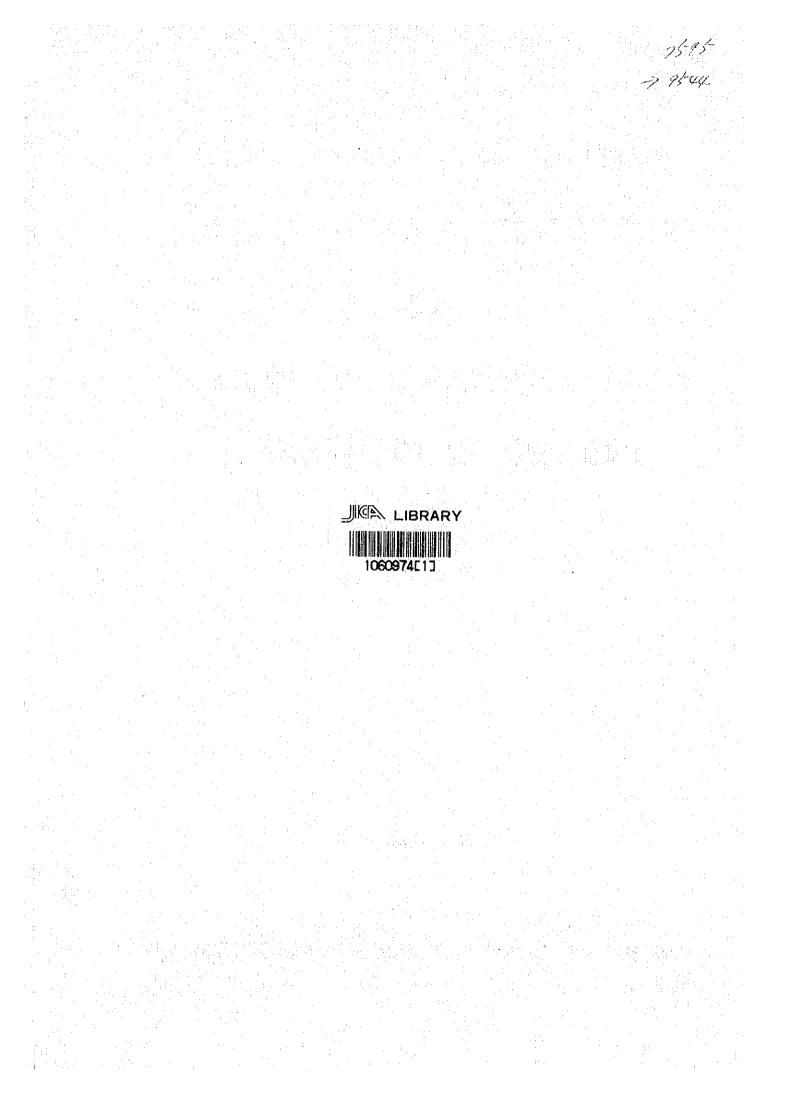
No. 10

ISLAMIC REPUBLIC OF PAKISTAN

SUBSOIL INVESTIGATION REPORT

ÔN


THE CONSTRUCTION PROJECT OF

A MINI-PORT IN GWADAR

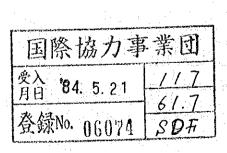
MARCH, 1980

JAPAN INTERNATIONAL COOPERATION AGENCY

ISLAMIC REPUBLIC OF PAKISTAN

landa basa se dela Paris Bertana da

SUBSOIL INVESTIGATION REPORT


ON

THE CONSTRUCTION PROJECT OF A MINI-PORT IN GWADAR

MARCH, 1980

JAPAN INTERNATIONAL COOPERATION AGENCY

INTRODUCTION

This report details the content and findings of the soil investigation done for the "STUDY REPORT ON THE CONSTRUCTION PROJECT OF A MINI-PORT IN GWADAR".

Kisojiban Consultants Co., Ltd. performed the soil investigation during Phase II of the Gwadar Mini-Port Construction Project Study from August 24 to December 2, 1979.

Subsoil investigations were performed in the East Bay twice in the past.

- 1) 11 drilling holes were made by Messrs. Boremaster Ltd. under the supervision of NESPAC from November, 1974 to April, 1975.
- 8 drilling holes were dug by Messrs. Incorporated Consulting Engineers, in association with Sir William Halcrow and Partners, in 1976.

The former included a considerable number of standard Penetration tests, sampling and laboratory tests.

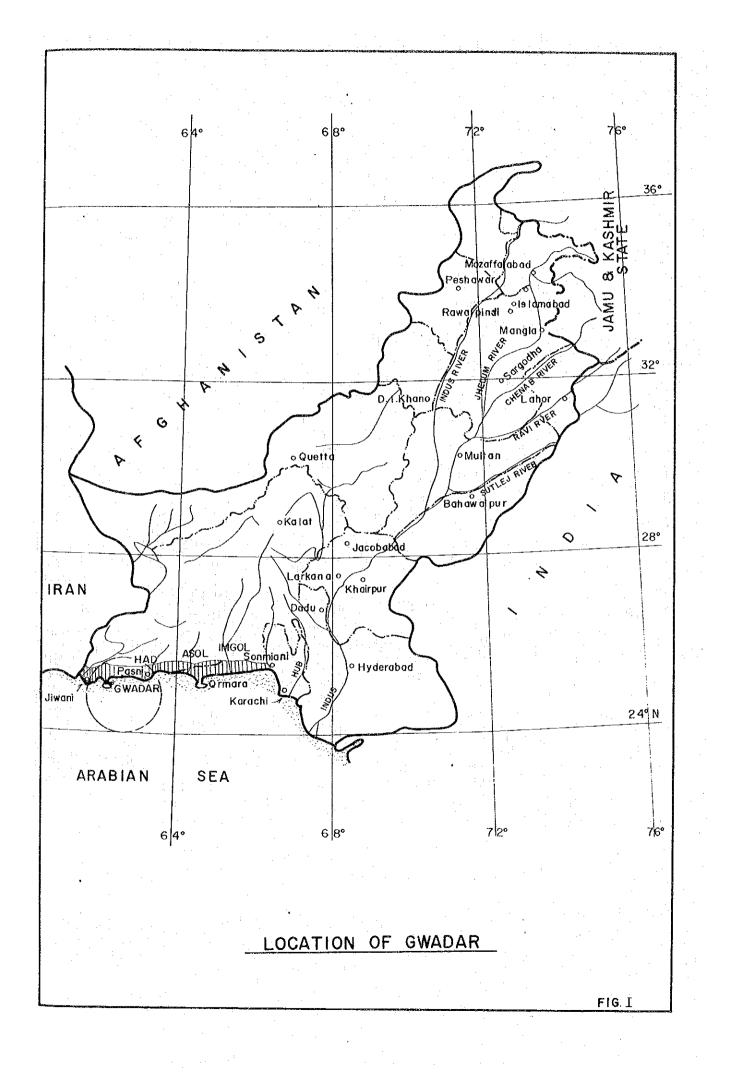
The results are very useful to understand the general engineering properties of the soil at Gwadar.

However, as no detailed description of the drilling and sampling methods was provided, and as the drilling locations were along the fieadland, approximately 1.2 Km south of the Proposed Mini-Port, it is difficult to apply the results directly to engineering study.

The latter investigation covered only soil classification, so that it can hardly be indicative of the soil strength.

This report presents the results of soil studies undertaken as a part of the study of the Gwadar Mini-Port.

The proposed major structures are landing facilities, groin, revetment, channel and basin.


Primary purposes of these investigations were:

1. To explore the subsurface ground conditions at the site.

 To compile the engineering properties of the soil for the study.

The standard used for this investigation was the Japanese Industrial Standard (JIS).

The location of Gwadar is shown on the map on the following page.

TABLE OF CONTENTS

Page

INTRODUCTION	N		
SECTION I		OUTLINE OF WORKS PERFORMED	, 1
SECTION II		FIELD INVESTIGATION	. 3
	a)	Exploratory Drilling	·. · · 3
· ·	b)	Sampling and Standard	•
	÷	Penetration Tests	3
SECTION III		LABORATORY SOIL TESTS	18
SECTION IV	i en	SUBSOIL CONDITIONS AT THE PRO-	. *
		POSED SITE	41
	a)	Geological Outline	41
	b)	Geological Structure	42
	c)	Subsoil Conditions at the	
	a de la della	Proposed Site	42

I

LIST OF ILLUSTRATIONS

Figures	$3^{(1)}$		Page	<u>e</u>
I	Location of Gwadar			
II	Location of Drilling Holes	÷	4	
III-1	to 10 Drilling Log	- 6	to	15
iv-1 t	co 2 Soil Profile	16	to	17
V	Engineering Properties of Soil vs. Depth		31	
VI	Grading Texture vs. Depth	. *	35	
VII	Cohesion vs. Depth	-	37	
VIII	Preconsolidation Pressure and			
	Compression Index vs. Depth		39	
IX	Void Ratio vs. Pressure		40	
		· .		

Tables

I Investigation Works Performed		2
II-1 to 12 Summary of Soil Tests	:.	
Performed in Singapore	19	to 27
Performed in Gwadar, Pakistan	28	to 30
III Natural Water Contents and Atterberg Limits	5	32
IV Summary of Soil Conditions		47

II

Appendices

Paye

Α.	Grain Size Distribution	A - 1 to 23
Β.	Atterberg Limits Determination	B - 1 to 18
c.	Unconfined Compression Tests (Stress-Strain Curves)	
	Performed in Singapore	C - 1 to 12
	Performed in Gwadar, Pakistan	C - 13to 47
D.	Unconsolidated-Undrained Triaxial Compression Tests (Stress-Strain Curves)	D - 1 to 30
Ε.	Unconsolidated-Undrained Triaxial Compression Tests (Mohr's Circle)	E - 1 to 30
·F .	Consolidation Tests (e-log p curves)	F - 1 to 26
G.	Consolidation Tests (log \bar{p} - c_V , m_V , k curves)	G - 1 to 26

SECTION I

OUTLINE OF WORKS PERFORMED

The field investigation was started on 6th September, 1979 and completed on 10th November, 1979. This soil investigation consisted of:

- Exploratory drilling with Standard Penetration Tests and undisturbed sampling.
- Laboratory soil tests on soil samples obtained from the site.

Eighty percent of the unconfined compression tests were conducted at the Gwadar temporary laboratory to avoid any disturbance of the samples due to transportation.

The tests of natural water content and of unit weight were also carried out at the laboratory. Triaxial compression tests, consolidation tests, remaining unconfined compression tests and other physical properties tests were performed in the laboratory of KISO-JIBAN CONSULTANTS CO., LTD. in Singapore.

Elevations referred to in this report were based on the datum obtained by the survey works performed in association with the study.

Investigation works performed are listed in Table I.

INVESTIGATION WORKS PERFORMED TABLE I

	r	1		1	t · · · · · · · ·	<u> </u>	1		1	Τ	1 ·····	t			.	1
		- consol i de	tion Test	e M	2	2	7	m		7	m	3	2	m	26 ^{NOS} .	
		Triaxial Compression	Test	7	m	7	7	4	2	4	m	ß	1	4	30 ^{NOS} .	
		Unconfined Compression	S'pore	, J		1	r-1	4	f1	. 1	2	.	1	4	12 47 ^{NOS} .	Liquid Limit
			Test GWD	4	m	Υ	4	r+	1	4	2	7	ধ	່ ຕ	35 4	quid
G	Tests	Grain Size Analvsis	*	Ŋ	4	3	2	- 6	2	3	4	<u>ى</u>	r-1	9	48 ^{NOS .}	Г.Г. Г.Л.
KS PERFORMED	Soil	Unit weight (S'pore	3	4	5	Э	6	2	4	4	Ŋ	5	9	41 76 ^{NOS} -	in Gwadar
N WORI	Laboratory	Unit	GWD	4	, m	'n	4	, , , , , , , , , , , , , , , , , , ,	1	Þ	7	Ľ	4	ⁱ . ε	35 76	ur
INVESTIGATION WORKS	. Lab	Atterberg	LL & PL	2	4	m	5	9	5	m	4	4	- H	Q	NOS. 37	GWD:
н		Specific	сy	ĸ	4	ĥ	N	9	7	m	4	Ś	N	e S	40 ^{NOS .}	Undisturbed Sampling
TABLE		н ал	s'pore	m	4	m	m	ø	7	4	4	Ś	5	v	5 42 77 ^{NOS} .	urbed S
enje Geo Te		Natural Water		4	'n	ю	4	н		4	5	L.	4	m	m	ndistı
• •	ß	Sampling by by	SPS DS	1	2 2	н м	۲ س	۱ و	1	4	رر ک	3	ı m	+	1 7 48 ^{NOS} .	
			tion Test S	Ø	10	26		12	10	11	13	22	18		NOS. 41 154	s) UD Sampling:
		Drilling Length	(117)	14.45	2 15.36	30.45	3' (4.85)	19.45	13.45	16.40	20.45	30.45	22.25	30.30	213.01 ^m (217.86 ^m)	(Notes)
		BORE			10	m	m	4	<u>ا</u> ب	2	4	ω	σ	PT	To- tal	

2 **...**,

SPS: by Stationary Piston Sampler 5

DS: by Dension Sampler

* •••• Grain Size Analysis with Hydrometer Test

S'pore: in Singapore PL: Plastic Limit

SECTION II

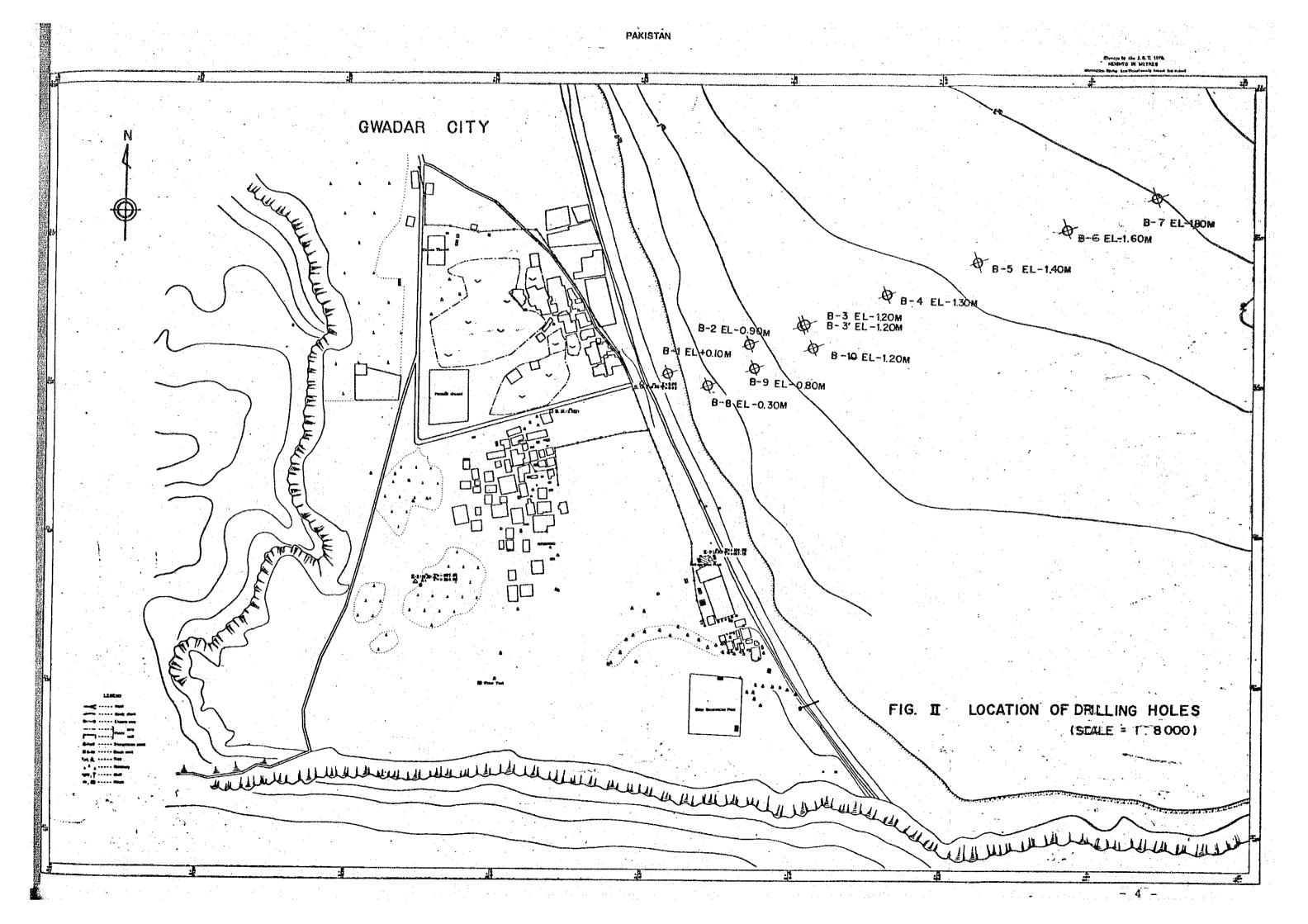
FIELD INVESTIGATION

The alignment of major structures of the proposed Miniport from the Set-Out Point(S.O.P.) is 70 degrees east of magnetic north.

