Table-B.4: SIEVING ANALYSIS RESULT FOR FINE AGGREGATE

		Passing (Rema	Remaining) Rate of Each Sieve in %	ach Sieve in %			
Sieve (mm)			Test Pit No.				Remarks
(1000)	FTP-1	FTP-2	FTP-3	FTP-4	FTP-5	– Average	
5	85(15)	38(62)	87(13)	63(37)	44.5(55.5)	63.5(36.5)	
2.5	80(20)	31.5(68.5)	84 (16)	57(43)	38(62)	58.1(41.9)	
1.2	76(24)	26.5(73.5)	82.5(17.5)	53.5(46.5)	33(67)	54.3(45.7)	
9.0	53.5(46.5)	13(87)	77.5(22.5)	38.5(61.5)	20(80)	40.5(59.5)	
0.3	15.5(84.5)	3.5(96.5)	14(86)	10(90)	(96)7	9.4(60.6)	
0.15	2(98)	1.0(99)	2(98)	2(98)	2(98)	1.8(98.2)	

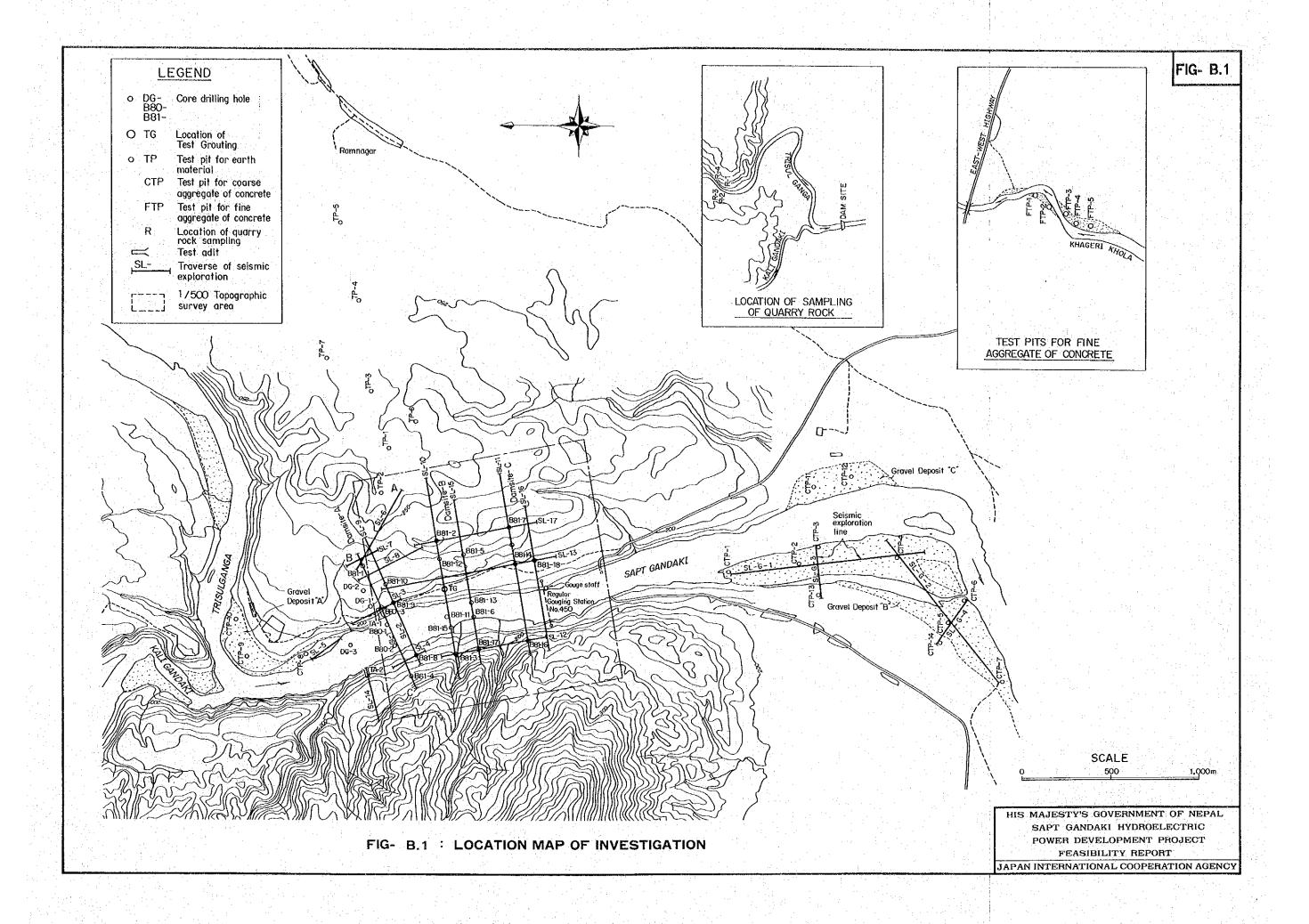
														. :
						Remarks						٠		
へ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	40.5(59.5)	9.4(90.6)	1.8(98.2)				Average	0	10.11	17.39	41.54	86.32	97.01	2.52
0.000	20(80)	(96) 7	2(98)		than 5 mm)		FTP-5	0	14.61	25.84	55.06	91.01	95.51	2.82
へり・ロナノリ・リリ	38.5(61.5)	10(90)	2(98)		size larger		FIP-4		9.52	15.08	38.89	84.13	96.83	2.44
くり・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	77.5(22.5)	14(86)	2(98)		in Each Sieve in % (Excl.	Test Pit No.	FTP-3	0	3.45	5.17	10.92	83.91	97.70	2.01
(0.0)	13(87)	3.5(96.5)	1.0(99)		Rate		FTP-2	0	17.11	30.26	65.79	90.79	97.37	3.01
(+4/0/	53.5(46.5)	15.5(84.5)	2(98)		Remaining		FTP-1	0	5.88	10.59	37.06	81.76	97.65	2.33
7.7	9.0	0.3	0.15			Sieve (mm)	(mm)	5	2.5	1.2	9.0	0.3	0.15	т.м.

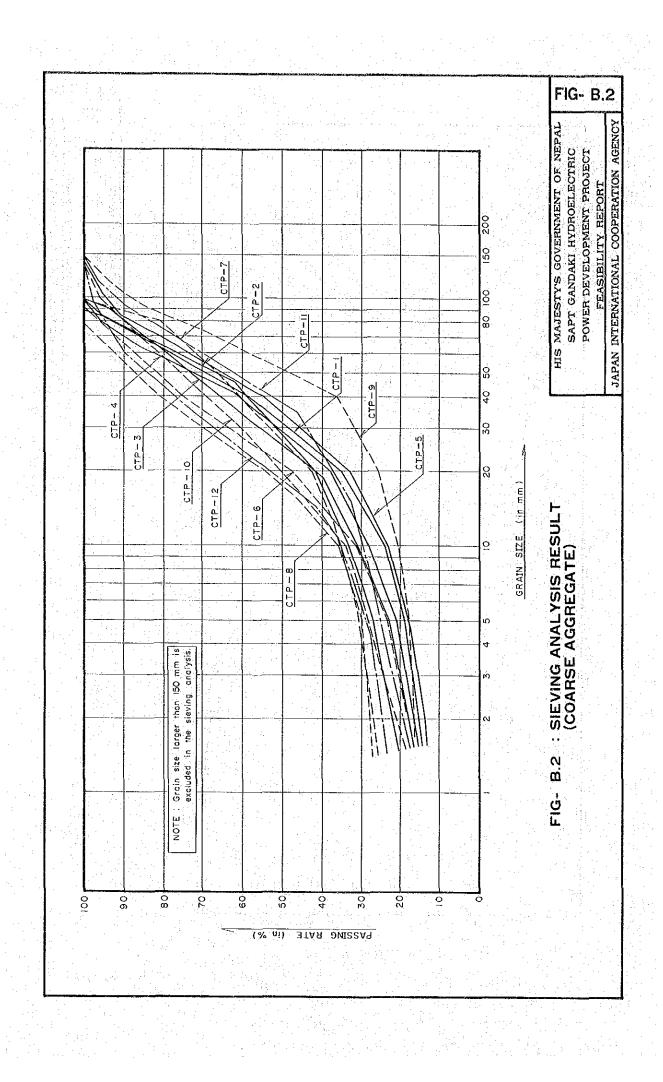
Table-B.5: QUALITY TEST RESULT FOR FINE AGGREGATE

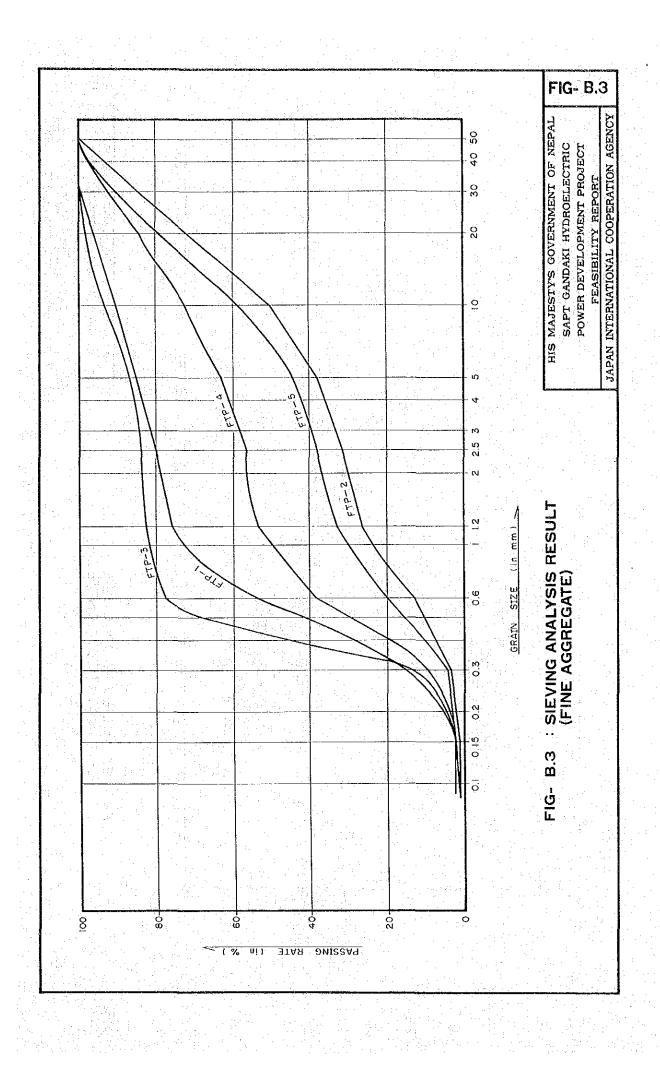
	Specifi	Specific Gravity			!	Weight of
 1	and Abs	and Absorption	Washing Test	Abrasion Test	Soundness Test	Unit Volume
No.	Specific Gravity	Absorption (%)	Rate of Passing 0.088 mm Sieve (%)	Weight Reduction (%)	Weight Reduction (%)	(t/m ³)
FTP - 1	2.67	1.93	10.09		9.58	1.283
1 2	2.65	1.94	1.93	1	1	1.891
າ . ຕ ↓	2.68	2.63	2.20	1	12.03	1.295
7 1	2.63	1.84	1.07		1	1.615
) V	2.54	2.28	6.14		: 	1.800

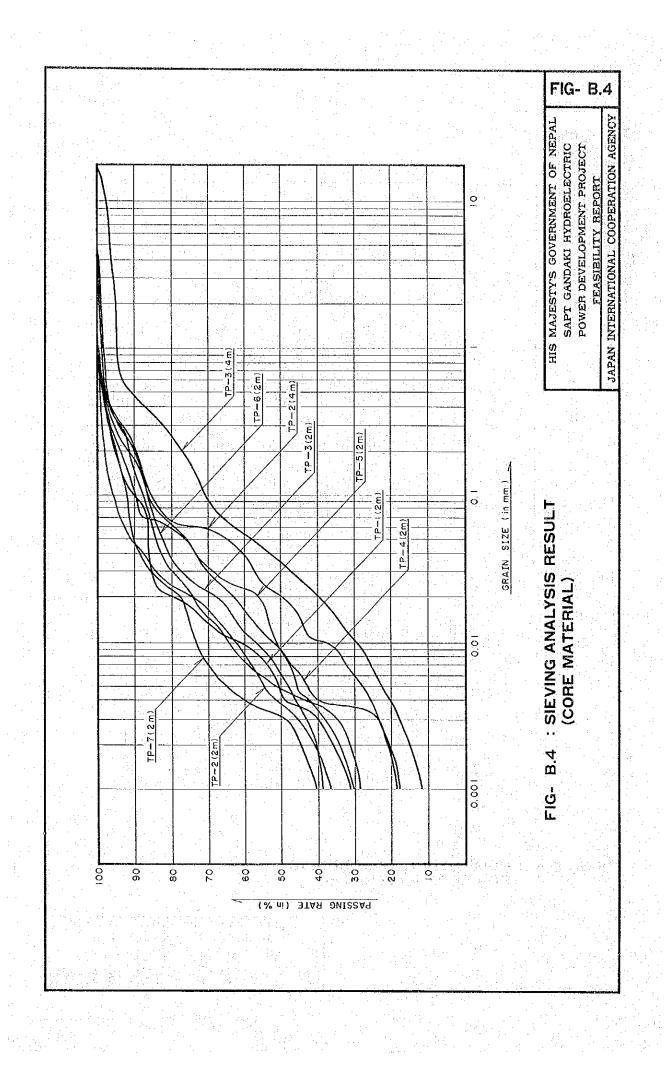
				1.								
	i	***		: .	÷			:				
		D10		: 1 -	I:	1	1	Ι.	l .		112	
	cle Size	D30	1	1	0.0063		0.012	0.0035	0.00I	0.0015	1	
	Particle	D60	0.01	0.008	0.035	0.013	0.065	0.017	0.024	0.007	0.0042	
	Gradation (%)	nm 0.005	51.0	53.0	28.0	78.0	22.0	44.0	46.0	50.0	65.0	
	Grad	7	86.1	94.2	82.0	85.0	67.8	85.0	88	85.8	91.2	
TAL (1	G Percentage	mm 0.42	97.5	1.66	97.5	6.96	87.6	96.8	97.9	6.96	98.4	
CORE MATERIAL	Passed	mm 2.00	1.66	100	98.9	100	95.6	8.66	100	100	100	
FOR CORF	100	mm 4.76	100	100	100	100	6.96	100	100	100	100	
RESULT FO	cy	P.I. (%)	6	16.5	21.4	26.1	φ. φ.	16.2	17.6	19.5	12.9	
TEST RES	Consistency	P.L. (%)	25.3	36.4	20.1	18.7	23.6	24.3	20.3	27.2	28.7	
LX	Con	L.L (%)	35.2	52.9	41.5	44.8	33.5	40.5	37.9	46.7	41.6	
Table-B.6: QUALI	Specific	Gravity, Gs(g/cm ³)	2.656	2.659	2.710	2.688	2.699	2.677	2.663	2.663	2.659	
Table	Field Moisture	Content Wf, (%)	17.8	26.9	12.6	20.2	10.1	20.5	23.6	23.4	24.0	
	Soil	Classifi- cation	占	Ю	T)	CI	ij	CL	CI	CL	CI	
	les	Depth (m)	7	7	7	8	7	7	7	2	2	
	Samples Test	Pit No.	TP-1	7.07	7-11	ć G	7	TP-4	TP-5	TP-6	TP-7	

