

			:		т
Ta	ble-E.3.1	: <u>GE</u>	LOGICAL	SURVEY	ITEMS

	Survey Item	Quantity
1.	Geological mapping:	
	Reservoir area (1:10,000 in scale)	100 km ²
	Damsite (1:2,000 in scale)	1.8 km2
L1.	Core drilling in the damsite	21 holes, 941.5 linear meter in total
11.	Permeability test in the bore- holes	20 holes, 116 stages in total
iv.	Seismic refraction prospecting	
•	Damsite	17 profiles, 9.75 km in total
":	Borrow area	4 profiles, 2.6 km in total
v.	Test aditting	2 adits, 100 linear meters in total
vi.	In-situ rock tests	
	Plate loading test	3 points
	Block shear test	15 blocks
11.	Test grouting in one site	7 holes, 170 linear meters in total, grouted in 21 stages
		Lugeon tested in 26 stages
ii.	Test trench for geological ovservation	4 trenches, 146 linear meters in total
ix.	Rock test in laboratory	34 pcs.

Table-E.3.2: ACTUAL PROGRESS OF FIELD WORKS ON GEOLOGICAL SURVEY

Survey Item		; ;	· · · · · ·		1	981		. () • • • • •					19	82	1	1 de 1
	F	M	A	М	J	J	Α	S	0	N	D	J	F	M	Α	
Geological Mapping	====															
Seismic Refraction Prospect.			ļ							_						
Core Drilling												-				
Permeability Test							1 A.								╞╼╎	
Test Grouting														_		
Test Adit Excavation									•					1.4 M		1. 1.
In-situ Rock Test														<u> </u>		
Test Trench Excavation																
		•		•	£								L	• <u>•</u> ••••••••••••••••••••••••••••••••••	••••••••	

ine No.		Length (m)		
	On Land	In the River	Total	Site
SL - 1	605	195	800	Damsite A
2	310	190	500	Damsite A
3	300		300	Damsite A
4	200	—	200	Damsite A
5	200		200	Gravel Deposit A
6	500		500	Damsite A
an (12 7 12),	200		200	Damsite A
8	400	-	400	Damsite A
9	250	· - ·	250	Damsite A
10	935	170	1,105	Damsite B
11	860	140	1,000	Damsite C
12	600		600	Damsite B, C
13	1,000		1,000	Damsite B, C
14	300	a tanàna d a kaominina.	300	Damsite A
15	760	140	900	Damsite B
16	630	170	800	Damsite C
17	705	- ·	705	Damsite B, C
SLG - 1	1,100	·	1,100	Gravel Deposit B
2	1,000	-	1,000	Gravel Deposit B
3	305		305	Gravel Deposit B
4	310	-	310	Gravel Deposit B
fotal 21 Lines	11,470	1,005	12,475	

Table-E.3.3: <u>SEISMIC REFRACTION PROSPECTING; LENGTH</u> AND LOCATION OF PROFILE LINE

Note: See Fig.-E.3 for each site

ltem	Name	Description	Quantity
Amplifier	OYO: TR-4-24	24-channel	1 No.
Field Graph	0Y0; Mode1-1230	25-trace	1 No.
Detector	HALL-SEARS; HS-J	14 Hz	30 Nos.
Blaster	KOKUTO RIKEN; GB-105		4 Nos.
Takeout Cable	GT-12	12-channel	4 rolls
Relay Cable	GR-24	24-channel	3 rolls
Linagraph	KODAK; Type 1895	SPEC 2	23 rolls
Dynamite			218.4 kg
Detonator			801 pcs

Table-E.3.4: MAIN INSTRUMENTS AND MATERIALS USED

Table-E.3.5: LAYERED VELOCITIES AND CORRELATIVE GEOLOGY

1.

. . .

I. <u>Damsite</u>

Zoning	Velocity (km/sec)	Correlative Geology
	verocrey (Mar Sec)	correlative debrogy
lst layer*	0.3 to 0.5	Top soil, talus deposits and surfacial loose layer of terrace deposits
2nd làyer 3rd layer	0.5 to 0.8 0.7 to 1.3	Unconsolidated clay, silt, sand and gravel; terrace deposits, residual soil and decomposed rocks
4th layer 5th layer**	1.6 to 2.2	Saturated and deep terrace deposits, saturated sand and gravel deposits in the riverbed and weathered rocks Bedrock; soft rocks
	{ 3.1 to 3.8	Bedrock; moderately hard and solid rocks

^{11.} Gravel Deposit B Site

	이 가슴이 걸렸는 것을 방어도 있는 것이 가지?	그는 그는 것은 것 같아요. 지수는 것은 것은 것을 가지 않는 것을 하는 것을 하는 것을 했다. 것은 것은 것을 하는 것을 수 있다. 가지 않는 것을 하는 것을 수 있다. 가지 않는 것을 하는 것을 하는 것을 수 있다. 가지 않는 것을 하는 것을 하는 것을 하는 것을 수 있다. 가지 않는 것을 하는 것을 하는 것을 하는 것을 하는 것을 수 있다. 가지 않는 것을 수 있는 것을 수 있다. 가지 않는 것을 수 있는 것을 수 있는 것을 수 있는 것을 수 있는 것을 수 있다. 가지 않는 것을 수 있는 것을 수 있다. 가지 않는 것을 수 있는 것을 것을 것을 것을 것을 것을 수 있는 것을
Zoning	Velocity (km/sec)	Correlative Geology
lst layer*	0.3 to 0.4	Top soil, silty soil
2nd layer	0.4 to 0.6	Loose sand and gravel
3rd layer	1.1 to 1.4	Loose
4th layer	1.6 to 1.9	Saturated sand and gravel
5th layer	2.2 to 2.5	Dense
6th layer**	2.5 to 3.5	Cemented conglomerates and/or bedrock
		(Inferred)

* Uppermost low-speed layer

** Deepest layer

Table-E.3.6: CORE DRILLING LENGTH

Hole No.	Length Drilled (in Linear Meter)	Location	Time Drilled
DG1*	37.2	Λ; Left	Before F/S
DG2*	50	A; Left	- do -
DG-3*	31.3	A; River	- do -
B80-1	40	A; River	F/S Stage I
B80-2	40	A; River	- do -
B80-3	45	A; Left	– do –
B81-1	30	A; Left	F/S Stage II
B81-2	50	B; Left	- do -
B81-3	50	B; Right	– do –
B81-4	40	A; Right	- do -
B81-5	50	B; Left	- do -
B81-6	36	B; River	- do -
B81-7	50	C; Left	– do –
B81-8	40	A; Right	– do –
B81-9	40	A; Left	– do –
B81-10	40	A; Left	- do -
B81-11	30.5	B; River	– do –
B81-12	60	B; Left	- do -
B81-13	50	B; River	– do –
B81-14	50	C; Left	- do -
B 81-1 5	50	B; River	- do -
B81-16	50	C; Right	- do -
881→ <u>1</u> 7	50	B; Right	- do -
B81–18	50 · · · · · · · · · · · · · · · · · · ·	C; Left	- do -
Total length	1,060 m A sit	e 11 Holes Befo	ore F/S 3 Holes
(F/S stage total	941.5 m) B sit	e 9 Holes F/S	Stage I 3 Holes
	C sit	e 4 Holes F/S	Stage II 18 Holes
Note: A; : Dam	site A Left, :	Left bank	
B; : Dam	site B Right :	Right bank	
C; : Dam	site C River :	Riverbed	
	F/S :	Feasibility Study	•
* : Но1е	es drilled before F/S s	tage	
			en e
			이 가는 사람이 있다. 동안은 사람이 가는 것이 있는 것이 있다.

Strata	MS-6 Member	At-5 Member		At-5 Member
LIST OF ROCK SAMPLES FOR LABORATORY TEST Depth Rock Name	Medium Sandstone Medium Sandstone Dark-gray Siltstone Yellowish Sandstone	Breccia (Calcareous) Medium Sandstone Fine Sandstone (Calcareous)	Medium Sandstone Sandy Mudstone	Dark-gray Siltstone Sandy Mudstone
. .	10.4 - 10.75 16.0 - 16.6 21.55 - 22.0 25.1 - 26.0	31.4 - 31.95 6.2 - 7.0 13.0 - 13.55	21.0 - 21.45 29.0 - 29.5	7.6 - 8.0 9.0 - 10.0
Table-E.3 Location	Damsite B Left bank	Damsite C Left bank		Damsite B Left bank
Hole No.	B81-5	B81-14		TG-4

	1997年1月1日) 1月1日日朝朝鮮新聞日子(1997年1月1日)		
Depth (m)	Overburden <u>/1</u> Pressure (kg/cm ²)	Stage <mark>/2</mark> No.	Applied Pumping Pressure <mark>/3</mark> (kg/cm ²)
0 ר	0		
5-	1.25	1	$1 \longrightarrow 2 \longrightarrow 1$
		2	$1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 2 \longrightarrow 1$
10 -	2.5	3	$1 \longrightarrow 2.5 \longrightarrow 4 \longrightarrow 2.5 \longrightarrow 1$
15-	3.75	4	$1 \longrightarrow 3 \longrightarrow 5 \longrightarrow 3 \longrightarrow 1$
20	5.0	5	$1 \longrightarrow 3 \longrightarrow 5 \longrightarrow 7 \longrightarrow 4 \longrightarrow 2$
25 -	6.75	б	$\frac{2}{2} \rightarrow 4 \rightarrow 6 \rightarrow 8 \rightarrow 5 \rightarrow 3$
30 -	7.5	7	$2 \longrightarrow 4 \longrightarrow 7 \longrightarrow 9 \longrightarrow 6 \longrightarrow 3$
35-	8.75		
40 -	10.0	8	
45 –	11.25	9	$2 \rightarrow 5 \rightarrow 8 \rightarrow 10 \rightarrow 7 \rightarrow 3$
50 -	12.5	10	(The same pattern was applied in the stages from 8th to 12th)
		11	
55 -	13.75	12	
60 –	15.0		<u> </u>

Table-E.3.8:APPLIED PRESSURE INTHE WATER PRESSURE TEST

Remarks: /1; The density of overburden is assumed as 2.5 g/cm³.

