AFRICAN DEVELOPMENT BANK

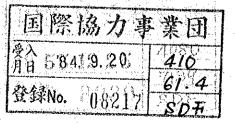
GOVERNMENT OF MAURITIUS

BEAU BASSIN - PORT LOUIS LINK ROAD

CULCULATION NOTE

FOR

SUBSTRUCTURES


2

JIGN LIBRARY

SEPTEMBER 1980

Japan International Cooperation Agency

S D F 80-100

CONTENTS

- 1. G.R.N.W. Bridge and St. Louis River Bridge
- 2. Over Bridges
- 3. Pedestrian Bridges
- 4. Motorway Junction Bridge (Piers)
- 5. Motorway Junction Bridge (Abutment and Approach Slab)
- 6. Ramp Way Bridge (Piers and Abutment)

4. Motorway Junction Bridge (Piers)

CONTENT

§§ 1 DESIGN CONDITIONS — 1 §§ 2 $H = 19.00^{m}$ (T Pier type) — 4 §§ 3 $H = 14.80^{m}$ () — 43

§§ 4 $H = 15.80^{m}$ () -84

SS / DESIGN CONDITIONS

&\$ 1 DESIGN CONDITIONS

1 Pier type

T Pier with circular column height $H = 19.00^m$, 14.80^m , 15.80^m

- 2. foundation type

 Spread footing
- unit weight of reinforced concrete and soil

 reinforced concrete 2.41 ton/m

 soil 1.90 ton/m
- 4 bearing capacity

 permissible bearing capacity $fa = 60^{-1/m^2}$
- 5 permissible stress of reinforced concrete
 - 1) Concrete grade 25

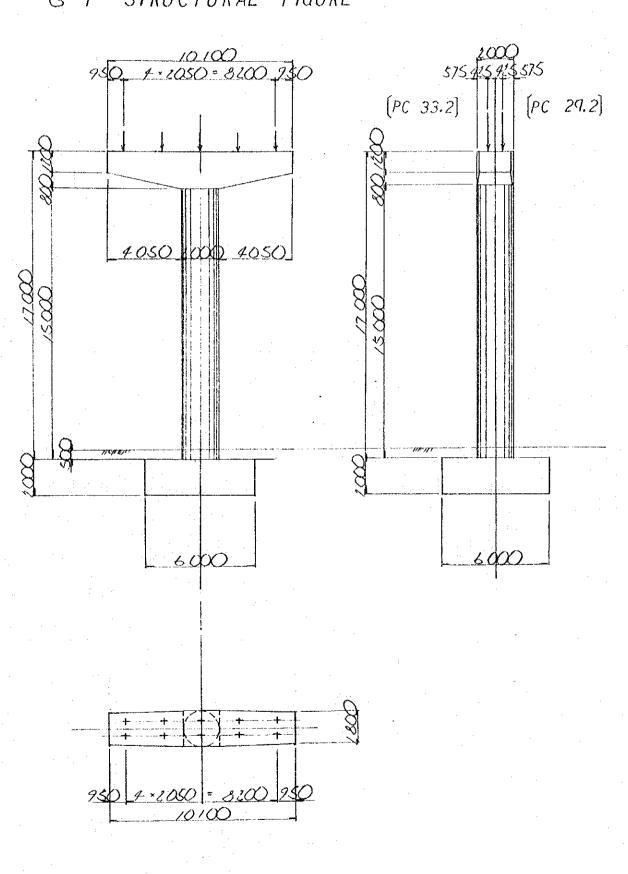
 specified cube strength at 28 days $25 \frac{N/mn^2}{mn^2} = 255 \frac{kg/cm^2}{cm^2}$ permissible compressive stress $6ca = 85 \frac{kg/cm^2}{mn^2}$ permissible shear stress $7ca = 0.81 \frac{N/mn^2}{mn^2} = 8.2 \frac{kg/cm^2}{mn^2}$

permissible shear in solid slab without shear reinforcement

Percentage of fle tensile steel	xural 100 As/b.d	0.25 or less	0.5	1.0	2.0	3.0 or more
Permissible shear	N/ 2 mm	0.23	0.34	0,46	0.63	0.70
	Kg/cm²	2.35	3.47	4.69	6.43	7.14

2) Reinforce ment

6 Permissible increase in basic working stresses


Load combination	Increase in basic permissible stresses (per cent)
Dead Load + HA Loading	0
Dead Load + HB Loading	25
Dead Load + Wind Load	15
Dead Load + HA Loading + Wind Load	15
Dead Load + HB Loading + Wind Load	30

$$A - L - 2 \qquad P = I$$

$$B - L - 2 \qquad P = I$$

$$E - RAMP \qquad P = I$$

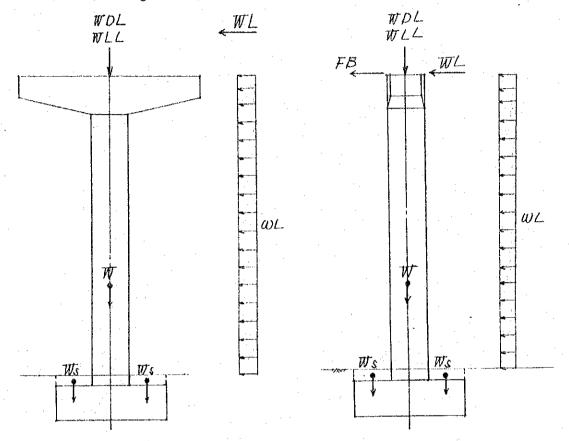
STRUCTURAL FIGURE

§ 2 REACTION OF SUPERSTRUCTURE

2-1 whole reaction of superstructure

dead load of decl	296.1	266.7	
H. A live load			
H.B live load	102.3	67.2	
crowd load	<u> </u>		
longitudinal forces	under H.A	12.90	
pongridumat jorces	under H.B	19.	10

2-2 reaction per each girder


		_	G /	G 2	G 3	G 4	G 5
	dead loc of de	id eck	114.7	116,5	118.1	116.5	114.7
	live.	H A	63,8	60.7	58.2	60.7	l3, E
	load	H B	63,5	57,3	62.2	57,3	63.5
	TOTAL	H A	178.5	177.2	176,3	177.2	1785
Į	, , , , , ,	HB	178.2	174.1	180.8	174.1	1782

§ 3 CALCULATION OF LOAD

3-1. loading diagram

 \circ

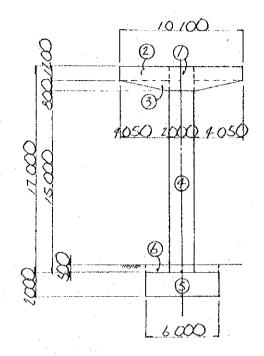
 \bigcirc

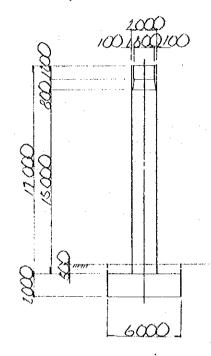
WDL: dead load of deck

WLL: max LL reaction under HA & HB

F B: HA & HB braking or fraction

W: self weight

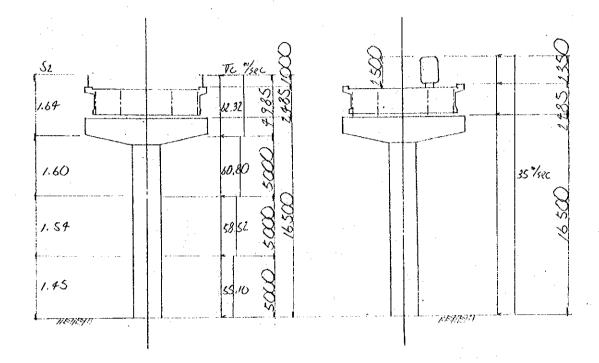

Ws : weight of soil


WL: wind load on the superstructure

wL : wind load on the pier

B : buoyancy

3-2 self weight and weight of soil



		N (1)
\bigcirc	200×200×200×2+1	19.18
2	{/2 × (1.80 + 2.00) × 4.05 × 1.20} × 2 × 2.4]	44.51
	{\(\times 0.80 \times \tau 0.5 \cdot (2 \times 2.00 + 1.80) \} \cdot 2 \times 2. \tau 1	15.10
	7/4 × 200° × 15 00 × 2.41	113.57
(F)	6.00 × 6.00 × 2.00 × 2. +1	173.52
6	(6.00×6.00 - 1/+ ×2.00°) × 0.50 × 1.9	31.22
		397.20

3-3 wind pressure

0

0

wind gust speed

$$V_c = v \cdot k_1 \cdot s_1 s_2$$

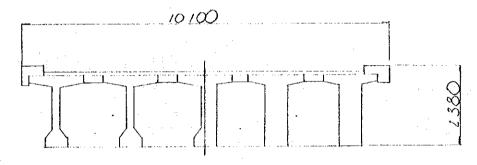
case (without live load)

$$V_{c} = 38 \times 1.0 \times 1.0 \times S_{z} = 38.S_{z}^{m/sec}$$

case 2 (with live load)

$$V_{\rm c} = 35.00 \, \text{m/sec}$$

(A) transverse wind load


 \mathcal{C}

(A-1) for superstructures

$$Pt = Q \cdot A \cdot Cd$$
 (1)
 $Q = 0.613 \cdot Vc^{2} \times 0.102$ (kg/m^{2})

Ca: drag coefficient

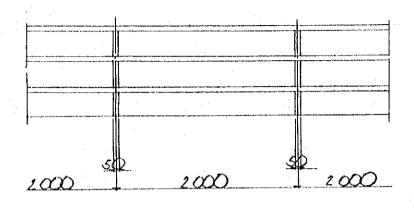
 $A : loading area (m^i)$

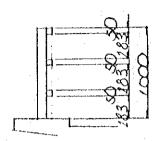
case 1
$$Q = 0.613 \times 62.32^{2} \times 0.102 \times 10^{-3} = 0.14 \frac{t}{m^{2}}$$

$$A = 2.38 \times \frac{1}{2} \cdot (34.00 + 30.00) = 76.16$$

$$Cd = 1.38 \quad (\frac{b}{d} = \frac{10.10}{2.38} = 4.24)$$

$$Pt = 0.24 \times 76.16 \times 1.38 = 25.22$$


case 2
$$Q = 0.613 \times 35^{2} \times 0.102 \times 10^{-3} = 0.077 \text{ m}^{2}$$

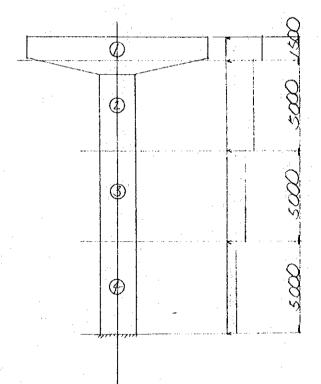

$$A = 4.73 \times \frac{1}{2} \times (34.00 + 30.00) = 151.36$$

$$Cd = 1.37 \quad (\frac{b}{d} = \frac{10.10}{2.50} = 4.04)$$

$$P t = 0.077 \times \frac{1}{5}, 36 \times \frac{1}{37} = \frac{15.97}{1}$$

(A-2) for parapet

case 1


O

 \bigcirc

$$A = 0.05 \times 3 \times 32 \infty + (1.00 - 0.05 \times 3) \times \frac{32 \infty}{2.00}$$
$$= 18.90^{-m^2}$$

$$q = 0.613 \times 62.32^{2} \times 0.102 \times 10^{-3} = 0.24^{t/m^{2}}$$

$$Ca = 1.1$$
 (from table 8)

