2-4 Port Plan

2-4-1 Result of Demand Forecast

The cargo demand forecast for 1982/83, 1987/88 and 1999/00 has been based on cargo demand data of the last 10 years correlated with the GDP.

Dry Cargo and Liquid Cargo as well as Imports and Exports are indicated in this forecast.

The major commodities of Dry Cargo shall be Wheat, Sugar, Cement, Fertilizers, Iron & Steel, Coal, Iron Ore, Phosphate Rock/Sulphur, Rice, Cotton and Other Dry Cargo.

The major commodities of Liquid Cargo shall be Crude Oil & Petroleum, Edible Oil & Tallow, Petroleum Products and Molasses.

The total cargo volume's rate of increase has been indicated with a base value of 100 for 1980/81, 111 for 1982/83, 165 for 1987/88 and 299 for 1999/00 as shown in Table 2-4-1 Demand Forecast of Seaborne Trade.

The ratio of imported cargo volume to total cargo volume is at present quite large, but it is expected to decrease gradually.

The percent of imports out of the total cargo volume is expected to amount to 76% in 1980/81, 77% in 1982/83, 70% in 1987/88 and 65% in 1999/00 as shown in Table 2-4-2 Demand Forecast for Imports/Exports Cargo.

The ratio of Liquid Cargo to Dry Cargo is expected to amount to 100% in 1980/81, 103% in 1982/83, 87% in 1987/88 and 114% in 1999/00.

The container cargo forecast method employed in this study is almost the same as the one currently used in accordance with the Japanese Standard Method.

Basic commodities in the container cargo forecast are Cotton, Rice, Sugar, Iron & Steel and Other Dry Cargo.

Wheat, Fertilizer, Phosphate Rock/Sulphur and Cement are excluded from the container cargo forecast because these cargoes are carried by bulk carriers as bulk cargo, a less expensive transport method than by general cargo vessels.

Container cargo volumes are forecasted at 0.613 million tonnes in 1982/83, 1.720 million tonnes in 1987/88 and 6.196 million tonnes in 1999/00 as shown in Table 2-4-3 Container Cargo Forecast.

Table 2-4-1 Demand Forecast of Seaborne Trade

Year 1982/83 1 8,152 1 142 142 1,228 536 504 754 754 754 759 1,259 1,259 1,259 1,259	13,176 13,176 1,467 1,193 630 1,360 2,030 2,030 2,030 2,030 1,593 1,593 1,593	20,894 643 643 2,208 2,208 2,341 1,735 1,360 2,030 2,936 2,998	
	987788 3,176 94 1,467 1,193 630 1,360 2,030 2,030 1,593	20,894 643 643 2,208 2,341 1,360 2,030 2,030 2,998 2,998	tanin di series de la cale
	3,176 1,467 1,193 1,360 1,360 1,593 1,593 1,593	20,894 643 643 2,266 2,341 1,360 2,030 2,998 693	
	527 1,193 1,193 1,193 1,360 2,030 2,030 1,593 1,593	2, 208 2, 208 2, 208 1, 34 1, 36 2, 39 2, 99 6,99	
	1,467 1,193 1,193 1,360 2,030 2,030 1,593	2,266 2,208 2,341 1,735 1,360 2,930 2,998	
terminal burst	1,467 1,193 1,360 1,593 1,593 334	2,208 2,341 1,735 1,360 2,030 2,998 2,998	
	1,193 6,30 1,360 2,030 2,78 1,593 334	2,341 1,735 1,360 2,030 2,998	
A Comment	630 1,360 2,030 1,593 334	1,735 1,360 2,030 2,998 692	
	1,360 2,030 2,78 1,593 334	1,360 2,030 779 2,998 692	
	2,030 278 1,593	2,030 779 2,998 492	
	278 1,593 334	779 2,998 492	
	1,593	2,998	
	334	492	
. 3			
	3,670	6,042	
	e di N		
8,420 1	1,449	23,795	
6,264	8,533	18,146	
632	685	636	
1,222	1,825	4,436	
302	406	577	
16,572 2	4,625	44,689	
111	165	299	
T		2	406 24,625 44,

Source: JICA Study Team

ئو،

Table 2-4-2 Demand Forecast for Imports/Exports Cargo

	٠.			(000100)	
Commodity	1980/81	1982/83	1987/88	1999/00	
Imports	11,323	12,773	17,227	29,168	
Dry Cargo	5,117	5,877	8,009	10,386	
Wheat	308	347	527	0	
Sugar	74	. 63	0	0	
Cement	777	142	0.	0	
Fertilizers	1,294	1,228	1,193	2,059	
Iron & Steel	-442	536	ę.	0	
Coal	191	504	1,360	•	
Iron Ore	777	754	2,030	2,030	
	191	299	278	779	
Other Dry Cargo	1,959	2,004	2,621	4,158	
Liquid Cargo	•	6,896	9,218	18,782	
Crude Oil & Petroleum	5,598		8,533	•	
e_0i1_&	809	632	685	989	
Export	3,618	3,799	7,398	15,521	
Dry Cargo	2,359	2,275	5,167	10,508	
Wheat	0	0	.0	643	
Rice	1,257	1,259	1,593	2,998	
Cotton	315	185	334	492	
Sugar	0	0	76	266	
Cement		0	1,467	2,208	
Fertilizers	21	0	0	282	
Iron & Steel	0	0	. 630	1,735	
Other Dry Cargo	766	831	1,049	1,884	
Liquid Cargo	1,259	1,524		5,013	
. 0	. 566	1,222	1,825	4,436	
Mo.lasses	265	302	907	577	
Imports/Total (%)	76	77	70	. 65	,

Source: JICA Study Team

 $\mathbb{E}_{(X_{i},X_{i})} = \mathbb{E}_{(X_{i},X_{i})} = \mathbb{E}_{(X_{i},X_{i})}$

Table 2-4-3 Container Cargo Forecast

	,																							
	00/66	689* 77	23,795		20,894				:				.11,533		67.8	7,814	32.2	5,17,	6,196	, ,	786.7		32.6	77767
(1000 M/I)	87/88	24,625	11,449		13,176								6,321		67.8	4,204	32.5	7,037	1,720	1	1.617		0.5	
(100)	82/83	16,572	8,420		8,152								4,878		66.8	3,260	33.2	7,010	613		533	}	0.0	8
	Export/Import	Total	Total Liquid Cargo	-	Total Dry Cargo								Total Containerizable	Cargo Containerized Routes	Share, 7	Quanticy (4x41)	Share, %	Quantity (4x43)	Total Containerized	Containerized Routes	Share, % (52/42)	Quantity Other Routes	Share, % (54/44)	Quantity
	00/66	29,168	18,782	636	10,386	1,0	2,030	2,059	2 1	ł	1 0	6,10	4,158		64.3	2,674	35.7	1,484	2.437		69.9	, oo, 1	38.3	268
	87/88	17,227	9,218	685	8,009	1 0	2,030	1,193) I	527	1 6	7,077	2,621		64.3	1,685	35.7	936	797		44.5	007	0.0	4./
	82/83	12,773	6,896	632	5,877	142	726	1,228	63	347	536	2,004	2,603		64.3	1,674	35.7	929	308		15.7	507	5.0	46
	Lmport	Total	Total Liquid Cargo Grude Oil/Petroleum Products		Total Dry Cargo	Сетепт	Coal Iron Ore	Fertilizers	Phosphate Kock	2756a1	Iron & Steel	Other Dry Cargoes		Cargo (36,38,39)	Share. %	Quantity (4x41)	Share, 7		Total Containerized	Containerized Routes	7 of Containerization	Quantity (42x51)	% of Containerization	Quantity (44x53)
. `	00/66	15,521	5,013	577	10,508	2,208	492	643	282	1,735	1,884		7,375		69.7	5,140	30.3	2,235	, ,	,,,,	9.09	3,115	28.8	644
	81/88	7,398	2,231	905	5,167	1,467	334	1	1 70	630	1,049		3,700		69.7		30.3	1,121	ć	72,	33.6	867	5.0	56
	82/83	3,799	1,524	302	2,275	ı	185		0 1	1	831		2,275		69.7	1,586	30.3	689	Č	5 .	17.0	270	2.0	34
	Бхротс	Total	Total Liquid Cargo Petroleum	Molasses	Total Dry Cargo	Cement	Cotton Rice	Wheat	Fertilizer	Iron & Steel	Other Dry Cargoes		Total Containerizable	Cargo (32,33,36,37,38)	containerized koutes	Quantity (4x41)	Other Routes Share, Z	Quantity (4x43)	Total Containerized	Cargo (32734) Containerized Routes	% of Containerization	Quantity (42x51)	Other Koutes % of Containerization	Quantity (44x53)
	8		2	72	· m	31	332	34	ე წ	3,6	38	33	4		41	42	43	77	٧.		53	52	53	54

Source: JICA Study Team

Large scale port facilities in Pakistan exist only at the ports of Karachi and Qasim.

In 1980/81 at Karachi Port these facilities consisted of 24 berths (total length 4,365 m) and 4 oil berths, while at Qasim port there was one Iron Ore & Coal berth and one Multipurpose Berth as shown in Table 2-4-4 Berth Facility.

The procedure for calculating the cargo handling capacity is as follows:

- (1) Calculation of total berth length at Karachi and Qasim Ports;
- (2) Case-1 and Case-2 estimations of yearly cargo handling capacity in tonnes per berth meters (t/m.y) based on past figures.
 - Case-1 assumes 16 hours of port operation per day and Case-2 assumes 12 hours of port operation per day.
- (3) Estimated port capacity for Case-1 is 1,000 t/m.y for General Cargo and 2,000 t/m.y for Dry Bulk.

 Estimated port capacity for Case-2 is 750 t/m.y for General Cargo and 1,500 t/m.y for Dry Bulk.

 The capacity of a Lighter Wharf would be 50% less than that of General Cargo Wharf.
- (4) Next the necessary berth length for Dry Bulk is calculated using the above estimated capacity, and then this length is subtracted from the total berth length.
- (5) The above remainder is then multiplied by the figure for General Cargo capacity.
 Finally, dividing the above product into the figure for total General Cargo volume, divided the projected berth occupancy rates are obtained.

Capacities for the Oil berth and Iron Ore & Coal berth are based primarily on their respective design capacities.

Calculating from the 1980/81, total cargo handling volume of 14,941 thousand tonnes, Case-1 General Cargo at Karachi Port is 150% of berth capacity, and Case-2 is 270% of berth capacity as shown in Table 2-4-5 and 2-4-6.

Both cases exceed appropriate berth capacity limit 100%, thus revealing the high degree of congestion in Karachi port.

The Karachi Port facilities in 1982/83 will expand to 4 berths with a total length of 674 m (Juna Bunder Wharf), and the Qasim Port facilities will expand to 3 berths with a total length of 600 m (Multipurpose Wharf) after partial completion of the on-going project.

Total cargo handling volume is forecasted at 16,572 thousand tonnes thus General Cargo port capacity at Karachi Port will be 109% in Case-1 and 168% in Case-2.

Though the above percentage is still over 100%, port congestion will be lessened as compared to 1980/81.

Three berths, having a total length of 600 m (multipurpose wharves) will be added by 1987/88 at Qasim Port, even without new port investment. On the other hand, at Karachi Port, forecasted total cargo handling volume is 18,435 thousand tonnes and port capacity for Liquid Bulk will be 135%.

Port capacity for General Cargo at Karachi Port will be 128% in Case-1 and 225% in Case-2, even assuming full operation of Qasim Port. It should therefore be clear that new port expansion projects are required.

Forecasted total cargo handling volume for the year 1999/00 is 44,689 thousand tonnes.

If there is no new port investment after year 1987/88 then the port capacity for Liquid Bulk and General Cargo will be 183% and 162% respectively, figures indicating heavy port congestion.

To relieve this congestion, construction of an additional 4 berth, (1,200 m) is required for a Full Container Terminal at Karachi Port and Buoy Berth for Crude Oil at Qasim Port. (See Table 2-4-5, 2-4-6 Port Capacity)

2-4-3 Basic Outline for Masterplan

The basic outline for the Port Masterplan in Pakistan shall be based upon the following items:

- (1) Selection of required projects based on the demand forecast.
- (2) Emphasis on efficient use of existing port facilities.
- (3) Selection of projects necessary for regional development.

The basic plan has been drawn up viewing Qasim and Karachi, the two representative ports of Pakistan, as one national port, introducing the concept of "functional divisions" so as to make full and efficient use of the facilities of both ports.

At Karachi Port, which will mainly handle General Cargo, top priority has been given to construction of a new Full Container Terminal in view of the rapid increase in container transits predicted by the demand forecast.

At Qasim Port which will handle mostly Bulk Cargo, top priority has been given to completion of on-going projects and construction of a new Fertilizer and Wheat Terminal, while major dredging projects for deepening and widening of the existing channel will not take place until the year 2000 because of the construction of Buoy Berth, except for maintenance dredging.

Construction of a Mini-Port at Gwadar in Baluchistan is being considered in order to promote regional development by utilizing the rich fishing resources in that area.

In addition, immediate upgrading and expansion of the Marine Academy at Karachi is being considered in order to meet the needs of Pakistani expanding merchant fleet as well as to facilitate smooth operation of the Full Container and Bulk Terminal.

2-4-4 Masterplan

Harris Control (1984)

In the year 2000, gateways for Pakistani sea transportation will be the improved and expanded Ports of Karachi and Qasim.

Total cargo handling volume in the year 2000 will be approximately 45 million tons, three times the present volume. With newly improved facilities and operations, both ports have sufficient capacity to meet future port demands.

The Port of Karachi has a long history and its facilities for general cargo handling of liner ships are highly developed.

On the other hand, Qasim Port's history is relatively brief, though it has experienced steady development through its import of raw materials for Pakistan Steel. With this background, it is important to decide how to allocate $_{\hbox{functions}}$ between these two ports.

The area of influence for both ports is basically the same and the actual distance between both ports is quite close (42 km). It would be possible for both ports to be responsible for similar functions, but it would also be possible to divide functions between both ports.

From the viewpoint of both of these ports' administrations, the most natural type of port development would be a general and overall expansion of existing facilities and functions. The unintended outcome of such development would be that both ports would have near indentical functions, being in constant competition with each other.

Of course, from the viewpoint of the national economy, it is obvious that such a double investment is redundant, and such competition is wasteful. It would be better, in regards to port development, to adopt the idea of "divide functions". In this light, each port should ideally have distinct and supplementary functions, so as to make available to port users the finest possible services.

According to the policy proposed by the Planning Commission, Karachi Port will handle mainly general cargo, while Qasim Port will handle mostly bulk cargo. Based on the historical circumstances behind the current port facilities (including transportation to the hinterland) and distribution function as well as the existing degree of urban development near the ports, the Planning Commission's policy shall be continuously supported.

(1) Karachi Port

Prior to the year 2000, the following projects are considered necessary for port development.

1) Full Container Terminal

According to the demand forecast, 6.2 million tonnes of container cargo will be handled in the year 2000.

6 berths, each 300 m long and -12 m deep, will be constructed on the west side of West Wharf.

Estimated total cost is 3,314 million Rs. Two of the berths shall be constructed by the year 1988 as the urgent project.

Operation of the new container berth will be the responsibility of KPT and containers for long haul upcountry destinations will be transported to the Inland Dry Port in Lahore by Pakistan Railways.

2) New Oil Berth

After dismantling of the existing oil berths Nos. 2 and 3, a new oil berth will be constructed at the same location.

After completion of this new oil berth, Karachi Port will be able to handle up to 10 million tonnes of liquid cargo per year.

The berth will be opened for general use in the year 1985. It's cost is estimated at 120 million Rs.

3) Equipment

Several container spreader type heavy fork lifts having a maximum capacity of 35 tonnes, are required in order to facilitate prompt handling of containers until the container terminal project is completed in 1988. Severe regulations will be made for the prevention of pollution of the sea by oil.

The purchase of an Oil Skimmer Ship will be necessary by 1988 in order to clean up the leakage of oil and bilge from berthing ships.

4) Marine Academy

To assure smooth operation of the container terminal, personnel training will be an important factor in the near future.

The Marine Academy at Mauripur, Karachi City serves as a training facility for nautical and engineer department. However, the academy lacks sufficient staff and equipment to adequately fulfill its role, therefore urgent improvement is required.

The estimated cost through the year 2000 is 240 million Rs.

(2) Oasim Port

Prior to the year 2000, the following projects are considered necessary for port development.

1) Bulk Cargo Terminal

According to the demand forecast, 3.8 million tonnes of bulk cargo will be handled in the year 2000.

An independent Fertilizer Terminal will be constructed in the port and multi-purpose berth No. 7 will be converted to Wheat Terminal.

The capacity of Fertilizer Terminal is estimated to handle total 3,120 thousand tonnes of bulk cargoes, that is composed of 2,341 thousand tonnes of fertilizer and 779 thousand tonnes of Phosphate Rock/Sulphur.

They will be equipped with unloaders, storage facilities and a bagging plant at an estimated cost of 746 million Rs.

2) Oil Berth and Buoy Berth

According to the demand forecast, 14 million tonnes of liquid cargo will be handled in the year 2000 and 1.5 million tonnes in the year 1988.

 $_{\rm To}$ help meet this demand, one oil berth having a capacity of 3 million $_{\rm tonnes}$ per year, will be constructed by 1988 and the estimated cost is $_{\rm 158}$ million Rs.

 $_{\rm To\ handle}$ the large volume of liquid cargo expected by the year $_{\rm 2000,\ a\ buoy\ berth}$ outside the approach channel is being considered.

It is assumed that an oil refinery might be constructed near the port and the refined products might be transported to the upcountry (Multan) near the consuming place by pipeline.

3) Equipment

One Trailing Hopper Suction Dredger and related equipments will be required for self-maintenance channel dredging.

(3) Other Ports

As a center for regional development in Baluchistan, a fishing port. with a small general cargo berth will be constructed at Gwadar by the year 1988.

This project consists of a 500 m revetment, 980 m groin, 330 m fishing berth, 70 m general cargo berth, $321,000 \text{ m}^3$ of dredging, etc.

The estimated project cost is 326 million Rs.

able 2-4-4 Berth Facility

	٠1			<u></u>							 <u> </u>						اا
	Depth	_	-10.2	-11.4	0.6-	-12.0	-7.2	-13.5	-13.5	-3.6	-12.8	-11.0	-12.0	-12.0	-11.3	-15.0	
1999/00	Total(L)	Ħ	2,604	1,254	929	1,800	507	540	240	1,194	 279	1,200	280	200	240	One Buoy	
	Depth No.of Berth Total(L)	-	17	۲.	4	•	1	2	- 4	. 1	 	ø	H	,	÷⊣		
	Depth	田	-10.2	-11.4	0-6-	-12:0	-7.2	-13.5	-13.5	-3.6	-12.8	-11.0	-12.0	-12.0	-11.3	1	
1987/88	Total(L)	ш	2,604	1,254	674	009	507	240	240	1,194	270	1,200	280	200	240	1 -	
	No.of Berth		17	7	7	7	1	2	r1	i	r-4	9	-1	H	,-4	ı	
	Depth	Ħ	-10.2	-11.4	0.6-	ı.	-7.2	-13.5	l'	13.6	-12.8	-11.0	, I.	ı	1	1	
1982/83	Total(L)	E	7,604	1,254	674	1	507	854	ı	1,194	279	800	ı	1	1	ı	-
	No.of Berth		17	7	7	1	ı	7	1	. 1	 1	7	1,	: .	t		
	Depth	8	-10.2	-11.4	1	ı	-7.2	-13.5	1	-3.6	-12.8	-11.0	l		ı	ı	
18/0861	Total(L)		2,604	1,254	ı	1	207	854	1	1,194	279	200	1	1	1	1	
	No.of Berth Total(L)		17		ì	ı	I,	4	1	ı	,1	r-l	ľ	ı	ı	ı	
, T	Name or Berth		East Wharf	West Wharf	Juna Bunder Wharf	Full Container Terminal	Lighter Wharf	Oil Berth	New Oil Berth	Small Boat Harbour	Iron Ore & Coal Berth	Marginal Wharf	Fertilizer Terminal	Wheat Terminal	Oil Berth	Buov Berth	
ŗ	707 D		KPT								POA	•		· <u>·</u>			
		٠															

Source: JICA Study Team

, 1	Y	سعميدين							1
00	Occupancy	527 %	100	280	100		103		
00/6661	Quantity	8,269	6,435	23,795	COa	7,000	3,390	ı	
1987/88	Occupancy	128	100	135	001	001	103	1	
198	Quantity	4,634	2,352	11,449	000	7,000	3,390	1	
1982/83	Occupancy	109 %	100	66		70	& & &		
198	Quantity	3,556	3,038	8,420	C	200	1,258	ı	
980/81	Occupancy	150 %	100	88		l	12	l	
198	Quantity	3,482	3,589	7,465	i	l	405	i	
1980/81	rote lype of cargo	General Cargo	Dry Bulk	Liquid Bulk	D.: 17.	FUM DULK	IOC Berth	Liquid Bulk	
42.00	コープロナ	KPT			Ç	탕	:		,

After Completion of New Proje	41	ect:					(OULE. +, OOO E)	,000,
(/81	1982/83	83	1987/88	88	1999/	00
or Cargo	Fort Type of Cargo Quantity	Occupancy	Quantity	Occupanc	Quantity	Occupancy	Quantity	Occupancy
General Cargo	3,482	% 0ST	3,556	109 %	4,634	72 %	8,269	91 %
ulk (100	3,038	100	763	100	3,354	100
Liquid Bulk	7,465	88	8,420	66	10,000	100	10,000	100
ulk	ı	l	200	31	4,398	75	5,881	100
10C Berth	405	12	1,258	38	3,390	103	3,390	103
Liquid Bulk	1.	l	1	ı	1,449	84	13,795	100

Notes: (1) Basic Conditions for Calculation Operation Hour of Port, 16 hours/day

Cargo Handling Capacity, General Cargo 1,000 t/m.year

" , Dry Bulk 2,000 "

(2) Dry Bulk include Wheat, Sugar, Cement, Fertilizer, Phosphate Rock/Sulpher and Rice.

(3) Liquid Bulk include Crude Oil, Edible Oil & Tallow, Petroleum Products and Molasses.

(4) General Cargo include Iron & Steel, Cotton and Other Dry Cargo.

Source: JICA Study Team

Table 2-4-6 Port Capacity (Case -2)

6	Before Commencement of New Project:	of New Pro	ject:					(Unit	(Unit: 1,000t)	
4	3 4		18/0861	198	1 88/286	198	88/186	195	00/6	
` ر	rorr Type or cargo	Quantity	Occupancy	Quantity	Occupancy	Quantity	Occupancy	Quantity	Occupancy	
KPT	General Cargo	3,482	270 %	3,556	168 %	4,634	225 %	8,269	Over 1,000%	
	Dry Bulk	3,589	100	2,938	100	3,052	100	7,135	100	
	Liquid Bulk	7,465	88	8,420	66	11,449	135	23,795	280	
PQA	Dry Bulk			400	33	2,100	100	2,100	100	
	IOC Berth	405	12	1,258	38	3,390	103	3,390	103	
	Liquid Bulk	ı	·. 1	1	i i	.1	1	I .	l	

. 1	After	After Completion of New Project:	New Projec	:t:				i	(Unit	Unit: 1,000t)
	70.00	The second	7	980/81	198	982/83	198	1987/88	199	00/6667
	FOLL	rore lype or cargo	Quantity	Occupancy	Quantity	Occupancy	Quantity	Occupancy	Quantity	Occupancy
	KPT	KPT General Cargo		270 %	3,556	168 %	4,634	% 76		109 %
-		Dry Bulk	3,589	100	2,938	100	1,363	100	3,954	100
		Liquid Bulk	7,465	88	8,420	66	10,000	100	10,000	100
	POA	Dry Bulk	1	ı	700	33	3,798	72	5,281	100
<u></u>		IOC Berth	405	12	1,258	38	3,390	103	3,390	103
<u> </u>		Liquid Bulk	1	I	ı	1	1,449	8 4	13,795	100

Notes: (1) Basic Conditions for Calculation ... Operation Hour of Port, 12 hours/day
Cargo Handling Capacity, General Cargo 750 t/m.year
"Dry Bulk 1,500 "

⁽²⁾ Dry Bulk include Wheat, Sugar, Cement, Fertilizer, Phosphate Rock/Sulpher and Rice.

⁽³⁾ Liquid Bulk include Crude Oil, Edible Oil & Tallow, Petroleum Products and Molasses.

⁽⁴⁾ General Cargo include Iron & Steel, Cotton and Other Dry Cargo.

