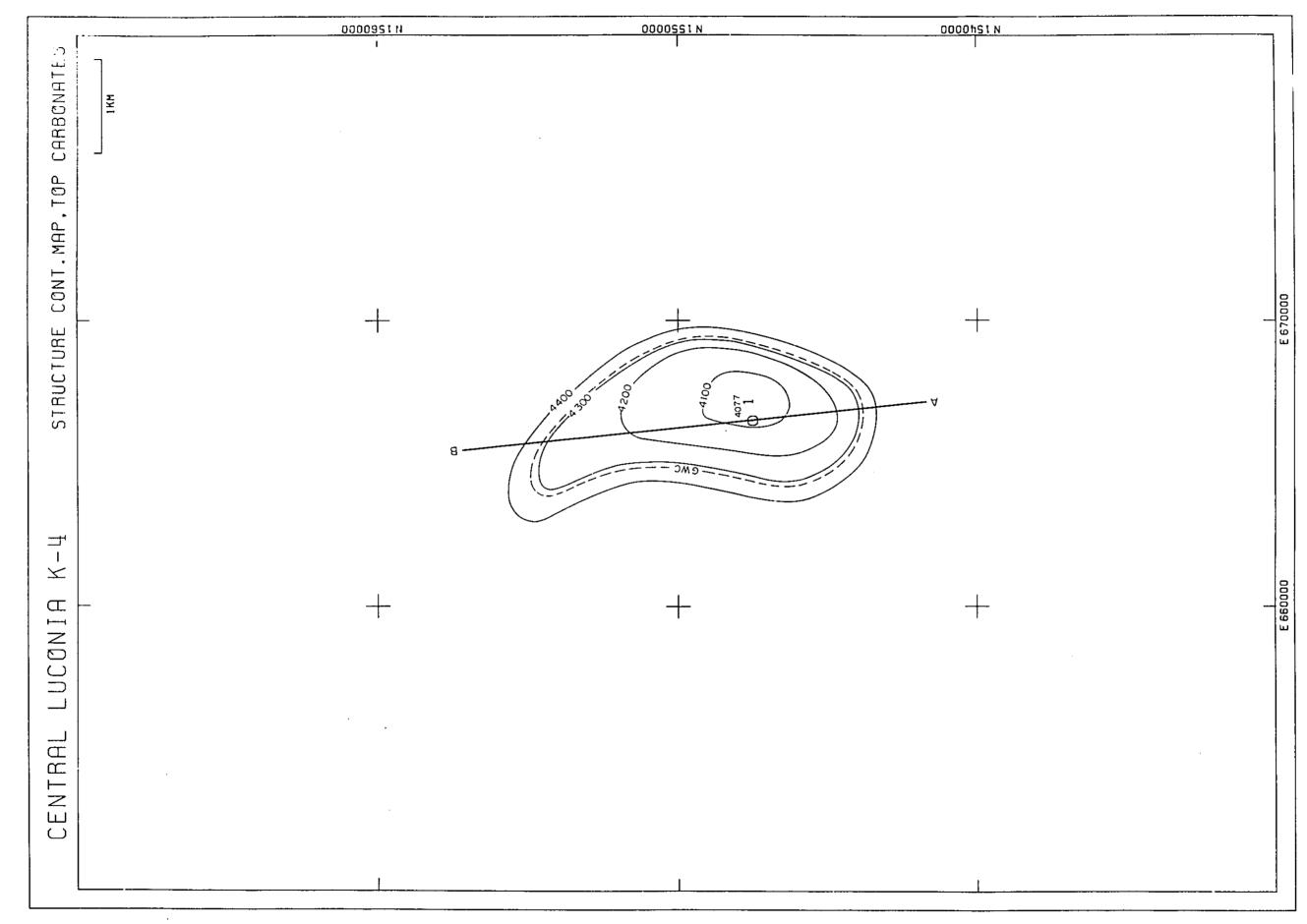
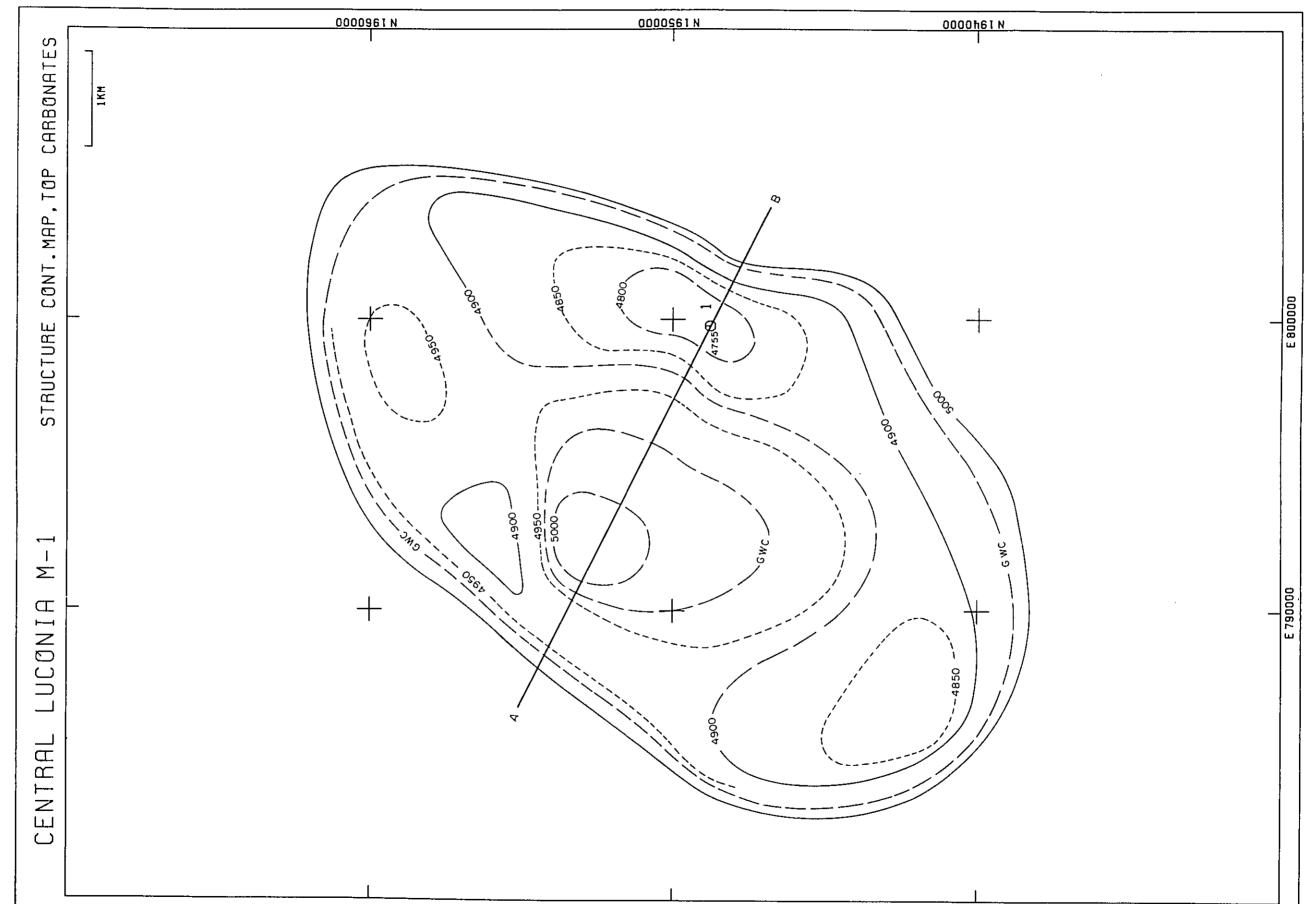
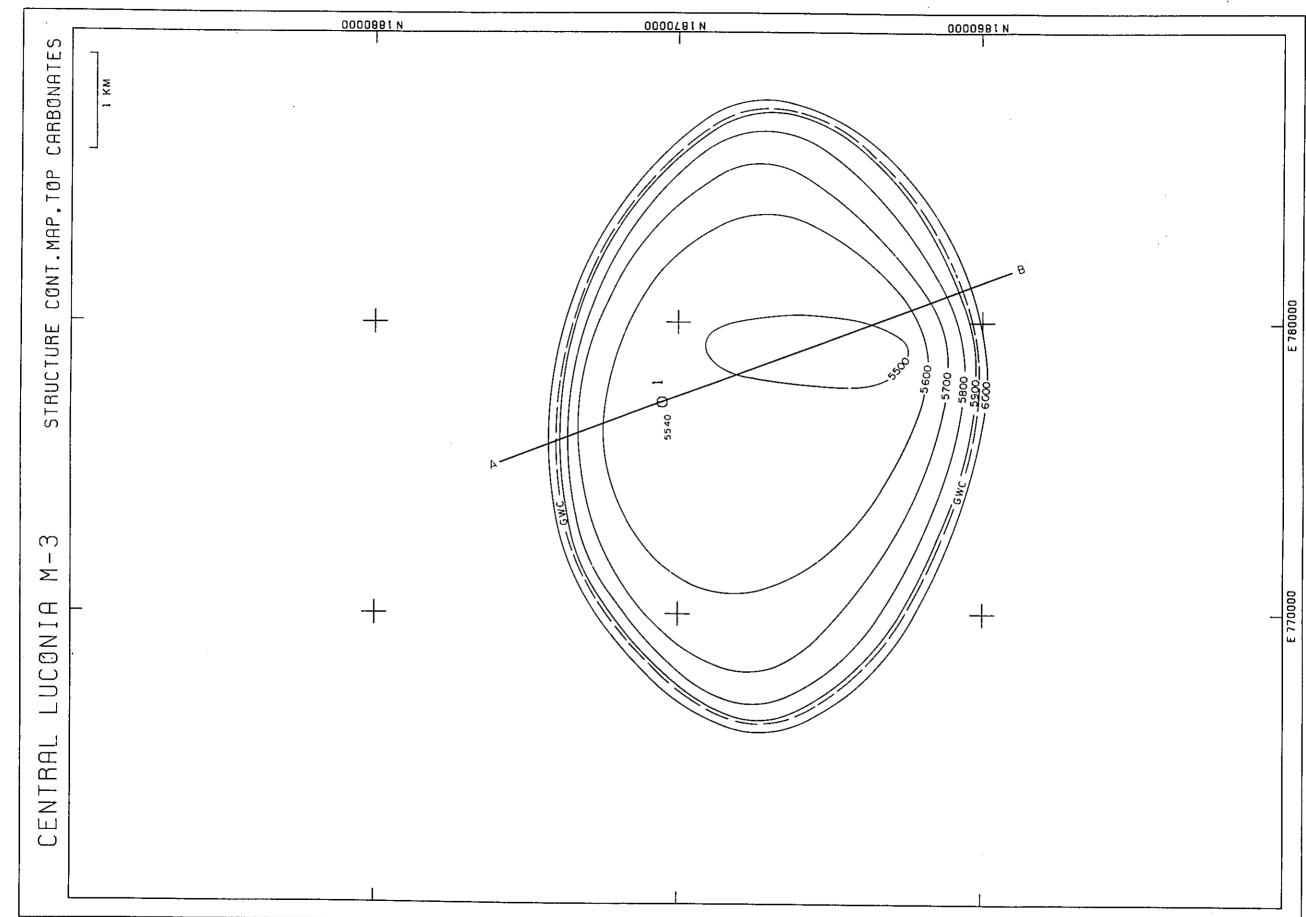
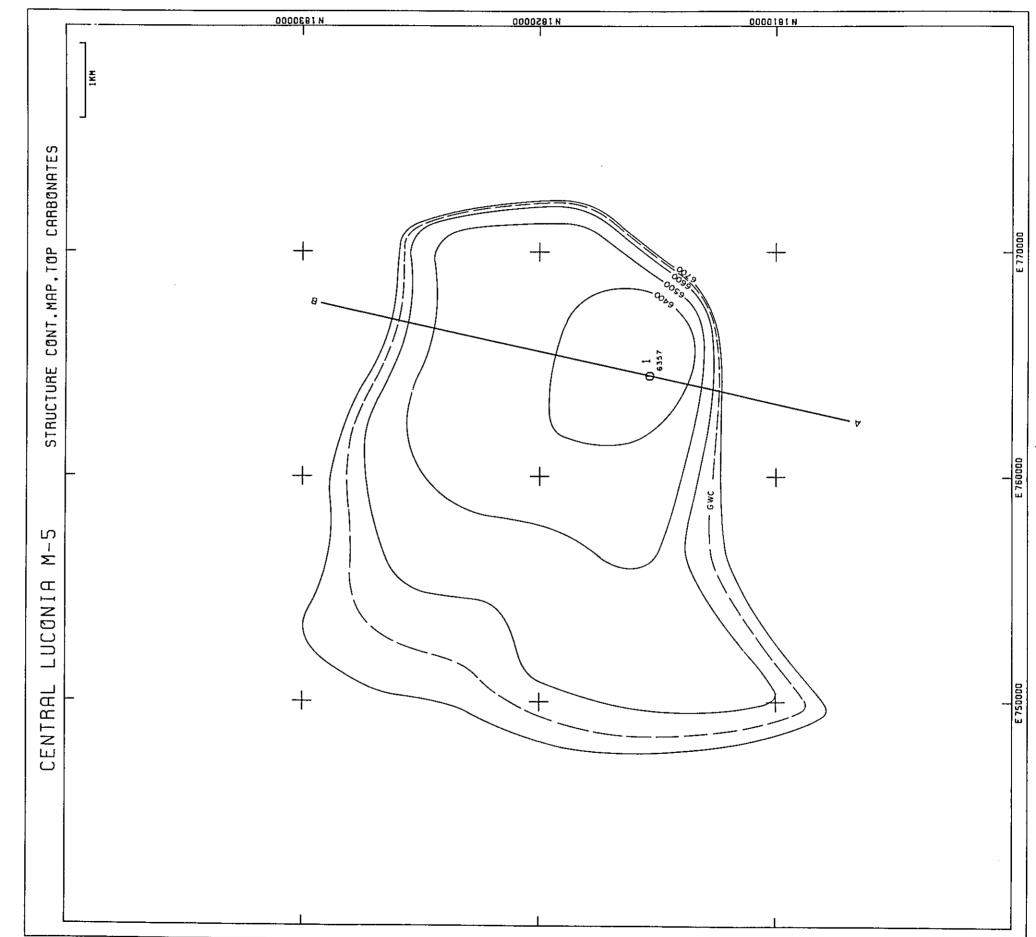




Fig. 12-2-16 STRUCTURAL CROSS-SECTION, CENTRAL LUCONIA F14, F22 Vol. IV AND F23


Fig. 12-2-17 STRUCTURE CONTOUR MAP, CENTRAL LUCONIA K4, TOP Vol. IV CARBONATES

STRUCTURE CONTOUR MAP, CENTRAL LUCONIA M1, TOP CARBONATES Fig. 12-2-18 Vol. IV

STRUCTURE CONTOUR MAP, CENTRAL LUCONIA M3, TOP CARBONATES Fig. 12-2-19 Vol. IV

STRUCTURE CONTOUR MAP, CENTRAL LUCONIA M5, TOP CARBONATES Fig. 12-2-20 Vol. IV

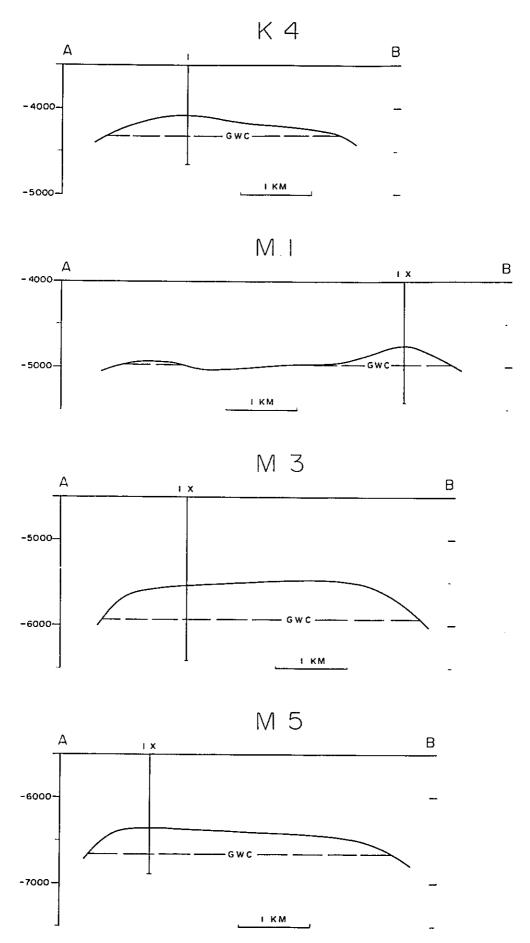


Fig. 12-2-21 STRUCTURAL CROSS-SECTION, CENTRAL LUCONIA K4, M1, Vol. IV M3 AND M5

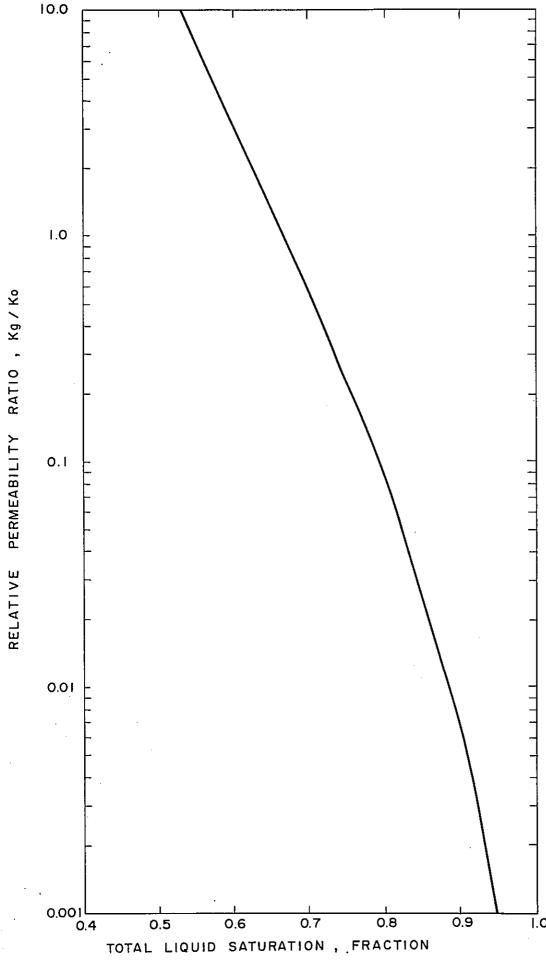
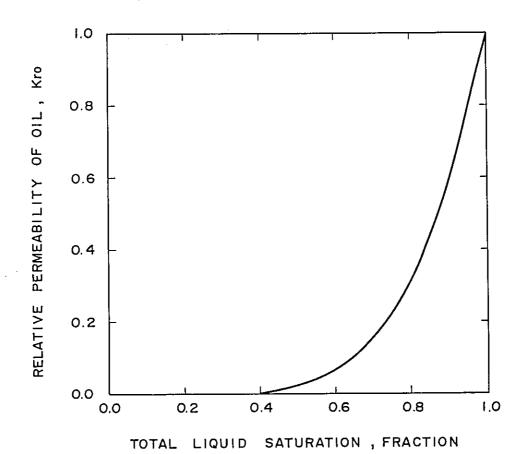
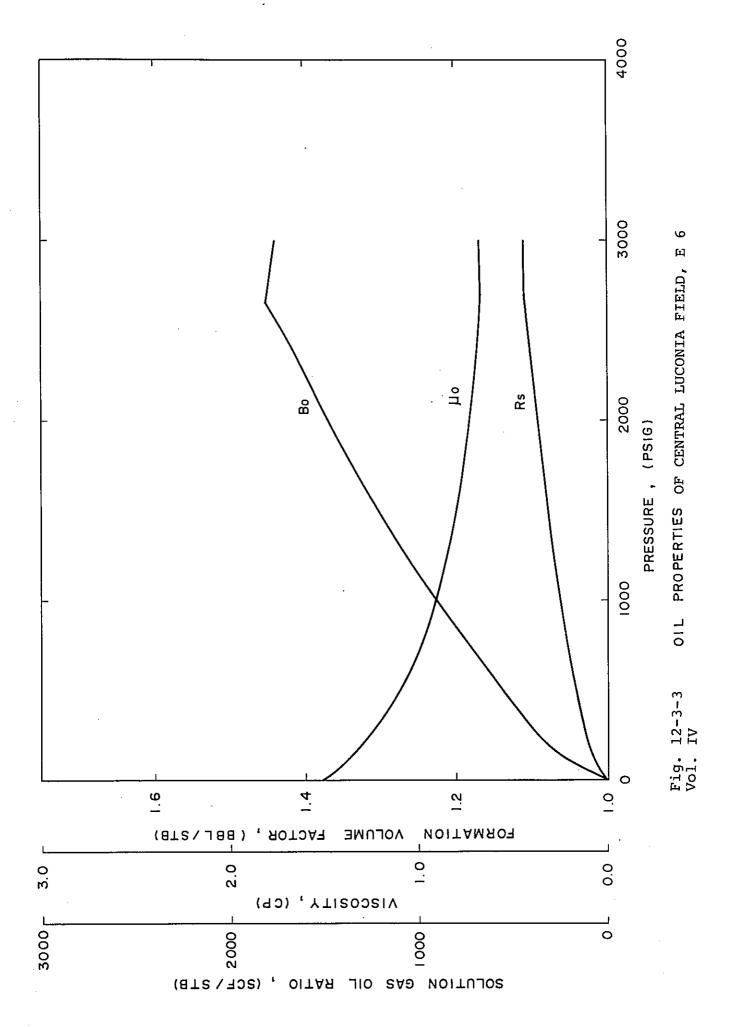
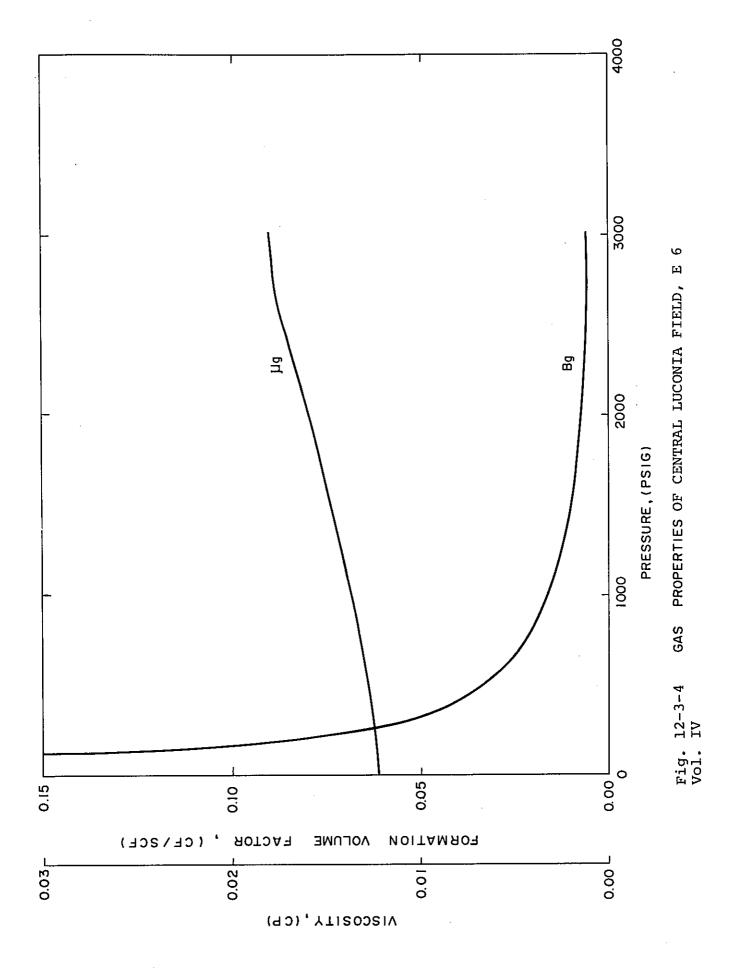
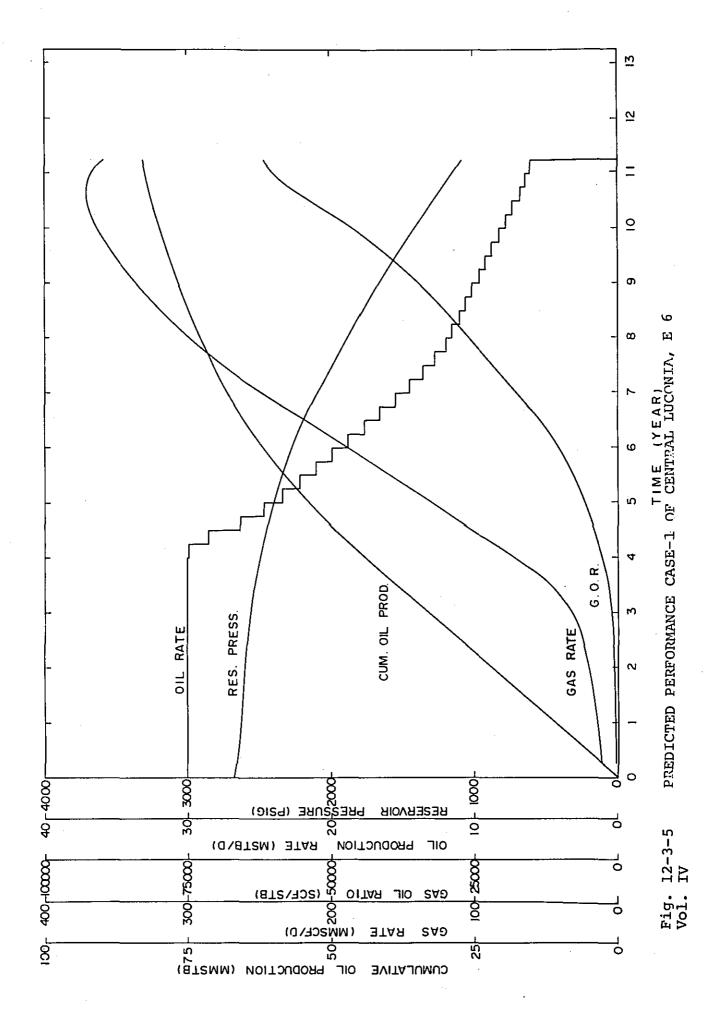
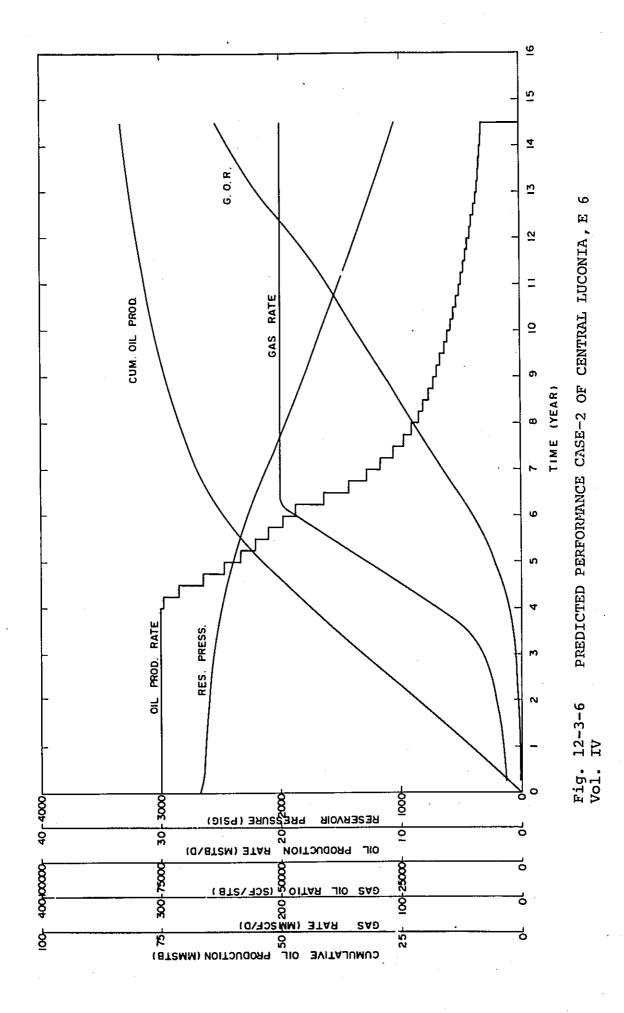
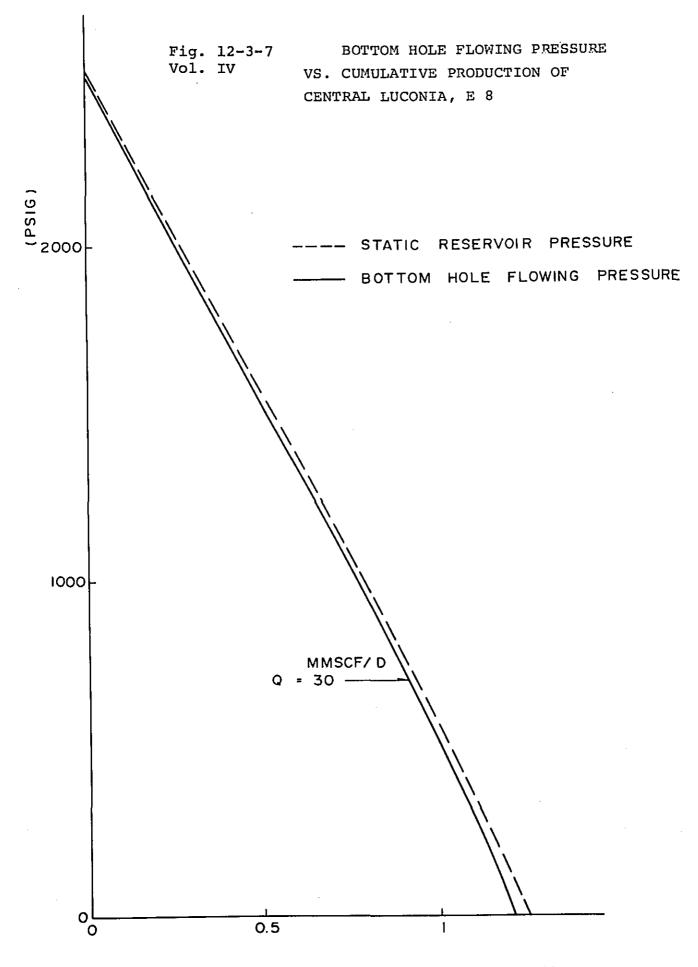
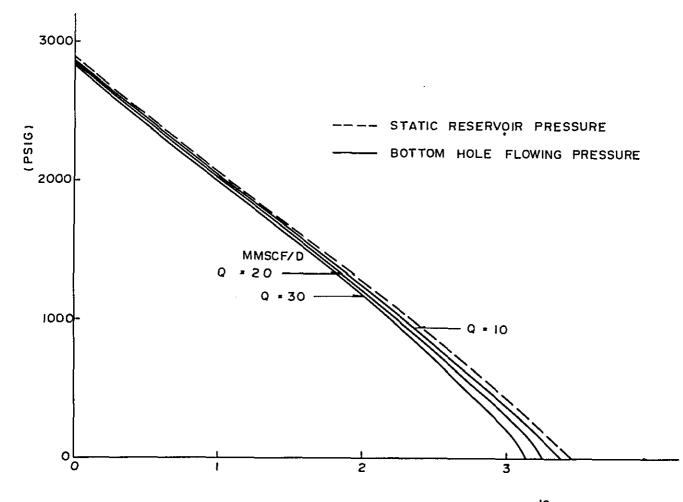
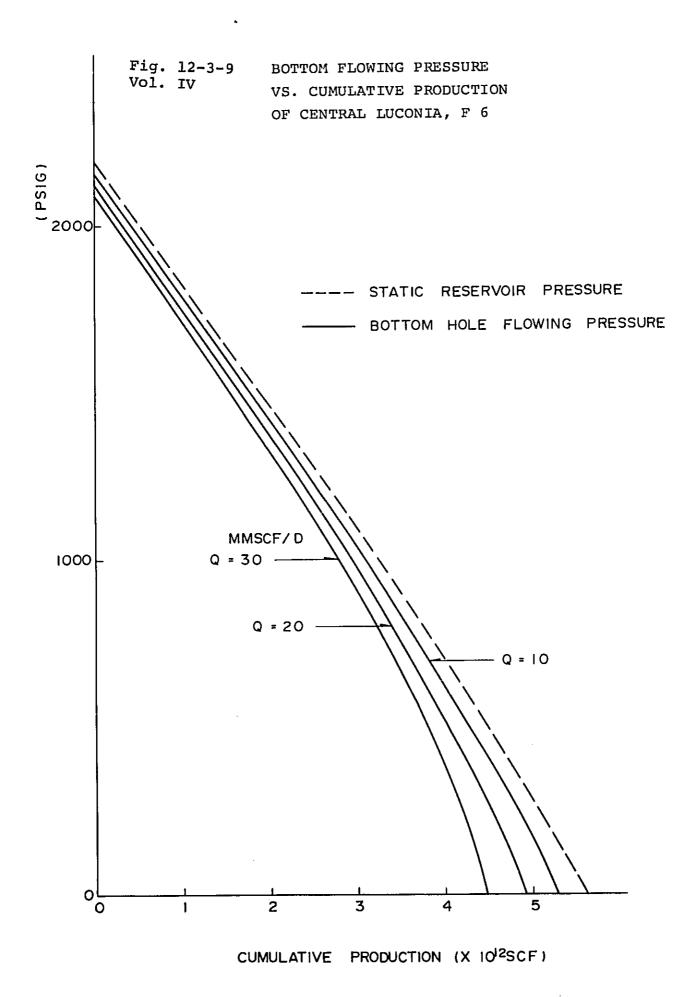


Fig. 12-3-1 GAS-OIL RELATIVE PERMEABILITY RATIO OF CENTRAL LUCONIA Vol. IV FIELD, E 6


Fig. 12-3-2 OIL RELATIVE PERMEABILITY CURVE OF Vol. IV CENTRAL LUCONIA FIELD, E 6





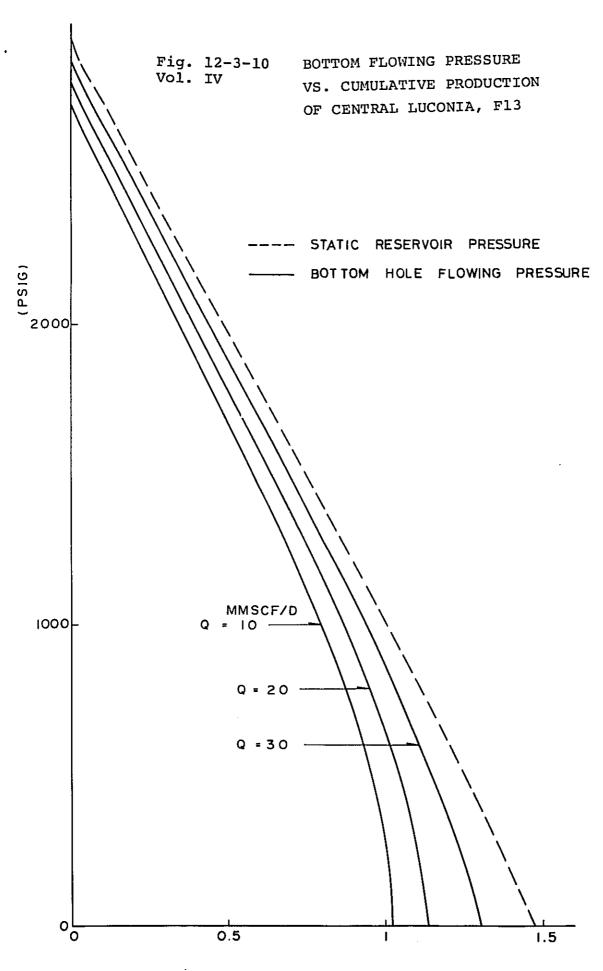
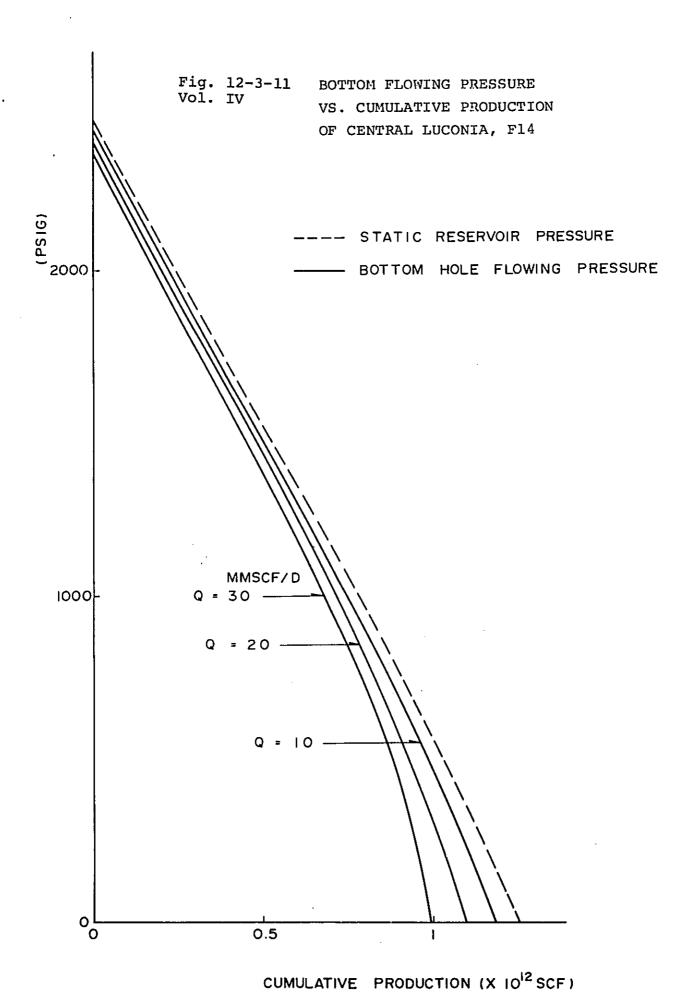
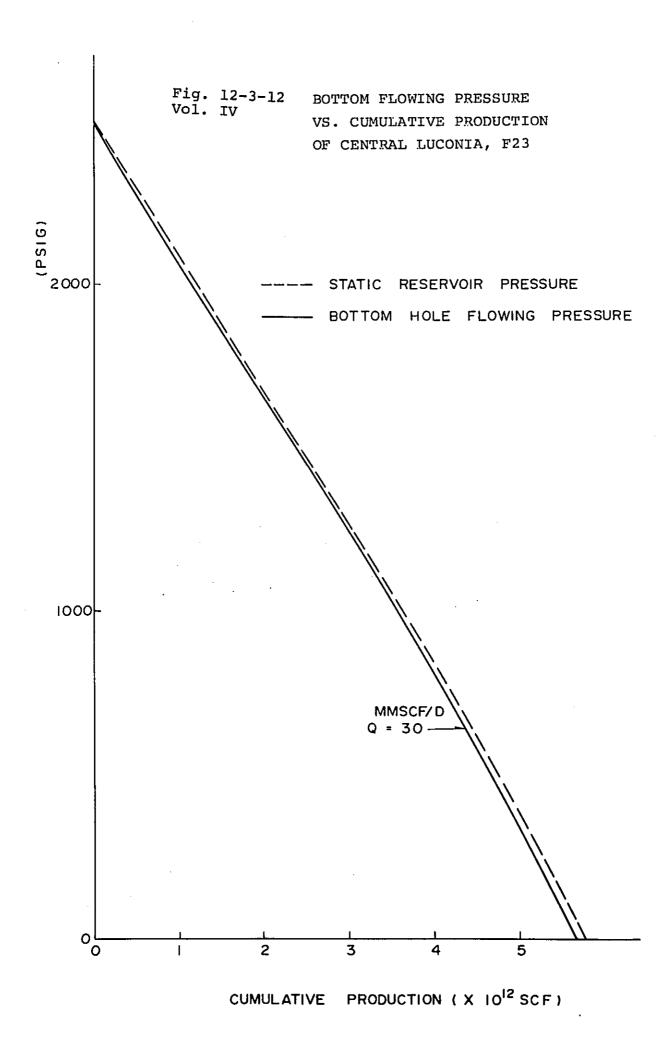

CUMULATIVE PRODUCTION (X 1012 SCF)

Fig. 12-3-8 BOTTOM FLOWING PRESSURE VS. CUMULATIVE PRODUCTION Vol. IV CENTRAL LUCONIA, E11




CUMULATIVE PRODUCTION (X 1012 SCF)

CUMULATIVE PRODUCTION (X 1012 SCF)

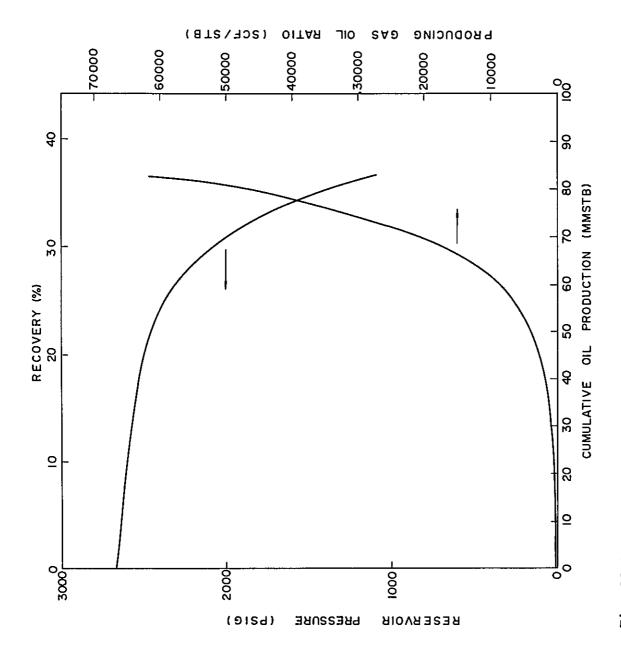
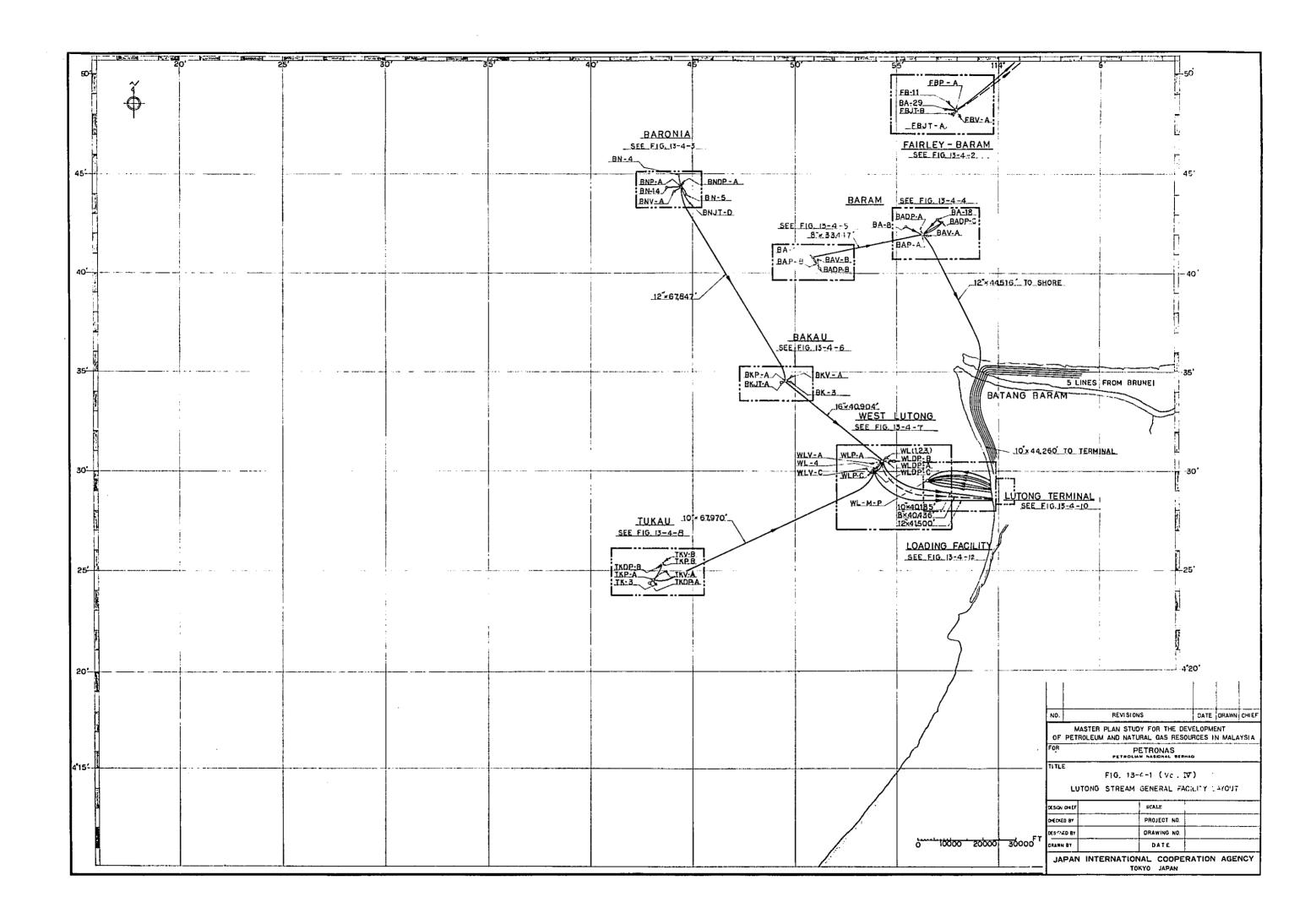
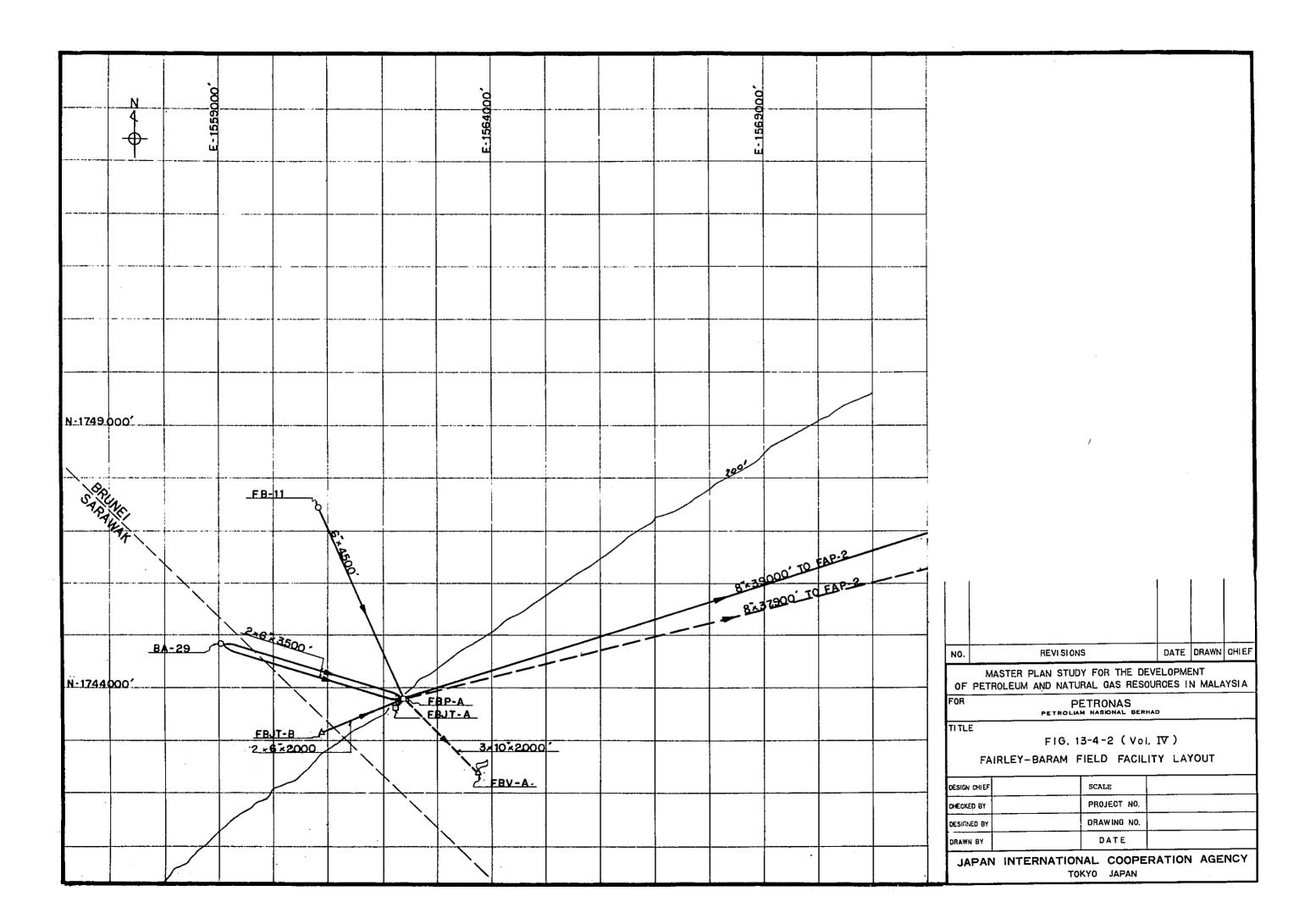
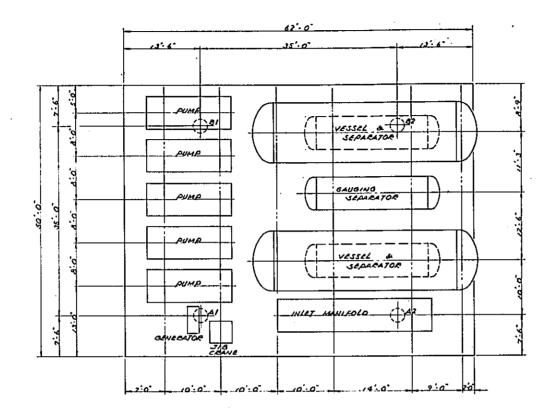
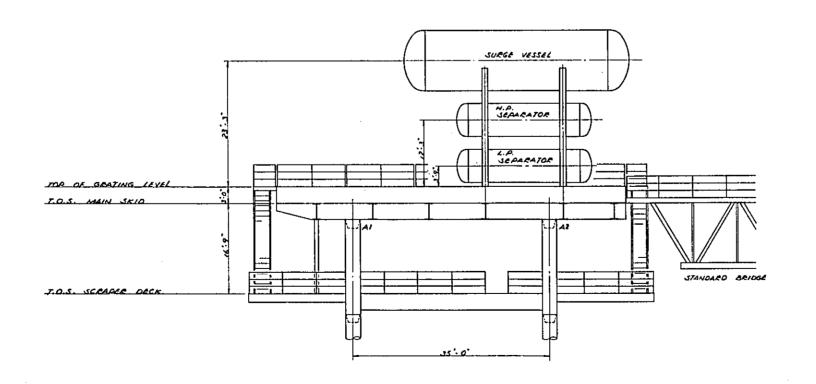





Fig. 12-3-13 CUMULATIVE OIL PRODUCTION VS. RESERVOIR PRESSURE VOI. IV AND PRODUCING GAS OIL RATIO OF CENTRAL LUCONIA E6 (CASE-1 AND CASE-2)

ò			
~	l g		
		1	
	33		
N. 1785000'			
	97.4		
			1
	AUDP:A		
	AND A		
8"x 6000' BYY:	Ar A		
17. 17.20000 BNV. 18			
	278		
			<u> </u>
			- COUNTY DEATH OUTS
			NO. REVISIONS DATE DRAWN CHIEF MASTER PLAN STUDY FOR THE DEVELOPMENT
			OF PETROLEUM AND NATURAL GAS RESOURCES IN MALAYSIA FOR PETROLIAM NASIONAL BERHAD
			TITLE FIG. 13-4-3 (Vol. IV)
N-1715000'	BUTT- D		BARONIA FIELD FACILITY LAYOUT
	3		DESION CHIEF SCALE
	4		CHECKED BY PROJECT NO. DESIGNED BY DRAWING NO.
			DATE.
			JAPAN INTERNATIONAL COOPERATION AGENCY TOKYO JAPAN

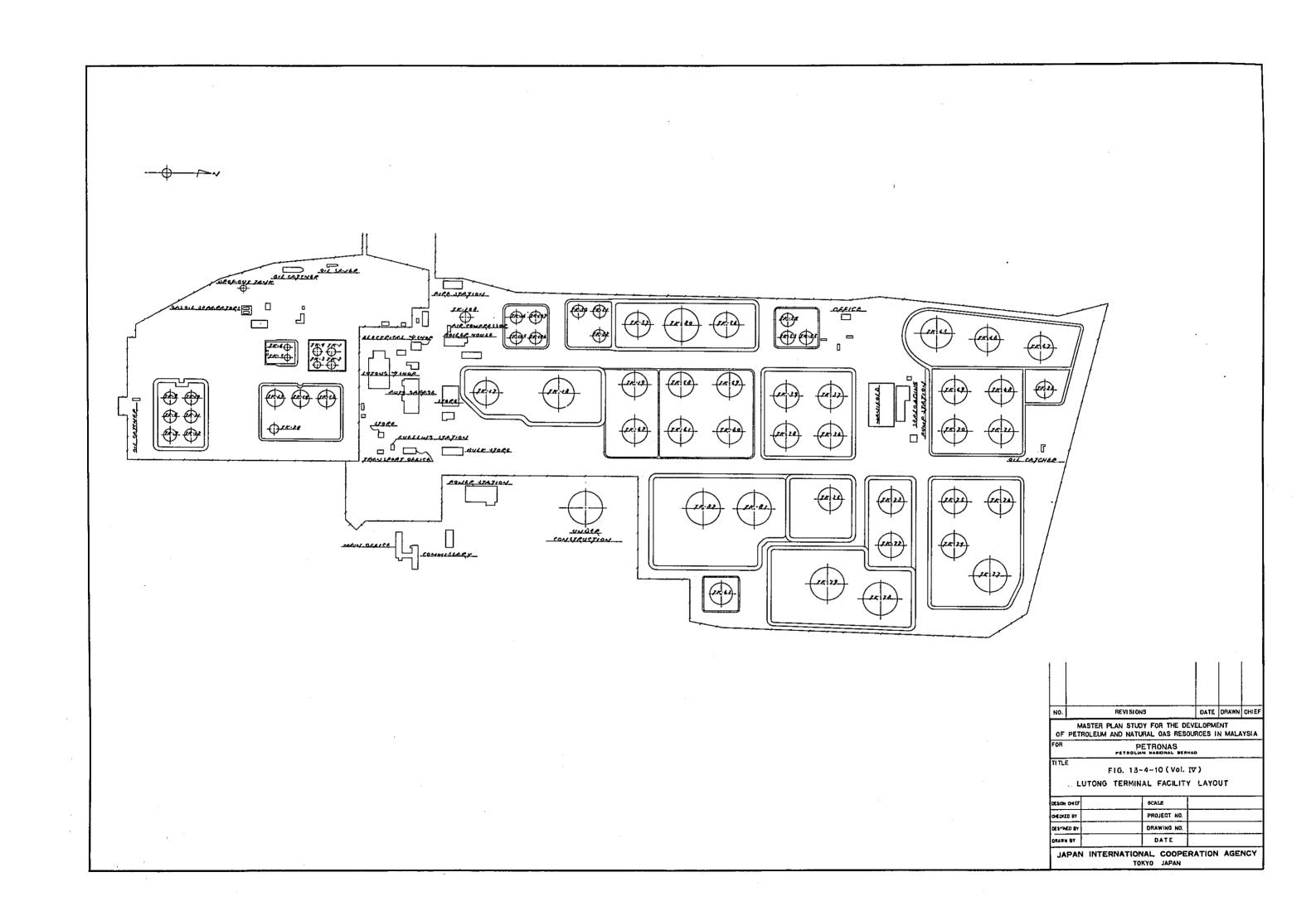
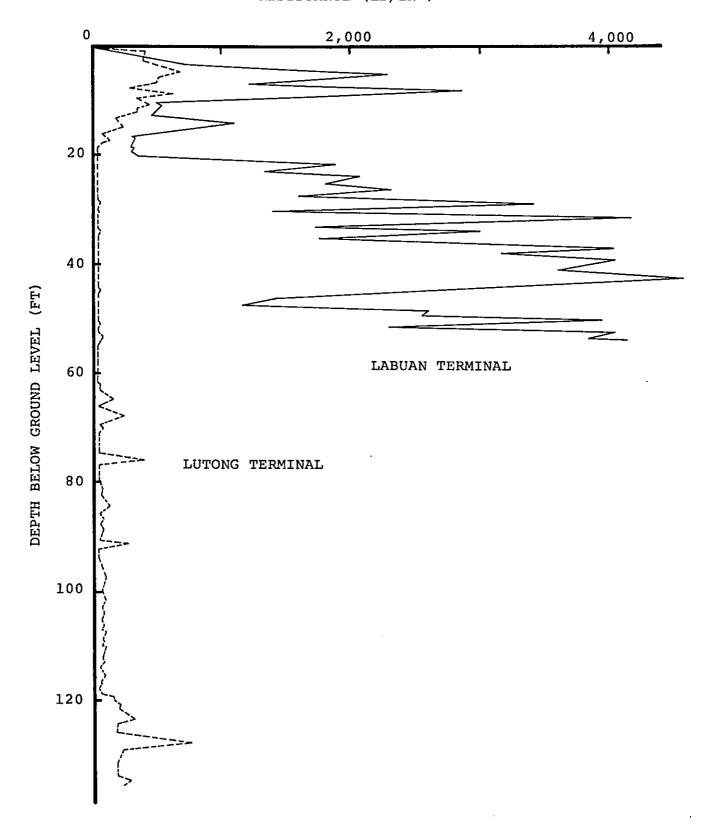
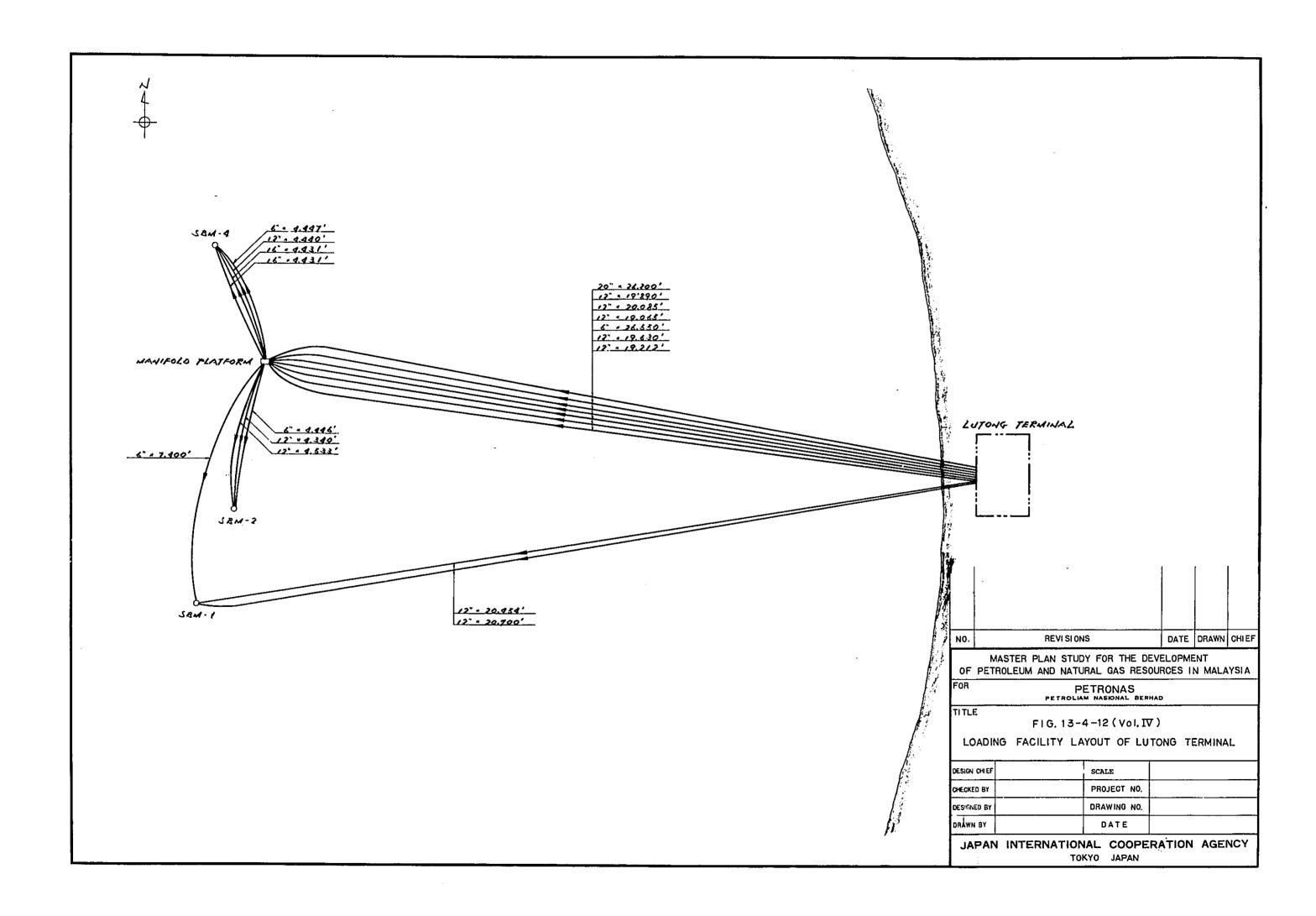


