REPORT ON MASTER PLAN STUDY FOR THE DEVELOPMENT OF PETROLEUM AND NATURAL GAS RESOURCES IN MALAYSIA

- Volume IV -(SARAWAK)

JANUARY 1978

JAPAN INTERNATIONAL COOPERATION AGENCY

LIBRARY

REPORT

ON

MASTER PLAN STUDY

FOR

THE DEVELOPMENT OF PETROLEUM AND

NATURAL GAS RESOURCES

IN

MALAYSIA

- VOLUME IV - (SARAWAK)

JANUARY 1978

JAPAN INTERNATIONAL COOPERATION AGENCY

国際協力事業団		
受入 日日 '84.11.16	[[3	
74 14	8.66	
登録No. 10852	MPI	

·

			Page
Vol.	. IV	SARAWAK AREA	
		PART A EVALUATION OF OIL AND GAS FIELD AND PERFORMANCE PREDICTION	
1.	GENE	RAL	A-l
2.	GEOL	OGY	A-4
	2.1	Stratigraphy	A-4
	2.2	Correlation of Reservoir	A-5
	2.3	Geologic Structure	A-6
3.	EXIS	TING PRODUCING FIELDS	A-8
	3.1	Baronia Field	Y-8
		3.1.1 Field Status	A-8
		3.1.2 Geology	A-8
		3.1.3 Reservoir Analysis	A-9
	3.2	Fairley Baram Field	Λ-27
		3.2.1 Field Status	A-27
		3.2.2 Geology	A-28

A-30

A-39

A-39

A-39

A-40

3.2.3 Reservoir Analysis

3.3.3 Reservoir Analysis

3.3 West Lutong Field

3.3.2 Geology

3.3.1 Field Status

			Page
	3.4	Baram Field	A-46
		3.4.1 Field Status	A-46
		3.4.2 Geology	A-47
		3.4.3 Reservoir Analysis, Baram A	A-48
		3.4.4 Reservoir Analysis, Baram B	A-50
	3.5	Bakau Field	A-52
		3.5.1 Field Status	A-52
		3.5.2 Geology	A-53
		3.5.3 Reservoir Analysis	A-55
	3.6	Tukau Field	A-58
		3.6.1 Field Status	A-58
		3.6.2 Geology	A-59
		3.6.3 Reservoir Analysis	A-60
4.	FIEL	DS FOR DEVELOPMENT (I)	A-63
	4.1	Betty Field	A-63
		4.1.1 Geology	A-63
		4.1.2 Reservoir Analysis	A-64
	4.2	Bokor Field	A-67
		4.2.1 Geology	A-67
		4.2.2 Reservoir Analysis	A-68
	4.3	Temana Field	A-71
		4.3.1 Stratigraphy and Geologic Structure	A-71
		4.3.2 Reservoir Analysis	A-74

				Page
5.	POTE	NTIAL F	IELDS	A-77
	5.1	Beryl 1	Field	A-77
		5.1.1	Geology and Hydrocarbon Occurrence	A-77
	5.2	Siwa F	ield	A-79
		5.2.1	Geology and Hydrocarbon Occurrence	A-79
		5.2.2	Reservoir Analysis	A-80
6.	FIEL	DS FOR I	DEVELOPMENT (II)	A-82
		- C	ENTRAL LUCONIA FIELDS -	
	6.1	Geolog	У	A-82
		6.1.1	Stratigraphy	A-82
		6.1.2	Structure of Reefal Carbonates	A-83
		6.1.3	Seismic Interpretation and Geology of Each Field	A-84
	6.Ż	Reserv	oir Analysis	A-96
		6.2.1	Analytical Procedure	A-96
		6.2.2	Test Required In Future	A-99
		6.2.3	Recoverable Gas and Condensate Reserves	A-101
7.	CONC	LUSTONS	AND RECOMMENDATIONS	A-103

			PART B SURFACE FACILITIES	
1.	EXIS	TING FA	CILITIES	B-1
	1.1		t Status of the Existing tion Facilities	B-1
		1.1.1	Offshore Production Facilities	B-2
		1.1.2	Lutong Terminal	B-10
	1.2		on the Capacity of the Existing tion Facilities	B-14
		1.2.1	Offshore Production Facilities	B-16
		1.2.2	Lutong Terminal	B-18
		1.2.3	Conclusion	B-21
	1.3		ment of the Facilities Capacity e Predicted Production Scheme	B-22
		1.3.1	Offshore Production Platform	B-23
	•	1.3.2	Offshore Gathering and Transmission Pipelines	B-24
		1.3.3	Storage and Loading Facilities	B-24
		1.3.4	Conclusion	B-25
		1.3.5	Additional Well Development Case	в-26
	1.4	Assess	ment on Present Production Practices	B-30
		1.4.1	Associated Gas Utilization	в-30
		1.4.2	Metering System	B-31
		1.4.3	Waste Water Treatment System	B-33
		1.4.4	Crude Oil Dehydration System	B-33
		1.4.5	Tank Size at Lutong Terminal	B-34
		1.4.6	Control and Monitoring System	B-37

Page

				Page
2.	PROP	OSED FA	CILITIES	B-38
	2.1	Genera	l Design Bases	B-38
		2.1.1	Basic Design Data from Collected Data	B-38
		2.1.2	Assumed Design Conditions	B-41
		2.1.3	Determination of Facilities Capacity	B-42
	2.2	Concep	otual Design	B-44
		2.2.1	Baronia Oil Field and B-12 Gas Field Gas Utilization	B-44
		2.2.2	Betty and Bokor Oil Fields	B-51
		2.2.3	West Temana and E-6 Oil Fields	B-59
		2.2.4	Central Luconia Gas Fields	B-68
		2.2.5	East Temana Oil Field	B-88
3.	CONC	LUSIONS	S AND RECOMMENDATIONS	B-90
	3.1	Exist:	ing Facilities	в-90
	3.2	Propos	sed Facilities	B-97

				Page
			PART C COST ESTIMATE AND ECONOMIC ANALYSIS	
1.	COST	ESTIMA	TE	C-1
	1.1	Genera	l Cost Estimate Bases	C-1
		1.1.1	Basic Cost Data	C-1
		1.1.2	Estimate of Other Cost Items	C-2
		1.1.3	Estimate of Past Investment	C-3
		1.1.4	Estimate of Annual Operating Cost	C-4
	1.2	Cost E	stimate	C-5
		1.2.1	Baronia Oil Field and B-12 Gas Field Gas Utilization	C-5
		1.2.2	Betty and Bokor Oil Fields	C-7
		1.2.3	West Temana and E-6 Oil Fields	C-9
		1.2.4	Central Luconia Gas Fields	C-11
2.	ECON	OMIC AN	ALYSIS	C-14
	2.1	Genera	l Economic Analysis Bases	C-14
		2.1.1	Oil	C-14
		2.1.2	Gas	C-18
	2.2	Profit	ability Analysis on Oil	C-20
		2.2.1	Betty and Bokor Oil Fields	C-21
		2.2.2	West Temana and E-6 Oil Fields	C-23
	2.3	Gas Co	ost Estimate	C-26
		2.3.1	Baronia Oil Field and B-12 Gas Field Gas Utilization	C-26
		2.3.2	Central Luconia Gas Fields	C-27

			Page
	2.4	Sensitivity Analysis	C-30
		2.4.1 Betty and Bokor Oil Fields (Case II)	C-30
		2.4.2 West Temana and E-6 Oil Fields (Case IIB)	C-31
3.	CONC	LUSIONS AND RECOMMENDATIONS	C-32
	3.1	Cost Estimate	C-32
	3.2	Economic Analysis	C-34

TABLE

FIGURE

APPENDIX

PART A EVALUATION OF OIL AND

GAS FIELD AND PERFORMANCE

PREDICTION

1. GENERAL

Sarawak area is the center of petroleum industry in Malaysia at present, with six oil producing fields, the total daily average production rate of which during the month of June 1976 amounts to 116,743 STB.

West Lutong field has the longest production history among the Malaysia oil fields. The field is composed of many sands layers. The production performance of its main zone was and will be very stable.

The biggest oil field in Malaysia is Baronia field, which is thought to have long and stable production performance. Special care should be taken for its field observation.

Baram has two different reservoir structures, that are Baram A and Baram B. Both structures are divided into several blocks and their oil displacement energy is interpreted to be poor. As for Baram B, the reservoir is confirmed in the highly limited portion of the structure.

Bakau field has only 3 wells drilled to the Bakau structure and is producing from 3 different blocks.

In this field also, only partial area is confirmed by actual well log. Judging from their production

performance, however, the size of the field is estimated to be very small.

Tukau field, which is also composed of many thin sand layers, is estimated to be medium sized oil field with comparatively poor oil displacement energy.

Fairly Baram field bestrides the national boundary between Malaysia and Brunei with its crestal part in Brunei. The field is medium sized oil field with comparatively good reservoir characteristics.

Original hydrocarbons in place for above 6 fields are shown on Table A-1 and the daily average oil production rates during the month of June 1976 are listed as follows.

Baronia Field	51,707	STB/D
Fairly Baram Field	2,952	STB/D
West Lutong Field	14,549	STB/D
Baram Field	30,995	STB/D
Bakau Field	4,034	STB/D
Tukau Field	12,506	STB/D

In addition to these producing fields, there exist three fields for development, which are Betty, Bokor and Temana, and potential fields that are Beryl and Siwa fields. There remains problem as to oil

displacement mechanism in Bokor and Temana fields because of its heavy oil characteristics and poor recovery is estimated.

In Betty field, only one well has been drilled so far into the objective oil reservoir and good reservoir characteristics are estimated, although the size of the field is small.

Beryl field is still in the exploration stage and requires more wells to define the reservoir. In Siwa field, where one well is drilled at the crestal area, reservoir limits are confirmed at this location in some zone, but still requires more information to characterize the reservoir.

Original hydrocarbons in place are shown on Table A-2 for the development fields, Table A-3 for the potential fields and A-4 for Central Luconia fields.

2. GEOLOGY

2.1 Stratigraphy

It is known that a vast offshore and onshore area of Sarawak was a place of sedimentation of Tertiary time. On the coastal area of Sarawak between 2.5°N and 5°N deltaic and shallow water marine deposits which consist predominantly of arenaceous materials crop out and the corresponding strata continue to the northwest under the sea. All of the study fields in the Sarawak area are located in the offshore area, but the most off Central Luconia fields are dealt with in other chapter because they have common characteristics that hydrocarbons are accumulated in carbonate rocks of the reef origin.

In most fields palynologic interpretation is available and a regional stratigraphy is established by Shell in the form of sedimentary cycles. The cycle boundaries can be made use of as a regional time reference and Fig. 1-2-1 is such a summary which shows geologic time and cycles of sedimentary sections penetrated in each field. The sedimentary sequences penetrated in the area are considered as conformable except the recent sediments. However, Temana structure, which is located in the southernmost part of the area, has a different tectonic history from the other

northern structures and suffered from subareal erosion of formations in Middle and Late Miocene time.

Since Shell adopted a number system to classify fossil pollen, scientific specific names of the fossil were not clarified. It is impossible to make clear the floral assemblages and to check the correlation by them. Therefore, it is desirable for Petronas to conduct palynological study for samples to be collected from surface and subsurface in future exploration activity.

2.2 Correlation of Reservoir Beds

Sedimentary rocks of the Sarawak fields consist mainly of sandstones intercalated with shale beds.

Most of hydrocarbon accumulations are found in these sandstone beds mainly of Upper Miocene age which were deposited in shallow marine and deltaic environments.

Since argillaceous rocks are not predominant, it was difficult to know exactly the continuity of a great number of reservoir sandstones on the scale of a unit bed, especially at the early stage of the study. Therefore, the reservoir rocks were grouped into several zones to which alphabetical names were given as a, b, ... from a stratigraphical viewpoint and in consideration of the relative size and the

vertical communication of them. However, since a detailed correlation of the reservoirs between the fields or structures was generally impossible and meaningless, the alphabetical names given to them are not identical with each other between any fields; for example, the horizon of reservoir d₂ of Baronia field does not correspond to that of d₂ of Baram field. Owing to a frequent difficulty of defining the lower limit of the reservoir zones, only top of the zone is given in the correlation tables.

2.3 Geologic Structure

Geologic structures of most of the producing fields were determined through stratigraphic correlation but seismic interpretation was made for the fields in which well control is very poor or correlation cannot be the only means for structural mapping.

For some fields such as Baram field very detailed correlation was required even in horizons in which hydrocarbons are not bearing because structures of such fields are intensely faulted into blocks.

It is concluded that a general characteristics of the petroleum fields of Sarawak area is a close relation of the hydrocarbon accumulation to the structural development accompanied by growth faulting which occurred during sedimentation. Hydrocarbons are trapped in anticlinal structural highs associated with such faulting. These growth faults are north-dipping normal ones with E-W or NE-SW strikes.

The correlation of zones to the Shell nomenclature for producing fields was shown on Appendix I.

3. EXISTING PRODUCING FIELDS

3.1 Baronia Field

3.1.1 Field Status

Baronia field is located approximately 31 km north-west of the mouth of Baram River. Production started May 1972 and the cumulative production as of October 1976 amounts to 30 MMSTB by 15 producing wells. During the 4 years' production history, maximum record of 50 MSTB/D was reported since the start of production. The field has the largest original in place with the highest productivity among the existing oil fields in Malaysia.

3.1.2 Geology

(1) Reservoir Beds

Sedimentary sections penetrated by wells in the Baronia field consist of the uppermost Miocene and Pliocene clastics where formations of the lower part of cycle VI and the upper part of cycle V are hydrocarbon bearing. Reservoir zones are named as a - g (Table 1-2-1).

Continuity of reservoirs is so good that there is no difficulty in correlation of them. Main oil bearing zones are a_2 - $_3$ and d_2 - $_4$. Although there

are intercalations of 20 to 30 ft thick shale between zones a_2 and a_3 , and between zones d_2 , d_3 , and d_4 , depths of OWC and GOC seem to be common for zones a_2 and a_3 and for zones d_2 , d_3 , and d_4 , respectively.

(2) Geologic Structure

Figs. 1-2-2 - 5 show geologic structure of the field in horizons of zones a_2 , c_2 , d_2 , and f_1 and Fig. 1-2-6 shows a north - south structural cross-section.

The structure is a very gentle domal anticline of which the north and south limits are two growth faults ENE-striking and north-dipping. The north fault is crossed by well No.2 in the zone b₂ horizon with a throw of about 150 ft. The anticlinal axis is ENE-WSW trending and dips of formations are less than 5 degrees at most.

3.1.3 Reservoir Analysis

Objective reservoir is classified and grouped into 6 zones which are A, C, D, E, Fl and F2 Zones from shallower to deeper horizon. They correspond to geological correlation names of Table 1-2-1 in the following ways.

Reservoir Model	Geological Code
A Zone	Zone a2 - a3
С	c2
D	d2 - d4
E	е
Fl	fl
F2	f2

In reservoir analysis, the three-phase three-dimensional model is applied to A and C Zones, while D to F2 Zones are analysed by the use of the block model.

The field total reservoir performance derived from simulation study is presented in the graphical form on Fig. 1-3-9 and in the tabular form on Table 1-3-1.

(a) Baronia A Zone

Reservoir Status

The reservoir was interpreted to be combination drive of gas cap and aquifer water. Oil water contact is observed at almost all wells penetrated the reservoir except for the few wells drilled at the crestal part.

Vertical reservoir permeability was supposed to be very poor due to shale breaks developed in the oil and gas zones. Reservoir net oil thickness, porosity and water saturation range from 23 to 65 ft, 0.20 to 0.28 and 0.35 to 0.50, respectively. Gas oil and oil water contacts derived from log interpretation are 5,590 and 5,665 ft s.s. depth, respectively.

Production started July 1973 at BN-Well No.5.

Gas oil ratio increased remarkably from 1000 to

4000 SCF/STB within only a few months, while with
the commencement of production by other wells, the
field total gas oil ratio got stabilized down to

1500 SCF/STB. Peak oil rate of 17.8 MSTB/D was
recorded after 3 years from the start of production.

Cumulative oil production during the history stage was 9.2 MMSTB, which was 4.53% of original oil in place. Water production was comparatively low during the period and cumulative water oil ratio was 0.017% only.

Original oil in place calculated by volumetric method is 202.7 MMSTB and gas cap gas in place is 287.32 MMMSCF.

Reservoir Parameter and Modeling

Reservoir oil properties were estimated based on the Baram Well No.12 data by modifying the API and other factor through history match calculation, as no fluid analysis is available for this zone.

Gas properties were determined by laboratory analysis of FIT sample. Those are summarized on Figs. 1-3-35 and 41.

Gas oil relative permeability relation is assumed at first by the use of general relation of representative sample, modified and established later by history match calculation. This is due to the lack of actually measured data.

Water oil relative permeability was established by manipulating the actually measured data of BN-Well No.4 D Zone through history match calculation. Those relations are summarized on Fig. 1-3-25.

In addition to the above relations, pseudorelative permeability relation was established for cell by cell to obtain well performance by taking into account the perforation interval, producing gas oil, water oil ratio, and average water saturation. In-put data for absolute permeability for oil zone were based on the Build-up Curve analyses for individual wells, and vertical/horizontal permeability ratio was assumed to be 0.1.

Porosity and saturation data for individual cells were derived from the distribution map illustrated on Figs. 1-3-3 and 5.

Original reservoir pressure was determined to be 2470 psig at the datum plane of 5630 ft subsea from FIT and BHP survey data. The pressure distribution at the end of October 1976 is shown as an isobaric map on Fig. 1-3-7. Simulation calculation was made by the Grid Model as illustrated on Fig. 1-3-1 utilizing aforementioned reservoir parameters.

Computation Results

History match calculation was made for the interval from May 1972 to October 1976, and revised reservoir parameter through the matching calculation was used to make extension for the subsequent 12 years' prediction.

Reservoir performance for A Zone is illustrated on Fig. 1-3-10, tabulated on Table 1-3-2 and individual well behaviors are shown on Figs. 1-3-11-14, and Tables 1-3-3-6.

Reservoir pressure match was made by changing aquifer size, horizontal and vertical permeability and vertical permeability of gas cap zone. Water oil and gas oil ratio are matched satisfactorily through the calculation.

As shown on the predicted results, producing gas oil ratio of the block for BN-11, 13 and 16 and the block for BN-17, 18 will increase to be 11000 and 12000 after 10 and 9 years, respectively.

(b) Baronia C Zone

Production started August 1974. Cumulative production as of October 1976 amounts to 6.384 MMSTB which is equivalent to 18.75 per cents of original oil in place. Average daily oil production rate of the zone during the month was 10.17 MSTB/D by five producers.

According to the log interpretation and FIT results, free gas zone was detected over the oil zone. Due to shale breaks developing between oil and gas zones, the gas zone is interpreted to have little contribution for oil displacement. The C Zone is regarded as water drive type reservoir with oil water contact at 6487 feet s.s.

Reservoir Analysis

Reservoir performance was calculated by the three dimensional model with the grid pattern shown on Fig. 1-3-2. Water saturation, porosity and effective thickness are obtained from log analysis for each well. Sw and ϕ h for each cell was derived from the distribution maps illustrated on Figs. 1-3-4, 6. Horizontal permeability KH was calculated for each cell by using the relation log $K_{\rm H}=21.47\phi$ - 0.87. This relation was obtained from core analysis at BN-Well No.8. Vertical permeability was assumed to be 30 per cent of horizontal permeability.

Gas oil relative permeability relation was assumed at first by the use of general relation of representative sample, modified and established later by history match calculation. This is due to the lack of actually measured data. Water oil relative permeability was established by manipulating the actually measured data of BN-Well No.4 D Zone through history match calculation. Those relations are summarized on Fig. 1-3-26. In addition to the above relations, pseudo-relative permeability relation was established for well by well to obtain well performance by taking into account the perforation interval, producing gas oil ratio, water oil ratio, and average water saturation.

For oil properties, the result of fluid study at Baram field was revised. Gas properties were obtained from the gas analysis at BW-Well No.4. Oil and gas properties are shown on Fig. 1-3-36 and Fig. 1-3-42, respectively. The premise was made in the model that well is to be shut-in when producing gas-oil ratio comes up to 10,000 SCF/STB or water oil ratio is more than 2.0. The performance is shown on Fig. 1-3-15 and Table 1-3-7. Individual well performances are shown on Figs. 1-3-16 - 20 and Tables 1-3-8 - 12. Reservoir pressure is decided to 2840 psig at datum level of 6450 feet s.s. from FIT and BHP survey. The pressure is corrected to the pressure at mid point depth for each cell. The pressure distribution at the end of October 1976 is shown as the isobaric map on Fig. 1-3-8.

(c) Baronia D Zone

This zone was interpreted to be combination drive of large gas cap and aquifer water. The fluid levels are estimated by the log analysis. Gas oil contact and oil water contact are 7200 feet s.s. and 7290 feet s.s., respectively. The results of log interpretation are shown on Appendix II. Average water saturation and porosity are 0.35 to 0.75 and 0.16 to 0.25, respectively. Production started

October 1974 at BN-Well No.8 and eight wells are currently producing.

Average API gravity of oil is 42.3°, and solution gas oil ratio was assumed to be about 900 SCF/STB, however, producing gas oil ratio increased rapidly to 3600 SCF/STB at the end of October 1976 when recovery reached to only 2.11% of original oil in place. The increase of gas oil ratio is interpreted to be brought about by gas coning. Gas oil ratio of BN-Well No.11, 13, 16 and 17 situated at upper part of the structure reached to 4600 - 6100 SCF/STB, accordingly it is considered that the gas cap gas is being produced.

At BN-Well No.8, 12, 14 and 15, situated at lower part of the structure, water production has started, especially, at BN-Well 14, whose water oil ratio reached to 0.66 at the end of October 1976. Cumulative water oil ratio of the zone is 0.1. The reservoir was interpreted to have strong water drive. Original oil in place and gas in place were estimated to be 271.222 MMSTB and 843.267 MMMSCF, respectively.

Reservoir Analysis

Datum level was decided to be 7250 feet s.s. and initial pressure was obtained to be 3170 psig from FIT and BHP survey.

In Baronia field, as PVT analysis was not available, the fluid data of Baram field was used by minor modification. Gas properties were obtained from gas analysis by FIT Sampling. Oil and gas properties are shown on Fig. 1-3-37 and Fig. 1-3-43, respectively.

As no special core analysis was available, the average trend of gas oil relative permeability relation was revised based on fluid properties and producing gas oil ratio of history stage. Calculation result is shown on Fig. 1-3-21 and Table 1-3-13, used reservoir parameters are shown on Figs. 1-3-27 and 31.

Gas cap volume was calculated to be 4.259 MMMCF whose original in place is 843 MMMSCF, and gas cap volume ratio is 1.83.

Gas cap drive was interpreted to be not so much effective due to several shale breaks in gas cap zone, and gas cap volume ratio was assumed to be 0.3 for the estimation of reservoir performance.

Assuming the gas cap volume ratio to be 0.3, cumulative gas production of 88 MMMSCF is to be produced by gas expansion and 755 MMMSCF gas in D zone

was calculated to be remained unproduced. The water encroachment is 90 MMBBL at the pressure stage of 1200 psig and each phase saturation distribution can be summarized as follows.

	initial condition	at 1200 psig
water saturation	30%	44%
oil saturation	70%	46%
gas saturation	0%	10%

The volume of water enchroachment at that reservoir condition corresponds to 63% volume of the void space produced by the oil production. Because of strong water enchroachment, the gas saturation will be only 10% at the final stage.

(d) Baronia E Zone

The form of this structure is similar to the other zones of Baronia field, but reservoir extent of oil zone is small. Oil was found at only 6 wells completed at the crestal part. Three of these 6 wells are producing. Gas cap is absent and aquifer is thought to be prevailing. Oil water contact, average water saturation and porosity were estimated by the log interpretation to be 7390 feet s.s., 41 - 52% and 16 - 23%, respectively.

Production started September 1974 at BN-Well No.7 and numbers of producer are 3 as of October 1976. Average API gravity of oil is 40.7°. Producing gas oil ratio was 900 - 1000 SCF/STB in the early stage and rised up gradually and reached to 1700 SCF/STB in October 1976.

Water production started July 1975 at BN-Well 9 and March 1976 at BN-Well 7. Water oil ratio for the wells reached to 0.88 and 0.6, respectively. Cumulative water oil ratio of zone total was 0.12.

Pressure decline of 250 psig was observed when recovery of original oil in place reached to 10%, while the increase of gas oil ratio was not remarkable, so that strong water drive can be anticipated. Original oil in place and history stage recovery is as follows.

Original oil in place = 16.779 MMSTB
History stage recovery = 11.76%

Reservoir Analysis

Datum level was decided to be 7370 feet s.s. and initial pressure was obtained to be 3220 psig from FIT and BHP survey. Fluid level is different from Baronia D Zone by 120 feet and fluid properties of D Zone were used for performance estimation.

Average trend of gas oil relative permeability curve was assumed and revised based on rock parameters, fluid properties and producing gas oil ratio. Fluid properties are summarized on Figs. 1-3-38 and 44, and relative permeability curve is summarized on Figs. 1-3-28 and 32.

Calculation result is shown on Fig. 1-3-22 and 1-3-14. After 16.75 years, oil production rate is 0.1 MSTB/D, and prediction calculation is terminated. At this time reservoir pressure is 1285 psig and recovery is 24.19%.

Cumulative water encroachment reached to 6 MMBBL when reservoir pressure is 1300 psig and this volume corresponds to 65% of void space under the reservoir condition.

(e) Baronia Fl Zone

Mid-point depth of oil zone is about 7650 feet s.s. and 7 wells are drilled to this depth. Four of these 7 wells are producer. Gas cap is absent and aquifer is existent. Oil water contact is 7704 feet s.s. Average water saturation and porosity are 42 to 73% and 13 to 20%, respectively.

Production started September 1974 at BN-Well No.7 and there were 4 producers as of October 1976. Average API gravity of oil is 40.3°. Producing gas oil ratio was 900 - 1000 SCF/STB in the early stage and increased gradually and reached to 1400 SCF/STB in October 1976. Water production started April 1975 at BN-Well No.6 and for BN-Well Nos.6, 7 and 9, October 1976. Water oil ratios for the three wells are 0.25, 0.99 and 0.66, respectively. Cumulative water oil ratio of zone total was 0.14. Original oil in place and history stage recovery are

Original oil in place = 34.651 MMSTB
History stage recovery = 8.24%

Reservoir Analysis

Datum level was decided to 7660 feet s.s. and initial reservoir pressure is 3350 psig from FIT and BHP Survey.

Oil properties of Baram field were used for performance estimation. Gas properties are obtained by gas analysis of FIT sampling. They are shown on Figs. 1-3-39 and 45. Average trend of gas oil relative permeability curve was revised based on rock parameters, fluid properties and producing gas oil ratio of history stage. Relative permeability relation is shown on Figs. 1-3-29 and 33.

Calculation result is shown on Fig. 1-3-23 and Table 1-3-15. After 20 years, reservoir pressure is 1664 psig, with the recovery of 23.18% and production rate is estimated to be 0.2 MSTB/D.

Cumulative water encroachment amounts to 8 MMBBL when reservoir pressure is 1700 PSIG and the volume corresponds to 45% of void space under reservoir condition.

(f) Baronia F2 Zone

The zone is the deepest one among the Baronia producing zones. No gas cap is detected while water bearing zone is confirmed at BN-Well No.2 which was drilled in the most down dip location. The oil displacement mechanism was thought to be edge water encroachment. Oil water contact was estimated to be between 7909 feet s.s. (bottom of BN-Well No.5) and 7920 feet s.s. (top of BN-Well No.2). Average water saturation and porosity range from 46 to 59 and from 11 to 15%, respectively.

Production started May 1972 at BN-Well No.4 and there were 4 producers in October 1976. Average API gravity of oil is 40.6° and solution gas oil ratio was estimated to be from 900 to 1000 SCF/STB, while producing gas oil ratio changed from 400 to 1200

SCF/STB during the 3 months and increased to be 2600 SCF/STB after 1.25 years and then declined to 1400 SCF/STB in October 1976. In spite of low permeability, oil production rate was high and the pressure around the well bore declined rapidly. This free gas is the cause of high gas oil ratio in the early stage.

As no oil water contact was detected in the individual producer, the start of water production was comparatively later stage of production. The fact is questionable that the water production is reported to start at BN-Well No.7 from the beginning of 1976 and remarkable increase of water oil ratio of 1.12 is reported. During the month, the water oil ratios of E and F zones of BN-Well No.7 are reported to be same value. Production split of commingled completion should be reviewed again.

Original Oil in Place and History Recovery

As no oil water contact was confirmed by well data, proven oil in place was calculated by setting 7901 feet s.s. as lower limit.

Original oil in place = 44.033 MMSTB
History stage recovery = 8.84%

Reservoir Analysis

Datum level was decided to be 7830 feet s.s. and initial reservoir pressure was estimated to be 3420 psig from the results of FIT and BHP survey. Oil properties of Baram field were used for the performance estimation of Baronia F2 Zone. Gas properties were obtained by gas analysis of FIT sample.

Average trend of gas oil relative permeability curve was revised based on rock parameters, fluid properties and producing gas oil ratio of history stage. Relative permeability relation is shown on Figs. 1-3-30 and 34. Fluid properties are shown on Figs. 1-3-40 and 46.

Calculation result for 20 years performance is shown on Fig. 1-3-24 and Table 1-3-16. Reservoir pressure is 915 psig and recovery is 31.38%. Active water drive was anticipated from history match calculation.

Cumulative water encroachment reached to 22 MMBBL when reservoir pressure declined to 900 psig, and the value corresponds to 59% of void space at reservoir condition.

(g) Additional Wells Case

The performance projections described in (a) to (f) were conducted on the basis of existing wells.

Additional wells case was studied from the view point of defining maximum allowable production rate.

Additionally required wells in this case are as follows.

Baronia A and D Zone BN-A 1, 2, 3, 4, 5, 6

C Zone BN-A 7, 9

E Zone BN-A 7, 8, 9, 10

Fl Zone BN-A 7, 8, 9

F2 Zone BN-A 7, 8, 9

The proposed locations for the additional wells are shown on Fig. 1-3-53. The reservoir performance prediction was made by the use of total 10 additional wells and such assumption was made that the wells start to produce from November 1976.

The locations of the additional wells were determined for the purpose of increasing areal sweep efficiency, while the primary recovery increased slightly from 26.9% of existing condition to 29.5% (Fig. 1-3-9 and Table 1-3-17). More enhanced production rate will shorten the economic life of the

field and decrease the recovery factor.

Under the current PS Agreement, it is difficult to define the most efficient rate for PETRONAS.

The above-mentioned enhanced rate is technically allowable maximum production rate.

The control of producing gas oil ratio is the most important factor in attaining good recovery. The allowable producing gas oil ratio is described for zone by zone as a function of cumulative oil production.

The relation is summarized on the following figures for individual zones.

Baronia	A	Zone	Fig.	1-3-47
	С		Fig.	1-3-48
	D	•	Fig.	1-3-49
	E		Fig.	1-3-50
	F1		Fig.	1-3-51
	F2		Fia.	1-3-52

3.2 Fairley-Baram Field

3.2.1 Field Status

Fairley-Baram field is located about 25 km north of Baram River. The structure is an anticlinal high

which is developed in the northern downthrown block of an ENE-trending growth fault. The field bestrides the boundary between Malaysia and Brunei.

The reservoir consists of 9 sand layers developed from approximately 7500 feet to 8800 feet s.s.

No gas cap is detected but light oil of API 38° to

40° exists. Each sand has aguifer.

Production started July 1975 by FB-11 and 29. The number of current producers is 5 and cumulative oil production amounts to 4.56 MMSTB.

3.2.2 Geology

(1) Reservoir Beds

Hydrocarbons are accumulated in sandstones probably of the uppermost part of cycle V and the lower part of cycle VI. Reservoir sandstones show very stable continuity and were picked up as zones a, b, and c (Table 2-2-1), main oil-producing zones being $a_2 - a_3$, $b_2 - a_3$ and c.

(2) Geologic Structure

Structural maps of zones a_3 , b_2 , and c are shown in Figs. 2-2-1 - 3, and structural cross-sections cut

in the both countries are shown in Fig. 2-2-4. The structure is an anticlinal high which was developed in the northern downthrown side as a roll-over of an ENE-WSW trending growth fault. The anticline has a culmination in the west, Brunei, side but extends into the Malaysian area with gentler slopes than in the Brunei side.

The central part of the anticline develops a few minor faults dipping southward antithetically, of which throws are observed to be less than 60 ft in well Nos.1, 2. Besides another larger fault occurs from the west but appears not to cross the crestal area. Dips of the northern slope are 6 or 7°N in the zone b horizon in well No.11 and 3°NW in well No.29.

Formations south of the growth fault limiting the south of the field are uniformly north-dipping, that is, open toward the south and is not expected to have hydrocarbon accumulations.

[Seismic Interpretation]

A target horizon of the seismic interpretation was the top of zone b. Quality of reflections of the horizon is very good and faults appear clearly in seismic sections. Migrated seismic sections were

available mainly in Malaysia area, but most sections in Brunei area were unmigrated ones. Time contours based on the unmigrated sections in the latter area were migrated. After that, the contours in both areas were combined. The relation of reflection time versus depth was based on the well shooting data of Fairley No.ll. Interpretation result and representative seismic section are shown in Fig. 2-1-1 and 2-1-2.

3.2.3 Reservoir Analysis

The sand layers were grouped into 3 zones and three models are used for performance analysis.

A, B and C Zones in reservoir analysis correspond to zones a, b and c in geological code.

(a) Fairley-Baram A Zone

This zone consists of 4 oil bearing sands of zone a_1 , a_2 , a_3 and a_4 completed in Well FB-1 to 3 and FB-29.

No vertical reservoir continuity between each zone was supposed to exist due to shale breaks, while the wells are produced by commingle production system.

Original reservoir pressure was determined to be 3390 psig at datum plane of 7800 feet s.s. from Figs. 2-3-1 and 2 which were obtained from FIT and BHP survey data.

Reservoir oil properties were estimated from laboratory analysis of Well FB-11 by modifying the API and other factors, as no fluid analysis was available for this zone. Permeability data were assumed at first by the use of special core analysis data of Well FB-2, modified and established later by history match calculation. Those are summarized on Figs. 2-3-35, 36, 39 and 40. Original oil in place calculated by volumetric method is 19.63 MMSTB as proved and 7.57 MMSTB as probable.

Water production increased from the later stage of history. This is due to the production from Well FB-1 and FB-2. Those wells, however, were completed near the crestal area. The high water oil ratio is thought to be caused by high water saturation zone in lower part of zone a₂ of Well FB-1 and zone a₃ of Well FB-2. Workover will be required for this well in some near future to shut off water. The calculated performance is shown on Fig. 2-3-13 and Table 2-3-3.

The most important factor to attain maximum recovery is the control of producing gas oil ratio. The value changes with the progress of the depletion stage.

The most recommendable producing gas oil ratio was described for the zone as a function of cumulative oil production and summarized on Fig. 2-3-45.

(b) Fairley-Baram B Zone

Reservoir fluid properties were obtained from laboratory analysis of Well FB-ll as shown on Figs. 2-3-41 and 42. Porosity, water saturation and effective thickness were obtained from log analysis.

Permeability data was estimated at first by the use of special core analysis data of Well FB-2, modified and established finally by history match calculation. The relation is summarized on Fig. 2-3-37.

The grid model is composed of 90 cells (9x5x2) as illustrated on Fig. 2-3-3. Water saturation and effective thickness data for the grid model were obtained from the distribution map as illustrated on Figs. 2-3-5, 7.

Based on the history match calculation, isobaric map for October 1976 is illustrated on Fig. 2-3-9.

Reservoir performance predictions were made for two cases.

Case 1 is the extension of existing condition and illustrated on Fig. 2-3-14 and Table 2-3-4.

The predicted performance for individual wells are described as follows.

Producing gas oil ratio for Well FB-2 is estimated to be increasing rapidly and the well is obliged to be shut-in at the stage when gas oil ratio comes up to 10000 SCF/STB as shown on Fig. 2-3-18, and Table 2-3-8. Water oil ratio and producing gas oil ratio for Well FB-3 are predicted to be increasing gradually and will be shut-in at the time when water oil ratio and gas oil ratio come up to 2.0 STB/STB and 7000 SCF/STB, respectively, as shown on Fig. 2-3-19 and Table 2-3-9. Well FB-29, which was shut-in about 4 months in 1976, started production again and it is estimated to have good performance as illustrated on Fig. 2-3-20 and Table 2-3-10.

Case 2 is the additional well case. One well is drilled in the crestal area where poor recovery is estimated by Case 1, whose location is I=6, J=4 in Fig. 2-3-3. The results are described on Fig.

2-3-24 and Table 2-3-14 and the well is anticipated to have good performance. In this case, as illustrated on Figs. 2-3-15, 21 - 23 and Tables 2-3-5, 11 - 13, no serious well interferences are estimated on existing wells FB-2 and 3, and slight effect on Well FB-29.

(c) Fairley Baram C Zone

The reservoir fluid properties were determined based on the results by PVT study of Well FB-11, initial production tests of Well FB-2 and FB-29, and sample analysis of FIT at Well FB-29. The fluid properties are shown on Figs. 2-3-43 and 44. Rock parameters such as porosity, water saturation and effective thickness are interpreted by log analysis, and permeability estimated from log analysis is checked and revised through history match calculation. Permeability data are summarized on Fig. 2-3-38.

As shown on Fig. 2-3-4, the objective reservoir is divided into 286 cells (13x11x2) in the model. The individual parameters in the cells were investigated and corrected through history match calculation. Water saturation and effective thickness data for the grid model were obtained from the distribution map as illustrated on Figs. 2-3-6 and 8.

The isobaric map for October 1976 is illustrated on Fig. 2-3-10.

This reservoir has short production history and no sufficient data was available for history matching. The history performance could be match by the minor change of each parameter in the cell and the future performance will be much influenced in the later stage. It should be emphasized therefore, that the accuracy of reservoir information in the early exploration stage has a great influence upon the future performance.

Results of the future performance on the basis of history matching are shown as Fig. 2-3-16 and Table 2-3-6 and individual well performance is shown on Figs. 2-3-25 - 28 and Tables 2-3-15 - 18. Case 1 is the extension of existing condition.

Apart from international boundary problem, investigation was made by Case 2 for increasing oil recovery by having 2 additional wells.

The study was made based on the computation results of Case 1. Additional wells are to be drilled in the area of poor recovery, the locations of which are (8,8) and (9,7) in Fig. 2-3-4. In this case additional 10% recovery is anticipated.

Performance for this case is shown on Fig. 2-3-17 and Table 2-3-7, and individual well performance is shown on Figs. 2-3-29-34 and Tables 2-3-19-24.

Field total performance for Case 1 and Case 2 is shown on Fig. 2-3-11, Table 2-3-1 and Fig. 2-3-12, Table 2-3-2, respectively.

(d) International Boundary Problem

Sample illustration is made for the main productive zones of b and c to describe the oil recoveries in the Malaysia and Brunei Area.

Existing Well Conditions

		Malaysia	Brunei	Total
Cumulative	zone b	1.093	0.643	1.736
Production (MMSTB)	zone c	6.283	7.527	13.810
(IMOID)		7.376	8.170	15.546

Under the existing wells condition, the field total recovery is 26.56%. In order to increase the recovery, a trial was made to have additional wells in the crestal area where there still remains unrecovered oil. The case is to have 3 additional wells, one is for zone b and two for zone c. The case is made only for the purpose of increasing field total recovery.

(e) Additional Wells Case

		<u> Malaysia</u>	Brunei	<u>Total</u>
Cumulative	zone b	1.059	1.552	2.611
Production (MMSTB)	zone c	5.787	13.026	18.813
(PENSID)		6.846	14.578	21.424

As illustrated on the table, the differences of areal recoverable oil depend on the numbers of wells.

The results show that the increased oil production rates in Brunei Side will cause decrease of cumulative oil production of Malaysia Side, and vice versa. As shown on the results, ratio of recoverable oil for Malaysia and Brunei is much influenced by the numbers of wells drilled in the individual areas.

As no remarkable difference is observed between the two areas, such an effort is recommended as to increase the field base total recovery.

		MALAYSIA	SIDE	BRUNEI	SIDE	FIELD TOTAL	OTAL
		B Zone	C Zone	B Zone	C Zone	B Zone	C Zone
Original Oil in Place	l in Place	7.76	23.47	10.30	28.45	18.06	51.92
End of History	Cumulative Oil Production (MMSTB)	0.184	0.774	0.214	1.695	0.398	2.469
	Recovery (%)	2.37	3.30	2.08	5.96	2.20	4.75
End of Prediction CASE 1	Cumulative Oil Production (MMSTB)	1.093	6.283	0.643	7.527	1.736	13.810
	Recovery (%)	14.09	26.77	6.24	26.46	9.61	26.56
End of Prediction CASE 2	Cumulative Oil Production (MMSTB)	1.059	5.787	1.552	13.026	2.611	18.813
	Recovery (%)	13.65	24.66	15.07	45.79	14.46	36.18

3.3 West Lutong Field

3.3.1 Field Status

West Lutong field, located approximately 10 km north of Sarawak western shore, has the longest production history among the producing fields in Malaysia.

In the past 8 years' history, it recorded maximum rate of more than 50,000 STB/D. Although it declined to be 15,000 STB/D under the current stage, the production performance is very stable and reservoir is thought to be in quite stabilized condition.

The reservoir is composed of approximately 50 sand layers and commingled production system is widely used.

3.3.2 Geology

(1) Reservoir Beds

In the West Lutong field hydrocarbons are found in sandstones which are predominant in deltaic sediments of the upper part of sedimentary cycle V. Correlation of reservoirs is very good and zones of a - e are recognized (Table 3-2-1), b_2 , c_1 , and c_2

containing main oil zones.

(2) Geologic Structure

Geologic structure of zones a_1 , b_2 , c_2 , and e_1 is shown in Figs. 3-2-1 - 4 and a structural cross section in Fig. 3-2-5. The W. Lutong structure is a NE-SW trending anticline of which size is 6 km long and 1.5 km wide in the c_2 oil zone. The anticline is symmetric with flanks of a maximum 7 degree dip in shallower horizons than zone c_2 but is asymmetric in the deeper part where a north-dipping growth fault is developed to run parallel to the anticlinal axis.

The upthrown south part of the fault is reached by well Nos.3, 4, 7, 8, 23 and the north side is penetrated by well Nos.1, 2, 14, but this growth fault is not recognized on the seismic record sections which were available for the study.

3.3.3 Reservoir Analysis

The reservoir is composed of more than 50 sand layers developed from 4000 feet to 8000 feet s.s.

Reservoir analysis was made by grouping and classifying the sand layers into 3 zones, taking into account geological correlation results and existing production system.

A Zone consists of zone $a_1 - a_3$ and b_1 , developed from the depth of 4000 feet to 5200 feet s.s. It has 6 years' production history. Remarkable increase in gas oil and water oil ratios were observed soon after the start of production, and oil production rate decreased rapidly.

B Zone consists of zone b₂, c₁ and c₂, developed in the depth interval from 5200 feet to 5800 feet s.s. The zone is the main producing reservoir in the West Lutong field with constant rate of production even after 8 years of history. Water oil ratio increased gradually during the early depletion stage but came to be stabilized and almost constant after 6 years of production.

C Zone is composed of zone c_3 - e_3 , the depth interval for which ranges from 6300 feet to 7300 feet s.s. The zone has 8 years of production history. The producing gas oil ratio for the zone was almost constant, while water oil ratio was observed to be increasing gradually.

Field total performance is shown on Fig. 3-3-2 and Table 3-3-1. Initial reservoir pressure at datum plane depth for individual zone is decided based on Fig. 3-3-1.

(a) West Lutong A Zone

A Zone consists of many gas rich sand reservoirs.

Most of the produced oil is condensate or light oil.

The reservoir fluid properties were determined on the basis of results analyzed by PVT study of WL Well No.19 from zone a₂ as shown on Figs. 3-3-12 and 15. Relative permeability data are shown on Figs. 3-3-6 and 9. Reservoir performance as derived from Model study is shown on Fig. 3-3-3 and Table 3-3-2. According to this results, rapid decrease of reservoir pressure was estimated.

Although water drive can be anticipated to some extent, there exists so many gas rich reservoir and it is next to impossible to produce oil by refraining gas oil ratio.

(b) West Lutong B Zone

B Zone, which includes 6 reservoirs, consists of zone b_2 , b_3 , c_1 and c_2 . The oil properties produced is 35° to 41° API gravity and average producing gas oil ratio is shown as follows.

zones with gas cap 1600 - 3000 SCF/STBzones without gas cap 1000 - 1100 SCF/STB(zone c₁ - 3, c₂ - 1) The reservoir fluid properties were determined by PVT studies of fluid samples from WL Well No.1 in zone c_2 and WL Well No.2 in zone c_1 . They are shown in Figs. 3-3-13 and 16. Relative permeability data is shown on Figs. 3-3-7 and 10.

The oil production started on August 1968 by 24 wells (WL Well No.1 - 25) except for WL No.5, and the cumulative oil production was 67.08 MMSTB and the recovery to original oil in place was estimated to be 37.4% during history stage.

In the model study the reservoir parameter was so adjusted as to match the past 8 years' production history by taking into account oil displacement mechanism. Based on this model, prediction of reservoir performance was made, which is summarized on Fig. 3-3-4 and Table 3-3-3.

Judging from this computed results (Fig. 3-3-4 and Table 3-3-3), producing gas oil ratio is kept constant while water oil ratio is increasing gradually. The reservoir energy was interpreted to be supplied by strong water drive.

The abandonment condition of the reservoir will be determined not from production decrease due to

pressure decline but from increased water oil ratio, while the reservoir pressure will be kept comparatively high level.

The current reservoir condition is quite stable and no increased production rate is recommended in order to expect good sweep efficiency.

(c) West Lutong C Zone

The zone is composed of 25 sand layers from zone $\mathbf{c_3}$ to $\mathbf{e_3}$.

In the area below zone c₃, there developed a big fault from north east to south west and no detailed information has been obtained for the northern part of the fault. The objective area in this study was for the southern block of the fault where there developed a small fault parallel to the above fault, which was interpreted to have little effects on this reservoir group.

The API gravity of the oil accumulating in the thin sand layers ranges from API 38° to 50° and the average producing gas oil ratio was from 1500 to 2000 SCF/STB.

No PVT analysis was available for this zones, the fluid properties were estimated from the average trend of Malaysia crude oil. Fluid properties are shown on Figs. 3-3-14 and 17. Relative permeability relation is shown on Figs. 3-3-8 and 11.

The past reservoir performance of the zone shows comparatively mild reservoir pressure decline with no remarkable change in the producing gas oil ratio, however gradual increase of water oil ratio is noticed.

In comparison with the aforementioned B Zone, the zone is composed of many thin and gas rich sands, and the operation problems are difficulties in controlling of production of gas and water.

The predicted reservoir performance is shown on Fig. 3-3-5 and Table 3-3-4.

(d) Additional Wells Case

Two wells are recommended to be drilled in the undeveloped portion of the field, which are zone d3-6, 7, 9, 10 and e2-1, 2, 3. The location of the wells are illustrated on Fig. 3-3-22.

The anticipated reservoir performance for this case is described on Fig. 3-3-23 and Table 3-3-5.

In this calculation, reservoir rock and fluid parameter were assumed to be identical to that of Model C.

The most important factor to attain maximum recovery is the control of producing gas oil ratio. The value changes with the progress of the depletion stage.

The most recommendable producing gas oil ratio was described for the individual zones as a function of cumulative oil production and summarized on Figs. 3-3-18 - 21.

3.4 Baram Field

3.4.1 Field Status

The field is composed of two different structures. Baram A, which is eastern structure, is located approximately 13 km north-northwest of Baram River. The western structure Baram B is located 17 km north-west of the river.

A and B fields started production from July 1970 and October 1972, and their peak oil rates are reported to be 40 and 20 MSTB/D, respectively.

Current production rates for A and B fields declined to 21.5 and 9.5 MSTB/D. The production was estimated to decline continuously.

3.4.2 Geology

(1) Reservoir Beds

The field is divided into two fields about 7 km apart, A to the east and B to the west. Sedimentary sections are clastics consisting of alternations of sandstone and shale, occurring half and half as a whole. Hydrocarbons are accumulated chiefly in deltaic sediments of cycle V with reservoirs named as zones a - g for the two fields (Tables 4-2-1, 2). It is noted that the horizon of zone d_2 in A field is equivalent to that of zone c_4 in B field.

(2) Geologic Structure

As shown in Fig. 4-2-1 indicating the location of the two fields in the corresponding horizons, they are anticlinal highs which are developed along the same growth fault running in the ENE-WSW direction. Figs. 4-2-2 - 4 show structural maps of the A structure for zones c_1 , d_2 , and f_2 , and Figs. 4-2-6 - 9 show those of the B structure for zones b_3 , c_4 , e_1 and e_3 .

As known from the structural maps and structural cross-sections in Figs. 4-2-5, 10, the both structures are extremely divided into blocks by faulting and then fluid levels are also different in block to block. Naturally the calculation of volumetric oil or gas-in-place carried out for each of blocks which are named I to VIII in A and I to V in B.

3.4.3 Reservoir Analysis, Baram A

The oil reservoir consists of more than 100 sand layers developed from the depth of 3700 feet to 9600 feet s.s. The structure is divided into 11 blocks (I1, I2, II, III, IV1, IV2, V, VI, VII, VIII, upper block) by many faults.

In the vertical direction, the sand layers can be divided into 15 groups from zone a_2 to zone g_3 and no dominant productive zone was found. The sand zones, whose cumulative oil production exceed 10% of field total cumulative production, are zones b, e_1 and g_2 - $_3$ only.

Block III and IV2 contain no hydrocarbon, and Il and I2 are combined, and reservoir performances are estimated for 8 blocks (Block I, II, IV, V, VI, VII, VIII and upper Block).

Reservoir Parameter and Modeling for Baram A Block I - VIII and Upper Block

Each Block consists of several or dozens of thin sand layers. Confirmed area is highly limited and reservoir limit such as gas oil and oil water contact can not be defined for all of the reservoir sands. The reserves calculation, therefore, by volumetric method is apt to be underestimated.

In this reservoir, the oil and gas reserves are estimated by the production decline curve method based on the reservoir performance and production history. Based on this estimated reserves, production performance is recalculated. The procedure is repeated until satisfactory results are obtained.

It is possible that the assumed oil in place by the Trial & Error Method is sometimes less than volumetrically calculated value. (Block VII)

At Block VII, it is considered that all the reserves calculated by the volumetric method do not contribute to the production performance.

Reservoir oil properties were estimated based on the BA-Well No.12 data by modifying the API gravity and other factors through history match calculation.

Gas properties were determined by laboratory analysis of FIT sample. Those are summarized on Figs. 4-3-26 - 41. Relative permeability relation was estimated by revising the general relation to match history performance. This relation is shown on Figs. 4-3-10 - 25. Field total reservoir performance is illustrated on Fig. 4-3-1, tabulated on Table 4-3-1, and performances for the individual block are shown on Figs. 4-3-2 - 9, tabulated on Tables 4-3-2 - 9. No additional case was considered for this field.

The most important factor to attain maximum recovery is the control of producing gas oil ratio. The value changes with the progress of the depletion stage.

The most recommendable producing gas oil ratio was described for the individual Blocks as a function of cumulative oil production and summarized on Figs. 4-3-53 - 60.

3.4.4 Reservoir Analysis, Baram B

The oil zone of this field consists of dozens of sand layers that develop from the depth of 4000 ft. to 9600 ft. s.s. The field is divided into 6 blocks (I, II, IIII, III2, III3 and south Block) by several faults and most of the reservoirs are

interpreted to be combination drive of gas cap and aquifer water. The continuities between the blocks are indistinct. Reservoir performance calculation was made for Block I, II and South Block by Model 1, and Block IIII and III3 are combined by Model 2.

No calculation was made for Block III2, as no hydrocarbon is observed.

In this field same problem as in Baram A was encountered in defining the gas oil contact and lower limit of the reservoir.

The most suitable proved and probable oil in place is obtained by the Trial & Error method in the same ways as in Baram A. Fluid properties and relative permeability were obtained by the same way as Baram A field. Relative permeability is shown on Figs. 4-3-45 - 48, and fluid properties are shown on Figs. 4-3-49 - 52. The production performance of Baram B field is shown on Fig. 4-3-42 and Table 4-3-10 and the production performances of Model 1 and 2 are shown on Figs. 4-3-43, 44 and Tables 4-3-11, 12. No additional well case was considered for this field.

The most important factor to attain maximum recovery is the control of producing gas oil ratio.

The value changes with the progress of the depletion stage.

The most recommendable producing gas oil ratio was described for the individual Blocks as a function of cumulative oil production and summarized on Figs. 4-3-61, 62.

3.5 Bakau Field

3.5.1 Field Status

Bakau field is located approximately 20 km west of Baram river. Production started February 1972 by well BK-3, and average daily rate of production during the month of June 1976 was 4.03 MSTB/D and cumulative oil production as of June 1976 amounts to 3.33 MSTB by 3 wells.

The field is divided into three blocks by faults.

Each well is drilled into independent block and commingled production system has been adopted.

Confirmed areas by three existing wells are highly limited and more delineation wells are required to be drilled for future development.

Only one well is completed in the individual blocks and performance analysis is made block by block using one well data.

3.5.2 Geology

(1) Reservoirs and Geologic Structure

In the Bakau field the upper part of sedimentary cycle V is hydrocarbon bearing. Only three wells, well Nos. 3, 4, and 5 are drilled in this field to produce oil, since Bakau well Nos.1 and 2 are considered out of the study object because of their locations being on a different structure in the distance 15 km southwest of the field.

The Bakau structure is a northeast-plunging nose-like one cut by several growth faults trending E-W or ENE-WSW. Especially a major fault which separates the south area drilled by well No.3 and the north area including well Nos.4 and 5 is presumed the most important, making correlation between the two areas impossible for some reservoir levels.

As shown in the correlation table (Table 5-2-1), zones a and b are common to the three wells, that is, the occurrence of identical strata over the field is down to the horizon of zone b_2 , whereas zones c and

lower of well No.3 and zones c' and lower of well Nos.4 and 5 have no relation to each other in the alphabetical names. Therefore, in Figs. 5-2-1, 2 and Figs. 5-2-3, 4 structural maps are independently given of the two areas.

(2) Hydrocarbon Trapping

Hydrocarbon trapping of the Bakau field is considered of a fault type in a nose-shaped anticline. Although it is inferred from Figs.5-2-1 - 2 that this is open southward, variable extents of faulting may make possible further distributions of hydrocarbons to the south. There is still two undrilled blocks in the area of well Nos.4 and 5, for which original hydrocarbons-in-place could not be estimated.

It is necessary to study structurally and stratigraphically the way in which the reservoirs are in contact across faults, since there is a possibility that the main growth fault does not always act as a seal, as suggested in Fig. 5-2-5.

[Seismic Interpretation]

In the southern area a target horizon of the seismic interpretation was the top of zone c_1 and in the northern area, the top of zone c'_4 . These horizons have the best quality in each area. However,

correlation of reflections across faults was not always possible. The relation of reflection time versus depth was based on well shooting data of Bakau No.3. Interpretation result and representative seismic section are shown in Figs. 5-1-1 - 3.

3.5.3 Reservoir Analysis

(a) Well BK-3

Well BK-3 is completed for 3 zones, which are zone c_1 , upper and lower parts of zone c_3 .

Original reservoir pressure was determined from Fig. 5-3-1 to be 3196 psig at datum plane of 7400 ft s.s. Average reservoir porosity is 0.2 and water saturation range from 0.47 to 0.67. Fluid properties and permeability data were established as shown on Figs. 5-3-6, 9, 12 and 15. Produced API gravity is 40 degrees.

As confirmed reserves by volumetric method are only for highly limited area the value is apt to be underestimated. The reserves calculation, therefore, was made by Decline Curve method and several trial and errors were made to match actual well performance. Estimated original oil in place is 6.993 MMSTB.

Based on this reserves, performance prediction was made, which is illustrated on Fig. 5-3-3 and tabulated on Table 5-3-2.

(b) Well BK-4

Well BK-4 is completed for 3 zones of zone a₁, zone c₁, upper part of zone c₄. Reservoir porosity and water saturation range from 0.44 to 0.70 and 0.22 to 0.17, respectively. Original reservoir pressure was determined to be 3325 psig at datum plane of 7700 ft s.s. from Fig. 5-3-1. Fluid properties and permeability data were established as shown on Figs. 5-3-7, 10, 13 and 16.

The production started May 1975 and cumulative oil production by June 1976 is 1.158 MMSTB that is 28% of oil volume detected by volumetric method. However production performance during the history stage seems to be prospective and original oil in place was determined by trial and error method in the same ways with Well BK-3. Estimated original oil in place is 14.475 MMSTB.

Computed result based on the above reserves is shown on Fig. 5-3-4 and Table 5-3-3.

(c) Well BK-5

Well BK-5 is completed for 4 zones of zone b₁, c₁, c₃ and c₄. Reservoir porosity ranges from 0.15 to 0.11 and water saturation was interpreted to be very high and exceeding 60%. Original reservoir pressure was determined to be 3497 psig from Fig. 5-3-1. Fluid properties and permeability data were determined as shown on Figs. 5-3-8, 11, 14 and 17.

Production started February 1976. As illustrated on Fig. 5-3-5, remarkable production decline was observed even in the short period of history stage.

Original oil in place was determined by trial and error method due to bad quality of log survey results. Original oil in place was estimated to be 0.834 MMSTB by that method.

Estimation of future performance was made using the aforementioned reserves, the results of which are shown on Fig. 5-3-5 and Table 5-3-4.

Field total performance is shown on Fig. 5-3-2 and Table 5-3-1.

The most important factor to attain maximum recovery is the control of producing gas oil ratio. The value changes with the progress of the depletion stage.

The most recommendable producing gas oil ratio was described for the individual wells as a function of cumulative oil production and summarized on Figs. 5-3-18 - 20.

3.6 Tukau Field

3.6.1 Field Status

In this field, 21 wells have been drilled so far, and 13 wells are producing.

The oil reservoir is composed of approximately 60 sand layers. Heavy and light oil with API gravity ranging from 22° to 39° accumulates in the reservoir in the depth from 2650 ft to 7550 ft s.s.

Production started June 1975 and average daily production rate during the month of June 1976 was 12.5 MSTB/D and cumulative oil production as of June 1976 amounts to 2.97 MMSTB.

3.6.2 Geology

(1) Reservoir Beds

The Tukau field has hydrocarbon accumulations in sandstones, occurring in depths below 2000 ft, which were deposited in deltaic environments of cycle V. Correlation of horizons of reservoirs is relatively good but below zone d it becomes extremely poor between the northern main wells and the southern wells because of the affect of growth faulting to the sedimentation below the horizon of zone b₃ (Table 6-2-1).

(2) Geologic Structure

The Tukau structure is a N-S trending anticlinal one which is transected by an ESE-WNW striking fault system, divided into the unfaulted northern half and the extremely faulted southern half, as shown in Figs. 6-2-1 - 4.

The fault system is probably rooted in a growth fault which occurs in greater depths than approximately 3000 ft. The growth fault, northward dipping, runs in the WNW direction between well Nos.2 and 11 to be the boundary between the northern and southern halves, but its exact location is difficult to know on account of intense tectonic disturbance of strata.

The southern half of the structure is cut into many parts by step-like faulting but the available seismic sections have so bad record quality below the zone d horizon in the area that accurate mapping was avoided in the present study.

3.6.3 Reservoir Analysis

The field is classified into 11 groups by blocking and zoning, and reservoir performance calculation was made for the individual group. The groups correspond to Models 1 - 11, respectively. The each Model defined by blocking and the original oil in place calculated by volumetric method are summarized on the following table. The each reservoir performance calculated by the Model is shown as Figs. 6-3-3 - 13 and Tables 6-3-2 - 12. The field total performance is shown on Fig. 6-3-2 and Table 6-3-1. Original reservoir pressure is determined from Fig. 6-3-1.

In the model calculation, well production behaviors such as the change of production rate, producing gas oil ratio and water oil ratio were matched, as no sufficient pressure information was available in this field.

Utilized fluid properties and rock characteristics are shown on Figs. 6-3-14 - 41.

The blocks analysed in the models are as follows, respectively.

Model	Block Zone	Producer	Sub Sea Depth	API Gravity	O.O.I.P. (MMSTB)
Model-1	Block-I zone bl,b2, b3	4	2650'-3250'	21°-24°	20.16
Model-2	Block-I zone cl,c2	2	3250'-3800'	26°-38°	4.30
Model-3	Block-I zone dl,d2, d3	4	3800'-4350'	27°-30°	13.45
Model-4	Block-I zone d4	2	4350'-4600'	31°-32°	1.07
Model-5	Block-I zone d5,e	1	5500'-7550'	36°-37°	20.50
Model-6	Block-II zone bl,b2, b3	1	2700'-3200'	23°	2.36
Model-7	Block-III zone dl,d2, d3	2	3700'-4200'	30°	0.98
Model-8	zone f	2	6200'-6600'	36°-38°	9.77
Model-9	Block-III zone bl,b2, b3	0(2)	2600'-3100'		48.49
Model-10	Block-IV zone bl,b2, b3	0(2)	2750'-3000'		19.88
Model-11	Block-IV zone d4	0(1)	3600'-4200'		2.66

^{*} The figures in the parenthesis are required numbers of wells in the additional wells case.

Additional wells case study was made for the development of undeveloped portion of the field.

In this field, total 5 wells are required to develop zone b of Block III, zone b of Block IV and zone d of Block IV which correspond to Model 9, 10 and 11, respectively. The well location was shown on Fig. 6-3-53.

The anticipated reservoir performance for this case is shown on Figs. 6-3-11-13 and Tables 6-3-10-12. The performance of Model 9, 10 and 11 was shown on Table 6-3-13.

The most important factor to attain maximum recovery is the control of producing gas oil ratio. The value changes with the progress of the depletion stage.

The most recommendable producing gas oil ratio was described for the individual Models as a function of cumulative oil production and summarized on Figs. 6-3-42 - 52.

FIELDS FOR DEVELOPMENT (I)

4.1 Betty Field

4.1.1 Geology

(1) Reservoir Beds

The Betty field has been drilled by four wells in the order of well Nos.1, 2, 3, and 4 from east to west. Correlation of well data indicates that formations decrease in thickness to the west both in cycle V and in the lower part of cycle VI. Hydrocarbons are accumulated in cycle V sediments of Upper Miocene age. Reservoirs are sandstones, named as zones a - c (Table 7-2-1), of varied thicknesses up to 190 ft generally intercalated with shale beds less than 10 ft or so. Well No.1 proved oil in zones a and b and gas in zones b and c, while well No.3 proved only gas in zones b and c and well Nos.2 and 4 were dry.

(2) Geologic Structure and Hydrocarbon Trapping

As shown in structural maps of zones a_1 and b_2 in Figs. 7-2-1, 2, the Betty structure is the rollover that formed on the north side of a nearly eastwest running growth fault, having structural highs both on the east and the west about 10 km apart. The depressed area between the both highs has depth

differences ranging from 300 to 500 ft and lower than the OWC levels encountered in the east by well No.1 (Figs. 7-2-1, 2). Since well No.2 was dry, the gas zones that were proved to exist in the both highs are considered to have no connection. There is an undrilled block faulted between well Nos.3 and 4 in the west area.

[Seismic Interpretation]

An interpreted horizon was the top of zone a₁. Data quality of the interpreted horizon is partly poor in the western part of the structure, but very good, in the other part. Faults also appear clearly in the seismic sections. The relation of reflection time versus depth was based on well shooting data of all wells, Betty Nos.1 - 4. Interpretation result and representative seismic section are shown in Fig. 7-1-1 and Fig. 7-1-2.

4.1.2 Reservoir Analysis

Two wells have been drilled in the eastern and western structure. Well No.1 drilled in the eastern structure confirmed oil accumulation in the zones a_1 , a_3 and a_2 , the API of which are 34.4° , 39.9° and 39° , respectively. Gas or gas condensate accumulation was observed in zones b_1 and c_1 . In the Well No.3 of western structure, small amounts of gas are

observed in zones b2 and c.

No gas cap was confirmed in oil zone of Well No.1 but aquifer was detected in zones a_1 and a_3 .

The reservoir seems to have good characteristics from qualitative log interpretation but reservoir extent seems to be comparatively small.

Proved oil reserves calculated from volumetric method is listed on Table 1-1-2 and log analysis is shown on Appendix.

The main production reservoirs are interpreted to be zones a₁ and a₃, but DST and production test has not been made so far and productivity for individual zone is still unknown.

As special core analysis and PVT data is not available, general trend of fluid characteristic was used for reservoir performance prediction of main zone. Reservoir parameters used in this sample calculation are listed on Tables 7-3-1 - 3 and computed results are summarized on Tables 7-3-4 - 6.

It should be reminded that the computed results as shown above are much influenced by the assumed and utilized parameters.

According to the study results, total proved oil reserved are estimated to be 54.2 MMSTB and the field belongs to medium to small sized reservoir in Malaysia. Although the results are much influenced by the assumed data, the field is anticipated to have the production ability of maximum 15 MSTB/D at initial condition. No delineation well is thought to be required, however, the first requisite is to confirm maximum allowable production rate on well basis and to obtain reservoir transmissibility by build up curve analysis. After the start of production, periodical pressure survey is required especially for the evaluation of water drive.

The most important factor to attain maximum recovery is the control of producing gas oil ratio. The value changes with the progress of the depletion stage.

The most recommendable producing gas oil ratio was described for the individual zones as a function of cumulative oil production and summarized on Figs. 7-3-1 - 3.

4.2 Bokor Field

4.2.1 Geology

(1) Reservoir Beds

The Bokor structure is located about 4 km south-southwest of Betty well No.1 and has been drilled by four wells. Hydrocarbons are found in sediments of cycle V and lower cycle VI, of which non-deltaic sediments of cycle VI contain heavy oil of 19.5° API in 10 to 50 ft thick sandstones (zones a₁ - a₃, Table 8-2-1).

(2) Geologic Structure and Hydrocarbon Trapping

Figs. 8-2-1, 2 show structural maps of zones a_1 and b_3 . The structure is an anticlinal high, the south half of which is blocked by several east-west trending faults. The main, north block of the structure was drilled at and below zone b_1 by well No.3 on the crestal part, and well Nos.1 and 2 on the western flank. Well No.4 drilled on one of the fault blocks of the south half. As seen in a north-south cross-section of Fig. 8-2-3 hydrocarbon accumulations have been proved to exist only in the north block. No hydrocarbons were found in zones $a_1 - a_3$ of two minor blocks penetrated through these horizons by well No.3 and well No.4, respectively (Fig. 8-2-1).

For horizons of zone b and lower, however, a central horst-like block is not explored as to the hydrocarbon accumulation since well No.3 enters the north block across the bounding fault at the top of zone b_1 .

[Seismic Interpretation]

A target horizon of the seismic interpretation was the top of zone a. Quality of reflections associated with the horizon is partly poor in the crestal part of the structure and around faults, but in the other part it is fair to good. In the marginal area it was possible to correlate reflections across faults. The relation of reflection time versus depth was based on well shooting data of Bokor Nos.1 and 2. Interpretation result and representative seismic section are shown in Fig. 8-1-1 and Fig. 8-1-2.

4.2.2 Reservoir Analysis

Four wells have been drilled in this structure and oil accumulation was confirmed by Well No.2 and 3.

In the northern block divided by the main fault crossing the central part of the structure, accumulation of heavy oil with API 19.5° was confirmed in the depth interval from 2000 ft to 3000 ft s.s.

While in the well No.1, 300 ft structurally in down dip location, all the zones are completely wet.

In the central block of the structure, hydrocarbon accumulation was confirmed by log analysis in the sand layers with total thickness of more than 190 ft, while discrimination of oil and gas can be made only at 4 points by FIT results. In this block, production test was conducted for a part of zone b, and API gravity of 21.5° and gas oil ratio of 330 SCF/STB were obtained. Hydrocarbon accumulation is widely distributed in the interval from 3100 ft to 5000 ft s.s.

In the southern block, only slight hydrocarbon was observed in zone b but all the other zones are water wet.

Zone a in northern block and zone b in central block are main productive reservoirs. Estimation of original reserves using log analysis results were made by volumetric method as listed on Table 1-1-2.

Sample calculations of performance prediction were made for zone a in northern block and for zone b in central block by using proved and probable in place. Reservoir parameters used in the computation

are shown on Tables 8-3-1 - 3 and predicted performances are shown on Tables 8-3-4 - 6. As PVT data and special core analysis were not available in this reservoir, general trend of Malaysia field was used in the calculation.

Computed results exhibit poor performance.

This is primarily brought about from insufficient reservoir energy caused by poor reservoir mobility and low solution gas oil ratio. However, probable hydrocarbon in place is not so small and further confirmation works are required.

First of all, confirmation of productivity and mobility should be checked zone by zone through production test or DST. High reservoir oil viscosity was thought to be the cause of poor reservoir mobility and strict production control should be made. In order to make this feasible, stabilized production rate should be determined through long term production test.

Relative permeability data should also be indispensable in designing future probable secondary recovery operation. The reservoir depth is comparatively shallow and drilling of appraisal wells is required for this reservoir. The most important factor to attain maximum recovery is the control of producing gas oil ratio. The value changes with the progress of the depletion stage.

The most recommendable producing gas oil ratio was described for the individual zones as a function of cumulative oil production and summarized on Figs. 8-3-1 - 3.

4.3 Temana Field

4.3.1 Stratigraphy and Geologic Structure

The Temana field is divided into two structures, "East" and "West"; Temana East has been drilled by well Nos.1 - 4 and Temana West by well Nos.5 - 10. Correlation of reservoirs and seismic interpretation were carried out separately for the two structures (Tables 9-2-1, 2). In the Temana field it is a difference from other Sarawak fields that there are unconformities between Pliocene and Middle-Lower Miocene sequences.

For the west structure there are two unconformities between Pliocene and Middle Miocene sediments and between Middle Miocene and Lower Miocene sediments. The middle Miocene consists of shaly beds of

sedimentary cycle V ranging from 250 to 300 ft in thickness. Important hydrocarbon bearing rocks are of non-deltaic sediments of cycle II and especially sandstones of zones c and d are heavy oil bearing, though their continuity being extremely bad. The west structure in the cycle II horizons is almost circular and dome-like and is associated with many small faults as shown in Fig. 9-2-1. It is interpreted that the structural high is dropped down relatively to the east because a fault located east of well No.10 in the figure is considered to be penetrated by the well at 2720 ft with a 650 ft throw.

As passing eastward from the west structure, sediments of cycles II and III occur in shallower depths, while the unconformity between them and Pliocene beds become deeper.

In the area of Temana East, Middle Miocene formations are lost and instead Pliocene sediments overlie directly the lower part of the cycle II with obviously angular unconformity (Fig. 9-2-2). The east structure in the cycle III horizons indicates an E-W elongate dome shape, transected by a number of faults originated before the formation of the unconformity. Well Nos.1, 3, 4, which encountered hydrocarbon accumulations, have been drilled on

separate fault blocks. Lateral variations in rock facies of reservoirs are smaller than in the west structure to give relatively good correlation. A heavy oil bearing zone, found also in the east structure in well No.3 (zone a), has a limited distribution in a peripheral area of the structure due to erosion of cycle II sediments in the crestal area.

[Seismic Interpretation]

A target horizon of the interpretation was the top of zone c₁ for Temana (West). Quality of reflections from the target horizon is partly poor, but mostly poor. Especially, in the eastern part of the structure quality becomes very poor. Well shooting data of Temana Nos.5 and 7 were available. Interpretation result and representative seismic section are shown in Fig. 9-1-3 and Fig. 9-1-4.

A selected horizon for the seismic interpretation was the top of zone c for Temana (East).

Quality of reflections associated with the interpreted horizon is fair to poor. In the southern part of the structure quality is mostly poor. The locations of most of faults are ambiguous in the seismic sections and correlation of reflections across faults is quite difficult. Well shooting data of only Temana No.4 were available in this structure.

Interpretation result and representative seismic section are shown in Fig. 9-1-1 and Fig. 9-1-2.

4.3.2 Reservoir Analysis

Oil properties and its distribution are quite different in the east and west structure.

In the east structure, accumulation of oil with API gravity ranging from 31° to 35° was confirmed in zone b to c in the depth interval from 3000 ft to 5000 ft and productivity for individual zones was confirmed by DST. The structure is subdivided into several blocks and no well has been drilled in the central block. Total 10 DSTs have been conducted. DSTs No.6 to 8 were conducted for main zone. Average productivities for the zones are about 300 to 400 STB/D with productivity index approximately 1 B/D/ psi, which are regarded as very poor value. tion test conducted at Well No.4 shows the productivity of 310 STB/D, while well head pressure declined to as low as 30 psig during 2.5 hours flowing period. Both zones are estimated to have extremely low productivities. According to the production test for zone c at Well No.4, the well is reported to be killed itself and no productivity is obtained.

According to the log analysis as shown in Appendix II, oil accumulation is confirmed, while actual productivity is extremely low in the confirmed area. The east structure will not be worth while unless high productivity zone exists in the undrilled central and its surrounding area.

In the west structure, heavy oil with API 18° to 23° accumulates in the depth interval from 1500 ft to 2200 ft s.s. and light oil with API 40° to 42° exists in the interval from 2500 ft to 3200 ft s.s. The light oil, however, is confirmed to exist only 10 ft in Well No.5. In Well No.5, oil and gas showings are observed in the interval from 5400 ft to 7000 ft, however, the zones were estimated to be poor permeable and tight according to the FIT results.

In the western structure, the field is divided into 4 blocks by fault. The block which includes Well No.5 shows high productivity. Production tests were conducted for zone e and f, which have light hydrocarbon, however, no report is made for productivity. Productivity for the zones may well be estimated to be very poor.

Main reservoir sands for the field are thought to be zone c and d which produce heavy oil. Assuming reservoir parameter to be as listed in Table 9-3-1, reservoir performance was predicted as shown on Table 9-3-2.

Estimated poor performance is not only due to poor reservoir mobility but due to poor water drive as the producing area is in a completely closed area.

As a result of the study, poor reservoir quality was estimated for eastern structure, while in western structure, confirmation of the reservoir extent of the productive zone observed in Well No.5 is required together with relative permeability information. The information is necessary to conduct feasibility study on secondary recovery as poor recovery was estimated by natural depletion.

5. POTENTIAL FIELDS

5.1 Beryl Field

5.1.1 Geology and Hydrocarbon Occurrence

A large area, amounting to 600 km² in area, is drilled by six wells under the name of Beryl, of which well data indicate that there had been sedimentation till Pleistocene. Sedimentary sections penetrated by wells consist of sandstones and shales of cycles ranging from V to VIII, increasing in thickness toward the north as a whole (Table 10-2-1). The area is tectonically characteristic of the development of many growth faults which trend eastwest and throw their north sides down to give a step-like appearance. Fig. 10-2-1 shows a depth contour on the top horizon of cycle VI.

The most significant hydrocarbon occurrence is a net 55 ft of gas in well No.6 at 4405 ft in a sandstone bed of cycle VI. Taking account of good continuity of this regressive sandstone and of the location of well No.6 being a few hundreds feet lower than the highest point of the block to which the well belongs, it is desirable to drill in a mid-point among well Nos.1, 4 and 6 to make further exploration. Other hydrocarbon occurrences of the Beryl area are as follows; oil shows or indications

were found in sediments of cycle V in well No.2, of cycle VI in well No.4, and of cycle VII in well No.3, while there was no hydrocarbon indication in well Nos.1 and 5.

It should also be reminded that GWC of the gas zone is obtained at well No.6. The field is still in the early stage of exploration and the objective area should be decided by more exploratory work.

[Seismic Interpretation]

An interpreted horizon of the seismic interpretation was the top of upper cycle VI. In general, quality of reflections associated with the target horizon is good. Several faults running east-west are clearly recognized in the seismic sections, but reflections are not always correlative across faults. In a fault block where no well has been drilled, reflections were correlated across the fault by the reliable seismic sections. The relation of reflection time versus depth was based on well shooting data of Beryl Nos.3, 4, 5 and 6. Interpretation result and representative seismic section are shown in Fig. 10-1-1 and Fig. 10-1-2.

5.2.1 Siwa Field

5.2.1 Geology and Hydrocarbon Occurrences

There is an east-west trending fault zone between Siwa well Nos.3 and 4 and this gives different structural characteristics to the north and south.

The south structure drilled by well Nos.1, 2 and 3 is a nose-like anticline pluging southward with considerably steep wings. It is suggested from seismic record sections that, after monotonous sedimentation continued till an early Pliocene time, a sudden tectonic movement happened to cause the uplift in the south area. The three wells drilled on the south structure all encountered undersompacted shale at about 5000 ft, which suggests the possibility of the structural origin in shale diapir movement.

Hydrocarbons were discovered only on the north structure in well No.4. Study was made for the northe structure in part because correlation was not possible between the two structures. The north structure is an east-west elongate high downthrown relative to the south (Figs. 11-2-1, 2). Well No.4, located near the crest of the anticline, contains hydrocarbons in mainly deltaic sediments of

cycle V. It is considered that the south structure was formed after the migration of hydrocarbons had finished, if any.

[Seismic Interpretation]

Near the top of zone d₁ was a target horizon of the seismic interpretation. In the interpreted area quality of reflections arising from the target horizon is partly poor, but mostly fair to good. The relation of reflection time versus depth is based on well shooting data of Siwa No.4. Interpretation result and representative seismic section are shown in Fig. 11-1-1 and Fig. 11-1-2.

5.2.2 Reservoir Analysis

Four wells have been drilled, however, only the Siwa Well No.4 is drilled into the objective structure.

In the location of Well No.4, where the well is drilled into the crestal part of the structure, hydrocarbon accumulation is observed in the depth interval from 1380 ft to 6700 ft BDF. Shallow horizon above the depth of 2000 ft is an alternation of shale and thin sand, and poor reservoir characteristics is anticipated.

Main reservoir is sand zone below 4000 ft depth, however, water levels are confirmed in many sand layers and wide reservoir extent can not be anticipated.

Areal extent should be confirmed and productivity should be evaluated by DST or production test.

- 6. FIELD FOR DEVELOPMENT (II) CENTRAL LUCONIA FIELDS
- 6.1 Geology

6.1.1 Stratigraphy

Central Luconia area is a sedimentary basin off Sarawak and has an about 6,000 km² area with water depths of 100 to 500 ft. This basin is characterized by reefal carbonate buildups which were developed in Middle to Late Miocene age. Each of the 14 studied structures was drilled by generally one or two walls, which penetrated the carbonate buildups. The structure which was drilled by the deepest well is B12 with a total depth of 12,225 ft and other structures were drilled by wells of total depths of 4,500 to 7,500 ft (Fig. 12-2-1, Table 12-2-1).

Sedimentary sections known in Central Luconia area are composed of sediments of sedimentary cycles III to VIII. The beginning of the carbonate buildup development is considered to be at times of cycles III to IV in Middle to Late Miocene age, but the termination of their development appears to be younger toward the north or northwest (Fig. 12-2-1). That is to say, times of termination of reefal development were probably within the cycle V time for fields of the southern side of a line connecting K4 and F23, at almost the same time as top of cycle V for fields

of the northern side to M5 area, and then within the cycle VI time for M3 and M1 in the northernmost area.

6.1.2 Structure of Reefal Carbonates

Fig. 12-2-2 shows areal size and shape of reefal structures at hydrocarbon bearing levels. The largest fields reach about 50 km² in area in F6 and F9. Most structures elongate N-S and NE-SW but F13 structure has a mixture of the two directions. Structural cross-sections shown in Figs. A75, 78, 81, 85, 90 indicate that carbonate buildups such as F13 and F14 have flat tops and others such as E11 and F22 have steep flanks.

The basements of the carbonate buildups were encountered in wells only in two fields of Ell and F13, but all of interfaces between water and hydrocarbons are proved to be within the carbonates as shown in Fig. 12-2-1. Gas columns confirmed in wells attain a maximum of 1,660 ft in E8 and a minimum of 220 ft in M1. The number of wells drilled on each structure is one to three. Correlation was not effective to know the internal structure or stratification of the carbonate reservoirs because of an insufficient number of wells fully penetrated the carbonates. However, some fields can be subdivided into a few zones in vertical sections.

6.1.3 Seismic Interpretation and Geology of Each Fields

In this section, (a) the explanation of seismic interpretation and (b) geologic comments on structure and reservoirs are given to each field.

Bl2 Field

- (a) A target horizon of the seismic interpretation was the top of carbonates. Quality of reflections is partly a little poor in the seismic sections shot in 1968, but generally good in the other sections. Well shooting data of B12 No.1 was available. Interpretation result and representative seismic section are shown in Fig. 12-1-1 and Fig. 12-1-2.
- (b) The Bl2 structure is the deepest carbonate buildup in the Central Luconia objective fields. Well No.1 penetrated carbonate rocks between 10,564 and 12,225 feet without reaching the basement. This reefal structure is NNE-SSE elongate, dome-like, and 6 km long and 2 km wide at the level of GWC and was drilled by well No.Bl2. 1X on the crest (Figs. 12-2-3, 6). Gas bearing reservoirs are limestones argillaceous to a considerable extent and of an average effective porosity of 14%.

E6 Field

- (a) An interpreted horizon was the top of carbonates. In general, quality of reflections associated with the interpreted horizon is fair to good, but partly a little poor in the eastern and western flanks of this carbonate buildup. The well shooting data of E6 No.1X was used for time-depth conversion. Interpretation result and representative seismic section are shown in Fig. 12-1-3 and Fig. 12-1-4.
- (b) The E6 structure is very elongate in the north-south direction and 10 km long and 1.5 km wide at the OWC level. It has two crests with similar heights in the north and the south, on the north of which well E6.1X was drilled (Figs. 12-2-4, 6). Reservoir rocks are limestones which show good characteristics for gas and oil bearing intervals except a shaly part of the uppermost several tens feet; namely, the interval of 5300 to 5600 ft consists of wackestone and packstone with an average effective porosity of 25%, and the interval of 5600 to 5830 ft is of wackestone with that of 19%. However, reservoir rocks deteriorate downward just below the OWC level at 5938 ft.

E8 Field

- tation was the top of carbonates. In the crestal part of this carbonate buildup, quality of reflections from the target horizon is fair, but in the marginal area it is generally poor. Well shooting data of E8 Nos.1X and 2 was available. Interpretation result and representative seismic section are shown in Fig. 12-1-5 and Fig. 12-1-6.
- elongate reef with a flat top and steep flanks,
 3.5 km long and 2.5 km wide at the GWC level
 (Figs. 12-2-5, 6). Two wells have been drilled
 without reaching the basement. Limestones are
 good in reservoir characteristics, except for
 the topmost 150 ft in well No.E8.1X and 280 ft
 in well No.E8.2, and consist mainly of packstone with minor intercalations of grainstone
 and wackestone, showing an average effective
 porosity of around 20%. However, reservoir
 rocks decrease in porosity below the GWC level.

Ell Field

(a) The top of carbonates was a target horizon of the seismic interpretation. Quality of

reflections associated with the top of carbonate is generally good to fair, but partly poor in the marginal area of the carbonate buildup. Time-depth conversion was made by the well shooting data of Ell Nos.l and 2. Interpretation result and representative seismic section are shown in Fig. 12-1-7 and Fig. 12-1-8.

The Ell structure does not have a flat (b) crest but steep slopes with dips of as much as 35 degrees, and is 8 km long and 4 km wide at the GWC level. The structure has been drilled by two wells, well No.Ell.lX on the crest and well No.Ell.2X on the east flank (Figs. 12-2-7, 9). The reefal limestones are vertically divided into the upper and lower parts with the boundary at depths of about 5900 to 6100 ft by the occurrence of shaly and low porosity intervention through which vertical communication of reservoir fluids are considered impossible. Reservoir rocks are mainly of wackestone and packstone and have an average effective porosity of about 20%. The basement of the carbonate buildup is reached at 6583 ft in well No.Ell.lX. Beside of the reefal reservoir, for a shallower interval between it and a 2600 ft depth there are gas accumulations in

a number of sandstone beds of cycle V though being in a much lesser amount.

F6 Field

- (a) An interpreted horizon was the top of carbonates. Quality of reflections arising from the interpreted horizon is good. The relation of reflection time versus depth was based on well shooting data of F6 No.2. T-z graph of F6 No.1 was not used because it was not clear whether this graph had been constructed based on the well shooting data, for lack of check shot marks in the graph. Interpretation result and representative seismic section are shown in Fig. 12-1-9 and Fig. 12-1-10.
- (b) The F6 structure is one of the largest reef fields in Central Luconia and has a gas bearing area 20 km long and 4 km wide at the GWC level. It is an ENE-WSW elongate structure the crest of which was drilled by well No.F6.1X and the north-east flank by well No.F6.2 (Figs. 12-2-8, 9). The carbonates in well No.F6.1X become better upward with increasing proportions of grainstones to wackestones. At about 3960 to 4090 ft in well No.F6.1X there is a reservoir deterioration caused by a marine transgression

which may divide the reservoir into the upper and lower parts, but this is doubtful to be applied to the whole area of the large field.

F9 Field

- tation was the top of carbonates. Quality of reflections associated with the top of carbonates is generally good to fair, but partly a little poor in the northern flank of the structure. Well shooting data of F9 No.1X were used for time-depth conversion. Interpretation result and representative seismic section are shown in Fig. 12-1-11 and Fig. 12-1-12.
- (b) The F9 structure is located 10 km north of the F6 structure. It is an ENE-WSW elongate structure with extremely flat surfaces, hollowed in the central portion, and has a gas bearing area 13 km long and 6 km wide (Figs. 12-2-10, 12). Well No.F6.1X was drilled nearly on the crest biassed in the north-east. Reefal carbonates mainly consist of wackestones and not good as reservoir rocks. The gas bearing interval of 232 ft has also a low net-gross ratio of as low as 0.29.

F13 Field

- (a) A target horizon of the seismic interpretation was the top of carbonates. Quality of reflection arising from the target horizon is generally good to fair, but partly poor. Well shooting data of F13 Nos.1X and 2 were used for time-depth convertion. Interpretation result and representative seismic section are shown in Fig. 12-1-13 and Fig. 12-1-14.
- (b) The F13 field is in a reefal structure

 10 km north of the Ell structure. It indicates
 two structural orientations which perhaps results from the basement movement and configuration; namely they are the NE-SW trend over
 the area and the N-S trend dividing the structure east-west. The "sub-structure" of the
 northeast was drilled by well No.F13.1X and
 that of the southwest by well No.F13.2 (Figs.
 12-2-11, 12). Well No.F13.1X reached the
 basement of the reef complex at 6860 ft in
 well No.F13.2. Reservoir limestones consist
 of packstones and wackestones and give an
 average effective porosity of 22%.

Fl4 Field

- (a) An interpreted horizon of this field was the top of carbonates. Well shooting data of F14 No.1X was available. Interpretation result and representative seismic section are shown in Fig. 12-1-15 and Fig. 12-1-16.
- (b) The F14 structure is a reef complex with extremely flat top surfaces and was drilled by well No.F14.lx in the center. The field is restricted by an E-W trending fault in the north (Figs. 12-2-13, 16). Proved gas column is only 223 ft but the gas bearing interval has an average effective porosity of 27% indicating relatively good reservoirs.

F22 Field

(a) The top of carbonates was interpreted in this field. Quality of reflections from the interpreted horizon is good to fair. Areal extent of this field is very small and since only three survey lines cover this field, detailed configuration of this structure is not definite. Well shooting data of F22 No.1 was used for time-depth conversion. Interpretation result and representative seismic section are shown in Fig. 12-1-17 and Fig. 12-1-18.

(b) The F22 structure is a relatively small,

NE-SW elongate reef of a gas bearing area of

3 km in length and 1 km in width with slopes

dipping as steeply as 37 degrees (Figs. 12-2-14,

16). Reservoir rocks are tight for the upper
most 80 ft interval, but below this, increase
in effective porosity from 12% to 25% downward.

F23 Field

- (a) A target horizon of the seismic interpretation was the top of carbonates. Quality of reflections associated with the top of carbonates is good and the reflections were easily followed. Well shooting data of F23 No.1 was available. Interpretation result and representative seismic section are shown in Fig. 12-1-9 and Fig. 12-1-20.
- in a gas bearing area of 7 km in length and 3.7 km in width (Figs. 12-2-15, 16). It has dips varying from 40 degrees near the GWC level to gradually small values toward the top. Well No.F23.1 is on the topmost part of the structure, where a gas column attains 1,060 ft. The net-gross ratio of the gas bearing interval is 0.95 and the average effective porosity is

as high as 25%. The core data of well No.F23.1 indicate that the rocks are of principally vuggy reefoid for the interval between 4150 and 5000 ft.

K4 Field

- (a) An interpreted horizon of this field was the top of carbonates. Quality of reflections arising from the interpreted horizon is generally fair, but partly poor. Well shooting data of K4 No.1 was available. Interpretation result and representative seismic section are shown in Fig. 12-1-21 and Fig. 12-1-22.
- (b) The K4 field is located in the westernmost part of Central Luconia area. It is a small reef structure elongated in the north-south direction and has a gas bearing area of 3.5 km in length and 1.5 km in width. Well No.K4.1 was drilled on the crest with only a 238 ft gas column. Limestones of the gas interval have an average effective porosity of 28%.

M1 Field

(a) A target horizon of the seismic interpretation was the top carbonates. Reflections arising from the top of carbonates appear clearly in the marginal area of this buildup, but do not in the main area. However, as reflections of different pattern appear in the main area, these reflections were assumed to be associated with the top of carbonates. Well shooting data of Ml No.1 was available. Interpretation result and representative seismic section are shown in Fig. 12-1-23 and Fig. 12-1-24.

(b) The Ml field has a ring-like, NE-SW elongate, reef structure with hollow parts at some places. The overall size of the structure is 8.5 km long and 5 km wide at the GWC level. The highest part of the ring is on the west and was drilled by well No.Ml.lX (Figs. 12-2-18, 21). The gas column is 220 ft in a maximum and probably less than 100 ft in the most parts of the ring.

M3 Field

(a) An interpreted horizon in this field was the top of carbonates. Quality of reflections arising from the top of carbonates is good. Well shooting data of M3 No.1 was available. Interpretation result and representative seismic section are shown in Fig. 12-1-25 and Fig. 12-1-26. (b) The M3 structure is a platform type reef of an E-W elongate oval shape, 6.5 km in length and 4 km in width (Figs. 12-2-19, 21). The gas column is 390 feet in well No.M3.1X which was drilled somewhat downflank. A tight part of 30 feet or so is found in the middle of the gas zone.

M5 Field

- (a) The top of carbonates was a target horizon of the seismic interpretation. Quality of reflections from the interpreted horizon is good. Well shooting data of M5 No.1X was available. Interpretation result and representative seismic section are shown in Fig. 12-1-27 and Fig. 12-1-28.
- (b) The M5 structure is a platform type reef
 7 km long and 4 km wide. The highest point is
 biassed in the southeast of the field (Figs.
 12-2-20, 21). It is regarded that the gas
 bearing interval does not have effective porosities for the most part since the upper part
 of limestones is mostly tight.

6.2 Reservoir Analysis

6.2.1 Analytical Procedure

For all of the reservoirs in the fourteen fields, the hydrocarbon accumulation was confirmed by FIT and log analysis results. Volumetrically calculated gas in place for the individual fields is tabulated on Table 1-1-4.

In this reserves calculation, the gas formation volume factor was estimated for representative sample of the fields as listed on Tables 12-3-1 - 8, based on the mole fraction of each components by Standing and Katz method.

For the objective gas fields for development, which are E8, E11, F6, F13, F14 and F23, the relations of

Reservoir Pressure/Gas Deviation Factor vs
Cumulative Production

were calculated at first by regarding all the reservoir as complete volumetric reservoirs. Based on the relations, the instantaneous static reservoir pressures were described as a function of cumulative production.

Finally bottom hole flowing pressures were described as a function of cumulative gas production for variable daily production rates cases of 30, 20 and 10 MMSCF/D by the turbulent steady-state flow equation. The computed results are described on Figs. 12-3-7 - 12 and on Tables 12-3-9, 12 - 18.

In the estimation of ultimate recoveries and deliverabilities required for establishing suitable production facilities design, the relations of Well Head Flowing Pressure vs Cumulative Production as a function of individual well production rates are required.

The well head pressures for variable production rates cases were estimated from Cullender & Smith method. The relations are described in Part B.

The application of the above procedures is due to the fact that no production potential test has been conducted so far for the Central Luconia fields except for Ell.2 and Fl3.3.

The exceptional field among the fields for development in the Central Luconia Area is E6, which can be interpreted to be an oil field with a huge gas cap.

Oil production is scheduled on this field, however, with the progress of the depletion stage, a lot of associated gas is anticipated to be produced. In the recommended gas production schedule, consideration was also made for the efficient utilization of the associated gas from E6.

The reservoir performance predictions for E6 obtained by material balance method for the volumetric reservoir with gas cap were made for two cases, one was for natural depletion and the other was for restricted gas production case. The cases are presented on Figs. 12-3-5, 6, tabulated on Tables 12-3-10, 11 and rock and fluid characteristics are shown on Figs. 12-3-1 - 4.

The most important factor to attain maximum recovery is the control of producing gas oil ratio. The value changes with the progress of the depletion stage.

The most recommendable producing gas oil ratio was described for the individual zones as a function of cumulative oil production and summarized on Fig. 12-3-13.

6.2.2 Test Required in Future

Reserves and reservoir performances were calculated based on the aforementioned procedure for the individual fields, which were estimated to have sufficient deliverability for anticipated gas production schedule.

What are required from now on for those fields are

- (1) to evaluate the gas properties accurately by analysing the samples obtained under stabilized reservoir condition, collected through the recombine method of separator fluid and liberated gas, and
- (2) to confirm maximum allowable production rate determined from the modified Isochronal Test, and
- (3) to review the proposed schedule presented in this report.

Especially, the required numbers of wells to be allocated for individual fields are much influenced by the potential test results.

The computed results presented in this report are, with all several assumptions and premise,

thought to have sufficient capability for proceeding the gas production project.

It should be reminded, however, that the reservoir heterogeneity of the limestone reservoir is supposed to exist always, even though the areal extents of the fields are clearly obtained. The reservoir parameter, therefore, should be obtained in the sufficient points in the reservoir through the above tests. The biggest point that is quite different from the sandstone reservoir is this heterogeneity.

The degrees of draw down imposed on the reservoir are much influenced by the skin factors at well bore. Instead of conducting conventional acidizing, recommended are to select the most suitable acid by laboratory analysis for the representative sample and to conduct acid fracturing. Gas productivity for the individual wells will often be much increased.

6.2.3 Recoverable Gas and Condensate Reserves

In the gas reservoir, the recoverable gas volume depends on the well head restriction. Based on the relation of bottom hole pressure us cumulative production for variable rates of production, well head pressure was estimated by Cullender & Smith method. The point when the estimated well head pressure corresponds to the utilized facilities restriction is the abandonment time.

Recoverable reserves for the proposed deliberability sheedule are as follows.

