REPORT
ON

MASTER PLAN STUDY
FOR

THE DEVELOPMENT OF PETROLEUM AND
NATURAL GAS RESOURCES
IN
MALAYSIA

- Volume ∭-(SABAH)

JANUARY 1978

JAPAN INTERNATIONAL COOPERATION AGENCY

LIBRARY 1059654[2] REPORT

ON

MASTER PLAN STUDY

FOR

THE DEVELOPMENT OF PETROLEUM AND

NATURAL GAS RESOURCES

IN

MALAYSIA

- VOLUME III -(SABAH)

JANUARY 1978

JAPAN INTERNATIONAL COOPERATION AGENCY

国際協力事業団				
受入 月日 '84.11.16	113			
10.1-1	66,8			
登録No. 10851	MPI			

Vol.	III	SABAH AF	EA	
		PART	A EVALUATION OF OIL AND GAS FIELD AND PERFORMANCE PREDICTION	
1.	GENE:	RAL		A-1
2.	GEOL	OGY OF TH	E BASIN	A-2
3.	EXIS	ring proi	OUCING FIELDS	A-3
	3.1	Samarang	, Field	A-3
		3.1.1 F	rield Status	A-3
		3.1.2	Geology	A-3
		3.1.3	Reservoir Analysis	A-5
	3.2	Tembung	o Field	A-11
		3.2.1	Field Status	A-1.1
		3.2.2	Geology	A-12
	•	3.2.3	Reservoir Analysis	A-14
4.	FIEL	DS FOR D	EVELOPMENT	A-22
	4.1	Erb Wes	: Field	A-22
		4.1.1	Geology	A-22
		4.1.2	Reservoir Analysis	A-24
	4.2	South F	urious Field	A-26
		4.2.1	Geology	A-26
		4.2.2	Reservoir Analysis	A-28

Page

				Page
5.	POTE	NTIAL F	IELDS	A-31
	5.1	West En	nerald Field	A-31
		5.1.1	Geology	A-31
		5.1.2	Reservoir Analysis	A-32
	5.2	St. Jo	seph Field	A-33
		5.2.1	Geology	A-33
		5.2.2	Reservoir Analysis	A-33
	5.3	Erb So	uth Field	A-34
		5.3.1	Geology	A-34
		5.3.2	Reservoir Analysis	A-35
6	CONC	PROTEILT	AND RECOMMENDATIONS	A-37

				Page
			PART B SURFACE FACILITIES	
1.	EXIS	TING FA	CILITIES	B-1
	1.1	Presen Facili	t Status of the Existing Production ties	B-1
		1.1.1	Labuan Stream	B-1
		1.1.2	Tembungo Stream	B-8
	1.2	Review Produc	on the Capacity of the Existing	B-12
		1.2.1	Labuan Stream	в-14
		1.2.2	Tembungo Stream	B-20
	1.3	Assess for th	ment of the Facilities Capacity e Predicted Production Scheme	B-23
		1.3.1	Labuan Stream	B-24
		1.3.2	Tembungo Stream	B-27
		1.3.3	Conclusion	B-29
		1.3.4	Additional Well Development Case	B-30
	1.4	Assess	ment on Present Production Practices	B-32
		1.4.1	Labuan Stream	B-32
		1.4.2	Tembungo Stream	B-36
2.	PROP	OSED FA	CILITIES	B-40
	2.1	Genera	al Design Bases	B-40
		2.1.1	Basic Design Data from Collected Data	B-40
		2.1.2	Assumed Design Conditions	B-42
		2.1.3	Determination of Facilities Capacity	B-42
	2.2	Concer	ptual Design	B-45
		2.2.1	Erb West and South Furious Oil Fields	B-45

		Page
3.	CONCLUSIONS AND RECOMMENDATIONS	B-52
	3.1 Existing Facilities	B-52
	3.2 Proposed Facilities	B-56

			Page
		PART C COST ESTIMATE AND ECONOMIC ANALYSIS	
1.	COST	ESTIMATE	C-1
	1.1	General Cost Estimate Bases	C-1
		1.1.1 Basic Cost Data	C-1
		1.1.2 Estimate of Other Cost Items	C-2
		1.1.3 Estimate of Past Investment	C-3
		1.1.4 Estimate of Annual Operating Cost	C-4
	1.2	Cost Estimate	C-5
		1.2.1 Erb West and South Furious Oil Fields	C-5
2.	ECON	OMIC ANALYSIS	C-8
	2.1	General Economic Analysis Bases	C-8
		2.1.1 Oil	C-8
	2.2	Profitability Analysis on Oil	C-12
		2.2.1 Erb West and South Furious Oil Fields	C-13
	2.3	Sensitivity Analysis	C-15
		2.3.1 Erb West and South Furious Oil Fields (Case IIA)	C-15
3.	CONC	CLUSIONS AND RECOMMENDATIONS	C-16
	3.1	Cost Estimate	C-16
	3.2	Economic Analysis	C-17
	TABI	Æ	
	FIGU		
		NDIX	

PART A EVALUATION OF OIL AND GAS FIELD AND PERFORMANCE PREDICTION

1. GENERAL

There are two oil producing fields in this area.

One is Samarang field and the other is Tembungo field.

Their production rates during the month of June 1976

are 28 and 4.3 MSTB/D, respectively.

Samarang field was estimated to have highest production capacity in this area, while the future performance of Tembungo field was estimated to be not prospective.

There are two fields for development in this area, one is Erb South and the other is South Furious fields. The former has small original oil in place, while the latter has oil displacement problem with all its comparatively big original oil in place, as the field is devided into numerous blocks and the recovery was estimated to be very poor.

There are other three fields which have some potential of oil production. The fields need more exploratory works for defining the reservoir.

The original hydrocarbon in place of Sabah area was shown on Tables A-1-3.

2. GEOLOGY OF THE BASIN

On the west coast area of Sabah, rocks of Paleocene to Miocene age are exposed but most of them are considered as indurated geosynclinal deposits. However, it is thought that in the western offshore there is a continuation of the Miocene - Pliocene sedimentary basin of Sarawak, which has hydrocarbon occurrences in the clastic sediments. Well data indicate that in the Sabah area unconformities are found in Upper Miocene sections in several fields, but regional stratigraphy seems to have not yet been completely established for the area. It remains also a problem to be solved whether the sedimentary cycles in Sarawak based on the palynologic data is applicable in the Sabah area.

Sedimentary sequences of the Sabah fields consist of sandstones and argillaceous rocks, the latter of which in some horizons indicate better development than in the Sarawak area. Reservoir rocks are fine-grained sandstones in general, for which the lithological correlation is difficult in some of the fields. The fields vary both in sedimentary environments and in structural types. Although hydrocarbons occur generally in anticlinal and/or faulted structure, unconformity trapping is also observed.

3. EXISTING PRODUCING FIELDS

3.1 Samarang Field

3.1.1 Field Status

The Samarang field is located 50 km north of Sabah shore and is the biggest field in Sabah area. Production started June 1975 and cumulative oil production during the history stage is 8.28 MMSTB, which is equivalent to 2.53 per cents of original oil in place.

Oil zone consists of sand layers developed in the depth interval of 4300 ft to 7400 ft s.s. The reservoir was interpreted to be of a combination drive of gas cap expansion and the aquifer water.

The field was estimated to have good reservoir performance and further development together with strict production control will be required.

3.1.2 Geology

(1) Reservoir Beds

In the Samarang field hydrocarbons are accumulated in clastic sediments which are probably equivalent to sedimentary cycles VI and V of the Sarawak area. Hydrocarbon bearing zones are concentrated in

a relatively small number of horizons where reservoir beds are sandstones of generally good continuity.

Main reservoirs are zones a_2 , b, and $c_1 - c_5$ of which correlation is shown in Table 1-2-1. Zone a_1 is a total 200 ft thick sandstone frequently intercalated with shale less than 15 ft thick, zone a_2 is a total 250 ft thick sandstone intercalated with about 10 shale beds less than 15 ft thick, and zone b is also intercalated with many shale beds less than 20 ft thick for a 270 ft interval. However, it is considered that fluid contact levels are single in zones a_1 , a_2 , and b, respectively, in spite of their shale intercalations. Each sandstone of zones c_1 to c_5 is interbedded with 40 to 70 ft thick shale beds and has separate independent OWC within it.

(2) Geologic Structure and Hydrocarbon Trapping

Structural contour maps of zones a₂, b, and c₁ are shown in Figs. 1-2-1 - 3, and a structural cross-section in Fig. 1-2-4. The Samarang structure is a NNE-SSW trending anticlinal high, but its east-southeast side is thrown down by a step-like occurrence of normal faults. The faults have strikes subparallel to the anticlinal elongation and dip 45 to 60 degrees toward ESE. To the east-southeast they reach shallower horizons, and have greater throws attaining 530 ft for the easternmost mapped one.

Seismic record sections suggest that the structure proved by well drilling is a western portion of a larger-scale structure. This "large" structure is thought to be a result of uplift caused by an unknown tectonic movement, possibly by igneous intrusion, and is accompanied by consequent normal faulting produced in the field of horizontal tension. It can be said there still remains the possibility of hydrocarbon trapping in an area east or south of the Samarang field by the combination of upwarping and faulting.

3.1.3 Reservoir Analysis

The field is divided into four zones, that are zones a, b, c and d. In the actual performance calculation, the analyses were made for zones a, b and c+d. Individual reservoir parameters used in the estimation are illustrated on Figs. 1-3-5 - 16. Performance estimation based on the history match calculation is shown on Figs. 1-3-2 - 4 and Tables 1-3-2 - 4 for zone by zone. Field total performance is shown on Fig. 1-3-1 and Table 1-3-1.

(a) Samarang A Zone

Oil zone consists of sand layers developed from the depth of 4300 to 4600 ft s.s. The oil displacement mechanism was interpreted to be combination drive of small gas cap and aquifer water.

Production started June 1975. Cumulative oil production during the history stage is 8.28 MMSTB.

Water production started April 1976 and water oil ratio is 0.0048 as of June 1976. Heavy oil with API gravity of 26° to 27° is produced from this zone and gas cap is interpreted to be comparatively small.

Oil properties were determined from reservoir fluid study at SM-Well No.1 A Zone. Gas properties were determined by gas analysis at SM-Well No.1 A Zone. Oil properties and gas properties are shown on Fig. 1-3-11 and Fig. 1-3-14, respectively.

Relative permeability relation was obtained by revising general trend of representative sample through the history match calculation. Relative permeability relation is shown on Fig. 1-3-5 and Fig. 1-3-8.

Initial reservoir pressure is decided to be
1990 psig at datum level of 4450 ft s.s. determined
by FIT and BHP survey. Five wells were producing
during the history stage and for future performance
calculation, 9 expected producers were used. Reservoir performance is shown on Fig. 1-3-2 and tabulated
on Table 1-3-2.

(b) Samarang B Zone

Oil zone is composed of sand layers developed from the depth of 5200 ft to 5400 ft s.s. This zone was interpreted to be combination drive of small gas cap and aquifer water. Production started August 1975 and cumulative oil production reached to 0.571 MMSTB, which was 0.79 per cent of original oil in place.

API gravity of produced oil is 37° - 38° and oil properties were estimated from reservoir fluid study of SM-Well No.1 B Zone. Gas properties were calculated by gas analysis at SM-Well No.3 B Zone. Oil properties and gas properties are shown on Fig. 1-3-12 and Fig. 1-3-15, respectively.

Relative permeability relation was obtained by revising the general trend of representative sample by history match calculation. Relative permeability relation is shown on Fig. 1-3-6 and Fig. 1-3-9.

Initial reservoir pressure was decided to be 2344 psig at datum level of 5350 ft s.s. from the results of FIT and BHP survey. There were 3 producers in this zone as of June 1976, and in the future performance calculation, 7 expected producers were added to 3 existing producers. Reservoir

performance is shown on Fig. 1-3-3 and tabulated on Table 1-3-3.

(c) Samarang C Zone

Oil zone consists of sand layers developed from the depth of 6000 ft to 6600 ft s.s. and from 7200 ft to 7400 ft s.s. The reservoir was interpreted to be combination drive of gas cap and aquifer water. Production started June 1975. Cumulative oil production during history was 6.832 MMSTB, which was 5.85 per cent of original oil in place. API gravity is almost same as Samarang B Zone. Oil properties were determined from reservoir fluid study of SM-Well No.1 C Zone. Gas properties were calculated by gas analysis at SM-Well No.1 C Zone. Oil and gas properties are shown on Fig. 1-3-13 and Fig. 1-3-16, respectively.

Relative permeability was estimated by the same ways as Samarang A and B Zone. The relative permeability is shown on Fig. 1-3-7 and Fig. 1-3-10.

Initial reservoir pressure was determined to be 2834 psig at datum level of 6450 ft s.s. from the results of FIT and BHP survey. There were 21 producers in this zone, and no producer was added in the performance calculation. Reservoir performance

is shown on Fig. 1-3-4 and tabulated on Table 1-3-4.

(d) Additional Wells Case

The performance projections described in (a). to (c) were conducted on the basis of existing and scheduled wells.

More additional wells case was studied from the view point of enhancing production rate and obtaining reservoir information required for establishing the secondary recovery device.

Additionally required wells in this case are as follows.

A Zone SM-A 1, 2, 3

B Zone SM-A 1, 2, 4, 5, 6, 8, 9, 11

C Zone SM-A 6, 7, 8, 10

The proposed locations for the additional wells are shown on Fig. 1-3-20. The reservoir performance prediction was made by using the 11 additional wells and starting the production from July, 1976.

The anticipated reservoir performance is shown on Fig. 1-3-1 and Table 1-3-5.

(e) The Concept of Maximum Allowable Production Rate

Under the current PS Agreement, it is difficult to define the most efficient production rate for PETRONAS. Therefore, discussion is made here from the purely technical point of view.

The locations of the additional wells were determined for the purpose of increasing areal sweep efficiency, while the primary recovery increased slightly from 26.4% of existing condition to 27.8%. Increased rate of production will shorten the economic life of the field.

The production rate estimated from the additional wells case can be defined as the maximum allowable production rate not only from the technical point of view but from the field operational reason, which can be explained hereunder.

In the additional wells case, several wells are estimated to be shut-in in 1983 due to increased producing gas oil ratio, and the pressure maintenance should be initiated before that time.

It is difficult to decide based on the current reservoir information whether water or gas injection is preferable for the pressure maintenance. Reservoir performance information for 2 more years are required. During this 2 years reservoir pressure and producing gas oil ratio should be observed.

Three years will be additionally required for engineering, construction and installation of the facilities.

The most important factor in this type of field is the control of producing gas oil ratio.

The allowable gas oil ratio is described as a function of cumulative oil production in the following figures for individual zones.

Samarang	A	Zone	Fig.	1-3-17
	В	Zone	Fig.	1-3-18
	С	Zone	Fig.	1-3-19

3.2 Tembungo Field

3.2.1 Field Status

The Tembungo field is located approximately
70 km west of Sabah coast. Oil reservoir is composed of sand layers developed in the depth of
4500 feet to 7500 feet s.s.

Thirteen wells including sidetrack wells have been drilled, but only 4 wells have been completed as oil producers.

Production started October 1974 and average daily production rate during the month of June 1976 was 4.3 MSTB/D and cumulative production as of June 1976 amounts to 2.3 MMSTB.

3.2.2 Geology

(1) Reservoir Beds

The Tembungo field produces oil from sandstones of Miocene age. Sedimentary sections penetrated by wells consist of marine deposits, mainly sandstones and mudstones of Late Miocene to Pleistocene time but a limestone deposit ranging from 100 to 500 ft in thickness is known in the Pliocene sequence. Thick upper Miocene shale beds attaining 1700 ft thick overlie a sandstone-shale alternation 500 to 800 ft thick, Tembungo Sandstone, which is oil and gas bearing.

Reservoirs are sandstones 20 to 50 ft thick of generally poor continuity and were named as zone a through zone d (Table 2-2-1). Among them zones c and d are of well developed sandstones which are

found typically in well Nos. 5, A-4 and A-7, zone c_1 being about 100 ft thick and zone d 100 to 150 ft thick.

(2) Geologic Structure

The Tembungo structure is an ENE-WSW trending anticline which is strongly faulted into many blocks with a normal fault system approximately perpendicular to the direction of anticlinal axis. Figs. 2-2-1, 2 give structural depth maps of zones b₁ and c₁, and Fig. 2-2-3 gives a cross-section of the reservoir horizons.

Since thick shale beds rest on the reservoir sequence, it is not easy to determine the location of the fault occurrence by using only well data. However, seismic record sections were also not convincing of the fault locations, for example, even that of the fault that is proved by well correlation to locate in well No. A-3 at a depth of 4130 ft with a west-side throw of about 550 ft. It is considered that other faults are in general with similar throws and with the west side down.

The fault-confined blocks are named as I through VII in consideration of some continuity of reservoir fluids and the estimation of hydrocarbons-in-place

was carried out for each block (Table 1-1-1).

[Seismic Interpretation]

A horizon between zones b₁ and b₂ was interpreted. Quality of reflections from the interpreted horizon is fair to very poor. Faults are not clear at deep level due to poor data quality. Accordingly, correlation of reflections across faults was difficult. The identification of reflection with geological horizon was based on the well data in each fault block where well shooting data of Tembungo Nos. 1, 4 and 5 were available. Interpretation result and representative seismic section are shown in Fig. 2-1-1 and Fig. 2-1-2.

3.2.3 Reservoir Analysis

The field is divided into several blocks by many faults and producing horizons are classified into 4 zones, which are zone a, b, c and d. The main producing zones are b and c.

Productive zones in the individual blocks were evaluated by the following models.

Model	Well No.	Zone	Block No.
1	A-1	b ₂	IV
2	A-7	c ₁	IV
3	A-4	b ₂	v
4	A-2A	b_1 and b_2	VI

Proved and probable oil in place for the field calculated by volumetric method are 34.3 and 30.5 MMRB, respectively.

Estimated field total performance excluding

Model 4 is shown on Fig. 2-3-1 and Table 2-3-1.

The anticipated field performance by Model 4 was
estimated to be highly pessimistic and was discarded.

(a) Model 1

Analysis for Block IV b2

This Block IV b₂ is located in the central area of the field. Well A-1 and Well A-7 were drilled in this area and oil water contact was confirmed at the depth of 5505 feet s.s. at Well A-7.

Well A-1 was completed as a producing well and production started October 1974 with initial oil production rate of 1367 STB/D and API gravity of 37.5°. Cumulative production amounts to 1.108 MMSTB, which is equivalent to 35% of proved reserves. In this block, there exist 18.28 MMRCF of probable hydrocarbon volumes for which definition of oil or gas can not be made at current stage.

The result of performance prediction by block model is shown on Fig. 2-3-2 and Table 2-3-2, and

reservoir parameters used in the calculation are on Figs. 2-3-7, 12, 17, 24.

Production behavior of this block will be quite favorable if the restricted gas and water production is to be made.

(b) Model 2

Analysis for Block IV c1

The analysis was made for the lower zone of the same block as in Model 1. Well A-1 and A-7 were drilled into this block and Well A-7 only was completed as a producer.

No free gas zone was detected and oil water contact was confirmed at the depth of 6640 feet s.s. by Well A-7.

Initial production rate in May 1975 was 2500 STB/D but declined to 600 STB/D in June 1976 and cumulative production by this stage is 0.26 MMSTB.

Reservoir performance calculation was made by the use of reservoir parameter shown on Figs. 2-3-8, 13, 18, 25, and computed result is shown on Fig. 2-3-3 and Table 2-3-3.

In the calculation, increase of water oil ratio was predicted. This is due to encroachment of water detected at Well A-7.

It can be thought of that the area of Well A-1 and southern part of the block may possibly be developed in future.

(c) Model 3

Analysis for Block V b2

In this Block V, two wells, Well A-4 and Tembungo 5 are located side by side with the distance of approximately 100 m, while remarkable geological changes were observed. No oil water contact was detected in this block. Original oil and hydrocarbon in place were estimated to be 2.584 MMSTB and 0.601 MMRCF, respectively.

Well A-4 was completed as a producer and production started March 1975. Production rate as of June 1976 was 2200 STB with no remarkable production decline. Observed pressure drop was very small.

Reservoir performance calculation was made on the basis of oil in place data as estimated by the decline curve method by the block model, and predicted performance is shown on Fig. 2-3-4 and Table 2-3-4. Reservoir parameters used in the calculation are shown on Figs. 2-3-9, 14, 19, 26.

(d) Model 4

Block VI b₁ + b₂ Analysis

Well A-2A, which is second side track of Well A-2, was completed in zone $b_1 + b_2$. The zone is oil bearing with oil water contact at 7986 s.s. depth, while at the location of Well A-2 (S.T), which is a first side track, the zone is completely gas.

Production started November 1974 with initial rate of 2000 STB but remarkable pressure and production decline were observed, and the well has been kept shut-in since March 1975.

Judging from the facts, the well is located in the highly limited area.

In the model calculation, the trial was made to produce from the well, however, no prospective result was obtained as shown on Fig. 2-3-5 and Table 2-3-5, and reservoir parameter used in the calculation are illustrated on Figs. 2-3-10, 15, 20, 27.

(e) Additional Wells Case

It was quite difficult to define individual reservoirs accurately only by existing well information due to several faults.

Presented here is a sample performance calculation based on the total undeveloped proved and probable reserves for the purpose of obtaining gross estimates of possible case.

Additional wells required for the development of the undeveloped portion of the field are as follows.

The locations for those wells are illustrated on Fig. 2-3-38.

Reservoir fluid properties and relative permeability data are summarized on Figs. 2-3-21 - 23, Figs. 2-3-28 - 30 and Figs. 2-3-11,16, respectively.

Estimated reservoir performance is shown on Fig. 2-3-6 and Tables 2-3-7 - 10.

The hydrocarbon in place used in this performance calculation is as follows.

				Original Oil in Place	Free Gas
				(MMSTB)	(MMMSCF)
Block	I	Zone	c,	2.235	5.600
11	I	11	ď	2.136	-
11	v	ti	a+b,	5.653	-
II	VII	If	c ₁	7.448	10.881
Total				17.472	16.481

(f) Maximum Recommendable Production Rate

The most important factor to attain maximum recovery is the control of producing gas oil ratio. The value changes with the progress of the depletion stage.

The most recommendable producing gas oil ratio was described for the individual zones as a function of cumulative oil production, and summarized on the following figures.

Block	IV	Zone	b ₂	Well	A-1	Fig.	2-3-31
	IV		cı		A-7	Fig.	2-3-32
	V		b ₂		A-4	Fig.	2-3-33
Block	I	Zone	c ₁			Fig.	2-3-34
	I		đ			Fig.	2-3-35
	V		a+b ₁			Fig.	2-3-36
	VII		c _l			Fig.	2-3-37

Production rate described on the performance curve is the most recommendable production rate, as one well represents one block.

4. FIELDS FOR DEVELOPMENT

4.1 Erb West Field

4.1.1 Geology

(1) Stratigraphy and Reservoir Beds

The Erb W. field has been drilled by four wells, of which geological data show that sedimentary sections consist of Late Miocene and Pliocene clastics. The lowest part of the Pliocene strata is argillaceous beds of approximately 2000 ft and below this there are gas bearing alternations of sandstone and shale of 2000 ft for which sandstones of gas bearing zones along to along and oil bearing zone bearedefined. The reservoir sandstones are in general 30 to 60 ft thick and have good lateral continuity.

Further below, there is a shale section of a thickness of about 1000 ft as a cap rock of other gas and oil bearing sandstones. These are zones c_1 and c_2 , the latter being a main oil reservoir of this field and being composed of a total 400 ft thick packet of shale and sandstones ranging from a few to 20 ft in each thickness.

(2) Geologic Structure

Structural maps of zones a_2 and c_1 are shown in Figs. 3-2-1, 2 and a cross-section in Fig. 3-2-3.

The Erb W. structure is an east-west elongate anticlinal high with extensive fault development. The faults formed mostly in horizons shallower than zone c_1 , but major ones penetrated into the deeper horizons.

GWC levels in zones $a_1 - a_7$ are considered different across the faults, then hydrocarbons-in-place were calculated to each of the fault blocks that were penetrated by the wells, whereas GOC and OWC in zone c_2 are thought probably constant across the faults.

[Seismic Interpretation]

Target horizons of seismic interpretation were the tops of zones a₂ and c₁. Quality of reflections arising from the top of zone a₂ is fair to good in the marginal area of the structure, but poor in the crestal part and in the surroundings of faults. Reflections from the top of zone c₁ have generally poorer quality than above ones. Correlation of reflections across the faults is difficult. Well shooting data were not available at all in this field. Accordingly, a time-depth curve was constructed from the sonic log of Erb West No.2. Interpretation result and representative seismic section are shown in Fig. 3-1-1, Fig. 3-1-2 and Fig. 3-1-3.

4.1.2 Reservoir Analysis

The structure is divided into several blocks by many faults. Hydrocarbon accumulation was confirmed mainly in zone c developed from 6000 feet to 7000 feet s.s. depth. In the shallower zone, small amounts of oil and gas can be detected in the crestal small block.

Zone c₂ is the main productive zone with gas cap and aquifer. According to the qualitative log interpretation, the oil zone is interpreted to be the alternation of thin sands and shales and seems to be not so much prospective. According to the production test results of Well No.3, however, daily rate of 1770 STB/D with productivity of 118 B/D/psi is reported.

Four wells were drilled in the independent blocks and the northern block where there exists Well No.3 is the most prospective.

The reservoir was interpreted to be the combination drive of gas cap expansion and aquifer water with API gravity of 30°.

Performance prediction was made by setting gas oil contact at 6705 feet s.s. and oil water contact at 6705 feet s.s. depth.

Computed results are shown on Fig. 3-3-1 and Table 3-3-2, and reservoir parameters are tabulated on Table 3-3-1.

In general, oil reservoirs in Sabah area are composed of many sands layers, while in this field, the reservoir is composed of a single oil zone.

The reservoir extent is comparatively small with all its high productivity at the location of Well No.3.

In the actual field development, reservoir evaluation should primarily be made for the northern block. Information is also necessary for the western side of block where no well has been drilled so far.

The coordinates of the well locations required for the further exploration and appraisal purposes are as follows.

Well No.5	E2165000	N230600
6	E2162000	N230200
7	E2174000	N229950

Currently estimated maximum production rate is 20 MSTB.

4.2 South Furious Field

4.2.1 Geology

(1) Stratigraphy

Well data of S. Furious wells indicate sedimentary sections of Middle Miocene to Pliocene time.
Upper Miocene sediments are eroded out for the most
part owing to tectonic movements which took place
toward the end of Miocene age and they are overlain
by marine argillaceous rocks which are thicker westward. Hydrocarbons are accumulated in the Middle
Miocene sequence of sand-shale alternations unconformably rested upon by the shale section.

The hydrocarbon bearing sequence attains 5000 ft in a total thickness and consists of alternating sandstone and shale beds generally a few to several tens feet thick, making correlation extremely difficult. It has been interpreted that sedimentary environments of such sediments deficient in distinctive features are of non-deltaic upper or lower coastal plain. Moreover, data of well core, dipmeter results, and seismic record sections indicate that there were very intensive tectonic disturbances in the section.

It must be mentioned, therefore, that the correlation shown in Table 4-2-1 is probably far from final and conclusive one over some or the whole sections.

(2) Geologic Structure

As Fig. 4-2-1 gives a seismically interpreted structural map for zone c, the S. Furious structure is an east-west anticline intersected by many faults. The faults occur so frequently that it is likely that one well is crossed by several or ten major fault planes. The size of the hydrocarbon distribution area is estimated about 6 km from east to west and 2 km from north to south. Among 7 wells drilled roughly in an east-west line on this field, well Nos.1 and 7 are beneath the western flank and 5 wells of Nos.2 through 6 are located on the structure proper. The structure has two culminations penetrated by a group of well Nos.2, 3 and 4 and by a group of well Nos.5 and 6.

In the case of well No.2 which is located at a crestal part, it is known from well logs that there is a formation interval as long as 3400 ft which indicates the existence of oil and gas but not that of water. Since it is very difficult to know exact fluid contact levels in detail on a great

number of gas and oil zones for the above-mentioned reasons, calculation of hydrocarbons-in-place was done for the areas included in circles with a radius of a quarter mile.

It is desired to perform an intensive geologic study including seismic interpretation and stratigraphic analysis.

[Seismic Interpretation]

An interpreted horizon was the top of zone c. Quality of reflections is very poor all over the structure. It was difficult to point out the locations of the faults in the seismic sections and to correlate reflections across the faults. Therefore, reflections in each fault block where no well has been drilled were selected assuming that the throw of fault is not big. Accordingly, reliability of the interpretation result is low. Well shooting data of South Furious Nos.4, 5 and 6 wells were available for time-depth conversion. Interpretation result and representative seismic section are shown in Fig. 4-1-1 and Fig. 4-1-2.

4.2.2 Reservoir Analysis

Among the 7 wells drilled in this area, 5 wells from Well Nos.2 to 6 were drilled into the objective

reservoir. As illustrated in the structure map, the field is divided into so many blocks by numerous faults.

Production tests have been conducted for 4 wells from Well Nos.2 to 5. The production rates are comparatively high but productivity indexes are less than 2 STB/D/psi and drainage radius for individual wells are less than 1000 feet.

Among the sand layers developed from 1100 feet to 7800 feet s.s. depth, main productive zones develop from 2000 feet to 5000 feet s.s. depth.

The reservoir is composed of 10 to several ten feet sand layers with average API gravity of 32°. Although the net oil columns range from 200 to 600 feet in thickness, the production is made from completely closed system, with no remarkable gas cap to be found.

Performance calculation was made including the possible hydrocarbon in place, the area of which corresponds to the area enveloping the proved and probable area. Computed results are shown on Fig. 4-3-1 and Table 4-3-2 and reservoir parameters are tabulated on Table 4-3-1. Maximum production rate was estimated to be 16 MSTB.

According to the preliminary analysis, highly limited area can only be confirmed, as the field is divided into many blocks by numerous faults. The estimated original in place calculated here is apt to be underestimated.

By the application of commingled production system and drilling one well in one block, recovery may possibly be increased a little.

The quality of seismic section is poor and existing numbers of wells are not sufficient to make fault analysis.

The most important factor to attain maximum recovery is the control of producing gas oil ratio.

The value changes with the progress of the depletion stage.

The most recommendable producing gas oil ratio was described for the individual zones as a function of cumulative oil production and summarized on Fig. 4-3-2.

5. POTENTIAL FIELDS

5.1 West Emerald Field

5.1.1 Geology

Well data of two W. Emerald wells indicate that there are sediments more than 6000 ft thick of late Miocene time, which are divided into the upper unit consisting of about 1000 ft thick argillaceous rocks, the middle unit of 3000 ft thick alternations of sandstone and shale, and the lower unit of 2000 ft thick shale.

Fig. 5-2-1 shows a structural map of the field by a seismic interpretation. The structure is an uplift like dome cut by several systems of faults. As the faults develop in intervals of 500 m or less, well correlation demonstrates that the middle unit of well No.1 is missing approximately 1000 ft by normal faulting compared with that of well No.2.

[Seismic Interpretation]

A target horizon of the seismic interpretation was the top of zone a. The seismic sections used were the latest ones shot in 1974. However, quality of reflections is very poor throughout the structure. This structure is cut by numerous faults, but

the locations of them are not clear in the seismic sections. Besides, correlation of reflections across faults is quite bad. The relation of reflection time versus depth was based on well velocity survey data of West Emerald No.2. Interpretation result and representative seismic section are shown in Fig. 5-1-1 and Fig. 5-1-2.

5.1.2 Reservoir Analysis

Two wells have been drilled in this field where the area is divided into several blocks. In the Well No.2 drilled in the crestal area, the oil was confirmed in the shallow zone (zone a) whose gas oil and oil water contacts can be detected in the same well and its proved and probable oil in place is very small as listed on Table 1-1-3.

Information on the western side of the fault crossing the central area from north to south is not available. More exploratory wells are required in the western area to define the reservoir, however, the field is not prospective.

5.2 St. Joseph Field

5.2.1 Geology

Well data of St. Joseph well No.1 indicate that there are thick sediments of Middle Miocene age, attaining 7000 feet in a total thickness. The sedimentary column is divided into the upper unit (250 - 1670 ft) consisting of shale, the middle unit (1670 - 5740 ft) consisting of alternations of sandstone and shale, and the lower unit (down to 6800 ft) consisting of shale. The upper third of the middle unit is predominant in shaly rocks and is oil and gas bearing. Reservoir rocks are shaly sandstones 20 to 70 ft thick. Structural mapping was impossible owing to the only one well and too poor quality in the seismic sections to interpret.

The seismic interpretation for the field was not carried out because no reflection could not be recognized virtually. A representative seismic section is shown in Fig. 6-1-1.

5.2.2 Reservoir Analysis

Only one well was drilled in this area and the reservoir is composed of 6 sand layers developed in the interval from 1672 feet to 2565 feet s.s. depth and the total oil column exceeds more than 150 feet.

No information is available as to reservoir extent, location of the fault and the anticipated type of reservoir due to very poor seismic record quality.

Production test results conducted in the interval from 2397 feet to 2412 feet BDF is prospective.

Recommended is to conduct additional seismic survey.

5.3 Erb South Field

5.3.1 Geology

The Erb S. field is located about 12 km southeast of the Erb W. field. Well data of well No.1 indicate that Middle Miocene rocks are overlain with unconformity by a unit of sand-shale alternations probably of Pliocene age. The lowest 190 ft interval of sandstones of the alternations are oil bearing.

The Erb S. structure, shown in Fig. 7-2-1 for the oil bearing horizon, is a NNE-SSW trending anticline with a crestal part drilled by well No.1 in the southern area. A few faults are found to

run in the N-S direction through the center of the structure. Seismic record sections suggest that the location of the well is the highest point of the Middle Miocene basement and the Pliocene and/or Upper Miocene strata seem to abut on the basement high. It is desirable, therefore, to drill further exploratory wells on the north-west flank, taking into consideration the fact that OWC has not been caught in well No.1.

[Seismic Interpretation]

A target horizon of the seismic interpretation was near the top of zone a. Data quality is usually fair except in the crestal part of the structure and in surroundings of faults. Well shooting data of Erb South No.1 was available. Interpretation result and representative seismic section are shown in Fig. 7-1-1 and Fig. 7-1-2.

5.3.2 Reservoir Analysis

Good oil sands with more than 90 feet oil column are detected at the location of Well No.1 whose location is near the crestal area of the south western block.

Fluid sample obtained has the API gravity of 20°.

No oil water contact is detected and more exploratory works are required.

No information on the north east block is obtained. The field needs more exploratory works. Recommendable well locations for defining the reservoir are as follows.

Well No.2	E219400	N227420
Well No.3	E219860	N228450

6. CONCLUSION AND RECOMMENDATIONS

Samarang field is a main producing field in Sabah area. The reservoir energy was interpreted to be combination of aquifer water, solution gas and gas cap expansion.

High production rate was reported so far, however, production control especially strict gas oil ratio control, is required for efficient utilization of the reservoir energy.

Optimum producing gas oil ratio is illustrated as a function of cumulative produced oil for your reference. The relation should, of course, be revised year by year by reviewing actual field performance.

Reservoir performance was made for additional wells case, where rapid production decline was anticlipated. The reservoir has only short production history. Survey of well behavior at the crest and down flank of the structure is required to confirm what is the dominant reservoir energy.

Only a few special core analysis data are available, which seems to be not so much favorable to gas injection. However, more data are required to conclude the most

suitable secondary recovery method.

- 2. Exhaustive efforts to produce oil from Tembungo field seem to be meaningless, because of small amount of recoverable oil and poor oil displacement energy.

 Prediction was also made for additional few wells case.
- 3. Minimum three wells are required for the reservoir evaluation of Erb-West field.
- 4. In South-Furious field, the productive area is divided into numerous block by many faults. Drainage radius for individual wells was interpreted to be extremely limited and strong water drive for the individual blocks can never be anticipated.

Detailed production test is recommended at the time of well completion and the most optimum production rate should be determined. The main reservoir energy was interpreted to be solution gas with little effect of gas cap expansion.

5. Reservoir characteristics are estimated to be comparatively good for St-Joseph field, however, the seismic interpretation was not carred out because of very poor seismic record quality. Additional seismic survey is recommended.

Followings are recommended in the actual field operation.

(1) Special core analysis data should be collected for the main productive zones of individual fields.

The data will be helpful in establishing the most effective secondary recovery method, to say nothing of performance analysis.

(2) Special fluid analysis should be made for the samples collected through the actually applied well completion system.

The data will be helpful in establishing the most optimum operating conditions (separator pressure and temperature) and resultantly increase recoverable oil.

Analysis for the separator liquid together with liberated gas is indispendable for the estimation of fluid characteristics under any operating conditions by phase equilibrium calculation.

(3) Detailed production test is required at the time of well completion.

Minimum three sizes of choke are recommended to be used for the test, and draw-down, productivity and producing gas oil ratio data should be obtained.

The data will be helpful in deciding the most optimum production rate.

(4) Control of producing gas oil ratio is required for the producing field.

In order to preserve the reservoir energy, it is recommended to make production control to restrict producing gas oil ratio for the fields whose main displacement energy is the gas cap expansion and solution gas. The maximum allowable producing gas oil ratio is not constant, depending on the progress of reservoir depletion stage.

For individual producing fields, recommendable producing gas oil ratio is described as a function of cumulative oil production.

(5) Countermeasures for High Producing Gas Oil Ratio

The cause of high producing gas oil ratio should
be detected by the use of Combination Production
Log survey, if necessary.

Control of producing gas oil ratio should be made not only by the use of reduced choke at well head but also by the shut-off of high gas saturation zone through the work over or by closing the sliding side door.

(6) Commingled Production System and Well Test

The commingled production system by the use of the sliding side door is efficient ways in completing highly stratified reservoirs, but production profile

information by the periodical production test and profile survey is indispendable for the proper field operation.

PART B SURFACE FACILITIES

1. SURFACE FACILITIES

1.1 Present Status of the Existing Production Facilities

1.1.1 Labuan Stream

Samarang field is located 32 miles northwest off
Labuan Island and operated by Sabah Shell Petroleum
Company (SSPC). Onshore crude terminal is situated on
the west side of the island.

Fig. 8-4-1 shows the general facility layout of Labuan Stream. Production from each well is gathered into two Production Platforms (SMP-A and SMP-B) and gas is separated from oil by the separators there. A part of gas is utilized as power gas, instrument gas, lift gas, etc. The exhaust and remainder flow to a Vent Structure through three 10" x 1,000' - 2,000' submarine vent lines and are vented to the air.

The production (crude and water) treated at SMP-A and SMP-B are once transferred to Riser Platform (SMR-A) by 8" submarine pipelines respectively. Then, after mixed it flows to Labuan Terminal through an 18" pipeline.

At Labuan Terminal, the incoming crude is dehydrated and stored in storage tanks and then the crude is loaded into a visiting tanker at SBM to which a 48" sea loading line is installed from the terminal. In this field total oil plus formation water of 70,000 BPD was produced at the time of site survey.

(1) Offshore Production Facilities

1) Drilling Platforms

The following drilling platforms or jackets are installed in Samarang field.

SMDP-A: 8-leg/21 Well Self-contained Drilling Platform

SMDP-B: 8-leg/28 Well Tender Assisted ditto

SMJT-C: 4-leg/6 Well Cluster ditto

SMJT-D: 4-leg/6 Well Cluster ditto

SM-4 : Single Leg/Single Isolated Well Structure

Although drilling at SM-4 and SMDP-A had already been completed, it was under way or provision at SMDP-B, SMJT-C and SMJT-D as of December, 1976.

A Drilling Platform is installed apart from a Production Platform due to safety reason and is connected to it by a bridge. At SMDP-A there were 19 producing wells and among them there was one fluid lifting well.

2) Production Platforms

A standard modular design of Production Platform is adopted in Samarang field. Two 4-leg Production Platforms had been already installed in this field at the time of site survey.

One Production Platform named SMP-A accommodates two banks of separators and five crude transfer pumps, and treats the production of approximately 65,000 BPD. The other named SMP-B accommodates one bank of separators and two crude transfer pumps and is connected by two submarine pipelines with SMP-A. SMP-B treats the production from seven high pressure wells sent from SMP-A by the pipelines.

There are several separators including a Test
Separator and the operating pressures of SMP-A separators at the time of site survey were as follows:

HHP Separator : 1,000 psig

HP Separator : 250 psig

LP Separator : 60 psig

Surge Vessel : 5 psig

As for a Test Separator, wells are normally put on test for four hours and provided well test programmer was not in use. Wells were put on test manually.

A. O. Smith PD flow meter is used to measure liquid (oil and water) production rate.

Total production rate of each platform cannot be measured, although measuring of gas flow rate at necessary points is made by orifice flow recorders.

The drains at each Production Platform are collected into a caisson type oil-water separator partly submerged in the sea and treated by it.

Major equipment with simple specifications of two Production Platforms are listed in Tables 8-4-1 and 8-4-2 and the typical mechanical flow diagram is shown in Fig. 30-4-1.

3) Submarine Pipelines

Submarine pipelines except a loading line consist of the following:

a. Oil Lines

- (i) to transfer well fluids from the Single Isolated Well Structure (SM-4) to the Production Platform (SMP-A)
- (ii) to transfer well fluids from SMDP-A to SMP-B

- (iii) to transfer gas-separated oil with formation
 water from SMP-A and SMP-B respectively to the
 Riser Platform (SMR-A)
 - (iv) to transfer the above-mentioned combined oil from SMR-A to Labuan Terminal

b. Gas Lines

- (i) to transfer separated gas at a Production Platform to a Vent Structure
- (ii) to transfer gas lift gas to satellite platform wells

Summary of the above-mentioned pipelines is shown in Table 28-4-2 and the general layout of the pipelines is shown in Fig. 8-4-2.

(2) Labuan Terminal

1) Terminal Facilities

The terminal is located at the west side of Labuan Island. Onshore crude terminal facilities mainly consist of crude receiving facilities for offshore Samarang field, dehydration and storage tank yard, crude loading facilities and utility facilities as

shown on Fig. 8-4-3. Incoming crude flows into three storage tanks, each of which is 439,000 barrels floating roof tank. After settled for 36 - 48 hours to separate formation water sent from offshore together with the crude, the crude is transferred to SBM terminal for shipment by crude oil loading pumps. This scheme can be seen on Fig. 8-4-4.

Water content in incoming crude was 2.7% at the time of site survey in December, 1976. As shown on Fig. 8-4-5 the water from the tanks and oily sewer in the terminal are treated by CPI (Corrugated Plate Intercepter) and then holding basin to separate remained oil and water. The lean water is finally disposed to the sea.

The official measurement of produced and export crude quantity is made by mannual dipping at storage tanks. BS & W in export crude is about 0.05%.

Fire water tank with a capacity of 35,000 barrels and two fire fighting pumps including one spare, sea water supply facility, utility facilities such as electrical power generators, air compressors, distillation unit, etc. and buildings such as office, power plant, pump house, fire station and gate house are provided in Labuan Terminal. Simple flow diagram for

these utilities are shown on Figs. 8-4-6 and 8-4-7. Major equipment list with simple specifications is attached as Table 8-4-3.

2) Loading Facilities

The SBM with the mooring capacity for maximum tanker size of 310,000 DWT is located approximately 15,000' west of Labuan Island and connected with the shore terminal by one 48" submarine loading line.

The total number of loaded tankers at the end of December, 1976 had been 50 since September, 1975.

Maximum volume of loaded crude to one tanker was 645,000 barrels.

Three diesel engine driven loading pumps with maximum capacity of 54,000 BPH (7,200 tons/hour) in total are installed. The allowable space for another future addition is provided. The crude loading facilities such as pumps, loading line and SBM are designed for an ultimate maximum loading rate of 72,000 BPH (9,600 tons/hour) in future.

1.1.2 Tembungo Stream

Tembungo field is located about 47 miles northwest offshore Sabah and Exxon Production Malaysia, Inc. is now developing the field. Up to this time, one 8-leg self-contained platform was installed to accommodate all facility and personnel necessary for drilling and production operation. And for offshore crude loading, one single anchor leg mooring system (SALM) was also installed at a distance of 7,000' from the platform. A submarine pipeline, 10" in diameter, is connecting the platform with the SALM. All of the produced crude is treated on and loaded from the offshore facilities and no onshore field facilities or terminal exist except support facilities. Tembungo field is characterized by this field development scheme.

Daily average gross liquid production in May, 1976 is reported to be 5,294 barrels against the design capacity of the existing facility of 20,000 barrels.

(1) Offshore Production Platform

The outline of the platform named Tembungo "A" is shown in Table 28-4-1. Major equipment arrangement of Tembungo "A" is shown on Fig. 8-4-8.

The jacket is conventional template type fabricated by Brown & Root and installed by McDermott. Deck part consists of two decks, that is, the upper one for drilling and the lower one for production. Besides the crude oil handling facilities, the platform has living quarters which can accommodate maximum 72 persons and are equipped with a weather station, gas detection panel, fire alarm panel, etc. A heliport is on the living quarters. Wellhead area is provided with eighteen slots.

(2) Crude Oil Production Facilities

Mechanical flow diagram on crude oil production and processing is shown on Fig. 8-4-9.

Six wells had been drilled from this platform and three of them were producing as of January 1977. No artificial lift such as pumping and gas lift is employed. Four well headers are provided and two of them which are test header and B train header are now in use. Remaining two which are weak well header and another train header are furnished for future expansion of the facility.

Oil and gas produced are first separated in Production Separator at the operating pressure and temperature of 150 psig and 135°F respectively. Free water accumulated in the separator is dumped manually. The second

stage separation is carried out in the vessel named
Free Water Knockout and Surge at the operating pressure
and temperature of 5 psig and 120°F. This vessel is
three-phase type separator and free water is automatically drained off. Crude oil is then transferred through
10" submarine pipeline to the SALM by two S.P.M. Oil
Pumps. Separated gas from Production Separator and
Free Water Knockout and Surge are treated in H.P. Flare
Scrubber and L.P. Flare Scrubber respectively and then
flared at the flare stack extended from the platform.
Liquid accumulated in those scrubbers is transferred to
Free Water Knockout and Surge by H.P. and L.P. Flare
Transfer Pumps.

Drain waters such as open drain from deck and pressure drain from various vessels are gathered into individual headers and flow into submerged caisson separator. Recovered oil is returned back into the inlet line of Free Water Knockout and Surge by Caisson Oil Pump.

Each well is put on test once a week with Test
Separator. Gas and liquid separated are measured with
orifice type and turbine type flow meters respectively.
Because the production separator is for liquid and gas
two-phase separation, individual flow rate of oil and
water cannot be measured. Instead, at Free Water Knockout and Surge vessel each of three phases can be measured.

For the measurement of total produced oil two positive displacement type flow meters, manufactured by

A. O. Smith Company are installed in parallel at downstream of S.P.M. Oil Pumps. These meters are each nominally rated at 1,425 barrels per hour. Another flow meter shown in the mechanical flow sheet supplied on and seemed to be used for calibration purpose is not installed. The figures read from these meters are used only for technical purpose and not used for sales purpose.

Measuring of sales figures is carried out at a moored tanker by manual gauging. Measuring is officially made at the end of each month and at the completion of crude loading to the tanker.

On control of facilities, concept of remote control is not adopted and only alarm signals are indicated on the panel.

Major equipment list with simple specifications is attached as Table 8-4-4.

(3) Storage and Loading Facilities

There is no storage tanker now in use, though the system is designed so that a storage tanker is moored to the SALM and that ocean tankers come alongside the storage tanker to receive crude oil stored in it.

Therefore crude oil produced is loaded directly from the SALM to the ocean tanker which is moored until fully loaded. The SALM can moor up to 94,000 DWT tanker.

1.2 Review on the Capacity of the Existing Production Facilities

Review was performed to evaluate the capacity of the existing production facilities and to proceed to the subsequent assessment of the capacity compared with the predicted production performance. The major facilities and items for reviewing are as follows and these are considered to dominate the capacity of total facilities. For the execution of the study several assumptions have been made in accordance with the availability of the data.

Facility Items for Review

- 1) Offshore Production Facilities
 - Oil and gas separator
 - · Gas venting line
 - · Oil gathering line
 - · Oil transmission line
- 2) Onshore Production Facilities
 - · Storage tank
 - · Loading system

Study Items

1) Separator

- Liquid capacity or retention time for proper oil-gas separation and for absorbing possible surge
- · Gas capacity to handle separated gas

2) Vent or Flare Line

· Gas capacity to handle separated gas

3) Oil Gathering and Transmission Line

 Pressure balance for present oil production rate and for maximum oil handling capacity of production platforms

4) Storage Tank

 Storage capacity to meet maximum visiting tanker and enough allowance for daily production

5) Loading System

· Pressure loss and flow speed in loading line

1.2.1 Labuan Stream

(1) Offshore Production Facilities

1) Separator

Calculation Bases

Flow Rate		30,000 BPD	
	H.P. Separator	L.P. Separator	Surge Vessel
Operating Pressure	250 PSIG	50 PSIG	10 PSIG
Operating Temperature	123°F	113°F	110°F
Separator Dimension	72"I.D.x20'	72"I.D.x20'	126"I.D.x32'
Specific Grav	ritu (Aggumod	11	
Specific Grav	VILY (Assumed	•)	
Gas	0.671	0.764	1.077
Oil	0.830	0.830	0.830
Gas Velocity Factor	0.40	0.40	0.40

Calculated Resutls

	Retention Time	Gas Capacity
H.P. Separator	2.7 minutes	61.5 MMSCFD
L.P. Separator	2.7 minutes	28.9 MMSCFD
Surge Vessel	13.6 minutes	46.4 MMSCFD

2) Vent Line

Calculation Bases

Same as those for separator calculation.

Calculated Results

	Size and Length	Maximum Gas Flow Rate
High Pressure Vent Line	10" x 2,000'	167 MMSCFD
Low Pressure Vent Line	10" x 2,000'	36 MMSCFD
Low Pressure Vent Line	10" x 2,000'	11 MMSCFD

3) Oil Gathering and Transmission Line

Fig. 8-4-10 and Fig. 8-4-11 show pressure balance of gathering and transmission lines under present production rate and design maximum liquid handling capacity of Production Platforms.

(2) Onshore Facilities

1) Storage Tank

There are three floating roof storage tanks having nominal capacity of 439,000 barrels for each and one tank is being used for receiving and settling transported gross production (oil plus formation water) from offshore platforms.

The following is analysis on storage tank capacity made by the operating company:

Gross Tankage 1,317,000 BBLS
Unpumpable (-) 156,000
Pumpable 1,161,000
Receiving, Settling (-) 387,000
Net Storage Capacity 774,000

Analyzed net storage capacity which is 774,000 barrels is about equivalent to the cargo volume of 100,000 DWT tanker or is also approximately equal to 10-day production for present production rate in the Labuan Stream.

2) Loading System

Calculation Bases

Installed Line Size 48" O.D.

Assumed Wall Thickness 0.500"

Installed Length 15,000'

Loading Rate

Case 1 30,200 BPH

(equivalent to tanker size of 100,000 DWT)

Case 2 45,300 BPH

(equivalent to tanker size of 150,000 DWT)

Case 3 60,400 BPH

(equivalent to tanker size of 200,000 DWT)

Case 4 90,600 BPH

(equivalent to tanker size of 300,000 DWT)

Note: The above loading rates are to complete loading within 24 hrs. in each case.

Calculated Results

	Pressure Loss (PSI)	Velocity (feet/sec.)
Case 1	22.0	10.8
Case 2	24.5	11.3
Case 3	41.1	15.0
Case 4	86.3	22.5

Head of the existing loading pumps is sufficient for each loading rate, but only Case 1 and Case 2 are possible in loading rate by the existing pumps.

The capacity of each of the three pumps is 18,000 BPH at 275' head. Actually Case 3 and Case 4 are not realistic from the viewpoint of storage capacity, although the mooring capacity of the existing SBM is reported to be sufficient for 310,000 DWT.

(3) Conclusion

 Specified design capacity of the existing vent lines and separation system with two banks of separators is reasonable and sufficient. The design capacity is 60,000 BPD gross liquid production and 180 MMSCFD separated gas.

- Gathering and transmission lines will cover
 maximum oil handling capacity of the existing
 Production Platforms in hydraulic design aspects
 including oil transfer pumps which have a design
 capacity of 13,000 BPD/unit.
- Storage tank capacity is considered reasonable unless the present production rate increases or full cargo for 200,000 DWT tanker or larger is expected.
- Loading system has enough capacity for the present production rate. Even if production increases, this system could meet the requirements by loading pump addition.

1.2.2 Tembungo Stream

Original design capacity of Tembungo "A" is 20,000 BPD. The review was performed based on this production rate.

(1) Separator

Calculation Bases

Flow Rate	20,000 BPD		
	H.P. Separator	L.P. Separator	
Operating Pressure	150 PSIG	5 PSIG	
Operating Temperature	135°F	120°F	
Separator Dimension	72"I.D.x20'	144"I.D.x30'	
Specific Gravity (Assumed)			
Gas	0.671	1.077	
Oil	0.838	0.838	
Gas Velocity Factor	0.40	0.40	

Calculated Results

	Retention Time	Gas Capacity
H.P. Separator	4.0 minutes	49.0 MMSCFD
L.P. Separator	17.1 minutes	53.9 MMSCFD

(2) Flare Line

Calculation Bases

Same as those for separator calculation.

Calculated Results

	Size and Length	Maximum Gas Flow Rate
High Pressure Flare Line	12" x 240'	113 MMSCFD
Low Pressure Flare Line	10" x 240'	15 MMSCFD

(3) Loading System

Calculation Bases

Installed Line Size	10" O.D.
Assumed Wall Thickness	0.500"
Installed Length	7,0001
Transfer Capacity	

Case 1 4,983 BPD

(equivalent to present production rate)

Case 2 20,000 BPD

(equivalent to capacity of the present production facility)

Case 3 30,000 BPD

(equivalent to future maximum capacity of production facility)

Calculated Results

	Pressure Loss	Velocity
	(PSI)	(feet/sec.)
Case 1	1.0	0.8
Case 2	11.3	3.0
Case 3	23.5	4.4

Note: Two (2) transfer pumps are installed on the platform and the capacity is 600 GPM (20,600 BPD) at 60 psi pressure difference for each unit.

(4) Conclusion

- Specified design capacity for the existing separation system as well as flare line is reasonable and sufficient under condition of 20,000 BPD gross oil production at 800 ft³/bbl of GOR.
- Transfer line from the platform to SPM and the transfer pumps have enough capacity for the present and future maximum design capacities.

1.3 Assessment of the Facilities Capacity for the Predicted Production Scheme

The assessment of the facilities capacity was executed from a viewpoint of handling capacity of major production facilities by comparing the predicted maximum production rate with the facilities capacity on which the evaluation was made in the previous section. Therefore the study does not cover the capability of the facilities to adopt unforeseen additional facilities or modifications which have no relation with the predicted production performance of each field.

The additional well development case is discribed later for reference.

The maximum production rate of gross liquid and gas for each field and its occurrence year after 1976 are shown below based on the reservoir study in previous sections.

Predicted Maximum Production Rate after 1976

Oil Field	Gross Liquid (year) BPD	Oil BPD	Water BPD	Gas (year) MMSCFD
Samarang	38,530 (1977)	38,230	300	56.6 (1979)
Tembungo	4,060 (1977)	3,470	590	4.8 (1977)

As shown in the above table, predicted maximum gross liquid production rates will not exceed the production rates in 1976. When new fields such as

Erb West and South Furious would be joined in future, the total handling rate would not increase due to the decline of the existing fields before the start-up of the new fields.

1.3.1 Labuan Stream

(1) Offshore Production Platform

Table 28-4-3 shows the comparison of the present production rates versus the evaluated capacity of Production Platforms for each field. While, the comparisons of the predicted maximum production rates after 1976 versus the evaluated capacity of them for each field are shown on Table 28-4-4 for gross liquid and on Table 28-4-5 for gas.

Two Samarang Production Platforms (SMP-A & B) have the total oil handling capacity of 90,000 BPD, while the present gross liquid production rate is 39,741 BPD. The production was increased to about 70,000 BPD in December, 1976, but no higher is expected in future by the reservoir study. Therefore the platforms have enough liquid handling capacity throughout the field life as well as the capacity for gas.

(2) Offshore Gathering and Transmission Pipelines

Fig. 8-4-12 shows the pressure balance for the present and predicted maximum gross liquid production rate. As can be seen from the above figure, the existing gathering and transmission network will have enough capacity to handle the predicted maximum production rate after 1976. On the other hand, high pressure gas is required for the transmission pumps as required for the Lutong Stream. According to the predicted gas production rate for the Samarang field, the enough required gas will be available.

(3) Storage Facilities

As evaluated in the previous section concerning review on the storage capacity, the Labuan Terminal has enough storage volume for the present production level. Therefore it will not have a problem on this matter in future, as the predicted production rate will not surpass the present production level.

(4) Loading Facilities

At present, the loading facility has the confirmed capacity of 54,000 BPH (7,200 tons/hour) and the mooring capacity of 310,000 DWT. The crude loading facilities such as pumps, loading line and SBM are designed for an ultimate maximum loading rate of 72,000 BPH

(9,600 tons/hour).

For the production rate of 70,000 BPD at the time of site survey, tanker arrival frequency was one tanker a week. This frequency is not tight. Therefore, the existing loading facilities will cover the future oil loading operation for predicted maximum production rate without any expansion or modification.

(

1.3.2 Tembungo Stream

(1) Offshore Production Platform

Table 28-4-3 shows the comparison of the present production rates versus the evaluated capacity of Production Platforms for each field. While, the comparisons of the predicted maximum production rates after 1976 versus the evaluated capacity of them for each field are shown on Table 28-4-4 for gross liquid and on Table 28-4-5 for gas.

The Tembungo "A" has the liquid handling capacity of 20,000 BPD, whereas the present gross liquid production rate is 5,294 BPD and the rate will not increase over the value after 1976. Therefore the platform has enough liquid handling capacity throughout the field life as well as the capacity for gas.

(2) Offshore Gathering and Transmission Pipelines

At Tembungo oil field the only offshore pipeline is a transfer line to SPM and so assessment is carried out in the following item of Storage and Loading Facilities.

(3) Storage Facilities

The offshore storage and loading concept is applied to this stream but no fixed storage tanker is used at present. Oil production is directly sent to and stored in an export tanker moored at SPM.

So far as this concept is adopted, storage capacity will be varied by the moored tanker size. In any case, the maximum oil production rate predicted as 3,470 BPD will cause no problem on required storage capacity, if a tanker is continuously available to be moored and loaded at SPM.

(4) Loading Facilities

The confirmed design capacity rate for oil loading is 20,000 BPD, whereas predicted maximum oil production rate is 3,470 BPD. It is obvious, from the comparison of the above rates, that the existing loading facilities will have no problem in future. However, the production system is operated on the tight line principle that there is no storage allowance except the buffer volume in the surge drum (238 barrels). Therefore, the continuous loading to a tanker connected with the SPM buoy is the only way to continue the daily production.

1.3.3 Conclusion

In accordance with the assessment of key components of the producing, storage and loading facilities for each field, the existing field facilities will basically cover the predicted future oil production, as well as associated gas and formation water, for all fields without any bottleneck. This conclusion, of course, results from the decline of oil production from the existing fields except gas and water and the time lag due to the necessity of lead time even if new field(s) will be tied in.

In case of the adoption of gas lift, possible artificial lifting method, gas source will be available from high pressure gas reservoirs or high GOR wells and the addition of a high pressure separator and simple modification of the existing facilities are only the work required for it.

1.3.4 Additional Well Development Case

Additional wells will be drilled and their productions are assumed to be started in 1976, the total predicted maximum gross liquid and gas production rate for each field and it's occurence year after 1976 are as follows.

Predicted Maximum Production Rate after 1976

Oil Field	Gross Liquid (year) BPD	Oil BPD	Water BPD	Gas (year) MMSCFD
Samarang	49,150 (1977)	48,650	500	73.1 (1978)
Tembungo	9,770 (1977)	8,460	1,310	15.7 (1978)

Production Facilities to be required in additional well case are as follows;

(1) Offshore Drilling and Production Platform

a. Samarang Field

Eleven (11) additional wells will be drilled in this field. Among these, six (6) are near and other five (5) are far from existing SMDP-B. And in this field SMDP-B is a only platform to be ever used for drilling. Therefore, a new drilling platform (8P/10W)

will be required. As for production platform, existing SMP-A and SMP-B have enough handling capacity throughout the field life compared with the predicted maximum gross liquid, 49,150 BPD (1977).

b. Tembungo Field

Four (4) additional wells will be drilled in this field. All of these can be drilled from existing

Tembungo 'A' (8P/18W) Platform. And also new production platform will not be need because of small quality of additional liquid as shown on previous table.

(2) Offshore Gathering and Transmission Pipelines

a. Samarang Field

The 10" \times 4,700 ft submarine gathering pipeline will be installed between SMP-A and new drilling platform. There is no need of the new transmission line from the viewpoint of the pressure balance as shown on Fig. 8-4-12.

b. Tembungo Field

As previously described, the only offshore pipeline is a transfer line to SPM at Tembungo Field. And if the value of predicted maximum oil production rate 8,460 BPD is substituted for 3,470 BPD, there will be no problem about storage and loading facilities.

1.4 Assessment on Present Production Practices

In this section assessment and recommendation are made on the topics related to present production practices which have been noticed during the course of the study on the review and assessment of the existing oil production facilities including site survey.

1.4.1 Labuan Stream

(1) Associated Gas Utilization

As shown in Table 28-4-6, total separated gas at offshore platforms in Samarang field was about 40 MMSCFD. The utilization status of this associated gas was as follows:

	MMSCFD	<u></u>
Pump Driving	10.2	24.8
Venting	30.9	75.2
Total	41.1	100.0

Separated gas is not actually utilized except expansion energy used for transfer pumps. As for the utilization of this associated gas it is pessimistic because the gas production decreases rapidly after 1979 and utilization will not be started before this considering the lead time for construction work, even if any demand is expected.

(2) Metering System

1) Offshore Platforms

There are no metering facilities of liquid at offshore Production Platforms.

Many informations should be checked such as fluctuation of flow and pressure and space limitation to select optimum metering system to be applied on the platform because conventional method may not be applied due to the existing pumps of reciprocating type. But the existing system will be enough for the purpose of measurement of produced crude.

2) Labuan Terminal

Measurement of produced oil to be transmitted from offshore and exported crude is carried out by hand dipping at storage tank, and official measurement of exported oil is also being made by hand dipping at storage tanks. This is not a conventional method at modern facilities but a conservative method which is adopted in fields in Saudi Arabia, etc.

But the existing system will be enough for the purpose of measurement of loaded crude.

(3) Waste Water Treatment System

Produced formation water, which is major waste water source on all offshore platforms, is transported with oil to Labuan Terminal by submarine pipelines and combined oil and water is dehydrated by being settled in storage tanks for 24 hours. As a modern and effective waste water treatment system is employed at the terminal, there is little possibility of sea pollution under suitable operation of this system.

(4) Crude Oil Dehydration System

Formation water produced with crude is separated at a conventional storage tank in Labuan Terminal. At present this method is applicable because of small amount of associated water and enough storage tank capacity, although care must be taken against the corrosion on the tank bottom and lower part of the tank shell.

(5) Control and Monitoring System

In offshore operations for Labuan Stream, no monitoring system at the onshore terminal is applied on. It will be worthy to take into consideration the adoption of telemetering system to monitor the operating conditions of offshore facilities to add more safety. This is because nobody can watch offshore

facilities at night without the installation of an accommodation platform in addition and it takes time to find out any accident and to reach the location. Efficiency and safety of oil production operation will be improved by the adoption of the system by which working conditions can be monitored at an onshore control room. At least the following status had better be monitored with alarm function.

- a. Emergency shut-down valve closed
- b. Low pressure of each seaparator
- c. High pressure of each separator
- d. High level of each separator
- e. Fire
- f. Transmission pump stopped

1.4.2 Tembungo Stream

(1) Associated Gas Utilization

As of May, 1976, 3.7 MMSCFD separated gas at the Tembungo platform was all flared and not utilized. The flaring of the separated gas is reasonable here, because the location of the platform is remote and utilization is not expected for this small quantity of gas with rather short life.

(2) Metering System

Measuring points and objective fluids on the Tembungo platform are as follows:

Measuring Point	<u>Fluid</u>	Kind of Meter
Gas outlet of production separator	Separated gas	Orifice
Liquid outlet of test separator	Separated oil and formation water	Turbine meter
Gas outlet of test separator	Separated gas	Orifice
Formation water outlet of free water knockout and surge vessel	Formation water	Turbine meter
Gas outlet of free water knockout and surge vessel	Separated gas	Orifice
Outlet of S.P.M. oil pump	Oil	P.D. meter

Present measuring method applied on determination of sales quantity is manual gauging in a moored tanker tank and measuring is officially made at the end of each month and at the completion of crude loading to the tanker. Such a measuring method is not conventional as official one by following reasons.

The present method of measuring loaded crude volume at a moored tanker will possibly cause an inaccurate figure unless the sea is very calm and the tanker is always kept flat. The above conditions are seemed to be rather difficult to expect in the open sea area like here.

There is the possibility that the error on sales figure would be caused by the swelling of cargo tanks in the tanker in proportion as quantity of loaded crude increases. This field, however, is in special circumstances to be applied on offshore loading concept due to low oil production rate. It is usual manner that a P.D. meter or other suitable meter is employed on a platform to measure sales volume, even if a storage tanker method is adopted.

It is recommended to use an appropriate flow meter, of which the specification has to meet the present production conditions, along with utilization of a meter prover or alternatively utilization of a

standard flow meter which will be calibrated at a manufacturer's factory at some time intervals such as once a year or two.

(3) Waste Water Treatment System

Formation water is treated in a submerged caisson waste water separator and disposed to the sea. The submerged caisson waste water separator is suitable for disposal of relatively small volume of water less than 60 GPM (2057 BPD) at offshore platforms as it does not arise a space problem.

Although waste water treating capacity depends on waste water temperature, the existing caisson can handle approximately 1,000 BPD. This capacity is large enough to treat the predicted maximum water production.

(4) Crude Oil Dehydration System

Formation water produced with crude is separated at a separator and a free water knockout vessel. At present there seems to be no problem on this system, as both water cut and total water production are small.

(5) Control and Monitoring System

Local control system of conventional type is fundamentally adopted for the Tembungo platform.

Only alarm signals are indicated on the central panel. For the production system of this grade, present control system will be sufficient.

2. PROPOSED FACILITIES

2.1 General Design Bases

All data and informations collected mainly in data collection and site survey phases have been reviewed, and accurate and realistic data required for conceptual design have been selected out of those data and informations.

However some of collected data and informations are imperfect or not clarified to adopt as design data. So some of design bases are assumed so as to be realistic and reasonable taking into consideration the purpose of this study.

Only common design bases to all fields have been described in this section and specified design bases for each field are mentioned in the subsequent sections.

2.1.1 Basic Design Data from Collected Data

(1) Fields Location

As shown in Fig. 30-9-1.

(2) Meteorological and Oceanographical Data

Atmospheric Temperature

Max. 110°F

Min. 65°F

Sea Water Temperature at Sea Bottom

Min.

60°F

Relative Humidity

Max. 90%

(3) Hydrographic and Topographic Data

Sea Water Depth

Sea water depths for offshore structures in new fields are maximum water depths obtained from drilling reports in each field. Design water depth for each field is summarized below.

<u>Field</u>	Sea Water Depth (feet)
Erb West	252
South Furious	188

(4) Soil Data at Sea Bed

The soil character under offshore structures is taken into consideration in the conceptual design in accordance with the soil data received from Petronas. For the offshore structures, typical soil data considered to be average are tentatively used.

2.1.2 Assumed Design Conditions

(1) Development Well

Development wells are assumed to be drilled by the following two types of rig.

- · Rig on self-contained platform
- Rig on tender assisted platform

2.1.3 Determination of Facilities Capacity

(1) Onshore Storage Tank

Storage tank capacity is assumed in accordance with the following formula.

Total Gross Capacity

- = { Design Production Capacity (BPD) x 6 days
 - + Full Cargo of 100,000 DWT Tanker (724,500 barrels)}
 - ÷ Pumpable Factor (0.9)

As for the required number of tanks, minimum three tanks are required for the purpose of receiving, settling and loading.

(2) Offshore Storage Barge

An oil storage barge which is to be newly built is adopted as an offshore storage facility and its capacity is assumed in accordance with the following formula.

Storage Capacity

- = Design Production Capacity (BPD) x 6 days
 - + Full Cargo of 100,000 DWT Tanker (724,500 barrels)

(3) Loading Pump

Loading pumps and a loading line are sized to complete the full cargo loading to a visiting tanker of 100,000 DWT (724,500 barrels) within 24 hours.

(4) Loading Line

Flowing velocity of crude oil in pipeline is limited to within 10 ft/sec to prevent static electricity generation and maximum internal pressure in hose line is limited within allowable pressure of 150 psig.

(5) Mooring Facilities

An SBM system which is popular all over the world at present is adopted in Malaysia. But in deep sea water (over approximately 200') a SALM system is adopted. In case of offshore storage and loading, two SBMs (or SALMs) are to be installed, one for an oil storage barge and the other for a visiting tanker. The system to moor a visiting tanker alongside the oil storage barge was not adopted at this time for safety reason.

2.2 Conceptual Design

2.2.1 Erb West and South Furious Oil Fields

(1) Design Bases

Field facilities have been designed in accordance with the following bases.