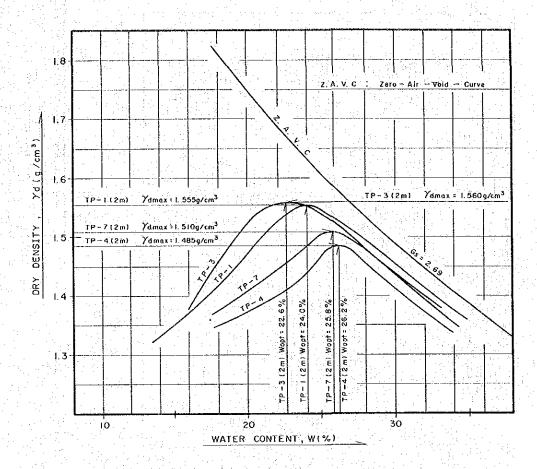
			Table-B.7:		Y TEST R	SULT FOR COR	QUALITY TEST RESULT FOR CORE MATERIAL (2)	~		
		-				:				
							TE	Triaxial Compression	E	Permeability
Samples	Condition of Test	Dry Density, rd	Mositure Content, W	Wet Density, rt,	Void Ratio, e	Degree of Saturation, Sr		U-U Friction Angle,	Cohesion, Friction	Test Permeability Coefficient,
- C - QL	Max. dry density and optimum	(g/cmJ)	22.6	(8/cm²) 1.913	0.723	84.0	(kg/cm²) 1.9 (-)	15°00'	(KB/CIII ²) 9 (-)	2.78 x 10 ⁻⁷
2 m depth)	95% dry density and 80% of degree of saturation	1.482	24.2	1.841	0.814	80.0	1.2	12°00'	0.3 (0.08) (35°30¹)	3.63 x 10 ⁻⁶
TP-4 (at	Max. dry density and optimum moisture content	1.485	26.2	1.868	0.803	87.3	1.4	15°00'	(-)	4.87 × 10 ⁻⁷
4 m depth/	95% dry density and 80% of degree of saturation	1.411	26.8	1,789	0,897	80.0	1.3	13°30'	0.42 11°30' (0.15) (33°30')	2.29 × 10 ⁻⁶

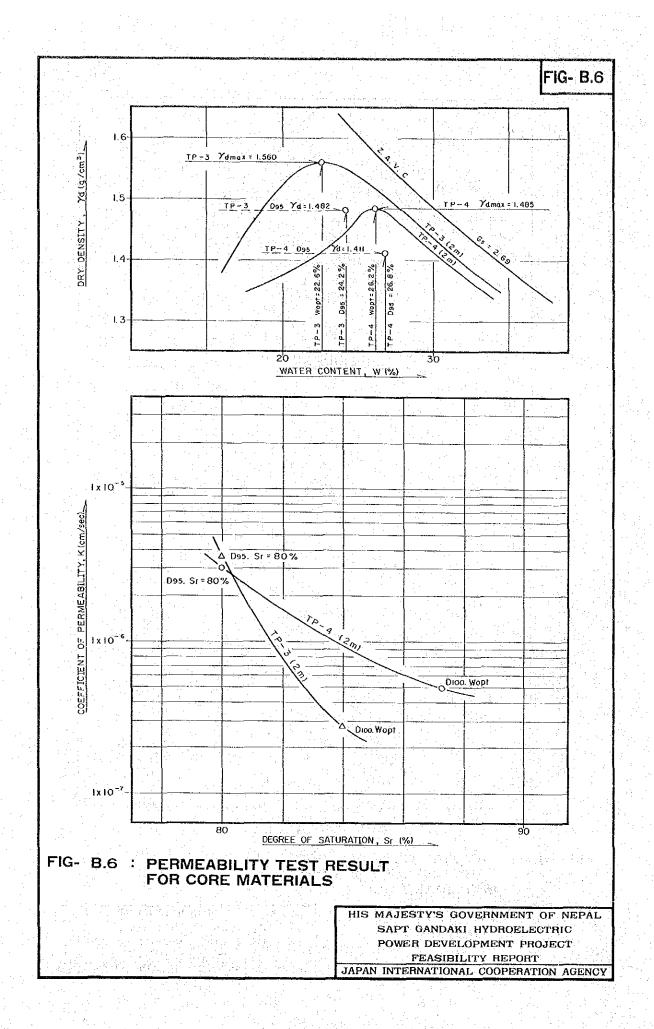

			Comp	Compaction Test			
Satisfaction of the satisf	Compaction	Max. Dry Depsity	Optimum	() () () () () () () () () () () () () (Allowable	Diameter	Weight of
	Energy, Ec (%)	rd Max. (g/cm ³)	Content Wopt (%)	7/2" - 1"	Grain Size (mm)	Mold (mm)	Rammer (kg)
TP-1 (at 2 m depth)	100 (5.625 m.kg/m ³)	1.555	24.0	-6.2	4.76	100	2.5
TP-3 (")	2	1.560	22.6	-2.4	, =	i i i i i i i i i i i i i i i i i i i	. ≡ •
TP-4 (")	=	1.485	26.2	-5.7	± .	2	Ξ
TP-7 ("')		1.510	25.8	-1.8	£	E	=

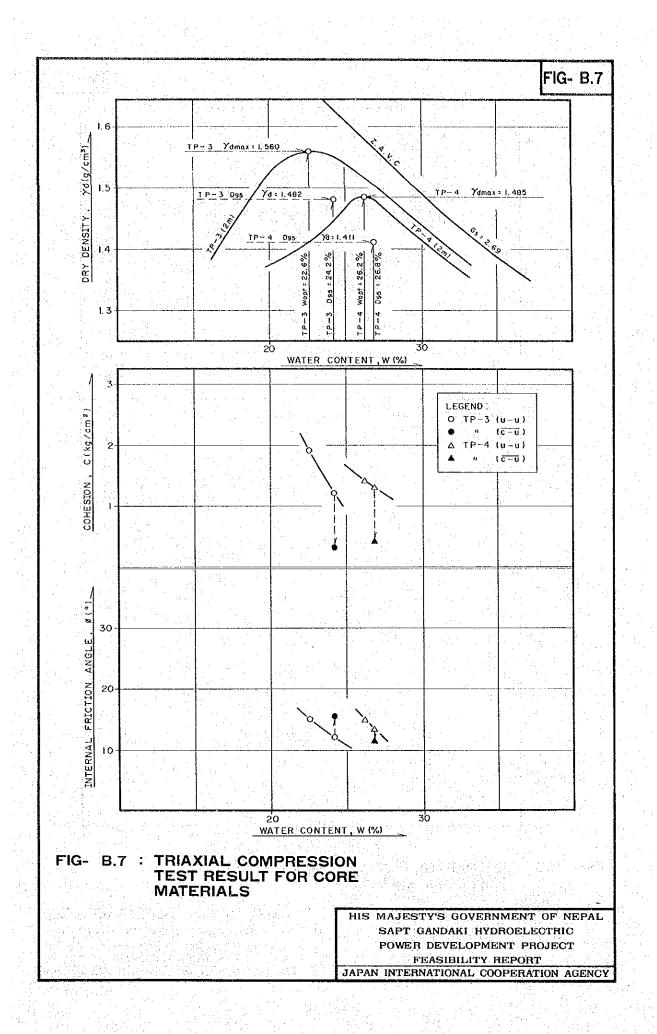

Notes: (i) WF = Moisture content at field.
(ii) () shows the effective stress analysis.

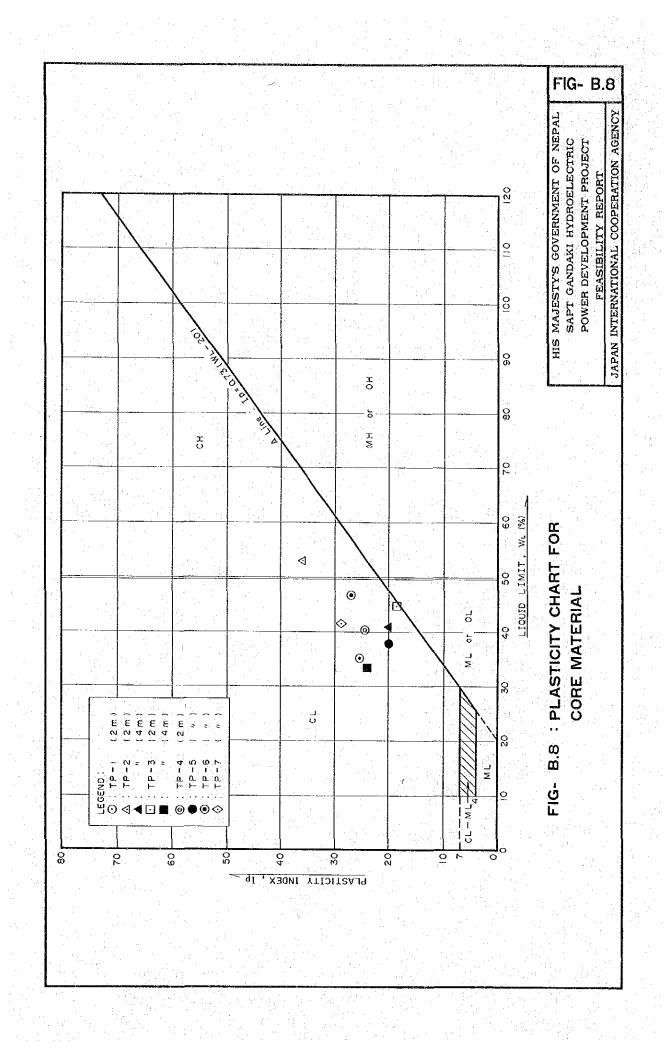

Table-B.8: QUALITY TEST RESULT FOR QUARRY ROCK


				 		
Sample	Specific (and Absort		Abrasion		Soundnes	S
No.	Specific Gravity	Absorp- tion (%)	Weight Redu tion (%)	and the second second	eight Redion (%)	ue-
R-1	2.934	0.24	29.48		0	
R-2	2.880	0.52	23.88		0	
R-3	2.907	0.41	16.97		0	
R-4	2.845	0.97	32.50		0	


FIGURES




	Energy Ec (%)	∕d max (g/cm³)	Wapt {%}	Wf — Wopt (%)
TP-1 (2m)	100	1 555	24.0	-6.2
TP-3 (2m)	***	l. 560	22. 6	-2. 4
TP-4 (2m)		1. 485	26. 2	-5. 7
TP-7 (2m)		1. 510	25. 8	-L 8


FIG- B.5 : COMPACTION TEST RESULT FOR CORE MATERIALS

HIS MAJESTY'S GOVERNMENT OF NEPAL SAPT GANDAKI HYDROELECTRIC POWER DEVELOPMENT PROJECT FEASIBILITY REPORT

JAPAN INTERNATIONAL COOPERATION AGENCY

그렇게 퇴본 통원 그림을 가는 데 그런 사람들은 그 가는 그를 가는 수 있는 그리고 있다.
그들은 그들은 얼마 아내는 그 아내는 아내는 얼마 때문에 가는 그는 모든 나는 것이다.

ATTACHMENTS

SKETCH OF TEST PITS

FOR

CONSTRUCTION MATERIAL SURVEY

Depth		Direc	tion		
 (m)	East	South	West	North	Description
- 1					Max. size is about 400 mm in diameter. There are many round gravels of medium size, assuming gray to grayish brown colour. Ground water appears at 1.2 m depth.
		7			
— Z	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				

Test Pit No. CTP-1 (1.2 m)

Depth	James en	Direct	tion		Description
(m)	East	South	West	North	Description
2-				0.00.00.00.00.00.00.00.00.00.00.00.00.0	Max. size is about 400 mm in diameter (very rare, 2 to 3 nos. in number). Colour is grayish blue. There are many gravels of dia. 10 mm to 60 mm. Large size of 300 to 400 mm in dia. and samll size increase in its number. Gravels of 10 to 60 mm become less than the upper layer. The materials in this layer assume grayish blue or grayish brown.

Test Pit No. CTP-2 (3.0 m)

SKETCH OF TEST PITS FOR CONSTRUCTION MATERIAL SURVEY (1)

Depth		Direc	ction		Description
(m)	East	South	West	North	Description
	0.5 0	5o	3	.50.5	This layer is the cover of fine sand and contains no gravel.
			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		A few large size of about 300 mm and some amount of medium size are contained. Percentage of sand and samil size is still high considerably.
2	600 600 000 000 000 000 000 000			\$0000000000000000000000000000000000000	There are many medium size suitable for coarse aggregate. Max. size of 200 mm in dia. is contained but very rare. The color is grayish blue.

Test Pit No. CTP-3 (3.0 m)

Depth		Directio	on	4	Description
(m)	East	South	West	North	
2	0.2 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0				Grayish-white silt deposit, containing a few roots of tree or grass. Grayish-blue fine sand, containing some small size of about 20 mm in diameter. A: Sand and gravel layer containing high percentage of sand and some large size of 300 to 400 mm in dia. B: Sand and gravel layer containing high percentage of medium size of grains.
					Contains some amount of medium size suitable for coarse aggregate, but the content of fine sand also becomes high.

Test Pits No. CTP-4 (3.0 m)

SKETCH OF TEST PITS FOR CONSTRUCTION MATERIAL SURVEY (2)

I	Depth		Direc	tion		The state of the s
۱	(m)	East	South	West	North	Description
				90°0 4°00 0°00		Assumes grayish white colour, and contains many medium size. Max. size contained is about 200 mm.
		00.000				The content of large grain size of about 400 mm to 500 mm becomes high. The content of fine sand also becomes high.
	2	0.0.°		000		Spring water appeared at 2.1 m depth.
			Ŧ			

Test Pits No. CTP-5 (2.2 m)

Depth		Direc	tion	1.94	
(m)	East	South	West	North	Description
2					The content of medium grain size is rich. The grain size Distribution is also favourable with max. size of 150 mm. Assumes bluish gray colour. The condition of this layer is generally same as the second layer of Test Pit No. CTP—5. The thickness of the layer is thicker than 2.0 m of excavated depth, but the spring water appears at 2.0 m depth.

Test Pits No. CTP-6 (2.0 m)

SKETCH OF TEST PITS FOR CONSTRUCTION MATERIAL SURVEY (3)

Depth		Direct	ion		
(m)	East	South	West	North	Description
1					Grain size distribution is fabourable for concrete coarse aggregates with many medium grain size. The layer is thicker than 1.5 m of excavated depth, at which the pit excavation was stopped due to spring water.
22					Submerged condition

Test Pits No. CTP-7 (1.5 m)

Depth		Direc	neit		Description
(m)	East	South	West	North	Description
	0.0000		0 0 0 0		Consists of medium size gravels and sand, and contains many roots of tree of grass.
2	0 0 0 0				Consists of medium to small size of gravels. The content of sand is also high.
7	.000	0 0	0,00		

Test Pit No. CTP-8 (3.0 m)

SKETCH OF TEST PITS FOR CONSTRUCTION MATERIAL SURVEY (4)

Depth	2 4 5 45 5 4 5 5	Direc	tion		Donatation
(m)	East	South	West	North	Description
	0.50° 00		0.00		Consists of large size gravels (300 mm) and fine sand.
	0000	0000	0.00	0.00	Medium size of gravels are rare.
		00000	0000	0000	
	0.0000	0000	0000	°,00°	Contains much medium size gravels. The grain size distribution is also favourable.
2	0000	0.00		00000	Max. size is about 200 mm in dia.
	O_{i}^{i}	00000	0.00	0.000	

Test Pits No. CTP-9 (3.0 m)

Depth		Direc	tion		Description
(m)	East	South	West	North	
	00000 00000			0000 0000 00000	The condition of this layer is generally same as that in the upper layer of Test Pit No. CTP-9, except content of several very large size (400 to 500 mm).
2					The grain size become smaller than the upper layer, and medium size increase. The content of fine sand is considerably high.

Test Pit No. CTP-10 (3.0 m)

SKETCH OF TEST PITS FOR CONSTRUCTION MATERIAL SURVEY (5)

Depth	Direction				
. (m) 🦠	East	South	West	North	Description
					There are many medium size (30 to 80 mm). Maximum size is about 100 mm. A: consists of large size gravels and fine sand. Medium size is rare. B: contains many medium size gravels. Some large size gravels (300 mm) are also included.
	2.7 9 : 6:9	<u>\</u>	o	0,0,0,0	Consists of medium to small size gravels. Moisture content is relatively high due to ground water.

Test Pits No. CTP-11 (3.0 m)

Depth	1.22.	Direc	tion		
(m)	East	South	West	North	Description
	0.0.0	0.00	00.00	0,0	Contains many large size gravels. Medium size gravels are relatively rare.
1		Σ.∵O <u>\</u> ZO	.00	0.0.	