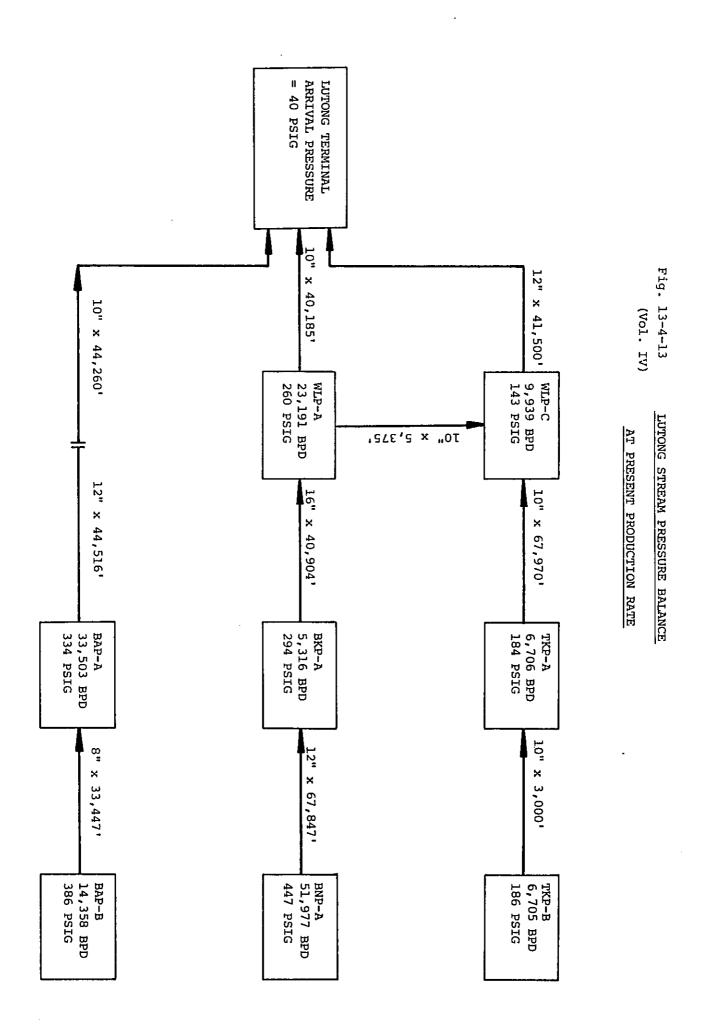

) o	000	3000	
	757	7 755	
N-1705000'			
			·
		3. xxxxx	
	To do the same of		
~/·/700000'	80.00		
7,3333			
	A BAVIA		
	· de la		
	BAP-B		
	- ande-a		NO. REVISIONS DATE DRAWN CHIEF MASTER PLAN STUDY FOR THE DEVELOPMENT
			OF PETROLEUM AND NATURAL GAS RESOURCES IN MALAYSIA FOR PETRONAS PETROLIAM NASIONAL BERHAD
N-1695000'			TITLE FIG. 13-4-5 (Vol. IV)
			BARAM FIELD FACILITY LAYOUT NO. 2
			DESIGN CHIEF SCALE CHECKED BY PROJECT NO.
			DESIGNED BY DRAWING NO.
			JAPAN INTERNATIONAL COOPERATION AGENCY TOKYO JAPAN

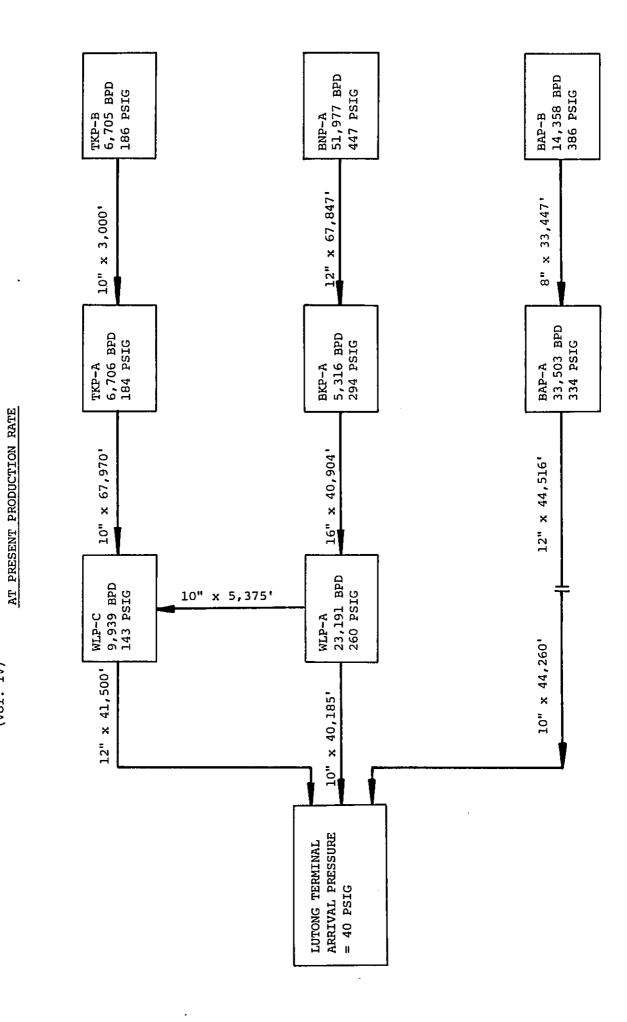
	z +	E-1505000*					E -1510000				E-1515000	!			
N-16650	00′											-			
			PRON BY	34>-		,089							150/		
N-1660 0				P.A.		BKP-A	1300	b	V-A						
								[∞] вк-3				**************************************	7 70	WLP-A	
N-1655Q					,										NO. REVISIONS DATE DRAWN CHIEF MASTER PLAN STUDY FOR THE DEVELOPMENT OF PETROLEUM AND NATURAL GAS RESOURCES IN MALAYSIA FOR PETROLIAM NASIONAL BERHAD TITLE FIG. 13-4-6 (Vol. IV) BAKAU FIELD FACILITY LAYOUT
															DESIGN CHIEF SCALE CHECKED BY PROJECT NO. DESIGNED BY DRAWING NO. DRAWN BY DATE JAPAN INTERNATIONAL COOPERATION AGENCY TOKYO JAPAN

	, a la l	8	
4	£.(470	E 1480	
	THE BY STAY	8	
N· 1605000'	THOP: BY	150	
	Sex.	-: A CONTRACTOR TO THE PERSON.	
	TACO.A.		
W:_/60000°	giè		
			NO. REVISIONS DATE DRAWN CHIEF MASTER PLAN STUDY FOR THE DEVELOPMENT
	7K-3 A		OF PETROLEUM AND NATURAL GAS RESOURCES IN MALAYSIA FOR PETRONAS PETROLIAM NASIONAL BERHAD TITLE FIG. 13-4-8 (Vol. IV)
			TUKAU FIELD FACILITY LAYOUT DESIGN CHIEF SCALE
W. 159.5000°			DESIGNED BY DRAWING NO. DRAWN BY DATE JAPAN INTERNATIONAL COOPERATION AGENCY TOKYO JAPAN

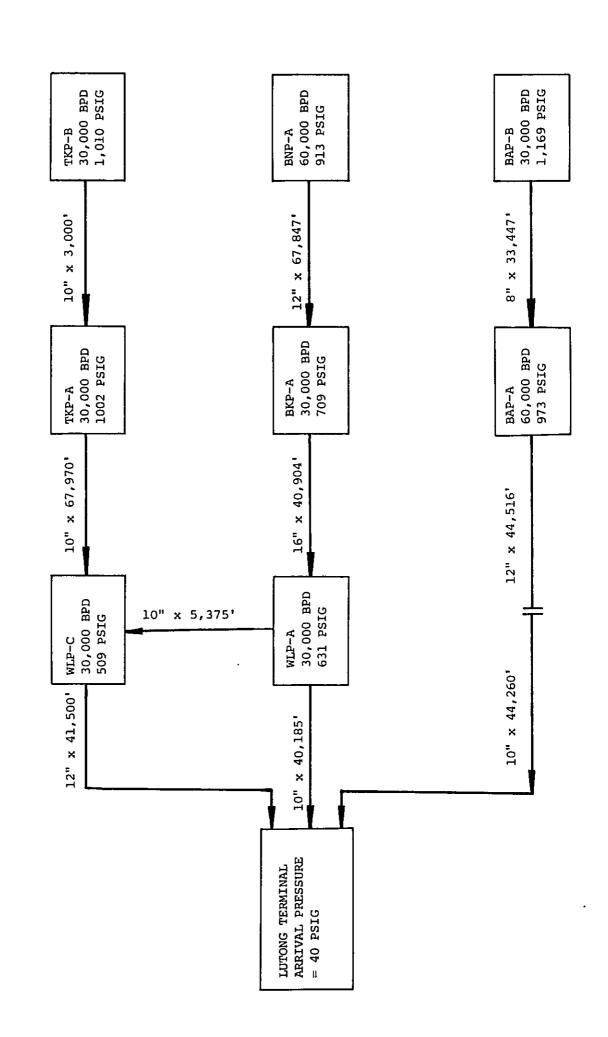
		w-								
NO.		REVISION	DATE	DRAWN	CHIEF					
0F I	MASTER PLAN STUDY FOR THE DEVELOPMENT OF PETROLEUM AND NATURAL GAS RESOURCES IN MALAYSIA									
FOR	PETRONAS PETROLUM MARDHAL BERMAD									
FIG. 13-4-9 (Vol. IV) MAJOR EQUIPMENT ARRANGEMENT OF STANDARD PRODUCTION PLATFORM										
DESIGN C	ЖEF	-	SCALE							
O-ECKED	BY		PROJECT NO.							
DES"NEI	D BY		DRAWING NO.							
CRAWN	BY		DATE							
JAF	JAPAN INTERNATIONAL COOPERATION AGENCY TOKYO JAPAN									

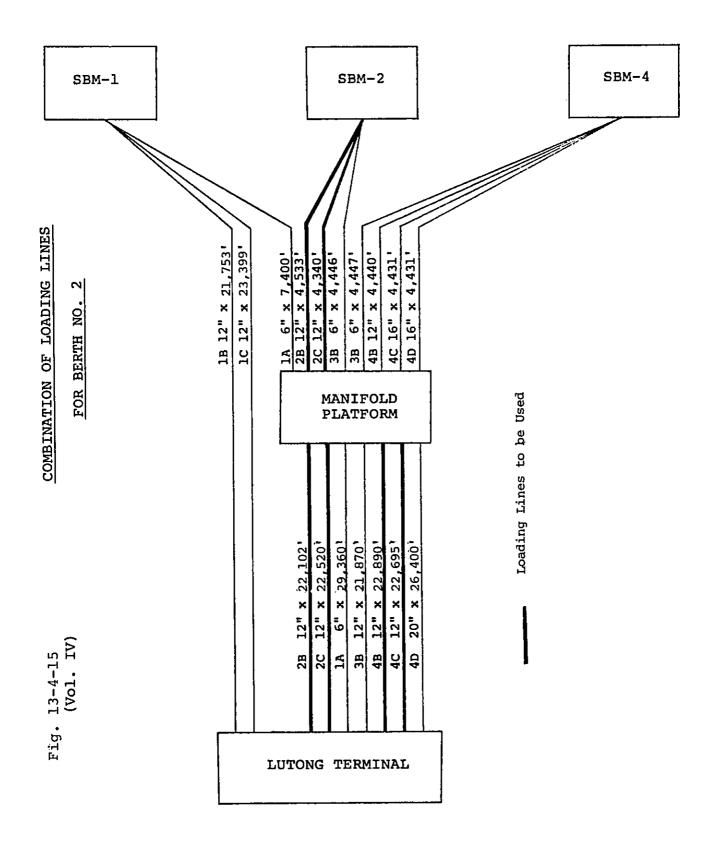




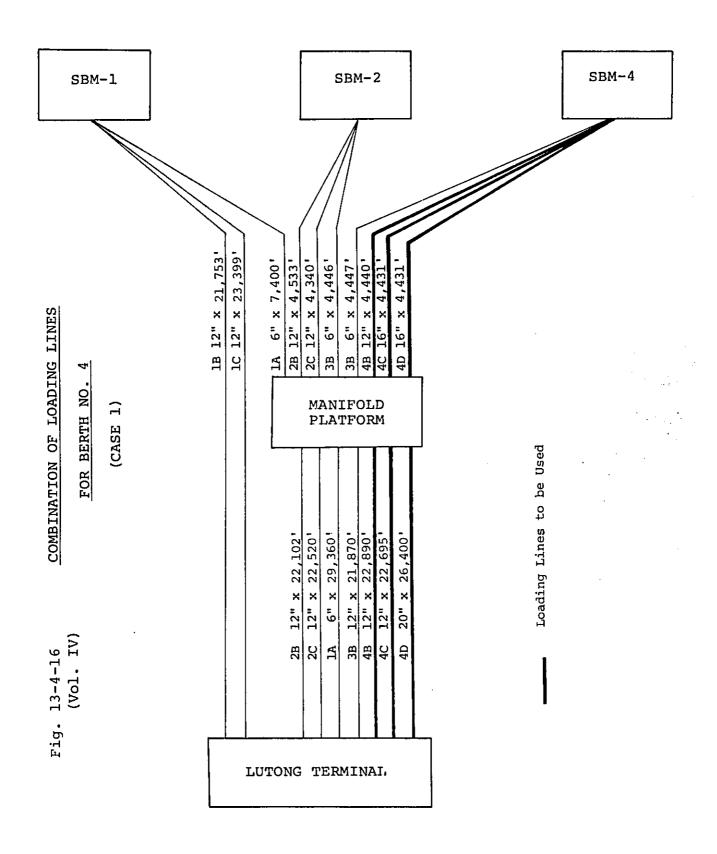

Fig. 13-4-11 CONE PENETRATION TEST
(Vol. IV)

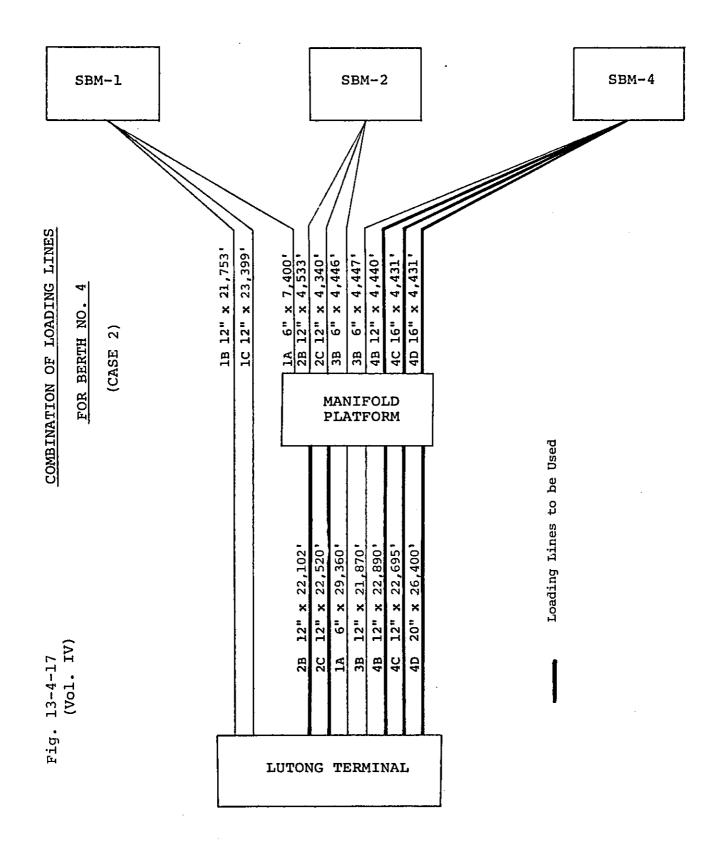

LUTONG AND LABUAN TERMINAL

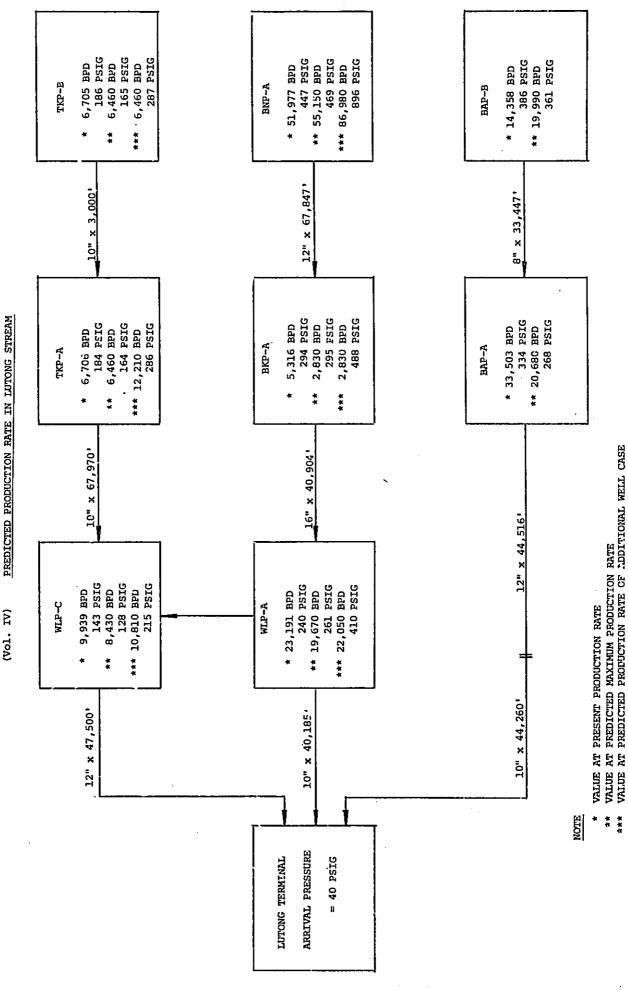
CONE RESISTANCE (LB/IN 2)

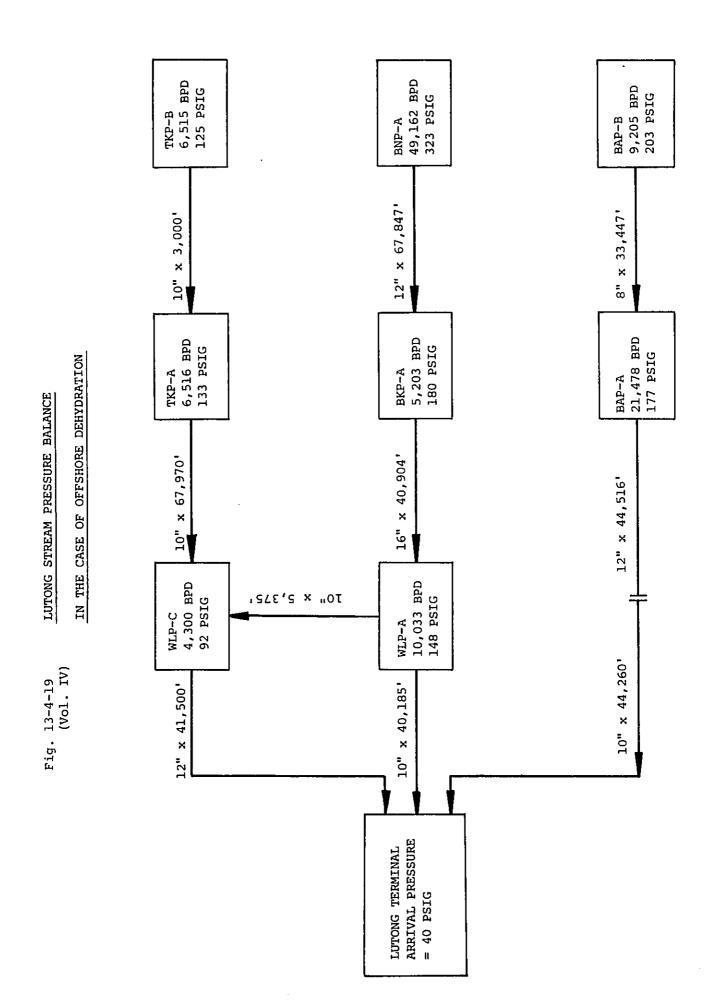



LUTONG STREAM PRESSURE BALANCE


(Vol. IV)

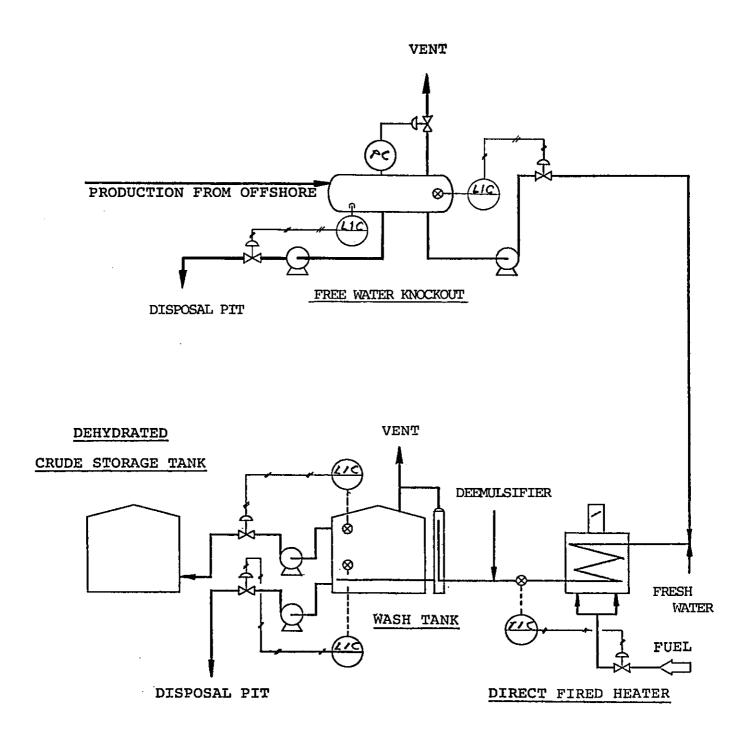
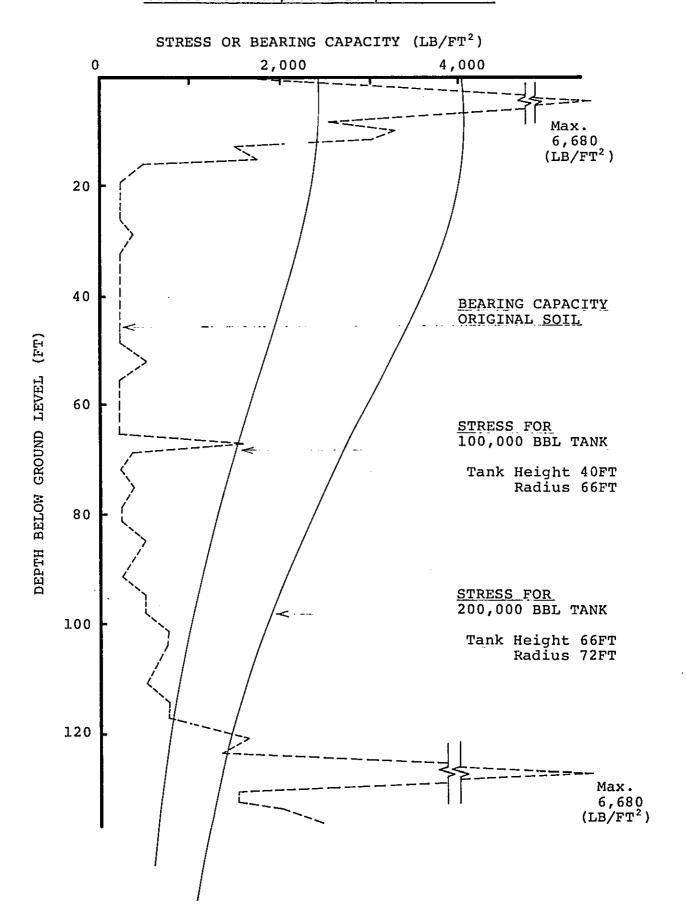

Fig. 13-4-13

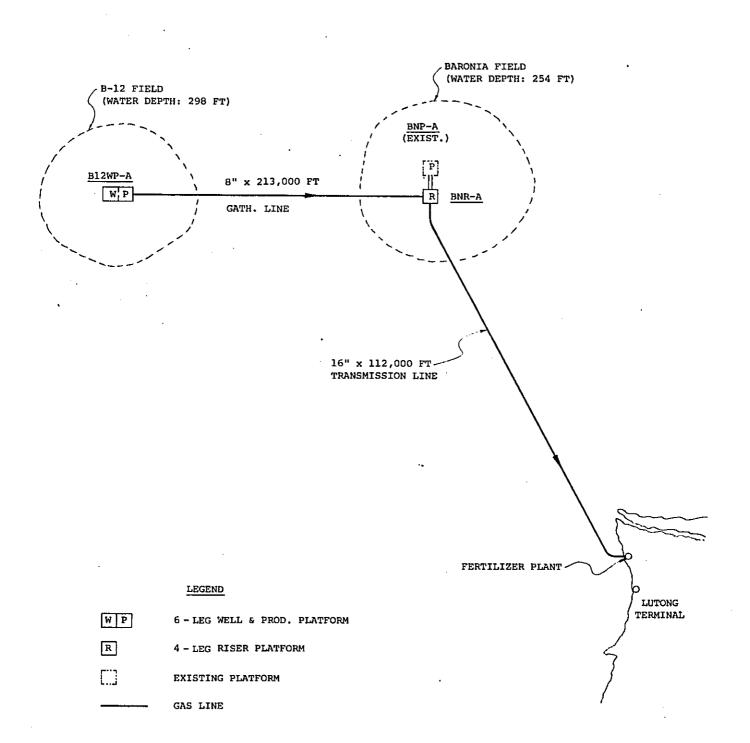

LUTONG STREAM PRESSURE BALANCE



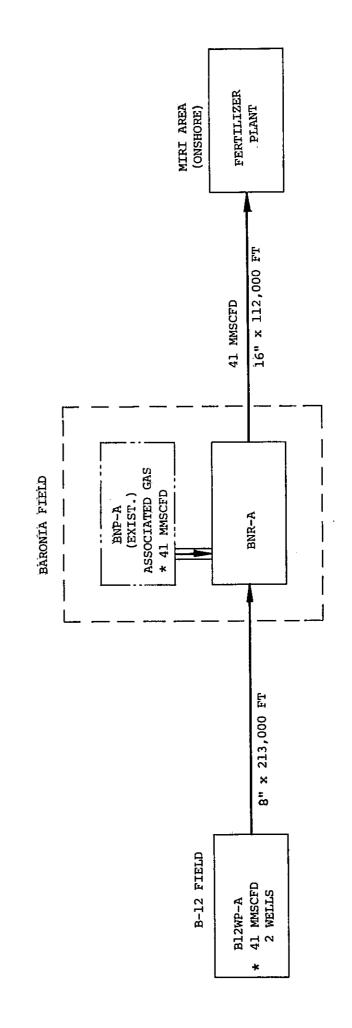
PRESSURE BALANCE FOR THE PRESENT AND MAXIMUM

Fig. 13-4-18


Fig. 13-4-21 BEARING CAPACITY OF SOIL AT LUTONG TERMINAL AND (Vol. IV)

STRESS FOR 200,000 & 100,000 BBL TANK


FIG. 14-5-1 (Vol. IV) FACILITIES ARRANGEMENT

FOR BARONIA OLL FIELD AND B-12 GAS FIELD GAS UTILIZATION - CASE I A

BLOCK FLOW DIAGRAM

FOR BARONIA OIL FIELD AND B-12 GAS FIELD GAS UTILIZATION - CASE I A

* Note: B-12 field gas backs up just in case of shut down or drop below 41 MMSCFD of Baronia associated gas production to supply the gas continuously to the fertilizer plant for 20 years.

FIG. 14-5-3 (Vol. IV)

FACILITIES ARRANGEMENT

FOR BARONIA OIL FIELD AND B-12 GAS FIELD GAS UTILIZATION - CASE I B

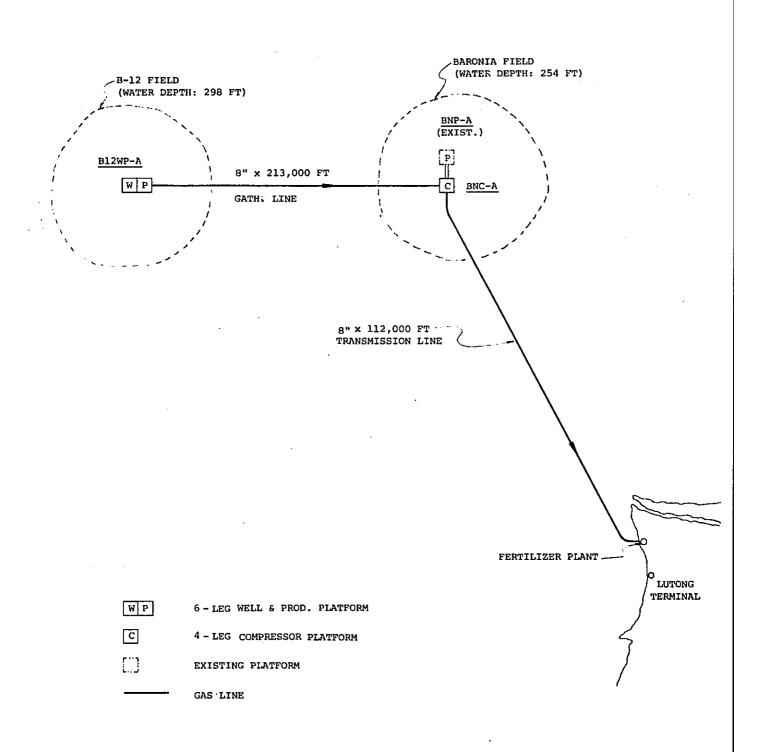
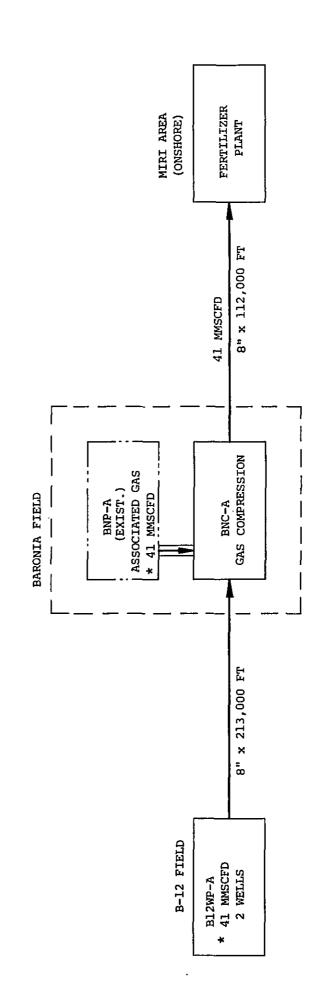
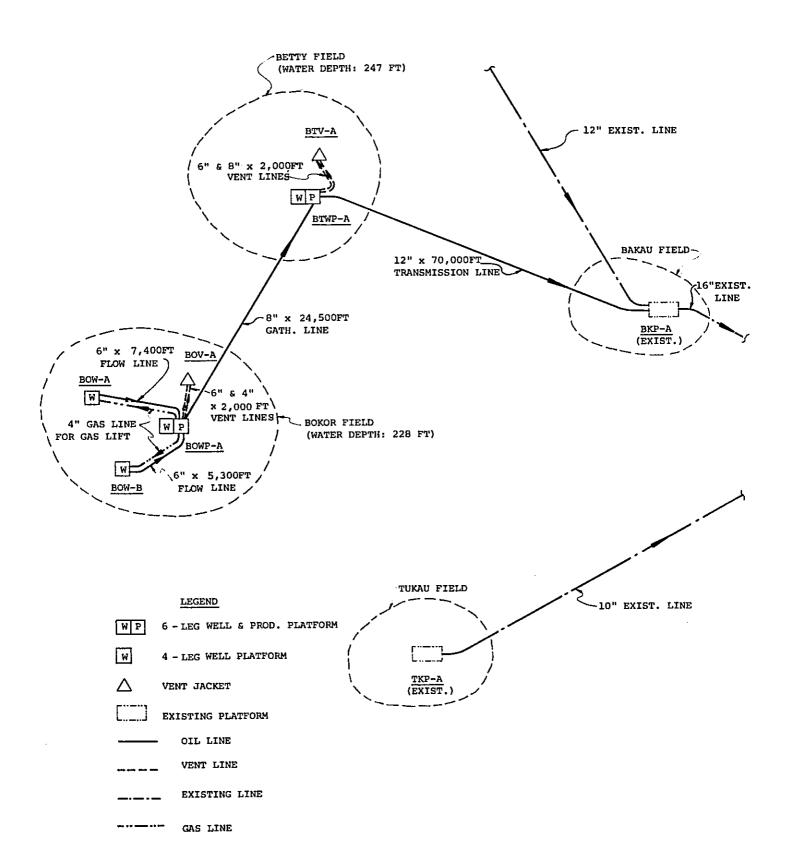



FIG. 14-5-4 (Vol. IV) BLOCK FLOW DIAGRAM

FOR BARONIA OIL FIELD AND B-12 GAS FIELD GAS UTILIZATION - CASE I B



* Note: B-12 field gas backs up just in case of shut down or drop below 41 MMSCFD of Baronia associated gas production to supply the gas continuously to the fertilizer plant for 20 years.

PROJECT SCHEDULE

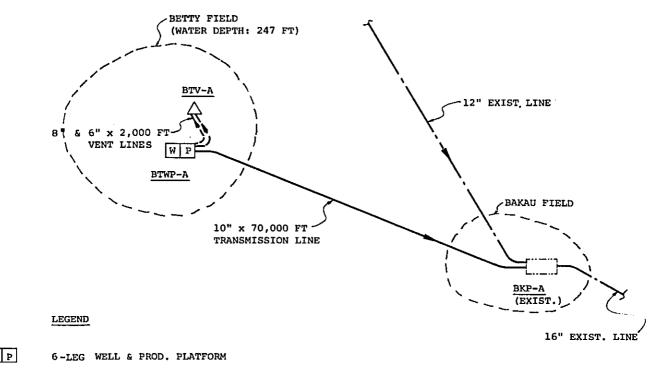

BARONIA OIL FIELD AND B-12 GAS FIELD GAS UTILIZATION CASE I A 67891011212345678910112 2nd 1 2 3 4 5 16"x112,000' 2 Wells 8"x213,000' 4-leg 6-1eg Year Submarine Pipeline Submarine Pipeline Well & Production Development Well Riser Platform 1. Engineering 4. Start - up Platform 2. Baronia Item 3. B-12

FIG. 15-5-1 (Vol. IV) FACILITIES ARRANGEMENT FOR BETTY AND BOKOR OIL FIELDS - CASE I

BAKAU (EXISTING) BKP-A (EXISTING) (EXISTING) WLP-A BNP-A .. Z T .. 9 T 12" x 70,000FT 21,000BPD FOR BETTY AND BOKOR OIL FIELDS - CASE FIG, 15-5-2 (Vol. IV) BETTY FIELD BTWP-A 16,000 BPD 10 WELLS BLOCK FLOW DIAGRAM 8" x 24,500FT 5,000BPD 4" x 5,300 FT 4" x 7,400 FT BOKOR FIELD BOWP-A 5,000 BPD GYS FINE 3 WELLS 3 WELLS 2 WELLS BOW-A BOW-B 6" x 7,400FT 6" x 5,300FT I,875BPD I,250BPD

FIG. 15-5-3 (Vol. IV) FACILITIES ARRANGEMENT FOR BETTY AND BOKOR OIL FIELDS-CASE II

LEGEND

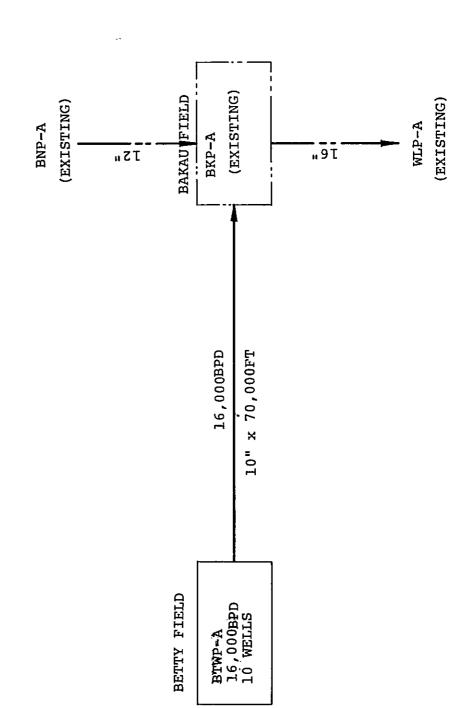
16" EXIST. LIN

WP 6-LEG WELL & PROD. PLATFORM

VENT JACKET

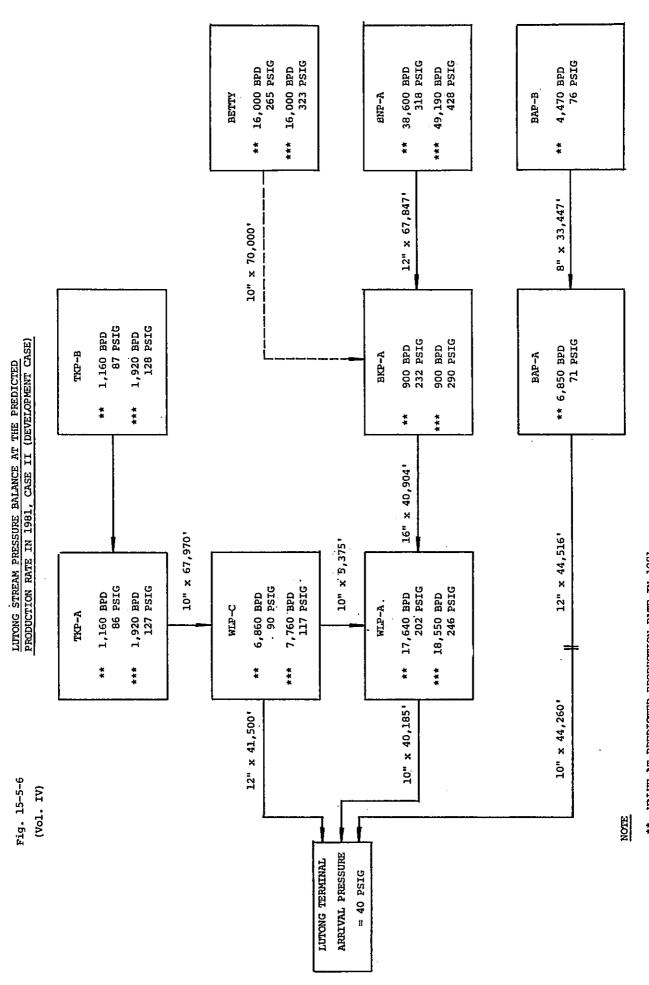
EXISTING PLATFORM

OIL LINE


VENT LINE

TUKAU FIELD

TKP-A
(EXIST.)


FIG. 15-5-4 (Vol., IV)

BLOCK FLOW DIAGRAM FOR BETTY AND BOKOR OIL FIELDS - CASE II

** VALUE OF THE PREDICTED FRODUCTION RATE IN 1981
*** VALUE OF THE PREDICTED PRODUCTION RATE OF ADDITIONAL WELL CASE

NOTE

** VALUE AT PREDICTED PRODUCTION RATE IN 1981
*** VALUE AT PREDICTED PRODUCTION RATE OF ADDITIONAL WELL CASE

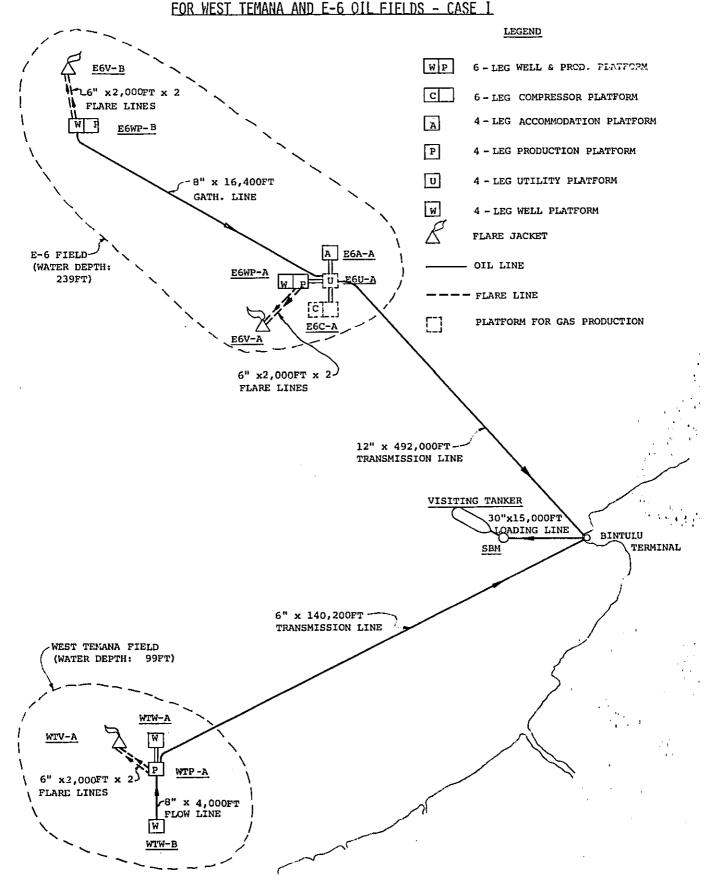
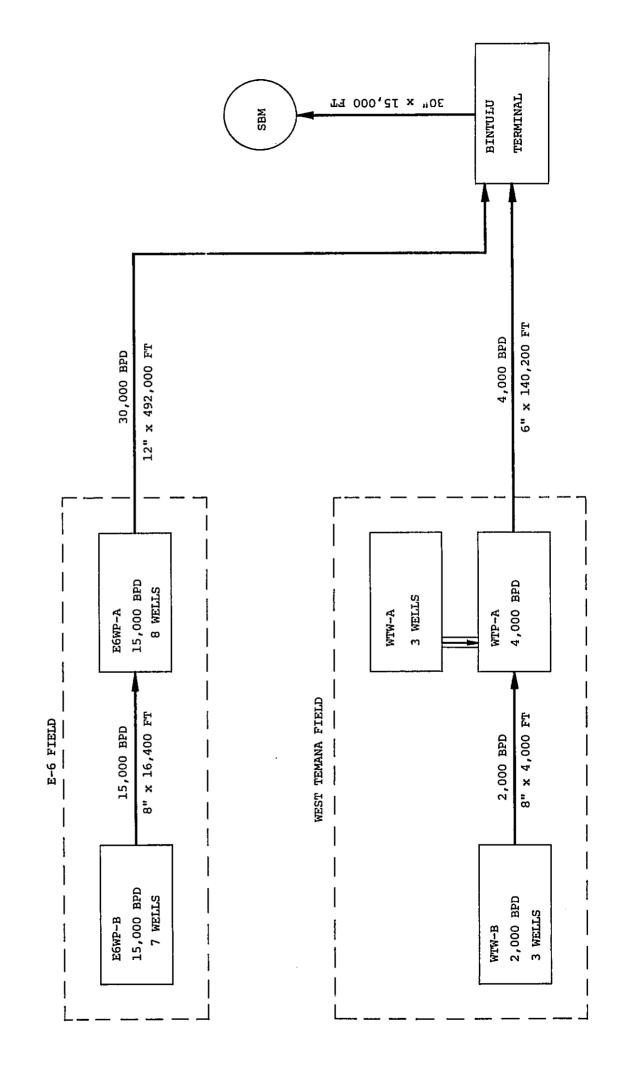

1,160 BPD 76 PSIG 1,920 BPD 108 PSIG 4,470 BPD 76 PSIG ** 38,600 BPD 249 PSIG *** 49,190 BPD . 355 PSIG BNP-A BAP-B TKP-B * *** ** 12" x 67,847" 10" x 3,000' 900 BPD 163 PSIG 900 BPD 217 PSIG ** 6,850 BPD 71 PSIG 75 PSIG *** 1,920 BPD 107 PSIG ** 1,160 BPD TKP-A BKP-A. BAP-A ** * 16" x 40,904' 10" x 67,970" 12" x 44,516' 7,760 BPD 97 PSIG ** 6,860 BPD 74 PSIG ** 17,640 BPD 145 PSIG *** 18,550 BPD 189 PSIG WLP-A WLP-C ** 10" x 44,260" 12" x 41,500' 10" x 40;185" NOTE *** ARRIVAL PRESSURE LUTONG TERMINAL = 40 PSIG

Fig. 15-5-7 LUTONG STREAM PRESSURE BALANCE AT THE PREDICTED PRODUCTION RATE IN 1981, EXISTING FIELDS CASE (Vol. IV)

VALUE AT PREDICTED PRODUCTION RATE IN 1981 VALUE AT PREDICTED PRODUCTION RATE OF ADDITIONAL WELL CASE

Year				lst				~	2nd					3rd								
Item		1 2	3 4 5	9	7 8 9	10 11 12	1 2 3	4 5	6 7 8	8 9 10	101 12	1 2	3 4	5 6 7	8	1011	12	·				
				 			"															
1. Engineering				 																		
																						
2. Betty				 																		
Development Well	10 Wells			-					 							_ -						
				 															-		 	
Well & Production	6-1eg				1				- - - -													
platform		_		_								+										
										_		-	_				-					
Vent Jacket	3-1eg								 -	-												
						- 																
Submarine Pipeline	10"x70,000'								j	-					_			<u>.</u> .				
	8"x2,000"											ļ			-							
	6"x2,000		<u> </u>	<u> </u>			: 	_	 				_	_			_					
														_						· ·		
3. Start - up													_									
		_																		· -	•	
					-														·-··			
								_		_												
									- 					<u> </u>				·	- :			
					-					-							•		 			
						_	 			_		_										
						- ,- 																
															_	-						
																						
															!					-		
													_									
													_								-	
																				:-		
			·				_		 ;				_		_							
	-																					
													l									l


FIG. 16-5-1 (Vol. IV) FACILITIES ARRANGEMENT

EIG, 16-5-2 (Vol. IV)

FOR WEST TEMANA AND E-6 OIL FIELDS-CASE I

BLOCK FLOW DIAGRAM

FIG. 16-5-3 (Vol., IV) FACILITIES ARRANGEMENT FOR WEST TEMANA AND E-6 OIL FIELDS - CASE II A

LEGEND

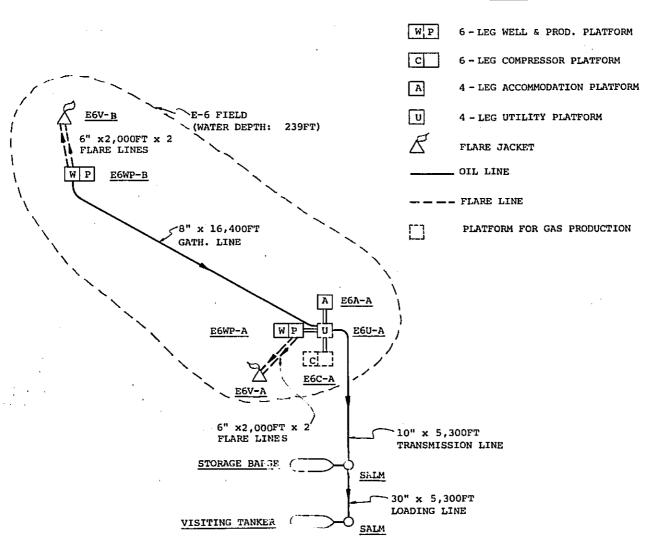
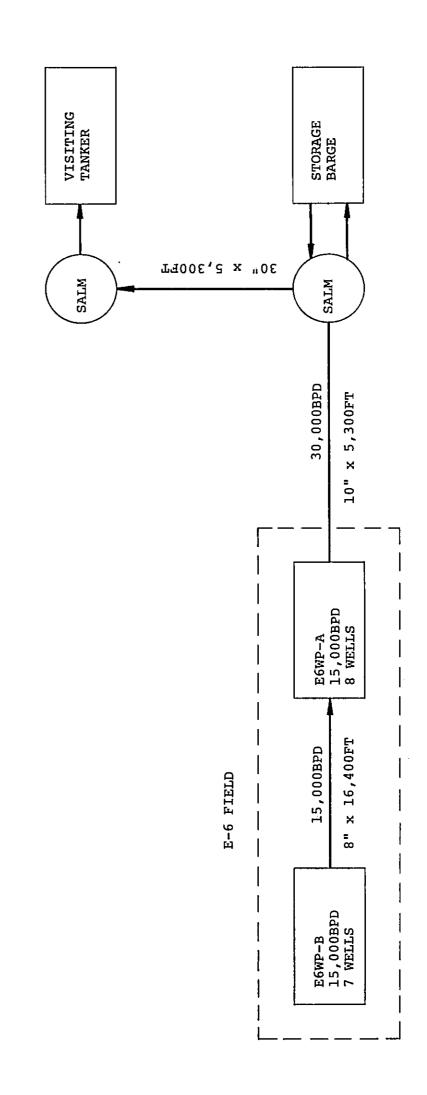



FIG. 16-5-4 (Vol. IV)

BLOCK FLOW DIAGRAM

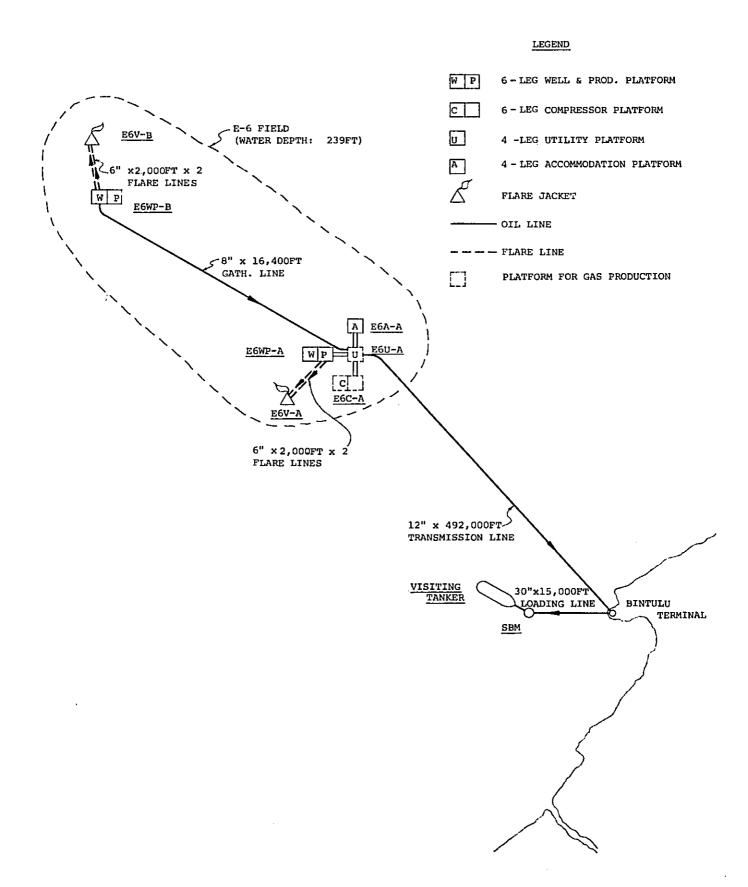
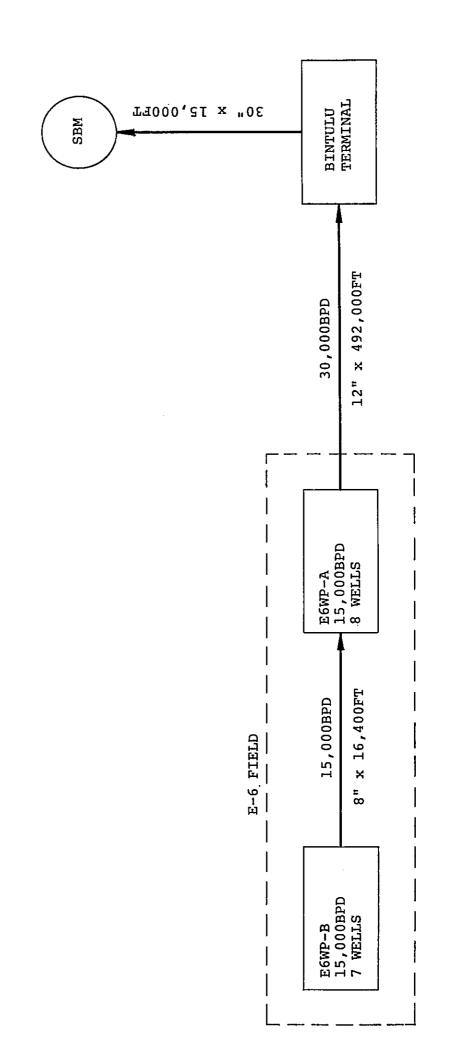
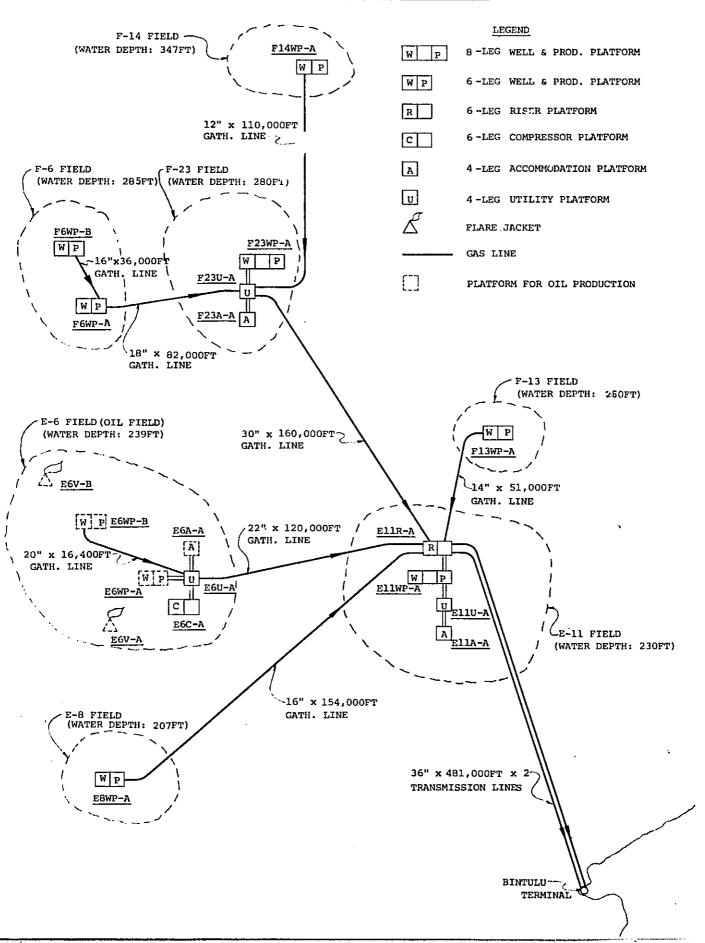

FOR WEST TEMANA AND E-6 FIELDS - CASE II A

FIG. 16-5-5 (Vol IV)

FACILITIES ARRANGEMENT


FOR WEST TEMANA AND E-6 OIL FIELDS - CASE II B

EIG. 16-5-6 (Vol. IV)


BLOCK FLOW DIAGRAM

FOR WEST TEMANA AND E-6 OIL FIELDS - CASF II B

Year				lst			_		2nd			\vdash		3rd	g							.
Item	•	1 2	3 4 5	67	8	101112	2 1 2	3 4	5 6 7	6 8 7	1.01	12 21	2 3	4 5 6	7 8	01 6	101112					
		·#	-	 		-	•															
1. Engineering		#				-	-							-	_						_	
				_		 -	<u> </u>						_									
2. E-6		<u> </u>					_		_												_	
Development Well	15 Wells	 		_						1.		-		1		$oldsymbol{\mathbb{L}}$				<u></u>		
		-		-		-			_													
Well & Production	6-leg x 2		-	_		- -	 			 - - - -	H		-		_							
Platform			F			-	_		-	_			F	_								
		 -	 					_														
Flare Jacket	3-leg x 2	-		-		-					\prod	-	F		_		_		 		. •	
			<u> </u>			 -				<u> </u>				-			_					
Accommodation Platform	4-leg	-	 -	_		-		1	#	-		T		<u></u>								
			_	_		<u> </u>				<u></u>						<u> </u>		 	_			
Submarine Pipeline	12"x492,000"	<u> </u>		_		_	<u> </u>					H		#	+					i		
	8" x 16,400"		_						_	_			-	-								
9	6"x2,000'x4	-	_						_								_					
				_		 	<u> </u>															
3. Onshore Terminal 6					_				· .	_												
Loading Facilities		-	 -	_			_	<u> </u>	F								_		_			
		-													· 							~ ·
4. Support Facilities		-	_	<u> </u>	1															 		
		-	-						F			E	F									
א אידי די						-	_			_							1					
		<u> </u>	_							_			_	_								
		_	- -	_		 -	_		-	_				<u> </u>							• • • • •	
		<u> </u>		_			_			_			_									
		_		<u> </u>									-									
									 -	-				_								
				_						_												
							_		_	_								_				
		F		_			-															
		-		<u> </u>					_	-												
		_								_					<u> </u>							
		1]					-]										

FIG. 17-5-1 (Vol. IV) FACILITIES ARRANGEMENT FOR CENTRAL LUCONIA GAS FIELDS- CASE I A

ONSHORE GAS PLANT BINTULU | TERMINAL |-36"x481,000FTx2 E-8 FIELD E8WP-A 70 MMSCFD EllWP-A 230 MMSCFD F-13 FIELD F13WP-A 80 MMSCFD 16" x 154,000 FT 14"x51,000 FT E-11 FIELD 22"x120,000 FT 30"x160,000FT E6WP-A ASSOCIATED GAS E6C-A GAS COMPRESSION F23WP-A 350 MMSCFD F-14 FIELD F14WP-A 60 MMSCFD F-23 FIELD 12"x110,000 FT 18"x82,000FT E-6 FIELD (OIL FIELD) 20"x16,400 FT GAS F6WP-B 120 MMSCFD F6WP-A 120 MMSCFD E6WP-B ASSOCIATED F-6 FIELD 16"x36,000 FT

EIG. 17-5-2 (Vol. IV)

BLOCK FLOW DIAGRAM

FOR CENTRAL LUCONIA GAS FIELDS- CASE I A

FIG. 17-5-3 (Vol. IV)

FACILITIES ARRANGEMENT

FOR CENTRAL LUCONIA GAS FIELDS- CASE IB

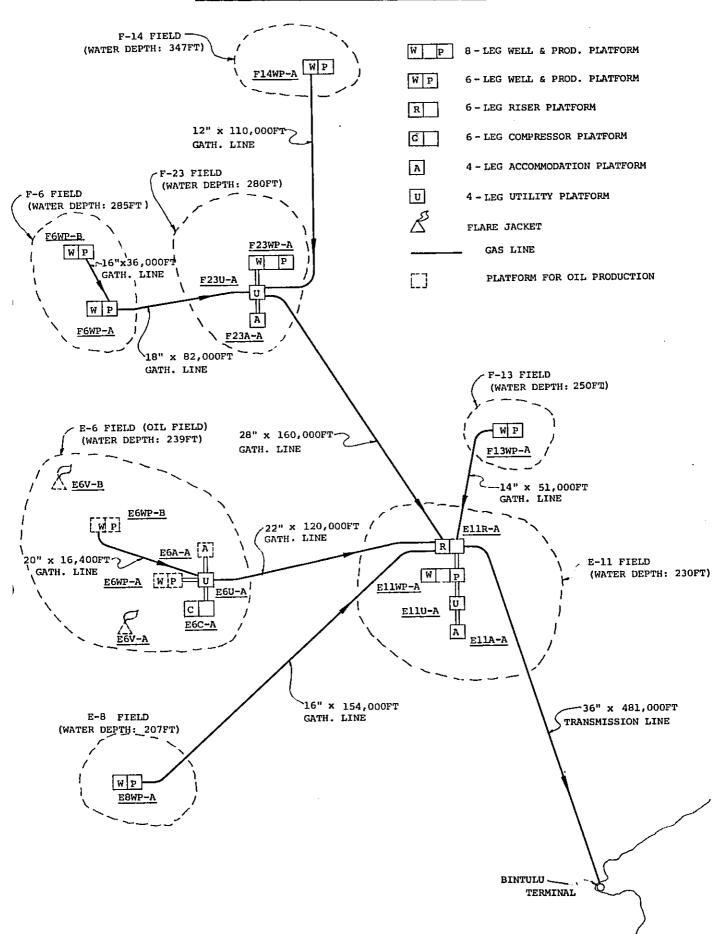
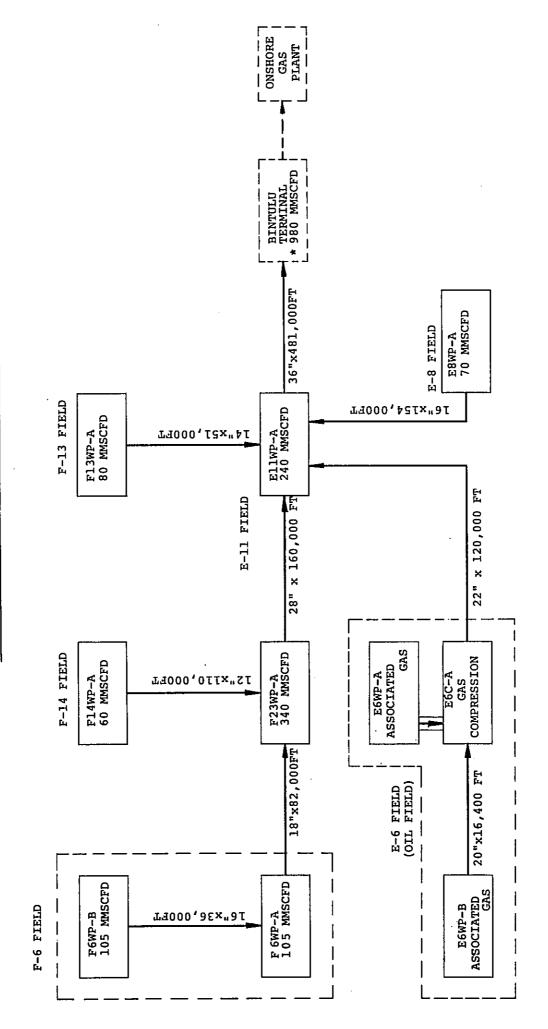



FIG. 17-5-4 (Vol. IV) BLOCK FLOW DIAGRAM

FOR CENTRAL LUCONIA WAS FIELDS- CASE IB

* Note: Total deliverability (1,000 MMSCFD) consists of net deliverability (980 MMSCFD) and fuel comsumption (20 MMSCFD).