The drilling holes are located along the alignment, the most distant hole from land being about 1450 m from S.O.P., as shown in Fig. II, "Location of Drilling Holes".

a) Exploratory Drilling

Eleven (11) exploratory drilling holes were performed on the fixed steel pipe stagings. One of them was for only undisturbed sampling.


All these holes were drilled by a rotary boring rig. The deepest hole was 30.45 m and the shallowest hole was 4.85 m below the surface of the seabed, and the diameter of holes was 90 mm for undisturbed sampling and 65 mm for normal drilling with Standard Penetration Tests. Location of drill holes were determined using a boat and two transits located on land with communication by means of walkie-talkies.

b)

Sampling and Standard Penetration Tests

Undisturbed samplings were performed using a stationary piston sampler or a Denison sampler. The thin-wall sampling tube of the samplers was made

- 3 -

of brass and had an inner diameter of 75 mm and a length of 1.0 m.

Many shell fragments were included in the soil at shallow depths and apt to remain on bore hole bottom. These fragments on hole bottom were flushed away before sampling in order to recover sufficient lengths of undisturbed samples.

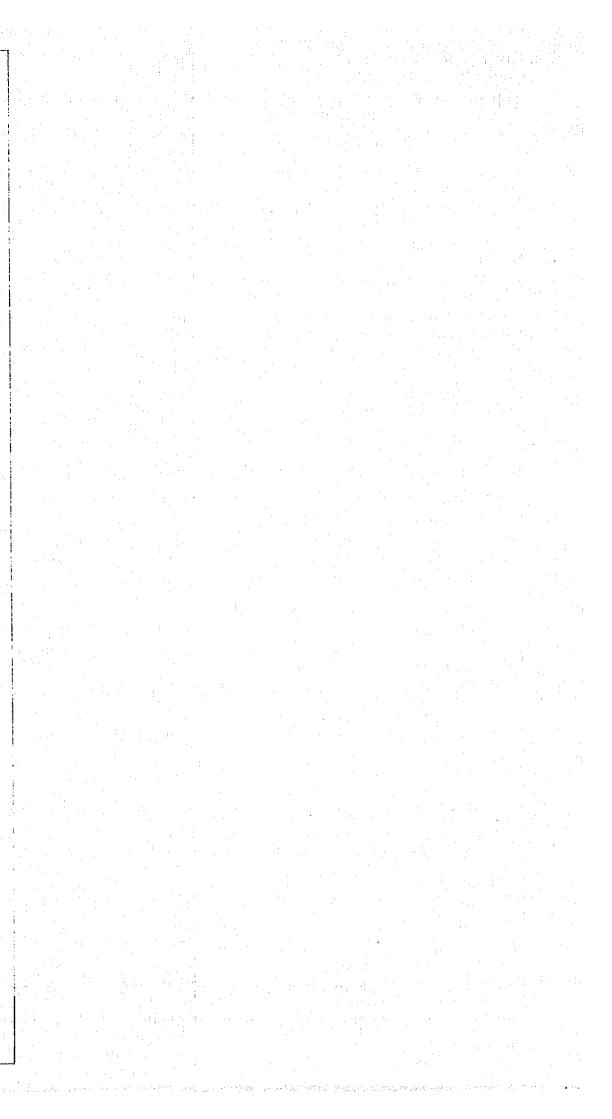
After undisturbed samples were sealed with paraffin at both ends of the thin-wall tubes, they were carefully brought to the Gwadar temporary laboratory, where the tests of natural water content and unit weight of soil, and unconfined compression tests, were performed.

The remaining undisturbed samples were re-sealed with paraffin, well-packed in thick foam rubber cushion to avoid any disturbance due to transportation, and sent to Singapore by air.

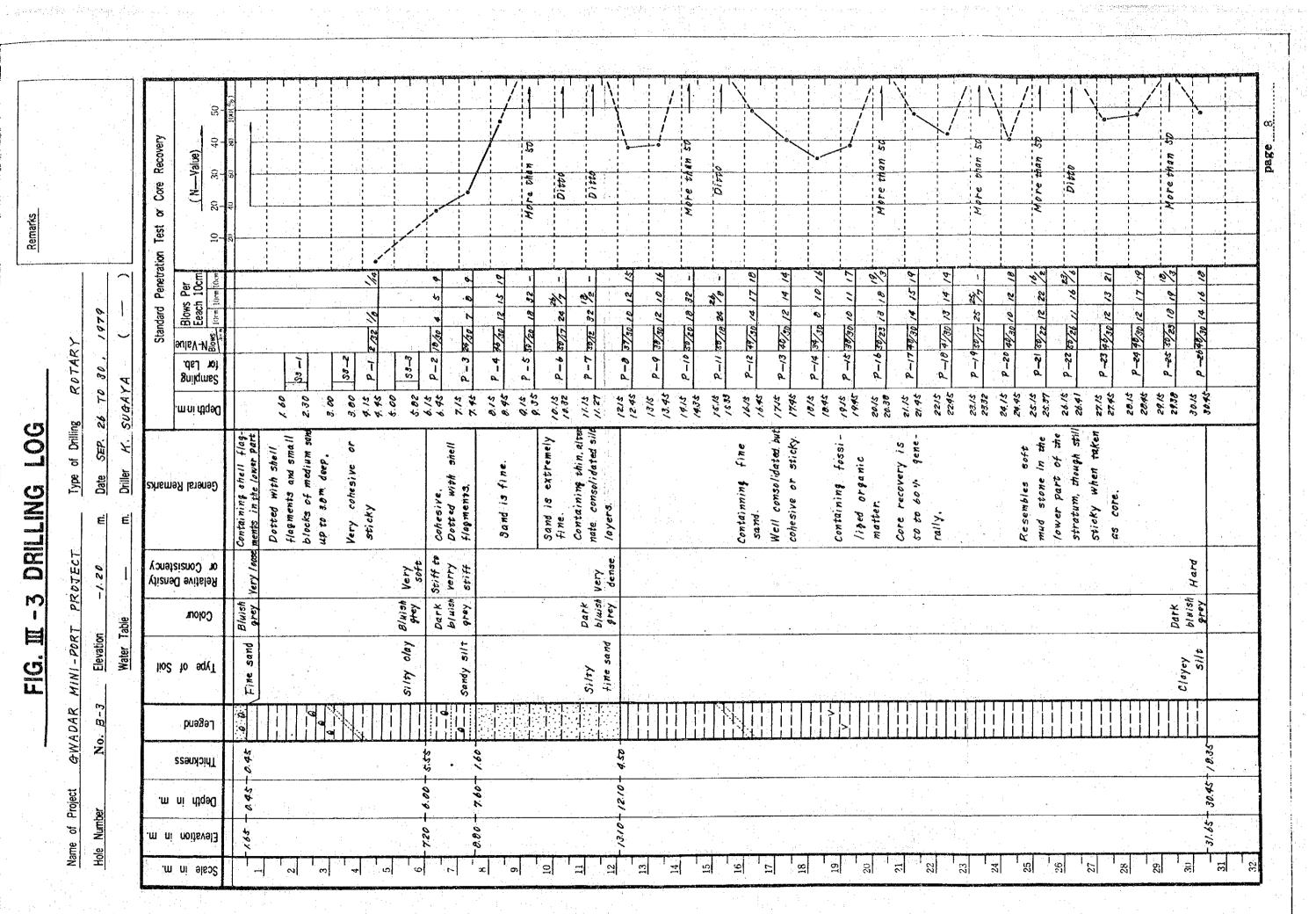
Standard Penetration Tests were conducted at 1.0-m intervals in each drilling hole except at depths where undisturbed samples were taken.

Disturbed samples taken from split tube samplers of Standard Penetration Tests were packed in plastic jars as observational samples and submitted in Gwadar to the Assistant Executive Engineer of the Gwadar Fishery Port Project. The results of drilling are summarized in Fig. III-1 to 10, Drilling Logs and shown in Fig. IV-1 to 2, Soil Profiles.

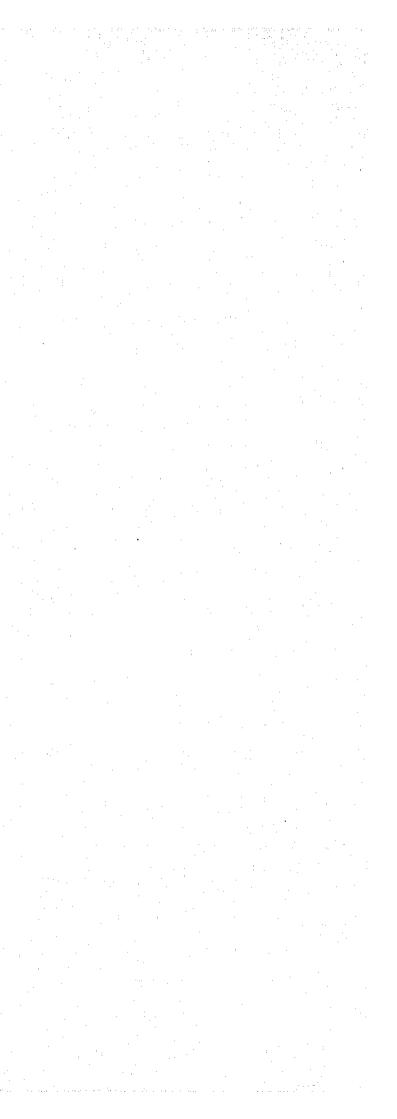
			· · · · · · · · · · · · · · · · · · ·					•																
Remarks		tion Test or Core Recovery	10 20 30 40 50																					page 6
D	of Drilling : ROTARY OCT. 30 TO 31. 1979	Standard Penetration	Depth in m. Sampling for Lab Box Value Box Value Coal 10 10 10 10 10 10 10 10 10 10 10 10 10 1			2.00	2.80 81-1 2.12	V-1 /30 //2	4.00 2 83 5/-2	5 15 P-2 30 1/0 2/ 18	8	2.17 31-3 6/ 2/ 2/ 2/	0, 2/ 00, %	┟╢╌╌	- <u>-</u>	Shell 10.15 P-5 1/30 3 4 4	1.15 P-6 12, 2 A			1315 P-0 7/30 11 13 17	14.15 p-6	14.45		
DRILLING LOG	m. Date :	s syaeu	General Rer	se Including many shells	With great quantities	of shell fragments			:	· · · · · · · · · · · · · · · · · · ·	3 and is very fine.			Including some decomposed organic	motter	With occasional 3	fragments.				Sand is homogeneous se and very fine.			
	PROJECT	Ațisu	Colour Relative De or Consist	Derkgrey V. Lorse			to Very Soft		Soft	to the		Bluish	dark dark bluistary 2005		Ditto Stiff			Dark grey Stift	· · · · · · · · · · · · · · · · · · ·	·····	Ditto Very			
FIG. III	<u>NI-PORT</u> Elevation Water			Silty sand park		L		• • • • •	Â	gilty clay g	2		4 9		S;/t D;			Sandy Silt lar			Sitty fine sond Di			
	GWADAR MI No. B-1		puə8əŋ	-0-0											L lil	 		<u> </u>					: :	
	••		Thickness	0 + 0.40-					1 a.e. 	÷ + 4	· <u> </u>			25.2 +	021 + 0	1. 1		0- 260				45-2.65		
	Name of Project Hole Number	יש יש ו	i noitsvela Depth in i	0 3 4 0 V			; • = -=		• •	£ م +	7 5 2			7.90 + 8.00	026 + 01			311 + 01		• • •		35-14		
· · ·	Name Hole		n ni əlsə2			8			- ₽		i v	ः सन्ह	- 		9	10		12		2		15.14		


kakun keneratakan kenaran dari kanan keneran kanan bahar dari dari dari keneran keneran keneran keneran keneran

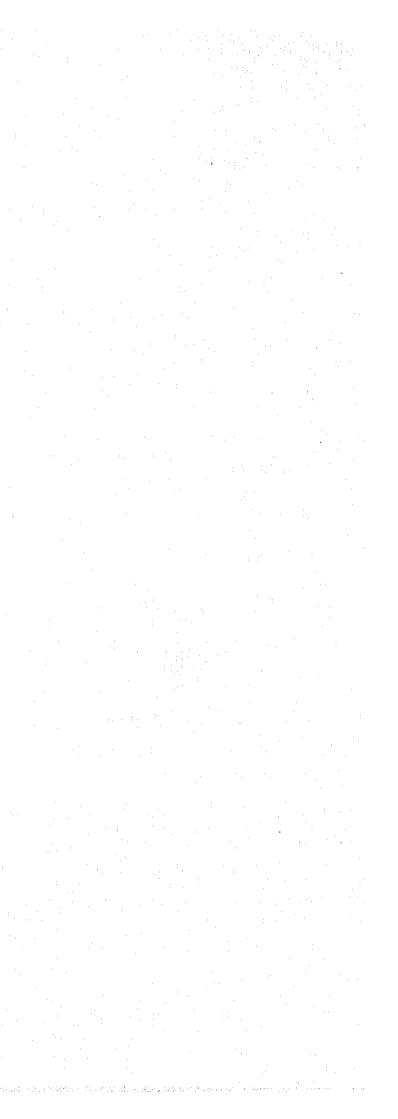
e e esta e en esta esta e (b) Some properties and a second or interaction of the second of the second second and the second s second se second s Second s Second seco


	•	:		Core Recovery	N-Value)																		D)##				page7	
Kemarks	· · .			Test or		10 20	} } }	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا	8								 			More	1 1 1 1 3 1 1 1 1 1 1 1 1 1	3/				
	1 K Y	3. 1979		Standard Penetration	N-Value Reach 10cm	Blows 10mm 10mm 10cm					2/30 /17 /13	1 & 1	12/20 3 4 5	C 22/01	>		4 25/30 8 8 9	5 20/0 7 9 12	4	6 36/30 7 12 1	37/30 10 11 1	8 39/22 10 24 12	0/2 12 01/00 b	20 27			•	
	ROTARY	P. 22 TO 2	SUGAYA		.m ni ntq Snilqm Lab.					250 52-1	3.20	4.00 52-2			54 9	7.00 52-30	a	- 2 - 5 - 0 - 5 - 0 - 0 - 5 - 0	<u> </u>	a		12/5- p-	14.15 - P-	/s:/s /s:/s				
LING LOG	Type of Drilling	m. Date SEP.	m. Driller H.	synem	Angla Re	99	Containing many Shell fragments.	containing many	shell fragments up	to 2.4 th deep.	Cakesiye.	Sand 13 fine.		fine. Containing altanate silty seams.		Well consolidated.			Sand is extremely	fine. Generally home.	leous, th	consolidated, clayey or silty seams are	nd in some p					
	PROJECT.	000		tency tency	lative De siznoJ	ю ВЯ	Very 10050			Vary	20ft	Soft		a200			34:14	Very Stiff	f :					to Very Dense	Drilling			
II -2		5	Table		olour	5	Bluish				grey	Dark bluis grey		e Dark, blue	A-1		Dark	bluish			· ·		Dark		1	:		
5	MINI-PORT	Z Elevation	Water	lios	jo əd	ر ر	Fine		-	1	1010	Sandy Silt		Silty fine	52.50			Sandy Silt						fine sand	LU LU			•
	GWADAR	No. B-2			puə8a	רי	0.0											ĻЩ				1 1 1 1 1		- - -	1			1
		Z			ickness	41	0 - 0.40		, ,	:			0 0 1	• •	061 +0	· · ·			00.0 +		: :: : : : :: : : : : 		· · · · · · · · · · · · · · · · · · ·		36 - 5.76			•
	of Project	mber		[ni dtq		0 0 0		•				50+ 4.70	 	09.9 + 0		<u> </u>	· · ·	09.6 + 0.90			-			26 - 15.30			•
	Name o	Hole Number	. :		n ni sle vation i	_	- 1.30		~	ີ ເ	1	4 70	5 L Ct 60	9 9	е5 к 			<u>თ</u>	10 10 20		71	<u> </u>	14	121	16-16			