Test Pit No. CTP-12 (1.0 m)

SKETCH OF TEST PITS FOR CONSTRUCTION MATERIAL SURVEY (6)

HIS MAJESTY'S GOVERNMENT OF NEPAL SAPT GANDAKI HYDROELECTRIC POWER DEVELOPMENT PROJECT FEASIBILITY REPORT

JAPAN INTERNATIONAL COOPERATION AGENCY

	Depth		Direc	tion		And the state of t
ı	(m)	East	South	West	North	Description
	2	0.5 0 2.6 2	, o o o o o	ν. σ ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	3 0.5 0.5 5 2.6	Assumes yellowish grayish brown colour. Consists of fine sand without any gravel. Assumes gray colour. Consists of fine sand with very rare small gravels. Medium size gravels are contained but its content is rare. Assumes grayish brown colour.

Test Pits No. CTP-13 (3.0 m)

Depth		Direc	tion	Fage 2 Fig.	
(m)	East	South	West	North	Description
2					The layer consists of soil materials without any gravel. This is a layer of large gravels without fine sand or silt. Max. size of the gravel is about 600 to 700 mm. The content of fine sand or silty materials becomes high. The content of gravels is rather rare.

Test Pit No. CTP-14 (3.0 m)

SKETCH OF TEST PITS FOR CONSTRUCTION MATERIAL SURVEY (7)

Depth		Dìrect	ion		
(m)	East	South	West	North	Description
	05 08	0	5 · · · · · · · · · · · · · · · · · · ·	0.5	Assumes grayish brown — gray colour. Consists of coarse sands containing very few gravels.
1	10 l	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000	0 0.8	Alluvial clay without gravel. Assumes blacky brown.
. et		<u></u>		, , , , , , , , , , , , , , , , , , ,	The layer of fine grained sand assuming light brown colour
2					The layer of sand containing a few gravels. Assumes grayish blue colour, spring water appears at
_					1.5 m depth.

Test Pit No. FTP-1 (1.5 m)

Depth		Direct	tion		
(m)	East	South	West	North	Description
l ——	05	30°°° 0.	000000	0.5	Sand deposit containing many gravels of small size. Assumes bluish gray colour.
22					Contains gravels larger than that in the upper layer. The sand is relatively coarse, assuming dark brown colour. Spring water appears at 1.6 m depth. Submerged condition

Test Pit No. FTP-2 (1.6 m)

SKETCH OF TEST PITS FOR CONSTRUCTION MATERIAL SURVEY (8)

Depth	·	Direct	ion		
(m)	East	South	West	North	Description
1	09 0 12 1 1.3 1 1.5	9	0 1	0 09 2 10	Fine grained sand deposit without any gravels, assuming yellowish brown. Sand deposit containing many gravels of Max. dia. about 30 mm. Assumes grayish blue.
2					Alluvial clay without gravel. Assumes blackish brown colour. Spring water appears at 1.5 m depth.

Test Pits No. FTP-3 (1.5 m)

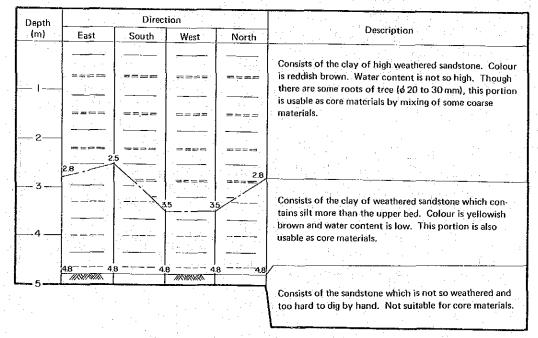
Depth		Direc	tion		
(m)	East	South	West	North	Description
2	0.8 6.0 0.8 6.0	©	7000	6 0 08 6 1 4	Relatively coarse sand deposit containing gravels of which max, size is about 40 mm. Assumes bluish gray colour. The content of gravels becomes much less than the upper layer. Contains clay partially. Submerged condition below 1.4 m depth.

Test Pits No. FTP-4 (1.4 m)

SKETCH OF TEST PITS FOR CONSTRUCTION MATERIAL SURVEY (9)

Depth		Direct	ion		
(m)	East	South	West	North	Description
2	0.3 0.0.5	2 0	5 0 0	2 03	Alluvial clay layer without gravel, assuming blackish brown to brown. Fine sands are contained, but not available for fine aggregate. Deposit of very fine sand without any gravel. Deposit of relatively coarse sand containing some gravels. Assumes yellowish grayish brown colour. Spring water appears at 1.5 m depth.

Test Pit No. FTP-5 (1.5 m)


Depth	Dire	ection		Proprietion
(m) E	sst South	West	North	Description
			====	
· 1. · · ·		-		[18] "各个大概" 制造 特别的第三人称单数
		= ====		Consists of the clay of highly weathered sandstone with
— I , ₂ =-	=======================================	10	i ====12	reddish brown colour. Some roots of tree are contained.
	1			Gravels contained are very rare.
				Water content is relatively high. It is expected to be usable
_ _		- 1		as core material by mixing of some coarse materials.
_2 		<u> </u>		
		- I		
		-		Contains silty part more than the upper layer. However,
	— I ——	-		it is expected to be usable as core material by mixing of
3.5		353	$\frac{5 3.5}{1}$	coarse materials,
` . · <u></u>				
4		7//8//89/86		
"	*******			N 6
1 1				Consists of moderately weathered sandstone with whity
:				yellowish gray colour. This is too hard to dig by hand and not suitable for core.
_ 5	·		L	hior suitable for core.
				This is bed rock and not suitable for core.

Test Pit No. TP-1 (4.0 m)

SKETCH OF TEST PITS FOR CONSTRUCTION MATERIAL SURVEY (10)

	Depth		Direc	tion		
	(m)	East	South	West	North	Description
	I	02 0	30	2 0	0.2	Consists of grayish brown soil contained roots of tree. Water content is low. Not suitable for core.
	2	2.2	4 2	4 2	2 22	Consists of the clay of highly weathered sandstone with considerably high water content but less than O.M.C. The colour is reddish brown. Though some roots of tree ar contained, it is expected to be usable for core by mixing of coarse materials.
	4	4.5 4.	5 4	5 4	5 4.5	Colour is yellowish-reddish brown. It contains silty part more than the upper layer. However, it is expected to be usable as core by mixing of coarse materials.
1	5			L		This is bed rock of sandstone not so weathered. Not usable as core.

Test Pit No. TP-2 (5.0 m)

Test Pit No. TP-3 (4.8 m)

SKETCH OF TEST PITS FOR CONSTRUCTION MATERIAL SURVEY (11)

Depth		Directi	on		
(m)	East	South	West	North	Description
		8==== 3		0 3.2	Consists of the clay of reddish brown colour. Water content is moderately middle to high but less than O.M.C. This part is usable as core materials by mixing of same coarse materials. Contains much sandy part or silt part, and some gravels. Water content is low. This layer is not expected for core material.
Í	118118118	5 4	11811811	5 4,5	Consists of hard sandstone not so weathered. Not suitable for core material.

Test Pit No. TP-4 (4.5 m)

Depth		Direct			Description
(m)	East	South	West	North	
			===		Consists of the clay of high weathered sandstone. Colou
—I ——		19 en et 17 an et			is reddish brown. Water content is of moderate degree. Though some roots of tree are contained, this layer is
	====	====	====	======================================	usable as core material by mixing of some coarse materia
_2				. —	
	2.6 2.0	5 2	6==== 2	6 ====26	
-3	. O . o	0.00	0,0	0 0 0 0 ° °	Consists of yellowish brown conglomerate weathered moderately. Contains much gravel of \$30 to 50 mm and
	3.3 3. = ====	3 3	.3 3 =====	3 3.8 ⇒===	some silt. This layer is expected to be usable as core material.
-4			IIRIIR	.	Same property as the first layer, but contains silt more than the first layer. Water content is low. This layer
	, -				is also usable as core material.

Test Pit No. TP-5 (4.0 m)

SKETCH OF TEST PITS FOR CONSTRUCTION MATERIAL SURVEY (12)

HIS MAJESTY'S GOVERNMENT OF NEPAL
SAPT GANDAKI HYDROELECTRIC
POWER DEVELOPMENT PROJECT
FEASIBILITY REPORT
JAPAN INTERNATIONAL COOPERATION AGENCY

Depth		Direc	tion		Description
(m)	East	South	West	North	Source of the second se
2-					Consists of the clay of reddish brown colour without gravels. Though some roots of tree are contained, it is available for core material by mixing of coarse materials.
3-4-	337.00	2 0 0 0 4	5 = = = = = = = = = = = = = = = = = = =	3,7	Consists of moderately weathered conglomerate of which colour is yellowish brown. Water content is low. There are many gravels and sandy parts. This layer is not expected for the use as core material. This is the rock surface of sandstone and not expected for core.

Test Plt No. TP-6 (4.2 m)

Depth		Direc	tion		Description
(m)	East	South	West	North	Description
				<u> </u>	
	0.5 0	so	202	. <u>0</u> 2	Consists of grayish brown earth, and contains many grasse
100					and roots of trees. It is not expected to use for core
	====	~===	====		
					material.
				* .	
:	====	====	T= Rx xx ixx .		
				4 (1)	
- 2				 :	Consists of highly weathered sandstone with brownish re
	·		_		colour
					Water content is comparatively high but less than O.M.C.
	·				The layer is hard but is expected to be usable as core
3	Ī			17	
			en en en		materials.
1.0	3.5	5 3,	5 35	3.5	
		4 /41			
_ 4					Consists of less weathered sandstone of yellowish brown
		<u> </u>			colour. Contains silt. Thus, it is not expected to use as
	4.5 4	5 4	5 4.5	4.5	core material.
	//XY/XY/A		11818818		V-
				1	
					This is the bed rock of sandstone and not expected to us
			4.5		for core.
	•	1.			T

Test Pit No. TP-7 (4.5 m)

SKETCH OF TEST PITS FOR CONSTRUCTION MATERIAL SURVEY (13)

ANNEX (C)
HYDROLOGY AND METEOROLOGY HYDROLOGY AND METEOROLOGY

TABLE OF CONTENTS	
	Page
I. GENERAL	C-1
II. METEOROLOGY	C-2
2.1 General	C-2
2.2 Data Available	C-3
2.3 Air Temperature	C 3
人名英格兰 人名英格兰 化氯化磺胺磺胺 医克里氏病 医电流 医电流电流 医电流电流 医电流流管	
2.4 Relative Humidity	
2.5 Evaporation	C-6
2.6 Rainfall	C-7
	1.100000000000000000000000000000000000
III. HYDROLOGY	C-10
3.1 General	C-10
3.2 Low Flow Analysis	C-11
3.2.1 Drainage System	C-11
3.2.2 Streamflow at the Damsite	The second second
3.2.3 Verification of Reliability of Runoff Data .	the state of the s
3.2.4 Frequency of Low Flow,	C-15
3.3 Flood Analysis	C-16
3.3.1 General Feature of Flood Frequency of the Basin	C-16
3.3.2 Flood Frequency Analysis	
IV. SEDIMENTATION STUDY AND WATER QUALITY	C-19
4.1 Sedimentation Study	C-19
4.1.1 General	C-19
4.1.2 Estimate of Long-term Suspended Load Transport	C-19
4.1.3 Reservoir Sedimentation	C-20
4.1.4 Grain Size of Sediments	C-22
4.2 Quality of the River Water	C-22

	LIST OF TABLES
	LIST OF TABLES
NO.	TITLE
110.	
C.1	ANNUAL RAINFALL IN AND AROUND THE BASIN
C.2	RESULTS OF DISCHARGE MEASUREMENTS
C.3	MONTHLY MEAN DISCHARGES AT GAGING STATION 450 ON THE SAPT GANDAKI RIVER (NARAYANGAR)
C.4	MONTHLY MEAN DISCHARGES AT GAGING STATION 420 ON THE KALI CANDAKI RIVER
C.5	ANNUAL MAXIMUM PEAK DISCHARGES OF MAJOR TRIBUTARIES OF THE SAPT GANDAKI RIVER
C.6	ANNUAL MAXIMUM PEAK DISCHARGES AT THE DAMSITE
C.7	RESULTS OF FREQUENCY ANALYSIS FOR ANNUAL MAXIMUM PEAK DISCHARGES OBSERVED AT GAGING STATION 420
c.8	RESULTS OF SUSPENDED LOAD MEASUREMENTS
C.9	LONG-TERM SUSPENDED LOAD AT THE DAMSITE
C.10	RESULT OF GRAIN SIZE ANALYSIS FOR SEDIMENTS
C.11	RESULTS OF WATER QUALITY ANALYSIS

	LIST OF FIGURES
NO.	<u>TITLE</u>
C.1	RELATION BETWEEN ALTITUDE AND PAN A EVAPORATION
C.2	ISOHYETAL MAP
C.3	DISCHARGE RATING CURVES AT G.S. 450 (ESTABLISHED BY HMG AND SMEC)
0.1	
C.4	DISCHARGE RATING CURVE AT G.S. 450
C.5	ANNUAL MONTHLY MEAN DISCHARGES AT GAGING STATION 420 AND 450
0.6	
c.6	DOUBLE MASS CURVE
C.7	RELATION BETWEEN MONTHLY MEAN DISCHARGES AT GAGING STATION 420 AND 450
C.8	FLOW DURATION CURVE AT THE DAMSITE
C.9	APPLICATION OF LOG-NORMAL DISTRIBUTION FOR FLOOD RECORDS IN THE BASIN
C.10	PROBABILITY CURVE AT THE DAMSITE
c.11	ENVELOPE CURVE OF RECORDED MAXIMUM FLOOD IN NEPAL
C.12	SUSPENDED LOAD VERSUS DISCHARGE

LIST OF ATTACHMENTS

TITLE

DAILY MEAN DISCHARGES AT GAGING STATION 450 (1963 TO 1980)

I. GENERAL

The overall hydrologic investigation for the Sapt Gandaki basin was carried out by Snowy Mountain Engineering Corporation (hereinafter called SMEC), an Australian consultant, in the course of the Basin Master Plan Study and the Prefeasibility Study of the Project.

For the Feasibility Study of the Project, further detailed hydrologic investigations and analysis as itemized below have been carried out.

- (i) Collection and review of meteorological and hydrological data in and around the Sapt Gandaki River basin,
- (ii) Check measurements of stream flow at the Gaging Station 450 (Narayangar) for the purpose of examining accuracy of the existing rating curve and establishing a new rating curve,
- (iii) Determination of the long-term discharges at the proposed damsite using the above rating curve,
 - (iv) Estimation of the frequency and magnitude of the floods, and
 - (v) Estimation of the sediment load transported into the reservoir, grain size analysis of sediments and clarification of water quality of the Sapt Gandaki River for various uses such as hydropower, concrete mixing, drinking water and so on.

This ANNEX (C) presents the results of the mentioned hydrologic investigations and analysis.

II. METEOROLOGY

2.1 General

The climate of Nepal is much affected by the southeast monsoon during the wet season and the northwest monsoon during the dry season. The wet season lasts for four months from June to September, while the dry season is from November to April. May and October are transition period of these seasons. In general, it is humid and hot in the wet season or summer, while it is dry and cold in the dry season or winter. 60 to 80% of the yearly rainfall occurs in the wet season. This is due to the influence of the said southeast monsoon.

From the climatorological viewpoint, the Sapt Gandaki River basin can be devided into four zones in accordance with its altitude, namely Himarayan, Tibetan, Middle and Inner Terai zones. The Himarayan and Tibetan zones whose elevation is almost above 3,000 m with the peak over 8,000 m in the Great Himarayan Range is situated in the northern part of the basin. The high mountainous area exceeding around 6,000 m in elevation forms eternal glacier and snow cover, while the Tibetan mountainous area ranging between 3,000 and 6,000 m in elevation is characterized by the desert climate. In this zone, the vegetation is extremely poor, and it is apt to occur a large quantity of sediment transport to the project area in the wet season.

The Middle zone accounts for major part of the basin. Its elevation varies in a wide range from 600 to 3,000 m, and this zone is also subject to soil erosion due to the steep topography, deforestation resulting from development of new cultivated land in lowland area and even in the high mountainous area.