FIG. 17-5-5 (Vol. IV) FACILITIES ARRANGEMENT FOR CENTRAL LUCONIA GAS FIELDS - CASE IC

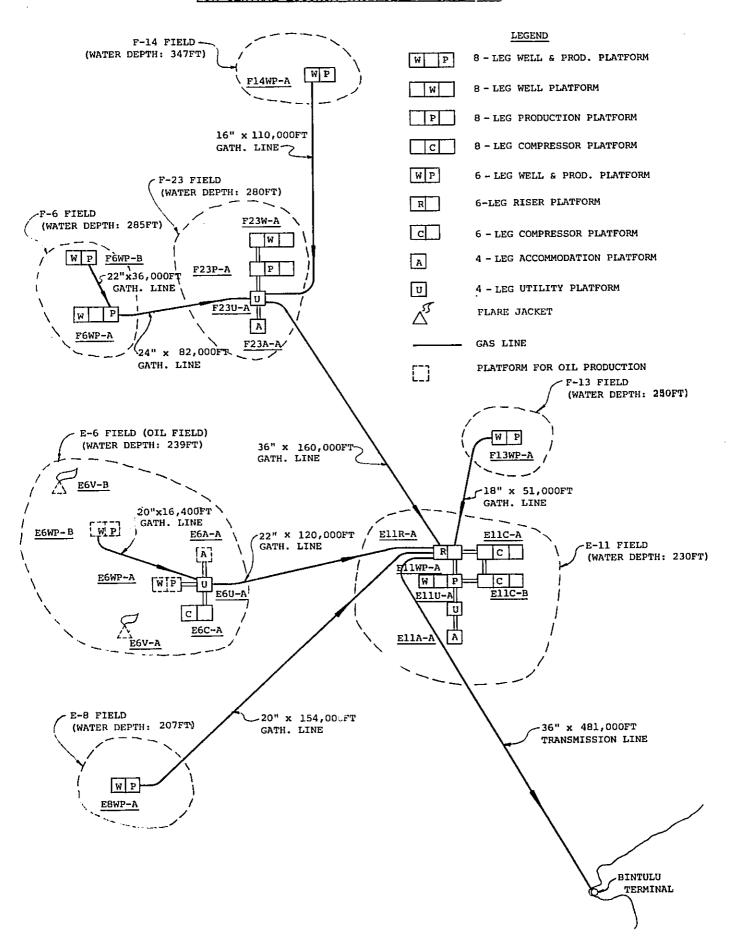
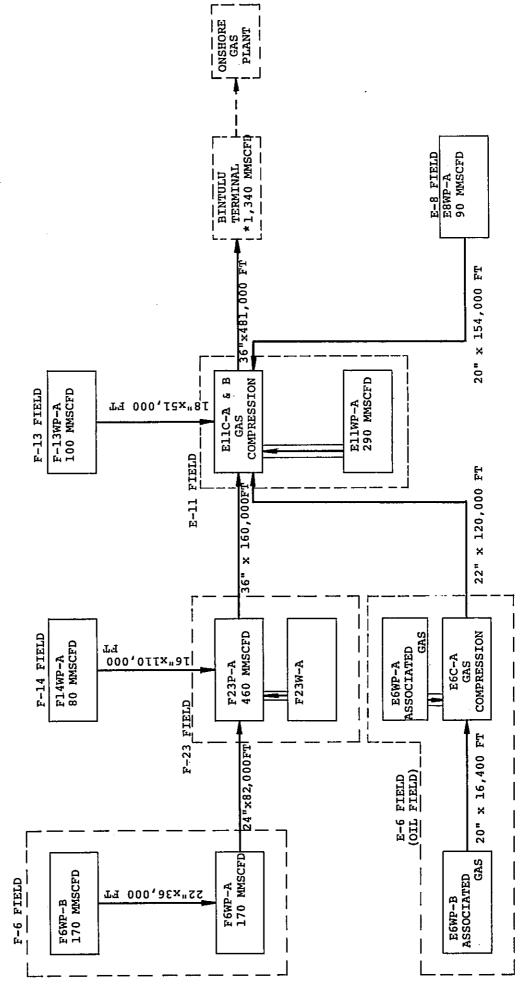
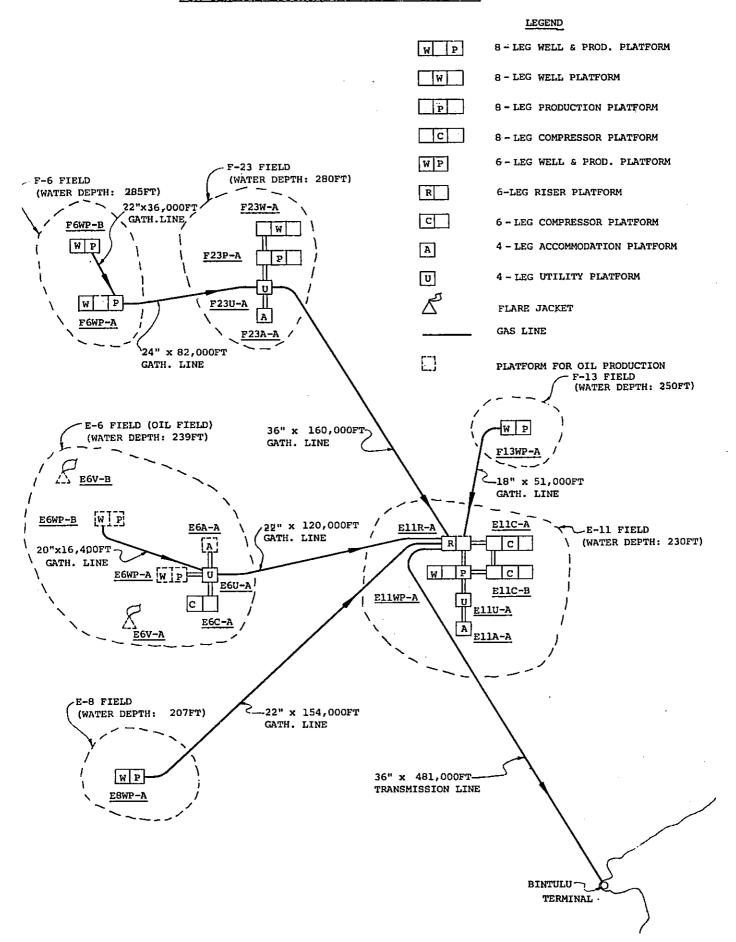
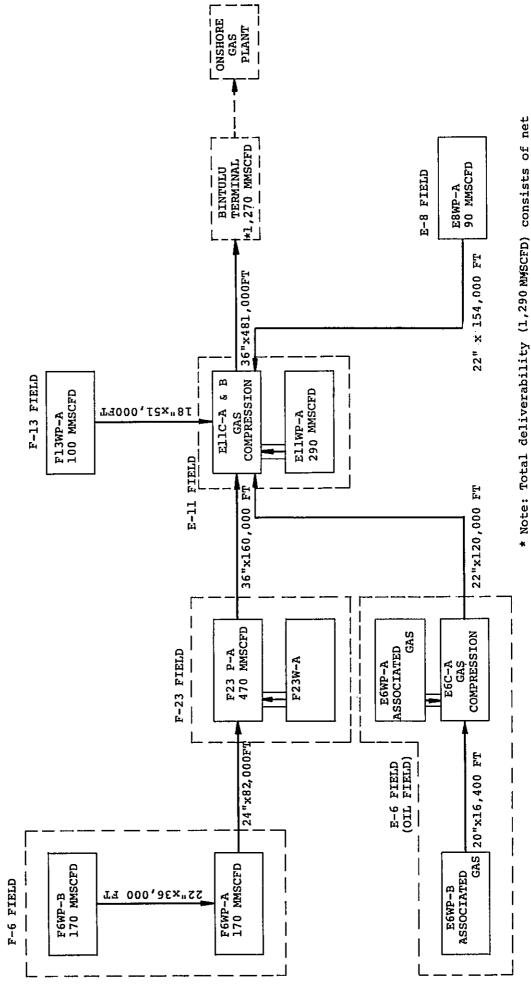



FIG. 17-5-6 (Vol. IV) BLOCK FLOW DIAGRAM

FOR CENTRAL LUCONIA GAS FIELDS- CASE IC



*Note: Total deliverability (1,360 MMSCFD) consists of net deliverability (1,340 MMSCFD) and fuel consumption (20 MMSCFD)


FIG. 17-5-7 (Vol. IV)

FACILITIES ARRANGEMENT

FOR CENTRAL LUCONIA GAS FIELDS- CASE II

FOR CENTRAL LUCONIA GAS FIELDS- CASE II FIG. 17-5-8 (Vol. IV) BLOCK FLOW DIAGRAM

* Note: Total deliverability (1,290 MMSCFD) consists of net deliverability and fuel consumption (20 MMSCFD).

FIG. 17-5-9 (Vol. IV)

FACILITIES ARRANGEMENT

FOR CENTRAL LUCONIA GAS FIELDS- CASE III

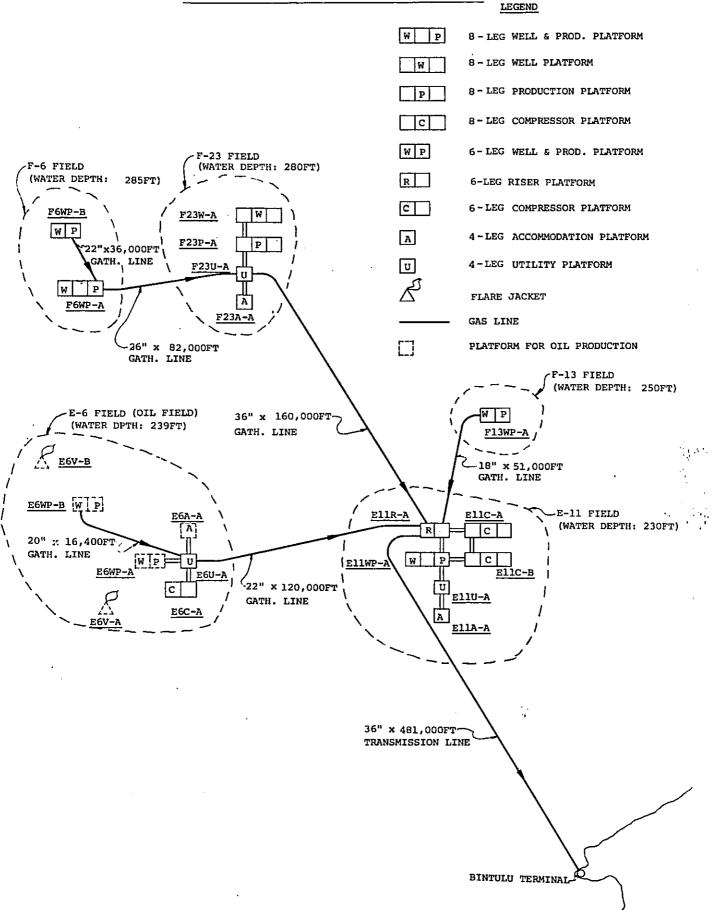
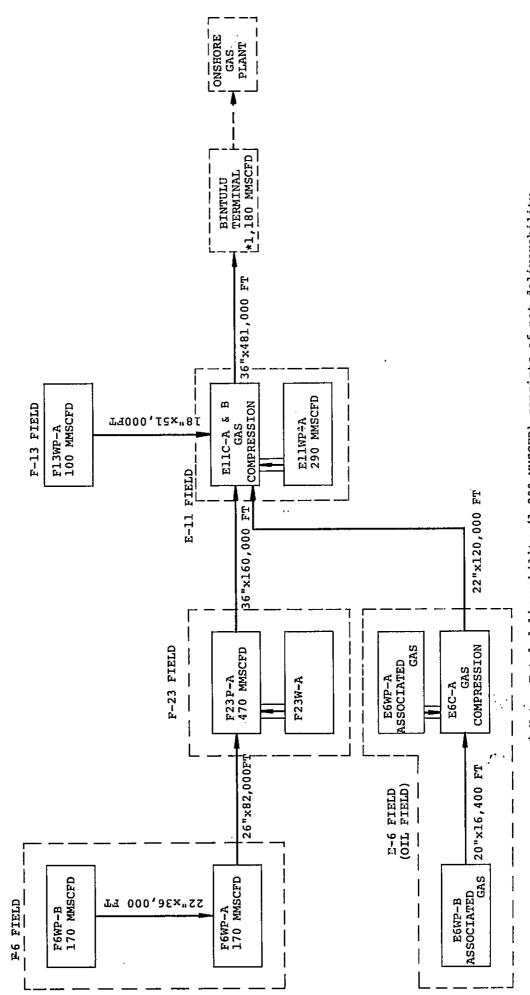



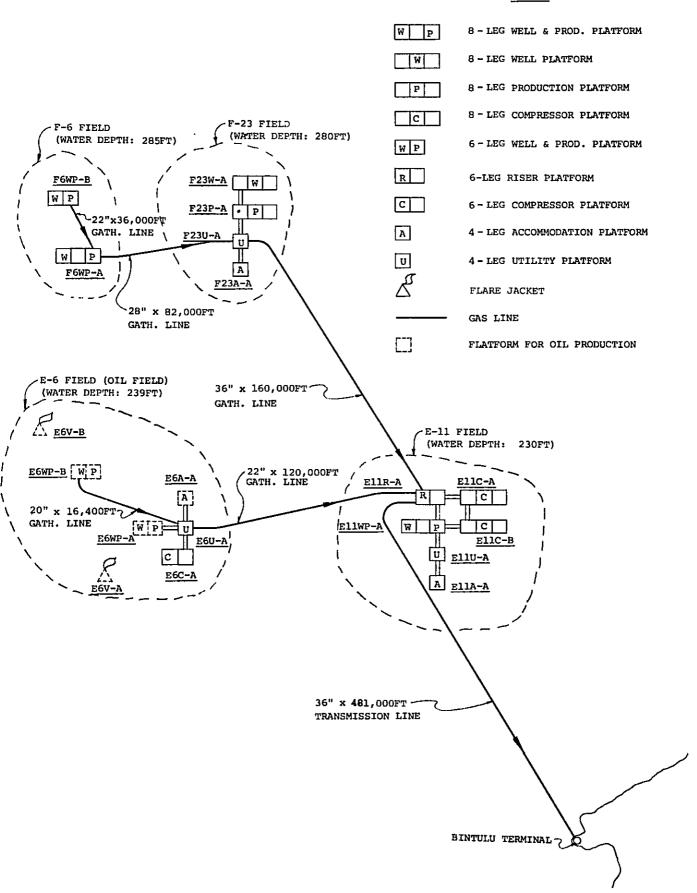
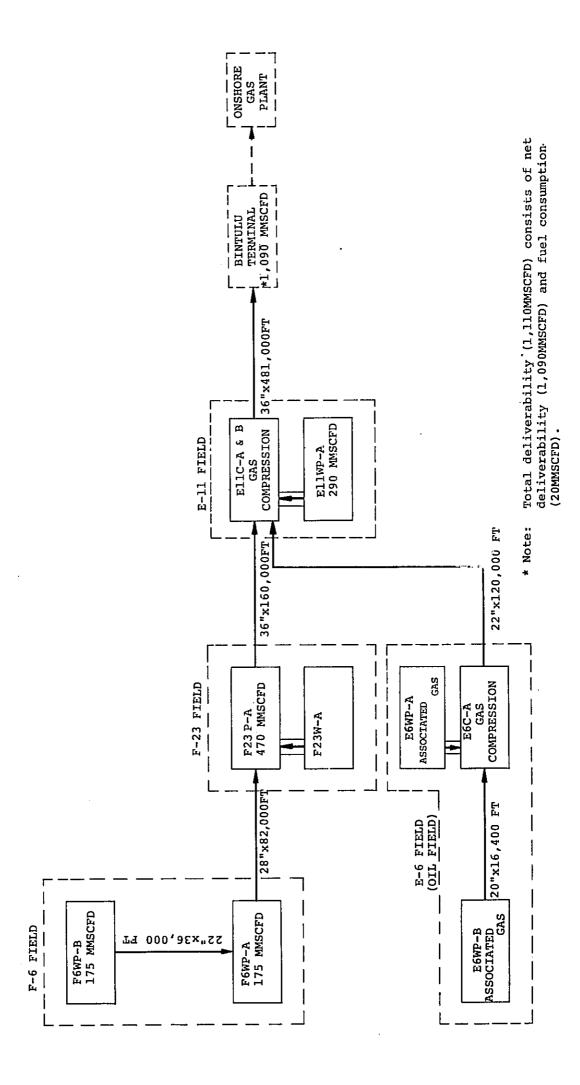
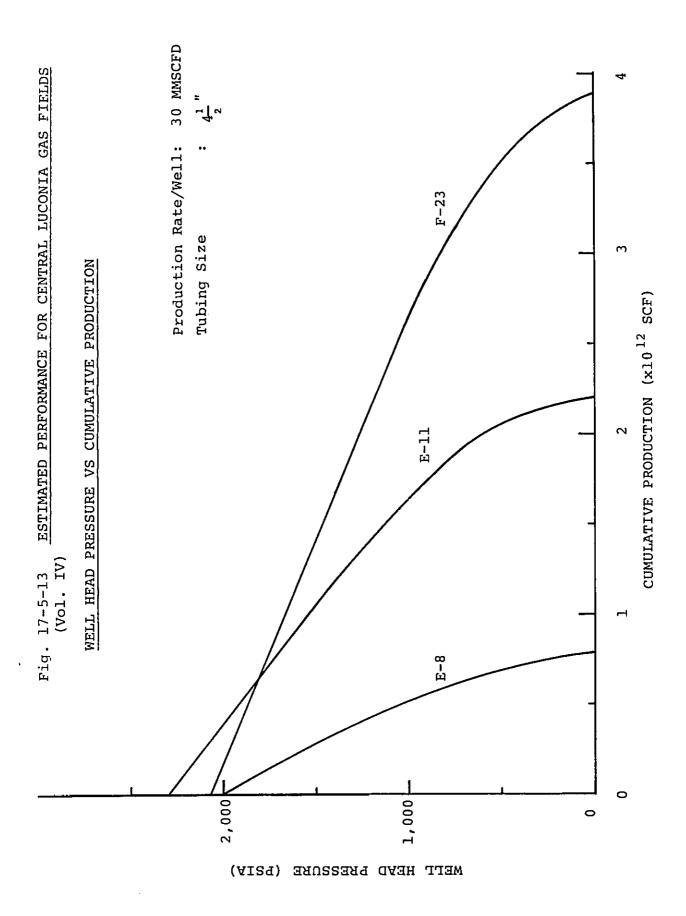
FIG. 17-5-10 (Vol. IV) BLOCK FLOW DIAGRAM

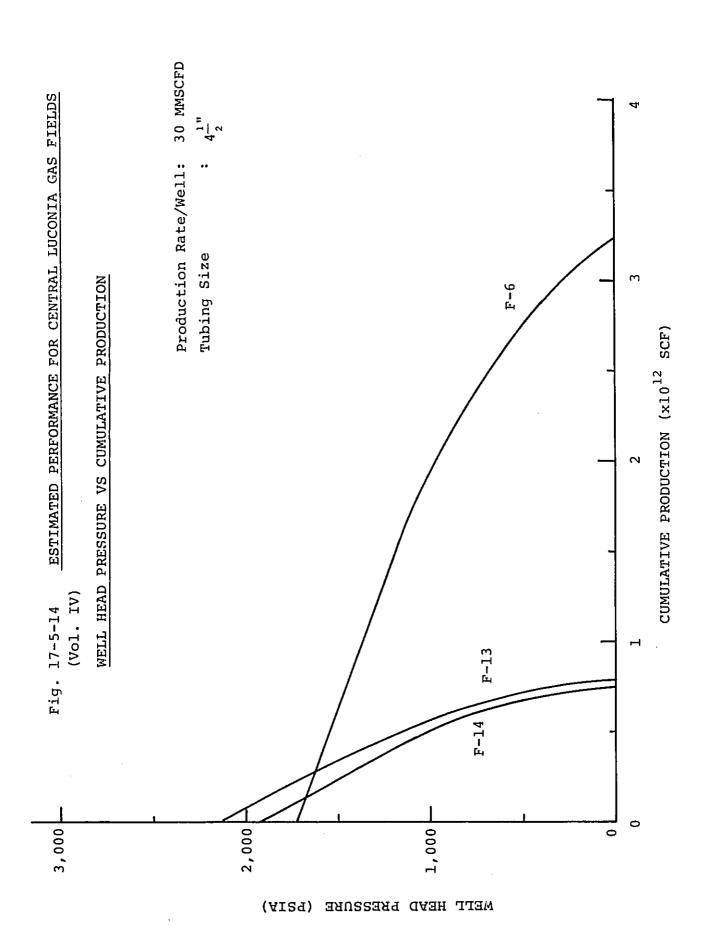
FOR CENTRAL LUCONIA GAS FIELDS- CASE III

* Note: Total deliverability (1,200 MMSCFD) consists of net deliverability (1,180 MMSCFD) and fuel consumption (20 MMSCFD).

FIG. 17-5-11 (Vol. IV) FACILITIES ARRANGEMENT FOR CENTRAL LUCONIA GAS FIELDS- CASE IV

LEGEND


FIG. 17-5-12 (Vol. IV)

BLOCK FLOW DIAGRAM

FOR CENTRAL LUCONIA GAS FIELDS- CASE IV

Vear				lst	۳			-		"	2nd			-			3rd					1		13th			Г
Item		1 2	3 4	5 6	7 8	6	10111	12 1	2 3	4 5	6 7	8	101	12	1 2	3 4	5 6	7 8	6	1011	12						
								"		_			-													-	
1. Engineering					-																	-	_				
																			_							_	
2. E-11					_																						
Development Well	11 Wells								1	-	-	1			—										,		
		-										_				_								.			
Well & Production	8-leg		H			1]-				 			_		<u> </u>	<u> </u>	 							
Platform												_	_				_	<u> </u>	_							-	
																			<u>.</u>								
Riser Platform	6-leg				1					T		_	_														
										_								_									
Compressor Platform	8-leg x 2			1	-	1		-		-	-				_	_										*	
																		_									
Utility Platform	4-leg	_			_	-I- 			1.	J.	-	1		_				_			_					'	
								_										_									
Accommodation Platform	4-1eg	_								-[_		_				_				
		_			_	_														_		_					,
Submarine Pipeline	36"x481,0001							1	_	1	+	1												-		- -	
																	_										
3. F-13		_			_		 											<u></u>									
Development Well	4 Wells					_												-			;						
					_		<u> </u>				_															-	
Well & Production	6-leg					_															_				_		
Platform													_	_	_	_	_	_		_		_		_			
																_											
Submarine Pipeline	18" × 51,000'											_				1	T		_								
						_			-																		
4. E-8																										-	
Development Well	4 Wells						·-											1	1	\mathbf{I}^{\dagger}							
													_			_		_	_	_							
Well & Produciton	6-leg	\neg		\exists	\exists	\exists					-	- 	#	#	T		\dashv	_			_						. 1
Platform		=					_								_												
												_						_		_		-	. —			-	
]

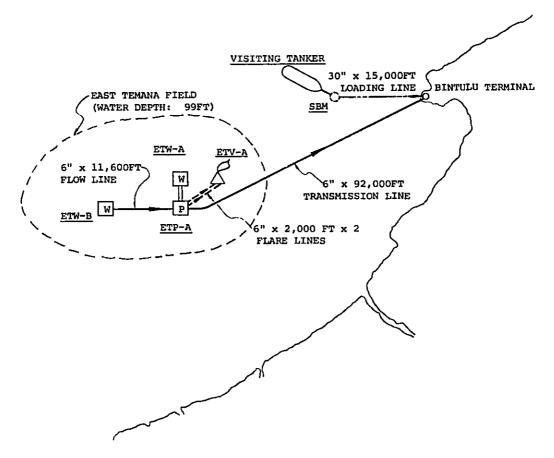
PROJECT SCHEDULE (Cont'd)

													ľ		l				ſ					İ	Γ
Year				1st	<u>.</u>	}	1	}	.	Snd 2nd		ļ	-	ŀ	ŀ	3rd		F			-	13th	<u>ا</u>		T
Item		1 2	3 4	5 6	7 8	9 101	1112	1 2 3	3 4	5 6 7	7 8	9 1011	12	1 2	3 4	5 6	7 8	1016	11 12		-	-			
																							_		
Submarine Pipeline	20"×154,000												+		1	T									
		_	_															_					-		
5. F-23													-		_			_							
Development Well	17 Wells							- -	1			-	+	-	Ŧ			-							
				-			<u> </u>		 					_	_	_							. <u>.</u>		
Well Platform	8-leg			-			 	-	- 1	<u> </u>							_						·•· · :		
				_			_	 		 	_		_		_	_									
Production Platform	8-leg		_	- -	 				1-	 						_									
						- -									_										
Utility Platform	4-leg				1.			- -	-	-								-			_				
			_		 			_																	
Accommodation Platform	4-1eg											_													
						 				•••	_														
Submarine Pipeline	36"×160,000								1	 	#	+	1										_		
														_											
6. F-6																		_		-					
Development Well	13 Wells													上	_										
																_	_								
Well & Production	8-leg					II		- -	-	1			T	-		_			_						
Platform											-			_	_										
	6-leg												1	7							 	 .,,			
						_														-				 ,	
Submarine Pipeline	24"x82,000'			<u> </u>		<u> </u>	-						+	1											
	22"x36,000"														_						1				
				_																			-		
7. F-14																_		_					 .		
	3 Wells				· • • • • • • • • • • • • • • • • • • •				<u> </u>						_		1								
						- -			 			_	_												
Well & Production	6-leg						<u> </u>			_ L.	#	+	T	1	T	_									
Platform															_			-						-	
						<u> </u>		<u> </u>		_					_	_									
															_	_	_	_	_						_
	 																								ĺ

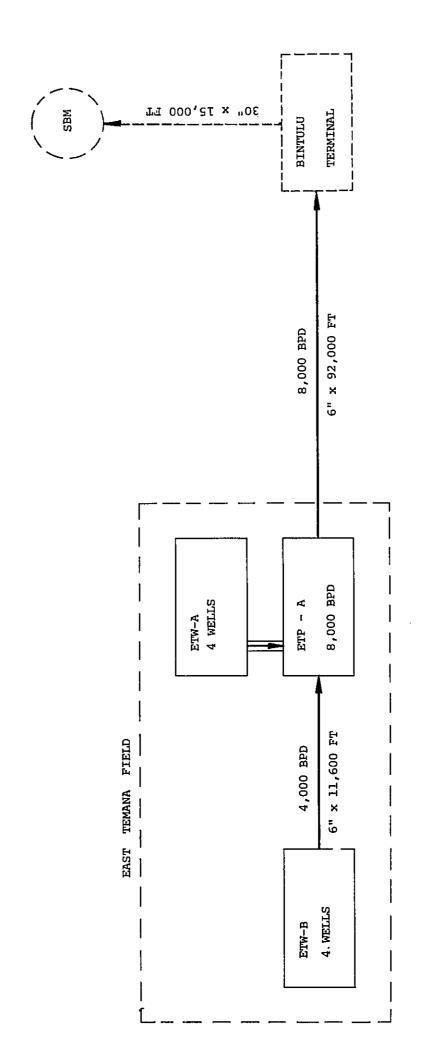
								-										_		-		-			-						-			
																	_			<u>-</u>				-				·	-					
13th			/- /·					-																										
~		-														-												• •						
														_															_					
														_	_										_									
Ŀ																	-																	
	101112							_							Ц.					. <u></u>						!	-	_						
.	101				•									\equiv		_													!					
	6												_		_			_	_	<u> </u>			-	\vdash								_		\blacksquare
	7 8								<u> </u>																									
3rd	5 6		-				_		ļ	_				<u> </u> -	-		_	<u> </u>	<u> </u>	-	 	-	<u> </u>				ļ	-	-			-		
	4		1														_																	
	m		\bot		_		_						-				<u> </u>	_	<u> </u>		_	 	_	ļ			ļ	-		<u> </u>	-			
L	1 2		_1_													╘																		
Ī	1 12				ļ.	<u> </u>		<u> </u>	-	- -		_	\prod	ļ. _	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	-	-	ļ			<u> </u>								\vdash
	1011				_		-						-								•	-		<u> </u>	_		_							
	6	<u> </u>					<u> </u>	<u> </u>	_		_		-	_	_	ļ				<u> </u>	ļ	_		_		L	ļ			ļ				
	7 8			\vdash	<u> </u>	-		-		L.			╁		-	-				 -		-		-	<u> </u>	_	 -		_					
2nd	9				-									_				1.	2		_	_		-		_	\vdash					-		
	4 5	-			-	╟┠	-	╂						┢	 		 	Ę			·	_					_					_		
1	m	<u> </u>	_				<u> </u>											2		<u> </u>		_		ļ	_					_	ļ			-
	1 2					-		-			-			-			_	renlacement				_	_	_		_		-				<u> </u>		
	10,112	ļ		Ŀ			ļ		ļ							_		- 4	<u> </u>	ļ	<u> </u>	Ţ		-		_		L			ļ	ļ		_
	급	<u>.</u>	•	ļ		-	-	╁╂	-			┝	╁	}		 		7			 	\vdash		-	 -		_							
	6	1					_										_	Year								ļ	ļ	[_				<u> </u>		
١.,	7 8	-	 -			┧┸╌	-	. _U	-	ļ			╁	┢	┢	 -	 	4	-		╁╌	十	-	├	┢	-	\vdash				<u> </u>	\vdash	-	
1st	9	#					_			_					_		_	<u> </u>		_			_	_			-					L		
	4 5			-	┝	-	 	-		-	-	-	-	-		-	 	1		-	-	╁╌		-	\vdash	╁	╁	-			\vdash			
	3				Ε.				-			匚					_	ě									\Box				ļ		_	
	1 2		<u> </u>	-	<u> </u>		\vdash	+-	+	_		<u> </u>								<u> </u>	<u> </u>		<u> </u>					\vdash			上		上	
			16"×110,000			6-1eq	1	4-1eg		22"×120,000'	20"x16,400'							* Investment on the 13																
2000	Item		Submarine Pipeline		8. E-6	Compressor Platform		ntility Platform		Submarine Pipeline			. 9 Omshore Facilities		11110	dn = Tare 701																		

