3.4 CERAMIC CAPACITORの基本技術指導資料

CERAMIC CAPACITOR 技術資料 (A61)

、講義用)

- (I) Ceramic Capacitor の規格と特性
- (II) Ceramic Capacitor の微細構造と誘電体組成
- (II) Ceramic Capacitor の材料
- (N) Ceramic Capacitor の実用化配合例
- (V) Ceramic Capacitor 以外の他のCapacitor の特性例

Ву

Mikio NAISEI Japanese Expert

NAISEI Engineering Co, Ltd.

FUKUSHIMA — PREF JAPAN

§ Ceramic Capacitorの技術資料(K1)

- 1. Ceramic Capacitorについて
 - (1) 一般にCeramic Capacitorは下記の種類に分類され、EIA規格或はJIS規格等に基づき商品化されている回路用電子部品である。高誘電率系固定磁器コンデンサ及び温度補償用固定磁器コンデンサであり材料の特長から前者をHi-k と呼び、後者はT.C(又はHi-Q)と略称される。此れ等の磁器誘電体は、チタン酸バリウム(Barium Titanate、化学式: BaTiO3)が主成分のものと、酸化チタン(Titanium Dioxide 化学式: TiO2) のものに大別される。Ceramic Capacitorとしての基本的特性はCapacitorの品質を静電容量(Capacity)、誘電正接(tana又はQ)、絶縁抵抗(Insulation Resistor) および絶縁耐力(Test Voltage)等で規定なざれている。(別紙配布資料、EIA規格参照)
 - (Ⅱ) BaTio3 磁器は微細な BaTiO3 単結晶粒の集合した、いわゆる多結晶体で通常の原料は BaCO3 (Barium Cabonate) と TiO2 (Titanium Dioxide)の等モル比混合物を 1300~1400 (℃) の高温で焼結してつくる。

化学式は $BaCO_3$ + TiO_2 → $BaTiO_3$ + CO_2 1

1 : 1 (mol)

CERAMIC技術に於ける化学反応は固体粉末のBaCO₃ とTiO₂ とが反応して、固体のBaTiO₃を生成するもので、固体反応(Solid reaction)に属するものである。粉末を加圧成型した試料を原形をとどめる範囲内で半熔融の状態で反応をとめる焼結(Sintering)現象が誘電体製法の基本である。実用に供されるBaTiO₃ 磁器およびTiO₂ 系(SrTiO₃、CaTiO₃、MgTiO₃ 或は 3MgO、4SiO₂) 磁器表面の電子顕微鏡による微結晶粒の写真を一部示す。

BaTiO。磁器の微結晶粒と分域はFig1で示す様に単結晶と粒界(grain bondany)で構成される。

焼結されたBaTiO₃ 磁器に電極を両面に焼付しCapacitorを形成させCapacity ε (誘電率:Dielectvic Constant)を測定すると、温度依存性が認められ、誘電正接(Disipation Factor)も同様に変化する。Fig2にεと tanδ の温度依存性を示す。

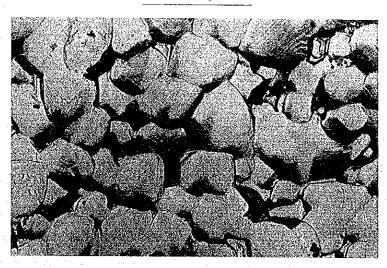
誘電率 € は Curie point 付近で最高 8 0 0 0 ~ 1 0,0 0 0 の鋭いピークを示し常温で約 1 5 0 0 で、夫々の温度範囲に結晶形の特長がみられる。純粋な BaTiO3 磁器それ自体では実用に供する為の条件が満されない。従って常温付近の誘電率を高くする方法、或は実用温度範囲の温度特性を平担にする為に他の固熔体を適正添加することによ

Photo 1

Composition

BaTiO₃-SrTiO₃-CaZrO₃ System
Magnification
×4000

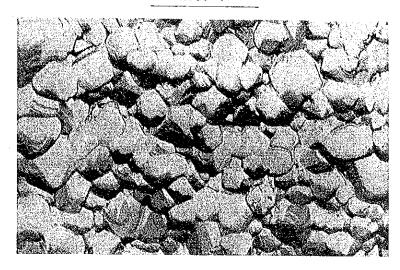
Photo 2


Composition

BaTiO₃ (Pb.Sr.Ca)SnO₃ System

Magnification

×4000


Photo 3

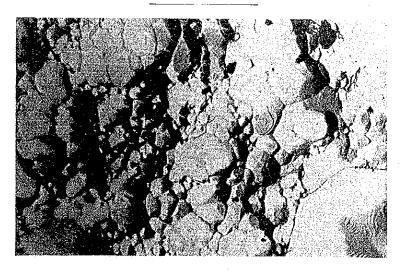
Composition

BaTiO₃ (Ba.Sr.Ca)SnO₃ System Magnification ×4000

Photo 4

Composition

BaTiO₃ 90 BaSnO₃ 3¹/₃ SrSnO₃ 3¹/₃ CaSnO₃ 3¹/₃ Magnification × 4000


Photo 5

Composition

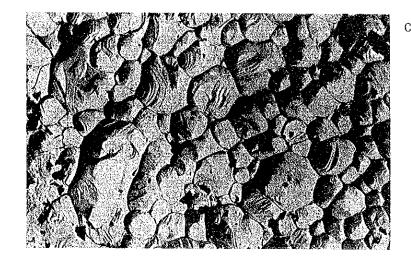
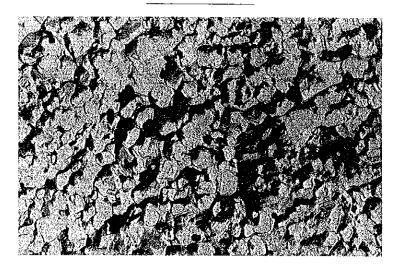

BaTiO₃ (pb.Sr.Ca)SnO₃ System
Magnification
×4000

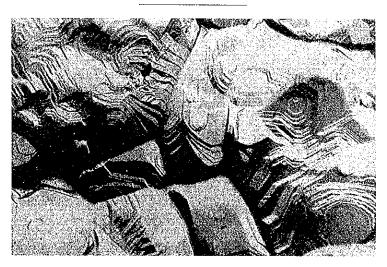
Photo 6


Composition

 $\begin{array}{ll} {\rm BaTiO_3-Clay-MnO_2} & {\rm System} \\ {\rm Magnification} \\ \times 4000 \end{array}$

Composition
CaTiO₃-Clay System
Magnification
×4000

Photo 8


Composition

SrTiO₃-Clay System

Magnification

× 4000

Photo 9

Composition $\begin{array}{c} \text{CaCO}_3 - \text{TiO}_2 - \text{Clay System} \\ \text{Magnification} \\ \times 4000 \end{array}$

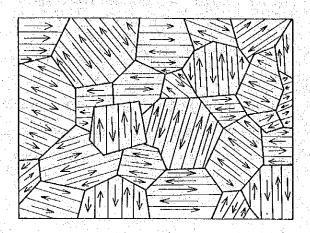
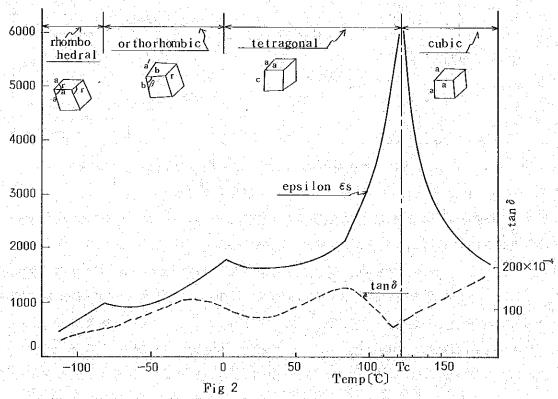
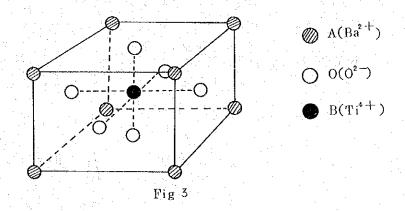



Fig 1
Microcrystal grains and domain structure of BaTiO₃ ceramics.



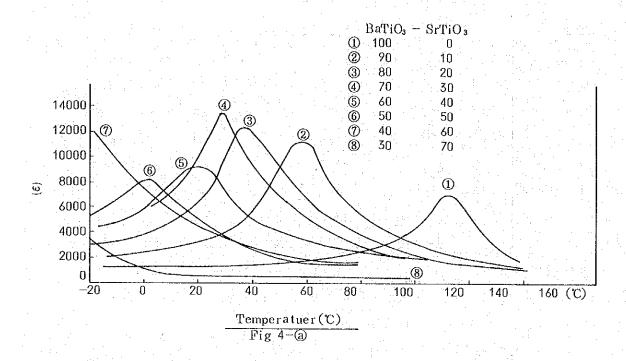
Temperatuer dependence of &s and tand of BaTiO₃ ceramics.

り組成改良が必要となる。つまり Curic point を移動させることで任意な特性を得るのである。以下にそのいくつかの例を示す。

- (1) BaTiOs を主体とするもので、これに不純物として微量の化合物を含むもの。
- (2) BaTiO₃ と他のチタン酸塩 (CaTiO₃、SrTiO₃、MgTiO₃、又はPbTiO₃等) との固熔体
- (3) BaTiO。とバリウムの錫酸塩、シルコン酸塩との固熔体
- (4) それ等の混合物

つまりBaTiO。(1:1MoI)磁器はFig3に示すよりな原子配例の結晶体である。そのBaイオン或はTiイオンを他の元素で置換することによってCurie Pointの位置及び誘電的特性の値に失々著しい差異を示す特長を利用するものである。

従って


(2)はBaTiO3 の結晶格子中のBaをCa、Sr、Mg およびPb 等で置換

(3)は BaTiOs のTiを一部Sn、Zr 等で置換したものである。

BaTiOs の Ba 又は Tiと類似している元素で置換すれば、その量に応じて Curie Point は低又は高温の方へほぼ平行的に移動する。

BaTiO₃ の Ba 又 は Ti を之と著しく性質を異にする(イオン半径、電子殻構造)元素で置換する場合には、微量添加で Curie Point の影響を与えるが、或る 程度以上の置換は (i誘電率) を低下せしめるに止る。

Fig4はその代表例でBaTiOs - SrTiOs 系誘電特性を測定したものである。

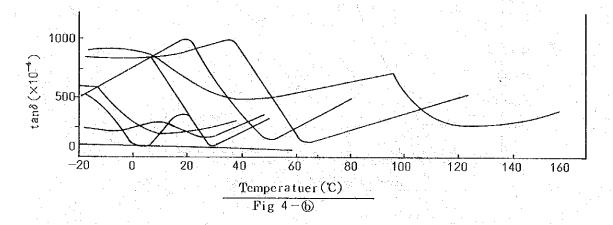
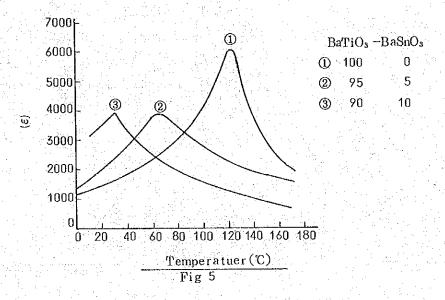
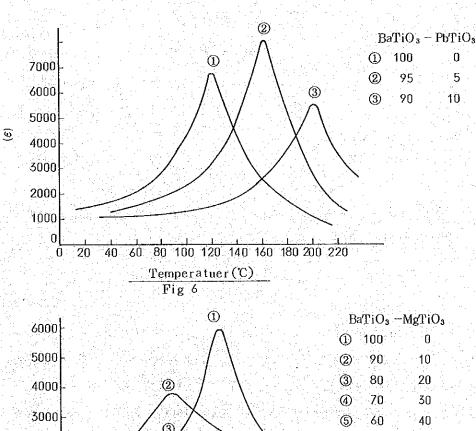
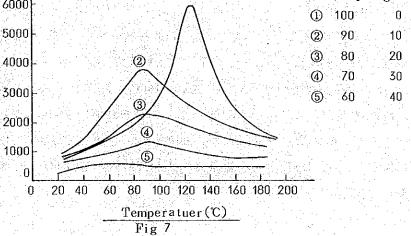
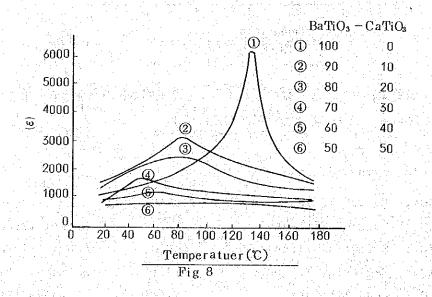
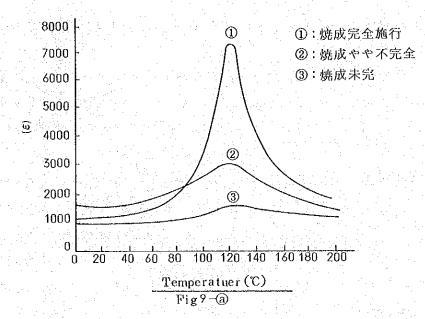
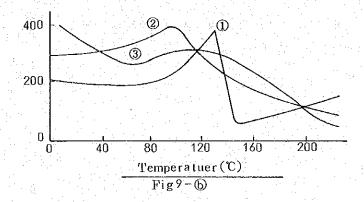




Fig5はBaTiOsのTiの一部をSnで置換した場合の実験結果でこの場合もSnの増加と共にCurie Pointが低温に移動する。Fig6はBaをPb で置換した例でこの場合はPb の量と共にCurie Pointが高温の方へ移動する。

Fig7は BaTiOs — MgTiOs の固熔体例で BaTiOs の格子に入り込んで Curie Point に影響を及ぼしているのは Mg のごく一部にすぎないことが理解される。Mgのイオン半径 0.78 Åは Ba (1.43 Å) に比して著しく小さく、BaTiOs と全く異なる結晶形に属するから、BaTiOs と MgTiOs との固溶体は BaTiOs を誘電率の低い物質で稀薄したに過ぎないことになる。


Fig8はBaTiOs — CaTiOs で憧換した実験例でFig4 と Fig7の中間の結果を得ている。

固熔体(又は混合体)に於ては材質の変化に伴って多少変化するがCurie Point が移動しくの温度特性が平行移動する様な場合には tanδ の温度特性も大体それに伴って移動する。尚 tanδ の絶対値は添加物の種類と量ばかりでなく焼成条件に於てもおおいに左右されるので実験による改善も重要である。

BaTiOs 誘電的異常性は TiO2 の Ti と O の形成する、Dipole の相互作用に基づくものと考えられるから、その特性は不純物(又は他の元素)の格子介入によって著しい影響を受けることは当然である。この点 Semiconduction と 同様に 構造に 敏感(Structuer semisitive)な特性と言える。それ故に Semiconduction と同様に格子欠陥(letticedefect)の存在もその特性に影響を与えることが考えられるから焼成条件の僅かの変化又はその後の熱処理によっても影響を受ける。例えば同一原料を用い、焼成条件を変化しただけでその特性に大きな差異が認められる。Fig9 はその一例である。焼成が完全な場合と不完全な場合の比較である。当然なことながら②、③のものを熱処理を施せば①の特性は得られる。

- (II) 次に一般的磁器コンデンサ材料として利用される固熔体の種類と近年特に改良され有用視されているビスマス化合物の例を下記に示す。
- (A) Titanium Compound

BaTiO₃: Barium Titanate ZnTiO₃ Zinc Titanate CaTiO₃: Calcium Titanate NiTiO₃ Nickel Titanate SrTiO₃: Strontium Titanate $CoTiO_3$ Cobalt Titanate MgTiO₃: Magnesium Titanate Bi₂(TiO₃)₃:Bismuth Titanate PbTiO₃: Lead Titanate La₂(TiO₃)₃: Lantanum Titanate

(B) Zirconium Compound

 $BaZrO_3$: Barium Zirconate SrZr O_3 : Strontium Zirconate $CaZrO_3$: Calcium Zirconate MgZr O_3 : Magnesium Zirconate $PbZrO_3$: Lead Zirconate $ZnZrO_3$: Zinc Zirconate