The Inner Terai zone situated in the south of the Mahabharat Range consists of low lands of around 200 m in elevation. The project site is located at the most northern part of this zone where the Sapt Gandaki River flows from north to south after its tributaries, Kali Gandaki and Trisulganga, traverse the Mahabharat Range and meet.

Due to the said variable topography, the climate of Nepal varies from subtropical in the Inner Terai zone to alpine in the Himarayan in accordance with their altitudes. Most of the Middle zone is characterized by the temperate climate.

2.2 Data Available

The meteorological records observed in Nepal has been compiled in "CLIMATOROLOGICAL RECORDS OF NEPAL" which was published by the Department of Irrigation, Hydrology and Meteorology (hereinafter called DIHM). The publication usually includes monthly rainfall, air temperature and humidity records. Among the meteorological records, those for the period from 1971 to 1975 were issued in three separate volumes, namely Volume I, II and III. Volume I consists of the records for monthly rainfall, air temperature and relative humidity observed for the five years. Volume III includes the data on monthly sunshine, wind, evaporation and soil temperatures at 16 climatorological stations for the period from 1967 to 1975. Volume II presents weather statistics in the Kathmandu area.

In addition to the above, the daily rainfall records in and around the Sapt Gandaki river basin were collected from the DIHM office during the field investigation period in Stage I and II of the Feasibility Study. DIHM is, at present, carrying out the compilation work for the meteorological records for the period from 1976 to 1980.

2.3 Air Temperature

The air temperature in the Sapt Gandaki River basin is much influenced by the southeast and northwest monsoon prevailing in the wet season and in the dry season, respectively.

The annual mean monthly air temperature observed at Mustang, Pokhara and Rampur stations for the period from 1966 to 1975 are listed below.

Annual Mean Monthly Air Temperature

Manala	Nar	ne of Sta. (Sta.	No.)
Month	Mustang (0612)	Pokhara (0803)	Rampur (0902)
Jan.	-4.7	13.4	15.8
Feb.	-2.7	15.9	17.7
Mar.	1.6	20.3	22.8
Apr.	6.7	23.9	27.9
May	9.1	25.1	30.2
Jun.	12.5	25.4	29.0
Jul.	13.7	25.5	28.4
Aug.	13.2	25.4	28.3
Sept.	11.4	24.3	27.5
Oct.	8.8	21.5	25.2
Nov.	2.2	17.6	19.6
Dec.	3.5	14.2	15.9
Mean	6.2	21.0	24.0

The Mustang station is situated in the foothill of the Great Himarayan Range on the main stream of the Kali Gandaki River and its elevation is around 3,700 m so that it is considered to be influenced to some extent by the alpine climate of the Great Himarayan Range. The air temperature at the Mustang station is 6.2°C on the average and lowers below a freezing point during the period of January and February.

The Pokhara station is located in the said middle zone and its climate is comparatively temperate. The annual mean air temperature at the Pokhara station is 21°C. The records represent an air temperature in the Middle zone.

In the Rampur station, the subtropics is predominant. Its mean air temperature is 24°C. There is a difference of 24°C between the maximum and minimum of annual mean monthly air temperatures. In addition, there is a considerable difference between the daily maximum and minimum air temperatures in the dry season.

2.4 Relative Humidity

The relative humidity in the Sapt Gandari River basin is also subject to the influence of the southeast monsoon during the wet season and the northwest monsoon during the dry season. In general, the relative humidity is high in the wet season, compared with that in the dry season, and it becomes higher in nighttime than that in the daytime in the wet season.

The annual monthly mean relative humidities at the said three climatorological stations are shown in the following.

Annual Mean Monthly Relative Humidity

			(Unlt: %)
Month		Station (Period)	
FIORE	Mustang (1974 & 75)	Pokhara (1967 - 74)	Rampur (1967 - 75)
Jan.	61	67	82
Feb.	58	58	75
Mar.	57	50	60
Apr.	56	51	48
May	59	62	56
Jun.	64	78	76
Jul.	66	83	83
Aug.	66	83	84
Sept.	67	82	83
Oct.	60	75.4 m - 1	82
Nov.	53	71 - 71	79
Dec.	55	70	82
Mean	60	69	74

As shown in the above table, the maximum and minimum of annual mean monthly relative humidities were observed in the wet season of June to September and in the dry season of November to April, respectively.

The annual mean relative humidity at the Rampur station is higher than those at other two stations due to the subtropical climate. The seasonal variation of relative humidity at the Mustang station is little compared with those at other two stations. This is due to less influence of southeast monsoon in the wet season.

2.5 Evaporation

The evaporation usually varies from day to day and from place to place under the influence of air temperature, relative humidity and rainfall, etc. In Nepal, the rate of evaporation for the period from March to October is high due to high air temperature, while that in the period from November to February is relatively low due to the northwest wind with low temperature.

In Nepal, the evaporation is being observed at sixteen climatorological stations by means of Class A pan. The observation of evaporation is usually made daily at 8:40 in the morning.

The annual mean Class A pan evaporation amounts at these climatorological stations for the period from 1967 to 1975 are plotted against their altitudes as shwon in Fig.-C.1. These evaporation amounts range from 949 mm at the Jiri station in the minimum to 2,519 mm at the Dum Kauli station in the maximum. From the Figure, the evaporation appears to have a tendency that it decreases with increase of altitude.

In estimating the evaporation amount from the reservoir surface, 60 to 70% of Class A pan evaporation amount is adopted as the actual reservoir evaporation. For the purpose of computing the monthly evaporation amounts for the Sapt Gandaki reservoir, it is determined that 70% of annual monthly mean Pan A evaporation at the Pokhara station is adopted.

The monthly mean evaporation amount of the Sapt Gandaki reservoir so obtained are shown in the following.

Monthly Evaporation Record at Pokhara (0804)

<u> </u>		And the second second	<u> </u>			(Unit: mm)	
Month		Year			Daily	Reservoir	
	1972	1973	1974	1975	Mean	Evaporation	
Jan.		65.1	74.4		2.3	49.9	
Feb.		95.2	98.0	-	3.5	68.6	
Mar.	***	130.2	167.4	173.6	5.1	110.7	
Apr.	-	180.0	156.0	195.0	5.9	123.9	
May	_	161.2	167.4	192.2	5.6	121.5	
Jun.		141.0	_	174.0	5.3	111.3	
Jul.	164.3	167.4	173.6	142.6	5.2	112.8	
Aug.	136.4	173.6	167.4	186.0	5.4	117.2	
Sept.	126.0	138.0		168.0	4.8	100.8	
Oct.	120.9	127.1	_	120.9	4.0	86.8	
Nov.	81.0	90.0		81.0	2.8	58.8	
Dec.	68.2	68.2		68.2	2.2	47.7	

2.6 Rainfall

In Nepal, the rainfall concentratedly occurs during the period of June to October owing to the influence of southeast monsoon, while the rainfall during the dry season from November to April is extremely little compared with that during the said period.

There are sixtyseven rainfall stations in and around the Sapt Gandaki River basin. The annual rainfalls recorded at these stations up to 1980 are listed in Table-C.1. Those annual mean rainfalls vary in a wide range from 257 mm at Jomsom station to 5,149 mm at Lumle station.

Among these rainfall stations, several have been abolished. On the other hand, as seen in the Table, there are many rainfall stations having the incomplete year of the rainfall record for the period from their established date to present. Siche the project catchment area is measured to be 31,100 km² at the proposed damsite and there are twenty-nine rainfall stations in the basin, one station covers an area of more than 1,000 km² on the average. Taking into account the variable rainfall due

to the complex topography in the basin, it can be said that the intensity of the rainfall stations in the basin is excessively low.

On the basis of the annual mean rainfalls at the said sixtyseven rainfall stations, the isohyetal map for the Sapt Gandaki River basin is established as shown in Fig.-C.2. In preparing the map, the annual rainfall in the high mountainous area of the Himarayan and Tibetan zones is determined taking into account the yearly isohyetal maps which are suggested in the said "CLIMATOROLOGICAL RECORDS OF NEPAL" as no rainfall data in the region are available.

The annual monthly mean rainfalls at the Pokhara, Jomsom and Rampur stations are tabulated below.

Annual Monthly Mean Rainfall

			(Unit: mm)
Month	Sta	ation (Sta. No.)	
MOTER	Jomsom (601)	Pokhara (803)	Rampur (902)
	(1958 - 1980)	(1956 –1975)	(1967 - 1980)
Jan.	17.1	27.1	21.4
Feb.	13.8	31.2	14.5
Mar.	24.7	54.5	16.9
Apr.	18.6	87.5	41.1
May	9.6	246.9	109.2
Jun.	19.7	649.5	386.2
Jul.	39.6	886.0	526.6
Aug.	46.0	824.3	404.6
Sept.	31.8	575.7	330.7
Oct.	30.9	193.9	85.2
Nov.	6.2	19.3	8.0
Dec.	2.7	8.5	10.0
Annua1	260.7	3,604.4	1,954.4

The above table indicates that around 90% of annual rainfall at the Rampur station occurs in the wet season from June to September due to the influence of southeast monsoon. The Rampur station which is located in

the Inner Terai zone represents the climatorological features in the project area. In this zone, the subtropical climate is prevailing.

On the other hand, the annual rainfall amount at the Jomsom station is very little compared with those at the Pokhara and Rampur stations. This reveals that the Jomsom station which is located in the southern foothill of the Himarayan range on the Kaligandaki River is not so strongly influenced by the southeast monsoon as other two stations. As seen in Fig.-C.2, the annual mean rainfall in the Himarayan and Tibetan zone is considered to range between 200 and 1,000 mm.

The Pokhara station is situated in the Middle zone which forms major part of the Sapt Gandaki River basin. The seasonal rainfall pattern in this zone is relatively close to that in the Inner Terai zone. However, the annual mean rainfall in this region distributes in a wide range from 1,000 mm to 6,000 mm due to its variable topography.

In the Sapt Gandaki River basin, the maximum annual daily rainfall usually occurs in the period from July to October. On the basis of the available daily rainfall records up to 1980, the probable daily rainfalls at the above three stations are calculated assuming Gumbel's distribution as shown below.

Probable Daily Rainfall

Recurrence	Rainfall	Station (Sta.	No.)
Intervals in Years	Pokhara (601)	Rampur (803)	Jomson (902)
5	211	183	54
10	242	217	68
50	310	292	100
100	338	323	114
200	367	355	127
1000	432	428	158

III. HYDROLOGY

3.1 General

The Sapt Gandaki River basin is blessed with rainfall by which the streamflow of the Sapt Gandaki river is feeded. On the other hand, snow cover in the high mountainous area which is located in the northern part of the basin contributes to yielding of runoff as the base flow. The snow melting which are affected by air temperature, humidity, wind and rainfalls, etc. occurs in a higher rate in the wet season than in the dry season.

In Nepal, the stream gaging stations were set up on almost all of the major streams. They are divided into two classes, namely partial and regular stream gaging stations. A gage stuff or water stage level recorder is installed at the regular stream gaging station and the stage height observation is continuously carried out by local inhabitants, usually two or three times a day in the dry season and more than three times a day in the wet season. The stage heights observed are converted into discharges using the stage height-discharge rating curve at DIHM office of Kathmandu. The discharge measurements at the regular stream gaging station are periodically made by the gaging staffs of DIHM in order to examine accuracy of the existing rating curve. On the other hand, the discharge measurements are limitedly made at the partial stream gaging station for the use in hydrological analysis.

In general, the major rivers of Nepal transport a large quantity of sediment during the wet season. As the above stream gaging stations are generally built on the alluvial deposit, the river floors are apt to vary after the large magnitude of flood flow. Accordingly, the stage height-discharge rating curves are required to be modified or newly established based on the results of the said periodical discharge measurements.

The monthly mean discharge records of major streams in Nepal up to 1974 which includes the maximum and minimum peak records were issued by the DIHM as "SURFACE WATER RECORDS OF NEPAL". The stage height records observed after 1975 are under processing to compile them in the publication.

3.2 Low Flow Analysis

3.2.1 Drainage System

The proposed project site is located on the Sapt Gandaki River around 1 km downstream from the confluence of the Kali Gandaki and Trisulganga rivers. Among these two main tributaries, the former drains a catchment area of around 11,000 km² which accounts for around 35% of catchment area of the project, 31,100 km². The Trisulganga river draining a catchment area of around 20,000 km² forms eastern part of the basin.

The Kali Gandaki River originates from the north of the Great Himarayan Range. In the upper reach, it generally flows from north to south and changes its course to the east after making a large loop at around 110 km downstream from the town Jomsom. Many tributaries including the Mayangdi, Modi and Andhi Rivers flow into the main stream until it combines with the Trisulganga River.

The longest course of the Trisulganga River which is called the Trisuli River originates from the Tibetan zone. The northern part of the Trisulganga River basin belongs to territory of China. The Trisuli River generally flows southwest and it meets many tributaries such as the Burhi Gandaki, Marsyangdi and Seti Rivers until it joins the Kali Gandaki River.

3.2.2 Streamflow at the Damsite

The regular stream gaging station 450 is located at around 0.9 km downstream from the project site. The water level observation was commenced in 1963 and the stage height records were converted into discharges for the period from 1963 to 1968 using the stage height-discharge rating curve established by HMG. The discharge records are summarized in the said "SURFACE WATER RECORDS OF NEPAL". Regarding the stage height records after 1969, however, no processing work was conducted.

Afterward, SMEC carried out the discharge measurements at the gaging station 450 for the period from July 21, 1972 to July 22, 1977 for the purpose of preparing the Prefeasibility Report. At that time, twentyfour discharge measurements were taken. In Fig.-C.3, the rating curves established by HMG and SMEC are illustrated. The results of the discharge measurements by SMEC were plotted in Fig.-C.4.

On the other hand, the JICA Team carried out the discharge measurements for the period of February to March and August to November in 1981 so as to examine accuracy of the existing rating curves. The measurements for low flow were concentratedly performed during the former period using a current meter, while the measurements for flood discharges were conducted during the latter period using floats in collaboration with counterpart personnel provided by HMG. The results of discharge measurements are shown in Table-C.2.

Based on the discharge measurements carried out by the JICA Team, it was found that the rating curve established by SMEC generally coincided with the measurements by JICA in the low flow discharges but excessively large estimate of discharge was made in the high flows. Thus, it was considered that both the rating curves prepared by SMEC and DIHM were required to be modified accordingly.

A new rating curve was established based on the discharge measurement results as shown in Fig.-C.4. In establishing the new rating curve, some of measurements by SMEC were incorporated.

Followings were considered for the application of the rating curves for converting into the stream flow;

As the Sapt Gandaki River causes much sedimentation by flood, there is a possibility that the riverbed topography changes by a large flood. The rating curve is also considered to be changed accordingly. DIHM carried out the discharge measurement and checking of the rating curve up to April 1967. Thus, DIHM's rating curve was considered right and should be applied during the period. From July 1972, SMEC carried out the discharge measurement and established a new rating curve which is considerably different from the DIHM's one and nearly same as in low flow the new one established at this time though there is some difference

in the high flow portion. Such being the case, it may be reasonable to consider that the change of the rating curve to be applied occurred during the period of May 1967 to July 1972 while any discharge measurement and checking of the rating curve was not carried out. Thus, the application of the rating curves for conversion from the river water level into the stream flow was made on the assumption that the change of the rating curve from the DIHM's one to the newly established one occurred at the middle of the period of May 1967 to July 1972, i.e., DIHM's stream flow data which were derived applying the DIHM's rating curve, were used up to June 1970 and after then, the stream flow was derived by the application of the newly established rating curve.

The daily mean discharges so obtained for the period from 1963 to 1980 are compiled in the end of this ANNEX (C). The monthly mean discharges are summarized in Table-C.3. In addition, annual mean monthly discharges for the period are shown in Fig.-C.5 and in the following.

