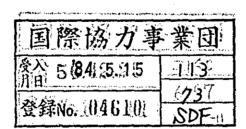
URBAN TRANSPORT STUDY
IN
GREATER METROPOLITAN AREAS
OF
GEORGETOWN, BUTTERWORTH AND BUKIT MERTAJAM

MALAYSIA

ANALYSIS AND FORCASTS OF TRAFFIC MOVEMENT


TECHNICAL REPORT - 11

DECEMBER 1979

JAPAN INTERNATIONAL COOPERATION AGENCY

GOVERNMENT OF MALAYSIA

TECHNICAL REPORT CONTENTS

1	Outline of the method of estimating traffic volume.	
1.1	Explanation of traffic terms	1
1.1.1	Trip	1
1.1.2	Division of the trip	1
1.1.3	O-D table	2
1.1.4	Traffic zone	3
1.2	General methodology of estimating the traffic flow	
1.2.1	Data collection	5
1.2.2	Traffic surveys	5
1.2.3	Analysis of present conditions	6
	(1) The basic unit method	
	(2) The growth rate method	
	(3) The regression method	
a a ma	(4) The simulation method	
	(5) General	•
1.2.4	Determination of future land use10	, · · ·
1.2.5	Proposals for the future traffic network10)
1.2.6	Estimation of future traffic demand10	į
· · · · · · · · · · · · · · · · · · ·	(1) Trip production	
	(2) Trip generation and attraction	
• • • • • • • • • • • • • • • • • • • •	(3) Trip distribution	
	(4) Completion of the O-D table	
	(5) Traffic assignment	
1.2.7	Evaluation of the proposals for future traffic	•."
	planning13	j - ·
2.	The procedure for completing the present O-D table	`.
2.1	Some of the main results from the traffic surveys14	ŀ
2.1.1	Owner-interview Survey12	ŀ
	(1) The vehicle-ownership situation	
	(2) The number of trips recorded in the internal	, k
	areas of Penang Tsland and Province Wellesley	
2.1.2	Ferry Survey18	}
2.1.3	Cordon-Line Survey22	
2.1.4	Screen Survey	+ 1
2.2	The procedure for completing the present O-D table2	;
The second second	TO THE LIBRARY CONTROL TO THE THE STATE OF T	1

3.	Present traffic situation	
3.1	Some situation from the present O-D table	26
3.1.1	An out-line of the traffic movements	26
3.1.2	A break down of trip purpose	27
3.1.3	Average number of trips per day	
3.1.4	Departure time and arrival time	
3.1.5	The average number of passenger per vehicle	40
3.2	Present O-D table	
4.	An analysis of the present traffic situation	
4.1	The attributes of vehicles owners	55
4.1.1	Form of ownership	55
4.1.2	The situation of ownership by area	- -56
4.1.3	The attributes vehicle owners	58
4.1.4	The characteristic by working place	63
4.1.5	Type of establishment and size of employment	66
4.1.6	Period of ownership and frequency of usage of vehicles	67
4.2 .	Analysis of trip production	70
4.2.1	Internal trip	70
4.2.2	External trip and through trip	76
4.2.3	Traffic volume and number of vehicles	
4.3	Analysis of trip generation and attraction	96
4.3.1	Trip generation and attraction	96
4.3.2	The classification of zones	-102
4.3.3	Analysis of trip generation and attraction	-106
4.4	Analysis of trip distribution	
4.4.1	The territory of traffic flow	-131
4.4.2	The time distance	-139
4.4.3	The formulation of the trip distribution model	-143
4.5	Traffic assignment	-155
4.5.1	The procedure of traffic assignment	-155
4.5.2	Road network model	-156
4.5.3	The method of estimating traffic volume	-162
4.5.4	Results of present traffic assignment	-166
5.	The premise	
5.1	Population and employed population	-169
5.2	Comparison Between Penang Island and Province Wellesley	176
5.3	Number of vehicles	-181
5.4	Summary of the premise	-190

6.	Estimation of future traffic demand
6.1	Outline of the flow-chart for estimation and some definition
6.2	Estimation of Future O-D Table196
6.2.1	Trip Production196
6.2.2	Trip generation and attraction203
6.2.3	Future O-D Table211
6.2.4	Varification by person trip228
7.	Estimation of Future Traffic Demand by Transport Plan
7.1	Concept of the Transport Plan229
7.2	The way of the Calculation232
7.2.1	Control of Parking Demand232
7.2.2	The comparison of transport plan in George Town256
7.3	Estimation of future traffic demand by transport plan
7.3.1	Number of total trips by transport plan247
7.3.2	The comparison of transport plan in George Town256
8.	Estimation of the Future Traffic Demand on Road Nerwork260
9.	Assignment for the road network without Ferry271

LIST OF TABLES

Table	1.1	O-D table by the internal, external & through trip	
Table	1.2	O-D table by 4 traffic zones	2
Table	1.3	Models used in the line with each step of the traffic estimation	
Table	2.1	Number of vehicles & motor-cycles	
Table	2.2	The number of vehicles in the internal area	
Table	2.3	The types of vehicles using ferry	18
Table	2.4	The O-D table & the elements	
Table	3.1	Type of trip & trip purpose	27
Table	3.2	The trip purpose in detail	
Table	3.3	The composition of the trip purpose by area	31
Table	3.4	Average number of trips per day	33
Table	3.5	Car - Trip to Work	
Table	3.6	Car - Business Trip	
Table	3.7	Car - Private Trip	
Table	3.8	Car - Trip Home	
Table	3.9	Car - Total	
Table	3.10	Lorry	
Table	3.11	Taxi	
Table	3.12	Bus	
Table	3.13	Vehicles except motor-cycles	53
Table	3.14	Motor-cycles	
Table	4.1	The number of vehicles	55
Table	4.2	Number of vehicles by zone	56
Table	4.3	Ownership of vehicles by age & sex group	60
Table	4.4	Ownership of car & motor-cycle by the employed & unemployed population	
Table	4.5	Unit vehicle possession of the employed & unemployed population	61
Table	4.6	Situation of ownership by working place	
Table	4.7	The unit trip production	
Table	4.8	Unit trip production by characteristic of user	73
Table	4.9	Employment	
Table	4.10	Employment	78

Table 4.11	Number of vehicles	
Table 4.12	Population Projection	83
Table 4.13	Employment Projection	
Table 4.14	Average household income per month	85
Table 4.15	Projected Traffic Volumes on Segment W9	
Table 4.16	The trend of the number of vehicles	
Table 4.17	The trend of traffic volume	91
Table 4.18	Ferry Traffic in One Way Trips	92
Table 4.19	Average Annual Percent Growth	93
Table 4.20	Index Number	94
Table 4.21	Trip generation of vehicles	109
Table 4.22	The explanatory variables	113
Table 4.23	Trip model of trip generation & trip attraction	114
Table 4.24	Formula of Trip Distribution	146
Table 4.25	Table denoting formulae used for the internal & external areas of Penang Island & Province Wellesley	147
Table 4.26	Q - V formula for vehicles	
Table 4.27	Q - V formula for motor-cycles	163
Table 4.28	Direct & indirect methods	168
Table 5.1	Employed population by industry in Penang State	
Table 5.2	Population by age in Penang State	175
Table 5.3	Motor-vehicle Registration Trend (Peninsular Malaysia)	181
Table 5.4	Motor-vehicle Registration Trend (Penang State)	182
Table 5.6	Estimated vehicles volume by using least square method	183
Table 5.7	Calculation of persons per vehicle type	184
Table 5.8	Persons per vehicle	185
Table 5.9	Estimated motor-cycles volume	187
Table 5.10	The number of vehicle in Penang State	187
Table 5.11	Number of vehicles in Penang State	188
Table 5.12	Number of vehicles in Internal Area	- 189
Table 5.13	Summary table of the premise	190
Table 6.1	Passenger Car Units	193
Table 6.2	Practical capacities of two-way urban roads	194
Table 6.3	The Daily Capacity	195
Table 6.4	Number of Trip in Internal Area	197
Table 6.5	The Unit Trip Production	198

Table	6.6	Cargo Tonnage in Penang Port	-199
Table	6.7	Future cargo volume by cargo type and wharf	-199
Table	6.8	Trip production by wharf	-200
Table	6.9	No. of passengers (bound for/departing from Penang Island) -	-200
Table	6.10	Future volume of passengers	
Table	6.11	Trip production	
Table	6.12	Total number of trips	
Table	6.13	Number of trip generation	
Table	6.14	Number of trip attraction	
Table	6.15	Number of trip in each traffic type	-212
Table	6.16	Number of Trip Production in each Traffic Type (P.C.U.)	-213
Table	6.17	Number of Trip Production in each Traffic Type (Vehicles)	-214
Table	6.18	Number of Trip Production in each Type (Motor-cycle)	-215
Table	6.19	Traffic Demand on major section	-221
Table	6.20	Traffic Volume across the straits	-225
Table	7.1	The parking ratio at peak hour (10-12 A.M)	-233
Table	7.2	Parking demand at peak hour in C.B.D	-234
Table	7.3	The volume of parking supply	-235
Table	7.4	The excluded volume	-235
Table	7.5	Diversion ratio between car and public transport	-238
Table	7.6	Diversion ratio between motor-cycle and public transport	-239
Table	7.7	The volume of diversion by transport plans	-241
Table	7.8	Number of trip attraction in C.B.D	-245
Table	7.9	Decreasing volume due to car pooling system	-246
Table	7.10	The comparison by transport plan in George Town	-256
Table	7.11	The comparison of trip generation and attraction in C.B.D	-258
Table	8.1	Simulation for traffic assignment	-260
Table	8.2	Time value	-261
Table	9.1	Traffic Volume on the Strait	-271
Table	9.2	The Comparison between with Ferry and Without Ferry	~273
Table	9.3	Traffic Volume Without Ferry for Vehicles (ex. motor-cycles)	273

·*;*

LIST OF FIGURES

Fig.	1.1	Zone Map (middle zone)	3
Fig.	1.2	The main steps in the methodology of traffic planning	4
Fig.	2.1	planning The number of vehicle by area	16
Fig.	2.2	The number of trips in the internal areas	
Fig.	2.3	The types of vehicles using Ferry	
Fig.	2.4	Trip generation and attraction of vehicles which made use of the ferry	
Fig.	2.5	Trip generation and attraction of motorcycles which made use of the ferry	
Fig.	2.6	Number of external trips (in coming)	22
Fig.	2.7	Traffic flow of through trip	23
Fig.	3.1	Number of trips for each travelling type	26
Fig.	3.2	The percentage for each type of trips	27
Fig.	3.3	Trip by Area	
Fig.	3.4	The unit trip production	34
Fig.	3.5	Departure time and arrival time - (All purpose)	35
Fig.	3.6	Departure time and arrival time - (Going to Work) & (Going to School)	36
Fig.	3.7	Departure time and arrival time - (Business Engagement)	37
Fig.	3.8	Departure time and arrival time - (Going Home)	38
Fig.	3.9	Departure time and arrival time - (Private	
Fig.	3.10	Desired Line (Vehicles)	42
Fig.	3.11	Desired Line (Motor-cycles)	43
Fig.	4.1	Ownership of car by individual, company and government	56
Fig.	4.2	Unit of vehicle ownership by zone	57
Fig.	4.3	Type of vehicles owned by age	58
Fig.	3 4.34 .	Type of vehicles owned by sex	
Fig.	4.5	Ownership of vehicles by sex and age	60
Fig.	4.6	Ownership of vehicles by type of occupation	62
Fig.	4.7	Size of Household	63
Fig.	4.8	Ownership of vehicles by zone of working place	64
Fig.	4.9	Unit of vehicle ownership by zone of working place	65
Fig.	4.10	Ownership of vehicle by various types of establishment	66
Fig.	4.11	Vehicles owned by various sized of employment	67
Fig.	4.12	Period of ownership	67
Fig.	4.13	Frequency of usage per week	68

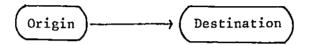
Fig. 4.	Average number of trips (gross)71
Fig. 4.	The percentage of "vehicles of no trips"71
Fig. 4.	
Fig. 4.	The distribution of number of trips75
Fig. 4.	Traffic flow of external trip76
Fig. 4.	19 The Study Areas82
Fig. 4.	The trend of the index number94
Fig. 4.	Number of trips generated in the large zones96
Fig. 4.	Comparison between the composition of trip generation and the population97
Fig. 4.	Trip Attraction of Vehicles vs. Motor-cycles98
Fig. 4.	Trip Generation of Vehicles vs. Motor-cycles99
Fig. 4.	Trip Generation Composition of Trip Purpose (Car)100
Fig. 4.	26 Trip Attraction Vomposition of Trip Purpose (Car)101
Fig. 4.	27 ************************************
Fig. 4.	Classification of the 57 zones in the study according to their density of trip attraction and the ratio of trip attraction and trip generation for the trip purpose of "Going to Work Place"
Fig. 4.	Zone classification of trip characteristics (Vehicles) (Vehicles)
Fig. 4.	The basic unit of trip generation (Vehicles)107
Fig. 4.	
Fig. 4.	
Fig. 4.	
Fig. 4.	Desired line (Motor-cycles)130
Fig. 4.	35 Method for classification of the territory of traffic flow131
Fig. 4.	36 Car-Trip to Work133
Fig. 4.	37 Car-Private Trip134
Fig. 4.	Motor-cycles-Trip to Work135
Fig. 4.	
Fig. 4.	40 Motor-cycles-Private Trip137
Fig. 4.	41 Time distance from zone 1139
Fig. 4.	Time distance from zone 28140
Fig. 4.	43 Time distance from zone 49141
Fig. 4.	44. Car-Trip to Work147
Fig. 4.	45 Car-Business Trip148
Fig. 4.	
6	

Fig. 4.48	Lorry	 -151
Fig. 4.49	Taxi	152
Fig. 4.50	Bus	153
Fig. 4.51	Motor-cycle	154
Fig. 4.52	Q-V Formula	155
Fig. 4.53	Road Network Model	156
Fig. 4.54	Q-V Formula	157
Fig. 4.55	Waiting time for vehicles	161
Fig. 4.56	Waiting time for motor-cycles	161
Fig. 4.57	The result of traffic assignment	167
Fig. 5.1	Population in Penang	170
Fig. 5.2	Population by zone	171
Fig. 5.3	Employed population in Penang	172
Fig. 5.4	Employed population (Total) by zone	173
Fig. 5.5	Employed population (Excluding Private Sector)	174
Fig. 5.6	The percentage of population as well as the employed population	176
Fig. 5.7	Population and employed population	178
Fig. 5.8	Persons per vehicle type	
Fig. 5.9	Persons Per Vehicle	185
Fig. 5.10	The trends of the growth of vehicles and motor-cycles ownership	186
Fig. 5.11	No. of vehicles in Penang State	188
Fig. 5.12	No. of vehicles in Internal Area	189
Fig. 6.1	Flow chart for the future traffic demand estimation -	192
Fig. 6.2	The unit trip production by year	198
Fig. 6.3	Trip production from Air Port	
Fig. 6.4	External and Through trips	202
Fig. 6.5	The relationship with trip generation and population	204
Fig. 6.6	Trip generation in Penang Island and Province Wellesley	205
Fig. 6.7	Trip Generation (P.C.U)	208
Fig. 6.8	Trip Generation (Vehicle Except motor-cycle)	209
Fig. 6.9	Trip Generation (motor-cycles)	210
Fig. 6.10	Traffic demand on major section	22
Fig. 6.11	Traffic demand on desired line P.C.U (1979)	222
Fig. 6.12	Traffic demand on desired line P.C.U (1985)	223
Fig. 6.13	Traffic demand on desired line P.C.U (2000)	224
Fig. 6.14	Induced Trip by Linkage (P.C.U)	226
	Induced Trip by Linkage (trips)	

	Fig. 7.1	Alternative Plan - B	
	Fig. 7.2	Alternative Plan - C	230
	Fig. 7.3	Alternative Plan - D	231
•	Fig. 7.4	Flow chart of parking control	233
	Fig. 7.5	Parking demand at peak hour	234
	Fig. 7.6	Diversion Curve in Kuala Lumpur	237
	Fig. 7.7	Diversion ratio between car and public transport	
	Fig. 7.8	Diversion ratio between motor-cycle and public transport	239
	Fig. 7.9	Flow-chart of calculation	244
	Fig. 7.10	The effect of car pooling system in C.B.D	246
	Fig. 7.11	Number of total trip by transport plan	247
	Fig. 7.12	Results of Estimation by Plan B (1985)	248
	Fig. 7.13	Results of Estimation by Plan B (2000)	250
	Fig. 7.14	Results of Estimation by Plan C (2000)	252
	Fig. 7.15	Results of Estimation by Plan D (2000)	254
	Fig. 7.16	The comparison of number of trips related to George Town	- 257
	Fig. 7.17	The comparison of trip generation and attraction in C.B.D	- 259
	Fig. 8.1	Comparison of Travel Speed	262
	Fig. 8.2	Comparison of the degree of congestion	263
	Fig. 9.1	Traffic Volume on the Strait	272
	Fig. 9.2	The comparison of traffic volume	274

Outline of the method of estimating traffic volume.

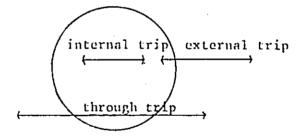
1-1 Explanation of traffic terms.


Generally the Origin and Destination Table called O-D table is used when forecasting future traffic demand because this table can show the movements of vehicles among the zones. The movements of vehicles are called trips.

The concept of 'trip' and 'O-D table' are explained by using the following simple example.

1-1-1 <u>Trip</u>

1


The term 'trip' means the route taken by a vehicle from the origin to the destination.

A single trip has 2 trip ends. One trip end, the origin, is called the "trip generation" and the other, the destination, is the "trip attraction".

1-1-2. Division of the trip

The total number of trips in the study area is divided into the following 3 groups.

These 3 groups are shown in the following O-D table.

Table 1-1 O-D Table by the internal, external and through trip.

destination	internal area	external area
internal area	internal trip	outgoing trip
external area	incoming trip	through trip

internal trip external trip through trip

i-i- O-D table.

The following O-D table shows an example where there are only 4 traffic zones.

destination		on traffic zones				
origi	origin		2	3	4	trip generation
S	1	tll	t12	t13	t14	gl
ic zones	2	t21	t22	t23	t24	. g ²
traffic	3	t31	t32	t33	t34	g ³
	4	£41	t42	t43	t44	g 4
trip a	trip attraction		a2	а3	a4	Т

Table 1-2 0-0 table by 4 traffic zones.

In this example tl2 is the number of trips that start from zone 1 and arrive at zone 2.

 g^{1} (tij = tll + tl2 + tl3 + tl4) is the total number of trip ends that arrive at zone 1.

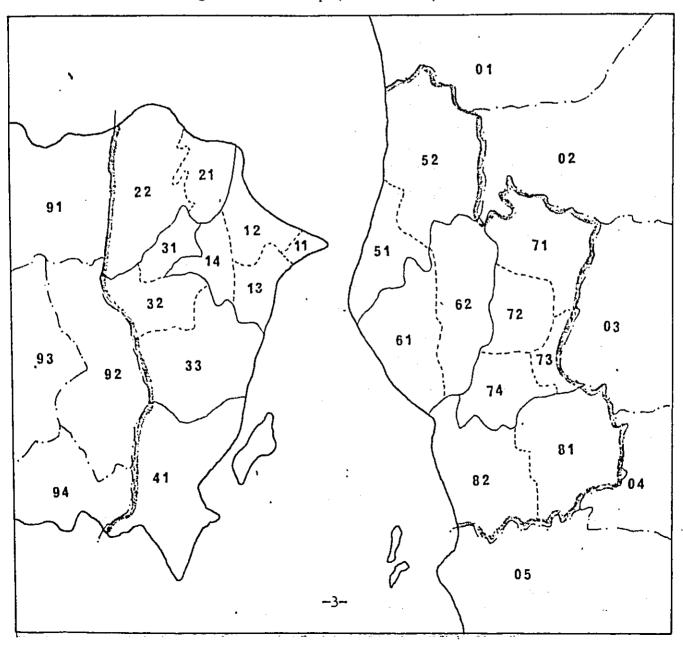
tij is called 'trip distibution', gi 'trip generation' and ai 'trip attraction'.

Thus, it is evident that the total number of trip generation is the same as the total number of trip attraction.

$$T = g^{1} + g^{2} + g^{3} + g^{4}$$

= a1 + a2 + a3 + a4

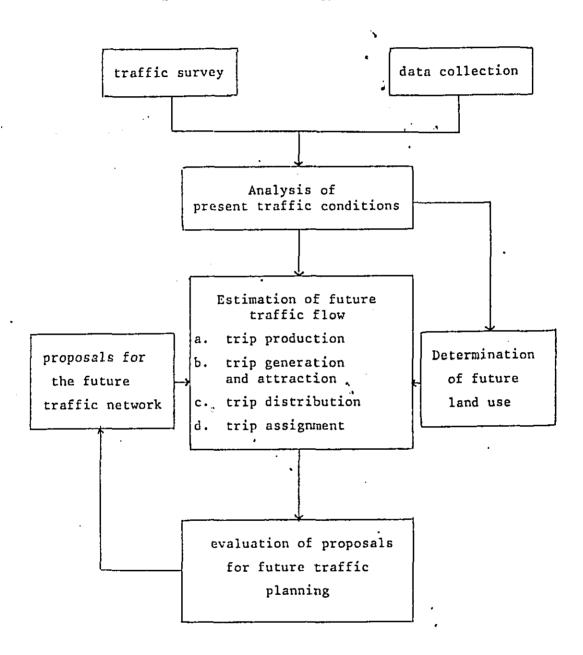
This total number of trip distibution is called 'trip production'. Eventually, the O-D table will show the volume of 'trip production', 'trip generation', 'trip attraction' and 'trip distribution'.


1-1-4 Traffic zone.

Zone codes are made up of the following 3 figures.

- 2 --- large zone (for the purpose of grasping the outline of traffic movement)
- 2 1 --- middle zone (the zone which is for practical use)
- 2 1 2 --- small zone (most detailed zone in this survey)

According to these zones, the internal area is divided into 8 large zones, 20 middle zones and 57 small zones.


Fig 1-1 Zone Map (middle zone)

1-2 General methodology of estimating the traffic flow.

Fig 1-2 shows the main steps in the methodology of traffic planning most commonly used.

Fig 1-2 The methodology of traffic planning

The procedure starts with the collection of data and conducting traffic surveys which constitute the basis for the analysis of statistical relationships. Then the future traffic network which could best serve the expected land-use is outlined. There after the future flow in the alternative traffic network can be estimated through four steps, that is, trip production, trip generation and attraction, trip distribution and traffic and assignment. Sometimes modal split step is required between trip distribution and traffic assignment.

Finally the results are evaluated and any possible alterations of the traffic network are introduced. Usually the land-use pattern is considered fixed while the traffic network is considered a flexible variable. Here, the future traffic network is outlined and the land-use pattern which is likely to appear under the triffic network is estimate.

As such the traffic network has an impact far beyond the traffic conditions because, if the expected interaction between traffic network and land-use does exist, then we can control the urban development through traffic planning.

The following section discusses the main items in the previous flow-chart. (Fig. 1-2)

1-2-1 Data collection

The collection of data is mainly concerned with:-

- a. present land-use and land utilization rates:
- b. existing traffic facilities.

Data for the land-use and the land utilization rates are used as explanatory variables when relating to the number of trips to and from different zones. At the same time these data are important when the estimates of the future land-use are worked out.

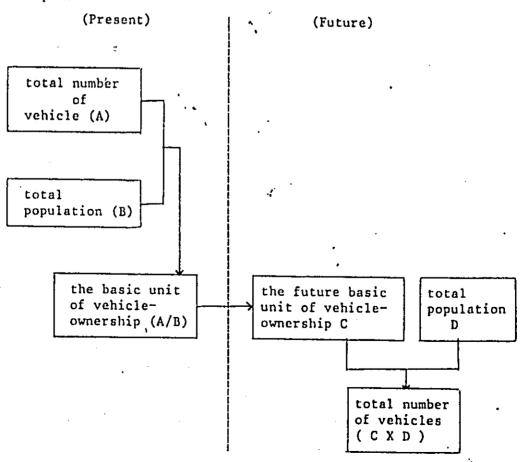
Data for existing traffic facilites are used for the inventory of the corresponding supply of the facilites, the proposal for new transportation systems and to help to explain the observed trip patterns.

1-2-2 Traffic Surveys

The core of the traffic surveys is the home-interview survey which provides the survey area with the information mentioned below with regards to particular information on the households and the trips made by owners on the previous day.

The data collected are analysed in order to find relationships and trends which may form the basis for forecasts.

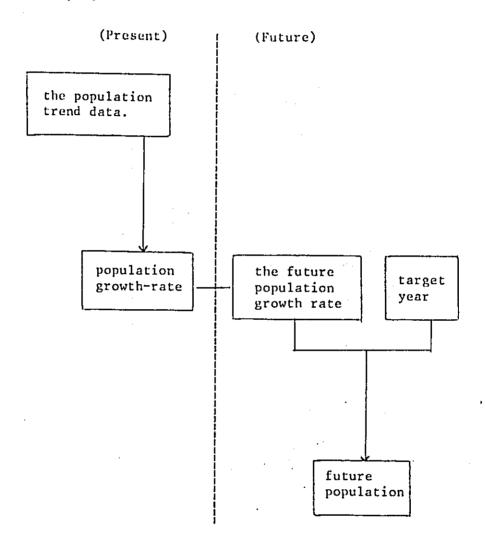
Usually the relationship are expressed in the use of some traffic models which apply to present traffic situations.


The traffic model is used for estimating traffic demand. Commonly, the types of traffic models are divided into the following 4 methods.

- (1) the basic unit method.
- (2) the growth rate method. 3
- (3) the regression method.
- (4) the simulation method.
- (1) The basic unit method.

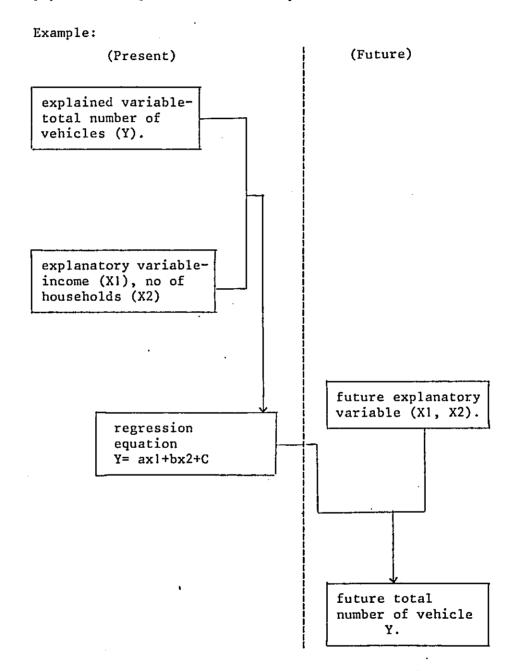
The basic unit is obtained by means of dividing the objective quantity by a certain unit. For example, the basic unit of vehicle-ownership is obtained by dividing the total number of vehicles by the total number of population or the total number of households.

In estimation work, we use this basic unit to estimate future objective quantity.


Example:

(2) The growth rate method.

The growth rate is obtained from various trend data, for example, the population projection data together with the data on the rate of population growth is very much used.


Example:

(3) The regression method.

This method makes use of the least square method to obtain the regression equation.

The explained variable is the unknown factor and the explanatory variables are the known factors, ie. the population figure and the area by land-use.

(4) The simulation method.

By using this method, we can obtain information on traffic phenomena, that is, the traffic flow at the roundabouts, the traffic flow on the roads and the traffic flow in the road network.

Some hypotheses of the actual flow is made and then the traffic flow is artificially created by using the computer.

(5) General.

Generally speaking, the following models are usually used in line with each step of the traffic estimation.

Table 1-3 Models used in the line with each step of the traffic estimation.

type of stage model of estimation	basic unit model	growth rate model	regression model	simulation model
trip production	0	0		·
trip generation and trip attraction	0	0	0	
trip distribution			0	
traffic assignment				0

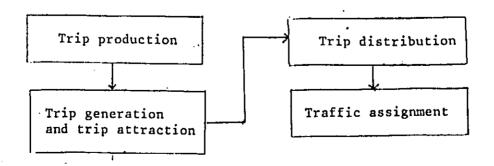
1-2-4 Determination of future land-use.

It is important to determine the future land-use because a knowledge of the future land-use pattern is a prerequisite in the estimation of traffic demand. It is a fact that the future population density is strongly related to the number of trip generations in the future. Therefore, it may rightly be said that the future land-use pattern will determine the future traffic demand.

1-2-5 Proposals for the future traffic hetwork.

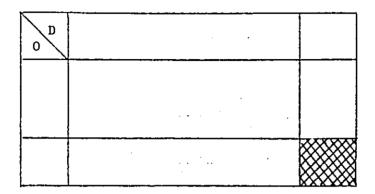
In order to obtain some guidelines in the preparation of the proposals for the future traffic network, an estimate of the existing capacity of the network when exposed to both the observed and the forecasted traffic is first made. A comparison between the "demand" and the "supply" on each link can be carried out.

The proposals for the traffic network usually emerge from the comparison, from policy objectives and from engineering experience and judgement.


1-2-6 Estimation of future traffic demand.

The next step in the planning process is the estimation of the future traffic flow.

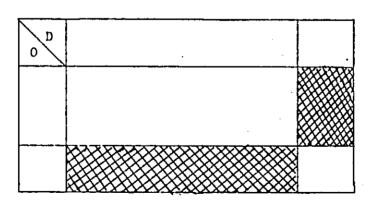
The data used are the proposed land-use figures and related figures (population, employment, etc.), the different proposals for the traffic network and the relationships and trends which have been developed from the traffic surveys.


The estimation consist of four steps.

The flow-chart is as follows:-

(1) Trip production.

This is the first step in the estimating of O-D tables. The purpose of this is to estimate the total number of trips in the study area. This is shown by the shaded portion in the following table.

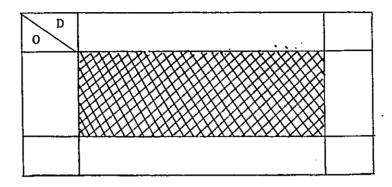


As is usually done, trip production is estimated by multiplying the total number of vehicles by the unit trip production of each vehicle. The unit trip production used is obtained from the actual survey, that is the car O-D survey.

Another method which is used occasionally is the correlation formula which is calculated from the population figure, the number of vehicles, etc.

(2) Trip generation and trip attraction.

This is the estimation of the number of trips that start from and arrive at each traffic zone.



It is easy to understand this concept if we consider the purpose of each trip. For example, when the purpose of the trip is to get to the working place, a single commuter usually produce one trip. Therefore, the trip generation for this purpose is

related to the number of residents, number of employees, land-use area by utilization etc.

(3) Trip distribution.

This is the most complicated step in the estimation of future traffic demand because if there are 50 traffic zones, we must estimate for 2500 (50 \times 50) pairs of trip distributions.

Many empirical formulae were formulated by many of our predecessors for the purpose of estimating the trip distributions. Among them, the gravity model is the most general method. Therefore, the concept of gravity model is introduced.

The fundamental formula of gravity model is shown as follows:-

$$Tij = R \frac{gi \times aj}{tij r}$$

Tij: trip distribution from zone i to zone j.

gi: trip generation from zone i.

aj: trip attraction to zone j.

tij: time taken from zone i to zone j.

r: coefficient of distance resistance.

R: coefficient.

This is common sense, that is, the more gi or aj increases, the more the traffic volume between i and j will increase and, the shorter the distance from i to j become, the more the increase in volume of traffic.

This formula is applied to the "law of terrestrial gravitation" (Newton's Law).

These coefficients are estimated from the least square method applied to the relationship between the present O-D table (which is obtained from the car O-D survey) and the present time taken for each zone pairs.

(4) Completion of the O-D table.

Data on trip production, trip generation, trip attraction and trip distribution are required for completing the O-D table.

(5) Traffic assignment.

After the O-D table has been estimated, it is necessary to estimate the traffic volume on each road. This process involves some amount of simulation. First, we make a model of the road network, and then to the traffic volume of each zone pairs (as already forecasted in the O-D table) are assigned the road network according to the travel time between origin and destination.

It is commonly accepted that the travel time also includes the time spent whenever there is traffic congestion. For the purpose of actualizing the above-mentioned situation, the O-D table is sub-divided and the traffic assignment on each O-D table is sub-divided and the traffic assignment on each O-D table is executed repeatedly.

1-2-7 Evaluation of the proposals for future traffic planning.

When the future traffic flow in a network has been computed, overloaded parts or poorly utilized parts will be indicated. The necessary alterations are introduced and a new capacity for the the network will be carried out. This procedure is applied to each of the alternative proposals.

When the distribution of traffic on the network is obtained the total trip length and travel time is also computed. These figures, together with the construction costs constitute the basis for the economic assessment of the different proposals.

The procedure for completing the present O-D table.

For the purpose of grasping the traffic movements, various kinds of traffic surveys were carried out.

The present O-D table according to each vehicle type was completed using that data.

In this section, the main results of each traffic survey is explained firstly, and then the procedure for completing the present O-D table is explained.

2-1 Some of the main results from the traffic surveys.

Some traffic surveys were carried out in June 1979. They were the owner-interview survey, ferry survey, cordon-line survey and screen-line survey.

First, some of the results of each traffic survey will be explained, then the method of completing the present O-D table will be shown.

2-1-1 Owner-interview Survey.

2

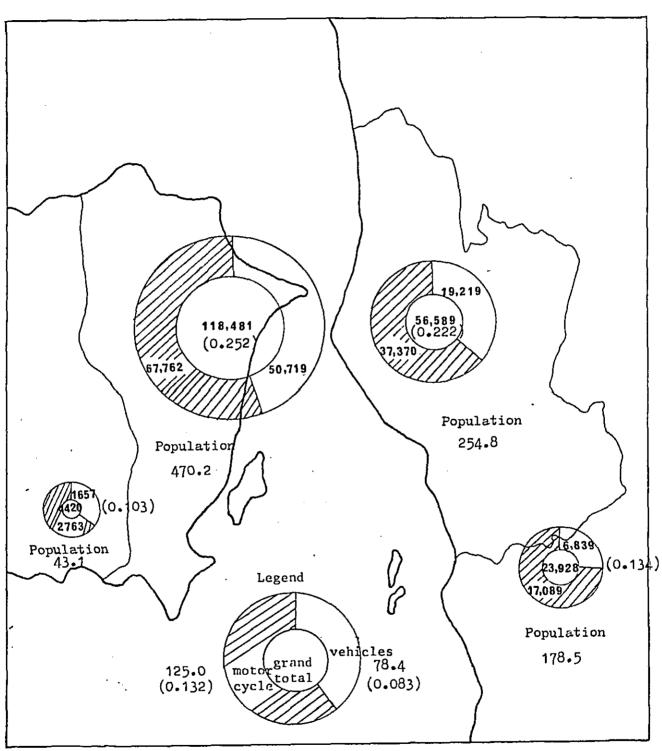
From the results of the owner-interview survey, information on vehicle owners and traffic movements can be obtained.

(1) The vehicle-ownership situation.

The number of vehicles and motorcycles registered with the R.I.M.V. in the state of Penang up to the end of May 1979 is shown in the following table.

Table 2-1 Number of vehicles and motorcycle.

Number
61674
3709
4461
7043
474
1073
78434
124984
203418

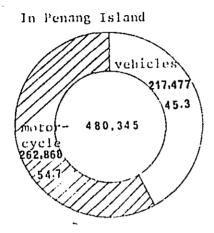

Population: 946580 persons.

The registration of vehicles/motorcycles at the R.I.M.V. did not take into consideration the classification by area. Therefore the number of vehicles in the internal area was estimated by using the results of out owner-interview survey.

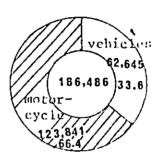
Table 2-2 The number of vehicles in the internal area.

Vehicles Car	Car	Van	Medium Lorry	Heavy Lorry	Taxi	Bus	Total	Motor cycle
Internal area	55956	3294	3671	5744	350	923	69938	105132
External area	5718	415	790	1299	124	150	8496	19852
Penang State	61674	3709	4461	7043	474	1073	78434	124984

Figure 2-1 The number of vehicle by area.


) : number of vehicle / population

(2) The number of trips recorded in the internal areas of Penang Island and Province Wellesley.


This survey traces the movements of vehicles in the internal areas of Penang Island and Province Wellesley.

The results are as follows:-

Figure 2-2 The number of trips in the internal areas (unit: trip per day)

In Province Wellesley

The above figure shows that in Province Wellesley, trips made by motorcycles contribute to a large proportion of the trips generated, amounting to 66% of total number of trips. In Penang Island, on the other hand, trips by motorcycles contribute to 55% of the total number of trips generated. Thus, proportion of trips between vehicles and motorcycles is roughly one to one.

2-1-2 Ferry Survey.

The results of this survey provide information on the movements of vehicles and passengers between Penang Island and Province Wellesley.

The types of vehicles and the trip purpose of the drivers are as follows.

Table 2-3 The types of vehicles using Ferry.

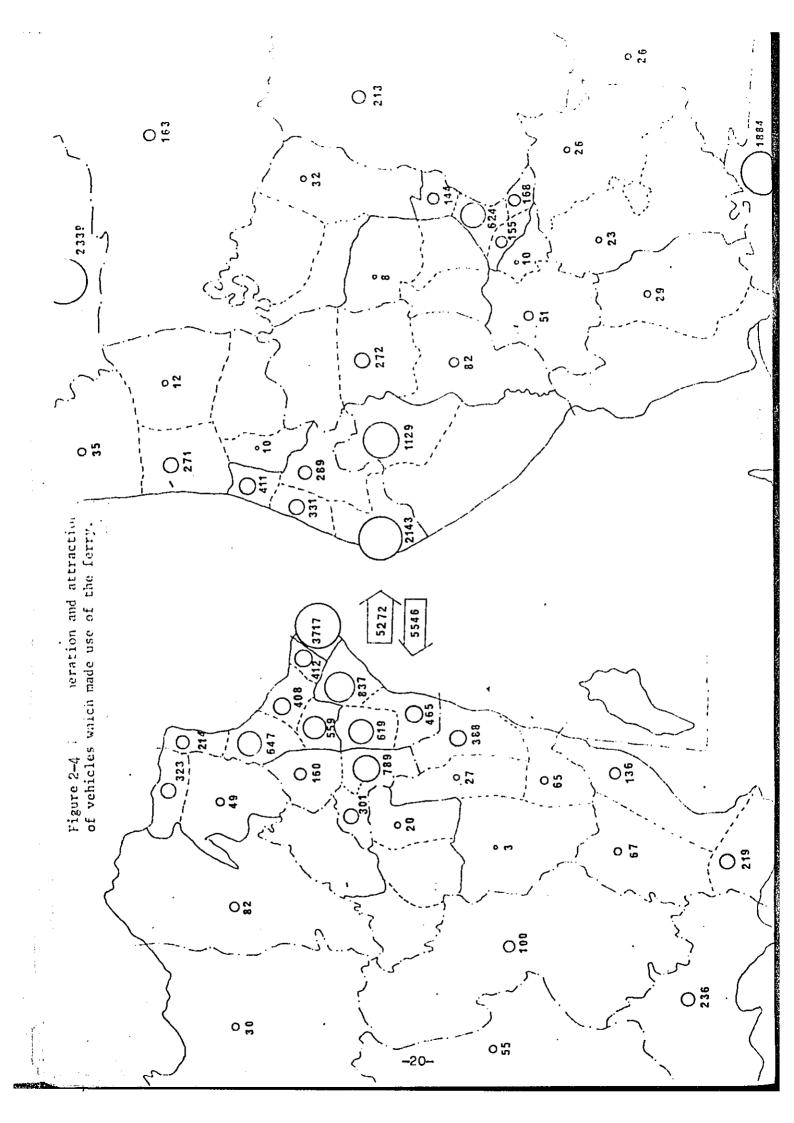
Ve	Origin destination	From P.I. to P.W.	From P.W.	Total	(Percentage)
	going to work '	1,235	553	1,788	(7.5)
	business trip	1,159	1,050	2,209	(9.2)
С	private trip	634	1,618	2,252	(9.4)
A R	going home	1,282	1,398	2,680	(11.2)
	sub-total	4,306	4,642	8,948	37.4
	lorry	848	843	1,691	7.1
	taxi	39	40	79	0.3
	bus	63	61	114	0.5
	sub total of vehicles	5,272	5,546	10,818	45.2
М	going to work	3,732	1,472	5,204	(21.8)
0 T	business trip	348	493	841	(3.5)
O R	private trip	706	1,711	2,417	(10.1)
С	going home	1,756	2,875	4,631	(19.4)
C L	sub-total	6,545	6,551	13,096	54.8
-1;'	Grand total	11,817	12,097	23,914	100.0

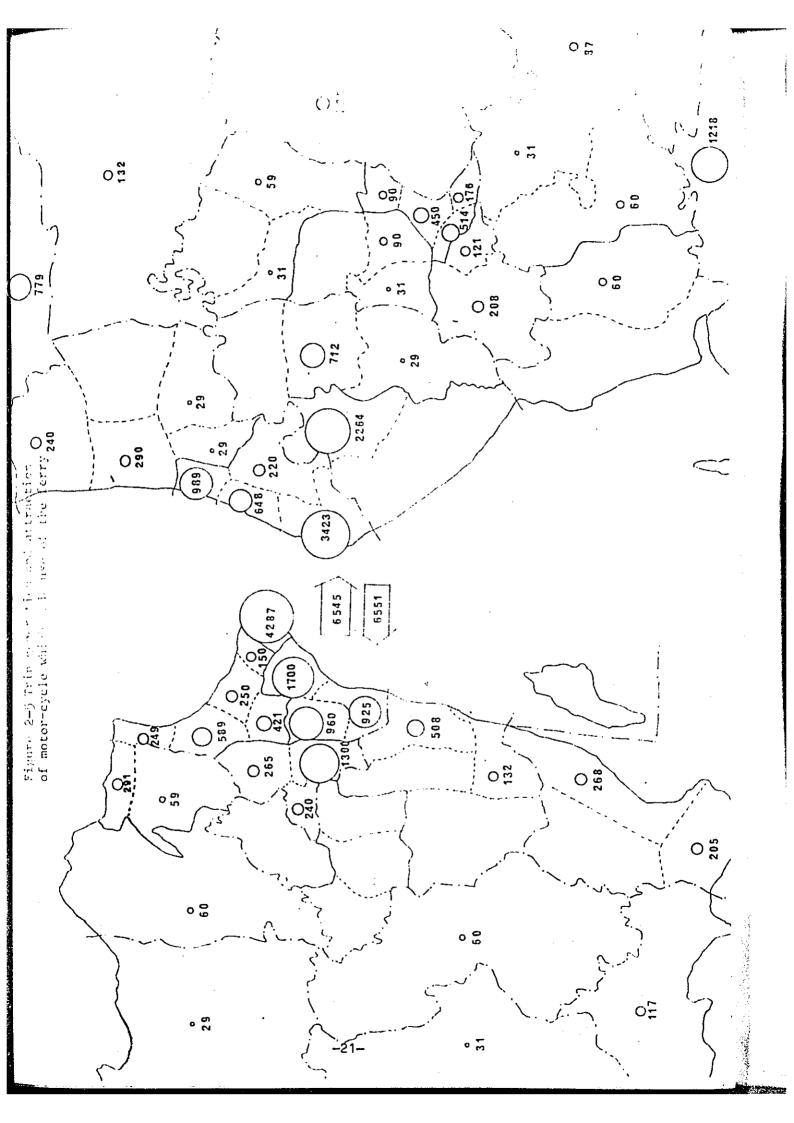
Figure 2-3 The types of vehicles using Ferry

From Penang Island to Province Wellesley

Vehicles	44.6		Motor-cycles	55.4
Car	36.4	Other		
	*			
/10,5/// 9.8	5.3 10.8	8.2	31.7	2.9 6.0 14.8

From Province Wellesley to Penang Island

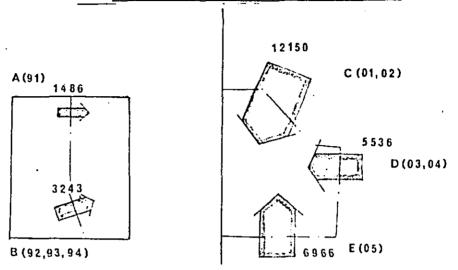

Vehicles 45.8			Notor-cycles 54.2			
Car	38.4	Othe				
46 8.7 13.4	11.6	7.8	12.2 4.1	14.2	23.7	
					•	


business trip

legend

going home

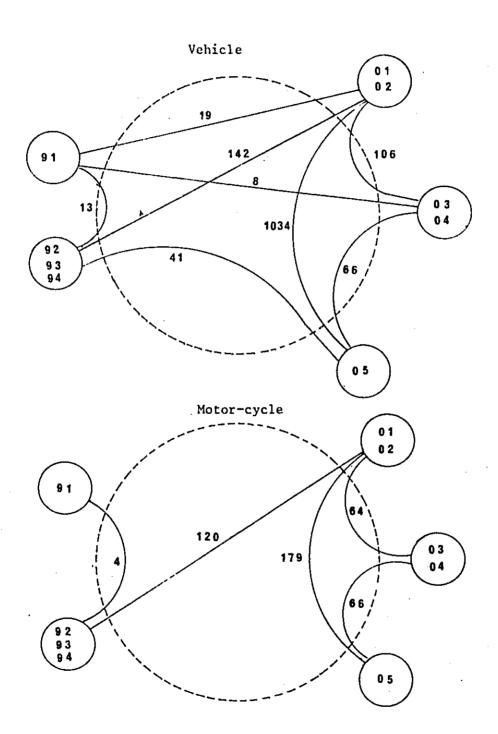
The distribution of vehicles and motorcycles which makes use of the ferry is as follows:-



2-1-3 Cordon-line Survey.

From this survey, the present situation of external trips and through trips was obtained.

This results for each direction of external trips (incoming) are as follows.


Figure 2-6 Number of external trips (in coming)

	Direction	From	From	From	From	From	
	Vehicles and trip purpose		В	С	D	E	Total .
	going to work	121	324	911	273	386	2015
	trip business	74	165	964	437	631	2271
CAR	trip private	155	249	1521	628	817	3370
	going home	210	327	1333	619	998	2487
			107.4	4738	1955	2838	11169
	lorry	172	278	2027	693	1409	4579
	taxi	82	85	475	50	323	1015
	bus		5	102	35	14	186
Vehicle	•	847	1443	7340	2733	4585	16948
	going to work	187	700	1783	690	420	3780
	trip business	62	352	565	348	222	1549
	trip private		305	1103	752	672	2994
	going home		453	1356	1009	1076	4120
mot	motor-cycles		1800	4810	2803	2381	12433
gra	grand total		3243	12150	5536	6966	29381

The result of traffic flow for through trip is as follows.

Figure 2-7 Traffic flow of through trip

2-1-4 Soreen-line Survey.

The results from this survey were used for the verification of the other traffic surveys. The traffic movements which were recorded by each traffic survey must correspond to the actual traffic volume on the screen line.

On checking the degree of accuracy, it was found that the results of those traffic surveys were very accurate and therefore can be used purpose of analyzing data from now on.

2-2 The procedure for completing the present O-D table

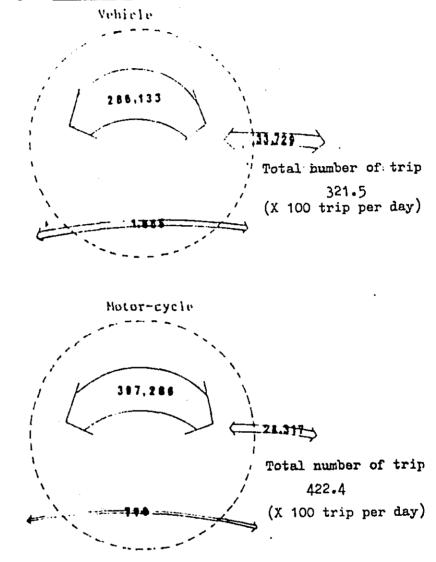
The present O-D table is completed from the following elements which are completed from the results of the following surveys.

D internal area external area 0 P.I. P.W. P.I. P.W. P.I. internal trip external external trip area which makes trip which makes use use of ferry of ferry internal P.W. internal external external trip trip which trip which makes use makes use of ferry of ferry P.I. external external trip through through trip which makes trip trip. which makes area use of ferry use of ferry external P.W. external external trip through through trip trip which trip which makes use makes use of ferry of ferry LEGEND owner-interview survey

Table 2-4 The O-D table and the elements.

degend owner-interview survey ferry survey cordon-line survey.

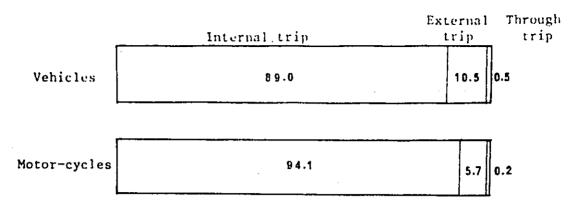
In the case of an overlap in the data collection, the following priority for the different surveys was used:-


1st priority data from the ferry survey
2nd priority data from the cordon line survey
3rd priority data from the owner-interview survey.

For example, the trips which made use of the ferry may have been interviewed at the ferry survey, cordon line survey and owner-interview survey. In this case, the data from the ferry survey was used to complete the O-D table. The basis for the above choice was based on the accuracy of each traffic survey.

- 3. Present traffic situation
- 3-1 Some situation from the Present O-D table.

3-1-1 An out-line of the traffic movements.


An out-line of the traffic movements is as follows:Figure 3-1 Number of trips for each travelling type.

The percentage for the different types of trips are shown in the following figure. From this, it can be seen that for internal trips, the ratio is higher for motor-cycles than for vehicles.

This means that the trip length of motor-cycles are shorter than those of vehicles, that is, motor-cycles are used more for short distance travelling.

Figure 3-2 The percentage for the each types of trips

3-1-2 A break down of trip purpose.

The type of trip and the trip purpose are as follows.

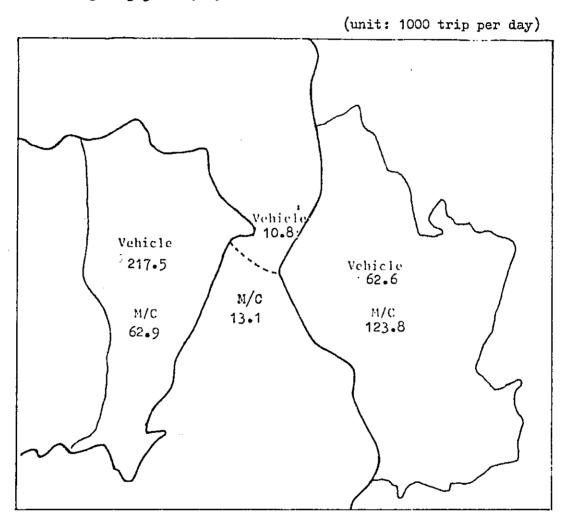
Table 3-1 Type of trip and trip purpose

vehicle	Type of trip and trip purpose	number of internal trip	number of external trip	number of through trip	Total
	going to work	66378	4127	. 186	70691
CAR	trip business	33428	4601	215	38239
	trip private	53060	6220	257	59537
	going home	83171	7006	511	90688
		236038	21992	1169	259199
	lorry	28381	9339	464	38184
	taxi	2723	1991	42	4756
vehicle	Bus	18987	411	11	19409
		286133	33729	1685	321547
	going to work	113412	7816	172	121400
	trip business	40907	3095	51	44053
	trip private	87810	5406	108	93324
	going home	155286	8020	442	163748
	· T	397286	24317	770	422373
	grand total	683419	58046	2455	743920

The trip purpose in detail is as follows:-

Table 3-2 The trip purpose in detail (unit: 1000 trip per day)

		(4.1.1.100	trip per day
Br	oad Purpose	Car	Motor-cycle
Classification	Detailed classification		
Going	Going to work	57.2 (22.1)	111.9 (26.5)
work	Going to school	13.6 (5.2)	9.5 (5.2)
Business trip	Business engagement	38.3 (14.8)	44.1 (10.4)
	Shopping/Marketing	13.5 (5.2)	21.8 (5.2)
Private	For food/Entertainment	18.6 (7.2)	34.1 (7.2)
trip	Social visit	24.5 (9.5)	35.0 (9.5)
	Other private trips	2.8 (1.1)	2.5 (1.1)
Going home	Going home	90.7 (35.0)	163.8 (38.8)
АТОТ	L	259.2 (100.0)	422.4 (100.0

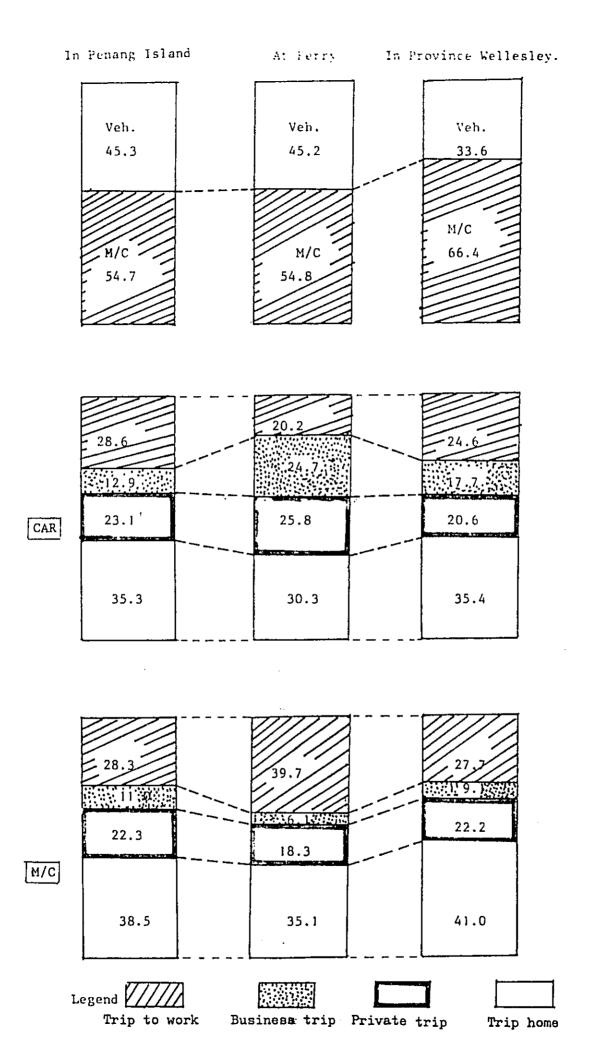

The Comparison between the trip purpose of cars and motorcycles is as follows:-

Going to work (22.] %)	27.3	28.7	Going to work (26.5 %)
Going to school (5.2%)			
Business engagement			Going to school (2.2%)
(14.8%)	14.8	10.4	Business engagement (10.4%)
Shopping/marketing (5.2)	<u> </u>		Shopping/marketing (5.2%)
For food/entertainment (7.2%)			For food/entertainment (8.1%)
Social visit (9.5%)	23.0	22.2	Social visit (8.3%)
Other private trips (1.)	Z)		Other private trips:(0 6%
Going home (35.0%)	35.0	38.8	Going home (38.8%)
CAR	<u></u>		MOTORCYCLE

There is no conspicuous difference between the trip purpose of cars and motorcycles except in the case of business trips where the figures for cars are slightly higher than those for motorcycles.

Internal trips are divided into 3 types i.e. the trips which move into the internal areas of Penang Island, the trips which move into the internal areas of Province Wellesley and the trips which make use of the ferry.

Figure 3-3 Trip by Area.



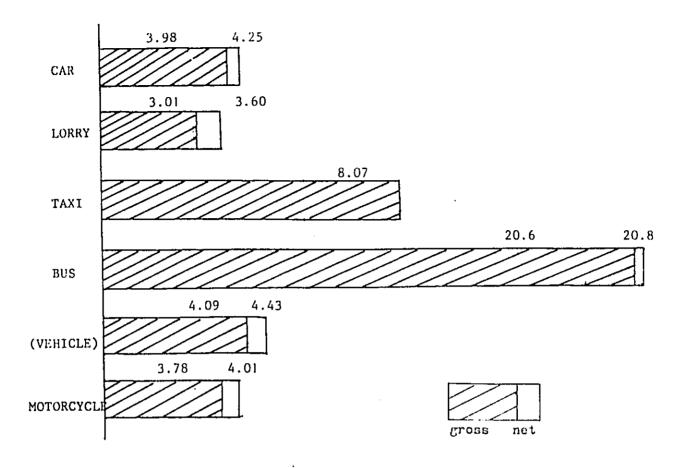
The composition of the trip purpose for the 3 types of trips are compared in the following table.

Table 3-3 The composition of the trip purpose by area.

(unit: 1000 trip per day)

	· · · · · · · · · · · · · · · · · · ·			
	icles trip purpose	In Penang 1stand	at the ferry	In Province Wellesley
	Going to work	51.5 (10.7)	1.8 (7.5)	12.5 (6.7)
С	Business trip	23.2 (4.8)	2.2 (9.2)	9.0 (4.8)
A	Private trip	41.6 (8.7)	2.3 (9.4)	10.5 (5.6)
R	Going home	63.6 (13.2)	2.7 (11.2)	18.0 (9.7)
	Sub-total	180.1 (37.5)	8.9 (37.4)	50.9 (27.3)
	Lorry	19.3 (4.0)	1.7 (7.1)	8.2 (4.4)
	Taxi	2.3 (0.5)	0.1 (0.3)	0.4 (0.2)
	Bus	15.8 (3.3)	0.1 (0.5)	3.1 (1.7)
	Sub total of vehicles	217.5 (45.3)	10.8 (45.2)	62.6 (33.6)
O Bu	Going to work	74.3 (15.5)	5.2 (21.8)	34.3 (18.4)
	Business trip	28.9 (6.0)	0.8 (3.5)	11.3 (6.1)
	Private trip	58.6 (12.2)	2.4 (10.1)	27.5 (14.8)
C Y C	Going home	101.1 (21.0)	4.6 (19.4)	50.8 (27.3)
L _E	Sub-total	262.9 (54.7)	13.1 (54.8)	123,8 (66.4)
	Grand total	480.3 (100.0)	23.9 (100.0)	186.4 (100.0)

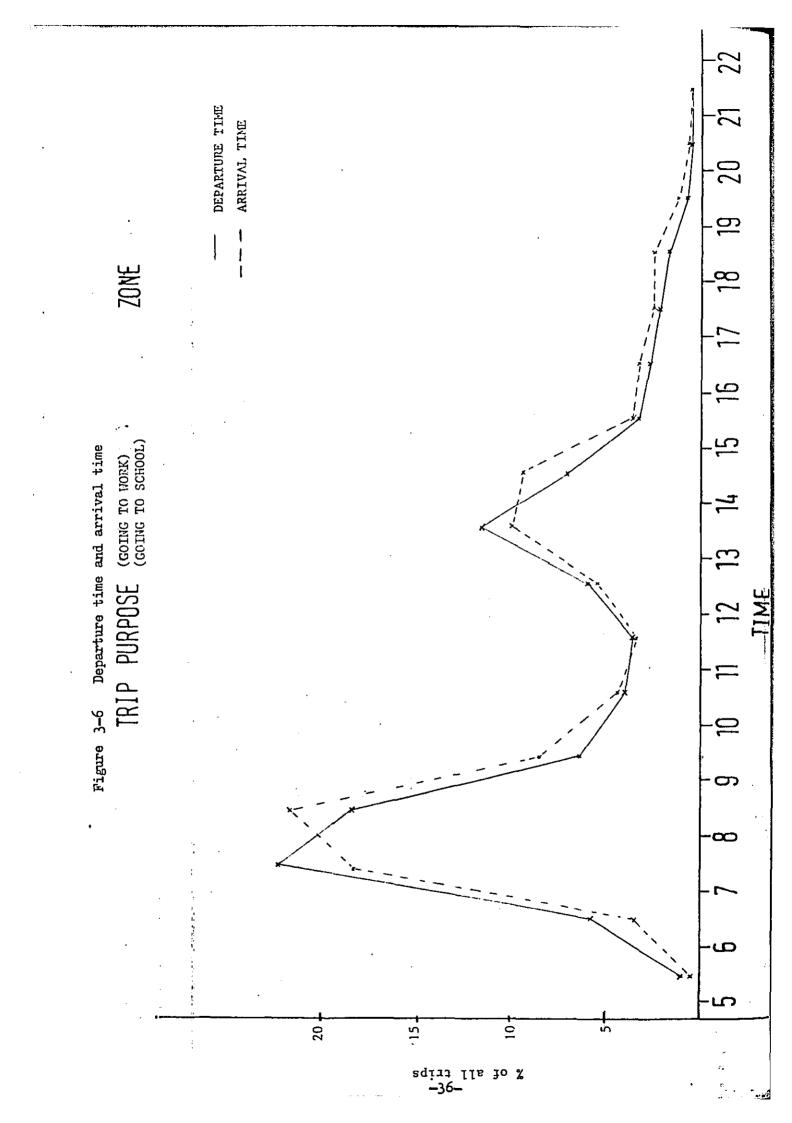
3-1-3 Average number of trips per day.

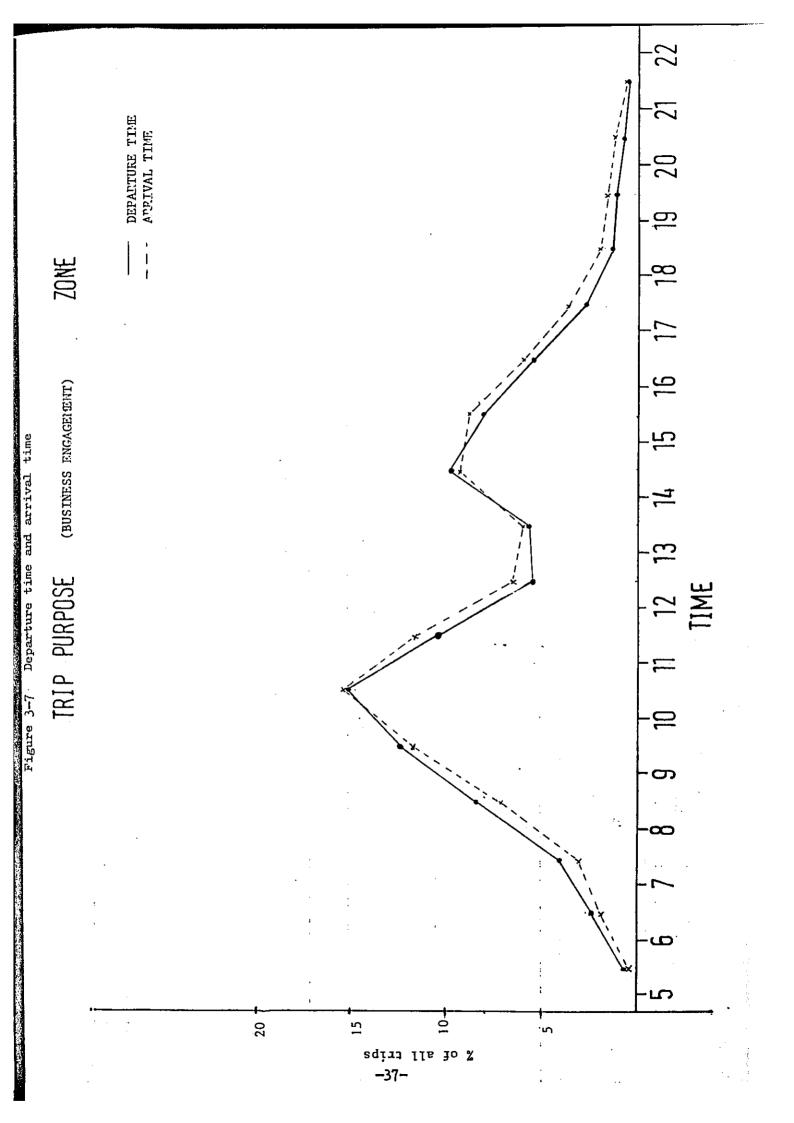

From the owner-interview survey, the average number of trips per day can be obtained. Using the technical term in traffic studies, these figures are called "unit trip production". There are two types of unit trip production. One is the gross unit trip production while the other is the net unit trip production.

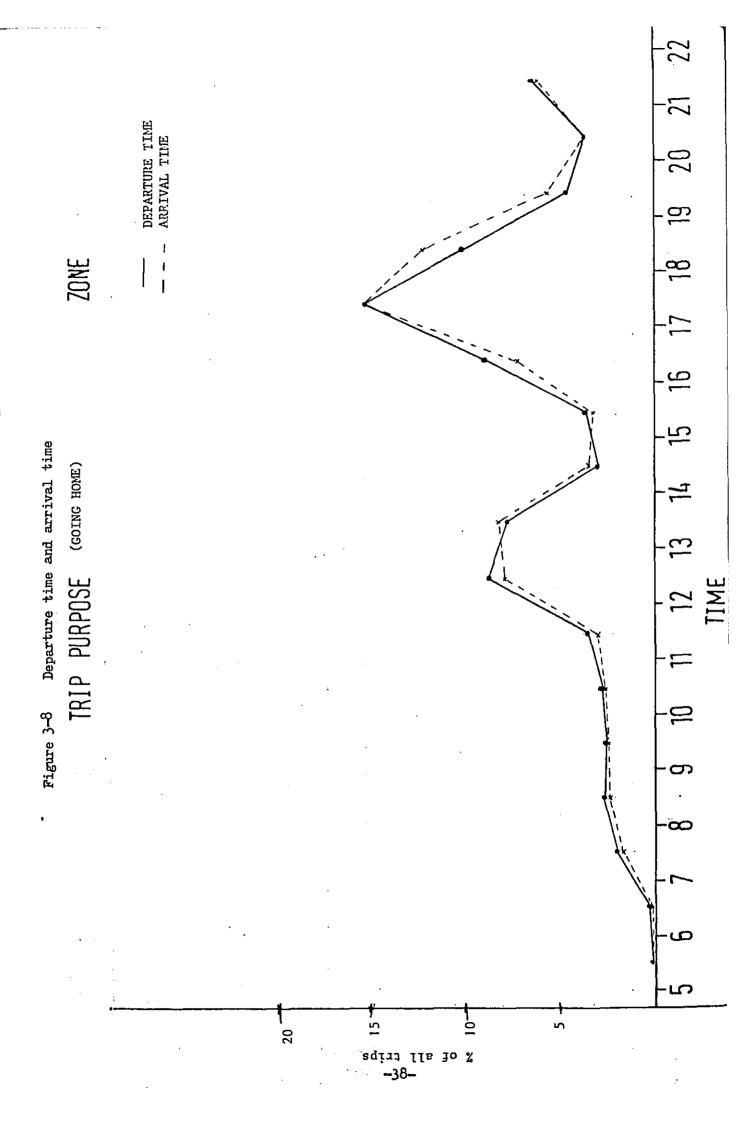
Some vehicles did not make any trips on the day of the interview. Therefore the former the gross unit trip production is the average trip per day of one vehicle which also includes zero (O) and the latter is the actual average number of trips per day of one vehicle.

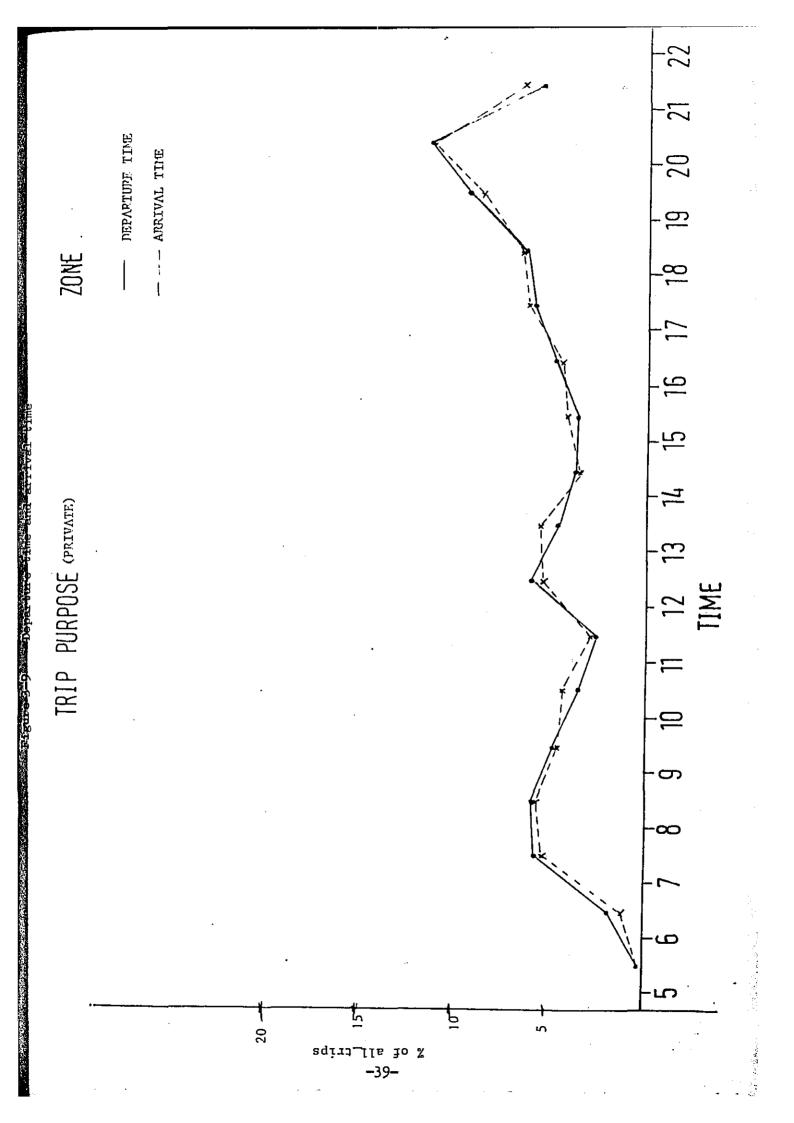
These figures are as follows;

Table 3-4 Average number of trips per day (unit: trip per vehicle per day)


		The unit trip production (gross)	The unit trip production (net)	The % of zero number of trips
Ca	r	3.98	4.25	6.3 %
Lo	rry	3.01	3.60	16.4 %
Та	xi	8.07	8.07	0 %
Bu	ıs	20.6	20.8	0.9 %
(Veh	nicles)	4.09	4.43	7.7 %
Mot	or-cycle	3.78	4.01	5.7 %
A11	vehicles	. 3.90	4.17	6.5 %




3-1-4 Departure time and arrival time.


The departure time and arrival time of all vehicles with regard to trip purpose is shown in the following figure.

Figures for all trip purpose show that there are three peak hours in a day, that is, 8am - 9 am, 1pm - 2 pm and 5pm - 6 pm. These peak hours are caused by commuting trips, lunch hour trips and going home trips.

3-1-5 The average number of passengers per vehicle.

The average number of passengers (inclusing the driver)

per vehicle is as follows :-

Car

1.7 person per trip

Lorry

1.9 person per trip

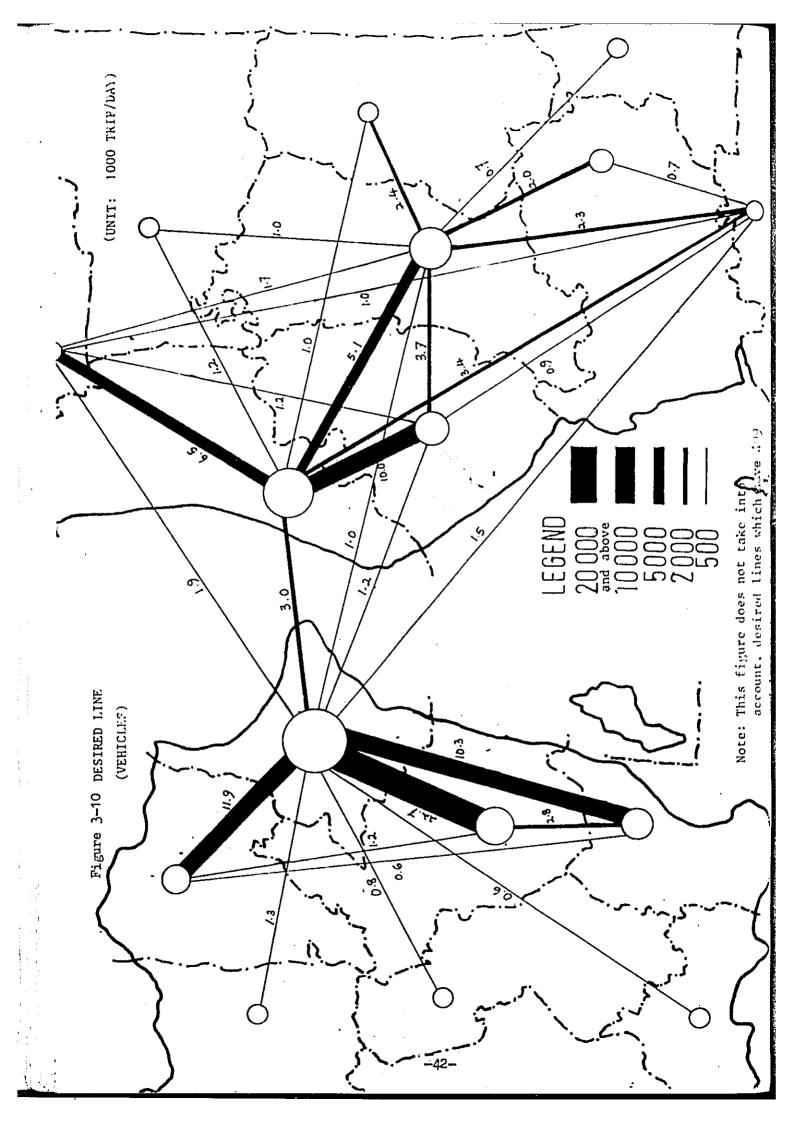
Taxi

1.4 person per trip

Bus

15.4 person per trip

Motorcycle


1.3 person per trip

In the case of the taxi, the above figure does not include the driver but includes trips without passengers too.

This 'no passenger trip' contributes to about 43 % of all the trips made by taxis. Thus, the actual average number of passengers per trip is 2.4 person (1.4/0.57).

3-2 Present 0-D table

The desired line and the O-D tables are shown in the following figures and tables.

