(check accounts)

$$
\begin{aligned}
& \mathrm{A}=0.500 \times 0.277=0.1385 \mathrm{~m}^{2} \\
& \mathrm{P}=0.277 \times 2+0.500=1.054 \mathrm{~m} \\
& \mathrm{R}^{2 / 3}=0.258 \\
& \mathrm{~V}=\frac{1}{0.015} \times 0.258\left(\frac{7}{2275}\right)^{\frac{1}{2}}=0.361 \mathrm{~m} / \mathrm{sec} \\
& \mathrm{Q}=0.361 \times 0.139=0.050 \mathrm{~m}^{3} / \mathrm{sec} \quad \ldots \quad 0 . \mathrm{K}
\end{aligned}
$$

Fig-25 Longitudinal section of case 7

the water slope of case 7 is same as case 2, that is 1:3050, therefore the most effective cross-section is also same as case 2.

Consequently, the case 6 gives more economical cross-section, that is the width of the QCl is 0.55 m to 0.50 m . Now, the design for water supply at $Q C 101$ which is the highest place of fCl , is calculated as follows.
viij) calculation of the most effective cross-section between of f -take and QC1D1 (case 8,9 and 10)

So far, the most effective cross-section is given by case 6, that is, the width of ${ }^{2 C l}$ is 0.50 m and it's water slope is 1:2275, however, it is still'necessary to make a dan up wair to take the irrigation water oventhough the water level in the UC1DI can lift up from 32.257 (ft) to 32.351 (ft) due to the re-construction of the off-take.

In this case, there are two ways to take the water from the 4C1, that is, one is from the O.S. H and the other is from the F.S.L.

Now, the former is given as case 8 and the latter is given as case 9.

The longitudinal section of case 8 is shown in Fig-26 and case 9 is in Fig-27.

Fig-26: Longitudinal section of case 8

The water level in the paddy field is given 32.544 (it) which is at least necessary water layer for rice caltivation.

The trial calculation to get the actual water quantity from the off-take is shown in table-23.

In case of eight, it is clear the water quantity is too small, that is $10.7 \mathrm{I} / \mathrm{sec}$, therefore eventhough the offotake is rem constructed the A.S.L is depended on the F.S.L.
Table-23: Trial calculation for dam up wair of QCIDI (Case 8)

assumes $H(m)$	$\frac{i .3 . L}{(\dot{x} t)}$	Water Ievel in paddy field (ft)	$\begin{aligned} & \text { assumed } \\ & Q\left(\mathrm{~m}^{3} / \mathrm{sec}\right) \end{aligned}$	I	$h(m)$	$\begin{aligned} & A\left(\mathrm{~m}^{2}\right) \\ & 0.50 \times \mathrm{k} \end{aligned}$	$P(m)$	$\mathrm{n}^{2 / 3}$	$V(\mathrm{~m} / \mathrm{sec})$	$8\left(\mathrm{~m}^{3} / \mathrm{sec}\right)$	Remarks
0.0010	3\%.5477	32.54.4	0.0129	1/93,105	0.3136	0.1568	2.1272	0.268	0.059	0.0093	Iess
0.0008	32.5434	1	0.0215	1/78,293	0.3237	0.2560	1. 1274	0.269	0.064	0.0100	*
0.0007	32.5457	4	0.0108	1/73,295	0.3127	0.1569	1.1274	0.269	0.066	0.0104	:
0.0006	32.5490	1	0.0300	1/68,898	0.3230	0.1569	1.3276	0.269	0.068	0.0107	over
0.0005	32.5494	"	0.0091	1/63,794	0.3239	0.1570	1.1278	0.269	0.071	0.0327	n

> Pagmit: longjtadinat soction of ecase ?

the trial calcuzation is carriad cut as well as case B. The result is shown in table-2/4.

It is clear in tablemit, whon the water layer in the nacidy field is given 5 cm which is at least necessary depih for rive cultivation, the water requirement j.s eble to expect by $0.054 \mathrm{~m}^{3} / \mathrm{sec}$ as a result.

However, the expected water requirement for within days presaturation is supposed $0.050 \mathrm{~m}^{3} / \mathrm{sec}$, therefore in cese of nine has a possibility to lift up nore the A.S.L in order to give hfgher vater supply lovel to the paddy fijeld.

As above-mentioned, the most, effective crossmsection for QClDl is carried out as case 10.

Ths expected water requirement, that is $0.050 \mathrm{~m}^{3} / \mathrm{sec}$, is able to take from 1.5 cm below tho F.S.l.

The A.S.I is decided as belowi-

The F.S.L	32.715 ft
-1.5 cm	-0.045 ft
The A.S.L	32.666 ft

assumed $H(m)$	$\underset{(\mathrm{f} t)}{A_{0} . S_{0} . L}$	water level in paday field (ft)	$\begin{array}{r} \text { assumed } \\ Q\left(\mathrm{~m}^{3} / \mathrm{sec}\right) \end{array}$	I	$h(m)$	$\begin{aligned} & A\left(\mathrm{~m}^{2}\right) \\ & 0.50 \times \mathrm{ch} \end{aligned}$	$P(m)$	$\mathrm{R}^{2 / 3}$	$\mathrm{F}(\mathrm{m} / \mathrm{sec})$	Q ($\mathrm{Ii}^{3} / \mathrm{sec}$)	Remarics
0.010	32.6822	32.544	0.0407	1/2493	0.3342	0.1671	2.1682	0.274	0.366	0.061	orer
0.013	32.6723	n	0.0454	1/2685	0.3326	0.1663	1.1652	0.273	0.351	0.058	\#
0.014	32.6691	n	0,0482	1/2754	0.3321	0.1661	1.1642	0.273	0.347	0.058	2
0.015	32.6658	\square	0.0499	1/2828	0.3316	0.1658	1.1632	0.273	0.342	0.057	4
0.016	32.6625	"	0.0515	1/2907	0.3313	0.1656	1.1622	0.273	0.338	0.056	"
0.017	32.6592	"	0.0531	1/2990	0.3306	0.2653	1.1612	0.273	0.333	0.055	"
0.018	32.6559	1	0.0546	1/3079	0.3301	0.3651	1.1602	0.273	0.328	0.054	Iess
0.019	32.6527	"	0.0561	2/3169	0.3296	0.1643	1.1592	0.272	0.322	0.053	a
0.020	32.6494	1	0.0576	1/3268	0.3291	0.1646	2.1582	0.272	0.337	0.052	"

The trial calculation is shown as below:-
Table-25: Trial calculation for dam up wair of QCIDI (Case 10)

$\begin{aligned} & \text { A. } \triangle \cdot L \\ & (\mathrm{f} t) \end{aligned}$	water level in paddy field ($n, f t$)		$\begin{gathered} \text { depth of } \\ \operatorname{dam} \text { up (m) } \end{gathered}$	I	$A\left(m^{2}\right)$	$P(m)$	$\mathrm{B}^{2 / 3}$	∇	8	Remariss
32.666	0.0585	32.572	0.3359	2/3665	0.2680	1. 1738	0.274	0.302	0.0507	over
π	0.0588	32.573	0.3360	1/3704	0.1680	2.1720	0.274	0.300	0.0504	a
ロ	0.0591	32.574	0.3362	1/3744	0.1613	1.3724	0.274	0.299	0.0503	!
:	0.0594	32.575	0.3363	1/3786	0.1682	1.2726	0.274	0.297	0.0500	equal
\square	0.0597	32.576	0.3365	1/3823	0.1683	1.1730	0.274	0.295	0.0496	Iess
"	0.0600	32.577	0.3367	1/3871	0.3684	1.1734	0.274	0.294	0.0495	\#

$-83-$

Consequently, the water lovel of yClDl is able to increase up to 32.575 ft due to remonstruct of the of f^{\prime} take.

Thus, the planner should tiy to find out the economical crosssection and try to make an effort to decrease the head losses, especially like this less supplus design is not to speak.

The longitudinal section of case 10 is shown in Fig-28.

Fig-28: longitudinal section of case 10.

5x) Regarding to the Flo?e Mrork Mo. 3-1
So far, the A.S.I is given 5.6 cm below the F.SL, however after re-constuction of the off-take the A.SL. is able to be lifted up, that is:-

expected water quantity	$0.050 \mathrm{~m}^{3} / \mathrm{sec}$
it's head loss	0.015 m
	$32.666 \mathrm{ft} 32.725 \mathrm{~m}\left(\frac{0.015}{0.3048}\right)$
paddy fiold elevation	32.29 ft
water Layer	0.100 m
water level. in paddy field	$32.608 \mathrm{ft} \cdot 32.28+\left(\frac{0.100}{0.3048}\right)$

the difference of head losses between the $A_{0} S_{0} L$ and the water level in paddy field is:m

$$
H=(32.666-32.608) \times 0.3048=0.0177 \mathrm{~m}
$$

Fif-29 shows the crossmection of inlet facilitios of Field 13lock lio. 3-1.

Fig.-29: Cross-section of inlet facilities at Field Block No. 30.l

the dismeter of the P.V.C pipe is calculated as well as befor, thet is:-

$$
\begin{aligned}
& V=\therefore \therefore \text { U } \mathrm{H} \\
& =\therefore .9 .8 \times 0.07777=0.539 \mathrm{~m} / \mathrm{sec} \\
& 1= \\
& 0.010=\quad: 0.589 \\
& n=\left(\frac{20.010}{30.580}\right)^{\frac{1}{2}}=0.347 \\
& =0.15 \mathrm{~m} \\
& \doteqdot 6^{\prime \prime}
\end{aligned}
$$

Houth Liol :alcalotion couldn't get the 10 cm water layer in the :c:di. iicid, in this case the water layer is given 10 en is aninlt of the re-construction of the off-take.
x) Pinal aromemert of

The most eilective cross-section of QCl in relation to each diverwini: box, that is, QOXDI, QCID2, $3 C 1 D 3$ and direct draw fron the ofl-take, is tried to find out up to here considering man co. :3. The hable- 26 shows the final determination of wh:l aml i' ': Longitudinal section is shown as in Fig- 30.