	<u> </u>				<u>,</u>		<u> </u>	<u> </u>	<u> </u>	(Unit	: m ³	/sec)
Month	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Mean	376	303	283	373	572	1,548	3.576	4.231	2-967	1.578	795.	520
11Can	5,0	303	200	3,3		,_,		7,231	2,501	1,570	,,,,,	320

The annual mean discharges of the Sapt Gandaki River at the damsite is calculated to be 1,436 $\rm m^3/sec$. As shown in the above Table, around 85% of the annual runoff occurs in the wet and transition seasons from May to October.

3.2.3 Verification of Reliability of Runoff Data

As the density of rainfall stations in the basin is too low to accurately estimate the runoff coefficient and rainfall data in the Himarayan and Tibetan zones are hardly available, the reliability of the runoff data at the Gaging Station 450 is examined by double mass curve method and comparing specific runoff at the Gaging Station 450 with those at other gaging stations in the basin.

(1) Double mass curve

In order to examine consistency of the runoff records at the Gaging Station 450, the accumulated annual mean runoff at the Station is compared with that at the Gaging Station 420 on the Kali Gandaki River which covers a catchment area of 11,400 km². To represent the correlation between those, the double mass curve for the period of 1964 to 1978 is established as shown in Fig.-C.6.

Since the relation between those is given by a straight line in the Figure, it can be said that the runoff records at the Gaging Station 450 is well correlated with those at the Gaging Station 420 and that these records are consistent. In addition to the above, high correlation of these runoff data is indicated in Fig.-C.5 and Fig.-C.7 showing annual mean monthly runoffs and relation of monthly mean discharges at these gaging stations, respectively.

Fig.-C.6 also shows a well correlation between the runoff records at the damsite and those at Gaging Station 680 which is located on the Sapt Kosi River basin, being adjacent to the Sapt Gandaki River basin in the east and at which a catchment area is measured to be around $18,000~\rm km^2$.

(2) Specific runoff

The annual mean specific runoff at the project site is estimated at $4.52~\text{m}^3/\text{sec}/100~\text{km}^2$ based on the runoff data for the period from 1964 to 1980. On the other hand, the annual mean specific runoff at five stream flow gaging stations in the Sapt Gandaki basin are shown in the following.

No. of G.S.	Name of River		al Mean Specific ff (m ³ /sec/100 km ²)
420	Kali Gandaki	1964 - 1977	4.30
4 30	Seti	1964 - 1978	8.88
439.8	Marsyangdi	1974 - 1979	5.57
445	Burhi Gandaki	1964 - 1978	3.62
447	Trisuli	1967 - 1974	4.22

The above table shows that the specific runoffs of the tributaries of the Sapt Gandaki River range so widely from 3.62 to 8.88. The value of 4.52 m³/sec/100 km² of the Gaging Station 450 is considered to be reasonable in comparison with specific runoff of 4.30 m³/sec/100 km² of the Gaging Station 420. Though the specific runoff at Gaging Station 420 is slightly less than that at Gaging Station 450, this results from the small rainfall amount in the upper reach of the Kali Gandaki River as seen in Fig.-C.2. Thus, the runoff records at the Sapt Gandaki damsite are judged to be reasonable.

3.2.4 Frequency of Low Flow

Since the project is planned to be of run-of-river scheme, the frequency of low flow discharges has a significant effect on the dependability of the power plants. As shown in Table-C.3, the daily mean discharge records at the damsite are incomplete for the nine years of 1963, 1971, 1972, 1974 to 1978 and 1980. For the purpose of establishing the discharge duration curve at the damsite, the daily discharges in the wet season are simply generated by applying discharge records at the Gaging Station 420 and a catchment ratio of Gaging Station 450 to Gaging Station 420. The discharge records for the period of 14 years exclusive of those in 1971, 1972 and 1976 became available for the purpose of examining the frequency of the low flow at the damsite. The discharge duration curve at the damsite is illustrated as shown in Fig.-C.8 and the daily discharges for selected exceedance probability are as follows.

	Percentage of time	when daily dis	charge is exceeded
	10 20 30	40 50 60	70 80 90 100
Discharge (m ³ /sec.)	3,890 2,730 1,620	982 684 523	424 343 290 150

3.3 Flood Analysis

3.3.1 General Feature of Flood Frequency of the Basin

In the Hydrology Report for the Basin Master Plan Study prepared by SMEC in 1979, it was stated that the log-normal distribution is well fit for the flood records in the Sapt Gandaki River basin. This hydrologic characteristic was confirmed by examining distribution of annual maximum peak discharges observed at each gaging station in the basin.

Table-C.5 shows the annual maximum peak discharges observed at the Gaging Station 420 (on the Kali Gandaki River), 430 (on the Seti River), 445 (on the Burhi Gandaki River) and 447 (on the Trisuli River) which are major tributaries of the Sapt Gandaki River. These peak discharge records were plotted on log-normal paper for each gaging station as shown in Fig.-C.9. From the Figure, it can be said that the log-normal distribution shows a good fit for the flood records in the basin as a whole.

On the other hand, a skewness of the samples was calculated for each of the above gaging stations as shown in Table-C.5. The skewnesses of samples in the basin are less than 1.1935 which is given as that of Gumbel's extreme distribution. This means that the curve derived from the sample is skewed to the left with increase of discharge on the Gumbel's paper. Thus, it is considered that an application of log-normal or Gumbel's distribution rather than log extreme value distribution is suitable for frequency analysis for flood records in the basin.

3.3.2 Flood Frequency Analysis

The annual maximum peak discharges at the Gaging Station 450 for the period from 1963 to 1981 are shown in Table-C.6. As seen in the Table, the annual maximum peak discharges range approximately between 6,000 and 16,500 m³/sec, and it is noted that they mostly occurred for the period from the beginning of July to the end of September in the wet season.

The flood frequency analysis was made using the log-normal, Gumbel's and Iwai's method as shown in the following table.

Estimated Peak Discharge

		(Unit	: m ³ /sec)
Recurrence Interval In Year	Log Normal	Gumbel's	Iwai's
2	9,100	9,000	8,700
5	10,900	11,300	10,400
10	12,100	12,900	11,500
20	13,100	14,400	12,400
50	14,300	16,300	13,500
100	15,200	17,800	14,400
200	16,100	19,200	15,200
1,000	18,000	22,600	16,900
10,000	20,700	27,400	19,400

As shown in the above table, the peak discharges estimated by the Gumbel's method are larger than those by the other methods for recurrence intervals of more than 5 years. Taking into consideration uncertainties involved in the extreme huge catchment area of 31,100 km², it is recommended to adopt the results by the Gumbel's method for the purpose of project planning and design.

In order to check the reliability of the above result of the flood frequency analysis, the estimated peak discharges for the Gaging Station 450 are compared with those for Gaging Station 420 on the Kali Gandaki River and unusual floods in the whole Nepal by using the following Creager's formula.

$$Q = 46CA^{b}$$

 $b = 0.89A^{-0.048} - 1$

where, Q: flood peak in second-feet

A: catchment area in square miles

C: Coefficient

The frequency analysis for the Gaging Station 420 was made for the annual maximum water levels for the period from 1964 to 1977 using the Gumbel's method. The results are shown in Table-C.7. The above Creager's C corresponding to the peak discharges estimated by Gumbel's method for the Gaging Station 420 and 450 are tabulated below.

Recurrence	Creager	's C
Interval in Year	Gaging Station 420 (C.A. = 11,400 km ²)	Gaging Station 450 (C.A. = 31,100 km ²)
200	62	71
10,000	94	100

As shown in the above table, the values of Creager's C for the 200 year and 10,000 year flood for the Gaging Station 450 resulted in generally same as those for the Gaging Station 420. The value of C is considered to depend on the characteristics of the drainage basin such as rainfall intensity, topography and so on. Therefore, taking into account the similarity of both basins, the results of the frequency analysis for the Gaging Station 450 are judged to be reasonable.

In Fig.-C.11, the recorded maximum peak discharges at the respective gaging stations in Nepal are plotted against their catchment areas using the said C value. The highest C value, as shown in the Figure, is derived to be 66. Accordingly, the 10,000 year flood of 27,400 m 3 /sec at the damsite which corresponds to C = 100 has a considerable allowance for the recorded unusual floods in Nepal. Furthermore, it is generally accepted that the value of C = 100 gives the largest peak flood at any part of the world.

From the above hydrological viewpoints, it is recommended that the spillway has a capacity of discharging the estimated 10,000 year flood at the damsite with an allowance to some extent.

IV. SEDIMENTATION STUDY AND WATER QUALITY

4.1 Sedimentation Study

4.1.1 General

The rivers of Nepal generally transport high sediment load due to the highly deforested land, steep slope and high intensity of rainfall during the wet season. On the other hand, the characteristic appears to be comparatively remarkable in the rivers which originates from the Tibetan zone. The Sapt Gandaki River water seems to be very clear in the dry season, while it becomes muddy in the wet season due to a large quantity of sediment transports from the basin. It is observed that the sediment rate of the Kali Gandaki River is higher than that of the Trisuli River.

The sedimentaion studies were made for the whole Sapt Gandaki basin based on the data on the suspended load at Gaging Station 450 which were carried out by DIHM for the period from 1975 to 1978. In addition to those, the suspended sediment data collected by the JICA Team during the field investigation period, as shown in Table-C.8, were incorporated in assessing the sedimentation of the Sapt Gandaki River basin.

As the Sapt Gandaki project is planned to be developed as a run-ofriver scheme, the studies are focused on estimate of time when the reservoir below the spillway crest level is filled up with the sediment.

4.1.2 Estimate of Long-term Suspended Load Transport

The ultimate objective of sedimentation study is to estimate the sediment rate of the basin based on the relationship between daily mean discharge and sediment load concentration. The sediment load consists of suspended and bed loads. In general, it is not possible to accurately measure the bed load in the natural river. In addition, any data on bed load are not available in Nepal. Accordingly, the rate of bed load transport is simply assumed to be 15% of that of the suspended one.

On the basis of the said data on the suspended load at the Gaging Station 450, the concentrations are plotted against discharges as shown

in Fig.-C.12. It reveals that the values of the suspended load concentration scatter in a wide range. From the figure, it appears that the sediment yield in low flow season is influenced by other factors than the magnitude of runoff discharge and that concerning flood season there is comparatively a large difference of the suspended load concentration between rising and descending time of the flood.

On the basis of the results of the suspended load measurements, the relationship between daily mean discharge and suspended load transport is established as shown in the following.

$$Qs = 7.53408 \times 10^{-4} \times Q^{2.54267}$$

where Q and Qs are daily mean discharge in m³/sec and suspended load transport in ton/day, respectively. As the exponent of the above expression generally ranges between 2.0 and 3.0 in the rivers of Nepal, it is judged to be adequate.

The long term suspended transports at the damsite are estimated using the daily mean runoff records at the Gaging Station 450. The monthly suspended load transports for the period from 1964 to 1980 are shown in Table-C.9. As seen in the Table, more than 90% of annual suspended load transport occurs in the wet season of June to September.

4.1.3 Reservoir sedimentation

For the purpose of converting the unit of sediment load from weight into volume, a density of sediment material is assumed to be 1.4 ton/ m^3 . By adding the bed load, the annual mean sediment yield of the Sapt Gandaki basin is estimate to be around $88 \times 10^6 \, m^3/\text{year}$ as shown below.

Annual Monthly Mean Sediment Yield

	+ 5,	1.				4		1111	(Un	lt:	10^{3} m^{3}
Jan.	Feb.	Mar.	Apr. M	ay Jun	. Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
76	30	36	78 2	// 3 6/r	6 26,356	35 701	15 000	. 877	498	168	87 799
70	39	20	70 2	44 3,04	0 20,330	33,731	10,770	4,077	490	100	07,199

The specific sediment transport of the Sapt Gandaki River basin expressed in $\rm m^3/km^2/year$ is determined to be 2,800 which is slightly smaller than a 3,000 $\rm m^3/km^2/year$ recommended in the SMEC's Prefeasibility Report.

In case of developing the Project as a storage type, the Sapt Gandaki reservoir needs to have a dead storage capacity of more than 9 x 10⁹ m³ which is equivalent to the 100 year sediment transport volume. Since it is not possible to raise up the dam crest to such a level taking into consideration of topography at the damsite, the project is proposed as a run-of-river scheme. Hence, the sediment inflow into the reservoir is required to be discharged downstream through the spillway gates after it is filled with the sediment.

In order to estimate the time when the reservoir below the spillway crest level is to be filled with sediment, it is necessary to determine the trap efficiency of the reservoir. The trap efficiency is considered to be a function of the ratio of gross reservoir storage capacity to annual inflow discharge volume. Usually, the trap efficiency becomes small if annual inflow volume is large compared with gross storage capacity. Since the ratio for the Project is calculated around 0.07, the value of trap efficiency is estimated to range between 20% and 50% based on data obtained by surveying the existing reservoirs in U.S.A. On the other hand, the flood discharge in wet season during which a large sediment transport occurs is planned to be mostly discharged downstream through the spillway gate without retarding. Accordingly, as the trap efficiency is considered to be very low as a whole, 30% is adopted as the trap efficiency for the Project.

With this trap efficiency, the annual sedimentation in the reservoir will be about $26 \times 10^6 \text{ m}^3$ and the reservoir below the spillway crest, which capacity is about $130 \times 10^6 \text{ m}^3$, will be filled up with sediment in several years.

4.1.4 Grain Size of Sediments

The grain size analysis of the sediments is made as shown in Table-C.10. As seen in the Table, the grain size of the sediments at the proposed damsite is very fine. It seems such fine particles will not be so harmful for the turbine blades.

4.2 Quality of the River Water

The laboratory tests for water quality analysis were carried out in order to examine the content of various chemical elements of the River water. The water samples were taken at the Gaging Station 450 not only in the dry season, but also in the wet season. These chemical analysis were made in DIHM laboratory of Kathmandu. The results of water quality analysis are tabulated in Table-C.11.

As shown in the Table, the River water is usable for drinking water and irrigation purposes and it also has no adverse effect on turbine and metal for hydropower use. The content of calcium for the River water is high compared with those of other elements. This shows that some of upstream area consists of limestone.