	Original in Place (MMMSCF)	Recoverable Volume(MMMSCF)	Recovery (%)
E8	1.25	0.69	55.2
Ell	3.45	2.08	60.3
F6	5.61	2.46	43.9
F13	1.47	0.71	48.3
F14	1.25	0.62	49.6
F23	5.75	3.37	58.6

(Offshore Compressor Installation Case)

As for the condensate recovery, it is not possible to estimate the value, because no sample analysis has been conducted for the combined sample of liberated gas and separator fluid. Phase

equilibrium calculation should be conducted based on the sample collected under stabilized reservoir condition.

The estimation based on liberated gas analysis obtained during short time production test will lead to serious error.

7. CONCLUSIONS AND RECOMMENDATIONS

Baronia field has the largest original hydrocarbon in place with the highest productivity among the existing producing oil fields in Malaysia.

The reservoir energy was interpreted to be combination drive of aquifer water, solution gas and gas cap expansion. High production rate was recorded so far, however, production control, especially strict control for the producing gas oil raatio is required for efficient utilization of the reservoir energy.

Optimum producing gas oil ratio is illustrated in this report as a function of cumulative produced oil. The relation, however, should be reviewed and revised year by year by observing actual field performance.

Reservoir performance predictions were made for two cases. One is the case for the extension of the existing conditions and the other is for the additional wells case. The additional wells case was made from the view point of enchancing production rate and increasing areal sweep efficiencies. The estimated production rate can be defined as technically allowable maximum production rate.

The reservoir has only short production history.

Survey of well behaviors at the crest and down flank of the structure is required to confirm what is the dominant reservoir energy.

Special core analysis data are required for the main producing zones to decide most suitable secondary recovery method. Commingled production system is widely applied in the well completion of stratified reservoir. In this system, periodical production test is required to make suitable production allocation to individual zones.

2. The Fairley-Baram field bestrides the international boundary between Malaysia and Brunei with its crestal part in Brunei. Well interference was expected when additional wells are drilled and produced, which means that increased oil production rate in one area will cause the production decline in the other area.

Such efforts are recommended in this report as to increase the field total recovery by mutual agreement between Malaysia and Brunei.

Unit operation based on the original oil in place seems to be the most suitable ways in developing this field.

3. West Lutong field has the longest production history among the fields in Malaysia. The main producing zone is B Zone, which is supported by strong water drive.

The reservoir will be abandoned not from pressure decline but from increased water oil ratio, while the reservoir pressure will be kept comparatively high.

The reservoir is in quite stable condition and WOR and GOR control are required. The lower part of the field has still undeveloped area.

Additional wells are recommended to be drilled and expected performances were illustrated.

4. Among the Central Luconia fields, six gas fields and one oil field were selected for establishing the short term fields development schedule.

The gas deliverability schedule of 1340 MMSCF/D with the project life of 20 years was recommended and the required production facilities were designed.

In this area, only one or two wells have been drilled for individual fields, and no detailed production test has been conducted so far. The reservoir is composed of carbonate build-up and reservoir heterogeneity was anticipated to exist. Detailed reservoir information should be collected every time when new well is completed.

FIT sample analysis data are available, however, the results gre quite insufficient to estimate anticipated fluid characteristics. Recommended are to conduct gas and liquid analyses for the recombined sample of liberated gas and separator liquid, collected under stabilized reservoir condition, and to make phase-equilibrium calculation. Modified isochronal test is recommended to decide the optimum well base gas deliberability.

Followings are recommended in the actual field operation.

(1) Special core analysis data should be collected for the main productive zones of individual fields.

The data will be helpful in establishing the most effective secondary recovery method, to say nothing of performance analysis.

(2) Special fluid analysis should be made for the samples collected through the actually applied well completion system.

The data will be helpful in establishing the most optimum operating conditons (separator pressure and temperature) and resultantly increase recoverable oil.

Analysis for the separator liquid together with liberated gas is indispendable for the estimation

of fluid characteristics under any operating conditions by phase equilibrium calculation.

(3) Detailed production test is required at the time of well completion.

Minimum three sizes of choke are recommended to be used for the test, and draw-down, productivity and producing gas oil ratio data should be obtained. The data will be helpful in deciding the most optimum production rate.

(4) Control of producing gas oil ratio is required for the producing field.

In order to preserve the reservoir energy, it is recommended to make production control to restrict producing gas oil ratio for the fields whose main displacement energy is the gas cap expansion and solution gas. The maximum allowable producing gas oil ratio is not constant, depending on the progress of reservoir depletion stage.

For individual producing fields, recommendable producing gas oil ratio is descibed as a function of cumulative oil production.

(5) Countermeasures for High Producing Gas Oil Ratio

The cause of high producing gas oil ratio should
be detected by the use of Combination Production

Log survey, if necessary.

Control of producing gas oil ratio should be made not only by the use of reduced choke at well head but also by the shut-off of high gas saturation zone through the work over or by closing the sliding side door.

(6) Commingled Production System and Well Test

The commingled production system by the use of the sliding side door is efficient ways in completing highly stratified reservoirs, but production profile information by the periodical production test and profile survey is indispendable for the proper field operation.

PART B SURFACE FACILITIES

1. EXISTING FACILITIES

1.1 Present Status of the Existing Production Facilities

The Lutong Stream will be further classified into the following three offshore oil streams which consist of six oil fields as shown in Fig. 13-4-1.

- Baronia, West Lutong, Bakau and Tukau Fields
 Stream
- 2) Fairley-Baram Field Stream
- 3) Baram Field Stream

Table 13-4-1 shows the oil and gas production rate of each field as of May, 1976.

Produced oil is transferred to shore after separation of gas at the offshore Production Platforms and dehydrated and stored at the Lutong Terminal. Then the oil is sent to offshore loading facilities or to Lutong Refinery.

Field facilities adopted here are conventional and rather simple with several characteristic points such as underwater well completion, standard modular concept for production platform design and reciprocating oil transfer pump driven by gas expansion on the Production Platforms.

1.1.1 Offshore Production Facilities

(1) Oil Gathering Scheme

The oil gathering scheme for the following three streams is shown on Figs. 13-4-2, 3, 4, 5, 6, 7 and 8. The production rates described below in this article are the figures as of May, 1976.

1) Baronia, West Lutong, Bakau and Tukau Fields Stream

In Baronia field total oil plus formation water of 51,977 BPD is collected at Production Platform A (BNP-A) and this oil is transferred to Bakau Production Platform A(BKP-A).

In West Lutong field major portion of the oil water mixture produced in the field is collected at Production Platform A(WLP-A) and this mixture is sent to Lutong Terminal by a 10" submarine transmission line after combined with Baronia and Bakau production.

In Bakau field total oil plus formation water of 5,316 BPD is gathered into Production Platform A(BKP-A) and this production combined with that of Baronia field is transmitted to West Lutong Production Platform A(WLP-A).

In Tukau field total oil production with some formation water of 13,411 BPD is gathered at Production Platform A(TKP-A) and is transferred to West Lutong Production Platform C(WLP-C) where the other portion of West Lutong production is gathered. The combined production is transferred to Lutong Terminal by another 12" transmission line.

From WLDP-A, 11.2 MMSCFD separated gas at the platform is sent to the Lutong Terminal through 8" pipeline for the utilization as fuel gas mainly for the refinery.

2) Fairley-Baram Stream

A detailed oil gathering scheme for this stream is not clear because the stream is being gathered in Brunei.

3) Baram Field Stream

Produced oil with formation water of 14,358 BPD is collected at Production Platform B(BAP-B) and delivered to Production Platform A(BAP-A). The production combined with that of 33,503 BPD produced at BAP-A is sent to the mouth of Baram River through 12" transmission line and then transferred to Lutong Terminal by 10" onshore line.

(2) Facilities

Offshore production facilities mainly consist of Drilling Platforms, Production Platforms and submarine pipelines.

1) Drilling Platforms

The following three kinds of drilling platforms are used in this area:

Well Head Protection Jacket

- · 3-leg/1 Well Jacket
- · 3-leg/2 Well Jacket
- · 3-leg/3 Well Jacket
- · 4-leg/4 Well Jacket

Tender Assisted Drilling Platform

- 6-leg/10 Well Platform
- 6-leg/12 Well Platform
- 8-leg/12 Well Platform

Self-contained Drilling Platform

4 x 4-leg/17 Well Platform

Most production wells are completed on multiwell drilling platforms and well production is transferred to bridge-connected Production Platforms, while produced oil at the satellite platforms is transmitted through individual flowlines. Exceptionally, there are two underwater completion wells in Baronia field.

Individual flowline connects each well with the production platform.

Summary of offshore structures for five oil fields in this area is shown in Table 28-4-1.

2) Production Platforms

Each oil field has one or two Production Platforms where oil and gas separation equipment, transmission pumps and associated equipment are equipped to handle the well effluent from an adjacent Drilling Platform together with that brought from satellite well platforms by flowlines.

The Production Platform is a 4-leg structure with the deck dimension 50' \times 62' and is installed separate from Drilling Platform due to a safety reason. Major equipment arrangement of that Production Platform is shown on Fig. 13-4-9.

This platform has two major distinctive features as follows:

- Standard modular concept adopted for the processing equipment and platform design
- . Reciprocating oil transfer pumps driven by expansion of high pressure separator gas

Fig. 30-4-1 shows typical mechanical flow diagram of standard Production Platform.

The standard Production Platform is basically designed at nominal gross (oil plus formation water) throughput of 30,000 BPD together with 90 MMSCFD associated gas. The throughput can be increased to 60,000 BPD by adding the second bank separators. Transmission pumps whose capacity is 13,000 BPD each can be installed up to 5 units on the deck. There were eight standard Production Platforms in the five oil fields as of December, 1976. The design oil handling capacity for each platform is as follows.

Design Capacity of Each Production Platform

Field	Production Platform	No. of Separator Banks	Design Gross Oil Throughput	No. of Transfer Pumps (Capacity)
Baronia	BNP-A	2	60,000 BPD	5 (65,000 BPD)
West Lutong	WLP-A	1	30,000 BPD	3 (39,000 BPD)
	WLP-C	1	30,000 BPD	3 (39,000 BPD)
Baram	BAP-A	2	60,000 BPD	5 (65,000 BPD)
	BAP-B	1	30,000 BPD	3 (39,000 BPD)
Bakau	BKP-A	1	30,000 BPD	3 (39,000 BPD)
Tukau	TKP-A	1	30,000 BPD	3 (39,000 BPD)
	TKP-B	1	30,000 BPD	3 (39,000 BPD)

Most wells are produced without artificial lift but portion of wells in West Lutong field are produced by either gas lift or fluid lift. Fluid lift is the artificial lift using well fluid of high GOR well without any processing. Production from wells is directed into a manifold system leading to a production separator bank on each Production Platform and generally separated in three stages under following conditions.

lst Stage	250 psig in HP Separator
2nd Stage	50 psig in LP Separator
3rd Stage	Near Atom. in Surge Vessel

In some cases, the pressure of 1st stage varies depending on flowing wellhead pressure. HP Separator was operated at 200 psig in the West Lutong Production Platform (WLP-A) at the time of site survey performed in January, 1977. In addition, HHP Separator is installed on the West Lutong Drilling Platform (WLDP-A) and the separator operating pressure was 700 psig at the time of our site survey. Some wells of comparatively low wellhead pressure are connected to LP (low pressure) manifold which leads the well fluid directly to LP Separator. After separation of gas at a Surge Vessel, oil is delivered to Lutong Terminal by gas expansion driven transfer pumps through submarine transmission line.

Production ability of each well is measured by a

Test Separator twice a month which is accommodated on
each Production Platform, while the total fluid production cannot be measured as there are no metering facilities on the platform.

Separated gas at separators is vented at a Vent Structure which is located 2,000' apart from a Production Platform and connected with it by a submarine vent line. The 250 psig gas from HP Separator is utilized to drive oil transfer pumps and then led to the vent line. The utilized gas corresponds to above 16% of

total separated gas which ranges 250 to 300 MMSCFD in these five fields in 1976. Separated gas by HHP Separator at WLDP-A is used for gas lift gas and also for the fuel gas to be sent to the Lutong Terminal through 8" pipeline for the utilization as fuel gas mainly for the refinery.

Produced formation water is transported to Lutong
Terminal together with the oil without any separation
at the platform. However, oily deck drains are collected and treated by a submerged caisson type oil-water
separator.

Major equipment lists with simple specifications of the Production Platforms are attached as Tables 13-4-2, 3, 4, 5, 6, 7, 8 and 9.

3) Submarine Pipelines

Submarine pipelines except loading lines consist of the following;

a. Oil Lines

- (i) to transfer well fluids from satelline Drilling
 Platforms to Production Platforms
- (ii) to transfer gas-separated oil with formation water to another platform

(iii) to transfer combined oil water mixture to Lutong
Terminal

b. Gas Lines

- (i) to transfer separated gas from Production Platform to Vent Structure
- (ii) to transfer separated gas from WLP-A to Lutong
 Terminal
- (iii) to transfer gas lift gas to satellite platform wells

Summary of the above-mentioned pipelines is shown in Table 28-4-2 and the general layout of the offshore pipelines is shown in Figs. 13-4-2, 3, 4, 5, 6, 7 and 8.

1.1.2 Lutong Terminal

(1) Storage Facilities

The layout of Lutong Terminal facilities is shown on Fig. 13-4-10. Gross production (oil plus formation water) gathered from five fields flows into storage tanks and is settled for about 24 hours to separate water then stored in appropriate tanks. The gross storage capacity of Lutong Terminal is 161,000 long tons or about 1,252,000 barrels. Tanks are classified into three groups which are crude, products and Brunei natural gas liquid.

The last group tanks are to be converted to those for Miri light crude. Natural gas liquid was transported from Brunei by an onshore pipeline.

As the soil condition is very bad as shown on Fig. 13-4-11 which is a typical example, the height of storage tanks is limited rather small, accordingly all tanks are cone roof type except only one gasoline storage tank which has a floating roof.

The official gauging for sale is carried out by manual dipping at a storage tank after 24 hours settling. Measuring of water separated at the tanks is not carried out. Estimation of total water production is made based on the analysis results of samples taken from incoming crude and water mixture.

Combined waste water is gathered into two drain pits connected each other in series and the latter is a 3-channel gravity type oil separator. The both pits have oil skimmers and skimmed oil is sent to a slop tank in which crude, emulsion and water are separated. Crude is injected into crude filling line and water is returned to the former pit. Emulsion is then treated with heater treater at 250°F and separated crude and water are also sent to crude filling line and pit respectively. Oil content of final effluent to the sea is to be around 50 ppm.

(2) Loading Facilities

Route and size of loading lines are shown on Fig. 13-4-12. Loading of crude and products to tankers is carried out at the following berths all of which are SBM type.

Berth No. 1 (for white products *1)

LINE NO.	RATE		
lA	630 BPH	(100 M	³ /HR)
18	4,410	(700)
ıc	4,410	(700)
10	1,130	(180)
Berth No. 2 (for	black product	s *2)	
2 lines	7,560	(1,200)
4 lines	13,860	(2,200)
3B LFO	630	(100)
Berth No. 4 (for	black product	s *2)	
2 lines	7,560	(1,200)
3 lines	13,860	(2,200)
4 lines	15,120	(2,400)
5 lines	19,530	(3,100)

- Notes *1 Topped naphtha, kerosene, gas oil, etc.
 - *2 SWR (Sarawak Waxy Residue)

 MLC (Miri Light Crude)

 BNGL (Brunei Natural Gas Liquid)

 Bunker

Simultaneous loading operations for tankers at two or three SBMs are not performed due to miscellaneous reasons in relation to tank combination, customs, third party inspection of tank dipping, etc.

Maximum size of tankers to be moored will be 90,000 DWT and possibly 100,000 DWT at good sea conditions such as wave, tide and current. Anchor chains are fixed at the sea bottom by anchors and not by piles.

Available draft for each berth is as follows;

No.	1	4	1	1

No. 2 41'

No. 3 44'

1.2 Review on the Capacity of the Existing Production Facilities

Review was performed to evaluate the capacity of the existing production facilities and to proceed to the subsequent assessment of the capacity compared with the predicted production performance. The major facilities and items for reviewing are as follows and these are considered to dominate the capacity of total facilities. For the execution of the study several assumptions have been made in accordance with the availability of the data.

Facility Items for Review

- 1) Offshore Production Facilities
 - · Oil and gas separator
 - · Gas venting line
 - · Oil gathering line
 - · Oil transmission line
- 2) Onshore Production Facilities
 - Storage tank
 - · Loading system

Study Items

1) Separator

- Liquid capacity or retention time for proper oil-gas separation and for absorbing possible surge
- · Gas capacity to handle separated gas

2) Vent or Flare Line

· Gas capacity to handle separated gas

3) Oil Gathering and Transmission Line

 Pressure balance for present oil production rate and for maximum oil handling capacity of production platforms

4) Storage Tank

 Storage capacity to meet maximum visiting tanker and enough allowance for daily production

5) Loading System

· Pressure loss and flow speed in loading line

1.2.1 Offshore Production Facilities

Standard modular concept is adopted on offshore production platform design in this oil field and separation system on the platform is basically designed at a nominal gross liquid (oil plus formation water) throughput of 30,000 BPD together with 90 MMSCFD associated gas. Throughput is designed to be increased to 60,000 BPD by adding second bank of separator. Platform space is available for transmission pumps to be installed up to 5 units.

(1) Separator

Calculation Bases

Flow Rate		30,000 BPD	30,000 BPD			
•	H.P. Separator	L.P. Separator	Surge Vessel			
Operating Pressure	250 PSIG	50 PSIG	10 PSIG			
Operating Temperature	123°F	113°F	110°F			
Separator 72"I.D.x20'		72"I.D.x20'	126"I.D.x32'			
Specific Gra (Assumed)	vity					
Gas	0.671	0.764	1.077			
Oil	0.830	0.830	0.830			
Gas Velocity Factor	0.40	0.40	0.40			

Calculated Results

	Retention Time	Gas Capacity
H.P. Separator	2.7 minutes	61.5 MMSCFD
L.P. Separator	2.7 minutes	28.9 MMSCFD
Surge Vessel	13.6 minutes	46.4 MMSCFD

(2) Vent Line

Calculation Bases

Same as those for separator calculation.

Calculated Results

	Size and Length	Maximum Gas Flow Rate
High Pressure Vent Line	10" x 2,000'	167 MMSCFD
Low Pressure Vent Line	10" x 2,000'	36 MMSCFD
Low Pressure Vent Line	10" x 2,000'	11 MMSCFD

(3) Oil Gathering and Transmission Line

Figs. 13-4-13 and 13-4-14 show pressure balance of gathering and transmission lines under present production rate and design maximum liquid handling capacity of Production Platforms.

1.2.2 Lutong Terminal

(1) Storage Tank

The following is analysis on storage tank capacity made by the operating company:

Gross Tankage	1,252,000 BBLS
Unpumpable	(-) 210,000
Pumpable	1,042,000
One Tank for Emulsion Service	(-) 47,000
Max. Operating Ullage	995,000
Receiving, Settling & Drainage	(-) 93,000
l-1/2 Day Safeguard to Delay	(-) 156,000
Balance	746,000

This balance of 746,000 barrels is about equal to cargo volume of 100,000 DWT tanker or additional daily production for one week.

(2) Loading System

The loading system at Lutong Terminal is complex due to presence of many pipelines and pumps for many products transferred to three sea berths. The operating company indicated us the following operational target loading rates for the combination of lines at each sea

berth. Berth No. 1 was omitted from the review as it is especially for the loading of white products.

Berth No. 2

2	lines	7,560	ВРН
4	lines	13,860	врн

Berth No. 4

2	lines	7,560	врн
3	lines	13,860	врн
4	lines	15,120	врн
5	lines	19,530	врн

The above data was only available to review the capability of the existing loading system. Therefore, analysis has been carried out as the following.

Calculation Bases

• For Berth No. 2

Combination of loading lines As shown in Fig. 13-4-15

Loading capacity 13,860 BPH

• For Berth No. 4

Combination of loading lines

Case	1	As	shown	in	Fig.	13-4-16
Case	2	As	shown	i.n	Fig.	13-4-17

Loading capacity

Case 1 13,860 BPH

Case 2 19,530 BPH

Calculated Results

Results of the calculated pressure loss and flow velocity are as shown in Table 13-4-10 and Table 13-4-11.

• For Berth No. 2

The indicated loading rate by the operating company, 13,860 BPH, is considered a maximum allowable rate according to the limitation of flow velocity, though the existing loading pump units have enough capacity for larger flow rate.

For Berth No. 4

The loading rate of Case 1 is acceptable from both aspects of flow velocity and pressure loss.

Case 2 is not desirable from the viewpoint of excess flow velocity in rubber hoses.

1.2.3 Conclusion

- Specified design capacity of the existing vent lines and separation system with two banks of separators is reasonable and sufficient. The design capacity is 60,000 BPD gross liquid production and 180 MMSCFD separated gas.
- Gathering and transmission lines will cover maximum oil handling capacity of the existing Production Platforms in hydraulic design aspects including transmission pumps which have a design capacity of 13,000 BPD/unit.
- * Storage tank capacity seems to have only small allowance if the existing production rate continues or increases. More storage capacity for safe guard to delay, say, for 3-day additional production is desirable.

1.3 Assessment of the Facilities Capacity for the Predicted Production Scheme

The assessment of the facilities capacity was executed from a viewpoint of handling capacity of major production facilities by comparing the predicted maximum production rate with the facilities capacity on which the evaluation was made in the previous section. Therefore the study does not cover the capability of the facilities to adopt unforeseen additional facilities or modifications which have no relation with the predicted production performance of each field.

The additional well development case is described later for reference.

The maximum production rate of gross liquid and gas for each field and its occurrence year after 1976 are shown below based on the reservoir study in previous sections.

Oil Field	Gross Ligu BPD	•	Oil BPD	Water BPD	Gas (y MMSCF	
Baronia	55,150	(1978)	48,680	6,470	164.5	(1983)
West Lutong	30,230	(1980)	14,500	15,730	58.3	(1979)
Baram	40,670	(1977)	25,440	15,230	137.8	(1977)
Bakau	2,830	(1977)	2,530	300	4.7	(1977)
Tukau	12,930	(1977)	12,380	550	34.5	(1978)

As shown in the above table, predicted maximum gross liquid production rates will not exceed the production rates in 1976 except Baronia field where some 3,150 BPD of increase is expected. When new fields such as Betty and Bokor would be joined in future, the total handling rate would not increase due to the decline of the existing fields before the start-up of the new fields.

1.3.1 Offshore Production Platform

Table 28-4-3 shows the comparison of the present production rates versus the evaluated capacity of Production Platforms for each field. While, the comparisons of the predicted maximum production rates after 1976 versus the evaluated capacity of them for each field are shown on Table 28-4-4 for gross liquid and on Table 28-4-5 for gas.

As shown in the tables referred to above, the Production Platforms in West Lutong, Baram, Bakau and Tukau have the liquid handling capacity of 60,000 BPD, 90,000 BPD, 30,000 BPD and 60,000 BPD respectively, whereas the present gross liquid production rates are 33,130 BPD, 47,861 BPD, 5,316 BPD, and 13,411 BPD respectively with no increase after 1976. For Baronia field present gross liquid production is 51,977 BPD and predicted maximum gross liquid production will surpass this figure to 55,150 BPD in 1978. But this rate still

lies within the handling capacity of 60,000 BPD.

Therefore all of the platforms have enough liquid handling capacity throughout the life of the fields as well as the capacity for gas.

1.3.2 Offshore Gathering and Transmission Pipelines

Fig. 13-4-18 shows the pressure balance for the present and predicted maximum gross liquid production rate. As known from this figure, the existing gathering and transmission network will have enough capacity to handle the maximum production rate predicted after 1976. On the other hand, so far as the present transmission pump system is used, high pressure power gas will be required for each transmission pump at the volume corresponding to its transmission rate. Based on the predicted gas production rate for each oil field, the required gas will be available without a problem.

1.3.3 Storage and Loading Facilities

(1) Storage Facilities

As evaluated in the previous section concerning review on the storage capacity, the capacity seems to have only small allowance from the view point of operation flexibility or to be said rather short. However, the conditions related to storage capacity will be

improved year after year due to the decline of the predicted production rates.

(2) Loading Facilities

At present maximum size of tankers to be moored is 90,000 DWT from the limitation of the available draft. Although the data on the average size of incoming tankers and operation efficiency of the berths depending on bad weather, etc. are required for the detailed evaluation of the berths capacity, the conditions from now will be anyway improved from the same reason as above.

1.3.4 Conclusion

In accordance with the assessment of key components of the producing, storage and loading facilities for each field, the existing field facilities will basically cover the predicted future oil production, as well as associated gas and formation water, for all fields without any bottleneck. This conclusion, of course, results from the decline of oil production from the existing fields except gas and water and the time lag due to the necessity of lead time even if new field(s) will be tied in. In case of the adoption of gas lift, possible artificial lifting method, gas source will be available from high pressure gas reservoirs or high GOR wells and the addition of a high pressure separator and simple modification of the existing facilities are only the work required for it.

1.3.5 Additional Well Development Case

The additional well development case of Baronia,
West Lutong and Tukau fields is described below for
reference. The predicted maximum gross liquid and
gas production rate for each field and its occurence
year after 1976 are shown below based on the reservoir
study in Part A. West Lutong and Tukau fields are
not decided the starting year of production, therefore
it is assumed that the starting year of those two fields
is 1976.

Predicted Maximum Production Rate after 1976

Oil Field	Gross Liquid (year) BPD	Oil BPD	Water BPD	Gas (year) MMSCFD
Baronia	86,980 (1978)	74,130	12,850	250.3 (1981)
West Lutong	33,010 (1980)	15,570	17,440	67.4 (1979)
Tukau	18,680 (1977)	18,080	600	40.8 (1978)

Production Facilities to be required in additional well case are as follows;

(1) Offshore Drilling and Production Platform

a. Baronia Field

Ten (10) additional wells will be drilled for this case. As ten (10) wells have ever been drilled from the existing BNDP-A (8P/12W), the new drilling platform (8P/12W) will be required. And also the predicted liquid production rates (86,980 BPD) at 1978 will exceed the handling capacity of existing facilities (60,000 BPD), therefore the new production platform having the capacity of 30,000 BPD will be required.

b. West Lutong Field

Two (2) additional wells will be drilled for this case. Five (5) wells and six (6) wells have been drilled from existing WLDP-B (6P/10W) and WLDP-C (6P/10W) respectively, so two (2) wells in addition can be drilled from these two platforms. The predicted maximum production rate is 33,010 BPD at 1980, therefore there is no need of the new production platform compared with the handling capacity of existing facilities.

Consequently the existing platforms will basically cover the predicted future oil production without any problem.

c. Tukau Field

Five (5) additional wells will be drilled for this case. Twelve (12) wells have been drilled from existing TKDP-A (6P/12W), so this platform can't afford to drill any more. And also existing TKDP-B will not be able to drill the wells because TKDP-B is far from the new development wells, therefore the new drilling platform (6P/10W) will be required for the additional two wells. The predicted maximum production rate will not exceed the handling capacity of the existing facilities.

(2) Offshore Gathering and Transmission Pipelines

a. Baronia Field

The 10" x 1,500 ft submarine gathering pipeline will be installed between existing BNP-A and new production platform. There is no need of the new transmission line from the viewpoints of the pressure balance as shown on Fig. 13-4-18.

b. West Lutong Field

The existing gathering and transmission pipelines will basically cover the predicted future oil production without any problem.

c. Tukau Field

The 10" \times 4,000 ft submarine flow pipeline will be installed between existing TKP-A and new drilling platform. There is no need of the new transmission line from the viewpoints of the pressure balance as shown on Fig. 13-4-18.

(3) Storage Facilities

The predicted maximum production rate after 1976 in this case will exceed by present production rate but the present storage capacity will absorb its increase without installation of new additional tanks. And also the conditions related to storage capacity will be improved year after year due to the decline of the predicted production rate.

(4) Loading Facilities

The conditions from now will be improved from the same reason as above, therefore the expansion of loading facilities will not be required for this case.

1.4 Assessment on Present Production Practices

In this section assessment and recommendation are made on the topics related to present production practices which have been noticed during the course of the study on the review and assessment of the existing oil production facilities including site survey.

1.4.1 Associated Gas Utilization

As shown in Table 28-4-6, total separated gas at offshore platforms in Baronia, West Lutong, Baram, Bakau and Tukau fields was about 290 MMSCFD. The utilization status of this gas was as follows:

	MMSCFD	_ _ &
Pump Driving	46.8	16.3
To Shore	11.2	3.9
Venting	228.8	79.8
Total	286.8	100.0

In the above table the gas used for driving the transfer pumps is ultimately vented, therefore only 4% of the total gas is actually utilized. As for the utilization of this associated gas, the following will be considered:

(1) Industrial or Town Use

The downstream team of the Master Plan study is to study about this utilization based on the predicted availability of future associated gas. The transferred cost of the gas to shore is studied in the subsequent section of this report.

(2) Underground Storage

Detailed feasibility study will be required to appraise whether the underground storage of the gas is feasible or not. The study will include the confirmation of the presence of suitable reservoirs with enough capacity. Forecast of gas price with the possibility of gas requirement will also be a key factor. At present the detailed discussion on this matter based on assumptions will have little meaning, as there are only few reliable informations.

1.4.2 Metering System

(1) Offshore Platforms

As there are no metering facilities of liquid at offshore Production Platforms, allocation of crude and water production to each field and each well will be inevitably inaccurate.

Many informations should be checked such as fluctuation of flow and pressure and space limitation to select optimum metering system to be applied on the platform because conventional method may not be applied due to the existing pumps of reciprocating type.

However, it is recommended to install a flow meter at inlet of transmission line to measure the total liquid flow produced at each platform to achieve more accurate allocation of production. At present, if it should be selected, there are two kinds of flow meter which are positive displacement type meter (PD meter) and turbine type meter for this purpose. A PD meter is just little better than a turbine meter from the following technical viewpoints.

- No need of electrical power
- More proven meter for this purpose
- More reliable
- More little occupied space on a platform

(2) Lutong Terminal

Measurement of produced oil to be transmitted from offshore and exported crude is carried out by hand dipping at storage tank, and official measurement of exported oil is also being made by hand dipping at storage tanks. This is not a conventional method at modern facilities but a conservative method which is

adopted in fields in Saudi Arabia, etc. Flow meter method can save personnel cost, can improve accuracy and makes it possible to control and monitor operations from a control room.

1.4.3 Waste Water Treatment System

Produced formation water, which is major waste water source on all offshore platforms, is transported with oil to Lutong Terminal by submarine pipelines and combined oil and water is dehydrated by being settled in storage tanks for 24 hours. This concept is more preferable to prevent oil pollution to the sea near offshore platforms compared with the method adopted in Tembungo platform. However, pipeline efficiency will be improved as shown in Fig. 13-4-19 in case waste water is treated at offshore platforms. In spite of this demerit the existing system is not necessary to be changed judging from the predicted production rate of all fields.

1.4.4 Crude Oil Dehydration System

Conventional storage tanks are used to cut the associated water at Lutong Terminal. The tank capacity used for dehydration purpose occupies about 11% of total operating tank capacity. Moreover, the temperature of incoming crude becomes 90°F to 93°F in cooler months and dehydration efficiency becomes lower.

Judging from the above-mentioned status, the existing storage tanks would be utilized more efficiently with
the application of more effective dehydration method if
any is applicable.

Although detailed evaluation will be required for the selection of treating method including a laboratory test and/or a pilot plant test to study the properties of oil-water emulsion, effect on the oil properties by treatment, etc., a wash tank method will be an alternative with the use of a direct fired heater because of simple method and simple operation. Fig. 13-4-20 shows a simplified flow diagram of this system and Table 13-4-12 shows a preliminary cost estimate.

1.4.5 Tank Size at Lutong Terminal

The form of structures to be installed and the properties of soil are important factors in investigating the bearing capacity of foundation, and so the detailed investigation on these matters will be required prior to final conclusion on the possibility to enlarge a tank size in Lutong Terminal. In the study at this time, as there are many unclear points on the soil conditions, a general explanation is made for the possible tank foundation plans suitable for the area.

Design and investigation of the tank foundation are generally based on the following factors:

- a. Bearing capacity of foundation
- b. Foundation settlement

It is a general method to decide the possible tank capacity from the above investigation factors but the soil data available at present are only the result of cone test, and its testing method is also unclear. However, when assuming those data as the resistance values "qc" of Holland style test and comparing them with the distributed stress below the ground of tank load with the oil in it, the comparison between bearing capacity and distributed stress is shown in Fig. 13-4-21. As for Labuan Terminal, the bearing capacity of ground is strong enough to support the tank with the capacity of 400,000 barrels or even more. Fig. 13-4-11 shows the typical cone test data for the tank area. But as for Lutong Terminal, although the bearing capacity value at the points 6' - 9' below the ground level ranges from $4,000 - 6,000 \text{ lb/ft}^2$, it ranges from 250 -400 lb/ft² at 20' - 40' below the ground level as shown in Fig. 13-4-21 and it can be said that the foundation is very weak. Therefore, in case of constructing a tank on the present foundation, the effective height of the tank must be within 40', but even in this case, it is desirable to proceed with the construction with continuous checking about the degree of settlement.

If the foundation could be improved down to about 60' under the ground level by any of the following methods, tanks with 200,000 - 400,000 barrels capacity and 70' effective height would be constructed.

Improvement methods for the clayey soil

- a. Preloading
- b. Sand drain or paper drain
- c. Sand compaction pile
- d. Replacement by excavation
- e. Others

Improvement methods for the sandy soil

- a. Water binding
- b. Compaction by blasting
- c. Compaction pile, sand compaction pile
- d. Vibro-floatation method

It is the combined method of vibro-floatation and preloading that seems the most useful for Lutong Terminal among these methods from the viewpoints of construction term and construction cost, although the detailed evaluation must be made about the properties of soil prior to the final selection of the suitable method.

1.4.6 Control and Monitoring System

In offshore operations for Lutong Stream, no monitoring system at the onshore terminal is applied on. It will be worthy to take into consideration the adoption of telemetering system to monitor the operating conditions of offshore facilities to add more safety. This is because nobody can watch offshore facilities at night without the installation of an accommodation platform in addition and it takes time to find out any accident and to reach the location. Efficiency and safety of oil production operation will be improved by the adoption of the system by which working conditions can be monitored at an onshore control room. At least the following status had better be monitored with alarm function.

- a. Emergency shut-down valve closed
- b. Low pressure of each separator
- c. High pressure of each separator
- d. High level of each separator
- e. Fire
- f. Transmission pump stopped

2. PROPOSED FACILITIES

2.1 General Design Bases

All data and informations collected mainly in data collection and site survey phases have been reviewed, and accurate and realistic data required for conceptual design have been selected out of those data and informations.

However some of collected data and informations are imperfect or not clarified to adopt as design data. So some of design bases are assumed so as to be realistic and reasonable taking into consideration the purpose of this study.

Only common design bases to all fields have been described in this section and specified design bases for each field are mentioned in the subsequent sections for each field.

2.1.1 Basic Design Data from Collected Data

(1) Fields Location

As shown in Fig. 30-9-1.

(2) Meteorological and Oceanographical Data

Atmospheric Temperature

Max. 110°F

Min. 65°F

Sea Water Temperature at Sea Bottom

Min. 60°F

Relative Humidity

Max. 90%

(3) Hydrographic and Topographic Data

Sea Water Depth

Sea water depths for offshore structures in new fields are maximum water depths obtained from drilling reports in each field. Design water depth for each field is summarized below.

<u>Field</u>	<u>Sea</u>	Water	Depth	(feet)
Baronia		2:	54	
Betty		2	47	
Bokor		2:	28	
Temana		!	99	

Field	Sea Water Depth (feet)
(Central Luconia)	
B-12	298
E-6	239
E-8	207
E-11	230
F-6	285
F-13	250
F-14	347
F-23	280

(4) Soil Data at Sea Bed

Offshore structures especially in Temana field, where sea bed soil is very soft, are taken into consideration the soil character in the conceptual design in accordance with the soil data received from Petronas. For the offshore structures in the other areas, typical soil data considered to be average are tentatively used.

2.1.2 Assumed Design Conditions

(1) Gas Utilization

1) Miri Fertilizer Plant

Gas utilization case has been studied to supply
37 MMSCFD gas for 20 years to a fertilizer plant at
Miri area. Battery limit is the shore line near the
mouth of Baram river where a gas transmission line will
terminate and any onshore facilities are not included.

2) Central Luconia

Studied is the case to develop Central Luconia gas fields and to transport the gas to Bintulu for 20 years. Battery limit is the shore of Bintulu area and any onshore facilities are not included.

(2) Development Well

Development wells are assumed to be drilled by the following two types of rig.

- · Rig on self-contained platform
- · Rig on tender assisted platform

2.1.3 Determination of Facilities Capacity

(1) Onshore Storage Tank

Storage tank capacity is assumed in accordance with the following formula.

Total Gross Capacity

- = { Design Production Capacity (BPD) x 6 days
 - + Full Cargo of 100,000 DWT Tanker (724,500 barrels)}
 - ÷ Pumpable Factor (0.9)

As for the required number of tanks, minimum three tanks are required for the purpose of receiving, settling and loading.

(2) Offshore Storage Barge

An oil storage barge which is to be newly built is adopted as an offshore storage facility and its capacity is assumed in accordance with the following formula.

Storage Capacity

- = Design Production Capacity (BPD) x 6 days
 - + Full Cargo of 100,000 DWT Tanker (724,500 barrels)

(3) Loading Pump

Loading pumps and a loading line are sized to complete the full cargo loading to a visiting tanker of 100,000 DWT (724,500 barrels) within 24 hours.

(4) Loading Line .

Flowing velocity of crude oil in pipeline is limited to within 10 ft/sec to prevent static electricity generation and maximum internal pressure in hose line is limited within allowable pressure of 150 psig.

(5) Mooring Facilities

An SBM system which is popular all over the world at present is adopted in Malaysia. But in deep sea water (over approximately 200') a SALM system is adopted. In case of offshore storage and loading, two SBMs (or SALMs) are to be installed, one for an oil storage barge and the other for a visiting tanker. The system to moor a visiting tanker alongside the oil storage barge was not adopted at this time for safety reason.

2.2 Conceptual Design

2.2.1 Baronia Oil Field and B-12 Gas Field Gas Utilization

B-12 field comes within the category of Central Luconia field, however this field should be considered for stand by capacity of Baronia associated gas utilization.

(1) Design Bases

Utilization of Baronia associated gas and B-12 free gas was considered in response to the demand from downstream team for the gas supply to a fertilizer plant. Field facilities in these fields have been designed in accordance with the following bases.

1) Requirements of Fertilizer Plant

Gas Supply Rate : 41 MMSCFD

Annual Operating Hour: 8,000 Hrs

Gas Supply Period : 20 Years

Gas Supply Pressure : 150 psig or 570 psig

at Plant Inlet

Plant Location : Miri area, Sarawak

Gas Composition : $CH_4 > 64\%$, $C_4 + < 5\%$

2) Gas Sources

Baronia: Associated Gas at Separation Pressure of 250 psig

B-12 : Free Gas Dehydrated at 1,500 psig

Supply rate of Baronia associated gas is changeable dependent on oil production conditions. So B-12 field gas backs up just in case of shutdown or drop below 41 MMSCFD of Baronia associated gas production to supply the gas continuously to the fertilizer plant for 20 years.

3) Gas Properties

Offshore gas production and gathering facilities to supply the gas to the fertilizer plant have been designed based upon the following gas components.

The gas analysis was obtained from the data of wireline formation test.

Component	Baronia Associated Gas	B-12 Field Gas
Hydrogen Sulfide	0.0	0.0
Carbon Dioxide	0.6	3.2
Oxygen	0.0	0.0
Nitrogen	0.6	1.3
Hydrogen	0.0	0.1
Methane	84.4	90.5
Ethane	7.5	2.9
Propane	4.3	1.1
i-Butane	0.6	0.2
n-Butane	1.1	0.3
i-Pentane	0.3	0.1
n-Pentane	0.3	0.1
Hexane	0.2	0.1
Heptane plus	0.1	0.1
Total	100.0	100.0

4) Gas Wells in B-12 Gas Field

Drilling Rig Type: Tender Assisted Drilling Rig

No. of Wells : 2

Max. Prod. Rate, : 41

(2) Conceptual Design

Location of Baronia oil field and B-12 gas field is shown in Fig. 30-9-1. Based upon the above design bases, several cases were compared and examined from economic points of view.

As the result, the following two cases were selected as alternative development cases out of several cases.

1) Case Setting

a. Case IA - Natural Flow Case

This is a case that Baronia associated gas and/or B-12 field gas is transported by natural flow to the onshore fertilizer plant at supply pressure of 150 psig. Facilities arrangement for this case is shown in Fig. 14-5-1. Block flow diagram of produced gas is shown in Fig. 14-5-2.

b. Case IB - Offshore Compression Case

This is a case that Baronia associated gas and/or B-12 field gas which will be transferred to Baronia field is compressed up to 1,200 psig at an offshore Compressor Platform installed adjacent to Baronia Production Platform A and then compressed gas is

transported to the onshore fertilizer plant at supply pressure of 570 psig. Facilities arrangement for this case is shown in Fig. 14-5-3. Block flow diagram of produced gas is shown in Fig. 14-5-4.

2) Preliminary Selection

Well and offshore facility capital investment costs for the above two cases have been estimated and are summarized below.

	Case IA	Case IB
Production Wells	M\$25,400,000	M\$25,400,000
Offshore Platforms	23,899,000	27,930,000
Offshore Production Equipment	5,080,000	11,430,000
Submarine Pipelines	34,796,000	29,515,000
Total	M\$89,175,000	M\$94,275,000

As shown above, well and offshore facility costs for Case IA are lower than that for Case IB and also operating costs for Case IA are considered to be obviously lower than that for Case IB. From the abovementioned reasons Case IA is selected at this stage, although there is small discrepancy in the basis of comparison. Therefore, field facilities are described for Case IA.

3) Facilities Description of Selected Scheme

Gas production system of Case IA for the development of Baronia and B-12 fields consists of the following facilities:

Baronia Field

1 ... 4-leg Riser Platform
Submarine Pipelines

BNR-A

B-12 Field

1 ... 6-leg Well and Production Platform B12WP-A
Submarine Pipelines

Facilities arrangement of these facilities is shown in Fig. 14-5-1. Major equipment to be installed are tabulated with simple specification in Table 14-5-1.

a. Baronia Field

(i) 4-leg Riser Platform

One 4-leg Riser Platform will be installed at approximately 254' water depth adjacent to Baronia Production Platform A and connected with the Production Platform by a bridge. A gas line branched from HP vent header at BNP-A and 8" gas Gathering Line from B-12 will be combined into 16" Transmission Line to the onshore

fertilizer plant. A sphere launcher and receiver will be also provided on this platform.

b. B-12 Field

(i) 6-leg Well and Production Platform

This platform will be installed at 298' water depth in B-12 field and maximum 4 wells can be drilled from this platform and process equipment with the capacity of 41 MMSCFD shown in Table 14-5-1 are also installed on this platform. Typical mechanical and utility flow diagrams are shown in Figs. 30-5-5 and 30-5-10. A heliport is provided on this platform for air transportation. Typical plan and elevation is shown in Fig. 30-5-20.

2.2.2 Betty and Bokor Oil Fields

(1) Design Bases

1) Production Rate and Number of Wells

<u>Field</u>	Production Rate (BPD)	No. of Wells
Betty	16,000	10
Bokor	5,000	8

2) Fluid Property

Field	API <u>Gravity</u>	Viscosity (60°F) cp	MAX. GOR (SCF/STB)
Betty	39	6	2,000
Bokor	19.5	220	800

(2) Conceptual Design

Location of Betty and Bokor oil fields is shown in Fig. 30-9-1. On the development of Betty and Bokor fields, two cases were considered. One is to develop both Betty and Bokor fields. The other is to develop Betty only. Because the reservoir pressure at Bokor field is low and the produced oil has relatively heavy gravity and high viscosity, gas lift will be required from the beginning of the production.

And in any case, the existing Lutong stream is to be utilized for oil gathering scheme of Betty and Bokor fields from the viewpoints of geographical location and relatively low oil production rate of these two fields. And then, two oil gathering schemes were considered for each case.

One scheme is that the production from Betty and Bokor fields are transported to the Bakau Production Platform (BKP-A), and the other is that the production is transferred to the Tukau Production Platform (TKP-A). On the above two schemes, a conclusive difference is not recognized on the initial capital investments estimated.

But the distance between Betty and Bakau is shorter than that between Betty and Tukau and, according to the available data, the existing transmission network is originally planned and designed to connect the pipeline from the Bakau Production Platform at the development phase of Betty and Bokor fields. Therefore, the oil gathering scheme for the former was selected. The following two cases were set for this scheme.

- 1) Case Setting
- a. Case I Betty and Bokor, Bakau Gathering System Case

Betty and Bokor fields will be developed and their production will be transferred to the Bakau Production Platform. Facilities arrangement and block flow diagram are shown in Fig. 15-5-1 and Fig. 15-5-2 respectively.

b. Case II - Betty, Bakau Gathering System Case

Betty field will be developed and its production will be transported to the Bakau Production Platform. Facilities arrangement and block flow diagram are shown in Fig. 15-5-3 and Fig. 15-5-4 respectively.

2) Study on Lutong Stream Capability to Receive the Production from Betty and Bokor Fields

The study on capability is conducted fundamentally for the relation between the maximum oil production rate predicted for Betty and Bokor fields and the overall capacity of the existing offshore transmission network and storage capacity of the Lutong stream at starting time of production from Betty and Bokor. Starting time of production is assumed to be 1981 based on the prepared project schedule.

a. Transmission Network

Fig. 15-5-5 and Fig. 15-5-6 show the pressure balance of overall transmission network for the two cases under the expected maximum flow rates which are flow rates from the existing oil fields at 1981 plus maximum production rate from Betty and Bokor fields or Betty only. As shown in the pressure balance, Transmission Line inlet pressure at each Production Platform for the above two cases increases slightly in comparison with that for the existing oil fields only shown in Fig. 15-5-7 but this increase does not have an important effect on the existing facilities because they have enough design pressure of Transmission Lines, and design head and displacement capacity of transmission pump.

b. Storage Capacity

At the stage of development of Betty and Bokor fields, oil production rate to be handled in the Lutong Terminal will additionally increase to 21,000 BPD in maximum.

On the other hand, net oil production from the existing fields in 1981 declines to 77,630 BPD, and so even if produced oil of 21,000 BPD from Betty and Bokor add to the Lutong Terminal, the storage capacity will have more allowance compared with the production of 136,880 BPD in 1977. From the above consideration, additional storage capacity will not be required for Betty and

Bokor development.

3) Facilities Description

For the above-mentioned two cases, capital investment costs and operating costs have been estimated and
then economic analysis has been performed as described
in Part C. As the result of the economic analysis,
Case II is a more profitable case. However, as Case I
is a case to cover the required facilities for both
fields, the facilities for both Case I and Case II are
described below.

a. Case I - Betty and Bokor, Bakau Gathering System Case

Crude oil production system for the development of Betty and Bokor fields consists of the following facilities;

Betty Field

1 ... 6-leg Well and Production Platform BTWP-A

1 ... 3-leg Vent Jacket BTV-A

Submarine Pipelines

Bokor Field

2 ... 4-leg Well Platform BOW-A & B

2 ... 6-leg Well and Production Platform BOWP-A

1 ... 3-leg Vent Jacket BOV-A

Submarine Pipelines

General arrangement of these facilities is shown in Fig. 15-5-1. Major equipment to be installed are tabulated with simple specification in Table 15-5-1.

(i) Betty Field

(a) 6-leg Well & Production Platform

One 6-leg Well and Production Platform, BTWP-A, will be installed and ten directional wells will be drilled from this platform by a tender assisted drilling rig. On the other half of the platform, production equipment will be laden. Typical mechanical flow, utility flow diagrams and typical plan and elevation are shown in Fig. 30-5-2, Fig. 30-5-10 and Fig. 30-5-16 respectively. Well fluids from BTWP-A will be separated into liquid and gas in three-stage separators. Separated liquid from BOWP-A will be transferred to BTWP-A and combined with that from BTWP-A, and then sent through 12" Transmission Line to Bakau platform by means of transmission pumps. And separated gases will be sent through 8" and 6" Vent Lines to Vent Jacket (BTV-A).

(ii) Bokor Field

(a) 4-leq Well Platform

Two 4-leg Well Platforms (BOW-A & BOW-B) will be installed and two or three directional wells will be drilled from each Well Platform by a tender assisted drilling rig. Manifolds and a test separator will be

mounted on each Well Platform. Also those two Well Platforms will have enough space so that the workover rig can be mounted after well completion. Typical mechanical flow diagram and typical plan and elevation are shown in Fig. 30-5-1 and Fig. 30-5-13 respectively. Well fluids from these two platforms will be sent through 6" respective flow lines to Well and Production Platform (BOWP-A).

(b) 6-leg Well and Production Platform

One 6-leg Well and Production Platform (BOWP-A) will be installed and three directional wells will be drilled from this platform by a tender assisted drilling rig. On the other half of the platform, production equipment will be laden. Typical mechanical flow, utility flow diagrams and typical plan and elevation are shown in Fig. 30-5-2, Fig. 30-5-10 and Fig. 30-5-16 respectively. And then, for the reason of high viscosity of the production oil and low reservoir pressure in Bokor field as shown in the result of reservoir study, a gas lift operation will have to be adopted to maintain the oil production. Source gas will be derived from a gas reservoir in Bokor field. The gas from the reservoir will be flowed into the high pressure separator on this platform and sent through 4" gas lines to BOW-A and BOW-B respectively to be used for a gas lift operation. Well fluids from Well and Production Platform (BOWP-A) will be combined with those from BOW-A

and BOW-B in the three-stage separators. And separated liquid will be sent through 8" Gathering Line to Well and Production Platform (BTWP-A). On the other hand, separated gas will be sent through 6" and 4" Vent Lines to Vent Jacket (BOV-A).

b. Case II - Betty, Bakau Gathering System Case

Crude oil production system for the development of Betty field only consists of the following facilities:

1 ... 6-leg Well and Production Platform BTWP-A
1 ... 3-leg Vent Jacket BTV-A
Submarine Pipelines

Description of above facilities is almost the same as that of Betty field in Case I. Only 12"

Transmission Line is altered to 10" because of lower production rate due to no development of Bokor field.

2.2.3 West Temana and E-6 Oil Fields

Originally, E-6 field comes within the category of Central Luconia fields, however this oil field has been considered for posibility of combined production system with neighbouring oil field.

(1) Design Bases

1) Production Rate and Number of Wells

Field	Production Rate (BPD)	No. of Wells
West Temana	4,000	6
E-6	30,000	15

2) Fluid Property

<u>Field</u>	API Gravity	Viscosity (60°F) cp	Max. GOR (SCF/STB)
West Temana	20	200	4,700
E-6	35	10	30,000

3) Others

Soil condition

Soil condition at sea bottom in West Temana field is expected to be not stable enough. For this reason, type of jackets to be installed in West Temana field is considered to be 3- or 4-leg jackets.

Gas lift

For the reason of low reservoir pressure in West Temana field as described in the result of reservoir study, a gas lift operation will be adopted to maintain the oil production rate. Source gas for the gas lift operation is assumed to be derived from a gas reservoir which exists beneath the oil reservoir. The gas flows upward in a tubing of the production well to the reservoir level and is injected into the oil produced through annulus at an appropriate point through gas lift valves. This is so-called "auto-lift" system.

(2) Conceptual Design

Location of West Temana field and E-6 field is shown in Fig. 30-9-1. West Temana field is located approximately 24 miles away from Bintulu Terminal to the west of Sarawak and E-6 field is located approximately 85 miles away from Bintulu Terminal to the northwest.

For designing the development plans of these fields, the following case setting was adopted taking into consideration geographical, economic and operational factors. As for West Temana field, it is evident that the independent development of this field is not profitable at all considering high capital investment and low production rate. High investment costs are due to the difficulty of recovering oil, i.e. requirement of gas lift facilities to produce from low pressure reservoir and larger size pipelines to transfer high viscosity oil, and more offshore structures with smaller size to stand on bad sea bottom soil condition.

In each case, production facilities are conceptually designed and capital investment of facilities is estimated based on the basic cost data so that optimum case might be found among the alternatives.

1) Case Setting

The following three cases have been selected as alternatives for the development of these fields.

a. Case I - West Temana and E-6, Bintulu Terminal Case

Produced crude oil in both West Temana and E-6 fields will be gathered and transported to onshore

storage terminal which will be constructed at Bintulu, and will be loaded to a tanker by means of SBM. Facilities arrangement and block flow diagram in this case are shown in Fig. 16-5-1 and Fig. 16-5-2.

b. Case IIA - E-6, Offshore Storage Case

Produced crude oil in E-6 field will be gathered and transported to an Offshore Storage Barge and will be loaded to a tanker by means of SALM. Facilities arrangement and block flow diagram in this case are shown in Fig. 16-5-3 and Fig. 16-5-4.

c. Case IIB - E-6, Onshore Terminal

Produced crude oil in E-6 field will be gathered and transported to Bintulu Terminal, and will be loaded to a tanker by means of SBM. Facilities arrangement and block flow diagram in this case are shown in Fig. 16-5-5 and Fig. 16-5-6.

2) Facilities Description

For the above-mentioned three cases, capital investment costs and operating costs have been estimated and then economic analysis has been performed as described in Part C. As the result of the economic analysis, Case IIB is the most profitable case among the above three cases. Production facilities for

Case I, however, are described below because those for Case I cover the required facilities for the development of both fields. The difference is that all of the offshore facilities related to West Temana are excluded in Case IIB. There is only small difference in onshore facilities due to small production rate of West Temana field compared with E-6 field.

The production system in Case I will consist of the following facilities:

West Temana Field

2 ... 4-leg Well Platform WTW-A & B

1 ... 4-leg Production Platform WTP-A

1 ... 3-leg Flare Jacket WTV-A

Submarine Pipelines

E-6 Field

2 ... 6-leg Well and Production Platform E6WP-A & B

2 ... 3-leg Flare Jacket E6V-A & B

1 ... 4-leg Accommodation Platform E6A-A

Submarine Pipelines

Bintulu Terminal

Tankage and Loading Facilities
Onshore Support Facilities

Facilities arrangement of these facilities is shown in Fig. 16-5-1. Major equipment to be installed are tabulated with simple specification in Table 16-5-1.

a. West Temana Field

(i) 4-leg Well Platform

Two 4-leg Well Platforms (WTW-A & B) will be installed and three directional wells will be drilled from each Well Platform by a tender assisted drilling rig. For the purpose of gas lift operation, each well will be dual completion. Test separator and other wellhead equipment will be mounted on an isolated Well Platform. Well Platforms will have enough space so that the workover rig can be mounted after well completion. Typical mechanical flow diagram and typical plan and elevation are shown in Fig. 30-5-1 and Fig. 30-5-13. Production from wellhead will be sent through an 8" flow line to a Production Platform.

(ii) 4-leg Production Platform

A 4-leg Production Platform (WTP-A) will be installed and a Well Platform (WTW-A) will be connected with a bridge to it. After degassing, combined production from two Well Platforms (WTW-A & B) will be transferred to Bintulu Terminal through 6", 140,200' length Transmission Line. Typical mechanical flow diagram, typical utility flow diagram and typical plan

and elevation are shown in Fig. 30-5-2, Fig. 30-5-10 and Fig. 30-5-15 respectively.

(iii) 3-leg Flare Jacket

A 3-leg Flare Jacket will be installed. The Flare Jacket will be located 2,000' apart from the Production Platform.

b. E-6 Field

(i) 6-leg Well and Production Platform

Two 6-leg Well and Production Platforms will be installed and located approximately 3 miles away from each other. Fifteen directional wells will be drilled from these two platforms by tender assisted drilling rig. On the other half area of the platform, production equipment will be laden. Typical mechanical flow diagram, typical utility flow diagram and typical plan and elevation are shown in Fig. 30-5-2, Fig. 30-5-10 and Fig. 30-5-16 respectively. Production from the Well and Production Platform (E6WP-B) will be transferred to the other (E6WP-A) and combined with that from E6WP-A. Then the combined production will be sent to Bintulu Terminal through 12", 492,000' length Transmission Line.

(ii) 3-leg Flare Jacket

Two 3-leg Flare Jackets will be installed. Each
Flare Jacket will be located 2,000' apart from corresponding Production Platform. Separated gas from
production separators will be led through two submarine
pipelines (one for HP gas, the other for LP gas) to the
Flare Jacket and flared out at the top of it.

(iii) 4-leg Accommodation Platform

An Accommodation Platform (E6A-A) with helideck, whose typical plan and elevation is shown in Fig. 30-5-31, will be built next to the Well and Production Platform (E6WP-A) and a bridge will connect these two platforms. Also, a Utility Platform and a Compressor Platform, the outline of which is described in the item of Central Luconia gas fields, will be connected with bridges to E6WP-A. This Accommodation Platform will accommodate the operating personnel who are working for E-6 field production facilities.

c. Tankage and Loading Facilities

Three 410,000 BBLS storage tanks will be installed at Bintulu Terminal. Production from offshore will be stored and loaded to a visiting tanker through 30", 15,000' length submarine Loading Line and a single buoy mooring (SBM).

d. Onshore Support Facilities

To support offshore operation and maintenance activities, the following facilities will be constructed at Bintulu Terminal;

Jetty
Material Yard
Office Buildings
Heliport, etc.

General layout for Bintulu Terminal is shown in Fig. 30-5-19.

2.2.4 Central Luconia Gas Fields

(1) Case Setting

Conceptual design for Central Luconia gas fields is for the collection, treating and transportation of hydrocarbons produced at offshore platforms to supply them to a shore-based gas plant to be located at Bintulu area. An oil field E-6 in this area was discussed in the previous section of this report.

The objective gas fields in this study are the fields with rather large reserves such as E-8, E-11, F-6, F-13, F-14 and F-23, and the other fields with smaller reserves have not been considered in the facilities design at this time but regarded as a portion of standby capacity which will be required enough at this phase of a project.

With regard to the gas production from the abovementioned fields, the following alternatives of the development scheme were considered:

1) Case IA - Natural Flow Case, Six Fields Development

The produced gas will be treated at each field, collected into E-11 field and then flow by natural energy to Bintulu with required arrival pressure to

feed the onshore plant. The objective fields are E-8, E-11, F-6, F-13, F-14 and F-23. Facilities arrangement and block flow diagram in this case are shown in Fig. 17-5-1 and Fig. 17-5-2.

2) Case IB - Onshore Compression Case, Six Fields Development

The produced gas will be treated at each field, collected into E-II field and then delivered to shore with required compressor suction pressure by natural flow. Gas will be compressed at onshore to meet the feed pressure to the plant. The objective fields are the same as Case IA. Facilities arrangement and block flow diagram in this case are shown in Fig. 17-5-3 and Fig. 17-5-4.

3) Case IC - Offshore Compression Case, Six Fields Development

The produced gas will be treated at each field, collected into E-ll field and compressed there. Then, the gas will be delivered to shore with required arrival pressure to feed the plant. The objective fields are E-8, E-ll, F-6, F-l3, F-l4 and F-23. Facilities arrangement and block flow diagram in this case are shown in Fig. 17-5-5 and Fig. 17-5-6.

4) Case II - Offshore Compression Case, Five Fields
Development

This is the same gathering system as that of Case IC. The objective fields are E-8, E-11, F-6, F-13 and F-23. Facilities arrangement and block flow diagram in this case are shown in Fig. 17-5-7 and Fig. 17-5-8.

5) Case III - Offshore Compression Case, Four Fields Development

This is the same gathering system as that of Case IC. The objective fields are E-11, F-6, F-13 and F-23. Facilities arrangement and block flow diagram in this case are shown in Fig. 17-5-9 and Fig. 17-5-10.

6) Case IV - Offshore Compression Case, Three Fields Development

This is also the same gathering system as that of Case IC. The fields for development are E-11, F-6 and F-23. Facilities arrangement and block flow diagram in this case are shown in Fig. 17-5-11 and Fig. 17-5-12.

(2) Selection of Optimized Scheme

The purpose of this study is to find out the optimum development and gathering scheme to maintain constant supply of the gas to the onshore gas plant at Bintulu, although the final selection will be made by

a more detailed feasibility study when more well data are available as the field development advances. At this stage only a few basic data were available.

1) Study on Deliverability

Reservoir sizes, deliverabilities, tubing diameters, gathering line lengths and diameters, transmission line length and diameter and delivery pressure all interact to establish flow rates from an individual field and total fields. All of the above-mentioned elements of the entire system affecting deliverability have to be evaluated by changing various parameters. Therefore, the following procedure was taken to establish the alternative schemes as the basis of conceptual design:

- a. To prepare a performance curve for each field to show wellhead pressure vs. cumulative gas production, taking into consideration the deliverability of each well.
- b. To investigate the transmission line pressure loss according to the changes of the line size for various production rates of total fields, and to determine the optimum transmission line diameter considering recoverable reserves in connection with size and cost of required compressors and pipelines and various technical aspects.

- c. To sum up the recoverable reserves or daily gas production rate of each field using its performance curve for the gathering lines which are selected to meet minimum pressure drop at reasonable pipeline costs and gathering line routes.
- d. To draw the curve of transmission line inlet pressure vs. gas production rate to be prepared based on the results of step b. and also the curve of transmission line inlet pressure vs. recoverable gas reserves or daily gas production rate to be prepared based on the results of step c. The intersection of the above-mentioned curves shows the total deliverability of each field can be calculated.

This procedure from b. to d. has been iterated to establish the optimum plan for each alternative case.

2) Bases for Conceptual Design

The bases for conceptual design and the study results for them are shown as follows.

a. Design Bases

(i) Fluid Property

The composition of the reservoir fluids used in the design of gas gathering system is as follows:

					(Vc	lume %)	
Field	E-11	F-23	F-6	F-13	E-8	F-14	E-6
Component							
Hydrogen Sulfide	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Carbon Dioxide	6.60	2.20	1.80	15.00	2.00	1.80	1.30
Oxygen	0.00	0.00	0.00	0.10	0.20	0.10	0.40
Nitrogen	1.80	0.90	0.70	3.60	0.80	3.30	2.90
Methane	83.70	88.20	88.70	74.60	88.40	84.70	89.10
Ethane	5.50	3.70	4.10	4.80	4.20	4.20	3.10
Propane	1.30	2.80	2.80	1.10	2.50	3.50	1.90
i-Butane	0.20	0.80	0.70	0.20	0.40	0.70	0.30
n-Butane	0.30	0.70	0.60	0.20	0.60	0.80	0.50
i-Pentane	0.10	0.30	0.20	0.10	0.20	0.30	0.10
n-Pentane	0.10	0.10	0.10	0.10	0.20	0.20	0.10
Hexane	0.20	0.20	0.20	0.10	0.30	0.30	0.20
Heptane Plu	s 0.20	0.10	0.10	0.10	0.20	0.10	0.10
Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00

In all cases the gas is assumed to be saturated with water vapor.

(ii) Production Performance of Each Field

Curves of wellhead pressure vs. cumulative gas production for each field, taking into consideration the pressure loss in tubing are shown in Fig. 17-5-13 and Fig. 17-5-14.

Deliverability of each well is assumed 30 MMSCFD.

(iii) Gas Supply Pressure

The gas supply pressure at the entrance of the onshore gas plant is assumed to be 750 psig minimum. This is common to each of the above cases except the onshore compression case. In the onshore compression case, the pressure at the entrance of the plant is assumed to be 240 psig minimum.

(iv) Wellhead Flowing Pressure

Initial and final wellhead flowing pressure is assumed as follows:

Initial Wellhead Flowing Pressure (I.W.F.P.)

Field Name E-11 F-23 F-6 F-13 E-8 F-14

I.W.F.P. (psia) 2,280 2,060 1,720 1,140 2,000 1,920

These are common to all cases.

Final Wellhead Flowing Pressure (psia)

Case Number	IA	IB	IC	II	III	IV
Field						
E-11	880	910	460	440	420	400
F-23	1,030	1,060	610	590	570	550
F-6	1,130	1,160	710	690	670	650
F-13	930	960	510	490	470	-
E-8	930	960	510	490	-	-
F-14	1,130	1,160	710	_	_	_

(v) Wellhead Flowing Temperature

Wellhead temperature is assumed to be same throughout project years. Only the well test data of E-11 was
available for the estimate of wellhead temperature,
therefore the validity of the following wellhead flowing temperature, which is assumed for this conceptual
design, is to be confirmed by a subsequent test and
study:

Wellhead Flowing Temperature (W.F.T.)

Field Name	E-11	F-23	F-6	F-13	E-8	F-14
W.F.T.(°F)	132	116	113	136	124	114

These are common to all cases.

(vi) Dew Point of Dehydrated Gas

Water dew point at dehydrator outlet: 55°F

(vii) Utilities

Electric power is assumed to be generated at both platforms of E-11 and F-23 and distributed to outlying platforms by submarine cables. Other utilities such as instrument air and water are also considered at each platform as required.

b. Calculation Results

(i) Production Rate

Production rate throughout the project life of 20 years from an individual field is governed by deliverability of a well, size of tubings, gathering lines through which the gas flows, and the required pressure at the onshore delivery point. The following figures are the results of a preliminary study to obtain high deliverability by keeping minimum pressure drop at reasonable costs while maintaining operational flexibility, although a detailed study will be required to confirm or modify these figures when more complete data are available by future drilling of delineation and production wells. In the alternatives using compressors the requirements of fuel consumption for compressors have been estimated tentatively and described in the following table.

Production Rate (MMSCFD)

Case Number	IA	IB	IC	II	III	IV
Field						
E-11	230	240	290	290	290	290
F-23	350	340	460	470	470	470
F-6	240	210	340	340	340	350
F-13	80	80	100	100	100	-
E-8	70	70	90	90	-	-
F-14	60	60	80	_	· -	_
Total	1,030	1,000	1,360	1,290	1,200	1,110
Fuel Consumptio	on 0	20	20	20	20	20
Net Gas Rate	1,030	980	1,340	1,270	1,180	1,090

(ii) Number of Wells

The number of producing wells is shown below based on the condition that each well produces 30 MMSCFD throughout the project life of 20 years, although the number is increased by about 10% for allowance. This condition may not be realistic for the actual development of gas fields, as recoverable reserves will be increased by additional drilling of producing wells with less production rate. However, the above condition is considered to be allowed at this time taking into the consideration the purpose of this study, the extent of data availability and the requirement of sizable allowance as back-up capacity at this phase of the project.

Number	٥f	Mal.	7 ~
MUDBLE P	OT	w⇔ı	1 94

Case Number	IA	IB	IC	II	III	IV
Field						
E-11	9	9	11	11	11	11
F-23	13	13	17	17	18	18
F-6	9	8	13	13	1.3	13
F-13	3	3	4	4	4	-
E-8	3	3	4	4	-	-
F-14	2	2	3	-	-	
Total.	39	38	52	49	46	42

(iii) Condensate Production

A slight amount of condensate will be expected to drop out at offshore separators outlet. Expected condensate quantity has been calculated based on assumed properties of heavy hydrocarbons and is summarized as follows:

	Cond	ensate	Product	ion	(bbls	/day)
Case Number	IA	IB	IC	II	III	IV
Field			•			
E-11	863	849	1,021	1,025	1,032	1,035
F-23	933	914	1,225	1,238	1,246	1,256
F-6	471	450	705	713	722	730
F-13	76	75	92	93	94	-
E-8	338	333	434	438	-	-
F-14	208	205	300	-	-	_
Total	2,889	2,826	3,777	3,507	3,094	3,021

(iv) Free Water Production

Free water production is assumed based on the condition that all produced gas is saturated with water.

c. Discussion

There are several points to be considered in selecting the gas gathering system as described below under the following headings:

- Gas standby capacity
- · Heavy hydrocarbon condensation
- · Comparison of alternative schemes

(i) Gas Standby Capacity

As F-9, F-22, K-4, M-1, M-3 and M-5 fields have rather small gas in place and/or are in remote locations, these fields have been excluded from the development schemes in this study at this stage mainly from the economic viewpoint. These fields, however, could be considered to provide standby capacity when required during the course of the development of other fields. Enough standby capacity in addition to the estimated deliverability must be taken into consideration at this stage of data availability for the subject fields, because it is the most important responsibility to keep constant feed rate during the project life of the onshore gas plant.

Recoverable reserves may be somewhat improved by drilling additional wells in the course of reservoir depletion. The detailed study on the expected allowance should be performed at the time when more data become available, taking into consideration the standby capacity requirements as mentioned above.

We assumed that the compression ratio of offshore compressor is three to one. In further engineering stage, recoverable reserves may be also improved, if the compressors with higher compressibility ratio are adopted.

Associated gas produced from E-6 oil field is supposed to be fed to the onshore gas plant as the first priority by adjusting gas production from other fields, especially E-8 field. This amount of gas should be considered to increase standby capacity at this stage and should not be considered to affect the deliverability of gas fields.

(ii) Heavy Hydrocarbon Condensation

Molecular weight and specific gravity of heptane plus in well effluent fluids are very sensitive to the quantity of hydrocarbon condensation estimated by equilibrium calculation. Although those data were not available, the following condensation quantity was estimated based on the assumed properties.

In gathering lines : about 7 bbls/MMSCF
In transmission line: about 4 bbls/MMSCF

The detailed study on this matter should be carried out when useful data become available. If hydrocarbon condensation is several times over the above figures, the configuration of gas gathering system will have to be changed into the system to install independent condensate gathering lines and transmission line.

(iii) General Comparison of Alternative Schemes

The general advantages and disadvantages of the
Natural Flow Case are as follows:

Advantage:

· Simplicity of operation

Disadvantage:

 Low gas deliverability due to required high wellhead pressure

The advantages and disadvantages of Onshore Compression Case are;

Advantage:

 Simplicity of operation and major rotating equipment is onshore with minimum equipment offshore.

Disadvantages:

- Low gas deliverability
- Gas velocity will be high in transmission
 line due to low pressure level

The advantages and disadvantages of Offshore Compression Case are;

Advantages:

- High gas deliverability
- · High operational flexibility

Disadvantages:

- Complicated operation
- · Many equipment at offshore

3) Selection of Optimum Scheme

The final selection of the optimum scheme among all alternatives had to be made after the performance of economic evaluations, as the deliverabilities as well as the investment costs and operating costs are different for each case and so the simple comparison of costs is not suitable for the selection in this case. Therefore, estimates of capital investment and operating costs were carried out for all of the alternative schemes and the economic evaluation was performed based on them. The evaluation procedure and results are

described in Part C.2, Economic Analysis. Consequently offshore compression case, Case IC, is recommended as the optimum gas gathering system from economic and technical viewpoints.

(3) Facilities Description of Optimum Scheme

Outline of facilities and process has been described below for the selected Case IC, Offshore Compression Case.

1) Outline of the Facilities

The separation, dehydration and reinjection equipment will be installed on each Well Production Platform or Production Platform. The design pressure of separators on each platform is tentatively set at 1000 psig.

The separated gas will go to the dehydration system to remove water. The dehydrated gas from glycol contactor and the condensate from separator will be then combined into common pipeline. The combined fluids from F-6 and F-14 fields will be also combined into fluid from the F-23 after terminating at the header on lower deck of the Utility Platform in F-23 field. The fluid will be then delivered to the Riser Platform in E-11 field.

The gases from E-8, E-11 and F-13 fields will be treated quite same method as F-6, F-14 and F-23. All of the gases will be received at the Riser Platform, and transferred to the Compressor Platform. These gases will be separated again there to remove liquid by centrifugal separators before going to the compressor station in E-11 field.

There are also liquid knockout drum and scrubbers on the Compressor Platform to protect the compressor. The compressed gas will go back to the Riser Platform, and knockout liquid will be also transferred to flash tanks on the Riser Platform. At that point, all liquid will be pumped and reinjected into the 36" Transmission Line to Bintulu Terminal.

a. Well Platform

Well Platform (F23W-A) is located in F-23 field. It will be an eight-leg, 17-well structure with 18 slots. This structure will accommodate one removable drilling rig and its support facilities. Typical plan and elevation for F23W-A is shown in Fig. 30-5-24.

b. Production Platform

Production Platform (F23P-A) is located in F-23 field. This platform will be installed to produce

and treat natural gas and condensate. It will be an eight-leg structure and equipped with high pressure separator and dehydration unit to achieve a water dewpoint less than 55°F. Typical mechanical flow diagram, typical utility flow diagram and typical plan and elevation for F23P-A are shown in Fig. 30-5-3, Fig. 30-5-10 and Fig. 30-5-23 respectively.

c. Well and Production Platform

Well and Production Platforms (F13WP-A, F6WP-A, F6WP-B, F14WP-A, E11WP-A and E8WP-A) will be installed to drill wells and to produce and treat the gas. There are two types of them in Central Luconia fields. One is an eight-leg structure and the other is a sixleg according to the capacity to be treated. Six-leg platforms will be installed in F-13, F-6, E-8 and F-14 fields respectively. Eight-leg platforms will be installed in E-11 and F-6 fields. Typical mechanical flow diagram, typical utility flow diagram and typical plan and elevation for Fl3WP-A, F6WP-B, E8WP-A and F14WP-A are shown in Fig. 30-5-5, Fig. 30-5-10 and Fig. 30-5-20 respectively. The same for EllWP-A are also shown in Fig. 30-5-4, Fig. 30-5-10 and Fig. 30-5-22 respectively. And those for F6WP-A are shown in Fig. 30-5-5, Fig. 30-5-10 and Fig. 30-5-21 respectively.

d. Utilities Platform

Utilities Platforms (Ellu-A, F23U-A and E6U-A) are located in E-ll, F-23 and E-6 fields which are bases for operation and maintenance of all offshore facilities. On the platform in F-23 field, the two gas turbine driven package type generator sets will be installed on the upper deck. The gas gathering lines will terminate at the lower deck of this platform and start from here to E-ll field. Manifold, sphere receivers and launchers will be installed on this lower deck. The platform in E-ll field is about same as that in F-23 although there are no gathering lines coming in on it. Typical plan and elevation for Ellu-A is shown in Fig. 30-5-30. And typical plan and elevation for F23U-A and E6U-A are shown in Fig. 30-5-29.

e. Compressor Platform

Compressor Platforms (EllC-A, EllC-B and E6C-A) are located in E-11 and E-6 fields. The platform in E-6 oil field is for the associated gas which is to be considered as supplemental gas supply source to Central Luconia gas fields. It will be a six-leg structure and accommodate four gas turbine driven compressors. The two eight-leg structures will be installed in E-11 field. These are equipped with four gas turbine driven

compressors and its related facilities. Typical mechanical flow diagram, typical utility flow diagram and typical plan and elevation for EllC-A and EllC-B are shown in Fig. 30-5-7, Fig. 30-5-11 and Fig. 30-5-26 respectively. Those for E6C-A are also shown in Fig. 30-5-8, Fig. 30-5-12 and Fig. 30-5-27 respectively.

f. Accommodation Platform

Accommodation Platforms (EllA-A and F23A-A) are located in both E-Il and F-23 fields. They will accommodate operation and maintenance personnel at normal operation time and also in case of emergency. They will be four-leg structures with heliport on the top of the platform. Safety and escape devices will be also equipped. Typical plan and elevation for EllA-A and F23A-A are shown in Fig. 30-5-31.

g. Riser Platform

Riser Platform (EllR-A) is located in E-11 field. It will be a six-leg structure and equipped with liquid handling facilities which are required for pigging operating of incoming gathering lines. Typical mechanical flow diagram and typical plan and elevation for EllR-A are shown in Fig. 30-5-9 and Fig. 30-5-28 respectively.

Major equipment to be installed for this case are tabulated with simple specification in Table 17-5-1.

2.2.5 East Temana Oil Field

At this time East Temana field is not considered to be developed with West Temana and E-6 fields at the same time, because further exploration for the field is considered to be required for the determination whether to proceed to development or not. Facilities study on this field, however, is briefly discussed below.

Location of East Temana field is shown in Fig. 30-9-1 and is located approximately 18 miles away from Bintulu Terminal. Soil conditions at sea bottom in East Temana field are expected not stable enough as West Temana field. For this reason, type of jackets to be installed in East Temana field is considered to be 3- or 4-leg jackets.

As the information on the production performance is not available, production rate of East Temana is assumed to be 8,000 BPD and maximum GOR figure 5,000 ft³/bbl. Using the information of the fluid properties such as 34° API gravity and 11 cp of viscosity at 60°F, and of others mentioned above, facilities arrangement is tentatively designed and shown in Fig. 18-5-1 considering geographical, economic and operational factors. Block flow diagram is shown in Fig. 18-5-2.

Main facilities are as follows:

2 4-leg Well Platform	ETW-A & B			
1 4-leg Production Platform	ETP-A			
1 3-leg Flare Jacket	ETV-A			
Submarine Pipelines				

Four directional wells will be drilled from each Well Platform. Production from Well Platforms will be gathered to the Production Platform and after separating gas, oil will be sent to Bintulu Terminal through 6", 92,000' length Transmission Line.

Estimated cost for these facilities is shown below;

Development Wells	M\$22,758,000
Offshore Platforms	49,337,000
Offshore Production	Equipment 3,797,000
Submarine Pipelines	12,814,000
Others	19,604,000
Total	M\$108,310,000

Note: Others consist of engineering, pre-start-up expenses and contingencies.

3. CONCLUSIONS AND RECOMMENDATIONS

3.1 Existing Facilities

(1) Present Status of the Existing Production Facilities

At present six offshore fields are producing oil in Sarawak area. Data collection and site survey were executed to investigate the present status of these existing production facilities at September, 1976 and January, 1977 respectively. Operating Company names, field names and oil production rates as of May, 1976 are shown below for each field.

<u>Field</u>	Oil Production Rate (BPD)		Major Facilities
Baronia	49,162		Drilling Platforms
West Lutong	14,333		Production Platforms
Baram	30,683	{	Lutong Terminal
Bakau	5,203		Single Buoy Mooring System
Tukau	13,031	l	Submarine Pipelines
(Sarawak Shell Be	rhad)		
Fairley Baram	11,705*		Drilling Platforms
			Submarine Pipelines
			Production Facilities in Brunei

^{*} Note: Total for Sarawak and Brunei

(2) Review on the Capacity of the Existing Production
Facilities

Review and evaluation on the capacity of the existing production facilities have been carried out for the above-mentioned fields. These results are to be used for the assessment of the ability of those facilities to meet the predicted production performance of the relevant fields. The major objective facilities for reviewing are as follows and these are basic items to evaluate the capacity of whole production facilities.

Oil and Gas Separator

Vent or Flare Line

Oil and Gas Gathering Pipeline

Storage Tank

Loading System

As a result of review, it was confirmed that the processing facilities have sufficient capacity to handle the initial design rate. As for storage tank and loading system, storage capacity of Lutong Terminal is considered to be a little short.

The handling capacity of the offshore production facilities is shown below.

<u>Field</u>	Capacity of Offshore Production Facilities (BPD)
Baronia	60,000
West Lutong	60,000
Baram	90,000
Bakau	30,000
Tukau	60,000

(3) Assessment of the Facilities Capacity for the Predicted Production Scheme

Based upon the review described above, assessment of capacity of the existing production facilities was performed based on the predicted maximum production rate of well fluids for each field.

.

As a result of the study, it has been confirmed that any bottlenecks on the capacity of the production facilities will not basically occur even if the changes of production rate of associated gas and formation water are considered, because the oil production rates from each field will decline gradually and predicted maximum production rate of oil plus formation water will not generally exceed the present production rate as shown below.

Production Rate as of	Predicted Max. Prod. Rate
May, 1976 (BPD)	after 1976 (BPD)

Field	Crude Oil + Formation Water	Crude Oil	Formation Water	Crude Oil + Formation Water (Year)	Crude Oil	Formation Water
Baronia	51,977	49,162	2,815	55,150('78)	48,680	6,470
West Lutong	33,130	14,333	18,797	30,230('80)	14,500	15,730
Baram	47,861	30,638	17,178	40,670('77)	25,440	15,230
Bakau	5,316	5,203	113	2,830('77)	2,530	300
Tukau	13,411	13,031	380	12,930('77)	12,380	550

Note: The oil production facilities of Fairley Baram are mostly located in Brunei area and the site survey was not performed.

(4) Assessment on Present Production Practices

Related to the evaluation study on the existing oil production facilities including site survey, the study on the following items was performed, although these items have no direct relation to the handling capacity of the production facilities.

- . Associated Gas Utilization
- . Metering System
- . Waste Water Treatment System
- . Crude Oil Dehydration System
- . Tank Size at Lutong Terminal
- . Control and Monitoring System

And the items shown below about existing facilities are recommended to be improved.

1) Metering System

There are no metering facilities of produced liquids at offshore Production Platforms in Lutong Stream.

It is recommended to install a positive displacement meter at the inlet of pipeline to measure the total liquid flow produced at each platform to achieve more accurate allocation of production from the viewpoint of accurate field control. However, detailed study will be required to select an optimum metering system due to the existing pumps of reciprocating type.

2) Crude Oil Dehydration System

Conventional storage tanks are used to cut the associated water at Lutong Terminal. The tank capacity used for dehydration purpose occupies about 11% of total operating tank capacity. Moreover, the temperature of incoming crude becomes 90°F to 93°F in cooler months and dehydration efficiency becomes lower.

Judging from the above-mentioned status, the existing storage tanks would be utilized more efficiently
with the application of more effective dehydration method
if any is applicable.

Although detailed evaluation will be required for the selection of treating method including a laboratory test and/or a pilot plant test to study the properties of oil-water emulsion, effect on the oil properties by treatment, etc., a wash tank method will be attractive alternative with the use of a direct fired heater because of simple method and simple operation.

3) Tank Size at Lutong Terminal

The size of the tanks at Lutong Terminal is relatively small due to the weak soil. The possibility to enlarge a tank size was studied. The form of structures to be installed and the properties of soil are important factors in investigating the bearing capacity of foundation, and so the detailed investigation on these matters together with economic evaluation will be required prior to final conclusion on the possibility. It is the combined method of vibro-flotation and preloading that seems to be the most applicable to Lutong Terminal among various methods from the viewpoints of construction term and cost.

4) Control and Monitoring System

In offshore operations for Lutong Stream, no monitoring system at the onshore terminal is applied on.

It will be worthy to take into consideration the adoption of telemetering system to monitor the operating conditions of offshore facilities to add more safety.

This is because nobody can watch offshore facilities at night without the installation of an accommodation platform in addition and it takes time to find out any accident and to reach the location. Efficiency and safety of oil production operation will be improved by the adoption of the system by which working conditions can be monitored at an onshore control room.

3.2 Proposed Facilities

Several alternative cases for the development of oil and gas fields in Sarawak area as shown below have been established including the cases for single field development and for the combined development of several fields. Conceptual design for the alternative cases has been carried out in accordance with the production performance predicted in Part A. As a result of the conceptual design, flow diagrams, facilities layouts and so on have been prepared.

Baronia and B-12 group (gas)

Betty and Bokor group (crude oil)

West Temana and E-6 group (crude oil)

Central Luconia (gas)

East Temana (crude oil)

- (1) Field Development Schemes
 - 1) Baronia and B-12 Fields (gas)

Utilization of Baronia associated gas together with B-12 free gas was considered for the gas supply to a possible fertilizer plant. The gas delivery rate is 41 MMSCFD and is kept constant for 20 years. Other usage of the associated gas produced in this area will be considered for the injection into the underground for secondary recovery, while current reservoir

performance information is not sufficient enough to establish pressure maintenance by gas injection.

The facilities mainly consist of well and production platform, riser platform and submarine pipelines.

2) Betty Field (crude oil)

The combined development scheme of Betty and Bokor was considered in the established alternative schemes. However, the scheme for Betty single field development with the connection to the existing Bakau production platform has been selected from the economic viewpoint.

The maximum production rate is predicted as 15,330 BPD.

The facilities mainly consist of well and production platforms and submarine pipelines.

3) E-6 Field (crude oil)

E-6 Field in Central Luconia Fields is divided as an oil field because it is built-up with huge capacity.

The combined development scheme of E-6 and West

Temana was considered in the established alternative

schemes. However, the scheme for E-6 single field

development has been selected from the economic viewpoint.

The maximum production rate is predicted as 30,000 BPD.

The facilities mainly consist of well and production platforms, accommodation platform, submarine pipelines and onshore terminal with tankage and loading facilities.

4) Central Luconia Fields (gas)

The scheme for the development of six gas fields such as E-8, E-11, F-6, F-13, F-14 and F-23 with the offshore compression stations has been selected.

The gas delivery rate is predicted as 1,340 MMSCFD for 20 years.

The facilities mainly consist of well and production platforms, utilities platforms, compressor platforms, accommodation platforms and submarine pipelines.

PART C COST ESTIMATE AND ECONOMIC ANALYSIS

1. COST ESTIMATE

1.1 General Cost Estimate Bases

1.1.1 Basic Cost Data

Cost data on materials and services, which are required for the estimate of cost for drilling, facilities construction and operation and maintenance, have been collected and tabulated as the values as of middle of 1976.

The following basic cost data tables and figures have been prepared;

- Basic cost data for wells and facilities cost Development wells Fig. 31-6-1
 Offshore structures Table 29-6-1 to 29-6-10
 Submarine pipelines Table 29-6-11, 29-6-12
 Gas production equipment Table 29-6-13
 Oil production equipment Table 29-6-14
 Other production equipment ... Table 29-6-15
 Offshore storage barge Table 29-6-16
 Onshore support facilities .. Table 29-6-17
- Basic cost data for operating cost
 Operating personnel Table 29-6-18

 Chemicals Table 29-6-19

 Service contractors Table 29-6-20

Computation for cost estimation has been performed in the currency of U.S. dollars, and then the results are converted into Malaysian dollars (M\$) with the shown exchange rate.

U.s.\$1 = M\$2.54

1.1.2 Estimate of Other Cost Items

The following items of capital investment cost and operating cost have been computed in accordance with the following formulas using some of the abovementioned basic cost data:

Capital Investment Cost

Engineering Fee (C_1) : 10% of $(C_2 + C_3)$

Pre-start-up Expenses : $1% \text{ of } (C_1 + C_2 + C_3)$

Contingency : 10% of $(C_1 + C_2 + C_3)$

Annual Operating Cost

Operation Management (C4): 10% of C5

Repair and Maintenance

Pipelines : 0.1% of C6

Others : 2% of $(C_7 + C_8)$

(in case of onshore storage)

3% of $(C_7 + C_8)$ (in case of offshore storage)

Operating Supplies : 0.3% of $(C_6 + C_7 + C_8)$

Indirect Personnel : 50% of $(C_4 + C_5)$

Insurance

Pipelines : 0.5% of C₆

Others : 1.5% of $(C_7 + C_8)$

where,

C1: Engineering Fee

C2: Development Well Cost from Basic Cost Data

C3: Facilities Cost from Basic Cost Data

C4: Operation Management Cost

C5: Operation Personnel Cost from Basic Cost Data

C6: Pipeline Cost including Miscellaneous Cost

C7: Development Well Cost including Miscellaneous
Cost

C₈: Facilities Cost except Pipeline Cost including Miscellaneous Cost.

Note: Miscellaneous costs include engineering, prestart-up expenses and contingency.

1.1.3 Estimate of Past Investment

Only exploration wells cost has been counted in capital investment and other past investment is not included in this study.

1.1.4 Estimate of Annual Operating Cost

Annual operating costs for each field have been counted only for its oil or gas production life span when two or more fields are produced in the combined production system.

1.2 Cost Estimate

1.2.1 Baronia Oil Field and B-12 Gas Field Gas Utilization

(1) Bases of Cost Estimate

Capital investment costs and operating costs for Baronia and B-12 fields have been estimated based upon the basic cost data and method of cost estimation which are described in 1.1, taking into consideration the following.

- It is assumed that all existing facilities in Miri will be utilized as onshore support facilities for these fields. Therefore onshore base cost is not included.
- · Operating personnel costs include only the minimum required for offshore operation as estimated below.

Foreman: 6

Operator: 9

- It is assumed that Baronia associated gas is available cost free at offshore Production Platform (BNP-A) in Baronia.
- · Offshore gas gathering facilities will be installed as the same time for both Baronia and B-12 fields.

(2) Capital Investment Cost Estimate

Capital investment costs for the development of these fields are summarized in Table 14-6-1. Total amount becomes M\$113,027,000.

(3) Annual Operating Cost Estimate

Annual operating costs for these fields are summarized in Table 14-6-2. Total amount becomes M\$4,809,000.

(4) Project and Investment Schedules

The project schedule for the development of Baronia and B-12 fields is tabulated as shown in Fig. 14-6-1, based upon the availability of following construction equipment.

Tender Assisted Drilling Rig 1

Derrick Barge (500 ton) 1

Lay Barge (up to 16" ϕ) 1

Subsequently based on the above project schedule, the investment schedule has been made as shown in Table 14-6-3.

1.2.2 Betty and Bokor Oil Fields

(1) Bases of Cost Estimate

Capital costs and operating costs in these fields have been estimated based upon the basic cost data in 1.1, taking into consideration the following.

- It is assumed that all existing facilities at Lutong Terminal could be utilized for these fields.
- Operation of these fields is considered to be performed linking with the Lutong Terminal as well as the existing fields. And an operation organization for these fields and existing fields is tentatively assumed as shown in Fig. 31-6-3, and operating personnel cost of Betty and Bokor fields is distributed according to the ratio of oil production rates of these two fields to those of the existing fields.

(2) Capital Investment Cost Estimate

Capital investment costs in each case have been estimated and are summarized in Table 15-6-1. Total amount becomes M\$232,200,000 for Case I and M\$122,166,000 for Case II respectively.

(3) Annual Operating Cost Estimate

Annual operating costs for each case have been estimated and are summarized in Table 15-6-2 and 15-6-3.

(4) Project and Investment Schedules

The project and investment schedules for Case II (optimum case) have been made and are shown in Fig. 15-6-1 and Table 15-6-5 respectively. For reference, the investment schedule for Case I is shown in Table 15-6-4.

The following construction equipment are assumed to be available.

Tender Assisted Drilling Rig 1

Derrick Barge (500 ton) 1

Lay Barge (12" - 30") 1

Lay Barge (4" - 10") 1

1.2.3 West Temana and E-6 Oil Fields

(1) Bases of Cost Estimate

Capital costs and operating costs for West Temana and/or E-6 fields have been estimated based upon the basic cost data and computation method which are described in 1.1. Besides, the following considerations are taken into:

- Extra piling cost is considered for jackets to be installed in West Temana field because of bad soil conditions.
- It is assumed that sufficient excavated areas are available at Bintulu for terminal construction.
- Operation organizations for Case I and Cases IIA and IIB are tentatively assumed as shown in Fig. 31-6-4 and Fig. 31-6-3 respectively.

(2) Capital Investment Cost Estimate

Capital investment costs in each case have been estimated and are summarized in Table 16-6-1. Total amount becomes M\$416,583,000 for Case I, M\$285,366,000 for Case IIA and M\$299,134,000 for Case IIB respectively.

(3) Annual Operating Cost Estimate

Annual operating costs for each case have been estimated and are summarized in Table 16-6-2, Table 16-6-3 and Table 16-6-4.

(4) Project and Investment Schedules

The project schedule for Case IIB (optimum case) is shown in Fig. 16-6-1. Investment schedule based upon the above-mentioned project schedule has been made and is shown in Table 16-6-7. Investment schedules for other cases have also been made in accordance with each project schedule and are shown in Table 16-6-5 and Table 16-6-6 for reference.

The following construction equipment are assumed to be available:

Tender Assisted Drilling Rig	1
Derrick Barge (500 ton)	1
Lay Barge (12" - 30")	1
Lay Barge (4" - 10")	1

1.2.4 Central Luconia Gas Fields

(1) Bases of Cost Estimate

Capital investment and operating cost for Central Luconia fields have been estimated based on the basic cost data and computation method described in 1.1, taking into account the following assumptions.

- It is assumed that the facilities which consist
 of buildings such as residence, office, warehouse,
 etc. and jetty will be newly installed at Bintulu
 Terminal.
- · Compressors are assumed to be replaced at the end of the tenth year after initial installations.
- Operating personnel costs have been estimated based on the tentative operating organization as shown in Fig. 31-6-5.

(2) Capital Investment Cost Estimate

As for these fields there are six cases and the estimated capital investments are summarized below. The breakdowns are shown in Table 17-6-1.

Case	IA	M\$1,271,003,000
Case	IB	M\$1,384,640,000
Case	IC	M\$1,658,253,000
Case	II	M\$1,565,995,000
Case	III	M\$1,461,356,000
Case	IV	M\$1,369,979,000

(3) Annual Operating Cost Estimate

Estimated annual operating costs are summarized below. These costs are all the same throughout the project life for each case. The breakdowns are shown in Table 17-6-2.

Case	IA	M\$42,912,000
Case	IB	M\$46,529,000
Case	IC	M\$56,008,000
Case	II	M\$52,775,000
Case	III	M\$49,555,000
Case	IV	M\$46,188,000

(4) Project and Investment Schedules

The project schedule for Case IC selected as an optimum case is shown in Fig. 17-6-1. The investment schedule for Case IC has been prepared based on the above project schedule and is shown in Table 17-6-5.

The investment schedules for other cases are shown in Tables 17-6-3, 4, 6, 7 and 8 respectively.

The following construction equipment are assumed to be available.

Tender Assisted Drilling Rig	3
Derrick Barge (500 ton)	3
Lay Barge	2

2. ECONOMIC ANALYSIS

2.1 General Economic Analysis Bases

2.1.1 Oil

(1) Method of Economic Analysis

Necessary items and formulas for the calculation of profitability of both Petronas and Operating Company in accordance with PS Agreements are shown in Appendix II.

(2) Profitability Yardsticks

The following profitability yardsticks are used for profitability analysis and for comparison of alternative schemes which are settled at conceptual design phase;

- Cumulative Net Cash Flow
- DCF ROR
- Cumulative Present Worth
- Payout Time

(3) Production Schedule

Annual oil production is obtained from calendar days (365) multiplied by daily oil production which has been estimated in Part A. Table 30-6-1 shows annual oil production for each field. Starting time

of production is to be at the completion of all of the drilling and installation of facilities.

(4) Oil Sales Price

The method to establish oil sales price has been presented from downstream team as follows;

1) As for the oil, of which the actual price at the middle of 1976 is known, the following actual prices are to be adopted.

Labuan Crude M\$31.88 (US\$12.55)/BBL Miri Crude M\$32.00 (US\$12.60)/BBL

2) As for the oil, of which the actual price at that time does not exist or can not be obtained, the price is to be established by making adjustment for API premium based on the price of the above-mentioned crudes or actual price of other oils.

The method to adjust oil price for API premium of each oil is to be made as follows;

a. As for the oil exceeding API 40.3°, M¢7.62 (US¢3)/° API is to be added to the standard price, M\$32.00 (US\$12.60)/BBL.

- b. As for the oil under API 36.4°, M¢7.62 (US¢3)/° API is to be reduced from the standard price M\$31.88 (US\$12.55)/BBL.
- c. As for the oil between API 36.4° and 40.3°, price is to be established in proportion calculation based on the above standard price.

And as for the oil produced from several combined fields, establishment of sales price is to be made by calculating the weighted average of oil production per year from each field. The prices established by this method are shown in Table 30-6-1, with oil production per year from each field.

(5) Investment Schedule

Capital investment schedules based on alternative schemes are shown in Table 31-6-1.

(6) Annual Operating Costs

Annual operating costs based on alternative schemes are shown in Table 31-6-2.