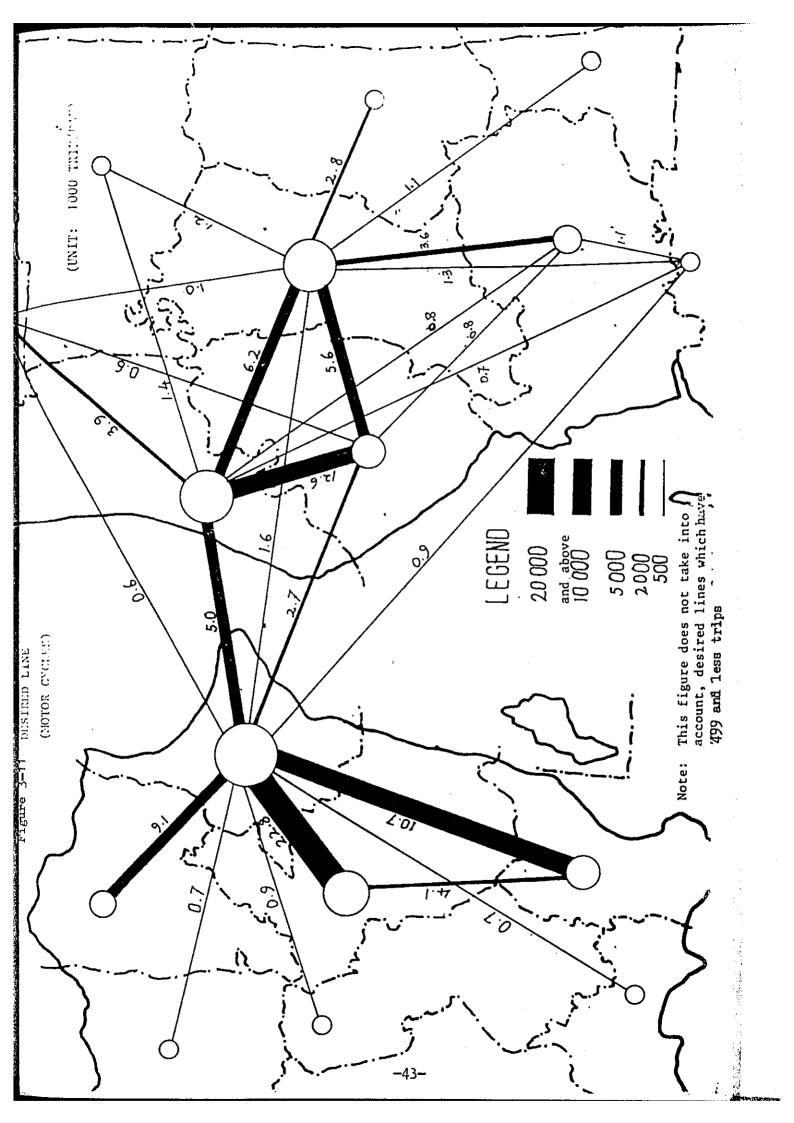


Table 3-5 CAR - TRIP TO WORK

rable 3-6 CAR - BUSINESS TRIP

i

0		2	r.	7	SUB TOTAL	۸_	و ا	7	80	SUB TOTAL	TOTAL IN INTERNAL AREA	91	92	93 9	94 Ti	SUB	5	05 0	03 04	4 05	SUB TOTAL	TOTAL IN EXTERNAL AREA	GRAND TOTAL
-	17242	914	951	988	20035	310	144	124	0	578	20673	58	59	21 2	28	166 2	225	9		0 203	454	620	21293
~	519	163	23	27	732	25	0	0	0	25	757	91	7	7	0	20	a 0	0	0	0 17	25	45	802
m	1040	27	171	566	1504	20		0	0	29	1533	0	œ,	0	2	13	0	0			18	31	1564
7	488	55	37	309	889	0	0	0	٥	0	689	٥	٥	4 2	23	23	•	٥	٥	0	8	31	920
SUB TOTAL	19289 1159 1182	1159	1182	1590	23220	355	153	124	.0	632	23852	74	69	27 5	54	224 2	239	9 2	56	0 229	503	727	24579
5	772	٥	2 □	15	. 302	3673	186	550	24	8228	5530	0	10	0	0	10 4	422	83 145		19 285	954	796	7679
9	98	0	0	17	103	1019	169	314	80	1510	1613	0	0	0	9	9	4.8	17 1	15 1	14 35	129	135	1748
7	139	0	20	0	159	638	197	1133	17	2009	2168	0	0	0	0	0	97	38 16	7 991	47 133	481	187	5649
₽,	7	0	0	0	7	6	22	141	86	258	265	٥	0	٥	0	0	^	-	=	0	18	81	283
SUB	509	0	30	32	178	5339	1369	2138	159	9005	9276	٥	2	٥	<u> </u>	16	574 1	138 337		80 453	1582	1598	11174
TOTAL IN INTERNAL AREA	19798 1159 1212 1622	1159	1212	1622	23791	2694	5694 1522	2262	159	9637	33428	74	79	27 (09	540 8	813 1	147 36	363 8	80 682	2085	2325	35753
16	82	19	٥	۰	74	٥	0	0	0	0	7.6	0	0	7	-	7	0	0	0	0	0	2	91
92	53	2	6 0	0	69	-	0	0	0	0	69	0	0	0	7	7	0	0	0	0 0	O	7	57
23	21	2	0	47	27	•	0		0	0	27	<u> </u>	0	0	0	0	0	0	0		0	0	27
76	28	0	'n	21	25	0	15	0	0	15	69	0	0	٥	-	0	6	ا ،	-	0	6	6	78
SUB	991	20	_ □	23	224	0	15	0	0	15	239	0	0	2	7	9	6	0	0	0 0	6	15	254
10	236	7	0	٥	243	422	87	97	7	574	817	_	7	o	-	7	0	14	0	98 0	100	101	924
05	5	o.	0	0	65	83	17	38	0	138	147	0	0	0	0	0	0	0	٥	7 0	7	7	151
8	٥	0	2	0	0	145	15	991	=	337	347	0	0	0	0	0	0	0	0	0 0	0	2	357
70	0	0	0	2	01	19	71	47	0	80	8	0	0	0	-	0	9	0	0	0	9	9	96
02	168	0	0	10	178	285	35	133	٥	453	631	0	0	0	9	9	99	~	0	0 0	67	73	704
SUB	113	1	10	20	057	954	129	481	82	1582	2032	0	7	0	9	13	99	21	0	0 100	187	200	2232
TOTAL IN EXTERNAL AREA	579	27	23	57	674	954	144	483	∞	1597	122	٥	^	~	-01	91	75	23	٥	0 100	196	215	2486
GRAND TOTAL	20377	20377 1186 1235 1667	1235	1667	24465	9799	24465 6648 1666	2743	177	11234	35699	7.4	98	29	- 0,	259	888	168 3	363 8	80 782	2281	2540	38239

Table 3-7 CAR - PRIVATE TRIP

<u> </u>						İ					.	į				1	1					1	1	1	
											:					ļ						.	ĺ		
GRAND TOTAL	36106		600	3947	941	42647	2965	2007	4848	977	13263	55910	155	121	39	6	412	1401	276	987	<u> </u>	880	3215	3627	59537
TOTAL IN EXTERNAL AREA	580	3	 D	27	69	756	686	011	716	78	2094	2850	0	æ	0	0	æ	143	£	<u> </u>	20	63	576	257	3107
SUB	27.8		ę,		27	361	979	011	716	78	2084	2445	0	ю	0	•	ထ	611	<u></u>	2	12	22	205	213	2658
50	24	2 :	<u>-</u>	ڼه	6	214	179	67	207	35	470	684	0	0	0	0	•	75	m	0	'n	0	8	83	767
2	١		0	0	0	0	54	0	108	2	14.6	144	0	0	0	•	•	m	0	0	0	0	ED	m	147
8	٥	,	0	0	0	6	114	6	360	7	133	261 446 144	0	0	0	٥	0	•	0	0	0	°	ا ع	٠	452
03	٥	•	80	0	٥	∞ Ì	103	∞	128	7	253	261	0	O	0	۰	0	35	0	0	0		33	35	296
5	غ ا	3	٥ 	œ		8	559	77	174	_	<u>8</u>	016	0		<u> </u>		~	٥	2	2	_	5	8	8	966
SUB	į	700	- -	2	42	395	2	•	٥	٥	0.	405	0	0	•	•	0	24	<u> </u>	•	80	12	7.7	77	677
76	5	2	0	0	28	88	2	0	0	٥	2 │	86	0	0	0	0	0	9	0	0	0	٥	2	0	108
93	;	7	7	0	9	39	0	0	٥	0	0	39	0	0	0	٥	0	a	0	0	0	٥	0	0	39
92	;	ž	0	æ	60	113	0	0	0	٥	٥	113	0	0	0	0	0	7.	0	0	0	12	26	92	139
16	;	3	6	7	0	155	0	0	۵	0	0	155 113	Q	O	0.	0	0	٥	0	0	~			αo	163
TOTAL IN INTERNAL	1;		1575	3920	872	41891	4973	1897	3931	368	11169	53060	155	113	39	97	404	1258	263	477	131	817	2966	3370	56430
SUB	15	3	0	07	6	256	1197	1756	3752	358	10487	10743	0	0	0	6	6	780	253	437	144	470	2084	2093	12836
80	٦,	 o	0	0	٥	0	12	80	85	56	134	.134	٥	0	0	0	0	7	14	14	12	35	78	78	212
7	1;	7 8	0	0	٥	78	239	258	3166	274	3937	_	0	0	0	0	0	174	128	300	108	207	917	917	8267
9		5 2	0	0	0	56	315	379	90 3	4	798 3	7 72	-	0	0	0	0	3	8	6	0	64	110	110	934 4
, 2	1	7	0	07	6	971	4045 3	1121 3	438	7	5618 7	164 8	-	O	0	o	6	53	103	114	57	179	979	988	6752
SUB	-	35317	1575	3880	863	1 98917	362 40	131		0.	682 56	42317 5764 824 402	155	113	33	88	395	8.27	10	07	~	347	882	1277	43594 6
2 1 8				_			_		2		12		-		و	28	42	3.7	_	0	0	20	79	106	e R
		9 315	7 14	547 162	4 216	7 707	20			0	20 1	27 71	~	æ	0	0	7 01	9 91	0	0	0	23	3	1 5	28 8
, E		626 /	7 17		721 9	9 1667	7 2		0		7	37963 1943 1687 724	39	0	2	0	17	Ç	0	0	0	30	.E	114	38979 2057 1728 830
7		1467	357	901		1936						3 194		j	_	09			<u>e</u>	40	7		ļ		02 62
-		32556	1187	3065	517	37325	328	131	169	2	638	3796:	111	97		ق	302	381	_	***		276	714	1016	389.
a		_	7	m	-7	SUB	5	. 49		80	SUB	TOTAL IN INTERNAL AREA.	16	92	, E	96	SUB	Б	05	. 8	70	SQ.	SUB	TOTAL IN EXTERNAL AREA	GRAND TOTAL

Table 3-8 CAR - TRIP HOME

1	į				}					!	į	i				!	ì					}	1	ļ
GRAND	56950	2364	3238	2795	65347	10836	1471	7407	629	21343	86690	214	169	36	173	265	1317	324	167	871	1126	907€	3998	90688
TOTAL IN EXTERNAL AREA	817	68	79	18	1030	1150	225	886	126	2489	3519	7	21	13	17.	35	270	38	15	5	128	456	511	4030
SUB	097	6	20	29	\$18	1150	225	988	126	2489	3007	0	17	6	17	43	226	38	15	٠,	128	412	455	3462
۶	159	6	=	Q.	188	327	89	309	77	802	066	٥	6	0	0	6	122	30	2	2	0	159	168	1158
70	0	0	0	0	0	53	Ŋ	9	0,	143	143	0	0	0	a	0	0	0	0	0	0	0	0	
63	27	0	0	0	27	83	23	310	82	434	195	0	0	0	0	0	6	9	0	0	0	σ.	<u>δ</u>	02:
02	26	0	0	0	26	110	38	129	13	296	322 461 143	0	0	0	0	0	<u></u>	0	∢	0	6	108	80-	430 470 143
5	248	0	6	20	27.7	109	70	140	Ю	814	1001	0	æ	6	17	34	0	7	6	0	125	136	170	1261
SUB	357	59	777	52	512	0	0	0	0	0	512	7	7	7	0	12	77	0	0	0	0	77	56	568
76	52	4	24	30	131	0	0	0	0	٥	131	7	7	7	0	12	23	0	0	0	0	23	35	166
93	19	7	0	o	23	0	0	0	0	0	23	o	0	0	O	0	0	0	0	0	0	0	0	23
92	103	6	91	20	148	0	0	0	0	o	148	0	0	0	٥	٥	21	0	0	0	0	=	=	169
16	162	42	*	7	210	0	0	0	0	0	210	0	0	0	0	0	0	0	0	0	0	0	0	210
TOTAL IN INTERNAL AREA	56133	2296	3174	2714	64317	9686	2246	6179	503	18854	83171	210	148	23	156	537	1047	286	416	143	866	2950	3487	8665R
SUB TOTAL	634	-11	91	53	969	9225	1972	6271	503	17971	18667	0	0	0	25	25	916	286	434	143	802	2479	2504	17112
80	26	0	0	0	26	56	119	422	231	828	854.	0	0	0	0	0	6	13	18	6	11	126	126	980
٧	123	o	0	0	23	815	367 1	970 4	261 2	6313 8	436 8	0	0	0	æ	æ	0,7	13	310	2	60	978 1	1 986	,22
9	92	0	80	=	95	1598	751	521 4	 O	2870 63	2965 64	0	0	0	9/	6	02	38	23		89	225 9	234 9	1.
٠,	409	11	8	18	452	6756 1	735	458	=	12 0962	412 29	٥	0	0	8	80	109	011	83	53	327	150	1158	9570 3199
SUB TOTAL	55499	2279	3158	2685	63621	9 197	274	148	0	883 7	64504 8412	210	148	23	131	512	233	0	42	0	196	471	983 1	65487 9
7	824	77	63	533	777	٥	12	0	0	12	957	2	20	0	30	52	12	0	2	0	0	32	78	240
n	5473	126	1132	510	241 1	77	0	20	0	17	282 1	7	16	0	37	77	2	0	0	0	2	70	79	346 1
2	1699 5	495	17 1	73	2284 7241 1444	12	36	0	0	87	332 7	42	6	4	7	59	٥	0	0	0	23	23	83	414 7
-	1 60525	1634	9761	1569	2 2925	428	226	128	0	782	53434 2332 7282 1456	162	103	19	52	357	211	0	32	0	153	396	753	54187 2414 7346 1540
a o	-	2	m	7	SUB TOTAL	5	•	_	8	SUB	TOTAL IN INTERNAL AREA	16	92	93	76	SUB	10	05	5	70	0.5	SUB	TOTAL IN EXTERNAL AREA	GRAND

Table 3-9 CAR - TOTAL

a a	. -	2	en .	7	SUB	2	9	7	8	SUB	TOTAL IN INTERNAL AREA	91 92	2 93	9.4	SUB	0	02	03 0	04 05	SUB	TOTAL IN EXTERNAL AREA	GRAND TOTAL
-	135696 4	8087	9072 3	3426	153002	1262	495	374	56	2157	155159	411 344	100	235	1090	069	77	7.4	0 610	1418	2508	157667
2	4754 1	1227	185	138	6304	11	51	=	0	133		1138 11	1 12	4	165	28	80	0	0 75	Ξ	276	6713
m	10591	203	2929	995	14718	901	97	20	0	172	14890	9 45	2 0	53	70.	13	0	6	0 29	55	159	15049
	3499	169	745 1	1628	1709	45	Ξ	0	0	56	6097	9 61	1 18	133	221	09	0	0	0 18	78	299	9629
SUB	154540 6	6407 1	12931 6	1819	180065	1484	603	405	56	2518	182583	197 795	130	425	1580	795	52	83	0 732	1662	3242	185825
2	1190	19	09	07	1309	19917	9007	2000	116	26039	2.1348	01 0	0 0	10	20 2	2032	387	391 7	78 908	3796	3816	31164
9	521	36	0	29	586	3959	2202	1172	135	7468	8024	0	0 0	9	9	231	80	56 1	19 201	587	593	8647
7	522	0	29	12	109	2040	1274	11886	146	95651	16547	0		0	0			. ~				19441
80	17	0	0	0	17	87	114	819	469	1489	1506	Ì	0	0	0	-	23	47 2	21 160	278	278	1784
SUB TOTAL	2250	55	122	98	2513	26003	7596	15877	1466	50942	53455	0	0 0	16	26 2	2811	868 14	1435 394	4 2047	7555	7581	61036
TOTAL IN INTERNAL AREA	156790 6462 13053 6273	6462 1	3053		182578	27487	8199	16282 1492		53460	236038	264 47	471 130 441		1606	3606	920 15	1518 394	4 2779	9217	10823	246861
16	117	138	ع	6	264	0	٥	0	0	0	564	0	0 2	7	9	0	0	0	0	°	9	570
92	344	=	45	19	197	0	0	0	0	0	197	٥	0 0	32	32	54	0	0	6 0	33	59	526
93	5	12	0	8	130	0	0	6	o	6	139		0 0	4	7	σ,	0	0		6 0	13	152
96	235	4	53	133	425	11	24	8	0	67	474	0	0 8	0	89	56	0	0	0	0 26	34	808
SUB TOTAL	1090	165	104	221	1580	11	57	17	0	58	1638	0	01 0	40	50	59	0	0	0	89 6	118	1756
10	968	20	28	95	1030	2032	231	531	17	2811	3841	10 42	2 0	34	986	0	191	91	0 340	523	609	4450
02	40	0	0	0	40	387	80	357	33	857	897	0	0 0	0	0	12	0	9	07 0	28	28	955
03	89	0	0.	2	109	391	26	941	17	1435	1544	•	0	0	0	37	7	0	0 17	. 28	88	1602
04	7	0	0	2	17	78	61	276	23	394	411	ω	0	0	œ	13	0	0	91 0	33		452
05	699	53	33	77	795	706	201	778	160	2043	2838	0	2 0	9	18	257	2	0	0	792 (285	3123
SUB TOTAL	1701	103	69	118	1661	3792	587	2883	278	7540	9531	18 54	0 7	07	112	323	175	22	6 413	939	1051	10582
TOTAL IN EXTERNAL AREA	2791	268	173	339	3579	3809	611	2900	278	7598	11169	.8 .2	54 10	80	162	382	175	22	6 422	1007	6911	12338
GRAND		6730	13226	6612	159581 6730 13226 6612 186149.	31296	6 8810	19182	1770	61058	247207	582 5	525 140 521	521	1768	3988	1095 1	540 4	1540 400 3201	10224	11992	259199

Table 3-10 LORRY

6	-	7	m	4	SUB	~	œ.	^	6 0	SUB	TOTAL IN INTERNAL AREA	91	92 9	93 94	SUB TOTAL	10	05	03	04 05		SUB TOTAL	TOTAL IN EXTERNAL AREA	GRAND TOTAL
-	11081	859	789	580	13309	188	62	98	Ξ.	349	13658	132	07	35 64	27.1	707	87	_	-	121	375	979	14304
2	821	135	367	37	1360	m	0	7	0	10	1370	3	7	0 0	33	٥	¢	0	0	-	7	07	1410
-	1255	777	607	007	2706	m	7	0	0	01	2716	7	-	0 18	23	0	0	n	0	0	е	56	2742
4	628	37	454	758	1877	~	13	м	0	61	1896	7	71	5 47	7.5	٥	0	٥	0	13	13	88	1984
SUB	13785	3785 1475 2217 1775	2217	2771	19252	197	82	96	13	388	19640	691	79	40 129	402	204	48	7	-	141	398	800	20440
5	294	0	2	18	317	2872	869	817	79	4238	4555	0	0	23 26	67 9	747	183	112	35 5	541	1618	1667	6222
φ.	102	ø	Ø,	22	136	853	364	552	6	1778	1914	0	0	0	6	328	156	135	19 2	254	892	106	2815
	19	0	0	•	19	367	867	947 1	127	1939	2000	۰	0	0		302	9	232	71 3	367	1082	1082	3082
æ	1.4	0	0	0	14	79.	34	55	06	258	272	٥	٥	0 7	7	35	-	63	101	178	303	310	582
SUB	471	e.	=	٤۶	228	1 1/15	1765	1972 3	305	8213	8741	0	0	23 42	65	1412	997	542 1	135 13	1340	3895	3960	12701
TOTAL IN INTERNAL AREA	14256	14256 1478 2228 1818	2228	1818	19780 4368 1847	4368		2068 3	318	8601	28381	691	99	171 E9	1 467	1616		546 1	514 546 136 1481		4293	4760	33141
16	132	۳	7	2	169	٥	٥	3	0	3	172	0	0	0	2 2	_	0	0	0	0	0	2	721
92	70	2	-	21	79	0	£	0	0	m	29	٥	٥	0	0	•	o	0	0	0	0	•	29
93	35	0	0	2	07	7	0	0	0	7	17	0	0			<u> </u>		0	0	•	0	0	£7
76	79	0	18	47	129	=	77	0	0	35	164	0	0	0	0 0	_	0	0	0	_	7	14	178
SUB	27.1	33	23	7.5	707	82	27	m	0	48	054	0	0	0	2 2	. 7	0	٥	٥		14	16	997
10	134	0	3	0	137	747	328	302	35	1412	6751	6	0	0	6 0	-	7 7	m	0	621	208	217	1766
07	٣	0	6	0	12	183	156	110	17	995	618	o	0	0	0 0		0	0	0	 .p	o	6	487
60	16	0	0	0	91	112	135	232	63	242	558	•	0	0	0	- 15	m	0	0	22	40	07	298
70	٥	0	0	0	o	35	19	71	01	135	135	0	0		0	<u>-</u>	0	0	0	0	0	0	135
03	57	0	60		69	175	254	367	2	1340	1409	9	0	_	7	167	ΕΟ	٥	٥	0	175	182	1591
SUB	210	0	21	3	234	1618	892	1082	303	3895	4129	6	0	7	91 0	185	37	3	0	207	432	877	4577
TOTAL IN EXTERNAL AREA	187	33	77	7.8	9£9	1636	919	1085	303	3943	6257		ء	-	2 18	192	3	~	0	214	446	197	5043
GRAND TOTAL	14737	14737 1511 2272 1896	2222	1896	20416	7009	2766	3153	621	12544	32960		79	20 173	3 485	1808	3.551	675	136 16	1695	4739	5224	38184

Table 3-11 TAXI

]					ĺ	1				1	1	i				Í	ĺ					1	1	1	1	
	CRAND TOTAL	1812	200	62	425	2499	882	99	242	~	1200	3699	82	33	=	37	2	184	17	<u></u>	<u> </u>	332	886	1057	9527	
	TOTAL IN EXTERNAL AREA	155	7	0	88	167	1117	17	18	0	808	976	0	7	•	0	7	8	<i>o</i>	=	<u>ہ</u>	6	38	42	1018	
	SUB	13	0	0	0	13	711	1.3	83	0	803	822	0	0	0	-	0	18	0	=	0	6	38	38	860	
	- 50	13	0	0	٥	<u> </u>	252	6	36	٥	297	310	0	0	0	•	0	18	0	=	0	0	29	29	339	
	90	0	0	0	0	٥	2	0	5	0	2 │	10	0	0	0	0	٥	0	0	0	0	٥	0	0	2 □	
1	03	0	0	0	٥	0	91	0	77	0	9,	0,7	0	0	0	0	0	0	0	0	0	0	0	•	07	
-	03	٥	0	0	0	۰	æ	0	47	0	2	12	0	0	0	0	0	0	0	0	0	٥	٥	0	12	ı
	õ	٥	D	0	0	0	430	œ	12	0	450	720	0	0	٥	0	0	0	0	0	0	6	6	65	459	i
	SUB TOTAL	142	7	0	8	154	0	0	0	0	0	154	0	7	0	0	7	0	0	0	0	0	0	-3	158	İ
-	36	20	0	0	4	24	0	0	0	0	-	24	0	7	c	-	-7	0	0	0	0	0	0	47	28	į
	23	Ē	0	0	٥	13	0	0	0	0	0	5	0	0	0	0	0	0	O	0	0	•	0	0	13	ĺ
	26	=	0	0	7	35	0	0	0	0	-	35	0	0	0	0	٥	0	0	0	0	0	0	0	35	
	16	2 2	7	0	0	82	0	0	0	0	0	82	0	0	0	0	0	0	0	0	0	0	0	. 0	82	
	TOTAL IN INTERNAL AREA	1657	196	29	417	2332	174	67	191	7	391	2723	82	35	13	37	167	463	12	07	10	323	848	1015	3738	
	SUB	E	0	0	0	13	160	67	161	7	37.7	390	0	0	0	13	13	450	12	40	10	310	822	835	1225	
	60	6	0	0	0	0	0	7	~	2	6	6	0	D	0	0	0	0	0	0	0	-	0	0	6	
	1	0	0	0	0	0	95	D)	65	۳	172	172	٥	Ç	0	0	0	12	43	57	'n	36	81	81	253	
	عب	2	0	0	0	13	28	F ~	=	o	46	59	0	0	¢	o	0	83	¢	0	0	6	17	17	92	
İ	S	٥	0	٥	0	0	37	3	80	7	150	150	0	0	0	13	13	064	80	16	10	265	724	737	887	
-	SUB	1644	196	62	417	2319	=	0	0	0	14	2333	82	35	13	57	154	13	0	0	0	13	26	180	2513	
	-3	360	34	17	12	423	0	0	٥	0	0	423	0	7	٥	4	8	0	0	0	0	0	0	œ	431	
	۳ ا	83	m	m	20	85		0	0	ø	0	85	0	0	0	0	0	٥	0	0	0	0	0	0	85	
	2	165	'n	m	57	218	0	0	0	0	0	218	-7	0	0	0	7	0	ø	0	0	0	0	7	122	
	-	1060	154	39	340	1593	7	o	0	o	71	1607	82	E	13	20	142	13	0	0	٥	13	26	168	1775	
	٥	-	7	m	7	SUB	ی	9	_	ъ	SUB	TOTAL IN INTERNAL AREA	16	26	93	76	SUB	10	02	63	04	02	SUB	TOTAL IN EXTERNAL AREA	CRAND TOTAL	

. Table 3-12 BUS

CRAND TOTAL	3479	817	926	1084	15937	1564	421	1056	234	:3275	19212	35	0	2	0	07	78	30	15	20	14	157	197	19409
[]	<u>=</u>			_		_		_		- 17					\dashv						+			_=
TOTAL IN EXTERNAL AREA	67	2	0	11	88	89	33	20	0	137	225	ν.	0	0	0	٠	9	•	•	0	٥	و	=	236
SUB	17	0	0	9	53	89	39	30	0	137	190	0	0	•	0	0	•	0	0	0	c	9	g.	961
95	7.7	0	0	9	53	0	0	0	0	0	53	0	0	0	٥	0	0	٥	0	0	0	0	0	53
70	0	0	0	0	ú	0	2	2	0	8	20	0	0	0	-	0	0	0	0	0	0	0	0	20
63	0	0	0	0	0	0	S	0	٥	15	13	0	0	0	•	-	0	0	0	0	٥	0	0	15
0.5	0	0	0	0	0	30	0	0	0	8	30	0	0	0	0	0	Φ	0	0	0	0	9	æ	36
_5	0	0	0	0	0	38	54	2	•	72	72	0	0	0	٥	٥	0	0	0	0	0	٥	· 6	72
SUB	20	10	0	5	35	0	0	0	0	0	35	S	0	0	0	'n	0	0	٥	٥	0	0	'n	07
76		-	-0-	0	0	0	-0	0	0			~	- <u>ö</u>	6	0	-M-	0	0	0	-	0	-		Ŋ
£ .	0	S	0	0	5	0	0	0	0	0	ď	0	0	0	c	0	0	0	0	0	c	0	o	'n
92	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٥	0	0	C
91	20	~	0	2	30	0	0	0	٥	0	90	0	0	٥	0	•	<u> </u>	0	0	٥	٥	0	0	õ
TOTAL IN INTERNAL AREA	13412	807	926	1073	15849	9671	382	1026	234	3138	18987	30	0	5	0	35	72	30	15	20	14	151	186	19173
SUB	15	2	0	0	30	1479	382	1026	234	3121	3151	0	c	0	0	0	72	30	15	20	0	137	137	3288
80	0	0	0	0	0	0	S	139	47	236	236	0	0	0	0	0	0	0	0	o	٥	0	0	236
۷	0	0	0	0	Ô	36	<u></u>	747	137	1021	1021	0	0	0	0	0	10	0	0	0	0	30	30	1601
9	c	0	0	0	0	147	10%	88	20	389	389	0	0	0	0	0	77	0	5	01	0	39	39	42B
30	15	2	0	0	30	1296	127	52	0	1475	1505	٥	•	0	0	0	38	30	<u> </u>	0	0	68	99	1.77.1
SUB	13397	393	956	1073	15819	11	0	0	O	17	15836	30	•	Ŋ	0	35	0	0	0	0	14	14	67	15885
7	724	59	97	220	1100	0	0	0	0	0	1100	5	0	0	0	5	0	0	0	0	0	0	S	1105
m	777	0	456	83	987	0	0	0	0	0	987	0	0	0	0	0	0	0	0	0	0	0	0	987
7	174	181	0	99	423	=	0	0	0	12	077	~	0	•	0	01	٥	0	0	0	0	0	10	450
-	12057	153	403	969	13309	-	0	0	0	0	13309	20	0	0	0	20	•	0	0	0	7	14	38	13343
Q O	-	2	n	7	SUB	5	9	7	ε0	SUB	TOTAL IN. INTERNAL AREA	16	92	93	76	SUB	01	03	03	70	00	SUB TOTAL	TOTAL IN EXTERNAL AREA	GRAND

Table 3-13 TEMICLES EXCEPT NOTOR-CT MES

7			SUB	5	9	_	8	SUB	7		1 1	1 1	SUB	0	05	8	70	N H	1	TOTAL IN EXTERNAL AREA	GRAND TOTAL
10364	υ,		181362	1465	571	657	39	2534			-	319	1523	893	92	75			1849	3372	187268
554	•		8259	68	25	æ :	0	158			-		211	28	60	0	0	82	118	329	97/8
3996			18448	601	%	20	0	182	18630				128	11	0	12	0	29	58	981	18816
320 1307 2618	- 1		9408	87	54	m	0	7.5	9483	17 8	86 23	183	309	09	0	0	0	37	97	406	9889
8530 16221 9485			217477	1711	669	200	39	2949	220426	95 778	560 190	577	1712	966	100	87	-	936 2	2122	4293 2	224719
39 62 59			1654	97177	5046	2549	194	31915	33569	-	10 23	37	70	3246	607	520	118 17	1703 6	7619	6264	39833
36 9 .53			717	7.57	2675	1832	161	9676	10393	0	0 0	51	15	590	236	961	7 87	1 797	1534	1549	11942
0 62 17			099	2540	1868	13643 1	1017	19068	19728	0	0	0	0	855	1 (8)	1206	362 11	1182 4	9807	4086	23814
0 0 0			3.	168	198	1012	809	1986	2017	0	0 0		7	52	5	0:1	31 3	338	582	589	.2606
75 133 129			3062	31806	9787 1	19036 2	2016	62645	65707	0	10 23	59	92	4743	1375 2	2032	559 36	3687 12.	12396	12488	78195
185966 8605 16354 9614			220539 33517 104	33517 1	96	19536 2	2055	65594	286133	844 570	0 213	636	2263	5741 1475		9 611	2119 560 4623	 -	14518	16781	715708
71 11 771			778	0	0	3	0	3	847	0	0 2	=	13	0	0	0	٥	0	0	5	860
13 46 86			260	0	٣	0	0	m	. 563	0	0 0	36	36	54	0	0	0	- 6	33	69	632
17 0 23			190	7	0	6	0	91	206	0	0 0	7	7	6	6	D	0	0		. 5	219
4 71 183			577	41	48	8	0	97	7.09	0	0 8	0	œ	Ξ.	0	0	0	7	07	87	722
211 128 309			2171	48	15	20	0	119	2290	0	01 0	51	61	99	٥	0	0	91	82	143	2433
50 31 56			1179	3246	290	855	52	4743	5922	7 61	75 0	34	95	0	193	18	9	536	753	878	6770
0 6 0			53	607	236	127	15	1365	1418	0	0 0	0	0	15	0	9	0	95	67	67	1485
0 10 10			125	520	196	1206	110	2032	2157	o	0 0	0		52	7	0	0	20	109	109	2266
0 0 10			17	118	48	362	31	559	925.	œ	0	0	φ	13	0	0	0	91	33	17	617
53 40 44	i		890	1711	797	1182	338	3695	4585	0	12 7	9	25	767	18	0	0	0	452	7.17	5062
103 90 120			2264	6202	1534	4076	582	12394	14658	27 5	54 7	40	128	518	218	24	9 9	1 879	1414	1542	16200
314 218 429		1	7732	6250	1585	4096	582	12513	16948	27 5	54 17	16	189	584	218	54	9	71 799	9671	1685	18633
189440 8919 16572 10043	10043		224974	39767 1	12071 2	23632 2	2637	78107	303081	871 624		230 727	2452	6325	1693 2	143	2143 566 5287	 	16014	18466 3	321547
		3																1	+		

Table 3-14 FOTOR- CYCLES

SRAND :	227939	7321	52749	13671	271680	55849	16604	58370	1000	137490	409170	643	722	423	7.18	2506	3639	1636	2112	805	2505	10697	13203	622373
TOTAL IN CRAND EXTERNAL TOTAL AREA	2077	317	7285	518	3197	3346	815	3747		8687	11884	7	34	54	S	29	707	61	.67	71	124	703	770	12654
SUB TOTAL E	102	28	5.9	56	844	3346	784	3747		8656	9500	0	0	-	٥	0	284	19	25	17	124	583	583	10083
05	312	0	59	28	399	375	175	652	<u> </u>	1773	2172	0	0	0	0	0	20	27	07	-3	٥	121	121	2203
70	87	0	0	٥	87	75	07	559	2	788	875	0	0	0	0	0	5	12	22	0	2	22	32	927
. 69	98	0	0	0	36	236	113	1390	a	1804	1890	0	0	0	٥	0	m	0	0	4	6	16	91	9061
02	70	0	0	-	70	969	181			1513	1583 1890	0	0	0	0	0	226	0	14	0	33	275	275	1858 1906
10	971	28	o	28	202	996	275	523	2	2778	2980 1	0	0	0	0	0	0	22	21	6	67	611	119	3099
SUB	1376	289	226	797	2353	0	31	0 0	3	31	2384	7	34	77	2	67	120	0	0	0	0	120	187	2571
76	364	Ŋ	57	230	656	0	0	0	3	0	656	2	29	24	0	55	09	0	0	0	0	9	115	771
93	2.33	7	28	19	399	0	33	0 (۱ -	31	730	2	5	c	٠٠٠	12	0	0	0	0	0	٥	12	299
92	433	2	6	154	688	0	0	0 9	- │	0	688	0	0	0	٥	0	09	0	0	0	٥	9	09	748
6	346	233	20	=	610	0	0	0	1	<u> </u>	610	0	-	0	٥	0	0	0	<u></u>	_	2	•		610
TOTAL IN INTERNAL AREA	225862	7004	75464	13153	268483	52503	15789	54623	2888	128803	397286	629	688	399	713	2439	3235	1575	2015	788	2381	9666	12433	614607
SUB	5055	198	216	146	5615	71667	14568	53494	2675	123831	129446	29	0	0	57	86	8272	1513	7081	788	1683	8566	8652	1.3809A
cc cc	29	0	29	0	58	807	374	1806	3776	5814	5872	0	0	0	0	0	14	13	65	116	175	779	977	66.51
_	613	c	0	0	613	3365	2703		69/	53743	54356	0	0	Ö	28	28	523	623	1390	559	652	3747	3775	58131
25	1595	53	70	59	1753	6198	2080		717	165	344	0	c	0	0	0	275	181	13	07	175	784	784	17128
٠,	2818	169	117	87	3191	40003	1179		368	49683 14	52874 16	29	0	0	29	58	1966	769	236	75	285	3256	3314	56188 1
SUB	220807	9089	22248	13007	262868	2529 4	1221		25	4972 4	267840 5	610	688	399	929	2353	457	62	211	0	869	1428	. 3781	271621
3	5397	7	2095	5598	13131	2	0	06	5	121	3252	=	154	19	230	797	٥	0	9	0	90	150	610	3864
m	10317	156	7380	2009	1 29861	181	3	16	-	334	1 9610	20	16	58	57	226	0	0	0	0	31	31	257	0453
7	1 8877	2002	310	; ''	6877 1	122	62	0	-	184	061 2	233	10	41	S	289	0	0	Þ	0	Q.	0	289	7350.2
-	200605 4	4607 2	12463	5323	222998 6	2195	1128	976	29	4333	227331 7061 20196 13252	346	733	233	364	1376	457	29	151	•	577	1247	2623	229954 7350.20453 13864
a o	-	2	Ю	7	SUB	55	•	7	E0	SUB	TOTAL IN INTERNAL AREA	16	92	93	76	SUB	10	05	63	70	95	SUB	TOTAL IN EXTERNAL AREA	GRAND

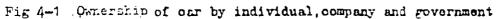
4. The analymin of product in ffic fituation.

7-1 The attributes of vehicle owners

There are 69,990 vehicles and 105,100 motor-cycles in this study area. The bread down of these figures is as follows:

Table 4-1 The number of vehicles (unit: 1000 vehicles)

car	lorry	taxi	bus	total no. of vehicles	M/Cs.
59.3	9.4	0.4	0.9	69.9	105.1


In this section, some of the attrivutes of owners of vehicles obtained through the owner-interim survey, are shown

- a) Form of ownership of vehicles
- b) Sex
- c) Age
- d) Occupation
- e) Size of household
- f) Zone of working place
- g) Type of establishment
- h) Size of employment
- i) Period of ownership .
- j) Frequency of usage for week

Note: The following types of vehicles, namely the lorry, taxi and bus are used only for specific purposes and owners of these types of vehicles are therefore different from other vehicle owners. Therefore in this analysis these types of vehicles are excluded.

4-1-1 Form of ownership

Of the two forms of ownership, the majority of vehicles and motor-cycles belong to the category of individual ownership, and the ratio for cars is 86% while that for motor-cycles is 97%.

(unit: 1000 vahioles)

7.8 0.5 Car 51.0 (86.0%)

Total no. of cars 59.3

Ownership of motoroyole by individual, company and government (unit: 1000 vehicles)

3.3 0.3

Motoroyole

101.6 (96.7%)

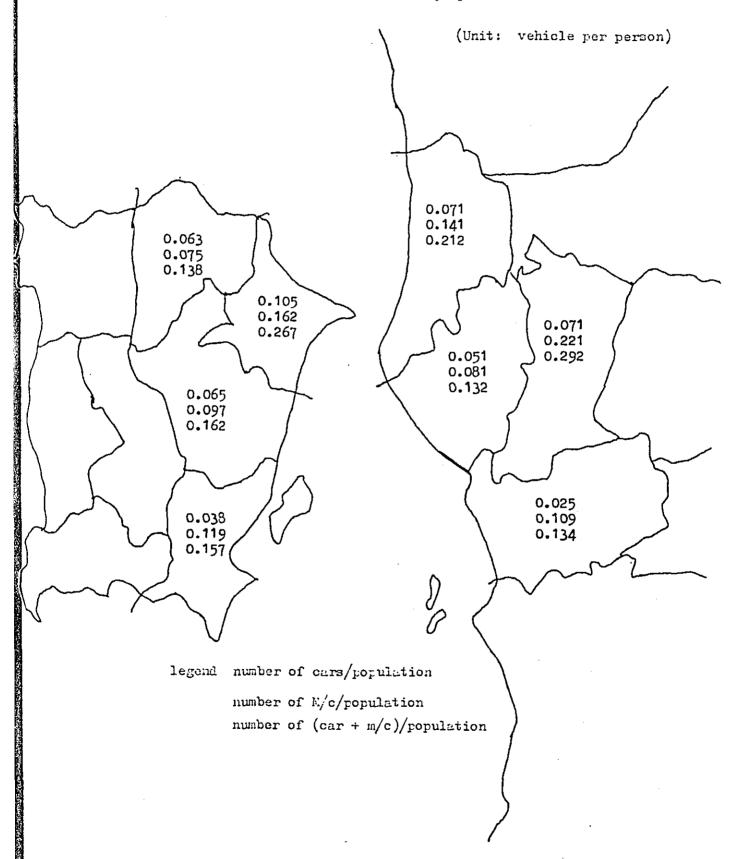
Total no. of motorcycle
105.1

Individual ownership

Company

Government

4-1-2


The situation of ownership by area.

The difference in the situation of ownership by area is as follows:-

Table 4-2 number of vehicles by zone

Vehicles	Number	Number	Total	Unit of	vehicle-o	mership
large zone	of cars (A)	of motor-cycles (B)	population (C)	A/C	в/с	A+B/C
1	35864	55271	341220	0.105	0.162	0.267
2	1703	2017	. 26980	0.063	0.075	0.138
3	4756	7156	73630	0.065	0.097	0.162
4	1063	3318	27870	0.038	0.119	0.157
Penang Island	43386	67762	469700	0.092	0.144	0.236
.5	7906	15693	311312	0.071	0.141	0.212
6	2510	3985	49330	0.051	0.081	0.132
7	4793	14830	67210	0.071	0.221	0.292
8	655	2862	` 26310	0.025	0.109	0.134
Province Wellerley	15864	37370	230902	0.069	0.162	0.231
Study area	59250	105132	700602	0.085	0.150	0.235

Fig 4-2 Unit of vehicle ownership by zone

These figures show clearly the difference between the form of ownership in Penang Island and Province Wellesley.

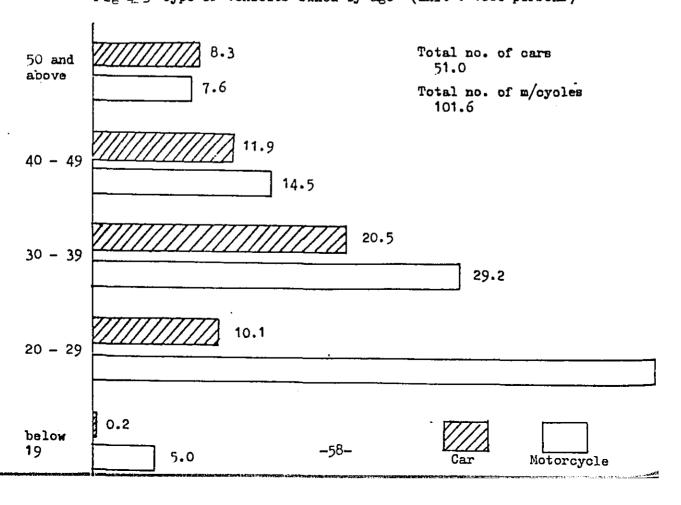
In Penang Island, the unit of vehicle ownership of cars is higher, while in Province Wellesley, that of motor-cycles is higher.

There results show that urbanization process is progressing at a more rapid pace in Penang Island than in Province Wellesley.

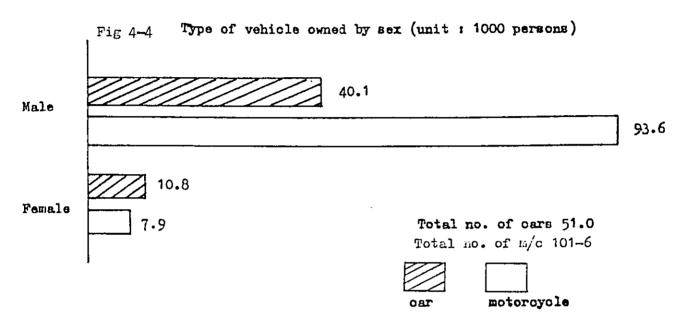
4-1-3 The attributes of vehicle owners.

The attributes of individual vehicle owners obtained were:-

- 1) age
- 2) sex
- 3) size of household.


(1) Age and sex

The following figure shows the types of vehicles owned by age.

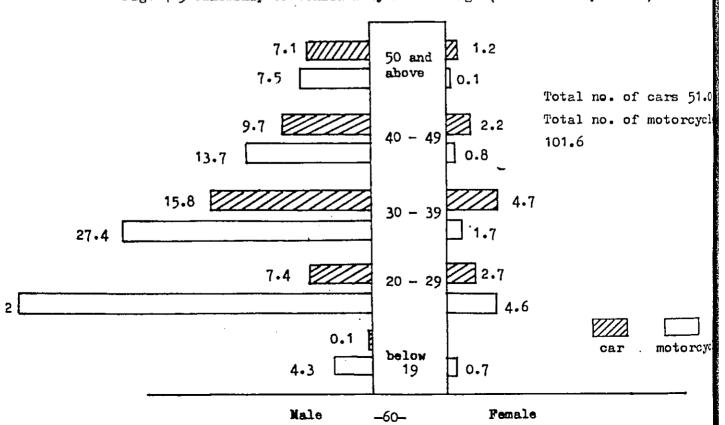

For the 40 years and above age group, the number of owner for cars and motor-cycles is almost the same, but in the age group of 20-29 year olds the number of owners for motor-cycles is 4.5 times more than that for cars.

This shows that the majority of motor-cycles is owned by the younger generation, that is, about 50% of the motor-cycles is owned by people belonging to the 29 years and below age group.

Fig 4-3 Type of vehicles owned by age (unit: 1000 persons)

More males than females own cars and motor-cycles as a means of transport. This is particularly true in the case of motor-cycle ownership as 94% of motor-cycles but 97% of cars are owned by males.

From our population study, the data for the present population by sex and age was collected. Using these data, the unit of vehicle ownership can be obtained. The results are shown in table 4-3.


The unit of ownership of cars in the age-sex category of 30-39 year old males is 0.378 cars per person and those of motor-cycles in the age-sex group of 20-29 year old males is 0.700 motor-cycles per person.

In the age-sex group of the 30-39 year old males, the unit of ownership of cars and motor-cycles is 1.034. This figure shows that some of these age-groups have 2 or more vehicle (that is, one car and one motor-cycle, 2 cars or 2 motor-cycles).

Ownership of vehicles by agae and sex group (unit: 1000 persons)

sex	Ma	ale		Fema	le		Tot	al	
Age group	Population	Cars	M/cs.	Population	Cars	M/cs.	Population	Cars	M/cs.
50 and above	46.6	7.1 0.152	7.5 0.161	48.1	0.025	0.1	94.7	8.3 0.088	7.7 0.080
40-49	33.0	9.7 0.294	13.7 0.415	33.6	2.2	0.8	66.6	11.9 0.179	14.5 0.218
30-39	41.8	15.8 0.378	27.4 0.656	43.8	4.7 0.107	1.7 0.039	85.6	20.5 0.239	29.2
20-29	58.3	7.4 0.127	40.8	62.1	2.7	4.6 0.074	120.4	10.1	45.4 0.377
18-19	16.2	0.1	4.3 0.265	17.4	0.0	0.7	33.6	0.2	5.0
total	195.9	40.1 0.025	93.6 0.478	205`. 0	10.9 0.053	7.9	400.0	51.0	101.6

Fig: 4-5 Ownership of vehicles by sex and age (unit: 1000 persons)

(2) Occupation

This attribute can be divided into two groups, viz. Those who are employed and those who are unemployed like students, housewives and the jobless.

The figures for this attribute is as follows:Table 4-4 Ownership of car and m/c by the employed and unemployed population. (unit: 1000 persons)

Employment status	Cars	M/cs.
employed	44.6	92.4
unemployed	6.4	9.2
total	510	101.6

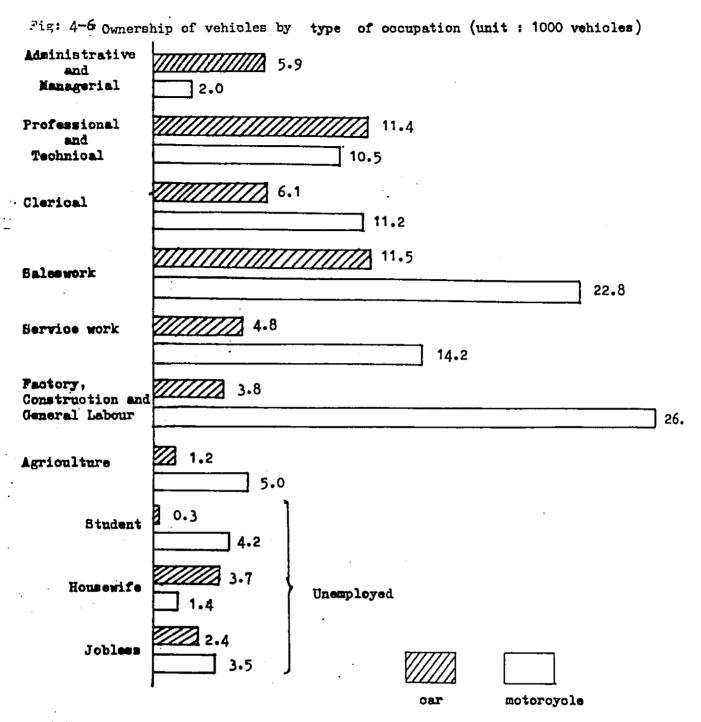
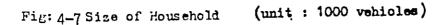
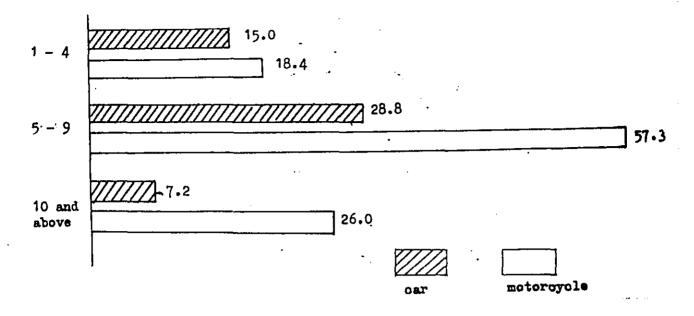

From our population study, the ratio of the employed to the unemployed in 1979 is 31% (294000/996580) in Penang State. Therefore, the unit of vehicle ownership by occupation in the study area is as follows:-

Table 4-5 Unit vehicle possesion of the employed and unemployed population. (unit: 1000 persons)

Employment	Population	No.of vehicle		Unit vehicle possesion		
status		Car	M/c.	_Car	.M/c	Total
employed	224.4	44.6	92.4	0.199	0.412	0.611
unemployed	499.5 .	5.4	9.2	0.011	0.018	0.029
total	723.9	51.0	101.6	0.070	0.140	0.210


From this table, it can be seen that the unit of vehicle ownership is 0.199 car and 0.412 motor-cycle per employed worker.


60% of the employed make use of cars and motor-cycles as their means of transport instead of using public transport.

(3) Size of households by type of vehicles

In small households (i.e those having between 1-4 people), the ratio of cars to motor-cycles is almost 1 to 1, whereas at large households, the ratio is 1 to 4.

4-1-4 The characteristic by working place

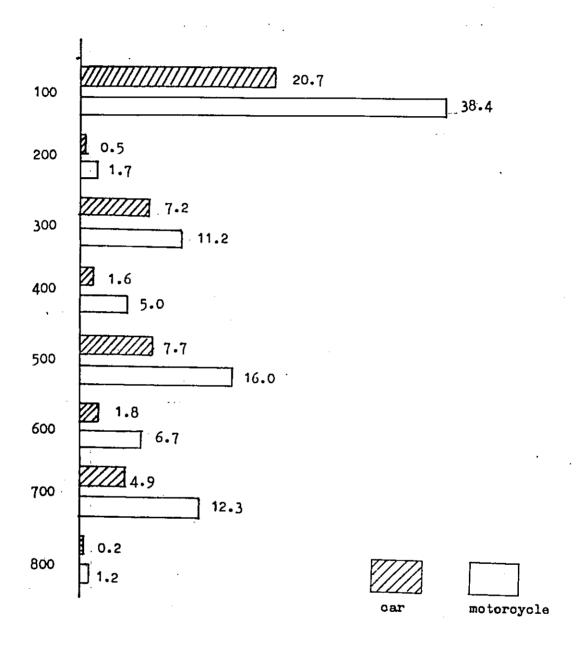
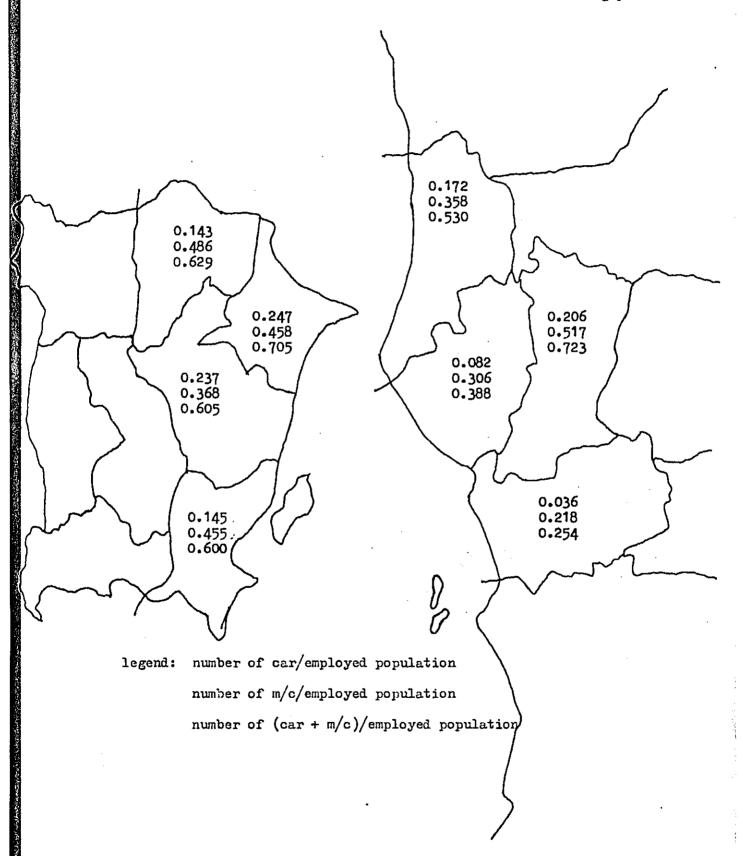
The difference in the situation of ownership by working place is as follows:-

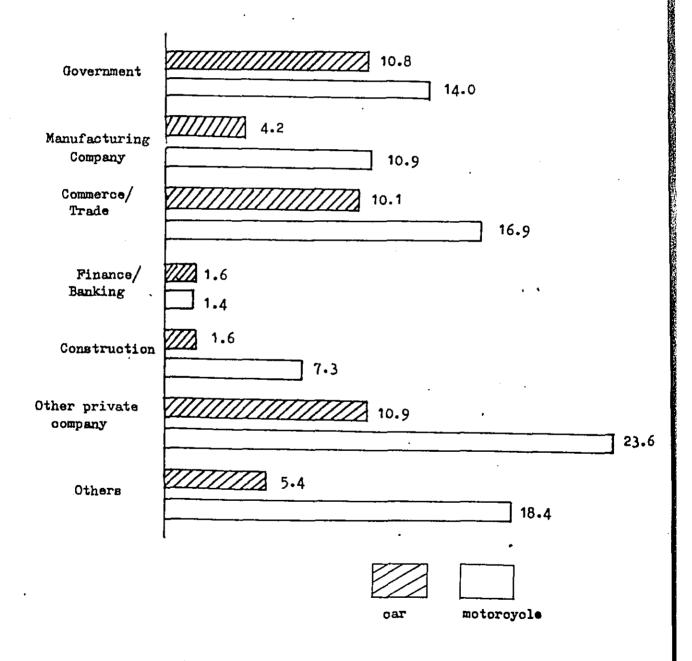
Table: 4-6 Situation of ownership by working place

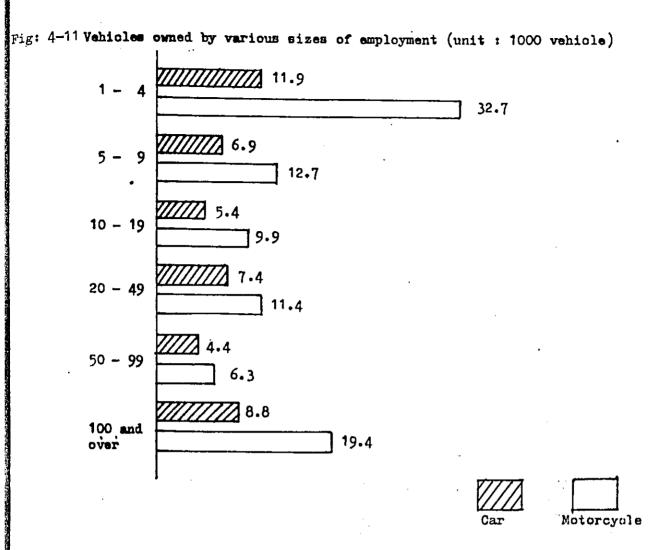
	Number	Number of		Unit of	Unit of vehicle ownership		
large zone	of cars (A)	motorcycles (B)	Employment (C)	A/C	в/с	A+B/C	
1	20.7	38.4	83.4	0.247	0.458	0.705	
2	۵.5	1.7	3.5	0.143	0.486	0.629	
3	7.2	11.2	30.4	0.237	0.368	0.605	
4.	1.6	5.0	11.0	0.145	0.455	0.600	
Penang Island	30.0	56.3	128.6	0.233	0.438	0.671	
5	7.7	16.0	44.7	0.172	0.358	0.530	
6	1.8	6.7	21.9	0.082	0.306	0.388	
7	4.9	12.3	23.8	0.206	0.517	0.723	
8	0.2	1.2	5.5	0.036	0.218	0.254	
Province Wellesley	14.6	36.1	95.8	0.152	0.377	0.529	
Study area	44.6	92.4	224.4	0.199	0.412	0.611	

Note: The actual size of employment in the study area in 1979 is 237,290. However, in this table the figure is for those living and working in the study area.

Fig 4-8 Ownership of vehicles by zone of working place (unit : 1000 vehicles)

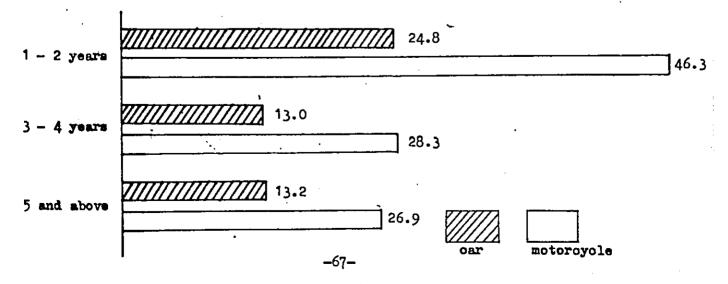

Fig. 4-9 Unit of vehicle ownership by zone of working place

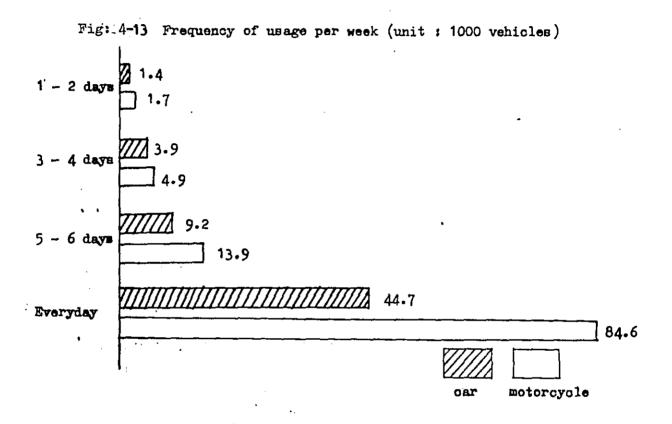


4-1-5 Type of establishment and size of employment

The ratio of cars to motor-cycles is almost 1 to 1 at government and finance/banking establishments.

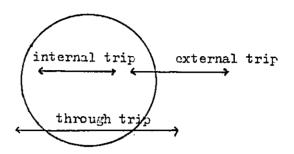
Fig: 4-10 Ownership of vehicle by various types of establishment (unit: 1000 vehicles)




4-1-6 Period of ownership and frequency of usage of vehicles.

The majority of cars vehicles and motor-cycles are those owned for only 1-2 years, contributing to 49% and 46% of the totals respectively. This shows that the rate of possesion of cars is slightly more rapid than motor-cycle.

Fig: 4-12 Period of Ownership (unit: 1000 vehicles)



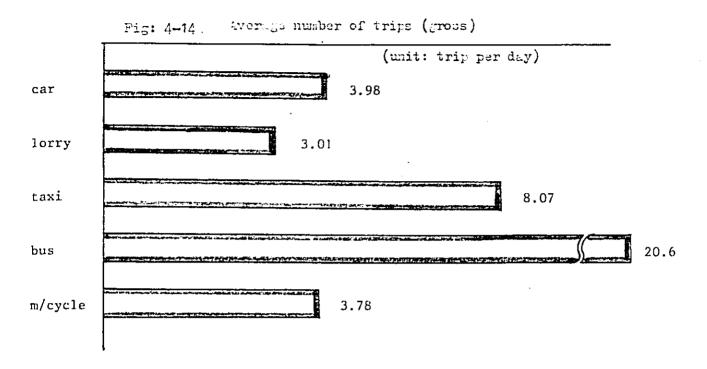
The percentage of car and motor-cycle owners who use the car and motor-cycle daily is 75% and 80% respectively. Only 2.4% and 1.6% of car and motor-cycle owners respectively use the vehicles for 2 days or less per week.

4-2 Analysis of trip production

The total number of trips in this study area is divided into the following 3 groups.

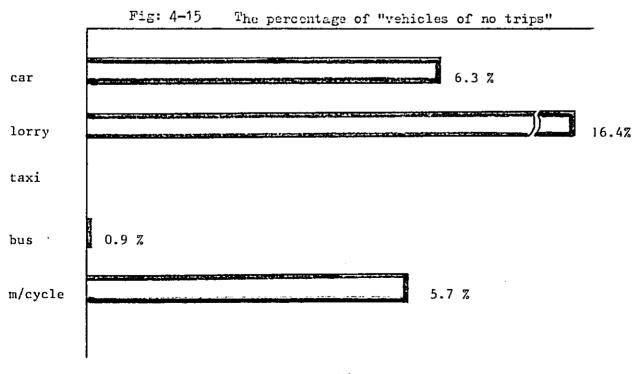
In this section, the analysis are carried out separately according to above-mentioned trip type.

i-2-1 Internal trip

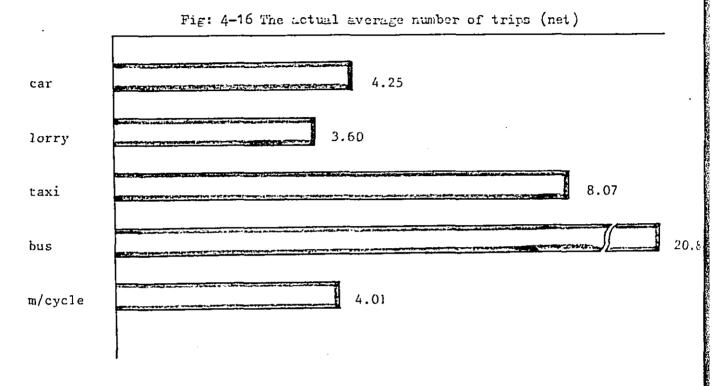

(1) The unit trip production

From the O-D table, we can obtain the unit trip production of each vehicle in the internal area.

Table: 4-7 The unit trip production


		HICLE AND IP PURPOSE	NUMBER OF VEHICLES AND MOTORCYCLES IN INTERNAL AREA	NUMBER OF INTERNAL TRIPS	THE UNIT TRIP PRODUCTION (TRIP PER DAY)		
	<u> </u>	going to work	-	66378	(1.12)		
	a.D	business trip	-	33428	(0.56)		
!	CAR	private trip	-	53060	(0.90)		
		going home	-	83171	· (1.40)		
			59250	236038	(3.98)		
		lorry	9415	28381	(3.01)		
		taxi	350	2723	(8.07)		
		aud	923 .	18987	(20.0)		
VE	HICLE		69938	286133	(4.09)		
		going home	_	113412	(1.08)		
		business trip	· -	40907	(0.39)		
	OTOR- CYCLE	private trip	-	83710	(0.84)		
ľ		going home	-	155286	(1.48)		
			105132	379286	(3.78)		
		grand total	175070	683419	(3.90)		

Average number of trips per day in the internal area are as follows :-

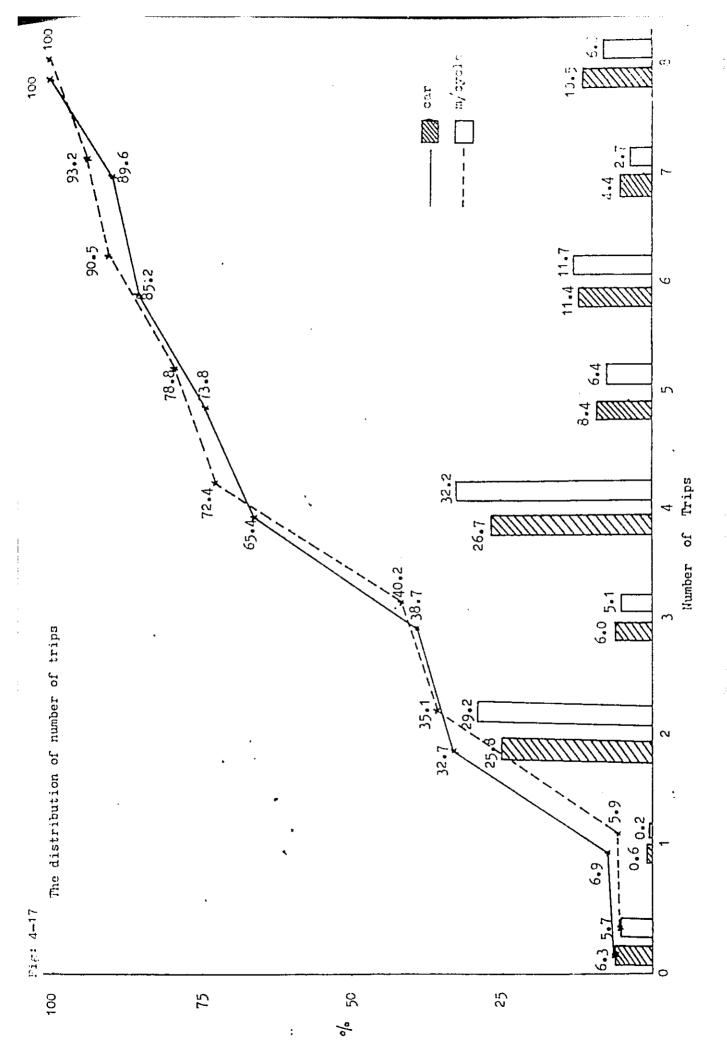


These figures include "vehicles of no trips".

The parcentage of "vehicles of no trips" is as follows :-

Therefore the actual average number of trips per day of one vehicle is as follows:-

These unit trip production by type of vehicle can be classified by characteristic of user. Therefore, using the category of form of ownership, sex, age and occupation, the unit trip production by characteristic of user are shown next table.

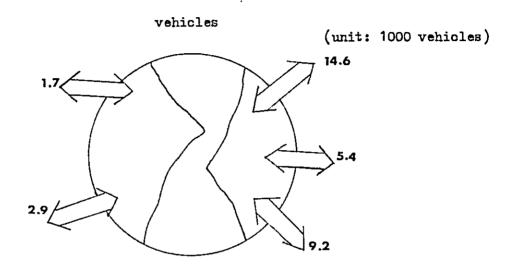

Table 4-3 Unit trip production by characteristic of user

		CAR	MOTORCYCLE
Form	Individual	3.92	3.74
of ownership	Company and Government	4:33	4.83
	Average	3.98	3.78
	Male	3.95	3•78
Sex	Female	3•79	3.29
	Average	3.92	3.74
	50 and above	3,77	3.80
	40 - 49	4.03	3.65
	30 - 39	3:92	3.75
Age	20 – 29	3.90	3.75
	Below 19	4.29	3.75
	Average	3.92	3.74
	Administrative and Nanagerial	4.17	3.69
	Professional amd Technical	4.00	3.88
	Clerical	3.80	3.98
	Sales work	3.96	3.91
	Service work	3.85	3.74
Occupation	Factory, construction and General labour	3.60	3•58
	Agriculture	3-45	3.67
	Student	3.90	3•41
	Housewife	4.10	3•54
_	Unemployed	3.66	3•33
	Average	3.92	3.74

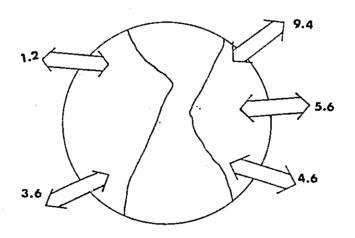
It seems that there are no particular difference by characteristic of owner. All of the unit trip production by characteristic are included within 4.3 - 3.6 for car and 4.0 - 3.2 for motorcycle.

Next figure shows the distribution of number of trips. From this figure, we can find that the cars made only 2 trips per day are 25.8% and the motorcycles are also 29.2%.

The most number of cars made 4 trips per day at 26.7% and the most number of motorcycles made 4 trips per day at 32.2%. The percentage of number of cars which made 4 trips and more trips per day is 65.4% and the percentage of number of motorcycles which made 4 trips and more trips per day is 72.4%. Therefore, more than half of cars and motorcycles are usually made 4 and more trips per day.



4-2-2


External trip and through trip.

Regarding external trip and through trip, the following data were obtained.

Figure, 4-18 Traffic flow of external trip.

motor-cycles

However, there data only concerned with the present situation. For the purpose of analysing long-distance trips, data which cover a wider area are required.

The Federal houte 1 and the past-West Migh way study are reviewed, after that, the method to be choosen for the the estimation of long-distance trips will be considered.

(1) Feasibility study between Alor Star and Changkat Jering. This study area covers parts of Kedah, Fenang and Ferak.

PEB - COIDITIONS.

Forecasts of future growth of the following elements were prepared as premises in estimating future travel demand.

- i) Population
- ii) Employment
- iii) Number of venicles

i) Population

An average natural annual growth-rate of 2.7% is used for the population projection of the study area. However, due to the emigration of people from the study area, the growth rate has been adjusted to 2.4%, for the 21 year period from 1970 to 1991.

Table 4-9 Employment (unit: 1000 persons)

	Fopulation	average annual growth rate (percent)
1970	1631.7	2.8
1981	2207.4	2.0
1991	2694.5	1.9
2001	3254.8	

ii) Employment

Due to the growth of the industrial (ie. mining and manufacturing), agricultral, construction, utilities, commercial, transport and services sectors, the Study Areas's employment is estimated to increase from 568,100 in 1978 to approximately 978,100 in 2001.

Table: 4-10 Employment (unit: 1000 persons)

	employment
1978	568.1
1981	642.9
1991	848.0
2001	978.1

iii) Number of vehicles

Vehicle ownership is expected to grow at a faster rate than population growth and the margin between all the states will diminish over the year 1980 - 2000.

Table: 4-11 Number of Vehicles (unit: 1000 vehicles)

		1978	1981	1991	2001
	car (A)	33.0	50.0	102.0	152.0
Kedah and Perlis	other vehicle	10.4	12.4	21.1	30.1
and relais	m/c (B)	109.1	127.0	198.8	225.0
	car (A)	63.8	74.0	120.0	169.0
Penang	other vehicle	12.9	16.2	26.0	36.4
	m/c (B)	123.0	133.8	184.0	216.7
	car (A)	76.3	97•7	168.0	240.0
Perak	other vehicle	18.4	22.1	36.7	51.3
	m/c (B)	183.0	221.0	311.0	352.9

B. Methods of estimation

The computer modelling technique with some refinement is used for traffic forecast in this study.

The models used are:-

- i) Highway Network Model.
- ii) Highway Trip Model.

The inputs of these models are data on travel pattern, travel time and roadway characteristic. These datas were obtained from surveys.

i) Highway Network Models.

Computer simulation of the roadway network in the study area was developed for each study alternative tested. This network model include geographic distance between locations, average free-travel speeds and capacity data.

The current highway network (base-year Existing Network) was simulated as the first step in the modelling process.

Generated traffic was estimated by using a family of curves which related the magnitude of traffic induced to the proportion of travel time saved on a given trip.

The net effect of generated and degenerated traffic on the road system of the Study area is an additional of 11984 trips in 2001 on the improved section of Route 1.

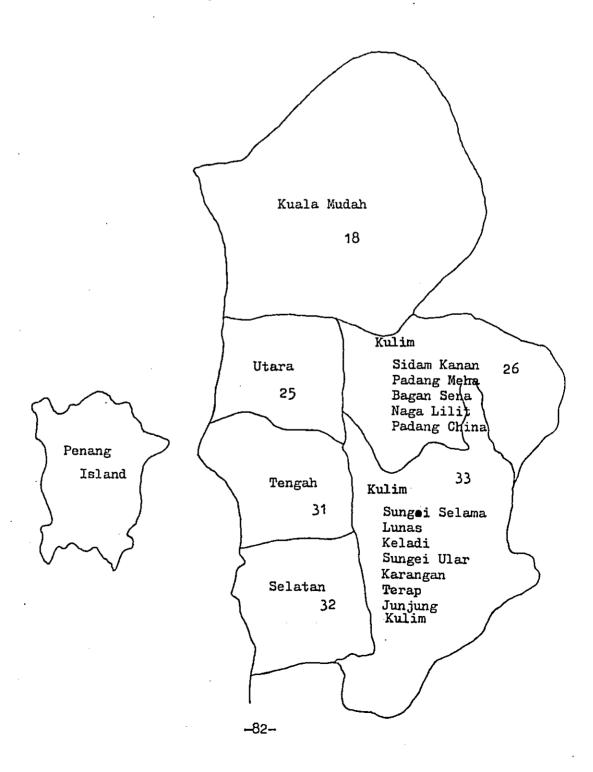
d) Traffic assignment.

Estimated use of the proposed improvement under study and the entire roadway system of the Study Area was derived from computer processing of appropriate combinations of network and trip tables.

Traffic was assigned to roadway links of the highway network model using the capacity restraint technique.

B. Results of traffic estimation

The existing unimproved route I has 61,500 trips as shown in the base year (1978) trip table. Regarding the 1981 trip forecast, the tables show the unimproved Federal Route I having 80800 trips while the network with Federal Route I improved has 21,100 trips. The growth rate over the 4 year period are 31.4% and 31.9% respectively. By 2001, traffic volume, are forecasted to increase by 129.6% even if Federal Route I remained unimproved, and by 143.5% if Federal Route I (Butterworth - Alor Star/Jitra section) is improved.


•	SUMMARY_OF TRIP TAI	BLE	
0.0	0017057701	TOTAL VEI	HICLE TRIPS
CAR	CONDITION	Improved F.R. 1	Unimproved F.R. 1
1978	Current (Base-year)	N/A	61,500 (1.00)
1981	Forecast Opening Year	81,100 (1.32)	80,800 (1.31)
2001	Forecast Horizon Year	197,500 (3.21)	185,500 (3.02)
Per Cent Growth	1978 – 1981	31.9	31.4

N/A denotes Not Applicable.

2) Feasibility Study of the supporting road systems for the east-west highway.

This study area which covers a total of 12173 square miles, is made up of the following States; Kelantan, Kedah, Perak and Penang (excluding Penang Island). However, in this section, only the following areas as shown in Figure 4-19 will be described.

Figure 4-19 The Study Areas.

A. <u>Pre-conditions</u>

The following premises inputs are used to project the future traffic demand.

- i) population
- ii) employment
- iii) income

i) Population

The projected zonal population for the years: 1978, 1985 and 2000 for zones 18, 25, 26, 31, 32, 33 are as follows:-

Table 4-12 Population Projection (unit: 1000 person)

C					
ZONSYMAR	1978	1985	2000		
18	203.6	241.7	323•5		
25	207.4	247•4	333•2		
26	40.1	46.0	58.6		
31	151.1	180.2	242.7		
32	81.8	97•7	131.7		
33	108.0	132.0	183.5		

ii) Employment

The following table shows the projected employment by zone for 1978 and 2000, which are classified into primary, secondary and tertiary employment.

Table: 4-13 Employment Projection

•					(unit: 1000 persons			ន)
		197			1990			
ZONE	Primary	Secondary	Tertiary.	Totall	Primary	Secondary	Tertiary	Total
18	32.2	6.1	20.7	59.0	35.1	9•4	32.3	76.8
25	18•3	13.5	26.7	58.5	15.6	19.5	42.9	77•9
26	7.1		_	7.1	7.2	_	_	7.2
31	10.4	8.7	17.6	36.7	9.8	12.2	26.8	48.8
32	9.9	3.1	7•2	20.2	10.2	5•4	11.3	26.9
33	19.7	3.8	14.1	37.•6	22.1	6.8	23.2	52.0

(iii) Income

The projected average household income per month for the year 1978, 1985 and 2000 is tabulated in the below:Table: Income Projection

(unit: 1000 dollars)

Table 4-14 Average Howsehold Income Fer Month.

ZONE YEAR	1978	1985	2000
18	0.3	0.5	1.0
25	0.3	0.5	1.0
26	0.2	0.4	0.8
31	0.3	0.5	1.0
32	0.3	0.5	1.0
33	0.2	0.4	0.8

Lethods of estimation

Trivel Forecasting Procedure

Technique used are as follows:-

	Intra-zonal trips	Inter-zonal trips
Travel by motor-cycles cars and buses	Exponential decay and gravity model	Trip concration and gravity model
Commercial goods vehicles (include trucks, vans)	Percentu _u e	Flow patterns from development plans

Intra-zonal trips refer to trips made between towns and a ricultural hinterland.

Inter-zonal trips include work and recreational trips.

Person Trip Demand Models

This section deals with the estimation of traffic volumes generated by the

- I) Passenger vehicle Travel Forecast
- II) Commercial vehicle Travel Forecast

I. Passenger Ve on Fravel.

A) Estimation of the second range of the

The following the second for the feet made in the

i) Trip gent of

It is back to the energory analysis of the tenth of

- a number of the coat. They are

 - b) makes a wis move sole:
 - c) the contract of the
 - d) turn many mention of his

These models are the property of a second of the community is dependent on the property. The state of the second of the collected through compression as a reserve to the second of them.

a) Vehicle ownership mode.

This model the allege of the sent relatives at the selections of busehold income and vehicle ownerscapeness, at the selections of the selections to one available in the selection of the selecti

- no vesicin il e religio
- motor-of selection
- one car in the life and
- Seny car ...

A series of the

b) Income distribute in mode.

The income distribution to the first being the order of individual household by income the transfer of the contract of the bousehold income that it is

c) Trip productive grade

These modern on the second of the the months of the production

rates which are related to income levels and vehicle ownership for each of the zones in the study area. (refer to Table 4.3.2.)

d) Trip attraction model

This model relates the attractiveness of the somes to its population and employment opportunity.

ii) Trip distribution model

It predicts the origins and destinations of general trips.

A standard gravity model is used. The model has the mathematical form:-

where Vij = volume of trips originating in zone i and attracted to zone j.

Pi = trips produced at zone i

Aj = trips attracted to zone j

Tij = travel time between i and j

F = friction factor which is a function of time

Kij = adjustment factor for special conditions such as socio-economic differences; large "perceived" barriers: to travel (such as the Penang Island Ferry) etc.

iii) Trip Assignment Model

The "all or nothing" model was used for the traffic assignment.

iv) Modal_Split

The modal split procedure was based on the projected vehicle ownership rates, household categories, population density and urban structures.

B) Estimation of Intra Zonal Person Travel demand

Estimation is based on

- i) a gravity model estimate of the total number of intrazonal person trips for each zone and bench-mark year
- ii) an allocation of intra-zonal trips to individual links

and an exponential decay function to obtain estimate of average link volumes.

Conversion of Person Trips to Passenger Vehicle Trips

The modal split which is based on the projected vehicle ownership rates, household categories, population density and urban structure was used to convert person trips to passenger vehicle trips.

II. Commercial Vehicle Travel Estimation

The estimation methods here are based on development plans and projections of freight inflow in to the study area.

The procedures involve the following:-

- Determination of freight flow resulting from export of forest and farm-based products.
- determine the routes to the destinutions.
- freight flow was allocated between light vans and trucks based on traffic data in the study area.
- freight inflow to districts was projected in 2 different ways. They are determined on the basis of
 - 1) the proportion of flow of rural produce originating in each district and
 - 2) the urban/rural population distribution
- constant vehicles mixing was assumed throughout the study period.
- freight flow was converted to commercial vehicle trips on the basis of
 - i) commodity tonnage
 - ii) average loading of different commercial vehicle types
 - iii) those goods which have been determined on the basis of proportion of flow of rural produce originating in each listrict.

The data obtained from HPPTU were used as data base for the forecasting procedures outlined above. In this way, agricultural commodities and miscellaneous freight were estimated.

TABLE 4-45 PROJECTED TRAFFIC VOLUMES ON SEGMENT W9

Year	Motor- Cycle	Car	Van	Lorry	Bun	Total
Bese Car	16			•		
1978	3, 132	5,460	200	600	358	9,750 .
1985	3, 427	5, 971	290	870	392	10, 950
1990	4,403	7,674	340	1,030	503	13,950
1995	5,303	9, 242	360	1,090	- 605	16,600
2000	6,258	10,907	390	1,180	715	19,450
Alternati	ve l					
1978	1,215	2, 135	80	240	130	3,800
1985	1,345	2,360	110	340	145	4, 300
1990	1,723	3,013	140	410	184	5,500
1995	1,978	3,433	140	440	210	6,200
2000	2,218	3, 855	160	180	237	6, 950
Alternati	ive 2		; ; . ;	•		
1978	2,804	4, 886	120	370	320	8,500
1985	3, 077	5, 361	180	5 30	352	9,500
1990	3, 959	6, 899	200	590	452	12,100
1995	4,823	8, 406	200	650	551	14,650
2000	5,065	8, 826	230	700	579	15,400

4-2-3 Traffic volume and number of vehicles.

We have no past-trend data concerning to the unit trip production. Instead of that, the data of traffic volume and number of vehicles can be obtained, therefore the relation between the both of them will be mentioned in this chapter.

A. Number of vehicles.

The past-trend data about the number of vehicles are shown as follows:

Table 4-16 The Trend Of The Number Of Vehicles

			·		Average annual percent growth				
11	1965	1970	1975	1979	1965 - 1970	1970 - 1975	1975 - 1979		
Cars .	20975	28326	45578	65352	6.2	10.0	9.4		
Taxis	214	294	386	474	.5.5	5.6	5,3		
Lorries & vans	3211	5469	8475	- 11404	11.2	9.2	7.7		
Buses	400	512	786	1073	5.1	8.9	8.1		
Subtotal	24800	34601	55225	78303	6.9	9.8	9.1		
Motorcycles	27126	47432	89311	124984	11.8	13.5	8.8		
Total	51926	82033	144536	203287	9.6	12.0	8.9		
Population	(697653)	776124	864771	(947530)	2.2	2.2	2.3		

Note 1) excludes other vehicles

(e.g. tractors, road rollers, etc.)

- 2) Source of registration no. : R.I.M.V.
- 3) Source of population:

"population projections for the states of Peninsular Malaysia 1970 - 1980" Department of Statistics.

(B) Traffic Volume.

In Penang state, there are 25 stations for traffic census by J.K.R. These data are shown as follows:

Table 4-17 The Trend Of Traffic Volume

										
YEAR STN NO.	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979
00F6	2140	2114	2842	3409	4462	4304	4492		4994	5931-
00F7	8811	9448	10635	14261	18080		21290	_	31018	3234.
OB13	224	290	341	344	414	447	376	_	117	818
0B14	1073	1112	1306	1436	1784	1764	1969	_	2739	3009
0B15	3552	4116	4429	5262	6602	7442	8797	_	10094	10002
0056	2241	2277	3164	3535	4132	4755	5026	-	7039	8254
0006	5726	6508	7026	7346	8948	10387	10069	_	11225	11097
0007	14712	13608	14882	11787	15423	18324	18517		20001	31675
8000	9299	9725	10127	12276	13920	12711	13876	_	16622	17691
0009	5967	6926	7230	8140	10176	10239	11550	_	14534	23350
0010	7085	7920	8027	8824	9954	9296	10880	_	12435	14059
006A	9991	10462	13453	12547	11795	12229	11297	_	14238	15257
00B1	800	960	1028	1088	1464	1541	2095		2077	2992
00B3	547	850	1254	1624	743	1237	879	_	1270	1179
00B4	2048	2824	2857	3170	2569	2762	4105	_	4061	5363
00В6	457	457	467	779	1088	1001	675	-	866	1026
00B7	1203	1134	1177	1116	1567	1521	1528	-	2166	2599
00B8	1627	2121	2387	2036	2798	2703	3943	-	3716	4970
00B9	2783	3093	2956	3255	3319	3510	3908	-	4962	4603
0087	1205	1199	972	1365	1914	1979	1826	-	2699	2785
0088	8567	9819	7583	8939	9628	10541	11913	-	11649	17208
0089	4008	4480	6162	6594	7429	8666	9105	_	14487	15099
0810	481	519	1104	493	534	460	548	-	627	818
OB11	826	877	867	1129	1310	1308	1542	_	2583	2122
0B12	970	1091	970	1001	1285	1254	1245	-	3719	2018
Total	82,800 (96,343)		113,246	121,756	141,338	148,623	161,451		199,938	236,266

(): estimation

The volume of ferry traffic are as follows:

Table 4-18 Ferry Traffic In One Way Trips

(1000 persons and vehicles)

	Passenger	Bicycle	Motorcycle	Car	Truck
1965	10173.5	760.7	634.4	885.9	179.1
1966	10185.2	931.5	725.2	981.9	189.6
1967	10415.7	1047.8	905.7	997.0	203.0
1968	12622	1108	1228	1024	234
1969	12724	1048	1312	1006	246
1970	13596	1146	1464	1138	260
1971	14288	1156	1596	1236	268
1972	15748	1162	1894	1462	298
1973	16744	1216	2204	1632	342
1974	17954	1208	2596	1678	364
1975	18150	1186	2726	1970	376
1936	18586	1158	3420	2552	442
1977	19644	1084	3858	2900	486
1978	20484		4452	3210	564

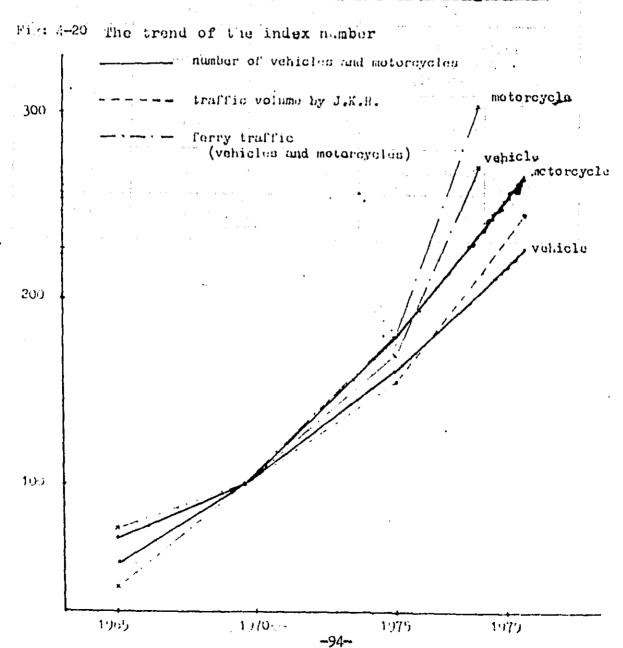
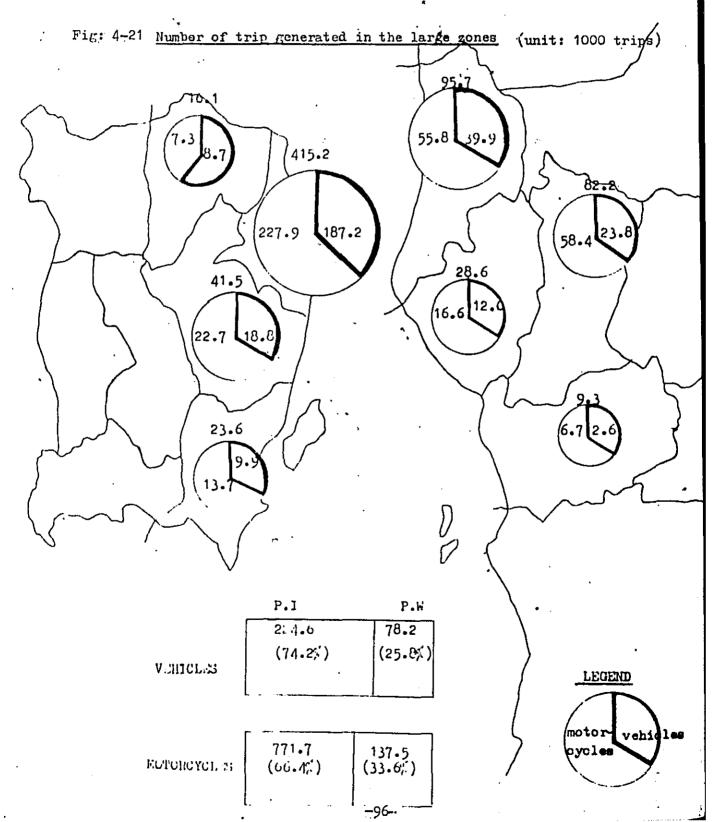

Using these data, the relationship with the number of vehicles and the traffic volume are calculated as follows:

Table 4-19 Average Annual Percent Growth

		Average annual percent growth			
		1965 - 1970	1970 - 1975	1975 - 1979	
Number	Vehicle	6.9	6.9 9.8		
of Vehicles	Motorcycle	11.8	13.5	8.8	
	Total	9.6	. 12.0	8.9	
	Traffic volume by J.K.R. (total)		9.1	12.3	
F	Vehicle	5.6	10.9	(17.2)	
e r r	Motorcycle	18.2	13.2	(17.8)	
у	Total	11.0	12.1	(17.5)	

Table 1-20 Index Number

Company of the second		Index Number				
ing a second second second second second second second second second second second second second second second	kine a sibber salah salah s	1965	1970	1975	1979	
	Vehicle	1	171.7	100	160	226
Number Of	Motorcycle	57.2	100	188	264	
Vehicles	Total	63.3	100	1-76	248	
	e volume		141(1	154	245	
F	Vehicle	76.2	100	168	(270)	
r e	Motorcycle	43.3	100	186	(304)	
r y	Total	.59,4	100	177	(287)	

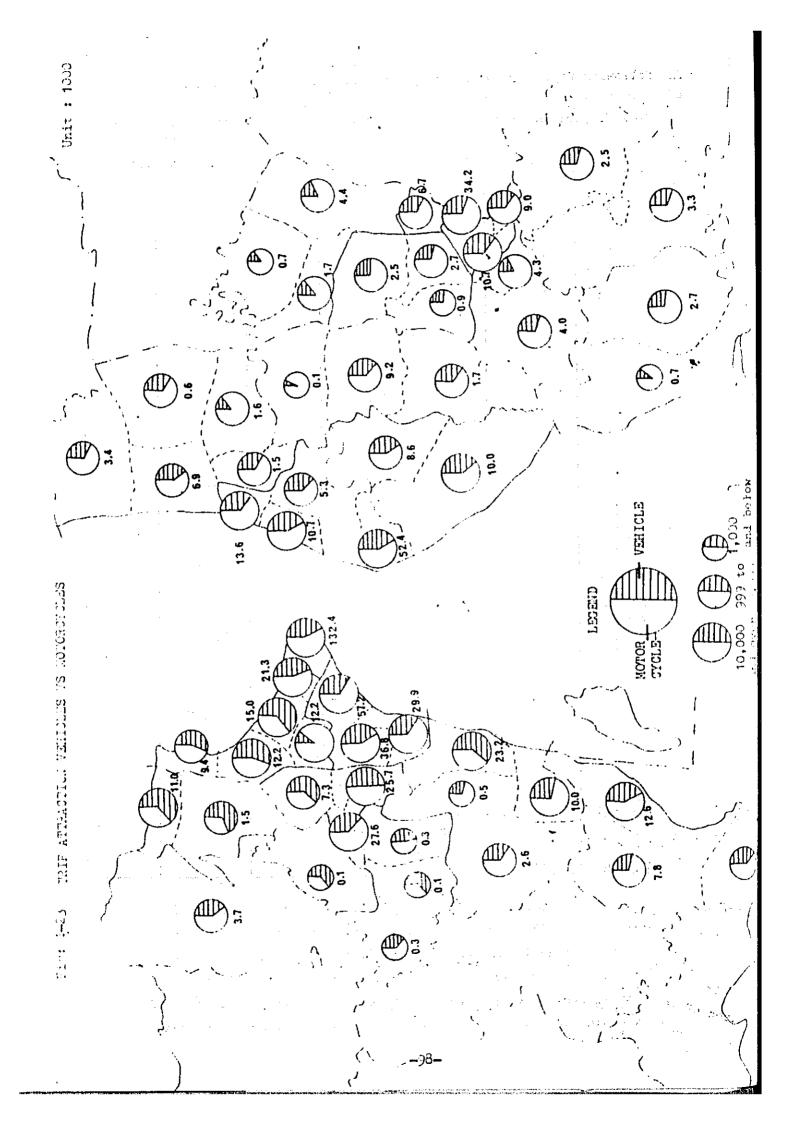

These figures show that the traffic volume are roughly following the number of vehicles excepting that the ferry traffic in 1975 - 1978 are increasing more than the increase of number of vehicles.