TABLES

												1
												C: T(T)
1	2)	4	5	9	7	ລ	6	10	11	1.2	13
Name of sta. Rukumkot Sta. No. (51.m) 1,560	ot Shera Gaun 0502 0 2,152	Libang Gaun 0504 1,270	Bijuwar Tar 0505 832	Musikot 0514 2,100	Jomsom 0601 2,744	Thakmarpha 0604 2,566	Baglung 0605 984	Tatopani 0606 1,243	Lete 0607 2,384	Mukutinath 0608 3,609	Beni Bazar 0609 835	Kushme 0614
						2.5				ř.	1,332.7	
1,933.3	3 1,124.0	1,132.5		:	259.6						1,401.5	
1,839.8		1,317.3			252.0						1,331.8	
1,634.9	9 1,358.5	974.2			327.0						1,316.4	
3,395.3	3 1,539.1	2,319.7		2 * . :	317.3					;	1,634.6	
3,268.9		1,294.7		·	244.1						1,322.9	
4,748.3	3 1,604.0	1,295.4		• •	346.7						1,532.7	
3,171.0	0 1,381.4	892.7			284.7					- 1 5	1,567.8	
1,645.3	3 1,171.3	755.1			284.8						1,164.7	
1,956.4	1,302.4	725.2			157.3						1,440.8	
2,384.6	6 981.5	942.3			141.3		1.				1,044.2	
3,504.6	5 1,275.6	1,058.9			347.0						1,406.2	
	1,386.1	1,064.8			324.2			. :			1,314.0	
4,729.8	3 1,444.5		1,292.7	•	189.3	4.664	2,354.8	1,321.7	821.8	! •	1,448.2	1,920.5
3,119.3		•	1,216.5		•	370.0	1,695.8	1,445.8	1,053.0	177.8	1	1,524.8
6,922.0			892.7		ı	398.4	1,033.2	1,199.5	1,202.0	432.8		1,790.5
	1,457.1		1,753.8		450.7	392.0		1,445.5	1,005.8	450.8	1,796.5	2,202.0
	1,293.6	1,515.3	897.9	1,339.4	301.4	264.8	1,901.6	•	1,062.4	412.7	1,306.5	2,420.0
	1,345.8	1,704.2	1,479.6	1,899.2	259.9	329.2	1,885.3	. 1	1,080.0	372.0	1,766.2	2,658.8
	1,334.4		836.8	1,668.0	214.7	253.2	1,689.0	1,605.5	1.015.7	341.5	1,432.8	
	1,351.8		912.2	1,331.5	91.2	361.5	1,678.5	1,907.2	1,060.1	327.9	1,436.0	1
1,346.5	5 1,725.6	1,925.9	1,531.1	1,489.0	3	ŧ	1,463.2	1,143.1	1,084.1	936.2	1,252.8	•
	1.357.8	2,635.2	1,373.5	- 1 - 1	•	ŧ	1,650.7	1,336.3	961.6	303.7	1,212.4	•
	1,580.0	1,852.7	1,415.3	2,538.2		475.3	2,148.2	1,626.2	1,167.9	472.6	1,430.2	₽,
3.040.0	1 1/4 4	8 721 C	1 316 K		* 750	9	. 750	, ,,		0 000	. 70,	. 700 0

27	Kuncha 0807	855	1.805.6	2,113.6	2,758.8	2,757.8	2,398.6	3,143.3	2,089.8	2,077.4	5.63	1,941.9	2,098.3	2,081.9	π.6 ·	8.73	4. 6:	7.5	18.1	4.9	2.0	4.3	2,433.0	7.1	5.6	3.2	4.2] ;··				
			Ä	2,1	2,7	2,7	2,3	3,14	2,8	2,07	2,349.5	1,94	9	2,08	1,821.6	2,057.8	2,639.4	2,871.5	.7 3,648.1	.3 3,294.9	.4 2,922.0	.3 2,674.3	2,43	.4 2,973.1	.9 3,095.6	.5 2,303.2	.2 2,514.2			٠.		
26	5yenja 0805	Ř									•		7				1	•	3,357.7	3,458.3	3,828.4	3,102.3	•	3,103.4	2,936.9	2,880.5	3,238.2			:		
25	Pokhara Airp.	845														3,731.6	3,275.6	3,208.5	4,096.4	4,605.0	4,666.0	4,249.9	3,810.0	3,960.0	4,010.7	3,843.0	3,950.6					
24	Pokhara Hosp. 0803	876	3,215.9	3,920.7	3,268.8	3,131.1	3,936.3	4,004.4	3,233.5	3,515.4	3,312.9	3,245.9	3,332.6	3,609.1	2,752.8	3,877.3	4,063.0	3,270.7	4,072.6	4,641.6	4,388.5	•	i	1	•	**************************************	3,620.7					
23	8.Z&.T	679		3,325.1	3,398.1	2,787.0	3,579.8	3,256.9	3,382.3	3,064.1	3,237.4	3,201.8	3,392.2	2,936.1	2,484.7	3,510.9	3,441.2	3,146.7	3,738.2	3,560.7	3,453.9	3,145.7	3,381.4	2,829.8	3,343.2	3,059.7	3,245.9					
22	ibas	44514		1,475.5	1,519.5	1,401.5	1,518.3	1,373.8	1,328.3	1,013.2	1,287.9	835.4	1,003.1	1,002.0	1,284.6	1,354.8		1,559.5	1,649.6	1,288.8	1,909.3	1,453.6	1,629.2	1,605.6	1,331.3	1,239.9	1,366.6					
21	Musikot 0722	7.700	1,658.4	1,989.0	2,050.5	2,010.8	551.5	1,391.7	1,815.7	577.7	1,440.2	1,428.8	1,312.9	1,818.1	1,544.1	1,742.3	1,666.2	1,398.7	2,819.4	1,861.7	1,952.5	2,106.9	2,060.8	2,657.5	1,786.1	1,966.6	1,733.7			- pane	:	
50	Kirtipur Churi 0714	740	: :					· .					-				3,811.2	2,929.1	•	ì	•	1	4	1	B	•	3,370.2			- To be continued -		:
19	RAMBAS 0713						:				٠			٠.		2,817.9	1,952.1	•		•	ŧ,	1	1	ı	ı		2,385.0					
18	Dumkali 0706	*7*				:							٠.				2,604.2	1.	•	1	2,264:3	1,927.0	1,715.8	2,555.3	1,929.5	1,893.3	2,127.1		:			 •
17		120		1,856.3	2,362.5	1,532.0	2,352.3	3,168.1	2,924.4	2,612.9	2,151.9	2,686.2	2,079.8	2,453.8	2,052.4	2,703.2	2,595.5	1,753.7	2,781.1	3,212.6	2,903.3	2,178.8	1,815.6	2,420.1	1,869.5	2,271.8	2,379.9					
16	-	Š	2,678.4		2,328.7	2,391.7	1,966.3 2	2,791.8 3	2,239.0 2	2,733.7 2	2,374.5 2	2,963.1 2	2,140.4 2	2,176.0 2	1,895.8 2	3,693.1 2	3,245.0 2	2,104.0	3,128.7 2	2,807.5 3	3,240.8 2	2	٠ -	7	1	- 2			:		٠	
15		1,067	1,415.0 2			31.		1,916.8 2	10.00	1,211.0 2	1,400.8 2		1,007.0 2	1,479.2 2	1,042.2 1	1,951.8 3	951.7 3	7	1	- 7	n		993.0	1,523.1	1,167.6	1,809.3	1,466.4 2,591.2					
14	Ridl Bazar Orol	44 2	1,003.8					1,512.9					1,046.3	Ď,	1,251.0	1,516.6	1,547.6	1,021.2	2,271.0	1,036.6	1,895.6	8.086	1,241.2	1,870.1	1,167.5	1,583.6	1,351.8					
No.	Name of sta. Sta. No.	Elevation (El.m)	Tear 1957		1959	1960	1961	1962	1963	1964	1965	1966	1961	1968	1969	1970	1971	1972	1973	1974	1975	3,976	1977	1978	1979	1980	Mean					

÷.						•	-																	:	-					:	: -	
c.1(3)	9	Amlekhganj 0907 359	2,399.1	1,485.2	2,324.3	2,161.0	1,910.5	2,060.4	2,555.8	2,099.9	2,057.4	2,412.1	2,543.4	2,298.0	1	1,892.3	1,581.6	3,275.0	1,584.7	2,445.1	2,440.4	3,017.5	1,972.5	1,583.0	1,985.1	2,117.7	1,757.2	2,165.0				
	. 39	Hetauda(N.F.I.) 090 6 474												2,575.0	2,275.1	•	l.		1,601.8	2,709.3	2,397.4	2,525.9	2,359.9	1,947.6	2,431.8	1,788.5		2,261.2				
	38	Daman B 0905 2,314													1,251.8	1,427.5	1,259.2	1,716.7	2,084.0	2,426.6	2,308.1	2,159.9	1,929.4	1,528.5	2,311.2	1,854.8	1,111.6	1,797.6				
	37	Chisapani Gadhi 0904 1,706			1,449.8	1,878.3	1,873.4	2,545.9	2,340.9	1,815.1	1,382.3	2,640.0	2,457.0	2,095.9	2,187.8	1,560.9	2,514.3	2,267.6	2,510.3	2,719.2	2,889.8	2,676.2	2,173.1	1,815.1	2,544.4	1,806.3	1,560.5	2,161.0				
	36	Jhavani Ch 0903 270			1,283.0	1,478.3	1,830.6	1,978.8	2,458.7	1,300.0	1,854.0	1,838.9	1,916.9	1,247.7	1,616.4	1,656.3	1,512.3	2,771.5	1,445.6	1,865.5	2,297.9	2,023.4	1,560.3	1,571.1	2,058.5	2,323.1	1,740.1	1,966.1 1,810.0				
	35	Rempur 0902 256				· · · .		٠.						•	1,953.6	1,376.3	1,943.6	2,202.5	1,648.3	2,341.0	2,532.4	2,314.0	1,824.8	1,725.9	2,287.8	1,825.3	1,584.0	1,966.1				
	34	Chame 0816 2,680				•	:							ı	1			ı	ı	1	1	751.3	665.4	862.2	1.199	1	1,461.2	881.6		end -	· .	
	.33	Mairani 0815 500				•					:	•		1	1	.• 			4 2,516.5	0.1,965.0	2,202.9	ı		ų	~	61	7 1,965.9	3 2,301.8		- To be continend -		
	32	Lumle 0814 1,642												•	1	•	5,610.6	5,963.5	5,368.4	5,757.0	1	5,355.6	4,713.1	4,863.1	4,951.9	3,946.1	4,959.7	5,148.9		:	٠.	
	31	Malepatan O811 856	I									:	• •	3,364.2		3,770.2	3,960.1	3,106.8	•	4,258.4	ļ.			3,832.4	3,499.1	3,619.9	3,501.3	3,656.9				
	30	Chapkot 0810 400			1,439.0	1,828.3	2,494.0	3,267.2	3,271.0	1,167.6	1,271.0	1,474.1	1,237.3	1,187.1	1,651.2	1,098.7	1,462.2	1,405.6	1,632.8	2,401.2	1,832.6	2,644.8	. i	1,578.7	1,894.7	1,480.6	1,981.3	1,804.6				
	29	Gorkha 0809 1,097		1,731.0	1,585.7	1,720.0			•	1	1,606.5	1,972.9	1,494.2	1,537.5	1,594.7	1,362.1	1,467.3	1,969.6	1,940.5	•	1,939.1	1,794.3	2,312.0	1,333.7	2,288.4	1,826.8	1,522.8	1,736.8				
	28	Bendipur 0808) 965		1,312.4	1,390.2	1,511.0	1,924.2	2,341.8	2,514.4	1,838.7	1,866.8	1,852.9	1,765.0	1,601.0	1,927.2	1,219.6	2,385.3	1,942.0	2,139.0	1,963.7	2,170.4	1,794.8	1,373.1	1,599.5	1,908.8	1,766.4	1,794.4	1,829.3				
	No.	Name of sta. Sta. No. Elevation (El.m)	Tear 1956	1957	1958	1959	1960	1961	1962	1963	1964	1965		1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	Mean				
															7									. •								

C. L(4)		Valpur 1008	7,				0.1	7-1	2,720.6	4.9	9.2	5.6	6.6	2.6	5.0	2-1	2.9	2.5	6.0	5.6	4.4	2.2	7.5	2.0	t=	4.3	7.6	1.5				
ا ذ	53	Nevalpur 1008					2,220,1	2,307.1	2,72	2,256.4	2,639.2	2,115.6	1,946.6	2,389.7	2,475.0	2,011.7	2,242.9	2,942.5	1,950.9	2,585.6	2,424.4	2,682.2	2,857.5	2,392.0	3,008.7	2,114.3	2,357.6	2,411.5	<i>3</i> 1 - 3			
	52	Kekeni 1007 2.064			. 1.									:									2,652.4	2,393.2	3,239.6	1,734.1	2,842.1	2,572.3				
	5.1	Dhading 1005			1.30%	2 018:4	2.846.8	4,013.6	4,182.9	3,605.3	1,615.0	1,999.4	2,043.0	1,534.6	1,526.0	1,690.4	2,021.1	2,194.0	1,930.4	2,507.9	2,013.2	2,044.7	2,269.5	2,098.2	2,301.4	1,555.6	1,915.3	2,227.4				
	50	Nuvakot 1004	22.1	1 759.8		1 839 0	1.650.0		2,116.1	•	1,727.0	•	t		1,187.8	1,431.0	1,952.4	1,873.4	1,702.6	2,015.2	2,065.0	2,076.2	1,741.8	2,033.5	2,541.6	1,603.2	1,732.7	1,836.0				
	49	Aru Ghat 1002 518	23,		2 333 4	2 286 4	1,328.2	3,019.5	3,042.2	2,767.0	1,916,1	2,615.7	2,008.4	1,653.5	1,791.9	2,056.2	2,759.3	2,921.0	3,133.5	3,942.5	3,252.9	2,626.6	2,987.2	3.048.8	3,060.5	2,366.8	2,557.2	2,585.8				
	48	Timule 1001			1 017 6	1 196	968.1	1,091.6	1,089.0	1,001.5	1,007.5	915.3	926.6	991.6	1,069.1	1,045.9	2.618		758.8	885.7	660.4	890.7	256.5	986.4	1,122.6	760.9	1,345.8	939.2	-		:	
	47	Beluwa 0920 274								Se.												2,687.2	2,264.2	2,133.6	2,737.7	2,189.3	2,440.0	2,408.7		ᄩ		
	46	Makavampur 0919 1 010																,				3,178.6	2,689.0	2,220.4	2,970.4	1,624.9	919.7	2,268.7		- To be continued -		: : .
	45	Birganj 0918 91													٠							988.0	4 406	934.0	1,276.9	1,388.2	1,036.8	1,088.6				
-	4	Hetauda 0917																			2,591.0	2,673.3	1,963.7	2,097.5	2,613.9	2,004.9	1,569.2	2,216.2			3	
	43	Chitlang 0915	2777																1,473.7	1,865.0	1,829.0	1,865.1	1,706.4	1,370.3	2,960.3	1,079.0	1,095.8	1,693.8				
	.42	Bhartpur 0914	7,7,4															2,993.5			•	ı	•	•	•	•		2,993.5				
	.41	Parvanipur 0911												865.2	881.9	1,060.3	1,760.4	1,352.3	893.4	1,851.3	1,939.5	1,716.8	1,026.8	1,146.6	1,809.2	1,549.8	1,161.0	1,358.2				
	No.	Name of sta. Sta. No.	700 700 700 700 700 700 700 700 700 700	7001	1058	200	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	7.				
																			- · · :													

C;1(5)		rayan 3			.		
Ö	57	Changu Marayan 1059 1,543		1,644.	2,043.6	1,577.5	
	99	Tarke Ghyang (1058 2.480		772.1 1,118.6 584.8	2,667.3	1,404.5	
	65	Dhunche 1055 1,982	1, 681.5 1, 820.0 1, 712.6	2,090.6 1,910.2 1.661.5	2,215.2 2,432.7 2,636.5	2,107.9	
	2	Thamschit 1054 1,847	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	1,668.3	1,924.0	1,642.5	
	63	Kathmandu Airport 1030 1,336	1, 362.3 1, 2011.3 1, 7961.4 1, 799.8 1, 225.1	1,424.5	1,556.0 1,356.4 1,340.9	1,398.8	
	62	Godavari 1022 1.400	1,764.4 2,083.6 2,063.9 2,393.9 1,495.1 1,633.0 1,766.2 2,337.2 2,337.2 2,337.2 2,337.2	1 i i		1,937.2	
	61	Ranipauwa 1019 1,828	2,778.0	1 4 1		2,686.3	
	60	Baunepati 1018 845		1,691.2	1,481.2 1,582.0	1,708.6	
	59	rmathang 1 1016 2,625	**************************************	,856.6 ,799.2 535.5	976.0	,928.2	
	58	Thankot Sa 1015 1,630	1,189.0 1,589.6 1,811.0 1,811.6 2,512.6 2,206.6	2,091.8 3 2,643.2 4 2,287.6 3	. 4 4 4	2,167.3 3	
	57	Kathmandu 1014 1,324	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	526.7		1,381.2	
	>6	Sundarijar Reservoir 1013	2, 252 2, 252	2,540.8		2,245.9	
	55	Sundarijar Su Powerhouse Re 1012 1,364	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	111		2, 108.9	
	54	Chautra Su 1009 1,660		1,519.9	2,242.1	2,018.3 2,	
		Name of sta. Sta. No. Elevation (El.m)		1975 1976 1977		Xean	

Table-C.2: R	ESULTS OF DISCHARGE M	EASUREMENTS
Observed Date	Stage Height (m)	Observed Discharge (m ³ /sec)
February 27, 1981	0.54	242
February 28, 1981	0.55	230
March 1, 1981	0.60	257
March 7, 1981	0.57	254
March 10, 1981	0.51	221
March 16, 1981	0.47	185
March 18, 1981	0.55	248
March 19, 1981	0.52	205
March 22, 1981	0.88	286
August 16, 1981	4.92	3,427
August 17, 1981	4.95	3,534
August 18, 1981	4.76	3,189
August 19, 1981	5.64	4,250
August 20, 1981	6.37	6,269
September 7, 1981	4.30	2,913
September 8, 1981	4.44	2,610
September 9, 1981	4,77	3,476
September 11, 1981	5.71	5,285
September 15, 1981	4.04	2,711
September 16, 1981	4.00	2,688
September 29, 1981	8.52	11,159
October 18, 1981	2.57	1,190
October 19, 1981	2.55	1,153
October 20, 1981	2.53	1,115
November 1, 1981	2.11	880
November 2, 1981	2.08	850
November 3, 1981	2.07	849
November 4, 1981	2.15	922
November 14, 1981	1.84	694
November 15, 1981	1.82	611
November 16, 1981	1.78	702