(C) Tin Compound

BaSnO3: Barium Stannate ZnSnO3 : Zinc Stannate

CaSnO₃: Calcium Stanate La₂(SnO₃)₃: Lantanium Stannate

SrSnO₃: Strontium Stannate
MgSnO₃: Magnecium Stannate

PbSnO3: Lead Stannate

(D) Bismuth Compound

BaBi₂Nb₂O₉ : Barium Bismuth Niobate

PbBi2Nb2O9 : Lead Bismuth Niobate

CdBi2Nb2O9 : Cadmium Bismuth Niobate

CaBi₂Nb₂O₉ : Calcium Bismuth Niobate

MgBi₂Nb₂O₉ : Magnesium Bismuth Niobate

SrBi₂Nb₂O₉ : Strontium Bismuth Niobate

Bi₃TiNb₂O₉ : Bismuth Titanium Niobate

SrBi₂Ta₂O₉ : Strontium Bismuth Tantanate

CaBi₂Ta₂O₉ : Calsium Bismuth Tantanate

BaBi₂Ta₂O₉ : Barium Bismuth Tantanate

PbBi₂Ta₂O₉ : Lead Bismuth Tantanate

BaBi4Ti4O15: Barium Bismuth Titanate

PbBi₄Ti₄O₁₅ : Lead Bismuth Titanate

BisTi3GaO15: Bismuth Titanium Galium

Sr₂Bi₄Ti₅O₁₈: Strontium Bismuth Titanate

Pb2Bi3Ti5O18: Lead Bismuth Titanate

*PbSb2Nb2O9: Lead Antimony Niobate

*PbSb₂Ta₂O₉: Lead Antimony Tantanate

(E) Oxide

MnO₂: Manganese Dioxide Sm₂O₃: Samarium Oxide

Cr₂O₃: Chromium (III) Oxide Ta₂O₃: Tantalum Oxide

Cu₂O₃: Copper (III) Oxide Dy₂O₃: Dysprosium Oxide

Fe₂O₃: Iron (III) Oxide Yb₂O₃: Ytterbium Oxide

Co₂O₃: Cobalt (III) Oxide UO₂ : Uramium Oxide

WO₃ : Tungsten Trioxide PbO : Lead Monoxide

 V_2O_5 : Vanadium Oxide ZnO : Zinc Oxide

Al₂O₃: Alminium Oxide Sb₂O₃: Antimony Trioxide

SiO₂: Silicon (IV) Oxide La₂O₃: Lanthanum Oxide

CeO₂: Cerium (IV) Oxide

 Nb_2O_5 : Niobium Oxide Bi_2O_3 : Bismuth Trioxide CdO: Cadmium Oxide

上記の酸化物グループは化合物としないで単身で基本組成に添加し利用されるものである。微量な金属酸化物の添加によって高誘電率磁器コンデンサの温度特性および経時変化の改善或は焼結助剤として著しい効果をもたらす。一般には殆んどの市販配合原料には添加されている。

元来BaTiOsが純粋であることで焼結を困難ならしめ空孔が残ることもあり、対耐電圧の劣化の原因となる。どんな鉱化剤をどの程度加えるかは、各メーカーが最も苦心することであり、日本国内に於てもそれ等の改善特許が数多く提案されている、つまり有益な不純物と逆には有害な不純物の作用効果をもたらす両者の工夫が CERAMIC 技術のポイントとも言える訳である。上記 (E) に示した夫々の酸化物 (稀土類元素も含む)の作用は実験に於いて確認せねばならず、1種义は多種類を同時に添加しその割合も実用化開発研究の結果に於いて決定される。優れた誘電体を焼結させるには最も重要な配合技術の要因のひとつである。

- (N) 次に実際に CERAMIC CAPACITORとして配合されている BaTiO3 系誘電体の例を上げて説明する。
 - (1) 高誘電率 CERAMIC CAPACITOR COMPOSITIOS

Table

1

基本	ВаТіОз	894 mol %	<u>化</u> 様
		3.95 mol %	Dielectric constant K., 18,000(at 1KHZ)
成分	CaSnO3	3.60 mol %	Temp Charactristics Z 5 V
Ľ	Sr SnO3	20 mol %	Curie Temperature 20 C
添加物	※ Li₂ Si₂ O₃※MnO₂	1.8 weight %	Fired Temperature 1390 °C (25 Hr)

※ 主成分 total 100 mol % の総重量に対して重量比率で添加する焼結助剤であり全体としては微量加えて効果をはたす。

Table 2

基	BaTiO ₃ 81 mol %	<u>(1)(())(())())())())())())())())()())(</u>
本	SrTiO ₃ 10 mol %	Dielectric Constant K 6000 (at1KHZ)
成分	CaZrO ₃ 7 mol %	Temp. Charactrislics Y 5 U
	MgZrO ₃ 2 mol %	Curie Temperature 25 C
旅	Fe ₂ O ₃ 0.5 weight %	Fired Temperature 1360 C (25Hr)
加	MnO ₂ 0.3 weight %	
物	GeO ₂ 0.2 weight %	

Table 3

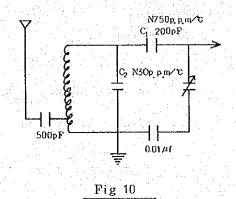
	BaTiO ₃ 89 mol %	住 様	
旭	CaZrO ₃ 10 mol %	Dielectric Constant:K 4500 (at	1KHZ)
	MgTiO ₃ 1 mol %	Temp Charactristic : Y 5 T	
添	Al ₂ O ₃ total	Curic point: 25°C	
	SiO ₂ 1.5 weight	Fired Temperature : 1370 °C (2H	r)
物	Mn CO ₃ (%)		

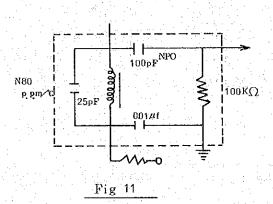
Table

	基組	BaTiO ₃ %90 weight %	位 様
	本成	PbBizNb2O9 10 weight %	Dielectric Constant : K 1800 (at 1KHZ)
:	*	分子量は関係無く 2 種類の固熔体	Temp Charactristic : Y 5 P Curie Point : 120 C
		を重量割合で配合した例	Fired Temperatoire : 1280 C (2Hr)

NOTE:表1から表4までは実用化されたほんの一部分で、後で述べる市販配合原料各種類の 組成比については、それぞれのメーカーの秘密部分であって一般には公表されていな い。従って参考までに記載したものである。

(2) 酸化チタン系温度補償用 CERAMIC CAPACITOR


BaTiOs系誘電体が発見される以前に、TiO2(Titanium Dioxid)磁器は有用な CAPACITOR 材料として研究され、特に誘電体損失(D.F)が非常に少いこと、つまりQ値が高く高周波用電子回路に重要な CAPACITOR として利用されていた。 CERAMIC CAPACITOR は高温で焼結されている為、化学的に非常に安定であり又長時間経時変化に於いても他種、コンデンサに比較し静電容量の安定性が大きい。 更に特長としては、負の温度係数を具備していることである。一般に通信機用回路部


品は、コイル、抵抗器或は真空管の内部容量も総て正の温度係数をもつから、それを 補償する部品として極めて有用である。

以下に使用例として携帯用FM無線機の場合を次に説明する。

(1)アンテナ回路 (2)中間周波増幅段 (3)同 (2) (4)ディスクリミネータ

(1) アンテナ回路

(8) 中間周波增幅段

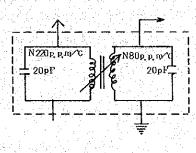
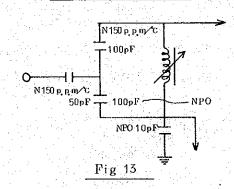



Fig 12

(4) デイスクリミネータ

中間周波増幅段

上記のように温度係数を適切に利用すれば無線機全体の温度変化による周波数の "すれ"を補正され瞬間的な周囲温度の変化に対して1~3 [min]で応答出来る。 尚実用上必要な温度係数については別添付 EIA 規格に詳しく制定されているので規格 に添って説明する。

- (注) JIS規格も独自に制定されているが英文規格が出来次第送付する。今回は BIA 規格に準拠する)
- (3) 温度補償用磁器コンデンサとして利用される誘電体材料の種類及び配合組成の具体 例を次に示す。先の BaTiO。系組成に於いても、各メーカーがそれぞれ苦心して実 用化研究の末開発しているので、必ずしも次の組成が総てでは無く数多い研究成果発 表が公知されているので次回の好機にそれ等の実施例特許公告をもって説明に当たる 所存である。

温度補償用 CERAMIC CAPACITOR 組成表

Table 5

J. C	Composition	(weight%)	Epsilon (&)	ଦ
b• b• m ∕ C	MgTiO3	CaTiO3	(at25℃)	(at25°C)
P 1 0 0	100	0	1 3.6	3000≧50 pf
P 30	9 7 5	2.5	4.7	3000 "
N P O	9 5.0	5.0	1 5.5	3000 //
N 30	9 4.0	6.0	16.4	3000 "
N 80	9 1.2	8.8	1 7. 7	3000 "
N 1:50	8 8 0	1 2.0	19.6	3000 //
N 2 2 0	8 5.0	1 5.0	2 1. 3	3000 "
N 3 3 0	790	2 1.0	2 4. 1	3000 "
N 4 7 0	7.4.0	2 6.0	28.6	3000 "
N 7 5 0	6 4.0	3 6.0	3 8.3	3000 "

(注) 添加物MnO₂ 0.05 ~ 0.5 weight % の範囲でQ値の改善が出来て粘土(Clay)を 微量添加することにより焼結し易い Element が得られる。

Table 6

		11010			
T . C	Com	Composition (mol %)			Q
p. p. m ∕ ℃	ТіОг	L a 2 O 3	B i 2 O 3	(at25℃/1MHZ)	(at25C1MHZ)
P 1 0 0	3 3.5	6 6.5	※ 7.5 (wx%)	6 0	5000≥100pf
P 30	4 2.0	5 8.0	7. 0	5 4	5000 "
N P O	4 5.0	5 5.0	7. 0	5.1	5000 //
N 3 0	4 6.0	5 4.0	6.6	5.0	5000 "
N 80	4 8.0	5 2.0	6.5	49	5000 "
N 1 5 0	5 3.0	4 7. 0	5.8	4 6	5000 #
N 2 2 0	5 7.0	4 3.0	5.3	4.6	5000 //
N 3 3 0	6 4.0	3 6.0	4.7	5 2	5000 //
N 4 7 0	7 3.0	2 7. 0	3.9	63	5000 //
N 7 5 0	8 8.0	1 2.0	2.6	8.7	5000 "

(注) Bi₂O₃ の添加量はTiO₂ / La₂O₃ に対し総重量のweight 多添加した例である。 次に温度係数が負に多く傾斜する組成、つまり温度係数が大きいクループの配合例を 表7~8に示す。

尚参考迄に付記すればTiO2/La2O3をTiO2/ThO2(Thorium)に変えて例比毎の 実験に於いても表もに近似な値を得ることが出来ている。

T· C	Composition(weight %)		Epsilon (\$)	Q
p- p- m∕℃	CaTiO3	SrTiO3	(at25°C)	(at25°C1MHZ)
 N 1200	100	0	160	3000≥100pf
N 1500	7 9.5	2 0.5	178	3000 "
N 2200	3 4.5	6 5.5	210	3000 "

(注) 森加物 MnO2、Clay および La2 O3

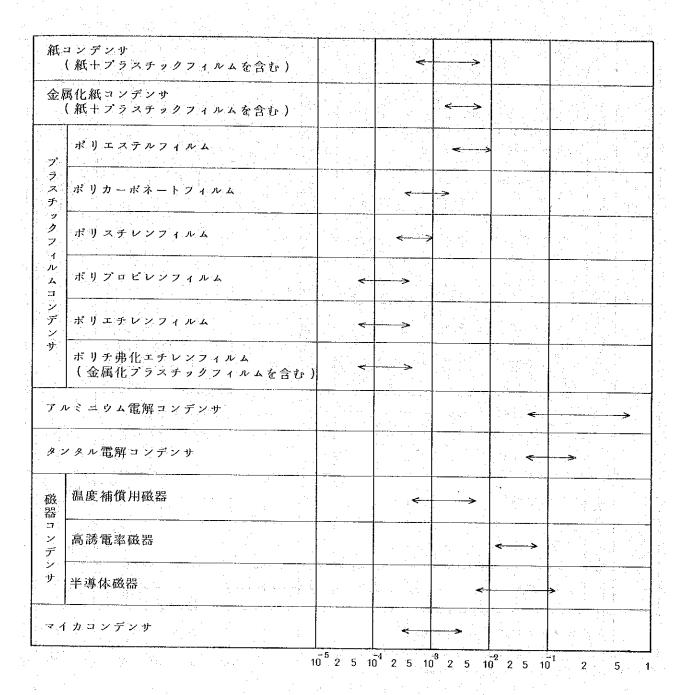
Table

Т.С	Composition (mol%)			Epsilon(\$)	Q
The state of the s	SrTiO3	РьтіОз	ВаТіОз	(at25℃)	(at25℃1MHZ)
 N 3300	8 7	3	10	375	3000≥100pf
N 4700	80	10	10	5 4 0	3000 "
N 5500	73	10	17	600	2000 "
N 7500	6.0	10	30	1 1 0 0	2000 "

(注) 添加物 MnO2 Clay および CeO2

以上は比較的一般用として利用されている量産用配合割合であって温度係数が少く、 更に誘電率を高める試みとして、次の表9に示す BiTiO35 を活用した例もある。この ことはより小形で大容量の CERAMIC CAPACITORを得るべく研究開発をされたも のである。但しQ(1MHZ)値を高めることが残された課題であろう。

Table


T.C	Composition (mo1%)	Epsilon (\$)	Q
p. p. m∕℃	SrTiO3 —CaTiO3 —BiTiO3.5	(at25℃)	(at25C1MHZ)
N 600	75CaTiO ₃ + 25BiTiO	260	1000≥100pf
N 1400	75(Sro.5 Cao.5)TiO3 + 25BiTiO3.5	5 0 0	800 . "
N 2200	75(Sros Cao.2)TiO3 + 25BiTiO3.5	990	600 "
N 3200	758rTiO ₃ + 25BiTiO _{3.5}	1100	500 //

(V) CERAMIC CAPACITOR 以外の各 CAPACITOR とその特長

CERAMIC CAPACITORの他には紙コンデンサ、プラスチックフィルムコンデン サ、タンタルコンデンサ、マイカコンデンサ、電解コンデンサおよび薄膜コンデンサ等 が電子回路部品として多用され量産なされている。これ等各種のコンデンサはそれぞれ

静電容量帯域或は適用周波数範囲又は、適用電圧に特長をもち、用途によって区別され 使用される。

以下に各種コンデンサの特性例を示す。

一 誘 電 力 率 →

Fig 14 各種コンデンサの誘電力率

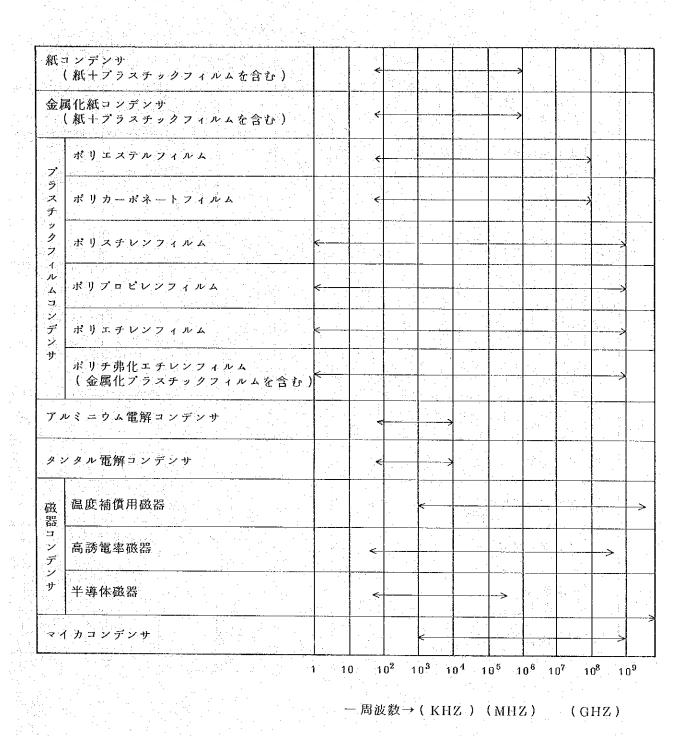


Fig 15 各種コンデンサの適用周波数範囲

			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
		DC AC					\rightarrow
		DO AC		<	->	>	
ブ		DC AC	*	← >	>	t V	
ラスチ		DC AC	←	∢ >			
ックフィ	ポリスチレンフィルム		<		>		
ルムコ		DC AO		← ←	>		
ンデンサ		DC AO	<	(-			
<i>y</i>	ポリチ弗化エチレフィルム (金属化プラスチックフィルムを含む)			<u> </u>			
7,		DC		~ →			
9 >	タル電解コンデンサ			>			
磁器	温度補償用磁器	N 4	*		->		:
コンデン	高誘電率磁器		<				
サ	半導体磁器	←	>				
₹ 1	カコンデンサ		<		>		

 $\frac{1}{1} \quad 2 \quad 3 \quad 5 \quad {}_{10} \quad 20 \quad 30 \quad 50 \quad {}_{100} \quad 200 \quad 300 \quad {}_{1000} \quad 2^{\rm K} \\ 3 \quad {}^{\rm K} \\ 6 \quad {}^{\rm K} \\ 10^{\rm A} \quad 20^{\rm K} \\ 30 \quad {}^{\rm K} \\ 500 \quad {}^{\rm K} \\ 300 \quad {}^{\rm K}$