(7) Common Input Data

Common input data for economic analysis to all cases of alternative schemes are as follows;

•	Royalty Rate		10%
•	Maximum Cost Recover	ry Ratio - Oil	20%
		(Gas	25%)
•	Profit Oil Share	Petronas	70%
		Operating Company	30%
•	Rate of Payment for	Research Fund	0.5%
•	Initial Basic Price	(at 1976 Base)	M\$32.31 (US\$12.72)/BBL
•	Rate of Increase fo	r Basic Price	5%/year
•	Rate of Payment for above Basic Price	Profit Oil	70%
	Production Bonus ab	ove 50,000 BPD	M\$5,000,000
•	Discovery Bonus*		M\$2,500,000
•	Income Tax Rate		45%
•	Discount Rate	·	5%, 10%, 15%

Note: * It is assumed that the value of M\$2,500,000 as discovery bonus is applied to even combined production fields case.

2.1.2 Gas

(1) Calculation Formula for Gas Cost

For the purpose of selection of the optimum case by comparing alternative schemes, the following formula is used for the calculation of net gas cost;

$$\sum_{i=1}^{n} \frac{GQ_{i} - (C_{i} + O_{i})}{(1 + r)^{i-0.5}} = 0$$

where,

G = Gas Cost

 Q_i = Gas Rate by Year

 C_i = Capital Investment by Year

 O_i = Operating Cost by Year

r = Discount Rate

n = Project Life

It should be noted that sales profit conception is not included in this gas cost calculation formula and, therefore, cash outflow factors such as tax, royalty, bonus and research fund are excluded. And as for the influence by these factors for cash flow, the attached calculated example in accordance with PS Agreements could be referred.

(2) Production Schedule

Annual gas production rate is obtained from the daily gas production rate multiplied by 365 calendar days. Daily gas production rate is shown in Table 31-6-3. Production life of all gas projects is twenty years and starting time of production is to be at the time of completion of drilling and installation of production facilities.

(3) Investment Schedule

Capital investment schedules based on the alternative schemes are shown in Table 31-6-4.

(4) Annual Operating Costs

Annual operating costs based on alternative schemes are shown in Table 31-6-5.

(5) Common Input Data

Discount Rate 0, 5, 10, 15, 20%

2.2 Profitability Analysis on Oil

The production rate and the production life of each field have important effect upon its profitability. As the result of analysis, it can be said that more advantageous case by comparison of investment cost based on the same production rate is not always advantageous for Operating Company in view of profitability when operating costs are not the same. In the various cases selected in the conceptual design phase, included are the cases for developing fields as a group by combining them or for developing them individually and also the alternative cases for developing the same field or the same group of fields by offshore storage and loading or onshore storage and loading. In this part C.2.2, a comparative study on the results of profitability analysis of each case and selection of a more profitable case in view of profitability are made for the above alternatives taking into consideration technical viewpoints. Detailed explanation of the facilities is made for the case(s) selected considering these results in Part B.2. And as for the selection standard of the alternative cases in the conceptual design, we adopted the value of DCF ROR of the year when that of the Operating Company is the largest, because the case of the largest oil production is most profitable for Petronas at all times, which cannot be the selection standard.

In this area the following two cases for the development of Betty and Bokor oil fields and three cases for the development of West Temana and E-6 oil fields have been selected as alternative schemes, and profitability analysis for each case has been carried out.

2.2.1 Betty and Bokor Oil Fields

Case I: Betty and Bokor, Bakau Gathering System
Case

Case II: Betty, Bakau Gathering System Case

Each of the profitability yardsticks obtained for each case is shown in Table 31-6-6. Cash Flow Tables for each of Petronas and Operating Company are shown in Tables 15-6-6 and 7. Descriptions for each case are as follows;

Case I: As Bokor field is connected to Betty field in this case, oil production rate increases. However, capital investment cost is higher due to the installation of a submarine pipeline to connect both fields. In this case Operating Company will not be able to recover the investment cost even at the time of project end and the cash flow conditions for Operating Company are very bad. At the same time, for the reason of low production rate,

short production year, heavy oil (19.5° API) and necessity of artificial lift for low well head pressure in Bokor field, capital investment cost is too high for this low oil production rate at the level of present sales price from the viewpoint of economics.

Case II: The profit will become a peak in the eighth year after the project start (in the fifth year after the production start) as shown in Cash Flow Table for Operating Company. Maximum DCF ROR is 12.62% in this year.

In comparison of the above two cases, profitability of Case II will be better than that of Case I.

However, even if Case II is adopted, as oil production rate in the ninth year after the project start is extremely low, it will be better for Operating Company to stop the project at eighth year.

2.2.2 West Temana and E-6 Oil Fields

Case I : West Temana and E-6, Bintulu Terminal
Case

Case IIA: E-6, Offshore Storage Case

Case IIB: E-6, Onshore Terminal Case

Each of the profitability yardsticks obtained for each case is shown in Table 31-6-6. Cash Flow Tables for Petronas and Operating Company are shown in Tables 16-6-8, 9 and 10. Descriptions for each case are as follows;

Case I: For the reason of low production rate, very short production life, bad soil condition and high investment cost of jackets in gathering scheme of West Temana field, profitability of combined development case of both fields as well as the development case of only the West Temana field is worse than the other alternative cases. The profit will become a peak in the fourteenth year after the project start (in the eleventh year after the production start) as shown in Cash Flow Table for Operating Company. As maximum DCF ROR is 7.88% in this year, this case cannot be said to be profitable.

Case IIA: In this case, capital investment cost is lower but operating cost is higher compared with Case IIB. The profit will become a peak in the thirteenth year after the project start (in the tenth year after the production start) as shown in Cash Flow Table for Operating Company.

Maximum DCF ROR is 15.48% in this year. Profitability after this year will become worse because of declining oil production rate.

Case IIB: In this case, capital investment cost is higher and operating cost is lower compared with Case IIA. The profit will become a peak in the sixteenth year after the project start (in the thirteenth year after the production start) as shown in Cash Flow Table for Operating Company.

Maximum DCF ROR in this year is 16.75%. Profitability after this year will become worse because of declining oil production rate.

In comparison of the above three cases, Case I is less profitable due to the high capital investment cost. And in comparison of Case IIA with Case IIB the latter can be said to be more profitable, because its profitability is better when the profit for Operating Company in Case IIA will become a peak in the thirteenth year

after the project start and this tendency continuous throughout the project life as shown in Cash Flow Table for Operating Company. However, even if Case IIB is adopted, as the profitability of Operating Company after the fifteenth year will become worse, it will be better for Operating Company to stop the project in this year.

2.3 Gas Cost Estimate

The gas costs calculated based on the formula mentioned above in the section of economic analysis bases are shown below. For reference, Table 14-6-4 and Tables 17-6-9 thru 14 show the analyzed results based on the PS Agreements under the condition to obtain 10% DCF ROR.

2.3.1 Baronia Oil Field and B-12 Gas Field Gas Utilization

For these fields the gas costs have been estimated for Case IA which was selected at the conceptual design phase.

Case IA: Natural Flow Case

The followings are gas costs for each discount rate;

Unit: M¢/1,000 SCF

Discount Rate

0% 5% 10% 15% 20%

Gas Cost 77.4 103.8 137.0 175.6 218.2

2.3.2 Central Luconia Gas Fields

For Central Luconia gas fields in this area, the six cases of gas production scheme are selected corresponding to different gas production, investment and annual operating costs and the gas costs for each case have been calculated and analyzed.

Case IA: Natural Flow Case - Six Fields

Development

Case IB: Onshore compression Case - Six Fields

Development

Case IC: Offshore Compression Case - Six Fields

Development

Case II: Offshore Compression Case - Five
Fields Development

Case III: Offshore Compression Case - Four Fields Development

Case IV : Offshore Compression Case - Three Fields Development

The followings are the gas costs of each case for each discount rate;

Unit: M¢/1,000 SCF
Discount Rate

	80	5%	10%	15%	20%
Case IA	28.3	39.4	53.8	71.3	91.5
Case IB	32.4	43.6	58.1	75.6	95.8
Case IC	28.4	38.6	52.1	68.6	87.9
Case II	28.3	38.5	51.9	68.4	87.6
Case III	28.2	38.3	51.5	67.8	86.9
Case IV	28.8	38.9	52.0	67.8	86.2

As known from the above table, a relative order of each case varies in accordance with the discount rate. Gas costs of Case IA and Case IB are higher in comparison with other cases. In the other cases, the gas cost in Case III is comparatively low, but the difference from other cases is small.

Case IC has been selected at this time in spite of the above-mentioned results and in spite that in this case there are many offshore facilities which will require more or less complicated operation. The reasons are described below, although final selection should be made based on the profitability analysis for the combined scheme of both gas gathering and a gas plant.

- (1) In general the project for large scale gas utilization will become more advantageous with the increase of supply gas rate due to the "merit of size" in spite of small increase in gas cost. Gas production rate is the largest in Case IC.
- (2) Gas recovery is relatively high, therefore this case has the merit to utilize gas reserves effectively.

2.4 Sensitivity Analysis

The sensitivity analysis has been carried out on the profitability yardstick for the optimum case of the production schemes as described in Part B.2 and the sensitivity curve is shown in Fig. 31-6-8. The results of sensitivity analysis for each case are as follows;

2.4.1 Betty and Bokor Oil Fields (Case II)

Production Rate Change	-20%	-10%	0%		
DCF ROR (%)	3.58	8.30	12.62		
Sales Price Change	-20%	-10%	0%	10%	20%
DCF ROR (%)	3.58	8.30	12.62	16.62	19.44
Investment Change	-20%	-10%	0%	10%	20%
DCF ROR (%)	20.02	16.36	12.62	9.36	6.50

2.4.2 West Temana and E-6 Oil Fields (Case IIB)

Production Rate Change	-20%	-10%	0 %		
DCF ROR (%)	9.99	13.99	16.75		
Sales Price Change	-20%	-10%	0%	10%	20%
DCF ROR (%)	9.99	13.99	16.75	18.90	20.87
Investment Change	-20%	-10%	0%	10%	20%
DCF ROR (%)	21.36	18.87	16.75	14.87	12.62

3. CONCLUSIONS AND RECOMMENDATIONS

3.1 Cost Estimate

Capital investment and annual operating cost have been estimated for each of the alternative cases for which the conceptual design of production facilities of the oil and gas fields has been performed. As a result, capital investment schedules have been prepared to be used as basic data for subsequent economic analysis.

The capital investment cost estimate has been performed for the drilling of production wells, offshore platforms, submarine pipelines, oil and gas processing equipment, offshore storage and loading facilities or onshore storage and loading facilities, support facilities, etc. The operating cost has been estimated for operating personnel, chemicals, service contractors, repair and maintenance, insurance and so on required for the field operation of the above-mentioned facilities.

Estimated capital investment cost in each case is summarized and shown below with design capacity of the production facilities.

Baronia and B-12 group (gas)

41 MMSCFD	МŚ	113,027,000
41 MACLD	1.14	113,027,000

Betty and Bokor group (crude oil)

Case I	21,000 BPD	M\$	232,200,000
Case II	16,000 BPD	M\$	122,166,000

West Temana and E-6 group (crude oil)

Case I	34,000 BPD	М\$	416,583,000
Case IIA	30,000 BPD	M\$	285,366,000
Case IIB	30,000 BPD	M\$	299,134,000

Central Luconia (gas)

•	Case	IA	1,200	MMSCFD	М\$	1,271,003,000
	Case	IB	1,100	MMSCFD	М\$	1,384,640,000
	Case	IC	1,500	MMSCFD	M\$	1,658,253,000
	Case	II	1,400	MMSCFD	М\$	1,565,995,000
	Case	III	1,300	MMSCFD	M\$	1,461,356,000
	Case	IV	1,200	MMSCFD	М\$	1,369,979,000

East Temana (crude oil)

8,000 BPD M\$ 108,310,000

3.2 Economic Analysis

The economic analysis has been performed regarding various production schemes for both oil and gas fields selected in the conceptual design phase. Regarding oil, the profitability of each production scheme is analyzed based on Production Sharing Agreements in Malaysia from the standpoint of Petronas and Operating Company respectively. Sales price of crude was given by the down-stream team of the Master Plan study.

Regarding gas, gas costs have been calculated based on the proper formula which was prepared for the purpose to select the lowest cost scheme of gas production and gathering. Gas utilization projects of large scale are generally difficult to decide the execution of them without the consideration of overall profitability for both gas production scheme and utilization scheme. And it is difficult to obtain such a general sales price for gas as sales price for oil. Therefore, it is not realistic to analyze profitability only for the objective gas production scheme without that for gas utilization scheme and this is the reason to use the above-mentioned formula. Consequently, the following have been selected as more profitable cases:

. Betty single field development case with connection to the existing Bakau facilities.

. E-6 single field development case with onshore storage facilities.

The cost of net gas delivered to a shore point has been estimated for the following two fields:

- . Baronia and B-12 fields
- . Central Luconia fields.

The summary of the results is shown below. For the cases of crude oil the indicated figures belong to the year when the profitability indexes become maximum, and for the cases of gas the indicated figures are the gas costs throughout 20 producing years.

- Crude Oil -

	Petronas	Operating Company			
Name of Field	Cumulative Net Cash Flow (M\$ 1,000)	DCF ROR (%)	Cumulative Net Cash Flow (M\$ 1,000)	Payout Time (year)	
Betty	188,132	12.6	58,526	5.7	
E-6	697,320	16.8	282,672	6.2	

- Gas -

Gas Cost by Discount Factors (M¢/1,000 CF)

Name of Field(s)	Discount Factor (%)				
	0	5	10	15	20
Baronia and B-12	77.4	103.8	137.0	175.6	218.2
Central Luconia	28.4	38.6	52.1	68.6	87.9

TABLE LIST VOL. IV SARAWAK AREA

Table	A-1	ORIGINAL HYDROCARBONS IN PLACE - PRODUCING FIELDS OF SARAWAK
14210	A-2	ORIGINAL HYDROCARBONS IN PLACE - DEVELOPMENT FIELDS OF SARAWAK
		ORIGINAL HYDROCARBONS IN PLACE - POTENTIAL FIELDS OF SARAWAK
	A-3 A-4	ORIGINAL HYDROCARBONS IN PLACE - CENTRAL LUCONIA FIELDS
	1-2-1	CORRELATION TABLE, BARONIA FIELD
	1-3-1	PREDICTED PERFORMANCE OF BARONIA FIELD
	2	PREDICTED PERFORMANCE OF A ZONE, BARONIA FIELD
	3	PREDICTED PERFORMANCE OF A ZONE, WELL 1, BARONIA FIELD
	4	PREDICTED PERFORMANCE OF A ZONE, WELL 2, BARONIA FIELD
	5	PREDICTED PERFORMANCE OF A ZONE, WELL 3, BARONIA FIELD
	6	PREDICTED PERFORMANCE OF A ZONE, WELL 4, BARONIA FIELD
	7	PREDICTED PERFORMANCE OF C ZONE, BARONIA FIELD
	8	PREDICTED PERFORMANCE OF C ZONE, WELL BN-6, BARONIA FIELD
	9	PREDICTED PERFORMANCE OF C ZONE, WELL BN-7, BARONIA FIELD
	10	PREDICTED PERFORMANCE OF C ZONE, WELL BN-9, BARONIA FIELD
	11	PREDICTED PERFORMANCE OF C ZONE, WELL BN-10, BARONIA FIELD
	12	PREDICTED PERFORMANCE OF C ZONE, WELL BN-13, BARONIA FIELD
	13	PREDICTED PERFORMANCE OF D ZONE, BARONIA FIELD
	14	PREDICTED PERFORMANCE OF E ZONE, BARONIA FIELD
	15	PREDICTED PERFORMANCE OF F1 ZONE, BARONIA FIELD
	16	PREDICTED PERFORMANCE OF F2 ZONE, BARONIA FIELD
	17	PREDICTED PERFORMANCE OF BARONIA FILED - ADDITIONAL WELL CASE -
	2-2-1	CORRELATION TABLE, FAIRLEY BARAM FIELD
4	2-3-1	PREDICTED PERFORMANCE OF FAIRLEY BARAM FIELD, CASE 1
	2	PREDICTED PERFORMANCE OF FAIRLEY BARAM FIELD, CASE 2
	3	PREDICTED PERFORMANCE OF A ZONE, FAIRLEY BARAM FIELD
	4	PREDICTED PERFORMANCE OF B ZONE, FAIRLEY BARAM FIELD, CASE 1
	5	PREDICTED PERFORMANCE OF B ZONE, FAIRLEY BARAM FIELD, CASE 2
	6	PREDICTED PERFORMANCE OF C ZONE, FAIRLEY BARAM FIELD, CASE 1
	7	PREDICTED PERFORMANCE OF C ZONE, FAIRLEY BARAM FIELD, CASE 2
	8	PREDICTED PERFORMANCE OF B ZONE, WELL FB-2, FAIRLEY BARAM FIELD, CASE 1
	9	PREDICTED PERFORMANCE OF B ZONE, WELL FB-3, FAIRLEY BARAM FIELD, CASE 1
	_	

Table 2-3-10	PREDICTED PERFORMANCE OF B ZONE, WELL FB-29, FAIRLEY BARAM FIELD, CASE 1
· 11	PREDICTED PERFORMANCE OF B ZONE, WELL FB-2, FAIRLEY BARAM FIELD, CASE 2
12	PREDICTED PERFORMANCE OF B ZONE, WELL FB-3, FAIRLEY BARAM FIELD, CASE 2
13	PREDICTED PERFORMANCE OF B ZONE, WELL FB-29, FAIRLEY BARAM FIELD, CASE 2
14	PREDICTED PERFORMANCE OF B ZONE, WELL FB-Al, FAIRLEY BARAM FIELD, CASE 2
15	PREDICTED PERFORMANCE OF C ZONE, WELL FB-2, FAIRLEY BARAM FIELD, CASE 1
16	PREDICTED PERFORMANCE OF C ZONE, WELL FB-3, FAIRLEY BARAM FIELD, CASE 1
17	PREDICTED PERFORMANCE OF C ZONE, WELL FB-11, FAIRLEY BARAM FIELD, CASE 1
18	PREDICTED PERFORMANCE OF C ZONE, WELL FB-29, FAIRLEY BARAM FIELD, CASE 1
19	PREDICTED PERFORMANCE OF C ZONE, WELL FB-2, FAIRLEY BARAM FIELD, CASE 2
20	PREDICTED PERFORMANCE OF C ZONE, WELL FB-3, FAIRLEY BARAM FIELD, CASE 2
21	PREDICTED PERFORMANCE OF C ZONE, WELL FB-11, FAIRLEY BARAM FIELD, CASE 2
22	PREDICTED PERFORMANCE OF C ZONE, WELL FB-29, FAIRLEY BARAM FIELD, CASE 2
23	PREDICTED PERFORMANCE OF C ZONE, WELL FB-A1, FAIRLEY BARAM FIELD, CASE 2
24	PREDICTED PERFORMANCE OF C ZONE, WELL FB-A2, FAIRLEY BARAM FIELD, CASE 2
3-2-1	CORRELATION TABLE, WEST LUTONG FIELD
3-3-1	PREDICTED PERFORMANCE OF WEST LUTONG FIELD
2	PREDICTED PERFORMANCE OF A ZONE, WEST LUTONG FIELD
3	PREDICTED PERFORMANCE OF B ZONE, WEST LUTONG FIELD
4	PREDICTED PERFORMANCE OF C ZONE, WEST LUTONG FIELD
5	PREDICTED PERFORMANCE OF WEST LUTONG FIELD - ADDITIONAL WELL CASE -
4-2-1	CORRELATION TABLE, BARAM FIELD, A-AREA
2	CORRELATION TABLE, BARAM FIELD, B-AREA
4-3-1	PREDICTED PERFORMANCE OF BARAM A FIELD
2	PREDICTED PERFORMANCE OF BLOCK I, BARAM A FIELD
3	PREDICTED PERFORMANCE OF BLOCK II, BARAM A FIELD
4	PREDICTED PERFORMANCE OF BLOCK IV, BARAM A FIELD
5	PREDICTED PERFORMANCE OF BLOCK V, BARAM A FIELD
6	PREDICTED PERFORMANCE OF BLOCK VI, BARAM A FIELD
7	PREDICTED PERFORMANCE OF BLOCK VII, BARAM A FIELD
8	PREDICTED PERFORMANCE OF BLOCK VIII, BARAM A FIELD
9	PREDICTED PERFORMANCE OF UPPER BLOCK, BARAM A FIELD
10	PREDICTED PERFORMANCE OF BARAM B FIELD

	TITLE
Table 4-3-11	PREDICTED PERFORMANCE OF MODEL-1, BARAM B FIELD
12	PREDICTED PERFORMANCE OF MODEL-2, BARAM B FIELD
5-2-1	CORRELATION TABLE, BAKAU FIELD
5-3-1	PREDICTED PERFORMANCE OF BAKAU FIELD
2	PREDICTED PERFORMANCE OF WELL BK-3, BAKAU FIELD
3	PREDICTED PERFORMANCE OF WELL BK-4, BAKAU FIELD
4	PREDICTED PERFORMANCE OF WELL BK-5, BAKAU FIELD
6-2-1	CORRELATION TABLE, TUKAU FIELD
6-3-1	PREDICTED PERFORMANCE OF TUKAU FIELD
2	PREDICTED PERFORMANCE OF MODEL-1, TUKAU FIELD
3	PREDICTED PERFORMANCE OF MODEL-2, TUKAU FIELD
4	PREDICTED PERFORMANCE OF MODEL-3, TUKAU FIELD
5	PREDICTED PERFORMANCE OF MODEL-4, TUKAU FIELD
6	PREDICTED PERFORMANCE OF MODEL-5, TUKAU FIELD
7	PREDICTED PERFORMANCE OF MODEL-6, TUKAU FIELD
8	PREDICTED PERFORMANCE OF MODEL-7, TUKAU FIELD
9	PREDICTED PERFORMANCE OF MODEL-8, TUKAU FIELD
10	PREDICTED PERFORMANCE OF MODEL-9, TUKAU FIELD
11	PREDICTED PERFORMANCE OF MODEL-10, TUKAU FIELD
12	PREDICTED PERFORMANCE OF MODEL-11, TUKAU FIELD
13	PREDICTED PERFORMANCE OF TUKAU FIELD - ADDITIONAL WELL CASE - (MODEL-9, 10, 11)
7~2-1	CORRELATION TABLE, BETTY FIELD
7-3-1	RESERVOIR PARAMETERS USED IN PERFORMANCE CALCULATION, al ZONE, BETTY FIELD
2	RESERVOIR PARAMETERS USED IN PERFORMANCE CALCULATION, a3 ZONE, BETTY FIELD
3	RESERVOIR PARAMETERS USED IN PERFORMANCE CALCULATION, b2 ZONE, BETTY FIELD
4	PREDICTED PERFORMANCE OF al ZONE, BETTY FIELD
5	PREDICTED PERFORMANCE OF a3 ZONE, BETTY FIELD
6	PREDICTED PERFORMANCE OF b2 ZONE, BETTY FIELD
8-2-1	CORRELATION TABLE, BOKOR FIELD
8-3-1	RESERVOIR PARAMETERS USED IN PERFORMANCE CALCULATION, al ZONE, BOKOR FIELD
2	RESERVOIR PARAMETERS USED IN PERFORMANCE CALCULATION, a2 ZONE, BOKOR FIELD
3	RESERVOIR PARAMETERS USED IN PERFORMANCE CALCULATION, b2 ZONE, BOKOR FIELD

Table 8-3-4	PREDICTED PERFORMANCE OF al ZONE, BOKOR FIELD
5	PREDICTED PERFORMANCE OF a2 ZONE, BOKOR FIELD
6	PREDICTED PERFORMANCE OF b2 ZONE, BOKOR FIELD
9-2-1	CORRELATION TABLE, TEMANA (EAST) FIELD
2	CORRELATION TABLE, TEMANA (WEST) FIELD
9-3-1	RESERVOIR PARAMETERS USED IN PERFORMANCE CALCULATION, TEMANA (WEST) FIELD
2	PREDICTED PERFORMANCE OF TEMANA (WEST) FIELD
10-2-1	CORRELATION TABLE, BERYL FIELD
11-2-1	CORRELATION TABLE, SIWA FIELD
12-2-1	CORRELATION TABLE, CENTRAL LUCONIA FIELD
12-3-1	GAS COMPONENTS AND Z-FACTOR, CENTRAL LUCONIA B12
2	GAS COMPONENTS AND Z-FACTOR, CENTRAL LUCONIA E8
3	GAS COMPONENTS AND Z-FACTOR, CENTRAL LUCONIA E11
4	GAS COMPONENTS AND Z-FACTOR, CENTRAL LUCONIA F6
5	GAS COMPONENTS AND Z-FACTOR, CENTRAL LUCONIA F13
6	GAS COMPONENTS AND Z-FACTOR, CENTRAL LUCONIA F14
7	GAS COMPONENTS AND Z-FACTOR, CENTRAL LUCONIA F23
8	GAS COMPONENTS AND Z-FACTOR, CENTRAL LUCONIA M1
9	ESTIMATING BOTTOM HOLE FLOWING PRESSURE VS. CUMULATIVE PRODUCTION, CENTRAL LUCONIA B12
10	PREDICTED PERFORMANCE OF CENTRAL LUCONIA E6 (CASE-1)
11	PREDICTED PERFORMANCE OF CENTRAL LUCONIA E6 (CASE-2)
12	ESTIMATING BOTTOM HOLE FLOWING PRESSURE VS. CUMULATIVE PRODUCTION, CENTRAL LUCONIA EB
13	ESTIMATING BOTTOM HOLE FLOWING PRESSURE VS. CUMULATIVE PRODUCTION, CENTRAL LUCONIA E11
14	ESTIMATING BOTTOM HOLE FLOWING PRESSURE VS. CUMULATIVE PRODUCTION, CENTRAL LUCONIA $F6$
15	ESTIMATING BOTTOM HOLE FLOWING PRESSURE VS. CUMULATIVE PRODUCTION, CENTRAL LUCONIA $F13$
16	ESTIMATING BOTTOM HOLE FLOWING PRESSURE VS. CUMULATIVE PRODUCTION, CENTRAL LUCONIA F14
17	ESTIMATING BOTTOM HOLE FLOWING PRESSURE VS. CUMULATIVE PRODUCTION, CENTRAL LUCONIA F23
18	ESTIMATING BOTTOM HOLE FLOWING PRESSURE VS. CUMULATIVE PRODUCTION, CENTRAL LUCONIA M1

Table 13-4-1	OIL AND GAS PRODUCTION RATE OF EACH FIELD IN LUTONG STREAM
2	MAJOR EQUIPMENT SPECIFICATIONS OF PRODUCTION STATION BNP-A
3	MAJOR EQUIPMENT SPECIFICATIONS OF PRODUCTION STATION BAP-A
4	MAJOR EQUIPMENT SPECIFICATIONS OF PRODUCTION STATION BNP-B
5	MAJOR EQUIPMENT SPECIFICATIONS OF PRODUCTION STATION BKP-A
6	MAJOR EQUIPMENT SPECIFICATIONS OF PRODUCTION STATION WLP-A
7	MAJOR EQUIPMENT SPECIFICATIONS OF PRODUCTION STATION WLP-C
8	MAJOR EQUIPMENT SPECIFICATIONS OF PRODUCTION STATION TKP-A
9	MAJOR EQUIPMENT SPECIFICATIONS OF PRODUCTION STATION TKP-B
10	PRESSURE LOSS AND FLOW VELOCITY IN LOADING LINE FOR BERTH NO. 2
11	PRESSURE LOSS AND FLOW VELOCITY IN LOADING LINE FOR BERTH NO. 4
12	PRELIMINARY CAPITAL INVESTMENT COST AND UTILITIES REQUIREMENTS FOR WASH TANK SYSTEM
14-5-1	MAJOR EQUIPMENT LIST FOR BARONIA OIL FIELD AND B-12 GAS FIELD GAS UTILIZATION - CASE IA
14-6-1	CAPITAL INVESTMENT COST ESTIMATION BARONIA OIL FIELD AND B-12 GAS FIELD GAS UTILIZATION - CASE IA
2	ANNUAL OPERATION COST ESTIMATION BARONIA OIL FIELD AND B-12 GAS FIELD GAS UTILIZATION - CASE IA
3	INVESTMENT SCHEDULE BARONIA OIL FIELD AND B-12 GAS FIELD GAS UTILIZATION - CASE IA
4	CASH FLOW TABLE FOR BARONIA OIL FIELD AND B-12 GAS FIELD GAS UTILIZATION - CASE IA
15-5-1	MAJOR EQUIPMENT LIST FOR BETTY AND BOKOR OIL FIELDS - CASE I
15-6-1	CAPITAL INVESTMENT COST ESTIMATION BETTY AND BOKOR OIL FIELDS
2	ANNUAL OPERATION COST ESTIMATION BETTY AND BOKOR OIL FIELDS - CASE I
3	ANNUAL OPERATION COST ESTIMATION BETTY AND BOKOR OIL FIELDS - CASE II
4	INVESTMENT SCHEDULE BETTY AND BOKOR OIL FIELDS - CASE I
5	INVESTMENT SCHEDULE BETTY AND BOKOR OIL FIELDS - CASE II
6	CASH FLOW TABLE FOR OIL BETTY AND BOKOR OIL FIELDS - CASE I
7	CASH FLOW TABLE FOR OIL BETTY AND BOKOR OIL FIELDS - CASE II
16-5-1	MAJOR EQUIPMENT LIST FOR WEST TEMANA AND E-6 OIL FIELDS - CASE I
16-6-1	CAPITAL INVESTMENT COST ESTIMATION WEST TEMANA AND E-6 OIL FIELDS
2	ANNUAL OPERATION COST ESTIMATION WEST TEMANA AND E-6 OIL FIELDS - CASE I
3	ANNUAL OPERATION COST ESTIMATION WEST TEMANA AND E-6 OIL FIELDS - CASE IIA

	1111112		
Table 16-6-4	ANNUAL OPERATION COST ESTIMATION WEST TEMANA AND E-6 OIL FIELDS	- CASE	IIB
5	INVESTMENT SCHEDULE WEST TEMANA AND E-6 OIL FIELDS	- CASE	I
6	INVESTMENT SCHEDULE WEST TEMANA AND E-6 OIL FIELDS	- CASE	IIA
7	INVESTMENT SCHEDULE WEST TEMANA AND E-6 OIL FIELDS	- CASE	IIB
8	CASH FLOW TABLE FOR OIL WEST TEMANA AND E-6 OIL FIELDS	- CASE	I
9	CASH FLOW TABLE FOR OIL WEST TEMANA AND E-6 OIL FIELDS	- CASE	IIA
10	CASH FLOW TABLE FOR OIL WEST TEMANA AND E-6 OIL FIELDS	- CASE	IIB
17-5-1	MAJOR EQUIPMENT LIST FOR CENTRAL LUCONIA GAS FIELDS	- CASE	IC
17-6-1	CAPITAL INVESTMENT COST ESTIMATION CENTRAL LUCONIA GAS FIELDS		
2	ANNUAL OPERATION COST ESTIMATION CENTRAL LUCONIA GAS FIELDS		
3	INVESTMENT SCHEDULE CENTRAL LUCONIA GAS FIELDS - CASE IA		
4	INVESTMENT SCHEDULE CENTRAL LUCONIA GAS FIELDS - CASE IB		
5	INVESTMENT SCHEDULE CENTRAL LUCONIA GAS FIELDS - CASE IC		
6	INVESTMENT SCHEDULE CENTRAL LUCONIA GAS FIELDS - CASE II		
7	INVESTMENT SCHEDULE CENTRAL LUCONIA GAS FIELDS - CASE III		
8	INVESTMENT SCHEDULE CENTRAL LUCONIA GAS FIELDS - CASE IV		
9	CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS - CASE IA		
10	CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS - CASE IB		
11	CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS - CASE IC		
12	CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS - CASE II		
13	CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS - CASE III		
14	CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS - CASE IV		
28-4-1	SUMMARY OF OFFSHORE STRUCTURES		
2	SUMMARY OF SUBMARINE PIPELINES		
3	COMPARISON OF PRESENT PRODUCTION RATE VS. PLATFORM CAPABILITY		
4	COMPARISON OF MAXIMUM PREDICTED PRODUCTION RATE VS. PLATFORM CAPABILITY GROSS LIQUID BASE		
5	COMPARISON OF MAXIMUM PREDICTED PRODUCTION RATE VS. PLATFORM CAPABILITY GAS BASE		
6	SUMMARY OF GAS UTILIZATION		
29-6-1	4-LEG OFFSHORE PLATFORM COST		
2	6-LEG OFFSHORE PLATFORM COST		
3	8-LEG OFFSHORE PLATFORM COST		
4	3-LEG VENT AND FLARE JACKET COST		

Table 29-6-5	COST OF 3 CONDUCTORS
6	COST OF 4 CONDUCTORS
7	COST OF 6 CONDUCTORS
8	COST OF 8 CONDUCTORS
9	COST OF 12 CONDUCTORS
10	COST OF 18 CONDUCTORS
11	UNIT COST OF SUBMARINE PIPELINE
12	UNIT COST OF RISER PIPE
13	GAS PRODUCTION EQUIPMENT COST
14	OIL PRODUCTION EQUIPMENT COST
15	UNIT COST OF OTHER PRODUCTION EQUIPMENT
16	NEWLY BUILT STORAGE BARGE COST
17	ONSHORE SUPPORT FACILITIES COST
18	OPERATING PERSONNEL COST
19	UNIT COST OF VARIOUS CHEMICALS
20	UNIT COST OF SERVICE CONTRACTORS
30-6-1	ANNUAL OIL PRODUCTION AND FOB PRICE PER BARREL
31-6-1	INVESTMENT SCHEDULE FOR OIL
2	ANNUAL OPERATING COST FOR OIL
3	DAILY GAS PRODUCTION
4	INVESTMENT SCHEDULE FOR GAS
5	ANNUAL OPERATING COST FOR GAS
6	PROFITABILITY YARDSTICKS OF OIL AT THE YEAR OF MAX. R.O.R. FOR OPERATING COMPANY

Vol. IV Table A-1 ORIGINAL HYDROCARBONS IN PLACE - PRODUCING FIELDS OF SARAWAK

FIELD NAME	BLOCK & ZONE	0.0.I.P.	0.G.I.P.	PRODUCED	RESVS.	17	E RESVS.
		(MMSTB)	(MMMSCF)	(MMSTB)	GAS (MMMSCF)	(MMSTB)	(MMMSCF)
BARONIA	A Zone	2.7	_ ⊢ •	7.354	13.696		321.788
		33.62	42.48	٠ <u>۲</u> ,	74	. Z.L	7. 20. 20. 20.
	E Zone	7.9	15.1	.65	.06	65	11.36
		4.6	1.7	.40	.93	.88	6.80
		4.0	0.2	.36	.09	. 24	1.90
	TOTAL PROVED RESVS. PROBABLE RESVS.	603.00	869.67 869.67	24.158	43.819	177.928	696.831
MKCKC VG TOT KG		-	9	20		0	76
the party	A BOILE	04.0	000	9 6	0 7 4	1.12	0000
		ģ,) . 	. J.	•	T0.7	77.1
	C Zone	i.	3.7	• 66	m	81	• 76
	TOTAL	7.1	21.8	3.287	5.190	29.416	69.456
	PROVED RESVS. PROBABLE RESVS.	97.18	121.82				
WEST LUTONG	A Zone	3.3	0.3	.14	8	.39	3.36
	B Zone	179.36	69	67.080	100.860	105.163	129.988
	C Zone	5.6	9.3	.03	0.3	1.95	1.57
	ADD. WELL	9•	1.4	•	•	.14	7.23
	TOTAL	256.97	410.51	76.252	140.02	135.661	302,158
	PROVED RESVS. PROBABLE RESVS.	56.9	10.5				
						į	

Vol. IV Table A-1 (Continued)
ORIGINAL HYDROCARBONS IN PLACE - PRODUCING FIELDS OF SARAWAK

FIELD NAME	BLOCK & ZONE	0.0.I.P.	O.G.I.P.	UCED	RESVS.	RECOVERABLE	E RESVS.
		(MMSTB)	(MMMSCF)	(MMSTB)	(MMMSCF)	(MMSTB)	(MMMSCF)
BARAM A	BLOCK I	0.	5.0	.50	7.98	.76	4.17
	BLOCK II	• 6	6.0	.49	1.49	.73	.58
	BLOCK IV	8.0	0.7	.68	8.98	.19	2.42
	BLOCK V	4.0	2.0	.08	8.59	.78	7.62
	BLOCK VI	6.4	9.6	0.11	1.53	2.51	1.85
	BLOCK VII	9.3	5	.87	.57	.20	9.10
		29.21	30.08	4.382	12.518	6.673	20.576
	UPPER BLOCK	2.9	0.	.72	.89	.91	00.
	TOTAL	08.5	19.1	58.860 2	26.580	85.793	364.331
	PROVED RESVS.	179.05	375.99				
	PROBABLE RESVS.	29.4	43.1				
BARAM B	MODEL-1	5.2	47.77	.65	ω	.99	0
	MODEL-2	56.18	. 2	11.729	9.42	21.613	66.
	TOTAL	1.4	95.2	18.380	69.271	31.605	128.552
	PROVED RESVS.	74.66	187.45				
	PROBABLE RESVS.	. 7	. 7				
BAKAU	BK-3	6.9	φ.	.09	.72	.55	.30
	BK-4	14.48	7.63	1.158	1.524	4.222	5.473
	BK-5	ω.	7	.07	.36	.15	.83
	TOTAL	c,	7.	3.328	6.611	6.934	12.619
	PROVED RESVS.	6.35	5.30				
	PROBABLE RESVS.	9	٠4				
					į		

ORIGINAL HYDROCARBONS IN PLACE - PRODUCING FIELDS OF SARAWAK Vol. IV Table A-1 (Continued)

FIELD NAME	BLOCK & ZONE	0.0.I.P.	0.G.I.P.	PRODUCED RESVS	S RESVS.	RECOVERABLE	JE RESVS.
		(MMSTB)	(MMMSCE)	(MMSTB)	(MMMSCF)	(MMSTB)	(MMMSCF)
TUKAU	MODEL-1	20.16	4.43	0.726	0.334		.58
	MODEL-2	4.30	1.93	.43	۳,	1.102	1.217
	MODEL-3	13.45	18.14	•	1.026	•	.77
	MODEL-4	1.07		.13	ᅼ	•	0.366
	MODEL-5	•	40.93	.25	0.877	•	• 38
	MODEL-6	2.36	1.98	.02	0.	•	.14
	MODEL-7	•	•	.36	7	•	96.
	MODEL-8	9.77	ŀ.	.71	9.	•	7.033
	MODEL-9	ω	10.67	0.0	0.0	•	.07
	MODEL-10	19.88	4.37	0.0	•	•	- 44
	MODEL-11	2.66	2.24	0.0	0.0	•	.67
	TOTAL	49.	•	3.102	3.682	29.485	70.658
	PROVED RESVS. PROBABLE RESVS.	149.62	100.67				
GRAND TOTAL	PROVED RESVS. PROBABLE RESVS.	1366.83 152.16	2071.41 163.29	187.367	495.173	496.822	1644.605
1					1		

ORIGINAL HYDROCARBONS IN PLACE - DEVELOPMENT FIELDS OF SARAWAK Table A-2 Vol. IV

RECOVERABLE RESVS. OIL GAS (MMSTB) (MMMSCF)	14.95 5.36 0.85 21.16		5.15
RECOVERAL OIL (MMSTB)	16.02 6.44 1.00 23.46		2.47
O.H.I.P. (MMCF)	181.0 56.0 0.0 12.0 0.0	44.0 33.0 1.0 8.0 9.0 11.0 0.0 1430.0	2346.0
O.S.G.I.P. (MMMSCF)	19.31 6.36 0.0 0.85 0.0 26.52 6.61	1.79 2.31 6.91 0.08 0.73 0.05 0.09	14.72 12.67 2.05
O.C.G.I.P. (MMMSCF)	0.0 0.0 14.27 0.0 47.75 47.72 14.30	0.0 2.31 2.31 0.0 0.0 0.92 0.05 2.64	10.56
O.O.I.P. (MMSTB)	41.09 11.57 0.0 1.55 0.0 54.21 13.51 40.70	7.77 10.03 30.03 8.50 0.34 1.08 0.0 0.47 0.14	59.15 50.93 8.22
BLOCK & ZONE	al a3 b1 b2 c1 rotal PROVED RESVS. PROBABLE RESVS. POSSIBLE RESVS.	c2 d3 d3 d3 f2 f3	TOTAL PROVED RESVS. PROBABLE RESVS. POSSIBLE RESVS.
FIELD NAME	BETTY (E)	TEMANA (W)	

ORIGINAL HYDROCARBONS IN PLACE - DEVELOPMENT FIELDS OF SARAWAK Vol. IV Table A-2 (Continued)

FIELD NAME	BLOCK & ZONE	0.0.I.P.	O.C.G.I.P.	0.S.G.I.P.	O.H.I.P.	RECOVERA OIL	RECOVERABLE RESVS. OIL GAS
		(MMSTB)	(MMMSCF)	(MMMSCF)	(MMCF)	(MMSTB)	(MMISCF)
BOKOR	al	12.30	0.0	1.43	76.0	16.0	09.0
	a2	O	0.0	3.05	20.0	1.77	1.09
	a3	3.80	0.0	0.48	55.0		
	pJ	0.0	0.0	0.0	12.0		
	b 2	8.60	0.0	2.84	16.0	1.37	66.0
	b 3	0.0	0.0	0.0	137.0		
	υ	0.0	0.0	0.0	79.0		
	Q	0.0	0.0	0.0	2.0		
	TOTAL PROVED RESVS. PROBABLE RESVS. POSSIBLE RESVS.	48.90	0.0	7.79	398.0	4.05	2.68

Vol. IV Table A-3 ORIGINAL HYDROCARBONS IN PLACE - POTENTIAL FIELDS OF SARAWAK

FIELD NAME	BLOCK & ZONE	0.0.I.P.	0.C.G.I.P.	0.S.G.I.P.	O.H.I.P.	VERABLE
·		(MMSTB)	(MMMSCF)	(MMMSCF)	(MMCF)	(MMSTB) (MMMSCF)
BETTY (W)	b2 c1 c2	0.0	0.24 0.06 1.90	0.0	0.00	
	TOTAL PROVED RESVS. PROBABLE RESVS. POSSIBLE RESVS.	0.0	2.20	0.0	0.0	
TEMANA (E)	a2 b1 b2 d2	0.0000000000000000000000000000000000000	1.22 6.25 1.03 0.0	0.0	0.00	
	TOTAL PROVED RESVS. PROBABLE RESVS. POSSIBLE RESVS.	0.93	8.51 8.51	0.37	9 • 8	
SIWA	р р ф д 22 е е е е е е е е е е е е е е е е е е	0.49 0.50 0.938 0.00 0.0 0.0	0.23 0.34 0.0 0.0 0.0 39.06 27.23 1.57	0.12 0.36 0.29 0.0 0.0 0.0	0000040000	

Vol. IV Table A-3 (Continued)
ORIGINAL HYDROCARBONS IN PLACE - POTENTIAL FIELDS OF SARAWAK

O.H.I.P. RECOVERABLE RESVS.	(B)	4.9
0.0.1.P. 0.C.G.I.P. 0.S.G.I.P. 0.H.I.P.	(MMMSCF)	3.20 1.05 2.15
0.C.G.I.P.	(MMMSCF)	69.45 69.45
0.0.I.P.	(MMSTB)	12.22 4.00 8.22
BLOCK & ZONE		TOTAL PROVED RESVS. PROBABLE RESVS. POSSIBLE RESVS.
FIELD NAME		

Vol. IV Table A-4 ORIGINAL HYDROCARBONS IN PLACE - CENTRAL LUCONIA FIELDS

.P. RECOVERABLE RESVS. OIL GAS	(MISIR)		4 Casel 82.96 737.31		069	2080	2460
O.S.G.I.P.	("IMMSCF"		99.44	4.40 95.04			
0.C.G.I.P.	(MMMSCF)		1165.	331. 834.			
0.G.I.P.	(MMISCF)	409. 161. 248.			1253.	3454. 1405. 2409.	5609. 670. 4939.
0.0.I.P.	(MMSTB)		226.	10. 216.			
BLOCK & ZONE		TOTAL PROVED RESVS. PROBABLE RESVS. POSSIBLE RESVS.	TOTAL	PROVED RESVS. PROBABLE RESV. POSSIBLE RESV.	TOTAL PROVED RESVS. PROBABLE RESVS. POSSIBLE RESVS.	TOTAL PROVED RESVS. PROBABLE RESVS. POSSIBLE RESVS.	TOTAL PROVED RESVS. PROBABLE RESVS. POSSIBLE RESVS.
FIELD NAME		B12	9Э		8 8	E11	F6

Vol. IV Table A-4 (Continued) ORIGINAL HYDROCARBONS IN PLACE - CENTRAL LUCONIA FIELDS

FIELD NAME	BLOCK & ZONE	0.0.I.P.	0.G.I.P.	O.C.G.I.P.	0.S.G.I.P.	VERABLE	RESVS.
		(MASTB)	(MINSCF)	(MMMSCF)	(MMMSCF)	(MMSTB) (MM	(MMMSCF)
ብ ያ	TOTAL PROVED RESVS. PROBABLE RESVS. POSSIBLE RESVS.		350. 28. 322.				
F13	TOTAL PROVED RESVS. PROBABLE RESVS. POSSIBLE RESVS.		1475. 1143. 332.				710
F14	TOTAL PROVED RESVS. POSSIBLE RESVS.		1252. 166.				620
F22	TOTAL PROVED RESVS. PROBABLE RESVS. POSSIBLE RESVS.		284. 284.				
F23	TOTAL PROVED RESVS. PROBABLE RESVS. POSSIBLE RESVS.		5750. 904. 4846.			ĸ	3370
К4	TOTAL PROVED RESVS. PROBABLE RESVS. POSSIBLE RESVS.		197.				

yol. IV Table A-4 (Continued) ORIGINAL HYDROCARBONS IN PLACE - CENTRAL LUCONIA FIELDS

FIELD NAME	BLOCK & ZONE	0.0.I.P.	0.G.I.P.	O.C.G.I.P.	0.S.G.I.P.	RECOVERA	RECOVERABLE RESVS.
		(MMSTB)	(IIMISCE)	(MMMSCF)	(MMMSCF)	(MMSTB)	(MMMSCF)
м1	TOTAL PROVED RESVS. PROBABLE RESVS. POSSIBLE RESVS.		840. 214. 626.				
M3	TOTAL PROVED RESVS. PROBABLE RESVS. POSSIBLE RESVS.		2043. 172. 1871.				
M5	TOTAL PROVED RESVS. PROBABLE RESVS. POSSIBLE RESVS.		517. 90. 427.				
GRAND TOTAL	TOTAL PROVED RESVS. PROBABLE RESVS. POSSIBLE RESVS.	226. 10. 216.	24598. 6207. 18391.		99.44 4.40 95.04	Casel 82.	32 10290.

Table 1-2-1 CORRELATION TABLE Vol. IV BARONIA FIELD

	ŀ	Subsea	4012 5289 7912	5289 5418 5534	5874	6327 6386	6824 6876 6966 7093	7324	7589 7722	7912	7967	
7		Log	4102 5444 8269	5444 5581 5702	6064	6547 6610	7084 7137 7236 7373	7623	7913 8065	8269	8330	
	8	Subsea	4025 5296 7932	5296 5425 5544	5884	6342 6401	6840 6887 6983 7113	7335	7605 7146	7932	6008	
9	7	Log	4246 5633 8494	5633 5775 5906	6283	6791 6858	7336 7388 7488 7622	7860	8146 8294	8494	8575	
	41	Subsea	4029 5334 7977	5344 5473 5593	5939	6387 6448	6899 6945 7038 7161	7391	7652 7793	7977	8186	
5	4	Log	4070 5375 8018	5375 5514 5634	5980	6427 6489	6940 6986 7079 7202	7432	7693 7834	8018	8227	
	1	Subsea	4042 5312 7955	5312 5437 5549	5883	6344 6396	6839 6886 6981 7113	7348	7622 7759	7955	8159	
4	41	Log	4083 5353 7996	5353 6478 5590	5924	6385 6437	6880 6927 7022 7158	7389	7663 7800	7996	8200	
	0	Subsea	4817 (5523) 8123	(5523) (5645) 5756	6129	6441 6492	6977 7029 7124 7263	7507	7793	8123	8400	
2	110	Log	4927 (5633) 8233	(5633) (5755) 5866	6239	6551 6602	7078 7139 7234 7373	7617	7903 8030	8233	8510	
		Subsea	4009 5310 7936	5310 5438 5560	5896	6350 6401	6850 6900 6989 7117	7347	7603 7746	7936	8890	
	111	Log	4120 5421 8047	5421 5549 5671	6007	6461 6512	6961 7011 7100 7228	7458	7714 7857	8047	τοο6	
NO LEW	- 1 144	2	Top Middle VI Lower VI V	Top a ₁	Top b	Top c ₁	Top d ₁ d ₂ d ₃ d ₄	Top e	Top f ₁ f ₂	Top g	T.D.	

Table 1-2-1 (Continued) CORRELATION TABLE Vol. IV

C)	8,	Subsea	4011	5927 5424 5537	5886	6350 6401	6859 6912 7012 7146	(7390)	ı		7486	
	_	Log	4723 6508	6508 6696 6862	7388	8051 8120	8723 8792 8913 9081	(9383)	-		9500	
2	8	Subsea	4003 5323	5323 5455 5580	5928	6390 6465	6926 6979 7073 7205	-			7432	
	7	Log	4623 6354	6354 6514 6665	7100	7690 7784	8345 8405 8515 8666	1			8930	
1	œ	Subsea	4034 5317	5317 5448 5566	5914	6375 6432	6875 6922 7013 7145	7382	ı		7483	
٦	7	Log	4730	6499 6672 6826	7263	7799 7864	8340 8390 8484 8620	8862	1		8962	
0	8	Subsea	4012 5285 7920	5285 5411 5331	5886	6313 6365	6816 6865 6956 7085	7323	7588 7731	7920	2662	
1	7	Log	4335 5790 8534	5790 5927 6055	6433	6887 6942	7408 7458 7552 7684	7927	8197 8341	8534	8610	
9	8	Subsea	4029 5299 7951	5299 5422 5541	5883	6343 6398	6843 6890 6985 7110	7347	7617 7759	7951	8009	
	7	Log	4236 5653 8491	5653 5790 5923	6305	6822 6882	7364 7414 7510 7638	7879	8155 8297	8491	8550	
8	8	Subsea	4039 5357	5357 5489 5611	5980	6455 6516	6988 7037 7138 7263	ı			7463	
	<i>L</i>	Log	4933 6945	6945 7163 7362	8000	8717 8806	9472 9539 9674 9838	ı			10100	
Well No.	Э. Э. Э. О	Cycle/Zone	Top Middle VI Lower VI V	Top a ₁ a ₂ a ₃	Top b	Top c ₁ c ₂	Top d ₁ d ₂ d ₃	Тор е	Top f ₁ f ₂	Top g1	T.D.	,

CORRELATION TABLE BARONIA FIELD

Table 1-2-1 (Continued)

Subsea 5581 5314 7479 7702 7258 Log Subsea 5301 5432 5556 6422 6932 7028 7161 6605 6768 7946 8627 8754 8928 Log ţ Subsea 6419 6924 7023 7159 5305 5433 5547 78 8754 8879 6506 6676 6828 8091 Log Subsea 5454 5571 6972 7069 7194 5320 6457 6188 6356 6509 7666 8317 8430 8572 Log Subsea 5543 5669 6575 7105 7201 7349 5404 6852 7037 8376 9079 9199 9386 6651 Log VI VI V Top Middle Tower Cycle/Zone ນ ນີ້ $\overset{\circ}{\sigma}_{1}^{2}$ # # # 7 Well No. Д ø þ D.F.E. T.D. Top Top Top Top Тор Top Top

Vol. IV Table 1-3-1 PREDICTED PERFORMANCE OF BARONIA FIELD

PRODUCTION START: May 1972 PRODUCTION END: Oct.1994

CTION WATER (MMSTB)	0.0	0.004	0.083	0.693	2.154	4.513	6.826	9.366	11.533	13.466	15.564	17.916	20.509	23.273	25.966	28.210
CUMULATIVE PRODUCTION OIL GAS WAT MSTB) (MMMSCF) (MMS	0.512	2.085	6.297	21.916	56.678	105.380	156.324	212.118	269.904	329.077	389.123	447.316	501.283	546.243	577.525	597.637
CUMULA: OIL (MMSTB)	0.561	2.100	5.534	16.830	34.480	52.251	67.875	81.789	93.733	104.224	113.639	122.075	129.621	136.023	141.614	146.614
W.O.R. (STB/STB)	0.0	0.002	0.023	0.054	0.083	0.133	0.148	0.183	0.182	0.182	0.225	0.279	0.344	0.432	0.482	0.449
G.O.R. (SCF/STB)	912	1021	1226	1383	1969	2741	3276	4011	4848	5641	6379	6889	7153	7023	5594	4022
GAS PROD. RATE (MMSCF/D)	1.87	4.31	11.54	42.79	95.24	133.43	139.57	152.86	158.32	162.12	164.51	159.43	147.85	123.18	85.70	55.10
OIL PROD. RATE (MSTB/D)	2.05	4.22	9.41	30.95	48.36	48.68	42.60	38.11	32.66	28.74	25.79	23.11	20.67	17.54	15.32	13.70
RECOVERY (%)	0.09	0.35	0.92	2.79	5.72	8.67	11.26	13.56	15.54	17.28	18.85	20.24	21.50	22.61	23.61	24.51
TIME (YEAR)	Jan.1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988

Vol. IV Table 1-3-1 (Continued) PREDICTED PERFORMANCE OF BARONIA FIELD

V	J
13/	199
Маў	Oct.1994
••	••
STAKE	END
PRODUCTION	PRODUCTION

NOTT	WATER (MMSTB)	30.226	30.915	31.165	31.386	31.576	31.755	31.882
CHMILATIVE PRODUCTION	GAS (MMMSCF)	613.833	623.302	630.408	636.916	642.902	648.568	652,418
CIIMIILAT	OIL (MMSTB)	151.052 613.833	153,323	154.865	156.287	157.621	158.881	159.740 652.418
	W.O.R. (STB/STB)	0.454	0.303	0.162	0.155	0.143	0.142	0.148
	G.O.R. (SCF/STB)	3649	4171	4613	4572	4493	4500	4479
משם פעט	RATE (MMSCF/D)	44.37	25.94	19.47	17.83	16.40	15.52	14.06
OTT. PROD	RATE (MSTB/D)	12.16	6.22	4.22	3.90	3.65	3.45	3.14
	RECOVERY (%)	25.30	25.73	26.04	26.32	26.55	26.75	26.90
	TIME (YEAR)	Jan.1989	1990	1991	1992	1993	1994	Oct.1994

Vol. IV Table 1-3-2 PREDICTED PERFORMANCE OF A ZONE,

BARONIA FIELD

PRODUCTION START: Jul. 1973 PRODUCTION END: Apr. 1989

CTION WATER (MMSTB)	0.062	0.089	0.347	0.786	1.413	2.266	3.413	4.862	6.622	8.704	11.039	13.36	15.289	17.013	17.43
CUMULATIVE PRODUCTION OIL GAS WAT MSTB) (MMMSCF) (MMS	12.01	14.73	28.48	47.53	72.37	103.7	140.9	181.5	222.4	261.0	293.4	313.8	324.2	331.7	333.3
CUMULAT OIL (MMSTB)	9.175	10.772	17.479	23.957	30.085	35.902	41.432	46.555	51.223	55.434	59.189	62.51	65.467	68.058	68.651
W.O.R. (STB/STB)	0.01	0.02	0.04	0.07	0.10	0.15	Ů.21	0.28	0.38	0.49	0.62	0.70	0.65	0.67	0.70
G.O.R. (SCF/STB)	1583	1705	2050	2941	J054	5386	6727	7925	8762	9916	8628	6142	3517	2894	2698
GAS PROD. RATE (MMSCF/D)	27.67	29.81	37.67	52.19	90.89	85.84	101.92	111.23	112.05	105.75	88.77	55.89	28.49	20.55	17.53
OIL PROD. RATE (MSTB/D)	17.48	17.50	18.38	17.75	16.79	15.94	15.15	14.04	12.79	11.54	10.29	9.10	8.10	7.10	6.50
RECOVERY (8)	4.53	5.31	8.62	11.82	14.84	17.71	20.44	22.97	25.27	27.35	29.20	30.84	32.30	33.58	33.87
RESERVOIR PRESSURE (PSIG)	2351	2334	2220	2075	1893	1688	1449	1190	929	685	490	400	377	361	357
$\frac{\mathtt{TIME}}{(\overline{\mathtt{YEAR}})}$	Oct.1976	Jan.1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	Apr.1989

Vol. IV Table 1-3-3

PREDICTED PERFORMANCE OF A ZONE,

WELL 1, BARONIA FIELD

PRODUCTION START: Jul. 1973 PRODUCTION END: Apr. 1989

CTION WATER (MMSTB)	0.046	0.067	0.222	0.468	0.802	1.235	1.799	2.508	3.372	4.433	5.671	6.887	7.853	8.770	9.014
CUMULATIVE PRODUCTION OIL GAS WAT (MMSCF) (MMSCF)	6.536	7.646	12.59	18.54	25.81	34.62	44.95	56.47	68.54	80.52	90.87	95.98	99.40	102.20	102.80
CUMULATO OIL (MMSTB)	3.856	4.426	6.708	8.966	11.13	13.21	15.207	17.088	18.826	20.411	21.854	23.154	24.293	25.291	25.523
W.O.R. (STB/STB)	0.029	0.036	0.068	0.109	0.154	0.208	0.282	0.377	0.497	0.670	0.589	0.936	0.848	0.920	1.067
G.O.R. (SCF/STB)	1862	1948	2167	2634	3359	4235	5174	6128	6947	7563	7179	3933	3003	2810	2657
GAS PROD. RATE (MMSCF/D)	11.17	12.17	13.55	16.30	19.92	24.14	28.30	31.56	33.07	32.82	28.36	14.00	9.37	7.67	1.64
OIL PROD. RATE (MSTB/D)	00.9	6.25	6.25	6.19	5.93	5.70	.5.47	5.15	4.76	4.34	3.95	3.56	3.12	2.73	2.54
RESERVOIR PRESSURE (PSIG)	2315	2298	2180	2037	1854	1646	1406	1142	873	616	406	376	356	322	310
TIME (YEAR)	Oct.1976	Jan.1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	Apr.1989

VOL. IV Table 1-3-4
PREDICTED PERFORMANCE OF A ZONE,
WELL 2, BARONIA FIELD

PRODUCTION START: Jan. 1975 PRODUCTION END: Apr. 1989

CTION WATER (MMSTB)	0.0	0.0003	0.049	0.153	0.322	0.571	0.919	1.357	1.870	2.431	3.006	3.550	3.984	4.317	4.381
CUMULATIVE PRODUCTION OIL GAS WAT MSTB) (MMMSCF) (MMS	3.101	3.881	7.852	13.54	21.19	30.72	41.85	53.59	64.90	75.01	83.03	88.18	90.03	91.00	91.18
CUMULAT OIL (MMSTB)	3.119	3,551	5.263	6.882	8.412	9.848	11.203	12.427	13.502	14.434	15.219	15.857	16.350	16.696	16.760
W.O.R. (STB/STB)	0.0	0.008	0.028	0.064	0.111	0.174	0.257	0.358	0.476	0.603	0.733	0.852	0.881	0.960	0.988
G.O.R. (SCF/STB)	1556	1800	2320	3510	5002	6644	8219	1096	10504	10862	10220	8063	3754	2797	2772
GAS PROD. RATE (MMSCF/D)	7.77	8.55	10.88	15.58	20.96	26.11	30.49	32.16	30.19	27.70	21.97	14.11	5.07	2.66	1.94
OIL PROD. RATE (MSTB/D)	4.99	4.74	4.69	4.44	4.19	3.93	3.71	3,35	2.95	2.55	2.15	1.75	1.35	0.95	0.70
RESERVOIR PRESSURE (PSIG)	2327	2312	2192	2042	1849	1637	1394	1135	878	638	451	386	358	349	350
TIME (YEAR)	Oct.1976	Jan.1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	Apr.1989

VOL. IV Table 1-3-5
PREDICTED PERFORMANCE OF A ZONE,
WELL 3, BARONIA FIELD

PRODUCTION START : Apr. 1975 PRODUCTION END : Apr. 1989

CTION WATER (MMSTB)	0.016	0.022	0.076	0.164	0.289	0.460	0.693	866.0	1.380	1.840	2.362	2.923	3.452	3.924	4.034
CUMULATIVE PRODUCTION OIL GAS WAT MSTB) (MMMSCF) (MMS	2,152	2.835	6.361	11.37	17.76	25.84	35.52	46.00	56.36	65.87	73.53	78.26	80.40	82.09	82.46
CUMULATO OIL (MMSTB)	1.799	2.119	3.373	4.536	5.623	6.672	7.685	8.635	9.509	10.312	11.043	11.700	12.284	12.795	12.913
W.O.R. (STB/STB)	0.014	0.020	0.043	0.076	0.115	0.163	0.230	0.321	0.438	0.573	0.715	0.854	906.0	0.924	0.935
G.O.R. (SCF/STB)	1689	2138	2808	4302	5875	7686	9540	11043	11876	11843	10493	7199	3664	3307	3119
GAS PROD. RATE (MMSCF/D)	7.63	7.48	99.6	13.73	17.51	22.14	26.52	28.71	28.38	26.05	20.99	12.96	5.86	4.63	4.05
OIL PROD. RATE (MSTB/D)	4.52	3.50	3.44	3.19	2.98	2.88	2.78	2.60	2.39	2.20	2.00	1.80	1.60	1.40	1.30
RESERVOIR PRESSURE (PSIG)	2354	2340	2221	2070	1886	1676	1432	1170	806	099	465	386	376	365	361
TIME (YEAR)	Oct.1976	Jan.1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	Apr.1989

Vol. IV Table 1-3-6
PREDICTED PERFORMANCE OF A ZONE,
WELL 4, BARONIA FIELD

PRODUCTION START: Feb. 1976 PRODUCTION END: Apr. 1989

ER TB)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CTION WATER (MMSTB)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CUMULATIVE PRODUCTION OIL GAS WAT MSTB) (MMMSCF) (MMS	0.221	0.370	1.682	3.078	7.616	12.48	18.53	25.40	32.64	39.64	45.95	51.39	54.32	56.32	56.78
CUMULA' OIL (MMSTB)	0.401	0.675	2.136	3.572	4.918	6.173	7.336	8.408	9.390	10.279	11.078	11.807	12,537	13.267	13.451
W.O.R. (STB/STB)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
G.O.R. (SCF/STB)	550	546	899	1666	2634	3874	5196	6402	7374	7860	7894	7452	4014	2740	2558
GAS PROD. RATE (MMSCF/D)	1.07	1.64	3.59	6.56	69*6	13.33	16.58	18.82	19.84	19.17	17.29	14.90	8.03	5.48	5.12
OIL PROD. RATE (MSTB/D)	1.95	3.00	4.00	3.94	3.68	3.44	3.19	2.94	2.69	2.44	2.19	2.00	2.00	2.00	2.00
RESERVOIR PRESSURE (PSIG)	2386	2364	2253	2113	1935	1735	1501	1244	983	747	559	405	381	369	366
TIME (YEAR)	Oct.1976	Jan. 1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	Apr.1989

Vol. IV Table 1-3-7 PREDICTED PERFORMANCE OF C ZONE,

BARONIA FIELD

PRODUCTION START: Aug. 1974 PRODUCTION END: Oct. 1980

MOIT	WATER (MMSTB)	0.229	0.494	1.468	2.285	3.245	3.711
TIVE PRODUC	OIL GAS WAT MSTB) (MMMSCF) (MMS	9.160	10.662	18.670	22.740	25.499	26.904
CUMULAI	OIL (MMSTB)	6.384	7.067	9.453	10.798	11.565	11.832
	W.O.R. (STB/STB)	0.08	0.39	0.41	0.61	1.25	1.74
	G.O.R. (SCF/STB)	1973	2198	3356	3026	3596	5241
GAS PROD.	RATE (MMSCF/D)	19.19	16.46	21.94	11.15	7.56	5.13
OIL PROD.	RATE (MSTB/D)	9.73	7.49	6.54	3.68	2.10	0.98
	RECOVERY (%)	18.75	20.76	27.80	31.76	34.01	34.80
RESERVOIR	PRESSURE (PSIG)	2394	2319	1906	1621	1400	1324
	TIME (YEAR)	Oct.1976	Jan.1977	1978	1979	1980	Oct.1980

VOL. IV Table 1-3-8
PREDICTED PERFORMANCE OF C ZONE,
WELL BN-6, BARONIA FIELD

PRODUCTION START: Nov. 1974 PRODUCTION END: Jan. 1978

WATER	(MMSTB)	0.0	0.119	0.814
GAS	(MMMSCF)	1.450	1.823	3.566
OIL	(MMSTB)	0.969	1.117	1.579
W.O.R.	(STB/STB)	0.0	0.81	1.50
G.O.R.	(SCF/STB)	2131	2523	3760
RATE	(MMSCF/D)	3.52	4.09	4.78
RATE	(MSTB/D)	1.65	1.62	1.27
PRESSURE	(PSIG)	2322	2225	1872
TIME	(YEAR)	Oct.1976	Jan. 1977	Jan. 1978
	PRESSURE RATE G.O.R. W.O.R. OIL GAS	D) (MMSCF/D) (SCF/STB) (STB/STB) (N	PRESSURE (PSIG) RATE (MSTB/D) RATE (MMSCF/D) G.O.R. (SCF/STB) W.O.R. (MMSTB) OIL GAS (MMMSCF) 2322 1.65 3.52 2131 0.0 0.969 1.450	PRESSURE (PSIG) RATE (MSTB/D) RATE (MMSCF/D) G.O.R. (SCF/STB) W.O.R. (MMSTB) OIL GAS (MMMSCF) GAS (MMMSCF) (MMSTB) (MMMSCF) (MMM

Vol. IV Table 1-3-9
PREDICTED PERFORMANCE OF C ZONE,
WELL BN-7, BARONIA FIELD

PRODUCTION START: Aug.1974 PRODUCTION END: Jul.1980

0.017	0.027	901.0	0.413	0.754	0.856
3.347	3.736	6.378	8,668	9.631	9.774
2.225	2.387	3.037	3.662	3.950	4.006
0.05	90.0	0.12	0.49	1.18	1.80
2055	2394	4066	3669	3340	2528
8.02	4.26	7.24	6.27	2.64	0.78
3.90	1.78	1.78	1.71	0.79	0.31
2333	2276	1845	1565	1364	1319
Oct.1976	Jan.1977	1978	1979	1980	Jul.1980
	2333 3.90 8.02 2055 0.05 2.225 3.347	2333 3.90 8.02 2055 0.05 2.225 3.347 2276 1.78 4.26 2394 0.06 2.387 3.736	2333 3.90 8.02 2055 0.05 2.225 3.347 2276 1.78 4.26 2394 0.06 2.387 3.736 1845 1.78 7.24 4066 0.12 3.037 6.378	2333 3.90 8.02 2055 0.05 2.225 3.347 2276 1.78 4.26 2394 0.06 2.387 3.736 1845 1.78 7.24 4066 0.12 3.037 6.378 1565 1.71 6.27 3669 0.49 3.662 8.668	2333 3.90 8.02 2055 0.05 2.225 3.347 2276 1.78 4.26 2394 0.06 2.387 3.736 1845 1.78 7.24 4066 0.12 3.037 6.378 1565 1.71 6.27 3669 0.49 3.662 8.668 1364 0.79 2.64 3340 1.18 3.950 9.631

Vol. IV Table 1-3-10
PREDICTED PERFORMANCE OF C ZONE,
WELL BN-9, BARONIA FIELD

1974	1979
Nov.	Jul.
••	••
START	END
PRODUCTION	PRODUCTION

CTION	WATER (MMSTB)	0.188	0.228	0.410	0.576	0.627
rive produ	OIL GAS WAT WSTB) (MMMSCF) (MMS'	1.905	2.014	2.471	2.874	2.952
CUMULA	OIL (MMSTB)	1.716	1.815	2.173	2.372	2.403
	W.O.R. (STB/STB)	0.36	0.41	0.51	0.84	1.64
	G.O.R. (SCF/STB)	1069	1106	1278	2045	2514
GAS PROD.	RATE (MMSCF/D)	1.18	1.19	1.25	1.10	0.43
OIL PROD.	RATE (MSTB/D)	1.10	1.08	96.0	0.54	0.17
RESERVOIR	PRESSURE (PSIG)	2348	2266	1869	1587	1506
	TIME (YEAR)	Oct.1976	Jan. 1977	1978	1979	Jul.1979

Vol. IV Table 1-3-11
PREDICTED PERFORMANCE OF C ZONE,
WELL BN-10, BARONIA FIELD

1974	1980
Dec.	oct.
••	••
START	END
PRODUCTION	PRODUCTION

CTION	WATER (MMSTB)	0.0	0.0	0.0	0.202	0.770	1.133
CUMULATIVE PRODUCTION	GAS (MMMSCF)	1.692	2.071	4.307	7.162	9.857	11.12
CUMULA	OIL (MMSTB)	1.144	1.302	1.888	2.408	2.857	3.071
	W.O.R. (STB/STB)	0.0	0.0	0.0	0.39	1.27	1.70
	G.O.R. (SCF/STB)	2010	2401	3805	5508	6003	5915
GAS PROD.	RATE (MMSCF/D)	4.10	4.15	6.13	7.82	7.38	6.92
OIL PROD.	RATE (MSTB/D)	2.04	1.73	1.61	1.42	1.23	1.17
RESERVOIR	PRESSURE (PSIG)	2376	2303	1871	1573	1351	1278
	TIME (YEAR)	Oct.1976	Jan.1977	1978	1979	1980	Oct.1980

Vol. IV Table 1-3-12
PREDICTED PERFORMANCE OF C ZONE,
WELL BN-13, BARONIA FIFLD

CTION	WATER	(MMSTB)	0.024	0.051	0.242
CUMULATIVE PRODUCTION	GAS	(MMMSCF)	0.766	1.019	1.937
CUMULAT	OIL	(MMSTB)	0.331	0.447	0.776
	W.O.R.	(STB/STB)	0.16	0.23	0.58
	G.O.R.	(SCF/STB)	2066	2183	2795
GAS PROD.	RATE	(MMSCF/D)	2.69	2.77	3,35
OIL PROD.	RATE	(MSTB/D)	1.30	1.27	1.20
RESERVOIR	PRESSURE	(PSIG)	2397	2318	1979
	TIME	(YEAR)	Oct.1976	Jan. 1977	Oct.1977

Vol. IV Table 1-3-13
PREDICTED PERFORMANCE OF D ZONE,

BARONIA FIELD

PRODUCTION START: Oct. 1974
PRODUCTION END: Oct. 1994

	RESERVOTR		OTT. PROD	מטפט אפט			or Times	yraoaa arran	
TIME (YEAR)	PRESSURE (PSIG)	RECOVERY (8)	RATE (MSTB/D)	RATE (MMSCF/D)	G.O.R. (SCF/STB)	W.O.R. (STB/STB)	OIL (MMSTB)	OIL GAS WAT	WATER (MMSTB)
Oct.1976	3046	2.11	12.29	44.48	3632	0.12	5.722	14.937	0.571
Jan.1977	3003	2.61	15.00	54.29	3619	0.12	7.091	19.891	0.731
1978	2819	4.63	15.00	58.29	3718	0.12	12.567	41.167	1.415
1979	2624	6.65	15.00	62.35	4159	0.13	18.042	63.937	2.140
1980	2428	8.61	14.55	65.28	4488	0.14	23.352	87.766	2.856
1981	2261	10.27	12.34	58.07	4705	0.14	27.857	108.960	3.488
1982	2115	11.68	10.50	50.78	4838	0.14	31.688	127.496	4.031
1983	1983	12.90	80.6	44.86	4942	0.15	35.001	143.869	4.521
1984	1866	13.98	7.96	39,85	5006	0.15	37.906	158.414	4.954
1985	1767	14.92	7.03	35.28	5017	0.14	40.473	171.292	5.324
1986	1674	15.77	6.26	31.32	5001	0.15	42.759	182.725	5.666
1987	1591	16.52	5.63	28.00	4975	0.15	44.813	192.944	5.976
1988	1521	17.21	5.07	25.01	4930	0.14	46.665	202.07	6.236
1989	1455	17.82	4.59	22.40	4876	0.15	48.342	210.251	6.480
1990	1394	18.39	4.19	20.28	4844	0.15	49.870	217.652	6.708
1991	1337	18.91	3.85	18,33	4753	0.15	51.278	224.344	6.919
1992	1287	19.39	3.57	16.82	4715	0.14	52.580	230.483	7.107
1993	1245	19.84	3.36	15.84	4613	0.13	53.805	236.134	7.266
1994	1205	20.27	3.18	14.65	4615	0.13	54.964	241.483	7.416
Oct.1994	1174	20.57	3.03	13.51	4454	0.13	55.774	245.180	7.529

Vol. IV Table 1-3-14
PREDICTED PERFORMANCE OF E ZONE,

1	. 13/4	1994
Č	sep.	Jul. 1994
		END :
	PRODUCITON STAKE	PRODUCTION
V FTELD		
BARONTA		

CTION	(MMSTB)	0.239	0.259	0.372	0.466	0.549	0.621	0.678	0.726	0.767	0.801	0.830	0.855	0.877	968.0	0.912	0.926	0.937	0.948	0.957	0.962
CUMULATIVE PRODUCTION	(MMMSCF)	2.571	2.789	3.794	4.742	5.568	6.280	6.875	7.368	7.778	8.123	8.416	8.663	8.877	090.6	9.221	9.359	9.481	9.592	9.692	9.738
CUMULAT	(MMSTB)	1.974	2.093	2.539	2.865	3.103	3.285	3.431	3.551	3.653	3.739	3.813	3.877	3.932	3.980	4.022	4.059	4.092	4.122	4.149	4.161
ب د د	(STB/STB)	0.15	0.16	0.25	0.29	0.35	0.40	0.39	0.40	0.40	0.40	0.39	0.38	0.40	0.40	0.37	0.38	0.34	0.38	0.35	0.39
, ,	(SCF/STB)	1815	1832	2253	2908	3471	3912	4075	4108	4020	4012	3959	3760	3909	3857	3667	3781	3714	3801	3914	3601
GAS PROD.	(MMSCF/D)	3.03	2.39	2.75	2.60	2.26	1.95	1.63	1.35	1.12	0.95	0.80	0.68	0.59	0.50	0.44	0.38	0.33	0.30	0.27	0.25
OIL PROD.	(MSTB/D)	1.7	1.30	1.22	68 * 0	0.65	0.50	0.40	0.33	0.28	0.24	0.20	0.18	0.15	0.13	0.12	0.10	60.0	0.08	0.07	0.07
	(\$)	11.76	12.47	15.13	17.07	18.49	19.58	20.45	21.17	21.77	22.29	22.73	23.10	23.43	23.72	23.97	24.19	24.39	24.57	24.73	24.80
RESERVOIR	(PSIG)	2729	2686	2449	2251	2077	1926	1806	1705	1619	1548	1487	1434	1388	1348	1314	1285	1261	1239	1219	1209
į	(YEAR)	Oct.1976	Jan.1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	Jul.1994

Vol. IV Table 1-3-15
PREDICTED PERFORMANCE OF F1 ZONE,
BARONIA FIELD

PRODUCTION START: Aug. 1974
PRODUCTION END: Jul. 1994

WATER (MMSTER)	(27.27.1)	0.417	0.475	0.715	0.860	196.0	1.039	1.106	1.166	1.219	1.267	1.310	1.347	1.380	1.409	1.437	1.462	1.484	1.504	1.524	1.533
CUMULATIVE PRODUCTION OIL GAS WAT MSTB) (MMMSCF) (MMS	/ TOOLERIA	3.261	3.721	5.723	7.140	8.173	8.990	9.684	10.301	10.851	11.359	11.808	12.224	12.596	12.928	13.235	13.511	13.758	13.982	14.199	14.306
CUMULAI OIL (MMSTE)		2.857	3.185	4.425	5.162	5.648	6.010	6.302	6.553	6.774	896*9	7.140	7.292	7.428	7.550	7.658	7.755	7.842	7.921	7.995	8.032
W.O.R.	(717)	0.17	0.18	0.19	0.19	0.21	0.22	0.23	0.24	0.24	0.25	0.25	0.24	0.24	0.24	0.26	0.25	0.25	0.25	0.27	0.25
G.0.R.	(TTC / TTC)	1387	1402	1615	1923	2126	2257	2377	2458	2489	2619	2617	2714	2755	2756	2804	2801	2820	2790	2973	2932
GAS PROD. RATE		4.94	5.04	5.48	3.88	2.83	2.24	1.90	1.69	1.51	1.39	1.23	1.14	1.02	0.91	0.84	0.76	0.68	0.61	0.59	0.59
OIL PROD. RATE	(G (G T CN)	3.59	3.59	3.40	2.02	1.33	0.99	0.80	0.69	0.61	0.53	0.47	0.42	0.37	0.33	0.30	0.27	0.24	0.22	0.20	0.20
RECOVERY (§)	(p)	8.24	9.19	12.77	14.90	16.30	17.35	18.19	18.91	19.55	20.11	20.60	21.05	21.44	21.79	22.10	22.38	22.63	22.86	23.07	23.18
RESERVOIR PRESSURE	(FGTG)	2855	2793	2537	2382	2275	2191	2120	2056	2000	1948	1902	1863	1828	1797	1767	1741	1717	1695	1674	1667
TIME	(IEAK)	Oct.1976	Jan.1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	Jul.1994

VOL. IV Table 1-3-16 PREDICTED PERFORMANCE OF F2 ZONE,

BARONIA FIELD

PRODUCTION START: Oct. 1976 PRODUCTION END: Apr. 1985

FION WATER (MMSTB)	0.087	0.106	961.0	0.289	0.367	0.438	905.0	0.577	0.642	0.702	0.758	0.811	0.858	0.901	0.941	0.979	1.010	1.018
CUMULATIVE PRODUCTION OIL GAS WAT MSTB) (MMMSCF) (MMS	4.282	4.884	7.546	10.235	12.742	15.070	17.218	19.181	20.969	22.605	24.093	25.444	26.675	27.793	28.810	29.745	30.579	30.778
CUMULAT OIL (MMSTB)	3.890	4.272	5.788	7.051	8.036	8.847	9.539	10.147	10.687	11.175	11.621	12.034	12.419	12.780	13.120	13.442	13.745	13.818
W.O.R. (STB/STB)	0.05	0.05	90.0	0.07	0.08	60.0	0.10	0.12	0.12	0.12	0.13	0.13	0.12	0.12	0.12	0.12	0.10	0.11
G.O.R. (SCF/STB)	1467	1578	1757	2129	2544	.873	3097	3220	3310	3345	3336	3271	3197	3097	2991	2904	2752	2726
GAS PROD. RATE (MMSCF/D)	6.13	09.9	7.29	7.37	6.87	6.38	5.89	5.38	4.90	4.48	4.07	3.70	5.37	3.06	2.79	2.56	2.28	2.18
OIL PROD. RATE (MSTB/D)	4.18	4.18	4.15	3.46	2.70	2.22	1.90	1.67	1.48	1.34	1.22	1.13	1.05	66.0	0.93	0.88	0.83	0.80
RECOVERY (%)	8.84	9.70	13.14	16.01	18.25	20.09	21.66	23.04	24.27	25.38	26.39	27.33	28.20	29.02	29.80	30.53	31.22	31,38
RESERVOIR PRESSURE (PSIG)	3079	3032	2805	2570	2372	2194	2023	1866	1727	1595	1474	1361	1259	1168	1081	1000	932	915
TIME (YEAR)	Oct.1976	Jan.1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	Apr.1992

VOl. IV TABLE 1-3-17
PREDICTED PERFORMANCE OF BARONIA FIELD
- ADDITIONAL WELL CASE -

PRODUCTION START: May.1972 PRODUCTION END: Oct.1994

CTION WATER (MMSTB)	0.0	0.004	0.083	0.693	2.473	7.161	10.126	12.877	15.748	18.672	22.609	27.995	33.176	35.684	36.013	36.311
CUMULATIVE PRODUCTION OIL GAS WAT MAT MSTB) (MMMSCF) (MMS	0.512	2.085	6.297	21.916	62.992	143.422	225.266	310.475	401.837	479.844	550.593	594.945	621,561	639,389	649.338	657.945
CUMULA OIL (MMSTB)	0.561	2.100	5.534	16.830	36.962	64.019	85.525	103.130	118.212	130.254	140.868	150.230	158.511	163.703	165.998	167.998
W.O.R. (STB/STB)	0.0	0.002	0.023	0.054	0.088	0.173	0.138	0.156	0.190	0.243	0.371	0.575	0.626	0.483	0.143	0.149
G.O.R. (SCF/STB)	912	1021	1226	1383	2040	2973	3806	4840	6058	6478	9999	4737	3214	3435	4337	4305
GAS PROD. RATE (MMSCF/D)	1.87	4.31	11.54	42.79	112.54	220.36	224.23	233.45	250.31	213.72	193.83	121.51	72.92	48.84	27.27	23.58
OIL PROD. RATE (MSTB/D)	2.05	4.22	9.41	30.95	55.16	74.13	58.92	48.23	41.32	32.99	29.08	25.65	22.69	14.22	6.29	5.48
RECOVERY (%)	60.0	0.35	0.92	2.79	6.13	10.99	14.54	17.43	19.86	22.59	23,34	24.89	26.26	27.12	27.50	27.83
TIME (YEAR)	Jan.1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988

VOL. IV TABLE 1-3-17 (CONTINUED)
PREDICTED PERFORMANCE OF BARONIA FIELD
- ADDITIONAL WELL CASE -

TION	WATER (MMSTB)		36.589	36.84I	37.043	37.229	37.409	37.579	37.689
CUMULATIVE PRODUCTION	GAS (MMMSCF)		665.624	672.637	678.785	684.403	689.347	693.810	696.831
CUMULA	OIL (MMSTB)	•	169.843	171.553	173.126	174.566	175.886	177.107	177.928
	W.O.R. (STB/STB)	•	0.151	0.147	0.128	0.129	0.136	0.139	0.134
	G.O.R. (SCF/STB)		4162	4101	3909	3903	3744	3656	3680
GAS PROD.	RATE (MMSCF/D)		21.04	19.21	16.85	15.39	13.55	12.23	11.04
OIL PROD.	RATE (MSTB/D)	(1 /1)	5.06	4.69	4.31	3.94	3.62	3.34	3.00
	RECOVERY (%)		28.14	28.42	28.68	28.92	29.14	29.34	29.48
	TIME (VEAR)		1989	1990	1991	1992	1993	1994	Oct.1994

Table 2-2-1 CORRELATION TABLE Vol. IV FAIRLEY BARAM FIELD

		osea	474	474 690 794 851	405 473 526	642	964	129	
29	11	sqns	9 8	977	888	8	8	16	
	Ţ	Log	6585 8753	6585 7801 7905 7962	8516 8584 8637	8753	9075	9240	
1	.2	Subsea	6571	6571 7772 7876 7933	8473 8528 8594	8711	9034	10156	
11		Log	6683 8823	6683 7884 7988 8045	8585 8640 8706	8823	9146	10368	
	1	Subsea	6340 8655	6340 7672 7783 7839	8410 8469 8534	8655	1	8935	
m	11	Log	6766 9485	6766 8299 8430 849'8	9186 9256 9337	9485	1	9830	
2	9,	Subsea	6565 8576	6565 7617 7718 7778	8333 8390 8456	8576	1	8960	
	7	Log	6947	6947 8072 8183 8247	8847 8909 8980	9109	1	9519	
1	92	Subsea	6400 8573	6400 7600 7711 7770	8334 8391 8457	8573	ı	8926	
	7	Log	6793 9186	6793 8084 8204 8268	8915 8979 9054	9186	1	9580	
Well No.	D.F.E.	Cycle/Zone	Top Lower VI(?) V (?)	Top a ₁ a ₂ a ₃ a ₄	Top b ₁ b ₂ b ₃	Top c	Top d	T.D.	

