Chapter 5 Recommendations

CHAPTER 5

RECOMMENDATION

5-1 Regional Characteristics

The project area was divided into two areas: Coastal area and Hinterland. Regional characteristics of these two areas are stated below.

5-1-1 Coastal area

Diarrhea and other diseases such as cholera have being studied in this area. The area is almost flat and covered with dry sandy soil and partly with silt or clay. In this area, small villages and labour camps are scattered throughout the area. Each village and camp consists of 30 to 50 houses.

The complete control of the companies of

The domestic water source for the people in this area depends mostly on shallow wells which are about 2.5 m in diameter and 5 to 10 m deep. The quality and capacity of the wells are satisfactory for domestic use.

The windmill with hand pump type is proposed as the water supply facilities and washing area and bathing sheds are planned as supply facilities and washing area and bathing sheds are planned as supplemental facilities.

त्र सम्बद्धिक <mark>प्रतिकृतिक वि</mark>ति त्रित्याक कर्ता के तिहती है। अपने किता कार्या के वित्र के कर सम्बद्धित कर समान ह ति कर्ति के किता के किता कि किता कि किता कि कार्य के किता कर किता है। असे वित्र कर किता किता किता के किता के स

5-1-2 . Hinterland for a substitution of the constraint (0,0)

Schistosomiasis has been studied in this area. The Hinterland is located in a hilly area with some rock outcrops. The elevation of this area is about 150 m above sea level. Although the Pemba River and its tributaries which run near the area are

a major source for domestic water, the river water is polluted by Schistosomiasis Haematobium.

The most effective countermeasure for this sistosomiasis pollution therefore, is to prevent people from having contact with the river water, not only for drinking but also for washing and bathing.

It is therefore proposed to obtain domestic water by withdrawal from the pipeline for Mombasa city which is considered to be the only available safe water source for this area.

5-2 Operation and Maintenance

5-2-1 Coastal area

As stated above, ample safe water can be obtained easily in this area in comparison with the Hinterland. Operation and maintenance of a safe water supply system, however, will be in an area where there are some problems to be resolved. As observed at some sites in the coastal areas, windmills and hand pumps have been abandoned either because of mechanical problems or a lack of spare parts. It is obvious that the payment for domestic water is not an easy matter for the people in the project area since they are a low income group. Without provision for proper operation and maintenance, however, it is almost impossible to have safe and clean domestic water.

For this purpose, operation and maintenance should be provided either by the sugar company or the people who benefit from the facilities on a self-reliance (self-help) basis. The items required to be provided for operation and maintenance of the safe water supply are as follows:

- 1. Social education
- 2. Periodic inspection of the water supply facilities
- Technical knowledge and training with respect to simple mechanical repairs
- 4. Acquisition of the necessary spare parts and adequate funds for repairs

In order to provide these items, it is proposed that a kind of community organization be established by the beneficiaries, the sugar company and a local public institution.

5-2-2 Hinterland

At present, water is available for this area from the Mombasa pipeline. This water, however, is only available for a fixed water charge. This water charge has a definite economic impact on the low income people in the area.

It was agreed by MOWD in Mombasa to withdraw domestic water from the pipeline for the people living in the area. At a meeting with Prof. Muganbi in KMRI we were informed that the Government of Kenya will possibly assist in subsidizing the water charge payments. Based on this information, therefore, three intakes were proposed to be installed along the pipeline and suitable washing spaces and bathing sheds were planned as supplementary facilities. The use of the proposed facilities after completion will depend upon the people's participation in the expenses. Before the implementation of the plan in the area, therefore, it is necessary to establish an operation and maintenance organization and water usage control system, to confirm the people's share in the cost of water use and to educate the people in the area about the importance of safe water use for eradication of schistosomiasis.

5-3 Regional Environmental Arrangements

Although the objective of this survey was limited only to the planning of a safe water supply system, drastic countermeasures against communicable diseases such as regional environmental controls are necessary.

From the view point of wide and long-term planning, a river improvement plan and improvement and expansion of the drainage net work system etc. should be planned and phased into operation in order to avoid inundation of villages or camps.

In the area of the Hinterland, periodic cleaning and disinfection of the Pemba River and its tributaries are necessary for the eradication of schistosomiasis Haematobium. The construction of bridges over the river mentioned above is also one of the effective contermeasures for prevention of Schistosomiasis. Large capital investment and a long term schedule might be required in order to implement those countermeasures mentioned above. Environmental arrangements within areas such as establishment of dumping yards, improvement of the drainage system for sewage and latrines or toilets are economical ways and mandatory for the prevention of breeding of diseases insect carriers such as mosquitoes, flies, lice, ticks and so on.

5-4 Public Health Education

Provision of safe water for the people and suitable environmental controls in the project area are mandatory as countermeasures against communicable diseases.

Perpetual medical facilities, doctors, medicine and so on are necessary in the project area. Public health education and information stated below, however, should be disseminated and implemented for the people in the project area.

- (1) Dissemination of basic knowledge about communicable diseases.
- (2) Rigid enforcement of personal hygione i.e. cleaning their hands and feet, food, tableware and so on.

For the prevention of contagions diseases or those spread by mouth infection rigid enforcement of clean food and tableware, and maintenance personal hygions (clean hands and feet) are mandatory. In the Hinterland, urination in the river is strictly prohibited.

(3) Cleaning of water storage buckets

Domestic water will be stored in the buckets for each household after the proposed water supply plan is completed. It is mandatory that the water storage buckets or containers always be kept clean.

(4) Extermination of obnoxious insects

Disease carrier, insects such as mosquitoes, flies, lice, and etc. will breed in the dumping yards, toilets or latrines, and storm water puddles or ponds. Periodic disinfection of disease carrier insect breeding grounds is mandatory for prevention of contagion or infection with diseases.

In order to disseminate health education as stated above, a substantial school and health center are required.

5-5 Construction of Safe Water Facility

This construction will be carried out basically by local contractors. Considering the dry and sandy soil condition, construction should be done very carefully to avoid collapse of side wall (i.e. foundation work). Near the sea side, materials must be chosen that will be resistant to deterioration by salt air. If metals are used then painting must be done carefully to prevent corrosion.

In Hinterland, since domestic water will be withdraw from the Mombasa pipeline, construction of connections and supply meters should be carried out under the supervision of MOWD. Except for the aforementioned construction the remaining facilities will be constructed within the Project. Frequent communications between MOWD and the Project team are required in order to avoid inconsistencies in construction.

APPENDIX

APPENDIX

- 1 MEMBERS OF THE TEAM
- 2 ITINERARY OF THE TEAM
 - 3 LIST OF OFFICIALS CONCERNED
 - 4 LIST OF COLLECTED DATA
 - 5 GEOELECTRIC RESISTIVITY SURVEY DATA
 - 6 EXISTING WELL DATA (4 Camps)
 - 7 EXISTING WELL DATA (Around Project area)
 - 8 GEOLOGICAL MAP OF THE COASTAL AREA
 - 9 CLIMATOLOGICAL DATA
- 10 POPULATION DATA
- 11 CONSTRUCTION COST DATA
- 12 STANDARD DESIGN OF WATER SUPPLY FACILITY
- 13 PHOTOGRAPHS

APPENDIX 1

Masami KONDO

SAFE WATER SUPPLY DETAILED DESIGN SURVEY

UNDER

THE COMMUNICABLE DISEASES RESEARCH AND CONTROL PROJECT TEAM

· ·	•	
Katsumoto AKAGI	Team Leader Sanitation Facilities Planner	Deputy Director Waste Management Division Ministry of Health & Welfare (Japanese Government)
the two are specified	institute on the confidence of	
Kazunobu ONOGAWA Yoshihisa KONDO	Planner	Deputy Director Water Supply Division Ministry of Health & Welfare (Japanese Government) Japan International Cooperation Agency (J.I.C.A.)
Nagashige YOSHITAKE	Hydrogeologist & Water Source Planner	Technical Adviser Pacific Consultants Inter national (P.C.I.)
Gunjiro OZAWA	Facility Planner	(P,C,I.)

Water Supply Planner

(P.C.I.)

APPENDIX 2 ITINERARY

Date	Mr. K.Akagi Mr. K.Onogawa Mr. Y.Kondo	Mr. N.Yoshitake Mr. G.Ozawa	Mr. M.Kondo				
Jan.17	Leave Narita 21:00	AF 273					
18	Arrive Paris 05:50						
19	Leave Paris 19:50	AF 467					
20	JICA Nairobi office Meeting with Japane	Courtesy call at Japanese Embassy. JICA Nairobi office. Meeting with Japanese experts. Courtesy call on Prof. Muganbi (KMRI Ministry of Reagion					
21	Meeting with Japane Courtesy call on Mr MOWD).		ta National Hospital. uty Secretary of				
22	Courtesy call on Dr Service, MOH). Courtesy call on Mr Internal meeting at	. M.G.Saini{Deputy	Director of MOST).				
23	Move to Mombasa.						
24	Courtesy call on Mr Health Office). Visit to Mombasa Di Observations at Msam Investigation of Fal Visit to Ramisi suga Visit to Kinango Di	strict Hospital. oweni water supply. hamuni camp. er factory.	incial Public				
25	Visit to Ramisi suga Investigation of Bu Internal meeting at the	ibui camp and Mwach	inga village.				
26	Observation of local contractor in Mombasa city. Courtesycall on Mr. Mwaura (Magurini Settlement Officer).						
27	Return to Nairobi.	Sampling water Field investi- gstion of the existing wells.	Return to Nairobi.				
28	Meeting with Prof. Muganbi, Dr. Tairu Visit to Japanese Embassy and JICA.	Field investi- gation. Water quarity test.	Same as Mr. Akagi.				

Date	Mr. K.Akagi Mr. K.Onogawa Mr. Y.Kondo	Mr. N.Yoshitake Mr. G.Ozawa	Mr. M.Kondo
Jan.29	Data arrangement.	Field investi- gation. Geoelectric resis- tivity survey. (Mwachinga Village)	Return to Diani. (Survey site)
30	Leave Nairobi.	Data arrangement.	
31		Geoelectic resis- tivity survey at Kanana & Kidimu camp.	Data collection at MOWD Mombasa. Procurement for yield test.
Feb. 1		Geoelectric resis- tivity survey at Fahamuni & Buibui camp, Topographic survey,	Data collection at MOWD Mombasa.
2		Geoelectic resis- tivity survey and Topographic survey at Buibi camp.	Survey at Ukunda area. Data arrangement.
3		Yield test at Kanar Topographic survey	
4		Field investigation wells. Check of the yield Buibui spring.	
5		Data collection at Ramisi suger factory. Investigation at Kiwanbale camp and water supply facility of the factory.	Field investigation of Mwachinga Vil. with Mr. Shine. (Officer of MOWD, Kwale)
6		Data arrangement.	
7		Data collection at Hospital, MOWD Momba constructor.	

Date	Mr. K.Akagi Mr. K.Onogawa Mr. Y. Kondo	Mr. N.Yoshitake Mr. M.Kondo Mr. G.Ozawa
Feb. 8		Meeting with Mr. Ali (MODD Nairobi) about the MOWD rural water supply project study area. Move to Tsavo from Mombasa.
9		Move to Nairobi from Tsavo. Visit to JICA Nairobi office. Meeting with Japanese experts at Medial Research Center.
10		Data collection at Mines and Geological Department. Meeting with Japanese experts. Courtesy call ab Japanese Embassy and JICA
13		Leave Nairobi 00:30 BA 054 Arrive London 06:05
14		Leave London 12:10 BA 005
15		Arrive Narita 15:30

APPENDIX 3 LIST OF OFFICIAL CONCERNED

- 1. Ministry of Regional Development, Science, and Technology
 - 1) Mr. M. G. Saini, Deputy Minister
 - 2) Mr. Kiruja Rachiami, Under Secretary
 - 3) Mr. Moatau Kaburu Wangai, Senior Asst. Secretary
 - 4) Prof. M. Mugambi, Acting Director, Kenya Medical Research Institute
 - 5) Mr. A. R. Gathogo, Administrative Officer, Kenya Medical Research Institute
- 2. Ministry of Health
 - 1) Dr. S. Kanani, Deputy Director, Medical Services
- 3. Ministry of Water Development
 - 1) Mr. K. S. A. Jeneby, Deputy Secretary
 - 2) Mr. Ali Sheikh
- 4. Ministry of Works and Housing
 - 1) Mr. Gideon Gitonga,
- 5. Ministry of Land & Settlement
 - Mr. J. T. Mwaura, Settlement Manager, Provincial Settlement, ξ Controller, Dept. of Land Adjustment, Coast Provincial Headquarters
 - 2) Mr. Saini, Magarini Settlement Scheme
 - Mr. Jujambili, Provincial Planning Officer, Coast Provincial Headquarters
- 6. University of Nairobi
 - 1) Dr. Kihuhibu Thairu, Chairman, KEMRI, & Head of Dept. of Micro Physiology
 - 2) Dr. Jean W. Inuugu, Dept. of Medical Physiology

7. Coast Provincial Headquarters

- 1) Dr. Kulumba Wamangala, Provincial Medical Officer, and Director General of Mombasa General Hospital
- 2) Dr. I. C. O. Omeri, Provincial Public Health Officer,
- 3) Mrs. Josphine Azsnga, Deputy Provincial Public Health Officer

8. Coastal Zone (Kidumu & Buibui) : Kwale District

- Dr. Kure, Medical Officer of Health, Kwale District Headquarter, Kwale District Hospital
- 2) Mr. Evic J. Odongo, Public Health Officer, Musambweni Hospital
- 3) Mr. Macharia, District Health Technician Officer, Musanbweni Hospital
- 4) Mr. Idi H. Boga, Public Health Technician, Nombasa Location
- 5) Mr. Jimon R. Machavia, District Health Education Officer
- 6) Mr. Peuben K. Mabil, District Officer, Southern Division
- 7) Mr. Byeno Bongo, Operator, Water Supply District Office
- 8) Mr. Muqanga, Ministry of Water Development, Mombasa
- 9) Mr. Nuthanvi, -"- , Mombasa
- 10) Mr. H.S.C. Fonseka, -"- -"- , Tiwi

Sugar Factory:

- 11) Mr. Ramanbhai M. Patel, General Manager
- 12) Mr. M. J. Desai, Asst. General Manager
- 13) Mr. John M. Mulli, Asst. Manager on Personnel Affairs
- 14) Mr. Ramsi, Asst. Manager
- 15) Mr. Maurice Barasa, Industiral Relations Officer

9. Hinterland Zone (Mwachinga) : Kwale District

- 1) Mr. G. W. Otieno, District Officer for Kinango Location, Kinango Division, Kwale District
- 2) Mr. Yusuf M. Nyawa, Location Chief, Kinango Location, Kinango Division
- 3) Mr. Sher Shign, Ministry of Water Development, Kwale

Main Laboratory, Kwale District, Mombasa:

- 4) Mr. David Moreo, Vector-borne Disease Division
- 5) Mr. Ramddan Musa, Lugogo, Vector-borne Division
- 6) Mr. George Bebora, Vector-borne Disease Division

Pwani Fabricators (Wind Mill)

- 7) Mr. Hashem Esmail Sodha, Executive Director,
- 8) Mr. Mussa Esmail, Executive Director, Mowabundu Road, Industrial Area, Mombasa

10. Fmvassy of Japan

- 1) Mr. Takayaoshi Hagiwara, First Secretary
- 2) Mr. Masataka Hayama, First Secretary

11. J.I.C.A. Office

- 1) Mr. Susumu Yanai, Head Officer
- 2) Mr. Hayao Takenaka
- 3) Mr. Shunichi Nagashima
- 4) Mr. Iwasaki

12. Experts of THE COMMUNICABLE DISEASES RESEARCH AND CONTROL PROJECT

- 1) Dr. Tatsuro Naito
- 2) Dr. Yasuo Chiba
- 3) Dr. Masaaki Shimada
- 4) Dr. Toshiaki Hayashi
- 5) Dr. Masahiko Ehara
- 6) Dr. Katsuyuki Sato
- 7) Dr. Chiaki Miyazaki

APPENDIX 4 LIST OF COLLECTED DATA

1. REFERENCES

- (1) STATISTICAL ABSTRACT 1979

 Central Bureau of Statistics

 Ministry of Economic Planning and Community Affairs
- (2) Kenya Statistical Digest June 1981 Vol. XX No.2

 ditto Sept.1981 Vol. XX No.3

 ditto Dec. 1981 Vol. XX No.4

 ditto Mar. 1982 Vol.XXI No.1
- (3) Construction Cost Index Dec. 1975

 Central bureau of statistics

 Ministry of finance & planning Dec. 1975
- (4) Consumer Price Indices Nairobi
 ditto Mar. 1977
- (5) 1982/1983 ESTIMATES OF REVENUE OF TH

 OF THE GOVERNMENT OF KENYA 30th June, 1983
- (6) KENYA: A Study in Physical and Human Geography
- (7) Planning for Progress:
 Our Fourth Development Plan
 A Short Version of the Development Plan 1979 1983

- (8) ECONOMICAL SURVEY, 1981

 Central Bureau of Statistics Ministry

 of Economic Planning and Development
- (9) Report of the Civil Service Review
 Comittee,
 1979 1980
- (10) The Electricity Industry in Kenya
- (11) A GEOGRAPHY OF EAST AFRICA
- (12) GEOLOGY OF SIMBA KIBWEZI AREA

 Ministry of Commerce and Industry

 Geological Survey of Kenya
- (13) GEOLOGY OF THE MOMBASA AND KWALE AREA
 ditto (Copy)
- (14) COMPLETION REPORT CHUINI WATER WELL

 KWALE DISTRICT

 Contract No. W.B.H./78-29 (Copy)

2. MAPS

(1)	MOMBASA	SB-37/3	Scale 1:250,000
(2)	MOMBASA	201/1	Scale 1: 50,000 (Copy)
(3)	GULANZE	200/1	- ditto -
(4)	KWALE	200/2	- ditto -
(5)	NDAVAYA	200/3	- ditto -
(6)	MSAMBWENI	200/4	- ditto -
(7)	UKUNDA	201/3	- ditto -
(8)	VANGA	202/1	- ditto -
(9)	SHIMONI	202/2	- ditto -
	*		

(10) GEOROGY MAP OF THE NAIROBI Scale 1:125,000

3. CONSTRUCTION COST DATA

- (1) Cost for Connection with Main Pipe
- (2) Price Schedule for Departmental Rigs
 to be Charge as from January, 1980 Onwords
- (3) Quotation for Repairing and Plastering of Shallow Well
- (4) Quotation for Digging Shallow Well
- (5) Quotation for Windmill
- (6) Quotation for the Repair of Windmill on Well

4. Existing Well Data

(1) Existing Well Data of Coast Area

APPENDIX 5 GEOELECTLIC RESISTIVITY SURVEY DATA

Table A-5-1

DATA SHEET OF GEOELECTRIC RESISTIVITY SURVEY

SURVEY NO. 1	DATE:	29 / 1 / 1983	TIME: AM. 10.30
•	PLACE:	Mwachinga	POINT: No.1
	WEATHER.	Fina	TCMD .

REMARKS:	Wenner's Method	•	
~~			

		•*				Commence of the Commence of th
NO.	a (m)	2π a (m)	(い) g	$S = 2 \pi a R$ $(\Omega - m)$	$0_p = G - \frac{P_1}{(a/2)} / P_2$	$D_{c} = G - C_{1} / C$ $(3a/2)$
1	1	6.28	15.8	99.2	0.5	1.5
2	2	12,6	5.0	63.2	1.0	3,0
3	3	18.8	2.0	39.1	1.5	4.5
4	. 4	25.1	1.1	27.5	2.0	6.0
5	5	31.4	0.65	20.3	2.5	7.5
6	6	37.7	0.5	18.9	3.0	9.0
7	8	50.2	0.38	19,0	4.0	12.0
8	10	62.8	0.3	18.9	5.0	15.0
9	12	75.4	0.25	18,8	6.0	18.0
10	14	87.9	0.34	30.3	7.0	21.0
וו	16	100	0.24	24.0	8.0	24.0
12	20	126	0.16	21.0	10.0	30.0
13	25	157	0.17	28.1	12.5	37.5
14	30	188	0.21	39.5	15.0	45.0
15	35	220			17.5	52.5
16	40	251			20.0	60.0
17	50	314			25.0	75.0
18	60	377			30,0	90.0
19	70	440	- 13 jyle		35.0	105
20	80	502	21 11		40.0	120
21	100	628			50.0	150
				A-11		<u> </u>

Tame A - 5-2 UNIA SHEET OF GEOELECTRIC RESISTIVITY SURVEY

SURVEY NO. 2

DATE: 29 / 1 / 1983 TIME: AM. 11.00

· WEATHER: Fine

TEMP.:

PLACE: Mwachinga POINT: No.2

REMARKS: Wenner's Method

628

100

21

2 π a NO. *β* = 2 π a R R (m)(n - m) (m) (\mathcal{N}) 6.28 1.5 1 64 -401.9 0.5 3.0 2 7.0 88.2 1.0 12.6 18.8 4.5 2.2 3 3 41.3 1.5 25.1 6.0 4 4 1.6 40.1 2.0 2.5 31.4 5 7.5 0.45 14.1 0.35 13.2 37.7 3.0 9.0 50.2 12.0 7 0.18 8 9.0 4.0 62.8 15.0 8 10 0.17 10.6 5.0 9 12 0.11 8.3 6.0 75.4 18.0 87.9 21.0 10 14 0.1 8.8 7.0 100 11 24.0 16 0.075 7.5 8.0 126 30.0 12 20 10.0 157 13 25 12.5 37.5 188 14 45.0 30 15.0 220 15 52.5 35 17.5 251 20.0 16 60.0 40 314 17 75.0 50 25.0 90.0 377 18 60 30.0 440 19 .70 105 35.0 502 20 80 40.0 120

50.0

150

A ROLL OF

Table A- 5-3

DATA SHEET OF GEOELECTRIC RESISTIVITY SURVEY

SURVEY NO. 3	DATE: 31 / 1 / 1983	TIME: 10.30
	PLACE: Kanana	POINT: No.1 near to well
	WEATHER:	TEMP.:
REMARKS: Wenner's Method		

NO.	a (m)	2π a (m)	(小) R	$f = 2 \pi a R$ $(\Omega - m)$	$D_{p} = G - P_{1} / P_{2}$	$D_{C} = G - C_{1}/C$ (3a/2)
1	1	6.28	29.2	183.3	0.5	1.5
2	2	12.6	11.2	141.1	1.0	3.0
3	3	18.8	6.6	124.1	1.5	4.5
4	4	25.1	4.6	115.5	2.0	6.0
5	5	31.4	5.2	163,3	2.5	7.5
6	6	37.7	2.5	94.2	3.0	9.0
7	8	50.2			4.0	12.0
8	10	62.8	2.0	125.6	5.0	15.0
9	12	75.4	1.9	143.3	6.0	18.0
10	14	87.9	1.2	105,5	7.0	21.0
11	16	100	4.1	401.0	8.0	24.0
12	20	126	0.64	80.6	10.0	30.0
13	25	157			12,5	37.5
14	30	188). :		15.0	45.0
15	35	220			17.5	52.5
16	40	251			20.0	60.0
17	50	314			25.0	75.0
18	60	377			30.0	90.0
19	70	440			35.0	105
20	80	502			40.0	120
21	100	628			50.0	150

Table A-5-4 DATA SHEET OF GEOELECTRIC RESISTIVITY SURVEY

SURVEY NO. 4	DATE: 31 / 1 / 1983	TIME: 11.30
	PLACE: Kanana	POINT: No.2
	WEATHER:	TEMP.:

REMARKS: Wenner's Method

NO.	a (m)	2π a (m)	R (∿)	β=2πa R (Ω - m)	$D_p = G - P_1 / P_2$	$D_{C} = G - C_{1}/C$ $(3a/2)$
1	1	6.28	56∙	351.7	0.5	1.5
2	2	12.6	17.1	215.4	1.0	3.0
3	3	18.8	7.8	146.6	1,5	4.5
4	4	25.1	4.6	115.4	2.0	6.0
5	5	31.4	3.7	116,8	2,5	7.5
6	6	37.7	2.7	101,8	3,0	9.0
7	8	50.2	1.7	85,3	4.0	12.0
8	10	62.8	1.4	87.9	5.0	15.0
9	12	75.4	0.76	57,3	6,0	18.0
10	14	87.9	0.32	28.1	7.0	21.0
11	16	100	0.25	25.0	8.0	24.0
12	20	126	0.24	30.2	10,0	30.0
13	25	157	0.10	15.7	12.5	37.5
14	30	188			15.0	45.0
15	35	220			17.5	52.5
16	40	251			20.0	60.0
17	50	314			25.0	75.0
18	60	377			30.0	90.0
19	70	440			35.0	105
20	80	502			40.0	120
21	100	628			50.0	150

Table A-5-5 DATA SHEET OF GEOELECTRIC RESISTIVITY SURVEY

SURVEY NO. 5	DATE: 31 / 1 / 1983	TIME:
	PLACE: Kanana	POINT: No.3 near to stream
	WEATHER:	TEMP.:
REMARKS: Wenner's Method	,	

	3.7	1			
a (m)	2 m a (m)	(で) g	P= 2 π a R (Ω - m)	$0_p = G - P_1 / P_2$	$0_{\rm c} = 6 - c_1 / c_2$
1	6.28	155	973.4	0.5	1.5
2	12.6	68	856.8	1.0	3.0
3	18.8	35	658,0	1.5	4.5
4	25.1	20	502.0	2.0	6.0
5	31.4	9.5	298.0	2,5	7.5
6	37.7	4.9	170.0	3.0	9.0
8	50.2	1.4	70.2	4.0	12.0
10	62.8	0.25	15.7	5.0	15.0
12	75.4	-	-	6.0	18.0
14	87.9		•	7.0	21.0
16	100			8,0	24.0
20	126			10.0	30.0
25	157			12,5	37.5
30	188			15.0	45.0
35	220			17.5	52.5
40	251			20.0	60.0
50	314			25.0	75.0
60	377			30.0	90.0
70	440			35.0	105
80	502			40.0	120
	620			50.0	150
	(m) 1 2 3 4 5 6 8 10 12 14 16 20 25 30 35 40 50 60 70 80	(m) (m) 1 6.28 2 12.6 3 18.8 4 25.1 5 31.4 6 37.7 8 50.2 10 62.8 12 75.4 14 87.9 16 100 20 126 25 157 30 188 35 220 40 251 50 314 60 377 70 440	(m) (m) (\(\infty\) 1 6.28 155 2 12.6 68 3 18.8 35 4 25.1 20 5 31.4 9.5 6 37.7 4.9 8 50.2 1.4 10 62.8 0.25 12 75.4 - 14 87.9 16 100 20 126 25 157 30 188 35 220 40 251 50 314 60 377 70 440 80 502	(m) (m) (\(\infty\) (\infty\) (\(\infty\) (\(\infty\) (\(\infty\) (\infty\) (\(\infty\) (\(\infty\) (\(\infty\) (\(\infty\) (\(\infty\) (\(\infty\) (\infty\) (\(\infty\) (\(\infty\) (\(\infty\) (\(\infty\) (\(\infty\) (\(\infty\) (\infty\) (\(\infty\) (\(\infty\) (\infty\) (\(\infty\) (\infty\) (\(\infty\) (\infty\) (\(\infty\) (\infty\) (\	(m) (m) (2) (2 - m) (3/2

lable A-5-6 DATA SHEET OF GEOELECTRIC RESISTIVITY SURVEY annum ourer of groffcotting testallially antart

SURVEY NO. 6	DATE: 31 / 1 / 1983	TIME:
	PLACE: Kidimu	POINT: No.1
	WEATHER:	TEMP.:
REMARKS: Wenner's Method		