O¢T．O	$086{ }^{\circ} \mathrm{T}$	T－900	20s ${ }^{\circ}$ \％	$\leqslant L Z Z / \tau$	$\xi ん ट Z / \tau$	T\％${ }^{\circ}$	050.0	Eato
โદโ＊		T－s．0	zos＊ $2 ¢$	SLEC／T	¢LZZ／T	Tge ${ }^{\circ}$	050.0	zator
007＊0－650\％	2LS＊てS	T＊＊	$999{ }^{\circ} \mathrm{CE}$	98LE／T	sLZZ／T	L6\％＊O	050.0	Totot
001．0	\＄09＊${ }^{\circ}$	T＊S ${ }^{*}$		adTod	төләт	$685 \cdot 0$	$050{ }^{\circ}$	
20人⿻上丨（V） 207 mm	（7J）โองəT Arains	teues Ruvpuooes JO Suothtwion	（75） $7 \times 5 \times \%$		adots peg	（0as／ux）Λ	$\left(025 / \varepsilon^{\text {mix }}\right.$ ？	ameris

Fig－30：Final longitudinal section of QCl

Now，the expected water requirement that is $0.050 \mathrm{~m}^{3} / \mathrm{sec}$ ，is satisfied with the best cross－section of QCl．

Hereinafter，the inlet box for diverting the water to each Field Block is designed as follows．

5）Design of inlet box of wCl
Generally speaking，the inlet box should be constructed 0 to 10 cm above the paddy field excepting on obstmetion due to the topographioal conditions，that is，the water from the inlet box can draw for the jet flow．In this case this inlet box is called as jet flow diversion．works．

However，as stated above， P / F No． 2 is located higher place of Kadok district therefore it is impossible to design as the jet flow one．

In this case，the structures design is calculated by using the formula of submerged weir，that is shown as below：－
－Complete overflow

$$
Q=m \cdot b \cdot h 1 \cdot \sqrt{2 \cdot g \cdot h 1}
$$

－Incomilete overflow

$$
u=\left(\alpha-\frac{h 2}{h 1}+3\right) \cdot b \cdot h 1 \cdot \sqrt{2 \cdot g \cdot h 1}
$$

－Jubmerged weir

$$
Q=m^{\prime} \cdot b \cdot h 2 \cdot \sqrt{2} g \cdot(h 1-h 2)
$$

The general cross-section of submerged weir is shown as below and it's coefficient is show in table-27.

i) In case of QC1D3

The expected cross-section is shown as below:-

The sultable water layer for rice cultivation is expected 5 cm above the paddy field and the width of inlet is decided at that time, that is, the water quantity of $0.050 \mathrm{~m}^{3} / \mathrm{sec}$ from the yCl can draw to the paddy field. The width is given as bolow using the formula of submerged weir.

$$
\begin{aligned}
\frac{h 1}{1} & =\frac{0.200}{2}<\frac{1}{2} \\
\frac{h 2}{h 1} & =\frac{0.050}{0.100}=0.50<2 / 3 \quad \text {..... complete overfiow } \\
Q & =\text { m.b.h1. } 2 . g . h 1
\end{aligned}
$$

Table-27: Coefficient table of submerged welr

	complete overilow	border of	incompleted overfiow		border of	submerged weis
nl and n2	m	h2	$\frac{\alpha}{m}$	会	$\frac{52}{61}$	$\frac{m^{\prime}}{}$
$\begin{aligned} & n 2=0-4 / 3 \\ & n 2<5 / 3 \end{aligned}$	$0.32+0.23 \frac{12}{d}$	0.60	-0.030	1.018	0.7	2.6
$\begin{aligned} & n 1=0-2 / 3 \\ & n 2 \doteqdot 1 \end{aligned}$	$0.29+0.32 \frac{\mathrm{~h}}{\mathrm{~d}}$	0.45	-0.200	2.090	0.8	2.6
$\begin{aligned} & n I=0-3 / 3 \\ & n 2=2 / 3 \end{aligned}$	$0.28+0.37$	0.25	-0.125	1.032	0.8	2.6
rectangle $\frac{m}{x}<\frac{d}{2}$	0.35	2/3	-	-	2/3	2.6

where; m: coefficient of discharge 0.35
$b:$ width of inlot. $\quad x$ in
hl: upostream water height $\quad 0.100 \mathrm{~m}$
$\mathrm{g}:$ acceleration of gravity $9.8 \mathrm{~m} . \mathrm{seo}^{-2}$
$0.050=0.35 \times b \times 0.100 \times \sqrt{2 \times 9.8 \times 0.100}$

$$
\mathrm{b}=1.02 \mathrm{~m}
$$

Consequentily, the width of the inlet is given as above, however QC1D3 is located at the end of the QCl therefore Field Block No. l-d is able to irrigate at the same time. This means the total area of Field Block No. 1-2 and No. 1-3, that is 2.69 ha , is irrigated by the expected water discharge $0.050 \mathrm{~m}^{3} / \mathrm{sec}$.

Now, the distributed water discharge to each Field Block can separate as below:-
to Field Block No. 1-2
$0.83 \mathrm{ha} / 2.69 \mathrm{ha} \times 0.050 \mathrm{~m}^{3} / \mathrm{sec}=0.016 \mathrm{~m}^{3} / \mathrm{sec}$.
to Field Block No. 1-3
$1.85 \mathrm{ha} / 2.69$ ha $\times 0.050 \mathrm{~m}^{3} / \mathrm{sec}=0.034 \mathrm{~m}^{3} / \mathrm{sec}$
thus, Each inlet width is decided as follows:
to Field Block No. 1-2

$$
\begin{aligned}
0.016 & =0.35 \times b \times 0.100 \times \sqrt{2 \times 9.8 \times 0.100} \\
b & =0.327 \\
& =0.33 \mathrm{~m}
\end{aligned}
$$

to Field Blook Ho. 1-3

$$
\begin{aligned}
0.034 & =0.35 \times \mathrm{b} \times 0.100 \times \sqrt{2 \times 9.8 \times 0.100} \\
& =-0.694 \\
& =0.70 \mathrm{~m}
\end{aligned}
$$

The expeoted inlet box of 2 ClD3 is shown as below:

> Field block No.1-3
$0.031 \mathrm{~m}^{3} / \mathrm{sec}, \mathrm{A}=1.85 \mathrm{ha}$

Field block wo. 1-2
$A=0.83 \mathrm{ha}$
ii) In case of gClD2
the expected cross-section is chown as bolow:-

the wedth of inlet is calculated as well as dClD3 by using the formula of submerged weirs

$$
32 i
$$

$$
\begin{aligned}
\frac{h}{L} & =\frac{0 . h}{h 1}<0 \\
\frac{h 2}{h 1} & =\frac{0.050}{0.131}=0.38<2 / 3 \\
Q & =m . b \cdot h 1 . \sqrt{2 . g . h 1} \\
0.050 & =0.35 \times b \times 0.0 \text { complete overflow } \\
b & =0.68 \mathrm{~m}
\end{aligned}
$$

the expected inlet box of पC1D2 is shown as below:-

iii) In case of GCIDI the expected cross-section is shown as below:-

the wedth of inlet is calculated as well as aciD and qCaD2 by using the formula of submerged vein.

$$
\begin{aligned}
\frac{\underline{y}}{t} & =\frac{Q .059}{2} \frac{1}{2} \\
\frac{\mathrm{~h} 2}{\mathrm{hl}} & =\frac{0.050}{0.059}=0.84 .7>2 / 3 \quad \ldots . \text { submerged weir } \\
Q & =m^{\prime} \cdot \mathrm{b} \cdot \mathrm{~h} 2 . \sqrt{2 . \mathrm{g} \cdot(\mathrm{h1-h} 2)} \\
\frac{\mathrm{m}^{\prime}}{\mathrm{m}} & =\frac{\mathrm{m}^{\prime}}{0.35}=2.6 \\
\mathrm{~m}^{\prime} & =0.91 \\
0.050 & =0.91 \times \mathrm{b} \times 0.050 \times \sqrt{2 \times 9.8 \times(0.059-0.050)} \\
b & =2.616 \\
& =2.62 \mathrm{~m}
\end{aligned}
$$

Though the wedth of inlet is given, that is 2.62 m , however it is not fit in with the reality. So far, the most effactive cross-section is calculated by many cases and it's best, longitudinal section is decided as in Fig-30.

On the other hand, the qCaDl is still not satisfied with the distribution of the water requirement to the paddy field. In spite of the re-construction of the off-take in order to lift up the water level in the ibl.

In this case, it is impossible to take the irrigation water from dClD1 without decrease the paddy field elevation or otherwise the bigger wedth of inlet has to be provided. Therefore, this AClDL should be considered to replace the same conditions as well as others.

The improved expected cross-section is shown as below:-

the existing paddy field elevation should be decreased. up to $32.24{ }^{7} \mathrm{ft}$. that is 4.1 m below the existing ground level. This moving soil will be applied to the farm road.

The improved width of the inlet box is fiven as below:

$$
\begin{aligned}
\frac{h 1}{1} & =\frac{0.200}{\infty}<\frac{2}{3} \\
\frac{h 2}{h 1} & =\frac{0.050}{0.100}=0.5<2 / 3 \quad \cdots \cdots \quad \text { complete overflow. } \\
U & =\text { m.b.h1. } \sqrt{2 . g . h 1} \\
0.050 & =0.35 \times b \times 0.100 \times \sqrt{2 \times 9.3 \times 0.100} \\
b & =1.02 \mathrm{~m}
\end{aligned}
$$

Accordingly, the width of inlet is given as above, hovever if the width is more than 1.0 m , the water control of tine sumpem mentary and groving period is anticipated ciffioulty to take the woter from inlet box due to a little wetex discharge. Therefore, it is cetter to separate the width to 30 cn and 72 cm , tat is 30 cm j.s used for tine supplementary and growind period not only tiee preaturation period.

the expected inlet box of wClDL is shown as below:m
6) Design of 《C2.

The design procedure for bC2 is the same as for the phl. Now, the longitudinal section of the existing paddy field is shown in Fig-3I, it is clear thet the topographice? conditions is steeper than del.