Vol. IV Table 2-3-1 PREDICTED PERFORMANCE OF FAIRLEY BARAM FIELD, CASE 1

PRODUCTION START : Jul. 1975 PRODUCTION END : Oct. 1986

CTION	(MMSTB)	0.007	0.312	1.368	5.567	11.445	18.473	25.968	33.161	39.580	45.410	50.971	55.232
CUMULATIVE PRODUCTION OIL GAS WAT	(MMMSCF)	1.977	7.77	13.970	21.017	27.313	32.380	37.221	41.785	45.978	49.986	53.760	56.681
CUMULA	(MMSTB)	1.421	5.167	8.677	11.802	14.401	16.443	18.148	19.593	20.805	21.877	22.838	23.538
W.O.R.	(STB/STB)	0.01	0.08	0.30	1.34	2.26	3.44	4.40	4.98	5.30	5.44	5.79	60-9
G.O.R.	(SCF/STB)	1391	1547	1766	2255	2422	2482	2839	3158	3459	3739	3927	4175
GAS PROD. RATE	(MMSCF/D)	10.83	15.87	16.98	19.31	17.25	13.88	13.26	12.50	11.49	10.98	10.34	9.60
OIL PROD. RATE	(MSTB/D)	7.79	10.26	9.62	8.56	7.12	5.59	4.67	3.96	3.32	2.94	2.63	2.30
RECOVERY	(&)	1.46	5.32	8.93	12.14	14.82	16.92	18.67	20.16	21.41	22.51	23.50	24.22
TIME	(YEAR)	Dec.1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	Oct.1986

Vol. IV Table 2-3-2 PREDICTED PERFORMANCE OF FAIRLEY BARAM FIELD, CASE 2

PRODUCTION START: Jul. 1975 PRODUCTION END: Oct. 1986

0.007	0.313	1.490	6.245	13.363	22.596	33.171	43.910	53.846	63.015	70.832	75.814
1.977	7.997	15.532	23.908	31.679	38.249	44.625	52,650	56.471	61.748	66.385	69.456
1.421	5.349	9.919	14.008	17.592	20.450	22.844	24.843	26.475	27.768	28.770	29.416
0.01	0.08	0.26	1.16	1.99	3.23	4.42	5.37	60.9	7.09	7.80	7.71
1391	1533	1649	2048	2168	2299	2663	4014	2341	4082	4628	4754
10.83	16.49	20.64	22.95	21.29	18.00	17.47	21.99	10.47	14.46	12.70	10.10
7.79	10.76	12.52	11.20	9.82	7.83	6.56	5.48	4.47	3.54	2.75	2.12
1.46	5.50	10.21	14.41	18.10	21.04	23.51	25.56	27.24	28.27	29.60	30.27
Dec.1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	Oct.1986
	1.46 7.79 10.83 1391 0.01 1.421	1.46 7.79 10.83 1391 0.01 1.421 1.977 5.50 10.76 16.49 1533 0.08 5.349 7.997	1.46 7.79 10.83 1391 0.01 1.421 1.977 5.50 10.76 16.49 1533 0.08 5.349 7.997 10.21 12.52 20.64 1649 0.26 9.919 15.532	1.46 7.79 10.83 1391 0.01 1.421 1.977 5.50 10.76 16.49 1533 0.08 5.349 7.997 10.21 12.52 20.64 1649 0.26 9.919 15.532 14.41 11.20 22.95 2048 1.16 14.008 23.908	1.46 7.79 10.83 1391 0.01 1.421 1.977 5.50 10.76 16.49 1533 0.08 5.349 7.997 10.21 12.52 20.64 1649 0.26 9.919 15.532 14.41 11.20 22.95 2048 1.16 14.008 23.908 18.10 9.82 21.29 2168 1.99 17.592 31.679	1.46 7.79 10.83 1391 0.01 1.421 1.977 5.50 10.76 16.49 1533 0.08 5.349 7.997 10.21 12.52 20.64 1649 0.26 9.919 15.532 14.41 11.20 22.95 2048 1.16 14.008 23.908 18.10 9.82 21.29 2168 1.99 17.592 31.679 21.04 7.83 18.00 2299 3.23 20.450 38.249	1.46 7.79 10.83 1391 0.01 1.421 1.977 5.50 10.76 16.49 1533 0.08 5.349 7.997 10.21 12.52 20.64 1649 0.26 9.919 15.532 14.41 11.20 22.95 2048 1.16 14.008 23.908 18.10 9.82 21.29 2168 1.99 17.592 31.679 21.04 7.83 18.00 2299 3.23 20.450 38.249 23.51 6.56 17.47 2663 4.42 22.844 44.625	1.46 7.79 10.83 1391 0.01 1.421 1.977 5.50 10.76 16.49 1533 0.08 5.349 7.997 10.21 12.52 20.64 1649 0.26 9.919 15.532 14.41 11.20 22.95 20.48 1.16 14.008 23.908 18.10 9.82 21.29 2168 1.99 17.592 31.679 21.04 7.83 18.00 2299 3.23 20.450 38.249 23.51 6.56 17.47 2663 4.42 22.844 44.625 25.56 5.48 21.99 4014 5.37 24.843 52.650	1.46 7.79 10.83 1391 0.01 1.421 1.977 5.50 10.76 16.49 1533 0.08 5.349 7.997 10.21 12.52 20.64 1649 0.26 9.919 15.532 14.41 11.20 22.95 2048 1.16 14.008 23.908 18.10 9.82 21.29 2168 17.99 17.592 31.679 21.04 7.83 18.00 2299 3.23 20.450 38.249 23.51 6.56 17.47 2663 4.42 22.844 44.625 25.56 5.48 21.99 4014 5.37 24.843 52.650 27.24 4.47 10.47 2341 6.09 26.475 56.471	1.46 7.79 10.83 1391 0.01 1.421 1.977 5.50 10.76 16.49 1533 0.08 5.349 7.997 10.21 12.52 20.64 1649 0.26 9.919 1.5532 14.41 11.20 22.95 2048 1.16 14.008 23.908 18.10 9.82 21.29 2168 1.99 17.592 31.679 21.04 7.83 18.00 2299 3.23 20.450 38.249 23.51 6.56 17.47 2663 4.42 22.844 44.625 25.56 5.48 21.99 4014 5.37 24.843 52.650 27.24 4.47 10.47 2341 6.09 26.475 56.471 28.27 3.54 14.46 4082 7.09 27.768 61.748	1.46 7.79 10.83 1391 0.01 1.421 1.977 5.50 10.76 16.49 1533 0.08 5.349 7.997 10.21 12.52 20.64 1649 0.26 9.919 7.997 14.41 11.20 22.95 20.48 1.16 14.008 23.908 18.10 9.82 21.29 2168 17.99 17.592 31.679 21.04 7.83 18.00 2299 3.23 20.450 38.249 23.51 6.56 17.47 2663 4.42 22.844 44.625 25.56 5.48 40.14 5.37 24.843 52.650 27.24 4.47 10.47 2341 6.09 26.475 56.471 28.27 3.54 14.46 4082 7.09 27.768 61.748 29.60 2.75 12.70 4628 7.80 28.770 66.385

Vol. IV Table 2-3-3

PREDICTED PERFORMANCE OF A ZONE,
FAIRLEY BARAM FIELD

WATER (MMSTB)	0.207	0.242	0.462	0.630	0.794	0.961	1.119	1.260	1.397	1.505	1.613	1.702
CUMULATIVE PRODUCTION OIL GAS WAT MSTB) (MMMSCF) (MMS	3.017	3.395	5.880	8.592	11.334	14.044	16.676	19.119	21.369	23.376	25.137	26.463
CUMULATO OIL (MMSTB)	1.696	1.866	2.879	3.762	4.538	5.228	5.836	6.376	098.9	7.295	7.691	7.992
W.O.R. (STB/STB)	0.12	0.21	0.22	0.19	0.21	0.24	0.26	0.26	0.28	0.25	0.27	0.30
G.O.R. (SCF/STB)	2122	2218	449	3070	3527	3928	4318	4522	4653	4621	4426	4403
GAS PROD. RATE (MMSCF/D)	2.99	6.21	6.81	7.43	7.51	7.43	7.21	69.9	6.16	5.50	4.83	4.36
OIL PROD. RATE (MSTB/D)	2.82	2.80	2.78	2.42	2.13	1.89	1.67	1.48	1.33	1.19	1.09	66.0
RECOVERY (8)	6.24	6.78	10.59	13.83	16.69	19.22	21.45	23.44	25.22	26.82	28.27	29.38
RESERVOIR PRESSURE (PSIG)	3049	3007	2743	2480	2224	1964	1718	1498	1284	1116	948	808
TIME (YEAR)	Oct.1976	Dec.1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	Oct.1986

Vol. IV Table 2-3-4
PREDICTED PERFORMANCE OF B ZONE,
FAIRLEY BARAM FIELD, CASE 1

7,	1985
out.	: Jun.
••	••
START	END
	PRODUCTION

!	WATER (MMSTB)	0.021	0.036	0.190	0.478	0.637	0.663	0.693	0.732	0.784	0.859	906.0
	CUMULATIVE PRODUCTION OIL GAS WAT MSTB) (MMMSCF) (MMS	0.739	0.880	1.937	3.759	4.961	5.246	5.498	5.737	5.974	6.223	6.355
	CUMULAT OIL (MMSTB)	0.398	0.466	0.847	1.190	1.369	1.453	1.528	1.596	1.657	1.712	1.737
	W.O.R. (STB/STB)	0.27	0.22	0.41	0.84	0.89	0.31	0.39	0.56	0.84	1.37	1.84
	G.O.R. (SCF/STB)	2000	2069	2785	5310	6721	3395	3288	3446	3820	4548	5166
	GAS PROD. RATE (MMSCF/D)	1.60	2.32	2.90	4.99	3.29	0.78	0.69	99.0	0.65	0.68	0.72
	OIL PROD. RATE (MSTB/D)	0.80	1.12	1.04	0.94	0.49	0.23	0.21	0.19	0.17	0.15	0.14
	RECOVERY (8)	2.20	2.58	4.69	6.59	7.58	8.05	8.46	8.84	9.17	9.48	9.62
	TIME (YEAR)	Oct.1976	Dec.1976	1977	1978	1979	1980	1981	1982	1983	1984	Jun. 1985

Vol. IV Table 2-3-5
PREDICTED PERFORMANCE OF B ZONE,
FAIRLEY BARAM FIELD, CASE 2

LATIVE PRODUCT	OIL GAS WATER (MMSTB) (MMSTB)	0.398 0.739 0.021	0.466 0.88 0.036	0.847 1.937 0.190	1.227 3.789 0.485	1.614 5.162 0.707	1.885 5.583 0.817	2.128 5.944 0.957	2.347 6.276 1.135	2.544 6.801 1.360	777 F 000 F FF7 0
	W.O.R. (STB/STB)	0.27	0.22	0.40	0.78	0.57	0.41	0.58	0.81	1.14	r
	G.O.R. (SCF/STB)	2000	2073	2774	4874	3549	1554	1485	1517	2663	(
GAS PROD.	RATE (MMSCF/D)	1.60	2.32	2.90	5.07	3.76	1.15	0.99	0.91	1.44	
OIL PROD.	RATE (MSTB/D)	08.0	1.12	1.04	1.04	1.06	0.74	0.67	09.0	0.54	(
	RECOVERY (%)	2.20	2.58	4.69	6.79	8.94	10.44	11.78	13.00	14.09	•
	TIME (YEAR)	Oct.1976	Dec.1976	1977	1978	1979	1980	1981	1982	1983	

Vol. IV Table 2-3-6
PREDICTED PERFORMANCE OF C ZONE,
FAIRLEY BARAH FIELD, CASE 1

WATER (MMSTB)	0.019	0.034	0.716	4.459	10.014	16.849	24.156	31.169	37.399	43.046	48.453	52.624
GAS (MMMSCF)	3.044	3.496	6.153	8.666	11.018	13.090	15.047	16.929	18.636	20.387	22.272	23.863
OIL (MMSTB)	2.469	2.835	4.951	6.850	8.494	9.762	10.784	11.623	12.288	12.870	13.410	13.809
W.O.R. (STB/STB)	0.03	0.04	0.32	1.97	3.38	5.39	7.15	8.36	9.37	9.70	10.02	10.45
G.O.R. (SCF/STB)	1238	1235	1256	1323	1431	1634	1915	2243	2567	3008	3492	3987
RATE (MMSCF/D)	7.99	7.43	7.28	68.9	6.44	5.68	5.36	5.16	4.68	4.80	5.16	5.23
RATE (MSTB/D)	6.45	6.02	5.80	5.20	4.50	3.47	2.80	2.30	1.82	1.60	1.48	1.31
RECOVERY (%)	4.76	5.46	9.54	13.19	16.36	18.80	20.77	22.39	23.67	24.79	25.83	26.60
TIME (YEAR)	Oct.1976	Dec.1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	Oct.1986
	RECOVERY RATE G.O.R. W.O.R. OIL GAS (ASTB/D) (MMSCF/D) (SCF/STB) (STB/STB) (MMSTB) (MMMSCF)	RECOVERY (%) RATE (MSTB/D) RATE (SCF/STB) G.O.R. (SCF/STB) W.O.R. (STB/STB) OIL (MMSTB) GAS (MMSCF) 4.76 6.45 7.99 1238 0.03 2.469 3.044	RECOVERY (\$) RATE (MSTB/D) RATE (MMSCF/D) G.O.R. (SCF/STB) W.O.R. (STB/STB) OIL (MMSTB) GAS (MMSCF) 4.76 6.45 7.99 1238 0.03 2.469 3.044 5.46 6.02 7.43 1235 0.04 2.835 3.496	RECOVERY (\$) RATE (\$) RATE (\$) G.O.R. (\$CF/STB) W.O.R. (\$TB/STB) OIL (MMSTB) GAS (MMSCF) 4.76 6.45 7.99 1238 0.03 2.469 3.044 5.46 6.02 7.43 1235 0.04 2.835 3.496 9.54 5.80 7.28 1256 0.32 4.951 6.153	RECOVERY (\$) RATE (MSTB/D) RATE (SCF/STB) G.O.R. (SCF/STB) W.O.R. (STB/STB) OIL (MMSTB) GAS (MMSCF) 4.76 6.45 7.99 1238 0.03 2.469 3.044 5.46 6.02 7.43 1235 0.04 2.835 3.496 9.54 5.80 7.28 1256 0.32 4.951 6.153 13.19 5.20 6.89 1323 1.97 6.850 8.666	RECOVERY (\$) RATE (MSTB/D) RATE (SCF/STB) G.O.R. (SCF/STB) W.O.R. (STB/STB) OIL (MMSTB) GAS (MMSCF) 4.76 6.45 7.99 1238 0.03 2.469 3.044 5.46 6.02 7.43 1235 0.04 2.835 3.496 9.54 5.80 7.28 1256 0.32 4.951 6.153 13.19 5.20 6.89 1323 1.97 6.850 8.666 16.36 4.50 6.44 1431 3.38 8.494 11.018	RECOVERY (\$) RATE (\$) RATE (\$CF/STB) G.O.R. (\$CF/STB) W.O.R. (\$TB/STB) OIL (\$MMSCF) GAS (\$MMSCF) 4.76 6.45 7.99 1238 0.03 2.469 3.044 5.46 6.02 7.43 1235 0.04 2.835 3.496 9.54 5.80 7.28 1256 0.32 4.951 6.153 13.19 5.20 6.89 1323 1.97 6.850 8.666 16.36 4.50 6.44 1431 3.38 8.494 11.018 18.80 3.47 5.68 1634 5.39 9.762 13.090	RECOVERY (%) RATE (MSCF/D) RATE (SCF/STB) G.O.R. (SCF/STB) W.O.R. (STB/STB) OIL (MMSTB) GAS (MMSCF/D) 4.76 6.45 7.99 1238 0.03 2.469 3.044 5.46 6.02 7.43 1235 0.04 2.835 3.496 9.54 5.80 7.28 1256 0.32 4.951 6.153 13.19 5.20 6.89 1323 1.97 6.850 8.666 16.36 4.50 6.44 1431 3.38 8.494 11.018 18.80 3.47 5.68 1634 5.39 9.762 13.090 20.77 2.80 5.36 1915 7.15 10.784 15.047	RECOVERY (#STB/D) RATE (MASTB/D) RATE (MASCF/D) G.O.R. (SCF/STB) W.O.R. (STB/STB) OIL (MMSTB) GAS (MMSTB) 4.76 6.45 7.99 1238 0.03 2.469 3.044 5.46 6.02 7.43 1235 0.04 2.835 3.496 9.54 5.80 7.28 1256 0.32 4.951 6.153 13.19 5.20 6.89 1323 1.97 6.850 8.666 16.36 4.50 6.44 1431 3.38 8.494 11.018 18.80 3.47 5.68 1634 5.39 9.762 13.090 20.77 2.80 5.36 1915 7.15 10.784 15.047 22.39 2.30 5.16 1915 7.15 10.784 15.047	RECOVERY (%) RATE (MSTB/D) RATE (MSCF/D) G.O.R. (SCF/STB) W.O.R. (STB/STB) OIL (MMSCF) GAS (MMSCF) 4.76 6.45 7.99 1238 0.03 2.469 3.044 5.46 6.02 7.43 1235 0.04 2.835 3.496 9.54 5.80 7.28 1256 0.32 4.951 6.153 13.19 5.20 6.89 1323 1.97 6.850 8.666 16.36 4.50 6.44 1431 3.38 8.494 11.018 18.80 3.47 5.68 1634 5.39 9.762 13.090 20.77 2.80 5.36 1915 7.15 10.784 15.047 22.39 2.30 5.16 2543 8.36 11.623 16.929 23.67 1.863 2567 9.37 12.288 18.636	RECOVERY (\$) RATE (MSTB/D) RATE (MMSCF/D) RATE (SCF/STB) G.O.R. (STB/STB) W.O.R. (MMSTB) OIL (MMSTB) GAS (MMSTB) 4.76 6.45 7.99 1238 0.03 2.469 3.044 5.46 6.02 7.28 1235 0.04 2.835 3.496 9.54 5.80 7.28 1256 0.32 4.951 6.153 13.19 5.20 6.89 1323 1.97 6.850 8.666 16.36 4.50 6.44 1431 3.38 8.494 11.018 18.80 3.47 5.68 1634 5.39 9.762 13.090 20.77 2.80 5.36 1915 7.15 10.784 15.047 22.39 2.30 5.16 2243 8.36 11.623 16.929 23.67 1.82 4.68 2567 9.37 12.288 18.636 24.79 1.60 4.80 3008 9.70 12.870 20.387	RECOVERY (\$8) RATE (MSTB/D) RATE (MSCF/D) G.O.R. (SCF/STB) W.O.R. (STB/STB) OIL (MMSCF) GAS (MMSCF) 4.76 6.45 7.99 1238 0.03 2.469 3.044 5.46 6.02 7.43 1235 0.04 2.835 3.496 13.19 5.20 6.89 1323 1.97 6.850 8.666 16.36 4.50 6.44 1431 3.38 8.494 11.018 18.80 3.47 5.68 1634 5.39 9.762 13.090 20.77 2.80 5.16 2243 8.36 11.623 16.929 22.39 2.30 5.16 2567 9.37 12.288 18.636 24.79 1.60 4.80 3008 9.70 12.870 20.387 25.83 1.48 5.16 3492 10.02 13.410 22.272

Vol. IV Table 2-3-7
PREDICTED PERFORMANCE OF C ZONE,
FAIRLEY BARAM FIELD, CASE 2

NO	WATER (MMSTB)	0.019	0.035	0.838	5.130	11.862	20.818	31.095	41.515	51.089	60.044	67.753	72.646
CUMULATIVE PRODUCTION	GAS W	3.044 (3.722 (7.715 0	11.527	15.183 11	18.622 20	22.005 31	25.255 41	28.301 51	31.344 60	34.020 67	35.765 72
ATIVE		m	m	7	11	15	18	22	25	28	31	34	35
CUMUI	OIL (MMSTB)	2.469	3.017	6.193	9.019	11.440	13.337	14.880	16.120	17.071	17.862	18.468	18.813
	W.O.R. (STB/STB)	0.03	0.03	0.25	1.52	2.78	4.72	99.9	8.40	10.07	11.32	12.72	14.19
	G.O.R. (SCF/STB)	1238	1237	1257	1349	1510	1813	2193	2621	3203	3845	4417	5056
GAS PROD.	RATE (MMSCF/D)	7.99	11.15	10.94	10.44	10.02	9.42	9.27	8.90	8.35	8.34	7.33	5.74
OIL PROD.	RATE (MSTB/D)	6.45	9.01	8.70	7.74	6.63	5.20	4.23	3.40	2.61	2.17	1.66	1.13
	RECOVERY (%)	4.76	5.81	11.93	17.37	22.03	25.69	28.66	31.05	32.88	34.40	35.57	36.23
	TIME (YEAR)	Oct.1976	Dec.1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	Oct.1986

Vol. IV Table 2-3-8

PREDICTED PERFORMANCE OF B ZONE,
WELL FB-2, FAIRLEY BARAM FIELD, CASE 1

PRODUCTION START: Sep. 1975 PRODUCTION END: Jun. 1979

RESERVOIR	OIL PROD.	GAS PROD.	<u>م</u> د	3 2	CUMULA	CUMULATIVE PRODUCTION	CTION
	(MSTB/D)	(MMSCF/D)	(SCF/STB)	(STB/STB)	(MMSTB)	(MMMSCF)	(MMSTB)
	0.51	1.30	2521	0.1	0.214	0.393	0.012
	0.51	1.30	2546	0.13	0.245	0.472	0.016
	0.47	1.55	3305	0.39	0.417	1.039	0.082
	0.42	2.63	6256	1.08	0.572	1.998	0.248
	0.39	3.44	8809	1.70	0.644	2.625	0.369

VOL. IV Table 2-3-9
PREDICTED PERFORMANCE OF B ZONE,
WELL FB-3, FAIRLEY BARAM FIELD, CASE 1

PRODUCTION START: Oct. 1976 PRODUCTION END: Feb. 1979

CTION	WATER (MMSTB)	0.010	0.020	0.108	0.229	0.253
CUMULATIVE PRODUCTION	GAS (MMMSCF)	0.019	0.036	0.139	0.516	0.615
CUMULA	OIL (MMSTB)	0.017	0.034	0.128	0.212	0.226
	W.O.R. (STB/STB)	0.57	0.59	0.93	1.44	1.72
	G.O.R. (SCF/STB)	1084	1002	1094	4491	7076
GAS PROD.	RATE (MMSCF/D)	0.31	0.28	0.28	1.03	1.63
OIL PROD.	RATE (MSTB/D)	0.28	0.28	0.26	0.23	0.23
RESERVOIR	PRESSURE (PSIG)	3392	3355	3031	2564	2474
	TIME (YEAR)	Oct.1976	Dec.1976	1977	1978	Feb.1979

Vol. IV Table 2-3-10
PREDICTED PERFORMANCE OF B ZONE,
WELL FB-29, FAIRLEY BARAM FIELD, CASE 1

				_	10		_	_	01	_	
CTION WATER (MMSTB)	0.0	0.0	0.0	0.001	0.015	0.041	0.071	0.110	0.162	0.237	0.284
CUMULATIVE PRODUCTION OIL GAS WAT MSTB) (MMMSCF) (MMS	0.328	0.372	0.759	1.245	1.721	2.006	2.258	2.497	2.734	2.983	3.115
CUMULATI OIL (MMSTB) (0.167	0.187	0.302	0.406	0.499	0.583	0.658	0.726	0.787	0.842	0.867
W.O.R. (STB/STB)	0.0	0.0	0.0	0.01	0.15	0.31	0.39	0.56	0.84	1.37	1.84
G.O.R. (SCF/STB)	0.0	2192	3313	4591	5016	3395	3288	3446	3820	4548	5166
GAS PROD. RATE (MMSCF/D)	0.0	0.72	1.06	1.33	1.30	0.78	69.0	99.0	0.65	0.68	0.72
OIL PROD. RATE (MSTB/D)	0.0	0.33	0.32	0.29	0.26	0.23	0.21	0.19	0.17	0.15	0.14
RESERVOIR PRESSURE (PSIG)	3406	3337	3011	2539	2269	2218	2165	2117	2068	2012	1981
TIME (YEAR)	Oct.1976	Dec.1976	1977	1978	1979	1980	1981	1982	1983	1984	Jun. 1985

Vol. IV Table 2-3-11 PREDICTED PERFORMANCE OF B ZONE,

WELL FB-2, FAIRLEY BARAM FIELD, CASE 2

1975	1979
Sep.	
START:	END

ATER	MSTB)	.012	.016	.082	.248	0.371
GAS	IMMSCF) (N	0.393 0	0.472 0	1.039 0	1.998	2,625 0
OIL	(MMSTB) (N	0.214	0.245	0.417	0.572	0.644
W.O.R.	(STB/STB)	0.10	0.13	0.39	1.08	1.73
		2521	2546	3305	6256	8809
RATE	(MMSCF/D)	1.30	1.30	1.55	2.63	3.44
_		0.51	0.51	0.47	0.42	0.39
PRESSURE	(PSIG)	3354	3322	3009	2534	2266
TIME	(YEAR)	Oct.1976	Dec.1976	1977	1978	Jun. 1979
	PRESSURE RATE G.O.R. W.O.R.	6	PRESSURE RATE G.O.R. W.O.R. (PSIG) (MSTB/D) (MMSCF/D) (SCF/STB) (STB/STB) (I 3354 0.51 1.30 2521 0.10 (PRESSURE (PSIG) RATE (MSTB/D) RATE (MMSCF/D) G.O.R. (SCF/STB) W.O.R. (STB/STB) (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	PRESSURE (PSIG) RATE (MSTB/D) RATE (MMSCF/D) G.O.R. (SCF/STB) W.O.R. (STB/STB) (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	PRESSURE (PSIG) RATE (MSTB/D) RATE (MSTB/D) RATE (MSTB/D) (MMSCF/D) G.O.R. (SCF/STB) W.O.R. (STB/STB) (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

VOl. IV Table 2-3-12

PREDICTED PERFORMANCE OF B ZONE,
WEIL FB-3, FAIRLEY BARAM FIELD, CASE 2

٠:,

PRODUCTION START: Oct. 1976 PRODUCTION END: Feb. 1979

	H)	0.	0:	8	<u></u>	14
CTION	WATER (MMSTB)	0.010	0.020	0.108	0.229	0.254
CUMULATIVE PRODUCTION	GAS (MMMSCF)	0.019	0.036	0.139	0.516	0.615
CUMULA	OIL (MMSTB)	0.017	0.034	0.128	0.212	0.226
	W.O.R. (STB/STB)	0.57	0.59	0.93	1.44	1.72
	G.O.R. (SCF/STB)	1084	1002	1094	4491	7076
GAS PROD.	RATE (MMSCF/D)	0.31	0.28	0.28	1.03	1.63
OIL PROD.	RATE (MSTB/D)	0.28	0.28	0.26	0.23	0.23
RESERVOIR	PRESSURE (PSIG)	3392	3355	3046	2559	2464
	TIME (YEAR)	Oct.1976	Dec.1976	1977	1978	Feb.1979

Vol. IV Table 2-3-13
PREDICTED PERFORMANCE OF B ZONE,

WELL FB-29, FAIRLEY BARAM FIELD, CASE 2

TON WATER MMSTB)	0	0	0	0.001	0.016	0.043	0.075	0.120	0.185	0.261
MA'	0.0	0.0	0.0	0	0	0	0	0	0	0
CUMULATIVE PRODUCTION OIL GAS WAT MSTB) (MMMSCF) (MMS	0.328	0.372	0.759	1.245	1.740	2.038	2.292	2.532	2.781	2.999
CUMULA OIL (MMSTB)	0.167	0.187	0.302	0.406	0.499	0.583	0.658	0.726	0.787	0.833
W.O.R. (STB/STB)	0.0	0.0	0.0	0.01	0.16	0.32	0.42	0.65	1.05	1.07
G.O.R. (SCF/STB)	0.0	2192	3312	4591	5216	3550	3314	3461	4013	5119
GAS PROD. RATE (MMSCF/D)	0.0	0.72	1.06	1.33	1.36	0.82	0.70	99.0	0.68	0.72
OIL PROD. RATE (MSTB/D)	0.0	0.33	0.32	0.29	0.26	0.23	0.21	0.19	0.17	0.15
RESERVOIR PRESSURE (PSIG)	3406	3337	3011	2533	2209	2117	2030	1944	1833	1735
TIME (YEAR)	Oct.1976	Dec.1976	1977	1978	1979	1980	1981	1982	1983	Oct.1984

VOL. IV Table 2-3-14

PREDICTED PERFORMANCE OF B ZONE,
WELL FB-Al, FAIRLEY BARAM FIELD, CASE 2

PRODUCTION START: Nov. 1978
PRODUCTION END: Feb. 1984

0.007	0.067	0.150	0.258	0.391	0.551	0.581
0.030	0.182	0.305	0.412	0.504	0.780	0.989
0.037	0.245	0.432	0.600	0.751	0.887	806.0
0.19	0.29	0.45	0.64	0.89	1.19	1.41
810	731	199	637	615	2044	9816
0.49	0.42	0.34	0.29	0.25	0.76	3.44
0.61	0.57	0.51	0.46	0.41	0.37	0.35
2591	2250	2142	2056	1971	1840	1779
Dec.1978	1979	1980	1981	1982	1983	Feb. 1984
	2591 0.61 0.49 810 0.19 0.037 0.030	2591 0.61 0.49 810 0.19 0.037 0.030 2250 0.57 0.42 731 0.29 0.245 0.182	2591 0.61 0.49 810 0.19 0.037 0.030 2250 0.57 0.42 731 0.29 0.245 0.182 2142 0.51 0.34 661 0.45 0.432 0.305	2591 0.61 0.49 810 0.19 0.037 0.030 2250 0.57 0.42 731 0.29 0.245 0.182 2142 0.51 0.34 661 0.45 0.432 0.305 2056 0.46 0.29 637 0.64 0.600 0.412	2591 0.61 0.49 810 0.19 0.037 0.030 2250 0.57 0.42 731 0.29 0.245 0.182 2142 0.51 0.34 661 0.45 0.432 0.305 2056 0.46 0.29 637 0.64 0.600 0.412 1971 0.41 0.25 615 0.89 0.751 0.504	2591 0.61 0.49 810 0.19 0.037 0.030 2250 0.57 0.42 731 0.29 0.245 0.182 2142 0.51 0.34 661 0.45 0.432 0.305 2056 0.46 0.29 637 0.64 0.600 0.412 1971 0.41 0.25 615 0.89 0.751 0.504 1840 0.37 0.76 2044 1.19 0.887 0.780

Vol. IV Table 2-3-15

PREDICTED PERFORMANCE OF C ZONE,
WELL FB-2, FAIRLEY BARAM FIELD, CASE 1

CTION VATER (MMSTB)	0.010	0.015	0.100	0.419	1.058	1.837	2.620	3.317	3.858	4.321	4.846	5.366
CUMULATIVE PRODUCTION OIL GAS VIAT MSTB) (MMMSCF) (MMS	0.952	1.068	1.751	2.407	3.052	3.696	4.339	4.956	5.529	6.176	6.948	7.677
CUMULA' OIL (MMSTB)	0.769	0.861	1.390	1.865	2.284	2.649	2.959	3.216	3.416	3.598	3.781	3.933
W.O.R. (STB/STB)	0.04	0.05	0.16	19.0	1.52	2.13	2.52	2.73	2.70	2.54	2.88	3.42
G.O.R. (SCF/STB)	1253	1263	1291	1383	1537	1764	2073	2415	2854	3545	4230	4793
GAS PROD. RATE (MMSCF/D)	2.42	1.91	1.87	1.80	1.77	1.76	1.76	1.69	1.57	1.77	2.12	2.40
OIL PROD. RATE (MSTB/D)	1.93	1.51	1.45	1.30	1.15	1.00	0.85	0.70	0.55	0.50	0.50	0.50
RESERVOIR PRESSURE (PSIG)	3659	3658	3613	3503	3339	3132	2909	2693	2499	2322	2155	2024
TIME (YEAR)	Oct.1976	Dec.1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	Oct.1986

VOI. IV Table 2-3-16

PREDICTED PERFORMANCE OF C ZONE,
WELL FB-3, FAIRLEY BARAM FIELD, CASE 1

PRODUCTION START: Oct. 1976 PRODUCTION END: Oct. 1986

CTION WATER (MMSTB)	0.0	0.0	0.019	0.127	0.563	1.595	3.153	4.833	6.335	7.789	9.340	10.520
CUMULATIVE PRODUCTION OIL GAS WAT (MMSCF) (MMS	0.007	0.116	0.753	1.331	1.869	2.391	2.914	3.411	3.856	4.329	4.879	5.313
CUMULAI OIL (MMSTB)	0.005	0.097	0.626	1.100	1.520	1.885	2.195	2.452	2.652	2.834	3.010	3.131
W.O.R. (STB/STB)	0.01	0.01	0.04	0.23	1.04	2.83	5.02	6.58	7.48	7.97	8.85	9.70
G.O.R. (SCF/STB)	1208	1187	1204	1218	1282	1430	1686	1945	2217	2592	3139	3567
GAS PROD. RATE (MMSCF/D)	0.11	1.79	1.75	1.58	1.47	1.43	1.43	1.36	1.22	1.30	1.51	1.43
OIL PROD. RATE (MSTB/D)	60.0	1.51	1.45	1.30	1.15	1.00	0.85	0.70	0.55	0.50	0.48	0.40
RESERVOIR PRESSURE (PSIG)	3694	3683	3631	3531	3365	3149	2918	2698	2504	2325	2160	2037
TIME (YEAR)	Oct.1976	Dec.1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	Oct.1986

VOI. IV Table 2-3-17

PREDICTED PERFORMANCE OF C ZONE,
WELL FB-11, FAIRLEY BARAM FIELD, CASE 1

					•								
CTION	(MMSTB)	600.0	0.019	0.589	3.820	7.751	11.760	15.640	19.240	22.490	25.390	27.980	29.900
CUMULATIVE PRODUCTION OIL GAS WAT	(MMMSCF)	1.124	1.234	1.885	2.522	3.109	3.629	4.072	4.495	4.841	5.138	5.391	5.573
CUMULA	(MMSTB)	0.926	1.017	1.546	2.022	2.417	2.728	2.969	3.159	3,308	3.429	3.527	3.594
W.O.R.	(STB/STB)	0.04	0.11	1.08	6.81	6.97	12.92	16.11	18.97	21.72	24.08	26.28	28.69
G.O.R.	(SCF/STB)	1203	1205	1230	1342	1489	1676	1839	2229	2312	2466	2567	2720
GAS PROD. RATE	(MMSCF/D)	2.86	1.81	1.78	1.75	1.61	1.43	1.21	1.16	0.95	0.81	69.0	09.0
OIL PROD. RATE	(MSTB/D)	2.37	1.50	1.45	1.30	1.08	0.85	99.0	0.52	0.41	0.33	0.27	0.22
RESERVOIR PRESSURE	(PSIG)	3682	3682	3626	3483	3321	3116	2896	2681	2489	2319	2160	2036
TIME	(YEAR)	Oct.1976	Dec.1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	Oct.1986

VOL. IV Table 2-3-18

PREDICTED PERFORMANCE OF C ZONE,
WELL FB-29, FAIRLEY BARAM FIELD, CASE 1

TON	(MMST.B)	0	0	800.0	0.093	0.642	1.657	2.743	3.779	4.716	5.546	6.287	6.838
CTIO	EE)	0.0	0.0	•	·	0.	ਜ	2.	m.	4.	ហ	9	9
CUMULATIVE PRODUCTION OIL GAS WAT	(MMMSCF)	0.961	1.078	1.764	2.406	2.988	3.374	3.722	4.067	4.410	4.744	5.054	5.300
CUMULA	(MMSTB)	0.769	0.860	1.389	1.863	2.273	2.500	2.661	2.796	2.912	3.009	3.092	3.151
W.O.R.	(STB/STB)	0.0	0.0	0.02	0.18	1.34	4.49	6.19	7.67	8.02	8.42	8.83	9.53
G.O.R.	(SCF/STB)	1267	1282	1296	1353	1424	1706	2167	2555	2937	3389	3693	4257
GAS PROD. RATE	(MMSCF/D)	2.61	1.92	1.88	1.76	1.60	1.06	0.95	0.95	0.94	0.92	0.85	0.81
OIL PROD.	(MSTB/D)	2.06	1.50	1.45	1.30	1.12	0.62	0.44	0.37	0.32	0.27	0.23	0.19
RESERVOIR PRESSURE	(PSIG)	3674	3672	3629	3526	3357	3151	2924	2705	2509	2334	2171	2046
TIME	(YEAR)	Oct.1976	Dec.1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	Oct.1986

٠.

Vol. IV Table 2-3-19

PREDICTED PERFORMANCE OF C ZONE,
WELL FB-2, FAIRLEY BARAM FIELD, CASE 2

CTION WATER (MMSTB)	0.010	0.015	0.121	0.560	1.422	2.521	3.751	5.015	6.187	7.409	8.619	9.388
CUMULATIVE PRODUCTION OIL GAS WAT MSTB) (MMMSCF) (MMS	0.952	1.068	1.756	2.434	3.129	3.856	4.601	5.332	6.038	6.831	7.596	8.075
CUMULA OIL (MMSTB)	0.769	0.861	1.390	1.865	2.284	2.649	2.959	3.216	3.416	3.598	3.749	3.835
W.O.R. (STB/STB)	0.04	0.05	0.20	0.93	2.05	3.01	3.97	4.95	5.84	6.70	8.09	9.03
G.O.R. (SCF/STB)	1253	1263	1300	1429	1656	1992	2401	2861	3517	4345	5112	5624
GAS PROD. RATE (MMSCF/D)	2.42	1.91	1.89	1.86	1.90	1.99	2.04	2.00	1.93	2.17	2.10	1.58
OIL PROD. RATE (MSTB/D)	1.93	1.51	1.45	1.30	1.15	1.00	0.85	0.70	0.55	0.50	0.41	0.28
RESERVOIR PRESSURE (PSIG)	3659	3654	3585	3432	3205	2920	2606	2293	2001	1724	1506	1369
TIME (YEAR)	Oct.1976	Dec.1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	Oct.1986

Vol. IV Table 2-3-20

PREDICTED PERFORMANCE OF C ZONE,
WELL FB-3, FAIRLEY BARAM FIELD, CASE 2

	ER TB)		10	19	28	56	51	16	37	78	29	.07	17
JCTION	WATER (MMSTB)	0.0	0.001	0.019	0.128	0.556	1.551	3.016	4.537	5.778	6.629	7.107	7.317
CUMULATIVE PRODUCTION	GAS (MMMSCF)	0.007	0.116	0.752	1.330	1.873	2.418	2.977	3.552	4.170	4.745	5.231	5.605
CUMULA	OIL (MMSTB)	0.005	0.097	0.626	1.100	1.520	1.885	2.195	2.452	2.650	2.792	2.886	2.942
	W.O.R. (STB/STB)	0.01	0.01	0.03	0.23	1.02	2.73	4.72	5.95	6.30	5.98	5.04	3.84
	G.O.R. (SCF/STB)	1208	1187	1202	1218	1294	1493	1802	2250	3135	4039	5121	6831
GAS PROD.	RATE (MMSCF/D)	0.11	1.79	1.74	1.58	1.49	1.49	1.53	1.58	1.69	1.58	1.33	1.23
OIL PROD.	RATE (MSTB/D)	0.09	1.51	1.45	1.30	1.15	1.00	0.85	0.70	0.54	0.39	0.26	0.18
RESERVOIR	PRESSURE (PSIG)	3694	3681	3608	3469	3243	2955	2639	2328	2039	1779	1562	1417
	TIME (YEAR)	Oct.1976	Dec.1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	Oct.1986

Vol. IV Table 2-3-21

PREDICTED PERFORMANCE OF C ZONE,
WELL FB-11, FAIRLEY BARAM FIELD, CASE 2

WATER (MMSTB)	600.0	0.019	0.681	4.211	8.301	12.435	16.299	19.752	22.798	25.380	27.500	28.996
CUMULATIVE PRODUCTION OIL GAS WAT MSTB) (MMMSCF) (MMS	1.124	1.234	1.886	2.513	3.061	3.533	3.920	4.217	4.446	4.614	4.731	4.802
CUMULAT OIL (MMSTB)	0.926	1.017	1.546	2.001	2.345	2.594	2.770	2.889	2.972	3.028	3.066	3.088
W.O.R. (STB/STB)	0.04	0.11	1.25	7.74	11.92	16.66	21.17	31.53	36.28	47.16	58.08	70.26
G.O.R. (SCF/STB)	1203	1205	1232	1.574	1597	1902	2121	2712	2728	3068	3205	3335
GAS PROD. RATE (MMSCF/D)	2.86	1.81	1.79	1.72	1.50	1.29	1.06	0.81	0.63	0.46	0.32	0.23
OIL PROD. RATE (MSTB/D)	2.37	1.50	1.45	1.25	0.94	0.68	0.50	0.30	0.23	0.15	0.10	0.07
RESERVOIR PRESSURE (PSIG)	3682	3680	3597	3415	3193	2916	2610	2302	2014	1750	1532	1393
TIME (YEAR)	Oct.1976	Dec.1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	Oct.1986

Vol. IV Table 2-3-22

PREDICTED PERFORMANCE OF C ZONE,
WELL FB-29, FAIRLEY BARAM FIELD, CASE 2

TION WATER (MMSTB)	0.0	0.0	0.008	0.107	0.743	1.767	2.927	4.016	4.922	5.626	6.133	6.431
CUMULATIVE PRODUCTION OIL GAS WAT MSTB) (MMMSCF) (MMS	196.0	1.078	1.769	2.431	3.023	3.386	3.713	4.023	4.307	4.567	4.802	4.969
CUMULAT OIL (MMSTB)	0.769	0.860	1.389	1.863	2.261	2.449	2.576	2.671	2.739	2.788	2.823	2.844
W.O.R. (STB/STB)	0.0	0.0	0.02	0.21	1.60	5.40	9.08	11.48	13.06	14.84	13.89	14.06
G.O.R. (SCF/STB)	1267	1282	1306	1395	1488	1913	2561	3267	4095	5479	6438	7843
GAS PROD. RATE (MMSCF/D)	2.61	1.92	1.89	1.81	1.62	1.00	06.0	0.85	0.78	0.71	0.64	0.55
OIL PROD. RATE (MSTB/D)	2.06	1.50	1.45	1.30	1.09	0.52	0.35	0.26	0.19	0.13	0.10	0.07
RESERVOIR PRESSURE (PSIG)	3674	3670	3604	3461	3231	2952	2638	2327	2035	1770	1550	1407
TIME (YEAR)	Oct.1976	. Dec. 1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	Oct.1986

Vol. IV Table 2-3-23

PREDICTED PERFORMANCE OF C ZONE,
WELL FB-A1, FAIRLEY BARAM FIELD, CASE 2

PRODUCTION START: Nov. 1976 PRODUCTION END: Oct. 1986

B)		9	4	9	7	œ	n	4	2	6	ις.
MATER (MMSTB)	0.0	900.0	0.094	0.676	1.882	3.368	5.013	6.664	8.472	10.149	11.185
CUMULATIVE PRODUCTION OIL GAS WAT MSTB) (MMMSCF) (MMS	0.113	0.778	1.420	2.074	2.755	3.448	4.115	4.708	5.320	5.853	6.183
CUMULA OIL (MMSTB)	0.091	0.621	1.095	1.515	1.880	2.190	2.446	2.647	2.828	2.972	3.053
W.O.R. (STB/STB)	0.0	0.02	0.24	1.39	3.30	4.79	6.44	8.22	16.6	11.78	12.62
G.O.R. (SCF/STB)	1238	1256	1353	1558	1866	2234	2611	2954	3353	3744	4018
GAS PROD. RATE (MMSCF/D)	1.86	1.82	1.76	1.79	1.87	1.90	1.83	1.63	1.68	1.46	1.09
OIL PROD. RATE (MSTB/D)	1.50	1.45	1.30	1.15	1.00	0.85	0,70	0.55	0 - 50	0.39	0.27
RESERVOIR PRESSURE (PSIG)	3633	3587	3441	3205	2914	2596	2279	1987	1709	1498	1365
TIME (YEAR)	Dec.1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	Oct.1986

VOL. IV Table 2-3-24

PREDICTED PERFORMANCE OF C ZONE,
WELL FB-A2, FAIRLEY BARAM FIELD, CASE 2

PRODUCTION START: Nov. 1976 PRODUCTION END: Oct. 1986

CTION	WATER (MMSTB)	0.0	0.003	0.030	0.164	0.662	1.734	3.182	4.740	6.528	8.245	9.409
CUMULATIVE PRODUCTION	GAS (MMMSCF)	0.113	0.774	1,399	2.023	2.674	3.346	4.016	4.632	5.267	5.807	6.131
CUMULAT	OIL (MMSTB)	0.091	0.621	1.095	1.515	1.880	2.190	2.446	2.647	2.828	2.972	3.051
	W.O.R. (STB/STB)	0.0	0.01	90.0	0.32	1.36	3.46	5.67	7.76	08*6	11.76	14.72
	G.O.R. (SCF/STB)	1238	1248	1317	1487	1784	2166	2622	3068	3479	3699	4097
GAS PROD.	RATE (MMSCF/D)	1.86	1.81	1.71	1.71	1.78	1.84	1.84	1.69	1.74	1.48	1.07
OIL PROD.	RATE (MSTB/D)	1.50	1.45	1.30	1.15	1.00	0.85	0.70	0.55	0.50	0.40	0.26
RESERVOIR	PRESSURE (PSIG)	3633	3587	3441	3216	2928	2606	2287	1993	1715	1500	1366
	TIME (YEAR)	Dec.1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	Oct.1986

1

Table 3-2-1 CORRELATION TABLE Vol. IV WEST LUTONG FIELD

1		. 1	r			1	_		,						 _
9	5	Subsea		08	4390	4988 5295	5427	71	1					5814	
	٥	Log		46	4809 5269	5471	5959	28	1					6392	
5	4	Subsea		18	4479	5113	59	5894 6293	77	7224	۲	42	8621 8890	9403	
	11	Log		30	5080	5229	71	6012 6413	89	7347	9	55	8749 9019	9534	
4	2	Subsea		07	4364	4958 5251	38	5652 6110	39	6734	3	35	7481 7700	9020	
	82	Log		15	4447	5040	46	5736 6195	48	6820	6	44	7568	9110	
3	1	Subsea		0.8	4398 4858	5040	51	5812 6148	50	6848	T	52	7683	8055	
	8	Log		9/	5167	5969	55	6915 7325	76	8178	51	97	9159 9465	9598	
2	3	g Subsea		11	4407	5006	44	5735 6175	19	7004	37	05	8213 8489	8566	
	8	Log		37	4682	5311	77	6085 6561	04	7461	84	57	8745 9039	9122	
-	3	Subsea	3048	05	4344	4931	5360	5638	47	6841	22	92	8116 8357	9400	
	8	Log	3131	4	4437	5024	_ LΩ	5732	6591	6977	7322	8021	8214 8455	9500	
Well No.	114	I	Top V	Top a ₁	A A	Top b ₁	TO GOT	C C C C C C C C C C C C C C C C C C C	Top d1	2 p -	ಧ್ಯ	Top e ₁	ข ข	T.D.	

Table 3-2-1 (Continued) CORRELATION TABLE Vol. IV

12	5	Subsea		4058	S) (7.5	4935	23	5364	64	ı							6014		
T	ဖျ	Log		27	4580	00	5190	20	5637	92	•							6315		
1	ī.	Subsea		05	4358	77	4968	30	5429	7.1	_							6125		
1	ا۳	Log		82	5154	09	5811	16	6305	61	ı						:	7065		
0	5	Subsea		07	4369	78	4965	26	5402	68	1							5907		
1	9	Log		62	4950	41	5617	97	6135	48	I							6755		
6	5	Subsea		90	4365	79	4975	29	5422	71	I							8009		
	9	Log		23	4547	98	5171	49	62	5915	ı							6215		
8	5	Subsea	<u> </u>	07	4368	78			40	5689	01	36	6693	96	36	7518	75	8076		
	9	Log		50	4824	26	46	5785	92	6211	ខ	90	7241	52	92	8083	32	8650		
7	65	Subsea		05	4353	9/	94	5252	m	5661	0	35	6699	99	ω	7536	വി	8160		
	9	Log		0	4420	(1)	5014	5318	4	5726	9	l N	99/9	D.	7447	7603	7858	8827		
Well No.	ıш	Cycle/Zone	Top V	Top a,	ಗ	เก	Top b,	. b ₂	Top C1	Ü	່ຕ		ີ່ ຜູ້		Top e ₁	Φ	(P.3	T.D.		

Table 3-2-1 (Continued) Vol. IV

CORRELATION TABLE WEST LUTONG FIELD

 ,		<u> </u>						٠,						_						
8		Subsea		12	4422	۲ 5	5028 5357		5479	9	1		·		,		5874			
7		Log		നി	4707	4 I	5347 5690		5817	⊣	1						6230			
7	1	Subsea		0.8	4373	:	4963 5282		5402	Q	I						5967			
17	7	Log		42	4739	7	5375 5715		5842	1	i						6433			
9	1	Subsea		10	4398	J O	5004 5329		5463	7.3	ı						5910			
	7	Log		17	4469	00	5075		5534	80	1						5981			
5	5	Subsea		04	4338	2	4921 5215		5344	62	-						2960			
T	65	Log		61	4975	40	5695		6263	9	1						7033			
4	5	Subsea		05	4348	۹ /	4939 5244		5366	63	90	49	6893 7234	1	02	8197 8486	9975			
	9	Log		12	4422	84	5025		5461	74	20	71	7195		54	9085	11040			
3	5	Subsea		4063	4365	4/85	4970		5416	5694	ı						5830			
	65	Log		4836	5209	5739	5976		6553	6919	ı						7100		•	
		9																		
Well No.	D.F.E.	Cycle/Zone	Top V	Top a1	Ø	m ៧	Top b ₁	7~	Top c1	3	ຕິ	Top d1	יטיט טיטי	6	Top e1	e ₃	T.D.			

Table 3-2-1 (Continued) CORRELATION TABLE Vol. IV

1	ığ			~ .0			<u> </u>		
	Subse		4127 4420 4828	5018	5445 5713 -			5898	
2	П		4503 4840 5295	5503 5827	5965 6253 -			6450	
3	Subsea		4092 4379 4787	4977 5274	5405 5680 6045	6413 6678 6956	7337 7498 7723	8029	
7	Log		4212 4521 4962	5169 5490	5631 5926 6315	6707 6988 7279	7678 7845 8082	8400	
3	Subsea		4146 4440 4854	5035 5347	5471 5735 -			5763	
7	Log		4951 5346 5909	6153 6579	6748 7121 -			7160	
3	Subsea		4094 4384 4791	4980 5275	5405 5675 -			6057	
7	Log		4167 4456 4864	5053 5348	5478 5748 -			6130	
7	Subsea		4094 4398 4826	5020 5354	5485 (5762)			2810	
7	Log		4392 4730 5192	5397 5746	5883 (6170)			6220	
1	Subsea		4123 4421 4835	5038 5368	5494 5775 -			2866	
7	Log		4442 4761 5196	5407 5750	5881 6174			6270	
D.F.E.	Cycle/Zone	Top V	Top a ₁ a ₂ a ₃	Top b ₁	Top c ₁	Top d ₁ d ₂ d ₃	Top e ₁ e ₂ e ₃	T.D.	
	71 71 73 73 73	E. 71 73 73 73 73 73 73 6/Zone Log Subsea Rog Subsea Ro	71 71 73 74<	Tone Log Subsea Log A503 A503 A503 A503 A503 A6440 A6440 A6440 A640 A640 <td>Zone Iog Subsea Log Assa Log Assa Log Assa Log Assa Assa</td> <td>Tile 71 73 74 80 8</td> <td> Name</td> <td> Table Tabl</td> <td> Table Tabl</td>	Zone Iog Subsea Log Assa Log Assa Log Assa Log Assa Assa	Tile 71 73 74 80 8	Name	Table Tabl	Table Tabl

Table 3-2-1 (Continued) CORRELATION TABLE Vol. IV

9	73	Subsea		4127	4410	1									<u></u>	4539	
2	7	Log		4345	4652											4790	
2	73	Subsea		4105	4390	4792	4980	\sim	5398	2668	ı					5809	
2	7	Log		4407	4709	5129	5323	5620	5752	6027	ı					6171	
Well No.		Cycle/Zone	тор V	Top a,		. B	Top b ₁	Ъ2	Top C ₁		ຍ	Top d ₁	ტ გ 3	Top e1	e e ₃	T.D.	

Vol. IV Table 3-3-1 PREDICTED PERFORMANCE OF WEST LUTONG FIELD

PRODUCTION START : Jul. 1968 PRODUCTION END : Jun. 1992

CTION	WATER (MMSTB)	.02	σ	.17	44	9.	5.12	0.58	4.84	9.46	4.02	8.19	3.30	9.04	3.27	6.94	0.08	2.96	5.89	8.87	1.85	3.14	3.81	4.49	75.164	5.48
TIVE PRODUCTION	GAS (MMMSCF)		.17	. 58	1.76	о	7.13	4.19	5.57	9.58	7.55	7.28	8,55	9.35	6.61	0.76	8.27	5.34	1.97	8.2	4.22	7.52	9.83	1.97	283.969	4.92
CUMULATIVE	OIL (MMSTB)	.23	3.877	٥.	ω.	3,3	9.0	7.2	4.	9.5	5.2	8.0	6.4	01.7	6.4	10.7	4.5	18.2	1.8	25.3	28.8	30.0	0.5	0.0	131,323	131.512
	W.O.R. (STB/STB)	0.02	0.03	•	0.	7	ı.	9	9	.7	œ		9	0.	Q.	ω.	φ.	. 7	0.81	0.83	φ,	1.07	4.	1.60	1.70	1.70
	G.O.R. (SCF/STB)	10	90	80	45	1440	73	80	81	30	16	50	82	93	65	28	96	91	84	78	71	2716	12	90	5035	
GAS PROD.	RATE (MMSCF/D)	5.00	7.72	2.0	3.5	٥.	4.7	6.7	31.18	8.3	9.2	4.0	8.2	7.0	7.2	8.7	0.5	c.	8.1			۰.	ω,	œ	5.46	7
OIL PROD.	RATE (MSTB/D)	4.50	7.24	7	3	•	2.9	2	7.1	Ġ	Ŋ	'n	ņ	4	4	i.	0	0	•	•	•	•	•	•	1.08	•
	RECOVERY (%)		7	ī.	9	7.4	3.7	7.0	9.5	2.0	4.3	6.5	8.8	0.9	2.8	4.6	6.1	7.6	9.0	0.4	1.8	2.3	2.5	2.7	52.89	2.9
	TIME (YEAR)	96	196	97	97	97	97	97	97	97	97	97	97	98	98	98	98	98	98	98	86	œ	98	99	1991	σ

Vol. IV Table 3-3-2

PREDICTED PERFORMANCE OF A ZONE

3	1
11111	
Ů	١
LUTONG	
	۱
EST	١

1971 1982	NOTT
Mar. Dec.	PRODIT
•• ••	6
START: Mar. 1971 END: Dec. 1982	CHMIII.ATIVE PRODIICTION
PRODUCTION START: Mar. 1971 PRODUCTION END: Dec. 1982	CITM
]	
門	.=
ST LUTONG FIELD	חטמם אמט
ĕ	בֿ
Ĕ	0 .
i	ט
Ы	

	RESERVOIR		OIL PROD.	GAS PROD.			CUMULA	CUMULATIVE PRODUCTION	CTION
ERE (F)	PRESSURE (PSIG)	RECOVERY (%)	RATE (MSTB/D)	RATE (MMSCF/D)	G.O.R. (SCF/STB)	W.O.R. (STB/STB)	OIL (MMSTB)	GAS (MMMSCF)	WATER (MMSTB)
	1717	9.19	0.11	1.46	14367	0.320	2.140	18.690	0.445
	1647	9.97	1.00	15.3	15224	0.492	2.323	21.476	0.535
	1496	11.54	1.00	15.8	15797	0.359	2.688	27.242	999.0
	1309	13.10	1.00	19.2	19145	0.340	3.053	34.230	0.790
	1091	14.67	1.00	22.2	22203	0.397	3.418	42.334	0.935
	863	16.18	96.0	22.6	23504	0.430	3.769	50.584	1.086
	999	17.56	0.88	19.3	21839	0.406	4.092	57.638	1.217
	522	18.84	0.82	15.7	19211	0.322	4.390	63.363	1.313

Vol. IV Table 3-3-3 PFEDICTED PERFORMANCE OF B ZONE

WEST LUTONG FIELD

PRODUCTION START: Jul. 1968 PRODUCTION END: Mar. 1989

WATER (MMSTB)	20.913	22,393	24.393	25.869	28.171	31.146	33.485	35.674	37.625	39.575	41.583	43.608	45.677	46.191
CUMULATIVE PRODUCTION OIL GAS WAT MSTB) (MMMSCF) (MMS	80,869	83.947	88.762	93.457	98.040	102.489	106.782	110.968	114.942	118.780	122.403	125.883	129.172	129.988
CUMULAT OIL (MMSTB)	67.080	69.298	72.788	76.218	79.585	82.871	86.092	89.271	92.398	95.468	98.494	101.479	104.430	105.163
W.O.R. (STB/STB)	0.67	0.667	0.573	0.430	0.684	0.905	0.726	0.689	0.624	0.635	0.664	0.678	0.701	0.701
G.O.R. (SCF/STB)	1386	1388	1380	1369	1361	1354	1333	1317	1271	1250	1197	1166	1115	1113
GAS PROD. RATE (MMSCF/D)	18.02	16.87	13.19	12.86	12.56	12.19	11.76	11.47	10.89	10.52	66.6	9.53	9.01	8.94
OIL PROD. RATE (MSTB/D)	12.99	12.15	9.56	9.40	9.22	00.6	8.82	8.71	8.57	8.41	8.29	8.18	8.08	8.03
RECOVERY (%)	37.40	38.64	40.58	42.49	44.37	46.20	48.00	49.77	51.52	53.23	54.91	56.58	58.22	58.63
RESERVOIR PRESSURE (PSIG)	1476	1473	1378	1325	1267	1205	1145	1087	1036	985	932	879	824	811
TIME (YEAR)	Jun. 1976	Dec.1976	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	Mar.1989

Vol. IV Table 3-3-4 PREDICTED PERFORMANCE OF C ZONE

WEST LUTONG FIELD

PRODUCTION START: Jul. 1968 PRODUCTION END: Jun. 1992

CTION	(MMSTB)	5.401	6.533	8.964	11.534	14.198	16.813	18.577	19.957	21.147	22.072	22.999	23.916	24.860	25.644	26.313	26.987	27.660	27.981
CUMULATIVE PRODUCTION	(MMMSCF)	20.689	24.163	31,553	39.594	48.177	56.286	62.195	66.434	69.965	73.198	76.211	79.035	81.687	84.174	86.486	88.624	90.618	91.570
CUMULAT	(MMSTB)	7.030	7.942	9.767	11.593	13.418	15.075	16.249	17.078	17.762	18.383	18.962	19.505	20.018	20.501	20.952	21.374	21.770	21.959
; ;	(STB/STB)	1.16	1.24	1.332	1.407	1.460	1.578	1.503	1.665	1.740	1.490	1.601	1.689	1.840	1.623	1.483	1.597	1.699	1.698
, ((SCF/STB)	3716	3809	4049	4404	4703	4894	5033	5113	5162	5206	5204	5201	5170	5149	5126	5066	5035	5037
GAS PROD.	(MMSCF/D)	4.73	19.04	20.25	22.03	23.52	22.22	16.19	11.61	6.67	8.86	8.25	7.74	7.27	6.81	6.33	5.86	5.46	5.22
OIL PROD.	RATE (MSTB/D)	1.30	5.00	2.00	2.00	5.00	4.54	3.22	2.27	1.87	1.70	1.59	1.49	1.41	1.32	1.24	1.16	1.08	1.04
1	RECOVERY (8)	15.40	17.40	21.40	25.40	29.40	33.03	35.60	37.42	38.92	40.28	41.55	42.74	43.86	44.92	45.91	46.83	47.70	48.12
RESERVOIR	PRESSURE (PSIG)	2614	2533	2360	2176	1986	1799	1673	1574	1490	1423	1357	1292	1224	1168	1120	1072	1024	1001
	TIME (YEAR)	Jun.1976	Dec.1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	Jun.1992

Vol. IV TABLE 3-3-5
PREDICTED PERFORMANCE OF WEST LUTONG FIELD
- ADDITIONAL WELL CASE -

ON	WATER (MMSTB)	0.295	1.186	2.183	3.231	3.855	4.259	4.637	4.954	5.225	5.291
DUCTI	,0										
CUMULATIVE PRODUCTION	GAS (MMMSCF)	1.891	4.401	7.459	10.764	12.741	14.062	15.201	16.194	17.043	17.237
CUMULA	OIL (MMSTB)	0.730	1.460	2.190	2.881	3.272	3.528	3.748	3.942	4.111	4.149
	W.O.R. (STB/STB)	0.404	1.221	1.366	1.517	1.596	1.578	2.718	1.634	1.604	1.737
	G.O.R. (SCF/STB)	2563	3466	4189	4783	5056	5160	5177	5119	5024	5105
GAS PROD.	RATE (MMSCF/D)	5.13	6.93	8.38	9.05	5.42	3.62	3.12	2.72	2.33	2.13
OTT, PROD.	RATE (MSTB/D)	2.00	2.00	2.00	1.89	1.07	0.70	09.0	0.53	0.46	0.42
	RECOVERY (8)	8.42	16.84	25.26	33.23	37.74	40.69	43.23	45.46	47.40	47.85
RESERVOTR	PRESSURE (PSIG)	2889	2554	2180	1786	1551	1399	1257	1138	1036	1011
	TIME (YEAR)	1.00	2.00	3.00	4.00	5.00	00.9	7.00	8.00	9.00	9.25

Table 4-2-1 CORRELATION TABLE Vol. IV BARAM FIELD A-AREA

No.		Cycle/Zone Log Subsea	a ₀ 5034 4996 a ₁ 5288 5250	Top b 5542 5504	c ₁ 6076 6038 c ₂ 6400 6362	d_1 7123 7085 d_2 7300 7262	- - - - - - - - - - - - - - - - - - -	£1 £2	ფ. ფ. ფ.	7617 7579	
2	9	Log	5258 5491	5744	6236	7263	7721	8295 8497	1	9879	
	65	Subsea	5193 5426	5679	6171 6513	7198 7374	7656	8230 8432	ı	9814	
3	39	Log	5218 5477	5693	6232 6410	7000	7518 7621			9619	
	9	Subsea	5179 5438	5654	6193 6371	6961 7149	7479 7582			8580	
2	11	Log	5615 5852	6112	6644 6994	7699 7860	8207 8476	8744 8938	9358 9602 -	9626	
	4	Subsea	5501 5738	5998	6530 6880	7585 7746	8093 8362	8630 8824	9244 9488 -	9512	
9	10	Log	5385 5539	5808	6318 6673	7394 7566	-			8840	
	02	Subsea	5283 5437	5706	6216 6571	7292 7464				8738	
8	11	Log	5372 5554	5780	6354 6707	7359	7900 8057	8326 8534	8975 9253 9447	9772	
	0	Subsea	5262 5444	5670	6244 6597	7249 7425	7790	8216 8424	8865 9143 9337	9662	

Table 4-2-1 (Continued) CORRELATION TABLE Vol. IV BARAM FIELD A-AREA

4	NI	Subsea	5067 5330	5565	6115 6361	6990 7171	7530 7828	8105 8307	8747 9014 9147	9526	
1		Log	5248 5515	5754	6312 6562	7204 7390	7756 8060	8342 8547	8993 9264 9398	9782	
13	2	Subsea	5217 5465	5628	5996 6350	7095 7285	7549 7832	8118 8322	8776 9035 9238	9388	
]	7	Log	5596 5863	6040	6438 6826	7646 7860	8160 8480	8805 9038	9556 9850 10080	10250	
12	7.2	Subsea	5086 5362	5604	6097 6296	7049 7236	7617 7939	8085 8304	8767 9054 9251	9405	
1	7	Log	5440 5749	6015	6651 6769	7602 7813	8248 8614	8779 9024	9532 9842 10055	10220	ì
11	71	Subsea	5031 5275	5517	6045 6386	7090 ?267	7312	7481 7612	1877	8151	
1	7	Log	5393 5651	5905	6456 6809	7541 7726	-7774	7953 8092	8371	0998	
10	1	Subsea	5176 5439	5663	6100 6459	7198 7330	7562 7869	8143 8347	8793 9004 9211	9354	
		Log	2800 6098	1389	6844 7256	8096 8251	8526 8877	9183 9407	9884 10107 10323	10473	
6	71	Subsea	5115 5369	5599	6055 6398	7102 7252	7414 7448	7629 7746	7918 8085 -	8512	
	7	Log	5188 5442	5672	6128 6472	7176 7349	7488 7522	7703 7820	7992 8159 -	9858	
Well No.	П.	Cycle/Zone	Top a ₀ a ₁ a ₂	Top b	Top c ₁	Top d ₁	Top e ₁ e ₂	Top f ₁ f ₂	Top g ₁ g ₂ g ₃	T.D.	
Wel	D.F.E	Cyc				-	<u>.</u>				

Table 4-2-1 (Continued) Vol. IV

CORRELATION TABLE BARAM FIELD A-AREA

20	72	g Subsea	65 5216 99 5477	74 5696	367 6176 800 6539	22 7053 60 7246	45 7627 32 7852	73 8124 28 8327	10 8778 04 9079 71 9289	08 9565	
		Fod 1	616	677	73(84;	91,	97	1061 1100 1127	116	
6	7.2	Subsea	5237 5292	l r	5975 6320	7036 7213	7569 7866	8139 8321	8702 8982 9183	9582	
1	,	Log	5584 5653	96	6359 6722	7485 7674	8057 8374	8588 5998	9261 9557 9770	10205	
18	1	sq	3768 5220 5463	74	6301 6664	7222 7387	7747 8033	8306 8496	8871 9110 9298	9930	
1	11	og	3879 5331 5575	85	6413 6777	7335 7500	7860 8146	8420 8610	8985 9224 9412	10044	
17	2	Subsea	5186	5629	6020 6383	7167	7564 7884	8177 8392	8831 9121 9324	9465	
<i></i>	7	Log	5630	12	6562 6969	7860 8087	8321 8701	9053	9830 10165 10400	10560	
9	72	Subsea	5142	67	6019 6597	7177 7371	7608 7931	8219 8436	8877 9167 9369	9510	
1	7	Log	5869	47	6885 7332	8258 8495	8787 9179	9520 9770	10263 10579 10798	10950	
5	72	Subsea	5130	5629	6156 6514	7097 7239	7612 7914	8207 8339	8802 9083 9285	9412	
	7	Log	5843	6417	7024 7439	8133 8300	8734 9092	9444	10143 10470 10703	10850	
Well No.	D.F.E.	Cycle/Zone	Top an a ₁	Top b	Top c ₁	Top d ₁	Top e ₁	Top f ₁ f ₂	Top g ₁ g ₂	T.D.	

Table 4-2-1 (Continued)

CORRELATION TABLE BARAM FIELD A-AREA

8	2	Subsea	5353 5613	5917	6503 6858	7327 7506	7865 8175	8334 8516	8934 9189 9456	9515	
2		Log	6433 6758	7136	7828 8230	8756 8955	9357 9701	9875 10074	10528 10805 10995	11159	•
7	2	Subsea	5189 5437	5720	6202 6562	7279 7443	7720 7939	8202 8386	8802 9066 9255	9431	
2	7	Log	5261 5510	5793	6275 6635	7352 7516	7794 8013	8276 8460	8876 9140 9329	9505	
9	2	Subsea	5300 5566	5613	5870 6188	6795 6939	7201 7420	l		7567	
2	7	Log	7034	7436	7757 8147	8982 9192	9576 9876	1		10080	
5	72	Subsea	5235 5491	5730	6303 6682	7220	7754 8022	8316 8433	8831 9083 9267	0096	
2	7	Log	5401 5680	5943	6578 6996	7592 7780	8190 8498	8836 8970	9418 9695 9893	10250	
2	71	Subsea	4887 5104	5301	5827 6158	6820 6871	7262 7494	ı		7502	
2	7	Log	5773 5995	6194	6722 7054	7716	8158 8390	ı		8338	
21	71	Subsea	4910 5151	5375	5805 6132	6785 6930	7209 7429	7622 7748	8017	8179	
2	7	Log	5499 5756	5990	6428 6757	7411 7557	7836 8056	8249 8375	8644	9088	
Well No.	D.F.E.	Cycle/Zone	Top a ₀ a ₁ a ₂	Top b	Top c ₁	Top d ₁	Top e ₁	Top f ₁	Top 91 92 93	T.D.	

Table 4-2-1 (Continued) CORRELATION TABLE Vol. IV

A-AREA

A-AREA

						_					
31 SDTR	72	Subsea	3773							4069	
31		Log	3997							4300	
31	72	Subsea	3811							4382	
		Log	4226							4964	
30	72	Subsea	5319 5573	5851	6074 6431	7138 7302	7648 7932	8211 8401	8820 9087 9272	9460	
		Log	5820 6103	6404	6641 7006	7718 7882	8228 8512	8791 8979	9400 9667 9852	10040	
Well No.	D.F.E.	Cycle/Zone	TOP a ₀ a ₁ a ₂	Top b	Top c1	$\begin{array}{c} {\rm Top} \ \ {\rm d}_1 \\ {\rm d}_2 \end{array}$	Top e ₁ e ₂	Top f ₁ f ₂	TOP 91 92 93	T.D.	

Table 4-2-2 CORRELATION TABLE Vol. IV BARAM FIELD B-AREA

•

.5	.2	Subsea	5032	4198 4893							7501	
3	7	Log	5677	4777 5524							8150	
34	72	Subsea	5478	5270 5762	5964 6025 6195	6568 6796 6990 7235	7649 7898	8225 8435 8581	8799	9076 9418	9578	
		Год	6393	6213 6869	7130 7208 7427	7905 8197 8440 8740	9245 9553	9956 10202 10366	10606	10900 11257	11424	
33	/2	Subsea	5407	5202 5677	5756 5979 6145	6494 6717 6919 7171	7591 7848	8180 8388 8542	8759	9040 9366	9487	
	<i>L</i>	Log	5892	5650 6216	6312 6555 6740	7128 7376 7595 7870	8323 8598	8955 9178 9343	9576	9878 10230	10360	
12	72	Subsea	5199	5009 5457	5740 6018 6172	6532	i				8408	
[6]	<i>L</i>	Log	5271	5081 5529	5812 6090 6244	6604					8480	
4	0	Subsea	5770	5581 6017	6282 6548 6699	6987 7110 7294 7517	7867 8100	8426 8635 8791	8606	9341	9628	
2	11	Log	5881	5692 6128	6393 6659 6810	7098 7221 7405 7628	7978 8211	8537 8746 8902	9149	9452	9739	
7	.11	Subsea	5576	5364 5820	6090 6353 6508	6829 7050 7222 7442	7833 8077	8400 8609 8766	9106	9341 9637	9924	
	1	Log	5686	5474 5930	6200 6463 6618	6939 7160 7332 7552	7943 8187	8510 8719 8876	9125	9451 9747	10034	
Well No.	D.F.E.	Cycle/Zone	Top V	Top a ₀ a ₁ a ₂	Top b ₁ b ₂ b ₃	Top c ₁ c ₂ c ₃ c ₄	Top d ₁	Top e ₁ e ₂ e ₃	Top f	Top 91 92	T.D.	

Table 4-2-2 (Continued) C

)

CORRELATION TABLE BARAM FIELD B-AREA

Well No.	3	9	3	1.1	38	8	3	9	4	40	4	41
Э	<i>L</i>	. 2	7	72	7	2	7	2	7	2	7	2
Cycle/Zone	for	Subsea	Log	Subsea	Log	Subsea	Log	g Subsea	Log	Subsea	Log	Subsea
Top V	5278	5169	7288	5687	ŀ		6550	5707	6852	5640	0199	5708
Top a ₀ a ₁ a ₂	5090	4990 5429	7007 7486	5491 5826	6032 6226	5537 5708	6340 6821	5527 5943	6591 7187	5458 5886	6369 6924	5533 5940
Top b ₁ b ₂ b ₃	5877 6177 6351	5715 5984 6138	7617 7996 8202	5918 6195 6349	6525 6828 6998	5970 6232 6381	7118 7421 7591	6201 6459 6605	7557 - 7825	6164 - 6369	7270 7606 7786	6198 6456 6599
Top c ₁ C ₂ C ₃ C ₄	6759 7053 7293 7605	6475 6713 6903 7145	8650 8966 9232 9630	6698 6923 7102 7343	7381 7623 7843 8098	6714 6927 7128 7362	7967 8029 8202 8477	6925 6978 7124 7356	8216 8524 8781 9114	6668 6901 7092 7341	8020 8170 8416 8700	6787 6909 7105 7330
${\rm Top}\ d_1\\ d_2$	8120 8423	7558 7813	10342	7765 8019	8373 8690	7602 7861	8952 9252	7752 7998	9717 10112	7774	9231 9580	7732
Top e ₁ e ₂ e ₃	8818	8134	ŧ	1	9141 9440 9705	8214 8441 8632	9692 9972 10184	8351 8575 8744	10667 10994 11258	8383 8593 8771	10059 10348 10561	8335 8557 8724
Top f					10141	8920	10509	9003	11617	9020	10902	8995
Top g ₁ g ₂					ı	ı	ı	ı	ı	ı	ı	1
T.D.	0068	8200	11953	8729	10350	9055	10720	9173	11705	1806	11050	9115

Vol. IV Table 4-3-1 PREDICTED PERFORMANCE OF BARAM A FIELD

PRODUCTION START: Apr. 1969 PRODUCTION END: Mar. 1991

TION	WATER (MMSTB)	0.056	0.234	1.895	4.668	8.448	11.943	14.26	16.71	18.588	20.197	21.502	22.696	23.305	23.842	24,241	24.449
CUMULATIVE PRODUCTION	GAS (MMMSCF)	0.63	3.95	23.46	59.81	106.94	155.76	192.91	232.48	264.29	290.30	310.72	325.38	335.13	342.21	347.30	351.22
CUMULA	OIL (MMSTB)	0.43	2.32	11.64	24.7	37.7	48.15	55.2	62.29	67.96	72.49	76.07	78.77	99.08	82.13	83.07	83.75
	W.O.R. (STB/STB)	0.13	60.0	0.18	0.21	0.29	0.33	0.33	0.35	0.33	0.36	0.36	0.44	0.32	0.37	0.42	0.31
	G.O.R. (SCF/STB)	1465	1755	2093	2784	3625	4672	5268	5425	5594	5742	5704	5426	4998	5015	5527	5790
GAS PROD.	RATE (MMSCF/D)	2.3	60.6	53.44	9.66	129.13	133.76	101.77	105,35	86.87	71.26	55.96	40.15	25.89	20.21	14.26	10.77
OIL PROD.	RATE (MSTB/D)	1.57	5.18	25.53	35.78	35.62	28.63	19.32	19.42	15.53	12.41	9.81	7.4	5.18	4.03	2.58	1.86
	RECOVERY (%)	0.14	0.75	3.77	8.01	12.22	15.61	17.89	20.19	22.03	23.50	24.66	25.53	26.15	26.62	26.93	27.15
	TIME (YEAR)	Dec.1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984

Vol. IV Table 4-3-1 (Continued)
PREDICTED PERFORMANCE OF BARAM A FIELD

PRODUCTION START : Apr. 1969 PRODUCTION END : Mar. 1991

		OIL PROD.	GAS PROD.			CUMULA	CUMULATIVE PRODUCTION	CTION
TIME (YEAR)	RECOVERY (%)	RATE (MSTB/D)	RATE (MMSCF/D)	G.O.R. (SCF/STB)	W.O.R. (STB/STB)	OIL (MMSTB)	GAS (MMMSCF)	WATER (MMSTB)
1985	27.30	1.32	8.47	6417	0.12	84.23	354.32	24.507
1986	27.43	1.09	7.02	6440	0.12	84.63	356.88	24.553
1987	27.54	0.94	5.98	6362	0.1	84.97	359.06	24.587
1988	27.64	0.81	5.18	6395	0.1	85.26	360.95	24.616
1989	27.72	0.8	4.49	6414	0.1	85.52	362.59	24.642
1990	27.79	0.61	3.89	6377	0.1	85.74	364.01	24.664
Mar.1991	27.81	0.56	3.54	6321	0.1	85.79	364.33	24.669

Vol. IV Table 4-3-2 PREDICTED PERFORMANCE OF BLOCK I,

PRODUCTION START: Apr. 1971 PRODUCTION END: Mar. 1991

TION	WATER (MMSTB)	0.822	0.952	1.220	1.452	1.615	1.755	1.870	1.961	2.040	2.109	2.167	2.213	2.247	2.276	2.302	2.324	2.329
CUMULATIVE PRODUCTION	GAS (MMMSCF)	45.494	53.476	69.071	81.751	92.082	100.447	107.253	112.796	117.335	121.065	124.156	126.716	128.900	130.792	132.430	133.849	134.172
CUMULAT	OIL (MMSTB)	16.501	18.178	21.183	23.410	25.124	26.475	27.553	28.423	29.132	29.713	30.194	30.593	30.935	31.231	31.488	31.710	31.761
1	W.O.R. (STB/STB)	0.07	0.08	60.0	0.10	0.10	0.10	0.11	0.10	0.11	0.12	0.12	0.12	0.10	0.10	0.10	0.10	0.10
1	G.O.R. (SCF/STB)	4609	4759	5191	5695	6022	6194	6321	6381	6410	6427	6416	6435	6365	6388	6411	6373	6321
GAS PROD.	RATE (MMSCF/D)	41.16	43.74	42.73	34.74	28.30	22.92	18.65	15.19	12.44	10.22	8.47	7.01	5.98	5.18	4.49	3.89	3.54
OIL PROD.	RATE (MSTB/D)	9.19	9.19	8.23	6.10	4.70	3.70	2.95	2.38	1.94	1.59	1.32	1.09	0.94	0.81	0.70	0.61	0.56
	RECOVERY (8)	15.0	16.53	19.26	21.28	22.84	24.07	25.05	25.84	26.48	27.01	27.45	27.81	28.12	28.39	28.63	28.83	28.87
RESERVOIR	PRESSURE (PSIG)	2396	2293	2079	1895	1765	1654	1562	1490	1427	1372	1326	1289	1262	1239	1219	1201	1197
	TIME (YEAR)	Jun. 1976	Dec.1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1939	1990	Mar.1991

Vol. IV Table 4-3-3
PREDICTED PERFORMANCE OF BLOCK II,
BARAM A FIELD

PRODUCTION START: Apr. 1971 PRODUCTION END: Jun. 1979

CTION	WATER (MMSTB)	0.675	0.695	0.733	0.763	0.779
CUMULATIVE PRODUCTION	GAS (MMMSCF)	11.670	12.026	12.695	13.301	13.580
CUMULA	OIL (MMSTB)	2.495	2.536	2.617	2.698	2.738
	W.O.R. (STB/STB)	0.50	0.50	0.47	0.37	0.40
	GO.R. (SCF/STB)	8865	8867	8331	7547	6949
GAS PROD.	RATE (MMSCF/D)	1.96	1.95	1.83	1.66	1.53
OIL PROD.	RATE (MSTB/D)	0.22	0.22	0.22	0.22	0.22
	RECOVERY (8)	29.01	29.48	30.43	31.37	31.84
RESERVOIR	PRESSURE (PSIG)	866	796	663	260	504
	TIME (YEAR)	Jun.1976	Dec.1976	1977	1978	Jun. 1979

Vol. IV Table 4-3-4
PREDICTED PERFORMANCE OF BLOCK IV.

PRODUCTION START : Jul. 1970 PRODUCTION END : Jun. 1979

CTION	WATER (MMSTB)	0.245	0.254	0.273	0.288	0.297
TIVE PRODU	OIL GAS WATER (MMSTB) (MMSTB)	18.160	18.869	20.299	21.722	22.424
CUMULA	OIL (MMSTB)	4.687	4.772	4.943	5.114	5.199
	W.O.R. (STB/STB)	60.0	0.10	0.11	60.0	0.10
	G.O.R. (SCI'/STB)	8249	8266	8336	8295	8184
GAS PROD.		4.09	3.88	3.92	3.90	3.85
OIL PROD.	RATE (MSTB/D)	0.50	0.47	0.47	0.47	0.47
	RECOVERY (%)	26.04	26.51	27.46	28.41	28.88
RESERVOIR	PRESSURE (PSIG)	1202	1134	166	869	806
	TIME (YEAR)	Jun. 1976	Dec.1976	1977	1978	Jun. 1979

Vol. IV Table 4-3-5
PREDICTED PERFORMANCE OF BLOCK V,
BARAM A FIELD

1970	1980
	Sep.
••	••
START	END
PRODUCTION	PRODUCTION

WATER (MMSTB)	4.902	5.400	990.9	6.618	7.009	7.490
GAS (MMMSCF)	75.950	82.554	91.908	99.035	104.476	19.784 107.620
OIL (MMSTB)	16.082	16.839	17.906	18.736	19.392	19.784
W.O.R. (STB/STB)	0.59	99.0	0.62	0.67	09.0	1.23
G.O.R. (SCF/STB)	8649	8720	8777	8602	8282	8031
RATE (MMSCF/D)	38.16	36.19	25.63	19.53	14.91	11.48
RATE (MSTB/D)	4.42	4.15	2.92	2.27	1.80	1.43
RECOVERY (%)	25.13	26.31	27.98	29.28	30.30	30.91
PRESSURE (PSIG)	1524	1371	1166	966	888	814
TIME (YEAR)	Jun.1976	Dec.1976	1977	1978	1979	Sep.1980
	PRESSURE RECOVERY RATE G.O.R. W.O.R. OIL GAS (PSIG) (%) (MSTB/D) (MMSCF/D) (SCF/STB) (STB/STB) (MMSTB) (MMMSCF) (PRESSURE (PSIG) RECOVERY (%) RATE (MSTB/D) RATE (MMSCF/D) G.O.R. (SCF/STB) W.O.R. (MMSTB) GIL GAS (MMMSCF) 1524 25.13 4.42 38.16 8649 0.59 16.082 75.950	PRESSURE (PSIG) RATE (%) RATE (MMSCF/D) G.O.R. (SCF/STB) W.O.R. (STB/STB) OIL GAS (MMSCF) GAS (MMSCF) (MMSCF) (MMSCF) (MMMSCF) (MMMSCF) </td <td>PRESSURE (PSIG) RECOVERY (%) RATE (MSTB/D) RATE (MMSCF/D) G.O.R. (SCF/STB) W.O.R. (MMSTB) OIL GAS (MMMSCF) GAS (MMSCF) (MMMSCF) (MMMSCF)</td> <td>PRESSURE (PSIG) RATE (PSIG)</td> <td>PRESSURE (PSIG) RECOVERY (A) RATE (B) RATE (B)<!--</td--></td>	PRESSURE (PSIG) RECOVERY (%) RATE (MSTB/D) RATE (MMSCF/D) G.O.R. (SCF/STB) W.O.R. (MMSTB) OIL GAS (MMMSCF) GAS (MMSCF) (MMMSCF) (MMMSCF)	PRESSURE (PSIG) RATE (PSIG)	PRESSURE (PSIG) RECOVERY (A) RATE (B) RATE (B) </td

Vol. IV Table 4-3-6 PREDICTED PERFORMANCE OF BLOCK VI,

PRODUCTION START: Apr. 1969 PRODUCTION END: Mar. 1983

CTION	WATER (MMSTB)	3.003	3.143	3.286	3.418	3.546	3.637	3.718	3.801	3.821
CUMULATIVE PRODUCTION	GAS (MMMSCF)	41.563	43.234	45.142	46.788	48.227	49.470	50.619	51.611	51.854
CUMULAT	OIL (MMSTB)	10.111	10.452	10.855	11.220	11.555	11.865	12.163	12.449	12.519
	W.O.R. (STB/STB)	0.40	0.41	0.36	0.36	0.38	0.29	0.27	0.29	0.28
	G.O.R. (SCF/STB)	7967	4898	4752	4510	4285	4006	3839	3484	3458
GAS PROD.	RATE (MMSCF/D)	12.10	9.16	5.23	4.51	3.94	3.41	3.15	2.72	2.66
OIL PROD.	RATE (MSTB/D)	2.42	1.87	1.10	1.00	0.92	0.85	0.82	0.78	0.77
-	RECOVERY (%)	21.79	22.52	23.39	24.18	24.90	25.57	26.21	26.82	26.98
RESERVOIR	PRESSURE (PSIG)	1126	1021	915	816	720	652	592	529	514
	TIME (YEAR)	Jun. 1976	Dec.1976	1977	1978	1979	1980	1981	1982	Mar.1983

Vol. IV Table 4-3-7 PREDICTED PERFORMANCE OF BLOCK VII,

PRODUCTION START : Jan. 1971 PRODUCTION END : Sep. 1980

CTION	WATER (MMSTB)	1.897	1.918	1.958	1.998	2.034	2.056
LIVE PRODU	OIL GAS WAT IMSTB) (MMMSCF) (MMS	8.059	8.103	8.443	8.687	8.925	9.102
COMULA	OIL (MMSTB)	3.875	3.919	3.997	4.073	4.147	4.201
	W.O.R. (STB/STB)	0.49	0.48	0.52	0.52	0.49	0.40
	G.O.R. (SCF/STB)	3120	3042	3238	3190	3260	3233
GAS PROD.	RATE (MMSCF/D)	0.75	0.73	0.68	0.67	0.65	0.65
OIL PROD.	RATE (MSTB/D)	0.24	0.24	0.21	0.21	0.20	0.20
	RECOVERY (8)	20.00	20.23	20.63	21.02	21.41	21.68
RESERVOIR	PRESSURE (PSIG)	1429	1407	1365	1323	1287	1267
	TIME (YEAR)	Jun.1976	Dec.1976	1977	1978	1979	Sep.1980

Vol. IV Table 4-3-8
PREDICTED PERFORMANCE OF BLOCK VIII,
BARAM A FIELD

PRODUCTION START: Jun. 1971 PRODUCTION END: Jun. 1982

CLION	WATER (MMSTB)	3.451	3.662	4.033	4.296	4.550	4.740	4.911	4.993
CUMULATIVE PRODUCTION	GAS (MMMSCF)	11.921	13.046	14.894	16.482	17.858	19.056	20.101	20.576
CUMULA	OIL (MMSTB)	4.382	4.681	5,163	5.573	5.933	6.252	6.540	6.673
	W.O.R. (STB/STB)	0.75	0.70	0.77	0.64	0.70	09.0	0.59	0.62
	G.O.R. (SCF/STB)	3730	3759	3836	3885	3808	3773	3624	3565
GAS PROD.	RATE (MMSCF/D)	6.28	6.16	5.06	4.35	3.77	3.28	2.86	2.60
OIL PROD.	RATE (MSTB/D)	1.71	1.64	1.32	1.12	66.0	0.87	0.79	0.73
	RECOVERY (8)	15.00	16.03	17.68	19.08	20.31	21.41	22.39	22.85
RESERVOIR	PRESSURE (PSIG)	1601	1491	1298	1160	1028	929	840	797
	TIME (YEAR)	Jun.1976	Dec.1976	1977	1978	1979	1980	1981	Jun.1982

Vol. IV Table 4-3-9
PREDICTED PERFORMANCE OF UPPER BLOCK,
BARAM A FIELD

PRODUCTION START : Jul. 1973 PRODUCTION END : Sep. 1984

WATER (MMSTB)	0.523	989.0	1.019	1.364	1.672	1.934	2.147	2.324	2.488	2.603
CUMULATIVE PRODUCTION OIL GAS WAT MSTB) (MMMSCF) (MMS	0.868	1.176	1.833	2.529	3.152	3.683	4.132	4.499	4.804	5.003
CUMULA OIL (MMSTB)	0.728	0.916	1.293	1.664	1.985	2.254	2.481	2.665	2.819	2.918
W.O.R. (STB/STB)	0.83	0.87	0.89	0.93	96.0	0.97	0.94	0.97	1.07	1.17
G.O.R. (SCF/STB)	1601	1639	1748	1869	1943	1966	1984	2011	1990	2019
GAS PROD. RATE (MMSCF/D)	1.64	1.69	1.80	1.91	1.71	1.45	1.23	10.1	0.84	0.73
OIL PROD. RATE (MSTB/D)	1.03	1.03	1.03	1.02	0.88	0.74	0.62	0.50	0.42	0.36
RECOVERY (%)	5.64	7.10	10.01	12.89	15.37	17.46	19.21	20.64	21.88	22.60
RESERVOIR PRESSURE (PSIG)	1543	1462	1297	1125	973	843	737	649	567	511
TIME (YEAR)	Jun.1976	Dec.1976	1977	1978	1979	1980	1981	1982	1983	Sep.1984

Vol. IV Table 4-3-10 PREDICTED PERFORMANCE OF BARAM B FIELD

PRODUCTION START : Sep.1972 PRODUCTION END : Jun.1982

CTION	WATER (MMSTB)	0.173	0.877	2.866	6.054	8.291	11.971	14.597	16.035	16.799	17.407	17.716
CUMULATIVE PRODUCTION	GAS (MMMSCF)	0.92	7.32	26.94	46.6	61.802	80.491	990.76	109.967	118.490	125.470	128.552
CUMULA	OIL (MMSTB)	0.502	4.39	11.43	16.829	20.270	23.961	26.831	28.884	30.122	31.147	31.605
	W.O.R. (STB/STB)	0.34	0.34	0.28	0.59	0.59	1.02	0.94	0.77	0.62	0.59	0.67
	G.O.R. (SCF/STB)	1835	1646	2788	3642	4348	5142	5831	6442	6888	6822	6729
GAS PROD.	RATE (MMSCF/D)	10.09	17.53	53.76	53.87	44.98	50.96	44.61	33.03	23.35	19.12	16.89
OTT, PROD.	RATE (MSTB/D)		10.65	19.29	14.79	10.35	9.91	7.65	5.13	3,39	2.8	2.51
	RECOVERY (%)	0.62	5.39	14.04	20.67	25.31	29.75	33.18	35.48	37.00	38.26	38.82
	TIME (YEAR)	Dec.1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	Jun. 1982

Vol. IV Table 4-3-11
PREDICTED PERFORMANCE OF MODEL-1,

PRODUCTION START: Aug. 1973 PRODUCTION END: Sep. 1979

CTION	WATER (MMSTB)	3.784	4.302	6.627	8.321	9.247
CUMULATIVE PRODUCTION	GAS (MMMSCF)	16.627	18.954	24.048	28.084	30.556
CUMULA	OIL (MMSTB)	6.651	7.315	8.592	9.488	9.992
	W.O.R. (STB/STB)	1.11	0.78	1.82	1.89	1.84
	G.O.R. (SCF/STB)	3437	3503	3988	4495	4908
GAS PROD.	RATE (MMSCF/D)	12.39	12.75	13.96	11.06	9.03
OIL PROD.	RATE (MSTB/D)	3.64	3.64	3.50	2.46	1.84
	RECOVERY (%)	26.36	28.99	34.05	37.60	39.60
RESERVOIR	PRESSURE (PSIG)	1989	1826	1449	1186	1020
	TIME (YEAR)	Jun.1976	Dec.1976	1977	1978	Sep.1979

Vol. IV Table 4-3-12 PREDICTED PERFORMANCE OF MODEL-2,

PRODUCTION START: Sep. 1972 PRODUCTION END: Jun. 1982

CTION	WATER (MMSTB)	3.085	3.567	4.792	5.881	6.788	7.552	8.160	8.469
CUMULATIVE PRODUCTION	GAS (MMMSCF)	36.696	42.848	56.443	68.982	79.411	87.934	94.914	96.16
CUMULA	OIL (MMSTB)	11.729	12.955	15.369	17.343	18.892	20.130	21.155	21.613
	W.O.R. (STB/STB)	0.34	0.39	0.51	0.55	0.59	0.62	0.59	0.68
	G.O.R. (SCF/STB)	4789	5016	5635	6350	6739	6888	6805	6728
GAS PROD.	RATE (MMSCF/D)	31.19	33.81	37.25	34.35	28.57	23.35	19.12	16.89
OIL PROD.	RATE (MSTB/D)	6.72	6.72	6.61	5.41	4.24	3.39	2.81	2.51
	RECOVERY (%)	20.88	23.06	27.36	30.87	33.63	35.83	37.66	38.47
RESERVOTR	PRESSURE (PSIG)	2406	2270	1939	1662	1431	1237	1082	1004
	TIME (YEAR)	Jun.1976	Dec.1976	1977	1978	1979	1980	1981	Jun. 1982

Table 5-2-1 CORRELATION TABLE Vol. IV BAKAU FIELD

					_				
	0	Subsea	1290 4215	0299	6979 7035	7236 7353 7675 8108	8349	9460	10129
3	110	бот	1400 4325	0829	7089	7346 7463 7785 8218	8459	9570	10239
Well No.	D.F.E.	Cycle/Zone	Top VI V	Тора	Top b ₁ b ₂	Τορ c ₁ c ₂ c ₃	Top d	Top e	T.D.

Well No.	4		5	
D.F.E.	112	.2	111	L.
Cycle/Zone	Log	Subsea	Log	Subsea
Top VI V	5001	4311	4397	4286
a	8520	1169	7590	7170
Top b ₁ b ₂	9018 9131	7265 7342	8170 8273	7686
Top c ₁ 'c ₂ 'c ₃ 'c ₄ '	9276 9467 9640 9840	7443 7581 7708 7858	8438 8650 8854 9096	7919 8096 8265 8471
Top d'	10702	8490	εττοτ	9322
T.D.	11300	8901	10993	10017

Vol. IV Table 5-3-1 PREDICTED PERFORMANCE OF BAKAU FIELD

PRODUCTION START: Feb. 1972 PRODUCTION END: Mar. 1982

CTION	WATER (MMSTB)	0.0	0.017	0.042	0.068	0.145	0.256	0.396	0.553	0.586	0.622	0.631
CUMULATIVE PRODUCTION	GAS (MMMSCF)	1.389	2.912	4.155	5.367	8.049	9.764	10.997	11.855	12.239	12.547	12.619
CUMULA	OIL (MMSTB)	0.794	1.483	1.939	2.755	4.089	5.012	5.712	6.234	6.574	6.865	6.934
	W.O.R. (STB/STB)	0.0	0.025	0.055	0.032	0.058	0.120	0.200	0.301	0.097	0.124	0.131
	G.O.R. (SCF/STB)	1749	2210	2726	1485	2010	1858	1761	1644	1129	1059	1044
GAS PROD.	RATE (MMSCF/D)	3.81	4.17	3.41	3.32	7.35	4.70	3.38	2.35	1.05	0.84	0.79
OIL PROD.	RATE (MSTB/D)	2.18	1.89	1.25	2.24	3.66	2.53	1.92	1.43	0.93	0.80	0.76
	RECOVERY (%)	3.56	6.65	8.69	12.35	18,33	22.47	25.61	27.95	29.48	30.78	31.09
	TIME (YEAR)	Dec.1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	Mar.1982

PREDICTED PERFORMANCE OF WELL BK-3, Vol. IV Table 5-3-2

BAKAU FIELD

PRODUCTION START: Feb. 1972 PRODUCTION END: Sep. 1979

CTION	WATER (MMSTB)	0.077	0.103	0.179	0.269	0.362
CUMULATIVE PRODUCTION	GAS (MMMSCF)	4.646	4.899	5.446	5.968	6.308
CUMULAT	OIL (MMSTB)	2.098	2.174	2.327	2.465	2.557
	W.O.R. (STB/STB)	0.30	0.34	0.50	0.65	1.36
	G.O.R. (SCF/STB)	3227	3301	3558	3764	4968
GAS PROD.	RATE (MMSCF/D)	1.34	1.39	1.50	1.43	1.24
OIL PROD.	RATE (MSTB/D)	0.42	0.42	0.42	0.38	0.25
	RECOVERY (%)	30.06	31.09	33.28	35.25	36.56
RESERVOIR	PRESSURE (PSIG)	1332	1236	1014	895	804
	TIME (YEAR)	Jun.1976	Dec.1976	1977	1978	Sep.1979

Sep.1979

Vol. IV Table 5-3-3 PREDICTED PERFORMANCE OF WELL BK-4,

BAKAU FIELD

PRODUCTION START: May 1975 PRODUCTION END: Mar.1982

CTION	WATER (MMSTB)	0.015	0.036	0.071	0.121	0.185	0.218	0.254	0.263
CUMULATIVE PRODUCTION	GAS (MMMSCF)	1.504	2.435	3.480	4.191	4.709	5.093	5.401	5.473
CUMULA	OIL (MMSTB)	1.158	1.781	2.530	3.092	3.522	3.862	4.153	4.222
	W.O.R. (STB/STB)	0.02	0.03	0.05	0.09	0.15	0.10	0.12	0.13
	G.O.R. (SCF/STB)	1421	1496	1395	1265	1203	1131	1055	1038
GAS PROD.	RATE (MMSCF/D)	5.18	5.10	2.86	1.95	1.42	1.05	0.84	0.79
OIL PROD.	RATE (MSTB/D)	3.75	3.41	2.05	1.54	1.18	0.93	08.0	0.76
	RECOVERY (8)	8.00	12.31	17.48	21.36	24.33	26.68	28.69	29.17
RESERVOIR	PRESSURE (PSIG)	2360	1906	1529	1237	1003	914	831	810
	TIME (YEAR)	Jun.1976	Dec.1976	1977	1978	1979	1980	1981	Mar.1982

Vol. IV Table5-3-4 PREDICTED PERFORMANCE OF WELL BK-5,

BAKAU FIELD

PRODUCTION START: Mar. 1976 PRODUCTION END: Mar. 1977

CTION	WATER (MMSTB)	0.004	900.0	900.0
FIVE PRODU	OIL GAS WAT! MMSTB) (MMMSCF) (MMST	0.345	0.715	0.838
CUMULA	OIL (MMSTB)	0.072	0.134	0.155
	W.O.R. (STB/STB)	90.0	0.03	0.03
	G.O.R. (SCF/STB)	6847	5963	5861
GAS PROD.	RATE (MMSCF/D)	3.36	2.03	1.35
OIL PROD.	RATE (MSTB/D)	0.52	0.34	0.23
	RECOVERY (8)	8.62	16.03	18.54
RESERVOIR	PRESSURE (PSIG)	1973	1286	086
	TIME (YEAR)	Jun.1976	Dec.1976	Mar.1977

Table 6-2-1 CORRELATION TABLE Vol. IV TUKAU FIELD

Well No.	D.F.E.	Cycle/Zone Log	Top Upper V 248 Lower V 545	Top a 215	Top b ₁ 278 291 b ₂ 308	Top c ₁ 344	Top d ₁ 409 d ₂ 420 d ₃ 444	Top e ₁ 571 e ₂ 626 e ₃ 663	Top f ₁ 7329 f ₂ 7620	.D.	
1	39	Subsea	80 2441 50 5411	51 2112	82 2743 10 2871 80 3041	48 3409 31 3592	96 4057 09 4170 49 4410 21 4582	11 5672 66 6227 34 6595 89 6850	9 7290 0 7581	16 9147	
	11	Log		2229	2735 2831 2973		3980 4055 4296 4465			7554	
2	0	Subsea		2119	2625 2721 2863		3870 3945 4186 4355		_	7443	
	11(Log	:	2237	2781 2910 3077		3747 3820 4061 4224			7093	
3	0	Subsea		2125	2669 2798 2965		3637 3710 3949 4114			6982	
1 (11	Log		2149	2735 2862 3033	3388 3557	4002 4117 4348 4511	5551 6078 6431 6658	7117 7413	8781	
4	.2	Subsea		2037	2623 2750 2921	3276 3445	3890 4005 4236 4399	5439 5966 6319 6546	7005 7301	8670	
	11	Log			2699 2819 2972		3841 3920 4151 4314			7000	
5	11	Subsea			2587 2707 2860		3729 3808 4039 4202			6889	
		Log			2827 2953 3107		3866 3950 4194 4365	I		5110	
9	1	Subsea			2716 2842 2996		3755 3839 4083 4254	1		4999	

CORRELATION TABLE TUKAU FIELD

Table 6-2-1 (Continued) Vol. IV

Subsea 4025 4268 4428 2723 2897 ı 2877 3085 4383 4653 4830 Log ı 64 Subsea 2699 2864 i 2763 2928 3447 Log ı Subsea 2730 2903 3449 4011 4248 6721 7563 4305 4560 3695 2901 3093 7037 7304 8267 Log Subsea 2675 2833 3883 4104 σ 4121 4357 2814 2986 3549 Log Subsea 2778 2960 4051 4284 4452 ı ω 2889 3071 3599 4162 4395 4563 Log Subsea 2840 3004 ı 2951 3115 Log Upper V Lower V Cycle/Zone Well No. р₁ р₂ р₃ $\overset{\circ}{\alpha}_{1}$ # 7 # 7 $\dot{\vec{Q}}_{3}$ D.F.E. ø Top Top T.D. Top Top Top Top Top

Table 6-2-1 (Continued) Vol. IV

CORRELATION TABLE TUKAU FIELD

5.	
426	
5239	
51	
77	
4071	
5235	
3250	
4268	
4301	
4465	
5008	
6757	
	f_2 8770 7517 .D. 6757 5008 4465 4301 4268 3250 5235 4071 8882 7617 5239 4

CORRELATION TABLE

Table 6-2-1 (Continued)

7

Vol.