NO.	(m)	2π a (m)	R (心)	β= 2 π a R (Ω - m)	$D_p = G - P_1 / P_2$	$D_{C} = G - C_{1} / C_{2}$ $(3a/2)$
ו	1	6.28	29	182.1	0.5	1.5
2	2	12.6	16.5	207.9	1.0	3.0
3	3	18.8	9.5	178.6	1.5	4.5
4	4	25.1	7.0	175.7	2.0	6.0
5	5	31.4	5.7	179.0	2.5	7.5
6	6	37.7	5.0	188.5	3.0	9.0
7	8	50.2	3.0	150.6	4.0	12.0
8	10	62.8	1.9	119.3	5.0	15.0
9	12	75.4	1.3	98.0	6.0	18.0
10	14	87.9	0.67	58.9	7.0	21,0
11	16	100	0.59	59.0	8.0	24.0
12	20	126	0.48	60.5	10.0	30.0
13	25	157	0.35	54.9	12.5	37.5
14	30	188	0,31	58.3	15.0	45.0
15	35	220	0.1	22.0	17.5	52.5
16	40	251			20.0	60.0
17	50	314			25.0	75.0
. 18	60	377			30.0	90.0
19	70	440			35.0	105
20	80	502			40.0	120
21	100	628			50.0	150
:				A-16		

DATA SHEET OF GEOELECTRIC RESISTIVITY SURVEY Table A - 5-7

SURVEY NO. 7	DATE: 31 / 1 / 1983	TIME: 15.30
	PLACE: Kidimu	POINT: No.2
	WEATHER:	TEMP •

REMARKS: Wenner's Method

NO.	a (m)	2π a (m)	(소)	P= 2 π a R (Λ = m)	$D_p = G - P_1 / P_2$	$D_{c} = G - C_{1} / C_{3a/2}$
1	1	6.28	-	· ·	0.5	1.5
2	2	12.6	205	2583	1.0	3.0
3	3	18.8	115	2162	1.5	4.5
4	4	25.1	59	1480.9	2.0	6.0
5	5	31,4	38	1193	2.5	7.5
6	6	37.7	19,5	735	3.0	9.0
7	8	50.2	7.2	361.4	4.0	12.0
8	10	62.8	3.2	201.0	5.0	15.0
9	12	75.4	er en		6.0	18.0
10	14	87.9	1.9	167	7.0	21.0
11	16	100	5.3	503	8.0	24.0
12	20	126	17.7	2230	10.0	30.0
13	25	157	3.9	612	12.5	37.5
14	30	188	13.3	2500	15.0	45.0
15	35	220			17.5	52.5
16	40	251			20.0	60.0
17	50	314			25.0	75.0
18	60	377			30.0	90.0
19	70	440			35.0	105
20	80	502	14. 3		40.0	120
21	100	628	1,111		50.0	150

DATA SHEET OF GEOELECTRIC RESISTIVITY SURVEY **Table** A = 5-8

SURVEY NO. 8	DATE: / /	TIME: 16.10
	PLACE: Kidimu	POINT: No.3 near to well
	WEATHER:	TEMP.:
REMARKS: Wenner's Method		

		1		T .		
NO.	a (m)	2 n a (m)	(√)	P = 2 π a R ($0_p = G - P_1 / P_2$	$D_{C} = G - C_{1} / G$ $(3a/2)$
1	1	6.28	-		0.5	1.5
2	2	12.6	65	819	1.0	3.0
3	3	18.8	19	357.2	1.5	4.5
4	4	25.1	11.2	281.2	2.0	6.0
5	5	31.4	8.1	254.3	2.5	7.5
6	- 6	37.7	4.0	150.8	3.0	9.0
7	8	50.2	1.4	70.3	4.0	12.0
8	10	62.8	0.4	25.1	5.0	15.0
9	12	75.4	0.3	22.6	6.0	18.0
10	14	87.9	0.27	23.5	7.0	21.0
11	16	100			8.0	24.0
12	20	126			10.0	30.0
13	25	157		·	12.5	37.5
14	30	188			15.0	45.0
15	35	220			17.5	52.5
16	40	251		-	20.0	60.0
17	50	314			25.0	75.0
18	60	377			30.0	90.0
19	70	440			35.0	105
20	80	502			40.0	120
21	100	628			50.0	150

Table A - 5-9 DATA SHEET OF GEOELECTRIC RESISTIVITY SURVEY

SURVEY NO. 9	DATE: 1 / 2 / 1983	TIME:
	PLACE: Fahamuni	POINT: No.1 near to well
	- WEATHER:	TEMP.:
REMARKS: Wenner's Method		

	 					
NO.	a (m)	2π a (m)	ጸ (ഹ)	P= 2 π a R (Ω - m)	$D_{p} = G - P_{1} / P_{2}$	$D_{c} = G - C_{1} / C_{2}$
1	1	6.28	10.3	64.7	0.5	1.5
2	2	12.6	3.5	44.1	1.0	3.0
3	3	18.8	1.7	32.0	1.5	4.5
4	4	25.1	1.2	30.1	2.0	6.0
5	5	31.4	0.8	25.1	2.5	7.5
6	6	37.7	0.65	24.5	3.0	9.0
7	8	50.2	0.45	22.6	4.0	12.0
8	10	62.8	0.36	22.6	5.0	15.0
9	12	75.4	0.3	22.6	6.0	18.0
10	14	87.9	0.25	21.8	7.0	21.0
11	16	100	0.22	22.0	8.0	24.0
12	20	126	0.15	19.0	10,0	30.0
13	25	157	0.12	18.8	12.5	37.5
14	30	188	• •	-	15,0	45.0
15	35	220		1	17.5	52.5
16	40	25)			20.0	60.0
17	50	314			25.0	75.0
18	60	377			30.0	90.0
19	70	440			35.0	105
20	80	502			40.0	120
21	100	628			50.0	150

Table A-5-10 DATA SHEET OF GEOELECTRIC RESISTIVITY SURVEY

SURVEY NO. 10	DATE: 1 / 2 / 1983	
	PLACE: Fahamuni	POINT: No.2
	WEATHER:	TEMP.:

REMARKS: Wenner's Method

NO.	a (m)	2π a (m)	R (小)	β= 2 π a R (Ω - m)	$0_{p} = G - P_{1} / P_{2}$ $(a/2)$	$D_{C} = G - C_{1} / C$ $(3a/2)$
ı	1	6.28	4.4.	27.6	0.5	1.5
2	2	12,6	1.7	21.4	1.0	3.0
3	3	18.8	1.1	20.7	1.5	4,5
4	4	25.1	0.84	21.0	2.0	6.0
5	5	31.4	0.73	22.9	2,5	7.5
6	6	37.7	0.60	22.6	3,0	9.0
7	8	50.2	0.50	25.0	4.0	12.0
8	10	62.8	0.36	22.6	5.0	15.0
9	12	75.4	0.34	25.5	6.0	18.0
10	14	87.9	0.30	26.4	7.0	21.0
11	16	100	0.25	25.0	8.0	24.0
12	20	126	0,18	22.7	10.0	30.0
13	25	157	0.15	23.5	12.5	37.5
14	30	188	0.11	20.7	15.0	45.0
15	35	220	0,11	24.2	17.5	52.5
16	40	251	0.09	22.6	20.0	60.0
17	50	314			25.0	75.0
18	60	377			30,0	90.0
19	70	440			35.0	105
20	80	502			40,0	120
21	100	628	1 (4)		50,0	150

Table A-5-11 DATA SHEET OF GEOELECTRIC RESISTIVITY SURVEY

		~ ~	
SURVEY	NO.	11	

DATE: 1 / 2 / 1983 TIME:

PLACE: Fahamuni

- WEATHER:

POINT: No.3 TEMP.: 33°

REMARKS: Wenner's Method

P = 2 m a R $(\Omega - m)$ $D_p = G - P_1 / P_2 D_C = G - C_1 / C_2$ Ŕ 2 m a NO. a (m) (m) (w) 1.5 11,5 72,2 6.28 0.5 1 1 3.0 1.0 2 3.9 49.1 12.6 4.5 18.8 1.5 3 3 2.1 39.5 6.0 25.1 2.0 4 42.7 4 1.7 2.5 7.5 31.4 0.85 26.7 5 5 3.0 6 0.77 9.0 6 29.0 37.7 12.0 50.2 4.0 7 8 0.52 26.1 15.0 0.49 30.7 62.8 5.0 8 10 6.0 9 12 0.5 37.7 18.0 75.4 21.0 87.9 7.0 10 14 0.37 32.5 24.0 0.32 32.0 100 8.0 16 11 30.0 0.15 18.9 126 10.0 12 20 157 12.5 25 37.5 13 0.12 18.8 45.0 0.11 20.7 188 15.0 14 30 52.5 220 17.5 15 35 251 20.0 60.0 16 40 75.0 314 25.0 17 50 90.0 377 30.0 18 60 105 440 19 35.0 70 502 20 40.0 120 80 628 50.0 - 150 21 100

Table A-5-12 DATA SHEET OF GEOELECTRIC RESISTIVITY SURVEY .

SURVEY NO. 12	DATE: 1 / 2 / 1983	TIME:
	PLACE: Buibui	POINT: No. 1 near to sprin
	WEATHER:	TEMP.:

REMARKS:	Wenner's Method		

· · · · · · · · · · · · · · · · · · ·	·	·			- 	
NO.	a (m)	2 m a (m)	(v)	P=2πa R (Λ - m)	$D_p = G - P_1 / P_2$	$D_{c} = G - C_{1} / (3a/2)$
1	ĺ	6.28	35.	219.8	0.5	1,5
2	2	12.6	28	353	1.0	3.0
3	3	18.8	22	413	1.5	4.5
4	4	25.1	15	376	2.0	6.0
5	5	31.4	12	377	2,5	7.5
6	6	37.7	7.5	283	3.0	9.0
7	8	50.2	4.6	231	4.0	12.0
8	10	62.8	0.85	53.4	5.0	15.0
9	12	75.4	0.9	68.0	6.0	18.0
10	14	87.9	3.0	263	7.0	21.0
-11	. 16	100	0.16	16	8.0	24.0
12	20	126	-	_	10.0	30.0
13	25	157			12.5	37.5
14	30	188			15.0	45.0
15	35	220			17.5	52.5
16	40	251			20.0	60.0
17	50	314			25.0	75.0
18	60	377			30.0	90.0
19	70	440			35.0	105
20	80	502			40.0	120
21	100	628			50.0	150

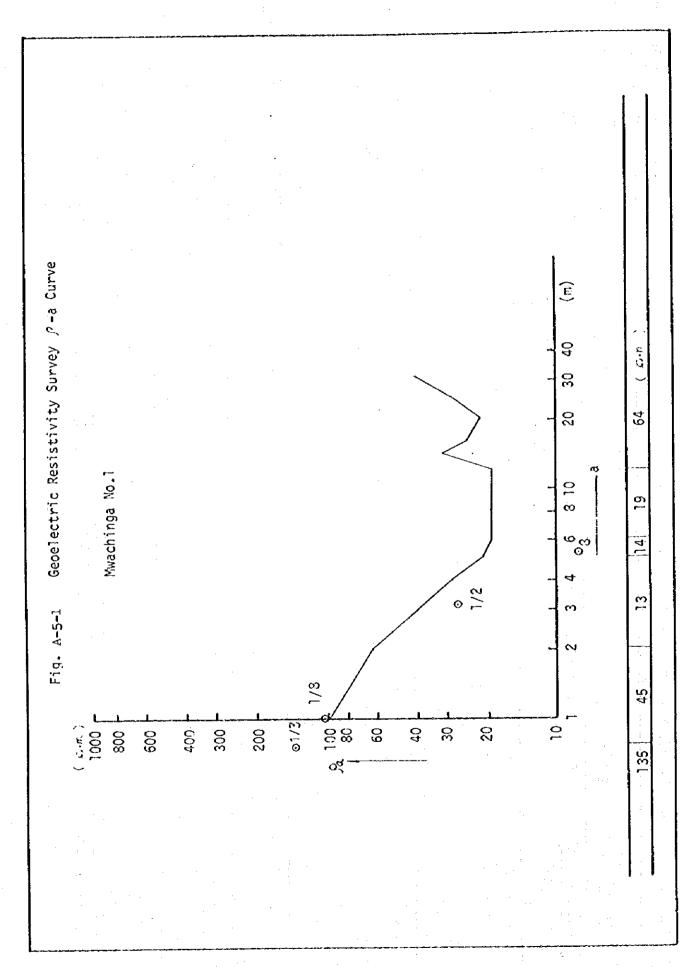
Table A-5-13 DATA SHEET OF GEOELECTRIC RESISTIVITY SURVEY

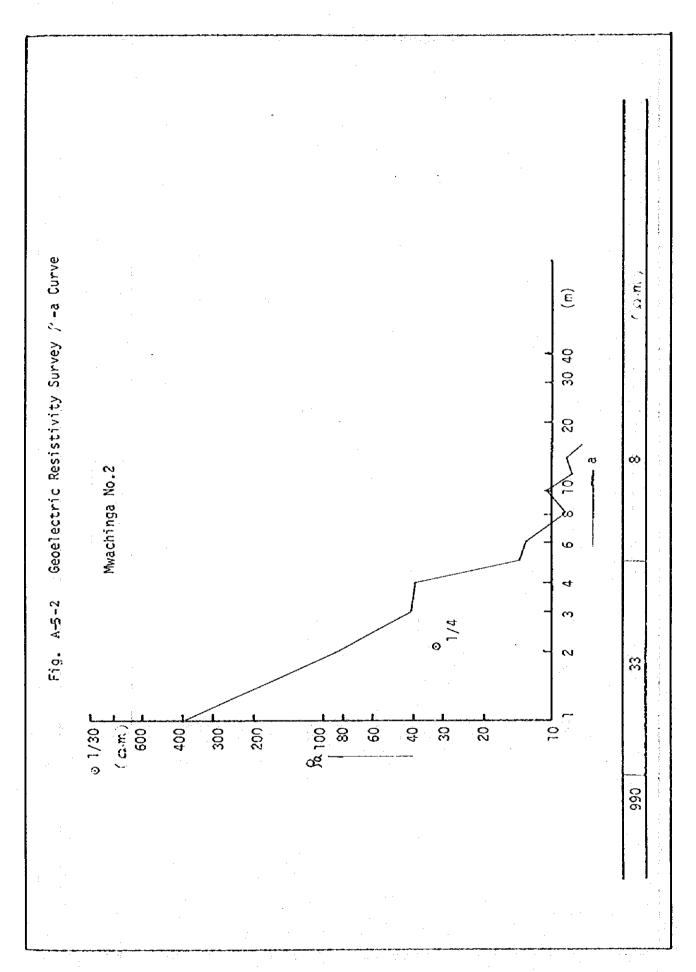
SURVEY NO. 13			1 / 2	/1983	TIME: 15.30
	-	PLACE:_	Buibui		POINT: No.2
the state of the s	-	WEATHER:	1.2	-	TEMP.:

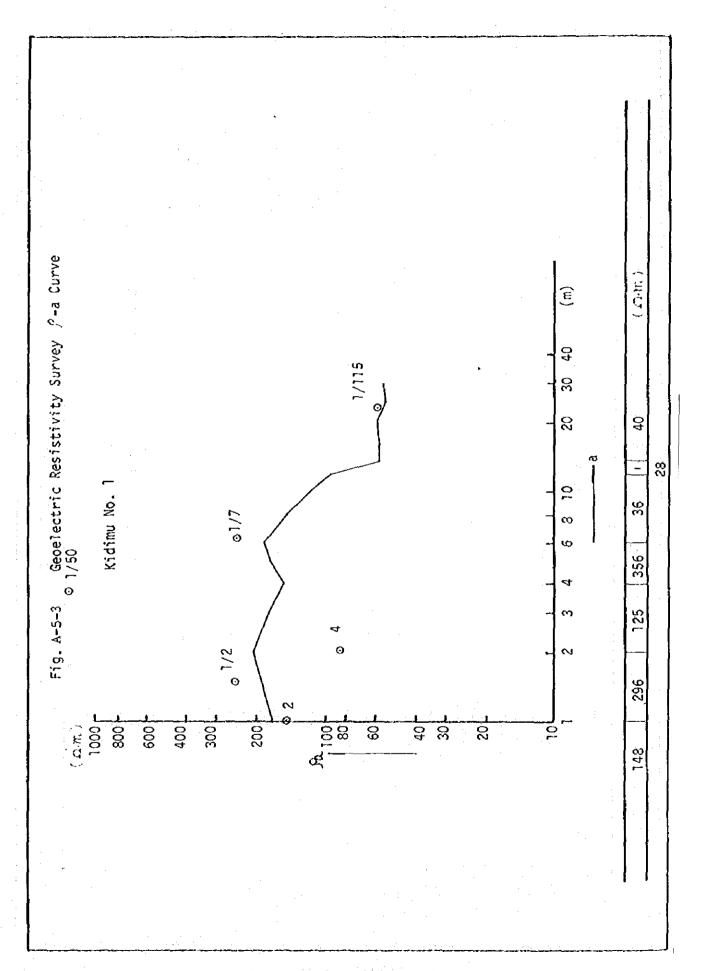
REMARKS: Wenner's Method

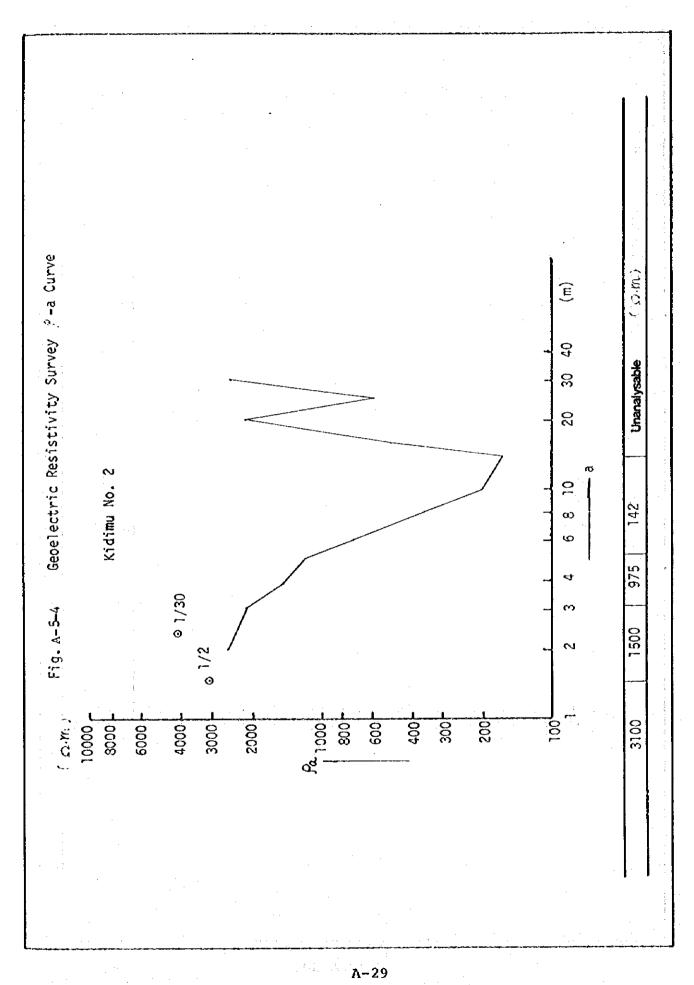
	·					
NO.	a (m)	2 m a (m)	R (♪.)	P = 2 π a R (Ω = m)	$D_p = G - P_1 / P_2$ (a/2)	$D_{C} = G - C_{1} / C_{2}$ $(3a/2)$
1	111	6.28	40	251	0.5	1.5
2	2	12.6	23	290	1.0	3.0
3	3	18.8	13	244	1,5	4.5
4	4	25.1	8.4	211	2.0	6.0
5	5	31.4	6.4	201	2.5	7.5
6	6	37.7	5.0	188.5	3.0	9.0
7	8	50.2	3.2	160.6	4.0	12.0
8	10	62.8	2.5	157	5.0	15.0
9	12	75.4	1.9	143,2	6.0	18.0
10	14	87.9	1.8	158.2	7.0	21.0
11	16	100	0.32	32.0	8.0	24.0
12	20	126	0.57	71.8	10.0	30.0
13	25	157	0.53	83,2	12.5	37.5
.14	30	188	0.29	54.5	15.0	45.0
15	35	550	0.22	48.4	17.5	52.5
16	40	251	0.39	97.9	20.0	60.0
17	50	314			25.0	75.0
18	60	377			30.0	90.0
19	70	440			35.0	105
20	80	502			40.0	120
21	100	628	j (9 1 d		50.0	150

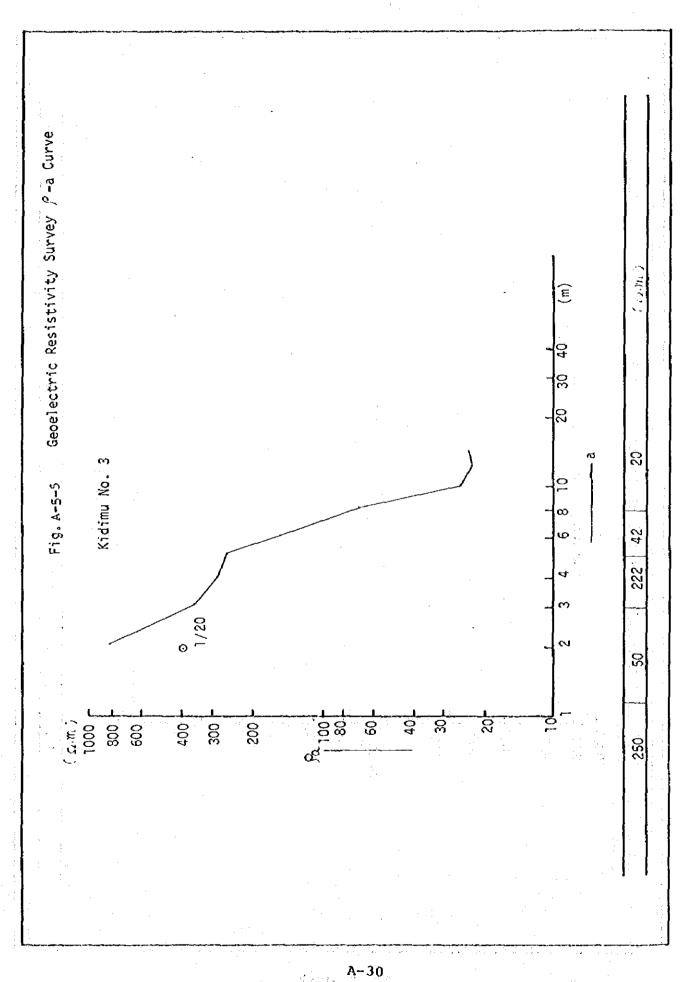
Table A-5-14 DATA SHEET OF GEOELECTRIC RESISTIVITY SURVEY

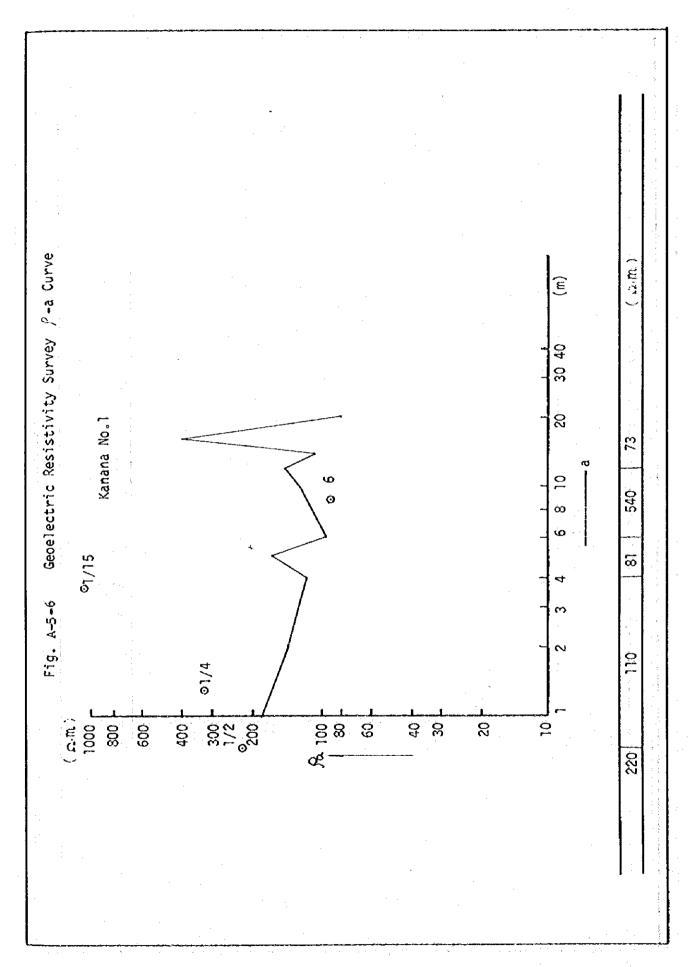

SURVEY NO.	. 14	DATE: 1 / 2 / 1983	TIME: 16.00
		PLACE: Buibui	POINT: No.3
		WEATHER:	TEMP.:
REMARKS:	Wenner's Method	<u>.</u>	

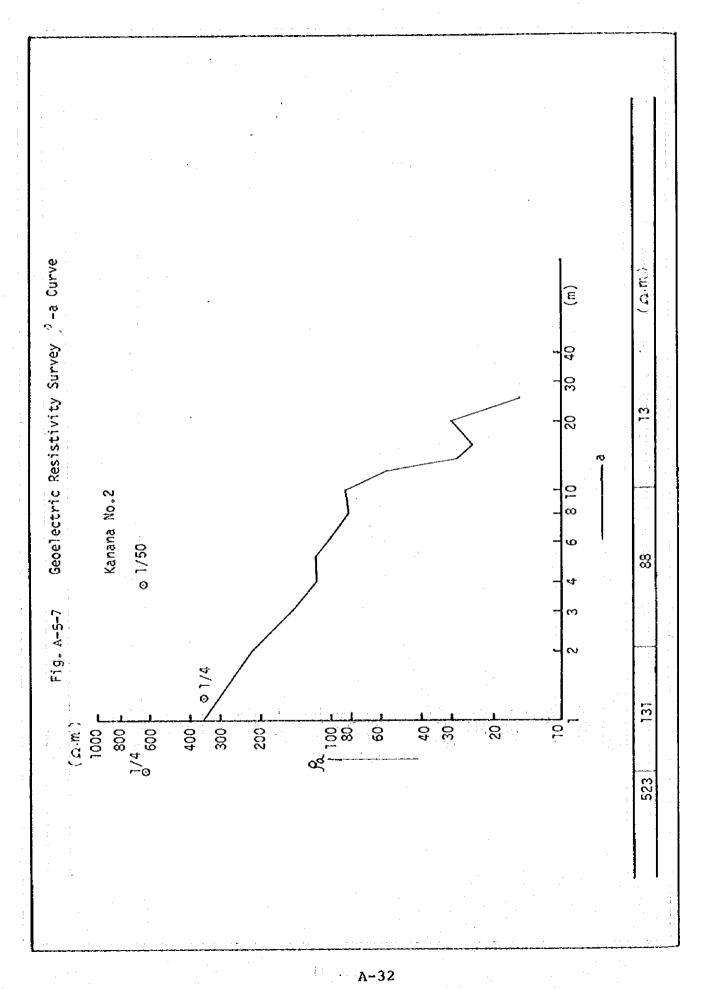

NO.	a (m)	2 m a (m)	(بر)	β = 2 π a R (m)	$0_p = G - P_1 / P_2$	$D_{C'} = G - C_1 / C_2$ (3a/2)
1	1	6.28	50 .	314	0.5	1.5
2	2	12.6	25	315	1.0	3.0
3	3	18.8	14.8	274	1.5	4.5
4	4	25.1	9.8	246	2.0	6.0
5	5	31.4	6.4	201	2.5	7.5
6	6	37.7	4.6	173	3.0	9.0
7	8	50.2	2.6	130.5	4.0	12.0
8	10	62,8	1.7	106.7	5.0	15.0
9	12	75.4	1.1	82.9	6.0	18.0
10	14	87.9	0.71	62.4	7.0	21.0
11	16	100	0.47	47.0	8.0	24.0
12	20	126		-	10.0	30.0
13	25	157	0.07	11.0	12.5	37.5
14	30	188	0.3	56.4	15.0	45.0
15	35	220	0.08	17.6	17.5	52.5
16	40	251			20.0	60.0
17	50	314			25.0	75.0
18	60	377			30.0	90.0
19	70	440			35.0	105
20	80	502			40.0	120
21	100	628			50.0	150