In this case, the water depth is able to give 25 cm above the paddy field at QC2D3, where is assumed the middle point of QC2, for the best conditions as below ;-

```
the A.S.L
paddy field elevation
convoied weter depth
water level in paddy field 31.72ft 30.90+0.82 32.502
```

the water slope is given as below:-
$(32.502-32.72) \times 0.302 / 210=1 / 881$

1) Calculation of the most effective cross-section (Case 1)

The most effective crossisection is calculated using the program No. 2 and 3 as in tablem 28.

Table-28: the most effective cross-section of पC2 (Case 1)

$\mathrm{B}(\mathrm{m})$	A	B	C	$\mathrm{H}(\mathrm{m})$	$\mathrm{P}(\mathrm{m})$	$\mathrm{F}(\mathrm{ft})$
0.35	0.00840	0.00294	0.00026	0.281	0.912	30.798
0.40	0.00431	0.00172	0.00017	0.243	0.886	30.923
0.45	0.00239	0.00108	0.00012	0.215	0.880	31.015
0.50	0.00147	0.00071	0.00009	0.195	0.890	31.080
5.55	0.00088	0.00048	0.00007	0.179	0.908	31.133

where, B : wiath of QC2
$\mathrm{H}:$ depth of UC 2
P: wetted perimeter
F : foundation height
A, B, C : coefficient

$$
9 r /-
$$

Consequently, the expacted most effective oross-section is shown in Fi g- 32 .

Fig-32: orossmsection by 0.45 m width of $6 \mathrm{C2}$.

(check accounts)

$$
\begin{aligned}
& A=0.45 \times 0.215=0.0968 \mathrm{~m}^{2} \\
& \mathrm{P}=0.215 \times 2+0.45=0.680 \mathrm{~m} \\
& \mathrm{~A}^{2 / 3}=0.230 \\
& \mathrm{~V}=\frac{1}{0.015^{2}} \times 0.230 \times\left(\frac{7}{051}\right)^{\frac{1}{2}}=0.517 \mathrm{~m} / \mathrm{sec} \\
& \mathrm{Q}=0.0 \% 88 \times 0.517=0.050 \mathrm{~m}^{3} / \mathrm{sec} \quad \ldots \ldots \mathrm{lo.k}
\end{aligned}
$$

At the same time, the water depth in the QC2D2 and QC2D4 are keeping enough water level eventhough it is lower than 25 cm , that is 21.7 and 13.3 cm , therefore tlere is no difficulty to take the expected water from QC2D2 and QC2DA.
ii) Calculation of the most effective crossesection at QC2DI.

The water level at 0C201 is shom 32.312 it, that $i s 4.9 \mathrm{~cm}$ above the paddy field elovation, hovever the supposed weter layer is expected 10 cm which will earry out tho food rosult for the decision of the width of inlet box $i . \theta$. the complete ovarflow is expectoci.

To meet the obove, it is necessary to dam up bold.

The expected water level in the paddy field is shown as below:-

the A.S.L.	32.502 ft below the $0.5 . L$ by 1.5 cm		
paddy field elevation	32.15 ft		
expected water layer	0.328 ft	$0.10 / 0.30 / 4$	
water level in peddy field	32.478 ft	$32.15+0.328$	32.502

The longitudinal section between the off-take and vC2DI is shown in Fig-33.

Fig-33: Longltudinal section for dam up weir of te2D1

The trial calculation to get the most effective cross-section of 4 C 201 which is from the 0.S.L is shown in table-29 as case 2.

In tiins case, the maximum water discherye is shown as $0.031 \mathrm{~m}^{3} / \mathrm{sec}$, however this water discharge is not satisfied with the expected water requirement, that is $0.050 \mathrm{~m}^{3} / \mathrm{sec}$.

Therefore, the A.S.L should be lifted up by 1.5 cm below the F.S.I. The assumed head losses, that is Ht, is also shown in Fig-33 and it's trial calculation to get the most offective cross-section is shown in table-30 as case 3.

The assumed water discharge is shown in table-30, that is $0.060 \mathrm{~m}^{3} / \mathrm{sec}$, however the expected water requirement for within 9 days presatura tion is supposed $0.050 \mathrm{~m} / \mathrm{sec}$, therefore in case of three has a possibility to lift more up the A.S.L in order to give higher water supply level to the paddy field.
Tabze-29: frial calcization for dam up wair of ecrad (case 2)

$\underset{\mathrm{H}(\mathrm{~m})}{\text { assumad }}$	$\underset{(f t)}{A_{i}, S, L}$	water level in paday fizeld (ft)	$\begin{aligned} & \text { asgumod } \\ & q\left(m^{3} / \mathrm{sec}\right) \end{aligned}$	I	h (m)	$\begin{gathered} \Delta\left(\mathrm{m}^{2}\right) \\ 0.4 \times 5 \mathrm{x} \end{gathered}$	$P(m)$	$R^{2 / 3}$	$V\left(n^{\prime} / \mathrm{sec}\right)$	$Q\left(\mathrm{~m}^{3} / \mathrm{sec}\right)$	Remarks
0.010	32.538	32.478	0.041	1/4183	0.2426	0.1092	0.9352	0.2389	0.2463	0.027	Iess
0.009	32.523	"	0.039	1/3892	0.2432	0.1094	0.9362	0.2390	0.2554	0.028	π
0.008	32.525	"	0.036	1/3560	0.2437	0:1097	0.9374	0.2393	0.2674	0.029	"
0.007	32.523	"	0.034	1/3346	0.2417	0.2098	0.9382	0.2393	0.2758	0.030	"
0.006	32.531	"	0.032	1/3157	0.2446	0.1702	0.9392	0.2395	0.2842	0.031	n
0.005	32.535	"	0.029	1/2935	0.2452	0.1103	0.9404	0.2396	0.2948	0.033	จงอั่

Table-30: Trial calculation for dam up wair of wCzDI (case 3)

$\begin{aligned} & \text { assuned } \\ & \mathrm{H}(\mathrm{II}) \end{aligned}$	${ }_{(i t)}^{\text {A }}$ (${ }^{\text {L }}$	water level in prday fieie (ft)	$\begin{gathered} \text { assumed } \\ Q\left(\mathrm{~m}^{3} / \mathrm{sec}\right) \end{gathered}$	I	$h(n)$	A $\left(\mathrm{m}^{2}\right)$ 0.45×2	$\mathrm{F}(\mathrm{m})$	$\mathrm{R}^{2 / 3}$	$\mathrm{V}(\mathrm{m} / \mathrm{sec})$	$Q\left(m^{3} / 5 \theta c\right)$	Remarks
0.038	32.656	32.478	0.0546	1/940	0.2637	0.1187	0.9774	0.2452	0.5332	0.063	over
0.029	32.653	"	0.0561	1/956	0.2632	0.1184	0.9764	0.2450	0.5283	0.063	"
0.020	32.649	"	0.0576	1/978	0.2626	0.1182	0.9752	0.2449	0.5221	0.062	"
0.022	32.64,6	"	0.0590	1/996	0.2621	0.1179	0.9742	0.2447	0.5269	0.061	\square
0.022	32.643	"	0.0604	$2 / 1024$	0.2627	0.2178	0.9734	0.2447	0.5123	0.060	equas
0.023	32.640	"	0.0678	2/1033	0.2672	0.2175	0.9724	0.2444	0.5069	0.060	less

$1011-$

As above-mentionod the cross-section of qC2DI is carried out

Tire expeoted water requirement, that is $0.050 \mathrm{~m}^{3} / \mathrm{sec}$, is able to take from 1.5 on below the F.S.L

The A.3.L is decided as below:-

The F.S.L	32.725 ft
-1.5 cm	-0.049 ft
The A.S.L	32.666 ft

Consequently, the water of QC2DI is able to increase up to 32.570 ft , that is 0.128 m above the paddy elevation.
iii) Final arrangement of QC2

The most effective cross-section of 1 CL in relation to each dive sion box is arranged in table-32, and final longitudinal section is show in Fig-31.

Fig-34: Final longitudinal section of QC2

Finally, the expected water requirement, that is $0.050 \mathrm{~m}^{3} / \mathrm{sec}$ is setisfied with the best cross-seotion of QC2 as well as the QCl.

Hercinafter, the inlet box for diverting the water to each field Block is derigned as follows.

$$
102 /-
$$

The trial calculation is show below:-

$\frac{A . S . L}{(\mathrm{ft})}$	water ievel in paddy fielu ($m, f t$)		depth of dam up (m)	I	$\Delta\left(m^{2}\right)$	$P(m)$	$\mathrm{R}^{2 / 3}$	V	Q	3emarks
32.666	0.3268	32.566	0.2787	1/1683	0.1254	1.0074	0.2493	0.4051	0.0508	over
*	0.3272	32.567	0.2777	1/1690	0.3254	1.0074	0.2493	0.4043	0.0507	"
"	0.1274	32.568	0.2789	1/1707	0.1255	1.0078	0.2494	0.4024	0.0505	"
${ }^{\prime \prime}$	0.1277	32.569	0.2790	1/1725	0.1256	1.0080	0.2495	0.4005	0.0503	*
"	0.1280	32.570	0.7292	1/1743	0.2256	1.0084	0.2494	0.3983	0.0500	equal
"	0.1283	32.571	0.2793	1/2761	0.1257	2.0086	$0.24,95$	0.3964	0.0498	2 ess
n	0.1236	32.572	0.2795	1/2780	0.2258	2.0090	0.24\%	0.3944,	0.04\%	*

name	$4\left(\mathrm{~m}^{3} / \mathrm{sec}\right)$	$\mathrm{V}(\mathrm{m} / \mathrm{sec})$	Bed slope	water slope	A.S.L (ft)	Conditions of secomdary canal	$\begin{aligned} & \text { Suppiy } \\ & \text { Ievei (ft) } \end{aligned}$	water layer (m)
$\therefore \mathrm{C2O1}$	0.050	0.398	1/881	2/1743	32.666	F.S.L	32.570	0.128
0.202	0.050	0.517	2/882	1/881	32.502	0.3.L	32.873	0.217
4C2D3	0.050	0.517	1/881	1/882	32.502	0.3 .15	32.702	0.25
QC2D4	0.050	0.517	1/881	1/881	32.502	O.S.L	31.206	0.133

