
THE STUDY ON NATIONAL TRANSPORT PLAN NATIONAL TRANSPORTS FREETRA

THE STUDY ON NATIONAL TRANSPORT PLAN IN THE ISLAMIC REPUBLIC OF PAKISTAN

TECHNICAL PAPER Vol. 2

MAY 1983

JAPAN INTERNATIONAL COOPERATION AGENCY

的"医"的一个异种的,因为"是"的是对象处理的"是

D. 数0. 医新发性 (E. 2000年)

国際協力事業団 第4. 9. 25 117。 25 71 5DE

THE LIE WORTH AREA OF TWO CAMPATER PROPERTY

VII. HIGHWAY PLANNING

- 1. Limitation of the Study
- 2. Introduction of Highway System in Japan
 - 2-1 Highway Network in Japan
 - 2-2 Road Development Programmes
 - 2-3 Construction Standards
- 3. Introduction and Methodology
 - 3-1 Master Plan
 - 3-2 Steps in the Planning Process
- 4. Present Highway System in Pakistan
 - 4-1 Highway Administration
 - 4-2 Present Road Network
 - 4-3 Road Network for National Transport Plan
 - 4-3-1 Selection of Road Network for National Transport Plan
 - 4-3-2 Preparation of the Road Inventory
 - 4-4 Technical Problems for Highway Planning
 - 4-5 The Current Development Programme and Its On-going Project
 - 4-6 Average Daily Traffic Volume on the Road Network
- 5. Highway Planning
 - 5-1 Basic Objectives of Road Planning
 - 5-2 Strategies
 - 5-3 Planning Process
 - 5-4 Classification of Highway System and Construction Standards
 - 5-4-1 Highway Classification
 - 5-4-2 Construction Standards
 - 5-5 Traffic Assignment
 - 5-6 List of Candidate Project
 - 5-7 Cost Estimation for Candidate Projects
 - 5-7-1 Unit Cost
 - 5-7-2 Cost Estimation
 - 5-8 Preliminary Project Evaluation
 - 5-9 Plan of Action

Appendix 1. Highway Inventory

Appendix 2. List of Construction Equipment
Appendix 3. List of On Going Road Project
Appendix 4. List of Expected Road Project
Appendix 5. Forecasted Traffic Volume

Appendix 6. Traffic Assignment

Appendix 7. Pavement Design Method — Road Note 29 —

Appendix 8. Transport Priority Index for Rural Road

VII. HIGHWAY PLANNING

1. Limitation of the Study

Highway planning dealed in this study is integrated into a Pakistan National Transport Plan so as to establish the adequate multi-model transport systems in Pakistan.

Required investment scale for highway sector will be recommended through highway planning incorporating with the National Transport plan.

Road Network for National Transport plan is selected on the basis of relevant reports prepared for road plannings in Pakistan and discussion made with Pakistan authorities concerned.

Road Network selected does not cover all highway networks existing in Pakistan and subject differs from an ordinally highway master plan.

Although, highway construction standard is presented according to the reports of past studies in Pakistan, it does not always result from any pre-evaluation.

It has to be mentioned that this study dealt with inter-regional traffic in order to set up the plan for inter-regional main highway network.

And there is no available topographical map for foreign study team.

2. Introduction of Highway System in Japan

2-1 Highway Network in Japan

Highway network in Japan consists of national expressway, national highway, prefectural road and municipal road.

National highway, prefectural road and municipal road are opened to traffic with free of charges to the users as general. There are also toll roads, such as national expressway and other similar roads, constructed and administered by the Japan Highway Public Corporation, Tokyo and Hanshin Expressway Public Corporations, local road public corporations and local governments.

Prefectural and municipal roads, in which rapid improvement are required, are designated as principal local roads.

The present status of roads in Japan and other developed countries are shown in Table 2-1 and 2-2.

Table 2-1 Present Status of Roads in Japan as of April 1, 1980

	Total Length	Improved S (Roadway width		Paved Se (High Star	
Class	(km)	Length (km)	Ratio (%)	Length (km)	Ratio (%)
National expressways	2,579.1	2,579,1	100,0	2,579,1	100,0
National Highways	40,211,7	33,894.9	84.3	33,503.4	83.3
Principal Local Roads	43,906.4	26,383.0	60.1	23,831.8	54.3
Prefectural Roads	86,930.0	32,831,0	37.8	25,588,3	29.4
Sub-total	173,627.2	95,688,0	55.1	85,502.7	49,2 10,1
Municipal Roads	939,760.3	93,625.2	10.0	94,905.0	
Total	1,113,387.5	189,313.2	17.0	180,407.7	16.2

Table 2-2 Road Network Density

		**	4.5	·		
	Japan	U.S.A.	W. Germany	England	France	Italy
Area (10,000 km²)	37.8	936.3	24.9	23.0	55.1	. 30.1
Total road length (10,000 km)	40.0	617.6	47.0	34,5	79.5	29.1
Road network density (km/km²)	1.06	0.68	1,89	1.50	1,44	0.97

Notes: 1, From IRF Statistics 1978, Highway Statistics 1977

The total road length of France does not include rural roads of about 700 thousand km.

Source; Roads in Japan 1981

2-2 Road Development Programmes

First Five-Year Road Improvement Programme of Japan was established in 1954, when the revenue from the gasoline tax was allocated to a special found for road improvement.

A main subject of road construction works so called primary reconstruction in 1950's was in the first place to improve the national highways connecting major cities so as to enable cars pass each other.

Regarding to the preliminary reconstruction, first specification of former primary and secondary national highway was performed and followings were examined in advance to above that the scale of the national highway network, coverage of cities by the primary national highway and location of primary highway.

The scale of national highway network was studied adopting formula of highway needs by Japanese Dr. Fujii, which is developed giving hypothesis that "road density is directly proportional to the square root of population density."

The solution is following.

On the assumption that "I" indicated national income per capita (\$/Man),

$$k = aI$$

and "a" is solved to be 0.028 from the data of Belgium, France, Italy, Holland and England, which were judged to have comparatively same situation as Japan. Thus,

$$L = 0.028I \sqrt{AP}$$

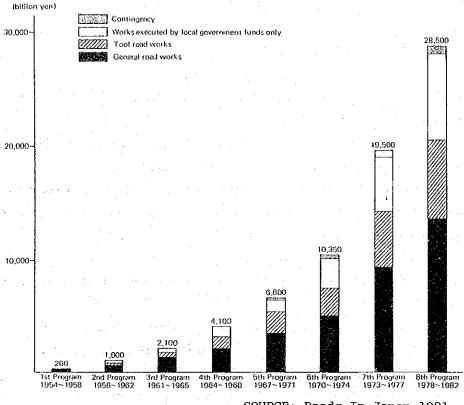
has been gotten.

Using above equation, the team has got following figures in case of Pakistan.

A = $768,874 \text{ km}^2$ P = 83,782,000CDP/capita = 258L = $0.028 \text{ I}\sqrt{AP} \div 60,000 \text{ km}$

At this stage, noteworthy point is that Japanese economic scale in 50's is remarkably similar to that of present Pakistan.

Vehicle composition at the end of 1953 in Japan consists of 77% truck and 18% passenger car, which is similar situation of the present Pakistan.


In the last half of 1960's, national expressways such as the Tomei Expressway, urban expressways and by-passes around cities were constructed (secondary reconstruction) extensively and, low cost road pavement was adopted for rural roads.

In spite of these efforts in road improvement works, road traffic demand exceeded road improvement works, which brought about such problems as traffic congestion, traffic accidents, pollution and so on.

In order to cope with this situation and to achieve the goals of road works, it was necessary to implement the works in a planned way by setting up and intermediate range planning with 1990 as the target year for the accomplishment of the urgent measures, at the same time, by setting up a new long range road improvement vision with the first years of the 21st century as target years, while paying attention to the changes in domestic and foreign socio-economic environments and fully looking back on the former long range road improvement vision.

In accordance with this intermediate plan, the 8th Five-Year Road Improvement Program has been launched to recover the delay of road improvement by promoting the work to meet the urgent necessities of coming five years.

Trends of the five-year road improvement programmes and road expenditures are shown in Fig. 2-1.

SOURCE; Roads In Japan 1981

Fig. 2-1 Trend of the Five-Year Road Improvement Programme

2-3 Construction Standards

Construction Standards for public roads are provided in the Road Structure Ordinance (enacted in 1970 according to the Road Law). The outline of this ordinance is as follows.

Construction Standards are classified into four types according to whether the road is an expressway or not, and the area where the highway is located.

Type 1 and 2 roads are respectively located in rural and urban areas, and classified into four and two categories. But both of them are expressways. On the other hand, Type 3 and 4 roads, also respectively located in rural and urban areas, are classified into five and four classes. These are the roads other than expressways.

Each type-and-class of construction standard is applied to the highway according to the design traffic volume and the terrain where te highway is located.

Construction standards of cross section, design speed, etc. are provided according to the type-and-class of the road.

Construction standard for Expressway is show in Table 2-3 and that of Road other than Expressway is shown in Table 2-4.

Table 2-3 Construction Standard (1)

Express-	_		Design	Access		Design traffic vo	sign traffic volume (vehicles/day)		
way or not	Type	Class	speed (km/h)	control	Over 30,000	30,000- 20,000	20,000- 10,000	Less than 10,000	Remarks
		1	120	F	N.E. in level terrain				Over 4-lane road
		2	100	F,P	N.E. in mountainous terrain	N.E. in level to	errain		Over 4(2) Jane road
					E. in level terrain	•			:.
Express- ways	1	3	80	FP		N.E. in mount terrain	tainous	N.E. in level terrain	
					E, in mountainous	s terrain	E. in level terra	in	Over 2-lane road
		4	60	F,P			E, in mountain	N.E. in mountainous terrain ous terrain	-
	2	1	80	F	N.E. in urban area Metropolis	. E. in urban area	a except the cente	r of	Over
		2	60	F	E, in the center of	Metropotis			4-lane road

F: Full control of access
P: Partial control of access
N: Non control of access

Table 2-4 Construction Standard (2)

Express-			Design	Access		Design	traffic volu	me (vehicles)	/day)		
or not	Туре	Class	speed (km/h)	control	Over 20,000 vehicles	20.000- 10.000	10,000 4,000	4,000- 1,500	1,500- 500	Less than 500	Remarks
		1	80	P,N	N.H. in level terrain						Over 4-lane road
		2	60	N	N.H. in mountainous terrain	N.H. in lev terrain	4				./ ./ .:=:::::::::::::::::::::::::::::::
					P.M. in level to	errain -					
		3	60 50	N		N.H. in mi terrain	ountainous	N.H. in lev P. in level		N A	Over
	3	3	40	,,,	P,M, in moun	tainous terra	in	M. in level terrain			2-lane road
								N.H. & P.	in mountai	nous terrain	
			50	1					M.in level		ala ya sa
Roads other		4	40 30	N				M, in mour			
than Express- way		5	40 30 20	N						M. in level terrain or mountain- ous terrain	1-lane road
		1	60	PN	N. H. in urbar		VIIIIII				Over 4(2)- lane road
								N.H. in ur			· · · · · · · · · · · · · · · · · · ·
		2	60 50	N			//////////////////////////////////////		///////////////////////////////////////		
	4		40				ntpan atea				Over
	•		50					P. in urbar	n area		2-lane road
-		3	40 30	, N				M. in urba	in area		
	. 11 1	.4	40 30 20	N.						M. in urban area	1-lane road

Note: N.H.: National Highway P.M.: Prefectural or Municipal Road

P.: Prefectural Road M.: Municipal Road

SOURCE; Roads in Japan 1981

3. Introduction and Methodology

3-1 Master Plan

The master plan is consistent with the development actions planned in spheres other than highways.

Highway plan is integrated into a transport plan, which should be integrated into a general development plan.

Therefore it takes account of the options (Alternatives) adopted for the allocation of transport between road and rail.

The total amount of the plan must be consistent with the available financial resources adopted in two cases, which are generally studied as a part of the plan.

3-2 Steps in the Planning Process

This plan is built upon a determination of the needs. The first step in the planning process is the collection of information about the needs and the existing conditions.

This is followed by the preparation of long-range programme so-called Master Plan for two alternatives to meet these needs.

The 5-year action programme for the selected alternative plan from 1983/84 upto 1987/88 is next prepared.

The final step of the plan is the preparation of an annual budget to provide the finance for the actual plan of action.

4. Present Highway System in Pakistan

4-1 Highway Administration

There are three main agencies responsible for highways in Pakistan; the Ministry of Communications, Provincial Highway Department and District Councils.

The Rural Development Department and Agency in charge of Social Welfare the Local Government undertake construction of black-top rural roads and all the completed roads transferred to the Highway Department for subsequent maintenance.

The Ministry of Communications is the authority responsible for administration of national highways. Within the MOC the National Highway Board is the agency functioning the planning, construction and maintenance of the national highways.

Organization Charts of the Ministry of Communications and the National Highway Board are shown in Fig. 4-1 and 4-2.

All the functions for the rest of the roads are handled by the four Provincial Government with the responsible agency of Highway Department.

Organization Charts of four Provincial Highway Departments are also shown in Fig. 4-3, 4-4, 4-5, and 4-6.

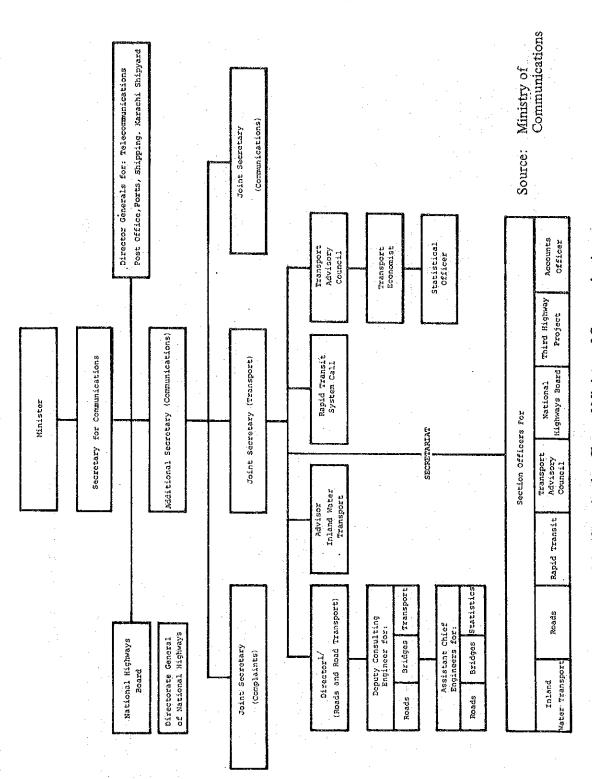


Fig. 4-1 Organization Chart of Ministry of Communications

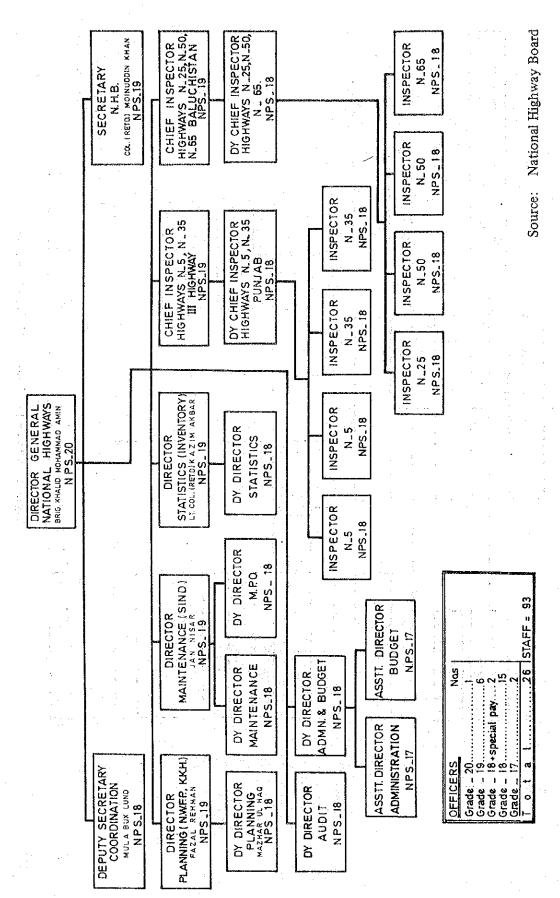
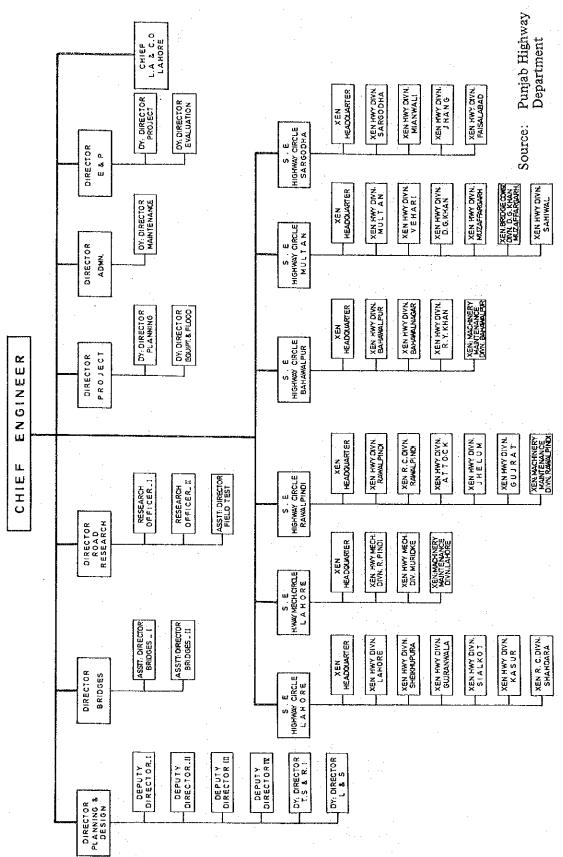
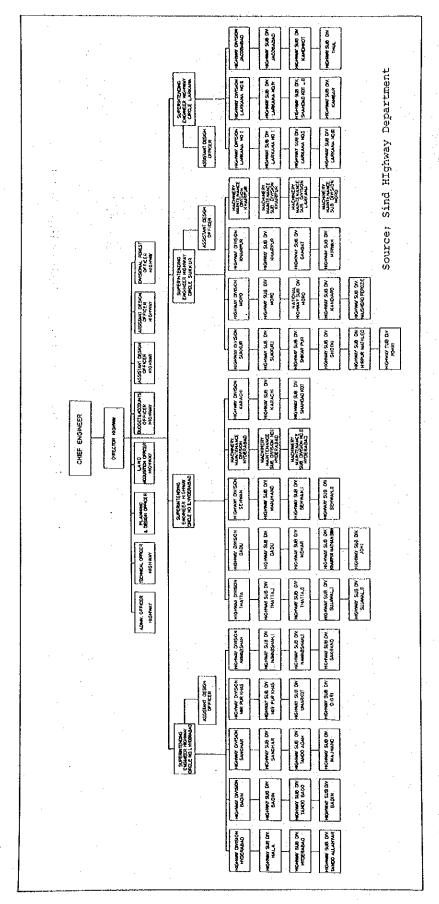
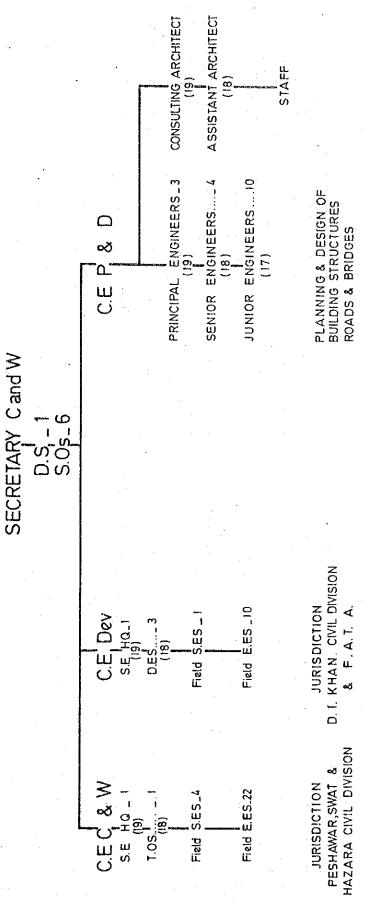


Fig. 4-2 Organization Chart of National Highway Board


Fig. 4-3 Organization Chart of Punjab Highway Department

---;

Source: Sind Highway Department

Fig. 44 Organization Chart of Highway Department Sind Province

Source: Communication and Works Department, NWFP

Fig. 4-5 Organization Chart of Communication and Works Dept. N.W.F.P.

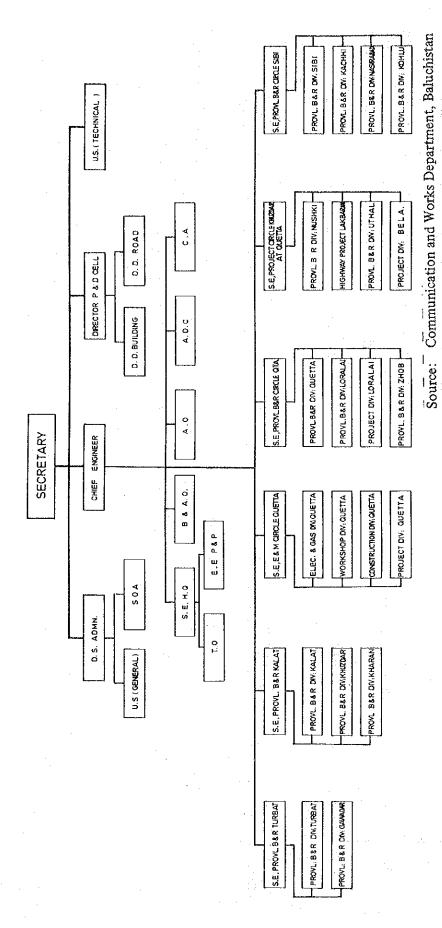


Fig. 4-6 Organization Chart of C & W Govt. of Baluchistan

Most of the Project planning and appraisals and design are undertaken by the four provincial highway departments as the whole.

If the cost of individual project is under Rs 2.5 million, it can be approved within the provincial highway department.

If it is under Rs 10.0 million, it can be approved by the Provincial Development Working Party and if over that amount the project has to get an approval from the Federal Government.

4-2 Present Road Network

There is no official road classification system in Pakistan, designating the roads as primary, secondary or local roads.

However, five roads with a length of 4,300 km were categorized as national highways. These roads are functionally regarded as the most important inter-provincial roads from the strategic point of view. Therefore, there are few traffic observed on national highways of N-25, N-35 and N-50 in comparison with N-5 and N-65.

National highway network and detailed location of five highways are shown in Fig. 4-7 and 4-8.

Asian highway network in Pakistan authorized by ESCAP is shown in Fig. 4-9 as compare to national highway network and brief description is given as follows;

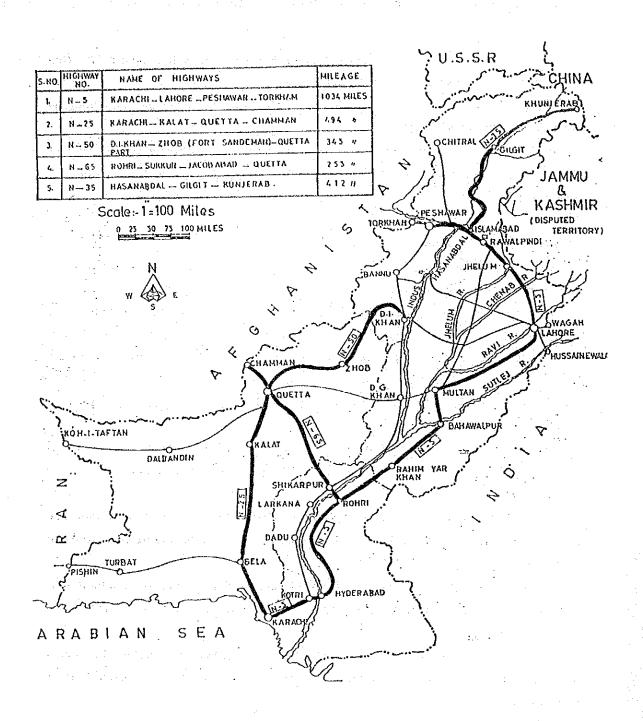
o N-5

This is main highway running from Karachi to Torkham of Afghanistan border. The sections of Karachi – Rohri, Rohri – Lahore and Lahore – Torkham correspond to Asian Highway Route A-73, A-2 and A-1.

Construction of a new carriageway from Shadara to Muridke and Gujranwala Bypass has been completed. Construction of the dual carriageway from Nowshera to Peshawar has been taken in hand.

In addition, the improvement works of N-5 have also been taken in hand to remove bottlenecks and ensure speedy movement of essential commodities from Karachi Port to up-country.

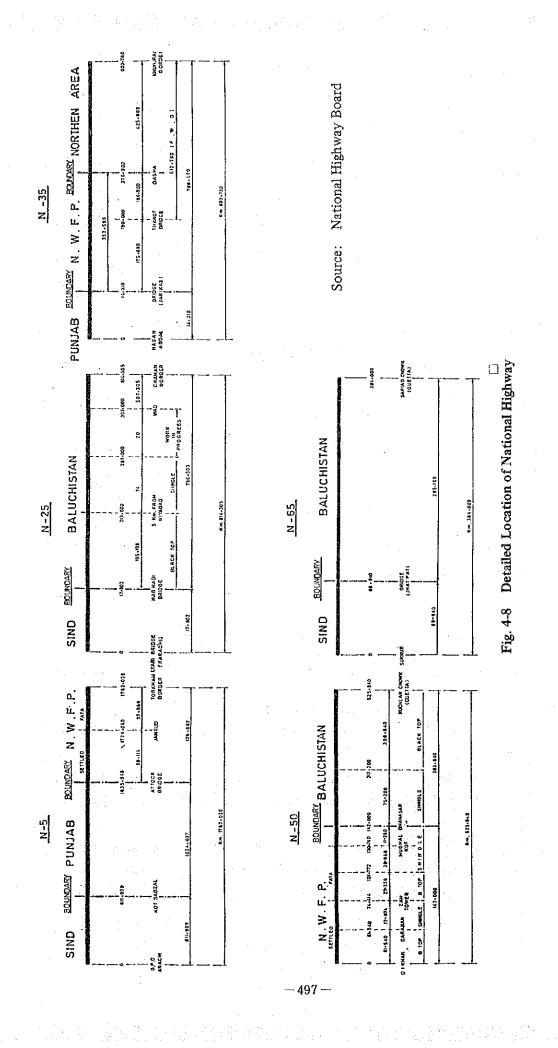
o N-25


This highway is the so-called RCD highway and corresponds to Asian Highway Route A-74.

RCD highway is now under construction and there are no restaurants and filling stations along this highway.

Therefore this highway will have a potential of diverting traffic from the National Highway.

o N-35


Karakoram Highway N-35 was constructed by the Chinese and Pakistani military engineers to link Islamabad to China in 1979.