GANDAKI RIVER (NARAYANGAHR) SAPT THE MONTHLY MEAN DISCHARGES AT GAGING STATION 450 ON Table-C.3:

3(55)	1	1	8 1,561	2 1,435	3 1,521	1 1,429	0 1,699	2 1,455	1,414	1	1	3 1,486	1	1		9	5 1,598	5 1,153	1	0 1,436
	Dec		638	592	583	541	670	542	37I	1	i-	553	540	575		977	435	405	390	520
	Nov.	1	987	953	852	908	1,043	851	909	1	656	939	781	871		675	702	577	629	795
איין איין איין איין איין איין איין איין	Oct.	1	1,764	1,312	1,322	1,385	2,822	1,513	1,213	1,546	1,086	2,843	1	1,629	1	•	1,426	1,060	1,172	1,578
	Sep.		3,510	2,816	3,379	2,985	3,147	3,721	2,175	2,309	2,388	3,372	j	4,072	2,625	1.	2,527	2,085	3,340	2,967
- TO	Aug.	5,165	4,451	4,606	5,325	4,059	4,176	4,083	4,412	4,046	3,408	3,919		3,662	3,298		4,690	4,168		4,231
	Jul.	3,781	7,06I	3,133	3,490	3,795	4,471	3,117	4,382	3,551	. I	2,512	3,388	1	2,465	3,754	4,742	3,011	1	3,576
	Jun.	1,656	1,180	1,524	1,328	1,402	1,920	1,307	1,828	•	1,165	1,816	1,020	2,518	1,891	1,312	2,110	902	1,452	1,548
1	May	l I	777	642	615	578	637	29T	588	489	542	607	502	619	347	664	976	441	977	572
	Apr.	1	412	470	285	422	366	399	37.2	319	239	360	379	421	396	505	431	289	286	373
	Mar.	1	310	268	245	306	320	368	236	204	233	259	288	338	374	31.7	313	217	223	283
1	Feb.	ı	377	323	313	328	308	380	278	214	1	244	327	398	1	261	304	266	225	303
	Jan.	1	452	472	387	431	407	495	378	269	i .	303	416	454		228	374	310	278	376
	Year	1963	1964	1965	1966	1961	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	Mean

Table-C.4: MONTHLY MEAN RUNOFF AT GAGING STATION 420 ON THE KALI GANDAKI RIVER
(G.A. = 11,400 km²)

m3/sec)	Year	589	513	558	472	614	408	519	786	370	550	424	528	376	451	491.6	
(Unit: 1	Dec.	219	225	201	137	761	126	154	153	102	192	109	143	148	158	161.5	
	Nov.	379	356	311	236	321	231	256	274	176	334	175	225	237	249	268.6	
	0ατ.	771	525	503	489	1,107	877	495	573	30.7	1,394	343	512	399	413	591.4	
	Sep.	1,625	1,092	1,256	1,123	1,256	1,190	906	848	893	1,469	785	1,382	996	917	1,122.0	
	Aug.	1,831	1,742	1,936	1,433	1,757	1,148	1,718	1,461	T,075	1,452	1,640	1,477	1,072	1,857	1,542.8	
	Jul.	1,361	1,180	1,258	1,212	1,671	850	1,607	1,133	1,158	914	1,124	1,761	945	1,006	1,222.0	
	Jun.	281	481	787	459	590	304	657	764	282	965	245	39.7	360	251	432.2	
	May	116	129	175	138	128	133	114	213	108	143	159	108	126	142	138.0	
	Apr.	98.2	118	103	101	70.5	92.8	71.7	128	63.6	76.0	116	71.7	80.4	102	92.4	
	Mar.	89.2	86.1	116	76.9	0.49	98.2	48.9	75.0	70.0	58.7	98.9	57.4	75.9	76.2	78.0	
	Feb.	122	155	142	94.3	66.7	107	65.7	73.9	81.5	59.3	112	9.99	91.3	89.0	91.9	
	Jan.	144	146	170	131	94.3	143	88.5	105	104	75.2	144	84.9	110	112	118.0	
	Year	1964	1965	9961	1961	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	Mean	

Table-C.5: ANNUAL MAXIMUM PEAK DISCHARGES OF MAJOR TRIBUTARIES
OF THE SAPT GANDAKI RIVER

1 / 1 de .				(Unit:	m ³ /sec)
		GAGING STA	TION		
	No.	420	430	445	447
Year	River of Name	Kali Gandaki	Seti	Burhi Gandaki	Trisuli
	Catchment Area (km²)	11,400	582	4,270	4,110
1964		3,730	346	650	
1965		5,150	236	693	<u> </u>
1966		3,210	268	735	_
1967		2,490	221	823	650
1968		6,720	599	570	605
1969		2,300	258	500	605
1970		5,650	500	528	690
1971		2,600	258	452	726
1972		3,730	433	574	850
1973		5,880	536	700	1,270
1974		4,480	555	805	1,170
1975		7,400	372	590	
1976		2,820	420	494	-
1977		5,700	425	546	1 - L
1978			218	518	1. 1.4 <u>.</u>
Skewn	ess	0.278	0.256	0.492	0.855

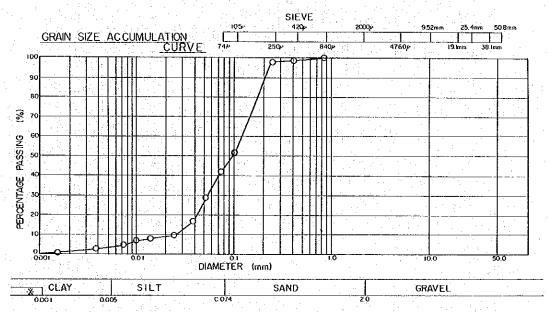
Table-C.6: ANNUAL MAXIMUM PEAK DISCHARGES AT THE DAMSITE

I	Date		Peak Discharges (m ³ /sec)	Date	Peak Discharges (m ³ /sec)
Aug.	8,	1963	7,970	Sep. 12, 1973	8,620
Aug.	4,	1964	8,400	Aug. 5, 1974	16,350
Aug.	12,	1965	7,940	Jul. 23, 1975	11,450
Aug.	24,	1966	9,480	Aug. 24, 1976	6,690
Jul.	10,	1967	8,790	Aug. 14, 1977	9,990
Oct.	5,	1968	10,160	Aug. 12, 1978	7,920
Jul.	26,	1969	6,160	Aug. 21, 1979	9,480
Jul.	16,	1970	9,230	Sep. 6, 1980	9,350
Aug.	8,	1971	7,030	Sep. 29, 1981	11,900
Jul.	28,	1972	9,990		

Table-C.7: RESULTS OF FREQUENCY ANALYSIS FOR ANNUAL MAXIMUM PEAK DISCHARGES OBSERVED AT GAGING STATION 420

Recurrence	Estimated Pea	ak Discharges	(m ³ /sec)
Interval in Year	Log Normal	Gumbel's	Iwai's
2	4,100	4,200	4,100
5	5,700	6,000	5,700
10	6,800	7,200	6,800
20	7,800	8,300	7,800
50	9,100	9,800	9,200
100	10,200	11,000	10,300
200	11,200	12,100	11,400
1,000	13,700	14,600	13,900
10,000	17,500	18,300	18,600

Table-C.8: RESULTS OF SUSPENDED LOAD MEASUREMENTS

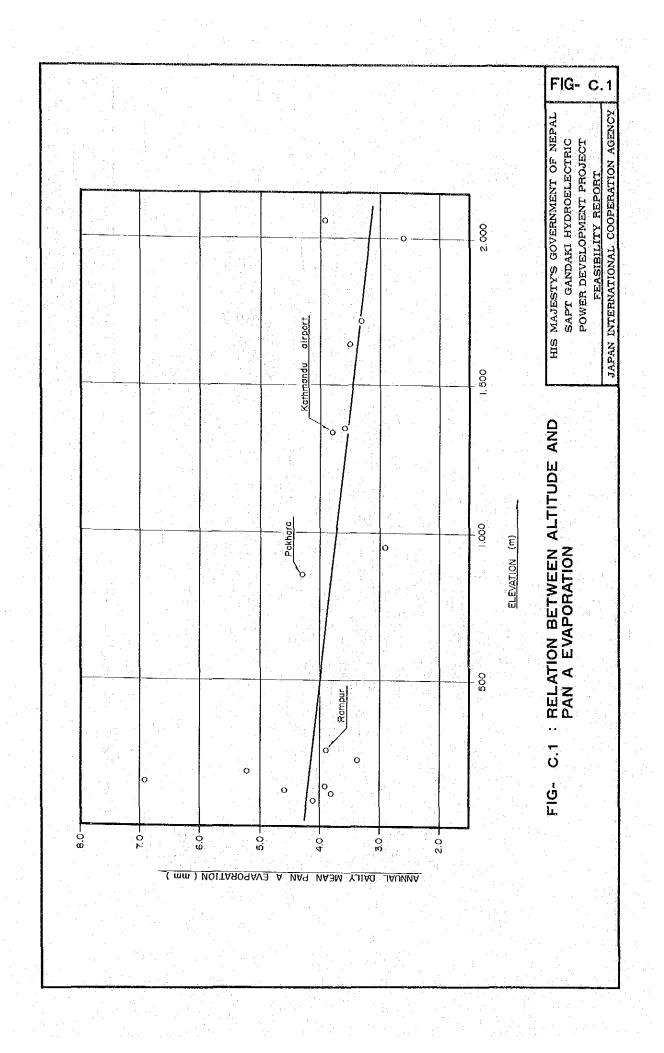

Ovserved Date	Observed Streamflow (m ³ /sec)	Suspended Load (mg/()
March 5, 1981	210	29
March 6, 1981	213	27
March 7, 1981	215	31
March 8, 1981	229	35
March 9, 1981	232	681
March 10, 1981	210	207
August 20, 1981	5,352	2,503
August 25, 1981	4,384	1,340
August 28, 1981	3,257	2,098
September 12, 1981	3,361	2,483
September 14, 1981	2,423	2,302
September 15, 1981	2,347	3,743
September 16, 1981	2,474	2,787
September 30, 1981	4,573	7,186
October 18, 1981	933	2,209
October 20, 1981	910	760

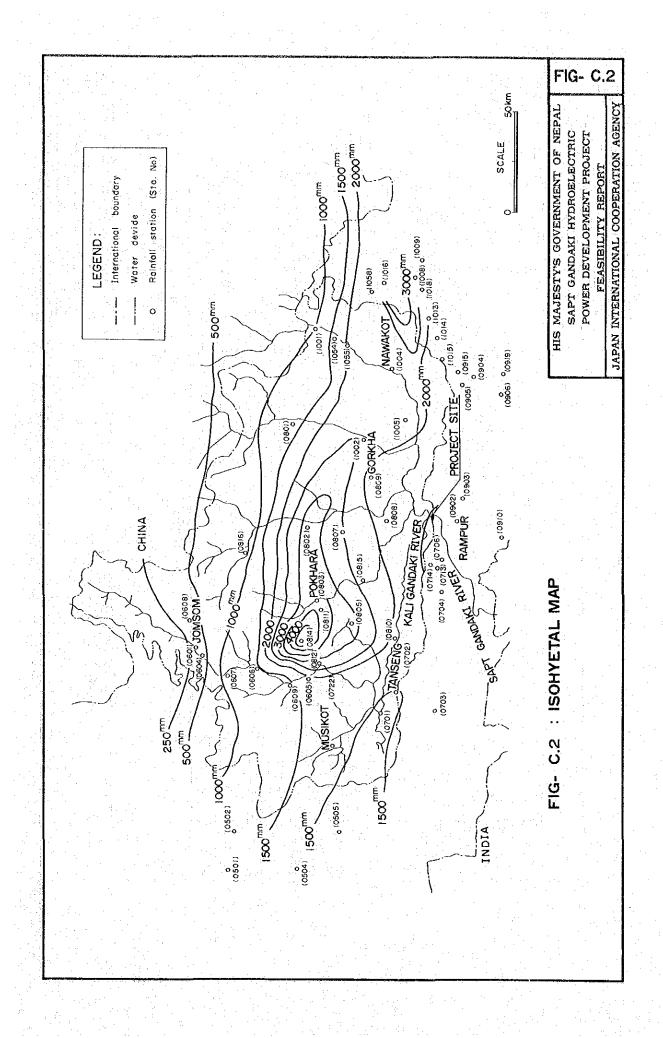
											:								••.						
10 ³ ton)	Total													J.				106,884.1							
(Unit:) '	320.5	265.6	255.7	212.5	214.6	81.5	ŀ		226.4	212.1	245.8	ı	129.6	123.9	108.4	93.3	204.0		1					
	Nov	982.5	6.606	652.8	568-9 1 111 A	661.1	291.6	1	8.877	863.5	536.8	698.8	1,	383.1	456.4	245.1	306.7	605.8)					:	
	Oct.	4,493.1	2,068.5	2,124.8	2,493.7	3,165.2	1,822.4	3,182.2	1,558.8	28,427.6		3,787.5		i .	2,765.4	1,248.2	1,635.2	5,937.8							
DAMSITE	Sep.	25,747.7	15,015.2	27,367.6	15,937.3 18 620 0	28,062.9	7,226.3	9,377.3	11,652.0	26,174.2		43,128.5	13,969.6		10,857.1	8,725.2	30,126.9	19,465.5					:		
LONG-TERM SUSPENDED LOAD AT THE DAMSITE	Aug	47,483.7	53,039.6	74,275.3	35,845.5	36,986.8	49,963.9	38,765.8	26,372.7	36,925.6		42,003.8	22,641.8	ı	62,941.3	47,541.4	1:	43,571.8						-	
SUSPENDED	Jul.	43,118.2	19,764.9	27,002.3	34, 273.2	20,646.1	54,457.1	26,723.7		13,225.7	32,058.8		13,153.9	31,428.2	57,031.1	23,978.6	t. :	32,085.4							
	Jun	2,496.3	3,921.2	2,744.3	2,707.7	2,041.8	9,423.8	.1	2,847.0	7,313.1	1,390.7	. .	8,269.7	2,360.5	8,456.7	1,339.2	4,265.9	4,438.2					. • .		
Table-C.9:	Мау	137.3	336.1	314.1	262.3	305.6	277.5	168.0	298.3	325.6	177.9	309.2	88:7	420.8	1,019.1	149.6	134.5	297.2							
	Apr.	105.5	158.3	44.2	129.2	100.5	112.6	58.4	25.7	78.4	87.1	118.1	92.8	211.8	125.9	42.8	47.7	1.36						:	
	Mar.	50.8	35.4	28.5	51.7 57.8	81.2	25.8	17.0	24.9	32.6	42.4	63.6	82.4	54.6	52.8	20.6	22.2	43.8			: :				
	Feb.	78.5	51.7	49.1	53.3 5.3.3 8.3.3	77.6	35.0	17.8	1	25.3	52.4	86.4	. 1	35.3	43.7	31.3	21.0	47.1			*.	٠.	÷.		
	Jan.	135.6	149.9	93.0	120.2	169.0	84.3	35.7	1	48.0	107.7	135.8	i	23.8	90.7	51.1	39.2	92.4							: .
	Year	1964	1965	1966	1967	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	Mean							