O

	Vc sec	$q^{(1/m^2)}$	†/ _b	Сd
Ċ	62.32	0.24	>4	1.1
2	60,80	0.23	0;	1.2
3	58.52	0.21		1.2
4	55,10	0.19	0	1.2

	$A = (C^{*})$	Aborada di Malamari va kapapan mengalah dari baharan bahar dari baharan bahar dari bahar dari bahar dari bahar	Pt (t)	y (m)	Pt·Ý
	2,00 × 1.50	3,∞	0.79	18.150	
2	2.00 × 5.00	10,∞	2,76	15.000	41.40
3	,	10.00	2.52	10.000	25.20
4		10.00	2.28	5. <i>0</i> 00	11.40
			·		
		! 			
		1			
Σ		33. <i>0</i>	8.35		92.42

 \bigcirc

$$Vc = 35 \frac{m}{\sec}$$

$$Q = 0.077 \frac{t}{m^2}$$

$$A = 33 \infty \frac{m^4}{\cos}$$

$$Cd = (1.10 \times 3.00 + 1.2 \times 30.00) \times \frac{1}{33.00} = 1.19$$

$$Pt = 0.077 \times 33.00 \times 1.19 = 3.02$$

- (B) longitudinal wind load
- (B-I) for superstructure

case 1

$$PLS = 0.25 \cdot Pt$$

$$= 0.25 \times 25.22 = 6.3/$$

case 2

0

0

No.

$$PLL = 0.5 \cdot Pt$$

$$Pt = q \cdot A \cdot Cd \qquad A = 2.50 \cdot l \qquad Cd \ge 1.45$$

$$PLL = 0.5 \times 0.077 \times (2.50 \times 32.00) \times 1.45$$
= 4.47

(B-2) for palapet

0

.

for vertical members

$$PLI = 0.8 \cdot Pt$$

$$Pt = Q \cdot A \cdot Cd \qquad Cd = 1.1$$

$$A = 0.05 \times (1.00 - 3 \times 0.05) \times \frac{32.00}{2.00} = 0.68^{\frac{10}{2}}$$

$$PLI = 0.8 \times 0.24 \times 0.68 \times 1.1 = 0.15$$

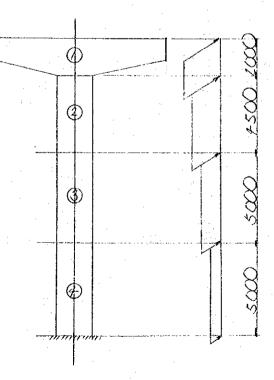
for horizontal members

$$PL2 = 0.4 \cdot Pt$$

$$Pt = Q \cdot A \cdot Cd \qquad Cd = 1.1$$

$$A = 32.00 \cdot 0.05 \cdot 3 = 4.80^{-6m^2}$$

PL2 = 0.4 x 0.24 x 4.80 x 1.1 = 05/


(B-3) for substructure

case 1

$$Vc = V \cdot k_1 \cdot S_1 \cdot S_2$$
= 38 × 1.0 × 1.0 × S₂ = 38 · S₂ $\frac{m}{sec}$

$$Q = 0.613 \cdot Vc^2 \times 0.102 \times 10^{-3} = 0.0903 \cdot (S_2)^2 / m^2$$

$$Pt = Q \cdot A \cdot Cd$$

	Vc (My sec)	$q^{(1/n\hbar)}$	t/b	(, d
(/)	62.32	0.29	< 1/4	2./
2	60.80	0.23	0	1.2
3	58.52	021	0	1.2
4	35.10	0.19		1.2

		A (m^i)	(1) Pt	y (m)	(tm) Pt·Y
	10.10 × 1.20 + /2 × (200+ 10.10) × 0.80	16:96	8,55	18.000	153.90
2	2.00 × 4.50	200	2.48	14.750	36,58
3	2,∞×5.∞	10.00	2,52	10.000	25, <i>ZO</i>
4	,	10.00	2.28	5.000	11.40
ļ		**************************************			
		·		:	
Σ		45,96	15,83		227.08

case 2

$$V_{C} = 35 \frac{m}{\text{sec}}$$

$$Q = 0.613 \times 35^{2} \times 0.102 \times 10^{-3} = 0.077 \frac{1}{m^{2}}$$

$$Cd = (2.1 \times 16.96 + 1.2 \times 29.00) \times \frac{1}{45.96} = 1.53$$

$$y = \frac{16.96 \times 18.00 + 29.00 \times 9.75}{45.96} = 12.79^{M}$$

(C) vertical wind load

case i

$$PV = Q \cdot A \cdot CL$$

$$A = 10.10 \times 32.00 = 323.20^{m^{c}}$$

$$CL = 0.4 \quad (\frac{b}{d} = \frac{10.10}{2.38} = 4.24)$$

$$PV = 0.24 \times 323.20 \times 0.4 = 31.03$$

case 2

$$PV = 9 \cdot A \cdot CL$$

$$A = 323.20^{m^2}$$

$$CL = 0.4$$

§ 4 CALCULATION OF STABILITY 4-1 longitudinal direction case (HA loading)

Москон час к Москва предеста в Абон, до до од друго дому до од до со до се до со до се до со до се до со до со	(†) N	(m) X	N·x (tm)	(t) H	y (m)	(tm) Hy
WDL.WI.L	801.20		28. 4 8		·	:
F B	·			12.90	19.000	245.10
W. Ws	397.20	: 				
TOTAL	1198.40	ىغانىيانىيىنىڭ ئارىلىدىنىڭ ئارىلىدىنىڭ ئارىلىدىنىڭ ئارىلىدىنىڭ ئارىلىدىنىڭ ئارىلىدىنىڭ ئارىلىدىنىڭ ئارىلىدىنىڭ ئارىلىدىنىڭ ئارىلىدىنىڭ ئارىلىدىنىڭ ئارىلىدىنىڭ ئارىلىدىنىڭ ئارىلىدىنىڭ ئارىلىدىنىڭ ئارىلىدىنىڭ ئارىلىدىنىڭ ئ	18.48	12.90	: :	245.10

I) check for eccentricity

$$e = \frac{INx + \Sigma Hy}{\Sigma N} = \frac{28.48 + 145.10}{1.198.40} = 0.23$$

$$< \frac{B}{6} = 1.00$$

2) soil reaction

18

0

0

$$Q = \frac{\sum N}{B \cdot L} \left(/ \pm \frac{6 \cdot e}{B} \right)$$

$$= \frac{/198.40}{6.00 \times 6.00} \times \left(/ \pm \frac{6 \times 0.23}{6.00} \right) = \begin{bmatrix} 40.91 & 1/m^2 \\ 25.63 & 60 \end{bmatrix}$$

$$H_u = C \cdot A' + N \tan \phi'$$
 $c = 0$ $\tan \phi' = 0.6$

$$F = \frac{0.6 \times 1/98.40}{12.90} = 55.7 \Rightarrow Fa = 1.5$$

case 2 (HB loading)

rian-unionela ana draid dissindra dalla Colle Print dell' eller I della Valle dilla print resu di	(f) N	(m)	N X	(t)	(m) V	H y (1m)
WDL WLL	732.30		27.41			
F B				19,10	19.000	362.90
W , Ws	397,20					
TOTAL	1119.50		27.41	19.10		362.90

1) check for eccentricity

$$e = \frac{27.41 + 362.90}{1/29.50} = 0.35$$
 $\frac{m}{6}$ $(\frac{B}{6})$ 1.25 = 1.25

2) soil reaction

0

Ó

$$Q = \frac{1/29.50}{6.00 \times 6.00} \times \left(1 + \frac{6 \times 0.35}{6.00}\right) = \begin{cases} +2.36 & \text{fig. } \\ 20.39 & \text{fig. } \end{cases}$$

$$F = \frac{0.6 \times 1/129.50}{19.10} = 35.4 \Rightarrow Fa = 1.5 \cdot \frac{1}{1.25} = 1.2$$

case 3 (HA loading + wind B)

	N (t)	(m) X	NX (tm)	H	y (m) y	Hy (tm)
WDL. WLL	801.20		28, 48			
F B				12.90	12.000	145,10
W , Ws	397.20					
wind $B-1$		· · · · · · · · · · · · · · · · · · ·		(2.02 + 4.47) 6.49	19.000	123.31
Pressure B−3			· · · · · · · · · · · · · · · · · · ·	5,41	12.790	69.19
IQIAL	1198.40		28.48	14.80		437.60

1) check for eccentricity

$$e = \frac{18.98 + 437.60}{1.198.70} = 0.39$$
 $\frac{m}{6} \times 1.15 = 1.15$

2) soil reaction

 \bigcirc

 \bigcirc

$$Q = \frac{1198.40}{6.00 \times 6.00} \times (1 \pm \frac{6 \times 0.39}{6.00}) = \begin{cases} 46.27 & t/m^2 \\ 6.00 & t/m^2 \end{cases}$$

$$F = \frac{0.6 \times 1/9840}{14.80} = 29$$
 > $F_0 = 1.5 \times \frac{1}{1.15} = 1.3$

case 4 (HA loading + wind ($\frac{1}{2}A + B + C$))

		(t) N	(m) X	(tm) Nx	(t) H	y (m)	Hy (tm)
WDL, WL	. /.	801,20		28.48			
FB					12.90	19.000	245,10
_W . }	/s	397.20					
wind	<i>B−1</i>				6.49	19.000	123,31
pressure	<u>B-3</u>				5,91		89.19
(B)	С	9.75					
wind pressure	A-1				(7.29)	21.418	(171.13)
(A)	A-3				4,18)		(46.21)
TOTAL	 	1208.35		18.98	24.80 (12.17)		(217.34)

1) check for eccentricity

$$e = \frac{18.48 + 437.60}{1208.35} = 0.39$$
 m $< \frac{B}{6} \times 1.15 = 1.15$ m

2) soil reaction

$$Q = \frac{/208.35}{6.00 \times 6.00} \times (/\pm \frac{6 \times 0.39}{6.00}) \pm \frac{6 \times 2/7.34}{6.00 \times 6.00^2} = \begin{bmatrix} 52.70^{-4} \\ 74.43 \end{bmatrix}$$

< 69.00 tm2.

$$F = \frac{0.6 \times 1208.35}{24.80} = 48 < Fa = 1.3$$

4-2 transverse direction

case (HA loading)

		N (t)	(m) X	Nx (tm)	H (†)	y (m).	Hy (tm)
	WDL	S62.80					
-	WLL	238 40			·		
	W Ws	397.20					
	TOTAL	1198.40					