	LEGEND
1.	INTERNATIONAL DOUBLEY
2.	PROVINCIAL BOUNDARY
3	NATIONAL HIGHWAYS
4.	OTHER ROADS
5.	HISHWAY No [N-5]
6.	RIVERS

Source: Ministry of Communications

Fig. 4-7 National Highway Network

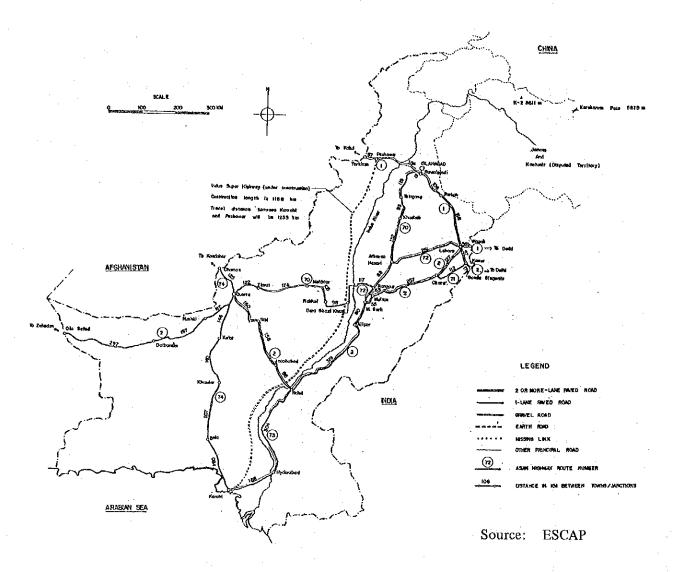


Fig. 4-9 Asian Highway Network in Pakistan

o N-65

This route corresponds to Asian Highway Route A-2.

The main road network consists of about 24,000 km of paved roads and 15,000 km of un-paved roads.

48% of paved road in Pakistan has been constructed in Punjab. There are some 40,000 km of earth roads in addition to the main road network. Road Kilometerage in Pakistan in 1979/80 is shown in Table 4-1.

Most of the major highways have been built as one-lane or two-lane highways. Pavement structural strength on major highways is insufficient to carry a heavy traffic load.

Total length of major roads in Pakistan by type of surface and pavement width is shown in Table 4-2.

Table 4-1 Road Kilometerage in Pakistan (1979/80)

UNDER	HITGHWAY	DEPARTMENT:

NMLD		(17,647) (2,258)	_		(17,647) (2,258)
SIND		(17,647)	_		(17,647)
PUNJAB	112	(35,139)	· .	112	(35,139)
CANAI, ROADS*					
NORTHERN AREAS:	2,288		- .	2,288	
SUB-TOTAL:	1,653		826	2,479	·
DISTRICT COUNCILS	693			693	
AZAD KASHMIR: HIGHWAY	960		826	1,786	
UNDER FATA:	1,967		1,956	3,923	
SUB-TOTAL:	1,073	· · · · · · · · · · · · · · · · · · ·	8,165	9,238	
ISLAMABAD		7-2-2-1	560	560	
BALUCHISTAN	85		299	384	* *
NWFP	78		199	277	
SIND	304		3,253	3,557	•
PUNJAB	606		3,854	4,460	
UNDER MUNICIPALITIES:					
SUB-TOTAL:	38,462		4,326	42,788	
BALUCHISTAN	4,596	•	99	4,695	
NWFP	3,871		178	4,049	
SIND	13,172		193	13,365	
UNDER DISTRICT COUNCILS: PUNJAB	16,823		3,856	20,679	
	14,000		24,142	38,830	
SUB-TOTAL:	8,841		3,019	11,860	
BALUCHISTAN	3,700		3,543	7,243	
SIND NWFP	1,975		5,997	7,972	
	172		11,583	11,755	
PUNJAB	UN-METALLE		METALLED	TOTAL	

^{*} OPEN TO PUBLIC () Total Canal Roads

Source: Transport Bulletin (Supplementary No. 1) Nov. 1981 NTRC

Table 4-2 Length of Road Under Highway Department in 1978/79

		Low Type				High Type Black Top by Width	: Top by	Width					-
Name of Province	Earthen	Shingle	Total Low Type	Up to	12-18	18-24 24-28	28-36	36-44 44-48		Above 48 Divided Undivided	48 Idivided	Total High Type	Total
Punjab	116.45	55.79	172.24		1,140.28	7,045.31 1,140.28 3,069.18 160.88	107.77	25.35	7.43	8.41	18.60	11,583.22	11,755.46
Sind	1,898.00	77.25	1,975.25	3,576.95		184.69 1,285.70 734.94	9.01	9.01 139.08	5.60	5.66	54.90	5,996.53	7,972.00
NWFP	826.50	2,873.39	3,699.89	2,233.68	412.65	732.53 43.11	96.64	2.00	1.44	20.16	98-0	3,542.77	7,242.66
Baluchistan		8,840.54	8,840.54 8,840.54	1,880.9	15 1,113.92	24.00						3,018.87	11,859.41
Total:	2,840.95		14,687.92	14,736.89	2,851.54	11,846.97 14,687.92 14,736.89 2,851.54 5,111.41 938.94 213.42 166.43 14.17 34.23	213.42	166.43	14.17	34.23	74.36	24,141.39	38,829.53
• •													
													-
								÷					
				Len	gth of Ros	Length of Road under District Councils in 1980	t Counci	ls in 198	္ကါ				44.4
Punjab	15,866.64	926.64	956.64 16,323.28	3,683.08	53.57	17.00	102.00					3,855.65	20,678.93
Sind	12,951.17	221.18	221.18 19,172.35	144.57	48.16				,			192.73	19,365.08
NWFP	2,807.49		1,063.12 3,870.61	144.15	33.66							177.81	4,048.42

Source: Transport Bulletin (Supplementary No. 1) Nov. 1981 NTRC

4,694.69

4,326.16 42,784.92

102.00

17.00 0.8

4,641.53 38,458.76 4,038.75 166.81

66.95 31.42

2,420.99 4,592.52

Baluchistan 2,171.53 Total: 33,816.83 The present kilometerage is hardly 0.1 per square km of area which is one of the lowest in the world and also lower than many other developing countries. This looks most insignificant when compared with 1.06 km per sq. km in Japan and 1.50 km per sq. km in England.

Existing road network for four provincies are shown in Fig. 4-10, 4-11, 4-12 and 4-13.

4-3 Road Network for National Transport Plan

This paragraph deals with the character and quality of the existing network for national transport plan, presenting the results of the inventory carried out by the Team. Inventory study is based on information received from the highway authorities concerned. The results are shown in Appendix I.

4-3-1 Selection of Road Network for National Transport Plan

Road network for National Transport Plan shown in Fig. 4-14 is formulated after discussion with authorities and counterpart concerned, which is basically attributed to the O-D survey conducted by NTRC. Road Network prepared for NTRC O-D survey is shown in Fig. 4-15.

In addition in order to determine the road network for National Transport Plan the Team studied the networks of Asian Highway Network shown in Fig. 4-16, Minimum National Highway Linking shown in Fig. 4-17 proposed by Master Plan for Highways by Techno-Consult in 1978 and Proposed Location Class I & II Highways shown in Fig. 4-18 prepared by Government of West Pakistan in 1962 through Master Plan for Highways.

The number of each link is also indicated in Fig. 4-14. And list of links for selected network for National Transport Plan is shown in Table 5-11.

Selected Road length by province is as follows:

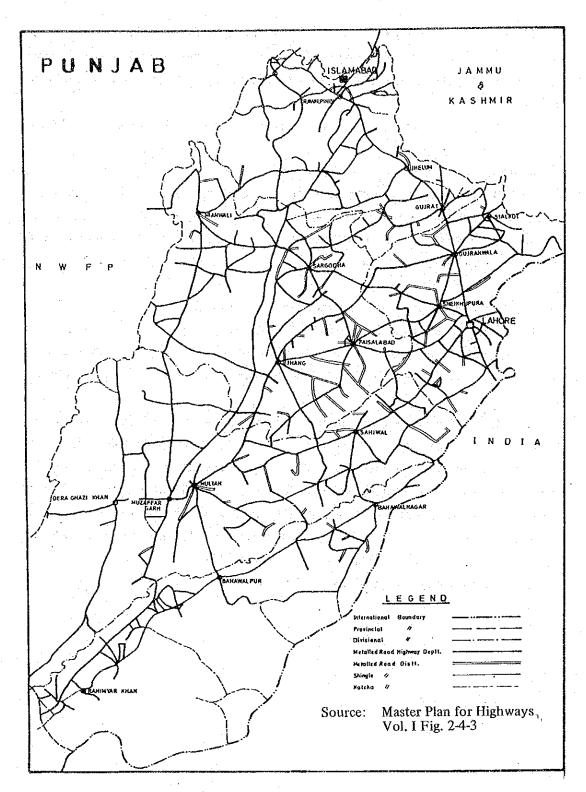


Fig. 4-10 Highway Network of Punjab

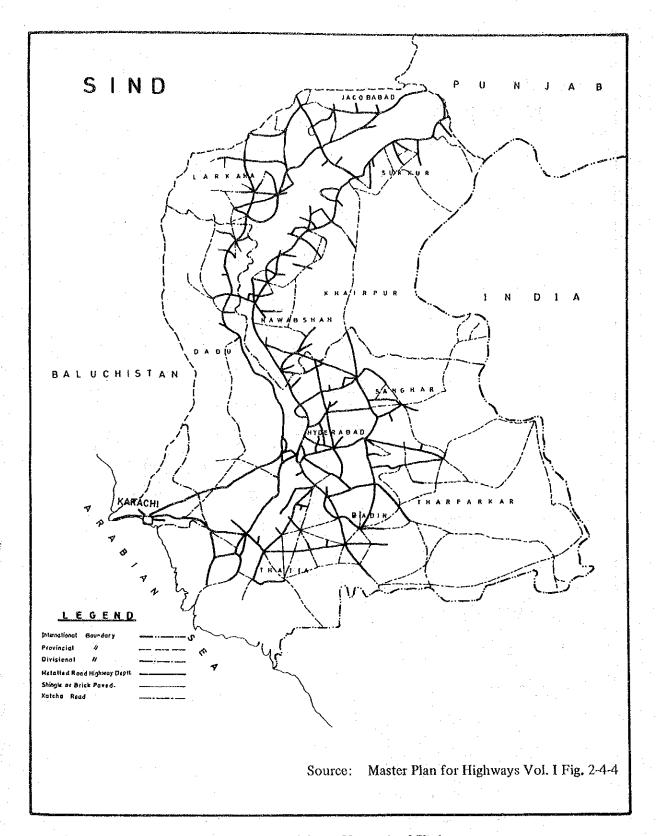


Fig. 4-11 Highway Network of Sind

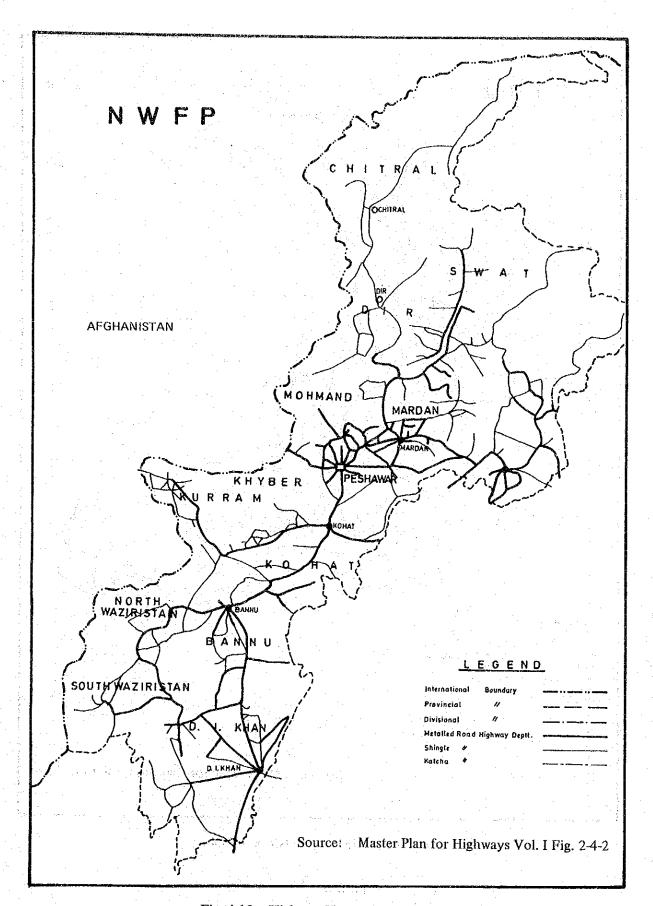


Fig. 4-12 Highway Network of NWFP

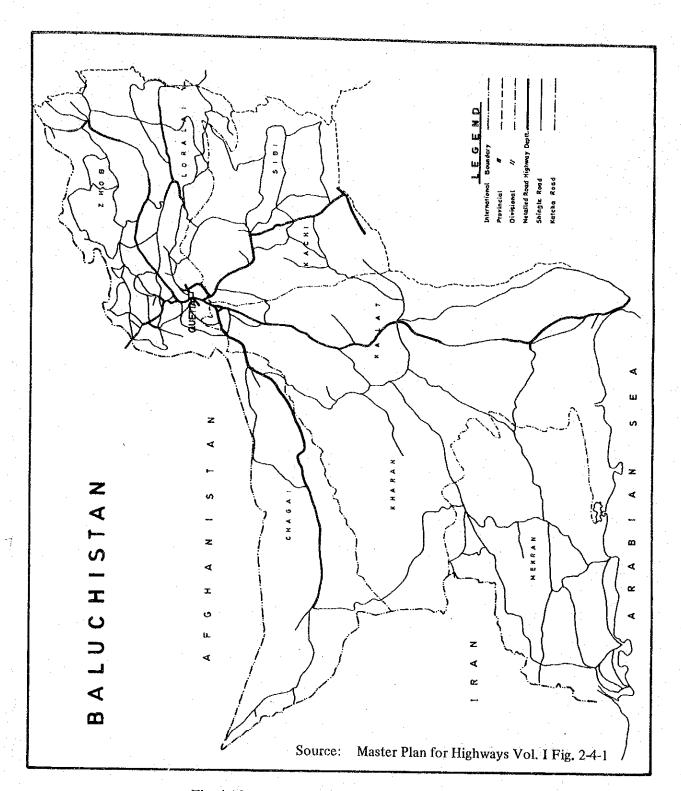
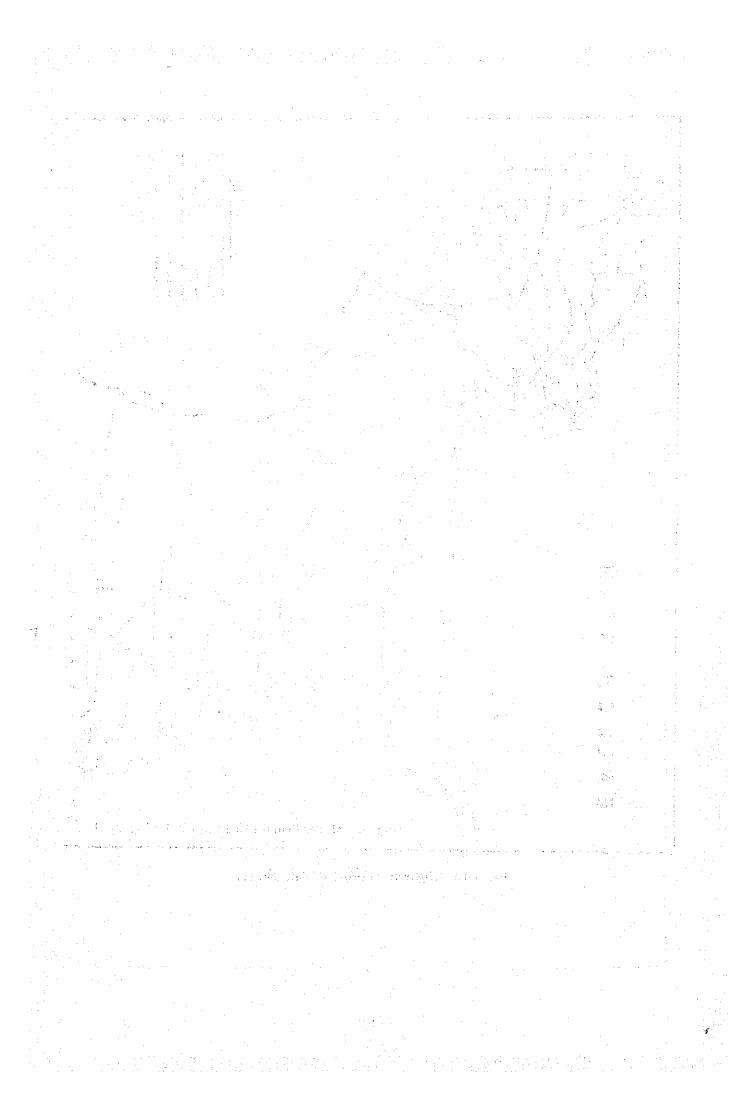
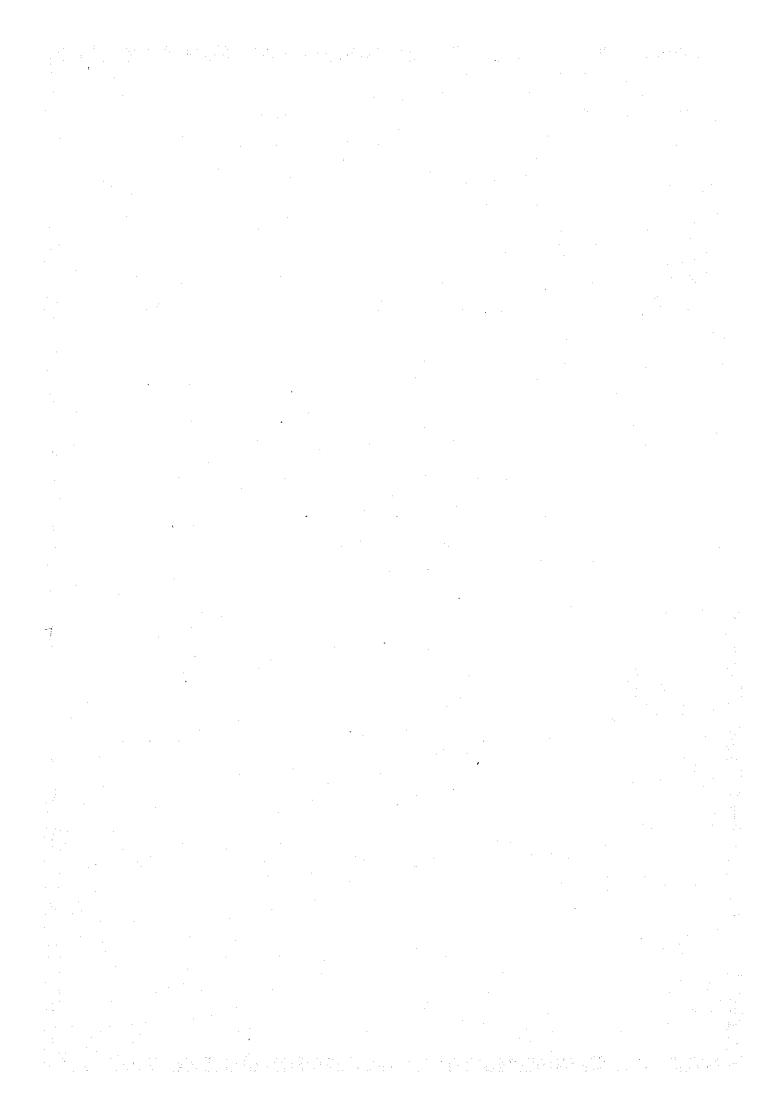




Fig. 4-13 Highway Network of Balcuchistan

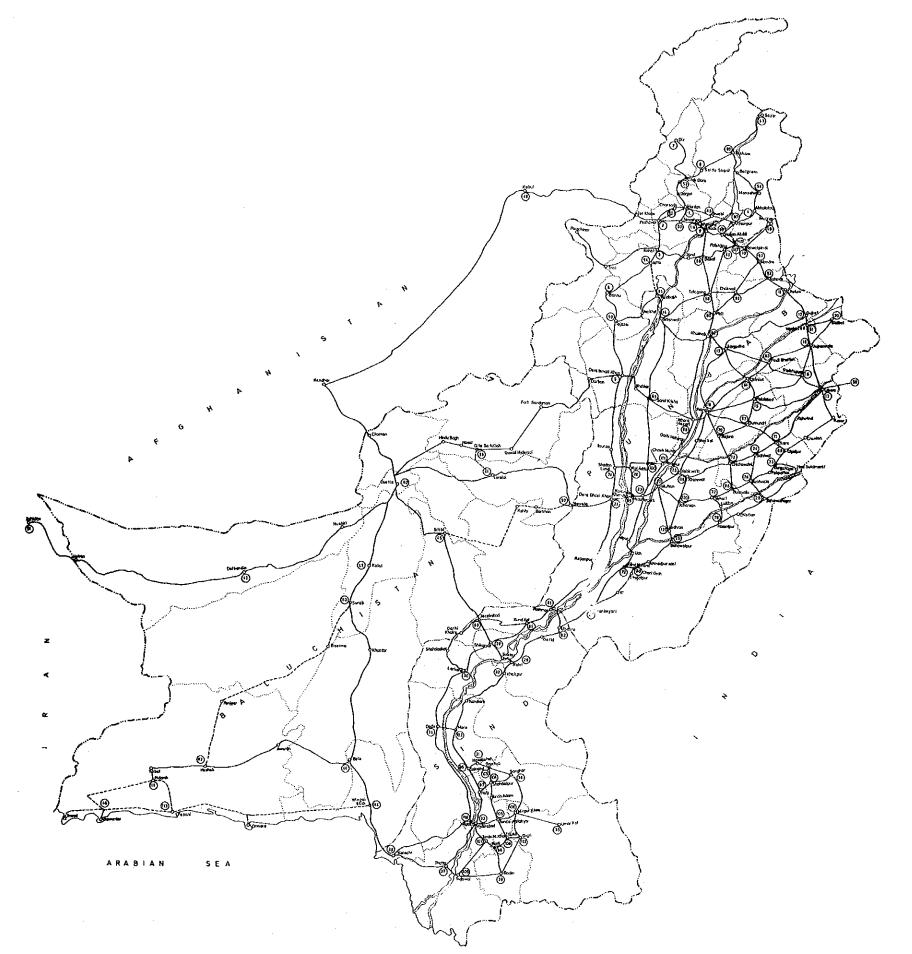
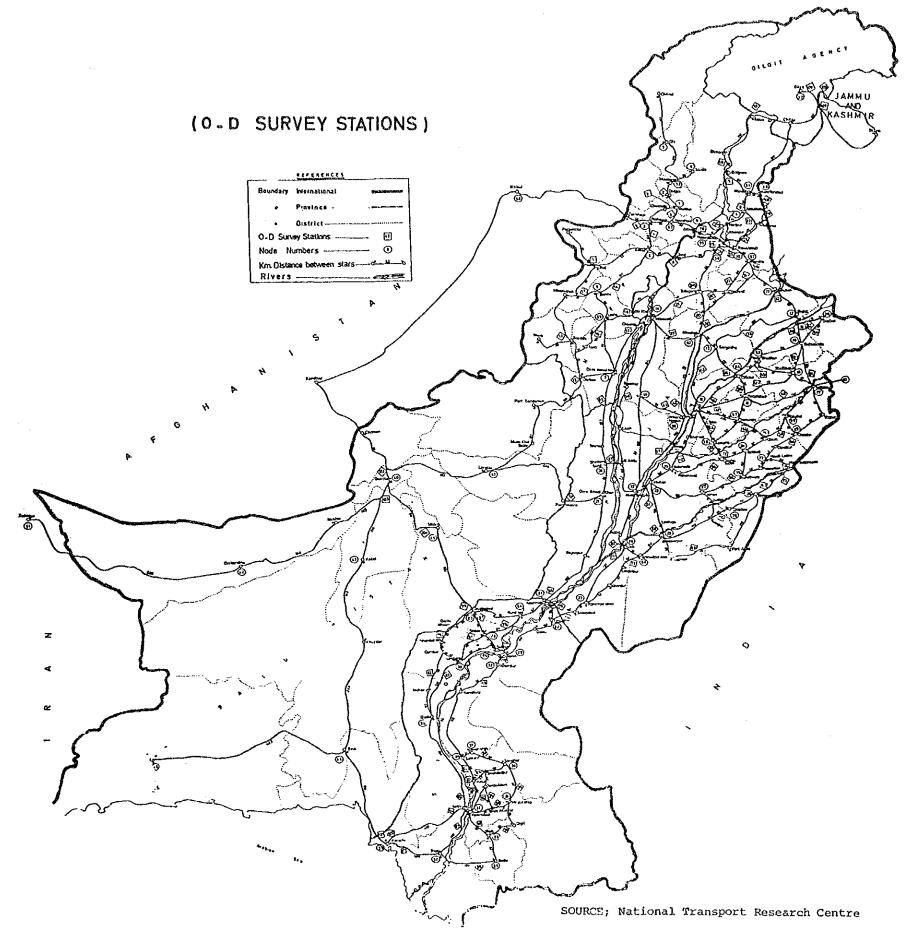


Fig. 4-14 Road Network for National Transport Plan



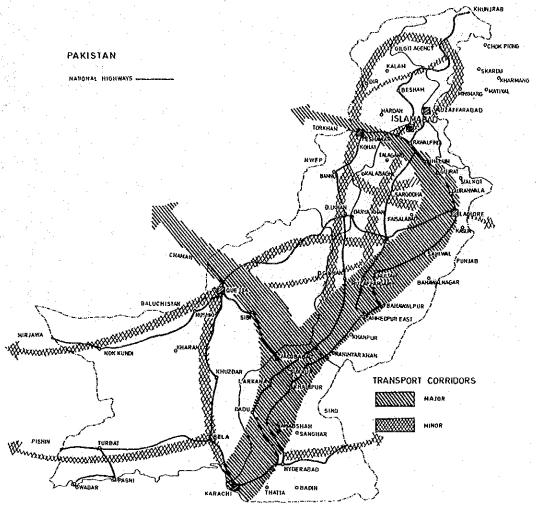


Fig. 4-15 Pakistan Road Network for NTRC O-D Survey

Source: Master Plan for Highways by Techno-Consult

Fig. 4-17 Recommended National Highway Network by Techno-Consult

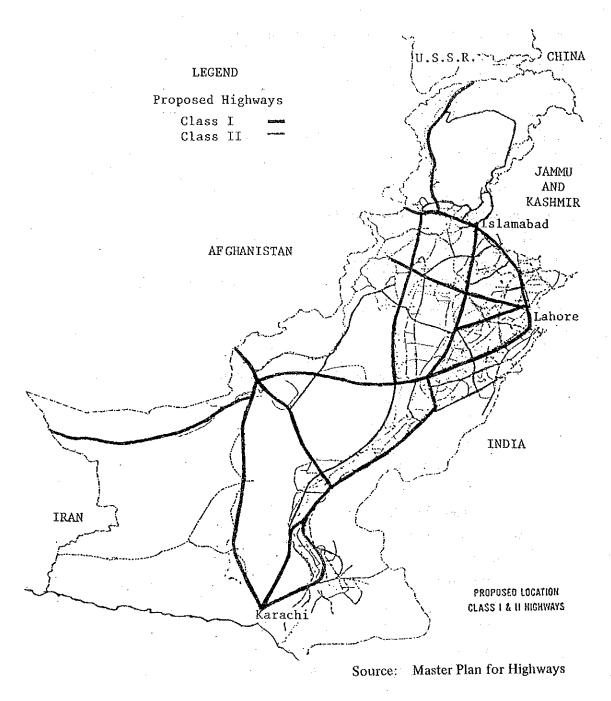


Fig. 4-18 Proposed Location of Class I & II Highways

	National Highway (km)	Provincial Highway (km)
Punjab	1,038	5,528
Sind	719	1,860
NWFP	630	1,333
Baluchistan	1,476	3,322
Total	3,863	12,043