Table 2-4-7 List of Port Project (Masterplan)

Name of Project	Location		mount (Mil	
Name of Troject		L/C	F/C	Total
Full Container Terminal	Karachi Port	1,230	2,090	3,320
New Oil Berth	Karachi Port	40	80	120
Small Boat Harbour	Karachi Port	150	150	300
Onshore Equipment	Karachi Port	41	76	117
Offshore Equipment	Karachi Port	_	500	500
0il Berth	Qasim Port	63	95	158
Buoy Berth	Qasim Port	390	910	1,300
Fertilizer Terminal	Qasim Port	289	201	490
Wheat Terminal Equipments & Storage	Qasim Port	140	116	256
Dredger & Equipment	Qasim Port	- .	445	445
Mini - Port	Gwadar	56	270	326
Marine Academy	Mauripur		240	240
Jinnah Bridge Phase II	Karachi Port	150	50	200
Total		2,549	5,223	7,772

Source: JICA Study Team

2-5 Shipping Plan

2-5-1 Liner Trade

It is considered that containerization in liner trade is an irreversible trend in world shipping.

Containerization in Shipping and an innovation in transportation system require intensive capital investment in various facillities including container ship, containers, container terminal and inland transport. An establishment of container services is to be coordinated with national and international cooperation among governments, port authorities, ship operators, railways, road hauliers, forwarders and shippers.

Therefore, it is strongly recommended that introduction of containerization in Pakistan should be promoted as a comprehensive national project in view of its huge impacts on all other modes of transport.

Feasibility Study Report on the Introduction of Containerization in Pakistan conducted by JICA (Japan International Cooperation Agency) by the request of Pakistan Government has concluded recommendation for the construction of full container terminal at Karachiwith two berths untill 1988 as urgent plan and six berths in total until 2000 as Master-Plan. Acquisition of full container ships should be introduced at the time of completion of full container terminal taking into consideration of the coordinated planning with the Masterplan of port projection. In case of delay on the terminal construction program up to 1988, acquisition of self-sustained container ship is to be identified as the alternative case, instead of immediate acquisition of full container ships.

Although carrying capacity in liner trade increases tremendously by the introduction of container ships as its quicker turnround, there exists the necessity to strengthen tonnage of multi-purpose ships in order to maintain 40% loading share of general cargo in main liner trade.

So-called 40:40:20 principle set forth in the Code of Conduct for Liner Conference by UNCTAD is a guideline to be observed in determining shares in pooling arrangements or the like among the member-lines of liner conferences (equal shares for the shipping lines of mutually trading countries and an approximately 20 percent share for others).

The Code cannot solve the problems of the activities of non-conference ships which carry big share of liner cargo in world shipping.

Hastened expansion of national fleets to meet the target share is not necessarily be the right answer. The fleets composition at each stage should be studied carefully by taking into consideration all other aspects such as financial impact, managerial view points, and flexibility for technical innovation.

2-5-2 Bulk Trade

Tramp shipping is operated essentially, based on the competitive. freemarket system.

The market of freight rate in bulk shipping fluctuates according to the imbalance of supply and demand in ships tonnage and seaborne cargo movements. As for bulk carriers, fleet arrangement should be decided by user of the service seeking most competitive freight rate. The introduction of a governmentally imposed formula into the sharing of bulk trade brings rather disadvantage for both user of the service and ship operator because of its operational inflexibility. Therefore, acquisition of bulk carriers for Steel Mill and bulk oil tanker are to e identified, based on a capacity analysis of total required tonnage, not on any pre-fixed loading share.

The concept of share that a fixed proportion of any nation's cargo should be carried by her own national fleet is now under debate in UNCTAD. The Policy for acquisition of specialized ships and trampers in bulk trade should be guided by the economic criteria, instead of number of vessels calculated based on a governmentally imposed loading share.

2-6 Airport and Aviation Plan

2-6-1 Air Traffic Volume

The target annual air traffic demands by route for key years were established as indicated in IV-2, for the planning basis of this Study. They are summarized in Table 2-6-1 to 3.

Table 2-6-1 Annual Air Traffic Volumes Projected (Domestic)

Item		Sta	ndard	14 15 15	Maxie	num
Airport	1987	1988	1999	/ 2000	1987 / 1988	1999 / 2000
	Pax	Cargo	Pax	Cargo	Pax	Pax
PESHAWAR	349,460	1,152	575,741	1,896	440,755	750,176
D. I. KHAN	45,150	41	81,088	73	-	-
SALDU SHARLF	28,950	17	48,701	29	_	
CHITRAL	35,757	112	57,386	180	+	-
ISLAMABAD	1,209,913	12,237	1,960,096	19,811	1,463,552	2,474,451
LAHORE	1,478,807	18,538	2,410,550	30,197	1,656,866	2,799,568
FAISALABAD	106,273	363	176,589	602	_	
MULTAN	241,885	875	407,396	1,473		
KARACHI	2,373,097	34,034	4,020,397	57,619	2,528,303	4,300,720
HYDERABAD	1,850	9	1,872	9	_	
NAWABSHAH	4,018	8	6,680	13	4 -	-
MOENJODARO	30,632	106	51,232	177	_	
SUKKUR	29,799	40	51,347	69		-
QUETTA	230,540	989	398,319	1,708	279,906	492,287
PANJGUR	21,226	10	36,568	18	=	-
TURBAT	55,963	116	100,578	207		
PASNI	28,666	118	44,548	183	_	
GWADAR	48,242	196	. 79,600	324	72,687	126,220
INAWI	7,699	14	12,337	23		
SUI	10,390	33	16,263	52		

Source: JICA Team estimation

Table 2-6-2 Annual Air Traffic Volumes Projected (Int'1)

Item	1987/	1988	19997	/ 2000
Airport	Pax	Cargo	Pax	Cargo
PESHAWAR	15,317	1,053	29,791	2,569
ISLAMABAD	371,802	19,730	627,768	44,472
LAHORE	99,591	6,605	185,765	17,874
KARACHI	3,425,515 *	103,457	5,913,529 *	247,800
GWADAR	4,292		6,905	·

Source: JICA Team estimation *: Not included transit passenger

Table 2-6-3 Annual Air Traffic Volumes Projected
(New Local Airport)

	(
Airport Year	1987/1988	1999 / 2000			
BANNU	10,232	15,174			
SARGODHA	66,612	132,156			
D. G. KHAN	11,444	17,688			
BAHAWALPUR	20,358	31,724			
RAHIMYAR KHAN	20,402	34,804			
ZHOB	4,570	6,938			
SIBI	1,540	2,604			
KHUZDAR	27,960	50,276			
ORMARA	15,478	24,520			

Source: JICA Team estimation

2-6-2 Breakdown of Air Traffic Volume

As the basis for the airport facility planning, the traffic demands expected for a peak hour of an average day of the peak month for the years 1988 and 2000 were used as recommended by ICAO (International Civil Aviation Organization), JCAB (Civil Aviation Bureau of Japan) and FAA (Federal Aviation Administration).

In this section, the above annual air traffic demands for 1988 and 2000 were broken down for various planning values for daily and hourly bases as formulated in Fig. 2-6-1.

All the coefficients and ratios are assumed as items (1) through (7).

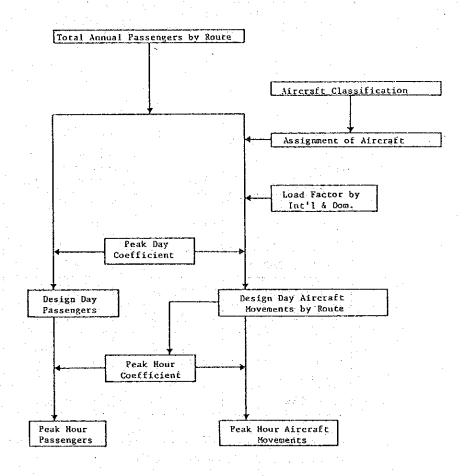


Fig. 2-6-1 Flow Chart for Breaking Down of Air Traffic Volume

(1) Aircraft Classification
For planning of airports, the aircraft expected to be operated in Pakistan are classified by type and size as follows.

Table 2-6-4 Aircraft Classification (Dom.)

ing disease of the second of t

Aircraft	No. of Seats	Remarks
B-747 class	500	The average No. of seats
		of B-747 SR (all
		economy)
Airbus class	320	The No. of seats of A-300
		- B4 (all economy)
Twin jet class	150	The No. of seats of
		DC-9-80 as model aircraft
		of Twin jet
F27 class	50	The assumed No. of seats
1944, 1941 1941, 1941		of this class in the
		future

Table 2-6-5 Aircraft Classification (Int'1)

and the second of	erana a <u>rientzia ekit</u>	graduation of the property of the control of
Aircraft	No. of Seats	Remarks
B-747 class	400	The average No. of seats
		of PIA's (380 seats)
		and other airline's
		B-747
Wide I	270	The average No. of seats
And the state of the		of PIA's DC-10 (280
the second	trong sugar	seats) and A300 (250
		seats)
Wide II	200	The general planning
		value
Twin jet class	150	same as domestic
F27 class	50	same as domestic

- (2) Assignment of Operating Aircraft
- Standard on Assignment of Operating Aircrafts for Domestic Flight Operation

The selection of aircraft type to be operated by route have been established based on mainly the above aircraft classification and the economical considerations.

Therefore, the standard on assignment of aircrafts for domestic flight operation is assumed as below according to annual passenger volume by route.

Table 2-6-6 Assignment of Operating Aircraft for Domestic Flight
Operation

Aircraft	No. of Seats	Annual PAX in one way
F27 class	50	UP TO 80,000
Twin jet class	150	80,000 - 200,000
Airbus class	320	200,000 - 600,000
B-747 class	500	600,000 -

Note: It is assumed that

- any route has more than one aircraft movement per one way, in one week
- -jet routes have more than two aircraft movements per one way, in one day.
- 2) Standard on Aircraft Mix for International Flight Operation

 The assumption of aircraft mix for international flight in the future,
 were made as Table 2-6-7 based on the present pattern at Karachi Airport
 and the forecast of aircraft appear in market in the world.

Table 2-6-7 Aircraft Mix for International Flight in Each Stage

A Committee of the Comm

1987/1988

(Percentage)

aircraft				·	
route	B-747 class	Wide I	Wide II	TOTAL	
MIDDLE EAST		in the same			·
& AFRICA	25	45 .	30 .	100	<u> </u>
EUROPE	65	30	5	100	<u> </u>
FAR EAST	70	20	10	100	
INDIA	35	50	15	100	

Agriculture of the second of t

1999/2000

aircraft route	B-747 class	Wide I	Wide II	TOTAL	
MIDDLE EAST	1941				
& AFRICA	30	45	25	100	
EUROPE	75	25		100	187
FAR EAST	80	15	5	100	
INDIA	45	45	10	100	

(3) Design Day Coefficient

Design day coefficient is presumed based on Japanese standard as follows.

Table 2-6-8 Design Day Coefficient

Route	Domestic	International
Design day		
Coefficient	1 / 330	1/300

(4) Peak Hour Coefficient

Peak hour coefficient is calculated according to the following by Japanese standard as follows.

Domestic $\alpha = 1.51 / A + 0.1151 (A \le 100)$ $\alpha = 6.61 / A + 0.0641 (A \ge 100)$

International $\alpha = 1.05 / A + 0.114$

Where, a: Peak hour coefficient

A: Peak day aircraft movements by airport

(5) Load Factor on Design Day

Load factor on design day is assumed 80% for domestic routes, and 70% for international routes, considering PIA'S1981 experience on domestic routes and general planning value used in international airport plan.

(6) Design Day Aircraft Movements by Route

Design day aircraft movements by route

- Annual Passengers by route x Design day coefficient Aircraft seats capacity x Design load factor
- (7) Peak Hour Aircraft Movements and Passengers

 Peak hour aircraft movements = Design day aircraft movements $x \alpha$ Peak hour passengers = Annual passengers x peak day coefficient $x \alpha$
- 2-6-3 Summary of Air Traffic Planning Volume

As the results of the calculations according to the procedure indicated in Fig. 2-6-1, the planning volume are summarized.

Table 2-6-9 to 12 indicate the annual passengers volume, design day movements and operating aircraft by OD (Origin and Destination.) Table 2-6-13 to 16 indicate the planning numbers broken down.

ORIG	DESTINATION	PEW	DSK	SDT	េជា	RWP	LHE	LYP	MUX	KHI	ноо	WNS	DUM	SKZ	UET	PJG	TUK	PSI	GWD	JIW	SUL	PDM (Dep.)	ВА	
	PESHAWAR		9,737 F SW	4,217 F 2W	17,942 F 1	41,770 F 3	22,357 F 2		3,229 F 2W	84,921 T 2			515									8 9W		2 6 9W
	D. I. KHAN	6,785 F 4W				5,265 F 3W	2		10,365 F 6W	601						adama a mindi sa mandi per milianya kumulayan						13W	_	1.3%
NWFP	SAIDU SHARIF	7,058 F 4W				9,529 F 5W										and the second of the second o						9W		9W
	CHITRAL	17,815 F 1																				1		_ 1
	ISLAMABAD	29,751 F 2	4,120 F 2W	8,146 F 4W			142,652 F 4		F 2W	350,529 A 4	<u> </u>				17,603 F 1							11 8W		4 3 8W
മ	LAHORE	21,868 F 2				146,445 T 4		1,331 F 1W	50,363 F 4	506,166 A 6					24,918 F 2							18 1W	6	4 8 10
PUNJAB	FAISALABAD					1,155 F 1W	1,799 F 1W		2,479 F 1W	48,105 下 4												4 3W		4 3W
μ	MULTAN	3,904 F 2W	8,275 F 4W		-	ļ	49,614 F 4	3,663 F 21		47,398 F 4			602	1,229 F 1W								8 11W		11v
	KARACHI	77,591 F 6	1 4				485,150 A 6		49,634 F 4		387	1,493 F 1W	12,510 F 1	11,859 F 6W	66,281 F 5	8,728 F 5W	22,354 F 2	10,398 F 6W	19,768 F 1	3,014 F 2W	3,475 F 2W	33 22W	10	2.25 2.25
	HYDERABAD									413			262	156										
SIND	NAWABSHAH		<u> </u>							1,460 F 1W			361	49								IM		1'
S	MOENJODARO	-							7 57	14,662 F 1	391	571						: .				1		1
	SUKKUR								1,712 F 1W	11,480 F 6W	241	63									1,579 F 1W	8W		8W
	QUETTA	 				18,79. F 1	26,140 F 2			69,121 F 5	<u> </u>	:					3,287 F 2W					8 2W		8 2W
	PANJGUR				<u> </u>		F 2			10,114 F 5W	•		 					60	1,207 F 1W			6W		6 W
_						 				23,098		21			4,230 F 2W			1,791 F 1W	6	7		2 3W		31
ISTAN	PASNI	<u> </u>		<u> </u>				<u> </u>		F 2 11,74 F 6W	1				167	391	1,122 F 1W		700	236		7W	-	71
BALUCHI	GWADAR						+			23,35 F 2						697	47	1,911 F 1W		394		2 1W		2
: 187					 					3,73	8							149	160			2W		21
	JIWANI		<u> </u>	1				 	 	F-2W 3,90 F 2W	4			1,431 F 1W								3W		3'
PE/	AK DAY MOV.	11			1	12	18	4	8	30 22W			1	1	8	5W	2 3W	8W	1 1W	2W	3W			
L.,	(Arr.)	10W	11W	6W		'11W	1W	3W	12W			1W		8W	2W) W	<u> </u>						-31	
	B-747							-		10		1												æ
	Airbus				<u> </u>	4	6		<u> </u>	 														
	T jet	11			1	4	4 8	4	8	18	-		1		8	_	2		1	2W	3W			
	F 27	10W	11W	6W		11W	1W	3W	12W	22W		<u> </u>		81/	2W	5W Aircraf	± Marram	- W8	1W	ZW	1 3w	ل ا		

ORIC	DESTINATION	PEW	DSK	SDT	СЛГ	RWP	LHE	L.Y.P	MUX	кні	HDD	wns	MJD	SKZ	UET	PJG	TUK	PSI	GWD	JIW	SUL	PDM (Dep.)	ВА	TF
	PESHAWAR		17,345 F1	7,205 F 4W	28,791 F 2	64,488 F 5	34,424 F 3		5,253 F 3W	145,994 T-4:			804									15 7พ		4 1.71
_{Рч}	D. I. KHAN	12,037 F 6W				9,153 F 5W	4		18,985 F 1	1,164 F 1W								·		:		1 12W		1 120
NWFP	SAIDU SHARIF	12,011 F 6W				15,894 F 1				·	·											1 6W		1 61
	CHITRAL	28,595 F 2																:				2		2
	ISLAMABAD	45,757 F 3	7,165 F 4W	13,590 F 1			214,428 A 3		6,401 F 3W	588,362 A 7					28,410 F 2					-		16 7W	10	6
_	LAHORE	33,589 F 3		ļ .		220,412 A 3		1,993 F 1W		848,438 J 6					40,160 F 3							21 1W	6 3	1
PUNJAB	FAISALABAD	<u> </u>				1,737 F 1W	2,699 F lw			80,604 T 2												2 4W		2 41
· D1	MULTAN	6,356. F 3W	15,234 F 1			7,386 F 4W	78,946 F 6	5,811 F 3W	1	84,211 T 2			972	2,060								9 12W		2 1 2 W
	KARACHI	133,091	t T			574,781	813,447	79,818		<u></u>	411	2,549 F IW	F 1W 21,256 F 2	F 1W 20,933 F 2	119,315 T 3	15,246 F	40,641 F 3	16,469 F 1	32,940 F 2	4,937 F 3W	5,530 F W		6 7	<u> </u>
	HYDERABAD	T 3				A 7	J6	F 6	T 2	435		r IW	251	155		-								
GNIS	NAWABSHAH	·								2,477 F 1W			557	78								111		11/
IS	MOENJODARO				<u> </u>					24,920	377	885							<u> </u>		 	1W 2		2 1W
	SUKKUR								F 1W	F 2	243	102									2,382	1W 2 3W		2
	 				<u> </u> 	30,389	42,157		F 2W	F 2 124,464		<u> </u>					5,748				F 1W	8		3 S
	QUETTA				<u> </u>	F 2	F 3			T 3							F 3W	88	1,873			3W		31
	PANJGUR				<u> </u>	<u> </u>				F 1 42,156		35			7,423			2,765	F 1W	11		1W 3		3
ISTAN	TURBAT							<u> </u>		F 3		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			F. 4W	573	1,713	F W	980	325		5W 1		5 ¹
BALUCHIS	PASNI								1	F 1					253		F JW		F 10	578		2W 3		2
BAL	GWADAR				ļ					F 3						1,089 F 1W	76	2,708 F 1R 204	231	3/6		2W		2W
	JIWANI					ļ				6,051 F 3W								1				3W		3W
	SUI			:						6,207 F 3W				2,144 F 1W	<u> </u>				2	٠.		4W		4W
PEA	K DAY MOV. (Arr.)	11 15W	2 4W	1 40	2	18 10W	21 1W	6 4W	9 11W	36 8W		1W	2 1W	2 2V	8 4W	1 1W	3 4W	1 2W	2W	3W	4W			
	B-747						6			6														
	Airhus					10	3			7														
	T jet	3							2	11					3									
	F 27	8 15W	2 4W	1 4W	2	8 10W	12 1W	6 4W	7 11W	12 8W		1₩	2 1W	2 2W	5 4W	1 1W	3 4W	1 2W	2 27	3W	4W			

Note: W - Weekly Aircraft Movement

Annual Pax and Aircraft Daily Movement by Route (International) Table 2-6-11

1987/1988

F27						A - 270 - 270 - 17							2W
13	4W	2 2 ^W	M7	14 6W					4W	2 2W	М7	14 6W	
TIM								10 6W				10 6W	
MI		2 8W	Μ5	12 10W			2 M	18		2 8W	М9	30 10W	
B4		2 4W	2W	8 M		2W	2W	14		2 6W	M7	22 6W	
Peak day Mov.	M7	6 14W	10W	34 22W	2W	ZW	4W	42 6W	М7	6 16W	14W	76 28W	2W
INDIA			10,532	301,326			36,396 2w 2w	1 [46,928	949,716	
FAR EAST		11,908		2 6W 4W				4 2 2 1		11,908		679,979	
EUROPE		163,686 2 6w 2w		115,953 6W 4W 2W		2w 19,501		751,432 6 4 6W		183,187		867,385	
MIDDLE EAST & AFRICA	15,317	176,707 4W 2 2	52,663 2W 2W 4W	1,337,653	4,292			720,578	15,317	176,707	52.663	2,058,231	4,292
AirportRoute	PESHAWAR	ISLAMABAD	IA LAHORE	KARACHI	GWADAR	K ISLAMABAD	CARRI	KARACHI	PESHAWAR	ISLAMABAD	TOT	KARACHI	GWADAR
						-3	<u> </u>	эхол 1	<u></u>				

Note: (1) The numbers in column of foreign carrier include the transit Pax. (2) W indicates the weekly aircraft movement.

Table 2-6-12 Annual Pax and Aircraft Daily Movement by Route (International)

F27					M.7								4W	-
11	6w	2	6W	20 4W					М9	2	м9	20 4W		×
MIL		:					2W	8 6 W			2W	8 <u>w</u>		it Pax
ΜÏ		7	877	24 6W			4W	22		7	12W	M9 9#		transit
B4		4 2W	2W	80 rd		2W	2W	26		4 tv	4W	777		the
Peak day Mov.	м9	10 2W	16W	62 10W	M7	2W	₩8	56 6Ŵ	M9	10 4W	24W	118 16W	4W	r include r.
MIDDLE EAST EUROPE FAR EAST INDIA	29 29 7.9 1	77 276.255 2W 21.947	91,601 21,593	2,25	6,905	26,789	72,571	1,1	29,791	302,777 303,044 21,947	91,601	3,285,538 1,278,769 1,118,355 1,693,351	6,905	Note: (1) The numbers in column of foreign carrier (2) Windicates the weekly aircraft movement.
Port	PESHAWAR	ISLAMABAD	LAHORE	KARACHI	GWADAR	ISLAMABAD	LAHORE	KARACHI	PESHAWAR -	ISLAMABAD	LAHORE	KARACHI	GWADAR	
Airpor			A	Id		83	GN SART	FORET			JATO	L]