1) Production Rate and Number of Wells

Field	Production Rate (BPD)	No. of Wells
Erb West	20,000	10
South Furious	16,000	10

2) Fluid Property

Field	API Gravity	Viscosity (60°F) cp	Max. GOR (SCF/STB)
Erb West	30	19	22,000
South Furious	32	14	5,000

(2) Conceptual Design

Location of Erb West and South Furious oil field is shown in Fig. 30-9-1. Based upon the design bases described above, conceptual design and subsequent cost estimates for several development cases including offshore storage and loading case have been performed.

As the result of screening several development cases from geographical, economic and operational points of view, the following three cases have been selected as realistic and reasonable ones to be more precisely compared.

- 1) Case Setting
- a. Case I Erb West and South Furious, Labuan
 Terminal Case

This is a combined development case of Erb West and South Furious fields. All produced crude will be transported to the existing Labuan Terminal and will be stored and loaded by use of the existing facilities in Labuan Island. The facilities arrangement is shown in Fig. 9-5-1 and block flow diagram is shown in Fig. 9-5-2.

b. Case IIA - Erb West, Labuan Terminal Case

This is a case for the development of only Erb West field. Similar to Case I, produced crude will be transported to the existing Labuan Terminal. The facilities arrangement is shown in Fig. 9-5-3 and block flow diagram is shown in Fig. 9-5-4.

c. Case IIB - Erb West, Mangalum Terminal Case

This is a case for the development of only Erb West field and similar to Case IIA. Produced crude will be transported to a new onshore oil terminal, which will be located on the nearest island named Mangalum Island, from Erb West field. The facilities arrangement is shown in Fig. 9-5-5 and block flow diagram is shown in Fig. 9-5-6.

2) Facilities Description

For the above-mentioned three cases, capital investment costs and operating costs have been estimated and then economic analysis has been performed as described in Part C. As the result of the economic analysis, Case IIA is the most profitable case among the above three cases. So field facilities are described below for this case. Whereas, field facilities for Case I, which is the better case in the combined development cases, are described below for reference to cover the facilities for both fields.

a. Case I - Erb West and South Furious, Labuan Terminal Case

Crude oil production system for these two fields consists of the following facilities:

Erb West Field

- 2 ... 6-leg Well and Production Platform EWWP-A & B
- 1 ... 4-leg Accommodation Platform EWA-A
- 2 ... 3-leg Flare Jacket EWV-A & B

Submarine Pipelines

South Furious Field

- 2 ... 6-leg Well and Production Platform SFWP-A & B
- 2 ... 3-leg Flare Jacket SFV-A & B

Submarine Pipelines

Facilities arrangement is shown in Fig. 9-5-1. Major equipment to be installed are tabulated with simple specification in Table 9-5-1.

- (i) Erb West Field
- (a) 6-leg Well and Production Platform

Two 6-leg Well and Production Platforms (EWWP-A & B) will be installed in Erb West (approx. 252 water depth). Maximum 6 wells can be drilled from this platform by a tender assisted drilling rig. Typical plan and elevation is shown in Fig. 30-5-16. Major process equipment are provided on this platform to treat well fluid up to 10,000 BPD. Produced crude from EWWP-B will be transported to EWWP-A through 6" submarine Gathering Line. And produced crude oil from

South Furious Field will be transferred to EWWP-A, combined with that from Erb West, and sent through 12" submarine Transmission Line to the existing Labuan Terminal. Typical mechanical and utility flow diagrams are shown in Figs. 30-5-2 and 30-5-10.

(b) 3-leg Flare Jacket

A 3-leg Flare Jacket will be installed 2,000' apart from each Well and Production Platform and connected with the Well and Production Platform by two 8" submarine Flare Lines which are for HP gas and LP gas respectively. Separated gas at three-stage separators on Well and Production Platform is flared at the top of a Flare Jacket for safe disposal of waste gas.

(c) Accommodation Platform

One 4-leg Accommodation Platform (EWA-A) will be installed at approximately 252' water depth adjacent to Well and Production Platform (EWWP-A) in Erb West field for offshore operating personnel and connected with EWWP-A by a bridge. A heliport is provided on this platform for the transportation between offshore and onshore oil terminal at Labuan Island. Typical plan and elevation is shown in Fig. 30-5-31.

(ii) South Furious Field

(a) 6-leg Well and Production Platform

Two 6-leg Well and Production Platforms (SFWP-A & B) will be installed in Erb West (approx. 188 water depth). These platforms are similar to Erb West 6-leg Well and Production Platform. Produced crude oil from SFWP-B will be transferred to SFWP-A through 6" submarine Gathering Line and sent through 10" submarine Gathering Line to Well and Production Platform (EWWP-A) in Erb West after mixing.

(b) 3-leg Flare Jacket

A 3-leg Flare Jacket is almost the same as that of Erb West.

(iii) Labuan Terminal

Labuan Terminal is the existing oil terminal at Labuan Island to receive crude oil from Samarang field. Judging from future production performance of Samarang field, the existing Labuan Terminal can afford to receive crude oil from Erb West and South Furious without any expansion. Incoming crude oil from the both fields will be settled and stored in the existing storage tanks and loaded to a visiting tanker by the existing loading system. Major facilities installed at the existing Labuan Terminal are

shown in Fig. 8-4-3.

b. Case IIA - Erb West, Labuan Terminal Case

Facilities arrangement and production system for this case are similar to those for Case I, although crude is produced from only Erb West field. The production system will consist of the following:

- 2 ... 6-leg Well and Production Platform EWWP-A & B
- 1 ... 4-leg Accommodation Platform EWA-A
- 2 ... 3-leg Flare Jacket EWV-A & B

Submarine Pipelines

Facilities arrangement is shown in Fig. 9-5-3. Major equipment to be installed are tabulated with simple specification in Table 9-5-1. The size of a Transmission Line is 10" in this case instead of 12".

3. CONCLUSIONS AND RECOMMENDATIONS

3.1 Existing Facilities

(1) Present Status of the Existing Production Facilities

At present two offshore fields are producing oil in Sabah Area. Data collection and site survey were executed to investigate the present status of these existing production facilities at September, 1976 and January, 1977 respectively. Operating Company names, field names and oil production rates as of May, 1976 are shown below for each field.

<u>Field</u>	Oil Production Rate (BPD)	Major Facilities
Samarang	39,055	Drilling Platforms
(Sabah Shell		Production Platforms
Petroleum Co.)		Labuan Terminal
		Single Buoy Mooring System
		Submarine Pipelines
Tembungo	4,983	Drilling and Production Platform
(Exxon Producton Malaysia, Inc.)		Single Anchor Leg Mooring System
		Submarine Pipelines

(2) Review on the Capacity of the Existing Production Facilities

Review and evaluation on the capacity of the existing production facilities have been carried out for the above-mentioned fields. These results are to be used for the assessment of the ability of those facilities to meet the predicted production performance of the relevant fields. The major objective facilities for reviewing are as follows and these are basic items to evaluate the capacity of whole production facilities.

Oil and Gas Separator

Vent or Flare Line

Oil and Gas Gathering Pipeline

Storage Tank

Loading System

As a result of review, it was confirmed that the processing facilities have sufficient capacity to handle the initial design rate. As for storage tank and loading system, except the case for Tembungo oil field where there are no storage facilities for its own, storage capacity of Lauban Terminal is appropriate for the level of present production rate.

The handling capacity of the offshore production facilities is shown below.

Field	Production Facilities (BPD)
Samarang	90,000
Tembungo	20,000

(3) Assessment of the Facilities Capacity for the Predicted
Production Scheme

Based upon the review described above, assessment of capacity of the existing production facilities was performed based on the predicted maximum production rate of well fluids for each field except additional well development case.

As a result of the study, it has been confirmed that any bottlenecks on the capacity of the production facilities will not basically occur even if the changes of production rate of associated gas and formation water are considered, because the oil production rates from each field will decline gradually and predicted maximum production rate of oil plus formation water will not exceed the present production rate as shown below.

	Production Rate as of May, 1976 (BPD)			Predicted Max. Prod. Rate after 1976 (BPD)		
Field	Crude Oil + Formation Water	Crude Oil	Formation Water	Crude Oil + Formation Water (Year)	Crude Oil	Formation Water
Samarang	39,741	39,055	686	38,530('77)	38,230	300
Tembungo	5,294	4,983	311	4,060('77)	3,470	590

Note: The oil production facilities of Fairley Baram are mostly located in Brunei area and the site survey was not performed.

(4) Assessment on Present Production Practices

Related to the evaluation study on the existing oil production facilities including site survey, the study on the following items was performed, although these items have no direct relation to the handling capacity of the production facilities.

- . Associated Gas Utilization
- . Metering System
- . Waste Water Treatment System
- . Crude Oil Dehydration System
- . Control and Monitoring System

And the item shown below about existing facilities is recommended to be improved.

1) Control and Monitoring System

In offshore operations for Labuan Stream, no monitoring system at the onshore terminal is applied on.

It will be worthy to take into consideration the adoption of telemetering system to monitor the operating conditions of offshore facilities to add more safety.

This is because nobody can watch offshore facilities at night without the installation of an accommodation platform in addition and it takes time to find out any accident and to reach the location. Efficiency and safety of oil production operation will be improved by the adoption of the system by which working conditions can be monitored at an onshore control room.

3.2 Proposed Facilities

Several alternative cases for the development of the following oil fields in Sabah area have been established including the cases for single field development and for the combined development of two fields. Conceptual design for the alternative cases has been carried out in accordance with the production performance predicted in Part A. As a result of the conceptual design, flow diagrams, facilities layouts and so on have been prepared.

- . Erb West and South Furious fields (crude oil)
- (1) Field Development Scheme
- 1) Erb West Field (crude oil)

The combined development scheme of Erb West and South Furious was included in the established alternative schemes. However, the scheme for Erb West single field development with the connection to the existing Labuan Terminal has been selected from the economic viewpoint. Even this scheme has the economic problem mainly due to short production life against the required investment cost.

The maximum production rate is predicted as 20,000 BPD.

The facilities mainly consist of well and production platforms, accommodation platform and submarine pipelines.

PART C COST ESTIMATE AND ECONOMIC ANALYSIS

1. COST ESTIMATE

1.1 General Cost Estimate Bases

1.1.1 Basic Cost Data

Cost data on materials and services, which are required for the estimate of cost for drilling, facilities construction and operation and maintenance, have been collected and tabulated as the values as of middle of 1976.

The following basic cost data tables and figures have been prepared;

- Basic cost data for wells and facilities cost
 Development wells Fig. 31-6-1

 Offshore structures Table 29-6-1 to 29-6-10

 Submarine pipelines Table 29-6-11, 29-6-12

 Oil production equipment ... Table 29-6-14

 Other production equipment ... Table 29-6-15

 Offshore storage barge Table 29-6-16

 Onshore support facilities .. Table 29-6-17
- Basic cost data for operating cost
 Operating personnel Table 29-6-18

 Chemicals Table 29-6-19

 Service contractors Table 29-6-20

Computation for cost estimation has been performed in the currency of U.S. dollars, and then the results are converted into Malaysian dollars (M\$) with the shown exchange rate.

U.S.\$1 = M\$2.54

1.1.2 Estimate of Other Cost Items

The following items of capital investment cost and operating cost have been computed in accordance with the following formulas using some of the above-mentioned basic cost data:

Capital Investment Cost

Engineering Fee (C_1) : 10% of $(C_2 + C_3)$

Pre-start-up Expenses : 1% of $(C_1 + C_2 + C_3)$

Contingency : 10% of $(C_1 + C_2 + C_3)$

Annual Operating Cost

Operation Management (C4): 10% of C5

Repair and Maintenance

Pipelines : 0.1% of C6

Others : 2% of $(C_7 + C_8)$

(in case of onshore storage)

3% of $(C_7 + C_8)$ (in case of offshore storage)

Operating Supplies : 0.3% of $(C_6 + C_7 + C_8)$

Indirect Personnel : 50% of $(C_4 + C_5)$

Insurance

Pipelines : 0.5% of C_6

Others : 1.5% of $(C_7 + C_8)$

where,

C1: Engineering Fee

C2: Development Well Cost from Basic Cost Data

Ca: Facilities Cost from Basic Cost Data

C4: Operation Management Cost

C5: Operation Personnel Cost from Basic Cost Data

C6: Pipeline Cost including Miscellaneous Cost

C7: Development Well Cost including Miscellaneous
Cost

C₈: Facilities Cost except Pipeline Cost including
Miscellaneous Cost.

Note: Miscellaneous costs include engineering, prestart-up expenses and contingency.

1.1.3 Estimate of Past Investment

Only exploration wells cost has been counted in capital investment and other past investment is not included in this study.

1.1.4 Estimate of Annual Operating Cost

Annual operating costs for each field have been counted only for its oil or gas production life span when two or more fields are produced in the combined production system.

1.2 Cost Estimate

1.2.1 Erb West and South Furious Oil Fields

(1) Bases of Cost Estimate

Capital investment cost and operating cost for Erb West and South Furious fields have been estimated based upon the basic data and methods of cost estimation which are discribed in 1.1, taking into consideration the following:

- It is assumed that all existing facilities at Labuan Terminal will be utilized for not only Samarang field but also Erb West and/or South Furious fields in common.
- Operating organization for all existing facilities at Labuan Terminal as well as offshore facilities for the objective fields is tentatively assumed as shown in Fig. 31-6-2. Based upon the above tentative operating organization, operating personnel costs have been estimated.
- It is difficult to estimate and allocate the operating costs related to the existing facilities which will be commonly used for Samarang field and new fields. Therefore at this time the allocation is simply made based on the ratio of initial

production rate of new fields to that of Samarang field in the same year. Existing Labuan Terminal costs as the base of the above calculation are assumed as US\$20,000,000 at the value in 1976. The costs allocated in this manner are repairs and maintenance cost, operating supplies and insurance.

(2) Capital Cost Estimate

Capital investment costs for the development of Erb West and South Furious oil fields are summarized in Table 9-6-1. Total amount becomes the following;

Case I M\$406,314,000

Case IIA M\$261,872,000

Case IIB M\$272,234,000

(3) Annual Operating Cost Estimate

Annual operating costs for the production facilities in Erb West and South Furious oil fields are summarized in Tables 9-6-2, 9-6-3 and 9-6-4.

(4) Project and Investment Schedules

The project schedule for Case IIA on the development of Erb West and South Furious oil fields has been made as shown in Fig. 9-6-1, based upon the following conditions for availability of construction equipment.

Tender Assisted Drilling Rig 1

Derrick Barge (500 ton) 1

Lay Barge (up to 12" \$\phi\$) 1

Subsequently based upon the above project schedule, the investment schedule has been prepared as shown in Table 9-6-6. For reference, the investment schedules for other cases are shown in Table 9-6-5 and Table 9-6-7.

2. ECONOMIC ANALYSIS

2.1 General Economic Analysis Bases

2.1.1 Oil

(1) Method of Economic Analysis

Necessary items and formulas for the calculation of profitability of both Petronas and Operating Company in accordance with PS Agreements are shown in Appendix II.

(2) Profitability Yardsticks

The following profitability yardsticks are used for profitability analysis and for comparison of alternative schemes which are settled at conceptual design phase;

- Cumulative Net Cash Flow
- DCF ROR
- Cumulative Present Worth
- Payout Time

(3) Production Schedule

Annual oil production is obtained from calendar days (365) multiplied by daily oil production which has been estimated in Part A. Table 30-6-1 shows annual oil production for each field. Starting time

of production is to be at the completion of all of the drilling and installation of facilities.

(4) Oil Sales Price

The method to establish oil sales price has been presented from downstream team as follows;

1) As for the oil, of which the actual price at the middle of 1976 is known, the following actual prices are to be adopted.

Labuan Crude M\$31.88 (US\$12.55)/BBL Miri Crude M\$32.00 (US\$12.60)/BBL

2) As for the oil, of which the actual price at that time does not exist or can not be obtained, the price is to be established by making adjustment for API premium based on the price of the above-mentioned crudes or actual price of other oils.

The method to adjust oil price for API premium of each oil is to be made as follows;

a. As for the oil exceeding API 40.3°, M¢7.62 (US¢3)/

°API is to be added to the standard price, M\$32.00

(US\$12.60)/BBL.

- b. As for the oil under API 36.4°, M¢7.62 (US¢3)/

 °API is to be reduced from the standard price M\$31.88

 (US\$12.55)/BBL.
- c. As for the oil between API 36.4° and 40.3°, price is to be established in proportion calculation based on the above standard price.

And as for the oil produced from several combined fields, establishment of sales price is to be made by calculating the weighted average of oil production per year from each field. The prices established by this method are shown in Table 30-6-1, with oil production per year from each field.

(5) Investment Schedule

Capital investment schedules based on alternative schemes are shown in Table 31-6-1.

(6) Annual Operating Costs

Annual operating costs based on alternative schemes are shown in Table 31-6-2.

(7) Common Input Data

Common input data for economic analysis to all cases of alternative schemes are as follows;

•	Royalty Rate	10%
•	Maximum Cost Recovery Ratio - Oil	20%
	(Gas	25%)
•	Profit Oil Share Petronas	70%
	Operating Company	30%
•	Rate of Payment for Research Fund	0.5%
•	Initial Basic Price (at 1976 Base)	M\$32.31 (US\$12.72)/BBL
•	Rate of Increase for Basic Price	5%/year
•	Rate of Payment for Profit Oil above Basic Price	70%
•	Production Bonus above 50,000 BPD	M\$5,000,000
•	Discovery Bonus*	M\$2,500,000
•	Income Tax Rate	45%
	Discount Rate	5%, 10%, 15%

Note: * It is assumed that the value of M\$2,500,000 as discovery bonus is applied to even combined production fields case.

2.2 Profitability Analysis on Oil

The production rate and the production life of each field have important effect upon its profitability. As the result of analysis, it can be said that more advantageous case by comparison of investment cost based on the same production rate is not always advantageous for Operating Company in view of profitability when operating costs are not the same. In the various cases selected in the conceptual design phase, included are the cases for developing fields as a group by combining them or for developing them individually and also the alternative cases for developing the same field or the same group of fields by onshore storage and loading. In this part C.2.2, a comparative study on the results of profitability analysis of each case and selection of a more profitable case in view of profitability are made for the above alternatives taking into consideration technical viewpoints. Detailed explanation of the facilities is made for the case(s) selected considering these results in Part B.2. And as for the selection standard of the alternative cases in the conceptual design, we adopted the value of DCF ROR of the year when that of the Operating Company is the largest, because the case of the largest oil production is most profitable for Petronas at all times, which cannot be the selection standard.

In this area the following three cases for Erb West and South Furious oil fields have been selected as alternative schemes, and the profitability analysis for each case has been carried out.

2.2.1 Erb West and South Furious Oil Fields

Case I : Erb West and South Furious, Labuan
Terminal Case

Case IIA: Erb West, Labuan Terminal Case

Case IIB: Erb West, Mangalum Terminal Case

Each of the profitability yardsticks obtained for each case is shown in Table 31-6-6. Cash Flow Tables for Petronas and Operating Company are shown in Tables 9-6-8, 9 and 10. Profitability of Operating Company in each case selected as alternative is extremely bad. Descriptions for each case are as follows;

Case I: South Furious field is located far way from
Labuan Island. Therefore, capital investment cost
becomes high. Oil production rate is lower and
production life is shorter in this field compared
with Erb West Field. In this case Operating Company
will not be able to recover the investment cost
even at the time of project end and the cash flow
conditions for Operating Company are very bad.

Case IIA: Erb West field is also located far away from Labuan Island. However, as produced oil can be transported to the existing Labuan Terminal by laying a submarine pipeline, capital investment cost of onshore oil terminal is not necessary as in Case I. The profit will become a peak in the eighth year after the project start (in the fifth year after the production start) as shown in Cash Flow Table for Operating Company. Maximum DCF ROR in this year is 1.31%.

Case IIB: Mangalum Island is located near Erb West field. However, as a new onshore oil terminal must be installed, capital investment cost is high. The profit will become a peak in the eighth year after the project start (in the fifth year after the production start) as shown in Cash Flow Table for Operating Company. Maximum DCF ROR is 0.23% in this year.

Common to above three cases, profitability of Operating Company is extremely bad. However, Case IIA will be more profitable than other cases from a viewpoint of comparison.

2.3 Sensitivity Analysis

The sensitivity analysis has been carried out on the profitability yardstick for the optimum case of the production schemes as described in Part B.2 and the sensitivity curve is shown in Fig. 31-6-7. The result of sensitivity analysis is as follows;

2.3.1 Erb West and South Furious Oil Fields (Case IIA)

Sales Price Change	0%	10%	20%
DCF ROR (%)	1.31	4.38	7.22
Investment Change	-20%	-10%	0%
DCF ROR (%)	7.24	4.06	1.31

For this case, sensitivity analysis for the value of factors to increase profits has been carried out due to unfavorable profitability analysis results obtained in the previous section.

3. CONCLUSIONS AND RECOMMENDATIONS

3.1 Cost Estimate

Capital investment and annual operating cost have been estimated for each of the alternative cases for which the conceptual design of production facilities of the oil fields has been performed. As a result, capital investment schedules have been prepared to be used as basic data for subsequent economic analysis.

The capital investment cost estimate has been performed for the drilling of production wells, offshore platforms, submarine pipelines, oil and gas processing equipment, onshore storage and loading facilities, support facilities, etc. The operating cost has been estimated for operating personnel, chemicals, service contractors, repair and maintenance, insurance and so on required for the field operation of the above-mentioned facilities.

Estimated capital investment cost in each case is summarized and shown below with design capacity of the production faiclities.

Erb West and South Furious group (crude oil)

Case I	36,000	BPD M\$	406,314,000
Case II	A 20,000	BPD M\$	261,872,000
Case II	в 20,000	BPD M\$	272,234,000

3.2 Economic Analysis

The economic analysis has been performed regarding various production schemes for oil fields selected in the conceptual design phase. Regarding oil, the profitability of each production scheme is analyzed based on Production Sharing Agreements in Malaysia from the standpoint of Petronas and Operating Company respectively. Sales price of crude was given by the down-stream team of the Master Plan study.

Consequently, the following has been selected as more profitable case:

Erb West single field development case with the use of the existing Labuan Terminal. This case, however, has the problem on profitability.

The summary of the results is shown below. For the cases of crude oil the indicated figures belong to the year when the profitability indexes become maximum.

- Crude Oil -

	Petronas		Operating Co	mpany
Name of Field	Cumulative Net Cash Flow (M\$ 1,000)	DCF ROR (%)	Cumulative Net Cash Flow (M\$ 1,000)	Payout Time (Year)
Erb West	297,213	1.31	13,964	7.7

TABLE LIST VOL. III SABAH AREA

TITLE

Table	A-1	ORIGINAL HYDROCARBONS IN PLACE - PRODUCING FIELDS OF SABAH
	A-2	ORIGINAL HYDROCARBONS IN PLACE - DEVELOPMENT FIELDS OF SABAH
	A-3	ORIGINAL HYDROCARBONS IN PLACE - POTENTIAL FIELDS OF SABAH
1-	2-1	CORRELATION TABLE, SAMARANG FIELD
1-	3-1	PREDICTED PERFORMANCE OF SAMARANG FIELD
	2	PREDICTED PERFORMANCE OF A ZONE, SAMARANG FIELD
	3	PREDICTED PERFORMANCE OF B ZONE, SAMARANG FIELD
	4	PREDICTED PERFORMANCE OF C ZONE, SAMARANG FIELD
	5	PREDICTED PERFORMANCE OF SAMARANG FIELD - ADDITIONAL WELL CASE -
2-	2-1	CORRELATION TABLE, TEMBUNGO FIELD
2-	3-1	PREDICTED PERFORMANCE OF TEMBUNGO FIELD
	2	PREDICTED PERFORMANCE OF MODEL-1, TEMBUNGO FIELD
	3	PREDICTED PERFORMANCE OF MODEL-2, TEMBUNGO FIELD
	4	PREDICTED PERFORMANCE OF MODEL-3, TEMBUNGO FIELD
	5	PREDICTED PERFORMANCE OF MODEL-4, TEMBUNGO FIELD
	6	PREDICTED PERFORMANCE OF TEMBUNGO FIELD - ADDITIONAL WELL CASE-
	7	PREDICTED PERFORMANCE OF TEMBUNGO FIELD, ADDITIONAL WELL CASE, WELL TM AD-1
	8	PREDICTED PERFORMANCE OF TEMBUNGO FIELD, ADDITIONAL WELL CASE, WELL TM AD-2
	9	PREDICTED PERFORMANCE OF TEMBUNGO FIELD, ADDITIONAL WELL CASE, WELL TM AD-3
	10	PREDICTED PERFORMANCE OF TEMBUNGO FIELD, ADDITIONAL WELL CASE, WELL TM AD-4
3-	-2-1	CORRELATION TABLE, ERB WEST FIELD
3-	3-1	RESERVOIR PARAMETERS USED IN PERFORMANCE CALCULATION, ERB WEST FIELD
	2	PREDICTED PERFORMANCE OF ERB WEST FIELD
4-	-2-1	CORRELATION TABLE, SOUTH FURIOUS FIELD
4-	-3-1	RESERVOIR PARAMETERS USED IN PERFORMANCE, SOUTH FURIOUS FIELD
	2	PREDICTED PERFORMANCE OF SOUTH FURIOUS FIELD
5-	-2-1	CORRELATION TABLE, WEST EMERALD FIELD
6-	-2-1	CORRELATION TABLE, SAINT JOSEPH FIELD
7-	-2 - 1	CORRELATION TABLE, ERB SOUTH FIELD
8-	-4-1	MAJOR EQUIPMENT SPECIFICATIONS OF PRODUCTION STATION SMP-A
	2	MAJOR EQUIPMENT SPECIFICATIONS OF PRODUCTION STATION SMP-B

Vol. III

TITLE

Table 8-4-3	MAJOR EQUIPMENT SPECIFICATIONS OF LABUAN TERMINAL
4	MAJOR EQUIPMENT SPECIFICATIONS OF TEMBUNGO "A"
9-5-1	MAJOR EQUIPMENT LIST FOR ERB WEST AND SOUTH FURIOUS OIL FIELDS - CASE I
9-6-1	CAPITAL INVESTMENT COST ESTIMATION ERB WEST AND SOUTH FURIOUS OIL FIELD
2	ANNUAL OPERATION COST ESTIMATION ERB WEST AND SOUTH FURIOUS OIL FIELDS-CASE I
3	ANNUAL OPERATION COST ESTIMATION ERB WEST AND SOUTH FURIOUS OIL FIELDS-CASE IIA
4	ANNUAL OPERATION COST ESTIMATION ERB WEST AND SOUTH FURIOUS OIL FIELDS-CASE IIB
5	INVESTMENT SCHEDULE ERB WEST AND SOUTH FURIOUS OIL FIELDS -CASE I
6	INVESTMENT SCHEDULE ERB WEST AND SOUTH FURIOUS OIL FIELDS -CASE IIA
7	INVESTMENT SCHEDULE ERB WEST AND SOUTH FURIOUS OIL FIELDS -CASE IIB
8	CASH FLOW TABLE FOR OIL ERB WEST AND SOUTH FURIOUS OIL FIELDS -CASE I
9	CASH FLOW TABLE FOR OIL ERB WEST AND SOUTH FURIOUS OIL FIELDS -CASE IIA
10	CASH FLOW TABLE FOR OIL ERB WEST AND SOUTH FURIOUS OIL FIELDS -CASE IIB
28-4-1	SUMMARY OF OFFSHORE STRUCTURES
2	SUMMARY OF SUBMARINE PIPELINES
3	COMPARISON OF PRESENT PRODUCTION RATE VS. PLATFORM CAPABILITY
4	COMPARISON OF MAXIMUM PREDICTED PRODUCTION RATE VS. PLATFORM CAPABILITY GROSS LIQUID BASE
5	COMPARISON OF MAXIMUM PREDICTED PRODUCTION RATE VS. PLATFORM CAPABILITY GAS BASE
6	SUMMARY OF GAS UTILIZATION
29-6-1	4-LEG OFFSHORE PLATFORM COST
2	6-LEG OFFSHORE PLATFORM COST
3	8-LEG OFFSHORE PLATFORM COST
4	3-LEG VENT AND FLARE JACKET COST
5	COST OF 3 CONDUCTORS
6	COST OF 4 CONDUCTORS
7	COST OF 6 CONDUCTORS
8	COST OF 8 CONDUCTORS
9	COST OF 12 CONDUCTORS
10	COST OF 18 CONDUCTORS
11	UNIT COST OF SUBMARINE PIPELINE
12	UNIT COST OF RISER PIPE

Vol. III

TITLE

Table 29-6-14	OIL PRODUCTION EQUIPMENT COST
15	UNIT COST OF OTHER PRODUCTION EQUIPMENT
16	NEWLY BUILT STORAGE BARGE COST
17	ONSHORE SUPPORT FACILITIES COST
18	OPERATING PERSONNEL COST
19	UNIT COST OF VARIOUS CHEMICALS
20	UNIT COST OF SERVICE CONTRACTORS
30-6-1	ANNUAL OIL PRODUCTION AND FOB PRICE PER BARREL
31- 6-1	INVESTMENT SCHEDULE FOR OIL
2	ANNUAL OPERATING COST FOR OIL
6	PROFITABILITY YARDSTICKS OF OIL AT THE YEAR OF MAX. R.O.R. FOR OPERATING COMPANY

Vol. III Table A-1 ORIGINAL HYDROCARBONS IN PLACE - PRODUCING FIELDS OF SABAH

		0.0.1.	0.6.1.P.	PRODUCED	D RESVS.	RECOVERABLE OTT	LE KESVS.
		(MMSTB)	(MMMSCF)	(MMSTB)	(MMMSCF)	(MMSTB)	(MMMSCF)
SAMARANG	A Zone	<u></u>	0.	.87	c.	α	9.69
	B Zone	72.14	54.61	0.571	0.338	20.131	39
	C Zone	9	4.	. 83	æ	2	9.07
	TOTAL	326.70	319.12	8.276	9.051	90.935	198.322
	PROVED RESVS.	26.7	19.1				
		,	c		•	(t.
TEMBUNGO	T-THOOM	•	7	7	4,	ე	ດຸ
	MODEL-2	4	۲.	26	- 20	.86	a)
	MODEL-3	α,	φ	0.883	•	.56	٥.
	MODEL-4	۳,	u,	07	. 22	•	0.229
	ADD. WELL	17.47	16.48	0.0	0.0	5.605	14.826
	UNDEVLP. RESVS.	0.2	1.2	0.0	•	•	0.0
	TOTAL	6.9	2.4	2,321	1.562	11,157	21.559
	PROVED	24.86	49.35				
	PROBABLE RESVS.	2.1	3.0				
GRAND TOTAL	TOTAL	73.	Ŋ	10.597	10.613	102.092	219.881
	PROVED RESVS.	351.56	368.47				
	PROBABLE RESVS.	2	۰.				

Vol. III Table A-2 ORIGINAL HYDROCARBONS IN PLACE - DEVELOPMENT FIELDS OF SABAH

RECOVERABLE RESVS.	(MMSTB) (MMMSCF)											25.122 475.374													22.957 82.389		-	
O.H.I.P.	(MMCF)	•	0.9		•	•	•	•	0	•	•	301.7				•	•	•	0.0	•	•	•	•		0.0			
0.S.G.I.P.	(MIMISCE)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.41	0.0	84.95	90 36	•	90.36					8.50					0.0	5.1	35,18		
O.C.G.I.P.	(MMMSCF)	8,39	0.0	0.0	0.0	N	0.36	0	8.76	0.0	506.70	4.4	291.23	1.2		œ	9	4.	10.97	٠.	4.	7	ς,	۲.	14.7	114.79		
0.0.I.P.	(MMSTB)	0.0	0.0	0.0	0.0	0.0			9.11	0.0	169.90	a	19	6				5	33.08	i.	6			0.0	22.5			
BLOCK & ZONE		<u>1</u> 2	22	i (C)	1 to		9 0	a.7	j "A	c J	25	F & E C E	PROVED RESVS.		POSSIBLE RESVS.	rd	b1	b 2	υ	ಌ	O	44	b	r.c	TOTAL	PROVED RESVS	PROBABLE RESVS.	FUSSIBLE KESVS.
FIELD NAME		ERB WEST														SOUTH FURIOUS												

Vol. III Table A-3 ORIGINAL HYDROCARBONS IN PLACE - POTENTIAL FIELDS OF SABAH

FIELD NAME	BLOCK & ZONE	0.0.I.P.	O.C.G.I.P.	0.S.G.I.P.	O.H.I.P.	RECOVERABLE RESVS.
:		(MMSTB)	(MMMSCF)	(MMMSCE)	(MMCF)	TB) (MM
WEST EMERALD	ра	14.86 0.19	0.94	0.97	0.0	
	TOTAL PROVED RESVS. PROBABLE RESVS. POSSIBLE RESVS.	15.04 7.59 7.45	1.16 1.16	1.01 0.46 0.55	0.0	
SAINT JOSEPH	a.1 a.2 b.1 b.2 b.3 b.4	0.00	0.0 0.0 0.0 0.44 0.25	0.0 0.0 1.29 0.0 0.0	1.94 8.09 0.88 10.96 1.18	
	TOTAL PROVED RESVS. PROBABLE RESVS. POSSIBLE RESVS.	8 8 8 8 5 10	0.69	1.42	23.05	
ERB SOUTH	rd	1.97	0.0	0.29	0.0	
	TOTAL PROBED RESVS. PROBABLE RESVS. POSSIBLE RESVS.	1.97	0.0	0.29	0.0	

Table 1-2-1 CORRELATION TABLE Vol. III SAMARANG FIELD

		rd		······									
9	85	Subsea		3445 4392	5231	6175	7 1	``\	4 10	5/	1	6750	
	8	Log		3718 5047	6197	7420	ט טיט	200	200	95	ı	8196	
5	5	Subsea		3485 4379	5332	6100	7 4	7.7	J.	44	7315	8915	
	8	Log		3571 4464	5417	6185	76	4.4	43	53	7400	0006	
		Subsea		3528 4503	5392	6322	42	50	9	80	7675	9962	
4	70	Log		3696 4683	5573	6202	60	69	78	90	7859	8150	
_	72	Subsea		3890 4589	5307	6111	19	26	35	41	7227	8005	
	7	Log		3962 4661	5379	6183	26	ω ω	42	48	7299	8077	
2	2	Subsea		3775	5407	6232	33	42	52	63	7596	8428	
	7	Log		3847	5479	6304	6410	ゼ	9	<u></u>	1668	8500	
	1	Subsea	6214	3684	5250	ואו	6142	_	an.	∞	7181	10329	
		Log	6325	3795 4608	5361	1919	6253	6324	6410	6498	7292	10440	
NOT LOW	ייסאן דיישאר	Cycle/Zone	Top V?	Top a1	Top b	Top c1	ี ช	່ບ	ີ ບໍ່	CS	Top d	T.D.	

Table 1-2-1 (Continued) CORRELATION TABLE Vol. III SAMARANG FIELD

									_				 	
1	85	Subsea		3553	34	2	29	6380	46	55	1	6647		
H	8	Log		3814	05	7071	ω	œ	α	σ I	_	7600		
10	85	Subsea		3528	22	6043	13	6209	29	38	7153	7483		
	8	Log		3877)	0602	20	29	40	51	8555	9028		
9	5	Subsea		3546		6110	20	28	36	45	7261	7508		
	8	Log		3786	71	6646	N)	m	\mathbf{c}	2	7913	8181		
qinal)	85	Subsea		3675	·l w	27	38	6456	55	63	1	6862	•	
8 (ori	8	Log		3955	96	15	29	7390	52	62	ı	7930		
(SDTR)	5	Subsea		3675	5385	13	23	9169	41	50	l	6891		
8		Log		3955	7	57	67	6758	85	95	1	7363		
7	85	Subsea	:	3530	5299	18	28	6371	46	55	l	1099		
	8	Log		3758	5697	6699	6770	0989	6958	7063	ı	7110		
Well No.	D.F.E.	Cycle/Zone	Top V?	Top aı	Top b	Top C,		n 1 u	ີ. ບ	, c	Top d	T.D.		;

Table 1-2-1 (Continued) CORRELATION TABL Vol. III SAMARANG FIELD

														 _
17	5	Subsea		3579	38	5256	ı						5953	
	8	Log		4114	80	6105	ı						6265	
16	85	Subsea		3436	35	5311	11	21	6303	39	20	1	6705	
	۵	Log		3662	67	5716	58	69	6218	83	00	l	7218	
5	85	Subsea		3577	39	5258	σ	O	6388	σ	9	-	6762	
-1	8	Log		3966	რ	5883	92	03	7132	24	35	-	7537	
4	85	Subsea		3587	45	5276	1						5590	
	8	Log		4014	91	5743	•						6057	
13	85	Subsea		3458	33	ı	16	27	6369	47	58	ı	8929	
J	8	Log		2962	12	1	7547	7683	7801	7933	8076	1	8300	
1.2	85	Subsea		3498	4361	1							4687	
]	8	Log		4016	5031	1							5407	
well No.	D.F.E.	Cycle/Zone	Top V?	Top a ₁	. a 2	Top b	Top C,	່ິບ	ı m	๋ ซ้	ຽ	Top d	T.D.	

Table 1-2-1 (Continued) CORRELATION TABLE Vol. III

. N	7	Subsea		3390	43	5237	ı						5536			
23	77	Log		3838	95	5761	ı						0909		 	
22	85	Subsea		3512	45	5254	6144	サフ	$\frac{32}{2}$	41	7	1	6663		 	
	00	Log		3645	19	5454	6372	4.7	55	64	74	ı	0069		 	
21	7	Subsea		3342	39	5306	6310	_	┨	$^{\prime\prime}$	4	1	6269			
2		Log		3859	12	6074	7082	-	\sim	7400	ഗ	1	7751			
0	85	Subsea		3652	39	5277	1						5624			
2	0	Log		3812	55	5438	ı						5785			
6	77	Subsea		3469		5234	22	33	43	6541	99	ı	6891		-	
		Log		54	4391	5373	40	51	61	6727	8	ı	7090			
3.8	α S	Subsea		51	4397	5318	04	14	22	6314	40	ı	6594			
	ia	Log		72	4679	5642	6402	6505	6586	6682	6119	1	6974			
N LLON	WELL NO.	Cycle/Zone	Top V?	Top at		Top b	Top C1		7 °C	ຶ່ບ	G.S.	Top d	T.D.			

Table 1-2-1 (Continued) Vol. III

CORRELATION TABLE SAMARANG FIELD

									
29	85	Subsea		3488 4402	5250	i		5512	
2	8	Log		3573 4510	5405	1		5675	
		Subsea		3549 4483	5278	1		5589	
28	85	Log		4151	6373	1		0929	
	100)	Subsea		3529 4407	ſ			4748	
27	85 (Log		3701 4645	J			4996	
26	77	Subsea		3358 4307	1			4696	
2	2	Log		3956 5004	1			5400	
25	77	Subsea		3480 4339	5211	1		5585	
2	7	Log		3705 4621	5535	ı		5935	
4	77	Subsea		3346 4347	5292	1		5685	
2	7	Log		3721 4841	5806	ı		6200	
Well No.	D. F. E.	Cycle/Zone	Top V?	Top a ₁	Top b	Top c ₁ c ₂ c ₃ c ₄	Top d	T.D.	

Vol. III Table 1-3-1 PREDICTED PERFORMANCE OF SAMARANG FIELD

PRODUCTION START : Jun.1975 PRODUCTION END : Mar.1995

			,													
CTION WATER (MMSTB)	600.0	0.104	0.213	0.348	0.532	0.712	0.843	0.931	1.006	1.073	1.17	1.284	1.286	1.288	1.29	1.291
CUMULATIVE PRODUCTION OIL GAS WAT MATSTB) (MMMSCF) (MMS	2.341	16.55	33.95	52.24	72.9	92.13	106.91	118.71	128.97	138.1	144.88	150.8	155.11	159.23	163.11	166.84
CUMULAY OIL (MMSTB)	2.218	15.934	29.889	41.409	51.473	59.833	960.99	70.651	74.374	77.501	79.201	80.618	81.494	82,309	83.069	83.806
W.O.R. (STB/STB)	0.004	0.0069	0.0078	0.0117	0.0177	0.0214	0.0213	0.0191	0.0201	0.0214	0.0572	0.0805	0.0023	0.0025	0.0026	0.0014
G.O.R. (SCF/STB)	1055	1034	1247	1588	1992	2289	2401	2557	2755	2917	3994	4183	4921	5063	5101	5268
GAS PROD. RATE (MMSCF/D)	12.83	38.93	47.66	50.11	56.60	52.69	40.51	32.32	28.11	25.01	18.57	16.23	11.81	11.29	10.61	10.22
OIL PROD. RATE (MSTB/D)	12.16	37.57	38.23	31.56	28.41	23.02	16.87	12.64	10.2	8.57	4.65	3.88	2.4	2.23	2.08	1.94
RECOVERY (%)	0.68	4.88	9.15	12.67	15.76	18.31	20.21	21.63	22.77	23.72	24.24	24.68	24.94	25.19	25.43	25.65
TIME (YEAR)	Dec.1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990

Vol. III Table 1-3-1 (Continued) PREDICTED PERFORMANCE OF SAMARANG FIELD

PRODUCTION START: Jun.1975
PRODUCTION END: Mar.1995

CTION	WATER (MMSTB)	1.293	1.296	1.296	1.297	1.297
CUMULATIVE PRODUCTION	GAS (MMMSCF)	170.3	173.57	176.73	179.74	180.49
CUMULA	OIL (MMSTB)	84.43	85.38	85.613	86.16	86.293
	W.O.R. (STB/STB)	0.0031	0.0016	0.0035	0.0018	0.0027
	G.O.R. (SCF/STB)	5302	6365	5487	5493	5662
GAS PROD.	RATE (MMSCF/D)	9.49	96*8	8.67	8.24	8.21
OTT. PROD.	RATE (MSTB/D)	1.79	1.67	1.58	1.50	1.45
	RECOVERY (%)	25.84	26.13	26.21	26.37	26.41
	TIME (YEAR)	1991	1992	1993	1994	Mar.1995

Vol. III Table 1-3-2 PREDICTED PERFORMANCE OF A ZONE,

SAMARANG FIELD

PRODUCTION START: Jun. 1975 PRODUCTION END: Dec. 1984

CTION WATER (MMSTB)	0.021	690.0	0.122	0.187	0.295	0.408	0.494	0.546	0.587	0.62
CUMULATIVE PRODUCTION OIL GAS WAT MSTB) (MMMSCF) (MMS	0.249	0.845	2.066	4.635	10.284	16.588	21.623	25.205	27.774	29.693
CUMULA OIL (MMSTB)	0.873	2.966	7.151	11.337	15.522	19.646	22.916	25.299	27.027	28.318
W.O.R. (STB/STB)	0.02	0.02	0.01	0.02	0.03	0.03	0.03	0.02	0.02	0.03
G.O.R. (SCF/STB)	285	285	292	614	1482	1394	1540	1503	1488	1485
GAS PROD. RATE (MMSCF/D)	1.43	3.27	3,35	7.04	17.00	15.75	13.80	9.81	7.04	5.26
OIL PROD. RATE (MSTB/D)	5.38	11.47	11.47	11.47	11.47	11.30	8.96	6.53	4.73	3.54
RECOVERY (%)	0.63	2.15	5.19	8.22	11.26	14.25	16.62	18.35	19.61	20.54
RESERVOIR PRESSURE (PSIG)	1939	1824	1698	1542	1285	1015	808	684	586	507
TIME (YEAR)	Jun.1976	Dec.1976	1977	1978	1979	1980	1981	1982	1983	1984

Vol. III Table 1-3-3 PREDICTED PERFORMANCE OF B ZONE,

SAMARANG FIELD

PRODUCTION START: Aug. 1975 PRODUCTION END: Sep. 1986

CTION WATER (MMSTB)	0.005	0.024	0.074	0.138	0.210	0.273	0.316	0.349	0.380	0.412	0.507	0.619
CUMULATIVE PRODUCTION OIL GAS WAT MSTB) (MMMSCF) (MMS	0.357	1.262	3.774	7.693	12.753	17.512	20.986	23.607	25.962	28.107	30.067	31.420
CUMULA' OIL (MMSTB)	0.571	1.957	4.728	7.500	10.251	12.338	13.649	14.556	15.350	16.081	16.760	17.233
W.O.R. (STB/STB)	0.01	0.01	0.02	0.02	0.03	0.03	0.03	0.04	0.04	0.04	0.14	0.24
G.O.R. (SCF/STB)	623	653	907	1415	1839	2279	2651	2895	2960	2938	2887	2857
GAS PROD. RATE (MMSCF/D)	1.37	4.96	6.88	10.74	13.86	13.04	9.52	7.18	6.45	5.88	5.37	4.94
OIL PROD. RATE (MSTB/D)	2.20	7.59	7.59	7.59	7.54	5.72	3.59	2.48	2.18	2.00	1.86	1.73
RECOVERY (%)	0.79	2.71	6.55	10.40	14.21	17.10	18.92	20.18	21.28	22.29	23.23	23.89
RESERVOIR PRESSURE (PSIG)	2324	2247	2074	1855	1604	1386	1237	1121	1028	942	861	805
TIME (YEAR)	Tun. 1976	3.57 Jed	1977	1978	1979	1980	1981	1982	1983	1984	1985	Sep.1986

VOL. III Table 1-3-4
PREDICTED PERFORMANCE C ZONE,

SAMARANG FIELD

PRODUCTION START : Jun. 1975 PRODUCTION END : Mar. 1995

ROD. G.O.R. F/D) (SCF/STB) 36 1303	D. GAS PROD. RATE (MMSCE/D) 36.36	VERY RATE RATE (MSTB/D) (MMSCF/D) 5 24.18 36.36 3 32.57
57	22.90 32.57 19.18 37.44	
34	12.50 32.34	12.50
26	8.57 27.26	
89	6.01 21.89	
11	4.32 17.11	
33	3.63 15.33	
62	3.29 14.62	
88	3.03 13.88	
20	2.80 13.20	
53	2.59 12.53	
81	2.40 11.81	
29	2.23 11.29	
61	2.08 10.61	•
22	1.94 10.22	
49	1.79 9.49	
96	1.67 8.96	
99	1.58 8.66	
24	1.50 8.24	Φ.
21	1.46 8.21	

VOl. III TABLE 1-3-5 PREDICTED PERFORMANCE OF SAMARANG FIELD

- ADDITIONAL WELL CASE -

PRODUCTION START: Jun.1975
PRODUCTION END: Mar.1995

	ER TB)	60	29	10	40	53	23	28	46	66	60	31	34	36	38	39	41
CTION	WATER (MMSTB)	0.009	0.129	0.310	0.540	0.753	0.923	1.158	1.546	1.899	2.209	2.431	2.434	2.436	2.438	2.439	7 447
CUMULATIVE PRODUCTION	GAS (MMMSCF)	2.341	18.802	42.863	69.814	93.493	112.010	126.486	138.595	148.070	155.657	162.262	167.180	171.775	176.132	180.112	183 940
CUMULA	OIL (MMSTB)	2.218	18.287	36.043	50.108	60.284	67.885	73.524	77.904	80.787	82.680	84.232	85.209	86.108	86.931	87.682	88 379
	W.O.R. (STB/STB)	0.004	0.008	0.010	0.016	0.021	0.022	0.042	0.089	0.122	0.163	0.143	0.002	0.002	0.002	0.002	000
	G.O.R. (SCF/STB)	1055	1024	1355	1916	2327	2436	2567	2765	3287	4007	4255	5035	5112	5294	5497	5497
GAS PROD.	RATE (MMSCF/D)	12.83	45.10	65.92	73.04	64.87	50.73	39.66	33.17	25.96	20.78	18.10	13.47	12.59	11.94	10.90	10 49
OIL PROD.	RATE (MSTB/D)	12.16	44.03	48.65	38.53	27.88	20.82	15.45	12.00	7.10	5.19	4.25	2.68	2.46	2.26	2.06	- L
	RECOVERY (%)	0.68	5.59	11.03	15.34	18.45	20.78	22.51	23.85	24.73	25.31	25.78	26.08	26.36	26.61	26.84	27.05
	TIME (YEAR)	Dec.1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990

Vol. III TABLE 1-3-5 (CONTINUED)

PREDICTED PERFORMANCE OF SAMARANG FIELD

- ADDITIONAL WELL CASE -

CTION	WATER	(aremi)	2.443	2.445	2.446	2.448	2.448
CUMULATIVE PRODUCTION	GAS		187.545	191.051	193.378	197.547	198.322
CUMULA		(BTSTM)	89.034	89.654	90.239	90.798	90.935
	W.O.R.	(STS/STS)	0.003	0.003	0.003	0.002	0.002
	G.O.R.		5297	5644	2677	5673	6672
GAS PROD.	RATE	(MMSCF/D)	9.88	9.61	9.11	89.8	8.49
OTT. PROD.	RATE	(MSTB/D)	1.80	1.70	1.61	1.53	1.50
	RECOVERY	(8)	27.25	27.44	27.62	27.79	27.83
	TIME	(YEAR)	1991	1992	1993	1994	1995

Table 2-2-1 CORRELATION TABLE Vol. III TEMBUNGO FIELD

П	_[ď	5.0		96	2 12	3	4	
-1	94	Subsea	2019		532(5492	5713	613	
-A-	6	Log	2117 3828		5612 5689	5801 5948	6046	8159	
5	1	Subsea	1674 3943	5323	5595 5635	5740 5849	6026	6584	
	31	Log	1705	5354	5626 5666	5771 5880	6057	9199	
4		Subsea	2833 5859		7583 7648	7772	7982	8753	
	3	Log	2864 5890		7614 7679	7803 7880	8013	8784	
3	-	Subsea	3194 4280		6279 6380	6479 6608		7277	
	3	Log	3225 4311		6310 6411	6510		7508	
2	1	Subsea	2681 5077			6699 6891	7002	7639	
	3	Log	2712 5038			6730 6922	7033	7670	
		Subsea	1991 4035	5735	5884 6024	6065 6185	6263	7427	
	31	Log	2022 4066	5766	5915 6055	9096 6216	6294	7458	
Well No	- C	Cycle/Zone	Top Cycle VII? Cycle VI?	Top a	Top b ₁	Top c ₁	Top d	T.D.	

Table 2-2-1 (Continued) Vol. III

CORRELATION TABLE TEMBUNGO FIELD

									
.7	94	Subsea	1918 3460	5150	5372 5434	5551 5717	5776	6002	
A-7	وا	Log	2084 4026	6144	6405 6476	6612 6802	6870	7131	
5	94	Subsea	2067 4167	5664	5888 5962	6045		6290	
A-5	6	Log	2246 5973	8684	9053 9172	9308		9733	
4	94	Subsea	2022 3467	5214	5454 5521	5662 5768	9685	6047	
A-4	6	Log	2122 3686	5638	5913 6020	6150 6275	6424	0099	
3	4	Subsea	1902 4839	_				6523	
A-3	94	Log	2043 6761	_				9523	
2	94	Subsea	1996 3767		4904 4998	5113 5287	5358	6083	
A-2	6	Log	2210 5172		7290 5470	7700	8143	9482	
2.A	9.4	Subsea	1996 3787		5223			5421	
A-2A	: 6	Log	2210 5293		7858			8219	
Mol No	MET - 100.	Cvcle/Zone	Top Cycle VII? Cycle VI?	Тора	Top b ₁	Top c ₁	Top d	T.D.	

Vol. III Table 2-3-1 PREDICTED PERFORMANCE OF TEMBUNGO FIELD

PRODUCTION START: Oct. 1974 PRODUCTION END: Sep. 1982

CTION	WATER (MMSTB)	0.0	0.038	0.131	0.347	0.579	0.682	0.756	0.818	0.877
CUMULATIVE PRODUCTION	GAS (MMMSCF)	0.12	666.0	2.424	4.163	5.497	5.945	6.232	6.525	6.733
CUMULA	OIL (MMSTB)	0.219	1.561	3.129	4.397	5.199	5.397	5.465	5.519	5.551
	W.O.R. (STB/STB)	0.0	0.03	90.0	0.17	0.27	0.52	1.07	1.13	1.73
	G.O.R. (SCF/STB)	558	655	206	1372	1527	2278	4158	5333	6143
GAS PROD.	RATE (MMSCF/D)	1.31	2.41	3.90	4.76	3.65	1.23	0.79	08.0	0.43
OIL PROD.	RATE (MSTB/D)	2.4	3.68	4.30	3.47	2.39	0.54	0.19	0.15	0.07
	RECOVERY (%)	1.14	8.12	16.27	22.50	27.03	28.06	28.42	28.70	28.86
	TIME (YEAR)	Dec.1974	1975	1976	1977	1978	1979	1980	1981	Sep.1982

Vol. III Table 2-3-2 PREDICTED PERFORMANCE OF MODEL-1,

PRODUCTION START: Oct. 1974 PRODUCTION END: Jun. 1978

WATER (MMSTB)	900.0	0.011	0.030	0.039
GAS (MMMSCF)	0.490	0.663	1.273	1.572
OIL (MMSTB)	1.108	1.414	1.893	2.056
W.O.R. (STB/STB)	0.01	0.02	0.04	90.0
G.O.R. (SCF/STB)	463	565	1275	1843
RATE (MMSCF/D)	0.75	0.95	1.67	1.64
RATE (MSTB/D)	1.68	1.68	1.31	0.89
RECOVERY (%)	23.92	30.54	40.88	44.40
PRESSURE (PSIG)	1774	1586	1190	1018
TIME (YEAR)	Jun. 1976	Dec. 1976	1977	Tim, 1978
	PRESSURE RECOVERY RATE G.O.R. W.O.R. OIL (PSIG) (%) (MSTB/D) (MMSCF/D) (SCF/STB) (STB/STB)	PRESSURE RECOVERY RATE RATE RATE G.O.R. W.O.R. OIL GAS (PSIG) (\$) (MSTB/D) (MMSCF/D) (SCF/STB) (STB/STB) (MMSTB) (MMMSCF) 1774 23.92 1.68 0.75 463 0.01 1.108 0.490	PRESSURE (F) RATE (F) RATE (MMSCF/D) RATE (SCF/STB) G.O.R. (STB/STB) W.O.R. (MMSTB) GAS (MMMSCF) 1774 23.92 1.68 0.75 463 0.01 1.108 0.490 1586 30.54 1.68 0.95 565 0.02 1.414 0.663	PRESSURE (F) RATE (F)

Vol. III Table 2-3-3 PREDICTED PERFORMANCE OF MODEL 2,

мау ту/э	: Sep.1982
START	END
PRODUCTION	PRODUCTION

CTION	WATER (MMSTB)	0.053	0.083	0.147	0.223	0.282	0.356	0.418	0.477
CUMULATIVE PRODUCTION	GAS (MMMSCF)	0.210	0.330	0.594	0.864	1.14	1.427	1.72	1.928
CUMULA	OIL (MMSTB)	0.26	0.357	0.510	0.625	0.711	0.779	0.833	0.865
	W.O.R. (STB/STB)	0.19	0.31	0.42	0.65	0.67	1.07	1.13	1.80
	G.O.R. (SCF/STB)	1085	1241	1722	2312	3151	4138	5352	6332
GAS PROD.	RATE (MMSCF/D)	0.63	99-0	0.72	0.74	0.76	0.79	0.80	92.0
OTT. PROD.	RATE (MSTB/D)	0.61	0.53	0.42	0.32	0.24	0.19	0.15	0.12
	RECOVERY (8)	7.62	10.48	14.97	18.33	20.86	22.86	24.44	25.39
archara a	PRESSURE (PSIG)	2136	1987	1742	1504	1334	1125	972	842
	TIME (YEAR)	Jun.1976	Dec.1976	1977	1978	1979	1980	1981	Sep.1982

Vol. III Table 2-3-4 PREDICTED PERFORMANCE OF MODEL-3,

PRODUCTION START: Mar. 1975 PRODUCTION END: Mar. 1979

CTION	WATER (MMSTB)	0.0	0.034	0.167	0.313	0.358
CUMULATIVE PRODUCTION	GAS (MMMSCF)	0.775	1.202	2.067	2.832	3.004
CUMULA	OIL (MMSTB)	0.883	1.289	1.924	2.449	2.561
	W.O.R. (STB/STB)	0.0	0.08	0.22	0.28	0.40
	G.O.R. (SCF/STB)	1064	1054	1362	1458	1528
GAS PROD.	RATE (MMSCF/D)	2.49	2.34	2.37	2.10	1.88
OTT. PROD.	•	2.34	2.22	1.74	1.44	1.23
	RECOVERY (%)	10.00	14.59	21.78	27.72	28.99
DECEDIME	PRESSURE (PSIG)	2147	1847	1330	910	805
	TIME (YEAR)	Jun.1976	Dec.1976	1977	1978	Mar.1979

Vol. III Table 2-3-5 PREDICTED PERFORMANCE OF MODEL-4,

PRODUCTION START: Nov. 1974 PRODUCTION END: Mar. 1975

CTION WATER (MMSTB)	0.003	0.107
CUMULATIVE PRODUCTION OIL GAS WATI	0.229	0.893
CUMULA OIL		0.149
W.O.R.	0.34	1.30
G.0.R.	5227	8269
GAS PROD.	(MMSCF/D)	1.82
	(MSTB/D) 0.22	0.22
RECOVERY	(%) 3.00	6.31
RESERVOIR PRESSURE	(PSIG) 2142	1591 1093
TIME	(YEAR) Mar.1975	1 T S S S S S S S S S S S S S S S S S S
·. ·		

Vol. III TABLE 2-3-6
PREDICTED PERFORMANCE OF TEMBUNGO FIELD
- ADDITIONAL WELL CASE - TOTAL

CTION	WATER	(cr r cr.m.a)	0.236	0.497	0.644	0.740	0.853
LIVE PRODU	OIL GAS WAT		2.383	6.350	10.172	12.554	14.826
CUMULA	OIL	(GTGLTA)	2.751	4.575	5.159	5.427	5.605
	W.O.R.		0.086	0.143	0.247	0.369	0.635
	G.O.R.	(SCE/SIB)	998	2177	6536	8940	12714
GAS PROD.			6.53	10.87	10.47	6.53	6.23
OIL PROD.	RATE	(MSTB/D)		4.99			0.49
	RECOVERY	(4)	15.75	26.18	29.52	31.06	32.08
	TIME	(xeak)	1.0	2.0	3.0	4.0	5.0

VOL. III TABLE 2-3-7
PREDICTED PERFORMANCE OF TEMBUNGO FIELD
- ADDITIONAL WELL CASE - WELL TM AD-1

CTION	WATER	(MMSTB)	0.016	0.052	0.102
LIVE PRODU	OIL GAS WATER	(MMMSCF)	0.391	1.744	3.361
CUMULA	OIL	(MMSTB)	0.365	0.693	0.811
	W.O.R.	(STB/STB)	0.044	0.110	0.425
	G.O.R.	(SCF/STB)	101	4119	13737
GAS PROD.	RATE	(MMSCF/D)	1.07	3.71	5.91
OIL PROD.	RATE	(MSTB/D)	1.00	06.0	0.43
	RECOVERY	(8)	16.33	31.01	36.29
RESERVOTR	PRESSURE	(PSIG)	2957	2176	1465
	TAME	(YEAR)	1.00	2.00	2.75

Vol. III TABLE 2-3-8

PREDICTED PERFORMANCE OF TEMBUNGO FIELD

CTION	WATER (MMSTB)	0.063	0.131	0.146
CUMULATIVE PRODUCTION	GAS (MMMSCF)	0.334	0.683	0.758
CUMULA	OIL (MMSTB)	0.330	0.522	0.556
	W.O.R. (STB/STB)	0.192	0.352	0.444
	G.O.R. (SCF/STB)	1017	1804	2221
GAS PROD.	RATE (MMSCF/D)	0.92	96.0	0.82
OIL PROD.	RATE (MMSTB/D)	06.0	0.53	0.37
	RECOVERY (%)	15.47	24.42	26.02
RESERVOIR	PRESSURE (PSIG)	1844	1024	893
	TIME (YEAR)	1.00	2.00	2.25

⁻ ADDITIONAL WELL CASE - WELL TM AD-2

VOL. III TABLE 2-3-9
PREDICTED PERFORMANCE OF TEMBUNGO FIELD
- ADDITIONAL WELL CASE WELL TM AD-3

CTION	WATER (MMSTB)	0.112	0.205
TIVE PRODUC	OIL GAS WATI	0.707	1.374
CUMULA	OIL (MMSTB)	0.975	1.541
	W.O.R. (STB/STB)	0.11	0.16
	G.O.R. (SCF/STB)	727	1179
GAS PROD.	RATE (MMSCF/D)	1.94	1.83
OIL PROD.	RATE (MSTB/D)	2.67	1.55
	RECOVERY (%)	17.26	27.26
RESERVOIR	PRESSURE (PSIG)	1409	868
	TIME (YEAR)	1.0	2.0

VOI. III TABLE 2-3-10
PREDICTED PERFORMANCE OF TEMBUNGO FIELD
- ADDITIONAL WELL CASE - WELL TM AD-4

RESERVOIR PRESSURE (PSIG)	OIR RE RECOVERY (%)	OIL PROD. RATE (MSTB/D)	GAS PROD. RATE (MMSCF/D)	G.O.R. (SCF/STB)	W.O.R. (STB/STB)	CUMULA OIL (MMSTB)	CUMULATIVE PRODUCTION OIL GAS WATER IMSTB) (MMMSCF) (MMSTB)	CTION WATER (MMSTB)
2415	14.52	2.96	2.61	880	0.042	1.081	0.951	0.045
2018	24.42	2.02	4.38	2166	0.085	1.819	2.548	0.108
1613	30.22	1.18	5.84	4945	0.186	2.251	4.678	0.188
1208	33.82	0.73	6.53	8940	0.368	2.519	7.060	0.286
837	36.21	0.49	6.23	12709	0.637	2.697	9.333	0.400

Table 3-2-1 CORRELATION TABLE Vol. III ERB WEST FIELD

ON LIOM		•	2		''	3	4	
D.F.E.	112	2	112	2	111	[]	112	.2
Cycle/Zone	Log	Subsea	Log	Subsea	Log	Subsea	Log	Subsea
Top Upper V	3795	3683	3493	3381	3308	3197	3853	3736
Top a1	3795	3683	3493	3381	3308	3197	3853	3736
	3942	3830	3846	3734	3648	3537	4253	4119
nd	4091	3979	3991	3879	3782	3670	4414	4272
a a a	4298	4186	4192	4080	3960	3849	4644	4492
· S	4459	4347	4335	4223	4132	4021	4817	4657
) 40 10	4664	4552	4547	4435	4371	4260	5041	4871
a 7	5005	4893	4882	4770	4615	4504	5336	5152
Top b	5192	5080		•	4901	4790	2650	5452
Top c1 c2	6462 6550	6350 6438	6285 6385	6173 6273	6601 6755	6490 6644	7099 7162	6827 6886
Top d	7772	7660						
T.D.	8015	7903	8775	8663	8531	8420	7878	7557
						·		

FIELD NAME; ERB WEST

RESERVOIR NAME;

NATURAL DEPLETION CASE

	.0120	.0123	.0125	.0127	.0135	.0143	.0159	0.01909	6				å						00	000	14	25	0 6	3;	F (ء د	۲. ۲.
VISO (C.P.)	•	• 29	•21	• 14	9	•94	.84	0.7250	•72										070)= 3101	000		• 5	•004	69	_	, V U L
FVFG	9125	S	.04074	.02698	.01582	.01100	.00753	0.004939	0489										(PSIG)	IJ,	≻	E FACTOR	011		MMST	MSTB/D)	אל פע
RS (SCF/STB)	•	33*	65.	. 86	9	3	N	500.	0	KRO	.066	1114	.182	0.2761	399	.557	.755	000•	PRE	SERVOIR PRES	OMPRE	ATION VOLUM	WATER	VOKE.	Z ;		יאר אינוט אינו
FVFO	1.048	•	3	0	0	H	1.135	1.186	.	KG/KD	•	•	•	3.0000		•	0.1300	0.6200	BURLE POINT	R E	FECTIVE	TER FORM	EDUCIBLE	NAL TAN	IGINAL O	L PRODUC	AACL TON D
PRESSURE (PSIG)		200	+00+	.009	1000	1400.	2000	3070	3100.	SL	•	7		0.80	φ.	6	σ.	c.								-	

Table 3-3-1 Vol. III Table 3-3-RESERVOIR PARAMETERS

FIELD NAME; ERB WEST

RESERVOIR NAME;

NATURAL DEPLETION CASE

WATER ENCROACH.	0.05	0.55	1.74	2.64	3.52	4.36	4.97
PRODUCTION GAS (MMMSCF)	2.098	7.932	17.892	34.895	69.561	231.192	475.374
CUMULATIVE PRODUCTION OIL GAS (MMSTB) (MMMSCF)	3.650	7.301	10,951	14.602	.18.252	21.902	25.122
GAS DIL RATIO (SCF/STB)	611.	2244.	3587.	5958.	10935.	48602.	750144.
PRODUCTION RATE OIL GAS (MSTB/D) (MMSCF/D)	11.49	31.97	54.57	93.15	189.93	885.56	1337.83
PRODUCT 01L (MSTB/D)	20.00	20.00	20.00	20.00	20.00	20.00	17.64
RECOVERY (%)	2.15	4.31	94.9	8.61	10.77	12.92	14.82
RESERVOIR PRESSURE (PSIG)	3066.	3014.	2942.	2827•	2619.	1781.	545.
TIME (YEAR)	0.50	1.00	1.50	2.00	2.50	3.00	3.50

Vol. III Table 3-3-2 PREDICTED PERFORMANCE

Table 4-2-1 CORRELATION TABLE Vol. III SOUTH FURIOUS FIELD

														 $\overline{}$
9	-	Subsea	1099 2589?	1099	1493 2249	2589	3027 ·	3456	4175	4946	5949	6462		
	4	Log	1140 2630?	1140	1534 2290	2630	3068	3497	4216	4987	5990	6503		
5	1	Subsea	1129 21652	1129	1217 1829	2165	2640	3112	3845	4669	5579	8969		
	4	бот	1170 22062	1170	1258 1870	2206	2681	3153	3886	4710	5620	9010		
4	1	Subsea	1781 3083?	1781	2549	3083	3463	3973	4498	5256	6003	6129		-
	4	Log	1822	1822	2590	3124	3504	4014	4539	5297	6044	0089		
3	5	Subsea	1505 2647?	1505	2045	2647	3150	3762	4565	5621	6381	7805	-	
	7	Log	1580 27222	1580	2120	2722	3225	3837	4640	5696	6456	7880		
2	70	Subsea	1610 27562	1610	1995	2756	3191	3637	4189	5040	5802	6777		
	7	Log	1680 28263	1680	2065	2826	3261	3707	4259	5110	5872	6847		
		Subsea	2429 6524									8889		
1	111	Log	2540? 6635									9000		
Well No.	D.F.E.	Cycle/Zone	Top Upper V Lower V	Top a	TOP b ₁	Top c	Top d	Top e	Top f	Top g	Top h	T.D.		

Table 4-2-1 (Continued) CORRELATION TABLE Vol. III SOUTH FURIOUS FIELD

Well No.		7
D.F.E.	4	41
IJ	Log	Subsea
Top Upper V Lower V	2138 4757?	2097 4716?
Top a	2138	2097
Top b ₁ b ₂	4213	4172
Top c	4757	4716
Top d	5275	5234
Top e	9089	6265
Top f	6109	8999
Top g	7681	7640
Top h	8290	8249
T.D.	9100	9059

FIELD NAME; SOUTH FURIOUS

RESERVOIR NAME;

NATURAL DEPLETION CASE

VISG (C.P.) 0.01202 0.01225 0.01247 0.01270 0.01352 0.01609	· · · · · · · · · · · · · · · · · · ·	000 167 250 500 000 000 000 000
VISD (C.P.) 1.6600 1.5150 1.4100 1.3200 1.3200 1.0700 0.9200		G)= 2101.0000 = 0.0000167 = 0.0000167 = 1.0250 = 500.0000 = 340.0649 = 4.0000 IL VOL.= 0.
FVFG 1.185485 0.079568 0.026674 0.015556 0.010780		16). RE (PSI ACTOR ON 1STB) 3/D)
RS (SCF/STB) 0. 35. 70. 105. 175. 240. 350.	KRO 0.0983 0.1561 0.2330 0.3318 0.4552 0.6058 1.0000	PRESSURE ERVOIR PRE DMPRESSIBI TION VOLUN AATER SATU SURE (PSI L IN PLACE ION RATE (
FVFU 1.048 1.066 1.079 1.107 1.124 1.149	KG/KU 70.0000 26.5000 6.0000 2.5000 0.9500 0.1380 0.1300	BUBLE POINT PR INITIAL RESERV EFFECTIVE COMF WATER FORMATIC IREDUCIBLE WAT FINAL PRESSUF ORIGINAL OIL I
PRESSURE (PSIG) 0. 200. 400. 600. 1000. 1400. 2101.	SL 0.65 0.75 0.75 0.80 0.90 0.95	

Vol. III Table 4-3-1 RESERVOIR PARAMETERS

FIELD NAME: SOUTH FURIOUS

RESERVOIR NAME;

NATURAL DEPLETION CASE

WATER ENCROACH• (MMBBL)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PRODUCTION GAS (MMMSCF)	2.942	8.148	13,857	20.106	26.826	33,791	40.804	47.760	54.511	60,586	65,984	70.808	75.103	78.942	82.389
CUMULATIVE OIL (MMSTB)	1.825	3.650	5.476	7.301	9.102	10.829	12,455	13.988	15,439	16.818	18,138	19.406	20.629	21.812	22.957
GAS OIL RATIO (SCF/STB)	2724.	2988•	3274.	3579.	3886.	4184.	4436.	4635.	4563.	4544.	3943	3658	3373.	3121.	2893•
FION RATE GAS (MMSCF/D)	32.24	57.05	62.55	68.48	73.64	76.32	76.85	76.22	73.97	66.57	59.15	52.86	47.07	42.06	37.77
PRODUCTION OIL (MST8/D) (MMS	20.00	20.00	20.00	20.00	19.74	18.92	17.82	16.80	15,90	15.12	14.46	13.90	13,41	12.96	12.54
RECOVERY (%)	,0.54	1.07	1.61	2.15	2.68	3.18	3.66	4.11	4.54	4.95	5.33	5.71	6.07	6.41	6.75
RESERVOIR PRESSURE (PSIG)	1935.	1821.	1703.	1580.	1455.	1323.	1190.	1063.	. 244	848	762.	687.	621.	563.	511.
TIME (YEAR)	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25	2.50	2.75	3.00	3.25	3.50	3,75

Vol. III Table 4-3-2 PREDICTED PERFORMANCE

Table 5-2-1 CORRELATION TABLE Vol. III WEST EMERALD FIELD

Well No.		1	3	2
D.F.E.	7	72	ω	80
Cycle/Zone	Log	Subsea	for	Subsea
Top V			ļ	
Top a	1250	1250 1178	1120	1040
Top b			4710	4710 4630
T.D.	6523	6451	5400	5320
		į		

Table 6-2-1 CORRELATION TABLE Vol. III ST. JOSEPH FIELD

Well No.		1
D.F.E.	7	71
Cycle/Zone	Log	Subsea
Top Middle V	809	738
Lower V	2321	2250
ΔI	5546	54/5
Top a ₁ a ₂	1741 1890	1670 1819
Top b1	2198	2127
ъ ₂	2321 2396	2250 2325
b.	2610	2539
T.D.	6928	6857
unconf.	5808	

Table 7-2-1 CORRELATION TABLE Vol. III ERB SOUTH FIELD

-	71	Subsea	2893	2707	4655		
	7	rog	2964	2778	4726	2962	
Well No.	D.F.E.	Cycle/Zone	Top VI Middle V	Тор а	T.D.	unconf.	