1) check for eccentricity

$$e = \frac{0 + 0}{119840} = 0$$
 $\frac{m}{6} = 1.00$ $\frac{m}{6}$

2) soil reaction

 \circ

0

$$Q = \frac{1/98.40}{6.00 \times 6.00} = 33.29^{-\frac{1}{100}^2} < 60^{-\frac{1}{100}^2}$$

$$F = \frac{0.6 \times 1/98.40}{0} = \infty$$
 > $F_0 = 1.5$

case 2 (wind loadig)

	Marketin Const. and State of Const. Cons	(t) N	(m) X	(tm) Nx	(†)	y (m)	(tm) Hy
	WD1.	562.80					
	W. Ws	397.20					
	wind $A-I$				25,22	20.295	5/1.84
-	Pressere A-2				4.86	21.985	106.85
	A 3				8.35		92.42
	TOTAL	960.00			38.43		711.11

i) check for eccentricity

$$e = \frac{0}{960.00} + \frac{711.11}{960.00} = 0.77 \stackrel{m}{<} \frac{B}{6} \times 1.15 = 1.15$$

2) soil reaction

 \Box

$$Q = \frac{960.00}{6.00 \times 6.00} \times (/ = \frac{6 \times 0.74}{6.00}) = \begin{cases} 46.90 \\ 6.93 \end{cases} < 69.$$

$$F = \frac{0.6 \times 960.00}{38.93} = 15.0 \quad 7Fa = 1.5 \times \frac{1}{1.15} = 1.3$$

case 3 (HA loading + wind A)

		(†) N	(m) X	(tm) Nx	(t) H	y ^(m)	(tm) HY
WDL		562.80					
WLL		238,40					
W . h	/s	397.20					
wind Pressure	A /_		144.00.00.00.00.00.00.00.00		15,97	21.470	342.88
pressure	<u> 4 – 3</u>				3.02	10.750	32.47
IOTA	L	1198.40			18.99		375 <u>3</u> 5

i) check for eccentricity

$$e = \frac{0}{198.40} + \frac{375.35}{6} = 0.31$$
 $\frac{m}{6} \times 1.15 = 1.15$

2) soil reaction

 \bigcirc

0

$$Q = \frac{1198.40}{6.00 \times 6.00} \times (1 \pm \frac{6 \times 0.31}{6.00}) = \begin{pmatrix} 43.61 \\ 12.97 \end{pmatrix} < 69 = \frac{1}{10}$$

$$F = \frac{0.6 \times 1/98.40}{18.99} = 37.9$$
 > $F_0 = 1.3$

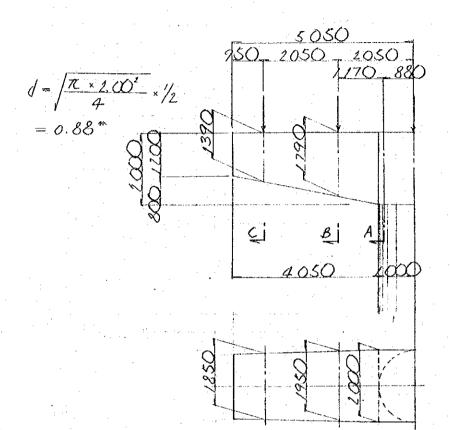
case 4 (HA loading + wind (A + C))

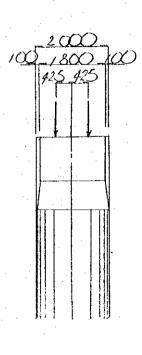
		$N^{-(t)}$	(M)	(tm) N x	(i) H	y (m)	(im) HY
WDL		562.80					
WLL		138.40					
W .	√s	397.20					
wind	A-1	<u>: : : : : : : : : : : : : : : : : : : </u>			15.97		342.88
Pressure	<u>A-2</u>				3.02		32.47
	<i>C</i> :	9,95					
IOIA	11_	1208.35			18.99		<i>375 3</i> 5

1) check for eccentricity

$$e = \frac{0}{1208.35} = 0.31$$
 $\frac{m}{6} \times 1.15 = 1.15$ $\frac{m}{6}$

2) soil reaction


0


Ö

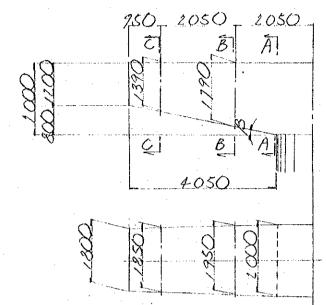
$$Q = \frac{1208.35}{6.00 \times 6.00} \times (1 + \frac{6 \times 0.31}{6.00}) = \begin{pmatrix} 43.97 & +/m^2 \\ 23.16 & 6.00 \end{pmatrix}$$

$$F = \frac{0.6 \times /208.35}{/8.99} = 38$$
 > $F_0 = 1.3$

§ 5 CALCULATION OF BEAM SECTION
5-1 dimension of beam and load

		G /	G 2	GЗ	G 4	G 5
WDL		114.7	116.5	118.1	116.5	114.7
4./ ()	H.A.	63.8	60.7	58.2	60.7	63.8
WLL -	н в	63,5	57.6	62.7	37,6	<i>હ</i> 3. ડ
TOTAL	H A	178.5	177.2	176.3	177.2	178.5
IUIAL	H B	178.2	174.1	180.8	174.1	178.2

5-2 sectional force of beam (HA loding)


. !				alle sa monte constituide contraction de pro-	h daniel e depressons perio distribucione for tradicione	**************************************
	1 : :	ţ		S (t)	(m) X	M (+111)
		W-L	-0.12×2.00×2.00×2.41	1.16	0.060	0.01
:		W 2	1/2 × (1.80+200) × 4.05 × 1.20 × 2.41	22.25	2, 109	16,93
	A - A	W 3	16 × 0.80 × 4.05 × (2 × 2.00 + 1.80) × 2.41	7,55	1.447	10.92
		RI		177.10	1,110	207.32
		R 2		178.50	3,220	<i>514.</i> 77
		Σ		386,66		839.95
		WI	1/2×(1.80+1.95) ×3.00 ×1:20×2.41	16.17	1, 480	14.08
,		W 2	16×0,59×3,00×(2×1.95+1,80)×2,41	4.05	0. 987	4.∞
	B - B	RI		(177,20)	0	0
	,	R 2		178,50	2:050	365,93
	i yili. Iii ingka			376,02		394.01
	acu, mirriar a estado estado en entre de caste d	4		(198.82)		
•		W_L	1/2 × (1.80 + 1.85) × 0.95 ×1.20 × 2.41	5.01	0.473	2.37
4	nga mitali garini.	W 2	1/6 × 0.19 × 0.95 × (2 × 1.85 + 1.80) × 2.41	0.40	0.315	0, 13
	C = C	R_{\perp}		178.50	0	0
		5		183.91		2.50
		· Comm		(5.41)		
	حجيلين بإسبادة بإبا			\$P\$ (1)		

Ó

5-3 list of stresses 6c.6s.7: working stress.

6ca,6sa,7a: Permissible stress. C-C A - AB-B M 839.95 394.01 2.50 S 386.66 376.02 183.91 b 200 195 185 h 185 164 129 10 15 - D32 13-D32 15 > 03L 15 > 241.20 As 120.60 104.52 0 0 M'bd° 12.27 7,5/ 10.45 11.76 n.P 0.0978 0.0566 C 7.77 6.39 S 11.60 19.53 1.13 1.10 58 78 Oc 2136 2201 Os. 7 10.5 11.7 83 Oca Ssa. 2346 7 a 8.2

5-4 check for sturrup

$$T_{cm}\beta = \frac{0.80}{4.05}$$

= 0.198

			ı		
	M (tm)	(t) S	d (m)	$\frac{M}{d}(\tan\beta)^{(t)}$	Sh (t)
section A-A	<i>839,9</i> 5	386, 66	1.850	89.90	296.76
<i>" В-В</i>	394.01	376. 02	1.640	47.57	328 45
" C-C	2,50	183,91	1.290	0.38	183.53

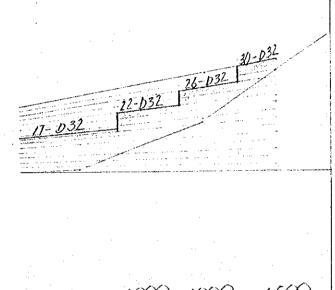
$$Sh = S - \frac{M}{d} (tan\beta)$$
 (t)

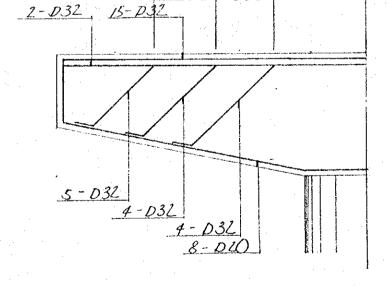
	b (cm)	d (cm)	(kg/ _{an} Za	Sc (t)	3h'
section A-A		the second of th			
· B-B			and the second of the second o		
° C-C			<u>.</u>		

$$Sc = Za \cdot b \cdot d \cdot 10^{-3}$$
 (t)

$$Sh' = Sh - Sc$$
 (t)

check for stirrups


$$Z = \frac{Sh}{b \cdot d} \times Z$$

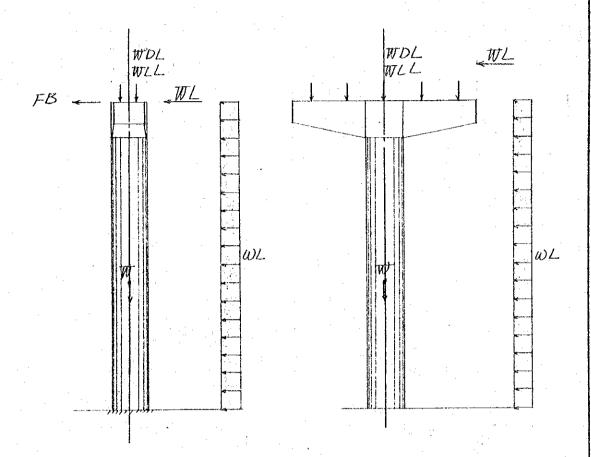

$$328.45 \times 10^{3}$$

$$= \frac{328.45 \times 10^{3}}{195 \times 164} \times 1.10 = 11.30 = 7a = 8.2$$

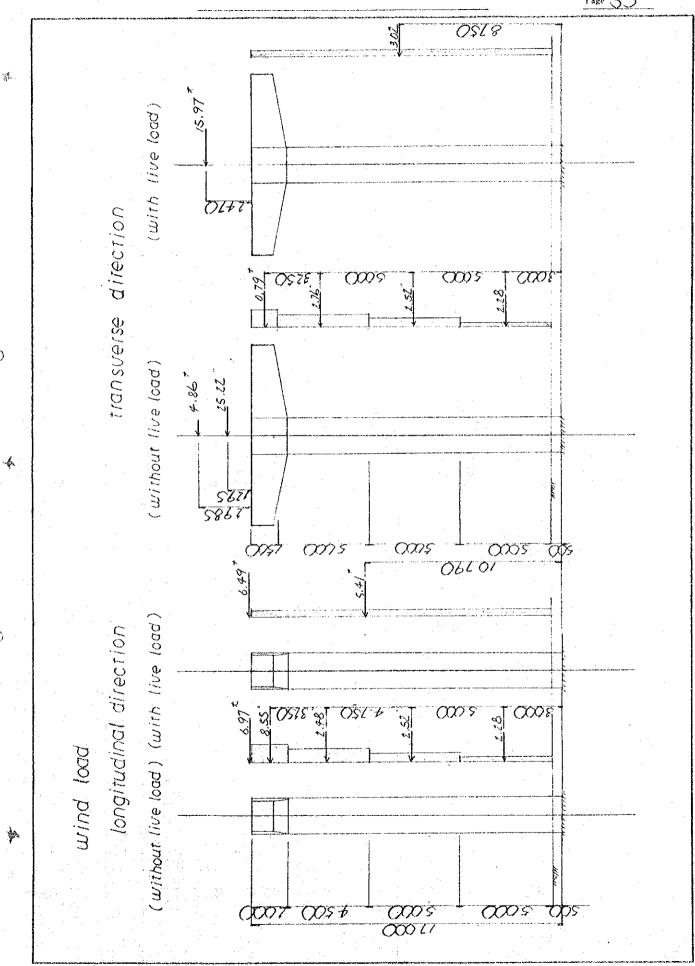
reg.
$$Aw = \frac{Sh' \times a}{Gsa - d} \times Z$$
 (em²)