-346-

35

(Domestic)
Numbers
c Planning
Traffic
Air
2-6-13
Table

Peaki hour 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			ş	-	0 20 30 00		Мометель		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PERSHAMAR 349,460 1,059 193 1,152 8,253 22.6 4 T jet, D. J. KHAN 45,150 137 77 41 1,488 3.4 2 FZ7 SADDU SHARIF 28,950 88 73 112 780 2.1 2 T/1 CHITRAL 35,757 108 94 112 780 2.0 2 T/1 ISCAMABAD 1.0478,807 4,481 702 18,538 13,244 36.3 4 Altburn PAISALARAD 1.0478,807 4,481 702 18,538 19,244 36.3 6 Altburn MULTAR 241,815 733 142 875 7,036 19.3 4 Altburn MULTAR 24,018 12 8 104 0.3 4 Altburn MULTAR 29,530 9 8 104 0.3 2.0 2 7 MORNADASSHAH 4,018 12 <	Airport	Courte	rassenger Peak day		Annual	Annual	Peak day	Peak hour	
D. F. KHAN 45, 150 137 77 41 1,246 3.4 2 FZ7 SADDU SHARF 28,950 88 73 17 760 2.1 2 "" CHITRAL 35,757 108 94 112 730 2.0 2 "" CHITRAL 1.209,913 3,666 637 12,237 9,383 25.7 4 Tabbus LISTAMABAD 1.478,807 4,461 702 18,538 13,244 86.9 3 45.454 PAISALABAD 1.650 63 142 83 7,036 19.3 4 1.444 NUMASSHAH 4,018 12 8 104 0.3 9 Atrbus, NUKKUR 29,799 90 69 40 82 1.6 7 "" PANIJGUR 230,540 669 144 989 6,048 1.6 7 "" PASNI 28,666 87 73 11	PESHAWAR	349,460			1,152	8,253	22.6	4	jet,
SALDU SHARIF 28,950 88 73 17 780 2.1 2 "" CHITRAL 35,757 108 94 112 730 2.0 2 "" CHITRAL 35,757 108 94 112 730 2.0 2 "" ISTAMBAD 1.209,913 3.666 637 12,237 9,383 25.7 4 Tabbus ASTAMBAD 1.209,913 3.666 637 12,237 9,383 65.3 6 4.4tbus PATSALABAD 1.06,223 3.2 2.2 86.3 3.2 8 "" WATAN 241,885 7.191 984 34,034 25,283 69.3 9 Atrbus, HYDERARAD 1.830 6 9 70.36 10.4 0.3 7 11 NAMADARA 29,799 90 69 40 572 1.6 1.9 1.1 PASNI 28,666 87 12		45, 150		7.1	41	1,248	3.4	2	F27
CHITRAL 35,757 108 94 112 730 2.0 2 "Intercreted and the problem of the	SAIDU SHARIF	28,950	88	73	17	. 180	2.1	2	=
LSTAMABAD 1.209,913 3,666 637 12,237 9,383 25.7 4 Airbous LAHORE 1,478,807 4,481 702 18,538 13,244 36.3 6 Airbous FAISALABAD 106,273 322 8.9 3,222 8.9 7 Airbous WULTAN 241,885 733 142 875 7,036 19.3 4 7 7 WULTAN 241,885 733 142 875 7,036 19.3 4 7 7	CHITRAL	35,757	108	96	112	730	2.0	2	÷
LAHORE 1,478,807 4,481 702 18,538 13,244 36.3 6 Affber afters FAISALABAD 106,273 322 92 363 3,232 8.9 3 F27 WULTAN 241,885 733 142 875 7,036 19.3 4 " WULTAN 241,885 733 142 875 7,036 9 4 " WARAGHI 2,373,097 7,191 984 34,034 69.3 9 4/104,018,0 8 104 0.3 8 17.0 NAWABSHAH 4,018 12 8 106 730 2.0 2 " SUKKUR 29,799 90 69 40 832 2.3 2 " PASINGUR 21,226 64 10 572 1.6 7 " PASIN 28,666 87 73 1,19 3.3 2 " PASIN 7,699	ISTAMABAD	1.209,913	3,666	637	12,237	9,383	25.7	7	Airbus iet.
FAISALABAD 106,273 322 92 363 3;23 8.9 3 FZ7 MULTAN 241,885 733 142 875 7,036 19.3 4 " MULTAN 2,373,097 7,191 984 34,034 25,283 69.3 4 " KARACHI 1,850 6 6 9 7 4 7	LAHORE	1,478,807	4,481	702	18,538	13,244	36.3	9	Airbus jet,
WULTAN 241,885 733 142 875 7,036 19.3 4 " KARACHI 2,373,097 7,191 984 34,034 25,283 69.3 9 Airbus, HYDERABAD 1,850 6 6 9 8 104 0.3 FZ7 NAMABSHAH 4,018 12 8 106 730 2.0 2 " MOENJODARO 30,632 90 69 40 832 2.0 2 " SUKKUR 230,540 69 144 989 6,048 16.6 3 " PANJGUR 21,226 64 7 116 1,772 4.9 2 " PANJGUR 55,963 170 72 116 1,199 3.3 2 " PASNI 28,666 87 73 128 2 2 " GRADAR 48,242 146 84 196 1,199	FAISALABAD	106,273	322	92	363	3,232	8.9	3	F27
KARACHI 2,373,097 7,191 984 34,034 25,283 69.3 9 Airbus, HYDERABAD 1,850 6 6 9 40.03 730 7.03	MULTAN	241,885	733	142	875	7,036	19.3	7	in the second se
HYDERABAD 1,850 6 9 9 104 0.3 NAWABSHAH 4,018 12 8 104 0.3 2 MOENJODARO 30,632 93 81 40 832 2.0 2 SUKKUR 29,799 90 69 40 832 2.3 2 QUETTA 230,540 699 144 989 6,048 16.6 3 PANJGUR 21,226 64 10 572 1.6 3 2 PANJGUR 25,963 170 72 116 1,772 4.9 2 PASNI 28,666 87 73 118 780 3.3 2 GWADAR 4,63,242 146 84 196 1,199 3.3 2 SUI 40,390 31 33 312 0.9 9 9	J	2,373,097	7,191	984		25,283		σ	~
NAMABSHAH 4,018 12 8 104 0.3 2 MOENJODARO 30,632 93 81 406 730 2.0 2 SUKKUR 29,799 90 69 144 989 6,048 16.6 3 QUETTA 230,540 64 10 572 1.6 3 1 PANIGUR 21,226 64 10 572 1.6 3 2 TURBAT 55,963 170 72 116 1,772 4.9 2 PASNI 28,666 87 73 118 780 3.3 2 GWADAR 48,242 146 84 196 1,199 3.3 2 JIWANI 7,699 23 33 312 0.9 0.9	1	1.850			6				
DARO 30,632 93 81 106 730 2.0 2 A 29,799 90 69 40 832 2.3 2 A 230,540 699 144 989 6,048 16.6 3 IR 21,226 64 10 572 1.6 3 C 55,963 170 72 116 1,772 4.9 2 R 28,666 87 73 118 780 3.3 2 R 48,242 146 84 196 1,199 3.3 2 I 7,699 23 14 208 0.6 0.9 B 1,0,390 31 33 312 0.99 0.99		4,018	1.2		æ	104	0		F27
t 29,799 90 69 40 832 2.3 2 t 230,540 699 144 989 6,048 16.6 3 IR 21,226 64 10 572 1.6 3 2 f 55,963 170 72 116 1,772 4.9 2 x 28,666 87 73 118 780 3.3 2 x 48,242 146 84 196 1,199 3.3 2 r 7,699 23 14 208 0.6 0.9 9.9	MOENJODARO	30,632	93	81	406	730	2.0	2	12
A 230,540 699 144 989 6,048 16.6 3 IR 21,226 64 10 572 1.6 7 IC 55,963 170 72 116 1,772 4.9 2 R 28,666 87 73 118 780 3.3 2 R 48,242 146 84 196 1,199 3.3 2 I 7,699 23 14 208 0.6 0.9 0.9 HO,390 31 31 33 312 0.9 9	SUKKUR	29,799	06	69	07	832	2.3	2	4.6
IR 21,226 64 10 572 1.6 1 55,963 170 72 116 1,772 4.9 2 2 8,666 87 73 118 780 3.3 2 3 48,242 146 84 196 1,199 3.3 2 7 599 23 14 208 0.6 0.9 0.9 40,390 31 33 312 0.9 0.9 0.9	QUETTA	230,540	669	144	686	6,048	9	3	11
C 55,963 170 72 116 1,772 4.9 2 28,666 87 73 118 780 3.3 2 3 48,242 146 84 196 1,199 3.3 2 1 7,699 23 14 208 0.6 6 40,390 31 33 312 0.9 6	PANJGUR	21,226	79		10	572	1.6		1.5
28,666 87 73 118 780 3.3 2 3 48,242 146 84 196 1,199 3.3 2 7,699 23 14 208 0.6 3 40,390 31 33 312 0.9	TURBAT	55,963	170	72	911	1,772	6.4	2	11.
X 48,242 146 84 196 1,199 3.3 2 I 7,699 23 14 208 0.6 40,390 31 33 312 0.9	PASNI	28.666	87	73	11.8	780	3.3	2	42
ANI 7,699 23 14 208 0.6 and a 31 312 0.9	GWADAR	48,242	146	84	196	. 6	3.3	2	=
33 312 0.9	JIWANI	7,699	23		14	208	9.0		=
	SUI	-10,390			33	312			2

Table 2-6-14 Air Traffic Planning Numbers (Domestic)

	***************************************					Morroment		Astronater
Item		Passenger Dook Jour	Dear hour	Cargo	Annual	Peak day	Peak hour	مبدحتم
Trotte	Annual	ברפה חפץ	15011	900 -	10.637	29.1	5	T jet, F27
SHA	575,741	1,745	エムフ	1,030	FO.01	ν. Υ.	2	F27
D. I. KHAN	81,088	246	98	/3	1,36,1	0.0	1	
SAIDU SHARIF	48,701	148	83	29	1,250	3.4	2	Ξ
CHITRAL	57 386	174	98	180	1,460	4.0	2	=
ISLAMABAD	1,960,096	5,940	930	19,811	13,294	36.4	Q	Airbus, F27 R-747
1.AHORE	2,410,550	7,305	1,102	30,197	15,434	42.3	9 ,	
FAISALABAD	176,589	535	150	602	3,336	9.1	ო	T jet, F27
MIII TAN	968 207	1,235	230	1,473	7,766	21.3	7	
KARACHI	4,020,397		1,644	57,619	27,790	76.1	10	B-747, Airbus T jet, F27
HYDERABAD	1.872	9		6				
NAWABSHAH	6,680	20		13	104	0.3		F27
MOFN TODARO	51 232	155	72	177	1,564	4.3	2	=
SUKKUR	51,347	156	68	69	1,720	4.7	2	=
OUETTA	398,319	1,207	246	1,708	6,204	17.0	8	T jet, F27
PANJGUR	36.568	111	86	18	834	2.3	2	F27
TURBAT	100,578	305	86	207	2,658	7.3	2	•
PASNI	44.548	135	76	183	938	2.6	2	<u>.</u>
GWADAR	79,600	241	63	324	2,033	5.6	2	-
JIWANI	12,337	37		23	312	6.0		
rns	- 16,263	67		52	416	3.2		

Air Traffic Planning Numbers (International)

			1	1		Morromon		į.
T+am/		Passenger		Cargo		ביי עווייי ויי		Aircrart
/	Fallond	Peak day	Peak hour	Annual	Annual	Peak day	reak nour	
Alrport	Calling A	L			000	u		(1) (1)
PESHAWAR	15,317	51		1,003	007			
*								B-747
TOTANADAD	371.802	1,239	298	19,730	3,022	8.3	2	WIDE-I, T jet
LSCAMABAN				ı		0	r	B-747
TAHORE	99,591	332	212	6,605	728	7.0	- 1	WIDE-I, T jet
								R-747 " WIDE-T
TUO AU A	3,425,515	11,418	1,452	1,452 103,457	29,196	0.08	2	WIDE-II T set
NAMACIIT								700
GWADAR	4.292	14			104	0.3		77/

*: Not include transit passenger

1999/2000

		70000000		Cargo		Movement		4.からかの子仕
I ten	Laway	Peak day	Peak hour	Annual	Annual .	Peak day	Peak hour	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Althort	79 791	66		2,569	312	6.0		T-jet
Total total	627,768	2,093	977	44,472	3,858	10.6	2	B-747 WIDE-I T iet
TANDE	185.765	619	262	17,874	1,248	3.4		B-747 WIDE-I
TENOTINE AND A VANA VA	5 913 579*	19,712	2,419	247,800	43,902	120.3	1.5	B-747 WIDE-I WIDE-II I iet
GWADAR	6,905				208	9.0		F.27

*: Not include transit passenger

Table 2-6-16

Air Traffic Planning Numbers (New Local Airport)

I tem		Passenger			Movement		1 1 1
Airport	Annual	Peak day	Peak hour	Annual	Peak day	Peak hour	Alrerare
BANNU	10,232	31		312	0.0		F-27
SARGODHA	66,612	202	74	2,190	0.9	2	11
D.G. KHAN	11,444	35		312	6.0		44
BAHAWALPUR	20,358	62	54	730	2.0	2	=
RAHIMYAR KHAN	20,402	62	54	730	2.0	2	11
ZHOB	4,570	7[104	0.3		ŧ
SIBI	1,540						=
KHUZDAR	27,960	85	7.4	730	2.0	2	4 2.5
ORMARA	15,478		41	730	2.0	2	±

1999/2000

Trem		Passenger			Movement		
Airport	Annual	Peak day	Peak hour	Annual	Peak day	Peak hour	Aircrait
BANNU	15,174	46	07	. 730	2.0	2	F-27
SARGODHA	132,156	400	106	3,650	10.0	٣	#
D.G. KHAN	17,688	54	L 7	730	2.0	2	1
BAHAWALPUR	31,724	.96	84	730	2.0	2	100 m 671 ±
RAHIMYAR KHAN	34,804	105	16	730	2.0	2	*
ZHOB	6,938	21		208	9.0		: .
SIBI	2,604	80		104	0.3		=
KHUZDAR	50,276	1.52	7.5	1,460	4.0	2	
ORMARA	24,520	7.4	64	730	2.0	2	:
	2221						

2-6-4 Facility Requirement

This chapter sets forth the airport facility requirements which are estimated based on the volume of air traffic forecast reported in the previous chapter, and also in compliance with the relevant standards, recommended practices and/or regulations of ICAO, JCAB and FAA.

(1) Runway

 $_{\mbox{\scriptsize Runway}}$ lengths at each airport were estimated respectively according to the requirement by operating aircraft.

- 1) The major airports which will handle B-747 and Airbus in the future were checked the possibility of taking off and landing under the conditions of maximum pay load, airport altitude and temperature, utilizing the ICAO standard.
- 2) The airport to which Twin Jet will be introduced has already the runway suitable for B-707 which require the longer runway length, existing runway of such airport suffice future requirement.
- 3) The local airports which F-27 class aircraft will be introduced in the future, will require the runway of 2000M (6500FT) according to the FAA. However, some airports now in service have shorter runway length than 2000M. In this case, existing runway were justified to be enough. But the runway of Gwadar Airport was planned to extend 2,000 m suitable for the international flight.

(2) Taxiway

At Karachi, Islamabad and Lahore Airports the instrument approaches will exceed scarecely four flights during the peak hour after 1988 and operation of the wide bodied jet aircraft will become frequent. Therefore, a complete parallel taxiway with perpendicular exits will be necessary in 1988.

(3) Apron

Calculation Method for Required Number of Aircraft Stands
 The following formula is used to obtain the required number of aircraft stands for the key years.

$S = Ti / 60 \times Ni \times 1.2 + \alpha$

Where S: Required number of aircraft stands,

Ti: Gate occupancy time in minutes,

Ni: Number of arriving aircrafts during the peak hour,

α: One extra stand for the largest aircraft of the planning year for unexpected peaking occasion. (1 extra for every 10 stands)

2) Gate Occupancy Time

The gate occupancy time for each category is assuming as tabulated in Table 2-6-17, with a margin for delay considering current condition.

Table 2-6-17 Gate Occupancy Time

(minutes)

		Occupanc	y time
Fli	ght or Airport	L jet	Others
	Primary Airport	80	55
Dom	Others	70	45
	PIA	130	70
Int'1	Foreign Carrier	70	

Notes:(1) Primary Airports-Karachi, Islamabad, Lahore, Peshawar, Quetta
(2) L jet- B-747, Airbus class

Apron Space

Apron Space is decided as Table 2-6-18 taking into account wing span, overall length and operating procedure of aircraft on the apron.

Table 2-6-18 Parking Space Requirement

(meters)

		wi	dth
Dom / Int'l	Procedure	Nose-in /Push-out	Self Maneuvering
	Aircraft Airport	KARACHI, ISLAMABAD LAHORE	Other
	B-747, Airbus	70	_
Dom	Twin Jet	45	60
	F-27	and the second of the	50
Int'1	B-747, Wide I	70	-
int i	Wide II	60	

*: Each figure includes the clearance between each aircard

(4) Passenger Terminal Building

The floor area required for the passenger terminal building is calculated by multiplying the number of the hourly peak passengers by the unit floor

The unit floor area per hourly peak passenger at each airport is established to be 15 m² for domestic use and 35 m² for international use taking into consideration Japanese standard and rather high well-wisher at Pakistan. (ICAO has no definite standard, and some of the advanced countries now adopt the standard similar to that of Japan.)

In addition to these space for embarkment or disembarkment passengers requires $10~\text{m}^2$ for the unit floor area is required for the international transit passengers.

(5) Cargo Terminal Building

In case of manual handling system on cargo, JCAB recommends following cargo handling capacities for the airline offices and agency offices.

Table 2-6-19 Cargo Handling Capacities

, ,	Airline office	Agency office
Dom.	0.067	0.02
Int'l	0.166	0.06

Unit : ton/sq.m.

Therefore, cargo handling space required is calculated by multiplying the above mentioned values by cargo demand.

(6) Car Parking

The following formula is used to calculate the required car parking spaces.

 $A = P \times C \times L$

Where, A: Required car parking spaces

- P: Number of peak hour passengers
- C: Number of parking spaces per peak hour passenger (0.8 by Japanese and FAA standard)
- L: Unit space for one lot (35 m² including incident space by general planning value)

(7) Air Navigation Systems

Air navigation systems will generally include radio navigational aids, air traffic control, aeronautical telecommunications, meteorological and aeronautical lighting systems.

Air navigation systems have been planned in this study for air routes and airports in compliance with the international standards, i.e., Standards and Recommended Practice of International Civil Aviation Organization (ICAO). However, detailed planning practices which are not included in those of ICAO Standards have been supplemented by the standards of Civil Aviation Bureau of Japan.

The basic planning criteria of major navigation equipment are as follows;

1) Radar Approach Control

Radar Approach Control Unit will be justified when annual aircraft operations would exceed 10,000 movements under instrument flight rules (IFR). Equipment necessary for the unit will include a terminal ASR/SSR and associated control consoles.

2) ILS Category-I / Lighting Category-I

Installation of navigational aids and lighting equipment which will allow the category-I operation will be justified for an airport where turbo jet aircraft operate as scheduled civil transport.

Equipment necessary for Cat .- I operations will be as follows;

ILS Category-I

Approach Lighting System Category-I

Visual Approach Slope Indicator System

Runway Edge Lights

Runway Threshold Lights

Runway End Lights

Taxiway Edge Lights, etc.

Terminal DME allocated with ILS will be applicable where outer marker could not justified for geographical and/or economical reasons.

3) ILS Category-II / Lighting Category-II

Installation of Category-II equipment will be justified to the highly congested international airport provided that such installation could result in, to the great extent, the economic benefits and contribution to aircraft operations safety.

Those equipment will include the followings;

ILS Category-II

Approach Lighting System Category II

Visual Approach Slope Indicator System
Runway Edge Lights
Runway Threshold Lights
Runway End Lights
Runway Center Line Lights
Touch Down Zone Lights
Taxiway Edge Light
Taxiway Center Line Light, etc.

4) VOR/DME

Installation of VOR/DME will be justified for airport where scheduled civil aircraft would be operated. NDB will be also applicable instead of the VOR/DME under conditions that the annual aircraft movements should not exceed 3,000 operations and interception to the airport of destination could be safely made by an adjacent VOR/DME or VORTAC located within 40NM radius from the airport.

2-6-5 Development Plan for Airport Facilities

Based on the facility requirements discussed in previous chapter and other informations about existing condition of facilities, development plan of each airport were made through layout plan, pavement design and cost estimation.

(1) Basic Consideration

Basic considerations on development planning are outlined as follows.

(a) Karachi International Airport which will handle 10.0 million passengers in the year of 2000, plays an important role in Pakistan aviation as a main gateway to the country for international air traffic and as the most advanced air base for domestic air routes.

Therefore, the terminal facilities are desirable to be developed with high priority and to be improved radically in the face of additional demands. And as no major repair or maintenance works can be undertaken for main runway because of the continuous traffic operation secondary runway shall be extended, strengthened and new several taxiways shall be installed for use of these during the main runway repaired and strengthened.

(b) Islamabad and Lahore Airport which is estimated to handle 2.6 million passengers in the year of 2000, are secondary major international airport next to Karachi International Airport and they are the air bases in northern part of Pakistan. Therefore, the development plans of these airports are also to be made emphasising priority to another airports.

The existing terminal area should be to relocated from the view point of its function and future expansibility.

The present runway strength of Lahore Airport is too weak for improvement in response to expected future traffic volume and for withstanding aircraft weight without complete closing down of the runway. Suitable sites of new terminal area were selected respectively to north side of the runway for Islamabad Airport and to east side of the runway for Lahore Airport.

To solve this problem, it is suggested that new parallel runway shall be provided and the existing runway shall be converted to parallel taxiway.

The plan of parallel taxiway at Islamabad Airport is effective to reduce the waiting time of holding aircraft and assessed feasible.

- (c) Nawabshah Airport is desirable to be developed as an alternative airport for both international and domestic flights to Karachi Airport in case of emergency.
- (d) In order to strengthen the pavement to meet the increasing traffic volume and heavier aircraft, the runways and taxiways shall be overlayed at each airport. And, even if the existing condition of the pavement will continue in the future, the runway and taxiway shall be overlayed to prevent deterioration and to maintain the smooth surface.
- (e) Construction of local airports which has low rate of traffic demand may be justified feasible from the view point of civil minimum. And they shall be planned suitable for F-27 class in near future.
- (2) Development Plan
- (a) Development plan at each airport are summarized as Table 2-6-20.
- (b) Development plans for maximum demand at several main airports, which were projected in "Traffic Demand Forecast", were carried out for reference purpose only.

Table 2-6-20 Airport Masterplan

and the same of th

	CARCO TERMINAL MIDG.	/ 2,500 a ² / Daggo		and the second			2.00	2,250 m² / 5,520 m² / 11,770 m²		/ 3.100 m ² / 6.650 m ²			/ 800 m ² / Dirto	30 m² / 2,000 m² / Dieco		7,500 m² / 26,350 m² / 61,050 m²						/ 90'#² / 150 #²							
Andicates atroom masser plan / 1988 / 2000 .	PAX TERNEMAL BLDG.	5,000 m ² / 10,250 m ² /	ŀ√l ·	/ 1,200 m / Ditto	/ 1,200 m² / Ditto	/ 1,200 m ² / Ditto	8,300 m² / 19,990 m² / 29,560 m²	DOM. / 9,560 / 13,950	INT'L / 10,430 / 15,610	\$,300 m ² / 17,950 m ² / 25,700 m ²	065,81 / 062,01 /	IMT'L / 7,420 / 9,170	816 m ² / 1,380 m ² / 2,250 m ²	1,050 =2 / 2,130 a ² / 3,450 a ²	27,800 m² / 67,970 m² / 112,320 m²	.2031. / 24,750 / 24,650	INT'L / 53,210 / 87,660		/ 6,980 m² / 13,810 m²	=2 / 1,200 =2 /	225 = 1,200 = / Dieto	5,800 m² / Mitto / Ditto	360 m ² / 1,200 m ² / Direc	/ 1,200 = /	220 = 1 1,200 m / Ditto	150 m² / 1,200 m² / Ditto	160 m ² / 1,200 m ² / Dáteo		/ / 1,200 m ²
The value in each colluen indicates skyport in the year of PRESENT (1988 / 2000 .	CAR PARKING	/ 11,280 m² / 14,030 m² / 5,400 / 8,150	380 / Dieto	/ 1.600 p ² / Dicto	/ 1,600 m² / Direc	/ 1,600 m ² / Dicto	19,000 m² / 26,180 m² / 38,530 m²	DOB. / 17,840 / 26,040	1 8,340 / 12,490	3,200 m² / 25,600 m² / 38,200 m²	308. / 19,660 / 30,860	INT'L / 5,940 / 7,340	3,620 m² / Datto / 4,200 m²	2,500 m² / 3,980 m² / 6,440 m²	15,000 m² / 68,210 m² / 113,760 m²	юн, / 27,550 / м6,030	INI'L / 40,660 / 67,730		/ 1,600, n ² / Extro	4,000 m² / Dieto / Ditto	/ 1,600 m ² / Dirto	2,400 m² / 4,030 m² / 6,890 m²	/ 1,600 m² / Dieto	/ 1,600 m ² / Ditto	/ 1,600 m ² / Ditto	/ 1,600 m² / Ditto	1 1 600 = 2 / 14 570	/ 1.60 m² / Direo	/ 1,500 w ²
	APRON	2: Airbus 2: B-737 / Ditto / Ditto		2:F-27 / Direco / Direco	2:F-27 / Dirto / Dirto	1:F-27 / 2:F-27 / Ditto	2:B-743 6:B-747 7:B-747 2:B-707 2:T-JET 1:Y-JET 4:9-27 1:Y-27 2:P-27	318-747 418-747 11T-377 218-22	/ PAtto	2:DC=10 5:B=747 6:B=747 1:B=707 2:T=727 1:HIDE=1X 4:F=27 2:F=27 2:F=27	DOM, 3:8-747 4:8-747 1:1-3:1 2:8-27 2:8-27	/ 2:5-747 1:WIDE-II	: >	1:8-707 Dirto 2:1-121 2:8-27 Dirto 2:8-27	8:8-747 13:8-747 13:8-747 4:8-707 13:8/128-12 13:8/128-11 4:8-27 3:8-28 4:8-28 2:8-28	DOM. 4:8-747 4:8-747 117-727 2:7-127 6:8-27 2:9-27	1/1		1:8-27 3:8-24 6:8-747 2:8-27 2:8-27	_	1:7-27 / 2:2-22 / Direc	2:Mrbus / Dirto, / Dirto	1:F-27, / Picco / 2:F-27	1:F-27 / 2:F-27 / 3:F-27	-	2:P-27 / Ditto / 3:P-27 DOM. / 2:F-27 / Ditto	, , , , , , , , , , , , , , , , , , , ,	1:7-27 / 1,7-27 / 1,100	-
Mascerplan	TAXIWAY	840 m / Dirto / Dirto		. 260 m / Ditto / Ditto	75 m / Ditto / Ditta	75 m / Ditto / Ditto		900 m / 3,140 m / 15,150			3,090 m / 4,105 m / Ditto		463 m / Ditto / Ditto	3,800 m / Ditto / Mitto		5,070 m / 6,710 m / Ditto		150 m / Ditto / Ditto	175 m / 1,186 m / 1,606 m	230 m / Dieto / Dieto	2,990 m / Dirto / Dirto	600 m / Dieto / Dieto	120 m / Dicto / Ditto	370 m / Ditto / Ditto	150 m / Ditto / Ditto	235 m / Datto / Datto		300 m / Ditto / Ditto	/ / / 75 %
2-6-20 Airport M	EUNWAY	7.750 m / Deres / Deres		1,500 m / Dirto / Ditto	1,830 = / Dirto / Dirto	1,830 . / Dicto / Ditto	7.5	1,730 m / 3,200 m / Ditto			2,750 m / 3,250 m / Dicto		2,750 m / Dicto / Dicto	2,750 m / Datto / Ditto	1	2,265 m / 3,200 m / Dicto		2,150 m / Ditto / Ditto	2,750 m / Ditto / Ditto	1,980 m / Dicto / Dicto	2,750 m / Ditto / Ditto	3,460 m / Dieto / Dieto	1,560 = / Ditto / Ditto	1,500 m / Ditto / Ditto	2,750 m / Ditto / Ditto	1,500 m / 2,000 m / Ditto		1,650 = / Mute / Mute	1,500 = 1 pages / pages
rable 2	ATRPORT.	E AMARANA		D.I. ZHAN	SATTA SHARIY	CHITAL		TELAMANAD		ZYTNN	NAOEV T		TATSALABAD	MILLAN		KARACKI	ahts	HYDERABAD	HVESTVEN	BOENTODARO	SUCCUE	QUELLA	PANJGUR	L	TASAT	27.0		THANL	MEN LOCAL ATREORY

2-6-6 Development Plan of Air Navigation Systems

The major planning objectives and concept of air navigation systems are described hereinunder.