一 定格電圧(V) →

Fig 16 各種コンデンサの適用電圧範囲

3.5 CERAMIC CAPACITOR の製造技術指導資料

CERAMIC CAPACITOR製造技術資料(A62)

(講 義 用)

- (1) バキスタン中央電気通信研究所に於ける CERAMIC CAPACITOR の 実験内容および使用誘電体の仕様
- (Ⅱ) 実験用携帯資材および機材
- (III) Ceramic Capacitor の試作実験方法スライド説明書
- (N) Ceramic Capacitor 製造技術解説
- (V) Ceramic Capacitor の製造工程の解説
- (VI) Ceramic Capacitor の設計
- (VII) 円板形 Ceramic Capacitor の一般市販品例
- (畑) 試作品の電気特性および使用原料の試験成績書
- (X) EIA規格

§ Ceramic Capacitor の技術資料(M2)

- 2. Ceramic Capacitor の試作実験に関して
 - (1) パキスタン中央電気通信研究所 PAKISTAN CENTRAL TELECOMMUNICATION
 RESERCH LABORATORES (C. T. R. L.) に於ける Ceramic Capacitor の実験
 について

C. T. R. L で行う Ceramic Capacitor の実験は凡そ下記の内容による。
Ccramic Capacitorの全てを1ヶ月間で完了させることは、困難であるが、短期間実習で実りある成果を修る為には、材料の基本組成の研究と文献 Dateの確認に及ぶことは、次の機会にするとして先づ用意された市販の原材料を用い、既設の実験設備を利用して初期の試験成績を得る様、実習に於いて理解することが必要である。斯様な理由から短期専門家が予め、日本国内で準備した原料および資材機具を基に、別配布試験研究方法のテキストを順守し用意したスライドを見ながら、手順や要領を会得し指導者のNow Howを覚え込むことを主眼とされたい。先の講義で説明した通り Ceramic ー Capacitor は粉末を成型し焼結させることが基本であるから実験を通してその成果を希待したい。

尚前回来べされ指導なされた専門家とは幾分その指導方法或は諸条件等相違する点が あろうけれど、このことは、夫々の会社および研究所に於ける製造方法に工夫改善の特 長があるからで、予め予解して頂きたい。

1. 実験に準備した誘電体材料および試料

既設機械器具に対し今回の短期専門家自身が確認試作を行っていない為、渡べ前に 次の試料を準備した。

(1-1) Spray Dried Peueting Powder

	<u>Nago mata ta</u>	<u>Table</u>	<u> 그런 세</u> 보다 그리고 있다. 동생의 물로 불합하고 있다.
1	BT-203	BLot 16. 1 A 111	5 Kg (BaTiOa 系誘電体)
2	BT-303	BLot 16 9 L 121	5 Kg (同上)
3	NPOB	Lot 16.9B118	5 Kg (TiO2系誘電体)
4	N750B	Lot 16 9C144	5 Kg (同 上)

上記4点の原料は何れも成型しやすく調整された、市販原料であり量産なされているものより調達した。従ってプレス工程以降から取扱える利点と既に量産化され 試験 Date も添付されている為比較試験を行うのに容易である。

(1-2) 成型素子

自動タブレット成型機による成型素子をそれぞれの原料毎に用意したそれ等の内 訳は下記の通りである。

Table 2

	原料名	製造 Lot. 16	成型品数量	成型寸法	(直径および厚さ)
1	BT-203B	(Lot 16 1A111)	1,000PCS	Dia 15 mm∮	Thicness 0.50 mm
2	BT-303B	(Lot 16 9L121)	1,000PCS	Dia 15 mm∮	Thicness 0.58 mm
3	NPOB	(Lot 16 9B118)	1,000PCS	Dia 15mm∮	Thioness 0.61 mm
4	N750B	(Lot % 90144)	1,000PCS	Dia 15 _{mm} ∮	Thicness 0.61 mm

(1 – 3) 焼結素子

Table 3

	素子材料	製造 Lot. Ka	焼成品数量	素子寸法	(直径および厚さ)
1	BT-203B	(Lot 16 1A111)	300PCS	Dia 12.2 _{mm} ∮	Thicness 0.425 _{mm}
2	BT-303B	(Lot 16 9L121)	300PCS	Dia12.2 _{mm} ∮	Thicness 0.485 mm
3	NPOB	(Lot 16 9B118)	300 P C S	Dia124mm∮	Thicness 0.42 mm
4	N750B	(Lot % 9C144)	300PCS	Dia12.5 _{mm} ∮	Thicness 0.525 _{mm}

総上記表1~表3の試料は総で富士チタン工業株式会社に於いて準備なされたものである。特に担当下された代田勲氏には前述したスライド製作も依頼致し協力頂いた。

(Ⅱ) 実験用携帯資材および機材

Table 4

4.5				
16.	品 名	仕	数量	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1	金型	Dia 8.2 nn 多 Dia 1 1.7 nn 乡 成型用	2組	三備精機㈱
2	Sagger(匣鉢)	アルミナ質耐火物	10個	富士チタン工業㈱
3	Zirconia Cetter	ジルコニヤ質耐火物	20 枚	ナイセイエンジニアリング
4	銀ペースト	· S P - 1 0 0 筆塗用	500 <i>9</i>	新日本化金㈱
5	半田ペースト	Solder Paste(860)	1 Kg	千住金属工業㈱
6	リード線	半田引軟導線	1000本	㈱コンド電機製作所
7	釜 料	Dufeze resin	2 Kg	長嶋塗料㈱
8	ワックス	含浸用クリスクリンWAX	5 Kg	㈱コンド電機製作所
9	机上口クロ	銀塗手動ロクロ	1台	㈱白岩製作所
10	毛	銀塗布用筆	10 本	ナイセイエンジニアリング
11	メスリング	焼成温度測定用	22個	富士チタン工業㈱

(III) CERAMIC CAPACITOR 試作実験方法

スライド説明書

THE SLIDES OF THE TESTING PROCEDURES OF THE CAPACITOR

1. Binder Making

This slide shows how to make binder. Binder consists of PVA 10% solution. It is made of 90% of water and 10% of PVA. PVA powder is mixed with hot water and disolved.

2. Weighing of Powder

300 grams powder is generally measured.

3. Mixing Machine

300 grams powder and 60 ml 10% PVA Binder are mixed. This mixure is dired at 120°C .

4. Mixing Machine

In this slide the mixing machine is shown with detailed expansion.

4.1 Granulation procedure

After drying, these mixed-dryed raw material is roughly grinded in mixing machine for 2 minutes. Then 80 mesh stainless made sieve is used. 80 mesh is about 150 micro-meter in granular size.

4.2 This sieved granular under 80 mesh is used for press. Nowadays this kind of sieved granular is usually sold to many condensor manufacturing companies.

5. 5.1 Press Machine

Dry press type of machine. Its maximum pressure is six tons.

5.2 Pressing Procedure

an Barbara ay ayant

The size of this pressed tablet is 15 mm in diameter, from 0.4 mm to 0.6 mm in thickness.

6. These tablets are set on the zirconium oxide plate (Zirconia) which is supported by sagger. As Zirconia oxide has very high melting temperature,

the bottom tablets can be prevented its dufussion, in other words, sintering with sagger.

- 7. 7.1 The whole scene of the Electric furnace for sintering.
 - 7.2 The front figure of the electric furnace.
 - 7.3 Inside of the electric furnace. Firstly, the sagger which support zinconia oxide plate for tablets is set inside of the furnace. Then, sintering procedure is started.

 From R.T to 1000°C, its rate of rising temperature is normally 150 to 170°C/HR and from 1000°C to at sintering temperature is 100°C/HR.

 Namely, ususal sintering temperature is set from 1200°C to 1370°C.

 Cooling procedure is held by natural cooling.
 - 7.4 Sintering
- 8. 8.1 The painting procedure of silver electrode

A small brush, the solution mixing silver powder are used in the painting procedure. Front side and back side of each sintered tablet is painted one by one.

- 8.2 Up sight of the silver painting procedure
- 9. The front view of the furnace for silver firing.

furnace electric power source and controller. The silver painted tablets which are supported by $\mathrm{Si}_2\mathrm{O}_3$ boat, are set in furnace and fired at 740°C for 3 minutes in air.

- 10. The wlding procedure of a lead wire, solder, lead wire, holder, copper plate and heater. The temperatures of and samples should should be adjusted at almost same temperature in order to prevent making crack. If temperature difference is so high, the tablet is cracted, due to heat strain.
- 11. 11.1 The measurement of the electrical character of the samples, take capacity, tan , temperature coefficient. You can see L,C,R meter on the right side, and on the left side.

- 11.2 The operation scene of L.C.R. Meter
- 11.3 L.C.R. meter, this type is TAP 4261 A.
- 12. Measurement of Insulation Resistance

The Meter and Condencer on the supporter can be shown.

13. The electron microscopic machine

You can measure the grain size, surface features of the crystallite of the samples. These samples are directly multiplied by 4,000. If necessary, you can multiply 10 times more by photography.

14. The measurement room of the various kinds of electrical characters

スライド Na	工程	
	NDER作製	
		₹-g-
		容器
		BINDER液(PV4 10% Soln)
2 粉の	·秤量 天	秤(5009)を用い、ポリエチレン袋に3009秤量
		遺器に粉300gを入れて、粉を広げ、注射器でBINDER
3-1 BI		
		10%Solp) を 6 0 me注入し、BINDER均一に混合する。
		燥器 1 2 0 ℃ ± 1 0 ℃で乾燥する約 1 2 分。
		びBINDER 30 ml注入し、混合する。均一に混合後再び乾
		器 1 2 0 ℃ ± 1 0 ℃で乾燥する。水分 0.5 %を終点とする。
	(手で触って、湿っぽく感じる点)
3-2 BI	NDER添加 ア	
4-1 造	粒	用器具 ・80 mx l 篩(オールステンレス)
		ステンレスパット(4つ切り)
		播潰器
	1.	乾燥終了後、播潰器で粗砕する、約2分間程度
	2	播潰器より試料を80 mesh 篩にりつし、手でおし篩分ける。
	3	節上に残ったものは再び粗砕し、再び 80 mesh で篩る。
		(成型に必要量約200~2509あればよい)
4-2 造	粒 品 1	80 me sh を通過したものを造粒品と成型用試料とする。
	(注) 2	粗砕時粒を小さくしすぎると流動性が悪くなり
		2-1 成型品の強度が出ない
		2-2 厚みが不均一になる
		2-3 焼結した時クラックが入りやすい
		ユーコ 粉版 しんはクノックが入りです。

	ライド Ma.	工一程	内
	- 1	成型機	玉川工機(乾式プレス機 6 TON)
5 –	-2	成型中	成型をしているところ
			富士試験寸法 ∮ 15.0 × 0.4 t ~ 0.6 t
			Hi-K機:-K材 TC材
			成型 : 1.7 × 10 ³ Kg/cm
		スライドなし	成型終了後、成型品の密度を1厚み∮径と重要より算出する。
		成型密度	
6		匣鉢に成型品を並	使用器具 匣 鉢(シャモット質)
		べる	ZrOz ty A-
			成型品を15枚重ねで並べる
	·. · .		
	-		-ZrO2 tv19
			T
1			- 連鉢
	-		匣鉢は逆にして底の平面上に ZrO2板を乗せてその上に成型品
7	 _ 1	焼結電気炉	を並べる。 使用器具 マッフル炉(東海高熱製)発熱体:エレマ
	- 1 - 2	焼結電気炉の前蓋	使用器具 マッフル炉(東海高熱製)発熱体:エレマ
		を開けた	
7 -		焼結電気炉中	但鉢を奥にセット
			昇温 : 0℃~1000℃:150~170℃/HR
			1000℃~焼結温度: 100℃ ℃/HR
٠.			焼結 :1200℃~1370℃
			冷却 : 自然冷却
. 7-	_ 4	焼結	前蓋を閉め焼結
8 -	- 1	銀塗り	使用器具 ・小錐 ・ロクロ
			·銀液(新日本化金研究所 SP-100KB)
			1枚1枚表裏小筆で銀液を塗布する。
8 -	- 2	銀逢り	
1			

スライド 低	在 程	内
9	銀焼付け炉	griffeligi francisco de la companya de la companya Engango de la companya de la company
	写真が悪いので図	温度コントロール
	示する	
		電流計
		電圧計
		/ 銀焼付け炉
		銀焼付け炉中に銀液を塗布した後、Al2O。 ボートに乗せ炉中
		に入れ、740 ℃ × 3 min 焼付ける。
10	リード線付け	使用器具 半田コテ 半田 リード線 ピンセット
		・銅板・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
		半田コテの温度と試料の温度の調整をすること
		温度差がありすぎると半田コテをあてた時破損(クラック)
		130
11	電気特性測定	
	Cap tand	
	T. C	(石)
		医価値
		LCRMeter
		C G T T T T T T T T T T T T T T T T T T
		1 1/2 1/2
		記録紙

スライド Na	工. 程	[1] [1] [1] [1] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2
11-2	2. G. R. Meter	操作
		Cap tand 測定
11-3	L. C. R. Meter	(YAP 4261A)
1 2	IR測定	
	(東亜電波	IR-Meter
	8 M - 5 E)	
		コンデンサー設置台
		N. R. D.
13	顕 微 鏡	(grain — Size、 導体検査
1 4	測定室	
and the		
		en de la companya de La companya de la co
		是,我们们是这些种的特别是一种的。
	san an ing Kabupatèn Balangan Kabupatèn Balangan	
2 * * *. *		
	en die Rigida en	
	in the second of the second	
1		
	nga Pangalan Pangalan Langga Pangalan Pangalan	
		-49-
	and the second s	
		-49-

(N)CERAMIC CAPACITORの製造技術解説

Purpose

To make PVA 10 WT % Binder Solution which needs for testing BaTiO3 Ceramics.

Instruments

- 1) Small Stiver
- 3) Heater (1 KW)
- 5) 325 mesh Sieves (sus 27)
- 2) Water Bath
- 4) Porcelainized Beaker (10 1)
- 6) Spatula

Materials and others

- 1) PVA (#*117)
- 2) Water (to get rid of extraneous substance through 325 mesh sleve)

Order	Description of Working	Notes
1)	To put water Bath on Heater, put porcelainized	To get rid of
	Beaker (10%) into the Bath and Pour water 7 1	extraneous sub-
	into it	stance from water
		through 325 mesh
		sieve
2)	To stir water in the Beaker by Stiver	Not to touch stiver
		with Beaker.
3)	To switch on Heater and heat	
4)	To put PVA (*117) 7808 into Porcelainized	If put PVA into
	Beaker little by litter	in one time, it is
		not dissolve
5)	To take care not to run out of water	perfectly and make
		ceramic character-
6)	To stir till solution becomes transparent and	istics worse.
	till not to feel solid body touching with	
	finger.	
7)	After finished dissolving, switchoff and cool	To force into cool
	naturally. At the time of 40°C maximum of	is also good.
12.00	Solution, sift them through 325 mesh sieve.	

Mixing Binder Solution and Granuation

Purpose

Mixing Binder Solution and Granuating for good Molding of ceramic Instrument

1) Balance (500g)

2) Spatula

3) Mixer 4). Stainless Bat C

5) Electric Drier

6) 80 mesh sieve (sus 27)

7) Injector (50 cc)

Materials and others

1) PV	A 10% Solution 2) BT-203 Powder	
<u>Order</u>	Description of Working	Notes
1)	To balance 300g BT-203 powder	
2)	To put 300g powder into Mixer and losen	
3)	To add 40 ml of PVA 10% solution with Injector	
4)	To switch on Mixer and mix enough Binder and Material for the equal dispersion of Binder	
5)	After Binder Solution is equally mixed with Material, remove them to stainless Bat and dry at 100°C ± 10°C,	
	To finish drying at the point of Water $0.3-0.5~\mathrm{WT}~\%$ (about $15~\mathrm{minutes}$) and reduce to powder again by Mixer.	
6)	After crashing material, add 20 ml of PVA 10% solution, and mix them till equal dispersion. After mixing, put them again into dryer.	
7)	To dry at 100° C \pm 10° C till to be water 0.3 - 0.5 WT%.	
8)	After drying, put them into Mixer. This time not to reduce finally to powder but to losen, then sift them	

- through 80 mesh sieve. Remain must losen by Mixer and sift through 80 mesh sieve and repeat this process.
- 9) After sifting, dry them for 3 minutes by Drier.
- 10) After drying, sift through 80 mesh sieve. These materials are for molding.

Molding

Purpose

Disk Molding and preparing for firing for BaTiO Ceramic Test.