reg.
$$A\omega = \frac{378.45 \times 10^3 \times 15}{1780 \times 164} \times 1.10 = 18.6$$
 cm²

$$M_I = \frac{M}{\int sa \cdot j} d$$


§ 6 CALCULATION OF COLUMN SECTION

6-1 dimension of column and load


longitudinal direction

0

transverse direction

	HA loading HB loading
dead load of deck	196.1 166.7 196.1 166.7
live load	138.0 100.4 102.3 67.2
longitudinal forces	12.9 19.1

Э

6-2 sectional force of column

1) longitudinal direction

					/ 4 1		(250)
		N (t)	(<i>m</i>) - X-	Nx (tm)	H (t)	y":	(tm) Hy
	WDL	562.80	·.	12.50			
case 1	WLL	238.40		15,98			
(HA loading)	FB.				12.90	17,000	219.30
	W	192.46					
		993.66		28.48	12,90		219,30
	WDL	\$62.80		12.50			
	W	192.46					
case 2	wind BI	.2			6,97	/7. OOO	118.49
(wind)	β				15.83		195,92
		755,26		12.50	22.80	·	313.91
	(L = 1.15			(10,87)	(19.83)		(272.97)
	WDL	562 80		12.50			
	WLL	238.40		15,98			
	FB		18		12.90	/7.00O	219.30
case 3	W	192,46		<u> </u>			
(HA loading)					<i>5.49</i>	17.000	110.33
+ wind		2			5,41	10.790	5837
	,	993.66		28.48	14.80		388 ∞
	(L=115			(24.77)	(21.57)	į	(337 39)

2) transverse direction

Ž.

Andrew Andrews and Andrews And	nakin saran ka paga pamah sarah sarah		N (t)	(m) X	(tm) Nx	(†) H	(m) y	Hy (1m)
	WDI	/	562.80					
·	W		192.46					
case /		<u>A-1</u>				25,22	18.195	461.90
(wind)	wind	<u>A-2</u>				4.86	19.985	97.13
		A-3			<u> </u>	8.35		75,72
			755.26			38.43		634.25
	(L = 1.	<i>15</i>)	(856,75)			(33,42)		(551,52)
	WD		562.80	: 				
	WLL		238,40					
case 2	W		192.46					
H A loading	wind	A-1			<u></u>	15.97	19.470	3/0.99
+ wind	wiiiu	4-3				3.02	8.750	26,43
	,	-	993.66			18.99		337.37
	(d = 1	. 15)	(864.05)			(16.51)		(293.37)

6-3 list of stresses 6c.6s: working stress

Ca, Csa: permissible stress

	longi	'tudinal di	rection	transvers	direction
	cask 1	case 2	cast 3	casel	case L
М	147. 78		362.16	551. 52	193.37
N	993.66	656.75	864,05	656.75	864.05
L	160				
Γs	90				
As	56-032 tc 100				
е	450,24	43.13	41.91	33.98	33.95
e e/r		0.43	0.419	0.840	0.340
M		240,59	1226.11	1208.27	1157,42
M r³		94.06	122.62	120,83	115.74
n P	-	0.2/5	0.215	0.215	0.215
n P		0.90	0.90	0.90	_0,90
(C)		0.481	0,474	0.685	0.436
[8]		0.097	0.086	0.5/8	0.012
Oc .		45	58	82	5/
0s		/37	159	938	39
Cca	83				*
()sa	2346				, 2

 $*As min = \frac{\pi}{4} \times 200^2 \times 0.01 = 314.16^{(9)^2}$

6-4 check for buckling of column

$$Pa = \frac{1}{3} \times (0.85 \cdot \int ck \cdot Ac + \int sy' \cdot As')$$

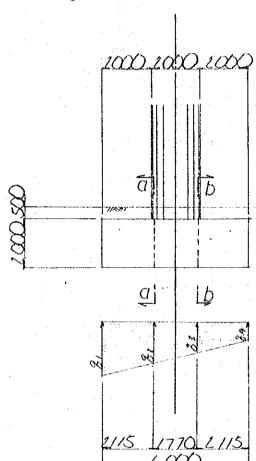
$$d = 1.45 - 0.03 \cdot \frac{he}{d}$$

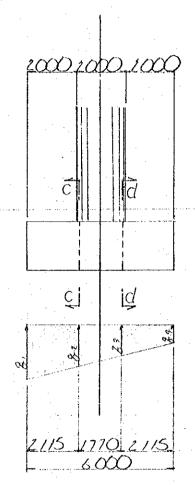
$$he = (17.00 + 2.00) \times 2 = 38.00^{14}$$

$$Pa = \frac{1}{3} \times (0.85 \times 250 \times \frac{\pi}{4} \times 200^{2} + 2500 \times 450.24)$$

$$= 2600000^{89} = 2600^{4}$$

$$d = 1.45 - 0.03 \times \frac{38.00}{2.00}$$


$$= 0.88$$


$$\therefore pqq = 2600 \times 0.88$$
= 2280 * > pN = 993.66 *

7 CALCULATION OF FOOTING SECTION 7-1 dimension and soil reaction

longitudinal direction transverse direction

-

case	10	ngitudi	nal dire	ection	transverse direction				
	91	92	73	94	91	92	Q'3	94	
1	10.91	35,52	31.02	15, 63	33,19	33.29	33.29	33,29	
2	42.36	34.62	18,13	20.39	46.40	32.49	20.84	6.93	
3	.46,27	37.12	29,46	10.3/	43.61	36.33	30.25	22,97	
4	46.66	37.43	19.70	20.47	43,97	36.63	30.50	23, 16	

section a - a

escas abscarces round escape in production the sec	Ceder Horestog Litzens		S (1)	(m)	SX (1m)
	W d	(2,00×2.4/+0,50×1,9) ×2.1/5 × 6.00	73,22	1.058	77. \$ 7
case 1	q	1/2 * (40.91 +35.52) * 2.115 × 6.00	- 484.95	1.082	- 524.89
			411.73		447,42
	Шd		73.12	 	77. <i>4</i> 7
case 2	Q	1/2 × (42.36+34.62) ×2.115 ×6.00	- 488,44	1.093	- 533.86
			415.22		456.39
(J=1.25)			(332,18)	4.4 H. A	(365,12)
	ш d		73.22		77. <i>4</i> 7
case 3	q	1/2 × (46.27 + 37, 12) × 2.115 × 6.00	- 529.11	1.096	- 579.90
			455.89		502.93
(L=1.15)			(396.43)		(436.90)
	Wd		73,22		77.47
case 4	q	1/2 * (46.66 + 19.70) ×2.115 × 6:00	- 484.50	1.096	- 531,02
			411.18		453.55
(L=1.15)			(357.63)		(394.39)

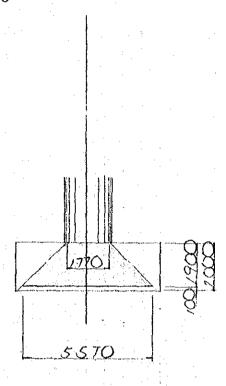
section b-b

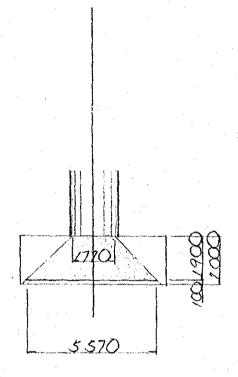
M upper = 0

section c - c

anne i propinsi de la compaction de la comp	Statement of the same of the s		(<i>t</i>)	(m) - X	SX (tm)
	wa		73.22		77.47
case 1	q	33,29 × 2,1/5 × 6.60	- 422.45	1.058	- 446,95
			369.23		369.48
	Wd		73,22		77.47
case 2	q	1/2×(46.40+32.49)×1.115×6.00	- 300.56	1,120	- 560.62
			427.3 4		483 15
(J = 1.15)			(371.60)		(420.13)
	шd		73.22		77. <i>‡</i> 7
case 3	q	1/2 * (43.6] + 36.33) * 2.115 * 6.00	- 507.22	1.090	- 552.87
			433.99		475.10
(2=1.15)			(377.39)		(413.39)
	Шd		73.22		77.47
case 4	9_	1/2 × (43.97 +36.63) ×2.115 × 6.00	- 5/1.41	1.089	- 557.23
(1= 1 15)			438.19		479.76
(d=1.15)			(381.03)		(417.19)

section d-d


Mupper = 0


7-2 calculation of members

longitudinal direction transverse direction

A

O

$$B_1 = 1.77 + 1.90 \times 2 = 5.57$$
 $B_2 = 1.77 + 1.90 \times 2 = 5.57$

7	-3	list of stresses	6c.6s.7:	working	stress ·
		•			

inal direct deligno albects with the second control where the self-self-self-self-self-self-self-self-	n allan sinka sun sun Compune annung qua kanganakpannung penenggan Typelik	n e se esta composita de la	الله المساوري ويوري ويوري ويوري	6ca,6sa,7	<u>a: Permi</u>	ssible st	ress.	···········
	a-a	b -	Ь	necessarie des sectos que de la compansión	<u> </u>	d-d		
М	447.42				420.13			
N								
S	411.73	galancia e de compansione de Paleiro		ogga gig	381.03			
b	557			. :	557			
h	190	ing and department of the second			190			
ď	/0			and the state of t	10	-		
As	D25 C 150 1.16.18	·*·		_	116.18		,	
As'								
	0				0			
M'ba° Sba	2,23				2.09			
Sba	3,89				3.60			
n-P	0.0165			NACOLA CONTRACTOR DE LA C	0.0165			
C	12.78			and the state of t	12.78			
S.	64.33				64.33			
Z	1.06				1.06			
6 c	19				27			
6s	2147				2017			
7	3.4				3.3	Malana ana ana ana ana ana ana ana ana an		
6ca	83							
Ssa	2346							
<u>7a</u>	2.35							