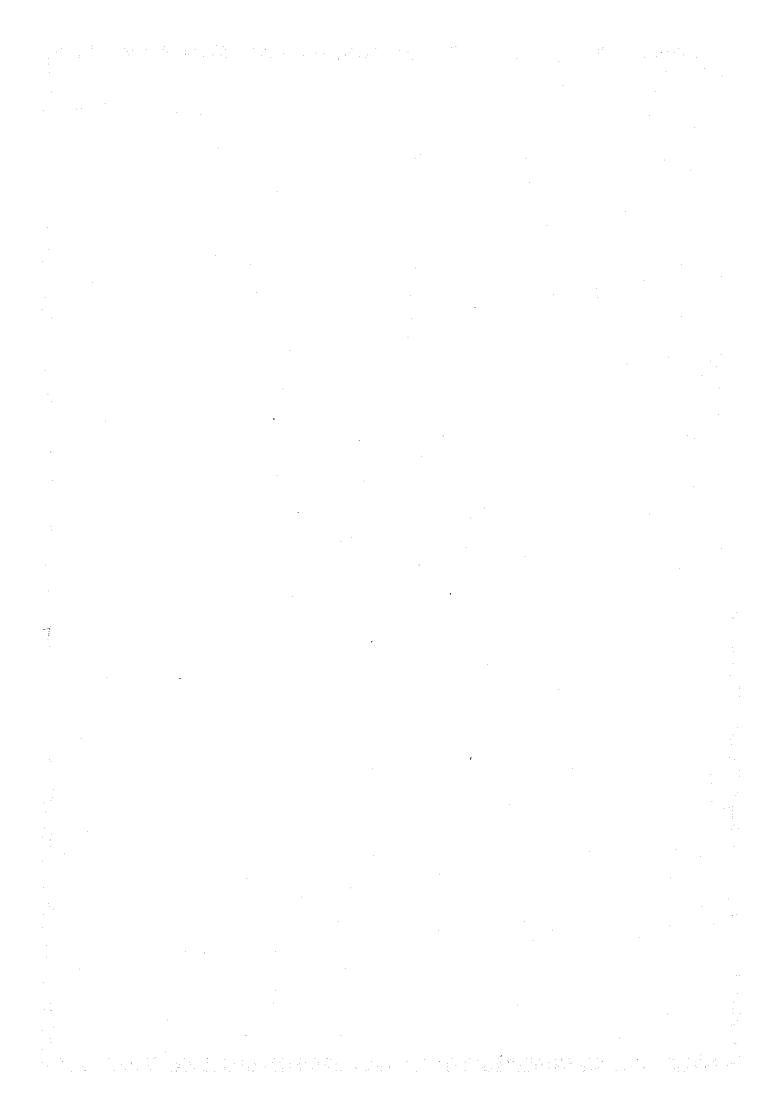
4-3-2 Preparation of the Road Inventory

The objective of making a inventory of the Road Network is to obtain useful information about the physical conditions.

The following items were investigated during the field surveys:

- Distance
- Terrain
- Design Speed
- Cross-Section (ROW, Formation and Pavement)
- Type of Surface
- Surface Condition*
- Pavement Depth
- Sub-grade CBR
- No of Culverts
- Major Structures
- * has been graded into following categories

Good


Fairly Good

Fair

Poor

Very Poor

Detailes are shown in Appendix I by link. Summary is shown in Fig. 4-19.

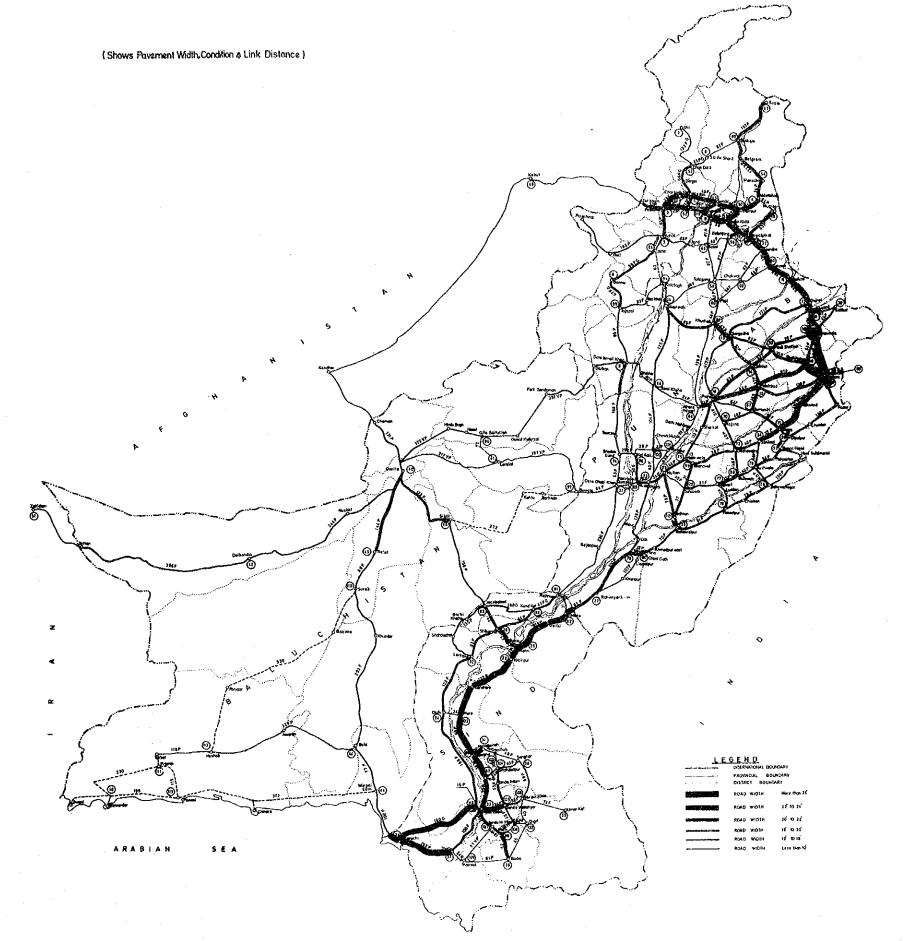
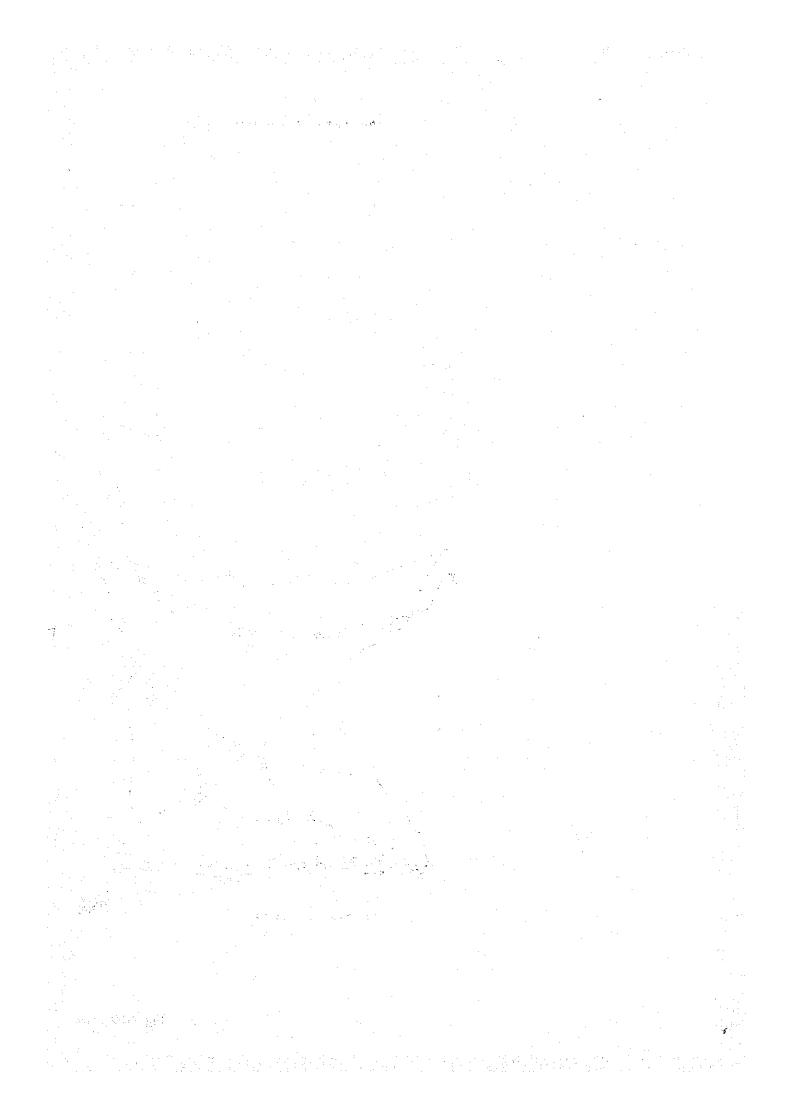



Fig. 4-19 Inventory Road Map of Pakistan in 1982

4-4 Technical Problems for Highway Planning

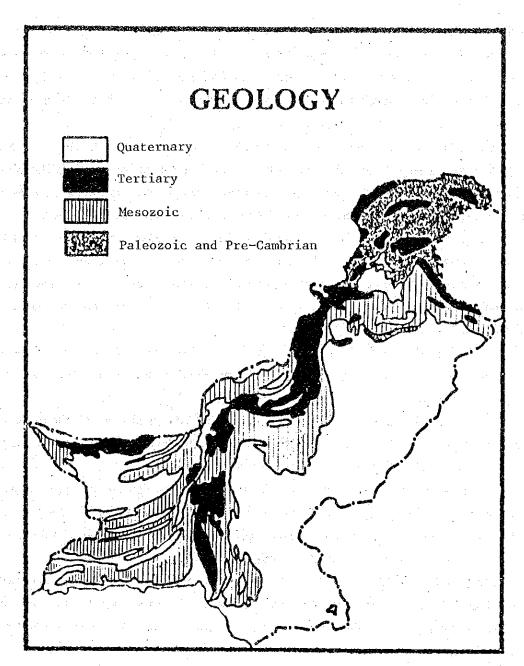
Although, a rapid increase in road traffic for the last two decades has exceeded both the traffic capacity and the pavement strength on the road network, Pakistan has an ancient road system which had been initially constructed by over-burnt brick or water bound base on not properly compacted subgrade.

Soil conditions in NWFP and Baluchistan are generally good. On the other hand, subgrade soil in Punjab and Sind are usually poor. Typical subgrade soils in Punjab and Sind have the nature that even a little moisture increase may result in strength loss although they are compacted at the optimum moisture contents close to plastic limit.

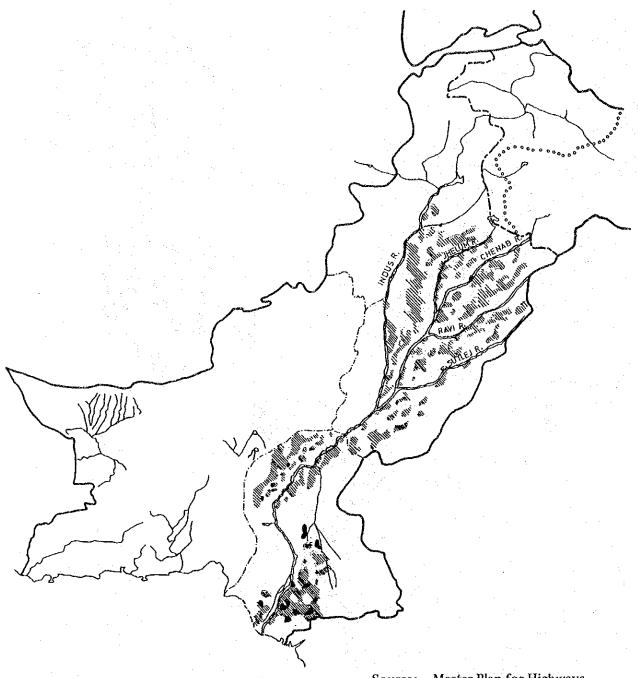
Punjab and Sind are subject to annual flooding and high soil salinity. Many roads in Pakistan have suffered from periodic heavy flood during 1973, 1975 and 1976. Floods lead to raising the level of watertable and damage the roads. They also wash away sections of roads and flow of traffic was suspended. In addition, an average holding distance of highway materials is extend to 200 km.

Geological Map of Pakistan, Soil Salinity Area in Pakistan, Water Logged Areas in Pakistan, Flood Affected Area in 1973, Existing Food Protection Facilities and Road Aggregate Deposit are shwon in Fig. 4-20, 4-21, 4-22, 4-23, 4-24 and 4-25.

Highway authorities express that one of the most serious problems is the overloaded vehicles, leading to a rapid deterioration of road and old bridges. It is also said that service lives of most of road structures have been almost terminated.


The problem is further compounded by the fact that insufficient funds are provided for the proper maintenance. Road maintenance by provincial highway department relies on road gangs who carry out routine maintenance, while periodic maintenance is done on an ad hoc basis as funds and equipment are available.

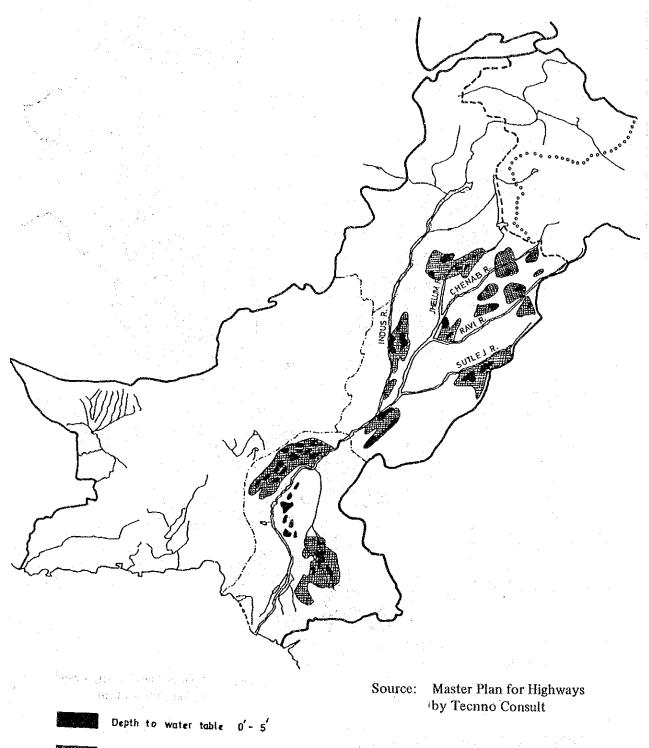
Structural overloading, together with inadequate maintenance is already causing complete failure on major highways. This will come to result in the loss of whole section of highway system. For example, increasing the axle load from 8-ton to 10-ton doubles the distructive effect.


There are sections under construction on the 3rd Highway project by IBRD (see Table 4-3) between Lahore and Sahiwal. Road construction progress are far behind the schedule due to the shortage of organized contractors and their inadequate management, and on Rohri section the constructor gave up construction after finishing a half mile of over laying.

Because, contractors generally have had more experience in building construction than in highway construction, and apart from locally made rollers, few domestic contractors including NLC hold equipment suitable for modern highway construction. Equipment hold by five agencies are shown in Appendix II.

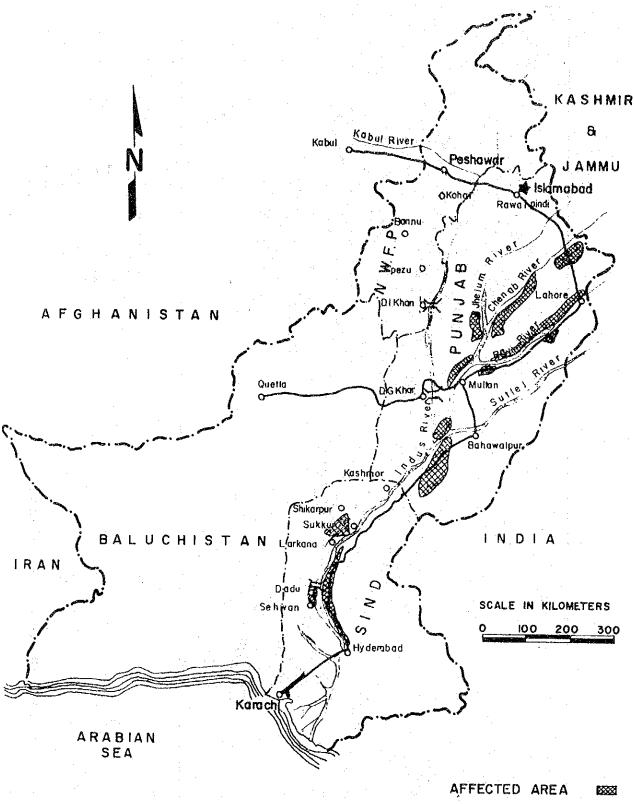
In addition to above, preconstruction testing for design purposes and effective quality control during construction are insufficient in Pakistan.

Source: Oxford Atlas for Pakistan



Source: Master Plan for Highways by Techno Consult

Severly


Severly Salt Affected Areas

SWAMPS

Depth to water table 5- 10

Fig. 4-22 Water Logged Areas in Pakistan

Source: Indus Super Highway Board

Fig. 4-23 Flood Affected Area in 1973

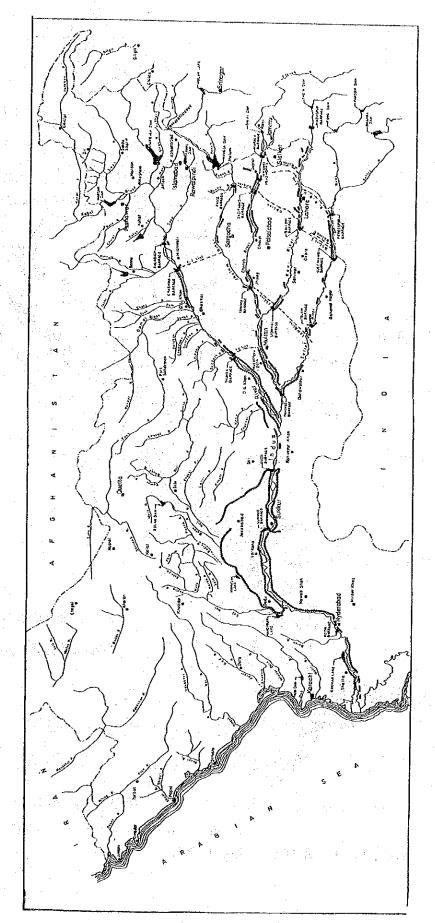
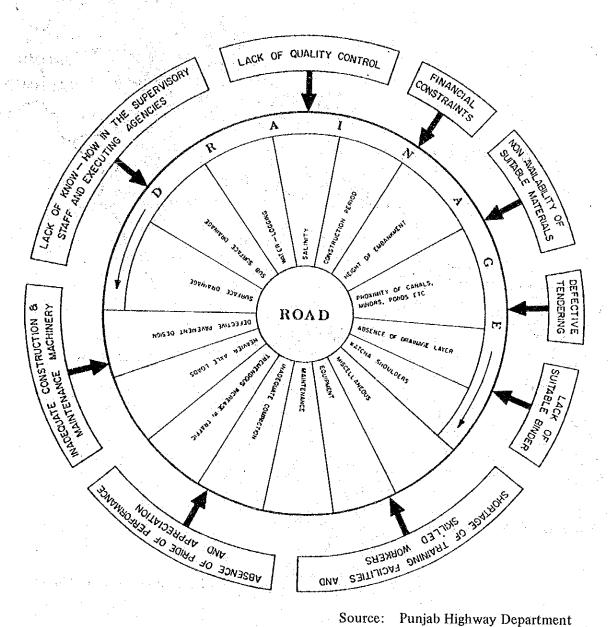


Fig. 4-24 Existing Flood Protection Facilities on Major River


Source: Master Plan for Highways by TechnoConsult

CRUSHED STONE *

Fig. 4-25 Road Aggregate Deposit

Overlay constructed on the section between Nowshera and Khairabad was damaged in few months after opening to traffic due to the above reason.

Finally, the analysis of the major causes of road failure is indicated in Fig. 4-26 which has been prepared by Punjab Highway Department in 1980.

Boutoo. Tunjao mgmway Departnik

Fig. 4-26 Major Causes of Road Failure

Table 4-3 Third Highway Project Contracts

Project No.	Project Sector No.	Tender Date Received Agrmt. Signed	Date Agrmt. Signed	Name of the Contractor	Name of the Consultant	Contract Amount in (Rs.)	Completion Date	Completion Mobilization Date Advance Paid	Remarks
	Peshawar	12.7.79	29.3.80	12.7.79 29.3.80 M/S Nazir & Co. Ltd. Lahore	M/S Progressive Consultants	20,067,885	Dec. 1982	Dec. 1982 30,10,000	Paid on 17.5.80
	Charsadda	n.				58,02,000		2,18,857	Paid on 17.5.80
74	Khairabad Nowshera	12.7.79	29.3.80	-DO-	-DO-	20,712,380 55, 93,250	Dec. 1982	31,07,000 2,18,857	Paid on 17.5.80 Paid on 17.5.80
ω 4	Lahore Pattoki	12.7.79 26.1.80	26.6.80	26.6.80 M/S Saadullar Khan & Bros.	NESPAK	14,78,96,974		2,35,52,753	Paid on 30.6.80 Paid on 23.9.80
4	Pattoki Sahiwal	12.7.79 20.1.80	26.6.80 -DO-	-D0-	-DO-	25,12,65,485 Dec. 1984 2,02,00,950	Dec. 1984	4,07,19,965	Paid on 7.9.80 Paid on 23.9.80
r -	Kotdiji Rohri	12.7.79	30.3.80	M/S Continental -DO- Engneer Ltd. Lahore	-DO-	10,85,00,000 Dec. 1983 77,50,000	Dec. 1983	1,69,20,000 3,12,088	Paid on 17.5.80 Paid on 17.5.80

Source: National Highway Board

4-5 The Current Development Programme and Its On-going Project

The Fifth Five Year Plan is aimed at the completion of project already started and the improvement or reconstruction of the existing roads.

The construction of the Indus Highway was eliminated from the Plan, because this road has more strategic than economic justification. As far as the alignment of Indus Highway is concerned, the section of the road up to Larkana and Shikarpur in Sind, it would traverse relatively undeveloped regions.

It has been decided that limited resources should usefully be spent to duplicate the National Highway N-5 and other congested routes. Rs. 3,619 million (46.8%) were allocated for national highways out of total amount of Rs. 7,734 million.

Details are shown in Table 4-4.

The Fifth Five Year Plan does not include farm to market roads which are handled under the people's work program.

An Annual Development Program is prepared by each provincial government on the following priority basis;

- i) Completion of On-going project
- ii) Defense Requirements
- iii) Demands by the Public

These ADP's are incorporated into the Five-Year Plan on a yearly basis.

ADP of National Highway Board for 1982-1985 is shown in Table 4-5.

Map of on-going projects with the cost more than Rs. 10 million and located on the Road Network for National Transport study is shown in Fig. 4-27 and summary of ongoing projects is indicated in Appendix III.

4-6 Average Daily Traffic Volume on the Road Network

The team obtained traffic counts data in 1980/81 for selected links during the field survey from authorities concerned.

Most reliable data was obtained from Punjab Highway Department because Lahore was the centre for the Wast Pakistan Highway Department, and traffic counts have been taken as yearly basis and not only in Punjab but also in other provinces.

In addition to above, the team also obtained traffic counts data from the National Transport Research Center which were taken in conjunction with the NTRC O-D survey in 1980.

Daily Traffic Volumes on the road network are shown in Fig. 4-28.

On the main highway, traffic volumes vary from about 2,500-5,000 daily traffic in the rural area. About 70% of the traffic volume on major highway is shared by trucks.

Daily Traffic Volume in Punjab is separately shown in Fig. 4-29.

