4.3 Soaking pits

4.3.1 Soaking pits

(1) Present problems

The existing soaking pits have a serious problem of combustion control. Improper temperature control raises the pit temperature extremely high (about 1,400°C) and causes most of the ingots to be washed. The pit pressure control dampers of particularly Nos. 1 to 6 soaking pits are improperly arranged and incapable of correct operation, resulting in an extremely high pit pressure and spouting of flame from the soaking pit top. With no cinder holes provided, cinder must be manually removed once per two months. This operation calls for frequent pit cooling and heating. These unfavorable operating conditions result in shortening the life of the soaking pits.

The downtime results of the soaking pits are shown in Table 4-1. Most of the downtime is accounted for by refractories replacement.

Table 4-1. Downtime ratio of soaking pits

1978	Sep.	Oct.	Nov.
Downtime ratio (%)	30.8	28.6	46.3
Number of days out of operation (day)	74	71 - 71	111

Notes: 100% = 30 or 31 days x 8 soaking pits

The temperature of combustion air is 250 to 300°C due to recuperator leakage and malfunction. This compares with the design temperature of 500°C.

- (2) Description of rehabilitation

 The soaking pits shall be modified as described below,

 with their dimensions and main specifications remaining unchanged.
 - a) The burners shall be renewed.
 - b) As for Nos. 1 to 6 soaking pits, a damper shall be installed after the recuperator to control the pressure of two soaking pits each, and the flues shall be modified accordingly.

Control of more than one soaking pit by one damper is practiced at Nippon Steel's works (Muroran, Kamaishi, Sakai and Hirohata). This control method accompanies fluctuations in the soaking-pit pressure, but these pressure fluctuations are not violent enough to interfere with the operation of soaking pits. There also is little or no likelihood that opening of the pit cover introduces cold air and discharges hot exhaust gases.

It may be more desirable to individually control the pressure of each soaking pit. After various studies described in Item 4.3.1.(5), however, the method of controlling two soaking pits by one damper has been adopted in this rehabilitation plan in consideration

4 - 10

of the existing flue layout, space available for recuperator installation, damper arrangement, and necessary investment.

These modification plans are shown in Drawing Nos. RP-0003 to RP-0007. The flues of Nos. 7 and 8 soaking pits remain unchanged.

- c) Recuperators of the stack type shall be installed for Nos. 1 to 6 soaking pits, and exhaust gases will be removed by natural draft. The existing finned-tube recuperators for Nos. 7 and 8 soaking pits shall be replaced.
- d) Entire instrumentation shall be renewed.

 Instrumentation of the soaking pits is described in

 Item 4.3.1.(4) and an instrumentation list is shown
 in Table 4-3.
- e) Pit covers shall be renewed with brick hangers changed.
- f) Refractories shall be replaced.
- g) Steel structure plates and air piping shall be partially modified.
- h) Cinder shall be removed by soaking pit crane, using the devices shown in Drawing No. RP-0002.

The soaking pit bottom control shall be undertaken carefully.

The rehabilitation plans for the soaking pits are shown in Tables 4-2.

(3) Main specifications

Туре	Top one-way fired recuperative soaking pit
Quantity	2 pits/battery x 4
Size	2,700 mm (W) x 5,100 mm (L) x 3,600 mm (D)
Charging capacity	45 tons max.
Fuel	Mixed gas
	(Blast furnace gas + fuel oil)

1

10

Table 4-2. Rehabilitation plan for soaking pits

		Rehabilitation plan	Present specifications			
		(Common to Nos. 1 to 8 soaking pits)	Nos. 1 to 4 soaking pits	Nos. 5 and 6 soaking pits	Nos. 7 and 8 soaking pits	
1. Pit	(1) Pit dimensions	Modification of steel structure and replacement of refractories with pit dimesnions unchanged	2,700 W x 5,100L x 3,600 D	Same as left	Same as left	
	(2) Charging capacity		45 tons max.	Same as left	Same as left	
2. Burner	(1) Fuel	Replacement of all burners with present specifications unchanged	BFG + fuel oil	Same as left	Same as left	
	(2) Quantity	Total 8 sets	4 sets/4 pits	2 sets/2 pits	2 sets/2 pits	
·	(3) Capacity (per set)	3.5 x 10 ⁶ kcal/hr			3.5 x 10 ⁶ kcal/hr	
3. Combustion air	(1) Quantity	(Existing fans will be reused)	2 sets/4 pits		3 sets/2 pits	
	(2) Capacity		7,000 m ³ /hr x 500 mmAq		5,000 m ³ /hr x 490 mmAq	
4. BFG fan	(1) Quantity	(Existing fans will be reused)	l set/4 pits	1 set/2 pits	l set/2 pits	
	(2) Capacity		5,000 m ³ /hr x 200 mmAq			
S. Flue	(1) Layout	Modification;				
		Stack-type recuperator Flue layout of Nos. 7 and 8 soaking pits will remain unchanged	b No.1 No.2 No.2	a No.5	No.7 No.8	

Table 4-2. (Continued)

	(2) Cross-section dimensions	Modification; Flue cross-sec- tions of Nos. 1 to 6 soaking pits shall be "b" in right figures, respectively	800 1,100 1,000 a~ b~ c~	1,000 1,000 b~	Cross-section dimensions not known
6. Recuperator	(1) _. Type	Renewal; Radiation type (Stack type for Nos. 1 to 6 pits)	Convection type (Flue tube type)	Same as left	Convection type (Finned-tube type)
	(2) Quantity	Replacement: Finned-tube type for Nos. 7 and 8 pits 3 sets for Nos. 1 to 6 soaking pits, and	2 sets/4 pits	l set/2 pits	2 sets/2 pits
	(3) Exhaust gas	2 sets for Nos. 7 and 8 soaking pits 1,100°C (1,150°C max.)			1,100°C
	temperature (at recuperator inlet)		Details not known	Details not known	
	<pre>(4) Preheated air temperature (at recuperator outlet)</pre>	500°C	ditto	ditto	500°C
	(5) Exhaust gas	6,400 m ³ /hr	ditto	ditto	4,250 m ³ /hr
	(6) Air volume	4,300 m ³ /hr	ditto	ditto	2,850 m ³ /hr
	(7) Location	Installed in stack for Nos. 1 to 6 soaking pits Installed in flue for Nos.	Installed in flue (Vertical type)	Installed in flue (Vertical type)	Installed in flue (Horizontal type)
		7 and 8 soaking pits *Exhaust gas and air pressure losses will be held within present values			*Drawings show that gas recuperator is installed just after air recupe- rator, but details are unknown
				Data-market	Potavy typa
7. Flue damper (for pit pressure control	(1) Type (2) Quantity	Renewal; Rotary type 3 sets for Nos. 1 to 6 soaking pits, and	Rotary type 4 sets/4 pits	Rotary type 2 sets/2 pits	Rotary type 2 sets/2 pits

Table 4-2. (Continued)

	<u></u>				
		2 sets for Nos. 7 and 8 soaking pits			
	(3) Location	After recuperator	In flue of each pit at	In flue of each pit at	In flue of each pit after
			the end of each gather-	the end of each gather-	recuperator
			ing flue	ing flue	
	(4) Water cooling	Not provided	Provided	Provided	Not provided
8. Exhaust system	(1) System	Renwal; natural exhaust	Forced exhaust by fan	Forced exhaust by fan	Natural exhaust
		system for Nos. 1 to 6			
		soaking pits. (Stack with recuperator) 1 set/			
·		2 0110	_		
	(2) Forced exhaust	z pies	17,000 m ³ /hr x 80 mmAq	Details not known	
	capacity		1 set/4 pits	1 set/2 pits	
9. Piping	•	Extension of combustion air			
J. Figure		piping (500 Ø)			
				*	
10. Fuel oil and		Renewal	•		
compressed air					!
heater					
			•		
11. Instrumenta-		Renewal; Refer to Table			
tion		43		·	

(4) Instrumentation

- a) Basic considerations
 - (i) The soaking-pit instrumentation system shall consist of electronic analog instruments which permit each soaking pit to be monitored and controlled in the soaking-pit instrument room.
 - (ii) In case of electric power failure, the soakingpit instrumentation system shall be made capable
 of performing one cycle of operation (e.g.,
 closing of a shutoff valve or opening of a pit
 pressure control damper) by both the residual
 pressure in the air receiver of the instrumentation pneumatic power supply and the residual
 pressure in the oil tank of the instrumentation
 hydraulic power supply, provided that the
 residual pressure in the air receiver of the
 instrumentation pneumatic power supply shall
 cover the closing of fuel shutoff valves alone.

b) Functional description

X

(i) Pit temperature control

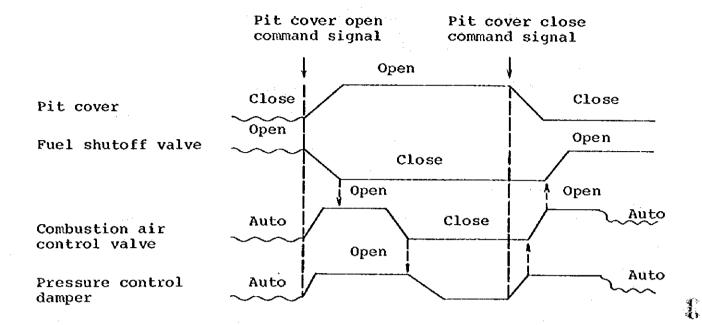
Each soaking pit shall be provided with two
temperature-sensing points so that its temperature can be measured accurately for proper
operation.

A switch shall be provided to permit selection between these two temperature-sensing points.

Maximum heat input control devices shall also be provided.

- (ii) Fuel oil flow control

 Positive displacement flowmeters shall be installed to measure the flow rate of fuel oil.
- (iii) BFG (blast-furnace gas) flow control
 The fuel oil/BFG ratio is controlled.
- (iv) Atomizing compressed air flow control
 The fuel oil/air ratio is controlled.
- (v) Combustion air flow control


 The volume of combustion air for the soaking pit
 greatly varies between the heating period and the
 soaking period. For this reason, the split ranging system shall be adopted which uses master and
 slave valves.
- (vi) Pit pressure control
 The pressure of two soaking pits shall be controlled in one loop by the damper installed after the recuperator.
- (vii) Exhaust gas temperature control Exhaust gas temperature shall be controlled by introducing diluting cold air before the recuperator.
- (viii) Preheated combustion air temperature control

 Preheated combustion air temperature shall be

1

controlled by releasing combustion air at the recuperator outlet.

- (ix) Fuel oil temperature control
 Fuel oil temperature shall be controlled by
 switching on and off an electric heater.
 - (x) Atomizing compressed air temperature control Atomizing compressed air temperature shall be controlled by switching on and off an electric heater.
- (xi) Combustion air pressure control (for prevention of blower surging)
 Blower surging shall be prevented by sensing common blower header pressure and controlling the amount of air released through release pipe.
- (xii) BFG pressure control (for prevention of blower surging)
 Blower suring shall be prevented by sensing common blower header pressure and controlling the volume of gas at the blower inlet.
- (xiii) Sequence control
 Pit cover opening and closing, and emergency
 shutoff shall be basically performed as shown
 in the following schedule:

- c) Electric power supply for instrumentation An exclusive electric power supply system shall be provided for instrumentation.
- d) Pneumatic power supply for instrumentation

 An exclusive pneumatic power supply system shall be provided for instrumentation and shall deliver boosted and dehumidified air.
- e) Hydraulic power supply for instrumentation

 An exclusive hydraulic power supply system shall be
 for instrumentation. One hydraulic power supply shall
 provide hydraulic drive for two or three soakiing
 pits.