Instruments

- 1) Powder Molding Machine (Tablet Machine)
- 2) Vacuum Pump
- 3) Electric Cleaner

4) Chemical Balance

Materials and others

- 1) Dial Gauge (1/100 mm)
- 2) Sagge
- 3) Zirconia Ceramic Setter

Order	Description of Working	Notes
1)	To switch on Vacuum Pump	To make clean
2)	To set Material Holder and fix with Holder fix	inner of Holder
	with spring.	
3)	To fasten lower Punch in upper fix point and	
	confirm the same level of lower punch and surface	
	of Table.	
4)	To put the granulated Materials into Holder.	
5)	To switch on and mold, to check thickness of some	
	pieces of molded Disk and pressure Molding	
	condition; thickness 0.42 ± 0.01 m/m	
	diameter 15 m/m	en e
	pressure 2,000 kg/cm ²	
6)	To compensate the condition to be pertinent in case	
	of irrelevant condition.	
7)	After compensating, mold 100 pieces.	
8)	To measure Molding Density	
	Molding Density $(g/cm^2) = \frac{\text{Weight of 10 pieces of Cer}}{(15/2)^2 \times 3.14 \times \text{thickness of}}$	

Firing

Purpose

To fire Molded Material BT-203 and make ceramics.

Instruments

- 1) Electric Furnace
- 2) Programmed Automatic Control Thermometer
- 3) Thermorecorder

Materials and others

4) Sagger

5) Zirconia Ceramic Setter

0rder	V			Descripti	lon o	Working		n de front de <u>Systage bereige</u> st
	4 May 18	1 .		15.75	: :			
1)	To arra	nge to	tal 4	5 pieces	in 3	lines 15	pieces for	each on

- 2) After arrangement of moded ceramics, set them into Electric Furnace.
- 3) To switch on the Programmed Automatic Control Thermoregulator of Electric Furnace.
- 4) To switch on Thermorecorder. (Refer to Firing Condition written on another sheet.)
- 5) To take out them when the temperature in Furnace falls upto 400°C and cool naturally upto room temperature.

Ceramic Density and Electrode Painting

Purpose

To measure ceramic Density of BT-203 and paint electrode for measurement of electric characteristics.

Instrument

- 1) Dial Gauge (1/100 mm)
- 2) Potter's Wheel

3) Silver Paint

4) Thinner for Silver Paint

Material and others

1) Acetone

2) Brush

3) Nonius

4) Chemical Balance

Order

Description of Working

- 1) To measure thickness of Ceramics by Dial Gauge and select 10 pieces of same thickness to check diameter by
- 2) To weigh the weight of 10 pieces ceramics by chemical balance and calculate the ceramic Density as follows,

Density
$$(g/cm^2) = \frac{\text{Weight of } 10 \text{ pcs}(g)/10}{\text{thichness}(cm) \times (radius)^2(cm) \times 3.14}$$

- To paint Silver Paste on the surface of same thick ceramics by potter's wheel.
- 4) To take out Silver Paint on plate as you need and dilute them up to surtable viscocity by thinner.

Electrode Firing and Soldering Lead Wires

Purpose

To fire Silver Electrode painted on BT-203 Ceramics and solder Lead Wires on Electrode.

Instruments

- 1) "ELEMA" Electric Furnace (hand-made)
- 2) Alumina Ceramic Boat
- 3) Case (for firing Silver Paint)
- 4) Electric Heater (200W)

Material and others

1) Lead Wires

2) Copper Plate

- 3) Electric
- Soldering
- 4) Pincette

Order

Description of Working

1) After drying Silver Paint, arrange as fig. 5.

Fig. 5 Arrangement of Ceramics on boat for firing

- 2) To put Alumina Ceramic Boats arranged ceramics into Furnace.
- 3) To switch on Electric Furnace and fire firing condition.
 - 1) Firing temperature

740°C 3 min.

2) Elevating condition

 $0^{\circ}C - 740^{\circ}C$ about 40 min.

of temperature

3) Cooling

naturally

- 4) To take the ceramic out at the point of 300°C max. and cool up to room temperature.
- 5) Lead Wires are soldered on fired Ceramics as fig. 6.

Fig. 6 Soldering method of Lead Wires

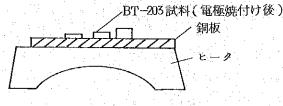
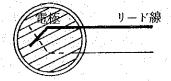



Fig. 7

Notes

Temperature of copper plate and solder must be almost same, other-otherwise ceramic Elements are easy to break.

Measurement of Electric Characteristics

Purpose

To measure various Electric Characteristics of BT-203 Ceramic Elements and judge the quality whether BT-203 can be used for Hi-K material or not.

Instruments

- 1) Digital L.C.R. meter Dielectric constant &
 - Dielectric loss tangent.
- 2) Resistance Meter Insulation Resistance
- 3) Oven Temperature Curve
- 4) Electric characteristics
- 4)-1 Materials and measuring method

After printing Silver Paint on both sides of Ceramic Elements

mentioned above, fire them at 800°C in 5 minutes for making electrode. To solder Lead Wires to both sides of electrode and make ageing for 24 hours, then measure electric characteristics.

4)-2 Dielectric Constant

Instrument

Di Digital Capacity Meter

Method

To put ceramics soldered Lead Wires into and operate at decided temperature to measure capacity by connected capacity Meter. The other side, measure thickness of Ceramics and diameter of Silver electrode by , then calculate dielectric constant by following formula,

Dielectric Constant $E = \frac{144 \times t \times c}{D^2}$

t: Thickness of Ceramics (mm)

c: capacity (PF)

D: electrode diameter (mm)

If precisely speaking this E mentioned here is specific inductive capacity, so it has no unit.

4)-3 Dielectric Loss Tangent (tan δ)

Instrument

Digital capacity meter

Method

This can be measured at the same time when 4)-2 Dielectric constant is done.

4)-4 Temperature Variation Rate

Instrument

Digital capacitance meter

Method

To put Ceramics soldered Lead Wires into and operate at decided temperature and measure capacity at some temperature.

Temperature Variation Rate can be calculated as follows using

these capacities and ones at standard temperature.

Tem. Variation Rate (%) =
$$\frac{\text{CT} - \text{Cs}}{\text{Cs}} \times 100$$
 (%)

CT: Capacity (PF) at test temperature

Cs: Capacity (PF) at standard temperature

4)-5 Insulation Resistance (IR)

Instrument

Resistance Meter Super-Megohm Meter

Method

To hold ceramics soldered Lead Wires on Resistnace Meter and go on 500 Voltage, and measure it in 15 minutes.

4)-6 Q Value

Instrument

Q Meter

Method

To hold ceramics soldered Lead Wires on Q Meter and measure at room temperature. At first to tune Coil and Variable Capacitor without holding ceramics on Q Meter, then connect ceramics in parallel with variable capacitor.

To calculate Q Value as follows:-

Q Vale =
$$\frac{Q_1 \cdot Q_2 (C_2 - C_1)}{Q \cdot C_1}$$

規格名	製品試験法(配合材)	(ik BT-203)	
品 名	Binder 液の作成し	PVA10%剂	()	-
作業目的				
BaTiO3 セラミ	ック試験に必要なPVA10w	1 % Binder	液を造る。	
使用器具		使用原料		
①小型攪拌装置	④ ヒーカー10 l	①PVA(倉	敷レーヨン# 117)
②ウォータバス	⑤ 325me s h 篩 (SUS 27)	②水 (3	25 me s h 篩 で異物隊	余去したもの
③ヒーター(1 KW) ⑥スパチュラ			
順序	作業内容		注 意 事	項
	ォータバスを乗せる。そして	ピーカ	・水は 325 me s h	を通し異物
1 7 1	ウォータバス中に浸し、	an a	除去した水である	35
氷を7 e入れ				
	の水は小型攪拌装置で攪拌す	3	・攪拌機とビーカス	が接触しない
			程度に底におろう	1
③ ヒーダのスイ	ッチを入れ加熱を始める			
	レーヨン#117)粉末 7809	平量し、そ	· PVA 粉末を一[度に入れると
	カ中に少量ずつ投入する。		完全溶解が出来す	げ、粒が残る
			こと、セラミッ	クの時性劣化
			となる。	
(C) thad 数 a for b	、ウォータバス中の水がなく	ならない様		
⑤ 加え終ったり に注意する。				
	なるまで加熱攪拌する。終点	は液をスパ	Harry Hill	
	い、指で未溶解の固形物が感	The state of the s	Contract to the	
うになった				
	* - ニターのスイッチを切り自然	冷却する。	 冷却時、強制的	に行ってもよ
	以下になったら 325 me sh篩に	医电压 化二氯化物 电电流放射	6	
	メード なったり o zome on milk	- ह्या अस्तर ह्या		10000
す。				
	7	$\langle \ \ \rangle$		
ホーロービーカ				
	#			
	7-1-10-0-12 111			
1 / Luw	VIIII			
fig-1	Bindev作成 fig-2 Bin	nder液 通し		
				<u> </u>

晶	:	-名
ΠĤ	1	· 7

Binder液混合及び整粒

作業目的

成型機で成型する際の成型性を良くするためBinder液を混合し整粒する。

使用機器

使用原料 その他

- ①上皿天秤(5009) ⑤電気乾燥機
- ①PVA 10%液

- ②スパチュラ
- ⑥ 80 me s h 篩 (SUS27)
- ②BT-203 製品

③播潰機

⑦注射器 (50 CC)

④ステンレス製バット(皿切り)

(4) ^)	フレス製ハット(皿切り)	
順序	作業内容	注意事項
1	BT-203製品を天秤(500g)で300g秤量する。	
2	試料 300gを播潰器に入れ、ほぐす。	
3	PVA 10%液を注射器で 40 mlとり、添加する。	
4	播潰機のスイッチを入れ、Binder 液が試料と均一に	· Binder が乳棒にクッツキ
	分散する様に良く混合する。	のでスパチュラで落として
		やる。
		この時廻しながらするので
		スパチュラが乳棒にとられ
		ない様注意する。
(5)	Binder液と試料が均一に混合されたら、ステンレス	・バット全面に試料を広げる
	製バットに移し、乾燥器に入れ、 100℃± 10℃で乾燥	33
	3 & Company of the Co	・温度が高過ぎると Binder
	乾燥終点は水分 0.3~0.5 wt %(約15分)になったら	がこげて成型困難となる。
	再び播潰機に入れ粉砕する。	
6	試料が粉砕されたら注射器でPVA 10多液 20mlとり	・水分 0.3 多は手で触ってみ
	添加する。均一に分散出来るまで混合する。	て少し湿っぽく感じる程度
	混合終了後再び乾燥器に入れる。	
7	乾燥温度 100±10℃で水分 03~05 wt%に乾燥する。	
8	乾燥終了後、播潰機に入れる。今度は乾燥試料を微粉	・ほぐし粉砕は30秒程度の
	砕しないでほぐす程度に粉砕し、80 mesh篩 K通して	粉砕である。
	やる。これは、これは、これは、これは、これは、これには、これには、これには、これには、	余り時間を掛けた粉砕は微
	上に残った試料は再び播潰機にてほぐし粉砕し、	粉となり、成型品がもろく
	80 me sh篩に通し必要量この操作をくり返す。	なる。
9	80 mesh篩通し終了後、乾燥器に人れ約3分乾燥する。	
(10)	乾燥後 80 mesh篩通しをする。	・固まりをほぐす。
14 1	との試料を成型用とする。	

		·		r
				·
品名	成	型		
作業目	(b)			
В	aTiO。セラミック試験の為に円板形に成数	リレ焼結の準	備をする。	
使用楊	器	使用原料	その他	
①粉末	成型プレス(タプレットマシン、玉川工	⑤ダイヤル	グージ(1/1	00 mm)
機 6	TOH)	⑥本焼成用	鉢(シャモー	ト質 160mm×
②真空	?ボンブ	90 mm ×	18 _{mm})	
3電気	掃除機	⑦Zr02 4	ェッター(95 mm	□)
④化学	- 天秤(島津製)			
順序	作業内容		注 意	事 項
(1)	真空ポンプのスイッチを入れる。			
2	洋式ホルダーをセットし、ホルダー固定ア	ームで固定	試料ホルダー内	はきれいであ
	後スプリングでとめる。		ること。	
3	下パンチを上止点で止め、下パンチとテー	プルの面が	a de	
	同一レベルであることを確認			
4	試料(造粒品)をホルター内に投入する。			
(5)	スイッチを入れ、成型する。 2 ~ 3枚の成	型品の厚み		
•	と圧力をチェックする。			
	成型条件			
	厚み 0.42±0.01(%)			•
	(%)			
	压力 2,000 (Kg/cm)			
6	成型条件外にある時は補正する。			
7	補正後100枚成型する。			
8	成型密度の測定をする。			
	成型密度(<i>9 / cm</i>)= 成型品 1 0 枚の重 (15/2) ² ×3.14×成型	さ(g) !の厚み (<u>%</u>)		

 品名
 焼
 結

 (事業目的
 BT-203 成型品を焼結しセラミックスを造る。

 使用機器
 (使用機器
 使用原料 その他

 ①電気炉(東海高熱製CE20型20W)
 (④本焼成用 鉢(シャモット質160mm×

 ②プログラム自動調整温度計(千野製作所に1505里)
 ⑤ZrO2セッタ(95 mm 口)

 ③温度記録計(千野製作所Class 0.5)

順序	。 作 業 内 容	注 意 事 項
(1)	fig-3 の様に成型品 1 5 枚ずつ 3 列で計 4 5 枚 鉢	
	に配列する。	
	BT-203成型品	
	ZrO2 セッタ	
	fig-3 成型品の配列	
2	成型品が配列されたら電気炉中にセットする。	
3	電気炉のプログラム自動温度調整計のスイッチを入れる	
4	温度記針計のスイッチを入れる。	
	焼結条件、別紙御参照下さい。	
(5)	炉内温度 400 C以下になったら、取り出し室温まで	
	自然冷却する。	

品。名

焼結密度、電極塗り

作業目的

BT-203セラミック素体の焼結密度を測定すると共に電極付を行い電気特性測定を可能にする。

使用機器

- ①ダイヤルゲージ(1/100 mm)
- 20110
- ③銀液(新日本化金KB-100E)
- ④銀液稀釈液(ミニングオイル)

使用原料 その他

- ⑥アセトン
- ⑦小 筆
- ⑧ノギス
- ⑨化学天秤(島津製作所)

⑤時言	† <u>u</u>	
順序	作 業 内 容	注 意 事 項
(1)	試料の厚みをダイヤルゲージで測定し、厚みの同じも	
	のを10枚選別する。径をノギスで測定する。	
2	試料10枚の重さを化学天秤で秤り、次式で焼結密度	
	を出す。	
	焼結密度 (g/cm) = 10枚の重さ (g)/10 焼結密度 (g/cm) = 厚み (cm)×(径/2) ² (cm)×3.14	
3	試料、同じ厚みのものをロクロを用いてAg 液を塗布	
4	する。 銀液は時計皿に必要量取り出し、ミニングオイルで適	銀液の粘土はカラス棒でAg
	当な粘土に稀釈する。	液をすくった時、一本の糸を
	小筆でもって塗布する (表裏塗布する)	引く程度

ロクロを用いて銀塗布

fig-4

品 名 電極焼付け、リー	- ド線付け
作業目的	
BT-203セラミック素体に塗布したAg液の	焼付けを行い電極にリード線を付け
粗コンデンサーとする。	
使用機器	使用原料 その他
	⑤リード線
②A12 O3 磁性ポート	 ⑥銅 板
③サヤ(銀焼付用)	⑦電気コテ、半田
④電気ヒータ(200W)	⑧ピンセット
順序 作 業 内 容	注 意 事 項
① 銀液が乾いたら fig — 5の様に配列する	
fig-5 焼付用ポントに試料の配列仕	· 方 (
② 試料の配列されたAl₂O₃ 磁性ポートを焼	付炉中にセ
ットする。	
③ 電気炉のスイッチを入れて焼付けをする。	
焼付条件	
①焼付け温度 740℃ × 3 min	
②温度上昇 0℃~740℃ 約40	min
③冷 却 自然冷却	
④ 300℃以下に温度が下がったら、炉外に	出し室温ま 500℃ で炉外に出すと素
で冷却する。	にクラックが入る。
⑤ 焼付け終了後の試料は fig-6の様にして	リード線付 銅板の温度と、半田の温度
けをする。 BT-203試料(電極)	無付け後) 合わないと素体の破損が生
「ファブランファブラー 銅板	5 0
L-1	y
fig-6 リード線の付け方	
	l '

fig-7 粗コンデンサー

品名

電気特性測定

作業目的

BF-203素体の電気特性を測定し、その測定値よりBF-203Hi-K 用配合材料としての合否を判定する。

使用機器

①デジタル L. C. Rメータ(横河ヒュレットパーカード社製、4260A 1V×1KHZ) ……...誘電率、誘電正接

③恒温槽 (矢嶋製作所 BF 10 -30℃ ~ 25℃ ~ 85℃) ·····温度曲線

4. 電気的特性

4-1 試料及び測定

方法 前項の磁器試料(素地)に銀ペーストを塗布した後、800℃、5分間焼き付けを行い電極とする。電極にリード線をハンダ付けした後24時間エージングを行い、電気的特性の測定を行う。