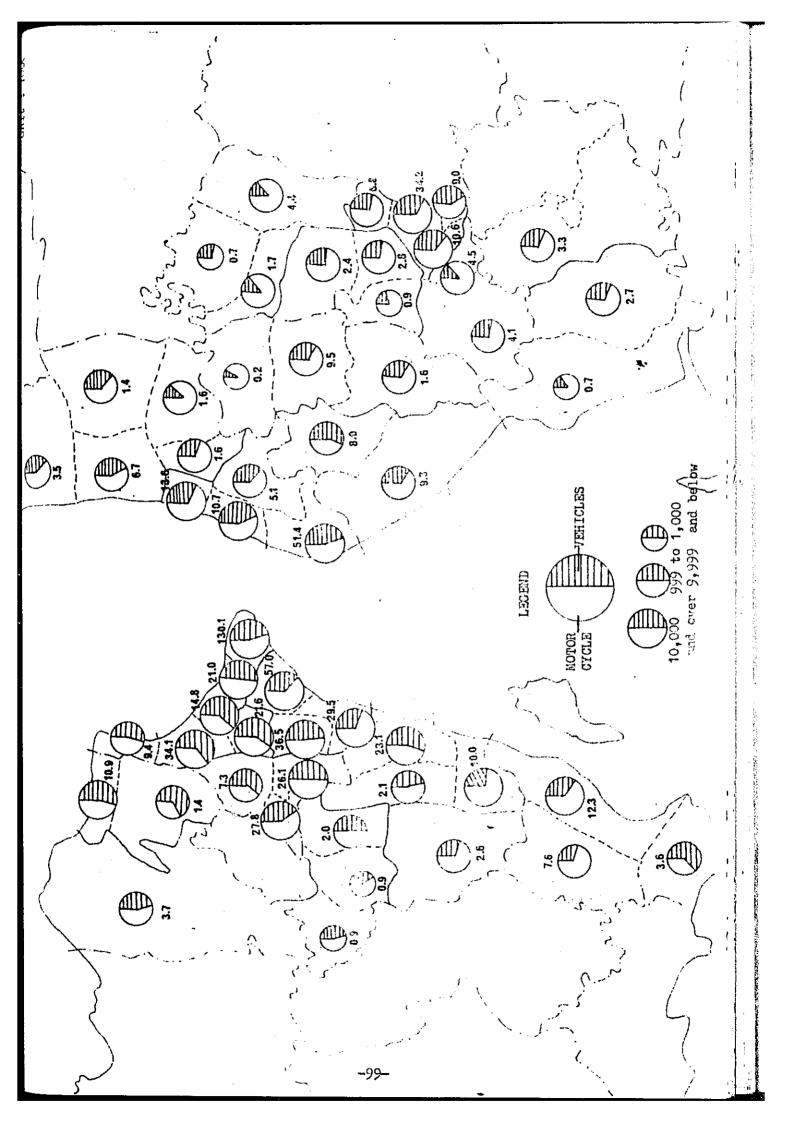
It can be said that the traffic volume up to this time increase in proportion to the number of vehicles or slightly exceed the increase of those. Therefore, it is estimated that the unit trip production is constant by year or may be slightly increased.

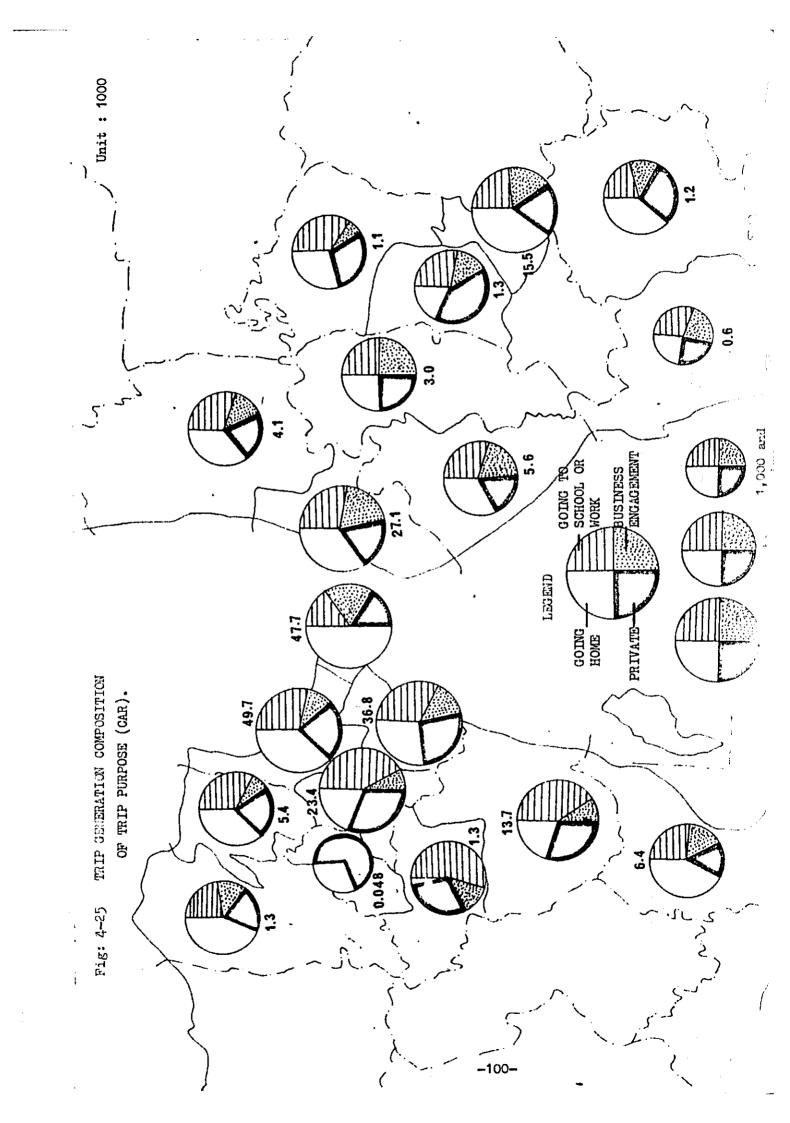
On the basis of these consideration, the unit trip production in future will be made use for the present value which were obtained though our traffic survey.

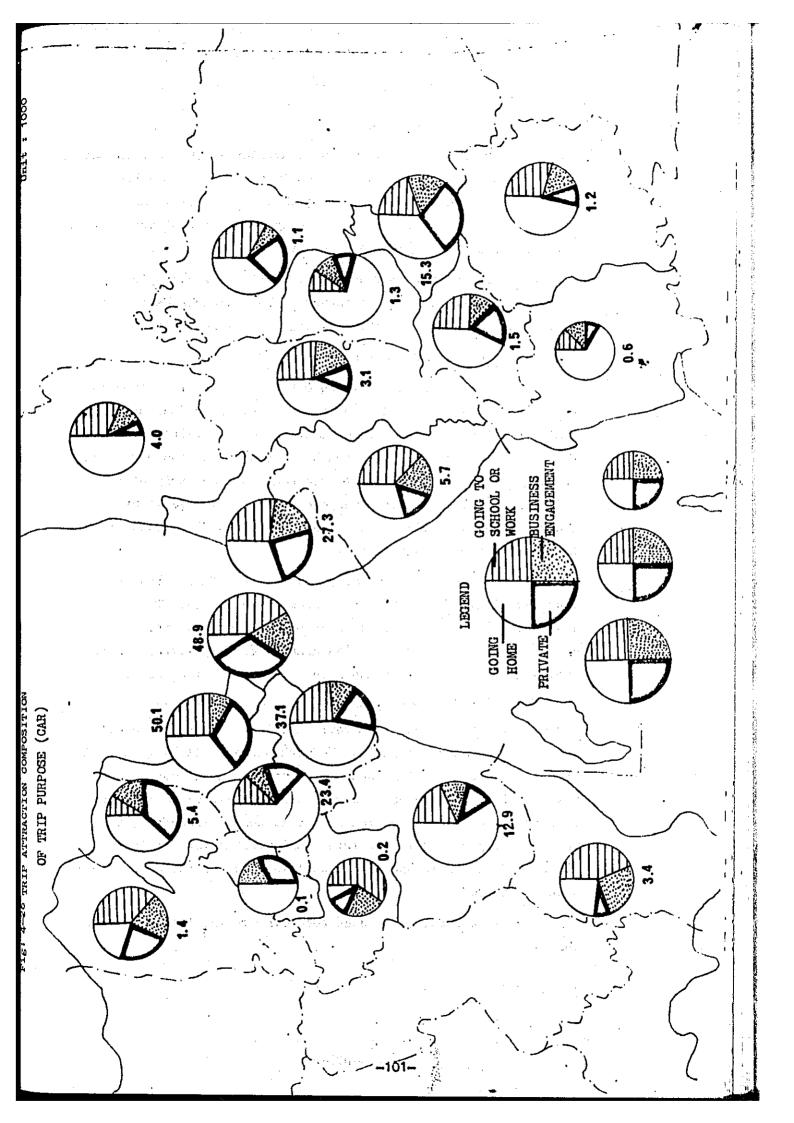
4-3-1 Trip generation and attration

The total number of trips generated from the internal area is 303,000 trips per day for vehicles and 409,000 trips per day for motorcycles. The number of trips generated in the large zones are shown in the following figure and it is remarkable that the trips generated is made up of about 62% vehicles and 50% motorcycles.




The following figure shows the comparison between the composition of trip generation and the population in the large zone.


Fig: 4-22 Comparison between the composition of trip generation and the population trip generation


	Arab Co	,				
. "	of vel.	icles	popula	ation	of motor	cycles
zone 1	61.8 %	P.I. 74.2 %	47.1	Р. I. 164.9 %	55•7 ≰	P. 1.
			3.7 ⁻⁽			
zone 2	2.9 %		3.9 %	,	1.8 % 5.6 %	
zone 3	6.2 % 3.3 %		15% (P.N.	13.6 %	P.N.
zone 5	13.1 %	P•#• 25•3 ₹	6.g ·	35-1 %	4.1 \$	53.6 %
zona 6	3.9 %		9•3 %		14.3 %	
zone 7	7.9 %		3.0	•	3.6	

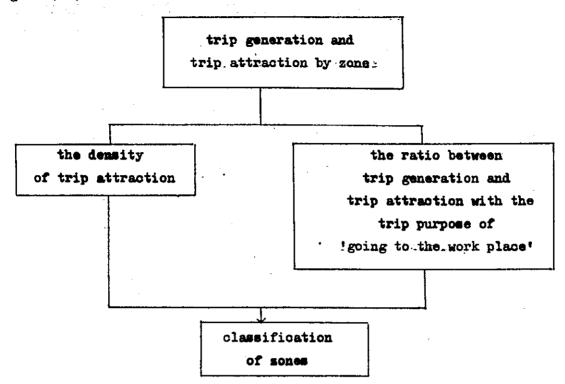
The composition of trip generation of motoroyoles is almost the same as the population. This means that the trip generation of motoroyole is almost proportional to the population, whereas the trip generation of vehicles is not proportional to the population. The reason for this is that the trip generation of vehicles is related to the degree of urbanization in the area.

4-3-2 The classification of zones

Each traffic zone has various characteristics. For instance, the commercial, the residential, the industrial and the business area come under one classification; that of land-use. High density, medium density and low density is another classification which makes use of population density.

In this section, another classification was attempted by using the results of traffic surveys. This classification is called the zone classification by traffic characteristics.

(1) Method of classification

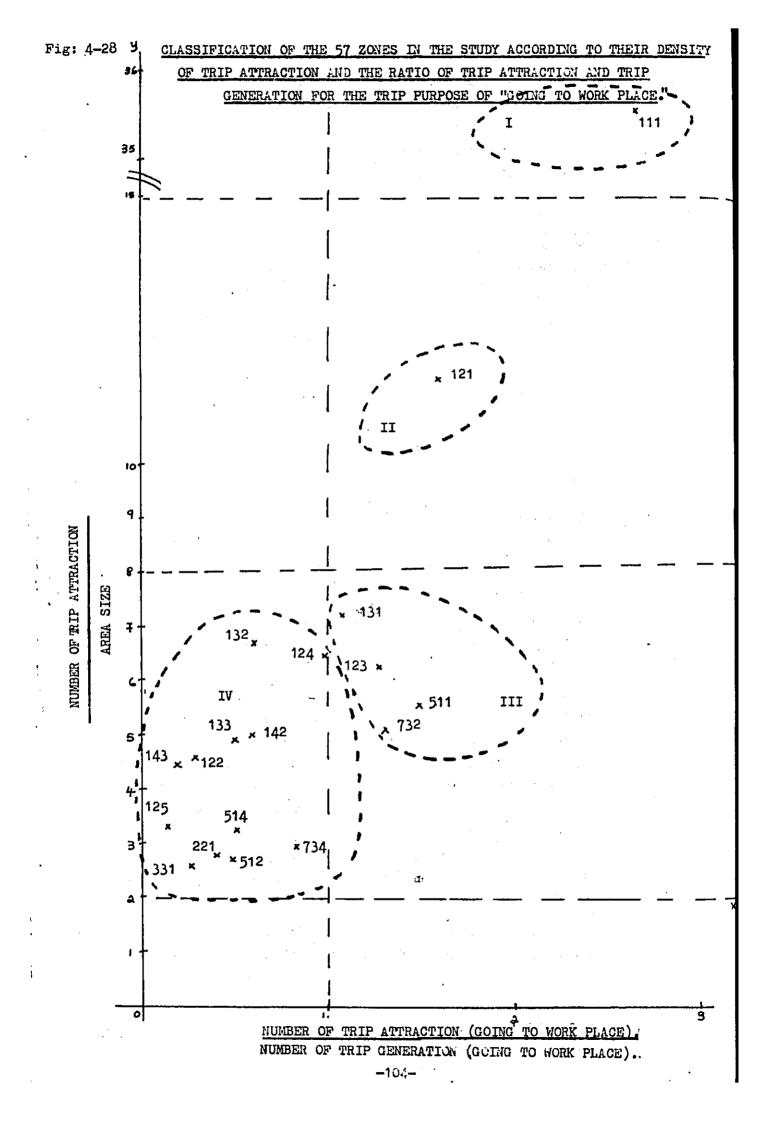

Through traffic surveys, the O-D table by vehicle type and trip purpose was obtained. The classification is done by using that O-D table. A lot of information which are related to the characteristics of the zones can be obtained from the O-D table, as for examples, the volume of trip generated and trip attracted and the composition of trip purpose which is the result of generated and attracted will be an indicator of the intensity of trip generation and attraction.

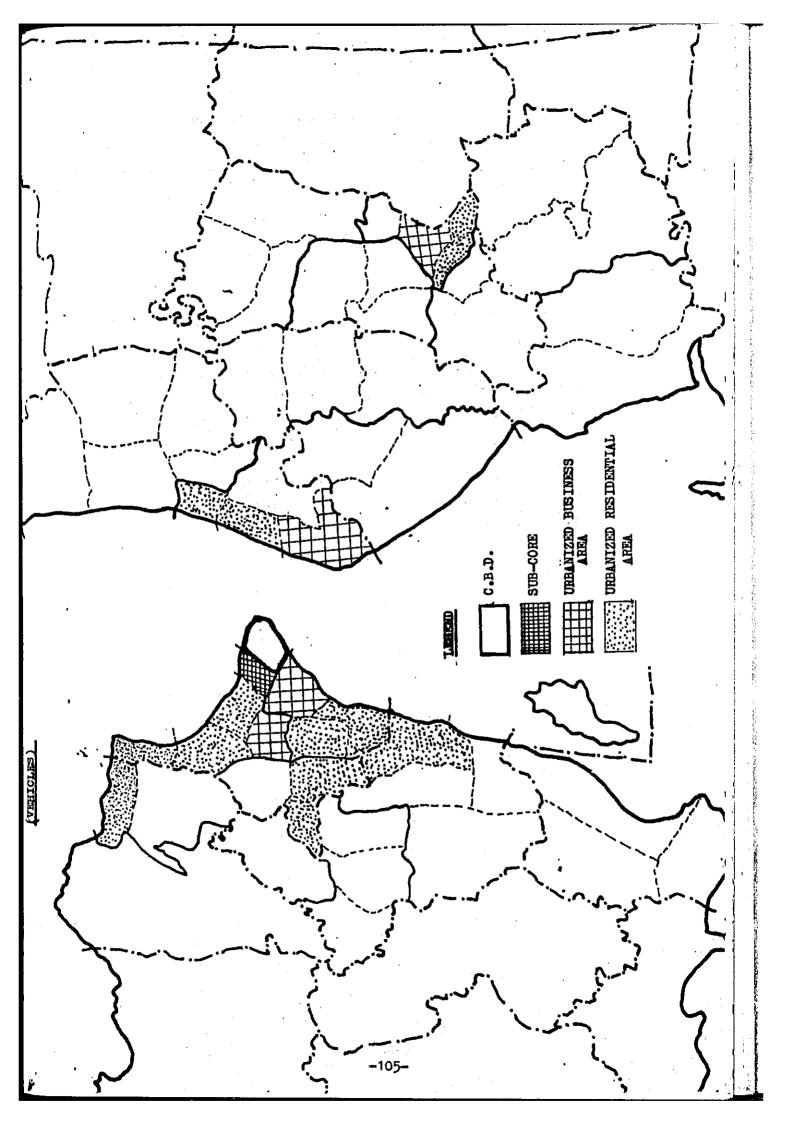
The urbanized zone has many 'attractive' facilities and they constitute the attractive forces of that zone. The more attractive the zone grow, the greater the number of trips attracted there. Therefore, the density of trip attraction is chosen as one of the indicators for classifying the zones.

Besides this, trip purpose is also useful for the classifying procedure. If the zone is a residential area, many trips with the trip purpose of 'going to the work place' will be generated from this zone and if the zone is a business area, many trips with the trip purpose of 'going to the work place' or 'business engagement' will be attracted into this zone. Therefore, the ratio of trip generation to trip attraction having the trip purpose of 'going to the work place' is used for the classification of the zones.

The classification is done according to the following flow chart.

Figure 4-27 Flow chart of zone classification.

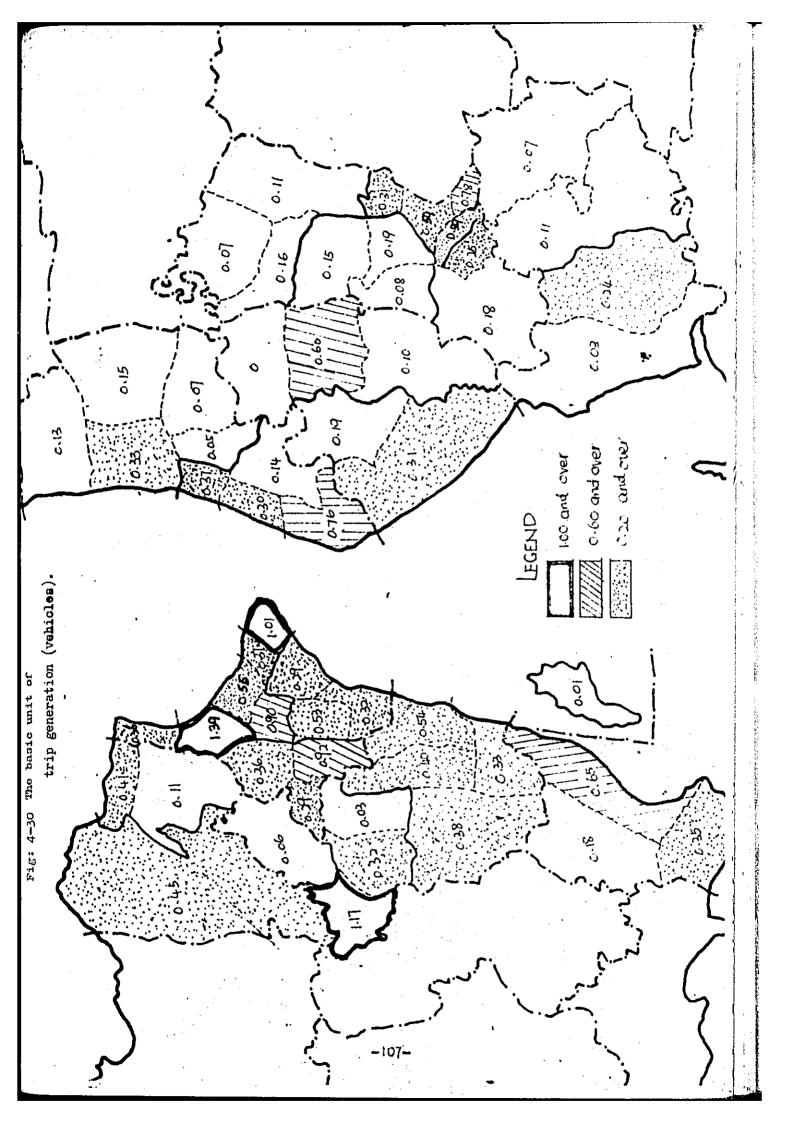

(2) The procedure of classification


Following the above-mentioned method, the graph is plotted to classify the 57 sones in the study.

The Y-axis of the graph represents the density of trip attraction by area size. The density of trip attraction is used here for zone classification because it shows us how 'attrative' that particular zone is.

The X-axis of the graph represents ratio of trip attraction to trip generation with the trip purpose of 'going to work'. If this ratio is high, it implies that a particular sone is a business area since many trips with the trip purpose of 'going to work' will be attracted to that zone. The point where the ratio of trip attraction and generation is equal to I is chosen as the line of demarcation. Thus, those zones which lie to the right of the line where x = 1 is classified as business areas while those that lie on the left is classified as residential areas.

This classification can be seen in the following graph and the results of this classification is shown in Fig. 4 - 28


The results show that this classification is appropriate. From this, it can be concluded that the volume of trip generated and trip attracted by the zones which have been obtained through traffic surveys is accurate.

4-3-3 Analysis of trip generation and attraction

Usually, the regression method and the basic unit method are used for the analysis of trip generation and attraction. In this study both these methods will be examined. After which, the suitable method and suitable explanatory variables will be chosen.

(1) The basic unit method

The basic unit of trip generation is obtained by means of dividing the trip generation by the population of each some. The results are shown in the following figure.

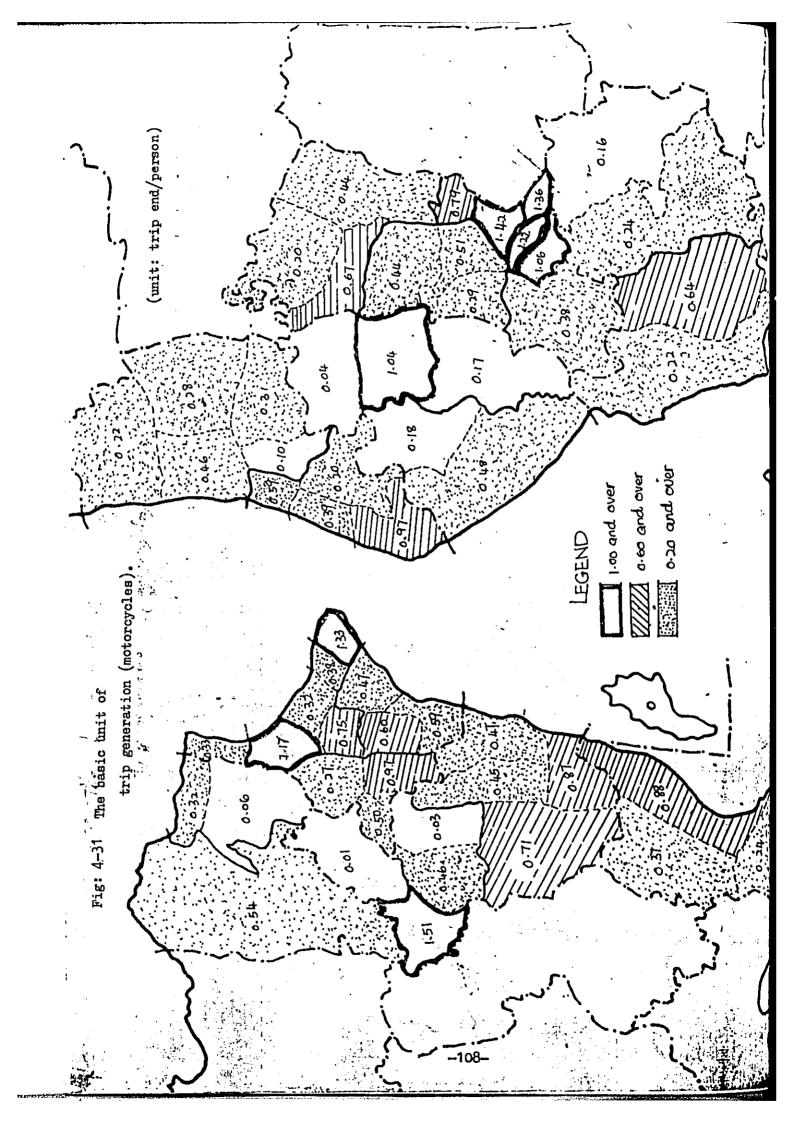


Table 4-21 Trip generation of vehicles

Zone code	Population (1979)	Carm	Cars pop.	Vehicles	Veh pop.	Motorcycles	M/o pop.
11	55,450	47,704	0.86	55,999	1.01	74,143	1.33
121	27,980	9,516	0.34	10,458	0.37	10.529	0.38
122	17,060	9,074	0.53	9,416	0.55	5,467	0.32
123	13,080	9,970	0.76	11,797	0.90	9,840	0.75
124	13,350	16,814	1.26	18,531	1.39	15,600	1.17
125	13,630	4,346	0.32	4,908	0.36	4,452	0.33
12	85,100	49,720	0.58	55,110	0.65	45,888	0.54
131	75,080	16,574	0.22	21,459	0.29	35,455	0.47
132	32,300	12,974	0.40	17,152	0.53	19,329	0.60
133	32,630	7,282	0.22	10,354	0.32	19,138	0.59
13	139,980	36,830	0.26	48,966	0.35	73,922	0.53
141	11,550	3,629	0.31	4,158	0.36	3,098	0.27
142	13,820	10,582	0.77	12,719	0.92	13,341	0.97
143	35,290	9,160	0.26	10,275	0.29	17,547	0.50
14	60,660	23,371	0.39	27,152	0.45	33,986	0.56
1	341,190	157,625	0.46	187,226	0.55	227,939	0.67
211	14,890	4,503	0.30	6,123	0.41	4,804	0.32
212	8,380	888	0.11	928	0.11	513	0.06
21	23,270	5,391	0.23	7,051	0.30	5,317	0.23
22	3,710	1,318	0.36	1,686	0.45	2,004	0.54
2	26,980	6,709	0.25	8,737	0.32	7,321	0.27
31	1,620	48	0.02	92	0.06	18	0.01
321	33,050	699	0.02	950	0.03	1,002	0.03
322	1,150	271	0.24	363	0.32	524	0.46
323	320	339	1.06	373	1.17	484	1.51
32	34,520	1,309	0.04	1,686	0	2,010	0.06
331	22,950	10,601	0.46	12,386	0.54	10,701	0.47
332	2,460	759	0.31	977	0.40	1,098	0.45

Trip generation of vehicles

.4...

Zone code	Population (1979)	Cars	Care pop.	Vehicles	Veh pop.	Motorcycles	M/o pop.
333	8,300	1,636	0.20	2,731	0.33	7,244	0.87
334	2,360	637	0.27	888	0.38	1,678	0.71
335	1,420	8	0.01	8	0.01	0	, 0
33	37,490	13,679	0.36	17,019	0.45	20,721	0.55
. 3	73,630	15,036	0.20	18,797	0.25	22,749	0.31
411	8,050	3,374	0.42	5,223	0.65	7,115	0.88
412	13,760	1,486	0.11	2,528	0.18	5 ,068 ···	0.37
413	6,060	1,535	0.25	2,137	0.35	1,448	0.24
4	27,870	6,395	0.23	9,888	0.35	13,671	0.49
sub-total	469,700	185,705	0.40	223,588	0.48	271,680	0.58
511	29,740	17,587	0.59	22,543	0.76	28,807	0.97
512	15,570	3,980	0.26	4,596	0.30	6,089	0.39
513	15,022	1,427	0.09	2,037	0.14	3,059	0.20
514	14,100	4,118	0.29	5,277	0.37	8,345	0.59
51	74,432	27,112	0.36	34,453	0.4	46,300	0.62
521	8,510	2,174	0.26	2,794	0.33	3,954	0.46
522	10,780	211	0.02	498	0.05	1,086	0.10
523	4,260	193	0.05	308	0.07	1,330	0.31
524	3,300	372	0.11	507	0.15	938	0.28
525	10,030	1,121	0.11	1,293	0.13	2,241	0.22
52	36,880	4,071	0.11	5,400	0.15	9,549	0.26
5	111,312	31,183	0.28	39,853	0.36	55,849	0.50
611	21,700	3,216	0.15	4,172	0.19	3,853	0.18
612	11,770	2,418	0.21	3,689	0.31	5,607	0.48
61	33,470	5,634		7,861	0.23	9,460	0.28
621	4,150	8	0	8	0	156	0.04
622	5,760	2,585	0.45	3,459	0.60	5,998	1.04
623	5,950	426	0.07	624	0.10	990	0.17

Trip generation of vehicles

The state of the s

Zone code	Population (1979)	Car	Car pop.	Vehicles	Veh pop.	Motorcycle	N/c pop.
62	15,860	3,019	0.19	34,091	0.26	7,144	2.22
6	49,330	8,653	0.18	114952	0.24	16,604	0.34
711	2,500	177	0.07	193	0.07	493	0.20
712	2,070	316	0.15	341	0.16	1,377	0.67
713	7,970	646	0.08	890	0.11	3,526	0.44
711	12,540	1,139°	0.09	1,424	0.11	5,396	0.43
721	4,100	545	0.13	634	0.15	1,813	0.44
722	2,420	168	0.07	200	0.08	708	0.29
723	4,020	602	0.15	760	0.19	2,064	0.51
72	10,540	1,315	0.12	1,594	0.15	4,585	0.44
731	6,170	1,524	0.25	1,911	0.31	4,873	0.79
732	17,060	8,119	0.48	9,995	0.59	24,246	1.42
733	4,200	2,932	0.70	3,282	0.78	5,696	1.36
734	5,850	2,903	0.50	3,461	0.59	7,152	1.22
73	33,280	15,478	0.47	18,649	0.56	41,967	1.26
741	3,430	636	0.19	853	0.25	3,631	1.06
742	7,420	884	0.12	1,311	0.18	2,791	0.38
74	10,850	1,520	0.14	2,164	0.20	6.422	0.59
7	67,210	19,452	0.02	23,831	0.35	58,370	0.87
811	9,650	652	0.07	1,017	0.11	2,328	0.24
812	10,710	553	0.05	774	0.07	1,745	0.16
81	20,360	1,205	0.06	1,791	0.09	4,073	0.20
821	2,870	58	0.02	77	0.03	619	0.22
822	3,080	527	0.17	744	0.24	1,975	0.64
82	~5 , 950	585	0.10	2,821	0.14	2,594	0.44
8	£26,310	÷1,790	0.07	72,612	0.10	6,667	0.25
sub-total	254,162	61,078	0.24	78,248	0.31	137,490	0.54
Total)	723,862	246,843	0.34	302,896	0.42	409,170	0.57

The basic unit of trip generation by zone is not constant, but it exhibits a certain trend, that is, the zones in the urban areas have a high besic unit while the zones in the rural areas have a low basic unit although there are some exceptions to this trend. These results show that the trip generation of a particular sone is dependent upon the character of that zone, and the character of that zone cannot be explained by only one factor. Therefore, it is advisable to use some explanatory factors in order to complete the traffic model for trip generation.

(2) The regression method

In the regression method, the least square method is used to obtain the regression equation. The regression equation consists of the explained variable and the explanatory variables. In this case, it is natural that the explained variable is the trip generation by zone while the explanatory variables make use of the following factor, i.e. the explanatory variables make use of the following factor, i.e. the explanatory and the employed population by industry etc.

For the purpose of drawing up the traffic model of trip generation, only some factors need be chosen. However, the following criteria must be observed:-

- (1) The explanatory variables for the present and also for the estimated target year must be obtained.
- (2) It has some causal relationship. The explanatory was variables must not be chosen only from the degree of openficient of correlation.

Taking into consideration the above matter, some indices of population are choosen as the explanatory variables in this study as shown in the following table:-

Table 4-22 The explanatory variables

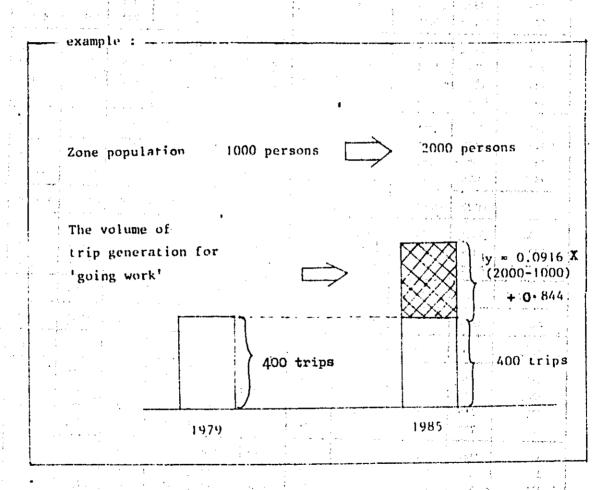
	,	Trip ger	neration	Trip a	ttraction
		Resident population	Employees	Resident population	Employees
	Trip to work	0			0
L'Ċar	Business trip		Ö		0
Car	Private trip	0	0		0
	Trip home		0	0	
Lorry			0		0
Taxi		0	0	0	0
Bus		. 0	0	0	0
Motoro	ycle	0	0	0	0,

The traffic model of trip generation and trip attraction which is drawn up by the least square method is as follows:-

Table 4-23 Trip model of trip generation and trip attraction

		Trip generation	'Trip attraction					
	Trip to work	y = 0.0916 xp + 0.844 $(R = 0.774)$	y = 0.405 x _E - 404 (R = 0.884)					
Car	Business trip	$y = 0.172 x_E - 80.7$ $(R = 0.894)$	$y = 0.172 x_E - 80.7$ $(R = 0.894)$					
Can	Private trip	$y = 0.0560 \text{ xp} + 0.0829 \text{ x}_{E}$ - 101 (R = 828)	$y = 0.250 x_E - 38.2$ (R = 0.811)					
	Trip home	$y = 0.440 x_E - 247$ (R = 0.864)	y = 0.101 xp + 177 $(R = 0.711)$					
Lorry	ÿ	$y = 0.116 x_{E} + 92.4$ (R = 0.851)						
Taxi		$y = 0.000941 \text{ xp} + 0.0186 \text{ x}_{E} - 12.$ $(R = 0.770)$						
Bus		y = 0.0242 xp 4 (R = 0.73	- 0.00728 x _E - 44.5					
Motor	rcycle	$y = 0.340 \text{ xp} + 1.01 \text{ x}_{E} - 1514.5$ (R = 0.945)						

y = trip generation or trip attraction by zone


xp = population by zone

 $\mathbf{x}_{\mathbf{E}}$ = employed population by zone

R = co-efficient of correlation

(3) Conclusion

For the model of trip generation and attraction, two methods were examined. The co-efficient of correlation of both methods show that the regression method is more suitable than the basic unit method for explaining the situation of trip generation and attraction. Therefore, the regression method was chosen for the generation/attraction model. However, the question is whether these models can explain the trip generation and attraction of each zone as each have their unique characteristics. Therefore, these model are to be used for the calculation of increasing trip generation/attraction from the year 1979 to 1935 or 2000. This is as follows:—

By using this method, present zonal characteristics will be considered.

Trip Generation (1979)

 !			CAR								
ZONE CODE	COING TO NORK	on Business	PRIVATE	COING HOME	SUB- TOTAL	LORRY	TAXI	BUS	SUB- TOTAL	MOTOR CYCLE	GRAND TOTAL
11(111)	7683	8660	8314	23047	47704	5233	1153	1909	55999	74143	130142
121	2363	1450	2346	3357	9516	613	28	301	10458	10529	20987
.12 2	3016	493	2474	3091	9074	78	24	240	9416	5467	14883
123	2567	953	2209	4241	9970	611	62	1155	11797	9840	21637
124	4746	1755	3849	6464	16814	422	162	1129	18531	15600	34131
125	1698	380	1493	775	4346	81	80	401	4908	4452	9360
12	14390	5031	12371	17928	49720	1805	356	3226	55110	45888	100998
131	4465	3141	4091	4877	16574	3149	19	1717	21459	35455	56914
132	4549	1444	3186	3795	12974	1295	69	2811	17152	19329	36481
133	2716	1070	1565	1931	7282	1973	92	1007	10354	19138	29492
13	11730	5655	8842	10603	36830	6417	180	5535	48966	73922	123888
141	1596	301	1229	503	3629	113	30	386	4158	3098	7256
142	3897	861	2717	3107	10582	313	62	1762	12719	13341	26060
143	3982	785	2631	1762	9160	423	31	661	10275	17547	27822
14	9475	1947	6577	5372	23371	849	123	2809	27152	33 9 86	61138
1	43278	21293	36104	56950	157625	14304	1812	13479	187226	227939	415615
211	1491	536	1151	1325	4503	1172	93	355	6123	4804	10927
212	119	75	224	470	888	2	8	30	928	513	1441
21	1610	611	1375	1795	5391	1174	101	385	7051	5317	12368
22(221)	278	191	280	569	1318	236	99	33	1686	2004	3690
5	1888	802	1655 ~	2364	6709	1410	200	418	8737	7321	16058
31(311)	0	0	35	13	48	٥	9	35	92	18	110
321	412	96	191	0	699	249	0	2	950	1002	1952
322	109	52	101	9	271	90		2	363	524	887
323	211	25	94	9	339	32	0	2	373	484	857
32	732	. 173	386	18	1309	371	0	6	1686	2010	3696
331	4341	840	2957	2463	10601	1098	33	653	12386	10701	23087
332	357	134	232	36	759	218	0	0	977	1098	2075
333	553	315	220	558	1646	813	11	262	2731	7244	9975
334	276	98	117	146	637	242	9	0	888	1678	2566
335	0	4	0	4	8	0	0	0	8	0	
33	5555	1391	3526	3207	13679	2371	. 53	915	17019	20721	37740
3	6287	1564	3947	3238	15036	2742.	62	956	18797	22749	41540

			CAR				<u> </u>				
ZONE CODE	GOING TO WORK	on Business	PRIVATE	going Rone	SUB- TOTAL	LORRY	TAXI	190 5	SUB LATOT	MOTOR CYCLE	CRAND TOTAL
411	909	391	469	1605	3374	1001	10	838	5223	7115	12338
412	387	278	262	559	1486	856	53	133	2528	5068	7596
413	443	251	210	631	1535	127	362	113	2137	1448	3585
4	1739	920	941	2795	6395	1984	425	1084	9888	13671	23559
Sub-total	53192	24579	42647	65347	185705	20440	2499	15937	224588	271680	496268
511	3699	4010	2910	6968	17587	3440	670	847	22543	28807	51350
512	1047	944	1107	882	3980	378	60	178	4596	6089	10694
513	278	377	299	473	1427	491	26	93	2037	3059	5096
514	1576	560	902	1080	4118	860	112	187	5277	8345	13622
51	6600	5891	5218	9403	27112	5169	868	1305	34453	46300	80753
521	626	345	234	969	2174	528	16	76	2794	3954	6748
522	99	42	48	22	211	235	0	52	498	1086	1584
523	35	48	19	91	193	92	0	23	308	1330	1638
524	124	72	88	88	372	117	0	18	507	938	1445
525	407	96	355	263	1121	81	1	90	1293	2241	3534
52	1291	603	744	1433	4071	1053	17	259	5400	9549	14949
5	7891	6494	5962	10836	31183	6222	885	1564	39853	55849	95702
611	1170	577	729	740	3216	730	38	188	4172	3873	8025
612	478	443	554	943	2418	1218	9	45	3689	5607	9296
61	1648	1020	1283	1683	5634	1948	47	233	7861	9460	17321
621	0	0	8	0	8	0	0	0	8	156	164
622	701	709	619	556	2585	768	2	105	3459	5998	9457
623	78	19	97	232	426	99	17	83	624	990	1614
62	779	728	724	788	3019	867	19	188	4091	7144	11235
6	2427	1748	2007	2471	8653	2815	66	421	11952	16604	28556
711	103	8	33	33	177	16	0	0	193	493	686
712	128	18	126	44	316	19	0	6	341	1377	1718
713	153	21	220	252	646	206	18	20	890	3526	4416
71	384	47	379	329	1139	241	18	26	1424	5396	6820
721	136	93	231	85	545	86	2	1	634	1813	2447
722	55	46	61	6	168	23	9	0	200	708	908
723	169	79	185	169	602	119	11	28	760	2064	2824
72	360	218	477	260	1315	228	22	29	1594	4585	6179

			CAR	1			1	{	1		
ZONE CODE	MORK TO MOING	on Business	PRIVATE	going Home	SUB- TOTAL	LORRY	TAXI	RUS	SUB- TOTAL	MOTOR CYCLE	GRAND TOTAL
731	252	276	485	511	1524	277	9	101	1911	4873	6784
732	1379	1116	1522	4102	8119	1374	150	353	9995	24246	34241
733	905	449	766	812	2932	290	11	49	3282	5696	8978
734	808	363	805	927	2903	361	16	181	3461	7152	10613
73	3344	2204	3578	6352	15478	2302	186	684	18649	41967	60616
741	152	86	191	207	636	54	11	152	853	3631	4484
742	308	94	223	259	884	257	5	165	1311	2791	4102
74	460	180	414	466	1520	311	16	317	2164	6422	8586
7	4548	2649	4848	7407	19452	3082	242	1056	23831	58370	82201
811	124	81	166	281	652	.240	4	122	1017	2328	3345
812	122	58	159	214	553	138	0	83	774	1745	2519
81	246	139	325	495	1205	378	4	205	1791	4073	5864
821	14	5	9	30	58	8	0	11	77	619	696
822 .	172	139	112	104	527	196	3	18	744	1975	2719
82	186	144	121	134	585	204	3	29	821	2594	3415
8	432	283	446	629	1790	582	7	234	f"2612	6667	9279
Sub-Total	15298	11174	13263	21343	61078	12701	1200	1711	78248	137490	215738
Total	68490	35753	55910	86690	246843	33141	3699	19212	302896	409170	712066

ı

ZOME CODE 11(111) 121 122 123 124 125 12 131 132		0m BUSINESS 6.65 6.91 3.31 4.40 5.14 4.06 4.96	Percent AR PRIVATE 6.39 11.18 16.62 10.21 11.28 15.95 12.25	оотно номе 17-71 16.0 20.77 19.60 18.94 8.28	SUB- TOTAL 36.66 45.34 60.97 46.08	4.02 2.9 0.52	0.89	1.47 1.43	BUB- TOTAL 43.03 49.83	MOTOR CYCLE	CRAIL TOTAL
11(111) 121 122 123 124 125 12	TO WORK 5-9 11.26 20.26 11.86 13.91 18.14 14.25 7-85	0m BUSINESS 6.65 6.91 3.31 4.40 5.14 4.06 4.96	6-39 11.18 16.62 10.21 11.28 15.95	001R0 HOME 17.71 16.0 20.77 19.60 18.94	SUB- TOTAL 36.66 45.34 60.97 46.08	4.02 2.9 0.52	0.89 0.13	1.47 1.43	BUB- TOTAL 43.03	56.97	10
11(111) 121 122 123 124 125 12	TO WORK 5-9 11.26 20.26 11.86 13.91 18.14 14.25 7-85	0m BUSINESS 6.65 6.91 3.31 4.40 5.14 4.06 4.96	6.39 11.18 16.62 10.21 11.28 15.95	17.71 16.0 20.77 19.60 18.94	36.66 45.34 60.97 46.08	4.02 2.9 0.52	0.89	1.47	43.03	56.97	100
11(111) 121 122 123 124 125 12	TO WORK 5-9 11.26 20.26 11.86 13.91 18.14 14.25 7-85	0m BUSINESS 6.65 6.91 3.31 4.40 5.14 4.06 4.96	6.39 11.18 16.62 10.21 11.28 15.95	17.71 16.0 20.77 19.60 18.94	36.66 45.34 60.97 46.08	4.02 2.9 0.52	0.89	1.47	43.03	56.97	100
11(111) 121 122 123 124 125 12	TO WORK 5-9 11.26 20.26 11.86 13.91 18.14 14.25 7-85	6.65 6.91 3.31 4.40 5.14 4.06 4.96	6-39 11.18 16.62 10.21 11.28 15.95	17.71 16.0 20.77 19.60 18.94	36.66 45.34 60.97 46.08	4.02 2.9 0.52	0.89	1.47	43.03	56.97	100
121 122 123 124 125 12	11.26 20.26 11.86 13.91 18.14 14.25	6.91 3.31 4.40 5.14 4.06 4.96	11.18 16.62 10.21 11.28 15.95	16.0 20.77 19.60 18.94	45.34 60.97 46.08	2.9 0.52	0.13	1.43			1 10
122 123 124 125 12	20.26 11.86 13.91 18.14 14.25	3.31 4.40 5.14 4.06 4.96	16.62 10.21 11.28 15.95	20.77 19.60 18.94	60.97 46.08	0.52	1		49.83	50.17	10
122 123 124 125 12	20.26 11.86 13.91 18.14 14.25	3.31 4.40 5.14 4.06 4.96	16.62 10.21 11.28 15.95	20.77 19.60 18.94	60.97 46.08	0.52	1				
123 124 125 12	13.91 18.14 14.25 7.85	4.40 5.14 4.06 4.96	11.28 15.95	19.60 18.94	P 1 1		[Uaid i	1.61	63:27	36.73	10
124 125 12 131	13.91 18.14 14.25 7.85	4.06 4.96	11.28 15.95		40.24	2.82	0.29	5-34	54.52	45.48	10
125 12 131	18.14 14.25 7.85	4.06 4.96	i	8.28	49.26	1.24	0.47	3.30	54-29	45-71	10
131	7.85	 	12.25		46.43	0.86	0.85	4.28	52.44	47.56	_{5.} :10
				17.75	49-23	1.79	0-35	3.19	54-57	45+43	-10
132	12.47	5.52	7.19	8 - 57	29.12	5-53	0.03	3.02	37.70	62.30	10
		3.96	8.73	10.40	35.56	3-55	0.19	7.71	47.02	52.98	10
133	9.21	3.63	5.31	6.55	24.697	6.69	0.31	3.41	35,11	68.89	10
13	9-55	4.60	7.20	8.63	29.97	,5.22	0.15	4.50	39.85	60,15	10
141	22.0	4.15	16.94	6.93	50.0	1.56	0.41	5.32	57.30	42.70	10
142	14.95	3.30	10.43	11.92	40.61	1.20	0.24	6.76	48.81	.51.19	10
143	4.14 -3 1	2.82	9.46	6.33	32.92	1.52	0.11	2.38	36-93	63.07	10
14	15.50	3,18	10.76	8.71	38 - 23	1.39	0.20	4.60	44.41	55-59	10
1	10.41	5.12	8.69	13.70	37 - 93	3.44	0.44	3.24	45.05	54.84	10
211	13.65	4.91	10.53	12,13	41.21	10.73	0.85	3,25	56.04	43.96	10
212	8.26	5.20	15.54	32.62	61.62	0.14	0.56	2.08	64.40	35.60	10
21	13.02	4.94	11.12	14.41	43-59	9.49	0.82	3.11	57.01	42.99	10
22(221)	7 • 53	5.18	7.59	15.42	35.72	6.40	2.68	0.89	45.69	54-31	10
2	11.75	5.0	10,31	14.72	41.78	8.78	1.25	2.60	54.41	45.59	10
32(311)	0	0	31.82	11.82	43.64	0	8.18	0.32	83.64	16.36	10
321	21.11	4.92	9.78	0	35.81	12.76	0	0.10	48.67	51.33	10
322	12.29	5.86	11.39	1.02	30.55	10.15	. 0	0.23	40.92	59.08	10
323	24.62	2.92	10.97	1.05	39.56	3-73	0	2.33	43.52	56.48	10
32	19.81	4.68	10.44	0.49	35.42	10.04	0	1.62	45.62	54.38	10
331	18.80	3.64	12.81	10.67	45.91	4.76	0,14	2.83	53.65	46.35	10
332	17.20	6.46	11.18	1.73	36.58	10.51	0	0	47.08	52.92	10
333	5-54	3.16	2.21	5-59	16.50	8.15	0.11	2.63	27.38	72.62	110
334	10.76	3.82	4.56	5.69	24.82	9.43	0.35	0	34.61	65.39	1
335	0	50	0	50	100	0	0	0	100	0	10
33	14.72	3.69	9-34	8.50	36.25	6.28	0.14	2.42	45.10	54.90	10

			CAR								
ZONE CODE	GOING TO WORK	or Or	PRIVATE	HOME GOING	BUB- TOTAL	LORRY	IXAT	BUS	BUB- TOTAL	NOTOR CYCLE	GRAND TOTAL
411	7 • 37	3.17	3.60	13.0	27.35	8.11	0.08	6.79	42.33	57.67	100
412	5.09	3.66	3.45	7.36	19.56	11.27	0.70	1.75	33.28	66.72	100
413	12.36	7.00	5.86	17.60	42.82	3-54	10.10	3.15	59.61	40.39	100
4	7.38	3.91	3.99	11.86	27.14	8.42	1.80	4.60	41.97	58.03	100
Sub-total	10.72	4-95	8.59	13.17	37.42	4.12	0.50	3.21	45.26	54.74	100
511	7.20	7.81	5.67	13.57	34.25	6.70	1.30	1.65	43.90	56.10	100
512	9-79	8.83	10.35	8.25	37.22	3.53	0.56	1.66	42.98	56.94	100
513	5.46	7.40	5.87	9.28	28.00	9.64	0.51	1.82	39.97	60.03	100
514	11.57	4.11	6.62	7.93	30.23	6.31	0.82	1-37	38.74	61.26	100
51	8.17	7.30	6.46	11.64	33-57	6.40	1.07	1.62	42.66	57-34	100
521	9.28	5.11	3-47	14.36	32.22	7.82	0.24	1.13	41.40	58.60	100
522	6.25	2.65	3.03	1.39	13.32	14.83	0	3.28	31.44	68.56	100
523	2.14	2.93	1.16	5.56	11.78	5.62	0	1.40	18.80	81.20	100
524	8.58	4.98	6.09	6.09	25.74	8.10	0	1.25	35.09	64.91	100
525	11.52	2.72	10.05	7-44	31.72	2.29	0.03	2.55	36.59	63.41	100
52	8.64	4.03	4.98	9.59	27.23	7.04	0,11	1.73	36,12	63.88	100
5	8.25	6.79	6.23	11.32	32.58	6.50	0.92	1.63	41.64	58.36	100
611	14.58	7.19	9.08	9.22	40.07	9,10	0.47	2.34	51.99	48-01	100
612	5.14	4-77	5.96	10.14	26.01	13,10	0,10	0.48	39.68	60.32	100
61	9.51	5.89	7.40	9.72	32.53	11.25	0.27	1.35	45.38	54.62	100
621	0 '	0	4.88	0	4.88	0	o	0	4.88	95.12	100
622	7.41	7.50	6.55	5.68	27.33	8.12	0.02	1.11	36.58	63.42	100
• 623	4.83	1.18	6.01	14.37	26.39	6.13	1.05	5-14	38.66	61.34	100
62	6.93	6.48	6.44	7.01	26.87	7.72	0.17	1.67	36.41	63.59	- 100
6	8.50	6.12	7.03	8.65	30.30	9.86	0.23	1.47	41.85	58.15	100
711	15.01	1.17	4.81	4.81	25.80	2-33	٥	0	28.13	71.87	100
712	7 - 45	1.05	7-33	2.56	18.39	1.11	0	0.35	19.85	80.15	100
713	3-46	0.48	4.98	5-71	14.63	4.66	0.41	0.45	20.15	79.85	100
71	5.63	0.69	5.56	4.82	16.70	3.53	0.26	0.38	20.88	79.12	100
721	5.56	3.80	9.44	3-47	22.27	3.51	0.08	0.04	25.91	74.09	100
722	6.06	5.07	6.71	0.66	18.50	2+53	0.99	0	22.03	77.97	100
723	5-98	2.80	6.55	5.98	21.32	4.21	0.39	0.10	26.91	73.09	100
72	5.83	3.53	7.72	7.21	21.28	3.69	0.36	0.47	25.80	74.20	100

: '			CAR]			<u> </u>		
ZONE CODE	MOUNG TO MOUNG	on Bosiness	PRIVATE	HOME GOING ,	SUB- TOTAL	LORRY	TAXI	BUS	SUB- TOTAL	MOTOR	ORAND TOTAL
731	3.71	4.07	7.15	7.53	22.50	4.08	0.13	1.49	28.20	71.80	100
732	4.03	3.26	4.44	1.98	23.71	4,01	0.44	1.03	29.19	70.81	100
733	10.08	5.00	8.53	9.04	32.66	3.23	0.12	0.55	36.56	63.44	100
734	7.61	3.42	7-59	8.73	27-39	3.40	0.15	1.71	32.61	67.39	100
73	5.52	3.64	5.90	10.48	25.53	3.80	0,31	1.13	30.77	69.23	100
741	3.39	1.92	4.26	4.62	14.18	1.20	0.25	3.39	19.02	80.98	100
742	7.51	2.29	5-44	6.31	21.55	6.27	0.12	4,02	31.96	68.04	100
74	5.36	2.10	4.82	5-43	17.70	3.62	0.19	3.70	25.20	74.80	100
7 :	5.53	3,22	5.90	9.01	23.66	3.75	0.29	1.28	28.99	71.01	100
811	3.71	2.42	4.96	8.40	19.49	7.17	0.12	3.65	30.40	69.60	100
812	4.84	2.30	6.31	8.50	21.95	5.48	0	3.30	30.73	69.27	100
81	4.20	2.37	5+54	8.44	20.55	6.45	0.07	3-50	30.54	69.46	100
821	2.01	0.72	1,29	4.31	8.33	1.15	0	1.59	11.06	88.94	100
822	6.33	5,11	4.12	3.82	19.38	7.21	0.11	0.66	27.36	72.64	100
82	5-45	4.22	3.54	3.92	17.13	5.97	0.09	0.85	24.04	75.96	100
8	4.66	3.05	4.81	6.78	19.29	6.27	0.08	2.52	28.15	71.85	100
Sub-total	7.09	5.18	6.15	4.89	28.31	5.89	0.56	7-93	36.27	63.73	100
Total	9.62	5.02	7.85	12.17	34.67	4.65	0.52	2.70	42.54	57.46	100

Trip Attraction (1979)

			CAR			************				-:	·
ZOHE CODE	COING TO WORK	eeshisne No	PRIVATE	GOING HOME	SUE- TOTAL	LORRY	TAXI	BUS	SUB- TOTAL	MOTOR CYCLE	GRAND TOTAL
- 11(111)	21201	10136	13329	4237	48912	5330	1028	1855	57124	75240	132364
121	3523	1048	2098	2943	9619	661	36	302	10613	10661	21274
122	744	324	3468	4676	9220	86	22	211	9536	5415	14951
123	3384	805	3124	2686	10001	664	73	1182	1924	10236	12160
124	4705	1742	4981	5540	16971	476	155	1115	18715	16058	34773
125	236	355	793	2909	4297	82	111	415	4908	4462	9370
12	12592	4274	14464	18754	50108	1969	397	3225	5696	46832	102528
131	4903	2232	3074	6417	16630	3302	37	1724	21695	35547	57242
132	2759	1109	2476	6617	12967	1324	73	2664	17031	19747	36778
133	1331	912	1371	3928	7547	2000	101	1095	0742	19130	29872
13	8993	4253	6921	16962	37144	6626	211	5483	49468	74424	123892
141	233	276	495	2562	3571	102	31	416	, 4119	3181	7300
142	2229	. 821	2042	5524	10619	332	76	1731	12762	12933	25695
143	738	617	1728	6148	9227	378	32	633	10271	17344	27615
14	3200	1714	4264	14234	23417	812	13 9	2780	27152	33458	60610
1	45986	20377	38979	54187	159581	14737	1775	13343	89440	229954	419394
211	586	788	1033	2098	4511	1239	116	387	6256	4782	11038
212	18	69	690	75	853	39	8	30	931	542	1473
21	604	857	1723	2173	5364	1273	12:	417	7187	5324.	12511
22(221)	460	329	334	241	1366	233	9.	33	1722	2026	3748
2	1064	1186	2057	2414	6730	1511	22:	450	8919	7350	16269
31(311)	0	11	17	29	56	0	9	35	101	43	144
321	46	43	12	9	110	37	0	2	148	163	311
322	30	11	0	٥	41	0	6	0	41	36	דר
323	61	0	9	0	70	16	6	2	88	169	257
32	137	54	21	9	221	53	ن	4	277	368	645
331	2249	673	1426	6237	10594	1100	43	683	12419	10790	23209
332	79	3	9	٥	91	57	9	2	150	367	517
333	342	416	192	684	1636	779	74	263	2704	7205	9909
334	100	74	63	383	620	283	9	0	913	1680	2593
335	0	4	0	4	8	0	0	0	8	٥	8
33	2770	1170	1690	7308	12949	2219	76	948	16194	20042	36236
3	2907	1235	1728	7346	13226	2272	85	987	16572	20453	37025

	· .	16. j. j. e 4 . e .	CAR	• • • • • • • • • • • • • • • • • • •			TAXI	BUS	The state of the s	F 12 1	art ,
ZONE CODE	GOING TO WORK	ON BUSINESS	PRIVATE	HOME	SUB- TOTAL	LORBY			SUB- TOTAL	CYCLE	GRAND TOTAL
411	1645	739	187	849	3421	978	.15	896	5308	7329	12637
412	473	368	259	470	1574	869	- 64	115	2624	5151	7775
413	443	560	384	221	1617	49 _.	352	94	2111	1384	3495
4	2561	1667	830	1540	6612	1896	431	1105	10043	13864	23907
SUB-TOTAL	52518	24465	43594	65487	186149	20416	2513	15836	224974	271621	496595
5 511 Te	5172	4494	4979	3215	17854	3431	671	855	22809	29567	52376
512	611	661	587	2189	4045	346	. 60	180	4630	6092,	10722
513	619	503	212	171	1501	460	28	93	2085	3217	5302
514	785	522	652	1985	3937	874	109	183	5107	8447	13554
51	7187	6180	6430	7560	27337	5111	868	13115.	34631	47323	81954
521	1006	335	132	859	2326	541	16	87	2972	3941	6913
522	18	12	; o	162	192	187	0	50	430	1115	1545
523	44	33	31	83	189	60	0	21	270	1359	1629
524	29	14	25	65	132	24	٥ ا	14	170	393	563
525	73	74	134	841	1120	81	3	90	1294	2057	3351
52	1170	468	322	2010	3959	893	19	262	5136	8865	14001
5	8357	6648	6752	9570	31296	6004	887	1573	39767	56188	95955
611	729	553	410	1579	3267	679	56	192	4193	4401	8594
612	1440	543	171	307	2459	1273	9	48	3787	5766	9553
61	2169	1096	581	1886	5726	1952	65	240	.980	10167	18147
621	o	0	o	8	8	0	0	0	8	140	148
622	686	503	. 289	1173	2651	756	2	103	3507	5727	9234
623	167	67	64	132	425	58	9	85	576	1094	1670
62	853	570	353	1313	3084	814	11	188	4091	6961	11052
6	3022	1666	934	3199	8810	2766	76	428	2071	17128	29199
711	102	2	12	o	116	16	0	0	132	585	
712	88	٥	16	204	307	19	0	6	332	1348	1680
713	180	70	185	231	668	212	18	20	915	3522	4437
71	370	72	213	435	1091	247	18	26	1379	5455	6834
721	60	68	18	396	542	110	2	1	654	1811	
722	3	2	9	154	168	39	9	0	215	677	1
723	89	43	73	403	610	103	10	28	752	1993	
72	152	113	100	953	1320	252	21	29	1621	4481	6102

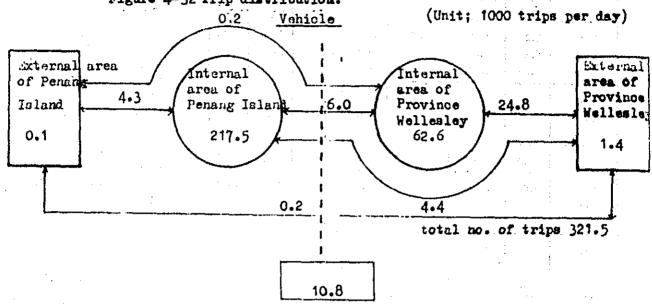
			CAR	, .		,		BUS	SUB- TOTAL	MOTOR CYCLE	
ZONE CODE	GOING TO WORK	eezhieje Om	PRIVATE	COING HOME	SUB- TOTAL	LORRY	TAXI				GRAND TOTAL
731	249	202	350	652	1448	320	2	111	1878	4795	6673
732	1802	1423	3030	1783	8036	1283	167	340	9827	24356	34183
733	469	356	462	1601	2888	330.	13	43	3275	5661	8936
734	675	391	576	1303	2879	405	16	186	3486	7222	10708
73	3195	2372	4358	5339	15251	2338	198	680	18466	42034	60500
741	123	78	130	308	640	54	11	154	857	3471	4328
742	··· 250	108	137	387	880	262	5	162	1309	2690	3999
74	373	186	267	695	1520	316	16	316	2166	6161	8327
7	4090	2743	4938	7422	19182	3153	253	1051	23632	58131	81763
811	194	79	101	266	637	247	4	127	1015	2328	3343
812	139	22	74	295	531	174	2	81	789	1715	2504
81	333	101	175	561	1168	421	6	208	1804	4043	5847
821	20	10	0	37	66	8	0	11	. 85	617	702
822	53	66	37	382	536	192	3	17	748	1991	2739
82	73	76	37	419	602	200	3	28	833	2608	3441
8	406	177	212	980	1770	621	9	236	2637	6651	9288
BUB-TOTAL	15875	11234	12836	21171	61078	12544	1225	3151	78107	138098	216205
TOTAL	68393	35699	56430	86658	247227	20416	3738	18987	303054	409719	712773

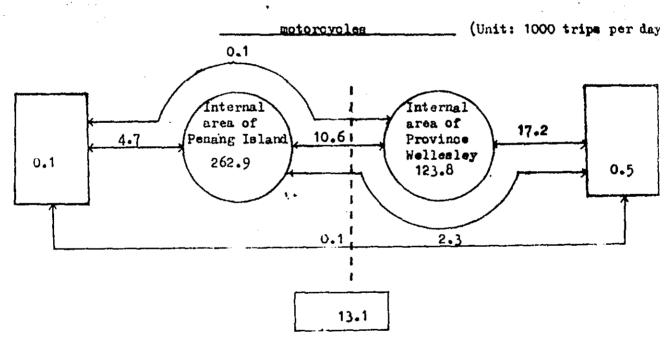
•

.

.

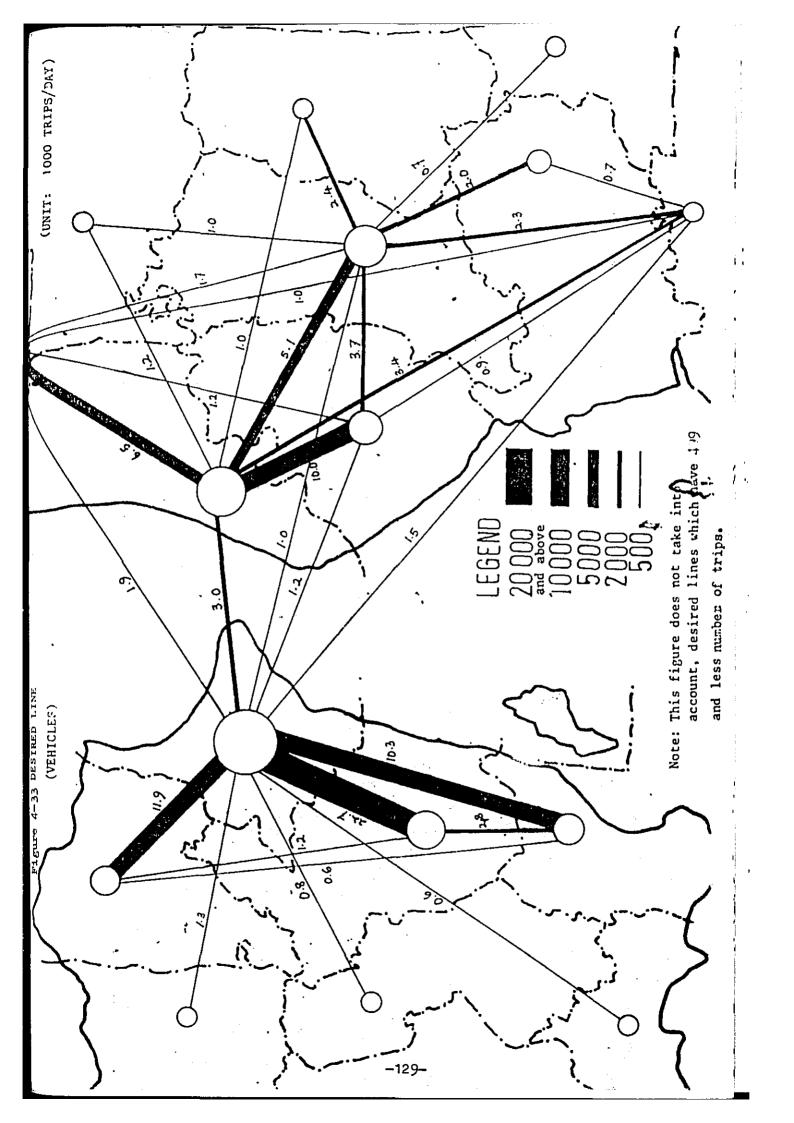
The Percentage of Trip Attraction (1979)

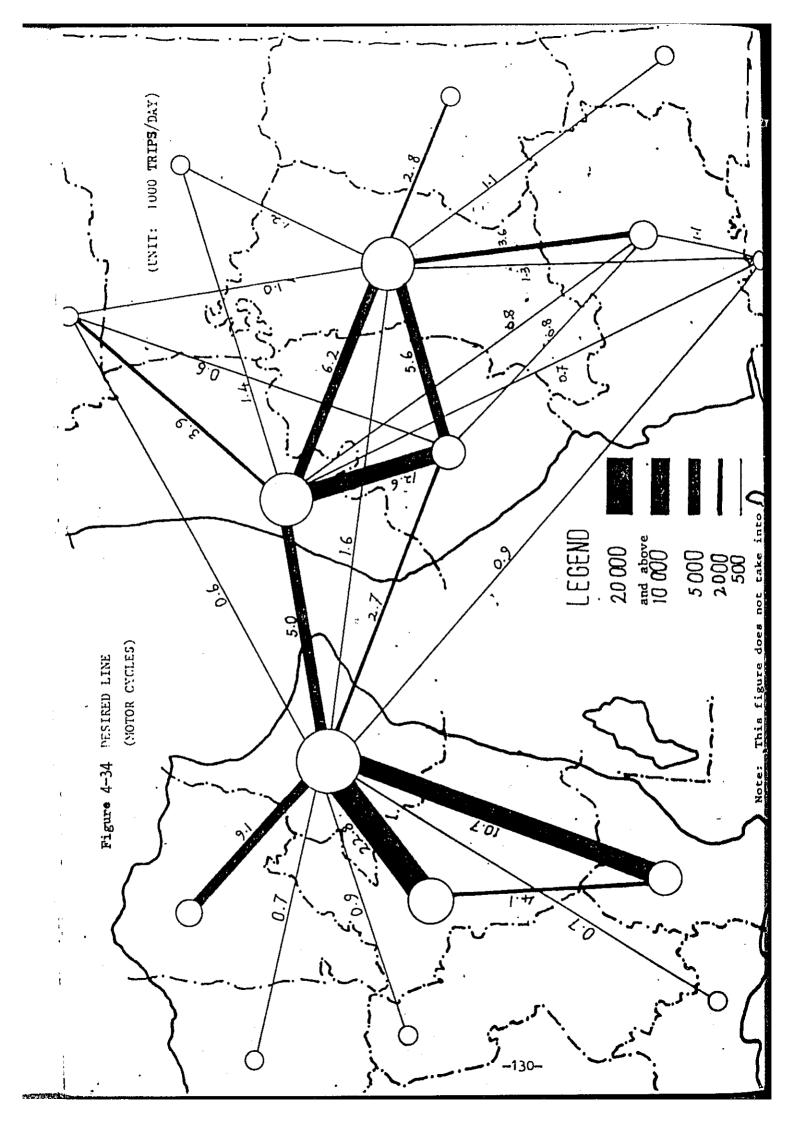

	1		CAR	į				,			
ZONE CODE	COING TO WORK	on Business	PRIVATE	HOME	SUB- TOTAL	LORRY	TAXI	BUS	SUB TOTAL	MOTOR CYCLE	GRAND
11(111)	16.01	7.66	10.07	3.20	36.95	4.03	0.78	1.40	43.16	56.84	100
121	16.56	4-93	9.86	13.83	45.27	3.11	0.17	1.42	49.89	50.11	100
122	4.98	2.17	23.20	31.28	61.67	0.58	0.15	1.41	63.78	36.22	100
123	27.83	6.62	25.69	. 22.09	82.25	5.46	0.60	9.72	15.82	84.18	100
124	13.53	5.00	14.32	15.93	48.81	1.37	0.45	3.21	53.82	46.18	100
125	2.52	3.79	8.46	31.05	45.86	0.88	1.18	4-43	52.38	47.62	100
12	, 12.28	4.17	14.11	18.29	48.87	1.92	0.39	3.13	54.32	45.68	100
131	8.57	3.90	5.37	11-21	29.05	5-77	0.06	3.01	: 37.90	62.10	100
132	7.50	3.02	6.73	17-99	35.26	3.60	0.20	7-24	46.31	53.69	100
133	4.46	3.05	4 59	13.15	25.26	0.67	0.34	3.67	35.96	64.04	100
	7.26	3-43	5•59	13.69	29.98	5-35	0.17	4.42	39.93	60.07	100
141	3.19	3.78	6.78	35.10	48.92	1.40	0.42	5.70	56.42	43.58	100
142	8.67	3-20	7-95	21.50	41.33	1.30	0.30	6.74	49.67	50.33	100
143	2.67	2,23	6.26	22.26	33-41	1-37	0.12	2.30	37-19	62.81	100
14	5.28	2.83	7.04	23.48	38.64	1.34	ز2,0	4.58	: 44.80	55.20	100
1	10.96	4.86	9.29	12.92	38.05	3.51	0.42	3.17	: 45.17	54.83	100
211	5.31	7.14	9.36	19.01	40.87	11.22	1.05	3.51	56.68	43.32	100
212	1.22	4.68	46.84	5.09	57.91	2.65	0.54	2.04	63.20	36.80	100
21	4.83	6.85	13.77	17-37	42.87	10.22	0.99	3.33	. 57 • 45	42.55	100
22(221)	12.27	8.78	8.91	6.43	36.45	6.22	5.61	0.88	45.94	54.06	100
2	6.54	7.29	12.64	14.84	41.37	9.29	1,36	2.70	54.82	45.18	100
- 31(311)	0	7.64	11.81	20.14	38,89	0	6.25	24.31	70.14	29.86	100
321	14.79	13.83	3.86	2.89	35.37	11.90	0	0.64	47.59	52.41	100
322	38.96	1.:.29	0	0	53.25	0	0	0	53.25	46.75	100
323	23.74	0	3.50	0	27.24	6.23	0	0.78	34.24	65.76	100
32	21.24	8.37	3,26	1.40	34.26	8.22	G :	0.620	42.95	57.05	100
331	9.69	2.90	6.14	26.87	45.65	4.74	0.19	2.94	53.51	46.49	100
332	15.28	0.58	1.74	.0	17.60	11.03	o	0.39	29.01	70.99	100
333	3 45	4.2	1.94	6.9	16.5	7.86	0.24	2.65	27.29	72.71	100
334	3.86	2.85	2.43	14-77	23.91	10.91	0.35	0	35.21	64.79	100
335	0	50	0	50	100	0	lo .	0	100	0	100
33	7.64	3.23	4.67	0.17	5.74	6.12	0.21	2.62	44-7	55.3	100
3	7.85	3.36	4.67	19.84	35.72	6.14	0.23	2.67	.44.76	55.24	100


							,				
			CAR							i	f
ZONE CODE	MOBK 10 COING	on Business	PRIVATE	COING HOME	SUB- TOTAL	LORRY	TAXI	BUS	SUB- TOTAL	MOTOR CYCLE	TOTAL
411	13.02	5.85	1.48	6.72	27.07	7.74	0.12	7.09	42	57-99	99-99
412	6.08	4.73	3•33	6.05	20.24	11.18	0.62	1.48	33-75	66.25	100
413	12.68	16.02	10.00	6.32	46.27	1.40	10.07	2.69	60•4	39.6	100
4	10-71	6.97	3-47	6.44	27.66	7-93	1.8	4.60	42	57 - 99	99•99
SUB-TOTAL	10.58	4•93	8.78	13-19	37•49	4.11	0.51	3.19	45•3	54•7	100
511	9.87	8.58	9.51	6.14	34.09	6.55	1.28	1.63	43-55	56.45	100
512	5.7	6.16	5-47	20.42	37-73	3.23	0.56	1.68	43.18	56.82	100
513	11.67	9.49	4 .	3.26	28.31	8.68	0.53	1.75	39.32	60.68	100
514	5-79	3.85	4.81	14.65	29.05	6.45	0.8	1.35	37.68	62.32	100
51	8.77	7 • 54	7.85	9-22	33-36	6.24	1.06	1.60	42.26	57-74	100
521	14.55	4.85	1.91	12.43	33.65	7.83	0.23	1.26	42.99	57.01	100
522	1.17	0.77	0	10.49	12.43	12.10	0	3.24	27.83	72.17	100
523	2.7	2.03	1.9	5.1	11.6	3.68	0	1.29	16.57	83.43	100
524	5.15	2.49	4-44	11.55	23.45	4.26	٥	2.49	30.2	69.8	100
525	2.18	2.21	4	25.1	33-42	2.42	0.1	2.69	38.62	61.38	100
52	8.36	3+34	2.3	14.36	28.28	6.38	0.14	1.87	36.68	63.32	100
5	8.71	6.93	7.04	9-97	32.62	6.25	0.92	1.57	41-44	58.56	100
611	8.48	6.43	4-77	18.37	38.01	7.90	0.65	2.23	48.79	51.21	100
612	15.07	5.68	1.79	3.21	25•74	13+33	0.09	0.50	39.64	60.36	100
61	11.95	6.04	3.2	10.39	31.55	10.76	0.36	1.32	43.97	56.03	100
621	0	0	0	5.41	5.41	o	0	0	5.41	94.59	100
622	7-43	5.45	3.13	12.7	28.71	8.19	0.02	1,12	37.98	62.02	100
623	10	4.01	3.83	7.9	25-45	3-47	0.54	5.09	34-49	65.51	100
62	7.72	5,16	3.19	11.88	27.9	7-37	0.1	1.70	37.02	62.98	100
6	10.35	5.71	3.2	10.96	30.17	9-47	0.26	1.33	41-34	58.66	100
711	14.23	0.28	1.67	0	16.18	2.23	0	0	18.41	81.59	100
712	5.24	0	0.95	12.14	18.27	1.13	0	0.36	19.76	80.24	100
713	4.06	1.58	4.17	5.21	15.06	4.78	0.41	0.45	20.62	79.38	100
71	5.41	1.05	3.12	6.37	15.96	3.61	0.26	0.38	20.18	79.82	100
721	2.43	2.76	0.73	16.06	21.99	4.46	0.08	0.04	26.53	73.47	100
722	0.34	0.22	1.01	17.26	1	4-37	1.01	0	24.1	75-9	100
723	3.24	1.57	2.66	14.68	1	3.75	0.36	1.02	27.4	72.6	100
72	2.49	1.85	1.64	15.ć.	,	4+13	0.34	0.48	26.57.	73-43	100
731	3.73	3.03	5.25	9.77	21.7	4.80	0.03	1.66	28.14	71.86	100

ZONE CODE			CAR			,	TAXI	BUS	SUB- TOTAL	MOTOR	GRAND TOTAL
	COING TO HORK	on Business	PRIVATE	HOME	SUB- TOTAL	LORRY					
733	5.25	3.98	5.17	17.92	32.32	3.69	0.15	0.48	36.65	63.35	100
734	6.3	3.65	5.38	12.17	26.89	3.78	0.15	1-74	32.56	67.44	100
73	5.28	3.92	7.20	8,82	25.21	3.86	0.33	1.12	30.52	69.48	100
741	2.84	1.80	3.00	7.12	14.79	1.25	0.25	3.56	19.80	80.20	100
742	6.25	2.70	3.43	9.68	22.01	6.55	0.13	4.05	32.73	67.27	100
74	4.48	2.23	3.21	8.35	18.25	3.79	0.19	3-79	26.01	73-99	100
7 .	5.00	3.35	6.04	9.08	23.46	3.86	0.31	1.25	28.90	71.10	100
811	5.80	2.36	3.02	7.96	19.05	7.39	0.12	3,80	30.36	69.64	100
812	5.55	0.88	2.96	11.78	21.21	6.95	0.08	3.23	31.51	68.49	100
81	5.70	1-73	2.99	9-59	19.98	7.20	0.10	3.56	30.85	69.15	100
821	2.85	1.42	0	5,27	9.40	1.14	o	1.57	12.11	89.89	100
822	1.94	2.41	1.35	13.95	19.57	7.01	0.11	0.62	27.31	72.69	100
82	2.12	2.21	1.08	12.18	17-49	5.81	0.09	0.81	24.21	75-79	100
8	4.37	1.91	2,28	10.55	19.06	6.69	0.10	2.54	28.39	71.61	100
latot-aue	7.34	5.20	5.94	9.79	28.25	5.80	0.57	1.46	36.13	63.87	100
TOTAL	9.60	5.01	7.92	12.16	34.69	2.86	0.52	2.66	42.52	57.48	100

4-4 Analysis of Trip Distribution.


The trip distribution in this study area is as follows:-Figure 4-32 Trip distribution.



total no. of trips 422.4

The desired line can be seen in the following fig. It shows that in Penang Island, radial traffic which concentrates into large zone 1 (George Town City) is conspicuous and contribute to a large part of the traffic in Penang Islan, while in Province Wellesley, traffic which go to and return from sone 5 (Butterworth), zone 6 (Prai area) and zone 7 (Bukit Mertajam) form a triangular traffic flow.

4-4-1 The territory of traffic flow

From the O - D table by trip purpose, it is possible to know the territory of traffic flow formed.

The figures no. 4-34 to show this are drawn by the following method.

Method for classification of the territory Figure 4-35 of traffic flow. Calculate the percentage of trips generated within each zone pair. 10% to 19% 20% and more of trips generated of trips generated joined with joined with lines. dotted lines confirmation of the territory

The following figures number 4-35, 4-36, 4-37, 4-38, 4-39 and 4-40 are drawn by using the following 0-D table.