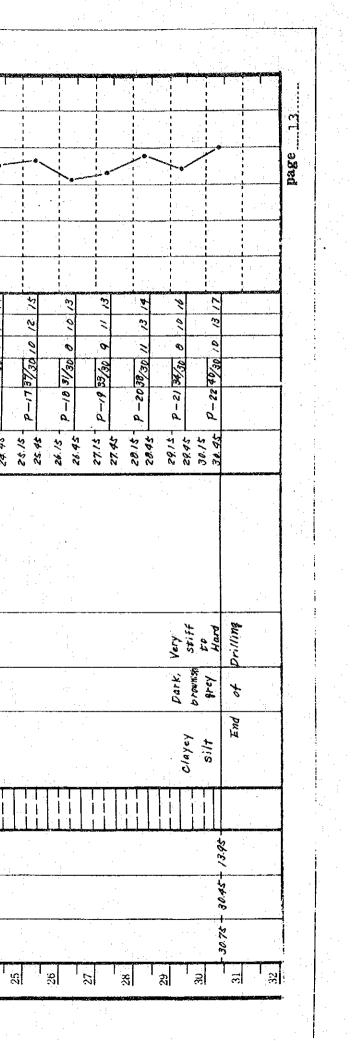
and a second second


investories and the

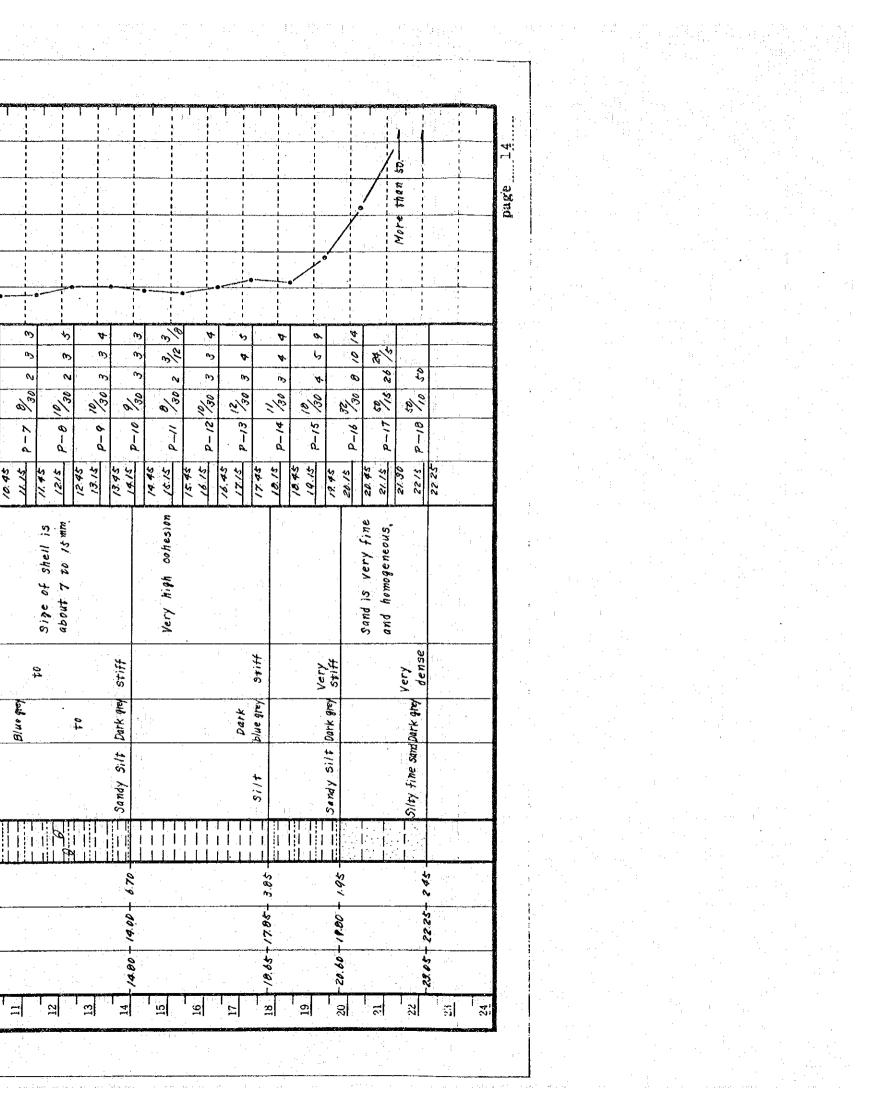
			Core Recovery	(<u>N Value)</u> D 30 40 50	0 60 ×0 101(52)				2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4					re then 50		0,110			ore then so						ore than so			ore than so	
Remarks	OTARY	TO 30. 1979 AYA (-)	Standard Penetration Test or	Sampling Sampling A-Value Blows Per Iden 10cm 10cm 10cm 10cm 10cm 10cm 10cm			i	78	P-1 2/32 1/6 1/4	<u></u>	P-2 10/20 4 5 4	P = 3 26/20 7 0 9	P-4 70/12 15 19	P = 5 30/20 18 32 HO	P-6 38/77 26 24 -	P-7 32 12	P-0 3750 10 12 18		P-10 50/20 18	P-11 20/10 20 2/0	P-12 49/30 14 17 10	P-13 20/30 12 14 14	P-14 34/30 0 10 16	LI 11 01 05/2E 5- d	M	P-17 + 030 14 15 19	5 P-18 4/30 /3 /4 /4	M 25 - 52 - 1/ds 61- d	
DRILLING LOG	TECT Type of Driling	./.20 m. Date SEP, 26 70 — m. Driller H. SVAAY	GUC À	Relative De or Consist General Re General Re	Containing chell flag- Very loce ments in the lower part	Dotte flagm	medium sand 2. doep	Very cohesive or 3.00	*	Very 5.00	* Cohesive.	stiff flagments, The The	Sand is fine. 8.45		E a la l	Containing thin, alter 11.15 Very nate consolidated silf 11.27		13.45	19.35		cimming time	Well consolidated but 1715 cohesive or sticky. 1745		ning fossi-	lifed organic matter, 2015 2013	Core recovery is 21.15 so to 60 % gene- 213		23.15	24 15
FIG. 亚 - 3	DAR MINI-PORT	No. <i>B-3</i> Elevation – Water Table	Ιίος	Colora Type of Legend	0.45 0.0 Fine sand Bluish					Silfy olay Bluish	55 Dark	Sandy Silt grey				Silty Dark	A24												
	Name of Project	Hole Number	.m n	Ccale in i Elevation i ni ntqaU	- 102 - 042-	7	3				7.20 + 6.00 +						-1310-1210	2 2	<u></u>		2		<u>8</u>	19	8	<mark>31</mark>	32	<mark>- 53</mark>	24



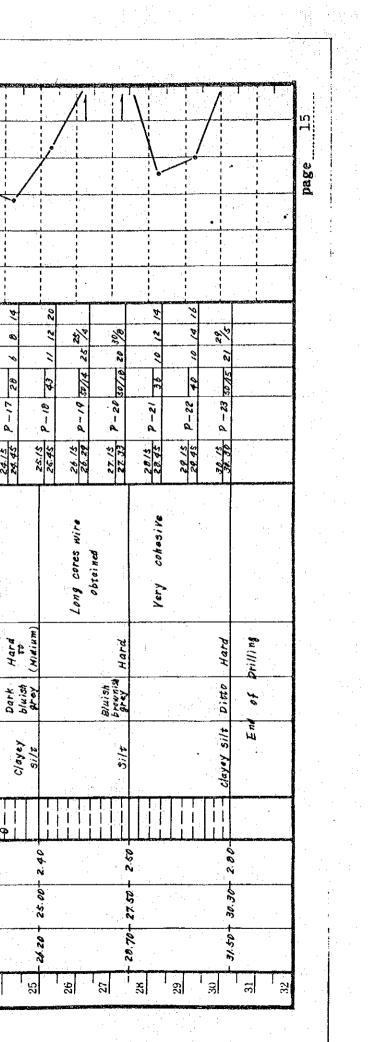
				:	.* : .	: 					1				parter parters	posicity	An example of the second se	appenderes	- 	utomioqua	enter ente	-	escar pagara	paran taria		
			50							1				1		 	1 1 1 1 1						1 1 	1 1 1 1 1		6
. • •		ery	40	5 <u>1</u>		1 1 1 	1 1 1 1			1 6 ' 9. <u></u> 8 <u></u>	1 1 1 1 1 1 1 1	 	 		1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1			4 1 1 1		1 1 	1 1	1 		e)
		e Recovery	(<u>N-Value</u>)	9 <u>1</u>	· [•] •]	1 1 1 1 1	1 1 1 1		1 ↓ ↓ ↓ ↓ ↓	9			1 1 1		 	1 1 1 1 1	1 1 1 1 1	1 1 1						t t 1 1		Dage Dage
2		or Core	(N)	≞}	1 1 		1 1 1 1		h h h 1 1	s 1 1 1 1			 		 <u> </u> 	1 	1 1 1 1	1 					1 	: l: 		
Remarks		in Test		ŝ i	1 1 	 	 	· · · · · · · · · · · · · · · · · · ·	1 8 8 7 1		1	1 			 	 			+							
		Penetration	Per 10cm			1 <u>weeker: weeker</u>	· · · · · · · · · · · · · · · · · · ·			29		1, 2,)) 		3/2/	(N)	N	3	<i>0</i>	5	6 13	2/01			
	6261	Standard F	Blows Blows I Eeach							12		2	4 0	N	· · · · · · · · · · · · · · · · · · ·	N	ŝ	Ň	8	24 7	32 7	30 7	32 10		_	
	ROTARY 0 19. AYA (St	dial vot sulev-N [®]			Ĩ	Ŷ	[2]	T	-1 230	e 6	-+ <u>,</u> ,		► †	2 4-9 2 4-9	5	6 9-d	2-7	0	P-9-2	P-10 3	P-11 3	P -12			
	P. Q.		1 Snidmes		·	78 54	00 07 54	63 S4	54	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7 15 P		- 	1.00		2 22	<u></u>	d 56 4/	2:12 12:40	1 51.6.15 F	215	18.15	915			
9	Drilling : Oct 17 K SU		Depth in m	yu.	8	to	3.00	4. 95	Shell +		<u> </u>	00	0 1		Ē	<u>11</u>	11	19	<u> </u>	<u> </u>	11	44	5011 /			
LOG				shell tragm	quantities a new s	an one					:		sion		ns of					ned Fr			cohesive S			
BNG	Dritter	syten	197 Istened	hany sh		170 51			(ccational	ments.			h con		h sear					core s obtai	Ē		hly cohe			
DRILL	E E			With "	With	and 7	· · · ·	· · · ·	With	frag			High	• .	W/F			3	· · ·	Hand	18.0		Hig	aning.		•
a	PR01ECT	thizn Rondy	Relative De or Consist	10050							Very	1405 2012						X	50 381ff			Very	stiff to Hard	of prin	- 	
4			noloj	Dark Prey V	Dark		~					Bluish grey	. :					Bluish	grey		•		Brownish Grey	End		
Ħ	MINI-PORT Elevation Water Table			sand				· · · · ·			<u> </u>	clay				· . :			. <u></u>				' Si/t	1 .		
E S		lio	S }o ed≬l	FINC 5								51/17											- Clayey			- -
	GWADAR No. B-4		cusga l	3		0																				
	Ø N S		זיוכאיפצצ		0 0 0 0	ال المن ل ع	المسالية ال	ل مراجع م				0 4 0					· · ·	• .	· · ·					58.01 +		
	oject		ı ni rttqəQ				<u> </u>	· .	 R	· · · · · ·	·						:							- 16 42		
	Name of Project Hole Number		ni notteval3	 	 } }		-				· · · · · ·					· . ·								-20.75		
	Name Hote		n ni sisoù		L I I I	~		T-T-			- -	 	ຼຼ	· 1.			<u>2</u>	7 7	<u>ا</u>	19	17	l ∞	19	102	1	