(Vol. III)

Table 8-4-1 MAJOR EQUIPMENT SPECIFICATIONS OF PRODUCTION STATION SMP-A

SEPARATOR

Name & Tag No.	No.	Туре	Size	Design Capacity BPD	Pressure Design/ Operation PSIG
HP Separator V-100 & 101	2	Hori.	72"øx20'	30,000	385/250
LP Separator V-200 & 201	2	ditto	72"øx20 '	30,000	125/50
Surge Vessel V-300 & 301	2	ditto	126"øx32 '	30,000	85/10
Test Separator V-400	1	ditto	60"øx15'		385
Gas Lift Separator V-500	1	ditto	42"øx15'		1,440/950

PUMP

Name & Tag No.	No.	Capacity BPD	Туре	Si	eader iction ischan		
Crude Oil Transfer Pump P-801 - 805	5	13,000	Recipro. Gas Expansion Driven		150# 600#	ANSI/ ANSI	

ELECTRICAL GENERATOR

No.	Type	Voltage volts	Phase	Frequency Hz	Capacity Kw	Speed RPM	Service
1	Gas Expansion Turbine- driven	415	3	50	20	1,500	Lighting, Instr., etc.

Table 8-4-2 MAJOR EQUIPMENT SPECIFICATIONS (Vol. III) OF PRODUCTION STATION SMP-B

SEPARATOR

Name & Tag No.	No.	Type	Size	Design Capacity BPD	Pressure Design/ Operation PSIG
HP Separator V-100	1	Hori.	72"øx20'	30,000	385/250
LP Separator V-200	1	ditto	72"øx20'	30,000	125/50
Surge Vessel V-300	1	ditto	126"øx32'	30,000	85/10
Test Separator V-400	1	N/A	N/A		385

PUMP

Name & Tag No.	No.	Capacity BPD	Туре	Header Suction/ Discharge
Crude Oil Transfer Pump P-801 - 802	2	13,000	Recipro. Gas Expansion Driven	20" 150# ANSI/ 8" 600# ANSI

ELECTRICAL GENERATOR

No.	Туре	Voltage volts	Phase	Frequency Hz	Capacity Kw	Speed RPM	Service
1	Gas Expansion Turbine- driven	415	. 3	50	20	1,500	Lighting, Instr., etc.

Table 8-4-3 (Vol. III)

MAJOR EQUIPMENT SPECIFICATIONS OF LABUAN TERMINAL

STORAGE TANK

Name & Tag No.	No.	Nominal Capacity BBLS	Size	Туре
Crude Oil Storage Tank	3	439,000	214'øx72'	Floating Roof

CRUDE OIL LOADING PUMP SYSTEM

Name & No Tag No.		Capacity BPH x Head	Туре	
Crude Oil Loading Pump P-21 - P-23	3	18,000 x 275'	Centrifugal, Diesel Engine Driven	

SINGLE BUOY MOORING

Name & . Tag No.	No.	Water Depth	Tanker Mooring Capacity, DWT
SBM	1	95'	310,000

SURFACE/FORMATION WATER DRAINAGE SYSTEM

Name & Tag No.	No.	Туре		
CPI	1	Corrugated Plate Interceptor		
Holding Basin 1		Gravity Separation		

Table 8-4-3 MAJOR EQUIPMENT SPECIFICATIONS (Vol. III) OF LABUAN TERMINAL (Cont'd)

FIRE FIGHTING SYSTEM

Name & Tag No.	No.	Capacity	Type
Firewater Tank T-61	1	35,000 BBLS	Open Top
Fire Fighting Pump P-61 - P-62	2	7,200GPM x 430'	Centrifugal, Diesel Engine Driven

POWER PLANT

Name & Tag No.	No.	Capacity HP	Type
Generator	3	325	Diesel Engine Driven

SEA WATER DISTILLATION UNIT

Name & Tag No.	No.	Output	Туре
Aqua-Chem Unit	l Unit	167 UKGPH	Aqua-Chem/ Type S200 Spec. E

UTILITIES TANK

Name & Tag No.	No.	Capacity	Туре
Diesel Fuel Tank T-51 - T-52	2	300 BBLS	Cone Roof
Potable Water Tank V-73	1	6,000 UKGAI	

Table 8-4-4 (Vol. III)

MAJOR EQUIPMENT SPECIFICATIONS OF TEMBUNGO "A"

SEPARATOR

Name & Tag No.	No.	Туре	Size	Design Capacity BPD/MMSCFD	Pressure Design/ Operating PSIG
Test Separator V-190	1	Hori.	48"øx15'	6,000/	710/ 100-600
Prod. Separator V-200	1	Hori.	72"øx20 '	20,000/	710/ 100-600
FWKO & Surge V-250	1	Hori.	144"øx30'	30,000/	50/ ATM.
LP Flare Scrubber V-400	1	Hori.	48"øx10'	20/0.5	50/ ATM.
HP Flare Scrubber V-410	1	Hori.	72"øx15'	20,000/ 15.5	50/ ATM.
Caisson Separator V-535	1	Vert.	30"øx172'		

PUMP

Name & Tag No.	No.	Туре	Capacity GPM	Head PSI	Motor Power HP
SPM Oil Pump P-290 & 300	2	Centri. Motor-driven	600	60	40
LP Flare Transfer Pump P-405	1	ditto	80	15	3
HP Flare Transfer Pump P-415	1	ditto	80	15	3
Caisson Oil Pump P-535	1	ditto	40	45	

ELECTRICAL GENERATOR

No.	Туре	Capacity	Service
1	Diesel Engine	400 kw	Motor Drivers, Lighting, Instrumentation, etc.

Table 9-5-1 (Vol. III)

MAJOR EQUIPMENT LIST

FOR ERB WEST AND SOUTH FURIOUS OIL FIELDS-CASE I

ITEM NO. & NAME	LOCATION	QUANTITY	DESCRIPTION
V - 1 1ST STAGE PRODUCTION SEPARATOR	SFWP-A SFWP-B EWWP-A EWWP-B	1 1 1	SIZE: 4'-6" I.D. x 13'-6" S-S DESIGN PRESS.: 300 PSIG @ 150°F TYPE: HORIZONTAL
V - 2 2ND STAGE PRODUCTION SEPARATOR	SFWP-A SFWP-B EWWP-A EWWP-B	1 1 1	SIZE: 4'-6" I.D. x 13'-6" S-S DESIGN PRESS.: 100 PSIG @ 150°F TYPE: HORIZONTAL
V - 3 3RD STAGE PRODUCTION SEPARATOR	SFWP-A SFWP-B EWWP-A EWWP-B	1 1 1	SIZE: 11'-0" I.D. x 22'0" S-S DESIGN PRESS.: 50 PSIG @ 150°F TYPE: HORIZONTAL
<u>V - 4</u> TEST SEPARATOR	SFWP-A SFWP-B EWWP-A EWWP-B	1 1 1	SIZE: 3'-6" I.D. x 10'-0" S-S DESIGN PRESS.: 300 PSIG @ 150°F TYPE: HORIZONTAL
C - 151 INSTRUMENT AIR COMPRESSOR	SFWP-A SFWP-B EWWP-A EWWP-B	2 2 2 2 2	CAPACITY: 35 SCFM
P - 2	SFWP-A SFWP-B	2 2	CAPACITY: 240 GPM TYPE: HORIZONTAL
CRUDE TRANSFER PUMP	EWWP-A EWWP-B	2 2	CAPACITY: 300 GPM TYPE: HORIZONTAL
P - 152 FIRE WATER PUMP	SFWP-A SFWP-B EWWP-A EWWP-B	1 1 1 1	CAPACITY: 1,500 GPM TYPE: VERTICAL
TK - 1 DEEMULSIFIER TANK	SFWP-A SFWP-B EWWP-A EWWP-B	1 1 1 1	SIZE: 6'-0" I.D. x 15'-6" H
TK - 2 DEFOAMANT TANK	SFWP-A SFWP-B EWWP-A EWWP-B	1 1 1	SIZE: 6'-0" I.D. x 15'-6" H
TK - 152 DIESEL STORAGE TANK	SFWP-A SFWP-B EWWP-A EWWP-B	1 1 1	CAPACITY: 500 BBL SIZE: 15'-6" I.D. x 16'-0" H
M - 1 INLET MANIFOLD	SFWP-A SFWP-B EWWP-A EWWP-B	1 1 1	HIGH PRESSURE HEADER LOW PRESSURE HEADER TEST HEADER
G - 151 DIESEL DRIVEN GENERATOR	SFWP-A SFWP-B EWWP-A EWWP-B	2 2 2 2	CAPACITY: 300 KVA
FM - 1	SFWP-A SFWP-B	1 1	DESIGN RATE: 280 GPM (MAX.)
FLOW METER	EWWP-A EWWP-B	1	DESIGN RATE: 350 GPM (MAX.)

CAPITAL INVESTMENT COST ESTIMATION	
(Vol. III)	
Table 9-6-1	

	THE MEST AND SOUTH FURTOUS OIL FIELDS			(M\$ 1,000)
		CASE I	CASE II A	CASE II B
i.	Exploration & Appraisal Wells	63,259	63,259	63,259
7	Engineering	28,096	16,266	17,115
ů.	Development Wells	090'66	57,150	57,150
4.	Facilities			
	a. Offshore Platforms	82,515	50,071	39,733
•	b. Offshore Production Equipment	21,864	13,355	7,633
	c. Submarine Pipelines	77,523	42,088	11,054
	d. Offshore Storage & Loading Facilities .		1	l
	e. Onshore Terminal & Loading Facilities .	ı	1	35,802
	f. Support Facilities	1	1	19,779
	Sub Total	181,902	105,514	114,001
5.	Pre-start up Expense	3,091	1,788	1,883
	Contingencies	30,906	17,895	18,826
		·		
	TOTAL	406,314	261,872	272,234

ANNUAL OPERATION COST ESTIMATION

Table 9-6-2 (Vol.III)

· · · · · · · · · · · · · · · · · · ·	ERB WEG	1	FURIOUS OIL 1	3	4	5	6	7	8	9
1.	Direct Cost									
	a. Operating Personnel					1,801	1,801	1,801	1,801	1,801
	b. Operating Management					180	180	180	180	180
	c. Repair & Maintenance					5,992	5,992	3,091	3,091	3,091
	d. Operating Supplies					1,135	1,135	602	602	602
	e. Chemical					1,494	1,494	843	843	650
	f. Service Contract					2,972	2,972	2,972	2,972	2,972
	Sub Total					13,574	13,574	9,489	9,489	9,296
2.	Indirect Cost									
	a. Indirect Personnel					991 [.]	991	991	991	991
	b. Insurance					4,486	4,486	2,525	2,525	2,525
	Sub Total					5,477	5,477	3,516	3,516	3,516
	TOTAL					19,051	19,051	13,005	13,005	12,812

ANNUAL OFFMATTON COST ESTIPATION

Table 9-6-3 (Vol.III)

		1	2	3	4	5	6	7	8
1 2 3 4 5 6									
	a. Operating Personnel				1,801	1,801	1,801	1,801	1,801
	b. Operating Management				180	180	180	180	180
	c. Repair & Maintenance				3,739	3,739	3,739	3,739	3,739
	d. Operating Supplies	i			691	691	691	691	691
	e. Chemical				843	843	843	843	650
	f. Service Contract				2,083	2,083	2,083	2,083	2,083
	Sub Total				9,337	9,337	9,337	9,337	9,144
2.	Indirect Cost								
	a. Indirect Personnel				991	991	991	991	991
	b. Insurance	1			3,000	3,000	3,000	3,000	3,000
	Sub Total				3,991	3,991	3,991	3,991	3,991
	TOTAL				13,328	13,328	13,328	13,328	13,135

ANNUAL OPERATION COST ESTIMATION

Table 9-6-4 (Vol.III)

ERB WEST AND SOUTH FURIOUS OIL FIELDS CASE IIB

		1	2	3	4	5	6	7	8
1.	Direct Cost								
	a. Operating Personnel				1,801	1,801	1,801	1,801	1,801
	b. Operating Management				180	180	180	180	180
	c. Repair & Maintenance				3,990	3,990	3,990	3,990	3,990
	d. Operating Supplies				622	622	622	622	622
	e. Chemical				843	843	843	843	650
	f. Service Contract				2,083	2,083	2,083	2,083	2,083
	Sub Total				9,519	9,519	9,519	9,519	9,326
2.	Indirect Cost								
	a. Indirect Personnel				991	991	991	991	991
	b. Insurance				3,028	3,028	3,028	3,028	3,028
•	Sub Total				4,019	4,019	4,019	4,01,9	4,019
-	·								
	TOTAL				13,538	13,538	13,538	13,538	13,345

ERB WEST AND SOUTH FURIOUS OIL	FIELDS CASE I			(M\$ 1,000)
Year	lst	2ND	3RD	4TH
Exploration & Appraisal Wells	63,259	1	1	1
Engineering	28,096	1	1	
Development Wells	-	10,716	42,863	45,481
Offshore Platforms	1,481	31,255	40,960	8,819
Offshore Production Equipment	780	13,538	5,974	1,572
Submarine Pipelines	1	-	43,261	34,262
Offshore Storage & Loading Facilities	•	ı	1	1
Onshore Terminal & Loading Facilities	1	1	ı	1
Support Facilities	1	-		1
Pre-start up Expense	304	555	1,331	901
Contingencies	3,036	5,551	13,306	9,013
Total	96,956	61,615	147,695	100,048

Table 9-6-6 (Vol. III)

INVESTMENT SCHEDULE

(M\$ 1,000)													
ERB WEST AND SOUTH FURIOUS OIL FIELDS CASE II A	3RD	1	1	28,575	2,164	924	42,088	1	ı	ı	737	7,375	81,863
	ZND	1	1	28,575	32,888	8,194	ı	ŧ	1		969	6,967	77,320
	1ST	63,259	16,266	1	15,019	4,237	4	•	ı		355	3,553	102,689
	Year	1. Exploration & Appraisal Wells	2. Engineering	3. Development Wells		5. Offshore Production Equipment	6. Submarine Pipelines	7. Offshore Storage & Loading	8 Onshore Terminal & Loading	9. Support Facilities	10. Pre-start up Expense	L L	Total

Table 9-6-7 (Vol. III) INVESTMEN

INVESTMENT SCHEDULE

(M\$ 1,000) 2,164 282 553 61,426 28,575 11,054 13,264 5,534 ı ı 1 1 333 9,215 922 28,575 26,685 5,146 18,563 13,185 102,291 ı 1 ı 2ND Щ CASE II 2,205 6,594 408 4,077 3,975 108,517 63,259 17,115 10,884 į į t lST ERB WEST AND SOUTH FURIOUS OIL FIELDS 5. Offshore Production Equipment 1. Exploration & Appraisal Wells Onshore Terminal & Loading Facilities Offshore Storage & Loading Facilities 10. Pre-start up Expense Year Submarine Pipelines 9. Support Facilities 4. Offshore Platforms 3. Development Wells 11. Contingencies Total 2. Engineering Item 9 7 ٠ ش

TABLE 9-6-8 CASH FLOW TABLE FOR OIL ERB WEST AND SOUTH FURIOUS OIL FIELDS

CASE I : ERB WEST & SOUTH FURIOUS, LABUAN TERMINAL CASE VOL.111

PAGE

PREMISES

: 5 YEARS : 4 YEARS : 100.00% : 8.00%	* S L N	: 10.00 % : 20.00 % : 70.00 % : 0.50 % : M\$ 32.31 /BBL : 5.00 % : M\$ 5000000. : M\$ 2500000.
** ** ** **	E E X	
	A G	BASIC PRICE
PRODUCTION LIFE PRE-STARTUP PERIOD EQUITY RATIO OF OIL COMPANY INTEREST RATE	* BASIC TERMS OF P/S AGREEMENTS	ROYALTY RATE MAXIMUM COST RECOVERY RATIO PROFIT OIL SHARE PETRONAS OPERATING COMPANY RATE OF PAYMENT FOR RESEARCH FUND INITIAL BASIC PRICE (AT 1976 BASE) RATE OF INCREASE FOR BASIC PRICE RATE OF PAYMENT FOR PROFIT OIL ABOVE PRODUCTION BONUS ABOVE 500008BL/DAY DISCOVERY BONUS INCOME TAX RATE

* INPUT DATA BY YEAR *

		TUPUI *	# INPUT DAIA BY TEAK #	TEAK #						9YR
TERM		73	m	4	ľ	9	7	æ	6	TOTAL
CAPITAL INVESTMENT (M\$ 1000)	96956	61615.	61615. 147695. 100048.	100048.	ô	•	•	•	•	406314•
OIL PRODUCTION (M BBL/YEAR)	ò	ò	0.0	0	12932.	12063.	7300	7300•	5625.	45220-
SALES PRICE OF OIL (MS/BBL)	0•0	0.0	0.0	0.0	31.45	31.45	31.39	31.39	0.0 31.45 31.45 31.39 31.39 31.39	
BASIC PRICE OF OIL (M\$/BBL)	35.62	37.40	39.27	37.40 39.27 41.24 43.30 45.46 47.74 50.12 52.63	43.30	45.46	41.74	50.12	52.63	

TABLE 9-6-8 CASH FLOW TABLE FOR OIL ERB WEST AND SOUTH FURIOUS OIL FIELDS VOL.III CASE I : ERB WEST & SOUTH FURIOUS, LABUAN TERMINAL CASE

	#	CASH FI	CASH FLOW TABLE FOR PETRONAS (X M\$ 1000)	FOR PET M\$ 1000	RONAS *					(CONT'D) PAGE 2
TERM	ı	~	m	4	ίŲ	•9		æ	σ·	9YR. TOTAL
1 SALES REVENUE FROM PROFIT OIL	ċ	•	ó	ċ	199289.	185897.	112282.	112282.	86519.	696268
2 REVENUE FROM OIL BASIC PRICE	ö	•	ċ	ċ	•	ò	•	ċ	•0	•0
3 RONUS FROM DIL COMPANY DISCOVERY BONUS PRODUCTION BONUS				000	2500. 2500. 0.	000		000		2500. 2500. 0.
4 RESEARCH FUND FROM DIL CO.	å	0		ó	834.	778.	470.	410.	362.	2913.
5 TOTAL CASH INFLOW	0	0	0	0	202622.	186674.	112752.	112752.	86881.	701681.
6 INCOME TAX	0.	0	0	ò	91180.	84003.	50738.	50738.	39096	315756.
7 NET CASH FLOW	6	•	•	ò	111442.	111442. 102671.	62013.	62013.	47784•	
8 CUMULATIVE NET CASH FLOW	ċ	ċ	ô	ċ	111442.	214113.	276127.	338140.	385924.	

TABLE 9-6-8 CASH FLOW TABLE FOR OIL ERB WEST AND SOUTH FURIOUS OIL FIELDS

VOL.III CASE I : ERB WEST & SOUTH FURIOUS, LABUAN TERMINAL CASE

# #	PRESENT WORTH OF NET CASH FLOW FOR PETRONAS (X M\$ 1000)	ORTH OF N	ET CASH FI	OW FOR P	ETRONAS 0001	# #				(CONT'D) PAGE 3
TERM		. ~~	m	4	រហ	•	~	æ	σ	
PRESENT WORTH										
5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.98	0.93 0. 0.	0.89	0.84 0.0	0.80 89475. 89475.	0.76 78507. 167981.	0.73 45160. 213142.	0.69 43010. 256152.	0.66 31563. 287715.	
10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.95	0.87	0.79	0.72 0. 0.	0.65 72574. 72574.	0.59 60784. 133358.	0.54 33376. 166734.	0.49 30342. 197076.	0.44 21254. 218331.	
15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.93	0.81 0. 0.	0.71	0.61 0.0	0.53 59417. 59417.	0.46 47600. 107017.	0.40 25001. 132018.	0.35 21740. 153758.	0.30 14566. 168324.	

TABLE 9-6-8 CASH FLOW TABLE FOR OIL ERB WEST AND SOUTH FURIOUS OIL FIELDS VOL.III CASE I: ERB WEST & SOUTH FURIOUS, LABUAN TERMINAL CASE

(CONT'D) PAGE 4

HOST	-	0	m	4	ភេ	. 49	7	œ	ō.	9YR. TOTAL
1 SALES REVENUE FROM PROFIT OIL	·		0	•	85409.	79670.	48121.	48121.	37079.	298400
2 SALES REVENUE FROM COST OIL	0	o	ô	ô	81342.	75876.	45829.	45829.	35314.	284191.
3 SALES REVENUE FROM ROYALTY OIL	٠0	•	0.	0	40671.	37938.	22915.	22915.	17657.	142095•
4 TOTAL CASH INFLOW	0	0	0.	•	207423.	193484.	116865.	116865.	90050•	724687.
5 RDYALTY	0	0	0	0	40671.	37938•	22915.	22915•	17657.	142095.
6 PAYMENT FOR OIL BASIC PRICE	•	•	0.	0	0.	•0	ó	ô	•0	•
7 BONUS DISCOVERY BONUS PRODUCTION BONUS	000	000		000	2500. 2500. 0.			000		2500. 2500. 0.
8 RESEARCH FUND TO PETRONAS	ċ	ô	•	0	834.	778.	470.	410.	362.	2913.
OPERATING EXPENSES	6	0 0	0.0	0.0	81342.	75876.	45829.	45829. 6.28	35314. 6.28	284191.
(ms/hhl) 9 DPERATING COST CAPITAL COST RECOVERY					19051.	19051.	13005.	13005.	12812. 22502.	76924. 207267.
INCOME BEFORE TAX	ċ	ċ	0	0	82076.	78892.	47651.	47651.	36717.	292987.
10 INCOME TAX	ċ	•	ò	0	36934.	35502.	21443.	21443.	16523.	131844.
11 CAPITAL INVESTMENT	•95696	61615.	147695.	100048.	0	•0	ċ	ô	•	406314.
12 TOTAL CASH OUTFLOW	•95696	61615.	147695.	100048.	•06666	93268.	57832.	57832•	47354.	762591.
13 NET CASH FLOW	-96956+	-61615.	-147695.	-100048.	107433.	100216.	59033	59033.	42696.	
14 CUMULATIVE NET CASH FLOW	-96956-	-158571.	-306266.	-406314.	-298881.	-198665.	-139633.	-80600	-37904.	
15 OCF ROR OF NET CASH FLOW (%)	0.0	0.0	0.0	0.0	0.0	0.0	0-0	0.0	0.0	
16 CORPORATE CAPITAL	96956	61615.	147695.	100048.	ô	°	0	ò	ċ	406314.
17 INTEREST	•	•0	•	0	0	0	•	•0	ċ	•
18 BANK BORROWING	•0	•	•	0.	ò	0	•	•0	•	•0
19 REPAYMENT	ô	0	•0	•0	0	0	•	•	•0	•0
20 BORROWING BALANCE	0	•0	0	0	0	0	0	0	•	
21 PAYOUT TIME 0.0 YEARS										

TABLE 9-6-8 CASH FLOW TABLE FOR DIL ERB WEST AND SOUTH FURIDUS DIL FIELDS

VOL.111 CASE I : ERB WEST & SOUTH FURIOUS, LABUAN TERMINAL CASE

#+ #+	PRESENT WOR	TH OF NET	. CASH FLC	WORTH OF NET CASH FLOW FOR OPERATING COMPANY * * (X M\$ 1000)	RATING CO 1000)	MPANY * *	н			(CONT'D) PAGE 5
TERM	et	8	m	4	ĸ	40		ထ	6	
PRESENT WORTH										
5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.98 -94619. -94619.	0.93 -57267. -151886.	0.93 0.89 -57267130735. 151886282622.	0.84 -84343. -366964.	0.80 86255. -280709.	0.76 76630. -204079.	0.98 0.93 0.89 0.84 0.80 0.76 0.73 0.69 -946195726713073584343. 86255. 76630. 42990. 4094294619151886282622366964280709204079161089120147.	0.69 40942. -120147.	0.66 28202. -91945.	1 3 6 7 9
10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.95 -92444. -92444.	0.87 -53407. -145851.	0.79 -116382. -262232.	0.72 -71670. -333902.	0.65 69963. -263939.	0.59 59331. -204608.	0.95 0.87 0.79 0.72 0.65 0.59 0.54 0.49 0.44 -924445340711638271670. 69963. 59331. 31772. 28883. 18991. -92444145851262232333902263939204608172836143953124962.	0.49 28883. -143953.	0.44 18991. -124962.	
15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.93 -904124 -9041214	0.81 -49962. -140374.	0.81 0.71 49962104141. 40374244515.	0.61 -61343. -305858.	0.53 57279. -248579.	0.46 46462. -202117.	0.93 0.81 0.71 0.61 0.53 0.46 0.40 0.35 0.30 -904124996210414161343. 57279. 46462. 23799. 20695. 13015. -90412140374244515305858248579202117178318157623144607.	0.35 20695. -157623.	0.30 13015. -144607.	

CASH FLOW TABLE FOR OIL ERB WEST AND SOUTH FURIOUS OIL FIELDS TABLE 9-6-9

VOL.III CASE II A : ERB WEST, LABUAN TERMINAL CASE

PAGE

PREMISES#

			æ	•	5625.	31.39	50.12
YEARS YEARS 10 % 10 %	#	% % % % % % % % % % % % % % % % % % %	-	•	7300	31,39	41.14
5 YEAR 3 YEAR 100.00 % 8.00 %	ENIS	10.00 % 20.00 % 70.00 % 30.00 % 0.50 % 1	9	ò	1300.	31.39	45.46
	Ш Ж	BASIC PRICE	īV	•	7300.	31,39	43.30
	P/S A G R		4	•	7300.	31.39	41.24
4PANY	M S 0 F	RATE COST RECOVERY RATIO IL SHARE AS ING COMPANY PAYMENT FOR RESEARCH FUND BASIC PRICE (AT 1976 BASE) INCREASE FOR BASIC PRICE PAYMENT FOR PROFIT OIL ABOVE ON BONUS ABOVE 50000BBL/DAY Y BONUS AX RATE * INPUT DATA BY YEAR *	m	81863.	•	0.0	39.27
=E ERIOD 3F OIL CO/	BASIC TERMS	RECOVERY ARE OMPANY NT FOR RE PRICE (ASE FOR B NUS ABOVE US THOUT	2	77320.	•	0.0	37.40
PRODUCTION LIFE PRE-STARTUP PERIOD EQUITY RATIO OF OIL COMPANY INTEREST RATE	* BASI	ROYALTY RATE MAXIMUM COST RECOVERY RATIO PROFIT OIL SHARE OPERATING COMPANY RATE OF PAYMENT FOR RESEARCH FUND INITIAL BASIC PRICE (AT 1976 BASE) RATE OF INCREASE FOR BASIC PRICE RATE OF PAYMENT FOR PROFIT OIL ABOVE PRODUCTION BONUS ABOVE 50000BBL/DAY DISCOVERY BONUS * INPUT DATA BY YEAR *		102689.	ċ	0.0	35.62
2 2 2 2		∝ ≆⊈	TERM	MENT (M\$ 1000)	(M BBL/YEAR)	OIL (M\$/8BL)	OIL (M\$/BBL)
				CAPITAL INVEST	OIL PRODUCTION	SALES PRICE OF	BASIC PRICE OF

8YR Total

261872.

TABLE 9-6-9 CASH FLOW TABLE FOR DIL ERB WEST AND SOUTH FURIOUS DIL FIELDS

CASE II A: ERB WEST, LABUAN TERMINAL CASE VOL.111

	**		OW TABL	BLE FOR PETR (X M\$ 1000)	ONAS #				(CONT'D) PAGE 2
TERM	H	2	M	4	۲v	ø	۲	ω	8YR. Total
I SALES REVENUE FROM PROFIT OIL	•	ċ	•	112282.	112282.	112282.	112282.	86519.	535647.
2 REVENUE FROM OIL BASIC PRICE	•	ö	•	•	•	•	ò	ċ	•0
3 BONUS FROM OIL COMPANY DISCOVERY BONUS PRODUCTION BONUS	÷ • •	000	000	2500. 2500. 0.	000	000	000		2500. 2500. 0.
4 RESEARCH FUND FROM OIL CO.	·	0.	ô	470.	470.	470.	470.	362.	2241.
5 TOTAL CASH INFLOW	Ċ	•0	ō	115252.	112752.	112752.	112752.	86881.	540388.
6 INCOME TAX	ô	•0	0.	51863.	50738.	50738.	50738.	39096	243174.
7 NET CASH FLOW	ċ	•	0.	63388*	62013.	62013.	62013.	47784•	
8 CUMULATIVE NET CASH FLOM	ċ	•0	ò	63388.	63388. 125402. 187415. 249429.	187415.	249429.	297213.	

TABLE 9-6-9 CASH FLOW TABLE FOR OIL ERB WEST AND SOUTH FURIOUS OIL FIELDS

VOL.III CASE II A : ERB WEST. LABUAN TERMINAL CASE

## ##	PRESENT WORTH OF NET CASH FLOW FOR PETRONAS (X M\$ 1000)	ORTH OF NE	CASH F	KUK YUK	1000)	.			PAGE
TERM	e nt	2	m	4	w	9	7	ω	
PRESENT WORTH 5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.98 0.0	0.93 0.	0.89	0.84 53438. 53438.	0.80 49789. 103227.	0.76 47418. 150645.	0.73 45160. 195806.	0.69 33141. 228947.	1 1 2 4 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.95 0.0	0.87 0.0	0.79	0.72 45408. 45408.	0.65 40385. 85793.	0.59 36714. 122507.	0.54 33376. 155883.	0.49 23380. 179263.	
15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.93	0.81 0.	0.71 0. 0.	0.61 38866. 38866.	0.53 33063. 71929.	0.46 28751. 100680.	0,40 25001. 125680.	0.35 16751. 142432.	

TABLE 9-6-9 CASH FLOW TABLE FOR DIL ERB WEST AND SOUTH FURIOUS DIL FIELDS VOL.III CASE II A: ERB WEST, LABUAN TERMINAL CASE

* * CASH FLOW TABLE FOR OPERATING COMPANY * * (X Ms 1000)

(CONT'D) PAGE 4

ТЕКМ	H	2	m	4	'n	. 9	~	ω	BYR. TOTAL
1 SALES REVENUE FROM PROFIT DIL	١ 0٠	ò	o	48121.	48121.	48121.	48121.	37079.	229563.
2 SALES REVENUE FROM COST DIL	ô	ò	•	45829.	45829.	45829.	45829.	35314.	218631.
3 SALES REVENUE FROM ROYALTY DIL	IL 0.	•0	ó	22915.	22915.	22915.	22915.	17657.	109316.
4 TOTAL CASH INFLOW	•	ô	ċ	116865.	116865.	116865.	116865.	•05006	557510.
5 ROYALTY	•0	•0	•0	22915.	22915.	22915.	22915.	17657.	109316.
6 PAYMENT FOR OIL BASIC PRICE	0.	0	•	0.	0	0.	0.	Ġ	•0
7 BONUS DISCOVERY BONUS PRODUCTION BONUS	000	•••	•••	2500. 2500. 0.	•••	000	• • •	000	2500. 2500. 0.
8 RESEARCH FUND TO PETRONAS	•0	ò	•	470.	470.	470.	470.	362.	2241.
OPERATING EXPENSES (M\$/BBL) 9 OPERATING COST CAPITAL COST RECOVERY	0000	0000	0000	45829. 6.28 13328. 32501.	45829. 6.28 13328. 32501.	45829. 6.28 13328. 32501.	45829. 6.28 13328. 32501.	35314. 6.28 13135. 22179.	218631. 6.28 66447. 152184.
INCOME BEFORE TAX	ċ	å	•	45151.	47651.	47651.	47651.	36717.	224822•
10 INCOME TAX	•	ö	0	20318.	21443.	21443.	21443.	16523.	101170.
11 CAPITAL INVESTMENT	102689.	77320.	81863.	0	ò	0	•0	•	261872.
12 TOTAL CASH OUTFLOW	102689.	77320.	81863.	59530.	58155.	58155.	58155.	47677.	543545.
13 NET CASH FLOW	-102689.	-77320.	-81863.	57335.	58710.	58710.	58710.	42373.	
14 CUMULATIVE NET CASH FLOW	-102689.	-180009.	-261872.	-204538.	-145828.	-87119.	-58409•	13964.	
15 DCF ROR OF NET CASH FLOW (%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.31	
16 CORPORATE CAPITAL	102689.	77320.	81863.	0	ó	0	.	•	261872.
17 INTEREST	0	0	•	•	•	•	ò	•	•0
18 BANK BORROWING	•	•	•	•	ô	0	o	•	•0
19 REPAYMENT	•	•	0.	ó	•	6	•	•0	•0
20 BORROWING BALANCE	0	•0	•	ö	ċ	ò	ö	ċ	
21 PAYOUT TIME 7.7 YEARS) 	1 		; 	

TABLE 9-6-9 CASH FLOW TABLE FOR DIL ERB WEST AND SOUTH FURIOUS DIL FIELDS

VOL.III CASE II A : ERB WEST, LABUAN TERMINAL CASE

(CONT'D) PAGE 5				
	œ	0.69 29388. -32035.	0.49 20732. -63044.	0.35 14855. -83979.
	۴-	0.73 42754. -61423.	0.54 31598. -83776.	0.40 23669. -98834.
APANY # #	•	0.76 44892. -104178.	0.59 34758. -115374.	0.53 0.46 0.40 31302. 27219. 23669. 14972112250298834.
RATING CON	ស	0.80 47137. -149070.	0.65 38233. -150132.	0.53 31302. -149721.
H FOR OPER	4	0.93 0.89 0.84 0.80 0.76 -7186372463. 48334. 47137. 44892. -172078244540196206149070104178.	0.87 0.79 0.72 0.65 0.59 -6702064507. 41072. 38233. 34758. -164930229437188365150132115374.	0.81 0.71 0.61 0.53 0.46 -6269757722. 35154. 31302. 27219. -158455216177181023149721122502.
CASH FLO	m	0.89 -72463. -244540.	0.79 -64507. -229437.	0.71 -57722. -216177.
TH OF NET	8	0.93 -71863. -172078.	0.87 -67020. -164930.	0.81 -62697. -158455.
PRESENT WORTH OF NET CASH FLOW FOR OPERATING COMPANY # (X M\$ 1000)		0.98 -100214. -100214.	0.95 -97910. -97910.	0.93 -95758. -95758.
## ##	TERM PRESENT WORTH	5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH

TABLE 9-6-10 CASH FLOW TABLE FOR OIL ERB WEST AND SOUTH FURIOUS OIL FIELDS

VOL.III CASE II B : ERB WEST, MANGALUM TERMINAL CASE

PREMISES

				80	•	5625.	31,39	50.12
YEARS YEARS 30 %	4	10.00 % 20.00 % 70.00 % 30.00 % 6.50 % 70.00 % 70.00 % M\$ 5000000000000000000000000000000000000		7	•	7300.	31.39	47.74
: 5 YE : 100.00	E N T S	10.00 % 20.00 % 70.00 % 90.00 % 6.50 % 70.00 % 70.00 % 70.00 % 70.00 % 70.00 % 70.00 % 70.00 %		9	•	7300.	31.39	45.46
	AGREEM	BASIC PRICE		ß	°	7300.	31,39	43.30
	P/S A G	SE) AY *		4	ò	7300.	31.39	41.24
MPANY	M S O F	RATE COST RECOVERY RATIO 11L SHARE AS 1NG COMPANY PAYMENT FOR RESEARCH FUND BASIC PRICE (AT 1976 BASE) INCREASE FOR BASIC PRICE INCREASE FOR BASIC PRICE ON BONUS ABOVE 50000BBL/DAY CY BONUS AX RATE * INPUIT DATA BY YEAR **	1	m	61426.	•	0.0	39.27
FE ERIOD OF OIL CO	BASIC TERMS	RATE COST RECOVERY ILL SHARE AS ING COMPANY PAYMENT FOR RE BASIC PRICE (BASIC PRICE (INCREASE FOR PR ON BONUS ABOVE XY BONUS AX RATE * INPIIT		7	102291.	ċ	0.0	37.40
PRODUCTION LIFE PRE-STARTUP PERIOD EQUITY RATIO OF OIL COMPANY INTEREST RATE	* 8 A S]	ROYALTY RATE MAXIMUM COST RECOVERY RATIO PROFIT OIL SHARE PETRONAS OPERATING COMPANY RATE OF PAYMENT FOR RESEARCH FUND INITIAL BASIC PRICE (AT 1976 BASE RATE OF PAYMENT FOR PROFIT OIL ABOV RATE OF PAYMENT FOR PROFIT OIL ABOV PRODUCTION BONUS ABOVE 50000BBL/DAY INCOME TAX RATE * INDIIT DATA BY YEAR		-	108517.	ô	0.0	35.62
AR PRINT		DAMY ALLON		TERM	(M\$ 1000)	(M BBL/YEAR)	OIL (M\$/BBL)	OIL (MS/BBL)
		·			CAPITAL INVESTMENT (M\$ 1000)	OIL PRODUCTION (M B	SALES PRICE OF OIL	BASIC PRICE OF OIL
					CAPI	OIL	SALE	BASI

8YR Total 272234.

TABLE 9-6-10 CASH FLOW TABLE FOR OIL ERB WEST AND SOUTH FURIOUS OIL FIELDS

VOL.III CASE II B : ERB WEST, MANGALUM TERMINAL CASE '

+ + CASH FLDW TABLE FOR PETRONAS + + { x M\$ 1000}

(CONT'D) PAGE 2

TERM		2	m	4	ľ	9	~	œ	8YR. TOTAL
1 SALES REVENUE FROM PROFIT DIL	•	0	•	112282.	112282.	112282.	112282.	86519.	535647.
2 REVENUE FROM OIL BASIC PRICE	•	•	•	•	•0	•	0	ċ	•0
3 BONUS FROM OIL COMPANY	.	• •	o d	2500.	o d	• •	00	••	2500.
PRODUCTION BONUS	36	ċ	ċ	0	0	ò	0	•0	•0
4 RESEARCH FUND FROM OIL CO.	ò	•0	•	470.	470.	470.	470.	362.	2241.
5 TOTAL CASH INFLOW	•0	•0	ó	115252.	112752.	112752.	112752+ 86881	86881.	. 540388
6 INCOME TAX 0.	0	0	0	51863.	50738.	50738. 50738.	50738.	39096•	243174.
7 NET CASH FLOW	•0	ċ	0	63388.		62013. 62013.	62013.	47784.	
8 CUMULATIVE NET CASH FLOW	•	•	•	63388.		187415.	125402. 187415. 249429. 297213.	297213.	

TABLE 9-6-10 CASH FLOW TABLE FOR OIL ERB WEST AND SOUTH FURIOUS OIL FIELDS

VOL.III CASE II B : ERB WEST, MANGALUM TERMINAL CASE

*	PRESENT WORTH	ORTH OF NE	T CASH F	LOW FOR	H OF NET CASH FLOW FOR PETRONAS (X MS 1000)	# #			(CONT'D) PAGE 3
TERM	1	2	m	4	ß	9	4	ω	
PRESENT WORTH									٠
5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.98	0.93	0.89	0.84 53438. 53438.	0.80 49789. 103227.	0.76 47418. 150645.	0.73 45160. 195806.	0.69 33141. 228947.	
10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.95	0.87	0.79	0.72 45408. 45408.	0.65 40385. 85793.	0.59 36714. 122507.	0.54 33376. 155883.	0.49 23380. 179263.	
15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.93	0.81	0.71	0.61 38866. 38866.	0.53 33063. 71929.	0.46 28751. 100680.	0.40 25001. 125680.	0.35 16751. 142432.	

TABLE 9-6-10 CASH FLOW TABLE FOR OIL ERB WEST AND SOUTH FURIDUS OIL FIELDS VOL.111 CASE II B : ERB WEST, MANGALUM TERMINAL CASE

* * CASH FLOW TABLE FOR OPERATING COMPANY * * (x M\$ 1000)

(CONT'D) PAGE 4

TERM	-	8	m	4	īV	9	7	æ	BYR. TOTAL
1 SALES REVENUE FROM PROFIT OIL	•	•0	ò	48121.	48121.	48121.	48121.	37079.	229563.
2 SALES REVENUE FROM COST OIL	•	•	•	45829.	45829.	45829.	45829.	35314.	218631.
3 SALES REVENUE FROM ROYALTY OIL	٠0	ô	0	22915.	22915.	22915.	22915.	17657.	109316.
4 TOTAL CASH INFLOW	•0	•	ò	116865.	116865.	116865.	116865.	90050	\$57510.
5 ROYALTY	0.	•0	0	22915.	22915.	22915.	22915.	17657.	109316.
6 PAYMENT FOR OIL BASIC PRICE	•0	0	•	•	0.	•	ó	ċ	•0
7 BONUS DISCOVERY RONUS PRODUCTION BONUS	000	000	666	2500. 2500. 0.				000	2500. 2500. 0.
8 RESEARCH FUND TO PETRONAS	ċ	0	0	470.	470.	470.	410.	362.	2241.
OPERATING EXPENSES (M\$/RBL) 9 OPERATING COST CAPITAL COST RECOVERY	0000	0000	0000	45829. 6.28 13538. 32291.	45829. 6.28 13538. 32291.	45829. 6.28 13538. 32291.	45829. 6.28 13538. 32291.	35314. 6.28 13345. 21969.	218631. 6.28 67497. 151134.
INCOME BEFORE TAX	0	•	0	45151.	47651.	47651.	47651.	36717.	224822.
10 INCOME TAX	•0	•0	•	20318.	21443.	21443.	21443.	16523•	101170.
11 CAPITAL INVESTMENT	108517.	102291.	61426.	•	•	•	0	•0	272234.
12 TOTAL CASH OUTFLOW	108517.	102291.	61426.	59740.	58365.	58365.	58365.	47887.	. 554957
13 NET CASH FLOW	-108517.	-102291.	-61426.	57125.	58500.	58500.	58500.	42163.	
14 CUMULATIVE NET CASH FLOW	-108517.	-210808.	-272234•	-215110.	-156610.	-98111.	-39611.	2552•	
15 DCF ROR OF NET CASH FLOW (%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.23	
16 CORPORATE CAPITAL	108517.	102291.	61426.	ċ	ó	ċ	ò	0.	272234.
17 INTEREST	ċ	•	•	ò	•	0	ò	•0	•0
18 BANK BURROWING	ò	0	•0	ò	•	0	•	•0	•
19 REPAYMENT	•	•	•	ò	0	•	•	•0	•0
20 BORROWING BALANCE	•0	0.	0.	•0	0	0	0	0.	
21 PAYOUT TIME 7.9 YEARS									

TABLE 9-6-10 CASH FLOW TABLE FOR OIL ERB WEST AND SOUTH FURIOUS OIL FIELDS

VOL.111 CASE II B : ERB WEST, MANGALUM TERMINAL CASE

# #	PRESENT WOR	STH OF NET	CASH FLO	OW FOR OPERATING (X M\$ 1000)	WORTH OF NET CASH FLOW FOR OPERATING COMPANY * (x M\$ 1000)		1		(CONT'D) PAGE 5
TERM	-	8	m	₫.	'n	9	~	σο	
PRESENT WORTH									
5.00% DISCOUNT RATE PRESENT WORTH	0.98	0.93 -95072.	0.89	0.84 48157.	0.80	0.76 44731.		0.69	
CUMULATIVE PRESENT WORTH	-105902•	-200974•	-255347.	-207189.	-200974255347207189160221115490.	-115490.	-72889.	-43646	
10.00% DISCOUNT RATE	0.95	0.87	0.79	0.72	0.65	0.59	0.54	64.0	
PRESENT WORTH CUMULATIVE PRESENT WORTH	-103467. -103467.	-88664. -192131.	-48403. -240534.	40921. -199613.	-8866448403. 40921. 38097. 34633192131240534199613161516126883.	34633. -126883.	- 1	20630. -74768.	
15.00% DISCOUNT RATE	0.93	0.81	0.71	0.61	0.81 0.71 0.61 0.53 0.46	97.0	0.40	0.35	
PRESENT WORTH CUMULATIVE PRESENT WORTH	-101193. -101193.	-82945. -184138.	-43312. -227450.	35025. -192424.	-8294543312. 35025. 31190. 27122. 23584184138227450192424161235134113110529.	27122. -134113.	23584. -110529.	14781. -95748.	

SUMMARY OF OFFSHORE STRUCTURES Table 28-4-1 (Vol. III)

FIELD/	W.D.		PLATFORM		FACILITY LOCATION	23	CATION					
FACILITY	FT	PLATFORM TYPE	CVERALL DIMENSION	BORNEO GRID	GRID		GEOGRA	GEOGRAPHICAL			DATE	5
				NORTH	ĖAST	1	Latn	IONGE	ы	† 	NSTAILE	
TEMBUNGO		47 Miles NNW off K. Kinabalu									•	
«	27.7	8P/18W Self-Cont. Drill & Prod. P/F	90'-0" x 185'-0"			ů	37' 8.848"	115°	47.]	47' 12.889"		
SALM	292	Single Anchor Leg Mooring System										
	;	;		THOSE CASE	F-4-000 F	u		714		9		
SAMARANG	32	32 Miles off Labuan		2,040,000	T, 634,000	n	· .	***		3		
SMDP-A	35	8P/21W Self-Cont. Drill. P/F	45'-0" x 18'-10-1/2"	2,040,200	1,894,040	Ŋ	37 9	114	53	10 Ma	Mar. '75	v
SMDP-B	160	8P/28W Tender-Ass. Drill. P/F		2,046,250	1,897,300							
SMJT-C	32	4P/6W Cluster Drill. P/F	30'-0" x 30'-0"									
SMJT-D	32	4P/6W Cluster Drill. P/F	30'-0" x 30'-0"									
SM-4	35	1P/1W WHPJ				Ŋ	36 39.27	114	52 3	33.02 Ma	Mar. '75	ιΩ
SMP-A	35	4P Prod. P/F	50'-0" x 62'-0"							Ā	Feb. '75	ιΩ
SMP-B	160	4P Prod. P/F	50'-0" x 62'-0"	2,046,432	1,897,405							
SMV-A	35	3P Vent Structure								M	Mar. '75	ro.
SMV-B	156	3P Vent Structure										
SMR-A	35	4P Riser P/F	35'-0" x 35'-0"	2,039,330	1,900,000					ñ	Jan. '75	ហ៊

SUMMARY OF OFFSHORE STRUCTURES (Cont'd) Table 28-4-1 (Vol. III)

	DATE	THE THE PARTY OF T
	GEOGRAPHICAL	LONGE
FACILITY LOCATION	GEOGRA	LATN
FACILITY	GRID	EAST
	BORNEO GRID	NORTH
PLATFORM	OVERALL DIMENSION	
·.	PLATFORM TYPE	
W.D.	FT MSL	
FIELD/	FACILITY	

LABUAN TERMINAL		1,909,667FT	1,992,808 ^{FT}
SBM 95	SBM 95 Single Buoy Mooring System 1,992,808	1,909,667	1,992,808

Mid. '66 113° 56' 37" . 40° 29° 33"

Single Bucy Mooring System

ditto ditto

4P Manifold P/F

20

WL-M.P. SBM-1 SBM-2 SBM-4

LUTONG TERMINAL

MARINE PIPELINES	
SUMMARY OF SUE	
e 28-4-2	\ +++ -
Tabl	/11/

	on the second se	(Vol. III)				- The second of
ORIGIN	TERMINAL	DIAMETER(IN.)	LENGTH (FT.)	SERVICE	NOS.	REMARKS
TEMBUNGO FIELD						
TEMBUNGO "A"	SALM	10	7,000	CRUDE	rH	
SAMARANG FIELD						
SMDP-A	SMP-B	9	7,000	WELL FLUID	2	VIA SMP-A
SM-4	SMP-A	9	5,200	WELL FLUID	н	
SMJT-C	SMP-A	9	5,460	WELL FLUID	ю	
SMJT-D	SMJT-C	9		WELL FLUID	4	
SMP-B	SMR-A	œ	15,300	CRUDE	7	
SMP-A	SMR-A	œ	10,300	CRUDE	1	
SMR-A	LABUAN T.	18	156,412	CRUDE	н	
SMP-A	SMJT-C	10	5,460	GAS LIFT	п	
SMJT-C	SM-4	ю	2,150	GAS LIFT	7	
SMP-B	SMV-B	10	2,000	VENT	m	
SMP-A	SMV-A	10	1,000	VENT	т	

(Cont'd)
PIPELINES
SUBMARINE
SUMMARY OF
28-4-2
Table

	REMARKS								
	NOS.		г	н	—	e	ĸ	H	H
	Z .								
	SERVICE		WELL FLUID	CRUDE	CRUDE	VENT	VENT	GAS LIFT	CRUDE
	LENGTH (FT.)		4,910	3,000	67,970	2,000	2,000	3,000	15,000
(Vol. III)	DIAMETER (IN.)		9	10	10	1.0	10	9	48
	TERMINAL		TKP-A	TKP-A	WLDP-C	TKV-B	TKV-A	TKDP-B	SBM
	ORIGIN	TUKAU FIELD	TK-3	TKP-B	TKP-A	TKP-B	TKP-A	TKP-A	LABUAN TERMINAL LABUAN T.

LUTONG TERMINAL						
LUTONG T.	SBM NO. 1	12	20,454		н	1B
LUTONG T.	SBM NO. 1	12	20,700		П	10
LUTONG T.	M.P.	9	26,550	GAS OIL	П	1A
LUTONG T.	M.P.	12	19,212		H	2B
LITTONG TE	Đ. M.	12	19,630		Н	20

APABILITY
PLATFORM C
RATE VS.
PRODUCTION
PRESENT
ON OF
COMPARIS

	Table 28-4-3	COMPARISON OF	COMPARISON OF PRESENT PRODUCTION RATE US. PLATFORM CAPABILITY	ION RATE US.	PLATFORM CAPAB	HILL			
	(vol. III)	PRESENT PR	PRODUCTION RATE @	@ MAY, 1976		PRODUCTIO	PRODUCTION PLATFORM CAPABILITY	LILL	
OIL FIELD	PRODUCTION PLATFORM	GROSS LIQUID (RPD)	NET OIL (BPD)	GAS (MMSCFD)	WATER (BPD)	NO. OF SEPARATION BANKS	GROSS LIQUID THROUGHPUT (BPD)	GAS (MMSCFD)	EFFICIENCY* (%)
TEMBUNGO	K	5,294	4,983	3.7	311	٦	20,000	16	26.5
BARONIA	BNP~A	51,977	49,162	106.1	2,815	, N	000,09	180	96.6
WEST LUTONG	WLP-A	23,191	10,033	24.6	13,158	a -	30,000	06 06	33.1
	WLP-C	33,130	14,333	35.2	18,797	1 17	000,00	180	55.2
ВАКАМ	BAP-A BAP-B	33,503 14,358	21,478	82.2 35.2	12,025 5,153	2	30,000	180	55.8
		47,861	30,683	117.4	17,178	h .	90,000	270	53.2
BAKAU	BKP-A	5,316	5,203	10.5	113	н	30,000	. 06	17.71
TUKAU	TKP-A TKP-B	6,706	6,516 6,515	8 8 8	190	п п	30,000	06	22.4
		13,411	13,031	17.6	380	5	60,000	180	22.4
SAMARANG	SMP-A	65,000**				8	000,09	180	108.3
	SMP-B	5,000**				r4	30,000	06	/-97
		70,000**				m	90,00	270	77.8

NOTE: * EFFICIENCY = GROSS LIQUID/GROSS LIQUID THROUGHPUT

** ROUNDED FIGURE IN DECEMBER, 1976

* EFFICIENCY = GROSS LIQUID/GROSS LIQUID THROUGHPUT = ADDITIONAL WELL DEVELOPMENT CASE _ NOTE

42.8 [54.6]

300 [500]

47.7 [66.0]

38,230 [48,650]

38,530 [49,150]

NOTE: *EFFICIENCY = GROSS LIQUID/GROSS LIQUID THROUGHPUT
[] = ADDITIONAL WELL DEVELOPMENT CASE

Table 28-4-6 SUMMARY OF GAS UTILIZATION (UNIT: MMSCFD) (Vol. III)

	TOTAL	106.1	35.2	117.4	10.5	17.6	286.8		41.1
	VENT GAS	82.8	16.7	106.0	8.7	14.6	228.8		30.9
	GAS TO SHORE		11.2				11.2		
/ + + +	PUMP DRIVE GAS	23.3	7.3	11.4	1.8	3.0	46.8		10.2
· TOA)	LUTONG STREAM	BARONIA	WEST LUTONG	BARAM	BAKAU	TUKAU	TOTAL	LABUAN STREAM	SAMARANG

* Figures are as of May, 1976

Table 29-6-1 4 (Vol. III)

4-LEG OFFSHORE PLATFORM COST

Field Name	Water	Total Cost		Breakdown	
	Depth		Material Cost	Fabrication Cost	Installation Cost
			(Weight: ton)	
Sarawak Area					
Central Luconia					
E-8	207 '	3,618,000	682,000 (852)	546,000	2,390,000
E-11	230'	3,805,000	772,000 (965)	618,000	2,415,000
F-6	285'	4,289,000	962,000 (1,202)	790,000	2,537,000
F-13	250'	4,054,000	864,000 (1,080)	691,000	2,499,000
F-14	347 <i>'</i>	4,899,000	1,272,000 (1,590)	1,018,000	2,609,000
F-23	280 1	4,239,000	958,000 (1,197)	760,000	2,521,000
Temana	99'	3,261,000	426,000 (532)	341,000	2,494,000
E-6	2391	3,910,000	819,000 (1,023)	655,000	2,436,000
Betty	247 '	3,998,000	853,000 (1,066)	683,000	2,462,000
Bokor	228 1	3,788,000	765,000 (956)	612,000	2,411,000
Baronia	254 1	4,086,000	880,000 (1,100)	705,000	2,501,000
B-12	298 '	4,425,000	1,025,000 (1,281)	830,000	2,570,000
Şabah Area					
South Furious	188'	3,481,000	610,000 (762)	485,000	2,386,000
Erb West	252'	4,070,000	872,000 (1,090)	698,000	2,500,000
Peninsular Area					
Bekok	234'	3,849,000	793,000 (991)	634,000	2,422,000
Pulai	245'	3,981,000	844,000 (1,055)	675,000	2,462,000
Seligi	248'	4,003,000	856,000 (1,070)	685,000	2,462,000
Tapis	225'	3,767,000	754,000 (942)	604,000	2,409,000
Jerneh	205'	3,590,000	668,000 (835)	534,000	2,388,000

Table 29-6-2 6-LEG OFFSHORE PLATFORM COST (Vol. III)

		,		•	
Field Name	Water	Total Cost		Breakdown	
	Depth		Material Cost (Weight: ton	Fabrication Cost)	Installation Cost
Sarawak Area					
Central Luconia				,	
E-8	207'	5,011,000	1,339,000 (1,673)	1,071,000	2,601,000
E-11	230'	5,347,000	1,504,000 (1,880)	1,203,000	2,640,000
F-6	285 *	6,063,000	1,820,000 (2,275)	1,452,000	2,791,000
F-13	250'	5,781,000	1,680,000 (2,100)	1,344,000	2,757,000
F-14	347'	7,204,000	2,400,000 (3,000)	1,920,000	2,884,000
F-23	280'	5,915,000	1,736,000 (2,170)	1,397,000	2,782,000
Temana	99'	3,955,000	744,000 (930)	593,000	2,618,000
E-6	239'	5,451,000	1,551,000 (1,938)	1,241,000	2,659,000
Betty	247'	5,655,000	1,649,000 (2,061)	1,319,000	2,687,000
Bokor	228'	5,329,000	1,495,000 (1,868)	1,197,000	2,637,000
B-12	298'	6,631,000	2,103,000 (2,628)	1,702,000	2,826,000
Sabah Area	-				•
South Furious	188'	4,827,000	1,241,000 (1,551)	997,000	2,589,000
Erb West	252'	5,831,000	1,706,000 (2,132)	1,364,000	2,761,000
Peninsular Area					
Bekok	234'	5,396,000	1,525,000 (1,906)	1,220,000	2,651,000
Pulai	245	5,595,000	1,618,000 (2,022)	1,295,000	2,682,000
Seligi	248 '	5,669,000	1,655,000 (2,068)	1,324,000	2,690,000
Tapis	225'	5,260,000	1,466,000 (1,832)	1,173,000	2,621,000
Jerneh	205'	4,980,000	1,322,000 (1,652)	1,058,000	2,600,000

Table 29-6-3 (Vol. III)

8-LEG OFFSHORE PLATFORM COST

Field Name	Water	Total Cost	<u> </u>	Breakdown	··
	Depth	•	Material Cost (Weight: ton	Fabrication Cost	Installation Cost
Sarawak Area			·	,	•
Central Luconia					
E-8	207'	7,459,000	2,518,000 (3,147)	2,015,000	2,926,000
E-11	230'	8,180,000	2,864,000 (3,580)	2,291,000	3,025,000
F-6	285 '	9,805,000	3,683,000 (4,603)	2,947,000	3,175,000
F-13	250'	8,688,000	3,120,000 (3,900)	2,496,000	3,072,000
F-14	347'	12,251,000	4,960,000 (6,200)	3,968,000	3,323,000
F-23	280'	9,596,000	3,574,000 (4,467)	2,857,000	3,165,000
Temana	99'	5,568,000	1,447,000 (1,808)	1,158,000	2,963,000
E-6	239'	8,419,000	2,990,000 (3,737)	2,392,000	3,037,000
Betty	247'	8,613,000	3,086,000 (3,857)	2,468,000	3,059,000
Bokor	228 '	8,125,000	2,837,000 (3,546)	2,269,000	3,019,000
B-12	298'	10,139,000	3,839,000 (4,798)	3,085,000	3,215,000
Sabah Area					
South Furious	188'	7,012,000	2,280,000 (2,850)	1,824,000	2,908,000
Erb West	252'	8,740,000	3,149,000 (3,936)	2,519,000	3,072,000
Peninsular Area					
Bekok	234'	8,283,000	2,920,000 (3,650)	2,336,000	3,027,000
Pulai	245'	8,563,000	3,062,000 (3,827)	2,450,000	3,051,000
Seligi	248	8,644,000	3,097,000 (3,871)	2,477,000	3,070,000
Tapis	225'	8,032,000	2,796,000 (3,495)	2,237,000	2,999,000
Jerneh	2051	7,413,000	2,496,000 (3,120)	1,997,000	2,920,000
	•		, . , ,		

Table 29-6-4 3-LEG VENT AND FLARE JACKET COST (Vol. III)

Water Depth	Total Cost	В	reakdown	
nacci popen		Material Cost (Weight: ton)	Fabrication Cost	Installation Cost
20'	343,000	100,000 (125)	80,000	163,000
40'	395,000	120,000 (150)	96,000	179,000
60'	447,000	140,000 (175)	112,000	195,000
100'	595,000	204,000 (255)	163,000	228,000
160'	660,000	240,000 (300)	192,000	228,000
180'	696,000	260,000 (325)	208,000	228,000
2001	764,000	280,000 (350)	224,000	260,000
220'	800,000	300,000 (375)	240,000	260,000
240'	869,000	320,000 (400)	256,000	293,000
260'	905,000	340,000 (425)	272,000	293,000
280'	973,000	360,000 (450)	288,000	325,000

Table 29-6-5 COST OF 3 CONDUCTORS (Vol. III)

Field Name	Water	Total Cost		Breakdown	
	Depth		Material Cost (Weight: ton	Fabrication Cost	Installation Cost
Sarawak Area					
Central Luconia					
E-8	207'	571,000	128,000 (160)	38,000	405,000
E-11	230 '	581,000	135,000 (168)	41,000	405,000
F-6	285 '	609,000	152,000 (190)	46,000	411,000
F-13	250'	587,000	140,000 (175)	42,000	405,000
F-14	347'	627,000	166,000 (207)	50,000	411,000
F-23	280'	606,000	150,000 (187)	45,000	411,000
Temana	99'	411,000	92,000 (115)	28,000	291,000
E-6	239'	584,000	138,000 (172)	41,000 42,000	405,000
Betty	2471	587,000 580,000	140,000 (175) 135,000	40,000	405,000
Bokor	228'	614,000	(168) 156,000	47,000	411,000
B-12	298'	014,000	(195)	47,000	,
Sabah Area					
South Furious	188'	546,000	150,000 (187)	36,000	360,000
Erb West	252'	588,000	141,000 (176)	42,000	405,000
Peninsular Area					
Bekok	234 †	582,000	136,000 (170)	41,000	405,000
Pulai	245'	587,000	140,000 (175)	42,000	405,000
Seligi	248	587,000	140,000 (175)	42,000	405,000
Tapis	225 '	579,000	134,000 (167)	40,000	405,000
Jerneh	205'	569,000	126,000 (157)	38,000	405,000

Table 29-6-6 (Vol. III)

COST OF 4 CONDUCTORS

Field Name	Water	Total Cost		Breakdown	
	Depth	•	Material Cost (Weight: ton)	Fabrication Cost	Installation Cost
Sarawak Area					
Central Luconia					
E-8	207'	778,000	171,000 (213)	51,000	556,000
E-11	230'	791,000	181,000 (226)	54,000	556,000
F-6	285'	841,000	204,000 (255)	61,000	576,000
F-13	250'	802,000	189,000 (236)	57,000	556,000
F-14	347'	868,000	225,000 (281)	67,000	576,000
F-23	280'	839,000	202,000 (252)	61,000	576,000
Temana	99'	534,000	122,000 (152)	36,000	376,000
E-6	239'	795,000	184,000 (230)	55,000	556,000
Betty	247	800,000	188,000 (235)	56,000	556,000
Bokor	228 '	790,000	180,000 (225)	54,000	556,000
B-12	298'	846,000	208,000 (260)	62,000	576,000
Sabah Area					
South Furious	188'	658,000	162,000 (202)	48,000	448,000
Erb West	252	803,000	190,000 (237)	5 7, 000	556,000
Peninsular Area					
Bekok	234 '	793,000	182,000 (227)	55,000	556,000
Pulai	245	800,000	188,000 (235)	56,000	556,000
Seligi	248	802,000	189,000 (236)	57,000	556,000
Tapis	225'	789,000	179,000 (223)	54,000	556,000
Jerneh	205'	777,000	170,000 (212)	51,000	556,000

(Vol. III)

Table 29-6-7 COST OF 6 CONDUCTORS

Field Name	Water	Total Cost		Breakdown	
	Depth		Material Cost (Weight: ton)	Fabrication Cost	Installation Cost
Sarawak Area					
Central Luconia					
E-8	207'	1,269,000	256,000 (320)	77,000	936,000
E-11	230'	1,286,000	269,000 (336)	81,000	936,000
F-6	285'	1,378,000	312,000 (390)	94,000	972,000
F-13	250'	1,308,000	286,000 (357)	86,000	936,000
F-14	347'	1,422,000	346,000 (432)	104,000	972,000
F-23	280'	1,367,000	304,000 (380)	91,000	972,000
Temana	99'	919,000	182,000 (227) 280,000	55,000 84,000	682,000 936,000
E-6	239' 247'	1,300,000	(350) 285,000	85,000	936,000
Betty Bokor	228 '	1,284,000	(356) 268,000	80,000	936,000
B-12	298'	1,386,000	(335) 318,000 (397)	96,000	972,000
Sabah Area	,		(397)		
South Furious	188'	1,087,000	242,000 (302)	73,000	772,000
Erb West	252'	1,309,000	287,000 (358)	86,000	936,000
Peninsular Area			•		
Bekok	234'	1,290,000	272,000 (340)	82,000	936,000
Pulai	245'	1,302,000	282,000 (352)	84,000	936,000
Seligi	. 248	1,306,000	285,000 (356)	85,000	936,000
Tapis	225 '	1,284,000	268,000 (335)	80,000	936,000
Jerneh	205 '	1,266,000	254,000 (317)	76,000	936,000

(Vol. III)

Table 29-6-8 COST OF 8 CONDUCTORS

Field Name	Water	Total Cost		Breakdown	
	Depth		Material Cost (Weight: tor	Fabrication Cost	Installation Cost
Sarawak Area					
Central Luconia					•
E-8	207'	1,903,000	384,000 (480)	115,000	1,404,000
E-11	230'	1,934,000	408,000 (510)	122,000	1,404,000
F-6	285	2,061,000	464,000 (580)	139,000	1,458,000
F-13	250'	1,955,000	424,000 (530)	127,000	1,404,000
F-14	347'	2,130,000	517,000 (646)	155,000	1,458,000
F-23	280'	2,051,000	456,000 (570)	137,000	1,458,000
Temana	99'	1,234,000	275,000 (343)	77,000	882,000
E-6	239'	1,945,000	416,000 (520)	125,000	1,404,000
Betty	247'	1,952,000	422,000 (527)	126,000	1,404,000
Bokor	228'	1,934,000	408,000 (510)	122,000	1,404,000
B-12	2981	2,080,000	478,000 (597)	144,000	1,458,000
Sabah Area					
South Furious	188'	1,643,000	364,000 (455)	109,000	1,170,000
Erb West	2521	1,958,000	426,000 (532)	128,000	1,404,000
Peninsular Area					
Bekok	234	1,942,000	414,000 (517)	124,000	1,404,000
Pulai	245	1,950,000	420,000 (525)	126,000	1,404,000
Seligi	248	1,953,000	422,000 (527)	127,000	1,404,000
Tapis	225'	1,926,000	402,000 (502)	120,000	1,404,000
Jerneh	205'	1,901,000	382,000 (477)	115,000	1,404,000

Table 29-6-9 (Vol. III)

COST OF 12 CONDUCTORS

Field Name	Water	Total Cost		Breakdown	• .
	Depth		Material Cost (Weight: ton)	Fabrication Cost	Installation Cost
Sarawak Area					
Central Luconia					
E-8	207'	2,442,000	512,000 (640)	154,000	1,776,000
E-11	230 *	2,478,000	540,000 (675)	162,000	1,776,000
F-6	285	2,649,000	616,000 (770)	185,000	1,848,000
F-13	250'	2,514,000	568,000 (710)	170,000	1,776,000
F-14	347'	2,737,000	684,000 (855)	205,000	1,848,000
F-23	2801	2,638,000	608,000 (760)	182,000	1,848,000
Temana	991	1,748,000	366,000 (457)	110,000	1,272,000
E-6	239'	2,494,000	552,000 (690)	166,000	1,776,000
Betty	247'	2,512,000	566,000 (707)	170,000	1,776,000
Bokor	228'	2,473,000	536,000 (670)	161,000	1,776,000
B-12	2981	2,678,000	638,000 (797)	192,000	1,848,000
Sabah Area					
South Furious	188'	1,978,000	488,000 (610)	146,000	1,344,000
Erb West	252'	2,517,000	570,000 (712)	171,000	1,776,000
Peninsular Area					
Bekok	234 '	2,483,000	544,000 (680)	163,000	1,776,000
Pulai	245	2,504,000	560,000 (700)	168,000	1,776,000
Seligi	248'	2,512,000	566,000 (707)	170,000	1,776,000
Tapis	225'	2,468,000	532,000 (665)	160,000	1,776,000
Jerneh	205'	2,439,000	510,000 (637)	153,000	1,776,000

Table 29-6-10 (Vol. III)

COST OF 18 CONDUCTORS

Field Name	Water	Total Cost		Breakdown	
	Depth		Material Cost (Weight: ton)	Fabrication Cost	Installation Cost
Sarawak Area					
Central Luconia					
E-8	207 '	3,600,000	762,000 (952)	228,000	2,610,000
E-11	230'	3,681,000	824,000 (1,030)	247,000	2,610,000
F-6	285'	3,914,000	920,000 (1,150)	276,000	2,718,000
F-13	2501	3,733,000	864,000 (1,080)	259,000	2,610,000
F-14	347'	4,018,000	1,000,000 (1,250)	300,000	2,718,000
F-23	280'	3,893,000	904,000 (1,130)	271,000	2,718,000
Temana	99'	2,615,000	544,000 (680)	163,000	1,908,000
E-6	239'	3,702,000	840,000 (1,050)	252,000	2,610,000
Betty	247'	3,723,000	856,000 (1,070)	257,000	2,610,000
Bokor	228'	3,671,000	816,000 (1,020)	245,000	2,610,000
B-12	298'	3,945,000	944,000 (1,180)	283,000	2,718,000
Sabah Area					
South Furious	188'	2,962,000	728,000 (910)	218,000	2,016,000
Erb West	252'	3,738,000	868,000 (1,085)	260,000	2,610,000
Peninsular Area					•
Bekok	234'	3,692,000	832,000 (1,040)	250,000	2,610,000
Pulai	245'	3,702,000	840,000 (1,050)	252,000	2,610,000
Seligi	2481	3,723,000	856,000 (1,070)	257,000	2,610,000
Tapis	225'	3,650,000	800,000 (1,000)	240,000	2,610,000
Jerneh	205'	3,598,000	760,000 (950)	228,000	2,610,000

* Pipelines of size from 6" to 10" exclude weight coating cost.