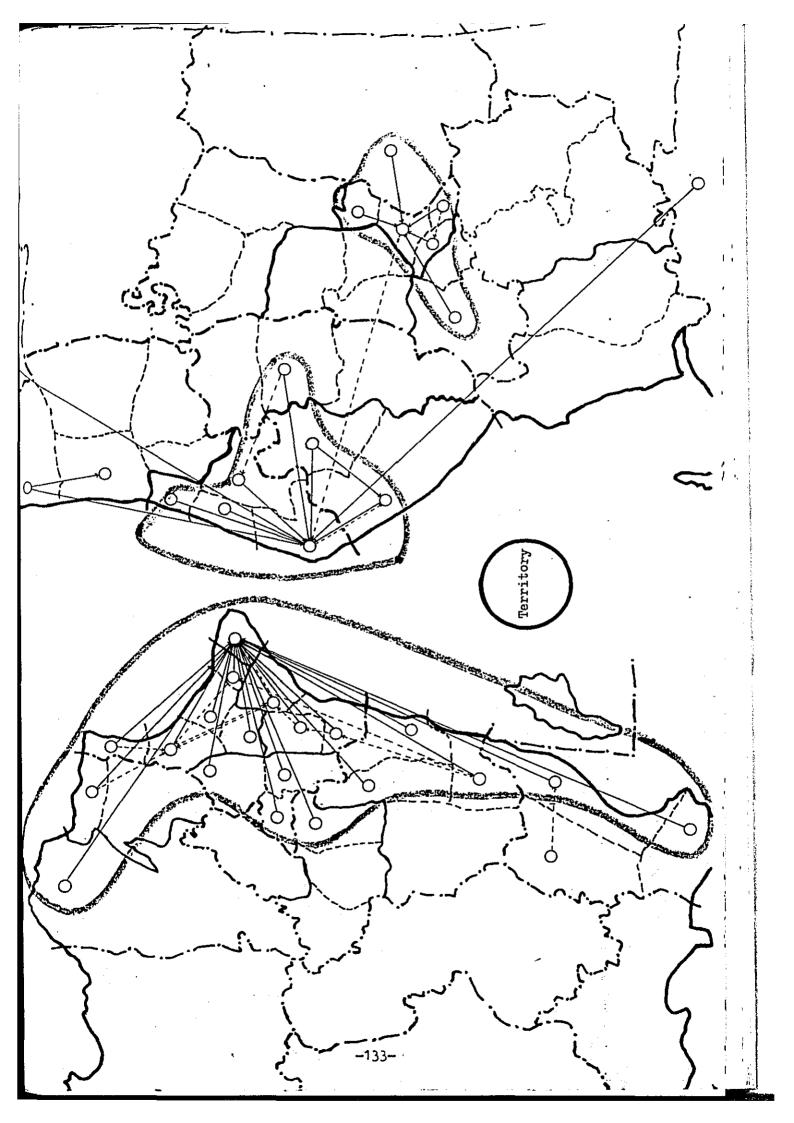
0-D table

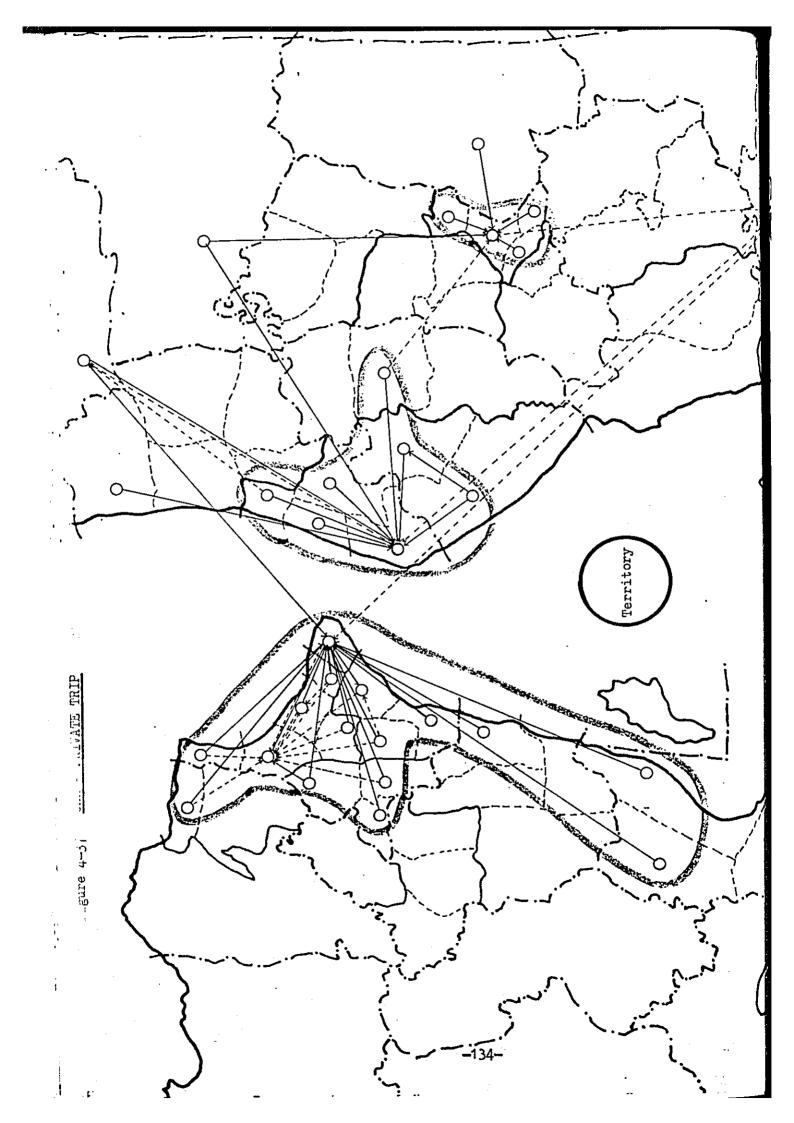
Car Trip to work

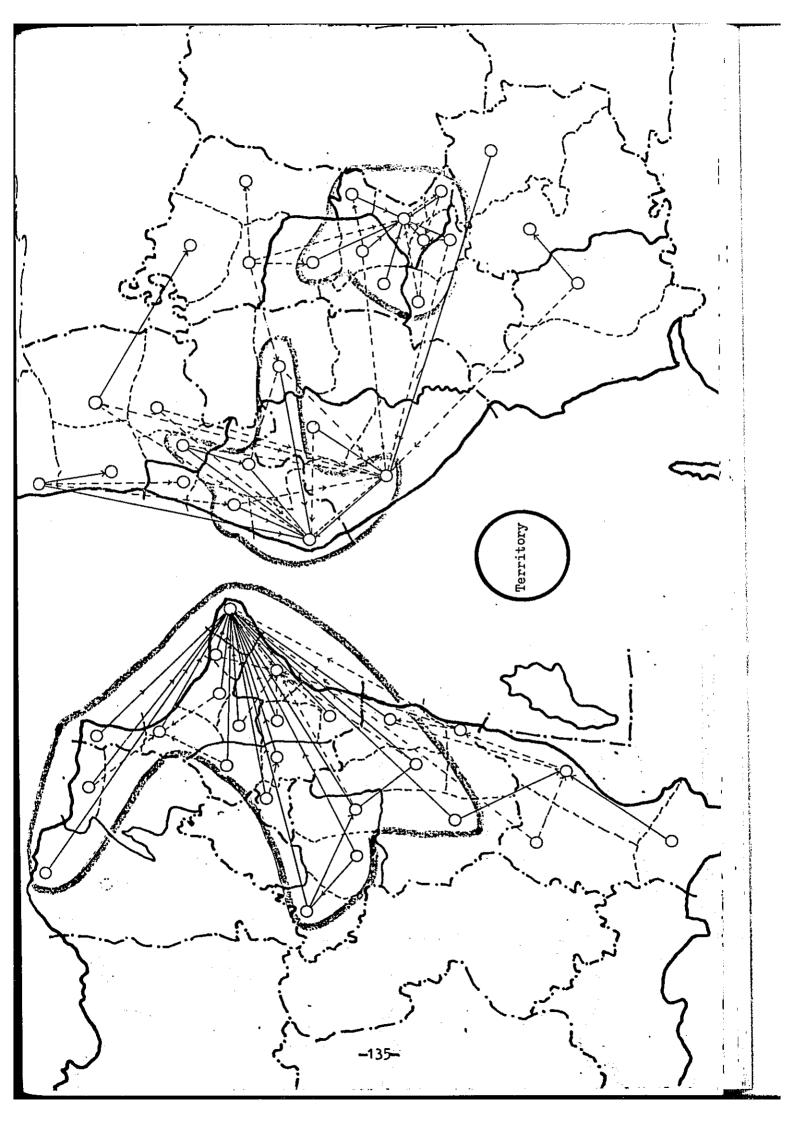
Business trip

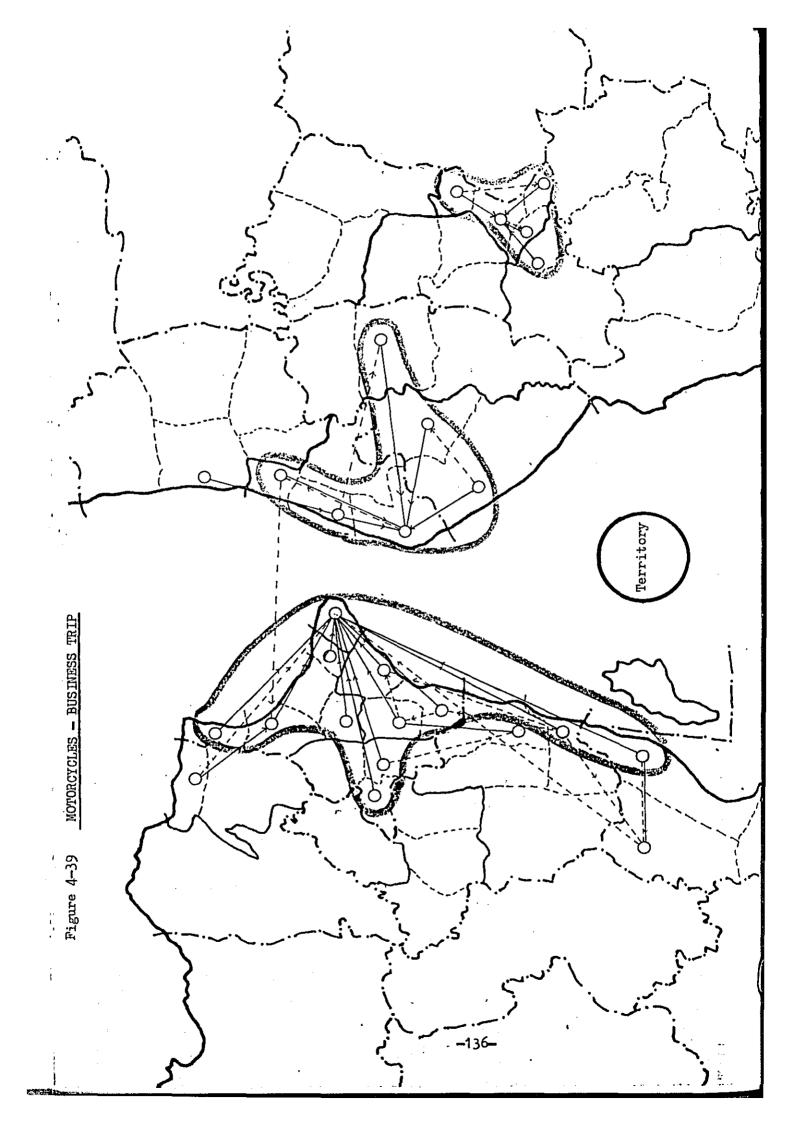
Private trip

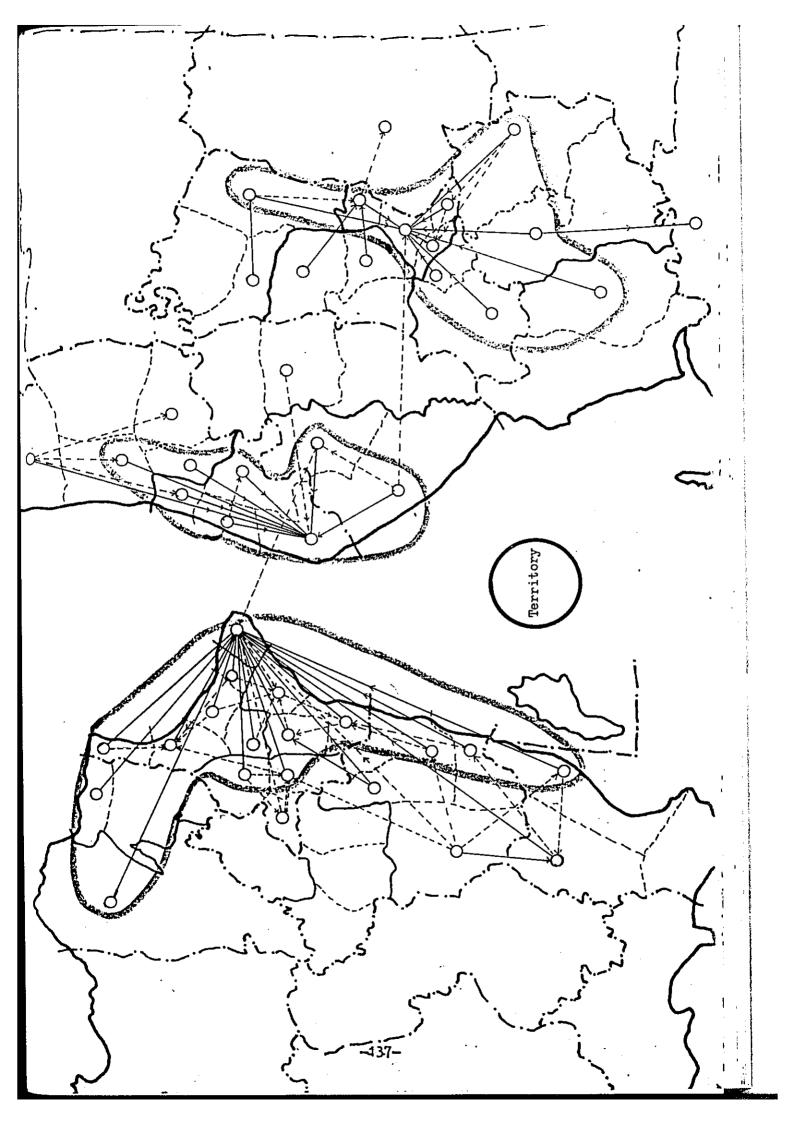
Motor-cycle Trip to work

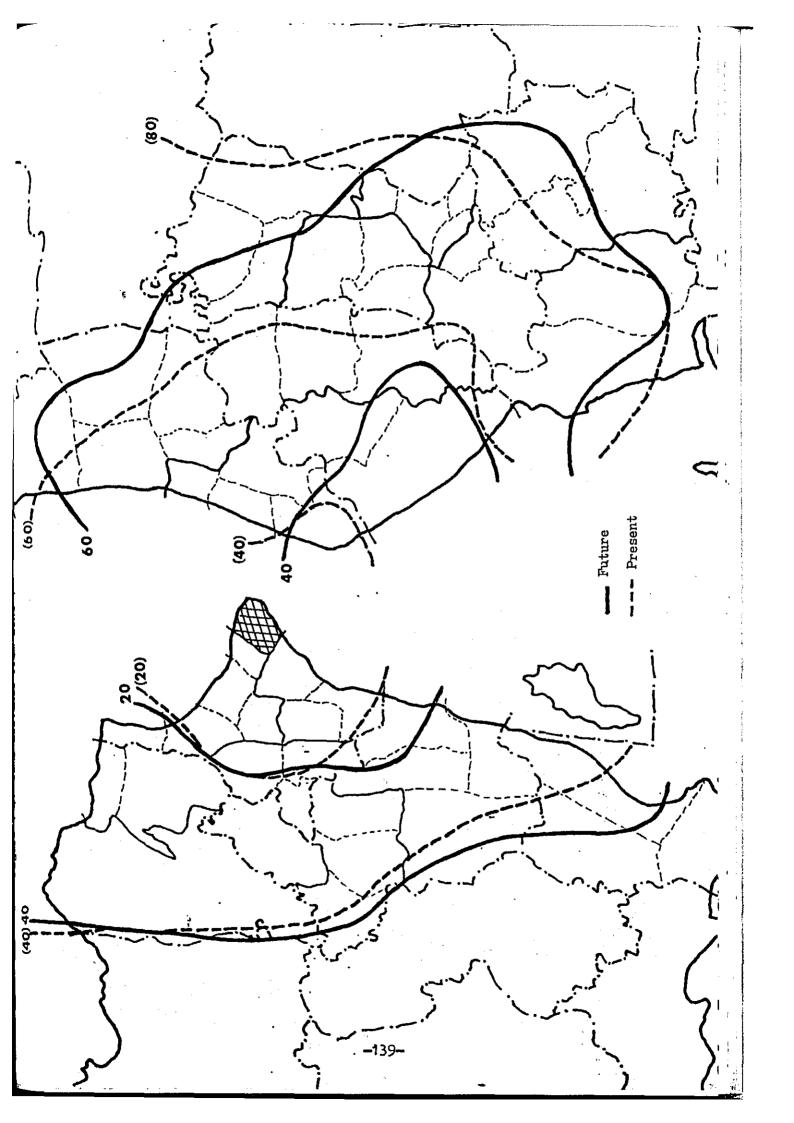

Business trip

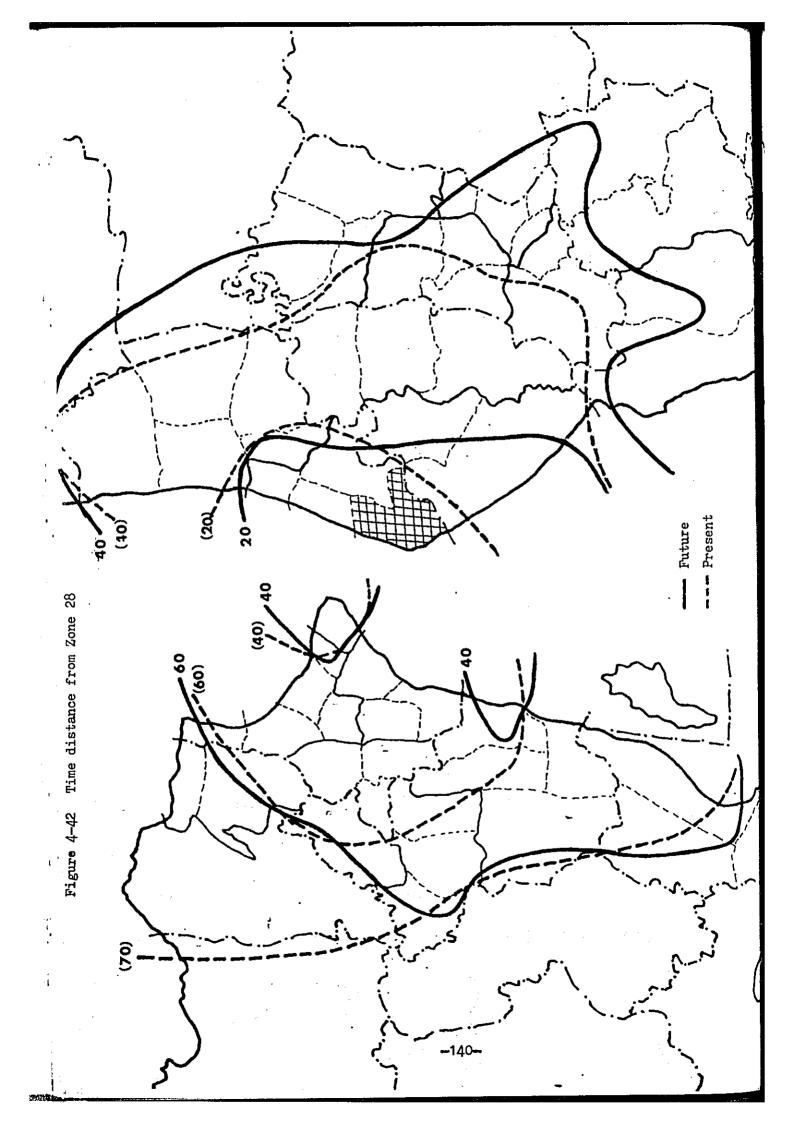

Private trip

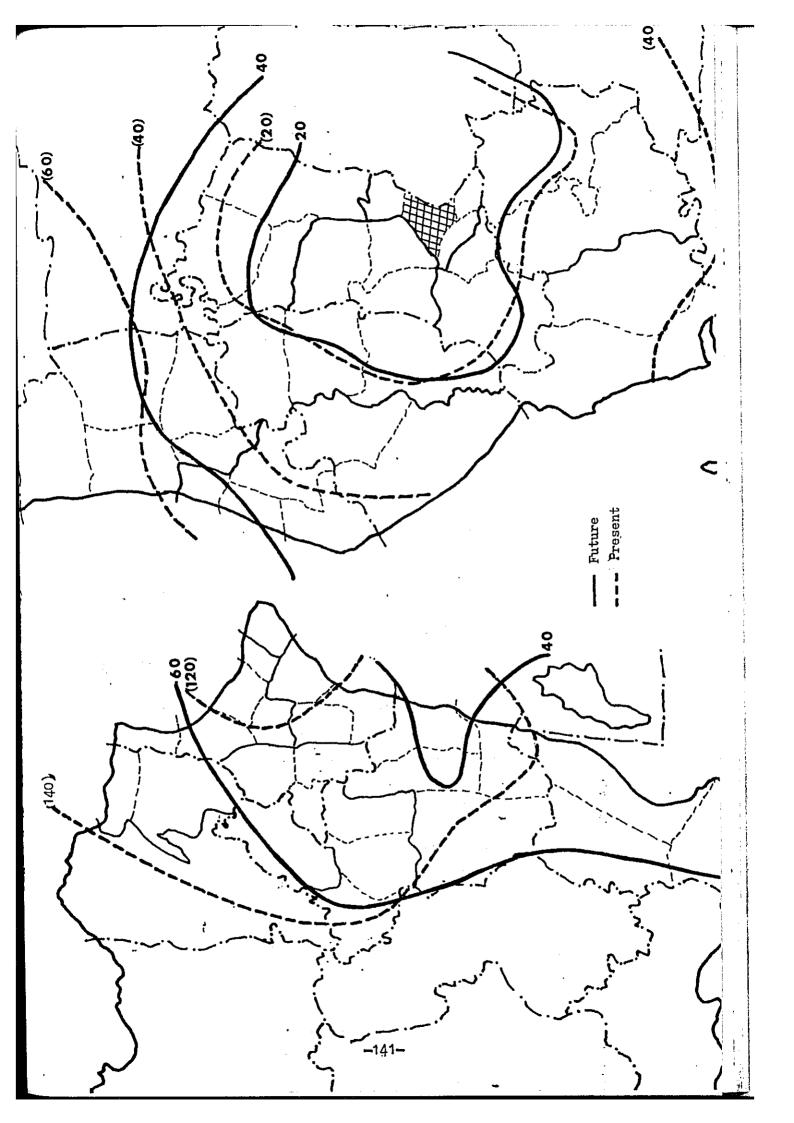

Looking at figure $4-35^{\circ}$ we find that there are three territories in this study area and the territory with zone 111 as its centre the widest area with zone 511 and then zone 732 coming second and third respectively.


In the territory map of business trips of cars, the territories of zone 511 and 732 are joined.


This suggests that there is a possibility the future traffic situation will be like this.




4-4-2 The time distance


Trip distribution is a result of trip generation and the time distance between the origin and the destination.

The time distance can be obtained from the car-owner Interview survey by substracting the arrival time from the departure time and also from the road net work model.

In this study, a comparizon between both these values is done, after which the model method is made use of for the evaluation of the time distances between each zone pairs.

4-4-3 The formulation of the trip distribution model.

Before formulating the trip distribution model, some trip distribution models which have been formulated by predecessors are first introduced.

(1) Method of trip distribution

Trip distribution models may be divided into two groups:-

- A. The Direct Method compites the numbeer of trips between
- two zones within one step.
- B. The Indirect Method distributes the total number of trips generated within a zone between all the zones of attraction.
- A. Methods for the direct calculation of trip distribution.
- A-1 Gravity Model

The gravity model which has taken its name from a version of the "Lill's Reisegesetz" is as follow:

$$Tij = \angle \frac{gi. Aj}{tij \sigma}$$

Tij : number of trips between zone i and j

gi, Aj: the "mass" of zoned i and j respectively

tij : distance from i to j

While Lill considered his law a natural law similar to that of Newton's Law of Gravity, it is considered a simple way of giving a reasonable description of the travel pattern of a particular area at a particular time. Therefore, a large number of models have been established which more of were devived from the original model.

A-2 Multiple Regression Models

In a number of cases in California, Osofsky applied multiple regression to derive models for traffic between two zones of the following form:

 $Tij = K1, X1 + K2, X2 + \cdots$

Tij : number of trips between zone i and j

K1, K2: parameters for zone i

X1,X2: variables referring to zone j

B. Methods for the Indirect Calculation of trip distribution.

B-1 Growth Factor Methods:

The growth factor F is the ratio of the present to the future number of trips attracted to and generated from a given area.

a. Uniform Growth Factor

The simplest possible Growth Factor Model is,

$$Tij' = Tij x F$$

Tij': the future number of trips between zone i and j

Tij : the observed number of trips between zone i and j

F : a uniform growth factor for the entire area

b. The Average Factor Method

c. The Detroit Method

d. The Fratar Method

e. The Subjective Growth Factor Method

The contents of these models (b, c, d, e) are not included as their methods are similar to model a.

B-2 The present pattern method

This method typically makes use of the above mentioned growth factor models.

Therefore, to use this model the present O-D table is needed.

(2) The formulation of the trip distribution model.

For the purpose of estimating the trip distribution, the following two methods are representative. One is the present pattern method and the other is the model method. Usually, the former is used for short term estimation or when it is auticipated that the land-use pattern will not be subject to too much change.

On the other hand, the model method which is designed for adjusting to the change in land-use pattern, is suitable for long term estimation.

In our land-use plan, it is perceived that the future land-use pattern would be different from the present pattern. In addition to this, the main flow of traffic would be diverted because the linkage plan and the east-west highway plan would have reached fruition and concequently there would be a change

in the major road network. As a result of the above, the most popular method was chosen for our estimation and this is the gravity model method.

The gravity model is as follows:-

Tij = dgi.aj . tij - \forall

Tij: number of trips between zone i and j.

gi: total number of trip generation in zone i.

ai : total number of trip attraction in zone i.

100

e : constant of proportion.

exponent of gravity model

The esponents of the gravity model is estimated by the trip purpose or vehicle type through the least square method applied to the relationship between the present O-D tables and the present travel time of each zone pairs.

The state of the s

The first of the second second

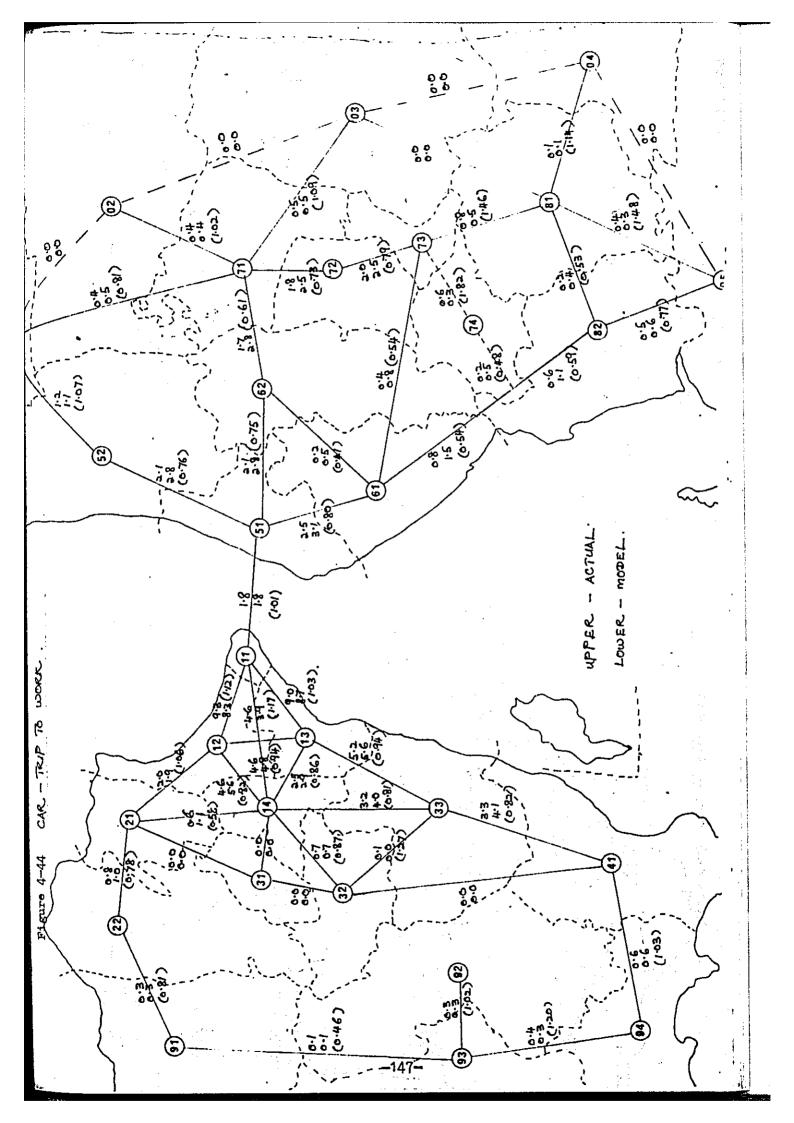
Carrier and the second second

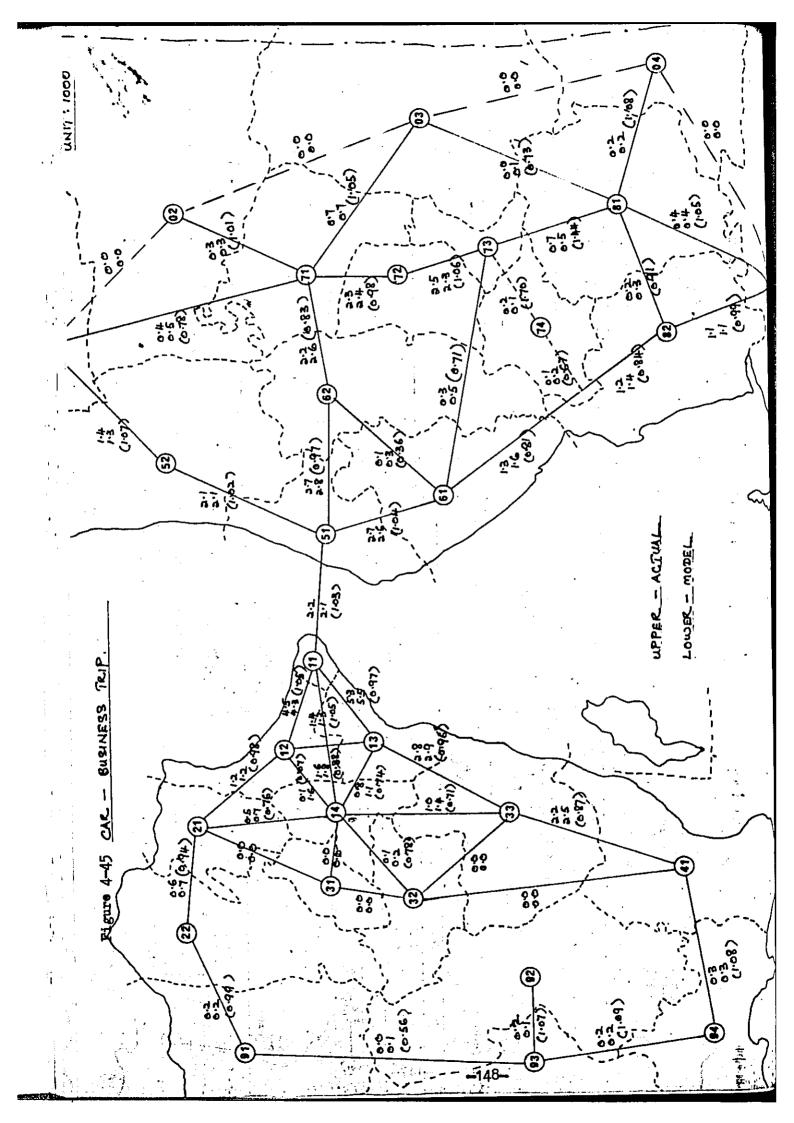
The second of the second section is

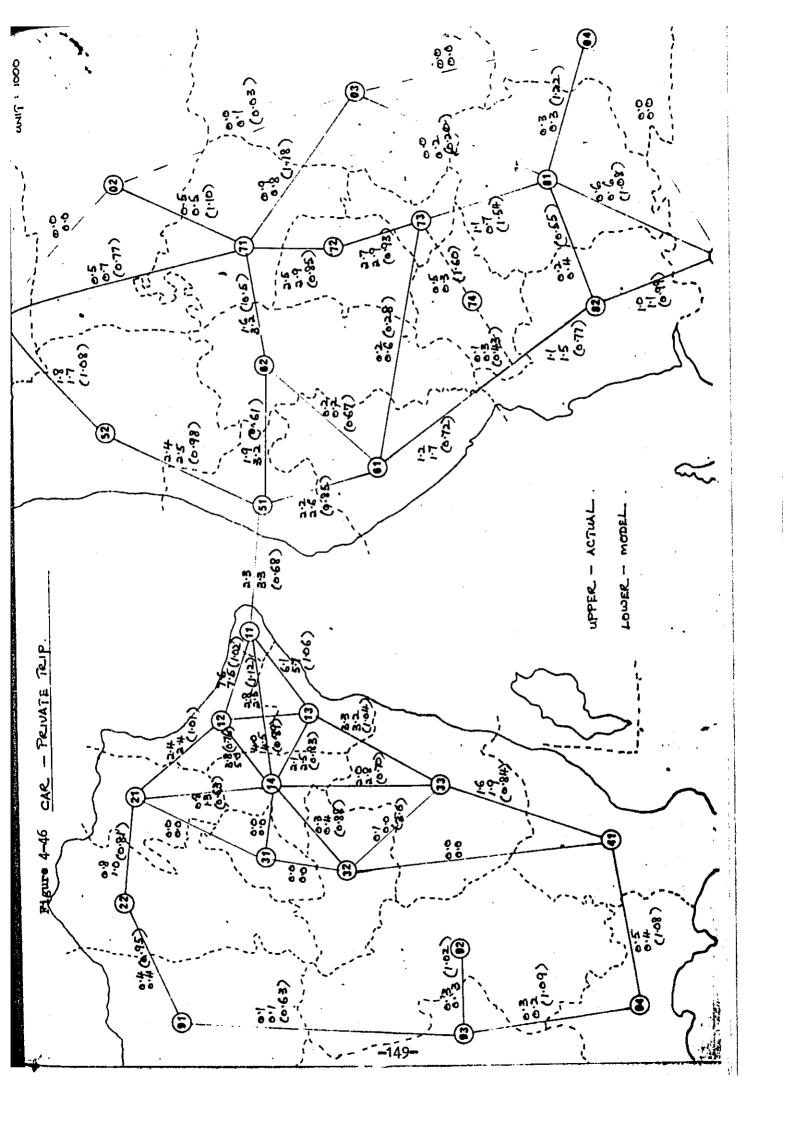
The results from using the model for all the zone pairs in the study area are as follows:-

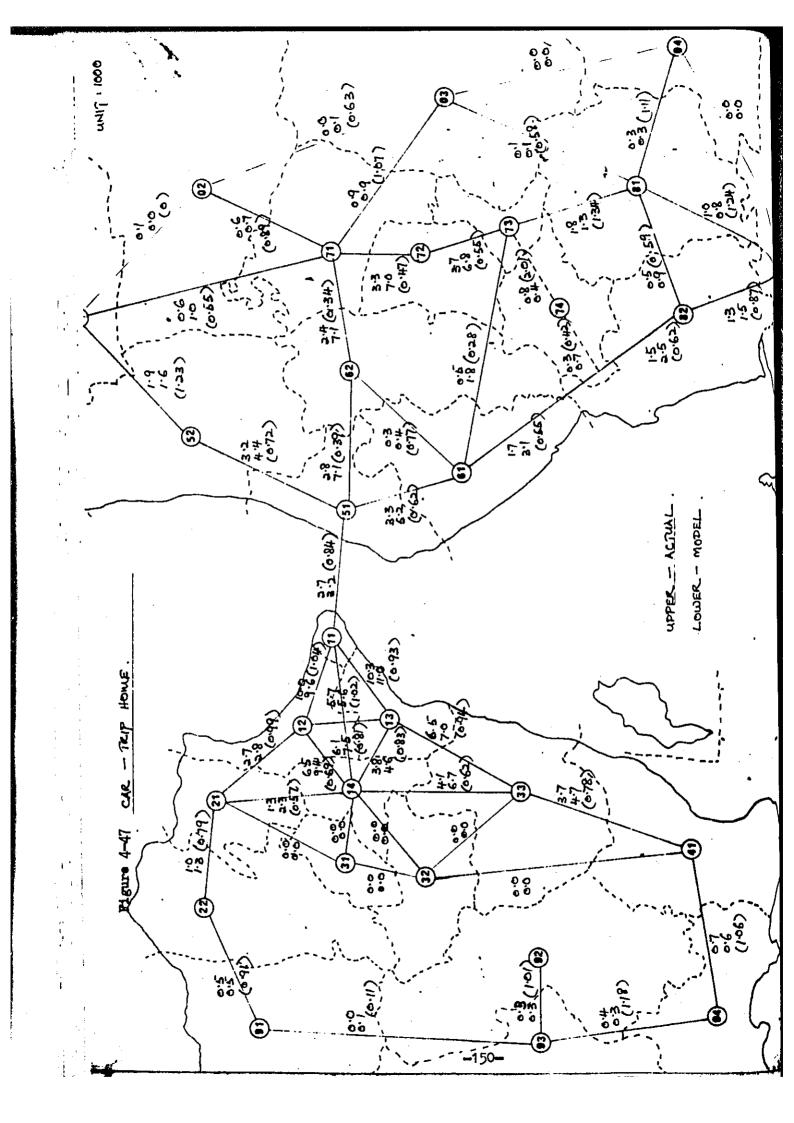
Table 4-24 Formula of Trip Distribution

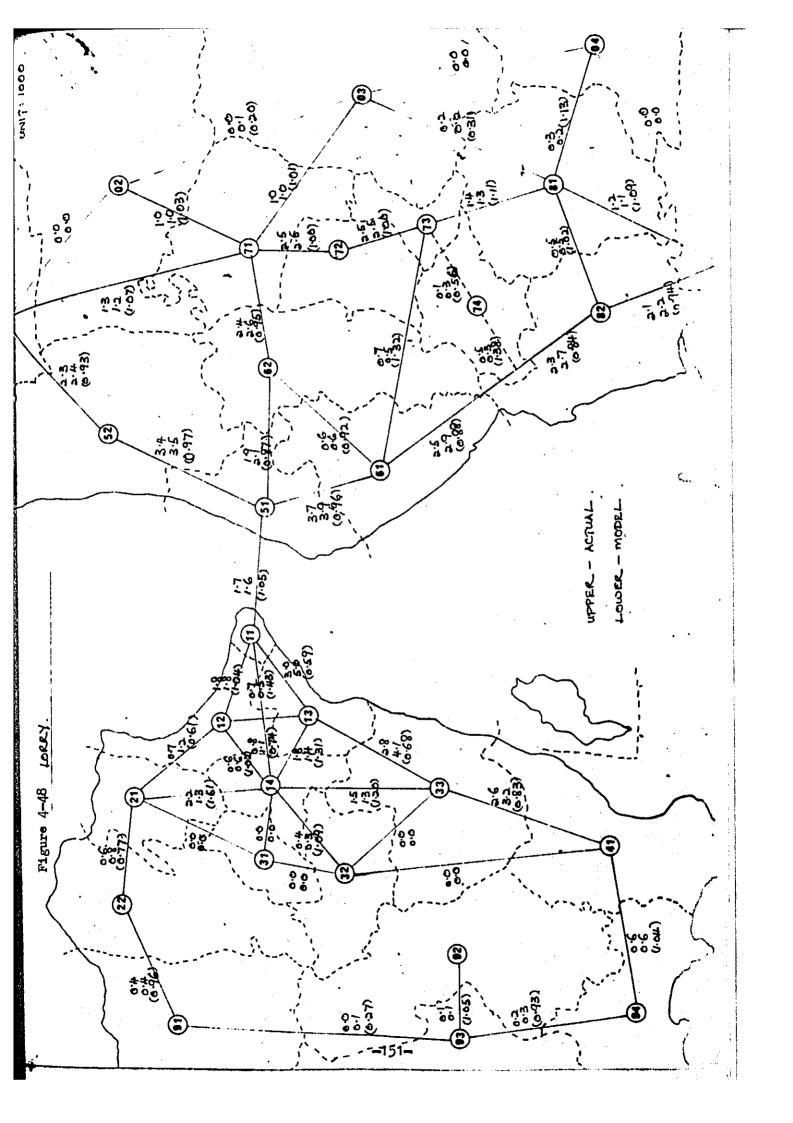
		The Formula of trip distribution
	trip to work	Tij = 1.147 $\frac{Ai^{0.340}gj^{0.424}}{tij^{0.624}}$
Ca	business trip	Tij =0.461 $\frac{\text{Ai}^{002} \text{ gj}^{0.398}}{\text{tij}^{0.396}}$
	private trip	Tij = 0.749 $\frac{\text{Ai}^{0.398} \text{ gj}^{0.404}}{\text{tij}^{0.576}}$
	trip home	Tij = 1.269 $\frac{\text{Ai}^{0.415} \text{ gj}^{0.367}}{\text{tij}^{0.709}}$
	Lorry	$Tij = 1.737 \frac{Ai^{0.355} gj^{0.381}}{tij^{0.635}}$
	Taxi	$Tij = 0.0998 \frac{Ai^{0.425}gj^{0.413}}{tij^{0.115}}$
	Bus	Tij = 0.523 $\frac{\text{Ai}^{0.417} \text{ gj}^{0.407}}{\text{tij}^{0.419}}$
Мс	tor-cycle	Tij = $0.237 \frac{\text{Ai}^{0.514} \text{ gj}^{0.510}}{\text{tij}^{1.100}}$

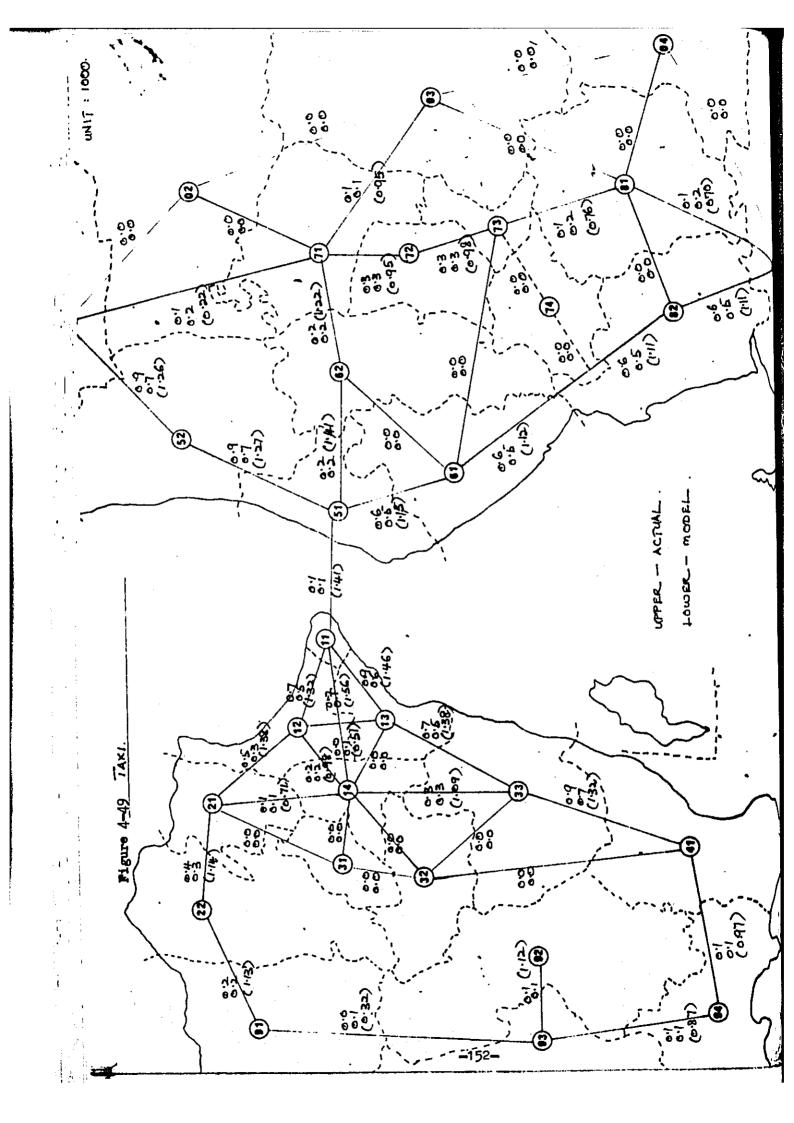

However, the use of one formula alone is not enough to explain the present traffic distribution. The reason is because the traffic pattern in Penang Island, Province Wellesley and across the strait each hand their unique charcteristics. Therefore, the formulae are drawn up according to following areas.

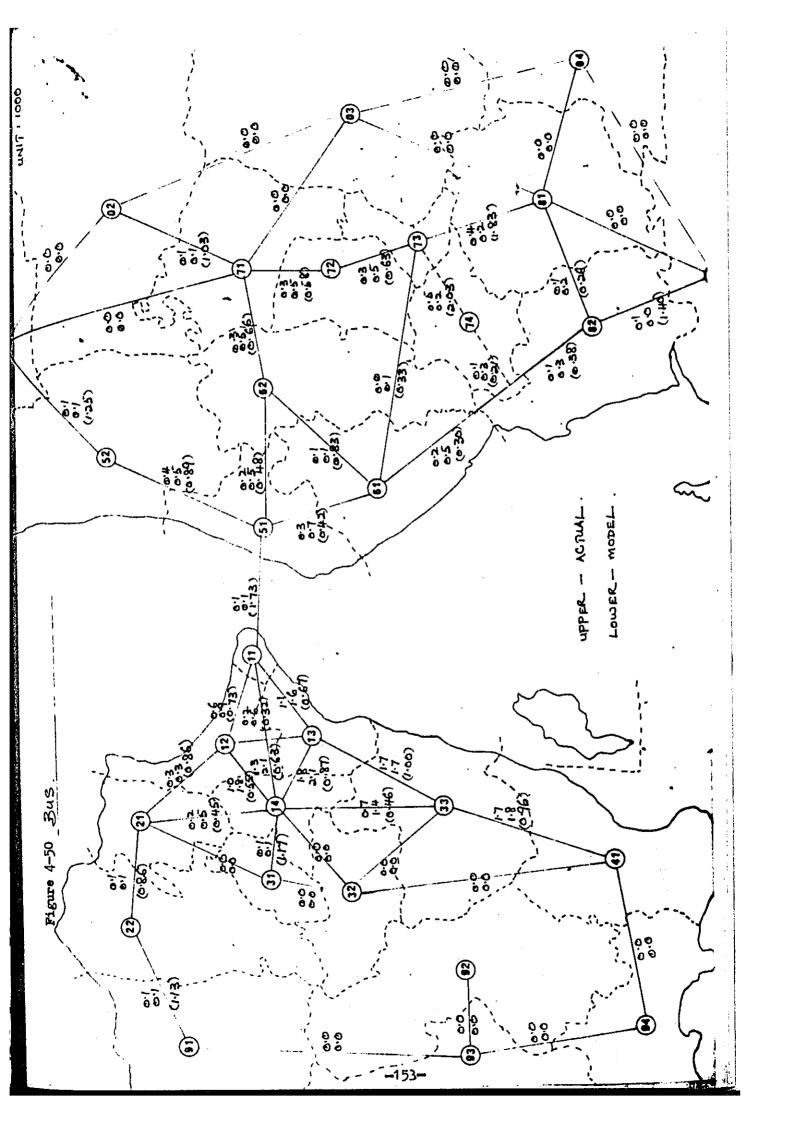

Table 4-25 Table denotes formulae used for the internal and external areas of Penang Island and Province Wellesley.

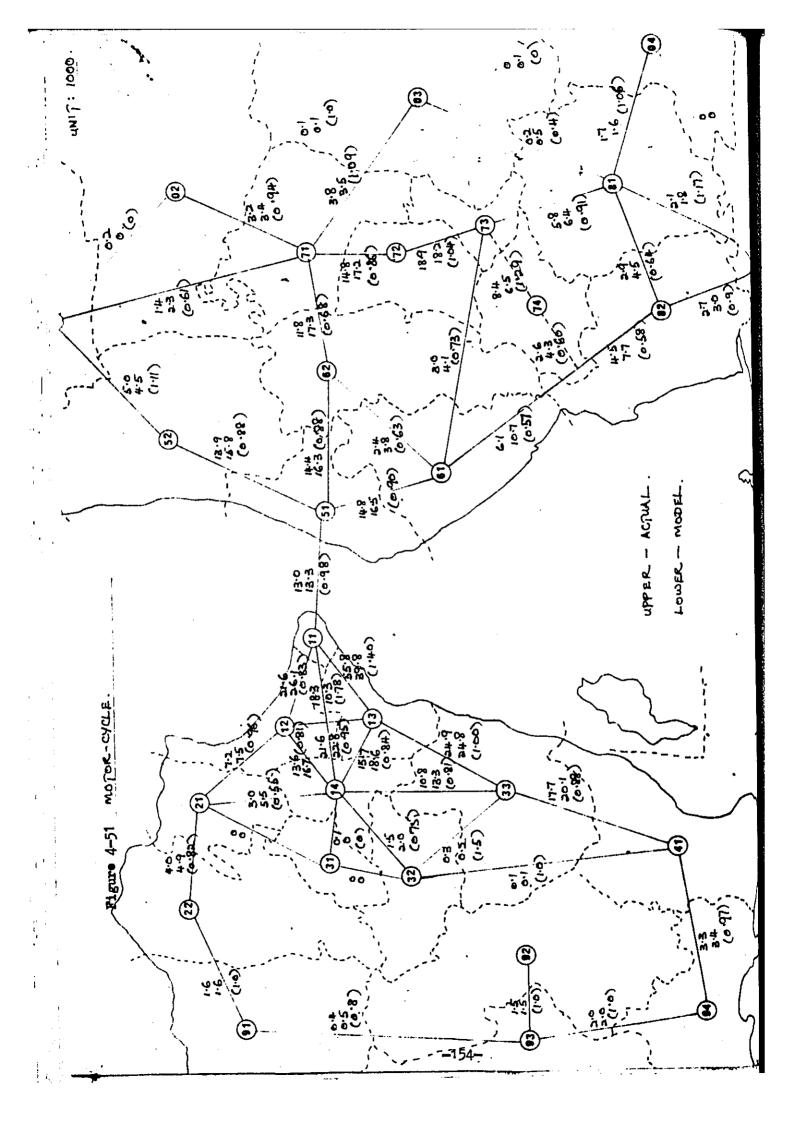

	D	Inte	rnal area	External area		
0		Penang Island	Province Wellesley	Penang Island	Province Wellesley	
nal a	Penang Island	1	2	3	4	
internal area	Province Wellesley	5	6	7	8	
nal a	Penang Island	9	10	l I	12	
external area	Province Wellesley	13	14	15	16	

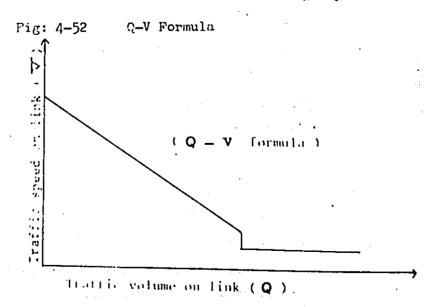

The results of these procedures is that one trip distribution formula is made up of 16 formulae from each area pair.


Referring to figures 4-44, 4-45, 4-46, 4-47, 4-48, 4-49, 4-50 and 4-51 all values above the line are the actual values while those below the line are the estimated values using this model.







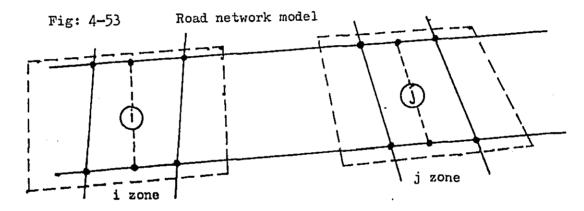

Through traffic assignment, the traffic volume on each road can be estimated. The procedure for traffic assignment is explained below.

- (1) Each link of the road network has its own relationship between the traffic volume and the travel time. In this relationship the travel time increases with respect to the increase in the traffic volume already assigned. The travel time increases very rapidly as the traffic volume approaches the road capacity.
- (2) The traffic demand of each O-D pair is assigned to the shortest route in relation to the travel time decided upon by the above relationship.

 The so-called "all or nothing" method is used.
- (3) The traffic demand of O-D pairs is divided into several lots and the travel time is calculated repeatedly according to the traffic volume already assigned on a link at the assignment of each lot.

The shortest route is obtained by the above calculations. The above procedure is repeated until all the lots of each O-D pair are assigned. Therefore, it rarely happens that the traffic demand of a particular O-D pair concentrates on a particular route.

The relationship between the traffic volume and the travel time is calculated from the following figures.



The travel time is estimated by dividing the length of the link by the traffic speed on the link obtained in this relationship by applying the traffic volume which has already been assigned. In the case of the linkage and the ferry collect tolls, the toll is added to the travel time which corresponds to the toll paid. To convert the toll paid to the travel time, divide the toll by the time value.

4-5-2 Road network model

For the purpose of estimating the traffic assignment, we need the time distance between each zone pairs.

For this purpose, it is necessary to formulate the road network model. This model consits of links and nodes as shown in Fig. 4-53.

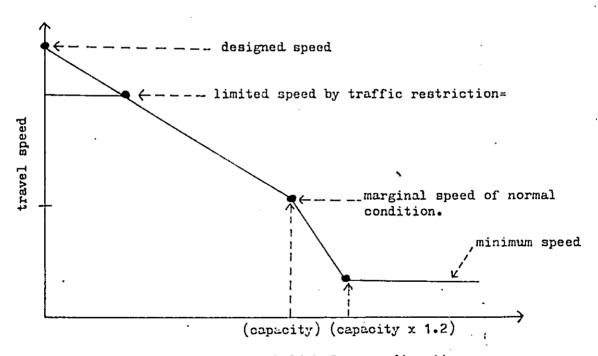
(Node)

- i j : node of generation and attraction.

 This node represents the zone. Therefore, this node is arranged at the zone center.
 - : node of connection

 The connecting points between links.

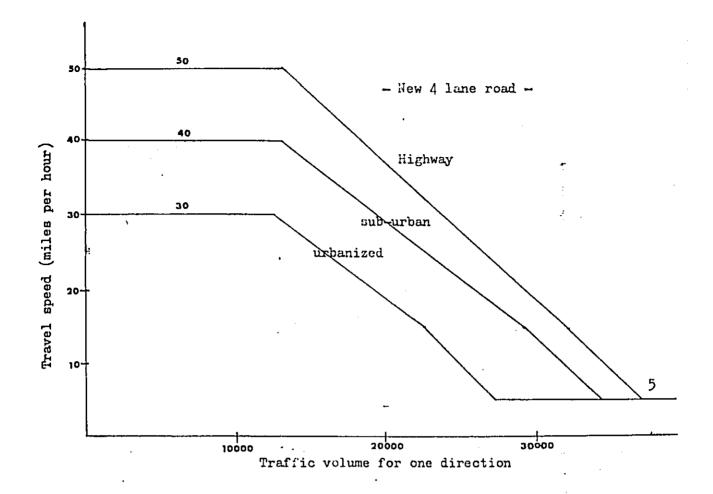
(Link)

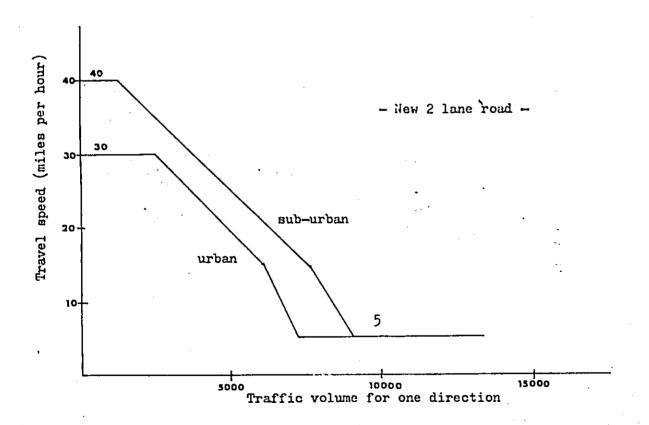

. actual link
This link represents the road.

This link is an assumed link done for the purpose of making traffic assignment an actuality.

To obtain the traffic volume which is very close to the traffic volume on each road, the $\mathbb{Q}-\mathbb{V}$ formula is then applied on each link of one direction.

The Q - V formula expresses the relationship between the traffic volume and the travel time. It is known that the more the more the traffic volume increases, the more the travel speed decreases. Therefore the Q - V formula is determined by type of road as follows:-

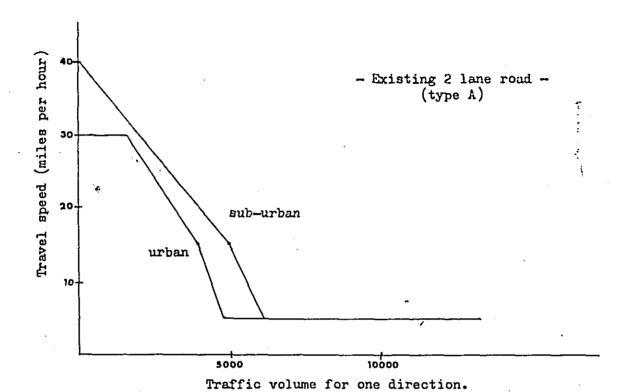
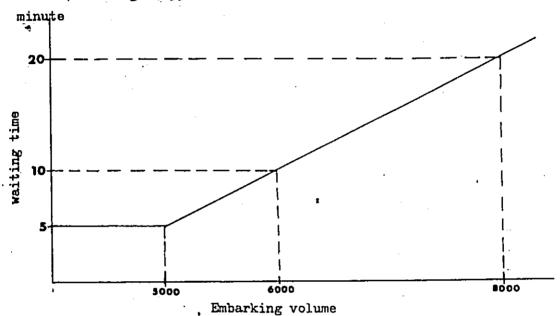

Fig. : 4 - 54 Q - V formula

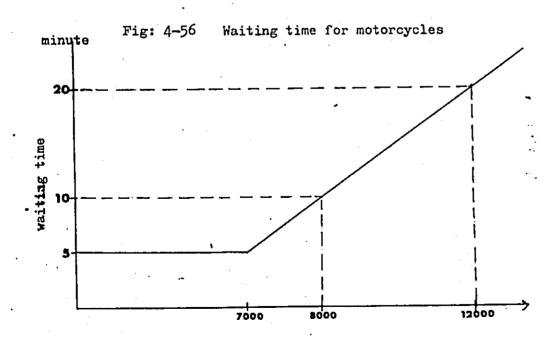


Traffic volume on each link for one direction.

Table 4-27 Q - V Formula for vehicle.

	No. of	Type of speed (miles per hour)					Capacity for one
Area	Talle	- Toau	designed	limited	marginal	minimum	direction
	4	new	50	30	15	5	22500
		existing	40	30	15	5	18000
Urbanized	2	new	40	30	15	5	6000
Area		existing (A)	40	30	15	5	4000
		existing (B)	35	30 -	15	5	3500
		existing .(C)	30	30	10	5	3000
	4	new	60	40	15	, 5	29000
		existing	50	40	15	5	20500
Sub-urban Area	2	new	45	40	15	5	7500
		existing (A)	40 .	40	15	5	5000
		existing (B)	35	35	10	5	4000
Highway	4	new	. 80	50	15	5	32000


Table 4 - 28 Q - V Formula for motorcycle.

Area	no. of lane	peed				capacity
		lesign	Limited	margi- nal	mini- mum	for one direction
Urbanized	4	25	20	10	5	3500
Area	2	25	20	10	5	2500
Sub-urban	4	30	25	10	5	4000
Area	2	30	25	. 10	5	3000
High-way	4	30	25	10	5	4000

Concerning the ferry, a specific T - V formula is prepared especially for the waiting time which is expressed by the following formula. This formula is derived from our ferry survey.

Fig: 4-55 Waiting time for vehicles

4-5-3 The method of estimating traffic volume.

Various methods can be used for the purpose of estimating traffic volume. However, it is possible to divide them into two methods, namely, the direct and the indirect method.

(1) The objects in a traffic plan.

The objects in a traffic plan consist of various contents, ie. major roads, streets, intersections, traffic signals and other traffic facilities.

These objects can be seen from two points of views.

One is from the point of view of the planning period while
the other is from the point of view of the study area.

Generally speaking, the objects of a traffic plan have the following tendency, viz, the longer the planning period, the larger the study area. For example, the plan for a highway network requires the long-term aspect as well as the large study area because that plan must take into consideration the long-term prospects and the ability of the highway to cope with the movements of long trips.

On the other hand, improvement of intersections must be an urgent measure in the urbanized city. Therefore, the planning period must be short and the study area small enough to require only a short-term partial plan.

Therefore, it is not difficult to divide the objects of a traffic plan as follows:-

short-term partial plan.

-162-

(2) The methods of estimating the traffic volume.

When drawing up traffic palms, it is usual that some estimation of future traffic volume is required and this is obtained from studying the traffic at the respective traffic facilities which are involved in the plan.

The method of estimating the traffic volume must correspond to the objectives of the traffic plan. For the purpose of dealing with urgent matters, it is useless if the target year is fixed too far in the future and it is also useless if a partial plan involves too large an area.

Taking the above-mentioned conditions into consideration it is better that for the short-term partial plan the direct method is used while for the long-term extensive plan the indirect method is more suitable. Of course another way is to combine both methods.

First, the contents of both methods are explained and then the features of these methods are shown.

A. The Direct Method.

For short-term estimation, the traffic volume can be estimated by making use of the trends of previous traffic volumes. In this instance, the future volume is estimated from the rast-to-present traffic volume data directly without any transformation of the estimating factors.

This is the reason why this method is called the 'direct method'.

As the future demands are forecasted directly, it has the following advantages, viz, it is easy to estimate the volume, the estimation is unexpectedly accurate in so far as it is a short-term target.

However, by using this method, it is difficult to consider the environmental factors, as for example the land-use pattern, population distribution etc. To take these factors into consideration, we must sutdy the extensive area, not the partial area.

Therefore this method is suitable for the short-term partial plan.

B. The Indirect Method.

This method uses certain means in the estimation of future traffic volume.

In the case of estimating the traffic volume on read networks the O-D table is almost the only means used. By using the O-D table, we can estimate the future traffic demands which also take into consideration the changes in the environment.

The increase of population in some zones can be seen in the increase in the trip generation in these zones.

Also, the reduction of the distance between some zones through the improvement of roads can be seen in the increase in the trip distribution between these zones.

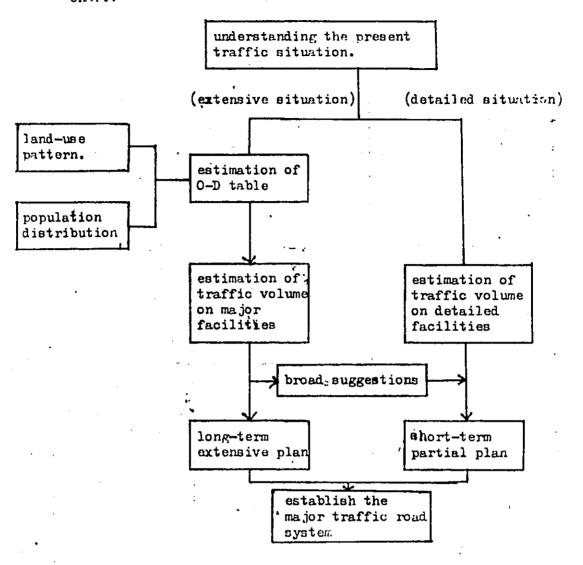
Therefore, by using the O-D table, we can broadly grasp the future traffic movements.

However, in order to estimate the O-D table, we must divide the area into several traffic zones. By virtue of this we cannot discuss the facilities found within the zones. Even if one zone includes many roads, these roads stand for one zone.

Therefore, the traffic plan is limited by the size of the traffic zone. This method is suitable for long-term estensive plans but unsuitable for detailed plans.

C. Conclusion.

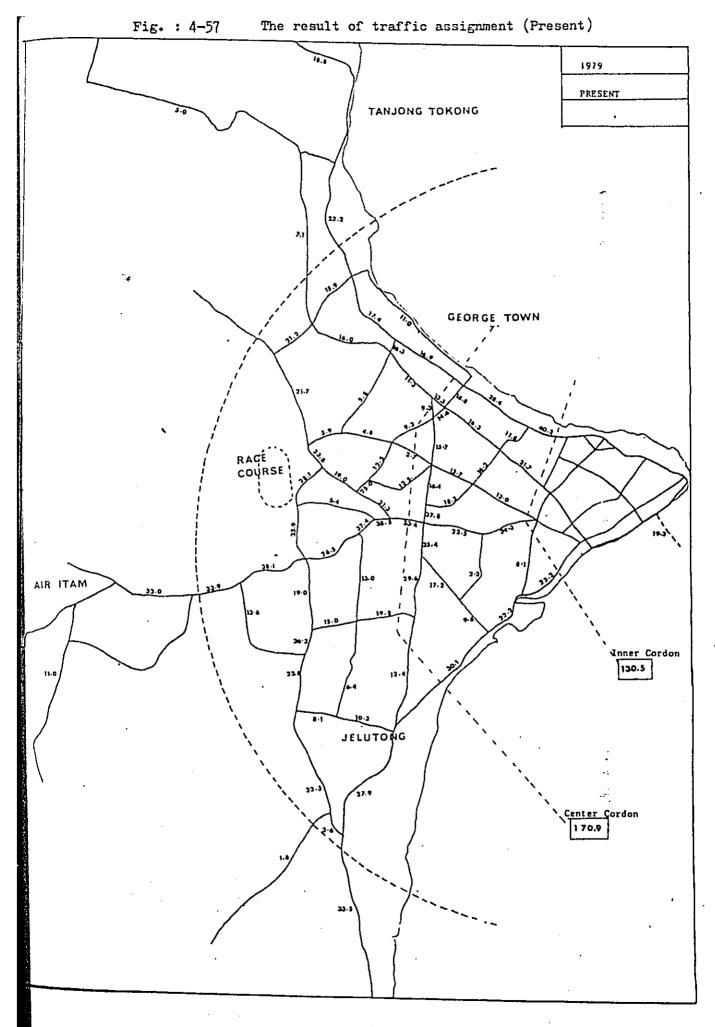
The features of both methods are shown in the following table.

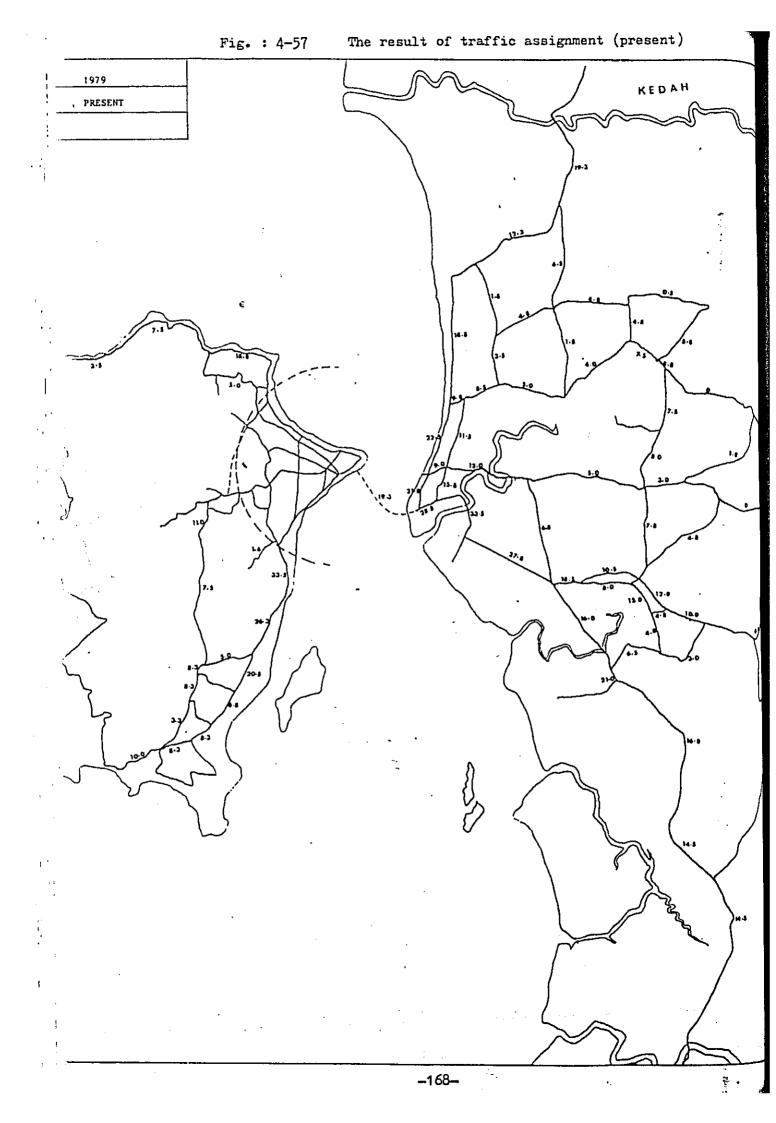

Table 4-28 Direct and indirect methods.

	Direct method	Indirect method
Functions	It is the way to estimate the traffic volume directly from the past-to-present traffic volume data.	It is the way to estimate the traffic volume by using the O-D table directly.
Advantages	(1) the detailed volumecan be forecasted(for short-term estimation).(2) it does not entail toomuch working expenses.	(1) the estensive movement can be forecasted.(2) it takes into consideration the changes in the environment e.g. the landuse pattern.
Disadvantages	(1) it is not suitable for long term estimations.(2) it cannot grasp the movements in the extensive area.	(1) it is hard to do a detailed estimation. (it suffers from the limitations for the zone) (2) it entails heavy working expenditure.
Conclu-	it is suitable for the short-term partial plan.	it is suitable for the long- term extensive plans.

Taking the above conclusions into consideration, it would be suitable to use the indirect method for the main estimating work in order to establish the major traffic road system.

However, it is necessary to make use of the direct method in order to solve the problem of detailed facilities which the indirect method cannot cope with.

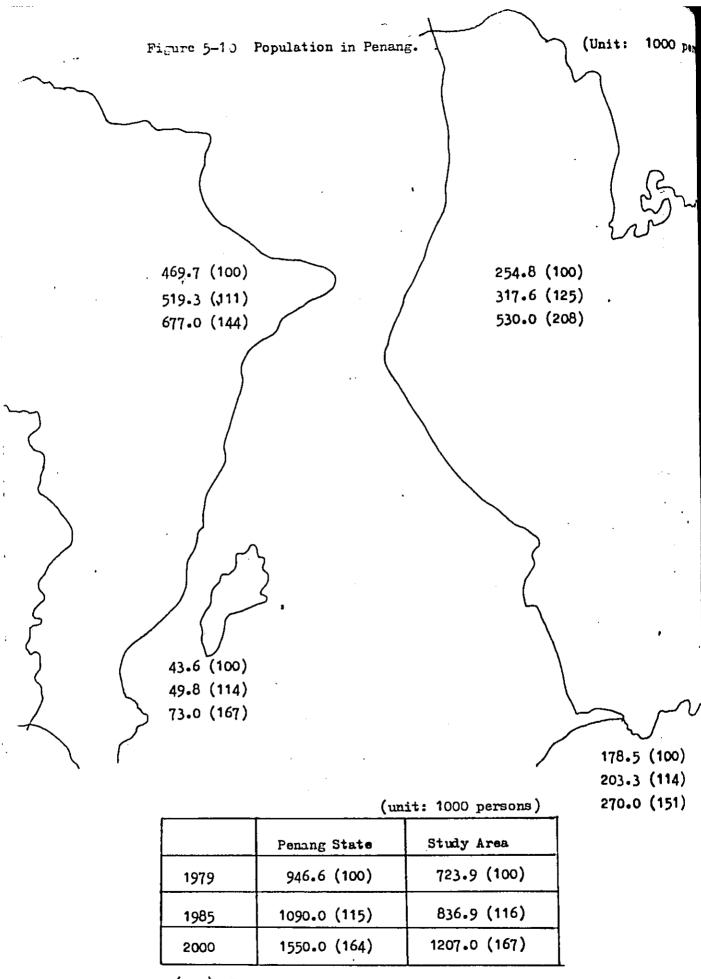

The above discussion can be extremsed in following flow-chart:-



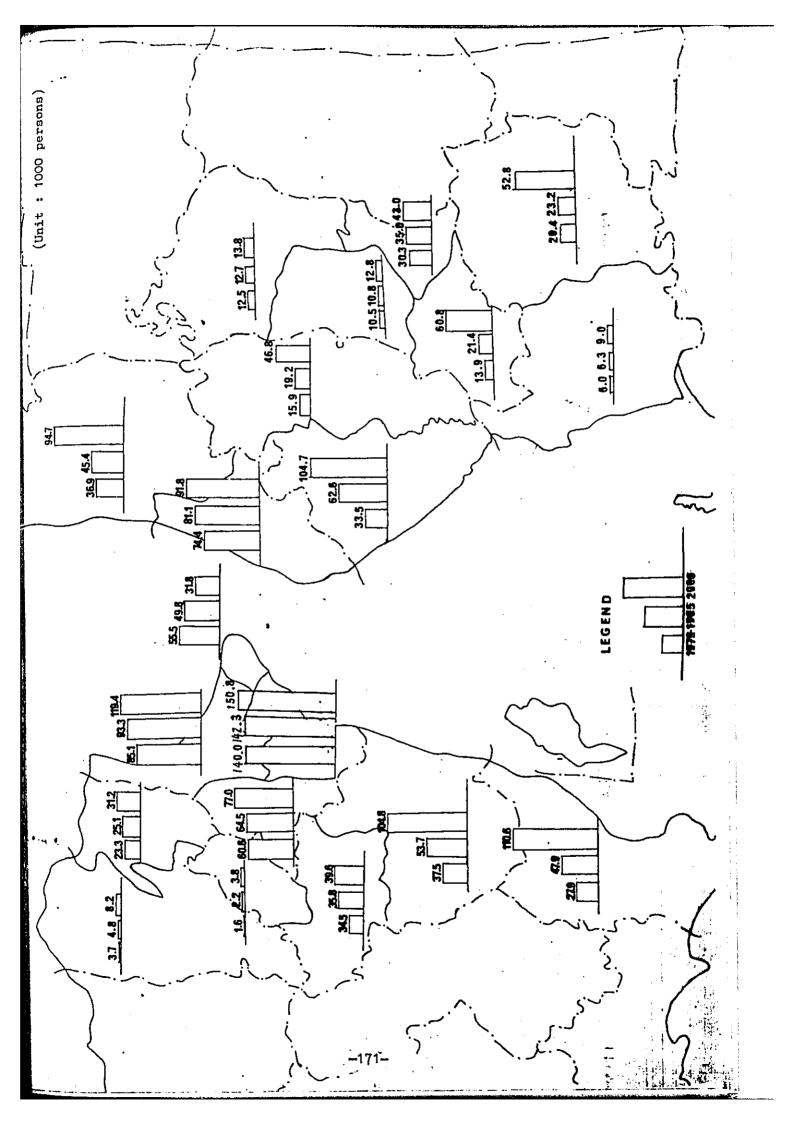
4-5-4 Results of present traffic assignment

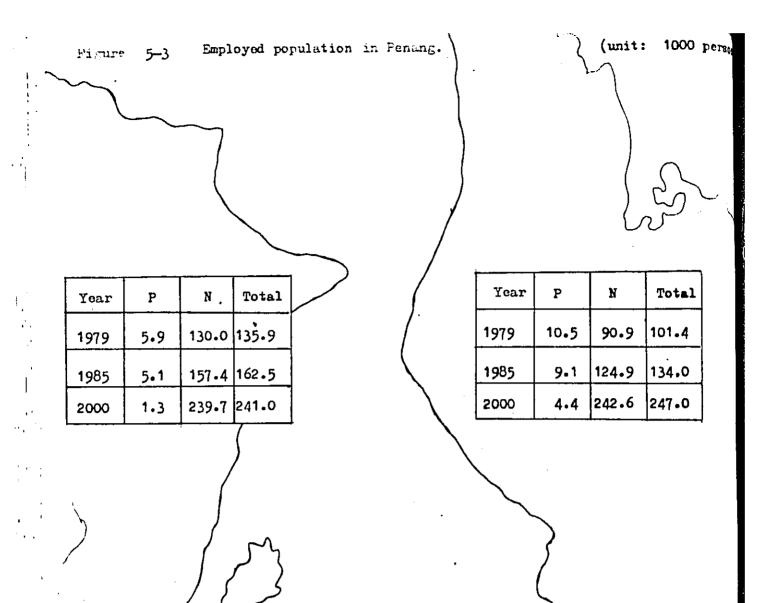
As a conclusion, it is emphasised that, this traffic assignment was conducted through using the O-D table. Therefore, the size of the traffic zone limits the traffic assignment. The detailed traffic volume on each road cannot be obtained from this method and besides there is more traffic than there actually should be around the zone node which represents a particular zone because all the trip generation and attraction of one zone are generated and attracted to/from this node.

Therefore, when looking at the results of trip assignment, there constrains must be given consideration.


5 The premise

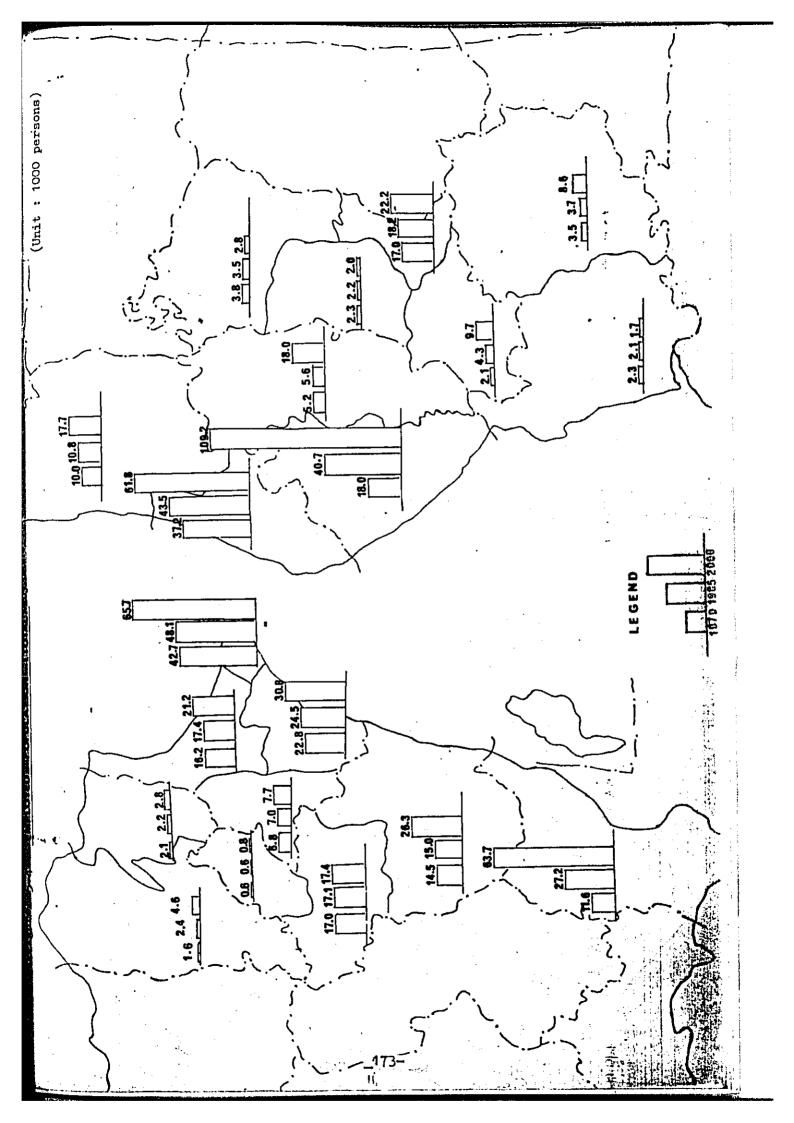
For the purpose of estimating future traffic demand, some premises must be first be laid down, that is, land-use by zone, population by zone and the cargo volume of port etc.


These figures have already been estimated by our population study and port study. In this section, these premises will be summarized.


5-1 Population and employed population.

The following population is forecasted on the basis of the land-use pattern.

) Growth rate



	Penang State	Study Area
1979	294.0 (100)	237.3 (100)
1985	350.7 (119)	296.5 (125)
2000	541.7 (184)	488.0 (206)

P : Primary

N : Non-primary

) Growth rate

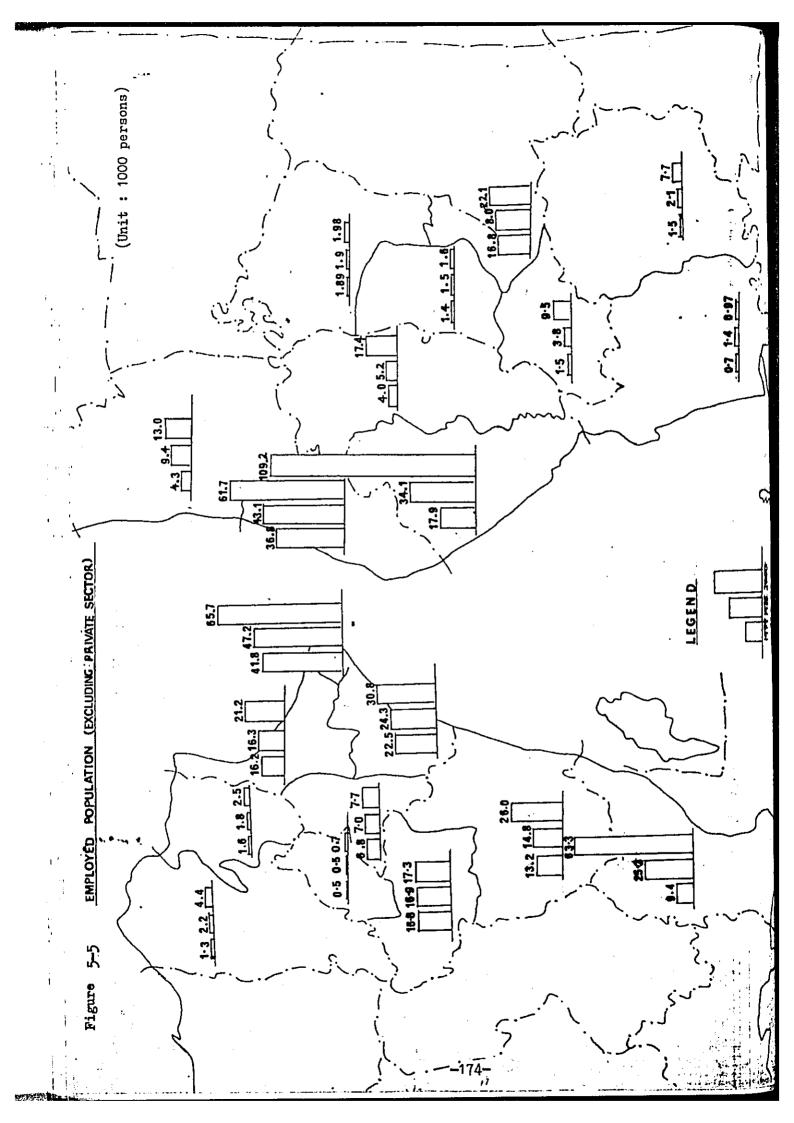


Table 5-1 Employed population by industry in Penang State.

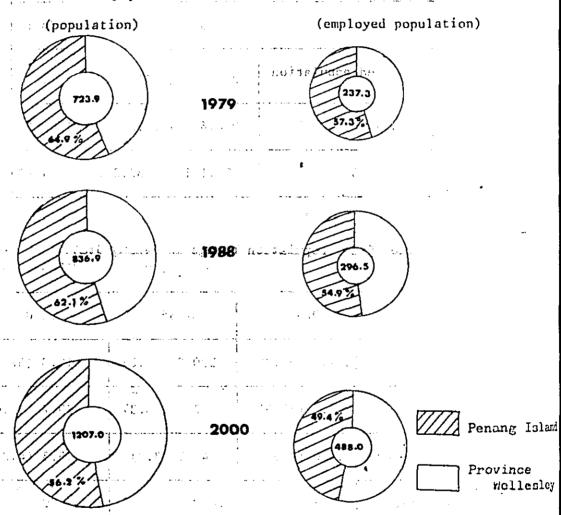
(Unit: 1000 person)

Year Industry	1979	1985	2000
Primary	53.7	46.3	21.7
Secondary	92.1	127.2	245.4
Tertially	148.3	177.2	274.6
Employed population (A)	294.1	350.7	541.7
Population (B)	946.6	1090.0	1550.0
A/B x 100	31.1 %	32.2 %	34.9%

Table 5-2 Population by age in Penang State.