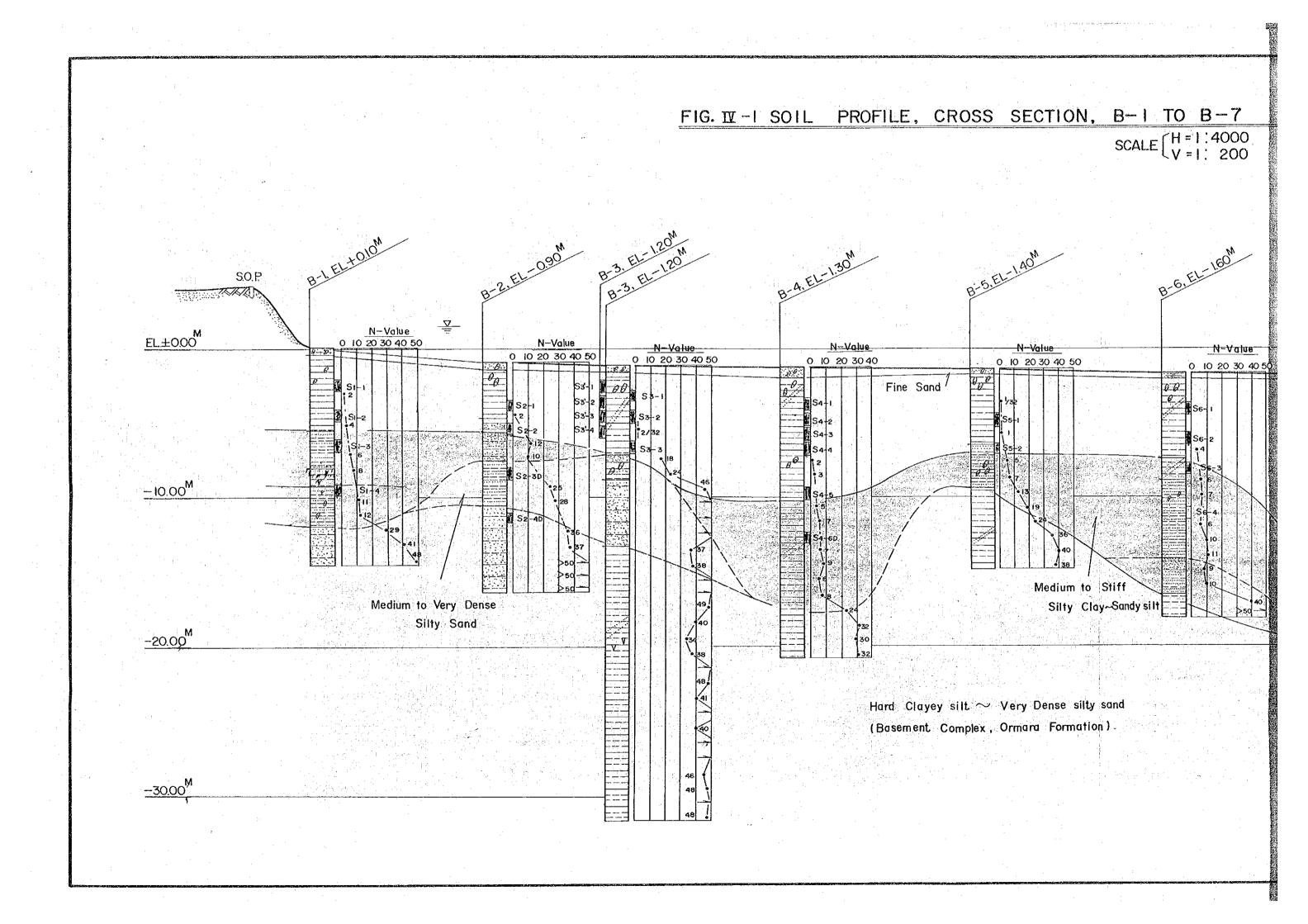

		· · · · · · · · · · · · · · · · · · ·				· · ·	······		- +						· · ·		· · · · ·	<u> </u>		·····	
		Recovery	(N-Value) 30 40 50																5.557 putta 1 1 1 1 1 1 1 1 1 1 1 1 1		page0_
Kemarks		Penetration Test or Core	07- 07-	0				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								L L J J J J J J L J J J J J J J J J J J		с 1 1 1 1 1 1 1 1 1 1 1 1 1			
	ROTARY TO 15. 1979	Standard	Lab. Nailly Blows Per Blows Leach 10cm Lan. Intern Intern				×~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	< /30		3 5/3 2/3 1/2 2/0	4 7 2 3	0 0 E E/ 5	6 19 5 6 8	7 24 7 7 10	8 36 10 11 15		2 20 12 12 12	10 30 10 13 15			
507	P. 14		.m ni ritged Brilgms2		nts 2.15 2.47 P-1	3.00	3 6		5.69 5.69	6.45 p -	7.15 p -	0.15 P-	e/s 945 P-1	- d <u>56 a/</u>	- d 5/1/	ء د	1 2 	1345 P-1			
52	PROJECT Type of Drilling T m. Date : SE m. Drillor	synen 2	เอห เรารายว	With many Shell fragments.	Many Shell Fragments and much sond or	ding from	E	Highly Conesire		Block of Shell frag	ments is induded	HIGHLY COLLESIVE	· · ·	· · · ·	Line 3and loyers(two ~15cm) ate included	occasionally					
A A	V I	nsity ency	Relative De trizencial	Yery 1005e				soft					04	Very	st)ff	\$		Hard	Prilling		·
	V - PORT on - // Table		roloJ	Dark grey				grey			Greenis D/WISH						Brownia	grey	of		
5	2AR MIN = S Elevation Water Tah	lioS	Type of	Fine Sand			ч. К. Са.	Silty Clay				Janay Silt						Clayey Silt	E H		
	9-WA DAR No. 8-5		puəßər	0.0	<u>a</u>					10 - 0 - 0 - 0											
	Z		Thickness	050		·		4.60	<u>}</u>	· · ·		5.90		÷		· · ·		- 5:45			
:	oject	w.	ni rttqəQ	0.40				+ 510	•	· · ·		0.00			•	•		- 13.45			
	Name of Project Hole Number	'ໝ ແ	noitevel3	001-	· · ·			- 50 - 50			· · ·	640				· · · ·		-14.05-			
	Z I	u u	ni eleoz		~	3	4	S.	·0	1	∝	, T	പി	2	=	2	13		4	2	· · ·

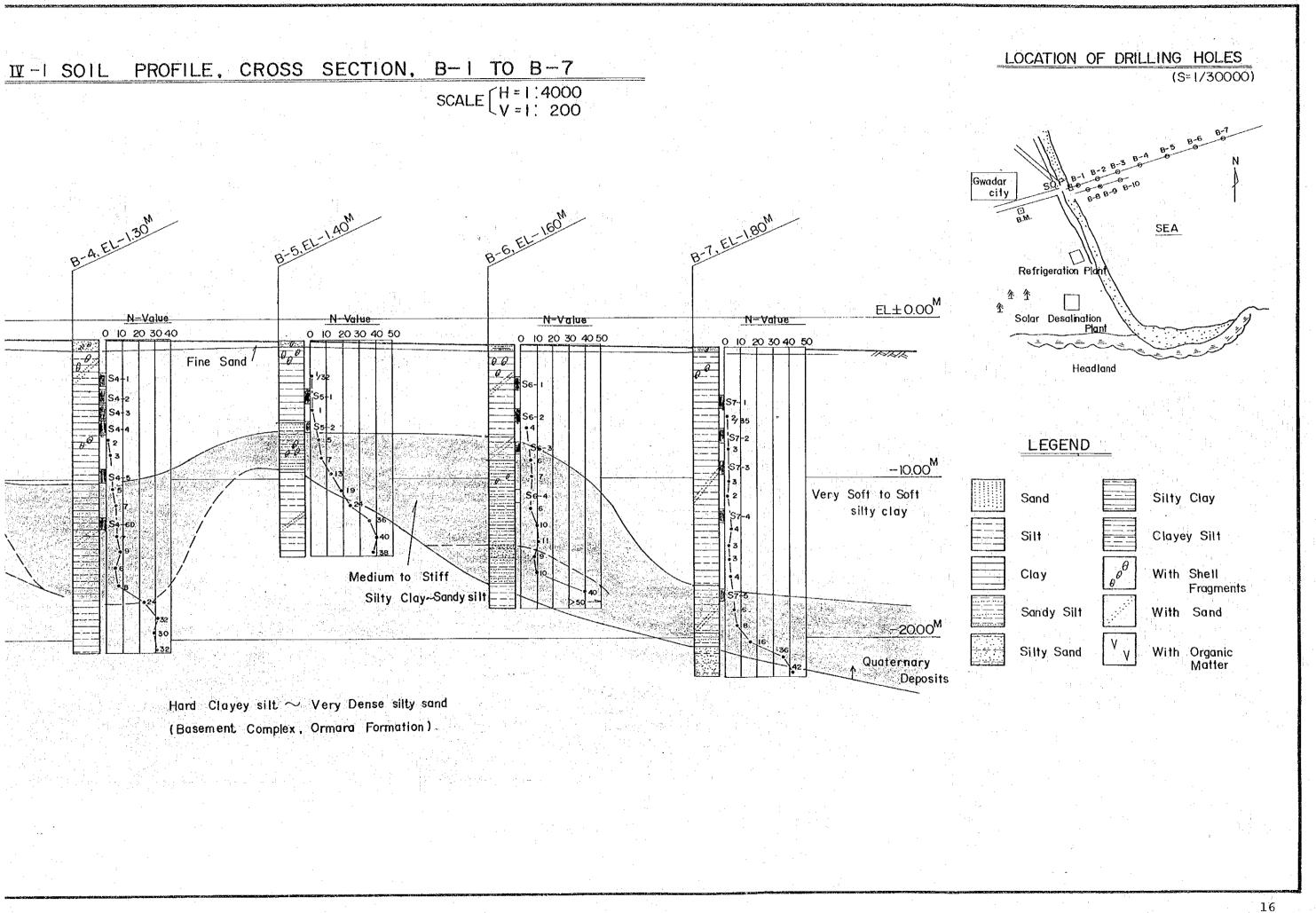
- - -										2005 \$ 1/207 - 2-4-											Series and the							-	ee '
			Recovery		40 50 1 1 80 100(%)														1					1	ĺ	4			page 11
			Test or Core Re		10 20 30						0 0 1 1 1 1 1 1 1 1 1 1 1 1 1		8 1 1 1 1 1 1					1 1 1 1 1 1 1 1 1 1 1 1 1 1						/	/:		1 		8d
		(Standard Penetration	Blow	10 m 10 m 11 m							1 2/2 /			N N N	6 2 2	• •		4	6 6 7	8 4 4	6. (2)		2 2	10 12 24	5 12 29 15			
	ROTARY	54 70 25	St	m ni ring Buling Bulisy-N	S of	· · · · · · · · · · · · · · · · · · ·		2.00	2.87 36-1 3.15 0-1	-	2-95 2-95	5.45 P-2 4	6,00	24-	715 P-3 6 745	8.15 P-4 7		56-4		1/ 9- d 50/1	12.15 P-7 11	13.15 P - B 9	5	_	15.45 P-10 40	16,40 P-11 50			
	Type of Drilling	m. Date : 0ct	marks	eneral Re	9	much s	Including great guantities of shall	up to 1.00		Some Sand		Very coresive soil 5		With medium size sand occasionally 6		ional	traduction.		Sand is nomegeneous /	f)%e		Jand is very fine.	<u> </u>		Low water content.				
TUT.	PROJECT	- 1.60	tency ensity	elative De r Consis	8	10050				the lint	\$0	an f t	7170	1	Winipal	WHI BOL		ţo			£1;42		······	Stiff		Hard		 :	
D F	PRT	Table		Colon	7-24	grey	Dark		to	:	:	Hulsh	21.57	Dark bluish	grey				;	· ·	Dark		Rentini ch	grey		Brownish Grey		:	
	MI	6 Elevation Water Table	lioS	îypê oî		Silty sand			: 			_	SILEY CIAY		1//S						Sandy silv			Silty sand		5:15			
-	<u>awa</u>	No. 8+		Legend Fickness		0.40	<u></u>						5:40		× 50									230			09.1		
· ·	Name of Project :	Number		Jepth in ni ntqa		2.00 + 0.40 +			·	· · · ·			40 + 5.00 +		8.90 - 7.30 -	· · · · ·				14 - 1 		1220-2		40+ 14.80+			+ 00 + 00 +		
	Name	Hole Number	ļ	ievation		N 		1	m		l. u	<u> </u>	0 X X		_	×	თ	2		1	12	13	1	15 7/0		, 16	17 / 8.	 ≊i	

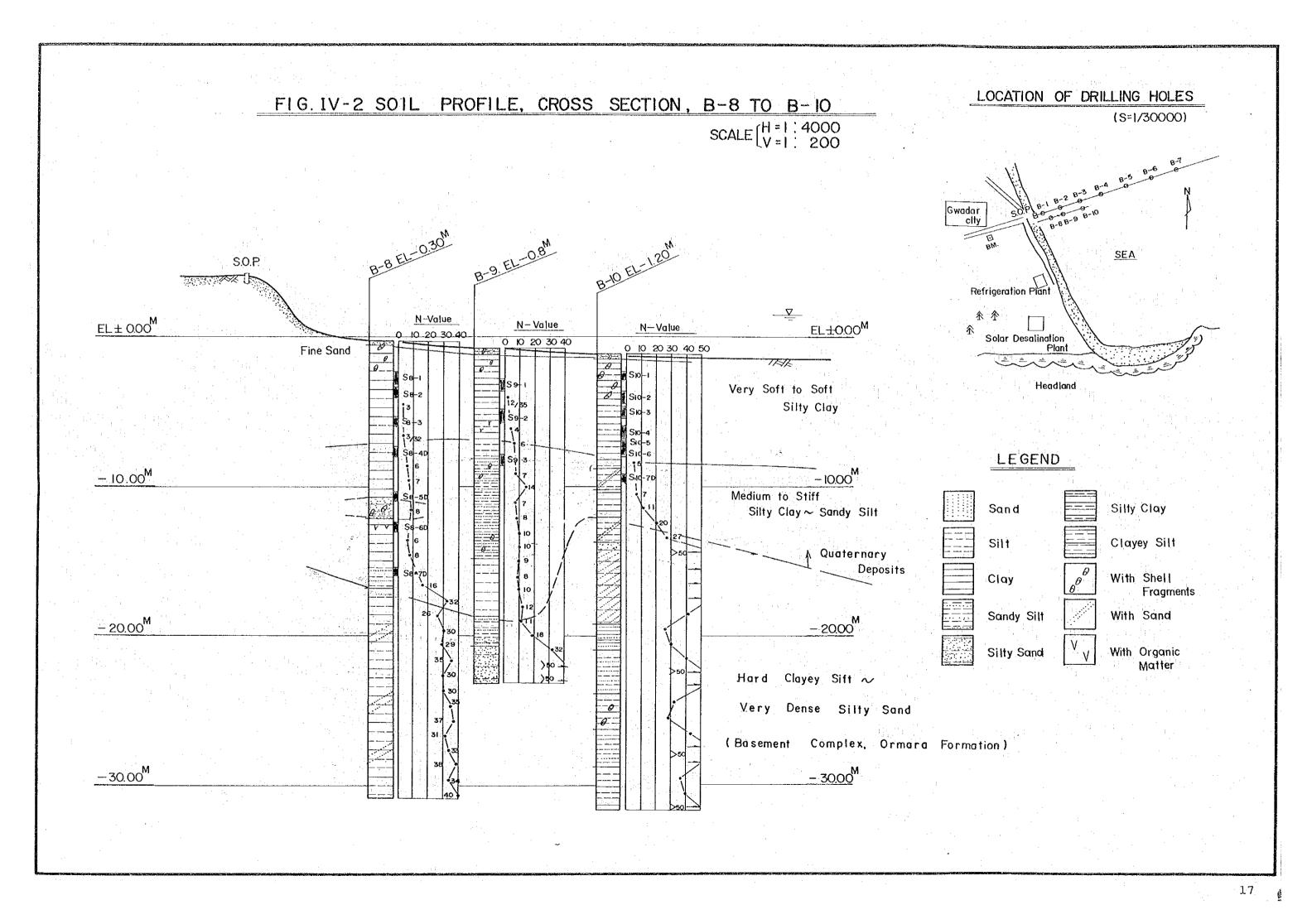


		-		THE CONTRACT	942an 223864419437576	1	an marine the	samparso.	esteries.	1999-190-100 	1	en anter a seconda de la companya de									e-proverties	17.141.4192.140		***					 14 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 -
				r Core Recovery	(N Value) 20 30 40 50	101 (22) (23) (20) (page 12
Remarks		· .		ition Test or	0	ŝ.	1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1		1 1 1 1 1 1 1	1 1 1 1 1 1			1 1 1 1 1	1 1 	 		1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	1 1 1 	 		+ 1 + + - - - - - - - - - - - - - - - - -	1 1 1 1 1 1 1			
	7	2.1979		Standard Penetration	Blows Per Eeach 10cm					2/35 1/20 1/15				1/0/10	1/4 /16	1	1 2/5/15		1/2 1/0 1/0	1 2/10/6		2/2 2/0	5 3 3	6 4 5 7	6 7 10 19	2 10 12	a		
	ROTARY	20 70 2	UGAYA	• S • •	Siniqme2 d6.1 rot euleV-Ns			·	, c.2	/-d		2 57-2		7.82 57-3 8.5 P-3 3	915 P-4 2	10:00 57-4	2 - d 32	245 P-6 3	13.15 P-7 3	6-d 56 4	15:00 57-5	615 P-9 6	17.13 P-10 8	10.15 P-11 10	E 21-d 5/0	p - 13			
ILLING LOG	ECT Type of Drilling	m. Date <u>0ct</u> .	er 7 <u>S</u>	shsm	əA larənəĐ .rn ni ritgəÐ			Including great guantities of shell	ments.	high water	content. 4.50	Highly cohesive 5.82			иеен 0.00 анd Ж		high water			Very cohesive	With hard block 15	11	uiny occasional sand.	With fine sand seams 12	Sand is homogeneous				
DRL	PROTECT	001-		ticns y	Relative D	Very	Very	Soft				· · · ·	· · · ·	ß			Sott			Soft			N edi um	1 A A	1 :	Very Stiff			-
	PORT	uo	Table		Colour	Dark		Grey	to	Dark.	bruish	&rey		\$0		Bruish			4	bluist grey		-	Dark Brey	Brownish		Brownist	1		
5	R MINI	Z Elevation	Water	lioS	type of	Fine sand					 1	. *					SILTY CLAY			Clayer Sila		÷ .	51/4	Sandy Sil		Silty Sand			
	GWA DAR	No. B-7			puaga,	30 0.0.																			080				
۰۰ م	oject				ni dtqad Thickness	0.30 - 0.30	•	• • <u>••</u> ••••••••••••••••••••••••••••••••		· · ·	••• •••						1.00 + 10.1							<u>}</u>			20.45- 1.9		
	Name of Project	le Number			roiteval3	2.10 0					· · · · ·						15.00-1	· · · ·				· · · ·	1	ł	- 20.02 -		- 22:22- 2		
• • •	Nar	Hole		W	Scale in		77	~		4	2	- -	T ~	20	5	3	⊒			₹ ¥			⊊ 	∞	61	2	5	22	