- (1) Basically air navigation systems will be newly planned and/or upgraded to meet the aircraft operation requirements in correspondence with the increased air traffic volume forecast and introduction of newly developed larger aircraft, taking into consideration internationally acknowledged standard level and future tendency of navaids development.
- (2) Obsolescent facilities which are neither fully operational nor reliable to the air safety will be replaced preferentially, in order to eliminate the significant hazards.
- (3) New facilities which allow to expedite safe and orderly aircraft operations will be positively planned, thus the delays, excessive fuel consumptions and diversions could be reduced to the minimum.
- (4) En route navigation aids such as en-route VOR/DME and remote controlled VHF Air to Ground communications facilities will be preferentially upgraded to the international level to provide adequate en route guidance of major international airways G2, G52, AI and G72.
- (5) En route air traffic control facilities, i.e., ARSR/SSR and the related VHF/HF communication network are planned to provide safe and efficient traffic flow in Pakistan Airspace after the terminal ASR/SSRs could be in full services.
- (6) Aeronautical telecommunications facilities for both mobile and fixed services are planned to improve the communications difficulties due to equipment absolescent and insufficiency of serviceable coverage.

Those facilities include ATS direct speech circuits, Aeronautical Fixed Telecommunications Network (AFTN) and related automatic message exchange, VHF/UHF A/G radios and UHF/VHF links.

- (7) Buildings for Flight Information Center, Air Traffic Control Center, Search and Rescue Coordination Center, etc. are proposed for modernization of air traffic services.
- (8) Training facilities and centralized maintenance centre (depot) are proposed for familialization to the highly sophisticated radio equipment and to maintain those equipment to the satisfactorily operational conditions.

- (9) ASR/SSRs are proposed for the major airports in order to expedite safe and efficient aircraft operations especially in the congested Controlled Terminal Area (CTA).
- (10) Precision Approach Category-I (ILS Cat.-I and Lighting Cat.-I) is proposed for the major airports during fiscal years of 1983/1988.

During the same period, non-precision IFR approach (VOR/DME or NDB) is proposed for the minor airports where the forecast does not allow turbo jet operations.

- (11) Precision Approach Category-I will be upgraded to Category-II in the major airports during the fiscal years of 1989/2000. Non precision IFR approach is proposed for the minor airports where the forecast still does not encourage the turbo jet operation.
- (12) It is noted that the equipment installed during the fiscal years of 1983/1988 shall be partly replaced within 10 years to improve the expected obsolescent condition except mechanically rigid parts such as antennas, cables, etc.

The proposed air navigation systems plan is summarized in Table 2-6-21,22.

2-6-7 Fleet Plan

Based on the estimated aircraft movements on peak day by route, the forecasted number of aircraft required by PIA (Pakistan International Airlines) were roughly estimated as tabulated in Table 2-6-23, under the study of flight hours by route and annual operating hours by aircraft.

Assuming the aircraft service period in PIA to be about 15 years in average, fleet of PIA up to 2000 is planned as shown in Table 2-6-24.

Table 2-6-21 Air Navigation Systems Plan

X : EXISTENCE O: PLAN(New / Upgrade / Repincement)

					¥ ×	RADIO AI	AIDS			сом.		1110	LIGHTING AIDS	Albs		MET.	-
, 0														Г			KEMAKKS
	NAME	rics	ASR /SSR	11.5	VOR	าหล	HO-J	NDB	OTHERS	. коз	Al.S	RWL	VASTS	TWL	APRON	RVR	
								×	var X	×	×	×	×			1	GCA is available
-	PESHAWAR				0	С		1		0			o	0	0		
								×									ŧ
ú	D.I.KHAN				0	0							O				
												ir.		1			*By DAC
m	SAIDU SHARIF						0 -	* 0					С				
						1 :			1 12				, .				
4	CHITRAL						0						0				
	-			×	×			×		×	×	×				1	
'n	ISLAMABAO		0	C	С	0	0	0		0	0	0	0	0	o	C	
				>	×			×		×	Ξ×	(2) ×	(3) X				(1) CarI not (2) avaitable
. .	LAHORE		0	0	0		0			0	0	O	0	0	0	0	(3) 2Burvasis
								×		X		(4) X	1				(4) Cat1 Not Available
`	FAISALABAD			* 0	*	0	.0	С		0	0	0	0	0	С		*By DAC
	1				×			×	,	×		(5) X				1	(5) Direc
90 .	MULTAN			* 0		0		С		0	О	0	0	0	0		משת לפי
			×	×	×	×		×		×	×	×	×	×	×	1	
о	KARACHI		0	0	0	0	0		0 VOR-2	o	0	o	0	0	С	0	
L			ļ Ļ										1				
2	HYDERABAD					1		2				0	0	0		Water Barrell	

REMARKS *By DAC *By DAC X : EXISTENCE / Upgrade / Kuplacement) M F F 3 4 8 c APRON 0 0 LICHTING ALDS TWL 0 Ç VASIS 0 a 0 C 0 ×lo 0 0 0 0 x o ၁ o 0 RWL 0 0 0 ALS 0 0 Table 2-6-22 Air Navigation Systems Flan (cont'd) COM. COM. × o 0 OTHERS X X O MI.S × 0 NDB × o × c 0 × c × 0 0 TEO-T c RABIO AIBS * 0 DMG ၁ 0 0 0 * 0 * C VOR 0 × 0 0 * * ASB /SSR PHYSICAL Characteristics AIRPORT Name MONENJODARO NAWABSHIAH GWADAR PANJGAR JIMANI TURBAT SUKKUR QUETTA PANSI SUJ 13 89 0 . 02 11 91 13 Ä 7 7.5

Table 2-6-23 Fleet Forecast

Year						
Туре	1982	1988		20	00	Remarks
of Aircraft						
		Int'l 7		13	16	
B-747_	3 (4)	Dom	7	3	(17)	
		Int'l 3	•	6		
DC-10	3	Dom. 2	5	2	8	
		Int'l 6	8	10	12	
A-300	4	Dom. 2	(9)	2	(13)	
		Int'l -				and 2
B707/720	7	Dom	_	-		Freighters
		Int'1 10		13	16	
Twinjet	· .	Dom. 1	11	3	(17)	
		Int'l l	19	1	16	
F-27	9	Dom. 19	(20)	15	(17)	
÷	26	Int'1 27	50	43	68	
TOTAL	and 2	Dom. 24	(52)	25	(72)	
	Freighters			<u> </u>		<u> </u>

Note: Mark () indicate the number including spare aircraft

Table 2-6-24 Fleet Plan of PIA

ircraft	1960		1970		1960	'32		۱9۰ س	90 20	00	Year	
	\mathbf{T}		-]						
(G6000000000000000000000000000000000000							····		ļ	1	i
(3				-					1	. 1	ĺ
{	3						6		······································	•		ĺ
. 9	2							•		1		
è	3	1. 1.	1							1		1
Ç	2				ļ			e i		1		ĺ
1	31								8	1		1
	3		}					i	&	1		
	3								9	}		
j	3		1		11			. 1	6	1 .	. 1	İ
	3	1800		11								l
	=									<u> </u>		ĺ
c-10	क्राक्टाक्टाक्ट क्राक्टाक्टाक्टाक्ट	* 4		-						┨		1
(₹		. 1						——————————————————————————————————————	-† - a a		ļ
(3						. •	•		Ť		1
į	위 [•	1			. 4			1		
ì	8					ŀ			•	4		
										1		1
2-300	ð <u>1</u>	tenarks				_		 _		-		1
1	ଥ -	Life span				_				1	•	1
į	ଷ -	Life span					8			-		
. !	왕 [-	e . Timing of		2		ļ				1		i
	⊗	O Timing of	retired			Į	•					1
	2	Timing of	tevener			1			6] .		
	<u> </u>						:			1		1
	8			1		·				1		ļ
										 		1
тэг кил	었는									7		
	ØΙ.					1	•			-1		1
	81	•				1				-]
	Ø						•			- ∤ ·		
	8					1]	•		7		1
	Ø		İ			1.		•				1
	81							6 — ····		I		
	[3]					Ì	Ì		•	-		
	8		ļ							4		
	Ø								0	-		1
	CECECOCOCOCO						- 12		-	7		1.
						+-				 		7
3-707	0000											
	21					+-	-0	*				
						Ţ	15.4		<u> </u>			-
3-707F	0		-		```	-				-		1
		··				1		<u> </u>				-{
3-720	2		 +			 	100			1		
	8					Ţ	o					
						1-	1			1	-	7
î-27 ciass	Ø											1
	<u>g</u>	-				1	-9		1			1
	5					I	9					
	81	: 1.1	 	<u></u>		_	 			_		-
	8	-				1				-		1
i	<u>g</u>					+	 		<u> </u>	<u></u>		
	81		- 1			1				<u>í-</u>	•	j
	21	e in a second					•		+			1
	出					1						1
	91				-	1 :		•	+			1
	18		.					*		Ξ.		
	49		1					•	· 			-
	81					1		- -		7		1
L		<u> </u>	1.] .	1				·	1.
			·									
		***		* *		- '						
									•			•
			-		. –	- 36	3 —					

2-7 Others

2-7-1 Inland Water Transportation

For determination of possibility and feasibility in utilization of the River Indus and the canal network mainly concentrated in the Provinces of Punjab and Sind as a means of transport, some studies and reconnaissances were carried out in the past.

According to the results of these studies, transport costs by inland waterway will be less than that by other modes of transport when the physical and engineering factors are not concerned. At the same time, in consideration of anticipated increase of the cost of energy, inland waterway transportation might become more economical than the other modes of transport.

However, there exists many serious problems which had been pointed out in these studies and also there are many issues to be raised by the officials in charge, which are noted as the following:

- (1) Many bridges don't have sufficient freespan and air clearance over the maximum water level.
- (2) There are many obstacles which prevent the introduction of Inland Water Transportation. These are low bridges, regulators, locks, barrages and dams. For example, a) there are bridges every 3 kms and dams every 80 kms at the outskirts of Lahore, b) the goods sent from Peshawar to Karachi have to be transshipped at least four times, c) there are locks every 13-16 kms on the average.
- (3) Since the river water is almost supplied from rain and snow melt in the mountains, the flood discharge in summer is much greater than in winter, and consequently the fluctuation is very powerful and the course shifts seasonally. It is also to be noted that there is not sufficient water depth during spring season and in some canals navigation is possible only for a few months.
- (4) Some of the railway and roads structures cross over the rivers and canals. Because these structures were constructed without taking navigation into consideration.

- (5) In water-logged areas, stability of canal slopes is a serious problem.
- (6) Navigation in the Indus River is not a smooth sailing affairs, because a great deal of risk is involved. For example, floods, storms, insufficient water depth and banks are parts of such navigational hazards.

As mentioned above, for utilizing rivers and canals as a regular mode of transportation of goods to up country and vice versa, obstacles to be removed are too many.

To establish the Inland Water Transportation Systems, a huge investment for removal of many obstacles in the rivers and canals will be required, that is, extensive remodelling of canals is needed for navigation purposes. That will make the navigation schemes very expensive and uneconomical.

Therefore, the canal network has not been utilized for transport. Up to now, the water has been brought into extensive use as a valuable source of irrigation water and generation of electric power. It plays an important role in irrigation in particular, that is, it is essential for the production of certain crops, such as fruits, sugarcane and tobacco, etc. The canals are the major sources which account for about 73% of the total irrigated area. In other words, canal network needs a series of barrages, locks and canal headworks which control the diversion of flows into the designated canals for irrigation.

Accordingly, there is no on-going and expected project of Inland Water Transportation for the Indus River and various canals. In conclusion, it is to be suggested that the in-depth study shall be conducted on all the issues as above mentioned in close coordination with the Ministries concerned.

2-7-2 Pipeline for POL Transport

According to the result of micro scopic traffic demand forecast with compound growth rate of about 5 percent per annum, it is estimated that the volume of the POL products to be consumed in the two provinces of Punjab and NWFP will be about 6.5 million tons in 1999/2000.

As a calculation purpose, if the aforesaid demand is to be met by the pipeline with a bare assumption that a new oil refinery will be constructed close to the PQA premise and the line will be running from the refinery to

the Multan Terminal for transport of POL products, it is estimated that the length for same would be about 870 km if it is running in parallel with the existing one.

With such assumption, a very rough cost for construction of the new pipeline would be about Rs. 1,440 million including pump station and storage facility at the terminal.

However, at the present stage, there is no concrete plan nor the detailed study and therefore, the specific study for the need of the refinery and connecting pipeline shall be carefully conducted and then, if the need for such is justified, the feasibility study is to be followed before determination of the implementation, because the pipeline construction is very closely related with the existence of new refinery.

As to the need for expansion or new development of the pipeline for transport of POL products to the Provinces of NWFP and Punjab for the Sixth Five Year Plan period, it is estimated that the existing pipeline would be sufficient to cover the demand which would reach about 3.0 million tons in 1987/88, because the capacity of the existing one is 4.0 million tons per year.

3. Preliminary Project Evaluation

3-1 General

3-1-1 Objectives and Approaches

The major objective of preliminary project evaluation in this Study is to provide some significant indicators for decision-makings in the later stages of preparing the Masterplan, plan of action and implementation programme.

As for the approach of project evaluation, the following ways will be basically applied.

- (1) Economic analysis and/or financial analysis in quantitative terms will be conducted for those projects who require more than empirical discussions for their justification and comparative importance and whose major components of cost and benefits are measurable in reasonably reliable terms. For the evaluation of some important projects involving large uncertainty, sensitivity analysis will be applied.
- (2) For a number of projects of the same kind which can not be evaluated one by one due to either the work limitation of the study or some unidentifiability of project formulation, a so-called screening analysis will be provided to typified projects for rough evaluation. In actual, road projects and some railway projects fall in this case.
- (3) For those projects whose benefit components are either unmeasurable (intansible) or unavailable, descriptive evaluation will take place from an empirical point of view. One of the important aspects in such discussions would be the safety, which is prerequisite to the development of transport systems.

Incidentally, those projects of minor development/rehabilitation/
improvement or the evidently justifiable projects will bypass the preliminary
evaluation and be handed over directly to the later stages of planning.

It should be also noted that project evaluation of this Study will not
reach much detail and give just an insight of the concerned projects good
for a planning purpose. Any projects proposed in this Study will, therefore,
require a separate full feasibility study before implemented.

3-1-2 Methodologies and Presentations

While methodologies applied to any specific modes or projects will be introduced in the concerned parts as occasion calls, this subsection is limited to the discussion of ones which are commonly in use.

The decision criterion of cost-benefit analysis which is of frequent use in the study is the internal rate of return. The internal rate of return criterion consists of calculating the discount rate at which a project has a net present value of zero. Such a discount rate is called internal rate of return (IRR)r, and only those projects whose IRR is higher than the pre-determined opportunity value of capital rate r are considered to be justifiable. In equation form, the IRR criterion may be expressed as: $\frac{N}{N}$ Bt-Ot $\frac{N}{N}$ Kt

 $\sum_{t=1}^{N} \frac{Bt-0t}{(1+r)^{t}} - \sum_{t=1}^{N} \frac{Kt}{(1+r)^{t}} = 0 ,$

where Bt designates benefit in t, and Ot operating cost, Kt capital investment and N project life. The financial interpretation of IRR would be the highest interest rate which the project can pay while redeeming the initial borrowing.

In estimating costs and benefits of economic analysis, border prices are adopted. Market prices of costs and benefits can be converted to border prices by applying the appropriate conversion factors to various broken-down traded and non-traded components (see below for the estimation of standard conversion factor as an example). For a reasonably small portion of the components whose international market prices are not identifiable, standard conversion factor is applied to convert to border prices. Also, border prices of labor can be obtained by multiplying its marginal productivity by the conversion factor for consumption.

Table 3-1-1 Trade Statistics (Total)

Esti	mation of Standard Conversion Factor				(Million Rupe	2es)
	$SCF(t) = \frac{M(t)+X(t)}{(M(t)+X(t))+(X(t)-D(t))}$	Year	Value of imports M(t)	Value of exports X(t)	Value taxes on imports T(t)	Value cassi on exports D(t)
	M(t): Value of imports X(t): Value of exports	1976-77	23,012.2	11,293.9	6,074.2	180.4
	T(t): Value taxes on imports D(t): Value taxes on exports	1977-78	27,814.7	12,980.4	8,251.3	346.5
	$SCF = \sum_{c} SCF(c)/N$	1978-79	36,388.1	16,925.0	10,065.7	219.3
	N: Number of observed years	1979-80	46,929.1	23,410.1	12,041.1	445.8
	Calibrating the above formula based on the data in the $\overline{T}able\ 311$.	1980-81	53,543.7	29,279.5	13,854.8	798.5
	SCF = 0.851			٥. ١	and and Ru	11et in

Source: Central Board of Revenue, Statistical Bulletin

To compare mutually exclusive projects, differential cost-benefit analysis is conducted. If the IRR on the hypothetical project, whose cost and benefit stream is the differential between those of the two mutually exclusive projects, is in excess of the pre-determined opportunity value of capital rate, the larger project is to be preferred to the former. Some further devices on cost-benefit analysis are also provided depending upon the conditions of preliminary evaluation works as can be seen later.

As for the presentation of preliminary project evaluation in this Study, this text contains a summarized stream of approaches/methodologies and major outcomes of each mode. More specific description of preliminary evaluation for each project is provided in the concerned part of project list. Also, follow-ups of the data and methodologies to be referred to are prepared separately.

3-2 Preliminary Evaluation of Road Projects

3-2-1 Road Project Optimum Timing Test

As a part of preliminary project evaluation, a system complex, named ROPOTT, has been developed to provide the basis for selecting the optimum timing of road projects. Actuated by the input of a case setting or a series of case settings, ROPOTT executes the examination of project timings in economic terms based upon the marginal benefit-cost ratio. This criterion defines the optimum timing of a project as the point in time when its net present value or its internal rate of return is at a maximum. The objective of ROPOTT is to offer some significant systematic criteria for the screening process of the projects with the potential benefits likely to offset their costs. In case of the projects whose net benefits are monotonously increasing over time, the marginal benefit cost ratio can be applied to provide the optimum implementation timings. This method is known as the first year rate of return test. The road projects in Pakistan are well - adapted for the application of this method, since they basically satisfy the condition of monotonously increasing net benefits. The first year rate of return test calculates the marginal benefit-cost ratio (r_1) and compares it with the appropriate discount rate (r). The result can be interpreted as:

- (1) if $r_1 < \hat{r}$ premature to implement yet,
- (2) if r_1 \rangle \hat{r} deferred too much, and
- (3) if $r_1 = \hat{r}$ optimum timing to implement.

The mechanism of the model can be demonstrated as follows. Suppose the traffic (Xt) is increasing over time (t), and the benefits relate to unit cost savings (b), so that total benefits (Bt) are given by

$$Bt = bXt.$$

On the other hand, the annual unit maintenance costs (a) gives total operating costs (Ct):

$$Ct = aXt.$$

Subtracting the capital cost of the road (Ko), the net present value (Z(i)) is given by

$$Z(i) = \sum_{t=1}^{N+i} \frac{(b-a)Xt}{(1+\hat{r})^t} - \frac{Ko}{(1+\hat{r})^{i-1}}$$

where N = project life, $\hat{r} = \text{discount rate and } i = \text{year of installation}$.

The optimum timing of a project is the point in time when its net present value is at a maximum. If this timing is defined as year i, the conditions of optimality for the NPV criterion can be represented by:

$$z(i-1) < Z(i) \stackrel{>}{=} Z(i+1)$$
or
 $z(i) - Z(i-1) > 0$
 $z(i) - Z(i+1) \stackrel{>}{=} 0$

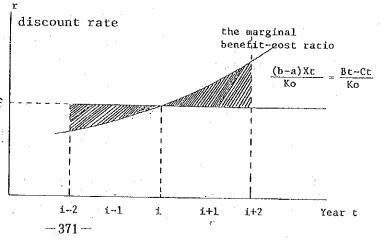
Now,

$$Z(i)-Z(i-1) = \left\{ \begin{array}{l} \frac{N+1}{t} \frac{(b-a)Xt}{(1+\hat{r})^t} - \frac{Ko}{(1+\hat{r})^{i-1}} \right\} - \left\{ \begin{array}{l} \frac{N+i-1}{t} \frac{(b-a)Xt}{(1+\hat{r})^t} - \frac{Ko}{(1+\hat{r})^{i-2}} \right\} \\ = \frac{-(b-a)Xi-1 + \hat{r}Ko}{(1+\hat{r})^{i-1}} \end{array} \right\},$$

and on the other hand,

$$Z(i)-Z(i+1) = \left\{ \begin{array}{l} \frac{N+1}{2} \frac{(b-a)Xt}{(1+\hat{r})^{t}} - \frac{Ko}{(1+\hat{r})^{i-3}} \right\} - \left\{ \begin{array}{l} \frac{N+i+1}{2} \frac{(b-a)Xt}{(1+\hat{r})^{t}} - \frac{Ko}{(1+\hat{r})^{i}} \right\} \\ = \frac{(b-a)Xi - \hat{r} Ko}{(1+\hat{r})^{i}} \end{array} \right\}$$

Therefore, the conditions of optimality can be rewritten as:


$$\begin{cases} - (b-a)Xi-1 + \hat{r}Ko > 0 \\ (b-a)Xi - \hat{r}Ko \ge 0 \end{cases} ,$$

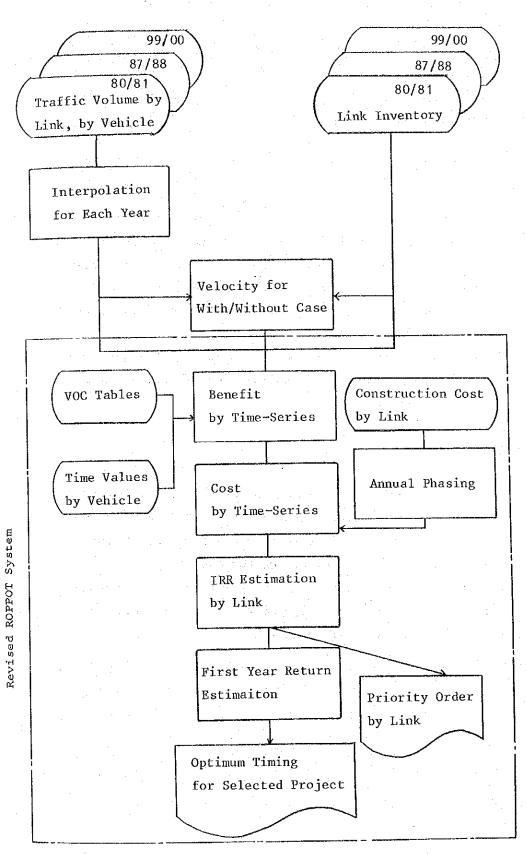
$$\frac{(b-a)Xi-1}{Ko} < \hat{r} \le \frac{(b-a)Xi}{Ko}$$

Since (b-a)Xi-l = Bi-l-Ci-l and (b-a)Xi = Bi - Ci, it can be interpreted that the year whose first year return r1 (net benefit Bi-Ci over capital cost Ko) equals or just exceeds the discount rate f is the optimum timing of the project. And it can be also observed from the above equation that this can be applied only when Xi-1 < Xi or verbally the traffic Xt is monotonously increasing.

In applying the optimum timing test of road projects the basic model explained above will be expanded as well as revised in use of such supplemental criteria as \$\hat{r}\$ b/C ratio and net present value (NPV), as introduced in the subsequent subsection.

Fig. 3-2-1 Optimum Project Timing

3-2-2 Application and Major Outcomes


(1) Application

The flow of the preliminary evaluation for the road projects is shown in Fig.3-2-2. The road network in this study consists of 208 links, which means 832 projects (=208x4) to be evaluated for two cases (Case A, Case B) and for two target years (1987/88, 1999/00). These projects were evaluated in terms of IRR, B/C, NPV and were also tested in terms of the optimum implementation timing. The following data and assumptions were adopted for the evaluation.

- (i) Benefit stream is estimated from the difference of vehicle operating cost (VOC) and time difference with and without scenario, assuming 20 years project life.
- (ii) VOC table prepared by MOC in 1981 is adopted, which gives financial cost by cost items and by vehicle type for improved and unimproved roads as a function of velocity. It is, therfore, necessary to convert to economic cost and to assume modification factors as to the terrain and the type of surface.
- (iii) Economic benefits of time saving by types of vehicle are 5.89, 56.26 and 10.70 Rs/hour for car, bus and truck respectively, where the time saving by truck includes both the crew cost and time cost of freight.