Check for stirrups

Sect a-a

$$T = \frac{S}{b \cdot d} \times Z = \frac{411.73 \times 10^3}{557 \times 190} \times 1.06 = 4.12 \times \frac{100}{557 \times 190} \times 1.06 = 4.12$$

s' = 5-5c

Sc =
$$Ta \cdot b \cdot d \cdot /z = 2.35 \times 557 \times 190 \times /1.06 = 234.62 \times 10^{3} \text{ kg}$$

S' = $(411.73 - 234.62) \times 10^{3} = 177.11 \times 10^{3} \text{ kg}$

Reg Av =
$$\frac{5 \times a}{6 \times a} \times Z = \frac{177.11 \times 10^3 \times 50}{1780 \times 190} \times 1.06 = 27.76$$

$$As = 3.14 \times 2 = 6.28$$
 cm² > Reg Au = 4.98 cm²

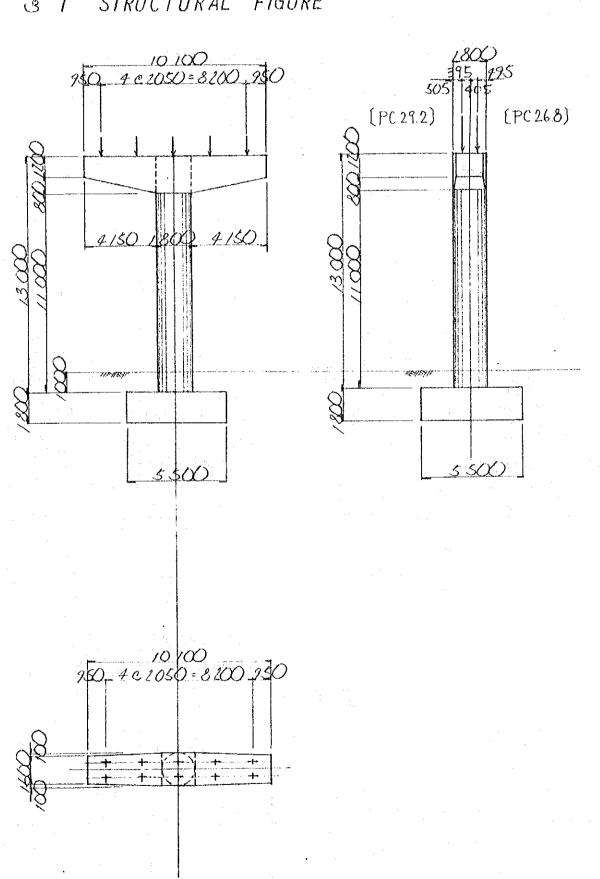
Sect c- c

Refer to sect a-a

As = \$20 - etc 500

d

0


O'

$$\begin{array}{cccc}
A - L - 2 & P & 2 \\
B - L - 2 & P & 2
\end{array}$$

STRUCTURAL FIGURE હ

A

Ç

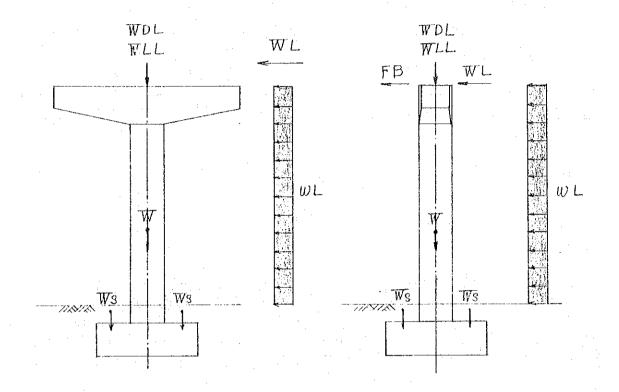
§ 2 REACTION OF SUPERSTRUCTURE

2-1 whole reaction of superstructure

· ()

Q

	gelegyddionel y spelen o'r Old Cumoniaeth Malliad Laffed Laffed Arl Malliad Carl Carl Carl Carl Carl Carl Carl Carl Carl Carl Carl Carl Carl Carl Carl		
dead load of decl	271.6	148.0	
H. A live load	128.6	94.9	
H.B live load		99.1	66.4
crowd load			
longitudinal forces	12	9	
iongradinal joices	under H.B	19	


2-2 reaction per each girder

		G 1	G 2	G 3	G 4	G 5
dead load		104.3	1063	107.7	106.3	104,3
live	H A	59.8	57. 7	54.5	57.7	59.8
load	$[H \mid B]$	62.1	<i>59</i> .3	57.3	54.3	62.1
TOTAL	H A	164.1	164.0	162.2	164.0	164.1
TOTAL	H B	166. A	160.6	165.0	160.6	166.4

.

§ 3 CALCULATION OF LOAD

3-1. loading diagram

WDL: dead load of deck

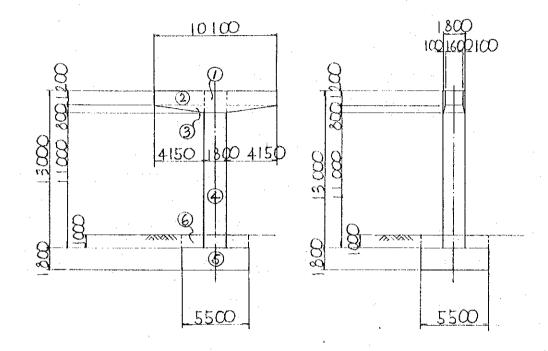
WLL: max LL reaction under HA & HB.

F. B : HA & HB braking or fraction

W : self weight

Ws : weight of soil

WL: wind load on the superstructure


wL : wind load on the pier

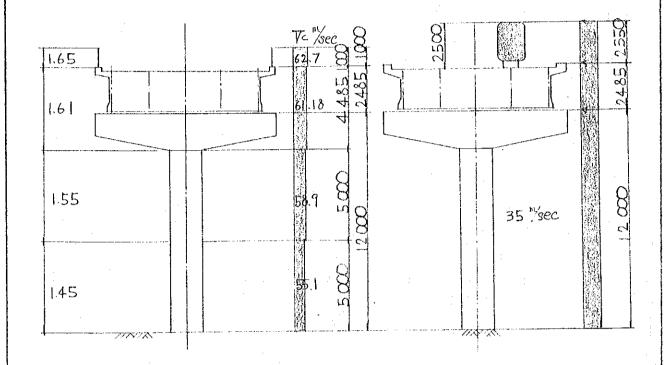
B : buoyancy

3-2 self weight and weight of soil

Ö

 \Diamond

		N
	180 × 180 × 2 CO × 2.4-1	15.62
2	(½ × (160 + 180) × 415 × 120) × 2.41.2	40.81
3	\(\langle \cdot 0.80 \langle 4.15 \cdot (2 \cdot 1.80 + 1.60)\cdot 2 \cdot 2.4\)	13.87
4	$\frac{17}{4} \times 1.80^2 \times 11.00 \times 2.41$	67.46
(5)	550 × 550 × 1.80 × 2.41	131.22
6	$(5.50 \times 5.50 - \sqrt[7]{4} \times 1.80^2) \times 1.00 \times 1.9$	51.64
		321.62


3-3 wind pressure

J.

 \bigcirc

Ö

P

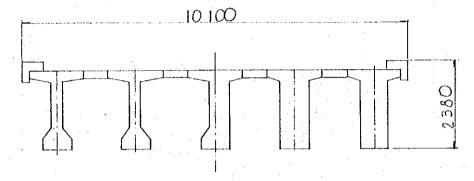
wind gust speed

case (without live load)

$$V_{c} = 38 \times 1.0 \times 1.0 \times S_{2} = 38.82$$
 = 38.82

case 2 (with live load)

$$V_c = 35.00 \, \frac{m}{\text{sec}}$$


(A) transverse wind load

(A-1) for superstructures

$$q = 0.613 \cdot \text{Vc}^2 \times 0.102 \quad (\frac{kg}{m^2})$$

Ca: diag coefficient

A : loading area (m²)

case /

4

 \bigcirc

 \odot

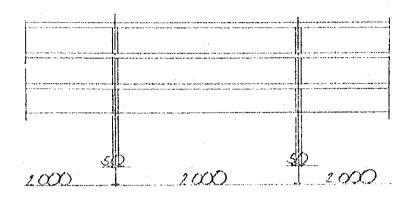
$$Q = 0.613 \times 6118^{2} \times 0.102 \times 10^{-3} = 0.23 \frac{1}{m^{2}}$$

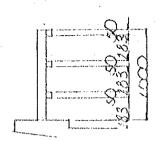
$$A = 2.38 \times \frac{1}{2} \times (30.00 + 2750) = 68.45$$

$$Cd = 1.38$$
 ($b/d = 10.10/2.38 = 4.24$)

$$Pt = 0.23 \times 68.43 \times 1.38 = 21.72$$

case 2


$$Q = 0.613 \times 35^2 \times 0.102 \times 10^{-3} = 0.077$$


$$A = 4.73 \times 1/2 \cdot (30.00 + 27.50) = 135.99$$

$$Cd = 1.37$$
 $(b/d = 10.10/2.50 = 4.04)$

$$P t = 0.077 \times 135.99 \times 1.37 = 14.35$$

(A-2) for parapet

case 1

()

 \bigcirc

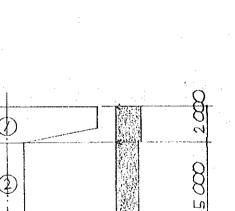
$$A = 0.05 \times 3 \times 28.75 + (1.00 - 0.05 \times 3) \times \frac{28.75}{2.60}$$
$$= 16.53$$

$$Q = 0.6/3 \times 62.7^{2} \times 0.102 \times 10^{-3} = 0.25^{t/m^{2}}$$

$$Cd = 1.1$$
 (from table 8)

$$Pt = 0.25 \times 16.53 \times 1.1 = 4.55$$

(A-3) for substructure


case 1

$$V_{c} = V \cdot k_{1} \cdot s_{1} \cdot s_{2}$$

$$= 38 \times 1.0 \times 1.0 \times s_{2} = 38 \cdot s_{2} \stackrel{m}{\sim} sec$$

$$q = 0.613 \cdot V_{c}^{2} \times 0.102 \times 10^{-3} = 0.0903 \cdot (s_{2})^{2} \stackrel{l}{\sim} m^{2}$$

= q · A · Cd

0 -

Ö

Jan.

	Vc sec	$q^{(1/n_1^2)}$	<i>t</i> / _b	Ça
	61.18	0.23	> 4	1
2	58.9	0.22	0	1.2
3	55.1	0.19	0	1.2.