(Unit : 1000 person)

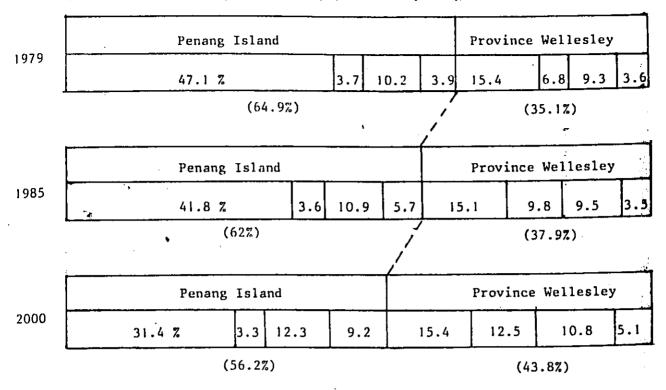
Year Age	1979	1985	2000
0 - 14	347.4 (36.7)	390.2 (35.8)	510.0 (32.8)
15- 64	563.2 (59.5)	657.3 (60.3)	979.7 (63.0)
65 and over	36.0 (3.8)	42.5 (3.9)	65.3 (4.2)
Population	946.6	1090.0	1550.0

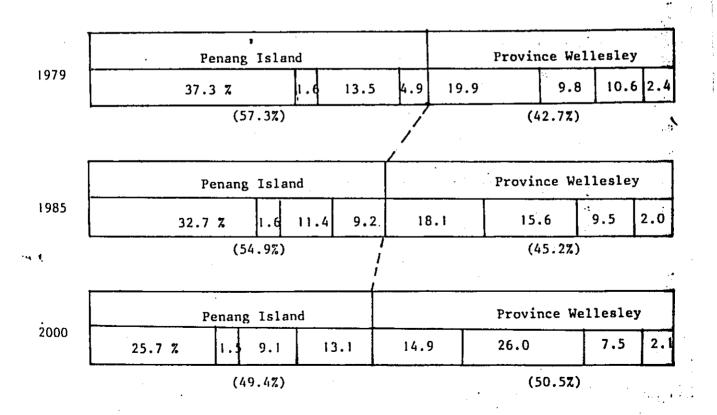

(): percentage

5-2 Comparison Between Penang Island and Province Wellesley.

The following figures show population as well as the employed population of Penang Island and Province Wellesley.

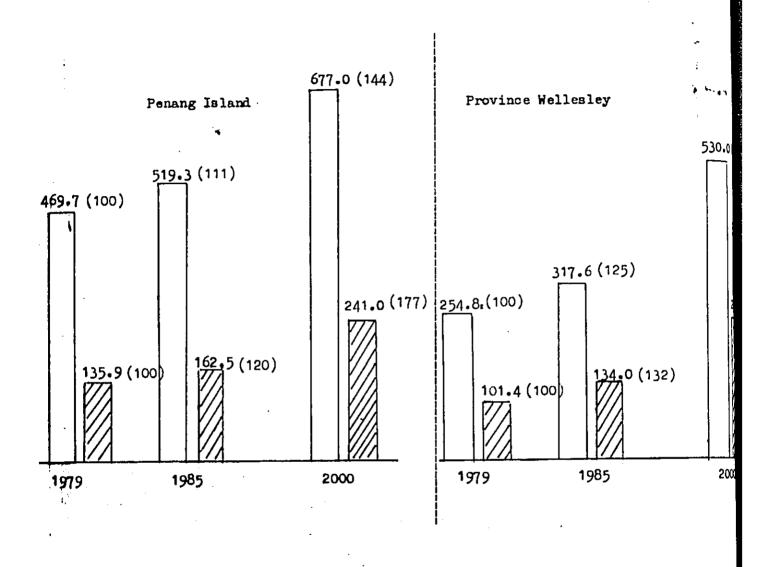
These figures indicate that in the future Province Wellesley will experience a great deal of development and also as a result of various existing conditions, the potential for development of Province Wellesley will be as great as that of Penang Island.


figure 5-6 The percentage of population as well as the employed population.


These figures suggest that the traffic volume in Province Wellesley will increased rapidly and the total number of trips will be close to that in Penang Island.

Therefore, traffic problems will arise in Province Wellesley as well in Penang Island.

The trend of the composition of population by large zone.



The trend of the composition of employed population by large zone.

(): Total Percentage

Figure 5-7 Population and employed population

	Population
	Employed population
()	Growth rate

CUMMERT TABLE OF POPULATION DISTRIBUTION Greater Penang Area, 1979, 1985 and 2000.

	1979	7 9	198	3 5	200	0 0	A.	Average Annual Orowth Rate (5)	. (3
*	Number	Per Cent	Number	Per Cent	Number	Per Cent	1979 – 85	1985–2000	1979–2000
100	341,220	66.5	349,900	9.09	378,900	50•5	0.4	.0.5	0.5
200	26,980	5.3	29,940	5+3	39,440	5•3	1.8	1.9	1.8
300	73,630	14.3	91,590	16.4	148,080	19.7	3.7	3.0	3.4
400	27,870	5.4	47,890.	8.9	110,590	14.8	9•4	5.4	6.8
Internal Total	469,700	91.5	519,320	91.2	677,000	90•3	1.7	1.8	1.8
External	43,550	8.5	49,780	8.8	73,000	9.7	2•3	2.4	2.4
Penang Is. Total	513,250	100.0	569,100	100.0	750,000	100.0	1.7	1.8	1.8
500	111,310	25.7	126,630	24.1	186,440	23•3	2•2	2.5	2.5
909	49,330	11.4	81,770	16.4	151,440	18.9	8.8	3.9	5.5
700	67,210	15.5	79,710	15.3	130,390	16.3	2.8	3.2	3.2
800	.26,310	6.1	29,510	5•6	61,730	7-7	1.9	4.7	4.1
Internal Total	254,160	58.7	317,620	61.9	530,000	66.3	3.8	3.3	3.6
External	178,500	41.3	293,820	38.1	270,000	33.7	2.2	1.8	2.0
Pro. Wellesley Total	433,330	100.0	520,900	100.0	800,0001	100.0	3.1	2.9	3.0

EMPLOYED POPULATION DISTRIBUTION PLAN Penang State, 1979, 1985 and 2000.

		1979			1985			2000		Average Annual Growth Rate %	nnual te %
-	Primary	Non-Primary	Total	Primary	Non-Primary	Total	Primary	Non-Primary	Total	1979–85	1985-2000
100	1,310	87,260	88,570	1,120	95,830	046,96	0	125,400	125,400	1.6	1.7
200	069	2,990	3,680	590	4,060	4,650	400	6,930	7,330	4.0	3.1
300	1,710	30,430	32,140	1,490	32,240	33,730	480	44,020	44,500	0.1	1.8
400	2,220	9,350	11,570	1,910	25,290	23,380	380	63,330	63,710	12.4	6.9
500	2,110	45,110	47,220	1,830	51,720	53,550	850	72,050	72,900	2.1	2.0
009	1,260	21,900	23,160	06041	45,210	46,300	510	126,570	127,080	12.2	6.9
700	3,510	21,640	25,150	05045 .	25,140	28,170	1,510	35,250	36,760	1.9	1.8
800	3,590	2,210	5,800	3,100	2,870	5,970	1,570	8,750	10,320	£•0 -	3.7
Internal Total	16,400	222,600	239,000	14,150	282,360	296,510	5,700	482,300	488,000	3.7	3.4
External Total	37,250	17,750	55,000	32,150	22,040	54,190	16,000	37,700	53,700	0•0	0.0
Grand Total	53,650	. 240,350	294,000	46,300	304,400	350,700	21,700	520,000	541,700	3.0	2.9

5-3 Number of vehicles.

The trend in motor-vehicle ownership is one of the key-indicators of traffic growth and this is useful tool for evaluating past traffic trends and future volumes.

A. Motor-vehicle Registration Trend.

Recently, there has been a dramatic increase in the registration of motor-vehicles in Malaysia, specifically Penang State.

Table 5-3 and 5-4 show the trends for Peninsular Malaysia and Penang State.

Table 5-3 Motor-vehicle Registration Trend (Peninsular Malaysia)

(unit: 100 vehicles)

Year	1065	1070	1075		Average ann	ual percent	age growth
Motor- vehicles	1965	1970	1975	1977	1965–1970	1970-1975	1975–1977
Cars	:154.3	231.5	398.0	492.3	8.4	11.5	11.4
Taxis	5.2	6.7	9.0	.10.9	5.2	6.0	10.0
Lorries & vans	41.9	55 . 8	92.2	.112.0	5•9	10.5	10.0
Buses	3.8	5.9	8.7	10.5	9.2	8.0	10.0
Sub-total	205.2	299.9	507.9	625.7	7•9	11.1	10.9
Notor-cycles	175.8	350.0	722.3	951.1	14.8	15.6	14.9
Population (1000s) 3		8809.6	10062.5	10659.4		2.7	2.8

Note: 1) excludes other motor-vehicles (eg. tractors, road-rollers, etc.)

- 2) source: Road Transport Department
- 3) source: "Population Projection for the States of Peninsular Malaysia, 1970 1980" Department of Statistics.

Table 5-4 Motor-vehicle Registration Trend

(Penang State)

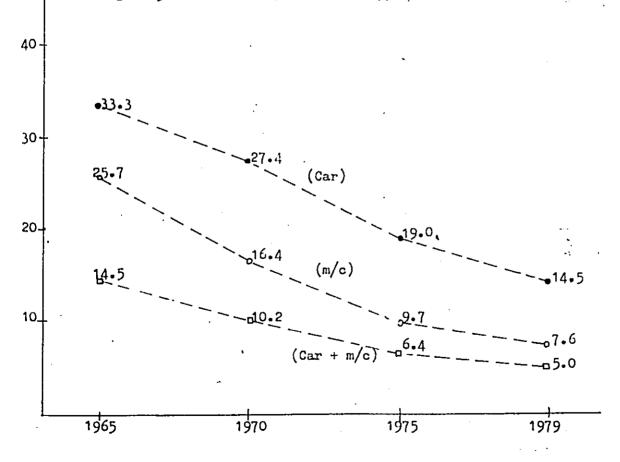
-	_						
Year		4'	4	4000	Average an	nual percen	tage gro
Motor- vehicle(1)	1965	1'970	1975	1979	1965–1970	1970–1975	1975-197
Cars	20975	28326	45578	65352	6.2	10.0	9.4
Taxis	* 214	294	386	474	5•5	5.6	5.3
Lorries	3211	5469	8475	11404	11.2	9.2	7.7
Buses	400	512	786	1073	5.1	8.9	8.1
Sub-total	24800	34601	55225	78303	6.9	9.8	9.1
Motor-cycles	27126	47432	89311	124984	11.8	13.5	8.8
Total	51926	82033	144536	203287	9.6	12.0	8.9
Population (3)	697653	776124	864771	947530	2.2	2.2	2.3

Note: 1) excludes other vehicles (eg. tractors, road-rollers, setc.)

- 2) source: R.I.M.V.
- 3) source: "Population Projections for the States of Peninsular Malaysia 1970 1980" Department of Statistics.

These tables show that the annual percentage growth was the highest for the period 1970 - 1975 after 1975 these figures decreased slightly. It goes without saying that the absolute figures are on the increase after 1975.

Table 5-6 Estimated vehicles volume by using least square method


Vehicles	1965	1970	1075	1070	Esti	mation
Vellicies	1907	יופי	1975	1979	1985	2000
Cars	20975	28326	45578	65352	80428	127922
M/cycles	27126	47432	89311	124984	162685	269122

B-2. Estimation by using the relationship of the indicators concerned.

These indicators are usually the population figures, house-hold size and income, accurate present and future values cannot be obtained during the study period. Therefore, only the population figures are used as a means of estimating the number of vehicles.

In figure which shows 'persons per vehicle type' we find that the figures are decreasing year by year and the shape of the graph looks like the exponential curve.

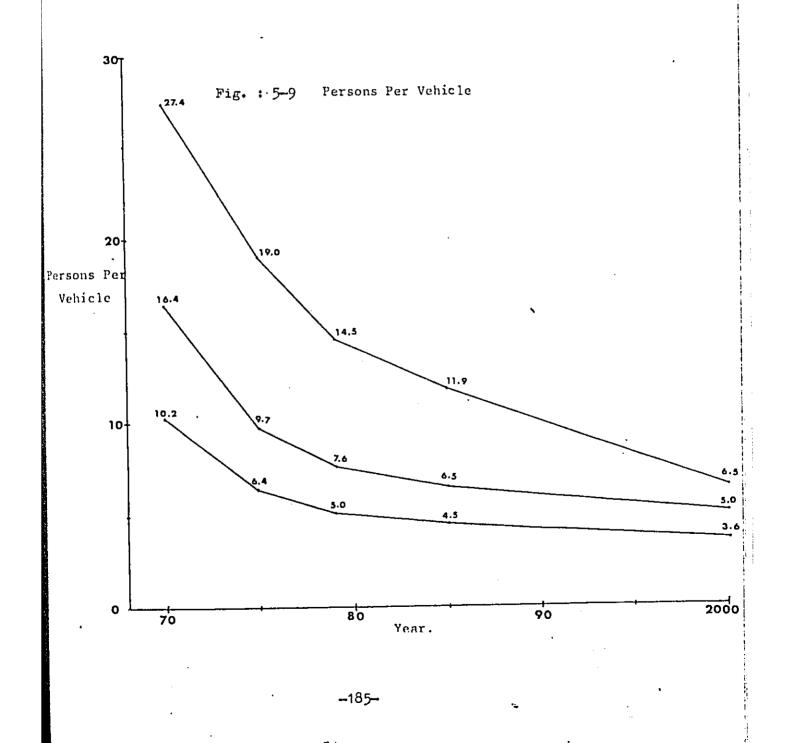
Figure 5-8 Persons per vehicle type.

[•] Car

o Motoroycle

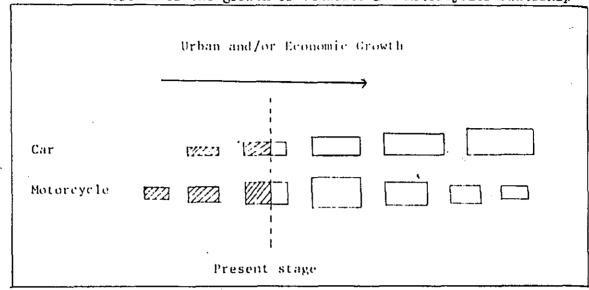
D Car and Motorcycle

Table 5-7 Calculation of persons per vehicle type.


		1965	1970	1975	1979
Populatio	on A	697653	776124	864771	947530
Car	В	20975	28326	45578	65352
Motorcycl	.e C	27126	47432	89311	124984
Car & motorcycl	.e D	48101	75768	124889	190336
Persons	B/A	33.3	27.4	19.0	14.5
by vehicle	C/A	25.7	16.4	9.7	7.6
type	D/A	14.5	10.2	6.4	5.0

Therefore, the exponential function is applied for the purpose of drawing the curve to estimate the future number of vehicles.

The results as obtained from using the exponential curve are as follows.


Table: 5-8 Persons per vehicle . (Unit : persons per vehicle)

	70	75	79	85	2000
Car	27.4	19.0	14.5	11.9	6.5
M/C.	16.4	9.7	7.6	6.5	5.0
Car + M/C.	10.2	6.4	5.0	4.5	3.6

A developed nation's urban history show that the modes of transport envolved parallel with the development of cities and urban incomes rose. It has been observed that Penang follows the evolutionary transition illustrated by the chart below:-

Figure 5-10 The trends of the growth of vehicles and motorcycles ownership

Previous Stage
Future Stage

The growth rate for motor-cycles does not seem to be following the present trend.

In time to come, it will be decreasing rapidly with the rate of urbanisation and economic growth.

The number of motor-cycles is estimated by subtracting the number of cars from the number of cars and motor-cycles.

Ownership for the other types of vehicles can also be estimated by the trend method.

The number of vehicles according to type is shown as follows:-

In time to come, it will be decreasing rapidly in live with the rate of urbanization and economic growth.

The number of motor-cycles is estimated by subtracting the number of cars from the number of cars and motor-cycles.

The results of the estimation are as follows:-

Table 5-9 Estimated motor-cycles volume (unit:1000 motorcycles)

			, .===	_
	1970	1979	1985	2000
Population	776.1	947•5 (100)	1090.0 (115)	1550.0 (164)
Number of cars & m/cycles	75•8	190.3	231.9	360.5
Number of cars	28.3	65.4 (100)	91.6 (140)	161.5 (247)
(Persons per car)	(27.4)	(14.5)	(11.9)	(9.6)
Number of m/cycles	47 • 4	125.0 (100)	140.3 (112)	199.0 (159)
(Persons per m/cycle)	(16.4)	(7.6)	(7.7)	(7.8)
 	• • • • • • • • • • • • • • • • • • • 			

Ownership for the other types of vehicles can also be estimated by the trend method.

The number of vehicles according to type is shown as follows:Table 5-10 The number of vehicle in Penang State

Vehicles	1979	1985	2000
Car	65.4	91.6	161.5
Taxi	0.5	0.7	1.2
Lorry	11.4	16.0	28.3
Bus	1.1	1.5	2.7
Sub-total	78•3 (100)	109.9 (140),	193.8 (248)
Motorcycle	125.0 (100)	140.3 (112)	199.0 (170)
Grand total	203.3	250.2	392.8

() Growth rate

(unit: 1000 vehicles)

Table: 5-11 Number of vehicles

47.4

(100)

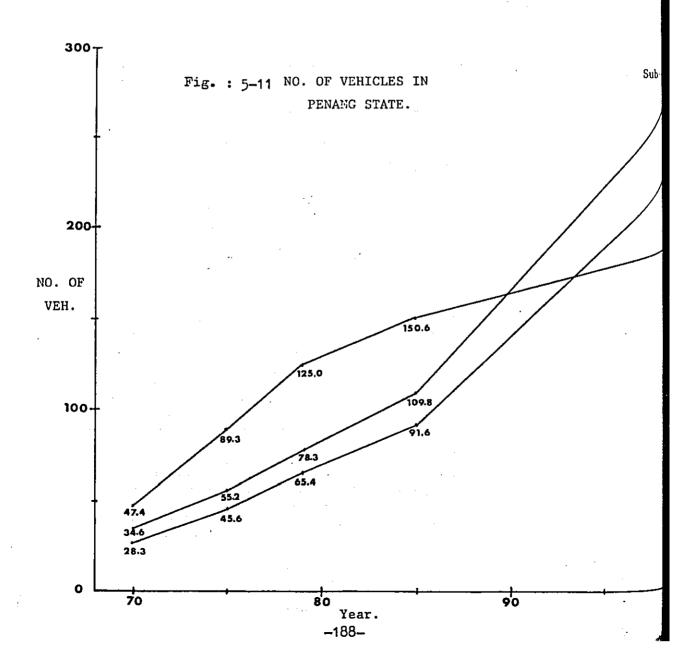
M/C

in Penang State. (unit:1000 vehic 79 85 2000 70 75 91.6 28.3 45.6 65.4 238.5 Car (231)(324)(842)(100)(161)16.0 5.5 8.5 11.4 35.5 Lorry (155)(207)(291)(645)(100)2.1 0.3 0.4 0.5 0.7 Taxi (100) -(133)(167) (233)(700)0.5 0.8 1.1 1.5 3.1 Bus (220)(300)(620)(100)'(160)28.3 109.8 279.2 34.6 55.2 Sub-total (160)(807) (100)(226)(317)

89.3

(188)

125.0


(264)

192.1

(405)

150.6

(317)

C. The number of vehicles in the study area.

The number of vehicles by area is estimated by distributing the increase in the number of vehicles since 1979 to each area according to the increase in the population by area since 1979.

Table: 5 - 12 Number of vehicles

iı	n Internal A	rea. (unit:	1000 vehicles)
	79 -	85	2000
Car	59.3	79.8	202.6
	(100)	(135)	(342)
Lorry	9.4	13.0	28.8
	(100)	(138)	(306)
Taxi	0.4 (100)	0.6 (150)	1.9 (475)
Bus	0.9	1.2	2.5
	(100)	(133)	(278)
Sub-total	69.9	94.6	235.7
	(100)	(135)	(337)
м/с.	105.1	124.0	155.0
	(100)	(118)	(147)
Population no of total	4.13	3.83	3.09

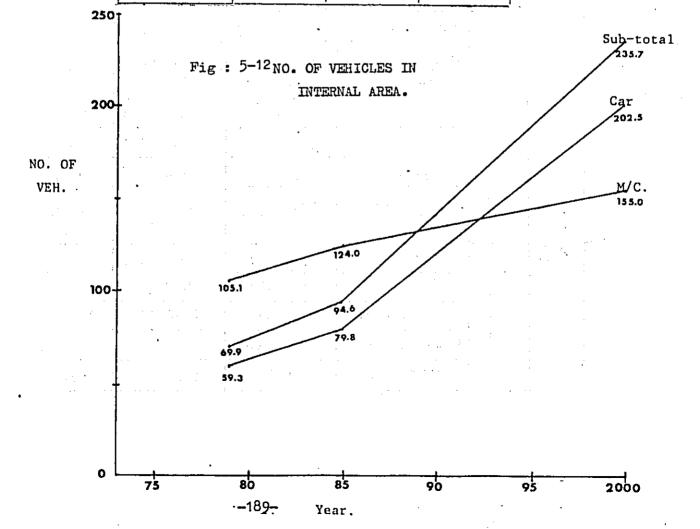


Table 5 - 13 Summary table of the premise.

(Unit:1000 person, vei

			1979	1985	2000
		P.I	469•7 (100)	519.3 (111)	677.0 (144)
	ដួ	P.W	254.2 (100)	317.6 (125)	530 . 0 (208)
t	Population	INTERNAL AREA	723.9 (100)	836 . 9 (116)	1207.0 (167)
Employment	Рори	Penang State	946.6 (100)	1090.0 (115)	1550.0 (164)
Imp1c		Internal Penang	76.5 %	76.8 %	77•9 %
and E	``	P•I	135.9 (100)	162.5 (120)	241.0 (177)
on a	t t	P.W	101.4 (100)	134.0 (132)	247.0 (244)
Population	Employment	Internal Area	237.3 (100)	296•5 (125)	488.0 (206)
[mďo,	արշ	Penang State	294.0 (100)	350•7 (119)	541.7 (184)
P4	FEI	Internal Penang	80.7 %	84.5 %	90.0 %
		P.I	44•7 (100)	57•9 (130)	130•9 (293)
		P.W	14.6 (100)	21.9 (150)	71,7 (491)
	ધ	Internal Area	59•3 (100)	79•8 (135)	202.6 (342)
	Car	Penang State	65.4 (100)	91.6 (140)	238.5 (365)
		Internal Penang	90.6 %	87.1 %	84•9 %
		P•I	50.7 (100)	67•5 (133)	147.6 (291)
ehicles	_	P.W	19.2 (100)	27.1 (141)	88.1 (459)
	icle	Internal Area	69.9 (100)	94.6 (135)	235.7 (237)
Number of V	Veh	Penang State	78.3 (100)	109.8 (140)	279.2 (357)
ber		Internal Penang	89.3 %	86.2 %	84.4 %
Num		P.I	67.8 (100)	77.9 (115)	84•4 (124)
	5	P.W	37•4 (100)	46.1 (123)	70. 6 (1 89)
.	3yc1	Internal Area	105.1 (100)	124.0 (118)	. 155•0 -(147)
	Motorcycle	Penang State	125.0 (100)	150.6 (120)	192.1 (154)
	Mo	Internal Penang	84.3. %	82.0 %	80.7 %

- 6 Estimation of future traffic demand.
- 6-1 Outline of the flow-chart for estimation and some definition.
 - (1) Outline of the flow-chart.

The analysis of the present traffic situation was done in chapter 3. The estimation for the future traffic demand will be carried out on the basis of this analysis and the mentioned premise.

The flow-chart is as follows:—
The procedure of estimation are consisted with four steps, that is, trip production, trip generation and attraction, trip distribution (0-D table) and traffic assignment.

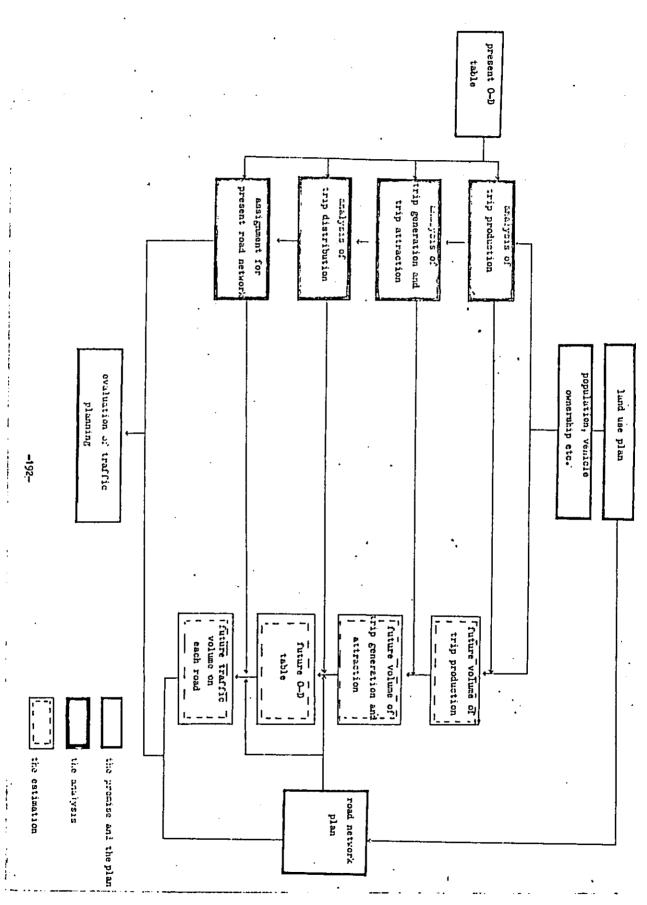


Figure 6-1 Flow chart for the future traffic demand estimation

(2) Some definition about traffic words

1) Passenger Car Units

Vehicles of different types require different amounts of road space because of variations in size and performance. In order to allow for this in capacity measurements for roads and junctions, traffic volume are expressed in passenger car units (p.c.u.).

In 'Roads in Urban Areas' (published by Ministry of Transport Scottish Development Department), these p.c.u. are defined as following table.

In this study, we use the following figure as p.c.u. of urban standards.

Table 6-1 Passenger Car Units

	Equivalent value in passenger car units (pcu's)					
Class of vehicle	Urban standards	Rural standards	Round- about design	Traffic signal design		
Private car, taxi, motor-cycle com- bination, light goods vehicle (up to 30 cwt. unladen)	1.00	1.00	1.00	1.00		
Motor-cycle (solo), motor scooter, moped	0.50	0.75	0.75	0.33		
Medium or heavy goods vehicle (over 30 cwt. unladen), horse-drawn vehicle	2.00	3.00	2.80	1.75		
Bus, coach, trolley bus, tram	3.00	3.00	2.80	2.25		
Pedal-cycle	0.33	0.50	0.50	0.20		

('Roads in Urban Areas')

(2) Carriage-way Capacity

Approximately practical capacities of urban roads between junction are defined as following Table in above-mentioned report.

Table Practical capacities of two-way urban roads

Effective width of carriageway	,	- 2-lane		3-la	ne		4-lane		•	6-lane	•	
in feet (excluding refuges or central reserve)	20'	22'	24'	`30'	33'	40′	44,	48'	eo.	66′	72'	Remarks
Description				s per he ons of l					eu's per			(for definitions of road) see Section 2.1)
Urban motorway with grade separation and no frontage access					,			3,000			4,500	Applicable to the high category of distributor
All-purpose road with no front- age access, no standing vehicles permitted and negligible cross- traffic	1,200	1,350	1,500	2,000	2,200	2,000	2,200	2,400	3,000	3,300	3,600	Appropriate for all-pup distributors
All-purpose street with high- capacity junctions and 'No Waiting' restrictions	800	1,000	1,200	1,600	1,800	1,200	1,350	1,500	2,200	2,250 2,450 or dual riagewa	2,700	Applicable to those distribution and access roads where to development is first but capacity is not us restricted by junctions

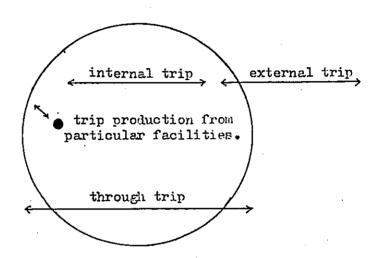
'Roads in Urban Areas'

The average daily capacity are calculated as following formula.

Average daily capacity = practical capacity per hour ratio of peak-hour traffic demand

Concerning to the ratio of peak-hour traffic demand, 10.0% in 2-lane roads 12% in 4 - lane roads are applied from traffic volume survey in Penang.

Therefore, the capacities are decided as follows;


Table 6-3 The Daily Capacity

		Urbanized Area		Sub-Urb	High-way	
·		existing	new road	existing	new road	
	Capacity per hour	800 (22')	1200 (24¹)	1000 (22')	1500 (24¹)	<u> </u>
2 1ane	Ratio of peak hour	10%	10%	10%	10%	
	Daily capacity	8000	12000	10000	15000	
	Capacity per hour for one direction	1200 (44')	1500 (48')	1350 (44')	2400 (48')	3000 (48')
4 lane	Ratio of peak hour	12%	12%	12%	15%	175
	ratio of one direction	55%	55%	55%	55%	55%
	Daily capacity	36000	45000	41000	58000	64000

6.2 Estimation of Future O-D Table.

6.2.1 Trip Production

The future traffic volume, related to the study area is divided into the following types viz internal trip, external trip, through trip and trip production from specific facilities.

With regards to 'internal trip', 'external trip' and 'through trip', they have already been explained in chapter 1. 'Particular facilities' in this section means the new port, other port facilities and the airport.

These facilities will produce more traffic than that produced as a result of population increase. This is because there will be a rapid increase in the volume of cargo handled by the port and also in the volume of air passengers. Therefore, trip production from these facilities must be considered separately from the usual trip production.

(1) Internal trip

The internal trip production is estimated by multipling the number of vehicles with the unit trip production already determined in this analysis.

Table 6-4. Number of Trip in Internal Area

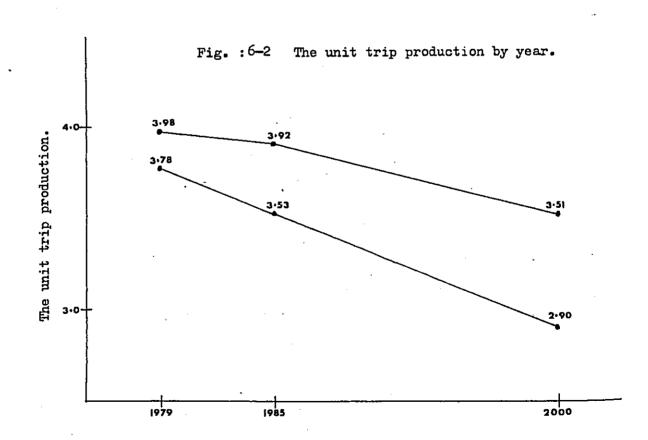
		Car	Lorry	Taxi	Bus	Sub- Total	м/с
of e	1979	59.3	9:4	0.4	0.9	69.9	105.1
Number o Vehicle	1985	79.8	13.0	0.6	1.2	94.6	124.0
No	2000	202.6	28.8	1.9	2.5	235.7	155.0
of	1979	236.0	28.4	2.7	19.0	286.1	397.3
Number o Trip	1985	312.9	39.1	4.8	24.7	381.5	437.7
Nu	2000	710.7	86.7	15.3	51.5	864.2	449.5

However, some explanation is needed regarding the unit trip production of cars and motor-cycles.

As future number of cars and motor-cycle shows, these number will increase with the increase in population and the level of income.

The average possession number per person about private car will increase from 0.08 in 1979 to 0.10 in 1985 and 0.17 in 2000. Also, those number about motor-cycle will be 0.15 in 1985, 0.14 in 2000 from 0.14 in 1979.

In any case, the ownership of private cars and motor-cycles per person and per household will increase without doubt.


As the number of private cars and motor-cycles increase, the unit trip production per day will decrease. It is proved by the results of many surveys in advanced countries.

Therefore, in the estimation of the volume of trip production by private cars and motor-cycles, we consider these situation and the unit trip production are settled to be slightly decreased figure from present one according to the increased ratio of car and motor-cycle possession.

Concerning to other type of vehicle, the unit trip production are settled to be same figure in present.

Table 6-5 The Unit Trip Production (Unit: trips per vehicle)

	1979	1985	2000
Private Car	3.98	3.92	3.51
Motor-cycle	3.78	3.53	2.90

(2) Trip production from specific facilities.

The specific facilities in this section refer to the port and the airport.

The future cargo volume is estimated by using the relationship between the cargo volume and the Gross Domestic Product (G.D.P.).

Table 6-6 Cargo Tonnage in Penang Port (Unit: 1000 tons per year.)

	1979	1985	2000	:
Cargo Tonnage in Penang Port	5.12 (100)	7.94 (155)	12.5 (245)	÷

The cargo volume by wharf for 1985 and 2000 estimated by using the data from the Penang Port Commission.

Table 6-7 Future cargo volume by cargo type and wharf. (Unit:1000 tons)

	year go type	1985	2000
	Commodity	535	550
Penang Island	Fuel oil	85	150
	total	623	700
	Commodity	2513	3090
Butterworth	Fuel oil		-
	total	2513	3090
,	Commodity	739	740
Prai River Area	Fuel oil	-	-
	total	739	740
	Commodity	728	1130
Prai Marginal Area	Fuel oil	650	1120
	total	1378	2250
	Commodity	1296	3500
New Development	Fuel oil	1391	-
Area	total	2687	3500
	Commodity	5814	9230
total	Fuel oil	2126	3270
	total	7940 !	12500

Trip production from these wharfs is estimated on the basis of their carrying capacity by each commodity type.

The results are shown in the following table.

Table 6-8. Trip production by wharf (Unit: 1000 trips per day)

Location year	1979	1985	2000
of wharf	.,,,	,,,,,	2000
Penang Island	3.6	4-1	5•3
Butterworth	7•9	9.0	13.0
Prai River Area	1.7	1.9	3.9
Prai Marginal Area	2•3	2.6	2.9
New Development Area	_	4.0	15•9
Total	15•5 (100)	21.6 (140)	41•0 (213)

The Passengers bound for and departing from Penang Island are increasing at a rapid rate and in the time span of one decade, the growth rate shows a 5 times increase.

Table 6-9 No. of passengers (bound for/departing from Penang

Island) Unit: 1000 persons per year)

Year	Passenger	Year	Passengers
1968	137.8	1974	497.0
169	162.9	175	560.6
' 70	198.7	176	588.6
171	233.4	177	635.6
'72	286.6	'78	685.5
'73	441.2		

The future volume of passengers is estimated by the . regression equation.

Table 640 Future volume of passengers
(Unit: 1000 persons per year)

	1970	1975	1978	1979	1985	2000
Passengers	198.7	560.6	685.5	705.5	1129.5	4234.0
	(100)	(282)	(345)	(355)	(568)	(2131)

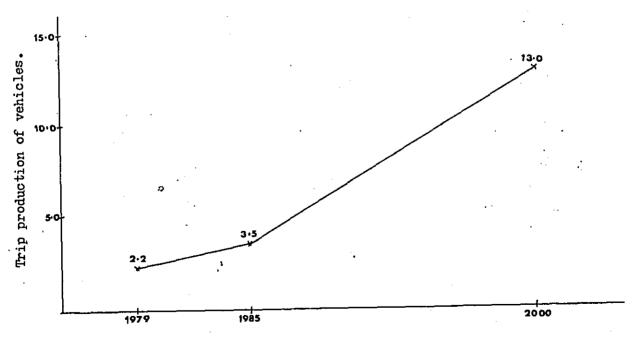

Trip prosuction from the airport is estimated from the growth rate of passengers as shown below:-

Table 6-11 Trip production (persons per day)

·	1979	1985	2000
passengers per day	. (100)	3090 (160)	11600 (600)
trip production of vehicles	2165*	3460	13000

* From our Traffic Generation Survey (14.6.1979)

Fig: 6-3 Trip production from Air Port.

(3) External trips and through trips.

The rate of growth of external trips and through trips in the future is dependent upon the rate of growth of the external area.

With regards to Penang Island, the rate of growth of external trips is estimated by using the growth rate population in the external area of Penang Island.

In Province Wellesley on the other hand, the rate of growth of external trips is calculated by using the estimation from the 'Feasibility study of Federal Route 1' and the 'Feasibility study of the East-West Highway.'

The result of the estimation is as follows:-

(Unit: 1000 trips)

150

120

120

120

25.1

27.7

28.6
(motorcycle)

Fig. : 6-4 External and Through trips.

(4) Total number of trip related to the study area.

The estimation for the number of trips was conducted separately according to the type of trips. The summary of these estimation are as follows:-

Table 6-12 Total number of trips (unit: 1000 trip perday)

	\unit: 1000 \					
		1979	1985	2000		
vehicles	internal trip	286.1	381.5	864•2		
	external and through trip	35-3	51.1	144•4		
	trip production from specific facilities		(6.1) (1.3) 7.4	(25•5) (10•8) (36•3)		
. *:	•	321.5	440.0	1044.9		
notorcycles	internal trip	397-3	437•7	449•3		
	external and through trip	25.1	27•7	28.6		
Ě		422.4	465•3	477•9		

6-2-2 Trip generation and attraction.

(1) Future trip generation and attraction.

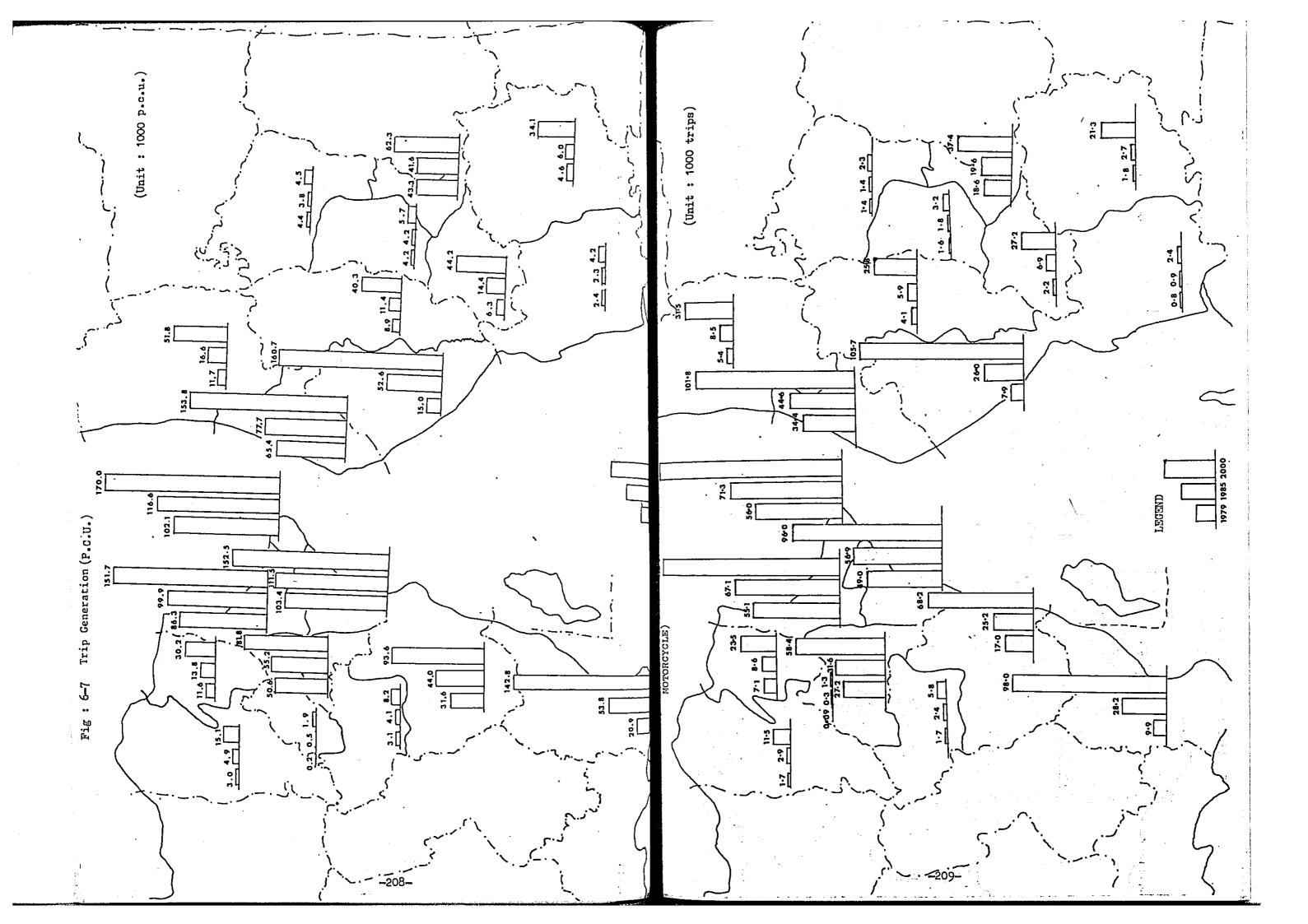
Future volume of trip generation and attraction is calculated by the trip generation and attraction model which is derived from the present traffic and population data.

The results are as follows:-

Fig: 6-5 The relationship with trip generation and population (unit:1000 p.c.u, person) 900 Internal area Internal area of Province Wellesley of Penang Island 800 700-677-0 (144) 600-561·6 (338) 530·0 (208) 519-3 504·3 (111) 500-469.7 (100) (100) 777 400-300-200-100-2000 1985 Trip generation (P.C. Population -204-

Fig: 6-6 Trip generation in Penang Island and Province Wellesley




Table: 6- 13 Number of trip generation (Unit: 1000 trips)

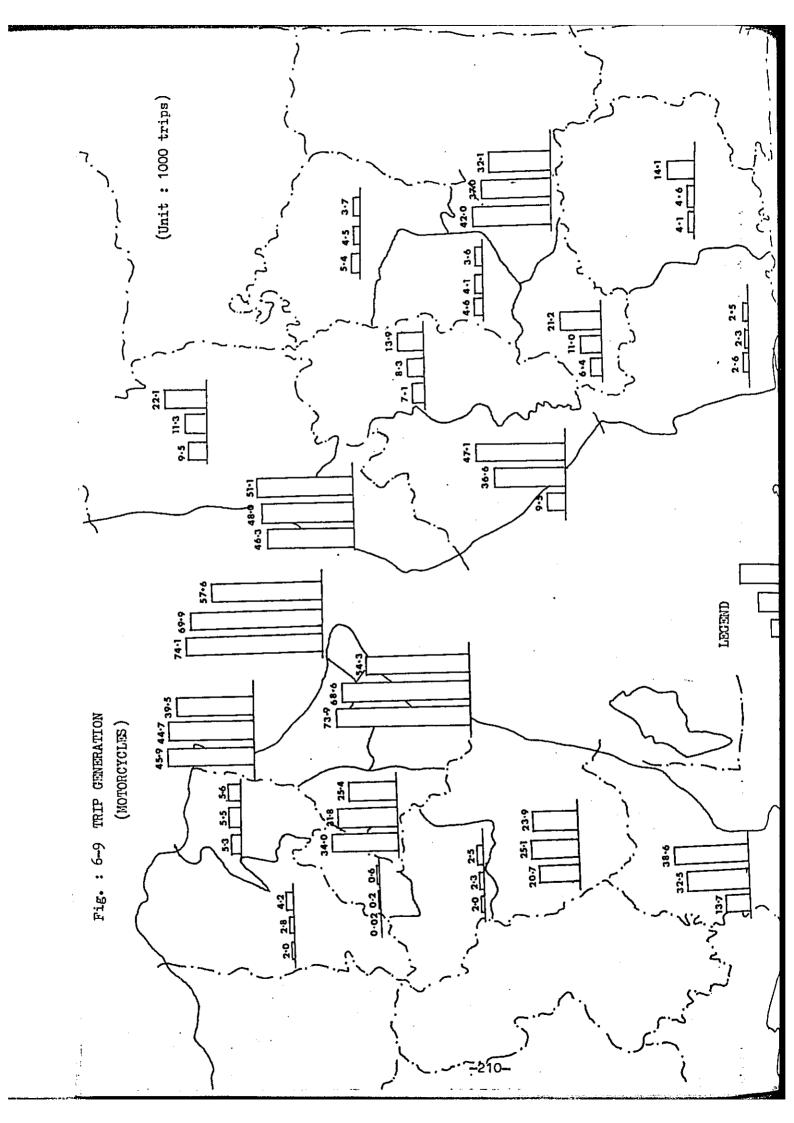

		Vehicle								
,		Car				<u> </u>	[.]	1		
	ļ	Going to Work	On Business	Private	Going Home	Sub- Total	Lorry	Taxi	Bus	Sub- Total
	1979	53192	24579	42647	65347	185705	20440	2499	15937	224588
Б	1985	70067 (1.32)	31714 (1.29)	56627 (1.33)	81095 (1.24)	239503 (1.29)	29426 (1.44)	6000 (2.40)	19584 (1.23)	294513 (1.31)
	2000	156142 (2.94)	62911 (2.56)	119357 (2.80)	149717 (2.29)	488128 (2.63)	59736 (2.92)	22420 (8.97)	30907 (1.94)	601191 (2.68)
	1979	15298	11174	13263	21343	61078	12701	1200	3275	78248
w	1985	21619 (1.41)	15401 (1.38)	18955 (1.43)	34215 (1.60)	90190 (1.48)	20864 (1.64)	1800 (1.50)	5470 (1.67)	118324
	2000	67736 (4.43)	40749 (3.65)	59275 (4.47)	99322 (4.65)	267082 (4.37)	63667 (5.01)	6680 (5.57)	21293 (6.50)	358722 (4.58)
T O	1979	68490	35753	55910	86690	246843	33141	3699	19212	302896
T A	1985	91282 (1.33)	47409 (1.33)	75381 (1.35)	115621 (1.33)	329693 (1.34)	50290 (1.52)	7800 (2.12)	25054 (1.30)	412837 (1.36)
L	2000	223878 (3.27)	103660 (2.90)	178632 (3.19)	249039 (2.87)	755210 (3.06)	123403 (3.72)	29100 (7.87)	52200 (2.72)	959913 (3.17)
لــــــــــــــــــــــــــــــــــــــ					•					

Table: 6-14 Number of trip Attraction

(Unit : 1000 trips)

	Vehicle									
		Car								
	Going to Work	On Business	Private	Going Home	Sub- Total	Lorry	Taxi	Bus	Sub- Total	M/C
979	52518	24465	43594	65487	186149	20416	2513	15836	224974	271621
985	65447· (1.25)	31274 (1.28)	56152 (1.29)	86630 (1.32)	239503 (1.29)	29426 (1.44)	6000 (2.39)	19584 (1.24)	294513 (1.3)	283458 (1.04)
000	122261 (2.33)	61027 (2.49)	111133 (2.55)	193704 (2.96)	488125 (2.62)	59736 (2.93)	22420 (8.92)	30907 (1.95)	601188 (2.67)	252124 (0.93)
979	15875	11234	12836	21171	61078	12544	1225	3151	78107	138098
985	25189 (1.59)	15455 (1.38)	19769 (1.54)	29777 (1.41)	90190 (1.48)	20864 (1.66)	1800 (1.47)	5470 (1.74)	118324 (1.51)	167740 (1.21)
000	74717 (4.71)	41537 (3.70)	61435 (4.79)	89391 (4.22)	267081 (4.37)	63667 (5.08)	6680 (5.45)	21294 (6.78)	358722 (4.59)	211275 (1.53)
979	68393	35699	56430	86658	247227	20416	3738	18987	303054	409719
985	90636 (1.33)	46729 (1.31)	75921 (1.35)	116407	329693 (1.33)	50290 (2.46)	7800 (2.09)	25954 (1.32)	· 412837 (1.36)	451199 (1.10)
000	196978 (2.88)	102564 (2.87)	172568 (3.06)	283095 (3.27)	755206 (3.05)	123403 (6.04)	29100 (7.78)	52201 (2.75)	959910 (3.17)	463399 (1.13)

6-2-3 Future O-D table

Number of trips in each traffic type.

O-D tables for the future are estimated by using the future trip generation, trip attraction, and distance between each zone pair together with gravity model which is derived from the present traffic data.

Table:6-15 Number of trip in each traffic type

(Unit:1000 trips)

				Ve	hicle					•	'
		L	С	Car			1				
	Year	Going to Work	On Business	Private	Going Home	Sub- Total	Lorry	Taxi	Bus	Sub- Total	M/c
	1979	66.4	33.4	53.1	83.2	236.0	28.4	2.7	19.0	286.1	397
internal	1985	88.1	44.0	70.8	110.1	312.9	43.2	6.1	24.7	386.9	431.
inte	2000	200.1	100.0	160.7	249.9	710.7	92.2	24.5	51.5	878.9	449.
1 trip	1979	4.3	4.8	6.4	7.5	23.2	9.8	2.1	0.4	35.3	25;
l rd	1985	6.0	7.2	9.8	10.3	33.3	15.8	3.4	0.6	53.1	27,
extern and through	2000	14.4	21.6	27.3	25.5	89.0	66.4	9.2	1.4	166.0	28,
T	1979	70.7	38.2	59.5	90.7	259.2	38.2	4.8	19.4	321.5	422
O	1985	94.1	51.2	80.6	120.4	346.2	59.0	9.5	25.3	440.0	465
A L	2000	214.5	121.6	188.0	275.4	799.7	158.6	33.7	52.9	1044.9	477

Table : 6-16 Number of Trip production in each

Traffic Type (P.C.U.)

(unit: 1000 P.C.U.)

	1979	1985	2000 -
internal trip	551.2 (100)	692.2 (114)	1287.5
external and	58.6	84.4	250.6
through trip	(100)	(144)	(428)
total	609.8 (100)	776.6 (127)	1538.1 (252)

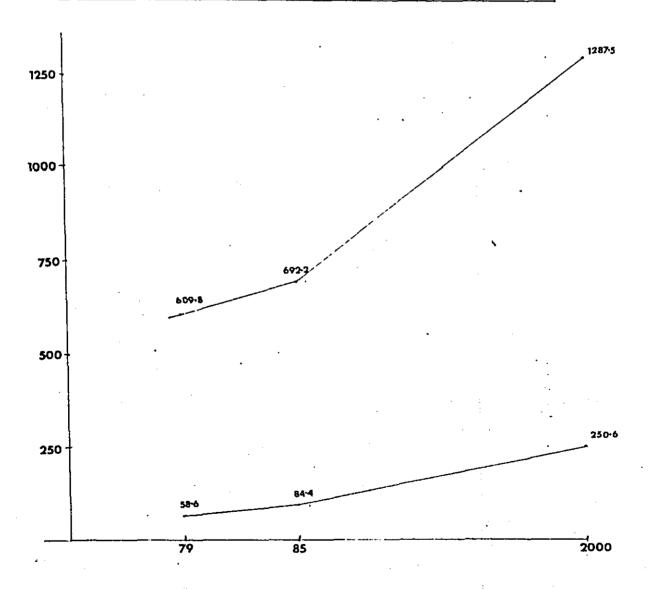


Table : 6-17 Number of Trip Production in each Traffic Type (Vehicles)

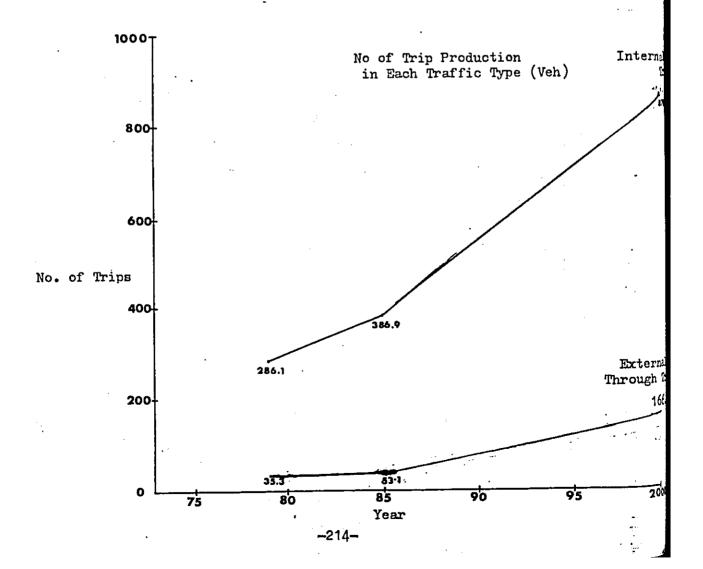
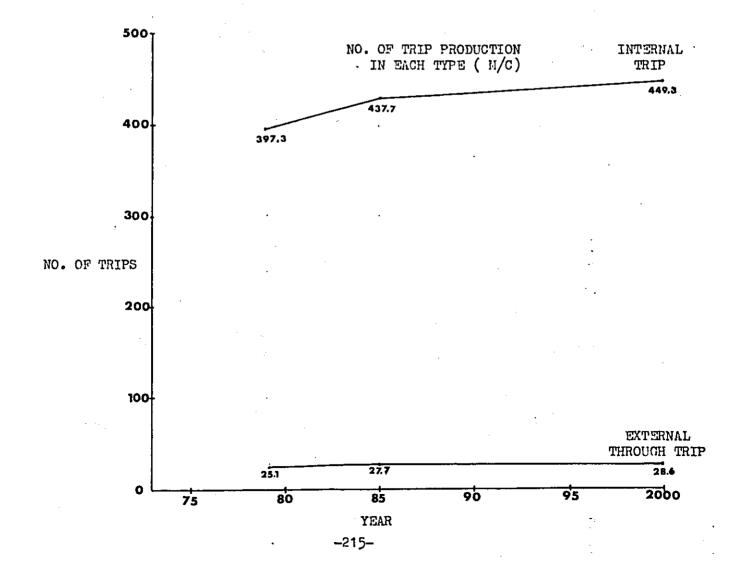
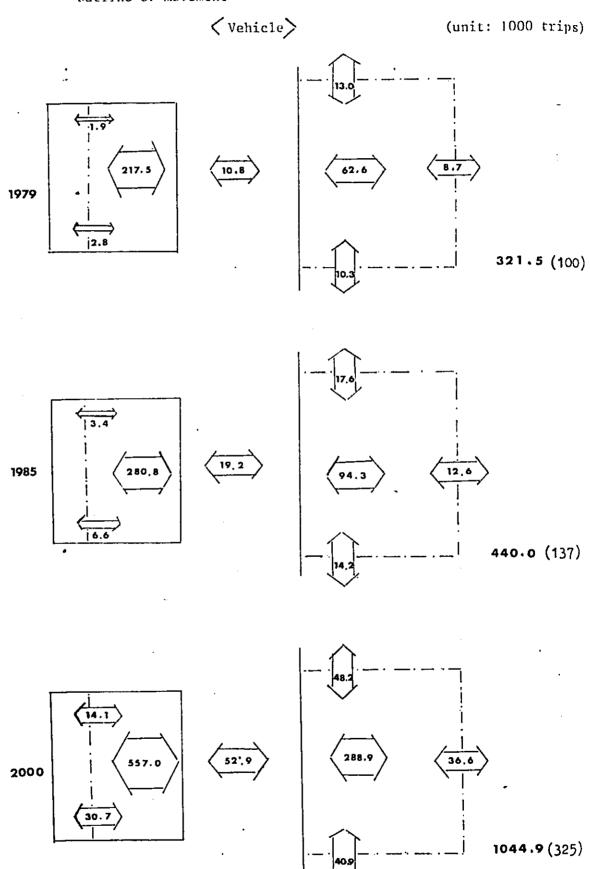
321**.**5 (100)

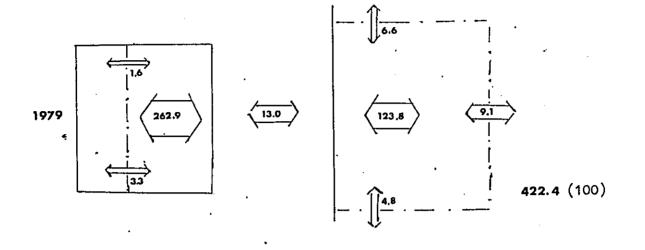
Total

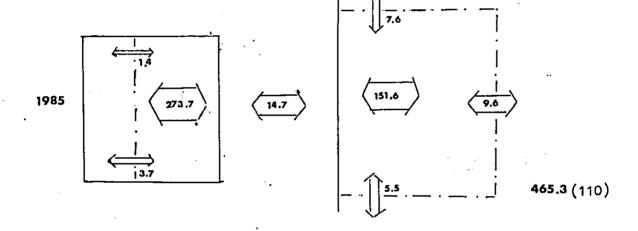
		·	(uni	t: 1000 trip	в)
		1979	1985	2000	
ľ	internal trip	286.1 (100)	386•9 (135)	878•9 (307)	
	external trip	.33•9 (100)	51.7 (153)	161.7 (477)	
	Through Trip	11.4 . (100)	1.4 (100)	4•3 (307)	

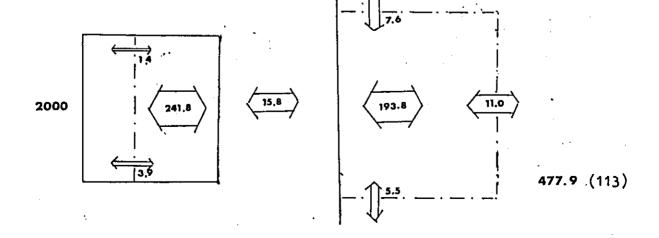
440.0 (140) 1044.9

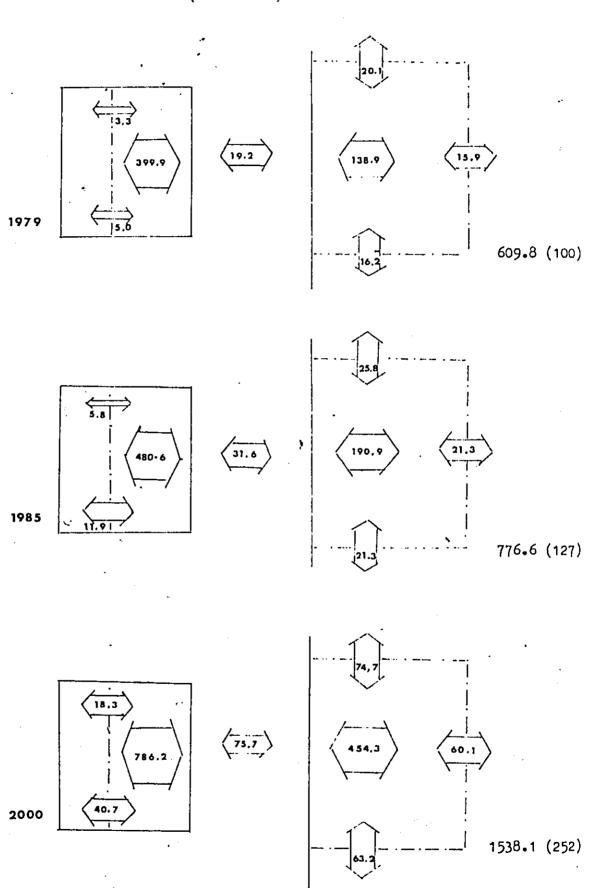
(325)


Table :6-18 Number of Trip Production in each Type (m/c)


	,	(uı	it: 1000 tr	ips)
	1979	1985	2000	
internal trip	397•3 (100)	437•7 (110)	449•3 (113)	
external through trip	25•1 (100)	27•7 (110)	28.6 (113)	
Total	422•4 (100)	465•3 (110)	477•9 (113)	



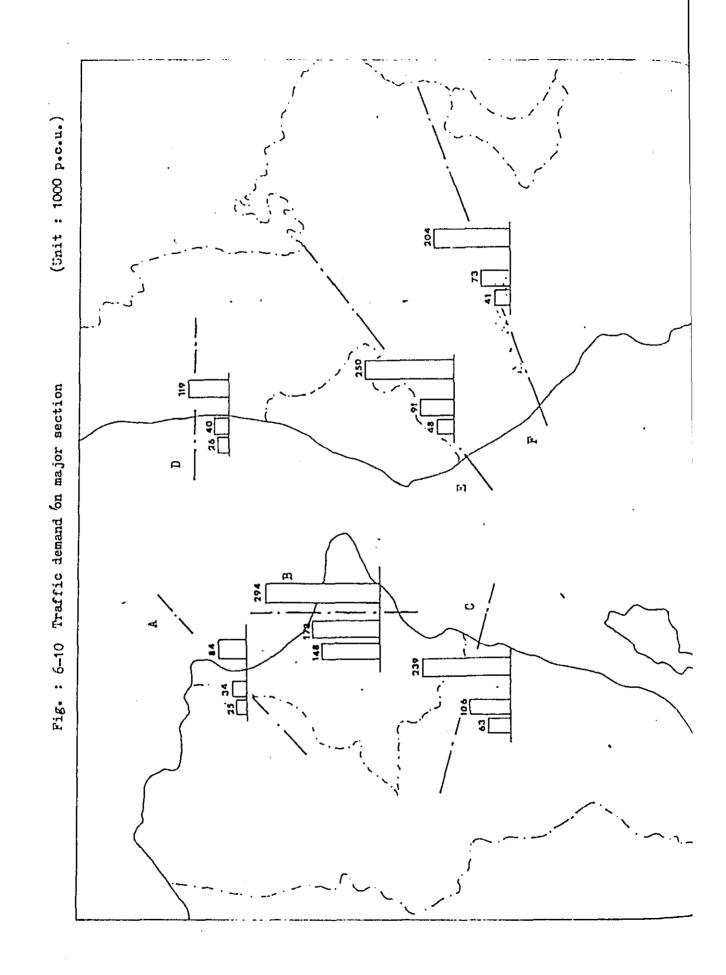
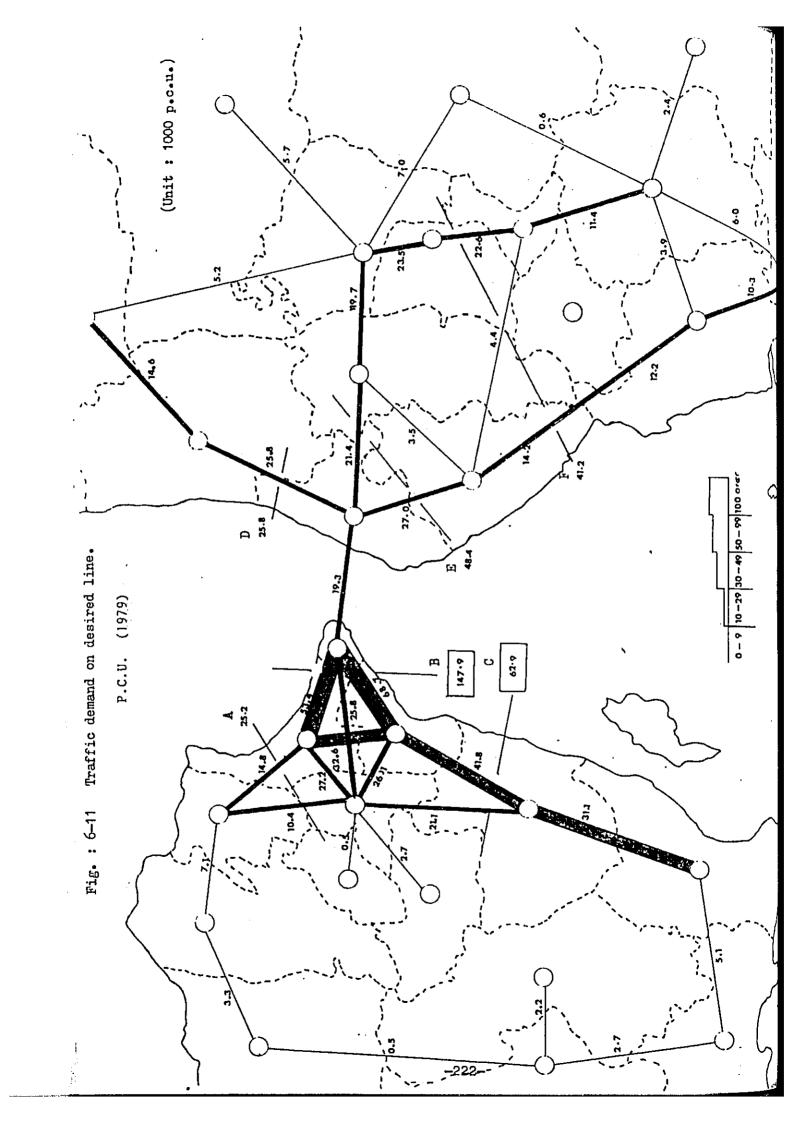
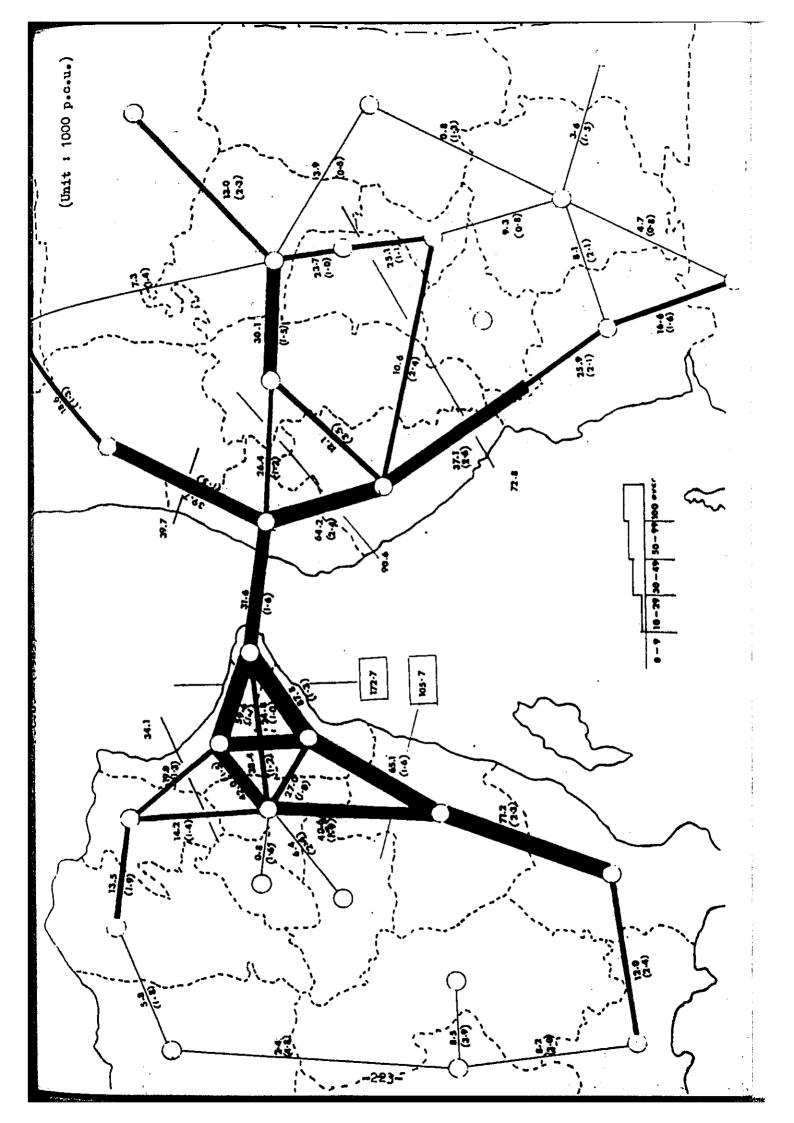

(2) Outline of movement

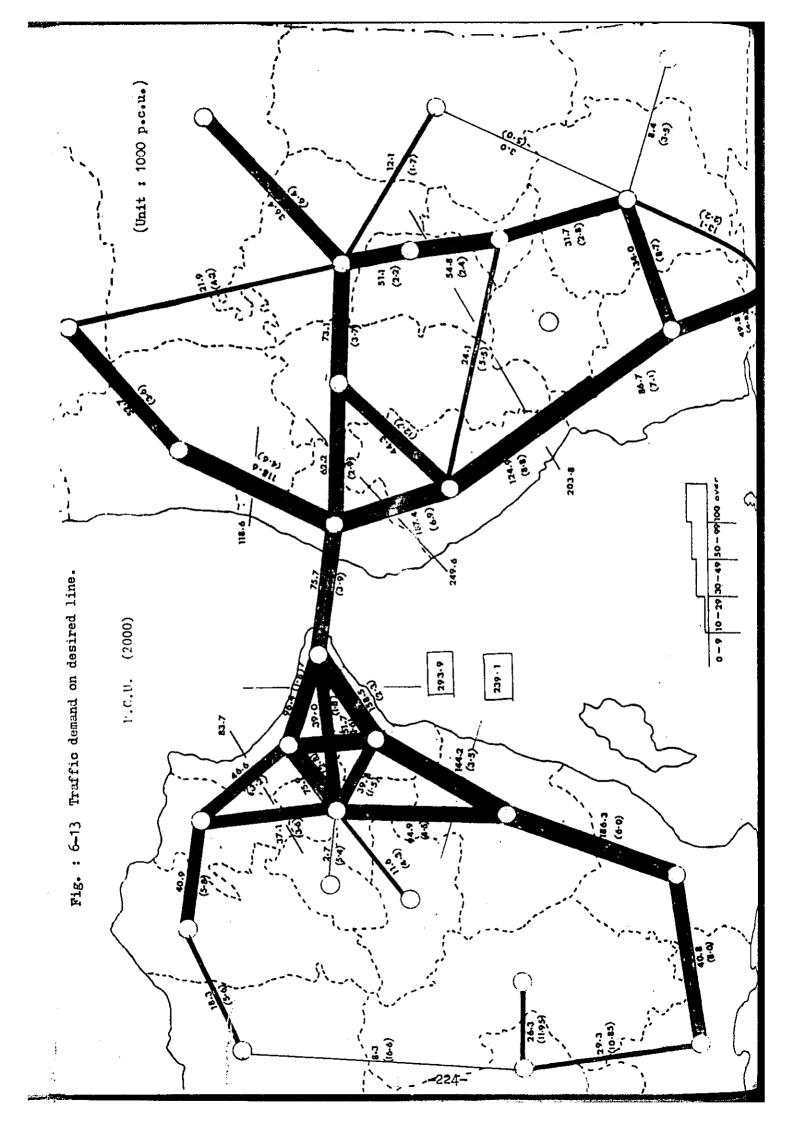
(3) Desired Assignment

For the purpose of grasping the traffic movement approximately, the desired assignment are conducted useing the method of simple assignment. This way is that the traffic demand of each O-D pair (in this case middle zone pair) is assigned to the shortest desired route according to the distance. The growth rate of traffic demand on major section estimated by the desired assingment are as follows;

From these figures, the following can be observed:

- (1) In Penang Island, the traffic movement between George Town and Bayan Lepas will become greater. (Section C). The traffic movement in 1979, 1985 and 2000 are 63,000 106,000 and 239,000 respectively.
- (2) In Province Wellesley, the traffic movement between Butterworth, Seberang Prai and Bukit Mertajam (Section F) will be increased remarkably from 41,000 to 73,000 in 1985, 20,400 in 2000.


Table 6-19 Traffic Demand on Major Section

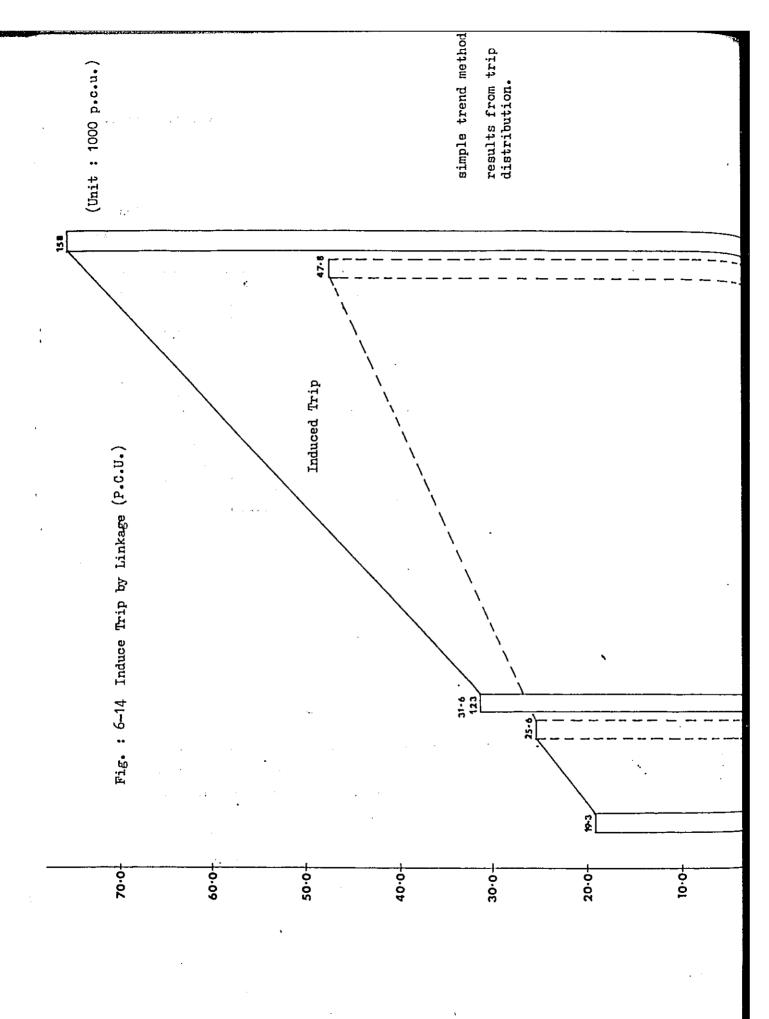
(Unit:1000 trip P.C.U)

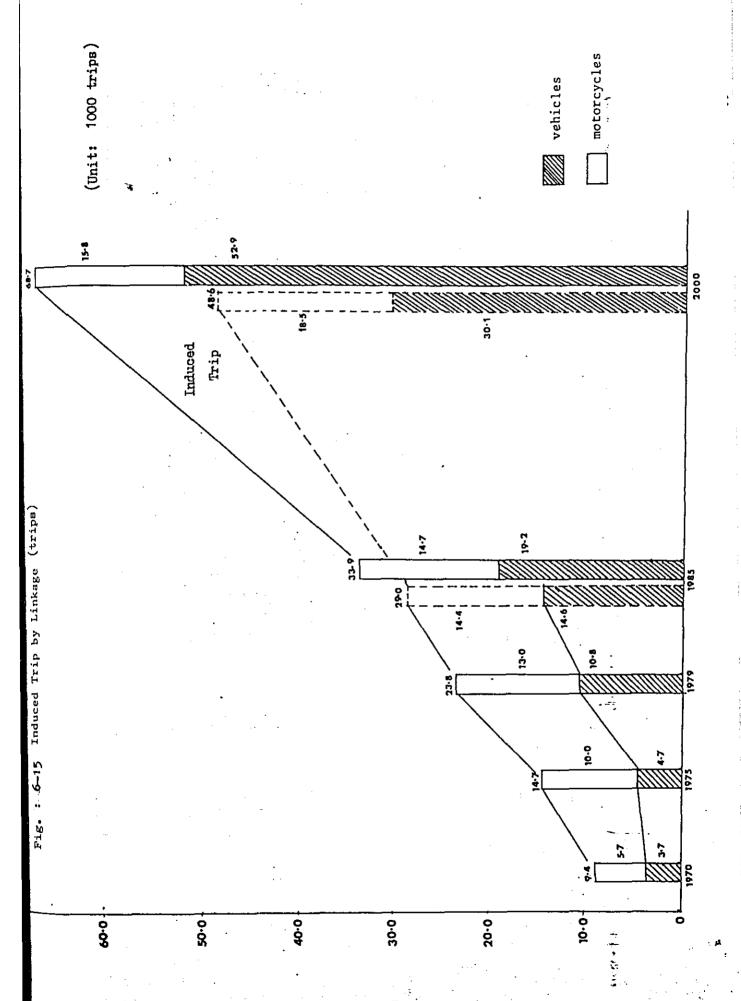
	Section Year		ng Island		Provi	Province Wellesley			
Year			В	С	D	Е	F		
	Vehicles	15.7	85.7	35.9	14.6	27.2	20.4		
1979	M/C	11.1	88.7	35.7	13.9	29.2	28.0		
	P.C.U	25.2	147.9	62.9	25.8	48.4	41.2		
	Vehicles	22.0	111.7	67.0	24.1	55.1	43.2		
1985	M/C	11.8	80.6	40.8	18.6	42.6	36.5		
1905	P.C.U	34.1 (1.35)	172.7 (1.17	105.7	39.7 (1.54)	90.6	72.8		
	Vehicles	65.8	217.8	179.6	77.0	169.8	136.5		
2000	м/с	12.9	70.2	39.1	29.1	56.4	48.9		
2000	P.C.U	83.7 (3.32)	293.9 (1.99)	239.1 (3.80)	118.6	249.6 (5.16)	203.8 (4.95)		

(4) The traffic volume across the Straits

The traffic volume over that unique section, viz cross the Straits is estimated as follows:-

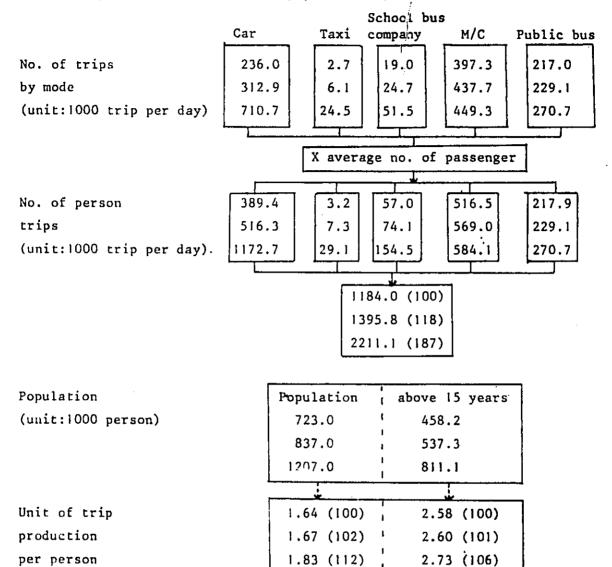
Table 6-20 Traffic volume across the straits (unit: 1000 vehicles/motorcycles)


		1975	1979	1985	2000
vehicles	8.	4-7	10.8 (100)	(14.6) (135)	(30•1) (278)
	Ъ	-	-	(19•2) (178)	(52.9) (49 0)
motor-	a	10.0	13.0 (100)	(14.4) (111)	(18.5) (142)
cycles	ъ	-	_	(140•7) _(113)	(15•8) (122)


a: simple trend method

b: results from distribution estimation

From the results, the induced trips brought about at the completion of the linkage can be obtained. In 1985, these trips will total 6,000 p.c.u. but by the year 2000 they will total 28,000 p.c.u.


From this, we can deduce that the effects of the linkage will be quite large.

:-2-4

Varification by person trip

Upper : 1979 Middle : 1985

(unit: no. of trip per person)
per day

Lower : 2000

-reference -

Owner : 2.32

Non owner: 1.57

Average: 1.73

in Manila

Estimation of Future Traffic Demand by Transport Plan

Concept of the Transport Plan

7

7.1

The future O-D table which are described in chapter 6 are estimated according to the demand of vehicles. However, the actual appearance of the traffic are affected by many restriction and alternative transport, that is, if there are no parking area, vehicle traffic will decrease and if there are some superior transport which speed is faster than vehicles, some vehicle will divert to the new transport.

Therefore, we must consider some factors which are related to the traffic volume. In this chapter, some alternative transport plan are considered and some estimation are excuted by the transport plan.

(1) The transport plan

The transport plan are planned as following 3 (three) steps. Plan B

In this plan, the restriction about parking demand and the alternative transport which are represented by bus exclusive lane are considered.

Plan C

In this plan, the new transport system which is imagined as the Lightway Rail System is considered on Penang Island in addition to Plan B.

Plan D

In this plan, the control of parking demand and the car pooling system are considered.

The calculation are executed as follows:-

Year	Plan - B	Plan - C.	Plan - D
1985	execution		
2000	execution	execution	execution

Fig. :7.1 Alternative Plan - B

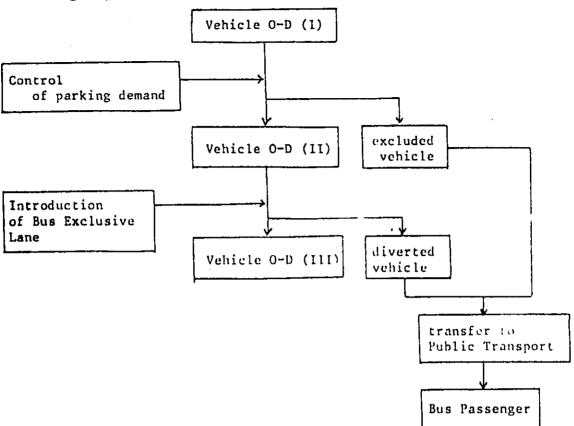


Fig. : 7.2 Alternative Plan - C

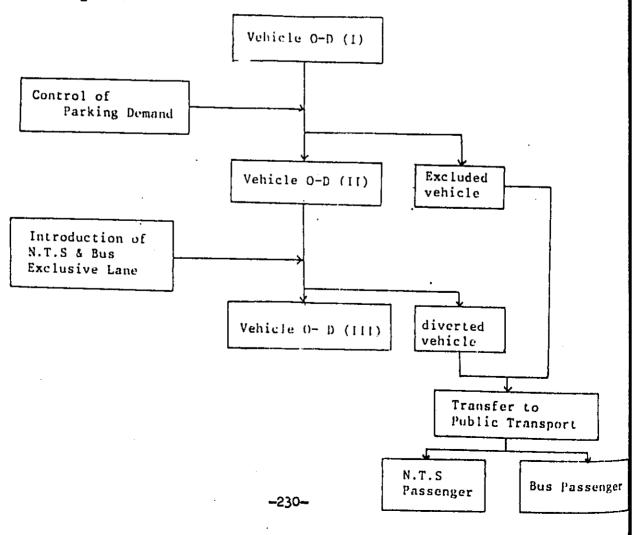
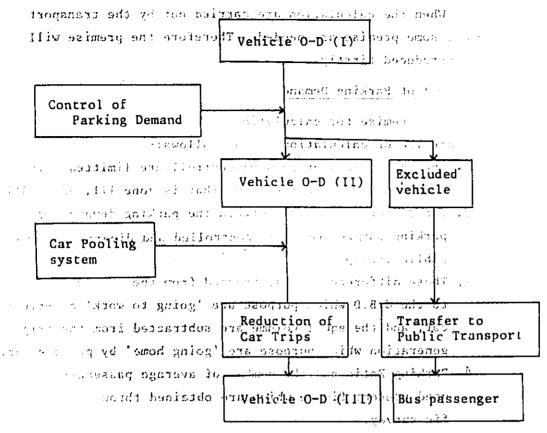



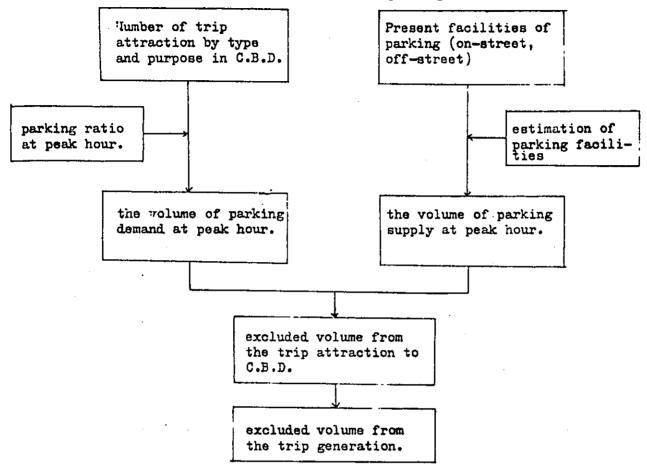
Fig. : 7.3 Alternative Plan - D

| respect to the pair To you got To you go you got To you go To you

- 5. There are no instriction concerning to morormed be a line in it is very fifted to estimate the forcer parameter.
 - 6. The avera a number of possengers is 1.4 in each or over com-

7.2 The way of the calculation

When the calculation are carried out by the transport plan, some premise are needed. Therefore the premise will be introduced firstly.