a a secondaria da la companya da la La companya da la comp




	:		······································				- 	·			· · · ·			- 4		·	-		· · ·			· · · · · · · · · · · · · · · · · · ·		·····	· · · · · · · · · · · · · · · · · · ·				·····	· · · · · · · · · · · · · · · · · · ·	·			
· · · · · · · · · · · · · · · · · · ·			tion Test or Core Recovery	(N-Value)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											- •														· 1-	More than 50.			page 14
	ROTARY	26 TO 28 1979 SUGAYA (-)	Standard Peretration	Mhin m. Lab Reach 10cm	101 100 100 100 100 100 100 100 100 100	· · · · · · · · · · · · · · · · · · ·					02 59-2	2-d 55	6 25 - p-3 6/30 2 2 2		7 79 01-3 0-15 pm 6 1/2 2 3	× 14,	42 7-2 /30 6 5	<i>b</i> - <i>b</i>	11.15 P-7 930 2 3 3	1215 P-0 1930 2 3 5	13.15 P-9 10 3 3 4	13.45 P-10 92 3 3 3 3		10/ 2 00 2	-12 /30 3 3	45 P-13	10.15 P-14 130 3 4 4	19.15 P-15 /30 4 5 9	15 P-16 32 0	L1-d	7 - 19 50 40	01, 01		
	Type of Drillin	m. Date: 007. 26 m. Driller : X. Su	marks	əA istən	9 <u>9</u>	Y STELL	fragments at ot to	1. 6 TH	<u> </u>	derow posed	timber.		highly cohesive		shell fragments	generally		112	liets to				Very High cortesion							sand is very fine and homogeneous.				
	<u>ser</u>	00	tency Yours	d evitelo vizno)	or I Re	25441		÷.,			Very Soft	to Soft		Soft			Medium	-	01			stiff	• •	•	:	34114		Very	2414		Very	denuc 1		
	PROJECT	Table		лою	- + •					40	-:	Bluish	Dark	blue grey	Dark	faub an/q	40		aib an ia	-0	2	Dark grey		!		plue grey		Dark anev	La La La					
··· . · .	-111	Water	lioS	to sqy		22.552					-	Silty clay		51/7							•	Sandy Silt						Sandv Silt	5		Silty fine sampark gray			
	ADAR	N0. 8-9		puəgə	7		- O													B_A											. T . [.]			
		2		ssenici	ш	040	· .		-				- 09:5	- 1. 20 -	}					· · ·		6.70-	· ·			- 	2	· · ·	1.95		· ·	5 \$ 2		
	of Project	B	ш.	ni ntqa		0.40					•••		- 0.00 -	- 7.30 -			· ·	· · · · ·				-10.01-				17.85			11.00			-22.22	· ·	
	Name of	TOIR NUMBER	.m ni	noiteva	EI	- 1.20	· · · ·						- 6.00	- 3.10			: : : : : :			· · · ·		-14.80			· · · ·	-18 64-	3	·····	-20.60	·	· · · · · ·	-23.05-		
	Nai	윕	Ш	ni ele:	\sim	<u>ו</u> רי			m	-	: I : 20	<u>،</u>	T T	~	∞	ີ ດາ	្រា	=		2	13	14	15	16	11 - LI			19	50	7.	7.7	5	1 3	



m 9~1 30. 00 at 9 10 Recovery 0 -4° 2 20 14 (N-Value) be 10 e o 30-X Core N I N.W 20. ଟ Remarks Va/u Value Test റ്റ_-* 5 Penetration Per 10cm ~ 6 20 * \mathfrak{D} 24.0 247 8 1979 106 b Blows Eeach 10km 10k Standard 2 3 SulsV-Value 02/2 Ļ 30 ROTARY 5 310-2 S/0-4 510-5 P-13 P-13 L1-d SI0-1 2-16 210-115 P-4 ۰ ۱ 9 11-d À for Lab. P - 3 ~ 6 516 SUGAYA 20 - I Q 0 Sampling ۵ ۵ 0 a ۵ 22.37 23.15 24.15 16.35 17.15 10.15 21.15 21.35 10.45 13.15 19.15 20.15 4 11.15 12.15 14.15 15.32 0.00 245 2.50 3.31 3.50 120 ¢E.¥ 4.00 .m ni niqeO Drilling : 001. LOG L ×. cohesion 2 Sana is very fine homegeneous. Were Shell sandy d' sand 5 •• Shell Cohesive fine tine sand Driller sa jaw bles Type Date Resembles s silt at lower Luow General Remarks DRILLING Some fragments fine fragments. obtained Induding Including Sand With Mith ε With I. SOM εÏ With Core Very PROJECT and Very dense Midium Midium soft Very Very Stiff 050 Very 31/ff to herd or Consistency Stiff - 120 10 02 Relative Density Ver MINI- PORT Bluish brownist grey B/uish brownish arey Bluish Bluish Bluish Grey Bluish park Dark noloJ ġ, Water Table Elevation FIG. H sine Sand sand day clay Sanay Clau Type of Soil Sile Sitty Siley 51/2 2 Silty Silty 8-10 **GWADAR** puəgəl P No. 030 7.50 X Thickness Project 030 .m ni ruqeQ ĸ Hole Number Name of 20.90 25. Elevation in m. 니 - 중3 [[]. ທ] 0 **|** ∞ ၂ ရ 61 ំន 0 ۲<u>۳</u> 2 1 2 Scale in m. ___ 6 4 1 ្ឋ 1 2 1 5 81 5 22

SECTION III

LABORATORY SOIL TESTS

Laboratory soil tests were performed at the Gwadar temporary laboratory and in Singapore on undisturbed samples obtained from bore holes. Except for sample no. S2-3D, samples of hard clayey silt and very dense silty sand (Basement Complex - Ormara Formation) were not tested in the laboratory because these layers are very stable and pose no difficult technical problems for design. The physical and mechanical properties of soil samples were tested according to JIS.

The types and numbers of laboratory soil tests performed are listed in Table I, Investigation Works Performed.

Results of laboratory soil tests are summarized in Tables II-1 to 12, "Summary of Soil Test", and discussed in this section. Detailed results of laboratory soil tests are shown in Appendices A to G.

III-1) Physical Property Tests

a) Natural Water Content and Atterberg Limits (LL, PL)

Results of natural water content and Atterberg Limits tests are shown in Fig. V, Engineering Properties of Soil vs Depth, and are summarized in Table III, Natural Water Contents and Atterberg Limits.

- 18

	Table II-	-1. 5	SUMMARY	OF SO	IL TES	Γ				· .
Proje	ct: <u>GMPP</u>				Stand	lard:	JIS			
Boreh	ole No.		B-1							
Sample	No.	S1-2	S1-3	S1-4						
Sample	depth	4.00 m 4.83 m	6.00 m 6.79 m	9.00 m 9.84 m	m 1 m				m ≯ m	1 1 1
Çonditi	on of sample	9690,9690 Undisturbed	DMXXXX Undisturbed	Undisturbed	Disturbed Undisturbed	Disturbed	Disturbed UKGKi)V()/AX	Disturbed V6X9UX44	Disturbed Undisturbed	Disturbed Undisturbed
Natural	l water content, %	26.7	21.8	31.8						
Specifi	c gravity	2.742	2.734	2.699						
Wet der	nsity, g/cm³	2.01	2.10	1.91						
Dry der	nsity, g/cm³	1.59	1.72	1.45		······································		*** 		
Natural	void ratio	0.728	0.586	0,858						
Degree	of saturation , %	100	100	100		·				
D.	Liquid limit , %	32.6	27.6	-		*****				
Atterberg limits	Plastic limit , %	16.3	14.0	-						
Att	Plasticity index	16.3	13.6	-						
	Gravel , %	0	0	-	·				· · ·	
.4	Sand , %	0	1	-		******				
rain size analysis	Silt , %	50	64	-						
90	Clay & colloid ,%	50	35	-					····	· · · · · · · · · · · · · · · · · · ·
n siz	Max. diameter , mm	0.105	0.105							<u></u>
Grai	Diam. at 60%	0.0077	0.018	-		·····				
-	Diam. at 10%	-	-	-						
Visual s	oil description	Silty Clay	Clayey Silt	Silty Clay						<u></u>
Unified	soil classification	CL	CL.	-	·······	·····	·····			
<u>ک</u> ک	Undisturbed sample, kg/cm ²	-	-	_						
afine ress	Remoulded sample, kg/cm ²	-	-	-						
Unconfined compression test	Sensitivity ratio	-	-							
±0⊂	Strain at failure,%	-	-	-	······································					
cial pres - test	Angle of internal friction	00	0 ⁰	-					······	
Triaxial compres sion test	Cohesion, kg/cm ²	0.26	0.34	-						
	Condition of drainage	U-U	U-U	-						
Consoli- dation test	Preconsolidation pressure, kg/cm ²	1.7	2.4	2.3						
	Compression index	0.21	0.17	0.30						
Remark	S:									

Table II-2.

SUMMARY OF SOIL TEST

Projec	ct:GMPP				Stand	iard:	JIS			
Boreho	ple No.		В	-2	.,		[B-3	·····	
Sample	No.	S2-1	S2-2	Ton	S2-3D Bottom		S3-1	S3-2	\$3-3	
Sample	depth	2.50 m 3.20 m	4.00 m 4.70 ^m	Top 7.00 m 7.40 m	17.40m	m	1.60 m 2.30 m	3.00 m 3.80 m	5.00 m 5.82 m	m m
Çonditi	on of sample	Rix XXI Undisturbed	Disturbed	文文学学校 Undisturbed	DXXXXXX Undisturbed	Disturbed Undisturbed	Disturbed 9hX40X90	Rix XXX Undisturbed	DXXXXX Undisturbed	Disturbed Undisturbed
Natural	water content, %	29.5	21.4	22.1	19.0		27.4	29.4	28.3	
Specific	c gravity	2.719	2.705	2.706	2.728		2.728	2.723	2.717	
Wet den	nsity, g/cm³	1.96	2.09	2.07	2.14		-	1.96	1.99	
Dry der	nsity, g/cm³	1.51	1.72	1.70	1.80		-	1.51	1.55	
Natural	void ratio	0.796	0.570	0.596	0.517		•	0.809	0.752	
Degree	of saturation , %	100	100	100	100			100	100	
5rg	Liquid limit ,%	34.7	24.4	22.0	27.0		27.4	35.9	33.0	
Atterberg limits	Plastic limit , %	15.2	12.5	16.6			15.4	14.8		
Att	Plasticity index	19.5	11.9	5.4	12.0		12.0	21.1	19.3	
	Gravel , %	0	1	0	0		3	0	0	
X: N	Sand , %	1	7	11	3		7]	1	
Grain size analysis	Silt , %	48	63	75	65	,	42	49	46	
68	Clay & colloid , %	51	29	14	32		48	50	53	
	Max. diameter , mm	0.84	4.76	4.76	0.42		19.1	0.105	0.105	
Gra	Diam. at 60%	0.0069	0.027	0.039	0.017		0,0084	0.0078	0.0070	
	Diam. at 10%	-	-	0.0044		·····		-		
	oil description	Silty Clay	Clayey Silt	Sandy Clayey Silt	Clayey Silt		Silty Clay with Sand	Clay	Clay	
	soil classification	CL	CL	ML-CL	CL		CL	CL	CL	
Unconfined compression test	Undisturbed sample, kg/cm ²	_			-		- -	-		
nfin Dress	Remoulded sample, kg/cm ²				-		-	-	-	
linco some	Sensitivity ratio	-	-		-		-	-	-	
	Strain at failure,% Angle of	-	-	-	-		-		-	
ciæl orês - test	internal friction	00	0 ⁰ (0.77	-	0 ⁰		-	00	00	
Triaxial compres sion test	Cohesion, kg/cm ²	0.17	~1.45)		~1.90)		-	0.17	0.19	
<u> </u>	drainage Preconsolidation	U-U	U-U		U-U			U-U	U-U	
Consoli- dation test	pressure, kg/cm ²	1.0	-		-			-	1.0	
<u> </u>	Compression index	0.23	0.10	-				0.23	0.23	
Remarl	 ks •									
									16	

	Table	II-3. S	UMMARY	OF S01	IL TEST					
Proje	ct:GMPP				Stand	lard:	JIS			
Boreho	ple No.		B-3'		,					· · · · · · · · · · · · · · · · · · ·
Sample	No.	\$3'-2	S3'-3	\$3'-4						
Sample	depth	3.00 m 3.84 m	4.00 m 4.88 m	5.00m 5.85m	71) 	m i m	л П	ភា រ កា	נית ל ורח	11) 1 100
Çonditi	on of sample	XiXuXoXi Undisturbed	DSX:XeX Undisturbed	Disturbed Undisturbed	Disturbed Undisturbed	Distuibed Undistuibed	Disturbed Undisturbed	Disturbed Undisturbed	Disturbed Undisturbed	Distorbed Undisturbed
Natural	water content, %	26.0	26.5	24.4						
Specific	c gravity	2.716	-	2.721						
Wet der	nsity, g/cm ³	2.02	2.02	2.04						
Dry dei	nsity, g/cm³	1.60	1.60	1.64				- <u></u>		
Natural	void ratio	0.694	-	0.659						
Degree	of saturation , %	100		100						
ຍົ	Liquid limit , %	31.7	-	27.7					1	
Atterberg limits	Plastic limit , %	15.1	-	13.6						
Atte	Plasticity index	16.6	-	14.1	· · · · · · · · · · · · · · · · · · ·					
	Gravel , %	0		0						
,s	Sand , %	0		1						
afys	Silt , %	54	-	61						
Grain size analysis	Clay & colloid , %	46		38				· · · · · · · · · · · · · · · · · · ·		
) siz	Max. diameter , mm	0.105	-	0.105						
Grair	Diam. at 60%	0.0095	-	0.016						
	Diam. at 10%	-		-						
Visual s	oil description	Clayey Silt	Silty Clav	Clayey Silt						
Unified	soil classification	CL		CL						
ъ <u></u> б	Undisturbed sample, kg/cm ²	-	0.469*	Ber			· · · · · · · · · · · · · · · · · · ·			
Unconfined compression test	Remoulded sample, kg/cm ²	-	-							
Uncor compi test	Sensitivity ratio	-	-	-						
⊃ ४ ₽	Strain at failure,%	-	(15)	-						
st -	Angle of internal friction	00	-	00						
Triaxial compres - sion test	Cohesion, kg/cm ²	0.22	-	0.24		<u> </u>				
		U-U	-	U-U					····	
Consoli- dation test	Preconsolidation pressure, kg/cm ²	1.2		(1.5)						
test test	Compression index	0.21	-	0.17						
Remar	ks: * Mean value	·							ιŝ	

Table II-4. SUMMARY OF SOIL TEST

Project:

GMPP

Standard: _____JIS

_	t:	r								
Boreho	le No.			 	B-4			.		
Sample	No.	S4-1	S4-3	S4-4 Top	S4-4 Bottom	S4-5 Top	S4-5 Bottom	_ S4-6D		
Sample o	depth	2.00 m 2.78 m	4.00 m 4.85 m	5.00 m 5.50 m	5.50m 5.87m	Top 8.00 m 8.35 m	8.35 m 8.80 m	11.00m 11.67m	m 1 m	ח ז ח
Conditio	on of sample	XiX.ybyXi Undisturbed	Dis XX XX A Undisturbed	곳····································	DHM HOX Undisturbed	Undisturbed	D(s)(c)(c)(c) Undisturbed	있었)순상 Undisturbed	Disturbed Undisturbed	Disturbed Undisturbed
Natural	water content, %		28.1	26.3	22.9	25.3	23.4	30.4		
Specific	gravity	-	2.754	2.716	2.709	2.742	2.722	2.758		*
Wet dens	sity, g/cm ³	-	1.99	2.02	2.06	2.04	2.07	1.98		
Dry den	sity, g/cm³	-	1.55	1.60	1.68	1.63	1.68	1.52		
Natural	void ratio	-	0.773	0.698	0.616	0.684	0.623	0.816		
Degree c	of saturation , %	-	100	100	100	100	100	100		
6 J	Liquid limit , %	-	33.2	31.8	27.7	31.0	27.0	36.0		
Atterberg limits	Plastic limit , %	-	17.7	15.4	15.4	17.2	16.4	19.1	···	<u></u>
Ă,	Plasticity index	_	15.5	16.4	12.3	13.8	10.6	16.9		
	Gravel , %	-	0	0	0	0	0	0		
zis	Sand , %	-	1	0	4	1	0	1		
sylac	Silt , %	-	43	49	58	54	65	41		
8	Clay & colloid ,%	-	56	51	38	45	35	58		
Grain size analysis	Max. diameter , mm	-	0.105	0.105	0.25	0.105	0.105	0.105	· · · ·	
je U	Diam. at 60%	-	0.0061	0.0075	0.013	0.010	0.019	0.0056		
	Diam. at 10%	-		-		-				
Visual sc	oil description	-	Silty Clay	Silty Clay		Clayey Silt	Clayey Silt			
Unified	soil classification	-	CL	CL	CL	CL	CL	CL		
ion No	Undisturbed sample, kg/cm ²	-	0.358 ~0.386	0.485 ~0.567	-	0.602*	0.566*			
nfin ress	Remoulded sample, kg/cm ²	_	-	-	-	-	-			
Unconfined compression test	Sensitivity ratio	-	_		-	-		-		
	Strain at failure,%	-	8~14	13~14		15	11~14			
cial pres - test	Angle of internal friction	-	00	00	00			00		
	Cohesion, kg/cm ²		(0.19)	0.26	0.23			0.23		
	Condition of drainage	-	U-U	U-U	U-U	-	-	U-U		
Consoli- dation test	Preconsolidation pressure, kg/cm ²	-	1.4	1.7	-	-	-	1.8		
	Compression index	-	0.22	0.20	-	-	-	0.29		
	s: * Mean value									