7) Design of inlet box of QC2
i) I_{n} case of $Q C 2 D_{3}$

The expected cross-section is shown as below:-

The width of inlet box is given as below using the formula of submerged wair.

$$
\begin{aligned}
\frac{b 1}{1} & =\frac{0.215}{.00}<\frac{1}{2} \\
\frac{h 2}{h 1} & =\frac{0.07 .5}{0.215}=0.070<2 / 3 \quad \ldots \ldots \text { complete overflow } \\
Q & =m . b \cdot h 1 \cdot \sqrt{2 . g . h 1} \\
0.050 & =0.35 \times b \times 0.215 \times \sqrt{2 \times 9.8 \times 0.215} \\
b & =0.324 \\
& =0.33 \mathrm{~m}
\end{aligned}
$$

Consequently, the expected inlet box of $8 C 2 D 3$ is shown as below:-

$105 /-$
ti.) th case of CCODO_{2}
The expected crossesection is shan : a below:-

The width of inlet box is given as wall at the ie qeD.

$$
\frac{b_{2}}{1}=\frac{0.215}{\infty}<\frac{1}{2}
$$

$$
\frac{h 3}{h 1}=\frac{0.048}{0.215}=0.223<2 / 3 \quad \ldots \ldots \text { complete everian }
$$

$$
Q=m \cdot b \cdot h 1 \cdot \sqrt{2 \cdot g \cdot h 1}
$$

$0.050=0.35 \times b \times 0.215 \times \sqrt{2 \times 0.3 \times 0.215}$

$$
x=0.324
$$

$$
=0.33 \mathrm{~m}
$$

The expected inlet box of QCRU2 ja simon as below:-

$$
\because r_{i} \cdots
$$

土ij) In case of ibROM
The engeted cross-soction is shown as bolow

The with of inlet box is friven as below:
$\frac{h]}{1}=\frac{2.28}{2}<\frac{1}{2}$
$\frac{h 2}{h 1}=\frac{0.050}{0.128}=0.392<2 / 3 \ldots$ complete overflon.
$\mathrm{Q}=\mathrm{m} \cdot \mathrm{b} \cdot \mathrm{h} 1 \cdot \sqrt{2 \cdot \mathrm{~g} \cdot \mathrm{~h} 1}$
$0.050=0.35 \times b \times 0.126 \times \sqrt{2} \times 9.8 \times 0.128$
$b=0.705$
$=0.72 \mathrm{~m}$

The expected inlet box of uC2D' is shown as below:-

$$
10 \% /
$$

iv) In case of QC2DA

The expected cross-section is shown as below :-

The width of in-let box is given as below :-
$\frac{\mathrm{h} 1}{1}=\frac{0.133}{6}<\frac{1}{2}$
$\frac{h 2}{\mathrm{~h} 1}=\frac{0.050}{0.3 .33}=0.376<\frac{2}{3} \quad \ldots$. complete over flow
$Q=m . b \cdot h 1 . \sqrt{2} \cdot \mathrm{~g} \cdot \mathrm{~h} 3$.
$0.050=0.35 \times b \times 0.133 x \sqrt{2 \times 9.8 \times 0.133}$
$b=0.865=0.67 \mathrm{~m}$
The expected in-let box of QC2D4 is shown as below ;-

Field Block No.5-1
$A=1.697 \mathrm{ha}$

Taking into consideration of field block No. $5-2$, the paddy elevation is higher than field block No. 5-1, that is, E.L 31.27 (ft) however, if the QC2 is designed to supply the irrigation water into field block No. 5-2, the size of irrigation canal become biger and high cost due to the water slope of the irrigation canal become more gently slope.

This is the reason why the water slope of the QCi2 is adapted to $I=1 / 881$. Atterwards, the land leveling of the field block No. 5-2 supposed to be taken at the construction time by the same elevation of field block No. 5-1, that is, $F . L=30.77$ (ft.) for using the soil for the farm road or another earth works.

So, the irrigation canal of QC2 is designed as $I=1 / 881$ and after construction the field block No.5-2 is able to supply the water as well as field block No, 5-1 and it is shown as below ;-

Field Block No.5-2 $\mathrm{A}=0.77$ ha
8) Determination of the free board.

So far, the water level on design which will supply the irrigation water to each Fiald Block is caloulated. However to determine the lireeboard, besides, the crosism sectional area of flow, the changing of the coefficient of roughness, velocity head and waving water in the canal, should also be considered. The standard consideration of the freeooard is said as follows.
i) Earth and lining canal.

$$
\mathrm{Fb}=0.005 \mathrm{~d}+\mathrm{hv}+(0.05 \sim 0.15)
$$

where, lib: freeboard (m)
d: water depth on design (m)
hv: velocity head (m)
$0.05 \sim 0.15:$ half wave-height (m)
As above mentioned, the freeboard is given using above dormula but the least freeboard should be supposed by 0.10 m .
ii) Flume canal.
$\mathrm{Hb}=0.07 \mathrm{~d}+\mathrm{hv}+(0.05 \sim 0.15)$
where, the function is the same as above formula.
In this case, the toree ways are able to consider as shown below:-

a) in case of the levee crown is higher than the crown of the J.ning canal.
b) in case of the levee crown is situated the same level. of the lining canal.
c) in cage of the levee crown is lower than the crown of the lining, canal.

The tipicsl crosb-section of the 461 and ic2 is expected like case a.

In this case, the standered consideration to get the sreem board will be adapted to the i) fomula, because of the canal. is supported already by the bound and also the least freeboard should be supporsed by 0.10 m .

How, the freeboard of acl and 402 are calculated as below:-

$$
\mathrm{Fb}=0.05 \mathrm{~d}+\mathrm{hv}+0.05
$$

name	0.05 d	hv	0.05	Fo	Remarks
$i{ }^{61} 1$	0.014	0.007	0.05	0.071	0.100
$i \mathrm{CL}$	0.011	0.014	0.05	0.075	0.100

The voluale obtained alter addine the rreeboard and water depth in the canal can be rounded un for ease of construction provided the ireeboard should not be less than 0.10 m .

The timical cross-section of gll and 2 Ci is shown in fig. 35 and 36 .

Fig-35: Tipical cross-section of dCl

Fig-36: Tifuical cross-section of 302

It is clear as in Fig-35 and 36 that the QC1 and QC2 are supported/covered by the $0.40-1.0 \mathrm{~m}$ width of border, that is called ditch-side border. The ditch-side border is used not only support/cover the irrigation canal but also used as the path for operation the wair and maintaing the irrigation canal as. one of the on farm facilities.
9) Design of Farm Road

The main farm road is located through the center of P / F No. 2 and this farm road should be connected with the city road and existing kanpong road for conveniently transfer of agricultural equipment, machinery and harvested rice.

On the other hand, the road which is located belong the irrigation canal, that is the ditch-side border is very useful to maintain and operating the irrigation canal as if the small farm road.
i) Width of farm road

Generally speaking, the width of the farm road is decided due to the varieties of vehicles which are concerned to the agricultural activities such as tractor, combine, truck and so on. The width of the main farm road include the space for pass each other (0.5 m), out side surplus width (0.3 m) and road shoulder ($0.5-0.75 \mathrm{~m}$).

The effective width of main farm road is said $5-6 \mathrm{~m}$ in order to pass each truck (2.4 m) and tractor (2.0 m) and also the branch road is 3 m 4 m for the combine width (3.5 m) as usual.

THe vehicles width which are seemed to run on the farm road are shown as follows ;-

passenger car	2.0 m
truck $(5 \mathrm{t})$	2.4 m
tractor (40 ps$)$	2.0 m
trailer	
combine (cutting width 3.0 m)	3.5 m

In this design, the expected farm road width is seemed 5.0 m , howevere it is said that wider farm road width is not able to require to the land acquisition now in Malaysia, because of existing conditions which have no on farm facilities, therefore it is given 4.0 m width for the alternative way.
ii) Height of farm road

Height of the farm road from the paddy ground is said more than 50 cm for main farm road and 30 cm for branch road. It must be careful to decide the height from the paddy ground because of the field crossing.

The width of field crossing is said 4.0 m as standerd, and it's slope is determined less than 32.5% because of the limited slope of tractor is seemed by 18^{n}.

All the paddy field which along the farm road will be possessed the field crossing at least one place to one paddy lot, and the location of field crossing is supposed to be left side of the paddy field due to the combine used to work right revolution as usual.

In this design, the field crossing slope is given 30% and it's tipical cross section is shown as in fig.-3?

Fig.-37 Tipical cross section of field crossing.

iii) Longitudinal slope

The max. longitudinal slope of the main farm road is said less than 8% as usual and also 12% as special case. If the longitudinal slope is given more than 8%, at that time the length should be limited by 100 m with the control distance which consisted by the appropriate slope, that is less than 2.5% and more than 30 m length.
iv) Cross section

The cross section of the farm road should be constructed that the center of the farm road is higher than road shoulder in order to drain out the rain fall water immediately. The cross section slope of the farm road which is made of soil and gravel is supposed to be $3-6 \%$ and concrete or asphalt one is $1.5-2 \%$.
v) Corner cut-off

The corner cut-off is able to situated in the intersection of the farm road if necessary, the size of the corner cutoff is seemed $1.5-2.0 \mathrm{~m}$ for one comer.

In this design, the longitudinal slope is given as in fig.-3ß. The slope from the city road to farm road and end of the farm road is given 5% slope for the approach. Especially, the control distance is consisted by level and 4.0 m distance for one vehicle is designed at the first approach from the city road.

The most of the middle parts of the farm road is designed to level and also the height from the paddy ground is given around 0.5 m . The tipical cross section of the farm road is shown as in fig. -39 .

$$
\cdots \cdots
$$

Fig. - 39 The cross section of farm road

10) Design of field drainage canal
i) Standerd daily precipitation

The daily precipitation which probability is seemed 5 year is adapted to the daily drainage from the terminal paddy field. The rainfall data from 1970 to 1977 at Kota Bharu are shown as in table- $3 \geqq$ and it's probability graph is also shown as in fig. -40 .