7.2.1 Controll of Parking Demand

- (1) The premise for calculation
 The premise of calculation are as follows:-
 - 1. The object area of parking controll are limitted only within C.B.D in George Town (that is zone 111, 121, 131).
 - The difference volume between the parking demand and the parking supply are to be controlled and diverted to the public transport.
 - 3. These difference are subtracted from the trip attraction to the C.B.D which purpose are 'going to work' by private car, and the equal volume are subtracted from the trip generation which purpose are 'going home' by private car.
 - 4. Parking Ratio and the number of average passenger are used present figure which are obtained through the traffic survey.
 - 5. There are no restriction concerning to motor-cycle because it is very difficult to estimate the future parking supply.
 - 6. The average number of passengers is 1.4 in each private car.

(2) The result of calculation.

The calculations are executed as the following flow chart.

Fig. : 7.4 Flow chart of parking control.

The volume of parking demand at peak hour is calculated by multiplying the volume of trip attraction with the parking ratio. The parking ratio at peak hour are as follows:-

Table 7.1 The parking ratio at peak hour (10 - 12A.M.)

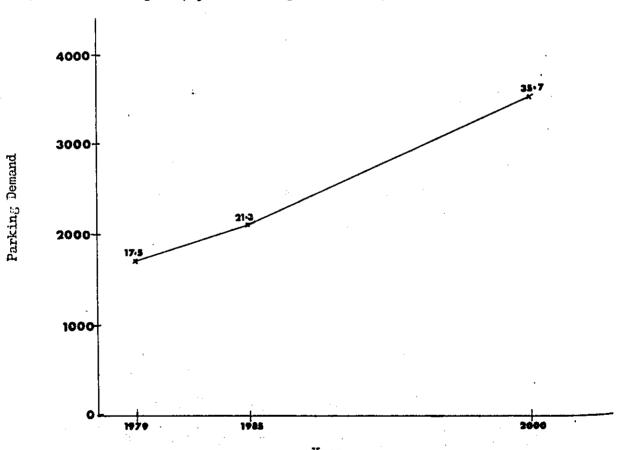

Car	To work	0.42
	On business	0.14
	Private	0.07
⁴.	Home:	0.04
Lorry		0.14
Taxi		0.0
Bus		0.0

Table 7.2 Parking demand at Peak Hour in C.B.D.

(Unit : trip on!)

	(0111)	
1979	1935	2355
12440	15010	24410
1330	2320	3930
1290	1690	3030
540	630	930
1300	1600	3300
17450 (100)	21300 (122)	35650 (204)
	12440 1330 1290 540 1300	1979 1935 12440 15010 1330 2320 1290 1690 540 630 1300 1600 17450 21300

Fig. : 7.5 Parking demand at peak hour.

Year -234The volume of parking supply are estimated by our parking survey as follows:-

Table 7.3 The volume of parking supply (Unit:vehicles)

	1979	1985	2000
On-Street	14133	11500	10000
Off-Street	3491	6500	11000
Total	17624	18000	21000

From Table 7.2 and Table 7.3 , the excluded volume due to the shortage of parking supply are calculated as follows;

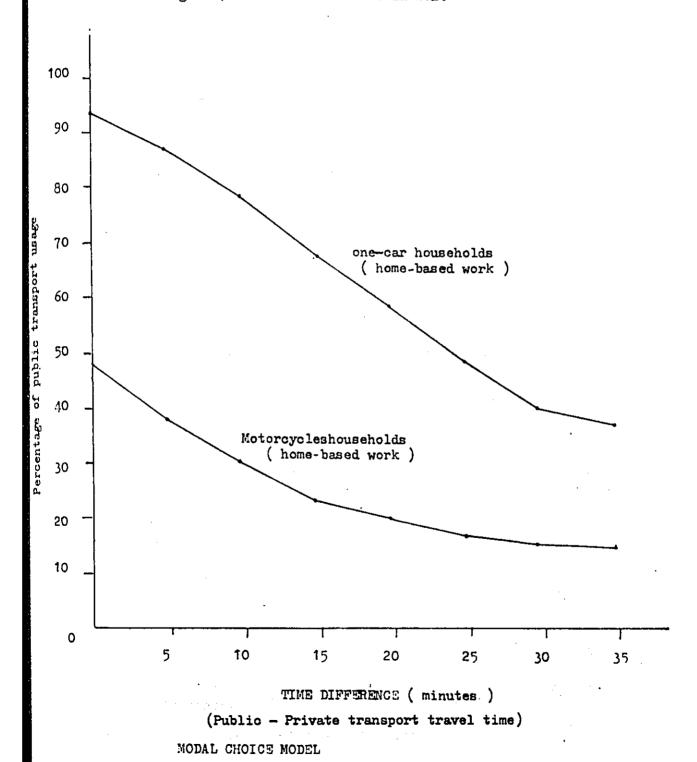
Table 7.4 The excluded volume

(Unit:1000 trip end)

	.~1979	1985	2000
demand volume	17.5	18.0	21.0
supply volume	17.6	21.3	35.7
difference	+0.1	-3.3	-14.7
excluded volume	_	-6.7	-29.3

7.2.2 Diverted volume to Public Transport

People who lived in urban area always chose their own mode among their available transport according to their judgement. The judgement are consist of varoius factors, but generally the factors are represented by concept of distance from origin place to destination. The distance includes, of course, actual distance, time distance and economic distance which includes the travel fare.


At 'Urban Transport Policy and Planning Study for Metropolitan Kuala Lumpur', the modal-choice model are applied the diversion curve and the factors of modal-choice are chosed time difference between alternative transport.

In Penang State, there are no modal-choice data, then the above-mentioned data in Kuala Lumpur are made use of the examination of diversion from traffic volume to public transport.

In above mentioned study in Kuala Lumpur, some diversion curve are verified by house-hold group and trip purpose.

Among of them the representative curves are as follows;

Fig. : 7.6 Diversion Curve in K.L.

From these curve, following diversion ratio are obtained.

Table 7.5 Divertion ratio between car and public Transport

reduction of time difference (min)	increasing ratio of public transport usage (%)			
5	10			
10	18			
15	24			

(One Car Households - Home based Work)

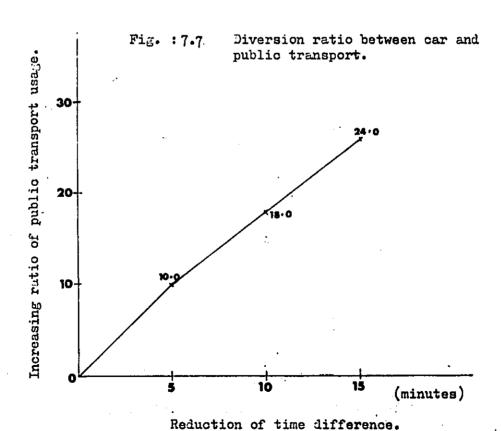
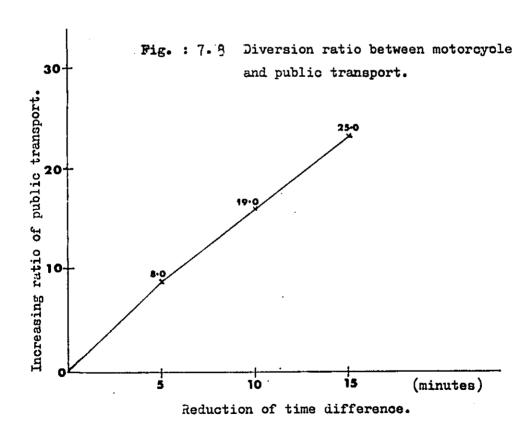



Table 7.6 Diversion ratio between M/C and public transport.

reduction of time difference (min)	increasing ratio of public transport usage (%)		
. 5	8		
10	19		
15	25		

(Motorcycle Households - Home-based Work)

effn# C and public				
other city	in severe e	rogamerion,	but it is	equal to examine
	ersion from v			
(F) The to	remise for c	; alculation [®]	transis. Sillerenr	nait
(%) This	ealculation_	are_conduct	ed in case	of the execution
		1		of New Transport
System.		; 	THE SECOND SECTION OF THE SECOND SECTION SECTI	il and the same of
Following	† premise are	diceded to	calculate.	<u>}</u>
1. The o	bject area f	or diversio	n are limi	tted those area
which	$\hat{f s}$ are directl	y related t	o the new	transport plan.
	-		_	'going to work'
(xto) brako-omoli - which	made by pri	vate car an	d motor-cy	cle. And after
calcu	lation of di	version fin	ished, the	equal volume
which	are diverte	d to public	transport	from 'going to
work'	are subtrac	ted from tr	ip purpose	'going home'.
3. The s	chedule spee	d are deter	mined as f	ollows;
Bus :	On exclusiv	e lane		25 km/h.
	On other la	ne (urbaniz	ed area)	15 km/h.
	On other la	ne		20 km/h.
elongration N. T. S.	ಚಿತ್ರಗ ದನ್ನಾರದ ನಾರು.	intovil 8.	: <u>#2.7</u> %	30 km/h.
	ತಿರಿದೆದಲ್ಲಿ ಎಸ್. ನಿರಿದೆದಲ್ಲಿ ಎಸ್.			~ 6 \$
	- 14			ž
	6-82 */			±.
	 ,			~ 0 ₹
				*· *
		⊙.⊙. 7		<u>:</u>
				8
				7 C. 1 Sa
			5.00	
				# ### \$P.\$1
				선 경 등학 교
(minutes)	7.5		.1	10 m
(2.30 3.22 2.21)	and the second second			

(2) The results of calculation

The volume of diversion from car and M/C to public transport are shown at followed Table.

Table 7.7 The volume of diversion by transport plans.

(Unit:1000 trips)

Year		In Penang Island		In Province Wellesley	
iear		Car	M/C	Car	м/c
1985	internal trip	221.9	273.7	71.8	151.6
Caused by Bus Exclusive Lane	object trip purpose for diversion B	124.9	156.0	40.2	86.4
	object trip related to the object area C	24.2	28.1	5.8	11.5
	Volume of diversion D	2.3	3.6	0.5	1.2
	ratio of diversion (D/C x 100)	9.5%	12.8%	8.6%	10.4%
2000	internal trip A	424.0	241.8	215.1	193.8
	object trip purnose for diversion B	237.4	137.8	120.5	110.5
Bus Exclusive to	object trip related to the object area C	37.2	21.6	16.7	14.4
	volume of diversion	3.5	3.6	1.7	2.1
	ratio of diversion (D/C x 100)	9.4%	16.7%	10.2%	14.6%

		In Penang	Island	In Provi	nce Wellesley
		Car	M/C	Car	M/C
2000	internal trip A	424.0	241.8	•	_
	object trip purpose for diversion B	237.4	137.8	-	
N.T.S	object trip related to the object area C	75.0	56.9	-	-
	volume of diversion D	12.9	9.1	•	-
	ratio of diversion (D/C x 100)	17.2%	24.1%	-	-

NOTE: Object trip purpose for diversion (B):

The traffic volume, the purpose of which is
'going to work' and 'going home'.

Object trip related to the object area (C):

The traffic volume which generates or attracts
from/to the object area.

Object area

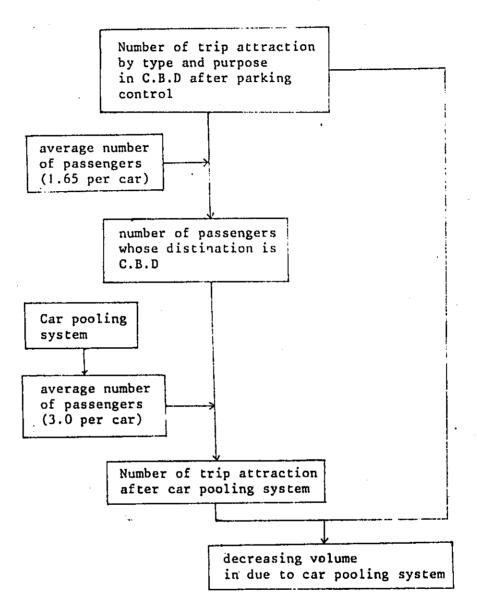
The area in which the new transport plan is introduced.

These volume of diversion are not so large, that is, 2800 cars and 4800 M/C in 1985, 5200 cars and 5700 M/C in 2000 and after introduction of N.T.S, these figures are 12900 cars and 9100 motor-cycle.

Comparing with the total trips, these volume of diversion are only 1.2% of vehicles and 1.9% of motor-cycles even if after introduction of N.T.S.

It is because the object trip and limited by trip purpose and by area.

7.2.3 Execution of Car Pooling system


Car Pooling System is divised for the purpose of preventing from the traffic congestion which are caused by private car entering to C.B.D.

According to the rule, the number of passenger in each car are enforced to be more effective, that is, to be full of capacity. As a result of the restriction, the number of car which passengers are a few will be on the decrease and the traffic volume also will decrease.

- (1) The premise for calculation
 The premise are as follows;
 - 1. The object area of car pooling system are limitted only within C.B.D in George Town.
 - 2. The object trips are those which destination are C.B.D and also trip purpose is 'going to work' and 'private'.
 - 3. Average number of passenger in each private car are enforced to be average 3.0 person includes the driver from 1.65 persons, therefore the decreasing ratio of traffic volume is 0.45 (3.0-1.65/3.0).
 - 4. The equal volume with the decreasing number of intering volume into the C.B.D are subtracted from coming out volume from C.B.D.

(2) The results of calculation
The calculation are conducted as following flow-chart in
2000 year.

Fig. 7.9 Flow chart of calculation

The number of trip attraction in C.B.D after parking control are as follows;

Table 7.8 Number of trip attraction in C.B.D (Unit: 1000 trip ends)

	·,	
		_
To work	43.4	
On Business	28.0	
Private	43.3	
Ноте	24.4	
	23.6	
	7.5	
	5.9	
11	176.1	
	95.5	· · · · · · · · · · · · · · · · · · ·
	On Business Private Home	On Business 28.0 Private 43.3 Home 24.4 23.6 7.5 5.9 176.1

From this table, the number of passengers whose trip purpose are 'going to work' 'private' are as 143100 persons. (86700 cars x 1.65 persons).

After excuting of car pooling system, following number of cars will be decreased.

Table 7.9 Decreasing volume due to car pooling system.

	number of trip attraction	number of passengers	average number of passengers
before car pooling system	86.7	141.3	1.65
after car pooling system	47.7	, 143.1	3.0
decreasing volume on one way direction	39.0		
decreasing volume on both way	78.0		

As a result of these restriction, number of trip attraction in C.B.D are decreased as followed figure.

Fig. 7.10 The effect of car pooling system in C.B.D.

7.3 Estimation of future traffic demand by transport plan.

7.3.1 Number of total trips by transport plan.

Estimation by transport plan are conducted according to the above-mentioned premise. Number of total trip (p.c.u) are changed as follows;

Fig. 7.11 , Number of total trip by transport plan.

(Unit: 1000 p.c.u.)

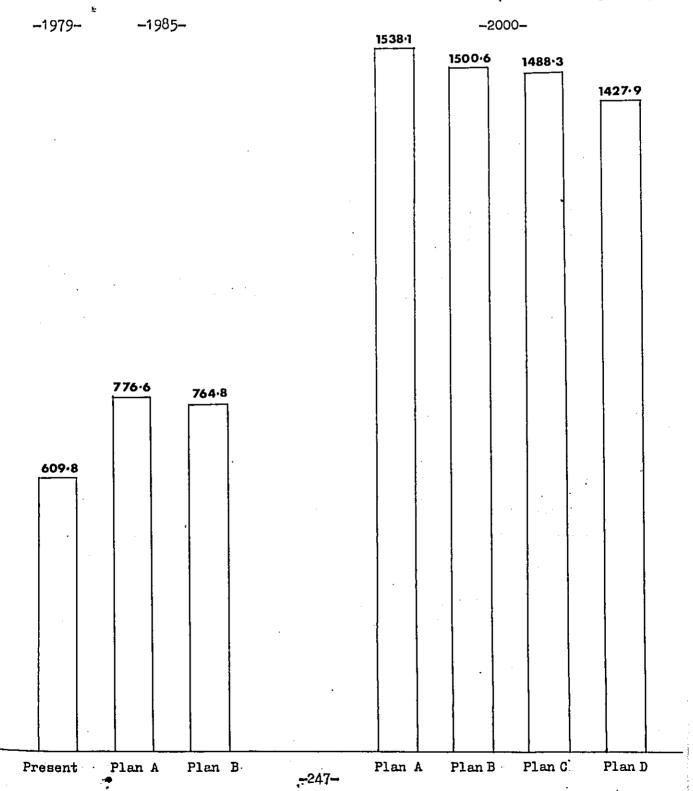
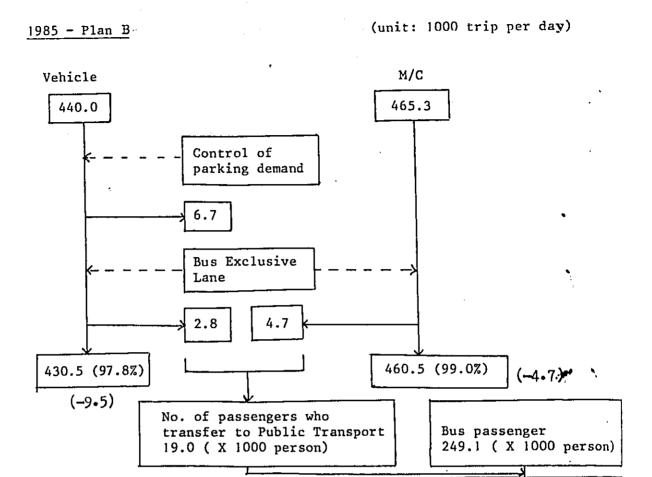
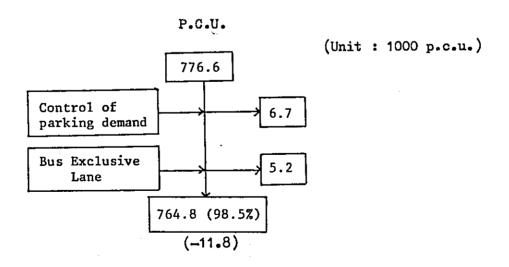
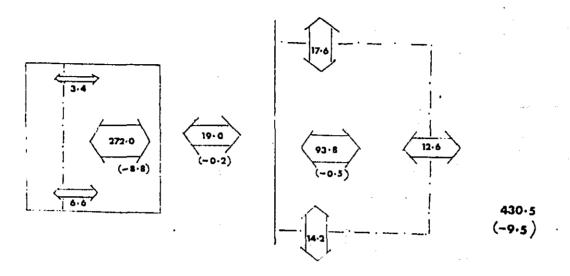




Fig. :7-12 Results of Estimation by Plan B (1985)



268.1 (X 1000 person)

(unit : 1000 trips)

Motor-cycle

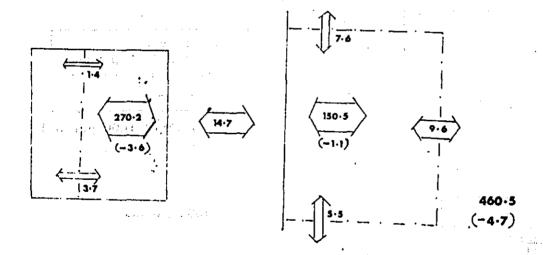
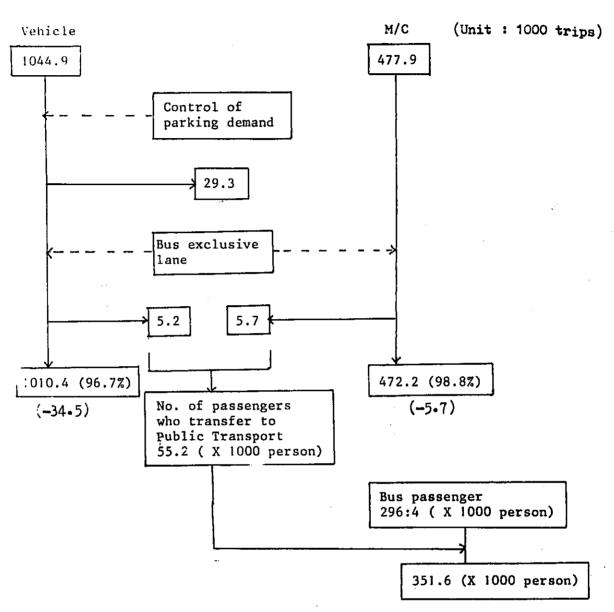
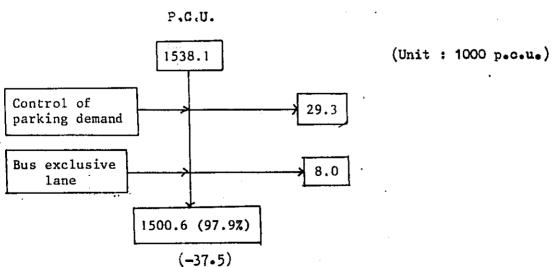




Fig. : 7.13 Results of Estimation by Plan B (2000)

2000 - Plan B

2000 - Plan B (unit : 1000 trips) Garage Age 1 19 m (XXX + 21 mil) U\a Vehicle 575-3 (-31·7) 1010-4 Jan Brown or the same of the contract of magnistria; ist Court of Gall of Sures Motor-cycle

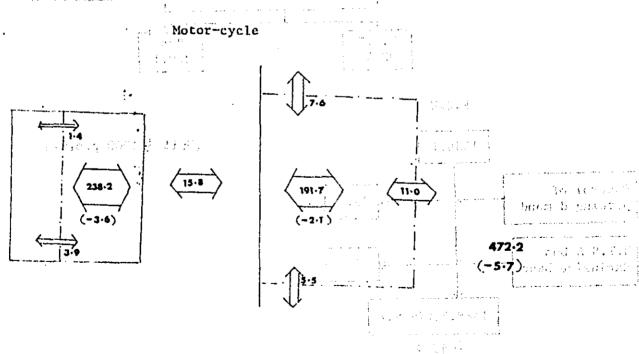
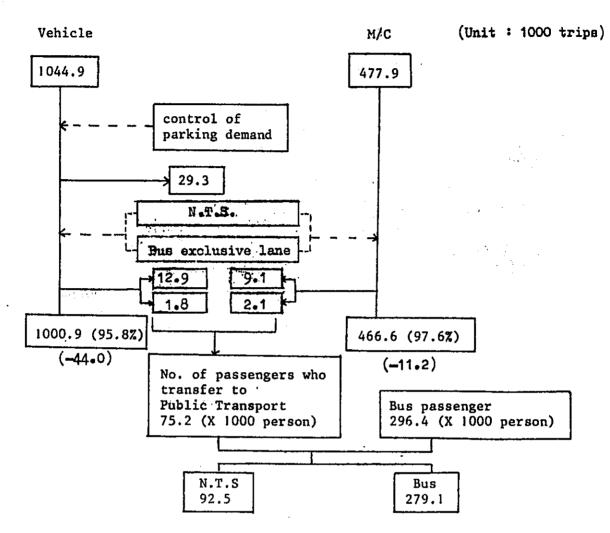
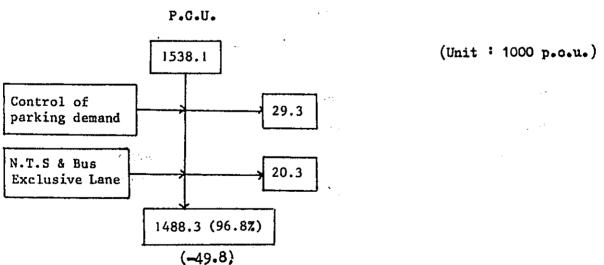
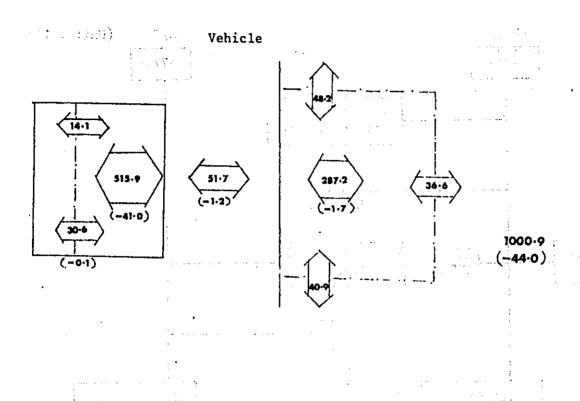





Fig. : 7.14 Results of Estimation by Plan C (2000)

2000 - Plan C

Motor-cycle

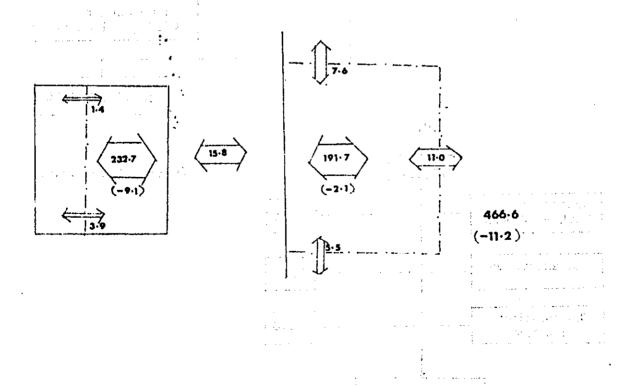
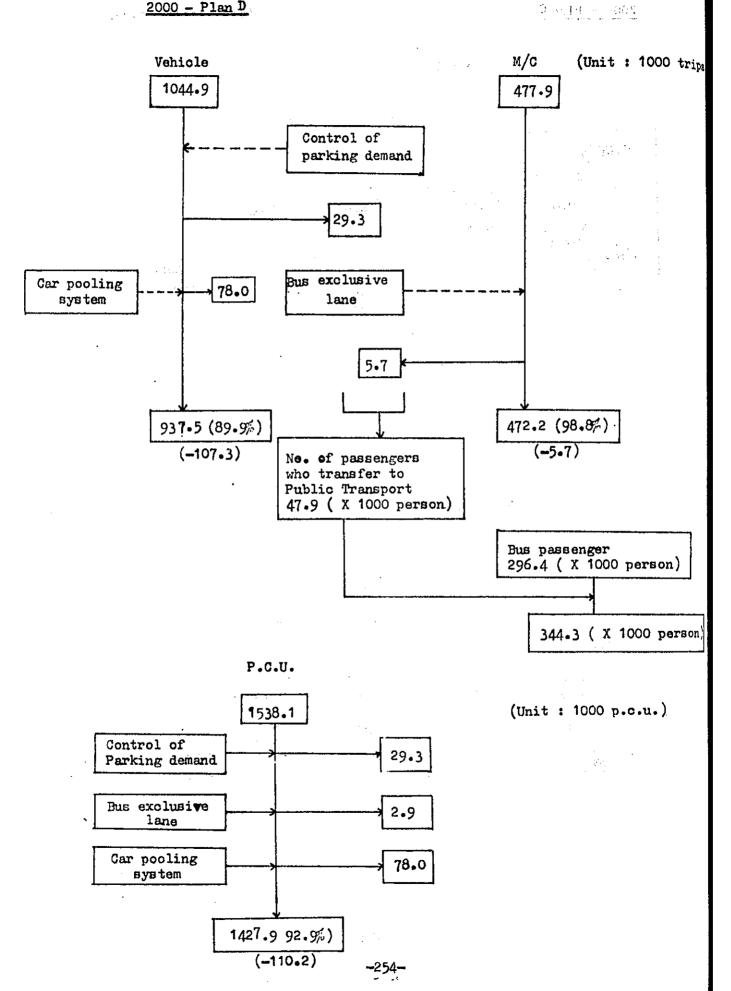
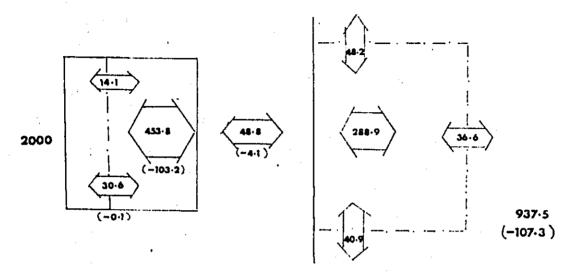
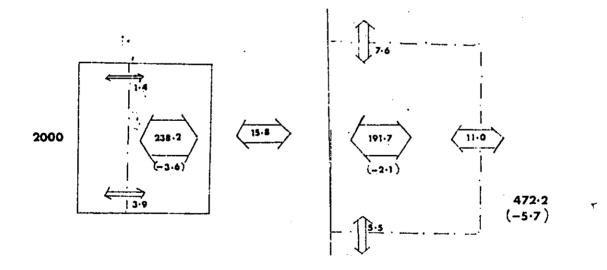




Fig. : 7. Results of Estimation by Plan D (2000)


2000 - Plan D

Vehicle

Motor-cycle

7.3.2 The comparizon of transport plan in George Town

(1) Number of trips related to George Town.

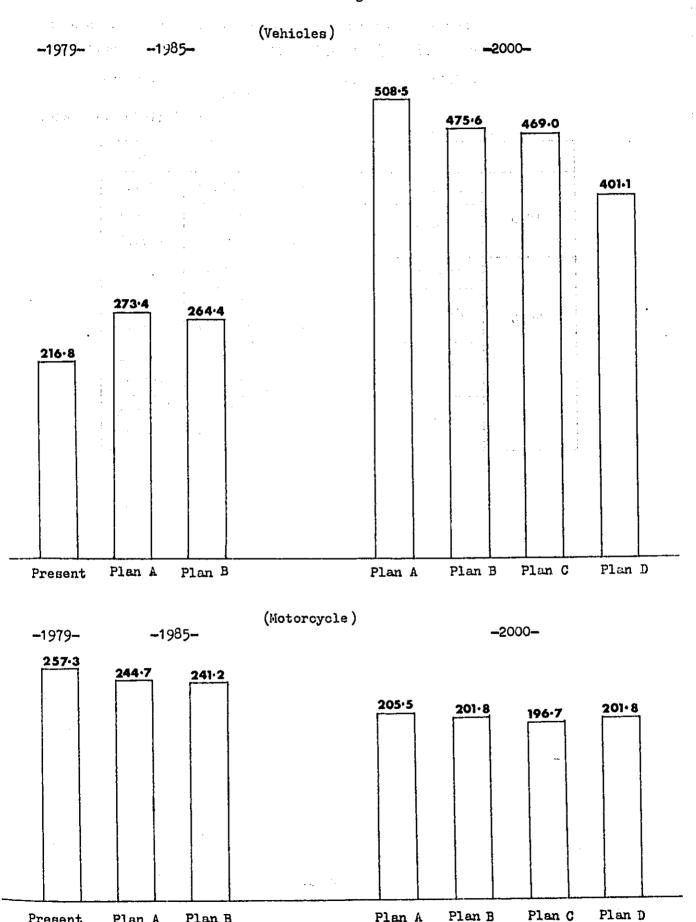

Number of trips by transport plans are as follows:-

Table 7.10 The comparizon by transport plan in George Town.

(Unit:1000 trips)

		٠	Vehicle			M/C	
		internal	external	total	internal	external	total
1005	Plan A	180.5	92.9	273.4	185.4	59.3	244.7
1985	Plan B	173.8 (-6.7)	90.6 (-2.3)	264.4 (-9.0)	182.5 (-2.9)	58.7 (-0.6)	241.2 (-3.5)
	Plan A	277.0	231.5	508.5	148.1	57.4	205.5
2000	Plan B	255.7 (-21.3)	219.9 (-11.6)	475.6 (-32.9)	145.2 (-0.8)	56.6 (-3.7)	201.8
	Plan C	252.8 (-24.2)	216.2 (-15.3)	469.0 (-39.5)	142.7 (-5.4)	54.1 (-3.3)	196.7 (-8.7)
-	Plan D	208.3 (-68.7)	192.8 (-38.7)	401.1 (-107.4)	145.2 (-2.9)	56.6 (-0.8)	201.8

Fig. 7:16 The camparizon of number of trips related to George Town.

Note: above figures include internal trip and external trip of George Town. -257-

Present

Plan A

Plan B

Plan B

Plan A

(2) Number of trip generation and attraction in C.B.D of George Town.

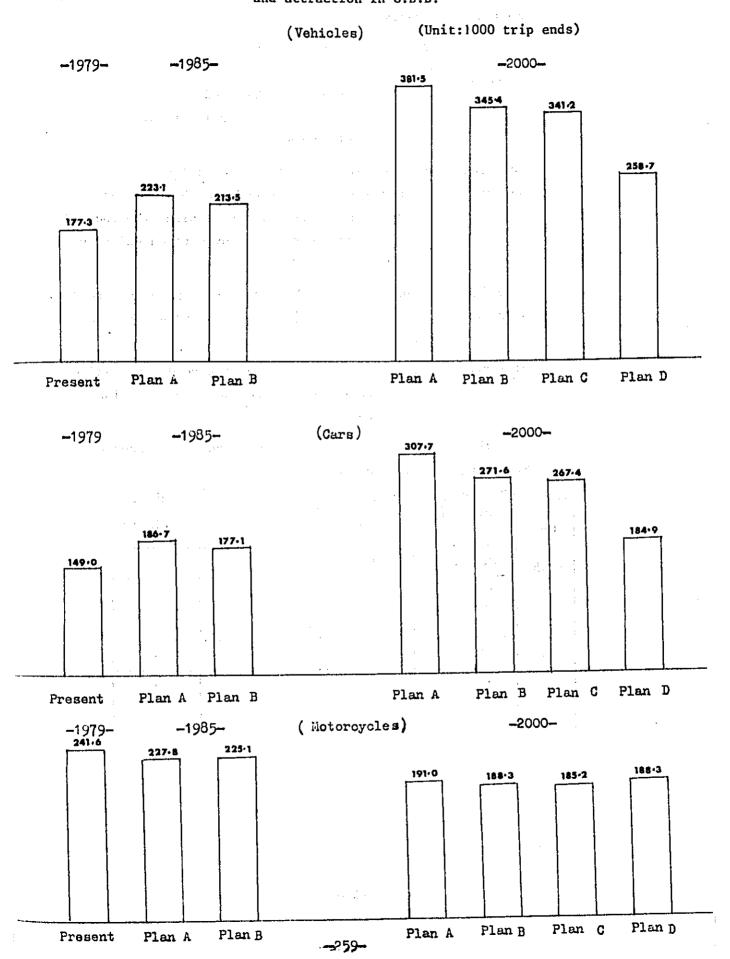

Number of trip generation and attraction in C.B.D area (zone 111, 121, 131) by transport plan are as follows;

Table 7.11 The comparizon of trip generation and attraction in C.B.D

(Unit:1000 trip ends)

		Vehicle	(Car)	M/C
	Plan A	223.1	(186.7)	227.8
1985	Plan B	213.5 (~9.6)	177.1	225.1 (-2.7)
	Plan A	381.5	(307.7)	191.0
· 2000	Plan B	345.4 (-36.1)	271.6 (-36.1)	188.3 (-2.7)
	Plan C	341.2 (-40.3)	267.4 (-40.3)	185.2 (~5.8)
1 1	Plan D	258.7 (~122.8)	184.9	188.3 (-2.7)

Fig. 7.17 The comparizon of trip generation and attraction in C.B.D.

8. Estimation of the future traffic demand on road network.

The road networks which are intended for traffic assignment are as follows:-

1979 Present network
1985 On going

On going & Proposed

2000 On going & Proposal Ultimated

Ultimated

The content of these road network are as follows:-

On going The present road network to which is added the

linkage plan, the dispersal plan, the federal route plan and some improvement on existing

road.

On going The road network where our proposed new road

& Proposed plans (e.g. project 1, 2, 3 and 4) are added

to 'On going'.

Ultimate The road network where some road plans and plans

to widen the roads are added to 'On going &

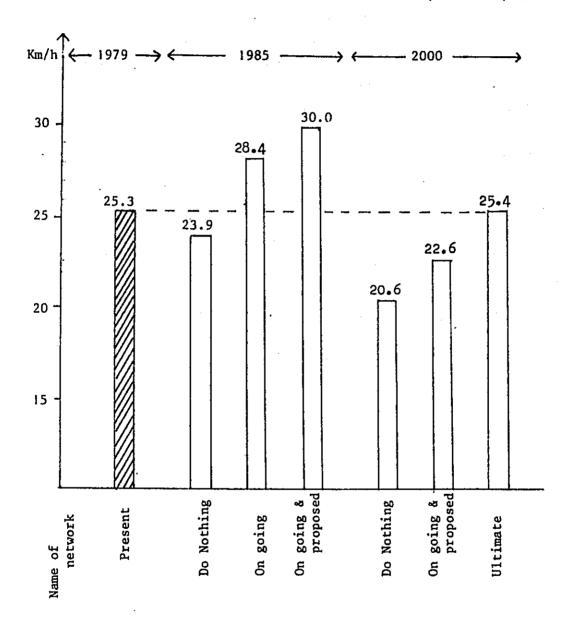
Proposed'.

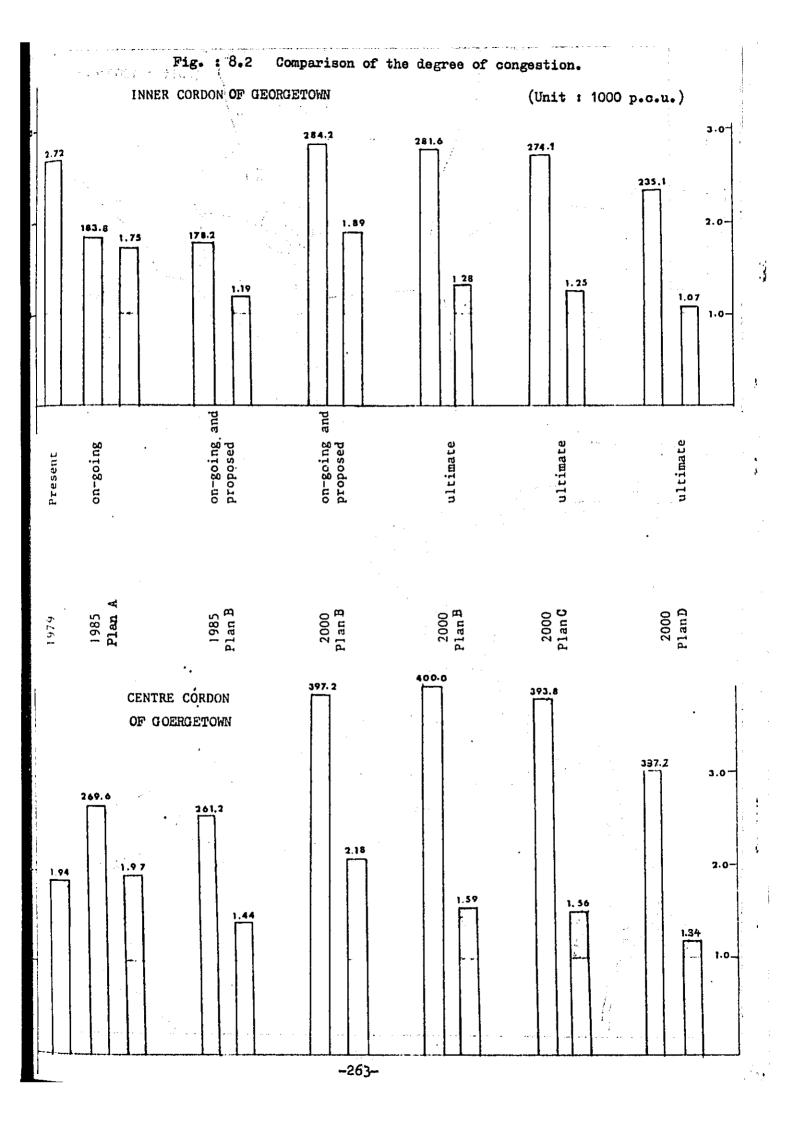
The simulation for traffic assignment are conducted according to following table:-

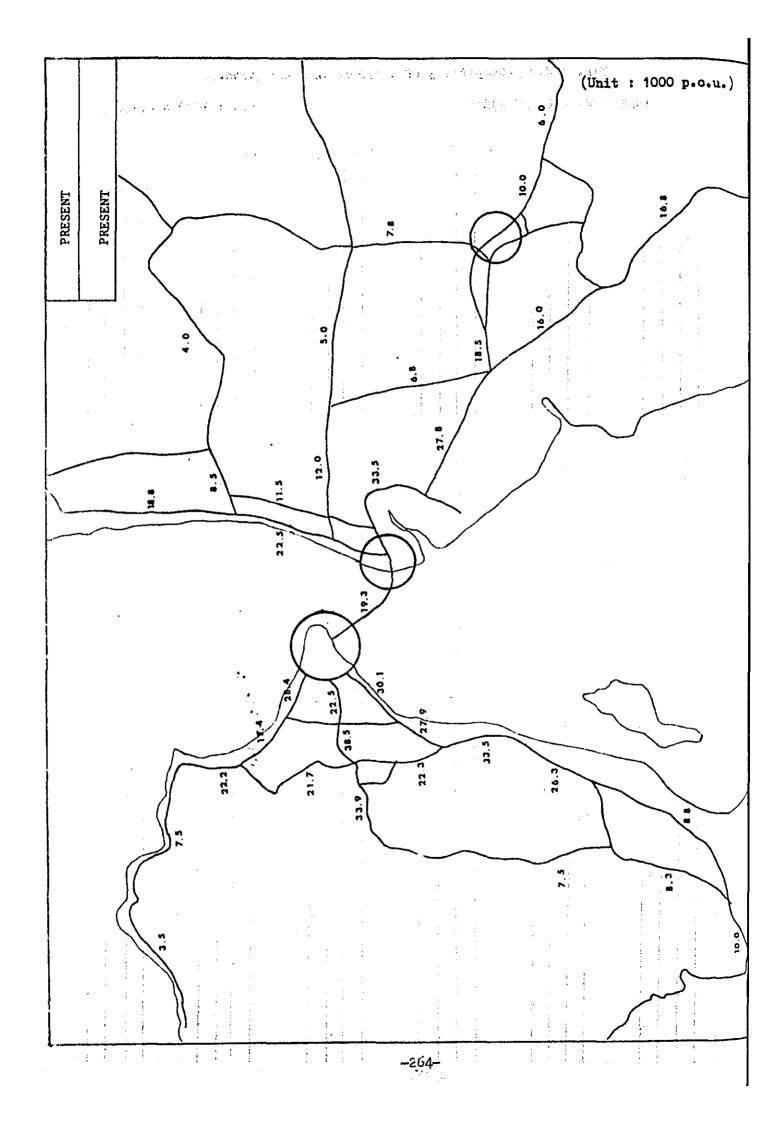
т	able 8-1	Simulation for traffic assignment			
0-D	Network	On going	On going & Proposed	Ultimate	
1985	Plan A	0			
	Plan B		0		
	Plan A				
2000	Plan B		0	0	
	Plan C			0	
	Plan D			0	

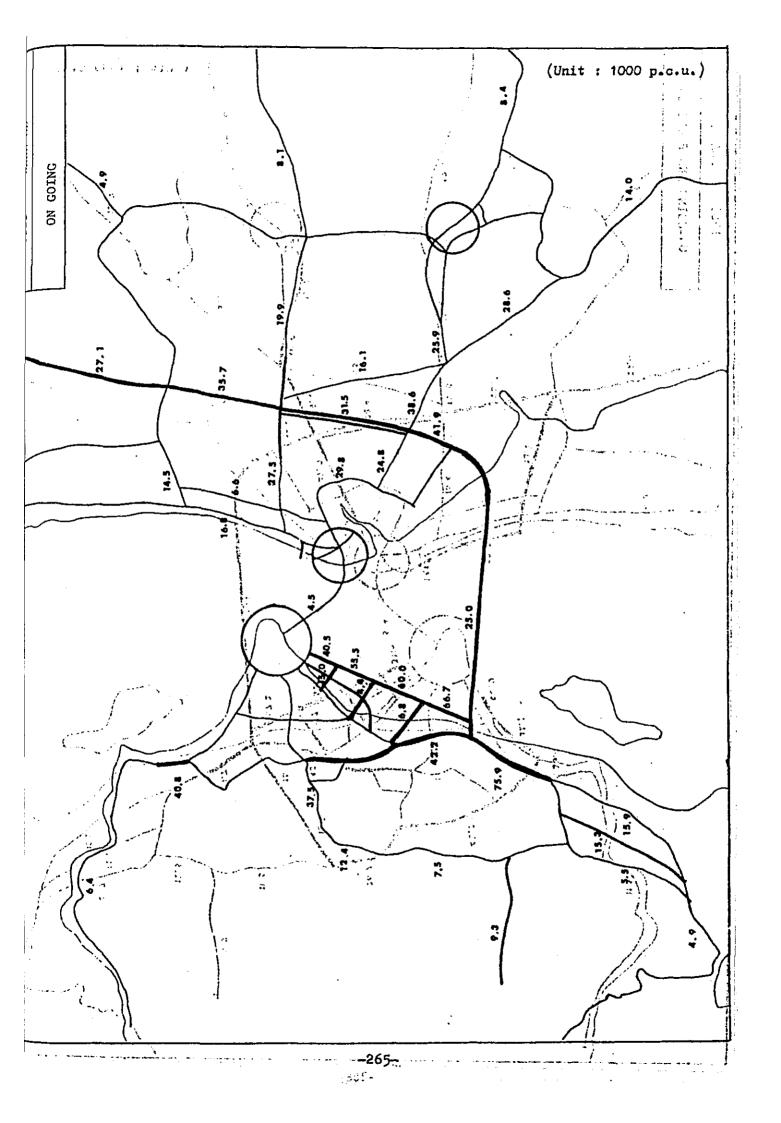
Regarding the toll charged, the following are taken in to consideration. In America, the toll rates which fall within the range of M\$00.5 to M\$00.8 per mile is common. At the Slim River toll-gate, a toll of M\$1.00 is imposed for the use of the new 18 mile section on Federal Route 1. Toll collection is only along one-way, hence, the charge is for 36 miles at a rate of M\$0.028 per mile.

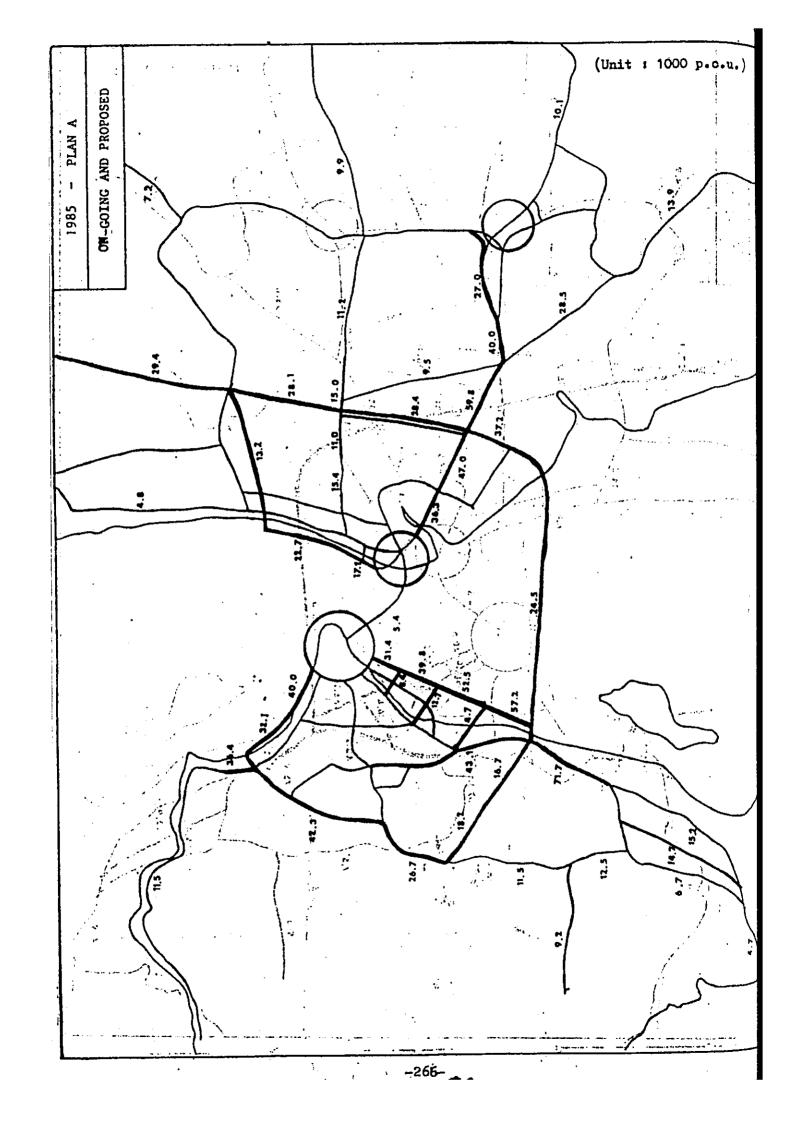
In the case of the Alor Star - Butterworth project, tollgates are located at intervals of about 15 miles and the toll
is expected to be M\$0.50 per passenger car trip giving the rate
of M\$0.033 per mile. The toll rates on Federal Route 1 in this
study area is M\$0.033 per mile. On the other hand, the decision
regarding the toll for the Linkage is influenced by the fare
for the ferry, i.e. M\$1.75 for one way.

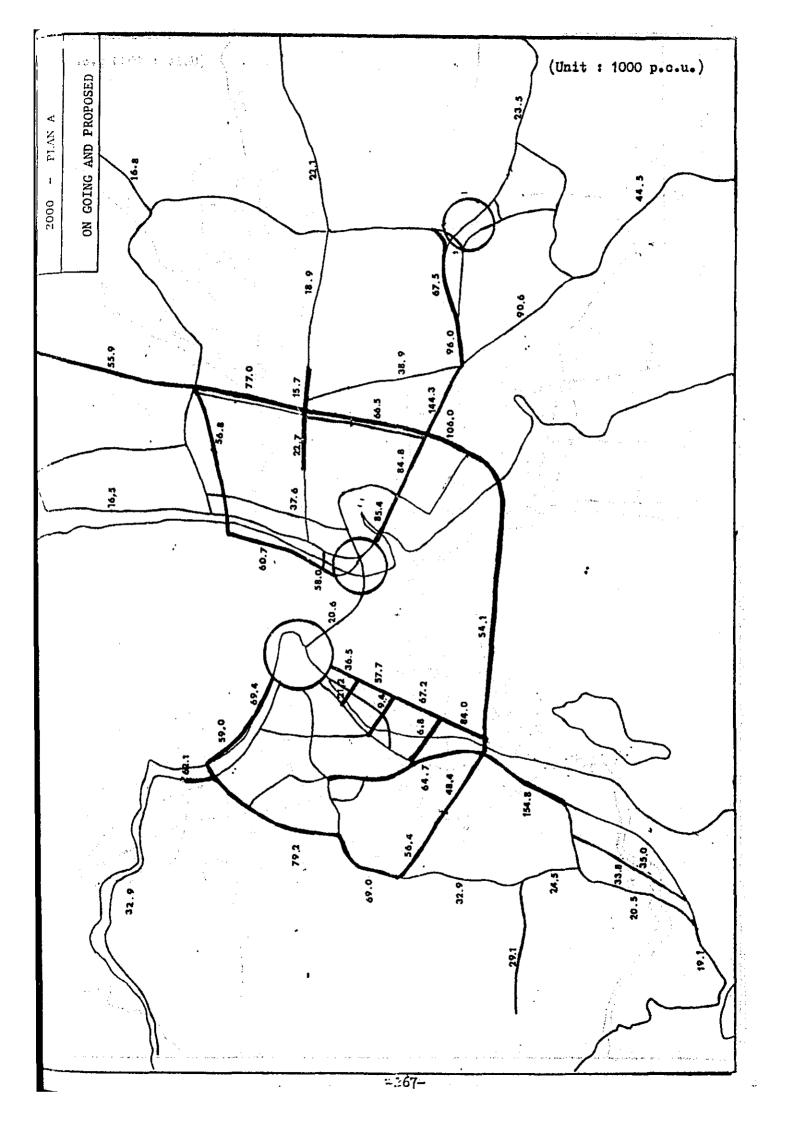

This fare is converted in to time by dividing the fare by the time value. The time value used are as follows:-

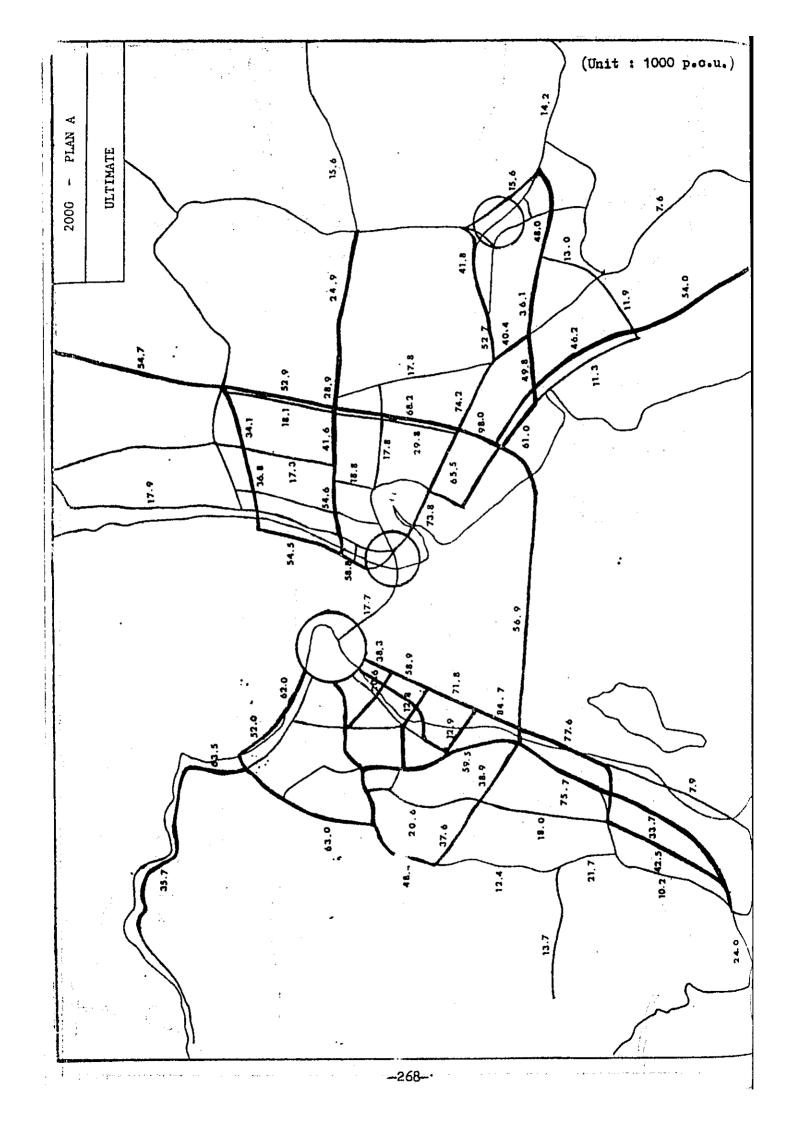

Table	8_2	Time	value
TOUTE	U-2	1 71116	varue

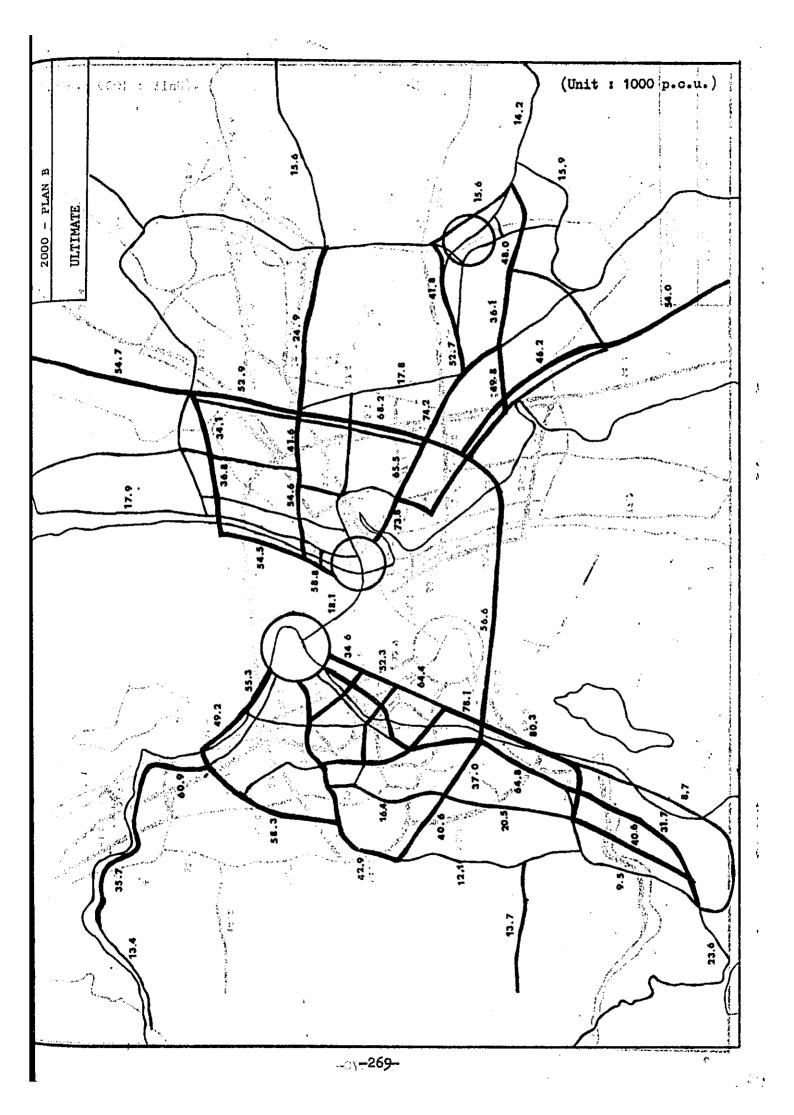

i	1979	1985	2000
passenger car	3.70 M/Hour	4.50 M/Hour	7.30 M/Hour
motor-cycle	1.30 M/Hour	1.60 M/Hour	2.60 M/Hour

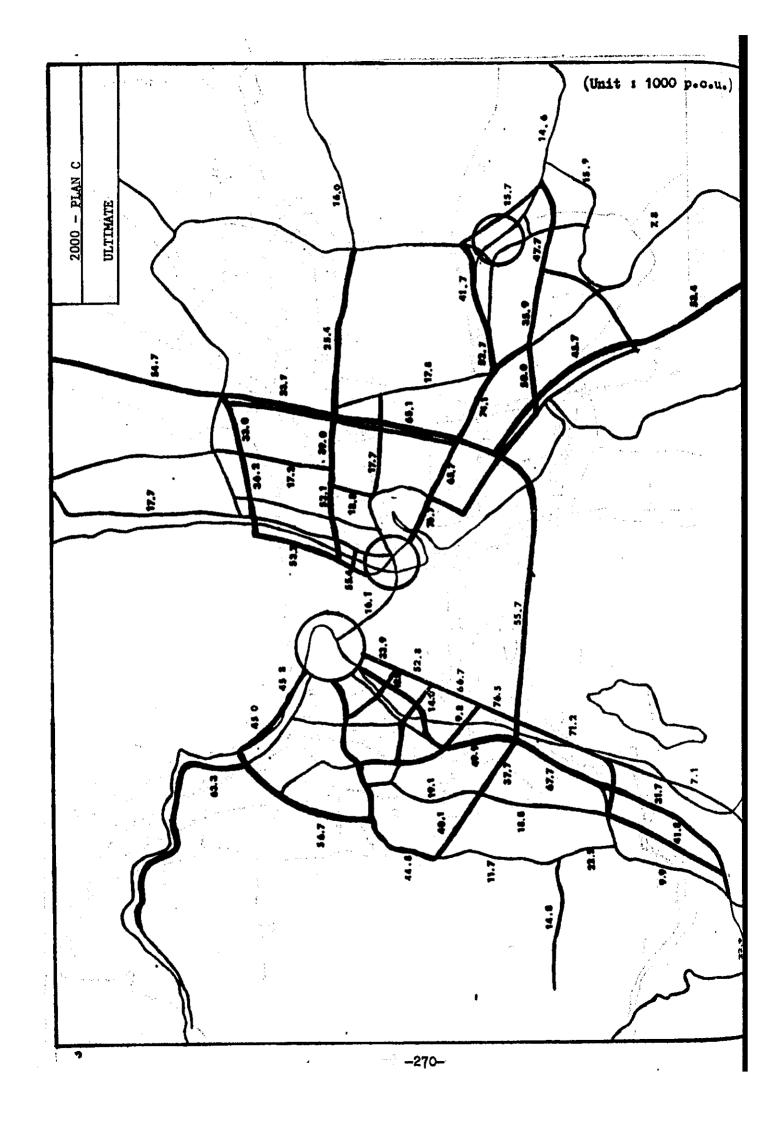

Fig. 8.1 Comparison of Travel Speed


(Unit : km/h)









9. Assignment for the road network without Ferry

The traffic volume on the strait are obtained from traffic assignment as follows:-

Table 9.1 Traffic Volume on the strait
(Unit:1000 trip)

0-D		NETWORK	Ferry		Li	Linkage		
J		NEIWORK	P.C.U (ex. m/c)	M/C	P.C.U	P.C.U (ex. m/c)	M/C	P.C.U
1979		Present	12.8	13.0	19.3	-		
1985	- Plan A	On going	2.7	4.6	5.5	20.8	8.4	25.0
	- Plan B	On going & Proposed	2.1	6.5	5.4	21.2	7.5	25.0
2000	- Plan B	On going & Proposed	17.3	6.5	20.6	49.7	8.7	54.1
	•	Ultimate	14.6	6.2	17.7	52.4	8.9	56.9
	- Plan C	Ultimate	14.9	6.2	18.0	52.1	8.9	56.6
	-Plan D	Ultimate	13.0	6.2	16.1	51.2	8.9	55.7

er en	and the second of	

		the same of the	
-	-		
		·	

-

For the purpose of measuring the effect of the ferry, the assignment are conducted on the road network without ferry (2000 - plan B, Ultimate)

Table 9.2

The Comparison between With Ferry and Without Ferry

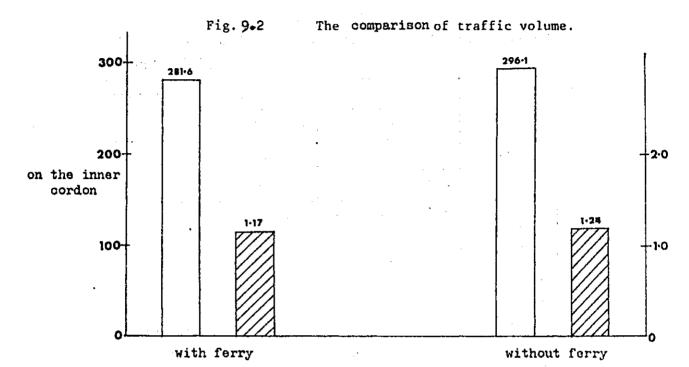
The second section is a second section of the second section of the second section is a second section of the second section of the second section is a second section of the second section of the second section is a second section of the second section of the second section is a second section of the section of the sect

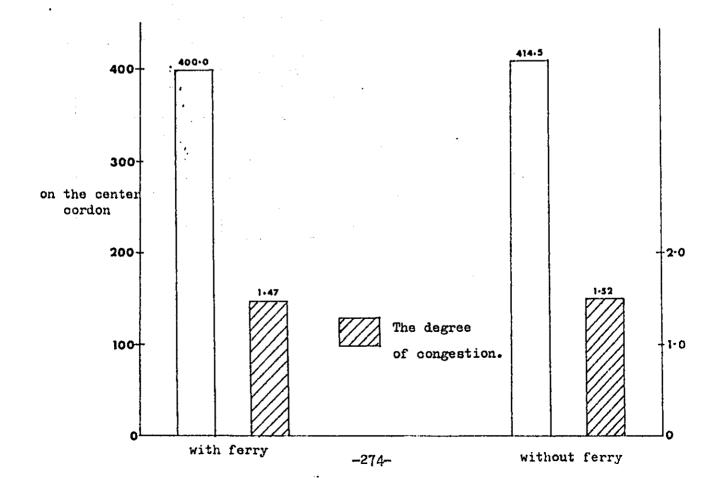
(Unit: 1000 p.c.u)

		With Ferry	Without Ferry
Inner Cordon	P.C.U. (ex m/c)	247.8	262.4
	M/C	67.4	72.2
	P.C.U.	281.6	298.5
Center Cordon	P.C.U. (ex m/c)	357.9	372.5
	M/C	83.9	90.1
	P.C.U.	400.0	417.6

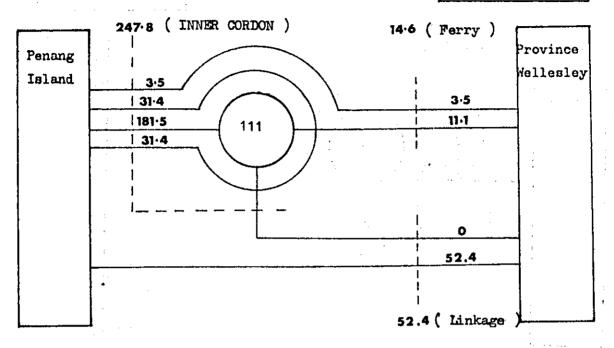
Therefore, if only the ferry service for vehicles (ex m/c) are stopped, the traffic volume will increase as follows:

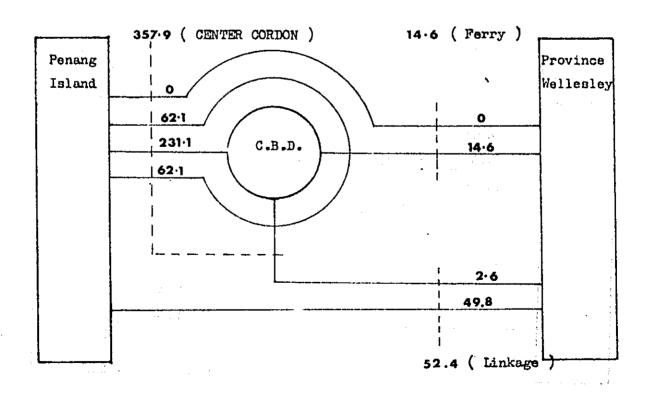
Table 9.3

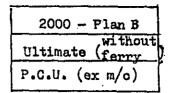

Traffic Volume Without Ferry for Vehicles (ex m/c)

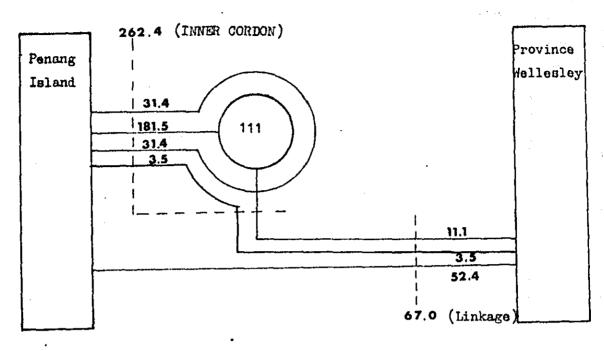

(Unit: 1000 p.c.u.)

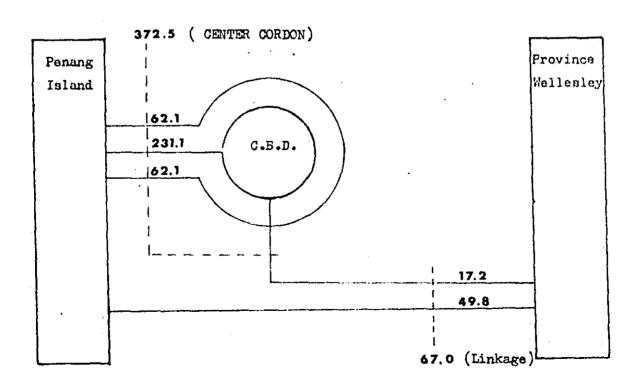
T	P.C.U. (ex m/c)	262.4
Inner Cordon	M/C	67.4
	P.C.U.	296.1
0	P.C.U. (ex m/c)	372.5
Center Cordon	M/C	83.9
	P.C.U.	414.5

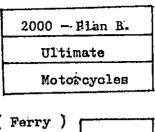

From this the traffic volume on the inner cordon line increase 12200 in traffic volume and on the center cordon line 14200 in traffic volume.

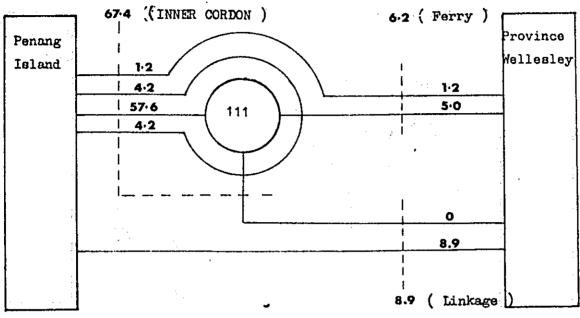

As a results of above-mentioned situation, the degree of congestion on each line are increased as follows;

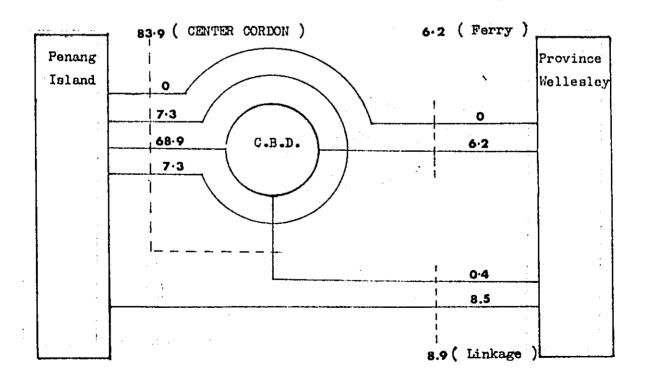


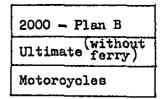


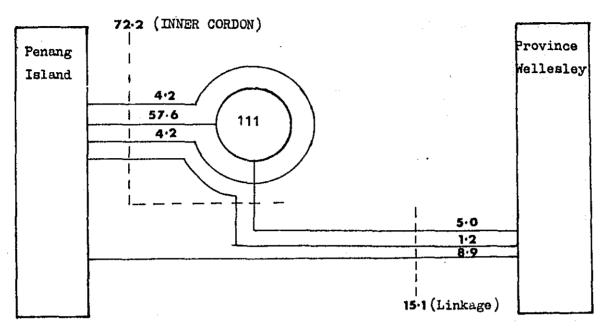

2000 - Plan B				
Ultimate				
P.Ç.U	(ex, M/C)			

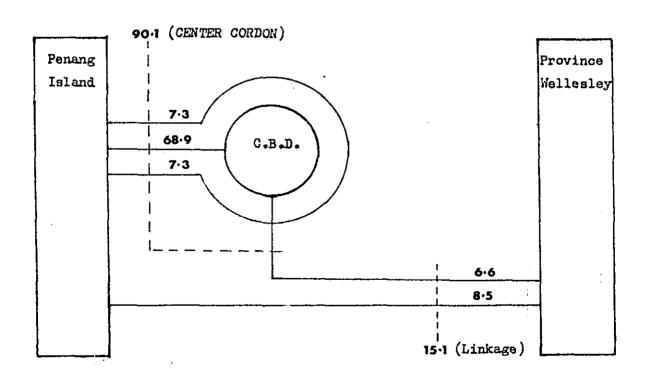












CONTENTS

TABLE OF APPENDIX

A		Tables of Trip Generation and Attraction 1
В		Figures of the Density of Trip Generation14
С		O-D Tables21
D		Figures of the Desired Assignment28
E	Ĭ	The Degree of Congestion on Major Section
F		The Comparison of the Degree of Congestion by Plans54
G	:	The Situation on The Inner Cordon and on The Center Cordon61
H		Results of Traffic Assign74

A .- TABLES OF TRIP GENERATION AND ATTRACTION

1.	1985 - Plan A	trip generation
2.	1985 - Plan A	trip attraction
3.	2000 - Plan A	trip generation
4.	2000 - Plan A	trip attraction

(Unit: 1000 trip ends per day)

	T		n.n				· · · · · ·	ĭ	i		
ZONE CODE	GOING TO WORK	on Business	PRIVATE	GOING HOME	SUB- TOTAL	YEROL	TAXI	BUS	SUB- TOTAL	NOTOR- CYCLE	GRAID TOTAL
111	9185	11058	10691	29388	60322	4865	1883	2227	69297	69904	139201
; 11	9185	11058	10691	29388	60322	2000 6865	1883	2227	2000 71297	69904	2000 141201
121	3368	1976	3270	4295	12909	819	60	381	14169	9932	2410
122	4077	573	3232	3267	11149	127	31	424	11731	6386	1811;
123	3319	1034	2737	4529	11619	1138	104	1151	14012	9593	2360
124	5938	1909	4699	6722	19268	669	262	1347	21546	14783	36329
125	2044	412	1776	663	4895	90	133	510	5628	4038	966
12	18854	5792	15733	19461	59840	2843	590	3813	67086	44732	11181
131	5554	3723	5125	5727	20129	3654	79	2245	26107	34064	6017
132	5497	1533	3715	3641	14386	1960	107	2923	19376	17476	3685
133	3284	1149	1846	1788	8067	2184	144	1049 -	11444	17091	2853
13	14335	6405	10686	11156	42582	7798	330	6217	56927	68631	12555
141	2029	330	1517	403	4279	146	44	517	4986	3130	8116
142	4990	894	3362	3104	12350	960	105	1709	15124	12944	2806
143	4838	820	3112	1415	10185	591	29	729	11534	15747	2728
14	11857	2044	7991	4922	26814	1697	178	2955	31644	31821	6346
1	54866	25115	45364	64213	189558	19203	2981	15212	226954	215088	44204
211	1868	639	1412	1269	5188	1417	151	471	7227	4631	1185
212	238	101	331	589	1259	17	16	68	1360	829	218
21	2106	740	1743	1858	6447	1434	167	539	8587	5460	1404
22	413	354	434	1017	2218	408	185	77	2888	2818	570
2	2519	1094	2177	2875	8665	1842	352	616	11475	8278	1975.
31	59	11	82	51	203	12	16	61	292	228	521
321	598	122	295	30	1045	314	16	31	1406	1267	267
322	160	61	139	13	373	114	16	13	516	570	108
323	254	29	119	10	412	41	16	13	482	478	56
32	1012	212	553	53	1830	469	48	57	2404	2315	471
331	5767	980	3840	2551	13138	1564	61	820	15583	11342	2692
332	716	213	467	131	1527	280	16	41	1864	1515	337
333	1428	476	784	1129	3817	1035	29	548	5479	9269	1474
334	685	162	384	400	1631	342	20	101	2094	2303	489
335	36	11	24	20	91	12	16	13	132	128	26
33	8621	1827	5498	4268	20204	3283	142	1523	25152	25057	5020
3	9693	2051	6125	4368	22237	3764	206	1641	27848	27600	5544

			CAR									
ZONE CODE	COING TO WORK	on Business	PRIVATS	HOME	SUB- TOTAL	LORRY	TAXI	dr	SUB- TOTAL	MOTOR CYCLE	GRAND TATAL	
411	1395	2261	1751	6231	11638	2914	380	1340	16272	18797	35069	
412	1430	743	1149	2065	5387	1566	179	594	7726	11937	19663	
413	633	285	332	768	2018	137	102	181	2438	1758	4196	
							1800		1800		1800	
4	3454	3282	3255	9052	19043	4617	2461	2115	28236	32492	60728	
Sub-total	70067	31714	56627	81095	239503	29426	6000	19534	294513	283458	577972	
511	4269	4093	3138	8008	19508	597	309	871	21285	27660	48945	
						2100		1	2100		2100	
		,	1	!		4500		1	4500	1	4500	
512	1316	1036	1328	943	4623	398	16	263	5300	6117	11417	1 -
513	458	1013	754	2197	4422	457	112	201	5192	6606	11798	İ
		İ				900			900		900	
514	1942	503	1009	916	4370	739	16	247	5371	7605	12976]
51	7985	6645	6229	12064	32923	9690	453	1582	44648	47988	92636	
521	729	359	264	989	2341	541	20	99	3001	3275	6276	ļ
522	492	80	298	216	1086	316	16	170	1588	2186	3774	
523	516	179	356	550	1601	186	16	137	1940	3084	5024	
524	163	69	104	65	401	138	16	21	576	821	1397	
525	516	96	415	138	1165	88	16	131	1400	1964	3364	
52	2416	783	1437	1958	6594	1269	84	558	8505	11330	19835	-
5	10401	7428	7666	14022	39517	10959	537	2140	53153	59318	112471	
611	2834	992	2040	2572	8438	882	149	1010	10479	15133	25612	
612	561	2364	1614	5740	10279	3172	534	264	14249	21486	35735	
			}			1300			1300		1300	
61	3340	3379	3637	8361	18717	5354	683	1274	26028	36619	62647	-
621	29	11	31	24	95	12	16	13	136	247	383	1
622	821	735	701	470	2727	466	16	119	3328	5163	8491	
623	424	225	405	839	1893	266	57	183	2399	2845	5244	
62	1274	971	1137	1333	4715	744	89	315	5863	8255	14118	_
6	4494	4314	4708	9926	23432	6098	772	1589	31891	44874	76765	
711	120	11	41	24	196	50	16	13	245	437	682	
712	150	20	142	27	339	27	16	13	395	1216	1611	
713	139	11	212	215	577	96	23	15	711	2883	3594	
71	409	42	395	266	1112	143	- 55	41	1351	4536	5887	1

.

			CAR				· 1				
ZONE CODE	GOING TO WORK	ON- BUSINESS	PRIVATE	HOME	SUB- TOTAL	LORRY	TAXI	BUS	SUB- TOTAL	KOTOR CYCLE	GRAIID TOTAL
721	164	105	282	56	607	102	16	13	738	1622	2360
722	56	52	76	10	194	21	16	13	244	644	888
723	203	80	214	116	613	155	19	13	800	1820	2620
72	423	237	572	182	1414	278	51	39	1782	4086	5868
731	299	253	413	425	1390	216	16	103	1725	3985	5710
732	1610	1091	1470	4359	8530	1403	191	340 ,	10464	21642	32106
733	1104	398	840	684	3026	256	16	52	3350	5160	8510
734	931	475	972	1155	3533	411	17	113	4074	6219	10293
73	3929	2217	3663	6670	16479	2286	240	608	19613	37006	56619
741	597	107	436	358	1488	35	16	306	1845	4379	6224
742	1085	507	521	1475	3958	556	65	424	5033	6595	11628
74	1672	614	1357	1833	5476	591	81	730	6878	10974	17852
7	6449	3105	6001	8927	24431	3298	427	1418	29624	56602	86226
811	173	107	197	298	775	241	16	140	1172	2013	3185
812	355	131	333	434	1253	152	16	151	1572	2589	4161
81	530	. 237	530	731	2028	393	32	291	2744	4602	7346
821	37	11	26	51	125	12	16	17	170	644	814
822	214	152	132	109	607	104	16	15	742	1700	2442
82	251	163	158	160	732	116	32	32	912	2344	3256
8	779	397	690	894	2760	509	64	323	3656	6946	10602
Sub-total	21619	15401	18955	34215	90190	20864	1900	5470	113324	167740	286064
Total	91282	47409	75381	115621	329693	50290	7800	25054	412837	451199	864036

Trip Attraction (1985)

<u></u>	i	<u> </u>	CAR								
ZONE CODE	GOING TO WORK	ON EUSINESS	PRIVATE	HONE GOING	SUB- TOTAL	YRROL	TAXI	BUS	Sub- Total	MOTOR CYCLE	GRAND TOTAL
111	25650	12527	17396	4749	60322	4865 2000	1883	2227	69297 2000	69904	139201 2000
11	25650	12527	17396	4749	60322	6865	1883	2227	71297	69904	141201
121	4451	1370	2912	4176	12909	819	60	381	14169	9932	24101
122	844	393	3909	6003	11149	127	31	424	11731	6386	18117
123	3490	869	3461	3799	11619	1138	104	1151	14012	9593	23605
124	4811	1856	5583	7018	19268	669	262	1347	21546	14783	36329
125	253	385	883	3374	4895	90	133	510	5628	4038	9666
12	13849	4873	16748	24370	59340	2843	590	3813	67086	44732	111818
131	5635	2685	3876	7933	20129	3654	79	2245	26107	34064	60171
132	2803	1129	2729	7725	14386	1960	107	2923	19376	17476	36852
133	1332	915	1460	4360	8067	2184	144	1049	11444	17091	28535
13	9770	4729	8065	20018	42582	7798	330	6217	56927	68631	125558
141	254	293	564	3168	4279	146	44	517	4986	3130	8116
142	2322	899	2266	6863	12350	960	105	1709	15124	12944	28068
143	704	626	1846	7009	10185	591	29	729	11534	15747	27281
14	3280	1818	4676	17040	26814	1697	178	2955	31644	31821	63465
1	52549	23947	46885	66177	189558	19203	2981	15212	226954	215088	442042
211	619	842	1136	2591	5188	1417	151	471	7227	4631	11858
212	59	94	791	315	1259	17	16	68	1360	829	2189
21	678	936	1927	2906	64.17	1434	167	. 539	8587	5460	14047
22	793	512	553	355	2218	408	185	77	2888	2818	5706
2	1476	1448	2490	3261	8665	1842	352	616	11475	8278	19753
31	21	22	33	127	203	12	16	61	292	228	520
321	84	64	39	858	1045	314	16	31	1406	1267	2673
322	39	16	11	307	373	114	16	13	516	570	1086
323	66	11	13	322	412	41	16	13	482	478	960
32	189	91	63	1487	1830	469	49	57	2404	2315	4719
331	2435	792	1687	8224	13138	1564	61	820	15583	11342	26925
332	434	30	47	1016	1527	280	16	41	1864	1515	3379
333	629	585	407	2196	3817	1085	29	548	5479	9269	14748
334	229	139	160	1103	1631	342	20	101	2094	2803	4897
335	12	11	11	57	91	12	16	13	132	128	260
33	3739	1557	2312	12596	20204	3283	142	1523	25152	25057	50209
3	3949	1670	2408	14210	22237	3764	206	1641	27848	27600	55448

		•									
			-		•						
			CAR			ļ .					<u>``</u>
ZONE CODE	COING TO NORK	on Business	PRIVATE	HOME COING	SUB- TOTAL	LORRY	TAXI	BUS	SUB- TOTAL	MOTOR CYCLE	GRAND TOTAL
411	5528	2754	2998	358	11638	2914	380	1340	16272	18797	35069
412	1490	863	983	2051	5387	1566	179	594	7726	11937	19663
413	455	592	398	573	2018	137	102 1800	181	2438 1800	1758	4196 1800
4	7473	4209	4379	2982	19043	4617	2461	2115	28236	32492	C0728
Sub-total	65447	31274	56152	86630	239503	29426	6000	19584	294513	283458	577972
511	6218	4539	6518	2233	19508	597 2100 4500	309	871	21285 2100 4500	27660	48945 2100 4500
512 [.]	732	715	679	2497	4623	398	16	263	5300	6117	11417
513	2066	1207	1090	59	4422	457	112	201	5192	6606	11798
	1:	,	1.		.,	900		[900		900
514	730	448	603	2589	4370	738	16	247	5371	7605	12976
51	9746	6909	8890	7378	32923	9690	453	1582	44648	47988	92636
521	991°	338	128	884	2341	541	20	99	3001	3275	6276
522	92	50	50	894	1086	316	16	170	1588	2186	3774
523	344	176	218	863	1601	186	16	137	1940	3084	5024
524	,37	11	22	331	401	138	16	21	576	821	1397
525	81	72	127	885	1165	88	16	131	1400	1964	3364
52	1545	647	545	3857	6594	1269	84	558	8505	11330	19835
5	11291	7556	9435	11235	39517	10959	537	2140	53153	59318	112471
611	1821	1023	1944	3650	8438	882	149	1010	10479	15133	25612
612	5104	2636	1911	628	10279	3172	534	264	14249	21486	35735
]	ł	1	1	1300			1300		1300
61	6925	3659	3855	4278	18717	5354	683	1274	26028	36619	62647
621	16	11	11	57	95	12	16	13	136	247	383
622	673	493	290	1271	2727	466	16	119	3328	5163	8491
623	615	296	361	621	1893	266	57	183	2399	2845	5244
62	1304	800	662	1949	4715	744	99	315	5863	8255	14118
5	8229	4459	4517	6227	23432	6098	772	1589	31891	44374	76765
711	96	11	- 13	76	196	20	16	13	245	437	682
712	83	11	11	234	339	27	16	13	395	1216	1611
713	140	61	158	218	577	96	23	15	711	2883	3594
71	319	83	182	528	1112	143	. 55	41	1351	4536	5887

											•
			CAR					-			
ZONE CODE	GOING TO WORK	ON BUSINESS	PRIVATE	COING HOME	SUB- TOTAL	LORRY	TAXI	eus	SUB- TOTAL	MCTOR CYCLE	GRAID TOTAL
721	61	76	26	444	607	102	16	13	738	1622	2360
722	10	11	13	160	194	21	16	13	244	644	888
723	87	40	74	412	613	155	19	13	800	1820	2620
72	158	127	113	1016	1414	278	51	39	1782	4086	5868
731	242	168	230 .	750	1390	216	16	103	1725	3985	5710
732	1922	1397	3123	2088	8530	1403	191	340	10464	21642	32106
733	405	288	396	1937	3026	256	16	52	3350	5160	8510
734	755	421	564	1793	3533	411	17	113	4074	6219	10293
73	3324	2274	4313	6568	16479	2286	240	608	19613	37006	56619
741	165	98	132	1093	1488	35	16	306	1845	4379	6224
742	1105	562	755	1566	3988	556	65	424	5033	6595	11628
74	1270	660	887	2659	5476	591	61	730	6878	10974	17852
7	5071	3144	5495	10771	24481	3298	427	1418	29624	56602	86226
811	202	104	94	375	775	241	16	140	1172	2013	3185
812	309	104	183	657	1253	152	16	151	1572	2589	4161
81	511	208	277	1032	2028	393	32	291	2744	4602	7346
821	33	17	11	64	125	12	16	17	170	644	814
822	54	71	34	448	607	104	16	15	742	1700	2442
82	87	88	45	512	732	116	32	32	912	2344	3256
8 .	598	296	322	1544	2760	509	64	323	3656	6946	10602
Sub-total	25189	15455	19769	29777	90190	20364	1800	5470	118324	167740	286064

. . .