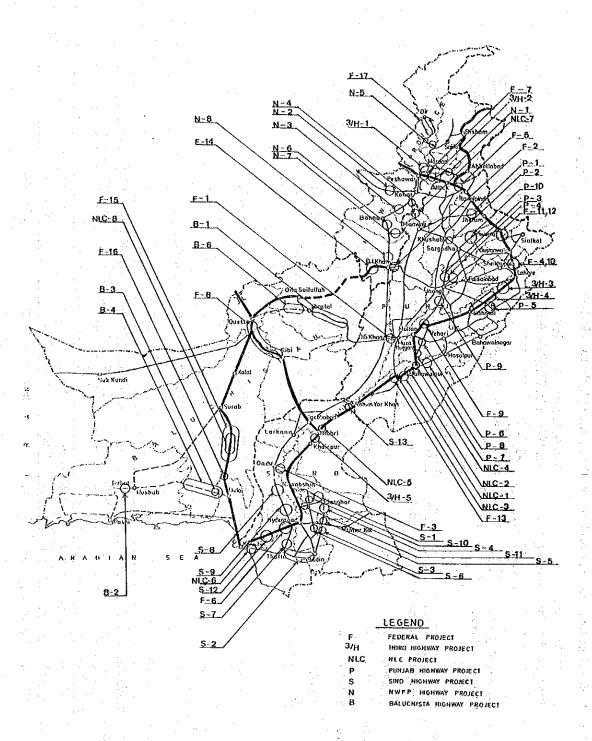
Table 4-4 Summary of Road Programme

			(Rs. Million)
A.	Fede	oral:	
	(i)	Improvement and widening of existing network:-	
		(a) National Highways including D.I. Khan-Fort Sandeman Road, R.C.D. Highway and North South link on west bank of Indus.	781.00
		(b) Third Highway Project:	
		Lahore-Okara Okara-Khanewal Okara-Chanewal Okara-Dipalpur Hyderabad-Nawabshah Nawabshah-Khairpur Rohri-Reti Khairabad-Peshawar Peshawar-Charsada	650.00
	(ii)	Roads in Federally Administeted Areas:	
-		Azad Kashmir	•
-		Northern Area180	
		FATA250	730.00
	(iii)	Other Roads	1,132.00
	(iv)	Major Bridges:	
		Nowshera, Attock, D.I. Khan, D.G. Khan and Dadu-Moro	300,00
	(v)	Studies:	
		Traffic count programme, Master Plan for Road Development and Rapid Transit System, etc.	26.00
		Sub-total "A"	3,619.00
В.	Prov	incial	4,115.00
		Total	7,734.00

Source: The Fith Plan 1978-83

Contd.../2

1982-85
for
(ADP) f
Programme (
Development
Board
Highway
National
Table 4-5(1) Na


PROFORMALI

€1 1		-	Balance if any, for after 7-	13	Work	- uoo	pletec in	4 50	1985 70.000 -do- 70.000 -ao-		.385 -do-	10 0 0	-go-	-op-	50.000 -do-	-op-
12121		(0)	- Propo- sed al alloca- 2 tions fo 5 to 1987- 88.	12	85.000	22.540	54.034	55.150	4	280.000 (including)	<u> </u>	84.220 -	- 576 -	- 709*:		2.000
3		L_HIGHWAYS	Total 1982 1984-85 1985	1011	່ ຜັ	,	<u>7</u> ⊆	15.152 56	rd.	100.00 28C	700.000 600	19.220 84	4.854 21	23.604 95	50.000 100.000	1
1	Torst	DIRECTORATE GENERAL NATIONAL	durin 3-84	6		. 1	24.434	20,000	50.000	180.000 1 (30.00) (FEC.)		30.000	8.000	000.04	50.000	
	Communication Division	rate gener	Allocations 1982-85 1982-85 198	80	85.000	22.540	29.600	20.000	lu.	1		35.000	8.722	30.000 (14.705)		5.000
)	Communi	DIBECTO	physical, achieve- ments in quanti- tative %age ter- ms upto	7	65%	t 85%	%9 7	•	! 	1	1	25%	1. 1 . 1	21.7%	Ĭ	63.5%
٠.	:	ncy:	Revised Estima- tes for 1981-82	9	65.000	14.224	22.810	1	. !	•	, T	23.780	•	23.780	1	1.745
	,or:	Executing Agency	Estima- ted Ex- pendi- ture up to June	5	104.360	85.065	39.170	. 1	ı	4	T.	7.983	í	13.956	· t	15.213
:	ည် မ	ម្ន	F.E.C.		1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	,t ,	. 1	ı	70.000	80.000	100.00		 	14.703		ı
		Name of	의 의 의	3	260.019	121.932	116.017	55.152	270.000	480.000	847.383	124.000	21.576	132.384	150.000	26.693
			ਰ	25	MAJOR SCHEMES (APPROVED) Ghazi Ghat Bridge (Punjab) (Approved)	Const: of new Carriageway (Punjab)	Providing dual carriage- way 169/4-201/4(Punjab)	Chowk Yatim Khana (Pb)	Talibwal Bridge (PB) (Not yet approved)	Imp.of N-5 having dual carriageway throughout N-5, Punjab, Sind, NWFP.	Karachi-Wyderabad addi- tional carriageway in- cluding Indus bridge at Kotri.	Special Repair to Kcy- Hyderabad Supper Highway (Sind)	Constiof Bypass at Moro Sind	Const: of dual H/way Now- shera-Peshawar (NWFP)-App.	Imp. of Zhob D. I.Khan Rd. (NWFP portion).	Imp.of Darazaida Moghal Kot Rd. (NWFP)
		} ! ! !			MAJ	2. Cons	3. Prov	4. Chow	5. Tali (Not	6. Imp. carr M-5,	7. Karach tional cludin Kotri.	8. Spec Hyde (Sin	9. Cons	10. Cons	Il. Imp. (NWF	12. Imp. Kot
					•		_	- 5	28 —	- 	-	~	υ.		L-H	

Table 4-5(2) National Highway Board Development Programme (ADP) for 1982-85

I Progodori

• .
41.685 67.594 109.279
11.563
30.812 67.594 98.406
95%
16.703
163.873 53.886 197.759
36,330 11,846 48,176
246.998 461.430 708.428
23. K.K.Sakardu. Rosd. 24. K.K.Sakardu. Rosd. TOTAL:
,

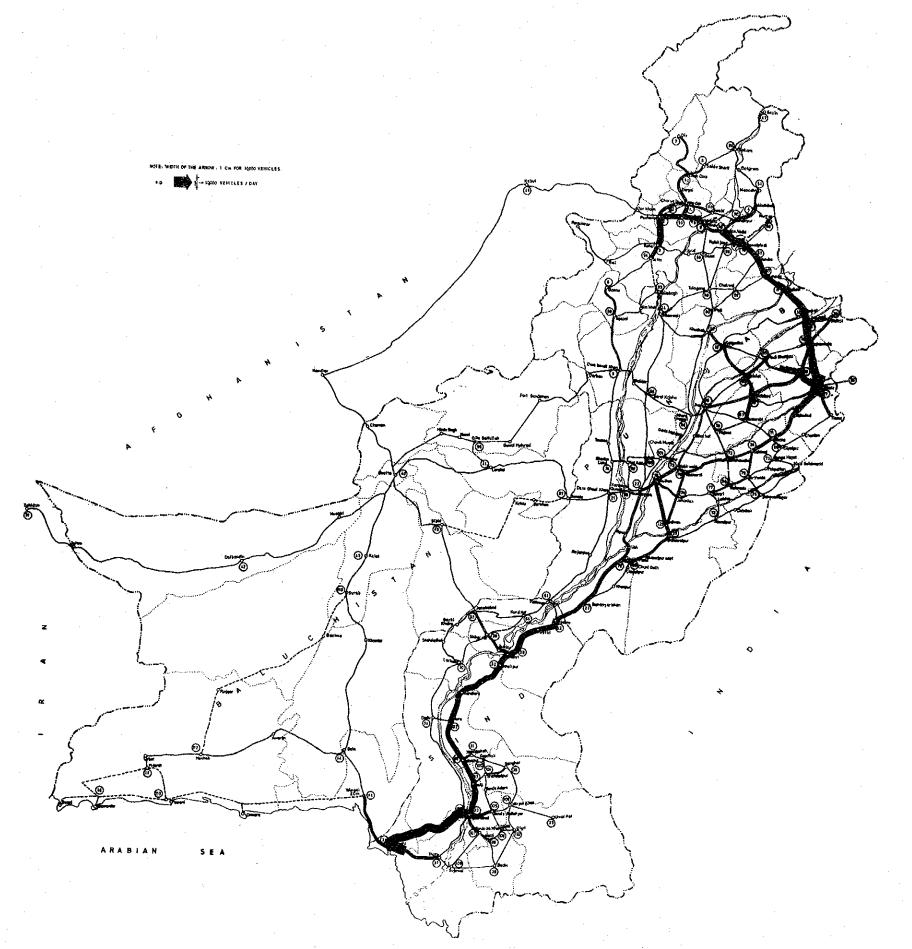
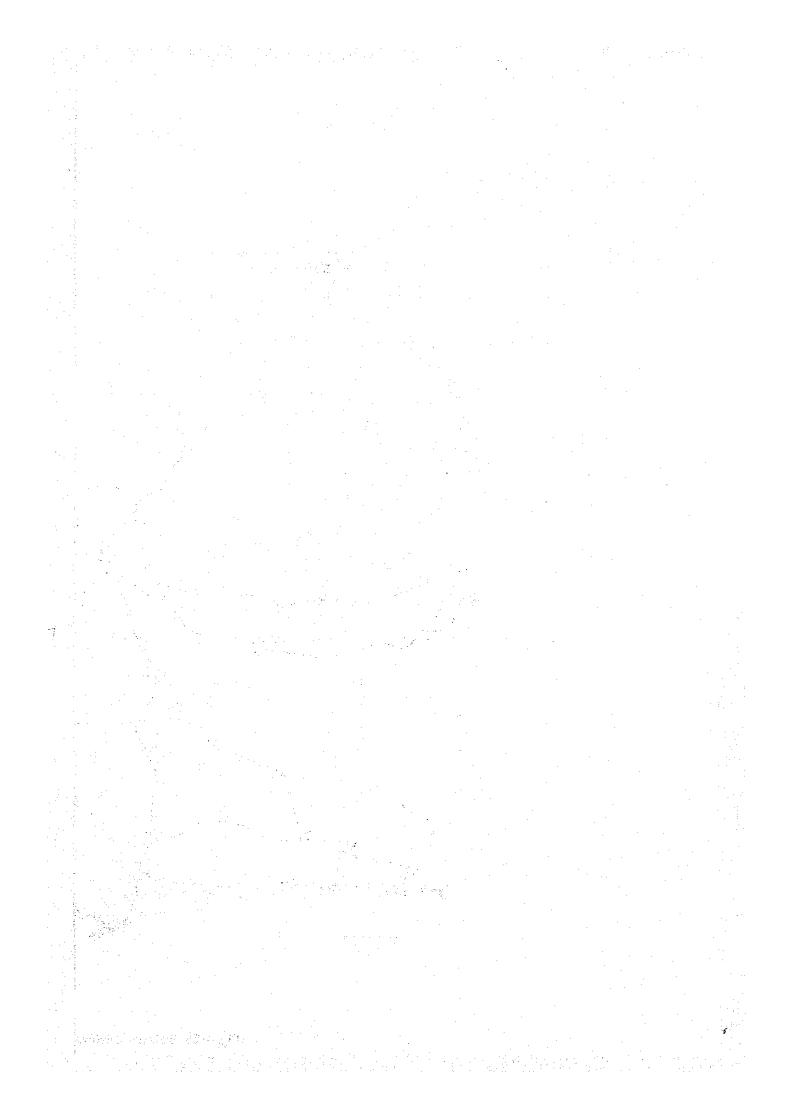



Fig. 4-28 Pakistan Highway Traffic Flow Map Mixed Traffic in 1980-81

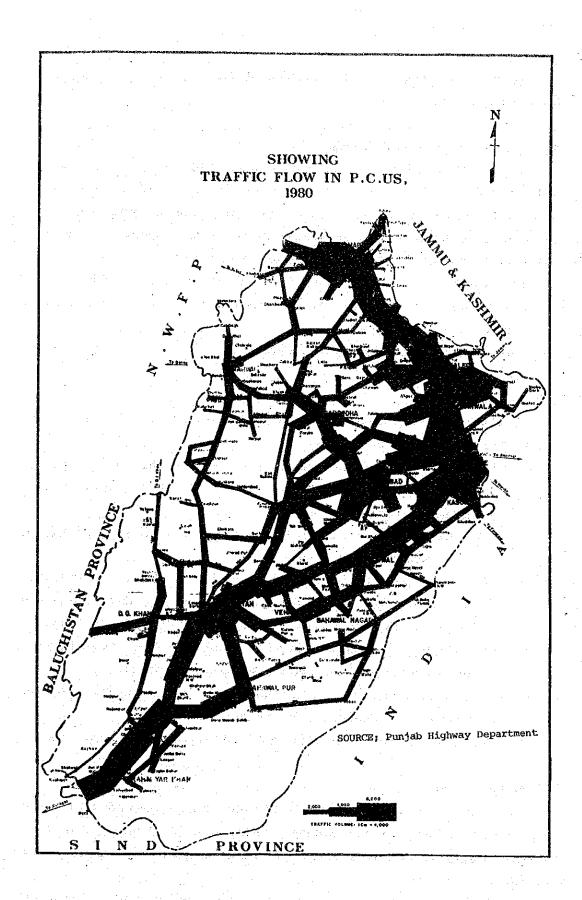


Fig. 4-29 Road Map of the Punjab

5. Highway Planning

Long-range planning means determination of the needs for as far ahead as can reasonably be foreseen.

5-1 Basic Objectives of Road Planning

Road is a most general and basic transportation facility which is indespensable for daily life and production activities, and which also plays an important role in forming confortable living environment and providing public space for disaster prevention.

Among the surface transportation means, motor vehicle transportation is play in an important role because of its mobility, door to door serviceability and reliability.

The main objects of the formulation of the future road network are as follows;

- The minimization of the total transport costs taking account of other modes and Multimodal transportation.
- The interconnection of important centres.

5-2 Strategies

To attain the above-mentioned basic objectives, road planning work is to be carried out based on the following five strategies;

- Higher priority should be given to the improvement of inter-regional trunk roads which would yield high and quick economic return from the view-point of present and future road traffic demand.
- 2. The national highway N-5 should be substantially improved keeping in view the traffic requirements in various sections.
- 3. The balanced national highway network should be established by rationalizing the existing network to include the roads of national importance such as Indus Highway, RCD Highway (Quetta Taftan Section), D.I.K. Lahore, Nowshera-Chitral & Multan-Rawalpindi (direct) via Khushab roads and by giving greater priority to rehabilitation and improvement of other arterial roads.
- 4. Construction of bridges across the major rivers/main canals and by-pass of trunk roads around big cities should be given priority.
- 5. New construction of road should be restricted to opening up of isolated areas.

5-3 Planning Process

The future traffic demands assigned to the future highway network are compared with the future highway capacity resulting from the standards adopted, and the future deficiencies which result from retaining the present network are calculated for two alternatives.

 Determine the deficiencies on the basis of desire lines and trial traffic assignment to existing network (Desire lines in the year 1987/88 and 1999/2000 are shown in Fig. 5-1 and Fig. 5-2)

- Development tentative networks to eliminate the deficiencies (capacity requirements for future network)
- Test the most promissing tentative plans by 2nd traffic assignment
- Develop the balanced road network with due regard to the future traffic flow and the road construction standard.

5-4 Classification of Highway System and Construction Standards

The highway system as proposed along with the construction standards will rationalise the basis and procedure for the proper growth and development of balanced road network.

5-4-1 Highway Classification

Prior to determination of the needs and an orderly solution of the multitude of problems on highways, classification of highways is necessary. Classification is the tool by which the complex network of highways can be allocated into groups or systems of routes having similar characteristics.

There are two types of classifications in highway system;

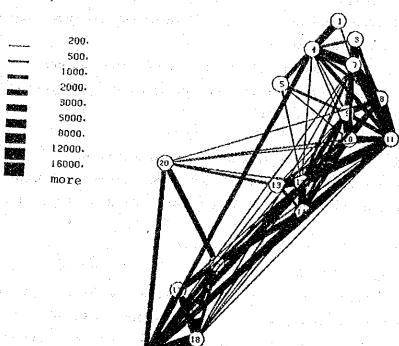
- i) Administrative classification
- ii) Functional classification

The administrative classification exists in Pakistan such as National Highway and Provincial Highway are identified from their administrative point of view.

The functional classification does not exist in Pakistan officially and the emphasis is primarily laid on the function and relative importance of the highway in the network.

The latter is more important because it is required for the road users to utilize highway efficiently and in an economical manner.

Actual assigned traffic volume in the year 1987/88 and 1999/2000 on each link has been considered as one of the most reliable parameter for determining the service required.


Road Network System for National Transport Plan is classified into three categories as follows:

- i) Primary Highway
- ii) Secondary Highways
- iii) Feeder Roads

Definitions are as follows;

Primary Highways

These are the main highways which form a part of international routes and link up all federal and provincial capitals. These road also pass through two or more provinces. Primary highways selected for this study on the basis of above criteria and policy mentioned before are shown in Fig. 5-3.

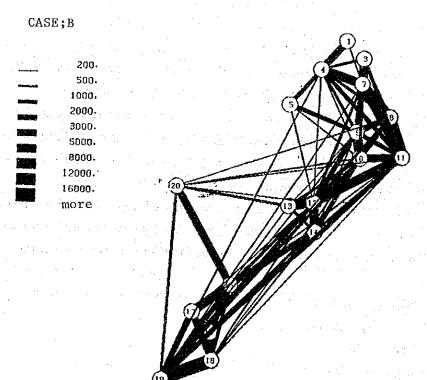


Fig. 5-1 Desire Line in the Year 1987/88

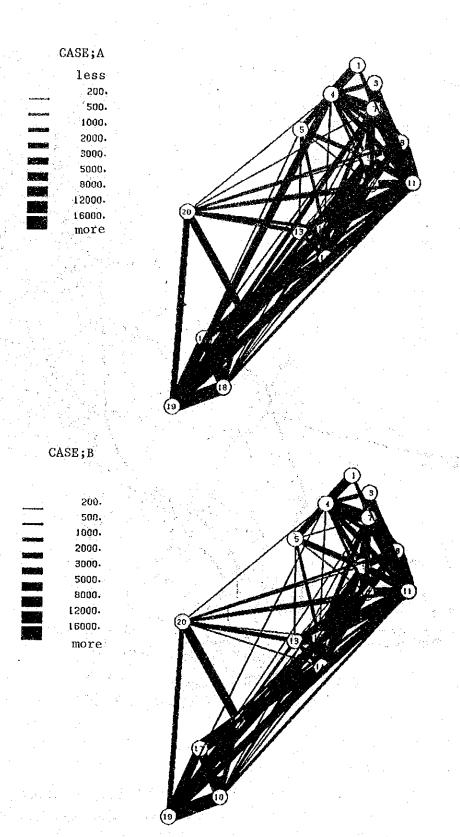


Fig. 5-2 Desire Line in the Year 1999/2000

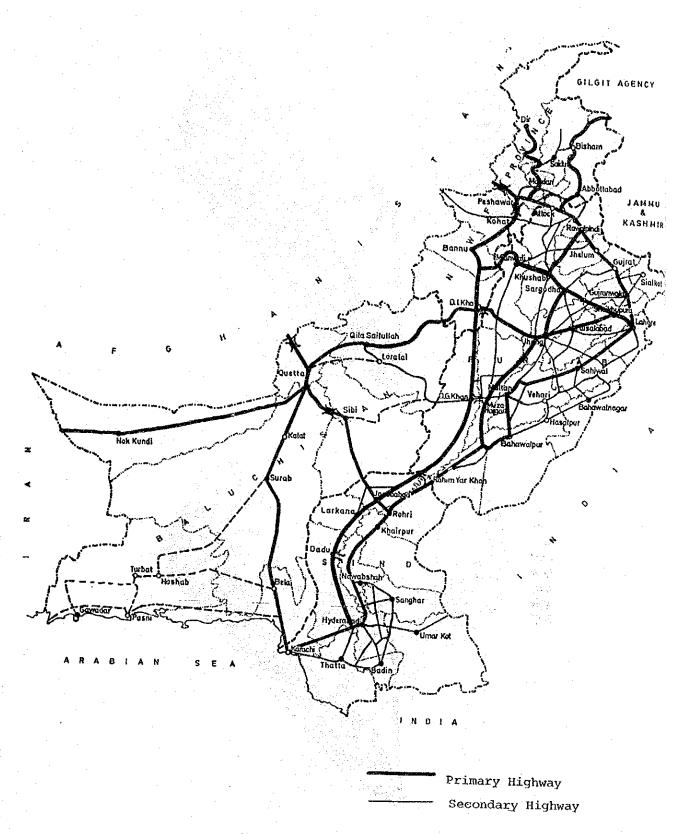


Fig. 5-3 Highway Classification

Secondary Highways

These highways connect divisional or district headquarters with each other and also link up divisional or district headquarters to primary highways. Those highways other than the primary highways on the road networks for national transport plan will be defined as secondary highways.

Feeder Road

The feeder roads will be all other roads which feed into the primary and secondary systems. This class of road is not dealt with in this Report.

Although the functional classification is not directly settled by analyses of the traffic on existing roads, it is important, through Origin-Destination analyses, to obtain a proper picture of the links actually used for commuting between different centres.

Functional Classification of the road network should not be regarded as a one-time process. A short-cut reducing the distance between two centres may imply a downward reclassification of the previous main route.

Sections of primary and secondary highways will be prepared for improvement or reconstruction depending on the assigned volume of traffic into any of the five construction standards.

5-4-2 Construction Standards

One of the aspects of the functional classification of roads is to demonstrate the importance of establishing and maintaining a certain level of accessibility between and among the various parts and centres in the country.

There is a clear difference between functional and technical classification. The above mentioned two categories of roads (primary and secondary) adopted into the highway systems will be constructed in different standard on the basis of the traffic volume.

For roads with a traffic too low to justify an acceptable level of construction, minimum construction standard should be established.

On the other hand, the introduction of possibly higher standards shall be applied with justification of benefit-cost analyses for the additional investments and user benefits that such improvement entail.

In view of the national economy and scarce resources, the construction standards for this road planning is determined through making comparison of several standards adopted for road planning in Pakistan and other countries.

Standards studies are as follows;

- i) Suggested Design Standard for Two-Lane Highway by IBRD (see Table 5-5).
- ii) Tolerable Standards for 2-Lane Highways by U.S. Department of Transportation Federal Highway Administration (see Table 5-6).
- iii) Pakistan Rural Highway-Computed Highway Capacity by Techno-Consult for "Master Plan for Highways" in 1978 (see Tables 5-7 and 5-8).

- iv) Construction Standards Recommended in "Classification of Highway System and Design Criteria June 1972 by Directorate of Planning and Design Highway Department, Lahore, (see Table 5-9).
- v) Design Characteristics for Roads in Different Type of Terrain by Central Road Organization, MOC, Government of Pakistan (see Table 5-10).

Basically, the construction standards recommended by the "Classification of Highway System and Design Criteria in June 1972" is adopted for this highway planning. The Construction Standards for this highway planning is shown in Table 5-1, and typical cross sections are shown in Fig. 5-4.

Table 5-1 Road Construction Standards for Highway Planning

Class	(Mixed	Opening Traffic)	Pavement	Formation Width	Right of Way	De si gn Speed (km/hr)	Level of Service on Opening
I		N 10 10 10 10 10					
	100) - 500	12-ft	32ft	110feet	L: 80	at the
			(3.65m)	(9.75m)	(33.53m)	R: 65	С
		•	Surface			M: 40	the second of
			Treated				•
II	500	1500		· · · · · · · · · · · · · · · · · · · ·			
T. IL	200	- 1500	20-ft	44ft	ll0feet	L: 90	
100			(6.0m)	(13.40m)	(33.53m)	R: 80	В
			Surface			M: 50	D
			Treated				•
III	1501	- 4000	24-ft	E 0.61		1.1	
	1001	. – 4000	(7.3m)	50ft	220feet	L: 95	
			Surface	(15.20m)	(67.05m)	R: 80	В
		11 to 5	Treated	1		M: 60	
	5 Mg - 18	+ 1 July 1	rreaceu				
IV	4001	- 8000	24-ft	50ft	220feet	L: 100	. " -
			(7.3m)		(67.05m)		* .
			Asphaltic		(07.0311)	R: 90 M: 70	, B
			Concrete	24	1	M: 70	
			+ 6-ft		•		x^{\prime}
			Treated Sh	oulder			
V	8001	- 48,000	2 x 24ft	96ft	220feet	L: 110	e to
			(7.3m)		(67.05m)	R: 100	
and the second			Asphaltic			M: 80	В
			Concrete				
			+ 6-ft		14.	ga kar sa	r e
		•	Treated Sh	oulder			

Note: The mixed traffic ADT of Class IV in above Road Construction Standards might be modified to be 4001-7200 for practical Pakistan Standard, although the ADP categorization is based on the information prevalent up to May, 1982.

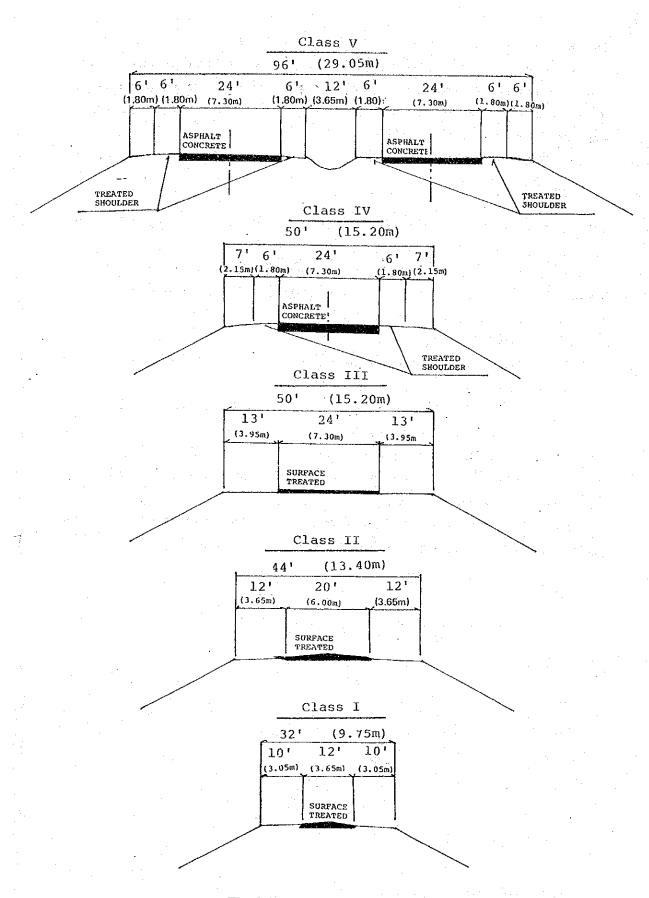


Fig. 5-4 Typical Cross Section

Design Speed & Capacity

It will not be economical to design all roads for very high speed. A road has, therefore, to be designed for specific speed known as 'Design speed'. The design speed is defined as the maximum approximately uniform speed. This is the safe uniform speed which depends on the following factors.

- i) Type and condition of surface
- ii) Type of terrain
- iii) Width of roadway

In order to set up the Q-V curves for traffic assignment the following Table 5-2 gives the speed recommended.

On the basis of above mentioned design speed traffic capacity in terms of mixed traffic by type of terrain and road width is calculated as in Table 5-3 so as to set up the Q-V curves for traffic assignment purposes.

Level of Service in terms of V/C Ratio

The quality of highway service is measured by two reasonably reliable indicators;

- i) Operating Speed
- ii) The "Volume/capacity ratio" that is, the ratio of the volume of traffic assigned to the maximum volume given in Q-V curve.

These indicators have been used to define six level of service shown in Table 5-4.

The selected standard as the residual level of service will not fall below a level is to be acceptable to the users of the highway.

The level of service concept does not apply to class I, but for all other classes level of service analysis is a tool for selecting standards for candidate projects.