UNIT COS	
12	
29-6-1	
oje Loj	

~
RISER
ONE
(PER
PIPE
RISER
빙
T COST
UNIT

Total	Materials	Breakdown Prefabrication	Riser Installation
	7.000	2.000	& Tie-in 181,000
	11,000	2,000	181,000
	15,000	2,000	181,000
	20,000	2,000	181,000
	24,000	3,000	. 272,000
	28,000	3,000	272,000
	33,000	3,000	272,000
	38,000	4,000	362,000
	43,000	4,000	362,000
	48,000	4,000	362,000
	50,000	5,000	453,000
	55,000	2,000	453,000
	60,000	2,000	453,000
	65,000	000'9	543,000
	70,000	9,000	543,000

(Vol. III)

Table 29-6-14 OIL PRODUCTION EQUIPMENT COST

UNIT : US\$

CAŚE	10,	000BPD	١
------	-----	--------	---

Material Cost	Installation Cost	Total Cost
593,000	322,000	915,000
320,000	80,000	400,000
105,000	27,000	132,000
1,018,000	429,000	1,447,000
Material Cost	Installation Cost	Total Cost
664,000	340,000	1,004,000
336,000	84,000	420,000
113,000	29,000	142,000
1,113,000	453,000	1,566,000
Material Cost	Installation Cost	Total Cost
795,000	400,000	1,195,000
368,000	93,000	461,000
128,00	32,000	160,000
1,291,000	525,000	1,816,000
	Section 593,000 320,000 105,000 1,018,000 Material Cost 664,000 113,000 1,113,000 Material Cost 795,000 368,000 128,00	Cost Cost 593,000 322,000 320,000 80,000 105,000 27,000 1,018,000 429,000 Material Installation Cost 664,000 340,000 336,000 84,000 113,000 29,000 1,113,000 453,000 Material Cost Cost 795,000 400,000 368,000 93,000 128,00 32,000

Table 29-6-15 (Vol. III)

UNIT COST OF

OTHER PRODUCTION EQUIPMENT

UNIT : US\$

1.	ONSHORE TANKAGE	5 / BBI
2.	PUMP WITH ELEC. MOTER & ACCESSORIES	650 / HP
3.	GAS COMPRESSOR WITH GAS TURBINE	600 / HP

Table 29-6-16 (Vol. III)

NEWLY BUILT STORAGE BARGE COST

UNIT : US\$

STORAGE CAPACITY	STORAGE BARGE COST
940,000 BBLS	19,000,000
1,100,000 BBLS	23,000,000
1,200,000 BBLS	25,000,000
1,270,000 BBLS	27,000,000
1,400,000 BBLS	32,000,000

Table 29-6-17 (Vol. III)

ONSHORE SUPPORT FACILITIES COST

(IN CASE OF 30,000BPD)

UNIT: US\$

OFFSHORE STORAGE CASE

ONSHORE STORAGE CASE

SITE PREPARATION	50,000	173,000
BUILDING	1,960,000	2,000,000
JETTY	2,000,000	2,000,000
OTHERS	1,203,000	1,252,000
AUXILIARY FACILITIES FOR TANKAGE		2,360,000

* Cost for the other capacity case is estimated based on above shown table considering scale factor.

7,785,000

5,213,000

TOTAL

Table 29-6-18 (Vol. III)

OPERATING PERSONNEL COST

US\$/Person/Year

1.	Manager	72,000
2.	Superintendent	44,000
3.	Supervisor	28,800
4.	Engineer	19,200
5.	Geologist	19,200
6.	Clerk	4,800
7.	Officer	4,800
8.	Mechanician	1,800
9.	Electrician	1,800
10.	Instrument	1,800
11.	Foreman	1,800
12.	Field Operator	1,500
13.	Store Keeper	960
14.	Laborer	1,200

UNIT COST

<u>of</u>

VARIOUS CHEMICALS

		UNIT : US\$
1.	Tri-Ethylene-Glycol	3.30/ gal.
2.	Corrosion Inhibitor for Gas	20.0/ gal.
3.	Deemulsifier	0.74/lb
4.	Defoamant	o.73/1b

Table 29-6-20 (Vol. III)

UNIT COST

<u>OF</u>

SERVICE CONTRACTORS

UNIT: US\$

1.	One W	ork Boat	30,000 per ye ar
2.	One C	Crew Boat	10,000 per y ear
3.	One 1	lug Boat Fleet*	18,000 for each berthing and unberthing operation
4.	One I	Melicopter	150,000 per year assuming one flight a day
5.	Cate	ring Service Personnel	
	a.	Cook	8,760 per yea r
	b.	Waiter	6,570 per yea r
	c.	Room Boy	4,380 per yea r

* Consisting of one tug boat, one hose handling boat and one mooring line handling boat.

ANNUAL OIL PRODUTION AND FOB PRICE PER BARREL Table 30-6-1 (Vol. III) Sabah Area

TIELD		South	South Furious & F	Erb West Fields		
CASE	CASE I (South Furious & Erb	We	st Fields)	CASE IIA, IIB (Erb West Field)		
YEAR	Annual Production (M BBLS)	F.O.B. Price (MS)	Price (US\$)	Annual Production (M BBLS)	F.O.B. (M\$)	Price (US\$)
H						
2						
ю						
4				7,300	31.39	12.36
Ŋ	12,932	31.45	12.38	7,300	31.39	12.36
9	12,063	31.45	12.38	7,300	31.39	12.36
7	7,300	31.39	12.36	7,300	31.39	12.36
œ	7,300	31.39	12.36	5,625	31.39	12.36
δ	5,625	31.39	12.36			

Note: Crude price is as of middle of 1976

Table 31-6-1 (Vol. III)

INVESTMENT SCHEDULE FOR OIL

UNIT: M\$1,000

_		-	
	ald	CASE IB	80,694 197,443 175,568
	Tapis Field	CASE IA	72,691 148,355 186,690
IR AREA		CASE III	150,020 205,658 153,643
PENINSULAR AREA	gi Fields	CASE II	179,848 262,407 193,549
	Bekok, Pulai & Seligi Fields	CASE IB	240,976 305,619 241,490
	Bekok, Pu	CASE IA	201,002 275,415 259,019
	South Furious & Erb West Fields	CASE IIB	102,291 61,426
SABAH AREA		CASE IIA	102,689 77,320 81,863
S	South Fur Fields	CASE I	96,956 61,615 147,695 100,048
	Bokor	CASE II	30,537 33,133 58,496
	Betty & B Fields	CASE I	54,093 67,270 110,837
SARAWAK AREA	ields	CASE IIB	51,365
SARA	a & E-6 Fields	CASE ITA	48,153
	West Temana	CASE I	102,168
AREA	FIELD	YEAR	1 2 5 4 5 9 6 9 11 11 12 13 15 15 15 15 15 15 15 15 15 15 15 15 15

Table 31-6-2 (Vol. III)

ANNUAL OPERATING COST FOR OIL

UNIT: M\$1,000

	r																											╗
	51d	CASE IB	- -		370 60	017177	22,108	21,885	21,445	21,095	20,444						. <u> </u>											
	Tapis Field	CASE IA			1	095//7	27,318	27,095	26,655	26,305	25,654																	
AREA		CASE III			i	31,350	31,523	31,286	30,487	29,184	28,286	27,636	27,151	22,917	22,221	21,987	21,780	21,603	21,512	21,396	21,316	21,227	21,148	21,108	20,796			
PENINSULAR AREA	ລ Seligi Fields	CASE II			,	38,158	38,120	37,904	37,166	31,277	30,347	29,688	29,182	28,203	24,066	23,822	23,626	23,456	23,324	23,211	23,108	23,018	22,963	22,899	22,582	-		
i	lai & Seliç	CASE IB				36,097	36,019	35,663	34,778	32,208	30,943	23,799	23,288	22,308	18,662	18,418	18,200	18,042	17,920	17,801	17,714	17,625	17,539	17,495	17,173			
	Bekok, Pulai	CASE IA	•			44,319	44,241	43,885	43,000	40,430	39,165	30,408	29,897	28,917	24,861	24,617	24,399	24,241	24,119	24,000	23,913	23,824	23,738	23,694	23,372			
	West	CASE IIB				13,538	13,538	13,538	13,538	13,345																		
SABAH AREA	South Furious & Erb West Fields	CASE IIA			•	13,328	13,328	13,328	13,328	13,135			٠							-								
88	South Furi Fields	CASE I				4.	19,051	19,051	13,005	13,005	12,812				·									•				
	Bokor Fields	CASE II				7,119	920'2.	7,031	988'9'	99,766	4,882																	
	Betty & B	CASE I				11,297	11,246	9,380	7.081	6,961	5,027																	
		CASE IIB				15,256	15,256	15,256	15,256	15,145	14,901	14,649	14,426	14,327	14,268	14,223	14,190	14,159	14,139	8,216						•		
SARAWAK AREA	ına & E-6 Fields	CASE IIA	,	!		21,525	21,525	21,525	21.525	21,414	21,170	20,918	20,695	20,596	20,537	20,492	20,459	20,428	20,408	10,202							•	,
SARA	West Temana & Field	CASE I				22,155	20,409	18,658	18,658	18,547	18,303	18,051	17,828	17.729	17,670	17,625	17,592	17,561	17,541	8,768								
AREA	Giara	YEAR	г	7	m	4	1	9	7	80		10	. A	. 71	13	14	51	16	17	18	19	20	21	22	23	}		

Table 31-6-6 (Vol. III)

-6 PROFITABILITY YARDSTICKS OF OIL

3)
AT THE YEAR OF MAX, R.O.R. FOR OPERATING COMPANY

UNIT: M\$1,000

	•															
	Payout Time (veat)		7.5	6.3	6.2	ı	5.7	I	7.7	7.9	5.1	5.2	5.2	5.2	5.6	5.8
MPANY	Maximum Cumulative	Worth at Discount Rate 10%	-29,685	57,673	. 70,265	-64,611	8,266	-124,962	-63,044	-74,768	252,866	239,115	202,485	184,618	53,873	30,337
OPERATING COMPANY	Maximum Cumulative	Flow	174,935	259,503	282,672	-21,229	58,526	-37,904	13,964	2,552	727,775	748,844	622,606	547,063	239,153	224,444
	Maximum ROR	ROR (%)	7.88	15.48	16.75		12.62	1	1.31	0.23	21.04	19.42	19.78	20.77	15.05	12.51
	Max. ROR	Year (*)	14	13	16	۵	ထ	6.	00	œ	14	17	15	15	6	o.
ONAS	Cumulative Present	Morth at Discount Rate 10%	369,459	352,124	363,228	140,256	116,397	218,331	179,263	179,263	1,015,256	1,028,039	858,248	738,332	428,202	428,202
PETRONAS	Cumulative Net Cash	*OT#	981,786	653,618	697,320	223,742	188,132	385,924	297,213	297,213	1,770,974	1,826,413	1,529,282	1,337,232	702,728	702,728
	TICK		CASE I	CASE IIA	CASE IIB	CAȘE I	CASE II	CASE I	CASE IIA	CASE IIB	CASE IA	CASE IB	CASE II	CASE III	CASE IA	CASE IB
XARDSTICK	FIELD		West Temana & E-6 Fields		Hottu & Rokor Pields			Erb West & South Furious Fields	,		Bekok, Pulai & Seligi	Fields		,	rapis rieta	
		AREA			Sarawak	Area		,	Saban	Area		Peninsular	Area			

Note: (*) - In the case that cumulative net cash flow is not positive, the year shown above is a peak year of cumulative net cash.

FIGURE LIST VOL. III SABAH AREA

Fig. 1-2-1	STRUCTURE CONTOUR MAP, SAMARANG FIELD, TOP a2
2	STRUCTURE CONTOUR MAP, SAMARANG FIELD, TOP b
3	STRUCTURE CONTOUR MAP, SAMARANG FIELD, TOP cl
4	STRUCTURAL CROSS-SECTION, SAMARANG FIELD
1-3-1	PREDICTED PERFORMANCE OF SAMARANG FIELD
2	PREDICTED PERFORMANCE OF A ZONE, SAMARANG FIELD
3	PREDICTED PERFORMANCE OF B ZONE, SAMARANG FIELD
4	PREDICTED PERFORMANCE OF C ZONE, SAMARANG FIELD
5	GAS-OIL RELATIVE PERMEABILITY RATIO OF A ZONE, SAMARANG FIELD
6	GAS-OIL RELATIVE PERMEABILITY RATIO OF B ZONE, SAMARANG FIELD
7	GAS-OIL RELATIVE PERMEABILITY RATIO OF C ZONE, SAMARANG FIELD
8	OIL RELATIVE PERMEABILITY CURVE OF A ZONE, SAMARANG FIELD
9	OIL RELATIVE PERMEABILITY CURVE OF B ZONE, SAMARANG FIELD
10	OIL RELATIVE PERMEABILITY CURVE OF C ZONE, SAMARANG FIELD
11	OIL PROPERTIES OF A ZONE, SAMARANG FIELD
12	OIL PROPERTIES OF B ZONE, SAMARANG FIELD
13	OIL PROPERTIES OF C ZONE, SAMARANG FIELD
14	GAS PROPERTIES OF A ZONE, SAMARANG FIELD
15	GAS PROPERTIES OF B ZONE, SAMARANG FIELD
16	GAS PROPERTIES OF C ZONE, SAMARANG FIELD
17	CUMULATIVE OIL PRODUCTION VS. RESERVOIR PRESSURE AND PRODUCING GAS OIL RATIO OF A ZONE, SAMARANG FIELD
18	CUMULATIVE OIL PRODUCTION VS. RESERVOIR PRESSURE AND PRODUCING GAS OIL RATIO OF B ZONE, SAMARANG FIELD
19	CUMULATIVE OIL PRODUCTION VS. RESERVOIR PRESSURE AND PRODUCING GAS OIL RATIO OF C ZONE, SAMARANG FIELD
20	ADDITIONAL WELL CASE - WELL LOCATION MAP, SAMARANG FIELD
2-1-1	TIME CONTOUR MAP, TEMBUNGO FIELD, TOP b 1/2
2	SEISMIC SECTION, TEMBUNGO FIELD, LINE S74B101
2-2-1	STRUCTURE CONTOUR MAP, TEMBUNGO FIELD, TOP bl
2	STRUCTURE CONTOUR MAP, TEMBUNGO FIELD, TOP cl
3	STRUCTURAL CROSS-SECTION, TEMBUNGO FIELD

Vol. III

Fig. 2-3-1	PREDICTED PERFORMANCE OF TEMBUNGO FIELD
2	PREDICTED PERFORMANCE OF MODEL-1, TEMBUNGO FIELD
3	PREDICTED PERFORMANCE OF MODEL-2, TEMBUNGO FIELD
4	PREDICTED PERFORMANCE OF MODEL-3, TEMBUNGO FIELD
5	PREDICTED PERFORMANCE OF MODEL-4, TEMBUNGO FIELD
6	PREDICTED PERFORMANCE OF ADDITIONAL WELL CASE, TEMBUNGO FIELD
7	GAS-OIL RELATIVE PERMEABILITY RATIO OF MODEL-1, TEMBUNGO FIELD
8	GAS-OIL RELATIVE PERMEABILITY RATIO OF MODEL-2, TEMBUNGO FIELD
9	GAS-OIL RELATIVE PERMEABILITY RATIO OF MODEL-3, TEMBUNGO FIELD
10	GAS-OIL RELATIVE PERMEABILITY RATIO OF MODEL-4, TEMBUNGO FIELD
11	GAS-OIL RELATIVE PERMEABILITY RATIO - ADDITIONAL WELL CASE, TEMBUNGO FIELD
12	OIL RELATIVE PERMEABILITY CURVE OF MODEL-1, TEMBUNGO FIELD
13	OIL RELATIVE PERMEABILITY CURVE OF MODEL-2, TEMBUNGO FIELD
14	OIL RELATIVE PERMEABILITY CURVE OF MODEL-3, TEMBUNGO FIELD
15	OIL RELATIVE PERMEABILITY CURVE OF MODEL-4, TEMBUNGO FIELD
16	OIL RELATIVE PERMEABILITY CURVE - ADDITIONAL WELL CASE, TEMBUNGO FIELD
17	OIL PROPERTIES OF MODEL-1, TEMBUNGO FIELD
18	OIL PROPERTIES OF MODEL-2, TEMBUNGO FIELD
19	OIL PROPERTIES OF MODEL-3, TEMBUNGO FIELD
20	OIL PROPERTIES OF MODEL-4, TEMBUNGO FIELD
21	OIL PROPERTIES OF WELL TM AD-1 and AD-4, TEMBUNGO FIELD
22	OIL PROPERTIES OF WELL TM AD-2, TEMBUNGO FIELD
23	OIL PROPERTIES OF WELL TM AD-3, TEMBUNGO FIELD
24	GAS PROPERTIES OF MODEL-1, TEMBUNGO FIELD
25	GAS PROPERTIES OF MODEL-2, TEMBUNGO FIELD
26	GAS PROPERTIES OF MODEL-3, TEMBUNGO FIELD
27	GAS PROPERTIES OF MODEL-4, TEMBUNGO FIELD
28	GAS PROPERTIES OF WELL TM AD-1 AND AD-4, TEMBUNGO FIELD
29	GAS PROPERTIES OF WELL TM AD-2, TEMBUNGO FIELD
30	GAS PROPERTIES OF WELL TM AD-3, TEMBUNGO FIELD
31	CUMULATIVE OIL PRODUCTION VS. RESERVOIR PRESSURE AND PRODUCING GAS OIL RATIO OF MODEL-1, TEMBUNGO FIELD

Vol. III

Fig. 2-3-32	CUMULATIVE OIL PRODUCTION VS. RESERVOIR PRESSURE AND PRODUCING GAS OIL RATIO OF MODEL-2, TEMBUNGO FIELD
33	CUMULATIVE OIL PRODUCTION VS. RESERVOIR PRESSURE AND PRODUCING GAS OIL RATIO OF MODEL-3, TEMBUNGO FIELD
34	CUMULATIVE OIL PRODUCTION VS. RESERVOIR PRESSURE AND PRODUCING GAS OIL RATIO OF WELL TM AD-1, TEMBUNGO FIELD
35	CUMULATIVE OIL PRODUCTION VS. RESERVOIR PRESSURE AND PRODUCING GAS OIL RATIO OF WELL TM AD-2, TEMBUNGO FIELD
36	CUMULATIVE OIL PRODUCTION VS. RESERVOIR PRESSURE AND PRODUCING GAS OIL RATIO OF WELL TM AD-3, TEMBUNGO FIELD
37	CUMULATIVE OIL PRODUCTION VS. RESERVOIR PRESSURE AND PRODUCING GAS OIL RATIO OF WELL TM AD-4, TEMBUNGO FIELD
38	ADDITIONAL WELL CASE - WELL LOCATION MAP, TEMBUNGO FIELD
3-1-1	TIME CONTOUR MAP, ERB WEST FIELD, TOP a2
2	TIME CONTOUR MAP, ERB WEST FIELD, TOP cl
3	SEISMIC SECTION, ERB WEST FIELD, LINE 71-ERB-01
3-2-1	STRUCTURE CONTOUR MAP, ERB WEST FIELD, TOP a2
2	STRUCTURE CONTOUR MAP, ERB WEST FIELD, TOP cl
3	STRUCTURAL CROSS-SECTION, ERB WEST FIELD
3-3-1	PREDICTED PERFORMANCE OF ERB WEST FIELD
2	CUMULATIVE OIL PRODUCTION VS. RESERVOIR PRESSURE AND PRODUCING GAS OIL RATIO OF ERB WEST FIELD
4-1-1	TIME CONTOUR MAP, SOUTH FURIOUS FIELD, TOP C
2	SEISMIC SECTION, SOUTH FURIOUS FIELD, LINE 74-SF-34
4-2-1	STRUCTURE CONTOUR MAP, SOUTH FURIOUS FIELD, TOP C
4-3-1	PREDICTED PERFORMANCE OF SOUTH FURIOUS FIELD
2	CUMULATIVE OIL PRODUCTION VS. RESERVOIR PRESSURE AND PRODUCING GAS OIL RATIO OF SOUTH FURIOUS FIELD
5-1-1	TIME CONTOUR MAP, WEST EMERALD FIELD, TOP a
2	SEISMIC SECTION, WEST EMERALD FIELD, LINE 74-EM-46
5-2~1	STRUCTURE CONTOUR MAP, WEST EMERALD FIELD, TOP a
6-1-1	SEISMIC SECTION, St. JOSEPH FIELD, LINE 73-839
7-1-1	TIME CONTOUR MAP, ERB SOUTH FIELD, NEAR TOP a
2	SEISMIC SECTION, ERB SOUTH FIELD, LINE 73-358
7-2-1	STRUCTURE CONTOUR MAP, ERB SOUTH FIELD, TOP a

Vol. III

Fig.	8-4-1	LABUAN STREAM GENERAL FACILITY LAYOUT
	2	SAMARANG FIELD FACILITY LAYOUT
	3	LABUAN TERMINAL FACILITY LAYOUT
	4	MECHANICAL FLOW DIAGRAM OF LABUAN TERMINAL
	5	UTILITY FLOW DIAGRAM OF LABUAN TERMINAL NO. 3
	6	UTILITY FLOW DIAGRAM OF LABUAN TERMINAL NO. 1
	7	UTILITY FLOW DIAGRAM OF LABUAN TERMINAL NO. 2
	8	MAJOR EQUIPMENT ARRANGEMENT OF TEMBUNGO PLATFORM "A"
	9	MECHANICAL FLOW DIAGRAM OF TEMBUNGO "A"
	10	LABUAN STREAM PRESSURE BALANCE AT PRESENT PRODUCTION RATE
	11	LABUAN STREAM PRESSURE BALANCE AT MAXIMUM HANDLING CAPACITY OF PRODUCTION PLATFORMS
	12	PRESSURE BALANCE FOR THE PRESENT AND MAXIMUM PREDICTED PRODUCTION RATE IN LABUAN STREAM
	9-5-1	FACILITIES ARRANGEMENT FOR ERB WEST AND SOUTH FURIOUS OIL FIELDS - CASE I
	2	BLOCK FLOW DIAGRAM FOR ERB WEST AND SOUTH FURIOUS OIL FIELDS - CASE I
	3	FACILITIES ARRANGEMENT FOR ERB WEST AND SOUTH FURIOUS OIL FIELDS - CASE IIA
	4	BLOCK FLOW DIAGRAM FOR ERB WEST AND SOUTH FURIOUS OIL FIELDS - CASE IIA
	5	FACILITIES ARRANGEMENT FOR ERB WEST AND SOUTH FURIOUS OIL FIELDS - CASE IIB
	6	BLOCK FLOW DIAGRAM FOR ERB WEST AND SOUTH FURIOUS OIL FIELDS - CASE IIB
	9-6-1	PROJECT SCHEDULE ERB WEST AND SOUTH FURIOUS OIL FIELDS - CASE IIA
	30-4-1	TYPICAL MECHANICAL FLOW DIAGRAM OF STANDARD PRODUCTION PLATFORM
	30-5-2	TYPICAL MECHANICAL FLOW DIAGRAM FOR OIL PRODUCTION PLATFORM
	10	TYPICAL UTILITY FLOW DIAGRAM FOR OIL & GAS PRODUCTION PLATFORM
	16	TYPICAL PLAN AND ELEVATION FOR 6-LEG WELL & OIL PRODUCTION PLATFORM
	31	TYPICAL PLAN AND ELEVATION FOR 4-LEG ACCOMMODATION PLATFORM
	32	LEGEND FOR FLOW DIAGRAMS
	30-9-1	GENERAL FIELD LOCATION
	31-6-1	DRILLING & COMPLETION COST OF DEVELOPMENT WELL
	2	TENTATIVE ORGANIZATION FOR FIELD OPERATION (80 PERSONS CASE)
	3	TENTATIVE ORGANIZATION FOR FIELD OPERATION (128 PERSONS CASE)
	4	TENTATIVE ORGANIZATION FOR FIELD OPERATION (135 PERSONS CASE)
	5	TENTATIVE ORGANIZATION FOR FIELD OPERATION (146 PERSONS CASE)
	7	SENSITIVITY CURVE OF SARAH AREA

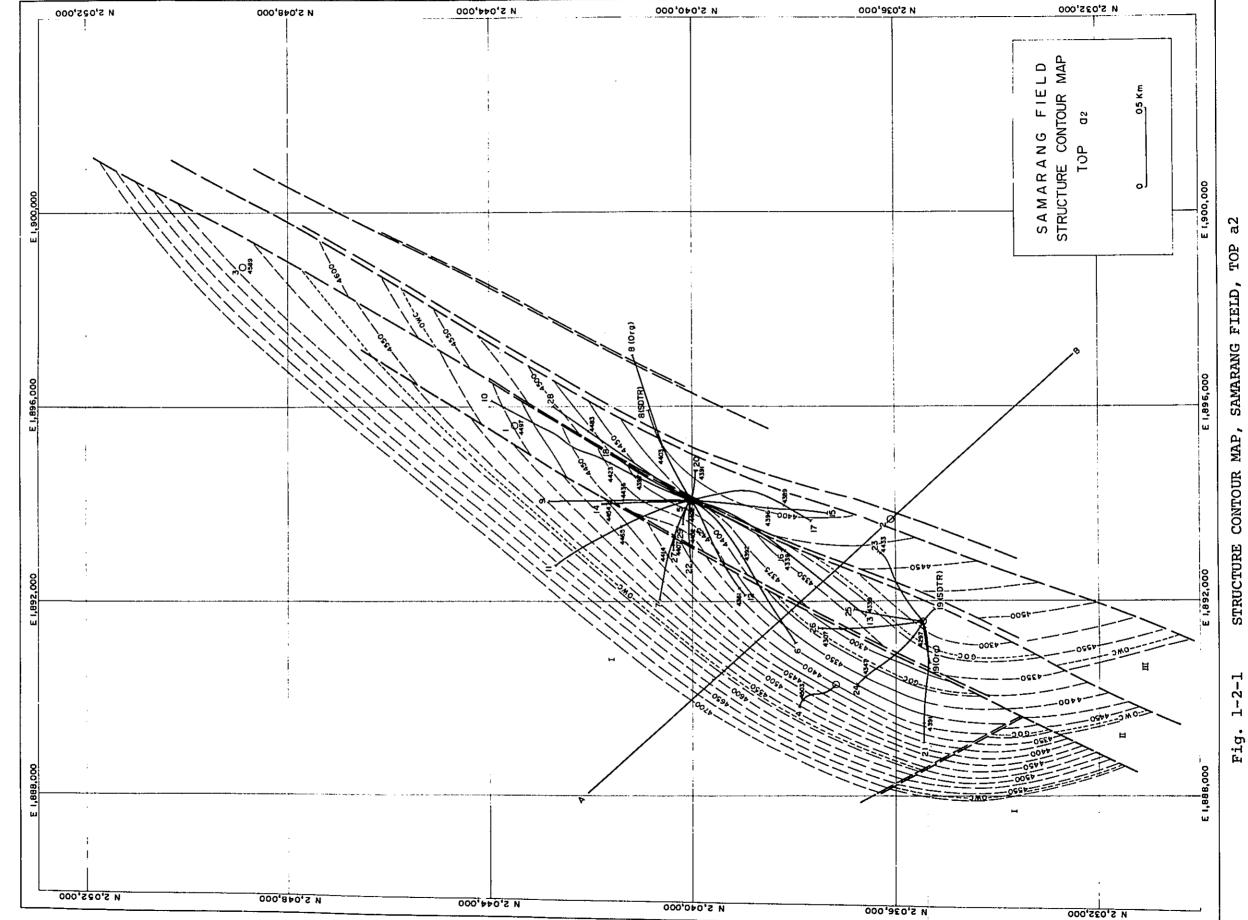
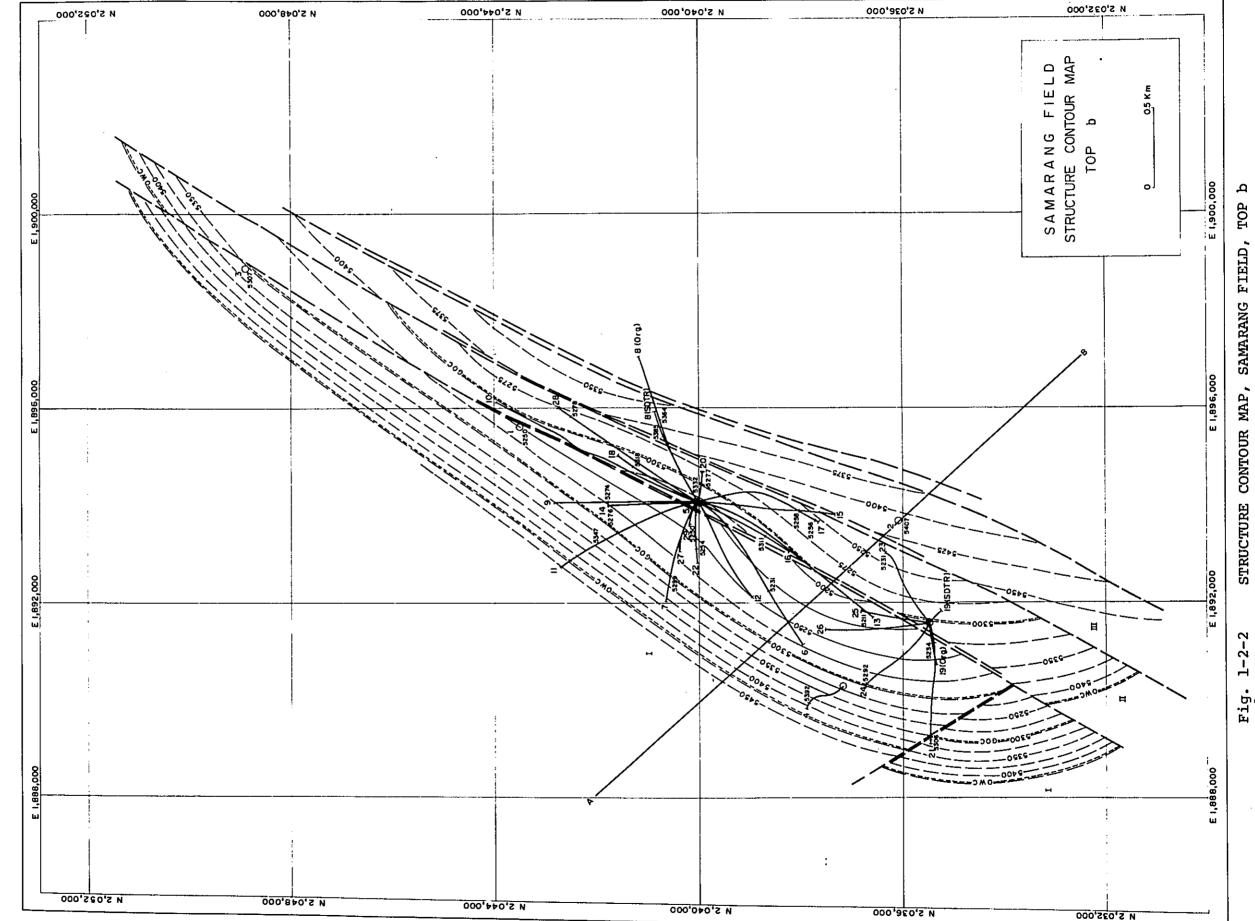



Fig. 1-2-1 Vol. III

1-2-2 III Fig. Vol.

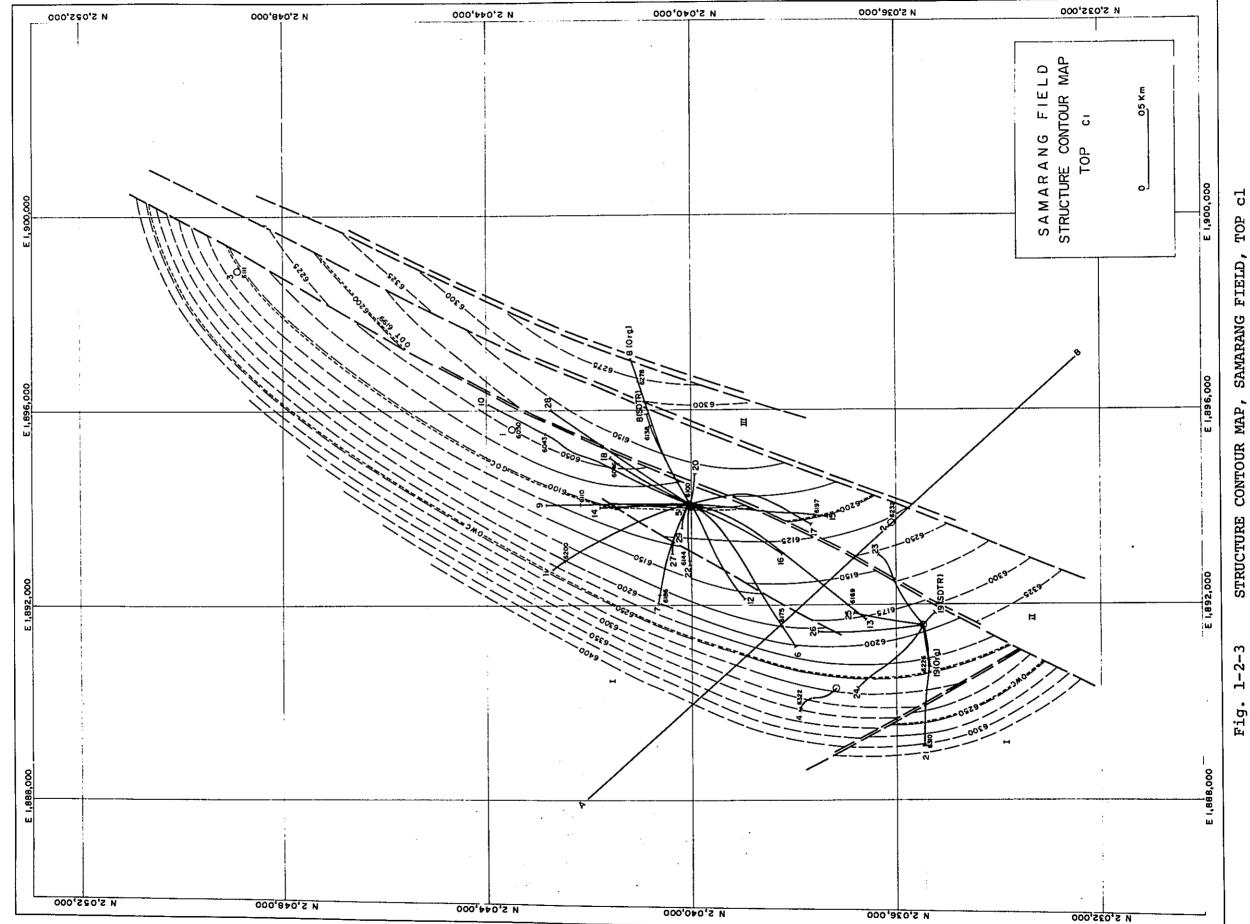
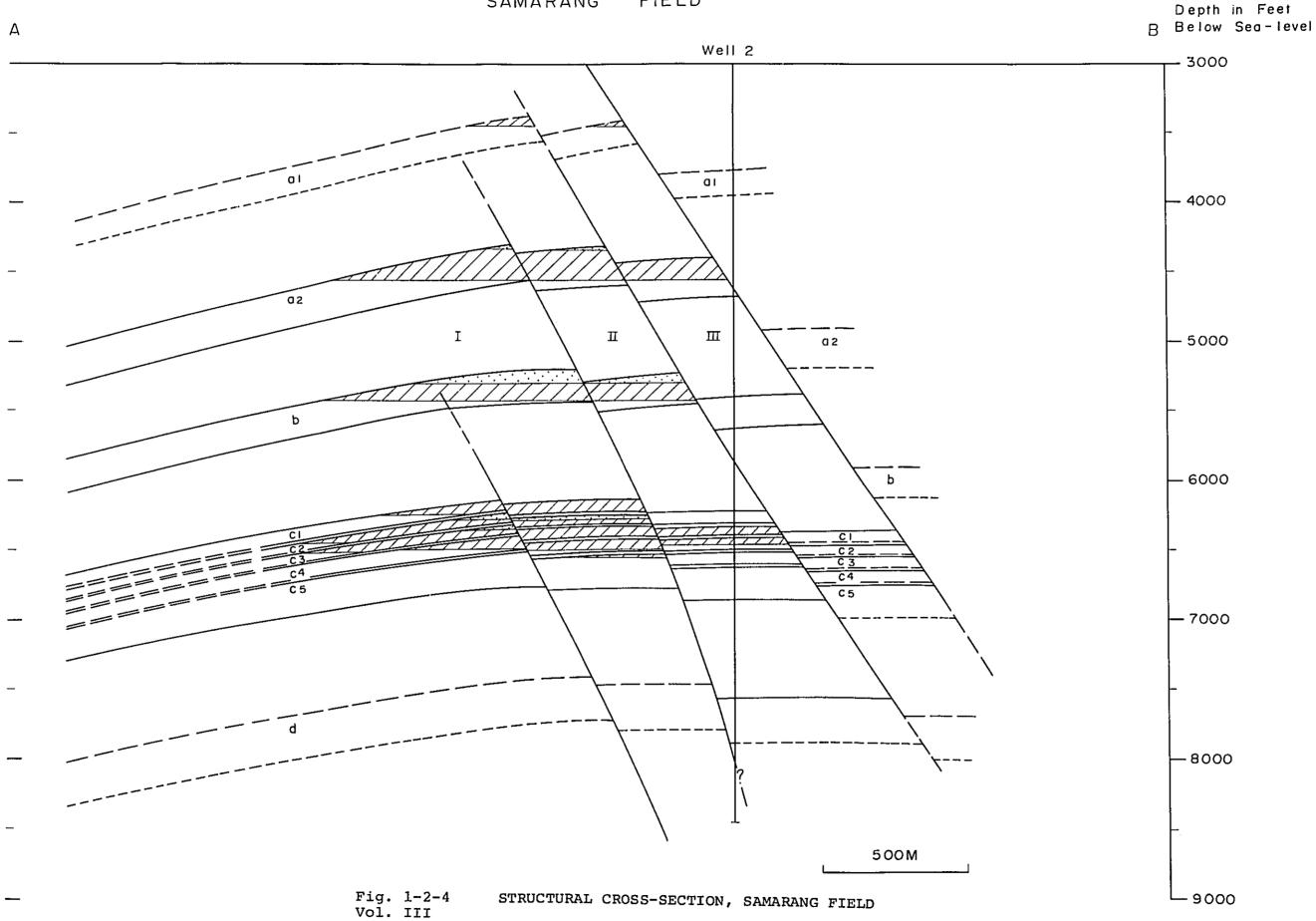



Fig. 1-2-3 Vol. III

STRUCTURAL CROSS-SECTION SAMARANG FIELD

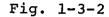



Fig. 1-3-1 PREDICTED PERFORMANCE OF SAMARANG FIELD Vol. III

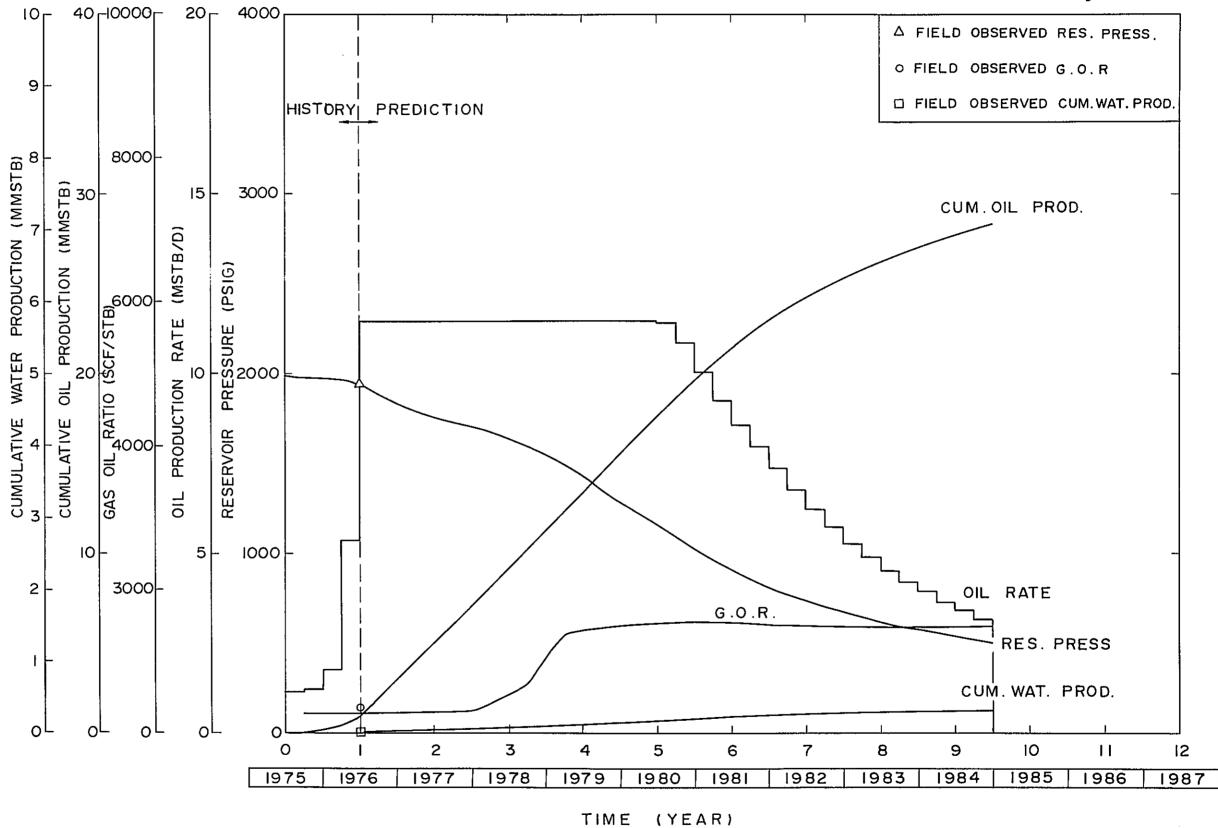


Fig. 1-3-2 PREDICTED PERFORMANCE OF A ZONE, SAMARANG FIELD Vol. III

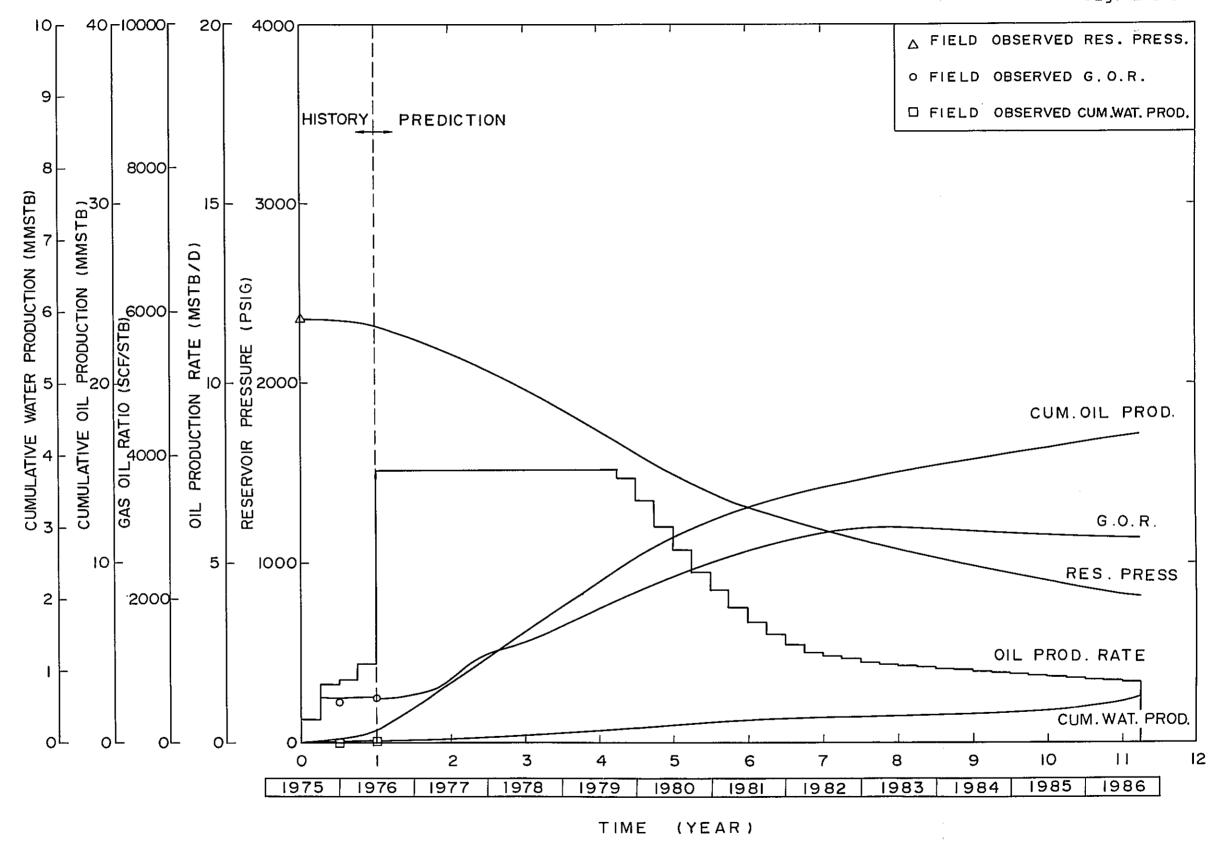
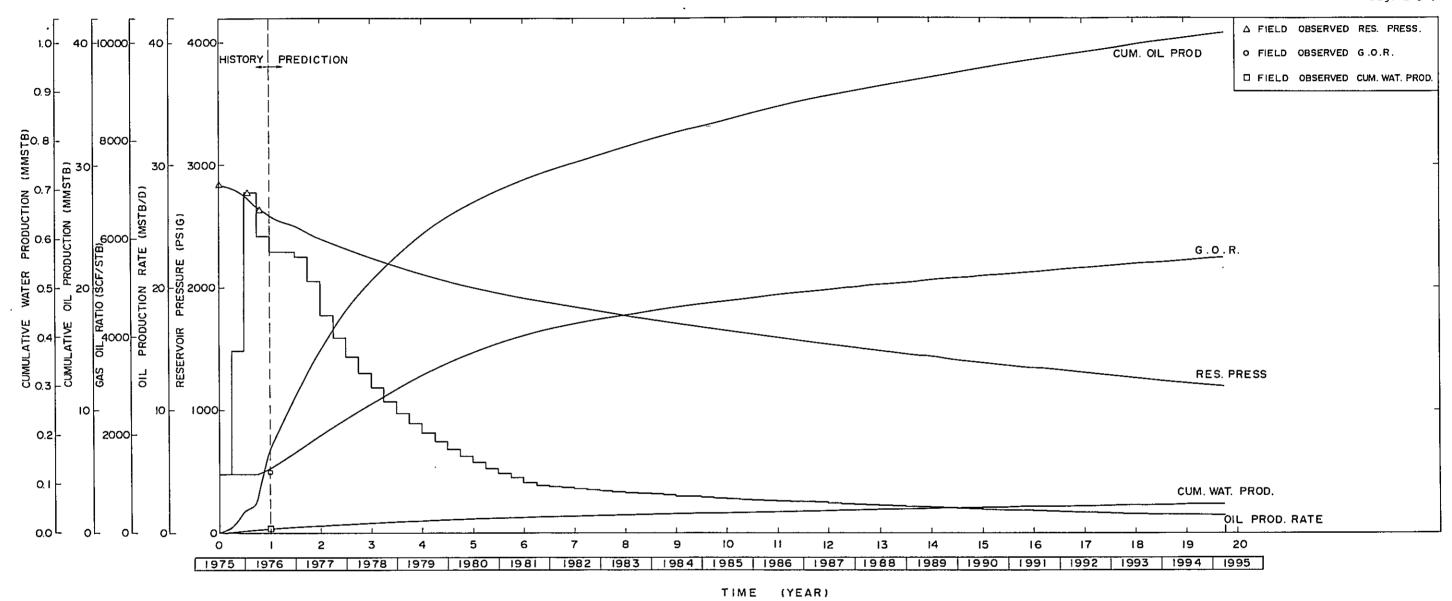
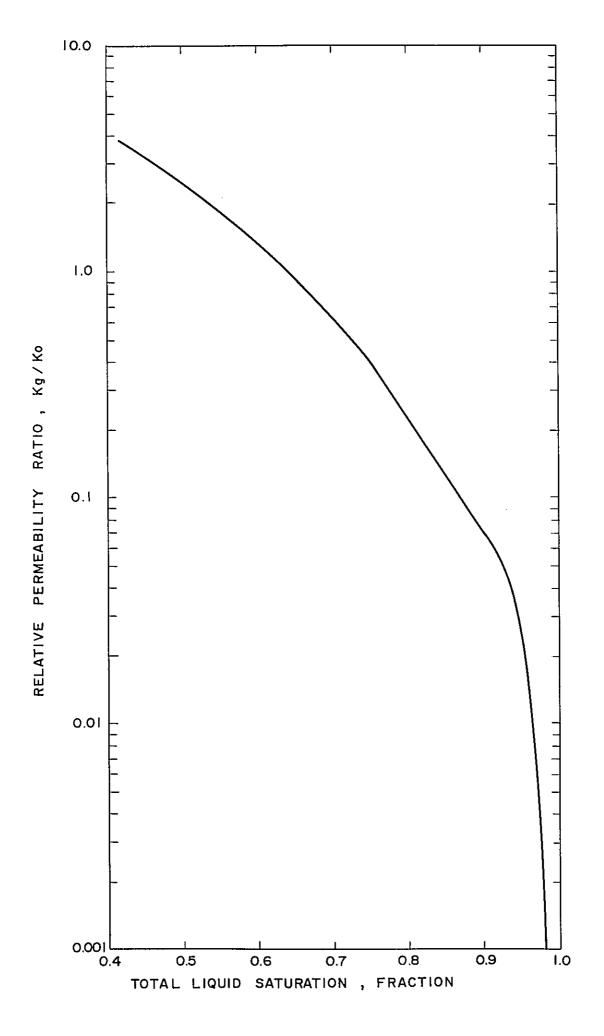
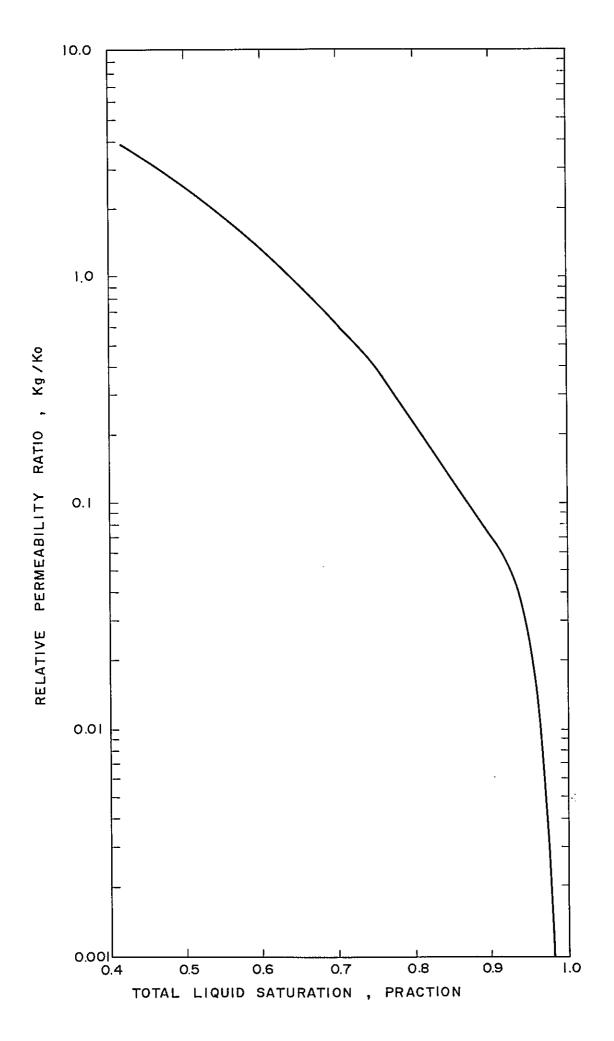
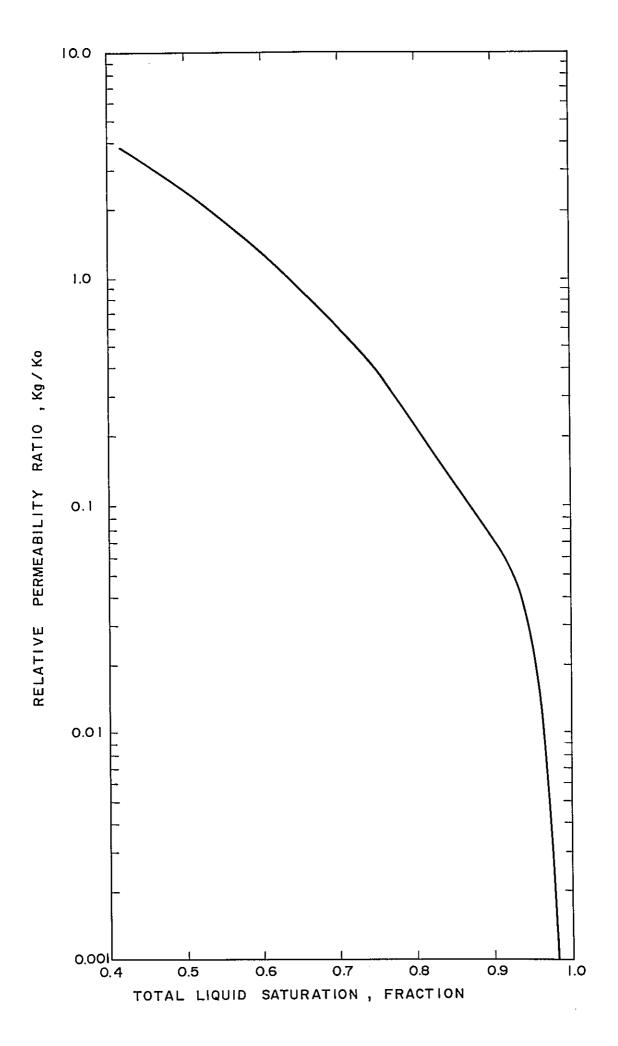


Fig. 1-3-3 PREDICTED PERFORMANCE OF B ZONE, SAMARANG FIELD Vol. III


Fig. 1-3-4 PREDICTED PERFORMANCE OF C ZONE, SAMARANG FIELD Vol. III

GAS-OIL RELATIVE PERMEABILITY RATIO OF A ZONE, SAMARANG FIELD Fig. 1-3-5 Vol. III

GAS-OIL RELATIVE PERMEABILITY RATIO OF B ZONE, SAMARANG FIELD Fig. 1-3-6 Vol. III

GAS-OIL RELATIVE PERMEABILITY RATIO OF C ZONE, SAMARANG FIELD

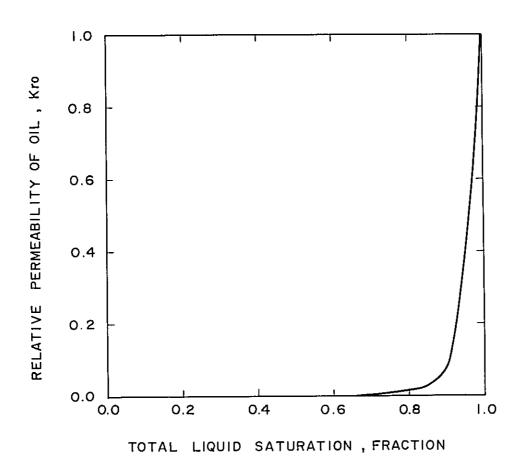


Fig. 1-3-8 OIL RELATIVE PERMEABILITY CURVE OF Vol. III A ZONE, SAMARANG FIELD

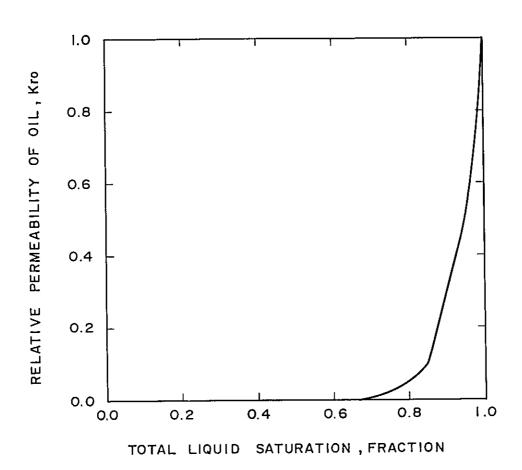
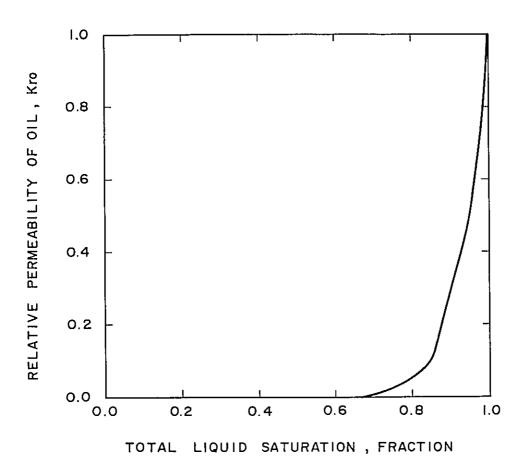
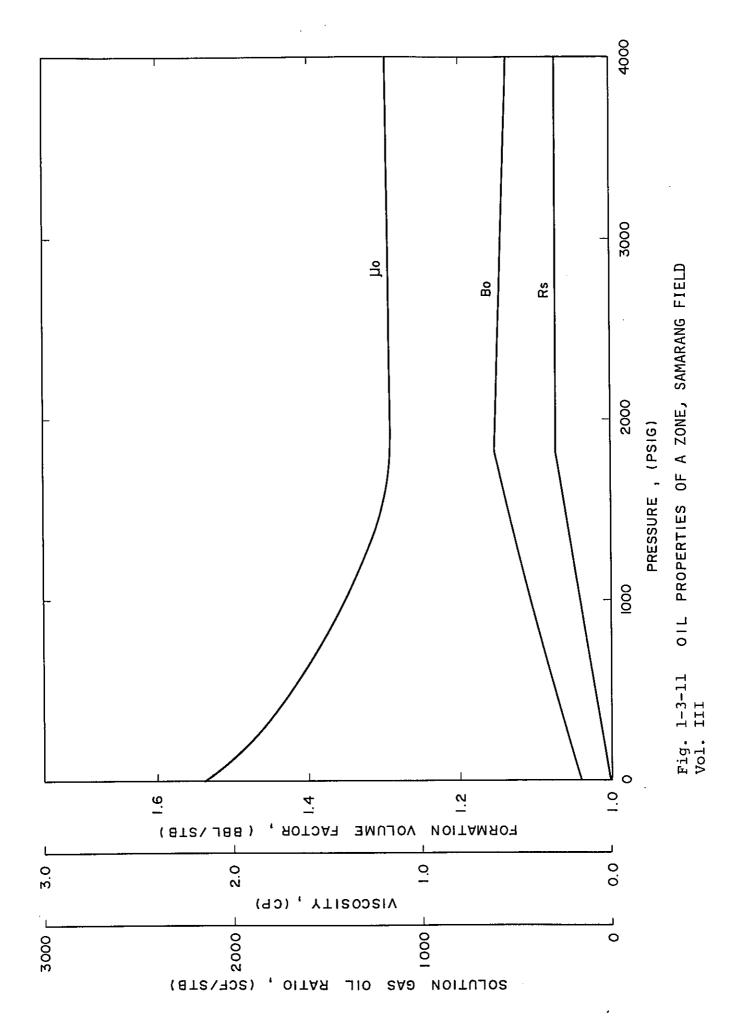
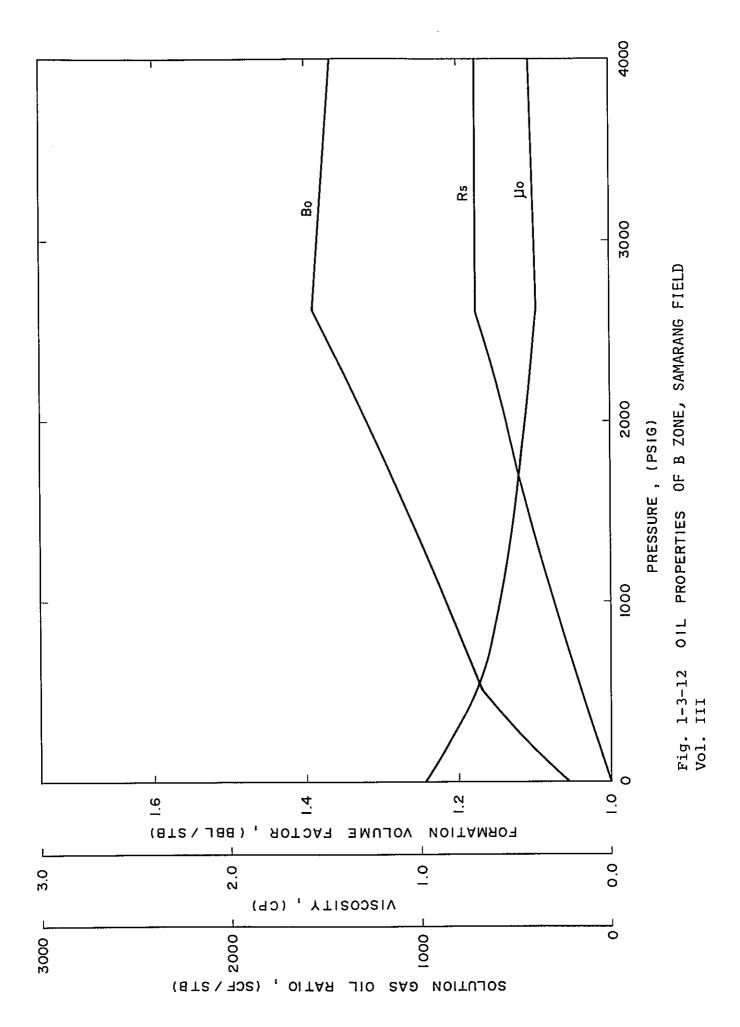
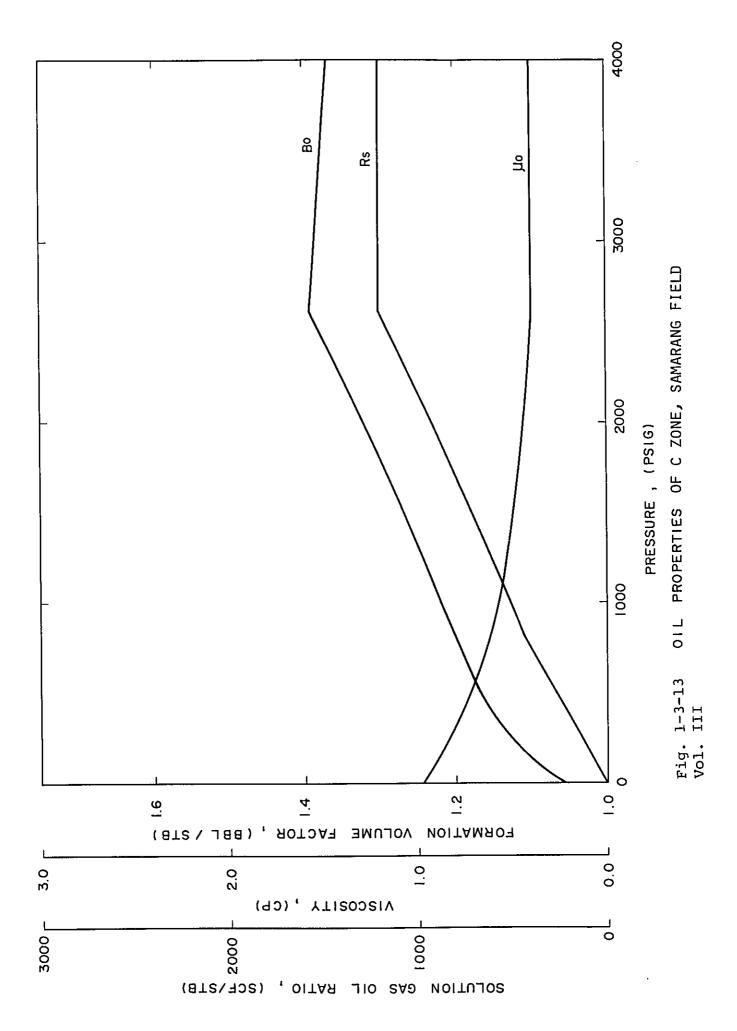
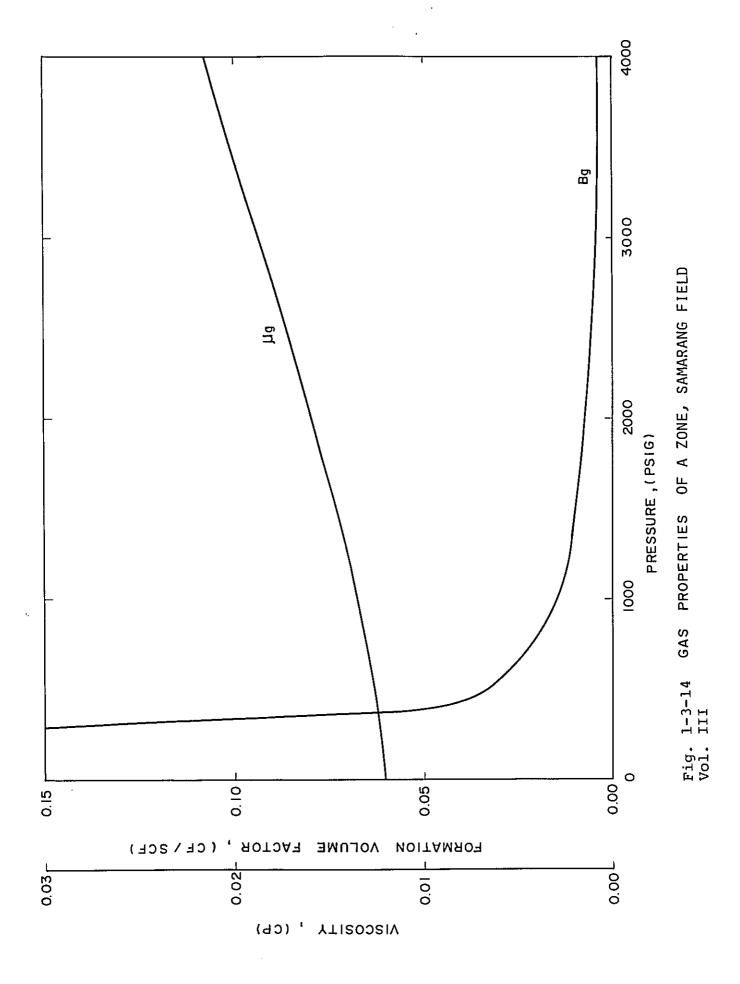
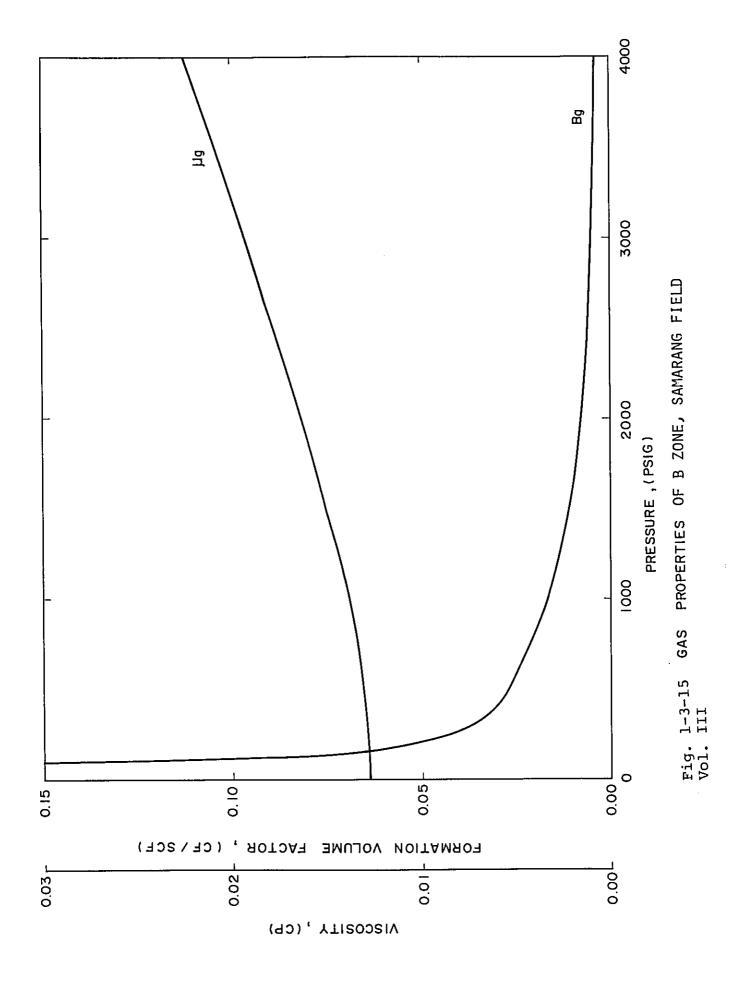
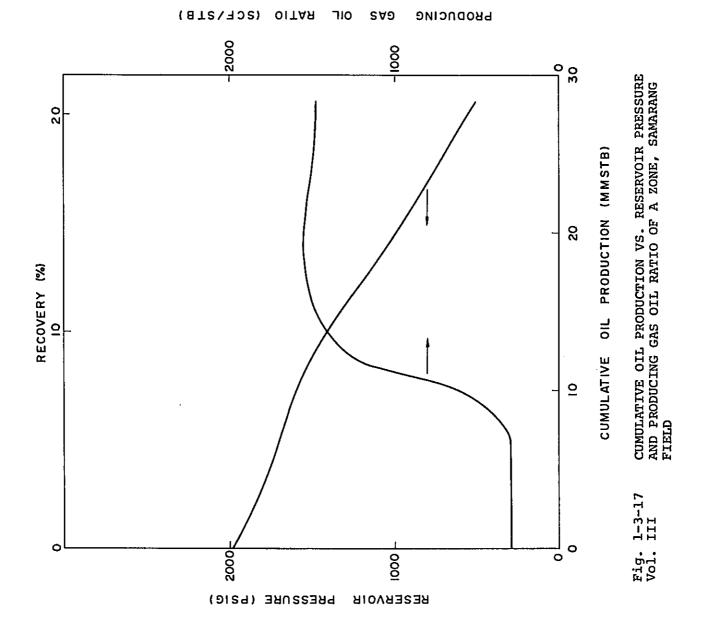
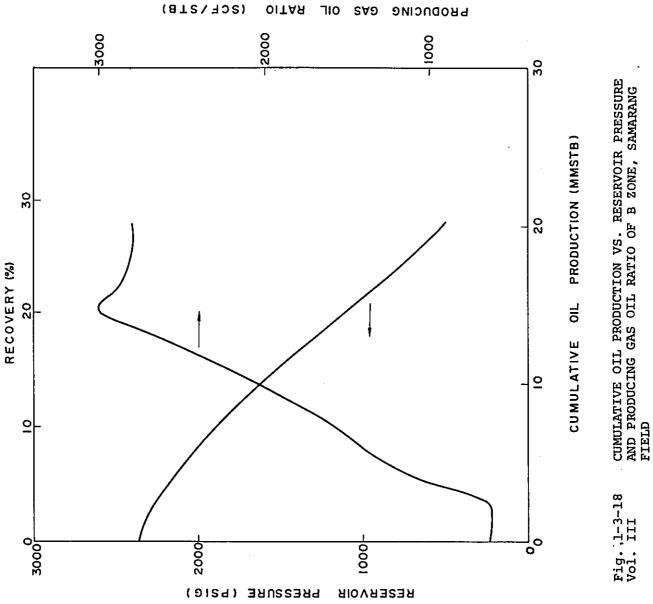