Subsea 3858 3970 4190 3272 3427 2609 2734 4795 3899 4360 1 ŧ 28 4218 4348 4604 4796 5275 2751 2898 3093 3532 3712 ı Log ı Subsea 2626 2752 2924 3301 3469 3926 4042 4300 ı 27 3465 3641 4505 2753 2887 3068 41174237 Log 1 Subsea 2581 2699 2860 3212 3375 3518 ı ı 26 2956 3116 3330 3801 4024 4222 Log 1 Subsea 2995 2599 2722 2886 i ţ 25 3005 3205 3487 3687 ı Log 1 Subsea 2602 2726 2879 3874 3988 4224 4393 4686 3247 3423 ı 24 4355 4500 4803 5017 5382 3560 3784 2783 2927 3107 Log ı 1 Subsea 2619 2745 2915 3893 4010 4239 4415 3290 3448 4701 ı ı 23 2805 2944 3134 3553 3729 4226 4357 4614 4811 5124 Log ı ١ Top Upper V Lower V Cycle/Zone Well No. р₁ Ъ₂ ָ קַ קַ קַ ₽1 127 c_1 D.F.E. ಗ T.D. Top Top Top Top đoL Top

TUKAU FIELD

Well No.	2	29
D.F.E.	7	73
Cycle/Zone	Log	Subsea
Top Upper V Lower V		
Top a	•	1
Top b ₁ b ₂ b ₃	2715 2843 3016	2603 2724 2888
Top c_1 c_2	3394 3565	3245 3408
Top d ₁ d ₂ ú ₃ d ₄	4032 4147 4380 4554	3854 3964 4187 4354
Top e ₁ e ₂ e ₃ e ₄	5601 6147 6508 6738	5361 5885 6230 6451
TOP f_1 f_2	7229 7503	6923 7187
T.D.	7947	7615

Vol. IV Table 6-3-1 PREDICTED PERFORMANCE OF TUKAU FIELD

PRODUCTION START: Aug. 1975 PRODUCTION END: Dec. 1983

CTION	WATER (MMSTB)	0.009	0.184	0.382	0.539	0.670	0.774	0.807	0.811	0.814
CUMULATIVE PRODUCTION	GAS (MMMSCF)	0.728	8.119	19.089	31.669	42.730	50.638	55.408	58.539	60.417
COMULA	OIT (MMSTB)	0.667	5.573	10.01	14.056	17.007	19.071	19.882	20.184	20.395
	W.O.R. (STB/STB)	0.013	0.036	0.044	0.040	0.044	0.050	0.041	0.013	0.014
	G.O.R. (SCF/STB)	1001	1505	2430	3174	3745	3829	5887	10337	8871
GAS PROD.	RATE (MMSCF/D)	3.99	20.23	30.08	34.47	30.30	21.67	13.07	8.58	5.15
OIL PROD.	RATE (MSTB/D)	3.66	13.44	12.38	10.86	8.09	5.66	2.22	0.83	0.58
	RECOVERY (%)	0.45	3.73	6.74	9.39	11.37	12.75	13.29	13.49	13.62
	TIME (YEAR)	Dec.1975	1976	1977	1978	1979	1980	1981	1982	1983

Vol. IV Table 6-3-2

MODEL-1	
g	
PERFORMANCE	
PREDICTED	

PRODUCTION START: Aug. 1975 PRODUCTION END: Mar. 1981

	جايما				***	٠.	_	~
CTION	WATER (MMSTB)	0.043	0.107	0.226	0.304	0.372	0.430	0.443
CUMULATIVE PRODUCTION	GAS (MMMSCF)	0.338	0.610	1.140	1.644	2.099	2.495	2.586
CUMULA	OIL (MMSTB)	0.726	1.274	2.369	3.437	4.382	5.213	5.405
	W.O.R. (STB/STB)	0.08	0.117	860.0	0.073	0.072	0.070	0.068
	G.O.R. (SCF/STB)	524	496	484	472	481	477	474
GAS PROD.	RATE (MMSCF/D)	1.64	1.49	1.45	1.38	1.25	1.08	0.75
OIL PROD.	RATE (MSTB/D)	3.19	3.00	3.00	2.93	2.59	2.28	1.58
	RECOVERY (%)	3.60	6.32	11.75	17.05	21.74	25.86	26.81
RESERVOIR	PRESSURE (PSIG)	1116	1063	952	797	662	547	521
	TIME (YEAR)	Jun.1976	Dec.1976	1977	1978	1979	1980	Mar.1981

Vol. IV Table 6-3-3

PREDICTED PERFORMANCE OF MODEL-2

TUKAU FIELD

PRODUCTION START: Aug. 1975
PRODUCTION END: Jun. 1978

CTION	WATER (MMSTB)	0.362 0.006	0.563 0.010	0.018	0.021
TIVE PRODU	OIL GAS WATER (MMSTB) (MMSTB)	0.362	0.563	1.023	1.217
CUMULA	OIL (MMSTB)	0.430	0.613	0.964	1.102
	W.O.R (STB/STB)	0.02	0.02	0.02	0.02
	G.O.R. (SCF/STB)	1027	1098	1311	1406
GAS PROD.	RATE (MMSCF/D)	2.36	1.10	1.26	1.06
OIL PROD.	$\frac{X}{MSTB/D}$	2.50	1.00	96.0	0.76
	RECOVERY (%)	10.01	14.26	22.44	25.65
RESERVOIR	PRESSURE (PSIG)	1138	086	646	514
'	TIME (YEAR)	Jun.1976	Dec.1976	1977	Jun. 1978

Vol. IV Table 6-3-4

PREDICTED PERFORMANCE OF MODEL-3

PRODUCTION START: Oct. 1975 PRODUCTION END: Jun. 1980

MOIT	WATER (MMSTB)	0.002	0.002	0.004	0.007	0.009	0.010
CUMULATIVE PRODUCTION	GAS (MMMSCF)	0.945	2.248	5.429	9.202	12.457	13.775
CUMULA	OIL (MMSTB)	0.460	0.825	1.555	2.271	2.874	3.128
	W.O.R. (STB/STB)	00.0	00.0	0.03	0.04	0.03	0.04
	G.O.R. (SCF/STB)	3156	3570	4358	5270	5398	5189
GAS PROD.	RATE (MMSCF/D)	5.06	7.14	8.72	10.34	8.92	7.22
OIL PROD.	RATE (MSTB/D)	1.87	2.00	2.00	1.96	1.65	1.39
	RECOVERY (%)	3.42	6.13	11.56	16.89	21.37	23.26
RESERVOIR	PRESSURE (PSIG)	1666	1558	1298	096	665	542
:	TIME (YEAR)	Jun.1976	Dec.1976	1977	1978	1979	Jun.1980

Vol. IV Table 6-3-5 PREDICTED PERFORMANCE OF MODEL-4

PRODUCTION START : Oct. 1975	END : Mar. 1976
START	END
PRODUCTION	PRODUCTION
TUKAU FIELD	

CTION	WATER (MMSTB)	0.004	0.007	0.009
LIVE PRODU	OIL GAS WATER (MASTB)	0.164	0.298	0.366
CUMULA	OIL (MMSTB)	0.136	0.209	0.246
	W.O.R. (STB/STB)	0.04	0.04	0.05
	G.O.R. (SCF/STB)	1687	1836	1838
GAS PROD.	RATE (MMSCF/D)	0.82	0.73	0.75
OIL PROD.	RATE (MSTB/D)	0.53	0.40	0.40
	RECOVERY (8)	12.73	19.56	22.98
RESERVOIR	PRESSURE (PSIG)	1332	998	625
	TIME (YEAR)	Jun.1976	Dec.1976	Mar.1977

Vol. IV Table 6-3-6 PREDICTED PERFORMANCE OF MODEL-5

PRODUCTION START: Aug. 1975 PRODUCTION END: Dec. 1983

CTION	WATER (MMSTB)	0.004	900.0	0.014	0.022	0.031	0.038	0.043	0.047	0.051
CUMULATIVE PRODUCTION	GAS (MMMSCF)	0.779	1.609	5.714	11.136	16.612	21.422	25.467	28.799	31.385
CUMULA	OIL (MMSTB)	0.252	0.434	1.165	1.883	2.481	2.946	3.320	3.635	3.901
	W.O.R. (STB/STB)	0.01	0.011	0.011	0.011	0.017	0.015	0.013	0.013	0.015
	G.O.R. (SCF/STB)	4420	4560	5616	7552	10236	10344	10812	10578	9722
GAS PROD.	RATE (MMSCF/D)	2.91	9.10	11.25	14.85	15.00	13.18	11.08	9.13	7.08
OIL PROD.	RATE (MSTB/D)	0.65	2.00	2.00	1.97	1.47	1.27	1.02	0.86	0.73
	RECOVERY (%)	1.23	2.12	5.68	9.19	12.10	14.37	16.20	17.73	19.03
RESERVOIR	PRESSURE (PSIG)	3070	2990	2617	2187	1767	1412	1174	696	749
	TIME (YEAR)	Jun.1976	Dec.1976	1977	1978	1979	1980	1981	1982	1983

Vol. IV Table 6-3-7 PREDICTED PERFORMANCE OF MODEL-6

PRODUCTION START: Mar. 1976 PRODUCTION END: Mar. 1982

	RESERVOIR		OIL PROD.	GAS PROD.			CUMULA	CUMULATIVE PRODUCTION	CTION
TIME (YEAR)	PRESSURE (PSIG)	RECOVERY (%)	RATE (MSTB/D)	RATE (MMSCF/D)	G.O.R. (SCF/STB)	W.O.R. (STB/STB)	OIL (MMSTB)	GAS (MMMSCF)	WATER (MMSTB)
Jun. 1976	1179	1.09	0.24	0.19	1128	0.01	0.026	0.019	000-0
Dec.1976	1087	2.94	0.24	0.35	1488	00.0	0.069	0.083	00000
1977	1040	6.64	0.24	0.40	1690	0.01	0.156	0.230	0.001
1978	982	10.35	0.24	0.42	1761	0.00	0.244	0.385	0.001
1979	841	14.05	0.24	0.59	2494	00.0	0.331	0.602	0.001
1980	682	17.69	0.24	69.0	2930	00.0	0.417	0.854	0.001
1981	537	20.76	0.20	19.0	3264	0.01	0.489	1.089	0.002
Mar.1982	504	21.44	0.18	0.58	3345	00.0	0.505	1.142	0.002

Vol. IV Table 6-3-8
PREDICTED PERFORMANCE OF MODEL-7
TUKAU FIELD

PRODUCTION START: Jan. 1976 PRODUCTION END: Mar. 1979

CTION	(MMSTB)	0.005	0.013	0.032	0.048	0.051
CUMULATIVE PRODUCTION	(MMMSCF)	0.243	0.727	1.857	2.787	2.966
CUMULA	(MMSTB)	0.362	0.861	1.576	2.058	2,153
;	(STB/STB)	0.01	0.02	0.03	0.03	0.03
1	G.O.R. (SCF/STB)	752	970	1580	1929	1841
GAS PROD.	RATE (MMSCF/D)	2.08	2.65	3.10	2.55	1.96
OIL PROD.	RATE (MSTB/D)	3.01	2.73	1.96	1.32	1.05
	RECOVERY (%)	5.18	12.33	22.58	29.47	30.84
RESERVOIR	PRESSURE (PSIG)	1640	1445	926	597	527
	TIME (YEAR)	Jun.1976	Dec.1976	1977	1978	Mar.1979

Vol. IV Table 6-3-9
PREDICTED PERFORMANCE OF MODEL-8

PRODUCTION START: Aug. 1975 PRODUCTION END: Jun. 1981

WATER (MMSTB)	0.019	0.037	0.076	0.124	0.174	0.213	0.227
GAS (MMMSCF)	0.670	1.076	2.079	3.525	5.130	6.464	7.033
OIL (MMSTB)	0.718	1.105	1.878	2.651	3.310	3.766	3.955
W.O.R. (STB/STB)	0.04	0.05	0.05	0.06	0.08	0.09	0.08
G.O.R. (SCF/STB)	1006	1049	1298	1871	2436	2925	2952
RATE (MMSCF/D)	2.09	2.22	2.75	3.96	4.40	3.65	3.02
RATE (MSTB/D)	2.12	2.12	2.12	2.12	1.81	1.25	1.02
RECOVERY (%)	7.35	11.31	19.22	27.14	33.89	38.56	40.49
PRESSURE (PSIG)	2650	2508	2204	1820	1430	1121	1009
TIME (YEAR)	Jun.1976	Dec.1976	1977	1978	1979	1980	Jun.1981
	PRESSURE RECOVERY RATE G.O.R. W.O.R. OIL GAS (PSIG) (%) (MSTB/D) (MMSCF/D) (SCF/STB) (STB/STB) (MMSTB) (MMMSCF) (PRESSURE (PSIG) RECOVERY (%) RATE (MSCF/D) G.O.R. (SCF/STB) W.O.R. (STB/STB) OIL GAS (MMSCF) (PSIG) (%) (MSTB/D) (MMSCF/D) (SCF/STB) (STB/STB) (MMSTB) (MMMSCF) (MMMMSCF) (MMMSCF) (MMMSCF) <t< td=""><td>PRESSURE (PSIG) RECOVERY (%) RATE (MSCF/D) G.O.R. (SCF/STB) W.O.R. (STB/STB) OIL GAS (MMSCF) 2650 7.35 2.12 2.09 1006 0.04 0.718 0.670 2508 11.31 2.12 2.22 1049 0.05 1.105 1.076</td><td>PRESSURE (PSIG) RECOVERY (\$) RATE (RSTB/D) RATE (MMSCF/D) G.O.R. (SCF/STB) W.O.R. (STB/STB) OIL GAS (MMSCF) 2650 7.35 2.12 2.09 1006 0.04 0.718 0.670 2508 11.31 2.12 2.22 1049 0.05 1.105 1.076 2204 19.22 2.12 2.75 1298 0.05 1.878 2.079</td><td>PRESSURE (PS1G) RECOVERY (\$) RATE (MSTB/D) RATE (SCF/STB) G.O.R. (SCF/STB) W.O.R. (STB/STB) OIL GAS (MMMSCF) 2650 7.35 2.12 2.09 1006 0.04 0.718 0.670 2508 11.31 2.12 2.22 1049 0.05 1.105 1.076 2204 19.22 2.12 2.75 1298 0.05 1.878 2.079 1820 27.14 2.12 3.96 1871 0.06 2.651 3.525</td><td>PRESSURE (PS1G) RECOVERY (\$) RATE (\$) RATE (\$) RATE (\$) RATE (\$) RATE (\$) G.O.R. (\$) W.O.R. (\$) OIL GAS (\$) GAS (\$) GAS (\$) MMSCF/D) (\$) C.C.F/STB) (\$) MMSCF/D (\$) CALS CALS</td><td>PRESSURE (%) RATE (%) RATE (MASCF/D) G.O.R. (SCF/STB) W.O.R. (STB/STB) OIL GAS (MMSCF) 2650 7.35 2.12 2.09 1006 0.04 0.718 0.670 2508 11.31 2.12 2.22 1049 0.05 1.105 1.076 2204 19.22 2.12 2.75 1298 0.05 1.878 2.079 1820 27.14 2.12 3.96 1871 0.06 2.651 3.525 1430 33.89 1.81 4.40 2436 0.09 3.310 5.130 1121 38.56 1.25 3.65 2925 0.09 3.766 6.464</td></t<>	PRESSURE (PSIG) RECOVERY (%) RATE (MSCF/D) G.O.R. (SCF/STB) W.O.R. (STB/STB) OIL GAS (MMSCF) 2650 7.35 2.12 2.09 1006 0.04 0.718 0.670 2508 11.31 2.12 2.22 1049 0.05 1.105 1.076	PRESSURE (PSIG) RECOVERY (\$) RATE (RSTB/D) RATE (MMSCF/D) G.O.R. (SCF/STB) W.O.R. (STB/STB) OIL GAS (MMSCF) 2650 7.35 2.12 2.09 1006 0.04 0.718 0.670 2508 11.31 2.12 2.22 1049 0.05 1.105 1.076 2204 19.22 2.12 2.75 1298 0.05 1.878 2.079	PRESSURE (PS1G) RECOVERY (\$) RATE (MSTB/D) RATE (SCF/STB) G.O.R. (SCF/STB) W.O.R. (STB/STB) OIL GAS (MMMSCF) 2650 7.35 2.12 2.09 1006 0.04 0.718 0.670 2508 11.31 2.12 2.22 1049 0.05 1.105 1.076 2204 19.22 2.12 2.75 1298 0.05 1.878 2.079 1820 27.14 2.12 3.96 1871 0.06 2.651 3.525	PRESSURE (PS1G) RECOVERY (\$) RATE (\$) RATE (\$) RATE (\$) RATE (\$) RATE (\$) G.O.R. (\$) W.O.R. (\$) OIL GAS (\$) GAS (\$) GAS (\$) MMSCF/D) (\$) C.C.F/STB) (\$) MMSCF/D (\$) CALS CALS	PRESSURE (%) RATE (%) RATE (MASCF/D) G.O.R. (SCF/STB) W.O.R. (STB/STB) OIL GAS (MMSCF) 2650 7.35 2.12 2.09 1006 0.04 0.718 0.670 2508 11.31 2.12 2.22 1049 0.05 1.105 1.076 2204 19.22 2.12 2.75 1298 0.05 1.878 2.079 1820 27.14 2.12 3.96 1871 0.06 2.651 3.525 1430 33.89 1.81 4.40 2436 0.09 3.310 5.130 1121 38.56 1.25 3.65 2925 0.09 3.766 6.464

Vol. IV Table 6-3-10
PREDICTED PERFORMANCE OF MODEL-9
TUKAU FIELD

RESERVOIR PRESSURE (PSIG)	R RECOVERY (%)	OIL PROD. RATE (MSTB/D)	GAS PROD. RATE (MMSCF/D)	G.O.R. (SCF/STB)	W.O.R. (STB/STB)	CUMULA OIL (MMSTB)	CUMULATIVE PRODUCTION OIL GAS WAT WAT WATED	CTION WATER (MMSTB)
1111	2.26	3.00	2.70	006	0.01	1.095	0.984	0.007
962	4.52	3.00	3.34	1113	0.01	2.190	2.202	0.014
819	6.72	2.92	3.19	1092	0.01	3.257	3.366	0.021
069	8.73	2.68	2.95	1101	0.01	4.234	4.443	0.027
577	10.57	2.45	2.66	1086	0.01	5.124	5.414	0.033
500	11.84	2.26	2.42	1071	0.01	5.742	9.019	0.037

Vol. IV Table 6-3-11
PREDICTED PERFORMANCE OF MODEL-10
TUKAU FIELD

CTION	WATER (MMSTB)	0.005	0.010	0.014	0.015
CUMULATIVE PRODUCTION	GAS (MMMSCF)	0.733	1.550	2.278	2.440
CUMULA	OIL (MMSTB)	0.730	1.451	2.080	2.22
	W.O.R. (STB/STB)	0.01	0.01	0.01	0.01
	G.O.R. (SCF/STB)	1005	1131	1163	1141
GAS PROD.	RATE (MMSCF/D)	2.01	2.24	2.00	1.78
OIL PROD.	RATE (MSTB/D)	2.00	1.98	1.72	1.56
	RECOVERY (8)	3.67	7.30	10.46	11.18
RESERVOIR	PRESSURE (PSIG)	1005	757	548	503
	TIME (YEAR)	1.0	2.0	3.0	3.25

Vol. IV Table 6-3-12
PREDICTED PERFORMANCE OF MODEL-11
TUKAU FIELD

MOIT	WATER (MMSTB)	0.003	0.008	0.013	0.017	0.020
IVE PRODUC	OIL GAS WATER MSTB) (MMMSCF) (MMSTB)	0.298	0.699	1.089	1.419	1.672
CUMULAT	OIL (MMSTB)	0.351	0.615	0.823	0.990	1.126
	W.O.R. (STB/STB)	0.01	0.02	0.02	0.02	0.02
	G.O.R. (SCF/STB)	854	1528	1877	1957	1865
GAS PROD.	RATE (MMSCF/D)	0.82	1.10	1.07	06.0	69.0
OIL PROD.	RATE (MSTB/D)	96.0	0.72	0.57	0.46	0.37
	RECOVERY (%)	13.19	23.13	30.93	37.21	42.35
RESERVOIR	PRESSURE (PSIG)	1534	1250	964	716	513
	TIME (YEAR)	1.0	2.0	3.0	4.0	5.0

Vol. IV TABLE 6-3-13

PREDICTED PERFORMANCE OF TUKAU FIELD

- ADDITIONAL WELL CASE -

		OIL PROD.	GAS PROD.			CUMULA	CUMULATIVE PRODUCTION	CTION
TIME (YEAR)	RECOVERY (%)	RATE (MSTB/D)	RATE (MMSCF/D)	G.O.R. (SCF/STB)	W.O.R. (STB/STB)	OIL (MMSTB)	GAS (MMMSCF)	WATER (MMSTB)
00•	3.06	5.96	5.52	926	0.007	2.176	2.015	0.015
00.3	5.99	5.70	6.59	1157	0.008	4.256	4.421	0.032
3.08	8.67	5.22	6.33	1214	0.008	6.160	6.733	0.048
00.1	10.48	3.52	4.30	1221	0.009	7.445	8.302	0.059
2.00	11.93	2.81	3,35	1192	0.009	8.472	9.526	0.068
5.75	12.80	2.26	2.42	1071	900.0	060.6	10.188	0.072

Table 7-2-1 CORRELATION TABLE Vol. IV BETTY FIELD

Well No.	1		2		3		4	
D.F.E.	11	10	11	0	112	.2	11]
Cycle/Zone	Log	Subsea	Log	Subsea	Log	Subsea	Log	Subsea
Top Upper VI			38	27	45	33		
O)	2270	2160	2670	2560	2760	2648	2800	2689
Lower VI	64	53	22	11	34	22	33	21
Λ	00	89	41	30	49	38	44	33
Top a ₁	55	44	62	51	49	38	89	78
_ a ₂	7786	7675	7828	7718	7652	7540	6950	6839
a ₃	89	78	91	80	9/	65	01	90
Top b ₁	입	99	10	99	86	75	12	7011
_ b ₂	8290	8180	8261	8151	8000	7888	7217	
Top c1	8483		43	32	8140	8029	7327	7216
G2	86	8757	8812	8702	4	4	9	49
T.D.	8943	8833	9436	9326	8803	1698	9485	9374
								•
			. — —					

FIELD NAME; BETTY

RESERVOIR NAME; A1 (A-BLOCK)

NATURAL DEPLETION CASE

VISG (C.P.) 0.01190 0.01214 0.01238 0.01262 0.01354 0.01354	0.01963 0.02094	0000 0000 0020 0250 4033 0000 5000
VISD (C.P.) 1.1400 1.0200 0.9400 0.8800 0.7700 0.6800	0.4730	= 2900,0000 = 3260,0000 = 0,0000030 = 1,0250 = 0,4033 = 1000,0000 = 68,0400 = 2,5000
FVFG 0.907080 0.081441 0.041214 0.027164 0.015764 0.010898	0.005109	E (PS CTOR ON STB)
RS (SCF/STB) 0. 31. 64. 96. 162. 226.		ESSUR OIR P RESSI N VOL ER SA E (P N PLA(
FVF0 1.029 1.048 1.060 1.071 1.092 1.114		BUBLE POINT PRINITIAL RESERVEFECTIVE COMPUNATER FORMATION IREDUCIBLE WATHENAL PRESSURFINAL OIL INDICTION OF RESERVEDUCTION OF RESERVEDUCTI
PRESSURE (PSIG) 0. 200. 400. 600. 1400. 1800.	2900. 3260. SL 0.65 0.70 0.85 0.85 0.90 0.95 1.00	

Vol. IV Table 7-3-1

RESERVOIR PARAMETERS USED IN FERFORMANCE CALCULATION

FIELD NAME; BETTY

RESERVOIR NAME; A3 (A-BLOCK)

NATURAL DEPLETION CASE

	•																									
VISG (C.P.)		72	2	ല	16	28	0	إسم										000	0000	030	1250	084	. 000	. 006	2,5000	_
VISO	0.8170	0.7100	0.6480	0.5350	0.4400	0.4100	0.3900	0.3905					•			,		_	4	u	1.0	0.5	= 500°C	n 19.6	= 2.5	• • • •
FVFG		0.082000						0.004508							•			(PSIG)	PSI	.1 T Y	F ACTOR	RATION	3)	(MMST8)	6	ב ב
RS (SCE/STR)	0	35.	. 19	167.	333.	433.	550.	550.	KRO	27	0	25	216	343	512	729	1.0000	PRESSURE (PSIG)	ESERVOIR PRE	OMPRESSIBI	TION VOLUM	WATER SATUR	SURE (PSI	IL IN PLACE	ION RATE (1	
FVFO	1.061	œ	•01	S	.17	• 19	1.225	\sim	KG/KD	12.7040	3.3750	1.0000	•	0.0787		•	0000*0	ΛΙΟ	INITIAL RES	<u>В</u>	:OR	IREDUCIBLE WA	FINAL PRES	ORIGINAL DI	OIL PRODUCT	CACITON O
PRESSURE (PSIG)	0	200•	400•	1000.	2000	2600.	3300.	3420.	SL	•	0.70	۲.	φ,	æ	6	٥.	1.00	_								-

Vol. IV Table 7-3-2

RESERVOIR PARAMETERS USED IN PERFORMANCE CALCULATION

FIELD NAME; BETTY

RESERVOIR NAME; 82 (A-BLOCK)

NATURAL DEPLETION CASE

ധമ	120	122	125	136	_	198	0.02211										0000	0000	0030	1250	+453	0000	2800	0	0000.0
VISO (C.P.)	0056*0						0,3810										3000	64	0000*0 =		7*0 ==	= 1000.	3,280	11	oit vol.=
FVFG	0.918583	0.082560	0.041827	0.016057	0.007566	0.005074	0.004354										(PSIG)	SSURE (PS	LITY	IE FACTOR	JRATION	(9)	(MMST	MSTB/D)	GAS AND
RS (SCF/STB)	o	36.	73.	184.	366.	S	550.	KRO	0.0481	0.0939	_	0.2577	_	•	0.7510	1.0000	T PRESSURE	ERVOIR P	Ų	_	WATER	SURE	IL IN PLAC	ON RATE	F RESERVOIR
FVFO	0	0	0	7	1.176	€:	^	KG/KO	5.3594	•	r.	0.1866	0	٠,	0	•	BUBLE POINT	ITIAL RE	FECTIVE	TER FORM	EDUCI	Ä	RIGINAL C	IL PRODUC	FRACTION O
PRESSURE (PSIG)	0	200•	400	1000	2000	3000	3640.	SL	0.65	0.10	0.75	0.80	0.85	06*0	0.95	1.00									

Vol. IV Table 7-3-3 RESERVOIR PARAMETERS USED IN PERFORMANCE CALCULATION

FIELD NAME: BETTY

RESERVOIR NAME: A1 (A-BLOCK)

NATURAL DEPLETION CASE

WATER FNCROACH.	(MMBBL)	0.30	0.65	1.01	1.38	1.75	2.08	2.40	2.68	2.93	3.16
PRODUCTION GAS	(MMMSCF)	0.950	1,905	2.893	3.994	5.328	6.942	8.722	10.679	12,767	14,952
CUMULAT IVE	(MMSTB)	1.825	3.650	5.476	7.301	9.126	10.848	12,377	13,737	14.946	16.023
GAS OIL	(SCF/STB)	521.	528.	563.	654	822.	1050.	1293.	1595.	1870.	2207.
PRODUCTION RATE	(MSTB/D) (MMSCF/D)	5.21	5.23	5.41	6.04	7.31	8.84	9.75	10.72	11.44	11,97
PRODUCT	(MSTB/D)	10.00	10.00	10.00	10.00	10.00	9.43	8.38	7,45	6.62	5.90
> 0 0 0 0	(%)	2.68	5.37	8.05	10.73	13.41	. 15.94	18.19	20.19	21.97	23.55
RESERVOIR	(PSIG)	2651.	2447.	2264.	2085.	1892.	1714.	1555.	1386.	1242.	1078.
U 2 H	(YEAR)	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00

Vol. IV Table 7-3-4 PREDICTED PERFORMANCE

FIELD NAME; BETTY

RESERVOIR NAME; A3 (A-BLOCK)

NATURAL DEPLETION CASE

TIME (YEAR)	RESERVOIR PRESSURE (PSIG)	RECOVERY (%)	PRODUCT OIL (MSTB/D)	PRODUCTION RATE OIL GAS STB/D) (MMSCF/D)	GAS OIL RATIO (SCF/STB)	CUMULATIVE OIL (MMSTB)	PRODUCTION GAS (MMMSCF)	WATER ENCROACH. (MMBBL)
0.50	2872.	f 4.63	5.00	2.57	487.	0.913	0.469	0.13
1.00	2559.	8.94	4.65	2.31	539	1.761	0.891	0.29
1.50	2332•	12.67	4.02	2+33	610.	2.495	1.317	0.43
2.00	2137.	15.94	3 • 53	2.27	685.	3.139	1.732	0.56
2.50	1972.	18.83	3.12	2.31	789.	3.708	2.153	19.0
3.00	1864.	21.41	2.78	2.34	894.	4.216	2.580	0.75
3.50	1758.	23.74	2.52	2,38	1004.	4.675	3.015	0.85
4.00	1648.	25.87	2.30	2.44	1128.	5.094	3.461	0.94
4.50	1532.	27.81	2.10	2.50	1266.	5.476	3.917	1.03
5.00	1410.	29.59	1,91	2.55	1419.	5.825	4.382	1.1
5.50	1279.	31.21	1.75	2 • 63	1591.	6.145	4.862	1.18
00*9	1136.	32.70	1.61	2.72	1792.	6.438	5.359	1.25

Vol. IV Table 7-3-5 PREDICTED PERFORMANCE

RESERVOIR NAME; B2 (A-BLOCK)

FIELD NAME; BETTY

NATURAL DEPLETION CASE

WATER ENCROACH. (MMBBL)	0.01	£0°0 .	0.04	90.0	0.08	0.10	0.11	0.13	0.15	0.17	0.19
PRODUCTION GAS (MMMSCF)	0.049	960.0	0.146	0.201	0.261	0.333	0.413	0.501	0.598	802.0	0.845
CUMULATIVE OIL (MMSTB)	0.091	0.183	0.274	0.365	0.456	0.548	0.639	0.730	0.821	0.913	1.004
GAS DIL RATIO	521•	. 516.	574.	628.	710.	833.	924.	1011.	1124.	1321.	1693
PRODUCTION RATE OIL GAS	0.27	0.26	0.27	0.30	0.33	0.39	0.44	0.48	0.54	0.60	0.75
PRODUCTION OIL	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
RECOVERY	2.78	5.50	8 35	11.13	13.91	16.69	19.48	22.26	25.04	27.82	30.61
RESERVOIR PRESSURE	2782.	2599.	2431.	2265.	. 2097.	1947.	1826.	1697.	1551.	1381.	1160.
11 X E	ר זה אר ז סבים	1.00	1.50	2.00	2.50	3.00	. 3.50	4.00	4.50	5.00	5.50

Vol. IV Table 7-3-6 PREDICTED PERFORMANCE

Table 8-2-1 CORRELATION TABLE Vol. IV BOKOR FIELD

Well No.			2			3	4	
D.F.E.	111	1	111	.1	111		111	J.
Cycle/Zone	Log	Subsea	Log	Subsea	Log	Subsea	Log	Subsea
TOP LOWEY VI Upper V	2832 3850	2721 3739						
Top a ₁ a ₂ a ₃	2496 2832 3084	2385 2721 2973	2220 2494 2857	2109 2383 2746	2328 2615 2976	2217 2504 2865	2242 2540 2902	2131 2429 2791
Top b ₁ b ₂ b ₃	3590 3697 3850	3479 3586 3739	3322 3420 3580	3211 3309 3469	3230 3340 3530	3119 3229 3419	3360 3464 3636	3249 3353 3525
Top c	4559	4448	4304	4193	4246	4135	4329	4218
Top d	5042	4931	4776	4665	4733	4622	4770	4659
T.D.	7885	7774	8974	8863	5500	5389	7273	7162

RESERVOIR NAME; A1

FIELD NAME; BOKOR

NATURAL DEPLETION CASE

SG.	0121	012	0124	0126	0128	0131	0135							-			-									•0200
))	Ö	ŏ	ċ	Ö	ċ	ŏ	Ö		٠		•							000	1,0000	003	.025	.380	000	•300	8	0
IS C	ıů.	•	•77	• 28	.95	• 69	•4500	•										103	66	0			Ž N	12	0	VOL.=
>~	rv.	_	Ŋ	8	∞	,													SIG)=		11	11	11	11		OIL
FVFG	•	0.13833	.0733	.0374	.0248	.0185	0.01471											(PSIG)	SURE (P	_	⋖		<u></u>	AMST	STB	GAS AND
RS (SCF/STB)		12.	23.	47.	70.	94.	116.		KRO	.070	123	.196	0.2939	419	.576	.769	• 000	PRESSU	ERVOIR P	OMPRESSI	TION VOL	R S/	SURE (P.	L IN PLA	ION RATE	RESERVOIR
FVFO	.02	1.026	• 02	• 03	• 04	0.	S		KG/KD	2.0	99•	90.	0.3000	• 08	• 02	.00	9	P0		TIVE	FORM	CIBLE		NAL DI	OIL PRODUCT	
PRESSURE	• 0	100	200	400•	•009	800	•066		SL	9		~	0.80	φ	σ.	6	1.00						٠			

Vol. IV Table 8-3-1 RESERVOIR PARAMETERS USED IN PERFORMANCE CALCULATION

RESERVOIR NAME;

A2

NATURAL DEPLETION CASE

FIELD NAME; BOKOR

VISG (C.P.)	01	.0123	.0124	.0126	•0132	.0136	•0137										0000	0	0800	1250	548	0000	4.2000		0000.0
VISO (C.P.)	9.8000	0004.6	9.1000	8.5600	7.6400	7.2000	7.2200	·									= 1048.	1= 1082.	0000 =	= 1.0	7*0 ==	= 500.0	= 24.	ġ	^OF = .
FVFG		0.139078	•	•		•	0.013604										(PSIG)	URE	LITY		RATION	(9)	₹.	MSTB/D)	GAS AND D
RS (SCF/STB)	•0	12.	24.	48.	96	126.	126.	KRO	0.0480	•		•		0.5477	•	•	PRESSU	ERVOI	DMPRESS	LION	α.	PRESSURE (PSIG)	a.	ION RATE	F RESERVOIR
FVFO		1.025		•	•	•	1.054	KG/KD	0	•	0	ů	0	0.0230	0	0	BUBLE POINT	ا - با	TIVE	u_	\Box		ORIGINAL DI	200V	FRACTION OF
PRESSURE (PSIG)	. 0	100.	200•	400	800.	1048.	1080.	S	•	۲.	۲.	Φ,	ω.	06.0	6	•									

Vol. IV Table 8-3-2 RESERVOIR PARAMETERS USED IN PERFORMANCE CALCULATION

FIELD NAME; BOKOR

RESERVOIR NAME; 82

NATURAL DEPLETION CASE

ISG C.P.	1:	• 0 1 1 8	•0119	•0122	•0124	.0133	0.01442											000	0000	020	250	. 236	0000	8.6000	000	00000
VISO (C.P.)	4.8500	4.7000	4.6000	4.4100	4.2300	3.9000	3.5800							•				- 63]= 145		1.0	9*0 =	= 860.C			.L VOL.=
FVFG	1.116201	0.141511	0.074776	0.037860	0.024966	0.014482	0.009631											(PSIG)	SSURE (PSIG	LITY	IE FACTOR	RATION	(9)	= 1	MSTB/D)	GAS AND D
RS (SCF/STB)	•0	23.	46.	91.	137.	228.	330.		KRO	0.0010			0.1228			0.7000	1.0000	PRESSU	SERVOIR PRE	VE COMPRESSIBI	ATION VOLUM	WATER SATU	SURE		ION RATE	F RESERVOIR
FVFO	1.026	• 03	• 03	• 04	• 05	• 06	• 07	-	KG/KD	•	•	•	0.3000			•	•	BUBLE POINT	S, ITI	М	WATER FORM	IREDUCIBLE	PRE	RIGINAL O	IL PRODUC	FRACTION OF
PRESSURE (PSIG)	0	100.	200	0	•009	0	1450.		SL	0.65	0.10	0.75	0.80	0.85	06.0	0.95	1.00							_		

Vol. IV Table 8-3-3

RESERVOIR PARAMETERS USED IN PERFORMANCE CALCULATION

NATURAL DEPLETION CASE

WATER. ENCROACH. (MMBBL)	0.03	0.07	0.11	0.14	0.18
PRODUCTION GAS (MMMSCF)	0.105	0.218	0.339	0.467	0.601
CUMULATIVE PRODUCTION OIL GAS (MMSTB) (MMMSCF)	0.183	0,365	0.548	0.730	0.913
GAS OIL RATIO (SCF/STB)	598•	644.	•619	720.	744.
PRODUCTION RATE DIL GAS	0.58	0.62	0.66	0.70	0.74
PRODUCT OIL (MSTB/D)	1+00	1.00	1.00	1.00	1.00
RECOVERY	1.48	2.97	4 • 45	5,94	7.42
RESERVOIR PRESSURE	904	815.	731.	644.	560.
TIME YEAR)	0.50	1.00	1.50	2.00	2.50

Vol. IV Table 8-3-4 PREDICTED PERFORMANCE

NATURAL DEPLETION CASE

	(
1.55	2.50	3.77 2.50 5.60 2.42 7.30 2.26	

Vol. IV Table 8-3-5 PREDICTED PERFORMANCE

NATURAL DEPLETION CASE

	RESERVOIR		PRODUCT	PRODUCTION RATE	GAS OIL	CUMULATIVE	CUMULATIVE PRODUCTION	WATER
TIME YEAR)	PRESSURE (PSIG)	RECOVERY (%)	OIL (MSTB/D)	OIL GAS (MSTB/D) (MMSCF/D)	_	OIL (MMSTB)	GAS (MMMSCF)	ENCROACH.
0.50	1332.	3.18	1.50	16.0	663.	0.274	0.178	0.05
1.00	1217.	6.37	1.50	1.02	•969	0.548	0.363	0.10
1.50	1099.	9.55	1.50	1.08	744.	0.821	095*0	0.16
2.00	979.	12.73	1.50	1.16	795.	1,095	0.772	0.21
2.50	871.	15.92	1.50	1.21	836.	1.369	0.993	0.27

Vol. IV Table 8-3-6 PREDICTED PERFORMANCE

Table 9-2-1 CORRELATION TABLE Vol. IV TEMANA (EAST) FIELD

4	41	Subsea	1949	1949	2179 2820	3459	4217 4504	5262	7163	
	4	Log	1990	1990	2220 2861	3500	4258 4545	5303	7204	
3	64	Subsea	1836	1836 2126	2482 2961	3654	4696 4926	5461	7546	
	9	Log	1900	1900	2546 3025	3718	4760	5525	7610	
2	99	Subsea	1698	2084	2719 3229	3914	4899 5134	5644	9008	
:	9	Log	1764	2150	2785 3295	3980	4965 5200	5710	8072	
1	67	Subsea	383	1803	2140 2667	3323	4146	5036	9946	
	9	Log	450	1870	2207 2734	3390	4213 4440	2103	10013	
Well No.		Cycle/Zone	Top VI II I?	Top a ₁ a ₂	Top b_1 b_2	Top c	Top d ₁ d ₂	Top e	T.D.	

Table 9-2-2 CORRELATION TABLE Vol. IV TEMANA (WEST) FIELD

		<u>"</u> T							<u> </u>			7		
10	1	Subsea	865 1099 1663	865	1099	1663 1730	2000 2085 2247	2597	2939 3054 3259	3519	4394		2006	-
	7	Log	906 1140 1704	906	1140	1704	2041 2126 2288	2638	2980 3095 3300	3560	4435		5047	
6	-	Subsea	954 1205 1649	954	1205	1649 1766	2047 2134 -						2474	
	4	Log	995 1246 1690	995	1246	1690 1807	2088 2175			-			2515	
8		Subsea	2895			2895 3044	3305 3453 3682	4254	5343			i	5415	
8	4	Log	2936			2936 3085	3346 3494 3724	4295	5384	:			5456	
7	1	Subsea	793 1082 1963	793	1082	1963 2039	271.2 2807 3001	3379	ı				3576	
	4	Log	834 1123 2004	834	1123	2004	2743 2848 3042	3420	1				3617	
9	11	Subsea	1199	ı	1199	1424							3240	
	4	Log	1240	ı	1240	1465 1567							3281	
5		g Subsea	755 1053 1589 4549	755	1053	1589 1709	1978 2099 2324	2519	3575 3677 3884	4057	4965	5745	6269	
	4	Log	796 1094 1630 4590	962	1094	1630 1750	2023 2140 2365	2660	3616 3718 3925	4098	5005	5786	7020	
Well No.	IЫ	Cycle/Zone	Top V III II I?	Тора	Top b	Top c ₁	Top d ₁ d ₂ d ₃	Top e	Top f ₁ f ₂ f ₃	Top g	тор ћ	Top i	T.D.	

FIELD NAME; TEMANA

RESERVOIR NAME;

NATURAL DEPLETION CASE

VISG (C.P.) 0.01184 0.01208 0.01232 0.01256		10.0000 11.0000 10.00115 1.0250 0.2360 0.0000 6.2180 2.0000
VISG (C.P.) 8.2000 7.6200 7.1600 6.7300 6.1600		242)= 90 = 0.0 = 30 = 30 L VOL.
FVFG 1.125825 0.075330 0.038093 0.025087		E (PS CTOR ON STB) AND
RS (SCF/STB) 0. 51. 102. 153. 230.	KRO 0.1517 0.2160 0.2963 0.3944 0.5120 0.6510 0.8130	ESSURE DIR PRI RESSIB N VOLUI ER SAT E (PS N PLAC RATE
FVF0 1.031 1.041 1.048 1.054	KG/KD 80.0000 28.0000 9.5000 2.8500 0.8500 0.2000 0.0380	BUBLE POINT PRINITIAL RESERVO EFFECTIVE COMPI WATER FORMATION IREDUCIBLE WATI FINAL PRESSURE ORIGINAL OIL IS OIL PRODUCTION
PRESSURE (PSIG) 200• 400• 600•	SL 0.65 0.75 0.80 0.85 0.90 0.95 1.00	

Vol. IV Table 9-3-1

RESERVOIR PARAMETERS USED IN PERFORMANCE CALCULATION

FIELD NAME; TEMANA

NATURAL DEPLETION CASE

WATER ENCROACH.	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PRODUCTION GAS (MMMSCF)	0.167	0.400	0.749	1.313	2.250	3.678	5.145
CUMULATIVE PRODUCTION OIL GAS (MMSTB) (MMMSCF)	0.365	0.730	1.095	1.460	1.820	2,161	2,473
GAS OIL RATIO (SCF/STB)	532.	766.	1192.	1977.	3353•	4686.	4623.
PRODUCTION RATE OIL GAS (MSTB/D) (MMSCF/D)	1.83	2.55	3 . 83	6.18	10.27	15.65	16.08
PRODUCT OIL (MSTB/D)	4.00	4.00	4.00	4.00	3,95	3.73	3.42
RECOVERY (%)	· 1.01	2.02	3.02	4.03	5,03	5.97	6.83
RESERVOIR PRESSURE (PSIG)	877.	846.	803•	737.	633•	480.	326.
TIME (YEAR)	0.25	0.50	0.75	1.00	1.25	1.50	1.75

Vol. IV Table 9-3-2 PREDICTED PERFORMANCE

Table 10-2-1 CORRELATION TABLE Vol. IV BERYL FIELD

	41	Subsea	3889 5809	8054	12036	
9	4	Log	3930 5850	8095	12077 12036	
	2	Subsea	3129	6771 8589	9588	
5	112	Log	3241	6883 8701	9700	
	12	Subsea	3855		11702	
4	11	Log	3967	8175 10297	11814 11702	
	12	Subsea	6779		9606	
(0)	11	Log	1689		9208	
	2	Subsea	2627 3570	5009	10192	
2	112	Log	2739	5121 6435	10304 10192	
	112	Log Subsea	3188	7054 8817	11471	
	11	Log	3300	7166 8929	11583 11471	
Well No.	D.F.E.	Cycle/Zone	Top Upper VI Middle VI	Lower VI V	T.D.	·

CORRELATION TABLE SIWA FIELD Table 11-2-1 Vol. IV

Well No.	4	
D.F.E.	109	6
Cycle/Zone	Log	Subsea
Top Upper V Lower V		
Тора	1388	1279
Top b	1892	1783
Top c	2918	2809
Top d ₁ d ₂ d ₃	3760 4011 4311	3651 3902 4202
Top e ₁ e ₂ e ₃ e ₄	4383 4662 4922 5391	4274 4553 4813 5282
Top f	0899	6571
T.D.	7579	7470

Table 12-2-1 CORRELATION TABLE Vol. IV CENTRAL LUCONIA FIELD

E11-1	112	Subsea	2613 6578	4744	7126	
		Log	2725 6690	4856	7238	
E8-3	41	Subsea	2099	ı	8751	
		Log	2140	1	8792	
E8-2	112	Subsea	2238 6283	4568	6320	
		Log	2350 6395	4680	6432	
E8-1	112	Subsea	2130	4543	6188	
		Log	2242	4655	6300	
E6-1	112	Subsea	3260	5263	6155	
		Log	3372	5375	6267	
B12-1	112	Subsea	3300 6907	10564	12225	
		Log	3412 7019	10676 10564	12337 12225	
Well No.	D.F.E.	Cycle/Zone	Top VI V IV - III	Top "Carbonate Buildup"	T.D.	

Table 12-2-1 (Continued) CORRELATION TABLE Vol. IV

			_			
-2	2	Subsea	2730 6702	6068	7533	
F13-2	112	Log	2842	6180	7645	
-1	2	Log Subsea	2653 6828	6227	7070	
F13-1	112	Log	2765 6940	6339	7182	
-	2	Subsea	1806	4304	5207	
F9-1	112	Log	1918	4416	5319	
.2	112	Subsea	1607	4037	5550	
F6-2	11	Log	1719	4149	5662	
1	.2	Subsea	1418	3524	4503	
F6-1	112	Log	1530	3636	4615	
-2	2	Log Subsea	2626 6713	5478	6752	
E11-2	112	Log	2738 6825	5590	6864	
Well No.	D.F.E.	Cycle/Zone	TOP VI V III - VI	Top "Carbonate Buildup"	T.D.	

Table 12-2-1 (Continued) CORRELATION TABLE Vol. IV

1	2	Subsea	4108	4755	5415	
M1-1	112	Log	4220	4867	5527	
1	41	Subsea	1214	4077	4645	
K4-1	4	Log	1255	4118	4686	
-1	112	Subsea	1530	3829	5011	
F23-1		Log	1642	3941	5123	
1-1	112	Subsea	1887	6327	7438	
F22-1		Log	1999 4450	6439	7550	
1-1	40	Subsea	1696	4265	4805	
F14-1	7	Iog	1763	4305	4845	
1-3	111	Subsea	2642	6213	6365	
F13-3		Log	2753	6324	6476	
Well No.	D.F.E.	Cycle/Zone	Top VI V III - VI	Top "Carbonate Buildup"	T.D.	

Table 12-2-1 (Continued) CORRELATION TABLE Vol. IV

		_				 _
	1.1	Subsea	3208	6357	6889	
M5-1	111	Log	3319	6468	7000	
.1	.2	Subsea	3477	5540	6411	
M3-1	112	Log	3589	5652	6523	
Well No.	D.F.E.	Cycle/Zone	IV GOT V III - VI	Top "Carbonate Buildup"	T.D.	

Vol. IV Table 12-3-1 GAS COMPONENTS AND Z-FACTOR

CENTRAL LUCONIA B 12

Gas Component	MOL %	Static	Committee of	
Methane	92.1	Reservoir Pressure (PSTG)		Z-factor
Ethane	3.0	•	-	
		5030. 5000.	0.0 0.0018	1.0363 1.0347
Propane	_ 1.02	4800.	0.0140	1.0240
Iso-Butane	0.2	4600	0.0264	1.0133
		4400.	0.0392	1.0025
N-Butane	0.3	4200.	0.0521	.9917
		4000.	0.0653	.9807
Iso-Pentane	0.1	3800.	0.0788	.9698
		3600.	0.0926	.9589
N-Pentane	0.1	3400.	0.1067	.9480
		3200.	0.1229	.9424
Hexanes	0.1	3000.	0.1396	.9383
		2800.	0.1564	.9342
Heptanes Plus	0.1	2600.	0.1737	.9311
		2400.	0.1913	.9293
Hydrogen	-	2200.	0.2092	.9278
		2000.	0.2278	.9304
Helium	_	1800.	0.2464	.9332
	0.6	1600.	0.2649	.9360
Oxeygen	_ 0.6	1400.	0.2835	.9402
N7.5 1	1.6	1200. 1000.	0.3019 0.3206	.9449 .9534
Nitrogen	- 1.0	800.	0.3206	.9615
Camban Managaida		600.	0.3568	.9699
Carbon Monoxide	-	400.	0.3745	.9799
Carlan Diamida	0.6	200.	0.3745	.9900
Carbon Dioxido	_ 0.0	100.	0.4005	.9950
Hydrogen Sulphide		100.	0.4003	.9930
mydrogen surphrae	-			
Reservoir Temp	perature (°1	F)		240.
Reservoir Pres	sure (PSIG))		5030.
Original Gas I	In Place (1	0 ¹² SCF)		0.4089
Original Gas I			•	245.81

(SCF/CFT)

Vol. IV Table 12-3-2

GAS COMPONENTS AND Z-FACTOR

Gas Component	MOL %	Static Reservoir	Cumulative	
Methane	88.4	Pressure (PSIG)	Production (10 ¹² SCF)	Z-factor
Ethane	4.2	(1510)	(10 001)	
Propane	2.5	2545.	0.00	.8603
Iso-Butane	0.4	2400.	0.07	.8614
N-Butane	0.6	2200.	0.17	.8630
Iso-Pentane	0.2	2000.	0.28	.8678
N-Pentane	0.2	1800.	0.38	.8733
Hexanes	0.3	1600.	0.48	.8804
Heptanes Plus	0.2	1400.	0.59	.8893
Hydrogen		1200.	0.69	.9021
Helium	0.2	1000.	0.79	.9167
Oxygen	0.2	800.	0.89	.9314
Nitrogen	0.8	600.	0.98	.9471
Carbon Monoxide	-	400.	1.08	.9647
Carbon Dioxido	2.0	200.	1.17	.9824
Hydrogen Sulphide	_	100.	1.21	.9912
Reservoir Tem	perature (°F)	162	
Reservoir Pre	essure (PSI	G)	2545	
Original Gas	In Place (10 ¹² SCF)	1.25	
Original Gas	Formation	Volume Facto (SCF/ _C F		

Vol. IV Table 12-3-3 GAS COMPONENTS AND Z-FACTOR

Gas Component Methane	-	Static Reservoir Pressure (PSIG)	Cumulative Production (10 ¹² SCF)	Z-factor
Ethane	5.5			
Propane	. 1.3	2890.	0.00	.8577
Iso-Butane	0.2	2800.	0.10	.8548
N-Butane	0.3	2600.	0.34	.8557
Iso-Pentane	0.1	2400.	0.58	.8574
N-Pentane	0.1	2200.	0.83	.8604
Hexanes	0.2	2000.	1.08	.8651
Heptanes Plus	0.2.	1800.	1.34	.8715
Hydrogen	-	1600.	1.59	.8786
Helium	_	1400.	1.84	.8882
Oxygen	-	1200.	2.09	.9025
Nitrogen	1.8	1000.	2.34	.9170
Carbon Monoxide	-	800.	2.57	.9316
Carbon Dioxido	6.6	600.	2.80	.9476
Hydrogen Sulphide	-	400.	. 3.03	.9651
		200.	3.25	.9825
		100.	3.35	.9915
Reservoir Tem	nperature (°F)	177	
Reservoir Pre	essure (PSI	G)	2890	
Original Gas	In Place (10 ¹² SCF)	3.45	
Original Gas	Formation '	Volume Facto (SCF/CI		

Vol. IV Table 12-3-4 GAS COMPONENTS AND Z-FACTOR CENTRAL LUCONIA F6

Gas Component	MOL %	Static	G	
Methane	88.7	Reservoir Pressure	Production (10 ¹² SCF)	Z-factor
Ethane	4.1	(PSIG)	(10°-SCF)	
Propane	2.8	2195.	0.00	.8204
Iso-Butane	0.7	2000.	0.53	.8261
N-Butane	0.6	1800.	1.09	.8348
Iso-Pentane	0.2	1600.	1.64	.8454
N-Pentane	0.1	1400.	2.18	.8571
Hexanes	0.2	1200.	2.73	.8738
Heptanes Plus	0.1	1000.	3.26	.8908
Hydrogen	_	800.	3.77	.9105
Helium	_	600.	4.26	.9319
Oxygen	-	400.	4.73	.9546
Nitrogen	0.7	200.	5.18	.9773
Carbon Monoxide	-	100.	5.40	.9887
Carbon Dioxido	1.8			
Hydrogen Sulphide	0.9			
Reservoir Tem	perature	(°F)	144	
Reservoir Pre	essure (PS	IG)	2195	
Original Gas	In Place	(10 ^{1 2} SCF)	5.61	
Original Gas	Formation	Volume Factor (SCF/CF)	r 156.5 r)	

Vol. IV Table 12-3-5 GAS COMPONENTS AND Z-FACTOR CENTRAL LUCONIA F13

Gas Component	MOL %	Static Reservoir Pressure	Cumulative Production	Z-factor
Methane		(PSIG)	(10 ¹² SCF)	Z-IAC COL
Ethané	4.8			
Propane	1.1	2950.	0.00	.8413
Iso-Butane	0.2	2800.	0.07	.8406
N-Butane	0.2	2600.	0.18	.8424
Iso-Pentane	0,1	2400.	0.28	.8441
N-Pentane	0.1	2200.	0.38	.8489
Hexanes	0.1	2000.	0.49	.8542
Heptanes Plus	0.1	1800.	0.60	.8622
Hydrogen	_	1600.	0.70	.8708
Helium	-	1400.	0.81	.8820
Oxygen	0.1	1200.	0.91	.8968
Nitrogen	3.6	1000.	1.01	.9114
Carbon Monoxide	_	800.	1.11	.9274
Carbon Dioxido	_ 15.0	500.	1.21	.9449
Hydrogen Sulphide	_	400.	1.30	.9632
		200.	1.39	.9816
		100.	1.43	.9908
Reservoir Ter	mperature (°F)	182	
Reservoir Pro	essure (PSI	G)	2950	
Original Gas	In Place (10 ¹² SCF)	1.48	
Original Gas	Formation	Volume Facto (SCF/CI		

Vol. IV Table 12-3-6 GAS COMPONENTS AND Z-FACTOR CENTRAL LUCONIA F14

Gas Component	MOL &	Static		
Methane	84.7	Reservoir Pressure	Cumulative Production (10 ¹² SCF)	Z-factor
Ethane	4.2	(PSIG)	(10° SCF)	
Propane	3.5	2470.	0.00	.8266
Iso-Butane	0.7	2400.	0.04	.8273
N-Butane	0.8	2200.	0.14	.8296
Iso-Pentane	0.3	2000.	0.25	.8353
N-Pentane	0.2	1800.	0.36	.8426
Hexanes	0.3	1600.	0.47	.8525
Heptanes Plus	0.1	1400.	0.57	.8635
Hydrogen		1200.	0.68	.8790
Helium		1000.	0.78	.8957
Oxygen	0.1	800.	0.89	.9143
Nitrogen	3.3	600.	0.98	.9346
Carbon Monoxide		400.	1.08	.9564
Carbon Dioxido	1.8	200.	1.17	.9782
Hydrogen Sulphide		100.	1.21	.9891
Reservoir Tem	perature (°	F)	147	•
Reservoir Pre	ssure (PSIG)	2470	
Original Gas	In Place (1	0 ^{1 2} SCF)	1.25	
Original Gas	Formation V	olume Factor (SCF/CF)		

Vol. IV Table 12-3-7 GAS COMPONENTS AND Z-FACTOR

Gas Component	MOL %	Static		
Methane	88.2	Reservoir Pressure	Cumulative Production (10 ¹² SCF)	Z-factor
Ethane	3.7	(PSIG)	(10° SCF)	
Propane	2.8	2510.	0.00	.8310
Iso-Butane	0.8	2400.	0.26	.8321
N-Butane	0.7	2200.	0.73	.8346
Iso-Pentane	0.3	2000.	1.22	.8401
N-Pentane	0.1	1800.	1.71	.8475
Hexanes	0.2	1.600	2.20	.8569
Heptanes Plus	0.1	1400.	2.68	.8677
Hydrogen	-	1200.	3.16	.8831
Helium		1000.	3.63	.8993
Oxygen	•	800.	4.09	.9173
Nitrogen	0.9	600.	4.53	.9369
Carbon Monoxide	· ·	400.	4.96	.9579
Carbon Dioxido	2.2	200.	5.36	.9790
Hydrogen Sulphide	<u>-</u>	100.	5.56	.9895
Reservoir Tem	perature	(°F)	150	
Reservoir Pre	ssure (PS)	IG)	2510	
Original Gas	In Place	(10 ^{1 2} SCF)	5.75	
Original Gas	Formation	Volume Factor (SCF/CFT		

Vol. IV Table 12-3-8 GAS COMPONENTS AND Z-FACTOR CENTRAL LUCONIA M 1

Gas Component	MOL %	Static		
Methane	87.5	Reservoir Pressure	Production	Z-factor
Ethane	4.5	(PSIG)	(10 ¹² SCF)	
Propane	2.7	3450.	0.0	.8697
Iso-Butane	0.5	3400.	0.0091	.8665
N-Butane	0.6	3200.	0.0513	.8592
Iso-Pentane	0.2	3000.	0.0943	.8519
N-Pentane	0.2	2800.	0.1380	.8446
Hexanes	0.4	2600.	0.1867	.8428
Heptanes Plus	0.2	2400.	0.2383	.8446
Hydrogen	· ·	2200.	0.2901	.8471
Helium	_	2000.	0.3431	.8523
Oxeygen	-	1800.	0.3963	.8590
Nitrogen	0.4	1600.	0.4494	.8673
Carbon Monoxide	_	1400.	0.5022	.8774
Carbon Dioxido	2.8	1200.	0.5552	.8921
Hydrogen Sulphide	-	1000.	0.6067	.9076
		800.	0.6567	.9240
		400.	0.7520	.9612
•		100.	0.8187	.9903
Reservoir Temp	erature (° F	')		167.
Reservoir Pres			3	450.
Original Gas I	n Place (10	SCF)	0.	8401
Original Gas F	ormation Vo	olume Factor (SCF/CFT		4.59

Vol. IV Table 12-3-9

ESTIMATING BOTTOM HOLE FLOWING PRESSURE VS. CUMULATIVE PRODUCTION

Production	Rate	(MMSCF/D)
ELOGICATOR	na ce	

	Q=30	Q=20	Q=15	Q=10
Cumulative Production (MMMMSCF)	Bottor	n Hole Flo	wing Press (P	ure SIG)
0.0 0.0018 0.0140 0.0264 0.0392 0.0521 0.0653 0.0788 0.0926 0.1067 0.1229 0.1396 0.1564 0.1737 0.1913 0.2092 0.2278 0.2464 0.2649 0.2835 0.3019	4997. 4967. 4766. 4566. 4365. 4165. 3964. 3764. 3563. 3161. 2959. 2757. 2555. 2353. 2149. 1945. 1740. 1534. 1362.	5008. 4978. 4778. 4577. 4177. 3976. 3575. 3174. 2973. 2772. 2570. 2369. 2167. 1964. 1761. 1557. 1351. 1144.	5013. 4983. 4783. 4583. 4383. 4183. 3982. 3782. 3582. 3381. 2980. 2779. 2578. 2377. 2175. 1973. 1771. 1568. 1364. 1158.	5019. 4989. 4789. 4589. 4188. 3988. 3788. 3588. 3588. 2987. 2786. 2585. 2183. 1982. 1781. 1579. 1376.
0.3206 0.3388 0.3568 0.3745 0.3919	897. 668. 412.	933. 716. 484. 193.	950. 738. 516. 261.	967. 759. 545. 314.

Vol. IV Table 12-3-10
PREDICTED FERFORMANCE CASE 1
CENTRAL LUCONIA E6

WATER (MMSTB)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CUMULATIVE PRODUCTION OIL GAS WAT	5.289	11.310	21.374	39.280	78.055	138.913	221.242	323.841	440.410	569.708	704.523	737.312
CUMULAY OIL (MMSTB)	10.951	21.902	32.854	43.805	53.797	61.667	67.902	72.702	76.620	79.865	82.417	82.958
W.O.R. (STB/STB)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
G.O.R. (SCF/STB)	483	550	919	1635	3880	7733	13206	21376	29764	39847	52841	96509
GAS PROD. RATE (MMSCF/D)	14.49	16.50	27.57	49.06	106.23	166.73	225.56	281.09	319.37	354.24	369.36	359,33
OIL PROD. RATE (MSTB/D)	30.00	30.00	30.00	30.00	27.38	21.56	17.08	13.15	10.73	8.89	66.9	5.93
RECOVERY (8)	4.85	9.69	14.54	19.38	23.80	27.29	30.05	32.17	33.90	35.34	36.47	36.71
RESERVOIR PRESSURE (PSIG)	2628	2595	2552	2493	2392	2267	2082	1881	1637	1406	1136	1082
TIME (YEAR)	1.00	2.00	3.00	4.00	5.00	00.9	7.00	8.00	9.00	10.00	11.00	11.25

Vol. IV Table 12-3-11
PREDICTED PERFORMANCE CASE 2
CENTRAL LUCONIA E6

}	ER TB)															
CTION	WATER (MMSTB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CUMULATIVE PRODUCTION	GAS (MMMSCF)	5.289	11.310	21.374	39.280	78.057	138.913	212.013	285.021	358.029	431.037	504.045	577.052	650.060	723.068	759.572
TIVE	S S S	5	11	21	39	78	138	212	285	358	431	504	577	650	723	759
CUMULA	OIL (MMSTB)	10.951	21.902	32.854	43.805	53.798	61.667	67.344	71.091	73.972	76.343	78.327	80.027	81.469	82.724	83.315
	W.O.R. (STB/STB)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	W.((STB)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ó
	G.O.R. (SCF/STB)	483	550	919	1635	3880	7733	12879	19476	25351	30773	36769	42923	50638	58146	61735
	G.((SCF,				•		•	H	H	2	ñ	ñ	4	ເດັ	Ñ	9
GAS PROD.	RATE (MMSCF/D)	14.49	16.50	27.57	49.06	.24	.73	.27	.02	.02	.02	.02	.02	.02	.02	.02
GAS]	RATE (MMSCF,	14	16	27	49	106.24	166.73	200.27	200.02	200.02	200.02	200.02	200.02	200.02	200.02	200.02
OIL PROD.	RATE (MSTB/D)	30.00	30.00	30.00	00.	.38	.56	.55	.27	7.89	6.50	5.44	4.66	3.95	3.44	3.24
OIL	RATE (MSTB/	30	30	30	30.0	27.38	21.5	15.5	10.2	7	9	5	4	m	М	m
	RECOVERY (%)	4.85	69.6	14.54	19.38	23.80	27.29	29.80	31.46	32.73	33.78	34.66	35.41	36.05	36.60	36.86
	REC.	•		À	Ä	7	7	2	m	m	m	Ċ.	m	m	m	m
RESERVOIR	SURE IG)	2628	2595	2552	2493	2392	2267	2104	1950	1815	1658	1524	1392	1229	9011	1041
RESE	PRESSURE (PSIG)	2	2	7	2	7	2	2	r-i	H	-	H	H	L	ri	-1
	TIME (YEAR)	1.00	2.00	3.00	4.00	5.00	00.9	7.00	8.00	9.00	10.00	11.00	12.00	13.00	14.00	14.50
		1	2	n	4	5	9	7	œ	6	10	11	12	13	14	14

Vol. IV Table 12-3-12
ESTIMATING BOTTOM HOLE FLOWING PRESSURE VS.
CUMULATIVE PRODUCTION

	Prod	Production Rate (MMSCF/D)					
	Q=30	Q=20	Q=15	Q=10			
Cumulative Production (MMMMSCF)	Bottom	Hole Flo	wing Pressu (PS				
0.00	2527.	2533.	2536.	2539.			
0.07	2382.	2388.	2391.	2394.			
0.17	2181.	2187.	2190.	2194.			
0.28	1979.	1986.	1990.	1993.			
0.38	1778.	1785.	1789.	1793.			
0.48	1575.	1584.	1588.	1592.			
0.59	1373.	1382.	1387.	1391.			
0.69	1169.	1179.	1185.	1190.			
0.79	963.	975.	982.	988.			
0.89	754.	770.	777.	785.			
0.98	544.	563.	573.	582.			
1.08	342.	362.	372.	382.			
1.17	135.	160.	171.	182.			
1.21	11.	57.	20.	82.			

Vol. IV Table 12-3-13

ESTIMATING BOTTOM HOLE FLOWING PRESSURE VS. CUMULATIVE PRODUCTION

CENTRAL LUCONIA Ell

	Prod	Production Rate (MMSCF/D)						
	Q=30	Q=20	Q=15	Q=10				
Cumulative Production (MMMMSCF)	Bottom	Hole Flow	ving Pressu (PS	ıre SIG)				
0.00	2839.	2857.	2865.	2873.				
0.10	2749.	2766.	2775.	2783.				
0.34	2546.	2565.	2574.	2583.				
0.58	2344.	2363.	2372.	2382.				
0.83	2140.	2161.	2171.	2181.				
1.08	1936.	1958.	1968.	1979.				
1.34	1730.	1754.	1766.	1777.				
1.59	1523.	1550.	1563.	1575.				
1.84	1314.	1344.	1358.	1372.				
2.09	1100.	1135.	1152.	1168.				
2.34	879.	922.	942.	962.				
2.57	646.	702.	728.	753.				
2.80	410.	483.	515.	545.				
3.03	174.	273.	310.	343.				
3.25		161.	92.	138.				
3.35				21.				

CENTRAL LUCONIA F6

CUMULATIVE PRODUCTION

	Production Rate (MMSCF/D)					
	Q=30	Q=20	Q=15	Q=10		
Cumulative Production (MMMMSCF)	Botton	n Hole Flow		ıre SIG)		
0.00	2094.	2129.	2146.	2163.		
0.53	1893.	1930.	1948.	1966.		
1.09	1683.	1724.	1744.	1763.		
1.64	1471.	1516.	1538.	1559.		
2.18	1254.	1306.	1331.	1355.		
2.73	1029.	1091.	1120.	1148.		
3.26	792.	869.	905.	938.		
3.77	524.	633.	680.	723.		
4.26	205.	389.	452.	507.		
4.73		133.	233.	300.		
5.18				73.		

5.40

Vol. IV Table 12-3-15
ESTIMATING BOTTOM HOLE FLOWING PRESSURE VS.

CUMULATIVE PRODUCTION

	Production Rate (MMSCF/D)						
	Q=30	Q=20	Q=15	Q=10			
Cumulative Production (MMMMSCF)	Bottom	Hole Flowi	ng Pressur (PSI				
0.00	2735.	2812.	2849.	2884.			
0.07	2578.	2658.	2696.	2732.			
0.18	2367.	2451.	2491.	2529.			
0.28	2153.	2243.	2285.	2325.			
0.38	1935.	2033.	2078.	2121.			
0.49	1712.	1819.	1868.	1914.			
0.60	1481.	1601.	1656.	1707.			
0.70	1239.	1378.	1440.	1497.			
0.81	978.	1146.	1218.	1284.			
0.91	671.	896.	985.	1064.			
1.01	175.	611.	733.	835.			
1.11		168.	433.	586.			
1.21				337			
1.30							
1.39			•				
1.43							

Vol. IV *Table 12-3-16
ESTIMATING BOTTOM HOLE FLOWING PRESSURE VS.
CUMULATIVE PRODUCTION

	Production Rate (MMSCF/D)					
	Q=30	Q=20	Q=15	Ω=10		
Cumulative Production (MMMMSCF)	Bottom	n Hole Flow	ring Pressu (PS	ire SIG)		
0.00	2366.	2403.	2420.	2437.		
0.04	2295.	2331.	2349.	2367.		
0.14	2089.	2128.	2147.	2165.		
0.25	1881.	1923.	1943.	1963.		
0.36	1671.	1717.	1738.	1760.		
0.47	1457.	1508.	1532.	1556.		
0.57	1238.	1297.	1324.	1350.		
0.68	1010.	1080.	1112.	1143.		
0.78	767.	855.	895.	932.		
0.89	487.	614.	667.	715.		
0.98	62.	355.	432.	496.		
1.08		38.	204.	287.		
1.17				39.		
1.21						

Vol. IV Table 12-3-17
ESTIMATING BOTTOM HOLE FLOWING PRESSURE VS.
CUMULATIVE PRODUCTION

	Prod	Production Rate (MMSCF/D)					
	Q=30	Q=20	Q=15	Q=10			
Cumulative Production (MMMMSCF)	Bottom	Hole Flo	wing Pressu (PS	ire IIG)			
0.00	2497.	2561.	2504.	2506.			
0.26	2387.	2391.	2393.	2396.			
0.73	2186.	2191.	2193.	2195.			
1.22	1985.	1990.	1993.	1985.			
1.71	1784.	1789.	1792.	1795.			
2.20	1582.	1588.	1591.	1594.			
2.68	1380.	1387.	1390.	1394.			
3.16	1177.	1185.	1189.	1193.			
3.63	973.	982.	987.	991.			
4.09	767.	778.	784.	789.			
4.53	561.	574.	581.	587.			
4.96	359.	373.	380.	387.			
5.36	156.	172.	180.	187.			
5.56	48.	71.	79.	87.			

Vol. IV Table 12-3-18
ESTIMATING BOTTOM HOLE FLOWING PRESSURE VS.
CUMULATIVE PRODUCTION

	Production Rate (MMSCF/D)					
	Q=30	Q=20	Q=15	Q=10		
Cumulative Production (MMMMSCF)	Bottom	Hole Flowi	ng Pressure (PSIC			
0.0	3406.	3421.	3428.	3436.		
0.0091	3356.	3371.	3378.	3386.		
0.0513	3155.	3170.	3178.	3185.		
0.0943	2954.	2970.	2977.	2985.		
0.1380	2753.	2769.	2777.	2785.		
0.1867	2551.	2568.	2576.	2584.		
0.2383	2349.	2366.	2375.	2383.		
0.2901	2146.	2164.	2173.	2182.		
0.3431	1942.	1962.	1972.	1981.		
0.3963	1737.	1759.	1769.	1780.		
0.4494	1530.	1555.	1566.	1578.		
0.5022	1322.	1349.	1362.	1375.		
0.5552	1110.	1141.	1157.	1171.		
0.6067	892.	930.	948.	966.		
0.6567	663.	713.	736.	758.		
0.7052	403.	479.	513.	544.		
0.7520		180.	254.	311.		
0.7969						

(Vol. IV)

Table 13-4-1 OIL AND GAS PRODUCTION RATE

 $\underline{\mathsf{OF}}$

EACH FIELD IN LUTONG STREAM

FIELD	OIL (BPD)	GAS (MMSCFD)	
DIRONTA	40.162	106.1	
BARONIA	49,162	106.1	
FAIRLEY-BARAM	11,705	21.6	
WEST LUTONG	14,333	35.2	
BARAM	30,683	117.4	
BAKAU	5,203	10.5	
TUKAU	13,031	17.6	
TOTAL	124,117	308.4	

NOTE

* AVERAGE PRODUCTION IN MAY, 1976

Table 13-4-2 MAJOR EQUIPMENT SPECIFICATIONS (Vol. IV) OF PRODUCTION STATION BNP-A

SEPARATOR

Name & Tag No.	No.	Type	Size	Design Capacity BPD	Pressure Design/ Operation PSIG
HP Separator V-100 & 101	2	Hori.	72"øx20'	30,000	385/250
LP Separator V-200 & 201	2	ditto	72"øx20'	30,000	125/50
Surge Vessel V-300 & 301	2	ditto	126"øx32'	30,000	85/10
Test Separator V-400	1	Vert.	72"øx20'		385

PUMP

Name & Tag No.	No.	Capacity BPD	Туре	S	eader uction ischa		
Crude Oil Transfer Pump P-801 - 805	5	13,000	Recipro. Gas Expansion Driven		150# 600#	ANSI/ ANSI	

No.	Туре	Voltage volts	Phase	Frequency Hz	Capacity Kw	Speed RPM	Service
1	Gas Expansion Turbine- driven	415	3	50	20	1,500	Lighting, Instr., etc.

Table 13-4-3 MAJOR EQUIPMENT SPECIFICATIONS (Vol. IV) OF PRODUCTION STATION BAP-A

SEPARATOR

Name & Tag No.	No.	Туре	Size	Design Capacity BPD	Pressure Design/ Operation PSIG
HP Separator V-100 & 101	2	Hori.	72"øx20'	30,000	385/250
LP Separator V-200 & 201	2	ditto	72"øx20'	30,000	125/50
Surge Vessel V-300 & 301	2	ditto	126"øx32 '	30,000	85/10
Test Separator V-400	1.	Vert.	72"øx20 '		385

PUMP

Name & Tag No.	No.	Capacity BPD	Туре	Si	eader iction ischar	
Crude Oil Transfer Pump P-801 - 805	5	13,000	Recipro. Gas Expansion Driven		150# 600#	ANSI/ IRNA

No.	Туре	Voltage volts	Phase	Frequency Hz	Capacity Kw	Speed RPM	Service
1	Gas Expansion Turbine- driven	415	3	50	20	1,500	Lighting, Instr., etc.

Table 13-4-4 MAJOR EQUIPMENT SPECIFICATIONS (Vol. IV) OF PRODUCTION STATION BAP-B

SEPARATOR

Name & Tag No.	No.	Туре	Size	Design Capacity BPD	Pressure Design/ Operation PSIG
HP Separator V-100	1	Hori.	72"øx20'	30,000	385/250
LP Separator V-200	1	ditto	72"øx20'	30,000	125/50
Surge Vessel V-300	1	ditto	126"øx32 '	30,000	85/10
Test Separator V-400	1	Vert.	72"øx20'		385

PUMP

Name & Tag No.	No.	Capacity BPD	Туре	Si	eader action ischa	
Crude Oil Transfer Pump P-801 - 803	3		Recipro. Gas Expansion Driven		150# 600#	ANSI/ ANSI

No.	Туре	Voltage volts	Phase	Frequency Hz	Capacity Kw	Speed RPM	Service
1	Gas Expansion Turbine- driven	415	3	50	20	1,500	Lighting, Instr., etc.

Table 13-4-5 MAJOR EQUIPMENT SPECIFICATIONS (Vol. IV) OF PRODUCTION STATION BKP-A

SEPARATOR

Name & Tag No.	No.	Туре	Size	Design Capacity BPD	Pressure Design/ Operation PSIG
HP Separator V-100	1	Hori.	72"øx20 '	30,000	385/250
LP Separator V-200	1	ditto	72"øx20'	30,000	125/50
Surge Vessel V-300	1	ditto	126"øx32 '	30,000	85/10
Test Separator V-400	1	ditto	60"øx15'		385

PUMP

Name & Tag No.	1 00 1 200		Туре	Header Suction/ Discharge			
Crude Oil Transfer Pump P-801 - 803	3	•	Recipro. Gas Expansion Driven		150# 600#	ANSI/ ANSI	

No.	Туре	Voltage volts	Phase	Frequency Hz	Capacity Kw	Speed RPM	Service
1	Gas Expansion Turbine- driven	415	3	50	20	1,500	Lighting, Instr., etc.

Table 13-4-6 MAJOR EQUIPMENT SPECIFICATIONS (Vol. IV) OF PRODUCTION STATION WLP-A

SEPARATOR

Name & Tag No.	No.	Туре	Size	Design Capacity BPD	Pressure Design/ Operation PSIG
HP Separator V-100	1.	Hori.	72"øx20 '	30,000	385/250
LP Separator V-200	1	ditto	72"øx20'	30,000	125/50
Surge Vessel V-300	1	ditto	126"øx32'	30,000	85/10
Test Separator V-400	1	N/A	N/A		385
Gas Lift Separator V-500	1	ditto (instal	36"øx10. Lled on WLDP	?-A)	1,440/950

PUMP

Name & Tag No.	No.	Capacity BPD	Туре	S	eader uctio ischa	
Crude Oil Transfer Pump P-801 - 803	3	13,000	Recipro. Gas Expansion Driven		150# 600#	ANSI/ ANSI

No.	Туре	Voltage volts	Phase	Frequency Hz	Capacity Kw	Speed RPM	Service
1	Gas Expansion Turbine- driven	415	3	50	20	1,500	Lighting, Instr., etc.

(Vol. IV)

Table 13-4-7 MAJOR EQUIPMENT SPECIFICATIONS (Vol. IV) OF PRODUCTION STATION WLP-C

SEPARATOR

Name & Tag No.	No.	Туре	Size	Design Capacity BPD	Pressure Design/ Operation PSIG
HP Separator V-100	1	Hori.	72"øx20 '	30,000	385/250
LP Separator V-200	1	ditto	72"øx20'	30,000	125/50
Surge Vessel V-300	1	ditto	126"øx32'	30,000	85/10
Test Separator V-400	1	Vert.	70"øx20'		385

PUMP

Name & Tag No.	No.	Capacity BPD	Туре	St	eader ictio ischa	
Crude Oil Transfer Pump P-801 - 803	3	13,000	Recipro. Gas Expansion Driven			ANSI/ ANSI

No.	Туре	Voltage volts	Phase	Frequency Hz	Capacity Kw	Speed RPM	Service
1	Gas Expansion Turbine- driven	415	3	50	20	1,500	Lighting, Instr., etc.

Table 13-4-8 (Vol. IV)

MAJOR EQUIPMENT SPECIFICATIONS OF PRODUCTION STATION TKP-A

SEPARATOR

Name & Tag No.	No.	Туре	Size	Design Capacity BPD	Pressure Design/ Operation PSIG
HP Separator V-100	1	Hori.	72"øx20 '	30,000	385/250
LP Separator V-200 &	1	ditto	72"øx20 '	30,000	125/50
Surge, Vessel V-300 &	1	ditto	126"øx32 '	30,000	85/10
Test Separator V-400	1	ditto	60"øx15 '	•	385
Gas Lift Separator V-500	1	ditto	42"øx15 '		1,440/950

PUMP

Name & Tag No.	No.	Capacity BPD	Type	Header Suction/ Discharge
Crude Oil	3 .	13,000	Recipro.	20" 150# ANSI/

Transfer Pump P-801 - 803

Gas Expansion Driven

No.	Туре	Voltage volts	Phase	Frequency Hz	Capacity Kw	Speed RPM	Service
1	Gas Expansion Turbine- driven	415	3	50	20	1,500	Lighting, Instr., etc.

Table 13-4-9 MAJOR EQUIPMENT SPECIFICATIONS (Vol. IV) OF PRODUCTION STATION TKP-B

SEPARATOR

Name & Tag No.	No.	Туре	Size	Design Capacity BPD	Pressure Design/ Operation PSIG
HP Separator V-100	1	Hori.	72"øx20 '	30,000	385/250
LP Separator V-200	1	ditto	72"øx20'	30,000	125/50
Surge Vessel V-300	1	ditto	126"øx32'	30,000	85/10
Test Separator V-400	1	N/A	N/A		385

PUMP

Name & Tag No.	No.	Capacity BPD	Туре	Si	eader action ischar	
Crude Oil Transfer Pump P-801 - 803	3	13,000	Recipro. Gas Expansion Driven		150# 600#	ANSI/ ANSI

No.	Туре	Voltage volts	Phase	Frequency Hz	Capacity Kw	Speed RPM	Service
1	Gas Expansion Turbine- driven	415	3	50	20	1,500	Lighting, Instr., etc.

Table 13-4-10 (Vol. IV)

PRESSURE LOSS AND FLOW VELOCITY IN LOADING LINES FOR BERTH NO. 2

Flow Rate: 13,860 BPH

Max. Velocity in This Section, FT/SEC	7.0	13.9	. 13.7
Pressure Loss PSI	100	76	20
n OT	Manifold Platform	SBM	Hose End
Section	Lutong Terminal	Manifold Platform	SBM

Table 13-4-11 PRE (Vol. IV)

PRESSURE LOSS AND FLOW VELOCITY IN LOADING LINES FOR BERTH NO. 4

Flow Rate Case 1: 13,860 BPH Case 2: 19,530 BPH

Max. Velocity in This Section, FT/SEC Case l Case 2	9.9	6.8	19.4
Max. Veloci Section, Case l	e•3	e.3	13.7
rre Loss PSI Case 2	59	24	41
Pressure Loss PSI Case l Cas	55	13	22
Section	Manifold Platform	SBM	Hose End
Sect	Lutong Terminal	Manifold Platform	SBM

Table 13-4-12 PRELIMINARY CAPITAL INVESTMENT COST (Vol. IV) AND UTILITIES REQUIREMENTS FOR WASH TANK SYSTEM

I. CAPITAL INVESTMENT										
		M\$								
FREE WATER KNOCKOUT	100,000BPD	203,000								
DIRECT FIRED HEATER	100,000BPD	381,000								
WASH TANK	100,000BBLS	2,032,000								
PUMPS		178,000								
PIPING		559,000								
ELECTRICAL EQUIPMENT		279,000								
INSTRUMENT EQUIPMENT		381,000								
	FREE WATER KNOCKOUT DIRECT FIRED HEATER WASH TANK PUMPS PIPING ELECTRICAL EQUIPMENT	FREE WATER KNOCKOUT 100,000BPD DIRECT FIRED HEATER 100,000BPD WASH TANK 100,000BBLS PUMPS PIPING ELECTRICAL EQUIPMENT								

II. UTILITIES REQUIREMENTS

TOTAL

1.	FUEL		MMBTU/HR		
	EQUIVALENT	TO NATURAL	GAS	SCFPD	40,000
2.	ELECTRICAL	POWER		кw	200

4,013,000

<u>Table 14-5-1</u> (Vol. IV)

MAJOR EQUIPMENT LIST

FOR BARONIA OIL FIELD AND B-12 GAS FIELD GAS UTILIZATION-CASE IA

ITEM NO. & NAME	LOCATION	QUANTITY	DESCRIPTION
V - 101 PRODUCTION SEPARATOR	B12WP-A	1	SIZE: 5'-0" I.D. x 15'-0" S-S DESIGN PRESS.: 1,500 PSIG @ 150°F TYPE: HORIZONTAL
V- 102 TEST SEPARATOR	B12WP-A	1	SIZE: 5'-0" I.D. x 15'-0" S-S DESIGN PRESS.: 1,500 PSIG @ 150°F TYPE: HORIZONTAL
V - 103 LIQUID KNOCKOUT DRUM	B12WP-A	2	SIZE: 3'-6" I.D. x 10'-0" S-S DESIGN PRESS.: 1,500 PSIG @ 150°F TYPE: VERTICAL
V ~ 104 GLYCOL CONTACTOR	B12WP~A	1	SIZE: 4'-9" I.D. x 27'-6" S-S DESIGN PRESS.: 1,500 PSIG @ 150°F TYPE: VERTICAL
<u>V - 105</u> CONDENSATE SURGE VESSEL	B12WP-A	1	SIZE: 4'-6" I.D. x 15'-0" S-S DESIGN PRESS.: 1,500 PSIG @ 150°F TYPE: HORIZONTAL
GR - 101 GLYCOL REGENERATOR	B12WP-A	1	REBOILER: 36" DIA. x 17'-6" L STILL COLUMN: 24" DIA. x 11'-0" L SURGE TANK: 36" DIA. x 17'-6" L
<u>H - 101</u> START-UP HEATER	B12WP-A	1	SIZE: 24" DIA. x 7'-6" L
C - 151 INSTRUMENT AIR COMPRESSOR	B12WP-A	2	CAPACITY: 35 SCFM
<u>P - 152</u> FIRE WATER PUMP	B12WP-A	1	CAPACITY: 1,500 GPM TYPE: VERTICAL
TK - 101 CORROSION INHIBITOR TANK	B12WP-A	1	CAPACITY: 20 BBL SIZE: 5'-0" I.D. x 8'-0" H
TK - 102 GLYCOL STORAGE TANK	B12WP-A	1	CAPACITY: 20 BBL SIZE: 5'-0" I.D. x 8'-0" H
M - 101 INLET MANIFOLD	B12WP-A	1	PRODUCTION HEADER AND TEST HEADER
G - 152 GAS TURBINE GENERATOR	Bl2WP-A	2	CAPACITY: 1,000 KVA

CAPITAL INVESTMENT COST ESTIMATION
Table 14-6-1 (Vol. IV)

(M\$ 1,000)

CASE I A	4,145	8,918	25,400		23,899	5,080	34,796	1	1	ļ	63,775	086	608'6	113,027
BARONIA OIL FIELD AND B-12 GAS FIELD GAS UTILIZATION	1. Exploration & Appraisal Wells	2. Engineering	3. Development Wells	4. Facilities	a. Offshore Platforms	b. Offshore Production Equipment	c. Submarine Pipelines	d. Offshore Storage & Loading Facilities .	e. Onshore Terminal & Loading Facilities .	f. Support Facilities	Sub Total	5. Pre-start up Expense	6. Contingencies	TOTAL

(M\$ 1,000/Year)

	CASE I A	48	· ·	1,359	324	69	1,778	3,583		28	1,198	1,226	4,809
BARONIA OIL FIELD AND B-12 GAS FIELD GAS UTILIZATION	Direct Cost	a. Operating Personnel	b. Operating Management	c. Repair & Maintenance	d. Operating Supplies	e. Chemical	f. Service Contract	Sub Total	Indirect Cost	a. Indirect Personnel	b. Insurance	Sub Total	TOTAL
BAF	r -i								2				

Table 14-6-3 (Vol. IV)

INVESTMENT SCHEDULE

CASE I A BARONIA OIL FIELD AND B-12 GAS FIELD GAS UTILIZATION

(M\$ 1,000)

3RD 5,080 966'9 669 8,672 30,808 77,655 25,400 1 ł ı 2ND 4,145 8,918 3,988 281 2,813 35,372 15,227 LST ı ı 1. Exploration & Appraisal Wells 5. Offshore Production Equipment Offshore Storage & Loading Facilities Onshore Terminal & Loading Facilities Year 10. Pre-start up Expense 6. Submarine Pipelines Support Facilities 4. Offshore Platforms 3. Development Wells 11. Contingencies 2. Engineering Total Item ٠ • . ω

TABLE 14-6-4 CASH FLOW TABLE FOR GAS BARONIA OIL FIELD AND 8-12 GAS FIELD GAS

UTILIZATION CASE I A : NATURAL FLOW CASE VOL. IV

PREMISES#

PAGE

						9,01	TOTAL	113027.	296.		20YR TOTAL	113027.	666.	
							10	•	37.	430.0	20	•	37.	430.0
							6	•	37.	430.0	19	•	37.	430.0
							80	•	37.	430.0	18	ò	37.	430.0
YEARS YEARS 10 %	#	P4 P4	34	34 (3000• *		7	•	37.	430.0	17	•	37.	430.0
: 20 YEAR : 2 YEAR : 100.00 %	E N T S	: 10.00 %	: 70.00	30.00 %	: 0.50 % : M\$ 2500000. : 45.00 %		9	•	37.	430.0	16	•0	37.	430.0
	GREEM						ľ	•	37.	430.0	15	·	37.	430.0
	P/S A				9	EAR #	4	•	37.	430.0	14	•	37.	430.0
4P AN Y	M S O F	RATIO		l	FOR RESEARCH FUND	INPUT DATA BY YEAR	m	•	37.	430.0	13	ò	37.	430.0
FE ERIOD OF OIL COV	C T E R	RECOVERY	AK:	Ω.		* INPUT	2	77655.	•	0.0	12	ċ	37.	430.0
PRODUCTION LIFE PRE-STARTUP PERIOD EQUITY RATIO OF OIL COMPANY INTEREST RATE * B A S I C T E R M S ROYALTY RATE MAXIMUM COST RECOVERY RATIO PROFIT GAS SHARE PETRONAS OPERATING COMPANY RATE OF PAYMENT FOR RESEARCH		RATE OF PAYMENT DISCOVERY BONUS INCOME TAX RATE		1	35372.	ů	0.0	11	ò	37.	430.0			
PRG PRE EQU		ROY	D.A.Y.	0	RAT DIS INC		TERM	CAPITAL INVESTMENT (M\$ 1000)	GAS PRODUCTION (MMSCF/DAY)	SALES PRICE OF GAS (M&/MSCF)	ТЕЯМ	CAPITAL INVESTMENT (M\$ 1000)	GAS PRODUCTION (MMSCF/DAY)	SALES PRICE OF GAS (ME/MSCF)

TABLE 14-6-4 CASH FLOW TABLE FOR GAS BARONIA OIL FIELD AND B-12 GAS FIELD GAS

UTILIZATION CASE I A : NATURAL FLOW CASE VOL. 1V

* INPUT DATA BY YEAR *

37. 430.0 ċ 22 430.0 37. ċ 21 TERM SALES PRICE OF GAS (M&/MSCF) CAPITAL INVESTMENT (M\$ 1000) GAS PRODUCTION (MMSCF/DAY)

(CONT'D) PAGE 2

22YR Total

113027.

740.

TABLE 14-6-4 CASH FLOW TABLE FOR GAS BARONIA OIL FIELD AND 8-12 GAS FIELD GAS

VOL.IV UTILIZATION CASE I A : NATURAL FLOW CASE

	*	#	CASH FLOW TABLE (X	FOR Ms]	PETRGNAS *	#				CCON	(CONT'D) PAGE 3
TERM	1	7	m	4	Ŋ	9	7	6 5	ው	10	10YR. TOTAL
1 SALES REVENUE FROM PROFIT GAS	ö	ò	26423.	26423.	26423.	26423.	26423.	26423.	26423.	26423.	211380.
2 BONUS FROM OIL COMPANY DISCOVERY BONUS PRODUCTION BONUS		000	2500. 2500. 0.		000		000	000	000	000	2500. 2500. 0.
3 RESEARCH FUND FROM OIL CO.	0	°	129.	129.	129.	129.	129.	129.	129.	129.	1034.
4 TOTAL CASH INFLOW	0	0	29052.	26552.	26552.	26552.	26552.	26552•	26552.	26552.	214914.
5 INCOME TAX	0	0	13073.	11948.	11948.	11948.	11948.	11948.	11948.	11948.	96711.
6 NET CASH FLOW	ċ	•	15978.	14603.	14603.	14603.	14603.	14603.	14603.	14603.	
7 CUMULATIVE NET CASH FLOW	•	•	15978.	30582.	45185.	.68783	74392.	88996.	103599.	118203.	
TERM	11	12	13	14	15	16	17	18	19	20	20YR. TOTAL
1 SALES REVENUE FROM PROFIT GAS	26423.	26423.	26423.	26423.	26423.	26423.	26423.	26423.	26423.	26423.	475605.
Z BONUS FROM OIL COMPANY DISCOVERY RONUS PRODUCTION BONUS	000	000	000			666	000	000	000		2500. 2500. 0.
3 RESEARCH FUND FROM OIL CO.	129.	129.	129.	112.	81.	81.	81.	81.	81.	81.	2017.
4 TOTAL CASH INFLOW	26552•	26552.	26552•	26534•	26503.	26503.	26503.	26503.	26503.	26503.	480122.
5 INCOME TAX	11948.	11948.	11948.	11940.	11926.	11926.	11926.	11926.	11926.	11926.	216055.
6 NET CASH FLOW	14603.	14603.	14603.	14594.	14577.	14577.	14577.	14577.	14577.	14577.	
7 CUMULATIVE NET CASH FLOW	132806.	147409.	162013.	176607.	191184.	205760.	220337.	234914.	249491.	264067.	

TABLE 14-6-4 CASH FLOW TABLE FOR GAS BARONIA OIL FIELD AND B-12 GAS FIELD GAS

VOL.IV UTILIZATION CASE I A : NATURAL FLOW CASE

* CASH FLOW TABLE FOR PETRONAS * * (X M\$ 1000)

TERM	21	22	22YR. TOTAL
1 SALES REVENUE FROM PROFIT GAS	26423.	26423.	528450.
2 BONUS FROM OIL COMPANY DISCOVERY BONUS		000	2500.
3 RESEARCH FUND FROM DIL CO.	81.	81.	2178•
4 TOTAL CASH INFLOW	26503.	26503.	. 533129.
5 INCOME TAX 11926.	11926.	-	. 239907.
6 NET CASH FLOW	14577.	14577.	
7 CUMULATIVE NET CASH FLOW	278644. 293221.	293221.	

TABLE 14-6-4 CASH FLOW TABLE FOR GAS BARONIA DIL FIELD AND 8-12 GAS FIELD GAS UTILIZATION CASE I A : NATURAL FLOW CASE VOL. IV

*	
Ų	
200	
1	
5	
ć	
;	
ţ	
A MODEL TO CO. C.	
:	
1	

(CONT'D) PAGE 5		2.	\$60 3.	227		39.	16 3. 3.	5.
5-	10	0.63 9187. 88942.	0.40 5905. 68613.	0.27 3871. 54106.	20	0.39 5630. 159804.	0.16 2273. 104863.	0.07 955. 73517.
	6	0,66 9646. 79755.	0.44 6496. 62708.	0.30 4452. 50235.	19	0.41 5911. 154174.	0.17 2500. 102590.	0.08 1098. 72562.
	6 0	0.69 10128. 70109.	0.49 7145. 56213.	0.35 5119. 45784.	18	0.43 6207. 148263.	0.19 2750. 100091.	0.09 1263. 71464.
	-	0.73 10635. 59981.	0.54 7860. 49068.	0.40 5887. 40664.	11	0.45 6517. 142057.	0.21 3025. 97341.	0.10 1453. 70201.
# #	ø	0.76 11166. 49346.	0.59 8646. 41208.	0.46 6770• 34777•	16	0.47 6843. 135540.	0.23 3327. 94316.	0.11 1671. 68748.
PETRONAS 1000)	w	0.80 11725. 38179.	0.65 9510, 32562,	0.53 7786. 28006.	15	0.49 7185. 128697.	0.25 3660. 90989.	0.13 1921. 67078.
PRESENT WORTH OF NET CASH FLOW FOR PETRONAS (X M\$ 1000)	4	0.84 12311. 26455.	0.72 16461. 23052.	0.61 8954. 20220.	14	0.52 7553. 121512.	0.28 4031. 87329.	0.15 2212. 65157.
NET CASH	M	0.89 14144. 14144.	0.79 12591. 12591.	0.71 11267. 11267.	13	0.54 7936. 113959.	0.30 4437. 83298.	0.17 2545. 62945.
WORTH OF	2	0.93 0. 0.	0.87 0. 0.	0.81 0.	12	0.57 8333. 106024.	0•33 4880• 78862•	0.20 2927. 60400.
PRESENT	.	0.98	0.95	0.93 0.	11	0.60 8749. 97691.	0.37 5368. 73982.	0.23 3366. 57473.
# # # # # # # # # # # # # # # # # # #	TERM	PRESENT WORLD 5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	TERM TERM	5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH

TABLE 14-6-4 CASH FLOW TABLE FOR GAS BARONIA OIL FIELD AND B-12 GAS FIELD GAS

UTILIZATION CASE I A : NATURAL FLOW CASE VOL.IV

(CONT'D) PAGE 6					
PRESENT WORTH OF NET CASH FLOW FOR PETRONAS * * { X M\$ 1000}	22		0.35 5106. 170272.	0.13 1878. 108807.	0.05 722. 75070.
PRESENT !	21		0.37 5362. 165166.	0.14 2066. 106929.	0.06 831. 74348.
*	TERM	PRESENT WORTH	5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH

TABLE 14-6-4 CASH FLOW TABLE FOR GAS BARGNIA OIL FIELD AND B-12 GAS FIELD GAS VOL.IV UTILIZATION CASE I A: NATURAL FLOW CASE

* * CASH FLOW TABLE FOR OPERATING COMPANY * * (X M* 1000)

(CONT'D)

TERM		2	m	4	īv	· 9	~	æ	6	10	10YR. TOTAL
1 SALES REVENUE FROM PROFIT GAS	•	ċ	11324.	11324.	11324.	11324.	11324.	11324.	11324.	11324.	90592•
2 SALES REVENUE FROM COST GAS	ċ	ò	14518.	14518.	14518.	14518.	14518.	14518.	14518.	14518.	116143.
3 SALES REVENUE FROM ROYALTY GAS	•	•	5807.	5807.	5807.	5807.	5807.	5807.	5807.	5807.	46457.
4 TOTAL CASH INFLOW	.	0	31649.	31649.	31649.	31649.	31649.	31649.	31649.	31649.	253192.
5 ROYALTY	0	0.	5807.	5807.	5807.	5807.	5807.	5807.	5807.	5807.	46457.
6 BONUS DISCOVERY BONUS	ċ ċ	• • •	2500.	• •	••			••	00	00	2500 . 2500.
7 RESEARCH FUND TO PETRONAS	ô	ò	129.	129.	129.	129.	129.	129.	129.	129.	1034.
OPERATING EXPENSES B OPERATING COST CAPITAL COST RECOVERY		000	14518. 4809. 9709.	116143. 38472. 77671.							
INCOME BEFORE TAX	ó	ò	8695.	11195.	11195.	11195.	11195.	11195.	11195.	11195.	87058.
9 INCOME TAX	0	ò	3913.	5038.	5038.	5038.	5038.	5038.	5038.	5038.	39176.
10 CAPITAL INVESTMENT	35372.	77655.	0	ò	0	0	•	•	ò	•0	113027.
11 TOTAL CASH OUTFLOW	35372•	77655.	17158.	15783.	15783.	15783.	15783.	15783.	15783.	15783.	240666.
12 NET CASH FLOW	-35372•	-77655.	14491.	15866.	15866.	15866.	15866.	15866.	15866.	15866.	
13 CUMULATIVE NET CASH FLOW	-353721130	-113027.	-98536.	-82670.	-66804.	-50938.	-35072.	-19206-	-3340•	12526.	
14 OCF ROR OF NET CASH FLOW (%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.21	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
15 CORPORATE CAPITAL	35372.	77655.	ó	ö	ċ	ċ	•0	o	ò	•	113027.
16 INTEREST	ò	•	•	ċ	ö	ö	ò	•	•	ô	•
17 BANK BORROWING	ö	•	o	•	ċ	•	•0	•	ċ	٥.	ċ
18 REPAYMENT	ö	•	ė	•0	ö	•	°	•	•	•	•
19 BORROWING BALANCE	0	0	•0	0	0	0.	•0	0	0.	0	
20 PAYOUT TIME 9.2 YEARS											

TABLE 14-6-4 CASH FLOW TABLE FOR GAS BARONIA OIL FIELD AND B-12 GAS FIELD GAS VOL.IV UTILIZATION CASE I A: NATURAL FLOW CASE

* * CASH FLOW TABLE FOR OPERATING COMPANY * *
(X M\$ 1000)

(CONT'D) PAGE 8

o 0 TOTAL ċ 86562. 113027. 113027. 203831. 2500. 2017. .99589. 199313. 104529. 89691. 113027. 398325. 199588, 507949, 104529. ċ 11243. 15756. 9.67 5807. 6184. ċ ċ ċ ċ ö 5807. 00 4809 4809. 5059. 11324. 4809 81. 109623. 21940 20 6,49 6184. 103439. ċ 5807. 5807. 00 15756. ö Ö ö 11324. 4809 4809 4809 11243. 5059. ċ o 21940. 83 67.6 6184. 5807. 11243 4809. 5807. 00 81. 4809 5059. ċ 97255. ö o ċ o ò 15756. 11324. 21940. 4809 18 6184. 9.07 5807. 00 81, 4809. ċ 15756. 91071. ö ċ o o 5807. 11243. 5059 11324. 4809. 21940. 17 6184. 8.81 5807. 4809. ċ 15756. 84888 ċ ċ ċ ċ 4809. 5807. . . 11243. 5059. 81. 4809 21940. 16 5807. ċ 15756. 6184. 8.51 ċ ċ ċ 11243. 78704. o ċ o ċ 4809 4809 21940. 81. 5059 11324. 4809 5807. 8.16 5807. 12396. ö . . 112. ċ 72520. ċ ò ò ö 11324. 4809. 11212 5045 15773. 11039. 28170. 5807. 6230 11039. 14 7.35 11195. 5038. 5807. o 5807. 129. ċ 15866. 60124. ċ ċ ċ 31649. 00 4809. 9709. 15783. o 11324. 4518, 14518. 5 6.05 5807. 129. 5038. ċ ċ ċ ċ ċ . · 15783. 15866. 44258. 14518. 31649. 5807. 14518. 4809 9709. 11195. 11324. 12 4.39 129. 5038. 5807. ċ 15783. ់ ċ ċ 5807. 14518. 11195. 15866. 28392 ċ 31649. . . 4809. 9709. 11324. 14518. : 3 SALES REVENUE FROM ROYALTY GAS 1 SALES REVENUE FROM PROFIT GAS 14 DCF ROR OF NET CASH FLOW (%) TERM SALES REVENUE FROM COST GAS RESEARCH FUND TO PETRONAS 13 CUMULATIVE NET CASH FLOW OPERATING COST CAPITAL COST RECOVERY OPERATING EXPENSES 11 TOTAL CASH OUTFLOW 10 CAPITAL INVESTMENT 19 BORROWING RALANCE 4 TOTAL CASH INFLOW 15 CORPORATE CAPITAL INCOME REFORE TAX DISCOVERY BONUS 17 BANK BORROWING 12 NET CASH FLOW 9 INCOME TAX 18 REPAYMENT 16 INTEREST 5 ROYALTY 6 RONUS Œ

20 PAYOUT TIME 9.2 YEARS

TARLE 14-6-4 CASH FLOW TABLE FOR GAS BARONIA DIL FIELD AND B-12 GAS FIELD GAS VOL.IV UTILIZATION CASE I A: NATURAL FLOW CASE

* * CASH FLOW TABLE FOR OPERATING COMPANY * * (x Ms 1000)

TERM	21	22	Z2YR. TOTAL
1 SALES REVENUE FROM PROFIT GAS	11324.	11324.	226479.
2 SALES REVENUE FROM COST GAS	4809.	4809.	209206•
3 SALES REVENUE FROM ROYALTY GAS	5807.	5807.	116143.
4 TOTAL CASH INFLOW	21940.	21940.	. 551829.
5 ROYALTY	5807.	5807.	116143.
6 RONUS DISCOVERY BONUS	••		2500.
7 RESEARCH FUND TO PETRONAS	81.	81.	2178.
NPERATING EXPENSES 8 OPERATING COST CAPITAL COST RECOVERY	4809. 4809. 0.	4809. 4809. 0.	209207. 96180. 113027.
INCOME BEFORE TAX	11243.	11243.	221800•
9 INCOME TAX	5059.	5059.	99810.
10 CAPITAL INVESTMENT	ò	•	113027.
11 TOTAL CASH OUTFLOW	15756.	15756.	429838.
12 NET CASH FLOW	6184.	6184.	
13 CUMULATIVE NET CASH FLOW	115806.	121990.	
14 DCF ROR OF NET CASH FLOW (%)	9.82	96*6	
15 CORPORATE CAPITAL	ċ	ċ	113027.
16 INTEREST	ô	•0	•0
17 BANK BORROWING	ė	0	•0
18 REPAYMENT	ċ	•	•0
19 BORROWING RALANCE	0	0	
20 PAYOUT TIME 9.2 YEARS			

TABLE 14-6-4 CASH FLOW TABLE FOR GAS BARONIA OIL FIELD AND B-12 GAS FIELD GAS UTILIZATION CASE I A : NATURAL FLOW CASE VOL. IV

8	
COMPANY	
PRESENT WORTH OF NET CASH FLOW FOR OPERATING COMPANY	M\$ 1000)
FOR	×
FLOW	
CASH	
NET	
븀	
WORTH	
PRESENT	
#	

TERM	-	2	W	4	ß	9	7	æ	6	10
PRESENT WORTH 5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.98	0.93	0.89	0.84	0.80	0.76	0.73	0.69	0.66	0.63
	-34520.	-72175.	12827.	13375.	12738.	12132.	11554.	11004.	10480.	9981.
	-34520.	-106694.	-93867.	-80492.	-67754.	-55622.	-44067.	-33064.	-22584.	-12603.
	0.95	0.87	0.79	0.72	0.65	0.59	0.54	0.49	0.44	0.40
	-33726.	-67310.	11419.	11366.	10332.	9393.	8539.	7763.	7057.	6416.
	-33726.	-101036.	-89617.	-78252.	-67919.	-58526.	-49987.	-42224.	-35167.	-28751.
15.00% DISCOUNT RATE	0.93	0.81	0.71	0.61	0.53	0.46	0.40	0.35	0.30	0.27
PRESENT WORTH	-32985.	-62968.	10218.	9728.	8459.	7356.	6396.	5562-	4837.	4206.
CUMULATIVE PRESENT WORTH	-32985.	-95953.	-85735.	-76007.	-67548.	-60192.	-53796.	-48234-	-43397.	-39192.
TERM	11	12	E #	14	15	16	17	18	19	20
PRESENT WORTH 5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.60	0.57	0.54	0.52	0.49	0.47	0.45	0.43	0.41	0.39
	9506.	9053.	8622.	6416.	3048.	2903.	2765.	2633.	2508.	2388.
	-3097.	5956.	14578.	20994.	24042.	26945.	29709.	32342.	34850.	37238.
10.00% DISCOUNT RATE	0.37	0.33	0.30	0.28	0.25	0.23	0.21	0.19	0.17	0.16
PRESENT WORTH	5832.	5302.	4820.	3424.	1553.	1411.	1283.	1167.	1060.	964.
CUMULATIVE PRESENT WORTH	-22919.	-17617.	-12797.	-9373.	-7820.	-6409.	-5126.	-3959.	-2899.	-1935.
15.00% DISCOUNT RATE	0.23	0.20	0.17	0.15	0.13	0.11	0.10	0.09	0.08	0.07
PRESENT WORTH	3657.	3180.	2765.	1879.	815.	709.	616.	536.	466.	405.
CUMULATIVE PRESENT WORTH	-35534.	-32354.	-29589.	-27710.	-26895.	-26187.	-25570.	-25034.	-24568.	-24163.