Table 5-2 Design Speed (Vmax)

Type of Terrain	Type of Road		W	idth (0.1	m)	
	Surface	≦36	36< ≤60	60<≦72	72< ≦108	73×2
	Metalled Good	80	90	95	100	110
Flat	Metalled Poor	60	70	70	.75	80
	Un-Metalled	40	45		-	
	Metalled Good	65	80	80	90	100
Rolling	Metalled Poor	50	60	60	70	-75
	Un-Metalled	30	40	~ ↑,	-	· <u>-</u>
	Metalled Good	40	50	60	70	80
Mountainous	Metalled Poor	30	35	45	50	60
	Un-Metalled	20	25			

Table 5-3 Capacity (Qmax) Mixed Traffic

			width (0.1	n)	
Type of Terrain	≦36	36<≦60	60<≨72	72<≦108	73x2
Flat	500	1,500	4,000	8,000	48,000
Rolling (0.9xFlat)	450	1,350	3,600	7,200	43,000
Mountainous (0.7xFlat)	350	1,000	2,800	5,600	34,000

Table 5-4 Operating Criteria and Maximum Service: Volumes Under Ideal Conditions

Level of Service	Description	Spe	ating eed oh)	Volume/ Capacity Ratio	Maximum Service Volume
		Passenger	vehicles	per hour in	both directions
A	Free flow	60	(96km)	•20	400
В	Stable flow	50	(80km)	•45	900
С	Stable flow	40	(64km)	.70	1400
D	Approaching unstal	ole 35	(56km)	.85	1700
E .	Unstable flow	30		1.00	2000
F	Forced flow	30		Not meanin	gful

Source: Highway Capacity Manual, pp. 302-3.

Table 5-5 Suggested Design Standard for Two-Lane Highways

					.	
Design Class	A.,	Class I	Class II	Class III	Class IV	Class V
(Mixed traffic)		Under 50	50 to 400	400 to 1,000	1,000 to 2,000	Over 2,000
		-unoW	-unoW	-unoM	-uno _W	-Woun-
101		-		tain-	tain-	tain
11 B 7 7 B 7		Flat Rolling ous	Flat Rolling ous	Flat Rolling ous	Flat Rolling ous	Flat Rolling ous
Design speed	km p.h.	60 40 30	80 65 40	90 80 50	95 80 60	
Maximum gradient	6-4	6.0 8.0 10.0	6.0 7.0 9.0	5.0 6.0 8.0	4.0 5.0 7.0	
Width of surfacing	Ħ	4.0 to 5.0 depending on design speed	5.0 to 6.2 depending on design speed	6.0 to 6.7 depending on design speed	6.7 to 7.0 depending	lepel
Width of one shoulder*	Ħ	0.	1.5	2.0	7-6	0 0
Total width of roadway*	Ħ	6.0 to 7.0	8.5 to 9.2	10.0 to 10.7	11.5 to 11.8	13 0 40 19 9
Minimum radius	EI		As in Table 34	for 10 percent maximum superelevention	supereleasefor	
Non-rose					arpere revocion	
sight distance	E		As in Table 3-5			
Passing sight distance	ឧ		As in Table 3-6			
Winth of tridops 1 < 20	1	3.5 to 4.0				
	3	(Single Lane)	8.5 to 9.2	10.0 to 10.7	11.5 to 11.8	13.0 to 13.3
Between Curbs L>20	ផ	3.5 to 4.0 (Single Lane)	7.0 to 7.7	7.5 to 8.2	8.7 to 9.0	, , , , , , , , , , , , , , , , , , ,
Vertical clearance	Ħ	5.0	5.0	5.0	5.0	, c
Design live loading		H 15-44	HS 20-44	HS 20-44	HS 20-4//	27 OC 8m
4 + Control + C	:					44107 07
design (Legal limit)	# ton		σ.	G,	o,	6
Right-of-way width	Ħ	25	35	40	20	+09
Surface Type (Assuming		Granular	Granular, Single or	Miltinle-lower curface	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
an adequate base)			Double Surface	treatment, Bituminous	Concrete or	Asphaltic Concrete or rigid pavement
					NOSG MIX	
* Shoulder and readman *	ነብተት ጠይጥ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				

* Shoulder and roadway width may be reduced in rough mountainous terrain.

Source: A Review of Highway Design Practicies in Developing Countries by IBRD

Table 5-6 Tolerable Standard for 2-Lane Highways

	Average Dailv		Design M	Min. Sight Distance	Distance	Roadv	Roadwav width (m)	(m)	Surface	raveled	Traveled Horizon Vertical	Jertical
S.No.	Traffic	Topography	• .	Stopping	Passing	Traveled	Shoulder	Total		way	Clearance	Clearance
	dav			Ē	j)	y a						
								ŀ				
4	Less than 150	Level	70	06	470	5.0	0.1	7.0	Gravel(or other all weather)	5.0	6.2	4.5
		Rolling	20	9	330	5.0	1.0	7.0		5.0	6.2	4.5
		Mountainous	30	30	190	5.0	1.0	7.0		5.0	6.2	4.5
2.	150-500	Level	100	160	680	0-9	1.0	8.0	Gravel(or	0.9	7.3	4.5
		* *				-			other all weather)			
		Rolling	20	06	470	ស្	1.0	7.5		5.5	6.7	4.5
		Mountainous	40	45	200	5.0	0.1	7.0		5.0	6.2	٦. ت.
e	500-1500	Level	110	185	740	0.9	1.5	0.6	Surface Treatment	0.9	7.3	4.5
		Rolling	06	135	019	0.9	1.5	0.6		9	7.3	4.5
		Mountainous	9	75	400	0.9	1.0	8.0		0-9	7.3	4.5
. 7	1500-5000	Level	110	185	740	6.7	1.5	7.6	Bituminous	6.7	8.0	4.5
		Rolling	100	160	089	6.7	1.5	9.7)))	6.7	8.0	4.5
		Mountainous	70	90	470	0.9	1.5	0.6		6.0	7.3	4.5
'n.	5000-14000	Level	110	185	740	7.3	2.5	12.3	Bituminous	7.3	8.5	4.5
		Rolling	100	160	089	7.3	2.5	12.3	carper	7.3	8.5	4.5
		Mountainous	80	110	540	6.7	2.0	10,7		2.9	0 8	4.5

Source: "Measuring Highway improvement Needs and Priority Analysis" U.S. Department of Transportation - Federal Highway Administration - 1976 Developed for Argentina Modified .

Table 5-7 Pakistan Rural Highway Computed Highway Capacity "Service Level C"

National and Provincial Primary Highways - Service Level C Provincial Secondary Highways - Service Level D

		EXIS	TING				IMPR	OVED		
PAV.WIDTH (m)	A.H.S. (k.p.h.) (as observed)	Width Factor (w)	v/c	D.H.V.	Capacity (A.D.T) (Rounded in p.c.us)	Design Speed (k.p.h.)	Width Factor (w)	V/C	D.H.V.	Capacity (A.D.T) (Rounded in p.c.us)
Katcha		ı	1	1	50	***		ı	į	50
Shingle	ţ	ŧ	i .	1	100	. 1	I	t.	i	100
2.74-3.66	ı	1.		. t	250	 L	ì		1.	250
3.96-5.18	1	1	i,	1	200	i	1	t	•	200
5.49	80	0.520	0.470	0.08	0009	113	0.633	0.70	0.08	11000
6.10	80	0.567	0.470	0.08	7000	113	0,688	0.70	0.08	12000
6.71	80	0.623	0.470	0.08	7500	113	0,760	0.70	0.08	13500
7.32-10.67	80	0.72	0.470	0.08	8500	113	0.875	0.70	0.08	15500
10.97-11.89	80	99.0	0.250	0.08	16500					
12.19-13.11	80	0.74	0.250	0.08	18500					
13.41-14.33	80	0.79	0.250	0.08	20000					:
14.63	80	0.81	0.250	0.08	20500				÷	
2 × 7.32	113	0.81	0.75	0.08	61000	113	96.0	0.75	0.08	72000
2 x 10.97	113	16.0	0.80	0.08	110000	113	0.97	08.0	0.08	120000
2×14.63	113	0.91	0.83	0.08	150000	113	0.97	0.83	0.08	160000
				-				-		

SOURCE: Master Plan for Highways by Techno-consult

Table 5-8 Pakistan Rural Highway Computed Highway Capacity "Service Level D"

		EXIS	TING			-	HERE	ROVED	*. *	
PAV.WIDTH (m)	A.H.S. (k.p.h.) (as observed)	Width Factor (w)	D//C	D,H.V.	Capacity (A.D.T) (Rounded in p.c.us)	Design Speed (k.p.h.)	Width Factor (w)	D//C	D.H.V.	Capacity (A.D.T) (Rounded in p.c.us)
Katcha	\$	· 1	ı	ı	50	1	ı		ı	50
Shingle	t	; ·	1	. i	001	ı	ı	1	1	100
2.74-3.66	. 1		1	ı	250	1	ı.	1.	ı	250
3.96-5.18	1	1	1	. 1	200	ı	ı	. 1	1	200
5.49	80	0.550	69.0	0.08	9500	113	0.657	0.85	80.0	14000
6.10	80	0.593	69.0	0.08	10000	113	0.707	0.85	0.08	15000
.6.71	80	0.647	69.0	0.08	11000	113	0.775	0.85	0.08	16500
7.32-10.67	80	0.74	0.69	0.08	13000	113	0.885	0.85	0.08	19000
10.97-11.89	80	0.66	0.70	0.08	46000					
12.19-13.11	80	0.74	0.70	0.08	52000					
13.41-14.33	08	0.79	0.70	0.08	55000					. • •
14.63	80	0.81	0.70	0.08	57000	•				2
2 x 7.32	113	0.81	06.0	80.0	73000	113	96.0	06.0	0.08	86500
2×10.97	113	0.91	06.0	0.08	125000	113	0.97	06.0	80.0	130000
2×14.63	113	0.91	06.0	0.08	165000	13	0.97	06.0	90.0	175000

Table 5-9 Recommended Construction Standard by Master Plan for Highways

				The second of the second
Volume limits (vehicle/day)	Construction Standards	Type of Pavement	Formation Width	Right of Way
101 - 500	Class III	12-ft. surface treated	32 feet	110 feet
501 - 1500	Class II	20-ft. surface treated	44 feet	110 feet
1501 - 4000	Class I	24-ft. surface treated	50 feet	220 feet
4001 8000	Class I carpetted	24-ft. car- petted with 6-ft. treated shoulders	50 feet	220 feet
8001 - 48000	4-Lane divided	Each 24-ft. carpetted with 6-ft. treated shoulders	96 feet	220 feet

Note: The designed speeds for Class I, and Class II standard highways will be adopted as follows:

Flat open terrain	:	70	miles	per	hour
Rolling hilly terrain	· .	50	miles	per	hour
Semi-hilly terrain	-	40	miles	per	hour
Urban areas	-	50	miles	per	hour
Minimum speed allowed		30	miles	per	hour

The designed speed for a Class III standard highway shall be 50 miles per hour. In extremely mountainous areas, where cost would be high and traffic volume low, a minimum speed of 20 miles per hour wil be used.

Source: Classification of Highway System and Design Criteria in 1972 by Punjab Highway Department

Table 5-10 Design Characteristics for Roads in Different Type of Terrain

•		•	•				Formation	
Characteristics Roads	ics Terrain	Design Speed	Radius of	Design Radius of Curvature(ft) Maxim. Maximum	Maxim.	Maximum I croth of	width	width.of
		M.P.H.	Minimum	Desirable	ent(%)	grade (ft)	(rermanent surfacing	permanent surfacing
•					1 * - 1		and shoul- ders) (ft)	(ξt)
Primary	Flat or rolling 50-70 625-1175	50-70	625-1175	675-1250	-74	None	32-42	20-24
	Hilly	35-50	35-50 300-625	325-675	2-7	2,000ft over4%	32-42	20-24
. **	Mountainous	25-35	160-300	175-325	4-6	2,450ft over6%	26–30	20-24
Secondary	Flat or rolling	35-50	35-50 300-625	325-675	5	None	32–39	20-22
·	Hilly	30-35	30-35 250-300	275-350	5-7	None	32-39	20-22
	Mountainous	20-30	20-30 115-250	130-275	6-7	2,450ft over 6%	26-30	20-22
Feeder	Flat or rolling	30-35	250-300	275-350	7	None	25-26	12-18
	Hilly	20-30	115-250	130-275	7-9	None	25-26	12-18
	Mountainous	15-20	65-115	90-130	9-12	3,300ft over9%	25-26	12-18

Note: The absolute minimum radius of curvature shown here take account of a superelevation of 10 per cent and a sideways for co-efficient of

0.16

Carriage-ways narrower than 20-ft, wide should not be used for roads carrying more than 1,500 vehicles per day. In case of primary roads, the maximum gradient for bridge approaches in flat or rolling terrain may be kept 2 to 3%.

Source: Guide to Highway Design Standard and Specifications by Central Roads Organization, MOC, Government of Pakistan

5-5 Traffic Assignment

Traffic assignment is the technical term used for the process of determining the distribution over the road network of the traffic demand between different zones.

The determination of the anticipated amount of traffic on a new network must be made before the size of the facility can be determined.

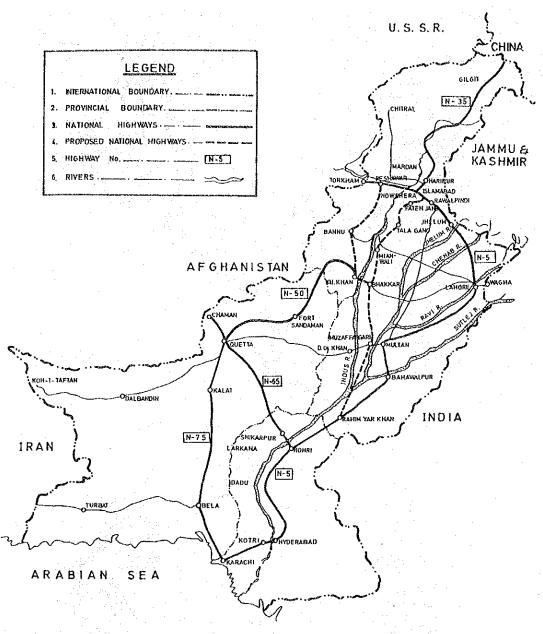
Such an estimation can be made only after an evaluation of the type of traffic which will use the new facility and an estimation of their volume.

Studies have indicated that the distribution of traffic between alternative routes such as mentioned Fig. 5-5 in the network depends on various characteristics of the routes involved. When, these characteristics are known for a new route, it is thus possible to estimate the traffic volume which can be expected on that route.

Balanced network in the year 1987/88 and 1999/2000 for two alternatives are shown in Fig. 5-6 and 5-7.

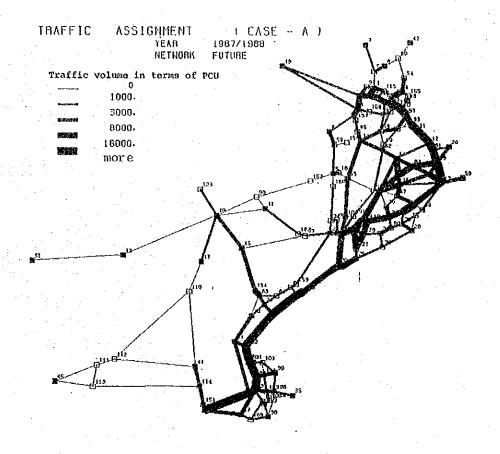
5-6 List of Candidate Project

Balance Network with type of improvement in terms of Construction Standard by the year 1987/88 and 1999/2000 for two alternatives are recommended as shown in Table 5-12 and Table 5-13. List of links is shown in Table 5-11.


In order to set up the Candidate Projects the Improvement Criteria for primary and secondary highways are recommended in advance as follows:

Improvement Criteria for Primary Highway

- 1. The highway shall be a two-lane highway at least in the year 2000.
- 2. Volume/capacity ratio must be less than 0.70 (level of service "C") in the year 1999/2000 and 0.85 (level of service "D") in the year 1987/88.
- 3. All railway crossings must be eliminated by the year 2000.
- 4. In case of dual carriageways, all junction should preferably be grade-separated.
- 5. The entire carriageway width of pavement plus paved shoulder shall be carried across all structures.


Improvement Criteria for Secondary Highway

- 1. Volume/capacity ratio must be less than 0.85 (level of service "D")
- In case of dual carriageways, all railway crossings and junctions shall preferably be grade-separated.
- At least pavement width shall be carried across all structures.

Source: Communication and Works Department, NWFP

Fig. 5-5 Alternative Location of Indus Highway

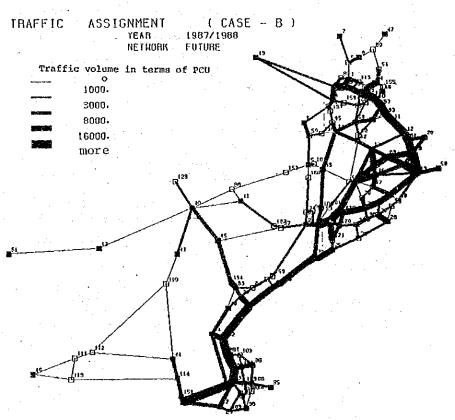
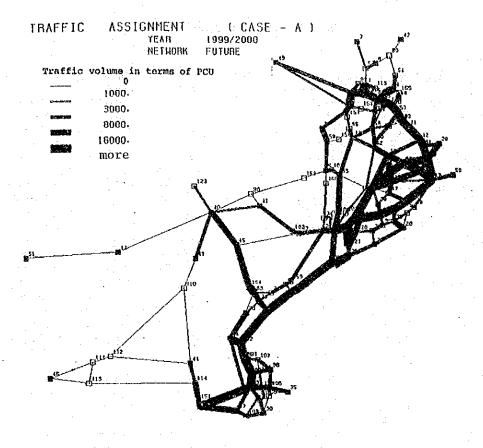



Fig. 5-6 Traffic Assignment in the Year 1987/88

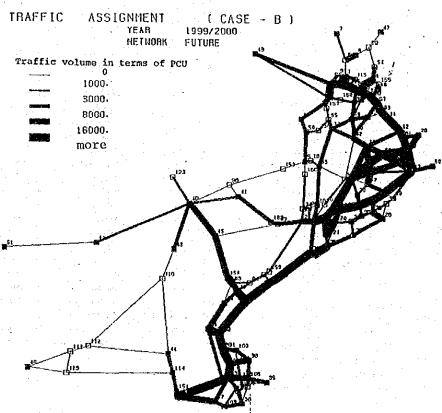


Fig. 5-7 Traffic Assignment in the Year 1999/2000

Table 5-11 (1) List of Links

PUNJAB PROVINCE

PUNJAB P	ROVINCE		100				
LINK NO.	NO. OF NODE	NAME OF NODE		LINK NO.	NO. OF NODE	NAME OF NODE	
051001	150 - 27	S/P Bound	- Rahimyac Khan	001056	13 ~ 12	Sargodha	- Gujrat
02	27 29	Rahimyar Khan	- Rohri	57	18 - 63	Sheikhupura	- Pindi Bhattian
03	79 - 80	Trindi	- Chani Goth	58	63 - 13	Pindi	- Sargodha
04	80 - 25	Chani Goth	- Bahawalpur	59	13 - 62	Bhattian Sargodha	- Khushab
05	25 - 121	Bahawalpur	- Lodhran	60	62 - 14	Khushab	- Mianwali
06	121 - 23	Lodhran	- Hultan	61	18 ~ 19	Sheikhupura	~ Gujranwala
07	23 - 75	Multan	- Kabirwala	62	19 - 20		
08	75 ~ 119	Kabirwala	- Khanewal	63	20 - 61	Gujranwala	- Sialkot
09	119 - 72	Khanewal	- Chichavatni			Sialkot	- Wazirabad
10	72 - 24	· 电工作类数型数 1000 mm	Application of the second	64	17 - 15	Lahore	- Faisalabad
11		Chichavatni	- Sahiwal	65	25 - 78	Bahawalpur	- Hassalpur
	24 - 71	Sahiwal	- Okara	66	78 - 26	Hassalpur	- Bahawainagar
12	71 - 17	Okara	- Lahore	67	26 - 76	Bahawalnagar	- Arifwala
13	17 - 19	Lahore	- Gujranwala	68	76 - 24	Arifwala	- Sahiwal
14	19 - 61	Gujranwala	- Wazirabad	69	67 - 15	Sumundri	- Faisalabad
15	61 - 12	Wazirabad	- Gujrat	70	15 64	Faisalabad	- Chiniot
16	12 - 11	Gujrat	- Jhelum	71	64 - 13	Chiniot	- Sargodha
17	11 - 93	Jhelum	- Sohawa	72	27 - 80	Rahimyar Khan	- Chani Goth
18	93 - 57	Sohawa	- Mandra	73	26 - 73	Bahawal Nagar	- Bunga Hayat
19	57 - 10	Mandra	- Rawalpindi	. 74	69 - 71	Dipalpur	- Okara
20	10 - 117	Rawalpindi	- Tarnaul	75	77 - 78	Vahari	- Hassalper
21	117 - 55	Tarnaul	- Kasanabdal	76	119 - 120	Kahnewal	- Jahanian
051022	55 - 9	Hasanabdal	- Attock	77	120 - 121	Jahanian	- Lodhran
351023	55 - 152		- P/N Bound	111078	23 - 120	Multan	- Louisan - Jahanian
001024	10 - 48	Rawalpindi	- Murree	79	120 - 77	Jahanian	
25	48 - 155	Murree	- P/N Bound	80	777 - 98		- Vehari
26	156 - 95		- Kalabagh	81	•	Vehari	- Burewala
27	95 ~ 14	Kalabagh				Burewala	- Arifwala
28	157 - 95	· . ·	- Minawali - Kalabanh	82	76 - 73	Arifwala	- Bunga Hayat
29	150 - 69			83	73 - 69	Bunga Hayat	- Dipalpur
			- Basal	84	69 - 17.	Dipalpur	- Lahore
30	68 - 56		- Pateh Jang	85	67 - 70	Sumundri	- Rajana
31	56 - 117	Fateh Jang	- Tarnaul	86	98 72	Burewala	- Chichawatni
32	159 - 21	and the state of the state of	- D.G.Khan	97	72 - 70	Chichawatni	- Rajana
33	21 - 74	D.G. Kahn	- Shadan Lund	86	70 - 16	Rajana	- Jhang
34	74 - 160	Shadan Lund	P/N Bound	89	16 - 64	Jhang	- Chiniot
35	17 18	Lahore	- Sheikhupura	90	64 - 63	Chiniot	- Pindi Bhattian
36	18 - 15	Sheikhupura	- Paisalabad	91	63 - 19	Pindi Bhattian	- Gujranwala
37	15 - 16	Fáisalabad -	- Jhang	92	22 - 100	Muzaffargarh	- Chowk Munda
38	16 - 66	Jhang	Achara Hazari	93	100 - 65	Chowk Munda	- Sarai Krishma
39	66 - 65	Athara Hazari	- Sarai Krishma	94	65 - 14	Sarai Krishma	- Mianwali
40	65 - 161	Sarai Krishma	P/N Bound	95	14 - 58	Minawali	- Talagang
41	162 - 97	B/P Bound	- Bewata	96	60 - 58	Pail	- Talagang
42	97 - 21	Bewata	- D.G. Khan	97	58 ~ 68	Talagang	
43	79 - 22.	- 15an 12. 1 547	- Kuzaffarqarh	98.	68 - 9	Basal	- Basal - Attock
44	22 - 101	and the second second	Rangpur	99	58 - 56	Talagang	
45	101 - 66		- Athara Hazari	100	93 - 92	and the first of the second	- Fateh Jang
46	66 - 62		- Khushab	101		Sohawa	- Chakwal
47	62 - 60				92 - 58	Chakwal	- Talagang
48	60 - 92		Pail	102	16 - 67	Jhang	- Sumundri
			· Chakval	103	67 - 71	Sumundri	- Okara
19	92 - 57	Chakwal -	- Mandra :	104	74 - 99	Shadan Lund	~ Kot Addu
50	17 - 50	Lahore -	· Indo Karamad	105	99 - 100	Kot Addu	- Chowk Munda
51	21 - 85	D.G. Khan -	Qureshi	106	100 - 101	Chowk Munda	- Pangpur
52	85 - 22	Karamad Qureshi	Huzaffargarh	107	85 - 99	Karamad Qureshi	- Kot Addu
53	22 - 23		Hultan .		4		
54	75 - 16	Kabirwala -	- Jhang			**************************************	** :
55	16 - 13	Jliang -	Sargodha				
					, .		