		**************************************			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	(m²) A		P_{t} (t)	Ų (m)	Pt-U
	180 × 200	3.60	0.91	13.80	12.56
2	1.80 × 5.00	9.00	2.38	10.30	24.5
(3)	7	9.00	2.05	5.30	10.87
		21.60	5.34		4794

case - 2

0

Ö

$$V_{C} = 35 \frac{m_{sec}}{sec}$$

$$Q = 0.613 \cdot 35^{2} \times 0.102 \times 10^{-3} = 0.077 \frac{t_{m^{2}}}{t^{2}}$$

$$A = 21.60 \frac{m^{4}}{s}$$

$$C_{d} = (1.1 \times 3.60 + 1.20 \times 18.0) \times \frac{1}{21.6} = 1.18$$

$$P_{t} = 0.077 \times 21.6 \times 1.18 = 1.96 \frac{t}{21.60}$$

$$Q = \frac{360 \times 13.80 + 18 \times 7.80}{21.60} = 8.80 \frac{m}{s}$$

- (B) longitudinal wind load
- (B-1) for superstructure

case /

$$PLS = 0.25 \cdot Pt$$

= 0.25×21.72 5.43

casé 2

$$PLS = 0.25 \cdot Pt$$

$$P_t = q \cdot A \cdot Cd \quad A = l \cdot d$$

$$PLS = 0.25 \times 0.077 \times (28.75 \times 2.38) \times 138$$
$$= 1.82$$

$$PLL = 0.5 \cdot Pt$$

$$Pt = Q \cdot A \cdot Cd \qquad A = 2.50 \cdot l \qquad Cd \ge 1.45$$

$$P(L = 0.5 \times 0.077 \times (2.50 \times 28.75) \times 1.45$$

$$= 4.01$$

(B-2) for parapet

1

for vertical members

$$PLI = 0.8 \cdot Pt$$

$$Pt = Q \cdot A \cdot Cd \qquad (Cd = 1.1)$$

$$A = 0.05 \times (1.00 - 3 \times 0.05) \times \frac{28.75}{2.00} = 0.61^{m^{2}}$$

$$PLI = 0.8 \times 0.25 \times 0.61 \times 1.1 = 0.13$$

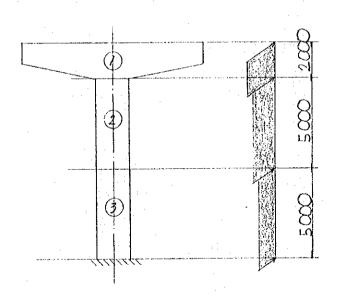
for horizontal members

$$PL2 = 0.4 \cdot Pt$$

 $P1 = Q \cdot A \cdot Cd$ $Cd = 1.1$
 $A = 28.75 \cdot 0.05 \cdot 3 = 4.31$

 $PL2 = 0.4 \times 0.25 \times 431 \times 1.1 = 0.47$

(B-3) for substructure


case 1

Ö

$$Vc = V \cdot k_1 \cdot S_1 \cdot S_2$$
= 38 × 1.0 × 1.0 × S₂ = 38 · S₂ $\frac{m}{sec}$

$$Q = 0.613 \cdot Vc^2 \times 0.102 \times 10^{-3} = 0.0903 \cdot (S_2)^2 / m^2$$

$$Pt = Q \cdot A \cdot Cd$$

	Vc Sec	$q^{(1/m)}$	<i>t</i> / _b	Ca
	61 18	0.23	< 1/4	2.
2	589	0.22		1.2
3	55.	0.19	0	1.2

		$A = (m^i)$	(†) Pt	y (m)	(tm) Pt·Y
	1010 × 1.20 + 1/2 × (1.80 + 10.10) × 0.80	16.88	8.15	1380	112.47
2	1.80 × 5.00	9.00	2.38	10.30	24.51
3	1.80 × 5.00	9.00	2.05	5.30	10.87
			·		
				•	· ·
		34.88	12.58		147.85

case 2

$$V_{C} = 35 \text{ //sec}$$

$$Q = 0.6/3 \times 35^{2} \times 0.102 \times 10^{-3} = 0.077 \text{ //m}^{2}$$

$$A = 34.88$$

$$C_{C} = (2.1 \times 16.88 + 18.00 \times 1.2) \times \text{ //}34.88 = 1.64$$

$$P_{T} = 0.077 \times 34.88 \times 1.64 = 4.40$$

$$Q = \frac{16.88 \times 13.80 + 18.00 \times 7.80}{34.88} = 10.704 \text{ //}$$

(C) vertical wind load

case 1

镁

$$PV = Q \cdot A \cdot CL$$

$$A = 10.10 \times 28.75 = 290.38^{1/2}$$

$$CL = 0.4 \cdot (\frac{b}{d} = \frac{10.10}{2.38} = 4.24)$$

$$PV = 0.23 \times 290.38 \times 0.4 = 26.71^{t}$$

case 2

$$PV = 9 \cdot A \cdot CL$$

$$A = 290.38$$

$$CL = 0.4$$

$$PV = 0.077 \times 290.38 \times c.4 = 8.94$$

§ 4 CALCULATION OF STABILITY
4-1 longitudinal direction
case (HA loading)

	(f) N	(m) X	(tm) N·x	(t) H	y (m)	(tm) H y .
WDL . WLL	743.		19.20			
FB				12.90	14.80	190,92
W. Ws	32162	,				
IOTAL	1064,72		19.20	12.90		190.92

1) check for eccentricity

$$e = \frac{\int Nx + \sum Hy}{\sum N} = \frac{19.20 + 190.92}{1064.72} = 0.20$$

$$< \frac{B}{6} = 0.92$$

2) soil reaction

.4

$$Q = \frac{\sum N}{B \cdot L} \left(/ \pm \frac{6 \cdot e}{B} \right)$$

$$= \frac{1064.72}{5.50 \times 5.50} \times \left(/ \pm \frac{6 \times 0.20}{5.50} \right) = \begin{bmatrix} 42.88 \\ m^2 \\ 27.52 \end{bmatrix}, \langle 60 \\ m^2 \\ 27.52 \end{bmatrix}$$

$$H_u = C \cdot A' + N \tan \phi'$$
 $C = 0 \tan \phi' = 0.6$

$$F = \frac{0.6 \times 1064.72}{12.90} = 49.52 > Fa = 1.5$$

case 2 (wind loading)

				to Charles the Area Charles and the Market and Advanta Area	B. S. Calandra and Company of the Co		
		(†) . Ň	(m)	$Nx^{(tm)}$	H	y (m)	Hy (1m)
WDL	a	519.6		6.84-		Milled and Address of the Prof.	
W, k	/ _{\$}	32162					
wind	B-1	· · · · · · · · · · · · · · · · · · ·	V-V-10	· ———	5.43	14.8	80 36
Plassure	B-2			:	(0.13 + 0.47) 0.6 <i>0</i>	14-8	10.37
	B-3	·			12.58	•	147.85
IOTA	1	841.22		6.84	18.61		238,58

1) check for eccentricity

$$e = \frac{6.84 + 238.58}{84122} = 0.29$$
 $< -\frac{B}{6} 1.15 = 1.05$

2) soil reaction

$$q = \frac{841.22}{5.50 \times 5.50} \times (1\pm \frac{6 \times 0.29}{5.50}) = \begin{pmatrix} 36.61 & \frac{1}{19.01} \\ 19.01 & 69 & \frac{1}{19.01} \end{pmatrix}$$

$$F = \frac{0.6 \times 841.22}{18.61} = 45$$
 > $F_0 = 1.5 \cdot \frac{1}{1.15} = 1.3$

case s (HA loading + wind B)

	(t) N	(m) X	Nx (tm)	(t)	y (m)	Hy (tm)
WDL.WLL	743.	· .	19.20			
FB				1290	14.80	190.92
W, Ws	321.62	-				
wind $B-1$		adendary subsective Want		(1.82+4.01) 5.83	14.80	86.28
Pressure B-3				4.40	12.74	56.06
TOTAL	1064.72		19.20	23.13		333, 26

1) check for eccentricity

$$\epsilon = \frac{19.20 + 335.26}{1064.72} = 0.33 \stackrel{m}{<} \frac{B}{6} 4.15 = 1.05$$

2) soil reaction

 $\mathcal{A}_{\mathbf{k}}$

$$q = \frac{1064.72}{550 \times 550} \times (1 \pm \frac{6 \times 0.35}{550}) = \begin{pmatrix} 35.2 & \frac{1}{10} \end{pmatrix}^{2} < 69.00$$

$$F = \frac{0.6 \times 1064.72}{23.13} = 28 > F_0 = 1.5 \times \frac{1}{1.15} = 1.3$$

					The second secon
case	4.	(HA	loading +	wind $(1/2)$	A + B + C))

		(†) N	(m) X	(tm) Nx	(t) H	$y^{(m)}$	H y (tm)
WDL, WL	<u></u>	743.1		19.20			
FB					12.90	1480	190.92
- W: . k	√s	321.62					:
wind	B1				5.83	14.80	86.28
Pressure					4.40	12.74	56.06
(B)	C	8.94					manuscript of a state of an extension of the
wind	A-1		makka ka		(7.18)	17.27	124.00
pressure (A)	A-3				(0.98)	8.80	862
TOTAL		1073.66		19.20	23.13. (8.16)		333,26 (132.62)

1) check for eccentricity

$$e = \frac{19.20 + 333.26}{1073.66} = 0.33$$
 $m < \frac{B}{6} \times 1.15 = 1.05$ m

2) soil reaction

 \odot

A

$$Q = \frac{1073.66}{5.50 \times 5.50} \times (|\pm \frac{6 \times 0.33}{5.50})^{\pm \frac{6 \times |3|.62}{5.50 \times 5.50^{2}}} = \begin{bmatrix} 53.02 & \frac{1}{10.00} \\ 17.97 & \frac{1}{10.00} \end{bmatrix}$$

$$< 69.00 = \frac{1073.66}{10.00} \times (|\pm \frac{6 \times 0.33}{5.50})^{\pm \frac{6 \times |3|.62}{5.50 \times 5.50^{2}}} = \begin{bmatrix} 53.02 & \frac{1}{10.00} \\ 17.97 & \frac{1}{10.00} \end{bmatrix}$$

$$F = \frac{0.6 \times 1073.66}{23.13} = 28 < F_a = 1.3$$

4-2 transverse direction

case ((HA loading)

	(†) N	(m))	Nx ^(tm)	$H^{(\uparrow)}$	$y^{(in)}$	H y
WDL	519.6					
WLL	223.5					
W Ws	321.62					1
TOTAL	1064.72					

I) check for eccentricity

$$e = \frac{0 + 0}{1064.72} = 0 \stackrel{m}{<} \frac{B}{6} = 0.92$$

2) soil reaction

$$q = \frac{106472}{550.550} = 35.2^{\frac{1}{100}} < 60^{\frac{1}{100}}$$

3) check for sliding

A

$$F = \frac{0.6 \times 1064.72}{0} = \infty$$
 $\Rightarrow F_0 = 1.5$

case 2 (wind loadig)