Trip Generation (2000)

								 ,			 -	
1				CAR					1		i	» 4
	ZONE CODE	HOEK TO COINC	ON BUS INESS	PRIVATE	HOME	SUB - TOTAL	LORRY	IXAT	BUS	SUB TOTAL	MOTOR— CYCLE	GRAID TOTAL
}	111	11439	19455	16717	50802	98412	12853 2500	6480.	2269	120014 2500	57601	177615 2500
	11	11439	19455	16717	50802 .	98412	15353	6480	2269	122514	57601	180115
ſ	121	5606	3148	5236	6407	20397	1418	260	484	22559	8001	30560
1	122	10783	1223	7481	5138	24625	369	103	1000	26097	7837	33934
	123	8022	1821	5820	7093	22756	1653	265	1673	26347	8528	34875
- 1	124	10242	2499	7252	7688	27681	1013	645	1916	31255	12161	43416
l	125	4082	706	3246	507	B541	151	332	636	9660	2974	12634
	12	38735	9397	29035	26833	104000	4604	1605	5710	115919	39501	155420
Ī	131	9792	6183	8762	10282	35019	6788	764	3112	45683	29898	75581
- 1	132	11019	2472	6788	4392	24661	2946	307	3621	31535	12431	43966
	133	6556	1808	3338	1910	13612	3490	398	1300	18800	11953	30753
	13	27367	10463	18878	16584	73292	13224	1469	8033	96018	54283	150301
	141	4664	597	3127	217	8606	243	300	750	9899	2991	12890
	142	11801	1652	7235	4318	25006	1445	735	2443	29629	11463	41092
-	143	9668	1234	5613	562	17077	754	128	913	18872	10956	29828
	14	26133	3483	15975	5097	50689	2442	1163	4106	58400	25410	83810
	1	103674	42798	80605	99316	326393	35623	10717	20118	392851	176795 .	569646
	211	5560	1440	3781	2352	13133	1989	1142	690	16954	4064	21018
ı	212	1518	345	1345	1610	4818	91	1419	209	6537	1512	8049
	21	7077	1785	5126	3962	17951	2080	2561	898	23490	5576	29066
	22	2018	1589	2037	4383	10027	984	225	249	11485	4209	15694
	2	9095	3374	7163	8345	27978	3064	2786	1147	34975	9785	44760
ĺ	31	461	67	365	- 236	1128	44	17	138	1327	573	1900
Ì	321	1744	, 278	892	153	3068	456	15	145	3714	1531	5245
	322	453	117	336	46	952	170	15	39	1176	544	1720
-	323	420	57	254	112	844	63	15	20	942	391	1333
	32	2619	452	1482	311	4864	719	45	204	5832	2466	8298
	331	14147		8662	3851	28599	2430	79	1563	32671	8470	41141
-	332	1972		1204	415	3987	477	. 15	207	4686	2024	6710
- 1	333	7366	Ł	4302	3703	16806	1932	61	1514	20313	9067	29380
- 1	334	3450	L	2026	1506	7557	678	34	512	8781	3576	12357
-	335	57		230	885	1509	223	32	27	1791	758	2549
	33	26992	4731	16424	10310	58456	5740	221	3819	68236	23895	92131
	3	30070	5250	18271	10857	64448	6503	283	4162	75396	26934	102330

··			CAR	<u> </u>							
ZONE CODE	TO WORK	on Business	PRIVATE	COING	SUB- TOTAL	LORRY	TAXI	BUS	SUB - TOTAL	MOTOR- CYCLE	GRAND TOTAL
411 -	4218	7254	6220	19643	37335	8971	1038	2582	49926	20401	70327
412	7627	3855	6291	10544	28317	5274	555	2460	36612	15413	52025
413	1458	180	807	1012	3457	301	541 6500	433	4732 6500	2797	7529 6500
4	13303	11489	13318	31199	69309	14546	8634	5481	97970	38611	136581
SUB-TOTAL	156142	62911	119357	149717	488128	59736	22420	30907	601191	252124	853315
511	7076	6716	9489	13960	37242	6343	2483	1732	47800	26663	74463
				1		9800			9800		9800
			}	1		5000	·		5000	1	5000
512	2240	1595	2155	1779	7769	820	351	530	9470	5897	15367
513	1244	3407	2612	8447	15710	3134	359	637	19840	12392	32232
				_		1800			1800		1800
514	3207	658	1564	853	6281	1040	316	492	8129	6135	14264
51	13767	12376	15820	25039	67002	27937	3509	3391	101839	51087	152926
521 522	1342 1854	461	508	1204	3516	755	19	239	4529	2821	7350
523	6682	240 781	1100	641	3834	550	15	621	5020	3570	8590
524	480	107	284	2658 130	14165	727	33	2028	16953	12052	29005
525	1511	187	1012	301	3011	180	15	106	1328	998	2326
52	11869	1776	6947	4934	25527	2418	97	438 3431	3644 31473	2669	6313 53582
5	25636	14152	22767	29973	92528	30355	3606	6822	133311	73196	206509
611	9831	3901	7371	10008	31111	4138	465	3695	39409	19783	59192
612	1428	11115	4902	28792	46237	16136	1014	1533	64920	27293	92213
_		})]	1	1400	j	•	1400]	1400
61	11259	15016	12273	38800	77 348	21674	1479	5228	105729	47076	152805
621	316	1513	1072	3971	6872	1628	230	247	8977	4569	13546
622	928	707	732	334	2701	637	15	178	3531	2697	6228
623	3857	916	2690	2938	10419	1116	124	1643	13302	6644	19946
62 	5119	3136	4494	7243	19992	3381	369	2068	25810	13911	39721
	16378	18152	16767	46043	97340	25055	1848	7296	131539	60987	192526
711	237	16	88	. 24	365	30	15	21	431	396	827
712	267	28	209	15	520	39	15	21	595	941	1536
713	343	24	385	290	1040	141	22	60	1263	2319	3582
71	847	68	679	329	1923	210	52	101	2286	3656	5942
721	407	149	496	69	1120	147	15	48	1330	1420	2750
722	168	73	105	38	384	33	15	20	-	567	1019
723	472	119	401	151	1143	221	17	65	1446	1567	3013
72	1047	341	1002	258	2647	401	47	133	3228	3553	6781
	•	•									
		: .						•			
					-	9 ~					
		1						•	**		

			CAR								4
ZONE CODE	COING TO WORK	on Bus iness	PRIVATE	GOING HOME	SUB- TOTAL	LORRY	TAXI	BUS	SUB- TOTAL	MOTOR CYCLE	GRAND LATOT
731	829	362	812	619	2622	320	15	269	3226	3491	671
732	3248	2276	3072	8035	16632	2378	739	1679	21428	18097	3952
733	2007	553	1377	756	4693	377	15	158	5243	4232	947
734	1763	860	1666	2051	6340	837	15	357	7549	6290	1383
73	7847	4051	6927	11461	30286	3912	784	2463	37444	32111	6955
741	1918	234	1225	673	4050	123	15	784	4972	4768	974
742	6993	1774	4867	5191	18825	1795	160	1467	22247	16396	3864
74	8911	2008	6092	5864	22875	1918	175	2251	27219	21164	4838
7	18652	6468	14700	17912	57732	6441	1058	4948	70179	60485	13066
811	1167	227	823	677	2893	396	15	483	3787	2860	664
812	5023	1492	3702	4392	14609	1234	123	1555	17521	11287	2880
81	6190	1719	4525	5069	17502	1630	138	2039	21309	14147	3545
821	292	37	177	142	648	26	15	94	783	835	161
822	588	221	339	183	1331	160	15	94	1600	1626	322
82	880	258	516	325	1979	186	30	188	2383	2461	484
8	7070	1977	5041	5394	19481	1816	168	2228	23693	16608	4030
SUB-TOTAL	67736	40749	59275	99322	267082	63667	6680	21293	358722	211276	56999
TOTAL	223878	103660	178632	249039	755210	123403	29100	52200	959913	463400	14233

Trip Attraction (2000)

							·				
ZONE CODE	COING	ON BUSINESS	CAR PRIVATE	GOING	SUB- TOTAL	LORRY	TAXI	BUS	SUB- TOTAL	MOTOR CYCLE	CRAID TOTAL
	WORK										
111	41728	20941	31114	4629	98412	12853 2500	6480	2269	120014 2500	57601	177615 2500
11	41728	20941	. 31114	4629	98412	15353	6450	2269	122514	57601	180115
121	6625	2275	4788	6710	20398	1418	260	484	22560	8001	30561
122	1893	923	6917	14891	24624	369	103	1000	26096	7837	33933
123	5587	1505	5965	9698	22755	1653	265	1673	26346	8528	34874
124	5870	2338	7342	12130	27680	1013	645	1916	31254	12161	43415
125	473	637	1527	5904	8541	151	332	636	9660	2974	12634
12	20448	7678	26539	49333	103998	4604	1605	5709	115916	39501	155417
131	9755	4831	7349	13085	35020	6788	764	3112	45684	29898	75582
132	4251	1749	4532	14128	24660	2946	307	3621	31534	12431	43965
133	1935	1366	2358	7952	13611	3490	398	1300	18799	11953	30752
13	15941	7946	14239	35165	73291	13224	1,169	8033	96017	54282	150299
141	523	523	1037	6522	8605	243	300	750	9898	2991	12889
142	3942	1611	4077	15376	25006	1445	735	2443	29629	11463	41092
143	898	875	2925	12379	17077	754	128	913	18872	10956	29828
14	5363	3009	8039	34277	50688	2442	1163	4106	58399	25410	83809
*	83480	39574	79931	123404	326389	35623	10717	20117	392846	176794	569640
211	1447	1789	2602	7295	13133	1989	1142	690	16954	4064	21018
212	. 394	328	1890	2205	4817	91	1419	209	6536	1512	8048
21	1841	2117	4492	9500	17950	2080	2561	899	23490	5576	29066
22	3305	1917	2497	2309	10028	984	225	249	11486	4209	15695
2	5146	4034	6989	11809	27978	3064	2786	1148	34976	9785	44761
31	138	88	133	768	1127	44	.17	138	1326	573	1899
321	303	189	197	2379	3068	486	15	145	3714	1531	5245
322	104	49	46	753	952	170	15	39	1176	544	1720
323	121	16	39	668	844	63	15	20	942	391	1333
32	528	254	282	3800	4864	719	45	204	5832	2466	8298
331	4835	1668	3744	18352	28599	2430	79	1563	32671	8470	41141
332	461	181	274	3072	3988	477	15	207	4687	2024	6711
333	2340	1604	1718	11144	16806	1932	61	1514	20313	9067	29380
334	997	549	754	5257	7557	678	34	512	8781	3576	12357
335	626	357	453	73	1509	223	32	23	1787	758	2545
33	9259	4359	6943	37898	58459	5740	221	3819	68239	23895	92134
3	9925	4701	7358	42466	64450	6503	283	4161	75397	26934	102331

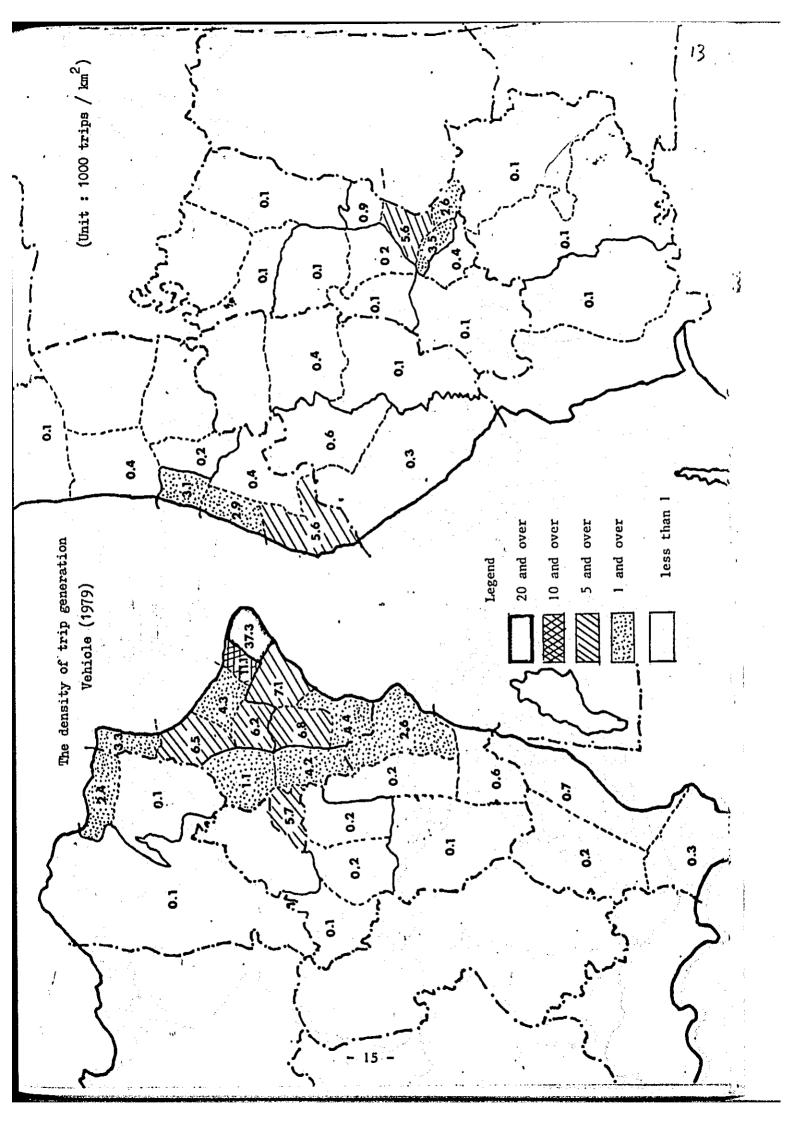
			CAR				Ι			<u> </u>	
ZONE CODE	COING TO WORK	on Business	PRIVATE	COING	SUB- TOTAL	LORRY	TAXI	BUS	SUB- TOTAL	MOTOR CYCLE	GRAND TOTAL
411	15502	7943	10700	3190	37335	8971	1038	2582	49926	20401	70327
412	7581	4121	5599	11015	28316	5274	555	2466	36611	15413	52024
413	627	654	556	1820	3657	301	541 6500	433	4932 6500	2797	7729 6500
4	23710	12718	16855	16025	69308	14546	8634	5481	97969	38611	136580
Sub-total	122261	61027	111133	193704	488125	59736	22420	30907	601188	252124	853312
511	11353	7115	15955	2819	37242	6343	2483	1732	47800	26663	74463
-	-	1				9800		1	9800	1	9800
]		5000	1		5000		5000
512	1516	1184	1362	3707	7769	820	351	530	9470	5897	15367
513	6813	3700	4829	367	15709	3134	359	637	19839	12392	32231
		560	906	2062	6281	1800	316	492	1800 8129	6135	1800
514 51	925	568 12567	826 22972	3962 10855	67001	1040 27937	316 3509	3391	101838	51087	152925
	- 20001	12,01		100,77	1 0,001	-1727	3,50,	1 337		1 , , , ,	
521	1183	419	196	1718	3516	755	19	239	4529	2821	7350
522	398	209	282	2946	3835	550	15	621	5021	3570	8591
523	1547	800	1139	10679	14165	727	33	2028	16953	12052	29009
524	89	32	62	818	1001	506	15	106	1328	998	2326
525	238	159	269	2345	3011	180	15	438	3644	2669 22110	6313 5358
52	3455	1619	1948	18506	25528	2418	97	3432	31475	 	1
5	24062	14186	24920	29361	92529	30355	3606	6823	133313	73197	206510
611	8530	4021	6594	11966	31111	4138	465	3695	39409	19783	5919
612	21429	11767	11711	1329	46236	16136	1014	1533	64919	27293	92212
61	29959	15788	18305	13295	77347	1400 21674	1479	5228	1400 105728	47076	1400 15280
621	2898	1597	2022	355	6872	1628	230	247	8977	4569	1354
655	612	456	292	1341	2701	637	15	178	3531	2697	6228
623	· 2189	1012	1733	5485	10419	1116	124	1643	13302	6644	1994
62	5699	3065	4047	7181	19992	3381	369	2068	25810	13910	3972
6	35658	18853	22352	20476	97339	25055	1848	7296	131538	60986	19252
711	127	14	26	199	366	30	15	21	432	396	62
712	105	14	16	385	520	39	15	21	595	941	153
713	194	89	228	528	1039	141	22	60	1262	2319	358
71	426	117	270	1112	1925	210	52	102	2289	3656	594

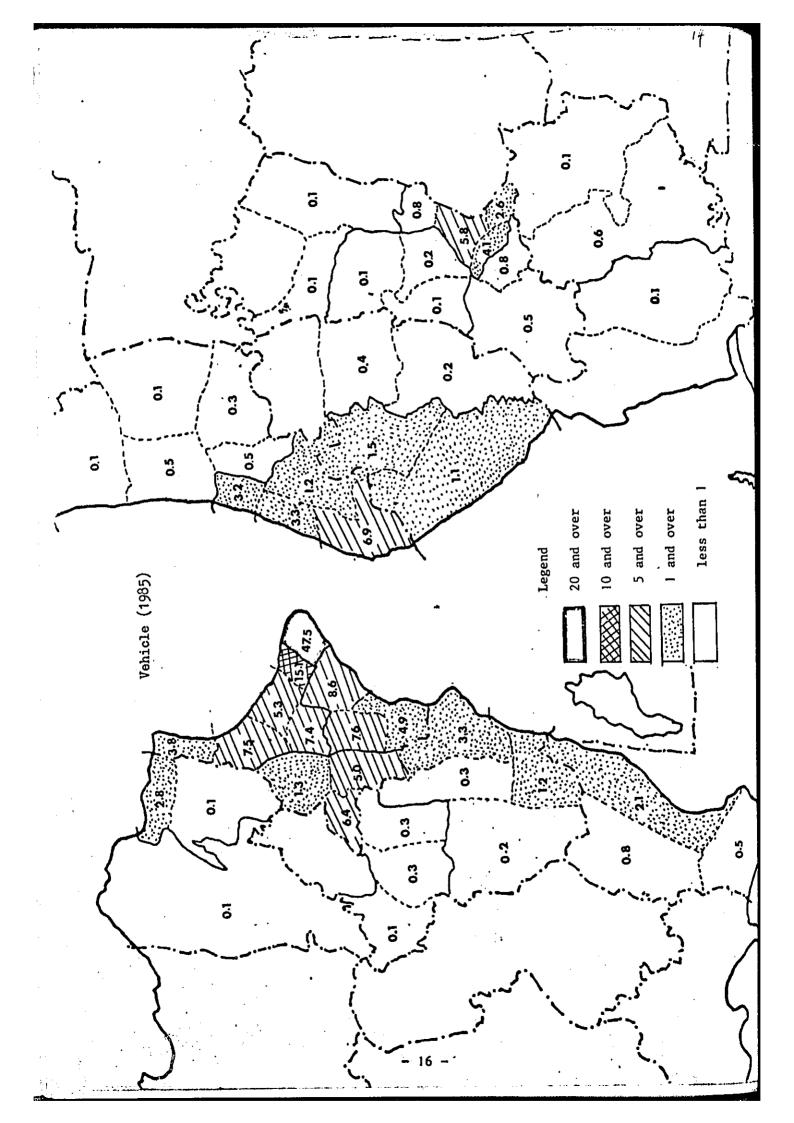
	44										
							•		•		
			CAR							[
ZONE CODE	GOING TO HORK	on Business	PRIVATE	HOKE	SUB- TOTAL	LORRY	TAXI	PUS	SUB- TOTAL	MOTOR CYCLE	CRAID TOTAL
721	99	107	53	862	1121	147	15	43	1331	1420	2751
722	15	14.	24	331	384	33	15	20	452	567	1019
723	136	65	122	820	1143	221	17	65	1446	1567	3013
72	250	186	199	2013	2648	401	47	133	3229	3554	6783
731	363	243	359	1656	2621	320	15	269	3225	3491	6716
732	4033	2673	5765	4160	16632	2378	739	1679	21428	18097	39525
733	566	396	584	3148	4694	377	15	158	5244	4232	9476
734	1629	889	1288	2532	6338	837	15	357	7547	6290	13837
73	6591	4201	7996	11496	30285	3912	784	2463	37444	32110	69554
741	394	222	322	3112	4050	123	15	784	4972	4768	9740
742	3631	1875	2721	10598	18825	1795	160	1467	22244	16396	38643
74	4025	2097	3043	13710	22875	1918	175	2251	27219	21164	48383
7	11292	6601	11508	28331	57733	6441	1058	4949	70181	60484	130665
811	424	221	259	1988	2892	396	15	483	3786	2860	6646
812	3083	1519	2270	7736	14608	1234	123	1555	17520	11287	28807
81	3507	1740	2529	9724	17500	1630	138	2038	21306	14147	35453
821	86	45	45	472	648	26	15	94	783	835	1618
822	112	112	81	1027	1332	160	15	94	1601	1626	3227
82	198	157	126	1499	1980	186	30	188	2384	2461	4845
8	3705	1897	2655	11223	19480	1816	168	2226	23690	16608	40298
Sub-total	74717	41537	61435	89391	267081	63667	6680	21294	358722	211275	569997
Total	196978	102564	172518	283095	755206	123403	29100	52201	959910	463399	1423309
						:					
											•
				•					N.		
					•						
			•								
							•				

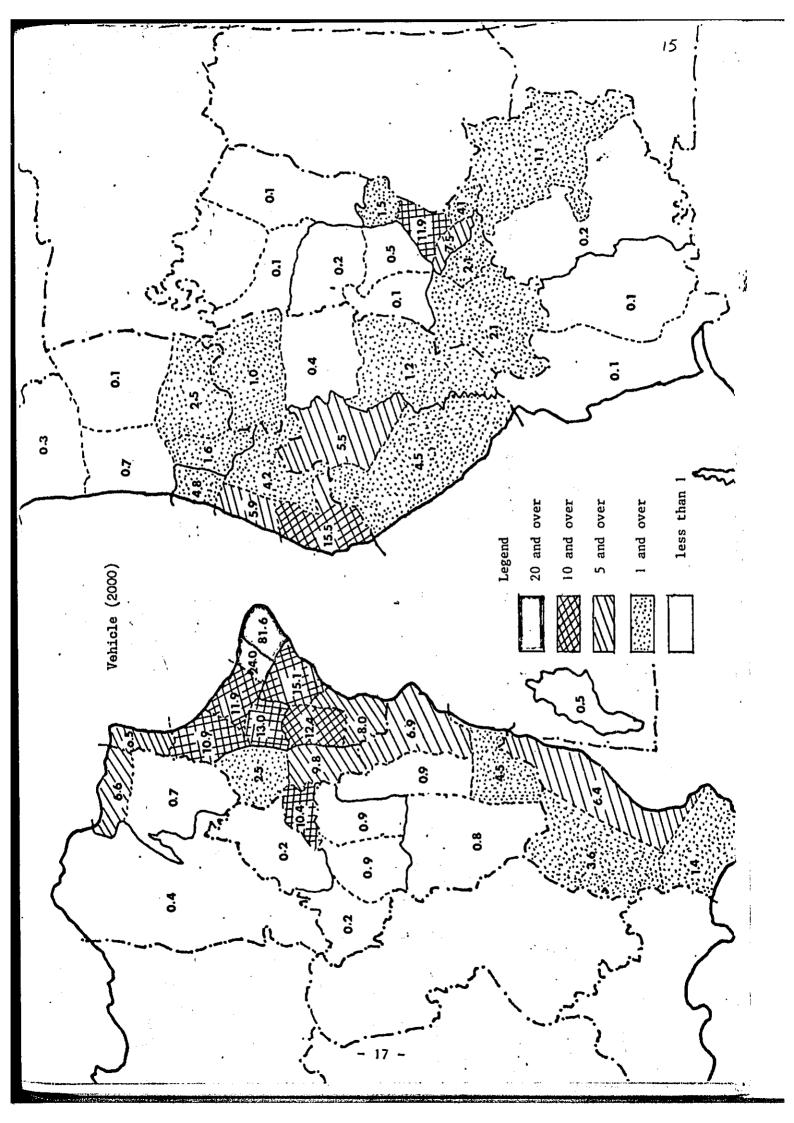
B - FIGURES OF THE DENSITY OF TRIP GENERATION

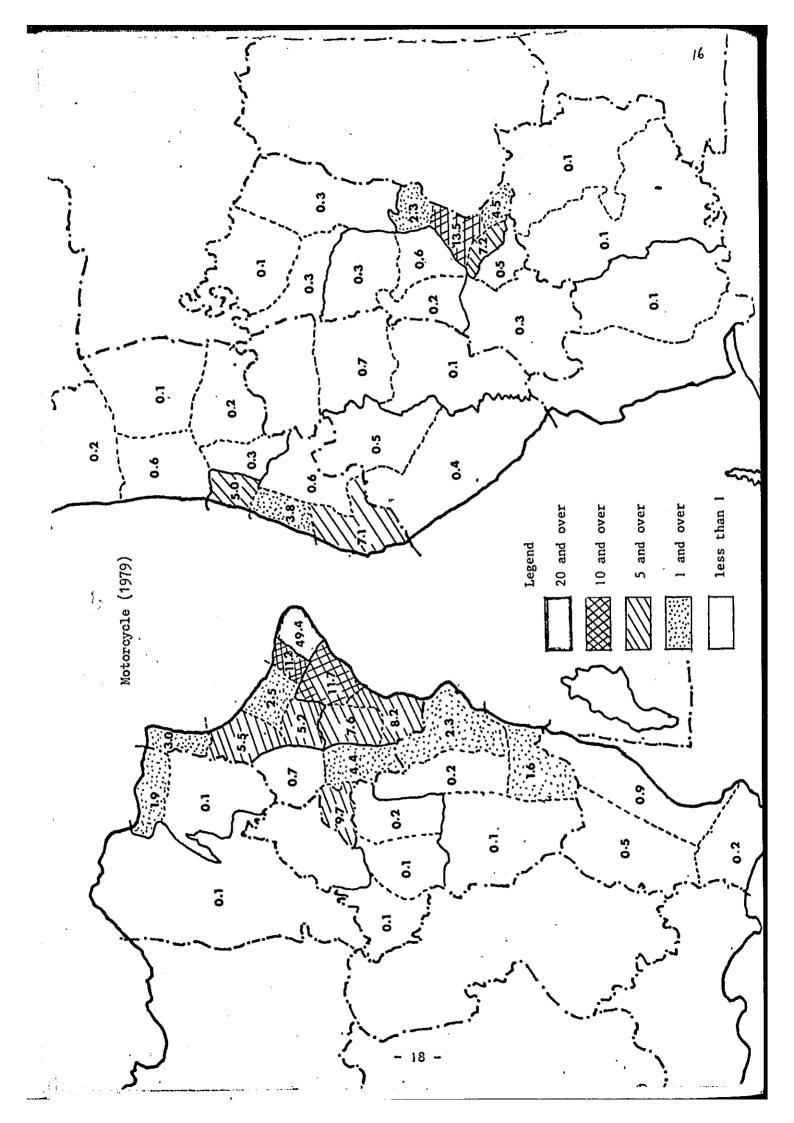
1. Vehicles ex. M/C 1979

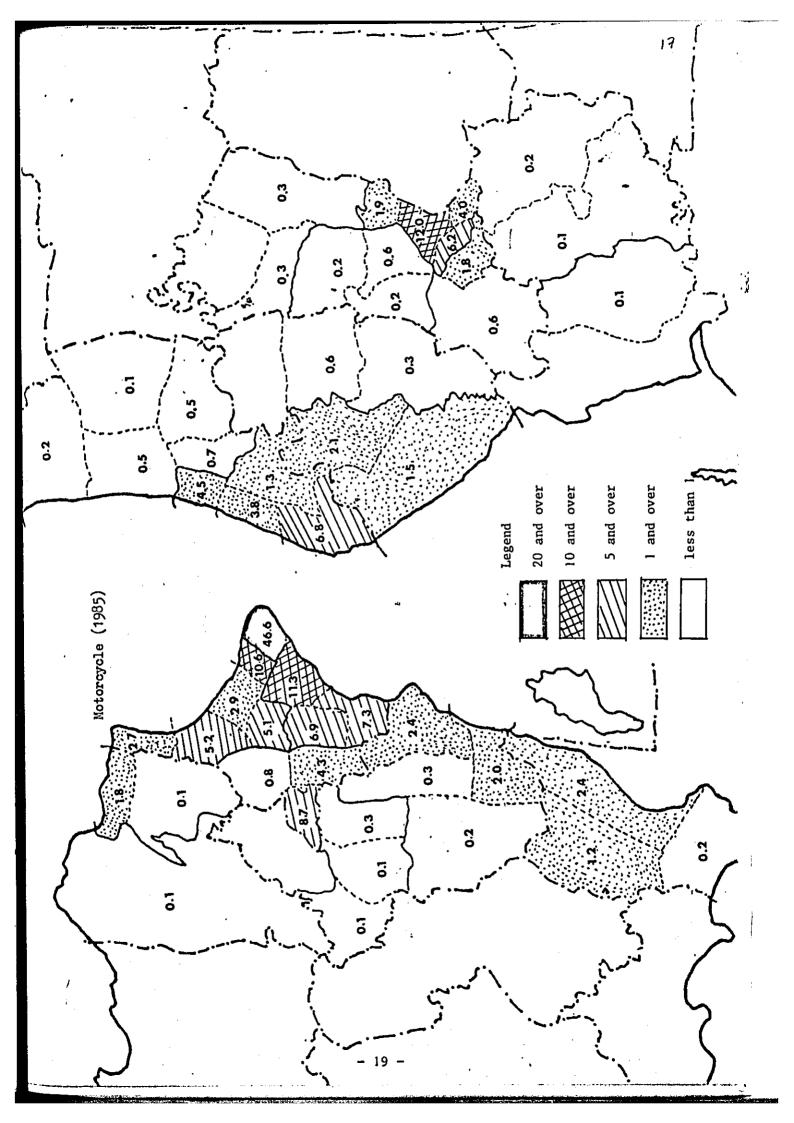
1985 - Plan A

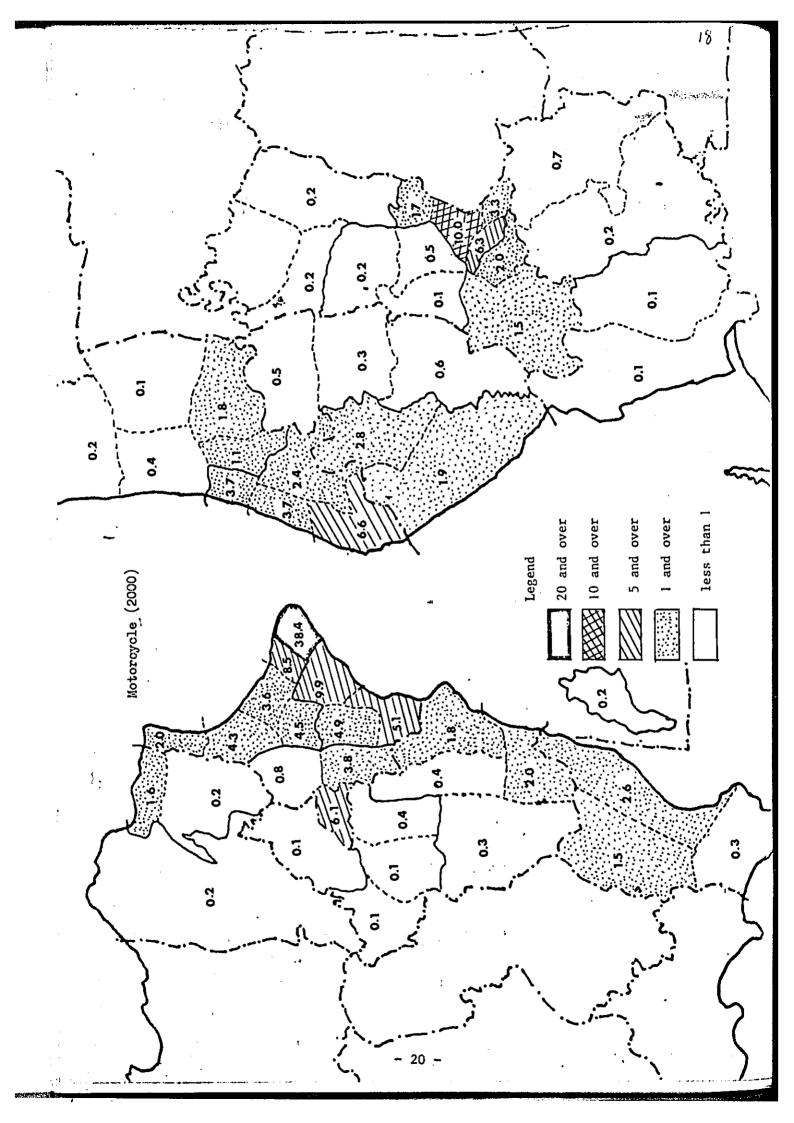

2000 - Plan A


2. Motor-cycles 1979


1985 - Plan A


2000 - Plan A


(Unit : 1000 trips/Km²)



C-- O-D TABLES

1. 1985 - Plan A Vehicles (Unit: trips)
(ex. M/C)

Vehicles (Unit: p.c.u)
(ex. M/C)

Motor-cycles (Unit: trips)

2. 2000 - Plan A Vehicles (Unit: trips)
(ex. M/C)

Vehicles (Unit : p.c.u)
(ex. M/C)

ex. M/C)

Motor-cycles (Unit : trips)

$\overline{}$
ŝ
33
c,
~
$\overline{}$
THORS
=
ŭ
•
1.1

				,																				19-	it ,	N
					•																+	Mary Co	તામુ ત્રી છે.	Paragraphy	ومها	
	GRAUD TOTAL	226920	27311	28251	294467	53149	31399	29605	3648	118301	412763	1199	2600	196	666	4994	8771	4266	1103	1001	7061	22202	27196	439964		
	TOTAL IN EXTERNAL AREA	5127	876	1245	77.37	7632	5324	43.13	191	18140	25377	43	8	~	42	139	- sx	179	34	82	#	1178	1367	27244		
	SUB- TOTAL	2219	370	450	3203	1569	5231	4232	413	17369	21072	4	35	! ~	20	131	314	146	98	74	376	966	1177	22249		
	04 05	95 774	-		135 1119			_	50 285	785 5442	6561	2 16	4 33		2 13	8 65	20 268	15 110		~1	35 0	75 445	33 510	1104 1003 7071	•	
,	50	105	17	55	152	314			8	354	4078 1006 920	~	4	0	7	8	56	2	0	\$	22	96	, 8			
	ο 62	5 469			683 6	-			23	3 3450		8	4 17	3	4	7 33	0				135	171 5	2 204	9 4282		
	0.0	989			1209				566	7298	8501	4 16	<u>~</u>	•	7	5 67			8 27			215	282	3789		
!	SUB- TOTAL	147 2900 13 253			3 4534				<u>۽</u>	55 271	8 4305		-	٠ <u>.</u>	0	4 8	4 67	7 33			14 66	39 182	43 190	1495		
	3 24	119 547 8 33	•-		191 903			2 1	0	9 5	190 958	0	0	0	٥	0	3 1	-	0	0	~	⊢	7	197 1001		
	92 93	1473 1			2363 1	69	45	33	ہ	144	2507 1	0	0	0	0	0	*	11	₹	4	ä	8	8	2599 1	!	
(1935)	91	901	8	: =	1037	1.2	19	2	\neg	63	1150 2	0	0	0	-4	4	16	ю	8	c۷	5	#	a	1198		
VEHICLE (TOTAL IN INTERNAL AREA	221793	26885	27006	286730	45457	26575	25252	2357	100161	336391	1151	2508	139	957	4805	8350	4637	1009	919	6619	21024	25329	412720		
-	SUB- TOTAL	4130	9636	792	5914	22960	24733	23934	2623	94255	100169	61	142	6	55	267	7132	3:94	356	785	5472	17789	13056	118225		
	60	153	, ,	×	236	998	727	160	23	5626	2862	3	9	0	3	12	260	123	ያ	5	285	113	785	3647		
	-	929	155	136	1330	5286	4562	13360	<u>3</u> 2	23976	25306	16	33	N	12	63	1524	918	273	240	1329	4227	4290	53099 31893 29596		
	و	1269	1	256	1837	1896	9762	4563	725	24740	26577	18	\$	ب	13	83	2146	991	234	214	1638	5223	5306	31833		
	\$	1914	27.	316	2511	27121	9697	5249	957	:2913	45424 26577 25306	24	59	4	22	109	3252	1499	314	281	2220	7566	7675	53099		
	SUETOTAL	217613	26199	26214	2º3316	2507	1837	1328	234	9065	285722	1090	2366	120	206	4538	1203	593	153	134	1147	3235	1773	294195		
	*	13605	1576	3210	26212	316	255	136	¥	791	27003	114	4.42	31	213	300	159	72	22	18	160	451	1251	28254		
	-	15994 1	1985	3564	6213 2	272	233	154	25	584	6897	99	349	23	107	578	1. 65	19	11	15	129	368	946	7843 2		
	~	1549 1			0794 2	8	22	23	6	255	1049 2	ই	5	6 0	8	254	82	2	∞	~	25.	162	416	1465 2		
	-	180465	15063	13622	217597 10794 26213 26212	1811	1270	625	166	4176	221773 11049 26897 27003	111	1474	113	543	2906	340	414	105	94	800	2254	5160	226933 11465 27843 28254		
-	2	- 6	۰ ۰	n 4	SUB-	2	49	-	8	SUB- TOTAL	TOTAL IN INTERNAL AREA	2	8	8	8	SUBTOTAL	5	8	8	8	93	SUB-	TOTAL IN EXTERNAL	CRAND TOTAL		

20.19

									묾		C. U1985)	3		<u>"</u>							- HII-	NOTAL TH	CRAM
2 3	~		4	SUB- TOTAL	2	•	-	φ υ ει	SUB- TOTAL	INTERNAL AREA	16	8	8	24 12 E	TOTAL	5	8	8	8	ر ا			TOTAL
9349 196	~	19648 1	17272	263169	2186	1558	1112	218	5074	268243	1194 2		116			1024	493	148	-		2795		275367
2154 10	0	1015	1077	13605	143	ള	13	9	340	13945	52	ξt	8	67	395	92	31	=		92	213	8	14553
1015 72	•••	7270	4715	32696	337	294	192	35	878	33554	1	216	55	183	83 83	178	85	24	52	8	477	1359	34913
1081 47	. I	4716 1	11103	34302	401	335	235	45	1022	35324	186	672	2	369	1260	220	105	я	 გ	212	23	1859	37183
13599 32		32649 3	34167	343772	3073	2239	1618	314	7294	351066	/; / 1711 3	341 1	1 621	1529	9999	1,198	720	215	201 1,	1450 4	4084	10950	362016
141		333	405	3066	5	12131	6373 1	1114	51760	54826	46	85	~	8	174	4067 1	1819	448	420 28	2841	9595	3769	64595
ठ		292	334	2301 121	=	12539	5641	951	31308	33609	2	99	m	စ္က	129	2754 1	1235	<u>7.4</u>	324 2	2156	6813	6942	40551
75		፠	230	1599	6317	5610 1	15686	8	28582	30181	23	49	2	23		1911	1057	363	350 17	11.	23%	5469	35670
15		35	45	209	1110	958	સુ	376	3426	3735	~	2	۰	ن	02	323	165	F	13	393	1062	10g2	4817
333		82	1014	7275	51740	31238 2	28682 3	3416 1	115076	122351	104	210	æ	3 3,	450	9081 4	4276 1	1232 1	1172 7	7101	22852	23262	145633
268435 13932 3		33499 35181	<u> </u>	351047 54	1813	33527 3	30300	3730 1	122370	473417	1815 3	3657 1	187 1	1627 7	7286	0579 4	4996 1	1447 1	1373 85	8551 2	26946	34232	507649
뒫	1	163	187	1726	8	29	24	5	96	1822	0	0	0	5	10	92	£	4	~	27	2	8	1905
₹ 8		513	119	3455	85	જ	ደ	5	211	3666	0	0	0	0	٥	ጸ	24	7	-	ይ	138	138	3
80		55	e e	178	4	~	∾.	0	6	187	0	0	0	8	0	٣		0	0	m	-	~	194
63		183	370	1531	41	ደ	23	5	99	1630	5	0	0	3	5	24	=	~	~	24	65	75	1705
38	ŀ	. 18	1261	0689	168	128	86	20	415	7305	t t	0	•	- 2	20	Ď.	. 64	4	₽ 1	효	283	33	7608
92	1	176	219	1510	4039	2723	1874	342	8578	10,488	56	ደ	m	ଅ	25	0	0	39	8	354	423	525	11013
Ε.		85	106	732	1839	1244	1062	166	11.	5043	13	25		2	2	0	0	ಜ	22	4	196	247	228
Ξ.		24	×	216	450	747	369	11	1243	1459	₹.	-	0	m	4,	33	옸	0	6	27	129	143	1632
Ξ		22	2	202	450	325	354	18	1177	1379	~	-	0	~	žΞ	7	22	6	٥٤	55	117	<u>8</u>	1509
13		170	217	1497	2887	2179	1711	355	7172	8669	28	22	~	54	8	223	176	82	77	0	512	618	9287
214	l .	477	604	4157	9635	6318	5370	1058	22881	27038	74	140	~	-53	586	293	228	136	116	Š	1377	1663	28701
610	ı	1358	1865	11047	9603	91/69	5469 1	1078	23296	34343	85 15	140	~	22	36	396	277	ङ	129	8	1660	1966	36309
21:51	¥	1857 3	17046	275649 145-12 34857 370-16 362094 64	919	40473 3	35769 4	4808	145666	507760	1899	3797	194 1	1702	1592	10975	5273	1597 1	1502 9	9259	28606	36198	543958
l	1		-			ļ ·	·																

_1

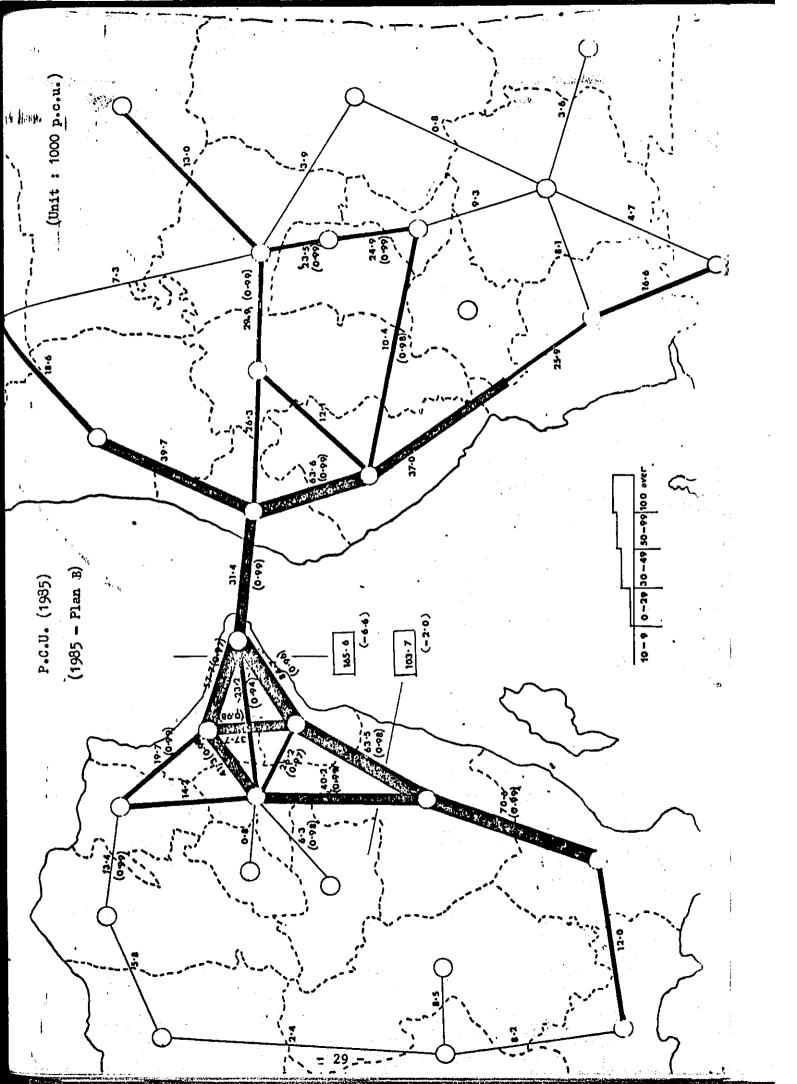
1 1 1 1 1 1 1 1

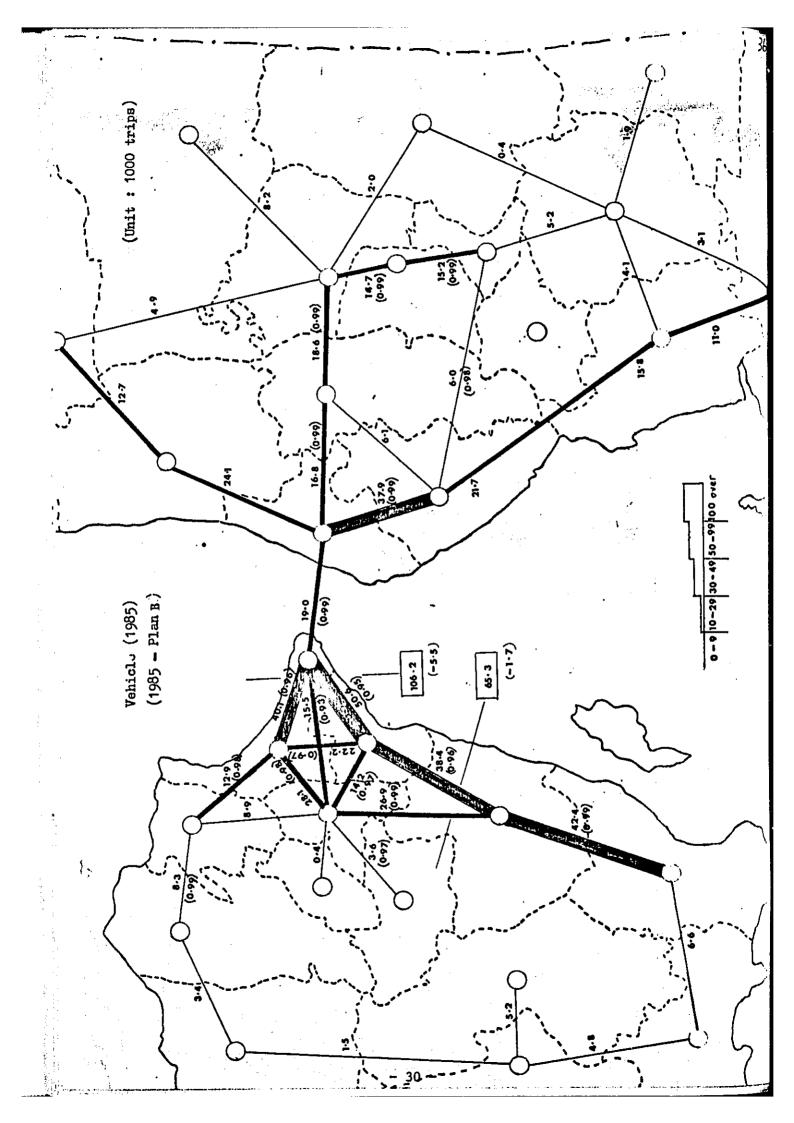
	÷.																							;	MA I
	CRAND TOTAL	215079	8275	. 27594	325/2	283462	59243	65677	\$6527	1969	167690	451152	765	901	397	669	2591	3805	3006	1105	797	2803	11516	14107	465259
	TOTAL IN EXTERNAL AREA	1789	197	538	784	3308	3221	3309	2937	765	10232	13540	2	0	0	2	4	125	103	75	S	175	528	532	14072
	SUB- TOTAL	572	0,7	Ξ	145	868	3217	3299	2935	765	0216	1084	0	0	•	0	0	92	75	79	67	137	117	117	11495
	05	179	2	35	45	272	639	810	679	242	2369	1797	0	0	0	0	0	<u>7, i</u>	7.5	22	20	0	158	158	2799
	70	35	7	9	6	22	147	961	262	28	700			o	0	•	0	9	0	7	0	20	2	63	795
	8	2	~	6	Ξ.	2 2	202	270	366	911	957	1033 752	0	0	0	0	0	12	23	0	7	27	69	\$	1102
	65	134	2	97	34	204	889	824	854	136	2703	2907	0	0	0	۰	0	0	0	13	<u>.</u>	9	93	8	3000
	5	173	1.2	35	77	264	1337	1199	27.5	176	3487	3751	0	0	0	0	0	0	0	12	9	2	48	8,7	3799
	SUB- TOTAL	1217	157	427	639	2440	4	0.	7	0	91	2456	2	0	0	2	4	33	28	=	7	38	117	121	1577
	56	288	13	98	263	656	-	~	-	0	3	657	2	0	0	0	2	6	&	٣	2	10	32	75	169
	93	161	=	89	93	368	-	~	0	0	~	12.	a	0	0	٥	٥	9	א	2	-	^	21	2	392
	92	376	23	226	230	855	-	•	-	٥	~	360	0	0	0	0	0	2	æ	г	7	Ξ	34	*	768
	91	359	102	47	23	195	-	7	0	٥	r	564	0	0	0	2	2	œ	7	n	7	9	90	~	596
(1985)	TOTAL 11: INTERNAL AREA	213290	8078	27056	317.0	280154	56022	41650	53590	9619	157458	437612	592	106	397	697	2587	3680	2903	1030	747	2628	10988	13575	451187
MOTOR-CYCLE (1985)	SUB- TOTAL	9657	195	739	879	6079	53519	39709	52519	5885	151632	158041	18	27	Ω.	77	82	3270	2576	910	999	2204	9626	80.7e	167749
MOTO		225	=	97	19	345	812	1363	1571	2118	5864	6209	=	7	-	7	٠,	164	129	2	16	224	718	723	6932
	80	809	95	167	218	1240	3714	6373	41073 1	1608 2	52768 5	\$4008 6	7	1	7	'n	82	680	191	339	248	577	2605	2623	56631 6
	6 7	1380	71	335	196	2147	9268	22233 (6320 4	1352	39473 5	41620 \$	1	=	9	2	3,4	1145	813	197	187	781	3187	3221	44841 5
	\$	2182	65	161	239	2677	39425	9740 2	3555	807	53527 3	56204 4	9		'n	_	25	1281	873	200	140	229	3116	3141	1
	SUB- TOTAL	208694	7883	26317	30851	273745	1503	1961	1071	3.	5826		574	874	384	673	2505	410	327	120	8	424	1362	3867	27579 32486 283438 59345
	4	52117	366	4635	18040	91801	112	326	193	53	783	11599	53	234	97	268	654	2	95	21	-7	7.2	233	887	32486
	e e	11078	363	10206		26309 30816 273745	17.1	302	137	07	959	8051 ' 26965 31599 279571	87	230	7.7	88	438	75	41	16	9	55	176	519	27579
	2	6077	172	361	365	7876	57	29	39	13	27.1	8051	59	23	2	20	191	=	15	Ś	∢	61 .	9	221	8272
5	_	185432	6177	11115	7784	772661	2058	1246	202	206	4212	212956	366	387	202	297	1252	269	215	78	53	278	893	2145	215101
	0	-	2	n	-3	SUB- TOTAL	5	9	7	80	SUB- TOTAL	TOTAL IN INTERNAL AREA	16	92	93	76	SUB- TOTAL	10	05	60	75	9	SUB- TOTAL	TOTAL IN EXTERNAL AREA	GRAND TOTAL

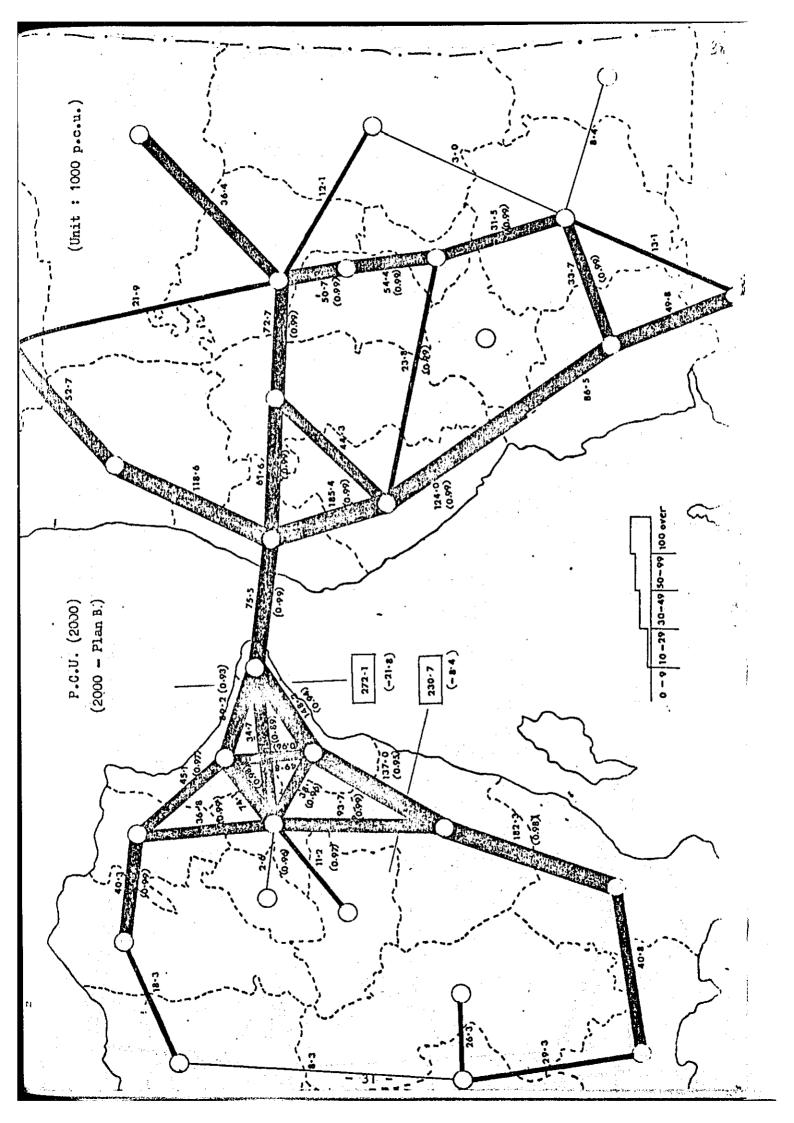
- 24 -

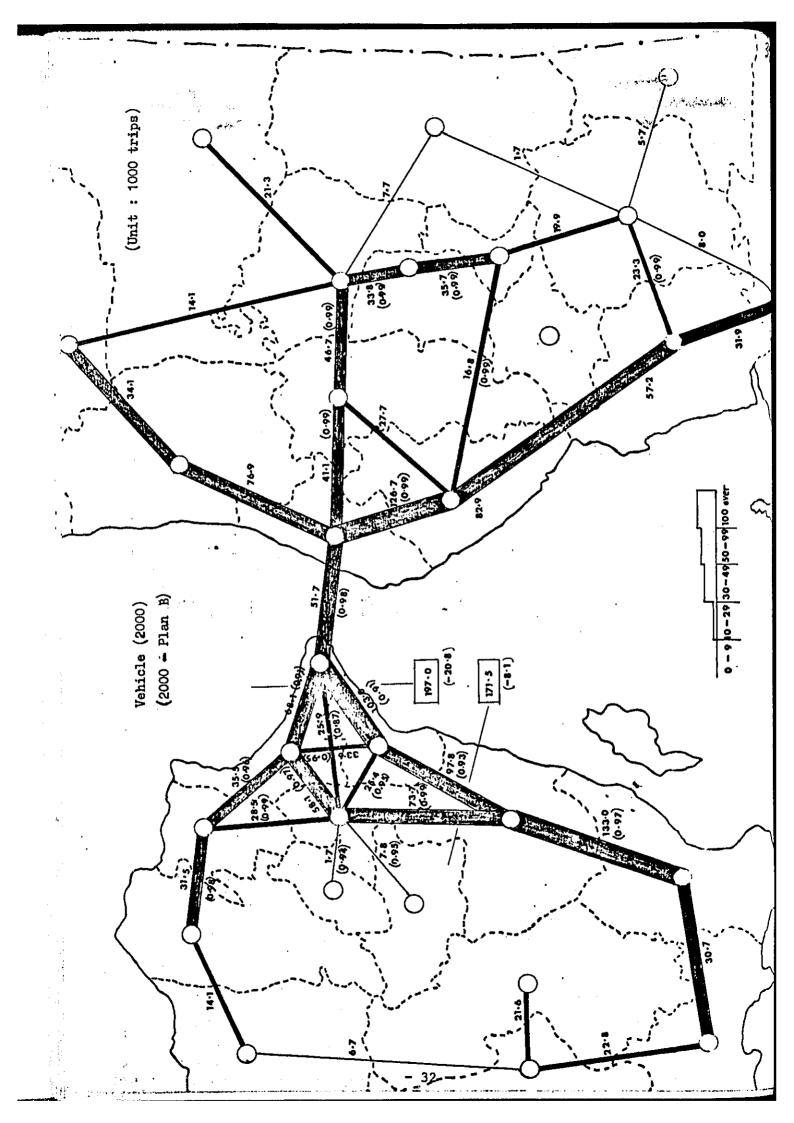
	CRAND	392520	34995	75472	93195	601132	133150	131542	19001	23663	358421	959603	5204	10306	2004	4501	22515	24114	11051	4513	3014	20017	69129	85284	104/4387
	TOTAL IN EXTENAL AREA	15043	2045	4236	6358	27632	13939	19538	10189	4360	53046	80728	237	381	83	202	901	1073	496	357	235	1243	34c9	4310	85038
	SUB- TOTAL	4439	535	1034	1539	1192	18395	19997	3905	4239	51524	59141	201	<u>15</u>	91	166	829	782	355	30	198	939	2575	3404	62545
\	05	1530	192	378	530	2680	5307	5993	3157	1471	15933	18613	73	137	53	69	299	637	252	119	8	0	1098	1397	20010
	8	201	77	당,	69	¥	725	333	£95	303	2426 1	2770 1	6	1	4	7	37	25	33	50	0	8	197	234	3004
	93	306	8	75	50	517	1095	1250	333	429	3612	4129 2	14	92	Ŗ	=	56	93	8	0	8	135	316	372	4501
	85	761	8	133	256	1290	3338	3319	1319	647	5173	10463	ጃ	64	14	83	140	0	0	8	35	305	408	548	11011
	6	1641	193	1 0	551	2735	7371	7597	3523	1339	20333	23156 1	11	137	53	.09	297	0	0	94	53	409	556	853	24019
	SUB- TOTAL	10554	1510	3152	4349	20065	523	591	287	121	1522	21537	36	0	0	36	72	296	141	56	37	ž Ž	834	906	22493
	94	1958	525	569	1235	3933	135	120	36	25	3c6	4294	36	0	0	٥	36	9	28	Ξ	-	5	167	23	449
	93	947	Ξ	236	431	1775	ß	B	27	11	£.	1923	0	0	٥	0	0	53	14	10	4	ន	32	32	2005
	92	4391	225	1764	2494	9691	242	232	136	51	717	10433	٥	0	0	0	0	137	65	56	11	139	384	8g 8g	10792
(00	91	2758	621	533	669	4611	124	Ξ.	স্ত	29	351	7957	0	0	0	36	36	70	Ħ	14	6	74	201	237	5199
VEIICLE (2000)	TOTAL IN INTERNAL AREA	377 177	32950	71236	91837	573500	114241	111954	59372	19303	305375	873875	1961	10,425	1923	1299	21614	23036	10555	4156	2779	18834	59360	80974	959849
ž.	SUB- TOTAL	9370	1045	2423	3203	16541	103541	105452	56854	15075	288922	305463	336	715	149	306	1506	17202	9259	3639	2438	16121	51728	53234	353697
	6 0	730	8	182	246	1238	\$643	23.52	4145	3:39	18076	19314	23	77	=	25	121	1373	652	431	ğ	1437	4252	4373	23637
	1	1795	2	452	209	3050	12,417	16315	24570	4154	56956 1	60006 1	83	135	53	57	289	3475	1828	849	572	3166	9890	10179 4	70185
	9	3818	399	1005	1292	6514	34045 1	19142 1	35	5335	105307 5	=	ر ا	281	农	120	589	7575	3356	1256	834	6083	19104	19693 1	14
	۶	3527	370	784	1053	5739	57431	34151	12354	4647	158583 1	114322 11183	113	242	53	104	205	7843	3423	1103	128	5385	18482	13939	133311
:	SUB- TOTAL	357607	31905	68813	8863.	556959	5700	6502	3013	1233	15453	573412 1	4631	9710	1774	3993	20103	59L2	1296	517	ጟ	2713	7632	27740	501152
	4		3647	4128	4149	3364	10:5	1285	9	245	3176	91540	698	2482	429	1232	4941	543	253	103	67	536	1512	6353	7893
			2998	5583 1	1166 3	3716 8	777	1002	F	182	2405	1121 9	536	1761	287	569	3153	394	182	2	8	379	1077	.4230	5351 9
i	2	٠.	533	3010 16593 14128	3661 14166 34149	1395 &	366	397	194	ස	1037	932 7	623	552 1	Ξ,	227	1513	190	8	36	24	193	533 1	2046	7 8761
	2	-		35092	36659	367984 31395 69716 33364 556959	3511	3518	1730	726	9835 1	377819 32932 71121	2774	4915	947	1965	10601 1	1633	991	306	200	1605	4510	15111 2	392930 34978 75351 97893 601152 133311 1315
2	0	rv .	N	~	4	SUB-	2	9	-	န	SUB- TOTAL	TOTAL IN INTERIAL 3 AREA	-91	72	93	94	SUB- TOTAL	10	05	6	9	05	SUB- TOTAL	TOTAL IN EXTERNAL AREA	

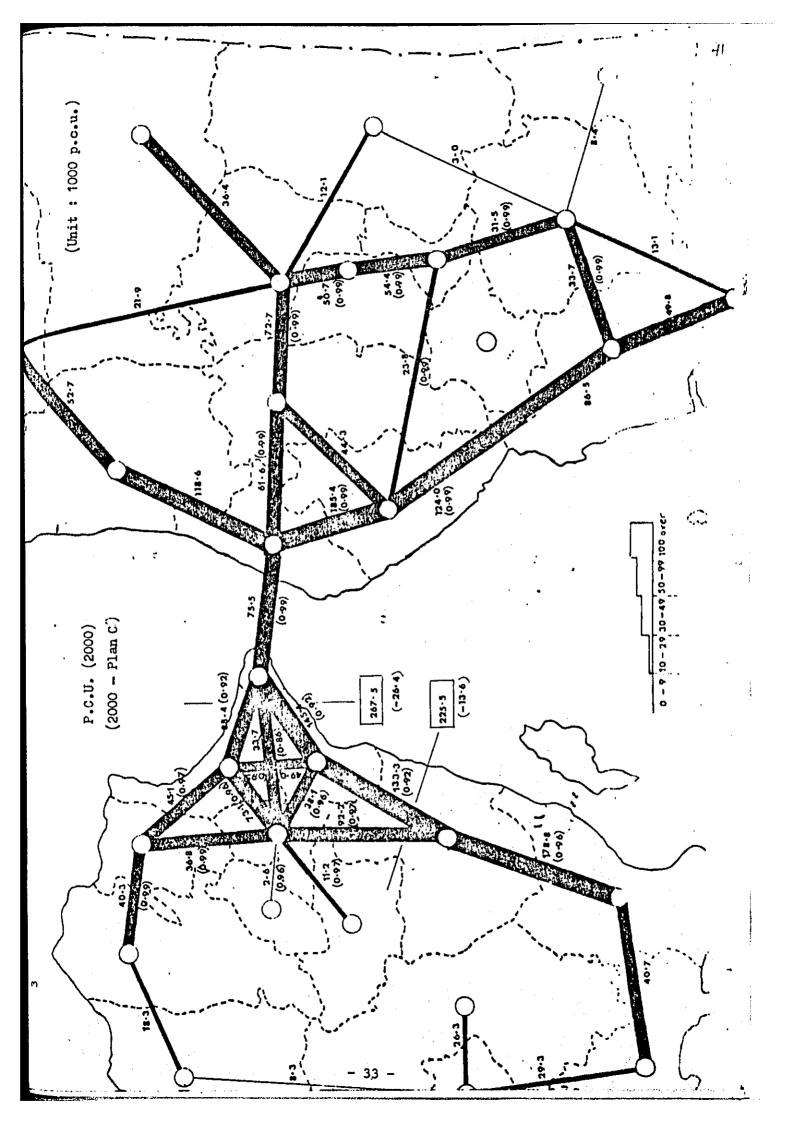
VEHICLE (P.-G.-1)2000)

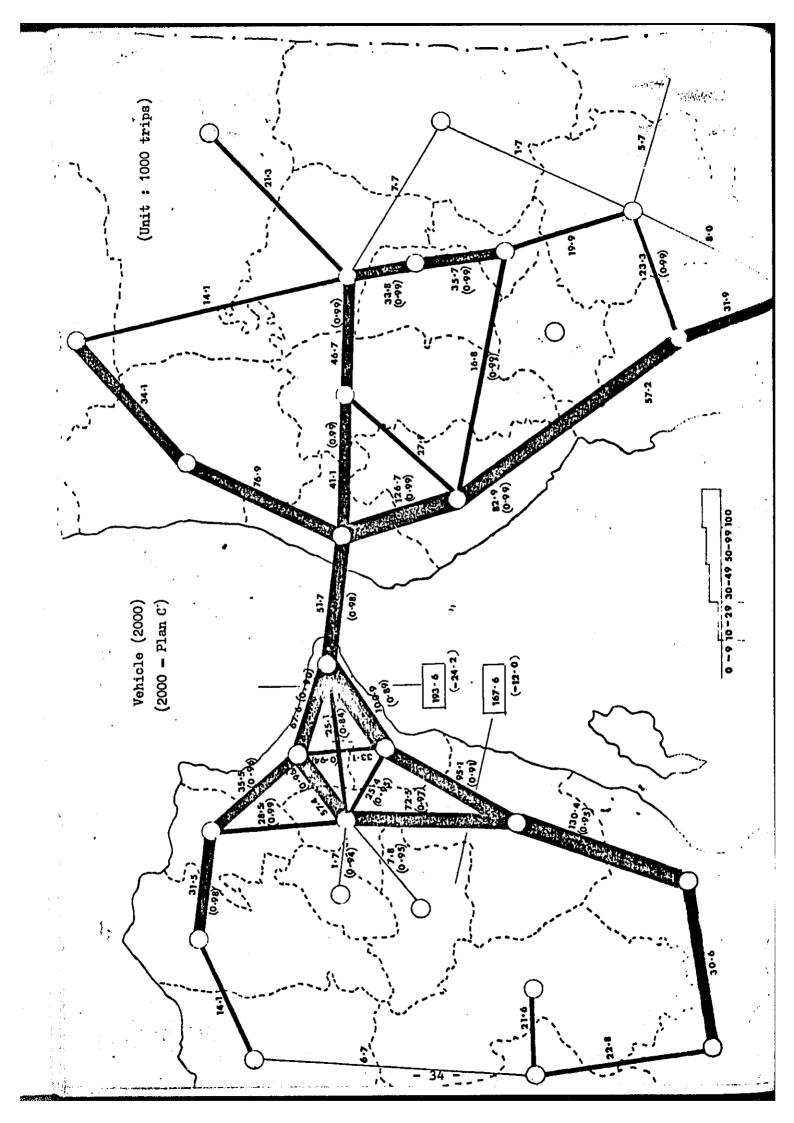

	01 02 03 04 05 TOTAL IN AREA.	2375 1160 429 260 2323 6547	271 133 49 30 275 758	578 279 103 62 554 1576	825 404 148 91 805 2273	4049 1976 729 443 3957 11154	11610 5284 1569 960 7967 27390	11358 5246 1817 1119 9130 28670	2760 1166 727 4601 1	2034 1002 606 397 2196 6237	30047 14292 5160 3203 23894 76596	34096 16268 5889 3646 27851 87750 114676	112 56 21 12 118 319	192 95 35 21 194 537	49 24 9 5 50 137	98 49 18 11 99 275	451 224 83 49 461 1268	0 0 157 81 1131 1369	0 0 121 58 475 654	160 121 0 30 206 517	82 58 30 0 143 313	729 576 233 144 0 1632	971 755 541 313 1955 4535	1422 579 624 362 2416 5803	2000 2000 2000 2000
•	92 93 94 TOTAL	9 5619 1300 2610 13088	8 615 148 292 1833	9 2016 393 755 3853	8 2964 615 1694 6211	4 11214 2456 5351 24985	286 71 143 665	7 337 81 167 762	155 38 80	37 68 17 32 154	846 207 422 1941	12060 2663 5773 26926	0 0 0 53 53	0 0 0 0	0 0 0 0	22 0 0 0 23	52 0 0 53 105	0 190 48 96 444	57 96 24 49 226	21 35 9 18 83	12 21 5 11 49	9 197 51 101 468	9 539 137 275 1270	1 539 137 328 1375	
2.0	SUB- TOTAL IN TOTAL INTERNAL 91 AREA	11945 447788 3559	1232 37554 778	2935 84813 689	4021 115056 938	20133 685411 5964	133996 140944 165	133018 141055 177	71832	22087 23575 3	357366 377406 466	377499 1062817 6430	440 6434	842 12069	206 2662	421 5779 5	1909 26944 5	29607 33577 110	12337 16313 5	5173 5895 2	3197 3634 1	24065 28042 119	76379 87461 319	78288 114405 371	i
	12 7 8 TY	4705 2103 875	18 475 224 95	5 1237 528 215	11 1646 738 306	Co63 3593 1451	42945 14911 5715	62851 19875 7282	19875 28629 4930	1278 4945 4155	20040 133975 132949 68360 22082 3	3 23573	175 87 37	15 335, 154 68	71 81 37 17	13 166 80 32	640 757 358 154	11239 4923 1999	5286 2747 1003	11 1818 1175 609	55 1115 731 396	9237 4580 2207	28695 14156 6214	29452 14514 6368	
	SUB- 4 TOTAL 5	45077 435843 4262		17489 81878 955	44075 111035 1331	35529 81693 111009 665278 6,986	1323 6948 70425	1645 8037 43010	734 3567 14631	306 1468 5709	4008 20040 13397	115017 685318 14096	941 5994 141	2967 11227 285	614 2456 7	1692 5358 143	6214 25035 64	815 3970 11446	406 1976 5301	148 722 1571	89 437 955	815 3977 8041	2273 11082 27314	8467 36117 27954	
	1 2 3	327370 21970 41426	6747	41437 3443 19509	45071 4369 17520	435847 35529 81693	4236 436 953	4687 474 1231	2088 223 522	872 95 215	11883 1226 2921	447730 37757 84814 115017 685318 140961 141012 7195	3577 783 693	5626 616 2018	1300 149 393	2613 294 759	13116 1842 3863	2329 264 562	1160 133 277	423 49 102		N	6503 751 1555	19619 2593 5418	
	a o	-	N	m	4	SUB- TOTAL	5	vo	 -	€	SUB-	TOTAL IN INTERNAL 4	8	8	8	24	sua- rotal	៩	8	8	8	95	SUB- TOTAL	TOTAL IN EXTERNAL AREA	CPASO

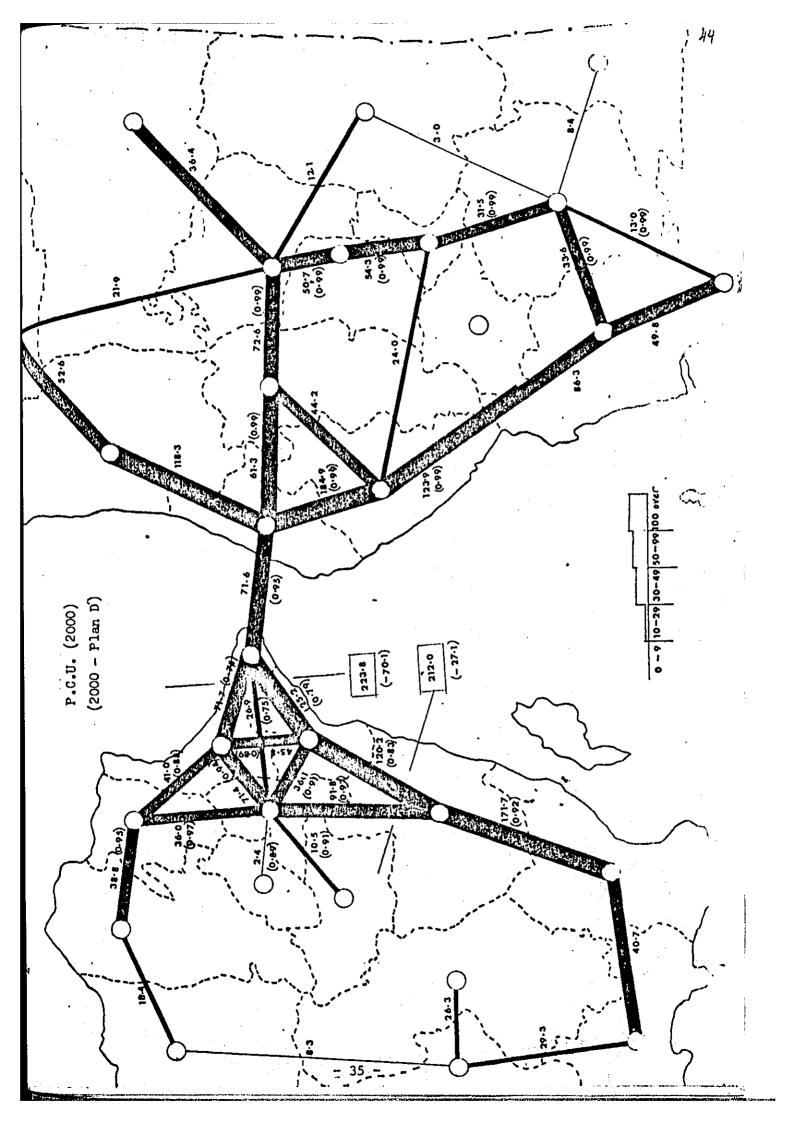

MOTOR-CYCLS (2000)

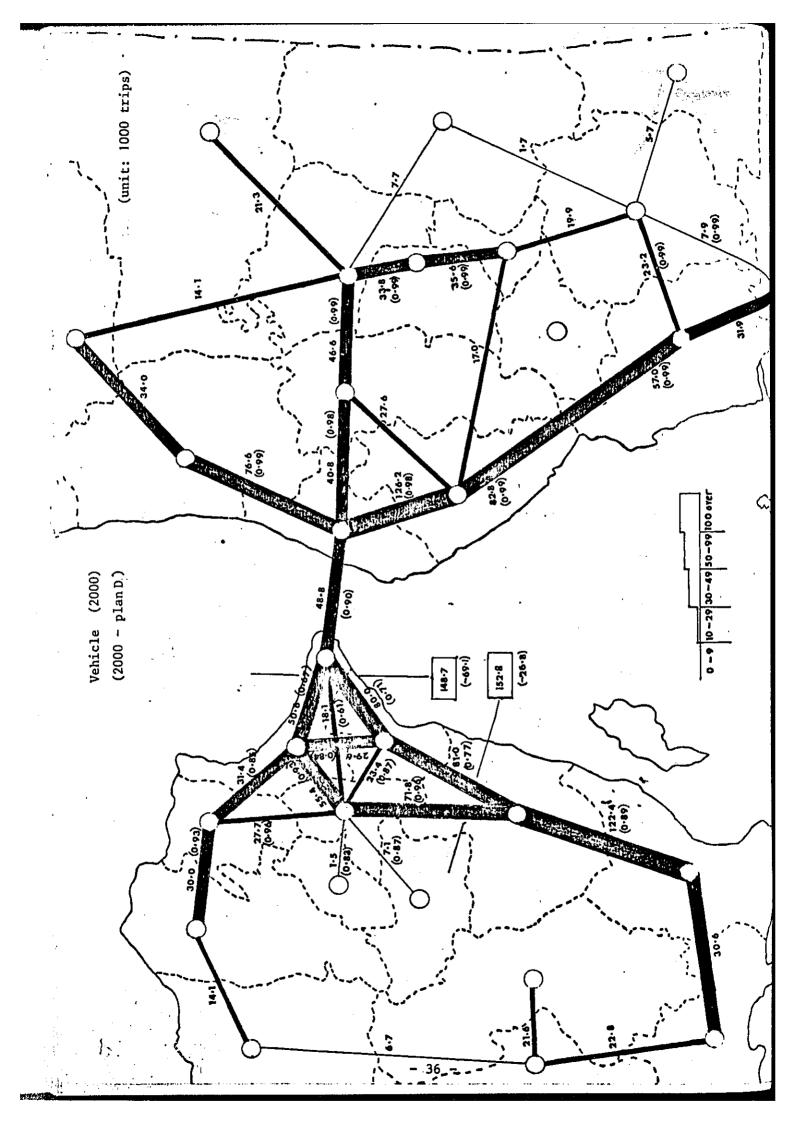

GRAND TOTAL	176822	9734	26955	3:645	52206	73105	61036	60303	16512	211151	453357	925	1 8	347	645	2693	3600	3403	1304	903	2603	11313	14501	827848
				-	۷.				\dashv		**		<u>. </u>	<u></u>	\dashv						_			
אנו שארסי באומהנאם אנהא	1539	23.	663	899	3277	3:13	3391	2713	1217	10794	14071	2	0	•	2	4	87	93	Ł9	43	3	423	427	14498
SUB- TOTAL	4	æ		7	723	3,166	3378	2709	1214	10767	2439 11495	0	0	0	0	•	23	64	55	96	5	315	315	2500 111810
05	129	22	5	#	213	633	166	591	315	2276	657	0	0	0	0	0	ģ	2	17	15	0	=	E	400
90	29	~	2	2	,후	164	213	257	133	822 3	363 2	0	0	O	0	0	₹	σ	-	0	12	23	35	S
60	₹	4	2	15	74	240	316	375	237	1163	1242	Ó	0	0	°	°	σ	22	0	-	22	59	53	1301
80	118	9	23	Z	194	1093	980	337	236	3131	3325	ဝ	0	o	0	0	0	0	22	9	£	78	55 55	100
9	121	õ	ጸ	2	201	1,361	1113	643	242	3370	3571	O	0	0	6	٥	٥	0	δ.	5	18	×	æ	
SUB- TOTAL	1097	193	504	755	2549	7	13	=1	~	27	2576	67	ဂ	n	2	4	23	\$	12	7	32	3 5	112	0000
94	226	61	34	283	610	2	~	-	-	7	617	~	0	0	0	2	-	-	~	~	က	27	29	;
23	151	14	25	25	327	-	N	-	0	4	331	C	0	0	0	٥	4	'n	0	-	5	11	:-	,
8	393	껆	305	37	1049	m	9	-	-	=	1050	٥	0	0	•	0	2	5	4	7	=	7.	33	
94	322	123	51	62	753	-	N	-	-	S.	563	0	0	0	2	2	1	~	~	2	ဆ	27	29	
TOTAL IN LITTERIAL RETA	75283	9553	263:71	377.16	676612	69632	57645	57635	15395	201357	449236	294	1100	347	643	2634	3513	3310	1237	960	2470	11390	1407.4	
SUB- TOTAL	961.5	273	5.5	<u> </u>	7179	17693	55472	56513	14276	193918	156002	2.1	33	==	22	96	3200	331	1120	783	2140	10244	10340	
&0 10 [-1	3	23	36	116	578	172.1	27.72	3530	6770	14356 1	15434 2	m	m	-	~	2.	230	230	229	174	ĕ	1164	1174	
-	835	59	195	274	1333	5033	3752	39322	3592	55704	53037	٣	σ,	~	~	₽	592	757	352	245	521	7.467	2485	
9	1455	102	396	:30	2433	13633	30157	3593	2731	55231	\$9915	8	16	-	10	41	1075	943	306	88	737	3269	3310	
2	2183	89	237	321	2335	46615	13761	4918	1733	Lzals	29669	7	Ξ	. m	9	27	1303	1071	233	156	581	1344	3371	
SUB- TOTAL	170437	9275	25433	36555	2;1750	2655			519	6539	245259 6	573	1051	333	621	2588	313	309	117	11	330	1146	3734	
4	73,4	496	5702	55692	36523	289	435	243	106	1073	37601	63	320	96	284	763	63	62	23	16	99	230	993	!
~	9992	452	9521	5539	25404	216	360	167	73	521	26225	25	305	8	85	511	#	\$	11	9	46	191	672	
~	4661	3660	43	161	1756	25	. E.	2	25	246	9517	1.2		ቪ	22	199	12	17	-	4	5	2	263	
-	143100 4661	4657	7566	7923	170547 9271 27404	2072	1307	710	310	4399	174946 9517	725	55	154	232	1115	189	136	2	47	199	169	1806	
. 0	-	2	~	4	SUB-	\ \ \ \	. 9	-	တ	SUB- TOTAL	TOTAL IN INCERNAL AREA	16	8	. 6	56	SUB- TCTAL	5	8	8	70	9 50	SUBTOTAL	TOTAL IN EXTERNAL AND A	Т