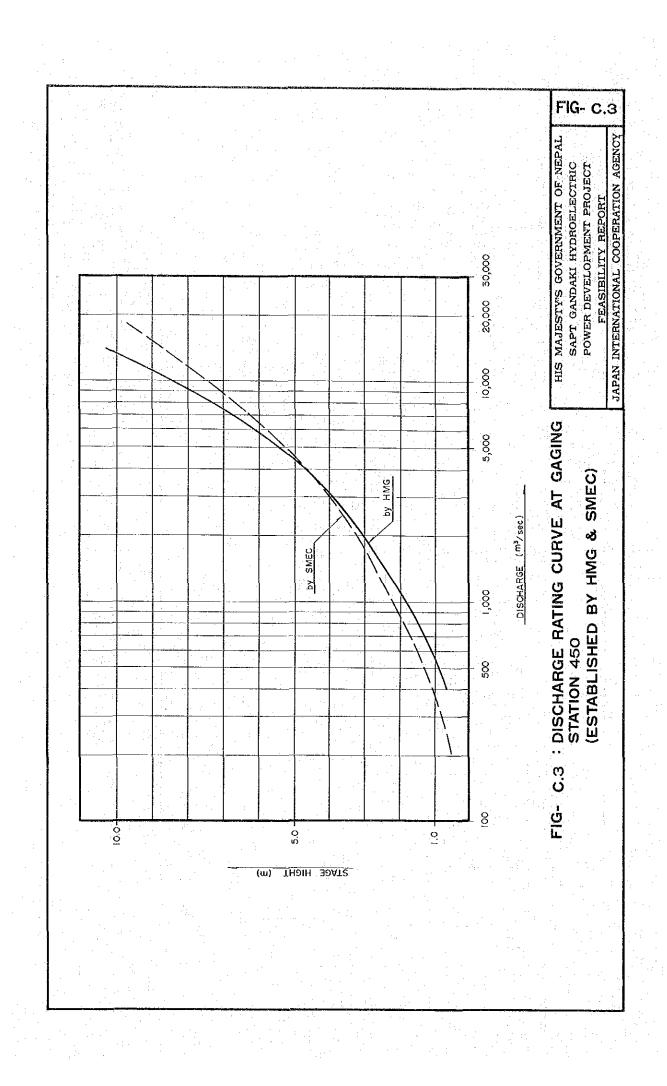
Table-C.10: RESULT OF GRAIN SIZE ANALYSIS FOR SEDIMENTS

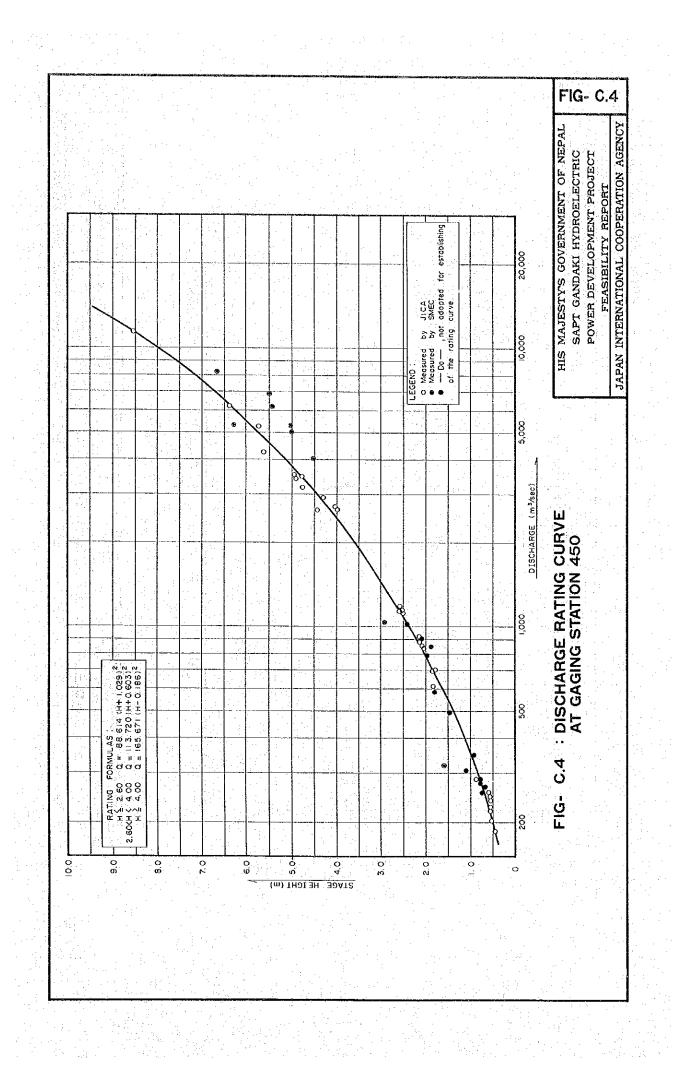
PARTICLE SIZE & WEIGHT PERCENTAGE OF PARTICLES UNDER THE SIZE

1 - 1 -					* . f ;	;		SPECI	FIC GRAV	/ITY <u>Gs</u>	2.73	2	- 1
ñ	GRAIN SIZE (mm)	50.8	38 I	25.4	19.1	9.52	4.76	2.00	0.84	0.42	0.25	0.105	0.074
S E	TOTAL PASSING(%)			1.					100	998	983	51.9	42.0
X EB	GRAIN SIZE (mm)	0.0527	0.0386	00249	00144	0.0102	0.0073	00037	0.0015		:		
8	TOTAL PASSING(%)	29.1	17.3	10.2	8.2	7.4	5.4	3.1	0.7				




* COLLOID


		4.76mm <	0 %	MAXMUM DIAMETER	0.84 mm
	N O	4.76~2.00mm	0 %	60% DIAMETER	O.12 mm
٠.	ORTIO	2.00~0.42mm	0 %	30% DIAMETER	0.055 mm
	PROPO	0 42~0.074mm	58 %	IO% DIAMETER	0.024 mm
.	ď.	O .074~ O .005mm	38 %	COEFFICIENT OF UNIFORMITY	5.0
		0.005mm >	4 %	COEFFICIENT OF CURVATURE	1.1


	March 1				· · ·						· .	· .		
			1 0 0 N	וובסזו		24	7	'n		94	10	9	е В	
						· .	turki Sak				• 1 • 1			
				. 9		27	11	1		120	. 1	თ	8.2	
							4 			11			8.2	
erak di je Grana di katalogia			по	5		24	7	ιΛ		06	18	o	ω	
	YSIS		Wet Season e No.	7		54	9	Ŋ		96	9	7		
	RESULTS OF WATER QUALITY ANALYSIS		Wet Se Sample No.										0	ing the second of the second o
	JALITY		San	3		24	'n	1		8	Ŋ	9	8.0	
	rer or			2		24	80	i		88	16	4	8.1	
	OF WAS													
	OLTS (1		23	4	φ		90	9	4	8.1	
				r.					٠			: 	0	
	Table-C.11:		E .	Mean		32	른	ო -		108	27	10	7.9	
	able-		Season								• .	:	7.9	
	H		Ng	2		31		ന		104	34	10	7	
		1. 3.00	Samp			32	10	ო		112	20.	10	7.9	
		** 1		١,		. :								
					по			Na + K	Ę	 	_7			
			Chemical	rrement	Cation	Ca	Mg	N a	Anion	8	so ₄	C	PH	
			Che	5T1	, ,				2.			*1	_د	

FIGURES

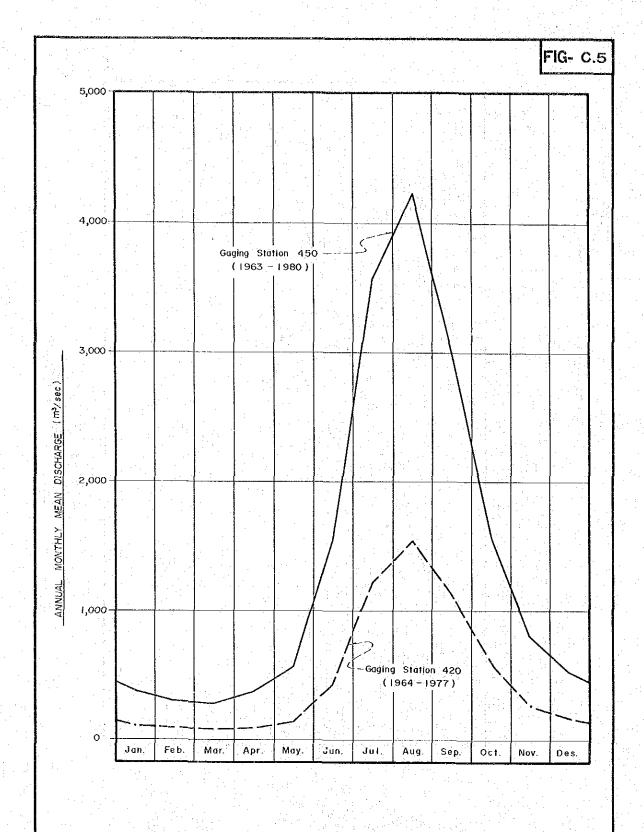
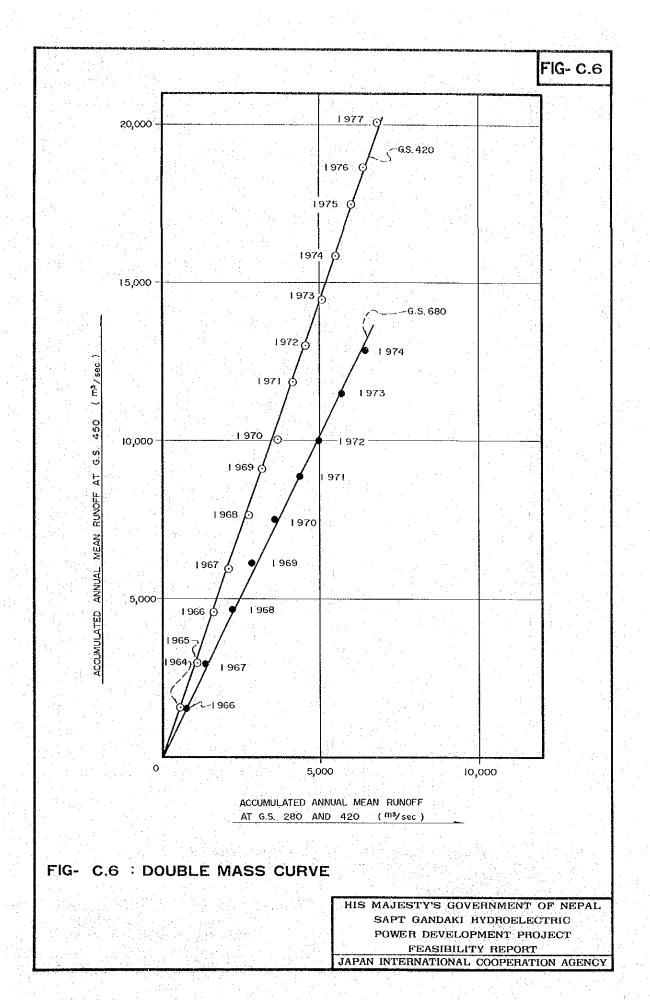



FIG- C.5: ANNUAL MONTHLY MEAN DISCHARGES AT GAGING STATION 420 AND 450

HIS MAJESTY'S GOVERNMENT OF NEPAL SAPT GANDAKI HYDROELECTRIC POWER DEVELOPMENT PROJECT FEASIBILITY REPORT

JAPAN INTERNATIONAL COOPERATION AGENCY

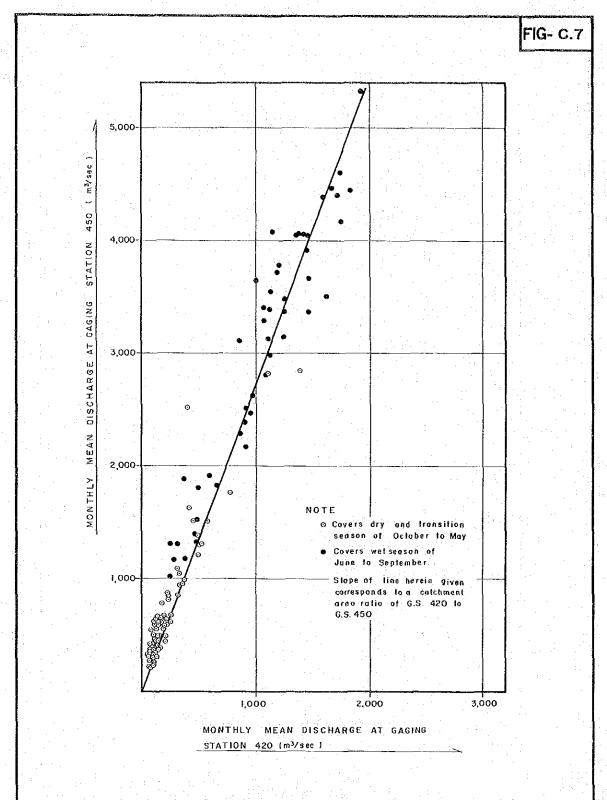
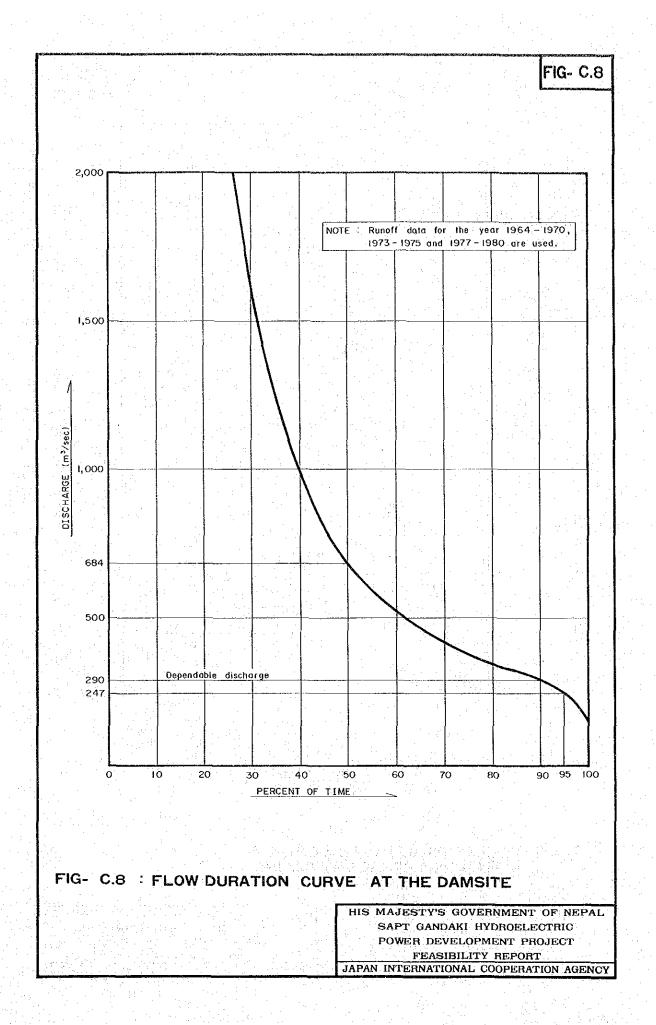



FIG- C.7 : RELATION BETWEEN MONTHLY MEAN DISCHARGES AT GAGING STATION 420 AND 450

HIS MAJESTY'S GOVERNMENT OF NEPAL SAPT GANDAKI HYDROELECTRIC POWER DEVELOPMENT PROJECT FEASIBILITY REPORT

JAPAN INTERNATIONAL COOPERATION AGENCY

engan kanalang at merupakan bermanan kenanggan banah mengan pendanggan bermanan bermanan bermanan bermanan ber Bermanan bermanan be
나는 이 이 없는 사람들은 사람들은 사람들이 되었다. 그 사람들은 사람들은 사람들은 경험하는 것이 살아 있다.
on specify of the control of the con
그런데 말이 맛말하면 하다. 그 안전을 통하는 나는 말을 하는 것으로 가는 모든 스탠션을 하는 바람들이 없다.
그는 사이건 전상으로 받아 그 왕이지 않고 한다는 하기학생들은 다음, 회원 회원 학생학
en general en skrivet en en en eksterne en greger han de eksterne beskrivet en en en en en eksterne bekende be De en en eksterne en e