. 478

Fig. 3-2-2 Preliminary Evaluation for the Road Projects

(iv) The annual phasing for road projects is carried out on the basis of the size of the projects, as follows.

				(%)
Year	1	2	3	4
Investment Cost(200MRs	30	50	20	
Investment Cost>200MRs	20	35	35	10

The implementation timings are assumed to be 1983/84 the candidate projects of next five year plan and 1993/94 for the rest of the projects. This cost stream, together with the benefit stream, is used for the evaluation.

- (v) First year return is calculated for the testings of the optimum implementation timing.
- (vi) The discount rate is assumed to be 12% as the opportunity cost in Pakistan, for the calculation of B/C, NPV and optimum timing.

(2) Major Outcomes

The Table 3-2-1 shows the sample output of the evaluation system, where IRR, discounted benefit, discounted cost, B/C, NPV, priority order with B/C, cost stream, first year return for the optimum implementation and optimum timing are displayed for each project.

These informations are utilized for the priority rating and the annual phasing for the projects of next five year plan after testing the sensitivity for several discount rates.

PLAN	* * *		CIMPROVEMENT FOR	OR MASTER PLAN B	-	- DIMONODE	<u>-</u> -		DISCOL	DISCOUNT RATIO 12	Ö				
15	INKING	LENGTH	1 2 2 1	1 1	1987/88 COST	₹	0	1 CE.	15	CONSTRUCTI	OM	H14	7.8.	TIMING	
15 70.0 643.73 51.76 12.44 591.99 3 0.10 50.17 20.07 0.93 55 42.8 1197.89 186.45 6.42 1011.44 21 75.91 132.84 137.95 0.49 58 22.8 10.2 10.20 368.68 65 71.43 119.05 47.02 0.27 132 54.17 156.34 20.174 6.02 118.46 35.10 0.07 132 54.1 156.34 186.48 18.64 186.48 6.27 0.07 132 54.1 16.00 20.04 174.23 17.04 18.36 40.27 19.20 10.06 18.36 40.27 19.20 118.73 11.24 18.73 7.49 118 40.27 118 40.27 118 40.27 118 40.27 118 40.27 40.27 118 40.27 40.27 40.27 40.28 40.27 40.27 40.27 40.28 40.28 4	52001	160	6.97	3763.5	66.627	7.84	283	15	195.42	341.98	341.98	97.71	0.54	83/84	
55 4.2.6 1197. 69 186.45 6.42 1011.44 21 75.91 132.84 152.84 37.95 0.49 33.6 4.91.49 122.22 4.00 366.46 65 71.43 119.05 47.62 37.95 0.49 132 54.1 261.74 6.02 1314.40 30 106.56 186.48 186.48 186.48 186.48 186.42 37.28 0.27 132 54.1 3610.52 335.15 10.60 3284.38 7 136.48 186.42 35.28 0.70<	52002		70.0	643.7	51.76	12.44	o,	м	30.10	50.17	20.07	•.	0.93	83/84	
48 45. 79,4.0 122,62 4,00 366,68 65 71,45 119,05 47.62 60.20 <t< td=""><td>52003</td><td></td><td>42.8</td><td></td><td>186.45</td><td>6.42</td><td>4</td><td>2 1</td><td>75.91</td><td>132.84</td><td>132.84</td><td>0</td><td>67-0</td><td>83/84</td><td></td></t<>	52003		42.8		186.45	6.42	4	2 1	75.91	132.84	132.84	0	67-0	83/84	
48 4.1.7 1576.34 261.74 6.02 1314.60 30 106.56 186.48 186.46 53.79 68.22 0.0.0 132 54.1 3619.52 335.15 10.80 3284.38 7 136.45 238.79 68.22 0.70 22 49.6 819.34 105.11 7.80 714.23 16 61.13 101.88 40.75 0.70 0.70 109 31.2 166.73 344.29 4.26 1123.01 55 140.17 245.30 245.30 7.0 0.70 100 31.2 166.74 3.12 192.00 85 52.66 87.76 35.10 0.47 100 332.2 466.76 184.42 2.12 240.00 85 52.66 87.76 35.10 0.48 100 332.2 26.00 99.87 38 13.20 46.77 0.48 11 10.4 11.1 10.00 35.00 36.00 37.00	52004	38	33.6		122.82		368.68	φ. Ω	71.43	119.05	47.62		0.27	83/84	-
132 5.1.1 56.15 536.75 136.45 238.79 238.79 238.79 68.22 0.70 22 49.6 819.24 105.11 7.80 714.23 16 61.13 101.88 40.75 0.75 0.70 109 31.2 14.67.30 74.29 4.26 1123.01 55 140.17 245.30 70.08 0.18 48 40.2 282.53 90.54 3.12 192.00 85 52.66 87.76 35.10 0.01 100 33.2 469.76 184.42 2.55 285.34 99 75.08 131.39 17.49 0.47 10 33.2 469.76 184.42 2.55 285.34 99 75.08 131.39 131.39 37.54 0.47 10 33.2 469.76 11.20.00 11.20.00 8 52.66 87.76 39.10 0.43 10 37.8 47.8 47.8 47.70 47.80 47.70 <td>52005</td> <td>89</td> <td>41.7</td> <td>1576.34</td> <td>261.74</td> <td>6.02</td> <td>1314.60</td> <td>30</td> <td>106.56</td> <td>186.48</td> <td>186.48</td> <td>2</td> <td>0.48</td> <td>83/84</td> <td></td>	52005	89	41.7	1576.34	261.74	6.02	1314.60	30	106.56	186.48	186.48	2	0.48	83/84	
22 49.6 819.34 105.11 7.80 714.23 16 61.13 101.88 40.75 0.50 109 31.2 1.467.30 344.29 4.26 1123.01 55 140.17 245.30 245.30 70.08 0.18 13 0.0 0.0 19.33 0.0 -19.33 11.24 18.73 7.49 0.18 46 4.0.2 282.53 99.54 3.12 192.00 85 52.66 87.76 35.10 0.47 100 33.2 469.76 113.24 113.24 113.24 113.39 37.54 0.48 12 41.4 122.55 285.34 99 73.08 131.39 137.34 0.47 12 41.4 122.56 0.91 -11.46 144 73.08 121.20 8.81 140.47 144 73.08 121.20 8.91 9.67 9.67 9.67 9.67 9.67 9.67 9.67 9.67 9.67	52006	132	54-1	3619.52	335.15	10.80	3284,38	7	136.45	238.79	238.79	2,	0.70	83/84	
108 31.2 1467.30 344.29 4.26 1123.01 55 140.17 245.30 245.30 70.08 0.18 4.0.2 282.53 90.54 3.12 192.00 85 52.66 87.76 35.10 0.47 10.0 33.2 469.76 184.42 2.55 285.34 99.87 35.06 131.39 131.39 37.54 0.48 122 120.29 22.72 2.75 2.40 99.87 35.06 131.39 131.39 37.54 0.48 122 120.29 120.02 22.72 2.75 2.40 99.87 35 13.21 22.02 8.81 0.43 13.21 0.44 13.21 0.44	52007	22	76.6		105.11	2.80	4	16	61.13	101.88	40.75		0.50	83/86	
13 0.0 0.0 19.33 0.0 -19.33 11.24 18.73 7.49 0.47 40.2 2825.35 90.54 3.12 192.00 85 52.66 87.76 35.10 0.47 100 33.2 469.76 186.42 2.55 285.34 99 75.08 131.39 37.54 0.48 12 41.4 122.59 22.72 5.40 99.87 38 13.21 22.02 8.81 0.45 70 37.8 47.8 122.92 22.72 5.40 99.87 38 13.21 22.02 8.81 0.43 70 37.8 47.8 12.2 92.36 14.7 73 52.62 92.08 8.81 90.43 92.08 <	52008	109	31.2		344.29	~	1123.01	55	140.17	245.30	245.30	70.08	0.18	83/84	
48 40.2 282.53 90.54 3.12 192.00 85 52.66 87.76 35.10 0.47 100 33.2 469.76 184.42 2.55 285.34 99 75.08 131.39 131.39 37.54 0.48 12 41.4 122.59 22.72 5.40 99.87 38 13.21 22.02 8.81 0.45 70 37.8 478.01 129.24 3.70 348.77 73 52.62 92.08 92.08 0.45 18 10.4 114.2 129.04 3.70 348.77 73 52.62 92.08 92.08 0.45 18 10.4 11.1	52009	ž.	0.0	0.0	19.33	0.0	-19.33	173	11.24	18.73	67-2		* * #	**	
100 33.2 469.76 184.42 2.55 285.34 99 75.08 131.39 131.39 37.54 0.48 12 41.4 122.59 2.72 5.40 99.87 38 13.21 22.02 8.81 10 41.4 122.59 2.72 5.40 99.87 38 13.21 22.02 8.81 18 10.4 114.20 129.24 3.70 34.8.77 73 52.62 92.08 26.31 0.43 18 10.4 114.20 129.24 120.98 8.48 905.48 10 70.36 117.26 46.91 19 10.4 114.20 125.66 0.91 -11.46 144 73.08 121.80 48.72 11 65.31 114.29 114.29 32.65 0.64 13 81.2 221.34 19.81 11.17 201.55 5 11.52 19.20 7.65 10.65 14 4.9 7.0 1360.93 160.41 8.48 1200.52 11 65.31 114.29 114.29 32.65 0.64 15 81.2 221.34 19.81 11.17 201.55 5 11.52 19.20 7.65 10.653 30.47 0.88 16 41.4 574.71 131.64 4.37 443.07 52 53.59 93.79 93.79 26.80 0.58 17 54.5 996.79 125.96 7.91 870.83 13 73.26 122.09 48.84 18 54.5 996.79 125.96 7.91 870.83 13 73.26 122.09 48.84 19 18 314.99 178.35 1.77 136.67 8 5 6.43 98.75 98.75 28.21 0.25 18 18 314.99 178.35 1.77 136.67 8 5 6.43 98.75 98.75 28.21 0.25 18 18 27.6 839.01 272.50 3.04 556.52 86 110.94 194.15 55.47 0.24	51001	87	40.2		75 06	3.12	192.00	85	52.66	87.78	35,10		27.0	83/84	
12 41,4 122.59 22.72 5.40 99.87 38 13.21 22.02 8.81 0.43 70 37.8 478.01 129.24 3.70 348.77 73 52.62 92.08 26.31 0.43 18 10.4 114.20 125.66 0.91 -11.46 144 73.08 121.80 48.72 0.13 44 49.9 1360.93 120.41 8.48 905.48 10 70.36 117.26 46.91 0.65 44 49.9 1360.41 8.48 1200.52 11 65.31 114.29 114.29 32.65 0.65 44 49.9 1360.41 8.48 1200.52 11 65.31 114.29 114.29 32.65 0.65 44 49.9 136.041 8.48 1200.52 11 65.31 114.29 114.29 11.29 5 6.4 1136.041 8.48 1200.52 11 66.93 106.63	51002	100	33.2		184.42	. •	285.34	66	75.08	131.39	131.39	37_54	0.48	83/84	
70 37.8 478.01 129.24 3.70 348.77 73 52.62 92.08 92.08 26.31 0.43 18 10.4 114.20 125.66 0.91 -11.46 144 73.08 121.80 48.72 25 60.2 1026.45 120.98 8.48 905.48 10 70.36 117.26 46.91 26 60.2 1026.45 120.98 8.48 905.48 10 70.36 117.26 46.91 27 60.2 1026.45 120.98 8.48 905.48 10 70.36 117.26 46.91 28 11.2 221.34 19.81 11.17 201.53 5 11.52 19.20 7.68 29 6.4 1136.29 149.67 7.59 986.63 17 60.93 106.63 106.63 30.47 0.88 20 41.4 574.71 131.64 4.37 443.07 52 53.59 93.79 93.79 26.80 0.58 20 41.4 574.71 131.64 4.37 443.07 52 53.59 93.79 43.84 21 5 5.5 996.79 125.96 7.91 870.83 13 73.26 122.09 48.84 22 5.5 578.70 138.59 4.18 440.10 62 56.43 98.75 28.21 0.29 23 52.5 578.70 138.59 4.18 440.10 62 56.43 98.75 28.21 0.29 24 17.3 723.06 453.14 1.60 269.92 125.85 322.85 322.86 0.13 27 6.6 829.01 272.50 3.04 556.52 86 110.94 194.15 194.15 55.47 0.24	51003	2.5	41.4	122.59	22.72	2.40	99.87	N N	13.21	22.02	8.81		0.26	83/84	
18 10.4 114.20 125.66 0.91 -11.46 144 73.08 121.80 48.72 0.15 75 60.2 1026.45 120.98 8.48 905.48 10 70.36 117.26 46.91 0.65 44 49.9 1360.43 160.41 8.48 1200.52 11 65.31 114.29 32.65 0.64 79 56.4 1356.29 149.67 7.59 986.63 17 60.93 106.63 30.47 0.68 79 56.4 1356.29 149.67 7.59 986.63 17 60.93 106.63 106.63 30.47 0.68 40 41.4 574.71 131.64 4.37 445.07 52 53.59 93.79 93.79 93.79 0.68 40 41.4 574.71 131.64 4.37 445.07 52 53.59 93.79 93.79 93.79 94.89 54.5 55.5 96.79 143.77	51004	20.	37.8		129.24	3.70	348.77	73	52.62	92.08	92.08	26.31	0.43	83/84	
75 60.2 1026.45 120.98 8.48 905.48 10 70.36 117.26 46.91 0.65 8 44 49.9 1360.93 160.41 8.48 1200.52 11 65.31 114.29 114.29 32.65 0.64 8 13 81.2 221.34 19.81 11.17 201.53 5 11.52 19.20 7.68 1.24 8 40 41.4 574.71 131.64 4.37 443.07 52 53.59 93.79 93.79 26.80 0.58 8 56 41.4 574.71 131.64 4.37 443.07 52 53.59 93.79 93.79 26.80 0.58 8 130 43.9 125.96 7.91 870.83 13 73.26 122.09 48.84 0.63 8 130 43.9 1311.11 201.79 6.50 1109.32 20 82.16 143.77 413.19 0.63 8	51005	18	10.4	114.20	125.66		-11.46	144	73.08	121.80	48.72			84/85	
15 81.2 221.34 19.81 11.17 201.53 114.29 114.29 32.65 0.64 8 15 81.2 221.34 19.81 11.17 201.53 5 11.52 19.20 7.68 1.24 8 79 56.4 1136.29 149.67 7.59 986.63 17 60.93 106.63 106.63 30.47 0.68 8 40 41.4 574.71 131.64 4.37 445.07 52 53.59 93.79 93.79 26.80 0.58 8 37 54.5 996.79 125.96 7.91 870.83 13 73.26 122.09 48.84 0.63 8 130 43.9 1311.11 201.79 6.50 1109.32 20 82.16 143.77 413.68 8 67 35.9 2437.50 570.73 4.27 1866.78 54 232.36 406.63 406.63 406.63 406.63 406.63 406.63 406.63 406.63 406.63 406.63 406.63 406.63 406.63	51006	7.5	60.2		120.98	87-8	905.48	10	70.36	117.26	16-91		0.65	83/84	
13 81.2 221.34 19.81 11.17 201.53 5 11.52 19.20 7.68 79 56.4 1136.29 149.67 7.59 986.63 17 60.93 106.63 30.47 0.88 8 40 41.4 574.71 131.64 4.37 445.07 52 53.59 93.79 26.80 0.58 8 37 54.5 996.79 125.96 7.91 870.83 13 73.26 122.09 48.84 0.63 0.63 8 130 43.9 125.96 7.91 870.83 13 73.26 122.09 48.84 0.63 0.63 8 67 33.9 2437.80 570.73 4.27 1866.78 54 232.36 406.63 406.63 116.18 0.45 8 52 33.9 2437.80 138.59 4.18 440.10 62 56.43 98.75 98.75 28.21 0.29 15 18.8 314.99 178.36 1.77 136.63 121 72.62 127.08 127.08 127.08 352.85 92.24 0.13 8 52 17.3 723.06 453.14 1.60	51007	77	6 67		160.41	8-48	1200.52	11	65.31	114.29	114.29	32.65	0.64	83/87	
79 56.4 1136.29 149.67 7.59 986.63 17 60.93 106.63 106.63 30.47 0.88 8 40 41.4 574.71 131.64 4.37 445.07 52 53.59 93.79 93.79 26.80 0.58 8 37 54.5 996.79 125.96 7.91 870.83 13 73.26 122.09 48.84 0.63 0.63 8 0.63 8 0.63 8 0.63 8 0.63 8 0.63 8 0.63 8 0.63 8 0.63 8 0.63 16.84 0.63 0.63 16.84 0.63 0.63 16.84 0.63 0.64 </td <td>51008</td> <td>ъ Б</td> <td>81.2</td> <td></td> <td>19.81</td> <td>11.17</td> <td>201.53</td> <td>'n</td> <td>•</td> <td>19.20</td> <td>7.68</td> <td></td> <td>1.24</td> <td>83/84</td> <td></td>	51008	ъ Б	81.2		19.81	11.17	201.53	'n	•	19.20	7.68		1.24	83/84	
40 41.4 574.71 131.64 4.37 445.07 52 53.59 93.79 26.80 0.58 8 37 54.5 96.79 125.96 7.91 870.83 13 73.26 122.09 48.84 0.63 8 130 43.9 125.96 7.91 870.83 13 73.26 143.77 143.77 41.08 0.45 8 67 33.9 2437.50 570.73 4.27 1866.78 54 232.36 406.63 116.18 0.35 8 52 35.9 2437.50 138.59 4.18 440.10 62 56.43 98.75 98.75 28.21 0.29 8 15 18.8 314.99 178.36 1.77 136.63 121 72.62 127.08 36.31 0.13 8 52 17.3 72.56 125.47 98.75 322.85 92.24 0.13 8 52 17.3 72.56 125.44 322.85 322.85 92.24 0.13 8 52 <	51009	- 62	56.4	1136.29	149.67	7.59	986.63	17	60.93	106.63	106.63	30.47	0.88	83/84	
37 56.5 996.79 125.96 7.91 870.83 13 73.26 122.09 48.84 0.63 8 130 43.9 1311.11 201.79 6.50 1109.32 20 82.16 143.77 145.77 41.08 0.45 8 67 33.9 2437.50 570.73 4.27 1866.78 54 232.36 406.63 406.63 116.18 0.33 8 32 32.5 578.70 138.59 4.18 440.10 62 56.43 98.75 28.21 0.29 8 15 18.8 314.99 178.36 1.77 136.63 121 72.62 127.08 127.08 36.31 0.13 8 52 17.3 723.06 453.14 1.60 269.92 125 184.49 322.85 92.24 0.13 8 38 27.6 829.01 272.50 3.04 556.52 86 110.94 194.15 194.15 55.47 0.24 8	51010		7-17		131.64		443.07	25	53.59	93.79	93.79	26.80	0.58	78/88	
130 43.9 1311.11 201.79 6.50 1109.32 20 82.16 143.77 145.77 145.77 145.77 145.77 145.18 0.45 8 67 33.9 2437.50 570.73 4.27 1866.78 54 232.36 406.63 406.63 116.18 0.35 8 32 32.5 578.70 138.59 4.18 440.10 62 56.43 98.75 98.75 28.21 0.29 8 15 18.8 314.99 178.36 1.77 136.63 121 72.62 127.08 36.31 0.13 8 52 17.3 723.06 453.14 1.60 269.92 125 184.49 322.85 322.85 92.24 0.13 8 38 27.6 829.01 27.5 3.04 556.52 86 110.94 194.15 194.15 55.47 0.24 8	51011	37	54.5		125.96	7.91	870.83	13	73.26	122.09	48-84		0.63	83/84	-
67 33.9 2437.50 570.73 4.27 1866.78 54 232.36 406.63 406.63 116.18 0.33 8 32 32.5 578.70 138.59 4.18 440.10 62 56.43 98.75 98.75 28.21 0.29 8 15 18.8 314.99 178.36 1.77 136.63 121 72.62 127.08 127.08 36.31 0.13 8 52 17.3 723.06 453.14 1.60 269.92 125 184.49 322.85 322.85 92.24 0.13 8 38 27.6 829.01 272.50 3.04 556.52 86 110.94 194.15 194.15 55.47 0.24 8	51012	130	6 27		201.79	6.50	1109.32	50	82.16	143.77	143.77	41.08	97.0	83/84	
32 32.5 578.70 138.59 4.18 440.10 62 56.43 98.75 98.75 28.21 0.29 8 15 18.8 314.99 178.36 1.77 136.63 121 72.62 127.08 127.08 36.31 0.13 8 52 17.3 723.06 453.14 1.60 269.92 125 184.49 322.85 322.85 92.24 0.13 8 27.6 829.01 272.50 3.04 556.52 86 110.94 194.15 194.15 55.47 0.24 8	51013	59	33.9	500	570.73		1866.78	54	232.36	406.63	406.63	116.18	0.33	83/84	
15 18.8 314.99 178.36 1.77 136.63 121 72.62 127.08 127.08 36.31 0.13 8 52 17.3 723.06 453.14 1.60 269.92 125 184.49 322.85 322.85 92.24 0.13 8 27.6 829.01 272.50 3.04 556.52 86 110.94 194.15 194.15 55.47 0.24 8	51014	32	32.5	578	138,59		440-30	62	56.43	98.75	98.75	28.21		93/84	
52 17.3 723.06 453.14 1.60 269.92 125 184.49 322.85 322.85 92.24 0.13 8 38 27.6 829.01 272.50 3.04 556.52 86 110.94 194.15 194.15 55.47 0.24 8	51015	15	18.8		178.36	1.77	136.63	121	72.62	127.08	127.08	36.31	0.13	83/84	
38 27.6 829.01 272.50 3.04 556.52 86 110.94 194.15 194.15 55.47 0.24	51016	52	17.3		453 14		269.92	125	184.49	00	00	۲.	0.13	84/85	
	51012	ν. α	27.6		272.50	3.04	556.52	86	110.94	194.15	194.15	25.47	72.0	83/84	

3-3 Preliminary Evaluation of Railway Projects

3-3-1 Approaches

Types of the railway projects widely range from electrification, track and station development, signalling improvement to rolling stock provision. Correspondingly, the approaches of preliminary evaluation vary from differential cost-benefit analysis, marginal cost-benefit analysis, cost comparison analysis to descriptive analysis.

It seems more appropriate that the applied methodologies are introduced together with the concerned major outcomes in the subsequent subsection.

3-3-2 Methodologies and Major Outcomes

(1) Electrification

The major benefits of electrification as compared with dieselization, in theory, include better energy efficiency, less maintenance cost of locomotives and increased line capacity, particularly better performance in gradient sections. More specifically, the energy cost of EL is 62 % of DEL in a financial term and 53 % of DEL in an economic term. Also, the maintenance cost of EL is 0.6 % of the cost of a new EL per 10,000 km, while that of DEL is 1.9 % in the analogous term.

While a number of railway line sections in Pakistan are coming up under discussion, first of all, a generalized model can be introduced to test the optimum timing of electrification projects over any double track sections of flat terrain. Taking into account such costs as the development and maintenance costs of electrification ground equipments, the acquisition and maintenance costs of EL and DEL, and the energy cost of electricity and diesel, the model indicates the number of trains at an optimum electrification timing under the different conditions. As for the mechanism of marginal cost-benefit ratio which is known as the first year return, the explanation provided in Subsection 3-2-1 can be reffered to.

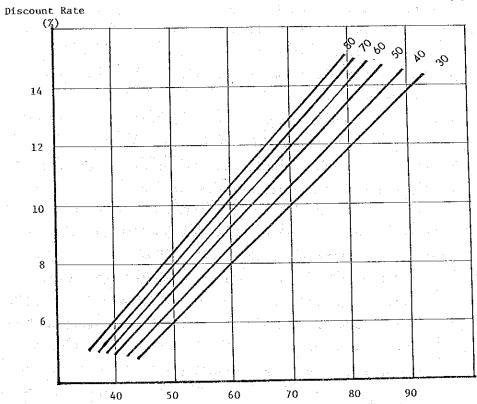
Table 3-3-1 and Figure 3-3-1 present results of the model in tabulated and graphical forms, respectively. On the other hand, the number of trains and the share of goods trains for the concerned section in 1999/2000 are projected as:

1

Table 3-3-1 Optimum Electrification Timing of

Flat Double Track Section

(Number	of:	Trains)


Discount	<u> </u>	Share of	f Goods	Trains	(%)	- Washington
Rate (%)	80	70	60	50	40	30
1.4	75	78	80	83	88	92
12	67	69	72	75	79	83
10	58	60	63	65	70	73
8	49	51	53	55	59	62

Note: Number of trains for both ways

Source: Study Team

Fig. 3-3-1 Optimum Electrification Timing of Flat Double Track Section

Goods Train Share (%)

Source: Study Team

Number of trains

C	Number of trains)	(Goods train share)
Kiamari - Rohri	122-132	51-55 %
Rohri - Samasata	158	63 %
Samasata - Khanewal via Chord	101	80 %
Samasata - Khanewal via Loop	58-68	34-41 %
Lahore - Lala Musa	82-90	61-58 %

Since the discount rate (the opportunity value of capital) for railway projects can be estimated to be somewhere around 12 %, it can be understood from Table 3-3-1 that all above sections with one exception are justified for electrification by 1999/2000. It is most desirable if these electrification projects are implemented at the number of trains indicated in Table 3-3-1. If not, they are recommended to be implemented as early as possible after the number of trains exceed the ones indicated in Table 3-3-1.