J.

Table 4-3. Instrumentation list

No.	Item	Function	Quantity
1	Pit temperature control	TRCA	8
2	Fuel oil flow control	FRCQ	8
3	BFG flow control	FRCQ	: 8
4	Atomizing compressed air/ fuel oil flow ratio control	FIC (ratio) 8
5	Combusion air/(fuel oil + BFG) flow ratio control	FIC (ratio	s) 8
6	Pit pressure control	PIC	5
7	Exhaust gas temperature control (for recuperator protection)	TICA	5
8	Combustion air temperature control (for recuperator protection)	TICA	5
9	Fuel oil temperature control	TIC	4
10	Atomizing compressed air temperature control	TIC	4
11	Combustion air pressure control (for prevention of blower surging)	PIC	5
12	BFG pressure control (for prevention of blower surging)	PIC	3
13	Sequence control		.1
14	Temperature recorder	TRCA	8
15	Instrument panel		2
16	Electric power supply for instrumentation		1

Notes: TRCA: Temperature recording controller with alarm

FRCQ: Flow recording controller with integrator

FIC: Flow indicating controller

PIC: Pressure indicating controller

TICA: Temperature indicating controller with alarm

TIC: Temperature indicating controller

- (5) Study of soaking-pit recuperator and damper arrangement Table 4-4 gives the results of study on the soaking-pit recuperator and damper arrangement (plans A to D).
 - a) Plan A is inferior to plan B because of pit pressure fluctuations, but better than plan B in terms of required modification and investment.

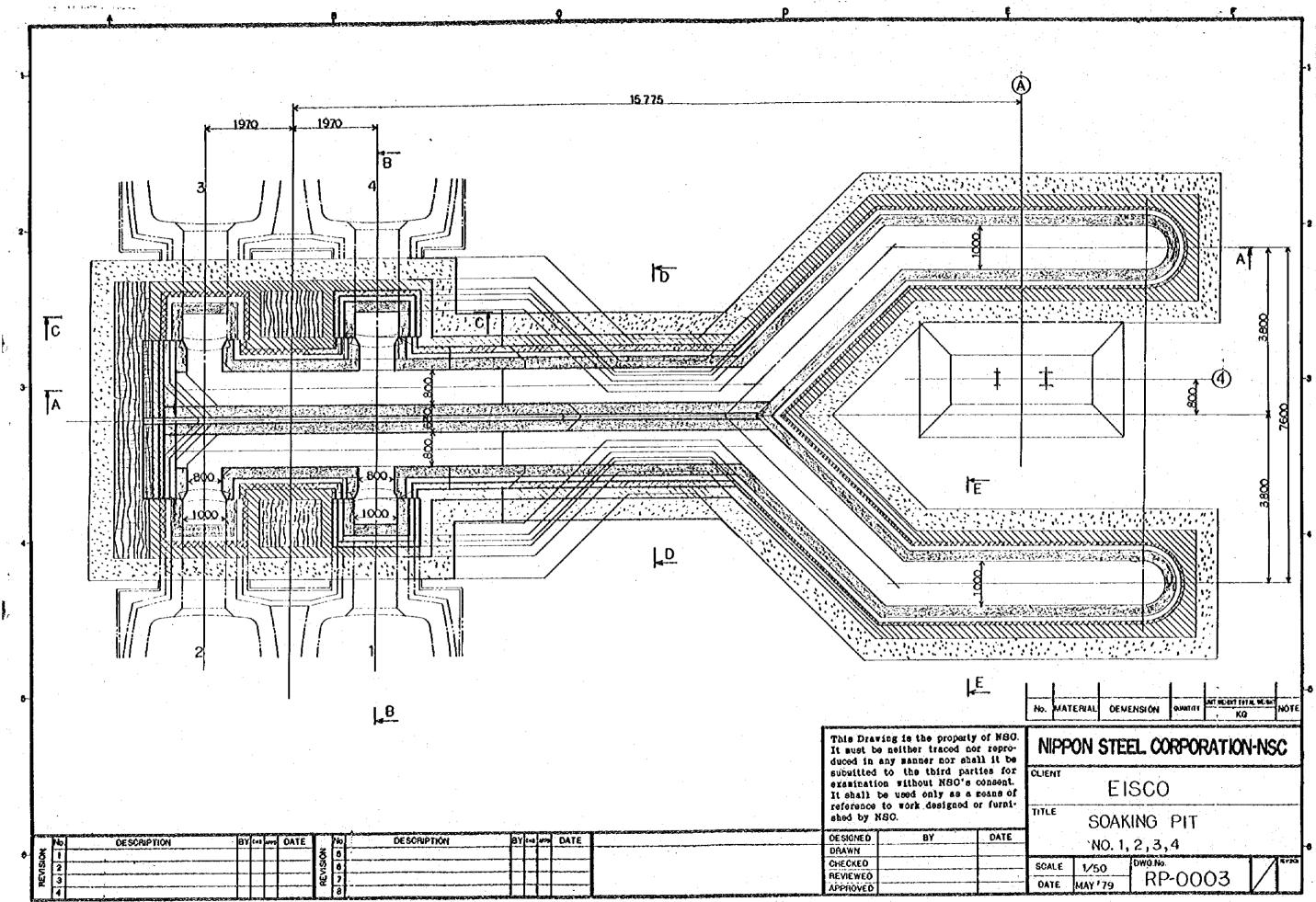
 This plan is also practiced at Nippon Steel's works without any operational problems.
 - b) Plan B is the best suited for rehabilitation, but has little feasibility because of limited recuperator installation space, extensive flue modification, tight schedule, and large investment required.

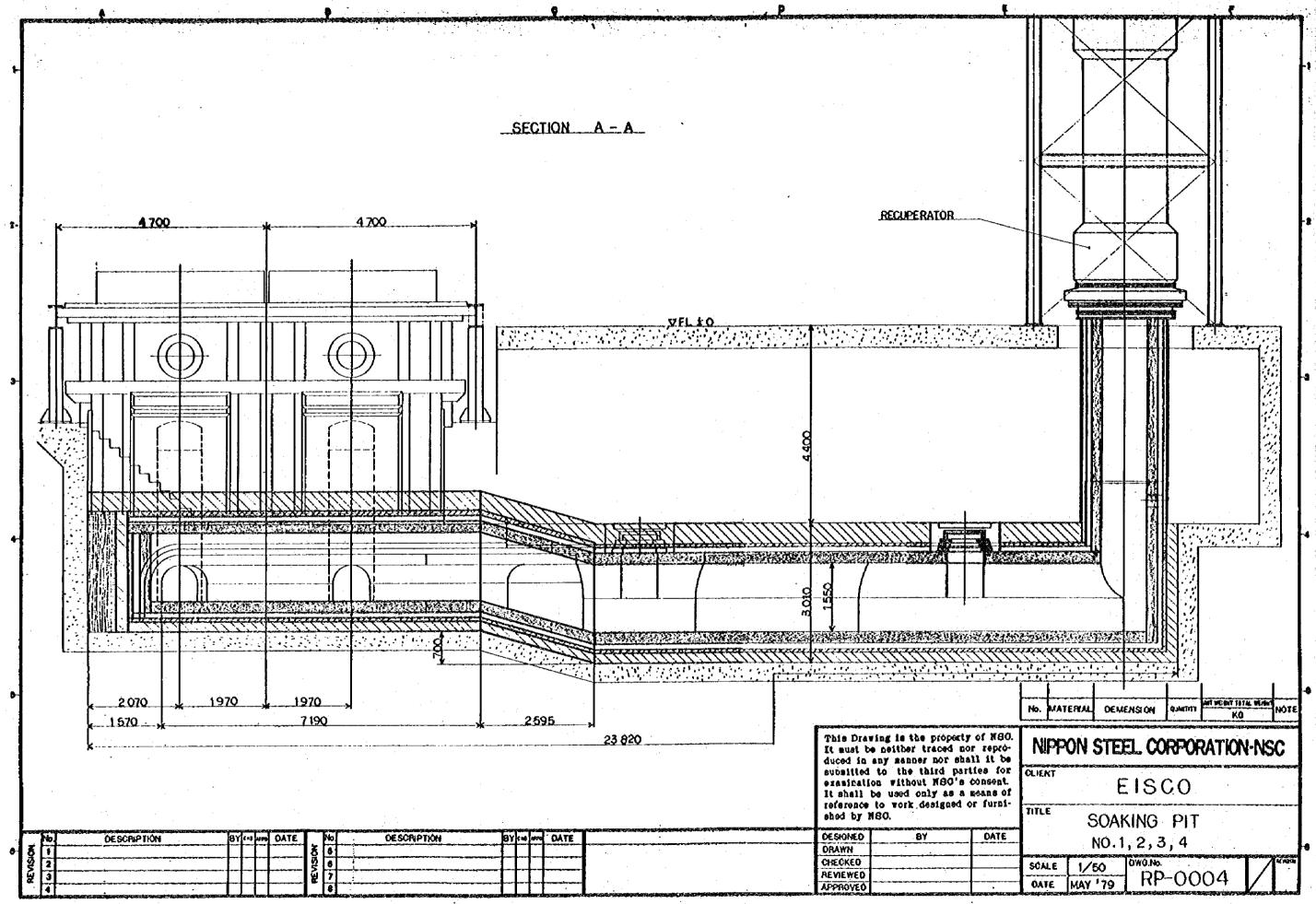
- c) Plan C is insufficient to eliminate recuperator and damper troubles.
- d) Plan D can be executed in the shortest schedule with the lowest investment, but provides little improvement, if any, and has such operational problems as decreasing the combustion air temperature.

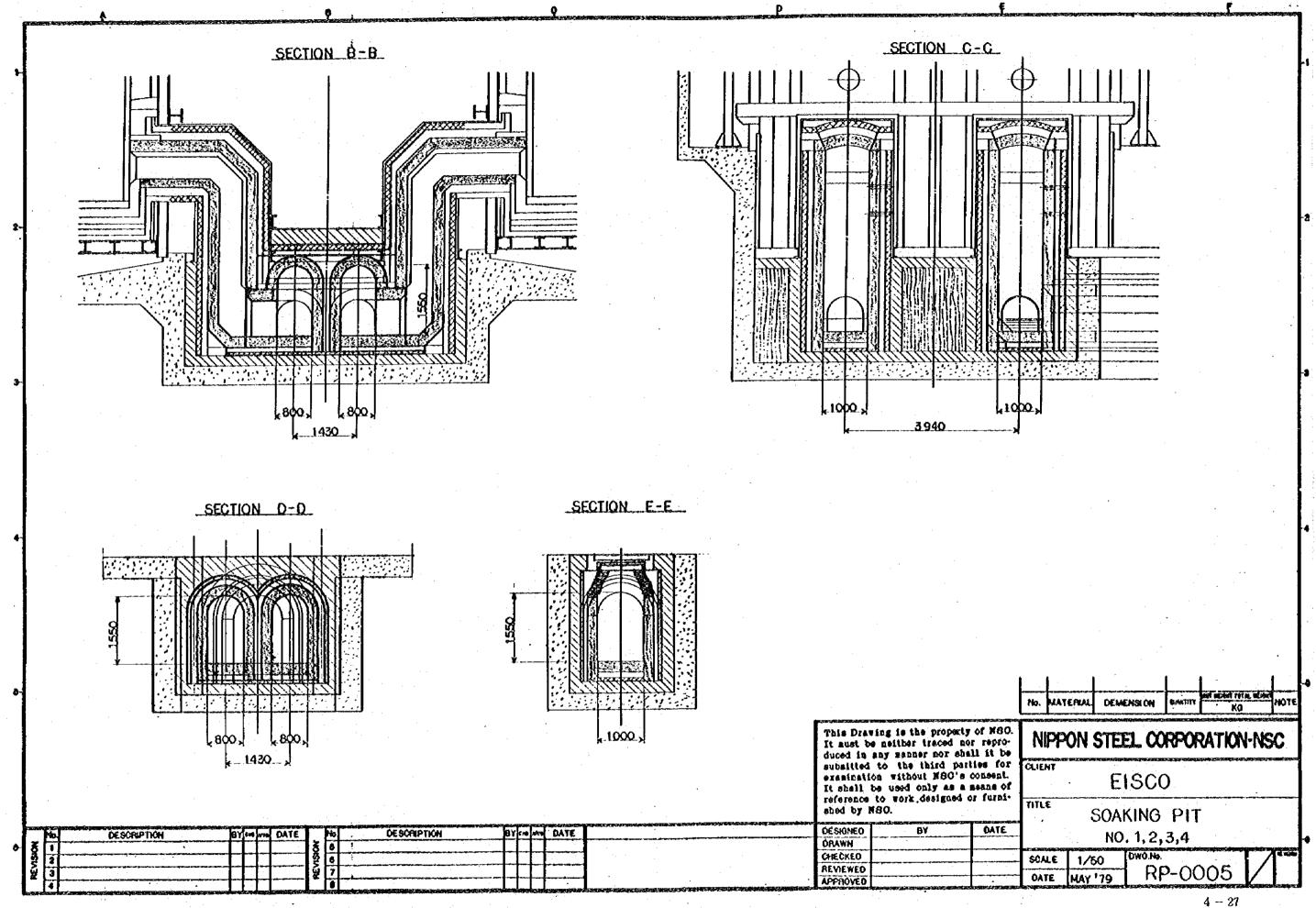
As a result, plan A has been adopted.