In fact, $351.0 \mathrm{~mm} /$ day precipitation is given the max. data of them and it shows 5 -year probability.
ii) Drainage discharge

The drainage discharge is calculated by following equation,

$$
Q=\frac{1}{86,400} \times \mathrm{t} 1 \times 10^{-3} \times \mathrm{A} \times 10^{4} \times \mathrm{t}
$$

where,
Q : drainage discharge ($\left.\mathrm{m}^{3} / \mathrm{sec}\right)$
t1 : standerd daily precipitation $351 \mathrm{~mm} /$ day
A : catchment area (ha)
f : run-off ratio: (0.7)
a) In case of FD 2

The catchmentarea of the FD 2 is calculated by the sum of the field block No. 2, 3-1, 3-2, 1-3 and 5-2, that is, $A=7.47$ ha.
Consequently, the drainage discharge is given as follows;

$$
\begin{aligned}
Q & =\frac{1}{86,400} \times 351 \times 10^{-3} \times 7.47 \times 10^{4} \times 0.7 \\
& =0.212 \mathrm{~m}^{3} / \mathrm{sec}
\end{aligned}
$$

The most effective cross section is calculated as follows;-
(calculation)
drainage discharge $\quad Q=0.212 \mathrm{~m}^{3} / \mathrm{sec}$
side slope gradient $1: m=1: 1$
bed slope
$I=1 / 1000$
base width
$\mathrm{b}=0.300 \mathrm{~m}$
coefficient of roughness $\quad n=0.03$

Pable- 33 The max precipitation from 1970-1977

| | $1970 / 71$ | $1971 / 72$ | $1972 / 73$ | $1973 / 74$ | $1974 / 75$ | $1975 / 76$ | $1976 / 777$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Max. 24 hr | 228.6 | 187.7 | 282.2 | 302.3 | 235.5 | 194.0 | 351.0 |
| Max. 48 hr | 268.7 | 300.5 | 292.1 | 431.5 | 287.5 | 269.5 | 470.0 |
| Max. 72 hr | 279.9 | 313.4 | 297.2 | 522.2 | 332.5 | 329.5 | 535.0 |

(DID store, Kota Bharu) unit : mm

Fig. 40 . The probability graph of precipitation

$$
\begin{aligned}
\frac{Q \cdot n}{I^{1 / 2} \cdot b^{8 / 3}} & =\frac{0.212 \times 0.03}{(1 / 1,000)^{1 / 2} \times 0.30^{8 / 3}} \\
& =4.9866
\end{aligned}
$$

(check account)

$$
\begin{aligned}
& \mathrm{V}=\frac{1}{\mathrm{n}} \cdot \mathrm{R}^{2 / 3} \cdot \mathrm{I}^{1 / 2} \\
& \mathrm{~A}=\left(1.4382^{+} \cdot 30\right) \times 0.569 \times 0.5 \\
&=0.494 \mathrm{~m}^{2} \\
& \mathrm{P}=0.569 \times 2^{1 / 2} \times 2+0.30=1.909 \mathrm{~m} \\
& \mathrm{R}^{2 / 3}=\left(\frac{\mathrm{A}}{\mathrm{P}}\right)^{2 / 3}=\left(\frac{0.494}{1.909}\right)^{2 / 3}=0.406 \\
& \mathrm{~V}=\frac{1}{0.03} \times 0.406 \times\left(\frac{1}{1,000}\right)^{1 / 2} \\
&=0.428 \mathrm{~m} / \mathrm{sec} \\
& \mathrm{Q}=0.428 \times 0.494=0.211 \mathrm{~m}^{3} / \mathrm{sec} \cdots \ldots \ldots 00 . \mathrm{K}
\end{aligned}
$$

The freeboard of the drainage canal is designed to give the crosa section at least 1.2 times drainage discharge can flow than the supposed discharge, therefore the final cross section is given as follows ;-
(coditions)
$Q=0.212 \times 1.2=0.254 \mathrm{~m}^{3} / \mathrm{sec}$
$1: m=1: 1$
$I=1 / 1,000$
$b=0.300$
$\mathrm{n}=0.030$
$\frac{Q \cdot n}{I^{1 / 2} \cdot b^{8 / 3}}=\frac{0.254 \times 0.030}{(1 / 1,000)^{1 / 2} \times 0.30^{8 / 3}}=5.974$

(check account)

$$
\begin{aligned}
& V=\frac{1}{n} \cdot R^{2 / 3} \cdot I^{1 / 2} \\
& A=\left(1.5362^{2}+0.30\right) \times 0.618 \times 0.5 \\
& =0.567 \mathrm{~m}^{2} \\
& P=2^{1 / 2} \times 0.618 \times 2+0.30=2.048 \\
& R^{2 / 3}=\left(-\frac{A}{P}\right)^{2 / 3}=\left(\frac{0.567}{2.048}\right)^{2 / 3}=0.425 \\
& \mathrm{~V}=\frac{1}{0.03} \times 0.425 \times\left(\frac{1}{1,000}\right)^{1 / 2} \\
& =0.448 \mathrm{~m} / \mathrm{sec} \\
& Q=0.448 \times 0.567=0.254 \mathrm{~m}^{3} / \mathrm{sec} \ldots \ldots . .0 . K
\end{aligned}
$$

Actually, the existing paddy field is uneven, therefore the depth of the drainage canal should be kept more than 0.62 m . The longitudinal section of FD 2 is shown as in Fig.- 38 . It is clear that the some places are impossible to cover the 0.62 m depth due to the topographical coditions, therefore this place will be counter measured by filling up the soil for the protection band. The tipical cross section of FD 2 is shown as in fig.-41. .

Fig. - 41 Tipical cross section of FD 2

b) In case of FD 1

The supposed catchment area for field block No.1-1 and $1-2$, that is, $A=2.06$ ha. However, this drainage canal is affected to drain the excess water from the housing area, so the size of the drainage canal is designed as well as FD 2. The longitudinal section and supposed cross section of FD 1 are shown as in fig. -42
c) In case of FD 3

The supposed catchment area for field block No.4-1, 4-2, and $5-1$ are calculated, that is, $A=3.75$ ha.
However, this drainage canal is affected to drain the excess water from the neighbor paddy field which are located in the P5S3L area.

Consequently, the drainage size of FD 3 is designed as well as FD 2. The longitudinal section is shown as in fig. 43 . Here, it is clear the all most of the paddy fields are situated lower places than the average elevation, that is, $\bar{x}=9.531 \mathrm{~m}$, because these paddy fields which are covered by FD 3 are located the lowest places of P / F No. 2 .

Therefore, some paddy fields are not able to keep the supposed depth of the drainage canal, that is $\mathrm{H}=0.62 \mathrm{~m}$, but as the given depth are shown such as $H=0.57 \mathrm{~m}$, it is mostly the same of the $H=0.569 \mathrm{~m}$ that is calculated the least necessary depth of drainage canal. Consequently, the lowest part of FD 3 is expected to fill up the soil for the protection border. The tipical cross section is shown as in fig.-44.

$$
\text { Fig. }-44 \text { Tipical cross section of } \mathrm{FD} 3
$$

(5) Rotational Irrigation

So far, the P / F No. 2 has been irrigated the area after take the water through the off-take P4S3L, however there was no quarterly canal to convey the water to each paddy field without lot-to-lot irrigation.

Therefore, the presaturation period is always delayed in spite of the expected period is shown 30 days by KADA. How to shorten the presaturation period and deriver the water when the farmers want to get it ?

There is no doubt to make a quarterly canal in the field as on farm facilities and connected to the drainage canal, so that the well achieved water management will be expected. Now, the design of P / F No. 2 is assumed to divid into 10 field blocks as shown in Fig-10 and the each field block possess the in-let box and out-let box as if one of the paddy lots. But it is unavoidable the lot-to-lot irrigation is still remain in the field block at presence.

The existing irrigation system and proposed system, that is a rotational irrigation system, are shown in Fig-45, and Fig-4.

Fig-4s : Existing irrigation system.

$$
-12 \vdots
$$

Figotio：rroposed rotatione irrigation systern

1）Arrangenent of the land
Presently，the field lots are an irregular，narrow shapas and the topogranical feature is also complicated．irouping of farmand，substitution of lots and the construction of land readjustment are imyossible owing to the existing institution of land and famers unawareness to agricultural improvement．

However，establishing the water management the Field Block should be devided by channels，drains and farin roads as the irrigation units in order to make the rational farming works， mechanization of cultivation，systeratic irrigation and so on．

2）Water rights．
Regerding to the whter rigints of Halaysia，it is not sure to establish already or not，however farmers who have his oun paddy land at hicher mlace can use the water firstiy and graduslly flow down to the lower peddy land as usual．At that time，the femers who situated higher place don＇t want to flow down the irrigation water before their addy land have enough water and finish the land preparntion，noreover after irrigated their paddy lots they also don＇t want to flow much water for lower waddy lant through their already irrigated paddy lots．

Thus，the famess will try to close or wing the irrigation water from the off－take，therefore it is natural the oresatu－ tation period will delay so much due to the both reason， that is one of them is no on farm facilities and the other is the hunan troubles．

3）The order for the rotational irrigation．
Now，the proposed rotational irrigetion system on P／P No． 2 is supposed as follows．the rotational water use for prew suturation period is see：ned that the Field 3jocks which con draw the irriestion water from the $0.3 . L$ are the firat onder， thet is Field Block No．1－2，1－3，1－1，5－1，5－2，4－2 and No．3－2 then the rield Blocles which belongs to the F．s．ls should be followed．This means the water level control in the secondaxy canal will be able to become easter．

The supporsed onder for the roational irrigation is shown in table－

Tablem 24 ：Supposed order for the rotstional irrigation．

Order	Field Block	erea（ha）	Q 8	Remarks
1st	）No．1－2 ${ }^{\text {No．1－3 }}$	）2．69	1.	$\left\{\begin{array}{l}\text { combine } 0.5 .4 \\ \text { together } 0.5 .12\end{array}\right.$
2nd	No．1－1	1.23	1.	O．S．E
3 rd	No．5－1	1.69	2	O．S．IN
4 th	㶦0．5－2	0.77	2	O．S．L
5 th	XXO．4－2	0.87	2	0．S．1
6th	No．3－2	2． 39	2	0．3．1．
－7th	No．3－1	1．4＇4	direct	F．S．L
8 th	No． 2	2.01	$\underline{1}$	F．S．1 dem up
9 th	No． $4-1$	1.18	2	For．l dam up

The operation of the water control in ：Cl and 62 is shown in Figm 47．

Using this rotational sjstem，the each Field Block will be satisfied with the presaturation water and the supelenentary one at the same time．

Fost probably the total suphementary water for one or two days duration whl be drawn at the same time due to the small water，thet is $0,0008 \mathrm{~m} / \mathrm{sec} / \mathrm{ha}$ ，and the farners don＇t supply the supplenentary witer continuously in that duration．

In this case，the presaturation water can be given up to $0.050 \mathrm{~m}^{3} / \mathrm{sec}$ not $0.050-\operatorname{sen} \mathrm{m}^{3} / \mathrm{sec}$ ．Anyway，the nost important thing is the operation for the rotetional irriga－ tion that is considered systematically．

Fig- 47 : The weter control of $4 C 1$ and (2C2 for the preseturation period
lst. Field Block Ho. 1-2 and to. l-3

2nd. Field Blook Mo, 2-1
ql: Supplementary wator for Field Block Mo. 1-2/1-3.
(2Cl)
' QCI.