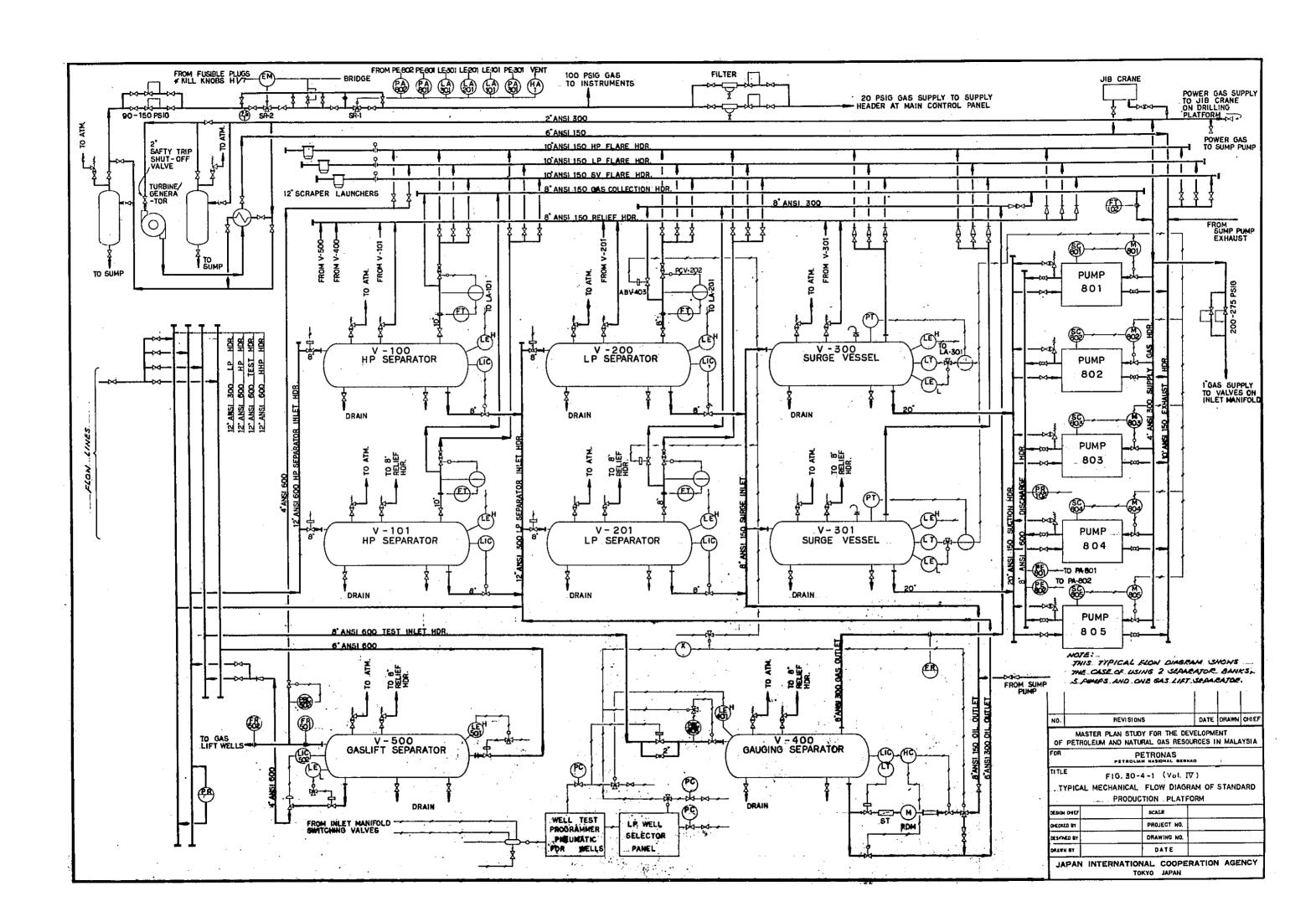
FIG. 18-5-1 (Vol. IV) FACILITIES ARRANGEMENT FOR EAST TEMANA OIL FIELD

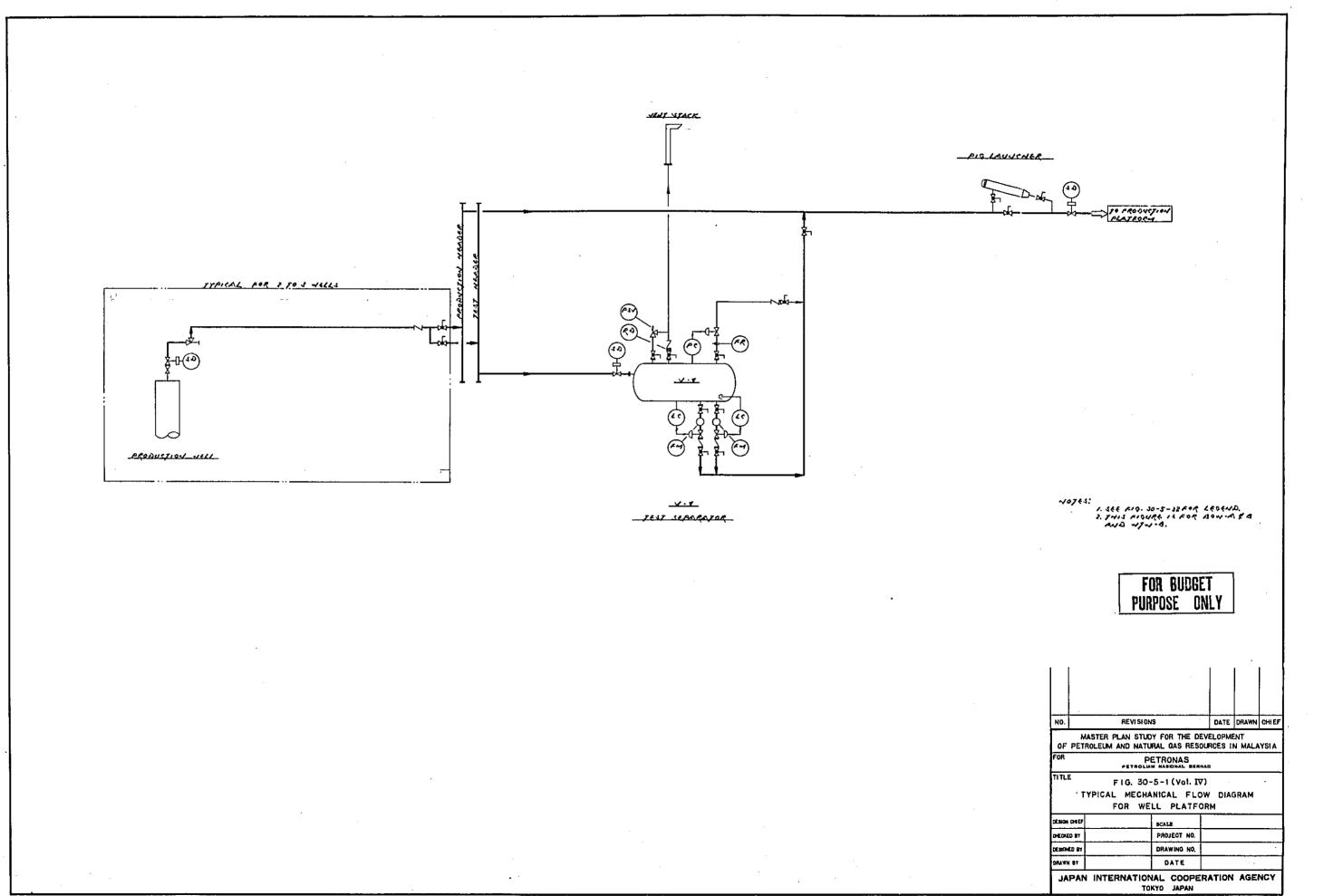
LEGEND

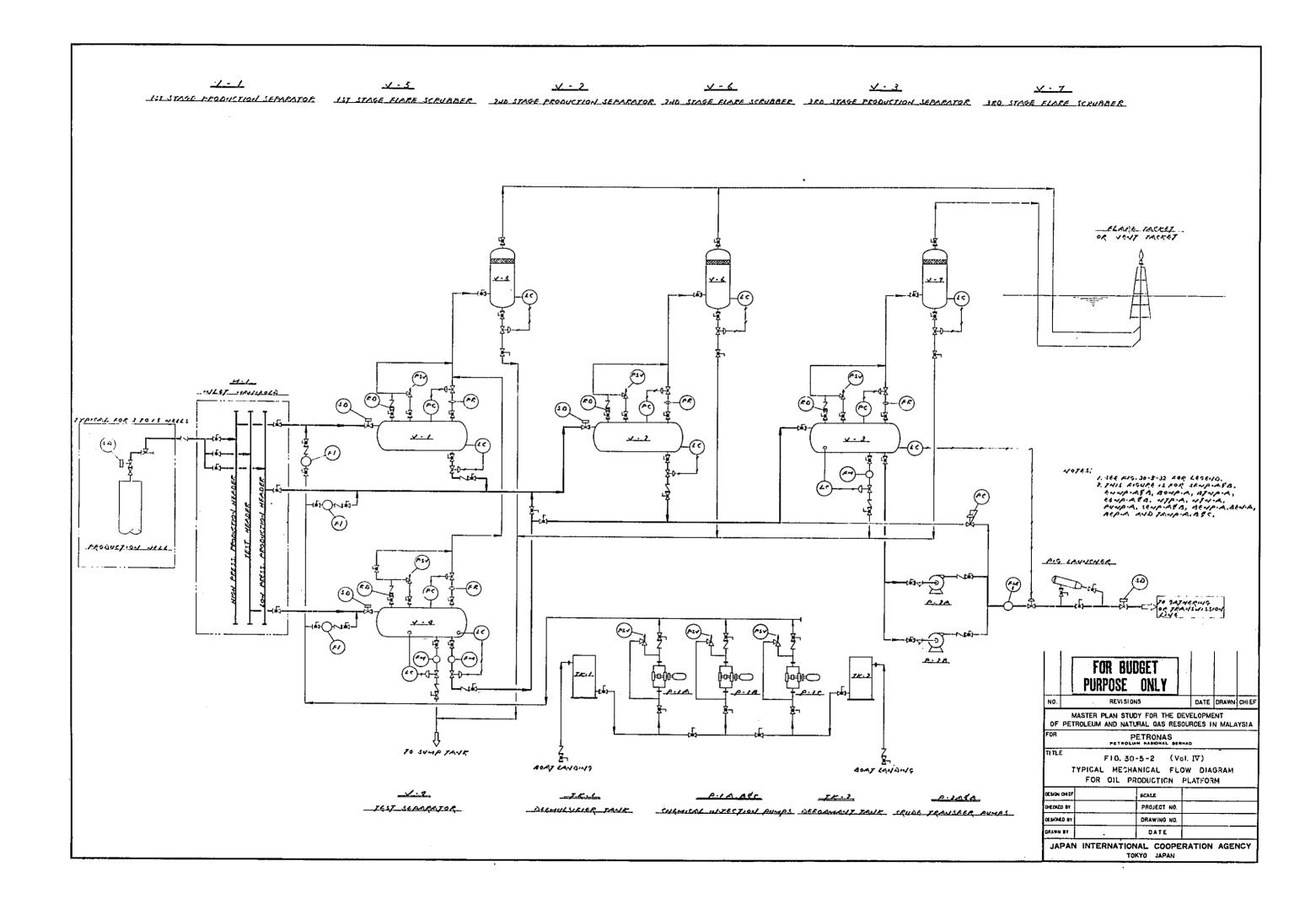

W 4 - LEG WELL PLATFORM

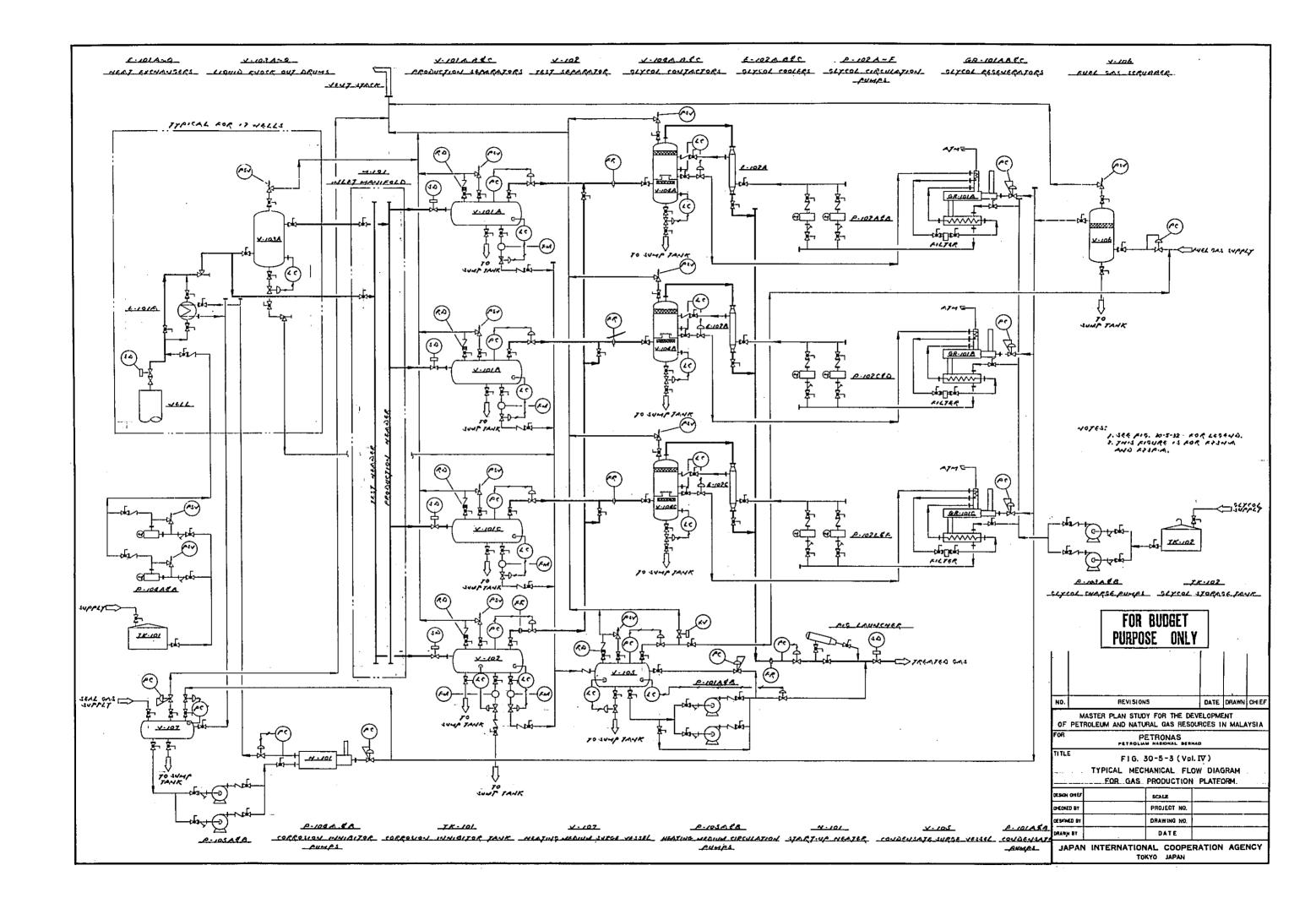
P 4 - LEG PROD. PLATFORM

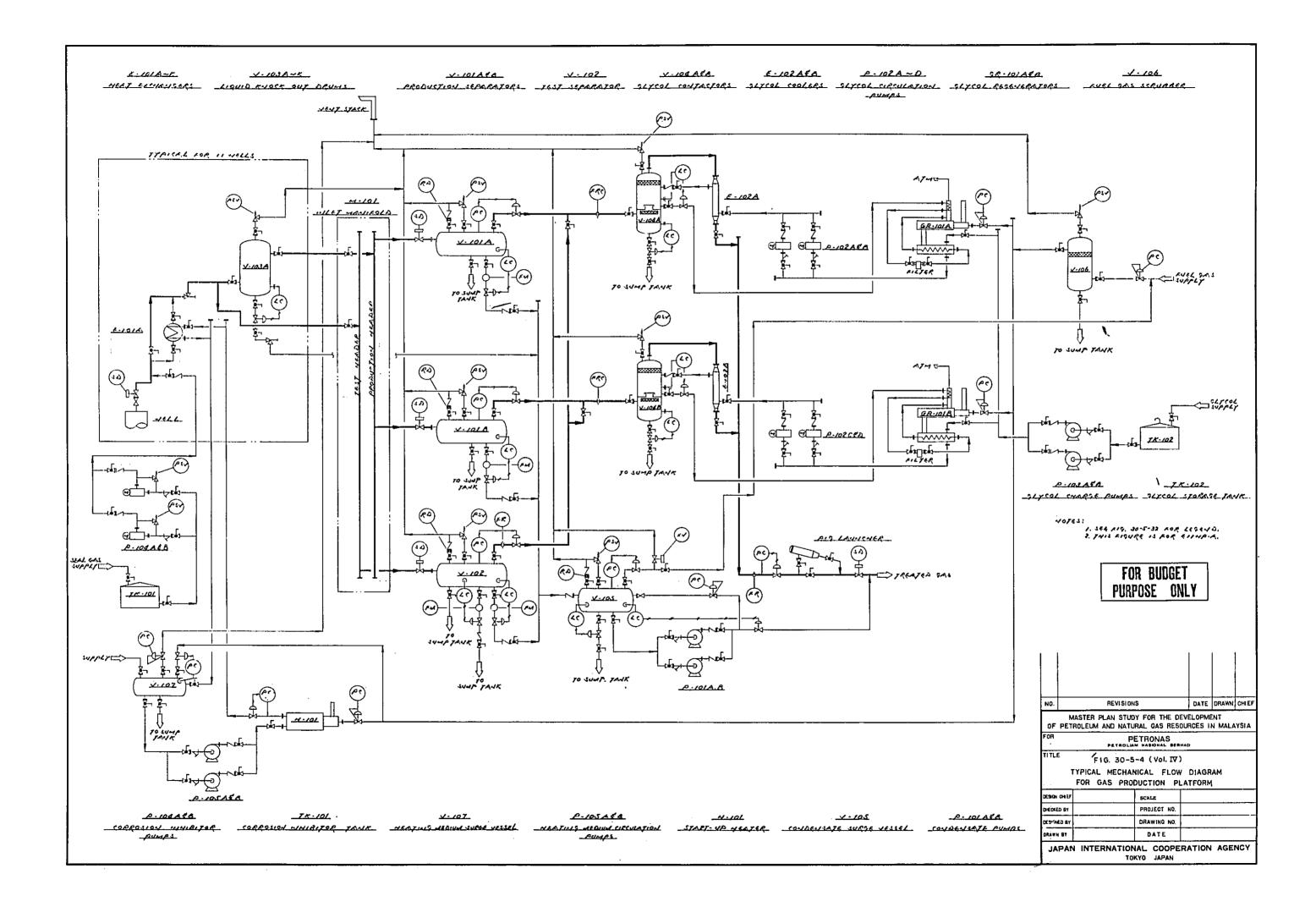

FLARE JACKET

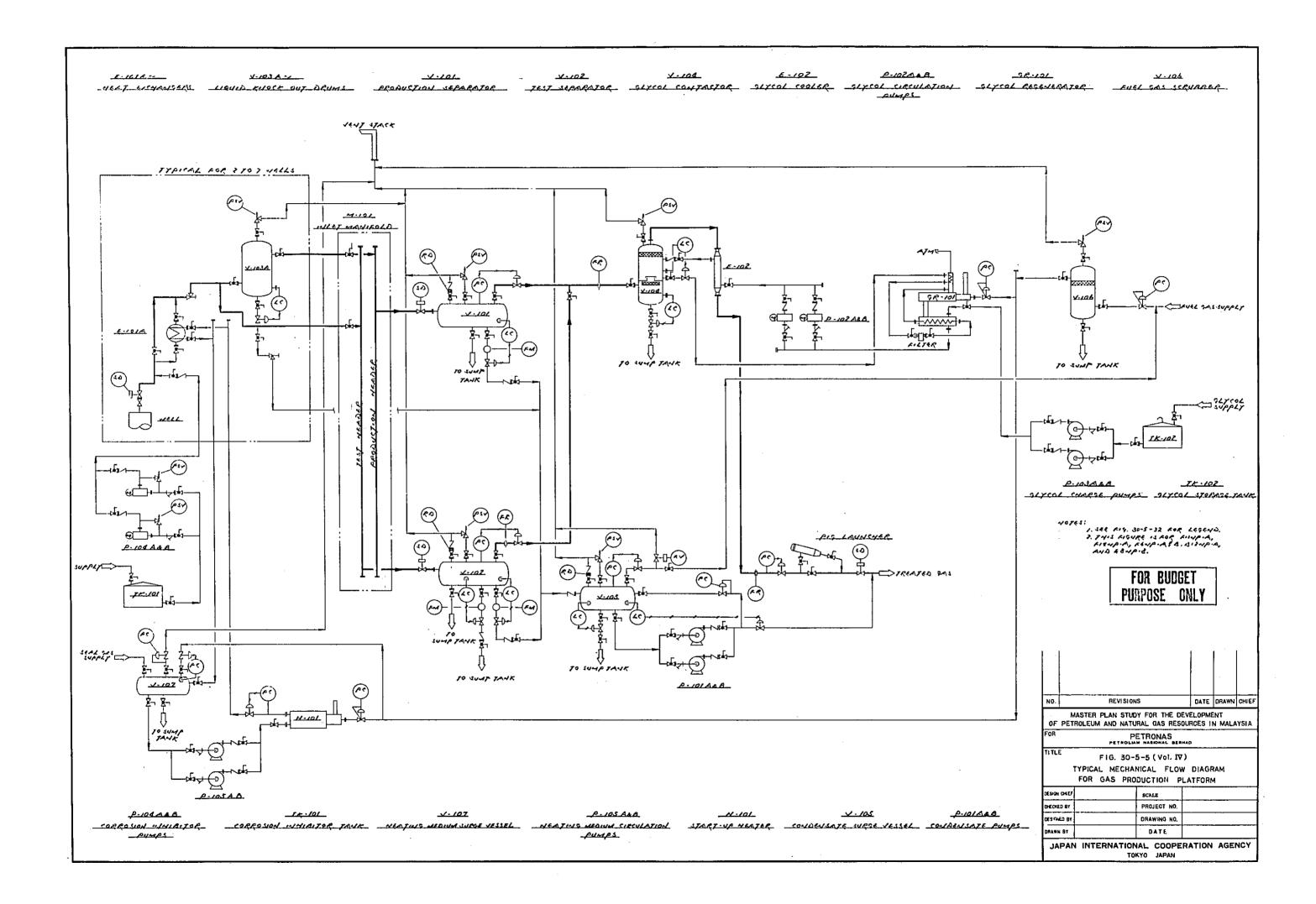

OIL LINE

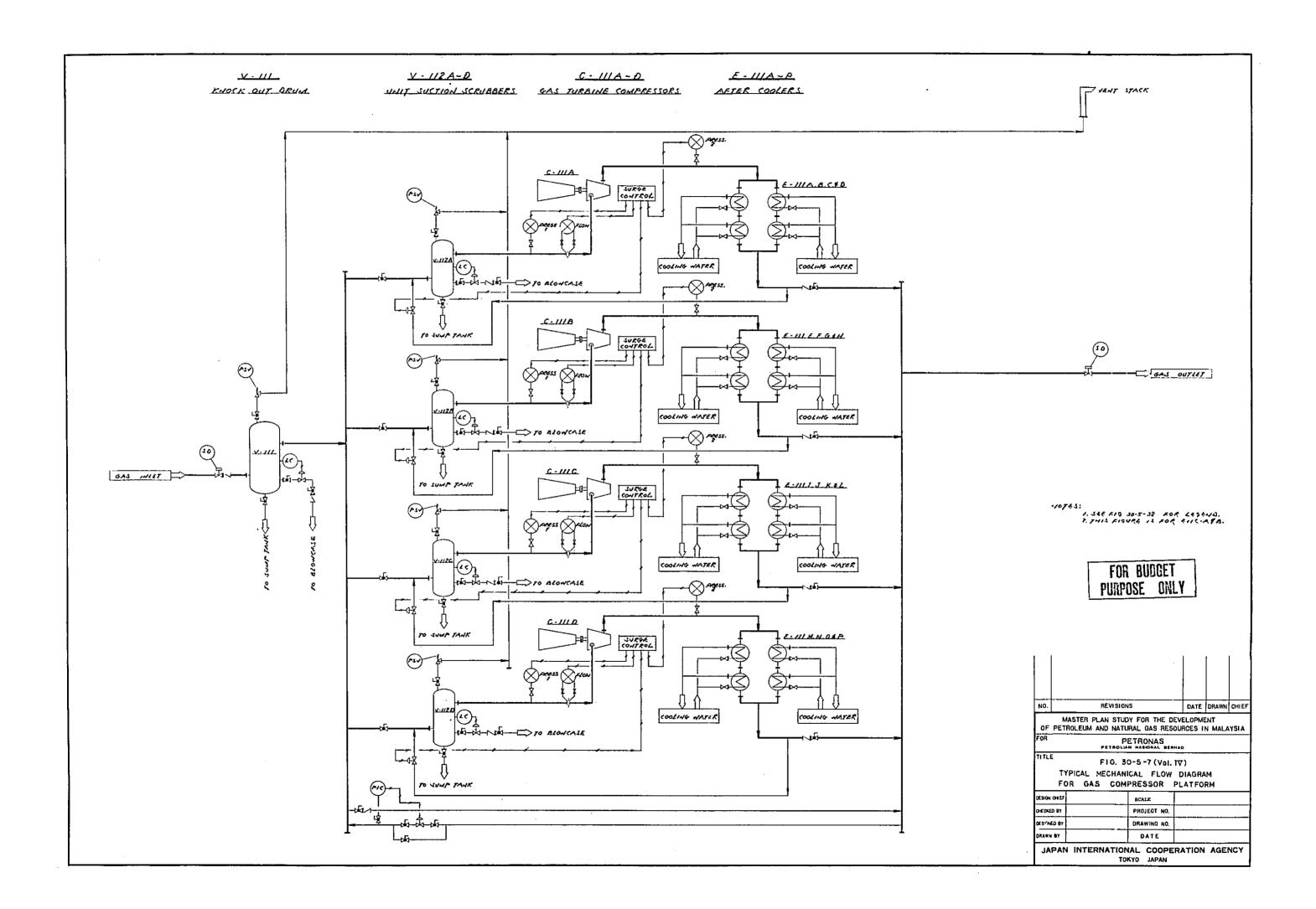

---- FLARE LINE

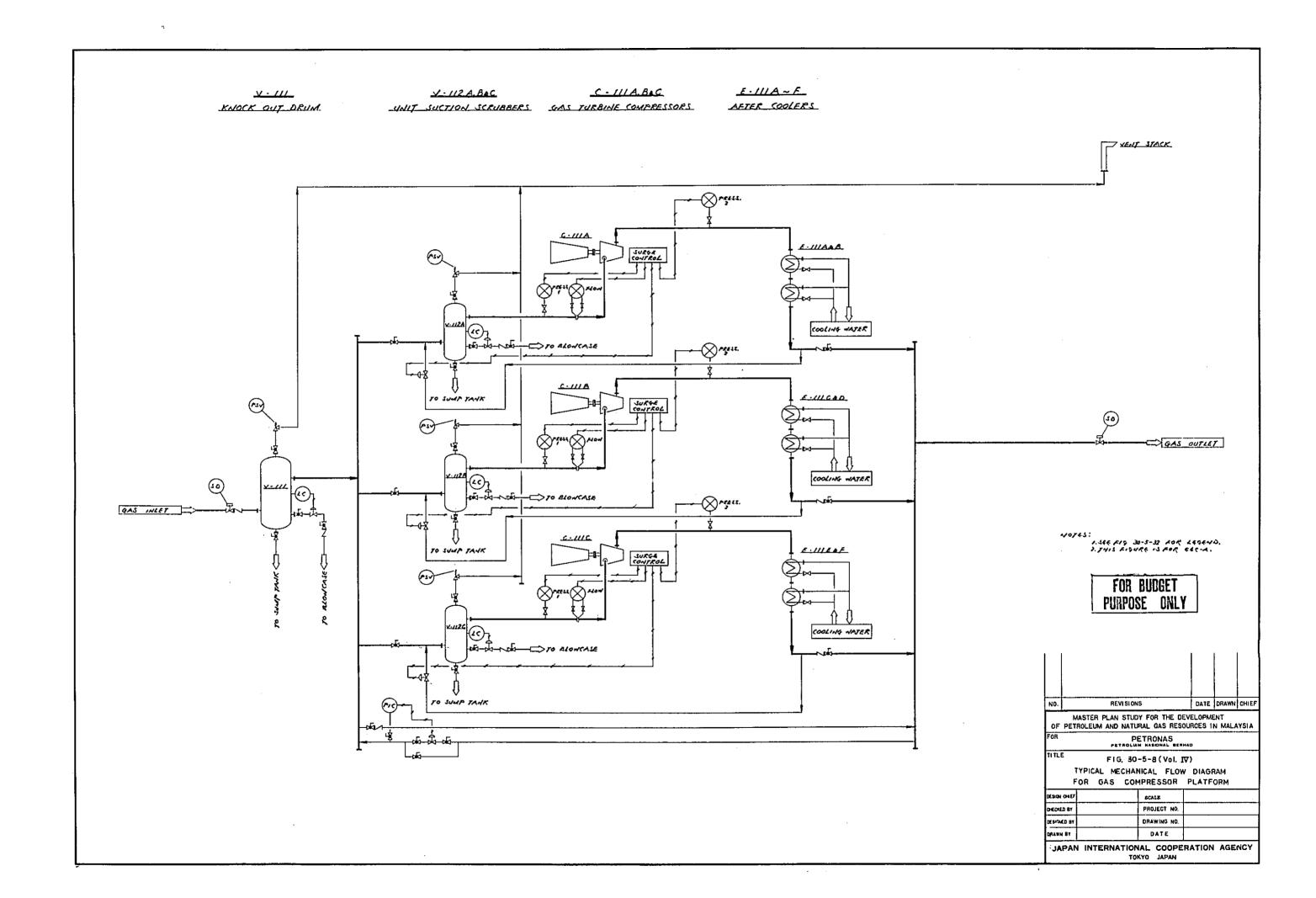


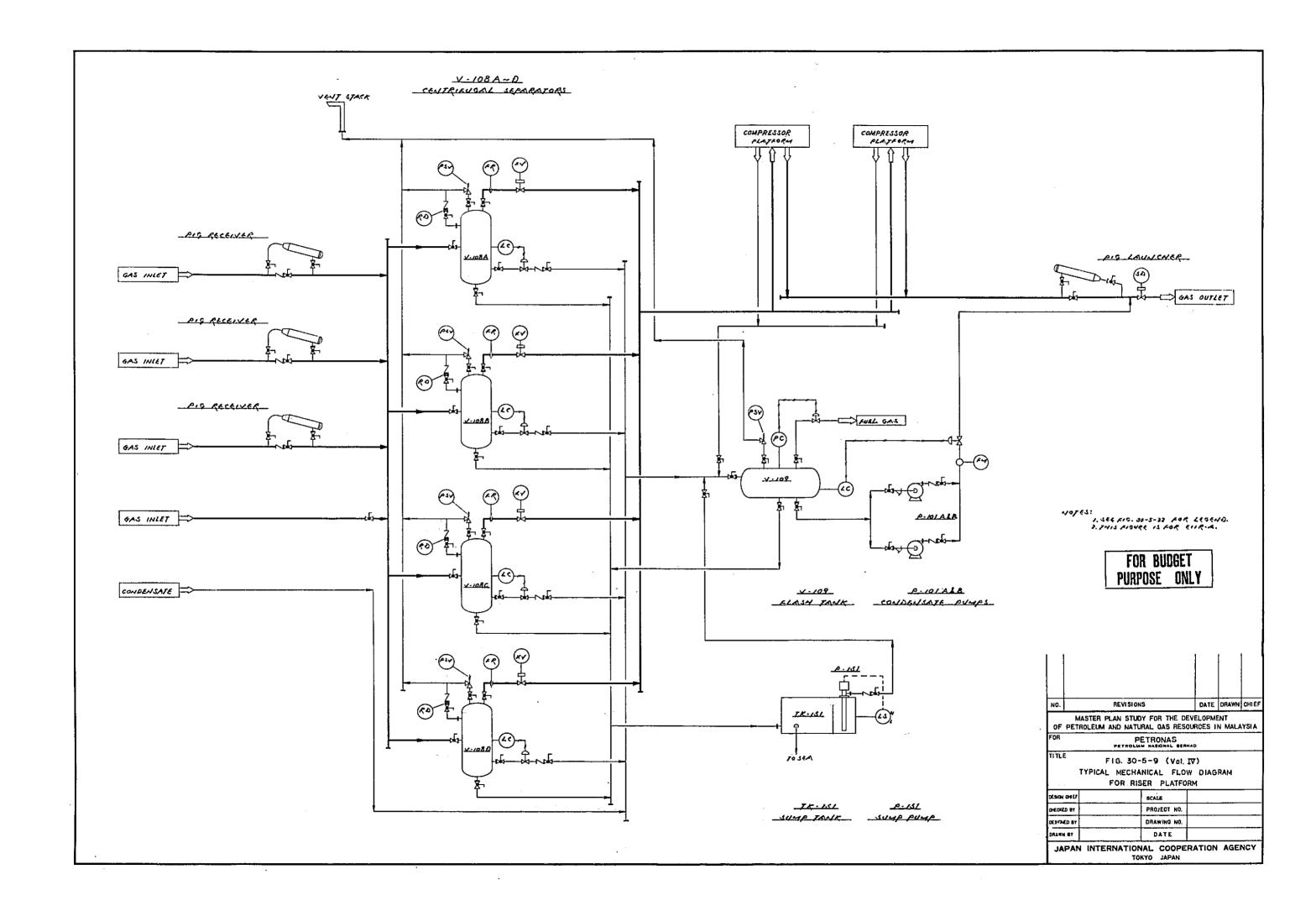

BLOCK FLOW DIAGRAM FOR EAST TEMANA OIL FIELD

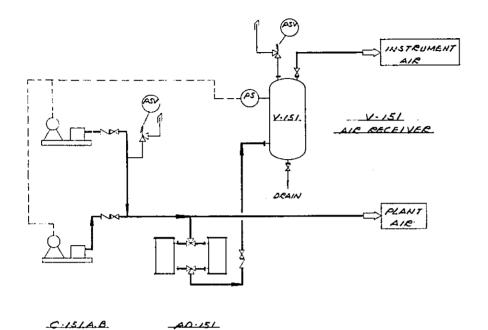


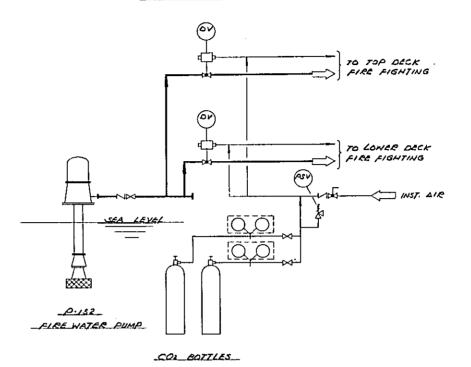




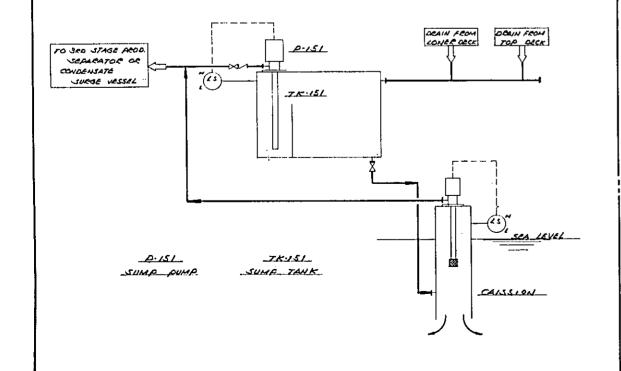








INSTRUMENT AIR SYSTEM


FIRE FIGHTING SYSTEM

DRAIN SYSTEM

AIR DRYER

AIR COMPRESSORS

40785:

1:

1. 188 FIG. 30-5-32 FOR LEGEND.

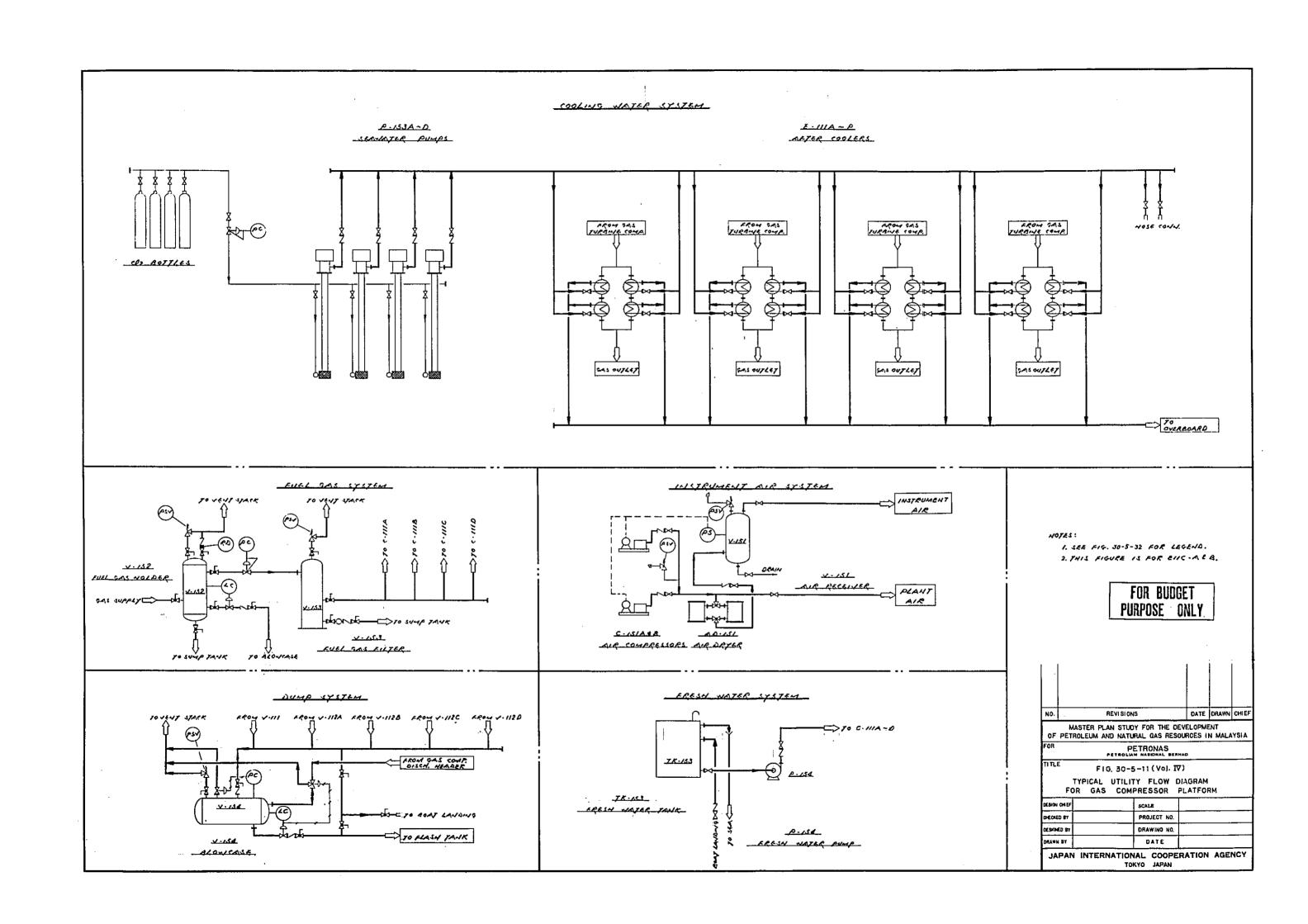
2. THIS FUGURE IS FOR SEMP-ASA,

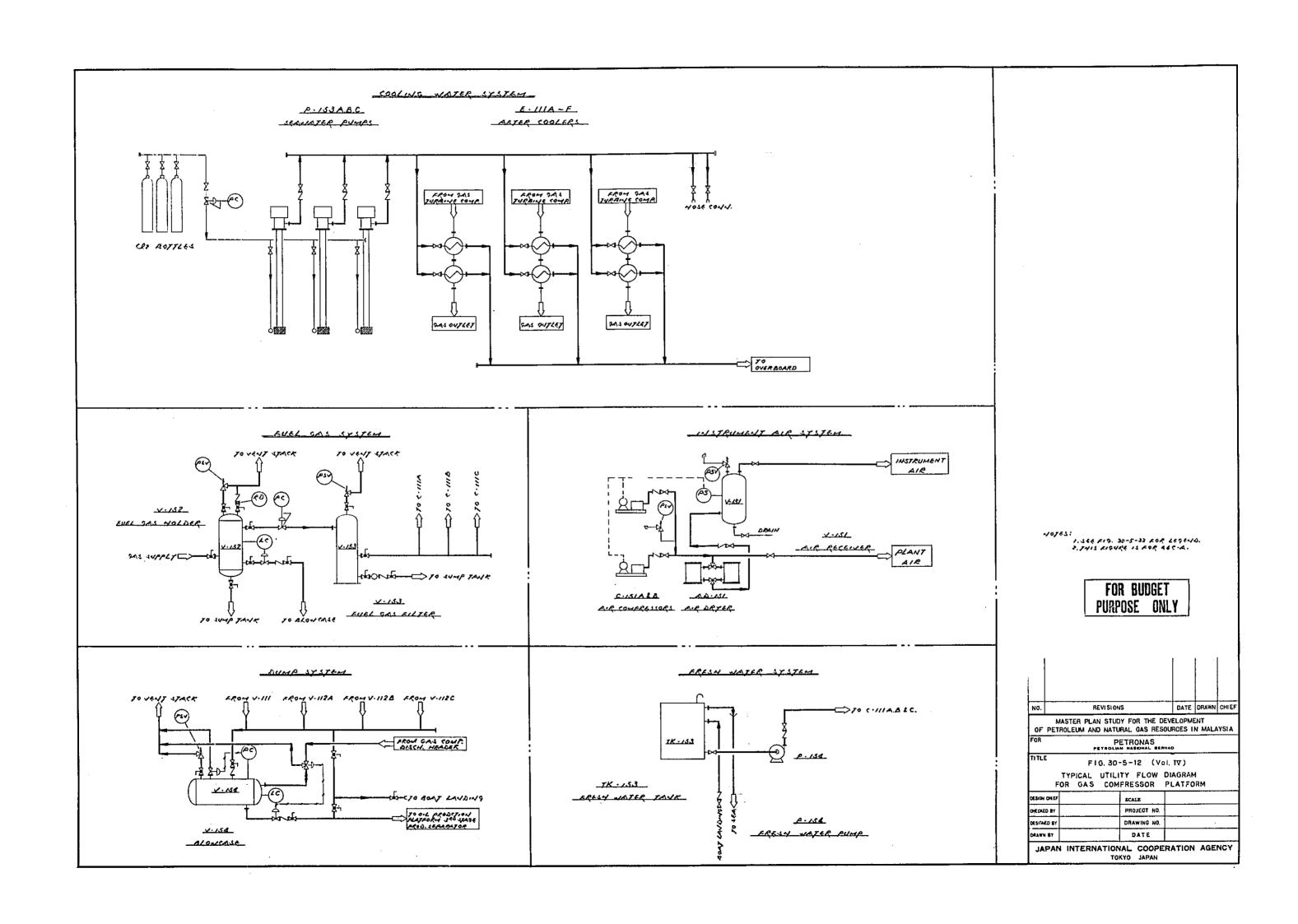
ENMPASA, NOMPA, AFMP-A,

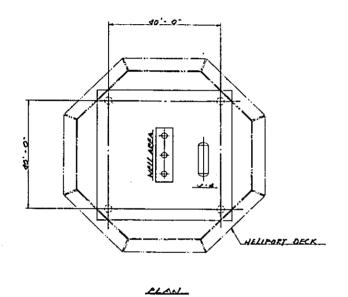
EEMP-ASA, MENPA, AEMP-A,

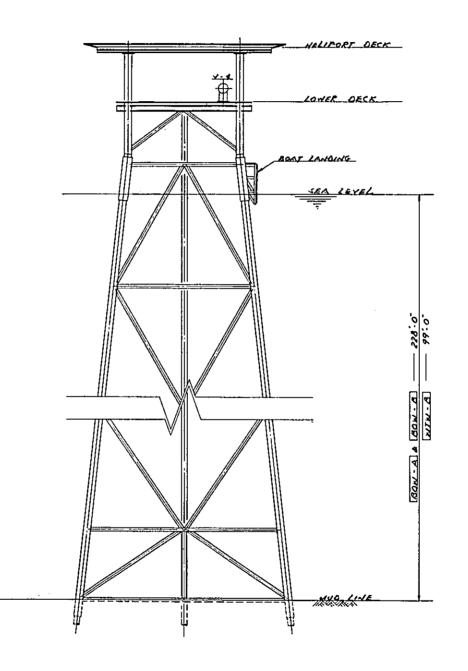
JEMP-ASEC, FISHP-A, FICHP-A,

FISP-A, FEMP-ASE, ESMP-A,


EIMPA, AEMP-ASE, ESMP-A


EIMPA, AEMP-A, PUPC-A,


AND BEPC-A.


FOR BUDGET PURPOSE ONLY

			<u> </u>		
NO.		REVISIONS	DATE	DRAWN	CHLE
OF P		ASTER PLAN STUDY FOR THE DEV ROLEUM AND NATURAL GAS RESOU			YSIA
FOR		PETRONAS	p		
TITLE		FIG. 30-5-10	(Vol. :	I ∀)	
Į .		TYPICAL UTILITY FLOW	DIAGE	NAS	
		FOR OIL & GAS PRODUCTION	PLAT	FORM	
DESIGN O	4 EF	SCALE	_		
O-ECKED	81	PROJECT NO.			
DESKOVED	97	DRAWING NO.			
DRAWN E	ìĭ	DATE			
JAP	AN	INTERNATIONAL COOPER	ATION	AGE	NCY

ELEXATION

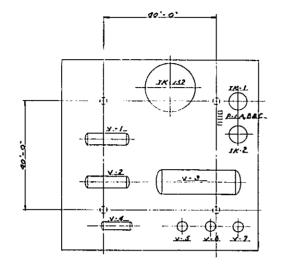
	EQUIPMENT LIST
ITEM NO.	DESCRIPTION
	VESSEL.
✓ • 4	TEST SEPARATOR
• • • • • • •	
• • • • • • • • • • • • • • • • • • • •	
	·
-	
	
	1

FOR BUDGET PURPOSE ONLY

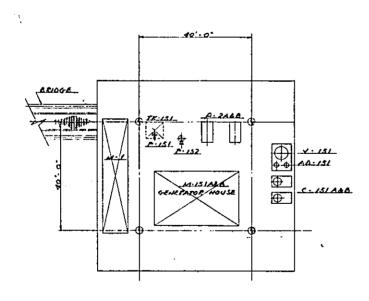
NOTE: THIS FIGURE IS FOR BON-4&B AND NTN-B.

O	REVISIONS	DATE	DRAWN	CHIEF

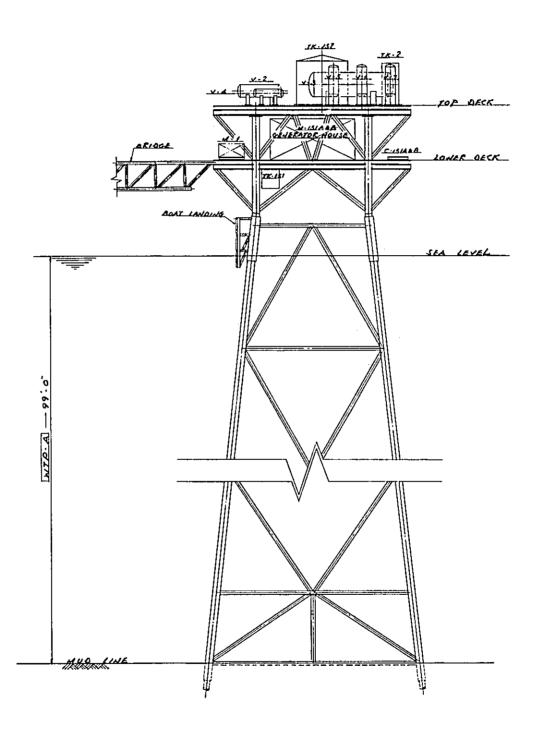
MASTER PLAN STUDY FOR THE DEVELOPMENT
OF PETROLEUM AND NATURAL GAS RESOURCES IN MALAYSIA
FOR PETROLAM PARRIAL BERMAD


_ FIG. 30-5-13 (Vol. IV)

TYPICAL PLAN AND ELEVATION FOR


TENDER ASSISTED WELL PLATFORM

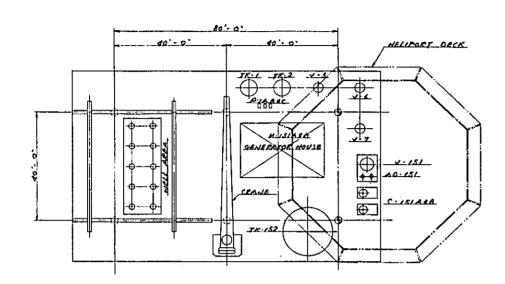
	 	_ , _ , , , , , , , , , , , , , , , , ,
DESIGN CHIEF	SCALE	
CHECKED BY	PROJECT NO.	
DESIGNED BY	DRAWING NO.	
DRAWN BY	DATE	


JAPAN INTERNATIONAL COOPERATION AGENCY
TOKYO JAPAN

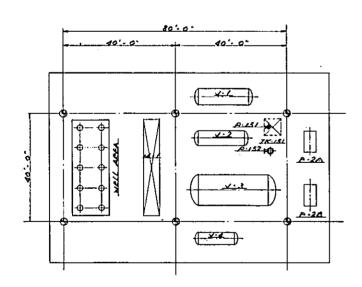
JOP DECK PLAN

LOWER DECK PLAN

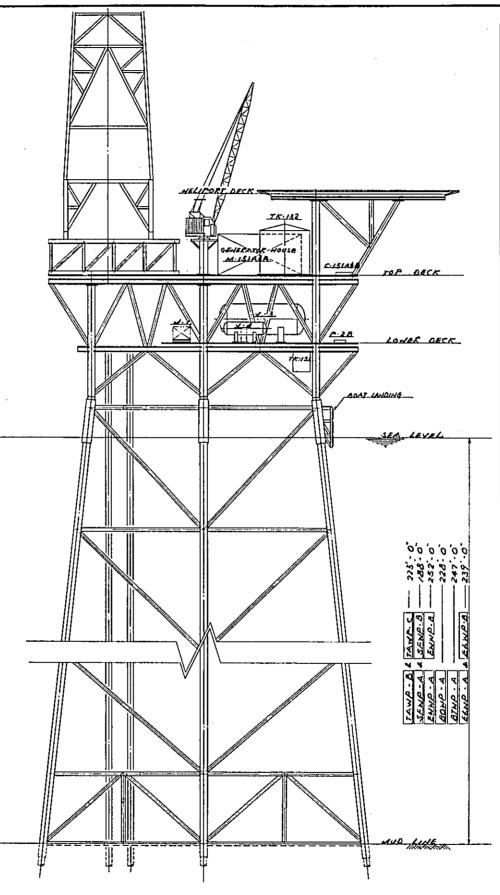
ELEVATION


	·
	EQUIPMENT LIST
ITEM NO.	DESCRIPTION
	VESSEL
V - 1	MY STAGE PRODUCTION SEPARATOR
V - 7	200 STAGE PRODUCTION SEPARATOR
V · 3	IRO STAGE PRODUCTION SEPARATOR
V - 4	JEST SEPARATOR
	1ST STAGE PLARE SCRUBBER.
	240 STAGE FLARE SCRUBBER
y - 7	300 STAGE FLARE SCRUBBER
v - 151	INSTRUMENT AIR RECEIVER
	JACIIIIE BY
	MACHINERY
	INSTRUMENT AIR COMPRESSORS
7/01/3/	INSTRUMENT AIR DRYER
	PUMP
	CHEMICAL INJECTION PUMPS
	CRUDE TRANSFER PUMPS
	SUMP PUMP
P · 152	FIRE WATER PUMP
	TANK
1K · /	DEEMULSIFIER TANK
1K - 7	DEFOAMANT TANK
TK . 151	SUMP TANK
TK -152	DIESEL STORAGE TANK
	MISCELLANEOUS
M - 1	INLET WANIFOLD
M - 151A+B	DIESEL DRIVEN GENERATORS
· · - -	
	1

FOR BUDGET PURPOSE ONLY


. NOTE:

THIS FIGURE IS FOR WIFE-A.


1				ı	1	1
NO.		REVISION	15	DATE	DRAWN	CHI
0F		IASTER PLAN STUD ROLEUM AND NATU				YSI
FOR		PETROL	ETRONAS	HAD		
TITLE		FIG.	30-5-15(Vo	ı iv)		
		TYPICAL PLAN	AND ELEV	ATION F	OR	
	_	4LEG OIL P	RODUCTION	PLATFO	RM	
DESIGN	CHEF		SCALE		-	
OHE CIKE	BY		PROJECT NO.	<u> </u>		
DE SHIME	D 87		DRAWING NO.			
DRAWN	91		DATE	Ī		
JA	A	INTERNATIO	VAL. COOPE	RATION	AGE	NC

TOP DECK PLAN

LOWER DECK PLAN

ELEVATION

	EQUIPMENT LIST
ITEM NO.	DESCRIPTION
	VESSEL .
V • /	IST STAGE PRODUCTION SEPARATOR
V • 2	240 STAGE PRODUCTION SEPARATOR
V - 3	300 STAGE PRODUCTION SEPARATOR
V · 4	TEST SEPARATOR
V - 5	IST STAGE FLARE SCRUBBER
<u>۷</u> ٠۵	240 STAGE FLARE SCRUBBER
<u> </u>	JE STAGE FLARE SCRUBBER
V - 151	INSTRUMENT AIR RECEIVER
	MACHINERY
	MISTRUMENT AIR COMPRESSORS
AD-151	INSTRUMENT AIR OFFER
	<u> </u>
<u></u>	
	PUMP
	CHEMICAL INJECTION PUMPS
	CEUDE TRANSFER PUMPS
	SUMP PUMP
r - 152	FIRE WATER FUMP
	- TANK
7K · 1	DEBMULSIFIER TANK
7K · 2	DEFOAMANT TANK
TK - 151	SUMP TANK
TK - 152	DIESEL STORAGE TANK
	MISCELLANEOUS
<u> </u>	INLET MANIFOLD
M - 15/A#8	DIESEL ORIVAN GENERATORS
	<u></u>
	<u></u>
	1

FOR BUDGET Purpose only

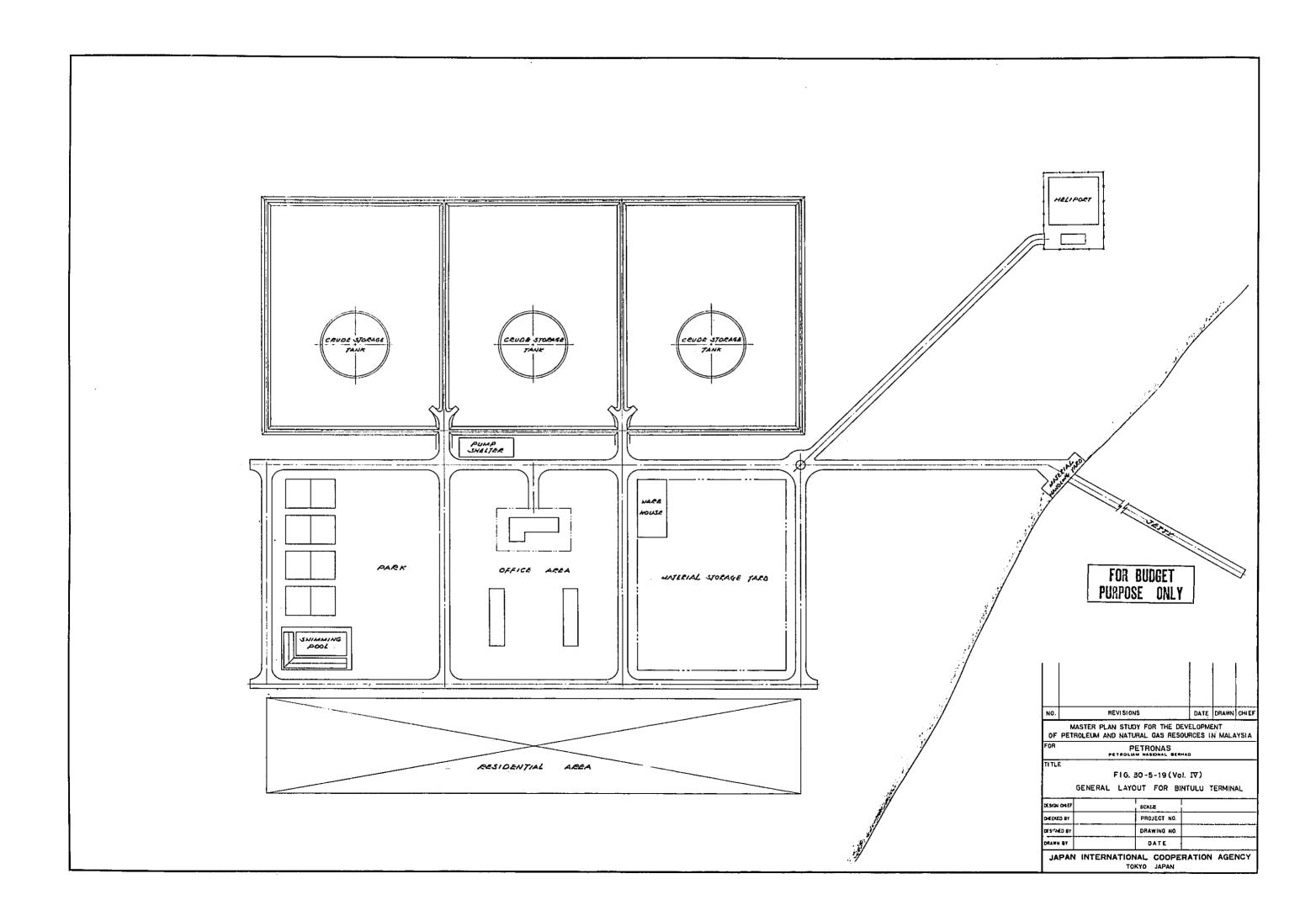
	DEVISIONS			a r.e
NO.	REVISIONS	DATE	DRAWN	CHIEF
	MASTER PLAN STUDY FOR THE DEVI	ELOPME	T/I	

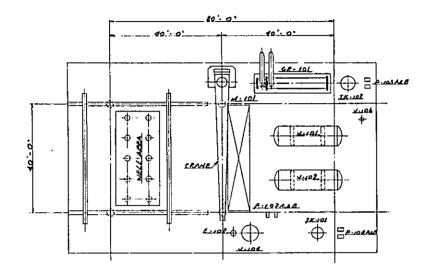
MASTER PLAN STUDY FOR THE DEVELOPMENT
OF PETROLEUM AND NATURAL DAS RESOURCES IN MALAYSIA
FOR
PETROLUM MASDINAL BERHAD

FIG 30-5-16 (Vol. IV)

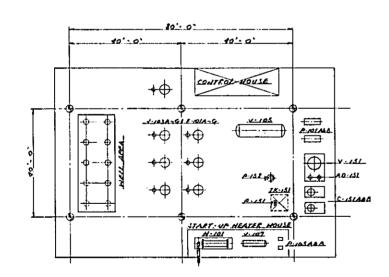
EGNP. A&B, AND TAMP. B&C.

TYPICAL PLAN AND ELEVATION FOR 6-LEG WELL # OIL PRODUCTION PLATFORM

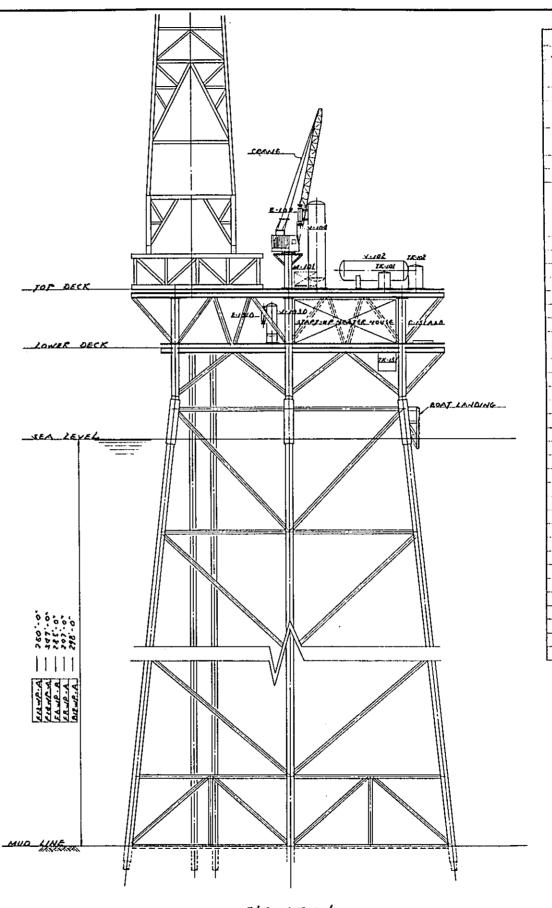

DESIGN DREF SCALE


DECKED BY PROJECT NO.

DESIGNED BY DRAWING NO.

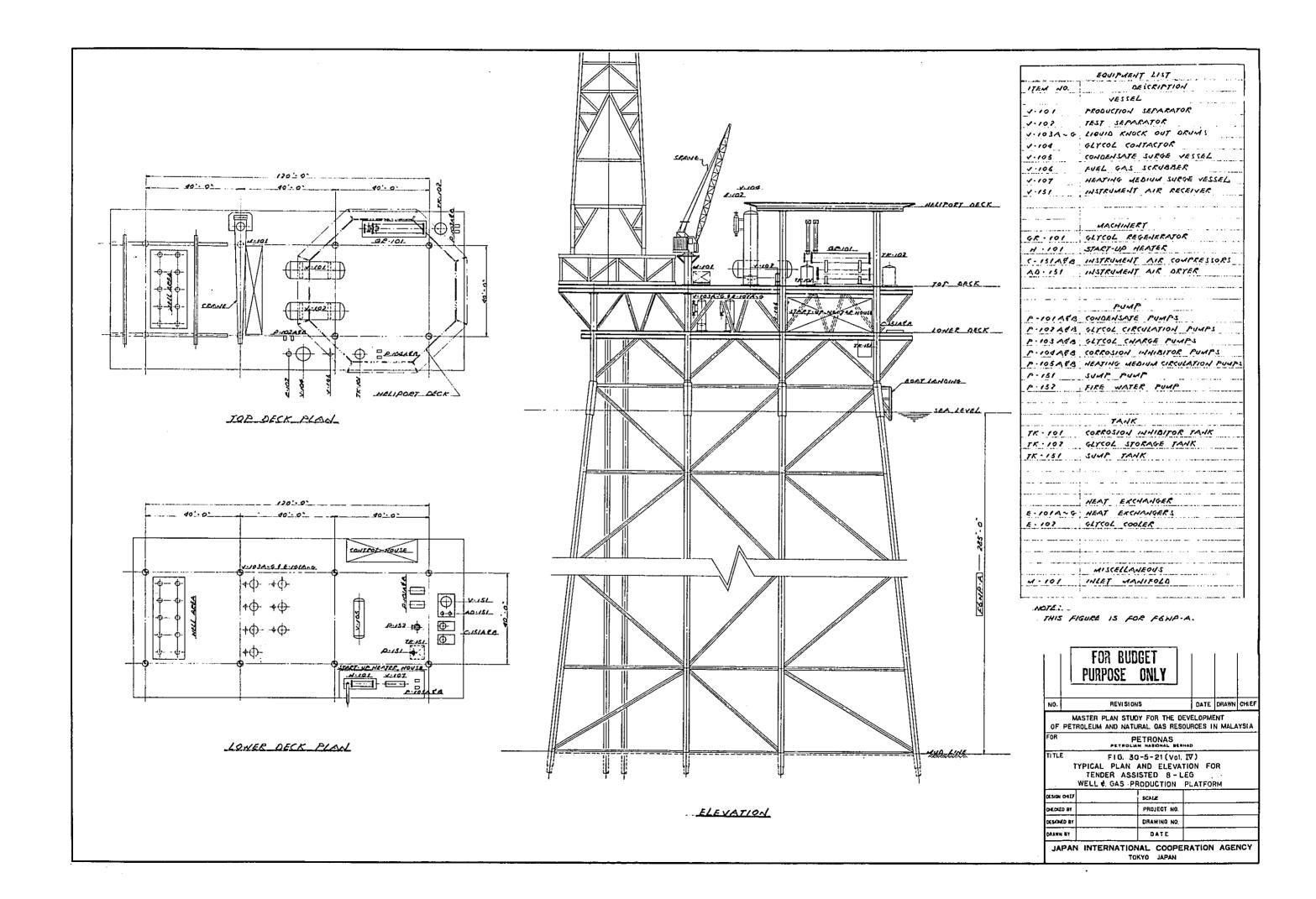

DRAWN BY DATE

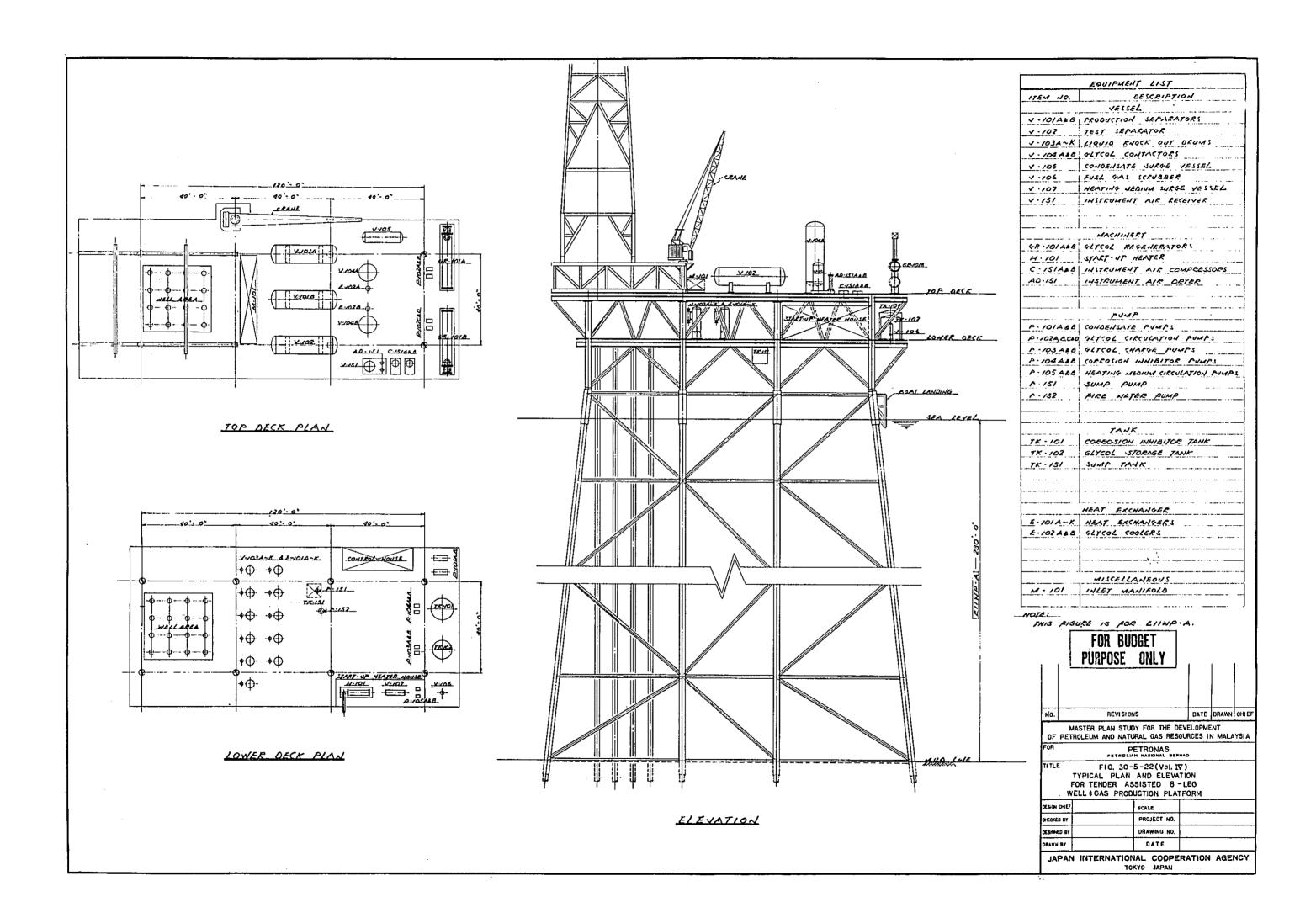
JAPAN INTERNATIONAL COOPERATION AGENCY TOKYO JAPAN

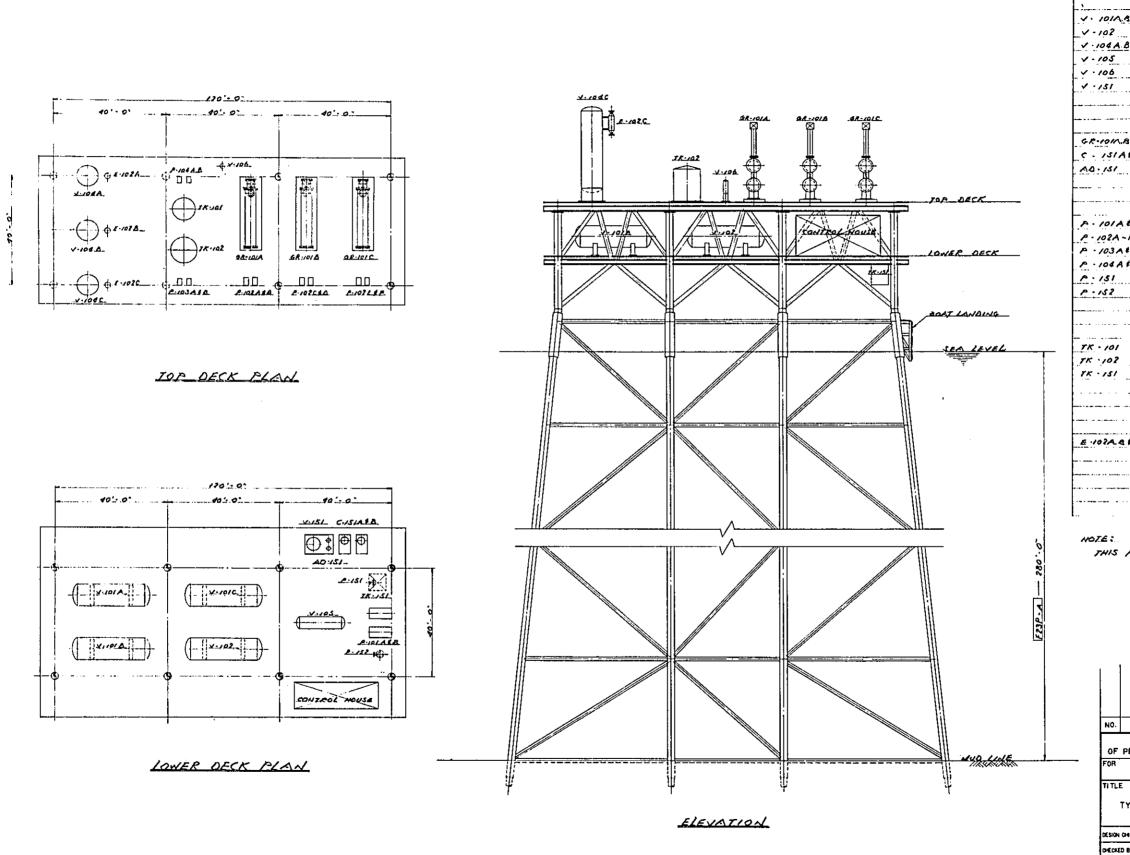


TOP DECK PLAN

LOWER DECK PLAN


ELEVATION


:	EQUIPMENT LIST
ITEM NO.	DESCRIPTION
· · · · · · · · · · · · · · · · · · ·	VESSEL.
1.101	PRODUCTION SEPARATOR
V - 102	TEST SEPARATOR
V-103A~4	LIQUID KNOCK OUT DRUMS
V - 104	GLYCOL CONTACTOR
V - 105	CONDENSATE SURGE VESSEL
	FUEL GAS SCRUARER
V:106	HEATING MEDIUM SURGE VESSEL
V - 107	i .
V · /5/	INSTRUMENT AIR RECEIVER
: ::	
	l
	MACHINERY
GR - 101	GLYCOL REGENERATOR
H - 101	START - UP HEATER
C . 15/148	INSTRUMENT AIR COMPRESSORS
AD .151	INSTRUMENT AIR DRYER
	PUMP
A - 101A & B	CONDENSATE PUMPS
P - 102A & B	GLYCOL CIRCULATION PUMPS
7-103A + 8	GLYCOL CHARGE PUMPS
A - 104 A & B	CORROSION INHIBITOR PUMPS
r - 105 A & B	HEATING MEDIUM CIRCULATION PUMP
P.151	SUMP PUMP
P · 152	FIRE WATER PUMP
	1
	TANK
18.101	CORROSION INHIBITOR TANK
FK - 102	GLYCOL STORAGE TANK
7K · 151	1
	SUMP TANK
	<u> </u>
	
	HEAT EXCHANGER
	HEAT EXCHANGERS
E - 102	GLYCOL COOLER
	<u> </u>
	ļ
	<u></u>
	MISCELLANEOUS
M - 101	INLET MANIFOLD


NOTE:

THIS FIGURE IS FOR FIBMP-A, FIAMP-A,
FOMP-B, EBMP-A AND BIZMP-A,

		FOR BUD PURPOSE					
NO.	_	REVISION	s		DATE	DRAWN	CHIEF
OF		ASTER PLAN STUD ROLEUM AND NATU					YSIA
FOR			ETRONAS	HAD			
TITLE	•	FIG. 3 YPICAL PLAN A TENDER ASSI ELL # GAS PROD	STED 6-LE	101 G	N FO		
DESIGN (ЖEF		SCALE				
D-ECKED	BY		PROJECT NO.				
DESKINE	D 81		DRAWING NO.				
DRAWN	BY		DATE				
JAF	AN	I INTERNATION	IAL COOPE	RA	TION	AGE	NCY

	EQUIPMENT /IST
Access to the second	EOUIPMENT LIST
ITEM NO.	DESCRIPTION
- }	VESSEL
V. IOIA REC	PRODUCTION SEPARATORS
V-102	TEST SEPARATOR
V-104A.B#C	GLYCOL CONTACTORS
V-105	CONDENSATE SURVE VET EL
V · 106	FUEL GAS SCRURRER
V -151	INSTRUMENT AIR RECEIVER
- 	
	MACHINERY
GR-10MBAC	GLYCOL REGENERATOR
C - ISIAEB	INSTRUMENT AIR COMPRESSORS
A0.151	INSTRUMENT AIR DRYER
	PUMP
A - 101A &B	CONDENSATE FUMPS
P-102A-F	GLYCOL CIRCULATION PUMPS
P - 103 A & B	GLYCOL CHARGE PUMPS
P - 104 A F B	CORROSION INHIBITOR PUMPS
P:151	SUMP PUMP
P - 152	FIRE WATER PUMP
,	TANK
TK - 101	CORROSION INHIBITOR TANK
TK 102	GLYCOL STORAGE TANK
TK - 151	SUMP TANK
,	HEAT EXCHANGER
E-107A.REC	GLYCOL COOLERS

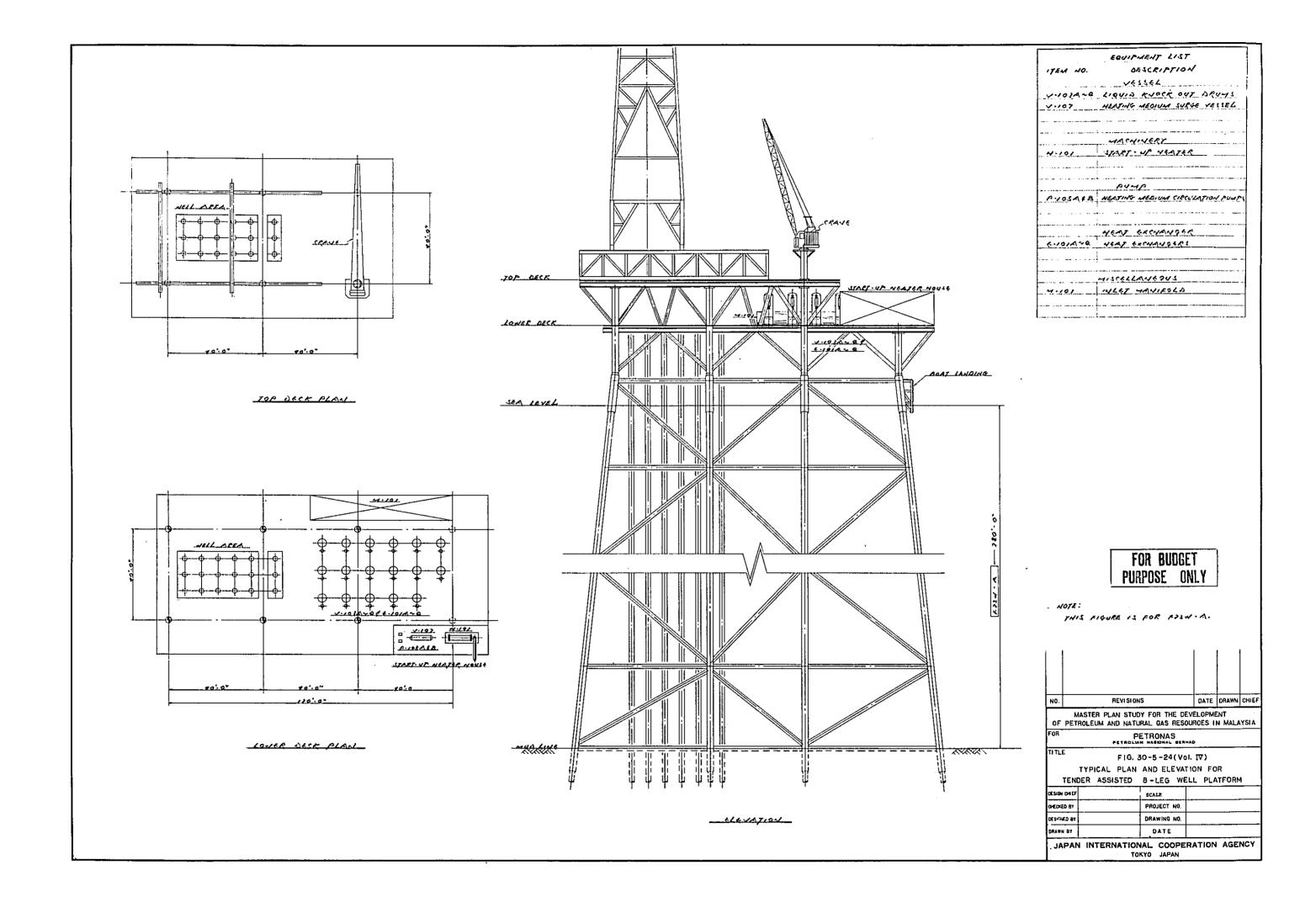
THIS FIGURE IS FOR FZ3P.A.