• ••

<u>/2;</u> The section length of a stage was fixed in five meter in general.

<u>/3;</u> Pressure was varied from left one to right one in the same stage.

Table-E.3.9: LUGEON TEST RESULTS

(Unit in Lugeon)

Stoge	Average	0.6	40.3		4.03	4.58	14.6		9.98	3.41	1.86	3.07	1.3	1.3	7.35
	B81-17 B81-16					4	10.2	6.88		2.46	6 44	16.75			8.59
					2.4	~		la di c	1.08	0.62	.88	2.04			1.39
t Bank	B81-3		071		2.33	245	1.28	1.83	2.3	2.07	466	62			2.14
Right	B81-8		0.1			л Д	7.2	7.6	20 4	2.22					6.12
ō	B81-4		159.3	401	6 6	8	9	23	2.3	10.4					273
	B80-13						19.5		0.05	0	0.05	196 T			23.9
Channel	B80-2 B60-15					221.	•		0,34	0.39	0.32	0.55			3.86
River C	B 80-2						3.13	ວ ເ	3.49	4.97					4.30
<u>د</u>	B80-1							664	3 15	6.57			-		545
	B81-18		:		3.2	89 7			3.6	0.98					2.65
-	881-7	. :					- 3 48 - 3 48	0.63	6.8	1. 78	6.0	7.28			5 4
Bank	B81-14	0.6	, L O		2.8	С Ч	N		0.2	0.6	0.02				3,66
Left B	<u>881-5</u>				0 4	- - 4	C		10.78	0.89	- 14	1.18			2.22
ő	881-2				<u> </u>	ς σ		690	0.53	031	=	8			3.70
- holes	B8I-12					با 4	22	6 6	0.1	12.2	5	, . 	£.1	۲. B	4.94
Bore	B81-9				7 4	۲- 7	59	B D D	۲) 80	8. I					6.68
	860-3					175	- 20 - 20 - 20	1 49	82.9						8 اع 2
Depth	ĵĝ.	о С п 1 — П	n 0	- -	u -			ן ה (א נ	ש כ ייז רא	ດ :: (ດ: ເ	2 4 0 0		ין אין כ		Average
Det						- 									Ave

Table-E.3.10: PERMEABILITY OF TERRACE DEPOSIT AND RIVERBED DEPOSIT

x 10-3 4.69×10^{-3} 1.5×10^{-3} 6.65×10^{-3} 5.16 x 10⁻³ 5.89 x 10⁻³ 1.41 x 10 cm/sec. 5.0 6 Average (cm^3/sec) TI = Terrace deposit of sandy site with scattered pebbles, cobbles and boulders. 263.3 683.3 8°.3 296.7 503.3 196.7 H (CH) 620 200 950 I,060 2,060 3,060 ਸ_(cm) 5.08 5.08 4.3 3.3 L (cm) 1,900 140 T2 = Terrace deposit of sand and gravel. Method ρ. o 0 Geology 25 H щ œ 36.2 - 37.6 0 - 19.0 Depth (m) 0 10 10.0 Borehole B81-10 B81-13 B81-13 Geology: B81-1 No. Note: No. 4

= Riverbed deposit. ы 0 = The open-end pipe test (see report discussion in the Section The pumping-in test; 5.4.1) # Р Method :

L = The length of test section.

= The radius of hole tested or the internal radius of casing. ۶ı

H = The differential head of water; H = H (gravity) + H (pressure).

Q = The constant head of flow into the hole.

k = The permeability.

Formulas for the tests: (1)

н Н

Method 0:

(5)

loge L

 $k = \frac{2\pi L \cdot H}{2\pi L \cdot H}$

Method P:

195.25 203.95 239.3 223.9 194:85 222.5 5 195.9 217.0 185.4 219.4 190.4 Apr. I. 1 the Date of 203.95 27 239.75 224.25 195.5 222.6 219.8 190 4 196.5 195.1 185.4 Mar. I Į I Water Table Elevation on 18 242.85 217.5 198.6 196.6 204.2 220.2 190.5 224.5 195.2 Mar I WATER TABLE OBSERVED IN BOREHOLES (Dry in deep at the bottom EL.202.46 m) 220.65 195.45 224.7 ∞ 243. L 204.7 196.9 190.5 Mar. I 1 t 2.6 225.85 243.2 195.35 204.9 197.0 221.1 (Drilled in the river) Feb. í 1 ł (Drilled in the river) (Drilled in the river) (Drilled in the river) ī Completion Table-E.3.11: 198.95 244.0 2,29.2 201.5 195.8 197.2 217.6 221.2 22**1.**7 194.6 221.2 190.9 185.7 198.9 182 82 82 182 182 82 181 182 81 181 181 82 1.82 1.82 182 182 82 82 181 of Drilling -; Not measured Completion Unit in meter 4, 23, 21, Feb. 10, 26, ۍ م Mar. 17. ,† 21, e m 27, ດົ က့် Jan. 28, Mar. 31, с Го Nov. 6, Mar. 24, Ś Apr. Dec. Mar. Nov. Dec. Feb. Jan. Apr. Apr. Feb. Mar Mar. Nov. କିତ୍କିତ୍କ Hole No. B81-15 B81-14 B81-10 B81-12 B81-13 B81-16 B81-18 B81-11 B81-17 B81-2 B81-5 B81-6 B81~7 B81-8 B81-9 B81-3 B81~1 B81-4 Note: TG-6

The borehole B81-8 encountered confined ground water at the depth of 32 m (Head = 36.5 m)

Table-E.3.12: TABLE OF TEST GROUTING RESULTS

4.8. (31.1) (25.4) Whole Aver-145.4 1.3 (88.6) 2.2 т. 8 247.5 9.3 102.1 3.0 23. L 33.5 0.6 1.4 69.9 2.9 age 0.15 Aver-age 0.14 1.2 0.5 Check Holes 0.15 1.0 TG-7 0.2 aÌ. TG-6 0.07 1 2 0.2 0.5 Aver-age 2:0. 2. 0 4.0 2.9 16.5 3.2 .1.6 0.5 1.0 2.2 1.1 5.0 Holes 2.2 TC-5 80 CT 3 O -7 8 -1 3.0 2.3 0.5 2.9 1.4 0.9 4.5 0.7 Tertiary 1.7 TG-4 2.6 2.8 30 . 6 со ---і 4.2 1.4 11.3 9.2 0.4 3.4 9 Secondary Hole TG-3 5. 0 2.6 1.1 1.2 0.9 2.2 3.6 2.3 4.5 2.3 4.0 0.4 0.7 6.0 1.4 0.7 8.0 7.2 429.0 ທ ຕ 14.2 2.2 1.5 237.0 4.8 179.8 Aver-90.1 11.7 33.5 78.6 612.1 0.7 173.4 1.4 0 7 51.6 age Primary Holes 1.8 TG-2. 3.7 ц. С 145.7 164.3 3.7 11.4 4.5 49.5 г. 6 64.3 49.7 0.6 1.4 0.5 7.7 6.II 720 2.5 3.2 26.9 34.4 309.605 5.9 18.9 2.7 309.9 345 3 TG-1 137.9 1.4 1,212.4 107.7 0.7 2.3 0.3 91.3 1.25 kg/cm² to 20 m, 3.75 kg/cm² to 10 m, 1.25 kg/cm² 3.75 kg/cm² m, 1.25 kg/cm² to 20 m, 3.75 kg/cm^2 2.5 kg/cm² 6.5 kg/cm2 to 15 m, 2.5 kg/cm^2 6.5 kg/cm² kg/cm^2 to 15 m, 2.5 kg/cm² m, 5 kg/cm² m, 5 kg/cm² CH C kg/ 65 Seugence of Grouting ŝ 20 m, f e, 'n Ę e, Ê 5 25 30 , TO to 25 25 R 5 ŝ ្អ . С 2 ů. S ទ ្ព S ç ŝ ក្ត 3rd Stage; 15 20 25 'n 2 5 15 20 Ч 20 25 Hole No. 'n 25 Hole Average Hole Average Hole Average (Stage No.) lst Stage; 2nd Stage; 2nd Stage; 3rd Stage; Stage: 5th Stage; 2nd Stage: 5th Stage; lst Stage; 3rd Stage; 4th Stage; 4th Stage; 4th Stage; lst Stage: 5 t.h (uoəSny) (μ/ιτ/) Grout Take (m/ga jnenc kg/m) ısəl uoə3nı Take

		Porte								
•	Adit No	N	E E	ÜL			Fore p		ΤL	ту
	1999 - 1997 -	Nos.	: " m	m .	N Nos.	Lm.	N Nos.	Ľm	m	m3
	TA - 1	1	1.5	40.5	9	9.5	0	0	50,0	150
	TA - 2	2	2.0	38.5	4	4.5	8	7	50,0	150

Table-E.3.13: <u>EXCAVATED ADIT LENGTH</u>

Note: N ; Number of supports L ; Tunnel linear length UL: Unsupported section linear length

TL: Total linear length TV: Total excavated volume

Table-E.3.14:LABORERS, EQUIPMENTS AND MATERIALSFOR TEST ADIT EXCAVATION

•	Item	Description	<u>Quantity</u>
Α.	Laborers engaged	Drillers	314 Man-days
		Common Labors	<u>500 Man-days</u>
÷		Total	814 Man-days

B. Equipments used

1. Air-compres	sor HOKUETSU; PDR-370, 1	0.5 m ³ /min;	l No.:	150 Hours
2. Leg Drill	FURUKAWA; 322D-LB56		2 Nos:	133 Hours
3. Pick Hammer	FURUKAWA; CA-7		2	Nos
4. Generator	YMG-35; 110 V, 3 kVA		1 No.:	377 Hours
5. Water Tank	0.3 m ³		1	No.
6. Pump	KOKEN; MG-5		1	No.
7. Bench Grind	ler		1	No.