3rd. Field Blook llo. 5-1

4th. Field Block Ho. 5m2

93: Supplementary weter for Field 31ook llo. 5":

5th. Field Block Ho.4-2
(QC2)

q/as Supplementory weter for Field Block No. 5-2

6th. Field Block No. 3-2

q5: Supplementary water for Field Block No. A- -2

7th. Field Block No. 3-1

8th．Field Blook No． 2

9th．Field Block N0．4－1

4) vater dequirement.

Followin; atimed values fox tide calculation of weber requirenent will necensmy be revisch socording to the resut of tine investim G!tion in field and benonstution Farm. lbe wates requirenont for the presituration veried as tie mater requiment for prem parition of pudely fiteld is shom as jolow:-

$$
\mathrm{U}=\mathrm{H}+\mathrm{Ap}+\mathrm{AS}+\mathrm{ES}+\mathrm{Pd}+\mathrm{PB}
$$

where, $Q:$ witen requitronont for prevaration of wity siele. H: stundire dator layer. Ap: air volwe replace to wter in plow ixer. As: air volu:o replece to mater in wascil. Es: equporation fron huter surfece. Dd: dommand percolititon. Pb : enrcolation through border.

The nodel of timeter reutrement in presturation eriod is shown in Pic. 4 緆.

Fig. 42 Model of the water requirement
standing water layer (H)

i) Presaturation reriod
a) Bvaporation (E)

Es: witer losses from saturated soil and bitor surface
Es $=0.70 \times$ घD DTD information mo. 2
Where, ifp: an evaporation.
The record of the evaporation using a black pan at Pasir Has Setian Cron April to Soptominer in 1872 to 1976 is shoun in tablem 35 .

Pablem 35 : Zococl of wan ov poration at kusir lus (Black pan)

jear	$\begin{gathered} \text { total } \\ \text { evaporation }(2 / a) \end{gathered}$	meturured total ays	$\begin{gathered} \text { average } \\ \text { evaporation }(n / \text { day }) \end{gathered}$	remarks.
1972	775.5	+ 152	5.10	Hexcept ifuy
1973	778.5	* 1.53	5.09	第xcopt April
1974	1015.2	183	5.55	
1975	1020.5	133	5.58	
1976	1035.1	183	5.66	

dhere, the excopting two montins are omited from the calculstion due to the observation errors. Generally spaling the corversion coefficient from pan evaporation to field one is roported 0.70 by 4.3 laather Buceau then the evaporation pan is used a winte one, however here in Pasir flas fitation one is a black pin therefore it is necessary to change the coefficient, that is 0.66.

The arranged is is hown as fol ows:

$$
\begin{aligned}
\mathrm{Hs} & =0.66 \times \mathrm{Lp} \\
& =0.66 \times 5.66
\end{aligned}=0.37 \mathrm{cos} / \mathrm{day} .
$$

Eu: fater losses rom uns:sturated soll.

$$
\mathrm{E}_{\mathrm{u}}=0.4 \mathrm{ca} / \mathrm{day} \ldots \mathrm{DW} \text { infomution } \mathrm{Bo} .2
$$

After harvesting, tice soil surface is bare and constantly loosing water by evaporation. The movement of irrigetion mater in the field during presaturation is shown in Fi_{S}. 43 .

Fig-49: Vovenent of irrization water in the field during presaturation.

'lherefore, the average eveporalion (ii) between tis and Eu durines the presitumation is shown in rizento

Fijot : average evaporation during the presaturation

Where, \quad iST $=\frac{\text { ès }+ \text { Eu }}{2} . T$
$E=\frac{E s+E u}{2}$
Consequentily, the average eviporstion is calcul:ited as below:-
$\mathrm{E}=\frac{0.4+0.4}{2}=0.15 \mathrm{~cm} / \mathrm{day}$
b) Infiltrution lossus (F)

The results of soil samples analysis on Demonstration Farm is shown in Table- 36 . It is claar that the percentage of clay is show over 50, , and the percolation coeffioient is shown $10^{-4}-10^{-6} \mathrm{~cm} / \mathrm{sec}$ in Fig-5l. In this case, the infiltration losses like this soil is considered below $1 \mathrm{~mm} /$ day, however for the safety the value of the ilfiltrition losses is given $1 \mathrm{~mm} /$ day.

$$
P=0.1 \mathrm{~cm} / \mathrm{day}
$$

c) Water requirement for pudding (s)

The role of puddling works is to crush soils of paddy field into optimum conditions for border painting and trunsplanting. At prosence, the fermers here in falaysia never painting the border and no readjustment is made on the borders waich was destroyed by buîfaloes, rats and so on. This action is very important to reduce the percolation through border that seems to cause a lot of water losses during the presaturation period.

$\begin{aligned} & \text { No. } \\ & \text { Bag. } \end{aligned}$	KeAalanan (1n)	Ho. mekw	$\begin{gathered} \mathrm{pH} \\ \mathrm{ajr}^{2} \mathrm{dry} \\ \mathrm{H}_{2} \mathrm{O} \end{gathered}$	$\begin{aligned} & \text { Conductivity } \\ & (\mathrm{air}-\mathrm{dry})^{2} \\ & (\mathrm{mon} / \mathrm{Bos} / \mathrm{cu} \end{aligned}$	\$N	7	K	\% 6	$\begin{aligned} & \text { Organic } \\ & \text { mattar } \end{aligned}$	$\begin{gathered} \text { C.E.C. } \\ \mathrm{meq} / 100 \mathrm{Bn} \end{gathered}$	M.A.			
											$\stackrel{\%}{\text { clay }}$	$\begin{gathered} \stackrel{y}{0} \\ \text { silt } \end{gathered}$	$\begin{aligned} & \text { \% fins } \\ & \text { sand } \end{aligned}$	$\operatorname{lic}_{\operatorname{sic}} \text { coarso }$
SAA 489	0-6"	SL 39/1	5.0	32.2	0.14	2	31.5	1.23	2.12	7.30	53.8	43.1	4.13	0.84
SAA 449	0-6"	SL 39/3	4.6	42.1	0.20	2	52.7	0.83	1.52	7.12	50.9	42.9	4.46	1.72
SV 208	0-5"	SL 39/4	4.85	40.0	0.12	2	57.4	1.00	2.72	7.14	49.9	43.7	4.59	1.80
SAA 450°	0-6"	SL 39/7	4.8	41.8	0.14	3	66.9	2.23	2.22	7.35	52.8	43.0	2.37	0.79
Sta 42	$0-6{ }^{\text {a }}$	Six $39 / 6$	4.9	33.2	0.14	3	65.0	1.29	2.22	7.17	51.9	434	3.66	2.00
SAA 448	0-6".	SL 39/12	5.1	28.3	0.15	2	79.5	1.35	2.33	7.00	50.6	44.6	4.27	0.65
Sy 350	$0-6{ }^{\text {Pr }}$	SL 39/22	5.0	36.9	0.17	4	91.1	2.46	2.52	7.16	51.2	4404	4.34	0.48
rotal			34.45	252.50	0.96	18.00	497.10	8.44	24.55	50.18	359.10	305.20	28.57	7.30
AVG.	$0-6^{\prime \prime}$		4.92	37.36	0.14	2.57	71.01	1.23	2.08	7.27	53.30	43.59	4.03	1.08

－ふきー

$\begin{aligned} & \text { No. } \\ & \text { Bag } \end{aligned}$	$\begin{gathered} \text { Ko- } \\ \text { dalaman } \\ \text { (in) } \end{gathered}$	$\begin{gathered} \text { No. } \\ \text { maknal } \end{gathered}$	$\left\|\begin{array}{c} \mathrm{pH} \\ \mathrm{air} \mathrm{r}-\mathrm{dry} \\ \mathrm{E}_{2} \mathrm{O} \end{array}\right\|$		58	P	K	\％ 6	\％Organic matter		M．A．			
											$\left[\begin{array}{c} \% \\ \text { clay } \end{array}\right.$	$\underset{8}{8}$	scine sand	$\left\lvert\, \begin{gathered} \% \\ \operatorname{cosenco} \\ \operatorname{sand} \end{gathered}\right.$
SAA 480	6－12＂	SIL 39／2	4.9	35.3	0.05	2	59.5	0.33	0.57	7.21	51.3	42.9	4.30	1.42
SAA 472	6－120	SL $39 / 5$	5.0	29.5	0.05	1	42.01	0.32	0.55	7.17	49.0	44.3	4.42	2.13
SAA 488	6－12＂	SL．39／6	5.0	12.7	0.05	1	43.2	0.37	0.64	7.05	50.3	45.4	3.22	3.00
SAA 423	6－12＇	SL 39／9	4.9	43.5	0.06	2	42.0	0.49	0.84	7.09	534	43.7	2.85	0.28
SV 253	6－12＂	SL 39／10	4.9	44.7	0.06	2	40.8	0.47	0.81	7.09	57.0	40.1	2.58	0.25
SAA 444	6－12＂	SL 39／13	4.9	42.8	0.08	2	72.2	0.61	2.05	7.19	54.2	42.2	3.52	0.26
SAC 598	6－321	SL 39／4	4.9	45.1	0.14	2	71.1	0.67	3.15	7.28	53.5	42.5	3.50	0.27
TOTAL			34.50	252.60	0.49	22.0	370.80	3.26	5.61	50.08	368.70	301.10	24.49	5.46
AvE．	6－12a		4.93	36.09	0.07	2.71	52.97	0.47	0.80	7.15	52.67	43.02	3.50	0.76

$\because 34$

-Figure - -icilitiondyess
Judgatst Hatk $\frac{10,61 / 15 A_{2}}{\text { saiL Hardaes: Fain }}$

$$
-195-
$$

It goes without sayine that to swe the meter in padey field at the necessary period without lossing uselessness, that is a good witer manatement.