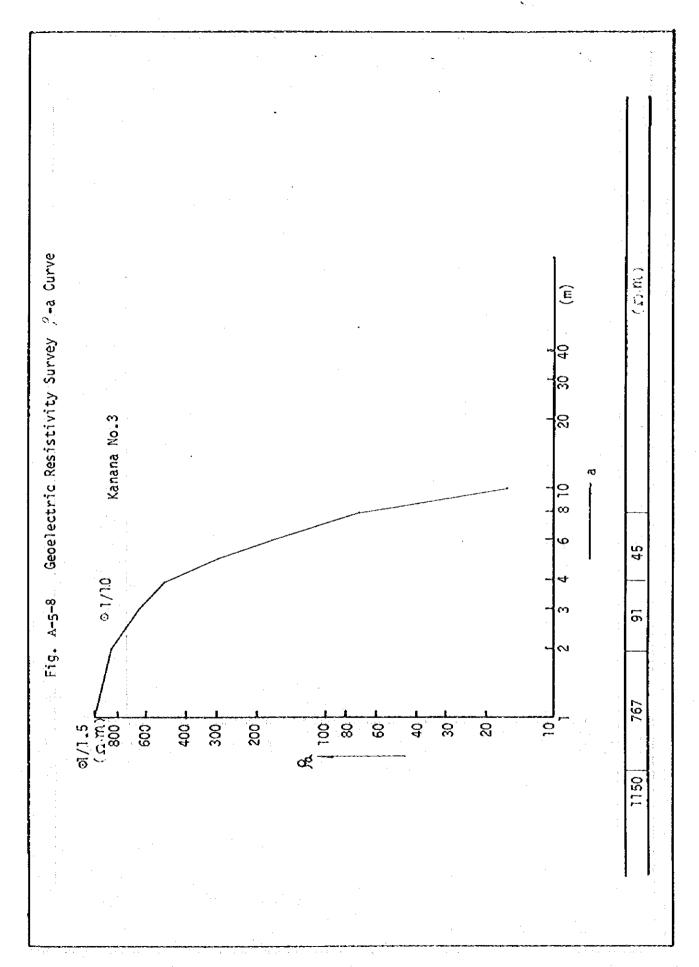

Table A-. 5-15 DATA SHEET OF GEOELECTRIC RESISTIVITY SURVEY

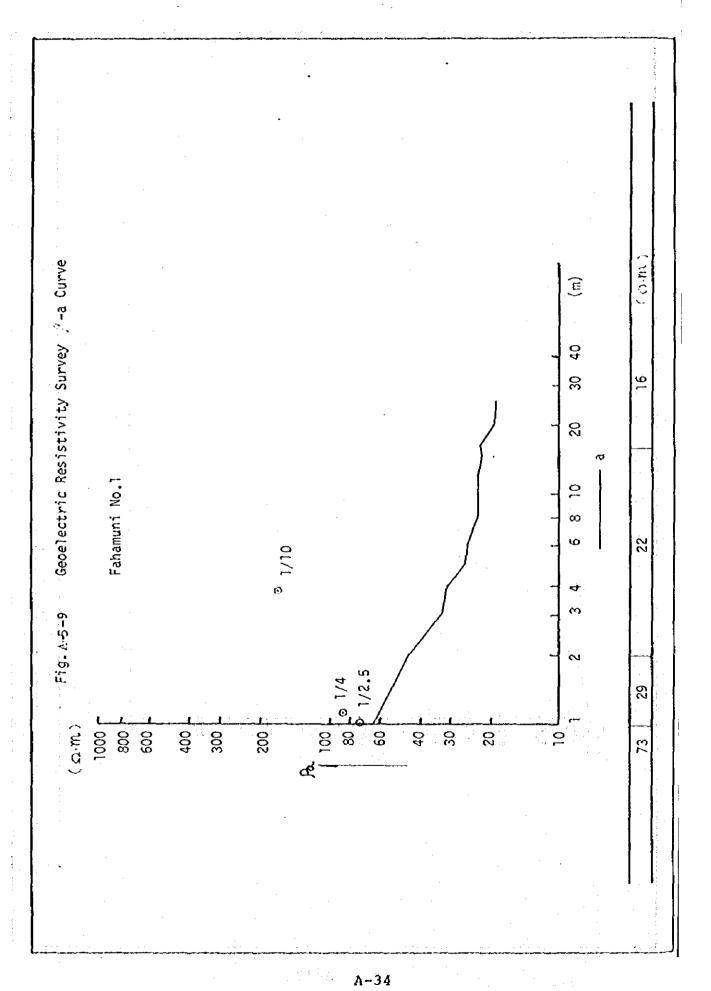

SURVEY NO	15	DATE: 2 / 2 / 1983 PLACE: UKUNDA WEATHER:	TIME: POINT: No.1 near to TEMP.:	Mr. Iddis house
REMARKS: 1	Wenner's Method	*		- ;

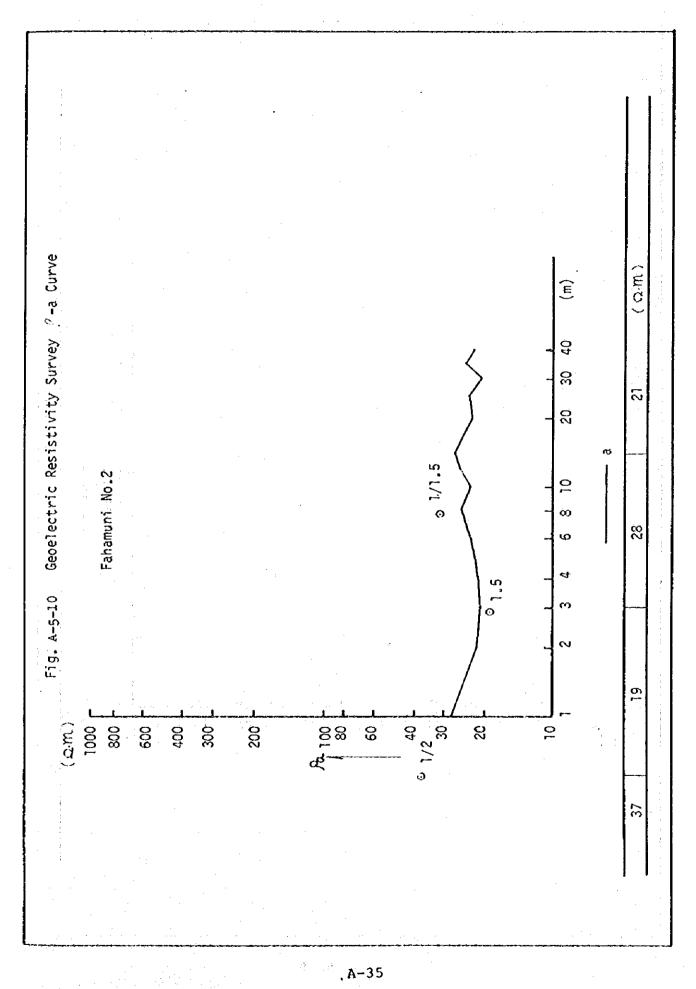

NO.	a (m)	2 m a (m)	(ふ)	Р= 2 ma R (л-m)	$0_p = G - P_1 / P_2$	$D_{c} = G - C_{1} / C_{2}$ $(3a/2)$
1	ı	6.28	159	1000	0.5	1.5
2	2	12.6	63	794	1.0	3.0
3	3	18.8	40	752	1.5	4.5
4	4	25.1	26	652	2,0	6.0
5	5	31.4	17.1	537	2,5	7.5
6	6	37.7	14.1	531	3.0	9.0
7	8	50.2	8.0	401	4.0	12,0
8	10	62.8	6,5	408	5.0	15.0
9	12	75.4	4.6	347	6.0	18.0
10	14	87.9	5.2	457	7.0	21.0
11	16	100	3.0	300	8.0	24.0
12	20	126	7.5	945	10.0	30.0
13	25	157		-	12.5	37.5
14	30	188	1.2	225	15.0	45.0
15	35	220	2.2	484	17.5	52.5
16	40	251			20.0	60.0
17	50	314			25.0	75.0
18	60	377			30.0	90.0
19	70	440			35.0	105
20	80	502			40.0	120
21	100	628			50.0	150