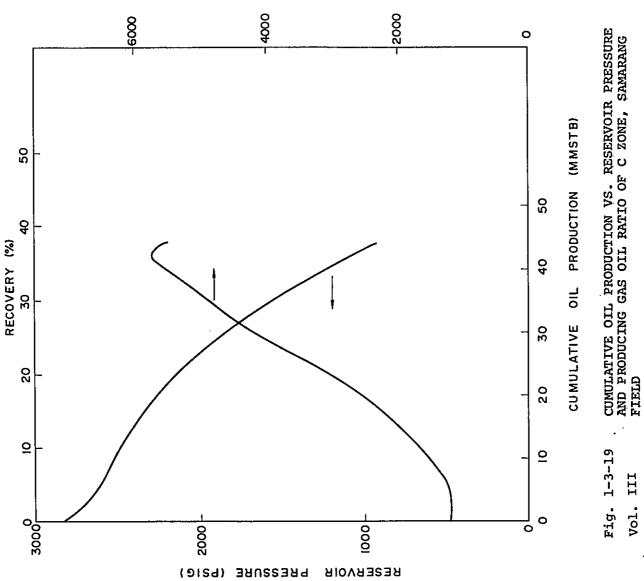
Fig. 1-3-9 OIL RELATIVE PERMEABILITY CURVE OF Vol. III B ZONE, SAMARANG FIELD

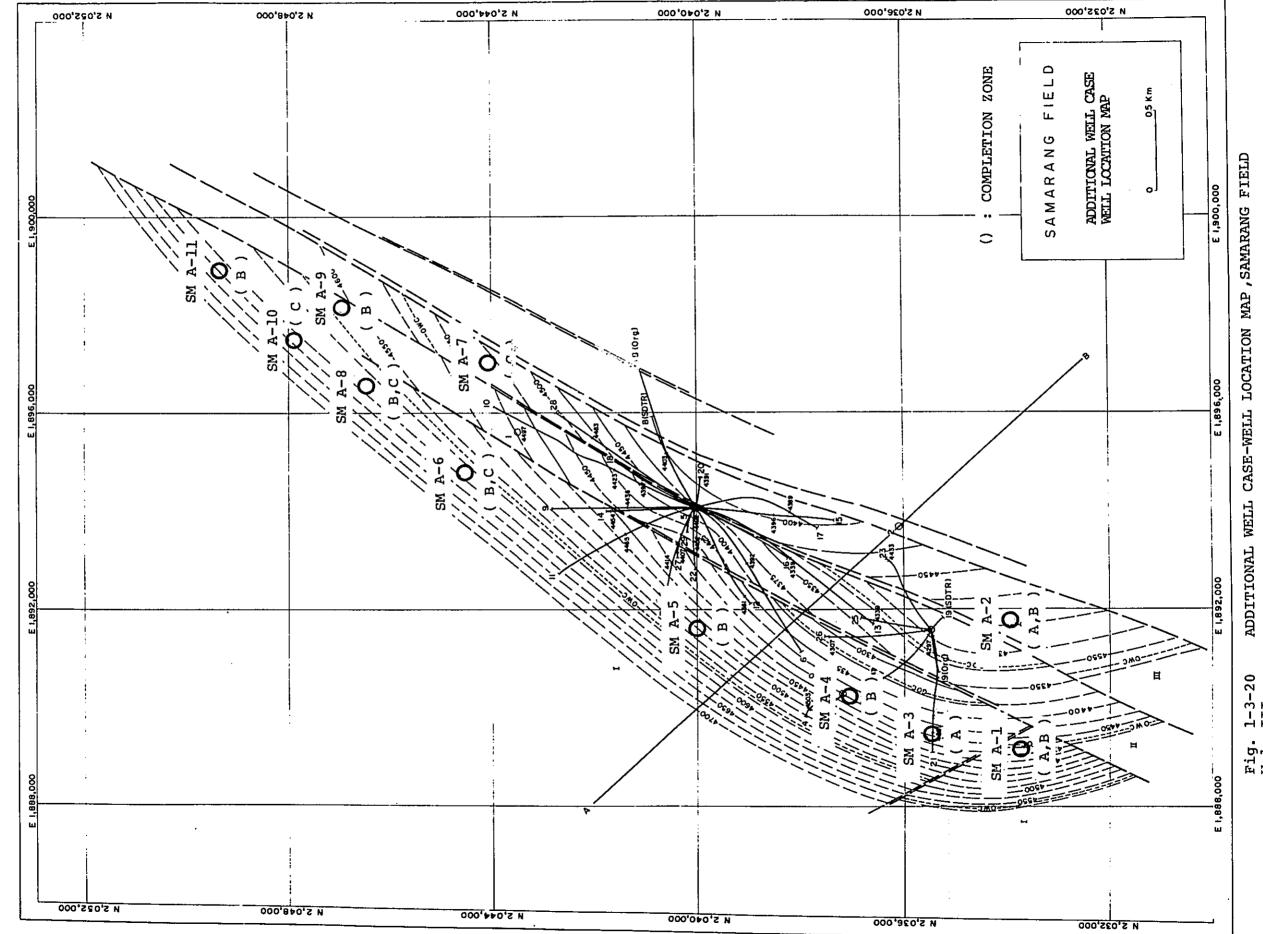






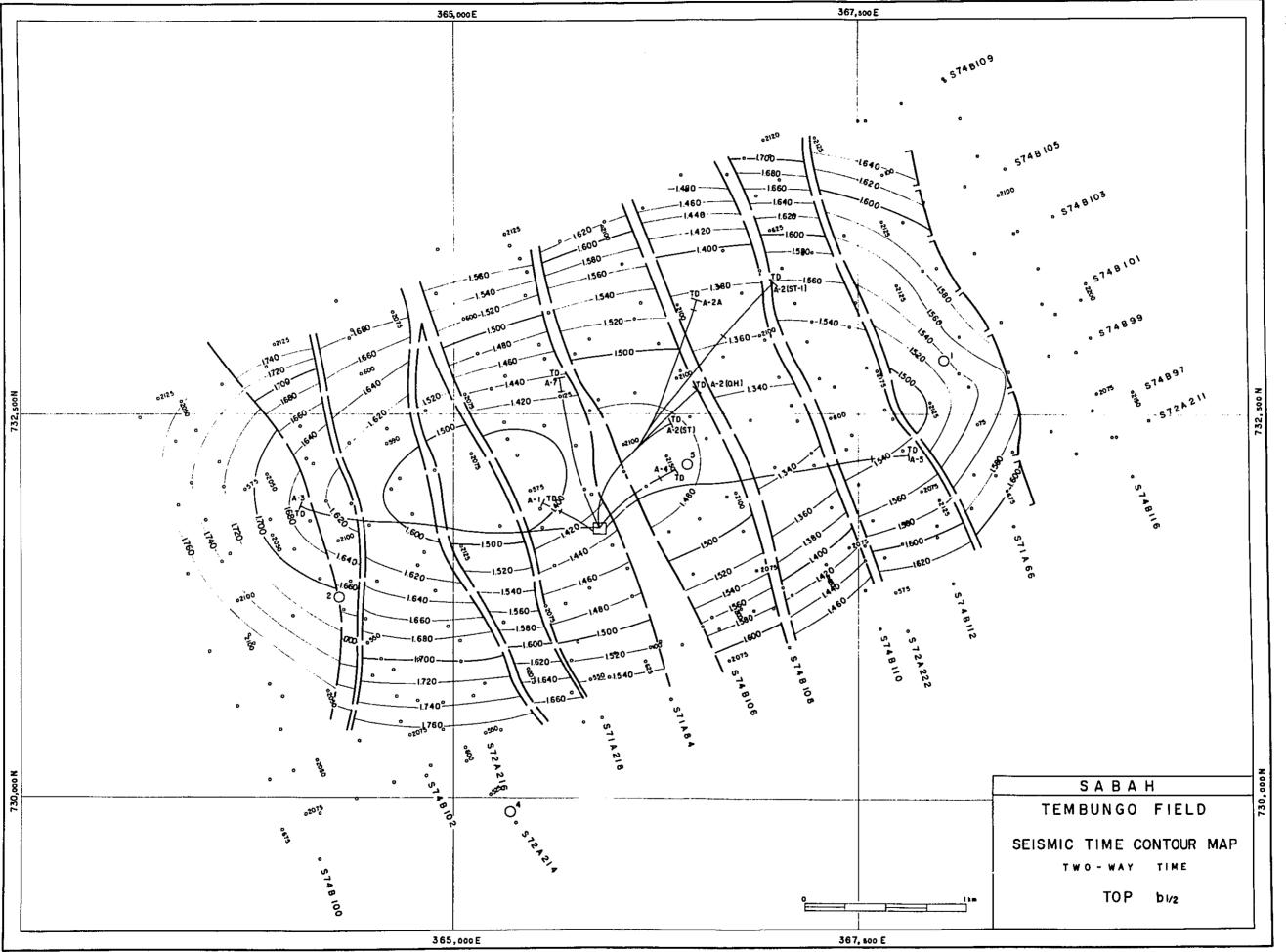

Fig. 1-3-10 OIL RELATIVE PERMEABILITY OF Vol. III C ZONE, SAMARANG FIELD










GAS OIL RATIO (SCF/STB)

РВО D U C I И В

Vol. III

1-3-20 III Fig. Vol.

2-1-1 TIME CONTOUR MAP, TEMBUNGO FIELD, TOP b 1/2

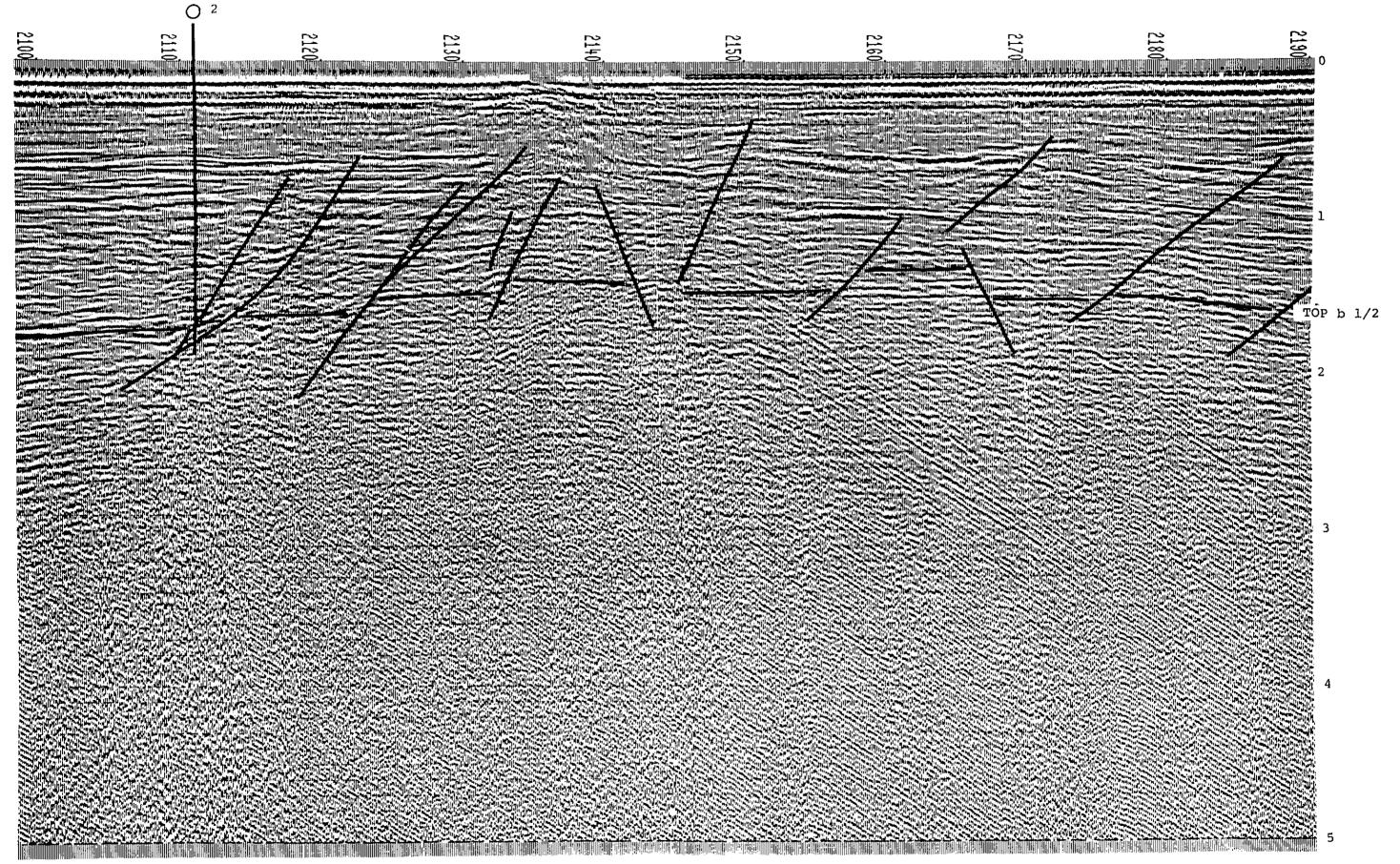


Fig. 2-1-2 SEISMIC SECTION, TEMBUNGO FIELD, Line S74B101 Vol. III

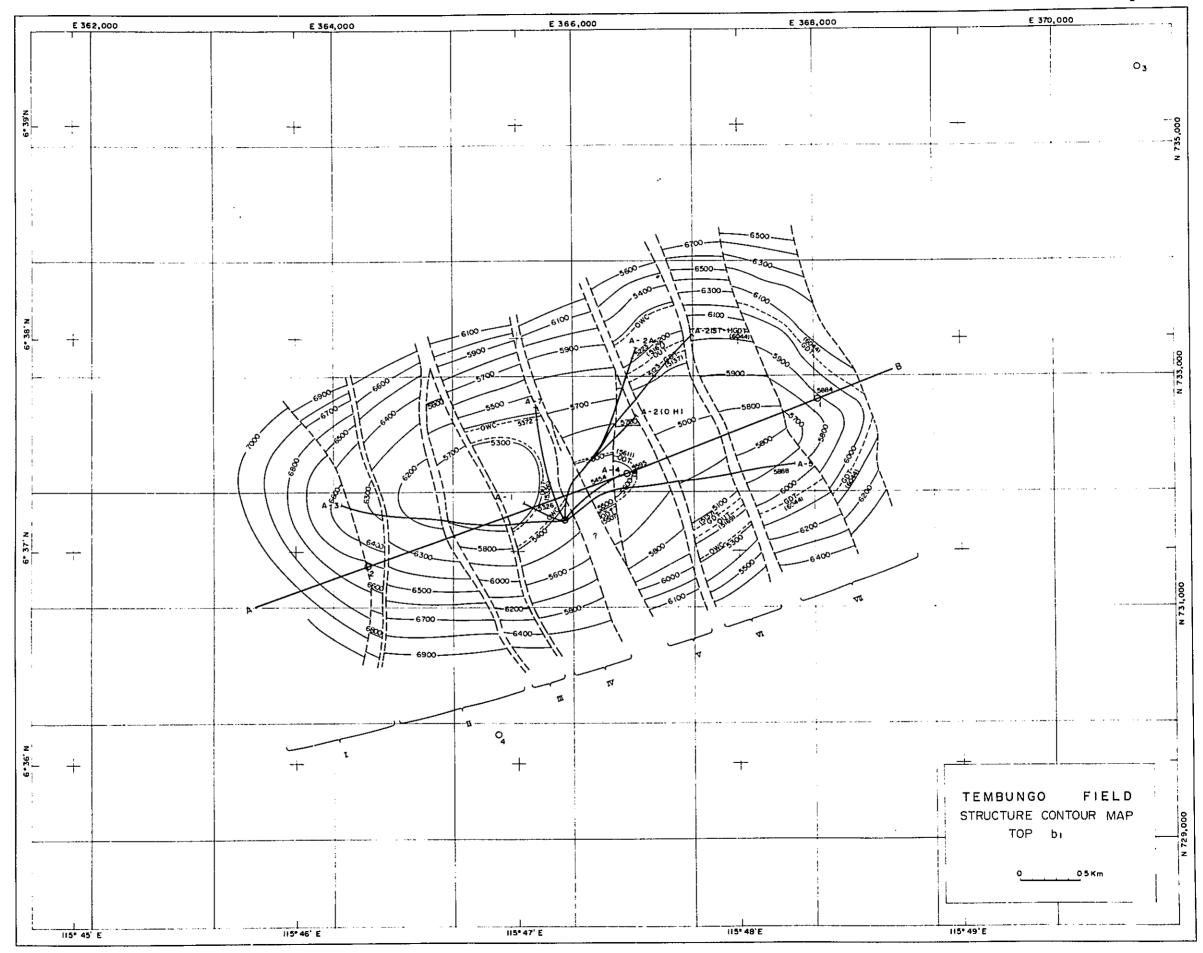


Fig. 2-2-1 Vol. III

STRUCTURE CONTOUR MAP, TEMBUNGO FIELD, TOP bl

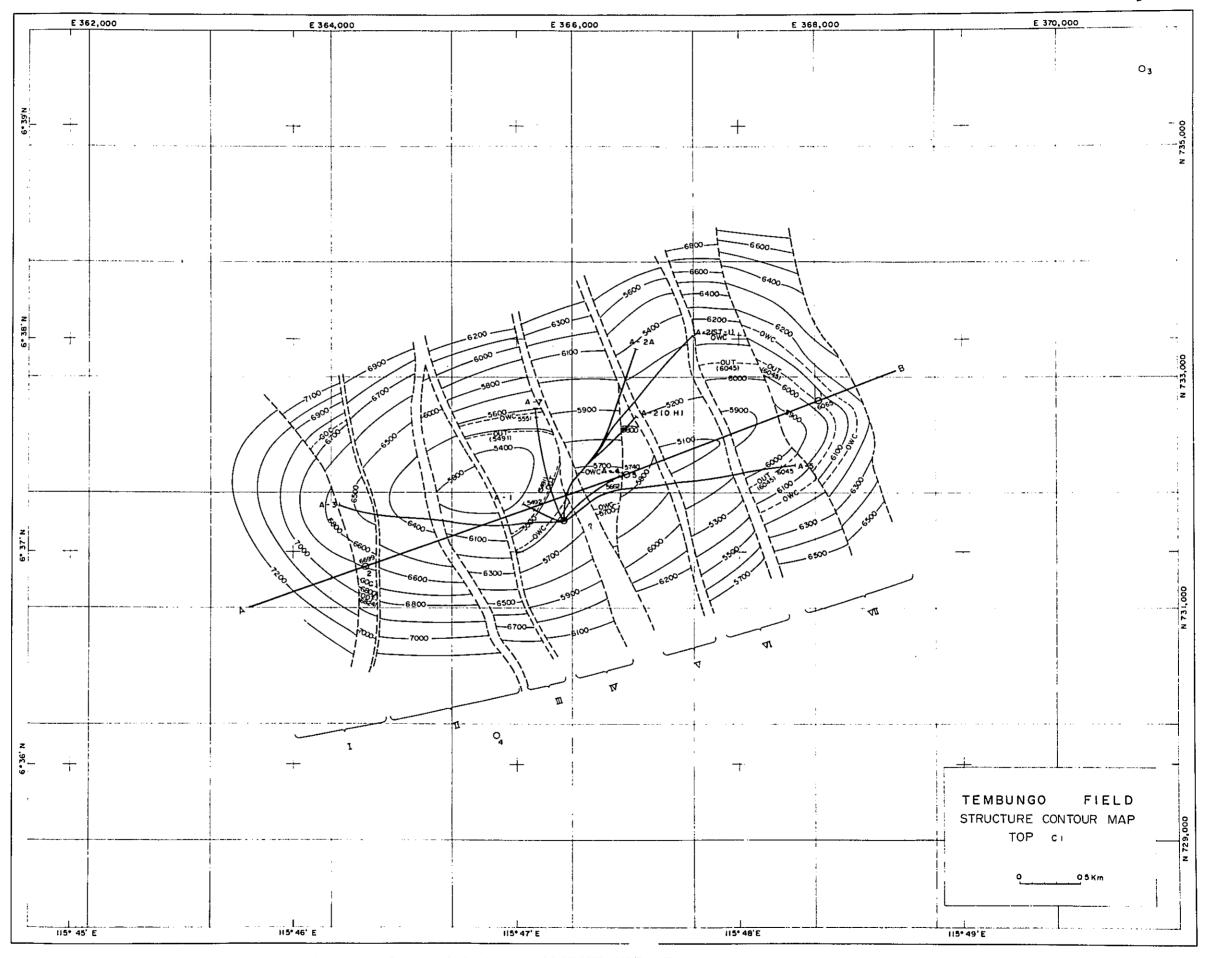


Fig. 2-2-2 STRUCTURE CONTOUR MAP, TEMBUNGO FIELD, TOP cl Vol. III

STRUCTURAL CROSS-SECTION TEMBUNGO FIELD

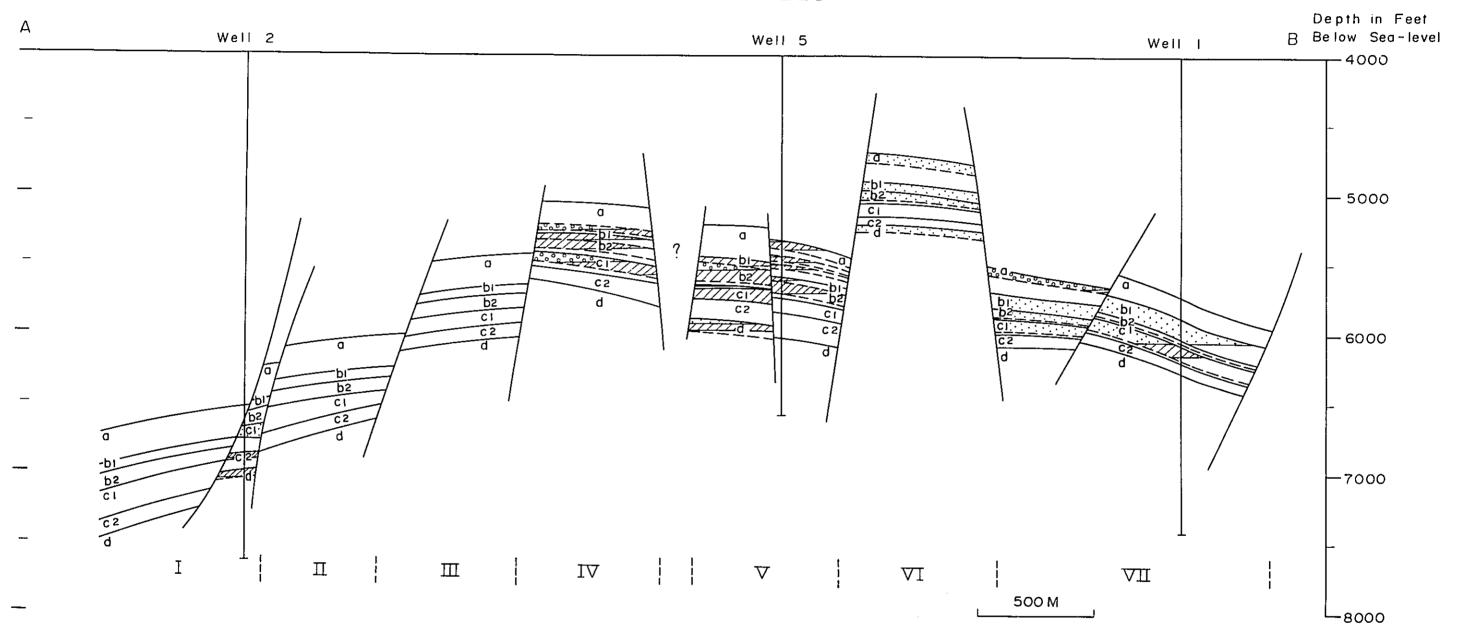


Fig. 2-2-3 STRUCTURAL CROSS-SECTION, TEMBUNGO FIELD Vol. III

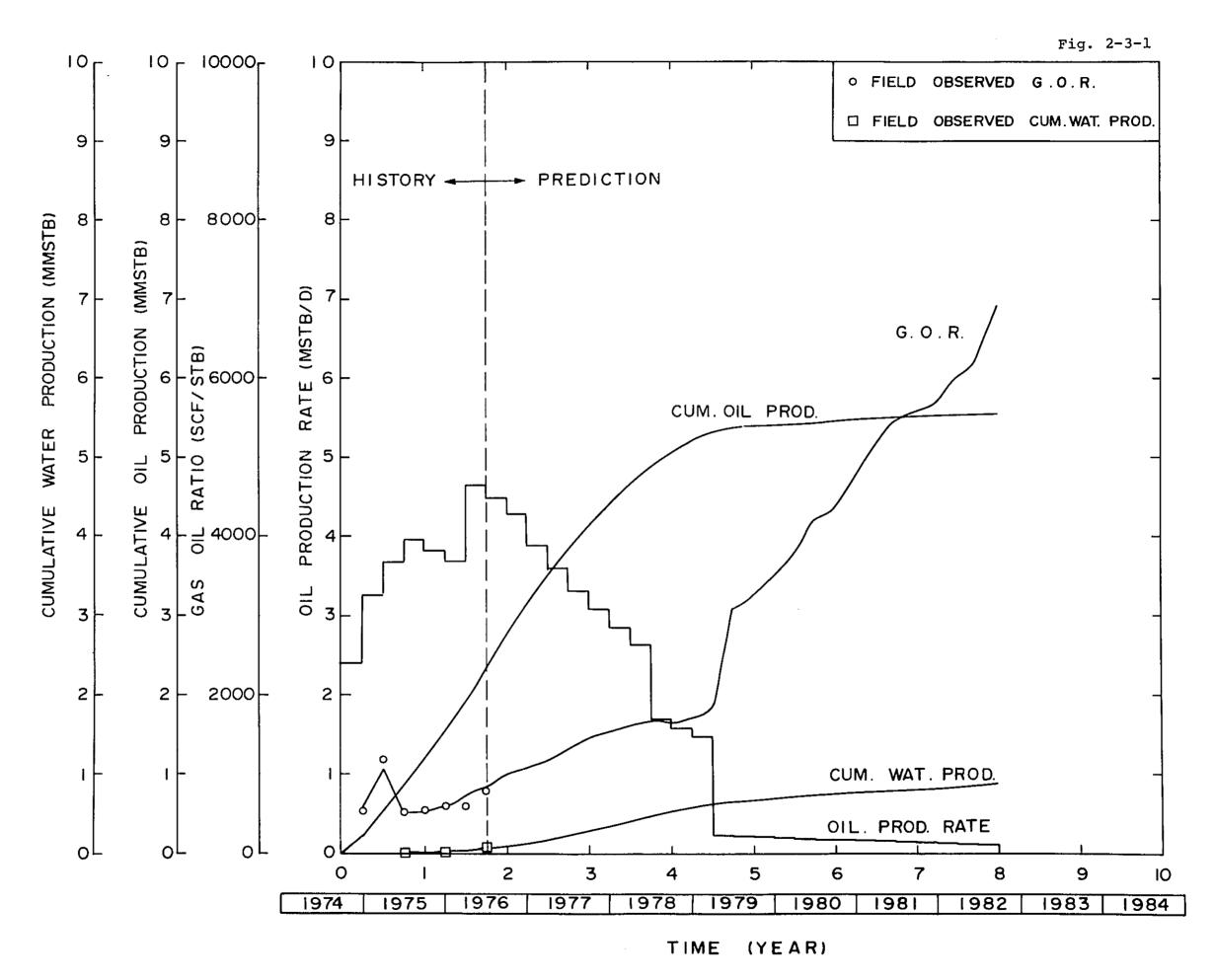


Fig. 2-3-1 PREDICTED PERFORMANCE OF TEMBUNGO FIELD Vol. III

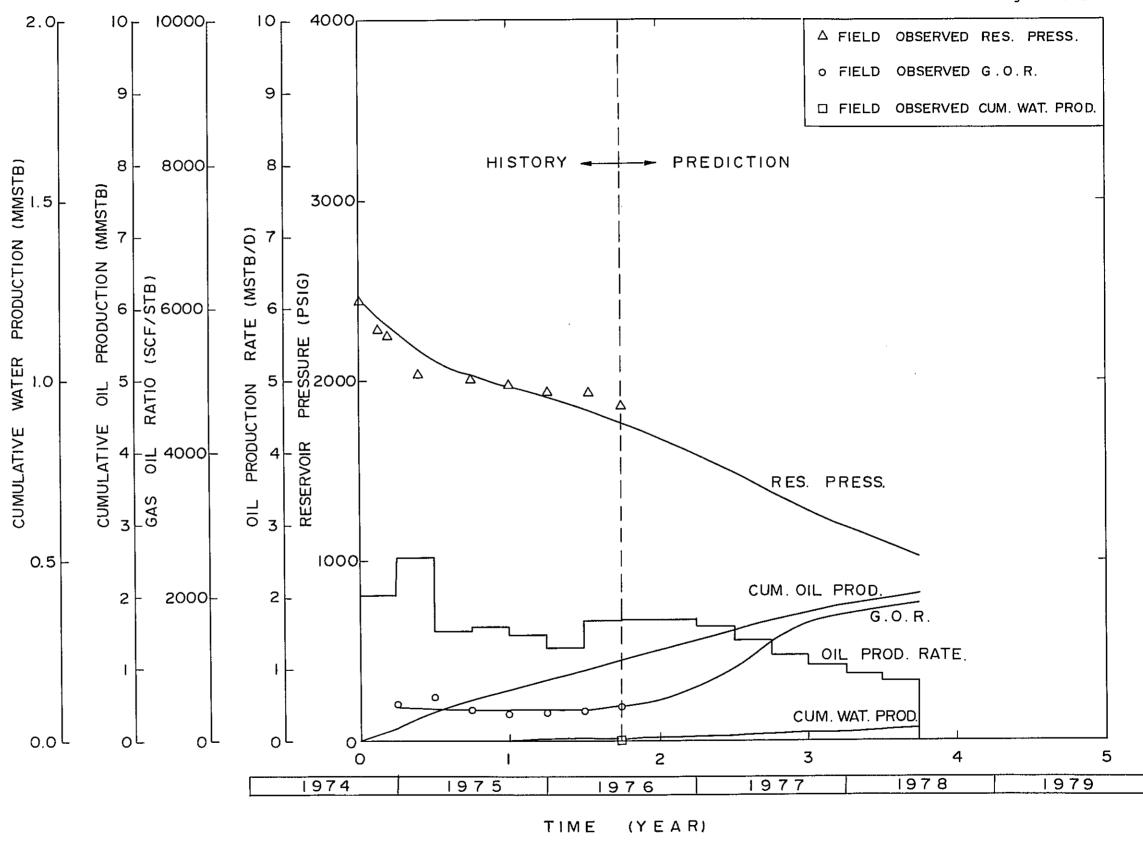


Fig. 2-3-2 PREDICTED PERFORMANCE OF MODEL-1, TEMBUNGO FIELD Vol. III

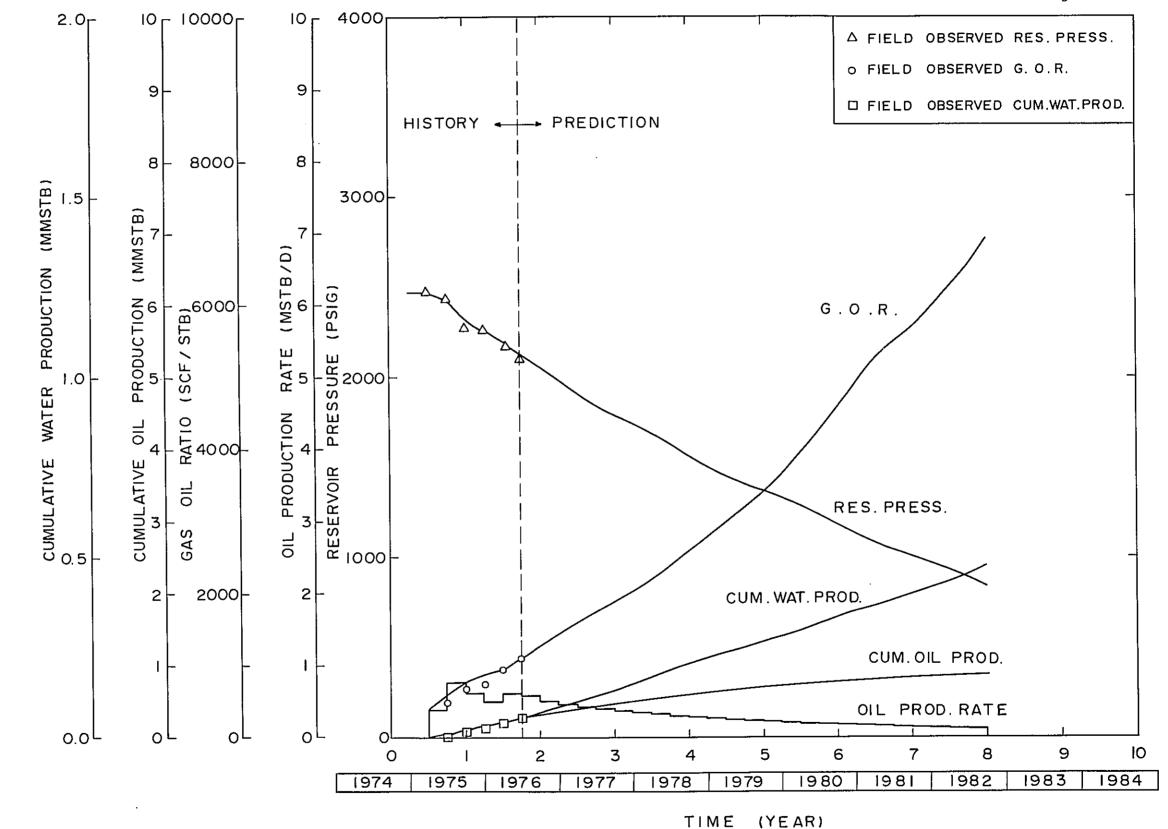


Fig. 2-3-3 PREDICTED PERFORMANCE OF MODEL 2, TEMBUNGO FIELD Vol. III

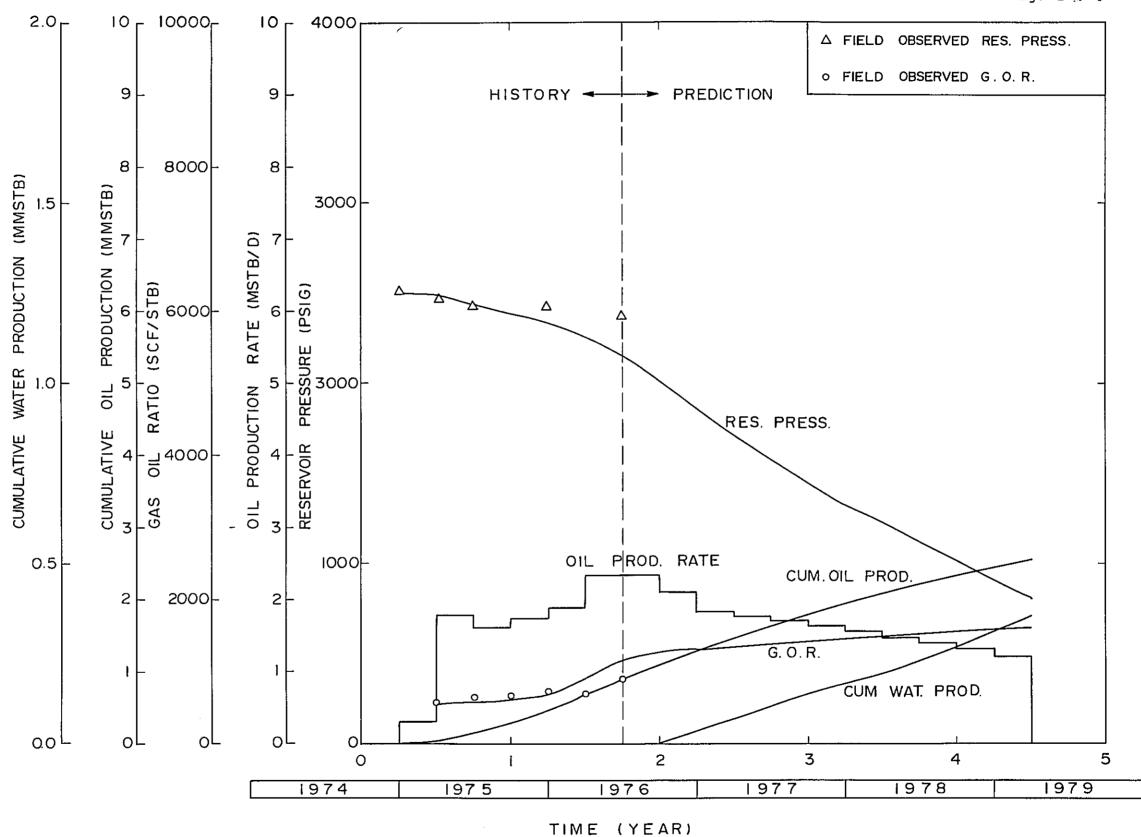


Fig. 2-3-4 PREDICTED PERFORMANCE OF MODEL 3, TEMBUNGO FIELD Vol. III

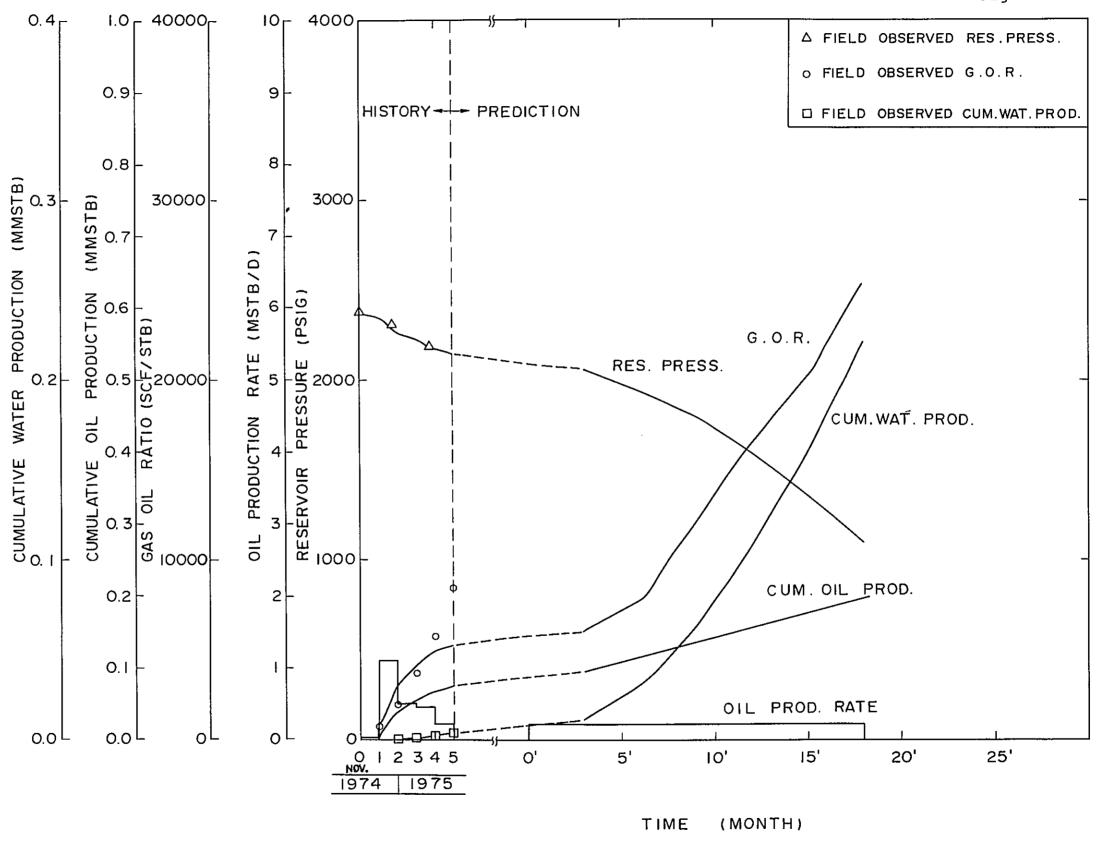
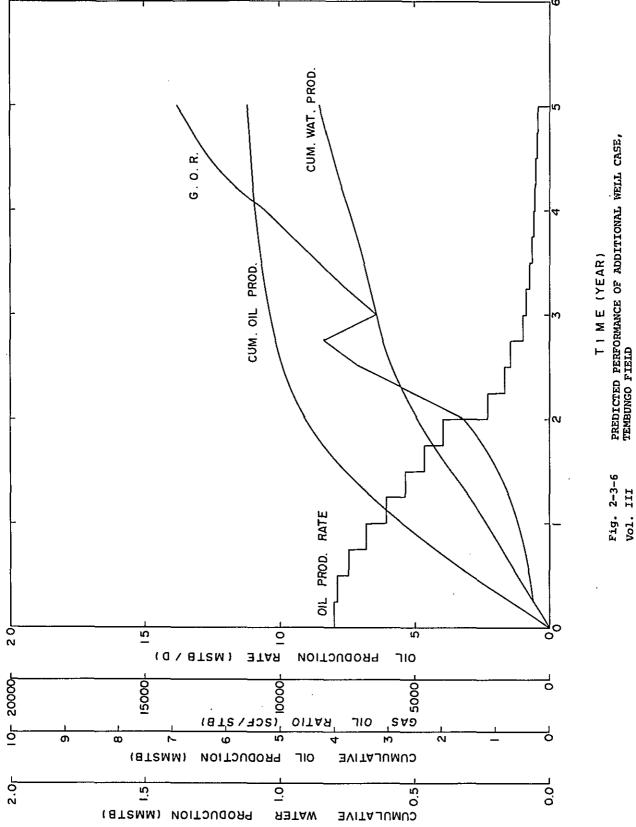
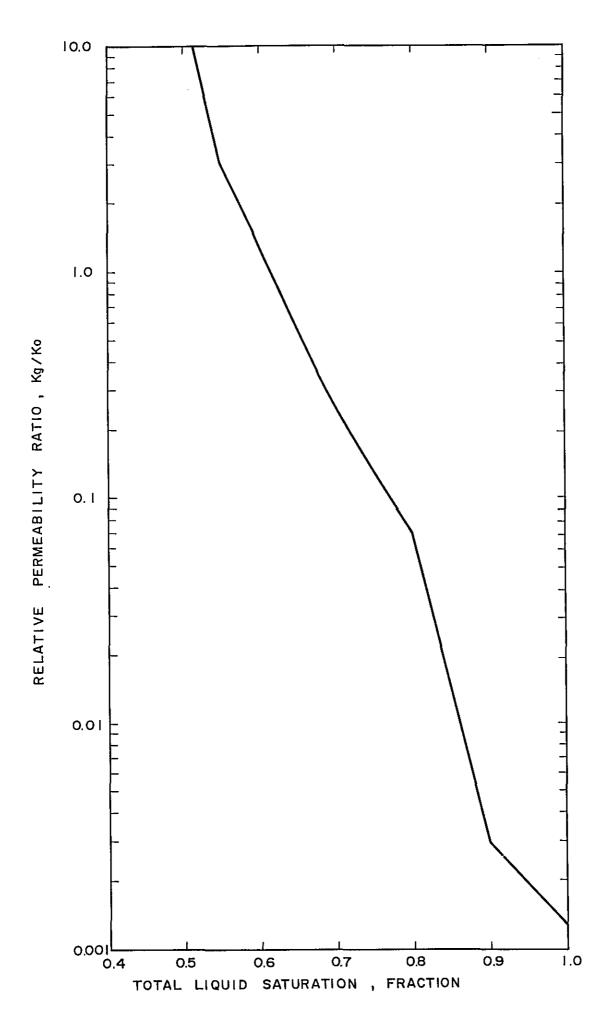
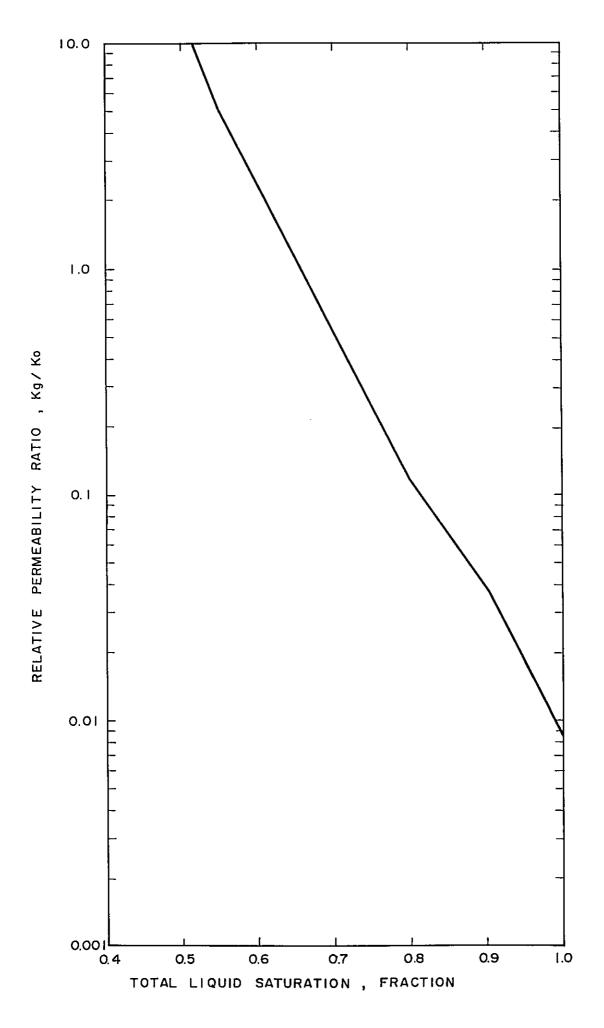
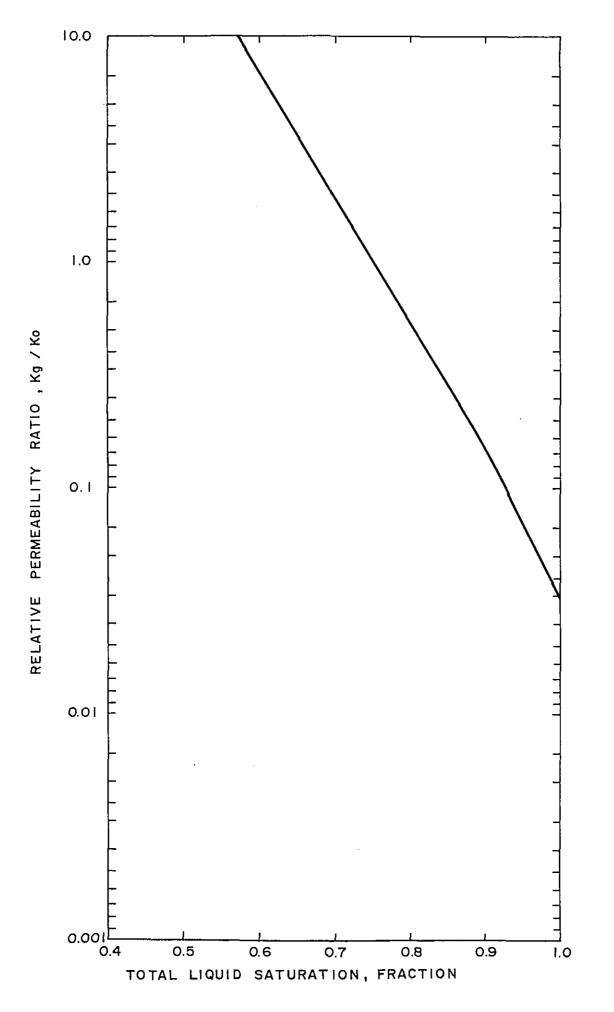





Fig. 2-3-5 PREDICTED PERFORMANCE OF MODEL 4, TEMBUNGO FIELD Vol. III



GAS-OIL RELATIVE PERMEABILITY RATIO OF MODEL 1, TEMBUNGO FIELD

GAS-OIL RELATIVE PERMEABILITY RATIO OF MODEL 2, TEMBUNGO FIELD Fig. 2-3-8 Vol. III

GAS-OIL RELATIVE PERMEABILITY RATIO OF MODEL 3, TEMBUNGO FIELD

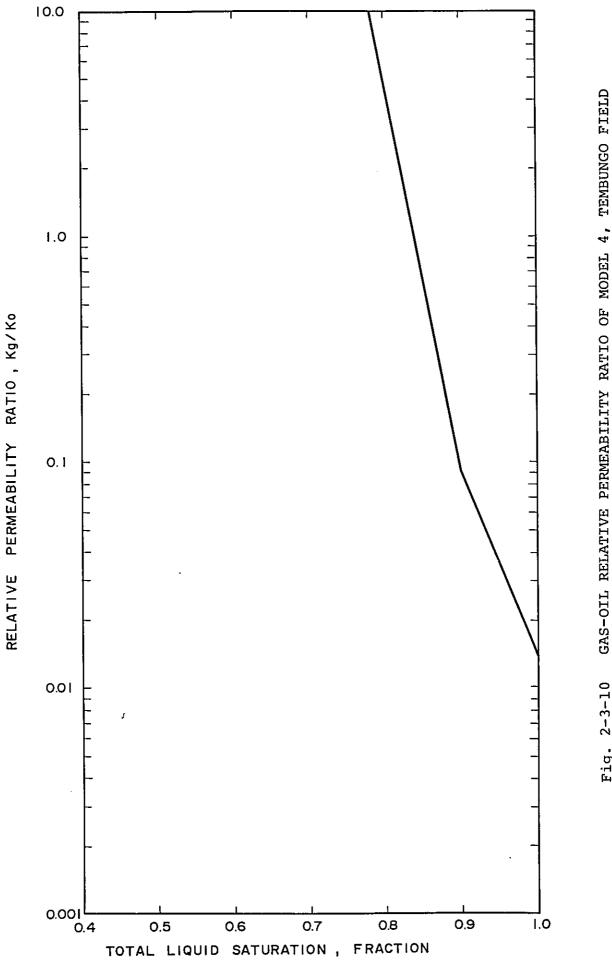


Fig. 2-3-10 Vol. III

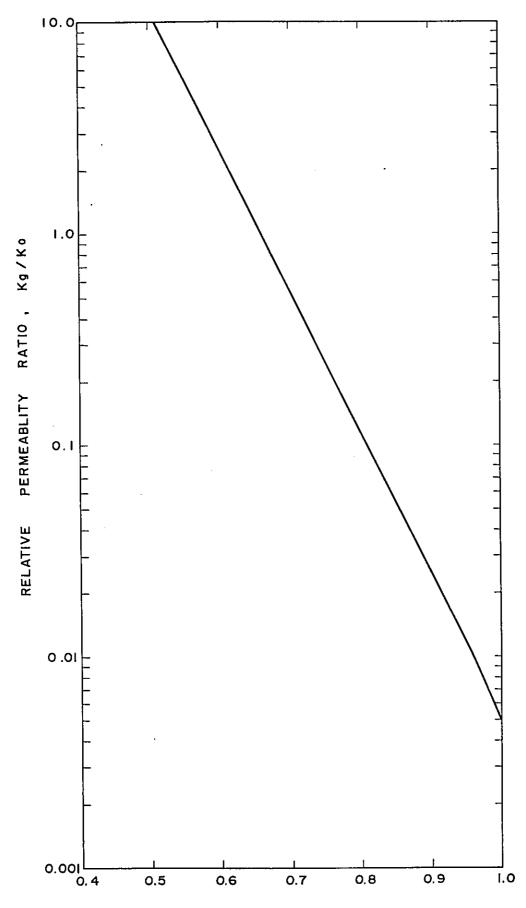


Fig. 2-3-11 GAS-OIL RELATIVE PERMEABILITY RATIO - ADDITIONAL Vol. III WELL CASE, TEMBUNGO FIELD

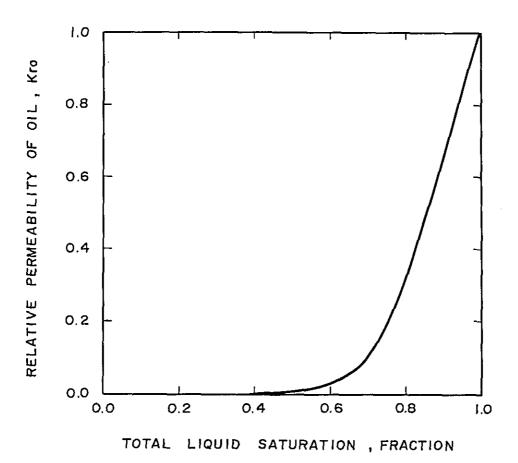


Fig. 2-3-12 OIL RELATIVE PERMEABILITY CURVE OF Vol. III MODEL 1, TEMBUNGO FIELD

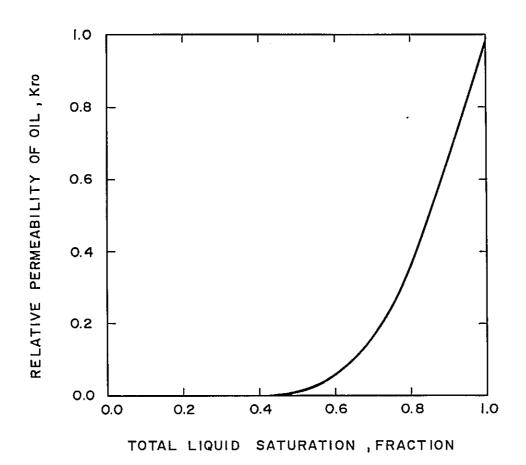


Fig. 2-3-13 OIL RELATIVE PERMEABILITY CURVE OF Vol. III MODEL 2, TEMBUNGO FIELD

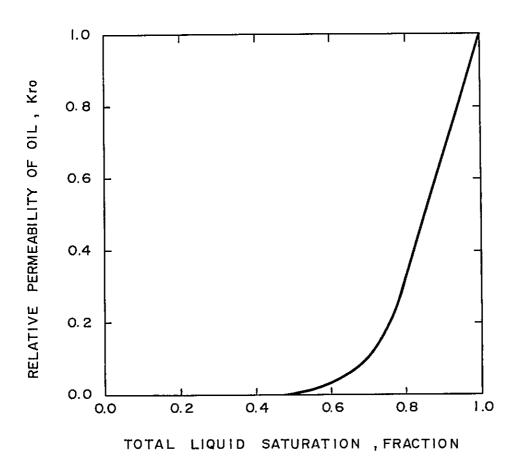
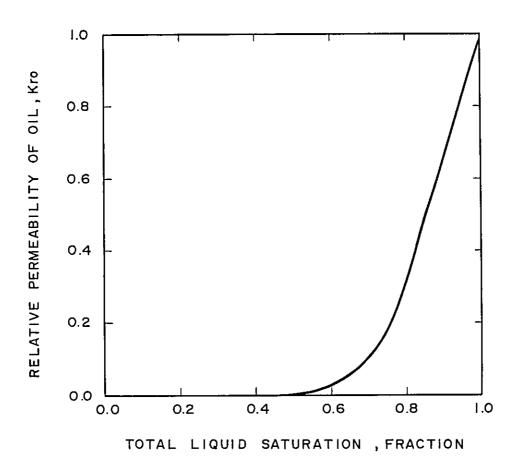
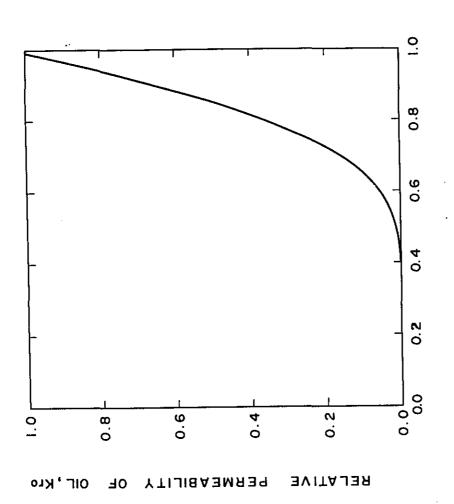
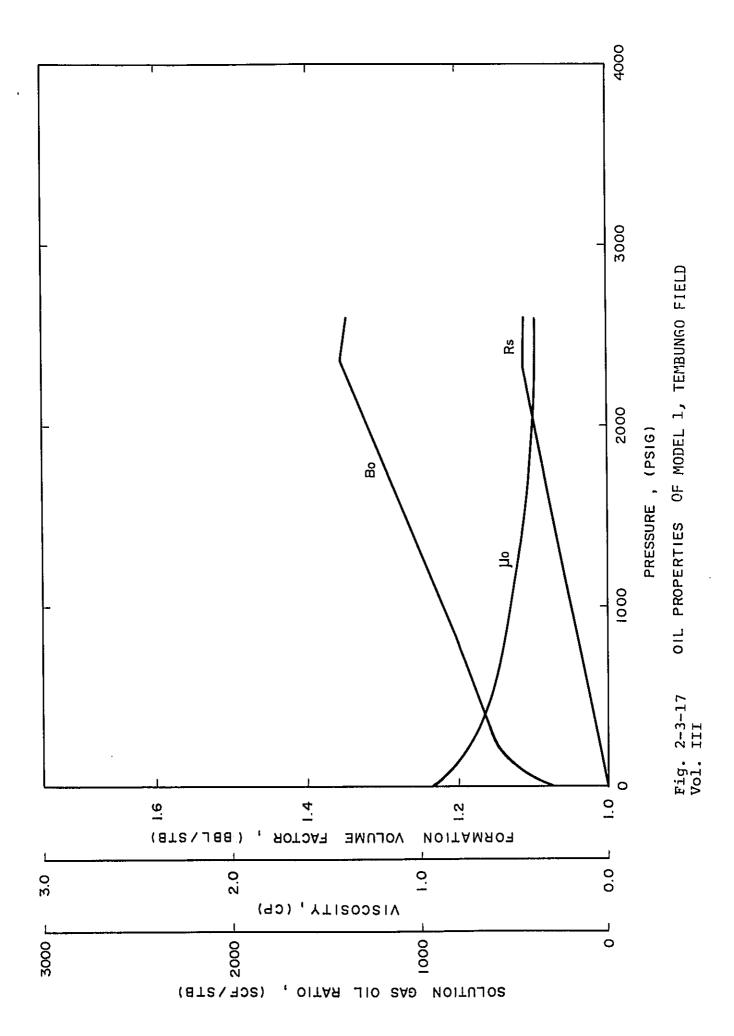
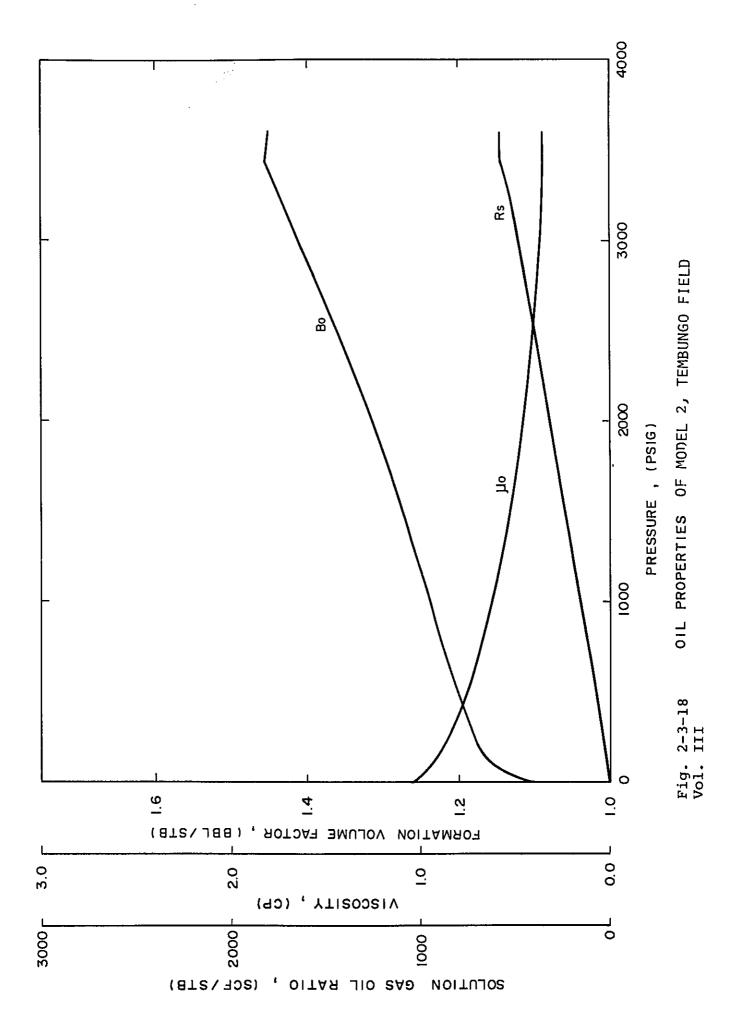
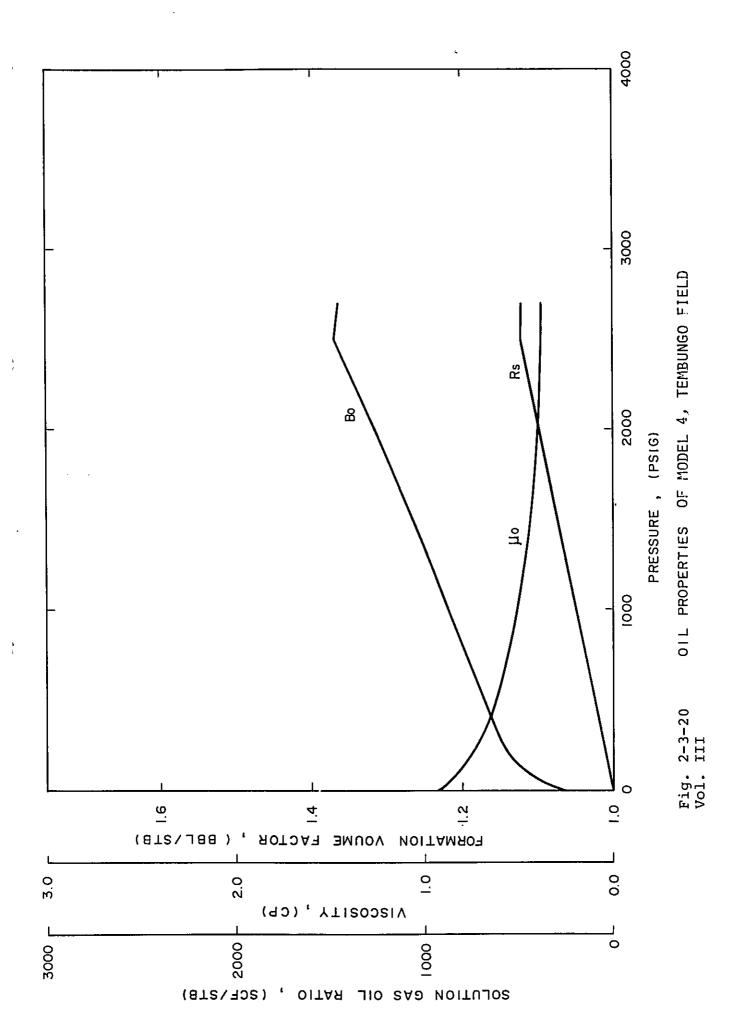


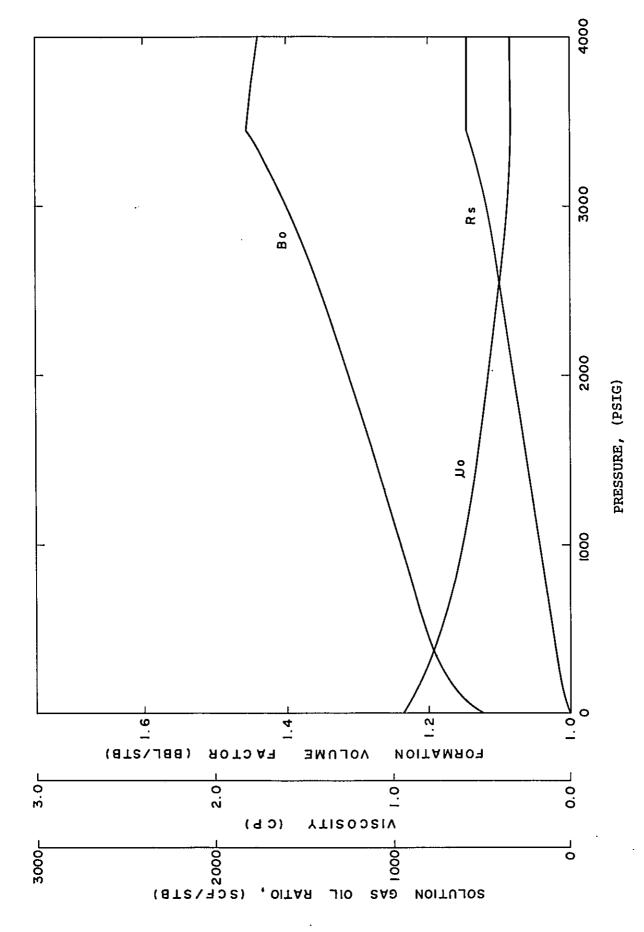
Fig. 2-3-14 OIL RELATIVE PERMEABLITY CURVE OF Vol. III MODEL 3, TEMBUNGO FIELD