		N (t)	(m)	(tm) Nx	(t) H	(m) y	Hy (tm)
	WDL	519.6				•	
	W Ws	32162					
	wind A-	/			21.72	16.095	349.58
ı	Pressere A -				4.55	17.785	80.92
	A				5.34	·	47.94
	TOTAL	841.22			31,61		478.44

i) check for eccentricity

$$e = \frac{0}{841.22} = 0.57 < \frac{B}{6} \times 1.15 = \frac{m}{6}$$

2) soil reaction

$$Q = \frac{841.22}{5.50 \times 5.50} \times (1 \pm \frac{6 \times 0.57}{5.50}) = \begin{cases} 45.10 & \text{fm}^2 \\ 10.52 & \text{fm}^2 \end{cases}$$

$$F = \frac{0.6 \times 84 \mid 22}{31.61} = 16.0 \Rightarrow F_0 = 1.5 \times \frac{1}{1.15} = 1.3$$

case 3 (HA loading + wind A)

	(†) N	χ (m)	(tm) Nx	H	$y_{\perp}^{(m)}$	(tm) 49
WDL	519,6					
WLL	223.5		:			:
W. Ws	321.62					:
1 1/3				14.35	17.27	247.82
Pressure A -	- 3			1.96	8.80	17.25
TOTAL	1064.72			16.31		265.07

() check for eccentricity

$$e = \frac{0 + 265.07}{1064.72} = 0.25 \stackrel{m}{<} \frac{8}{6} \times 1.15 = 1.05$$

2) soil reaction

):E

Ö

$$Q = \frac{1064.72}{5.50 \times 5.50} \times (1 \pm \frac{6 \times 0.25}{5.50}) = \begin{pmatrix} 44.8 & 711^2 \\ 25.6 & <69 \end{pmatrix}^{-1}$$

$$F = \frac{0.6 \times 106472}{1631} = 39 \Rightarrow F_0 = 1.3$$

case 4 (HA loading + wind(A+C))

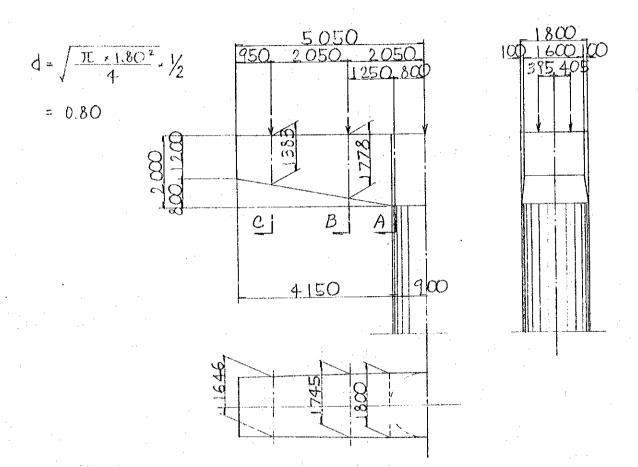
		N (t)	(M)	(tm) Nx	H (†)	y (m).	H.y.
WDL		519.6					
W	<u>l. L.</u>	223.5				wan werey fully drings	Laurence per Ausgaries gergerüberen. von
W	. Ws	321.62					
wind	A-1	 }	·	· · · · · · · · · · · · · · · · · · ·	14.35		247.82
Press					1.96		17.25
	C	894					
J	OTAL	1073.66		-	16.31		265 07

1) check for eccentricity

$$e - \frac{0}{1073.66} + \frac{265.07}{6} = 0.25 \stackrel{m}{<} \frac{8}{6} \times 1.15 = 1.05$$

2) soil reaction

$$q = \frac{1072.66}{5.50 \times 5.50} \cdot (|\pm \frac{6 \times 0.25}{5.50}) = \begin{pmatrix} 45.17 & 7 \text{m}^2 \\ 15.81 & < 69 & 7 \text{m}^2 \end{pmatrix}$$


$$F = \frac{0.6 \times 1073.66}{16.31} = 39$$
 $> F_0 = 1.3$

§ 5 CALCULATION OF BEAM SECTION 5-1 dimension of beam and load

S.

 \bigcirc

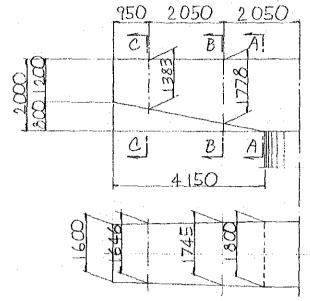
 \bigcirc

		G J	G 2	Ĝ 3	G 4	G 5
WDL		104.3	106.3	107.7	106.3	1043
	H A	5° 8	57.7	54.5	57.7	59.8
WLL	н В	62.	54.3	57.3	54.3	62.1
	H A	164	164.0	162.2	164.0	164.1
TOTAL	H B	166.4	160.6	165.0	160.6	166.4

5-2 sectional force of beam (HA loding)

			S (t)	χ (m)	(tm)
	WI	0.10 × 1.80 × 1.80 × 2.41	0.78	0.05	0.04-
	W 2	1/2 × (160+180) × 4.15 × 1.20 × 2.41	20.40	2.134	43,53
A - A	W 3	16 x 0.80 x 4.15 x (2 x 1.80 + 1.60) x 2.41	6.93	1.457	10.10
	R 1:		164.0	1.25	105.0
	R 2		164.1	3.30	541,53
	Σ		356.21	·	800.2
	WI	½×(1.60+1.745)×300×1.20×2.41	14.51	1.478	21.45
	W 2	1/6×0578×300+(2×1.745+160)×2.41	3.55	0.986	3,50
B - B	RI		(164.0)	0	0
	R 2		164.1	2.05	336,41
	Σ		346.16		361.36
			(182.16)		
::	W	1/2×(160+1646)×095×120×24	4.46	0.473	2.11
	W 2	1/6×0.183×0.95×(2×1.646+1.6C)×2.41	034	0.315	0.11
C - C	R_{I}		164.1	O	0
	5		168.9		2.22
	Σ		(4.80)	,	


5-3 list of stresses 6c.6s.z: working stress.


6ca,6sa,7a: Permissible stress. C - CB - BA - AΜ 800.2 361.36 2.22 N 168.9 346.16 356.2 164 b 180 174 168 128 185 10 10 15 14 - 032 12 - 032 14 > D32 225.12 As 112.56 96.4-8 0 0 M'bd° 12.99 7.36 Shd 11.84 10.70 0.0578 n.P 0.1014 6.31 771 11.21 19.16 .1.14 1.11 82 57 6°C 2184 2115 6s 12 13 7 83 6ca 2346 (Sa 8.2 7a

.

)

. .

$$\tan \beta = \frac{0.80}{4.15}$$
= 0.193

	(tm) M	S	d (m)	$\frac{M}{d}(\tan\beta)^{(t)}$	Sh
section A-A	8 0 0. 2	356.21	1.850	83.38	272.83
	361.36			4146	319.9
C-C	2.22	1689	1.280	0 33	168.57

$$Sh = S - \frac{M}{d} (tan\beta)$$
 (t)

				· · · · · · · · · · · · · · · · · · ·	
	b (cm)	d (cm)	(kg/cm Za_	Sc	Shi
section A-A					
B-B					
· C-C					

$$Sc = Za + b + d + 10^{-3}$$

$$Ca = C + C + C + (t)$$

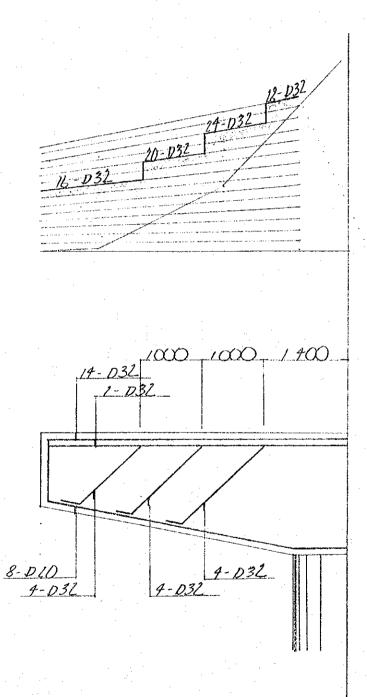
煤

 \bigcirc

-

O

J_a


check for stirrups

$$\mathcal{I} = \frac{sh}{b \cdot d} \times \mathcal{Z}$$

$$= \frac{319.90 \times 10^{3}}{175 \times 168} \times 1.11 - 12.10 > T_a = 8.2$$

reg.
$$Aw = \frac{Sh' \times a}{6sa - d} \times Z$$
 (em')

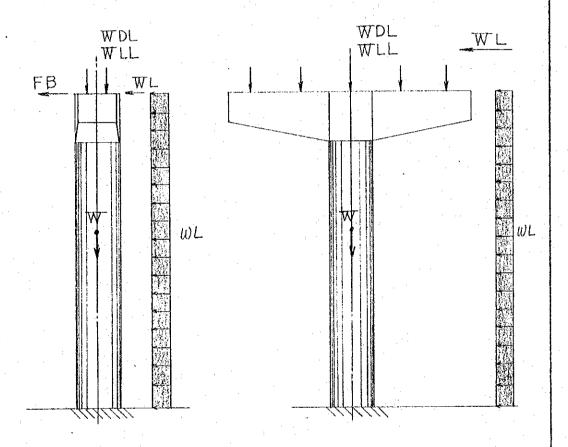
$$S_c = To \times b \times d \times \frac{1}{2}$$

XA

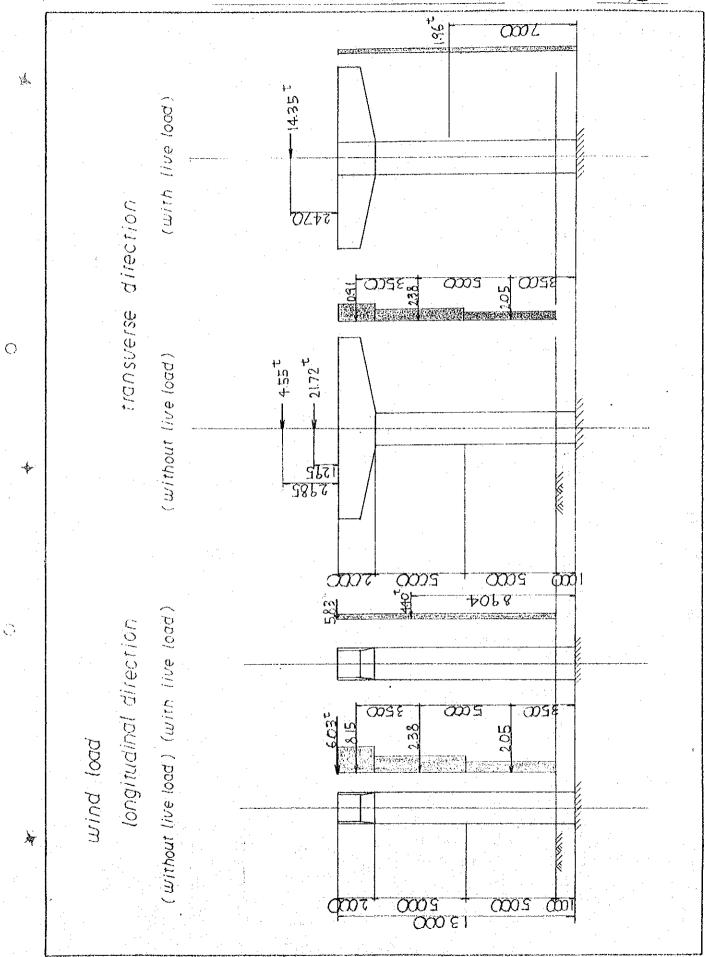
*

0

A


§ 6 CALCULATION OF COLUMN SECTION

6-1 dimension of column and load


 \circ

 \circ

longitudinal direction transverse direction

	HA lo	adin9	HB loo	ndin9
dead load of deck	271.6	248.0	271.6	2480
live load		94.9	99.1	
longitudinal forces	12	9	19	· .