4-2 誘電率

機器 デジタル容量計(横河ヒューレットパッカード社製)

恒温槽(矢嶋製作所製)BT-10型

方法 リード線付き試料を恒温槽内に装着し、所定の温度とする。接続してある容量計にて静電容量を測定する。

他方、試料の厚み、銀電極の径をノギスにて測定し、次式により誘電率を算 出する。

誘電率
$$\xi = \frac{144 \times t \times C}{D^2}$$

t : 試料の厚み(mm)

C : 静電容量 (PF)

D : 銀電極の直径(mm)

注 ここでいう f (誘電率)とは正しくは比誘電率のことである。 従って単位は無い。

4 – 3 誘電正接(¡an δ)

機器 デジタル容量計(横河ヒューレットパッカード社製)

4270A型 Hi - K 1V × 1KHZ

恒温槽(矢嶋製作所製)BT-10型

万法 4-2項誘電率を測定する時、同時に測定することができる。(値を直読できる)

4-4 温度変化率

機器 デジタル容量計(横河ヒューレットパッカード社製)

4270A型 Hi-K 1V×11KHZ

TO

11MHZ

恒温槽(矢嶋製作所製)BT-10型

万法 リード線付き試料を恒温槽内に装着し所定温度とする。

各温度における静電容量を測定し、これと標準温度での静電容量の値を用いて次式により温度変化率を算出する。

温度変化率(%) =
$$\frac{CT-CS}{CS} \times 100(%)$$

CT : テスト温度での静電容量 (PF)

CS : 標準温度での静電容量 (PF)

4-5 絶縁抵抗(IR)

機器 抵抗計(東亜電波工業製)スーパーメクオームメーター

方法 抵抗計にリード線付き試料を装着し、500V(製品100V×60 sec^{ec}) の電圧をかけ、15秒後に測定する。

4 — 6 Q 値

機器 Qメーター(横河ヒューレットパッカード社製)

4342A型 TC:1MHZ

方法 リード線付き試料をQメーターに装着し室温にて測定する。

最初、試料を装着しない状態にて装置のコイル及び可変コンデンサの同調を とる。ここで得られた各数値を用い、次式に従って試料のQ値を算出する。

試料Q值=
$$\frac{Q1 \cdot Q2 (C2-C1)}{\triangle Q \cdot C1}$$

Q1:試料を装着せず同調をとった時のQ値

C1: # 静電容量

Q2;試料を装着し同調をとった時のQ値

C 2: # 静電容量

△Q:Q2-Q1(直読できる)

3. Temperature Characteristics

-30

Lot No.: 9B126 2t GRADE: 203 (B)

1. Power Characteristics

325 Mesh Size (T	325 Mesh Size (m2/100g (m2/100g	1 1 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0	70	
325 Mesh Size (ml/100g) (ml/100g)	325 Mesh Size H (m2/100g) (m2/100g)	rots cure collectic	%	
325 Mesh Size (ml/100g (ml/100g)	325 Mesh Size (ml/100g (ml/100g	Loss on Ignition	%	
(n (n / n / n / n / n / n / n / n / n /	(n (n :y	Residue on Sieve 325 Mesh	%	
(n)	(n) (s	Avrage Particle Size	1	
(n)	Water Absorption (ml/100g) Compressed Density (g/cm³)	Bulk	(m%/100g)	254
		later Absorption	(m%/100g)	
		ompressed Density	(g/cm ³)	
				-

2. Forming Condition

Torming Dragging	1ra / cm 2	
י כר ייינים זי נפפלדנ	ייים /פע	
Weight of Formed Body	60	
	·	Ф
Size of Formed Body	THE .	το
Density of Formed Body	g/cm³	

csb(%)

	Ф	το	
ed Body		Body	ned Body g/cm ³
Weight of Formed		Size of rormed	Density of Formed

tan & (%)

Ceramic Characteristics

	г		,		,	
T.C.		(°C) 20°C -30°C ~ 85°C ~ 20°C		22.5 -83.6 -82.5		35800 17200 1.30 ×10 ⁴ 22.5 -82.7 -83.0
		20°C ^ 85°C		-83.6		-82.7
Curie	Point	(G) 		22.5		22.5
(၁,0	7	K (%) (MG)	00	×104×	8	×10 t
cs (2)	tanô	(%)		1.25		1.30
erist		×		35900 18000 1.25 ×10 ⁴		17200
Sharact	Cap.	(PF)		35900		35800
Electric (Electrode	Diameter (¢nm)		10.04		10.11
Density of Electric Characteristics (20°C) Curie	Fired Body	(g/cm³)		5.82		
Shrinkage	⊕ -¢ ×100(%)	$c_{S}(mw) \phi_{0} \qquad (g/cm^{3}) Diameter (PF) (\phi mw)$	1.219	0.35 17.93		
of.	Body	ts (mm)		0.35		0.34
Size of	Fired	φ _S (mm) ts		12.31	:	
:	Firing Condition		1370 °C	2.5 hr 12.31	1340 °C	2.5 hr
	Firing	0	1	1	2	

(V) <u>CERAMIC CAPACITOR</u>の製造工程の解説

FLOW CHART FOR CERAMIC DISC CAPACITORS MANUFACTURE

	<u></u>					
1.	Dielectric formulation material		2. Bind	ler		
		1				
3.	Batching (cultination)					
Γ		1	en e			•
4.	Milling					
		1			4	
5.	Spray drying					
		1				
6.	Evaluation					
		1				
7.	Disc forming					
		1				
8.	Arranging discs on setter tiles					
		,				
9.	Firing for Sintering		1			:
		,	:	. 1		
10.	Separation		,			
		1				
11.	Sintering Test	<u></u>				
12.	Silver painting					
		1		÷		
13.	Silver firing			•		
		í _	· · ·			4
		.	Electric	chara	cteris	tics
			check			
		· .				
14.	Wire Strip making	! ·	•	1.5		
		i				
15.	Elements assembling					
<u>:</u>		1	the second			
16	Soldering					
<u>г</u>		' 1 '.				
17.	Flux cleaning	4				
		·. -			•	
18.	Resin coating	·				:
19.	Curing Resing		* * . *			
		1		1.15		
20.	Marking) - J-				
L					. :	4.4
21.	Waxing					
21.	Waxing			jan ja		. '
22.	Waxing Final Test					

MANUFACTURE PROCEDURE (Ceramic Disc Capacitors)

I	li-K	TC	
EIA Standard	K Value	EIA Standard	K Value
25V	17000	M7G P100 PPM	17
< Z5U	10000	* COH NPO	8
Y5U	6000	UIG N 80 PPM	60
Y5T	4000	P2H N150 PPM	75
Y58	3800	R2H N22O PPM	80
Y5R	3300	S2H N330 PPM	90
Y5P	2600	т2н м470 РРМ	100
Y5E	1300	* U2J N750 PPM	130
e e e e e e e e e e e e e e e e e e e		SL P350 PPM	300
:		~ N1000 PPM	

NOTE: * Only these materials are available in CTRL this time.

- Select the granular powder material available in CTRL Circuit Component Lab. according to the design of capacitors for the above Hi-K and TC (Temperature coefficient) values.
- 2. Add Binder solution to the above.
- 3. Batching (cultination) process to make material solid state.
- 4. Milling (crushing & mixing) process to obtain fine wet granules by a pot mill.
- 5. Spray drying process by a spray drier.
- NOTE-I. Material available in the market is already processed up to this stage.
- NOTE-II. For experimental manufacturing the material in the Circuit Component Lab. is simply processed by a sieve.
 - 6. Powder characteristics are checked at this stage.
- 7. Discs formed by a cold press die.
- 8. The discs are on setter tiles made of Zirconia plate or Alumina plate.
- 9. The setter tiles are placed on sagger (tray) in the oven for firing.

 The oven temperature is started from room temperature upto 1150°C --

- 1380°C according to the material chart, after this the oven is switched off and discs in the oven are naturally cooled about 24 hours.
- 10. The setter tiles are taken out of the oven. The discs which are now sintered are separated and are now called capacitors ceramic dia electric elements, if the elements are sticking together, they are put into the hot water turn by turn two cycles and vibrated. If still the elements are sticking hard, repeat the process several times to get them separated, then the elements are dried by blowing hot air.
- 11. Selection of good elements
 - i) Checking by putting a drop of ink on the element if the drop expand the element is not properly sintered.
 - ii) Element density check (g/cm³) according to specification chart
- 12. Silverment of electrodes by screen printing (potters wheels by hand) on both sides of these ceramic elements. (Silver cream or silver paste is used to prepare ink for printing.)
- 13. Fire the elements in the oven at about 750°C -- 850°C for 3 minutes -- 20 minutes. Check and reject the shorted capacitor elements.
- 14. Prepare the lead wires on the strips.
- 15. Assemble the elements on wire strips.
- 16. Solder the wires by using solder cream or dip solder method.
- 17. After the lead wire properly soldered on to the capacitor units clean flux by using trichlor ethelene and high frequency cleaner bath.
- 18. Dip the units into insulation coating Resin Paint for encapsulation. (Trade name of this phenol formoaldehyde is Dureze Resin) and keep 24 houts before curing.
- 19. Cure the units according to Dureze chart in the oven at about 140°C -- 150°C for 30 minutes and then switch off the oven and cool naturally.
- 20. Mark capacity, tolerance, working voltage and temperature characteristics and trade mark.
- 21. Dip capacitors into the molten crystalline wax (at 120°C approximately) and cool for 15 minutes. (Preferably this process is done in a vacuum chamber.)
- 22. Remove the capacitors from the strips and tested for:-
 - 1. Capacity denomination PF, nF and UF.

- 2. Tolerance ±5%, ±10%, ±20% and +80% 20%.
- 3. Dissipation factor (tan δ) and loss angle (Q value = $1/\tan \delta$)
- 4. Insulation resistance at DC voltage.
- 5. Temperature coefficient. (for these tests $10~{\rm pcs}$ are picked & used)
- 6. Break down voltage (about ten pieces are used for this test).
- 7. Leads wire strength is tested (5 pieces).

For mass production another 2 process may be required further.

- 23. Packing & shipping
- 24. 100% sorting

DETAILED CHECKS FOR PROCESS

Disc forming.

- Size of the Die. Diameter check and thickness Design of the capacitor.
- 2. Pressure gauge check and duration
- 3. Checking die of good form
- 4. Lubrication of die and cleaning oil coating, frequently
- 5. Looking for cracks in the prepared pellet
- 6. Weight of formed body (g)
- 7. Size of formed body (mm ϕ t₀)
- Density of formed body (g/cm³)
 (Please see item 7 on page I.)

Arranging pellets

- Piling up the pellets on setter tiles should be according to their thickness.
 5 -- 10 pieces.
- 2. Zirconia setter and sagger (Tray) should be checked for cleanliness. Each Zirconia setter should always be used for only one type of material pellets. (Please see item 8 on page I.)

Firing for sintering

- 1. Special method devised by Mr. Niesai for CTRL working time schedule, is see the photo copy of the chart.
- This is to vaporize binder solution, therefore slowly temperature is increased and then kept 250°C -- 500°C in four hours.
- 3. Making the programme design sheet for firing & checked.
- 4. Automatic graph is checked.
- 5. The sagger (Tray) should be placed exactly in the centre of the oven for best sintering results. (Please see item 9 on page I.)

Evaluation

1. Powder characteristic check.

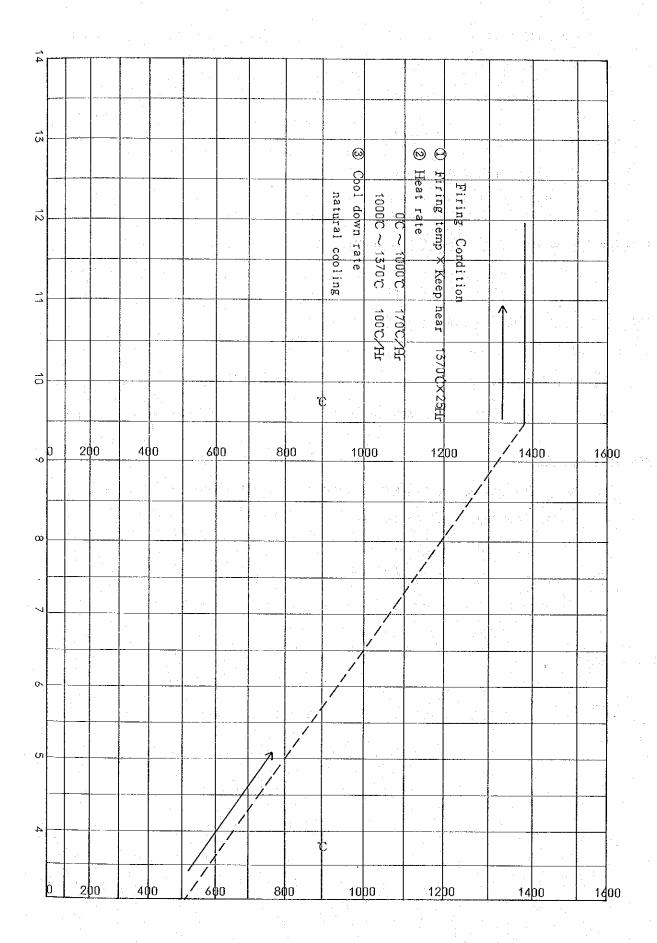
- 2. Moisture content (%)
- 3. Loss in Ignition (%)
- 4. Residue on sieve mesh (%)
- 5. Bulk m1/100g
- 6. Water absorption m1/100g
- 7. Compressed density (Please see item 6 on page I.)

Sintering Test

- 1. Tiring condition checked by automatic graph.
- 2. Fired body size (ϕt_s)
- 3. Shrinkage of fired body $\frac{\phi_0 \phi_S}{\phi_S} \times 100$ (%)
- Density of fired body (g/cm³)
 (Please see item 11 on page 1.)

Silverment Check

- 1. Silver paint name check
- 2. Viscosity of silver paint & thinner after mixing
- 3. Coated silver diameter check using vennier calipper
- Checking of silver centre (Please see item 12 on page I.)


Silver Firing

- 1. Fired time and duration check
- 2. The speed of increase of temperature should be slow for large & thick elements to avoid cracks.
- 3. Similarly the elements are slowly cooled down to avoid cracks.

 (Please see item 13 on page 2.)

Electric Characteristic at Room Temperature

- Electrode Diameter (mm φ)
- 2. Capacity (PF, nF, UF)
- 3. Dielectric constant (K value)
- 4. Dissipation factor (tano %)

- 5. Insulation resistance $(M\Omega)$
- 6. Curie point degree (C)
- 7. Temperature coefficient (TC)

Checking Wire Strips

Spring action of lead wires
 (Please see item 14 on page 2.)

Placing the capacitors element in centre

(Please see item 15 on page 2.)

Soldering slowly heating up to avoid cracking

(Please see item 16 on page 2.)

Check for dry joint

Check for too much or too less solder.

Resign Coating

- 1. Check viscosity for different size of capacitors by practice.
- 2. Coating on lead minimum is better (1 mm -- 3 mm)
- 3. Coating should be even all sides.
- 4. Naturally dried for 24 hours approximately. (Please see item 18 on page 2.)

3. 6 (VI) CERAMIC CAPACITOR の設計

CONSIDERATIONS FOR CERAMIC CAPACITOR DESIGN

- I. 1. Capacitance and tolerance
 - 2. Working Voltage DC & AC
 - 3. Characteristics (T.C.)
 - 4. Material (Epsiron, K value)
 - 5. Element Firing (Dia, thickness)
 - 6. Silverment electrode Dia mmø
 - 7. Shrinkage after firing Dia & thickness
 - 8. Fired temperature & keep time

II. Formulae:

(Please see design formulae in the attached sheet.)

III. Consideration for Ceramic Capacitor

- To have high Dielectric Constant and to be stable for temperature, frequency and voltage, especially to have flat temperature characteristics of Dielectric Constant.
- 2) Disipation Factor: the smaller, the better (tan δ)
- 3) Aging Effect: the smaller, the better
- 4) Insulation Voltage: the higher, the better
- 5) To be possible to produce thin plate ceramic by malleable material and suitable firing condition.
- Good consistency and stable quality.

DESIGN OF DISK TYPE CAPACITOR

$$C_{pF} = \frac{E \times S \times 0.00885}{T} \qquad \dots \qquad 1$$

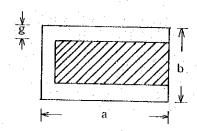
- E = Dielectric of ceramic material
- $S = Silver coated area = \pi r^2$
- T = Thick of disk in m.m 0.00885 is constant.