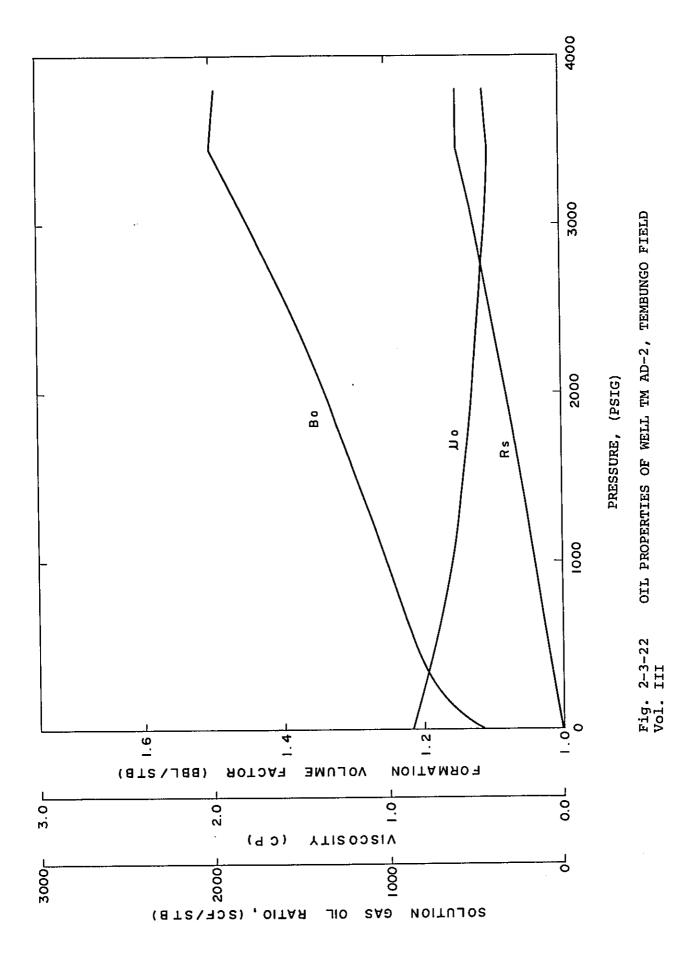





Fig. 2-3-15 OIL RELATIVE PERMEABILITY CURVE OF Vol. III MODEL 4, TEMBUNGO FIELD

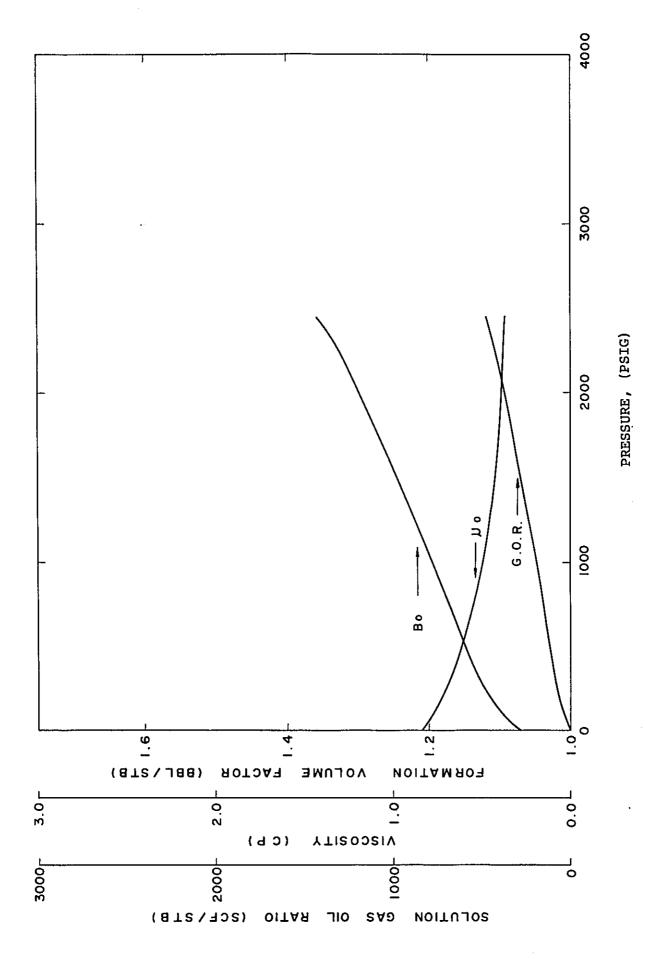
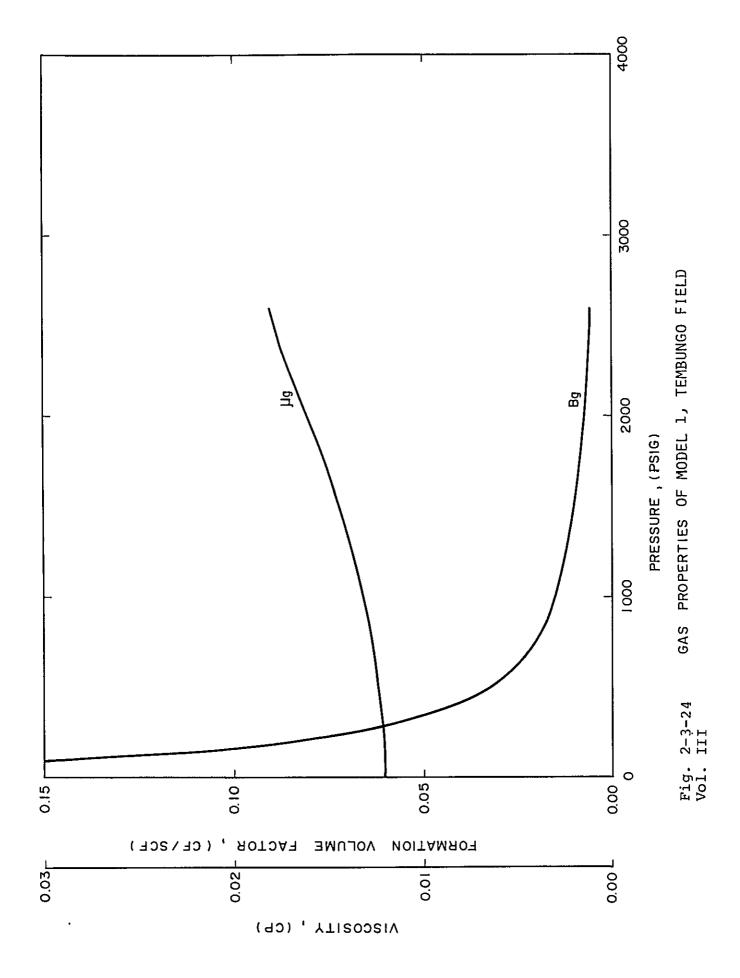
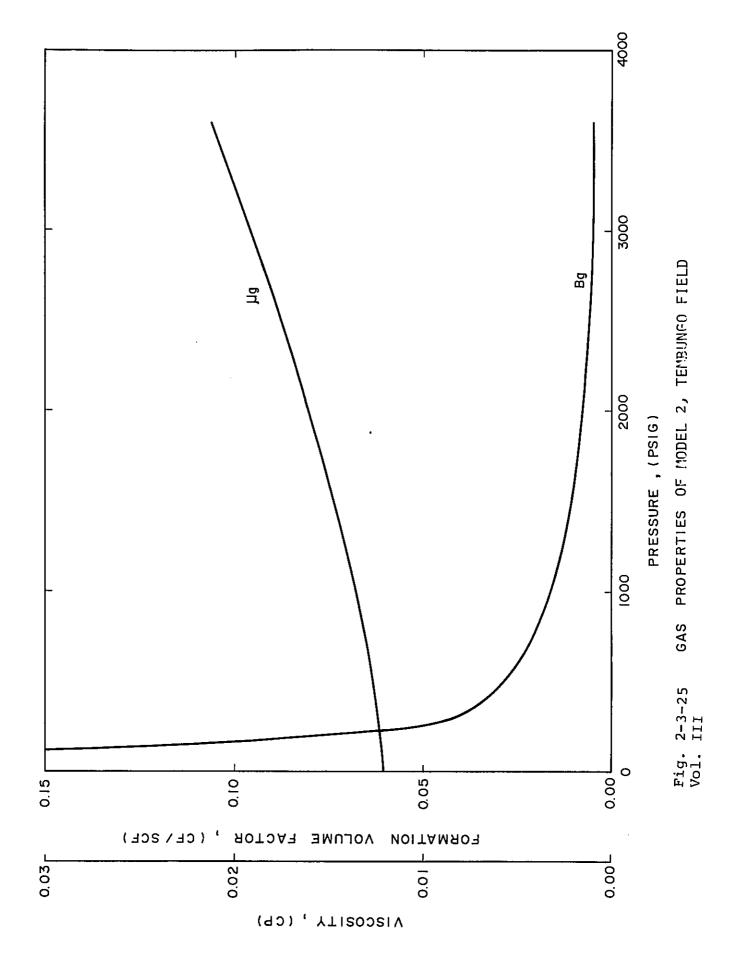
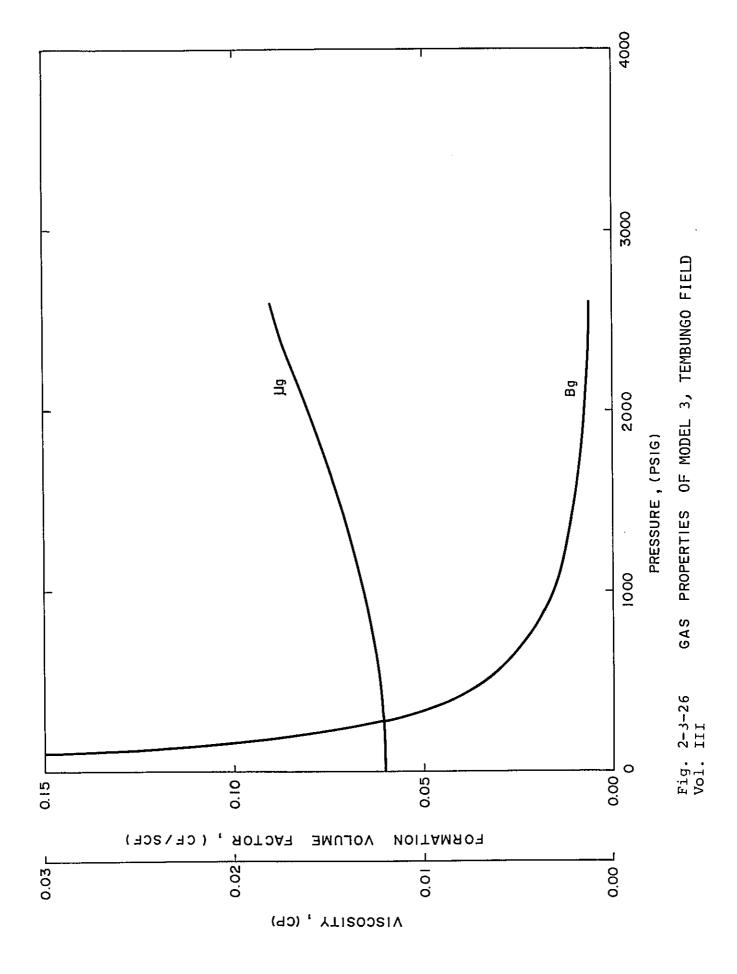
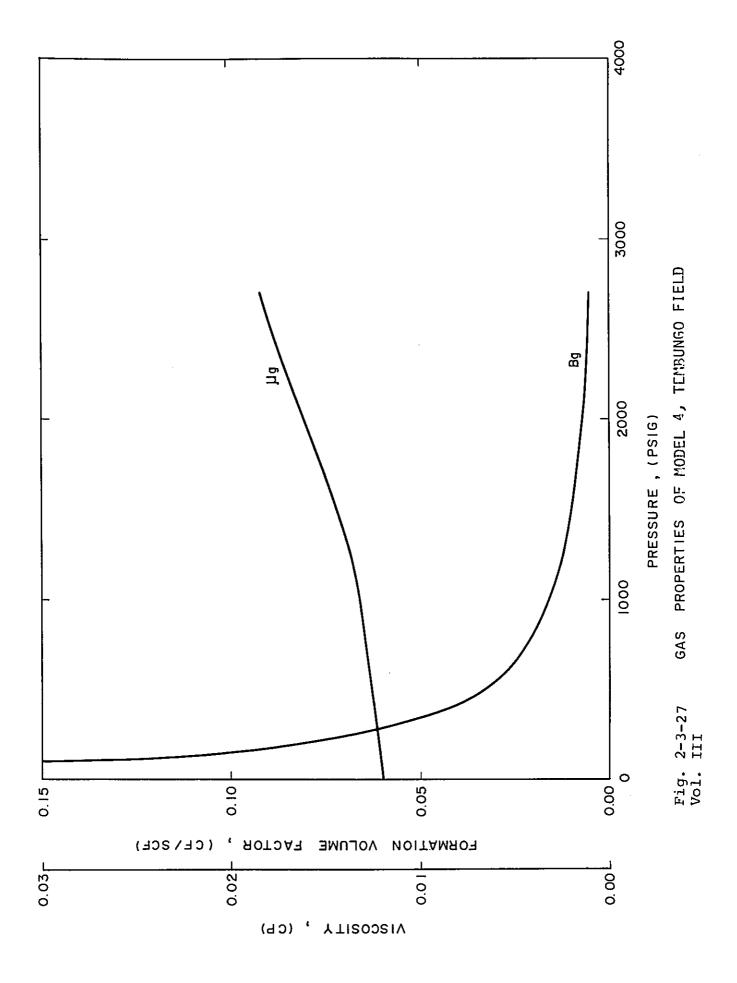


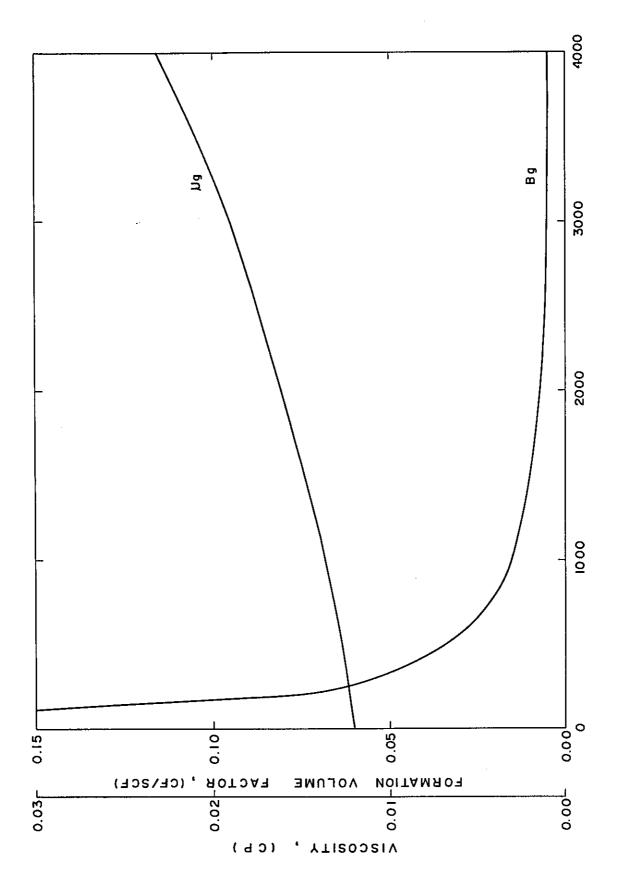

OIL RELATIVE PERMEABILITY CURVE - ADDITIONAL WELL CASE, TEMBUNGO FIELD Fig. 2-3-16 Vol. III


TOTAL LIQUID SATURATION, FRACTION



OIL PROPERTIES OF WELL TM AD-1 AND AD-4, TEMBUNGO FIELD Fig. 2-3-21 Vol. III


Fig. 2-3-23 OIL PROPERTIES OF WELL TM AD-3, TEMBUNGO FIELD Vol. III

GAS PROPERTIES OF WELL TM AM-1 AND AD-4, TEMBUNGO FIELD Fig. 2-3-28 Vol. III

PRESSURE, (PSIG)

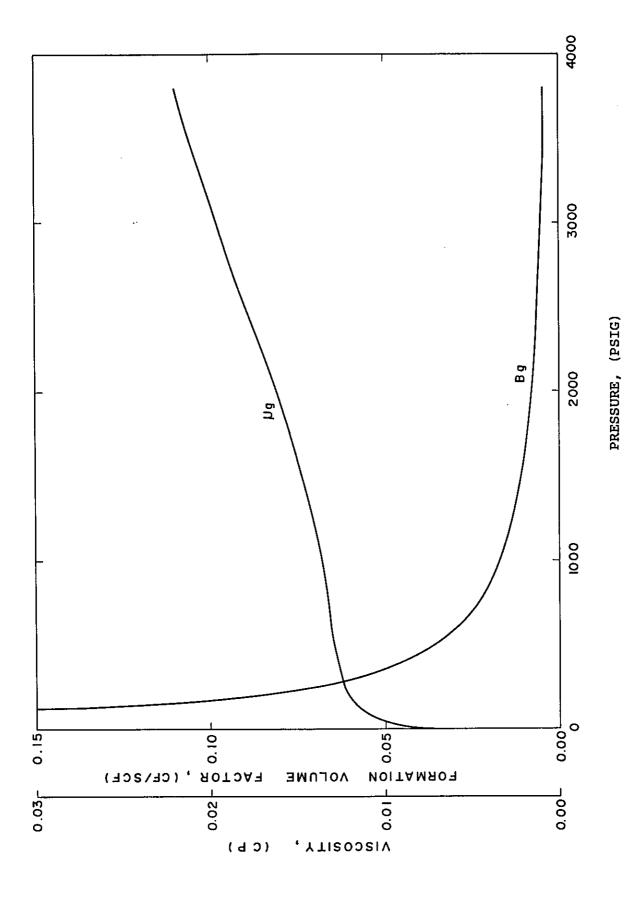
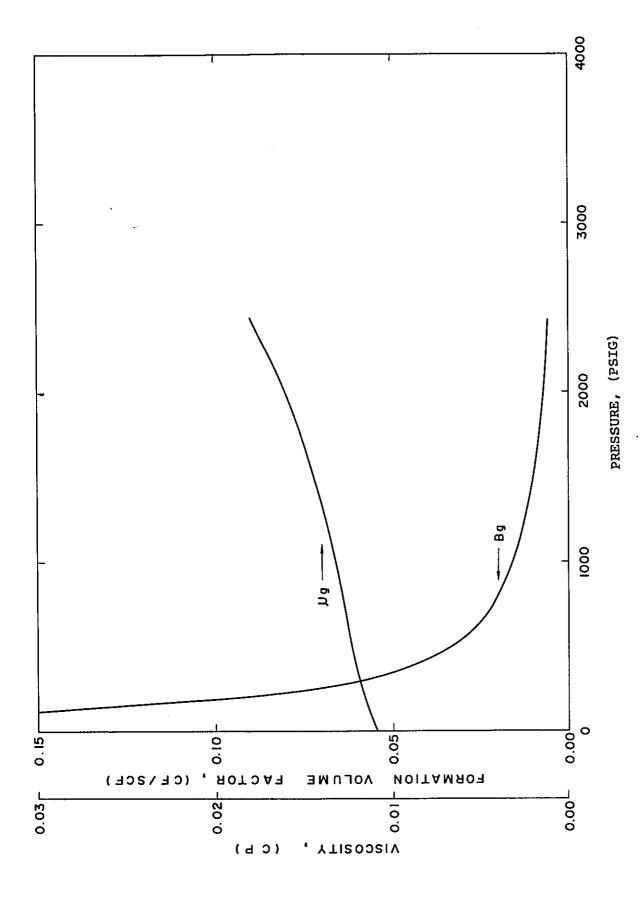
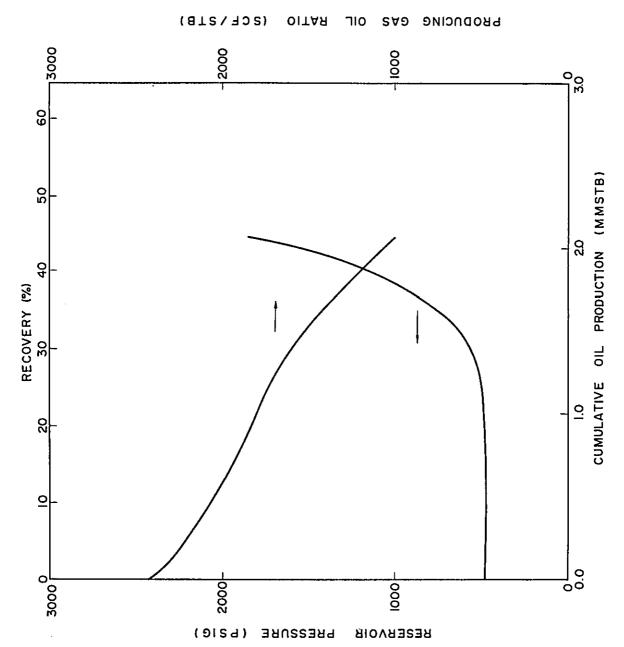
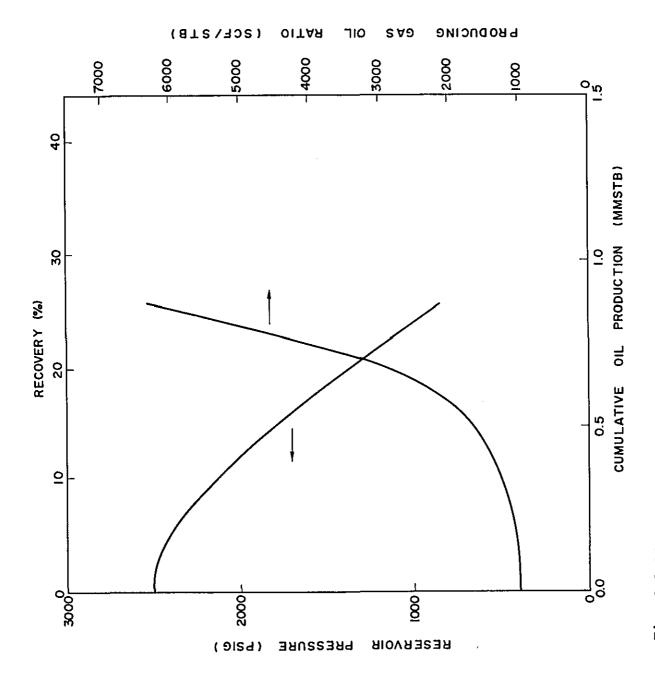
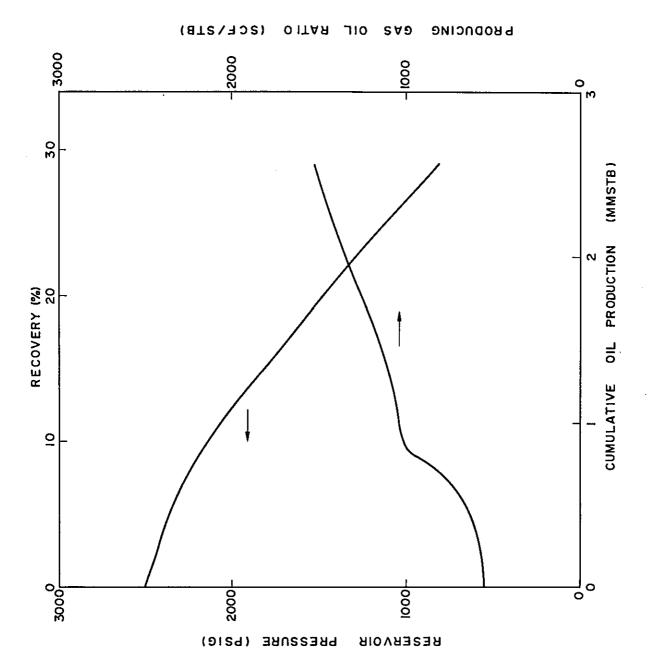
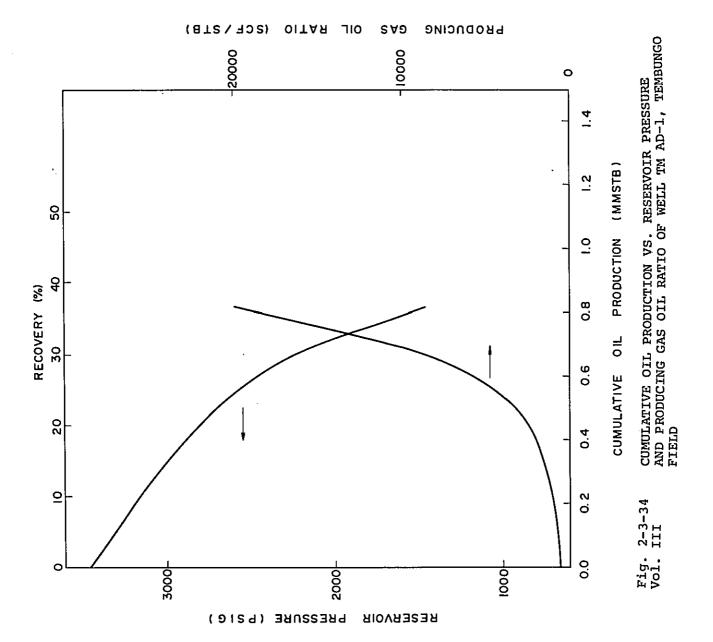
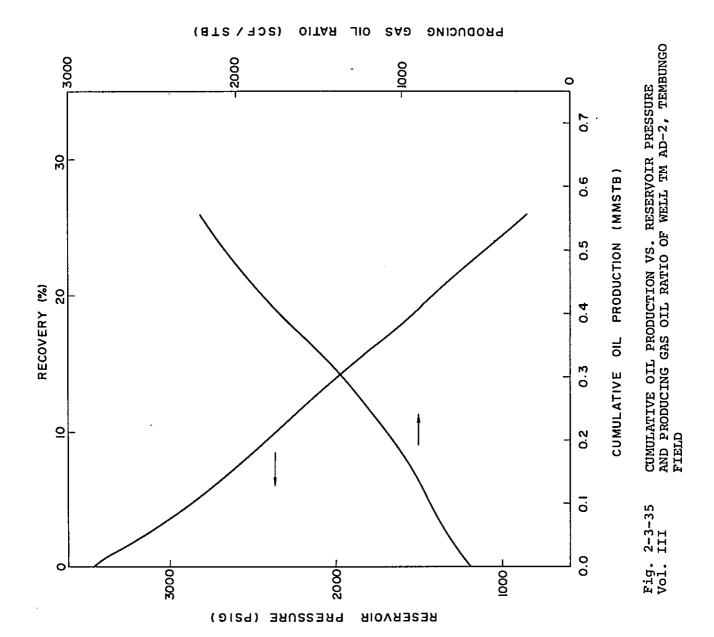


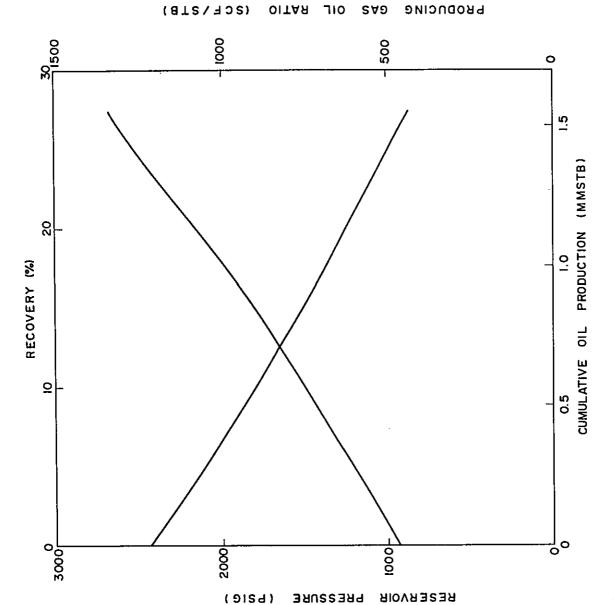
Fig. 2-3-29 GAS PROPERTIES OF WELL TM AD-2, TEMBUNGO FIELD VOL. III

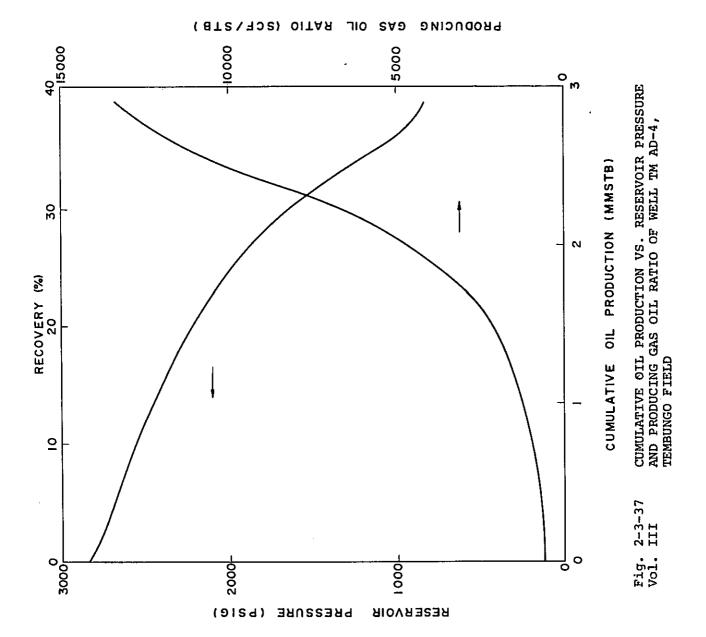





Fig. 2-3-30 GAS PROPERTIES OF WELL TM AD-3, TEMBUNGO FIELD Vol. III


CUMULATIVE OIL PRODUCTION VS. RESERVOIR PRESSURE AND PRODUCING GAS OIL RATIO OF MODEL-1, TEMBUNGO FIELD Fig. 2-3-31 Vol. III




CUMULATIVE OIL PRODUCTION VS. RESERVOIR PRESSURE AND PRODUCING GAS OIL RATIO OF MODEL-2, TEMBUNGO FIELD Fig. 2-3-32 Vol. III


CUMULATIVE OIL PRODUCTION VS. RESERVOIR PRESSURE AND PRODUCING GAS OIL RATIO OF MODEL-3, TEMBUNGO FIELD Fig. 2-3-33 Vol. III

CUMULATIVE OIL PRODUCTION VS. RESERVOIR PRESSURE AND PRODUCING GAS OIL RATIO OF WELL IM AD-3, TEMBUNGO FIELD Fig. 2-3-36 Vol. III



Fig. 2-3-38 ADDITIONAL WELL CASE-WELL LOCATION MAP, TEMBUNGO FIELD Vol. III

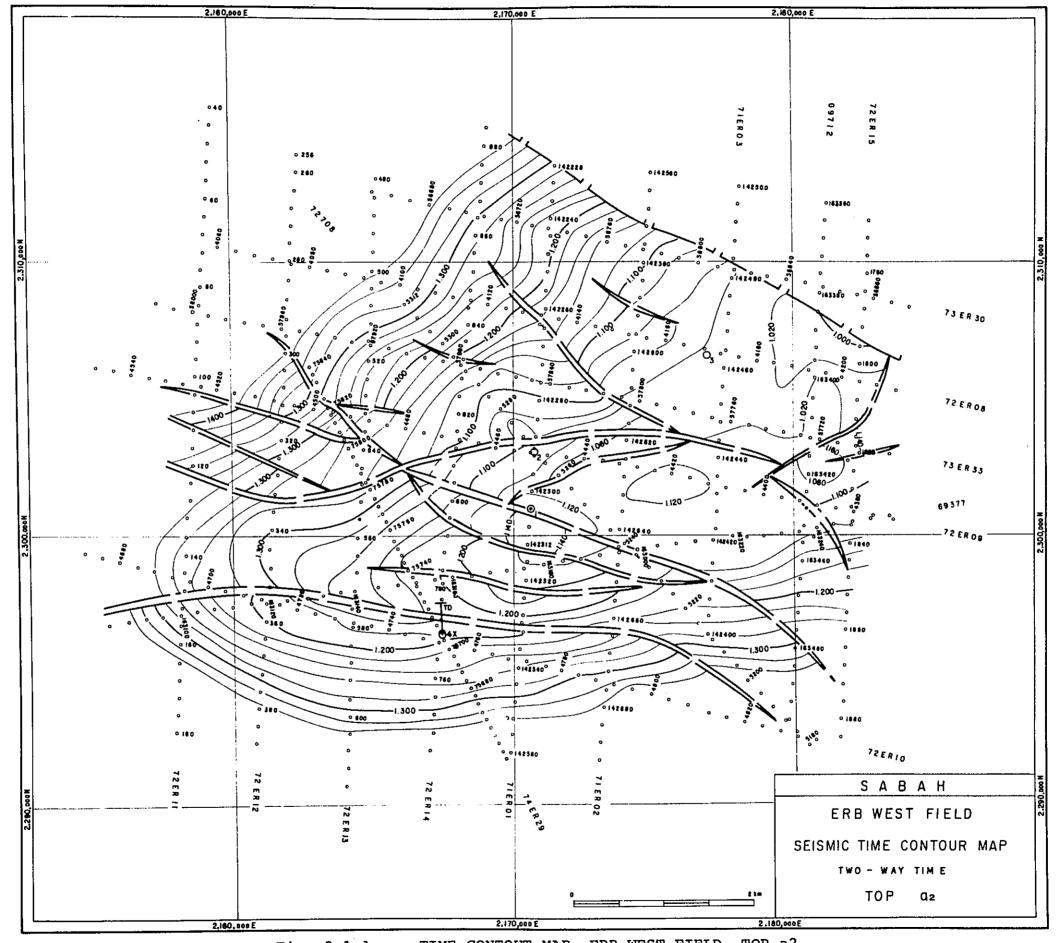


Fig. 3-1-1 TIME CONTOUT MAP, ERB WEST FIELD, TOP a2 Vol. III

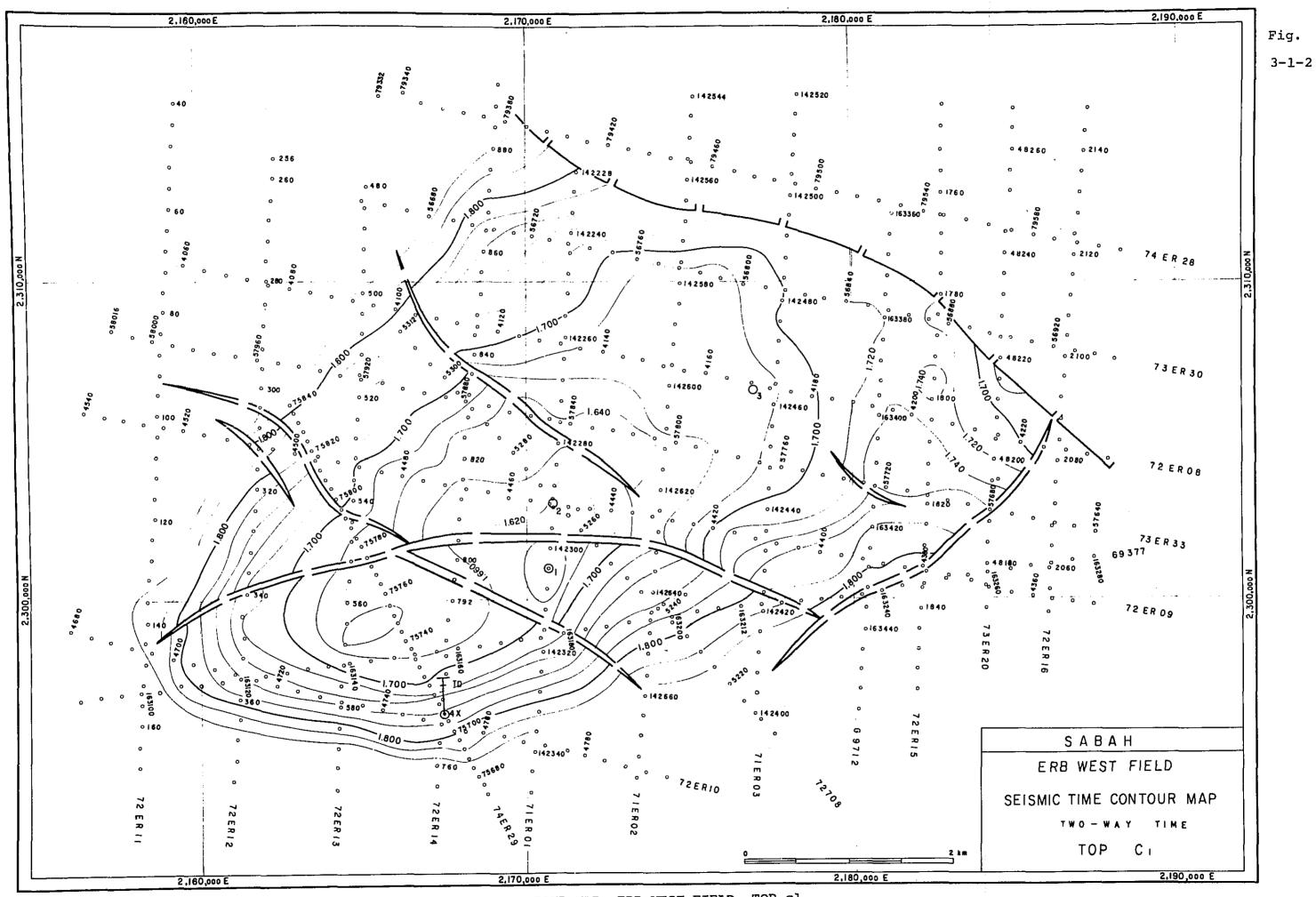


Fig. 3-1-2 TIME CONTOUR MAP, ERB WEST FIELD, TOP cl Vol. III

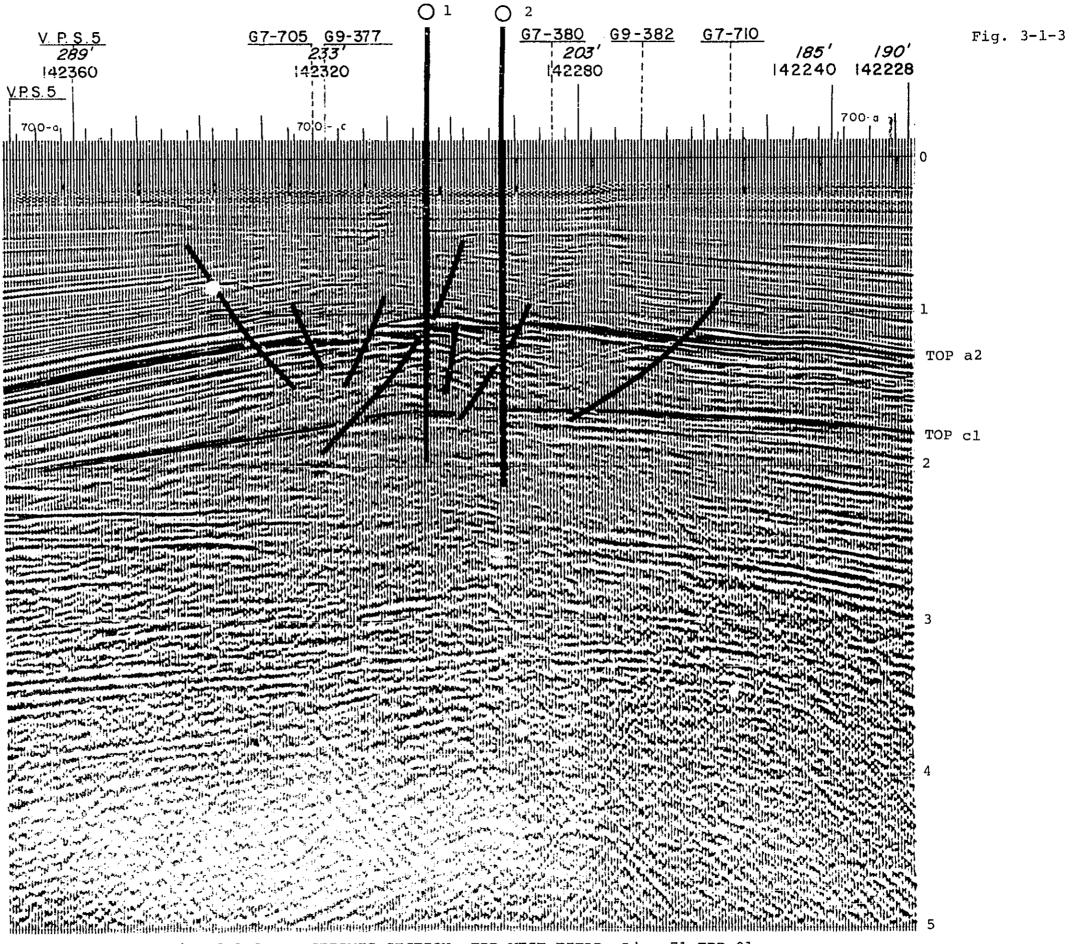


Fig. 3-1-3 SEISMIC SECTION, ERB WEST FIELD, Line 71-ERB-01 Vol. III

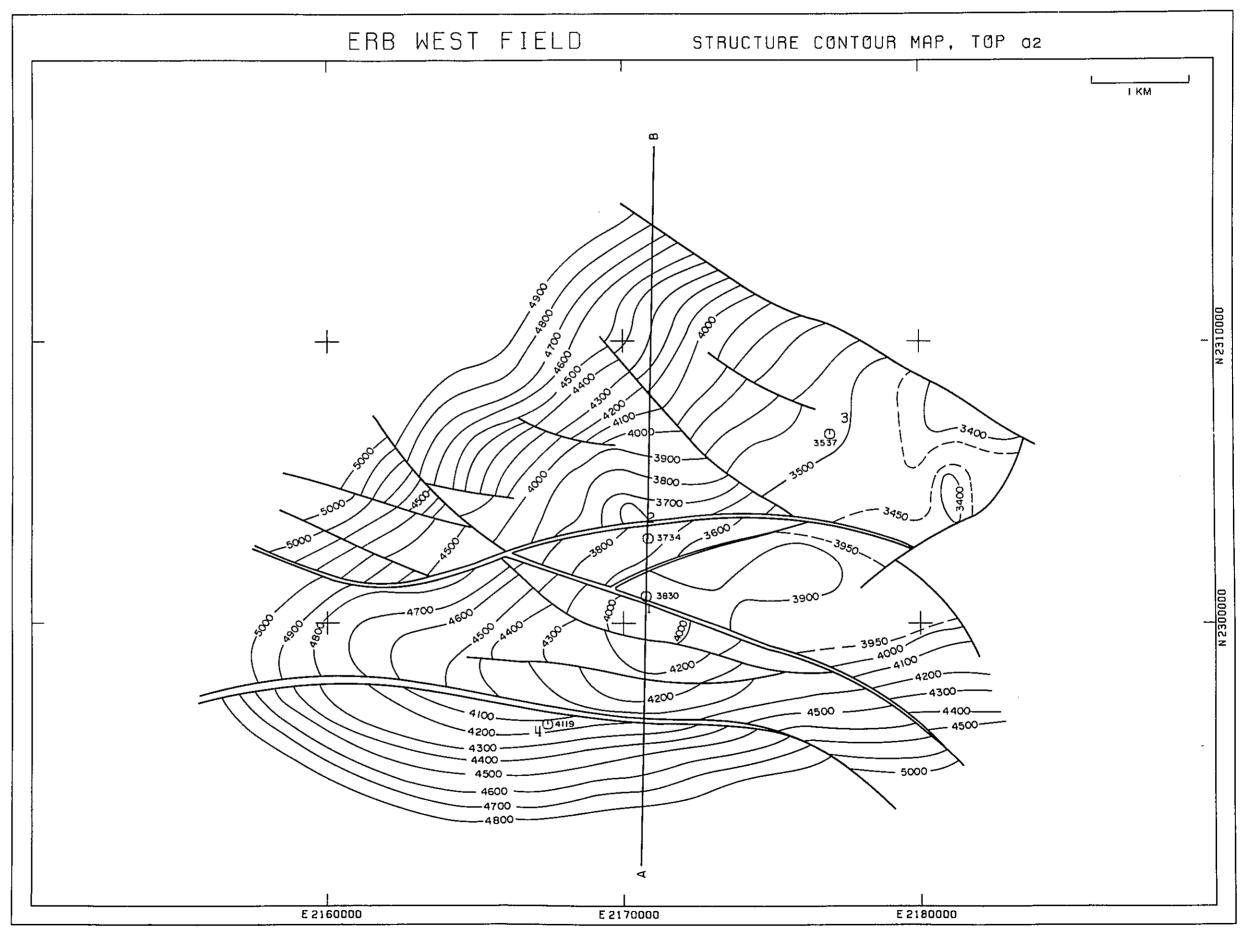


Fig. 3-2-1 STRUCTURE CONTOUR MAP, ERB WEST FIELD, TOP a2 Vol. III

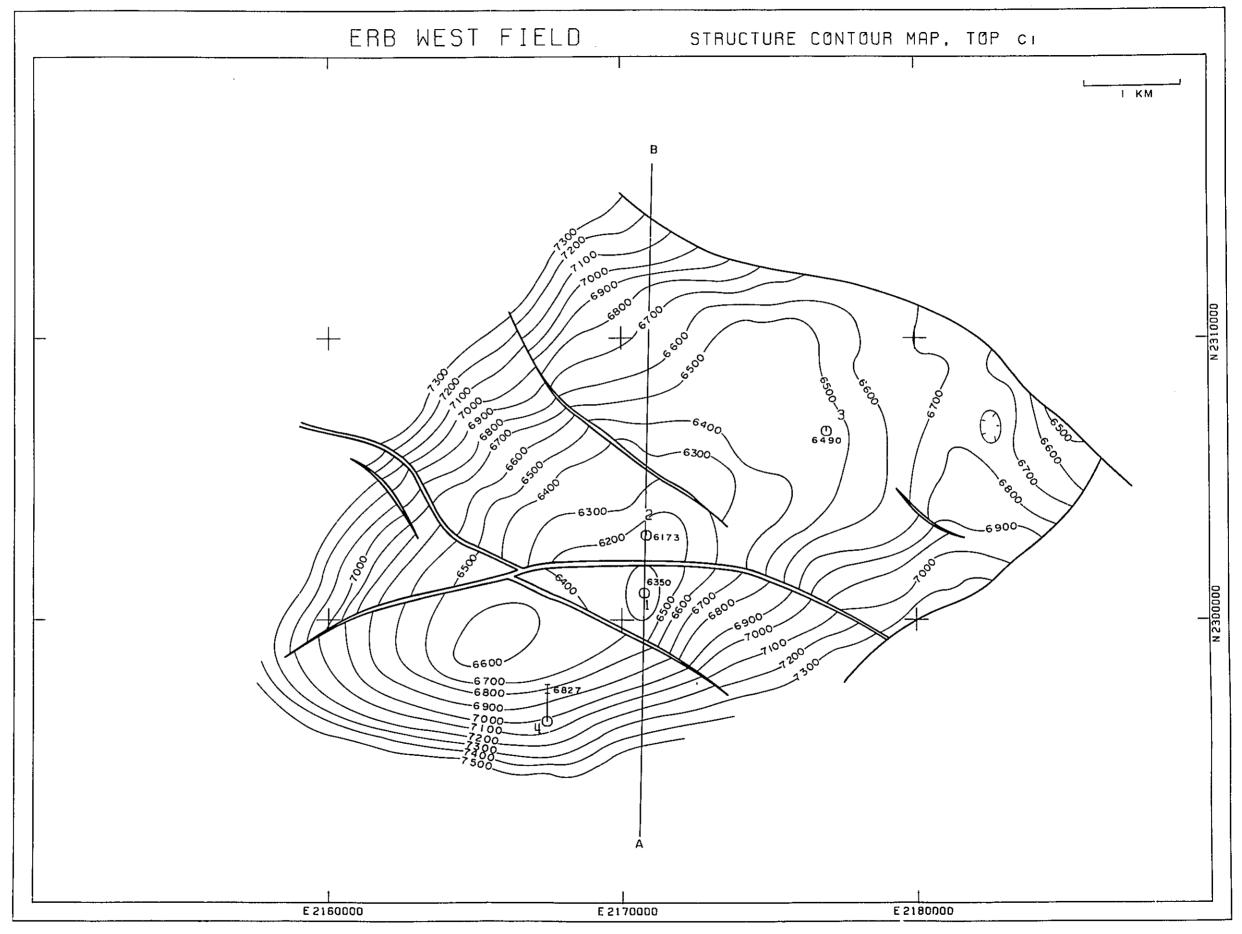


Fig. 3-2-2 Vol. III STRUCTURE CONTOUR MAP, ERB WEST FIELD, TOP cl

ERB WEST FIELD

m

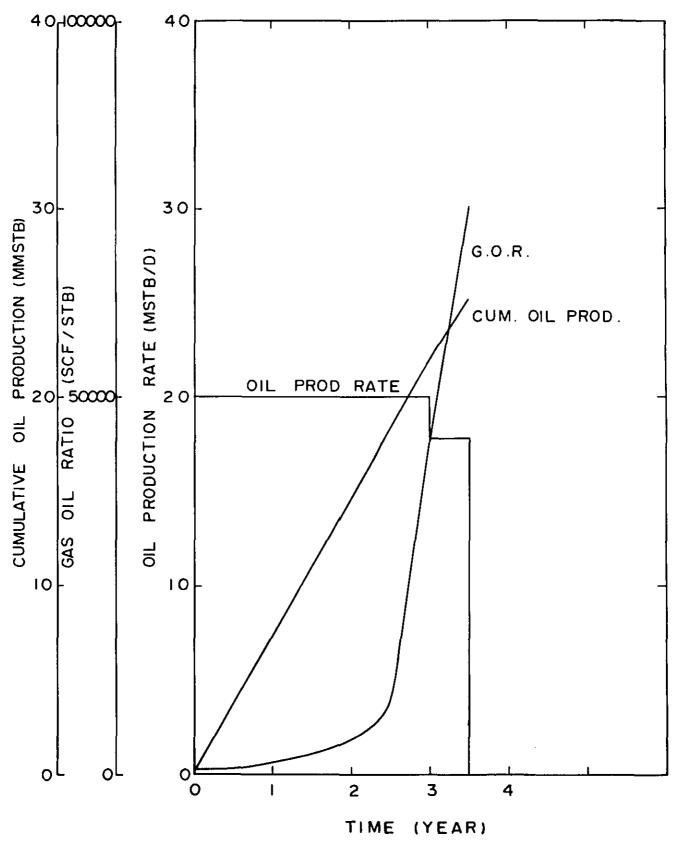
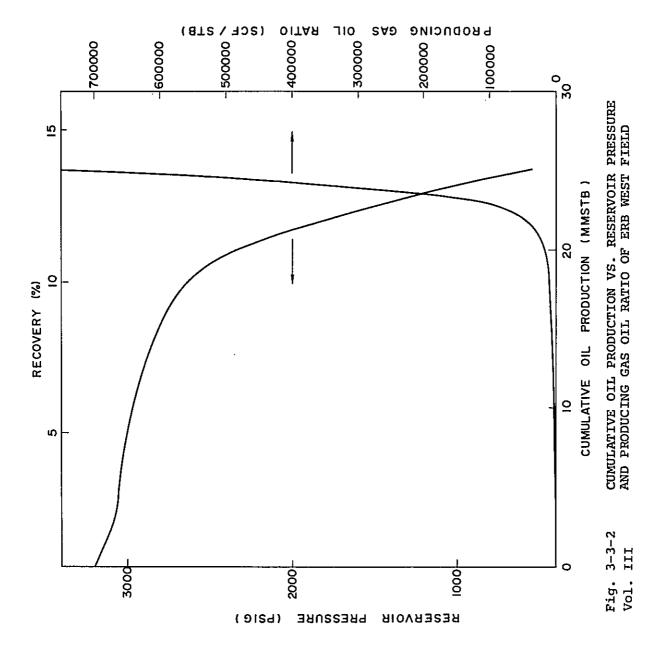



Fig. 3-3-1 PREDICTED PERFORMANCE OF ERB WEST FIELD Vol. III

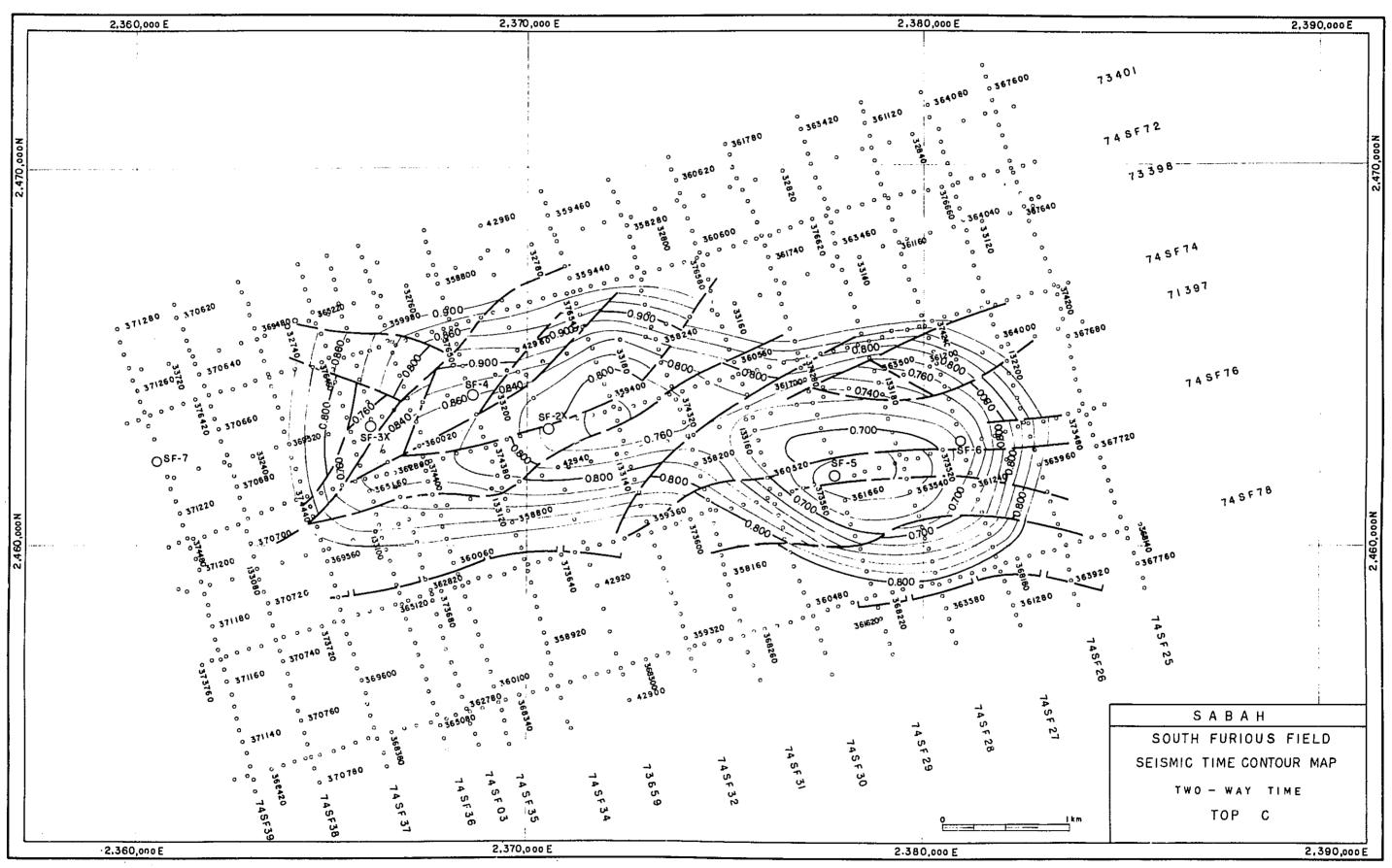


Fig. 4-1-1 TIME CONTOUR MAP, SOUTH FURIOUS FIELD, TOP c Vol. III

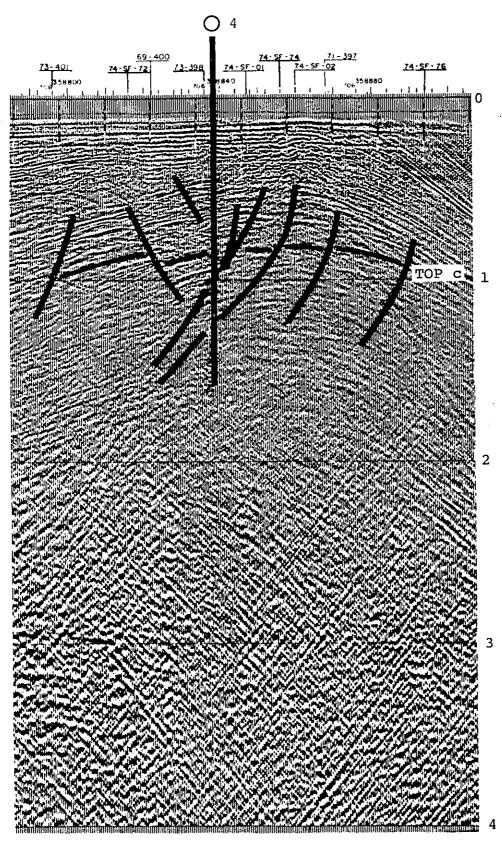


Fig. 4-1-2 SEISMIC SECTION, SOUTH FURIOUS FIELD, Line 74-SF-34 Vol. III

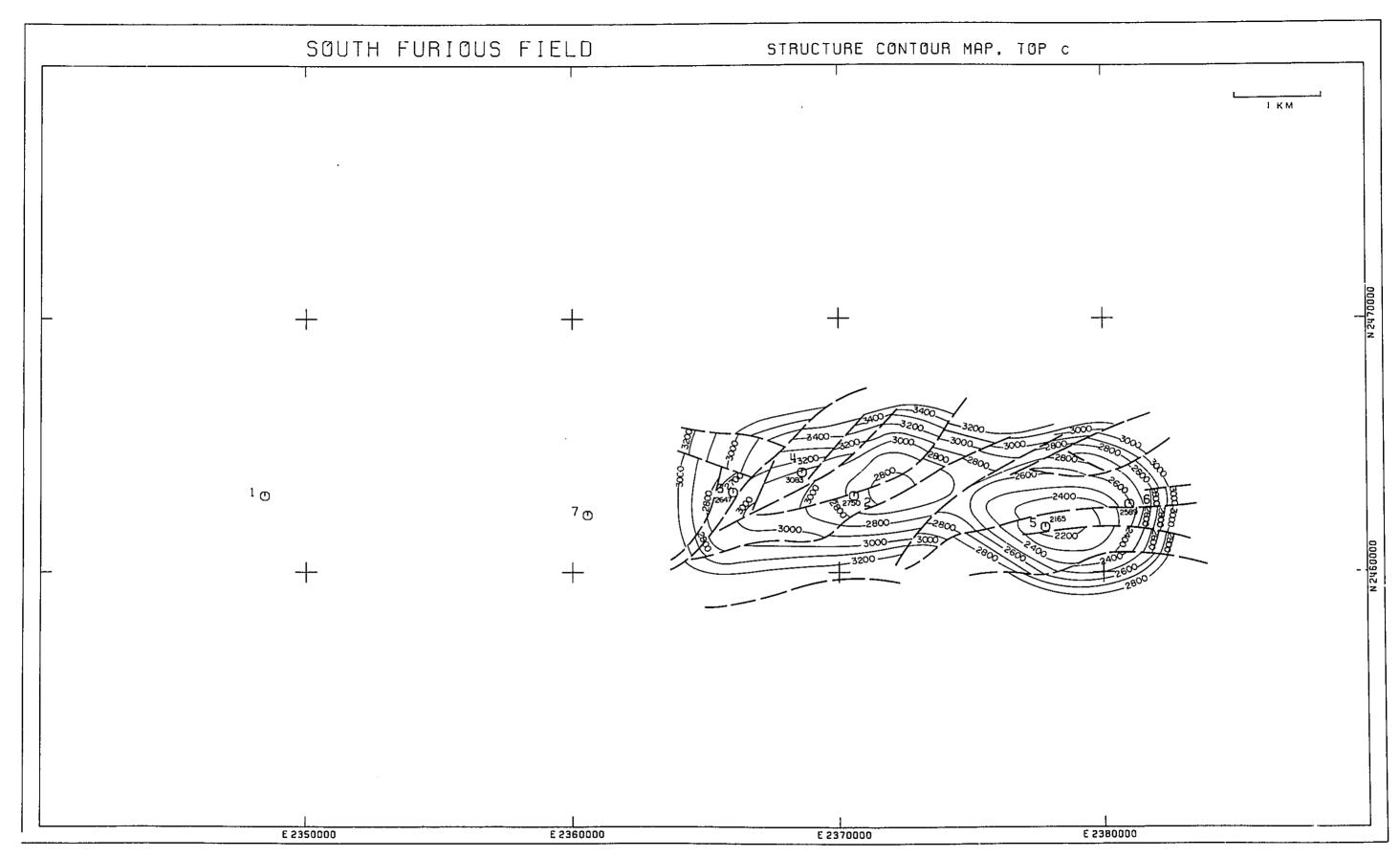


Fig. 4-2-1 STRUCTURE CONTOUR MAP, SOUTH FURIOUS FIELD, TOP c Vol. III

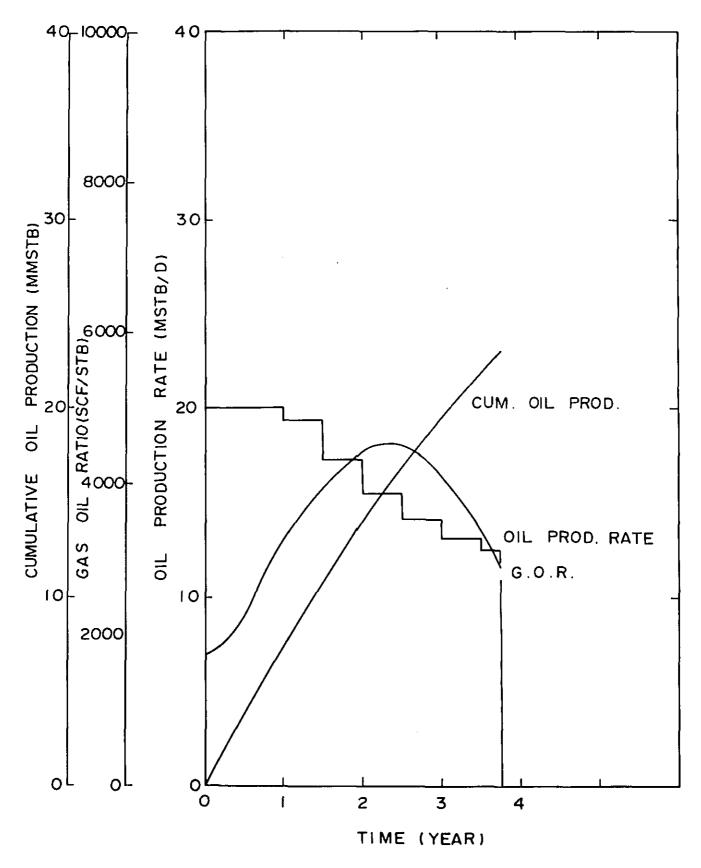
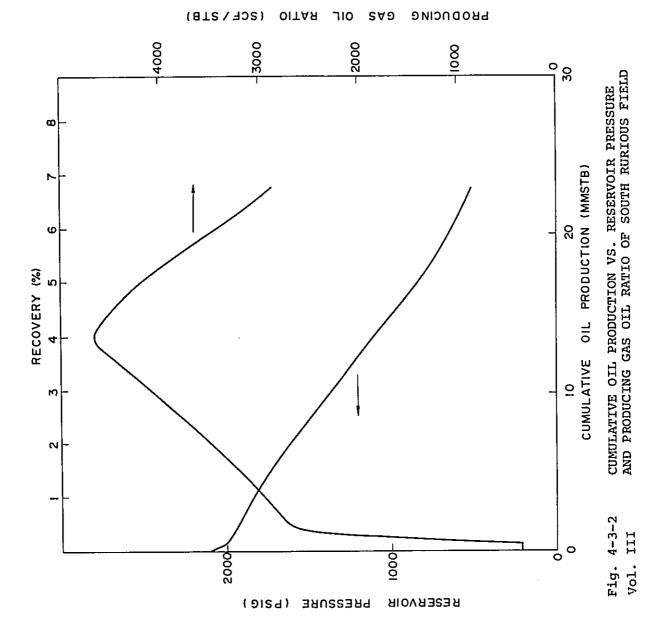



Fig. 4-3-1 PREDICTED PERFORMANCE OF SOUTH FURIOUS FIELD Vol. III

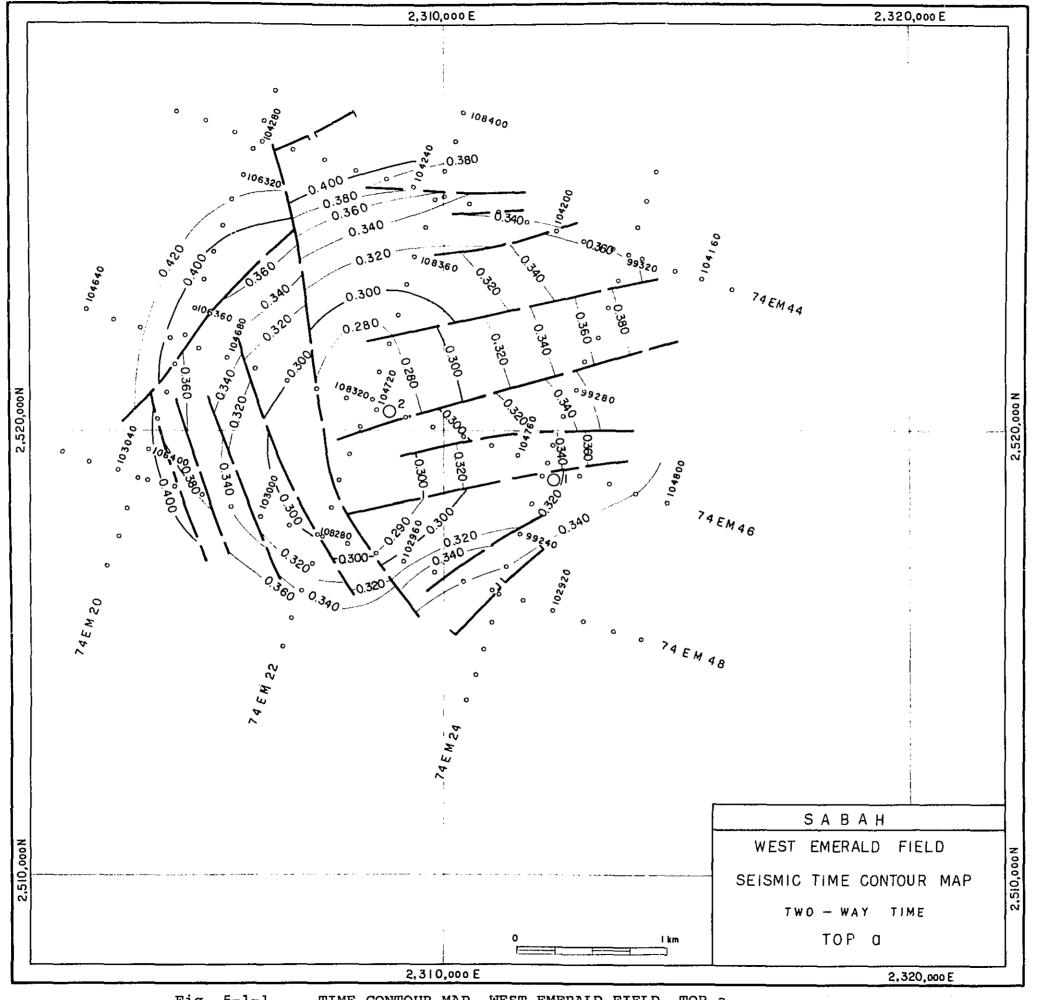


Fig. 5-1-1 TIME CONTOUR MAP, WEST EMERALD FIELD, TOP a Vol. III

Fig. 5-1-2 SEISMIC SECTION, WEST EMERALD FIELD, Line 74-EM-46 Vol. III

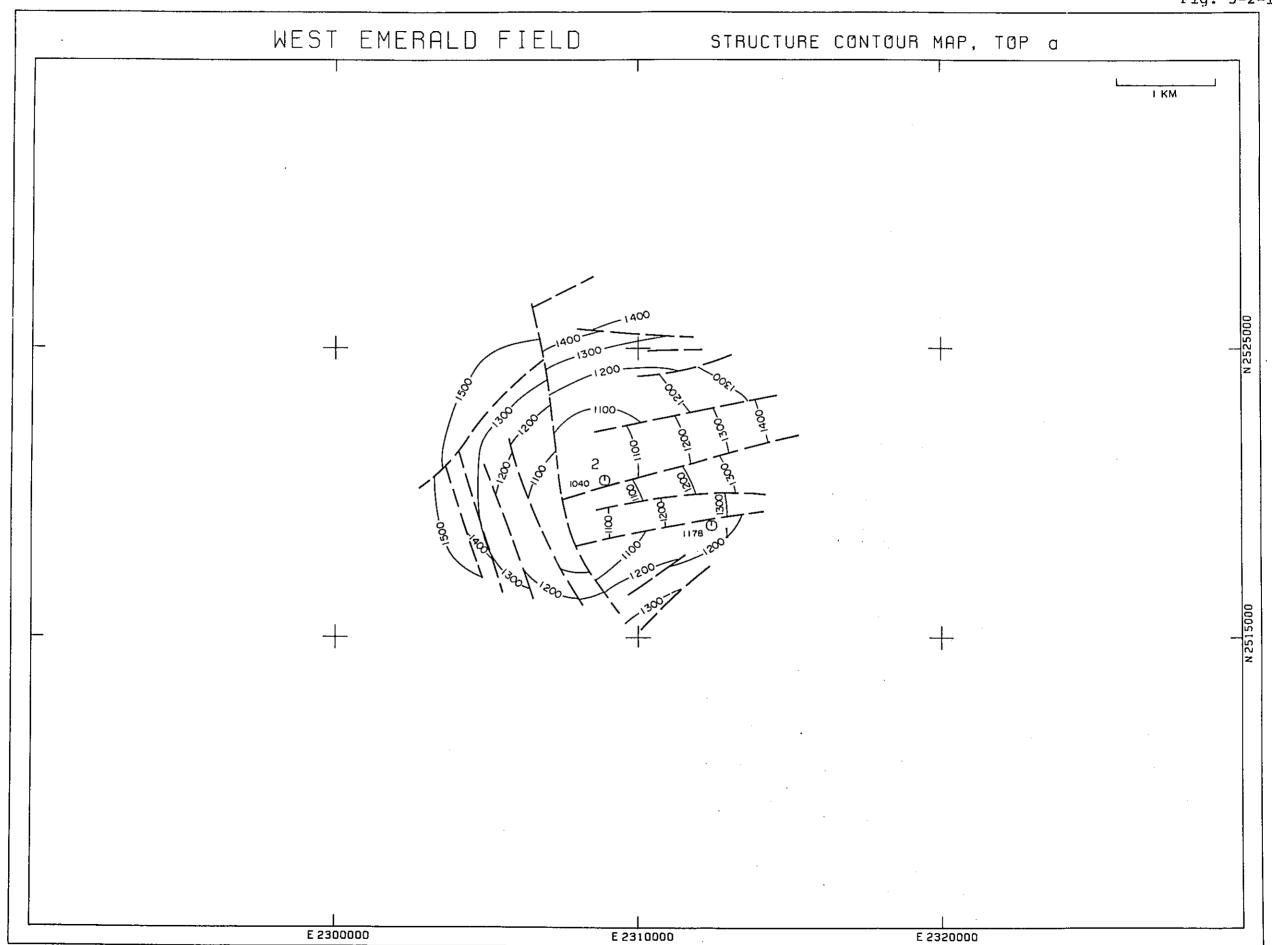


Fig. 5-2-1 STRUCTURE CONTOUR MAP, WEST EMERALD FIELD, TOP a Vol. III

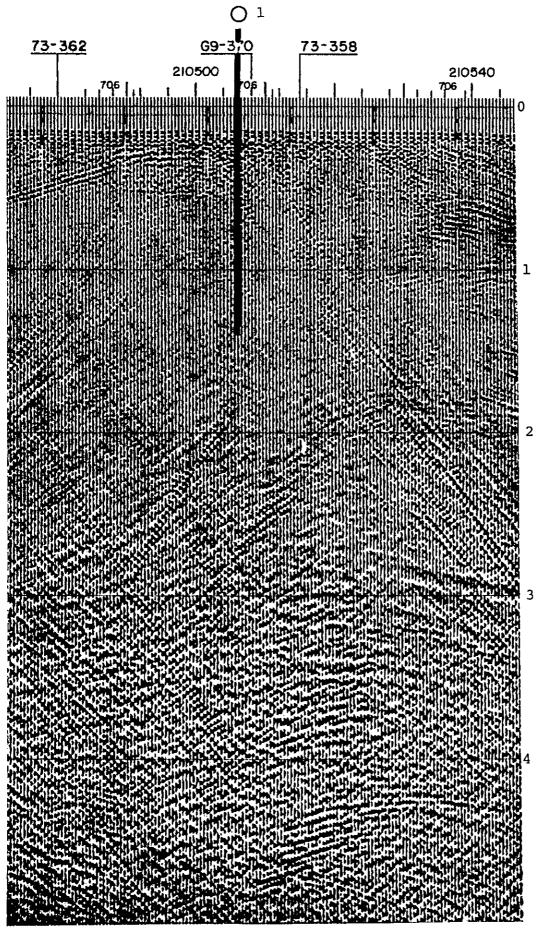


Fig. 6-1-1 SEISMIC SECTION, St. JOSEPH FIELD, Line 73-839 Vol. III

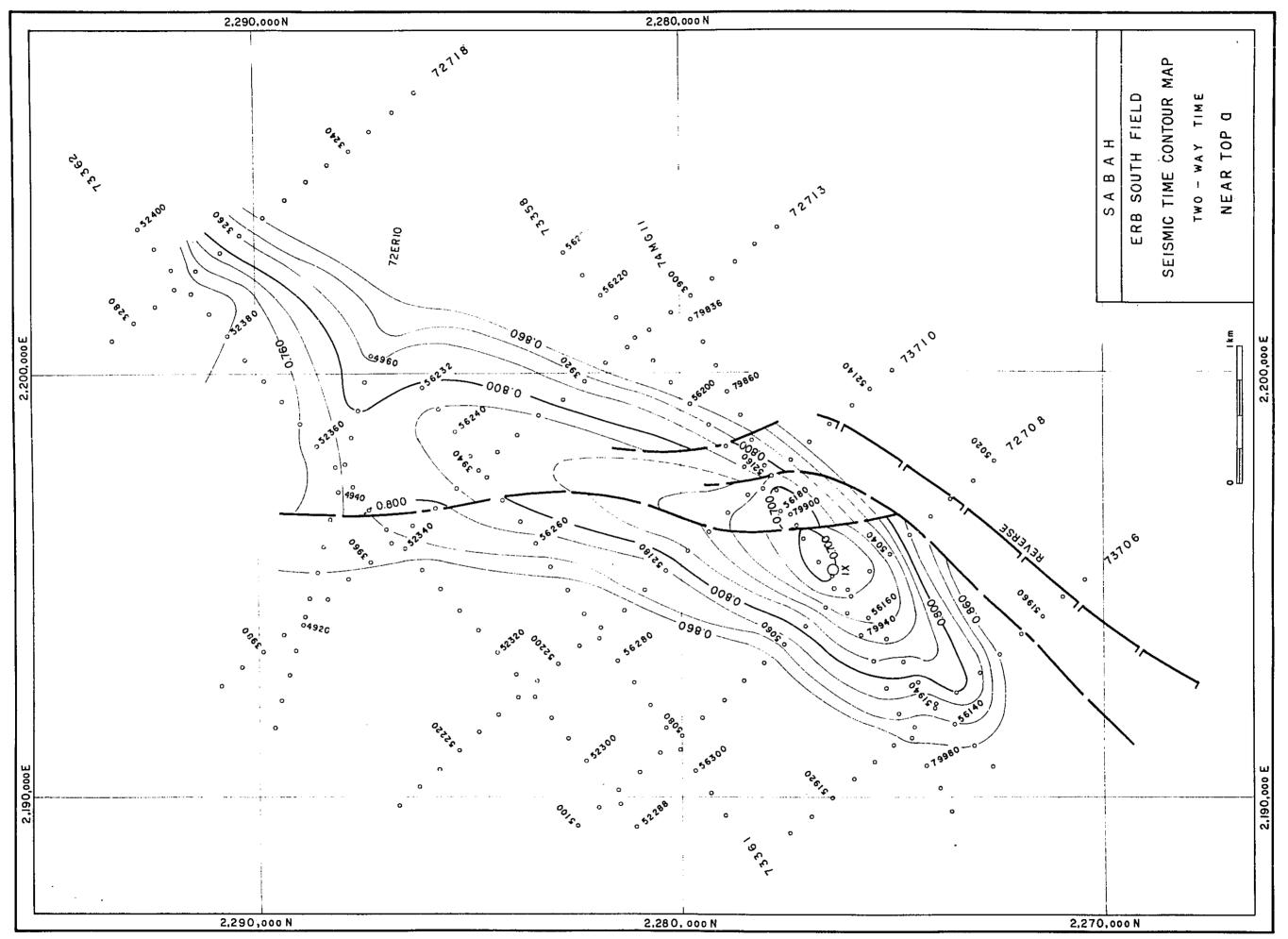


Fig.