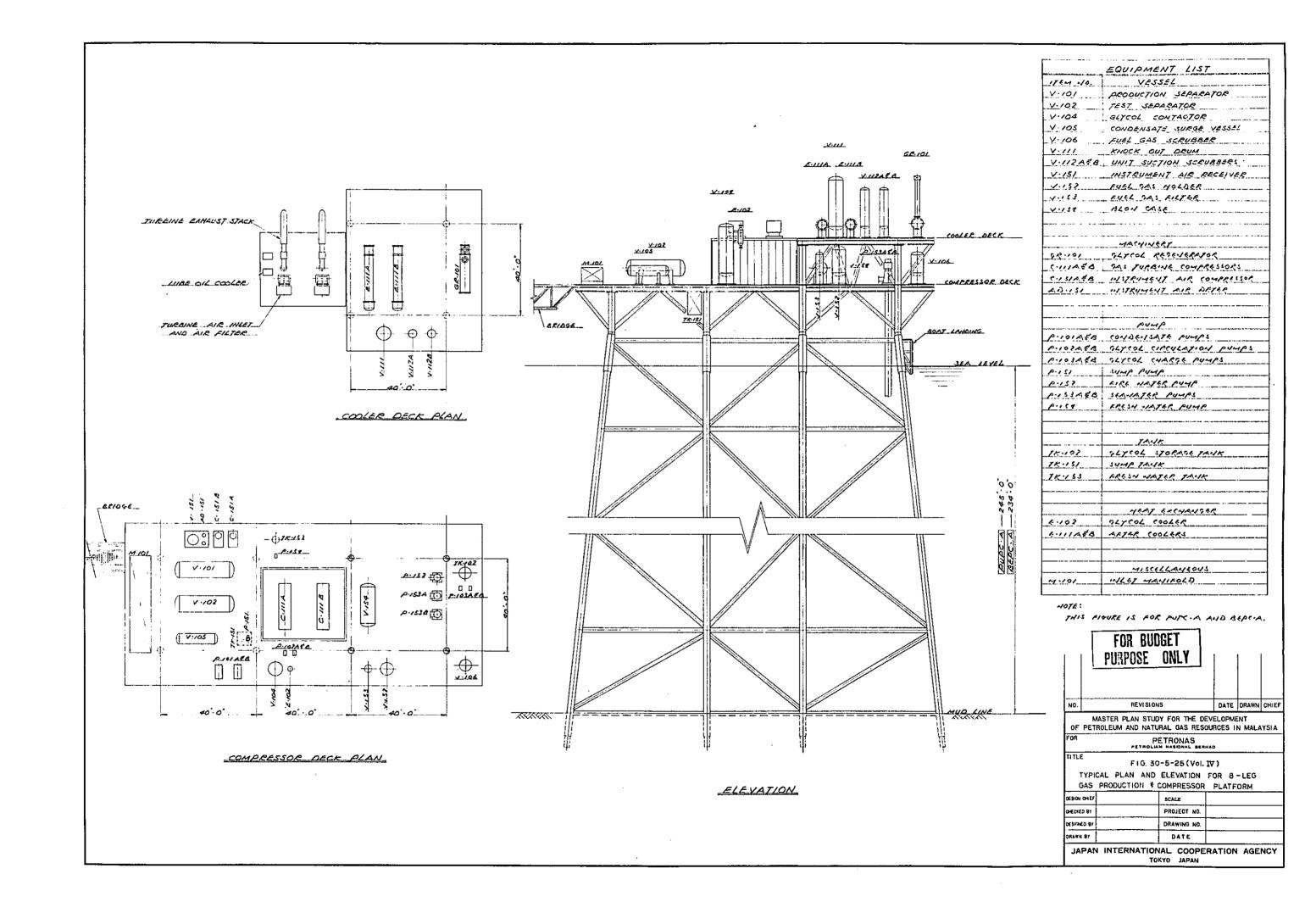
FOR BUDGET Purpose only

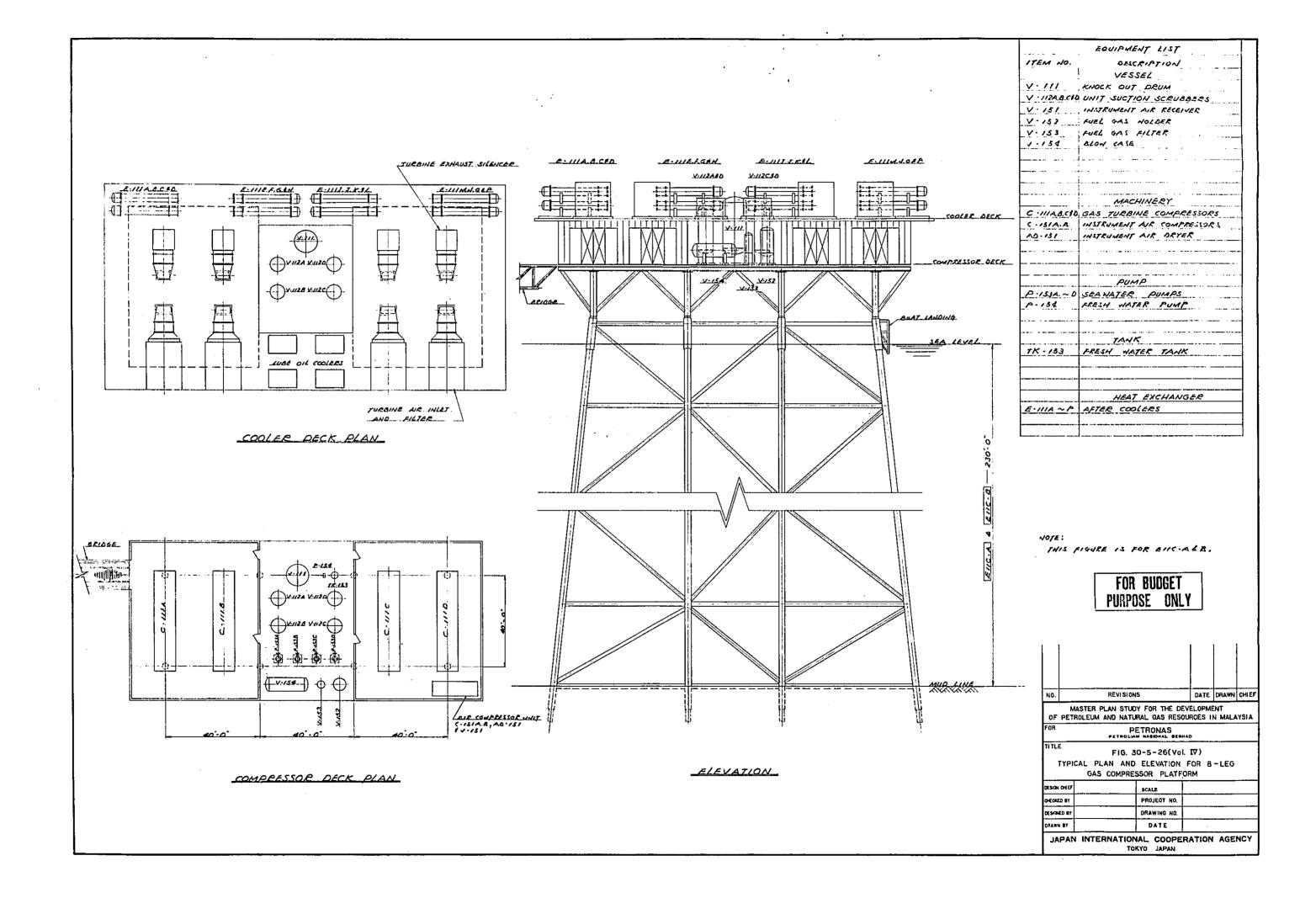
NO.	REVISIONS	DATE	DRAWN	CHLEF
0F	MASTER PLAN STUDY FOR THE DEVE PETROLEUM AND NATURAL GAS RESOUR			YSLA

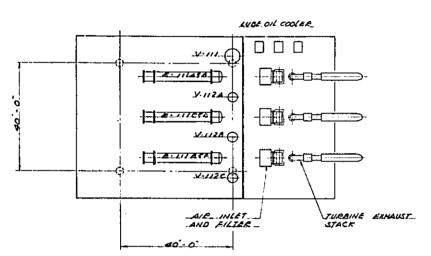
ETROLEUM AND NATURAL GAS RESOURCES IN MALAY
PETROLUM NASDRAL BERHAD

FIG. 30-5-23(Vol.IV)
TYPICAL PLAN AND ELEVATION FOR 8-LEG
GAS PRODUCTION PLATFORM

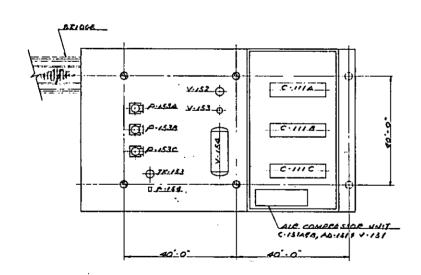

DESIGN CHEF SCALE

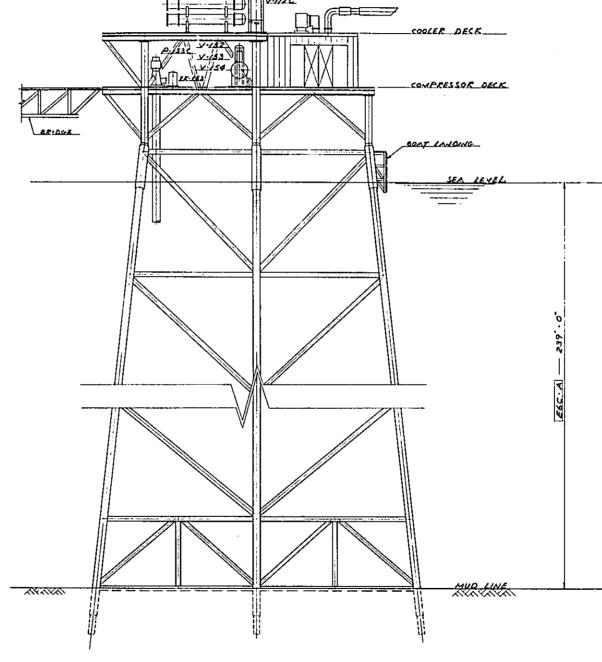

DECKED BY PROJECT NO.


DESIGNED BY DRAWING NO.


DRAWN BY DATE

JAPAN INTERNATIONAL COOPERATION AGENCY TOKYO JAPAN





COOLER DECK PLAN

COMPRESSOR DECK PLAN

V:ILL

ELEVATION

	EQUIPMENT LIST
1784 40.	DESCRITION
	∨ESSEL
V · ///	KNOCK OUT DRUM
	UNIT SUCTION SCRUBBERS
	INSTRUMENT AIR RECEIVER
V-152	FUEL GAS HOLDER
V · 153	FUEL GAS FILTER
V · 154	BLOW CASE
	MACHINERY
C-111ABEC	GAS TURBINE COMPRESSORS
C-ISIAFE	MISTRUMENT AIR COMPRESSORS
AD - 151	INSTRUMENT AIR DRYER
	PUMP
P. ISBANCE	SEAWATER PUMPS
P · 153 ABEC P · 154	
	SEAWATER PUMPS
	SEAWATER PUMPS
	SEAWATER PUMPS FRESH WATER FUMP
	SEAWATER PUMPS
p. 154	SEAWATER PUMPS FRESH WATER FUMP TANK
p. 154	SEAWATER PUMPS FRESH WATER FUMP TANK
p. 154	SEAWATER PUMPS FRESH WATER FUMP TANK FRESH WATER TANK
p. 154	SEAWATER PUMPS FRESH WATER FUMP TANK FRESH WATER TANK
P. 154 7K-153	SEAWATER PUMPS FRESH WATER FUMP TANK FRESH WATER TANK HEAT EXCHANGER
P. 154 7K-153	SEAWATER PUMPS FRESH WATER FUMP TANK FRESH WATER TANK HEAT EXCHANGER
P. 154 7K-153	SEAWATER PUMPS FRESH WATER FUMP TANK FRESH WATER TANK HEAT EXCHANGER
P. 154 7K-153	SEAWATER PUMPS FRESH WATER FUMP TANK FRESH WATER TANK HEAT EXCHANGER
P. 154 7K-153	SEAWATER PUMPS FRESH WATER FUMP TANK FRESH WATER TANK HEAT EXCHANGER
P. 154 7K-153	SEAWATER PUMPS FRESH WATER FUMP TANK FRESH WATER TANK HEAT EXCHANGER
P. 154 7K-153	SEAWATER PUMPS FRESH WATER FUMP TANK FRESH WATER TANK HEAT EXCHANGER
P. 154 7K-153	SEAWATER PUMPS FRESH WATER FUMP TANK FRESH WATER TANK HEAT EXCHANGER
P. 154 7K-153	SEAWATER PUMPS FRESH WATER FUMP TANK FRESH WATER TANK HEAT EXCHANGER
P. 154 7K-153	SEAWATER PUMPS FRESH WATER FUMP TANK FRESH WATER TANK HEAT EXCHANGER

HOTE: THIS FIGURE IS FOR EGG. A.

FOR BUDGET PURPOSE ONLY

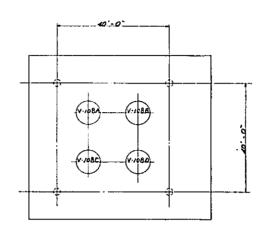
NO.	REVISIONS	DATE	DRAWN	CHIEF
	MASTER PLAN STUDY FOR THE DEVI	LODME	NIT	

MASTER PLAN STUDY FOR THE DEVELOPMENT
OF PETROLEUM AND NATURAL GAS RESOURCES IN MALAYSIA
FOR DETROMAS

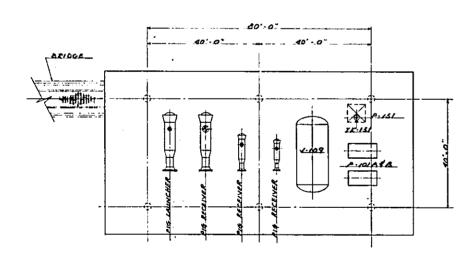
PETRONAS
PETROLUM MARIONAL BERHAD

.E FIG. 30-5-27(Vol. Ⅳ)

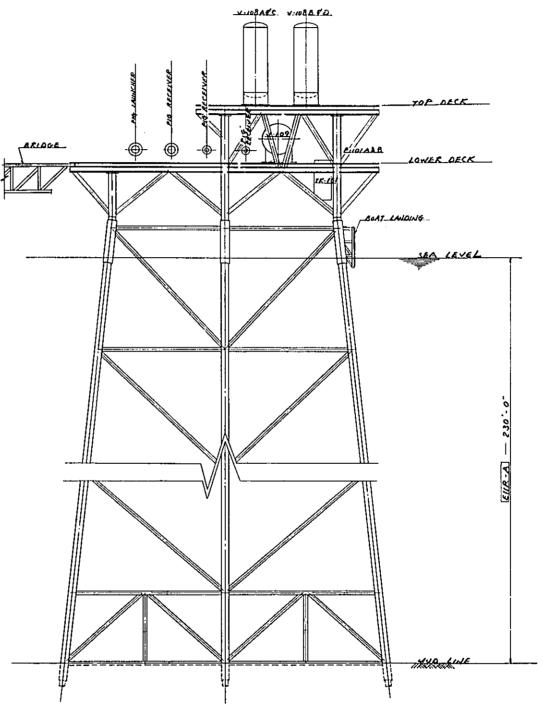
TYPICAL PLAN AND ELEVATION FOR 6 - LEG GAS COMPRESSOR PLATFORM


 DESIGN ONEF
 SCALE

 OHEDRED BY
 PROJECT NO.


 DESIGNED BY
 DRAWING NO.

 ORAWN BY
 DATE


JAPAN INTERNATIONAL COOPERATION AGENCY TOKYO JAPAN

TOP DECK PLAN

LOWER DECK PLAN

ELEVATION

	EQUIPMENT LIST
ITEM NO.	DESCRIPTION
	VESSEL
V - 108A-D	CENTRIFUGAL SEPARATORS
	FLASH TANK
	PUMP
P.101A & B	CONDENSATE PUMPS
	SUMP FUMP
	TANK
TK - 151	SUMP TANK

FOR BUDGET PURPOSE ONLY

.NOTE:

THIS FIGURE IS FOR EILR. A.

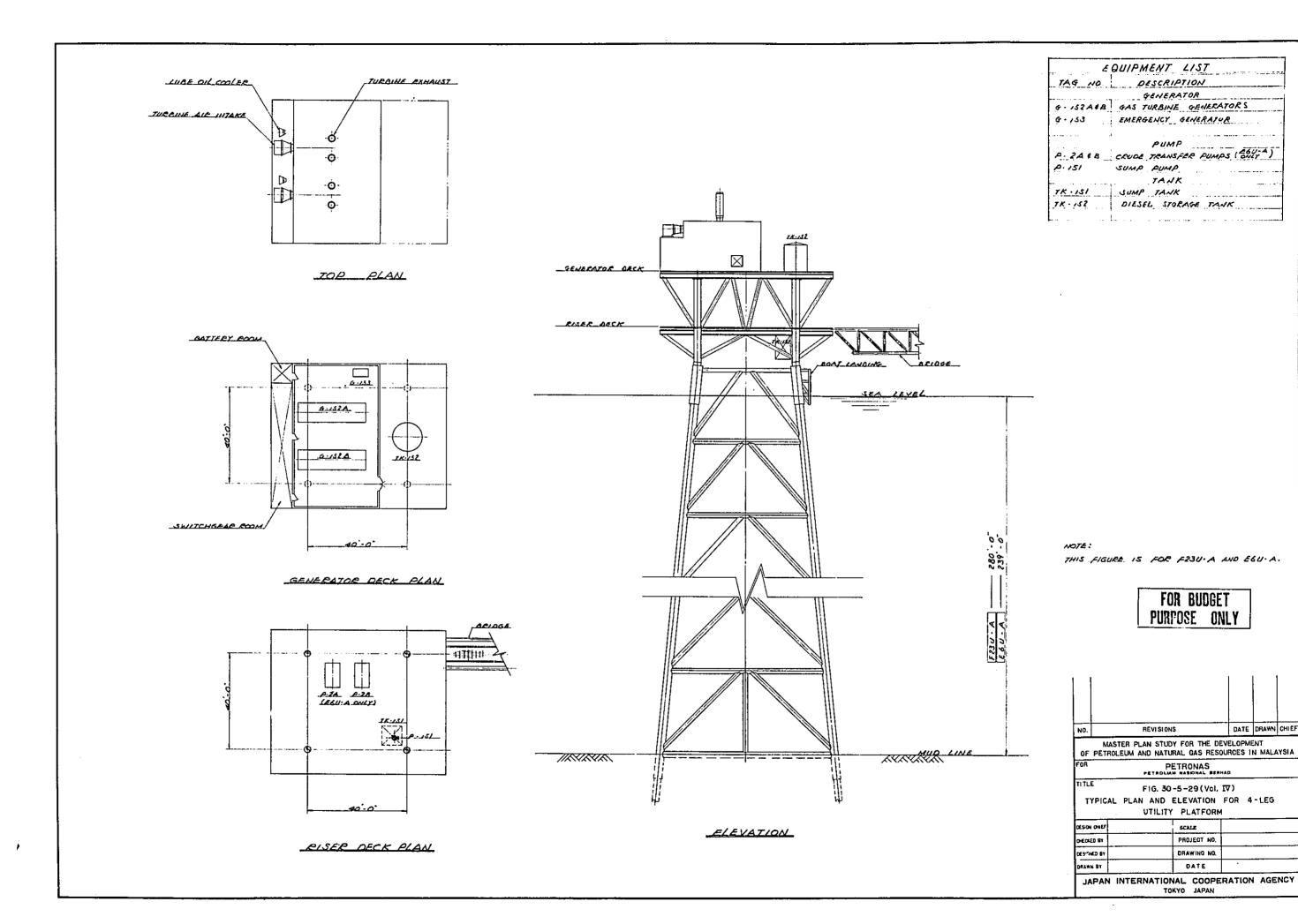
1				
NO.	REVISIONS	DATE	DRAWN	CHIEF
NO.		0215		011.01

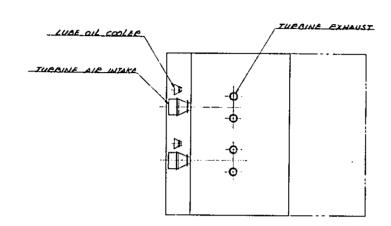
MASTER PLAN STUDY FOR THE DEVELOPMENT
OF PETROLEUM AND NATURAL GAS RESOURCES IN MALAYSIA

PETRONAS

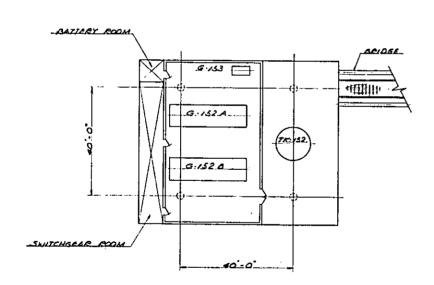
FIG. 30-5-28 (Vol. IV)

TYPICAL PLAN AND ELEVATION FOR 6 - LEG RISER. PLATFORM

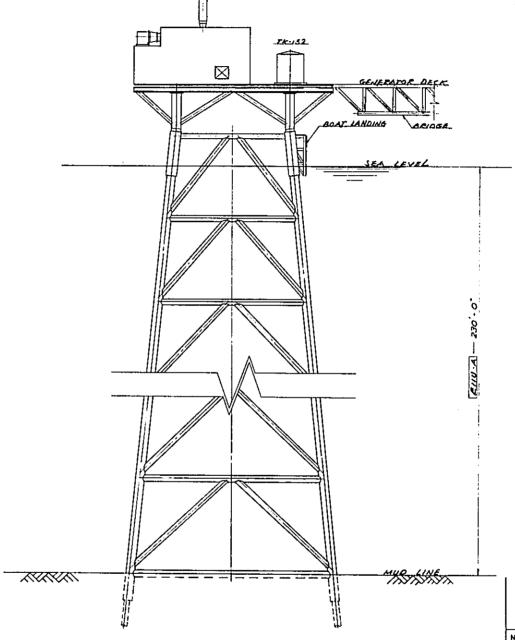

 DESIGN OHEF
 SCALE


 CHECKED BY
 PROJECT NO.

 DESIGNED BY
 DRAWING NO.


 DRAWING NO.
 DRAWING NO.

JAPAN INTERNATIONAL COOPERATION AGENCY



TOP PLAN

GENERATOR DECK PLAN

ELEVATION

ITEM NO.	DESCRIPTION
	GENERATOR
G-152A&B	GAS TURBINE GENERATOR
G • /53	EMERGENCY SENERATOR
	TANK
TK-152	DIESEL STORAGE TANK

NOTE: THIS FIGURE IS FOR EITU.A.

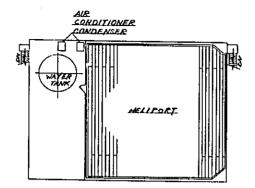
> FOR BUDGET PURPOSE ONLY

0.	REVISIONS	DATE	DRAWN	CHIE
0F	MASTER PLAN STUDY FOR THE DEVI PETROLEUM AND NATURAL GAS RESOU			YSIA
R	PETRONAS PETROLAM NASIONAL BERNAS	,		

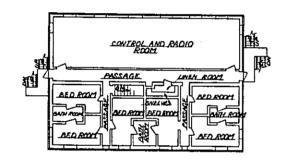
TITLE FIG. 30-5-30(Vol. IV)

TYPICAL PLAN AND ELEVATION FOR 4-LEG

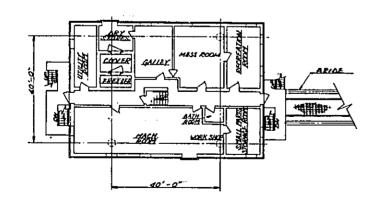
UTILITY PLATFORM

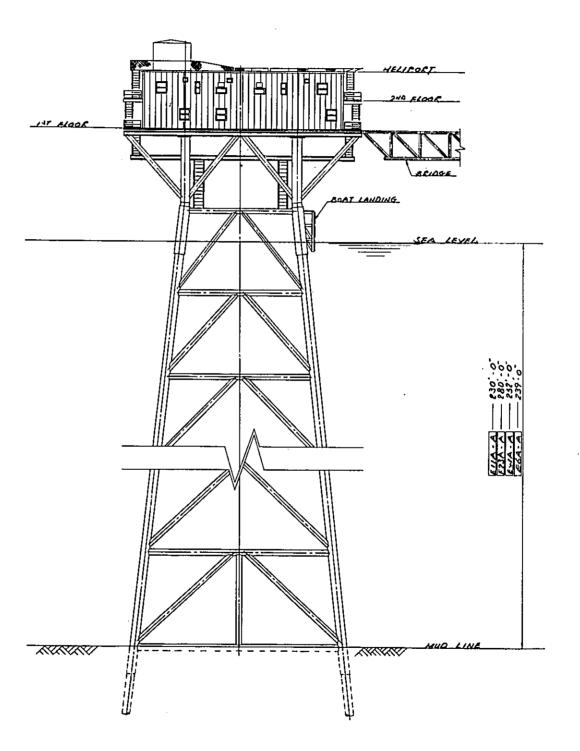

DESIGN OFFE SCALE

DECALD BY PROJECT NO.


DESIGNED BY DRAWING NO.

DRAWN BY DATE


JAPAN INTERNATIONAL COOPERATION AGENCY
TOKYO JAPAN


HELIPORT OFCK PLAN

2NO FLOOR PLAN

1ST FLOOR PLAN

ELEVATION

NOTE:
THIS PIGURE IS FOR FIZA-A, EIIA-A,
ENA-A AND EGA-A.

FOR BUDGET Purpose only

ŧ I	ı		l :	1	, [
NO.		REVISIONS	DATE	DRAWN	CHIEF			
75		ASTER PLAN STUDY FOR THE DEVI			VC1 4			
FOR	PEI	ROLEUM AND NATURAL GAS RESOU	HUES II	N MALA	TSIA			
run		PETRONAS PETROLUM NASIONAL BERHAL	,					
TITL	E	_FIG. 30-5-31 (Vo	ı. IV)					
	TYPI	CAL PLAN AND ELEVATION	FOR	4 - LEC	, l			
		ACCOMMODATION PLATE						
DESIGN	OHEF	SCALE	*******					
CHE CATE	D 87	PROJECT NO.						
DE 31/04	DESIDED BY DRAWING NO.							
DRAWN	I BY	DATE						
JAPAN INTERNATIONAL COOPERATION AGENCY TOKYO JAPAN								

Fig. 30-5-32 (Vol. IV)

LEGEND FOR FLOW DIAGRAMS

PIC	PRESSURE INDICATING CONTROLLER
PC	PRESSURE CONTROLLER
PS	PRESSURE SWITCH
FRC	FLOW RECORDING CONTROLLER
FM	FLOW METER
FR	FLOW RECORDER
FI	FLOW INDICATOR
(rc)	LEVEL CONTROLLER
LS	LEVEL SWITCH
PSV	PRESSURE SAFETY VALVE
RD	RUPTURE DISC
(DV)	DELUGE VALVE
(SD)	SHUTDOWN VALVE
(xv)	MISCELLANEOUS VALVE

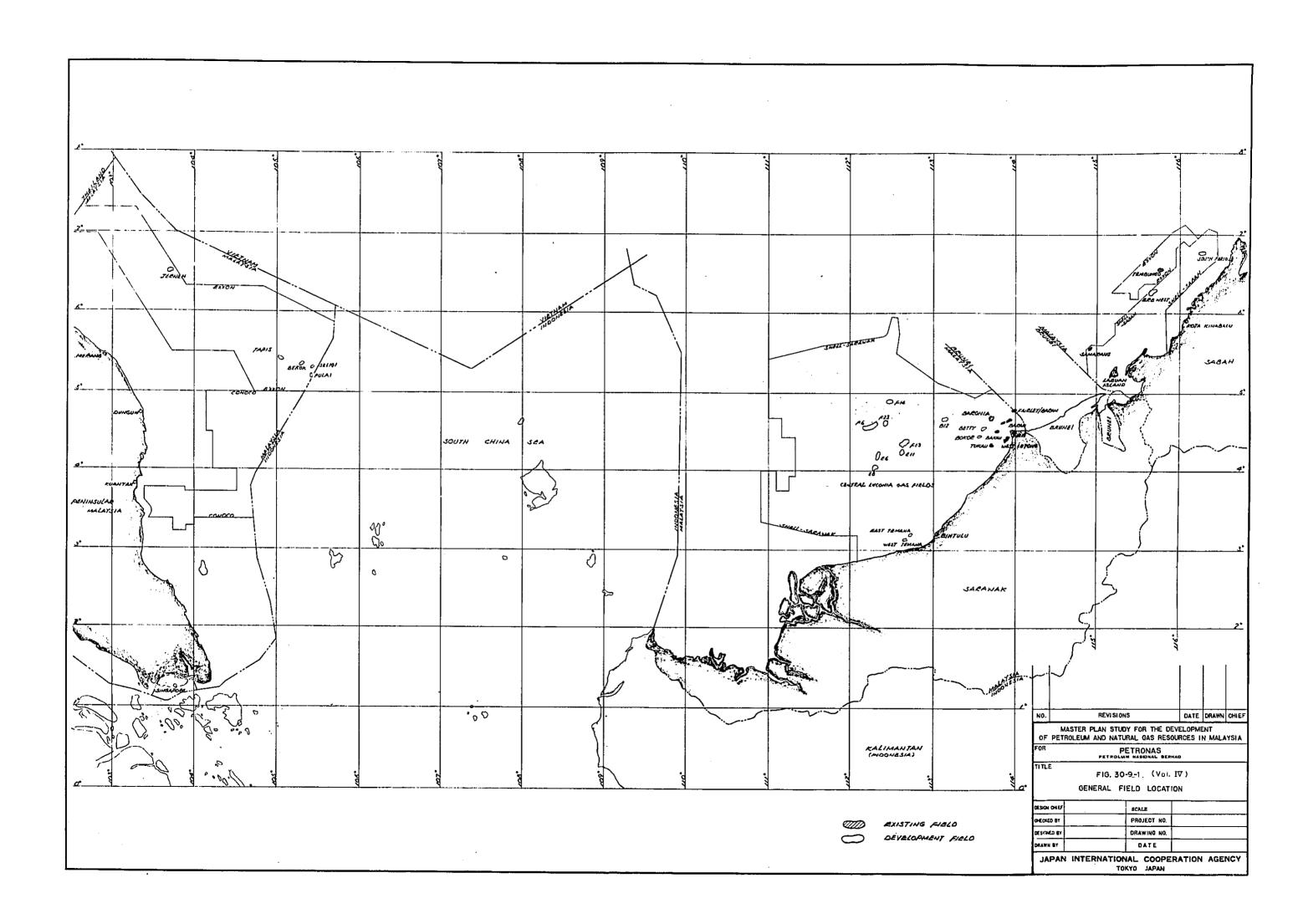
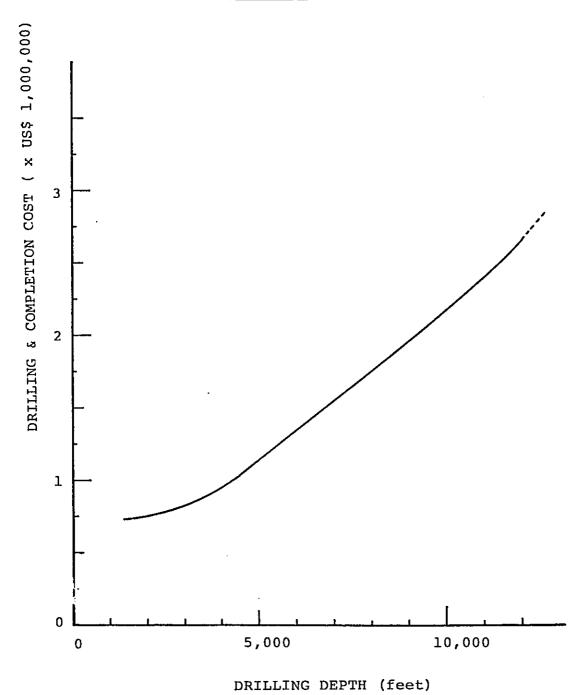
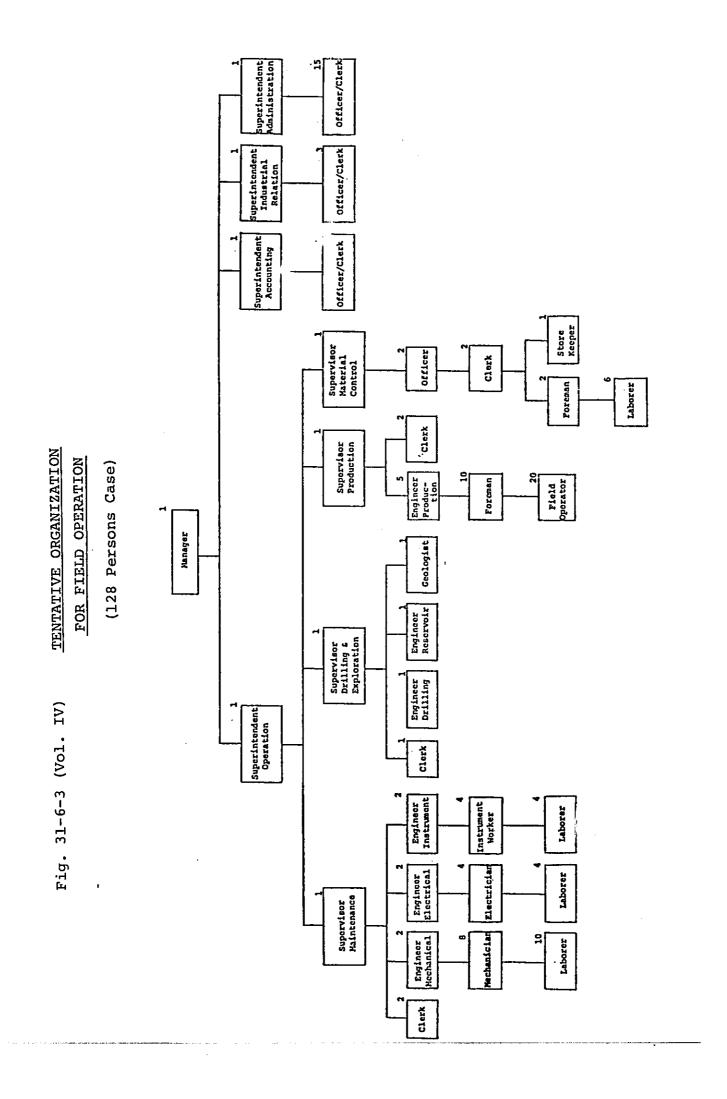




Fig. 31-6-1 DRILLING & COMPLETION COST (Vol. IV)

OF DEVELOPMENT WELL

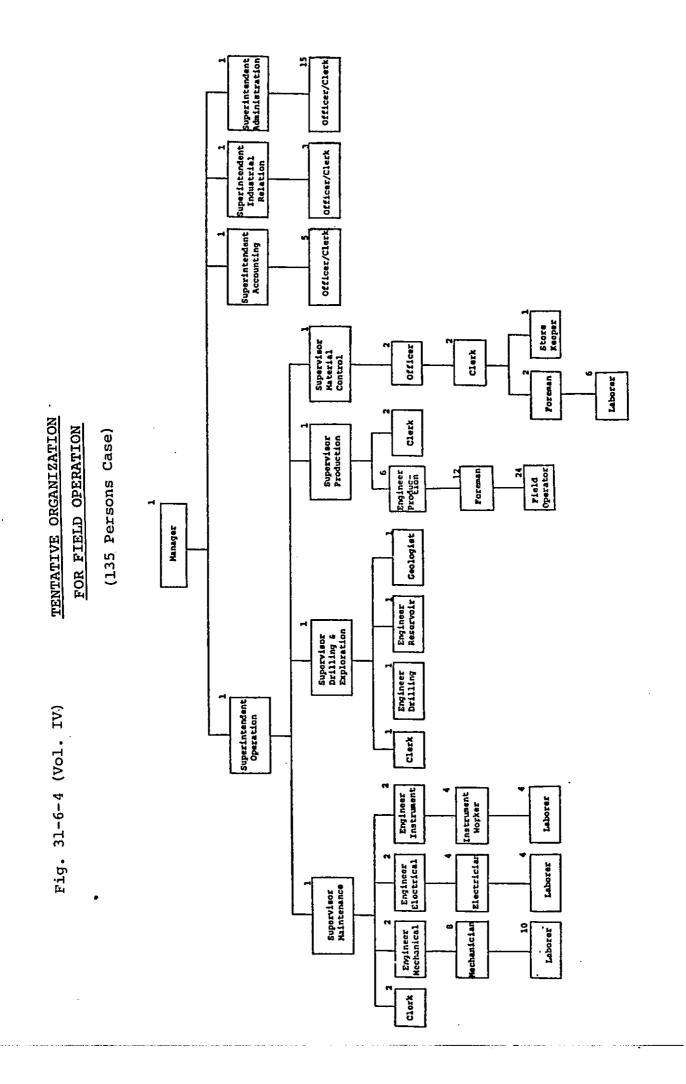
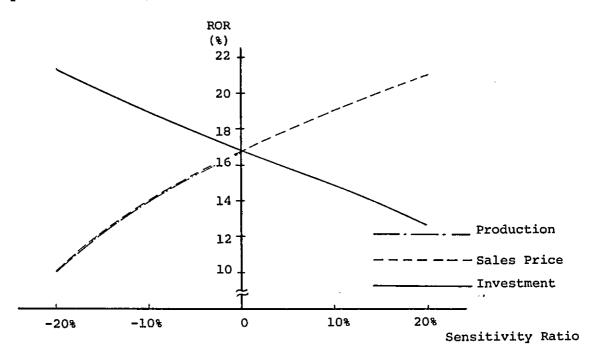
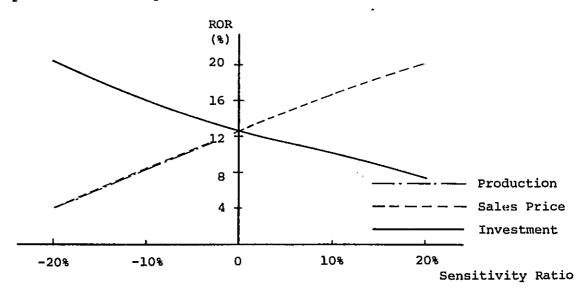



Fig. 31-6-8 (Vol. IV) SENSITIVITY CURVE FOR SARAWAK AREA


West Temana & E-6 Fields

Optimum Case: E-6, Onshore Terminal - CASE IIB

Betty & Bokor Fields

Optimum Case: Betty, Bakau Gathering System - CASE II

.

APPENDIX I

Correspondence of Zones to the Shell Nomenclature for Producing Fields

Correspondence of Zones to the Shell Nomenclature for Producing Fields

																	_			
Field	Shell	Top Cl	E6	F2	∿ F6	65.5	H4	ī	14	17	J2	∿ L2	MI	MS	NT	N7	01			
Ħ	Zone	Тора	p ₁	b ₂	b 3	C 1	G ₂	d ₁	ď2	d ₃	ď.	e ₁	e ₂	ψ «	e.	£	£2			
ram Field	Shell	$ ext{Top } ext{L}_1$	P1	υ	PS	Qs	90°	Ω6.1	∿ R ₁	Rs										
Fairley-Baram Field	Zone	Top a ₁	a ₂	n n	a t	p ₁	b ₂	b ₃	υ	ס										
Field	Shell	Top RL3	RM ₂	RN ₂	RO	RP 1	∿ RP2	ı	RR2	ı	RS2	RT	RU2	RV2	RW1					
Baronia	Zone	Top a1	a ₂	p 3	д	ບ	C ₂	d ₁	d ₂	d ₃	d.	Φ	f1	£2	ש					
Fiel	Shell	Top L7	N1	04	P1.1	P3.1	P4.1	P7	03	05	RJ	S1.1	S4	S6.1	58.1	59.1	s11.1	S13.1	S15.1	
Baram B	Zone	Top a	a 1	a 2	bı	b2	b3	G ₁	C2	ບ	บ้	d ₁	d ₂	e ₁	e ₂	O B	44	gı	92	
Field	She11	Top Kl	M4	N2	01	Pl	P4	95	R1	Sl	S4	98	SS	S11	S13	S14		u -		
Baram A	Zone	Top a	a ₁	a2	q	υ 1	G ₂	d ₁	ď2	e ₁	e ₂	£1	£2	91	gs	g		-		
r Field	ı	Top A 0	C ₁	~ 田 1	H.	Н	×	z	Pı	ð	U 1	V ₁	Wı	×	Z 1A					
W.Lutong	Zone	Top a ₁	a ₂	m rd	b ₁	p ₂	ບິ	ຜິ	ບ	ק	d ₂	đ ₃	6 1	e ₂	n 3					
_	_																			

APPENDIX II

LOG INTERPRETATION RESULTS

SARAWAK AREA

1. Baronia Field

The water resistivity value was 0.09 Ω -m @ 150°F.

In this area the value belongs to lower one. Water saturation was somewhat high. The porosities of core samples corresponding the intervals which are under 20% shale contents were compared with log derived porosity. The results are average core derived porosity equal to 20.6% and average log derived porosity equal to 20.3%. They are consistent each other.

2. Fairly Baram Field

As water resistivity value 0.22 Ω -m 0 70°F was used. The water saturation is in the range between 30% and 60%. This value is somewaht high. Generally gas zones show lower water saturation than oil zones. In well No.2 and well No.3 corings were conducted and each core was analyzed. In comparing each other for points picked up continuously under 10% shale contents the average core derived porosity is 21.8% and the average log derived porosity is 21.7% for well No.2. And for well No.3 the average core derived porosity is 25.6% and the average log derived porosity is 22.5%. These values show good coincidance in spite of the correlation difficulty, especially, in well No.2.

3. West Lutong Field

Porosity and water saturation were calculated every two feet by computer using Rw = 0.205 Ω -m @ 100°F.

Generally speaking, water saturation was high relatively. As for porosity log derived porosity has a tendency to show somewhat lower than core derived porosity. The porosities of core samples corresponding the intervals which are under 10% shale contents were compared with log derived porosity. The results are average core porosity equal to 24.4% and average log derived porosity equal to 19.6%. They are not consistent each other. As the explanation of this unconsistency it is considered that in analysing cores shales have been washed out, so core derived porosity shows good result.

4. Baram Field

For Baram A area 0.135 Ω -m @ 150°F and for Baram B area 0.13 Ω -m @ 170°F for water resistivity are used. Calculation was done every two feet by computer. Generally water saturation is high. Core analysis was conducted on Well No.8. But coring intervals were out of log interpreted intervals, so the comparison between log derived porosity and core derived porosity was not done.

5. Bakau Field

As water resistivity value 0.12 Ω -m @ 206°F was used. Water saturation is somwhat high. As there is no core analysis data so the comparison with log derived porosity can not be done. But the magnitude of porosity is in the range of reasonable value.

6. Tukau Field

As water resistivity value 0.12 Ω -m @ 140°F was used. Water saturation is in the range between 30% and 50%. The porosities of core samples corresponding the intervals which are under 20% shale contents in log analysis were compared with log derived porosity. The results are average core porosity is 24.9%, average log derived porosity is 22.4%.

7. Betty Field

There are gas zones or oil zones encountered at only well No.1 and well No.3. So the well log analysis was conducted for well No.1 and well No.3. The water resistivity value was 0.11 Ω -m @ 180°F.

As the core analysis is not conducted, so the comparison with the porosity derived from the core analysis. The within the reasonable range.

8. Bokor Field

0.16 Ω -m @ 140°F was used for the water resistivity value. The cores are not available. The water saturations are generally somewhat high. But when this value and the porosity value were compared with the value of other nearby fields the values are reasonable.

9. Temana Field

Analyzed wells are well No.2 Well No.10 except Well No.1. No.1 Well was excluded because the recording quality is not good.

The water resistivity value was 0.15 Ω -m @ 152°F. The water saturation was very high except well No.9. The value almost exceeds 50%.

The comparison with core analysis data was not done because of imperfect data quality.

10. Beryl Field

In Beryl wells they do not encounter the gas or oil zones. So the well log analysis does not conducted for this field.

ll. Siwa Field

Only well No.4 which has hydrocarbon bearing intervals was analysed.

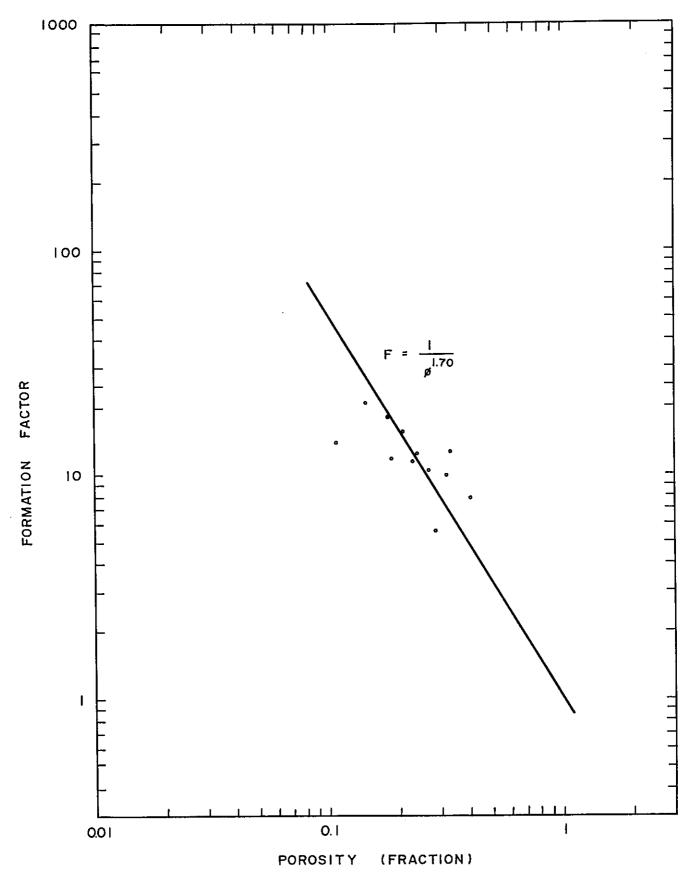
For the water resistivity value 0.4 $\Omega\text{-m}$ @120°F was used. The relationship F = 0.62/ $\phi^{2.15}$ was used. The coring was not planned.

12. Central Luconia Area

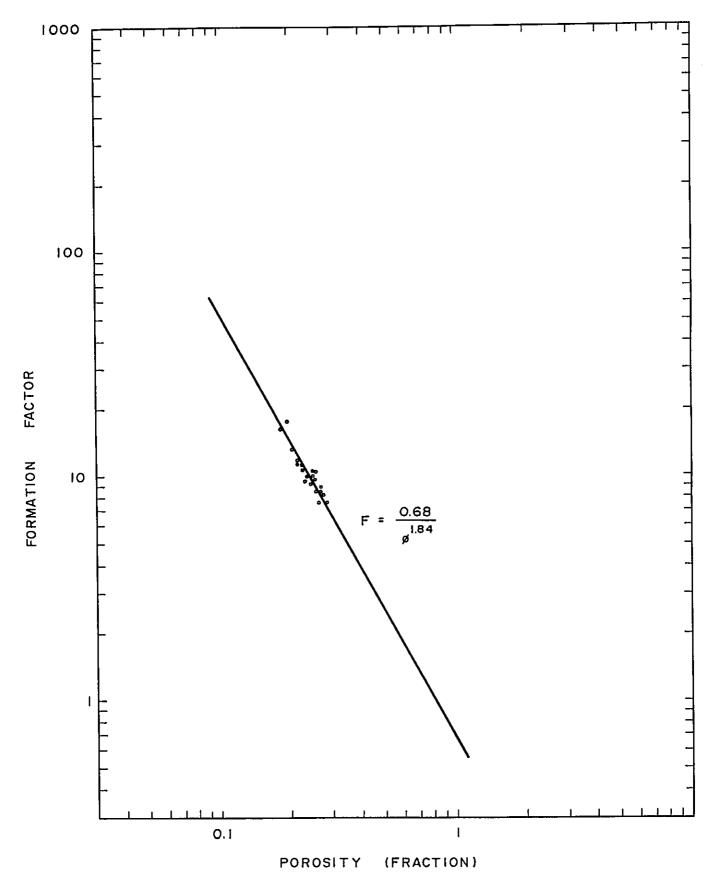
In this area m and a values were gotten from core analysis data in the E-8 field and E-11 field. The relations are F = $1.04/\phi^{1.84}$ in the E-8 field and F = $1/\phi^2$ in the E-11 field. In considering that the main lighology in this area is either limestone or dolomite, either of the two relations was used in calculation.

The water resistivity values show simillar values as other field in the Sarawak area. The value of each field was shown in the table.

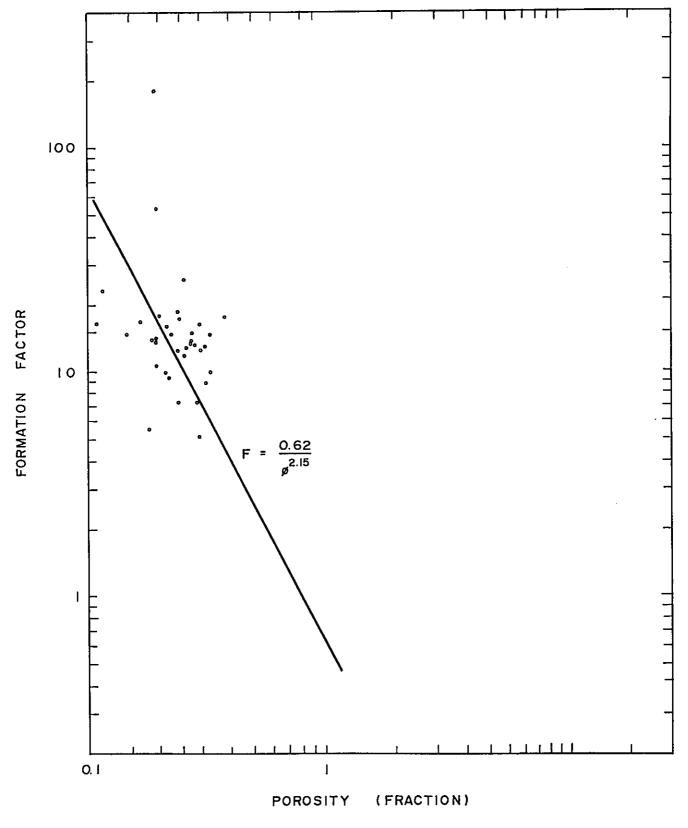
In every field in the Central Luconia area the water saturation values were 10 to 20 % and lower than any other zones dominated by sand and shale of the other field in the Sarawak area.

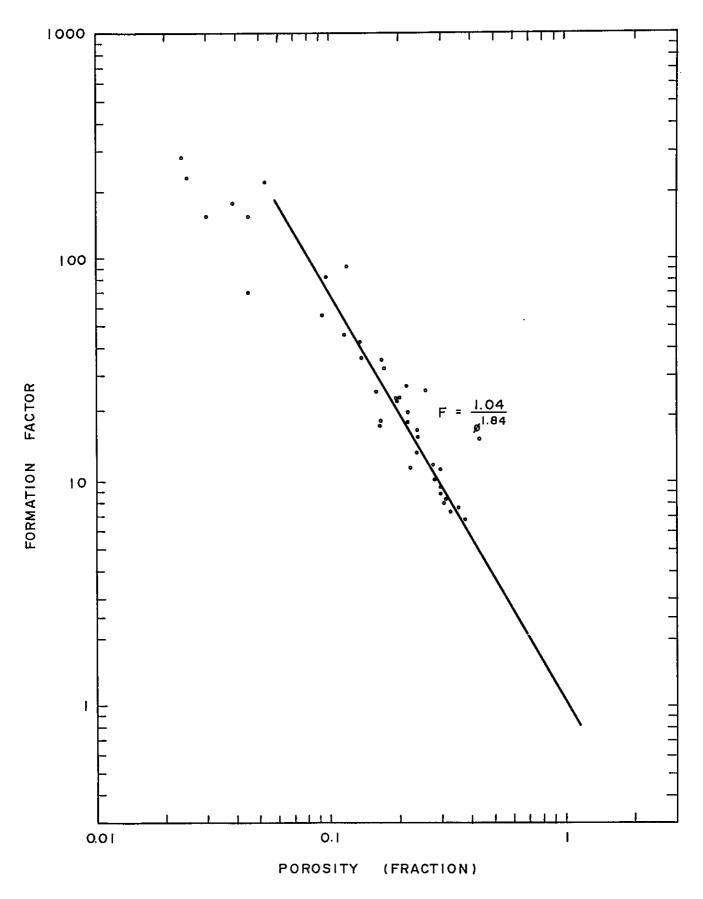

From core analysis data of E-8-2, E-11-1, F-6-1, F-23-1 the porosity cut-off was fixed 10% corresponding to area 99% flow capacity.

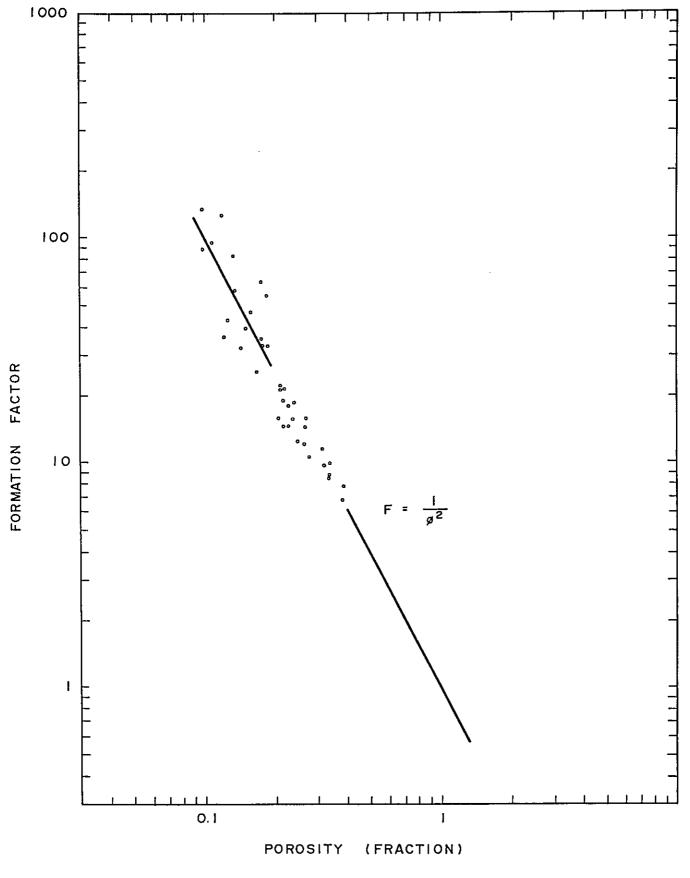
Shale contents out-off (Vsh Cut off) limit was decided 60% from the comparison of porosity and shale contents of log analysis results. Water saturation cut off limit was adopted 60%.