TABLE 14-6-4 CASH FLOW TABLE FOR GAS BARONIA OIL FIELD AND B-12 GAS FIELD GAS VOL.IV UTILIZATION CASE I A: NATURAL FLOW CASE

* * PRESENT WORTH OF NET CASH FLOW FOR OPERATING COMPANY * * (X M\$ 1000)

				15.00% DISCOUNT RATE 0.06 0.05 PRESENT WORTH 352. 306. CUMULATIVE PRESENT WORTH -2381123505.
22		0.35 2166. 41679.		0.05 306. -23505.
21		0.37 2274. 39512.	0.14 876. -1058.	0.06 0.05 352. 306. -2381123505.
TERM	PRESENT WORTH	5.00% DISCOUNT RATE 0.37 PRESENT WORTH 2274. CUMULATIVE PRESENT WORTH 39512. 4	10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH

<u>Table 15-5-1</u> (Vol. IV)

MAJOR EQUIPMENT LIST

FOR BETTY AND BOKOR OIL FIELDS-CASE I

ITEM NO. & NAME	LOCATION	QUANTITY	DESCRIPTION
V - 1 1ST STAGE PRODUCTION SEPARATOR	BTWP-A	1	SIZE: 5'-6" I.D. x 16'-6" S-S DESIGN PRESS.: 300 PSIG @ 150°F TYPE: HORIZONTAL
	BOWP-A	1	SIZE: 4'-0" I.D. x 12'-0" S-S DESIGN PRESS.: 300 PSIG @ 150°F TYPE: HORIZONTAL
<u>V - 2</u>	BTWP-A	1	SIZE: 5'-6" I.D. x 16'-6" S-S DESIGN PRESS.: 100 PSIG @ 150°F TYPE: HORIZONTAL
2ND STAGE PRODUCTION SEPARATOR	BOWP-A	1	SIZE: 4'-0" I.D. x 12'-0" S-S DESIGN PRESS.: 100 PSIG @ 150°F TYPE: HORIZONTAL
<u>v - 3</u>	BTWP-A	1	SIZE: 12'-0" I.D.x 24'-0" S-S DESIGN PRESS.: 50 PSIG @150°F TYPE: HORIZONTAL
3RD STAGE PRODUCTION SEPARATOR	BOWP-A	1	SIZE: 9'-0" I.D. x 18'-0" S-S DESIGN PRESS.: 50 PSIG @ 150°F TYPE: HORIZONTAL
<u>V - 4</u> TEST SEPARATOR	BTWP-A BOWP-A BOW-A BOW-B	1 1 1	SIZE: 3'-6" I.D. x 10'-0" S-S DESIGN PRESS.: 300 PSIG @ 150°F TYPE: HORIZONTAL
C - 151 INSTRUMENT AIR COMPRESSOR	BTWP-A BOWP-A	2 2	CAPACITY: 35 SCFM
P - 2	BTWP-A	2	CAPACITY: 470 GPM TYPE: HORIZONTAL
CRUDE TRANSFER PUMP	BOWP-A	2	CAPACITY 150 GPM TYPE: HORIZONTAL
P - 152 FIRE WATER PUMP	BTWP-A BOWP-A	1	CAPACITY: 1,500 GPM TYPE: VERTICAL
TK - 1 DEEMULSIFIER TANK	BTWP-A BOWP-A	1	SIZE: 6'-0" I.D. x 15'-6" H
<u>TK - 2</u> DEFOAMANT TANK	BTWP-A BOWP-A	1	SIZE: 6'-0" I.D. x 15'-6" H
TK - 152 DIESEL STORAGE TANK	BTWP-A BOWP-A	1	CAPACITY: 500 BBL SIZE: 15'-6" I.D. x 16'-0" H
M - 1 INLET MANIFOLD	BTWP-A BOWP-A	1	HIGH PRESSURE HEADER LOW PRESSURE HEADER TEST HEADER
G - 151 DIESEL DRIVEN GENERATOR	BTWP-A BOWP-A	2 2	CAPACITY: 300 KVA
<u>FM - 1</u>	BTWP-A	1	DESIGN RATE: 500 GPM (MAX.)
FLOW METER	BOWP-A	1	DESIGN RATE: 180 GPM (MAX.)

Table 15-6-2 (Vol.IV)

BETTY AND BOKOR OIL FIELDS CASE I

1 Diment Cont	1	2		4	5	6	7	8	9
1. Direct Cost			3					0	
a. Operating Personnel b. Operating Management c. Repair & Maintenance d. Operating Supplies e. Chemical				607 61 3,772 617 843	607 61 3,772 617 792	607 61 2,896 473 620	607 61 2,019 328 399	607 61 2,019 328 279	455 46 1,514 246 15
f. Service Contract Sub Total				2,159 8,059	2,159 8,008	2,159 6,816	1,778 	1,778 	1,334 ———————————————————————————————————
2. Indirect Cost a. Indirect Personnel b. Insurance				335 2,903	335 2,903	335 2,229	335 1,554	335 1,554	251 1,166
Sub Total				3,238	3,238	2,564	1,889 7,081	1,889	1,417 5,027

Table 15-6-3 (Vol.IV)

BETTY AND BOKOR OIL FIELDS CASE II

		1	2	3	4	.5	6	7	8	9
1.	Direct Cost									
	a. Operating Personnel				490	490	490	490	490	368
	b. Operating Management				49	49	49	49	49	37
	c. Repair & Maintenance				2,019	2,019	2,019	2,019	2,019	1,514
	d. Operating Supplies				328	328	328	328	328	246
	e. Chemical				632	589	544	399	279	15
	f. Service Contract				1,778	1,778	1,778	1,778	1,778	1,334
	Sub Total		,		5,296	5,253	5,208	5,063	4,943	3,514
2.	Indirect Cost									
	a. Indirect Personnel				269	269	269	269	269	202
	b. Insurance] 	1,554	1,554	1,554	1,554	1,554	1,166
	Sub Total				1,823	1,823	1,823	1,823	1,823	1,368
	TOTAL				7,119	7,076	7,031	6,886	6,766	4,882

(M\$ 1,000)													
	3RD	1	1	65,789	10,803	1,232	22,029	-	1	479	666	9,985	110,837
	ZND	1	i e	10,754	44,412	5,438	-	_	1	-	909	6,060	67,270
CASE I	lst	26,711	16,830	ŀ	6,568	1,270	•	-	•		247	2,467	54,093
BETTY AND BOKOR OIL FIELDS CA	Year	1. Exploration & Appraisal Wells	2. Engineering	3. Development Wells	4. Offshore Platforms	5. Offshore Production Equipment	6. Submarine Pipelines	7. Offshore Storage & Loading 7. Facilities	Onshore Terminal & Loading Facilities	9. Support Facilities	10. Pre-start up Expense	11. Contingencies	Total

(M\$ 1,000)

BETTY AND BOKOR OIL FIELDS CASE II

5,270 527 58,496 42,255 10,444 ı ı 1 333 298 2,713 2,985 16,383 33,133 10,754 ı ı ı ŀ 1 2ND 1,686 6,568 1,257 168 9,037 30,537 11,821 1STı 1 1. Exploration & Appraisal Wells 5. Offshore Production Equipment Onshore Terminal & Loading Facilities Offshore Storage & Loading Facilities Year 10. Pre-start up Expense 6. Submarine Pipelines 9. Support Facilities 4. Offshore Platforms 3. Development Wells 11. Contingencies Total 2. Engineering Item ω.

** ECONOMICANA TECANOMICANA TECTET SECTIONA TO THE TOTAL TO THE TOTAL TO THE TOTAL TOTAL TO THE TOTAL TOTAL TO THE TOTAL TOTAL

TABLE 15-6-6 CASH FLOW TABLE FOR OIL BETTY AND BOKOR OIL FIELDS

VOL.IV CASE 1 : BETTY & BOKOR, BAKAU GATHERING SYSTEM CASE

PAGE

Ms 32.31 /88L 5.00 % 70.00 % YEARS 6 YEARS 70.00 # 30.00 # 0.50 # : 100.00 % : 8.00 % 10.00 S L N ш Σ DECEMBER OF THE SECULATION FOR PROFIT OIL AROVE BASIC PRICE PRODUCTION BONUS ABOVE 500008BL/DAY u AGRE P/S S ш ш * PREMIS 0 ROYALTY RATE
MAXIMUM COST RECOVERY RATIO
PROFIT OIL SHARE
PETRONAS
OPERATING COMPANY EQUITY RATIO OF DIL COMPANY S Σ œ ш BASICT PRE-STARTUP PERIOD PRODUCTION LIFE INTEREST RATE Ħ

136. 31.95 ċ 52.63 σ 2467. 31.95 ċ 50.12 31.95 47.74 ċ 3526. 31.88 45.46 5456. ċ 31.70 43,30 ċ 6972. 7421. 31.70 41.24 ċ 39.27 ċ 110837. 0.0 m 67270. · 37,40 0.0 N 54093 ċ 35.62 0.0 TERM CAPITAL INVESTMENT (MS 1000) SALES PRICE OF OIL (M\$/BRL) MASIC PRICE OF OIL (MS/BBL) DIL PRODUCTION (M BBL/YEAR)

DISCOVERY BONUS INCOME TAX RATE

TOTAL

9YR

M\$ 5000000. M\$ 2500000. 45.00 % 25978.

232200

TARLE 15-6-6 CASH FLOW TABLE FOR OIL BETTY AND BOXOR OIL FIELDS

VOL.1V CASE I : BETTY & BOKOR, BAKAU GATHERING SYSTEM CASE

* * CASH FLOW TABLE FOR PETRONAS * *

TERM	. ш	2	м	4	īV	9	-	œ	6	9YR. TOTAL
1 SALES REVENUE FROM PROFIT OIL	°	0	ò	115270.	108296.	85229.	55201.	38622.	2129.	404748.
2 REVENUE FROM OIL RASIC PRICE	•	•0	ċ	•	0	•	0	ö	°	0
3 ROMUS FROM OIL COMPANY DISCOVERY BONUS	• •	•••	00	2500.	00	000	00	000	000	2500.
PRODUCTION BONUS 4 RESEARCH FUND FROM OIL CO.	• •			482.	453.	357.	0. 231.	162•	o o	0. 1693.
5 TOTAL CASH INFLOW	•0	•0	•0	118253.	108749.	85586•	55432•	38784.	2138.	408941
6 INCOME TAX	•0	•0	ó	53214.	·		24945.		962.	184023.
7 NET CASH FLOW	•0	•0	•	65039		47072.	30488.	59812, 47072, 30488, 21331, 1176,	1176.	
R CUMULATIVE NET CASH FLOW	ó	•	•	62039.	65039. 124851.		202411.	171923. 202411. 223742.	224918.	

TABLE 15-6-6 CASH FLOW TABLE FOR OIL BETTY AND BOKOR OIL FIELDS VOL.IV CASE I : BETTY & BOKOR, BAKAU GATHERING SYSTEM CASE

* * PRESENT WORTH OF NET CASH FLOW FOR PETRONAS * * (x M\$ 1000)

	•		
. 6	0.66	0.44	0.30
	777.	523.	358.
	176618.	140779.	113718.
80	0.69	0.49	0.35
	14794.	10437.	7478.
	175841.	140256.	113360.
7	0.73	0.54	0.40
	22202.	16409.	12291.
	161047.	129819.	105882.
9	0.76	0.59	0.46
	35994.	27868.	21824.
	138844.	113410.	93591.
'n	0.80	0.65	0.53
	48022.	38951.	31890.
	102851.	85542.	71767.
4	0.84	0.72	0.61
	54829.	46591.	39878.
	54829.	46591.	39878.
m	0.89 0.0	0.79	0.71 0. 0.
7	0.93 0.	0.87	0.81 0.
	0.98	0.95	0.93
TERM	PRESENT WORTH 5.00% DISCOUNT RATE PRESENT WORTH CHANG ATTAC DESCENT MODITH	-	15.00% DISCOUNT RATE 0.93 PRESENT WORTH 0.

TABLE 15-6-6 CASH FLOW TABLE FOR OIL BETTY AND BOKOR OIL FIELDS VOL. IV CASE I: BETTY A BOKOR, BAKAU GATHERING SYSTEM CASE

* CASH FLOW TABLE FOR OPERATING COMPANY #

TERM		2	m	4	īv	. 9	~	ω	6	9YR. TOTAL
1 SALES REVENUE FROM PROFIT OIL	ò	•	•0	49402.	46413.	36527.	23658.	16552.	912.	173463.
2 SALES REVENUE FROM COST DIL	ċ	0	°°	47049.	44202•	34787.	22531.	15764.	869.	165203.
3 SALES REVENUE FROM ROYALTY OIL	•0	0	0*	23525.	22101.	17394.	11266.	7882.	435.	82602.
4 TOTAL CASH INFLOW	ó	0.	•	119975.	112716.	88708.	57454.	40199.	2216.	421268.
5 ROYALTY	0.	0.	•	23525.	22101.	17394.	11266.	7882.	435.	82602
6 PAYMENT FOR OIL BASIC PRICE	•	•	•	ò	6	•	•	•	•	0.
7 BONUS DISCOVERY BONUS PRODUCTION PONUS	000	000	000	2500• 2500• 0•	•••	000	000	000		2500. 2500. 0.
8 RESEARCH FUND TO PETRONAS	ċ	0	•0	482.	453.	357.	231.	162.	۶.	1693.
nperating expenses (Ms/RRL) 9 OPERATING COST CAPITAL COST RECOVERY	0000	0000	0000	47049. 6.34 11297. 35752.	44202. 6.34 11246. 32956.	34787. 6.38 9380. 25407.	22531. 6.39 7081. 15450.	15764. 6.39 6961. 8803.	5027. 36.96 5027.	169361. 6.52 50992. 118369.
INCOME REFORE TAX	¢	ò	·	46419.	45960.	36170.	23427.	16391.	*+06	169270.
10 INCOME TAX	•0	Ö	•	20889.	20682.	16277.	10542.	7376.	407.	76171.
11 CAPITAL INVESTMENT	54093.	67270.	110837.	ô	•	0	•	ċ	ċ	232200.
12 TOTAL CASH OUTFLOW	54093	67270.	110837.	58693.	54482.	43407.	29120.	22380.	5877.	446158-
13 NET CASH FLOW	-54093•	-67270.	-110837.	61283.	58234.	45301.	28335.	17818.	-3661.	
14 CUMULATIVE NET CASH FLOW	-54093*	-121363.	-232200.	-170917.	-112683.	-67382.	-39047.	-21229.	-24890.	
15 DCF ROR OF NET CASH FLOW (%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
16 CORPORATE CAPITAL	54093.	67270.	110837.	ô	ò	ò	ó	ô	•	232200.
17 INTEREST	ô	ö	•0	•	ò	•0	0	ô	146.	146.
18 BANK BURROWING	0	0.	.0	•	ö	•0	6	•0	3807.	3807.
19 REPAYMENT	•0	o	0	0	•	°	ċ	·	°	•
20 BORROWING RALANCE	•	0	0	0	•0	0.	•0	•0	3807.	
21 PAYOUT TIME 0.0 YEARS										•

TABLE 15-6-6 CASH FLOW TABLE FOR OIL BETTY AND BOKOR OIL FIELDS

VOL.IV CASE I : BETTY & BOKOR, BAKAU GATHERING SYSTEM. CASE

* * PRESENT WORTH OF NET CASH FLOW FOR OPERATING COMPANY * *
(X M\$ 1000)

ø		0.66 -2418. -49791.	0.44 -1628. -66239.	0.30 -1116. -76962.
æ		0.69 12358. -47373.	0.49 8718. -64611.	0.35 6246. -75846.
4		0.73 20634. -59730.	0.54 15250. -73329.	0.40 11423. -82093.
•		0.76 34639. -80365.	0.59 26819. -88579.	0.46 21003. -93516.
'n		0.80 46755. -115004.	0.65 37924. -115398.	0.53 31048. -114518.
4			0.72 43900. -153322.	0.61 37575. -145567.
W		0.93 0.89 0.84 -6252398110. 51663. -115312213422161759.	0.79 -87338. -197222.	0.71 -78152. -183141.
2		0.93 -62523. -115312.	0.87 -58309. -109884.	0.81 -54547. -104989.
Ħ		0.98 -52789. -52789.	0.95 -51576. -51576.	0.93 -50442. -50442.
TERM	PRESENT WORTH	5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	10.00% DISCOUNT RATE 0.95 PRESENT WORTH CUMULATIVE PRESENT WORTH -51576.	15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH

TABLE 15-6-7 CASH FLOW TABLE FOR DIL BETTY AND BOKOR DIL FIELDS

CASE
SYSTEM
GATHERING
BAKAU
BETTY,
••
11
CASE 11
VOL.1V

CASE
SYSTEM
GATHERING
BAKAU
BETTY,
••
ΙΙ
CASE
L•1V

PREMISES

PAGE 1

: 6 YEARS : 3 YEARS : 100.00 % : 8.00 %	ENTS #	10.00 % 20.00 % 10.00 % 10.50 % 10.50 % 10.50 % 10.50 % 10.00 % 10.50 % 10.00 % 10.50
PRODUCTION LIFE PRE-STARTUP PERIOD EQUITY RATIO OF OIL COMPANY INTEREST RATE	* BASIC TERMS OF P/S AGREEMENTS	ROYALTY RATE MAXIMUM COST RECOVERY RATIO PROFIT OIL SHARE PETRONAS OPERATING COMPANY RATE OF PAYMENT FOR RESEARCH FUND INITIAL BASIC PRICE (AT 1976 BASE) RATE OF INCREASE FOR BASIC PRICE RATE OF PAYMENT FOR PROFIT OIL ABOVE BASIC PRICE PRODUCTION BONUS ABOVE 5000088L/DAY DISCOVERY BONUS INCOME TAX RATE

•	Q.
1	YEAK
:	<u>~</u>
	DAIA
	INPUL
	Ē

9YR TOTAL

TERM	1	23	m	4	2 3 4 5 6 7 8 9	•	7	æ	6	97K TOTAL
CAPITAL INVESTMENT (M\$ 1000)	30537.	33133.	58496.	•	ò	•	•	ċ	°	122166.
OIL PRODUCTION (M BBL/YEAR)	•0	•	•0	5595.	5206.	4805.	3526.	2467.	136.	21735.
SALES PRICE OF DIL (M\$/BBL)	0.0	0.0	0.0	31,95	31.95	31,95	31.95	31.95	31.95	
BASIC PRICE OF DIL (M\$/BBL)	35.67	37.40	39.27	41.24	43.30	45.46	47.74	50.12	52.63	

TABLE 15-6-7 CASH FLOW TABLE FOR OIL BETTY AND BOKOR OIL FIELDS

VOL.IV CASE II : BETTY, BAKAU GATHERING SYSTEM CASE .

* * CASH FLOW TABLE FOR PETRONAS * *

(X M\$ 1000)

TERM	1	8	m	4	5	9	~	ω	œ	9YR. TOTAL
1 SALES REVENUE FROM PROFIT OIL	ċ	°	ö	87593.	81503.	75225.	55201.	38622•	2129.	340272.
2 REVENUE FROM OIL BASIC PRICE	•	•	ö	0	0	•	0	•	•0	•0
3 BONUS FROM DIL COMPANY DISCOVERY BONUS PRODUCTION BONUS	666	666	000	2500. 2500.	000	000	000	000	.	2500.
4 RESEARCH FUND FROM OIL CO.	•			366.	341.	315.	231.	162.	. 6	1424.
5 TOTAL CASH INFLOW 0.	•0	•	0	90459.	81843.	75539.			2138.	344196.
6 INCOME TAX 0.	0	ō	ö	40707.	36830.	33993.	24945.	17453.	.296	154888.
7 NET CASH FLOW	ö	•	•0	49752.	45014.	41547.	30488.	21331.	1176.	
B CUMULATIVE NET CASH FLOW	•	•	•	49752.	94766.	136313.	166801.	188132.	189308.	

TABLE 15-6-7 CASH FLOW TABLE FOR OIL BETTY AND BOKOR OIL FIELDS

VOL.IV CASE II : BETTY, BAKAU GATHERING SYSTEM CASE :

(CONT'D) PAGE 3				
	ø	0.66 777. 147625.	0.44 523. 116920.	0.30 358. 93894.
	ω	0.69 14794. 146848.	0.49 10437. 116397.	0.35 7478. 93536.
	۲	0.73 22202: 132054.	0.54 16409. 105960.	0.40 12291. 86058.
# #	9	0.76 31768. 109851.	0.59 24597. 89551.	0.46 19262. 73767.
PETRONAS 1000)	'n	0.80 36141. 78083.	0.65 29314. 64955.	0.53 24000. 54505.
WORTH OF NET CASH FLOW FOR PETRONAS (X M\$ 1000)	4	0.84 41942. 41942.	0.72 35640. 35640.	0.61 30505. 30505.
ET CASH F	m	0.89	0.79	0.71
ORTH OF N	~	0.93	0.87	0.81
PRESENT W		0.98	0.95	0.93
**	TERM PRESENT WORTH	5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH

TABLE 15-6-7 CASH FLOW TABLE FOR OIL BETTY AND BOKOR OIL FIELDS VOL.IV CASE II: BETTY, BAKAU GATHERING SYSTEM CASE

* * CASH FLOW TABLE FOR OPERATING COMPANY * * (x M\$ 1000)

TERM	r	73	m	4	ហ	. 9	۲	89	δr	9YR. TOTAL
1 SALES REVENUE FROM PROFIT OIL	0	0	0	37540.	34930.	32239.	23658.	16552.	912.	145831.
2 SALES REVENUE FROM COST DIL	Ö	•	•	35752.	33266.	30704.	22531.	15764.	.698	138887.
3 SALES REVENUE FROM ROYALTY DIL	٠ 0	0	0	17876.	16633.	15352.	11266.	7882.	435.	69443.
4 TOTAL CASH INFLOW	•	•	0	91168.	84829.	78295.	57454.	40199.	2216.	354161.
5 ROYALTY	0	0	0	17876.	16633.	15352.	11266.	7882.	435.	69443.
6 PAYMENT FOR OIL BASIC PRICE	0	0.	0.	•	•	•	ó	0	°	0
7 RONUS DISCOVERY BONUS PRODUCTION BONUS	600	000	000	2500. 2500. 0.		000	000	600		2500. 2500. 0.
8 RESEARCH FUND TO PETRONAS	0	•	0.	366.	341.	315.	231.	162.	.	1424.
OPERATING EXPENSES (M\$/ABL) 9 OPERATING COST CAPITAL CNST RECOVERY	0000	0000	0000	35752. 6,39 7119. 28633.	33266. 6.39 7076. 26190.	30704. 6.39 7031. 23673.	22531. 6.39 6886. 15645.	15764. 6.39 6766. 8998.	4882. 35.90 4882. 0.	142900. 6.57 39760. 103140.
INCOME BEFORE TAX	•	0.	ċ	34673.	34589.	31924.	23427.	16391.	• +06	141907.
10 INCOME TAX	0	0	0	15603.	15565.	14366.	10542.	1376.	.104	63858.
11 CAPITAL INVESTMENT	30537.	33133.	58496.	0	0	°	ô	ò	•	122166.
12 TOTAL CASH OUTFLOW	30537.	33133.	58496.	43464.	39615.	37064.	28925.	22185.	5732.	299151.
13 NET CASH FLOW	-30537.	-33133	-58496.	47703.	45214.	41231.	28530.	18013.	-3516.	
14 CUMULATIVE NET CASH FLOW	-30537	-63670.	-122166.	-74463.	-29249.	11983.	40513.	58526.	55010•	
15 DCF ROR OF NET CASH FLOW (%)	0.0	0.0	0.0	0.0	0.0	3.49	9.80	12.62	12.16	
16 CORPORATE CAPITAL	30537.	33133.	58496*	0	o	o	ö	ò	°	122166.
17 INTEREST	•0	•	•	ò	0	ô	0	ċ	141.	141.
18 BANK BORROWING	•0	•	•	0	•0	•	•	ċ	3657.	3657.
19 REPAYMENT	ò	•	•	•	0	•0	•0	0	•	• 0
20 BORROWING BALANCE	0	•	o	•0	0.	•0	•0	•0	3657.	
21 PAYOUT TIME 5.7 YEARS										

TABLE 15-6-7 CASH FLOW TABLE FOR OIL BETTY AND BOKOR OIL FIELDS

VOL.IV CASE II : BETTY, BAKAU GATHERING SYSTEM CASE

* * PRESENT WORTH OF NET CASH FLOW FOR OPERATING COMPANY * *

(CONT'D)

TERM PRESENT WORTH		~	m	4	'n	•9	7	6 0	ō.		
5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.98 -29801. -29801.	0.93 -30795. -60596.	0.89 -51779. -112375.	0.84 40215. -72160.	0.80 36301. -35858.	0.76 31527. -4331.	0.73 20776. 16445.	0.69 12493. 28938.	0.66 -2322. 26616.	 	
10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.95 -29116. -29116.	0.87 -28719. -57835.	0.79 -46094. -103929.	0.72 34172. -69757.	0.65 29445. -40312.	0.59 24410. -15902.	0.54 15355. -547.	0.49 8813. 8266.	0.44 -1564. 6703.	1	
15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.93 -28476. -28476.	0.81 -26867. -55343.	0.71 -41246. -96589.	0.61 29249. -67340.	0.53 24107. -43233.	0.46 19116. -24118.	0.40 11502. -12616.	0.35 6315. -6301.	0.30 -1072. -7373.		

<u>Table 16-5-1</u> (Vol. IV)

MAJOR EQUIPMENT LIST

FOR WEST TEMANA AND E-6 OIL FIELDS-CASE I

ITEM NO. & NAME	LOCATION	QUANTITY	DESCRIPTION
V - 1 1ST STAGE PRODUCTION	WTP-A	1	SIZE: 4'-0" I.D. x 12'-0" S-S DESIGN PRESS.: 300 PSIG @ 150°F TYPE: HORIZONTAL
SEPARATOR	E6WP-A E6WP-B	1 2	SIZE: 5'-6" I.D. x 16'-6" S-S DESIGN PRESS.: 300 PSIG @ 150°F TYPE: HORIZONTAL
V - 2 2ND STAGE PRODUCTION SEPARATOR	WTP-A	1	SIZE: 4'-0" I.D. x 12'-0" S-S DESIGN PRESS.: 100 PSIG @ 150°F TYPE: HORIZONTAL
SEPARATUR	E6WP-A E6WP-B	1	SIZE: 5'-6" I.D. x 16'-6" S-S DESIGN PRESS.: 100 PSIG @ 150°F TYPE: HORIZONTAL
<u>V - 3</u> 3RD STAGE PRODUCTION SEPARATOR	WTP-A	1	SIZE: 9'-0" I.D. x 18'-0" S-S DESIGN PRESS.: 50 PSIG @ 150°F TYPE: HORIZONTAL
SEFAMIUR	E6WP-A E6WP-B	1	SIZE: 12'-0" I.D. x 24'-0" S-S DESIGN PRESS.: 50 PSIG @ 150°F TYPE: HORIZONTAL
<u>V - 4</u> TEST SEPARATOR	WTP-A WTW-B E6WP-A E6WP-B	1 1 1	SIZE: 3'-6" I.D. x 10'-0" S-S DESIGN PRESS.: 300 PSIG @ 150°F TYPE: HORIZONTAL
C - 151 INSTRUMENT AIR COMPRESSOR	WTP-A E6WP-A E6WP-B	2 2 2	CAPACITY: 35 SCFM
<u>p - 2</u>	WTP-A	2	CAPACITY: 120 GPM TYPE: HORIZONTAL
CRUDE TRANSFER PUMP	E6WP-A E6WP-B	2 2	CAPACITY: 400 GPM TYPE: HORIZONTAL
P - 152 FIRE WATER PUMP	WTP-A E6WP-A E6WP-B	1 1 1	CAPACITY: 1,500 GPM TYPE: VERTICAL
TK - 1 DEEMULSIFIER TANK	WTP-A E6WP-A E6WP-B	1 1 1	SIZE: 6'-0" I.D. x 15'-6" H
TK - 2 DEFOAMANT TANK	WTP-A E6WP-A E6WP-B	1 1 1	SIZE: 6'-0" I.D. x 15'-6" H
TK - 152 DIESEL STORAGE TANK	WTP-A E6WP-A E6WP-B	1 1 1	CAPACITY: 500 BBL SIZE: 15'-6" I.D. x 16'-0" H
M - 1 INLET MANIFOLD	WTP-A E6WP-A E6WP-B	1 1 1	HIGH PRESSURE HEADER LOW PRESSURE HEADER TEST HEADER
G - 151 DIESEL DRIVEN GENERATOR	WTP-A E6WP-B	2 2	CAPACITY: 300 KVA
FM - 1	WTP-A	1	DESIGN RATE: 150 GPM (MAX.)
FLOW METER	E6WP-A E6WP-B	1 1	DESIGN RATE: 500 GPM (MAX.)

_	
î	
(Vol.	
16 - 6 - 1	
Table	
E	

ST ESTIMATION	
Ö	
INVESTMENT	
CAPITAL	

WEST	WEST TEMANA AND E-6 OIL FIELDS	CASE I	CASE II A	CASE II B
4	Exploration & Appraisal Wells	14,841	4,397	4,397
2.	Engineering	32,903	23,012	24,140
ë.	Development Wells	76,076	62,865	62,865
4.	Facilities			
	a. Offshore Platforms	99,024	39,756	49,688
	b. Offshore Production Equipment	26,129	13,980	20,213
	c. Submarine Pipelines	. 883	3,345	52,575
	d. Offshore Storage & Loading Facilities .	ı	066'96	56,048
	e. Onshore Terminal & Loading Facilities .	38,936	ı	ı
	f. Support Facilities	22,478	13,178	1
	Sub Total	252,950	167,249	178,524
5.	Pre-start up Expense	3,620	2,531	2,655
•	Contingencies	36,193	25,312	26,553
	TOTAL	416,583	285,366	299,134

Table 16-6-2 (Vol.IV) WEST TEMANA AND E-6 OIL FIELDS CASE I

		1	2	3	4	5	6	7	. 8	9	10
1,	Direct Cost					-					
	a. Operating Personnel				2,276	2,276	2,276	2,276	2,276	2,276	2,27
	b. Operating Management				228	228	228	228	228	228	228
	c. Repair & Maintenance				6,494	5,652	4,806	4,806	4,806	4,806	4,806
	d. Operating Supplies				1,204	1,054	904	904	904	904	904
	e. Chemical				1,430	1,346	1,262	1,262	1,151	907	655
	f. Service Contract				4,054	4,054	4,054	4,054	4,054	4,054	4,054
	Sub Total				15,686	14,610	13,530	13,530	13,419	13,175	12,923
2.	Indirect Cost										
	a. Indirect Personnel				1,252	1,252	1,252	1,252	1,252	1,252	1,252
	b. Insurance				5,217	4,547	3,876	3,876	3,876	3,876	3,876
	Sub Total				6,469	5,799	5,128	5,128	5,128	5,128	5,128
	TOTAL				22,155	20,409	18,658	18,658	18,547	18,303	18,05
										1	

(M\$ 1,000)

	6	7	8	9	10	11	12	13	14	15	16	17	18
6	2,276	2,276	2,276	2,276	2,276	2,276 _	2,276	2,276	2,276	2,276	2,276	2,276	1,138
28	228	228	228	228	228	228	228	228	228	228	228	228	114
52	4,806	4,806	4,806	4,806	4,806	4,806	4,806	4,806	4,806	4,806	4,806	4,806	2,403
54	904	904	904	904	904	904	904	904	904	904	904	904	452
46	1,262	1,262	1,151	907	655	432	333	274	229	196	165	145	69
54 — 10	4,054	4,054	4,054	4,054	4,054	4,054	4,054	4,054	4,054	4,054	4,054	4,054	2,027
1.0	13,530	13,530	13,419	13,175	12,923	12,700	12,601	12,542	12,497	12,464	12,433	12,413	6,203
										·			
52	1,252	1,252	1,252	1,252	1,252	1,252_	1,252	1,252	1,252	1,252	1,252	1,252	627
47	3,876	3,876	3,876	3,876	3,876	3,876	3,876	3,876	3,876	3,876	3,876	3,876	1,938
99	5,128	5,128	5,128	5,128	5,128	5,128	5,128	5,128	5,128	5,128	5,128	5,128	2,565
09	18,658	18,658	18,547	18,303	18,051	17,828_	17,729	17,670	17,625	17,592	17,561	17,541	8,768

Table 16-6-3 (Vol.IV)

WEST TEMANA AND E-6 OIL FIELDS CASE IIA

		1	2	3	4	5	6	7	8	9	10
1.	Direct Cost										
	a. Operating Personnel	·	:		1,801	1,801	1,801	1,801	1,801	1,801	1,80
	b. Operating Management				180	180	180	180	180	180	180
	c. Repair & Maintenance				8,313	8,313	8,313	8,313	8,313	8,313	8,31
	d. Operating Supplies				843	843	843	843	843	843	84
	e. Chemical				1,262	1,262	1,262	1,262	1,151	907	65
	f. Service Contract				3,962	3,962	3,962	3,962	3,962	3,962	3,96
	Sub Total				16,361	16,361	16,361	16,361	16,250	16,006	15,75
2.	Indirect Cost										3
	a. Indirect Personnel		-		991	991	991	991	991	991	99
	b. Insurance				4,173	4,173	4,173	4,173	4,173	4,173	4,17
	Sub Total				5,164	5,164	5,164	5,164	5,164	5,164	5,16
	TOTAL				21,525	21,525	21,525	21,525	21,414	21,170	20,91

(M\$ 1,000)

	6	7	8	9	10	11	12	13	14	15	16	17	18
-													
01	1,801	1,801	1,801	1,801	1,801	1,801	1,801	1,801	1,801	1,801	1,801	1,801	902
.80	180	180	180	180	180	180	180	180	180	180	180	180	90
13	8,313	8,313	8,313	8,313	8,313	8,313	8,313	8,313	8,313	8,313	8,313	8,313	4,155
843	843	843	843	843	843	843	843	843	843	843	843	843	422
62	1,262	1,262	1,151	907	655	432	333	274	229	196	165	145	69
62	3,962	3,962	3,962	3,962	3,962	3,962	3,962	3,962	3,962	3,962	3,962	3,962	1,981
361	16,361	16,361	16,250	16,006	15,754	15,531	15,432	15,373	15,328	15,295	15,264	15,244	7,619
													}
91	991	991	991	991	991	991	991	991	991	991	991	991	495
73	4,173	4,173	4,173	4,173	4,173	4,173	4,173	4,173	4,173	4,173	4,173	4,173	2,088
64	5,164	5,164	5,164	5,164	5,164	5,164	5,164	5,164	5,164	5,164	5,164	5,164	2,583
											Ē.		
25	21,525	21,525	21,414	21,170	20,918	20,695	20,596	20,537	20,492	20,459	20,428	20,408	10,202

Table 16-6-4 (Vol.IV) WEST TEMANA AND E-6 OIL FIELDS CASE IIB

	1	2	3	4	5	6	7	8	9	10
1. Direct Cost										
a. Operating personne	el			1,801	1,801	1,801	1,801	1,801	1,801	1,80
b. Operating Manageme	ent			180	180	180	180	180	180	18
c. Repair & Maintena	nce			4,686	4,686	4,686	4,686	4,686	4,686	4,68
d. Operating Supplies	3			884	884	884	884	884	884	88
e. Chemical				1,262	1,262	1,262	1,262	1,151	907	65
f. Service Contract				3,962	3,962	3,962	3,962	3,962	3,962	3,96
Sub Total				12,775	12,775	12,775	12,775	12,664	12,420	12,16
2. Indirect Cost										
a. Indirect Personnel				991	991	991	991	991	991	991
b. Insurance				1,490	1,490	1,490	1,490	1,490	1,490	1,490
Sub Total				2,481	2,481	2,481	2,481	2,481	2,481	2,48
TOTAL				15,256	15,256	15,256	15,256	15,145	14,901	14,64

(M\$ 1,000)

	.												
	6	7	8	9	10	11	12	13	14	15	16	17	18
				<u> </u>									
1	1,801	1,801	1,801	1,801	1,801	1,801	1,801	1,801	1,801	1,801	1,801	1,801	902
0	180	180	180	180	180	180	180	180	180	180	180	180	90
6	4,686	4,686	4,686	4,686	4,686	4,686	4,686	4,686	4,686	4,686	4,686	4,686	2,344
34	884	884	884	884	884	884	884	884	884	884	884	884	442
52	1,262	1,262	1,151	907	655	432	333	274	229	196	165	145	69
52	3,962	3,962	3,962	3,962	3,962	3,962	3,962	3,962	3,962	3,962	3,962	3,962	1,982
— 75	12,775	12,775	12,664	12,420	12,168	11,945	11,846	11,787	11,742	11,709	11,678	11,658	5,829
91	991	991	991	991	991	991 _	991	991	991	991	991	991	495
0	1,490	1,490	1,490	1,490	1,490	1,490	1,490	1,490	1,490	1,490	1,490	1,490	1,892
00 31	2,481	2,481	2,481	2,481	2,481	2,481	2,481	2,481	2,481	2,481	2,481	2,481	2,387
56	15,256	15,256	15,145	14,901	14,649	14,426	14,327	14,268	14,223	14,190	14,159	14,139	8,216

WEST TEMANA AND E-6 OIL FIELDS	CASE I			(M\$ 1,000)
Year	1ST	2ND	3RD	-
1. Exploration & Appraisal Wells	14,841	1	1	
2. Engineering	32,903	1	Ē	
3. Development Wells	1	32,070	44,006	
4. Offshore Platforms	37,249	59,964	1,811	
5. Offshore Production Equipment	5,062	17,435	3,632	
6. Submarine Pipelines	1	. 27,186	39,197	
7. Offshore Storage & Loading 7. Facilities	_	ľ	A	
8. Onshore Terminal & Loading	1	14,041	24,895	
9. Support Facilities	3,459	10,373	8,646	
10. Pre-start up Expense	787	1,611	1,222	
11. Contingencies	7,867	16,107	12,219	
Total	102,168	178,787	135,628	

WEST TEMANA AND E-6 OIL FIELDS	CASE II A			(M\$ 1,000)
Year	lsr	2ND	3RD	
Appraisal Wells	4,397	ı		
	23,012	1	1	
Development Wells		17,960	44,905	
Offshore Platforms	13,030	26,726	ı	
Production Equipment	3,378	10,602	1	
Submarine Pipelines	-	3,099	246	
Storage & Loading		87,859	9,131	
Terminal & Loading les	1	1	1	
Facilities	1	8,786	4,392	
Pre-start up Expense	394	1,550	587	
Contingencies	3,942	15,503	5,867	
	48,153	172,085	65,128	

WEST TEMANA AND E-6 OIL FIELDS CASE II B

(M\$ 1,000)

INVESTMENT SCHEDULE

3RD	1	1	44,005	1,811	3,632	39,197	1	30,902	1	1,195	11,955	132,697
2ND	==	9	18,860	36,152	13,175	13,378	1	22,103	1	1,037	10,367	115,072
lsT	4,397	24,140	1	11,725	3,406	1	•	3,043	1	423	4,231	51,365
Year	1. Exploration & Appraisal Wells	2. Engineering	3. Development Wells	4. Offshore Platforms	5. Offshore Production Equipment	6. Submarine Pipelines	7. Offshore Storage & Loading 7. Facilities	8. Onshore Terminal & Loading Facilities	9. Support Facilities	10. Pre-start up Expense	11. Contingencies	Total

TABLE 16-6-8 CASH FLOW TABLE FOR OIL WEST TEMANA AND E-6 OIL FIELDS

	CASE
	TERMINAL
	CASE I : WEST TEMANA & E-6. BINTULU TERMINAL
1	A F-6.
)	TEMANA
:	TEST.
	CASE
)	>
1	V0! - TV

Ħ

*PREMISES

PAGE

·		2	TOTAL	416583.	69533.	`	1	18YR TOTAL	416583.	85504.	
			10	0.	5677.	31.57	55.26				
			6	•	7869.	31.57	52.63				
	·		œ	•0	•6666	31.57	50.12	18	•	591.	31.57
YEARS YEARS 10 %	31 /BBL 31 /BBL 30000.		-	ò	10951.	31.57	47.74	17	•	1255.	31.57
: 15 : 300. : 8.0	10.00 % 20.00 % 70.00 % 30.00 % M\$ 32.31 /B 5.00 % 70.00 % M\$ 5000000. M\$ 2500000.		9	•0	10951.	31.57	45.46	16	0	1442.	31.57
ი	BASIC PRICE		Ŋ	ô	11681.	31,52	43,30	15	ô	1700.	31.57
P/S A	≘ w	EAR #	4	0	12411.	31.47	41.24	14	ö	1984.	31.57
OMPANY R M S O F	EUVERY RATIO PANY FOR RESEARCH FUND RICE (AT 1976 BASE) FOR BASIC PRICE FOR PROFIT OIL ABOVE S ABOVE 50000BBL/DAY	INPUT DATA BY YEAR	m	135628.	•	0.0	39.27	EI	•	2371.	31.57
FE ERIOD OF OIL CC C T E F	RATE COST RECOVERY IL SHARE AS ING COMPANY PAYMENT FOR RE BASIC PRICE INCREASE FOR B PAYMENT FOR P PAYMENT FOR P AYMENT FOR P AX RATE	# INPUT	2	178787.	•	0.0	37.40	12	•	2881.	31.57
PRODUCTION LIFE PRE-STARTUP PERIOD EQUITY RATIO OF OIL COMPANY INTEREST RATE * 8 A S I C T E R M S	ROYALTY RATE MAXIMUM COST RECOVERY RATIO PROFIT OIL SHARE PETRONAS OPERATING COMPANY RATE OF PAYMENT FOR RESEARCH FUND INITIAL BASIC PRICE (AT 1976 BASE RATE OF INCREASE FOR BASIC PRICE RATE OF PAYMENT FOR PROFIT OIL ABOV PRODUCTION BONUS ABOVE 50000BBL/DAY DISCOVERY BONUS INCOME TAX RATE		1	102168.	ò	0.0	35.62	11	•	3747.	31.57
PRO PRE INTENTION INTENTIO	ROY HAX PROT INI RAT RAT RAT INC		TERM	CAPITAL INVESTMENT (MS 1000)	OIL PRODUCTION (M BBL/YEAR)	SALES PRICE OF OIL (M\$/BBL)	BASIC PRICE OF OIL (MS/BBL)	TERM	CAPITAL INVESTMENT (MS 1000)	OIL PRODUCTION (M BBL/YEAR)	SALES PRICE OF OIL (MS/BBL)

81.64

77.76

74.05

70.53

67.17

63.97

60.92

58.02

BASIC PRICE OF OIL (M\$/BBL)

TABLE 16-6-8 CASH FLOW TABLE FOR OIL WEST TEMANA AND E-6 OIL FIELDS

VOL.IV CASE I : WEST TEMANA & E-6, BINTULU TERMINAL CASE

	#	#	CASH FLOW TABLE	E FOR PETRONAS X M\$ 1000)	RONAS *	*				CCONT PAGE	(CONT'D) PAGE 2
TERM	,,,	2	m	4	ĸ	40	7	æ	σ	10	10YR. TOTAL
1 SALES REVENUE FROM PROFIT OIL	ô	0	ò	191381.	180411.	169404.	169404.	154585.	121728.	87819.	1074731.
2 REVENUE FROM OIL BASIC PRICE	ö	•	0.	•	0	0.	•	ò	•	•	•
3 BONUS FROM OIL COMPANY DISCOVERY BONUS PRODUCTION BONUS		000		2500. 2500. 0.	600	000					2500. 2500. 0.
4 RESEARCH FUND FROM OIL CO.	ó	ò	ò	801.	755.	709.	709.	647.	509.	367.	*4496
5 TOTAL CASH INFLOW	•0	•0	0	194682•	181165.	170113.	170113.	155231	122237.	88187.	1081727.
6 INCOME TAX	ô	0	Ö	87607.	81524.	76551.	76551.	69854•	55007.	39684.	486777.
7 NET CASH FLOW	0	•	•	107075.	99641.	93562.	93562•	85377.	67230.	48503.	
8 CUMULATIVE NET CASH FLOW	0	0	ċ	107075.	206716.	300278.	393840.	479217•	546448.	594950.	
TERM	11	12	13	14	15	16	17	18	 	 	18YR. TOTAL
1 SALES REVENUE FROM PROFIT OIL	57963.	44567.	36678.	30691.	26298.	22307.	19414.	9142.			1321787.
2 REVENUE FROM OIL BASIC PRICE	0	•	•	•	•	•	0	•			•
3 BONUS FROM OIL COMPANY DISCOVERY BONUS PRODUCTION BONUS	000		000	000	• • •	• • •					2500. 2500. 0.
4 RESEARCH FUND FROM OIL CO.	243.	186.	153.	128.	110.	93•	81.	38			5530.
5 TOTAL CASH INFLOW	58206.	44753.	36831.	30819.	26408.	22400.	19495.	9181.	 		1329817.
6 INCOME TAX	26193.	20139.	16574.	13869.	11884.	10080.	8773.	4131.			598419.
7 NET CASH FLOW	32013.	24614.	20257.	16951.	14524.	12320.	10722.	5049.			٠
8 CUMULATIVE NET CASH FLOW	626964.	651578.	671835.	688786.	703310.	715630.	726352.	731402.			

TABLE 16-6-8 CASH FLOW TABLE FOR DIL WEST TEMANA AND E-6 DIL FIELDS VOL.IV CASE I: WEST TEMANA & E-6, BINTULU TERMINAL CASE

3								t - - -	
(CONT'D) PAGE 3	10	0,63	30512.	0.40 19613. 338629.	0.27 12857. 263155.			1 	
	ō.	99*0	44408. 413565.	0.44 29904. 319017.	0.30 20494. 250298.				
	œ	69*0	59214. 369157.	0.49 41773. 289113.	0.35 29930. 229803.	18	0.43 2150. 516968.	0.19 953. 379095.	0.09 438. 286399.
	~	0.73	68135. 309943.	0.54 50356. 247339.	0.40 37719. 199873.	17	0.45 4794. 514818.	0.21 2225. 378142.	0.10 1069. 285961.
#	9	0.76	71542. 241808.	0.59 55391. 196984.	0.46 43377. 162154.	16	0.47 5783. 510025.	0.23 2812. 375918.	0.11 1412. 284893.
PETRONAS 1000)	ស	08*0	79999.	0.65 64889. 141592.	0.53 53125. 118777.	15	0.49 7159. 504241.	0.25 3647. 373106.	0.13 1914. 283481.
	4	0.84	90267. 90267.	0.72 76703. 76703.	0.61 65652. 65652.	14	0.52 8773. 497082.	0.28 4682. 369459.	0.15 2569. 281567.
NET CASH	m	0.89	00	0.79	0.71	13	0.54 11008. 488310.	0.30 6154. 364777.	0.17 3531. 278998.
PRESENT WORTH OF NET CASH FLOW FOR	8	0.93	00	0.87 0.0	0.81	12	0.57 14045. 477301.	0.33 8226. 358623.	0.20 4934. 275467.
PRESENT	1	0.98	00	0.95 0. 0.	0.93	11	0.60 19180. 463257.	0.37 11768. 350397.	0.23 7379. 270534.
# #	TERM	PRESENT WORTH 5.00% DISCOUNT RATE	PRESENT WORTH CUMULATIVE PRESENT WORTH	10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	TERM	PRESENT WORTH 5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH

TABLE 16-6-8 CASH FLOW TABLE FOR OIL WEST TEMANA AND E-6 DIL FIELDS VOL.IV CASE I: WEST TEMANA & E-6, BINTULU TERMINAL CASE

* * CASH FLOW TABLE FOR OPERATING COMPANY * (X M\$ 1000)

(CONT'D) PAGE 4

TOTAL LOYR. ċ 2500. ċ ö ö 2500. 460599 438666 ċ 4496. 6.31 219333 219333 34781 981815. 416583 1118598 303885. 453603. 204121. 416583. 438666 6.31 91404. ö 000 367. .7794. 37269. 16771. ċ 53112. 6.74 37637. 17922. 35845. 17922. 136784. ં ċ ö ់ ċ 8051. 38292. 6.33 31382. 98492. 5.27 49685. ċ 000 51660. 23247. ċ 66902. 59795. 52169. 24842 509 ់ ö ċ 126696. ់ 24842 18303. 160894. 2,35 6.31 44549. ċ 38697. 66251. 63096. ċ 000 647. 65604. 29525. 80263. 80631. 31548. ċ ċ ċ ċ ċ 31548 96069 18547. 176319. ċ 6.31 ċ 90028 -41934. 69145. 000 71893. 32352. 86291. 72602. 34572. ċ 709. 50487. 34572. 69145. 86981 ċ ċ ċ ċ 0 176319. 50487. 72602. 69145. 6.31 71893. ċ 90028 -131962. 34572. 34572. ċ 000 32352. 86291. 709. 69145. ċ ċ 8658 0.0 ċ ဝံ ċ 187774. -221989. 77319. 73637. 36818. 6.30 76564. 34454. 92436. 36818. ċ 000 53228. ċ 95338 ံ 73637 0.0 ံ ံ ċ ံ 20409, 82021. 39057. 99193. 39057. 2500. 6.29 78720. 99256 -317327. ċ 2500. 801. 35424. ċ 99937 ċ 78115. 78115. 55960 ċ ċ 0.0 22155, • • • -416583. ċ ċ 000 ċ ċ ċ 135628. -102168. -178787. -135628. ċ ċ ó ċ 0.0 135628 135628 0000 178787. -280955. ċ ċ ċ 000 102168. 178787. ö ċ ċ 178787. ċ ċ ċ ċ 0.0 102168. 0000 -102168. ċ 000 ċ ċ 102168. ċ ċ ċ ċ ċ ់ 0.0 3 SALES REVENUE FROM ROYALTY DIL SALES REVENUE FROM PROFIT OIL TERM 15 DCF ROR OF NET CASH FLOW (%) 2 SALES REVENUE FROM COST OIL 6 PAYMENT FOR OIL BASIC PRICE RESEARCH FUND TO PETRONAS 14 CUMULATIVE NET CASH FLOW CAPITAL COST RECOVERY OPERATING EXPENSES 11 CAPITAL INVESTMENT 12 TOTAL CASH OUTFLOW PRODUCTION BONUS 4 TOTAL CASH INFLOW 20 BORROWING BALANCE INCOME BEFORE TAX DISCOVERY BONUS 16 CORPORATE CAPITAL OPERATING COST 18 BANK BORROWING 13 NET CASH FLOW (MS/RBL) 10 INCOME TAX 19 REPAYMENT 17 INTEREST 5 ROYALTY BONUS œ 6

21 PAYOUT TIME

TABLE 16-6-8 CASH FLOW TABLE FOR OIL WEST TEMANA AND E-6 OIL FIELDS VOL.IV CASE I: WEST TEMANA & E-6, BINTULU TERMINAL CASE

* * CASH FLOW TABLE FOR OPERATING COMPANY * * (X M\$ 1000)

(CONT'D)
PAGE 5

TERM	11	12	E	14	15	16	17	18	18YR. TOTAL
1 SALES REVENUE FROM PROFIT GIL	24841.	19100.	15719.	13153.	11270.	9560	8320.	3918.	566482.
2 SALES REVENUE FROM COST DIL	23659.	18191.	14970.	12527.	10734.	9105.	7924.	3732.	539507.
3 SALES REVENUE FROM ROYALTY OIL	11829.	9062	7485.	6263.	5367.	4552.	3962	1866.	269753.
4 TOTAL CASH INFLOW	60329.	46386.	38175.	31944.	27371.	23217.	20206.	9516.	1375739.
5 ROYALTY	11829.	9095.	7485.	6263.	5367.	4552•	3965	1866.	269753.
6 PAYMENT FOR DIL BASIC PRICE	o	•	ö	ó	•	•	•	•	•0
7 BONUS DISCOVERY BONUS PRODUCTION BONUS			• • • •	• • • •	000			•••	2500. 2500. 0.
8 RESEARCH FUND TO PETRONAS	243.	186.	153.	128.	110.	93.	81.	38.	5530.
OPERATING EXPENSES {Ms/BBL} 9 OPERATING COST CAPITAL COST RECOVERY	23659. 6.31 17828. 5831.	18191. 6.31 17729. 462.	17670. 7.45 17670. 0.	17625. 8.88 17625.	17592. 10.35 17592. 0.	17561. 12.18 17561. 0.	17541. 13.98 17541. 0.	8768. 14.84 8768. 0.	577272. 6.75 267095. 310177.
INCOME BEFORE TAX	24599.	18914.	15566.	13025.	11160.	9467.	8239.	3880•	558452.
10 INCOME TAX	11070.	8511.	7005.	5861.	5022.	4260.	3708.	1746.	251303.
11 CAPITAL INVESTMENT	ò	0	ċ	•	ò	•	•	ċ	416583.
12 TOTAL CASH OUTFLOW	+0960+	35522.	32313.	29878.	28091.	26467.	25292.	12418.	1212761.
13 NET CASH FLOW	19360.	10864.	5862.	2066.	-720•	-3250.	-5085-	-2905-	
14 CUMULATIVE NET CASH FLOW	156144.	167008.	172869.	174935.	174215.	170965.	165880.	162977.	
15 DCF ROR OF NET CASH FLOW (%)	7.37	7.68	7.83	7.88	7.86	9L°L	7.70	7.64	
16 CORPORATE CAPITAL	ċ	ċ	ċ	ċ	ċ	ó	ċ	ċ	416583.
17 INTEREST	ô	ċ	ċ	ċ	29.	190.	538.	901.	1658.
18 BANK BORROWING	ċ	6	ċ	°	749.	3439.	5624.	3804.	13616.
19 REPAYMENT	ô	ô	ò	•	6	•	°	ċ	•0
20 BORROWING BALANCE	•0	•	•	0	749.	4188.	9812•	13616.	
21 PAYOUT TIME 7.5 YEARS									

21 PAYOUT TIME 7.5 YEARS

TABLE 16-6-8 CASH FLOW TABLE FOR OIL WEST TEMANA AND E-6 OIL FIELDS VOL.IV CASE I: WEST TEMANA & E-6, BINTULU TERMINAL CASE

* * PRESENT WORTH OF NET CASH FLOW FOR OPERATING COMPANY * * (x M\$ 1000)

(CONT'D)

TERM 1 2 3 4	RESENT WORTH 5.00% DISCOUNT RATE 6.00% DISCOUNT RATE 6.00% DISCOUNT RATE 6.00% DISCOUNT RATE 6.00% DISCOUNT RATE 7.00% DISCOUN	10.00% DISCOUNT RATE 0.95 0.87 0.79 0.72 PRESENT WORTH -97413154970106873. 71102. CUMULATIVE PRESENT WORTH -97413252383359256288154.	15.00% DISCOUNT RATE 0.93 0.81 0.71 0.61 PRESENT WORTH -9527214497495632. 60857. CUMULATIVE PRESENT WORTH -95272240246335878275021.	TERM 11 12 13 14	RESENT MURTH 5.00% DISCOUNT RATE 0.60 0.57 0.54 0.52 PRESENT WORTH 11599. 6199. 3185. 1069. CUMULATIVE PRESENT WORTH 39796. 45995. 49181. 50250.	10.00% DISCOUNT RATE 0.37 0.33 0.30 0.28 PRESENT WORTH 7117. 3631. 1781. 571. CUMULATIVE PRESENT WORTH -35667320363025529685.	15.00% DISCOUNT RATE 0.23 0.20 0.17 0.15 PRESENT WORTH 4463. 2178. 1022. 313. CUMULATIVE PRESENT WORTH -85050828728185181537.
in	0.80 76545. -225710.	0.65 62087. -226067.	0.53 50831. -224190.	15	.2 0.49 355. 49895.	28 0.25 -181. 5 -29865.	15 0.13 195. 781632.
9	0.76 68839. -156871.	0.59 53299. -172768.	0.46 41739. -182451.	16	0.47 -1525. 48369.	0.23 -742. -30607.	0.11 -372. -82005.
٢	0.73 65561. -91310.	0.54 48454. -124315.	0.40 36295. -146157.	17	0.45 -2274. 46096.	0.21 -1055. -31662.	0.10 -507. -82511.
80	0.69 55922. 35388	0.49 39451. -84864.	0.35 28266. -117890.	8	0.43 -1236. 44860.	0.19 -548. -32210.	0.09 -252. -82763.
6	0.66 39496. 4109.	0.44 26597. -58267.	0.30 18228. -99663.				
10	0.63 24088. 28197.	0.40 15484. -42783.	0.27 10150. -89512.				

TABLE 16-6-9 CASH FLOW TABLE FOR DIL WEST TEMANA AND E-6 DIL FIELDS

TABLE 16-6-9 LASH FLUM TABLE FUR DIL HEST LEMANA MAD C.O. O.L	GE CASE
Abte ruk uit Mesi ier	E-6, OFFSHORE STORAGE
D-4 LASH FLUM I	CASE II A:
TABLE 16-t	VOL. IV

PREMISES

PAGE 1

			ayor	TOTAL	285366.	67343.			18YR TOTAL	285366•	83314.		
				10	•	5677.	31.57	55.26					
				6	•	7869.	31.57	52.63					
				ω	ò	9993•	31.57	50.12	18	•	591.	31.57	81.64
YEARS YEARS 10 %	*	.00 % .00 % .00 % .50 % .50 % .00 % .00 % .00 % .00 %		۲-	ô	10951.	31.57	47.74	17	•	1255.	31.57	77.76
: 15 YE : 3 YE : 100.00	E N T S	10.00 % 20.00 % 10.00		•	ċ	10951.	31.57	45.46	16	ō	1442.	31.57	74.05
	G R E E	IC PRICE		īV	ö	10951.	31.57	43.30	15	•	1700.	31.57	70.53
	P/S A	ND BASE 1 E ABOVE BASIC /DAY	EAR #	4	·	10951.	31.57	41.24	14	•	1984.	31.57	67.17
COMPANY	N S O F	OVERY RATIO ANY FOR RESEARCH FUND ICE (AT 1976 BASE) FOR BASIC PRICE FOR PROFIT OIL ABOVE ABOVE 50000BBL/DAY	* INPUT DATA BY YEAR	m	65128.	•	0.0	39.27	13	ò	2371.	31,57	63.97
	C T E R	RATE COST RECOVERY RATIO ILL SHARE AS ING COMPANY PAYMENT FOR RESEARC BASIC PRICE (AT 1 INCREASE FOR BASIC ON BONUS ABOVE 5000 AY BONUS AX RATE	# INPUT	2	172085.	0	0.0	37.40	12	0	2881.	31.57	60.92
PRODUCTION LIFE PRE-STARTUP PERIOD EQUITY RATIO OF OI INTEREST RATE	* BASI	ROYALTY RATE MAXIMUM COST RECOVERY RATIO PROFIT OIL SHARE PETRONAS OPERATING COMPANY RATE OF PAYMENT FOR RESEARCH FUND INITIAL BASIC PRICE RATE OF PAYMENT FOR PROFIT OIL RATE OF PAYMENT FOR PROFIT OIL RATE OF PAYMENT FOR PROFIT OIL ABOV PRODUCTION BONUS DISCOVERY BONUS INCOME TAX RATE		7	48153.	•0	0.0	35.62	11	ó	3747.	31.57	58.02
PRO PRE EQU INT		RACY PROPERTY PROPERT		TERM	CAPITAL INVESTMENT (M\$ 1000)	OIL PRODUCTION (M BBL/YEAR)	SALES PRICE OF OIL (M\$/BBL)	BASIC PRICE OF OIL (MS/BBL)	TERM	CAPITAL INVESTMENT (M\$ 1000)	OIL PRODUCTION (M BBL/YEAR)	SALES PRICE OF OIL (M\$/BBL)	BASIC PRICE OF OIL (MS/BBL)

TABLE 16-6-9 CASH FLOW TABLE FOR OIL WEST TEMANA AND E-6 OIL FIELDS

VOL.IV CASE II A : E-6, OFFSHORE STORAGE CASE

	*	# CASH	FLOW TABLE (X	FOR 1	PETRONAS # .000)	*				(CONT	(CONT*D) PAGE 2
TERM	,	2	m	4	ហ	9	~	ω	6	10	10YR. TOTAL
1 SALES REVENUE FROM PROFIT OIL	ė	0	•	169404.	169404.	169404.	169404.	154585.	121728.	87819.	1041748.
2 REVENUE FROM OIL BASIC PRICE	ò	0	o	•0	ô	0	°	•	0.	0	0.
3 BONUS FROM OIL COMPANY DISCOVERY BONUS PRODUCTION BONUS	000		000	2500. 2500. 0.	000	000	000	000	000	000	2500. 2500. 0.
4 RESEARCH FUND FROM OIL CO.	0	•0	•	709.	709.	709.	709.	647.	509	367.	4358.
5 TOTAL CASH INFLOW	0	0	o	172613.	170113.	170113.	170113.	155231•	122237	88187.	1048606.
6 INCOME TAX	0	0	o	77676.	76551.	76551.	76551+	69854	55007.	39684*	471873.
7 NET CASH FLOW	0.	°O	•	94937.	93562.	93562.	93562	85377.	67230.	48503.	
8 CUMULATIVE NET CASH FLOW	ċ	•	0	94937.	188499.	282061.	375624.	461001.	528231.	576734.	
лен тен	11	12	13	14		16	17	18	1	 	18YR. TOTAL
1 SALES REVENUE FROM PROFIT OIL	57963.	44567.	36678.	30691.	26298.	22307.	19414.	9142.			1288804.
2 REVENUE FROM OIL BASIC PRICE	ò	•	•	•	0	0	•	0			°
3 RONUS FROM OIL COMPANY DISCOVERY BONUS PRODUCTION BONUS		000		000	•••		000	000			2500. 2500. 0.
4 RESEARCH FUND FROM OIL CO.	243.	186.	153.	128.	110.	93.	91.	38.			5392.
5 TOTAL CASH INFLOW	58206.	44753.	36831.	30819.	26408.	22400.	19495.	9181.		1	1296696.
6 INCOME TAX	26193•	20139.	16574.	13869.	11884.	10080.	8773.	4131.	1	, , ,	583515.
7 NET CASH FLOW	32013.	24614.	20257.	16951.	14524.	12320.	10722.	5049.			
8 CUMULATIVE NET CASH FLOW	608747.	633361.	653618.	670569.	685093.	697413.	708136.	713185.			

TABLE 16-6-9 CASH FLOW TABLE FOR OIL WEST TEMANA AND E-6 OIL FIELDS

VOL.IV CASE 11 A : E-6, OFFSHORE STORAGE CASE

TARLE 16-6-9 CASH FLOW TABLE FOR OIL WEST TEMANA AND E-6 OIL FIELDS VOL.IV CASE II A: E-6, OFFSHORE STORAGE CASE

* * CASH FLOW TABLE FOR OPERATING COMPANY * * (X H\$ 1000)

(CONT'D) PAGE 4

TOTAL ċ 10YR. 2500**.** 2500. ċ ċ o 149602. 852250. 446464 212602. 4358 197822. 285366. 285366 425203 212602 1084268 425203 275601 439605. 367. 91404. 6.31 20918. 37269. ċ 14.78 ċ 000 16771. 55979. ं ö ់ ċ ċ 37637. 35845. 17922. 17922. 35845 14927. 35425 232018. 10 509. 23247. 196594. 6.31 21170. ċ 69769 56928. 13.57 000 51660. 52169. 24842 ċ 49685. 28515. ់ ċ ċ ċ ċ 24842 49685 126696. ō 29522. 139666. 647. ċ 10.98 31548. 000 6.31 41682. 65604. 83130. 77764. ċ 66251. 160894. ċ ċ ં ċ 63096 21414. ċ 31548 63096 5.90 709. ċ 61902. 34572 6.31 32352. 89158. 87161. ċ 69145 176319. ö 00 71893. ံ ċ ငံ ċ 72602. 34572 47620. 69145 176319. 709. 6.31 21525. 71893. 32352. 87161. 69145. 34572 ċ 00 89158. -25259. ċ ċ ċ ċ 72602. 34572 47620. 0.0 69145 176319. 34572. ċ 000 709. 6.31 71893. 32352. ċ 87161. -112420. ċ 69145. 34572. 21525. 47620. 89158. ö ċ ċ ö 0.0 72602, 69145 176319. 6.31 21525. -199580. 34572. 2500. ċ 85786. ó 2500. 709. 47620. 31227. 72602. 90533. ċ o. ċ ö 69145. 34572 69393 0.0 ċ 69145 0000 -285366. ċ 000 ċ ċ ċ ċ -65128. o 65128. ċ ċ ċ ċ 65128 0 65128 0000 -220238. 000 ċ -48153. -172085. ċ ċ 0 172085. 172085 ċ ċ ċ ċ 0 172085 48153. 0000 48153. -48153. 000 ċ ċ 0 ċ ċ ö 48153. ċ ċ ċ ċ 0.0 3 SALES REVENUE FROM ROYALTY OIL 1 SALES REVENUE FROM PROFIT OIL 15 OCF ROR OF NET CASH FLOW (%) TERM 6 PAYMENT FOR OIL RASIC PRICE 2 SALES REVENUE FROM COST DIL A RESEARCH FUND TO PETRONAS 14 CUMULATIVE NET CASH FLOW 6.3 YEARS OPERATING COST CAPITAL COST RECOVERY 12 TOTAL CASH OUTFLOW **OPERATING EXPENSES** 11 CAPITAL INVESTMENT DISCOVERY RONUS
PRODUCTION BONUS 4 TOTAL CASH INFLOW INCOME REFORE TAX 20 BORROWING RALANCE 16 CORPORATE CAPITAL 18 BANK BURROHING 13 NET CASH FLOW 21 PAYOUT TIME (MS/ARL) 10 INCOME TAX 19 REPAYMENT 17 INTEREST 5 ROYALTY σ

TABLE 16-6-9 CASH FLOW TARLE FOR OIL WEST TEMANA AND E-6 OIL FIELDS VOL.IV CASE II A: E-6, OFFSHORE STORAGE CASE

* * CASH FLOW TABLE FOR OPERATING COMPANY * * (X # 1000)

(CONT'D) PAGE 5

TERM	ped ped	12	13	14	15	16	17	18	18YR. Total
1 SALES REVENUE FROM PROFIT OIL	24841.	19100.	15719.	13153.	11270.	9560	8320.	3918.	552346.
2 SALES REVENUE FROM COST OIL	23659.	18191.	14970.	12527.	10734.	9105.	7924.	3732.	526044.
3 SALES REVENUE FROM ROYALTY OIL	11829.	9095	7485.	6263.	5367.	4552.	3962.	1866.	263022.
4 TOTAL CASH INFLOW	60329.	46386.	38175.	31944.	27371.	23217.	20206.	9516.	1341409.
5 ROYALTY	11829.	9095.	7485.	6263.	5367.	4552.	3962.	1866.	263022.
6 PAYMENT FOR OIL BASIC PRICE	•	•	0	•	°°	.	•	•0	•0
7 RONUS DISCOVERY RONUS PRODUCTION BONUS	000	000	000	• • • •	000			000	2500. 2500. 0.
8 RESEARCH FUND TO PETRONAS	243.	186.	153.	128.	110.	93.	81.	38.	5392•
OPERATING EXPENSES (M\$.ABL.) 9 OPERATING COST CAPITAL COST RECOVERY	23659. 6.31 20695. 2964.	20596. 7.15 20596. 0.	20537. 8.66 20537. 0.	20492. 10.33 20492. 0.	20459. 12.03 20459. 0.	20428. 14.17 20428. 0.	20408. 16.26 20408. 0.	10202. 17.26 10202. 0.	581984. 6.99 303419. 278565.
INCOME REFORE TAX	24599.	18914.	15566.	13025.	11160.	9467	8239.	3880.	544454.
10 INCOME TAX	11070.	8511.	7005.	5861.	5022.	4260.	3708.	1746.	245004•
11 CAPITAL INVESTMENT	ò	•	0	•	o	•0	•	•0	285366•
12 TOTAL CASH DUTFLOW	43836.	38389*	35180.	32745.	30958.	29334•	28159.	13852.	1104701.
13 NET CASH FLOW	16493.	7997.	2995.	-801.	-3587.	-6117.	-7952.	-4336.	
14 CUMULATIVE NET CASH FLOW	248511.	256508.	259503.	258702.	255115.	248998.	241045.	236709.	
15 DCF ROR OF NET CASH FLOW (%)	15.24	15.42	15.48	15.47	15.42	15.34	15.25	15.20	
16 CORPORATE CAPITAL	ò	ċ	ö	ċ	ċ	•	ö	°	285366.
17 INTEREST	•0	•	•	32.	210.	615.	1227.	1817.	3901.
18 BANK BURROWING	•0	ċ	•0	833.	3797.	6732.	9180.	6153.	26695.
19 REPAYMENT	•	0	•0	•	•	•0	0	•0	•0
20 BORROWING RALANCE	•0	•	0	833•	4630.	11362.	20542.	26695.	
21 PAYOUT TIME 6.3 YEARS			 	 				• 	

TABLE 16-6-9 CASH FLOW TABLE FOR OIL WEST TEMANA AND E-6 OIL FIELDS

VOL.IV CASE 11 A : E-6, OFFSHORE STORAGE CASE

•	PANY # #	
	NG COM	_
	OPERAT I	X MS 1000
	FOR	×
	FLOW	
	CASH	
	NET	
	Р	
	WORTH	
	PRESENT WORTH OF NET CASH FLOW FOR OPERATING COMPANY	
	# #	

(CONT'D) PAGE 6

	·]] # # 1 	1 1 1 1 1 1		 		
10	0.63 22285. 121657.	0.40 14324. 48028.	0.27 9390. -1741.				3 3 4 4 3
o	0.66 37603. 99373.	0.44 25321. 33703.	0.30 17354. -11132.		; 		
œ	0.69 53934. 61770.	0.49 38048. 8382.	0.35 27261. -28485.	18	0.43 -1846. 127273.	0.19 -818. 52687.	0.09 -376. 1722.
7	0.73 63473. 7836.	0.54 46910. -29666.	0.40 35139. -55747.	17	0.45 -3555. 129120.	0.21 -1650. 53505.	0.10 -792. 2097.
٠	0.76 66647. -55637.	0.59 51601. -76577.	0.46 40410. -90885.	16	0.47 -2871. 132675.	0.23 -1396. 55155.	0.11 -701. 2890.
ĸ	0.80 69979. -122284.	0.65 56762. -128178.	0.53 46471. -131295.	15	0.49 -1768. 135546.	0.25 -901. 56551.	0.13 -473. 3591.
4	0.84 72319. -192264.	0.72 61453. -184940.	0.61 52598. -177766.	14	0.52 -415. 137314.	0.28 -221. 57452.	0.15 -121. 4064.
m	0.89 -57649. -264583.	0.79 -51320. -246393.	0.71 -45922. -230364.	13	0.54 1627. 137729.	0.30 910. 57673.	0.17 522. 4185.
N	0.93 -159941. -206933.	0.87 -149161. -195073.	0.81 -139539. -184442.	12	0.57 4563. 136102.	0.33 2673. 56763.	0.20 1603. 3663.
•••	0.98 -46993. -46993.	0.95 -45912. -45912.	0.93 -44903. -44903.	pref pref	0.60 9881. 131539.	0.37 6063. 54091.	0.23 3802. 2060.
ТЕЯМ	PRESENT WORTH 5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	TERM	PRESENT WORTH 5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH

TABLE 16-6-10 CASH FLOW TABLE FOR OIL WEST TEMANA AND E-6 DIL FIELDS

			10YR TOTAL	299134.	67343.			18YR TOTAL	299134.	83314.		
PAGE			10	0.	5677.	31.57	55.26					
			ō,	0.	7869.	31.57	52.63					
			80	•	•6666	31.57	50.12	18	•0	591.	31.57	81.64
	YEARS YEARS 10 % 10 %	10.00 % 20.00 % 30.00 % 0.50 % 5.00 % 70.00 % Ms 50000000 Ms 25000000000000000000000000000000000000	-	•	10951.	31.57	47.74	17	°	1255.	31.57	17.76
	: 15 : 100.0 : 8.0	10.00 % 20.00 % 70.00 % 30.00 % M* 32.31 /B 5.00 % 70.00 % M* 5000000 M* 2500000	•	ò	10951.	31.57	45.46	16	•	1442.	31.57	74.05
CASE	G R E E M	IC PRICE	w	•	10951.	31.57	43.30	15	•	1700.	31.57	70.53
ERMINAL S #	. P/s A	O CH FUND 1976 BASE) PRICE OIL ABOVE BASIC 0088L/DAY	EAR #	ò	10951.	31.57	41.24	14	0	1984.	31.57	67.17
E-6, ONSHORE TERMINAL PREMISES*	OMPANY R M S O F	COVERY RATIO E PANY FOR RESEARCH FUND RICE (AT 1976 BASE) E FOR BASIC PRICE FOR PROFIT OIL ABOVE S AROVE 50060BBL/DAY	INPUT DATA BY YEAR 2 3	132697.	•	0.0	39.27	13	•	2371.	31.57	16.69
8: E-6.	ر د	COVERY FOR R FOR R FOR E FOR	* INPUT	115072.	0	0.0	37.40	12	0	2881.	31.57	60.92
CASE II	PRODUCTION LIFE PRE-STARTUP PERIOD EQUITY RATIO OF OI INTEREST RATE * B A S I C T	ROYALTY RATE PROFIT OIL SHAR PETRONAS OPERATING COM RATE OF PAYMENT INITIAL BASIC P RATE OF INCREAS RATE OF PAYMENT PRODUCTION BONU DISCOVERY BONUS	1	51365.	ò	0.0	35.62	11	ċ	3747.	31.57	58.02
VOL.IV	PRO PRE EQU INT	RDY MAX PRO INI INI RATI RATI PRO INC	TERM	CAPITAL INVESTMENT (MS 1000)	OIL PRODUCTION (M BBL/YEAR)	SALES PRICE OF OIL (M\$/BBL)	RASIC PRICE OF OIL (M\$/BBL)	TERM	CAPITAL INVESTMENT (M\$ 1000)	OIL PRODUCTION (M BRL/YEAR)	SALES PRICE OF OIL (M\$/BRL)	BASIC PRICE OF OIL (MS/RBL)

TABLE 16-6-10 CASH FLOW TABLE FOR DIL WEST TEMANA AND E-6 OIL FIELDS

VOL.IV CASE II B : E-6, ONSHORE TERMINAL CASE

	* .	#	CASH FLOW TABLE	E FOR PETRONAS X M\$ 1000)	RONAS *	#				(CONT	(CONT'D) PAGE 2
TERM	ęd	8	m	4	'n	ð	7	æ	6	10	10YR. TOTAL
1 SALES REVENUE FROM PROFIT OIL	0	0	0	169404.	169404.	169404.	169404.	154585.	121728.	87819.	1041748.
2 REVENUE FROM OIL BASIC PRICE	•	o	0.	0	•0	o	0	0	•	0	0.
3 RONUS FROM OIL COMPANY DISCOVERY RONUS PRODUCTION RONIS	000	000		2500. 2500. 0.	000	000	000	000	000		2500. 2500. 0.
4 RESEARCH FUND FROM OIL CO.	•	o	0	709.	709.	709.	709.	647.	£06*	266.	4257.
5 TOTAL CASH INFLOW	0	0	0	172613.	170113.	170113.	170113.	155231.	122237.	88085.	1048505.
6 INCOME TAX	Ó	0	o	77676.	76551.	76551.	76551.	69854.	55007.	39638.	471827.
7 NET CASH FLOW	ó	÷	0	94937.	93562.	93562.	93562.	85377.	67230.	48447.	
8 CUMULATIVE NET CASH FLOW	•0	•	0	94937.	188499.	282061.	375624.	461001.	528231.	576678.	
TERM	11	12	13	14	15	16	17	18			18YR. TOTAL
1 SALES REVENUE FROM PROFIT OIL	57963.	44567.	36678.	30691.	26298.	22307.	19414.	9142.			1288804.
2 REVENUE FROM OIL BASIC PRICE	•0	0.	0	0	o	•0	0.	·			0.
3 BONUS FROM OIL COMPANY DISCOVERY BONUS PRODUCTION BONUS	000	000	000		000	000	000	000			2500. 2500. 0.
4 RESEARCH FUND FROM OIL CO.	196.	167.	150.	128.	110.	93.	81.	# 8 6			5221.
5 TOTAL CASH INFLOW	58160.	44734.	36828.	30819.	26408.	22400.	19495.	9181.	 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1296526.
6 INCOME TAX	26172•	20130.	16572.	13869.	11884.	10080	8773.	4131.	! ! ! !		583438.
7 NET CASH FLOW 8 CUMULATIVE NET CASH FLOW	31988.	24604.	20255. 653525.	16951.	14524.	12320. 697320.	10722. 708042.	5049.			

TABLE 16-6-10 CASH FLOW TABLE FOR OIL WEST TEMANA AND E-6 OIL FIELDS

CASE II B : E-6, DNSHORE TERMINAL CASE Vnl. IV

(CONT'D)
PAGE 3

(CONT PAGE	10		0.63 30477. 428928.	0.40 19590. 325953.	0.27 12842. 252457.			
	σ'n		0.66 44408. 398452.	0.44 29904. 306363.	0.30 20494. 239615.			
	89		0.69 59214• 354044•	0.49 41773. 276459.	0.35 29930. 219120.	18	0.43 2150. 501798.	0.19 953. 366405.
	~		0.73 68135. 294830.	0.54 50356. 234686.	0.40 37719. 189190.	17	0.45 4794. 499648.	0.21 2225. 365453.
*	9		0.76 71542. 226695.	0.59 55391. 184330.	0.46 43377. 151471.	199	0.47 5783. 494854.	0.23 2812. 363228.
PETRONAS 1000)	Ŋ		0.80 75119. 155153.	0.65 60930. 128939.	0.53 49884. 108093.	15	0.49 7159. 489071.	0.25 3647. 360416.
CASH FLOW FOR	4		0.84 80034. 80034.	0.72 68008.	0.61 58210. 58210.	14	0.52 8773. 481912.	0.28 4682. 356769.
ET CASH	M		0.89	0.79	0.71	E 1	0.54 11007. 473139.	0.30 6154. 352088.
RESENT WORTH OF NET	2		0.93 0. 0.	0.87	0.81 0.	12	0.57 14039. 462132.	0.33 8222. 345934.
PRESENT 1	-		0.98	0.95	0.93	11	0.60 19165. 448093.	0.37 11759. 337712.
**	TERM	PRESENT WORTH	5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	TERM	PRESENT WORTH 5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH

438**.** 275693**.** 0.09

1069.

0.11 1412. 274187.

0.15 0.13 2569. 1914. 270861. 272775.

0.23 0.20 0.17 7373. 4931. 3530. 259830. 264761. 268292.

PRESENT WORTH CUMULATIVE PRESENT WORTH

15.00% DISCOUNT RATE

TABLE 16-6-10 CASH FLOW TABLE FOR OIL WEST TEMANA AND E-6 OIL FIELDS VOL.1V CASE II B : E-6, ONSHORE TERMINAL CASE

* * CASH FLOW TABLE FOR OPERATING COMPANY * * (X Ms 1000)

(CONT'D) PAGE 4

TOTAL 10YR. ċ ċ ċ 2500. 4257. 446464. 404853 212602 ċ 2500. ċ 6.01 .05719. 197868 299134. 1063918 212602 822079 404853, 99134 439707, 299134, 71053. 2.73 37371. ċ 49654 17922. 17922. 16817. o 000 266. 845. 241839. 15.86 ់ ċ ံ ċ 37637. 14649 ö 15494 21399. 2 509. 6.31 51660. 23247. ċ 63500. 15.15 24842. 000 14901. 63197. 220440. ċ ċ ċ ċ ċ 52169. 49685 126696. 24842 49685. 34784 647. 6.31 47951. 157243. 12.40 66251. *960€9 31548. 15145. 65604. 29522. ċ 76861. 160894. ċ 000 84033 ċ ċ ċ 31548. 63096. ċ ċ 7.05 709. 82889. 73210. 34572. 34572. 71893. 32352. ċ 69145. 176319. ċ 000 53889. 93430 72602. 6.31 15256. ċ ċ ċ ö ં 34572. 176319. 82889. 69145. 34572. 6.31 71893. 32352. ċ 72602. ċ 000 709. 15256. 93430 -20220-· ċ ċ 53889. 0.0 ċ ċ 69145 71893. 34572. 176319. 34572. 000 709. 6.31 32352. ċ ċ 69145. 15256. 82889. 93430 -113650. ं ċ 72602. 53889. 0 69145 2500. 176319. 2500. 709. 6.31 69393. 31227. ċ 84264. 92055 -207079. ċ 72602* 69145. 34572. 34572. ċ ċ 15256. 53889, 0.0 69145 -299134. 0000 ċ ċ 000 ċ 132697. -51365. -115072. -132697. ċ 132697. ċ ċ ċ ċ 0.0 132697 -166437. 115072. ċ ċ 000 0000 51365. 115072. 115072. ċ ċ ċ ċ ċ ċ ċ 0.0 ċ ċ 51365. ċ ... ċ 0000 -51365. ċ ċ ់ ċ ċ ċ 51365. ċ ċ ċ 0.0 ċ 3 SALES REVENUE FROM ROYALTY OIL 1 SALES REVENUE FROM PROFIT DIL TERM 2 SALES REVENUE FROM COST DIL NET CASH FLOW (%) 6 PAYMENT FOR DIL BASIC PRICE RESEARCH FUND TO PETRONAS 14 CUMULATIVE NET CASH FLOW 6.2 YEARS CAPITAL COST RECOVERY OPERATING EXPENSES 12 TOTAL CASH OUTFLOW 11 CAPITAL INVESTMENT 4 TOTAL CASH INFLOW DISCOVERY BONUS
PRODUCTION BONUS INCOME REFORE TAX 20 BORROWING BALANCE 16 CORPORATE CAPITAL OPERATING COST 18 BANK BORROWING 13 NET CASH FLOW 21 PAYOUT TIME 15 DCF ROR OF 10 INCOME TAX REPAYMENT 17 INTEREST 5 ROYALTY BONUS æ σ 19

TABLE 16-6-10 CASH FLOW TABLE FOR OIL WEST TEMANA AND E-6 OIL FIELDS VOL.IV CASE II 8 : E-6, ONSHORE TERMINAL CASE

* * CASH FLOW TABLE FOR OPERATING COMPANY * *

(CONT D)

TERM	11	12	13	14	15	. 16	17	18	18YR. TOTAL
1 SALES REVENUE FROM PROFIT OIL	24841.	19100.	15719.	13153.	11270.	9560.	8320.	3918.	552346.
2 SALES REVENUE FROM COST OIL	14426.	14327.	14268.	12527.	10734.	9105.	7924.	3732.	491895.
3 SALES REVENUE FROM ROYALTY DIL	11829.	•5606	7485.	6263.	5367.	4552.	3962.	1866.	263022.
4 TOTAL CASH INFLOW	51097.	42522•	37472.	31944.	27371.	23217.	20206.	9516.	1307260.
5 ROYALTY	11829.	9095	7485.	6263.	5367.	4552	3962.	1866.	263022.
6 PAYMENT FOR OIL BASIC PRICE	ò	•0	o	•	•	•	•	ċ	•0
7 BONUS DISCOVERY BONUS PRODUCTION BONUS	000	• • •	•••	• • •	•••	•••	000	000	2500. 2500. 0.
8 RESEARCH FUND TO PETRONAS	196.	167.	150.	128.	110.	93.	81.	38.	5221.
OPERATING EXPENSES (M\$/RBL) 9 OPERATING COST CAPITAL COST RECOVERY	14426. 3.85 14426. 0.	14327. 4.97 14327. 0.	14268. 6.02 14268. 0.	14223. 7.17 14223. 0.	14190. 8.35 14190. 0.	14159. 9.82 14159. 0.	14139. 11.27 14139. 0.	8216. 13.90 8216. 0.	512801. 6.16 213667. 299134.
INCOME BEFORE TAX	24645.	18933.	15569.	13025.	11160.	9467.	8239.	3880.	544625.
10 INCOME TAX	11090.	8520.	7006.	5861.	5022.	4260.	3708.	1746.	245081.
11 CAPITAL INVESTMENT	•	•	•	ò	•	ô	•	ó	299134.
12 TOTAL CASH OUTFLOW	37542.	32109.	28909.	26476.	24689.	23065.	21890.	11866.	1028625.
13 NET CASH FLOW	13555.	10413.	8563.	5468.	2682.	152.	-1683.	-2350.	
14 CUMULATIVE NET CASH FLOW	255394.	265807.	274370.	279837.	282519.	282672.	280988.	278638.	
15 DCF ROR OF NET CASH FLOW (%)	16.23	16.46	16.62	16.71	16.75	16.75	16.73	16.71	
16 CORPORATE CAPITAL	•	•	•0	ċ	•0	ċ	ċ	•0	299134.
17 INTEREST	•	•0	ò	ò	•	•	67.	234.	301.
18 BANK BORROWING	•	ò	•	•	•	•0	1751.	2585•	4335.
19 REPAYMENT	•0	•	ò	•	•	0	•	•	•0
20 BORROWING BALANCE	•0	•	•	ò	0	0	1751.	4335.	
21 PAYOUT TIME 6.2 YEARS	 	‡ 		 	j i i i i i		 		* * * *

TABLE 16-6-10 CASH FLOW TABLE FOR OIL WEST TEMANA AND E-6 OIL FIELDS

VOL.IV CASE 11 B : E-6, ONSHORE TERMINAL CASE

**	PRESENT WORTH	NTH OF NET	. CASH FLOW	FOR ×	OPERATING CO Ms 1000)	COMPANY * *				(CONT'D) PAGE 6	
TERM		2	m	4	ហ	۵	۲	ω	6	10	
PRESENT WORTH											
5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.98 -50127. -50127.	0.93 -106951. -157078.	0.89 -117460. -274538.	0.84 77604. -196934.	0.80 75013. -121921.	0.76 71441. -50481.	0.73 68039. 17558.	0.69 58282. 75840.	0.66 41743. 117583.	0.63 13462. 131045.	
01 U.C.	0.95 -48975. -48975.	0.87 -99743. -148717.	0.79 -104563. -253281.	0.72 65944. -187337.	0.65 60844. -126493.	0.59 55313. -71180.	0.54 50285. -20896.	0.49 41116. 20220.	0.44 28110. 48330.	0.40 8653. 56983.	
15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.93 -47898. -47898.	0.81 -93309. -141207.	0.71 -93566. -234773.	0.61 56442. -178330.	0.53 49813. -128517.	0.46 43316. -85201.	0.40 37666. -47535.	0.35 29459. -18076.	0.30 19265. 1189.	0.27 5672. 6861.	
TERM	11	12	13	14	15	16	17	18			
PRESENT HORTH											
5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.60 8121. 139166.	0.57 5942. 145108.	0.54 4653. 149761.	0.52 2830. 152591.	0.49 1322. 153913.	0.47 72. 153984.	0.45 -753. 153232.	0.43 -1001. 152231.			
10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.37 4983. 61966.	0.33 3480. 65446.	0.30 2601. 68047.	0.28 1510. 69557.	0.25 673. 70231.	0.23 35. 70265.	0.21 -349. 69916.	0.19 -443. 69473.			
15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.23 3124. 9985.	0.20 2087. 12073.	0.17 1492. 13565.	0.15 829. 14394.	0.13 353. 14747.	0.11 17. 14765.	0.10 -168. 14597.	0.09 -204. 14393.			