Table 5-11 (2)

SIND PROV	/INCE		and the second of	R.W.F.P.			
		NAME OF NODE			_		-
LINK NO.	NO. OF NODE	NAME OF NODE		TINK NO.	NO. OF NODE	NAME OF NODE	
052001	39 - 118	Karachi	- Kotri	053001	9 - 116	Attock	- Jehangira
2	118 - 33	Kotri	- Hyderabad	2	116 - 53	Jehangira	- Novshera
3	33 - 87	Hyderabad	- Hala	. 3	53 - 2	Nowshera	- Peshawar
4	87 - 86	Hala	- Sakrand	. 4	2 - 49	Peshawar	- Afghan, B
\$	A6 - 102	Sakrand	Horo .	353005	152 - 90	P/N Bound	- Haripur
6	102 32	Horo	- Khairpur	6	90 4	Haripur	- Abbottaba
7	32 - 29	Khairpur	- Rohri	7	4 - 54	Abbottabad	~ Mansehra
8 .	29 - 82	Rohri	- Ubauro	8	54 - 89	Mansehra	- Besham
9 252010	82 + 150	Ubauro	- S/P Bound	. 9	89 - 47	Besham	- Sazin
	39 - 151 29 - 28	Karachi	- S/P Bound	503010	5 - 153	D.I. Khan	- H/B Bound
652011 652012		Rohri	- Shikarpur	11	155 - 4	P/N Bound	- Abbottabad
552013	28 - 83 83 - 154	Shikarpur	- Jacobabad	12	59 - 156	Jajazai	- N/P Bound
002014	118 - 34	Jacobabad	- S/B Bound	13	94 - 157	Jatta	- N/P Bound
15	34 - 30	Kotri	- Dadu	14	49 - 3	Kabul	- Kohat
16	30 - 28	Dadu	- Larkana	15	3 - 158	Kohat	- N/P Bound
17	28 - 84	Larkana	- Shikaupur	16	160 - 5	P/N Bound	- D.I. Khan
18		Shikarpur	- Kund Kot	17	5 - 59	D.I. Khan	- Jajazaí
19	84 - 81 81 - 159	Kund Kot	- Kashmor	18	59 - 6	Jajazai	- Bannu
20	33 - 105	Kashmor	- S/P Bound	19	6 ~ 94	Bannu	- Jatta
21	105 - 106	Hyderabad	- Tnado Allayar	20	. 94 - 3	Jatta	- Kohat
22	105 - 106	Tando Allayar Muirpur Khas	- Mirpur Khas	21	3 - 2	Kohat	- Peshawar
002023	39 - 37	Karachi	- Umar Kot	22	161 - 5	P/N Bound	- D.I. Khan
24	37 - 33	Thatta	- Thatta	003023	53 - 1	Nowshera	- Mardan
02025	34 - 102	Dadu	- Hyderabad - Moro	24	1 - 52	Mardan	~ Chakdara
26	86 - 31	Sakrand		25	52 - 7	Chakdara	- Dir
27	31 - 103	Nawabshah	- Navabshah - Gupchani	26	2 - 91	Peshawar	~ Charsadda
28	103 - 36	Gupchani	- Sanghar	27	91 - 1	Charsadda	- Mardan
29	36 - 106	Sanghar	~ Mirpur Khas	28	1 ~ 115	Mardan	- Swani
30	106 - 122	Mirpurkhas	- Digri	. 29	115 - 90	Swabi	- Haripur
31	122 - 38	Digri	- Badin	30 31	52 - 8	Chakdara	- Saidu Shar
32	38 - 109	Badin	- Sujwal	32		Saidu Sharif	- Besham
33	109 - 37	Sujwal	- Thatta	33	116 - 115 2 - 1	Jehangira	- Swabi
34	33 - 107	Hyderabad	_ Tando Mohammad			Peshawar	- Hardan
35	107 + 88	Tando M.Khan	Kuhan - Matli	BUPOCH121	AN PROVINCE		
36	88 - 38	Matli	- Badin	LINK NO.	NO. OF NODE	NAME OF NODE	
37	103 - 104	Gupchani	- Shahdadpur	254001	151 - 114	S/B Bound	- Wingai
38	104 - 105	Shahdadpur	- Tando Allayar	2	114 - 44		- Bela
39	105 - 108	Tando Allayar	- Toali	3	44 - 110		- Surab
40	108 - 88	Toali	- Matli	. 4	110 - 43		- Kalat
41	107 - 109	Tando M. Khan	- Sujwal	5	43 - 40		- Quetta
42	81 - 82	Kashmor	- Ubauro	5	40 ~ 49		- Afghan Bound
12043	87 - 104	Hala	- Shahdadpur	504007	153 - 96		- Qila Saifulla)
44	104 - 36	Shahdadpur	- Sanghar	8	96 - 40	Qila	- Quetta
45	30 - 83	Larkana	- Jacobabad	654009	154 - 45	OUTTOILING	- Sibi
46	83 - 84	Jacobabad	- Kund Kot	10	45 - 40		- Quetta
47	108 - 122	T.G. Ali	- Digri	004011	40 - 41		- Loralai
			,	12	41 - 162		- B/P Bound
			•	13	40 - 42		- Dalbandin
				14	42 - 51		- Iran Bound
		•		15	44 - 112		- Hoshab
				16	112 ~ 111		- Pidapak
					111 - 46		- Gawadar
				18	110 - 112		- Hoshab
tie te				19	114 - 113		- nosnan - Pasani
				004020	113 - 46		- Pasani - Gawardar
		2		21	111 - 113		·
				22	41 - 96		- Pasani - Oile Seifullet
	4-1			23	45 - 97		- Qila Saifullah - Bewata

--;i

-	
Ö	
ັບ	
L	
US	
်	
é	
ž	9
47	
S	
8	
80	
987/198	
5	
E C	
ě	
(I)	
ov the Year 1987/1988	
ρv	
ಚ	
<u>e</u>	,
Pr(
andidate P	
33	
Ġ	
Ë	
f Ca	
Ö	
isi	
List of Candic	
2	
Table 5-12 (1)	
5	
þ	
Ta	

	SERVICE B-C C-D	*	*	*	*	a a	*	# #	*	80	78	98	*	# #	*	***	*	86	*	85	**	85	*	# #	*	#	*
		*	*	*	*	**	*	*	*	*	- , 4	#	*	ω 1	81	80	. #	82	82	82	. #	80	*	41 41 8	* *	- #i	*
	AN A A B A B B	8)	8,	83	0	85	36	00 M	*	*	# .	¥	*	*	*	*	86	- # - #	#	# 4 *	# . #	*	80	80	80	*	8
	ER PL LEVEL LEV.	ω	ED)	10	. 00	ю	ю	ω	⋖	۵	۵	c	æ	ပ	U	ບ	æ	٥	Ü		₹	٥	æ	€.	m	¥	£Ω
	ROVE YPE	>	>	. >		>	>	>	>	Λī	. ^1) I	ĭΛ	>	>	Λī	>	. AI	ΙΛ	ΛI	>			· ·		`	_
tion	FOR TYP				٠.,					H	H	н	F-4	.+-1	AI.	. 1-4			.	Н		IV	-	_	_	•	
ruc Linc	TENT JAD 1	0	٧.	٥.	٥	Ю		~	100	۲,	-	ν, •	'n	4	80		9	Ľ,	c	Ŋ	,		٠,	6	0.	4.	٧.
Suo	IMPROVEMENT AXLE LOAD	4031.8	3539	3291.9	3013.9	2874.3	2603.8	3131.7	1888.8	1705.2	1619.4	1599.5	934.5	1162,4	1243.8	883.1	2188.6	1108.5	1091 0	1336.5	1596.4	1238.4	1472	2161.9	2368.9	1954	1890.5
ige (v		ro.	60	100	- -t	D-	-	~	2	0	0				0			_	60	ं <u>.</u> ःस		 N		 D.	. 61
t Stz	, D 4	12131.5	11464.7	12816.8	8831.8	8157.8	7755.1	9562.9	4998.1	4596.7	4263.2	4305.0	0.8725	3489.7	3724.7	3207.1	7327.0	4628.0	4181.7	4961.7	5933.8	4625.1	10126.4	9677-2	9154.4	800019	8725.2
(18		12	. 11	12	œ			D.	4	4	4	4	~	١		w	7	4	7	. 4	, V 1		10	٥	٥.	80	ю
88	SERVICE B-C C-D	* * *	*	# #	*	*	*	*	*	*	**	. #	*	86	85	*	#	86	85	*	*	85	* .	#	*	*	**
87//		*	*	*	* *	*	. # .	# #	*	*	# # #	# #	80 N	87	80	83	# #	89	81	*	*	81	*	*	*	# # #	₩ # #
2	EVEL OF	80	81	83	S.	₩ 10	86	78	*	*	*	*	M M	*	# ## ·	**	86	# #	*	*	*	*	8	*	44 #	*	85
List of Candidate Project by the Year 1987/1988 (1st stage construction	ER F LEVE	æ	₩.	æ.	£Ω	D)	(D)	œ	⋖	. ⋖	44	e	۰ پ	۵	۵.	U	6 0	<u>۵</u>	۵	∢ .	⋖	۵	m	<	<	≪	0
the	MAN S'	>	>	>	>	> .	>	>	· >	>	>	>	٨٢	1.4	۸۱	. A I	>	^ 1	>=		>	> 11	. · · .	>	>	>	>
à	FOR MASTE IMPROVE L													7	-	_		_									
Ject	A.D.T. AXLE LOAD	4532.4	3973.5	7.1	3578.6	3585.6	2526.2	2989.5	5446.4	2167.3	2057.5	2021.3	1200.2	1486.2	1480.4	828.2	2174.7	1107.5	1291.8	1588.1	1755.4	1378.5	1449.0	1647.2	1716.2	7.4	7.5
7.	PROV:	45	'n	3721	357	358	255	298	544	216	205	202	120	148	148	88	217	110	129	158	175	137	7.77	164	171	1634.7	1737.5
date	Σα	M	v,	7	,	0	Ø	ý	**	0	4	60	ω,	0	80	0	٠	Ŋ	0	i.	un.	Ŋ	ı,	D.	₩.	מא	•0
andı	A.D.	13327.3	12511.6	13868.7	10182.4	9860.0	7661.8	9277.6	6325.1	5708.9	5307.4	5288.8	3151.8	4388.0	4353.8	3185.0	7292.6	4604.5	0.7997	5564.5	6305.5	4955.5	10025.5	8420.9	7565.1	7235.3	8343.6
ဘ ဗ	COND.	F.	7	ж	. ₹1 .m :	7	4	-4	4	m.	м	ы	J.	n	٠. ٣				4		· .	7	5 10	 M	m	n	m
ıst	YPE CO						•		17							· .			de la La companya				ć.				
	20 4 C	in	10	ĽŇ.	Ŋ	2	1/1	n.	Ŋ	in.	V3	ιν	ľ	Ŋ	Δ.	'n	ın	Ņ	Ŋ	'n	vi	'n	Ŋ	ın	ľ,	Ŋ	Ŋ
(1)	ISTING IDTH TA	7.5	20	6	7.5	7.5	75	45	7.5	7,5	29	61	61	58	, , 9	79	62	m o	29	62	ó9	2.2	96	80	78	82	81
<u>ب</u>	TER. WI	25	м	м	M	M3	m.	m.	'n	m	m	m	м	м	m	; ;	i m	м.	m	m.	м	: m	. H	m	m.	м	~
Table 5-1	i⊭ 														٠												
₹.	CTION	160	7.5	5.5	38	6 3	132	22	109	완.	8	100	12	. 70	E0	7.5	7 7	13	62	0.5	37	130	67	32	15	, 55 57	38
	S G C T	es"	cv ·			מנ	. 9		• 60	٥	.	~	m		الا	· •		٠ نف	•			r.v			10	~	
	INA INX-	5200	52002	52003	52004	52005	52006	52007	52008	52009	51001	51002	51003	51004	51005	51006	51007	51008	51009	51013	51011	51012	51013	51014	51015	51016	51017
	-HIGHWAY SECTION SEG LINK-NO LENG		ſQ:	M	•	ın .	9	۲.	æ	٥.	10	11	12	13	7,	13	16	17	13	6	20	21	22	53	72	52	56
										٠.																	

TER (terrain) 1: Mountainous 2: Hilly 3: Flat

TYPE (surface) 1: Earth 2: Gravel 3: Bituminous Surface Single 4: Pavement (Double) 5: Pavement (Triple)

COND (surface condition) 1: Good 2: Fairly Good 3: Flat 4: Poor 5: Very Poor

Table 5-12 (2) List of Candidate Project by the Year 1987/1988 (1st stage construction)

SERVICE B-C C-D	# # #	# #	# #	* * *	* * *	** 35	83 ***	*	**	*	*** 9	*** 7	*	*	*	* * *	82 ***	***	* * *	*	**	*	*	. # #	*	* * *
8	# #	*	**	* * * S	*	*		*	10	*	€0	ده *	*	*	*	**		*	*. *	**	*	*	81 **	80 ××	*	E)
ER PLAN B LEVEL OF LEV. A-B	. *	*	60	ю.	*	M.	*	*	*	*	*	*	*	*	*	*	*	*	*	*	# .	*			*	*
TER LEV	4	<	ďΩ	æ	<	۵	U	ď.	ပ	ω.	U	. •	a 0	۵	Ω	æ	IJ	S		U	ω.	<	D	· co	100	υ
MAS OVE	>,	>	>	>	>	٨٢	۸.	>	111	> 1	1 1	III	II	щ	111	111	7.1	١.	>	111	1	Ţ	н	H	11	λĭ
T FOR MAST IMPROVE TYPE						•						Н	•		м	н				н.						
EMENT	592.2	831.1	3037.4	2193.9.	1759.7	1069,4	977.3	1447.1	211.8	538.8	423.5	416.0	88.6	88.6	182.7	208.2	973.8	899.2	7.559	218.7	35.1	29.3	38.9	33.9	82.7	1105.1
D.T. AXLE LOAD	in #4	18	9	21	17	10	D	7.7	2	iń	4	4	~	~	ã	Ň	0	60	6	'n		••	.,			7
T. A	ω.		ø,	ø.		۲.	4	۲.	۰.	7	4.	40	~:	2	'n	0	o.	ιά	~	0	o.	0	۰,	9	0	N ₂
A.0.1.	7136.8	74.57	13199.8	9165	7261.1	5310.7	4349	3158.	1302.6	2983.4	1707.	1688.6	230.2	230.	1307	1283.0	0.0962	3795.	6234.	1891.0	259.0	102.0	121.6	121.6	256.	3540.7
		_									٠															•
SERVICE B-C C-D	*	:	*	*	*	*	*	**	*	38	* *	*	*	*	*	*	*	() () ()	ar M	*	*	*	*	*	*	*
	*	*	#. #	*	*	# #	ω	* * *	85	80	98	8	*	**	*	*	8	60 53	*	4	**	*	8	78	*	*
LAN /	*	* *	60	#	*	** #	*	*	4 4	*	*	*	*	*	*	## ##	*	*	# #	*	* *	**	81	80	*	**
FOR MASTER PLAN IMPROVE LEVEL O TYPE LEV. A-	≪.	<	m	⋖	4	ڹ	U	«	ပ	۵	ပ	Ų	w	۵	ø)	æ	U	U	<.	U	100	∢	U	o'	υ	E)
DVE	>.	>	Ν	>	>	ΛI	۸ ۲	>	111	111	III	111	н	н	111	III	١٨	١٨	>	111	II	I	5~4	s-d"	.	۸I
HCF T			٠						н	н	-	н			₩.	I				1				.*		
T. AXLE COAD	1465.7	1679.1	2451.4	1779.8	515.7	919.7	831.6	1180.0	211.8	539.1	423.7	416.3	88.6	88.5	139.6	206.2	720.5	661.1	717.0	218.7	35.1	29.3	23.6	53.4	41.1	670-7
P R G V	14	16	54	17	4	. 6	60	118		8	1,4	2	ш	w	13	20	7.5	99	7.1	21	m	~	'n	ın	4	67
E K		٥.	7	w	'n	'n	7	4	9	۲,	6	-	2.	۲,	.1	0.	٥.	۲.	ø.	•	0	0	4.		7	m
A. D. T.	6824.1	7096.9	11809.4	8177.5	6678.3	4903.5	3972.4	7498.4	1302.6	2984.1	1707.9	1689.1	230.2	230.2	1207.1	1283.0	4367.9	3239.7	5674.6	1891.0	259.0	102.0	158.4	158.4	202.4	2534.3
10	м	m	m	ю	m	m	m	m.	4	373	۲N	n	m	מו	-3	-3	M	ı	m	P)	īV	m	7		ľV.	4
STING ROAD DTH TYPE COND M)	Ŋ	יע	Ŋ	ın	ı,	ıv.	ю	. 10	ın	*	* ^	ν.	•	80	•	м	10	v	Ŋ	v	Ŋ		10	M	м	ю
ING H TY		•									- '	•				•••							•••			
XX	7.4	7.3	133	113	7.4	9	9	100	\$	7.3	20	38	£. 80	38	61	51	7.	67	9 ,	φ.	66	99	39	77	37	69
H H H	₩.	m	173	₽⁄)	α	m,	'n	M3	ęŧ	m	. m	rv ·	M	23	tv	2	m	N	н	. 1	ę-t	er i	8	ਜ	-	'n
ENGTH CKM)	32	53	9.	000	5 7	1,4	36	53	ξŲ.	18	82	7.7	293	69	777	131	7.4	M)	75	5.4	122	157	141	210	175	۲,
CT LC													2		4-4	***					-	**	1	2	· 🕶	
-HIGHWAY SECTION SEG LINK-NO LENGTH	51018	51019	51020	51,021	51022	53001	53002	53003	53004	252010	254001	254002	254003	500552	254005	254006	351023	323002	353006	353007	353008	353009	503010	504007	504008	652011
LGHW/																							503	504		652
3 E C	2.7	28	52	30	m T	32	E.	34	35	36	37	9	39	0.7	4.1	. 45	43	57	57	97	2.7	87	67	20	51	5.2

Table 5-12 (3) List of Candidate Project by the Year 1987/1988 (1st stage construction)

ERVICE C C-D	*	86	*	R R F	*	N N	*	. *	#. # vt	*	*	*	*	*	*	*	8	*	* .	*	*	- # . #	*	*	**	*
I W ED	8	60 M	*	86	*	*	8	# ·	*	ω Ω	4	38	*	*	*	*	*	*	* *	₩ ₩	*	*	80	80	*	*
PLAN 8	ő	. ¥	80	80	*	*	*	**	*	*	82	82	*	*	. # #	*	*	# #	**	# #	*	*	*	. # *	*	#
E (1) (1)	Ų	Ω.	ω	U	۵	ω	ပ	ø	Φ	U	IJ	U	ro.	ω	m)	æ	v	ťΩ	U,	۵	රා	, <u>p</u>	υ	Ü	æ	æ
T FOR MAST IMPROVE TYPE	1 4	^ 1	7 \	١٧	III	Ħ		Ħ	H	III	- 13	Ħ	III	II	H	11	II	111	III	11	11	# 보	11	II	171	11
IMPROVEMENT T. AXLE LOAD	897.1	1443.2	825.4	676.8	126.2	63.6	21.5	131.4	131.4	585.8	183.0	183.0	129.8	102.9	118.4	119.5	123.6	7-775	512.5	218.4	136.3	281.4	242.8	272.8	512.7	138.9
A.D.T. A	9.2775.	4145.9	2742.8	1916.5	1018.1	361.7	230.5	399.3	399.3	1993.8	454.0	0.757	871.0	432.3	8.567	563.4	735.9	1352.7	1823.1	1001.5	6.879	805.6	773.2	773.2	978.6	4.07.7
SERVICE B-C C-D	***	# # 7 # 0	82 86	86 ***	***	***	83 ***	**	**	86 **	86 ***	86 ***	**	***	***	* * * *	83	*	***	* 83	**	27 80 8	80 85	80 85	**	**
~ u m	£2.	*	# #	80	*	*	*	#.	**	£4 44	20	82	. # #	**	*	* *	**	*	. #	* *	*	* * * * * * * * * * * * * * * * * * * *		*	*	*
집교.	œ	U	· <u>.</u>	ပ	*	* m	* ن	*	*	U	J	ى د	* ش	ω.	# m	8	* *	es es	* ن	* ن	#i mo	H ن	# #	a G	* m	# m
ASTER E LEY LEY																										j)
T FOR MASTE LIMPROVE L	1 V	ΛŢ	111	1 0	III	11	н	11	II	ΙV	III	III	III	11	11	1 1	11	III	III	11	11	11	Ħ	11	111	11
IMPROVEMENT T. AXLE LOAD 3	634.6	1110.6	6.95.9	700.6	126.2	63.6	21.5	82.7	82.7	875.4	374.0	374.0	129.8	89.9	103.0	106.3	119.3	7-777	\$20.4	127.3	136.3	267.3	278.6	278.6	312.7	138.9
A.D.T. A	2181.9	3387.2	2326.4	1986.3	1018,1	361.7	230.5	286.1	286.1	2-6062	9-276	9.2.6	871.0	395.7	0.054	521.7	711.5	1352.7	1837.1	781.1	6.875	765.1	0.978	846.0	978-6	2.702
OND	4	*	❖.	m	4	4	4	4	м	м	-3	4	•	4	m	m	m	ю	'n	-3	4	∾.	*~₹	м	m	, in
OAD E C	'n	,IA	7	ın.	w	v	in.	4	ī,	Ŋ	m.	m	w	. 7	ŵ.	Ś	ω	N.	n.	'n	ın.	ľ	s	. 10	Ŋ	vs
ISTING IDTH T	61	99	10 7	56	65	35	35	87	33	33	33	28	25	. 3.6	0.0	30	61	3 .	4	54	24	7 5	75	31	33	37
EXISTING R JER. WIDTH TYP (M)	m	m	ы	₩.	.	1	44	N	м	n	1	. н	-	M	ю́	m	m	м	м	٣	m	m	m	m	м	m
	27	æ	148	163	63	٥	5:5	39	5.4	89	666	666	186	80	38	707	30	196	123	63	79	4.7	№.	224	53	106
-HIGHWAY SECTION SEG LINK-NO LENGTH	3 652012	652013	624009	654010	1024	1025	3011	3012	1026	1027	3013	1028	3014	3015	1029	1030	1031	2014	2015	2016	2017.	2018	2019	1032	1033	1034
- H1G1	53.6	54 6	55 6	56.6	57	88	56	90	61	9	63	79	\$ 9	9	49	89	8	70.	7.1	22	2	7.4	7.5	76	2.2	7.8

Table 5-12 (4) List of Candidate Project by the Year 1987/1988 (1st stage construction)

1	VICE C-D	×	82	H H H	*	*	85	*	*	*	. H	*	*	*	*	*	88	*	78	98	*	*	*	86	*	*	. M
	SERVICE B-C C-D	*	*	86	*	86	*	*	*	8	*	k # #	**	*	*	*	82	#	**	*	*	*	**	. 80	83	89	*
	u. (D	# #	#	*	*	*	* * *	86	*	**	*	*	#	*	82	81	**	100 100	*	* 4 *	*	*	*	81	*	₩ ₩	81
TER P	LEVEL LEV.	w	U	Ų	٥	U	۵	80	nò	ပ	8	U	<u>.</u>	œ	m	m	O	£Ď	ပ	0	ø	Δ.	ø)	0	U	ັບ	6 0
FOR MASTER PLAN	IMPROVE TYPE	. н		III	I	אר	λĭ	>	7.1	λī	III	ĭ	11	III	₽÷ŧ	III	II.	111	III	111	III	111	111	λĪ	111	II	III
PROVEMENT	T. AXLE LOAD IMPROVE TYPE	131.1	164.0	306.9	203.8	452.9	861.2	1915.5	562.1	1125.5	310.0	62.6	93.6	239.1	21.7	308.8	308.8	271.2	516.3	629.5	297.3	822.3	401.0	1614.6	530.6	167.7	337.8
E 1 1 1 1 1 1 1 1 1		355.6	2.5.6	1517.2	814 0	4693.7	4326.8	8548 5	2953.1	3965.0	1004.5	239.6	282.0	1222.0	6 56	757.0	757.0	653.5	2195.4	2767.6	1181.3	2584.5	1275.8	4196.3	2416.1	661.8	1190.6
. ;	1.0E	**	82	* *	# 4	# #	*	# # #	*	#1 # W	# #	.89	# #	* *	*	## ##	80 PV	4 4	82	85	*	98	7 ×	*	* *	*	# #
-	SERVICE B-C C-D	я # ж	*	4 *	*	83	*	*	# #	81	*	*	*	78	83	# #	80 20	86	*	*	ts M	*	*	98	8.	# #	80
-	H. ED	*	*	# #	*	*	*	*	*	*	# #	*	*	82	80	82	*	87	# #	#	* * *	# ·	*	85	* * *	*	* * *
ER PLAN	ωш	60	ပ	m	ø	Ų	⋖	∢(Δ	υ	'n	۵	60	Ų	ပ	£Ω	ρ.	IJ	۰ u	a	· m	U	æ æ	J J	u U	r m	٠. ن
FOR MAS	IMPROVE (11	11	111	111	٨٢	>	>	111	ΛĪ	111	1	11	III	I	III	11	III	III	111	III	III	111	ΙΛ	111	11	II
IMPROVEMENT		131.1	173.2	273.3	212.0	9-629	9.666	1146.5	4884	1059.0	310.0	66.5	65.1	678.7	39.5	323.7	323.7	370.9	469.8	577.7	276.9	2-079	401.0	988.9	417.7	98.7	192.2
1	ν.	355.6	7.927	1425.9	827.4	5582.9	7. 1917	5453.9	2818.7	3849.2	1004.5	258.9	221.0	1781.0	228.0	791.4	791-4	890.5	2078.2	2638.2	1129.3	2158.3	1275.8	2747.5	2151.9	501.0	851.7
	ONO	4	4	2	2	Ņ	m	M	м	'n	m	M	m	m	'n	'n	m	m	ю	m	'n	m	m	м	4	m	M
G ROAD	7 P E	Ŋ	20	Ŋ	Ŋ	ď	٧.	'n	Ŋ	υ	'n	٠. س	ın	Ŋ	NI ·	м	8	ъ	m	m	m	M	'n	M	'n.	ю	3 /1
NILSI	WIDTH TYPE COND.	. 29	0,7	5.8	25	04	Š.	140	69	20	61	92	28	28	36	36	22	30	K.	9	36	22	22	25	73	36	36
 	TER.	'n	м	m	N	м	, c i	m	м	'n	ы	'm	M	m	-		, LAJ	1	m	ю	M	ю	m	M	m.	, M	m
TION	LENGTH (KM)	62	9.5	2.7	86	20	. \$9 . \$3	30	26	82	32	76	666	666	217	189	80	78	o M	tu tu	2.4	102	100	666	23	16	80
-HIGHWAY SECTION	INK-NO	3016	3017	3018	3019	3020	3021	1035	1036	1037	1038	1039	1040	3022	4011	4012	1041	2701	2020	2021	2022	2023	2024	2025	9202	2027	2028
H9 I H -	SEG	2.0	80	81	82	833	- 783 ·	89	98	87	88	68	06	9.1	9.5	93	76	62	96	26	86	66	100	101	102	103	104

Table 5-12 (5) List of Candidate Project by the Year 1987/1988 (1st stage construction)