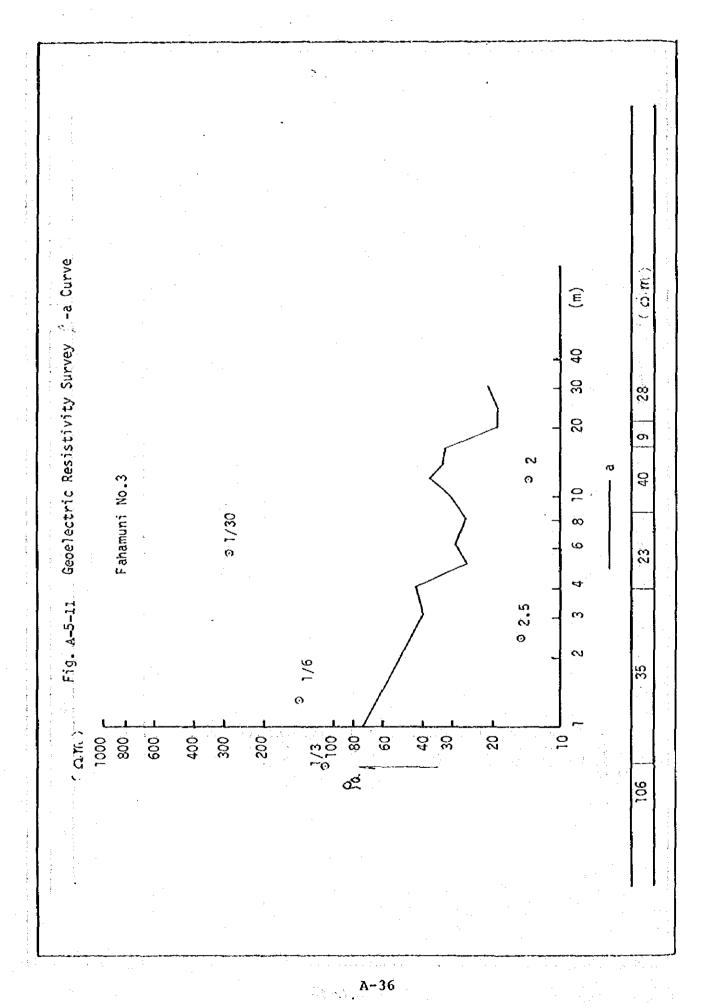


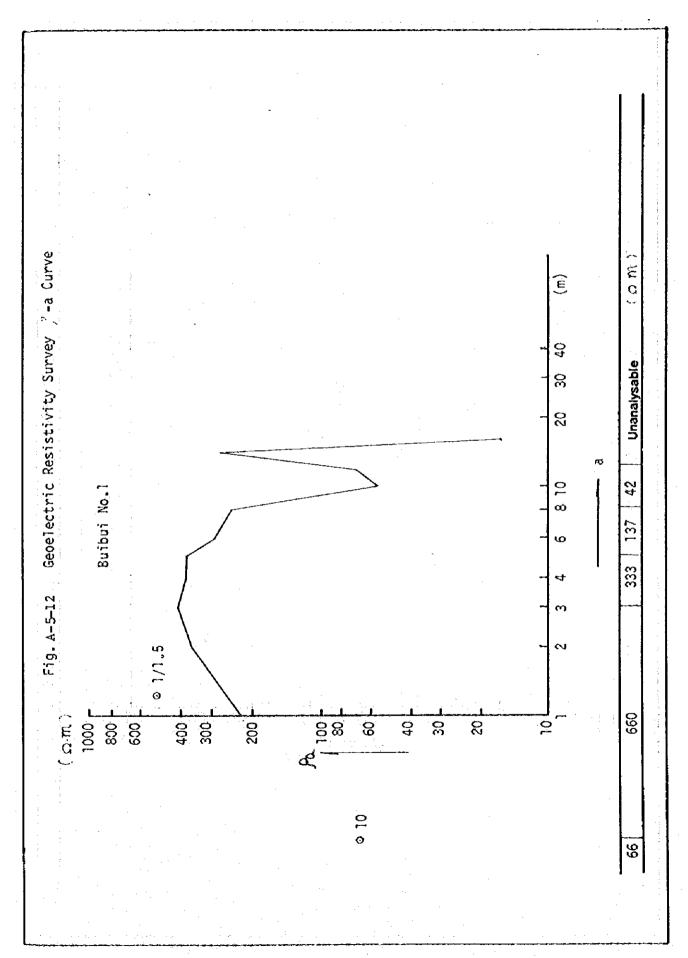


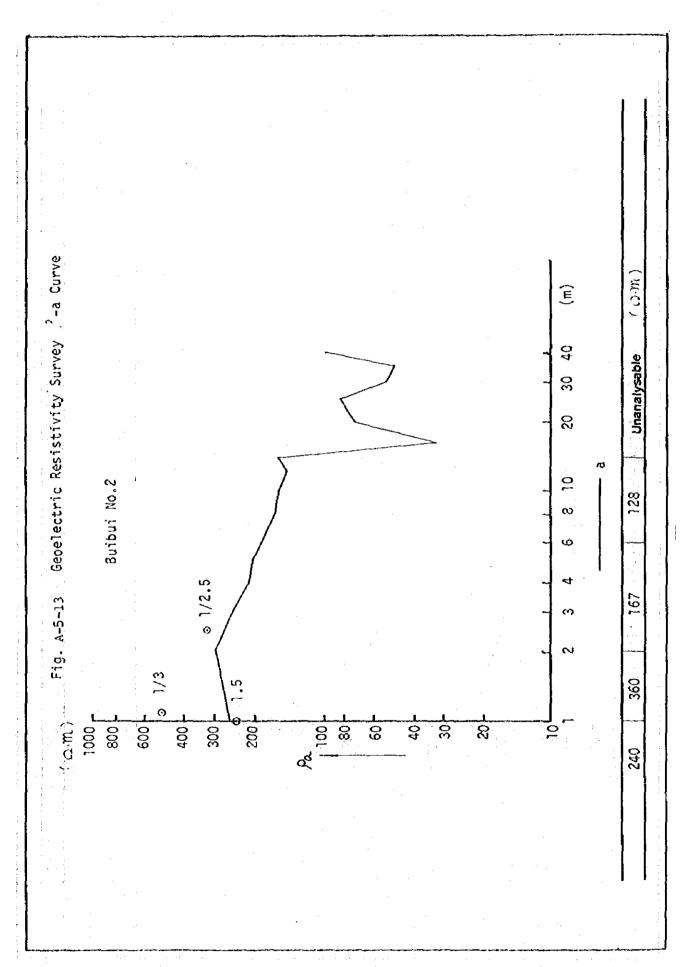


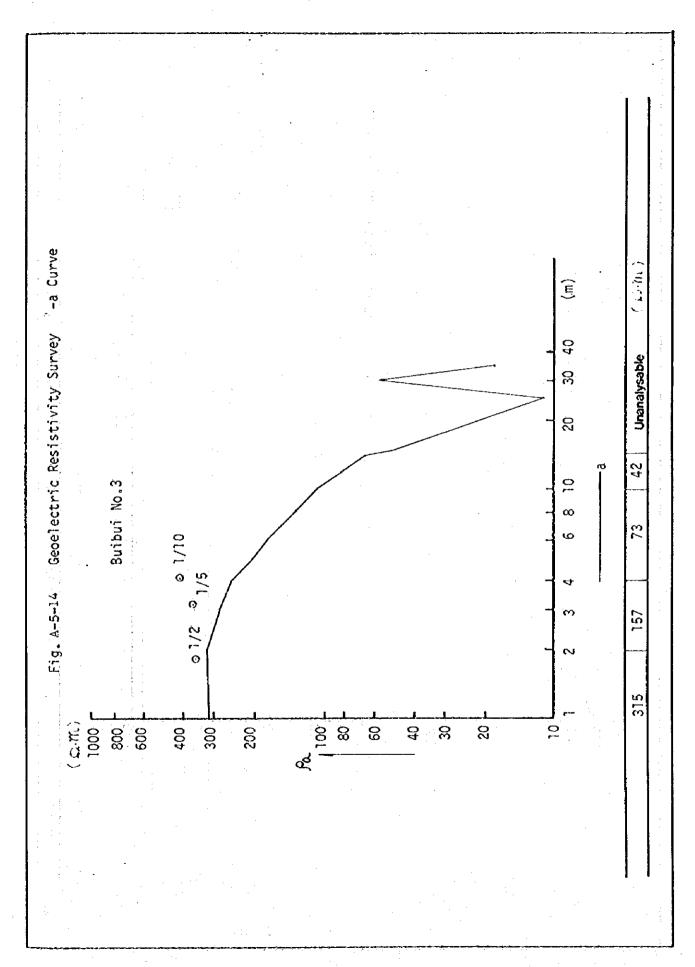


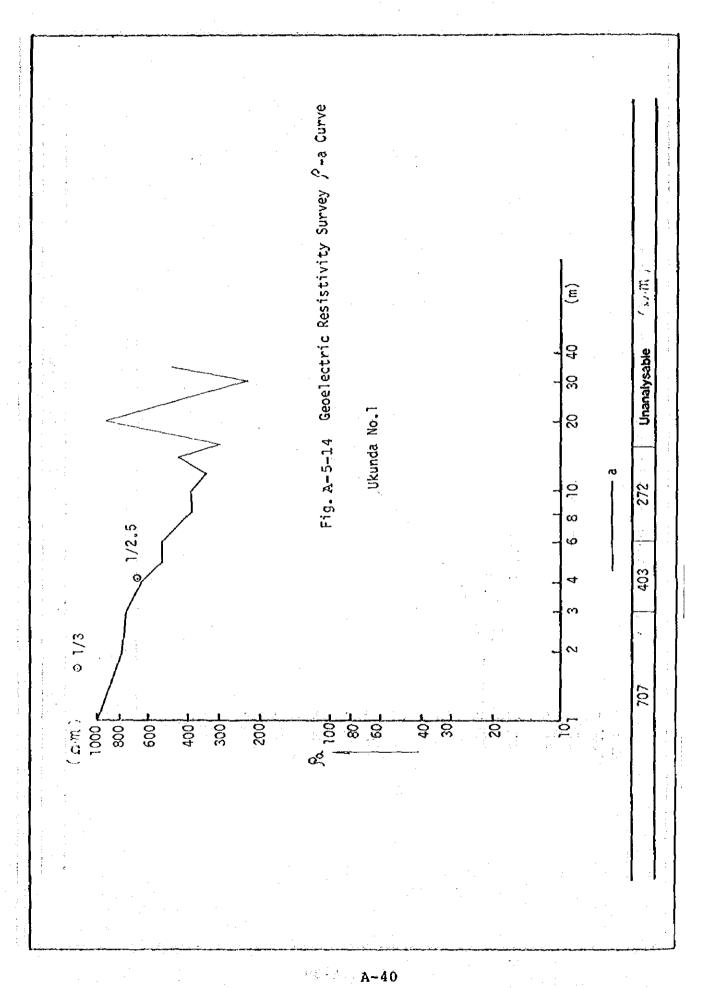


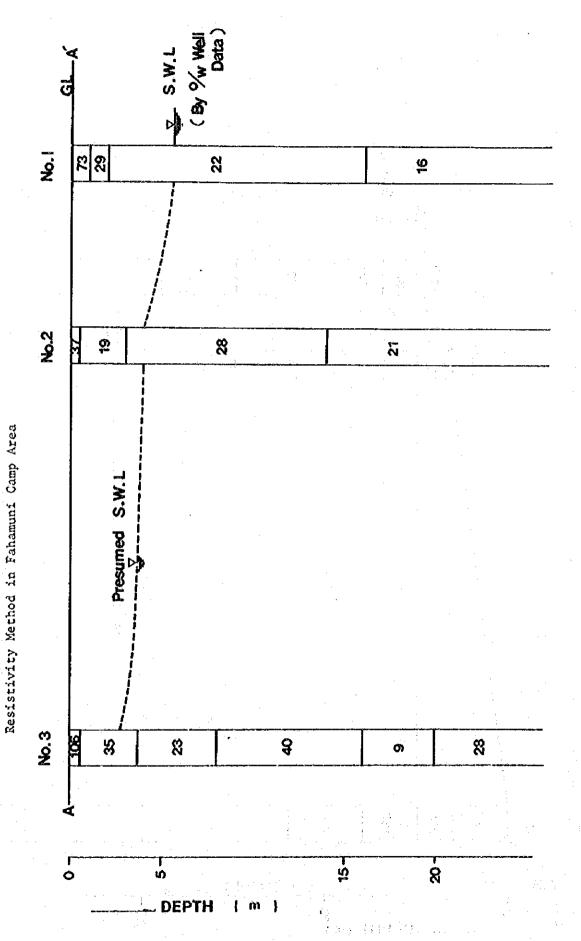












Presumed Columns of Geological Log Based on Geoelectrical Fig. A-5-15

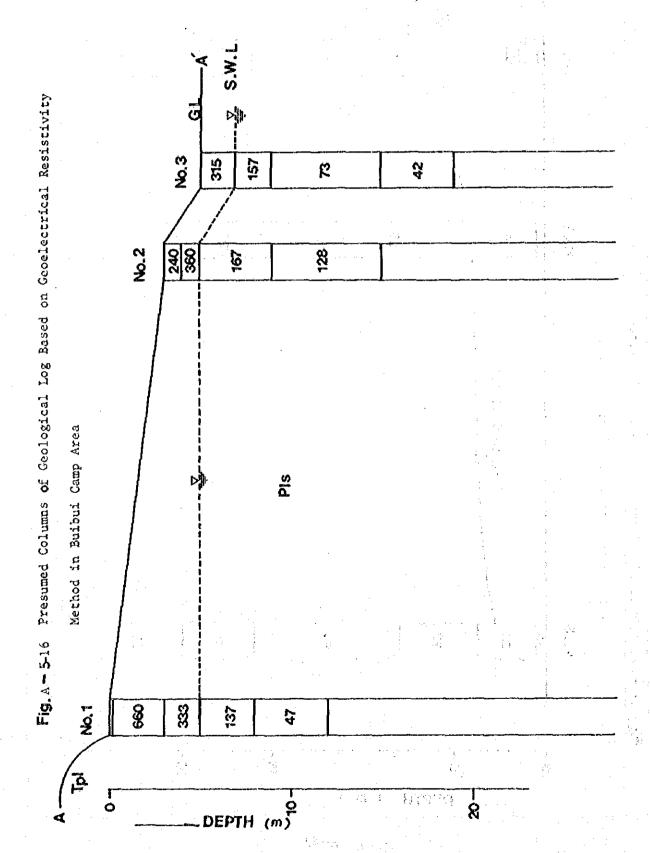
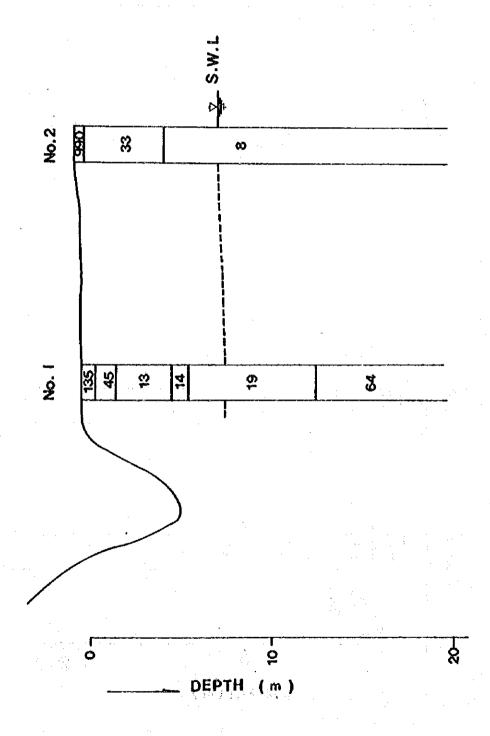



Fig. A-5-17 Presumed Columns of Geological Log Based on Geoelectrical

Resistivity Method in Mwachings Area

Presumed Columns of Geological Log Based on Geoelectrical Fig. A-5-18

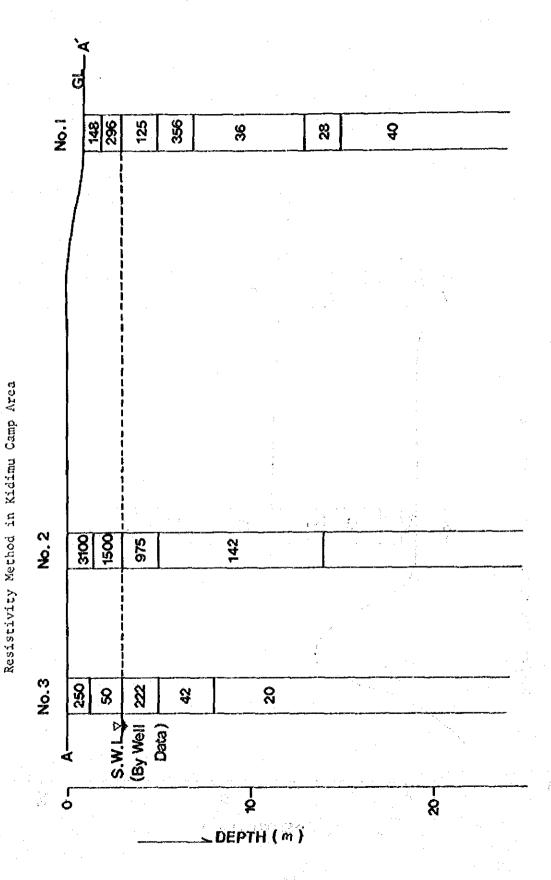
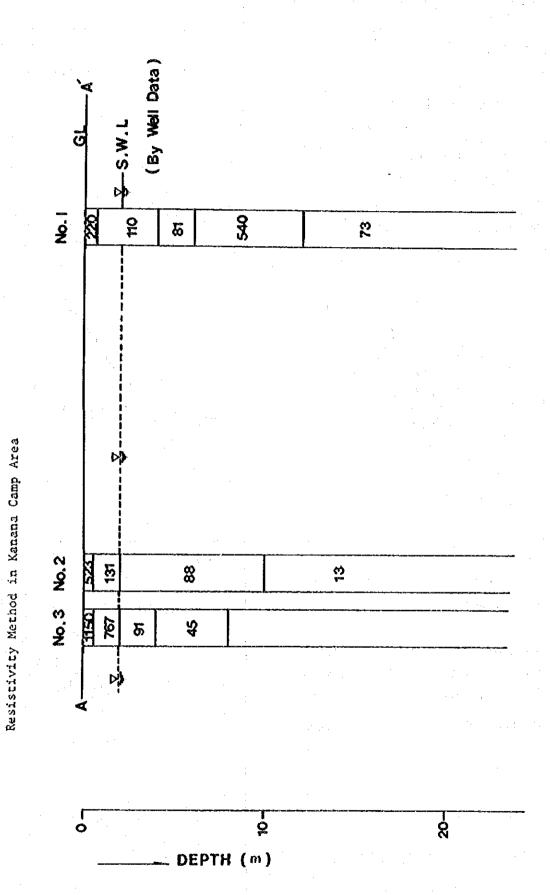



Fig. A-5-19 Presumed Columns Geological Log Based on Geoelectrical

APPENDIX 6 EXISTING WELL DATA (4 Camps)