C. Material consumed

1. Dynamite	Made in India	1,025 kg	•
2. Detonators	Made in India	2,422 pcs	
3. Timber	Logs; 150 mm dia.x1,800) mmL 60 pcs	
- do -	Logs; 100 mm dia.x1,800) mmL 40 pcs	
- do -	Plate; 200 x 1,500 x 40	mm 5,127 m ³	
- do -	Square; 100 x 100 x 3,00	00 mm 1.83 m ³	
4. Fuel	For Diesel Engines	2,240 Lit.	

	Test Item		R	ock Gro	up	
	lest ilem	I	II	III	IV	V
1.	Apparent specific gravity, water absorption and porosity	1	1	1	1	1
2.	P-wave and S-wave velocities (air-dried state)	3	3	2	2	2
3.	P-wave and S-wave velocities (saturated state)	3	3	: :	_ 1.	-
4.	Unconfined compression test		-	2	2	2
5.	Poisson's ratio (air-dried state)	3	3		- :	-
6.	Poisson's ratio (saturated state)	3	3		· · · · · · · · · · · · · · · · · · ·	
7.	Brazilian test (tensile strength)	. 2	3	-	-	- -
8.	Triaxial compression test $(6_3 = 10 \text{ kg/cm}^2)$	3	_	-		-
9.	Triaxial compression test $(6^{-3} = 20 \text{ kg/cm}^2)$	3		_	-	-
0.	Weathering test	1	1			-

Table-E.3.15: TEST ITEMS AND NUMBER OF SAMPLES TESTED

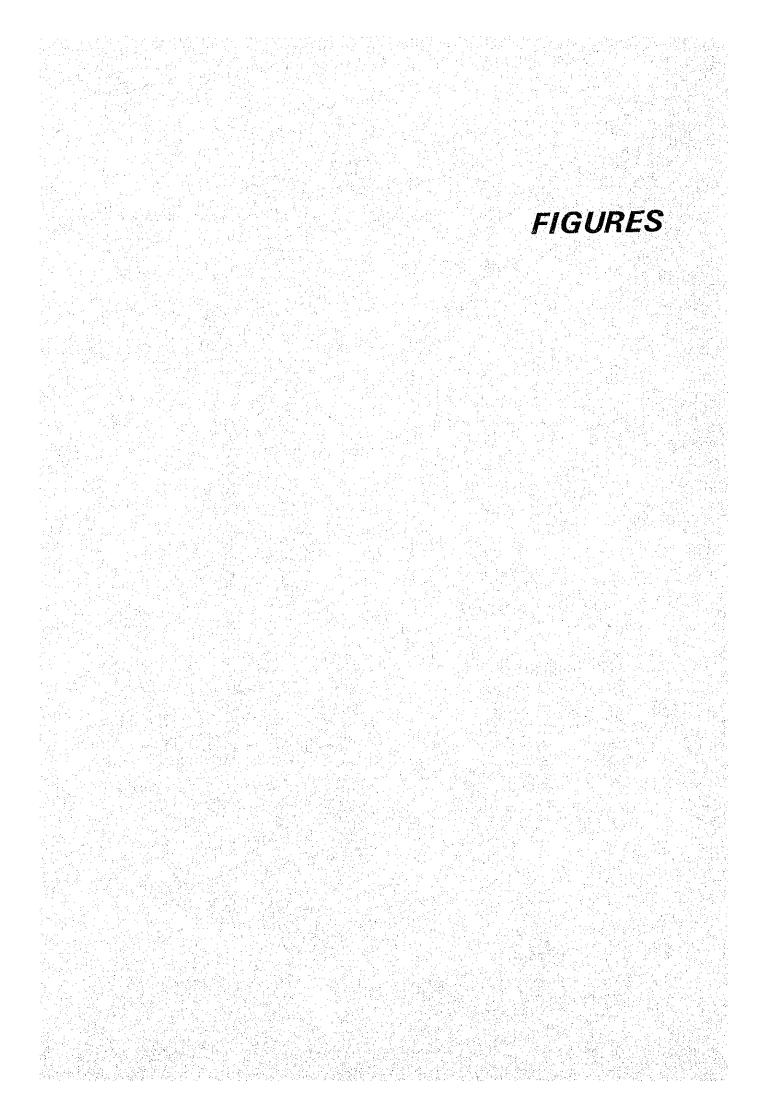
•	۰. ۱۰ ۱۰			SAMPLE NO.	LOCATION	ROCK NA	OBSERVATION	KOLTIGNOO	MEN IN ROCK TEST	APPARENT	DENSITY	NATURAL	WATER AL	٩A	LES NES	AW ITIDE	NEFC S 8			NOUP NO STAT	L V STRE	210) 1EV		NO NO	. 1		али Тоно Тоно	4	1531 9NI			REMARKS	
	•			IO.:	LOCATION NO. & DEPTH	ROCK NAME IN LITHOLOGY	NOL	NOF SPECI. MOISTURE	÷	SPECIFIC GF	7 (g/em ³)	WATER CONTENT WA (%)	WATER ABSORPTION	POROSITY A' (%)	P.WAVE	AVE Vs (km/sec)	STICITYED_(kg/cm²).	AMIC FUISON SHAFTU - 40	STRENGTH CONTURING (10/2011)	STATIC POISON'S RATIO	BRAZILIAN TENSILE		VINNG PRESSURE 01 [kg/cm	STRESS DIFFERENCE at - at (kg/am)	Custon - Obder	LE OF INTERNAL	FAICTION & ()	a car bacour him					
	- 		1. 21.4	(1)1-1	Core			NAT	1		- 1	3.85	1 .	10.29	1.65	0.94		0 260	8-9TT	1	L		(1)										• • •
				1-1(2)	Core drilling No. BS1-14;			XAT	TON		2.347		_	.					126.5	0 310													
				1-1(3)		Medium sands	White gray Massive	NAT	TON		2.343				1,66	0.86 0.94	5: 34×104	0.264	1 684104	0 352									 		-		
		Tabl	•	1-1(4) 1	6.2 co 7.0	dstone		SAT	TON		2.414				2.03	96	6.16x104 6	0.356	0.104	植门													
		Table-E.3.16(1):		1-1(5) 1-	m in depth				NOT		2.414	_				66 0		_	106.6	0 307													
	•	: SUMMARY		1-1(6) 1-:				SAT			2.405			F	2.08	0.97	29×104	0.361	96.5	305													
		ů.	1	1-2(1) 1-2				NAT		37 -		5.02	5.31	12.41							5.62 6								 	3			
	· · ·	ROCK TEST (1-2(2) 1-2(3)	Core drilling			NAT NAT			2.373 2.								28.6		6.41		50	331									* . •
		(1)		(3) 1-2(4)	ing No.B81-14;	Med1	Whit Mass	VT NAT			2.415 2.								2 86×104 1 92				_	331.9 311.7									
			÷.	(4) 1-2(5)	10.0	Med1um sandstone	White gray Massive	T NAT	<u> </u>		2.412 2.453			-					1 224104 2 254104 2 034104				.0 20.0	7 377.4				-					
				5) 1-2(6)	to 11.0 m fu	ne		NAT	<u> </u>		53 2.457								104 2 03-10					4 288.5									
·				1-2(7)	depth	-		NAT	TON		2.453			-					4 1 83~104				10.0	283.8									
				1-2(8)				TAT	TON		2.436								401-22 C - 401-22				10.0	284.5					 				· · · ·
·						Med1um sand- stone	Wnite Stay Massive	IAT	NOT	2 613	2.587	1 50	1.73	4.41																			
				7-4	B81-5 10.4 to 10.7 m	Mediur sand- srone	White gray Massive	INAT	TON	2.304	2.254	0.70	8.24	17.76								••• •										· ۱	

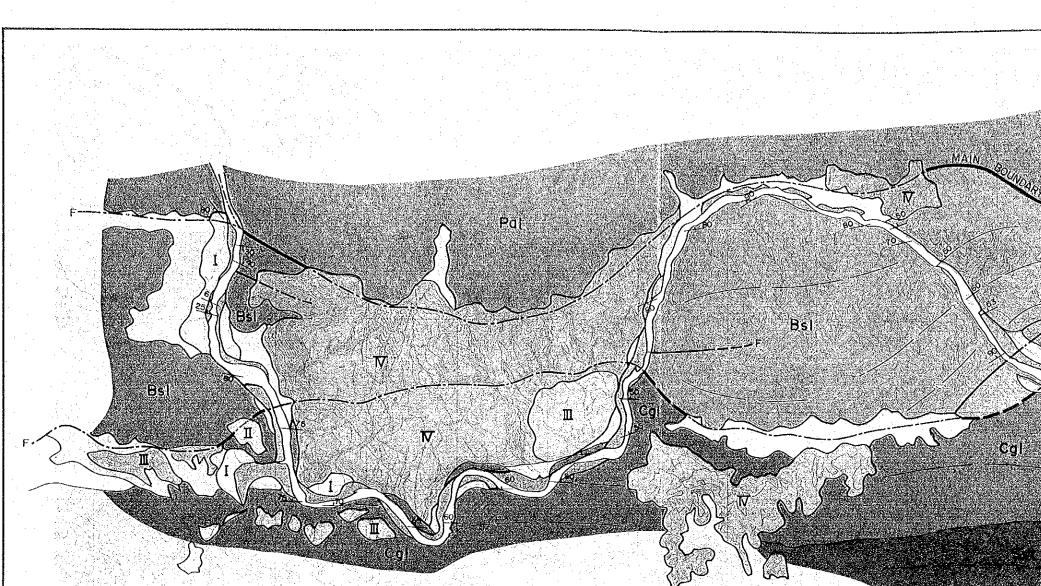
1. A. A.		
n daye N		
	ST (2)	
··· .	- ROCK TES	0 0 (5)
	SUMMARY OF ROCK TEST (2)	1110 6
	аble-E.3.16(2): <u>S</u>	10/0 0 10/0
	able-	Ľ