•	SEG	-HIGHWAY SECTION SEG LINK-NO LENGTH (KM)	TON	1 E	WIDTH WIDTH (M)	NG ROA	COND	A.D.T. AKE	MPROVEMENT AXLE LOAD 1	T FOR MAST IMPROVE TYPE	E 20 E	PLAN A	SERVICE 8-C C-D	A.D.T.	T. AXL	IMPROVEMENT AXLE COAD	FOR MASTER PLAN IMPROVE LEVEL OF TYPE LEV A-F	TER PL LEVEL LEV.	u_ m	SERVICE B-C C-D
	105	2029	. 99	M	7	. 143	m	1077.3	265.7	111	. 00	* *	# # # # # # # # # # # # # # # # # # #	* 1113.	7 5	273.4	TIT	60		***
	106	2030	0,4	m	33	m	*	1105.9	243.0	111	60	*	*	4 1105.9	6.6	243.0	111	80	*	* * *
	107	2031	4.5	·M.	33	m,	7	217.3	51.2	н	U ,	# H	81 ***		217.3	51.2		U	. 4	81 * *
	108	2032	81	M	E.	n	·	562.5	163.3	II	Ų	# #	85 ***		561.0	162.6	11	U	# #	85 ***
	100	2033	54	m,	S.	m	ın	1138.8	316.6	111	Φ	# # #	* *	# 1135.5	٥.	315.2	111	œ	. # #	4 *
	110	2034	34	m,	79	٣	Ŋ	1083.3	220-5	III	60	# #	*** ***	* 1094	* -	7-522	III	æ	*	*** **
	111	2035	16	m	83	m	LN.	1415.7	368.1	111	σ.	#	*	. 1436.	~	377.0	111	æ	. N	4 4
	112	2036	25	m	79	m	Ŋ	1059.7	27772	111	Ф	* #	* # # # # # # # # # # # # # # # # # # #	¥ 1072.	60	6.645	111	စ	**	# *
	113	2037	S.	m	9£	m	₹.	193.1	0.84	×	α Δ 	*	***	* 193.	-1	0.87	Ħ	æ	**	* * *
	114	2038	55	m	55	n	m.	1270.7	309.1	111	E)	*	*	* 1270.7	. 7	309.1	111	æ	*	* *
	115	2039	57	n	38	м	4	608.0	169.0	11	ပ	# #	*	* 608.0	0	169.0	I I .	U	- - 	. * *
	116	0702	92	m	33	m	'n	608.0	169.0	11	υ	*	* *	* 608.0	o.	169.0	11	· U	. w	. *
	117	2041	. 22	m	36	m	'n	601.0	139.4	11		*	* * * * *	* 601.0	0.	139.4	H 11		*	* * * * *
	118	2042	31	מי	07	m,	ľ	731.0	239.6	11	υ	*	*	* 731.0	0	239.6	I	υ	. W	**
	119 1	112043	%	m	3.5	M	4	2375.7	334.8	111	Ų	*	*** 78	* 2597.5	٧.	428.3	111	U	# #	83 * *
٠	120 1	112044	07	m	05	m	in.	1907.1	352.9	111	υ.	*	* * 78	* 2185.7	7	470.8	III	٠.	. u	82 ***
	121	112045	135	ייי	07	n	м	16.0	3.8	н	•	*	* * *	16	0	m	• н	⋖	**	*
	122 1	112046	9.	m.	97	м	N	873.1	186.5	11	U	* *	82 **	* 919	9	194.3	11	٠,	* * *	*** 2
	123	1043	129	n	20	'n.	4	2871.6	1089.5	١١٧	U	*	*** 78	* 2452.	m	879.8	ΑĪ	m m	*	*
	721	1044	63	m,	e n	<u>.</u>	m	588.2	2:17.7	11	U	*	* 70	* 325.7	٠,	103.6	11	æ	* *	*
•	125	1045	92	м	30	īv	ιή	592.5	240.9	II	U	*	82 ***	\$ 396.	60	145.3	11	ω	* * *	# #
	126	1046	138	m	30	'n	4	536.2	217.0	11	υ	82	86 ***	* 135.5	۲.	54.3	н	æ	83 **	*
	127	1047	97	₩.	37	Lrs.	m	644.3	150.1	III	æ	# #	* * * *	849.7	.,	223.8	III	œ.	. # # #	# #
1.	128	1048	58	m	30	۲n	n	5.5.5	87.8		ω	# #	**	* 575.0	. 0	10013	11	 دن	**	*** 78
	129	1049	62	Ņ	43	W	m	1723.8	274.0	111	œ	*	*	1786.0		309.0.	111	٠ ن	60 K R	* * *
	130	1050	89	M	. 52	w	N	2775.0	383.0	III	u	*	**	8775.0		383.0	. 1.1 1	٠ ن	:	# #

Table 5-12 (6) List of Candidate Project by the Year 1987/1988 (1st stage construction)

B SERVICE	1 85 ***	# # # P	# # # # #	83.4.4	83. ###	***	83 83	*** 78	* 86 * **	***	**	86 ***	* * *	**	***	**	85 888	31 44 41 51 51 51 51 51 51 51 51 51 51 51 51 51	***	86 ***	80 ***	***	***	* * *	***	***
TER PLAN B LEVEL OF LEV. A-8	∞	*	#	*	**	*	4 4 4	#	*	* * *	*	*	# #	*	#	# # #	80	*	*	*	*	*	*	*	*	80
	Ü		₹.	Ų	U	ب	U		U	æ		O	m	U	εο .	u	U.	æ	IJ.	ь	O	60		∢	82	Ф
FOR MASTER IMPROVE LEV TYPE LEV	111	III	>	۸٦	111	11	٨١	111	٨٢	III	III	7.	III	H	TIT	11	LΛ	III	111	17	Λī	11	∺	11	11	ΙV
A.D.T. AXLE LOAD IMPROVE TYPE	5.955	5.545	1934.0	1364.4	534.0	159.1	988.6	426.1	677.0	319.7	373.0	531.4	336.4	108.9	98.3	158.9	828.8	276.8	310.1	8-242	881.4	6.06	6.59	12.8	82.0	890.2
A . D . T . A	1522.3	1761.9	6179.9	3889.4	1778.7	1041.4	3766.3	1948.0	2812.9	1131.3	1688.2	3577.0	1247.9	617.0	1723.4	842.5	2.8762	1109.0	1836.3	2854.2	3379.4	481.0	330.0	111.0	390.0	2228.7
SERVICE 8-C C-D	85 ***	83 ***	**	83 86	82 **	**	85 224	84 4 48	***	**	**	86 448	***	*	***	***************************************	82 ***	**	**	***	80 **	***	**	*	化 化	85 ***
_ 1∟ 00	81	**	. # #	**	#	- 4	*	# · # #	*	# # #	*	4: 41 15	*	*	*	# #	*	**	*	**	# #	*	*	有什么	*	80
ER PLAN LEVEL O LEV. A-	υ	Ü	. <	۵	Ų	۰.	Ų	U	m	m	ບ	ပ	80	ပ	80	Δ.	ပ	ပ	Ų	Q	Ų	ø	٥	∢(<u>.</u>	ပ
FOR MAST MPROVE TYPE	III	iii	>	71	111	ir	7.1	111	17	III.	III	7.7	111	11	III	. 11	III	11	111	111	1.4	11	H .	11	1.1	۸1
D.T. AXLE LOAD IMPROVE TYPE	524.9	551.1	1739.9	1414.7	2.675	154.9	786.6	381.0	632:0	329.8	330.9	514,5	148.4	108.9	102.9	168.9	380.0	118.6	298.9	713.7	874.7	6.06	6.53	12.8	82.0	1141.6
A.D.T. A	1495.4	1734.5	5618.6	4015.5	1809.4	1039.6	3214.0	1833.0	2730.3	1191.5	1633.2	3498-4	784.4	617.0	1738.0	8.698	1909.6	727.8	1802.5	2611.8	3363.7	481.0	330.0	111.0	390.0	2827.4
0.00	4	, (4	m	М	4	4	M	М	ij	м	14.)	n	M	4	м	4	m	n	M	m	M	4	4	м	7	ŀԴ
ROAU	vn	in	ហ	'n	ı,	ľ	ľ	in	١n	'n	'n	יע	U N	\$5	ĸ	v	ın	v	w	١	ı,	w	w	Ŋ	'n	N
HIDTH TYPE COND.	32	27	63	8	9	9	-22	36	73	61	5.9	57	24	61	30	09	36	\$5.	63	09	88	35	37	, 12	38	60
TER, EX	m	m	M .	'n	m	'n	m	n	m	m	ю	м	iń.	м	n	m	ř'n	м	M	ю	'n	m	m	'n	m	m
LENGTH (KM)	666	92	3.6	113	117	171	. 20	63	7.7	68	23	87	. 7	138	91	78	07	97	07	37	25	107	130	22	0 50	31
-HIGHWAY SECTIONSEG LINK-NO LENGTH	1051	1052	1053	2054	1055	1056	1057	1058	1059	1060	1061	1062	1063	1064	1065	1066	1067	1068	1069	1070	1071	1072	1073	1074	1075	1076
-H16	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156
							. **					•							. •				•			

Table 5-12 (7) List of Candidate Project by the Year 1987/1988 (1st stage construction)

111078 57 3 60 5 3 1421-5 1111 6 1422-6 1325-6 1111 6 1422-6 1325-6 1111 6 1422-6 1335-5 1111 6 1422-6 1335-5 1111 6 1422-6 1335-5 1111 6 1422-6 1335-5 1111 6 1422-6 1335-5 1111 6 1422-6 1335-5 1111 6 1422-6 1335-5 1111 6 1432-6 1322-6 1311 6 1432-6 1322-6 1322-6 1311 6 1432-6 1322-6 1311 6 1432-6 1311 6 1432-6 1311 6 1432-6 1311 6 1432-6 1311 6 1432-6 1311 6 1432-6 1311 6 1432-6 1311 6 1432-6 1311 6 1432-6 1311 6 1432-6 1311 6 1432-6 1312-6 1311 6 1322-6	-HIGHWAY SE Sed Link-No	CTION CENGTH (KM)		EXISTIN WIDTH (M)	IG ROAD. TYPE CC	OND.	A.D.T. AXL	IOVEMENT E LOAO 1	FOR MAS (MPROVE TYPE	TER PLEVE	A . 9	•	IMPROVEMENT AXLE LOAD		TER P	2 C I
111002 35		57	м	09	į,	M		1141.6	٨٢	U	85 **	2228	890	61	• •	**
111000 35 3 41 5 3 120.10 1283.6 111 8 8 8 8 132.0 111 8 8 8 8 8 8 8 8	158 111078	07	m	5 7	L D	м	1443.0	333.5	III	U	**			III	U	*
1108 35		25	M	51	v	M	1001.1	283.6	111	æ	**	1001.1		III	60	4
1108 40 5 45 5 5 5 5 5 5 5		N N	m.	61	W	м	1322.8	355.6	III	æ	# # # #	1322.8	355.6	171	හ	
111085 54 54 65 6 5 6 5 5 5 5 5 5 5 5 5 5 5 5	161 111081	07	m	43	'n	m	1003.2	5.772	111	Φ .	***	1003.2	274.5	III	ω	*
11086 138 25 5 5 5 5 5 5 5 5		54	m	69	rv	J.	556.5	148.9	II	ပ	* *	556.5		ĦĦ	υ	*
111086 48	163 111083	5.5	M	. 25 25	ın	'n	7.63.5	144.8	11	m	- # # # # # # # # # # # # # # # # # # #	463.2		II	æ	**
111066 46 5 5 5 5 719.00 156.00 111 6 111 7 111	64 111084	138	m	55	٧.	M	597.5	154.5	II	Ų	*	597.5		11	υ	**
111096 46 5 5 5 5 5 5 1121-5 302-9 111 11 11 11 111-5 302-9 111 11 11 111-5 302-9 111 11 111-5 302-9 111 11 111-5 302-9 111 11 111-5 302-9 111 11 111-5 302-9 111 11 111-5 302-9 111 11 111-5 302-9 111 11 111-5 302-9 111 11 111-5 302-9 111 11 111-5 302-9 111 11 111-5 302-9 111 11 111-5 302-9 111 11 111-5 302-9 111 11 111-5 302-9 111 11 111-5 302-9 111 11 11 111-5 302-9 111 11 11 111-5 302-9 111 11 11 11 11 11 11		87	m	95	ın	m	930.2	242.4	III	ıź	# #	930.2		III	ω.	*
111094 40 51 52 52 54 1121.3 502.9 111 8 888 888.8 343.6 59.4 111 8 888 888.8 111.0 6 60 60 60 60 60 60 6	66 111086	87	m	ιν α	ហ	m	719.0	156.4	11	Ų	**	719.0	156.4	H	Ų	*
11099 35 3 5 5 5 5 5 5 5	67 111087	07	m	25	īV	4	1121.3	302.9	111	æ	**	1121.3	302.9	111	۵	*
111094 82	68 111088	51	, m	80	W	143	335.7	57.1	11	<i>t</i> o	*	343.8	•	H	, 6 0	*
11109 53 5 61 5 5 2908.3 1061.6 14 C 81 86 *** 5825.3 1326.4 14 C 81 86 *** 8525.0 117.9 14 C 81 81 81 81 81 81 81	69 111089	32	n	61	N.	7	29082	1041-6	ΛÏ	ပ	2 86	3381.7	1215.2	٨٢	ပ	80
111092 60 3 61 5 6 2920.9 941.9 14 6 81 86 825.0 1117.9 1117.9 11 6 825.0 1117.9 11 6 825.0 1117.9 11 6 825.0 1117.9 11 6 825.0 1117.9 11 6 825.0 1117.9 11 6 825.0 1117.9 12 12 12 12 12 12 12 1	70 111090	33	М	61	۱۸	м	m	9.1701	IV	υ	έο 12	3823.3	1324.4	ΛŢ	U	98
11092 60	71 111091	66	м	61	M	4	2920.9	941.9	7.7	U	80	3535.0	1117.9	λī	·	78
111094 125 3 50 5 3 2120.4 755.3 III D *** 82 86 1376.7 450.5 III C *** 83 *** 1210.1 446.0 III B *** *** 83 *** 1210.1 446.0 III B *** *** 83 *** 1210.1 446.0 III B *** *** *** 83 ***	72 111092	09	m	30	·w	n M	2161.6	7.8.7	111	۵	(O)	1437.1	476.3	III	<u>ပ</u>	80
111094 125 3 50 5 3 1738.7 661.7 111 C see 83 see 1210.1 460.4 111 B see 1336.7 460.4 111 B see 1336.7 460.4 111 B see 1336.7 460.4 111 B see 413.3 128.5 11 B see 82.2 111 B 82.2 112 C C C C </td <td></td> <td>104</td> <td>м</td> <td>\$0</td> <td>ľ</td> <td>m</td> <td>2120.4</td> <td>755.3</td> <td>III</td> <td>۵</td> <td>82</td> <td>1376.7</td> <td>5.052</td> <td>III</td> <td>Ų</td> <td>83</td>		104	м	\$0	ľ	m	2120.4	755.3	III	۵	82	1376.7	5.052	III	Ų	83
11096 47 5 55 6 131.1 42.0 11 8 828 828 413.5.7 444.6 111 8 828 828 821 82 828 82 821 82 821 82 822 82 822 82 822 82 822 82 822 82 823 82 82	74 111094	125	m	50	v	m	1738.7	661.7	111	U	50	1210.1	7.077	III	80	**
111096	11109	66	m	33	'n	•	1336.7	437.4	III		₩ # ₩	1336.7	7.777	111	œ	*
111097 82 3 4 635.8 272.2 III 8 64 are	76 111096	47	m	35	w	•	131.1	42.0	I.I	•	:# #	413.3	128.5	II	æ	. # #
111098 61 2 55 5 4 635.8 272.2 III B 86 88 88 88 88 88 88 88 88 88 88 88 88		8	n	30	v	4	835.8	272.2	III	rà	# #	1062.9	337.7	III	ισ	**
111099 87 3 47 5 4 691.3 201.2 II C mex mass see 691.3 201.2 III C akk mass 111100 68 3 31 5 4 418.0 82.2 II B *** *** *** 418.0 82.2 II B *** *** 1268.1 473.3 III B 83 *** *** 1268.1 473.3 III B 83 *** *** 111101 64 3 37 5 3 146.0 25.7 I B *** ***	78 111098	. 44	69	53	ιń	4	835.8	272.2	111	65	*	1051.5	333.1	111	60	ø. ₩
111101 68 3 31 5 4 418.0 82.2 II B *** *** *** 418.0 82.2 II B B B *** *** 1268.1 473.3 III B B3 *** 111101 46 3 37 5 3 146.0 25.7 I B *** *** 146.0 25.7 I B ***	79 111099	87	m	27	ĸ	4	691.3	201.2	H	ي .	**	691.3	201.2	1.1	υ	*
111101 46 3 32 5 4 1170.7 425.5 III 8 63 24x x s 1268.1 473.3 III 8 83 x x x 111102 64 3 37 5 3 146.0 25.7 I 8 x x x x x x x x x x x x x x x x x x	80 111100	8.9	'n	31	ν.	4	418.0	82.2	II	100	*	418.0	82.2	1.1		*
111102 64 3 37 5 3 146.0 25.7 1 B *** *** *** 146.0 25.7 1 B *** ***	81 111101	97	m	32	N		1170.7	425.5	III	æ	* * * * * * * * * * * * * * * * * * * *	1268.1	473.3	III	ø	# #
		79	'n	37	Ŋ	ю	146.0	25.7	H ;	ဆ		146.0	25.7	ы.	. 60	***

Table 5-12 (8) List of Candidate Project by the Year 1987/1988 (1st stage construction)

	SEG	-HIGHWAY SECTION SEQ LINK-NO LENGTH	TION LENGTH	1 ER - EX	ISTIN IOTH	G RDAD	COND	IMPROVEMENT A.D.T. AXLE LOAD	COVEMENT	I FOR MAS IMPROVE	- C E E	PLAN A FEL OF SERVICE	A.D.T.	IMPROVEMENT AXLE LOAD	FOR MAS	H	R PLAN 8-	SERVICE	
	18	111103	57	m	5.8	50	m	1114.7	220.4	III	. 60	# #	1127.2	225.1	- H		0 #	. н	
	184	184 111104	68	m	30	ĸ	IV.	793.1	246.3	11	۵	*** *** ***	793.1	٠	II .	۵	*	# # # #	
٠.	185	111105	62	m	30	v	4	314.1	97.7	II	, to	**	314.1	7.79	ня	æ	**	***	
	186	186 111106	31	ю	30	. . .	4	186.8	67.5	· H	U	****	186.8	67.5		U	# #	# # # # #	
	^	111107	20	W	25	, v	.	788.0	216.2	11	υ	***	788.0	216.2	·II	့် ပ		***	
	188	3023	53	n	8.5	in	7	4772.6	719.1	ΣV	υ	* * * * * * * * * * * * * * * * * * *	5082.6	852.4	١٨	Ų	*	81 ***	
	189	ั เ	. \$	~	65	, ,	~	2360.0	396.7	III	ပ	***	2478.7	4.7.7	III	် ဂ	*		
	190	3025	132	н	36	4	8	2.44.7	127.2	1.1	Ü	坐装骨 美华伦 化复数	5.645	129-1	11	υ	*	***	
	191	3026	62	, m	73	4	, m	3102.0	488.3	III	۵	机放线 经票据 有效化	3102.0	488.3	III	6	**	# #	
	192	3027	82	, m	73	•	m	654.0	110.1	, I	U	经营养 计记录 医牙状	654.0	110-1	14	υ	* *	. #	
	193	3028	97	ю	7.1	4	'n	1757.4	241.0	TII	æ	化苯丙 古花木 双条件	1757.4	241.0	111	100 ·	*****	*	
	194	3029	666	44	7.1	4	m	572.0	53.4	TI	U	计	572.0	23.6	11	U	*	# #	
	195	3030	35	ъ.	87	Ŋ	. 2	2193.3	287.3	iii	, U	*** 83 ***	2287.7	327.9	III	်ပ	· 60	83 ***	
	196	3031	82	~	36	W	m	0.2	0.3	н	et	化苯基苯基甲基苯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	0.2	0.1	[*] H	<	* * *	# # #	
	197	3032	20	м	61	4	n	1173.0	159.3	1.1	۵	***	1173.0	159.3	II	۵	***	. *	
	198	2107	344	8	99	4	m	136.7	27.1	м	60	**	223.8	8.79	Н	υ	***	* *	
	667	7107	366	м	39	23	'n	7.0	0.0	H	¥		7.0	0.0	.	« C	: # # #	*	
	200	4015	328	, m .	36	ę-i	7	226.0	87.3	м	U	***	226.0	87.3	· +4	Ų	# # # # # # # # # # # # # # # # # # #	# #	
	201	4016	118	m	36	N	.	230.0	22.4	н	U	44 44 44 44 44	230.0	25.4	H	u	**	*	
	202	4017	230	m,	36	2	4	6.5	1.9	H	⋖	*** ***	6.5	1.9	н	4	**		
	203	4018	530	ΓV	36	۲N	7	6.5	7.9	н	<	化苯磺基苯基苯酚	8.5	1.9	H	∢	**	*	
	204	4016	666	m	200	m	. 3	18.8	2.5	н	∢	***	18.8	7.5	Ħ	ĸ	. # #	*	
	205	4020	169	m	36	m	4	18.8	7.5	H	⋖	经单位 电极极 化双环	18.8	7 5		ď	***	**	
•	206	4021	115	m	36	m	4	15.4	5.7	н	∢	***************************************	15.4	5.7	Ħ	4	* * *	* * * * * * * * * * * * * * * * * * * *	
	502	7055	7.5		36	M	4	182.4	32.4	Ħ	ပ	***	182.4	32.4	Н	ں	*	. #	
	208	4023	272	٨.	36	M	4	102.4	42.2	H	æ.	4 # # MO	7.2	5.9	Н	<	***	*	

Table 5-13 (1) List of Candidate Project by the Year 1999/2000 (2nd stage construction)

Table 5-13 (2) List of Candidate Project by the Year 1999/2000 (2nd stage construction)

- ?

SERVICE 8-C C-D	***	***	92 x*x	*** 86	***	**	**	***	4 4 8 6	***	*** 26	8 K K . 5 6	***	**	30 xxx	***	***	***	***	***	*	***	***	*	******	***
8 0 d	. 48	87	# #	*	87	70	80	80	*	*	*	*	# # # # # # # # # # # # # # # # # # #	*	* * *	*	* 96	4 7 6	85 83	*	44 44 44	. * *	*	*	* **	*
TER PLAN I LEVEL OF LEV. A-B	æ	an	ပ	Ü	æ	ec)	100	no.	ື ບ	-1	" ບ	и U	10	es ED	ان	* 60		Ø	ED	* ن	ė,	# ≪	∢.	# ≪	. *	*
FOR MASI	>	>	>	>	>	>	>	>	λī	>	٨١	ΑŢ	1.1	ы Н	111	. 111	>	>	>	III	Ħ	. 11	II	II	I.I	Α.
IMPROVEMENT FOR MA -D.T. AXLE LOAD IMPROVE TYPE	3286.1	3683.4	6500.6	0-9997	3696.0	2141.0	1973.5	2848.6	430.8	1162.8	915.4	897.0	88.6	88.6	413.0	206.2	2141.3	1983.4	2087.5	218.7	35.1	29.3	38.9	38.9	82.3	2273.3
A.D.T. A)	13772.2	14232.0	26196.1	18174.0	14265.0	10327.5	8539.9	15146.7	2429.5	5819.4	3430.2	3384.7	230.2	230.2	5456.4	1283.0	10002.3	7787.1	12332.1	1891.0	259.0	102.0	121.6	121.6	0.952	6967.0
OF SERVICE	83 ** * *	88 *** ***	*** 95 ***	87 *** ***	38 *** ***	96 *** ***	***	90 *** ***	*** 98 ***	*** 89 97	*** 96 ***	*** 70 ***	化有关 化邻位 长龙头	化水块 化氯化 化电池	90 *** ***	经代本 法实务 拉茶科	计元件 计计算 化分件	***	91 *** ***	计算机 经存款 计关键	化光光 化光光 计实验	***	***	* * *	***	***
ER PLAN A. LEVEL OF S	m	ш	Ü	œ.	æ	В	ez.	<u> 6</u>	* ن	ä	ų ن	× U	#	æ æ	۵	# ·	₩	*	20	* U	ω.	*	*	. # . ED	10	*
T FOR MASTE LATPE L	ż	>	>	>	۸	٨	^	>	ΛĪ	ΙΛ	^	٨١	Ħ	11	ΛI	III	>	>	Α.	111	11	11	11	11	11	>
IMPROVEMENT	2997.8	3450.0	5176.1	3732.3	3113.1	1917.5	1751.6	2325.2	430.8	1209.4	952.5	2.759	88.6	88.6	346.0	206.2	1591.9	1467.2	1569.2	218.7	35.1	29.3	53.4	53.4	41.1	1425.1
A.D.T.	13079.2	13717.3	23072.4	15963.6	12866.9	9771.0	7998.0	13902.7	2429.5	5946.8	3524.3	3478.8	230.2	230.2	2322.9	1283.0	8711.0	6576.2	11107.2	1891.0	259.0	102.0	158.4	158.4	202 4	5012.1
STING ROAD DIH TYPE COND. M?	้หว	m	m	m	'n	ю	'M	M	4	· 34)	м	М	m	·M	7	7	m	Ņ	m	ĸń	'n	m	4	in .	in.	. 4
IG RO	'n	Į.	ín	Ņ	ın	ħ	'n	ν.	'n	٣	m	М	m	'n	м	м	ĸ٠	so	· w	: ! N	w	m	m	м	, m	Ņ
WIDTH:	7.2	7.3	133	113	7.7	9	90	100	, S	7.3	0	W 00	æ	38	61	5,	7.5	67	9	.59	99	99	39	77	37	69
TER. WID	2	m	'n	m	N	m	'n	m	7	m	m	N	H	rv _.	۲۷	€.	m	2	44	-	rı	-	2	₩.		n
CTION LENGTH (KM)	32	29	16	30	45	1.4	36	23	\$3	18	82	7.7	293	69	144	131	**	10	75	52	122	157	14.1	210	175	٤4
-HIGHWAY SECTION SEG LINK-NO LENGTH (KM)	51018			51021	51022	53001	53002	53003	53004	252010	254001	254002	254003	254004	254005	900752	351023	353005	353006	353007	353008	353009	503010	204007	800705	652011
SEG	2.7	28	\$	80	31	32	33	34	35	36	37	38	30	0,7	7	4.2	4 4	77	4.5	97	47	8 7	6.7	20	51	25

Table 5-13 (3) List of Candidate Project by the Year 1999/2000 (2nd stage construction)

LEVEL OF SERVICE LEV. A-8 8-C C-D	*** ***	5 *** *** S	***	***	4 91 ***	# # 7 06 . 4	* * * * * * *	88 97	*** 68	****	**** 98	**** 98	* * * * * *	89 95	***	*** *** *	****	***	193 EXE	a c a 76 s	*** ***	***	****	*** *** *	* *	***
ER PLAN LEVEL OF LEV. A-F	***	96 8	***	*	* *	** **		***	, k	ά *	**	*	αγ **	***	8 g	68 g	# #	**	* * U	4 4	***	# #	8 4.4.8	*	*	8 4 4 4
FOR MASTE LIMPROVE L	λ.	Α	>	>	III	H H	Ħ	Ħ	II	> H	Ħ	II	111	11	III	111	111	III	٨٦	111	11	III	. 111	111	III	II.
-IMPROVEMENT . AXLE LOAD I	1918.3.	5789.0	1594.0	1331.9	201.6	102.4	24.7	7.165.	261.7	836.7	198.2	198.2	129.8	262.0	304.9	260.1	250.1	7-797	1048.1	426.5	136.3	389.2	285.7	285.7	312.7	138.9
AXA .T.O.A	5682.2	2.7782	5122,7	3703.8	1754.2	618.8	8.507	714.7	714.7	2.4565	0.585	785.0	871.0	932.1	1072.5	1072.0	1322.5	1352,7	3588.5	1882.5	6.872	1107.9	918.6	913.6	978.6	2.702
ATTITE SERVICE	***	* * * * * * * * * * * * * * * * * * * *	*** 06	***	91 ##	*** 06	14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	美加斯 曼利普	***	87 ***	88 ***	88 **	***	26 06	***	# # #	***	*	-0-0-1 	***	**	· · · · · · · · · · · · · · · · · · ·	***	**	*	**
ER PLAN LEVEL O LEV. A-	# # W	**	*	**	# #	*	88	8	**	. * * *	* *	# *	**	4 4 4	9	D6 8	ж *	4	***	# # (2)	* *	* *	ις) H H H	E H	**	* *
FOR MAST IMPROVE TYPE	>	>.	ΛI	۵	111	11	11	11	ŢŢ	1 V	III	III	III	11	111	III	111	III	١٢	111	11	111	111	III	111	ii
IMPROVENENT FOR MAST .T. AXLE LOAD IMPROVE TYPE	1373.7	2227.8	1281.5	1422.4	.201.6	102.4	34.7	115.8	115.8	5.945	178.6	178.6	129.8	230.5	267.3	221.9	252.2	7-775	1098.5	5.985	136.3	9-277	413.5	413.5	312.7	138.9
A.D.T. AX	4477.2	6611.0	4469.7	3960.2	1754.2	618.8	8.504	365.9	365.9	1888.6	431.0	431.0	871.0	859.2	9.586	0.889	1341.6	1352.7	3686.9	1408.7	5.874	1245.8	1230.6	1230.6	978.6	2.704
OND.	4	4	4	m	4	4	4	4	M	M	4	4	4	4	м	· M	м	м	m	4	4	73	ą.,	'n	m	m .
ROAD YPE C	· IN	Ŋ	•	ľ	'n	ιń	ın	4	c,	Ŋ	м	ы	Ŋ	4	Ŋ	ın	M	'n	ın	ΙΛ	N	عر	Ŋ	,in	v n	rv.
XISTING ROAD WIDTH TYPE COND.	61	99	87	28	. 9	35	35	87	33	M M	ñ	28	75	24	30	30	61	34	24	25	24	75	25	31	35	37
1 H H H H H H H H H H H H H H H H H H H	м	M	'n	• स्त	1 4		₽	∾	м	- 143		.	#	м	м	м	m	м	io	m	m	m	м	m,	'n	m,
	7.5	50	148	163	63	o -	55	e M	2.5	4	666	466	186	20	38	0.5	30	196	123	63	79	4.7	2	722	N N	106
-HIGHWAY SECTION SEG LINK-NG LENGTH (KM)	652012	652013	620759	654010	1024	1025	3011	3012	1026	1027	3013	1028	3014	3015	1029	1030	1031	2014	2015	2016	2017	2018	2019	1032	1033	1034
SEG	. K	24	· \$5	56	57	. 21	\$	9	61	62	, 6	99	65	99	67	89	69	70	7.1	7.2	73	7.4	22	7.6	7.7	78

Table 5-13 (4) List of Candidate Project by the Year 1999/2000 (2nd stage construction)

- ?