Table **A-6-1**

DATA SHEET OF EXISTING WELL/SPRING

Survey Condition Date: 4th Feb. T	ime; 9:40 am	Weather:	Fine		Temperat	ure:31	.5(° C
Spring Location BUIE	SUI Camp (About	200 m dis	tant fr	om Camp)		
Detail of ####/Spring	3			***	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
Depth of Well :	-	•			* *	•	
Diameter :	- .	1.5	. :				
Water Level :	G.L						
Sketch of Well		-			57		
					1		
	Rock				WIX	مللا	
٨	٠ (ه				J.		
Ž,	Z 2.0m			į, s	y	•	
				Y	:		:
	 ./						•
6/7					Rock		
177			•	V /			•
					:		÷
					:		·
Water Qualitt		Ren	narks				· · · · · · · · · · · · · · · · · · ·
Water Qualitt Water temp, :	29.7 (°C)	Ren	arks				
Water temp. :		Ren	narks				<u></u>
Appearance :	Clear	Ren	arks				
Water temp. : Appearance : pH :	Clear 5.4	Ren	narks				- 1
Water temp. : Appearance : pH : Turbidity :	Clear 5.4 7 (ppm)	Ren	arks				3.
Water temp. : Appearance : pH : Turbidity : Conductivity :	Clear 5.4 7 (ppm) 1.5 (m以cm)	Ren	narks		のでは、「大きな」では、「大きな		1
Water temp. : Appearance : pH : Turbidity :	Clear 5.4 7 (ppm) 1.5 (m以cm)	Ren	narks				
Water temp. : Appearance : pH : Turbidity : Conductivity :	Clear 5.4 7 (ppm) 1.5 (m以cm)	Ren	narks				
Water temp. : Appearance : pH : Turbidity : Conductivity : Desolved Oxygen :	Clear 5.4 7 (ppm) 1.5 (m以cm) 5.6 (ppm)	Ren	narks		・ 「		
Water temp. : Appearance : pH : Turbidity : Conductivity : Desolved Oxygen :	Clear 5.4 7 (ppm) 1.5 (m以cm) 5.6 (ppm)	Ren	narks				
Water temp. : Appearance : pH : Turbidity : Conductivity : Desolved Oxygen :	Clear 5.4 7 (ppm) 1.5 (m以cm) 5.6 (ppm)	Ren	arks				
Water temp. : Appearance : pH : Turbidity : Conductivity : Desolved Oxygen :	Clear 5.4 7 (ppm) 1.5 (m以cm) 5.6 (ppm)	Ren	narks				
Water temp. : Appearance : pH : Turbidity : Conductivity : Desolved Oxygen :	Clear 5.4 7 (ppm) 1.5 (m以cm) 5.6 (ppm)	Ren	arks				
Water temp. : Appearance : pH : Turbidity : Conductivity : Desolved Oxygen :	Clear 5.4 7 (ppm) 1.5 (m以cm) 5.6 (ppm)	Ren	arks				
Water temp. : Appearance : pH : Turbidity : Conductivity : Desolved Oxygen :	Clear 5.4 7 (ppm) 1.5 (m以cm) 5.6 (ppm)	Ren	arks				

Survey NO. F-1			e e e e e e e e e e e e e e e e e e e	· ;
Survey Condition Date: 28th Jan.	Time: 16:25	Weather: Fine	Temperature:33.	5(° (
Well Locati	lon			
FAI	HAMUNI Camp			
Detail of Well/ Sp	ring			: .
Depth of Well	: 7.4 (m)			
Diameter	: 2.1 (m)	. •	ф 6.0	
Water Level	: G.L 4.70 (m)	_ \$\phi 2.5	
Sketch of Well		18 56 S.	φ 2.1	r -
Water Qualitt		Remarks		
Water temp.	: 28.9 (°C)			:
Appearance	: Clear			
рĦ	7.0		. •	
Turbidity	; 3 (ppm)			:
Conductivity	: 2.4 (m ¹ /cm)			
Desolved Oxygen				
Coliform Group	: (/cc)			
corriorm of oup				
oottioim oloup				
control a cloup				
	••			
	•••			

Survey NO. K-1

Survey Condition

Date: 28th Jan. Time: 16:07 Weather: Fine

Temperature: 34 (6 C)

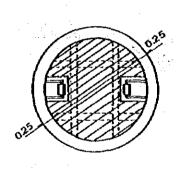
Well

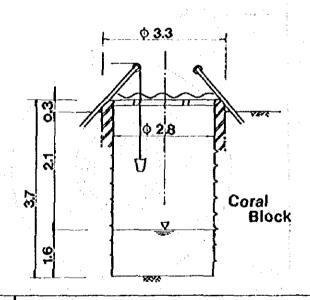
Location

KANANA Camp

Detail of Well/Spring

Depth of Well


; 3.7 (a)


Diameter

: 2,8 (m)

Water Level : G.L. - 1.8 (m)

Sketch of Well (m)

Water Qualitt

Water temp.

: 29.7 (°C)

Appearance

: Clear

pН

: 6.7

Turbidity

: 3 (mgq)

Conductivity

2.3 (my/cm)

Desolved Oxygen: 5.0

(ppm)

Coliform Group :

(/cc)

A - 48

Remarks

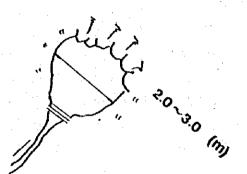
Survey NO. K-1

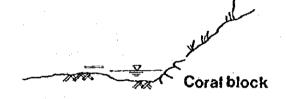
Survey Condition

Date: 27th Jan. Time: 12:00 Weather: Fine Temperature: 34 (°C)

Spring Location

KIDIMU Camp (About 250 m distance from Camp)


Detail of Well/Spring


Depth of Well :

Diameter : -

Water Level : G.L. -

Sketch of Well

Water Qualitt

Water temp. : 30.6 (°C)

Appearance : Turbid with white &

dark green

рн : 5.6

Turbidity : 16 (ppm)

Conductivity : 0.8 (my/cm)

Desolved Oxygen: 5.7 (ppm)

Coliform Group : (/cc)

Remarks

Survey NO. K-2

Survey Condition

Date: 27th Jan.

Time: 12:20

Weather: Fine

Temperature:34 (° C)

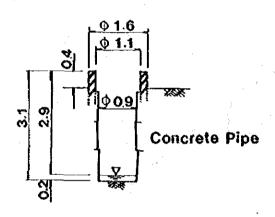
Well/Spring Location

KIDIMU Camp

Detail of Well/Spring

Depth of Well

: 3.1 (m)


Diameter

; 0.9 (m)

Water Level

: G.L. - 2.5 (m)

Sketch of Well

Water Qualitt

Water temp.

: 30.0

(°C)

Appearance

: Turbid with Brown

ρH

6.4

Turbidity

: 12

(ppm)

(/cc)

Conductivity

: 1.5 (mប/cm)

Desolved Oxygen: 5.5

(ppm)

Coliform Group:

Remarks

APPENDIX 7 EXISTING WELL DATA (Around Project Area)

Table A- Data of Existing Well around the Project Area

Well No.	Year	Total Depth(m)	W.S.L. (m)	W.R.L. (m)		Conduc- tivity	Diameter of Well(m)	Remarks
C2790	1958		170ft	30ft	2800GPH			
C3020			206-285ft	. 1	3000СРН			
C5028	1981	30	23-24	5.6	2.6			
C5000	1981	25	16	3.235	18			
C4166	1975	36	10	4.6	6			
C4354	1977	100	5-10	3.3	10.8	: : : :		:
C4977	1981	68	36	4.564	8		=	
C4240	1976	213.4	- 11	11.9	4.8		-	
C2558	1956	220f t	150ft	36-94ft	500GPH	•		
C2761	1958	98ft	86ft	86f t	720GPH			
C2555	1956	110ft	76£t	60ft	7000СРН		1 1 2	
C3011	1960	208ft	160-190ft	30ft	10000GPH			
C3906	1973	76.21	52.74	35.97	4.81	ł I	# # # # # # # # # # # # # # # # # # #	
C4421	1977	22	9.5	8.55	13.627			
C3904	1973	76.21	20.42	15.54	10.90		1	
C4536	1978	120		29	-			
C4142	1975	159	30-31	23.2	2.5		i 1	
C3905	1973	50.91	24.43	15.54	13.63			:
C4195	1976	84	25.5	23.5	35.3			
o/w 24		9.10	4.10	-	-	550	2.14	Kiviogo
o/w 25		7.50	5.50	-		500	2.20	Fahamuni
o/w 26		8.50	3.20	_		630	2.00	Shivazi
o/w 27		3.92	1.62	_	-	410	1.32	Dalgube
o/w 28		2.60	1.30	-	-	420	1.70	Bodo

W.S.L.: Water Struck Level
W.R.L.: Water Rest Level

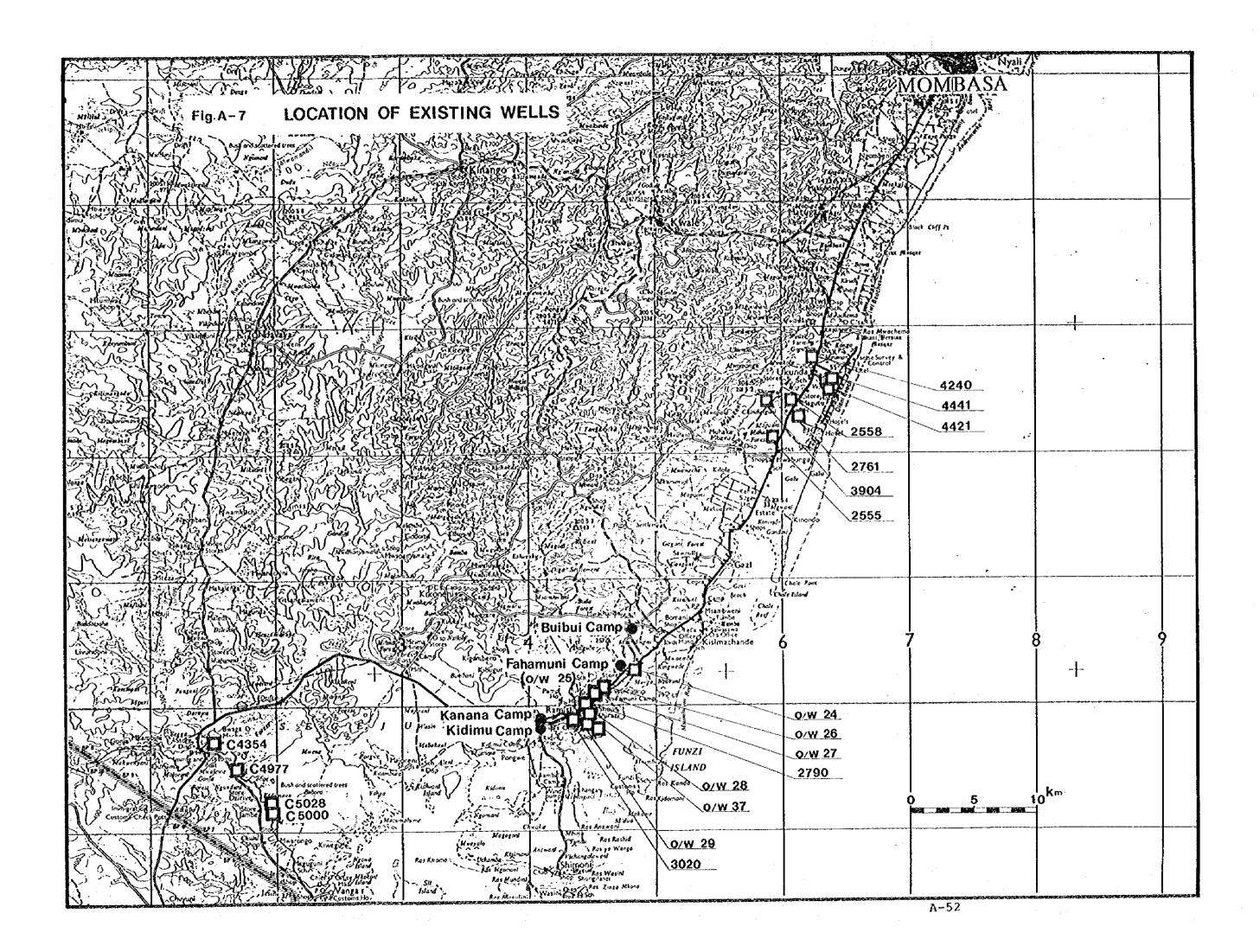


Fig. A-9-1 Located columnal diagrams of rainfall

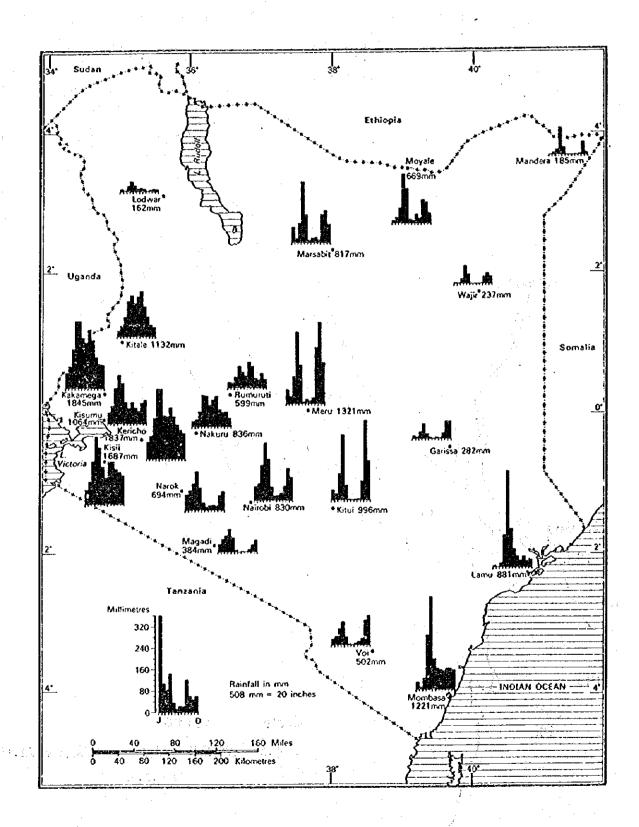
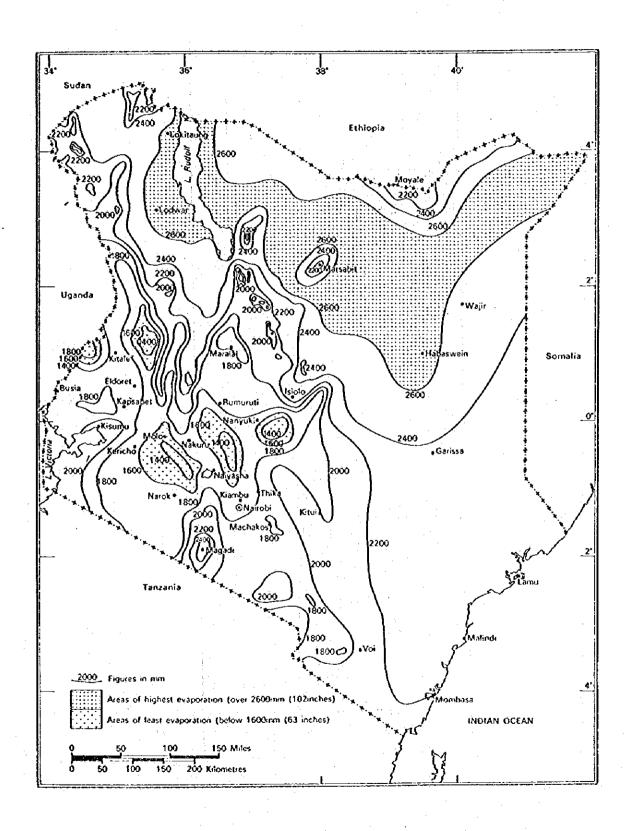