7-1-1

Fig. 7-1-1 TIME CONTOUR MAP, ERB SOUTH FIELD, NEAR TOP a Vol. III

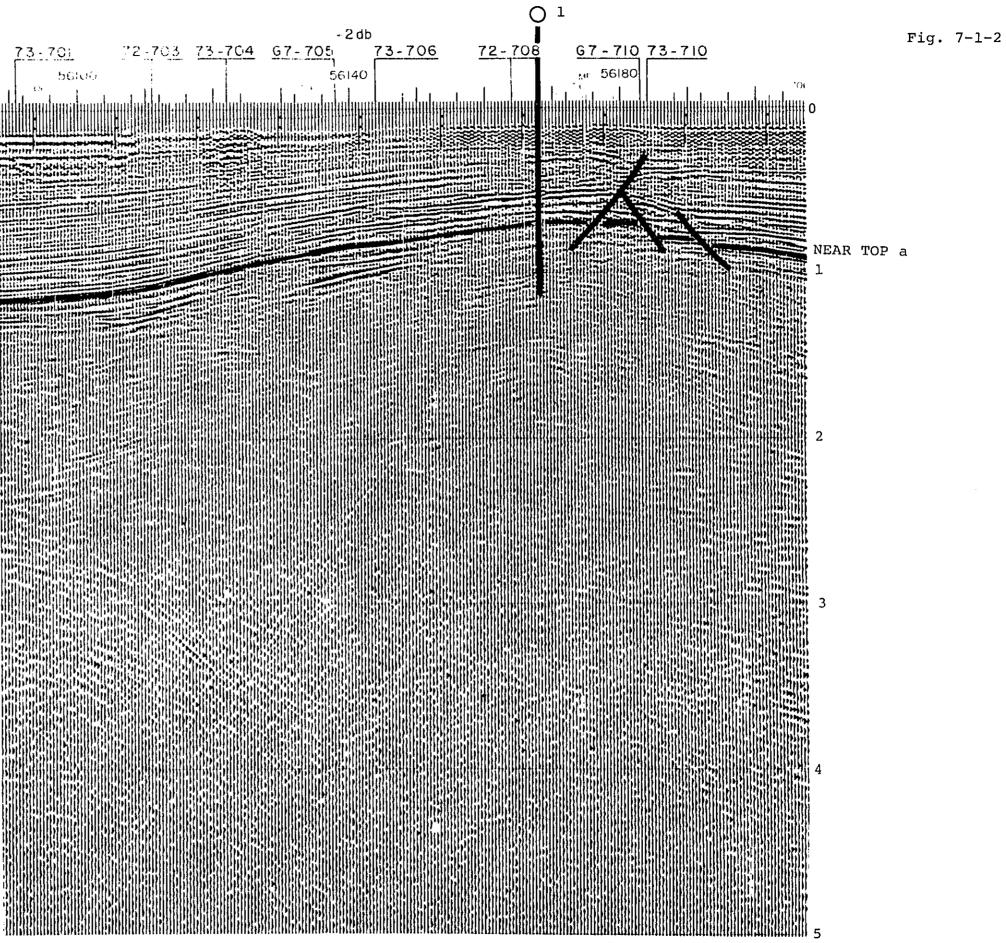
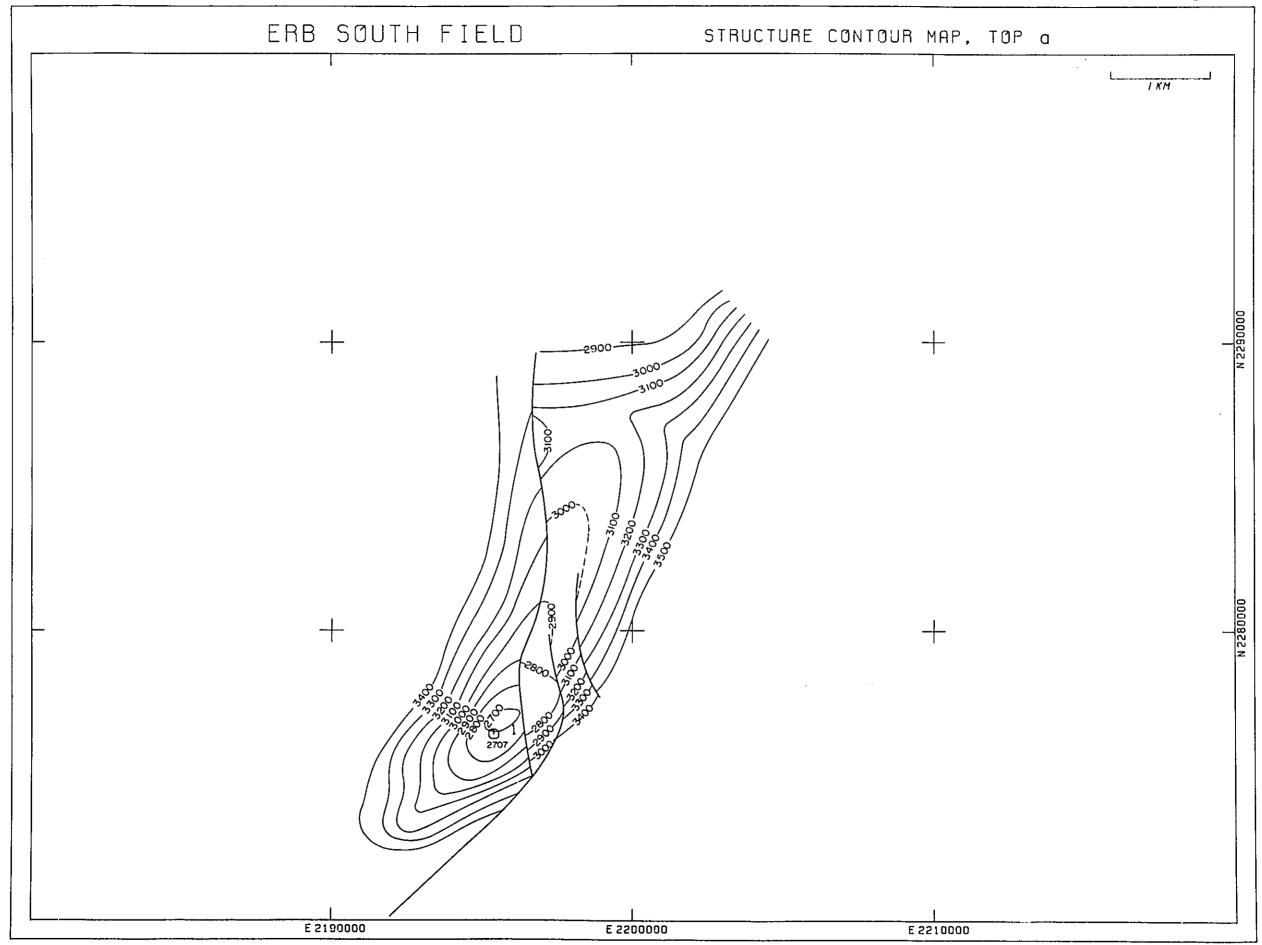
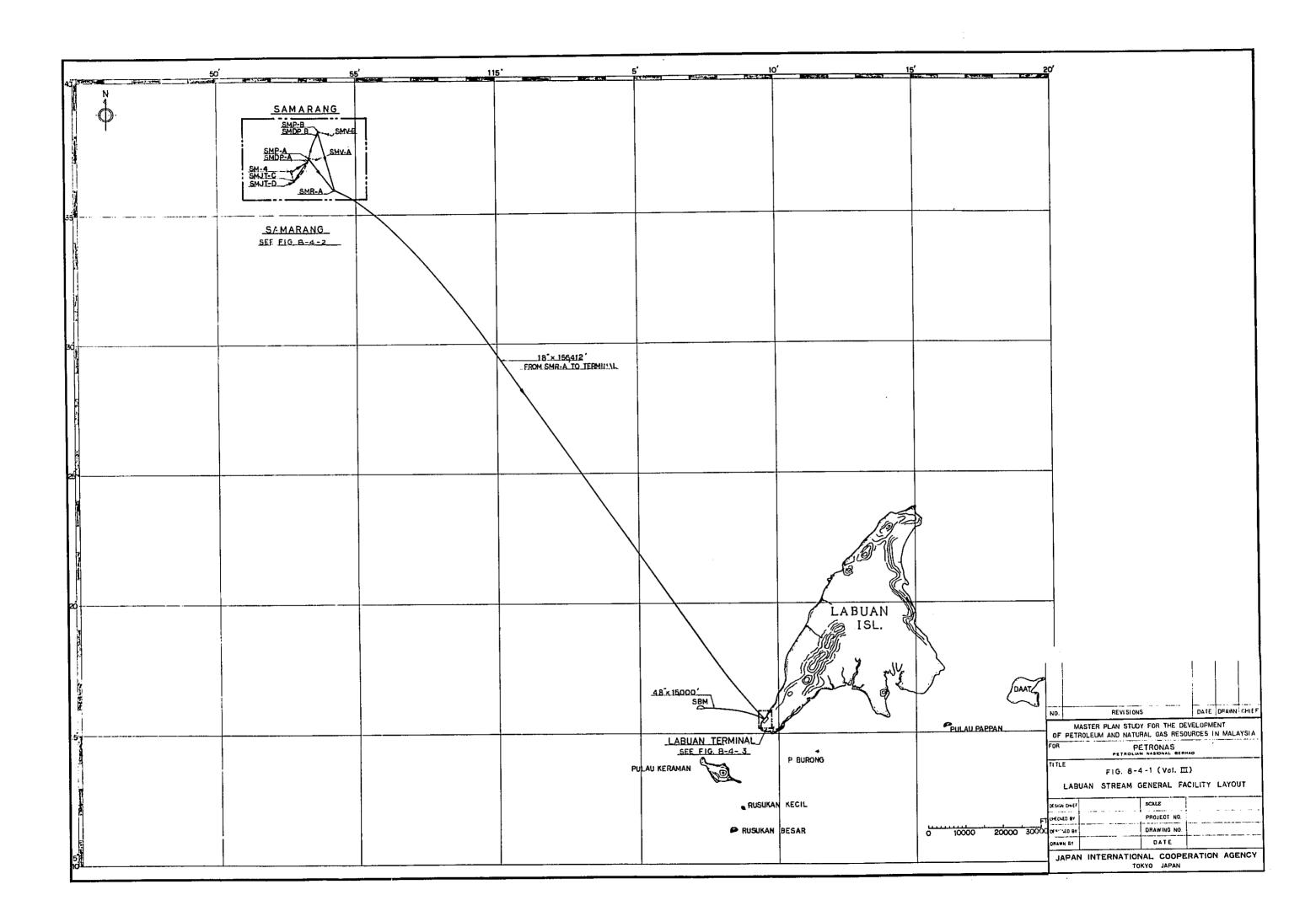
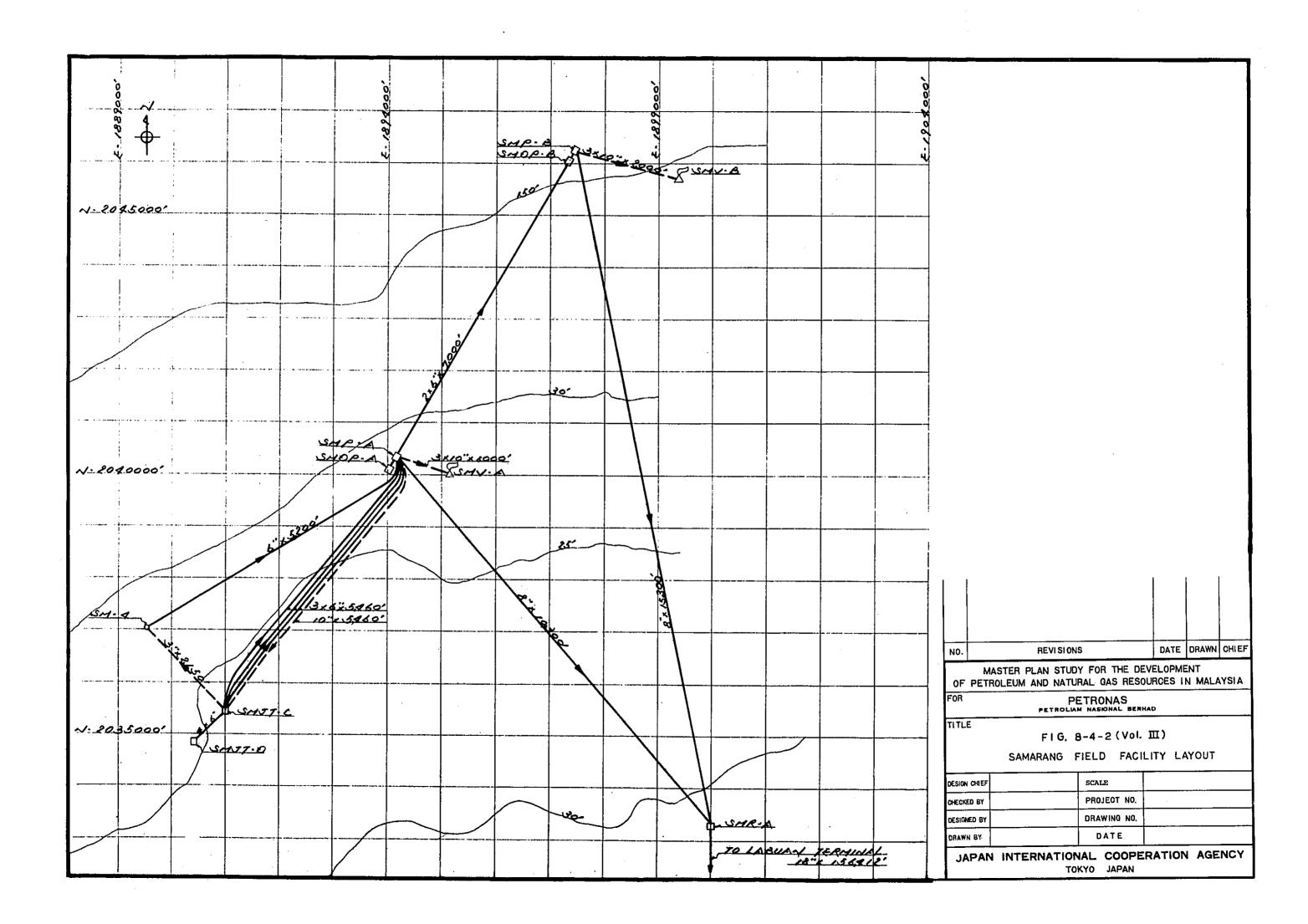
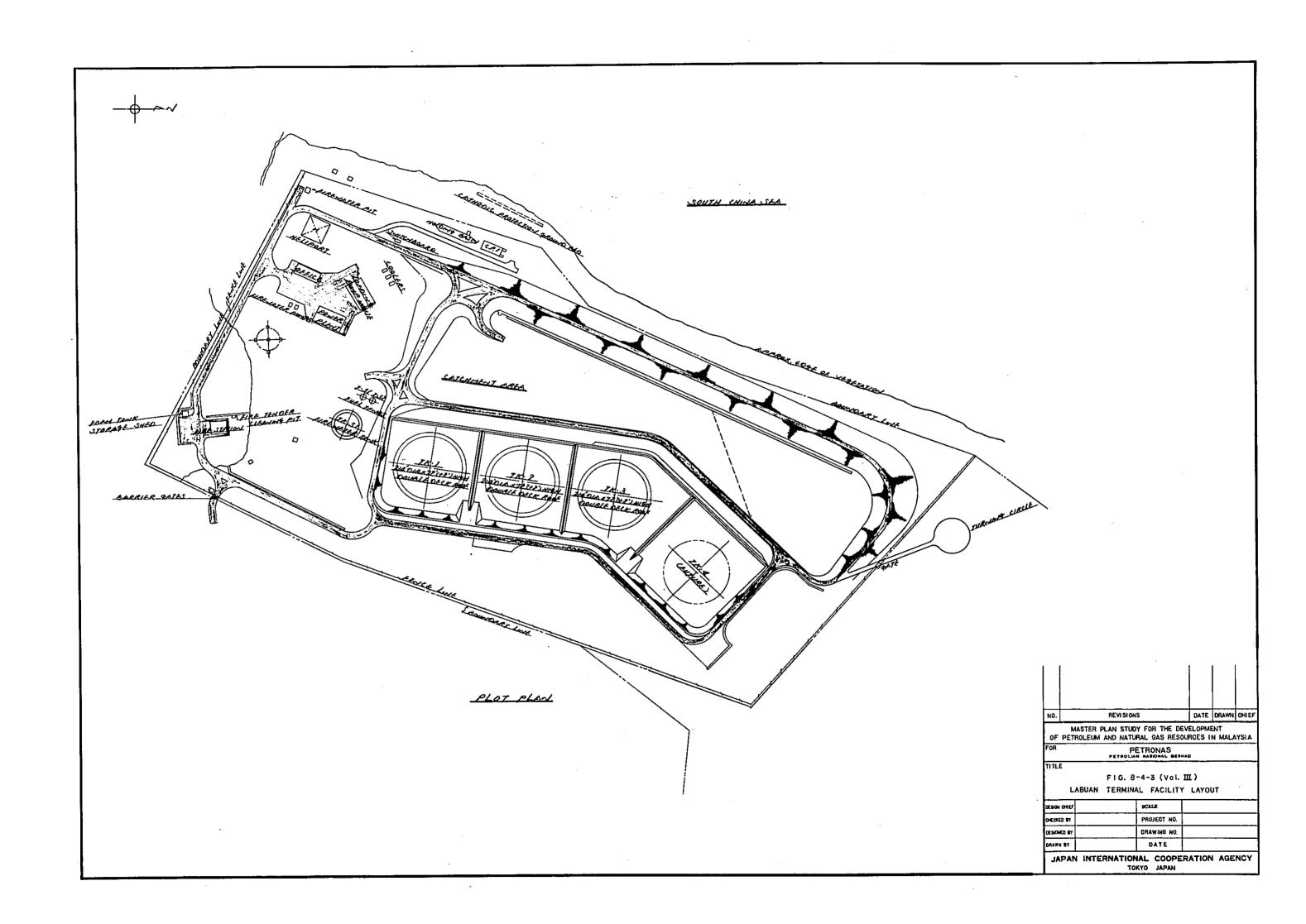
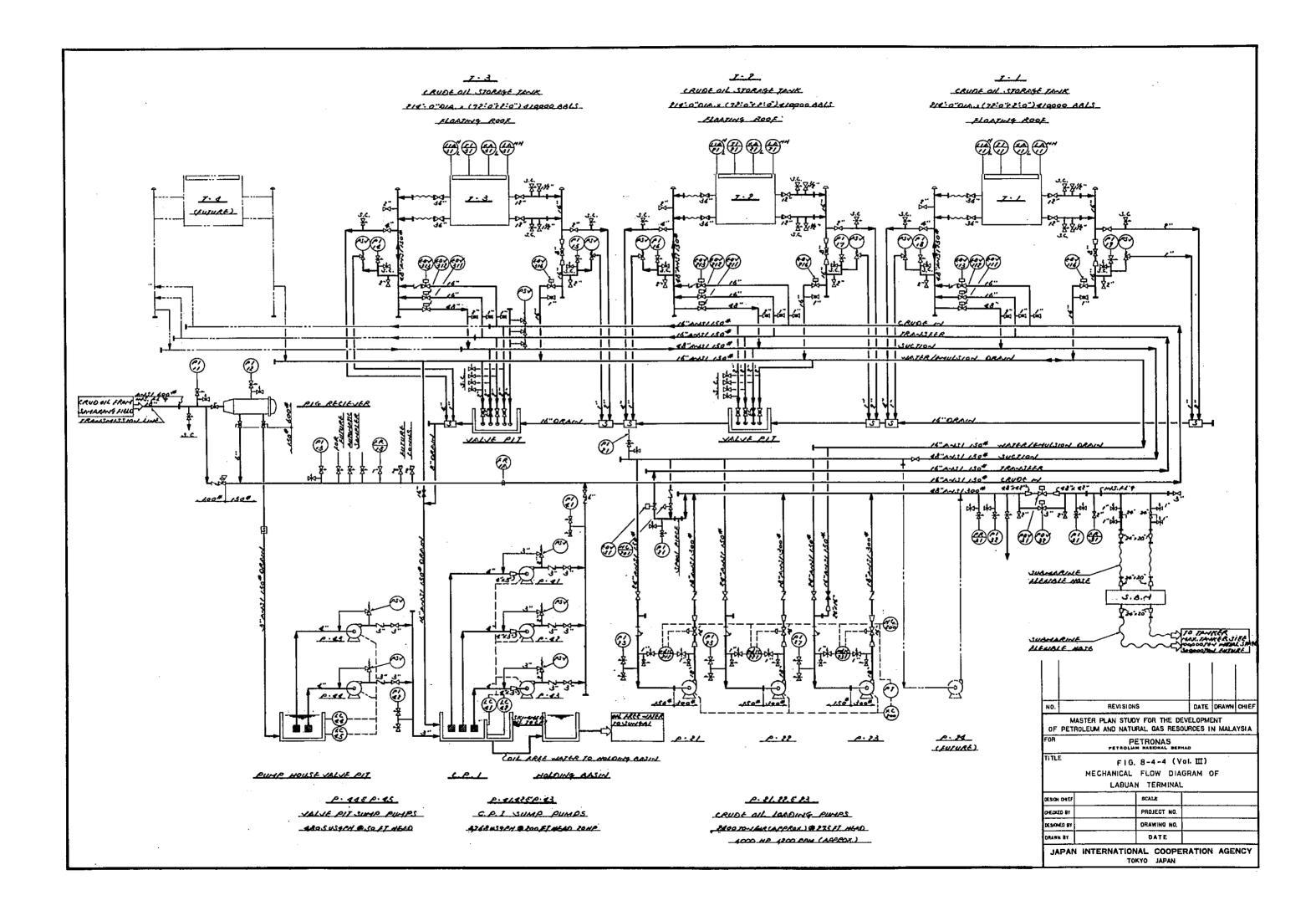
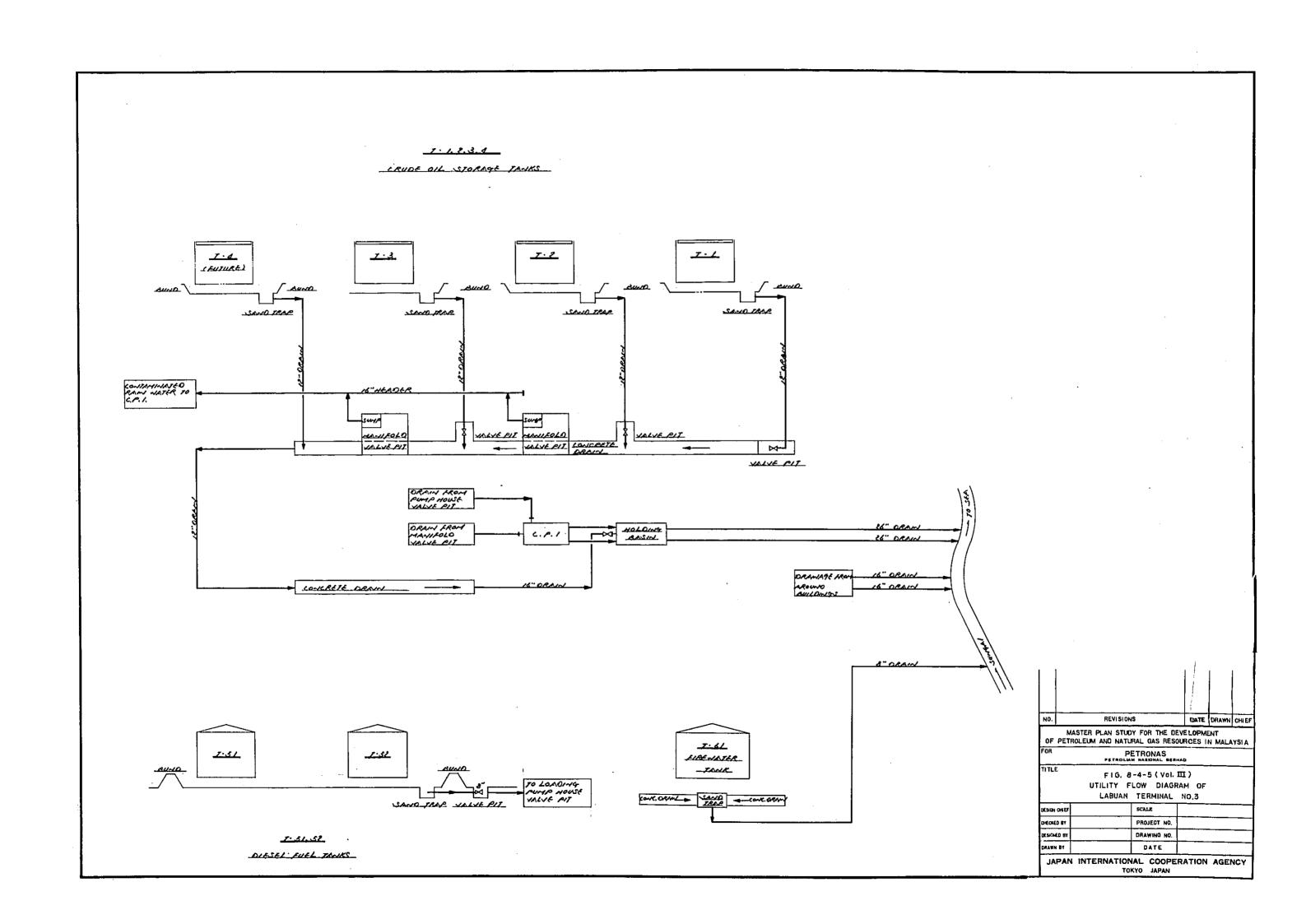
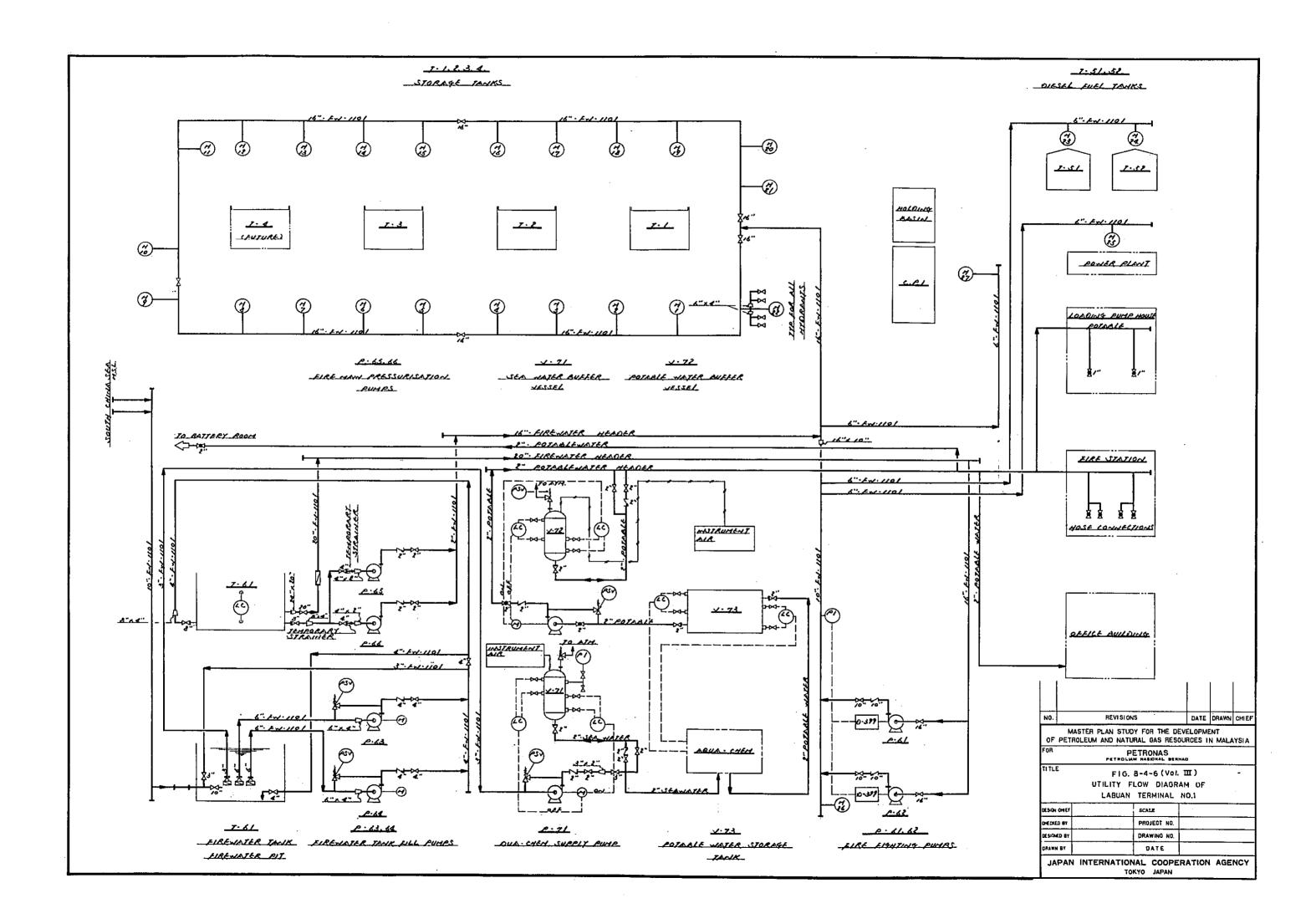
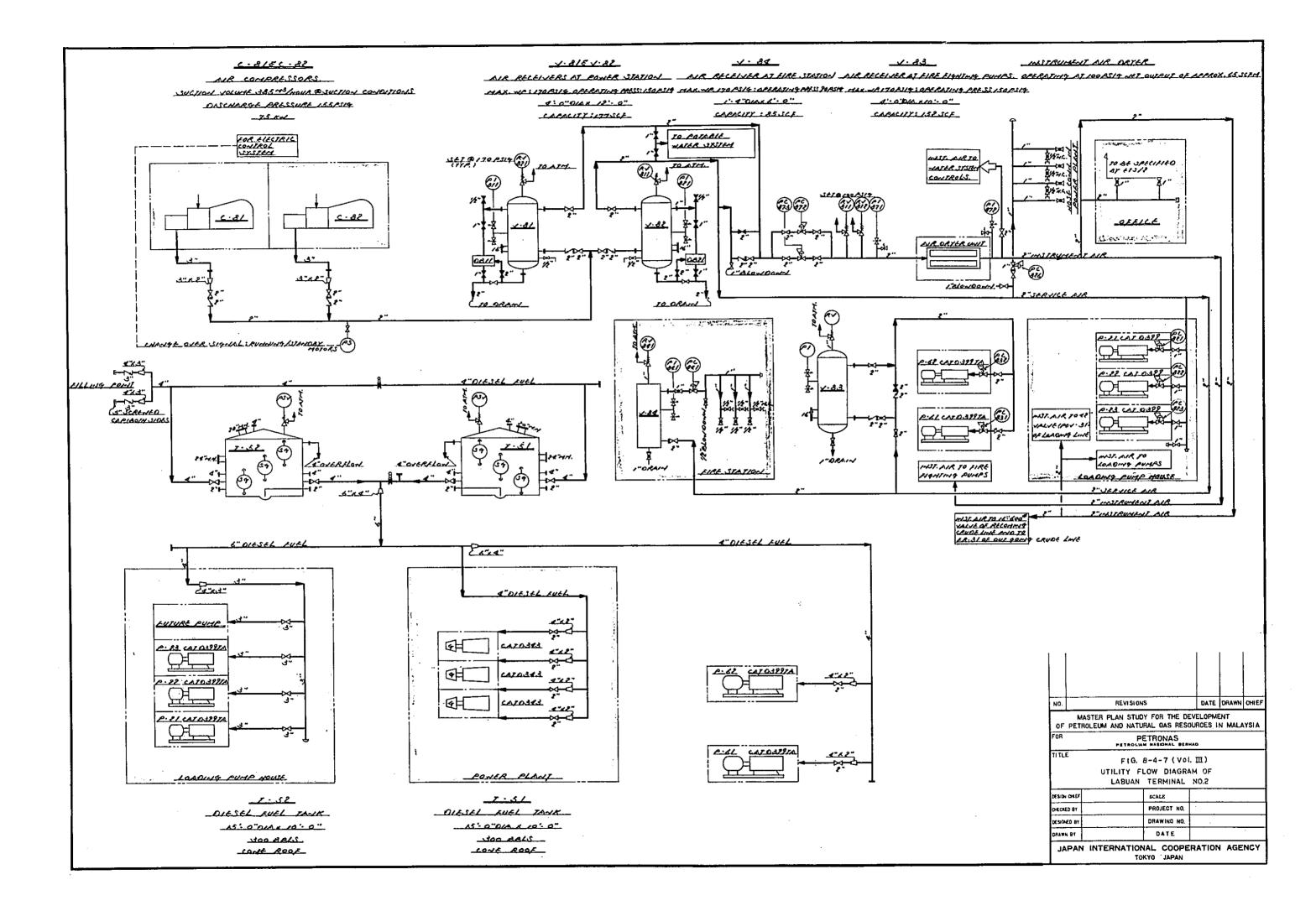


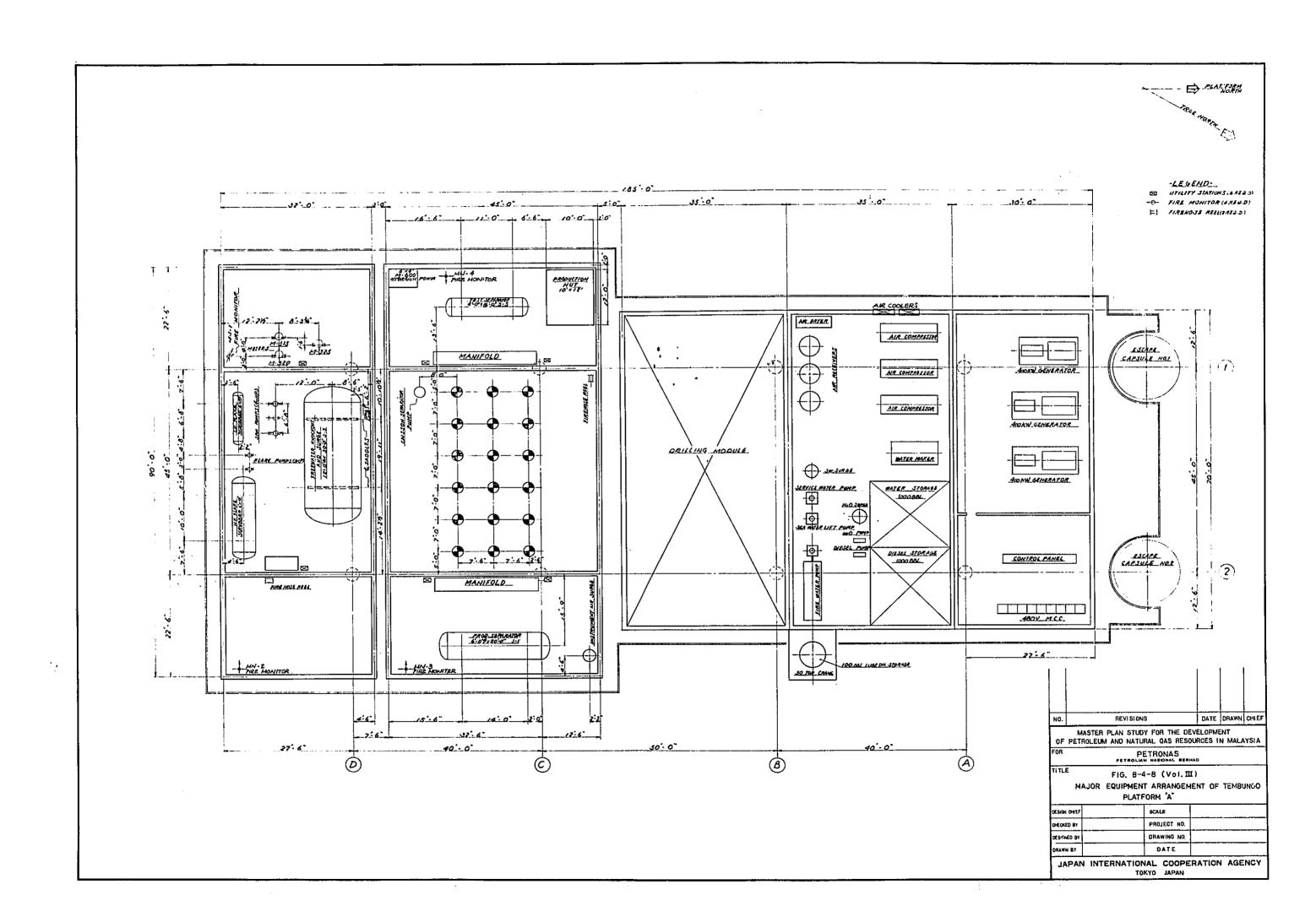
Fig. 7-1-2 SEISMIC SECTION, ERB SOUTH FIELD, Line 73-358 Vol. III

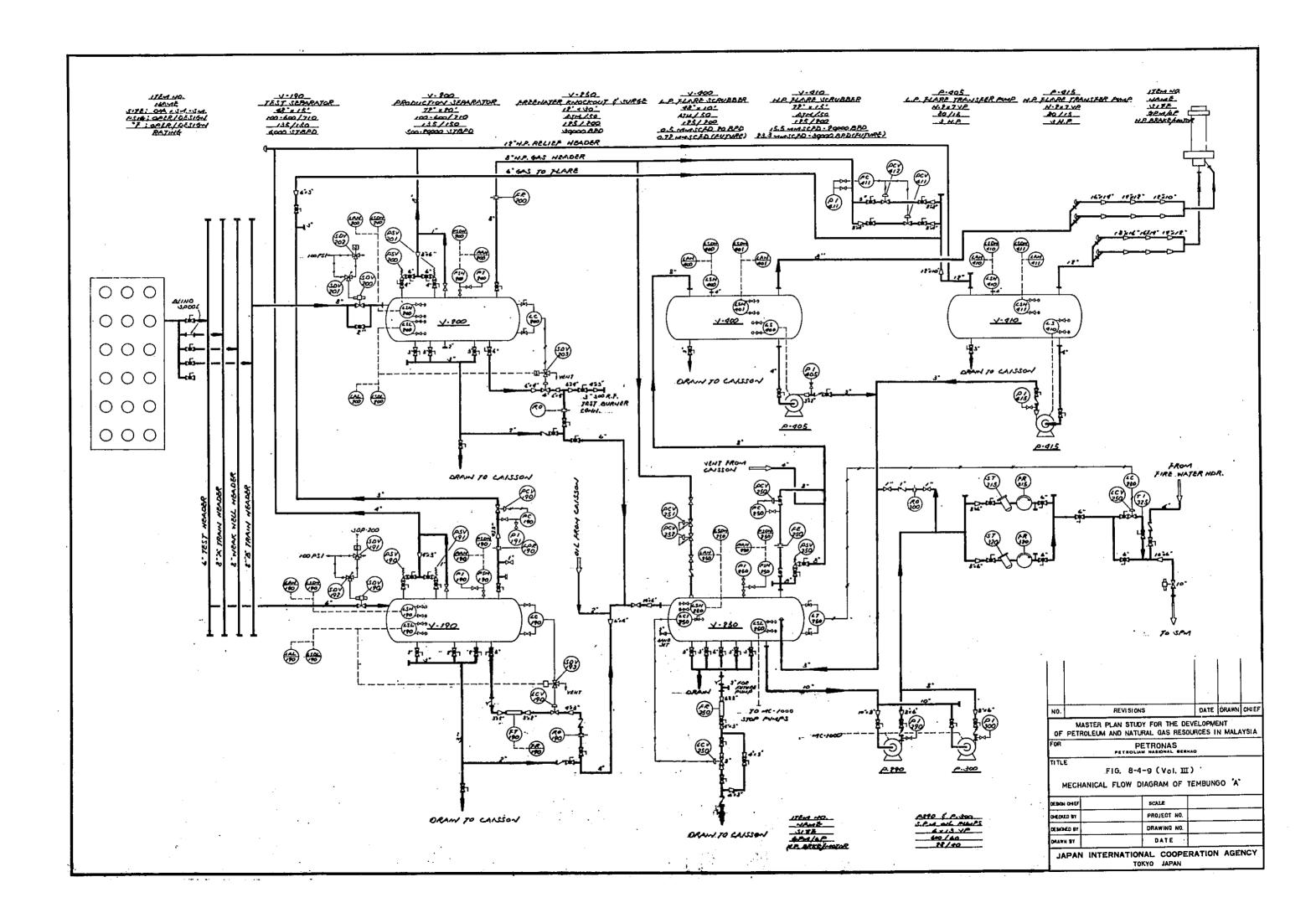







Fig. 7-2-1 STRUCTURE CONTOUR MAP, ERB SOUTH FIELD, TOP a Vol. III









AT PRESENT PRODUCTION RATE

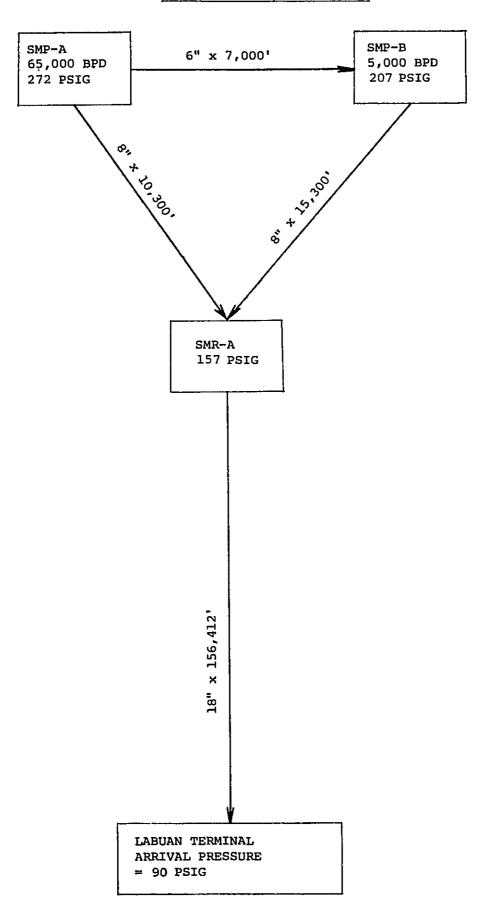
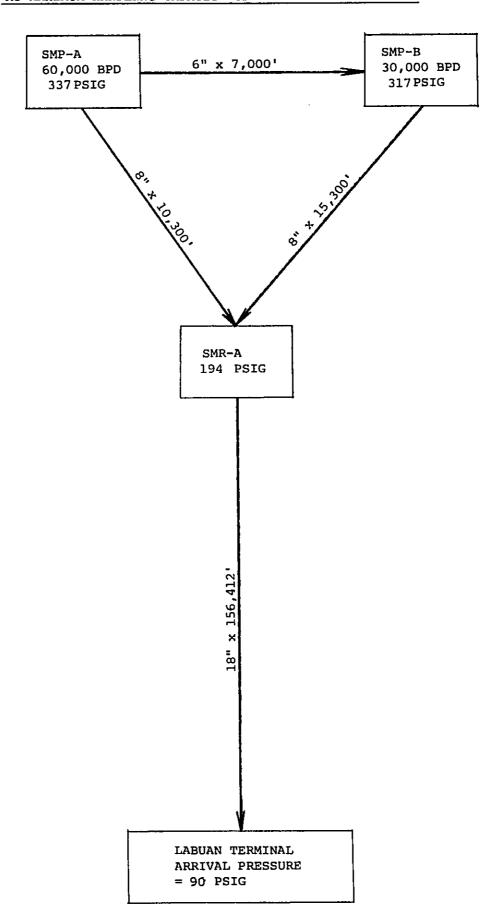
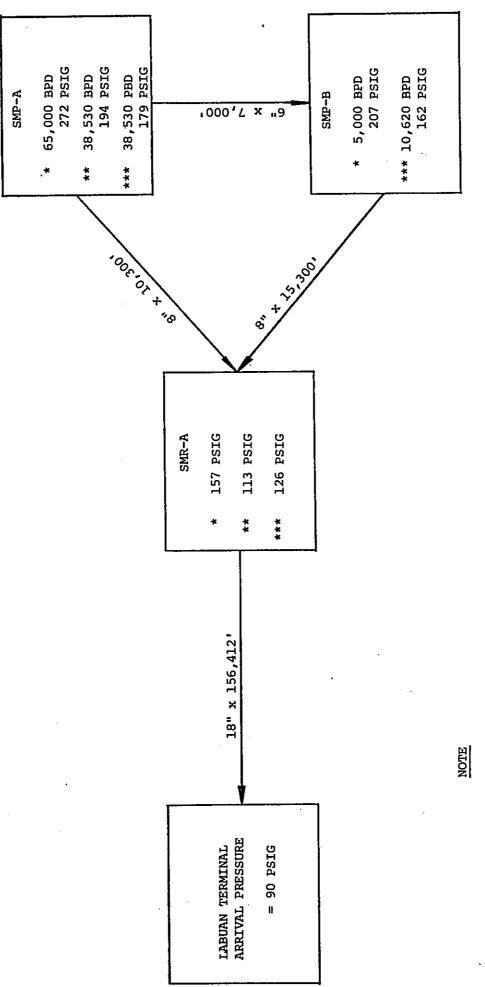
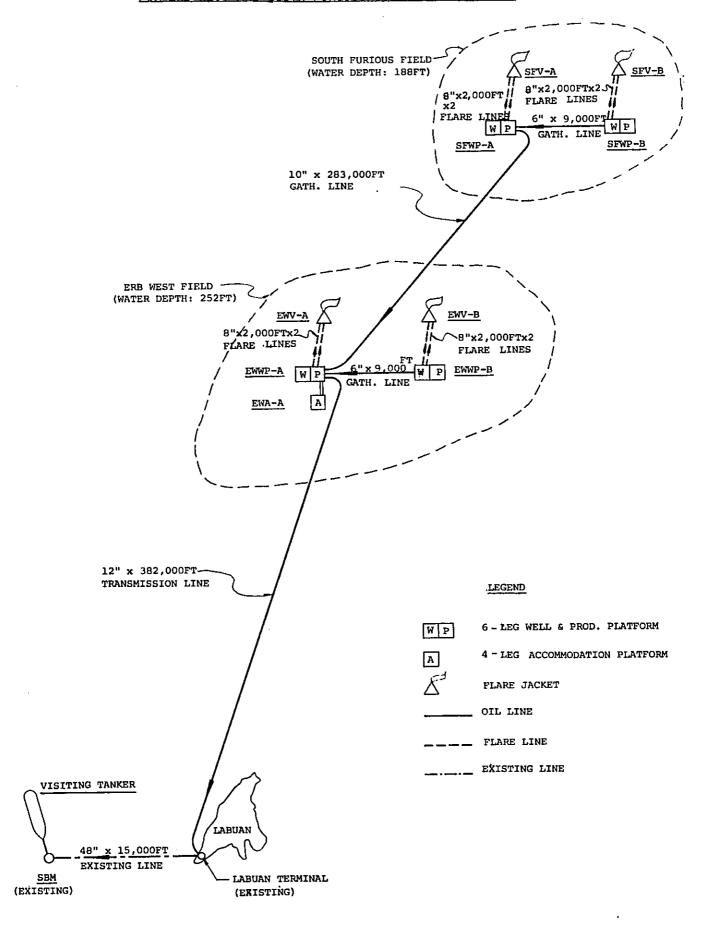




Fig. 8-4-11 LABUAN STREAM PRESSURE BALANCE
(Vol. III)

AT MAXIMUM HANDLING CAPACITY OF PRODUCTION PLATFORMS

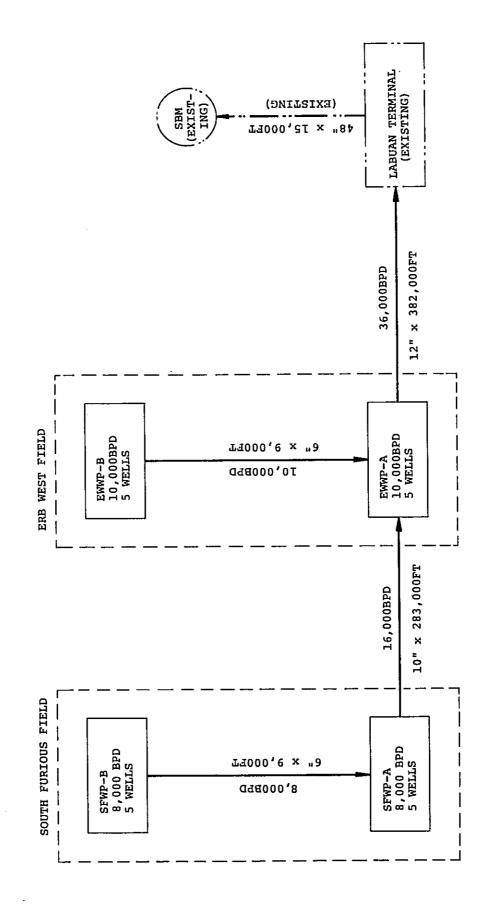
PREDICTED PRODUCTION RATE IN LABUAN STREAM PRESSURE BALANCE FOR PRESENT AND MAXIMUM Fig. 8-4-12 (Vol. III)



VALUE AT PRESENT PRODUCTION RATE

^{***}

VALUE AT PREDICTED PRODUCTION RATE VALUE AT PREDICTED PRODUCTION RATE OF ADDITIONAL WELL CASE


FIG. 9-5-1 (Vol. III) FACILITIES ARRANGEMENT FOR ERB WEST AND SOUTH FURIOUS OIL FIELDS - CASE I

EIG, 9-5-2 (Vol. III)

BLOCK FLOW DIAGRAM

FOR ERB WEST AND SOUTH FURIOUS OIL FIELDS - CASE I

FIG. 9-5-3 (Vol. III) FACILITIES ARRANGEMENT FOR FRB WEST AND SOUTH FURIOUS OIL FIELDS-CASE II A

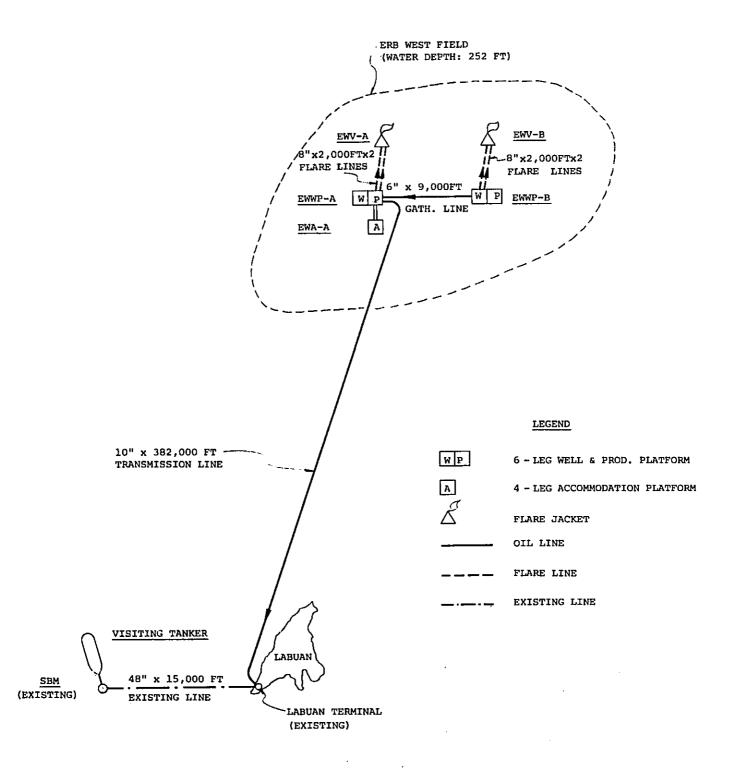
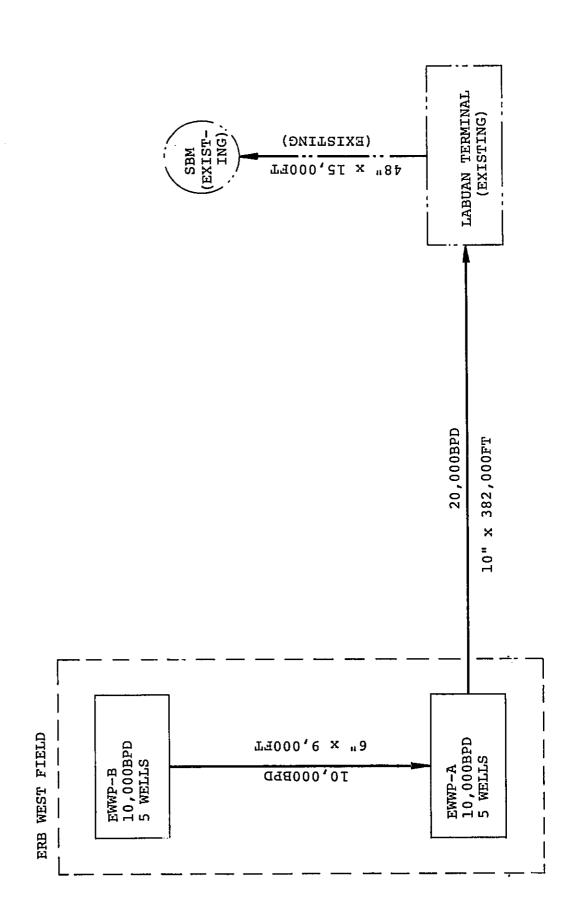



FIG. 9-5-4 (Vol., III)

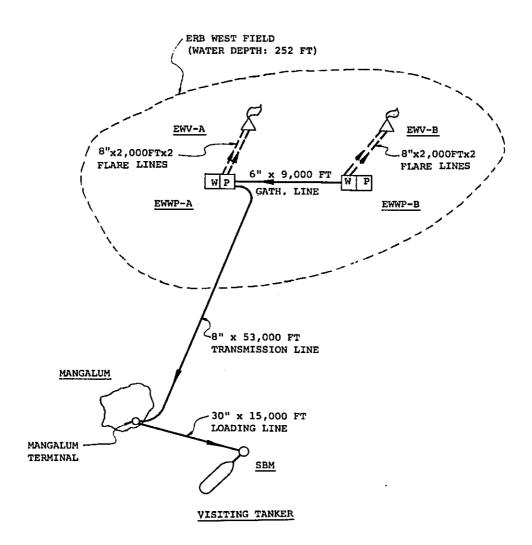
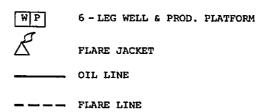
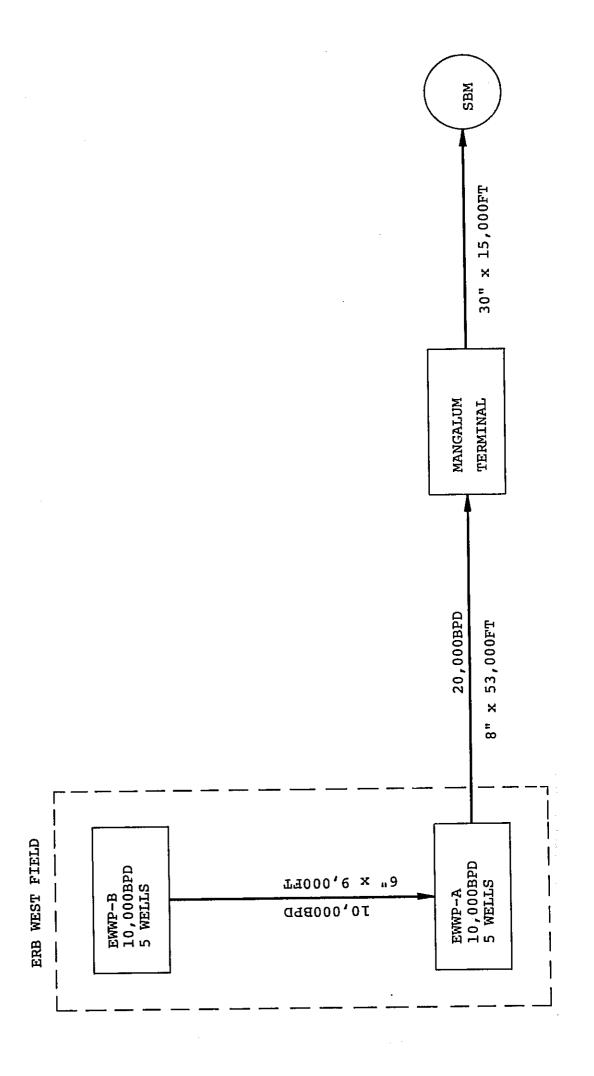
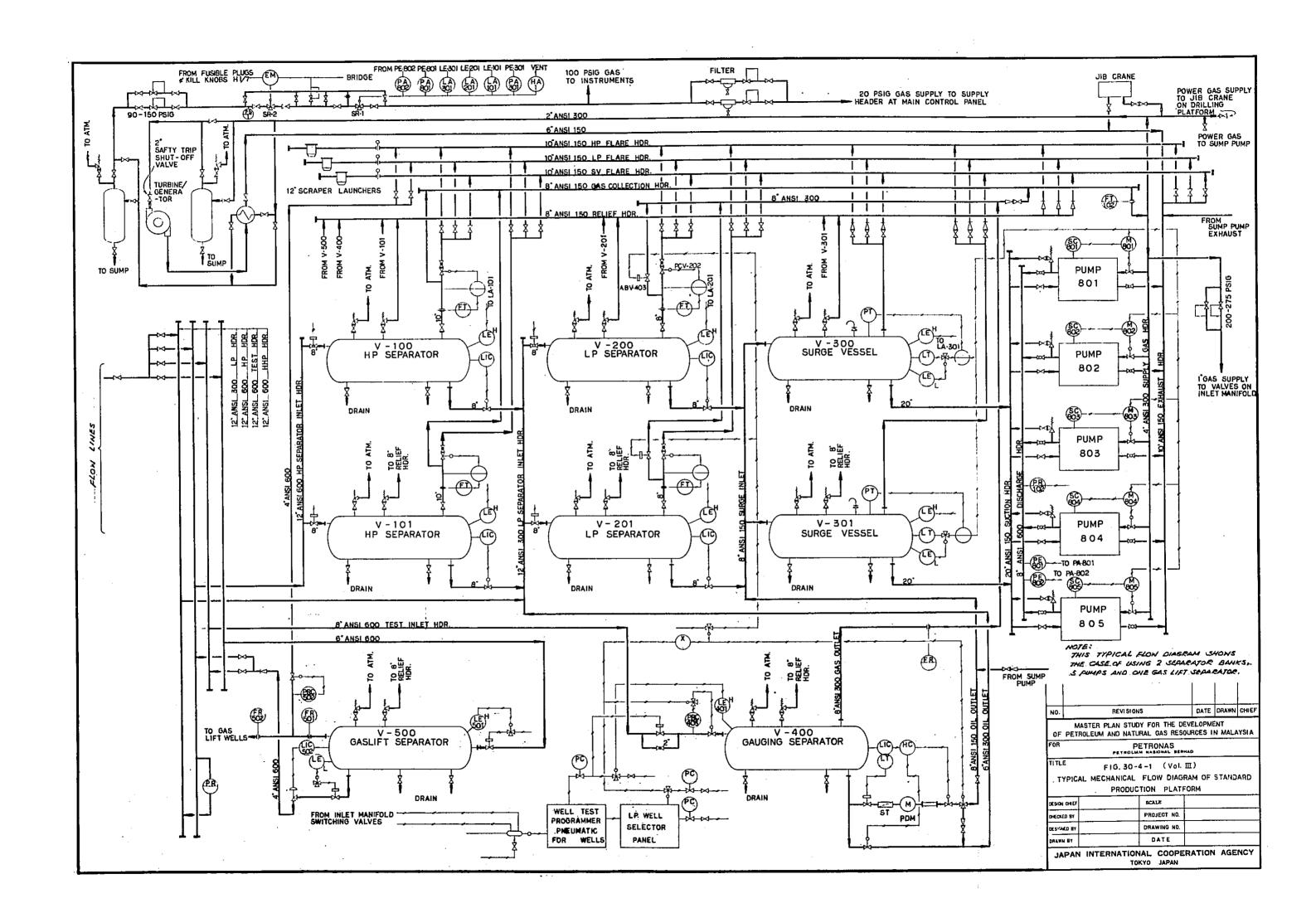
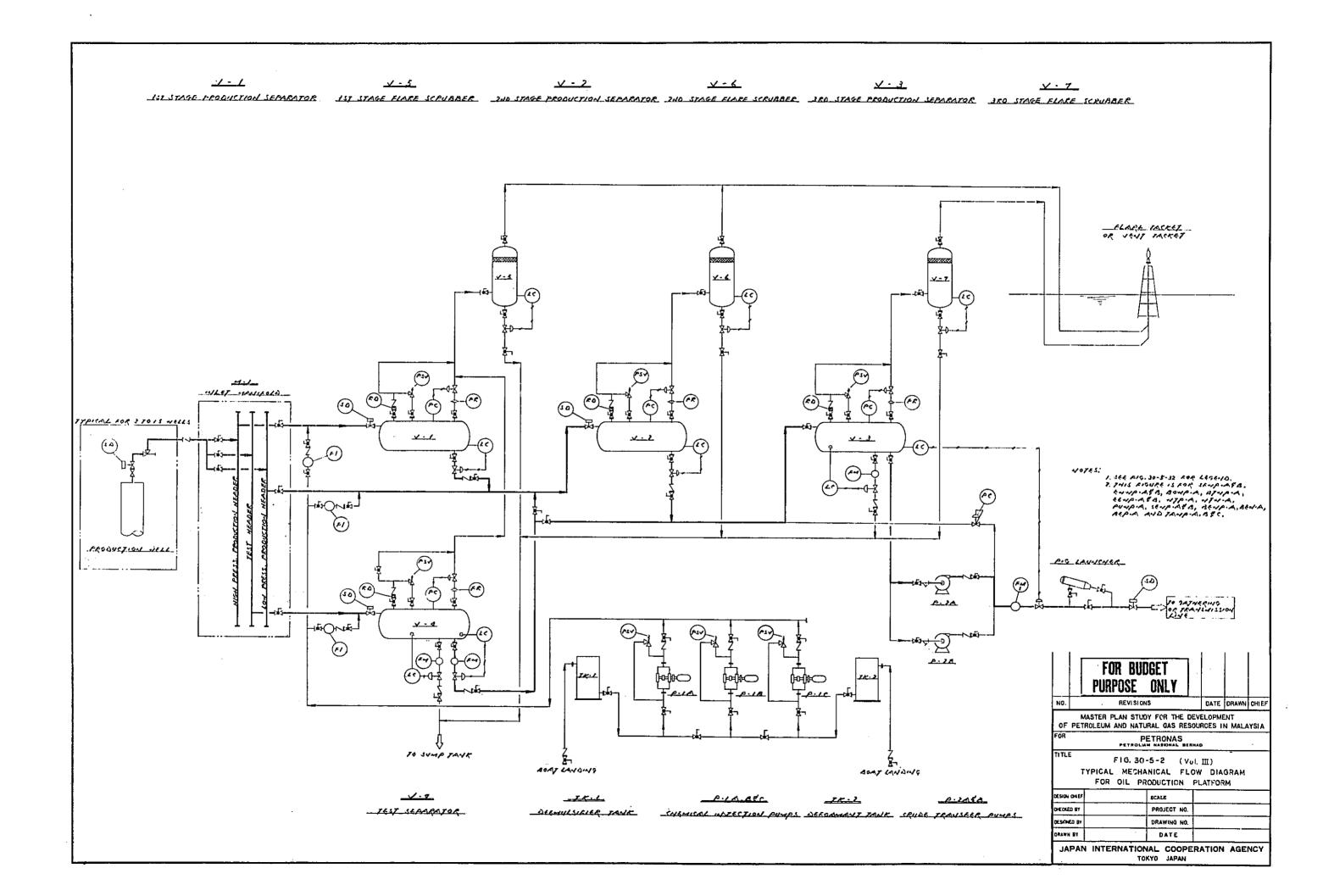

BLOCK FLOW DIAGRAM

FIG. 9-5-5 (Vol. III) FACILITIES ARRANGEMENT

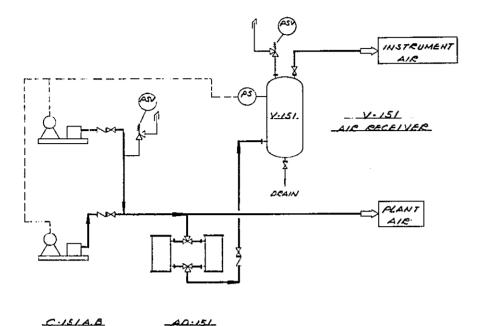
FOR ERB WEST AND SOUTH FURIOUS OIL FIELDS - CASE II B

LEGEND

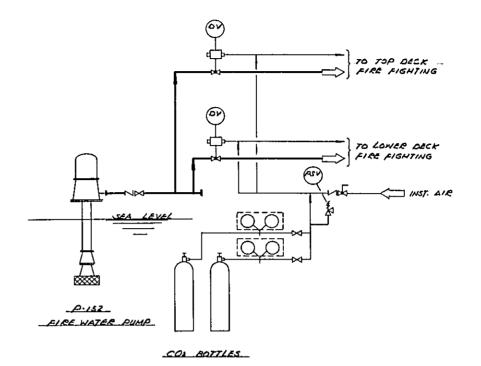





FIG. 9-5-6 (Vol. III)

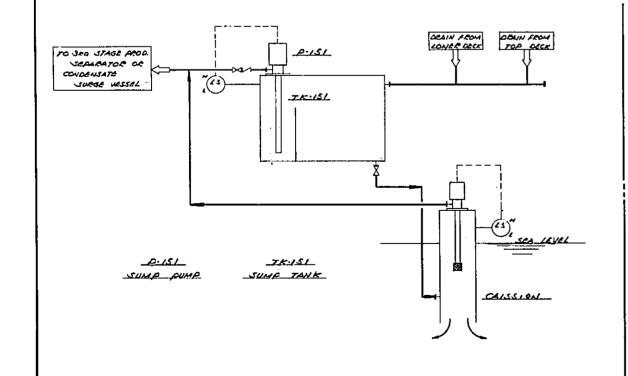
BLOCK FLOW DIAGRAM FOR ERB WEST AND SOUTH FURIOUS OIL FIELDS-CASE II B



																							-
3rd	6 7 8 9 101112														1								
111	8 9 1011 12 1 2 3 4 5																						
2nd	101112 1 2 3 4 5 6 7																						
ţ.,	8																						
	· 			of top of	STTAM OT	6-leg x 2		201	2 5 5 7 7	2 4 69T-C	1000 285*101	000 to 000	** 000 7 " " " " " " " " " " " " " " " " "	000/6 × 0									
	Year		1. Engineering	Z. EID WEST	Development Well	Well & Production	Platform	Docommodation Platform		Flare Jacket	C. L. Lander Dinolino	Substitute Figure				3. Start - up							



INSTRUMENT AIR SYSTEM

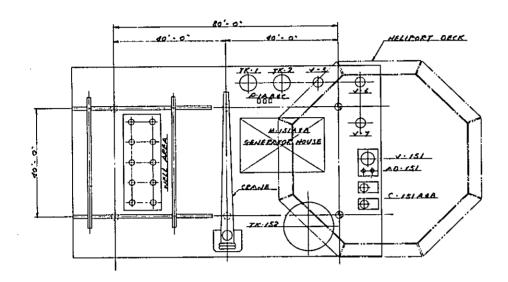

FIRE FIGHTING SYSTEM

DRAIN SYSTEM

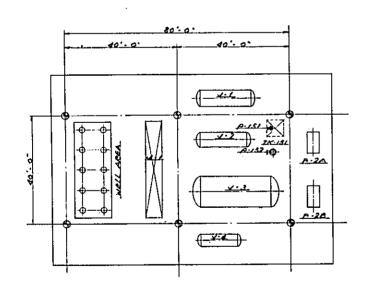
AIR DRYER

AIR COMPRESSORS

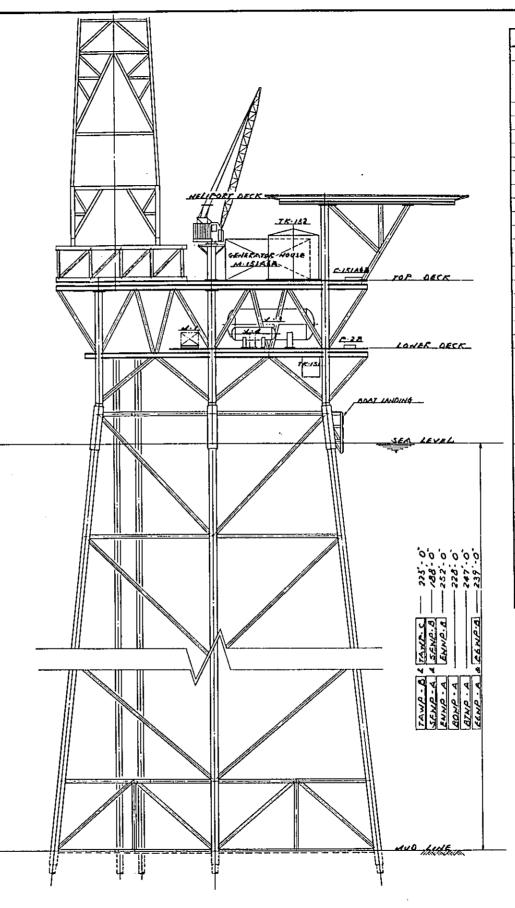
40765:


1:

1. 188 FIG. 30-5-32 FOR LEGGYD.