Consequentii, tho pudiline wher is consisted as follows:

$$
S=A p+A s+P d+P b
$$

ithore, is: puddling water
Ap: air volune replace to weter in plow layer
As: iar volume replace to water in subsoil
Pd: dombard percolation
Pb : bercolation through berder.
The standine w tor jayer and eviporation from saturated and unsatureted soll are oxcented, bocause of both of value are given by the actwal data.
Now, the assumed similar value of "3"is siven below as well as the Huda area more also hive the heary clay soil.

$$
3=1.5 \mathrm{~cm}
$$

In this assumed value inrolve the dommand percolation already, therefore the infiltration losses (F) shouia be nezflected aurine the positurytion periocio
d) Standing nter layer (ii)

Tho standing water layer is suplied after pudrling. Though a desirable value is aithin 5 cm , however due to variation of land surfece in the paddy lot, 10 con depth of stamizes witer is considered so hat farners can have betier control of the water dentia.

$$
\mathrm{H}=10 \mathrm{~cm}
$$

e) Field losses (i)

Selected for ssuration.
20f of loses is de pied in suphomentury water.
ii) Srownc pested.
a) Sveporution losess (B)

$$
s i=0 . \therefore \mathrm{m} / \text { day } .
$$

b) Trunsiration losses (Et)

$$
3 t=0.1 \mathrm{om} / \mathrm{duy}
$$

c) Infiltration losises (f)

$$
\mathrm{p}=0.1 \mathrm{~cm} / \mathrm{asy}
$$

d) Fiold loswos (is)

$$
L=20_{i}^{*}
$$

Consomenthy, the atwr wirewnt per iectaro (a) is shown as below:-

$$
\begin{aligned}
& q=\frac{(E s+2 t+B)_{2} L}{6 / 4}=0.00003 \mathrm{~m}^{3} / \mathrm{sec} \\
& a=0.0008 \mathrm{~s} \times 13.27=0.011 \mathrm{~m}^{3} / \mathrm{sec}
\end{aligned}
$$

iii) Formala for retiond impetion in aresabation werion.
 fiell block tis as folloms:
(1) Fiend locis re sturated fracmally fron tive rea whici bolong to tho O.S.L and followe by ayews with the F.b.L conditions of the secondary conal because water control is easier und more economicsl.
(2) A satureted block is supplied witi supplamen water succeedingly.
(3) Presaturation period calculated for one bloci is to be carrected to a whole round-up number so as to fucilitate easj wate? management.
(4) Eyaporation losios fron unsaturated soil are calculated only for pressturation period of one field Elock.
(5) Infiltration losises during presaturation periosi of whole area are neglected, bacause tine lobses are already assuged in the water requirement for pudding.
b) Calculation formula,
The calculation of the presaturation period is carried out as follows:
$Q=27+22$

- (1)
$2 \lambda=\frac{(3+11+4.9) A}{.364 \cdot 1}$

In this case a is fived fron above formala,
$T=\frac{(3+I I)_{0}}{364 \cdot i 6-\left(D_{0} E S_{0} B+E, A\right)}-(4)$

```
#%
```

Where, q: total water requiroment for prosaturation period $\mathrm{m}^{3} /$ sec

Q18 water requirement for presaturation	$\mathrm{m}^{3} / \mathrm{seo}$
Q2: water requirement for supplement	$\mathrm{m}^{3} / \mathrm{sec}$
T: presaturation period	day
A: presaturation area	ha
B: supplenental area	ha

iv.) Caloulation for presatur:tion period by rotational. irrigation.

Using the above formula, the presaturation priod is siven as in table- 37 .

At the first tine, the expected presaturation period is supposed within 9 days, however the calculation rosults are shown the actual operating day for tine p:esturuation pertod becones 12 days becuuse of the round-up days to facilitate ea3y witor management for the farmers.
at the first time, the water remurement is ctilculated to finish the iarigation period within 9 dajs, that is $0.05 \mathrm{an}^{3} / \mathrm{sec}$, however it is essumed to $0.050 \mathrm{~m}^{3} / \mathrm{sec}$ due to the presaturation period will be rounded in order to mike easy water manamement.

It is clear in tie result in table- 37 that the presoturetion period finished uithin 9 days, that is 8.38 days, out this operation of the meter manapement is very difficult. after corrected day is eiven to the calculation the expected presaturation period is shown to bo 12 days and also the maximon water discharge is shom as $0.047 \mathrm{~m}^{3} / \mathrm{sec}$ thich is less than the expecter $0.050 \mathrm{~m}^{3} / \mathrm{sec}$.

However, it is not so much different with the expected water discharge, that is $0.050 \mathrm{~m}^{3} / \mathrm{sec}$ and considering about the unexpected los es, the size of facilities is able to docise using this expected wher discharge for the sefety.

The wher usace during the pres:turation veriod is supposed to bo of the s me fischarge as tae expected w ter discharge. To meet the above, the most important things is to arramge each Fiold Blocks fitted by the investimation result ss the best consideration thoug hot the sane area due to the existing conditions.

Therefore, now some perion shon the water discinve is not necessary oy $0.050 \mathrm{~m}^{3} / \mathrm{sec}$, Wut in relation to the future plan if the formers becone betuer to operite the mater manacement, make better land contitions anci to counter neasure the increasing of water wectuirement, the size of the ciuarterly canal should be designod iju ine expectad woter discisme, tiont is $0.050 \mathrm{~m}^{3} / \mathrm{sec}^{\text {. }}$
Table-37: Calculation table for presaturation period

Field Block	A (ha)	B (ha)	(S+H)A	E.A	L.Es.E	denominator	T (day)
			25.A	$0.4 A$	0.48.8		
$\begin{aligned} & 1-2 \\ & 1-3 \end{aligned}$. 2.69	-	67.25	1.08	-	42.12	1.60
1-1	1.23	2.69	30.75	0.47	1.29	42.42	0.74
5-1	1.69	3.92	42.25	0.68	1.88	-0.64	2.04
5-2	0.77	5.61	29.25	0.31	2.69	40.20	0.45
4-2	0.87	6.38	21.75	0.35	3.06	39.79	0.55
3-2	1.39	7.25	34.75	0.56	3.48	39.16	0.89
3-1	1.44	8.64	36.00	0.58	4.15	38.47	0.94
2	2.01	10.08	50.25	0.80	4.84	37.56	1.34
4-1	1.18	12.09	29.50	0.47	5.80	36.93	0.80
Total	23.27						8.38

$-108-$
$1-2$
$1-3$
$1-1$
$5-1$
$5-2$
$4-2$
$3-2$
$3-1$
2
$4-1$
Total
The calculation table for presatimation period
using the corrected round-up T value is shown as below:-
Table- 58 : Corrected calculation table for presatumation period

Field Block	A (ha)	T (day)	Q2. ${ }^{\prime}\left(m^{3}\right)$	$B(\mathrm{ha})$	$22^{1}\left(\mathrm{~m}^{3}\right)$	$22^{2}+82^{\prime}\left(\mathrm{m}^{3}\right)$	$T=\frac{21+221}{Q}$	correated presa truration period
2-2	2.69	2	6.940	-	-	6.940	2.61	2
1-1	3.23	1	3.124	2.69	129	3.253	0.75	1
5-1	2.69	2	4.360	3.92	376	4.736	1.10	2
5-2	0.77	1	1.956	5.61	269	2.225	0.52	I
4-2	0.87	1	2.230	6.38	306	2.516	0.58	1
3-2	2.39	1	3.531	7.25	348	3.879	0.90	2
3-1	2.44	1	3.658	8.64	415	4.073	0.94	1
2	2.01	2	5.186	10.08	963	6.254	1.42	2
4-1	1.18	1	2.997	12.09	576	3.573	0.83	I
Total	13.27	32	33.\%2		3,387	37.349	8.65	12

Where, QI': total water requirement for presaturation.
Q2': total water requirement for supplement.
Es.T.L.B. $100 \mathrm{~m}^{3}$
W: total supnly water per day
total supniy water yom day
$0.050 \times 56400=40.320 \mathrm{~m}^{3}$
The water discharge in the presaturation perion when it is expected 12 days is shown in tablem 30.