IMPORTANT PARAMETER USED FOR LOG-ANALYSIS

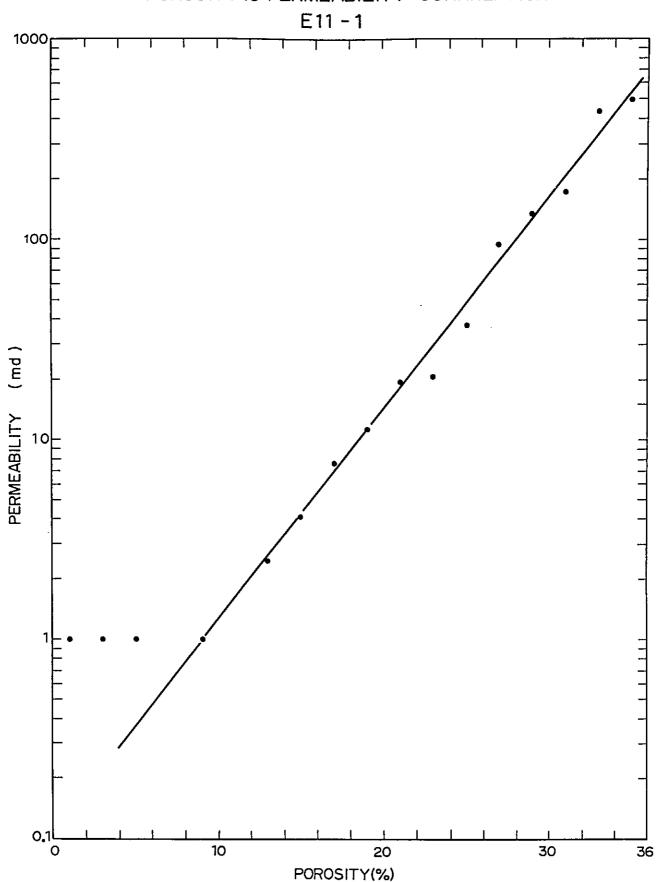
- SABAH AND SARAWAK -

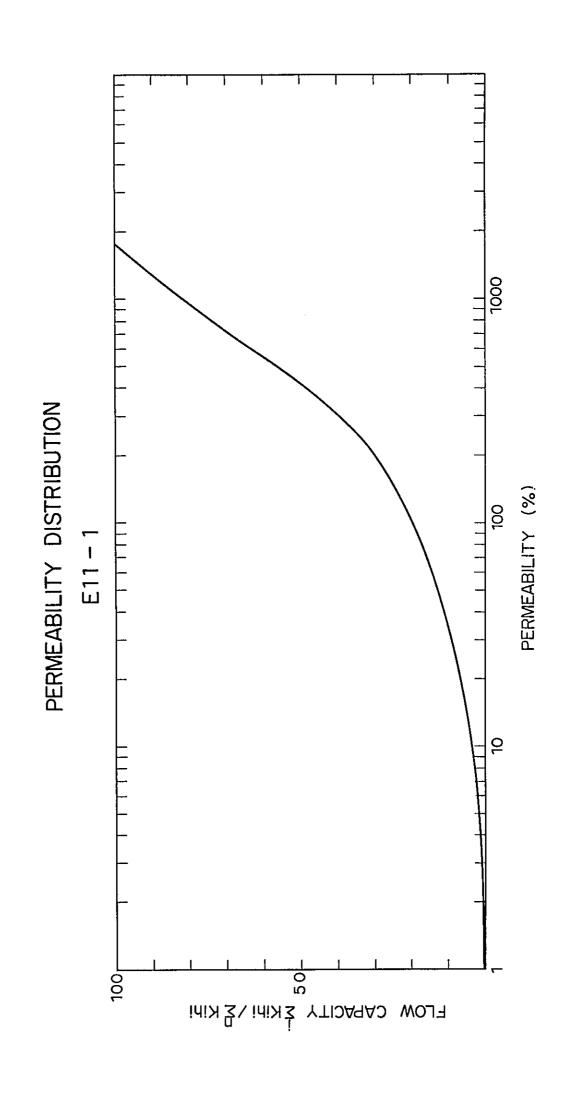

FIELD	CEMENTATION FACTOR (m)	ARCHIE FORMULA'S CONSTANT (a)	SATURATION EXPONENT (n)	WATER RESISTIVITY (Ω-M @ F.T.)
TEMANA	2	1	2	0.15 @ 152°F
SOUTH FURIOUS	1.69	1	2	0.22 @ 155°F
BETTY	2	1	2	0.11 @ 180°F
BOKOR	2.15	0.62	2	0.16 @ 140°F
ERB WEST	2.15	0.62	2	0.13 @ 145°F
ERB SOUTH	2.15	0.62	2	0.3 @ 120°F
ST. JOSEPH	2.15	0.62	2	0.25 @ 150°F
WEST EMERALD	2.15	0.62	2	0.21 @ 135°F
BERYL	1.87	0.7	2	
SIWA	2.15	0.62	2 .	0.4 @ 120°F
CENTRAL LUCONIA				
B12	1.84	1.04	1.84	0.096@ 240°F
E6	1.84	1.04	1.84	0.23 @ 70°F
E8	1.84	1.04	1.84	0.102@ 148°F
Ell	1.84	1.04	1.84	0.096@ 165°F
F6	1.84	1.04	1.84	0.096@ 152°F
F9	2	1	2	0.208@ 170°F
F13	1.84	1.04	0.84	0.25 @ 184°F
F14	1.84	1.04	1.84	0.124@ 148°F
F22	1.84	1.04	1.84	0.2 @ 170°F
F23	1.84	1.04	1.84	0.16 @ 204°F
K4	2	1	2	0.102@ 175°F
Ml	1.84	1.04	1.84	0.11 @ 162°F
м3	1.84	1.04	0.84	0.06 @ 203°F
M5	1.84	1.04	1.84	0.06 @ 206°F
BARAM A	1.87	0.7	2	0.135@ 150°F
BARAM B	1.87	0.7	2	0.13 @ 170°F
BAKAU	2.15	0.62	2	0.11 @ 206°F
BARONIA	1.69	1	2.0	0.09 @ 150°F
RAIRLY BARAM	2.15	1	1.49	0.22 @ 70°F
SAMMARANG	1.8	1	1.8	0.111@ 142°F
TEMBUNGO	1.93	1.14	1.93	0.14 @ 150°F
TUKAU	2.15	0.62	2	0.12 @ 140°F
WEST LUTONG	1.84	0.68	2	0.205@ 100°F

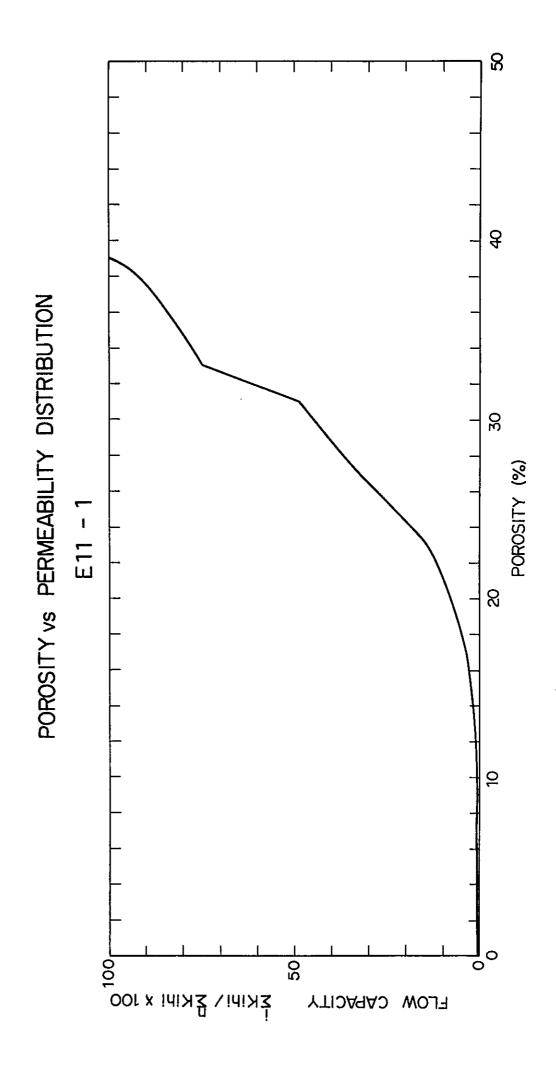

FORMATION FACTOR VS POROSITY PLOT FAIRLY BARAM 2

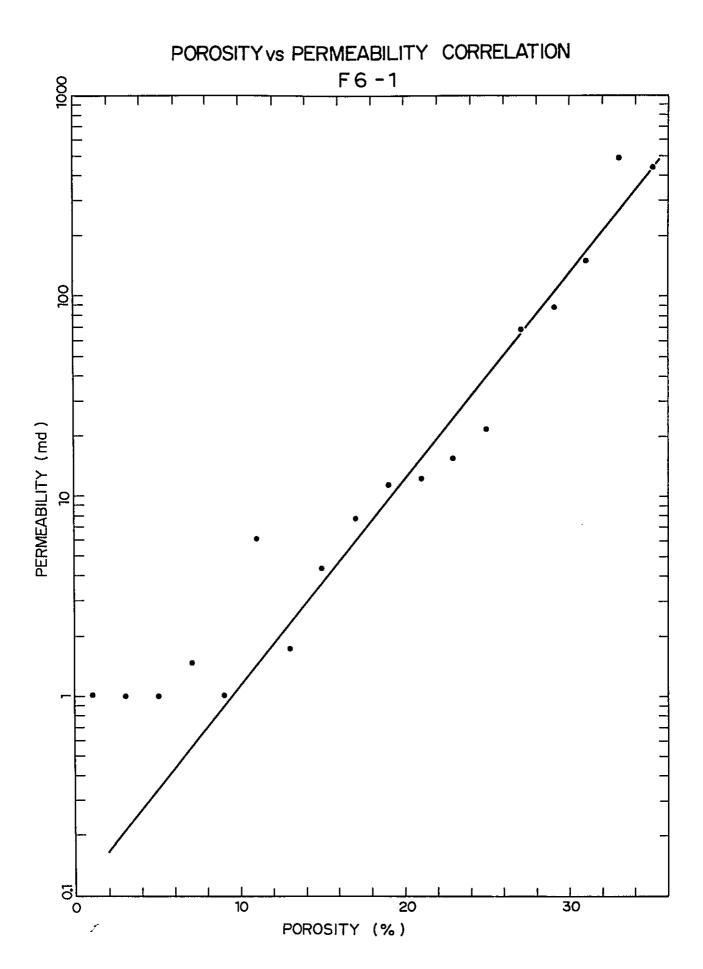

FORMATION FACTOR VS POROSITY PLOT WEST LUTONG 4

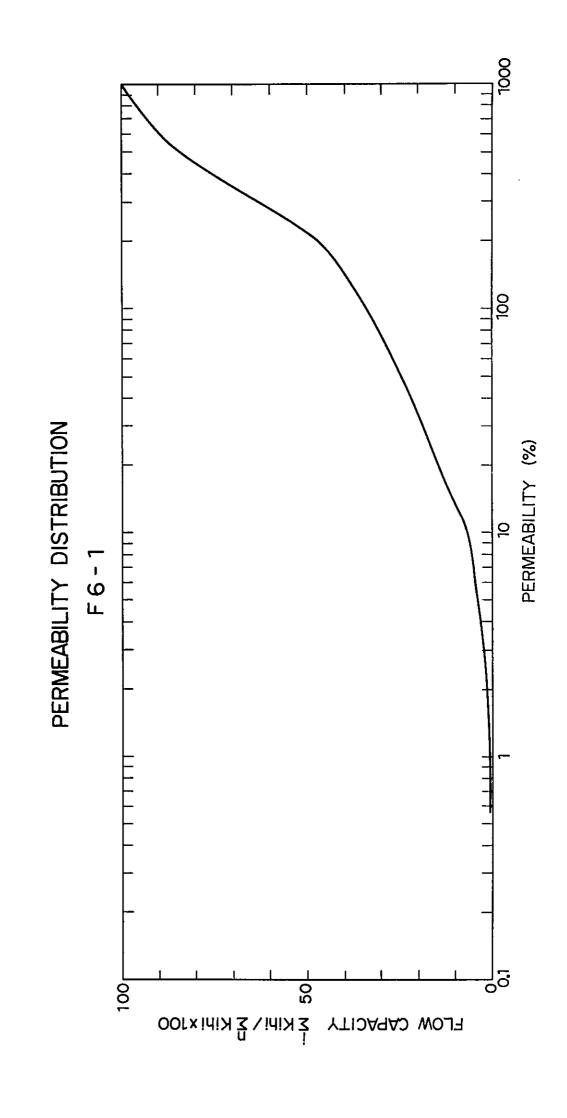
FORMATION FACTOR VS POROSITY PLOT TUKAU 10

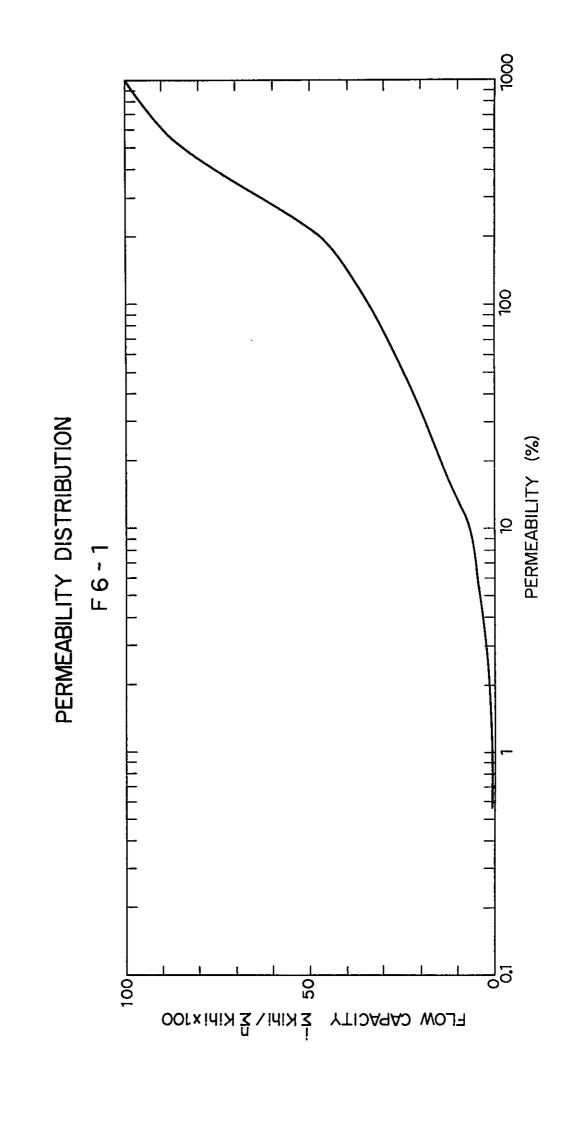


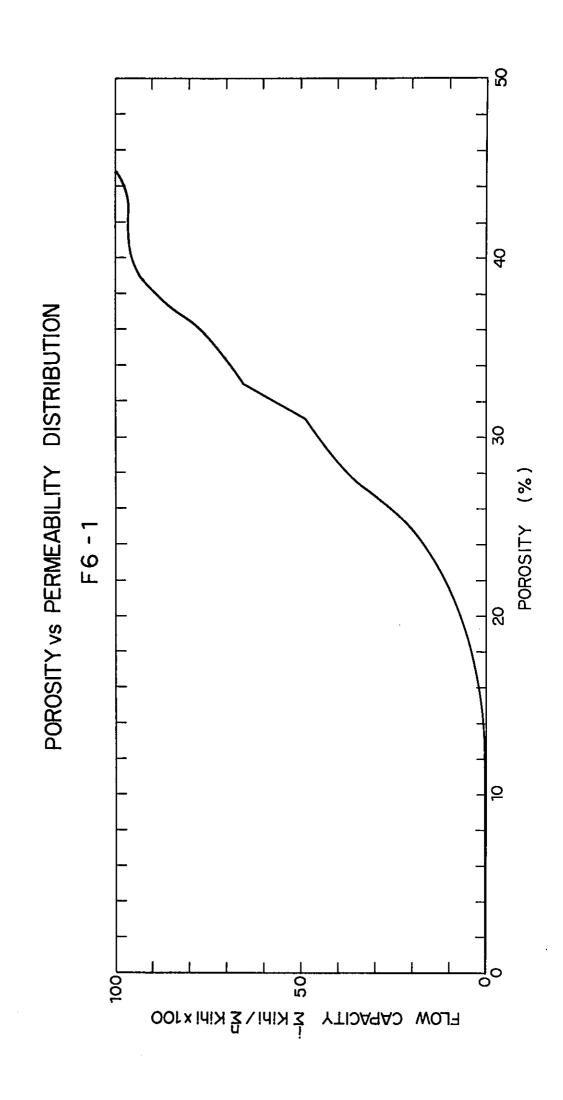

FORMATION FACTOR VS POROSITY PLOT CENTRAL LUCONIA E8-2

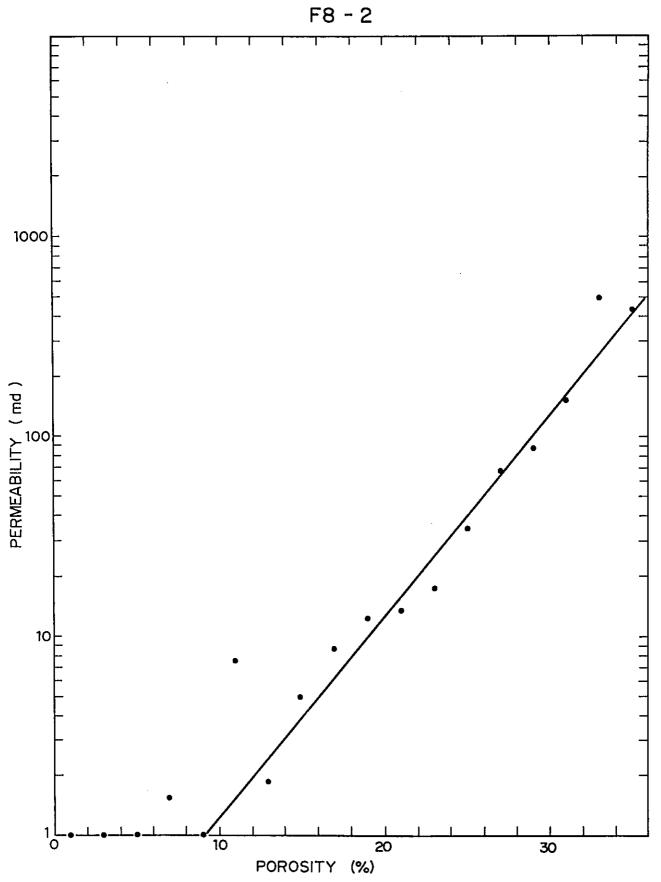


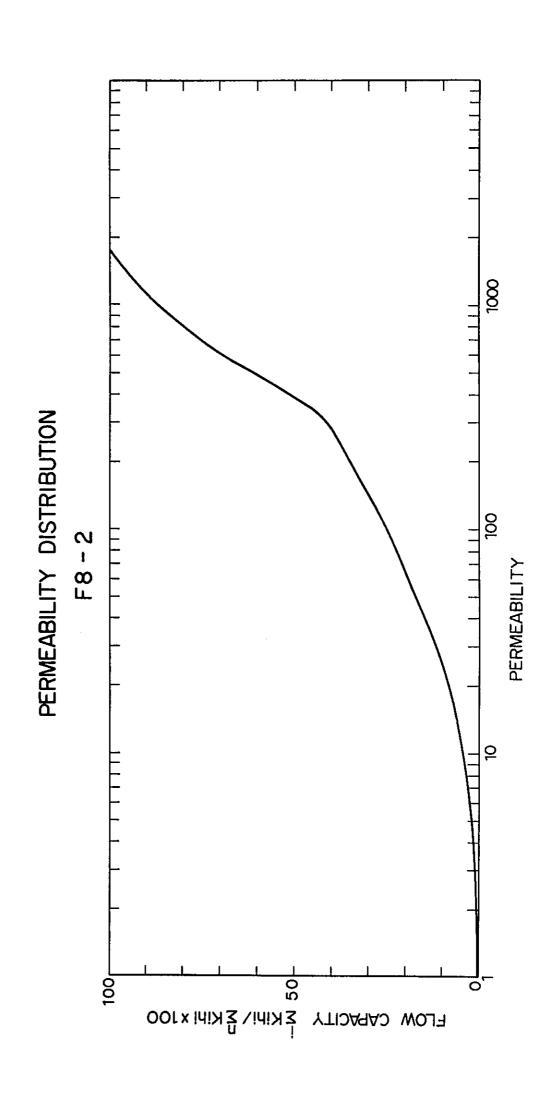

FORMATION FACTOR VS POROSITY PLOT CENTRAL LUCONIA E II - 2

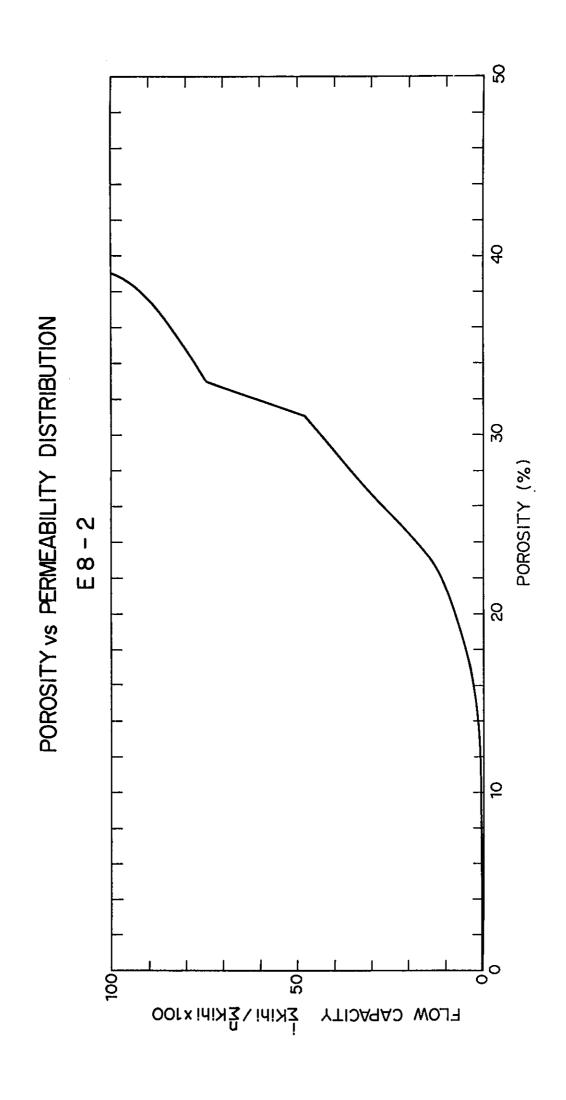

POROSITY vs PERMEABILITY CORRELATION

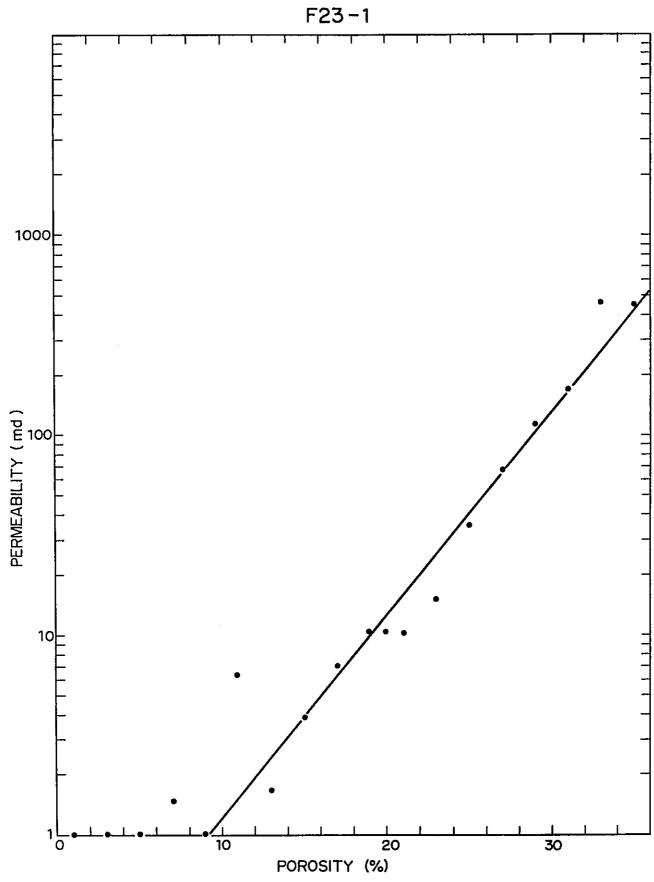


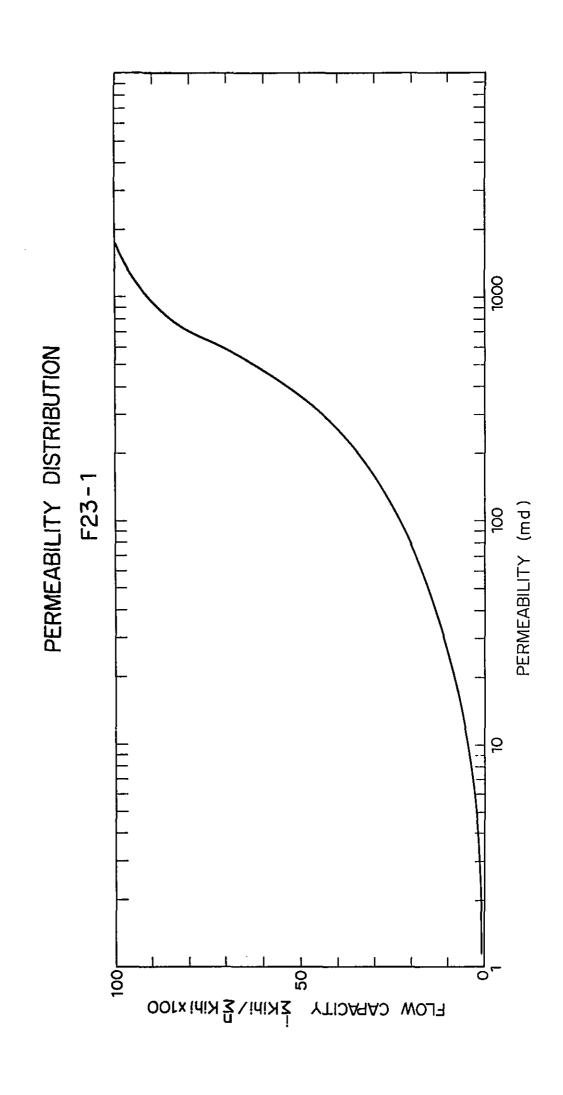


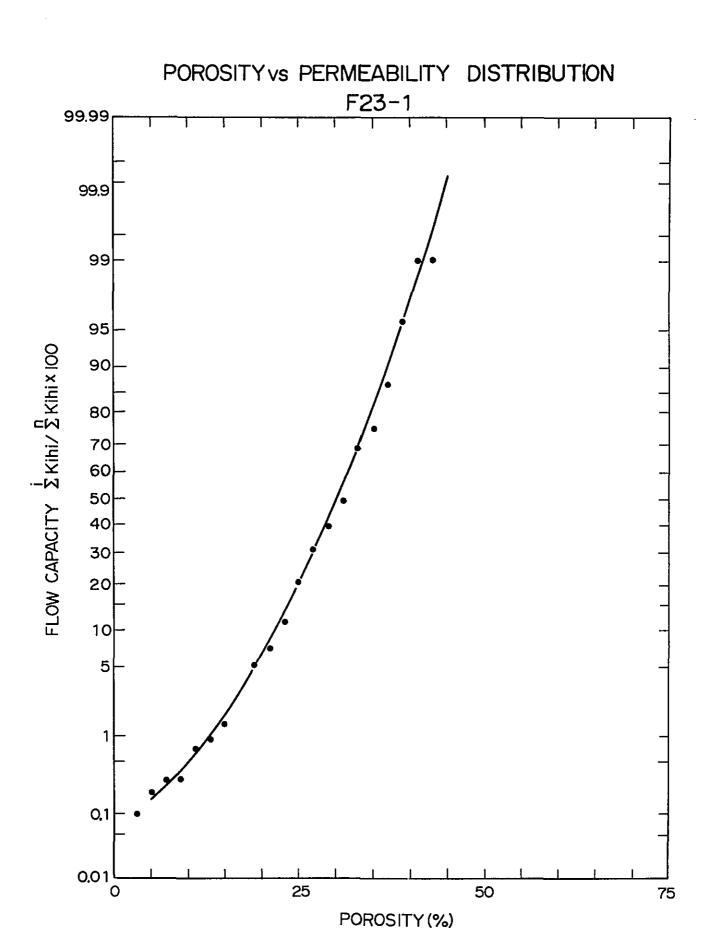







POROSITY VS PERMEABILITY CORRELATION





POROSITY VS PERMEABILITY CORRELATION

WELL NAME : BARONIA 01

		REMARKS		:												-
		AVERAGE	SATURATION	(%)	45.6	22.5	21.8	21.0	26.0	37.1	37.5	38.4	37.7	47.8		
		AVERAGE	POROSITY	(%)	19.3	22.6	19.4	22.9	27.3	23.6	27.0	23.6	17.6	14.5		
01	: 80.00 ITY : 0.0 : 50.00	L	THICKNESS	(FT)	10	22	£	36	949	30	α	U) C:	36	58		
WELL NAME : RARONIA	T OFF OF SW T OFF OF POROSI T OFF OF SHALE	INTERVAL	BASE	(FT)	- 7058.0	- 7140.0	- 7170.0	- 7266.0	- 7312.0	- 7484.0	- 7496.0	- 7816.0	7896.0	- 7964.0	- 8056.0	- 8182.0
MELL	CUT CUT CUT	INI	TOP	(FT)	.7044.0	7118.0 -	7158.0 -	7232.0	7246.0	7456.0	7490.0	7756.0	7840.0	19r4.0	8 Ú 7 7 Û	A060.0

WELL NAME : BARONIA 04

	REMARKS					•		GDC 5628		- 1	OWC 6525					GDC 7240			DWC 7432		DMC 7748				
		GAS	GAS	GAS	GAS	GAS	GAS	GAS	01L	GAS	OIL	GAS	GAS	GAS	GAS	GAS	011	OIL	OIL	01L	016	01L	GAS	GAS	GAS
	AVERAGE SATURATION (%)		35.3	55.0	24.7	36.2	43.6	42.3	54.3	32.5	51.4	47.5	26.1	27.4	47.3	31.4	44.0	42.1	52.1	1		• 1		28.3	•
	AVERAGE POROSITY (%)		21.2	18.2	24.8	25.7	23•3	26.2	23.9	27.1	18.8	17.1	20.7	24.1	14.7	22.6	20.6	19.5	24.9			m	~	18.8	m
80.00 17Y : 0.0 50.00	NET THICKNESS (FT)		34	2	30	40	10	20	12	24	36	ထ	14	64	28	84	10	22	10		40	. 09	7	10	40
OFF OF SW OFF OF POROSI OFF OF SHALE	3VAL BASE {FT}	632.	380		534.	580.	5602.0	628.	650.	408.	525.	944	982.	102.	146	24	250	414.	7432.0	685.	748.	875.	.600		076.
CUT CUT CUT	INTERVAL TOP (FT)	4610.0 -	. +	5478.0 -	ċ	~		. 0	~	.+															8032.0 -

1			
	•		
	_	Z	
	C		
	•		
		2	
	•		
	l	1	ļ
	:	2	
	•		
	•	_	
	i	j	l

	REMARKS	GAS	GAS	GAS	GAS	GAS	OIL	GAS	GAS	GAS	1	GAS GOC 7238	OIL	OIL	GAS
	AVERAGE SATURATION (%)		80		m		-	2		ري ا		:	9.5	2.9	39.7
	AVERAGE POROSITY (%)		19.4	24.3	24.9	25.1	22.5	16.5	20.6	20.5	16.3	22.5	19.9	13.4	13.9
: 80.00 1TY : 0.0 50.00	NET THICKNESS (FT)		26	œ		7-7	77	14	22	72	34	36	99	74	84
CUT OFF OF SW CUT OFF OF POROS: CUT OFF OF SHALE	INTERVAL TOP BASE (FT)	3540.0 - 3550.0	ı	1	ı	5544.0 - 5624.0	1	6984.0 - 7000.0	ı	ı	ı	- 7238.	- 729	•	- 8110.

WELL NAME : BARONIA 06

	REMARKS			THE RESIDENCE OF THE PARTY OF T		0969 200				UMC 6944						OWC 7915				OWC 8240		
	AVERAGE SATURATION (%)	GAS	6AS 47.1 GAS	GAS	GAS	GAS		• •	ů,	.2	.5		m		0.	.1	• 2	ίυ.	67.9 OIL	.2	6.	GAS
	AVERAGE POROSITY (%)		22.0					٠	•	17.1	9	m	6	ं	0	16.0	5	.	2	18.6	14.7	
80.00 1TY: 0.0	NET THICKNESS (FT)		258					9	36	40	14	54	102	126	82	52	16	22	16	42	126	
CUT OFF OF SW CUT OFF OF POROSI CUT OFF OF SHALE	INTERVAL TOP BASE (FT) (FT)	4794.0 - 4805.0 4830.0 - 4836.0	- 4986. - 5987.	l J	1	t	ı	ι	Í	ı	1	ι	ı	ı	ι	ι	ı	ı	ı	ι	ι	t

WELL NAME : RARONIA 07

80.00 0.0 50.00

CUT OFF OF SW : CUT OFF OF POROSITY : CUT OFF OF SHALE :

REMARKS									•											OWC 7573	OWC 7686		DMC 8020		:
	· · · · · · · · · · · · · · · · · · ·	GAS	UI F	015	GAS	OIL	GAS	GAS	GAS	017	OIL	OIL	OIL	OIL	GAS										
AVERAGE	SATURATION (%)							41.2	67.4	64.8	34.0	46.8	9.64	67.0	40.9	55.9	43.4	32.0	36.6	63.5	51.2	61.2	51.0	51.5	18.4
AVERAGE	POROSITY (%)		•					19.2	14.6	17.1	23.B	24.0	25.0		22.7	18.0	19.2	21.3	ċ	18.6	19.4	17.3	17.5	14.4	20.0
NET	THICKNESS (FT)							48	10	16	76	54	12	9	34	7.0	50	88	146	26	58	26	96	100	14
/AL	RASE (FT)	3602.0	4666.0	4718.0	4762.0	4811.0	411	477	519	555	069	762	5810.0	834	582	969	7198.0	315	7478.0	7573.0	7686.0	7766.0	8020.0	8186.0	8290.0
INTERVAL		1	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	1	ı	ı	1	1	1	1	ı	ı	4	1	1
N	T0P (FT)	3574.0	4596.0	4715.0	4758.0	4864.0	5387.0	5429.0	5484.0	5530.0	5610.0	5703.0	5793.0	5824.0	6546.0	6612.0	7138.0	7224.0	7331.0	7478.0	7623.0	7742.0	7913.0	8057.0	8277.0

WELL NAME : BARONIA 08

		REMARKS							60C 6978			GDC 7312			600 9748	
:				1	GAS	GAS	GAS	GAS	GAS	015	GAS	GAS	OIL	016	GAS	016
		AVERAGE	SATURATION	(%)					40.1	59.5	51.1	39•3	58.7	59.4	47.3	53.7
		AVERAGE	POROSITY .	(%)		4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			19.1	13.0	17.3	22.4	16.4	20.2	19.7	17.9
80	: 80.00 ITY : 0.0 : 50.00	ZEL	THICKNESS	(FT)					48	œ	α	92	16	56	200	76
WELL NAME : BAKUNIA US	T OFF OF SW T OFF OF POROSITY T OFF OF SHALE	INTERVAL	BASE	(FT)	- 4858.0	- 5653.0	- 5703.0	- 5753.0	- 6978.0	- 69R8.O	- 7192.0	- 7312.0	- 7342.0	- 7432.0	- 9748.0	- 9849.u
TIBM	CUT CUT CUT	LN I	T0P	(FT)	4846.0	5640.0	5682.0	5730.0		6978.0		7215.0		7362.0		9748.0

WELL NAME : RARONIA 09

	REMARKS		;			:					60C 5944	•		0MC 6976					60C 7730					OMC 8002		:
i			: (CAN	GAS	GAS	GAS	GAS	GAS	GAS	GAS	OIL	GAS	011	GAS	GAS	GAS	GAS	GAS	016	016	016	OIL	OIL	015	
1 1 2 2	AVERAGE	54 (DKA 110N (R)					49.1	68.6	37.2	46.8	50.6	52.1	45.8	57.9	55.7	32.1	39.2	29.3	38.7	58.1	49.3	52.0		75.1	46.8	51.6
:	٠					:					!															
•	AVERAGE	۲∪KUSTIY (۶)					15.4	16.1	21.9	22.1	24.1	26.6	20.4	15.5	14.6	22.6	17.0	19.2	18.0	16.9	16.4	19.4		13.7	19.2	12.1
80.00 0.0 50.00		NESS					44	8	8	0	4	4	9	2	0	0	Œ	4	30	4	4	0		6 0	42	9
 >_	NET	THICKNES (FT)	;				4		~	m	τŲ		m	æ	1	~	~	~	13	2	2	, -nl		7	4	~
OFF OF SW OFF OF POROSIT OFF OF SHALE		BASE (FT)	•	4832.0	4984.0	.+	.+	0	•0	-	•	0.0009	3	•	7424.0	α	α	മ	7730.0	4	7910.0	Ġ	7940.0		.+	8384.0
CUT	INTERVAL			ı	ı	ı	ı	ı	ı	ı	1	ı	i	ı	,	:	ı	ı	ı	ı	1	1	ı	1	ı	ı
000	ZI	T0P		4818.0	0.976.0	5070.0	5640.0	5740.0	5826.0	5924.0	5940.0	5994.0	6820.0	0.0689	7416.0	7450.0	7478.0	7562.0	7600.0	7730.0	7880.0	7916.0	7976.0	7962.0	204	

WELL NAME : BARONIA 10

	REMARKS																					OWC 7220						
		0 4 0	GAS	GAS	GAS	GAS	GAS	GAS	GAS	GAS	GAS	GAS	GAS	OIL	OIL	GAS	011	OIL	OIL	OIL	OIL	OIL	GAS	GAS	GAS	GAS	GAS	GAS
	AVERAGE SATURATION	Ambaria de la compansión de la compansió					;	۷.	o	-	-	9	'n	œ	59.0	۲.	'n	æ	ċ	÷	რ	2	8	4	6	S	ŝ	29.0
:	. !			t :															:	:						·		
	AVERAGE POROSITY (%)							3	2	÷	2	4	3	Ö	24.5	_	œ	9	œ	9	4	3	φ.	ເດ	3	4	7	
80.00 0.0 50.00	NET CKNESS (FT)			•			ż	32	4	9	œ		42		22	32											30	
: 	THI																											
OFF OF SW OFF OF POROSI OFF OF SHALE	VAL BASE (FT)	944.	5056.0	106.	250.	720.	732.	820.	834.	934.	946.	040	.960	112.	162.	920.	046.	076.	100.	146.	190.	220.	472.	516.	602.	632.	678.	788.
CUT CUT CUT	INTERVAL	ı	ı ı	1	ı	i	١.	ı	1	ı	1	ι	1	1	•	ı	ŀ	•	ł	1	ı	1	ŀ	ı	1	1	1	ı
	TOP (FT)	926.	5044.0	098.	546.	716.	728.	788.	830.	928.	940.	958.	056.	106.	140.	888	950.	.990	.060	128.	150	198.	460.	496	552	606.	650.	688.

WELL NAME : BARONIA 10

	REMARKS	OWC 8296
	!	01L 01L 01L 01L
	AVERAGE SATURATION	40.0 56.0 43.3 41.7
	AVERAGE POROSITY (%)	19.2 18.5 22.6 15.5
: 80.00 DSITY : 0.0 LE : 50.00	NET THICKNESS (FT)	20 26 52 82
OFF OF SW OFF OF POROS OFF OF SHALE	VAL BASE (FT)	7946.0 8060.0 8296.0 8426.0
CUT CUT CUT	INTERVAL TOP (FT)	7926.0 - 8032.0 - 8246.0 - 8340.0 -

	REMARKS							600 6836					OMC 7816			•				600 8654	DWC 8736
		GAS	GAS	GAS	0 V	0 4 0	GAS	GAS	016	011	016	OIL	OIL	OIL	GAS	GAS	GAS	GAS	GAS	GAS	016
	AVERAGE SATURATION (%)	:	6	28.3		٠ (32.1	4	6.94	36.6	80	48.5	S	+	0	33.0		25.3	œ	59.6	44.6
	AVERAGE POROSITY (%)		16.2	•	7 . 6.	15.0	2.4.2 .0.4.0 .0.4.0	•			3						24.1	1.	15.7		20.5
 	NET THICKNESS (FT)		10	34	9 (~ ~	1 6	œ	7	14	12	34	16	12	20	50	14	8	30	34	78
OFF OF SW OFF OF POROSI OFF OF SHALE	VAL BASE (FT)	5460.0	6492.0	6532.0	6552.0	6610.0	6808-0	6836.0	6844.0	6862.0	6878.0	6914.0	7816.0	7906.0	8448.0	8536.0	8556.0	8568.0	8612.0	8654.0	8736.0
CUT CUT TUT	INTERVAL TOP (FT)	5446.0 -	6482.0 -	- 0.8649	6546.0 -		6706.0		6836.0 -	- 0.8489	- 0.8989	- 0.0889	7800.0	7884.0 -	8428.0	8486.0 -	8542.0 -	8562.0 -	8582.0 -	8622.0 -	8654.0 -

WELL NAME : RARONIA 12

;	REMARKS	8265 209	:		:	GDC 5420												OWC 8754
i		GAS	OIL	GAS	GAS	GAS	011	GAS	OIL	GAS	GAS	OIL						
	AVERAGE SATURATION (%)		,		;				9*65	26.1	45.6	42•2	41.8	62.3	63.6	45.6	35.9	47.1
!					!													
·	AVERAGE POROSITY (%)								16.7	26.7	19.8	20.5	23.5	23.0	21.0	20.6	21.8	19.8
. 80.00 / : 0.0	NET THICKNESS (FT)								16	38	14	30	86	30	20	89	84	132
OFF OF SW OFF OF POROSITY OFF OF SHALE	VAL BASE (FT)	3545.0 3978.0	· ヘ'	. 4-	5352.0	5420.0	5428.0	5548.0	6348.0	6386.0	6406.0	6542.0	6648.0	0.0079	6728.0	8470.0		8754.0
CUT CUT CUT	INTERVAL	ا ا د د	1	ı	1	1	1	0	і С	1	1	I 0	1	ı	1	1	1	1
	TOP (FT)	3530.0	3978.	5254.0	5328.	5416.0	5420.0	5538.0	6146.	6348.0	6394.0	6514.	6550.0	6668.0	6706.0	8404.0	8514.0	8616.0

WELL NAME : BARONIA 13

	REMARKS					:				0699 009		3				600 8068							600 9114	•
			:	1		GAS		GAS	GAS	GAS	OIL	GAS	GAS	OIL	016	GAS	016	OIL	GAS	GAS	GAS	OIL	GAS	OIL
	AVERAGE	SATURALION	(&				r.	39.4	•	65+3	75.5	34.6	46.4	6.84	8*09	40.8				40.2	34.0	44.9	30.7	38.5
	AVERAGE	POROSITY	(*)				13.0	20.1		16.1	15.6	9	ហ	9	26.0	Ŋ				23.7	21.8	20.5	23.8	7.52
: 80.00 ISITY : 0.0 .E : 50.00	NET	THICKNESS	(FT)				18	99		œ	2	106	58	28	. 24	20				28	108	56	24	108
OFF OF SW OFF OF POROS OFF OF SHALE		BASE	(FI)	4140.0	5370.0	5416.0	6458.0	6552.0	6610.0	6630.0	6652.0	6842.0	6928.0	0.0969	7026.0	8068.0	0.2609	3200.0	8814.0	8868.0	9016.0	9088.0	9114.0	9222.0
CUT CUT	INTERVAL	T0P	(FT)	- 0.010+	5328.0 -	5388.0 -	6438.0 -	- 0.9849	5564.0 -	- 0.0299	- 0.0699	6732.0 -	6862.0 -	- 0.2869	- 0.9669	8050.0 -	8068.0 -	8130.0 -	- 0.4678	8840.0 -	- 0.8788	9034.0 -	- 0.5606	9114.0 -

WELL NAME : RARONIA 14

	REMARKS					GOC 6570					OWC 9270
•		:	:		GAS	GAS	011	GAS	016	GAS	OIL
:	AVERAGE	SAIUKAIIUN (%)	•					48.0	45.4	55.0	60.1
	AVERAGE	PORUSITY (%)					!	22.1	23.0	20.7	20.3
: 80.00 TY: 0.0	- LWN	THICKNESS (FT)						14	108	99	0.6
OFF OF SW OFF OF PORDSITY OFF OF SHALE		RASE (FT)	5428.0	5480.0	5418.0	6570.0	6610.0	6872.0	7010.0	9152.0	9270.0
CUT CUT CUT	INTE	TOP (FT)	- 0.4145	5448.0 -	5492.0 -	6538.0 -	- 0.0759	6852.0 -	- 0.0069	- 0.0806	9162.0 -

WELL NAME : BARONIA 15

	REMARKS														DWC 8652
		GAS	GAS	GAS	GAS	FAS	GAS	GAS	GAS	OIL	GAS	GAS	GAS	GAS	016
	AVERAGE SATURATION (%)		26.6	36.5	56.3	35.4		25.8	32.9	49.1	50.7	59.9	41.6	37.3	52.3
	AVERAGE POROSITY (%)		25.4	23.2	17.2	20.6		26.6	27.6	22,1	27.4	12.0	18.9	16.0	16.8
: 80.00 TY: 0.0 50.00	NET THICKNESS (FT)		46	14	ထ	12		40	800	14	74	10	20	94	86
OFF OF SW OFF OF POROSITY OFF OF SHALE	RASE (FT)	5218.0	6220.0	6246.0	6256.0	6372.0	6384.0	6438.0	6500.0	6528.0	6612.0	8336.0	8386.0	8512.0	8652.0
CUT CUT CUT	INTERVAL TOP (FT)	5170-0	6168.0 -	6232.0 -	6246.0 -	6360.0	6380.0	- 0.9669	6444.0 -	6510.0 -	6534.0 -	8320.0 -	8358.0 -	8392.0 -	œ

WELL NAME : BARONIA 16

	REMARKS					GOC 6882	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•		OWC 8172				60C 9084	0816 DM0
		GAS	GAS	GAS	GAS	GAS	OIL	011	011	011	011	GAS	GAS	GAS	OIL
	AVERAGE SATURATION (%)		34.6	33.4	41.9	47.6	50.1	46.5	75.4	57.9	55.7	36.1	36.8	43.4	42.6
	AVERAGE POROSITY (%)		20.9	24.1	23.4	23.0	27.8	21.6	20.4	19.3	16.8	22.8	20.1	19.7	22,9
: 80.00 .0.0177 : 0.0 .1LE : 50.00	NET THICKNESS (FT)		50	50	52	54	3.8	22	9	46	12	28	146	80	106
CUT OFF OF SW CUT OFF OF POROS CUT OFF OF SHALE	INTERVAL TOP BASE (FT) (FT)	5454.0 - 5494.0 5518.0 - 5542.0	1	6710.0 - 6758.0	ı	ι	6882.0 - 6922.0	1	ı	1	8758.0 - 8782.0	8804.0 - 8830.0	8840.0 - 8988.0	ı	9084.0 - 9190.0

WELL NAME : BARONIA 17

	REMARKS					: :													OWC 8046			600 8988	OWC 9012
	; ;			GAS	GAS	GAS	GAS	GAS	GAS	OIL	GAS	GAS	GAS	GAS	GAS	GAS	0 I L	GAS	016	GAS	GAS	GAS	01[
	AVERAGE	SATURATION	(%)			: : : : : : : : : : : : : : : : : : : :					27.2	35.2	52.3	26.7	31.0	39.0	46.5	35.5	57.1	40.5	31.9	37.0	35.8
	AVERAGE	PORGSITY	(%)			:					26.6	24.7	20.1	30.6	29.4	28.5	32.2	26.6	19.4	21.9	22.7	20.9	22.7
1TY: 80.00 50.00	N THIN	THICKNESS	(FT)								56	œ	20	26	102	40	18	42	86	54	108	114	24
OFF OF SW OFF OF POROS OFF OF SHALE	VAL	RASE	(FT)	5432.0	5628.0	5746.0	5794.0	. 0.9709	6368.0	6386.0	6472.0	6492.0	6562.0	6634.0	6750.0	6808•0	6894.0	7904.0	8046.0	8704.0	8854.0	8988.0	9012.0
CUT CUT CUT	INTERVAL	TOP	(FT)	5334.0 -	5610.0 -	5730.0 -	5768.0 -	6034.0 -	6348.0 -	6378.0 -	- 0.9149	6482.0 -	6542.0 -	- 0.4099	- 0.4499	6768.0 -	- 0.9789	7860.0 -	7934.0 -	8630.0 -	8710.0 -	- 0.9788	8988*0 -

WELL NAME : BARONIA 18

	REMARKS			e de sende de se de service de la companya de la co						- 19-0								GDC 7730		
	- 1			GAS	GAS	GAS	GAS	GAS	GAS	GAS	GAS	GAS	GAS	GAS	GAS	GAS	GAS	GAS	OIL	OIL
	AVERAGE	SATURATION	(6)									31.9	36.7		34.8	30.2	42.1	52.3	45.3	70.0
	AVERAGE	POROSITY		3								20.8	19.5		22.0	22.8	23.1	20.7	25.5	30.2
: 80.00 TY: 0.0	LWZ	THICKNESS				•		!				70	16		36	60	84	30	18	26
OFF OF SW OFF OF POROSITY OFF OF SHALE	VAL	BASE	(۲)	4384.0	5970.0	6012.0	0.8609	6176.0	6264.0	7173.0	7204.0	7304.0	7332.0	7320.0	7516.0	7592.0	7680.0	7730.0	7750.0	- 7874.0
CUT CUT TUD	INTERVAL	T0P	-		- 0.8685	5983.0 -	- 0.0609	6162.0 -	6236.0 -	7150.0 -	7161.0 -	7236.0 -	7316.0 -	7396.0 -	7478.0 -	7532.0 -			•	•

WELL NAME : FAIRLY BARAM 01

			REMARKS			DWC 8042			GOC 8232	OWC 8370	OWC 8522	OMC 9092	60C 9274	
			:			OIL	OIL	OIL	GAS	015	016	016	GAS	OIL
			AVERAGE	SATURATION	(%)	74.2	6*69	49.3	47.2	62.7	53.8	36.6	39.8	42.5
			AVERAGE	POROSITY	(%)	.22.5	21.8	25.3	22.6	21.7	23.9	23.7	23.6	20.6
••	TY: 0.0		NET	THICKNESS	(FT)	•	20	32	22	7.0	46	86	82	126
OFF OF	OFF OF PORUSITY	UFF UF		BASE	(FT)	8042.0	8116.0	8188.0	8232.0	8370.0	8522.0	9092.0	9274.0	9428.0
CUT	CUT	103	INTERVAL	TOP	(FT)	7986.0 -	8082.0 -	8142.0 -	8204.0	8232.0 -	8414.0 -	8994.0	9186.0 -	9274.0 -

WELL NAME : FAIRLY BARAM 02

	REMARKS	OWC 8090	OWC 8314	OWC 8456	OMC 9020	1
		i i	01L 01L	OIL	011	OIL
	AVERAGE SATURATION (%)	67.2	59.2 63.2	58.5	38.9	43.1
	AVERAGE POROSITY (%)	27.5	19.6 19.8	22.6	23.0	18.8
: 80.00 : 0.0 : 60.00	NET THICKNESS (FT)	12	68 18	38	84	186
OFF OF SW OFF OF POROSITY OFF OF SHALE	BASE (FT)	8090.0 8145.0	8288.0 8314.0	8454.0	9020.0	0.9066
CUT CUT CUT	INTERVAL TOP (FT)	8072.0 - 8128.0 -	8183.0 - 8298.0 -	8386.0 -	8847.0 -	9110.0 -

WELL NAME : FAIRLY BARAM 03

	REMARKS		;	OWC 8158	1		OMC 8542
	:		OIL	015	OIL	OIL	016
	AVERAGE	SAI CKA I 1 UN (%)		71.4	53.7	61.5	63.7
	AVERAGE	(%)		22.2	25.7	22.9	21.3
: 80.00 0.0 0.0 0.0 0.0	NET	HICKNESS (FT)		10	34	30	28
OFF OF SW OFF OF POROSITY OFF OF SHALE	2VAL	SASE (FT)	6832.0	8158.0	8342.0	8488.0	8545.0
CUT CUT TU3	INTERVAL	(FT)	6772.0 -	8114.0 -	8302.0 -	8430.0 -	8498.0 -

WELL NAME : FAIRLY RARAM 11

·		REMARKS	# # # # # # # # # # # # # # # # # # #
		AVERAGE SATURATION (%)	90°8
		AVERAGE POROSITY (%)	23.1
IARAM 11	: 80.00 TY : 0.0 : 60.00	NET THICKNESS (FT)	42
WELL NAME : FAIRLY RARAM 11	CUT OFF OF SW CUT OFF OF POROSITY CUT OFF OF SHALF	INTERVAL TOP RASE {FT}	R822.0 - 8908.0

WELL NAME : FAIRLY RARAM 29

			REMARKS	The state of the s		0MC 7670		DWC 7937	GOC 7937		GOC 8603	OWC 8668	9928 209	
						OIL	OIL	011	GAS	OIL	GAS	011	GAS	016
		والمتحققة المقارعة والمقدمة المقد والمتحققة المتحقة المتحقة المتحقة المتحقة المتحقة المتحقة المتحددة والمتحددة	AVERAGE	SATURATION	(%)	69.1		7.64	60.2	73.1	48•0	58.5	32.3	43.8
			AVERAGE	POROSITY	(%)	21.8		22.2	21.1	19•1	21.9	23.4	21.6	21.4
. 80.00	••	•	NET	THICKNESS	(FT)	10	Programmed the control of the contro	26	8	10	16	28	14	132
CUT OFF OF SW	OFF OF POROSITY	OFF OF SHALE	INTERVAL	BASE		0.0797	7832.0	7937.0	7971.0	7986.0	8603.0		8766.0	8904.0
CUT	CUT	CUT	INTE		(FT)	7650.0 -	7800.0	- 0.9067	7962.0 -	7971.0 -	8587.0 -	8637.0 -	8752.0 -	8766.0 -

1

WELL NAME : WEST LUTONG 01

	;	6A 6A 6A 01 01
		82-1 82-2 61-1 61-1 61-1 61-2
	REMARKS	WEST LUTONG 01
	AVERAGE SATURATION (%)	44.6 47.4 37.4 28.0 28.0 49.3 35.9
	AVERAGE POROSITY (%)	19.5 23.5 25.7 24.3 27.9 22.1 24.2
. 60.00 . 0.0 . 60.00	NET THICKNESS (FT)	16 40 54 26 24 6 70 112
OFF OF SW OFF OF POROSITY OFF OF SHALE	VAL BASE (FT)	5365.0 5453.0 5520.0 5566.0 5609.0 5732.0
CUT CUT	INTERVAL TOP (FT)	55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

WELL NAME : WEST LUTONG 02

	: :	GA	6 A D	10	10	IO	10
	:	182-11	182-21	101-11	101-2	1C1-3	162-11
	REMARKS	WEST LUTONG 02	1	LUTONG	WEST LUTONG 02	WEST LUTONG 02	WEST LUTONG 02
	AVERAGE SATURATION (%)	45.2	i C	41.0	47.5	43.7	34.8
	AVERAGE POROSITY (%)	16.4	c c	7 I • C	19.3	19.2	21.8
00.09 :	NET THICKNESS (FT)	7	`	4 4	16	18	56
OFF OF SW : OFF OF POROSITY : OFF OF SHALE :	SASE FT)		5745.0	0*9069	5969.0	6085.0	6253.0
CUT CUT	INTERVAL TOP (FT)	5647.0 -		5779.0	- 0*9065	5969.0 -	6085.0 -

WELL NAME : WEST LUTONG 04

0.00

CUT OFF OF PORNSITY :
CUT OFF OF SHALE :

		182-11 GA						10 .6-13,				
REMARKS	1	WEST LUTONG 04		LUTONG	LUTONG	LUTONG	LUTDNG	WEST LUTONG 04	LUTONG			
AVERAGE SATURATION	(%)	47.2	6.94	40.5	46.1	42.2	46.3	45.4	39.9	26.0	33.9	34.6
AVERAGE PORUSITY	(%)	20.1	19.9	20.1	18.1	19.7	18.7	200	19.5	20.5	19.7	19.7
E PARTE LA P	(FT)	14	34	28	16	. 60	: ac	2.8	78	12	30	76
VAL	(FT)	5369.0	5463.0	5510.0	טייטריטי	5599.0	5622	726.0	5891.0	6510.0	6571.0	0 0677
INTERVAL	(FT)	5335.0 -	5369.0 -	5463.0 -	5510.0	77.50				6483.0 -	6531.0	0 1737

WELL NAME : WEST LUTONG 06

		GA	01	10
		182-11	.C1-2'	1C1-31 1C2-11
	REMARKS	WEST LUTONG 06 '82-1'	LUTONG 06	WEST LUTONG 06 WEST LUTONG 06
		WEST	WEST	WEST
	AVERAGE SATURATION (%)	38.9 58.7	46.1	36.8 39.5
	AVERAGE POROSITY (%)	19.5	14.9	19.5
: 60.00 : 60.00 : 60.00	NET THICKNESS (FT)	14 2	46 28	50 102
OFF OF SW OFF OF POROSITY OFF OF SHALE	VAL BASE (FT)	5858.0 5939.0 5959.0	6078.0 6158.0	6281.0 6490.0
CUT CUT CUT	INTERVAL TOP (FT)	5811.0 - 5858.0 - 5939.0 -	5959.0 -	6281.0 -

	OF SW	00.09				
בטד כעד	OFF OF POROSIT OFF OF SHALE	0.0 . 60.00				
INTERVAL	VAL	N H H	AVERAGE	AVERAGE	REMARKS	ļ
TOP FT.)	BASE (FT)	THICKNESS (FT)	POROSITY (%)	SATURATION (%)		1
18.0 -		4	13.9	57.6	WEST LUTONG 07	GΑ
5357.0 -	5447.0				WEST	GA GA
47.0	5492.0	24	17.0	48.9	LUTONG 07	3
	5560.0	32	18.2	43.4	LUIDNG OT	5 è
60.0	5582.0	the second of the second of the second of			LUTUNG OF	5 0
	•	0-	22.1	38.0	LUTONG 07	0
i	5882.0			40.0	LUTDNG 07	0
		4	17.8	56.1		
- 0.07	6498.0	24	16.4	38.4		
- 0.86	6566.0	24	<u>, </u>	34.9		
- 0.99	6631.0	50	20.2	35.4		
31.0 -	-					;
- 0.17	6515.0					
26.0 -	6547.0	1				
43.0 -	6557.0					
58.0	7072.0				:	-
	7090.0					
•	-	``		7 07		:
- 0.06	•	46	19•1	† • O †		
	7288.0	: : : : : : : : : : : : : : : : : : : :	 			
88.0	7364.0	~	20.2	40.4		
- 0.49	7035.0		:			
75.0 -	7052.0					
7447.0 -	.+					
21.0 -	7603.0					
7603.0 -	٠ د د	5		-		
1.0	7355•0					

WELL NAME : WEST LUTONG 07

	REMARKS		
	AVERAGE SATURATION (%)		39•6
	AVERAGE POROSITY (%)		17.8
00.09	NET THICKNESS (FT)		49
CUT OFF OF SW : CUT OFF OF PORCITY : CUT OFF OF SHALE :	VAL BASE (FT)	7745.0 7858.0 7899.0	8033.0
TU3 TU3	INTERVAL TOP B	7703.0 - 7745.0 - 7858.0 -	7899.0 -

WELL NAME : WEST LUTONG 08

		G.A	4 Q	OI	01	io	0.1		: :		:		1		:				•		•							
		182-11	182-21	101-11	101-21	101-31	.03-1.				1		1		:		:											
	REMARKS	ST LUTONG	WEST LUTONG 08	ST LUTONG	ST LUTONG	ST LUTONG	ST LUTONG																					
	AVERAGE SATURATION (%)	42.8	48.9 25.6	46.2	46.5	42.7	42.1	47.3	53.0	34.2	47.5	35.8	36.8	35.5	40 . 9	39.1	45.8	45.9	31.4	46.8	50.4		25.4		0	35.1	'n	٠-
	AVERAGE POROSITY (%)	P	17.6	, _C	9	6	8	9	٠ ت	9	'n	•	o.	8	9	_	4.		7	C	9	•	19.5		œ.	18.9	φ.	
. 60.00 	NET THICKNESS (FT)	10	. 7	9 7	16	28	77	9	9	24	4	50	4	26		28	14	œ	12	œ	12		49		18	36	~	22
OFF OF SW OFF OF POROSITY OFF OF SHALE	VAL BASE (FT)	5826.0	5921.0	594Z•U	6105.0	6211.0	6353.0	6880.0	6918.0	6988.0	6992.0	7114.0	7120.0	7204.0	7322.0	7366.0	7544.0	7568.0	7744.0	7840.0	7856.0	7878.0	7998.0	7998.0	8109.0	8150.0	8218.0	8243.0
CUT	INTERVAL TOP (FT)	-8	0.9)) (037.0	7	6211.0 -	- 0.9989	- 0.2069	- 0.0569	- 0.9869	7044.0 -	7114.0 -	7150.0 -	7242.0 -	7322.0 -	7524.0 -	7544.0 -	7732.0 -	7762.0 -	7840.0 -	7856.0 -	7922.0 -	8000°0 -	8083.0 -	8109.0 -	17	2]

WELL NAME : WEST LUTONG 08

CUT OFF OF SW : 60.00 CUT OFF OF POROSITY: 0.0 CUT OFF OF SHALE : 60.00 CUT OFF OFF OF SHALE : 60.00 CUT OFF OFF OFF OFF OFF OFF OFF OFF OFF OF		REMARKS	
CUT OFF OF SW : 60.00 CUT OFF OF POROSITY : 0.0 CUT OFF OF SHALE : 60.00 CUT OFF OF SHALE : 60.00 INTERVAL BASE THICKNESS POROSITY (FT) (FT) - 8343.0 - 8495.0 - 8495.0		GE TION	39.4 58.9
CUT OFF OF SW : CUT OFF OF POROSITY : CUT OFF OF SHALE : NTERVAL	1	AVERAGE PORMSITY (%)	19.8 22.0
CUT OFF OF SW CUT OFF OF POROSITY CUT OFF OF SHALE NTERVAL BASE (FT) - 8343.0 - 8495.0		NET HICKNESS (FT)	• • •
CUT CUT CUT CUT	0F 0F 0F	BASE (FT)	8343.0 8495.0
		INTER TOP (FT)	

WELL NAME : WEST LUTONG 14

		GA GA	۲ < ع د	5 0	, «	40	.	IO	O.
		182-11	162-2.	- [] - []	7 [.7-17.	101-21	101-3	1C2-11
	REMARKS		LUIUNG 14	MEST LOIDING 14		LUIUNG	ST LUTONG 14	LUTONG	WEST LUTONG 14
	: -	3					Ξ.	ᅸ	프
	AVERAGE SATURATION (%)	53.2	C	4 - N	† 1 • • • • † •	42.5		45.2	40.9
	:	1							
	AVERAGE POROSITY (%)	21.0	, c	20.4	8.12	21.5		21.2	20.7
60.00 0.0 60.00									
** ** **	NET THICKNES	4	,	24	22	16		46	0
OFF OF SW OFF OF POROSITY : OFF OF SHALE	3ASE (FT)	5367.0	5461.0	5523.0	5573.0	5616.0	5635.0	5743.0	5001.0
CUT CUT	INTE	ا د	1	1 0	1	0	i C	ا ي ج	ا :
	T0P (FT)	5336.0	5367.0	5461.0	5523.0	5573.0	5616.0	5636.0	5763.0

WELL NAME : WEST LUTONG 16

	REMARKS		EST LUTONG 16 'C1' GAS	EST LUTONG 16	EST LUTONG 16 'C2' UIL	EST LUTONG 16 'C2' OIL BE	LUTONG 16 'D1' GAS BE	EST LUTONG 16 'D2' BE	ST LUTONG 16 'EI' GAS RE	r LUTONG 16 'E2' GAS BE	ST LUTONG 16 'E2' OIL BE	ST LUTONG 16 'E4' GAS BE	ST LUTONG 16 'E4' OIL BE	ST LUTONG 16 'FO' GAS BE	ST LUTONG 16 'FI' GAS BE	ST LUTONG 16 'F2' OIL BE	ST LUTONG 16 'G1' OIL BE	ST LUTONG 16 '62' OIL BE	ST LUTONG 16 'H ' OIL BE	ST LUTONG 16 'I ' GAS BE	ST_LUTONG 16"'I " OIL BE	ST LUTONG 16 'J' GAS BE	T'EUTONG 16 'J' OIL BE	ST LUTONG 16 'K' OIL BE	ST LUTONG 16 'L ' DIL BE	ST LUTONG 16 'R' OI	"FN 1 OIL BE
	AVERAGE SATURATION (%)		ċ	ا ا	Ϊ,	6	55.3	ر د ک	Ϊ.	æ		4		36.6	ò	:	~	56.6	L)	46.8	!	\$	6	5	ന	41.9	÷ 9
	AVERAGE POROSITY (%)			3	4	9	22.1	0	00	~	0	C		13•B	6		င်	19.2	2	'n	-		9		. • —	21.2	
. YT : YT	NET THICKNESS (FT)		20	4	18	2	4	4	24	9	. α	α		4	30		œ	4	10	9		9	2	52	36	525	77
CUT OFF OF SW CUT OFF OF POROSITY CUT OFF OF SHALE	INTERVAL BASE (FT)	0 - 4439.0	ŀ	ı	ı	t	1	0 - 4874.0	0-8464 - (1	ı		ı	i	ı	ı	ı	ı	ı	ı	ı	ı	1	1	- 56	I I	0 - 586
	T0P (FT)	4432•(4439.0	4551.0	4635.0	4719.	4796.0	4816.	4874.(4948.	4967	5009.	5031.	5050.	5073.	5120.0	5154.(5194.(5239.	5387.	5471.	5428	5480.	5526.	5632	5678	5806.