	3-2	TG-4 7.6 to 8.0 m	Sandy silt- stone	Dark gray Calcareous	NAT	TON	2.700	2.681		1 69	3					-															
	3-1(2)	22.0 m	92	ay Sus	TAN	NOT		-2.617			3.20	1.67	ii		i	3.66×104		;													
	3-1(1)	B81-5 21.5 to	Siltstone	Dark gray Calcareous	IAT	LON	2.616	2.621		2.75	3.34	76° I	2.50×105	0.245	206.5	2.68x104				· · · · · · · · · · · · · · · · · · ·											t, î
: • •																															
urr San	2-2(9)				TAN	TON		2.544										4.63													
-	2-2(8)				NAT	TON		2.560										6.80													۰.
	2-2(7)	i in depth		slaking	INAT	NOT		2553										12 38				.' :									
:	2-2(6)	co 10.0 m	one	. S.	SAT	TON		2.588			3.00	1.54			77.0	4:5×103	0,367										-				•
	2-2(5)	Core drilling No.IC-4; 9.0	Sandy mudstone	Greenish gray Being cracks due	SAT	TON		2.570			3.01		1.83x105	0.285	95.5	Ś	0.397								-			:			•
	2-2(4)	oN guilti	S.	ម៍ធ័	SAT	TON		2.576			2 41	1.56	5 1.67×105	0.302	53.0	m	0.300		27 												
	2-2(3)	ł : :			NAT	NOT		2.574			00 8	-	1	ŧ	207.8							-									•
	2-2(2)				TAN	TON		2.558			3.1.2	1.67	6.92×105 1.88×105	0.298	261.3	4 2.97×104	0.354														
	2-2(1)				IAT	TON	2.561	2.574		4.00	7.0 0	1.67	6.92×10	0.269	163.9	1.21×104	0.338									2	100				: • . • .
				Å																											:
	1-6	B81-5 25.2 co 25.6 m			ered NAT	LON	2.324	-		13.72	10.11																				
	1-5	881-5 16.0 co 16.6 m	-Mediua sand- srone	Whice gray Massive	NAT			2.276	-	1 / 20																					
			DGY		MOISTURE	ANISOTROPY	AVITY	(even)	ENT WA (%)	Wiat (%)	Vo (km/sec)	Vs (km/sec)	S OF Ka/cm ²	RATIO ND	PRESSIVE)F ES (kg/cm ²)	24 OITAF	.E. [ka/am ³]_		IRE o, [kg/am	CE - 0, - 0, (kg/c)		re (kolcm ²)			NG (times)					
	o	LOCATION NO. & DEPTH	ROCK NAME IN LITHOLOGY	ATION	· E : · ·	MEN IN ROCK-TEST	APPARENT SPECIFIC GRAVITY C	DENSITY (9/cm ³)	WATER CONT	WATER ABSORPTION		VE	DYNAMIC MODULUS OF ELASTICITY ED (ka/em ²)	AMIC POISON'S	UNCONFINED COMPRESSIVE STRENGTH OF (kg/cm²)	IC MODULUS O	I S,NOSIOU DI	BRAZILIAN TENSILE		INING PRESSU	STRESS DIFFERENCE of -o. (kg/cm		COHESION	ERICTION		& SAT, PASSI	PERCENT LOSS				· * . •
	SAMPLE NO.	LOCATION	ROCK NA	OBSERVATION	CONDITIO	MEN IN RO	APPARENT	DENSITY	NATURAL	APPARENT POROTION	MA	S WAVE		AE	5 STRE	STAT ELAS	C S STAT		OIS IJI		XAIF NO NO	5.5	340 8							REMARKS	

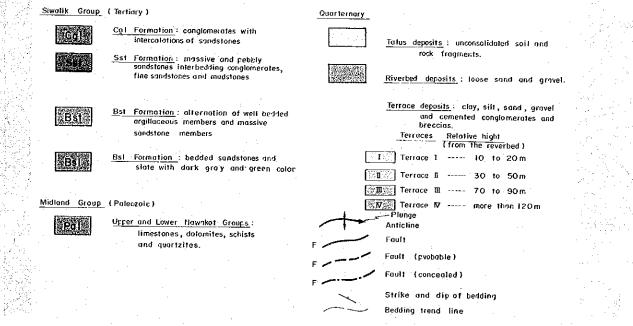
Table-E.3.16(3): SUMMARY OF ROCK TEST (3)

																			: 										
			-															·····			: 								
					· · · · · · · · · · · · · · · · · · ·													9											
5-1(1) 5-1(2)			FINE SANGSCORE	White gray	Calcareous	NAT NAT		9	2.612	0.66	0.85	2.25	3.66 5.10	1.97 3.03		-	619.4 752.8	-											
(3), []									54				- L	1			7											·	
<u> </u>		Intraformational	breccia	Patched-like	ments Calcareous	NAT NAT		2.690	2.671 2.694		0.70	1,88	4.77	2.77	5.21×105 6.83×105	0.246	752.9 624.7	3.06×105 4.00×105											
SAMPLE KO	LOCATION NO. & DEPTH	V20 (0011 - 44) 2000			OBSERVATION	DITION OF SPECI- MOISTURE	MEN IN ROCK TEST ANISOTROPY	APPARENT SPECIFIC GRAVITY G	DENSITY (9/mm)	NATURAL WATER CONTENT WA (%)	WATER ABSORPTION West (%)		P.WAVE Vp. (km/sec)	S-WAVE V. (Mm/sec)	DYNAMIC MODULUS OF	DYNAMIC POISON'S RATIO HUD	UNCONFINED COMPRESSIVE STRENGTH 20 (ka/em ²)	DE ELASTICHODULUS OF ES (kg/em*)	STATIC POISON'S PATIO 45	STRENGTH TENSILE		CONFINING PRESSURE #, (kg/em ¹)	STRESS DIFFERENCE	COHESION +. (kg/cm ²)	ANGLE OF INTERNAL S	DRY & SAT PASSING (1)mth)	PEACENT LOSS (%)		