Fig. A-9-2 Annual potential evapolation from open water (Peumen Eo)

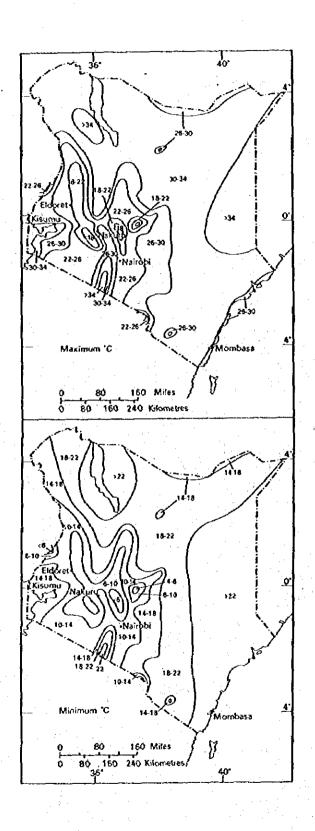


Fig. A-9-4 Relief

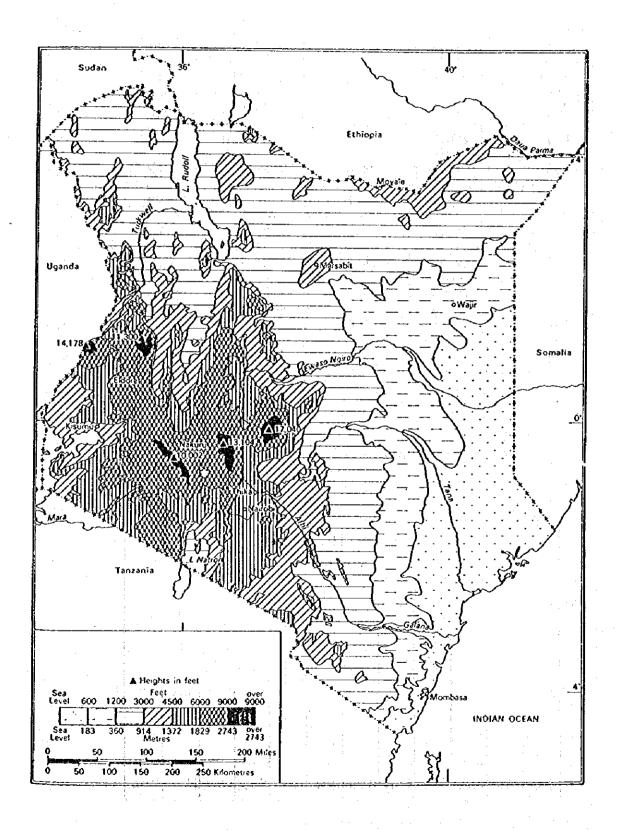
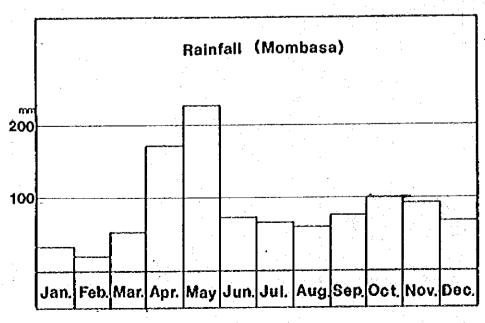



Table A-9-1 Climate of Mombasa

	Rainfall	Temper	rature	Related Humidity	Sunshine
	(mm)	Mean Max(°C)	Mean Min(°C)	(at 1200 %)	(hours/day)
Jan.	33.4	32.1	23.2	63	8.6
Feb.	20.1	32.4	23.6	61	9.1
March	54.4	32.7	24.2	63	9.0
April	173.9	31.2	23.8	68	7.5
May	228.2	29.2	22.6	72	6.5
June	75.1	28.5	21.2	68	7.5
July	68.2	27.7	20.3	68	7.0
Aug.	62.6	28.0	20.3	67	7.9
Sept.	77.9	28.9	20.8	65	8.5
Oct.	101.6	29.7	22.0	66	8.7
Nov.	92.8	30.6	23.0	68	9.0
Dec.	69.4	31.6	23.3	67	8.8
Total	1,057.6mm				
Remarks	(*)				

(*) Mean rainfall in 1971 to 1978

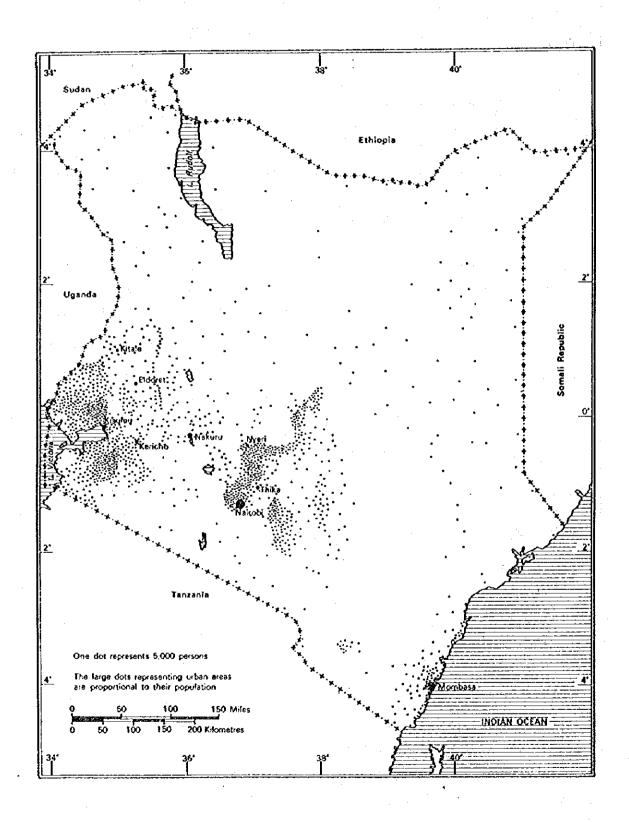
Source ; Meteorological Department A-58

APPENDIX 10 P) PULATION DATA

Table A-10-1 Population Changes by Province and District, 1969-79

Rate of In-To-Rate of Province & Province & 1979 crease Growth 1969 1979 1969 crease Crowth District District (%) (%) **(%)** (1) 2.22 Nairobi 509,286 827,775 62.5 4.98 Nyanza Pr. 2,122,045 2,643,956 24.6 869,512 28.8 2.56 Kisii 675,041 2,345,833 Central Pr. 1,675,647 40.0 3,42 20.4 1.87 400,643 482,327 Kisumu 3.74 475,576 Kiambu 686,290 44.3 2.16 383,188 474,516 23.8 Siaya 216,988 291,431 2,99 Kirinyaga 14.3 2.12 South Nyanza 663,173 817,601 23.3 Muranga 445,310 648,333 45.6 3.83 2,224,085 3,240,402 45.7 3.84 176,928 233,302 31.9 2.80 Rift Valley Pr. Nyandarua 3.03 85,903 149.005 73.5 5.66 360,845 486,477 34.8 Kajiado Nyeri 32.2 2.83 Kericho 479,135 633,348 Coast Pr. 944,082 1,342,794 42.2 3.59 7.30 Laikipia 66,506 134,524 102.3 Kilifi 307,568 430,986 40.1 3.43 290,853 522,709 79.7 6.04 Nakuru 288,363 205,602 40.2 3.44 Kvale 3.65 209,068 299.319 43.2 Nandi 22,401 42,299 88.8 6.56 Lamo 125,219 210,306 68.0 5.32 Narok Momba sa 247,073 341,148 38.1 3.28 10.6 1.02 69,519 76,908 Samburu 147,597 2.91 110,742 33.3 Taita 124,361 259,503 108.7 7.63 Trans-Nzola 92,401 6,19 50,696 82.3 Tana River 165,225 142,702 -13.6 -1.29 Terkana 191,036 300,766 57.4 4.64 Eastern Pr. 1,907,301 3,719,851 42.6 3.61 Vasin Cishu 158,652 64.7 5.11 Embu 178,912 263,173 47.1 3.93 West Pokot 96,254 44.3 3.73 161,741 203,792 26.0 2.34 30,135 43,478 Baringo Isíolo 3.08 Elegeyo Marakwet 159,265 148,868 -6.5 -0.63 342,953 464,283 35.4 Kitui 3.76 44.6 Machakos 707,214 1,022,522 1,328,298 1,832,663 38.0 3.27 Western Pr. 51,581 96,216 86.5 6.43 Marsabit 503,935 Bungona 345,226 46.0 3.85 3.36 830,179 596,506 Meru 4.04 Busia 200,486 297,841 48.6 1,030,887 31.7 2.79 Kakamega 782,586 North Eastern 245,757 373,787 52.1 4.28 99.7 Garissa 64,521 128,867 7.16 11.1 1.06 Mandera 95,006 105,609 10,956,501 15,327,061 39.9 3.41 Total Kenya 4.91 139,319 61.6 86,230 Waiir

Source: Kenia Population Census, 1979


Table A-10-2 Population of Province and District

	····	· · · · · · · · · · · · · · · · · · ·					<u> </u>
Province	District	Male	Female	Total	No.of households	Km ²	Density
							:
Nairobi		479,443	348,327	827,775	200,447	684	1,210
Central	Kiambu	344,366	341,924	686,290	142,301	2,448	280
	Kirinyaga	142,986	148,445	291,431	53,729	1,437	202
·	Muranga	310,632	337,701	648,333	129,238	2,476	261
	Nyandarua	114,856	118,446	233,302	43,197	3,528	66
	Nyeri	234,405	252,072	486,477	98,222	3,284	148
	Total	1,147,245	1,198,588	2,345,833	366,687	13,173	178
Coast	Kilifi	205,360	225,626	430,986	76,741	12,414	34
	Lamu	21,633	20,666	42,299	8,681	6,506	6
	Kwale	141,746	146,617	288,363	52,261	8,257	34
	Mombasa	189,942	151,206	341,148	82,571	210	1,622
:	Taita/ Taveta	72,218	75,379	147,597	31,706	16,959	8
	Tana River	46,647	45,754	92,401	17,239	38,694	2
•	Total	677,546	665,248	1,342,794	269,199	83,040	16
Eastern	Embu	127,867	135,306	263,173	50,241	2,714	96
	Isiolo	22,020	21,458	43,478	10,097	25,605	, 1
	Kitui	215,336	248,947	464,283	86,678	29,388	15
	Machakos	492,937	529,585	1,022,522	185,934	14,178	72
	Marsabit	48,860	47,356	96,216	21,005	73,952	1
	Meru	408,596	421,583	830,179	150,662	9,922	83
	Total	1,315,616	1,404,235	2,719,851	504,617	155,759	17
North-	Garissa	69,107	59,760	128,867	23,029	43,931	2
Eastern	Mandera	54,261	51,340	105,601	20,234	26,470	3
	Wajir	73,156	66,163	139,319	28,709	56,501	2
	Total	196,524	177,263	373,787	71,972	126,902	2
Nyanza	Kisii	423,450	446,062	869,512	141,607	2,196	395
	Kisumu	238,042	244,285	482,327	97,611	2,093	230
	Siaya	215,058	259,458	474,516	89,702	2,522	188
	South Nyanza	395,122	422,479	817,601	134,401	5,714	143
	Total	1,271,672	1,372,284	2,643,956	463,321	12,525	211
•		Y	A-60	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·

Table A-0-2 (Cont.)

					No.of	,	
Province	District	Male	Female	Total	households	Km ²	Density
Rift Valley	Baringo	101,606	102,186	203,792	42,724	9,885	20
	Elgeyo Marakwet	73,737	75,131	148,868	33,657	2,279	65
	Kajiado	75,137	73,868	149,005	28,571	19,605	7
	Kericho	322,057	311,291	633,348	124,847	3,931	161
	Laikipia	69,548	64,976	134,524	30,281	9,718	13
	Nakuru	268,717	253,992	522,709	114,624	5,769	90
	Nand i	151,996	147,323	299,319	57,521	2,745	109
	Narok	104,727	105,579	210,306	37,747	16,115	13
	Samburu	36,992	39,916	76,908	16,714	17,521	4
	Trans-Nzoia	131,890	127,613	259,503	49,001	2,078	124
	Turkana	72,273	70,429	142,702	22,911	61,768	2
	Vasin Gisku	154,836	145,930	300,766	60,214	3,378	89
	West Pokot	78,625	80,027	158,652	29,141	9,090	17
	Total	1,642,141	1,598,261	3,240,402	647,953	163,883	19
Western	Bungoma	246,841	257,094	503,935	78,971	3,074	163
	Busia	140,142	157,699	297,841	55,105	1,626	183
	Kakamega	489,938	540,949	1,030,887	198,070	3,495	294
	Total	876,921	955,742	1,832,663	332,146	8,196	223
KENYA Total		7,607,113	7,719,9481	5,327,061	2,956,369	564,162	27

Source: Kenya Population Census, 1979