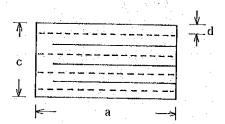
- C = Capacitance in PF
- t = Thickness of disk
- D = Dia of silver coated area

$$E = \frac{11.3 \times C \times t}{S} \qquad \dots \qquad \qquad III$$

TUBLER TYPE CAPACITOR DESIGN

- d = Inside diameter of tube (ceramic element)
- L = Length of silver coated area in m.m.


silver coated area ceramic tube


Note: Calculation of silver coated diameter of disk type

Silver D =
$$\sqrt{\frac{4(11.3 \times C \times t)}{\pi E}}$$
 V

MULTI-LAYER CERAMIC CAPACITOR DESIGN FORMULA

$$CV = \frac{E(4-2g)(b-2g)(n-2)}{4(c/n-d)\times a + b \times c} \times \frac{10}{9} = PF/(m.m)^3$$

E = Dielectric constant of ceramic material

g = Leakage path

a+b = Size of element

c = Total thickness of capacitor

d = Thickness of one sheet element

n = No. of laminations

WORKING VOLTAGE DESIGN ELEMENT THICKNESS AND SILVERMENT ELECTRODE DIA.

D.C. Working voltage V	Element thickness in t m.m	Leakage path m.m	Brak down voltage D.C. V
50 V	0.15 0.3	0.3 0.5	500 V
150 250 V	0.25 0.4	0.5 1.0	1000 V
500 V	0.5	0.8 1.0	2000 V
1000 V	1.0 1.5	1.0 1.5	3 4 KV
2 3 IV	2.0	1.0 2.0	* 3 KV A.C.

^{*} Brak down voltage is 5 KV DC change range in A.C.V.

COMMERCIAL CERAMIC CAPACITOR DESIGNING

Example

A. Temperature coefficient ceramic capacitor

I. Feature

- 1. Temperature Characteristics Flat.
- 2. Frequency response Flat
- 3. Q very high
- 4. Protection against moisture and heat

II. Uses

- 1. Negative temperature coefficient
- 2. Tuning circuit
- 3. Trapping circuit
- 4. Coupling circuit
- 5. By pass

B. High Dielectric Ceramic Capacitor

I. Feature

- 1. Large capacity and small size-
- 2. Its Q is low compared to TC style (tan δ)
- 3.

II. Uses

- 1. By pass circuit
- 2. Coupling circuit

一般市販園定磁器コンテンサの標準仕用 DISC IYPE CERAMIC CAPACITOR

DC 50 WV

11-0-11

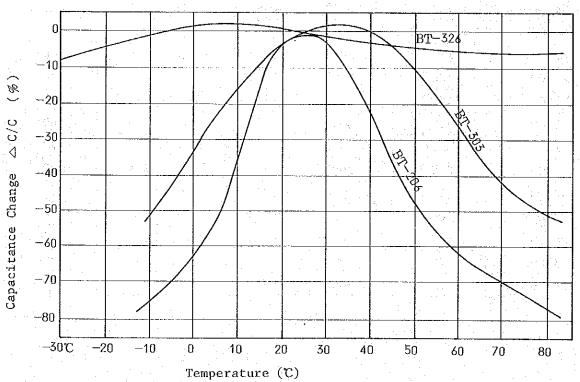
UJ N750	Violet	2 - 27 33 - 56 68 - 82 100 - 150 180 - 220 270 330, 390
TH N470	Blue	2 - 22 27 - 30 47 - 68 82 - 120 150 - 220 270 - 330
SH N330	Green	2 - 18 22 - 39 47 - 56 68 - 100 120 - 150 100
RH N220	Yellow	1 - 18 22 - 33 39 - 56 68 - 100 150 - 180 220
RH N150	Orange	1 - 15 18 - 27 33 - 47 56 - 82 100 120 - 150
LH N80	Red	1 - 12 15 - 22 27 - 39 47 - 68 82 100 - 120 150
CH NPO	Black	PF 1 - 27 33 - 56 68 - 100 120 - 150 180 220 - 270
Temperature Coefficient T.C. PPM/c°	Color Code	Capacity (PF) Hi-Q Type

Capacitance tolerance		MAX. 10PF C±0.25PF D±0.5 PF F±1.0 PF MIN. 10PF J± 5% K±10% M±20%
Size (m.m) Dia (m.m)		4.5 5.0 7.5 8.5 9.5
SL + 350 -1000	No. Mark	1 - 47 56 - 100 120 - 150 180 - 270 330 - 390 470 - 560 680
Temperature Coefficient T.C. PPM/c°	Color Code	Capacity (PF) Hi-Q Type

	30PF MAX, Q ≥ 400 + 20C C = Capacity	
(-25° c 85° c)	W (Working temperature)	
≥1000 (at 30pF min)≥ 1000 at 30PF min.		
(10,000 M)	IR (Insulation Resistance)	
(DC 50V)	WV (Working Voltage)	

30PF MIN. Q ≥ 1000

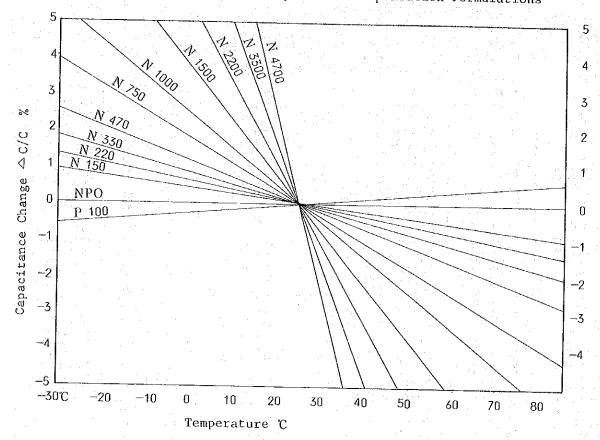
Temperature characteristic capacity	Y5F (±10%)	Y5P (+22%)	$z_{5V} \begin{pmatrix} +22\\ -82 \end{pmatrix}$	Size in m.m. Dia m.m.	Capacitance tolerance
	270, 330, 340	1000	1000, 2200	4.5	$K\pm 10\%$ $M\pm 20\%$ $Z=\pm 80\%$ $P=\pm 100\%$
(PF)		1500, 2200	4700	5.0	0 - 07 GMV
	1500, 1800, 2200	3300	10000	0.9	Granted minimum
H1-K	2700, 3300, 3900	4700, 6800	18000	7.5	Value
Type			22000	8.5	
) Le	5600, 6800	10000	33000	9.5	
		15000	47000	11.0	
		33000	100000	15.0	


٠.	WV (Working Voltage) DC 50V
	IR (Insulation Resistance)
	Tan & (Y5P, Y5T) = 2.5% MAX.
	25V = 5.0% MAX.
	WT (Working temperature) (-25c° - +85c°)
	GMV = Granted minimum value

3.7 (VII) CERAMIC CAPACITOR の一般市販原料例

Hi-K Type Formulation

<u></u>			<u>:</u>			
	Electric	propert	ies	Standar	d code	
Designation	Dielectric constant 25°C	Tan & Max %	IR Min. MΩ	JIS	EIA	Firing Temp Range (°C)
BT-201	16,500± 1,500	1.5	104	ZF	Z5V	1330-1370
BT-203	17,000± 1,500	1.5	10 ⁴	ZF	Z5V	1320-1360
BT-204	30,000± 2,000	2.5	104		Z4V	1360-1400
ВТ-206	16,500± 1,500	1.5	10 ⁴	ZF	25V	1340-1360
BT-221	13,000± 1,500	1.0	10"	YF	Y5V	1320-1350
BT-303	10,500± 1,500	1.0	10 ⁴	ZE	Z5U	1280-1320
ВТ-304	8,000± 1,000	1.0	10"	YE	Y5U	1280-1320
ВТ-305	7,000± 1,000	1.0	10 ⁴	YE	Ÿ5U	1280-1320
ВТ-306	6,000± 1,000	1.5	10 ⁴	YE	Y5U	1280-1310
BT-313	4,000± 300	1.0	10"	YD	Y5T	1260-1300
BT-328	3,800± 300	1.5	104	YD	Y5S	1220-1260
ВТ-327	3,300± 300	1.5	10 ⁴	YB	Y5R	1220-1260
ВТ-326	2,600± 200	2.0	104	YB	Y5P	1250-1290
ВТ-335	1,300± 100	1.0	10 ⁴	YA	Y5E	1220-1270


Some Characteristics of Hi K Formulations

Temperature Compensation Type Formulation

	Electric	propert	ies	Standar	d code	P.J. J. m
Designation	Dielectric constant 25°C	Q Min.	IR Min. MΩ	JIS	EIA	Firing Temp Range (°C)
P 100	17	3000	105	AG	M7G	1340-1380
NPO-L	8	3000	10 ⁵	СН	СОН	1230-1250
NPO-N	16	3000	10 ⁵	CG	COG	1320-1360
NPO	40	3000	10 ⁵	CG	COG	1150-1220
NPO-M	55	2000	10 ⁵	CG	COG	1280-1330
N80-N	17	3000	10 ⁵	LG	U1G	1300-1340
и80	45	3000	10 ⁵	LG	UlG	1240-1280
N80-M	60	3000	10 ⁵	LG	U1G	1320-1350
N150-N	19	3000	10 ⁵	PG	P2G	1300-1340
N150	47	3000	105	PH	Р2Н	1240-1280
N150-M	75	2000	10 ⁵	PH	Р2Н	1360-1380
N220-N	20	3000	10 ⁵	RH	R2H	1300-1340
N220	50	3000	10 ⁵	RH	R2H	1230-1270
N220-M	80	3000	10 ⁵	RH	R2H	1310-1340
N330	60	3000	10^{5}	SH	S2H	1270-1300
N330-M	90	3000	10 ⁵	SH	S2H	1310-1340
N470	65	3000	10 ⁵	TH	Т2Н	1230-1260
N470-M	100	3000	10 ⁵	TH	т2н	1310-1340
N750	90	2000	10 ⁵	UJ	U2J	1200-1260
N750-M	130	3000	10 ⁵	UJ	U2J	1280-1320
N1000	180	3000	10 ⁵	VJ	мзј	1170-1230
N1200	185	3000	10 ⁵	TC-200	-	1180-1250
N1500	200	3000	105	WJ	P3J	1180-1250
N1700	305	2000	10 ⁵	TC-200M	_	1170-1220
N2200	350	3000	10 ⁵	XK	R3K	1230-1250
N3300	400	3000	10 ⁵	YK	S3K	1270-1310
N3300M	1100	250	10 ⁴	YI.	S3L	1210-1270
N4700	550	3000	10 ⁵	ZL	T3L	1270-1310
N5500	870	3000	10 ⁵	YN		1270-1310
SL300	315	2000	10^{5}	SL	-	1280-1340

Some Characteristies of Temperature Compensation Formulations

原子量表(1979) Ar(12C)=12

多くの元素の原子量は不変ではなく、物質の起源と処理に依存している。脚注は個々の元素について考えられる変動の様式を詳細に示している。本表に記した原子量の値、Ar(E) は地球上に自然に存在する元素およびいくつかの人工元素に適用される。脚注に適切な考慮をはらって用いれば信頼度は最後の桁で±1、米印を付けたものは±3までと考えてよい。()を付けた値は、起源の知識なしでは原子量を正確に示すことのできないいくつかの放射性元素に対するものであり、表の値はその原素の既知の最長半減期をもつ同位体の質量数である。

		17.79	Section 1997						NATI L
元 業 名	元素記号	原子番号	原子量	牌注	元 聚 名	元楽記号	原子番号	原子費	脚注
llydrogen	н	1	1.0079	w	lodine	1	53	126.9045	
Helium	lle	2	4.00260	x ·	Xenon	Xe	54	131.29*	×17
Lithium	Li	3	6.941*	W,X,Y	Caesium	Cs	55	132.9054	
Beryllium	Be	4	9.01218		Barium	Ba	-56	137.33	x
Boron	В	5	10.81	*,y	Lanthanum	l.a	57	138.9055*	×
Carbon	C	6	12.011	*	Cerium	Ce -	58	140.12	x
Nitrogen	N	7	14.0067		Praseodymium	Pr	59	140.9077	
Oxygen	0	8	15.9994*	*	Neodymium	Nd	60	144.24*	. x
Fluorine	F	ğ	18.998403		Promethium	Pm	61	(145)	
Neon	Ne	10	20.179	γ .	Samarium	- Sm	62	150.36*	x
Sodium	Na	11	22.98977		Europium	Eu	63	151.96	x
(Natrium)	, Wa	1		ŀ	Gadolinium	Gd	64	157.25*	x
Magnesium	Mg	12	24.305	×	Terbium	Ть	65	158.9254	
Aluminium	Al	13	26.98154		Dysprosium	Dy	66	162.50*	
Silicon	Si	14	28.0855*		Holmium	Но	67	164.9304	
Phosphorus	P	15	30.97376		Erbium	Er	68	167.26*	
Sulfur	s	16	32.06		Thulium	Tm	69	168.9342	
	C1	17	35.453		Ytterbium	Yb	70	173.04*	·
Chlorine	1	18	39.948		Lutetium	Lu	71	174.967*	
Argon	Ar	19	39.0983	×,×	Hafnium	Hf	72	178.49*	
Potassium	K	19	39.0903		Tantalum	Ta	73	180.9479	
(Kalium)		20	40.08	_	Tungsten	W	74	183.85*	
Calcium	Ca		1	*	(Wolfram)	"	1 '	10000	1
Scandium	Sc	21	44.9559		Rhenium	Re	75	186.207	
Titamium	Ti	22	47.88*		Osmium	0s	76	190.2	×
Vanad1um	V	23	50.9415		Iridium	Ir	77	192.22*	
Chromium	Cr	24	51.996		Platinum	Pt	78	195.08*	
Manganese	Mn	25	54.9380	1	Gold	Au	79	196.9665	
Iron	Fe	26	55.847*			Hg	80	200.59*	
Cobalt	Co .	27	58.9332		Mercury	T1	81	204.383	
Nickel	Ni	28	58.69	1.	Thallium		82	207.2	77.5
Copper	Cu	29	63.546*		Lead	Pb	83	208.9804	.,,0
Zinc	Zn	30	65.38	i .	Bismuth	Bi	84		}
Callium	Ga	31	69.72	1	Polonium	Po		(209)	
Germanium	Ge	-32	72.59*		Astatine	At	85	(210)	:
Arsenic	As	33	74.9216		Radon	Rn	86	(222)	ŀ
Selenium	SE	34	78.96*	1.	Francium	Fr	87	(223)	.X,Z
Bromine	Br	35	79.904	1	Radium	Ra	88	226.0254	1
Krypton	Kr	36	83.80	x,y	Actinium	Ac	89	227.0278	z .
Rubidium	Rb	37	85.4678*	x	Thorium	Th	90	232.0381	,X,2
Strontium	Sr	38	87.62	x	Protactinium	Pa	91	231.0359	z
Yttrium	Y	39	88.9059		Uranium	U ·	92	238.0289	X,y
Zirconium	Zr	40	91.22	z.	Neptunium	Np	93	237, 0482	z
Niobium	Nb	41	92,9064		Plutonium	Pu	94	(244)	
Molybdenum	Mo	42	95.94	1	Americium	Am	95	(243)	1
Technetium	Tc	43	(98)		Curium	Cm	. 96	(247)	
Ruthenium	Ru	44	101.07*	, z	Berkelium	Bk	. 97	(247)	1 *
Rhodium	Rh	45	102.9055		Califormium	Cf	98	(251)	
Palladium	РЬ	.46	106.42	, x	Einsteinium	Es	99	(252)	1
Silver	Ag	47	107.868	×	Fermium	Fm	100	(257)	
Cadmium	Cd	48	112.41	x .	Mendelvevium	Md	101	(258)	1
Indium	In	49	114.82) x .	Nobelium	No	102	(259)	
Tin	Sn	50	118 69*		Lawrenchium	Lr	103	(260)	1
Antimony	Sb	51	121.75*		(Unnilquadium)	(Unq)	104	(261)	
(Stibium)		1				4.0	ļ		1
Tellurium	Te	52	127.60*	x	(Unnilpentium)	(Unp)	105	(262)	
			4	1.5	(Unnilhexium)	(Unh)	106	(263)	I

脚注:W. 正常な地球物質における同位体組成の既知の変動により、より高い精度の原子量値を示し得ない元素のAr(E) は、"正常な"物質すべてに適用されるものとする。X. その元素について異常な同位体組成をもつ地質学的試料が知られており、そのような試料中の当該元素の原子量と表に記した値との差が示された不確かさをかなりの程度こえるような元素。Y. 同位体組成が不注意あるいは不明な原因で変化し、そのため、市販品中におけるAr が表記の値とかなり異なることがありうる元素。 S. Ar が最長半減期の放射性同位体の値である元素。