WELL NAME : WEST LUTONG 21

	E REMARKS ION	EST LUTONG 21 'AO' GAS	181 GAS B	EST LUTONG 21 'B2' GAS B	EST LUTONG 21 'C1' GAS B	EST LUTONG 21 'C1' OIL B	ST LUTONG 21 'C2' OIL B	EST LUTUNG 21 'CZ' GAS B	STATE TO THE STATE OF THE STATE	SI LUIUNG ZI 10I' GAS B	EST LUIONG ZI DZ	EST LUTONG 21 'E2' GAS B	EST LUTONG 21 'E2' OIL B	EST LUTONG 21 'E4' GAS B	EST LUTONG 21 'FO' GAS A	EST LUTONG 21 'F1' GAS B	EST LUTONG 21 'F2' GAS B	EST LUTONG 21 'F2' OIL B	EST LUTONG 21 'G1' DIL B	EST LUTONG 21 'G2' OIL B	EST LUTONG 21 'H ' OIL B	EST LUTONG 21 'I GAS A	ST LUTONG 21 'J 'GAS B	ST LUTONG 21 'K ' GAS B	EST LUTONG 21 'K ' OIL B	EST LUTONG 21 'L GAS R	ST LUTONG 21 'L ' OIL B
	AGE AVERAGE SITY SATURATION (%)		52.	2 50.1	សូល			() 38.6		α.					m	.		8 56•0	:			51.2		2 49.1		56.0
0.00	AVER SS PORO		19.	6 22.	13.			•	7 13.		91	-1				r#	2 22		2 11.				4 10.		9 14.		12 11.
NFF OF SW : OFF OF POROSITY : OFF OF SHALE :	BASE THI (FT)	4239.0	4333*0 4409*0	4457.0	4552.0	4636.0	4699.0	4703.0	4777.0	4805.0	4854.0 2010	4717•C	6990.0	5027.0	5055.0	5084.0	5113.0	5120.0	5158.0	5200.0	5351.0	5388•0	5482.0	5500.0	5575.0	a a	2651•n
CUT CUT CUT	INTERVAL TOP (FT)		4333.0 -	- 0.6044	4457.0 -	4552.n -	Ģ	Ç	c,	4777.0 -	4865.0 I			4990.0	5027.0 -	5055.0 -	5084.0 -	5113.0 -	5120•0 -	5158.0 -	5260.0 -	5351.0 -	5388.0 -		0.00	589°D	5589.0 -

WELL NAME : WEST LUTONG 21

	AGGE REMARKS AATION 2)	WEST LUTONG 21 'M' OIL BEAR WEST LUTONG 21 'N' OIL BEAR
	AVERAGE SATURATION (%)	4.74
	AVERAGE POROSITY (%)	15.0 15.3
10NG 21 : 60.00 ITY: 0.0	NET THICKNESS (FT)	20
WELL NAME: WEST LUTONG 21 CUT OFF OF SW: CUT OFF OF POROSITY:	INTERVAL TOP BASE (FT) (FT)	5651.0 - 5750.0 5750.0 - 5896.0

WELL NAME : WEST LUTONG 22

REMARKS	LUTONG 22 'AO' GAS B	2 12 1	LUTONG 22 'C2' GIL	ST LUTONG 22 'C1' ST LUTONG 22 'C2'	LUTONG 22 'CZ' OIL	LUTONG 22 'D2' GAS	LUTONG 22 'E1' GAS	LUTONG 22 'E2' GAS	CUTONG 22 'E4' DIC	LUTONG 22 'FO' GAS	LUTONG 22 FF1 GAS	LUTONG 22 'F2' DIL	22 '62' OIL	LUTONG 22 'H' OIL	LUTONG 22 'I ' GAS	LUTONG 22 'I ' GIL	LUTONG 22 13 1 GAS	LUTONG 22 1J 1 OIL	LUTONG 22 'K ' OIL	LUTONG 22 "L " OIL	LUTONG 22 'M ' OIL	LUTONG 22 'N ' DIL
AVERAGE	41.4	54.5	•				0.44			6	ω.	51.0 8.1.0	i				58			40.1	42.2	
AVERAGE POROSITY	~ •i	20.2	•		THE PARTY OF THE P		17.3			~	6	17.3	, ,	***************************************			w	ij.	Ġ	18.0	σ.	
: 60.00 : 0.0 : 60.00 NET THICKNESS	8	4 4	٠.				20	-		ω	32	4	ø					14	54	40	24	
0FF 0 0FF 0 0FF 0 RVAL	5046	5275.0	5400	5565	5785	5816	5978	- 5966.0	- 6059.0 - 6110.0	- 6153.0	- 6220.0	- 6250.0	6314	6578	- 6581.0	. 6648	- 6664.0	- 6782.0	- 6905.0	- 6992.0	- 7120.0	- 7160.0
T0P	0.4	5168.0	5334.0		5674.0	5785.0 -		.~	c c		_	_	6250.0 -	6390.0	_	6581.0 -	_	_	_		_	(* 1

WELL NAME : WEST LUTONG 23

	REMARKS		EST LUTONG 23 'AO' GAS BE	EST LUTONG 23 'AI' GAS BE	EST LUTONG 23 'BI' GAS BE	EST LUTONG 23 'B2' GAS BE	23 1C11 GAS B	EST LUTONG 23 'CI' OIL BE	EST LUTONG 23 'C2' OIL BE	EST LUTONG 23 'C2' GAS BE	EST LUTONG 23 'C2' OIL BE	EST LUTONG 23 'D1' GAS BE	EST LUTONG 23 '02' BE	EST LUTONG 23 'EI' GAS BE	EST LUTONG 23 'E2' GAS BE	EST LUTONG 23 'E2' OIL BE	EST LUTONG 23 'E4' GAS BE	EST LUTONG 23 'FO' GAS BE	EST LUTONG 23 'F1' GAS BE	EST LUTONG 23 'F2' GAS BE	EST LUTONG 23 'G1' GAS BE	EST LUTONG 23 1G1 OIL BE	EST LUTONG 23 'G2' GAS BE	EST LUTONG 23 'G2' DIL BE	EST LUTONG 23 'H ' GAS BE	EST LUTONG 23 'H ' OIL BE	EST LUTONG 23 'I ' GAS BE	EST LUTONG 23"1" GAS BE	EST LUTONG 23 'K ' GAS BE	EST LUTONG 23 'K' OIL BE
	AVERAGE	UKA (%)	o	4	9	-	40.3	٠. ص	8		56.4	'n		39.8	ŝ		0.09		æ	50.4	8	4		52.5			ċ	58.7	œ	œ
	A GE	(%) (%)	ທ	۲	?	4	24.3	ċ	,I		6	20.9			19.8		15.6		•	19.0	•	ċ		16.3				12.5		•
. 60.00 0.0 0.0 0.0	((FT)	50	42	œ	16	14	9	9		4	10		32	16		2	•	16	. ~ ~	. 2	10		. 2			2	4	4	22
CUT OFF OF SW CUT OFF OF POROSITY CUT OFF OF SHALE	INTERVAL	BASE (FT)	- 4289.	0 - 4388.0	- 44	:		- 4710.	- 4775.	92.	0 - 4864.0	- 4892.	67	16.	R 1.	- 5097.	36.	0 - 5168.0	- 5199.	- 5232.	- 523	- 5276.	- 527	- 532	28.	- 548	30.	0 - 5629.0	S	ŝ
!	(((FT)	•	Ġ	œ	9	4520.	4613.	4710.(4775.(92.	64.	97.			5081.0		5136.(5168.0	5199.0	•	5236.0	5276.0		•	5328.0				5655.

WELL NAME : WEST LUTONG 23

	REMARKS		WEST LUTONG 23 'L ' GAS BEAR		LUTONG 23 'M ' OIL	LUTONG 23 'N ' DIL																							
	AVERAGE	(%)	39.7		41.2	39.8		ż	~	œ	4.	39.1	36.9	31.1	36.1	42.7	34.2		40.2		31.1			:		43.0	33.4	37.7	48.6
	AVERAGE	(%)	17.6	16.0	19.7	18.1		17.4	14.9	18.7	20.6	17.7	17.9	21.7	14.3	14.6	17.7	13.7	20.2		19.4					16.1	19.4	19.2	20.4
00*09 : A1	NET	(FT)	20	10	50	48		14		18	22	22	40	36			78				126					 	90		2
OFF OF SW OFF OF POROSI OFF OF SHALE		6ASE (FT)	5762.0	5814.0	5923.0	6065.0	6585.0	6642.0	6721.0	6791.0	6848.0	6942.0	7086.0	7132.0	7297.0	7326.0	7493.0	7518.0	7540.0	7610.0	7954.0	7763.0	7778.0	7865.0	7934.0	7959.0	8030.0		8133.0
CUT CUT CUT	INTERVA	-Ur (FT)	•	· 🔿 I		5923.0 -											0.0		7520.0 -		0.0	~	0.5	7845.0 -	7865.0 -	935	'n	8082.0 -	8131.0 -

WELL NAME : BARAM 08

	REMARKS	6 70%5 6 20NE	9	4 ZONE	4 70NE	4 20NE
	AVERAGE SATURATION (%)	50.4 BLOCK				
	AVERAGF POROSITY (%)		8.6	Q.50	11.9	6.8
80.00 SITY: 0.0	NET THICKNESS (FT)	34	9	22	52	4
CUT OFF OF SW CUT OFF OF POROSITY : CUT OFF OF SHALE	INTERVAL RASE (FT)	- 7943.0 - 8585.0	- 8703.0	- 9370.0	- 9508.0	- 9584.0
ឆ	INI TOP (FT)	7900.0	8694.0	9224.0	9377.0	9558.0

91F 01E 01E 01E 01E

WELL NAME : BARAM10

		4-1, ZONE: C1, OIL 5 , ZONE: , OIL		, OIL		OIL GAS	
		5	. S3,	. F1	S S	rrd (N)	[O Z
	S S	ZONE ZONE	ZONE: ZONE:	ZONE: ZONE:	ZONE:	-0	- B
•	REMARKS	-1,	w w	មក		ZONE	ZONE
	α.	X X 	* * *	× ×			
		BLOCK: BLOCK:	BLOCK:	BLOCK:	BLOCK: BLOCK:	BLOCK 4 BLOCK 4	BLOCK 4
	AVERAGE SATURATION (%)	59.7 48.2 22.2	98.7 8.7 8.7	42.3 48.0	45.9 49.3	4 2	38.0
	SA						
	AVERAGE POROSITY (%)	21.4	17.3 17.9	20.5 13.2	15.0 16.0	15.0 15.7	17.3
80.00 0.0 50.00	NET THICKNESS (FT)	24 78	50 34	10 62	42 56	76 48	52
ΙΤΥ	Ė						
OFF OF SW OFF OF POROSITY OFF OF SHALE	VAL BASE (FT)	6905.0 8360.0	8609.0 8747.0 8933.0	9193.0	9646.0	10240.0 10322.0	10398.0
CUT CUT CUT CUT	INTERVAL	1 1	1 1 1	i 1	1 1	1 1	1
	IN TOP (FT)	6880.0 8246.0	8526.0 8696.0 8879.0	9183.0	9585.0 9884.0	10106.0	10322.0

WELL NAME : BARAM 11

	REMARKS	BLOCK: 4-1, ZONE: B , GAS BLOCK: 4-1, ZONE: 3, OIL	ZONE: C1,	4-1, ZONE: P2,	4-1, ZONE: C2,	ZONE: +	••	: 1-2 ZONE : E	GAS	GAS	GAS	GAS	GAS
	AVERAGE SATURATION (%)	45.4	49.2	51.4	35.0	50•3	30.2	40.8	6*0*	62.8	47.0	38.2	50.2
	AVERAGE POROSITY (%)	20.4	20.6	17.8	21.6	19.9	23.4	21.0	18.7	9.4	12.1	17.8	12.7
: 80.00 ITY : 0.0 : 50.00	NET THICKNESS (FT)	10 26	77	30	20	28	34	42	32	9	42	42	20
OFF OF SW OFF OF POROSITY :	INTERVAL BASE (FT)	5922.0	0.9959	6656.0									
CUT CUT CUT	INTE TOP (FT)	5905.0	6514.0 -	6602.0 -	- 0.6089	6830.0	7777	7815.0 -	7953.0 -	8039.0	8093.0	8188.0 -	8372.0 -

	80.04	0.0	20.06
į	••		
WELL NAME : RARAM 12	CUT OFF OF SW	CUT OFF OF POROSITY :	CUT OFF OF SHALE

			-	_	_	_		\sim		_		
					•			02,	٠	\$3,		
ΚS			ZOME:	ZONE:	ZOME:	ZONE:	ZONE:	ZONE:	20 NE:	ZUNE:		
REMARKS			ار ا	in.	٠,	•	ب س		٠	•		
₹ 1			LOCK:	LOCK:	BLOCK:	LOCK:	. X301	LOCK:	LOCK:	Lück:		
	•									Œ.		
AVERAGE	SATURATION	(%)	38.7	36.2	41.6	40.2	46.6	38.9	46.2			
	:	•		:				1				
/ERAGE	RUSITY	(%)	19.4	20.5	20.0	21.7	20.6	18.9	19.6			
A	ā	:										
	S											
上出	THICKNES	(FT)	79	26	22	56	24	99	50			
		٠	Ü• 6	0.0	0.4	ф ф	0.0	0.0	2.0	0.0	0.0	C. S.
Je.	RAS	(FT)	6869.0	0.0669	7024.0	7070.0	7130.0	7930.0	7986.0	8895.0	8330.0	8476.0
INTERVAL			1	1	ı	t	1	ı	ı	1	t	ı
۷I	TOP	(FT)	6769.0	6955.n	0.6569	7044.0	7107.0	7812.0	7930.0	8888	8248.0	0.5023

6AS 6AS 01L 01L 01L 6AS

WELL NAME : BARAM 12

	REMARKS	BLOCK 4 ZONE : F-2 BLOCK 4 ZONE : F-2 BLOCK 4 ZONE : G-1
	AVERAGE SATURATION (%)	40.4 94.0 92.9 43.4 7.7
	AVERAGE POROSITY (%)	13.2 19.4 10.5 13.3 11.0
SW : 80.00 POROSITY : 0.0 SHALE : 50.00	NET THICKNESS (FT)	2 2 3 3 5 2 8 4 2 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
CUT OFF OF SW CUT OFF OF POROS CUT OFF OF SHALE	INTERVAL BASE (FT)	.0 - 9086.0 .0 - 9246.0 .0 - 9644.0 .0 - 9826.0 .0 - 10016.0 .0 - 10082.0
	T0P (FT)	9024.0 9210.0 9581.0 9792.0 9897.0 9988.0

01L 01L 01L 6AS 01L 6AS

ں	CUT OFF OF	OF SW	. 80.00			
	CUT OFF CUT OFF	OF POROSITY	Y: 0.00			
VI	INTERVAL		NET	AVERAGE	AVERAGE	REMARKS
TOP (FT.)		BASE (FT)	THICKNESS (FT)	POROSITY (%)	SATURATION (%)	
6045.0	9	6115.0	56	17.3	40.2	ZONE:
6458.0	9	6548.0	70	18.6	37.6	in -
6548.0	9	6568.0	18	19.1	L.44	5 , ZONE:
6593.0	9	6656.0	36	15.2	50.1	a
6684.0	9	0.7699	10	15.4	45.8	5 , ZONE: P3.
6826.0	9	6870.0	34	19.3	33.0	5 , ZONE: C2,
6878.0	9	6913.0		16.4	45.8	5 , ZONE:
7010.0	-	7062.0	32	17.4	50.7	5 , ZONE:
7812.0	1	7930.0		14.3	48.8	, ZONE: D2.
7930.0	-	7986.0	22	15.3	53.1	5 , ZONE: ,
R295.0	ж І	8340.0	46	15.4	32.1	4 ZONE : E-1
8340.0	æ t	8349.0	ω	16.5	38.1	4 ZONE : E-1
8490.0	æ I		80	16.7	46.7	BLOCK 4 ZONE : E-2 OIL
9051.0	ı	0.9606	28	4.6	50.1	4 ZONE : F-2
9220.0	ı	9255.0	28	11.8	48.7	4 ZONE : F-2
9603.0	ı	0.0796	54	18.2	36.6	-1 01
	٠	((((((((((((((((((((ח סני	CL7 - 2005 - VL2

•

			GAS	GAS	GAS	OIL	GAS	017	GAS	016	GAS	OIL	016	GAS	OIL	GAS	OIL	GAS	011	GAS
		EMARKS	ONE	ZONE P6	ONE	ONE	ONE D	ONE	ONEE	ONE E	ONEE	ONE E	ONE F	ONE F	ONE	ONE G				
:		œ	Ŋ	ľ		Ŋ	'n								'n	īυ	rυ	4	4	4
	·	•	BLOCK	BLOCK	BLOCK	BLOCK	BLOCK	BLOCK	BLOCK	BLOCK	BLOCK	BLOCK	BLOCK	BLOCK	BLOCK	BLOCK	BLOCK	2	BLOCK	BLOCK
		AVERAGE SATURATION (%)	36.8	35.0	39.3	9	37.1	41.0	36.5	σ	43.2	9	2	45.0	•	٠		•		41.2
		AVERAGE POROSITY (%)	17.4	18.7	16.7	•	15.8	•	•	17.9	•	2	22•3	•	•	15.5		14.6	12.6	16.6
.	: 80.00 ITY : 0.0 : 50.00	NET THICKNESS (FT)	77	77	20	14	84	62	99	46	30	34	26	54	38	α	76	42	18	76
NAME : BARAM 14	OFF OF SW OFF OF POROSITY OFF OF SHALE	(VAL BASE (FT)	6686.0	6755.0	6790.0	6812.0	7536.0	7624.0	7826.0	7947.0	8104.0	8140.0	8366.0	8602.0	8752.0	0.0006	9084.0	9208.0	9239.0	0-9896
L N	CUT CUT CUT	INTERVAL	ı	ı	ı	1	1	1	•	•	1	1	1	1	1	1	ı	1	1	1
WELL		I TOP (FT)	6625.0	6704.0	6768.0	0.0679	7390.0	7536.0	7756.0	7901.0	8070.0	8104.0	8342.0	8548.0	8708.0	8994.0	9000	9147.0	9208.0	9578.0

WELL NAME : BARAM 16

	REMARKS	BLOCK: 5 , ZONE: C1, GAS BLOCK: 5 , ZONE: , OIL BLOCK: 5 , ZONE: P2, OIL BLOCK: 5 , ZONE: P3, OIL BLOCK: 5 , ZONE: , OIL BLOCK 4 ZONE : E-1 OIL BLOCK 4 ZONE : F-2 OIL BLOCK 7 ZONE : G-2 OIL
	AVERAGE SATURATION (%)	60 00 00 00 00 00 00 00 00 00 00 00 00 0
	AVERAGE POROSITY (%)	16.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3
: 80,00 3SITY: 0,0	NET THICKNESS (FT)	38 46 20 14 16 24 52
OFF OF SWOFF OF POROSITY :	INTERVAL BASE (FT)	6967.0 7036.0 7139.0 7186.0 7374.0 8517.0 9034.0 9831.0
CUT CUT TUD	INTE TOP (FT)	6885.0 6976.0 7070.0 7170.0 7330.0 8495.0 9770.0

80.00 0.0 50.00

CUT OFF OF POROSITY :
CUT OFF OF SHALE :

•	, GAS	• 0 I	3, OII	2, GA!	, OI	• 0II	OIL	OIL	017	01L	011	OIL	OIL	0IL	016
REMARKS	5 , ZONE: 5 , ZONE: C	•	5 , ZONE: P	5 + ZONE: C	•	5 + ZONE:	ZONE : E-1	•• ••	••	<u></u>	••	••	••	••	ZONE : 6-2
	BLOCK: BLOCK:	BLOCK:	BLUCK: BLUCK:	BLOCK:	BLOCK:	BLOCK:	BLOCK 4	BLOCK 4	BLOCK 4	BLOCK 4	BLOCK 4	BLOCK 7	BLOCK 7	BLOCK 7	BLOCK 7
AVERAGE SATURATION (%)	39 • 2 54 • 3	52.0	30.1 39.1	38.6	56.0	61.8	69 9	46.8	62.7	53.6	52.9	71.1	50.2	67.6	47.8
AVERAGE POROSITY (%)	17.4	17.7	16.2	18.4	17.1	14.3	11.3	12.7	14.3	æ•80	18.4	7.5	13.0	16.4	11.8
NET THICKNESS (FT)	50	588	32 12	20	34	12	Φ	54	26	26	10	œ	18	20	70
AL BASE (FT)	6191.0	6703.0	6791.0	0.7535	7048.0		8337.0	8560.0	8754.0	9374.0	9518.0	9834.0	9876.0	9918.0	10429.0
INTERVAL	1 1	1	1 1	ı	ı	1	ŧ	1	ı	ı	1	ŧ	ĭ	1	í
IN TOP (FT)	6132.0	6643.0	6727.0	0.0106	6991.0	8082.0	8320.0	8492.0	8700.0	9311.0	9510.0	9828.0	9854.0	9006	10322.0

WELL NAME : BARAM 18

					GAS OIL
			REMARKS		BLOCK 4 ZONE : K-1 GAS BLOCK 4 ZONE : K-1 OIL BLOCK 4 ZONE : A-1 OIL
			AVERAGE	SATURATION (%)	50.5
			AVERAGE	POROSITY (%)	24.8
••		: 50.00	NET	THICKNESS (FT)	36
CUT OFF OF SW	OFF OF POROS	OFF OF SHALE	RVAL	BASE (FT)	3879.0 3965.0 5359.0
CUT	CUT	CUT	INTERVAL	T0P (FT)	3830.0 - 3879.0 -

WELL NAME : BARAM 18

			REMARKS	ander den mit degret er gebreitste gebeurgebelikkeiten man mit man ver ind dem blikkeitelliche der er dem ins	THE REPORT OF THE PROPERTY OF	52.9 BLOCK: 8 , ZONE: 62, OIL 49.9 BLOCK: 8 , ZONE: 62, OIL
			AVERAGE	SATURATION	(%)	52.9
			AVERAGE	PORDSITY	(%)	11.0
: 80.00	TY: 0.0	••	NET	THICKNESS THICKNESS	(FT)	20
CUT OFF OF SW	CUT OFF OF POROSITY	CUT OFF OF SHALE	INTERVAL	BASE	(FT)	9335.0
ರ	ರ	ປ	Ξ		(FT)	9303.0 -

	REMARKS	BLOCK: 4-1, ZONE:	-1, ZONE: , OI	: 5 + ZONE: C1+	: 5 , ZONE: P2,	: 5 , ZONE: P3,	: 5 , ZONE: C2,	: 5 , ZONE: P5,	: 5 , ZONE: ,	: 5 , ZONE: ,	: 5 , ZONE: ,	: 5 , ZONE: D2,	: 5 , ZONE: ,		: 5 , ZONE: S3,	5 , ZONE: E	: 5 , ZONE: F1,	4 ZONE : F-2 OI	4 ZONE : G-1 GA	4 ZONE : G-1 OI	4 ZONE : G-1 GA	4 ZONE : 6-1 01	4 ZDNE : G-2 GA	ZONE : G	4 ZONE : 6-3 6A
	AVERAGE SATURATION	(#) 55 50 50 50 50 50 50 50 50 50 50 50 50	55.6	ċ	Ġ.	۲.	38.0		8	'n	'n	æ		6	6	•	ំ	'n	4.	0	2		ċ	•	
	AVERAGE POROSITY	(3)	19.5	8	•	'n	æ	9	۲.	ò	œ	٠	6	4	٠ س	4	8	Š	•	7	Ň	14.2	4.	•	
: 80.00 ITY: 0.0	NET THICKNESS	10	26	78	36	14	09	10	26	18	22	82	52	99	54	38		28	46	58	64	22	48	44	
OFF OF SW OFF OF POROSITY OFF OF SHALE	RVAL BASE	5923.0	093	•	6564.0	6603.0	6803.0	6902.0	6955.0	6993.0	7053.0	7810.0	7898.0	8130.0	8257.0	8417.0	8674.0	0.9668	9348.0	9408.0	9601.0	0.6696	•	9874.0	10055.0
CUT CUT CUT	INTERVAL TOP	5904•0 -	059	6360.0 -	- 0.9059	6589.0	6722.0 -	6892.0 -	6913.0 -	6973.0 -		7669.0 -	7810.0 -	8057.0 -	8200.0	8374.0 -	8665.0 -	8960.0	- 0.0056	9348.0 -	9506.0 -	- 0.6096	9705.0 -	- 0.4086	9934.0 -

WELL NAME : BARAM20

	REMARKS	BLOCK: 2- ZONE: D2 BLOCK: 2- ZONE: E1 BLOCK: 2- ZONE: E2 BLOCK: 2- ZONE: F1 BLOCK: 2- ZONE: F2 BLOCK: 2- ZONE: G3 BLOCK: 2- ZONE: G3 BLOCK: 2- ZONE: G3
	AVERAGE SATURATION (%)	58 47.2 57.9 58.0 50.0 60.0 60.0
	AVERAGE POROSITY (%)	12.6 9.5 13.6 11.7 13.1 9.2 14.6
00*05 : XII	NET THICKNESS (FT)	22 56 46 40 18 36 10 18
CUT OFF OF SW CUT OFF OF POROSITY CUT OFF OF SHALE	INTERVAL TOP BASE (FT) (FT)	8653.0 - 8740.0 9216.0 - 9284.0 9421.0 - 9533.0 9533.0 - 9643.0 9743.0 - 9792.0 9792.0 - 9835.0 10046.0 - 10101.0 10256.0 - 10256.0 10256.0 - 10884.0 11179.0 - 11389.0 11333.0 - 11444.0

WELL NAME : BARAM 21

	REMARKS	BLOCK : 1-2 ZONE : A2 BLOCK : 1-2 ZONE : B	BLOCK : 1-2 ZONE : 02 BLOCK : 1-2 ZONE : 03	: 1-1 ZONE : 1-1 ZONE :		BLOCK : 1-1 ZONE : D1 BLOCK : 1-1 ZONE : D2 BLOCK : 1-1 ZONE : E1	
	AVERAGE SATURATION (%)	88.0 0.88.0	4 1 1	53.9	43.0 53.5	33.4 50.5 42.7	
	AVERAGE POROSITY (%)	18.5	22.4 23.4	18.7 15.8	20.3 14.0	17.4 14.7 14.7	
: 80.00 ITY : 0.0 50.00	NET THICKNESS (FT)	32	10 24 28	20 18	71. 74.00	7 4 6 7 4 6 7 4 6 7 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
IT OFF OF SW IT OFF OF POROSITY IT OFF OF SHALE	INTERVAL BASE (FT)	- 5805.0 - 5996.0		- 6616.0 - 6672.0	- 6827.0 - 7470.0		* * * * * * * * * * * * * * * * * * * *
CUT CUT CUT	INT TOP (FT)	5756.0 5989.0	5998.0 6088.0	6402+0 6602+0 6642-0	0.757.0	7474.0 7557.0 7836.0	2 - 2 - 2

WELL NAME : BARAM 22

	REMARKS	SLOCK 1 ZONE : B-	BLOCK 1 ZONE : 0-2	BLOCK 1 ZONE : 0-3	BLOCK : 1-1 ZONE : C1	BLOCK : 1-1 ZONE : C1	BLOCK : 1-1 ZONE : C2	BLOCK : 1-1 ZONE : D1	3LOCK : 1-1 ZONE : D1	3LOCK : 1-1 ZONE : D2	3LOCK : 1-1 ZONE : E1
	AVERAGE SATURATION (%)	6*65	49.5	45.0	57.4	52.5	46.64	46.5	35.7	63.0	33.6
	AVERAGE POROSITY (%)	16.9	16.7	20.5	19.2	18.7	19.1	14.0	17.8	14.7	16.3
: 80.00 ITY: 0.0 : 50.00	NET THICKNESS (FT)	80	24	48	12	14	40	36	42	7	77
OFF OF SW OFF OF PORNSITY OFF OF SHALE	RVAL BASE (FT)	6288.0	6348.0	6428.0	0.9069	0.0769	7110.0	7776.0	7831.0	7880.0	8212.0
CUT CUT	INTERVAL TOP (FT)	6194.0 -	6303.0 -	6365.0 -	- 0.9689	6934.0 -	7054.0 -	7716.0 -	7780.0 -	7867.0 -	8159.0 -

WELL NAME : BARAM 24

	REMARKS	BLOCK 3-1 ZONE : C3 BLOCK 3-1 ZONE : C3 BLOCK 3-3 ZONE : E1 BLOCK 3-3 ZONE : E2 BLOCK 3-3 ZONE : E2 BLOCK 3-3 ZONE : E3
	AVERAGE SATURATION (%)	49.2 42.1 37.5 44.2 48.1
	AVERAGE POROSITY (%)	20.4 22.2 21.7 19.4 15.9
: 70.00 TY: 0.0	NET THICKNESS (FT)	38 36 60 92 10
CUT OFF OF SW CUT OFF OF POROSITY CUT OFF OF SHALE	INTERVAL BASE (FT)	- 7469.0 - 7572.0 - 8593.0 - 8864.0 - 9071.0
ប ប ប	IN TOP (FT)	7454.0 7510.0 8542.0 8751.0 8909.0

WELL NAME : BARAM 25

	AVERAGE SATURATION {%}
	AVERAGE POROSITY (%)
00.08	NET THICKNESS (FT)
CUT OFF OF SW CUT OFF OF POROSITY CUT OFF OF SHALE	INTERVAL BASE (FT)
CUT CUT	INTER TOP (FT)

BLOCK 7 ZONE : D-1 GAS

9.69

17.2

50

7713.0

7592.0 -

REMARKS

WELL NAME : BARAM 25

			016	OIL		OIL		OIL		OIL	OIL	011
:	,		•	62,		62,		63,		•	•	•
	REMARKS		•	8 , ZONE:		8 , ZONE: 62,	-	8 , ZONE:		8 , 20NE:	8 , ZONE:	8 , ZONE:
			BLOCK:	BLOCK:		BLOCK:		BLOCK:		BLOCK:	BLOCK:	BLOCK:
	AVERAGE SATURATION (%)	54.8 41.6	50.7	45.0	34.8	46.2	42.3	7.79	45.6	52.5	54.2	55.6
	AVERAGE POROSITY (%)	10.4	16.2	14.6	15.8	14.1	18.5	11.3	13.7	13.1	12.3	10.0
: 80.00 ITY : 0.0 : 50.00	NET THICKNESS (FT)	22	46	34	12	108	12	12	22	9	30	28
OFF OF SW : OFF OF POROSITY : OFF OF SHALE :	INTERVAL BASE (FT)	9003.0	9291.0	9811.0	9830.0	0.4466	0.1966	0.0666	10020.0	10030.0	10092.0	10205.0
CUT CUT CUT	E E	1 1	ı	ı	1	ı	1	1	ı	1	ı	ı
-	10 TOP (FT)	8970.0	9250.0	9773.0	9820.0	9830.0	9955.0	9957.0	10000.0	10020.0	10041.0	10139.0

WELL NAME : RARAM26

REMARKS	BLOCK: 1-2 ZONE: C1 BLOCK: 1-2 ZONE: D1 BLOCK: 1-2 ZONE: 02 BLOCK: 1-2 ZONE: E1 BLOCK: 1-2 ZONE: E1
AVERAGE SATURATION (%)	76.2 59.9 52.1 56.4 45.7
AVERAGE POROSITY (%)	22.2 17.0 19.4 16.9
NET THICKNESS (FT)	7 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
INTERVAL BASE (FT)	8000.0 - 8029.0 8982.0 - 9081.0 9192.0 - 9253.0 9576.0 - 9644.0 9692.0 - 9790.0
	NET AVERAGE AVERAGE 3ASE THICKNESS POROSITY SATURATION (FT) (%)

WELL NAME : BARAM 27

80.00 0.0 50.00

	GAS	016	016	OIL	OIL	016	OIL	016	OIL	016	015
S	F-1	E-2	F-2	F-2	F-2	6-1	6-1	6-1	6-1	6-2	A-1
REMARKS	7 ZONE :	~	~	~	_	~	~	<u>~</u>	~	~	4
	BLOCK	BLOCK	BLOCK	BLOCK	BLOCK	BLOCK	BLOCK	BLOCK	BLOCK	BLOCK	BLOCK
AVERAGE SATURATION (%)	37.1	57.5	71.6	8*65	47.0	56.3	62.8	47.6	56.0	6.04	
AVERAGE POROSITY (%)	18.1	15.2	10.1	15.3	15.2	13.7	12.0	21.3	16.5	15.1	
NET THICKNESS (FT)	52	12	14	26	20	26	10	22	16	104	
VAL BASE (FT)	7892.0	8017.0	8484.0	8590.0	8617.0	8904.0	8933.0	8961.0	9041.0	9376.0	5300.0
INTERVAL	I 0	0	- 0	- 0	- 0	- 0	- 0	I 0	1	1 0	ı 0
1 TOP (FT)	7838.0	7993.	8460.0	8517.	8596.0	8876.0	8913.0	8939.0	9012.0	9261.0	5262.0

WELL NAME : BARAM 30

						0				0	
	REMARKS			BLOCK 4 ZONE : C-1	BLOCK 4 ZONE : C-2	BLOCK 4 ZONE : D-1	BLOCK 4 ZONE : E-1	BLOCK 4 ZONE : F-2	BLOCK 4 ZONE : G-1	BLOCK 4 ZONE : G-2	
	AVERAGE	SATURATION	(K	41.2							
	AVERAGE	POROSITY	(%	18.6	22.2	13.4	15.8	16.9	12.1	12.7	
. 80°00 0°0 17 : 50°00	L UNIX	THICKNESS	(FT)	126	14	4	36	12	2	99	
OFF OF SW OFF OF POROSIT	INTERVAL	ASE	(FT)	. 6892.0	. 7030.0	. 7736.0	8406.0	0.8006	. 9750.0	. 9920•0	
CUT CUT CUT	INTE		(FT)	- 0.0499	7006.0 -	7718.0 -	8362.0 -	8980.0	9624.0 -	9784.0 -	

GAS 01L 01L 01L 01L 01L

WELL NAME : BARAM 31

	REMARKS	BLOCK 4 ZONE : K-1 GAS BLOCK 4 ZONE : K-1 OIL
	AVERAGE SATURATION (%)	39.4 50.6
	AVERAGE POROSITY (%)	32.2 28.0
: 80.00 ITY : 0.0	NET THICKNESS (FT)	12 40
CUT OFF OF SW CUT OFF OF POROSITY CUT OFF OF SHALE	INTERVAL TOP BASE (FT) (FT)	3997.0 - 4008.0 4008.0 - 4068.0

WELL NAME : BARAM 32

KS .	SONE :	SONE :	SONE:	SONE :	ZONE :	ZONE : 56.1	SONE :	ZONE :	ZONE :	ZONE :
REMARKS	2	1-1	1-1	<u>[-]</u>	1-1	1-1	1-1	1-1	1-1	1-1
	••	••	**		 	••	 ~	••	••	
	BLOCK	BLOCK	BLOCK	BLOCK	BLOCK	BLOCK	BLOCK	BLOCK	BLOCK	BLOCK
AVERAGE SATURATION (%)	52.4	54.0	49.0	59.9	45.4	6.09	48.8	47.2	45.4	41.5
AVERAGE POROSITY (%)	29.5	18.9	23.7	17.3	21.2	18.0	19.3	21.6	17.4	23.2
NET THICKNESS (FT)	10	16	14) 80 11 (f)	1 m	1 80	20	77	2
/AL BASE (FT)	5824.0	6760.0	6914.0	6950.0	7094-0	7450.0	7514.0	7694.0	7846.0	8320.0
INTERVAL	ı	ı	i	•	1	ı	t	1	ı	1
1N TOP (FT)	5812.0	6722.0	6810-0	0.8502	7044.0	7294-0	7478.0	7632-0	7760-0	8170.0

WELL NAME : BARAM33

	REMARKS	ZONE : B2 ZONE : B3	••		ZONE : E3	ZONE :	ZONE :	ZONE :	ZONE	20NE :	ZONE :	ZONE:	ZONE:	ZONE :	SONE:	••	••
	я П		1		⊣	1	~ (~ -	-	-		_		-	-	_	_
		BLOCK :	BLOCK :	BLOCK :	BLOCK	BLOCK:	BLOCK :	BLOCK	BLOCK	BLOCK :	BLOCK :	BLOCK	BLOCK :	BLOCK :	BLOCK :	BLOCK :	BLOCK :
	AVERAGE SATURATION (%)	43.2 53.6			51.4 4.10	4.94		,	7 - 1 4	34.5	41.5	3	\vdash	8	9	45.2	9
	AVERAGE POROSITY (%)	26.7 23.4	18.9 14.9	15.6	17.2	16.7		ī	16.7	19.9	18.5	14.4	14.8	14.3	20.1	15.7	15.7
: 70.00 ITY : 0.0 : 40.00	NET· THICKNESS (FT)	12	ω 4	20	8 701	124		,	32	0.00	50	12	24	20	28	10	34
OFF OF SW OFF OF POROSITY OFF OF SHALE	INTERVAL BASE (FT)	6600•0	7670.0 9128.0	9254.0	9280.0	9730.0	9766.0	9822.0	9934.0	10088-0	10152.0	10170.0		10274.0	10308-0	10324.0	•
207 207 207	NTE	11	11	·		· ·	١	1	•	1 I	1	1	١		ا ً	ا ۔	1
	I TOP (FT)	6554.0 6740.0	7650.0	9200•0	9260.0	9574.0	9734.0	9770.0	9878•0	10020.0	10092.0	10152.0	10174.0	10230.0	10274.0	10312-0	10324.0

WELL NAME : BARAM 34

70.00 0.0 40.00

łKS	ZONE : E1	ZONE : E2	ZONE : E3	ZONE : F	ZONE : 61	ZONE : G1	ZONE : 61	ZONE : 61	ZONE : G1	ZONE : 61	ZONE : 61	ZONE : 61	ZONE : 61	ZONE : 62	ZONE : 62
REMARKS	BLOCK: 1 BLOCK: 1	BLOCK : 1	BLOCK: 1	BLOCK: 1	BLOCK: 1	BLOCK: 1	BLOCK: 1	BLOCK: 1	BLOCK: 1	BLOCK : 1	BLOCK: 1	BLOCK : 1	BLOCK: 1	BLOCK: 1	BLOCK: 1
AVERAGE SATURATION (%)	6.89	50.1	47.6	46.3	43.3	42.1	41.5	39.0	47.0	57.5	49.5	48.2	41.7	40.3	35.7
AVERAGE POROSITY (%)	13.3	14.8	13.9	14.8	15.8	13.4	14.9	17.6	15.9	11.2	17.3	12.5	16.6	14.2	13.9
NET THICKNESS (FT)	2	16	82	9.8	22	œ	44	44	9	9	16	10	4	28	14
RVAL BASE (FT)	10140.0	•	•	10742.0	10940.0	10958.0	11018.0	11094.0	11102.0	11136.0	11168.0	11230.0	11236.0	11328.0	11384.0
INTERVAL TOP (FT)	10128.0 -	10226.0 -	10366.0 -	10588.0 -	10894.0 -	10940.0	10966.0 -	11048.0 -	11094.0 -	11122.0 -	11146.0 -	11214.0 -	11230.0 -	11256.0 -	11368.0 -

WELL NAME : BARAM35

	AVERAGE SATURATION (%)
	AVERAGE POROSITY (%)
: 70.00 : 0.0 : 40.00	NET THICKNESS (FT)
CUT OFF OF SW CUT OFF OF POROSITY CUT OFF OF SHALE)ASE FT)
CUT CUT	INTERVAL TOP (FT)

SHELLCODE :L

OIL

57.1

25.5

ç

4777.0 - 4822.0

REMARKS

WELL NAME : BARAM 35

0FF 0F	OFF OF POROSITY:	OFF OF SHALE :
OFF	OFF	OFF
CUT	CUT	CUI

Z	INTERVAL	VAL	FHZ	AVERAGE	AVERAGE		REMARKS	KS.		
TOP (FT)		BASE (FT)	THICKNESS (FT)	POROSITY (%)	SATURATION (%)			<u>}</u>		
5524.0	1	5532.0		,		BLOCK :	2	ZONE	٠.	7
5530.0	1	5556.0	9	25.3	64•3	BLOCK :	2	ZONE	۷	-
5668.0	1	5708.0	28	26.1	53.8	BLOCK:	1-1	ZONE		02.
5708.0	ı	5724.0	2	26.8	65.8	BLOCK:	1-1	ZONE	0	2
5776.0	ı	5830.0	18	26.1	50.3	BLOCK :	1-1	ZONE		<u>ش</u>
6046.0	ı	0.0609	22	25.0	58.5	BLOCK :	1-1	ZONE	۵.	
6542.0	ı	6576.0	4	21.9	58.6	BLOCK :	1-1	ZONE	٠.	9
6590.0	1	6604.0				BLOCK :	1-1	ZONE	٠.	•

WELL NAME : BARAM 36

	A2	7 7	B 1	81	B 2	B3	C5	C3	C3	C3	7	Ç	C 4	7	o]	01	El
		•	••	••	••	••	••	••	••	••	••	••	••	••	••	••	••
S X.	ZONE	ZONE	ZONE	ZONE	ZONE	ZONE	ZONE	ZONE	ZONE	ZONE	ZONE	ZONE	ZONE	ZONE	ZONE	ZONE	ZONE
REMARKS	2.0	N 1	7	7	2	7	2	7	7	7	7	7	7	7	2	7	2
	BLOCK :	BLUCK	BLOCK:	BLOCK :	BLOCK :	BLOCK :	BLOCK:	BLOCK:	BLOCK :	BLOCK:	BLOCK:	BLOCK :	BLOCK:	BLOCK :	BLOCK:	BLOCK :	BLOCK:
AVERAGE SATURATION (%)			51.4	57.9	51.3	53.9		52.8	59.2	Ļ	51.1	65.0	57.4		54.8	54.6	28.1
AVERAGE POROSITY (%)			25.7	24.5	24.2	24.3	22.9	22.1	15.4	23.3	19.6	22.3	18.7		20.0	19.8	21.9
NET THICKNESS (FT)			20	24	26	32	. . .	10	14	26	16	œ	10		26	4	18
INTERVAL BASE (FT)	5568.0	5802.0	5938.0	6148.0	6246.0	6420.0	7218.0	7350.0	7374.0	7464.0	7634.0	7686.0	8078.0	8084.0	8162.0	8198.0	8834.0
TER	ı	ı	ı	ı	1	1	1	ı	ı	ı	ı	4	1	1	ı	i	ł
IN TOP (FT)	5560.0	5794.0	5862.0	6084.0	6178.0	6350.0	7080-0	7292.0	7350.0	7414.0	7604.0	7676-0	8058.0	8078.0	8120.0	8186.0	8818.0

WELL NAME : BARAM 37

70.00 0.0 40.00

s)	ZONE : 81 ZONE : 81		•• ••	••	••	••	••	••	••	••	••	••	••	••	•• Ш	 ш	 ພ	••
REMARKS		ი ო ო ი ო ო	е е Н Н М М	3-3	3-3	3-3	3-3	3-3	3-3	3-3	3-3	3-3	3-3	3-3	3-3	3-3	3-3	3 1 3
	BLOCK : BLOCK :	BLOCK	BLOCK :	BLOCK :	BLOCK:	BLOCK:	BLOCK:	BLOCK :	BLOCK :	BLOCK :	BLOCK:	BLOCK:	BLOCK :	BLOCK :	BLOCK :	BLOCK:	BLOCK :	BLOCK:
AVERAGE SATURATION (%)	42.1 51.3	40.4 40.4 40.1	52.7	51.0	59.6	52.2	50.5	0.09	58.5				53.4	39.4	34.6	34.9	56.4	59.5
AVERAGE POROSITY (%)	24.0			22.9	21.2	27.6	29.2	20.1	21.7				16.9	20.1	22.8	23.6	18.3	19.5
NET THICKNESS (FT)	12	20 18 18	္ရွ္	34	16	34	26	2	۵				16	128	28	77	10	30
VAL BASE (FT)	7630.0 7652.0	7908.0 7962.0 8018.0	8032.0	8274.0	8682.0	8840.0	8890.0	8994.0	9008.0	9108.0	9136.0	9178.0	9334.0	9588.0	0.0996	9704.0		9778.0
INTERVAL	1 1	1 1 1			ı	1	ı	ı	1	ı	ı	ı	ı	1	I	ı	ı	1
10 10P (FT)	7620.0 7630.0	7888.0 7908.0 7996.0	8024.0	8206.0	8654.0	8754.0	R852.0	8966.0	8994.0	9100.0	9124.0	9152.0	9288.0	9380.0	9630.0	9660.0	9710.0	9740.0

	ONE ::	ZONE : C3 ZONE : C4 ZONE : C4	ONE	ONE	ONE	 			ONE C	ONE ONE ONE ONE
REMARKS	1 1 1	9 9 9 1 1 1 1 1 3 4	1 1 1	1 1	1 1 1	1 1 1	1 1 1	1 1 1	- 1	1 1 1
	BLOCK : BLOCK : BLOCK	BLOCK : BLOCK : BLOCK :	BLOCK :	BLOCK :	BLOCK :: BLOCK ::	BLOCK ::	BLOCK :		BLOCK :	
AVERAGE SATURATION (%)	65.4 62.7		9,00		9 - 7	50.9	1. 6.	9 10) ထွား	47.5 34.6 47.7
AVERAGE POROSITY (%)	16.2 15.7	19.6 20.8 23.7	ထောင်းထ	16.5 21.4	5 1	16.5	550		15.3	14.1 19.0 17.1
NET THICKNESS (FI)	8 10	76 6 56	24 2 2 6 2 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	30 14	4 4 6) N & ;	12 6	4 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	28 28	12 10 198
VAL BASE (FT)	7674.0 7800.0 7852.0	8076.0 8106.0 8182.0		3000	m N s			484. 528.	632.	9666.0 9678.0 10042.0
INTERVAL P	000				000					000
T0P (FT)	7638	882 098 132	8372	8540. 8574.	8986	9162.0	9260.0 9298.0 9440.0	9474	9600	9644 9668 9706

	S	ZONE :	ZONE :	ZONE :	ZONE :	ZONE:	ZONE :	ZONE:	ZONE :	ZONE :	ZONE :	ZONE :	ZONE :	ZONE :	SONE :
	REMARKS	3 -3	3-3	3-3	3-3	3-3	3-3	3–3	3-3	3-3	3-3	3-3	3-3	3-3	3-3
		BLOCK :	BLOCK :	BLOCK:	BLOCK:	BLOCK :	BLOCK :	BLOCK :	BLOCK:	BLOCK :	BLOCK :	BLOCK :	BLOCK :	BLOCK :	BLOCK:
;	AVERAGE SATURATION (%)	63.2	35.5	46.5	51.3	46.2	50.8	46.2	56.9	57.0	44 • I	60•3	6*65	49.2	48.7
	AVERAGE POROSITY (%)	14.5	21.0	19.8	17.1	18.0	20.3	16.2	15.2	18.8	17.1	15.7	15.7	17.8	16.4
: 70.00 ITY: 0.0	NET THICKNESS (FT)	α	90	12	30	28	28	22	16	28	26	14	4	12	122
JT OFF OF SW JT OFF OF POROSIT JT OFF OF SHALE	INTERVAL BASE (FT)	- 8138.0 - 8274.0	- 8358.0	- 8380.0	- 8450.0	- 8532.0	- 8570.0	- 9716.0	- 9756.0	- 9828.0	- 10038.0	- 10122.0	- 10138.0		- 10450.0
CUT CUT CUT	INI TOP (FT)	8124.0	8376.0	8368.0	8394.0	8478.0	8540.0	9692.0	9736.0	0.7676	9974.0	10074.0	10128.0	10146.0	10186.0

WELL NAME : BARAM40

REMARKS		BLOCK : 3-3 ZONE : 83	: 3-3 ZONE : B	: 3-3 ZONE : B	: 3-3 ZONE : B			-3 ZONE : C	LOCK: 3-3 ZONE: C	-3 ZONE : C	LOCK: 3-3 ZONE: C	LOCK : 3-3 ZONE : C	LOCK: 3-3 ZONE: C	LOCK : 3-3 ZONE : C	LOCK : 3-3 ZONE : C	LOCK : 3-3 ZONE : C	LOCK: 3-3 ZONE: C	LOCK : 3-3 ZONE : C	-3 ZONE : C	LOCK : 3-3 ZONE : C	BLOCK : 3-3 ZONE : C4	-3 ZONE : C	LOCK : 3-3 ZONE : C	LOCK : 3-3 ZONE : E	: 3-3 ZONE : E	LOCK : 3-3 ZONE : E			
AVERAGE SATURATION	(%)	48.3	•		œ	50.2	æ	4	-	'n	•	m	œ		8		3	•	6	~	39.3	2	۲.	'n	:	4		56.7	
AVERAGE PGROSITY	86	21.6	0		20.9	18.0	20.8	6	-	22.7	2	•			13.6	15.4	13.6		ထီ	æ	21.5	6	6	16.6		19.1	14.4	17.3	
NET THICKNESS	_	18	9		22	12	24	14	24	12	22	16	12	l I	9	œ	20	38	24	26	28	22	26	10					20
INTERVAL BASE	(FT)	- 7864.0	- 7914.0	- 7968.0	- 8054.0	0.9608 -	- 8140.0	- 8246.0	8286.0	- 8458.0	8494.0	8584.0	- 8646.0	8658	- 8706.0	- 8726.0	0.0888 -	- 8976.0	- 9010.0	0.0806 -	- 9148.0	- 9198.0	- 9246.0	- 10700.0	- 10740.0	- 10816.0	- 11090.0	- 11178.0	- 11222.0
11 TOP	(FT)	7826.0	7896.0	7950.0	8020.0	8084.0	8096.0	216.	250.	436.	8456.0	8524.0	8610.0	8646.0	8692.0	8716.0	8832.0	8934.0	8980.0	9020•0	9114.0	9148.0	9200.0	10666.0	10714.0	10786.0	10994-0	11122.0	11200.0

WELL NAME : BARAM40

70.00	0.0	40.00
MS	POROSITY	SHALE
	P.	
OFF	OFF	OFF
CUT	CUT	CUI

	AVERAGE	POROSITY	(%
* 40.00	NET	THICKNESS	(FT)
CUT OFF OF SHALE	RVAL	BASE	(FT)
CUT	INTERVAL	T0P	(FT)

ZONE : E3

BLOCK : 3-3

57.0

18.6

122

11260.0 - 11544.0

REMARKS

AVERAGE SATURATION (%)

WELL NAME : BAKAU 03

	GWC 8327.									
	AVERAGE SATURATION (%)	55.00 56								
	AVERAGE POROSITY (%)	23.1 22.2 13.6 18.4 21.6 19.8 18.0 22.2 21.7 20.4 19.7 11.4 11.5 11.5 8.5								
SITY: 80.00 E: 50.00	NET THICKNESS (FT)	4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6								
OFF OF SW OFF OF POROS OFF OF SHALE	RVAL BASE (FT)	7148.0 7403.0 7528.0 7719.0 77757.0 7797.0 7852.0 7852.0 7851.0 8277.0 8327.0 8510.0 8510.0 8510.0 8510.0 9552.0 9431.0 9452.0								
CUT CUT CUT	INTERVAL TOP (FT)	7142.0 7349.0 7462.0 7514.0 7745.0 7784.0 7784.0 7814.0 7818.0 8217.0 8217.0 8454.0 8551.0 8551.0 8953.0 9275.0 9275.0 9443.0								

WELL NAME : BAKAU 04

	REMARKS	GOC 8708?	OWC 8802		:												
÷	,	GAS	011	011	OIL	OIL	GAS	GAS	GAS	GAS	OIL?	GASS	GASS	GAS?	GAS?	GAS?	GAS?
!	AVERAGE SATURATION (%)	52.9	72.3	65.9		67.3	48.4	6.44	60.5	52.9	57.2	52.8	52.7	46.9	40.1	47.7	54.5
	AVERAGE POROSITY (%)	20.8 22.5	22.6	19.4		17.8	17.4	18.0	17.1	16.0	16.0	15.2	16.3	18.3	16.2	16.0	13.9
: 80.00 OSITY: 0.0 LE: 50.00	NET THICKNESS (FT)	4 0	7 9	16		28	78	58	54	54	142	90	70	22	24	13	97
CUT OFF OF SW CUT OFF OF POROS CUT OFF OF SHALE	INTERVAL OP BASE I) (FI)	3.0 - 8711.0	ı	ı	ı	1	5.0 - 9748.0	0.0 - 9920.0	0.5066 - 0.0	5.0 - 10188.0	7.0 - 10419.0	i	1	ı	ı	ı	3.0 - 11253.0
	TOP (FT)	8703.0	8796.0	9017.0	9244.0	9283.0	9655.0	0.0286	0.0466	1015	10217.0	10701.0	10844.0	11002.0	11108.0	11141.0	11203.