6-2 sectional force of column

1) longitudinal direction

			N (t)	(m) X	NX (tm)	H (t)	(m) y	Hy (trn)
		WDL	519.6		6.84			
	, case 1	WLL	223.5		12,36			
	(HA loading)	FB				12.90	13.00	167.70
		W	137.76					
			880.86		19,20	12.90		167.70
		WDL	519.6		6.84			· ·
		· W	137.76		<u></u>			
5	case 2	wind B				6.03	13.00	78.39
	(wind)	B-3		<u> </u>		1258		125.21
			657.36		6.84	18.61	•	203,6
		(sL = 1.15)	(57162)		(5.95)	(16.18)		(177.04)
		WDL	519.6		6.84			
		WLL	223.5		12.36			
		F B				12.90	13.00	167.70
	case 3	W	137.76			:		
	(HA loading)		*			5.83	13.00	75.79
	+ wind	B-2				4.40	8.904	39.18
		•	880.86		19.20	23.13		28267
		(L=1.15)	(765.97)		(16.70)	(20.11)	مرور المراجع ا	(245.8)

2) transverse direction

_									
		Personan organisa makeriya		(t) N	(in) X	Nx (tm)	11	y (m)	Hy (1m)
		WDi		519.6	The second secon				***************************************
		W		137.76					
	case /		<u> </u>				21.72	14.295	310.49
	(wind)	wind	4-2				4.55	15.985	72.73
			4-3				534		38.33
		·		657.36	·		31.6		421,55
		L= 1.	<i>15</i>)	(571.62)			(2749)		(36657)
.		WDL	•	519.6					
		W _I .L		223.5					***************************************
	case 2	W		137,76	·			· · ·	***************************************
	(I A loading ₎	wind	<u> </u>		· .		14.35	15.47	221.99
	+ Wind	will d	<u>A - 3</u>				1.96	7.00	13.72
				880.86	·		16.3 [235 71
		(d = 1.	15)	(765.97)		·	(14.18)		(204.97)

6-3 list of stresses 6. 8: working stress

6ca,6sa: permissible stress

					AND CONTROL OF THE PARTY OF THE
	l ongitu	dinal direc	tion	transverse	direction
	case /	, 2	, 3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	· .
М	186,9	182.99	262.5	366.57	204,97
N	880.86	571.62	765.97	571.62	765.97
ſ	90				
ſs	80				
As	36 - D32			-	
1,13	289.44				
6		32.01	34,27	64.13	
6/		0.36	0.38	0.71	
M	7	697.45	752	881.03	
M ₁ 3		95.67	130.57	120.85	
nΡ		0.1706	0.1706	0.1706	
rs r		0.90	0.90	0.90	
(C)		0.46	0.4-8	0.68	
[S]		0.0406	0.0618	0.448	
бс		45	63	82	
0s		58	121	812	
(Ca	83				
() sa	2346	:			

Ą

 \bigcirc

.

6-4 check for buckling of column

$$Pa = \frac{1}{3} \times (0.85 \cdot \int ck \cdot Ac + \int sy \cdot As)$$

$$d = 1.45 - 0.03 \cdot \frac{he}{d}$$

$$he = (13.00 + 1.80) \times 2 = 29.60^{\text{NL}}$$

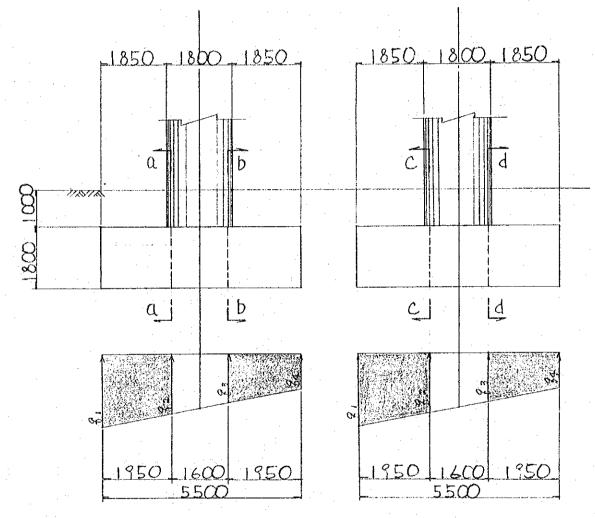
$$Pa = \frac{1}{3} \times (0.85 \times 250 \times \frac{15}{4} \times 180^{2} + 2500 \times 289.44)$$

$$= 2044.000^{kg} \quad 2044^{t}$$

$$d = 1.45 - 0.03 \times 29.60 / 1.8$$
$$= 0.96$$

O

$$\therefore paa = 2044 \times 0.96$$


$$= 1962.24^{t} > pN = 880.86$$

\$ 7 CALCULATION OF FOOTING SECTION

7-1 dimension and soil reaction

褪

longitudinal direction transverse direction

case	loi	ngitudi	nat dire	ction	transverse direction				
	q_{J}	92	Q3	94	91	92	Q3	CJ 4	
1	42.88	37.43	32.97	27.52	35.2	35.2	35.2	352	
2	36.61	30.37	25.25	19.01	45.1	32.84	2278	10.52	
3	35.20	3071	27.02	22.53	44.8	37.99	3241	25.6	
4	48,27	39.21	31.78	2272	45.17	3831	32.67	2581	

section A-A

0

 \bigcirc

			S (t)	(m)	Sx (tm)
	w d	(1.80 × 2.41 +1.00 × 1.9) × 1.95 × 5.50	66.90	0.975	6 <u>5</u> .23
case 1	9	15.4(42.88+37.43)×1.95×5.50	-430.66	0.997	- 429.37
			363.76		. 364.14
	wd		66.9		65.23
case: 2	9	1/2 < (36.61 +30.37) × 1.95 × 5.50	-35918	1.01	-362.77
(1, 15)			292.28		297 54
(1 = 1.15)			(254.16)		(258 73)
	Шd		66.9		65.23
case 3	q	1/2×(352+30.71)×195,550	-353.44	0.997	-35238
(1 - 1 10)			286, 54		287.15
(L=1.15)			(249 17)		(249 70)
	Wd		66.9		65,23
case 4	<u>q</u>	1/2 × (48.27 +39.21) × 1.95 × 5.50	-469.11	1.01	-473,80
(d=1.15)			402.21	100	408 57
(0,77,737			(349.75)		(355, 28)

section B - B

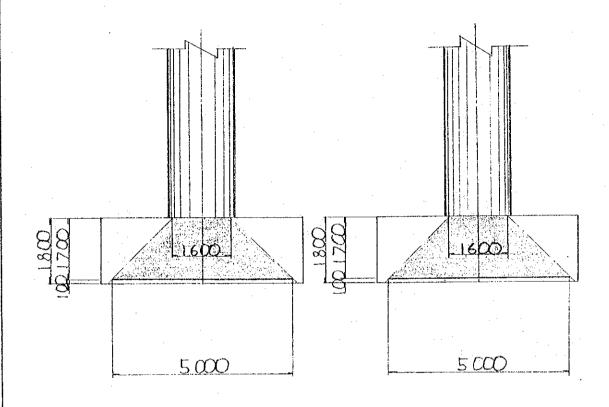
Mupper - 0

section c - c

N.

0

-				(1)	(m)	(tm)
		· · · · · · · · · · · · · · · · · · ·		S	ŗ	Sx
	.	Wd		66.9		65,23
	case 1	q.	35,2 × 1.95 × 5.50	- 377,52	0.975	- 368 08
				310,62		302.85
		เบิส		66.9		65.23
	case 2	Q	1/2×(45.1+32.84)×1.95×5.50	-417.95	1.026	-42882
	÷			351.05		363 59
	(J.= 1. 15)			(305.26)		(316.17)
	ŧ	เมส		66.9		65,23
	case 3	q	1/2 * (44.8 + 37.99) * 1.95 * 5.50	- 443.96	1.002	-444.85
				377.06	· :	379.62
	(J=1.15)			(327.88)		(330.10)
		Wd		66.9		65,23
	case 4	q	1/2 x(45.17+38.31) x1.95 x5.50	-447.66	1.002	-44-8,56
				380.76		383 33
	(d= 1.15)			(33.1.10)		(333-33)


section d-d

Mupper = 0

7-2 calculation of members

longitudinal direction transverse direction

劉

$$B_1 = 1.60 + 1.70 \times 2 = 500$$

$$B = 1.60 + 1.70 \times 2 = 5.00^{m}$$

6c.6s.7: working stress. 7-3 list of stresses 6ca,6sa,7a: Permissible stress. d - dC - Ca - ab - bΜ 333, 33 364.14 N 331,10 363.76 b 500 500 170 h 170 10 10 D25 @ 150 106.76 D25 @150 106.76 0 0 2.31 2.52 Sbd 3.90 4.28 0.0188 0.0188 n.P 12.07 C 12.07 56.52 S 56.52 1.06 1.06 29 30 00 1956 2136 6s 4.5 4.1 7 83 Oca 2346 (Sa 2,35 Za

鬞

С

 C

奉

Check for stirrups

Sect a-a

ii.

$$T = \frac{S}{b \cdot d} \times Z = \frac{363.76 \times 10^3}{500 \times 170} \times 1.06 = 4.54 \frac{\text{kg/cm}^2}{\text{cm}^2} < T_a = 2.35 \frac{\text{kg/cm}^2}{\text{cm}^2}$$

5' = 5-56

$$S_c = T_0 \cdot b \cdot d \cdot \frac{1}{Z} = 2.35 \times 500 \times 170 \times \frac{1}{10b} = 188.44 \times 10^3 \times 9^3$$

$$5' = (363.76 - 188.44) \times 10^3 = 175.32 \times 10^3$$

Reg Av =
$$\frac{s' \times a}{\sigma_{sa} \cdot d} \times 7 = \frac{175.32 \times 10^3 \times 50}{1780 \times 170} \times 1.06 = 30.71$$

Sect c-c