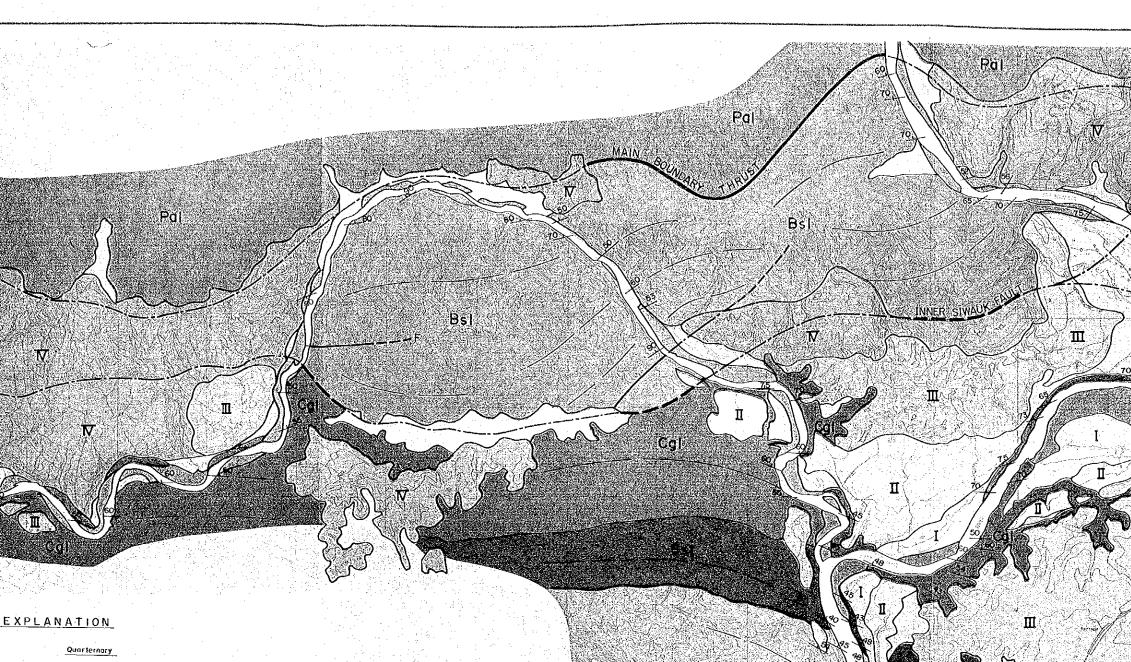

Table-E. 3. 17: DETERMINATION OF PROPERTY OF ROCK SAMPLES


-

- 1	SAMPLE-NO.				-5		2 - 2			3-1 and 3	3-2		4 - 1			5	rf		
	LOCATION NO. & DEPTH		BSL-14 (6.2 to 21 to 21.4 m) B81-5 (10 4 to		, 10 co 11 0.7 16 fo	TC-4	(9.0 co 10.0 m)	а)	B81-5 TC-4	B81-5 (21.5 to 22.0 TG-4 (7.6 to 8.0 m)	22.0 m) 0 m)	38I-5	5 (31.4 го	о 31.9 m)	B31-14	(13.0	ro 13.5 m)		
	ROCK NAME IN LITHOLOGY	JLOGY	16.6, 2. M	I C E	one		Sandy muds tone	це		Siltstone	, es		Breccia	ę		Fine sandstone	LS LORG		
12 1	OBSERVATION									Calcareous	31		Calcareous	eous		Calcareous	50/US	Эн. К	
1.1																			
E .	CONDITION OF SPECI-	MOISTURE	INT /1	SAT ^{/2}		NAT	SAT		NAT	-		TAT			IAT				
1.1	MEN IN ROCK TEST	ANISOTROPY																	
£ -	APPARENT SPECIFIC GRAVITY G	RAVITY G	2.407			2.56I			2.658			2.690			2,666	9			
ŧ É	DENSITY	7 (g/cm ²)																	
$V^{(n)}$	NATURAL WATER CONTENT WA (%)	VTENT WA (%)																	
1 ° C	WATER ABSORPTION	(Want (%)	5.24			4.00			1.69			0.70			0.85				
1 .	APPARENT POROSITY	(%), u (%)	12.07			9.92			4.36			1.88			2.25				
1 ²		Vp (km/sec)	1.63	2.07		3.03	2.98		3.27			5 02			4.38				
	AVE S WAVE	Vs. (km/sec)	0.91	0.97		T 65	1.58		1.81			2 99							
	DYNAMIC MODULUS OF ELASTICITY ED (ka/em ²)	LUS OF (ka/cm ⁻)	5.11×104	6.34x10 ⁴	4	1.90×105	-		2.23x10 ⁵			6.02×105	15		4.39×105	05			• 1
		VSRATIO LD	0.272			0.287	<u>.</u>		0.279			0.226	-		0.262	2			
1 S	STRENGTH SE (kylem)	MPRESSIVE (kg/cm ²)	2.2.8.1	0.001		212.0	75.2		169.1		· .	688.5			686.	1			
3Hd		S OF ES (kg/cm ¹)	2.03×104	H	*	2.06x10 ⁴	4. 5×10		3.17×104			3.53×105	5		3.14×105	05			
100	- C.S.		0.329	0.308		0 335	0.355						-						
۳ I	STRENGTH TO	eNSILE	6.02			7.94													
LEV	OIS		<u> </u>														1, d' a 1		
1 S		CONFINING PRESSURE 0, (kg/cm²)	20 10																
1 U di	ZEA STRESS DIFFERE	STRESS DIFFERENCE 0, -0, (kg/em) 340. 3 285.	340.3285	5.7									 						
100																			
1 a q	COHESION	7 ₆ (kg/cm ²)	20			- 26				: - 					- 1				4 1 1
A 13	C ANGLE OF INTERNAL	RNAL (9	54			53													4 C
 my 3 	ANE																		
t	DRY & SAT, PASSING [times]	SING [times]	S			2					- -				-		-	:	
	THE PERCENT LOSS	[¥]	0			100													
DNE	sji																		
1.															.			-	
í.,																			
									_								· · · · · · · · ·		


REMARKS /1 NAT : Tested under the natural moistured condition. /2 SAT : Tested under the saturated condition.

	<u>/</u> 0	0					· · ·						
	Revealed Rock Stratum	Sst and Ms-8	At-3	Ms-5 At-1			· · ·						
	Geology Overburden <u>/5</u>	\mathbf{T}	(Thin)	Tr (Thin)									
LIST OF TRENCHES	Length/4 (m)	45	42.5	30.6 38	156.1			· · ·				lon.	
:: :: :-	Stake No. <u>/3</u>	75 to 83	212 to 220	69 to 75 193 to 199		Mk.		aciton profile.	along the slope.			ers of Bst Formation	
Table-E.3	Location Line No. 12	SL-10	81 - 10	SL-11 SL-11		nk; R = Right b	profile line No	f a seismic refi	rench excavated	Terrace deposits.		nd At-1 are memb	
	Site	Damsite B : $L^{/1}$	Damsite B : R	Damsite C : L Damsite C : R		Site: L = Left bank; R = Right bank.	Seismic refraction profile line No.	Survey stake No. of a seismic refraciton profile	Linear length of trench excavated along the slope	Overburden: Tr = Terrace	Sst = Sst Formation.	Ms-8, Mt-3, Ms-5 and At-1 are members	
	Trench No.	TR-1	TR-2	TR-3 TR-4	Total	Note: <u>/1</u> ;	<u>/2</u> ;	<u>/3</u> ;	<u>/4</u> ;	<u>/</u> 2;	<u>/</u> e;		