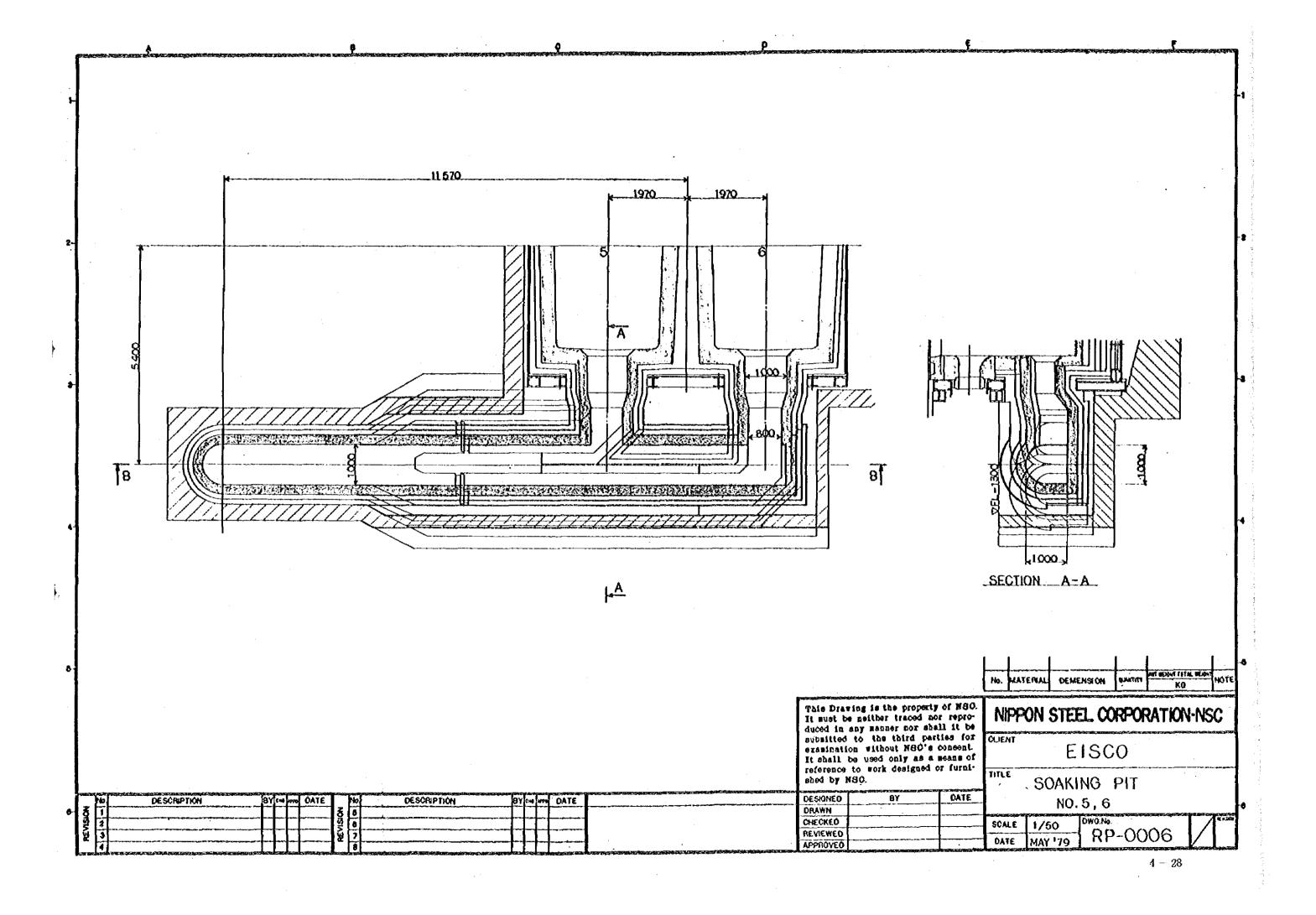
Table 4-4. Study of soaking-pit recuperator and damper arrangement

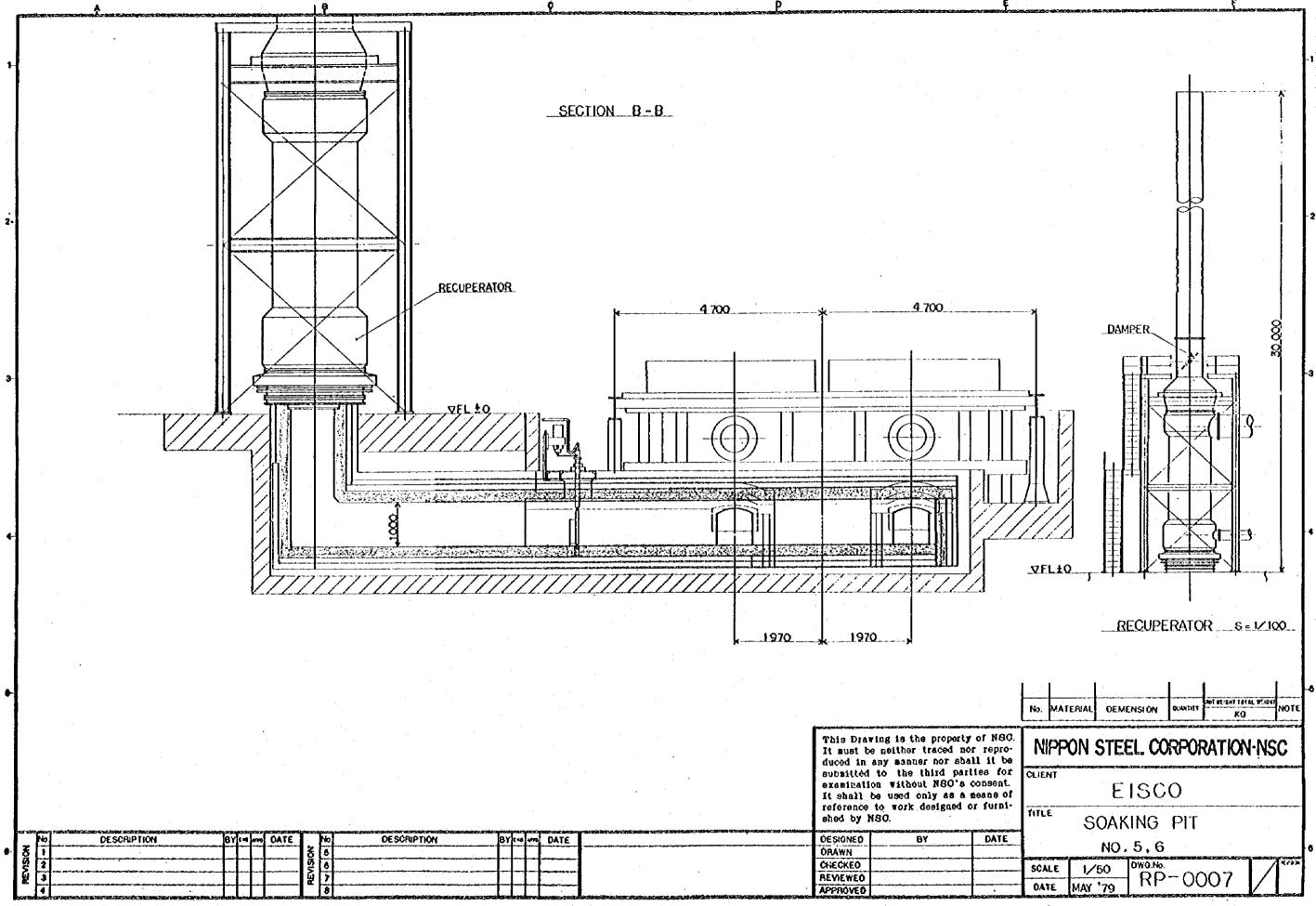
	Donat and this	Rehabilitation plan			
	Present condition	Plan A (adopted)	Plan B	Plan C	Plan D
1. Layout	Recuperator Damper N. 4 N. 1 Recuperator Stack To burner Air blower Exhaust gas	Recuperator and damper Na 4 Na 1 Na 2 Stack Damper To burner Recuperator Air blower Exhaust gas	Recuperator and damper No. 1 No. 2 Stack Damper To burner Recuperator Air blower Exhaust gas	Recuperator No. 1 No. 2 Recuperator Stack Recuperator Burner Pit Recuperator Recuperator Recuperator Recuperator Recuperator Recuperator Recuperator	 (1) Same as present layout (2) Injection of diluting air into flue ahead of damper to lower exhaus gas temperature (for damper protection) (3) Renewal of recuperator (to same specification as present ones)
		(1) Renwal of recuperator(2) Removal of IDF and atack(3) Installation of damper after recu-	(1) Renewal of recuperator(2) Removal of IDF and atack(3) Installation of damper after recu-	(1) Installation of additional recuperator in downtake (2) Renewal of existing recuperator	


Table 4-4. (Continued)


2. Récuperator					
(1) Type	Convection type (finned	Radiation type (stack	Radiation type (stack	Radiation + radiation	Convection type (flue
	tube type)	type	type)	type	tube type)
(2) Quantity	2 sets/4 pits	2 sets/4 pits	4 sets/' pits	(4 sets + 2 sets)/4 pits	2 sets/4 pits
7. Damper					
(1) Type	Rotary type (water	Rotary type (not water	Rotary type (not water	Rotary type (water	Rotary type (water
	cooled)	c∞led)	cooled)	cooled)	cooled or not)
(2) Quantity	4 sets/4 pits	2 sets/4 pits	4 sets/4 pits		
4. Pit pressure control	Pressure control of each	Pressure control of	Pressure control of each	Pressure control of each	Pressure control of each
system	pit	gathering flue common to	pit	pit	pit
		two pits			
5. Problem	(1) Severe recuperator	(1) Pit pressure fluctu-	(1) Extensive flue modi-	(1) Grave risk of addi-	(1) Exhaust gas tempera-
	and damper damage	ations due to pres-	fication work re-	tional recuperator	ture must be lowered
		sure control of	quired	being damaged by	to operate damper
		gathering flue	(2) Is it possible to	after burning, etc.	without water cooling.
		(But these pressure	secure space for	(2) There is no space in	
		fluctuations does	installation of	Nos. 5 and 6 pits to	waste heat recovery and thermal efficiency.
	·	not interfere with	additional recu-	install additional	
		the operation.)	perator?	recuperator.	(2) Recuperator troubles
				(3) Installation of ad-	such as dust clogging
				ditional recuperator	cannot be eliminated.
				lowers exhaust gas	
				temperature in damper	I
				area by about 100°C,	
•				but water cooled	
				dampers are still	
•				required.	
				(4) Is it possible to	
				install additional	
				recuperator?	