From a point of view of train operation beside the traffic volume factor pointed out above, the Chord line of Samasata - Khanewal is recommended to be electrified at a relatively early point of time. Although the loop line of Samasata - Khanewal does not reach the train number required for electrification even by 1999/2000, the electrification of this section is also preferred from an operational point of view by considering it as a set project with the Chord line electrification. Incidentally, the Sher Shah - Mahmud Kot section is proposed to be electrified also from an operational point of view to ensure the smooth operation of tank wagons carrying liquid products from Mahmud Kot.

Since the project environments of electrification in the Sibi - Kolpur and Lala Musa - Rawalpindi sections do not fit the conditions of optimum electrification timing test model, that is, double track of flat terrain, these two important projects are analyzed independently from the generalized model. They take differential cost-benefit analysis between the two mutually exclusive cases of electrification and diesel operation. These two sections have relatively small traffic volume and do not seem to fully enjoy the usual benefits of electrification against its development cost of ground facilities. Due to the desirable performance of EL on the gradient sections, however, electrification in these sections is expected to save the provision of some supplemental locomotives which are required otherwise if diesel operation is continued.

The differential cost-benefit analysis applied to the electrification project of the Sibi-Kolpur section during the 6th Plan period is conducted with the IRR of 10.9 %. While such other benefits as regional development effect of Baluchistan regions can be also seen, it can not be quite convinced that the project is feasible, yet. However, if regenerative brakes are introduced to take advantage of the steep slopes, a considerable amount of electricity can be saved. Table 3-3-2 is the economic cost-benefit stream of electrification project of the section with regenerative brake systems. The resulting IRR is 12.5 % and proves the economic feasibility of project. The electrification project of Sibi - Kolpur section therefore is recommended to be implemented during the 6th Plan period with the system design of regenerative brakes.

The electrification of Lala Musa - Rawalpindi section is proposed to be implemented during the 8th Plan period. This project is also expected to experience the benefit of saving the energy and supplemental locomotives. The differential cost-benefit analysis with the resulting IRR of 16.0 % insists that the electrification during the 8th Plan period in this section is preferable to the continuation of diesel operation.

(2) Improvement of Terminals and Stations

In order to cater for the new programs of innovative train operation, a few projects of terminal and station improvement are proposed. One of the innovative programs is the introduction of 3,000-ton traction.

Since 104 wagons will be hauled for one train in this program, the improvement of terminals at Karachi City and Lahore and the sidetrack extension and improvement at a number of way stations are required.

While the initial cost of such improvement is Rs. 56 million, the procurement cost of a smaller number (30) of 3,000-HP ELs is less than that of 44

2,000-HP ELs which are otherwise needed by approximately Rs. 178 million.

Based upon this cost comparison analysis, and in further consideration of such effect of train number reduction, 3,000-ton traction program is recommended.

The container transport is another innovative program introduced to railway, requiring the development of Lahore Dry Port. This is a part of the adopted intermodal containerization program which holds the IRR of 14.3 % as will be introduced in subsection 3-4-1, and is in turn a prerequisite to the containerization program. Similarly, the good terminal improvement project is involved in the railway transport enhancement program through

Table 3-3-2 Comparative Cost Streams of the Sibi-Kolpur Projects (with Regenerative Brake Systems)

(Million Rupees)

(Million Rupees)

						ou kupees	,
Year		Electrif			D	iesel	
rear	Ground Equipment	EI.	Elect- ricity	Total	DEL	Diesel	Total
1	89.79	- -	:	89.79	-	· · · · · · · · · · · · · · · · · · ·	
2	209.98	183.78	_ =	393.76	298.98	<u>,</u>	298.98
3	1.20	21.84	3.98	27.02	23.88	11.35	35.23
4	1.20	21.99	4.57	27.77	40.89	12.54	53.43
- 5	1.20	22.15	4.98	28.33	41.70	13.77	55.47
6	1.20	22.31	5.08	28.59	25.89	14.13	40.02
7	1.20	22.46	5.50	29.16	59.52	15.40	74.92
8	1.20	22.62	5.91	29.74	44.12	16.71	60.83
9.	1.20	22.78	6.34	30.32	28.32	18.05	46.37
10	1.20	22.94	6.47	30.60	45.33	18,53	63.86
11	1.20	23.09	6.91	31.20	46.14	19.94	66.08
12	1.20	23.25	7.35	31.80	30.33	21.39	51,72
1.3	1.20	23.41	8.10	32.71	63.96	23.78	87.74
14	1.20	23.56	8.58	33.34	48.56	26.25	74.81
15	1.20	23.72	9.00	33.93	32.75	27.81	60.57
16	1.20	3.46	9.00	13.66	16.55	27.81	44.36
17	1.20	3.46	9.00	13.66	16.55	27.81	44.36
18	1.20	3.46	9.00	13.66	16.55	27.81	44.36
19	1.20	3.46	9.00	13.66	16.55	27.81	44.36
20	1.20	3.46	9.00	13.66	16.55	27.81	44.36
21	1.20	3.46	9.00	13.66	16.55	27.81	44.36
22	1.20	3.46	9.00	13.66	16.55	27.81	44.36
23	∆119.91	∆179.49		∆299.40	∆275.23		Δ275.23

Source: Study Team

the development of base stations. This project aims at increasing the goods handling capacity of such base stations by improving their arrival/departure and loading/unloading tracks. This project is prerequisite to the railway transport enhancement program which, designated as Case B, is selected in the evaluation of Masterplan alternatives.

(3) Improvement of Signalling

The objectives of signalling improvement projects are firstly to ensure the security of train operation through the introduction of more reliable systems, and then to increase the average train speeds by quicker interlocking systems and clearer signals. The standards applied as criteria to make signalling improvement plans can be summarized in the following Table 3-3-3.

Table 3-3-3 Combination of Major Train Control Systems

Interlocking	B1c	ock Working Systems	
Systems	Token Block	Tokenless Block	Automatic Block Signalling
Standard-I	1-a	1-b	1-с
Standard-II	2-a	2-b	2-с
Standard-III	3 - a	3-b	3-с
Relay Interlocking	4-a	4-ъ	4-c

The highest priority is given on the signalling improvement of main line single track sections. In order to maintain the security and increase the line capacity of such sections for rapidly increasing traffic, the 3-b systems have to be improved to 4-c. Some main line single track sections with large volume of traffic are to be provided with 4-c systems even during the 6th Plan period. The next priority is given to the improvement projects from 3-b to 4-c over the main line double track sections. This is followed by the improvement of some busiest branch line from 3-a,b to 4-c, and then that of major branch lines from 2-a,b to 3-b.

(4) Others

The other projects which, as a matter of fact, have pretty much share of the proposed budget include track works and rolling stock provisions. The programs for track renewal and rolling stock provision are made to support the safe and smooth implementation of projects introduced above in consideration of the present inventories. Finally, the requirement for track doubling is dependent on the single track line capacity n, which is the function of station-to-station running time $(\frac{1}{2}(\frac{1}{v_1}+\frac{1}{v_2}))$, block handling time t, and the traffic intensity f:

$$n = \frac{1,440 \text{ f}}{\frac{1}{2} \left(\frac{1}{v_1} + \frac{1}{v_2} \right) + t}.$$

While the exact future line capacity of single track connot be determined due to some uncertainty about the progress of operation condition improvement, the entire main line between Karachi and Rawalpindi is proposed to be doubled based upon the present performance and future operation policy.

3-4 Preliminary Evaluation of Port Projects

3-4-1 Approaches and Methodologies

preliminary evaluation of the port projects in this Study also takes various approaches depending upon the types and study environments of projects. They vary from the introduction of economic/financial analyses, cost comparison analysis to the provision of descriptive analysis. Besides, the discussion often involves queueing theory for the justification of proposed projects to meet the estimated future demands. Queueing theory allows verification of the required number of berths taking into account the probability if distribution of vessels' inter-arrival and service times which, in turn, consider peak/off-peak and other factors.

Let λ the mean arrival rate (expected number of arriving vessels per day), μ the mean service rate (expected number of served vessels per day) and S the number of berths. The ratio, $\rho=\lambda/S\mu$, is called the traffic intensity since it represents the average fraction of time that the berths will need to be busy serving vessels in order to keep up with the incoming vessels.

When ρ is less than 1.0, the system will approach a steady-state condition where its statistical properties are in statistical equilibrium. However, when $\rho \geq 1.0$, the berths are unable to keep up with incoming traffic and statistical equilibrium cannot be achieved. Incidentally, $1/\lambda$ and $1/\mu$ can be interpreted as the expected interarrival time and expected service time, respectively.

As no significant attempt is made to control the arrivals in Pakistan, every time period of fixed length has the same probability of an arrival occurring. This can be referred to as "random arrivals". Mathematically, this stochastic process can be expressed as the number of arrivals falling in a Poisson process with parameter λ . It is also equivalent to say that interarrival times, represented by T_1 , has an exponential distribution with parameter λ . Its probability density function is $f_{T_1}(t) = \lambda e^{-\lambda t}$

Arising from a certain variety of vessel sizes, loads and some other f_{actors} , on the other hand, service time T_2 has a certain degree of

variability somewhere between the great variability of the exponential distribution and the zero variability of the degenerate distribution. A probability that fills in this middle ground is called the Erlang distribution of phase 2 or 3, expressed as:

$$f_{T_2}(t) = \frac{(\mu k) k}{(k-1)!} t^{k-1} e^{-k\mu t}$$
 (see Figure 3-4-1).

The Erlang distribution of phase 1 can be understood as the exponential distribution while that of phase ∞ as the degenerate distribution, and at the same time the standard deviation for the kth phase Erlang distribution is $\frac{1}{\sqrt{k} \cdot \mu}$ against those of $\frac{1}{\mu}$ for the exponential distribution and zero for the degenerate distribution.

Phase k of the Erlang distribution is the "shape parameter" determining the degree of variability. The Erlang distribution of phase k with the mean of $\frac{1}{\mu}$ can be understood as the sum of k probability variables each of which follows an independent exponential distribution with the mean of $\frac{1}{k\,\mu}$. For a practical purpose in comprehensive transport analysis, the Erlang distributions of phase 2 and 3 do not make so significant differences.

Fig. 3-4-1 Berth Occupancy Time of Tankers at Karachi Port

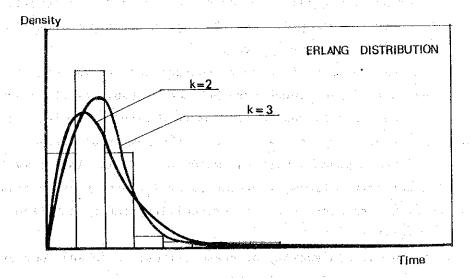


Table 3-4-1 can be referred to in order to obtain the expected length Lq for the berths system with M/E $_3$ /S behavior, that is, random arrival and Erlang service time. Then the expected waiting time Wq can be estimated as Wq = Lq/ λ .

Table 3-4-1 Expected Length of Queue for M/E3/S

		S			**************************************	
ρ	1	2	3	4	5	
0.10	0.74074E-02	0.14829E-02	0.31947Е-03	0.71166E-04	0.16161E-04	
0.20	0.3333E-01	0.11975E-01	0.46423E-02	0.18660E-02	0.76599E-03	
0.30	0.85714E-01	0.41923E-01	0.22024E-01	0.119918-01	0.66699E-02	
0.40	0.17778E 00	0.10620E 00	0.67576E-01	0.44429E-01	0.29808E-01	
0.50	0.33333E 00	0.22975E 00	0.16697E 00	0.12481E 00	0.94971E-01	
0.55	0.44815E 00	0.32724E 00	0.25061E 00	0.19688E 00	0.15720E 00	
0.60	0.60000E 00	0.46098E 00	0.36945E 00	0.30284E 00	0.25196E 00	
0.65	0.80476E 00	0.64697E 00	0.53948E 00	0.45890E 00	0.39539E 00	
0.70	0.10889E 01	0.91164E 00	0.78740E 00	0.69617E 00	0.61433E 00	
0.75	0.15000E 01	0.13027E 01	0.11609E 01	0.10490E 01	0.95669E 00	
0.80	0.21333E 01	0.19155E 01	0.17552E 01	0.16264E-01	0.15179E 01	
0.85	0.321118 01	0.29722E 01	0.27929E 01	0.26461E 01	0.25206E 01	
0.90	0.54000E 01	0.51395E 01	0.49405E 01	0.47751E 01	0.46316E 01	
0.95	0.12033E 02	0.11751E 02	0.11532E 02	0.11347E 02	0.11184E 02	
0.98	0.32013E 02	0.31717E 02	0.31486E 02	0.31288E 02	0.31115E 02	
0.99	0.65340E 02	0.65040в 02	0 64804E 02	0.64603E 02	0.64425E 02	

Source: Hillier and Yu, Queueing Tables and Graphs

3-4-2 Major Outcomes

(1) Full Container Terminal

The development project of full container terminal is perhaps one of the largest projects in the port sector of Pakistan. The major quantifiable benefits include: 1) reduction in cargo handling costs by raising cargo handling productivity through mechanization and containerization, 2) reduction in ship costs for berth waiting time and for loading/umloading cargo, mainly through increases in cargo handling capacity and productivity, 3) reduction of transport period, inland transport period, and port area freight accumulation through the increase of efficiency of inland transportation, and 4) reduction in container rental fees through the the shortening of transport periods.

Among the other benefits are contribution to the country's economic development, cargo damage reduction, packing cost reduction and so on.

Taking into account the major quantifiable benefits, economic analysis is conducted in the Feasibility Study of the Introduction of Containerization. If Karachi Port is selected as the development site, the internal rate of return for the containerization development project of the port terminal is calculated to be 16.2 % (if the costs related to railway facilities are included, 14.3 % as shown in Table 3-4-2). In the case that Port Qasim is assumed to be the development site, on the other hand, it comes down to 13.9 % (if the costs related to railway facilities are included, 12.2 %). Both results recognizably exceed the opportunity value of capital, and the project is considered to be justifiable from an economic point of view.

As for the site selection, Karachi Port is considered to be more advantageous for the containerization development of port terminal than Port Qasim. This can be partly observed from the results of economic analysis which are reported to be well established figures. In addition, since almost all existing port-related functions, facilities and know-how are situated in and around Karachi Port, selecting Port Qasim for a container port is considered likely to result in roundabout transportation of upcountry containers and container cargoes, that is, to Port Qasim, to the Karachi Port area and then to upcountry. Furthermore, it is discussed that from a liner operators' point of view, Karachi Port will be more favorable in consideration of the lower tariff levels and some other conditions of facilities and services.

On the assumption that 1) Karachi Port is selected as the port development site, 2) the interest rate of loan for both foreign and local currency portions is 11.6 %, and 3) the current tariff will be raised by 25 % on and after 1982/83, the financial rate of return is calculated to be 11.2 %. It is analyzed that the increase of current tariff is by any means necessary.

(2) Liquid Berths

A new oil berth is proposed to be constructed at Karachi Port replacing the two existing berths, namely No.2 which is a temporary structure and No.3 which is deteriorated. If the proposed project is not implemented, ρ for berths No.1 and No.4 in and after 1985/86 is estimated to be 1.23 (λ = 0.96, μ = 0.48, 300 day operation per year), and the system will

Costs/Benefits and IRR - Shadow Price (Karachi Port - Feedback Ratio 30%) IRR - 14.3% Table 3-4-2

(Unite; '000 Rs)

				·
	Reduction in Time Cost	12,840 22,117 33,517 33,516 43,916 43,916 43,916 43,916 43,916	43,916 43,916 43,916 43,916 43,916 43,916 43,916 43,916 43,916 43,916	990,762
Lts	Reduction in Cargo Handling Cost	4,732 25,186 44,025 49,807 49,807 49,807 49,807 49,807 49,807 49,807	49,807 49,807 49,807 49,807 49,807 49,807 49,807 49,807 49,807 49,807 49,807	111,989
Benefits	Reduction in Ships' Staying Cost	53,896 70,072 160,806 177,180 177,180 177,180 177,180 177,180 177,180 177,180	177,180 177,180 177,180 177,180 177,180 177,180 177,180 177,180 177,180 177,180	4,005,560
	Total	71,468 117,374 238,392 270,904 270,904 270,904 270,904 270,904 270,904 270,904	270, 904 270, 904	6,116,210
	Operation/ Maintenance	12,672 93,778 43,778 43,778 43,778 43,778 43,778	43,778 43,778 43,778 43,778 43,778 43,778 43,778 43,778 43,778	987,248
	Equipment	333,650		333,650
Costs	Construction	11,692 77,240 225,591 306,633 148,460		769,616
	Total	9239198977777777	43,778 43,778 43,778 43,778 43,778 43,778 43,778 43,778 43,778 43,778 43,778	2,090,514
	Fiscal Year	1982/83 83,784 84,785 84,785 86,787 86,787 89,790 90,91 91,92 92,93 94,195 96,196 96,196	199/2000 2000/1 11 / 12 12 / 13 13 / 4 14 / 15 16 / 17 17 / 18 18 / 19 19 / 110 10 / 110	Total
	No.	1787 8 3 8 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8	22 22 22 25 25 25 25 25 25 25 25 25 25 2	

Source: Feasibility Study Report on the Introduction of Containerization in the Islamic Republic of Pakistan, 1982

be unable to keep up with the incoming traffic. With the proposed project, on the other hand, ρ for the three berths including the proposed is estimated as 0.90 (λ = 1.06), indicating that the system is assumed to approach the statistical equilibrium. In consequence, the proposed project is required early in the 6th Five Year Plan period. Incidentally, since Wq is estimated to be 4.7 days based upon M/E₃/S (Lq = 4.94), efforts are most encouraged to reduce Wq by various short-term and long-term devices including the handling rate increase.

Based upon the Policy that liquid products beyond 10 million tons per year will be handled at Qasim Port, an oil berth needs to be developed at Qasim Port before flowing demand reaches a considerable amount. One oil berth of 1.5 million ton capacity proposed to be constructed by 1988 aims at meeting this demand.

The rest of demand for liquid berth at Qasim Port can be estimated as shown in Table 3-4-3. Handling this demand by the buoy berth at the outer anchorage area instead of the conventional oil berth presumably at Bundal Island is advantageous under the given conditions in the respects including the following:

- 1) The total construction cost is estimated less.
- 2) The congestions in the channel expected in the long-term future can be partly eased.
- 3) The navigation of tankers along the channel of approximately 15km portion can be saved.
- 4) The security from accidents can be maintained due to avoidance of large tankers coming into the channel.

The first point can be further elaborated based upon cost comparison analysis in use of queueing theory as follows. If four conventional berths are planned for the year 2000, ρ is estimated to be 1.03 (the apparent service rate = 0.38), while ρ for five berths is 0.82. Therefore, five berths are actually required, and four berths seem to be the least requirement even upon successful improvement of berth operation. The construction of four oil berths at Qasim Port is estimated to cost approximately 1.4 billion Rupees, which is more than the estimated cost of the buoy berth and related facilities of equivalent capacity.

Table 3-4-3 Estimated Demand for Liquid Berths

Excluding the First One at Port Qasim

Year	Import/Export(1000t)	Number of Vessels per Year	Number of Vessels per Day	
1988 / 89	670	26	0.07	
1989 / 90	1,437	56	0.15	
1990 / 91	2,252	87	0.24	
1991 / 92	3,118	120	0.33	
1992 / 93	4,039	156	0.43	
1993 / 94	5,018	193	0.53	
1994 / 95	6,059	234	0.64	
1995 / 96	7,165	276	0.76	
1996 / 97	8,341	321	0.88	
1997 / 98	9,591	369	1.01	
1998 / 99	10,920	420	1.15	
1999 / 00	12,295	473	1.30	

Source: Study Team

Notes: (1) A constant annual average growth rate is assumed to project the intermediate years.

(2) The average load per vessel is assumed to be 26,000t.

(3) Mini-Port at Gwadar

The construction of a mini-port in Gwadar was studied by JICA in 1980 and the following benefits were identified:

- 1) The availability of a modern fishing port will improve the fishing productivity in the region and increase the protein supply in the region as well as Pakistan.
- 2) The export of a large quantity of high-grade shrimp will become possible, contributing to international balance of payment.
- 3) 150-ton class coastal steamers will become able to berth at the proposed mini-port, accelerating the use of coastal shipping.
- 4) After the development of mini-port, larger barges may be used, reducing the cargo-handling time and the anchorage days of coastal trade vessels.

5) The project is expected to play an important role for the development of Baluchistan Province and in particular Gwadar City.

Quantifying the first four effects, the cost benefit analysis can be concluded with the internal rate of return of 3.8 %. This appears to be a rather low return. Upon implementation of the project, therefore, the expansion of Gwadar based fishery activities in an efficient manner will have to be most encouraged. At the same time, the indirect effects of the project including the last one in the above list are to be taken into consideration.

(4) Others

By the conventional fertilizer unloading system of 1,750-ton daily handling rate, the berth occupancy of a vessel with the average load of 13,000 tons is more than eight days. Without the proposed fertilizer terminal development at Qasim Port, the required number of berths to keep up with the estimated volume of incoming fertilizer and phosphate/sulpher of 1.5 million tons in 1987/88 and 3.1 million tons in 1999/2000 are about four and seven, respectively. The proposed development of equipments, whose cost is almost equivalent to the construction cost of 1.5 berth, is expected to enable one terminal of 279m long to handle the demand for 1999/2000.

The major aim of wheat terminal development at Qasim Port is to clear the apron occupancy of bulk wheat by the conventional handling way. Although the project is not necessarily requisite from a point of view of berth congestions (ρ of one berth for wheat products in 1999/2000 = 0.5), an early implementation is favored from a point of view of berth apron management.

The small boat harbor basin is presently occupied during peak hours by 300 to 400 small boats, which are of many and still-increasing motor launches offering access to the public, approximately 50 sail boats stationed in the basin and roughly 200 launches belonging to KPT, Navy, Coast Guard and oil companies. As stated in KPT Act (V-30), Karachi Port is to provide such public landing facilities free of charge. The existing facilities which were built in 1920 and are becoming deteriorated and need to be rebuilt before too late.

3-5 Preliminary Evaluation of Airport Projects

3-5-1 Approaches and Methodologies

Among development expenditures of the airports and navigation systems to cater for the projected demands, the most expensive is civil works for airport facilities. The expansion and maintenance of runways, taxiways and aprons including periodical overlays are essential to keep the safe aircraft movements from an engineering point of view. Since the required number of apron berths are planned based upon the forecasted peak hour movements and apron occupancy time of aircrafts as criteria, the development of additional apron berths needs to be implemented without delay.

The requirement of terminal buildings and car parkings are also planned based upon the forecasted peak hour traffic. While some flexibility concerning the implementation timing is allowed within the permissible extent of congestions, excessive postponement of such facility development will involve serious confusions beside the problems of low amenity.

Another important system element to maintain the safe aircraft operations is navigation systems of airports and enroutes. To ensure the safety performances of such systems as radars, communications, radio navigation aids and aeronautical lightings, such systems are to be improved so as to meet with the international standards.

Beside safety and amenity factors, policies play an important role in discussing the priorities of projects. The policy factor was taken into account based upon discussions with the concerned Pakistani officers, particularly for development of major airports and new local airports. Approaches of preliminary evaluation involving such factors as safety, amenity and policy usually take descriptive analysis as demonstrated for each project in the project list.

On the other hand, quantitative analysis is effective for preliminary evaluation of projects which aim at economic efficiency improvement. Since safety is the first condition in aircraft operation, absence of the necessary facilities is often forced to neglect the operation efficiency in order to secure the least safety. Cost-benefit analysis is conducted in such a manner to compare the development cost of the missing facilities and the saving of economic losses. Table 3-5-1 and 3-5-2 show the hours

and costs of aircraft holding respectively which are often introduced in the analyses.