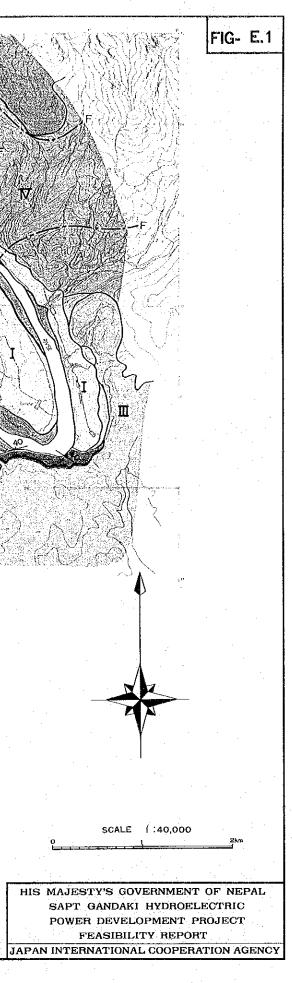
EXPLANATION

ziγ . rotes. ll bedded

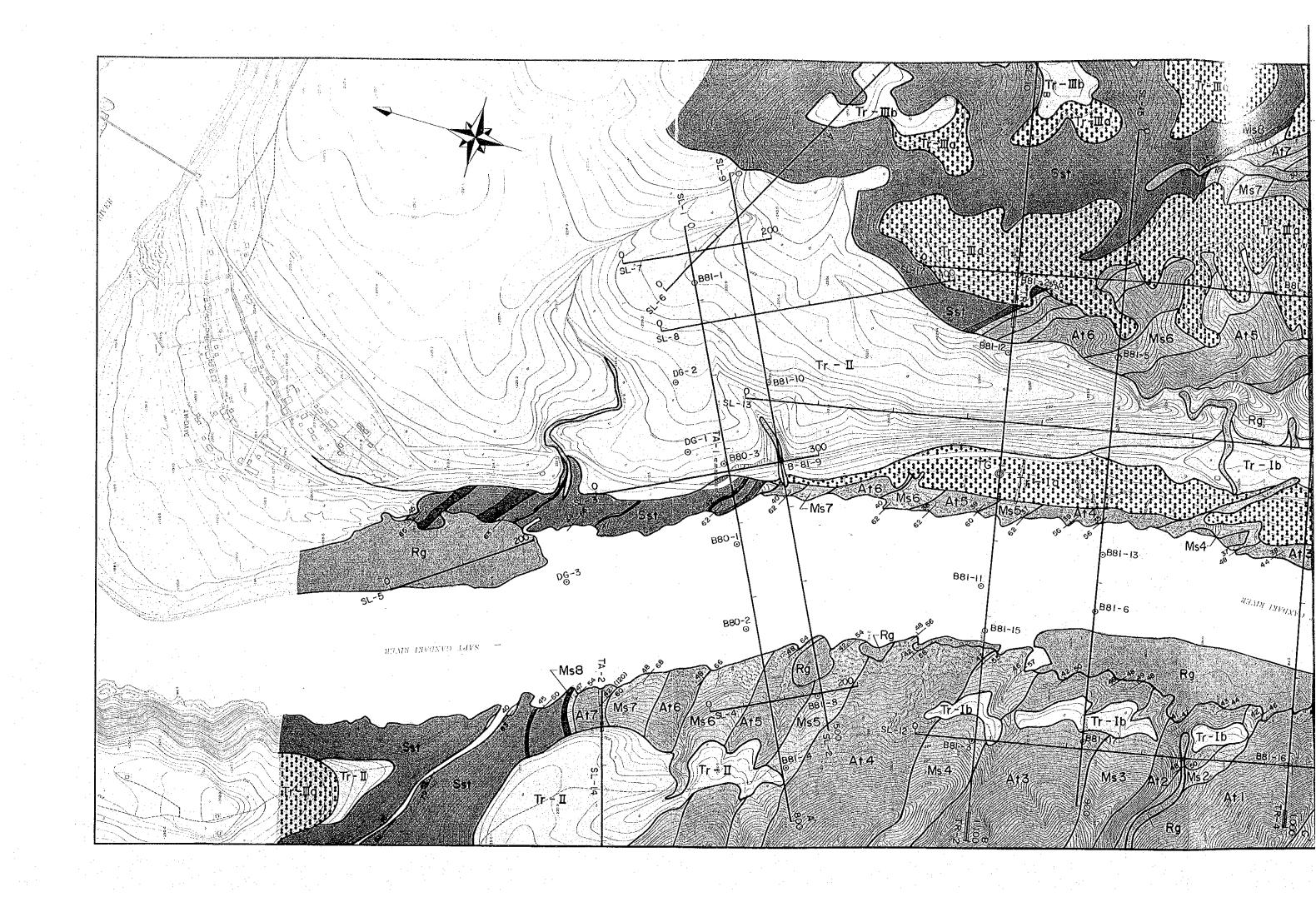
es and reen color

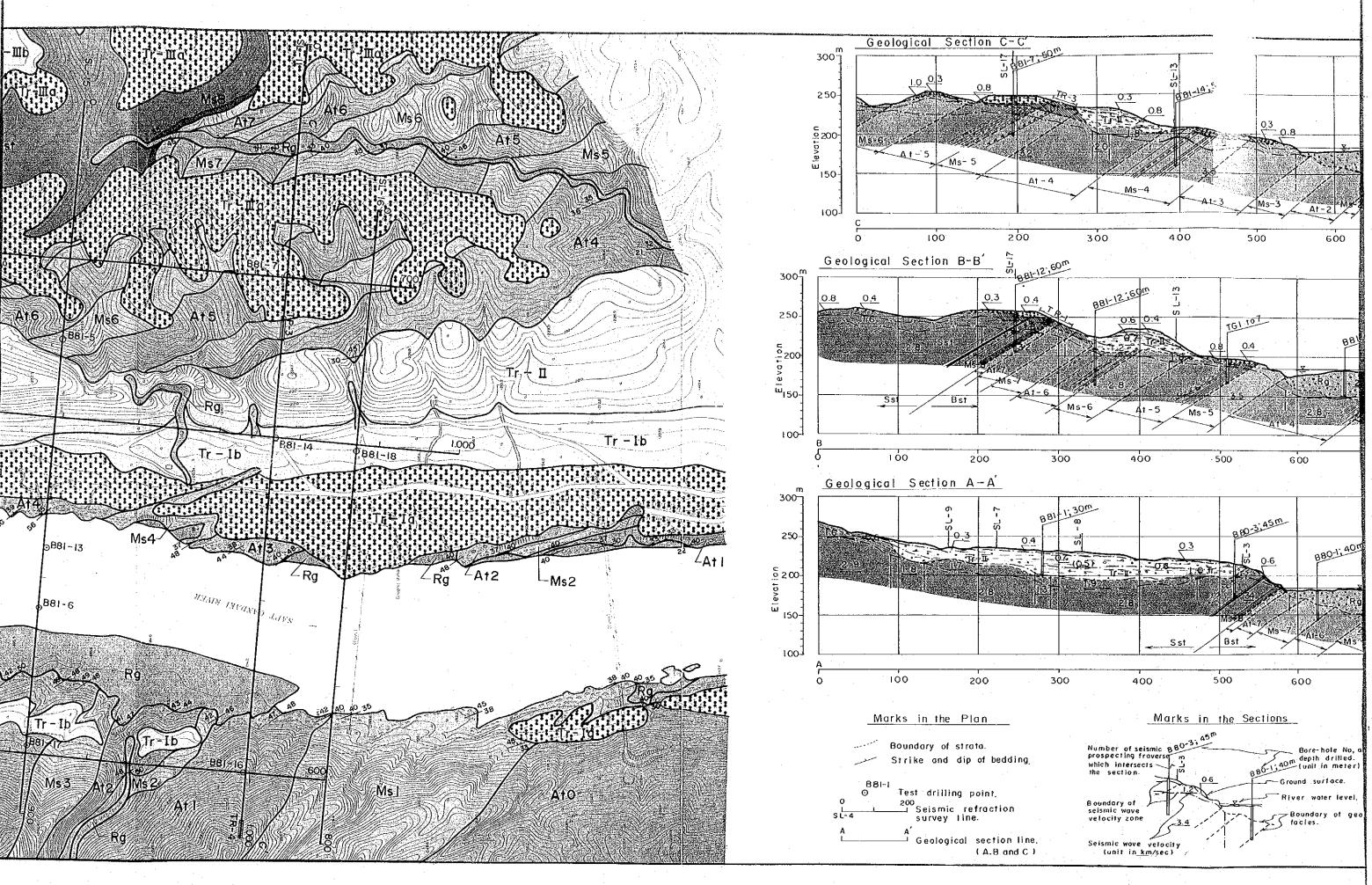
> Fault (probable) Fault (concealed) Strike and dip of bedding Bedding trend line

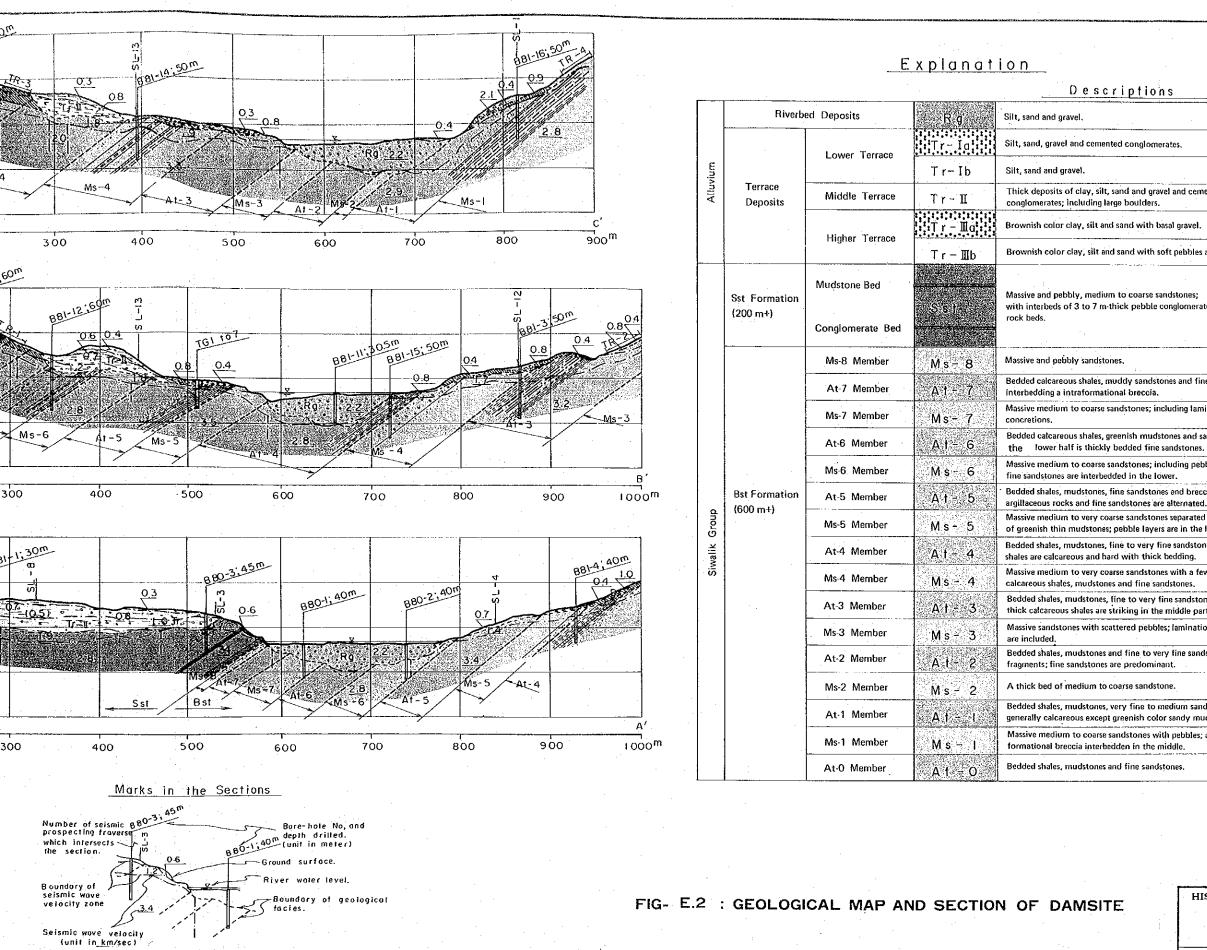
Anticlin Fault


Talus deposits : unconsolidated soil and rock fragments. Riverbed deposits : louse sond and grave