Table 4-4. (Concluded)


6. Evaluation rating*				
i) Investment				
o Flue work (includ-	2	3	1	1
ing brick)				
o Recuperator	2	3	3	1
ii) Work period	2	3	1	1
iii) Operation	2	1	3	3
iv) Overall evaluation	1	2	3	4


^{1 =} Excellent; 2 = Good; 3 = Fair; 4 = Poor.

4.3.2 Soaking pit refractories

(1) Present problems

2

The soaking pits and their covers refactories are made of firebrick. The pit covers are partially repaired at intervals of one to three months and totally repaired every five months. The soaking pits are partially repaired at intervals of one to two months and completely repaired every eight months. Possible causes for these short lives of the soaking pits and their covers are as described below.

- a) Operating conditions

 Combustion control is not performed successfully.

 Generally, the cold-ingot ratio is about 5% at ordinary integrated steelworks but a very high 40 to.50% at EISCO. And ingots are charged tilted against the pit walls, seriously damaging the pit walls.
- b) Maintenance of pit cover frameworks

 The pit cover frameworks are deformed greatly. The seal plates are severely damaged. Most of them are in unsatisfactory condition and heated red hot.
- c) Quality and shape of refractories
 Corner and ridge chips are found on most of brick.
 This is probably because brick corners are physically weak and brick are improperly packaged and handled.
 In particular, deformed brick in the pit covers

does not have sufficient strength because they are hand-moulded brick.

d) Brick laying

Most of brick joints have virtually no mortar filled, and allowance for expansion is provided little.

- (2) Description of rehabilitation
 - a) Operating conditions

Firstly, ingots must be charged upright into the soaking pit. To this end, it is very important to fill the bottom of the soaking pit with bottom-making material and to effect careful bottom control. The dual purposes of the bottom-making material are to protect the bottom of the soaking pit and to erect ingots upright in the soaking pit. Ingots must be also shaped better through efforts at improvement in ingotmaking operation.

1

Secondly, care must be exercised to prevent ingots and crane tongs from striking against the pit walls when the soaking pit crane is operated. Crane operators should be instructed to observe this precaution strictly.

Thirdly, efforts should be made to avoid rapid heating and cooling of the soaking pits.

If these protective measures are properly taken, the life of the soaking pits will be substantially prolonged.

b) Soaking pits

The soaking pits refractories shall be made of firebrick.

General side walls shall be made of silica brick which have excellent resistance to spalling and creep. However, the lower parts of the side walls and the bottom shall be made of basic brick to prevent erosion by scale. At the back of the side walls and the bottom shall be provided insulating firebrick and board. The walls shall be provided with tension brick to prevent them from protrusion. Curve tile brick in the topmost parts of the walls, except the partition wall, shall also be made of tension brick. These measures can prevent the flow of seal sand into the space between the shell and brick.

The pit walls should be made of plastic refractories if longer lining life is desired in the future. Plastic refractories, however, call for skill in laying and cause greater trouble than firebrick when imporperly laid. Even when plastic refractories are used in the pit walls, it is desirable to make the partion wall with firebrick.

General types of refractories used in the soaking pits are shown in Fig. 4-3.

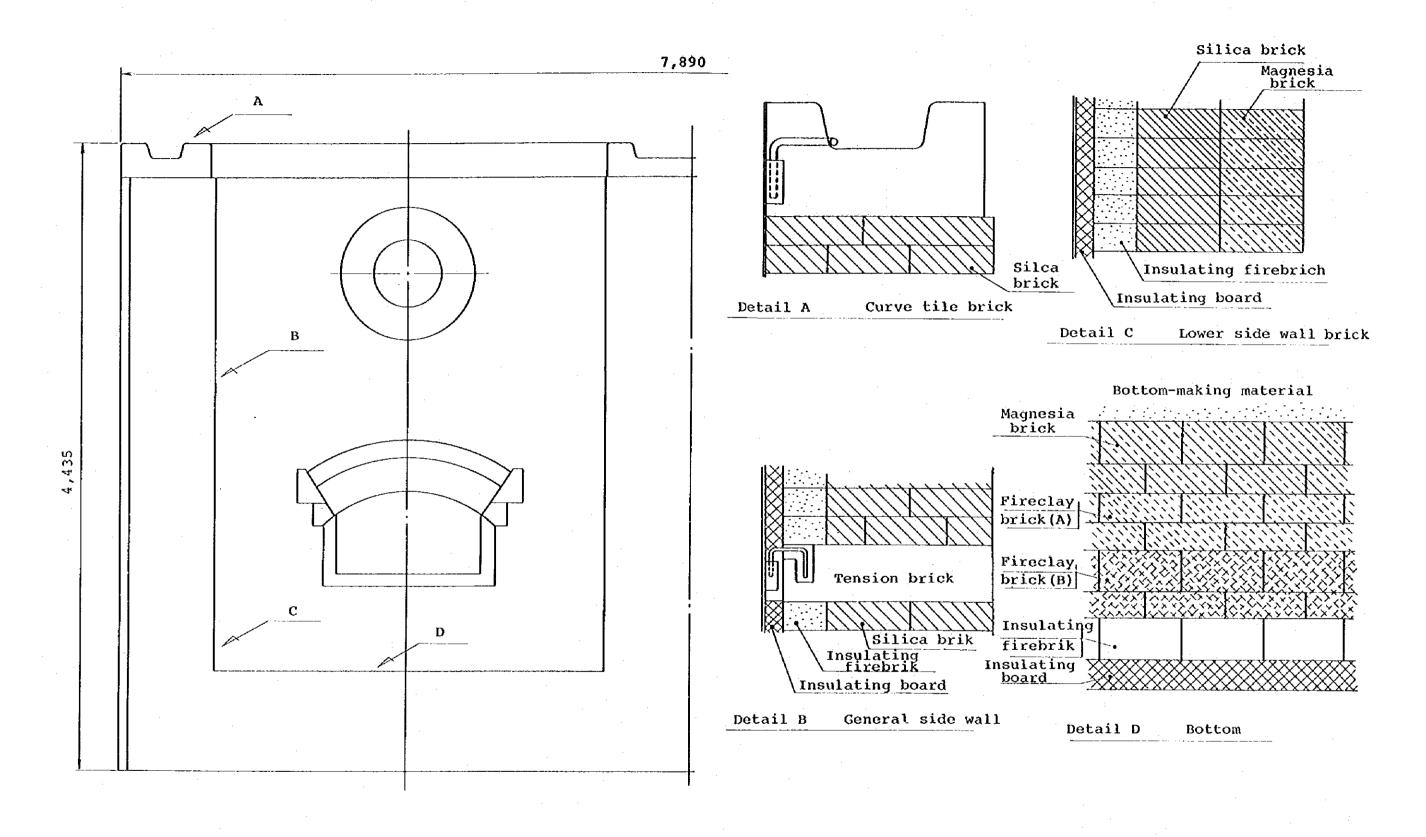


Fig.4-3. Shcematic diagram of soaking pit lining

c) Soaking pit covers

The soaking pit covers shall be made of plastic or castable refractories to improve spalling resistance and to prevent gas escape by monolithic structure.

Plastics are more durable than castables but require a high degree of skill in laying. They also are liable to deterioration when stored for a long period of time. Thus, use of castable refractories should be preferred at present.

The cover lining is schematically illustrated in Fig. 4-4 and Drawing No. RP-0008.

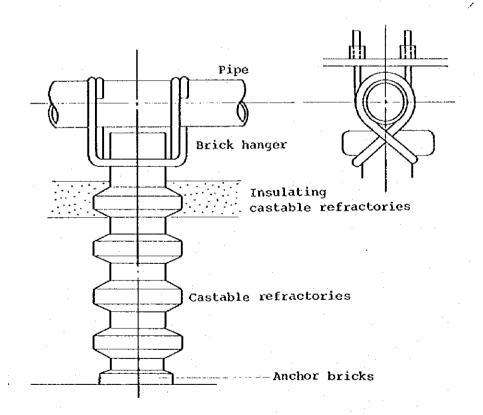
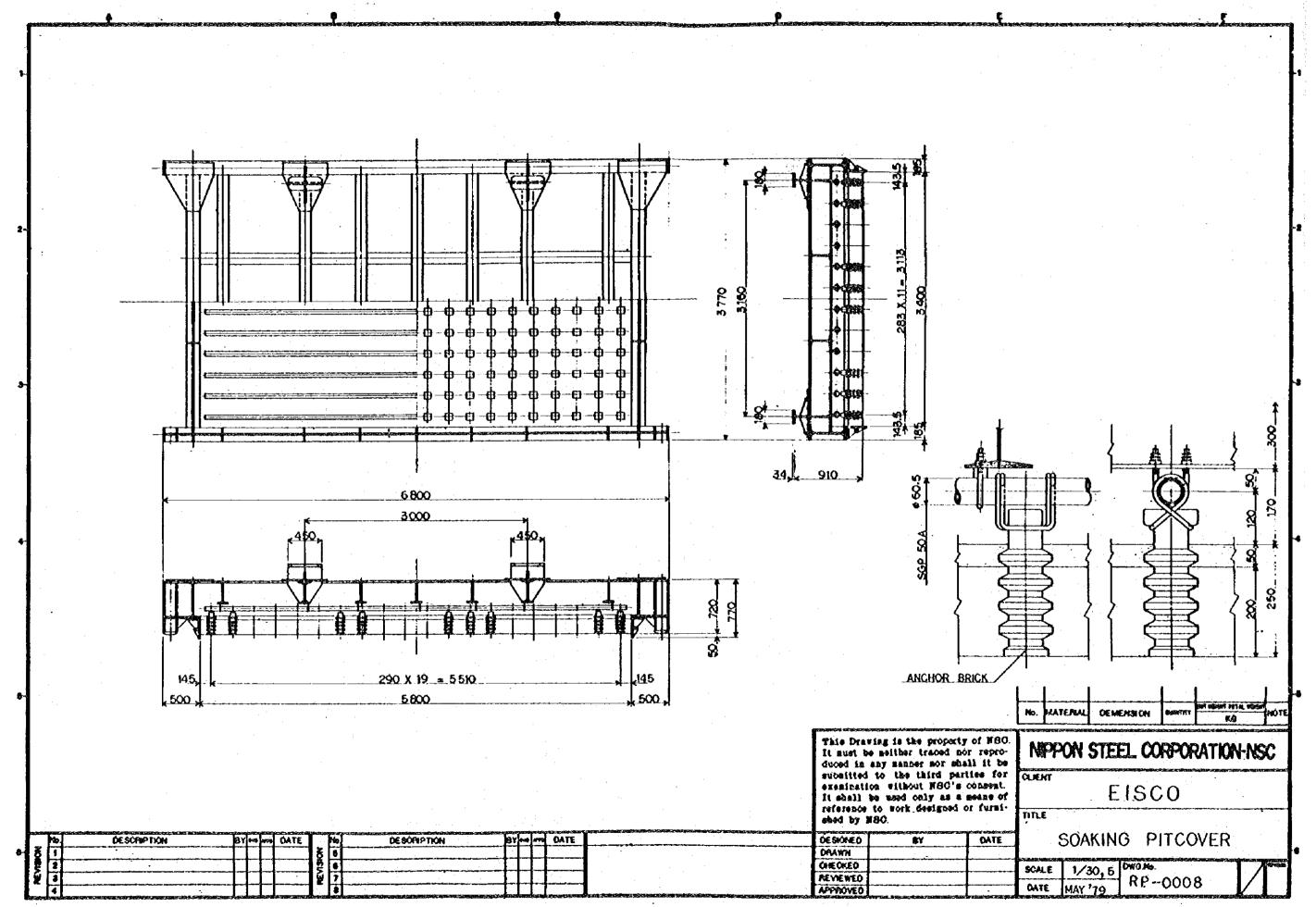



Fig. 4-4. Schematic diagram of hangle bricks

4.3.3 Cover cranes

1

(1) Present problems

The existing two cover cranes must be entirely renewed because of severe damage and wear of the drive units related to travelling and hoisting. Plant shutdown caused by cover crane failures accounts for an average of 19 hr per month (between September and November, 1978). Most of these crane failures are electrical failures, mainly collector problems and wiring and motor burnouts.