Table 3-5-1 Annual Holding Hours of the PIA Aircrafts (1981/82)

				(Hou	urs) .
Aircraft	RWP	кні	LHE	UET	Total
B747	30	103	-	_	133
DC10	90	180	10	. . .	280
À300	15	307	64	-	386
8707	25	148	11	5	189
B720	15	112	7	16	150
F-27	160	100	83	4	347
Total	335	950	175	25	1485

Source: PIA

Table 3-5-2 Holding Cost of the Aircrafts

	1 1		graph was		()	s / hr)	
		В-747	DC-10	A300	B-707	B-720	F-27
	Financial	57,800	42,500	29,750	28,900	27,030	3,230
fuel	Economic	56,644	41,650	29,155	28,322	26,489	3,165
	Financial	8,000	5,400	3,100	2,000	2,000	1,500
Maintenance	Economic	7,260	4,914	2,821	1,820	1,820	1,365
Standing	Financial	25,477	19,578	22,105	4,261	2,721	600
Charges	Economic	23,184	17,816	20,116	3,878	2,476	546
rew	Financial	3,200	2,600	2,400	1,700	1,700	650
Salaries	Economic	2,861	2,324	2,146	1,520	1,520	581
	Financial	94,477	70,078	57,355	36,861	33,451	5,980
fotal	Economic	89,969	66,704	54,238	35,540	32,305	5,657

Source: PIA for Financial Cost, Study Team for Economic Cost

(1) Civil and Building Works at Major Airports

Among the major civil work projects are the runway and taxiway development projects at Karachi and Lahore. The necessity of these projects mainly arises from that of rehabilitating, or expanding the existing runways. Since runway construction works take a period of runway closure which is not possible at such major airports, the development of the other runway to be fit for the substitute is proposed. Based upon the examination from an engineering point of view, they are urged to be implemented during the 6th Five Year Plan period.

Beside the runway and taxiway development project, Karachi Airport needs to undergo a number of projects including expansion and rehabilitation of various types of aprons, development of cargo terminal area, international passenger terminal and domestic passenger terminal. As discussed earlier, expansion and maintenance of such basic facilities should be regarded as requisite to cater for the rapidly increasing traffic. Also in view of the importance of Karachi Airport as the main gateway to the nation, it can be taken as a policy to give highest priority on the development of terminal facilities at Karachi immediately.

The development of Islamabad Airport can be divided into three phases, beside the periodical overlay of runway and taxiway. The major parts of the first phase include the extension of runway to make it more appropriate as a primary international airport and the development of parallel taxiway. The absence of parallel taxiway is a part of the causes for air traffic congestions at Islamabad shown in Table 3-5-1. This is because the runway occupancy by landed aircrafts becomes high for taxiing back on the runway. Table 3-5-3 shows the outcomes of cost-benefit analysis for the assumption sets of holding hour reduction and installation timing (see Table 3-5-4 for an example of cost-benefit stream). According to the discussion between the concerned Pakistani officers and the Study Team, the reduction of holding hours is expected to be a few tens percents. Therefore, the economic feasibility of the project's early implementation is not fully assured from the above quantitative analysis.

Table 3-5-3 Economic Return (IRR) of
Islamabad Airport Parallel Taxiway Project

Reduction of		Installation Timing (Pro	oject Start)
Holding Hours (%)	1983 / 84	1986 / 87	1988 / 89
10 10 14 10			• • • • • • • • • • • • • • • • • • •
.20	3.43	5.20	6.34
30	9.21	11.24	12.54
40	13.77	16.12	17.61

Source: Study Team

Table 3-5-4 Islamabad Airport Parallel Taxiway Project,
Stream of Economic Costs and Benefits
(Holding Hours: 20 % Reduction, Installation Timing: 1983/84)

Unit: Rs

			COST			
Yes	ir	Construction Cost	Maintenance & Operating Cost	Total	Benefit	
1	1983 / 84	25,557,500		25,557,500		
. 2	1984 / 85	25,557,500	i was Ar sas	25,557,500	1.00	
3	1985 / 86		1,357,000	1,357,000	3,612,750	
4	1986 / 87		1,357,000	1,357,000	3,934,284	
5	1987 / 88		1,357,000	1,357,000	4,284,435	
- 6	1988 / 89		1,357,000	1,357,000	4,460,097	
7	1989 / 90		1,357,000	1,357,000	4,642,960	
8	1990 / 91		1,357,000	1,357,000	4,833,321	
9	1991 / 92		1,357,000	1,357,000	5,031,487	
10	1992 / 93		1,357,000	1,357,000	5,237,777	
II.	1993 / 94	in the second second	1,357,000	1,357,000	5,452,525	
12	1994 / 95		1,357,000	1,357,000	5,676,077	
13	1995 / 96	13,649,000	1,357,000	15,006,000	5,908,797	
14	1996 / 97		1,357,000	1,357,000	6,515,056	
15	1997 / 98		1,357,000	1,357,000	6,403,249	
16	1998 / 99		1,357,000	1,357,000	6,665,781	
17	1999 / 00		1,357,000	1,357,000	6,939,076	
18	2000 / 01		1,357,000	1,357,000	7,223,578	
19	2001 / 02		1,357,000	1,357,000	7,519,743	
20	2002 / 03		1,357,000	1,357,000	7,828,052	
21	2003 / 04		1,357,000	1,357,000	8,149,003	
22	2004 / 05		1,357,000	1,357,000	8,483,111	
IRR	= 3.43					

Source: Study Team

Trafficwise, since the peak hour aircraft movements at Islamabad Airport are estimated 6 in 1987/88 and 8 in 1999/2000, the case is still controversial. In consideration of further factors, it can be pointed out the joint use of the airport for PAF and civil is actually making the traffic condition worse than explained above. Also, Islamabad Airport as the Capital International Airport of Pakistan is expected to receive some intangible benefit from the parallel taxiway provision project. Synthesizing the above discussion, the parallel taxiway is proposed to be developed late in the 6th Five Year Plan period. This is also desirable from a planning point of view, because the runway extension project and terminal area development project can be conveniently coordinated.

The rest of the first phase and the following two phases of Islamabad Airport Scheme are mostly for the development of terminal area including aprons, terminal building and car parkings. The Study is proceeded based upon the concept of developing the terminal area north of the existing runway. this concept is supported by the following points.

- 1) The capacity of existing terminal facilities is by any means inadequate for the estimated traffic in 1987/88, but the site has very limited area for expansion.
- 2) The existing runway is estimated to be capable of managing the estimated traffic if the parallel taxiway is constructed. The development of new terminal facilities north of the existing runway is expected to be successful in a) separation between the PAF and civil traffics, b) taking advantage of the existing terminal facilities and c) better access connection to Islamabad. Also, the area of site is large enough to design a terminal attractive enough as the Capital airport.
- 3) While no significant additional benefits can be found in developing a completely new airport at a different site, several losses and disadvantages can be identified. Included among them are construction of additional runway and related facilities, abandonment of the existing terminal facilities, and relatively disadvantageous access condition.

(2) Air Navigation System Development

Air navigation systems of airports and enroutes are planned applying certain standards as criteria. The enroute A/G communication, enroute radar and other enroute facilities will be brought to the international standard. Radio navigation aids and aeronautical lighting systems at the major three airports will be upgraded to Precision Approach Category II in a phased approach, while the airports with turbo jet operations will be upgraded to Precision Approach Category I and the airports without turbo jet operations to Non-precision IFR Approach.

Development of airport radars is expected not only to ensure the security but also to improve the economic efficiency of aircraft operations. The present ASR at Karachi Airport was installed in 1965 and is now operated only on a test basis during morning hours suffering from maintenance problems. It is observed that most of the congestions in the Controlled Terminal Area shown in Table 3-5-1 are due to the conflicting traffic during the absence of active ASR. Upon replacement of ASR at Karachi, therefore, much of the congestions are expected to be solved. Cost-benefit analysis on the assumption that 10 % of holding hours will be saved is concluded, as shown in Table 3-5-5, with IRR of 47.5 %. If 20 % of holding hours is assumed to be saved, IRR is estimated to be 95.5 %. Judging from these results, the project appears quite feasible in these cases. At the same time, the actual reduction of holding hours will without any doubt exceeds these percentages. It can be concluded that even an immediate implementation of the ASR/SSR project is justifiable.

The present aircraft holding at the Islamabad Airport is attributable partly to the absence of radar and also partly to the absence of parallel taxiway which increases the runway occupancy by the landed aircrafts for taxiing back. Table 3-5-6 shows the outcomes of cost-benefit analysis of the assumption sets of holding hour reduction and installation timing. In actual, discussion has been held between the concerned Pakistani officers and Study Team that nearly half of the holding hours is the least expectation for reduction due to the more skillful separation of aircrafts enabled by the radar. Taking into consideration such further benefits as the holding hour reduction of other Pakistani and foreign aircrafts and the prestage of the capital city airport, the installation project of remote radar at the Islamabad Airport is justifiable during the 6th Five Year Plan period.

Table 3-5-5 Stream of Economic Costs and Benefits (Holding Hours: 10% Reduction) Karachi Airport ASR/SSR Project

		<u> </u>	18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u> </u>	(Rs)
			совт		
Yea	r	Construction Cost	Maintenance & Operating Cost	Total	Benefit
1	1983 / 84	32,301,000		32,301,000	
. 2	1984 / 85	, s	2,442,960	2,442,900	15,347,230
3	1985 / 86		2,442,900	2,442,900	16,575,008
. 4	1986 / 87		2,442,900	2,442,980	17,901,007
5	1987 / 88	-	2,442,900	2,442,900	19,333,086
6	1988 / 89		2,442,900	2,442,900	20,229,740
7.	1989 / 90		2,442,900	2,442,900	21,314,725
. 8	1990 / 91		2,442,900	2,442,900	22,380,461
9	1991 / 92		2,442,900	2,442,900	23,499,482
10	1992 / 93		2,442,900	2,442,900	24,674,455
11	1992 / 93	12,920,400	2,442,900	15,363,300	25,908,178
12	1993 / 94		2,442,900	2,442,900	27,203,585
13	1994 / 95		2,442,900	2,442,900	28,563,761
14	1995 / 96		2,442,900	2,442,900	29,991,948
15	1996 / 97	·	2,442,900	2,442,900	31,491,545
16	1997 / 98		2,442,900	2,442,900	33,066,121
17	1998 / 99	. •	2,442,900	2,442,900	34,719,428
18	1999 / 00		2,442,900	2,442,900	36,455,398
19	2000 / 01		2,442,900	2,442,900	38,278,163
20	2001 / 02		2,442,900	2,442,900	40,192,071
21	2002 / 03	·	2,442,900	2,442,900	42,201,663
IRE	= 47.53				

Source: Study Team

Table 3-5-6 Economic Return (IRR) of Remote Radar Installation Project at Islamabad Airport

				,	(%)
Reduction of			Installation Timing ((Project Start)	
Holding Hours	(%)	1983 / 84	1986 / 87	1988 / 89	1991 / 92
10		÷1.11	-	-	<u>-</u>
20		0.95	3.50	5.07	7.46
30		8.96	11.93	13.71	16.53
40		15.20	18.87	20.98	24,40
50		20.73	25.23	27.74	31.84
60	3	25.91	31.34	34.27	39.10
70		30.88	37.32	40.70	46.27
80		35.73	43.23	47.07	53.40
90	_	40.50	49.10	53.40	60.50
100		45.21	54.96	59.72	67.59

Source: Study Team

Due to the fact that the Lahore Airport is situated very close to the Indian border and there are a number of overflying traffic, some opinions support the installation of radar. The peak day aircraft movements at Lahore are forecasted to be 39 in 1987/88 and 46 in 1999/2000. Under such a circumstance, the installation of radar will be justified at least in future, but the installation timing is remaining controversial.

Table 3-5-7 shows the outcomes of cost benefit analysis of the crosssectional assumption of holding hour reduction and installation timing. It can be interpreted from these figures that 70 to 80 % of the reductuion of holding hours are expected to economically pay off the cost. This indicates that the air traffic congestions are much less serious at the Lahore Airport than Karachi or Islamabad and that the installation of remote radar at Lahore seems better to be left for the 7th Year Plan period or after.

Table 3-5-7 Economic Return (IRR) of Remote Radar
Installation Project at Lahore Airport

(%)

Reduction of		Installation Timing (Project Start)						
Holding Hours (%)	1983 / 84	1986 / 87	1988 / 89	1991 / 92				
10	- :	.	.	<u>.</u>				
20	-	• • • • • • • • • • • • • • • • • • •	<u>-</u>	·				
30	•		1, 1, 1, <u>1</u> , 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,					
40	<u>-</u>	1.09	2.65	5.00				
50	2.95	5.55	7.14	9.60				
60	6.52	9.31	10.99	13.64				
70	9.64	12.68	14.49	17.36				
80	12.48	15.81	17.76	20.89				
90	15,13	18.78	20.89	24.30				
100	17.64	21.65	23.93	27.63				

Source: Study Team

(3) New Airport Development Projects

A number of candidate local airport sites which come up for discussion can be roughly grouped into three. Those of the first group including Zhob, Sibi and Khuzdar are situated in rather remote areas of Baluchistan, expecting relatively small public demand as shown in Table 3-5-8. The airport development at these sites is proposed for the future economic development of area and the administrative and other governmental purposes. Although it is admitted from an economic and safety point of view that highest priorities during the 6th Five Year Plan period are to be placed on the major and other existing airports, some airports out of the first group will be developed based upon the policy.

Table 3-5-8 Forecasted Demand for New Local Airports

/T~~	4	
LL	I,	PS)

		The second secon
Airport	1987 / 88	1999 / 2000
Bannu	10,232	15,174
Sargodha	66,612	132,156
D.G.Khan	11,444	17,688
Bahawa1pur	20,358	31,724
Rahimyar Khan	20,402	34,804
Zhob	4,570	6,938
Sibi	1,540	2,604
Khuzdar	27,960	50,276
Ormara	15,478	24,520

Source: Study Team

The second group of candidate sites including Sargodha, Rahimyar Khan, Bahawalpur and D.G.Khan have relatively higher potentials for development in and after the 7th Five Year Plan period particularly in terms of forecasted demand volume. These sites are considered to make the nationwide airport network more extensive, occasionally taking advantage of some existing facilities developed in early days. Finally, a very limited number of airport sites might be developed before the year 2000 out of the third group candidate sites including Abbottabad, Jacobabad, Sialkot, Sahiwal, Sehwarsharief, Mirpurkhas and so on.

(4) Alternate Airport for Karachi

While the actual air traffic managed at the Nawabshah Airport is not much to speak of as a local airport, Nawabshah is supposed to maintain the function as the alternate aerodrome for Karachi Airport. Even though Nawabshah is designated so in AIP, the required facilities to meet this function are not made available yet. Due to this situation, the wide-bodied aircrafts of PIA are unable to plan to be diverted to Nawabshah in case of emergency. Then, these aircrafts are incurring extra expenditure of burning extra fuel for such more distant alternate airports as Islamabad and Lahore. According to PIA, the extra expenditure for 1981 is estimated as shown in Table 3-5-9 in financial terms.

Table 3-5-9 Extra Expenditure (Financial) Due to Non-availability of Nawabshah as the Alternate for Widebodied Aircrafts

Aircraft	Number of	Extra	Average	Extra
Aircratt	Incoming Flights.	Burn off(gal/Hr)	Price(Rs/gal)	Expenditure(Rs)
B-747	832	148	15.3	2,825,971
DC-10	1,976	112	15.4	5,112,307
A~300	3,068	76	15.4	5,386,181
Total	5,876	<u>.</u>	-	13,324,459

Source: PIA

Note: Average flying time is assumed to be 1.5hrs.

Taking the saving of these extra burn off as the benefits, economic cost-benefit analysis has been conducted to analyze the development project of Nawabshah Airport to the full alternate aerodrome for Karachi. In the case the facilities are fully developed the internal rate of return is estimated to be 19.2 %, while that of the case the building development is in a half scale is 22.2 %. It can be interpreted that an early and full implementation is economically feasible. Taking into consideration such further benefits as the saving of fuel consumption brought to other aircrafts and the accomplishment of reliable image of Karachi Airport, this project is recommended to carry out in an early timing of the 6th Five Year Plan period.

4. Summary of Masterplan Alternatives

4-1 Masterplan Alternative A

Masterplan Alternative A is formulated taking into account the projects identified in each sub-sector, based on the present pattern modal split for road and railway.

Here, present pattern means that future demand in inland traffic volume is divided into road and railway with the same pattern of modal split of 1980/81 which leads to the situation where rapid expansion of road transport in secular trend results as seen internationally due to marginal efficiency of road being higher than that of railway also in Pakistan.

present transportation infrastructure is not necessarily regarded as the situation of shortage in capacity except some portions of the road. Rather than this, main serious problem is the difficulty to provide the designed service level because of unsatisfied maintenance level. As for future traffic, shortage in capacity will occur without discussion by far amount.

4-1-1 Road and Road Transport

Marie Marie As for the capacity of road in future, it can be foreseen as follows.

- (i) Assignment of the traffic in 2000 on the present road inventory.
- (ii) Assignment of the traffic in 2000 changing the inventory of the road to the level of the standard which is now used in Pakistan for those links where the traffic becomes higher than capacity.
- (iii) In case there existing a gap between traffic volume and capacity because of network combination, readjustment of road inventory is adopted up to acceptable level.

Above simulation is adopted since there occurs a serious distortion of traffic flow, then the road inventory is fixed.

Therefore, it should be considered that the differentials of present inventory to the inventory which is identified with the last one at the stage of the simulation shows deficit against the traffic demand at 2000.

The main targets necessary to achieve by this Masterplan are to practise appropriate road rehabilitation and maintenance and to shorten the overall traffic time through the smooth connection between different modes and the speed up of running of trains. Therefore, it should be strongly suggested that the level of road inventory should not be decreased than the original level with larger allocation of financial and human resources.

Due to limitation of scope and work in this Study, road maintenance project is not identified. According to the general survey, the works to maintain the service level of road has been implemented only about one third of the required level.

This Masterplan's indirect suggestion for maintenance of transportation infrastructure is to improve the level of standard of road than the present one in order not to suffer from the deterioration of road, especially from the large size vehicle because large size vehicle restriction is not realistic and it is almost impossible to charge the obligatory practise of overlay work after the completion of road at periodical intervals.

It is necessary to provide appropriate higher productivity of transport system in order to attain the projected high economic growth as the transport activity is one of the vital external economies for manufacturing, agricultural, mining and service industries. Otherwise, transportation infrastructure becomes the bottleneck for the socio-economic growth of the country.

As for the road, taking into account the economically accepted vehicle operating cost, maximum average speed being 80 km/h, admitting 40km/h for some portion of the road in general, metalled two lanes road with fair maintenance level should be fulfilled for trunk network roads.

Also as the civil minimum standard, it is necessary to provide the feeder road in order to make people access to the facilities of medical, educational and other cultural institutions reaching at least within, say, 120 minutes to the trunk road from any place in the country.

Therefore, the improvement of National Road N-5 to 4 lanes which is the most important national economic corridor between North and South should be suggested as the strategic project for the core of road arrangement.

Further, in order to make the flow of traffic on trunk network fluent, the dissolution of bottleneck generated by the traffic, based on present traffic and future demand assignment, the level up of the minor road by the standpoint of estimated diverted traffic, the bridges on the Indus River, short cut, by-pass and access road to other modes are to be identified by the mode study and should be arranged, depending on its urgency.

Among the identified projects, the main route which goes directly from South to North in Punjab, diverting away from the National Highway N-5 should be arranged as the quasi-strategic project.

Other important items to be considered are as follows.

- (i) Level up of East-West trunk road, due to the resource development in Baluchistan.
- (ii) Concerning the insufficiency of road maintenance, level up of the road standard and project formation including compulsory over-lay work united to road project.
- (iii) Arrangement of road and road transport in accordance with the strategic projects of railway's long distance intensive policy and port's containerization.

Considering above mentioned items, road and road transport should be arranged as one of the main mode of transportation in Pakistan.

Besides the projects based on economic feasibility, as the high social needs, for direct access route from Quetta to the economically accumulated areas of Islamabad/Rawalpindi and Lahore intending economic development effect, should be arranged,

As for the road transport, the arrangement plan of vehicle enough to handle the demand by public sector should be indentified.

Also on the road transport either in public and private, it is necessary to solve the various problems in management system in order to improve the productivity.

It is also necessary to advise that the programmes to prevent the traffic accidents are to be prepared with the highest priority.

4-1-2 Railway

Railway should provide the appropriate capacities both in line and rolling stocks in accordance with the future demand with reasonable service level such as average maximum speed in genaral, 100km/h including stop hour, admitting 50km/h for some portions and with the service level of which productivity of transport can contributes to the projected economic activity in 2000.

In order to realize the above mentioned items, drastic rationalization investment has to be necessitated as long distance intensive policy of railways for the commodity flow.

Other main projects for railway to improve the service level are considered as follows.

- (i) Replacement of worn-out facilities in the present railway inventories, which make difficult to offer the designed service level.
- (ii) Level up the service standard of the access, handling of cargo, ware-house and terminal for transportation continuity.
- (iii) Necessity to improve the efficiency of such soft aspect in accordance with above mentioned rationalization investment as the system of railway is so complicated in institution and management aspects.

Further, independent projects which should be identified are as follows,

- (i) Electrification to improve the energy efficiency.
- (ii) Improvement of the route between East and West trunk route.
- (iii) Improvement of facilities related to the containerization projects of port and shipping.

4-1-3 Port and Shipping

As for the port and shipping, it is preferrable to provide the sufficient facilities in quantitative and qualitative aspects by antecedent investment, not to make the bottleneck in coordinating the vital role of port and shipping for economic growth.

As the Ports of Karachi and Qasim are the main gateways in Pakistan, projects identified to meet the demand concerning warehouse, handling facilities and terminal keeping in view of productivity should be implemented considering the commodity splits for two ports.

For a chain of rationalization, containerization project of Karachi Port should be suggested as the strategic project.

As for shipping, 40% of liner trade by national flag ship is considered as acceptable share with reference to the UN code of conduct.

As for bulk cargo, it is suggested to be operated on the base of economic principle. Therefore, acquisition of bulk carrier for steel mill and oil tanker shall be further studied on the basis of world shipping market and based on capacity analysis of required tonnage instead of prefixed loading share.

As for the projects related to containerization of port, full container ship should be acquired.

4-1-4 Airport and Aviation

Aviation characterized to connect 2 places with a short time is considered as the compulsory mode in highly developed economic and cultural society.

Therefore, it is urgently necessary to adopt the large size airplane in accordance with the growth of demand, and purchasing program for larger size airplane together with the related development/improvement plans for airport should be the major schemes of these sub-sectors.

Besides the arrangement according to the quantitative measures, those projects for level up of service level of the navigation system for securing of traffic safety and the securities of airport should be implemented in coordination with other facilities.

4-1-5 Others

Although there has been no specific information and data available on pipeline for POL, to meet with the demand forecast, it might be necessary for Pakistan to have another pipeline connecting between Karachi and Multan Terminal with the assumption that a new oil refinery would be constructed close to the PQA premises. It is to be noted that the in-depth study on pipeline and refinery shall be necessary before any decision to be made on pipeline development.

Allocation of fund for each mode in the Masterplan Alternative A is as follows.

	Million Rs.	%
Road	85,445	43.5
Road Transport	10,991	5.6
Railway	38,092	19.4
Port	8,940	4.5
Shipping	11,522	5.9
Airport	8,905	4.5
Aviation	32,700	16.6
TOTAL	196,595	100.0

It is considered that the level of transport system after completion of the projects listed in Masterplan Alternative A can cover the transport demand with acceptable service level by each mode and that can contribute to the expected goal of GDP at 2000 in Pakistan and offer the serviceability meeting with the level of GDP/capita in 2000.

In consideration of above, the projects needed for the Masterplan Alternative A have been summarized and listed by mode as per attached.

List of Projects Constituent Masterpaln Alternative A

i. Road

Mode

ame of Project Widening of N-5 to 4 Lanes Widening and Grade up Project (N-5) Grade up of Road of Quetta, Grade up of Road of Quetta, Lahore via D.G.Khan till Multan Short Cut Truckroad in Panjab Withshab, Pail, Mandra Road Rehabilitation of Karachi, Rehabilitation of Quetta, Taftan Road Project (N-25) Rehabilitation of Quetta, Taftan Road Project Grade up of Qila Saifullah, D.I. Khan Road Project Indus Highway of Kotri, Bridge Construction between D.I. Khan, Sarai Krisha Project Eshawar Road Project Bridge Construction of Sarai Rehabilitation of Sarai Rehabilitation of Innd M. Fana, Rehabilitation of Innd M. Fana, Atharan Hazari Road Project Rehabilitation of Innd M. Fana, Atharan Hazari Road Project Rehabilitation of Innd M. Fana, Atharan Hazari Road Project Rehabilitation of Innd M. Fana, Atharan Hazari Road Project	Remarks Million Rs., Financial, 1981 Price (Link No.) Cost	52001-52009,51001-51022, 16,235 53001-53003 34 Links	4010, 4009, 2012, 2011, 2,673 2013 5 Links	4008, 4022, 4012, 1042, 1,620 1051, 1041, 1052, 1053 8 Links	1054, 1055, 1059, 1047, 2,294 1048, 1049 6 Links	2010, 4001, 4002, 4003, 1,268 4004, 4005 6 Links	4013, 4014 2 Links 900	4007, 3010 2 Links 352	2014-2018, 1032-1034, 2,602 3016-3021, 2019 15 Links	3022, 1040 2 Links 107	1039, 1038, 1037, 1036, 1,094 1061 5 Links	1043, 1044, 1045 3 Links 697	1005 4057 4050 2 Timbs 000
ame of Project Widening of N-5 to 4 Lanes Project (N-5) Grade up of Road of Quetta, Rohri Project (N-65) Grade up of Road of Quetta, Lahore via D.G.Khan till Multan Short Cut Truckroad in Panjab of Kabirwala, Jhang, Sargodha, Khushab, Pail, Mandra Road Rehabilitation of Rarachi, Quetta Road Project (N-25) Rehabilitation of Quetta, Taftan Road Project Grade up of Qila Saifullah, D.I. Khan Road Project Indus Highway of Kotri, Peshawar Road Project Bridge Construction between D.I.Khan, Sarai Krisha Project Rehabilitation of Sarai Krisha, Gujranwala Project Rehabilitation of Innd M. Fana, Atharan Hazari Road Project	of Project	and Grade up	dn		507			ďn		3ridge Construc-		10	110
man	of Project	ഗ വ	Grade up of Road of Quetta, Rohri Project (N-65)	. Grade up of Road of Quetta, Lahore via D.G.Khan till Multan		Rehabilitation of Karachi, Quetta Road Project (N-25)				Bridge Construction between D.I.Khan, Sarai Krisha Project	Rehabilitation of Sarai Krisha, Gujranwala Project	Rehabilitaion of Innd M. Atharan Hazari Road Proj	12 Rehabilitation of Lahore.