Table II-5. SUMMARY OF SOIL TEST

Boreh	ole No.	B-	-5			B-	•6			
Sample		S5-1	S5-2		S6-1	S6-2	S6-3	S6-4		
Sample		3.00 m 3.74 H	5.00 m 5.69 m	m. i m	2.00 2.87	4.00 m 4.78 m	6.00 m 6.86 m	9.00 m 9.87 m	m I M	 ۲ ۱ ۲
	on of sample	S.74 m Sox (x) Undisturbed	DXXXXXX Undisturbed	Disturbed Undisturbed	XXXX Undisturbed	XXXXXd Undisturbed	Undisturbed	Undisturbed	Disturbed Undisturbed	Disturbed Undisturbed
	water content, %	(30.5)			30.2	31.8	31.3	23,4		
	c gravity	2.759	2.722		2.732	-	2.740	2.699		····
	nsity, g/cm ³	1.97	2,11		1.98	1,96	1.97	2.06	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u></u>
	nsity, g/cm ³	1.51	1.75		1.52	1.49	1.50	1.67		
Natura	void ratio	0.828	0.553	· · · · · · · · · · · · · · · · · · ·	0.796	-	0.829	0.617		
Degree	of saturation , %	100	100		100		100	100		
 ក្រ	Liquid limit , %	36.1	24.0		36.7	-	39,1	23.3		
Atterberg limits	Plastic limit , %	17.0	15.1		17.0	-	16.9	16.1		<u> </u>
Atte lim	Plasticity index	19.1	8.9		19.7	-	22.2	7.2		
	Gravel , %	0	0		0	-	0	0		
.4	Sand , %	0	5		0		1	3		
alysi	Silt ,%	40	68		42	-	36	76		
8	Clay & colloid , %	60	27		58	-	63	21		
Grain size analysis	Max. diameter , mm	0.105	4,76		0.105	-	0.105	0,84		
Graii	Diam. at 60%	0.0050	0.021		0.0055	· •	0,0045	0.036		
•	Diam. at 10%	-			-	-	~	_		
Visual	soil description	Silty Clay	Clayey Silt		Silty Clay	Silty Clay	Silty Clay	Clayey Silt		
Unified	i soil classification	CL	CL		CL.		CL	CL		
p g	Undisturbed sample, kg/cm ²	0.291 ~0.340	-		-	-	-	-		
nfine ressi	Remoulded sample, kg/cm ²	-			-	-		-		
Unconfined compression test	Sensitivity ratio	-	-		-	-	-	-		
⊃ŏ₽ 		12 ~ 15			-	-	-	-		
kiæl pres - test	Angle of internal friction	00	23 ⁰ (0 ⁰)		00	00	00	(10 ⁰)		
Triaxial compres sion test	Cohesion, kg/cm ²	0.17	0.24 (1.3)		0.19	0.19	0.23	(0.26)		
		U-U	U-U		U-U	U-U	U-U	U-U		
Consoli- dation test	Preconsolidation pressure, kg/cm ²	1.2	-		1.1	-	(1.0)	-		
	Compression index	0.24	-		0.23	-	0,22	1		

Table II-6.

SUMMARY OF SOIL TEST

Project:

ł

GMPP

Standard: ____

J.I.S.

Boreho	ole No.	·		B-7		07.5				
Sample	No.	\$7 -1	5.00 m	S7-3 7.00 ო	\$7-4 10.00	S7-5		m	m	
Sample	depth	3.00 m 3.78 m XXXXXX	5.83 h	7.82 m	10.87m	15.00 m 15.72 m DXXXXX	m i m Disturbed	rn I m Disturbed	m ł m Disturbed	Disturbed
Çonditi	on of sample	Undisturbed	Undisturbed	Undisturbed	Undisturbed	Un disturbed	Undisturbed	Undisturbed	Undisturbed	Undisturbe
Natura	water content, %	30.2		30.5	27.0	26.5				
Spëcifi	c gravity	2.756		2.750	2.734	2,748				
Wet der	nsity, g/cm³	1.96	-	1.96	2.00	2.01				
Dry de	nsity, g/cm ³	1.51	-	1.50	1.58	1.59				
Natura	l void ratio	0.831		0.831	0.736	0.729		•		
Degree	of saturation , %	100		100	100	100				
Ð,	Liquid limit , %	35.0	مو	36.3	30.0	29.5				
Atterberg limits	Plastic limit , %	16.4		17.1	15.7	15.0				
Att	Plasticity index	18.6	-	19.2	14.3	14.5				
	Gravel , %	0	-	0	0	0				
.4	Sand , %]	-	0	0	0				
alys	Silt , %	44	-	38	54	53				
6 มา	Clay & colloid , %	55		62	46	47				
ı siz	Max. diameter , mm	0,105		0.105	0.105	0.105				
Grain size analysis	Diam. at 60%	0.0060	en	0.0046	0.011	0.011				
-	Diam. at 10%	-		-	-					
Visual	soil description	Silty Clay		Silty Clay	Clayey Silt	Clayey Silt				
Unified	d soil classification	CL	-	CL.	CL	CL				
ਤ ਕ	Undisturbed sample, kg/cm ²	0.283 ~0.376	-	0.466 ~0.599	-	-				
Unconfined compression test	Remoulded sample, kg/cm ²	-	-	-	-	_				
Uncon compr test	Sensitivity ratio	-	-		-	-				
585	Strain at failure,%	11 ~ 15		10~15	-					
_ v t	Angle of internal friction	00	-	00	-	00				
Triaxial compres - sion test	Cohesion, kg/cm ²	0.18	50	0.26	-	0.32				
-		U-U		U-U	-	U-U				
35 5	Preconsolidation pressure, kg/cm ²	1.2	-		1.7	2.3				
Consoli- dation test	Compression index	0.25	-		0.21	0.21				
									<u> </u>	
					1					<u> </u>

SUMMARY OF SOIL TEST Table II-7. J.I.S. GMPP Standard: Project:__ B-8 Borehole No. S8-4D S8-5D S8-6D S8-7D S8-2 S8-3 Sample No. 3.00 m 74 m 5.00 m 5.62 m 7.00 m 7.65 m 10.00m 10.58m 12.00 m 12.62 m 15.00 m 15.60 m n i m m ∤m m ≀ m Sample depth DAAAXAX XXXX DXXXXXX KXXXX DXXXXXX DANK KAX Disturbed Disturbed Disturbad Condition of sample Undisturbed Undisturbed Undisturbed Undisturbed Undisturbed Undisturbed Undisturbed Undisturbed Undisturbed 30.6 20.2 30.5 20.7 Natural water content, % 34.2 2.717 2.728 2.727 2.705 2.700 Specific gravity Wet density, g/cm³ 1.91 1.98 2.09 1.96 2.07 -1.72 Dry density, g/cm³ 1.42 1.52 1.73 -1.50 0.562 0.797 0.568 0.917 0.797 -Natural void ratio 100 100 97 100 100 -Degree of saturation , % 29.3 40.2 NP 41.2 39.8 Liquid limit ,% Atterberg limits 16.4 14.0 16.2 NP Plastic limit 18.3 ,% Plasticity index 24.0 22.9 23.4 15.3 NP -0 3 0 0 0 ----,% Gravel . 2 1 18 Sand 0 0 ---, % Grain size analysis Silt , % 35 45 55 ---43 67 43 56 12 65 55 Clay & colloid , % -9.52 0.105 Max. diameter, mm 0.105 0.074 0.42 0.0059 0.014 0.0060 0.052 0.0043 Diam. at 60% -0.0013 ----_ Diam. at 10% Sandy Silt Silty Clay Silty Clay Silty Clay Clayey Silt -Visual soil description Unified soil classification CL CL CL ML. CL -Undisturbed Unconfined compression test -_ _ _ _ sample, kg/cm² Remoulded sample, kg/cm² _ ----_ _ Sensitivity ratio -_ _ ••• ---Strain at failure,% ••• ---_ ---Angle of 0⁰ test 00 22° (0°) Triaxial compres -sion test _ internal friction -----Cohesion, kg/cm² 0.21 0.33 --0.78 (3.2) ----Condition of U-U U-11 U-U ----drainage Consoli-dation test Preconsolidation pressure, kg/cm² -1.2 -_ Compression index 0.24 -0.26 0.14 _ -

Remarks:

	Table II	-8. S	UMMARY	0F S03	IL TEST	Γ				
Proje	ct:GMPP				Stand	lard:	J.I.	s		
Borehole No. B-9 Sample No. S9-1 S9-2 S9-3										
Sample	No.	\$9-1	S9-2							
Sample	depth	2.00 m 2.82 m	4.00 m 4.82 m	7.00 m 7.78 m	m I M	m. ≁ m	(1) 	11 1 11	m t m	m 1 m
Çonditi	on of sample	DSXIXA Undisturbed	XXXXXXX Undisturbed	CHEPANKEX Undisturbed	Disturbed Undisturbed	Disturbed Undisturbed	Disturbed Undisturbed	Disturbed Undisturbed	Disturbed Undisturbed	Disturbed Undisturbed
Natural	water content, %	33.4	-	21.6						
Specific	c gravity	2.734	-	2.733						
Wet der	nsity, g/cm ³	1.90	-	2,09						
Dry der	nsity, g/cm³	1.42	-	1.72						
Natural	void ratio	0.899	-	0.509						
Degree	of saturation , %	100		100						
ອ	Liquid limit , %		-	25.5	***************************************					
its	Plastic limit , %	-	-	14.2						
Atterberg limits	Plasticity index	-		11.3						
	Gravel , %	-	-	0						
N.	Sand , %	-	-	0						
atysi	Silt , %	-		70						·····························
Grain size anałysis	Clay & colloid , %	-	-	30						
siz c	Max. diameter , mm			0.105						
	Diam. at 60%	_		0.021						
	Diam. at 10%	-	-				· · · · · · · · · · · · · · · · · · ·			
Visual s	soil description	Silty Clay		Clayey Silt						
Unified	soil classification	-	-	CL	·····					·
75	Undisturbed sample, kg/cm ²		_							
essi essi	Remoulded sample, kg/cm ²	-	-	-						
Unconfined compression test	Sensitivity ratio	_	-	_						
582	Strain at failure,%	-	-	-						
st s	Angle of internal friction	-	-	00						
Triaxial compres - sion test	Cohesion, kg/cm ²	-	-	0.42						
	j urannage	-	-	U-U					<u></u>	
Consoli- dation test	Preconsolidation pressure, kg/cm ²	0.93		1.6						
te Bro	Compression index	0.27	-	0.15						<u> </u>
ļ				•						
Remar	ks:							~		

	Table II	-9. S	ummary	0F S01	IL TEST						
Project: GMPP Standard:J.I.S											
Borehole No. B-10 Sample No. \$10-2 \$10-3 \$10-6 \$10-70 \$10-70 \$10-70											
		Middle	Bottom								
Sample	depth	2.50 ·· 3.31 ··	3.50 m 4.30 m	4.80 m 5.61 m	6.30 m 6.80 m	8,00 m 8,25 m	8.25 m 8.45 m	8.45 m 8.55 m	m 	m J m	
	on of sample	9899999 Undisturbed	XXXXX ¹ X ^d Undisturbed	DXXXXXX Undisturbed	Rix아자 Undisturbed	Di xt XXX Undisturbed	びが快え Undisturbed	962/14% Undisturbed	Disturbed Undisturbed	Disturbed Undisturbed	
Natural	water content, %	31.5	-	27.2	25.1	25.5	23.2	54.2			
Specific	c gravity	2.731	1	2,723	2.718	2.713	2.691	2.631			
Wet den	nsity, g/cm³	1.95	-	2.01	2.02	2.03	2.05	1.69			
Dry der	nsity, g/cm ³	1.48	+	1.58	1.60	1.62	1.66	1.10			
Natural	void ratio	0.842	-	0.723	0.695	0.677	0.617	1.40			
Degree of saturation , % 100 - 100											
[20	Liquid limit , %	38.4		35.1	32.0	33.0	27.3	66.0			
its	End of the second se		-	13.5	14.2	15.4	17.6	28,6			
Atte	Plasticity index	21.7	-	21.6	17.8	17.6	9.7	37.4			
	Gravel , %	0	-	0	0	0	0	0			
sis San Silt Silt Cla	Sand , %	1	-	0	1	2	11	4			
	Silt , %	42	-	47	50	49	67	38			
	Clay & colloid , %	57	-	53	49	49	22	58			
) siz	Max. diameter , mm	0.25	-	0.074	0.105	0.105	2.00	0.84	· · · · · · · · · · · · · · · · · · ·		
Srair	Diam. at 60%	0.0056		0.0067	0.0078	0.0087	0.037	0.0055			
	Diam. at 10%	-	-	-	-	-	-	-			
Visual s	soil description	Silty Clay_		Siltý Clay	Silty Clay	Silty Clay	Sandy Clayey Silt	Silty Clay			
Unified	soil classification	CL.	-	CL	CL	CL	CL	ĊH			
रु ह	Undisturbed sample, kg/cm ²	0.345 ~0.353		0.460 ~0.562	-	-	0.519	0.304 ~0,311			
Unconfined compression test	Remoulded sample, kg/cm ²			-	-		-				
Uncon compr test	Sensitivity ratio	-	-	-	-	<u> </u>	-				
5°5	Strain at failure,%	11 ~ 15		11 ~ 15	-		5	9			
cial ores - test	Angle of internal friction	00	-	00	00	00	-				
Triaxial compres - sion test	Cohesion, kg/cm ²	0.17		0.24	0.22	0.18	-				
	Condition of drainage	U-U	-	U-U	U-U	U-U	-	-			
Consoli- dation test	Preconsolidation pressure, kg/cm ²	1.2	-	1.4		-		-			
at the	Compression index	0.25		0.22	-	-	0.13	-			
			^								
Remar	ks:										

Table II-10. SUMMARY OF SOIL TEST

Performed at Gwadar, Pakistan

Project GWADAR MINI-PORT

Standard JIS.

	<u></u>		<u> </u>	· · · · · · · · · · · · · · · · · · ·	. : :	
Borehole No.		В	-1		E E	3−2
Sample No.	S 1-1	S1-2	S1-3	S1-4	S2-1	S22
Sample depth in meter	2.0-2.8	4.0-4.8	6.0-6.8	9.0-9.8	2.5-3.2	4.0-4.7
Natural water content, %	30.8	28.1	20.7	27.9	30.4	27.2
Wet density, g/cm ³	1.92	2.00	2.11	1.96	1.96 -2.00	$1.96 \\ -2.00$
Dry density, g/cm ³					-	-
Unconfined Compression Test						
Undisturbed Sample, kg/cm ²	0,39	0.49	0.66	0.67	0.37	0.26
Remolded Sample, kg/cm ²	-		-		0.12	-
Sensitivity ratio	· · · ·	-	-	-	3.00	-
Strain at failure, %	6-11	6-11(15)	9-11	7-14	9-13	(16)

(Notes)

			· · · · · · · · · · · · · · · · · · ·		1. 	
Borehole No.	B-2		в-3		B-	-31
Sample No.	\$2-3D	S3-1	S3-2	s3-3	s3'-1	s3'-2
Sample depth in meter	7.0-7.8	1.6-2.3	3.0-3.8	5.0-5.8	3.0-3.8	4.0-4.9
Natural water content, %	22.0	30.9	30.4	25.7	30.8	29.6
Wet density, g/cm ³	2.04	1.97	$1.94 \\ -1.96$	2.00	1.93	$1.94 \\ -1.97$
Dry density, g/cm ³	-	-	-	-		-
Unconfined Compression Test						
Undisturbed Sample, kg/cm ²	0.27	0.16	0.25	0.34	0.19 -0.31	0.36
Remolded Sample, kg/cm ²	. - .	n an Trainneach		en T ieren	-	
Sensitivity ratio	-			. <u> </u>		-
Strain at failure, %	10-14	(15)	13	7-10	10-(15)	5-8

(Notes)

Table II-11.

si.