Field Bloak	A (ha)	T (day)	Q1 (1/sec)	B (ha)	Q2(1/sec)	$21+22(1 / \mathrm{sec})$
1-2 I-3	2.69	2	40.16	-	-	40.26
-1-1	2.23	1	36.16	2.69	1.49	37.65
5-1	2.69	2	25.23	3.92	238	27.42
5-2	0.77	1	22.54	5.61	3.12	25.76
4-2	0.87	1	25.58	6.38	3.54	29.12
3-2	1.39	2	40.86	7.25	4.03	44.89
- 3-1	2.44	1	42.33	8.64	4.80	47.13
2	2.01	2	30.01	10.08	5.60	35.61
4-1	1.18	1	34.69	12.09	6.72	42.42
Total	13.27	12				

The conveied vatur to each diversi:n ivx is show in mine-40.
Table-4) . Conveied nater to asch diversion box

rerioi	rotation mucoer		Blinck	date	- $\because f$-tnke direct No. 3-1 ($1.1 / 4 \mathrm{~h}$)	$\left(\begin{array}{l} { }^{4} C 1 \\ (5.93) \end{array}\right.$	$\begin{gathered} D 1 \\ (20.22 \end{gathered}$	$\begin{gathered} \text { D2 } \\ \mathrm{NO}_{0} .1-1 \\ (1.23) \end{gathered}$	$\left\lvert\, \begin{gathered} D_{3} \\ \mathrm{No.1-2} \\ 3 \\ (2.69) \\ \hline \end{gathered}\right.$	$(8.2$	$\left\|\begin{array}{cc} 1 \\ N o . ~ & 4-7 \\ (1.13) \end{array}\right\|$	$\begin{gathered} \mathrm{D} 2 \\ \mathrm{No} \cdot \mathrm{3}-2 \\ (1.39) \end{gathered}$	$\begin{gathered} 03 \\ 0.1+2 \\ (0.87) \end{gathered}$	$\left\|\begin{array}{c} 14 \\ \mathrm{No} .5-2 \\ 0.77) \end{array}\right\|$	$\begin{gathered} 04 \\ \times 10.5-7 \\ (1.59) \end{gathered}$	$\begin{aligned} & \text { Totni } \\ & (I / s c c) \end{aligned}$
	2	1-2	2.69	2	-	40.36	-	-	00.16	-	-	-	\cdots	-	-	40.16
	2	1-1	1.23	1	-	37.65	-	36.16	1.49	-	-	-	-	-	-	37.65
	3	5-1.	1.69	2	\cdots	2.15	-	0.63	1.50	25.23	-	-	-	-	25.23	27.43
Presathuotion	4	5-2	0.77	2	-	2.23	-	0.68	2.50	23.58	-	-	-	22.54	0.94	25.76
	5	L-2	0.87	2	-	2.17	-	0.58	2.47	26.95	-	-	25.58	0.43	0.43	29.12
	6	$3-2$	1.39	1	-	2.13	-	0.68	1.50	42.71	-	40.36	0.48	0.43	0.94	44.89
	7	3-1	1.4.4	1	42.33	2.17	-	0.68	1.49	2.62	-	0.77	0.48	0.43	0.94	47.13
	を	2	2.01	2	0.80	32.18	30.03	0.63	1.4.9	2.52	-	0.77	0.4	0.43	0.94	35.61
	9	$4-1$	1.18	1	0.50	3.30	2.12	0.68	1.50	37.31	34.69	0.77	0.48	0.43	0.94	4, 17.47
$\begin{aligned} & \text { Normal } \\ & \text { Period } \end{aligned}$	All the area				1.15	4.74	1.61	0.98	2.35	4.72	0.94	1.13	0.70	0.62	2.35	10.61

Incidentatuy, the sotal anomet of wator requirement ameng presoturation peviod is to be $37,3 / 4+87,136=121+435 \cdot \mathrm{~m}$ and the operstion cost of Kenubu Pumbing Station is seemed rounty to be 0.5 cent per one cubic metre. Therefore, the

To obtax zhe ropured punping wator in Kenubu Scheme, a vast onout of moner were bo be sweme. Thus, it is very impontant, tiant, geos watrin menarament should pe sohieved so as mot wate wotert minemseriyy. To meot the above reruirment, farming schedule shmpe not be deluaed nan more sutemation use of water should be obsemyd in the whole of liemubu area irmediategy after the constmotion of on farm facilities.

Pig. 52. imangement of the rotational irrigation of E/F Ko. 2

5) Border Improvement

Now, looking around the existing paddy field conditions, it is clear that the on farm facilities such as irrigation, drainage canal and farm road are very few or nothing.

Under like this conditions, it is natural that the well achieved water management is seemed very difficult, besides that most of all the irrigation facilities are operated and maintained by the government not the farmers, therefore the farmers sometimes try to broke the irrigation gate to get the irrigation water in the inexpected period that is not on program, because of the farmers not used to keep the farming schedule.

Concequently, the on farm facilities should be promoted into the paddy field to shorten the presaturation period and also to make the farmers associetions in order to control the terminal irrigation and drainage systems by their own hand under the government farming schedule.

These Pilot Farm projects are able to so called " The Tertiary Groups ", however these tertiary groupe still have a lot-to-lot irrigation systems due to the difficulties to promote the land consolidation project now in Malaysia.

This means, the government should organize the paddy field conditions promoting the available irrigation and drainage schemes for the extensive way.

Moreover, the farmers should be changed their maind to enhance the paddy farming techniques which will be got by ever-progressing rice cultivation techniques.

Lot-to-lot irrigation is unavoidable things under existing conditions, however there is one of the ways of control the irrigation water for better water management in it. That is a "Border Improvenent " .

Existing paddy field have many parts of in-let which are made by a baffalos and sc on at the same border and also some of the borders are consisted by the rice straw not the soil, therefore it is an usual way that the percolation through the border will be happen, so these uncontroled border prevent to serve the irrigation water in paddy field and there is no doubt that these border cause a long presaturation period.

In conclusion, the in-let should be situated only one place at one border and at the same time this in-let is to be an out-1et of the higher paddy field, Like this, each border of the paddy field should be given one in-let and out-let and the water control should be done within a rotational unit as if one of the field lot.
To obtain like this operation system, the farmers who are situated
in the same rotational unit should be cooperated together in order to have a responsibility in their unit, besides that they must keep the irrigation order and must follow the government farming schedule. Not only the big irrigation schemes but also like this terminal operations are very important for the well achieved water management and well use of the water resources.
6) Finalized on farm facilities of p/F No. 2
i) Name of the off-take P4S3L

iv) Topographical slope
west to east, approximately $\quad I=1 / 1,000$
v) Farm lot.
number of field lot 106
number of farmers
max. area
min. area
average area

26
$A=2,839 \mathrm{~m}^{2}$
$A=179 \mathrm{~m}^{2}$
$A=179 \mathrm{~m}_{2}^{2}$
$A=1,120 \mathrm{~m}^{2}$
vi) Field facilities
a) Irrigation canal $\quad L=760 \mathrm{~m}$

QC 1	$\mathrm{~L}=362 \mathrm{~m}$	$($ concrete $)$
QC 2	$\mathrm{~L}=348 \mathrm{~m}$	$\left(\begin{array}{c}1\end{array}\right)$

$\begin{array}{ll}\text { QC.2 } & L=348 \mathrm{~m} \quad \text { existing } \\ L=50 \mathrm{~m}\end{array}$ (earth canal)
irrigation canal density $760 / 13.27=57 \mathrm{~m} / \mathrm{ha}$
b) Drainage canal $L=696 \mathrm{~m}$ FD $1 \quad \mathrm{~L}=93 \mathrm{~m}$ FD $2 \quad \mathrm{~L}=2.88 \mathrm{~m}$ $\mathrm{FD} 3 \quad \mathrm{~L}=315 \mathrm{~m}$
drainage canal density $696 / 13.27=52 \mathrm{~m} / \mathrm{ha}$
c) Farm road $\quad \mathrm{L}=429 \mathrm{~m}$ farm road density $429 / 13.27=32 \mathrm{~m} / \mathrm{ha}$
vii) Water supply for Irrigation
a) Presaturation period $Q=0.050 \mathrm{~m}^{3} / \mathrm{sec}$
b) Normal period

$$
Q=0.011 \mathrm{~m}^{3} / \mathrm{sec}
$$

viii) Rotational irrigation
irrigation period for presaturation 12 days

Fig -1	Classification of paidy field
112	Histogren of. P/F No, 2 (altitude)
113	Measurement of area (trianele method)
114	Histogram of F / i No. 2 (area)
13	Measurement of aischarge
116	General view of off-take and it's head loss
117	General vien of submerged orifice head loss
118	General vies of total head losses of off-take
119	H-ig curve of off-take (P433L)
" 10	Laymout plan of P/F No. 2
1111	Future plan of P/F No. 2
12	General view of QCl which is situated right near the inlet box
" 13	Longitudinal section by 1.25 m width of scl
114	The most effective cross-section by 1.25 m width of 4Cl
${ }^{1} 15$	Cross-section of 4.9 m width of QCl
i16	Graph of the most effective cross-section in relation to width/ wetted parimeter and denth
17	The cross-section by 0.55 m width of uCl
118	longituainal section and design of acl
" 39	The longitudinal-section from off-take to 2ClD
120	Cross-section of in-let facilities of Field Miock No. 3-1
1123.	Expected Longitudinal section as Case 5
122	Longitudinal soction between RIS3L nnd R2S32
1123	Longitudinal section of Case 6
1124	Cross-section by 0.50 width of wCl
" 25	Longitudinal section of Case 7
126	Longitudinal section of Case 8
127	Longitudinal section of Case 9
128	Longitudinal section of Case 10
" 29	Cross-section of inlet facilities at Field Block No. 3-1
1130	Final longitudinal section of QCl
11.31	Longitudinal section ard design of yC2
- 32	Cross-section by 0.45 m width of 4 C 2
1133	Longitudinal section for dam yp weir of QC2DI.
* 34	Final longitudinal section of पC2
1135	Tipical cross-section of pha

Fig 36	Tipical crosswsection of QC2
" 37	Tipical orosswsection of rield crossing
1138	Longitudinal section of Farn Road and FD2
1139	The cross-seotion of Farmiliond
1140	The probability graph of precipitation
1142	Tipical cross section of FD2
1142	Longituadinal section of FDI
1143	Longitudinal section of FD3
114	Tipical cross section of FD3
1145	Existing irrigation system
1146	Proposed rotational irrigation system
1177	The water control of QCI and QC2 for the presaturation period
11.48	Model of the water requirement
1149	Movement of irrigation water in the field during presaturation
- 50	Average evaporation during the presaturation
1151	Cone penetration Test D_{A} ta Sheet
1 52	Arrangement of the rotational irrigation of P / F No. 2
1153	Hater Usage During the presaturation period

APPEHDTXES.. 3 JIS: OP PROSRAM
pro. - 1 . Adoption of $\mathrm{Y}_{\mathrm{H}}=\mathrm{cx} \mathrm{a}^{\mathrm{a}}+\mathrm{dx} \mathrm{b}^{\mathrm{b}}$
" 2 Calculation of uniform flow in the rectangulsr canal (No. 1)
" 3 Calculation of uniform flow in the rectangular canal. (ilo. 2)