(2) Description of rehabilitation The two cover cranes shall be both renewed in accordance with the existing rail span.

(3) Main specifications

Туре	Electric motor driven type
Quantity	2 units (one for Nos. 1 to 4
	soaking pits and the other for
	Nos. 5 to 8 soaking pits)
Crane span	9,400 mm
Lift	180 mm
Travelling speed	24.0 m/min
Cover weight	21 tons/cover
Main power source	380 V, 50 Hz

Operation of the cover cranes shall be manually controlled from the instrument room of the soaking pits.

4.4 Blooming mill and auxiliaries

4.4.1 Present problems

Failures of the blooming mill, including the manipulator, working roller tables and breast rollers, are most frequent and responsible for an average of 50.3 hr per month of plant shutdown (between September and November, 1978).

Electrical equipment accounts for more than the half of these failures. There also are many mechanical drive unit failures, such as unbalanced wear of speed reducer gears and wear of bearings. The gear box covers are not bolted, resulting in incomplete closure.

11

4.4.2 Description of rehabilitation

(1) Manipulator

The manipulator shall be renewed with the existing manipulator guide length and tilting finger positions unchanged. Since the existing wire rope drive system for the tilting fingers fails frequently, it shall be renewed by a drive system of the worm reducing type.

The existing AC drive motors shall be replaced by DC motors to improve controllability and to reduce motor burnouts.

(2) Breast rollers

The breast rollers shall be basically the same as the present specifications but shall be independently driven to allow for the ease of maintenance.

(3) Mill screwdown speed reducers

The existing mill screwdown speed reducers shall be renewed because of their obsolescence and wear-out.

The AC screwdown drive motors shall be replaced by DC motors to enhance stopping accuracy.

4.4.3 Main specifications

(1) Manipulator

Туре	Electric motor driven type
Side guide length	4,800 mm (exluding end
	guide)
Finger	Worm reducing type with
	4 fingers
Side guide opening	2,300 mm max.
Side guide moving speed	0.8 m/sec
Finger tilting stroke	600 mm

(2) Breast rollers

Barrel length	2,100 mm
Roll diameter	590 ø/490 ø mm
Journal diameter	180 ø mm

4.5 Roller tables

4.5.1 Present problems

Most of the existing roller tables are obsolete, and many rollers are incapable of rotation.

Plant shutdown due to roller table troubles averages 22.3 hr per month (between September and November, 1978).

. Negaration is a proposition of the second

ada pantaman ang atau at tang a

en proportion de la compact de la compact

and the state of the control of the first and the state of the state of the state of the state of the state of

4.5.2 Description of rehabilitation

(1) Ingot receiving table

> The ingot receiving table shall be renewed with the roller diameter and roller barrel length unchanged.

The foundation shall be constructed to accommodate an ingot scale and three roller tables for future installation (ingot receiving table, ingot scale table and ingot waiting roller table). In this step, the ingot receiving table and ingot waiting table shall be installed. The ingot receiving table shall have to be moved when the ingot scale table is installed.

Equipment shall also be provided to receive scale falling from the roller tables.

(2) Front extension table

> The front extension table shall be renewed with the roller specifications unchanged.

This table has the same function as the working roller tables of transferring slabs and blooms which elongate greatly during rolling.

Because of the resultant need for synchronization with the working tables, DC motor shall be installed. account of maintenance, the table rollers shall be independently connected to corresponding DC motors through a coupling.

Ingot approach table (3)

> The ingot approach table shall be renewed with the roller specifications unchanged.

> > 4 - 41

1.

This table shall also use rollers connected to DC motors for the same reason as described in (2) above.

(4) Front and back working tables

The front and back working tables shall be renewed

with the roller specifications unchanged.

Because of the need for synchronization with the mill rolls, these working tables shall be driven by DC motors.

This system is generally used in Japan and seems satisfactory enough when ingot size and economy are considered.

(5) Back extension table

The back extension table shall be renewed with the specifications unchanged. Rollers connected to DC motors shall be used for the same reason as described in (2) above.

- (6) Shear roller tables A and B

 These tables shall be renewed with the roller dimentions unchanged. Four entry rollers of the these 21 rollers shall be rollers connected to DC motors for the same reason as described in (2) above.
- (7) Runout tables A and B

 These tables shall be replaced with motor rollers to the same specifications as the present ones.

(8) Other

The existing roller table aprons shall be reused.

Those of the existing rollers which can be reused shall be held as spare rollers.

The relationship between roller table layout and slab and bloom length is shown in Fig. 4-5.

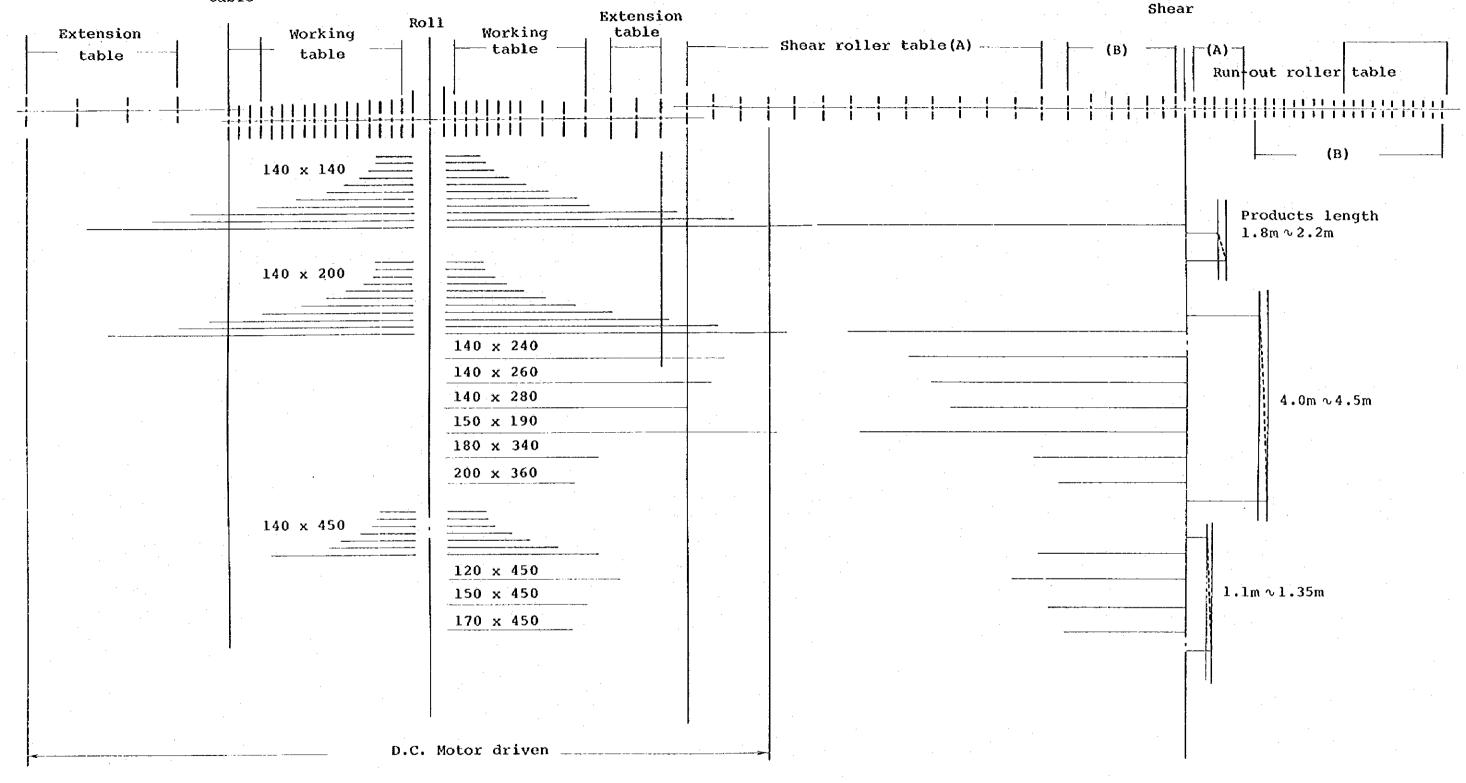


Fig.4-5. Roller table layout and production length

4.5.3 Main specifications

Main specifications of the table rollers are given in Table 4-5.

Table 4-5. Table rollers of blooming mill

		Table dimension							
No.	Name of table roller	Roller dia.	Roller length (mm)	Roller pitch (mm)	No. of rollers	Table * length (mm)	Speed (m/sec)	Drive	Remarks
1.	Ingot receiving table	400	800	650	5	2,600	1.0	Common	L.S.H. (line shaft drive)
2	(Ingot scale table)	400	800	650	5	2,600	1.0	Common	L.S.H. (line shaft drive, if necessary)
3	Ingot waiting table	400	800	650	5	2,600	1.0	Common	L.S.H.
4	Extension table	380	1,000	2,800	4	8,400	2.8-5.6	Individual	Roller connected to DC motor with coupling
·	(mill front)								
5	Ingot approach table	350	2,300	600	4	1,800	2.8-5.6	Individual	
6	Working table	350	2,300	600	13	7,200	2.8-5.6	Common	L.S.H.
	(mill front)					- Market Andreas		·	
7	Breast roller	590/490	2,100	900	1	_	2.8-5.6	Individual	
8	Breast roller	590/490	2,100	900	1	_	2.8-5.6	Individual	
9	Working table	350	2,300	600 x 6] 10	7,200	2.8-5.6	Common	L.S.H.
	(mill back)			1,200 x 3	J				
10	Extension table	350	2,300	1,400 x 2	3	2,800	2.8-5.6	Individual	Roller connected to DC motor with coupling
	(mill back)								
. 11	Shear table (A)	380	1,000	1,500	4]19,500	2.8-5.6	Individual	Ditto
					J 10	J	2.2	Individual	Ditto
12	Shear table (B)	380	1,000	1,200 x 2	ן]			
				$1,000 \times 2$ 900×1	} 7	5,925	2.2	Individual	Ditto
			•	625 x 1		J			
13	Runout table (A)	380	1,000	550	6	2,750	2.2	Individual	Motor roller
14	Runout table (8)	380	1,000	550	20	10,450	2.2	Individual	Motor roller

^{*:} Length of roller table as measured between centers of first and last rollers.