Rehabilitati Tajazai Road Rehabilitati Talagang, Fa Road Project Grade up of Sazin Road F Grade up of Grade up of Road Project Construction Road Project Construction Grade up of Rehabilitati Turbat Road Construction Grade up of Road Project Grade up of Road Project Grade up of Road Project Grade up of Road Project Grade up of Road Project Rehabilitati Parachinar H Grade up of Rehabilitati Rehabilitati Ralabagh By Rehabilitat Construction Ralabagh By	ion of Khushab, Rehabilitation 1060, 1027, 1026, 1029 to feel be project 102 to feel be project 102 for of Pail 102 for of Pail 102 for of Sibi, Bewata Rehabilitation 1023, 3006, 3007, 3009, 3005 for Link 100 of Wingai, 100 of Wingai, 100 of Sibi, Bewata Rehabilitation 100 for for for of Sibi, Bewata Rehabilitation 100 for for for for for for for for for for	Rehabilitation of Khushab, Rehabilitation of Pail Rehabilitation of Pail Rehabilitation of Pail Rehabilitation of Pail Road Project Road Project (N-35) Road Proje
Rehabilitation of Khushab, Tajazai Road Project Rehabilitation of Pail Talagang, Fatehjang, Tarnual Road Project Grade up of Hasan Abdal, Sazin Road Project (N-35) Grade up of Hasan Abdal, Sazin Road Project Construction of Sibi, Bewata H Road Project Construction of Wingai, Jiwani Road Project Construction of Sibi, Bewata H Rehabilitation of Surab, Hoshab Road Project Construction of Surab, Bisham Road Project Grade up of Quetta, Chaman Road Project Construction of Satta, Rehabilitation of Satta, Ralabagh Bypass Road Project Rehabilitation of Rahimyarkhan Chani Goth Road Project	Rehabilitation of Khushab, Tajazai Road Project Rehabilitation of Pail Talagang, Fatehjang, Tarnual Road Project Grade up of Hasan Abdal, Sazin Road Project (N-35) Grade up of Hasan Abdal, Sazin Road Project Construction of Sibi, Bewata H Road Project Construction of Wingai, Jiwani Road Project Construction of Sibi, Bewata H Rehabilitation of Surab, Hoshab Road Project Construction of Surab, Bisham Road Project Grade up of Quetta, Chaman Road Project Construction of Satta, Rehabilitation of Satta, Ralabagh Bypass Road Project Rehabilitation of Rahimyarkhan Chani Goth Road Project	Rehabilitation of Khushab, Tajazai Road Project Rehabilitation of Pail Talagang, Fatehjang, Tarnual Road Project Grade up of Hasan Abdal, Sazin Road Project (N-35) Grade up of Hasan Abdal, Sazin Road Project Construction of Sibi, Bewata H Road Project Construction of Wingai, Jiwani Road Project Construction of Sibi, Bewata H Rehabilitation of Surab, Hoshab Road Project Construction of Surab, Bisham Road Project Grade up of Quetta, Chaman Road Project Construction of Satta, Rehabilitation of Satta, Ralabagh Bypass Road Project Rehabilitation of Rahimyarkhan Chani Goth Road Project
Rehabilitat Tajazai Roa Rehabilitat Talagang, E Road Projec Grade up of Sazin Road Grade up of Road Projec Constructic Gonstructic Jiwani Roac Constructic Gwadar Ling Constructic Gwadar Ling Constructic Rehabilitat Rehabilitat Road Projec Grade up of Road Projec Constructic Road Projec Grade up of Road Projec Grade up of Road Projec Rehabilitat Grade up of Rehabilitat Grade up of Rehabilitat Rehabilitat	Rehabilitat Tajazai Roa Rehabilitat Talagang, E Road Projec Grade up of Sazin Road Grade up of Road Projec Constructic Gonstructic Jiwani Roac Constructic Gwadar Ling Constructic Gwadar Ling Constructic Rehabilitat Rehabilitat Road Projec Grade up of Road Projec Constructic Road Projec Grade up of Road Projec Grade up of Road Projec Rehabilitat Grade up of Rehabilitat Grade up of Rehabilitat Rehabilitat	Rehabilitat Tajazai Roe Rehabilitat Talagang, E Road Projec Grade up of Sazin Road Grade up of Road Projec Constructic Gonstructic Jiwani Roac Constructic Gonstructic Gonstructic Gonstructic Gonstructic Gonstructic Gonstructic Rehabilitat Turbat Roac Constructic Gonstructic Road Projec Grade up of Road Projec Grade up of Road Projec Grade up of Road Projec Rehabilitat Grade up of Rehabilitat Grade up of Rehabilitat Gonstructi
	13. 14. 14. 15. 15. 15. 20. 20. 22. 23. 23. 25.	13. 14. 14. 15. 15. 20. 23. 24. 24. 24. 25.

`												
1,657	510	392	123	712	153	301	193	63	309	54	214	07
1089, 1090, 1091 3 Links	1078-1084 7 Links	1065, 1066, 1073 3 Links	1050 1 Link	1092-1094 3 Links	1046 1 Link	1062, 1063 2 Links	1024, 3011, 1025 3 Links	3026, 3027 2 Links	4011 1 Link	2045 1 Link	2025 1 Link	2042 1 Link
Rehabilitation	τ	E	E	22	gar gar	=		E		Dec.	=	±
28. Rehabilitation of Jhang, Gujranwala via Chiniot Road Project	29. Rehabilitation of Multan, Jahanian, Kasur, Lahore Road Project	30. Rehabilitation of Bahawalpur, Bunga Hayat Road Project	31. Rehabilitation of Lahore to India Road Project	32. Rehabilitation of Muzaffar-garh Mianwali Road Project	33. Rehabilitation of Atharan Hazari, Khushab Road Project	34. Rehabilitation of Gujranwala, Sialkot, Wazirabad Road Pro- ject	35. Rehabilitation of Rawalpindi, Abbottabad Road Project	36. Rehabilitation of Peshawar, Charsadda, Mardan Road Pro- ject	37. Rehabilitation of Quetta, Loralai Road Project	38. Rehabilitation of Larkana, Jacobabad Road Project	39. Construction of Dadu, Moro Bridge to Project	40. Rehabilitation of Kashmir, Ubauro Bridge Project

y2...

Grade up of Karachi, Hyderabad Grade up Road Project Rehabilitation of Thatta, Rehabilitation Sakrand Ling Road Project		000
	2023, 2024 2 Links	875
	2026-2033 8 Links	641
Rehabilitation of Mir Fur Khas, Umar Kot Road Project	2022 1 Link	129
Rehabilitation of Jacobabad, "Kund Kot Road Project	2046 1 Link	110
Rehabilitation of Mianvali, " Talagang, Sohawa Road Project	1095, 1101, 1100 3 Links	415
Rehabilitation of Faisalabad "	1064 1 Link	154
Rehabilitation of Kohat, "Fatehjang Road Project	1029, 10	225
Rehabilitation of Attock, " Talagang Road Project	1097, 1098 2 Links	457
Rehabilitation of Lodhran, " Khanewal Road Project	1076, 1077 2 Links	209
ation of Jhang, Road Project	1086-1088 3 Links	191
Rehabilitation of Jhang, Dipalpur Road Project	1102, 1103, 1074 3 Links	163
ation of Rajana, "Road Project	1085, 1069, 1070, 1071 4 Links	834
Rehabilitation of Mardan, "Haripur Road Project	3028, 3029 2 Links	27.0
Rehabilitation of Nowshera, " Swabi Short Cut Road Project	3032 1 Link	28
Rehabilitation of Shadan Lund, Ruknpur Road Project	1104-1106 3 Links	79

n n	177	48	179	201	176	148	100	163	9	30	67	63	ις	165
1107 1 Link	1067, 1068 2 Links	1075 1 Link	2034-2036 3 Links	2037-2040 4 Links	2043, 2044 2 Links	2020, 2021 2 Links	2041 1 Link	3004 1 Link	On-going Project	r		=	.	
Rehabilitation		=	· E	Ė			Ξ	E	Bridge Construction	Up Grade	Rehabilitation	Construction of Dual C/Way	Improvement	Construction of Bridge
Rehabilitation of Kot Addu, Karamdad Road Project	Rehabilit Bahawalna	Rehabilitation of Vihari, Hassalpur Road Project	Rehabilitation of Hyderabad, Badin Road Project	Rehabilitation of Matli, Copchali Road Project	Rehabilitation of Hala, Sanghar Road Project	Rehabilitation of Hyderabad, Mirpur Khas Road Project	Rehabilitation of Sujawal, Tando M. Khan Road Project	Rehabilitation of Peshawar, TorKham Road Project	Ghazi Ghat Bridge over River Indus	Providing Carpetted Dual C/Way	Special Repairs Karachi- Hyderabad Super Highway	Const. of Dual C/Way between Nowshera-Peshawar	Imp. & B/Topping of Darazinda Mughalkot Road	Const. of D.I.Khan-Darya Khan Construction of Bridge over River Indus
. 56.	57.	58.	.65	.09	61.	62.	63.	64.	65.	.99	67.	. 68	. 69	70.
Barr						·	411					:		

									٠										
•															:				
07	133	٠ •	236	144	^		<u>ო</u>	10	,	2 %	<u>†</u>			· · ·	∞		νη ·	9	35
									-										
٠.											•			À					
rojec										*.			٠.						
On-going Project	÷	=	=	= :	-	=	.	Ξ,	:		=	E	÷ ;	٠	=	. h	=	÷	ŧ
0n-g							•						(a)			. •		-	
		á	oject								껼		Bridg						
tion			мау Рх	tion		tion		,			Hyderabad ghway		Jo uo:		rt T				
Implementation	=	=	Third Highway Project	Rehabilitation	ideneng	Rehabilitation	= .	= .		•	Karachi Hyder Super Highway	rade up	onstruction of		Improvement		=	=	idening
H	ļ T		Th	,	Road Wi	Re	Road				Ka	B.	 O	! !	Π̈́			กนะ	;≊
	Imp. and Wideneng of Quetta- Chaman Road	Lora e 39				lin	Ali R	jani		roj.	per	.P.	Ü		Ihal		le of	of Bannu Fezu	Construction of Dual Carriageway Nowshera-Mardan
 Sibi	ng of	Hamid- at Mil	ject	itral	h-Sang	of Bac Road	hulam	of Gur		of Hal	bad St	uddo F	Bridg Mili	!	Kohat		idenir Rd.	ening jazai	of Dual
Imp. of Quetta-Sibi	Videne ad	Const. of Sind Hamid-Lora Bridge on N-25 at Mile 39	Third H/Way Project	ıra-Ch	W/R of Nawabshah-Sanghar	Reconditioning of Badin Sujawal Thatta Road	Ning of Tando Ghulam Ali	Reconditioning of Gupjani Shahdadmur Road		Reconditioning of Hala Shahdadpur Road	Karachi- Hyderabad Super Highway	W/R of Ubauro Guddo Rd.	Construction of Bridge of Rada Whamar in Mili 10	.	Improvement of Kohat Thal		Improvement & Widening of D.I. Khan-Bannu Rd.	Improvement/Widening -D.I.Khan Rd.Tajazai	to noi
 of Q	Imp. and Wi Chaman Road	t. of	M/H P.	Chakda	of Nav	nditio	of Ta	nditio	nd nen	ndití dadpu	chi- I	of Ub	truct	Topi Rd.	ovemen		ovemer Khan	covement. Khan	Construction Carriageway)
														Topi		Road			
71.	72.	73.	74.	75.	76.	77.	78.	79.		80.	81.	82.	83.	•	84.		85.	86.	87.
	,									-412·	_								
	÷		ř.,																

7	. 2	16	8,789	11,896	9,340	5,621	1,281	85,445
On-going Project	ï	Ξ	Outside the Study	2	= .		# · · · · · · · · · · · · · · · · · · ·	
Construction	=	:						
88. Construction of Loralai D.G. Construction Khan Road	89. Construction of Kanki Bridge	90. Construction of Sibi Harnai Road	91. Under Federal Budget	92. Under Punjab Government Budget	93. Under Sind Government Budget	94. Under NWFP Government Budget	95. Under Baluchistan Government Budget	TOTAL

List of Projects Constituent Masterplan Alternatives A and B Million Rs., Financial, 1981 Price

1. Purchase Plan of Bus in Semi- 4,660 Buses Public Sector Project
Purchase Plan of Bus by NLC Project
Purchase Plan of Trucks by NLC Project
Purchase Plan of New Truck by 200 Trucks of 20 Ton NLC Project
Purchase Plan of New Bowzer by NLC Project
Purchase Plan of Replacement of Bowzer by NLC Project
Purchase Plan of New Trailer by NLC Project
Purchase Plan of Container
· .

10,991

Č
٩
•
ŀ
Ç
•
•
,

		Eist of Phojects	Constituent Masterplan Alternative	A M:11:00		1981 price
Mode	Name of	of Project	Contents of Project	•	Ϋ́	
3. Railway		Electrification of Samasata-Khanewal Project	Electrification	Speed up, Capacity Expansion, Energy Efficiency	314	
	H X	Electrification of Lodhran-Khanewal Project	11		297	
	Э.	Electrification of Lahore		· ·	32	
	₽~-I	Terminal Project				
	4 E X	Electrification of Sibi- Korpur	"	: E	427	
		Electrification of Karachi-Samasata Project			969"7	
	М Ж	Electrification of Lahore- Rawalpindi Project			568	
415	R	Rehabilitation of Karachi- Lalamusa Project	Replacement of Worn- out Track	Speed up	7,760	
4, ³ 	, 00 M H1	Rehabilitation of Lalamusa~ Peshawar Project	=	¥.	568	
	о Н IH	Rehabilitation of Khanewal- Faisalabad-Wazirabad Project	E	E	711	
	10. S	Rehabilitation of Shorkot- Sargodha Project	Ε	*	365	
	K X	Rehabilitation of Shershah- Kundian Project		=	799	
	12. R	Rehabilitation of Rohri- Quetta Project			926	
	13. M O	Extension of Track in Main Stations Project	Construction of New Track Inside Station	Capacity Expansion	24	
	14.	Expansion of Terminals Pro- ject	Construction of New Terminal Expansion of 13 Stations	=	66	

1,145	173	& 66 8	286	089	622	350	636	330	200	683	. 58	1,000	406
Containerization in Port	Capacity Expansion	Rationalization	Ë		±	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	=	E		Ε	, , z ,	Speed up, Capacity up	=
Construction of Container Station	Construction of New Freight Terminal in Lahore	Level up and Rehabili- tation of Signal and Communication Facili- ties	=	£	E	E		Ξ	:	E	· •	Purchase of EL	:
15. Inland Container Freight Station Project	16. Freight Terminal Project	17. Rehabilitation of Karachi- Lodhran, Signal and Communi- cation Project	18. Rehabilitation of Lodhran- Multan-Khanewal Project	19. Rehabilatation of Lodhran- Lahore Project	20. Rehabilitation of Lahore-Rawalpindi Project	21. Rehabilitation of Rawalpindi- Peshawar Project	22. Rehabilitation of Khanewal- Faisalabad-Wazirabad Project	23. Regabilitation of Shorkot-Sargodha Project	24. Rehabilitation of Shershed-Kundian Project	25. Rehabilitation of Rohri- Quetta Project	26. Other Enforcement of Communication Facilities Project	EL	28. Purchase Plan of El for

38,092			TOTAL
700	=		36. On-Going Projects, Others
800	On-going		35. On-going Projects Loco Factory
3,327	10% of the Amounts above Total		34. Minor Projects
3,041	Demend Forecast	Purchase of Passenger Wagon	33. Purchase Plan of Passenger Wagon Project
5,179	F	Purchase of DEL	32. Replacement of DEL Project
374	Replacement of Worn-out Facilities and Capacity up	Purchase of 29 EL	31. Replacement of EL Project
329	Containerization Project in Port	Purchase of New Wagon for Containerization	30. Purchase Plan of Container Wagon Project
2,143	Demand Forecast	Purchase of Passenger Wagon Project	29. Purchase Plan of Passenger Wagon Project

List of Projects Constituent Masterplan Alternatives A and B

	List of Projects		Constituent Masterplan Alternatives A and B Million Rs., Financial,	inancial, 1981 Price
Mode	Name of Project	Contents of Project	Remarks	Cost
4. Port	1. Full Container Berth Project	Strategic Project of This Masterplan, Containerization in Port at Karachi	Containerization Project 3, in Port	3,320
	2. Oil Berth Karachi Project	Oil Berth Construction Demand Forecast at Karachi Port	Demand Forecast	120
	3. Small Boat Harbour Project	Small Boat Harbour Construction at Karachi		300
	4. Onshore Equipment Project	Equipment Installation Level up at Karachi Port Capacity	Leveloup of Handling Capacity	117
	5. Offshore Equipment Project	Equipment Installation at Karachi Port	= '	500
4	6. Oil Berth Qasim Project	Oil Berth Construction	Ε	158
18-	7. Buoy Berth Project	Buoy Berth Construction at Qasim Port	E	1,300
	8. Fertilizer Terminal Project	Fertilizer Terminal Construction at Qasim Port		760
	9. Wheat Terminal Project	Wheat Terminal Construction at Qasim Port Dredger & Equipment Installation at Qasim Port	" Level up of Handling Capacity	256 445
	11. Mini Port Project	Port Construction at Gwadar	Social Needs	326

240	1,168	200	8,740
Social Needs	On-going	Demand Forecast	
Marine Academy Estab- lishment in Mauripur		Improvement of Jinnah Demand Forecast Bridge at Karachi	
12. Marine Academy Project	13. Port Qasim Authority Project	14. Jinnah Bridge Phase II Pro- ject	TOTAL

List of Projects Constituent Masterplan Alternatives A and B Million Rs., Financial, 1981 Price

	μ										
	Cost	75	12	17	20	80	54		186	24	29
	*.										
	Remarks	Demand Forecast	E	E E	#	c	Ξ .	'n	e	c	t
	Contents of Project	Car Parking, Terminal Building, Overlay Works for Runway and Taxiway	a		Apron, Car Parking, Overlay Works for Runway and Taxiway	Car Parking, Terminal Building, Overlay Works for Runway and Taxiway	Apron, Car Parking, Terminal Building, Overlay Works for Runway and Taxiway	Overlay Works for . Runway and Taxiway	Runway, Taxiway, Apron, Car Parking, Access Road, Terminal Build- ing, Control Tower	Terminal Building, Overlay Works for Runway and Taxiway	Apron, Car Parking, Terminal Building, Overlay Works for Runway and Faxiway
	Name of Project	1. Peshawar Airport Project	2. D.I. Khan Airport Project	3. Saidu Sharif Airport Project	4. Chitral Airport Project	5. Faisalabad Airport Project	6. Multan Airport Project	7. Hyderabad Airport Project	8. Nawabshah Airport Project	9. Moenjodaro Airport Project	10. Sukkur Airport Project
**	Mode	5-1 Airport				4	20 —				

6 6	23	23	20	57	e e	2	1,444	
Demand Forecast	=	=	±	±		ε	Social Needs	
Car Parking, Overlay Works for Runway and Taxiway	Car Parking, Terminal Building, Apron, Over- lay Works for Runway and Taxiway	Apron, Car Parking, Terminal Building, Overlay Works for Run- way and Taxiway	Car Parking, Terminal Building, Overlay Works for Runway and Taxiway	Apron, Car Parking, Terminal Building, Runway and Taxiway Expansion	Car Parking, Terminal Building, Runway and Taxiway Expansion	Car Parking, Terminal Building, Overlay Works for Runway and Taxiway	Runway, Taxiway, Apron, Social Car Parking, Access Road and Terminal Building Construction for Local 8 New Air-	
11. Quetta Airport Project	12. Panjgur Airport Project	13. Turbat Airport Project	14. Pasni Airport Project	15. Gwadar Airport Project	16. Jiwani Airport Project	17. Sui Airport Project	18. New Airport Project	

927		2,310		616	491	N N	14	290
Demand Forecast		=		Level up of Navigation System	±	Demand Forecast	Ξ	Level up of Navigation System
POL, Administration Office, Control Tower, VIP Bldg., Terminal Bldg., Car Parking, Apron, Taxiway, Run- way, Overlay, Extension	Kunway, laxiway, laxi- way, Terminal Area Expansion	Runway, Taxiway, Pax Loading, Apron Expan- sion, Cargo Loading, Apron Expansion, Night Stay Apron, Existing Apron, International	ing, Domestic Pax Terminal	Regional ATS Bldg., Training Facilities, Remotely Controlled VHF A/G Communication Facilities and up Grade of AFIN Network	3 Sets of ARSR/SSR	Car Parking, Terminal Building, Overlay Works for Running and Taxiway	±	
Islamabad A	20. Lahore Airport Project	21. Karachi Airport Project		22. Pakistan Central and Network Project	23. ARSR/SSR En-Route Radar Network Plan Project	24. Bannu Airport Project	25. Ormara Airport Project	26. Air Navigation System Plan for Karachi International Airport

234	194	211	108	67	2	8	2	, 0	27	
Level up of Navigation System	z	Ε	i E		On-going Project	±	=	2		= .
				. *	Improvement	:	E	Ξ		
27. Air Navigation System Plan for Islamabad International Airport	28. Air Navigation System Plan for Lahore International Airport	29. Air Navigation System Plan in Minor Airports (1983-88)	30. Air Navigation System Plan in Minor Airports(1988-93)	31. Air Navigation System Plan in Minor Airports(1993-2000)	32. Interim Improvement of Terminal Building at Lahore Airport	33. Interim Improvement of Terminal Building at Karachi Airport	34. Improvement and Expansion of Terminal Building at Ormara	35. Est. of Basic Aerodrome Facilities at Bannu	36. Improvement and Maderniza- tion of Aeronautical Commu- nication Facilities	37. Improvement of Existing Car Park and Payment of Army Land at Islamabad

38. Joint Fillin of Runway Apron and Taxi at Islamabad (UN-APP)

ď	
\subset	
σ	•
	ŧ
α	1

On-going Project	E			•	=	Improvement			
Strengthening of Taxiway at Lahore Airport	Emergent Repair of Runway at Lahore Airport	Const. of Drain up to Charar. (Lahore Airport)	Renovation of Electric System at Karachi Airport.	Construction of Fillets on Intersection of Taxiway No. 233 at Karachi Apt.	Filling of Joints of Runway Taxi and Apron at Karachi Airport	Construction of Barracks Accommodation for ASF at Karachi Airport	Intruder Alarm System (Karachi Airport)	Strengthening & Widening of Runway for Airbus Opr. (Faisalabad Airport)	Barracks Accommodation for ASF at Peshawar Airport Construction of Residential

List of Projects Constituent Masterplan Alternatives A and B

1. Furchase of Aircraft Project 18 B-747 2. Purchase of Aircraft Project 9 DC-10 1. II 3. Purchase of Aircraft Project 15 A-300 1. III 4. Purchase of Aircraft Project 19 Twin-jet IV 5. Purchase of Aircraft Project 24 F-27 V TOTAL 32,700		Nar	Name of Projects	Contents of Project	Remarks	Cost
Project 9 DC-10 " Project 15 A-300 " Project 19 Twin-jet " Project 24 F-27 "	viation			18 B-747	Demand Forecast	12,960
Project 15 A-300 " Project 19 Twin-jet " Project 24 F-27 " 3		2.		9 DC-10	=	5,940
Project 19 Twin-jet "Project 24 F-27 "		က္		15 A-300	=	6,750
Project 24 F-27 "		4		19 Twin-jet	E	5,130
		ī,		24 F-27	=	1,920
			TOTAL			32,700

Million Rs., Financial, 1981	Cost	1,440	
Milli	Remarks	Comprehensive Transport System	
	Contents of Project	Doubling Capacity of Comprehensive Karachi Multan Pipeline Transport System	
	Name of Project	1. Pipeline for POL Transport	
		peline	

Mode

TOTA