WELL NAME : BAKAU 05

	_	GAS GAS TIGHT OIL OIL OIL
	AVERAGE SATURATION (%)	61.5 78.2 59.4 62.4 65.7 79.0
	AVERAGE POROSITY (%)	14.8 14.8 17.5 14.5 13.1 11.0
: 80.00 1TY: 0.0	NET THICKNESS (FT)	4 2 2 18 2 10
CUT OFF OF SW CUT OFF OF POROSITY CUT OFF OF SHALE	INTERVAL BASE (FT)	- 7698.0 - 7828.0 - 8174.0 - 8218.0 - 8364.0 - 8458.0
 	INI TOP (FT)	7690.0 7824.0 8168.0 8211.0 8338.0 8450.0 8461.0

REMARKS

WELL NAME : TUKAU 03

		REMARKS					:			,													0609 DMU			GOC 6612	
				;	011	01 L	:		016	OIL	016	011	OIL	014	016	OIL	OIL	011	016	OIL	GAS	011	011	GAS	GAS	GAS	OIL
		AVERAGE	SATURATION	(%)	46.3	42.6	37.6	22.3	35.8	46.2	39.3	31.1	6*55	33.6	42.1	49.7	39.1	41.7	54.6	45.0	42.5	41.0		:		•	43.3
	•	AVERAGE	POROSITY	(%)	24.0	25.3	26.9	33.7	26.2	21.7	25.4	26.7	٠ ص	ċ	25.3	2	•	26.0	20.1	21.0	23.2	27.4				16.3	17.9
\$ 60.00	AAIE : 50.00	Lu	THICKNESS	(FII)	9	22	18	12	20	œ	9	4	c	8%	30	10	22	9	2	4	14	4				36	102
OFF OF ST	OFF OF SE	ERVAL	BASE	(EI)	- 2744.0	- 2812.0	- 2848.0.	- 2878.0	į	- 2962.0	1							- 3866.0		4320		4546	0609	6228	6372	- 6612.0	<u> </u>
TUD		INTERVAL	TOP	(ET)	a	c	2826.0	c	•	0	2998.0 -	C	3076-0-	3102.0 -	3152.0 -	Ç	c.	c	4064.0 -	4316.0 -	4348.0 -	4538.0 -	_	Ċ	6256.0 -	22	6612.0 -

WELL NAME : TUKAU 04

	AVERAGE	NO NO	45.5		52.8 V 01L V V 52.8	50.9 DIC 3076	110	710	53.7 Section 11.	53.8 011	710				51.2 OIL	54.5 UIL	47.3 OIL	1I0	OIL	50.5 OIL	33 • 0 GAS
0.00		THICKNESS POROSITY	8 27.0	4 30.0	6 cm 1 cm 2	36.0	こうけん いかいがく かまなな もほか コート・		2 28.6	2 29.5			28•1	10 22.2	522.3	2 22.7	20			6 22.6	54 24.9
CUT OFF OF SW CUT OFF OF SHALE :	RVAL	BASE	2849.0 - 2875.0			1	1	3444.0 - 3469.0	3558.0 - 3598.0	1	3689.0 - 3768.0	- 3815.0	3849.0 - 3857.0	- 4074.0	1	4260.0 - 4266.0	- 4412.0	4572.0 - 4585.0	4597.0 - 4613.0	4626.0 - 4642.0	7116.0 - 7174.0

WELL NAME : TUKAU 05

	REMARKS	710
		OIL
	AVERAGE SATURATION (?)	34.5
	AVERAGE POROSITY (%)	17.9
. 60.00 . 50.00	NET THICKNESS (FI)	7
CUT OFF OF SW CUT OFF OF POROSITY CUT OFF OF SHALE	INTERVALNET OP RASE THICKNES T.)(FT)	6584.0 - 6620.0
	I TOP (FT)	6584.0

90
TUKAU
NAME .
ELL N
뿔

	REMARKS	NOT INTERPRETATED NOT INTERPRETATED
	AVERAGE SATURATION (%)	
	AVERAGE POROSITY (%)	
1TY : 60.00 0.0 : TY : 50.00	NET THICKNESS (FT)	
CUT OFF OF SW CUT OFF OF POROSITY CUT OFF OF SHALE	VAL BASE (FT)	1784.0 1828.0
CUT CUT CUT	INTERVAL TOP (FT)	1572.0 -

WELL NAME : TUKAU 07

WELL NAM	WELL NAME : IUKAU D		: :			
CUT 0 CUT 0 CUI 0	CUT OFF OF SW CUT OFF OF POROSITY CUT OFF OF SHALE	. 60.00 1TY: 0.0 50.00	-		e e e e e e e e e e e e e e e e e e e	
INTERVAL		NET	AVERAGE	AVERAGE		REMARKS
T0P (FT)	SE T.)	THICKNESS (FT)	POROSITY (%)	SATURATION (%)		: :
		4	25.9	53.8	OIL	
2798.0 -	- 2804.0	9	27.3	43.2	016	
'	2920•0	42	27.4	37.3	011	ı
2944.0 -	2964.0	14	28.0	32.2	016	t
2984.0 -	3002.0	4	23.9	50.00	OIL	
3008.0 -	3018.0	æ	30.1	34.2	016	
3024.0 -	3032.0	9	24.8	45.9	016	
3114.0 -	3128.0	14	29.6	29.4	OIL	
3150.0 -	3120.0				016	

WELL NAME : TUKAU 08

	REMARKS		011.	710	OIL	OIL	OIL	OIL	OIL	OIL	. 110
	AVERAGE	(%)	37.0	30.7	58.3	45.5	8 • 6 5	52.4		50.3	0 73
	AVERAGE POROSITY	(%)	24.5	28.4	17.6	27.7	24.5	16.7		15.5	10.5
60.00	NET THICKNESS	(FT)	18	œ	4	16	2	9		32	7
OFF OF SW OFF OF POROSITY OFF OF SHALE	RASE	(FT)	2901.0	2939•0	2983.0	3027.0	3075.0	4065.0	4094.0	4193.0	4418 C
CUT CUT CUT	INTERVAL TOP	(FT)	2878.0 -	7931.n -	2979.0 -	3009.0	3071-0 -	4055.0 -	4092.0 -	4150.0 -	4305.0

	REMARKS		-
			◁
	AVERAGE SATURATION (%)	41.8 28.92 28.92 28.90.7 29.7 42.3 44.2 56.3 44.2 44.2 44.2 44.2 44.2 44.2 44.2 44.3 44.3	
	:		
	AVERAGE POROSITY (%)	23.4 27.6 27.6 26.6 26.5 26.5 19.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 2	16.5
.Y: 50.00	NET THICKNESS (FT)	12 16 10 10 10 10 10 10 10 10 10 10 10 10 10	2
OFF OF SW OFF OF POROSITY OFF OF SHALE	VAL RASE (FT)	2780.0 2828.0 2865.0 2885.0 28965.0 29600.0 31000.0 33330.0 35522.0 35552.0 3555.0 3555.0 4040.0 4114.0 4172.0 4331.0	777
CUT CUT CUT	INTERVA 5)		-0-
	TOP (FT)	2750.0 2870.0 2870.0 2888.0 2888.0 2888.0 2888.0 3870.0 3870.0 3870.0 3870.0 4008.0 4158.0 4158.0 4358.0	4427

WELL NAME : TUKAU 09

		REMARKS										
		: : : : :		GAS	OIL	OIL	OIL	016	OIL	OIL	OIL	OIL
		AVERAGE	SATURATION (%)	33.4		44.3	44.8	6-14	58.9	45.2	6.54	42.3
:		AVERAGE	POROSITY (%)	25.0	And the second s	18.6	17.6	18.8	15.3	21.5	25.5	23.3
	: 60.00 051TY: 0.0 LE: 50.00	NET	THICKNESS (FT)	œ		4	ç	80	. 2	9	12	56
WELL NAME : TUKAU 09	OFF OF SW OFF OF POROSI OFF OF SHALE	VAL	BASE (FT)	4500•0	4600.0	4636.0	4664.0	4722.0	4762.0	4777.0	4798.0	5762.0
WELL NA	CUT CUT CUT	INTERVAL	TOP (FT)	4468.0 -	4586.0 -	4626.0 -	4656.0 -	- 0.9694	4754.0 -	4768.0 -	4786.0 -	5730.0 -

WELL NAME : TUKAU 10

SO.00 NET	
AVERAGE AVERAGE POROSITY SATURATION (%) (%) 31.4 36.0 0IL 27.7 39.6 0IL 29.0 46.7 0IL 29.0 46.7 0IL 27.6 57.2 0IL 24.4 46.7 0IL 24.4 47.5 0IL 25.3 53.1 0IL 28.3 49.2 0IL 28.3 64.5 56.3 0IL	JT OFF OF SHALE :
PORUSITY SATURATION (%) (%) 31.4 27.7 33.3 29.4 29.0 27.6 31.9 24.8 24.4 44.8 26.3 28.3 28.3 49.2 28.3 24.5 56.3	NE L
31.4 36.0 27.7 39.6 33.3 39.6 29.4 46.7 29.0 46.7 27.6 57.2 31.9 44.8 24.4 47.5 26.3 56.7 28.3 49.2 23.5 49.2 24.5 56.3	THICKN
36.0 39.6 31.7 51.4 46.7 57.2 44.8 47.5 53.1 49.2 49.2 56.3	(FT)
39.6 31.7 51.4 46.7 57.2 44.8 47.5 56.7 53.1 49.2 49.2	12
31.7 51.4 46.7 57.2 44.8 47.5 56.7 56.7 49.2 49.2	18
51.4 46.7 57.2 44.8 47.5 56.7 56.7 49.2 49.2	10
46.7 57.2 44.8 47.5 56.7 53.1 49.2 45.1	œ
57.2 44.8 47.5 56.7 53.1 49.2 45.1	8
44.8 47.5 56.7 53.1 49.2 49.2 56.3	4
47.5 56.7 53.1 49.2 49.2 56.3	2
56.7 53.1 49.2 45.1 49.2 56.3	12
53.1 49.2 45.1 49.2 56.3	œ
.3 49.2 .3 45.1 .5 49.2	7
45.1 5 49.2 5 56.3	14
.5 .5 .5 .5	4
.	10
	2

WELL NAME : TUKAU 11

00.09	0.0	50.00
00.09 : WS	CUT OFF OF POROSITY :	SHALE
CUT OFF OF SW	OFF OF	CUT OFF OF SHALE
CUI	CUT	CUI

REMARKS			-								
				011	OIL	016	016	OIL	015	011	OIL
AVERAGE	SATURATION	(%)		32.1	36.4	29.4				51.7	55.6
AVERAGE	POROSITY	(%)		27.7	27.8	29.1				18•3	20.6
FIIV	THICKNESS	(FT)		10	16	10				2	7
INTERVAL	BASE	·(FT)		2776.0	2832.0	2940.0	3004.0	3322.0	3364.0	3384.0	3414.0
T ERV.	i			ı	ı	ı	ı	ı	1	ı	t
Z	TOP	(FT)		2764.0	2802.0	2928.0	2994.0	3308.0	3358.0	3380.0	3404.0

WELL NAME : TUKAU 17

***************************************		S HWAD K			GAS GOC 3304		OIL	GAS	GAS	OIL	GAS	GAS	OIL	f. TIO	OIL	OIL	OIL	GAS	OIL	OIL	OIL	OIL	710	016	OIL	011	OIL	110
		35 A 3 3 7 A	SATURATION	(%)	26.4	38.1	45.4	36.5	41.3	34.1	49.2	39.3	41.4	53.1	6*67	9.74	49.7	40.4	41.9	43.2	41.7	45.8	55.1	47.0	43.1	36.2		
	·	AVEDACE	PORUSITY	(%)	30.1	28.9	28.0	28.7	28.0	9.0€	25.1	28.8	29.7	26.2	23.8	24.1	24.1	25.9	26.7	22.0	21.7	22.5	18.9	19.5	20.3	26.7	•	
••	ITY : 0.0 : 50.00	FUN	CHACKNEY	(FT)	œ	28	20	20	22	18	38	10	9	18	8	8	80	18	12	10	10	12	œ	28	12	8		-
OFF OF SI	OFF OF POROSITY OFF OF SHALE	1470	RACE	(FT)	3304-0	3332.0	3372.0	3440.0	3520.0	3674.0	3774.0	3792.0	3822.0	3978.0	4374.0	4398.0	4436.0	4520.0	4612.0	4996.0	5014.0	5084.0	5110.0	5410.0	5462.0	5772.0	5900•0	6004.0
CUT	בטד בעד	A V GH TIAT	TOP	(FT)	3296-0	3304.0 -	3352.0 -	3408.0 -	3482.0 -	3656.0 -		3782.0 -	3816.0 -	3960.0	4364.0 -	4384.0 -	- 0.9244	- 0.9644	- 0.0094	4984.0 -	5006.0 -	5060.0	5100.0 -	5376.0 -	5450.0 -	5766.0	5864.0 -	- 0-6965

WELL NAME : TUKAU 18

	REMARKS					! !																			: :
				GAS	GAS	011	GAS	OIL	OIL	OIL	016	OIL	OIL	OIL	GAS	GAS	011	OIL	GAS	GAS	OIL	GAS	OIL	GAS	011
	AVERAGE	SATURATION	(%)	37.7		33.2	34.1				37.7	44.0		52.2	50.4		55.4		44.8	39.7	48.5	55.1		44.7	37.6
	AVERAGE	POROSITY	(%)	23.0		24.1	27.3				23.6	22.2		20.5	21.9		15.9		23.2	21.7	17.7	20.6		22.6	21.3
: 60.00 ITY: 0.0	N H	THICKNESS	(ET)	10		10.	12				7	9		4	9		7		2	20	4	9		12	9
OFF OF SW OFF OF POROSI OFF OF SHALE	/AL	ВА	(FT)	9	ċ	ċ	٠	-	3226.0	o.	.+		o,	<u>.</u>		*		4.	80.	.+	ċ		.+	4366.0	å
CUT C CUT C	INTERVAL		(FT)	2818.0 -	2860.0		- 0.9662		3222.0 -	_	o.	•	3776.0 -	_	3994.0 -	4023.0 -	- 0.9404	•	- 0.970+	4106.0 -	142.	248.	\sim	4334.0 -	_

WELL NAME : TUKAU 19

CUT OFF OF SW CUT OFF OF SHALI	SITY: 60.00 E 50.00				
INTERVAL	Luz	AVERAGE	AVERAGE	:	REMARKS
BASE	THICKNESS	POROSITY (%)	SATURATION (%)		
		9.75	45.55	011	
1 3546.0	14	32.2	26.9	GAS	
3594.0	9	33.7	18.6	GAS	
3600•0	9	31.8	18.3	GAS	
3628.0	14	24.1	39.8	OIL	*: And
- 3668.0	9	21.6	51.0	016	
- 3720.0	4	23.1	49.7	OIL	
	12	20.9	50.7	OIL	
- 3796.0	18	28.6	28.7	OIL	
<u> </u>	28	22.0	48.3	OIL	
3938•0	9	30.7	33.6	01.	
- 4002.0	12	30.4	32.9	011	

WELL NAME : TUKAU 20

CUT OFF OF SW : CUT OFF OF POROSITY :

CUT OFF DE SH	DE_SHALE	: 50.00		ari dan yan man a wa's dimakiri —	e de la cième de des de descripto de la compansión de la cième
INTERVAL	1	- 1	AVERAGE	AVERAGE	REMARKS
	BASE (FT)	THICKNESS (FT)	POROSITY (%)	SATURATION (%)	
ı	0.92			9	AS
	40.0		and the same of th	9	AS
I,	3204.0	14	•	8.7	AS
- 323	36.0	16		4.3	
	78.0	4		0.1	1L 0WC 3278
- 335	54.0	12	25.1	38.3	
	12.0	10	•	1.8	AS
	74.0	2		5.8	
• 0 = 353	32.0		•	8.5	11.7
1	24.0	24	•	0.7	11.2
ı	14.0			2.0	IL?
3754.0 - 377	0.07	4	•	3.9	11.5
1	0 • 9g			0	IL?
ı	08.0				ĀS
1	24.0	4	·C	8.7	AS
ı	94.0	14	0	7.6	AS
ı	24.0	&	0	6.0	AS
ı	98.0	80	•	6 6	AS
4286.0 - 429	4298.0	9	23.8	9 6.94	AS
1	30.0	7	10	8.2	AS
:	08.0	:			IL
ı	30.0	~	2	3.6	IL
4762.0 - 477	76.0	8	۲.	6.7	AS
1	\sim	36	16.7	41.4 0	1
œ	4	4	2	8.5	I.L
49	14.0	ထ	÷	0.5	OIL
0	ω ;				1.
_	\sim	54	14.8	45.1	IL

WELL NAME : TUKAU 21

	REMARKS		
		011	01L 01L 011
	AVERAGE SATURATION (%)	43.9	53.8
	AVERAGE PORUSITY (%)	30.6	22.7
. 50.00 7 : 50.00	NET THICKNESS (FT)	1,0 «	7 7
CUT OFF OF SW CUT OFF OF PORNSITY CUT OFF OF SHALE	INTERVAL RASE (FT)	1	4712.0 4992.0 8484.0
TU20 TU20 TU20	INTE TOP (FT)	3016.0 3068.0 4560.0	4676.0 - 4947.0 - 8454.0 -

WELL NAME : TUKAU 22

-			REMARKS		- Charge Williams in the Links of the Control of th					OWC 3253						
					•	OIL	011	016	01L	OIL	OIL	OIL	OIL	011	016	016
			AVERAGE	SATURATION	(%)	53.7	35.6	53.1	45.2	47.5	37.8	58.5		37.9	58.5	52.1
			AVERAGE	POROSITY	(%)	27.4	30.5	25.5	26.5	27.5	25.6	19.6		23.9	17.5	20.4
: 60.00	••	20.00	NET	THICKNESS	(FT)	2	4	4	2	4	10	2		20	2	∞
	OFF OF	OFF OF SHA		3 A S E		2960.0	2973.0	3024.0	3046.0	3253.0	3852.0	4524.0	4584.0	4752.0	4946.0	5184.0
CUT	CUT	CUT	INTERVAL	T0P	(FT)	2954.0 -	2968.0 -	3016.0 -	3042.0 -	3210.0 -	3842.0 -	4492.0 -	4574.0 -	4682.0 -	4938.0 -	- 0.1603

WELL NAME : TUKAU 23

			REMARKS				•								i !	
			٠			011	OIL	016	011	OIL	OIL	OIL	OIL	OIL	011	OIL
			AVERAGE	SATURATION	94	37.4	38.3	47.2	46.6			43.9	7.44	56.1		
			AVERAGE	POROSITY	(%)	35.1	33.0	31.0	32.0			31.9	23.7	24.0		
00.09 :	. .		NET	THICKNESS	(FT)	9	22	4	4			2	8	9		
OFF OF	OFF OF POROSITY	OFF OF SHALE		BASE	(FT)	2952.0	3020.0	3050.0	3086.0	3100.0	3112.0	3582.0	4350.0	4388.0	4720.0	1815.0
	100	CUT	INTERVAL	TOP	(FT)	2944.0 -	2988.0 -	3044.0 -	3080.0 -	3098.0 -	3110.0	3564.0 -	4226.0 -	4358.0 -	4614.0 -	4810.0 -

WELL NAME : TUKAU 24

	REMARKS								OWC 3206							
			OIL	011	011	016	011	016	016	016	OIL	OIL	OIL	016	OIL	OIL
	AVERAGE	SATURATION (%)	42.1	45.3	44.8	54.9	53.5		53.9							magnetische Antonio de State de State de La Companya de La Companya de La Companya de State de La Companya de L
	AVERAGE	POROSITY (%)	30.7	28.3	28.1	28.4	28.4		30.0							
. 60.00 TY: 0.0	THE STATE OF THE S	THICKNESS (FT)	7	12	24	æ	10		9							: •
OFF OF SW OFF OF POROSITY OFF OF SHALE	VAL	BASE (FT)	2920•0	2950.0	3006.0	3078.0	3118.0	3132.0	3206.0	3818.0	5170.0	4366.0	4619.0	4700.0	4876.0	5176.0
CUT CUT CUT	INTERVAL		I 0	0	0	- 0	- О	о О	. 0	1	0	- 0	г 0	I 0	1	1
	i I	(FT)	2914	2926	2972.0	3070.0	3107.0	3128.0	3162.0	6784.0	4156.0	4354.0	4500.0	4690.0	4808.0	5160.

CUT OFF OF SW CUT OFF OF SHALE	SOSITY : ALE :	60.00 0.0 50.00		
INTERVAL TOP BASE (FT) (FT)	THIO	NET THICKNESS (FT)	AVERAGE PORNSITY (%)	AVERAGE SATURATION (%)
3206.0 - 3228.0 3268.0 - 6284.0		14 66	28.5 28.3	39.3
260.0 - 3300.0				
3306.0 - 3322.0				
3408.0 - 3426.0	٠		· · · · · · · · · · · · · · · · · · ·	
3486.0 - 3516.0				

REMARKS

WELL NAME : TUKAU 26

÷	REMARKS																	ī
		OIL	01L 01t	016	016	OIL	011	011	O I I	011	011	OIL	016	OIL	OIL	011	OIL	OIL
	AVERAGE SATURATION (%)		54.1 40.1	29.6	46.6	53.6			53.3		37.4	50.1		54.1	40.1	41.7	41.4	51.7
	AVERAGE POROSITY (%)		21.6 28.1	28.7	23.4	22-3			25.5		30.5	25.8		23.8	30.6	28.8	27.7	25 . 8
: 50.00 ITY: 0.0 : 50.00	NET THICKNESS (FT)		2 16	ူထ	9	2			2		4	22		16	9	14	4	4
T OFF OF SW T OFF OF PORNSITY T OFF OF SHALE	INTERVAL RASE (FT)	- 3060.0 - 3071.0	- 3110.0 - 3136.0	- 3178.0	- 3196.0	- 3208.0	- 3220•0	- 3258.0	- 3284.0	- 3322.0	- 3346.0	- 3444.0	- 3838•0	- 3940.0	0.0798 -	- 4080.0	- 4124.0	- 4166.0
CUT CUT CUT	INT TOP (FT)	3056.0						-						3908.0		4024.0	4116+0	4140.0

WELL NAME : TUKAU 27

		REMARKS												
					OIL	-016	016	OIC	OIL	OIL	OIL	OIC	OIL	011
:		AVERAGE	SATURATION	131	34.1	26.4	40.2	26.0		53.6	50.9	43.3		52.6
		AVERAGE	POROSITY	191	28.2	30.0	26.6	22.6		26.0	22.3	22.1		19•4
	Y: 0.0 : 50.00	NET	THICKNESS THICKNESS	(44)	80	8	10	2		9	~	10		8
CUT OFF OF SW	OFF OF POROSITY : OFF OF SHALE :		BASE		2896.0	2936.0	2968.0	2992.0	3004.0	3026.0	3500.0	4130.0	4230.0	4268.0
CUT	CUT CUT	INTERVAL	α.	(+	2888.0 -	2928.0 -	2954.0 -	2982.0 -	- 0.8662	3015.0 -	3486.0 -	4118.0 -	4224.0 -	4238.0 -

WELL NAME : TUKAU 28

		REMARKS	_	,																				
:					OIL	011	OIL	OIL	OIL	016	OIL	OIL	OIL	OIL	OIL	01L	OIL	OIL	OIC	OIL	OIL	016	OIL	016
		AVERAGE	SATURATION	(%)	33.7	24.4	-	36.3		37.6		57.1	48.9		46.4			51.2					52.4	
		AVERAGE	POROSITY	(%)	26.0	26.3		24.5		27.2		21.7	21.7		17.0			16.4					8.1	
	: 50.00	NET	THICKNESS	(FT)	00	10		10		12		4	4		10			9					9	
H H	OFF OF SHALE	VAL	BASE	(FT)	7910.0	2954.0	2966.0	2990.0	3012.0	3108.0	3552.0	3758.0	3974.0	4054.0	4246.0	4304.0	4340.0	4382.0	4408.0	4516.0	4556.0	4580.0	4714.0	5004.0
CUT	CUT	INTERVAL	T0P	(FT)	2898-0 -		2960.0	2972.0 -	3000.0	3092.0 -	3548.0 -	3705.0 -	3968.0 -	4040.0	4218.0 -	4256.0 -	4330.0 -	4350.0 -	4392.0 -	4512.0 -	4544.0 -	4573.0 -	4604.0 -	4788.0 -

WELL NAME : TUKAU 29

	REMARKS							–		OMC 3498	1					60C 4044	: : : : :								1	DMC 5726		
		011	011	011	011	710	110	TIGH	011	OIL	016	015	011	011	OIL	GAS	011	015	016	015	011	011] [0] [016	011	OIL	GAS	OIL
	AVERAGE SATURATION (%)		40.7	36.0	52.9		48.9			50.3		6•94		55.8		50.0				49.6			42.8	46.4			•	0.44
	AVERAGE POROSITY (%)		2 P	25.6	22.2		26.4			27.1		27.8		29.6		19.3				21.1			21.0	16.4	19.4		20.0	17.6
: 60.00 ISITY: 0.0 E: 50.00	NET THICKNESS (FT)		7 4	2	2		9			4		2		2		9				9			9	8	œ		22	12
OFF OF SW OFF OF POROS OFF OF SHALE	/AL BASE (FT)	vo i.	2866.0	י ביו	$\overline{}$		on:	· On	\sim	\mathbf{c}	×1.	.+	ev:	N	ന	.+-	. ^	·N		ന	_	~	C.3	! . T	· 1	vn.	-4.	\sim
CUT CUT	INTERVAL	1	1 1	1	ı	1	ı	ı	1	ı	ı	ı	1	1	ı	1	ı	1	1	1	1	1	i	1	1	: ! 1	ı	1
	10P (FT)	2833.0	2844.0	2898.0	2912.0	2968.0	3018.0	3420.0	3450.0	3472.0	3544.0	3546.0	3624.0	3706.0	3896.0	4032.0	4044.0	4114.0	4134.0	4146.0	4274.0	4246.0	4380.0	5600.0	5638.0	19	818	918

WELL NAME : TUKAU 29

CUT OFF OF PORNSITY: 0.00 CUT OFF OF SHALE: 50.00 CUT OFF OF SHALE: 50.00 CUT OFF OF SHALE: 50.00 INTERVAL NET AVERAGE AVERAGE REMARKS (FT) (FT) (FT) (R) (R) (R) (R) (R) (R) (R) (R) (R) (R	CUT	OFF OF SW	••	90.09				
OF SHALE 50.00 OF SHALE 50.00 AVERAGE AVERAGE REI BASE THICKNESS PORDSITY SATURATION 158.0 14 20.0 36.8 GAS GOC 164.0 4 23.6 45.8 OTL OWC OUL		H.	·.	0.0				
NET NET AVERAGE RE		비	•	50.00				
BASE THICKNESS PORDSITY SATURATION (FT) (FT) (FT) (FT) (FT) (FT) 158.0 14 20.0 36.8 GAS 164.0 4 19.8 37.4 01L 0WC 372.0 6 18.0 37.4 01L 0WC 448.0 40 17.2 37.2 01L 0WC 522.0 6 18.3 44.3 01L 0WC 522.0 6 18.3 44.3 01L 0WC 738.0 6 18.3 6.2 6AS 60C 748.0 6 18.3 6.2 6AS 60C 748.0 10 16.6 6AS 60C 6AS 60C 748.0 16 16.6 50.2 6AS 60C 748.0 16 16.6 6AS 60C 6AS 60C 918.0 16.6 16.5 16.5 6AS		VAL	NET	•	AVERAGE	AVERAGE		REMARKS
(FT) (%) 14 20.0 36.8 GAS GOC 4 19.8 37.4 OIL OWC 4 19.8 37.4 OIL OWC 18 18.0 53.7 GAS GOC 40 17.2 37.2 OIL OWC 5 18.3 44.3 OIL OWC 6 18.3 44.3 OIL OWC 10 12.6 50.2 GAS GOC 10 12.6 50.2 GAS GOC 18 13.0 52.1 OIL 18 10.1 47.4 OIL 18 10.1 47.4	i	BASE	THICKN	:SS	POROSITY	SATURATION		
6158.0 14 20.0 36.8 6AS. 6DC 6164.0 4 23.6 45.8 01L 0WC 6324.0 4 19.8 37.4 01L 0WC 6372.0 6 18 18.0 53.7 01L 0WC 6548.0 40 17.2 37.2 01L 0WC 6AS. 60C 6AS. 60C	ł	(FT)	(FT		(%)	(%)		
6164.0 4 23.6 45.8 01L 0MC 6324.0 4 19.8 37.4 01L 6372.0 6 4 19.6 43.0 6AS 60C 6418.0 40 17.2 37.2 6AS 60C 6522.0 6522.0 37.2 01L 0WC 6738.0 10 12.6 6AS 60C 6748.0 10 12.6 50.2 6AS 60C 6852.0 10 16 12.6 50.2 6AS 60C 6748.0 16 16.6 50.2 6AS 60C 6918.0 16 16.6 50.2 6AS 60C 7100.0 8 13.0 45.5 01L 7100.0 8 13.0 47.4 47.4		6158.0	14		20.0	36.8	GAS	GDC 6158
6324.0 4 19.8 37.4 01L 6372.0 6 18.0 43.0 6AS 60C 6418.0 18 18.0 53.7 6AS 60C 6548.0 40 17.2 37.2 01L 6522.0 6522.0 44.3 01L 0WC 6738.0 10 12.6 6AS 60C 6748.0 10 12.6 50.2 6AS 60C 6918.0 16 16.6 50.2 6AS 60C 7100.0 8 13.0 52.1 01L 7266.0 18 10.1 47.4 47.4	İ.	6164.0	4		23.6	45.8		DWC 6164
6372.0 6 19.6 43.0 6AS 60C 6418.0 18.0 53.7 6AS 60C 6548.0 40 17.2 37.2 01L 6522.0 6522.0 44.3 01L 0WC 6738.0 6738.0 6AS 60C 6AS 60C 6748.0 10 12.6 50.2 6AS 60C 6918.0 16 16.6 50.2 6AS 60C 7020.0 16 16.6 45.5 01L 7100.0 8 13.0 52.1 01L 7266.0 18 10.1 47.4		6324.0	4		19.8	37.4	016	
6418.0 18 18.0 53.7 6548.0 40 17.2 37.2 6594.0 6 18.3 44.3 01L 6522.0 6738.0 01L 0WC 6738.0 10 12.6 6AS 60C 6748.0 10 12.6 50.2 6AS 60C 6918.0 16 16.6 45.5 01L 01L 7100.0 8 13.0 52.1 01L 7266.0 18 10.1 47.4	١.	6372.0	9		19.6	43.0	GAS	GOC 6372
6548.0 40 17.2 37.2 01L 6594.0 6 18.3 44.3 01L 0WC 6522.0 6738.0 6AS 6C 6AS 6C 6748.0 10 12.6 50.2 6AS 60C 6918.0 16 16.6 50.2 6AS 60C 7020.0 16 16.6 45.5 01L 7100.0 8 13.0 52.1 01L 7266.0 18 10.1 47.4		6418.0	18		18.0	53.7		
6594.0 6 18.3 44.3 01L 0WC 01L 0WC 6728.0 6AS 60C 6AS	h	6548.0	40		17.2	37.2		
6522.0 01L 0WC 6738.0 6748.0 6748.0 10 12.6 50.2 6AS GOC 6918.0 16 16.6 45.5 01L 7020.0 8 13.0 52.1 01L 7266.0 18 10.1 47.4	ı	6594.0	9		18.3	44•3	OIL	
6738.0 6748.0 01L 0WC 6748.0 10 12.6 50.2 6AS GOC 6918.0 16 16.6 45.5 01L 7020.0 8 13.0 52.1 01L 7266.0 18 10.1 47.4	١.	6522.0					01L	OWC 6522
6748.0 01L 0WC 6852.0 10 12.6 50.2 6AS GOC 6918.0 16 16.6 45.5 01L 7020.0 8 13.0 52.1 01L 7266.0 18 10.1 47.4	1	6738.0					GAS	600 6738
10 12.6 50.2 GAS GDC 16 16.6 45.5 01L 8 13.0 52.1 01L 18 10.1	١,	6748.0					01L	DMC 6748
6918.0 16 16.6 45.5 7020.0 8 13.0 52.1 7266.0 18 10.1 47.4		6852.0	10		12.6	50.2	GAS	GOC 6852
8 13.0 52.1 18 47.4		6918.0	16		16.6	45.5	011	
8 13.0 52.1 18 10.1 47.4		7020.0	!				OIL	
10.1		7100.0	œ		13.0	52.1	016	
		7266.0	18		10.1	4-7-4	!	i : : : : : : : : : : : : : : : : : : :

LOG INTERPRETATION RESULTS
- BETTY 1 -

INTERVAL	NET SAND	AVERAGE	AVERAGE Sw	REMARKS
7559 - 7668	94	21.39	40.33	Oil a ₁ 7668 O/W
7786 - 7892	0	_	-	Oil a2
7892 - 8008	42	18.49	50.84	Oil a3 8008 O/W
8100 - 8245	16	17.84	47.58	G&C b ₁
8290 - 8375	10	14.89	44.53	Oil b ₂ 8375 O/W
8580 - 8670	66	17.63	36.80	G&C
8865 - 8915	4	18.86	39.80	

LOG INTERPRETATION RESULTS
- BETTY 3 -

INTERVAL	NET SAND	AVERAGE	AVERAGE Sw	REMARKS
8066 - 8098	10	16.17	74.18	
8205 - 8220	2	20.84	69.45	GWC 8220
8453 - 8490	36	20.54	64.79	GWC 8490
8556 - 8560	0	-	-	GOC 8560
8560 - 8570	8	13.01	68.55	
8590 - 8634	6	19.16	56.64	

	REMARKS	BOKOR 1	BOKOR - 2	80KOR - 2	BOKOR - 2	BOKOR - 2						
	AVERAGE SATURATION (%)	47.2	8.99	6.09	40.5	73.7	4.19	55.5	57.2	66.8	62.8	73.1
	AVERAGE POROSITY (%)	22.3	23.7	24.1	30.1	22.8	20.5	22.4	21.7	19.5	18.6	18.0
80.00 .ITY : 0.0	NET THICKNESS (FT)	æç	20	80	28	88	2	14	9	9	4	9
OFF OF SW OFF OF POROSITY OFF OF SHALE	VAL Base (FT)	2232.0	2420.0	2534.0	2566.0	2896.0	3054.0	3110.0	3600.0	3620.0	3693.0	3712.0
CUT CUT	INTERVAL TOP (FT)		2378.0 -	510.0 -	534.0 -	2854.0 -	3048.0 -	3080.0	3580.0 -	3608.0 -	3652.0 -	3702.0 -
•					••	• •	111	111		***	111	1.1

WELL NAME : BOKORO3

			REMARKS			BOKOR - 3	BOKOR - 3	BOKOR - 03	BOKOR - 03	BOKOR - 03	BOKOR - 03	80K0R - 3	BOKOR - 3	BOKOR - 3
			AVERAGE	SATURATION	(%)	70.2	56.2	62.4	48.3	58.1	63.5	57.2	63.3	51.4
			AVERAGE	POROSITY	(%)	25.9	22.7	23.9	22.0	20.6	21.6	23.7	23.9	24.9
80.00	ITY : 0.0	: 20.00	NET	THICKNESS	(FT)	10	16	34	. 56	04	42	12	4	7 9°
0FF 0F	OFF OF PORUS	OFF OF	RVAL	BASE	(FT)	2814.0	3398.0	3474.0	3560.0	3702.0	4340.0	4476.0	4790.0	5132.0
CUT	CUT	CUT	INTERVAL	TOP	(FT)	2800•0	3306.0 -	3412.0 -	3578.0 -	3598.0 -	4220.0 -	4428.0 -	4724.0 -	- 0.0605

WELL NAME : TEMANA 02

80.00	0.0	50.00
	••	••
St	: POROSITY	SHALF
F.	Н	ü
OFF	OFF	110
COT	CIIT	CHI

REMARKS			
AVERAGE	SATURATION	(%)	58.1
AVERAGE	POROSITY	(%)	20.9
NET	THICKNESS	(FT)	18
/vL	BASE	(FT)	5277.0
INTERVAL	TOP	(FT)	- 0.7555

WELL NAME : TEMANA 03

AVERAGE POROSITY (%)
MET THICKNESS (FT)
INTERVAL BASE (FT)
INTE TOP (FT)

REMARKS

AVERAGE SATURATION (%)

> 1900.0 - 1965.0 2200.0 - 2216.0

WELL NAME : TEMANA 04

	REMARKS		:	:														:								
				GAS	OIL	015	OIL	016																		
	AVERAGE	SATURATION	(%)	68.2		6•69	58.0	46.1	71.6		70.9		78.8	50.7	45.6		•	•	61.4	68.4		79.5	78.0			69•1
	AVERAGE	POROSITY	(%)	28.6		20.1	20.6	23.7	15.3		22.3		16.0	28.0	25.7		17.5	19.4	16.6	14.9		17.7	14.3			16.2
: 80.00 TY: 0.0	<u>н</u> 2	THICKNESS	(FT.)	9		4	14	52	2		4		2	2	10		16	4	ั้	~		4	2			54
OFF OF SW OFF OF POROSI OFF OF SHALE	7.01	ш	(FT)	2002.0	2026.0	2114.0	2199.0	2282.0	2300.0	2394.0	2472.0	2603.0	2662.0	2684.0	2780.0	2795.0	2890.0	2942.0	2976.0	3005.0	3054.0	3094.0	3218.0	3305.0	3404.0	4760.0
199 199	INTERVA	TOP	(FT)	- 0-1961	2023.0 -	- 0.9602	2168.0 -	2218.0 -	2286.0 -	2383.0 -	2448.0 -	2597.0 -	2638.0 -	2680.0 -	- 0.0772	2793.0 -	2862.0 -	2904.0 -	- 0.6962	2993.0 -	3032.0 -	3084.0 -	3120.0 -	3301.0 -	3374.0 -	4716.0 -

WELL NAME : TEMANA 05

	REMARKS			:	: ناب	_1		·	S	_1		1	S		S	
	•		10	0	10	10	10	OIL	GAS	O	OIL	0	GAS	GAS	GAS	0.1
	AVERAGE	SATURATION (%)	23.6		66.3		37.2			-		•	52.9	49.1	58.6	
	AVERAGE	POROSITY (%)	33•1		26.6		25.8						25.3	22.2	19.4	
80°00 7 : 0°0 80°00	NET	THICKNESS (FT)	84		10		œ						9	12	18	
OFF OF SW OFF OF POROSITY OFF OF SHALE	INTERVAL	BASE (FT)		2170.0	2692•0		4584.0	4850.0	4968.0	5164.0	5526.0	5663.0	5828.0	6194.0	6236.0	6392.0
CUT CUT CUT	INTE			0	1	- 0	- 0	- 0	1 0		0	1	1	1	1	1
		TOP (FT.)	2022	2138.0	2677.0	4050.0	4576.0	4846.	4962.0	5158.0	5508	5584.	5822.0	6180.0	6216.0	6350

WELL NAME : TEMANA 06

		1	REMARKS					
				•	:	OIL	OIL	
:			AVERAGE	SATURATION	(%		68.3	
			AVERAGE	POROSITY	(%)		21.8	
80.00	0.0	50.00	<u> </u>	THICKNESS	-1)		4	
••	⊥	••	NET	THIC	٣			
OFF OF	OFF OF POROSITY :	OFF OF	\\	BASE	(FT)	1906.0	2184.0	
CUT	CUT	CUT	CUT	INTERVAL	T0P	(FT)	1883.0 -	2158.0 -

WELL NAME : TEMANA 07

80.00	0.0	50.00
••		••
SW	PORUSITY	SHALE
ΩF	F)	9E
OFF	ÚΡΡ	OFF
CUT	CUT	CUT

AVERAGE	SATURATION (%)
AVERAGE	POROSITY (%)
NET	THICKNESS (FT)
INTERVAL	TOP BASE FT) (FT)
INTER	T0P (FT)

0.0
ا ن•0

NO HYDROCARBON

REMARKS

0	*	۰
•	2	′
•		,
		,
•	٠	
- 2	7	
-	_	r
-	~	•
- 2	Ζ	
	ı	i
:	•	
ŀ	_	
	,	
•	•	•
	,	
٠,	*	
- 7	2	
	Ē	Ì
_	_	•
	4	_
•	-	۰
	t	
•		
	3	•

	REMARKS
	AVERAGE AVERAGE POROSITY SATURATION (2)
	AVERAGE POROSITY (%)
SW : 80.00	NET
PORUSITY : 0.0	THICKNESS
SHALE : 50.00	(FT)
0FF 0F	3V∆L
0FF 0F	BASE
0FF 0F	(FT)
CUT	INTERVA
CUT	TOP
TUD	(FT)

NO HYDROCARBON

0.0

0.0

LOG INTERPRETATION RESULT TEMANA FIELD

WELL NAME : TEMANA 09

	REMARKS	01L 01L 6AS 01L
	AVERAGE SATURATION (%)	47.6 44.1 26.3 52.6
	AVERAGE POROSITY (%)	35.9 32.1 40.1 32.9
SSITY: 0.0 LE : 50.00	NET THICKNESS (FT)	14 4 38 44
CUT OFF OF SW CUT OFF OF POROSITY CUT OFF OF SHALE	INTERVAL TOP BASE (FT) (FT)	1807.0 - 1822.0 2087.0 - 2093.0 2126.0 - 2166.0

LOG INTERPRETATION RESULT TEMANA FIELD

		REMARKS			and produced to the state of th						To the state of th		GOC 2994				***************************************						-		
			:		٠٠	011	GAS	GAS	011	ر ٠	016	OIL	GAS	OIL	GAS	GAS	OIL	GAS	GAS	GAS	GAS	011	٠- ١	GAS	GAS
		AVERAGE	SATURATION	(%)	1.69	31.7	17.0		40.6	47.8	42.0	52.9	22.0	28.1	10.0	26.4	26.5	60.5	41.0	48.3	56.0	61.2	71.7	E C C	52.6
		AVERAGE	POROSITY	(%)	. 25.7	34.2	34.9		24.2	24.0	21.7	15.8	28.2	24.6	33.4	24.5	24.3	23.3	25.7	23.7	22.0	23.2	14.9	27.2	21.6
	80.00 80.00 80.00	L H	THICKNESS	(FI)	2	26	40		18	4	28	9	16	38	20	2	10	4	9	9	20	12	හ	46	30
ME : TEMANA 10	OFF OF SW OFF OF POROSITY OFF OF SHALE	VAI		(FT)	1782.0	1816.0	2166.0	2294.0	2324.0	2432.0	2680.0	2704.0	2994.0	3036.0	3114.0	3308.0	3322.0	3564.0	3602.0	3626.0	3658.0	3684.0	4062.0	4476.0	4527.0
WELL NAME :	CUT TUD TUD	INTERVAL	i,		ı	1	1	1			1	1			1	1	1		1	1	1	-	1	i r	-
WEL		-	TOP	(FI)	1770.0	1790-0	2126.	2287.0	2298	2424	2632.	2692.	2978.	2994.	3092.0	3298.0	3311.0	3558	3584.	3618.0	3636.0	3672.0	4024.0	4404.0	4496.0

WELL NAME : SIWA 4

		REMARKS									1		OWC 2954		UWC 3778					GWC 4/58	:	DWC 5431		
					GAS	011.2	011.2	GAS	GAS	GAS	GAS	OIL	01.	011	015	OIL	ر ا	GAS	GAS	GAS	GAS	016	OIL	GAS
		AVERAGE	SATURATION	(8)	51.6		69.3	41.1	47.8	65.7	61.2	43.0		70.2			1	1	46.5	45.8	49.1	59.3	61.1	64.1
		AVERAGE	POROSITY	(%)	31.4	American Company of the Company of t	21.9	31.4	30.7	22.0	21.7	29.9		25.6					22.9	23.1	19.3	16.4	18.4	16.3
••	LE : 50.00	LUZ	THICKNESS	(FT)	4		9	9	9	9	9	2		4	•				32	72	12	24	2	12
OF SW	SHA	RVAL	BASE	(FT)	1396.0	1407	:		1918.	1944•0	1966.0	1994	1854.	3068.	3778.	4025.0	4329.0	4470.0	4615.0	4758.0	5402.0	5431.0	5472.0	6701.0
CUT	TUD	INTERVAL	TOP	(FT)	1388-0 -	1404.0	1426.0	1892.0 -	1914.0 -	1927.0	1950.0		2918.0	3059.0 -	3758.0 -	4011.0 -	4310.0	4383.0 -	4546.0 -	4662.0 -	5391.0 -	5406.0 -		- 0.1899

WELL NAME : CENTRAL LUCONIA B12-1X 'CARBONATES'

		REMARKS	GAS GWC 11375
		AVERAGE SATURATION (%)	11.4
60.00		AVERAGE POROSITY (%)	13.6
	00.01	NET THICKNESS (FT)	248
CUT OFF OF SW	CUT OFF OF SHALE	INTERVAL BASE (FT)	
:		I TOP (FT)	10676.0

WELL NAME : CENTRAL LUCONIA E6-1X 'CARBONATES' DI

	REMARKS	60C 5944 GWC 6050
1		GAS OIL
	AVERAGE SATURATION (%)	2.8
	AVERAGE POROSITY (%)	22.0 18.6
: 60.00 TY: 10.00 60.00	NET THICKNESS (FT)	510 98
CUT OFF OF SW CUT OFF OF POROSITY CUT OFF OF SHALE	RVAL BASE (FT)	5944.0 6050.0
CUT CUT CUT	INTERVAL TOP (FT)	5375.0 - 5944.0 -

_
5
CARBONATES
٥
ž
ᅙ
80
¥
ũ
-
×
E8-1X
œ
ш
LUCONIA
z
9
목
\preceq
CENTRAL
2
₣
z
8
**
Ξ
NAMI
Z
_
ت
WELL
ح.

REMARKS	GWC 5734.
	GAS
AVERAGE SATURATION (%)	0.9
AVERAGE POROSITY (%)	20•0
NET THICKNESS (FT)	862
INTERVAL BASE (FT)	4655.0 - 5734.0
	NET AVERAGE AVERAGE BASE THICKNESS POROSITY SATURATION (FT) (FT) (%)

		REMARKS		GWC 5734.
				GAS
		AVERAGE	SATURATION (%)	5.7
CARBUNALES		AVERAGE	POROSITY (2)	19•6
: 60.00	TY :		THICKNESS (FT)	776
CHI OFF OF CW	CUT OFF OF POROSI CUT OFF OF SHALE	INTERVAL	TOP BASE (FT)	4680.0 - 5734.0

WELL NAME : CENTRAL LUCONIA E11-1X 'CARBONATES'

	REMARKS	GAS GWC 6520
		GAS
	AVERAGE SATURATION (%)	4.1
	AVERAGE POROSITY (%)	21•1
: 60.00 ITY : 10.00 : 60.00	NET THICKNESS (FT)	1214
OFF OF SW : OFF OF POROSITY : OFF OF SHALE :	INTERVAL BASE (FT)	- 6520.0
CUT CUT CUT	INTE TOP (FT)	4856.0 -

WELL NAME : CENTRAL LUCONIA E11-2 'CARBONATES'

		REMARKS	GAS GWC 6520
			GAS
	·	AVERAGE SATURATION (%)	12.4
CAR BONATES "		AVERAGE POROSITY (%)	18.5
WELL NAME : CENTRAL LUCONIA E11-2 'CARBONATES'	: 60.00 FY : 10.00	NET THICKNESS (FT)	909
AME : CENTRAL L	OFF OF SW OFF OF POROSITY :	INTERVAL BASE (FT)	6520.0
WELL N	CUT CUT TUD	INTE TOP (FT)	- 0.0655

WELL NAME : CENTRAL LUCONIA : F4-1X 'CARBONATES'

	REMARKS	GWC 4528
	N O	11.0 GAS
	AVERAGE SATURATION (%)	11.0
		1
	AVERAGE POROSITY (%)	56.9
60.00 10.00 60.00	NET THICKNESS (FT)	182
	THIO	F-1
CUT OFF OF SW : CUT OFF OF POROSITY : CUT OFF OF SHALE :		0
FF 0F 0FF 0F FF 0F	AL BASE (FT)	4528.0
CUT O	INTERVAL	1
	I TOP (FT)	4305.0

WELL NAME : CENTRAL LUCONIA F6-1X 'CARBONATES'

		REMARKS	GAS GWC 4448
		AVERAGE SATURATION (%)	10.6
		AVERAGE POROSITY (%)	25.1
ארור אאשו . פראויאר הפספאזא . א זא פראינים אין א	: 60.00 17Y: 10.00 : 60.00	NET THICKNESS (FT)	406
###	OFF OF SW : OFF OF POROSITY : OFF OF SHALE :	INTERVAL BASE (FT)	- 4448.0
- 1116	CUT CUT CUT	INTE TOP (FT)	3636.0

CARBONATES
_
٠
◂
-
~
_
_
œ
∝.
-
~
. 1
_
_
SI.
٠,-
-
ď.
F6-2
ш.
⋖
_
-
-
~
$\overline{}$
_
1 1
ಲ
2
2
LUC
LUC
LUC
. LUC
JUL 1:00
AL LUCONIA
AL LUC
RAL LUC
RAL LUC
TRAL LUC
VTRAL LUC
NTRAL LUC
ENTRAL LUC
ENTRAL LUC
CENTRAL LUC
CENTRAL LUC
CENTRAL LUC
CENTRAL
: CENTRAL LUC
CENTRAL
: CENTRAL
: CENTRAL
: CENTRAL
: CENTRAL
: CENTRAL
: CENTRAL
: CENTRAL
: CENTRAL
NAME : CENTRAL
NAME : CENTRAL
NAME : CENTRAL
NAME : CENTRAL
NAME : CENTRAL
NAME : CENTRAL
NAME : CENTRAL
: CENTRAL

	REMARKS	GAS GWC 4448
	AVERAGE SATURATIGN (%)	28.3
	AVERAGE POROSITY (%)	21.7
: 60.00 : 10.00 : 60.00	NET THICKNESS (FT)	240
OFF OF SW :	BASE (FT)	4448.0
CUT CUT CUT	INTERVAL TOP (FT)	4149.0 -

FRAL LUCONIA F9-1X 'CARBON 1 : 60.00 SROSITY : 10.00 AALE : 60.00 THICKNESS PC (FT)				GAS
STAL LUCONIA F9-1X			AVERAGE SATURATION (%)	22.2
CUT OFF OF SW: 60.00 CUT OFF OF POROSITY: 10.00 CUT OFF OF SHALE: 60.00 INTERVAL BASE THICKNESS (FT) (FT)	CAR BONATES !	:	AVERAGE POROSITY (%)	14.4
CUT OFF OF SW CUT OFF OF PORDSI CUT OFF OF SHALE INTERVAL BASE (FT)	LUCONIA F9-1X		NET THICKNESS (FT)	68
iii	ELL NAME : CENTRAL	CUT OFF OF SW CUT OFF OF POROSI CUT OFF OF SHALE	INTERVAL	4416.0 - 4648.0
ME TOP (FT)	3		T0 (FT	4416

REMARKS

GWC 4648

WELL NAME : CENTRAL LUCONIA F13-1X 'CARBONATES'

	REMARKS	GAS GWC 6538
	;	GAS
	AVERAGE SATURATION (%)	27.4
	AVERAGE POROSITY (#)	22.0
: 60.00 [TY : 10.00 60.00	NET THICKNESS (FT)	140
OFF OF SWOFF OF POROSITY	INTERVAL BASE (FT)	. 6538.0
CUT CUT CUT	INTE TOP (FT)	6339.0

WELL NAME : CENTRAL LUCONIA F22-1X 'CARBONATES'

60.00 10.00 60.00

CUT OFF OF SW : CUT OFF OF POROSITY : CUT OFF OF SHALE :

REMARKS		GAS GWC 7276
		GAS
AVERAGE	SATURATION (%)	12.1
AVERAGE	POROSITY (%)	18.2
NET	THICKNESS (FT)	632
VAL	BASE (FT)	7276.0
INTERVAL	T0P (FT)	6439.0 -

,

WELL NAME : CENTRAL LUCONIA F23-1 'CARBONATES'

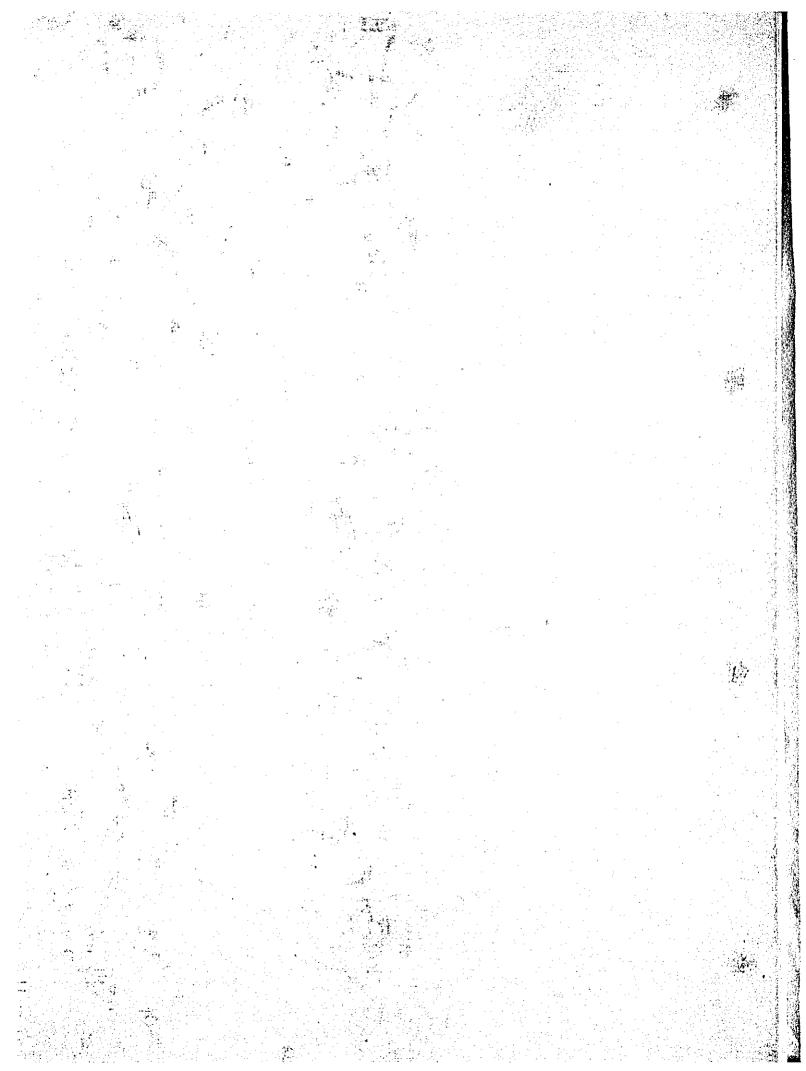
	REMARKS	GAS GWC 5004
· ·		GAS
:	AVERAGE SATURATION (%)	T.T
	AVERAGE POROSITY (%)	25.4
: 60.00 1TY : 10.00 60.00	NET THICKNESS (FT)	1008
CUT OFF OF SW CUT OFF OF POROSITY : CUT OFF OF SHALE :	INTERVAL TOP BASE (FT) (FT)	3941.0 - 5004.0

WELL NAME : CENTRAL LUCONIA K4-1X 'CARBONATES'

	REMARKS	GAS GWC 4356
		GAS
	AVERAGE SATURATION (%)	,3.2
	AVERAGE POROSITY (%)	28•3
: 60.00 11Y : 10.00 : 60.00	NET THICKNESS (FT)	236
OFF OF SW : OFF OF POROSITY : OFF OF SHALE :	INTERVAL BASE (FT)	4
CUT CUT TUD	INTE TOP (FT)	4118.0 -

WELL NAME : CENTRAL LUCONIA M1-1X 'CARBONATE'

	REMARKS	GOC 5065 OWC 5086
		GAS OIL
	AVERAGE SATUKA!IUN (%)	10.6
	AVERAGE POROSITY (%)	35.5
60.00 10.00 60.00	NET THICKNESS (FT)	116 20
OFF OF SW : OFF OF POROSITY : OFF OF SHALE :	BASE (FT)	5065.0 5086.0
0 Tu 0 CuT 0 0 Tu 0 Tu	INTERVAL TOP (FT)	4806.0 -


'CARBONATES'
M3-1X
LUCONIA
CENTRAL
NAME
WELL

			AVERAGE	SATURATION	(%)	2.0
			AVERAGE	POROSITY	(%)	18.4
	: 10.00		NET	HICKNESS	(FT)	230
IFF OF SW	HE OF POROSITY	OFF OF SHALE :		,	.) (FT)	
O TUO	CUT	CUT 0	INTERV	T0P	(FT)	5652.0 - 6044.0

REMARKS

WELL NAME : CENTRAL LUCONIA M5-1X 'CARBONATES'

	KEBARKS	
	AVERAGE SATURATION (%)	17.8
	AVERAGE POROSITY (%)	18.9
SW : 60.00 POROSITY : 10.60 SH21E : 60.00	NET THICKNESS (FT)	136
0FF 0F 0FF 0F 0FF 0F	PVAL BASE (FT)	6773.0
CUT CUT CUT	INTERVAL TOP (FT)	£468.0 · =