4.6 Electric equipment

4.6.1 Use of DC screwdown motors

- The screwdown system is obsolete with motor and secondary-resistor burnouts and coupling breakage taking place. Now driven by AC motors, it is poor in stopping accuracy. Overload by AC motors causes motor burnouts frequently.
- (2) Description of rehabilitation

 DC motors shall be used. Controls and wiring shall

 be completely renewed to reduce screwdown failures and
 to improve stopping accuracy.

(3) Main specifications

Motor	DC 52 kW/104 kW, 550/1,650 rpm
DC power source	SCR (thyristor)
Motor cooling	Open pipe ventilation
Brake	DC electromagnetic brake

4.6.2 Use of DC manipulator motors

- (1) Present problems

 Driven by AC motors, the manipulator has poor controllability and causes motor burnouts.
- (2) Description of rehabilitation

 DC motors shall be used to drive the manipulator and fingers, and controls and wiring shall be renewed to reduce manipulator failures.

(3) Main specifications

Motor	Manipulator: DC 22 kW/44 kW, 650/
	1,950 rpm
	Finger: DC 15 kW/30 kW, 260/520 rpm
DC power source	SCR (thyristor)
Brake	DC electromagnetic brake
Motor cooling	Open pipe ventilation

4.6.3 Front and back working roller tables

(1) Present problems

Driven by AC motors, the front and back working roller tables cannot have their speed matched with the mill speed. Overload by AC motors causes motor burnouts. Some rollers are incapable of rotation.

(2) Description of rehabilitation

DC table drive motors shall be used to match the table speed with the rolling speed, and controls and wiring shall be renewed.

This will eliminate motor overload and reduce motor burnouts.

(3) Main specifications of motors

Front working roller table	37 kW/74 kW, 575/1,725 rpm, 2 motors
Back working roller table	37 kW/74 kW, 575/1,725 rpm, 2 motors
Appraoch table	11 kW/22 kW, 800/2,000 rpm, 4 motors
Front extension table	11 kW/22 kW, 800/2,000 rpm, 4 motors
Back extension table	11 kW/22 kW, 800/2,000 rpm, 3 motors
Shear roller table	11 kW/22 kW, 800/2,000 rpm, 4 motors
DC power source	SCR (thyristor)
Motor cooling	Open pipe ventilation

- 4.6.4 Independent drive of breast rollers by DC motors
 - (1) Present problems
 The breast rollers are now mechanically coupled to
 the front and back working roller tables, resulting
 in maintenance difficulty.
 - (2) Description of rehabilitation

 The breast rollers shall be independently driven by

 DC motors.
 - (3) Main specifications

Brest roller motor	3.7 kW/7.4 kW, 1,025/2,050 rpm			
DC power source	SCR (thyristor)			
Motor cooling	Open pipe ventilation			

Notes: The following measures shall be taken with respect to Items 4.6.1 through 4.6.4:

- Forced-cooling fans for motors shall be installed in the mill motor room.
- 2) The motors shall be provided with protective circuits (current-limiting circuits, etc.) to prevent their burout by overload.
- 3) SCRs (thyristors) and controls shall be provided with failure detectors for ease of maintenance and shall be installed for ease of parts replacement.

1

4.6.5 Roller table motors

- (1) Present problems
 The present roller table motors are obsolete with motor and secondary-resistor burnouts frequently taking place.
- (2) Description of rehabilitation

 The motors, controls and wiring shall be completely renewed to reduce failures.
- (3) Main specifications

Motor	AC 30 kW, 6 P, 2 units
	AC 7.5 kW, 4 P/10 P, 30 units
	AC 11 kW, 6 P/10 P, 13 units

4.6.6 Other

A large amount of dust enters the mill pulpit because of poor sealing. Room temperature is so high that equipment failrues frequently occur due to deterioration and insulation drop. Therefore, the mill pulpit shall be lined and made airtight.

An air-conditioning system shall be installed also to maintain constant temperature in the pulpit.

- 4.6.7 Cooling equipment for motor room and units installed in motor room
 - (1) Present problems
 - a) Poor sealing of the motor room raises room temperature and permits the entrance of dust, leading to the failure of controls for the Ilgner motor-generator set and mill drive motor.
 - b) Cooling capacity for the entire motor room is insufficient.
 - c) Undercooling of the Ilgner motor-generator set and mill drive motor causes insulation trouble and other failures.
 - i) Coolers for the Ilgner motor-generator set and mill drive motor are deteriorated and short on capacity.
 - ii) The commutator sides of the DC generators and mill drive motor are open, adding to the lack of cooling effect.

(Temperature inside the DC generators and mill drive motor is over 60°C)

- (2) Description of rehabilitation
 - a) The motor room shall be made airtight.
 - b) A ventilating and cooling system of increased capacity shall be installed for the motor room.
 - i) The present forced-draft fan room shall be enlarged.

- ii) Pressure inside the motor room shall be made higher than the surrounding area to prevent the entrance of dust.
- c) The cooling system for the Ilgner motor-generator set (drive motor and DC generators) and mill drive motor shall be completely changed from the existing unit-cooling system to a down-draft system.
- d) The sides of the DC generators and mill drive motor opposite to the commutator shall be enclosed with new end covers.
- e) A sealed compartment shall be provided in the motor room to house the SCRs (thyristors) and controls for DC motors and shall be cooled by an air conditioner.
- f) Forced-cooling fans for DC motors shall be installed in the motor room, and air ducts shall be installed running from the motor room to the individual DC motors.

1

1

- 4.6.8 Lubricating system for bearings of Ilgner motorgenerator set
 - (1) Present problems

 In case of power failure, the lubricating oil pump is driven by a battery-operated DC motor. This DC motor and its control have frequent troubles.
 - (2) Description of rehabilitation
 - a) The battery and DC motor shall be removed.
 - b) An elevated oil tank shall be installed to supply lubrication to the Ilgner motor-generator set for the time (about 1 hr) during which the Ilgner motorgenerator set completely stops in case of power failure. A switching device shall be provided for the purpose.
 - c) The lubricating system shall be completely renewed.

4.6.9 Exciters for DC generators and mill drive motor

parts are also difficult to obtain.

- (1) Present problems

 The exciter (Amplidyne) for the DC generators and the exciter (Metadyne) for the mill drive motor are obsolete and subject to frequent failures. Spare
- (2) Description of rehabilitation
- a) SCRs (thyristors) shall be used in place of the Amplidyne, Metadyne and base exciters.
 - b) The existing controls and wiring shall be completely renewed.

(

1

- c) A sealed compartment shall be provided in the motor room to house the thyristors and controls and shall be cooled by an air conditioner.
- d) The existing exciters shall be removed.
- Notes: The thyristor exciters will apply higher voltage

 (harmonic surge voltage) to the field of the DC

 generators and mill drive motor, leading to the

 possibility of breakdown of field coil insulation.

 Therefore, the following measures seem necessary:
 - i) Strengthened field coil insulation of DC generators and mill drive motor
 - ii) Overhaul of DC generators and mill drive motor

 It seems necessary to ask AEG, the manufacturer of
 the DC generators and mill drive motor, to study the
 need for the above-mentioned measures.

4.6.10 Communication equipment

The following systems shall be installed to ensure rapid and reliable communications concerning operations and failures with related departments and thus to minimize equipment downtime.

Soaking pit instrument room Blooming mill pulpit

Motor room

Shear pulpit

(2) Radio communication system for crane operation

Soaking pit instrument room —— Soaking pit crane (No. 401)

Soaking pit instrument room —— Soaking pit crane (No. 402)