ER PLAN B LEVEL OF SERVICE LEV. A-B B-C C-D	- E	* * *	# #	* * * 7	96.	**	*	96 2	- # - #	* *	* *	# #	**	5 97	*	*	* * * /	* * *	3. 96	*	56 2	***	#	**	*	26 6
10 E	*	6	*	76	*	* *	*	87	#	*	*	*	# #	93	9.8	9.5	26	91	60	6	87	*	*	ο.	#	68
A 0 A H H H H H H H H H H H H H H H H H	*	*	*	* # * #	4	76	**	*	*	*	*	8	*	8	87	*	tO 60	*	# #	# #	* # #	*	6.	*	87	*
TER PI LEVEI LEV.	œ	ີ ບ	ത	ņ	•	ь	ω		4	Ð	Ü	5 0	to	۵	υ	υ	Ü	Ų.	a	U	a	æ	m	oʻ	æ	۵
FOR MAS	11	III	۸Τ	III	ΛĪ	>	>	· >	>	111	H	III	III	II	٨٦	III	١ ٨	۸٦	IΛ	III	7 1	111	>	>I	HHH	III
ROVEMENT LE LOAD	131.1	395.3	0-799	435.9	665.9	1543.9	4381.5	930.5	1450.0	310.0	62.6	304.6	239.1	175.0	728.2	728.2	750.3	1184.7	1344.6	612.9	1597.1	401.0	4720.8	1091.8	347.3	703.0
A.D.T. AXLE LOAD IMPROVE. LEVEL O TYPE LEV. A-	355.6	1568.3	2871.9	1599.2	7913.4	7.69.7	17592.3	5137.7	5141.0	1004.5	239.6	877.1	1222.0	615.2	1762.6	1762.6	1790.7	2.6957	5193.5	2250.5	4770.3	1275.8	11633.7	9-8097	1343.8	2438.3
SERVICE 3-C C-D	***	* * * 86	** 76	97 ***	**	K ##	***	89 ***	***	**	**	94 mm#	被 · 被	* a ■ £ 6	95 ***	96 06	*** 76	.92 s#*	89 97	91 ***	*** 06	**	**	*** 56	90 98	*** 86
LL E3	# #	89	*	80 80	*	4	93	*	- M - M - K	# #	*	89	*	*	*	# #	. # #	*	*	*	*	*	# #	*	*	# #
TER PLAN A- LEVEL OF S LEV. A-B E	6	U	ပ	ບ	4	m	Ø	ပ	≪	60	6	υ	Ų	Ü	U	۵	J	ပ	6	U	U	60	≪	U	۵	ن
TYPE LEVEL OF TYPE	ïï	71	Λī	71	>	>	>	21	>	111	н	III	III	. 11	IV	111	ΛΙ	11	1.0	111	۸ī	111	>	AT	II	111
A.D.T. AXLE LOAD	131.1	848.6	945.6	872.5	1109.8	1828.8	2385.8	655.1	1719.6	310.0	8.65.5	678.7	678.7	124.2	888.2	888.2	932.3	1088.2	1234.0	568.0	1322.6	401.0	2375.7	852.1	193.2	377.6
A.D.T. A	355.6	2673.7	3705.5	2651.4	9160.3	8480.0	10398.9	4237.4	6320.7	1004.5	6.852	1781.0	1781.0	551.4	2139.5	2139.5	2219.5	4131.3	7.2267	2132.1	4121.9	1275.8	6277.0	4058.6	983.6	1680.2
COND.	4	4	~	~	זע	m	M	М	м	m	m	m	m	īv	īv	m	м	M	M	м	'n	m	М	4	m	ю
ISTING ROAD IDTH TYPE COND.	ľ	in	ın	'n	2	'n	20	٧	w	Ś	'n	ľ	Ŋ	~	M	N	۰	m	m	m	ю	m	m	m	٣	m
EXISTI WIDTH (M)	62	0.7	58	75	70	20	140	69	20	61	. 26	28	23	36	98	27	90	73	. 0	36	7.3	55	55	73	36	92
TER. WI	m	117	M	2	m	- 44	173	m	m	м	٣	м	ы		41	m	4-4 -	м	м	ĸ	'n	м	ю	M	m	M
LENGTH (KM)	62	95	24	86	62	65	EX.	26	82	32	76	666	666	217	189	· co	83	34	35	7.2	102	100	666	21	16	87
-HIGHWAY SECTIONSEG LINK-NO LENGTH	3016	3017	3018	3019	3020	3021	1035	1036	1037	1038	1039	1040	3022	4011	4012	1041	1042	2020	2021	2022	2023	2024	2025	2026	2027	2028
-HIGS SEG L	82	80	81	89	83	78	85	88	58	83	6) 6)	0.6	- 6	6	6	76	. 6	96	26	φ. Φ.	66	100	101	102	103	101

Table 5-13 (5) List of Candidate Project by the Year 1999/2000 (2nd stage construction)

SERVICE BCC C-D	91 ***	. 25 × 26	***	* *	26 06	4 * 4 5 6	87 97	*** 56	***	***	建设料 机材料	*	**	* * *	93 ***	93 88.8	*	06 *	**	*	## ## ## ## ## ## ## ## ## ## ## ## ##	*	*** 96	***	96	* *
AN B.	ं अ #	H A	# 82	87 *	# #		* *	*	**	*	- H - H - H	**	. :	*	*	 #	**	***	*** ***	* * *	***	# # # # # # # # # # # # # # # # # # #	, 44 A	88	*	*
ER PL/ LEVEL LEV.	Ü	۔ ن	œ	Ē	, a	۰ * ن	. 0	U	œ.	. *	u u	ب ن	u	: * U	" ບ	* ب	*		ω,	, co	, m	. CO	u U		·*	÷ o
FOR MASY IMPROVE TYPE	III	III	5	III	111	III	III	III		111	11	. 11	11	11	AI	ΛI	H	. н . н	۸۲	11	II	н	21	111	III	III
-IMPROVEMENT	518.6	341.8	5-72	363.5	720.2	388.7	656.1	433.3	0.87	309.1	169.0	169.0	139.4	239.6	0.208	980.3	8,	248.6	645,1	103.6	145.3	54.3	622.1	250.3	513.0	383.0
A.D.T. A	2125.7	1732.9	345.6	1166.4	7.9072	1789.4	2394.4	1770.8	193.1	1270.7	608 0	608.0	601.0	731.0	4532.7	4114.6	16.0	1039.6	1681.7	325.7	396.8	135.5	5056.4	1224.5	2931.5	2775.0
SERVICE BIC CID	**# 26	4** 26	提供供加加	* * * *	26 06	96 BRE	88 78	. a ≥ 6	新	## ## ## ## ## ## ## ## ## ## ## ## ##	***	# # # # # # # # # # # # # # # # # # #	***	* *	98 ***	98 ***	H # # #	** ** ** **	56 ###	经	# 44 H	化	*** £6	*** 96	*	* * * * * * * * * * * * * * * * * * * *
EV. A-B	**	*	88	87	# #	*	*	: ¥ - #	# .	, # , #	*	*	44 44	***	*	#	*	*	***	*	**	*	ි හ භ	88	*	# # #
74 74 75 76 76 76 76 76 76 76 76 76 76 76 76 76	U		Φ.	Φ.		U	۵	·u	ω.	ø,		U	U	U			⋖	60	۵	IJ	ပ	ပ္	, U		æ	U
FOR MAINETYPE	111	117	Ħ	III	III	III	III	111		III	. II	11	II	11	1 V	1.4	н	111	ΝĪ	II	II	11	AI	III	11	111
IMPROVEMENT T. AXLE LOAD	8.567	341.8	74.5	366.2	725.7	369.0	620.5	410.4	0.84	309.1	169.0	169.0	139.4	239.6	582.2	7.407	3.8	295.4	1774.2	217.7	540-9	217.0	863.8	384.4	585.9	383.0
A.D.T. AXE	2002.4	1732.9	345.6	1172.6	2419.4	1743.5	2311.7	1717.6	193.1	1270.7	0.808	608.0	601.0	731.0	4002.0	3459.1	16.0	1188.2	4379.8	588.2	592.5	536.2	2666.9	1596.6	3240.4	2775.0
COMD.	m.	. 4	4	ы	'n	, ۳	, '	, in	4	m	4	, s ^ .	īv.	5	4	м	, M	23	4	м.	М	4	m	וא	'n	N
G ROP TYPE	м	н	m	m,	ю	m	m.	M	m	m	m	Н	, w	м	ю	м	м	m	īV.	w :	, un	m	W	Ŋ		Ϋ́
EXISTIN WIDIH CMD	. 23	io io	ĸ.	M ·	33	79	.80 24	99	38	\$2	38	N N	38	07	3 ¢	20	0,4	97	20	8	20	90	37	30	٤3	72
H	m	M	. м	, m	m	'n	n	n	m	ń	m	m	m	. M	m,	m	m,	m.	n	m.	m	m	ę4	M	m	iù
CTION LENGTH (KM)	89	0,7	4.5	60 F1	72	35	16	. 25	, g	S.	57	52	7.7	31	92	07	135	.92	159	£9,	3.5	138	97	88	62	89
-HIGHWAY SECTION SEG LINK-NO LENGTH	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2002	112043	112044	112045	112046	1043	1044	1045	1046	1047	1048	1049	1050
-HIG SEG	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120 1	2,	122	123	124	125	126	127	128	129	130
													-													

Table 5-13 (6) List of Candidate Project by the Year 1999/2000 (2nd stage construction)

VICE OLD	* * *	*	* * *	*	*	# #	*	4 4	76	A A	. # #	76	8	# #	# #	*	#	- 80 6-	*	a *	* #	**	*	6 #	# #	26
SERVICE B-C O-D	76	9	# #	*	9	<i>t</i>	# #	92	4 #	89	ò	*	88	*	92	9	*	89	76	*	# #	*	. · #	* *	×	88
	*	*	90	96	*	. N N	93	*	*	*	. # # #	*	* .	*	*	# # #	# #	*	*	*	*	*	- # #	H	*	# #
TER PL LEVEL LEV.	ں	ပ္	- (15 -	60	υ	U	æ	U	٥	U	U	٥	0	U	O	U	વ	۵	U	₹	4	άn	ю	4		٥
FOR MASIMPROVE	ΛI	IV	>	>	IV	III	>	7.1	7 .	117	11	ΙΛ	III	11	III	111	>	111	ΛI	^	>	II	II	11	II	NI.
A.D.T. AXLE LOAD IMPROVE LEVEL OF TYPE LEV. A-E	1143.4	1190.4	2915.6	2735.4	1116.1	293.0	3230.3	8:526	1304.4	572.3	781.1	957.8	709.1	108.9	174.4	289.2	1704.4	566.7	9.459	1795.6	1576.7	90.9	65.9	12.8	82.0	1644.7
A.D.T. A	3141.4	3565.4	9492.0	7561.9	3549.1	1886.8	10575.1	3875.2	4963.6	1867.5	3488.0	6213.4	5760-9	617.0	2964.0	1478.7	5788.0	2147.0	3510.3	6232.8	5899.9	481.0	330.0	111.0	390.0	4066.5
N A OF SERVICE N-8 8-C C-D	**	## #3 #4	**	*	* * * * * * * * * * * * * * * * * * *	. 4	# #	**	96	. # #	*	32	¥ ¥	*	# #	* *	* .	. #4 . #4	* *	. # ·	. * *	#	# # #	*	* * *	76
3 - 8 0 - 8	76.	9.5	*	*	92	8	. #1 #1	76	87	00	. 6	# #	*	4	85.	9	9	*	8	8	*	*	41 41	*	# #	* .
AN A OF A-B	*	# #	26	6	*	*	9.5	€: 47 28	45 14	# #	*	# #	# #	*	* *	. N 4	*	*	*	. # #	*	*	* *	*	*	# #
TER PL LEVEL LEV.	Ü	J.	Ġ	Φ	U	·	æ	υ.	۵	Ų	U	۵	· m	ပ	υ,	υ	u	ю.	U __	υ	. ⋖	m	æ	<	ω	Δ.
T FOR MASTER PLAN . IMPROVE LEVEL OF TYPE LEV. A-B	ΙΛ	ΛΙ.	>	>	ÌΛ	111		ΙΛ	۸Ι	III	ΛÏ	AI	면. 대 	I	III	III	7.7	111	1.0	ΑŢ	>	ï	11	11	Ħ	Νī
-IMPROVEMENT . AXLE LOAD I	1195.9	1243.1	2760.4	3358.2	1174.2	290.3	8-2682	615.9	1145.4	4.267	652.3	928.8	266.7	108.9	192.7	328.1	721.7	229.5	499.5	1152.4	1477.3	6.06	6.59	12.8	82.0	1.99.1
A.D.T. A	3269.6	3697.9	8976.8	9151.3	3680.5	1916.1	9789.8	3561.4	4618.6	1686.0	3045.5	6017.4	1349.6	617.0	3028.0	1589.4	3524.3	1367.1	3066.7	4204.3	2593.4	481.0	330.0	111.0	390.0	4370-4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4	M	m	m	4	4	m	"m	m	m	ы	m	'n	4	ю	4	m	M	м	m	m	4	. 4	m	J.	n
ROA Y P.E.	ĸ	'n	v	v	'n	٠ د	ı۸	۰.	N	2	N	Ŋ	w	S	Ŋ	S	4	77	Ŋ	īv	v	v n	v	ĿΛ	w	ın
TER, WIDTH TYPE COND.	א רא	2 7	63	8	éE	. 09	73	36	73	1.9	59	22	2.7	61	30	09	36	55	63	09	.85	35	37	61	36	09
	m	м	m	m	m	m	m	m	ю	M	ń	m	ю	м	ю	m	'n	 M	· M	'n,	M	m	· M	'n	, m	ĸ
-HIGHWAY SECTION-1 SEG LINK-ND LENGTH	666	56	34	113	117	171	70	63	27	89	53	87	7.5	138	9.1	7.8	0,7	94	07	37	25	101	130	8	20	m H
WAY SEC INK-ND	1051	1052	1053	1054	1055	1056	1057	1058	1059	1060	1061	1062	1063	1064	1065	1066	1067	1068	1069	1070	1071	1072	1073	1074	1075	1076
SEG	131	132	133	134	135	136	137	138	43.9	140	141	142	143	771	145	146	147	148	149	150	151	152	153	154	15.5	156
÷																										

Table 5-13 (7) List of Candidate Project by the Year 1999/2000 (2nd stage construction)

SERVICE 8-C C-D	88 97	*	- 66 - 66 - 18 - 18	*	- # - # - # - #	***	**	* # # # # # # # # # # # # # # # # # # #	**	* * * * * * * * * * * * * * * * * * *	4	*** 26	- 44 #2 #4	* *	**	26 ***	*	88 **	87 ***	· 数件	89 97	88 98	***	**	87 ***	**
AN 81 - A	* * *		- # - # - #	# # # # # # # # # # # # # # # # # # #	**	**	# #	***	* *	* # #	* *	. 4 4	91 #3	٠ ا	# # # # # # # # # # # # # # # # # # #	*	,	- # - # - #	w #	39.	**	# H	**	# # #	B **	***
ER PLA LEVEL LEV. A	•	٠ χ .	m m	E	m	* ပ	. to	*. :	60	ů	a		æ	80	< ₩	*	. ن	U	U	203	# 	ب ۵	Ü	en H	* ن	ю ж
FOR MAST IMPROVE TYPE	1.V	111	III	III	III	II	II	II	TII	ΕĦ.	III	1.1	>	>	>	ਬ ਬ ਸ	III	III	III	III	III	111	П	11	111	H
MPROVEMENT AXLE LOAD	1644.7	333.5	283.6	355.6	274.5	148.9	164.8	154.5	7.272	156.4	302.9	126.3	4370.8	3358.7	2162.4	9.629	612.5	532.7	610.5	375.1	727.4	621.8	201.2	82.2	875.8	25.7
A.0.1. A	5-9907	1443.0	1001.1	1322.8	1003.2	556.5	7 63.5	5.792	930.2	719.0	1121.3	6.969	12447.9	9218-6	6498.5	2099.6	1929.7	1488.5	1781.7	1080.4	2100.2	1842.8	691.3	418.0	1513.7	146.0.
SERVICE B-C C-D	7.6	*	**	*	* H	* # * #	*	, # . # . #	*	# # #	# #	₹ #	* # * #	# #	**	26		**	#	**	*	96	# #	it et	##	*
, m, m	**	被	***	* * * *	**	**	# # # # # # # # # # # # # # # # # # #	**	**	· · · · · · · · · · · · · · · · · · ·	**	£6 ***	93 ***	93 **	98 ***	680 ##	***	*** ***	*** 87	92 887	89 ***	06 ***	***	* * *	**	***
ER PL LEVEL LEV	0	ပ	60	æ	Ф	ن ا	œ	ري	πò	U	ω	ပ	100	ю	œ	۵	u	U	U	80	, co	ရ	ပ	æ	. Φ	Φ)
FOR MAST MPROVE TYPE	^1	III	111	111	rir	11	II	Ħ	III	Ħ	III	=======================================	.>	>	>	1.0	٨٦	111	111	111	١٢	111	1,1	II	III	1
MPROVEMENT AXLE LOAD I	1799.7	333.5	583.6	355.6	274.5	148.9	144.8	154.5	7.272	156.4	302.9	117.9	3877.6	3780.5	2471.1	1548.2	1376.1	600.3	5.59.7	37'0.7	813.5	206.6	201.2	82.2	317.6	25.7
A.D.T. A	4370.4	1443.0	1001.1	1322.8	1003.2	556.5	7.63.2	5.798	930.2	719.0	1121.3	666.0	10448.8	10183.4	7167.4	4172.6	3754.4	1646.1	1698.6	1090.6	2346.4	2083.9	691.3	418.0	7-726	146.0
COND	'n	m	м	ю	m	4	, m	, M	m	, m	,	, M	4	M	4	М	'n	m	4	t,	. 4	4	4	7	4	ы
G ROAD-	, In	, in	ļ'n	'n	ľ	'n	, w	, I A	Ν	ī.	2	'n	. L	'n	'n	ın	, In	,in	W	.	M	v	Ŋ	w	M	'n
XISTIN WIDTH	90	\$ 4	51	61	.73	.,09	38	28	\$	88	\$5	38	6.1	63	61	, ê	20	20	33	3	30	33	47	31	32	37
HEN.	m	, m	"m	m	m	,M	M	,m	ю	M	.141	,m	m	m	, m	m	m	м	м	m	m	N	W	m	n	m
LENGTH	57	0.7	25	35	0.7	5.4	5.5	138	8,4	8,7	0,7	51	85	33	- 66	09	104	125	66	29	82	81	87	88	97	79
-HIGHWAY SECTION SEG LINK-NO LENGTH (KM)	7 1077	3 111078	111079	160 111080	1110	111082	111083	111084	111085	166 111086	7 111087	3 111088	169 111089	170 111090	111091	172 111092	173 111093	174 111094	111095	111096	7 111097	3 111098	111099	180 111100	111101	2 111102
1 W	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	27.5	17.	174	175	176	177	178	179	180	181	182

Table 5-13 (8) List of Candidate Project by the Year 1999/2000 (2nd stage construction)

																			-								
10 E	*	N Ci	*	# #	* * *	*	98	*	H H	*	×	*	**	tt.	# #	*	. # #	# 1. # 1.	K K	*	*	* :	#	# #	*	*	
SERVICE C-	83	*		H .	*	#	63	96	# #	*	*	#	5	*	*	9.6	# #	N	*	44	*	*	*	¥	*	*	
	*		*	*	*	100	H	*	*	*	*	*	*		*		*	* *	4	*	*		*	*	**	* 26	
< 4	#	*	#	*	÷	O.	#	*	*	×	*	*	*	*	#	#	*	N N	#	*	Ħ	# # %	*	*	# # #	0	
TER P LEVE LEV.	O	<u>ت</u>	6 0	ن	U	6 3		Ü	۵	U	60	Ų	Ų	€	0	O	∢ .	υ ·	U	∢ .	⋖	⋖	< ٔ	₹	Ü	m)	
FOR MASTER PL IMPROVE CEVEL TYPE CEV.	111	11	11	н	H	>	ΙA	111	111	H	III	₩ ₩	ΛĪ	ы.	H	Ξ.	H H	H	~	 4	7		H	H-4			
F 2		۱۵.			•		<u></u>	: :.				2					2		٠.							1.	1
-IMPROVEMENT . AXLE LOAD	2.807	246.3	7.79	67.5	216.2	1654.1	0.026	275.2	488.3	110.1	241.0	53.4	667-8	0.1	159.3	172.3	0	87.3	22.4	4.1	4.1	18.4	18.4	5.7	32.4	56.3	
A X						N.			_	_			^		^				_							~	
A.D.T.	1988.4	793.1	314.1	186.8	788.0	8952.3	6-6657	1078.0	3102.0	0.450	1757.4	572.0	4152.9	0.3	1173.0	507.4	7.0	226.0	230.0	13.3	13.3	45.5	45.5	15.4	182.4	135.3	
1 W G	*	# #	#1 64	* *	* *	*	* *	** **	*	*	*	# #	# #	# #1	# # #	* *	* *	* *	# # #	* * *	*	# #	#	*	**	* *	
SERVICE B-C C-D	06	*	* .	*	# #	, ,	06	1.	4	* * *	*	*	. 70	*	*	*	*	*	*		* * *		*	×	*	.26	
~ ~	*	¥	* *	*	* #	Ħ	*		*	# #	*	*	41 H	*	**	*	*	# #	*	**	*	. *	. * . #	*	# !! !!		
EVEL OF	* .	*	#	*	. 4	*	*	el el	*	* .	*	*	*	*	N	٥	*	*	*	*	*	*	*	4	*	**	
STER F LEVE	Ü	۵.	ю		υ	∢.		υ,	۵		100	ပ	ပ	∢		Ø	∢ .		ပ	≪.	<	4	₹	د	ပ	ပ	٠
IT FOR MASTE LATPE	111	Π	11	н	11	>	١٧	111	111	11	111	11	ΛI	ън *	II	Ħ	H	H	н		н	H .	н	H	1	.	
TENT	399.4	.46.3	7.79	67.5	216.2	312.0	795.0	265.3	88.3	110.1	61.0	53.4	70-1	0.1	59.3	7.79	0.0	87.3	2.4	4.1	4.1	3.6	18.4	2-2	32.4	76.2	
LIMPROVEMENT	39	54	0	•	210	131	42	565	89	11	54.	iń	57(15	9	Ū	à		•	<u>.</u>	ř	ñ	•	M	. 7	
Ε A Dr X	_			80	:		4	60		0	J.	. 0	6	m	0	2	~	0	0	м	. 10	м.	<u>.</u> .	•	4	_	
A.0.4	1962.7	793.1	314.1	186.8	788.0	8156.2	7.6057	8.450	3102.0	0.459	1757.4	572.0	3925.	0.3	1173.0	258.2	0.7	226.0	230.0	13.3	13.3	45.5	45.5	15.4	182.4	183.7	
¦ «÷	15	~	.,			80	7	ĭ	ñ	·	['n		. . .				:							•	
OND.	M	in	*	4	+	N	N	N	M	ĸ	M	M	N	n	m	'n	ĸ	4	4	4	4	4	7	4	. 4	4	
G ROAD TYPE COND																		_	٠.			_		×		•	
א א רט בר	b	. ທ	. 61		ľ	υı .	V	.4	7	.4	. 47	4	.11		4			,		10	14	"	F*.	•		.,,	
ISTING IDTH T	33	30	30	30	5.5	62	2.6	36	73	7.3	71	7.1	8	36	6.1	30	39	36	36	36	36	36	36	36	9 (4	36	
XX				٠	ų.		+ 4		i.																		
TER. WIDT	ተነ	M	M	'n	143	М	~	€1	10	М	M	स	m	*4	·m	~·	n	M	М	11	;- ;-	n	M	·	***	Ł.J	
1 E C	5.7	52	6.	31	20	. 23	99	132	5.0	28	. 97	666		82	33	375	366	82.8	118	230	530	666	169	115	73	272	
LENGT (KM)		. /		,		: .		. 🕶		1		٥				m	, m	n			. '^	•	. •	. . .		Ŋ	
2 C S	ь Б	*	ın O	90	20	23	5.4	52	56	27	28	50	30	31	32	13	16	4015	4016	4017	4018	4019	020	4021	4022	4023	
TNY.	111103	111104	111105	111106	111107	3023	3054	3025	3026	3027	3028	3029	3030	3031	3032	4013	4014	40	0.7	0.7	0,3	7	40	0,	9	0.7	
-HIGHWAY SECTION SEG LINK-NO LENGTH	183 1	184 1	185 1	186 1	187 1	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	504	205	902	207	208	
	**	**	-	-		~	-	~	.57	**	-	.**	•	. •	. •			•••			••				:		
ite fil		٠.										*	. •	. :			.*			er si				:			