<u>Table 17-5-1</u> (Vol. IV)

MAJOR EQUIPMENT LIST

FOR CENTRAL LUCONIA GAS FIELDS-CASE IC

			·
ITEM NO. & NAME	LOCATION	YTITMAUQ	DESCRIPTION
<u>V-101</u>	E8WP-A F13WP-A F14WP-A	1 1 1	SIZE: 7'-0" I.D. x 21'-0" S-S DESIGN PRESS.: 1,200 PSIG @ 150°F TYPE: HORIZONTAL
PRODUCTION SEPARATOR	E11WP-A F6WP-A F6WP-B F23P-A	2 1 1 3	SIZE: 8'-0" I.D. x 24'-0" S-S DESIGN PRESS.: 1,200 PSIG @ 150°F TYPE: HORIZONTAL
<u>v-102</u>	E8WP-A F13WP-A F14WP-A	1 1 1	SIZE: 7'-0" I.D. x 21'-0" S-S DESIGN PRESS.: 1,200 PSIG @ 150°F TYPE: HORIZONTAL
TEST SEPARATOR	EllWP-A F6WP-A F6WP-B F23P-A	1 1 1	SIZE: 8'-0" I.D. x 24'-0" S-S DESIGN PRESS.: 1,200 PSIG @ 150°F TYPE: HORIZONTAL
V-103 LIQUID KNOCKOUT DRUM	E8WP-A E11WP-A F6WP-A F6WP-B F13WP-A F14WP-A F23W-A	4 11 7 6 4 3 17	SIZE: 3'-6" I.D. x 10'-0" S-S DESIGN PRESS.: 1,200 PSIG @ 150 °F TYPE: VERTICAL
V-104	E8WP-A F13WP-A F14WP-A	1 1 1	SIZE: 6'-0" I.D. x 27'-6" S-S DESIGN PRESS.: 1,200 PSIG @ 150°F TYPE: VERTICAL
GLYCOL CONTACTOR	F6WP-A F6WP-B	1	SIZE: 8'-0" I.D. x 28'-6" S-S DESIGN PRESS.: 1,200 PSIG @ 150°F TYPE: VERTICAL
	EllWP-A E23P-A	2 3	SIZE: 7'-6" I.D. x 28'-6" S-S DESIGN PRESS.: 1,200 PSIG @ 150°F TYPE: VERTICAL
V-105 CONDENSATE SURGE VESSEL	E8WP-A E11WP-A F6WP-A F6WP-B F13WP-A F14WP-A F23P-A	1 1 1 1 1 1	SIZE: 4'-6" I.D. x 15'-0" S-S DESIGN PRESS.: 1,200 PSIG @ 150°F TYPE: HORIZONTAL
GR - 101	E8WP-A F13WP-A F14WP-A	1 1 1	REBOILER: 42" DIA. x 21'-6" L STILL COLUMN: 22" DIA. x 12'-0" L SURGE TANK: 42" DIA. x 21'-6" L
GLYCOL REGENERATOR	E11WP-A F6WP-A F6WP-B F23P-A	2 1 1 3	REBOILER: 48" DIA. x 24'-0" L STILL COLUMN: 28" DIA. x 13'-0" L SURGE TANK: 48" DIA. x 22'-0" L
H - 101 START-UP HEATER	E8WP-A E11WP-A F6WP-A F6WP-B F13WP-A F14WP-A F23W-A	1 1 1 1 1 1	SIZE: 24" DIA. x 7'-6" L

<u>Table 17-5-1</u> (Vol. IV)

MAJOR EQUIPMENT LIST

FOR CENTRAL LUCONIA GAS FIELDS - CASE IC (Cont'd)

ITEM NO. & NAME .	LOCATION	QUANTITY	DESCRIPTION
C - 151 INSTRUMENT AIR COMPRESSOR	E8WP-A E11WP-A F6WP-A F6WP-B F13WP-A F14WP-A F23P-A	2 2 2 2 2 2 2	CAPACITY: 35 SCFM
<u>P - 152</u> FIRE WATER PUMP	E8WP-A E11WP-A F6WP-A F6WP-B F13WP-A F14WP-A F23P-A	1 1 1 1 1 1	CAPACITY: 1,500 GPM TYPE: VERTICAL
	E8WP-A F13WP-A F14WP-A	1 1 1	CAPACITY: 20 BBL SIZE: 5'-0" I.D. x 8'-0" H
TK - 101 CORROSION INHIBITOR	F6WP-A F6WP-B	1 1	CAPACITY: 50 BBL SIZE: 6'-6" I.D. x 10'-0" H
TANK	EllWP-A	1	CAPACITY: 70 BBL SIZE: 8'-0" I.D. x 10'-0" H
	F23P-A	1	CAPACITY: 90 BBL SIZE: 9'-6" I.D. x 12'-0" H
	E8WP-A F13WP-A F14WP-A	1 1 1	CAPACITY: 20 BBL SIZE: 5'-0" I.D. x 8'-0" H
<u>TK - 102</u>	F6WP-A F6WP-B	1	CAPACITY: 50 BBL SIZE: 6'-6" I.D. x 10'-0" H
GLYCOL STORAGE TANK	EllWP-A	1	CAPACITY: 70 BBL SIZE: 8'-0" I.D. x 10'-0" H
	F23P-A	1	CAPACITY: 90 BBL SIZE: 9'-6" I.D. x 12'-0" H
M - 101 INLET MANIFOLD	E8WP-A E11WP-A F6WP-A F6WP-B F13WP-A F14WP-A F23W-A	1 1 1 1 1 1	PRODUCTION HEADER TEST HEADER
c - 111	E6C-A	3	CAPACITY: 100 MMSCFD
GAS TURBINE COMPRESSOR	EllC-A EllC-B	4 4	CAPACITY: 230 MMSCFD
<u>v - 111</u>	E6C-A	1	SIZE: 5'-0" I.D. x 15'-0" S-S TYPE: VERTICAL
KNOCKOUT DRUM	EllC-A EllC-B	1	SIZE: 10'-0" I.D. x 20'-0" S-S TYPE: VERTICAL

<u>Table 17-5-1</u> (Vol. IV)

MAJOR EQUIPMENT LIST

FOR CENTRAL LUCONIA GAS FILEDS-CASE IC (Cont'd)

ITEM NO. & NAME	LOCATION	QUANTITY	DESCRIPTION
<u>V - 112</u> UNIT SUCTION SCRUBBER	E6C-A	3	SIZE: 3'-6" I.D. x 10'-0" S-S TYPE: VERTICAL
UNIT SUCTION SCRUBBER	EllC-A EllC-B	4 4	SIZE: 5'-6" I.D. X 16'-0" S-S TYPE: VERTICAL
E - 111 AFTERCOOLER	E6C-A E11C-A E11C-B	6 16 16	TYPE: SHELL AND TUBE
<u>P - 153</u>	E6C-A	3	CAPACITY: 650 GPM TYPE: VERTICAL
SEA WATER PUMP	EllC-A EllC-B	4 4	CAPACITY: 3,000 GPM TYPE: VERTICAL
<u>V - 108</u> CENTRIFUGAL SEPARATOR	EllR-A	4	SIZE: 6'-6" I.D. x 16'-0" S-S TYPE: VERTICAL
G - 152 GAS TURBINE GENERATOR	E6U-A E11U-A F23U-A	2 2 2	CAPACITY: 1,000 KVA

•	
ᅼ	
. L	c
φ	È
	_
17	
	_
a	Ċ
Ä	Š
Ω	-
Tab	
н	

ESTIMATION	
COST	
INVESTMENT	
CAPITAL	

(M\$ 1,000)

CEN	CENTRAL LUCONIA GAS FIELDS	CASE IA	CASE IB	CASE IC	CASE II	CASE III	CASE IV
i	Exploration & Appraisal Wells	66,957	66,957	66,957	66,957	66,957	66,957
2.	Engineering	98,032	107,919	130,328	122,770	114,201	106,718
ë.	Development Wells	148,209	145,034	196,088	186,573	173,863	155,575
4.	Facilities						
	a. Offshore Platforms	232,921	210,168	314,763	293,108	277,157	259,152
•	b. Offshore Production Equipment	175,603	316,364	474,742	444,285	413,890	383,062
	c. Submarine Pipelines	390,657	250,813	278,374	264,444	237,800	230,084
	d. Offshore Storage & Loading Facilities .	ı	ı	ı	1	ı	1
	e. Onshore Terminal & Loading Facilities .	ı	117,500	1	ı	1	ı
	f. Support Facilities	39,304	39,304	39,304	39,304	39,304	39,304
	Sub Total	838,485	934,149		1,041,141	. 968,151	911,602
ů.	Pre-start up Expense	10,847	11,871	14,336	13,505	12,562	11,738
•	Contingencies	108,473	118,710	143,361	135,049	125,622	117,389
	TOTAL	1,271,003	1,384,640	1,658,253	1,565,995	1,461,356	1,369,979

Table 17-6-2 (Vol. IV)

ANNUAL OPERATION COST ESTIMATION

CEN	TRAL	CENTRAL LUCONIA GAS FIELDS				(M\$	(M\$ 1,000/Year)		
۲.	Dire	Direct Cost	CASE IA	CASE IB	CASE IC	CASE II	CASE III	CASE IV	
	rd	Operating Personnel	2,545	2,545	2,545	2,545	2,545	2,545	
	ď.	Operating Management	254	254	254	254	254	254	
	ច់	Repair & Maintenance	14,145	16,713	21,120	19,774	18,512	17,094	
	ė.	Operating Supplies	3,470	3,373	4,128	3,879	3,597	3,358	
	o o	Chemical	2,535	2,477	3,345	3,170	2,957	2,733	
	4	Service Contract	5,944	5,944	5,944	5,563	5,182	4,801	
		Sub Total	28,893	31,306	37,336	35,185	33,047	30,785	
2.	Indi	Indirect Cost			·				
	ส	Indirect Personnel	1,400	1,400	1,400	1,400	1,400	1,400	
	Ď.	Insurance	12,619	13,823	17,272	16,190	15,108	14,003	
		Sub Total	14,019	15,223	18,672	17,590	16,508	15,403	
		TOTAL	42,912	46,529	56,008	52,775	49,555	46,188	

(M\$ 1,000)

Table 17-6-3 (Vol. IV)

CENTRAL LUCONIA GAS FIELDS CA	CASE I A			(M\$ 1,000)
Year	lst	2ND	3RD	13тн
1. Exploration & Appraisal Wells	66,957	a	ţ	ı
2. Engineering	94,070	i	1	3,962
3. Development Wells	ı	60,452	87,757	1
4. Offshore Platforms	59,510	153,558	19,853	1
5. Offshore Production Equipment	36,548	91,859	7,572	39,624
6. Submarine Pipelines	1	. 155,227	235,430	
7. Offshore Storage & Loading 7. Facilities	1	1	1	ı
8. Onshore Terminal & Loading 8. Facilities	1	ı	ı	1
9. Support Facilities	11,791	19,652	7,861	ı
10. Pre-start up Expense	2,019	4,807	3,585	436
11. Contingencies	20,192	48,075	35,847	4,359
Total	291,087	533,630	397,905	48,381

(M\$ 1,000)	13тн	-	15,865		1	158,648	1	1	1	1	1,745	17,451	193,709
	3RD	-	1	84,582	17,361	965'9	162,779	•	117,500	7,861	3,967	39,668	440,314
	2ND	1	1	60,452	132,624	114,605	. 88,034	1	ı	19,652	4,154	41,537	461,058
CASE I B	18T	66,957	92,054	•	60,183	36,515	ı	1	ı	11,791	2,005	20,054	289,559
CENTRAL LUCONIA GAS FIELDS CA	Year	1. Exploration & Appraisal Wells	2. Engineering	3. Development Wells	4. Offshore Platforms	5. Offshore Production Equipment	6. Submarine Pipelines	7. Offshore Storage & Loading 7. Facilities	8. Onshore Terminal & Loading 8. Facilities	9. Support Facilities	10. Pre-start up Expense	11. Contingencies	Total

CENTRAL LUCONIA GAS FIELDS CASE I C

(M\$ 1,000)

Year	lst	2ND	3RD	13TH
1. Exploration & Appraisal Wells	66,957		ı	-
2. Engineering	112,695	i.		17,633
3. Development Wells	1	83,820	112,268	ı
4. Offshore Platforms	121,298	176,848	16,617	ļ
5. Offshore Production Equipment	115,253	175,679	7,483	176,327
6. Submarine Pipelines		156,820	121,554	1
7. Offshore Storage & Loading 7. Facilities	•			1
8. Onshore Terminal & Loading Facilities	1	1	:1	ı
9. Support Facilities	11,791	19,652	7,861	l
10. Pre-start up Expense	3,609	6,129	2,657	1,941
11. Contingencies	36,104	61,283	26,579	19,395
Total	467,707	680,231	295,019	215,296

(M\$ 1,000)	13тн	ŀ	16,901	1	I	169,012	1	1	ı	1	1,859	18,591	206,363
	3RD	I	i	102,743	11,204	5,596	107,622	1	ı	7,861	2,350	23,503	260,879
	2ND	•	•	83,830	160,604	161,072	156,822	1	1	19,652	5,820	58,198	645,998
SE II	lst	66,957	105,869	•	121,300	108,605	ı	•	•	11,791	3,476	34,757	452,755
CENTRAL LUCONIA GAS FIELDS CASE	Year	1. Exploration & Appraisal Wells	2. Engineering	3. Development Wells	4. Offshore Platforms	5. Offshore Production Equipment	6. Submarine Pipelines	7. Offshore Storage & Loading 7. Facilities	Onshore Terminal & Loading Pacilities	9. Support Facilities	10. Pre-start up Expense	11. Contingencies	. Total

(M\$ 1,000)	13TH	ı	16,002	ı	1	160,020	1	ı	ı	•	1,760	17,602	195,384
	3RD	1	1	98,171	16,220	5,364	111,674	1	-	7,861	2,393	23,929	265,612
	2ND	1	1	75,692	161,732	163,063	126,126	l	I	19,652	5,463	54,627	606,355
CASE III	lst	66,957	98,199	1	99,205	85,443	ı	1	1	11,791	2,946	29,464	394,005
CENTRAL LUCONIA GAS FIELDS CA	Year	1. Exploration & Appraisal Wells	2. Engineering	3. Development Wells	4. Offshore Platforms	5. Offshore Production Equipment	6. Submarine Pipelines	7. Offshore Storage & Loading Facilities	8. Sacilities	9. Support Facilities	10. Pre-start up Expense	11. Contingencies	Total

(M\$ 1,000)	13TH	1	15,057	ı	Γ	150,571	ı		l	ı	1,656	16,563	183,847
	3RD			103,251	23,310	17,612	194,869	L	1	7,861	3,469	34,690	385,062
	2ND	1	8	52,324	178,725	180,525	35,215	1	•	19,652	4,664	46,644	517,749
CASE IV	lst	66,957	199,16	ľ	57,117	34,354	1	1	į	11,791	1,949	19,492	283,321
CENTRAL LUCONIA GAS FIELDS CAS	Year	1. Exploration & Appraisal Wells	2. Engineering	3. Development Wells	4. Offshore Platforms	5. Offshore Production Equipment	6. Submarine Pipelines	7. Offshore Storage & Loading 7. Facilities	8. Onshore Terminal & Loading 8. Facilities	9. Support Facilities	10. Pre-start up Expense	11. Contingencies	Total

TABLE 17-6-9 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

						10YR	TOTAL	1222622•	7210.		20YR TOTAL	1271003.	17510.	
PAGE							10	0.	1030.	174.0	20	•	1030.	174.0
							ው	•0	1030.	174.0	19	•	1030.	174.0
							æ	•	1030.	174.0	18	o,	1030.	174.0
_		YEARS YEARS 10 %	#	be be	ж ж ж ж ж ж ж ж ж ж ж ж ж ж ж ж ж ж ж		7	•	1030.	174.0	17	•	1030.	174.0
SIX FIELDS DEVELOPMENT		: 20 YE : 3 YE : 100.00	N T S	: 10.00 : 25.00	. 70.00 % . 30.00 % . 0.50 % . M\$ 2500000.		9	ċ	1030.	174.0	16	•0	1030.	174.0
FIELDS D			GREEM				'n	0	1030.	174.0	15	•	1030.	174.0
CASE - SIX	*		P/S A		Q	EAR *	4	•0	1030.	174.0	14	•	1030.	174.0
NATURAL FLOW C	E M I S E	MPANY	N S O F	RATIO	RESEARCH FUND	INPUT DATA BY YEAR	m	397905.	ö	0.0	13	48381.	1030.	174.0
: NATURA	± €	FE FRIOD OF OIL COMPANY	_ ⊢	C T E R RECOVERY R ARE OMPANY NI FOR RES	AKE JMPANY NT FOR RESI JS	# INPUT	2	533630.	•	0.0	12	•	1030.	174.0
CASE I A		PRODUCTION LIFE PRE-STARTUP PERIOD EQUITY RATIO OF 010 INTEREST RATE	* B A S I C T E R M S ROYALTY RATE MAXIMUM COST RECOVERY RATIO PROFIT GAS SHARE PETRONAS OPERATING COMPANY RATE OF PAYMENT FOR RESEARCI DISCOVERY BONUS INCOME TAX RATE		1	291087.	•	0.0	11	•	1030.	174.0		
VOL.1V		PRO PRE EQU		ROY	PRO P P RAT DIS INC		TERM	CAPITAL INVESTMENT (M\$ 1000)	GAS PRODUCTION (MMSCF/DAY)	SALES PRICE OF GAS (MC/MSCF)	TERM	CAPITAL INVESTMENT (M\$ 1000)	GAS PRODUCTION (MMSCF/DAY)	SALES PRICE OF GAS (MW/MSCF)

TABLE 17-6-9 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

VOL.IV CASE I A : NATURAL FLOW CASE - SIX FIELDS DEVELOPMENT

(CONT'D) PAGE 2

INPUT DATA BY YEAR

23YR. Total

1271003.

23	ò	1030.	174.0
22	•	1030. 1030.	174.0 174.0 174.0
21	•	1030.	174.0
TERM	CAPITAL INVESTMENT (M\$ 1000)	GAS PRODUCTION (MMSCF/DAY)	SALES PRICE OF GAS (M&/MSCF)

TABLE 17-6-9 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

VOL.IV CASE I A: NATURAL FLOW CASE - SIX FIELDS DEVELOPMENT

* * CASH FLOW TABLE FOR PETRONAS * * (X M\$ 1000)

(CONT'D) PAGE 3

TERM	1	7	m	4	'n	9	7	æ	σ,	10	10YR. TOTAL
1 SALES REVENUE FROM PROFIT GAS	°0	ó	0.	297639.	297639.	297639.	297639.	297639.	297639.	297639.	2083474.
2 BONUS FROM OIL COMPANY DISCOVERY BONUS PRODUCTION BONUS	000	000	•••	2500.		000	•••	•••	000		2500. 2500. 0.
3 RESEARCH FUND FROM DIL CO.	ò		•	145	1455.	1455.	1455.	1455.	1455.	1455.	10188.
4 TOTAL CASH INFLOW	ò	·	ô	301595.	299095.	299095.	299095.	299095	299095.	299095.	2096161.
5 INCOME TAX	0	°	o	135718.	134593.	134593.	134593.	134593.	134593.	134593.	943273.
6 NET CASH FLOW	•0	•0	ċ	165877.	164502.	164502.	164502.	164502.	164502.	164502.	
7 CUMULATIVE NET CASH FLDW	°	ċ	ó	165877.	330379.	494881.	659384.	823886.	988388.	1152889.	
TERM	11	12	13	14	15	16	17	18	19	20	20YR. TOTAL
1 SALES REVENUE FROM PROFIT GAS	5 297639.	297639.	297639.	297639.	297639.	297639.	297639.	297639*	297639.	297639.	5059864.
2 RONIJS FROM OIL COMPANY DISCOVERY RONUS PRODICTION BONIS	000	000	•••	• • •	000	000		000	000		2500. 2500. 0.
3 RESEARCH FUND FROM OIL CO.	1455.	1455.	1455.	1176.	852.	852.	852.	852.	852.	852.	20845.
4 TOTAL CASH INFLOW	299095	299095	299095	298815.	298492.	298492.	298492•	298492•	298492•	298492.	5083204.
5 INCOME TAX	134593.	134593.	134593.	134467.	134321.	134321•	134321.	134321.	134321.	134321.	2287442.
6 NET CASH FLOW	164502.	164502.	164502.	164349.	164170.	164170.	164170.	164170.	164170.	164170.	
7 CUMULATIVE NET CASH FLOW	1317391. 1481	1481893.	1646395.	893. 1646395. 1810743.	1974913.	2139083.	2303253.	2467423.	2631593.	2795763.	

TARLE 17-6-9 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

CASE I A : NATURAL FLOW CASE - SIX FIELDS DEVELOPMENT

VOL. IV

	¥Γ	* * CASH	CASH FLOW TABLE FOR PETRONAS * *	(CONT'D) PAGE 4
TERM	21	22	23	23YR. TOTAL
1 SALES REVENUE FROM PROFIT GAS 297639. 297639.	297639.	297639.	297639.	5952781.
2 BONUS FROM OIL COMPANY DISCOVERY BONUS PRODUCTION BONUS	•••	000	0.00	2500. 2500. 0.
3 RESEARCH FUND FROM DIL CO.	852.	852.	852.	23402•
4 TOTAL CASH INFLOW	298492•	298492. 298492. 298492.	298492.	. 5978677
5 INCOME TAX	134321.	134321. 134321. 134321.	4321. 134321.	2690405.
6 NET CASH FLOW	164170.	164170. 164170. 164170.	164170.	
7 CUMULATIVE NET CASH FLOW	2959933.	2959933. 3124103. 3288273.	3288273.	

CASE I A: NATURAL FLOW CASE - SIX FIELDS DEVELOPMENT TABLE 17-6-9 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS VOL.1V

#	· PRESENT WORT	WORTH OF	H OF NET CASH FLOW FOR (x M\$	FLOW FOR (X M\$	PETRONAS 1000)	#				(CONT'D) PAGE 5	~ <i>1</i> 0
TERM	••	₹.	ĸ	4	ſŪ	.	~	æ	6	10	
PRESENT WORTH 5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.98 0.	0.93 0.	0.89 0.	0.84 139838. 139838.	0.80 132075. 271913.	0.76 125786. 397699.	0.73 119796. 517495.	0.69 114092. 631587.	0.66 108659. 740246.	0.63 103485. 843730.	·
10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.95 0.0	0.87 0. 0.	0.79 0.0	0.72 118826. 118826.	0.65 107129. . 225955.	0.59 97390. 323345.	0.54 88536. 411881.	0.49 80487. 492368.	0.44 73170. 565538.	0.40 66519. 632057.	
15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.93 0. 0.	0.81	0.71	0.61 101706. 101706.	0.53 87706. 189412.	0.46 76267 265678	0.40 66319. 331997.	0.35 57669. 389666.	0.30 50147. 439812.	0.27 43606. 483418.	! !
TERM PRESENT WORTH	11	12	13	14	15	16	17	18	19	20	
5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.60 98557. 942287.	0.57 93864. 1036151.	0.54 89394. 1125545.	0.52 85058. 1210602.	0.49 80920. 1291521.	0.47 77067. 1368587.	0.45 73397. 1441983.	0.43 69902. 1511884.	0.41 66573. 1578457.	0.39 63403. 1641859.	
10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.37 60471. 692528.	0.33 54974. 747502.	0.30 49977. 797479.	0.28 45391. 842870.	0.25 41220. 884089.	0.23 37472. 921562.	0.21 34066. 955628.	0.19 30969. 986596.	0.17 28154. 1014750.	0.16 25594. 1040344.	
	0.23 37918. 521336.	0.20 32972. 554308.	0.17 28671. 582980.	0.15 24908. 607888.	0.13 21636. 629524.	0.11 18814. 648338.	0.10 16360. 664698.	0.09 14226. 678924.	0.08 12371. 691295.	0.07 10757. 702051.	

TABLE 17-6-9 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

VOL.IV CASE I A: NATURAL FLOW CASE - SIX FIELDS DEVELOPMENT

* * PRESENT WORTH OF NET CASH FLOW FOR PETRONAS * * (X M\$ 1000)

(CONT'D) PAGE 6

0.04 7073. 726612. 0.37 0.35 0.33 60384, 57509, 54770, 1702242, 1759750, 1814520, 0.14 0.13 0.12 23267. 21152. 19229. 1063611. 1084763. 1103992. 23 0.06 0.05 9354. 8134. 711405. 719539. 22 21 TERM 5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH PRESENT WORTH CUMULATIVE PRESENT WORTH 15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH 10.00% DISCOUNT RATE PRESENT WORTH

TABLE 17-6-9 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS VOL.1V CASE I A: NATURAL FLOW CASE - SIX FIELDS DEVELOPMENT

* * CASH FLOW TABLE FOR OPERATING COMPANY * * (X M\$ 1000)

(CONT'D)

TOTAL ċ 10YR. ó ċ 892919. 2500. 1144767. 300384. 1222621. 1144767. 396104. 457907, 2495591. 457907. 880230. 1222622. 2389700. 844383 10188, ċ 56747. 166530. 1.73 126104. ċ ċ 65415. 00 1455. 42912. ö ċ ö 127560. 120626. 189984. 163538, 356513. 65415 163538 105888 10 56747. 166530. 189984. 126104. ċ 00 163538. ċ 163538. 65415. 356513. 1455. -84096. 0.0 ċ ċ ċ ö 127560. 65415 42912, 120626 56747. 166530. • • 126104. ċ ċ 127560. 163538. 65415. 356513. 65415. 1455. 163538. 42912 120626. 1 1 1 1 1 1 189984. -274079. ċ ċ ċ ċ 0.0 166530. 189984. -464063. 127560. 65415. 1455. 126104. 56747. ċ 163538. 356513. 65415. 00 163538. 42912. ċ ċ ċ ċ ö 120626. 0.0 166530. 1455. 126104. 189984. -654046. 127560. 163538. 65415. 356513. 65415. 00 163538. 56747. ċ ċ ċ ċ 42912. ં ċ 120626. 0.0 9 189984. 166530. 127560. 126104. -844030. ċ 163538. 65415. 356513. 65415. 00 163538. 56747. 1455. 42912. ċ 120626. ċ ö ċ 0.0 ċ 188609. 127560. -291087. -824717.-1222622.-1034013. 163538. 65415. 356513. 1455. 123604. 167905. 2500. ċ 163538. 20626. ċ ċ ċ ċ ċ 65415. 2500. 42912. 55622. 0.0 -291087. -533630. -397905. 397905. ċ ċ 00 ċ 000 ċ ċ ċ ċ ċ ċ ċ ċ 397905. 0.0 397905. 533630. ċ . . . 533630. 533630. ċ ċ 00 ċ ö ċ ċ ċ 0 ċ ċ 0.0 291087. 291087. 291087. ó ċ 00 ċ 000 ċ ċ ċ ċ ċ ់ ô 0.0 3 SALES REVENUE FROM ROYALTY GAS 1 SALES REVENUE FROM PROFIT GAS 14 DCF ROR OF NET CASH FLOW (%) TERM GAS 7 RESEARCH FUND TO PETRONAS 13 CUMULATIVE NET CASH FLOW SALES REVENUE FROM COST OPERATING COST CAPITAL COST RECOVERY **CIPERATING EXPENSES** 10 CAPITAL INVESTMENT 11 TOTAL CASH OUTFLOW 4 TOTAL CASH INFLOW INCOME BEFORE TAX 19 BORROWING BALANCE 15 CORPORATE CAPITAL DISCOVERY BONUS 17 BANK BORROWING 12 NET CASH FLOW 9 INCOME TAX 18 REPAYMENT 16 INTEREST 5 ROYALTY 6 BONUS æ

20 PAYOUT TIME 9.4 YEARS

CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS CASE I A : NATURAL FLOW CASE - SIX FIELDS DEVELOPMENT TABLE 17-6-9

CASH FLOW TABLE FOR OPERATING COMPANY (X M\$ 1000) # #

(CONT'D) PAGE 8

20YR. TOTAL ċ ċ 2500. 2168510, 2000500 5281080. 2500 20845 1271002. 1112059 729504 1112059 965327 4101225 2000507 1271003 1271003 2145167 9.54 ċ 235887. 852. 42912. 42912. ċ 126707. 166198. ់ 65415. 00 57018. ö ö ċ ċ 65415. 970778. 1040467. 1110155. 1179844. 127560, 42912. 6 96 89. 20 166198. 126707. 57018. 9.36 235887. 00 42912. ċ 68969 ċ ċ ċ ö 852. ċ 127560. 42912. 65415. 42912. 65415. 13 9.14 42912. 126707. 57018. 166198. 69689. ċ 65415. 235887. 00 852* ់ ċ ċ ċ ċ 127560. 42912 65415. 42912. 18 8.90 42912. 42912. 57018. 166198. 852. 126707. 68969 65415. 65415. 00 ċ ċ 127560. 235887. ċ ċ ö 42912. ċ 17 42912. 166198. 901089. 8.62 126707. 57018. 68969 65415. 65415. • • 852. ċ ċ 127560. 235887. 42912. ċ ċ ċ ċ 42912 16 42912. 166198. 831400. 8.30 65415. 126707. 57018. 65415. . · ċ 127560. 235887. 852. 42912. 68969 ់ ċ ċ ċ ö 42912. 15 7.93 56873. 166376. 761711. 126384. 65415. 300629. 65415. 00 1176. ċ 134253. ċ ċ ċ ċ ċ 127560. 107654. .07654. 42912 64742 14 56747. 214911. 627458. 7.08 126104. 141603. 65415. 356513. 65415. . . 1455. 42912. ċ 127560. 48381. 48381. ċ ċ 163538. 163538 120626. 13 189984. 485855. 127560. 163538. 356513. . . 1455. 126104. ċ 166530. 6.00 ċ ċ 65415. 65415. 56747. ċ ċ ö 163538. 42912 120626. 12 189984. 295872. 4.15 1455. 127560. 65415. . . 26104. 56747. ċ 166530. ċ ċ 163538 356513. 65415. 63538 ċ ់ ċ 42912. 120626. 11 3 SALES REVENUE FROM ROYALTY GAS 1 SALES REVENUE FROM PROFIT GAS 8 SALES REVENUE FROM COST GAS TERM RESEARCH FUND TO PETRONAS 14 DCF ROR OF NET CASH FLOW 13 CUMULATIVE NET CASH FLOW OPERATING COST CAPITAL COST RECOVERY 11 TOTAL CASH OUTFLOW OPERATING EXPENSES 10 CAPITAL INVESTMENT 4 TOTAL CASH INFLOW 19 BORROWING BALANCE 15 CORPORATE CAPITAL INCOME REFORE TAX DISCOVERY BONUS 17 BANK BORROWING 12 NET CASH FLOW 9 INCOME TAX 18 REPAYMENT 16 INTEREST 5 ROYALTY 6 BONUS œ

9.4 YEARS 20 PAYOUT TIME

TABLE 17-6-9 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS VOL.1V CASE I A: NATURAL FLOW CASE - SIX FIELDS DEVELOPMENT

+ # CASH FLOW TABLE FOR OPERATING COMPANY # #
(x M\$ 1000)

TERM	21	22	23	. 23YR. 10TAL
1 SALES REVENUE FROM PROFIT GAS	127560.	127560.	127560.	2551187.
2 SALES REVENUE FROM COST GAS	42912.	42912.	42912.	2129233.
3 SALES REVENUE FROM ROYALTY GAS	S 65415.	65415.	65415.	1308304.
4 TOTAL CASH INFLOW	235887.	235887.	235887.	5988741.
5 ROYALTY	65415.	65415.	65415.	1308304.
6 BONUS DISCOVERY BONUS	••	••	• •	2500.
7 RESEARCH FUND TO PETRONAS	852.	852.	852.	23402•
OPERATING EXPENSES 8 OPERATING COST CAPITAL COST RECOVERY	42912. 42912. 0.	42912. 42912. 0.	42912. 42912. 0.	2129243. 858240. 1271003.
INCOME BEFORE TAX	126707.	126707.	126707.	2525288.
9 INCOME TAX	57018.	57018.	57018.	1136381.
10 CAPITAL INVESTMENT	•	•	°	1271003.
11 TOTAL CASH OUTFLOW	166198.	166198.	166198.	4599816.
12 NET CASH FLOW	69689	•68969	•68969	
13 CUMULATIVE NET CASH FLOW	1249533.	1319222.	1388911.	
14 DCF ROR OF NET CASH FLOW (%)	9.70	9.85	76*6	
15 CORPORATE CAPITAL	ċ	ö	•0	1271002.
16 INTEREST	•	ò	•0	•0
17 BANK RORROWING	ô	ò	•0	•0
18 REPAYMENT	ò	0	•0	•0
19 BORROWING BALANCE	•	o	•0	
20 PAYOUT TIME 9.4 YEARS				

TABLE 17-6-9 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS VOL.IV CASE 1 A: NATURAL FLOW CASE - SIX FIELDS DEVELOPMENT

*	
COMP ANY	
PRESENT WORTH OF NET CASH FLOW FOR OPERATING COMPANY * *	M\$ 1000)
ë.	×
FLOW F	_
CASH	
NET	
R	
WORTH	
PRESENT	
# #	

TERM	1	2	e	4	ın	9	-	ထ	6	10	٠
PRESENT WORTH											
5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.98 -284072. -284072.	0.93 -495972. -780043.	0.89 -352214. -1132257.	0.84 159001. -973256.	0.80 152534. -820722.	0.76 145270. -675452.	0.73 138353. -537100.	0.69 - 131765. -405335.	0.66 125490. -279845.	0.63 119515. -160331.	`
10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.95 -277540. -277540.	0.87 -462543. -740083.	0.79 -313544. -1053626.	0.72 135110. -918516.	0.65 123723. -794793.	0.59 112475. -682318.	0.54 102250. -580067.	0.49 92955. -487113.	0.44 84505. -402608.	0.40 76822. -325786.	
15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.93 -27144043 -27144070	0.81 -432707. -704147.	0.71 -280566. -984713.	0.61 115643. -869070.	0.53 101292. -767777.	0.46 88080. -679697.	0.40 76592. -603106.	0.35 66601. -536504.	0.30 57914. -478590.	0.27 50360. -428230.	
TERM	11	12	13	14	15	16	17	18	61	20	
PRESENT WORTH											
5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.60 113823. -46507.	0.57 108403. 61896.	0.54 76950. 138846.	0.52 69482. 208328.	0.49 34350. 242678.	0.47 32714. 275392.	0.45 31156. 306548.	0.43 29673. 336221.	0.41 28260. 364481.	0.39 26914. 391395.	
10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.37 69839. -255947.	0.33 63490. -192458.	0.30 43020. -149438.	0.28 37079. -112359.	0.25 17497. -94862.	0.23 15907. -78955.	0.21 14461. -64494.	0.19 13146. -51348.	0.17 11951. -39397.	0.16 10865. -28533.	;
15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.23 43792. -384438.	0.20 38080. -346358.	0.17 24680. -321678.	0.15 20347. -301331.	0.13 9184. -292147.	0.11 7986. -284160.	0.10 6945. -277215.	0.09 6039. -271177.	0.08 5251. -265925.	0.07 4566. -261359.	
ļ											

TABLE 17-6-9 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

VOL.IV CASE I A : NATURAL FLOW CASE - SIX FIELDS DEVELOPMENT

* * PRESENT WORTH OF NET CASH FLOW FOR OPERATING COMPANY * * (x M\$ 1000)

23		0.35 0.33 4412. 23249. 1439. 464688.	0.12 8163. -1514.	
22		0.37 0.35 25632. 24412. 417027. 441439.	0.13 8979. -9677.	0.05 3453. -253936.
21			0.14 9877. -18656.	0.06 0.05 0.04 3971. 3453. 3002. -257388253936250933.
TERM	PRESENT WORTH	5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	15.00% DISCOUNT RATE 0.06 0.05 0.04 PRESENT WORTH 3453. 3002. CUMULATIVE PRESENT WORTH -257388253936250933.

ų. u						TOTAL	1190931.	6860.	! ! ! ! !	20YR TOTAL	1384640.	16660.	
PAGE						10	0	-086	181.0	20	0	•086	181.0
						6	0	-086	181.0	19	ċ	-086	181.0
						æ	ò	980.	181.0	18		980.	181.0
ELOPMENT	YEARS YEARS 30 %	#	be be	0000 4000		7	0.	980.	181.0	17	•	980.	181.0
IIA GAS FIELDS - SIX FIELDS DEVELOPMENT	20 YE 3 YE 100.00	ENTS	: 10.00 : 25.00	: 70.00 % : 30.00 % : 0.50 % : M\$ 2500000. : 45.00 %		•	•	980.	181.0	16	ċ	980.	181.0
		G R E E M				'n	•	980.	181.0	15	•0	-086	181.0
NTRAL LUCON SION CASE S *		P/5 A		QN	EAR *	4	•	980	181.0	14	•	980.	181.0
az vo	JMP ANY	H S O F	RATIO	'ANY FOR RESEARCH FUND	INPUT DATA BY YEAR	m	440314.	ċ	0.0	13	193709.	980.	181.0
•	IFE PERIOD OF OIL COMPANY	C T E R	RATE COST RECOVERY RATIO SAS SHARE	<u> </u>	* INPUT	8	461058.	•	0.0	12	0	980.	181.0
CASH FLOV	PRODUCTION LIFE PRE-STARTUP PERIOD EQUITY RATIO OF DI INTEREST RATE	* BASIC	RDYALTY RATE MAXIMUM COST REI PROFIT GAS SHAR	PETRONAS OPERATING COM RATE OF PAYMENT DISCOVERY BONUS INCOME TAX RATE		ı	289559.	ò	0.0	11	ċ	980.	181.0
TABLE 17-6-10 CASH FLOW T VOL.IV CASE I B:	PRC PRE EQL		RDN MAX PRD	F RAT BIS DIS DIS DIS DIS DIS DIS DIS DIS DIS D		TERM	CAPITAL INVESTMENT (M\$ 1000)	GAS PRODUCTION (MMSCF/DAY)	SALES PRICE OF GAS (MC/MSCF)	TERM	CAPITAL INVESTMENT (MS 1000)	GAS PRODUCTION (MMSCF/DAY)	SALES PRICE OF GAS (MW/MSCF)

varioricandenterrande

TABLE 17-6-10 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

CASE I B : ONSHORE COMPRESSION CASE - SIX FIELDS DEVELOPMENT VOL.1V

(CONT'D) PAGE 2

* INPUT DATA BY YEAR *

23	•	980.	181.0
22	•	-086	181.0 181.0 181.0
21	•	980•	181.0
TERM	CAPITAL INVESTMENT (MS 1000)	GAS PRODUCTION (MMSCF/DAY)	SALES PRICE OF GAS (ME/MSCF)

23YR Total 1384640.

19600.

TABLE 17-6-10 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

VOL.IV CASE I B : ONSHORE COMPRESSION CASE - SIX FIELDS DEVELOPMENT

* # CASH FLOW TABLE FOR PETRONAS * * (x M* 1000)

TERM		7	m	4	, N	49	~	හ	σ	10	10YR. TOTAL
1 SALES REVENUE FROM PROFIT GAS	0.0	0	•	294584.	294584.	294584*	294584	294584•	294584.	294584•	2062084.
2 BONUS FROM OIL COMPANY DISCOVERY BONUS PRODUCTION BONUS	000	000	000	2500. 2500. 0.	000	000	666	000		000	2500. 2500. 0.
3 RESEARCH FUND FROM OIL CO.	•	•	•	1441.	1441.	1441.	1441.	1441.	1441.	1441.	10084.
4 TOTAL CASH INFLOW	ò	•0	ô	298524.	296024.	296024.	296024•	296024•	296024.	296024•	2074669.
5 INCOME TAX	°	ő	ċ	134336.	133211.	133211.	133211.	133211.	133211.	133211.	933602.
6 NET CASH FLOW	ė	•0	·	164188.	162813.	162813.	162813.	162813.	162813.	162813.	
7 CUMULATIVE NET CASH FLOW	•	•	0	164188.	327002.	489815.	652629.	815442.	978255.	1141068.	
TERM	11	12	13	14	15	16	17	18	19	20	20YR. TOTAL
1 SALES REVENUE FROM PROFIT GAS	5 294584.	294584	294584.	294584.	294584.	294584	294584.	294584*	294584.	294584.	5007914.
2 BONUS FROM OIL COMPANY DISCOVERY BONUS PRODUCTION BONUS	000	000			•••	000	000	000	• • •	000	2500. 2500. 0.
3 RESEARCH FUND FROM OIL CO.	1441.	1441.	1441.	1441.	1441.	867.	864.	864.	864.	864.	21609.
4 TOTAL CASH INFLOW	296024•	296024.	296024•	296024•	296024•	295451.	295448•	295448.	295448.	295448	5032028.
S INCOME TAX	133211.	133211.	133211.	133211.	133211.	132953.	132951.	132951•	132951.	132951.	2264408.
6 NET CASH FLOW	162813.	162813.	162813.	162813.	162813.	162498.	162496.	162496.	162496.	162496.	
7 CUMULATIVE NET CASH FLOW	1303881. 14	1466694.	1629507.	1792320.	1955133.	2117631.	2280127.	2442623•	2605119.	2767615.	

TABLE 17-6-10 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

CASE I B : ONSHORE COMPRESSION CASE - SIX FIELDS DEVELOPMENT	:TRONAS * *
ONSHORE COMPRESSION (* * CASH FLOW TABLE FOR PETRONAS * * (x M\$ 1000)
CASE I B:	#
VOL.1V	

Σαυ. L		22	23	
		1	;	
1 SALES REVENUE FROM PROFIT GAS 294584. 294584.	15 294584.	294584.	294584.	5891663.
2 B'ONUS FROM DIL COMPANY DISCOVERY BONUS PRODUCTION BONUS	666	• • •	.	2500. 2500.
3 RESEARCH FUND FROM OIL CO.	864.	864.	864.	24201•
4 TOTAL CASH INFLOW	295448.			5918369
ļ	132951	132951 132951 132951	132951.	.132951
6 NET CASH FLOW	162496.	162496. 162496. 162496.	162496.	
7 CUMULATIVE NET CASH FLOW	2930111.	2930111- 3092607- 3255103-	3255103.	

TABLE 17-6-10 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

VOL.IV CASE I B : ONSHORE COMPRESSION CASE - SIX FIELDS DEVELOPMENT

#	* PRESENT WORTH	WORTH OF	NE	CASH FLOW FOR	PETRONAS 1000)	*				(CONT'D)	5
TERM	-	~	m	4	ľ	•0	۰	80	o v	10	·
PRESENT WORTH											
5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.98	0.93 0. 0.	0.89 0.	0.84 138414. 138414.	0.80 130719. 269133.	0.76 124495. 393628.	0.73 118566. 512194.	0.69 112920. 625115.	0.66 107543. 732658.	0.63 102422. 835080.	, 1
10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.95	0.87	0.79 0.0	0.72 117617. 117617.	0.65 106029. 223645.	0.59 96390. 320035.	0.54 87627. 407663.	0.49 79661. 487324.	0.44 72419. 559743.	0.40 65836. 625579.	
15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.93	0.81 0.	0.71 0.0	0.61 100670. 100670.	0.53 86806. 187476.	0.46 75484. 262960.	0.40 65638. 328598.	0.35 57076. 385674.	0.30 49632. 435306.	.0.27 43158. 478464.	
TERM	Ħ	12	13	14	15	16	17	18	19	20	
PRESENT WORTH 5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.60 97545. 932626.	0.57 92900. 1025526.	0.54 88476. 1114002.	0.52 84263. 1198265.	0.49 80251. 1278515.	0.47 76281. 1354796.	0.45 72648. 1427444.	0.43 69189. 1496632.	0.41 65894. 1562526.	0.39 62756. 1625282.]] [] []
10.00% DISCOUNT RATE PRESENT WORTH .CUMULATIVE PRESENT WORTH	0.37 59851. 685429.	0.33 54410. 739839.	0.30 49463. 789302.	0.28 44967. 834269.	0.25 40879. 875148.	0.23 37091. 912239.	0.21 33718. 945957.	0.19 30653. 976610.	0.17 27867. 1004477.	0.16 25333. 1029810.	
0	0.23 37529. 515993.	0.20 32634. 548626.	0.17 28377. 577003.	0.15 24676. 601679.	0.13 21457. 623136.	0.11 18622. 641759.	0.10 16193. 657952.	0.09 14081. 672033.	0.08 12244. 684277.	0.07 10647. 694924.	

TABLE 17-6-10 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

	(CONT'D) PAGE 6				
I B : ONSHORE COMPRESSION CASE - SIX FIELDS DEVELOPMENT	NT WORTH OF NET CASH FLOW FOR PETRONAS * * . (X M\$ 1000)	22 23	17 0.35 0.33 3. 56922. 54211. 3. 1741972. 1796183.	14 0.13 0.12 3. 20937. 19033. 3. 1073776. 1092809.	06 0.05 0.04 3. 8051. 7001. 3. 712234. 719234.
CASE 1	PRESENT	21	0.37 59768. 1685050.	0.14 23030. 1052840.	0.06 9258. 704183.
VOL. IV	# #	TERM PRESENT WORTH	5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH

TABLE 17-6-10 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS
VOL.1V CASE I B : ONSHORE COMPRESSION CASE - SIX FIELDS DEVELOPMENT

* * CASH FLOW TABLE FOR OPERATING COMPANY * * (x Ms 1000)

(CONT'D)

				•							
TERM	1	8	' m	4	, in	` •	7	æ	6	10	10YR. TOTAL
1 SALES REVENUE FROM PROFIT GAS	•0 S	0	•	126250.	126250.	126250.	126250.	126250.	126250.	126250.	883751.
2 SALES REVENUE FROM COST GAS	•	0.	•	161859.	161859.	161859.	161859.	161859.	161859.	161859.	1133014.
3 SALES REVENUE FROM ROYALTY GAS	AS 0.	•	•	64744	64744.	64744.	64744.	64744.	64744.	64744.	453205.
4 TOTAL CASH INFLOW	ċ	•	0.	352853.	352853.	352853.	352853.	352853.	352853.	352853.	2469971.
5 ROYALTY	0	•0	0	64744	64744.	64744.	64744.	64744•	64744.	64744.	453205.
6 BONUS DISCOVERY BONUS	••	; ;	::	2500 . 2500.	••	66	••	•••	00	00	2500 . 2500.
7 RESEARCH FUND TO PETRONAS	•	•	ċ	1441.	1441.	1441.	1441.	1441.	1441.	1441.	10084.
OPERATING EXPENSES 8 OPERATING COST CAPITAL COST RECOVERY	000	• • • •	•••	161859. 46529. 115330.	1133014. 325703. 807311.						
INCOME BEFORE TAX	•	•	0	122310.	124810.	124810.	124810.	124810.	124810.	124810.	871167.
9 INCOME TAX	ů	ô	•	55039	56164.	56164.	56164.	56164.	56164.	56164.	392025.
10 CAPITAL INVESTMENT	289559.	461058.	440314.	•	•	•	•	•	•	ò	1190931.
11 TOTAL CASH OUTFLOW	289559-	461058	440314.	170252.	168878.	168878	168878.	168878.	168878.	168878.	2374445.
12 NET CASH FLOW	-289559.	-461058.	-440314.	182600.	183975.	183975.	183975.	183975.	183975.	183975.	
13 CUMULATIVE NET CASH FLOW	-289559.		-750617,-1190931,-1008331,	1008331.	-824355.	-640380•	-456404•	-272429.	-88453.	95522.	
14 DCF ROR OF NET CASH FLOW (%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.60	
15 CORPORATE CAPITAL	289559.	461058.	440314.	ò	ô	0	•	ô	ò	ċ	1190930.
16 INTEREST	•0	ċ	·	•	0	°	•	•	ċ	°	ċ
17 BANK BORROWING	•	•	•	•	ò	•	•0	•	ô	°	ô
18 REPAYMENT	ò	•	0	0	•	•	•	ċ	ò	ċ	•
19 BORROWING BALANCE	•0	0.	0.	•0	•0	•0	0.	•0	0	ċ	
20 PAYOUT TIME 9.5 YEARS										 	

TABLE 17-6-10 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS
VOL.IV CASE I B : ONSHORE COMPRESSION CASE - SIX FIELDS DEVELOPMENT

* * CASH FLOW TABLE FOR OPERATING COMPANY * * (x Ms 1000)

TERM	11	12	13	14	15	. 16	17	18	19	20	20YR. TOTAL
1 SALES REVENUE FROM PROFIT GAS	126250.	126250.	126250.	126250.	126250.	126250.	126250.	126250.	126250.	126250.	2146251.
2 SALES REVENUE FROM COST GAS	161859.	161859.	161859.	161859.	161859.	47208.	46259*	46529.	46529.	46529.	2175628.
3 SALES REVENUE FROM ROYALTY GAS	15 64744.	64744.	64744.	64744.	64744	64744.	64744.	64744.	64744.	64744.	1100641.
4 TOTAL CASH INFLOW	352853.	352853.	352853.	352853.	352853.	238202•	237523•	237523.	237523.	237523.	5422525.
5 R0YALTY	64744	64744	64744	64744	64744	64744	64744.	64744	64744.	64744.	1100641.
6 BONUS DISCOVERY BONUS	••	• •		••	00	00	••	••	••	00	2500.
7 RESEARCH FUND TO PETRONAS	1441.	1441.	1441.	1441.	1441.	867.	864.	864.	864.	864.	21609.
OPERATING EXPENSES 8 OPERATING COST CAPITAL COST RECOVERY	161859. 46529. 115330.	161859. 46529. 115330.	161859. 46529. 115330.	161859. 46529. 115330.	161859. 46529. 115330.	47208. 46529. 679.	46529. 46529. 0.	46529. 46529. 0.	46529. 46529. 0.	46529. 46529. 0.	2175633. 790993. 1384640.
INCOME REFORE TAX	124810.	124810.	124810.	124810.	124810.	125383.	125386.	125386.	125386.	125386.	2122139.
9 INCOME TAX	56164.	56164.	56164.	56164.	56164.	56422.	56424.	56424.	56424.	56424.	954964.
10 CAPITAL INVESTMENT	0	0	193709.	0	•	•0	•	ò	•0	•	1384640.
11 TOTAL CASH OUTFLOW	168878	168878.	362587.	168878.	168878.	168562.	168560.	168560.	168560.	168560.	4255341.
12 NET CASH FLOW	183975.	183975.	-9734.	183975.	183975.	.04969	68962.	68962.	68962.	68962.	
13 CUMULATIVE NET CASH FLOW	279498.	463473.	453739.	637715.	821690.	891330.	960292.	1029255.	1098216.	1167178.	
14 DCF ROR OF NET CASH FLOW (%)	4.07	5.93	5.84	7.20	8.26	8.59	8.87	9.12	9.34	9,53	
15 CORPORATE CAPITAL		•	193709.	•	·	•	ċ	ô	•	.	1384638.
16 INTEREST	•	•	•	ò	0	0	ô	ò	•	0	•
17 BANK BORROWING	ċ	ô	•	ò	•	•	o	•	•	· ·	ó
18 REPAYMENT	0	•0	•	•	0	•	•	•	o.	0	•
19 RORROWING BALANCE	•0	0.	0	•0	0.	•0	•0	0.	0.	0	
20 PAYOUT TIME 9.5 YEARS											

TABLE 17-6-10 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS
VOL.1V CASE I B : ONSHORE COMPRESSION CASE - SIX FIELDS DEVELOPMENT

* * CASH FLOW TABLE FOR OPERATING COMPANY * * (X Ms 1000)

TERM	21	22	23	2.	23YR. TOTAL
1 SALES REVENUE FROM PROFIT GAS	126250.	126250.	126250.	5525	2525001.
2 SALES REVENUE FROM COST GAS	46529•	46529.	46529.	2315	2315212•
3 SALES REVENUE FROM ROYALTY GAS	5 64744.	64744.	. 44744	1294	1294870.
4 TOTAL CASH INFLOW	237523.	237523.	237523.	6135	6135091.
5 ROYALTY	64744.	64744.	64744.	1294	1294870.
6 BONUS DISCOVERY BONUS	• •	• •	••	2 2 2	2500.
7 RESEARCH FUND TO PETRONAS	864.	864.	864.	24	24201.
OPERATING EXPENSES 8 OPERATING COST CAPITAL COST RECOVERY	46529. 46529. 0.	46529. 46529. 0.	46529. 46529. 0.	2315 930 1384	2315220. 930580. 1384640.
INCOME BEFORE TAX	125386.	125386.	125386.	2498	2498297.
9 INCOME TAX	56424.	56424.	56424.	1124	1124234.
10 CAPITAL INVESTMENT	ö	ò	•	1384	1384640.
11 TOTAL CASH OUTFLOW	168560.	168560.	168560.	4761	4761021.
12 NET CASH FLOW	68962.	68962.	68962.		
13 CUMULATIVE NET CASH FLOW	1236140. 13051	1305102.	02. 1374064.		
14 DCF ROR OF NET CASH FLOW (2)	69.6	9.83	96.6		‡ ! !
15 CORPORATE CAPITAL	ė	o	•	1384	1384638.
16 INTEREST	ò	•	•		ċ
17 BANK BORROWING	•	.•0	ò		o
18 REPAYMENT	°	•	•		°
19 BORROWING BALANCE	•	Ö	ċ		! ! !
16166677477111111066794111166111	- - - - - - - - - - - - - - - - - - -				

²⁰ PAYOUT TIME 9.5 YEARS

TABLE 17-6-10 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

VOL.IV CASE I B : ONSHORE COMPRESSION CASE - SIX FIELDS DEVELOPMENT

#		
* * PRESENT WORTH OF NET CASH FLOW FOR OPERATING COMPANY * *	(X M\$ 1000)	

10	0.63 115735. -159702.	0.40 74393. -317892.	0.27 48768. -415486.	20	0,39 26633, 383589,	0.16 10751. -28941.	0.07 4519. -255227.
. 6	0.66 121522. -275437.	0.44 81832. -392284.	0.30 56083. -464254.	19	0.41 27965. 356956.	0.17 11826. -39692.	0.08 5196. -259746.
80	0.69 127598. -396958.	0.49 90015. -474117.	0.35 64495. -520337.	18	0.43 29363. 328990.	0.19 13009. -51519.	0.09 5976. -264942.
7	0.73 133977. -524556.	0.54 99017. -564132.	0.40 74169. -584832.	71	0.45 30831. 299627.	0.21 14310. -64528.	0.10 6872. -270918.
\$	0.76 140676. -658533.	0.59 108918. -663149.	0.46 85295. -659001.	16	0.47 32691. 268796.	0.23 15895. -78838.	0.11 7981. -277790.
w	0.80 147710. -799209.	0.65 119810. -772067.	0.53 98089. -744296.	15	0.49 90682. 236105.	0.25 46192. -94733.	0.13 24246. -285771.
4	0.84 153936. -946919.	0.72 130806. -891877.	0.61 111959. -842385.	14	0.52 95216. 145423.	0.28 50811. -140925.	0.15 27883. -310017.
m	0.89 -389753. 1100855.	0.79 -346961. 1022683.	0.71 -310469. -954344.	13	0.54 -5289. 50208.	0.30 -2957. -191737.	0.17 -1696. -337900.
8	0.93 0.89 -428521389753. -7111021100855.	0.95 0.87 0.79 -276084399638346961. -276084675722-1022683.	0.81 -373860. -643875.	12	0.57 104975. 55497.	0.33 61482. -188780.	0.20 36875. -336204.
-	0.98 -282581. -282581.	0.95 -276084. -276084.	0.93 0.81 -270015373860. -270015643875.	11	0.60 110224. -49478.	0.37 67630. -250262.	0.23 42407. -373079.
TERM	PRESENT WORTH 5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	_	TERM	PRESENT WORTH 5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH

TABLE 17-6-10 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

VOL.IV CASE I B : ONSHORE COMPRESSION CASE - SIX FIELDS DEVELOPMENT

* * PRESENT WORTH OF NET CASH FLOW FOR OPERATING COMPANY * * (X M\$ 1000)

23	0.33 23007. 456118.	0.12 8078. -2204.	0.05 0.04 3417. 2971. 47881244910.
22		0.13 8885. -10282.	0.05 3417. -247881.
21	0.37 25365. 2 408954. 43:	0.14 9774. -191671	0.06 3929. -25129824
TERM PRESENT WORTH	5.00% DISCOUNT RATE 0.37 PRESENT WORTH 25365. 2 CUMULATIVE PRESENT WORTH 408954. 43	10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH

ABLE 17-6-11 CASH FIRM TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

	: OFFSHORE COMPRESSION CASE - SIX FIELDS DEVELOPMENT
\$0731L	FIELDS
2 2	SIX
₹.	1
	CASE
TABLE 17-6-11 CASH FLUM TABLE FUR GAS CENTRAL LUCUNTA GAS FIELUS	COMPRESSION
3	Ä
Ž	뎦
ABLE	0FP.
 	••
3	C
CASH	CASE 1 C :
17-6-11	
TABLE	VOL.IV

*PREM 1 SES#

				gxor	TOTAL	1442957.	9380.		20YR TOTAL	1658253.	22780.	
					10	•	1340.	165.0	20	0	1340.	165.0
					6	ò	1340.	165.0	19	•	1340.	165.0
					ω	•	1340.	165.0	18	••	1340.	165.0
YEARS YEARS 10 %	#	P6 P6	**************************************		7	•0	1340.	165.0	17	•	1340.	165.0
: 20 YEAR : 3 YEAR : 100.00 %	ENTS	: 10.00 : 25.00	70.00 % 30.00 % 0.50 % MS 2500000.		9	0	1340.	165.0	16	•	1340.	165.0
	G R E E E				ហ	ô	1340.	165.0	15	•	1340.	165.0
	P/S A		Q	EAR *	4	•	1340.	165.0	14	ċ	1340.	165.0
MPANY	M S 0 F	RATIO	RESEARCH FUND	INPUT DATA BY YEAR	m	295019.	ő	0.0	13	215296.	1340.	165.0
FE FRIOD OF DIL COMPANY	C T E R	RECOVERY	ARE OMPANY INT FOR RE US	# INPUT	~	680231.	·	0.0	12	•	1340.	165.0
PRODUCTION LIFE PRE-STARTUP PERIOD EQUITY RATIO OF DII	* BASIC	ROYALTY RATE MAXIMUM COST RECOVERY RATIO	PROFIT GAS SHARE PETRONAS OPERATING COMPANY RATE OF PAYMENT FOR DISCOVERY BONUS INCOME TAX RATE		1	467707. 680231.	•	0.0	pret pret	ċ	1340.	165.0
PRO PRE EQU ENT		ROY MAX	PRO		TERM	CAPITAL INVESTMENT (M\$ 1000)	GAS PRODUCTION (MMSCF/DAY)	SALES PRICE OF GAS (MC/MSCF)	TERM	CAPITAL INVESTMENT (M\$ 1000)	GAS PRODUCTION (MMSCF/DAY)	SALES PRICE OF GAS (M¢/MSCF)

****	* ECONOMIC ANALYSIS FOR MALAYSIA PROJECT *	女子女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女
#	Σ	# #
*	8	*
***	ц.	*
# #	S	# #
*	S	# #
*	>	#
*	بـ	*
#	¥	#
#	4	¥
*	u	# # #
#	_	#
*	Σ	R K B
#	0	# #
*	0	H H
#	ပ	#
17 45 45	ш	\$7 #> #>
*	Ħ	替替

TABLE 17-6-11 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

CASE I C : OFFSHORE COMPRESSION CASE - SIX FIELDS DEVELOPMENT VOL.1V

(CONT'D) PAGE 2

* INPUT DATA BY YEAR #

23YR Total

1658253.

23	•	1340.	165.0
22	ö	1340. 1340. 1340.	165.0 165.0 165.0
21	•	1340.	165.0
TERM	CAPITAL INVESTMENT (M\$ 1000)	GAS PRODUCTION (MMSCF/DAY)	SALES PRICE OF GAS (M¢/MSCF)

TABLE 17-6-11 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

	(CONT'D) PAGE 3	
CASE 1 C : DFFSHORE COMPRESSION CASE - SIX FIELDS DEVELOPMENT	* * CASH FLOW TABLE FOR PETRONAS * * (X M\$ 1000)	
VOL.1V		

TERM			m	4	w	•	-	æ	σ	10	10YR. TOTAL
1 SALES REVENUE FROM PROFIT GAS	3AS 0.	ċ	ò	367192.	367192.	367192.	367192.	367192.	367192.	367192.	2570339.
2 BONUS FROM DIL COMPANY DISCOVERY BONUS PRODUCTION BONUS	000	• • •		2500. 2500. 0.	000	000	000		000	000	2500. 2500. 0.
3 RESEARCH FUND FROM OIL CO.	•	•	ó	1796.	1796.	1796.	1796.	1796.	1796.	1796.	12569.
4 TOTAL CASH INFLOW	ċ	•0	ċ	371487.	368987.	368987.	368987.	368987.	368987.	368987.	2585409.
5 INCOME TAX	0	0	0	167169.	166044.	166044.	166044.	166044•	166044.	166044.	1163434.
6 NET CASH FLOW	•0	ö	ċ	204318.	202943.	202943.	202943.	202943.	202943.	202943.	
7 CUMULATIVE NET CASH FLOW	•	ċ	ò	204318.	407261.	610204.	813147.	1016090.	1219033.	1421976.	
TERM	11	12	13	14	15	16	17	18	19	20	20YR. TOTAL
1 SALES REVENUE FROM PROFIT GAS	SAS 367192.	367192.	367192.	367192.	367192.	367192.	367192.	367192.	367192.	367192.	6242249.
2 BONUS FROM OIL COMPANY DISCOVERY BONUS PRODUCTION BONUS	000	000	•••	000	000		666		666	666	2500. 2500. 0.
3 RESEARCH FUND FROM DIL CO.	1796.	1796.	1796.	1796.	1342.	1067.	1067.	1067.	1067.	1067.	26428.
4 TOTAL CASH INFLOW	368987.	368987.	368987.	368987.	368534.	368259.	368259.	368259.	368259.	368259.	6271180.
5 INCOME TAX	166044.	166044.	166044.	166044.	165840.	165716.	165716.	165716.	165716.	165716.	2822030.
6 NET CASH FLOW	202943•	202943.	202943.	202943.	202694.	202542.	202542•	202542.	202542.	202542.	
7 CUMULATIVE NET CASH FLOW	1624919.	1624919. 1827862.	2030805.	2233748.	2436441.	2638983.	2841525.	3044067.	3246609.	3449151.	

TABLE 17-6-11 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

VELOPMENT	
SIX FIELDS DE	# #
CASE -	ETRONAS 100)
CASE I C : OFFSHORE COMPRESSION CASE - SIX FIELDS DEVELOPMEN]	* * CASH FLOW TABLE FOR PETRONAS * * (X M\$ 1000)
 U	# #
CASE I	
VOL.IV	

TERM	21	22	23	23YR. TDTAL
1 SALES REVENUE FROM PROFIT GAS 367192. 367192.	367192.	367192.	167192.	7343822.
2 RONUS FROM OIL COMPANY DISCOVERY BONUS PRODUCTION BONUS	•••	000	•••	. 2500. 2500. 0.
3 RESEARCH FUND FROM OIL CO.	1067.	1067.	1067.	29629•
4 TOTAL CASH INFLOW	368259.	368259. 368259.	368259. 368259. 368259.	7375954.
5 INCOME TAX 165716. 165	165716.	165716. 165716. 165716.	3319178.	3319178.
6 NET CASH FLOW	202542.	202542. 202542. 202542.	202542.	
7 CUMULATIVE NET CASH FLOW	3651693.	3651693. 3854235. 4056777.	56777.	

TABLE 17-6-11 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

VDL.IV CASE I C : DFFSHORE COMPRESSION CASE - SIX FIELDS DEVELOPMENT

TABLE 17-6-11 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

CASE I C : OFFSHORE COMPRESSION CASE - SIX FIELDS DEVELOPMENT VOL.IV

* * PRESENT WORTH OF NET CASH FLOW FOR PETRONAS * * (X M\$ 1000)

(CONT'D) PAGE 6 0.37 0.35 0.33 74497. 70950. 67571. 2099950. 2170900. 2238471. 0.14 0.13 0.12 28706. 26096. 23724. 1312026. 1338122. 1361845. 0.06 0.05 0.04 11540. 10035. 8726. 877504. 887539. 896265. 23 22 21 TERM 10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH 5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH 15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH PRESENT WORTH

TABLE 17-6-11 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS
VOL.IV CASE I C : OFFSHORE COMPRESSION CASE - SIX FIELDS DEVELOPMENT

* * CASH FLOW TABLE FOR OPERATING COMPANY * *

TERM	-	7	M	4	īV	. 49	-	ю	6	10	10YR. TOTAL
1 SALES REVENUE FROM PROFIT GAS	2	•	0	157368.	157368.	157368.	157368.	157368.	157368.	157368.	1101575.
2 SALES REVENUE FROM COST GAS	•	•	0	201754.	201754.	201754.	201754.	201754.	201754.	201754.	1412275.
3 SALES REVENUE FROM ROYALTY GAS	4S 0.	ċ	•	80701.	80701.	80701.	80701.	80701.	80701.	80701.	564910.
4 TOTAL CASH INFLOW	ċ	•	0	439823.	439823.	439823.	439823	439823.	439823.	439823.	3078761.
5 ROYALTY	0.	•0	0	80701.	80701.	80701.	80701.	80701.	80701.	80701.	564910.
6 BONUS DISCOVERY BONUS	00	00	00	2500.		00	••	• •	• •	00	2500.
7 RESEARCH FUND TO PETRONAS	•	•	0	1796.	1796.	1796.	1796.	1796.	1796.	1796.	12569.
OPERATING EXPENSES 8 OPERATING COST CAPITAL COST RECOVERY	•••		000	201754. 56008. 145746.	1412275. 392056. 1020220.						
INCOME REFORE TAX	•	ò	o	153072.	155572.	155572.	155572.	155572.	155572.	155572.	1086505.
9 INCOME TAX	•0	•	•	68883.	70008.	70008.	70008.	70008	70008.	70008.	488928.
10 CAPITAL INVESTMENT	467707.	680231.	295019.	ò	0	0	0	•	•	•	1442957.
11 TOTAL CASH OUTFLOW	467707•	680231.	295019.	209888.	208513.	208513.	208513.	208513.	208513.	208513.	2903916.
12 NET CASH FLOW	-467707•	-680231.	-295019.	229935.	231310.	231310.	231310.	231310.	231310.	231310.	
13 CUMULATIVE NET CASH FLOW	-4677071147	-1147938	93814429571213021.	1213021.	-981711.	-750400.	-519090.	-287779.	-56469.	174842.	
14 DCF ROR OF NET CASH FLOW (%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.27	† 6 1 1
15 CORPORATE CAPITAL	467707•	680231.	295019.	·o	ò	•	ò	8	ò	ó	1442955.
16 INTEREST	•	•	•	•0	•0	ò	ċ	0	0	ċ	•
17 BANK BURROWING	•	•	•	0	ò	•	•	•	ô	•	•
18 REPAYMENT	•0	•	0	•	•	•	•	ċ	ô	0	•0
19 BORROWING BALANCE	•0	•0	•0	•0	•0	•0	•0	•0	•0	•	!
20 PAYOUT TIME 9.2 YEARS											

TABLE 17-6-11 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS
VOL.IV CASE I C : OFFSHORE COMPRESSION CASE - SIX FIELDS DEVELOPMENT

(CONT'D)

* * CASH FLOW TABLE FOR OPERATING COMPANY * * (x M\$ 1000)

TERM	11	12	13	14	15	16	17	18	19	20	20YR. TOTAL
1 SALES REVENUE FROM PROFIT GAS	157368.	157368.	157368.	157368.	157368.	157368.	157368.	157368.	157368.	157368.	2675245.
2 SALES REVENUE FROM COST GAS	201754.	201754.	201754.	201754.	111061.	56008	56008.	56008.	56008.	56008.	2610382.
3 SALES REVENUE FROM ROYALTY GAS	\$ 80701.	80701.	80701.	80701.	80701.	80701.	80701.	80701.	80701.	80701.	1371922.
4 TOTAL CASH INFLOW	439823.	439823.	439823.	439823.	349130.	294077.	294077.	294077.	294077.	294077.	6657568.
5 ROYALTY	80701	80701.	80701.	80701.	80701.	80701.	80701.	80701.	80701.	80701.	1371922.
6 BONUS DISCOVERY BONUS	• •	00	••	: •	::		••	••	••	00	2500.
7 RESEARCH FUND TO PETRONAS	1796.	1796.	1796.	1796.	1342.	1067.	1067.	1067.	1067.	1067.	26428.
OPERATING EXPENSES 8 OPERATING COST CAPITAL COST RECOVERY	201754. 56008. 145746.	201754. 56008. 145746.	201754. 56008. 145746.	201754. 56008. 145746.	111061. 56008. 55053.	56008. 56008. 0.	56008. 56008. 0.	. 56008. 56008. 0.	56008. 56008. 0.	56008. 56008. 0.	2610388. 952136. 1658253.
INCOME REFORE TAX	155572.	155572.	155572.	155572.	156026.	156301.	156301.	156301.	156301.	156301.	2646323.
9 INCOME TAX	70008	70008.	70008.	70008	70212.	70335.	70335.	70335.	70335.	70335.	1190845.
10 CAPITAL INVESTMENT	•	•	215296.	•0	0	•0	0	0	•	ò	1658253.
11 TOTAL CASH OUTFLOW	208513.	208513.	423809.	208513.	208263.	208112.	208112.	208112.	208112.	208112.	5202078.
12 NET CASH FLOW	231310•	231310.	16014.	231310.	140867.	85965	85965	85965.	85965.	85965.	
13 CUMULATIVE NET CASH FLOW	406152.	637463.	653477.	884787.	1025655.	1111619.	1197584.	1283549.	1369514.	1455479.	
14 DCF ROR OF NET CASH FLOW (%)	4.59	6.36	6,46	7.71	8,33	8.65	8.93	9.17	9.38	9.57	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
15 CORPORATE CAPITAL	ċ	ċ	215296.	•	o	•	ċ	ċ	ċ	ö	1658251.
16 INTEREST	ò	•	•	•	°	ò	ò	•0	ò	•	•
17 BANK BORROWING	ò	•	ò	ċ	0	0	•	•	•	•	0
18 REPAYMENT	ò	•	ö	•	ò	•	ó	ċ	•	•	0
19 BORROWING BALANCE	•0	•0	0	0	•0	•0	•0	•0	0.	0.	

20 PAYOUT TIME 9.2 YEARS

TARLE 17-6-11 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS
VOL.IV CASE I C: OFFSHORE COMPRESSION CASE - SIX FIELDS DEVELOPMENT

* * CASH FLOW TABLE FOR OPERATING COMPANY * * (X Ms 1000)

TERM	21	22	23	23YR. TOTAL
1 SALES REVENUE FROM PROFIT GAS	157368.	157368.	157368.	3147346.
2 SALES REVENUE FROM COST GAS	56008.	56008.	56008.	2778403.
3 SALES REVENUE FROM ROYALTY GAS 80701.	S 80701.	80701.	80701.	1614025.
4 TOTAL CASH INFLOW	294077.	294077•	294077.	•6626651
5 ROYALTY .	80701.	80701.	80701.	1614025.
6 BONUS DISCOVERY BONUS	• •	••	•••	2500.
7 RESEARCH FUND TO PETRONAS	1067.	1067.	1067.	29629*
OPERATING EXPENSES 8 OPERATING COST CAPITAL COST RECOVERY	56008. 56008. 0.	56008. 56008. 0.	56008. 56008. 0.	2778412. 1120160. 1658253.
INCOME BEFORE TAX	156301.	156301.	156301.	3115226.
9 INCOME TAX	70335.	70335.	70335.	1401850.
10 CAPITAL INVESTMENT	ò	•	•	1658253.
11 TOTAL CASH OUTFLOW	208112.	208112.	208112.	5826411•
12 NET CASH FLOW	85965.	85965.	85965.	
13 CUMULATIVE NET CASH FLOW	1541444.	1541444 1627409. 1713374.	1713374.	
14 OCF ROR OF NET CASH FLOW (%)	9.73	9.87	66*6	
15 CORPORATE CAPITAL	ċ	ò	ö	1658251.
16 INTEREST	ċ	•	•	•0
17 BANK BORROWING	ò	·	•0	•0
18 REPAYMENT	•	•	•0	•0
19 BORROWING RALANCE	0	0.	•0	
20 PAYOUT TIME 9.2 YEARS				

TABLE 17-6-11 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

CASE 1 C : OFFSHORE COMPRESSION CASE - SIX FIELDS DEVELOPMENT VOL. IV

* * PRESENT WORTH OF NET CASH FLOW FOR OPERATING COMPANY * * (X M\$ 1000)

TERM TOPIN	pret	8	m	4	ιn	9	~	œ	6	10
5.00% DISCOUNT RATE	0.98	0.93	0.93 0.89 0.84	0.84	0.80	0.76	0.73	0.69	0.66	0.63
PRESENT WORTH	-4564366	-632227.	32227261142. 193840.	193840.	185714.	176871.	168448.	160427.	152788.	145512.
CUMULATIVE PRESENT WORTH	-45643610	-1088662.	8866213498041155963.	1155963.	-970249.	-793379.	-624930.	-464503.	-311715.	-166203.
10.00% DISCOUNT RATE	0.95	0.87	0.95 0.87 0.79 0.72	0.72	0.65	0.59	0.54	0.49	0.44	0.40
PRESENT WORTH	-445941.	-589614.	-445941589614232471. 164715.	164715.	150636.	136942.	124493.	113175.	102887.	93533.
CUMULATIVE PRESENT WORTH	-445941.	1035555.	-445941103555512680261103311.	1103311.	-952675.	-815733.	-691240.	-578065.	-475178.	-381645.
15.00% DISCOUNT RATE	0.93	0.8	1 0.71	1 0.61	0.53	0.46	0.40	0.35	0.30	0.27
PRESENT WORTH	-436139.	-551582	208020.	. 140982.	123326.	107240.	93252.	81089.	70512.	61315.
CUMULATIVE PRESENT WORTH	-436139.	-987721	1195741	1054758.	-931432.	-824192.	-730939.	-649850.	-579338.	-518023.
TERM Present Worth	11	12	13	14	15	16	17	18	19	20
5.00% DISCOUNT RATE	0.60	0.57	0.54	0.52	0.49	0.47	0.45	0.43	0.41	0.39
PRESENT WORTH	138583.	131984.	8703.	119714.	69434.	40355.	38433.	36603.	34860.	33200.
CUMULATIVE PRESENT WORTH	-27620.	104365.	113067.	232781.	302214.	342569.	381002.	417605.	452465.	485665.
10.00% DISCOUNT RATE	0.37	0.33	0.30	0.28	0.25	0.23	0.21	0.19	0.17	0.16
PRESENT WORTH	85030.	77300.	-4865.	63885.	35369.	19622.	17838.	16216.	14742.	13402.
CUMULATIVE PRESENT WORTH	-296615.	-219314.	-214449.	-150564.	-115195.	-95573.	-77735.	-61519.	-46777.	-33375.
15.00% DISCOUNT RATE	.0.23	0.20	. 0.17	0.15	0.13	0.11	0.10	0.09	0.08	0.07
PRESENT WORTH	53317.	46363.	2791.	35057.	18565.	9852.	8567.	7449.	6478.	5633.
CUMULATIVE PRESENT WORTH	-464705.	-418342.	-415551.	-380494.	-361929.	-352077.	-343511.	-336061.	-329584.	-323951.

TABLE 17-6-11 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

VOL.IV CASE 1 C : OFFSHORE COMPRESSION CASE - SIX FIELDS DEVELOPMENT

(CONT'D) PAGE 11				
ORTH OF NET CASH FLOW FOR OPERATING COMPANY * *	23	0,33 28680. 576077.	0.12 10069. -46.	0.04 3704. 1090.
H OF NET C	22	0.35 30113. 547397.	0.13 11076. -10115.	0.05 0.04 4259, 3704, -314794, -311090.
PRESENT WORT	21	0.37 31619. 517284.	0.14 12184. -21191.	
## ##	TERM PRESENT WORTH	5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH

TABLE 17-6-12 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

IVE FIELDS DEVELOPMENT		: 20 YEARS	: 3 YEARS	: 100*00 %	: 8.00 %
VOL.IV CASE II : OFFSHORE COMPRESSION CASE - FIVE FIELDS DEVELOPMENT	* P R R R I S R S #	PRODUCTION LIFE	PRE-STARTUP PERIOD	EQUITY RATIO OF OIL COMPANY	INTEREST RATE

PAGE

•	·	9,0	TOTAL	1359632.	8890.	 	20YR TOTAL
			10	•	1270.	164.0	20
			6	ö	1270.	164.0	19
			α.	ċ	1270.	164.0	18
#	, , , , ,		-	•	1270.	164.0	17
E N T S	10.00 % 25.00 % 1 70.00 % 30.00 % M 2500000. 45.00 %		9	•	1270.	164.0	16
я п ж			S	•	1270.	164.0	15
* B A S I C T E R M S O F P/S A G RDYALTY RATE MAXIMUM COST RECOVERY RATIO PROFIT GAS SHARE PETRONAS OPERATING COMPANY RATE OF PAYMENT FOR RESEARCH FUND DISCOVERY BONUS INCOME TAX RATE	AR *	4	•	1270.	164.0	14	
	INPUT DATA BY YEAR	т	260879.	·	0*0	13	
	RECOVERY : IARE COMPANY NT FOR RE US	# INPUT	2	645998.	°	0.0	12
* BASIC	RDYALTY RATE MAXIMUM COST RE PROFIT GAS SHAR PETRONAS OPERATING COM RATE OF PAYMENT DISCOVERY BONUS INCOME TAX RATE		-	452755.	°	0.0	11
**	RDY/ MAX1 PRG PE OF RATE DISC		TERM	CAPITAL INVESTMENT (M\$ 1000)	GAS PRODUCTION (MMSCF/DAY)	SALES PRICE OF GAS (M¢/MSCF)	TERM

1565995. 21590.

CAPITAL INVESTMENT (M\$ 1000) GAS PRODUCTION (MMSCF/DAY)

164.0 1270. ċ 20

164.0 1270. ċ 19

> 164.0 1270. ဝံ

164.0 1270. ċ

> 1270. 164.0

1270. ċ

164.0

164.0 1270. ċ 14

> 164.0 1270. 206363.

164.0 1270. ċ 12

164.0 1270. ċ 13

SALES PRICE OF GAS (M¢/MSCF)

ċ

** ECONOMIC ANALYS SISFORMATA CONTRACT CONTRACT

TABLE 17-6-12 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

VOL.IV CASE II : OFFSHORE COMPRESSION CASE - FIVE FIELDS DEVELOPMENT

(CONT'D) PAGE 2

* INPUT DATA BY YEAR *

23YR. Total

1565995. 25400.

23	•	1270.	164.0
21 22 23	•	1270.	164.0 164.0 164.0
21	•	1270.	164.0
TERM	CAPITAL INVESTMENT (M\$ 1000)	GAS PRODUCTION (MMSCF/DAY)	SALES PRICE OF GAS (M¢/MSCF)

TABLE 17-6-12 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

VOL.IV CASE 11: OFFSHORE COMPRESSION CASE - FIVE FIELDS DEVELOPMENT

* CASH FLOW TABLE FOR PETRONAS * *	(X M\$ 1000)	
#		

10YR. TOTAL	2421303.	2500. 2500. 0.	11840.	2435645.	1096040.			20YR. TOTAL	5880303.	2500. 2500. 0.	24917.	5907723.	2658472.	
10	345901.	000	1691	347592.	156417.	191176.	1339604.	20	345901.	000	1005.	346906.	156108.	190798. 3249246.
6	345901.		1691	347592.	156417.	191176.	1148429.	19	345901.		1005.	346906.	156108.	190798.
83	345901.	• • •	1691	347592.	156417•	191176.	957254.	18	345901.	• • •	1005.	346906.	156108.	190798. 2867650.
1	345901.	•••	1691	347592.	156417.	191176.	766078.	17	345901.	000	1005.	346906.	156108.	190798. 2676852.
9	345901.		1691.	347592.	156417.	191176.	574902.	16	345901.		1005.	346906.	156108.	190798. 2486054.
w	345901.		1691	347592.	156417.	191176.	383727.	15	345901.		1285.	347186.	156233.	
4	345901.	2500. 2500. 0.	1691.	350092.	157542.	192551.	192551.	14	345901.	000	1691.	347592.	156417.	191176. 190952. 2104304. 2295256.
M	•	000	0	0	0.	•	0	13	345901.		1691.	347592.	156417.	191176. 1913129.
2	0	000	°	0	0.	•	0	12	345901.	000	1691.	347592.	156417.	191176. 1721954.
1	ė	• • •	ò	ò	•0	0	•	11	345901.	000	1691	347592.	156417•	191176. 191176. 1530779. 1721954.
TERM	1 SALES REVENUE FROM PROFIT GAS	2 BONUS FROM OIL COMPANY DISCOVERY BONUS PRODUCTION BONUS	3 RESEARCH FUND FROM OIL CO.	4 TOTAL CASH INFLOW	5 INCOME TAX	6 NET CASH FLOW	7 CUMULATIVE NET CASH FLOW	TERM	1 SALES REVENUE FROM PROFIT GAS	2 BONUS FROM DIL COMPANY DISCOVERY BONUS PRODUCTION BONUS	3 RESEARCH FUND FROM OIL CO.	4 TOTAL CASH INFLOW	5 INCOME TAX	6 NET CASH FLOW 7 CUMULATIVE NET CASH FLOW

TABLE 17-6-12 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

VOL.IV CASE II : OFFSHORE COMPRESSION CASE - FIVE FIELDS DEVELOPMENT

*	
#	
PETRONAS	X MS 1000)
FOR	¥
TABLE FOR	×
CASH FLOW 1	
ASH	
O	
*	

TERM	21	22	23	23YR. TOTAL
1 SALES REVENUE FROM PROFIT GAS 345901. 345901. 345901.	.5 345901.	345901.	345901.	6918003.
2 BONUS FROM OIL COMPANY DISCOVERY BONUS PRODUCTION BONUS	000	000	•••	2500. 2500. 0.
3 RESEARCH FUND FROM OIL CO.	1005.	1005.	1005.	27932.
4 TOTAL CASH INFLOW	346906•	346906. 346906. 346906.	346906.	4 TDTAL CASH INFLOW 346906. 346906. 346906.
5 INCOME TAX	156108. 154	156108.	6108. 156108.	5 INCOME TAX 156108. 156108. 156108.
6 NET CASH FLOW	190798.	190798. 190798. 190798.	190798.	
7 CUMULATIVE NET CASH FLOW	3440044.	3440044. 3630842. 3821640.	3821640.	

TABLE 17-6-12 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELOS VOL.IV CASE 11: OFFSHORE COMPRESSION CASE - FIVE FIELDS DEVELOPMENT

יייי יייי ייייי ייייי יייייי		
מונטיר כמינו ויבסקומו כשמר		
V 1 - 10 V		

#	* PRESENT	PRESENT WORTH OF NET CASH FLOW FOR	NET CASH	FLOW FOR	PETRONAS 1000)	**				(CONT'D) PAGE 5	<u>.</u> υ
TERM	M	7	m	4	ľ	9	~	ю	.	10	
5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	, 0.98 0.	0.93	0.89 0.0	0.84 162324. 162324.	0.80 153491. 315815.	0,76 146182, 461997,	0.73 139221. 601218.	0.69 132591. 733809.	0.66 126278. 860087.	0.63 120265. 980351.	
10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.95	0.87	0.79	0.72 137934. 137934.	0.65 124499. 262433.	0.59 113181. 375615.	0.54 102892. 478507.	0.49 93538. 572045.	0.44 85035. 657080.	0.40 77304. 734384.	
15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.93	0.81 0. 0.	0.71	0.61 118060. 118060.	0.53 101928. 219988.	0.46 88633. 308621.	0.40 77072. 385693.	0.35 67019. 452713.	0.30 58278. 510990.	0.27 50676. 561667.	
TERM PRESENT WORTH	p=4 p=4	12	13	14	15	16	17	18	19	20	
5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.60 114538. 1094889.	0.57 109084. 1203972.	0.54 103889. 1307861.	0.52 98942. 1406803.	0.49 94120. 1500923.	0.47 89566. 1590489.	0.45 85301. 1675790.	0.43 81240. 1757029.	0.41 77371. 1834400.	0.39 73687. 1908086.	
10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.37 70277. 804661.	0.33 63888. 868549.	0.30 58080. 926629.	0.28 52800. 979429.	0.25 47944. 1027373.	0.23 43550. 1070923.	0.21 39591. 1110514.	0.19 35992. 1146506.	0.17 32720. 1179226.	0.16 29746. 1208971.	
15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.23 44066. 605733.	0.20 38319. 644051.	0.17 33321. 677372.	0.15 28974. 706346.	0.13 25166. 731512.	0.11 21866. 753377.	0.10 19014• 772391•	0.09 16533. 788924.	0.08 14377. 803301.	0.07 12502. 815803.	! !

TABLE 17-6-12 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

VOL.IV CASE II : OFFSHORE COMPRESSION CASE - FIVE FIELDS DEVELOPMENT

* * PRESENT WORTH OF NET CASH FLOW FOR PETRONAS * * (x M\$ 1000)

23			3 0.12 . 22348. . 1282943.	0.04 8220. 844347.
22		0.37 0.35 0.33 70178, 66836, 63654, 1978263, 2045099, 2108752,	0 • 1 4583 0595	
21		0.37 70178. 1978263. 20	0.14 27041. 2 1236012. 126	0.06 0.05 10871. 9453. 826674. 836127.
TERM	PRESENT WORTH	5.00% DISCOUNT RATE 0.37 0.35 0.35 PRESENT WORTH 70178. 66836. 63654 CUMULATIVE PRESENT WORTH 1978263. 2045099. 2108752.	10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH

TABLE 17-6-12 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS
VOL.IV CASE II : OFFSHORE COMPRESSION CASE - FIVE FIELDS DEVELOPMENT

* * CASH FLOW TABLE FOR OPERATING COMPANY * * (X M\$ 1000)

TERM		8	m	4	ĸ۸	. 40	7	ω	σ	10	10YR. TOTAL
1 SALES REVENUE FROM PROFIT GAS	6	•	·	148243.	148243.	148243.	148243.	148243.	148243.	148243.	1037703.
2 SALES REVENUE FROM COST GAS	0	•	•	190055.	190055.	190055.	190055.	190055.	190055.	190055.	1330387.
3 SALES REVENUE FROM ROYALTY GAS	15 0.	·	°	76022.	76022.	76022.	76022.	76022.	76022.	76022.	532155.
4 TOTAL CASH INFLOW	ò	·	•	414321.	414321.	414321.	414321.	414321.	414321.	414321.	2900242.
5 ROYALTY	0	0	0	76022.	76022.	76022.	76022.	76022•	76022.	76022	532155.
6 BONUS DISCOVERY BONUS	• •	00	• •	2500.	00	• •	00	00	00	00	2500.
7 RESEARCH FUND TO PETRONAS	0	0	0.	1691.	1691	1691	1691	1691.	1691.	1691.	11840.
OPERATING EXPENSES 8 OPERATING COST CAPITAL COST RECOVERY	• • •	000	000	190055. 52775. 137280.	1330387. 369425. 960963.						
INCOME REFORE TAX	•	0.	•	144052.	146552.	146552.	146552.	146552.	146552.	146552.	1023362.
9 INCOME TAX	•	•	0	64823.	65948.	65948.	65948.	65948.	65948.	65948.	460513.
10 CAPITAL INVESTMENT	452755.	645998.	260879.	0	0	•	•	ċ	•	•	1359632.
11 TOTAL CASH OUTFLOW	452755•	645998.	260879.	197812.	196437.	196437.	196437.	196437.	196437.	196437.	2736059.
12 NET CASH FLOW	-452755•	-645998•	-260879.	216509.	217884.	217884.	217884.	217884.	217884.	217884.	
13 CUMULATIVE NET CASH FLOW	-452755109	8753.	-13596321143123	1143123.	-925239.	-707355.	-489471.	-271587.	-53703.	164181.	
14 DCF ROR OF NET CASH FLOW (%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.25	
15 CORPORATE CAPITAL	452755.	645998.	260879.	ċ	•	•	•	ò	ċ	ċ	1359630.
16 INTEREST	0	•	•	ö	ò	ċ	•	ċ	ò	ċ	0.
17 BANK BORROWING	•	ô	0	ö	ò	ô	ò	•0	ö	°	•
18 REPAYMENT	•	•	0	ö	•	•0	•	•	ö	•	0.
19 BORROWING BALANCE	•	•	•	ò	•0	•0	o	ò	ó	•	
20 PAYOUT TIME 9.2 YEARS	! ! ! ! ! !	 	 	! ! ! ! !	t t 1 1 1 1	 	 	 	! ! ! !	#	

TABLE 17-6-12 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS
VOL.IV CASE 11: OFFSHORE COMPRESSION CASE - FIVE FIELDS DEVELOPMENT

CASH FLOW TABLE FOR OPERATING COMPANY * (X M\$ 1000) #

(CONT'D) PAGE

2500. TOTAL 1292376. 2500. 24917. 2463169. 1565995. 1565995. 4904674. ់ ċ 2463163. 1292376. 6275674. 897175. 1121722. ់ 2520133. 2492715. 1565992. 148243. 52775. 277040. 9.53 ċ 76022. 76022. 52775. ċ ċ 66257. ò ံ ċ • • 1005. 52775. 147238. 196059. 80981 966093. 1047073. 1128054. 1209034. 1290014. 1370994. 20 52775. 277040. 9.35 148243 76022. 80981. 1005. 76022. 00 52775. ċ ċ 52775. 147238. 66257. ċ 196059. ံ ċ ់ 19 52775. 80981. 9,13 277040. 1005. 148243. 52775. 66257. ċ ់ ċ ់ 76022. 76022 • • 52775. 147238. 196059. ់ ់ 80981. 8.89 1005. 52775. 52775. 147238. 66257. 196059. ċ ċ ö 148243. 76022. 277040. 76022. 00 52775. ċ ċ ċ 17 80981. 76022. 1005. 8.61 148243. 52775. 277040. 66257. 196059. 76022. • • 52775. 147238. ċ ċ ċ ់ ċ ċ 52775. 136739. 148243. 8.29 108687. 1285. 196213. 76022. 332952. 76022. 00 108687. 146959. 66131. ္ 52775. ċ ċ ċ ં ċ 55912 15 217884. 414321. 52775. 137280. 196437. 829353. 7.66 148243. 190055. 190055. 76022. 76022. ٠. ن 1691 146552. ċ ċ ċ 65948 o. ં ់ 7 11521. 414321. 190055. 52775**.** 137280. 146552. 402800. 611469. 6.40 ċ 148243. 76022. 76022. 00 1691. 190055. 65948. ċ ċ 206363. 206363. ċ 13 52775. 217884. 6.32 148243. 190055. 414321. 146552. ċ 196437 599949 ċ ċ 76022. 00 1691. 190055. ċ ċ ċ 76022. 65948. 12 217884. 414321. 382065. 52775**.** 137280**.** 148243. 190055. 3 SALES REVENUE FROM ROYALTY GAS 76022. 146552. 196437. 4.57 76022. • • 90055. ċ ċ ċ ċ ċ 1691. 65948. ċ 1 SALES REVENUE FROM PROFIT GAS 14 DCF ROR OF NET CASH FLOW (%) TERM SALES REVENUE FROM COST GAS 7 RESEARCH FUND TO PETRONAS 13 CUMULATIVE NET CASH FLOW OPERATING COST CAPITAL COST RECOVERY NPERATING EXPENSES 11 TOTAL CASH DUTFLOW 10 CAPITAL INVESTMENT 19 BORROWING BALANCE 4 TOTAL CASH INFLOW INCOME REFORE TAX 15 CORPORATE CAPITAL DISCOVERY BONUS 17 RANK BURROWING 12 NET CASH FLOW 9 INCOME TAX 18 REPAYMENT 16 INTEREST 5 ROYALTY 6 AGNUS 2 œ

9.2 YEARS 20 PAYOUT TIME TABLE 17-6-12 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS
VOL.IV CASE II: OFFSHORE COMPRESSION CASE - FIVE FIELDS DEVELOPMENT

* * CASH FLOW TABLE FOR OPERATING COMPANY * *

-	TERM	21	22	23	23YR. TOTAL
1 SALES REVENUE FROM PROFIT GAS		148243.	148243.	148243.	2964862.
2 SALES REVENUE FROM COST GAS		52775.	52775.	52775.	2621485.
3 SALES REVENUE FROM ROYALTY GAS		76022•	76022.	76022.	1520442.
4 TOTAL CASH INFLOW	N	277040.	277040.	277040.	7106794
5 ROYALTY		76022-	76022-	76022.	1520442.
6 RONUS DISCOVERY RONUS		• •			2500.
7 RESEARCH FUND TO PETRONAS	15	1005.	1005.	1005.	27932.
OPERATING EXPENSES 8 OPERATING COST CAPITAL COST RECOVERY	• •	52775 . 52775. 0.	52775. 52775. 0.	52775. 52775. 0.	2621494. 1055500. 1565995.
INCOME REFORE TAX	7	147238.	147238.	147238.	2934429*
9 INCOME TAX		66257.	66257.	66257.	1320493.
10 CAPITAL INVESTMENT		ċ	•	•	156595.
11 TOTAL CASH OUTFLOW	1	196059.	196059.	196059.	.15492851
12 NET CASH FLOW		80981.	80981.	80981.	
13 CUMULATIVE NET CASH FLOW		. 42619	1451974. 1532954.	1613934.	
14 OCF ROR OF NET CASH FLOW (%)	(%)	69.6	9.83	96*6	
15 CORPORATE CAPITAL		ò	ċ	•	1565992•
16 INTEREST		ċ	°	•	•0
17 BANK BORROWING		ċ	•	ċ	•0
18 REPAYMENT		ċ	0	•0	•0
19 HORROWING RALANCE		0	0	•0	
20 PAYOUT TIME 9.2 YEARS					

TABLE 17-6-12 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS
VOL.IV CASE II: OFFSHORE COMPRESSION CASE - FIVE FIELDS DEVELOPMENT

* * PRESENT WORTH OF NET CASH FLOW FOR OPERATING COMPANY * * (x Ms 1000)

TABLE 17-6-12 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

VOL.IV CASE II : OFFSHORE COMPRESSION CASE - FIVE FIELDS DEVELOPMENT

* * PRESENT WORTH OF NET CASH FLOW FOR OPERATING COMPANY * * (X M\$ 1000)

				15.00% DISCOUNT RATE 0.06 0.05 0.04 PRESENT WORTH 4614, 4012, 3489. CUMULATIVE PRESENT WORTH -304301, -300289, -296800.
23		0.33 27017. 540925.	0.12 9485. -2932.	0.05 0.04 4012. 3489. 0289296800.
22		0.35 28367. 513909.	0.13 10434. -12417.	0.05 4012. -300289.
21		0.37 29786. 28 485541. 513	0.14 11477. -22851.	0.06 4614. -304301300
TERM	PRESENT WORTH	5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	15.00% DISCOUNT RATE PRESENT WORTH CHMULATIVE PRESENT WORTH

	CASE III : OFFSHORE COMPRESSION CASE - FOUR FIELDS DEVELOPMENT	
SOTE	IELDS	
AS FI	OUR F.	
NIA G	i I	
LUCO	CAS	
NTRAL	SSION	ψ *
SCE	OMPRE	ISE
OR GA	ORE	Σ
TARLE 17-6-13 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS	OFFSH	* PREMISES*
1	••	
FLOW	111	
CASH	CASE	
-6-13		
.E 17-	٧١.	
TARI	VOL. IV	

PAGE 1

	•				TOTAL	1265972.	8260.	 	ZOYR TOTAL	1461356.	20060.
					10	•0	1180.	164.0	20	•	1180.
					6	•0	1180.	164.0	19	•	1180.
					æ	•	1180.	164.0	18	0	1180.
YEARS YEARS 10 % 10 %	*	8€ BC	0000 1000		7	0	1180.	164.0	17	•	1180.
: 20 YEAR : 3 YEAR : 100.00 %	E N T S	: 10.00 % : 25.00 %	: 70.00 % : 30.00 % : 0.50 % : M\$ 2500000. : 45.00 %		9	0.	1180.	164.0	16	•	1180.
	G R € E				'n	0	1180.	164.0	15	•	1180.
	P/S A		9	AR #	4	•	1180.	164.0	71	•	1180.
MPANY	S &	RATIO	ANY FOR RESEARCH FUND	DATA BY YEAR	W	265612.	0	0.0	13	195384.	1180.
FE ERIOD OF OIL COMPANY	C TER	RECOVERY	ט ס	INPUT	2		•	0.0	12	•	1180.
PRODUCTION LIFE PRE-STARTUP PERIOD EQUITY RATIO OF OII	* BASIC	ROYALIY RATE MAXIMUM COST RECOVERY RATIO DODGIT GAS SHABE	PETRONAS OPERATING COMPANY NATE OF PAYMENT FOR DISCOVERY BONUS INCOME TAX RATE		~	394005. 606355.	•0	0.0	11	·	1180.
PRG PRE ESU INT		ROY MAX MAX	PAG D BAT DIS INC		TERM	CAPITAL INVESTMENT (M\$ 1000)	GAS PRODUCTION (MMSCF/DAY)	SALES PRICE OF GAS (MC/MSCF)	TERM	CAPITAL INVESTMENT (M\$ 1000)	SAS PRODUCTION (MMSCF/DAY)

164.0

164.0

164.0

164.0

164.0

164.0

164.0

164.0

164.0

164.0

SALES PRICE OF GAS (Me/MSCF)

¥	¥	4
¥		# #
4	—	¥
*	ပ	A A
*	щ	*
*	7	¥
*	0	ř *
ķ ķ	α.	#
¥	۵	ħ ∯
*	٧	# #
*	H	#
*	Ŋ	*
¥	>	¥
*	⋖	*
*	_	¥ A
#	۷	#
#	Σ	# #
#	œ	*
#	0	# #
#	ட	*
#		*
#	_	*
*	S	*
#	>	ä
#	۔	ä
#	۷	# #
#	z	t t
# #	۹	# #
#		*
#	_	37 44 14
*	5	# #
#	_	ή. 4
#	z	# #
替替	0	#
# #	ں	# #
*	ш	*
***************************************		化分类化物 医克拉氏试验检 医克格特氏试验检 医克格特氏病 医克格特氏病 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性
*	* ECONOMIC ANALYSIS FOR MALAYSIA PROJECT *	ä

TABLE 17-6-13 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

CASE III : OFFSHORE COMPRESSION CASE - FOUR FIELDS DEVELOPMENT VOL.IV

⇒ INPUT DATA BY YEAR

⇒

164.0 1180. ċ 23 164.0 ċ 1180. 22 164.0 1180. ċ 21 TERM CAPITAL INVESTMENT (M\$ 1000) SALES PRICE OF GAS (ME/MSCF) GAS PRODUCTION (MMSCF/DAY)

(CONT'D) PAGE 2

23YR Total

1461356.