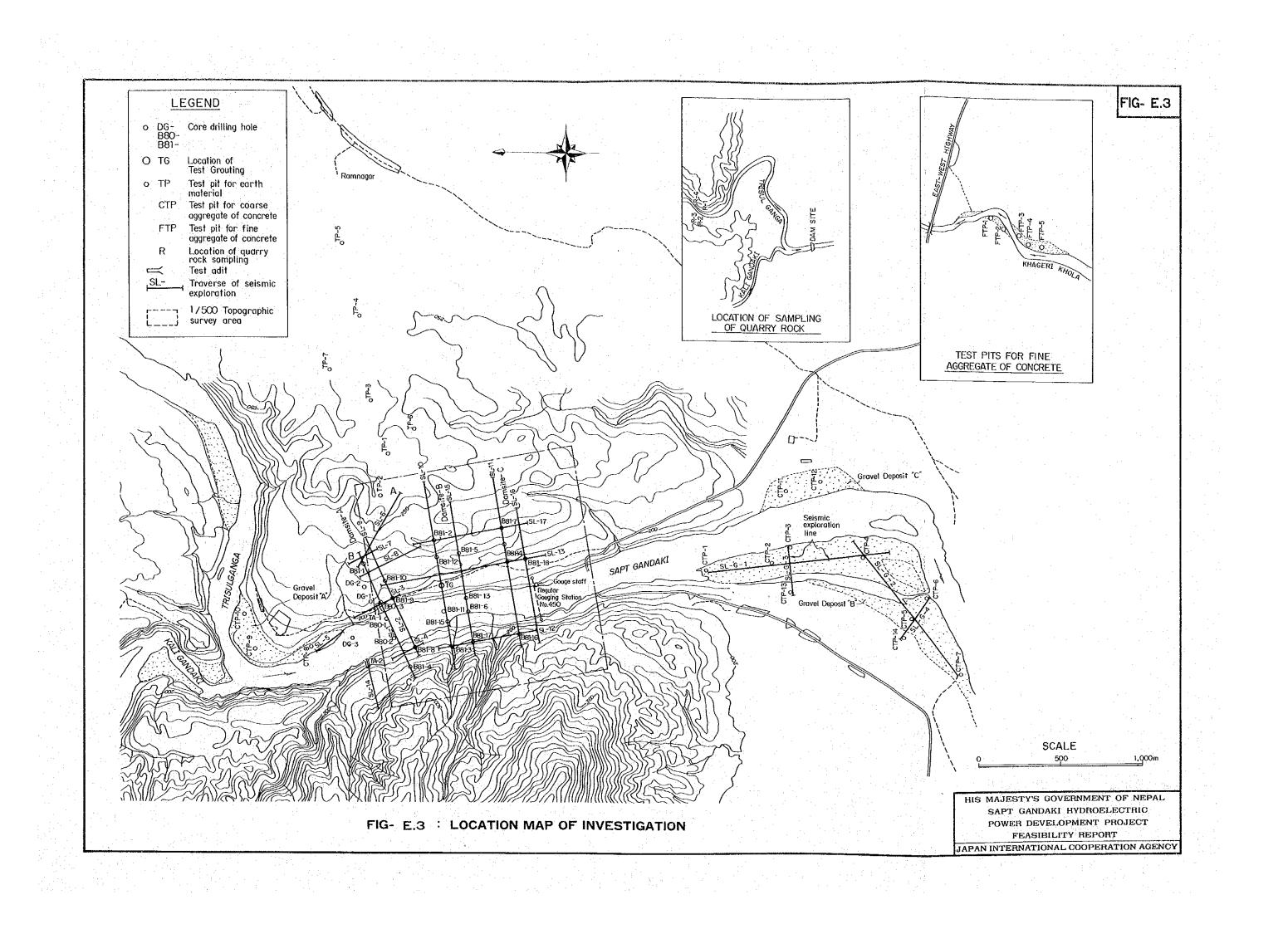
Terrace deposits : clay, silt, sand, gravel and cemented conglomerates and breccias. Terraces Relative hight (from the reverbed) Terrace 1 ---- 10 to 20 m Terroce E ----- 30 to 50m Terrace W ----- more than 120m

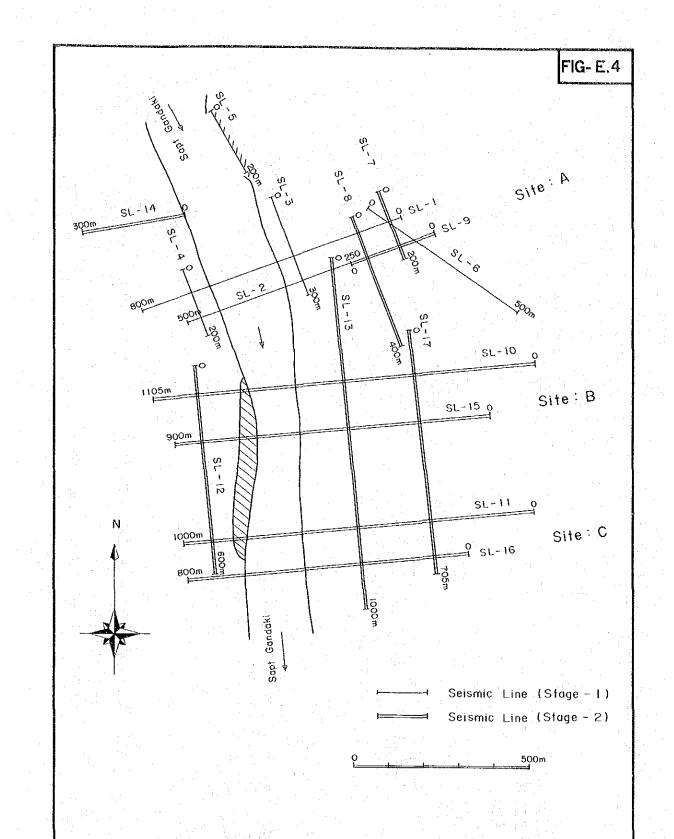

Bst


Ι FIG- E.1 : GEOLOGICAL MAP OF RESERVOIR AREA


1sti

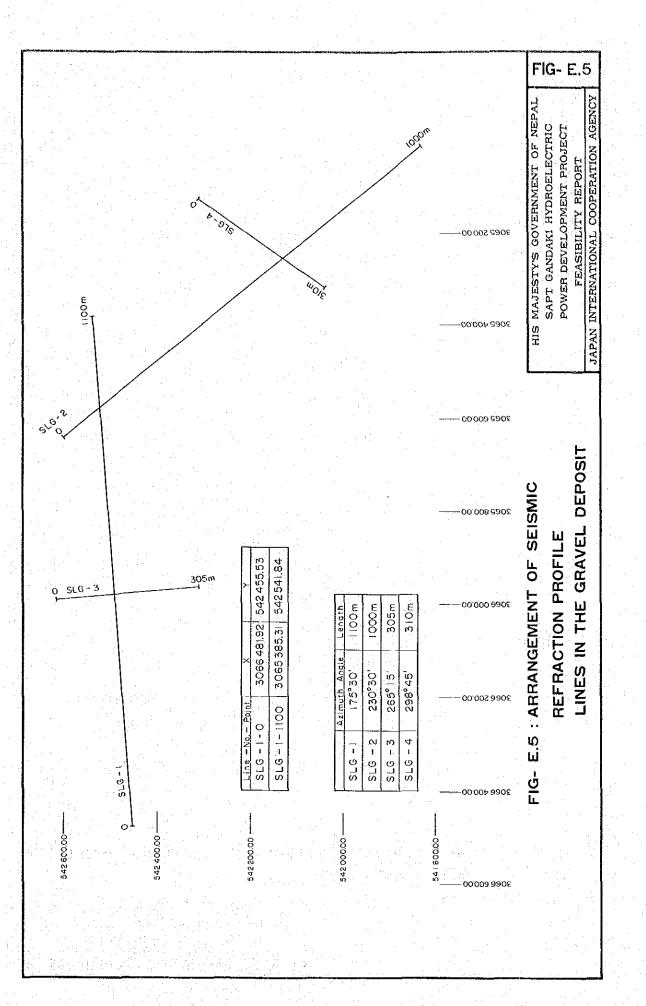
Π


•			
		FIG- E.2	-
· · ·			
	hicknes	S	
	15 to 40 m in main channel	the	
	0 to 8 m	·	
· · · · · · · · · · · · · · · · · · ·	3 to 10 m		
nented	20 to 40 m		
	3 to 10 m		
s and underlying residual soil.	2 to 8 m		
	· .		
ate beds and argillaceous	200 m+		
		·	
	7 m	and the second	
ne sandstones;	15 to 20 m		
ninations and	[.] 25 m		
sandstones; 5.	30 m		
bbles and concretions;	30 m		
ccias; d.	35 m		
d in three units by two layers e lower.	25 to 30 m		
ones and breccias;	65 m		
ew intercalations of	45 to 60 m		
ones and breccias; a few meter art.	50 to 65 m		
ions and concretion layers	30 m		
dstones with intraformational	35 m		
	10 m		
ndstones and breccias; udstone.	45 m		
; a few meter thick intra-	105 m		
	15 m+		