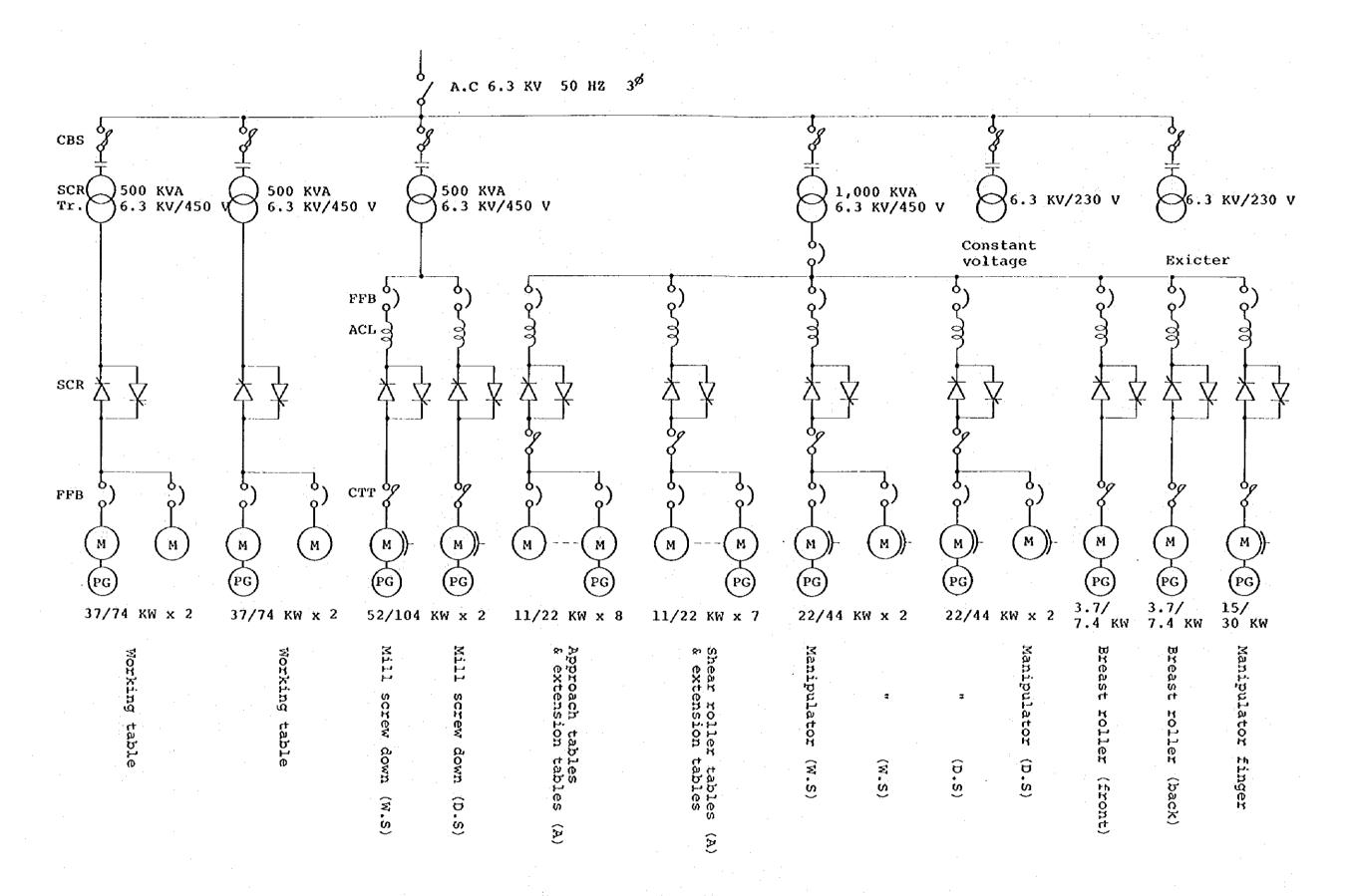


Fig. 4-6. DC motor skeleton diagram

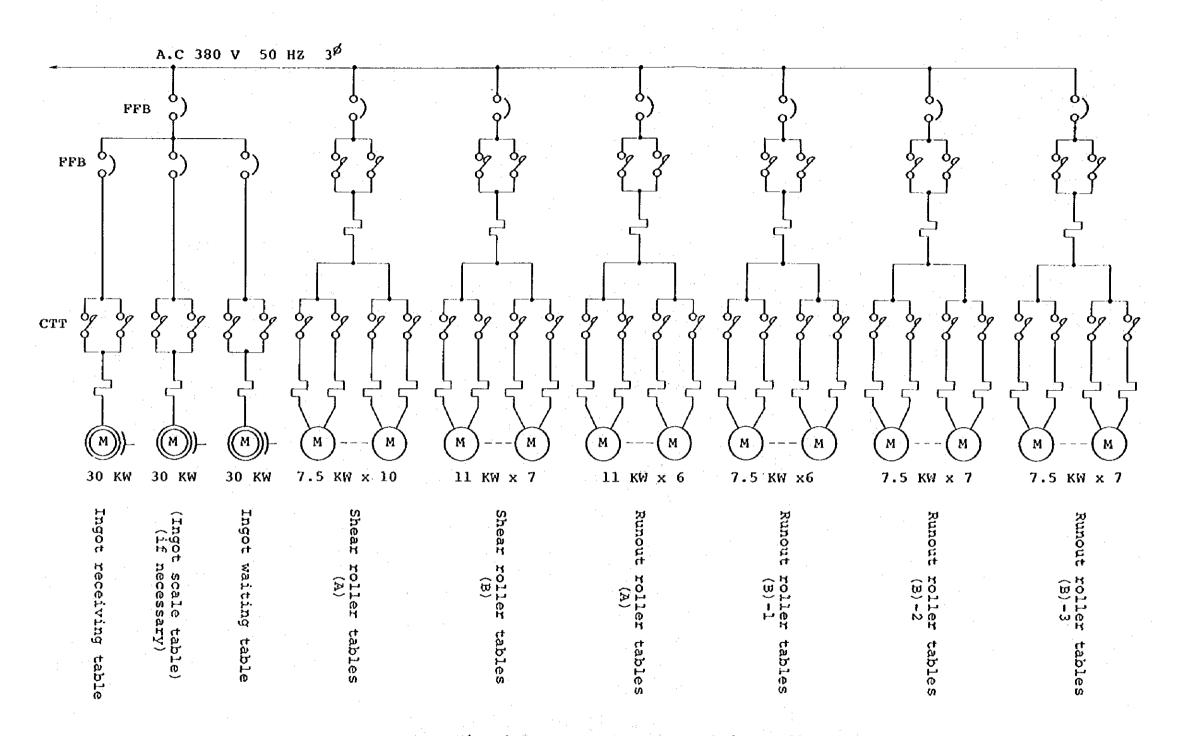


Fig. 4-7. A.C Table motor skeleton diagram

4.7 Auxiliaries

4.7.1 Centralized grease equipment

- (1) Three centralized grease systems shall be installed to supply grease to individual table roller necks.
 - a) System for ingot receiving table, (ingot scale table), waiting table, extension table (mill front), approach table, and working table (mill front)
 - b) System for working table (mill back), extension table (mill back), and shear tables A and B
 - c) System for runout tables A and B

(2) Main specifications

Section 1

egyddail en o'i genglyddi Agell Caellen Coloniae Caellen Caell

Туре	Electric motor driven loop type
Tank capacity	35 liters x 2, 20 liters x 1
Pump delivery	192 cc/min x 2, 60 cc/min x 1
Rated pressure	210 kg/cm ²

"我我们的一直看我们,我却只要的一定的一点,我们们的一个一个。"

4.8 Ingot scale table (if necessary)

(1) If necessary for production control, the type of ingot scale described below may be installed.

Fig. 4-8. shows an ordinary ingot scale of the lifting type. This type of ingot scale may be driven electrically or hydraulically.

Since the mast guide of the EISCO soaking pit cranes is only 3,500 mm high above the ground, this type of ingot scale has the possibility of striking against the ingot and soaking pit cranes.

1

1

Instead, an ingot scale of the direct table receiving type is recommended which weighs both the ingot and table at the same time. This type of ingot scale needs the equipment to dispose of scale falling from ingot surfaces. In general, ingot scales require detailed routine maintenance and are very difficult to maintain.

The ingot scale table shall be located in the ingot receiving table under this rehabilitation plan. When installing the ingot scale, the ingot receiving table will have to be moved 2,600 mm to receive an ingot from the soaking pit crane. he ingot scale table of the direct receiving type is schematically illustrated in Drawing No. RP-0009.

A ingot weight display and recorder will be installed in the soaking pit instrument room, and ingot weighing will be made possible both manually and automatically.

(2) Main specifications

Туре	Direct table receiving type
Maximum capacity	5 tons
Minimum graduation	10 kg
Accuracy	1/1,000

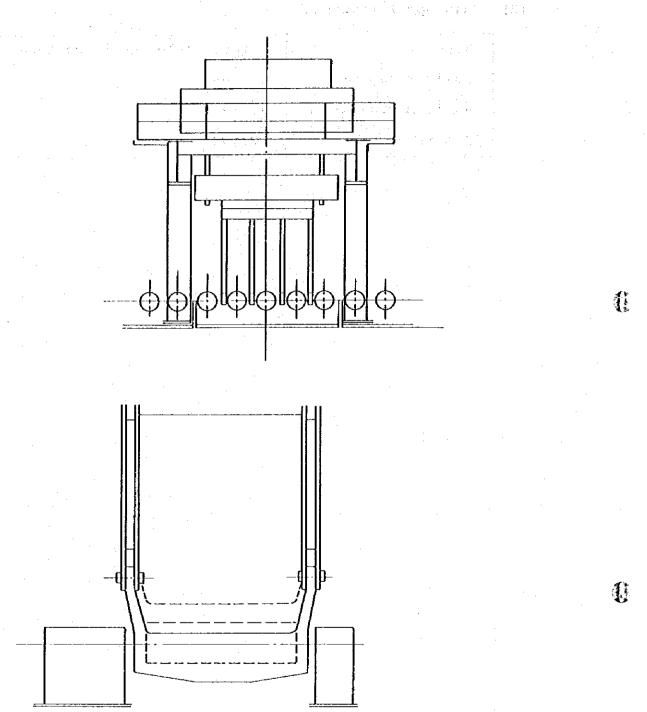
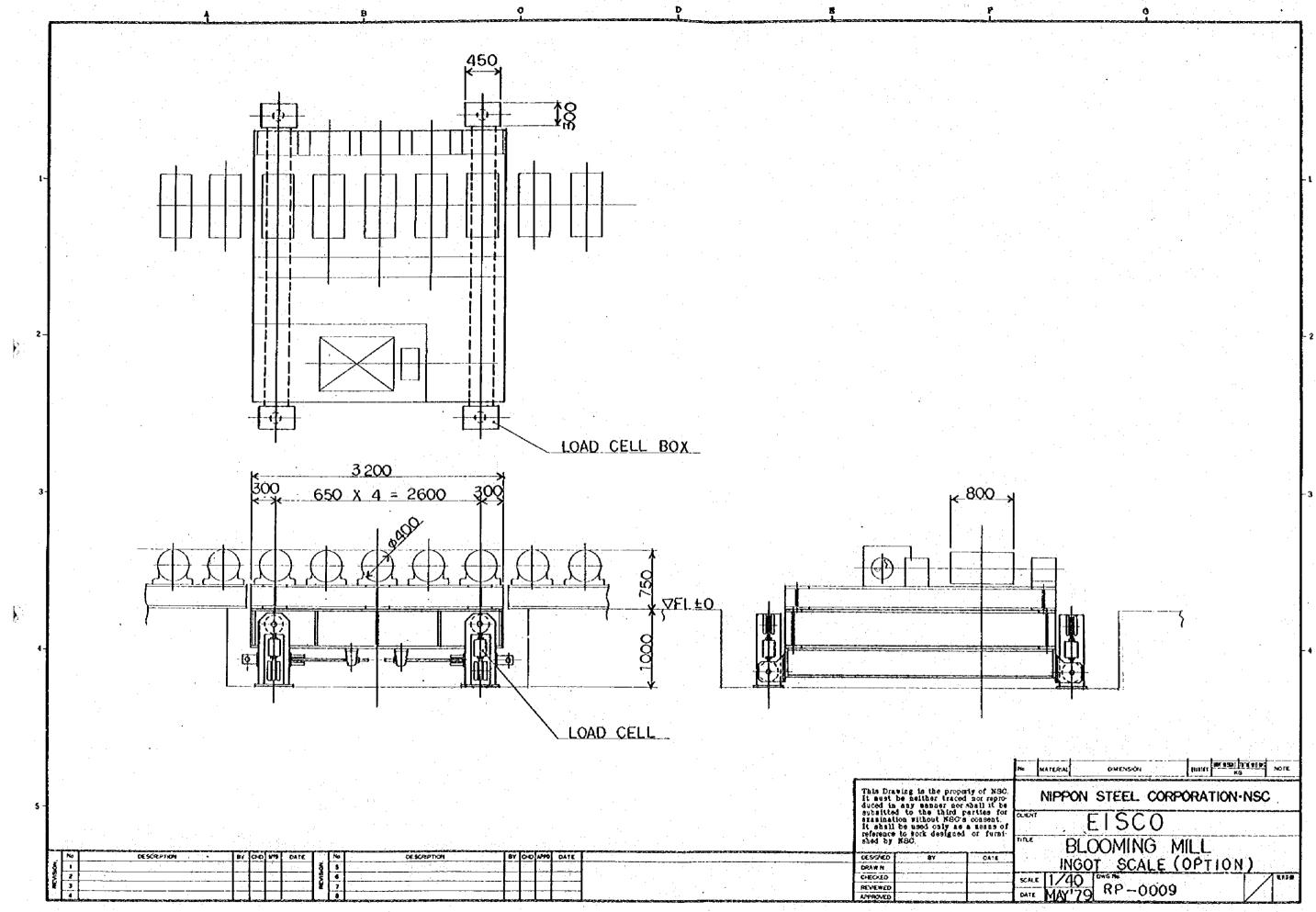



Fig. 4-8. Ingot scale (lifting type)

· ·			
:			

4.9 Civil and building works

400

Data required for studying the existing foundations and buildings, such as meteorological conditions, soil conditions, design calculation sheets, and design codes and regulations, have not been made available to us. Therefore, study is made here under the following conditions.

and the respective former for the color of the ex-

4.9.1 Soaking bay building

Since their degree of deterioration with age is not known, it is assumed that the existing crane runway girders may be all replaced. It is also assumed that the building foundation will not be modified because its strength and other particulars are not known.

Since increased soaking pit crane weight must be

considered, more detailed study for the soaking pit building and foundation should be made by EISCO.

4.9.2 Foundations for manipulator and roller tables
Since the fatigue of foundations for the manipulator,
working roller tables and other tables is now known,
no additional piles will not be driven. The bearing
power of ground is assumed to be satisfactory engough.
More detailed study should be made by EISCO.

to stand with the fact growing and states

4.9.3 Soaking pit flues

Since foundation data are not available, detailed study cannot be made. The area where flues of Nos. 1 to 4 soaking pits converge shall be modified. Deterioration of the existing foundations is not taken into account.

More detailed study should be made by EISCO.