SUMMARY OF SOIL TEST

Performed at Gwadar, Pakistan

Project	GWADAR	MINI-PORT	

Standard JIS.

	· · · · ·					
Borehole No.	В	-3'	B-4		B-6	
Sample No.	S3'-3	s3'-4	S4-2	S6-1	S6-2	S6-3
Sample depth in meter	4.0-4.9	5.0-5.9	3.0-3.9	2.0-2.9	4.0~4.8	6.0-6.9
Natural water content, %	26.7	25.7	28.3	31.2	33.1	30.0
Wet density, g/cm ³	2.02	$1.99 \\ -2.04$	1.95	1.98	1.94	$1.94 \\ -1.97$
Dry density, g/cm ³	-				-	
Unconfined Compression Test						
Undisturbed Sample, kg/cm ²	0.38 -0.49	0.32	0.41	0.33	0.37	0.49
Remolded Sample, kg/cm ²	-	-	-	0.13	-	-
Sensitivity ratio	_	en e		2.4	-	-
Strain at failure, %	6-10	5.5-11	6.5-8	5-8	9-(15)	6-10

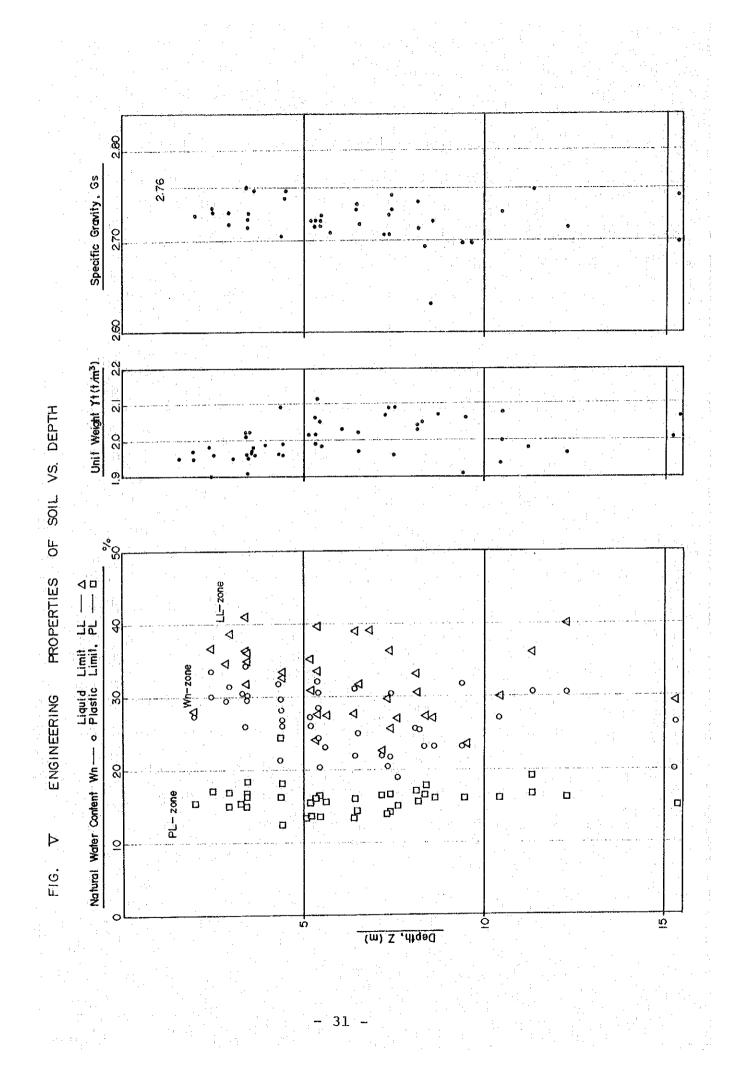
(Notes)

		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
Borehole No.	B-6	В	-7		B-8	
Sample No.	s6-4	S7-2	s7-4	S8-1	S8-2	S8-3
Sample depth in meter	9.0-9.9	5.0-5.8	$10.0 \\ -10.9$	2.0-2.9	3.0-3.7	5.0-5.6
Natural water content, %	25.7	32.3	26.5	34.8	32.3	32.3
Wet density, g/cm ³	2.02	1.94	2.01	1.90	1.91	1,92
Dry density, g/cm ³	-		-	-		
Unconfined Compression Test						
Undisturbed Sample, kg/cm2	0.54	0.35	0.55	0.45	0.46	0.44
Remolded Sample, kg/cm ²		-	-		-	n de Arriense de Arriense Arriense de Arriense de Arr
Sensitivity ratio	-		_	:	-	
Strain at failure, %	8-14	8-10	9-10.5	6.5-9.0	12-13	10

(Notes)

Table II-12. SUMMARY OF SOIL TEST

Project	GWADAR	MINI-PORT	<	St
	Statistics and statistics and statistics			


Performed at Gwadar, Pakistan Standard JIS.

Borehole No.		В	В-9			
Sample No.	S8-4D	58-5D	S8-6D	S8-7D	S9-1	S9-2
Sample depth in meter	7.0-7.7	$10.0 \\ -10.6$	12.0 - 12.6	$15.0 \\ -15.6$	2.0-2.8	4.0-4.8
Natural water content, %	22.2	21.0	27.8	21.4	33.6	29.5
Wet density, g/cm ³	2.08	2.08	$1.91 \\ -1.98$	2.03	1.90	1.96
Dry density, g/cm ³	-			19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -		
Unconfined Compression Test						:
Undisturbed Sample, kg/cm ²	0.66	0.67	0.55	0.59	$0.26 \\ -0.40$	0.39
Remolded Sample, kg/cm ²	-		-	-		- :
Sensitivity ratio		-	_		-	
Strain at failure, %	10-(15)	7-13	12-13	5-7	10-(15)	5-9

(Notes)

				<u></u>		1. 1.
Borehole No.	В	-9		B-10		
Sample No.	S9-3	S9-3	S10-1	S10-3	S10-5	
Sample depth in meter	7.0 -7.28	7.28-35	1.2-1.7	3.5-4.3	5.7-6.2	
Natural water content, %	22.5	20.3	32.9	28.8	25.7	
Wet density, g/cm ³	2.08	2.12	1.95	1.99	2.03	
Dry density, g/cm ³	-					
Unconfined Compression Test						
Undisturbed Sample, kg/cm ²	0.49	$0.69 \\ -1.21$	$0.27 \\ -0.31$	$0.32 \\ -0.43$	0.41	
Remolded Sample, kg/cm ²	-	-	-	-	0.15	
Sensitivity ratio	_	_			2.7	
Strain at failure, %	8-(15)	10-12	(15)	7-9	7-8	

(Notes)

Table III

		Natural Water	Atterberg Limits								
			Liquid Limit	Plastic Limit	Plasticity Index						
Quater-	Very Soft to Soft Silty Clay	21-34%	24-41%	13-18%	9-23						
ñary Deposits	Medium to Stiff Silty Clay and Sandy Silt	20-31.8	23-40% (66)	14-19% (29)	10-24 (37)						
Basement Complex (Ormara Formation	Medium to Very Dense Silty Sand	19-22%	22-27%	15-17%	5-12%						

Natural Water Contents and Atterberg Limits

b) Specific Gravity, Unit Weight and Void Ratio

Specific gravity and unit weight at natural water content vs. depth are shown in Fig. V, Engineering Properties of Soil vs Depth. Specific Gravity (Gs) is generally in the range of 2.70 to 2.75 for any layer of Quaternary deposits and basement complex. Gs at the depth of 8.50 m in borehole B-10 is 2.631, lower than others because of the presence of organic matter.

The unit weight of very soft to soft silty clay varies from 1.90 to 2.1 t/m³ and the average is approximately 2.0 t/m³.

The unit weight of medium to stiff silty clay and sandy silt is in the range of 2.03 to 2.12 t/m³ and that of medium to very dense silty sand of the basement complex is 2.14 t/m³.

The void ratio of all Quaternary deposits is in the range of 0.55 to 0.90, less than the value of normal Quaternary cohesive soil.

The void ratio of medium to very dense silty sand of the basement complex is 0.52.

C) Grain Size Analysis

c-1) Quaternary Deposits

Quaternary deposits, except for a top layer of fine sand, consist of mainly silt and clay (including colloid) and include a small quantity of fine sand and shell fragments.

1 Very Soft to Soft Silty Clay

0 to 3 % gravel

0 to 11 % sand (generally less than 5 %)

35 to 68 % silt

27 to 65 % clay

2 Medium to Stiff Silty Clay and Sandy Silt

- 33 -

0 to 3% gravel

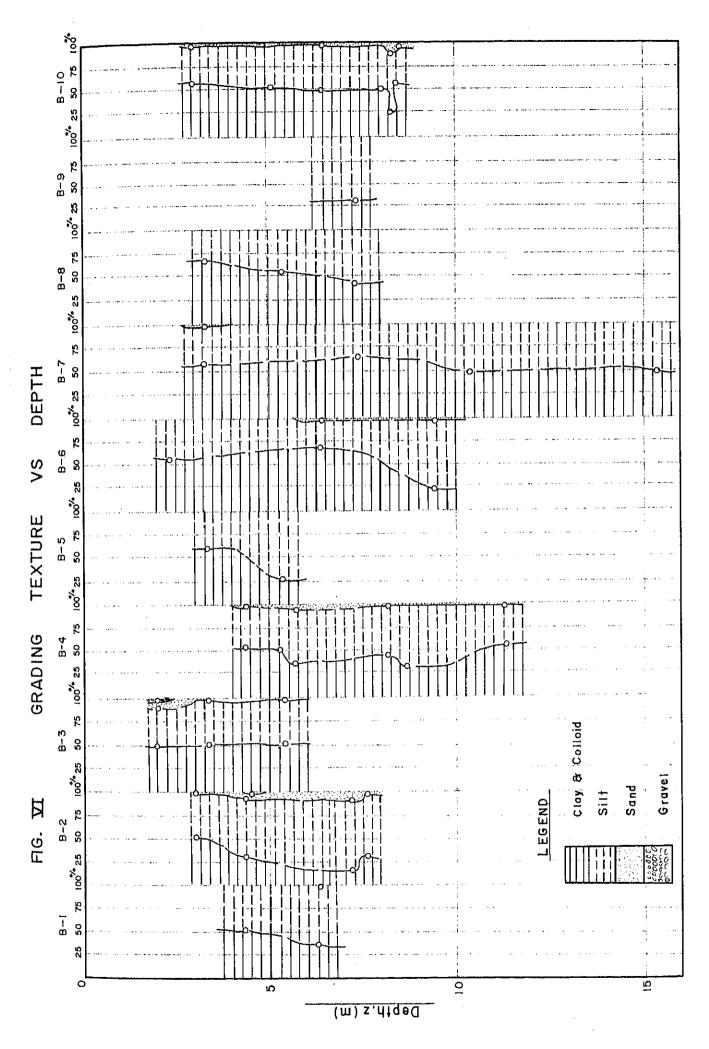
0 to 18% sand

36 to 76 % silt

12 to 63 % clay

c-2) Basement Complex - Ormara Formation

Medium to Very Dense Silty Sand


34

3 to 11 % sand

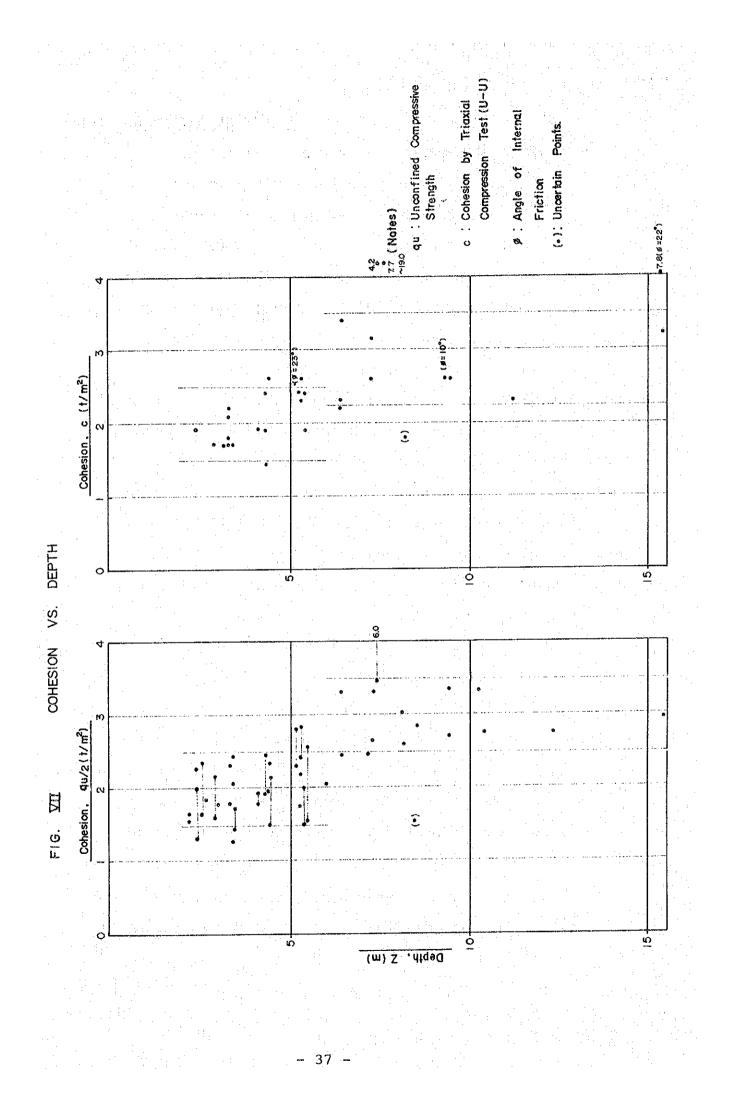
65 to 75 % silt

14 to 32 % clay

Results of grading analysis are summaried in Fig. VI. Grading Texture vs Depth, and the details are shown in Appendix A.

III-2 Unconfined and Triaxial Compression Tests

Unconfined compression tests were performed on almost all undisturbed samples, and triaxial compression tests were performed on selected undisturbed samples under unconsolidated undrained (U.U.) condition.


Results of the tests are summarized in Tables II-1 to II-12 and the details are shown in Appendices C, D and E.

Cohesion values obtained from these tests are listed in Fig. VII, Cohesion VS Depth.

Cohesion values (c=qu/2) obtained from unconfined compression tests are generally in the range of 1.5 to 2.5 t/m² at depths of 2.0 to 6.0 m below the surface of the seabed and vary from 2.5 to 3.5 t/m² at depths of 6.0 to 15.5 m, which include Quaternary deposits and basement complex.

Cohesion values obtained from triaxial compression tests are in the range of 1.5 to 2.5 t/m² at depths of 2.0 to 6.0 m and almost same to c=qu/2, and generally vary from 2.25 to 3.50 t/m² at depths of 6.0 to 15.5 m for Quaternary deposits. That for the medium to very dense silty sand of the basement complex is 7.7 to 19 t/m^2 .