23600-

TABLE 17-6-13 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

VOL.IV CASE III : OFFSHORE COMPRESSION CASE - FOUR FIELDS DEVELOPMENT

	*	* * CASH	FLOW TABLE (X	FOR MS 1	PETRONAS *					CON	(CONT'D) PAGE 3
TERM	-	2	m	4	ហ	9	۲	ω	с	10	. 10YR. TOTAL
1 SALES REVENUE FROM PROFIT GAS	ċ	0.	0.	321388.	321388.	321388.	321388.	321388.	321388.	321388.	2249717.
2 RONUS FROM OIL COMPANY DISCOVERY RONUS PRODUCTION RONUS	000	000	000	2500. 2500. 0.	000		000	000	000	000	2500. 2500. 0.
3 RESEARCH FUND FROM OIL CO.	•	0	0	1572.	1572.	1572.	1572.	1572.	1572.	1572.	110011.
4 TOTAL CASH INFLOW	0	0	•0	325460.	322960.	322960.	322960.	322960.	322960.	322960.	2263216.
5 INCOME TAX	Ö	0	0	146457.	145332.	145332	145332.	145332.	145332.	145332.	1018448.
6 NET CASH FLOW	·o	0.	0.	179003.	177628.	177628.	177628.	177628.	177628.	177628.	
7 CUMULATIVE NET CASH FLOW	0	ö	•	179003.	356631.	534259.	711887.	889515.	1067142.	1244769.	
TERM	11	12	13	14	15	16	17	18	19	20	20YR. TOTAL
1 SALES REVENUE FROM PROFIT GAS	321388.	321388.	321388.	321388.	321388.	321388.	321388.	321388.	321388.	321388.	5463597.
2 BONUS FROM OIL COMPANY DISCOVERY RONUS PRODUCTION RONUS	000	000	666	000	000	000		•••		•••	2500. 2500. 0.
3 RESEARCH FUND FROM OIL CO.	1572.	1572.	1572.	1572.	1256.	936.	936.	936.	936.	936.	23227.
4 TOTAL CASH INFLOW	322960.	322960.	322960.	322960.	322645.	322325.	322325	322325•	322325.	322325.	5489316.
5 INCOME TAX	145332.	145332.	145332.	145332•	145190.	145046.	145046.	145046.	145046.	145046.	2470193.
6 NET CASH FLOW	177628.	177628.	177628.	177628.	177455.	177279.	177279.	177279.	177279.	177279.	
7 CUMULATIVE NET CASH FLOW	1422396.	1422396. 1600023.	1777650.	1955277.	2132731.	2310009.	2487287.	2664565.	2841843.	3019121.	

TABLE 17-6-13 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

- FOUR FIELDS DEVELOPMENT
FIELDS
- FOUR
CASE
OFFSHORE COMPRESSION
OFFSHORE
=
CASE 111
۷۵۲۰۱۷

* * CASH FLOW TABLE FOR PETRONAS * * (X M\$ 1000)

TERM	21	22	23	23YR. TOTAL
1 SALES REVENUE FROM PROFIT GAS 321388. 321388. 321388.	5 321388.	321388.	321388.	6427761.
2 BONUS FROM OIL COMPANY DISCUVERY BONUS PRODUCTION RONUS	000	000	•••	2500. 2500. 0.
3 RESEARCH FUND FROM OIL CO.	936.	936.	936.	26036.
4 TOTAL CASH INFLOW 322325.	322325.	322325. 322325. 322325.	322325.	322325. 322325.
5 INCOME TAX 145046. 145	145046.		145046.	2905331.
6 NET CASH FLOW	177279.	.972771 .972771 .972771	177279.	
7 CUMULATIVE NET CASH FLOW	3196399.	3196399. 3373677. 3550955.	3550955.	

TABLE 17-6-13 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

VOL.IV CASE III : OFFSHORE COMPRESSION CASE - FOUR FIELDS DEVELOPMENT

*	r PRESENT WOR	WORTH OF NET	NET CASH	FLOW FOR (x M\$	PETRONAS 1000)	#				(CONT'D) PAGE 5	~ n
TERM	1	2	m	4	w	•0	7	σο	6	10	
PRESENT WORTH											
5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.98 0. 0.	0.93	0.89	0.84 150903. 150903.	0.80 142614. 293517.	0.76 135823. 429339.	0.73 129355. 558694.	0.69 123195. 681889.	0.66 117329. 799218.	0.63 111742. 910960.	·
10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.95	0.87	0.79	0.72 128229. 128229.	0.65 115676. 243906.	0.59 105160. 349066.	0.54 95601. 444666.	0.49 86910. 531576.	0.44 79009. 610585.	0.40 71826. 682411.	
15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.93	0.81	0.71	0.61 109753. 109753.	0.53 94705. 204458.	0.46 82352. 286810.	0.40 71610. 358420.	0.35 62270. 420690.	0.30 54148. 474838.	0.27 47085. 521923.	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
TERM	11	12	13	14	15	16	17	18	19	20	
PRESENT WORTH 5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.60 106421. 1017381.	0.57 101353. 1118734.	0.54 96527. 1215261.	0.52 91931. 1307191.	0.49 87468. 1394658.	0.47 83220. 1477877.	0.45 79257. 1557134.	0.43 75483. 1632617.	0.41 71889. 1704505.	0.39 68465. 1772970.	
10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.37 65297. 747708.	0.33 59361. 807068.	0.30 53964. 861032.	0.28 49058. 910091.	0.25 44555. 954646.	0.23 40464. 995110.	0.21 36786. 1031896.	0.19 33442. 1065337.	0.17 30402. 1095738.	0.16 27638. 1123375.	!
15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.23 40944. 562867.	0.20 35603. 598470.	0.17 30959. 629429.	0.15 26921. 656350.	0.13 23387. 679737.	0.11 20316. 700053.	0.10 17666. 717719.	0.09 15362. 733081.	0.08 13358. 746439.	0.07 11616. 758055.	

TABLE 17-6-13 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

VOL.IV CASE III : OFFSHORE COMPRESSION CASE - FOUR FIELDS DEVELOPMENT

#	
PETRONAS	(M\$ 1000)
PRESENT WORTH OF NET CASH FLOW FOR PETRONAS	SM X)
ä #	

23		1 1 1 1		0.04 7638. 784577.
22		0.35 62100. 19002.75.	0.13 0.12 22841. 20765. 1171341. 1192105.	0.05 8783. 776939.
21		0.37 0.35 0.33 65205. 62100. 59143. 1838175. 1900275. 1959418.	0.14 25125. 1148500. 1	0.06 10101. 768156.
TERM	PRESENT WORTH	5.00% DISCOUNT RATE 0.37 0.35 0.33 PRESENT WORTH 65205. 62100. 59143. CUMULATIVE PRESENT WORTH 1838175. 1900275. 1959418.	10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH

TABLE 17-6-13 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS
VOL.IV CASE 111 : DFFSHORE COMPRESSION CASE - FOUR FIELDS DEVELOPMENT

* * CASH FLOW TABLE FOR OPERATING COMPANY * * (X Ms 1000)

TERM	1	2	m	4	រភ	. 9	7	5 0	6	10	10YR. TOTAL
1 SALES REVENUE FROM PROFIT GAS	.0 21	°	ò	137738.	137738.	137738.	137738.	137738.	137738.	137738.	964165.
2 SALES REVENUE FROM COST GAS	•	0	•	176587.	176587.	176587.	176587.	176587.	176587.	176587.	1236107.
3 SALES REVENUE FROM ROYALTY GAS	AS 0.	•	•	70635.	70635.	70635.	70635.	70635.	70635.	70635.	494443.
4 TOTAL CASH INFLOW	•0	0.	°	384960.	384960.	384960.	384960.	384960.	384960.	384960	2694714.
5 ROYALTY	•0	0	Ö	70635.	70635.	70635.	70635.	70635.	70635.	70635.	494443.
6 BONUS DISCOVERY BONUS	00	0	• •	2500.	00	000	00	000	• •	• •	2500.
7 RESEARCH FUND TO PETRONAS	•0	0.	•	1572.	1572.	1572.	1572.	1572.	1572.	1572.	110011
OPERATING EXPENSES R OPERATING COST CAPITAL COST RECOVERY	000	000	000	176587. 49555. 127032.	176587. 49555. 127032.	176587. 49555. 127032.	176587. 49555. 127032.	176587. 49555. 127032.	176587. 49555. 127032.	176587. 49555. 127032.	1236107. 346885. 889224.
INCOME REFORE TAX	•0	•	•	133666.	136166.	136166.	136166.	136166.	136166.	136166.	950663.
9 INCOME TAX	•0	0	0	60150.	61275.	61275.	61275.	61275.	61275.	61275.	427798.
10 CAPITAL INVESTMENT	394005•	606355.	265612.	•		6	0	•	•	ò	1265972.
11 TOTAL CASH OUTFLOW	394005•	606355.	265612.	184411.	183036.	183036.	183036.	183036.	183036.	183036.	2548599.
12 NET ÇASH FLOW	-394005• -6063	-606355.	-265612.	200548.	201923.	201923.	201923.	201923.	201923.	201923.	
13 CUMULATIVE NET CASH FLOW	-39400510003		6012659721065423	.1065423.	-863500.	-661576.	-459653.	-257730.	-55806.	146117.	
14 DCF ROR OF NET CASH FLOW (%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.17	1 1 1 1 1 1
15 CORPORATE CAPITAL	394005•	606355.	265612.	ó	ô	ô	•	ò	Ö.	ó	1265971.
16 INTEREST	ò	•	•	•0	°	•0	•	•	•	0	•
17 BANK BORROWING	ò	•	•	•	•	0	•	ò	0	0.	•
18 REPAYMENT	•0	0	•	0.	•	•	•	•	•0	0	0.
19 BURROWING RALANCE	٥	0	•	0	0	•0	•	0	0*	0	
20 PAYOUT TIME 9.3 YEARS						, 	! ! ! ! ! !	; ; ; ; ; ; ; ; ;	 - - 	 	

TABLE 17-6-13 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS
VOL.IV CASE III : OFFSHORE COMPRESSION CASE - FOUR FIELDS DEVELOPMENT

* * CASH FLOW TABLE FOR DPERATING COMPANY * *

TERM	11	12	13	14	15	. 91	17	18	19	. 50	20YR. TOTAL
1 SALES REVENUE FROM PROFIT GAS	137738.	137738.	137738.	137738.	137738.	137738.	137738.	137738.	137738.	137738.	2341535.
2 SALES REVENUE FROM COST GAS	176587.	176587.	176587.	176587.	113562.	49555.	49555.	49555.	49555.	49555.	2303782.
3 SALES REVENUE FROM ROYALTY GAS	70635.	70635.	70635.	70635.	70635.	70635.	70635.	70635.	70635.	70635.	1200789.
4 TOTAL CASH INFLOW	384960•	384960.	384960.	384960.	321934.	257928.	257928.	257928.	257928.	257928.	5846119.
5 ROYALTY	70635.	70635.	70635	70635	70635.	70635	70635.	70635	70635.	70635.	1200789.
6 BONUS DISCOVERY BONUS	00	00	••		00	00	• •	•••	••	••	2500.
7 RESEARCH FUND TO PETRONAS	1572.	1572.	1572.	1572.	1256.	936.	936•	936.	936.	936.	23227.
OPERATING EXPENSES 8 OPERATING COST CAPITAL COST RECOVERY	176587. 49555. 127032.	176587. 49555. 127032.	176587. 49555. 127032.	176587. 49555. 127032.	113562. 49555. 64007.	49555. 49555. 0.	49555. 49555. 0.	. 49555. 49555. 0.	49555. 49555. 0.	49555. 49555. 0.	2303788. 842435. 1461356.
INCOME REFORE TAX	136166.	136166.	136166.	136166.	136481.	136801.	136801.	136801.	136801.	136801.	2315813.
9 INCOME TAX	61275.	61275.	61275.	61275.	61417.	61561.	61561.	61561.	61561.	61561.	1042117.
10 CAPITAL INVESTMENT	•	0	195384.	ċ	°	·	0	ò	•	0	1461356.
11 TOTAL CASH BUTFLOW	183036.	183036.	378420.	183036.	182863.	182687.	182687.	182687.	182687.	182687.	4572419.
12 NET CASH FLOW	201923.	201923.	6539.	201923.	139072.	75241.	75241.	75241.	75241.	75241.	
13 CUMULATIVE NET CASH FLOW	348040.	549964.	556503.	758426.	897498.	972738.	1047979.	1123219.	1198459.	1273699.	
14 DCF ROR OF NET CASH FLOW (%)	4.51	6.28	6.33	7.60	8.30	8.62	8.90	9.14	9.36	9.54	
15 CORPORATE CAPITAL	ċ	•	195384.	0	ò	ò	ċ	ċ	ò	ó	1461355.
16 INTEREST	•	°	ó	•	°	ċ	•0	•	•	ċ	•
17 BANK BORROWING	•	0	°	•	0	•	ċ	o	0	ò	ċ
18 REPAYMENT	ò	•	0	ô	•	°	°	0	0	°	•
19 BORROWING RALANCE	0.	•0	•0	0.	0	•0	•0	•0	•0	0	į
20 PAYOUT TIME 9.3 YEARS					-						

TABLE 17-6-13 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS VOL.IV CASE III : OFFSHORE COMPRESSION CASE - FOUR FIELDS DEVELOPMENT

* * CASH FLOW TABLE FOR OPERATING COMPANY * *

TERM	21	22	23	23YR. TOTAL
1 SALES REVENUE FROM PROFIT GAS	137738.	137738.	137738.	2754746.
2 SALES REVENUE FROM COST GAS	49555.	49555.	49555.	2452444-
3 SALES REVENUE FROM ROYALTY GAS	70635.	70635.	70635.	1412691-
4 TOTAL CASH INFLOW	257928.	257928.	257928.	•619900.
5 ROYALTY	70635	70635.	70635.	1412691.
6 BONUS DISCOVERY BONUS	• •	0.0	00	2500. 2500.
7 RESEARCH FUND TO PETRONAS	936.	936.	936.	26036.
OPERATING EXPENSES 8 OPERATING COST CAPITAL COST RECOVERY	49555. 49555. 0.	49555. 49555. 0.	49555. 49555. 0.	2452453. 991100. 1461356.
INCOME BEFORE TAX	136801.	136801.	136801.	2726216•
9 INCOME TAX	61561.	61561.	61561.	1226797.
10 CAPITAL INVESTMENT	•0	•0	ċ	1461356.
11 TOTAL CASH OUTFLOW	182687.	182687.	182687.	5120477.
12 NET CASH FLOW	75241•	75241.	75241.	
13 CUMULATIVE NET CASH FLOW	1348939. 14241	1424179.	79. 1499419.	
14 DCF ROR OF NET CASH FLOW (%)	9.70	9.85	76.6	
15 CORPORATE CAPITAL	ċ	ċ	ô	1461355.
16 INTEREST	ò	•	•	•0
17 BANK BORROWING	ô	•0	•	•0
18 REPAYMENT	ó	•	ċ	•0
19 BORROWING RALANCE	0	o	0	
20 PAYOUT TIME 9.3 YEARS				

TABLE 17-6-13 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS
VOL.IV CASE III : OFFSHORE COMPRESSION CASE - FOUR FIELDS DEVELOPMENT

* * PRESENT WORTH OF NET CASH FLOW FOR OPERATING COMPANY * * (x M\$ 1000)

9 10	0.66 0.63 133377. 127026. -277130150105.	0.44 0.40 89815. 81650. -418553336903.	0.30 0.27 61554. 53525. -508391454865.	19 20	0.41 0.39 30511. 29058. 394200. 423259.	0.17 0.16 12903. 11730. -4263930909.	0.08 0.07 5670. 4930. -289468284538.
œ	0.69 140045. -410507.	0.49 98797. -508368.	0.35 70787. -569945.	18	0.43 32037. 363690.	0.19 14193. -55542.	0.09 6520. -295137
۲-	0.73 147048. -550553.	0.54 108676. -607165.	0.40 81405. -640732.	17	0.45 33638. 331653.	0.21 15613. -69736.	0.10 7498. -301657.
9	0.76 154400. -697600.	0.59 119544. -715842.	0.46 93616. -722137.	16	0.47 35320. 298015.	0.23 17174. -85349.	0.11 8623. -309155.
'n	0.80 162120. -852000.	0.65 131498. -835386.	0.53 107658. -815753.	15	0.49 68548. 262695.	0.25 34918. -102522.	0.13 18328. -317778.
4	0.84 169066. -1014120.	0.72 143663. -966884.	0.61 122964. -923411.	11	0.52 104505. 194146.	0.28 55768. -137440.	0.15 30603. -336106.
m	0.93 0.89 0.84 -563564235112. 169066. -94807411831861014120.	0.79 -209299. -1110547.	0.71 -187285. -1046374.	13	0.54 3554. 89642.	0.30 1987. -193209.	0.17 1140. -366709.
N	0.93 -563564. -948074	0.87 0.79 -525579209299. -9012481110547.	0.81 0.7 -491677187285. -8590891046374	12	0.57 115216. 86088.	0.33 67480. -195195.	0.20 40473. -367849.
1	0.98 -384510. -384510.	0.95 -375669. -375669.	0.93 -367412. -367412.	11	0.60 120977. -29128.	0.37 74228. -262675.	0.23 46544. -408322.
TERM	PRESENT WORTH 5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	TERM	PRESENT WORTH 5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH

TABLE 17-6-13 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

VOL.IV CASE III : OFFSHORE COMPRESSION CASE - FOUR FIELDS DEVELOPMENT

* * PRESENT HORTH OF NET CASH FLOW FOR OPERATING COMPANY * * (X M\$ 1000)

(CONT'D)

0.12 8813. -1739. 0.33 25102. 502391. 0.06 0.05 0.04 4287. 3728. 3242. -280251. -276523. -273281. 23 0.35 26357. 477289. 0.13 9694. -10551. 22 0.37 27674. 450933. 0.14 10664. -20246. 21 TERM 5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH 10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH 15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH PRESENT WORTH

TABLE 17-6-14 CASH FLOW TABLE: FOR GAS CENTRAL LUCONIA GAS FIELDS

-						2	TOTAL	1186132.	7630.	# ! ! !	20YR TOTAL	1369979.	18530.		
PAGE							10	ò	1090.	163.0	50	0	1090.	163.0	
							6	ċ	1090.	163.0	19	ċ	1090.	163.0	
-							œ	ċ	1090	163.0	18	ċ	1090.	163.0	
TELDS DEVELOPMENT		YEARS YEARS 30 %		be be	0000 0000 0000 0000		7	•	1090.	163.0	. 17	•	1090.	163.0	
FIELDS DI		: 20 YE : 3 YE : 100.00	E N T S	: 10.00 : 25.00	70.00 % 30.00 % 1 0.50 % 1 Ms 2500000. 2 45.00 %		•	ċ	1090.	163.0	16	•	1090.	163.0	
CESSION CASE - THREE FIELD			GREEN	•			Ŋ	ċ	1090.	163.0	15	•	1090.	163.0	
ION CASE	* S		P/S A (٥	AR #	4	•	1090.	163.0	1,	ö	1090.	163.0	
~	EM I S E	MPANY	* S O F	RATIO	SEARCH FUN	INPUT DATA BY YEAR	ĸħ	385062.	ċ	0.0	13	183847.	1090.	163.0	
OFFSHORE COMP	æ ⊕ ₩	FE ERIOD OF OIL CO	C T E R	RECOVERY RATIO	IAKE COMPANY NT FOR RE IUS	* INPUT	2	517749.	ò	0.0	12	•	1090.	163.0	
CASE IV :		PRODUCTION LIFE PRE-STARTUP PERIOD EQUITY RATIO OF OIL COMPANY INTEREST RATE	* BASI	ROYALTY RATE MAXIMUM COST RE PROFIT GAS SHAP	PRUFII GAS SHAKE PETRONAS OPERATING COMPANY RATE OF PAYMENT FOR RESEARCH FUND DISCOVERY BONUS INCOME TAX RATE		1	283321.	ċ	0.0	11	ò	1090.	163.0	
ABLE 1/-0-14 LASH FLUW VOL.IV CASE IV :		PRO PRE EQU		ROY MAX PRI	PRU P P RAT DIS INC		ТЕЯМ	CAPITAL INVESTMENT (M\$ 1000)	GAS PRODUCTION (MMSCF/DAY)	SALES PRICE OF GAS (M¢/MSCF)	TERM	CAPITAL INVESTMENT (M\$ 1000)	GAS PRODUCTION (MMSCF/DAY)	SALES PRICE OF GAS (ME/MSCF)	

TABLE 17-6-14 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

VOL.1V CASE 1V : OFFSHORE COMPRESSION CASE - THREE FIELDS DEVELOPMENT

(CONT'D) PAGE 2

INPUT DATA BY YEAR *

23YR Total 1369979. 21800.

23	••	1090.	163.0
22	ò	1090.	163.0
21	ò	1090.	163.0
TERM	CAPITAL INVESTMENT (MS 1000)	GAS PRODUCTION (MMSCF/DAY)	SALES PRICE OF GAS (M¢/MSCF)

TABLE 17-6-14 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

CASE IV : DFFSHORE COMPRESSION CASE - THREE FIELDS DEVELOPMENT VOL.1V

	×	# # CASH	CASH FLOW TABLE	-E FOR PETRONAS X M\$ 1000}	TRONAS *	#				(CON	(CONT'D) PAGE 3
TERM	r	2	m	4	'n	9	۲	s	6	10	10YR. TOTAL
1 SALES REVENUE FROM PROFIT GAS	ò	0	0	295065.	295065.	295065.	295065	295065	295065.	295065.	2065455.
2 BONUS FROM OIL COMPANY DISCOVERY BONUS PRODUCTION BONUS	000	•••	• • • •	2500. 2500. 0.	000	000	•••	000	•••	000	2500• 2500• 0•
3 RESEARCH FUND FROM DIL CO.	•	0	•	1443.	1443.	1443.	1443.	1443.	1443.	1443.	10100.
4 TOTAL CASH INFLOW	•0	•0	o	299008	296508.	296508	296508.	296508.	296508.	296508.	2078056.
5 INCOME TAX	0	0	°	134554•	133429.	133429.	133429.	133429.	133429.	133429.	935125.
6 NET CASH FLOW	ó	•0	o	164455.	163080.	163080.	163080.	163080.	163080.	163080.	
7 CUMULATIVE NET CASH FLOW	ò	ċ	•	164455.	327534.	490614.	653693.	816773.	979852.	1142931.	
TERM	11	12	13	14	15	16	17	18	19	20	20YR. TOTAL
1 SALES REVENUE FROM PROFIT GAS	295065.	295065.	295065.	295065.	295065.	295065.	295065.	295065.	295065.	295065.	5016105.
2 BONUS FROM OIL COMPANY DISCOVERY BONUS PRODUCTION BONUS	000		000	000	000	•••	•••	000	• • • •	000	2500. 2500. 0.
3 RESEARCH FUND FROM OIL CO.	1443.	1443.	1443.	1443.	1337.	863.	863.	863.	863.	863.	21525.
4 TOTAL CASH INFLOW	296508.	296508.	296508.	296508	296402•	295928.	295928•	295928•	295928•	295928.	5040129.
5 INCOME TAX	133429.	133429.	133429.	133429•	133381.	133168.	133168.	133168.	133168.	133168.	2268052.
6 NET CASH FLOW	163080.	163080.	163080.	163080.	163021.	162761.	162761.	162761.	162761.	162761.	
7 CUMULATIVE NET CASH FLOW	1306010.	1306010. 1469089.	1632168.	1795247.	1958268.	2121028.	2283788.	2446548•	2609308.	2772068.	

TABLE 17-6-14 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

CASE IV : OFFSHORE COMPRESSION CASE - THREE FIELDS DEVELOPMENI	STRONAS * *
OFFSHORE COMPRESSION (* * CASH FLOW TABLE FOR PETRONAS * *
CASE IV :	#
VOL.IV	

3000		22	23	23YR• TOTAL
1 SALES REVENUE FROM PROFIT GAS		295065 295065	295	5901300•
2 BONUS FROM DIL COMPANY DISCOVERY BONUS PRODUCTION BONUS	000	666	÷ • •	2500• 2500• 0•
3 RESEARCH FUND FROM OIL CO.	863.	863.	863.	24114.
4 TOTAL CASH INFLOW	295928• 29	295928•	295928.	5928. 295928.
5 INCOME TAX	133168•	133168. 133168. 133168.	133168.	5 INCOME TAX 133168. 133168. 133168.
6 NET CASH FLOW	162761.	162761. 162761. 162761.	162761.	
7 CUMULATIVE NET CASH FLOW	2934828.	2934828. 3097588. 3260348.	3260348.	

TABLE 17-6-14 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

VOL.IV CASE IV : OFFSHORE COMPRESSION CASE - THREE FIELDS DEVELOPMENT

(CONT'D) PAGE 5] 	
54	10	0.63 102590. 836444.	0.40 65943. 626599.	0.27 43229. 479245.	20	0.39 62859. 1627905.	0.16 25374. 1031475.	.10665.
	6	0.66 107719. 733854.	0.44 72538. 560656.	0.30 49713. 436016.	19	0.41 66001. 1565047.	0.17 27912. 1006101.	0.08 12264. 685386.
	∞	0.69 113105. 626135.	0.49 79791. 488118.	0.35 57170. 386303.	18	0.43 69301. 1499046.	0.19 30703. 978189.	0.09 14104. 673122.
	۲	0.73 118760. 513030.	0.54 87770. 408327.	0.40 65745. 329133.	17	0.45 72766. 1429745.	0.21 33773. 947486.	0.10 16219. 659018.
*	9	0.76 124698. 394270.	0.59 96547. 320557.	0.46 75607. 263388.	16	0.47 76405. 1356979.	0.23 37151. 913713.	0.11 18652. 642798.
PETRONAS 1000)	w	0.80 130933. 269572.	0.65 106202. 224009.	0.53 86948. 187781.	15	0.49 80353. 1280575.	0.25 40931. 876562.	0.13 21485. 624146.
WORTH OF NET CASH FLOW FOR	4	0.84 138639. 138639.	0.72 117807. 117807.	0.61 100833. 100833.	14	0.52 84401. 1200222.	0.28 45040. 835631.	0.15 24716. 602661.
NET CASH	m	0.89 0.0	0.79	0.71	13	0.54 88621. 1115821.	0.30 49544. 790591.	0.17 28424. 577945.
WORTH OF	8	0.93 0. 0.	0.87	0.81	12	0.57 93052. 1 0 27200.	0.33 54499. 741047.	0.20 32687. 549522.
PRESENT		0.98 0.	0.95	0.93	11	0.60 97705. 934148.	0.37 59949. 686548.	0.23 37590. 516835.
## ##	TERM	PRESENT WORTH 5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	TERM PRESENT WORTH	5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH

TABLE 17-6-14 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

VOL.IV CASE IV : DFFSHORE COMPRESSION CASE - THREE FIELDS DEVELOPMENT

# #	* PRESENT		MORTH OF NET CASH FLOW FOR PETRONAS * * (x M\$ 1000)	(CD) PA((CONT'D) PAGE 6
TERM	21	22	23		
PRESENT WORTH					
5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.37 59865. 1687770.	0.35 0.33 57015. 54300. 1744784. 1799083.	0.33 54300. 1799083.		
10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.14 23068. 1054542.	0.13 0.12 20971. 19064. 1075512. 1094576.	0.12 19064. 1094576.		
15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.06 9274. 705324.	0.05 8064. 713388.	0.04 7012. 720400.	· .	

TABLE 17-6-14 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS
VOL.IV CASE IV : OFFSHORE COMPRESSION CASE - THREE FIELDS DEVELOPMENT

* * CASH FLOW TABLE FOR OPERATING COMPANY * *

(CONT'D)

TERM	1	8	m	4	'n	, ° •	۲	æ	o.	10	10YR. TOTAL
1 SALES REVENUE FROM PROFIT GAS	• 0	•	•	126457.	126457.	126457.	126457.	126457.	126457.	126457.	885196.
2 SALES REVENUE FROM COST GAS	•0	0	•	162124.	162124.	162124.	162124.	162124.	162124.	162124.	1134866.
3 SALES REVENUE FROM ROYALTY GAS	kS 0.	•	•	64850.	64850.	64850.	64850.	64850.	64850.	64850.	453947.
4 TOTAL CASH INFLOW	•	·	ô	353430.	353430.	353430.	353430.	353430	353430.	353430.	2474005.
5 RDYALTY	0	•0	0	64850.	64850.	64850.	64850	64850.	64850.	64850.	453947.
6 BONUS DISCOVERY AGNUS	• •	::		2500.	00	••	••	•••	• •	00	2500.
7 RESEARCH FUND TO PETRONAS	•	•	ò	1443.	1443.	1443.	1443.	1443.	1443.	1443.	10100.
OPERATING EXPENSES 8 OPERATING COST CAPITAL COST RECOVERY	000		666	162124. 46188. 115936.	1134866. 323316. 811551.						
INCOME BEFORE TAX	•	•	ò	122514.	125014.	125014.	125014.	125014.	125014.	125014.	872595.
9 INCOME TAX	ò	•	°	55131.	56256.	56256.	56256.	56256.	56256.	56256.	392668.
10 CAPITAL INVESTMENT	283321.	517749.	385062.	•	•	ò	ò	ò	•	•	1186132.
11 TOTAL CASH OUTFLOW	283321•	517749.	385062.	170112.	168737.	168737.	168737.	168737.	168737.	168737.	2368659.
12 NET CASH FLOW	-283321•	-517749.	-385062.	183318.	184693.	184693.	184693.	184693.	184693.	184693.	
13 CUMULATIVE NET CASH FLOW	-283321.	-801070,-1186132,-1002814,	1186132	.1002814.	-818121.	-633427.	-448734.	-264041.	-79348.	105346.	
14 DCF ROR OF NET CASH FLOW (%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.75	
15 CORPORATE CAPITAL	283321.	517749.	385062.	ċ	ò	•	°	ė	ò	0	1186131.
16 INTEREST	•	ò	ò	0	ò	•	•	•	•	.	•0
17 BANK BORROWING	ò	•	0	o	ò	•	•	ċ	ò	•	•
18 REPAYMENT	Ġ	•	ė	•	•	•	•	ċ	•	•	0
19 BORROWING BALANCE	•0	•0	0.	0	0	0	0	0	0	0	
20 PAYOUT TIME 9.4 YEARS											

TABLE 17-6-14 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS
VOL.IV CASE IV : OFFSHORE COMPRESSION CASE - THREE FIELDS DEVELOPMENT

* * CASH FLOW TABLE FOR OPERATING COMPANY * * .

(CONT'D)

TOTAL 20YR. 2500. 21525. o ó o 1102441. 1102441, 2155172 956581, 1369979, 4238213, 2149757. 2155166. 5407365. 785196 369979 2125732 1369977. 46188. 126457. 64850. 9.56 168418. ċ 237494. 863. ċ ċ 00 46188. 56517. ċ ċ ċ 64850 46188. 125593. 69076. 961926. 1031002. 1100078. 1169154. 20 9.37 46188. 863. 56517. 168418. 126457. 64850. 46188. ċ 69076. ċ ċ 237494. 00 46188* 125593. ċ ċ 64850. ċ 19 9.15 56517. 126457. 46188. 64850. 863. 168418. 69076. 237494. . . 46188. 46188. 125593. å 64850. ċ ċ ċ ċ ċ 18 46188. 8.91 126457. 64850. 237494. 64850. 56517. 168418. 69076 00 863. 46188. ċ ċ ċ ċ 125593. ċ ċ 46188. 17 126457. 46188. 237494. 64850. 56517. 8.62 863. å 168418. 69076. 892850. 64850 00 125593. Ö ċ ċ ö 46188 46188. ċ 16 140874. 126457. 64850. 332180. . . 1337. 94686. 163502. 823774. 8,30 ċ ċ 140874. 125120. 56304. ċ 168678. ċ ċ ់ 64850 46188. 168737. 126457. 162124. 184693. 7.37 353430. 00 162124. 125014. 56256. 660272. ċ ċ 64850. 1443. ċ ċ ċ ċ 64850. 115936. 46188 7 846. 162124. 6.04 126457. 353430. 352584. 475579. 125014. 56256. ċ ċ ċ ċ 64850. 00 162124. 183847. 64850 1443 115936. 183847. 46188 13 56256. 162124. ċ 126457. 353430. 168737. 6.04 ċ 64850. ċ 00 184693. 474732. 1443 125014. Ġ ċ 64850 162124. 115936 ċ 46188, 12 353430. 162124. 168737. 184693. 4.19 126457. 64850. 00 125014. ċ ċ ċ 1443. 56256. å 290039. ċ ċ 64850 62124. 46188. 15936. 11 3 SALES REVENUE FROM ROYALTY GAS SALES REVENUE FROM PROFIT GAS TERM 2 SALES REVENUE FROM COST GAS 20 RESEARCH FUND TO PETRONAS 14 DCF ROR OF NET CASH FLOW 13 CUMULATIVE NET CASH FLOW OPERATING COST CAPITAL COST RECOVERY OPERATING EXPENSES 11 TOTAL CASH DUTFLOW 10 CAPITAL INVESTMENT 4 TOTAL CASH INFLOW 19 BORROWING BALANCE INCOME BEFORE TAX 15 CORPORATE CAPITAL DISCOVERY BONUS 17 BANK BORROWING 12 NET CASH FLOW 9 INCOME TAX 18 REPAYMENT 16 INTEREST 5 ROYALTY SUNO8 9 œ

20 PAYDUT TIME 9.4 YEARS

TABLE 17-6-14 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS
VOL.IV CASE IV : OFFSHORE COMPRESSION CASE - THREE FIELDS DEVELOPMENT

* * CASH FLOW TABLE FOR OPERATING COMPANY * *

TERM	21	22	23	23YR. TOTAL
1 SALES REVENUE FROM PROFIT GAS	126457.	126457.	126457.	2529125•
2 SALES REVENUE FROM COST GAS	46188.	46188.	46188.	2293727.
3 SALES REVENUE FROM ROYALTY GAS	5 64850.	64850.	64850.	1296988•
4 TOTAL CASH INFLOW	237494.	237494.	237494.	6119844.
5 ROYALTY	64850	64850.	64850.	1296988
6 RONUS DISCOVERY RONUS	••		30	2500•
7 RESEARCH FUND TO PETRONAS	863.	863.	863.	24114•
OPERATING EXPENSES 8 OPERATING COST CAPITAL COST RECOVERY	46188. 46188. 0.	46188. 46188. 0.	46188. 46188. 0.	2293736. 923760. 1369979.
INCOME BEFORE TAX	125593.	125593.	125593.	2502511.
9 INCOME TAX	56517.	56517.	56517.	1126130.
10 CAPITAL INVESTMENT	ċ	•	•	1369979.
11 TOTAL CASH OUTFLOW	168418.	168418.	168418.	4743464.
12 NET CASH FLOW	69076	.9076	69076.	
13 CUMULATIVE NET CASH FLOW	1238230. 1307306.	1307306.	1376382.	
14 DCF ROR OF NET CASH FLOW (%)	9.72	9.86	66*6	
15 CORPORATE CAPITAL	•0	0.	•0	1369977.
16 INTEREST	0	0	•	•0
17 BANK BORROWING	ò	•	•	•0
18 REPAYMENT	•	•	ċ	•0
19 BORROWING BALANCE	•	•	•	
20 PAYOUT TIME 9.4 YEARS	 			

TABLE 17-6-14 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

VOL.IV CASE IV : OFFSHORE COMPRESSION CASE - THREE FIELDS DEVELUPMENT

* * PRESENT WORTH OF NET CASH FLOW FOR OPERATING COMPANY * * (X M\$ 1000)

10	0.63 116187. -153720.	0.40 74683. -314791.	0.27 48958. -414574.	20	0.39 26677. 386364.	0.16 10769. -27111.	0.07 4526. -254778.
6	0.66 121996. -269907.	0.44 82151. -389474	0.30 56302. -463532	19	0.41 28011. 359687.	0.17 11846. -37880.	0.08 5205. -259305
œ	0.69 128095. -391902.	0.49 90367. -471626.	0.35 64747. -519834.	18	0.43 29412. 331676.	0.19 13030. -49726.	0.09 5986. -264510.
7	0.73 134500. -519998.	0.54 99403. -561992.	0.40 74459. -584580.	17	0.45 30882. 302264.	0.21 14334. -62757.	0.10 6884. -270495.
•	0.76 141225. -654498.	0.59 109343. -661395.	0.46 85628. -659039.	16	0.47 32426. 271382.	0.23 15767. -77090.	0.11 7916. -277379.
'n	0.80 148286. -795723.	0.65 120278. -770739.	0.53 98472. -744667.	15	0.49 80590. 238955.	0.25 41052. -92857.	0.13 21548. -285295.
4	0.84 154541. -944009.	0.72 131320. -891016.	0.61 112399. -843138.	14	0.52 95587. 158365.	0.28 51010. -133909.	0.15 27992. -306843.
m	0.93 0.89 81211340846. 577041098550.	0.87 0.79 .8777303424. .89131022337.	0.71 -271510. -955538.	13	0.54 460. 62778.	0.30 257. -184919.	0.17 147. -334835.
8	44	34-	0.81 -419829. -684027.	12	0.57 105385. 62318.	0.33 61722. -185176.	0.20 37019. -334983.
1	0.98 -276493. -276493.	0.95 -270136. -270136.	0.93 -264198. -264198.	11	0.60 110654. -43066.	0.37 67894. -246897.	0.23 42572. -372002.
TERM	PRESENT WORTH 5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	TERM	PRESENT WORTH 5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH

TABLE 17-6-14 CASH FLOW TABLE FOR GAS CENTRAL LUCONIA GAS FIELDS

CASE IV : OFFSHORE COMPRESSION CASE - THREE FIELDS DEVELOPMENT VOL.1V

(CONT'D) PAGE 11				
PRESENT WORTH OF NET CASH FLOW FOR OPERATING COMPANY * *	23	0.33 23045. 459014.	0.12 8091. -330.	04 76. 44.
T CASI	.,			2 -244
TH OF NE	22	0.35 24197. 435969.	0.13 8900. -8421.	0.05 0.04 3422. 2976. -247420244444.
'RESENT WOR	21	0.37 25407. 411771.	0.14 9790. -17321.	0.06 3936. -250843.
*	TERM	PRESENT WORTH 5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH

SUMMARY OF OFFSHORE STRUCTURES Table 28-4-1 (vol. IV)

FIELD/	W.D.		PLATFORM		FACILITY LOCATION	23	CATIC	Z						Γ
FACILITY	FT MSL	PLATFORM TYPE	OVERALL DIMENSION	BORNEO'GRID	GRID			GEOGR	GEOGRAPHICAL	ıJ.		a i	DATE	
				NORTH	EAST	н	LATN		ron	IONGE		r Fig.		
												-		1
BARAM		18 Miles off Lutong						٠						
BARAM A	118			1,707,000 ^{FT}	1,550,000 FT	4°	42	"11	113°	56	17"			
BARAM B	203			1,696,000	1,519,000	4	40	23	113	51	11			
BADP-A	118	4x4P/17W Self-Cont. Drill. P/F		1,706,990	1,549,970	4	42	10	113	56	17	Мау 169	69.	
валр-в	203	6P/10W Tender-Ass. Drill. P/E		1,696,410	1,519,180	4	40	56	113	51	12	Mar.	173	
BADP-C	110	6P/10W Tender-Ass. Drill. P/E		1,710,620	1,557,090	4	42	47	113	57	27	Nov. '72	172	
BA-8	180	зр/1м инро		1,709,170	1,544,393	4	32	32,889 113	113	55	21.9	Aug. '68	89.	
BA-18	130	зр/1м мнрл		1,711,436	1,556,150	4	42	55.161 113	113	23	18.3	May	171	
BA-24	212	зр/1м мнрл		1,700,113	1,517,216	4	41	3. <u>717</u> 113	113	20		May '72	172	
BAP-A	118	4P Prod. P/F	50'-0" x 62'-0"	1,706,856	1,549,976							Jun. '69	69	
вар-в	203	4P Prod. P/F	50'-0" x 62'-0"									Feb.	173	
BAV-A	118	3P Vent Structure		1,705,853	1,551,720							May 169	69,	
BAV-B	205	3P Vent Structure		1,698,830	1,518,880							Feb. '73	173	-

Table 28-4-1 SUMMARY OF OFFSHORE STRUCTURES (Cont'd) (Vol. IV)

											ŀ		
PIEID/	W.D.		PLATFORM		FACILI	TY LO	FACILITY LOCATION		Í				
FACILITY	F. TSK	PLATFORM TYPE	OVERALL DIMENSION	BORNEO GRID	GRID			GEOGRAPHICAL	PHICAL			DATE	<u> </u>
				NORTH	EAST	н	LATN		LONGE	ы		TROTE	
				•									
BARONIA	250	27 Miles off Lutong		1,721,000 ^{FT}	1,479,000 FT	4	41.	31"	113	44	35"		
BNDP-A	249	8P/12W Tender-Ass. Drill. P/F	49'-0" x 98'-0"	1,721,280	1,479,380	4	44	34	113	44	39	Feb.	174
BNJT-D		3P/3W WHPJ											
BN-4		Subsea Completion		-									
BN-5		Subsea Completion											
BN-14	251	Зр/Ім мнрл		1,720,099	1,473,626	4	44	34	113	44		Jul.	175
BNP-A	254	4P Prod. P/F	50'-0" x 62'-0"	1,721,146	1,479,270								
BNV-A	250	3P Vent Structure		1,720,360	1,477,390							Sep. '73	173
							-						
BAKAU	180	14 Miles off Lutong		1,660,000	1,510,000	4	34	26	113	49	41		
вклт-я	175	4P/4W WHPJ		1,660,254	1,508,393	4	34	27.971	113	49	25.08	Aug.	174
BK-3	176	зр/1м мирл		1,659,306	1,510,080	4	34	20.689	113	49	40.6	oct.	171
BKP~A	180	4P Prod. P/P	50'-0" x 62'-0"	1,660,380	1,508,466							Dec.	17.
BKV-A	179	3P Vent Structure	17'-17" Triangular	1,660,380	1,510,510							Oct. '74	174

Table 28-4-1 SUMMARY OF OFFSHORE STRUCTURES (Cont'd) (Vol. IV)

	<u> </u>	·		,	70	171	172	.68	.68	168	172	-68	172			74	175	175	175	175	175	175
	DATE	THETENT			Apr. '70	Apr.	Mid.	Apr.	Apr.	Aug.	Mid.	Aug.	Mid.			Oct. '74	Jun.	Dec.	Mar.	Jun	Mar.	Jul.
		<u>ы</u>		54' 27"	4 23	4 54.5	9 .10		3 53					٠	4.							
	ICAL	LONG. ~E		113° 5	113 54	113 54			13 53						.3 43							
	GEOGRAPHICAL				7		9 114		22.763 113	•					113							
NOI	GEC	×.	•	1 47"	51	29.5	38.9	٠.							31							
FACILITY LOCATION		LATN		4° 29¹	. 29	30	13		29				٠		24							
TLITY					4,	4	4		4						4							
FAC	GRID	ISVI		1,539,000 ^{FT}	1,538,570	1,541,750	1,534,450	1,539,020	1,535,581	1,538,467		1,536,450	1,534,290		1,470,000	1,472,782	1,472,150	1,470,712	-		1,474,550	
	BORNEO GRID	NORTH		1,632,000FT	1,632,000	1,632,270	1,628,600	1,633,920	1,629,528	1,632,306		1,631,854	1,630,600		1,600,000	1,601,793	1,604,890	1,598,018			1,603,000	
PLATFORM	OVERALL									50'-0" x 62'-0"	50'-0" x 62'-0"								50'-0" x 62'-0"	50'-0" x 62'-0"		
	PLATFORM			9 Miles off Lutong	6P/10W Tender-Ass. Drill. P/F	GP/10W Tender-Ass. Drill. P/F	6P/10W Tender-Ass. Drill. P/F	зр/зи индл	3P/IW WHPJ	4P Prod. P/F	4P Prod. P/F	3P Vent Structure	3P Vent Structure	·	20 Miles off Lutong	6P/12W Tender-Ass. Drill. P/F	6P/12W Tender-Ass. Drill. P/F	3P/lw whpj	4P Prod. P/F	4P Prod. P/F	3P Vent Structure	3P Vent Structure
S. D.	FT			8	90	6.	104	101	101	06	104	6	101	•	158	156	159	157	156	160	155	159
PTETD/	FACILITY			WEST LUTONG	WLDP-A	WLDP-B	WLDP-C	WL-(1,2,3)	WL-4	WLP-A	WLP-C	WLV-A	WLV-C		TUKAU	TKDP-A	TXDP-B	TK-3	TKP-A	TKP-B	TKV-A	TKV-B

Table 28-4-1 SUMMARY OF OFFSHORE STRUCTURES (Cont'd) (Vol. IV)

	DATE	
	GEOGRAPHICAL	IONGE
FACILITY LOCATION	GEOGRA	LATN
FACILI	GRID	ÈAST
	BORNEO GRID	NORTH
PLATFORM	OVERALL DIMENSION	
	PLATFORM TYPE	•.
W.D.	MSI	
FIEID	FACILITY	

LUTONG TERMINAL

WL-M.P. 50 4P Manifold P/F

Single Buoy Mooring System

SBM-1 SBM-2 SBM-4

ditto

ditto

Table 28-4-2 SUMMARY OF SUBMARINE PIPELINES

		(Vol. IV)				
ORIGIN	TERMINAL	DIAMETER(IN.)	LENGTH (FT.)	SERVICE	NOS.	REMARKS
BARONIA FIELD						•
BN-4	BNP-A	vo	3,000	WELL FLUID	н	
BN-5	BNP-A	9	3,200	WELL FLUID	н	
BN-14	BNP-A	80	000'9	WELL FLUID	н	
BNP-A	BKP-A	12	67,847	CRUDE	н	
BNP-A	BNV-A	10	2,000	VENT	m	
BNJT-D	BNP-A	v	6,000	WELL FLUID	m	
BNP-A	BNJT-D	9	000′9	GAS LIFT	н	
BARAM FIELD						
BA-18	BADP-C	9	2,560	WELL FLUID	н	
BA-18	BAP-A	y	9,145	WELL FLUID	H	
BADP-C	BAP-A	ω	8,320	WELL FLUID	7	
BA-8	BAP-A	9	6,000	WELL FLUID	H	

Table 28-4-2 SUMMARY OF SUBMARINE PIPELINES (Cont'd)

REMARKS	NOS. 1 3	SERVICE WELL FLUID WELL FLUID CRUDE VENT VENT VENT WELL FLUID	LENGTH (FT.) 33,447 44,516 2,000 2,000	(Vol. IV) 6 8 12 10 10 6	Ont'd) BAP-B BAP-A SHORE BAV-A BAV-B BAV-B BAY-A BAY-A	BARAM FIELD (cont'd) BA-24 BA-24 BAP-A BAP-A BAP-B BAP-B BAP-B BARAU FIELD BK-3 B
	н с	CRUDE	40,904	16	WLP-A BKV-A	BKP-A BKP-A
,	н	CRUDE	40,904	16	WLP-A	BKP-A
	н	WELL FLUID	2,000	9	BKP-A	BK-3
						BAKAU FIELD
	H	CRUDE		æ	BA-24	BAP-B
	m	VENT	2,000	10	BAV-B	BAP-B
	m	VENT	2,000	10	BAV-A	BAP-A
	н		2,560		BA-18	BADP-C
	, - 1	CRUDE	44,516	12	SHORE	BAP-A
	н	WELL FLUID	33,447	ω	BAP-A	BA-24
	н	WELL FLUID		.	BAP-B	BA-24
					ont'd)	BARAM FIELD (C
REMARKS	NOS.	SERVICE	LENGTH (FT.)	DIAMETER (IN.)	TERMINAL	ORIGIN
				(Vol. IV)		

		(^+ .+0^)				
ORIGIN	TERMINAL	DIAMETER(IN.)	LENGTH (FT.)	SERVICE	NOS.	REMARKS
WEST LUTONG FIELD	GTE					
WLDP-B	WLDP-A	9		WELL FLUID	4	
WL-1,2,3	WLP-A	9		WELL FLUID	m	
WLP-A	WLDP-C	10		CRUDE	H	
WL-4	WLP-A	9		WELL FLUID	ı	
WL-4	WLP-C	9		WELL FLUID	1	
WLP-A	LUTONG T.	10	40,185	CRUDE	r i	
WLDP-C	LUTONG I.	12	41,500	CRUDE	н	
WLDP-A	WLDP-B	9		GAS LIFT	П	VIA WL-1, 2, 3
WLP-A	WL-4	9		GAS LIFT	н	
WLP~C	WL-4	g		GAS LIFT	гd	
WLP-A	LUTONG T.	œ	40,436	GAS	H	
WLP-A	WLV-A	10	2,000	VENT	m	
WLP-C	WLV-C	10	2,000	VENT	m	

	REMARKS
ES (Cont'd)	.son
SUMMARY OF SUBMARINE PIPELINES (Cont'd)	SERVICE
SUMMARY OF S	LENGTH (FT.)
Table 28-4-2 (Vol. IV)	DIAMETER (IN.)
	TERMINAL
	ORIGIN

		(^+ . + 0^)				
ORIGIN	TERMINAL	DIAMETER (IN.)	LENGTH (FT.)	SERVICE	NOS.	REMARKS
TUKAU FIELD						
TK-3	TKP-A	9	4,910	WELL FLUID	Н	
TKP-B	TKP-A	10	3,000	CRUDE	н	
TKP-A	WL,DP-C	10	67,970	CRUDE	ч	
TKP-B	TKV-B	10	2,000	VENT	m	
TKP-A	TKV-A	10	2,000	VENT	т	
TKP-A	TKDP-B	v	3,000	GAS LIFT	г г	
LABUAN TERMINAL						
LABUAN T.	SBM	48	15,000	CRUDE	ᆏ	
LUTONG TERMINAL						
LUTONG T.	SBM NO. 1	12	20,454		Н	18
LUTONG T.	SBM NO, 1	12	20,700		Н	1C
LUTONG T.	M.P.	vo	26,550	GAS OIL	н	1.8
LUTONG T.	M.P.	12	19,212		Н	2B
LUTONG T.	м.Р.	12	19,630		н	2C

(Cont'd)
PIPELINES
MARINE
SUMMARY OF SUE
Table 28-4-2 (Vol. IV)

	REMARKS		38	4B	. 4C	4Б	la	2B	2C	3B	3B	4B	4C	40
	NOS.		H	Т	ч	н	н	1	٦	7	7	н	н	-
	SERVICE		BUNKER				GAS OIL			BUNKER	BUNKER			
	LENGTH (FT.)		19,065'	20,085	19,890	26,200	7,400	4,533	4,340	4,446	4,447	4,440	4,431	4,431
(AT .TOA)	DIAMETER(IN.)		12"	12	12	20	9	12	12	vo	9	12	16	16
	TERMINAL	(Cont'd)	M.P.	м.р.	м. Ф.	м.Р.	SBM NO. 1	SBM NO. 2	SBM NO. 2	SBM NO. 2	SBM NO. 4	SBM NO. 4	SMB NO. 4	SMB NO. 4
	ORIGIN	LUTONG TERMINAL (Cont'd)	LUTONG T.	LUTONG T.	LUTONG T.	LUTONG T.	M.P.							

NOTE:

M.P. = MANIFOLD PLATFORM

	Table 28-4-3	COMPARISON OF	COMPARISON OF PRESENT PRODUCTION RATE VS. PLATFORM CAPABILITY	TION RATE VS.	PLATFORM CAPA	BILITY			
	(Vol. IV)	PRESENT PE	PRESENT PRODUCTION RATE (@ MAY, 1976		PRODUCTIO	PRODUCTION PLATFORM CAPABILITY	CLITY	
OIL FIELD	PRODUCTION	GROSS LIQUID (BPD)	NET OIL (BPD)	GAS (MMSCFD)	WATER (BPD)	NO. OF SEPARATION BANKS	GROSS LIQUID THROUGHPUT (BPD)	GAS (MMSCFD)	EFFICIENCY* (%)
TEMBUNGO	ď	5,294	4,983	3.7	311	1	20,000	16	26.5
BARONIA	BNP-A	51,977	49,162	106.1	2,815	8	000,09	180	86.6
WEST LUTONG	WLP-A	23,191	10,033	24.6	13,158	Т	30,000	06	77.3
	WLP-C	9,939	4,300	10.6	5,639	႕	30,000	8	33.1
		33,130	14,333	35.2	18,797	7	60,000	180	55.2
Baram	BAP-A	33,503	21,478	82.2	12,025	2	60,000	180	55.8
	BAP-B	14,358	9,205	35.2	5,153	٦	30,000	80	47.9
		47,861	30,683	117.4	871,71	m	000,06	270	53.2
BAKAU	BKP-A	5,316	5,203	10.5	113	н	30,000	06	17.7
TUKAU	TKP-A	6,706	6,516	8.8	190	н	30,000	06	22.4
	TYP-B	6,705	6,515	8.8	190	1	30,000	90	22.4
		13,411	13,031	17.6	380	7	60,000	180	22.4
SAMARANG	SMP-A	65,000**				7	000,09	180	108.3
	SMP-B	5,000**				н	30,000	06	16.7
		70,000**				m e	000,06	270	77.8

NOTE: * EFFICIENCY = GROSS LIQUID/GROSS LIQUID THROUGHPUT

** ROUNDED FIGURE IN DECEMBER, 1976

	EFFICIENCY* (%)	20.3 [48.9]	91.9 [145.0]		50.4			45.2	9.4		21.6		42.8 [54.6]
SILITY	GAS (MMSCFD)	16	180	06	180	180	90	270	06	06 06	180	180	270
PRODUCTION PLATFORM CAPABILITY	GROSS LIQUID THROUGHPUT (BPD)	20,000	000,09	30,000	60,000	60,000	30,000	000,06	30,000	30,000	000,09	30,000	000,00
	NO. OF SEPARATION BANKS	r.	7	ਜ ਜ	2	7	٦ ا	m	н	1 1	2	1 2	m
OSS LIQUID RATE	WATER (BPD)	590 [1,310]	6,470 [12,850]		15,730 [17,440]		,	15,230	300		550 [600]		300
D ON MAX. GE	GAS (MMSCFD)	4.8 [15.7]	133.5		57.0		!	137.8	4.7		30.1		47.7
TION RATE BASE	NET OIL (BPD)	3,470 [8,460]	48,680 [74,130]		14,500			25,440	2,530		12,380		38,230 [48,650]
PREDICTED PRODUCTION RATE BASED ON MAX. GROSS LIQUID RATE	GROSS LIQUID (BPD)	4,060 [9,770]	55,150 · [86,980]		30,230			40,670	2,830		12,930		38,530 [49,150]
	PRODUCTION PLATFORM	ď	BNP-A	WLP-A WLP-C		вар-а	BAP-B		BKP-A	TKP-A TKP-B		SMP-A SMP-B	
	OIL FIELD	TEMBUNGO	BARONIA	WEST LUTONG		вакам			BAKAU	TUKAU		SAMARANG	

NOTE * EFFICIENCY = GROSS LIQUID/GROSS LIQUID THROUGHPUT
[] = ADDITIONAL WELL DEVELOPMENT CASE

	Table 28-4-5	COMPARISON OF MAXIMUM PREDICTED PRODUCTION RATE VS. PLATFORM CAPABILITY, GAS BASE	KIMUM PREDICTE	PRODUCTION R	ATE VS. PLATFO	RM CAPABILITY, G	AS BASE		
	(Vol. IV)	PREDICTED PRODUCTUIN RATE BASED ON MAX. GAS RATE	JIN RATE BASED	ON MAX. GAS R	YTE	PRODUCTI	PRODUCTION PLATFORM CAPABILITY	ABILITY	•
OIL FIELD	PRODUCTION PLATFORM	GROSS LIQUID (BPD)	NET: OIT (BED)	GAS (MMSCFD)	WATER (BPD)	NO. OF SEPARATION BANKS	GROSS LIQUID THROUGHPUT (BPD)	GAS (MMSCFD)	EFFICIENCY (%)
TEMBUNGO	«	4,060	3,470 [8,460]	4.8	590 [1,310]	ī	20,000	91	20.3 [48.9]
BARONIA	BNP-A	31,540 [49,190]	25,790 [41,320]	164.6 [250.3]	5,750	7	000,09	180	52.6 [82.0]
WEST LUTONG	WLP-A	•				т	30,000	06	
	WLP-C					ન	30,000	06	
		29,200	15,200	58.3	14,000	2	000,09	180	48.7 [56.6]
BARAM	BAP-A	•		•	•	2	60,000	180	
	BAP-B					7	30,000	06	
		40,670	25,440	137.8	15,230	м	000'06	270	45.2
BAKAU	вкр-а	2,830	2,530	4.7	300	1	30,000	06	۵. 4.
TUKAU	TKP-A					1	30,000	06	
	TKP-B					1	30,000	06	
		11,290	10,860	34.5	430 [480]	8	000'09	180	18.8 [27.6]
SAMARANG	SMP-A					73	000,09	180	
	SMP-B					ا 1	30,000	06	
		28,910 [39,160]	28,410 [38,530]	56.6 [73.1]	500 [630]	m	000'06	270	32.1 [43.5]

NOTE: *EFFICIENCY = GROSS LIQUID/GROSS LIQUID THROUGHPUT
[] = ADDITIONAL WELL DEVELOPMENT CASE

Table 28-4-6 (Vol. IV)

SUMMARY OF GAS UTILIZATION (UNIT: MMSCFD)

넴	ᄅ	7	4	Ω.	9		œ		н
TOTAL	106.1	35.2	117.4	10.5		1	286.8		41.1
VENT GAS	85.8	16.7	106.0	8.7	14.6		228.8		30.9
GAS TO SHORE		11.2					11.2		
PUMP DRIVE GAS	23.3	7.3	11.4	1.8	3.0	1	46.8		10.2
LUTONG STREAM	BARONIA	WEST LUTONG	BARAM	BAKAU	TUKAU		TOTAL	LABUAN STREAM	SAMARANG

* Figures are as of May, 1976

(Vol. IV)

Table 29-6-1 4-LEG OFFSHORE PLATFORM COST

Field Name	Water	Total Cost		Breakdown	·
	Depth		Material Cost	Fabrication Cost	Installation
			(Weight: ton)		Cost
Sarawak Area					
			,		
Central Luconia					
E-8	207'	3,618,000	682,000 (852)	546,000	2,390,000
E-11	230'	3,805,000	772,000 (965)	618,000	2,415,000
F-6	285 '	4,289,000	962,000 (1,202)	790,000	2,537,000
F-13	250'	4,054,000	864,000 (1,080)	691,000	2,499,000
F-14	347'	4,899,000	1,272,000 (1,590)	1,018,000	2,609,000
F-23	280 '	4,239,000	958,000 (1,197)	760,000	2,521,000
Temana	991	3,261,000	426,000 (532)	341,000	2,494,000
E-6	239'	3,910,000	819,000 (1,023)	655,000	2,436,000
Betty	247'	3,998,000	853,000 (1,066)	683,000	2,462,000
Bokor	228'	3,788,000	765,000 (956)	612,000	2,411,000
Baronia	254 '	4,086,000	880,000 (1,100)	705,000	2,501,000
B-12	298 '	4,425,000	1,025,000 (1,281)	830,000	2,570,000
Şabah Area					
South Furious	188'	3,481,000	610,000 (762)	485,000	2,386,000
Erb West	2521	4,070,000	872,000 (1,090)	698,000	2,500,000
Peninsular Area					
Bekok	234'	3,849,000	793,000 (991)	634,000	2,422,000
Pulai	245'	3,981,000	844,000 (1,055)	675,000	2,462,000
Seligi	248'	4,003,000	856,000 (1,070)	685,000	2,462,000
Tapis	225'	3,767,000	754,000 (942)	604,000	2,409,000
Jerneh	2051	3,590,000	668,000 (835)	534,000	2,388,000

Table 29-6-2 6-LEG OFFSHORE PLATFORM COST (Vol. IV)

•					
Field Name	Water	Total Cost		Breakdown	······································
	Depth		Material Cost (Weight: ton	Fabrication Cost	Installation Cost
Sarawak Area					
Central Luconia		,			•
E-8	207 1	5,011,000	1,339,000 (1,673)	1,071,000	2,601,000
E-11	230'	5,347,000	1,504,000 (1,880)	1,203,000	2,640,000
F~6	285 '	6,063,000	1,820,000 (2,275)	1,452,000	2,791,000
F-13	250'	5,781,000	1,680,000 (2,100)	1,344,000	2,757,000
F-14	347'	7,204,000	2,400,000 (3,000)	1,920,000	2,884,000
F-23	280'	5,915,000	1,736,000 (2,170)	1,397,000	2,782,000
Temana	99'	3,955,000	744,000 (930)	593,000	2,618,000
E-6	239'	5,451,000	1,551,000 (1,938)	1,241,000	2,659,000
Betty	247'	5,655,000	1,649,000 (2,061)	1,319,000	2,687,000
Bokor	228 '	5,329,000	1,495,000 (1,868)	1,197,000	2,637,000
B-12	298 '	6,631,000	2,103,000 (2,628)	1,702,000	2,826,000
Sabah Area					•
South Furious	188'	4,827,000	1,241,000 (1,551)	997,000	2,589,000
Erb West	252'	5,831,000	1,706,000 (2,132)	1,364,000	2,761,000
Peninsular Area					
Bekok	234 1	5,396,000	1,525,000 (1,906)	1,220,000	2,651,000
Pulai	245'	5,595,000	1,618,000 (2,022)	1,295,000	2,682,000
Seligi	248'	5,669,000	1,655,000 (2,068)	1,324,000	2,690,000
Tapis	225'	5,260,000	1,466,000 (1,832)	1,173,000	2,621,000
Jerneh	205'	4,980,000	1,322,000 (1,652)	1,058,000	2,600,000

Table 29-6-3 8-LEG OFFSHORE PLATFORM COST (Vol. IV)

Field Name	Water	Total Cost		Breakdown	
	Depth		Material Cost (Weight: ton)	Fabrication Cost	Installation Cost
Sarawak Area					•
Central Luconia		·			
E-8	207'	7,459,000	2,518,000 (3,147)	2,015,000	2,926,000
E-11	230'	8,180,000	2,864,000 (3,580)	2,291,000	3,025,000
F-6	285'	9,805,000	3,683,000 (4,603)	2,947,000	3,175,000
F-13	250'	8,688,000	3,120,000 (3,900)	2,496,000	3,072,000
F-14	347'	12,251,000	4,960,000 (6,200)	3,968,000	3,323,000
F-23	280'	9,596,000	3,574,000 (4,467)	2,857,000	3,165,000
Temana	99'	5,568,000	1,447,000 (1,808)	1,158,000	2,963,000
E-6	239'	8,419,000	2,990,000 (3,737)	2,392,000	3,037,000
Betty	247'	8,613,000	3,086,000 (3,857)	2,468,000	3,059,000
Bokor	228'	8,125,000	2,837,000 (3,546)	2,269,000	3,019,000
B-12	298'	10,139,000	3,839,000 (4,798)	3,085,000	3,215,000
Sabah Area					
South Furious	188'	7,012,000	2,280,000 (2,850)	1,824,000	2,908,000
Erb West	252'	8,740,000	3,149,000 (3,936)	2,519,000	3,072,000
Peninsular Area					
Bekok	234'	8,283,000	2,920,000 (3,650)	2,336,000	3,027,000
Pulai	245	8,563,000	3,062,000 (3,827)	2,450,000	3,051,000
Seligi	248 '	8,644,000	3,097,000 (3,871)	2,477,000	3,070,000
Tapis	225'	8,032,000	2,796,000 (3,495)	2,237,000	2,999,000
Jerneh	205'	7,413,000	2,496,000 (3,120)	1,997,000	2,920,000
			(4)2541		

Table 29-6-4 (Vol. IV) 3-LEG VENT AND FLARE JACKET COST

Water Depth	Total Cost	В:	reakdown	
-		Material Cost (Weight: ton)	Fabrication Cost	Installation Cost
20'	343,000	100,000 (125)	80,000	163,000
40'	395,000	120,000 (150)	96,000	179,000
60'	447,000	140,000 (175)	112,000	195,000
100'	595,000	204,000 (255)	163,000	228,000
160'	660,000	240,000 (300)	192,000	228,000
180'	696,000	260,000 (325)	208,000	228,000
200'	764,000	280,000 (350)	224,000	260,000
220'	800,000	300,000 (375)	240,000	260,000
240'	869,000	320,000 (400)	256,000	293,000
260'	905,000	340,000 (425)	272,000	293,000
280'	973,000	360,000 (450)	288,000	325,000

Table 29-6-5 COST OF 3 CONDUCTORS (Vol. IV)

Field Name	Water	Total Cost	·	Breakdown	
	Depth		Material Cost (Weight: ton	Fabrication Cost	Installation Cost
Sarawak Area					
Central Luconia			·		
E-8	207'	571,000	128,000 (160)	38,000	405,000
E-11	230'	581,000	135,000 (168)	41,000	405,000
F-6	285'	609,000	152,000 (190)	46,000	411,000
F-13	250'	587,000	140,000 (175)	42,000	405,000
F-14	347 1	627,000	166,000 (207)	50,000	411,000
F-23	280'	606,000	150,000 (187)	45,000	411,000
Temana	99'	411,000	92,000 (115)	28,000	291,000
E-6	239'	584,000	138,000 (172)	41,000	405,000
Betty	247'	587,000	140,000 (175)	42,000	405,000
Bokor	228'	580,000	135,000 (168)	40,000	405,000
B-12	2981	614,000	156,000 (195)	47,000	411,000
Sabah Area					
South Furious	188'	546,000	150,000 (187)	36,000	360,000
Erb West	252'	588,000	141,000 (176)	42,000	405,000
Peninsular Area					
Bekok	234'	582,000	136,000 (170)	41,000	405,000
Pulai	245'	587,000	140,000 (175)	42,000	405,000
Seligi	248 '	587,000	140,000 (175)	42,000	405,000
Tapis	225'	579,000	134,000 (167)	40,000	405,000
Jerneh	205'	569,000	126,000 (157)	38,000	405,000

Table 29-6-6 (Vol. IV)

COST OF 4 CONDUCTORS

	_			•	•
Field Name	Water	Total Cost	· · · · · · · · · · · · · · · · · · ·	Breakdown	
	Depth		Material Cost (Weight: ton)	Fabrication Cost	Installation Cost
Sarawak Area					
Central Luconia					
E-8	207'	778,000	171,000 (213)	51,000	556,000
E-11	230'	791,000	181,000 (226)	54,000	556,000
F-6	285'	841,000	204,000 (255)	61,000	576,000
F-13	250'	802,000	189,000 (236)	57,000	556,000
F-14	347'	868,000	225,000 (281)	67,000	576,000
F-23	280'	839,000	202,000 (252)	61,000	576,000
Temana	99'	534,000	122,000 (152)	36,000	376,000
E-6	239'	795,000	184,000 (230)	55,000	556,000 556,000
Betty Bokor	247 ' 228 '	800,000 790,000	188,000 (235) 180,000	56,000 54,000	556,000
B-12	298'	846,000	(225) 208,000	62,000	576,000
	2.30	010,000	(260)	01,000	2,
Sabah Area	. '				
South Furious	188'	658,000	162,000 (202)	48,000	448,000
Erb West	252'	803,000	190,000 (237)	57,000	556,000
Peninsular Area					
Bekok	234'	793,000	182,000 (227)	55,000	556,000
Pulai	245'	800,000	188,000 (235)	56,000	556,000
Seligi	248'	802,000	189,000 (236)	57,000	556,000
Tapis	225'	789,000	179,000 (223)	54,000	556,000
Jerneh	205'	777,000	170,000 (212)	51,000	556,000

Table 29-6-7 COST OF 6 CONDUCTORS (Vol. IV)

Field Name	Water	Total Cost	<u> </u>	Breakdown	
	Depth	•	Material Cost (Weight: ton)	Fabrication Cost	Installation Cost
Sarawak Area		·			
Central Luconia			· ,		
E-8	207'	1,269,000	256,000 (320)	77,000	936,000
E-11	230'	1,286,000	269,000 (336)	81,000	936,000
F-6	285'	1,378,000	312,000 (390)	94,000	972,000
F-13	250'	1,308,000	286,000 (357)	86,000	936,000
F-14	347'	1,422,000	346,000 (432)	104,000	972,000
F-23	280'	1,367,000	304,000 (380)	91,000	972,000
Temana	99 '	919,000	182,000 (227)	55,000	682,000
E-6	239'	1,300,000	280,000 (350)	84,000	936,000
Betty	247'	1,306,000	285,000 (356)	85,000	936,000
Bokor	228 '	1,284,000	268,000 (335)	80,000	936,000
B-12	298 '	1,386,000	318,000 (397)	96,000	972,000
Sabah Area					
South Furious	188'	1,087,000	242,000 (302)	73,000	772,000
Erb West	252'	1,309,000	287,000 (358)	86,000	936,000
Peninsular Area					
Bekok	234'	1,290,000	272,000 (340)	82,000	936,000
Pulai	245'	1,302,000	282,000 (352)	84,000	936,000
Seligi	. 248 ¹	1,306,000	285,000 (356)	85,000	936,000
Tapis	225'	1,284,000	268,000 (335)	80,000	936,000
Jerneh	2051	1,266,000	254,000 (317)	76,000	936,000

Table 29-6-8 (Vol. IV)

COST OF 8 CONDUCTORS

Field Name	Water	Total Cost		Breakdown	
•	Depth		Material Cost (Weight: ton	Fabrication Cost	Installation Cost
Sarawak Area					
Central Luconia					
E-8	207 1	1,903,000	384,000 (480)	115,000	1,404,000
E-11	230'	1,934,000	408,000 (510)	122,000	1,404,000
F-6	285 1	2,061,000	464,000 (580)	139,000	1,458,000
F-13	250'	1,955,000	424,000 (530)	127,000	1,404,000
F-14	347 '	2,130,000	517,000 (646)	155,000	1,458,000
F-23	280'	2,051,000	456,000 (570)	137,000	1,458,000
Temana	99'	1,234,000	275,000 (343)	77,000	882,000
E-6	239'	1,945,000	416,000 (520)	125,000	1,404,000
Betty	247'	1,952,000	422,000 (527)	126,000	1,404,000
Bokor	228'	1,934,000	408,000 (510)	122,000	1,404,000
B-12	298'	2,080,000	478,000 (597)	144,000	1,458,000
Sabah Area					
South Furious	188'	1,643,000	364,000 (455)	109,000	1,170,000
Erb West	252'	1,958,000	426,000 (532)	128,000	1,404,000
Peninsular Area					
Bekok	234 '	1,942,000	414,000 (517)	124,000	1,404,000
Pulai	245	1,950,000	420,000 (525)	126,000	1,404,000
Seligi	248'	1,953,000	422,000 (527)	127,000	1,404,000
Tapis	225'	1,926,000	402,000 (502)	120,000	1,404,000
Jerneh	205'	1,901,000	382,000 (477)	115,000	1,404,000

Table 29-6-9 (Vol. IV)

COST OF 12 CONDUCTORS

Field Name	Water	Total Cost		Breakdown	
	Depth		Material Cost (Weight: ton)	Fabrication Cost	Installation Cost
Sarawak Area					
Central Luconia		·			
E-8	207'	2,442,000	512,000 (640)	154,000	1,776,000
E-11	230'	2,478,000	540,000 (675)	162,000	1,776,000
F-6	285 °	2,649,000	616,000 (770)	185,000	1,848,000
F-13	250'	2,514,000	568,000 (710)	170,000	1,776,000
F-14	347'	2,737,000	684,000 (855)	205,000	1,848,000
F-23	280'	2,638,000	608,000 (760)	182,000	1,848,000
Temana	99'	1,748,000	366,000 (457)	110,000	1,272,000
E-6	239'	2,494,000	552,000 (690)	166,000	1,776,000
Betty	247'	2,512,000	566,000 (707)	170,000	1,776,000
Bokor	228'	2,473,000	536,000 (670)	161,000	1,776,000
B-12	298'	2,678,000	638,000 (797)	192,000	1,848,000
Sabah Area					
South Furious	188'	1,978,000	488,000 (610)	146,000	1,344,000
Erb West	252'	2,517,000	570,000 (712)	171,000	1,776,000
Peninsular Area		·		•	
Bekok	234'	2,483,000	544,000 (680)	163,000	1,776,000
Pulai	245'	2,504,000	560,000 (700)	168,000	1,776,000
Seligi	248'	2,512,000	566,000 (707)	170,000	1,776,000
Tapis	225'	2,468,000	532,000 (665)	160,000	1,776,000
Jerneh '	205'	2,439,000	510,000 (637)	153,000	1,776,000

Table 29-6-10 (Vol. IV)

Table 29-6-10 COST OF 18 CONDUCTORS

unit: CS\$

Field Name	Makas	makai Gash			
rield Name	Water Depth	Total Cost	<u></u>	Breakdown	
	•		Material Cost (Weight: ton)	Fabrication Cost	InstalTation Cost
Sarawak Area					
Central Luconia					
E-8	207'	3,600,000	762,000 (952)	228,000	2,610,000
E-11	230'	3,681,000	824,000 (1,030)	247,000	2,610,000
F-6	285'	3,914,000	920,000 (1,150)	276,000	2,718,000
F-13	250'	3,733,000	864,000 (1,080)	259,000	2,610,000
F-14	347'	4,018,000	1,000,000 (1,250)	300,000	2,718, 600
F-23	280'	3,893,000	904,000 (1,130)	271,000	2,718,000
Temana	99'	2,615,000	544,000 (680)	163,000	1,908,000
E-6	239'	3,702,000	840,000 (1,050)	252,000	2,610,600
Betty	247'	3,723,000	856,000 (1,070)	257,000	2,610,000
Bokor	228'	3,671,000	816,000 (1,020)	245,000	.2,610,000
B-12	298'	3,945,000	944,000 (1,180)	283,000	2,718,000
Sabah Area					
South Furious	188'	2,962,000	728,000 (910)	218,000	2,016,000
Erb West	252'	3,738,000	868,000 (1,085)	260,000	2,610,000
Peninsular Area					
Bekok	234'	3,692,000	832,000 (1,040)	250,000	2,610,000
Pulai	245'	3,702,000	840,000 (1,050)	252,000	2,610,000
Seligi	2481	3,723,000	856,000 (1,070)	257,000	2,610,000
Tapis	225'	3,650,000	800,000 (1,000)	240,000	2,610,000
Jerneh	205'	3,598,000	760,000 (950)	228,000	2,610,000

Table 29-6-11	UNIT COST OF	F SUBMARINE PIPEI	SUBMARINE PIPELINE (PER 1,000 FEET)	
(Vol. IV)				UNIT: US \$
Size	Total		Breakdown	
		Materials	Corrosion & Weight Coating*	Installation
9	31,000	7,000	2,000	22,000
<u>.</u> 00	33,000	8,000	3,000	22,000
10"	36,000	11,000	3,000	22,000
12"	39,000	13,000	4,000	22,000
14"	46,000	14,000	4,000	28,000
16"	50,000	17,000	5,000	28,000
18"	53,000	20,000	2,000	28,000
20"	61,000	20,000	000′9	35,000
24"	68,000	25,000	8,000	35,000
28"	76,000	31,000	10,000	35,000
30"	94,000	34,000	13,000	47,000
32"	000'66	37,000	15,000	47,000
36"	106,000	41,000	18,000	47,000
42"	172,000	48,000	29,000	95,000
48"	204,000	000'69	40,000	95,000

* Pipelines of size from 6" to 10" exclude weight coating cost.

29-6-12	(AI
Table 2	(Vol)

UNIT COST OF RISER PIPE (PER ONE RISER)

.	ıtion															
	Riser Installation & Tie-in	181,000	181,000	181,000	181,000	. 272,000	272,000	272,000	362,000	362,000	362,000	453,000	453,000	453,000	543,000	543,000
	Rich															
Breakdown	Prefabrication	2,000	2,000	2,000	2,000	3,000	3,000	3,000	4,000	4,000	4,000	5,000	5,000	5,000	000'9	000'9
	Materials	7,000	11,000	15,000	20,000	24,000	28,000	33,000	38,000	43,000	48,000	50,000	55,000	. 000'09	65,000	70,000
Total		190,000	194,000	198,000	203,000	299,000	303,000	308,000	404,000	409,000	414,000	. 508,000	513,000	518,000	614,000	619,000
Size		9	 8	10,	12"	14"	16"	18"	20"	24"	28"	30"	32"	36"	42"	48"

Table 29-6-13 GAS PRODUCTION EQUIPMENT COST (Vol. IV)

UNIT : US\$

3,797,000

CASE 65MMSCFD

Total Cost

	Material Cost	Installation Cost	Total Cost
Process Equipment (including Piping)	1,042,000	538,000	1,580,000
Electrical Equipment	1,008,000	253,000	1,261,000
Instrument Equipment	227,000	57,000	284,000
Total Cost	2,277,000	848,000	3,125,000
CASE 95MMSCFD			
•	Material Cost	Installation Cost	Total Cost
Process Equipment (including Piping)	1,255,000	648,000	1,903,000
Electrical Equipment	1,099,000	275,000	1,374,000
Instrument Equipment	261,000	66,000	327,000
Total Cost	2,615,000	989,000	3,604,000
CASE 110MMSCFD			
	Material Cost	Installation Cost	Total Cost
Process Equipment (including Piping)	1,341,000	692,000	2,033,000
Electrical Equipment	1,135,000	284,000	1,419,000
Instrument Equipment	276,000	69,000	345,000

2,752,000

1,045,000

Table 29-6-13 GA (Vol. IV)	AS PRODUCTION EQ	UIPMENT COST	(Cont'd)
			UNIT : US\$
CASE 265MMSCFD			
	Material	Installation	Total
	Cost	Cost	Cost
Process Equipment (including Piping)	2,135,000	1,100,000	3,235,000
Electrical Equipment	1,472,000	368,000	1,840,000
Instrument Equipment	405,000	102,000	507,000
Total Cost	4,012,000	1,570,000	5,582,000
•			
CASE 320MMSCFD			
	Material Cost	Installation Cost	Total Cost
Process Equipment (including Piping)	2,658,000	1,370,000	4,028,000
Electrical Equipment	1,694,000	424,000	2,118,000
Instrument Equipment	492,000	123,000	615,000
Total Cost	4,844,000	1,917,000	6,761,000
CASE 390MMSCFD			
	Material Cost	Installation Cost	Total Cost
Process Equipment (including Piping)	2,844,000	1,466,000	4,310,000
Electrical Equipment	1,772,000	444,000	2,216,000
Instrument Equipment	522,000	131,000	653,000
Total Cost	5,138,000	2,041,000	7,179,000
TOTAL COST	5,138,000	2,041,000	7,179,000

Table 29-6-13 (Vol. IV)

GAS PRODUCTION EQUIPMENT COST (Cont'd)

UNIT : US\$

CASE 520MMSCFD

	Material Cost	Installation Cost	Total Cost
Process Equipment (including Piping)	3,442,000	1,774,000	5,216,000
Electrical Equipment	2,026,000	507,000	2,533,000
Instrument Equipment	620,000	155,000	775,000
Total Cost	6,088,000	2,436,000	8,524,000

Table 29-6-14 OIL PRODUCTION EQUIPMENT COST (Vol. IV)

UNIT : US\$

CASE	10	,0	0 0 B	PD

Total Cost

CASE 10,000BPD			
	Material Cost	Installation Cost	Total Cost
Process Equipment (including Piping)	593,000	322,000	915,000
Electrical Equipment	320,000	80,000	400,000
Instrument Equipment	105,000	27,000	132,000
Total Cost	1,018,000	429,000	1,447,000
CASE 20,000 BPD			
	Material Cost	Installation Cost	Total Cost
Process Equipment (including Piping)	664,000	340,000	1,004,000
Electrical Equipment	336,000	84,000	420,000
Instrument Equipment	113,000	29,000	142,000
Total Cost	1,113,000	453,000	1,566,000
CASE 30,000BPD	·		
	Material Cost	Installation Cost	Total Cost
Process Equipment (including Piping)	795,000	400,000	1,195,000
Electrical Equipment	368,000	93,000	461,000
Instrument Equipment	128,00	32,000	160,000

1,291,000 525,000 1,816,000

Table 29-6-15 (Vol. IV)

UNIT COST OF

OTHER PRODUCTION EQUIPMENT

1.	ONSHORE TANKAGE	5 / BBI
2.	PUMP WITH ELEC. MOTER & ACCESSORIES	650 / HP
3.	. GAS COMPRESSOR WITH GAS TURBINE	600 / HD

Table 29-6-16 (Vol. IV)

NEWLY BUILT STORAGE BARGE COST

STORAGE CAPAC	ITY	STORAGE	BARGE	COST
940,000 B	BLS		19,000	,000
1,100,000 B	BLS		23,000	,000
1,200,000 B	BLS		25,000	,000
1,270,000 BI	BLS		27,000	,000
1,400,000 B	BLS		32,000	,000

Table 29-6-17 (Vol. IV)

ONSHORE SUPPORT FACILITIES COST

(IN CASE OF 30,000BPD)

UNIT: US\$

	OFFSHORE STORAGE CASE	ONSHORE STORAGE CASE
SITE PREPARATION	50,000	173,000
BUILDING	1,960,000	2,000,000
JETTY	2,000,000	2,000,000
OTHERS	1,203,000	1,252,000
AUXILIARY FACILITIES FOR TANKAGE	-	2,360,000

7,785,000

5,213,000

TOTAL

^{*} Cost for the other capacity case is estimated based on above shown table considering scale factor.

(Vol. IV)

Table 29-6-18 OPERATING PERSONNEL COST

·US\$/Person/Year

1.	Manager	72,000
2.	Superintendent	44,000
3.	Supervisor	28,800
4.	Engineer	19,200
5.	Geologist	19,200
6.	Clerk	4,800
7.	Officer	4,800
8.	Mechanician	1,800
9.	Electrician	1,800
10.	Instrument	1,800
11.	Foreman	1,800
12.	Field Operator	1,500
13.	Store Keeper	960
14.	Laborer	1,200

UNIT COST

<u>OF</u>

VARIOUS CHEMICALS

		UNIT : US\$
ı.	Tri-Ethylene-Glycol	3.30/ gal.
2.	Corrosion Inhibitor for Gas	20.0/ gal.
3.	Deemulsifier	0.74/lb
4.	Defoamant	o.73/1b

Table 29-6-20 (Vol. IV)

UNIT COST

<u>OF</u>

SERVICE CONTRACTORS

UNIT: US\$

1.	One V	Nork Boat	30,000 per year
2.	One (Crew Boat	10,000 per year
3.	One 1	rug Boat Fleet*	18,000 for each berthing and unberthing operation
4.	One I	Helicopter	150,000 per year assuming one flight a day
5.	Cate	ring Service Personnel	
	a.	Cook	8,760 per year
	b.	Waiter	6,570 per year
	c.	Room Boy	4,380 per year

* Consisting of one tug boat, one hose handling boat and one mooring line handling boat.

Table 30-6-1 (Vol. IV) ANNUAL

ANNUAL OIL PRODUCTION AND FOB PRICE PER BARREL

SARAWAK AREA

FIELD		West	Temana	& E-6 Fields				Bet	Betty & Bokor	tor Fields		
CASE	Case I (We	(West Temana	€ E-6)	Case	IIA, IIB ((E-6)	Case I	(Betty &	Bokor)	Case II	(Betty)	
VEAR	_i Stic	F.O.B.		Annual Production (M BBLS)	F.O.B.	Price (US\$)	Annual Production (M BBLS)	F.O.B.	Price (US\$)	Annual Production (M BBLS)	F.O.B.	Price (US\$)
1									<i></i>			
2			***** *****							_		
m									_			
4	12,411	31.47	12.39	10,951	31.57	12.43	7,421	31.70	12.48	5,595	31.95	12.58
រេ	11,681	31.52	12.41	10,951	31,57	12.43	6,972	31.70	12.48	5,206	31.95	12.58
9	10,951	31.57	12.43	10,951	31.57	12.43	5,456	31.88	12.55	4,805	31.95	12.58
7	10,951	31.57	12.43	10,951	31.57	12.43	3,526	31.95	12.58	3,526	31.95	12.58
80	9,993	31.57	12.43	9,993	31,57	12,43	2,467	31.95	12.58	2,467	31.95	12.58
თ	7,869	31.57	12.43	7,869	31.57	12.43	136	31.95	12.58	136	31.95	12.58
10	5,677	31,57	12.43	5,677	31.57	12.43			_			
I.F	3,747	31.57	12.43	3,747	31.57	12.43			_			
12	2,881	31.57	12.43	2,881	31.57	12.43			_			
13	2,371	31.57	12.43	2,371	31.57	12.43			~			
14	1,984	31.57	12.43	1,984	31,57	12.43			— ·			
15	1,700	31.57	12.43	1,700	31.57	12.43						
16	1,442	31.57	12.43	1,442	31.57	12.43			-			•
17	1,255	31.57	12.43	1,255	31.57	12.43						
18	591	31.57	12.43	591	31,57	12.43						

Note: Crude price is as of middle of 1976

Table 31-6-1 (Vol. IV)

INVESTMENT SCHEDULE FOR OIL

4				
		e1d	CASE IB	80,694 197,443 175,568
000'T\$W		rapis Field	CASE IA	72,691 148,355 186,690
UNIT: M	IR AREA		CASE III	150,020 205,658 153,643
	PENINSULAR AREA	Seligi Fields	CASE II	179,848 262,407 193,549
FOR OIL		List I	EF IB	240,976 305,619 241,490
SCHEDULE		Bekok, Pulai	CASE IA	201,002 275,415 259,019
INVESTMENT SCHEDULE FOR OIL		. West	CASE IIB	108,517 102,291 61,426
INC	SABAH AREA	South Furious & Erb West Fields	CASE IIA	102,689 77,320 81,863
L-6-1 IV)	0,	South Fur Fields	CASE I	96,956 61,615 147,695 100,048
Table 31-6-1 (Vol. IV)		Воког	CASE II	30,537 33,133 58,496
		Betty & B Fields	CASE I	54,093 67,270 110,837
	SARAWAK AREA	ields	CASE IIB	51,365
	SAR	na & E-6 Fields	CASE IIA	48,153 172,085 65,128
		West Temana	I asko	102,168
	AREA	FIELD	YEAR	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 31-6-2 (Vol. IV)

ANNUAL OPERATING COST FOR OIL

UNIT: M\$1,000

		ıld	CASE IB		-		22,276	22,108	21,885	21,445	21,095	20,444																
M\$1,000		Tapis Field	CASE IA				27,486	27,318	27,095	26,655	26,305	25,654		,			-											
UNIT:	R AREA		CASE III				31,560	31,523	31,286	30,487	29,184	28,286	27,636	27,151	22,917	22,221	21,987	21,780	21,603	21,512	21,396	21,316	21,227	21,148	21,108	20,796		
	PENINSULAR AREA	Seligi Fields	CASE II			,	38,158	38,120	37,904	37,166	31,277	30,347	29,688	29,182	28,203	24,066	23,822	23,626	23,456	23,324	23,211	23,108	23,018	22,963	22,899	22,582	•	
		L3	CASE IB				36,097	36,019	35,663	34,778	32,208	30,943	23,799	23,288	22,308	18,662	18,418	18,200	18,042	17,920	17,801	17,714	17,625	17,539	17,495	17,173	,	
		Bekok, Pulai	CASE IA				44,319	44,241	43,885	43,000	40,430	39,165	30,408	29,897	28,917	24,861	24,617	24,399	24,241	24,119	24,000	23,913	23,824	23,738	23,694	23,372		
		West	CASE IIB				13,538	13,538	13,538	13,538	13,345		•															
,	Sabah area	South Furious & Erb West Fields	CASE IIA				13,328	13,328	13,328	13,328	13,135																	
	is	South Fur Fields	CASE I			•		19,051	19,051	13,005	13,005	12,812			-	•		•	-						'			
		s Bokor Fields	CASE II				7,119	9/0,7	7,031	988'9	6,766	4,882			*							-						
		Betty & Bo	CASE I				11,297	11,246	9,380	7,081	6,961	5,027																
			CASE IIB				15,256	15,256	15,256	15,256	15,145	14,901	14,649	14,426	14,327	14,268	14,223	14,190	14,159	14,139	8,216							
•	SARAWAK AREA	na & E-6 Fields	CASE 1IA				21,525	21,525	21,525	21,525	21,414	21,170	20,918	20,695	20,596	20,537	20,492	20,459	20,428	20,408	10,202	•						
	SAR	West Temana & E-6 Fields	CASE I		_		22,155	20,409	18,658	18,658	18,547	18,303	18,051	17,828	17,729	17,670	17,625	17,592	13,561	17,541	8,768			-				
	AREA		YEAR	1	7	m	4	Ŋ	9		Ø	6	. 01	ដ	12	13	14	1.5	16	17	18	19	20	21	22	23		

MMSCFD

Table 31-6-4 (Vol. IV)

OR GAS INVEST

C	וכ	
į	4	
G	a	
į	7	
ì	訠	
ľ	4	
ŧ	ל	
Ç	מ	
Ē	-	
ć	3	l
í	Ε	
Ė	-1	ľ

UNIT: M\$1,000	PENINSULAR AREA	Bekok & Pulai Fields		32,878	109,440	149,410																			-		
		Baronia & B-12 Fields	Case IA	35,372	77,655	•																					
			Case IV	283,321	517,749	385,062								·		183,847	·										
	AREA		Case III	394,005	606,355	265,612										195,384									•		
	SARAWAK	Luconia Fields	Case II	452,755	645,998	260,879										206,363											
(A)		Central Lucon	Case IC	467,707	680,231	295,019										215,296											
(Vol. IV)		Cen	Case IB	289,559	461,058	440,314										193,709											
			Case IA	291,087	533,630	397,905										48,381						-					
	AREA	FIELD	YEAR	T		т	4	'n	9	7	80	6	10	11	12	13 ·	14	15	36	17	18	19	20	21	22	23	

UNIT: M\$1,000	PENINSULAR AREA	Bekok & Pulai Fields			-	7,285	7,303	7,376	7,587	8,507	9,162	9,708	10,048	10,755	11,309	11,504	11,683	11,808	11,906	12,006	12,068	12,150	12,225	12,260	12,531	
		Baronia & B-12 Fields	Case IA		4,809		-		-			***							•					→		
			Case IV		,	46,188					·					***		-P	<u></u> .						Þ	
	AREA		Case III			49,555			<u>.</u>										-						حوا	
	SARAWAK	Luconia Fields	Case II			52,775					-						··· -	****							4	
		Central Luc	Case IC			56,008															-		<u></u> -		>	
(Vol. IV)		၁	Case IB			46,529									-						-				>	
			Case IA		1 · · · · · ·	42,912						• • •	· · =												>	
	AREA	FIELD	YEAR	ī	7 E	4	S	9	7	8	6	10	11	12	13	14	15	. 16	17	18	19	20	21	22	23	

Table 31-6-6 PROFITABILITY YARDSTICKS OF OIL (Vol. IV)

AT THE YEAR OF MAX. R.O.R. FOR OPERATING COMPANY

UNIT: M\$1,000

			PETRONAS	ONAS			OPERATING COMPANY	MPANY	
	YARDSTICK	ICK	Cumulative Net Cash	Cumulative Present	Max	Maximum ROR	Maximum Cumulative	Maximum Cumulative	Payout Time
AREA	FIELD		*TOW	worth at Discount Rate 10%	Year (*)	ROR (\$)	Net tash Flow	Fresent Worth at Discount Rate 10%	(Year)
		CASE I	982'889	369,459	ÞΤ	7.88	174,935	-29,685	7.5
	West Temana & E-6 Fields	CASE IIA	653,618	352,124	13	15.48	259,503	57,673	6.3
Sarawak		CASE IIB	697,320	363,228	16	16.75	282,672	70,265	6.2
Area	Betty & Bokor Fields	CASE I	223,742	140,256	æ	1	-21,229	-64,611	1
		CASE II	188,132	116,397	æ	12.62	58,526	8,266	5.7
40400		CASE I	385,924	218,331	6.	ι	-37,904	-124,962	1
Saban	Erb West & South Furious Fields	CASE IIA	297,213	179,263	80	1.31	13,964	-63,044	7.7
80.75	•	CASE IIB	297,213	179,263	æ	0.23	2,552	-74,768	7.9
		CASE IA	1,770,974	1,015,256	14	21.04	727,775	252,866	5.1
Peninsular	Bekok, Pulai & Seligi	CASE IB	1,826,413	1,028,039	17	19.42	748,844	239,115	5.2
Area	Fields	CASE II	1,529,282	858,248	15	19.78	622,606	202,485	5.2
		CASE III	1,337,232	738,332	15	20.77	547,063	184,618	5.2
	בנפים מיחפם	CASE IA	702,728	428,202	σ	15.05	239,153	53,873	5.6
		CASE IB	702,728	428,202	œ.	12.51	224,444	30,337	بر. دي

Note: (*) - In the case that cumulative net cash flow is not positive, the year shown above is a peak year of cumulative net cash.