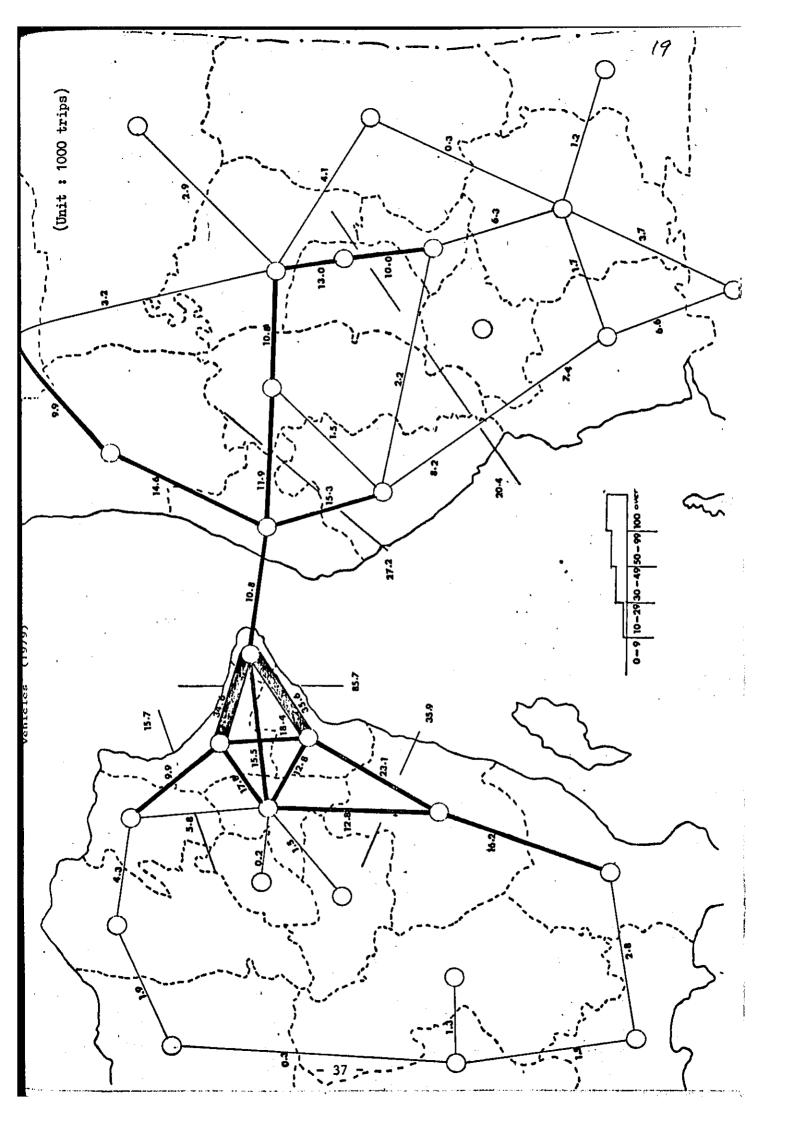

D - FIGURES OF THE DESIRED ASSIGNMENT

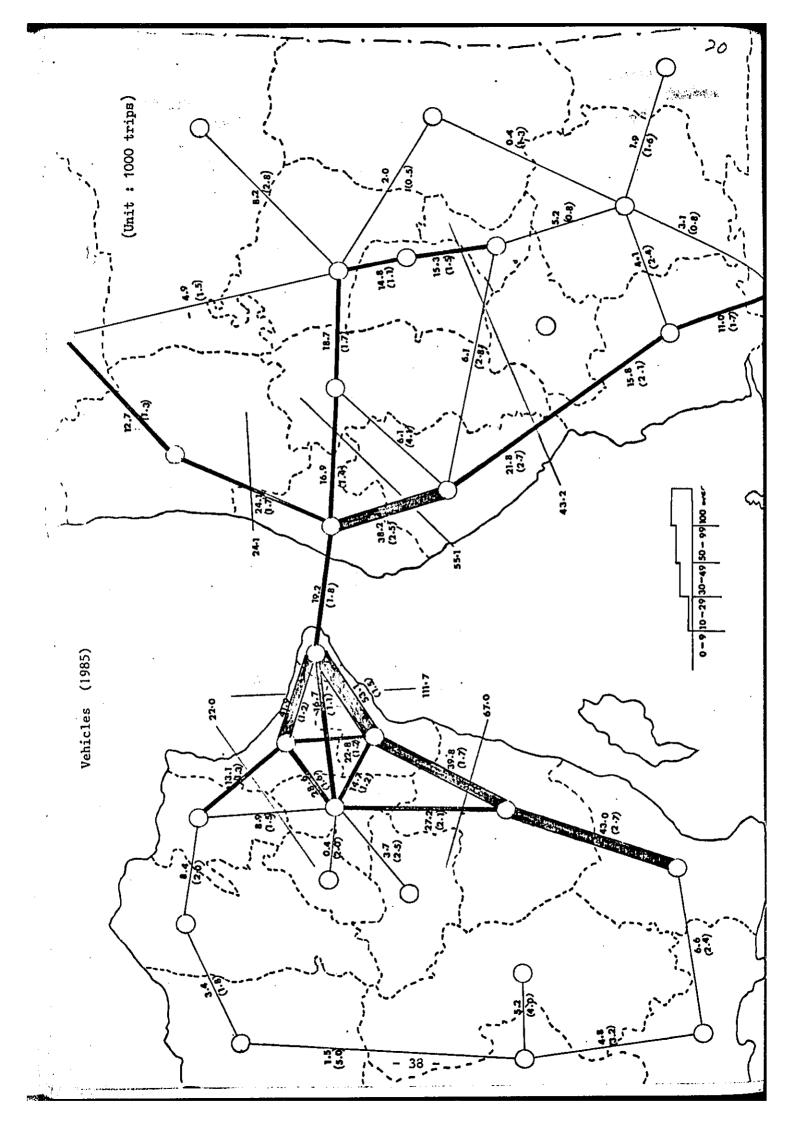

	· ·	
1.	1985 - Plan B	P.C.U (Unit : 1000 p.c.u)
		Vehicles (Unit : 1000 trips) (ex. M/C)
2.	2000 - Plan B	P.C.U (Unit : 1000 p.c.u)
,		Vehicles (Unit: 1000 trips) (ex. M/C)
3.	2000 - Plan C	P.C.U (Unit : 1000 p.c.u)
•		Vehicles (Unit : 1000 trips) (ex. M/C)
4.	2000 - Plan D	P.C.U (Unit : 1000 p.c.u)
		Vehicles (Unit: 1000 trips) (ex. M/C)
5	1979	Bicycles (Unit : 1000 trips)
		M/C (Unit: 1000 trips)
6	1985 - Plan A	Vehicles (Unit : 1000 trips)
		M/C (Unit: 1000 trips)
7	2000 - Plan A	Vehicles (Unit : 1000 trips)
	•	M/C (Unit: 1000 trips)

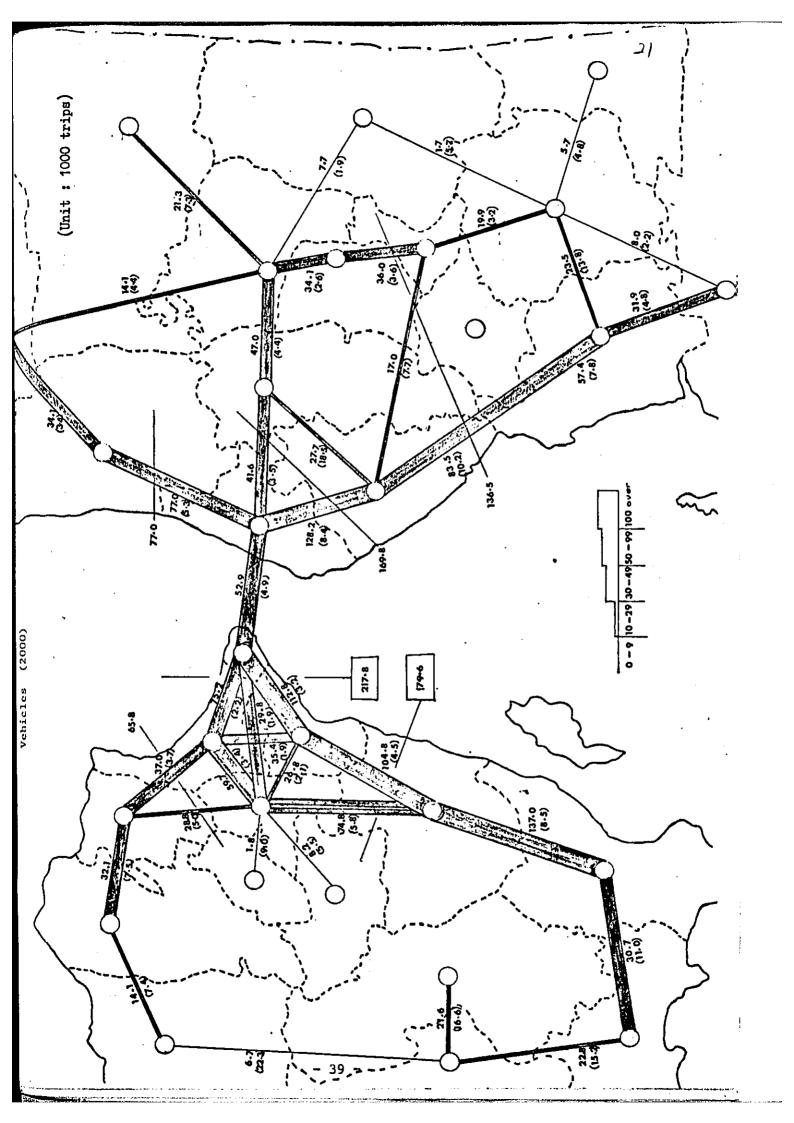


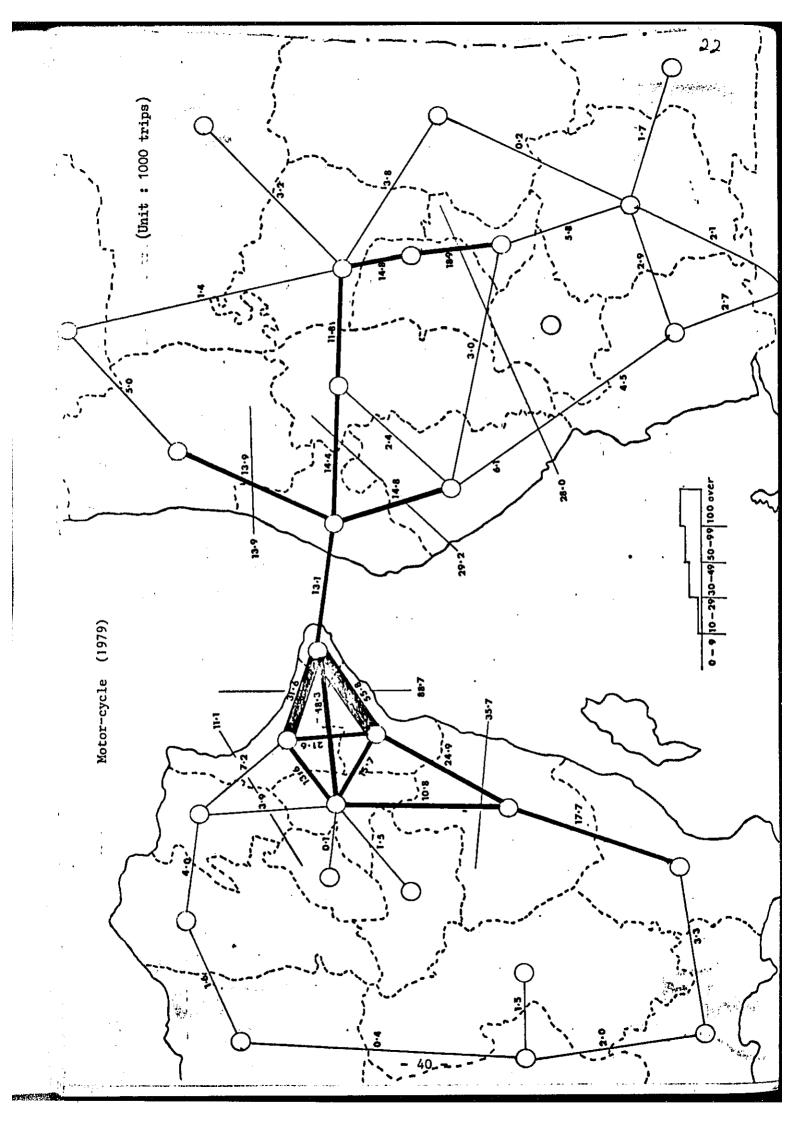


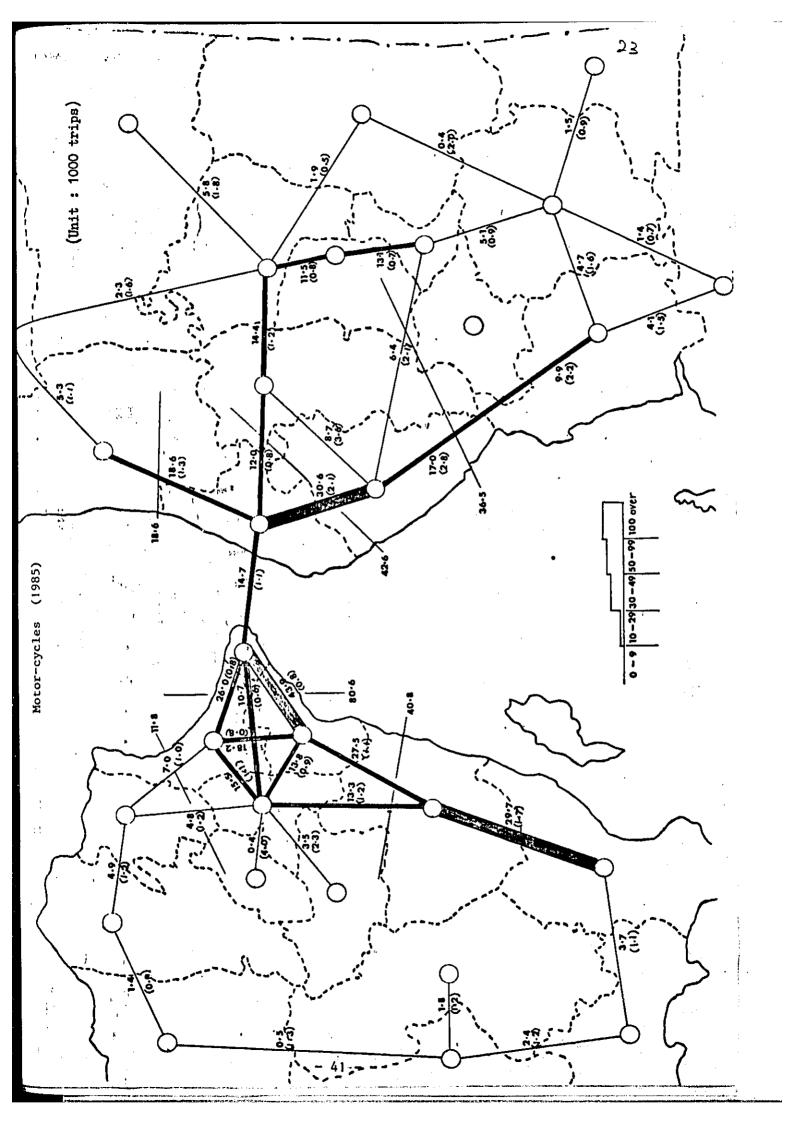


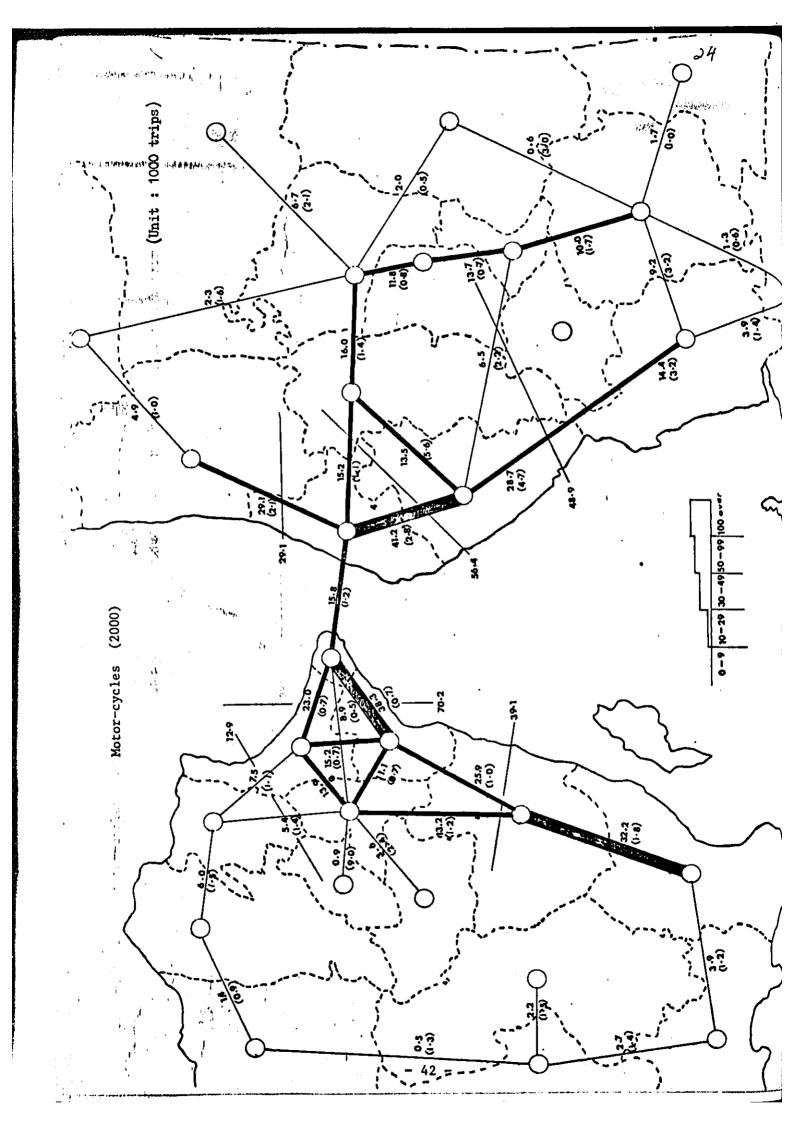


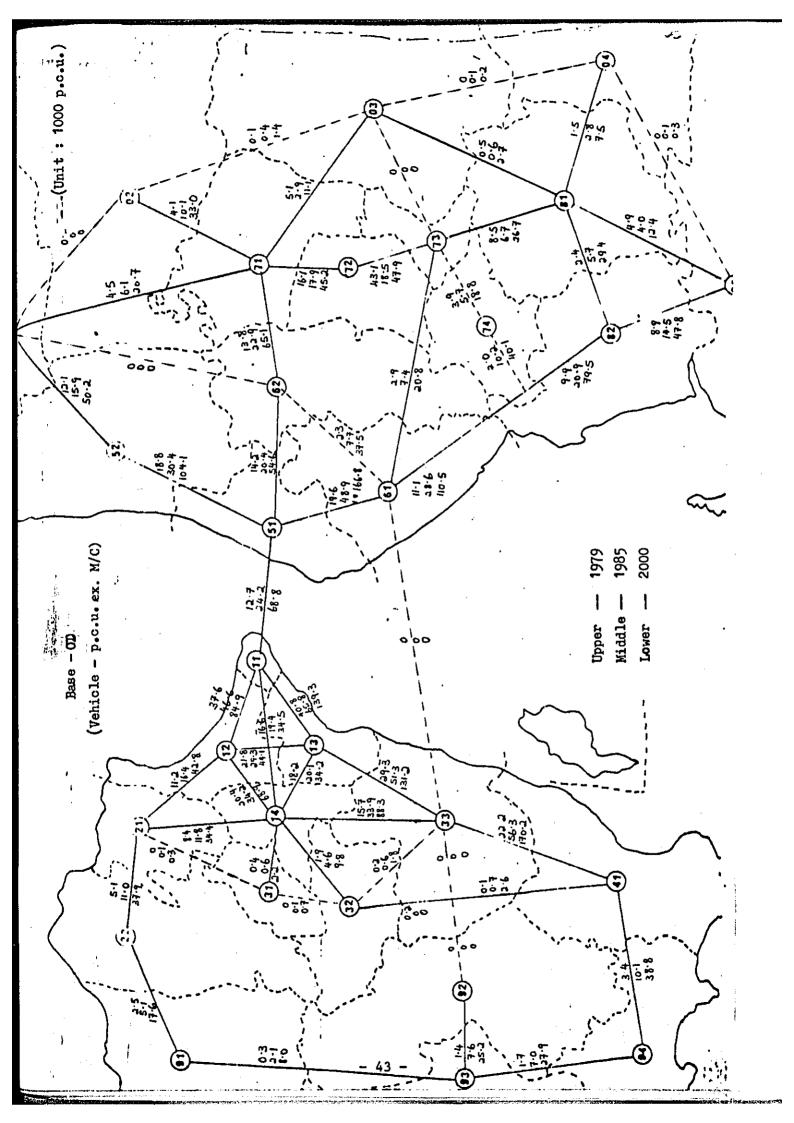


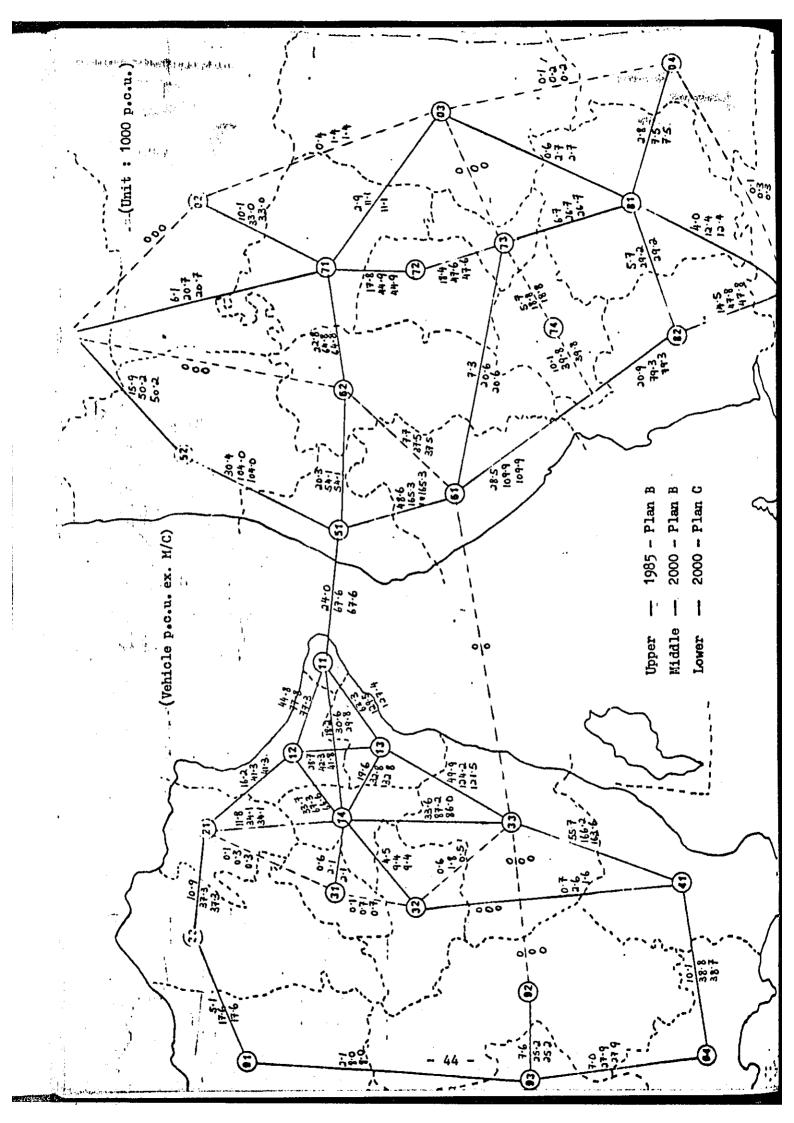


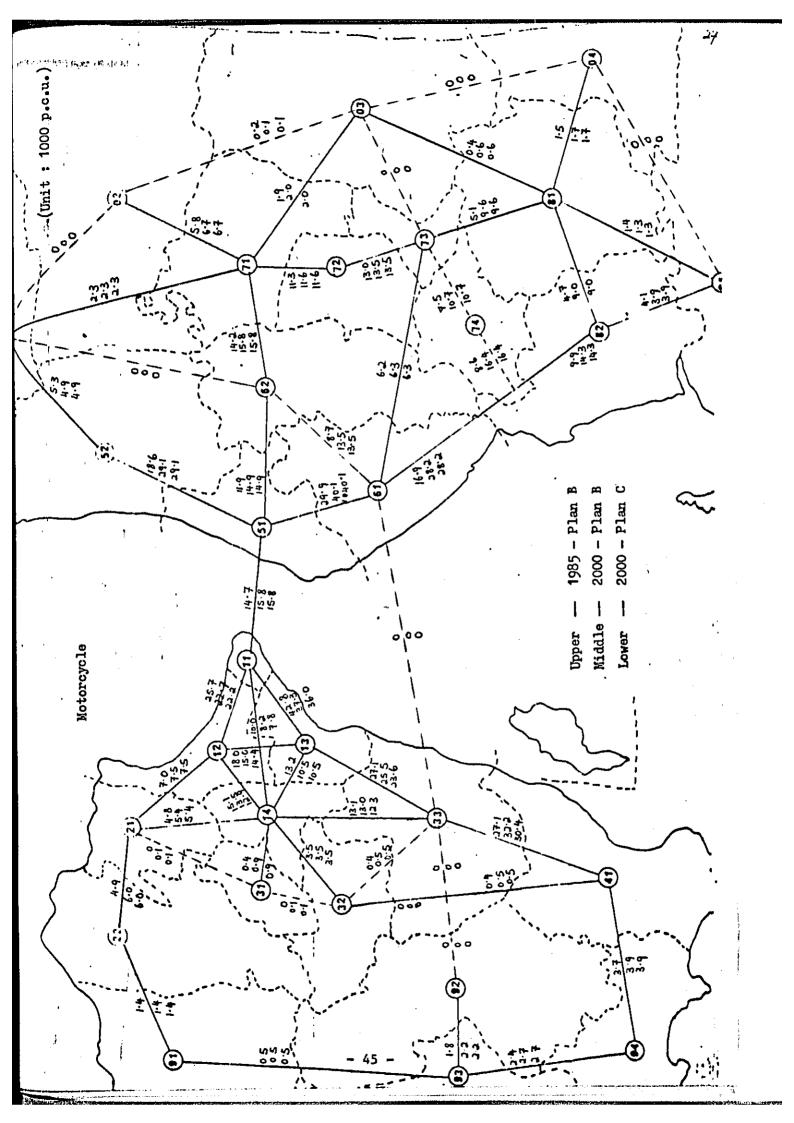












E - THE DEGREE OF CONGESTION ON MAJOR SECTION

1.		1979 - Present
2.		1985 Plan A - On Going
3.		1985 Plan B - On Going & Proposed
4.	•	2000 Plan B - On Going & Proposed
5.		2000 Plan B - Ultimate
6.		2000 Plan C - Ultimate
7		2000 Plan D - Ultimate

1979 PRESENT

Network

	Item	tra	affic (charac	terist	ic	P.C.U	U No. of Capa- Road city				degree of conges- tion
Name	of section	Vehi- cle	rate of large veh.	Vehi- cle	M/C	rate of M/C	: :	2	4	6		
	Inner Cordon	89.3	7%	99.0	63.1	41.4%	130.5	0 6	0		48.0	2.72
ge Town	Center Cordon	118.4	7%	131.3	. 79.2	40.1%	170.9	0 11	0		88.0	1.94
George	Outer Cordon	40.9	16%	51.3	48.2	54,1%	75.4	0	0		50.0	1.51
- Pu	Section 1	27.2	16%	34.1	24.0	46.9%	46.1	0	0,		30.0	1.53
ing Island	Section 2	34.1	16%	42.8	24.8	42.1%	33.8	0 2	0		20.0	1.69
Penang	Section 3	5.5	23%	17.5	19.3	77.8%	17.1	0 2	0		20.0	0.86
Į.	Section 4	19.2	18%	24.7	18.6	49.2%	34.0	0	0		20.0	1.70
ley	Section 5	3.8	18%	4.9	7.2	651.5%	8.5	Q 1	o O		10.0	0.85
Welles	Section 6	26.2	16%	32.5	26.0	9.8%	45.5	0 2	0		20.0	2.28
Province Wellesley	Section 7	16.8	23%	22.6	24.1	58.9%	34.6	0 2	Ö,		20.0	1.73
	Section 8	9.3	23%	12.5	12.1	56.5%	18.5	0	0 0		10.0	1.85
H	Ferry	10.8	12%	12.8	13.0	54.6%	19.3					
Channe 1	Lincage						0					

1985 - Plan A

On Going

	Item	tr	t	chara	cteris	ic	P.C.U		of load		Capa-	of conges-
		Vehi- cle	rate of large veh.	Vehi- cle	M/C			2	4	6		
	Inner Cordon	122.3	13%	144.3	79.0	39.2	183.8	1 6	1 0		105.0	1.75
ge Town	Center Cordon	185.8	13%	219.2	100.7	35.1	269.6	1	1		145.0	1.86
George	Outer Cordon	109.6	18%	139.2	59.3	35.1	168.9	0 3	3 0		204.0	0.83
nđ	Section 1	82.2	18%	104.4	45.1	35.4	127.0	0 2	0		136.0	0.93
ang Island	Section 2	52.7	18%	66.9	33.0	38.5	83.4	0	1 0		68.0	1.23
Penang	Section 3	21.8	21%	28.6	16.3	42.8	36.7	1 2	0		35.0	1.05
1	Section 4	12.9	17%	16.3	14.0	52.0	23.3	0 2	0		20.0	1.17
lesley	Section 5	8.6	17%	10.8	7.3	45.9	14.5	0	0		10.0	1.45
Wel	Section 6	35.2	17%	44.3	26.0	42.5	57.3	0 2	0		20.0	2.87
Province	Section 7	31.2	19%	40.3	28.9	48.1	54.8	0 2	0		20.0	2.74
	Section 8	14.6	19%	18.9	14.0	49.0	25.9	0 1	0		10.0	2.59
Channel	Ferry	2.1	17%	2.7	5.6	72.7	4.5					
Char	Lincage	16.5	17%	20.8	8.4	33.7	25.0					

Network

1985 - Plan B On Going & Proposer

	Item	Tr Vehi- cle	rate	Vehi-	cteris M/C	tie	P.C.U		of load		apa-	Degree of conges- tion
	Inner Cordon	117.3	13%	139.3	77.8	39.9	178.2	1 6	2		150.0	1.19
ge Town	Center Cordon	179.1	13%	212.5	97.4	35.2	261.2	1 10	2		182.0	1.44
George	Outer Cordon	110.0	18%	140.7	58.7	34.8	170.1	0 2	4	,	252.0	0.68
ld	Section 1	83.1	18%	106.3	44.3	34.8	128.4	0	3		184.0	0.70
ng Island	Section 2	52.1	18%	66.6	33.1	38.8	83.2	0	1		68.0	1.22
Penang	Section 3	21.2	21%	27.9	17.3	44.9	36.6	1 2	0		35.0	1.05
*	Section 4	17.8	17%	22.5	15.1	45.9	30.1	0 2	1 0		78.0	0.39
lesley	Section 5	91.2	17%	1.1.5	10.3	10.1	16.7	0	1 0		68.0	0.25
Wel	Section 6	37.6	17%	47.4	26.7	41.5	60.8	0 2	1 0		78.0	0.78
Province	Section 7	42.5	19%	54.9	28.6	40.2	69.2	0	1 0		68.0	1.02
	Section 8	25.5	19%	33.0	14.0	35.4	40.0	0	1		58.0	0.69
nel	Ferry	1.7	17%	2.1	6.5	79.3	5.4					
Channel	Lincage	16.8	17%	21.2	7.5	30.9	25.0					

Network

2000 - Plan B

On Going & Proposal

<u> </u>	<u></u>				، - " ا							
	Item		traffi	c char	acteri	stic	P.C.U		. of Road		Capa-	P.C.U/
Name	of section	Vehi- cle	rate of large veh.	Vehi- cle	M/C			2	4	6		Capa-
	Inner Cordon	207.5	13%	250.5	67.4	24.5	284.2	1	2		150.0	1.89
ge Town	Center Cordon	294.4	13%	355.4	83.6	22.1	397.2	1 10	2		182.0	2.18
George	Outer Cordon	214.8	15%	264.8	56.2	20.7	292.9	0 2	4		252.0	1.16
ıg	Section 1	165.8	15%	204.4	42.7	20.5	225.8	0	3		184.0	1.23
ng Island	Section 2	138.4	15%	170.6	34.1	19.8	187.7	0	1 0		68.0	2.76
Penang	Section 3	63.1	16%	78.8	20.9	24.9	89.3	1 2	0		35.0	2.55
	Section 4	68.6	23%	92.9	18.0	20.8	101.9	0 2	1 0		78.0	1.31
ey	Section 5	53.8	23%	72.8	14.4	21.1	80.1	0	1		68.0	1.18
Wellesley	Section 6	103.6	21%	135.5	33.1	24.2	152.1	0 2	1		78.0	1.95
Province Well	Section 7	124.6	21%	163.1	40.2	24.4	183.2	0	1 0		68.0	2.69
À.	Section 8	66.7	21%	87.3	17.4	20.7	96.0	0	0		58.0	1.66
le1	Ferry	13.2	21%	17.3	6.5	33.0	20.6					
Channe 1	Lincage	38.0	21%	49.7	8.7	18.6	54.1					

2000 - Plan B Ultimate

	Item			charac	terist	ic	P.C.U		of		apa-	Degree of conges
Name	of section	Vehi	rate of large veh.	Vehi- cle	M/C			2	4	6		
	Inner Cordon	204.8	13%	247.8	67.4	24.8	281.6	0 5	4 0		220.0	1.28
ge Тоvп	Center Cordon	295.8	13%	357.9	83.9	22.1	400.0	0	4 0		252.0	1.59
George	Outer Cordon	217.9	15%	268.0	53.9	80.2	294.9	1 2	4		267.0	1.10
- P	Section 1	159.5	15%	196.2	40.4	20.2	216.6	1	3		199.0	1.09
ng Island	Section 2	135.3	15%	166.4	34.2	20.2	183.5	1	2		141.0	1.30
Penang	Section 3	67.0	16%	83.8	21.0	23.9	94.3	1	2		141.0	0.67
	Section 4	45.3	23%	61.1	14.2	23.9	68.2	0	1 0		78.0	0.87
ey	Section 5	29.5	23%	39.8	10.3	25.9	44.9	0	1 0		68.0	0.66
Wellesley	Section 6	99.8	21%	130.8	28.0	21.9	144.8	0	2		126.0	1.15
Province Welle	Section 7	137.6	21%	180.3	37.5	21.4	199.2	0	2 0		190.0	1.05
<u> </u>	Section 8	60.1	21%	78.7	20.0	25.0	88.7	0	2		116.0	0.76
le1	Ferry	11.1	21%	14.6	6.2	35.8	17.7				_	
Channel	Lincage	40.0	21%	52.4	8.9	18.2	56.9					

Network

2000 - Plan C

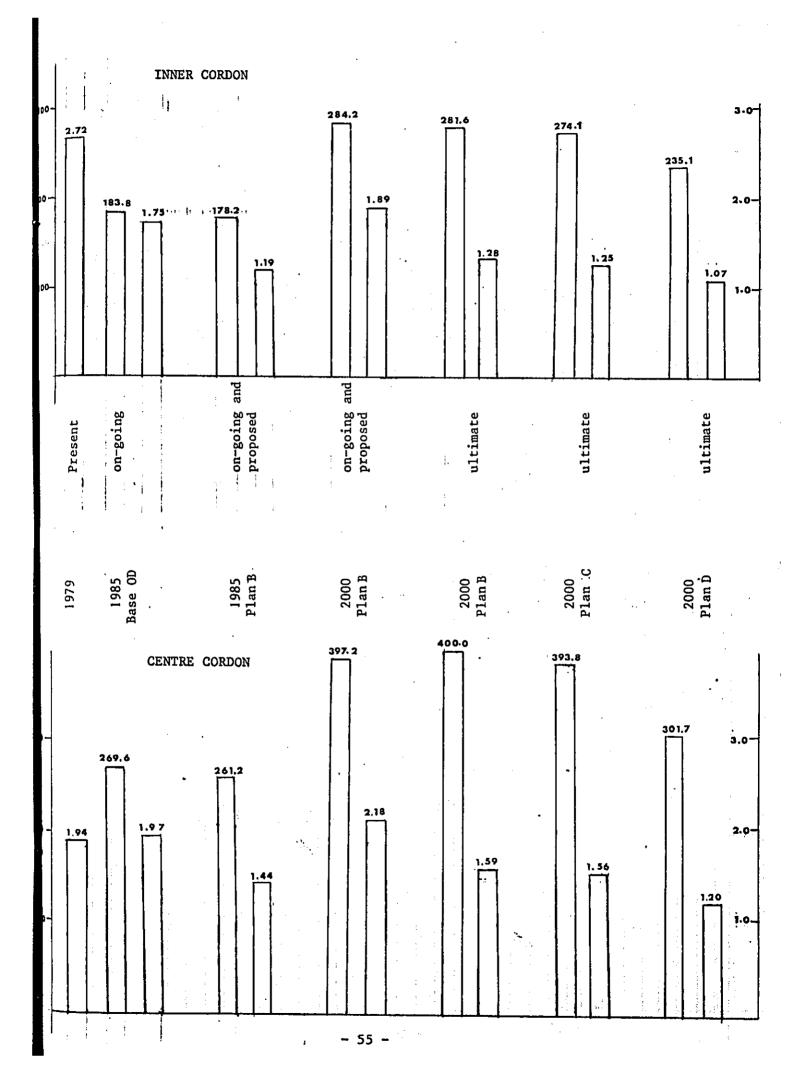
6.	Item			chara	cteris	tic	P.C.U		of load		apa-	P.C.U/
Name		Vehi- cle	rate of large veh.	Vehi- cle	м/с			2	4	6		Capa- city
	Inner Cordon	201.4	13%	244.4	59.4	22.8	274.1	0 5	4 0		220.0	1.25
e Town	Center Cordon	291.3	13%	353.4	80.8	21.7	393.8	0 9	4 0		252.0	1.56
George	Outer Cordon	211.1	16%	261.4	51.4	19.6	287.1	1 2	4		267.0	1.08
Ħ	Section 1	152.5	16%	188.8	37.9	19.9	207.8	1	3 0		199.0	1.04
g Island	Section 2	130.6	16%	161.7	31.7	19.5	177.5	1 1	2		141.0	1.26
Penang	Section 3	64.2	16%	80.6	19.7	23.5	90.5	1	2 0		141.0	0.64
,	Section 4	45.2	23%	61.1	14.2	23.9	68.2	0 2	1 0		78.0	0.87
esley	Section 5	29.5	23%	39.8	10.3	25.9	45.0	0	1 0		68.0	0.66
Welles]	Section 6	99.8	21%	130.8	28.0	21.9	144.8	0 1	2 0		126.	1.15
Province Well	Section 7	137.6	21%	180.3	37.5	21.4	199.0	0	2 0	1	190.	0 1.05
1	Section 8	60.1	21%	78.7	20.0	25.0	88.7	0	2 0		116.	0.76
e1	Ferry	_]	21%	14.9	6.2	35.2	18.0					
Channel	Lincage	39.8	3 21%	52.1	8.9	18.3	56.6					

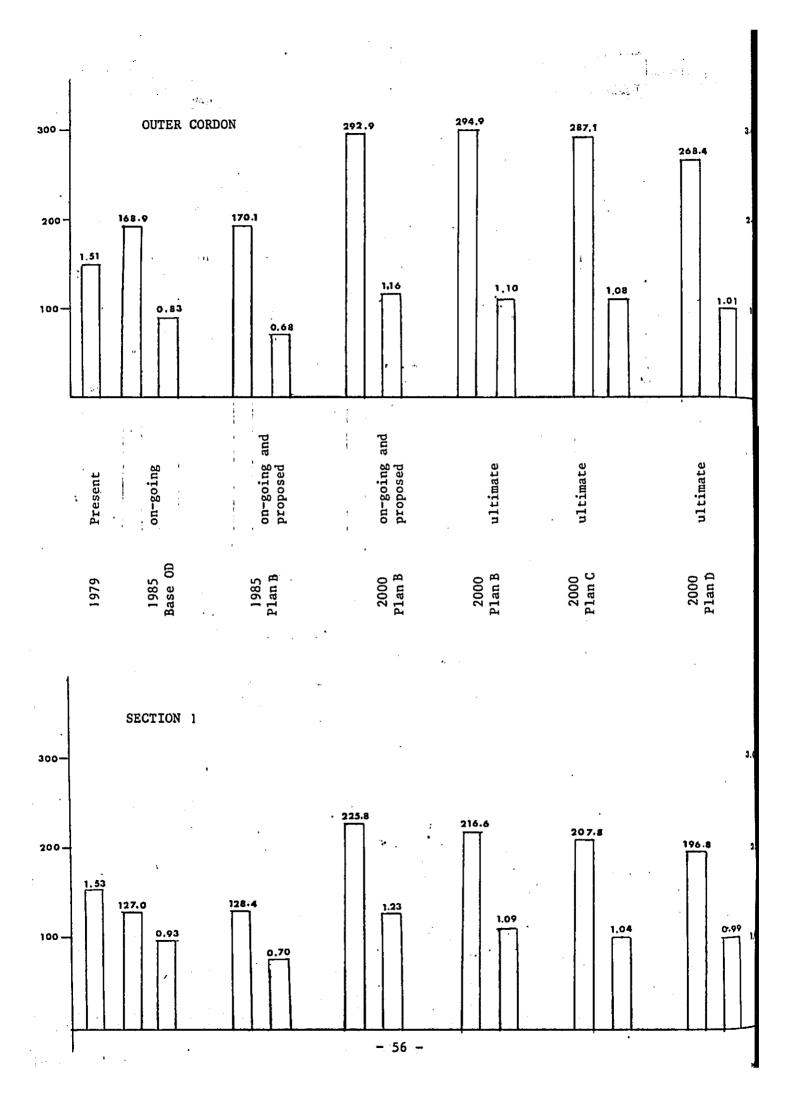
Network

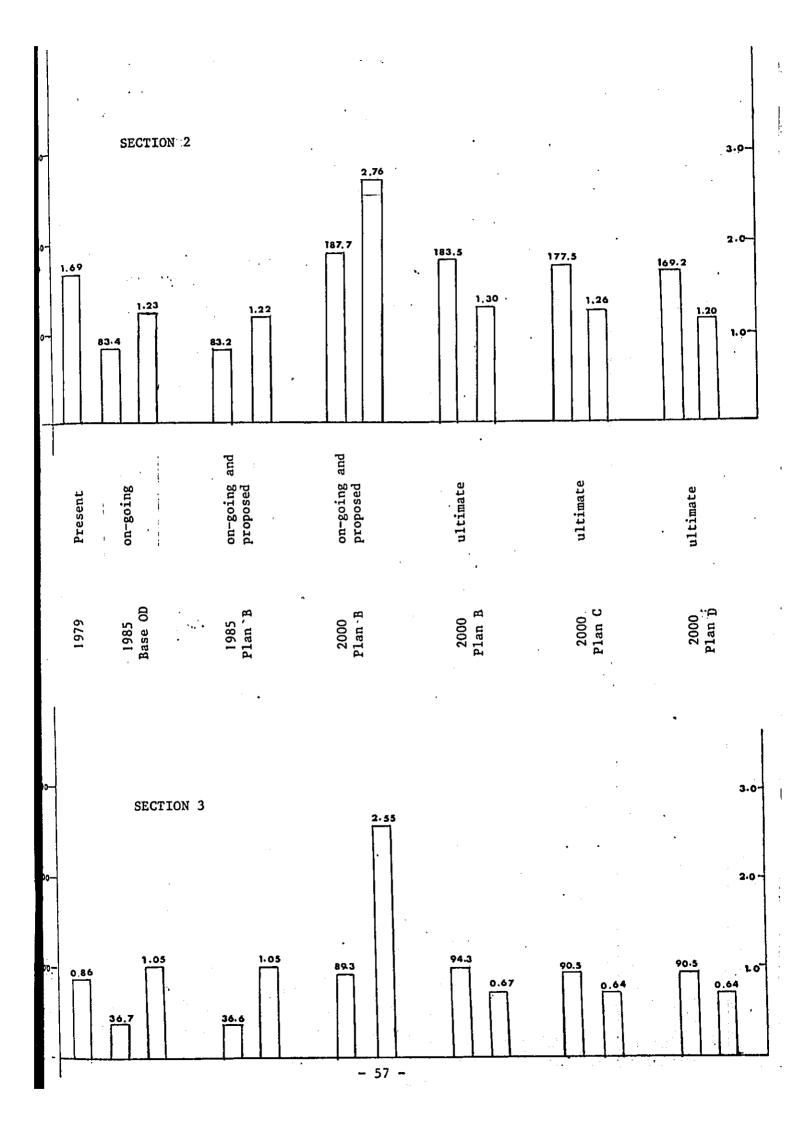
2000 - Plan D Ultimate

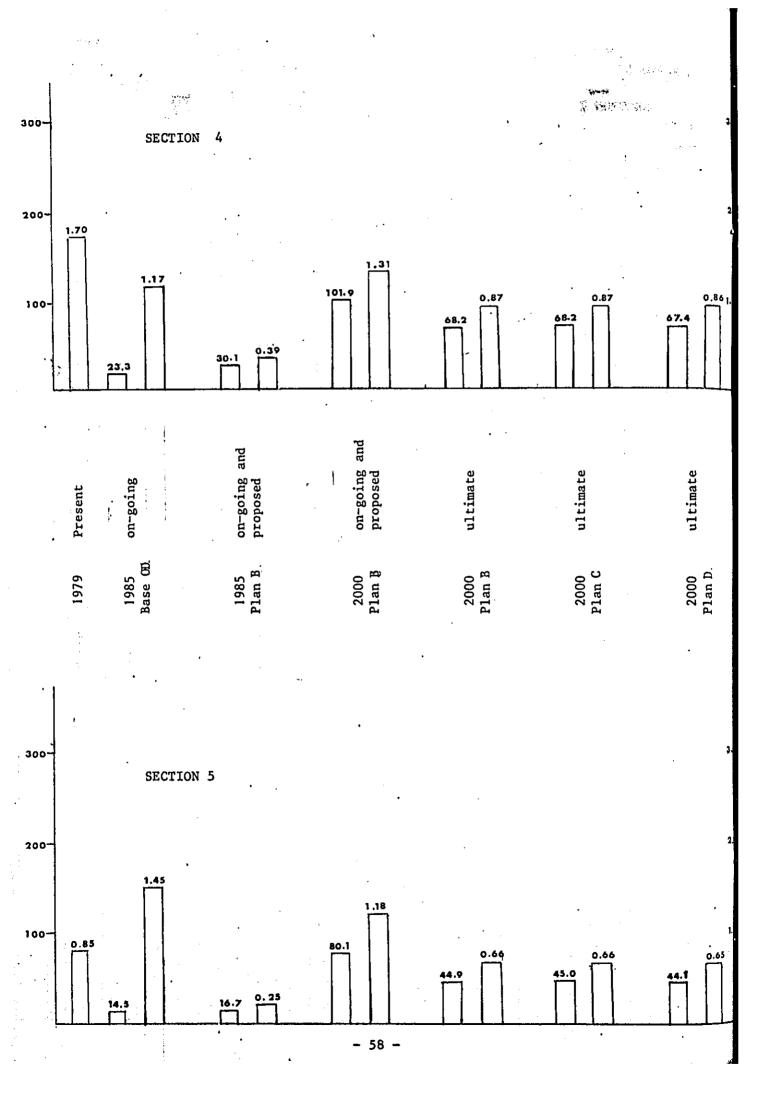
	Item	tr Vehi-	rate of	charac Vehi-		tic	P.C.U	F	of load		apa-	egree of onges- ion
Name	of section	cle	large veh.	cle	M/C			2	4	6		
	Inner Cordon	158.4	18%	201.4	67.4	29.8	235.1	0 5	4 0		220.0	1.07
nwoI ag.	Center Cordon	· 224.6	20%	295.2	83.9	29.8	337.2	0	4 0		252.0	1.34
George	Outer Cordon	193.1	17%	241.4	53.9	21.8	268.4	1 2	4 0		267.0	1.01
pu	Section 1	141.1	17%	176.4	40.4	22.3	196.8	1	3		199.0	0.99
ing Island	Section 2	121.7	17%	152.1	34.2	21.9	169.2	1	2		141.0	1.20
Penang	Section 3	64.0	17%	80.0	21.0	24.7	90.5	1	2		141.0	0.64
	Section 4	44.7	23%	60.3	14.2	24.1	67.4	0 2	1 0		78.0	0.86
ey e	Section 5	28.8	23%	38.9	10.3	26.3	44.1	0	1 0		68.0	0.65
Wellesley	Section 6	100.3	21%	131.4	28.0	21.8	145.4	0 1	2		126.	1.15
Province Well	Section 7	136.9	21%	179.4	37.5	21.5	198.2	0	2 0		190.	1.04
Pr	Section 8	59.9	21%	78.5	20.0	25.0	88.5	0 0	2 0		116.0	0.76
le1	Ferry	10.0	20%	13.0	6.2	38.3	16.1					
Channe1	Lincage	39.4	20%	51.2	8.9	18.4	55.7					

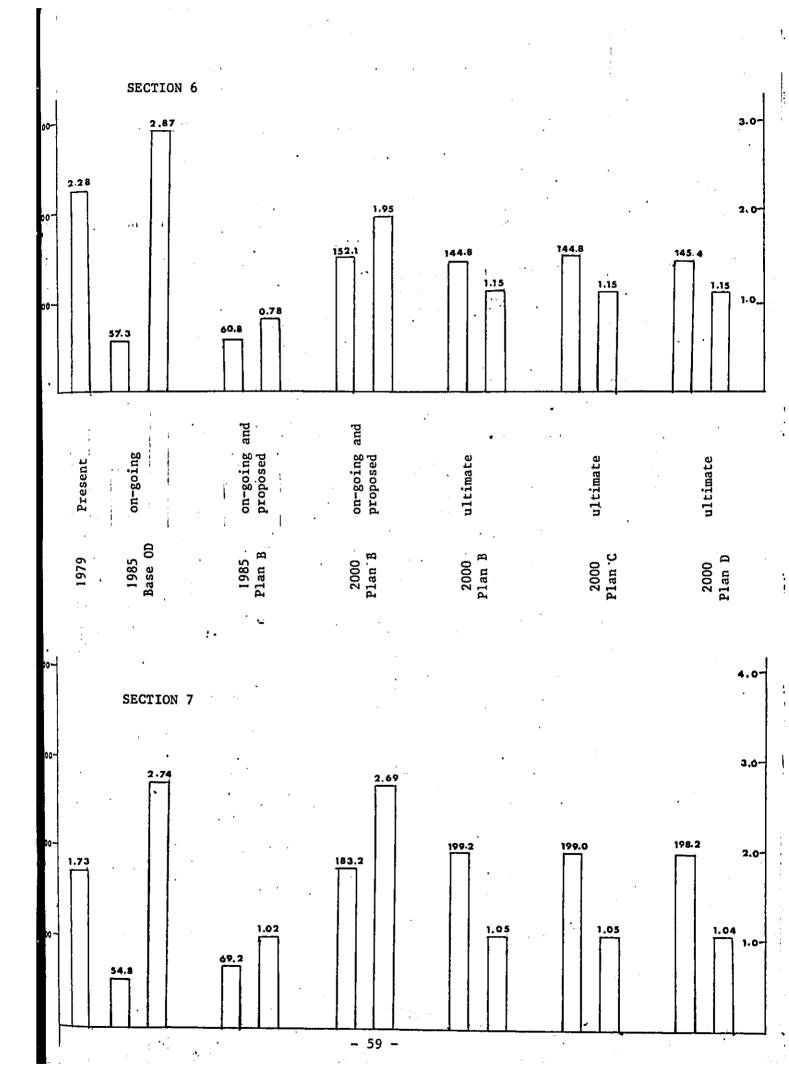
F - THE COMPARISON OF THE DEGREE OF CONGESTION BY PLANS

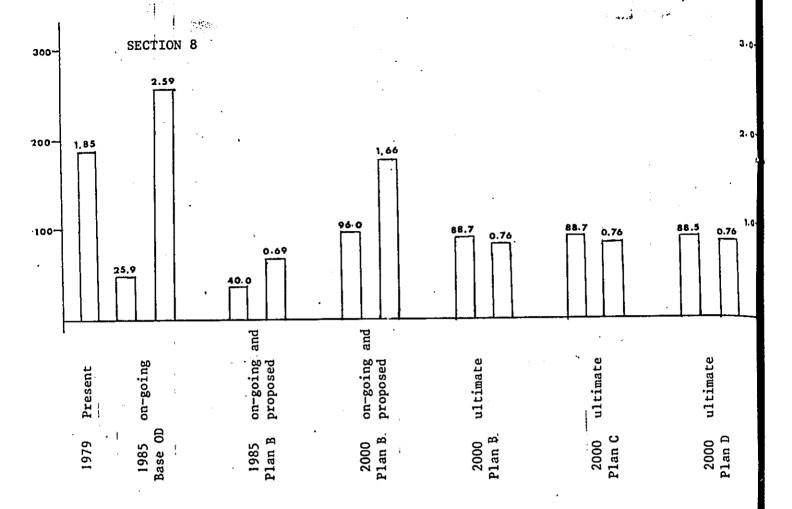

INNER CORDON


15

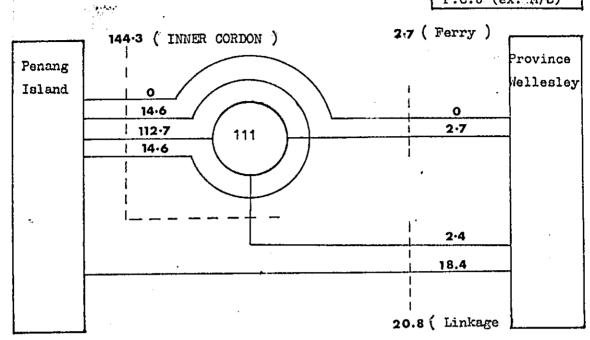

CENTER CORDON

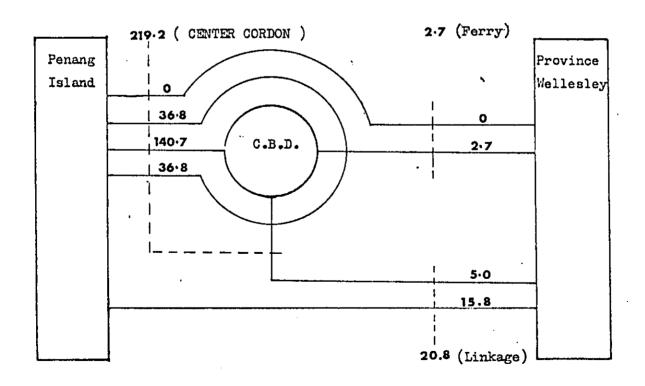

OUTER CORDON


SECTION	1
SECTION	່ 2
SECTION	3
SECTION	4
SECTION	5
SECTION	6
SECTION	7
SECTION	8

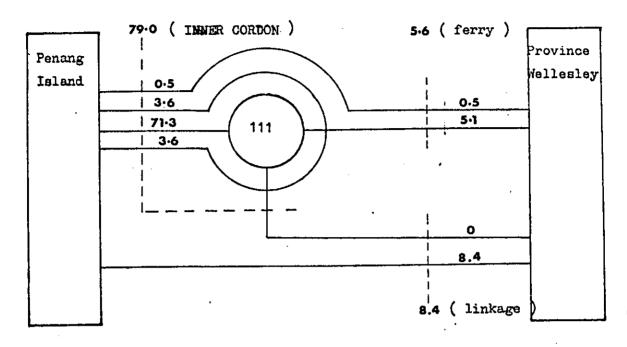


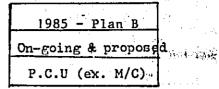


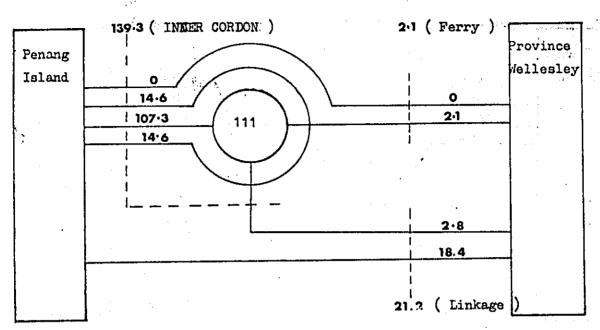


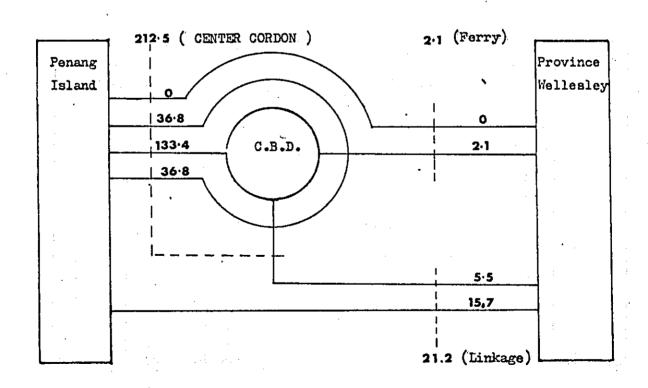

G - THE SITUATION ON THE INNER CORDON AND ON THE CENTER CORDON

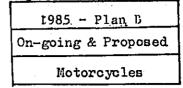
١.	1985 Plan A - On Going
2.	1985 Plan B - On Going & Proposed
3.	2000 Plan B - On Going & Proposed
•	2000 Plan B - Ultimate
i .	2000 Plan C - Ultimate
i.	2000 Plan D - Ultimate
	U(Unit:1000 p.c.u., trips)

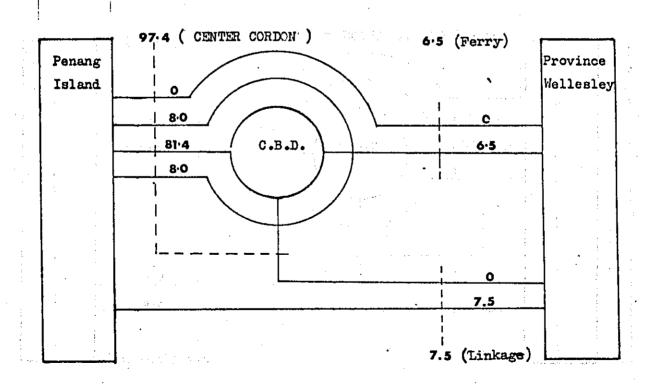


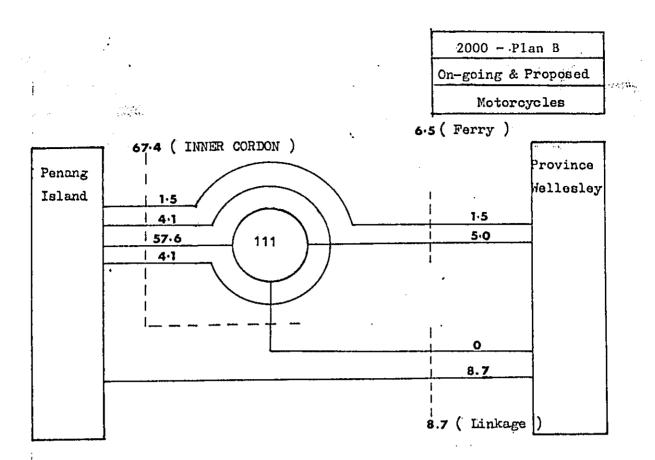

};

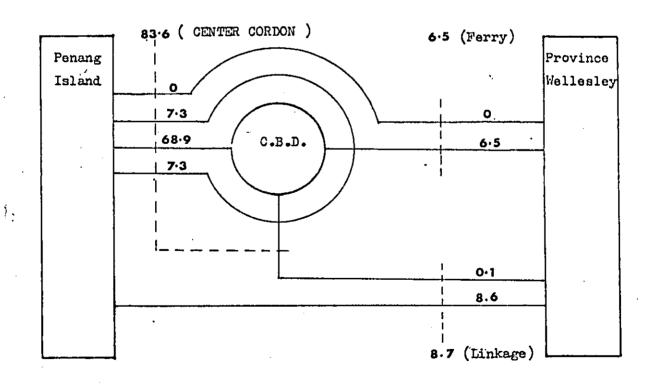


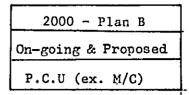

1985 - Plan A
On-going
Mot é rcycles

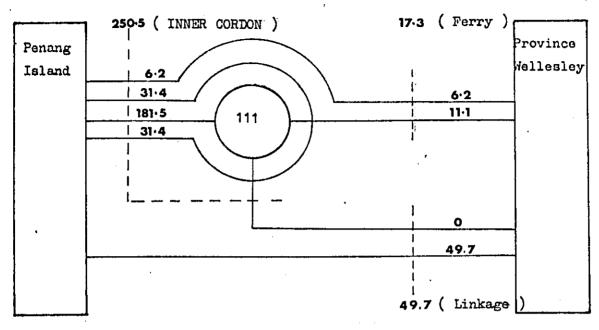


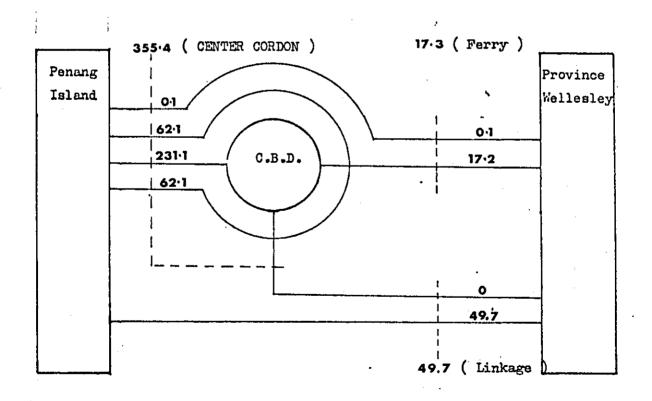


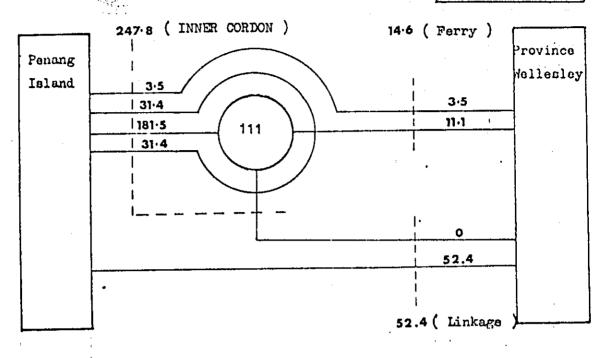


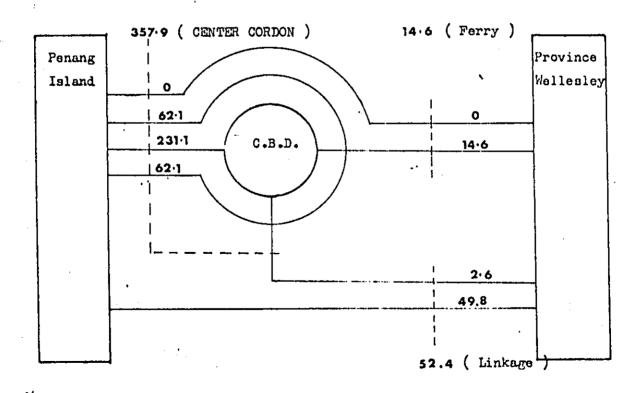


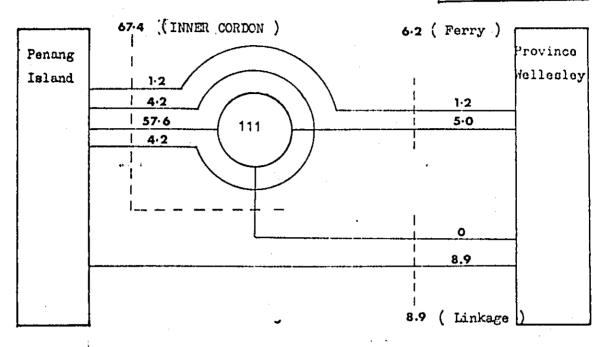


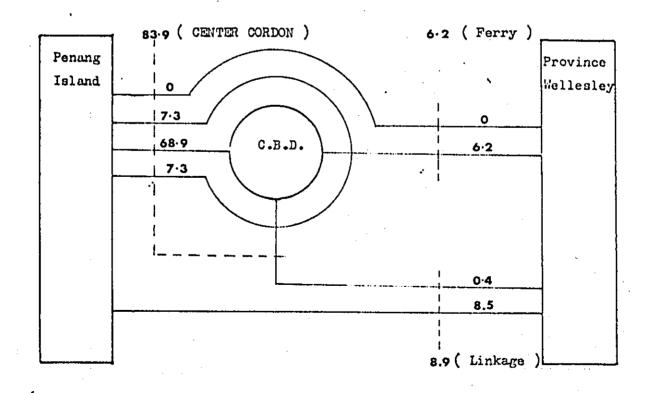


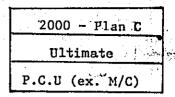


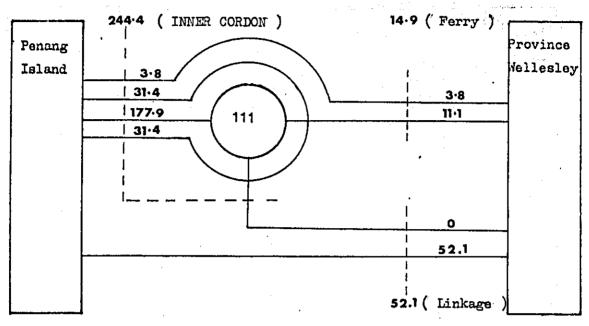


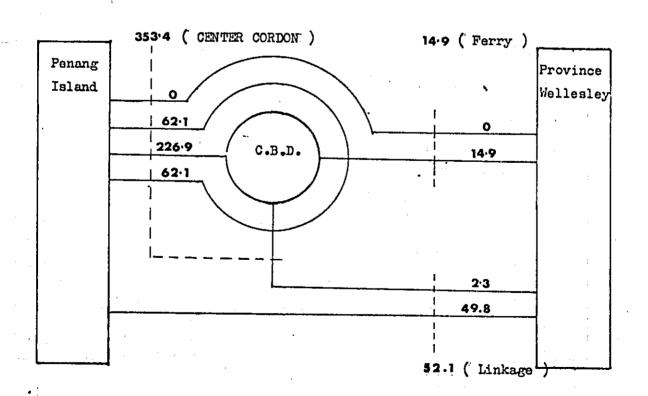


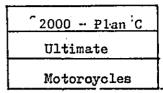

Ultimate
P.C.U (ex. M/C)

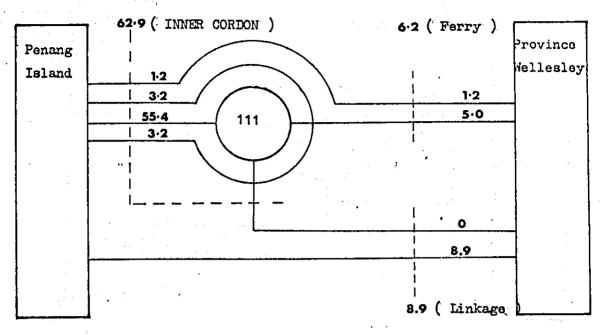


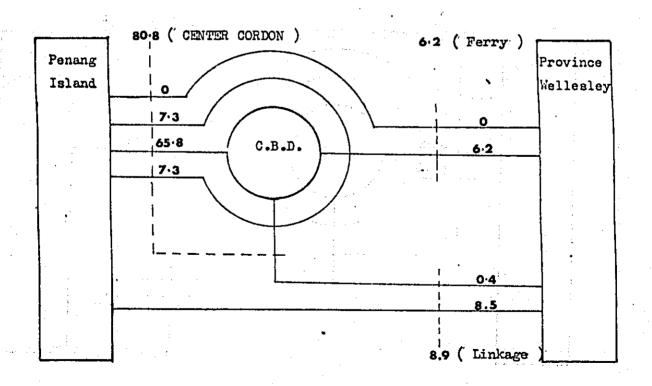

1.

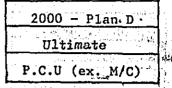


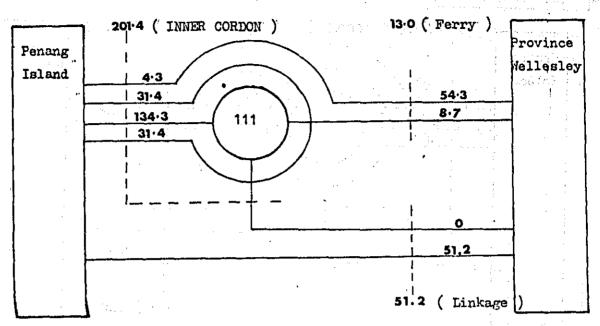

2000 - Plan B Ultimate Motorcycles

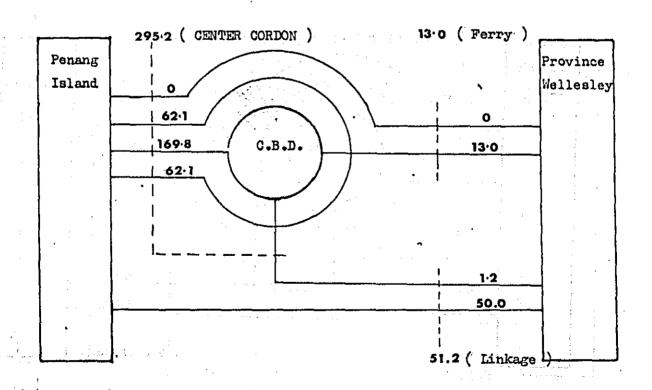


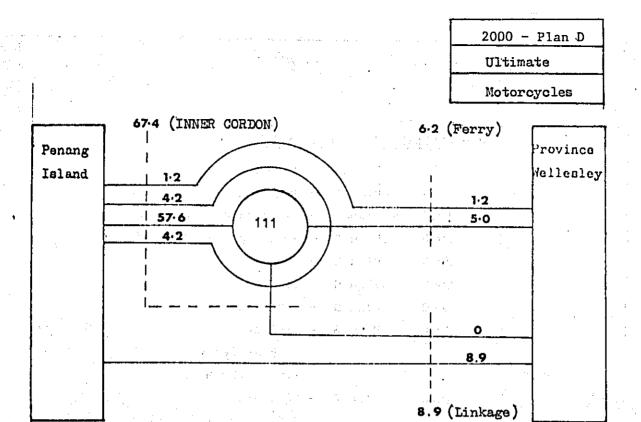


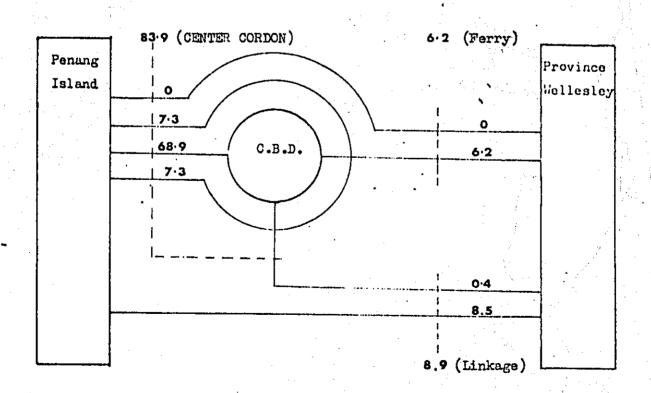


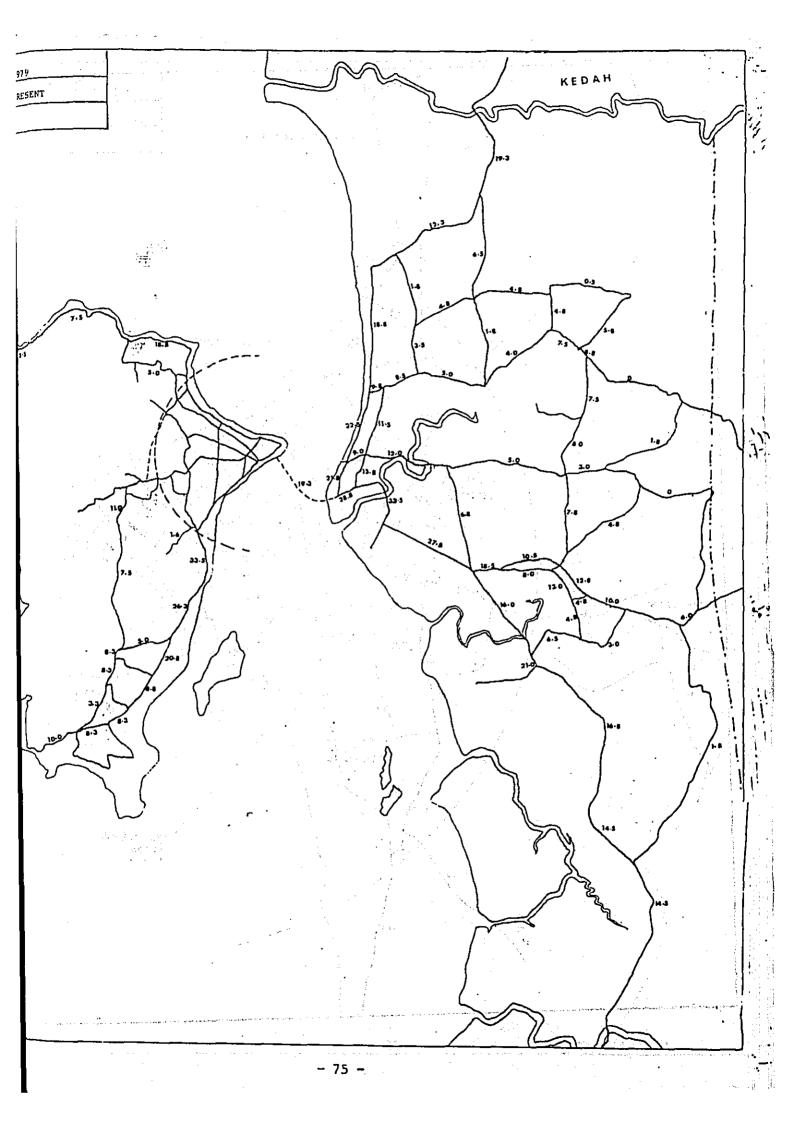


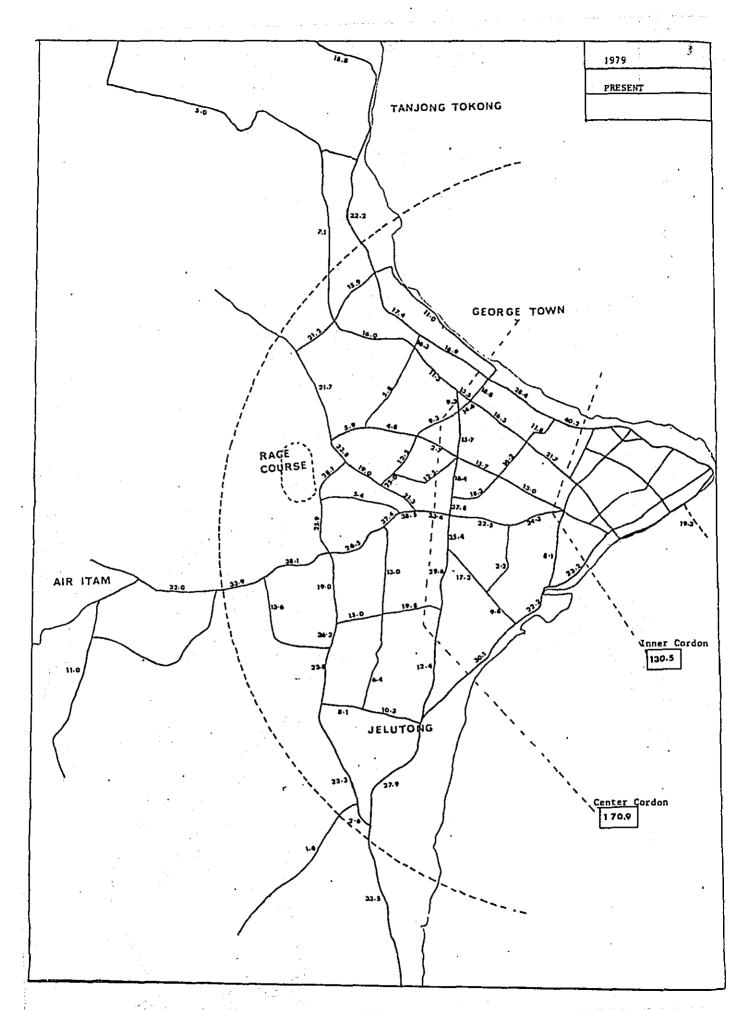


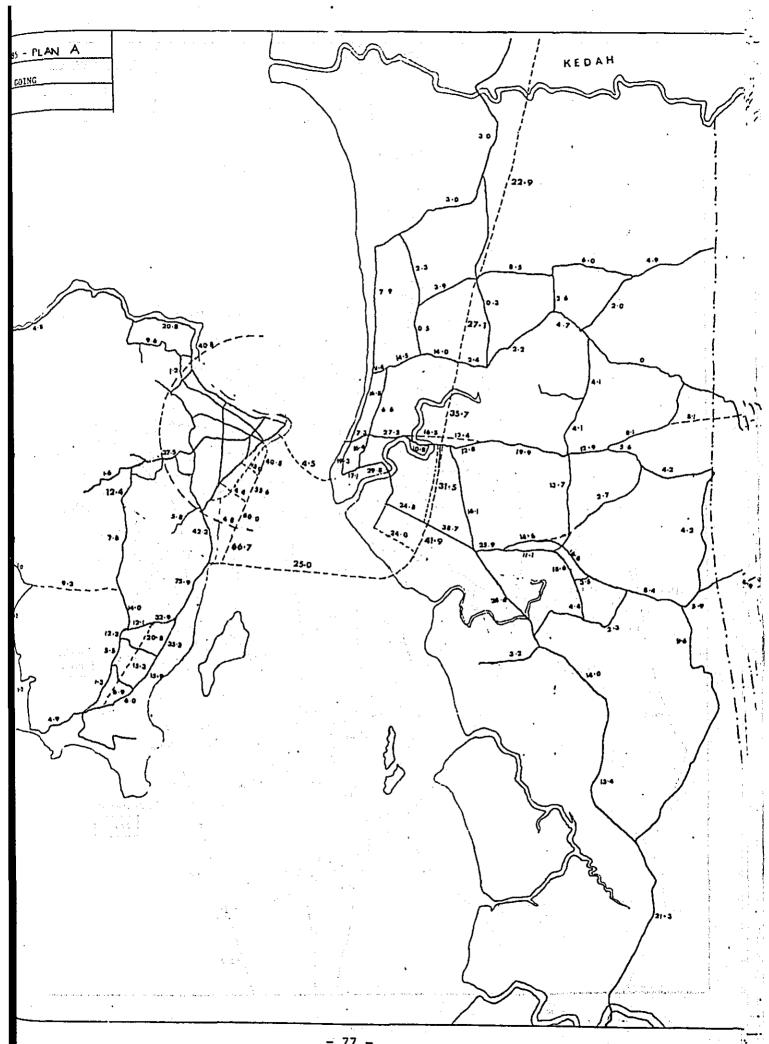


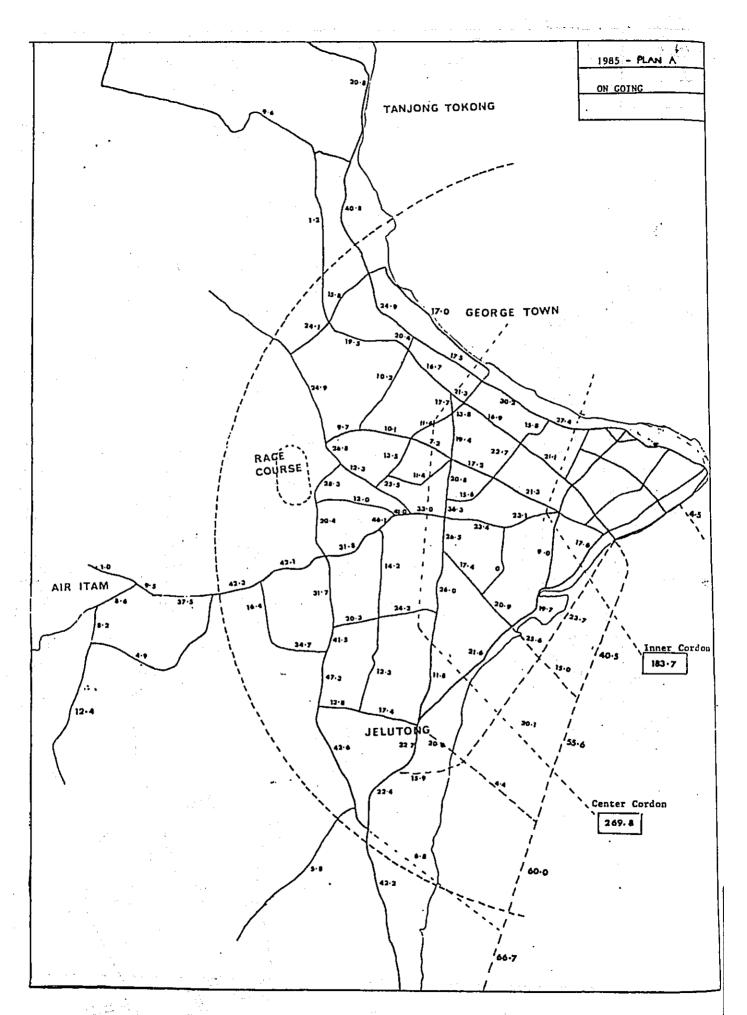







H - RESULTS OF TRAFFIC ASSIGN


Present - Present 1979 Plan A - On-going 1985 1985 Plan B - On-going and Proposed 2000 Plan B - On-going and Proposed 2000 Plan B - Ultimate - Ultimate 2000 Plan C 2000 Plan D - Ultimate - Ultimate 2000 Plan B Without ferry P.C.U. (Ex M/C) Plan B - Ultimate 2000 P.C.U. (Ex M/C)


(Unit: 1000 p.c.u.)

15