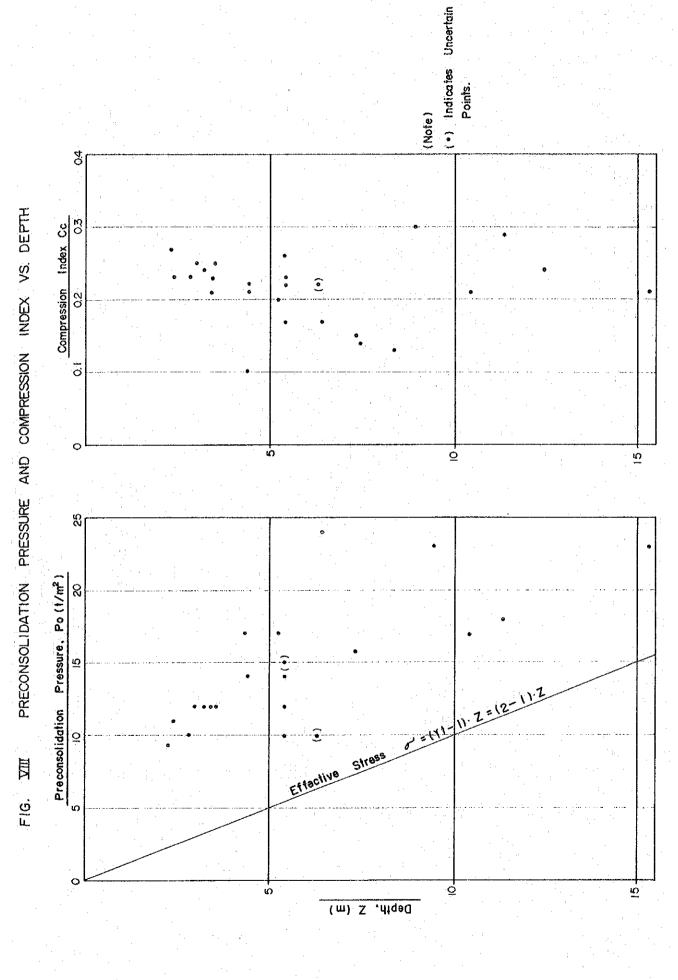
36 -

III-3 Consolidation Tests

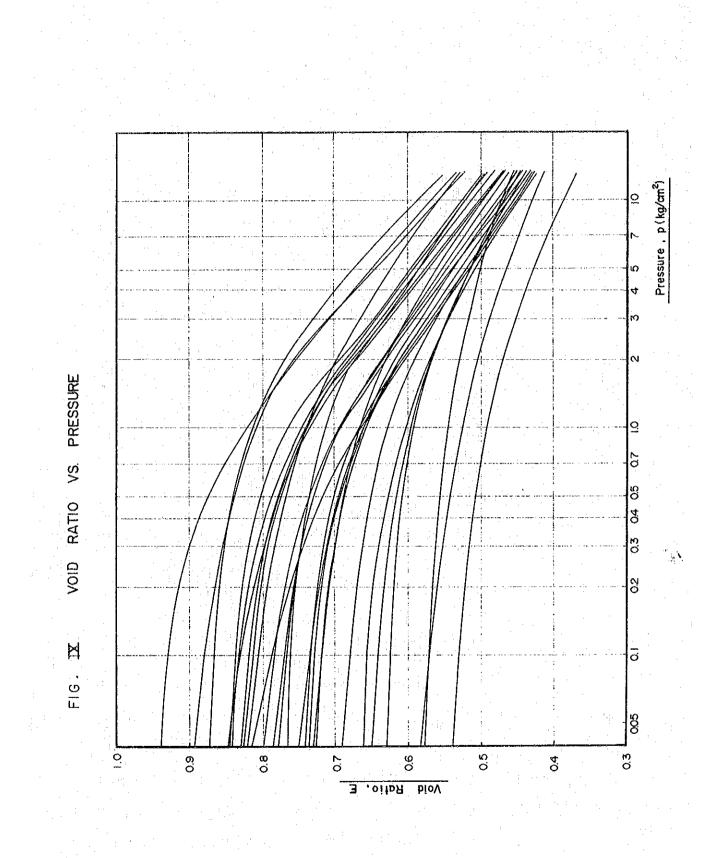
Consolidation tests were performed in Singapore on selected undisturbed samples.

Test results are indicated in Tables II-1 to II-12, "Summary of Test". Details of each test are shown in Appendix F, "Consolidation Test (e-log p curves)" and Appendix G, "Consolidation Test (log \bar{p} cv, mv, k curves)".

Preconsolidation pressure is higher than the effective vertical stress of soil, and Quaternary deposits are overconsolidated by about 10 t/m^2 .


The compression index, Cc, is approximately 0.10 to 0.30, and calculations using the empirical equation proposed by SKEMPTON to estimate Cc after liquid limits for unsensitive clayey soil agree well with the test results obtained. Preconsolidation pressure and compression index versus depth are plotted in Fig. VIII.

All e-log p curves obtained are plotted in Fig. IX.


The coefficient of consolidation, Cv, at a pressure of 10 t/m² is in the range of 5.0 x 10^{-2} to 4.0 x 10^{-1} cm²/min. The coefficient of volume compressibility, mv, is in the range of 1.0 to 5.0 x 10^{-2} cm²/kg at a pressure of 10 t/m². The coefficient of permeability, k, varies from 2 to 5 x 10^{-6} cm/min at a pressure of 10 t/m².

Consolidation tests were performed only on Quaternary deposits (very soft to soft silty clay, and medium to stiff silty clay and sandy silt).

38 -

- 39 -

SECTION IV

SUBSOIL CONDITIONS AT THE PROPOSED SITE

a) Geological Outline

Geographical features around the proposed site can be grouped into three areas.

1. The Headland

2. Tombolo

3. The Mainland

<u>The Headland</u> is composed of weakly consolidated, argillaceous sedimentary rocks made up mainly of particles of silt and clay. The rocks are mudstone and belong to the Ormara Formation formed during the Pliocene and Pleistocene Epochs. The layer is capped generally by a thin layer of hard limestone or sandstone which consists of shells, sand and coral. The hard limestone layer is of the Jiwani Formation formed during the Pleistocene Epoch.

<u>Tombolo</u> consists of fine-grained particles containing many shell fragments. The fine material is mixed with sand, silt, clay and at some places, with gravel of sandstone and mudstone. However, at the middle portion of the Tombolo are dunes of mainly medium-size sand containing shell fragments. The Tombolo must have been formed gradually by the redeposition of fine-grained particles by the action of the drift paralleling the shore. On the <u>Mainland</u>, the Makran Coastal range forms the northern border of the Gwadar area. The range essentially consists of mudstone, shale and sandstones formed during the Miocene and Pliocene Epochs. The prominent hillocks on the northeast of Gwadar town, called Koh-e-medi and Koh-e-Sur, consist of mudstone formed during the Tertiary Period.

b) Geological Structure

The formations formed during the Pliocene Epoch are folded and faulted along an east-west axis due to the complex crust movements occuring in the same period with the Himalayan orogenic movements during the Tertiary Period. The Jiwani Formation and recent deposits are not affected by these folds and faults, but they are affected by recent earthquakes which have occured in Baluchistan.

c) Subsoil Conditions at the proposed Site

Soil conditions at the proposed site, which have been investigated by field explorations and laboratory soil tests, are summarised here.

As shown in the Soil Profiles, Figs. IV-1 and IV-2 the subsurface ground consists of Quaternary deposits (very soft to soft silty clay, and medium to stiff silty clay and sandy silt) and basement complex (medium to very dense silty sand, hard clayey silt and very dense silty sand). The physical and mechanical properties of soil along the port alignment are indicated in Tables II-1 to II-12 and are summarized in Table IV, Summary of Soil Conditions.

c-1) Quaternary Deposit

1 Fine Sand

Find sand is deposited at the surface of the seabed. This dark grey, very loose sand layer is 0.30 to 0.60 m thick and includes many shell fragments and some clay.

2 Very Soft to Soft Silty Clay

This layer is deposited below the fine sand to depths of EL -5.5 to -11.0 m. The layer contains shell fragments, especially at depths of 0.5 to 2.50 m below the surface of the seabed, and organic matter, like decomposed wood.

N-values of Standard Penetration Test vary from 1 to 4.

Specific Gravity, Gs = 2.71-2.76
Water Content, wn = 21-34%
Liquid Limit, LL = 24-41%
Plastic Limit, PL = 13-18%
Plastic Index, PI = 9-23%
Grain size distribution: 0-3% Gravel

43

0-11% sand 35-68% silt

27-65% clay

Unit weight, $\gamma t = 1.90 - 2.10 \text{ t/m}^3$ (Average; 2.0 t/m³) Cohesion, c = qu/2 = 1.25-3.0 t/m² (mainly 1.5-2.5 t/m²)

 $c = 1.5-2.5 t/m^2$ (Triaxial compression test) Compression Index, Cc = 0.10-0.29

Coefficient of Consolidation,

 $Cv = 6.5 \times 10^{-2} - 3.0 \times 10^{-1} \text{ cm}^2/\text{min}.$

(at a pressure of 10 t/m^2)

Coefficient of Volume Compressibility,

mv = 1.2 to 4.7×10^{-2} cm²/kg

(at a pressure of 10 t/m^2)

Coefficient of Permeability,

 $k = 1.5 \text{ to } 5 \times 10^{-6} \text{ cm/min.}$

(at a pressure of 10 t/m^2)

3 Medium to Stiff Silty Clay and Sandy Silt

This layer was encountered below very soft to soft silty clay with the maximum thickness of 12.0 m. The layer contains shell fragments.

N-values are 4 to 12.

Specific Gravity, Gs = 2.63-2.76 Water Content, wn = 20-31.8% Liquid Limit, LL = 23-40% Plastic Limit, PL = 14.0-19% Plasticity Index, PI = 10-24 Grain size distribution: 0-3% gravel

> 0-18% sand 36-76% silt 12-63% clay

Unit weight, $\gamma t = 2.03 - 2.12 t/m^3$

Cohesion, $c = 2.5-3.5 \text{ t/m}^2$ (Unconfined Compression Test)

Cohesion, $c = 2.4-4.2 \text{ t/m}^2$ Angle of Internal Friction $\phi = 22^{\circ}-10^{\circ}$ Compression Index, Cc = 0.13-0.30Coefficient of Consolidation,

> $Cv = 8x10^{-2}$ to $3.0x10^{-1}$ cm²/min (at a pressure of 10 t/m²)

Coefficient of Volume Compressibility,

mv = 1.0 to 4.0×10^{-2} cm²/kg

(at a pressure of 10 t/m^2)

Coefficient of Permeability,

k = 1.3 to 5×10^{-6} cm/min (at a pressure of 10 t/m²)

c-2) Basement complex - Ormara Formation

The basement complex consists of medium to very dense silty sand, hard clayey silt and very dense silty sand. The complex is of the Ormara Formation formed during the Pliocene and Pleistocene Epochs. The formation has folds and faults due to complex crustal movements, and there is the possibility of faults between boreholes B-4 and B-5, and between boreholes B-9 and B-10.

1 Medium to Very Dense Silty Sand

This layer was found at boreholes B-2 to B-3 and has a thickness of 3.0 to 5.0 m. N-values are 25 to more than 50. Specific Gravity, Gs = 2.73
Water Content, Wn = 19-22%
Liquid Limit, LL = 22-27%
Plastic Limit, PL = 15-17%
Plasticity Index, PI = 5-12
Grain size distribution: 3% to 11% sand
65% to 75% silt

14% to 32% clay

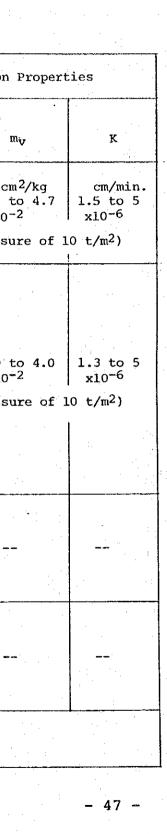
Unit weight, $\gamma_t = 2.14 \text{ t/m}^3$

2

Cohesion, $c = (7.7 \text{ to } 19.0) \text{ t/m}^2$

(Triaxial compression test)

Hard Clayey Silt and Very Dense Silty Sand This layer is hard and very dense and is not compressible due to the loads of the proposed Mini-port facilities.


Its N-values are 24 to more than 50. The layer is expected to act as a drainage layer for the Quaternary deposits while a surcharge of reclaimed soil is applied.

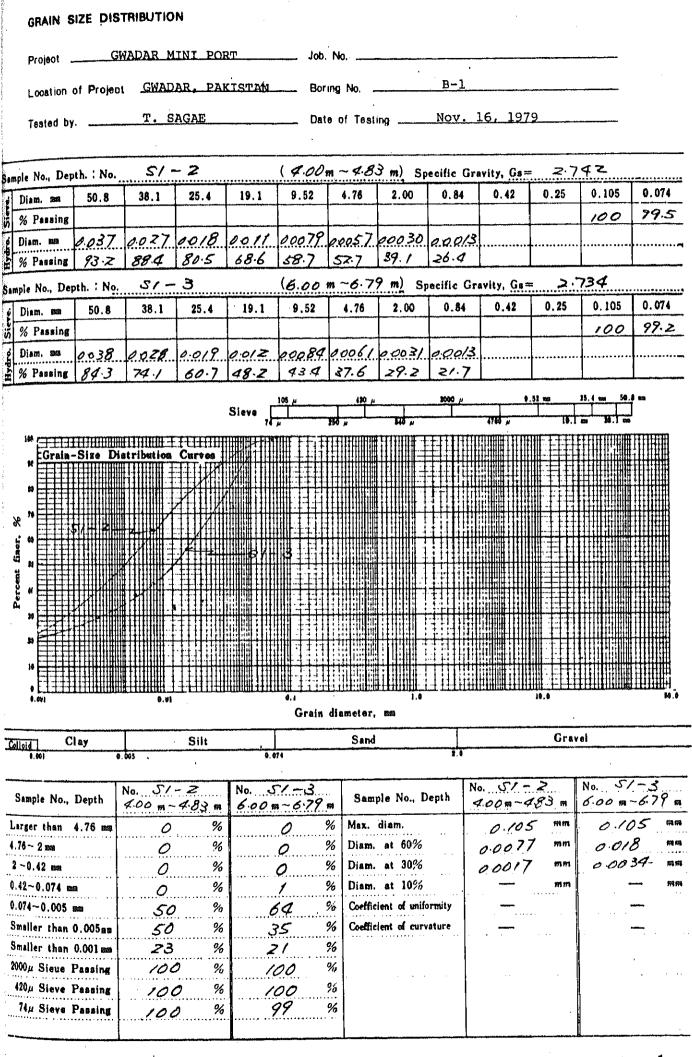
46

Table IV

SUMMARY OF SOIL CONDITIONS

		Grai	ding	Analys	is				Specific Gravity		Standard Cohesion Penetra-		Consolidation			
	Layer	Gravel G	Sand S	nd Silt Clay M C		Wn	Liquid Limit		Plastici- ty Index		Yt	tion Test SPT	С	Cc	Cv	m
Quater-	Very Soft to Soft Silty Clay	0-3	0-11	35-68	27-65	* 21-34	* 24-41	* 13-18	9-23	2.71 -2.76	t/m ² 1.90 -2.10	0.3m	t/m ² 1.5-2.5	0.10 -0.29	cm ² /min. 6.5x10 ⁻² - 3.0x10 ⁻¹ (at a	cm 1.2 to x10 ⁻² pressu
nary Deposits	Medium to Stiff Silty Clay and Sandy Silt	0-3	0-18	36-76	12-63	20-31.8	23-40	14-19	10-24	2.63 -2.76	2.03	4-12	2.5-3.5 (Uncon- fined compres- sion test) c=2.4-4.2 ϕ =10-22°		8.0x10 ⁻² - 3.0x10 ⁻¹ (at a	1.0 t x10 ⁻ pressu
												en e	(Triaxial compres- sion test)			
Basement Complex	Medium to Very Dense Silty Sand	0	3-11	65-75	14-32	19-22	22-27	15-17	5-12	2.73	2.14	25- >50	(7.7-19.0) (Triaxial compres- sion test)			
(Ormara Forma- tion)	Hard Clay- ey Silt and Very Dense Silty Sand	-	-		-	_		-			_	24- >50	· · · · · · · · · · · · · · · · · · ·			

APPENDICES


48

Appendices

Α.	Grain Size Distribution	A - 1 to 23
В.	Atterberg Limits Determination	B - 1 to 18
C.	Unconfined Compression Tests (Stress-Strain Curves)	
	Performed in Singapore	C - 1 to 12
•	Performed in Gwadar, Pakistan	C - 13to 47
D.	Unconsolidated-Undrained Triaxial Compression Tests (Stress-Strain Curves)	D - 1 to 30
E.	Unconsolidated-Undrained Triaxial Compression Tests (Mohr's Circle)	E = 1 to 30
F.	Consolidation Tests (e-log p curves)	F - 1 to 26
G.	Consolidation Tests (log p- cv, mv, k curves)	G - 1 to 26

49

Page

belässkeste