4.9.4 Motor room

Thyristor and control compartments shall be provided in the existing motor room.

More detailed study should be made by EISCO.

5. Specifications of main equipment

Notes: Asterisks in the following tables denote specifications of modified or new equipment.

5.1 Soaking pits

Item	Name of equipment	Quantity	Specifications
(1)	*Soaking pit	8	Top one-way fired recuperative soaking pit.
·			Size: 2,700 mm (W) x 5,100 mm (L) x 3,600 mm (D)
:			Fuel : Mixed gas (blast furnace gas + fuel oil)
			Charging capacity: 45 t/pit (max.)
(2)	*Recuperator	3	Stack-type metallic recuperator.
		(#1 ∿#6)	Temperature of preheated air at outlet: 500°C
		2	Convection type (Finned-tube type)
		(#7, 8)	Temperature of preheated air at outlet : 500°C
(3)	*Cover crane	2	Capacity: 21 t
			Crane span : 9,400 mm
			Lift: 180 mm
			Traveling speed: 24.0 m/min
(4)	*Soaking pit crane	2	Type: Overhead type
			Capacity: 5 ton
			Crane span : 21 m
			Lift: 6,500 mm (FL+3,500 mm, FL-3,000 mm)
			Speed: Lifting 20 m/min
			Traversing 50 m/min
			Traveling 120 m/min
			Revolving 5 r.p.m
			Tons control 4 times/min

5.2 Blooming mill

Item	Name of equipment	Quantity	Specifications
(1)	Blooming mill	1	Type : 2-high reversing, preset
			Roll dimensions: 900 mm dia (max) x 2,200 mm (L)
			Lift: 500 mm Speed: 0 - 65 - 95 - 120 r.p.m
(2)	*Manipulator	1	Type : Electric motor-driven, rack and pinion reduc- ing type
			Length of side guide: 4,800 mm
			Finger: Four for front drive side only
		·	Traversing speed of side guide:
:	. 5		0.8 m/sec
			Tilting stroke : 600 mm
(3)	Slab shear	1	Type : Electric motor-driven,
-			start stop/down-and-up- cut type
-			Shear width : 950 mm
			Shearing force : 700 t
			Shearing cycle : 8 sec/cut
(4) .	Crop pusher	1	Traveling speed: 0.85 m/sec
			Pushing force: 20 t

5.3 Table rollers

No.	Name of table roller	Dimensions (mm)	No. of rollers	Length (mm)	Speed (m/s)
1	*Ingot receiving table	(dia) 400ø x 800 (L)	5	2,600	1.0
. 2	*(Ingot scale table)	ditto	5	2,600	1.0
3	*Ingot waiting table	ditto	5	2,600	1.0
4	*Extension table	380ø x 1,000	4	8,400	VV
5	*Mill approach table	350∅ x 2,300	4	1,800	VV
6	*Working roller table	350ø x 2,300	13	7,200	VV
7	*Breast roller table	590ø/490øx2,100	1		VV
8	*Breast roller table	590ø/490øx2,100	1 .		VV
9	*Working roller table	350ø x 2,300	10	7,200	w
1.0	*Extension table	350ø x 2,300	3	2,800	VV
11	*Shear roller table (A)	380ø x 1,000	4	19,500	vv
		380ø x 1,000	10	19,500	2.2
12	*Shear roller table (B)	380∮ x 1,000	7	5,925	2.2
13	*Runout roller table (A)	380ø x 1,000	6	2,750	2.2
14	*Runout roller table (B)	380ø x 1,000	20	10,450	2.2

5.4 Ingot scale (if necessary)

No.	Name of equipment	Quantity	Specifications
(1)	*Ingot scale	1	Type : Direct table receiving
			type
			Capacity: 5 t
			Minimum graduation : 10 kg

6. REHABILITATION COST

:			

6. Rehabilitation cost

(

- 6.1 Estimate conditions
 - 6.1.1 The scope of estimate is based on the rehabilitation plan described in Item 4, excluding Item 4.10.
 - 6.1.2 Equipment is estimated on a CIF basis.
 - 6.1.3 Erection cost covers equipment removal and installation, and it estimated from past experience on a Japanese basis. The cost of civil and building works is calculated from the conditions given in Item 4.9. The cost for construction materials is estimated on F.O.B. basis, since those materials are thought to be available in Egypt.
 - 6.1.4 Spare parts for one year of operation are estimated for modified equipment.
 - 6.1.5 The cost is estimated on a Japanese basis on May, 1979 and price escalation is not considered.

Rate of exchange between U.S. dollars and Japanese Yen is as follows;

U.s.\$1.00 = 219.75 Yen (20 May, 1979)

- 6.1.6 The following items are not included in this estimate:
 - (1) Utilities for erection and hot-run, such as electricity, water, fuel, flushing or lubricating oil, compressed air, steam, etc.
 - (2) Inspection by third parties

6.2 Approximate estimate of equipment purchasing cost and erection cost

The estimated cost of this rehabilitation plan its shown in Table 6-1, and the approximate cost of the rehabilitation plan including the ingot scale and ingot scale table is given in Table 6-2.

1

6.3 Approximate total rehabilitation cost

1.

	Rehabilita	tion plan	Rehabilitati including ind and ingot sca	ot scale
	Million Yen	Thousand U.S.\$	Million Yen	Thousand U.S.\$
Equipment purchasing cost	2,181	9,925	2,223	10,116
Erection cost	751	3,418	761	3,463
Engineering fee	290	1,320	300	1,365
Startup technical assistance fee	37	168	37	168
Total	3,259	14,831	3,321	15,112

Table 6-1. The estimated cost of rehabilitation plan

		CIF	cost	li .	ction ost	T	otal	
No.	Equipment	Mil- lion Yen	Thou- sand U.S.\$	lion	Thou- sand U.S.\$	lion	Thou- sand U.S.\$	Remarks
1	Soaking pits	966	4,396	238	1,083	1,204	5,479	Soaking pit crane: 2 units Cover crane : 2 units Cinder removal bucket: 2 units Steel framework : 1 set Refractory : 1 set Stack : 3 units Recuperator : 5 sets
2	Blooming mill	510	2,321	56	255	566	2,576	Front table : 2 units Separating
3	Electrical equipment	464	2,111	127	578	591	2,689	
4	Instrumenta- tion	241	1,097	80	364	321	1,461	Soaking pit instrumentation : 1 set
5	Civil and building work	cs	_	250	1,138	250	1,138	
	Total	2,181	9,925	751	3,418	2,932	13,343	

Table 6-2. The estimated cost of rehabilitation plan (including the ingot scale and ingot scale table)

		CIF o	cost		tion st	То	tal	
No.	Equipment	Mil- lion Yen	Thou- sand U.S.\$	lion	Thou- sand U.S.\$	lion	Thou- sand U.S.\$	Remarks
1	Soaking pits	966	4,396	238	1,083	1,204	5,479	Soaking pit crane: 2 units Cover crane : 2 units Cinder removal bucket: 2 units Steel framework : 1 set Refractory : 1 set Recuperator : 5 sets Stack : 3 units
2	Blooming mill	528	2,403	61	277	589	2,680	Front table : 3 units Separating equipment: 1 set Scale removal equipment: 1 set Extension table: 7 rollers Approach table : 4 rollers Working table : 23 rollers Shear table : 21 rollers Runout table : 26 rollers Breast roller : 2 rollers Manipulator : 1 set Mill screwdown system: 1 set Centralized grease system: 1 set
3	Electrical equipment	466	2,120	127	578	593	2,698	
4	Instrumenta- tion	263	1,197	85	387	348	1,584	Soaking pit instrumentation : 1 set Ingot scale : 1 unit
5	Civil and building work	S		250	1,138	250	1,138	
	Total	2,223	10,116	761	3,463	2,984	13,579	

Œ.

7. CONCEPTUAL CONSTRUCTION SCHEDULE

7. Conceptual construction schedule

Table 7-1 shows the conceptual construction schedule for the rehabilitation plan of the blooming mill.

This schedule is planned on a standard basis in Japan.

- 7.1 Nos. 1 to 8 soaking pits may be rehabilitated in two groups of four pits each, with Nos. 1 to 4 soaking pits rehabilitated first.
- 7.2 The runway girders are scheduled to be replaced partially in advance of blooming mill shutdown, to the extent that it does not disturb soaking pit operation.
- 7.3 This construction schedule is just conceptual.

 On implementation of this rehabilitation plan, EISCO shall make more detailed construction schedule considering the following points;
 - (1) Production plan during construction
 - (2) Foundation for renewed equipment
 - (3) Construction method

Note: - denotes the period prior to blooming mill shutdown

	·													سال الشار والمراجع											to J	oroc	omin	g m	111	shu	itdo	wn	
Item		Week	-9 -	-8 -	7 -6	5 -5	-4	-3	-2	-1	1	2 3	4	5	6	7	8.	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1. Mill front &	back table																																
1. Equipments re	emoval									K.	emp	val						•	İ				-										
2. Civil work										: -	•		-		, , ,		120		D												·		
3. Installation													ļ		111	sta.	LIAL	101		PIR													
																				ļ	F]	usi	ling										
4. Electrical										 			-		}								Seq	uen	çe	tes	t					:	
5. Test								·													ļ				ļ 				}				
J. 1550																					.	:											
Hot Run	•																											 		>			
noe kun												:								·								•		,	l		
II Conking wit																							-										
II. Soaking pit			Repl	lace	ment					R	ep]	aceme	ent																				
1. Building (Run	way girders)	•				Inst	411a	tio	n	R	emo	va	-					.*															
2. Soaking pit	crane							-	R	2mov	al	Civi	1 w	ork					Ins	tal!	lati	on			Te	st	Dry	'i na					
3. Soaking pit N	No.1 ~ No.4									8 -	^	emova	-	Civi	1 w	ork							,				}	·······(Ì	ina			
1	No.5 ~ No.8	•										 -	-		ļ		-						ion						Dey		ĺ		
																		:															
						i.			1											•													
												:											1								:	·	
									·.	٠.																							
																						:											
																											. 1						
			Ji_			1		1		ľ				_ _	<u> </u>	1		l							L	L	LI		L		l		

8. NECESSITY OF INVESTMENT

8. Necessity of investment

If the blooming mill of BISCO is left as it is, its monthly production will go below 8,000 t/month after three years, as shown in Fig. 1-1. This production volume will amount to only about a half of 16,100 t/month of ingots which must be rolled, and will eventually lead to the shutdown of the blast furnaces, let alone the steelmaking plant. This rehabilitation plan represents the investment to restore the production of the present blooming mill to the original level.

This investment is essential to keep production level of the blooming mill to meet the required production of ingots from steelmaking plants.

The estimated annual increase in the production of heavy sections is (16,100 t/m - 12,000 t/m) \times 0.8 \times 0.82 \times 12 \simeq 32,000 t/y.

At present, this increase of production is very effective for solving shortage of steel material in Egypt, moreover, for reducing quantity of imported steel material.

9. DRAWING LIST

9. Drawing list

RP-0001: Blooming mill rehabilitation plan

RP-0002: Soaking pit bucket & rake

RP-0003: Soaking pit Nos. 1, 2, 3, 4 (a plane figure)

RP-0004: Soaking pit Nos. 1, 2, 3, 4 (a side view)

RP-0005: Soaking pit Nos. 1, 2, 3, 4 (Sections)

RP-0006: Soaking pit Nos. 5. 6 (a plane figure)

RP-0007: Soaking pit Nos. 5, 6 (a side view)

RP-0008: Soaking pit cover

RP-0009: Blooming mill ingot scale