この原子量表は、1979年9月のIUPAC原子量委員会資料にもとづき、日本化学会原子量小委員会が、 従来の形式にならって作成したものである。

②日本化学会 原子量小委員会・化合物命名小委員会

	Г		~~~~~~~	·				
	0	2He 4.00260	10Ne 20.179	18Ar 39.948	36Kr 83.80	54 Xe 131.29	86Rn (222)	
一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一					28Ni 58.69	45Rd 106.42	78Pt 195.08	
1.0079	VIII				27Co 58.9332	45Rh 102.9055	77IT 192.22	
原子番号					25Fe 55.847	10.107	760s 190.2	
	IIA		9F 18.998403	1,7CL 35,453	25Mn 54.9380 35Br 79.904	43Tc (98) 53L 126.9045	75Re 186.207 85At (210)	
	VI		15.9994	16S 32.06	24Cr 51.996 34Se 78.96	42Mo 95.94 52Te 127.60	7 t W 183.85 8 t Po (209)	(92U) 238.0289
2 周 知 年	Λ		7N 14.0067	30.97376	23V 50.9415 33AS 74.9216	41Nb 92.9064 51Sb 121.75	73Ta 180.9479 208.9804	(91Pa)(P
光	ΛĪ		12.011	1 Si 28.0855	22Ti 47.88 32Ge 72.59	402r 91.22 50Sn 118.69	178.49 207.2	232.0381
	III		sB 10.81	13AI 26.98154	21.Sc 44.9559 31.Ga 69.72	39 Y 88.9059 114.82	57~71 81T1 204.383	7クチノイド 89~103
	H		_ц Ве 9.01218	12Mg 24.305	20Ca 40.08 30Zn 65.38	38Sr 87.62 h.8Cd 112.41	seBa 137.33 80Hg 200.59	88Ra 226.0254
	Ţ	1, 1,0079	3Li 6.941	11Na 22.98977	19K 39.0983 29Cu 63.546	.37Rb 85.4678 47Ag 107.868	ssCs 132.9054 79Au 196.9665	87Fr (223)
	紫	т	2	ო	4	Ŋ	9) /

62 Sm 63 Eu 64 Gd 65 Tb 66 Dy 67 Ho 88 Er 150.36 151.96 157.25 158.9254 162.50 164.9304 167.26 sece serr 60Nd 61Pm 140.12 140.9077 144.24 (145) 70Yb 71Lu 173.04 174.967 69 Tm 168.9342 227.0278 102 No (259) 57La 138.9055 ランタノイド

100Fm 101Md (257) (258)

98Cf 99Es (251) (252)

97Bk (247)

э 6 Ст (247)

95Am (243)

soTh 91Pa 92U 93NP 94Pu 232.0381 231.0359 238.0289 237.0482 (244) 103Lr (260)

(棚) 試作品の電気特性および使用原料の試験成績書

SPRAY DRIED PELLETING POWDER

- 1. BT-203 B Lot No. 1A111
- 2. BT-303 B Lot No. 9L121
- 3. NPO B Lot No. 9B118
- 4. N-750 B Lot No. 9C144

THE RESULTS OF INSPECTION

Spray Dried Pelleting Poweder Material

Grade BT-203 Lot No. 1A111 (B)

1. Physical Characteristics 2. Shrinkage Pelleting Density Relationship

1) Sieve Analysis % Finer than Mesh

140 82.4 (%)

200 33.6 (%)

250 22.4 (%)

325 10.3 (%)

- 2) Bulk Density 1.33 (g/ml)
- 3) Angle of Repose 33°30'
- 4) Moisture 0.16 (%)

20 Line) (Solid 18 (%) .14 Pelleted Density (g/cc)

3. Ceramic Characteristics

1) Forming Condition

Diameter ϕ 15 (mm)

Thickness (at 20 ton) t_1 0.42 (nm)

2) Firing Condition

Firing Temp

 1370×2.5

Size of Fired Body \$\phi\$ 12.36 (mm)

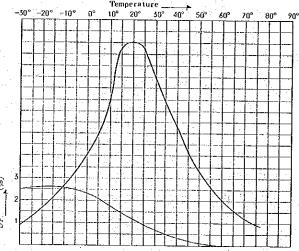
 t_2 0.36 (mm) $_{-30^{\circ}-20^{\circ}}$

4. Electric Characteristics

Electrode Diameter ϕ 10.58 (mm)

Capacitance 35600 (pf).

K (at 20°C) 16500


DF 1.3

IR $2 \times 10^4 (M\Omega)$

TC (20°C STD) -25°C 78.0 (%)

85°C 83.7 (%)

See the right figure.

THE RESULTS OF INSPECTION

Material Spray Dried Pelleting Powder

Gra<u>de</u> 303 (B)

Lot No. 9L121

1. Physical Characteristics 2. Shrinkage Pelleting Density Relationship

1) Sieve Analysis % Finer than Mesh

140 84.7 (%)

30.8 (%) 200

250 21.3 (%)

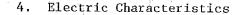
325 7.9 (%)

- 2) Bulk Desnity 1.23 (g/ml)
- 3) Angle of Repose 33°20'
- 4) Moisture 0.18 (%)

3. Ceramic Characteristics

1) Forming Condition

Diameter ϕ 15 (mm)


Thickness (at 20 ton) t_1 0.57 (mm)

2) Firing Condition

Firing Temp $1310(^{\circ}C) \times 2.0(hr)$

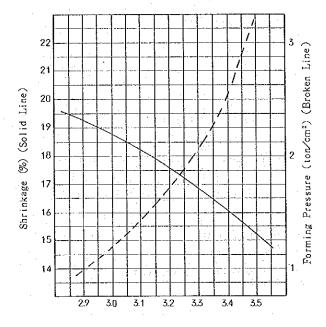
Size of Fired Body ϕ 12.45 (mm)

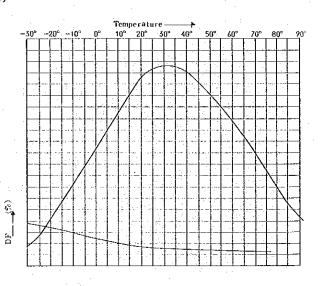
 $t_2 = 0.51 \text{ (mm)}$

Electrode Diameter ϕ 10.45 (mm)

15500 (pf) Capacitance

K (at 20°C). 10400


DF 0.8


 $2 \times 10^4 (M)$

TC (20°C STD) -30°C -71.6 (%)

85°C -52.3 (%)

See the right figure.

TEST REPORT

THE RESULTS OF INSPECTION

Material

Spray Dried Pelleting Powder

Grade

NP-0 (B)

Lot No.

9B118

Electrical Characteristics

See attached sheet

Physical Characteristics

1) Sieve Analysis % Finer than Mesh

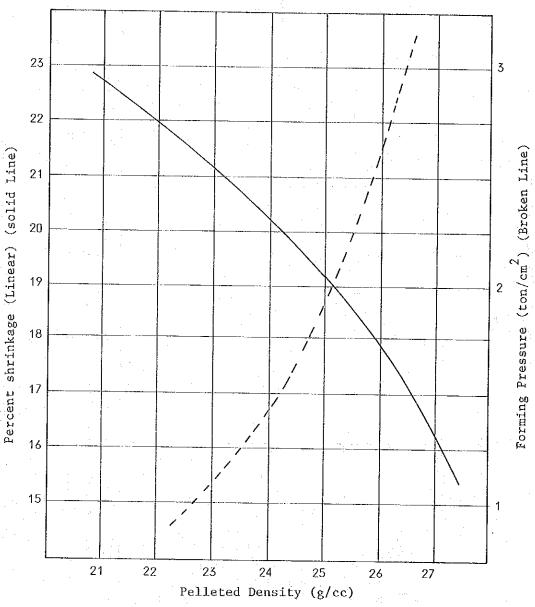
140 92.3 % 200 30.5 % 250 21.5 % 325 9.7 %

2) Bulk Density (umtamped)

1.02 g/m1

3) Angle of REpose

30°201


4) Moisture

0.15 %

5) Shrinkage by Compression

See attached sheet

MEASURED REBULT SHEET
Spry Dried Pelleting Powder
NP-O(B) Lot No.9B118

SHRINKAGE PELLETING DENSITY RELATIONSHIP

Grade NP-0 (B)

Lot No.

9B118 (2t)

1. Powder Characteristics

	Moisture Content	%	
	Loss on Ignition	6%	
	Residue on Sieve 325 Mesh	%	
	Average Particle Size	ī	
	Bulk (m2/100g))g)	
•	Water Absorption (m%/100g)	(g)	
	Compressed Density (g/cm ³)	n³)	

3. Temperature Characteristics

csb(%)

2. Forming Condition

:			
		φο το	
kg/cm ³	50	TITIII.	g/cm³
Forming Pressure	Weight of Formed Body	Size of Formed Body	Density of Formed Body

Ceramic Characteristics

		20°C -30°C ν85°C ν20°C		67-		
				-32		
Curie	roint (oc)	(DW)				•••
0°c)	I.R.	(GW)		107	: :	
ics(2		0	٠.,	38 11600 107		
erist		Ж		38	·	
Charact	Cap.	(PF)		63.11		
Electric (Dlectrode Cap.	Diameter (PF) (фmm)		10.22 63.11		
Density of Electric Characteristics(20°C) Curie	-\$\phi_s \ 100(%) Fired Body	(g/cm³)		4.49		-
Shrinkage	φ ₀ -φ _s ×100(%)	æ	1.235	19.00		
	Fired Body ϕ_0	ts (mm)		0.44	-	
Size of	Fired	φ _S (mm) t _S (mm) φ		12.15		
	Riving Condition		1140 °C	2.0 hr 12.15 0.44	O.	hr
:	[<u>+</u>	1			,	1

TEST REPORT

The Results of Inspection

Material

Spray Dried Pelleting Power

Grade

N-750 (B)

Lot No.

9C144

Electrical Characteristics

See Attached Sheet

Physical Characteristics

1)	Sieve Analysis	% Finer than Mesh
	140	93.5%
	200	32.4%
	250	25.3%
	325	11.6%
2)	Bulk Density (ur	ntamped) 0.97 g/ml
3)	Angle of Repose	33°00'
4)	Moisture	0.20 %


5) Shrinkage by Compression

See Attached Sheet

MEASURED REBULT SHEET

Spry Dried Pelleting Powder

N-750(B) Lot No.9C144

SHRINKAGE PELLETING DENSTTY RELATIONSHIP

	1	
-		
• • •		
		4
	· `:	Secretary and the second secon
HART	•	5
TION CHA	•	1
- ≰	•	8
PECIFIC	DATE	c
ωj		
	ି ଜି	
	,4 (2t	
	7106	
	ot No.	
	Lot o	
	}I	
•)(B)	
	N-750(B)	٠.
	ADE	
	ADE	

3. Temperature Characteristics	24	%	8	n n				_30101	
Powder Characteristics	Moisture Content	Loss on Ignition	Residue on Sieve 325 Mesh	Average Particle size	Bulk (m2/100g)	Water Absorption (m%/100g)	Compressed Density (g/cm ³		

Bulk (m%/100g	()	(%) Company of the Co
Water Absorption (m $\ell/100g$)		
Compressed Density (g/cm ³		
		_301010118
		(%)
Forming Condition		csb
Forming Pressure kg/cm ³		
Weight of Formed Body 8		
Size of Formed Body mm	φο το	
Density of Formed Body g/cm3		

ſ	ပ္ပ		7
	-30°	93	-94
	T.C 20°C ~80°C	-777 -937	-782 -947
	Curie T.C. Point 20°C -30°C (°C) ~80°C ~20°C		
	(MC)	2.5 ×10 ⁵	2.5 ×10 ⁵
	0 (20	3200	3300
	tics K	91	93
	Cap. K	135.91 91 3200 ×10 ⁵	135.86 93 3300 ×10 ⁵
	Cha)	9.94	9.86
	Density of Electric Fired Body Electrode (g/cm³) Diameter \$\phi\$	4.13	
	Shrinkage \$\phi_0-\phi_s^\times100(%)\$ \$\phi_0\$	1,240	
	dy S (mm)	0.46	0.46
TRITER	Size of Size of Fired Body ϕ_{o} ϕ_{o}	12.10 0.46	
4. Ceramic Characteristics	Firing Condition	°C hr	° c تاط
Ceramic	Firing C	1270 °C 2.0 hr	2. 1240 °C 2.0 hr
4.	L		

1 BT-203B LOT NO 1A111

- 1-1 FIRING TEMPERATURE V.S GRAIN SIZE
- 1-2 DIELECTRIC CONSTANT
- 1-3 DIELECTRIC CONSTANT V.S DENSITY OF FIRED BODY
- 1-4 CURIE POINT V.S FIRING TEMPERATURE
- 1-5 IR V.S FIRING TEMPERATURE

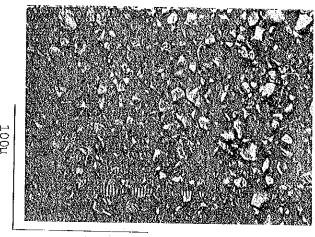
2 BT-303B LOT NO 9L121

2-1 FIRING TEMPERATURE V.S GRAIN SIZE

3 NPOB LOT NO 9B118

3-1 FIRING TEMPERATURE V.S GRAIN SIZE

4 N-750B LOT NO 9C144

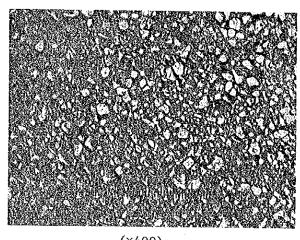

4-1 FIRING TEMPERATURE V.S GRAIN SIZE

FIRING TEMPERATURE VS. GRAIN SIZE

1. FIRING TEMP: 1360°C

K at 20°C : 15900

DF (%) : 1.5

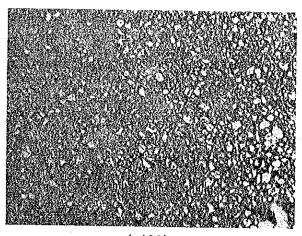


100µ (×400)

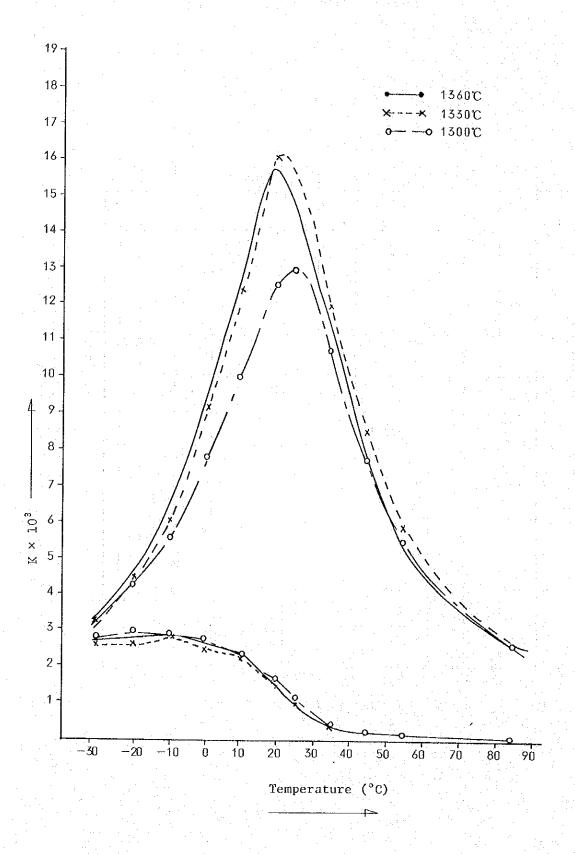
2. FIRING TEMP.: 1330°C

K at 20°C : 16200

DF (%) : 1.5

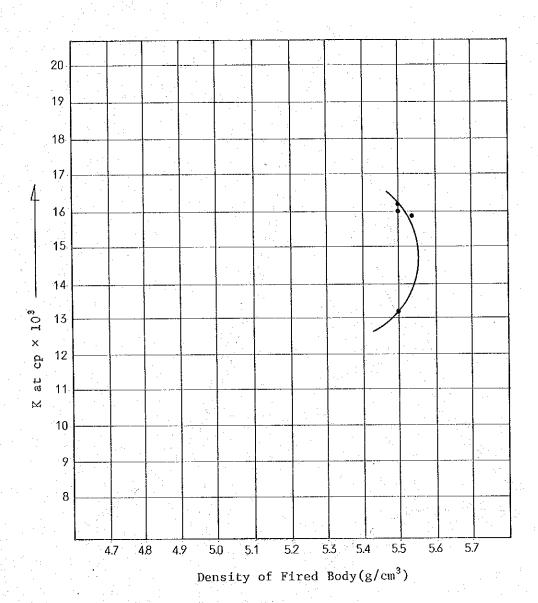


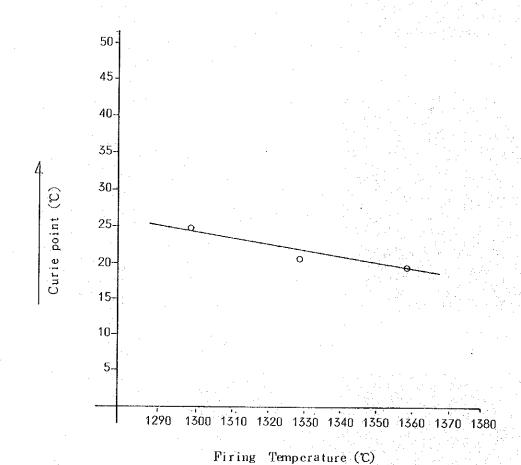
(×400)