2. THIS FIGURE IS FOR SEMPINER,
EMPINER, BOMPIN, BIMPIN,
ESMPINER, MIPIN, PUMPIN,
IEMPINER, MEMPIN, BEPIN,
IEMPINER, FIRMPIN, FIEMPIN,
FRIPIN, FEMPINER, FROMPIN,
ELIMPIN, BEWPINE,
ELIMPIN, BEWPINE, PUPCIN,
AND BEPCINA.

FOR BUDGET PURPOSE ONLY



TOP DECK PLAN

LOWER DECK PLAN

ELEVATION

	EQUIPMENT LIST
ITEM NO.	DESCRIPTION
1	VESSEL
V - /	IST STAGE PRODUCTION SEPARATOR
V · 2	2" STAGE PRODUCTION SEPARATOR
V · 3	3 RO STAGE PRODUCTION SEPARATOR
V - 4	TEST SEPARATOR
V - 5	IST STAGE FLARE SCRUBBER
V·6	240 STAGE FLARE SCRUBBER
V · 7	300 STAGE FLARE SCRUBBER
	INSTRUMENT AIR RECEIVER
<u>v</u> .,,,,	A STANDARY CONTRACTOR OF THE STANDARY CONTRACTOR
	MACHINERY
	INSTRUMENT AIR CONFRESSORS
AD-151	INSTRUMENT AIR ORTER
	PUMP
	CHEMICAL INJECTION PUMPS
	CRUDE TRANSFER PUMPS
P - 151	SUMP PUMP
r· 152	FIRE WATER PUMP
	TANK
7K · 1	DEEMULSIFIER TANK
TK . 2	DEFORMANT TANK
TK - 151	SUMP TANK
TK - 152	DIESEL STORAGE TANK
	MISCELLANEOUS
w · /_	INLET MANIFOLO
M . 15/AFB	
	i

FOR BUDGET Purpose only

MOTE:
_THIS FIGURE IS FOR SEMP-A&B.
_ENMP-A&B, BOMP-A, BIMP-A,
_E6MP-A&B, AND TAMP-B&C.

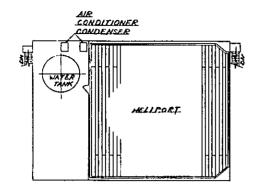
NO.	REVISIONS	DATE	DRAWN	CHIEF					
MASTER PLAN STUDY FOR THE DEVELOPMENT									

MASTER PLAN STUDY FOR THE DEVELOPMENT
OF PETROLEUM AND NATURAL GAS RESOURCES IN MALAYSIA
FOR
PETROLAM

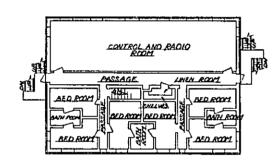
FIG 30-5-16 (Vol. III)

TYPICAL PLAN AND ELEVATION FOR

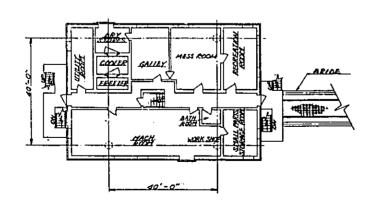
6-LEG WELL & OIL PRODUCTION PLATFORM

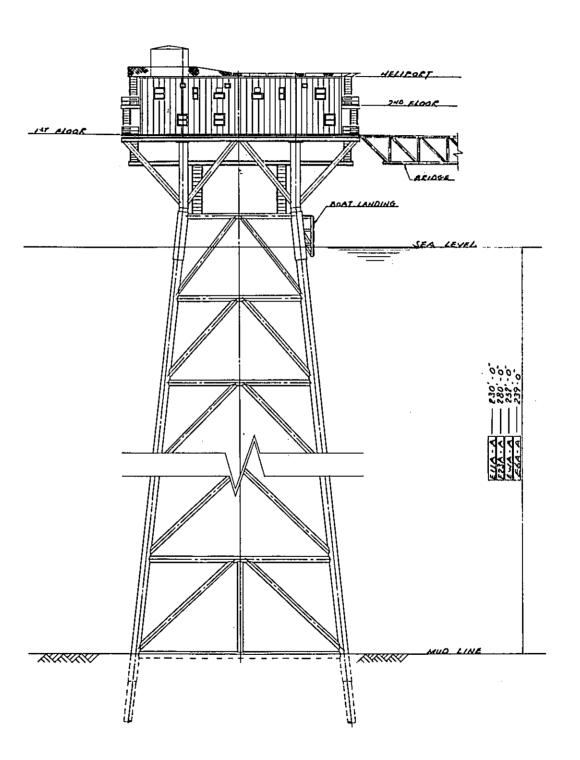

DESIGN ONLE BCALE

DECKED BY PROJECT NO.


DESIGNED BY DRAWING NO.

DRAWN BY DATE


JAPAN INTERNATIONAL COOPERATION AGENCY
TOKYO JAPAN


HELIPORT DECK PLAN

2NO FLOOR PLAN

1st FLOOR PLAN

ELEVATION

THIS FIGURE IS FOR FIRM-A, EITA-A, ENA-A AND EGA-A.

FOR BUDGET PURPOSE ONLY

	-											
NO.	REVISIONS	DATE	DFLAWN	CHIEF								
οF	MASTER PLAN STUDY FOR THE DEVELOPMENT OF PETROLEUM AND NATURAL GAS RESOURCES IN MALAYSIA											
OR	PETRONAS PETROLAN HASIONAL BERHAL	•										
171												

FIG. 30-5-31 (Vol. Ⅲ)

TYPICAL PLAN AND ELEVATION FOR 4-LEG ACCOMMODATION PLATFORM

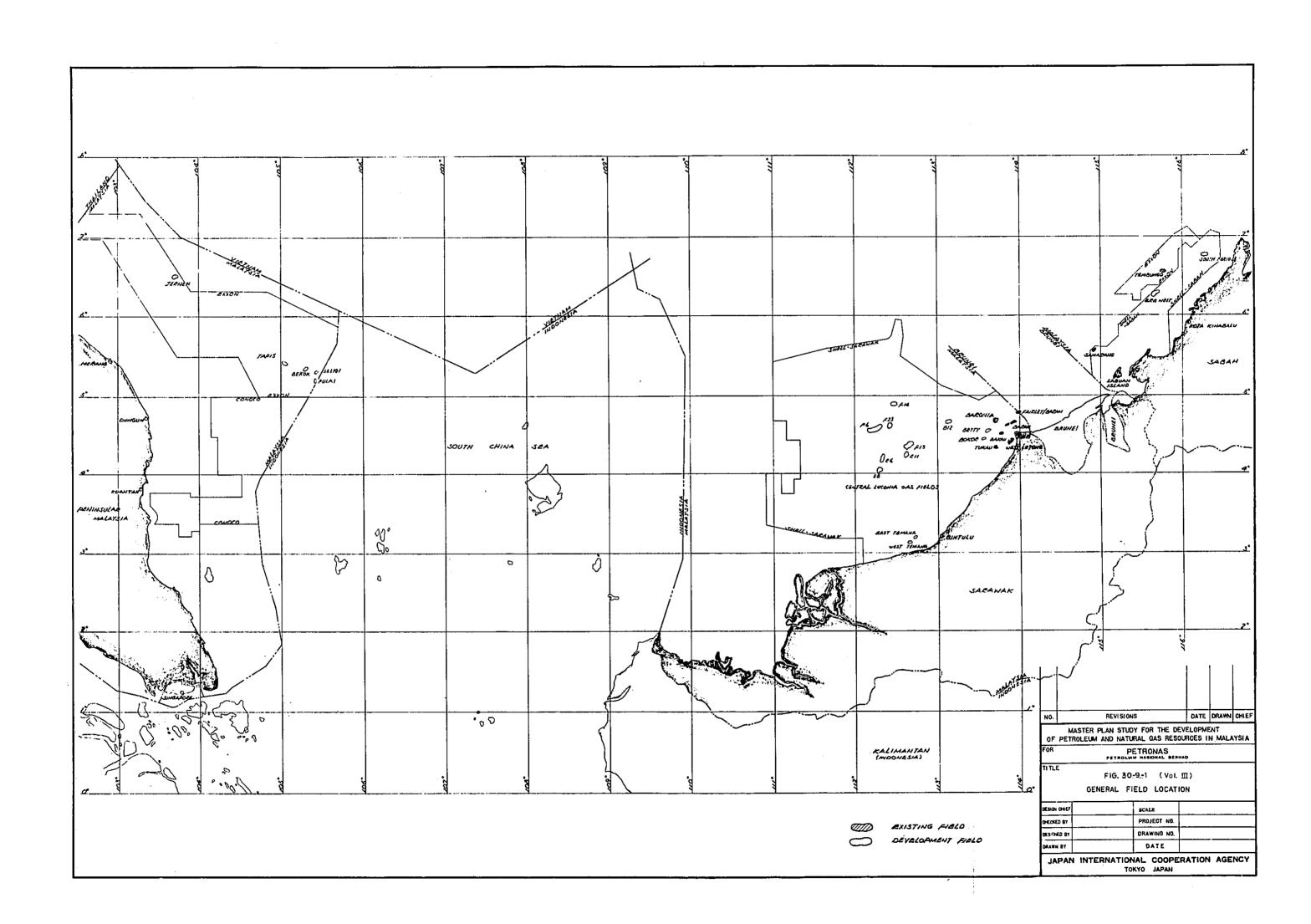
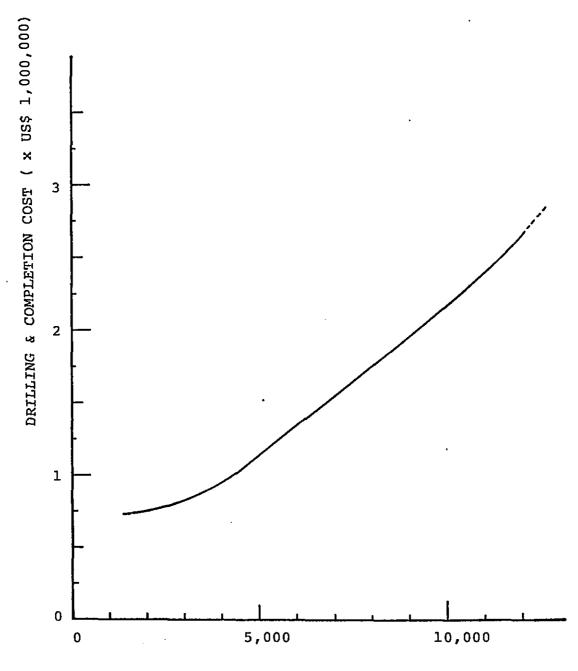
SCALE CHECKED BY PROJECT NO. DRAWING NO. DESINED BY DATE

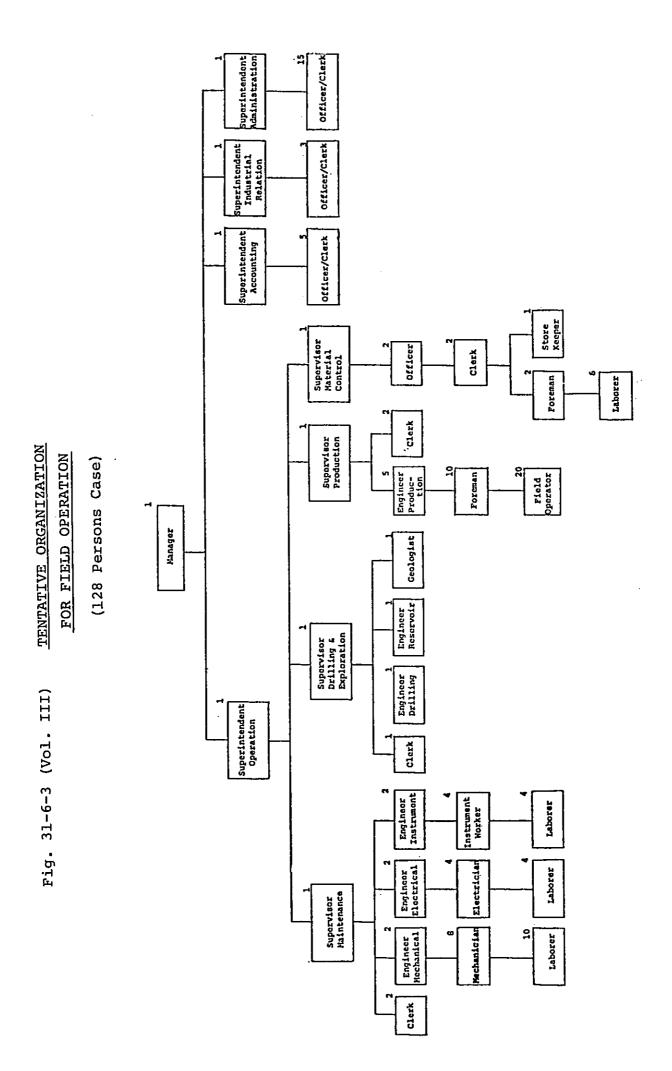
JAPAN INTERNATIONAL COOPERATION AGENCY TOKYO JAPAN

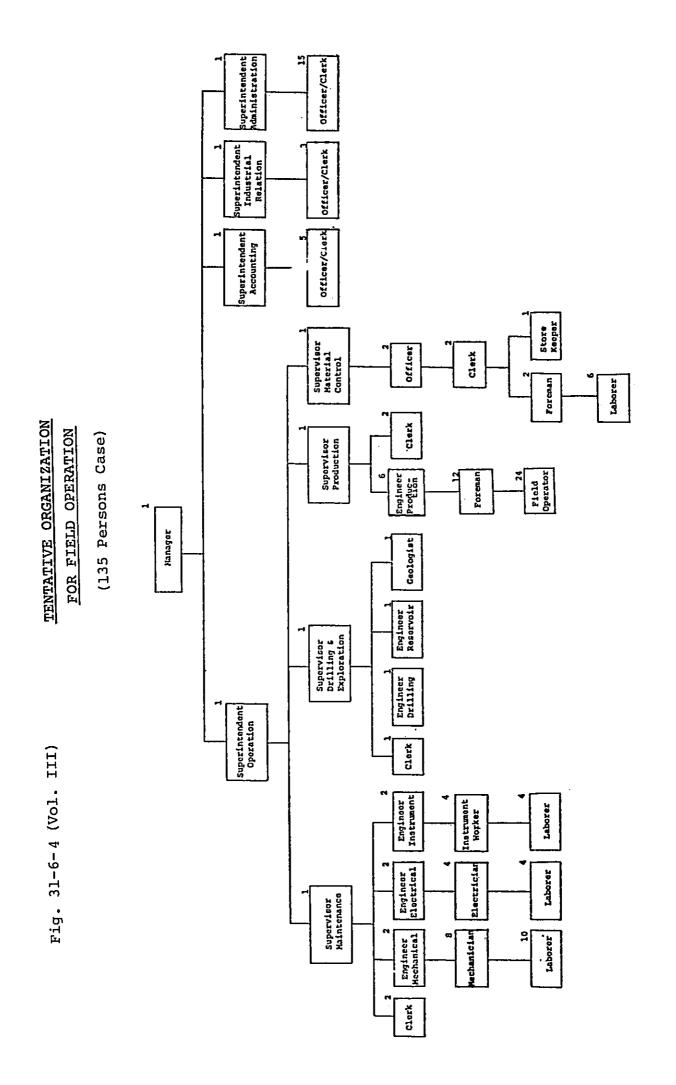
Fig. 30-5-32 (Vol. III)

LEGEND FOR FLOW DIAGRAMS

PIC	PRESSURE INDICATING CONTROLLER
PC	PRESSURE CONTROLLER
PS	PRESSURE SWITCH
FRC	FLOW RECORDING CONTROLLER
FM	FLOW METER
FR	FLOW RECORDER
FI	FLOW INDICATOR
LC	LEVEL CONTROLLER
LS	LEVEL SWITCH
PSV	PRESSURE SAFETY VALVE
RD	RUPTURE DISC
DV	DELUGE VALVE
SD	SHUTDOWN VALVE
xv	MISCELLANEOUS VALVE

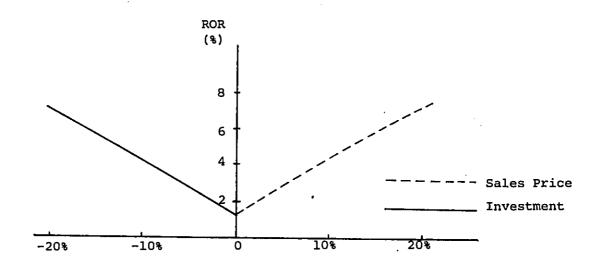

Fig. 31-6-1 DRILLING & COMPLETION COST (Vol. III) OF DEVELOPMENT WELL



DRILLING DEPTH (feet)

Fig. 31-6-2 (Vol. III) TENTATIVE ORGANIZATION FOR FIELD OPERATION

(80 Persons Case)



Superintendent Administration Officer/Clerk Superintandont Industrial Relation Officer/Clerk Superintendent Accounting Offloor/Clerk Stora Supervisor Material Control Officer Clerk Foreman Laborer Clork Supervisor Production TENTATIVE ORGANIZATION FOR FIELD OPERATION (146 Persons Case) Engineer Produc-tion Field Operator Forcman Hanager Geologist Engineer Reservoir Supervisor Drilling & Exploration Fig. 31-6-5 (Vol. III) Engincer Drilling Superintendent Operation Clerk. Engineor Instrument Instrument Laborer Engineor Electrical Electrician Laborer Supervisor Maintenanco Engineer Mechanical Mechanician Laborer Clerk

Fig. 31-6-7 (Vol. III) SENSITIVITY CURVE FOR SABAH AREA

Erb West & South Furious Fields

Optimum Case: Erb West, Labra. Terminal Case - CASE IIA

•

•

APPENDIX

LOG INTERPRETATION RESULTS

SABAH AREA

1. Sammarang Field

Using the data of formation factor and porosity derived from core analysis the cementation factor and a constant of Archie's formula was gotten. The values are 2.02, 0.36 respectively. But the value of constant a is too low comparing with other field's data. So in this case the general formula as sandstone, $F = 0.62/\phi^{2.15}$ was used.

Logs of well No.2, 3 and 14 to 29 were digitized and analyzed by computer every two feet.

The rest of logs are not analyzed by computer because of scale difficulty. But well No.8 is situated in the important place of the structure, so the log analysis of well No.8 also was done manually. The results was shown as table. The comparison with core analysis data was not done because the number of core analysis data is not sufficient.

2. Tembungo Field

Log data of Tembungo field was analyzed by manual. The results are arranged as table. The water saturation shows somewaht high value.

The comparison between core derived porosity and log derived porosity was not conducted because of no core data.

3. Erb West

0.13 Ω -m 0 145°F for water resistivity value was used.

After core analysis results the relation between formation factor(F) and porosity (ϕ) was F = 1.1/ ϕ ^{1.21}

for sandstone was adopted.

Water saturation ranges between 20 to 60%. The core analysis data were not abundant to be able to make compariosn.

4. South Furious Field

0.22 Ω -m @ 155°F was used for water saturation value. After core analysis results the relation, $F=1/\phi^{1.69}$ was used. The core analysis was conducted on the cores of well No.2 and well No.3. Among these cores the intervals between 3515' and 3540.5' of well No.2 has sufficient data.

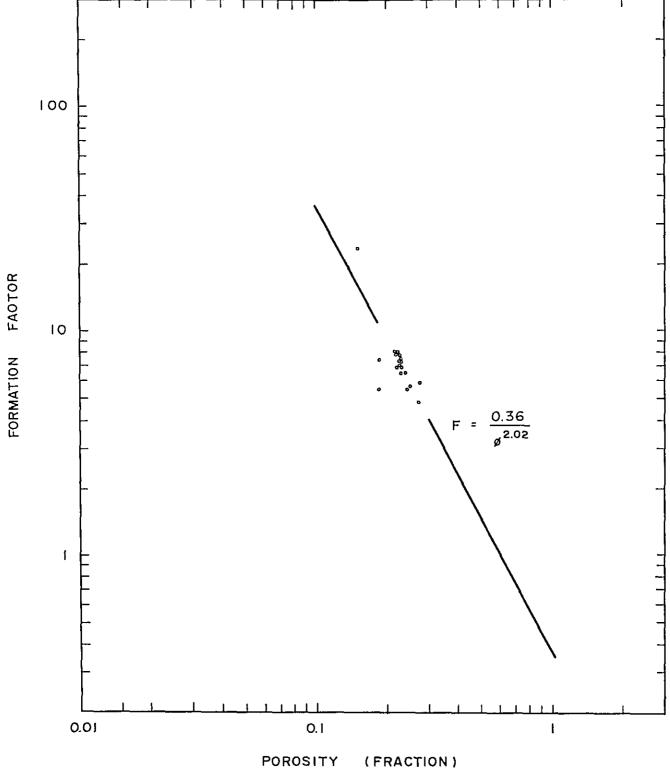
The porosities of core samples corresponding the intervals which are under 20% shale contents were compared with log derived porosity. The average core derived porosity was 20.86%. On the other hand the average log derived porosity was 19.63%. These two values are consistent with each other fairly good.

5. West Emerald Field

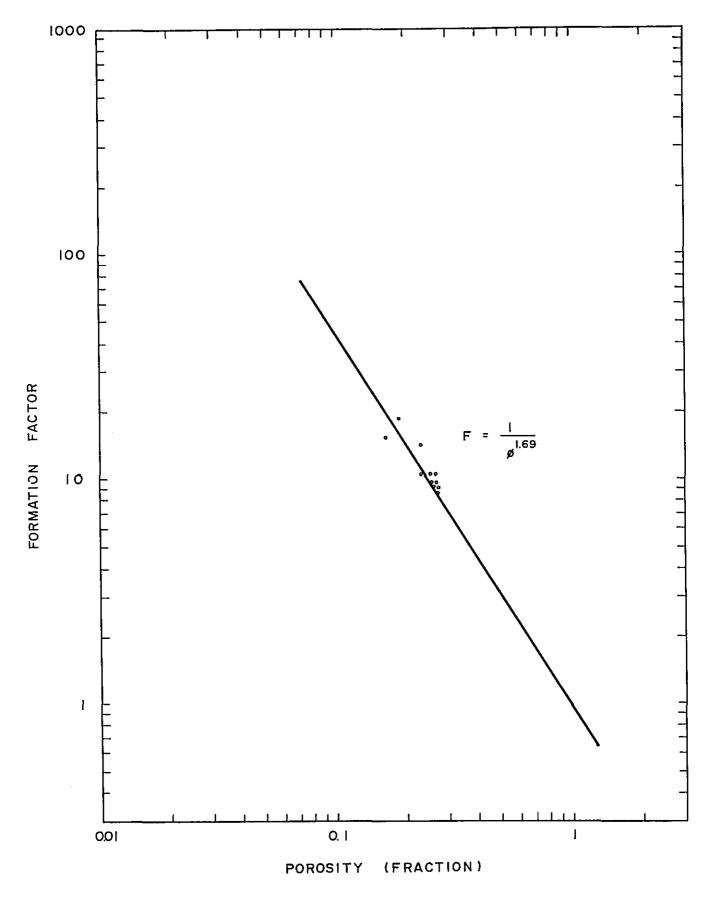
For the water resistivity value 0.21 Ω -m @ 135°F and for the relation between formation factor and porosity general formula for sandstone F=0.62/ ϕ ^{2.15} were used.

6. St. Joseph

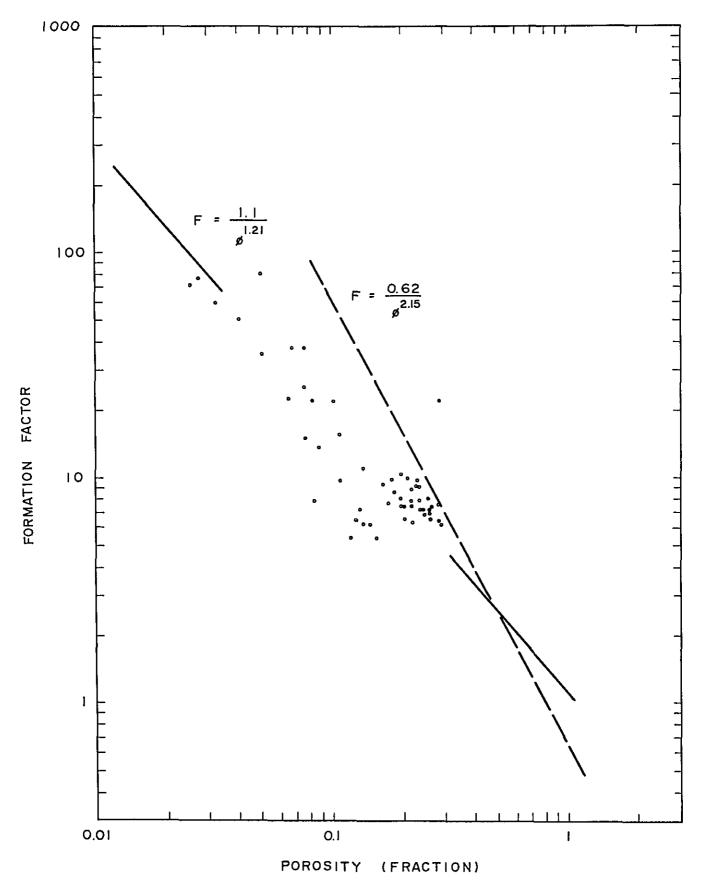
For the water resistivity value 0.25 Ω -m @ 150°F and for the relation between formation factor and porosity general formula for sandstone F = 0.62/ $\phi^{2.15}$ were used.


7. Erb South Field

0.3 Ω -m @ 120°F was used for the water resistivity value. This value is higher than that of Sarawaku area. But other fields which belong to Sabah area, that is, South Furious, St. Joseph, West Emerald also show similar values. So this is considered as a regional characteristic. The cores did not recovered. Therefor general formula for sandstone $F = 0.62/\phi^{2.15}$ was applied.


IMPORTANT PARAMETER USED FOR LOG-ANALYSIS

- SABAH AND SARAWAK -


FIELD	CEMENTATION FACTOR (m)	ARCHIE FORMULA'S CONSTANT (a)	SATURATION EXPONENT (n)	WATER RESISTIVITY (Ω-M @ F.T.)
TEMANA	2	1.	2	0.15 @ 152°F
SOUTH FURIOUS	1.69	1	2	0.22 @ 155°F
BETTY	2	1	2	0.11 @ 180°F
BOKOR	2.15	0.62	2	0.16 @ 140°F
ERB WEST	2.15	0.62	2	0.13 @ 145°F
ERB SOUTH	2.15	0.62	2	0.3 @ 120°F
ST. JOSEPH	2.15	0.62	2	0.25 @ 150°F
WEST EMERALD	2.15	0.62	2	0.21 @ 135°F
BERYL	1.87	0.7	2	
SIWA	2.15	0.62	2	0.4 @ 120°F
CENTRAL LUCONIA				
B12	1.84	1.04	1.84	0.096@ 240°F
E6	1.84	1.04	1.84	0.23 @ 70°F
E8	1.84	1.04	1.84	0.102@ 148°F
Ell	1.84	1.04	1.84	0.096@ 165°F
F6	1.84	1.04	1.84	0.096@ 152°F
F9	2	1	2	0.208@ 170°F
F13	1.84	1.04	0.84	0.25 @ 184°F
F14	1.84	1.04	1.84	0.124@ 148°F
F22	1.84	1.04	1.84	0.2 @ 170°F
F23	1.84	1.04	1.84	0.16 @ 204°F
K4	2	1	2	0.102@ 175°F
Ml	1.84	1.04	1.84	0.11 @ 162°F
м3	1.84	1.04	0.84	0.06 @ 203°F
м5	1.84	1.04	1.84	0.06 @ 206°F
BARAM A	1.87	0.7 .	2	0.135@ 150°F
BARAM B	1.87	0.7	2	0.13 @ 170°F
BAKAU	2.15	0.62	2	0.11 @ 206°F
BARONIA	1.69	1	2.0	0.09 @ 150°F
RAIRLY BARAM	2.15	1	1.49	0.22 @ 70°F
SAMMARANG	1.8	1	1.8	0.111@ 142°F
TEMBUNGO	1.93	1.14	1.93	0.14 @ 150°F
TUKAU	2.15	0.62	2	0.12 @ 140°F
WEST LUTONG	1.84	0.68	2	0.205@ 100°F

FORMATION FACTOR VS POROSITY PLOT SAMMARANG IX

FORMATION FACTOR VS POROSITY PLOT SOUTH FURIOUS 2X

FORMATION FACTOR VS POROSITY PLOT ERB WEST 4

WELL NAME : SAMARANG 002

	AVERAGE SATURATION (%)
	AVERAGE POROSITY (%)
90°00 0°0 20°0	NET THICKNESS (FT)
CUT OFF OF PARAMSITY : CUT OFF OF SHALE :	
CUT OF CUT OF CUT OF	INTERVAL TOP RASE (FT) (FT)

102' 01L ZONE

SAMARANG 02 SAMARANG 02

41.4

22.8 17.9

1.6

6458.0 6515.0

1 1

6444.0 6498.0

REMARKS

WELL NAME : SAMARANG 03

90.06 0.0 50.00

CUT OFF OF SW :CUT OFF OF SHALE :

REMARKS	SAMARANG 03 'B ! OIL ZONE	03 'C2' GAS	03 'C3' GAS	03 'C3' OIL	03 'C4' DIL	03 'C5' OIL	03 'D' GAS	03 'D' OIL	
AVERAGE SATURATION (%)	42.5	5.04 8.04	40.04	75.0	63.8	9 • 44	46.6	64.1	4
AVERAGE POROSITY (%)	18.3	18.7	5°/7	- - C -	F: P	- O-	1 C	0.1	7.61
NET THICKNESS (FT)	98	04	, 09 10 10 10 10 10 10 10 10 10 10 10 10 10	œ c	x (47	104		. 64
INTERVAL RASE FT) (FT)	- 5478.0	- 6228.0	- 6324.0	- 6398.0	- 6410.0	0-9249 -	- 6616.0	ı	- 7440.0
10P TOP (FT)	0 0 0 1	6184.0	6256.0	6334.0	6400.0	6424.0	6.486.0	7312.0	7372.0

LOG INTERPRETATION RESULTS
- SAMARANG 8 -

INTERVAL	NET SAND	AVERAGE	AVERAGE Sw		REMARKS
4742 - 4905					
5772 - 5820					
6040 - 6050					
6570 - 6630	38	19.58	48.51		c_1
6704 - 6722	17	23.06	19.39	Gas	C ₂
6760 - 6800	40	19.83	37.38	Gas	C ₃
6800 - 6855	55	17.87	29.66		
6856 - 6954	56	18.73	46.22		
6954 - 6965	5	23	57		

WELL NAME : SAMARANG 13

	AVERAGE REMARKS SATURATION (%)	:	13 'C2' 01L 13 'C3' 01L 13 'C4' 01L
	AVERAGE POROSITY (%)	24.1 23.4 22.1	17.5
SITY: 90.00 0.0 00.00	NET THICKNESS (FT)	244 32 130	77
CUT OFF OF SW CUT OFF OF POROSITY CUT OFF OF SHALE	INTERVAL TOP 9ASE (FT) (FT)	. III.	7546.0 - 7574.0 7698.0 - 7762.0 7802.0 - 7908.0 7931.0 - 7984.0

-	
•	

CUT OFF OF SW CUT OFF OF POROSITY CUT OFF OF SHALE	00*06 : XI			
INTERVAL TOP BASE (FT) (FT)	NET THICKNESS (FT)	AVERAGE POROSITY (%)	AVERAGE SATURATION (%)	REMARKS
4970.0 - 5032.0 5744.0 - 5764.0	80 20	24.4	38.2 64.4 34.8 5A	SAMARANG 14 'A ' OIL ZONE SAMARANG 14 'B ' GAS ZONE SAMARANG 14 'B ' OIL ZONE

WELL NAME : CAMARANG 15

	REMARKS	SAMARANG 15 'A ' OIL ZONE SAMARANG 15 'B ' GAS ZONE SAMARANG 15 'B ' OIL ZONE SAMARANG 15 'C2' OIL ZONE SAMARANG 15 'C3' OIL ZONE
	AVERAGE SATURATION (%)	04.5 07.7 000.4 090.1 4.2.4
	AVERAGE POROSITY (2)	26.6 24.5 23.5 19.8
0°05 : X:	MET THICKNESS (FT)	174 8 92 56 57
CUT OFF OF SA CUT OFF OF SHALE :	INTERVAL TOP RASE (FT) (FT)	4914.0 - 5104.0 5918.0 - 5924.0 5930.0 - 6028.0 7040.0 - 7102.0

WELL NAME : SAMARANG 16

	REMARKS	SAMARANG 16 'A ' OIL ZONE SAMARANG 16 'B ' OIL ZONE SAMARANG 16 'CI' OIL ZONE SAMARANG 16 'C2' GAS ZONE SAMARANG 16 'C2' OIL ZONE SAMARANG 16 'C3' GAS ZONE SAMARANG 16 'C3' GIL ZONE SAMARANG 16 'C3' OIL ZONE SAMARANG 16 'C3' OIL ZONE
	AVERAGE AVERAGE POROSITY SATURATION (%)	26.1 21.0 13.9 17.8 17.8 16.9 16.9 16.0 19.1 44.5 19.1 44.5
CUT OFF OF POROSITY: 90.00 CUT OFF OF SHALE: 50.00	INTERVAL TOP BASE THICKNESS (FT) (FT)	3661.0 - 3683.0 192 4678.0 - 4904.0 192 5718.0 - 5833.0 80 6590.0 - 6634.0 42 6723.0 - 6744.0 18 6792.0 - 6758.0 28 6842.0 - 6818.0 28 6890.0 - 6982.0 66

WELL NAME : SAMARANG 17

	REMAKKS	SAMARANG 17 'A 'OIL ZONE SAMARANG 17 'B 'GAS ZONE SAMARANG 17 'B 'OIL ZONE
	AVERAGE SATURATION (%)	34.8 33.4
	AVERAGE PORUSITY (2)	26.2 20.0 24.1
00*05 : ALI	NET THICKNESS (FT)	184 20 86
CUT OFF OF SW CUT OFF OF POROSITY CUT OFF OF SHALE	INTERVAL TOP BASE (FT) (FT)	5087.0 - 5294.0 6106.0 - 6146.0 6154.0 - 6248.0

WELL NAME : SAMARANG 18

00.06

CUT OFF OF SW : CUT OFF OF POROSITY : CUT OFF OF SHALE :

		ZONE	ZONE	ZONE	ZONE	ZONE	ZUNE	7007	10.07	3 NI 7	
		011	OIL	GAS	GAS	GAS	0 7 0) -) (и. 5 (710	
RKS		۷.	Œ	.C1	C2.	103	1771	֓֞֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	ا ا د	S	
REMARKS	1	6 18	6.18	6 18	6 18	13	α -		ا د ا د	9 9	
		SAMARANG	SAMARAN	SAMARANG	SAMARAN	CAMARAN	DINA GAMA 2	NAME OF THE O	SAMAKANG	SAMARAN	-
AVERAGE SATURATION		29.0	38.0	31.9	6.81	22.8.) u	C•06	46.6	43.7	
	• -			•							
	:		!	i.	;						
AVERAGE POROSITY	2	26.8	20.4	19.4	22.4	1 C	20.0	19.0	13.4	17.B	
	i						;				
					:		.:				
NET	<u>.</u>	158	α α	o tr		י מ	9	30	45	144	
			٠.							-	
AL BASE	(FT)	0 7887	0 · a × c u	0.0474	0.0000	0.0000	0.2999	6710.0	6762.0	6930.0	
INTERVAL		. (1	1	ı	ı	i	ı	1	1	
IN TOP	(FT)	0 (07)	0.000	0.4400	0.4040	6552.0	6588:0	6682.0	4720.0	0 0827	

WELL NAME : SAMARANG 19

		AVERAGE REMARKS SATURATION (%)	22.3 SAMARANG 19 'A ' GAS ZONE 34.0 SAMARANG 19 'A ' OIL ZONE 39.9 SAMARANG 19 'R ' GAS ZONE 39.5 SAMARANG 19 'R ' OIL ZONE 57.4 SAMARANG 19 'C2' OIL ZONE 72.2 SAMARANG 19 'C3' OIL ZONE
		AVERAGE POROSITY (%)	20.7 20.2 15.4 18.5 16.1
61 J	SITY: 90.00 0.0 50.03	NET THICKNESS (FT)	46 178 56 104 36
WELL NAME : SAMARANG 19	CUT OFF OF SW CUT OFF OF POROSITY : CUT OFF OF SHALE :	INTERVAL TOP BASE (FT) (FT)	4392.0 - 4436.0 4438.0 - 4672.0 5384.0 - 5444.0 5446.0 - 5576.0 6540.0 - 6580.0

WELL NAME : SAMARANG 21

		AVERAGE SATURATION (%)	43.5 30.2 48.7 35.4 SAMARANG 21 'A ' OIL ZONE 33.2 SAMARANG 21 'B ' OIL ZONE 74.7 SAMARANG 21 'C2' OIL ZONE 80.9 SAMARANG 21 'C3' OIL ZONE
	00.06 0.0 50.08	NET AVERAGE CKNESS POROSITY (FT)	38 25.6 50 29.4 26 25.5 102 23.9 6 19.6
WELL NAME : SAMARANG 21	CUT OFF OF SW : CUT OFF OF POROSITY : CUT OFF OF SHALE :	INTERVAL BASE THICK! (FT)	3853.0 - 3897.0 3902.0 - 3951.0 3953.0 - 3981.0 5108.0 - 5298.0 6086.0 - 6192.0 7222.0 - 7226.0

WELL NAME: SAMARANG 22

CUT OFF OF PORDSITY: 0.0

CUT OFF OF SHALE: 50.00

TATEDVAL		- u Z	AVERAGE	AVERAGE	REMARKS
TOP	BASE	THICKNESS	POROSITY	SATURATION	
(FT)	(FT)	(L			
0 7177	0 7727	102	25.1	46.3	SAMARANG 22 'A ' OIL ZONE
0.0104	י מי טיי זיי זיי	J. C.	19.0	63.2	22 'B ' GAS
0.0000	0.0000		24.1	7.62	22 'B ' OIL
- 0.0166	0.0007)) (16.6	52.0	22 'C1' OIL
- 0.7/54	0450.0	200	20.00	28.8	22 'C2' GAS
0.0040	0.0100) C	16.4	36.0	22 'C2' 0IL
- 0.81ca	0.0260	0 0	20°	28.2	1C31 GAS
0.0000	6640	1 0	18.0	37.8	22 'C3' OIL
- 0.2000	6714.0	. C	19.5	43.1	22 'C4' OIL
6746.0 -	6782.0	346	22.9	56.4	25

WELL NAME : SAMARANG 23

	AVERAGE AVERAGE REMARKS POROSITY SATURATION (%)	5.0 0.5 44.7 7.8 7.8 2.5 45.1 SAMARANG 23 'A ' UIL ZONE 2.5 45.1 SAMARANG 23 'B ' GAS ZONE 7.9 23.2 SAMARANG 23 'B ' OIL ZONE 2.9
CUT OFF OF POROSITY: 90.00 CUT OFF OF SHALE: 50.00	INTERVAL NET AVER TOP BASE THICKNESS PORO (FT) (FT) (FT)	3825.0 - 3860.0 28 3860.0 - 3868.0 8 275.0 - 3906.0 36 4956.0 - 5088.0 120 5762.0 - 5798.0 30

WELL NAME : SAMARANG 24

90.00 0.0 50.00

CUT OFF OF SW CUT OFF OF SHALE :

AVERAGE AVERAGE REMARKS PORDSITY SATURATION (2)	26.3 26.4 25.3 25.0 26.0 27.2 28.3 27.2 SAMARANG 24 'A ' OIL ZONE 25.0 60.0 SAMARANG 24 'B ' OIL ZONE
· NET THICKNESS (FT)	8 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
INTERVAL TOP BASE (FT)	3768.0 - 3757.0 3759.0 - 3804.0 3804.0 - 3841.0 4948.0 - 5066.0 5822.0 - 5940.0

WELL NAME : SAMARANG 25

	REMARKS	SAMARANG 25 'A ' GAS ZONE SAMARANG 25 'A ' GIL ZONE SAMARANG 25 'B ' GAS ZONE SAMARANG 25 'B ' GAS ZONE
	AVERAGE SATURATION (%)	59.4 28.1 22.6 23.4
	AVERAGE POROSITY (%)	22.7 26.1 25.5
. 90.00 17 : 77	NET THICKNESS (FT)	10 220 70 126
CUT OFF OF SW : CUT OFF OF POROSITY : CUT OFF OF SHALE :	INTERVAL TOP RASE (FT) (FT)	4616.0 - 4624.0 4626.0 - 4852.0 5538.0 - 5630.0 5632.0 - 5764.0

WELL MAME : SAMARANG 26

	REMAKKS	• • • • • • • • • • • • • • • • • • • •	SAMARANG 26 14 1 GAS (1994) SAMARANG 26 18 1 01L 2003
	AVERAGE SATURATION (%)	34.5 28.7	34.2 SI 25.5 SI
	AVERAGE PURNSITY (%)	29.9	23.5 2.5 2.5 2.5
: 90.00 TY: 0.0	NET THICKNESS (FI)	32 56	16 18 210
FORE OR SW FORE OR POROSITY FORE OR SHALE	INTERVAL BASE (FT)	- 3986.0 - 4045.0	- 4062.0 - 5016.0 - 5270.0
CUT CUT	TNT TOP (FT)	2943.0 3989.0	4047.0 5000.0 5018.0

WELL NAME : SAMARANG 27

AVERAGE POROSITY (%)	25.7
: 90.00 : 0.0 : 50.00 THICKNESS (FT)	130
CUT OFF OF SW : CUT OFF OF POROSITY : CUT OFF OF SHALE : INTERVAL TOP BASE TH (FT) (FT)	4648.0 - 4814.0

WELL NAME : SAMARANG 28

90.00		50,00
••	••	••
SW	CUT OFF OF POROSITY :	SHALE
Н	<u> </u>	90
OFF	OFF	CUT OFF
CUT	CUT	

		SAMARANG 28 'A ' OIL ZONE	OIL ZONE
RKS		1 A	8
SEMA		28	28
		SAMARANG	SAMARANG
AVERAGE	SATURATION (%)	35.1	27.1
AVERAGE	POROSITY (%)	25.7	25.4
LEIN	THICKNESS (FT)	\$5	130
INTERVAL	~ ~	- 5458.0	- 6542.0
LNI	T0P		6412.0

WELL NAME : SAMARANG 29

00.06	0.0	50.00
. MS	PORUSITY:	SHALE :
CUT OFF OF SW	CUT OFF OF	CUT OFF OF

	RKS		0.00	A OIL LUNE	'B ' GAS-ZONE	SAMARANG 29 'B ' OIL ZONE
	REMARKS	,	000	SAMAKANG 29	SAMARANG 29	SAMARANG 29
	AVERAGE	SATURATION (%)		30.1	50.7	30.3
	AVERAGE	POROSITY (%)		26.0	18.8	20.8
50.00	NET	THICKNESS (FT)		134	4	118
CUT OFF OF SHALE	VAL	BASE (FT)		4684.0	5452.0	5586.0
COT	INTERVAL	T0P (FT)	:	4512.0 -	5437.0 -	5458.0 -

LOG INTERPRETATION RESULTS - TEMBUNGO 1 -

INTERVAL	NET SAND	AVERAGE	AVERAGE Sw	REMARKS
5916 - 5934	18	27.17	24.44	
5945 - 5956	11	25.86	25.70	
5966 - 5997	28	23.96	33.68	
6045 - 6075	24	25.21	25.64	
6096 - 6060	56	21.98	27.27	
6165 - 6175	10	17.75	53.63	

LOG INTERPRETATION RESULTS - TEMBUNGO A-1 -

INTERVAL	NET SAND	AVERAGE	AVERAGE Sw	REMARKS
5535 - 5550	15	16.33	38.33	Oil
5560 - 5570	5	22.0	60.0	Oil
5585 - 5560				oil
5615 - 5655	35	26.14	26.08	Oil
5670 - 5675	5	33.0	36.0	Oil
5685 - 5730	35	28.14	27.12	Oil
5800 - 5835	35	24.83	25.52	Oil

LOG INTERPRETATION RESULTS
- TEMBUNGO 2 -

INTERVAL	NET SAND	AVERAGE	AVERAGE Sw	REMARKS
1415 - 4423	8	31	26	
1441 - 4466	25	28	28	
1474 - 4500	26	21	51	WUT 4508
5176 - 5187	8	16	36	
5114 - 6128				Shale
5413 - 6427				Tight
742 - 6855	83	19	49	Gas,GOC 6800
5922 - 6933	11	19	41	Oil
7033 - 7074	22	21	43	Oil

LOG INTERPRETATION RESULTS
- TEMBUNGO A-2 -

INTERVAL	NET SAND	AVERAGE	AVERAGE Sw_	REMARKS
7324 - 7338	1.4	26.94	33.26	Gas
7358 - 7370	12	19.8	49.85	Gas GOC 7370
7372 - 7414	8	19.65	56.26	Oil WDT 7414
7698 - 7724	26	22.84	35.61	Gas
7784 - 7850	50	18.17	42.83	Oil
8596 - 8906				Gas
8746 - 8754			•	
9160 - 9178	10	18.46	54.78	Gas
9206 - 9242	4	19.65	58.04	Oil

LOG INTERPRETATION RESULTS - TEMBUNGO A-2A -

NET SAND	AVERAGE	AVERAGE Sw	REMARKS
			Tight
			Oil
			Tight
84	21.65	49.33	Oil (5223.4-5286.9 SS)
		ф	φ Sw

LOG INTERPRETATION RESULTS - TEMBUNGO A-3 -

INTERVAL	NET SAND	AVERAGE	AVERAGE Sw	REMARKS
5420 - 5435				Tight
6730 - 6790	20	12	63.25	Oil
7930 - 7940	10	20	51	Gas
7965 - 7975	10	22	66	Gas

LOG INTERPRETATION RESULTS
- TEMBUNGO A-4 -

INTERVAL	NET SAND	AVERAGE	AVERAGE Sw	REMARKS
5510 - 5525	15	17	54	Oil
5912 - 5972	56	24.80	29.70	Oil
6020 - 6128	96	19.32	37.39	Oil
6150 - 6162	9	23.5	44	Oil, OWC 6162
6424 - 6580	134	17.40	64.68	Oil, OWC 6580

LOG INTERPRETATION RESULTS
- TEMBUNGO 5 -

INTERVAL	NET SAND	AVERAGE	AVERAGE Sw	REMARKS
1276 - 4322	·			
4687 - 4727				
5244 - 5280	26	23.82	72.52	Oil
5296 - 5306	6.0	21.33	75.28	Gas
5345 - 5427	62	22.88	66.99	Oil
5470 - 5510	4	30.0	71.0	Oil
5536 - 5565	8	19.88	75.02	Oil
5620 - 5642	22	23.66	64.29	Oil
5660 - 5688	19	25.54	64.55	Oil
5697 - 5732	31	26.44	59.71	Oil

LOG INTERPRETATION RESULTS
- TEMBUNGO A-5 -

INTERVAL	NET SAND	AVERAGE	AVERAGE Sw	REMARKS
1464 - 4470				Tight
4550 - 4583				Tight
4847 - 4860				Tight
5834 - 5892	51	23.24	53.54	Oil
5966 - 5978	12	25	40	Oil
7347 - 7400	9	17	47	Oil
7865 - 7874				Oil
7958 - 7963				Oil
7974 - 7979				Oil
8690 - 8703	12	24.38	39.99	Oil
9054 - 9090	32	18.37	50.77	Oil
9100 - 9138	38	22.94	34.01	Gas
9172 - 9234	58	23.12	27.24	Gas
9273 - 9279	10	28.6	44.93	Oil
9305 - 9394	92	22.11	38.42	Oil

LOG INTERPRETATION RESULTS - TEMBUNGO A-7 -

INTERVAL	NET SAND	AVERAGE	AVERAGE Sw	REMARKS
6310 - 6318	13	4	56	
6352 - 6360	12	21	89	
6405 - 6421	18	16.33 ,	49.29	OWC 6421
6477 - 6488	13	22	57	
6512 - 6538	26	25.5	31	
6550 - 6558	14	14	53	OWC 6558
6613 - 6640	36	24.50	28.94	OWC 6640

WELL NAME : ERBWEST 01

CUT OFF OF SW : 80.00

CUT OFF OF POROSITY : 0.0

CUT OFF OF SHALE : 50.00

REMARKS	HWC 3872 WUT 4000 WHWC 4131 HWC 4334 HWC 5218 GAS GAS
AVERAGE SATURATION (%)	48.6 53.9 28.5 47.1 18.3 41.8 28.9 61.0 42.4 69.0 42.1 48.3 16.7 43.5
AVERAGE POROSITY (%)	26.5 28.6 33.1 35.8 19.6 40.7 37.3 37.3 37.3 22.0 20.0 20.0 22.7 22.7 22.7
NET THICKNESS (FT)	26 26 10 10 12 20 12 14 162 18
INTERVAL TOP BASE (FT)	3796.0 = 3833.0 3851.0 = 3872.0 3942.0 = 3990.0 4093.0 = 4131.0 4196.0 = 4208.0 4242.0 = 4248.0 4459.0 = 434.0 4459.0 = 434.0 4612.0 = 4624.0 5046.0 = 5040.0 5192.0 = 5216.0 5860.0 = 5868.0 6462.0 = 6486.0 6542.0 = 6486.0 6542.0 = 6486.0

WELL NAME : ERB WEST 02

CUT OFF	OF SW	•		
CUT OFF	OFF OF POROSITY OFF OF SHALE	: 50.00		
INTERVAL		NET	AVERAGE	AVERAGE
T0P		THICKNESS	POROSITY	SATURATION
(FT)	(FT)	(FT)	(2)	(%)
ı	376.0			
6278.0 - 6	6338.0	9	16.4	32.8
ı	412.0	26	23.4	15.3
ı	6420.0	2	11.7	46.8
1	6484.0	52	18.7	20.4
6500.0 - 6	6528.0	16	16.7	27.6
i	612.0	58	19.4	19.2
ŀ	6638.0	œ	15.2	40.9
ı	6736.0	06	22.0	20.7
:				

WELL NAME : ERR WEST 03

	REMARKS							
	. .	GAS					1	GAS
	AVERAGE SATURATION (%)		38.9	41.1	34.9	32.9	56.4	32.1
	AVERAGE POROSITY (%)		17.6	14.8	15.3	22.6	22.4	20•3
80.00 1TY: 0.0	NET THICKNESS (FT)		2	20	77	34	99	52
CUT OFF OF SW CUT OFF OF POROSITY CUT OFF OF SHALE	INTERVAL BASE (FT)	- 5461.0	- 5802.0	- 6372.0 - 6516.0	0.0699 -	- 6794.0	- 6930.0	- 7032.0
CUT CUT CUT	INI TOP (FT)	5458.0	5796.0 6164.0	6342.0	6602.0	6756.0	6816.0	6930.0

WELL NAME : ERB WEST 04

	AVERAGE SATURATION (%)	20.6 73.3 49.0
	AVERAGE POROSITY (%)	33.7 15.8 21.3
00*05 :	NET THICKNESS (FT)	48 2 34
OFF OF SW OFF OF POROSITY OFF OF SHALE	VAL BASE (FT)	
CUT C CUT C	INTERVAL TOP (FT)	3856.0 - 7100.0 - 7162.0 -

REMARKS

GAS

WELL NAME : SOUTH FURIOUS 01

	REMARKS		<u> </u>
	AVERAGE SATURATION (%)	59.3 OIL	
	AVERAGE PORUSITY (%)	19.6	
. 60.00 0.0 0.0	NET THICKNESS	.1	
CUT OFF OF POROSITY: CUT OFF OF SHALE:	RVAL BASE (et)		6735.0
CUT CUT CUT	INTERVAL TOP	6634.0 -	6684.0 - 7054.0 -

WELL NAME : SOUTH FURIOUS 03

	REMARKS																							
		GAS OIL	GAS	OIL	011		:		1									GAS	ni.					
	AVERAGE SATURATION (%)	42.5	940 940 940	36.6	9	35.9		ш	44.2	47.0	39.1	39.3	•	4 · · · · · · · · · · · · · · · · · · ·	53.4	56.2	57.1		36.0	53.2	34.6			33 • 0
	AVERAGE POROSITY (%)	•	23.9	27.5	26.9	29.8	:	•	28.1	7.50	31.9	35.0		4 4	22.8	5	21.7	23.6	23.2	18.5	19.4			23.2
: 60.00 SITY : 0.0	NET THICKNESS (FT)	4	38	16	10	; 9		* 1	10		12	4		16	o	2	2	20	112	4	18		#	4
OFF OF SW OFF OF POROSI OFF OF SHALE	VAL BASE (FT)	1080.0	570 . 692.	760.	846. 858.	126.	170.	184.	292.		368	635.	845.	888.	926. 938.	965.	138.	247.	670.	954.	160.	166.	210	30•
CUT CUT	INTERVAL TOP (FT)	1076.0 -	1540.0 -	o i				0	o c) (0	Ö	0		0	0	0	0	0	0	o	o	0

WELL NAME : SOUTH FURIOUS 03

	REMARKS			
		GAS	011	GAS
	AVERAGE SATURATION (%)	41.3	44.5 57.8 37.3	36.6
	AVERAGE POROSITY (%)	21.1	20.6 20.3 19.9	19.3
00.09 : YT	NET THICKNESS (FT)	• • •	24 4 18	· cc
CUT OFF OF SW CUT OFF OF POROSITY : CUT OFF OF SHALE	INTERVAL TOP BASE (FT.) (FT.)	- 4252.0 - 4364.0 - 4380.0	4385.0 - 4394.0 4698.0 - 5262.0 5795.0 - 5803.0 5972.0 - 5992.0	1 1 1 1

WELL NAME : SOUTH FURIOUS 04

	AVERAGE SATURATION (%)	52.4 28.9 51.4	41.6	46.4 26.4 43.1
	AVERAGE . PORGSITY (%)	19.6 21.7 19.0	25.8 17.0	19.8 17.7 18.0
	NET THICKNESS (FT)	6 48 16	9 9	4 6 34
CUT OFF OF SW CUT OFF OF POROSITY CUT OFF OF SHALE	INTERVAL BASE (FT)	- 3298.0 - 3910.0 - 4085.0	- 4118.0 - 4162.0 - 4269.0	- 4386.0 - 4409.0 - 4416.0 - 4476.0 - 4810.0
ບບົບ	10P TOP (FT)	3123.0 3504.0 4014.0	4107.0 4118.0 4200.0	4344.0 4405.0 4412.0 4434.0 4529.0

01L 01L 01L

016

REMARKS

WELL NAME : SOUTH FURIOUS 05

		REMARKS																														
					GAS	OIL	011	OIL						UIL	SAS.	01£	GAS	016													GAS	UIL
		AVERAGE	SATURATION	*	37.0	54.2	48.5		47.9	37.5	•		49.5	•	•	•	•	•	•	34.7	1.64	39.9	ر م م	5 • 5 · ·	28•3	31.9	39.5	43.1	20.8	30.0	32.0	
				:	,	•																										
		AVERAGE		€ •	27.4	28.3	28.8	29.7	25.6	24.8	19.1	•	9	n	21.9	0	26.2	18.3		22•3	18•3	21.1	•	19.6	23.2	21.2	20.0	17.0	20.7	19.2	20.1	
FURIOUS 05	: 60.00 0.0 0.0 : TTY	NET	THICKNESS	(FT)	24	2	12	9	80	ŝ	4	æ	4	72	64	10	62	4		9	4	18	2	18	10	9	18	8	œ	14	82	
SOUTH	OFF OF SW OFF OF POROSI OFF OF SHALE	VAL	BASE	(FT)																										3165.0		
WELL NAME	CUT CUT CUT	INTERVAL	TOP	(FT)		1221.0		1870.0		1992.0 -		2120.0 -		2205.0 -								2884.0 -						3096.0	3122.0 -	3152.0 -	3184.0 -	3665.0 -

WELL NAME : SOUTH FURIOUS 05

		GAS
	AVERAGE SATURATION (%)	31.2 36.5
	AVERAGE POROSITY (%)	20.8
00.09 :	NET THICKNESS (FT)	28 70
CUT OFF OF SW CUT OFF OF POROSITY CUT OFF OF SHALE	INTERVAL BASE (FT)	3707.0 - 3711.0 3834.0 - 3915.0 3919.0 - 4434.0
רטט	INTE TOP . (FT)	3707.0 3834.0 3919.0

REMARKS

WELL NAME : SOUTH FURIOUS 06

0.0	00.09
••	••
POROSITY	SHALE
님	Я
OFF	OFF
	CUT
	OFF OF POROSITY :

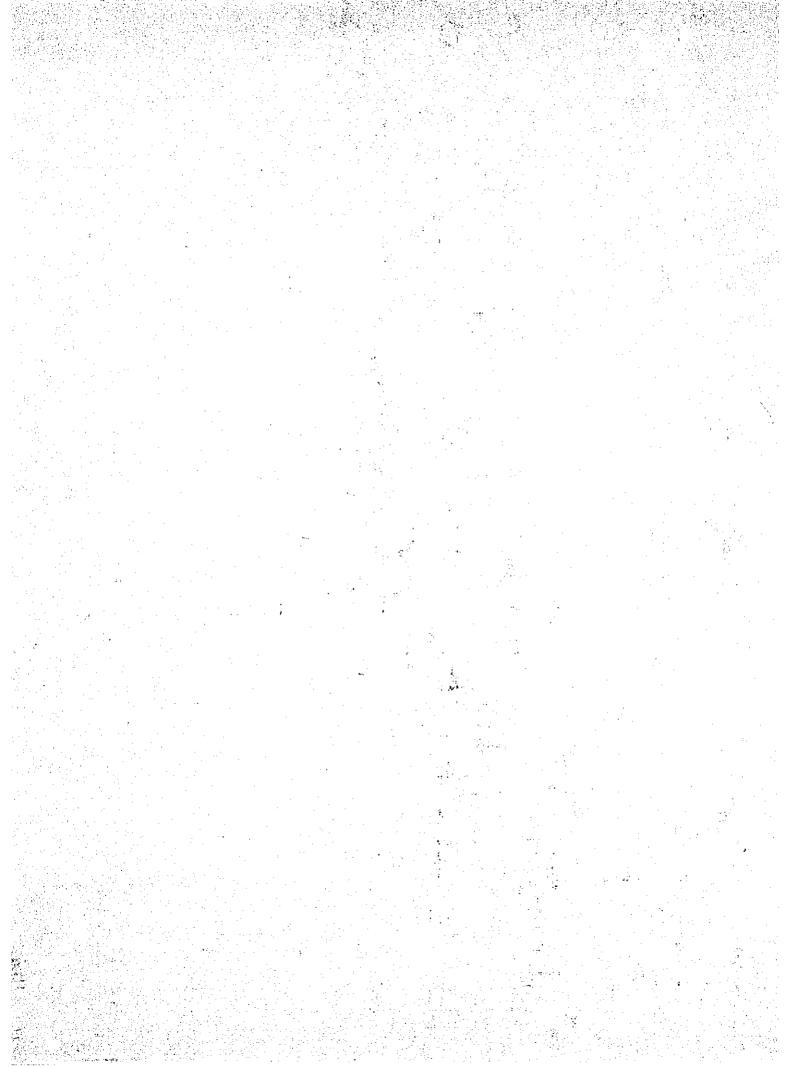
AVERAGE POROSITY (%)	25.1 26.3
NET THICKNESS (FT)	88 78
INTERVAL TOP BASE (FT) (FT)	2288.0 - 2586.0 2610.0 - 2748.0

REMARKS

AVERAGE SATURATION (%) 01L 01L

37.7

WELL NAME : WEST EMERALD B


	REMARKS	GAS GOC 1140 OIL OWC 1174	GAS GOC 4720 OIL DWC 4728
	AVERAGE SATURATION (%)	19.9 32.6	72.2 67.7
	AVERAGE POROSITY (%)	33.0 32.6	16.0 18.3
: 80.00 : 1TY: 0.0	NET THICKNESS (FT)	20 32	89
CUT OFF OF SW CUT OFF OF POROSITY CUT OFF OF SHALE	INTERVAL TOP BASE	; 1 1	4338.0 - 4510.0 4712.0 - 4720.0 4720.0 - 4728.0

WELL NAME : ST.JOSEPH

	REMARKS								Template to the first and the case of 1 - 1 - 1 - 1 - 1 - 1 - 1		į	WUT 2642		<u> </u>		-	:	UMC 5108	
	AVERAGE	SATURATION (%)	Andrews	(68.4	54.6	58.3	38.6	7.47	60.7				TIGHT		70.5 TIGH	GAS	65.4 UIL	٠.
	AVERAGE	POROSITY (%)			18.7	18.1	12.7	20.4	10.8	18.2	19.3	14.9	31.3			3.0		2•3	23.4
11Y: 80.00 50.00	F 112	THICKNESS (FT)		The same of the sa	9	18	2	72	~	28	12	9	8		Agent Martine Company of the State of Company of the State of the Stat	2		12	4
T OFF OF SW T OFF OF POROSITY T OFF OF SHALE	FRVAI	BASE (FT)	- 1447-0	- 1493.0	- 1781.0	- 1914.0	- 2119.0	- 2273.0	2309.0	- 2360.0	- 2427-0	2636+0		- 2842.0	- 2952.0		- 3005.0	- 3188.0	- 5592.0
CUT CUT CUT	INTERVAL	TOP (FT)	_		1740.0							2584.0							5556.0

WELL NAME : ERB SOUTH (AX)

	REMARKS		OWC2914
		11GHT 11GHT 11GHT 11GHT	110 110 110
	AVERAGE SATURATION (%)		47.3 74.8 48.1 66.2
	AVERAGE POROSITY (%)		26.2 21.9 21.5 23.4
: 80.00 ITY : 0.0 50.00	NET THICKNESS (FT)		50 10 6
CUT OFF OF SW CUT OFF OF POROSITY CUT OFF OF SHALE	INTERVAL TOP RASE (FT) (FT)		2831.0 - 2886.0 2896.0 - 2914.0 2934.0 - 2941.0 2952.0 - 2963.0