SCALE 1 :4,000

HIS MAJESTY'S GOVERNMENT OF NEPAL SAPT GANDAKI HYDROELECTRIC POWER DEVELOPMENT PROJECT FEASIBILITY REPORT

200


JAPAN INTERNATIONAL COOPERATION AGENCY

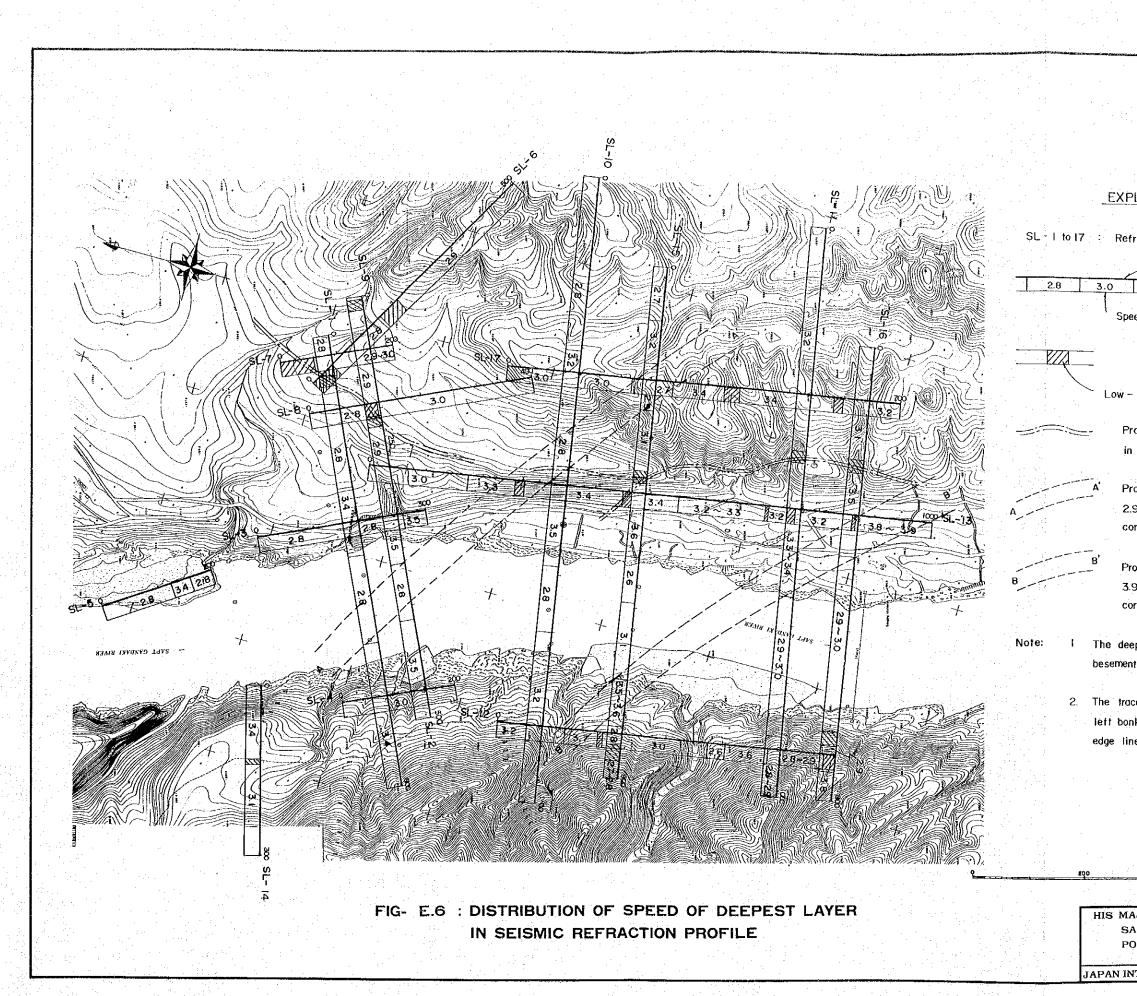


FIG- E.4 : ARRANGEMENT OF SEISMIC REFRACTION PROFILE LINES IN THE DAMSITE

HIS MAJESTY'S GOVERNMENT OF NEPAL SAPT GANDAKI HYDROELECTRIC POWER DEVELOPMENT PROJECT FEASIBILITY REPORT JAPAN INTERNATIONAL COOPERATION AGENCY

EXPLANATION

SL-1 to 17 : Refraction Profile NO.

-Profile Line

Speed of the deepest layer (unit in km/sec)

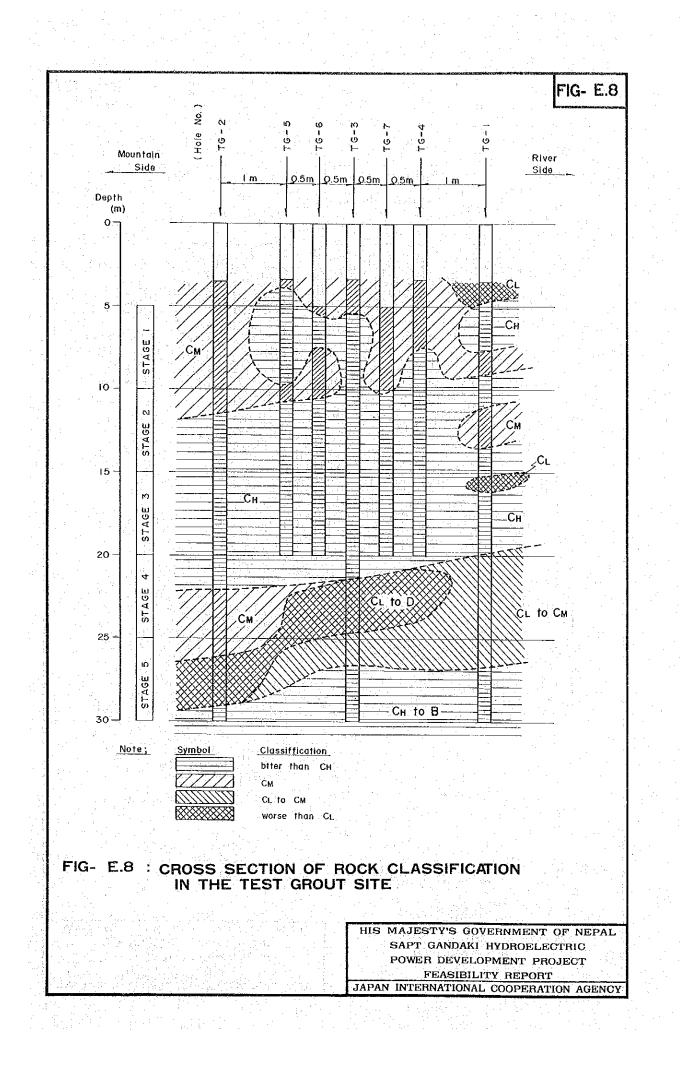
Low-speed zone

Probable trece of the low-speed zone in the left bank.

Probable trend of the 2.7 km/sec to 2.9 km/sec zone which seems to correlate with Ms-6 Member.

Probable trend of the 3.3 km/sec to 3.9 km/sec zone which seems to correlate with At - 3 Member.

I The deepest layer generally represents the besement (fresh bedrock) in refraction profile.


> The trace of the low-speed zone in the left bonk probably correlates to the steep edge line of old river channels.

HIS MAJESTY'S GOVERNMENT OF NEPAL SAFT GANDAKI HYDROELECTRIC POWER DEVELOPMENT PROJECT FEASIBILITY REPORT JAPAN INTERNATIONAL COOPERATION AGENCY

No.) **∩** 1 76 - 5 ø TG-3. TG-7 (Hole 16-1 101 Mountain Ю River Side Side <u>Q.5 m</u> m 0.5m <u>Q.5</u>m 0.5 m Ϊm Depth Rock (Rock Facies (<u>m</u>) 0 Overburden silty sand White gray f.tom.sondst 5 Siltst. & f.sandst STAGE Mudstone. — (gradual.) — 10 Fine sandst 2 STAGE Fine sandst. graded 15 ю STAGE Fine sandst graded 20 Fine sandst 4 cracky STAGE 25 Mudstone massive ß STAGE -(gradual)-Med sondst graded 30 Clear boundary of rock facies Gradual boundary of rock facies Bedding slip faults. +#17,4781.018 FIG- E.7 : GEOLOGIC SECTION OF THE TEST GROUT SITE

> HIS MAJESTY'S GOVERNMENT OF NEPAL SAPT GANDAKI HYDROELECTRIC POWER DEVELOPMENT PROJECT FEASIBILITY REPORT JAPAN INTERNATIONAL COOPERATION AGENCY

FIG- E.7

		<u></u>	n yan genten oo ya ya ya ya ya					FIG-E.9	
								NEPAL UC CT AGENCY	
[alot	mann (Ground surface)	N X		<u></u>	84 12	<u>8</u> 4] ⊠		HIS MAJESTYS GOVERNMENT OF NEPAL SAPT GANDAKI HYDROELECTRIC POWER DEVELOPMENT PROJECT FEASIBILITY REPORT JAPAN INTERNATIONAL COOPERATION AGENCY	
TG-1 Hole)		0, 20 0, 20	01.390	26.88	01 Γ αια - - - - - -	71 . ၁୬0 O W		OVERNM CI HYDR(JOPMEN LITY RE	
) Test ant r. meter		STY'S GOVERNMENT C GANDAKI HYDROELEC ER DEVELOPMENT PRO FEASIBILITY REPORT NATIONAL COOPERATIO	
TG-4 Hole) (Tertiary Hole) 1m		9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-2.64 0.41	<u>1. 71</u> 0. 55		Result of Lugeon Test (Lugeon unit) Grout take cement weight in Kg. per bore-hole linear meter		S MAJE SAPT POWE I	
19		Dec 31	ין מח ויט כו	100 e			ശ	HIS	
ary HJ TG-7 ary HJ TG-7 m Check Ho		0.12	(Wot.6) 8,55 0,57 0,57	0.97 (Mot. 7)	1. <u>20</u> 1. 36	0.68 Lower	sted date. from TG-		
le) TG-3 H) (Secondary H) (C		0%c, 22	Dec. 23	0		0 10	ugeon te of water		
TG-6 (Check Hole) 0.5m		(G)oM)	0 0 1 (g 10W)	(G. 10M)		ä	show the Lugeon tested date. to leakage of water from TG-	GROUTING	
TG-5-HI (Tertiory HI) 05m		νο, ο νο, ο φ, θ β, 83	8 .nol w.O 40.0	Of .npt 2.2 4.2 5.1 5.5		Date of grouting	en dates s isted due		
		<u> </u>	<u> </u>			Ă A A A A A A A A A A A A A A A A A A A	routed. Th was not to	TES	
TG-2 Hole) (Primary Hole)		7 <u>20,00</u> 49.52	3.68 0.58	914 141 114	1.7 <u>6</u> 0.54	7,73	Check holes were not grouted. Then dates show the Lugeon tested date. The 1st stage of TG-7 was not tested due to leakage of water from TG-6.	FIG-E.9 : RECORD OF TEST	
-91- Lai-		8 23() 1	Dec 13	0, 15 0, 150	1 1	Déc 55	k holes w Ist stage	RECO	
						en de la compañía de La compañía de la comp La compañía de la comp	X. Checi The	の 山	
Grouting Stage	No. (No grouting)	-	2	61	4	<u></u>		, FIG	
Depth (⊞)		ი ს	· · · · · 2 · · · ·	ο 	3	່ 			
J									