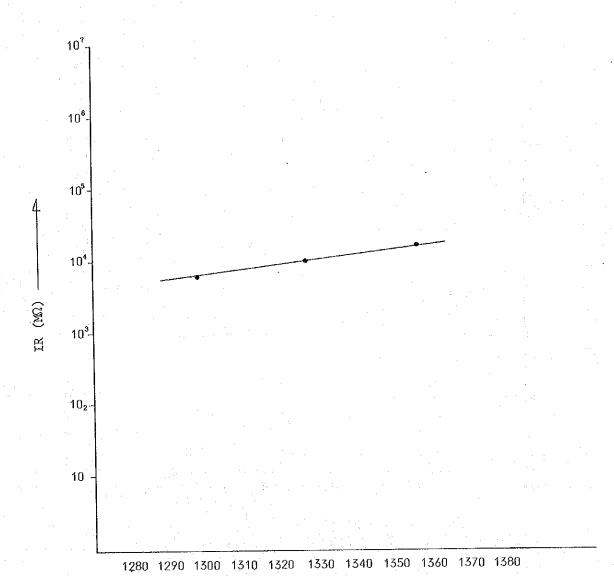

3. FIRING TEMP.: 1300°C

K at 20°C : 12600

DF (%) : 1.7




(×400)

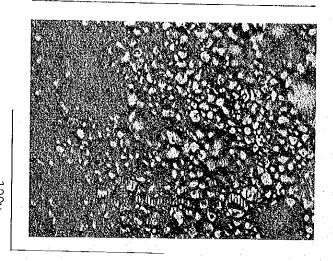


DIELECTRIC CONSTANT VS

DENSITY OF FIRED BODY

Firing Temperature (C)

BT-303B LOT NO 9121
FIRING TEMPERATURE V.S GRAIN SIZE
(×400)

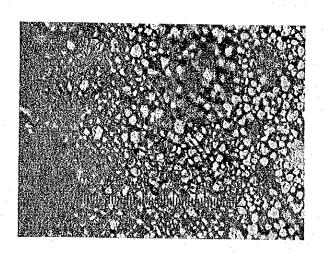

Firing.TEMP: 1310°C

K

: 10810

DF

: 0.9

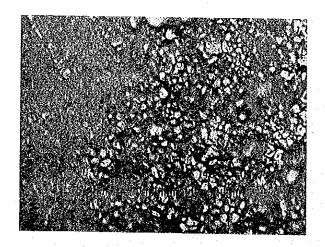

FIRING.TEMP: 1280°C

K

: 10700

 \mathbf{DF}

: 0.9


FIRING.TEMP: 1250°C

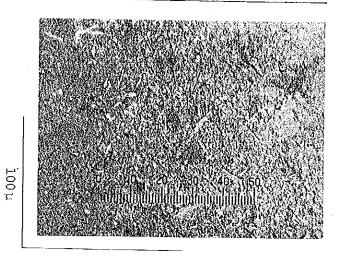
K

: 10780

DF

: 0.9

.

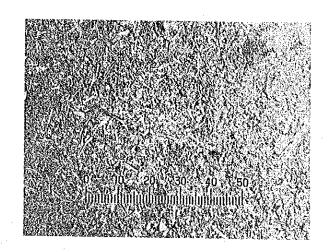

$\ensuremath{\mathsf{NPO_B}}$ LOT 9B118 FIRING TEMPERATURE V.S. GRAIN SIZE ($\times 400$)

FIRING.TEMP.: 1220°C

K : 39

? : 19200

TC 85°C (ppm/°C): -32

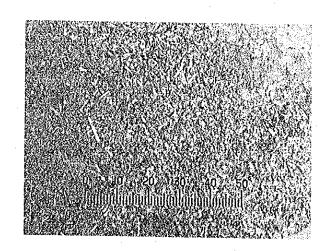


FIRING TEMP: 1190°C

K : 39

Q : 20000

TC 85 (ppm/°C): -44



FIRING TEMP.: 1160 °C

К : -

Q :

TC : -

N750_B LOT 9C144

FIRING. TEMPERATURE VS.

GRAIN SIZE

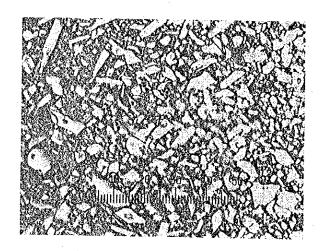
(×400)

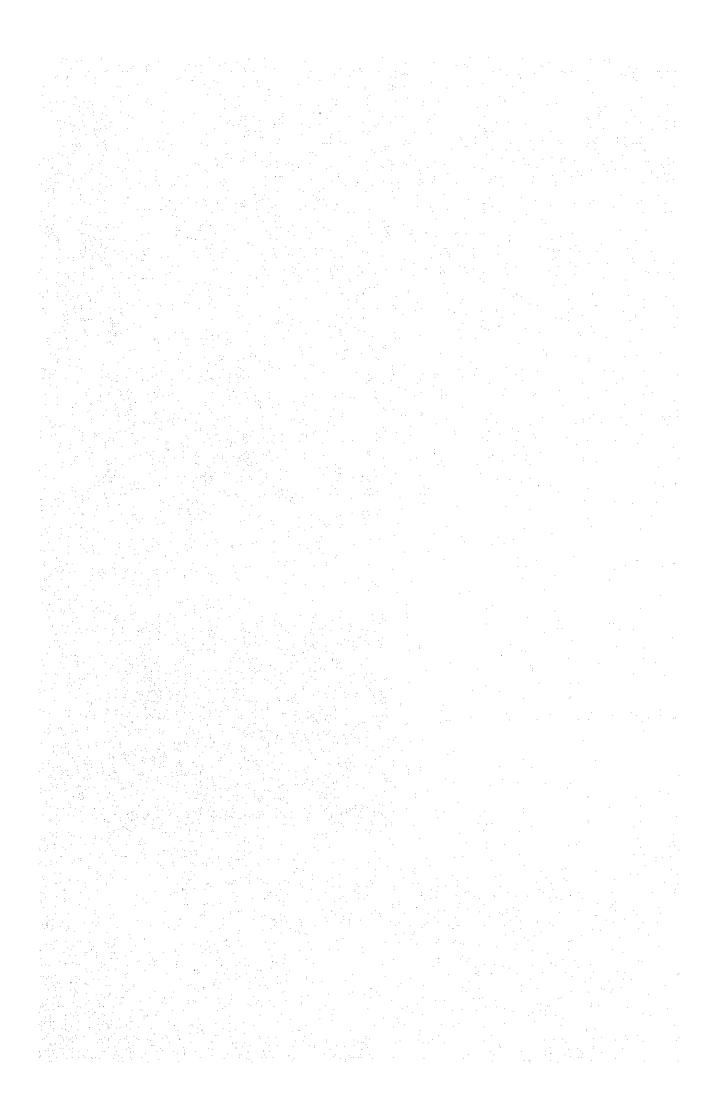
FIRING.TEMP: 1270°C

K : 96

Q : 3080

TC 85°C (ppm/°C): -757


100μ


FIRING TEMP: 1250°C

K : 96

Q : 3120

TC 85°C(ppm/°C): -763

-82.9 -82.7 -78.7 。 80 8 Temp. (°C) -79.8 ~20°C -78.7 -73.9 50° . 60° Point Curie (၁) 25 20 22 400 (CW) 103 33400 15900 1.5 10* 34200 16200 1.5 104 × 30° Electric Characteristics (20°C) tanô (%) 27200 12600 1.7 10° 20° 3. Temperature Characteristics 2 (%) Cop Cap. ္ပ • <u>[</u>] -30° -20° -10° SPECIFICATION CHART 10. Electrode Diameter 10.72 10.85 10.75 DATE 56. 3. (%) & nsT V 'n) Density of Fired Body (g/cm³) 5.54 Shrinkage φ<u>φ</u>φ×1.00 (%) 1.210 φ ပ္ **5**~2 9.6 (g/cm³)(mg/100g) (m%/100g) kg/cm3 g/cm3 Lot No. 1A111 00 φs(mm)ts(mm) Firing Condition Fired Body 12.40 0.38 12.40 0.38 12.41^{5} 0.38 Residue on Sieve 325 Mesh Ceramic Characteristics 1. Powder Characteristics Density of Formed Body Average Particle Size Weight of Formed Body Size of Formed Body Forming Condition Compressed Density Moisture Content Loss on Ignition Water Absorption Forming Pressure BT-203B hr hr ပ္ hr ပ 1360 1300 1330 Bulk GRADE m

 $Temp(\mathbb{C})$ 30° ₩ (%) 20° Temperature Characteristics SPECIFICATION CHARI -20° -10° DATE 56. 3 . 10. (g/cm³) % % ۶,6 (m%/100g) (m%/100g) Lot No. 9L121 Residue on Sieve 325 Mesh 1. Powder Characteristics Water Absorption Average Particle Size Compressed Density Moisture Content Loss on Ignition GRADE BT-303B Bulk

doo)	0.2		Electric Characteristics $(20^{\circ}C)$ Lectrode ϕ Cap. K tan δ I.R. Lameter (mm) (pF)	3× 15700 10810 0.9 10 ⁴	15700 10700 0.9 10 ⁴	15600 10780 0.9 10*
			Electric Ch. Electrode ϕ Diameter (m	10.63	10.69	10.82
<u>ю</u> 0	· · · · · · · · · · · · · · · · · · ·		Density of Fired Body (g/cm ³)	5.08	in the second se	
80	φ ₀ ττ ₀		Shrinkage \$\phi -\phi \times 100(%)\$	1.199		
n kg/cm³ Body g	dy mm Body g/cm ³	ristics	Size of Fired Body	12.51 0.50	12.51 0.50	12.57 0.50
Forming Pressure Weight of Formed B	Size of Formed Bo. Density of Formed	. Ceramic Characteristics	Firing Condition	1310 °C 2.5 hr	2 1280 °C 2.5 hr	3 1250 °C 2.5 hr

-25°C 20°C ~20°C ~85°C

Curie Point (°C) -69.6 | -52.9

32

9.69-

35

-72.2 -52.1

35

2. Forming Condition

SPECIFICATION CHART

DATE 56. 3.10.

DATE									
GRADE MPOB Lot No. 9B118	1. rowder characteristics	Moisture Content %	Loss on Ignition %	Residue on Sieve 325 Mesh %	Average Particle Size	Bulk (m2/100g)	Water Absorption (m%/100g)	Compressed Density (g/cm ³)	

3. Temperature Characteristics

\sim				·····						
ō.			1 :		1	1			1	1
		1	1						j '	
0	1 / .	1	l		1				i .	
0	1.00	1 1 1 1 1						- 0		100
80°										
	1 /		1 1		25.00		ļ	l	l* -	
			1	1				1		
0	- 41	1	100		1 1			}		1
.0		L	L			i	İ			
700		1								
	1.0	1		1		į	ł.	1.0	S	
1.	100	1	l '				l			
0	1000	100						5.4.4		
Φ.					L	<u>L</u>	1000	3.5		l
و00										
		1.1	1 .			1.1			1	1 11
	4	1.0		i ·					1	l .
Q.		1.				l .	l "		}	
\sim							11. 1		1	3.5
50°		1.				10.0			-	
		11.	,	`					1	
2.0	٠.		3-			1				
2	Acres 6	100	"							
	A .		9	<u> </u>				i	1.54	1 1 1
40°		1.00	1. 8	B						
· . • .			1 6	5		-				
		100000	l - 22 - 154	4	4.4	75.00	7 8 7		. 1	
0	1 S			1.0			1.0		1::*	
.0							1.1	1.44		1 1
30°	A The Control		1000	1.0						
	4. 14.1		1					· .		
			1 1		l i					
. 0_			1							. 5
0	1.00		1	"						
20°		C	b u	5	14		-	2111		
2	8 1 E	Ç	р и	>	Le) 0		2.0		
	8 A F	Ç) u) ·	LC	ر -10				
	8 (1.41) 1-47	Ç) u)	LC	ر –10				
		Ç) u)		-1(
		Ş) U	>		-1(
10° 2		Ç) <u>u</u>)		-1(
10°) L)	(%)	-1(
10°) L)		-1(
10°						-1(
)		-1(# 1
10°						-1(
0, 10,						-1(# 2
0, 10,						-1(
0, 10,						-1(
0, 10,			9 . U			-1(
0, 10,						-1(# 12 m
0, 10,			9			-1(
0, 10,			9			-1(
0, 10,						-1(
0, 10,						-1(
-20° -10° 0° 10°						-1(
-20° -10° 0° 10°						-1(
-20° -10° 0° 10°						-1(
-20° -10° 0° 10°						-1(
-20° -10° 0° 10°						-1(
0, 10,						-1(
-20° -10° 0° 10°						-1(
-20° -10° 0° 10°						-1(
-20° -10° 0° 10°						-1(
-20° -10° 0° 10°						-1(
-20° -10° 0° 10°						-1(

Forming Condition

Weight of Formed Body	kg/cm³ 8 600
Size of formed Body Density of Formed Body	mm t _o

:		20°C ∿85°C	-33 -32	77-	
	T.C.	~25°C ~20°C	-33	-30	
	Curie	Point -25°C 20°C (°C) ~20°C	1		
	(0,	2).		701	
	cs (20°	O	72.83 39 19200 10	74.47 39 20000 10 ⁷	
	isti	м	39	39	
	racter	Cap. (pF)	72.83	74.47	
	Shrinkage Density of Electric Characteristics (20°C)	0(%) Fired Body Electrode ϕ Cap. (g/cm ³) Diameter (mm) (pF)	10.42	10.44	
	Density of	Fired Body [(g/cm ³)	4.28		
	Shrinkage	$\frac{\phi_{o}-\phi_{s}\times100(\%)}{\phi_{o}}$	1.222		
STTCS	Size of	Î	12.27 0.40	12.15 0.40	
4. OEL GIIAL ACCEL ISCICS	S12	Firing Condition Fired Body \$\phi \text{s(mm)} \text{ts(n}\$	220 °C 2.0 hr 12.	1190 °C 2.0 hr 12.	°C hr
מבי שווד		Firing	122	119	
ا ;			<u> </u>	7	m

SPECIFICATION CHART

DATE 56 . 3 . 10.	3. Temperature Characteristics	-30° -20° -10° 0° 10° 20° 30							
GRADE N-750 Lot No. 90144	1. Powder Characteristics	Moisture Content	Loss on Ignition %	Residue on Sieve 325 Mesh %	Average Particle Size	Bulk (m 2/100g)	Water Absorption (m 2/100g)	Compressed Density (g/cm ³)	このは、1000年の1000年の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の

g							· · · · · ·			
. 1										Tu brief
88										
70°					- //					
7										
60°									5.	
3.50								*		
50°				$\overline{\Omega}$				- <u>1 , 7</u>		
400))d						
				temp(C)						
30°								7	. 1	
20°		C) · · · · · · · · · · · · · · · · · · ·	<u> </u>	1					-3
0		•			1	-10				
7		1.1		1		(%	csp (e			
6								- 22		
20°10° 0°										
Ţ							-:			
20							1.5			
. 1	11.	1 1		1/I			1			-
	٠.			140°			1	i		
	٠.			Ц_			<u> </u>			<u> </u>
-30°	٠.			И_	1					

. Forming Condition		
Forming Pressure	kg/cm ³	
Weight of Formed Body	60	
		ф
Size of Formed Body		to
Density of Formed Body	g/cm³	

Ceramic Characteristics	ristics	- 1									
			10.1.2.2	40 124 2000	TO Comme of the	orantorio	4100	(Jours	Cirrie	T.	
	Size of		SULTINKARGE	Deliate you	ביום חדום	コーロトトローナロ	1)		
Piring Condition	Fired Body		φο-φ×100(%)	Fired Body	Electrode ϕ	Cap.	- 2	I.R.	Point	–25°C	20°C
	φs(mm) ts(mm)		00	(g/cm ³)	$\phi_{\rm O}$ (g/cm ³) Diameter (mm) (pF) $^{\circ}$ (MO) (°C) $^{\circ}$ C0 $^{\circ}$ C $^{\circ}$ C	(pF)	4	(SW)	(၁)	∿20°C	∿85°C
1270 °C			1.233			l L		2× 105		990	757
.0 hr	12.17 0.475	0.475	18.87	3,95	10.51	155.17 96 3080 10	ည် တ (၁)	ΩT	1	000	<u>,</u>
1250 °C						1 / X X		5. 2×			163
hr	12.18 0.475	0.475		. i	10.52	154.90	96 32	07 00	ŕ	706-	C0/-
0		1									
: ر •										•	
'n											

ო