マレイシア国石油産業開発計画調査報告書

第 Ⅲ 巻 サ バ 地 区

昭和53年1月

国際協力事業団

LIBRARY

マレイシア国石油産業開発計画調査 報告書

オ ■巻 サバ地区

昭和53年1月

国 際 協 力 事 業 団

国際協力事業団		
受入'85. 6. 19 月日	113	
	66.8	
登録No. 11653	MPI	

オ ■巻 サバ地区

一 目 次 一 .	ベージ
PART A 油・ガス田の評価と生産予測	A-1
1. フィールド概況	A-2
2. 地質概略	A-3
3. 既存生産油田	A-3
3.1 Samarang Field	A-3
3.1.1 油田概况	A-3
3.1.2 地質概略	A-3
3.1.3 油層解析	A-4
3.2 Tembungo Field	A-5
3. 2. 1 油田概況	A-5
3. 2. 2 地質概略	A-6
3. 2. 3 油層解析	A-7
4. 開発待機フィールド	A-12
4.1 Erb West Field	A-12
4.1.1 地質概略	A-12
4.1.2 油曆解析	A-13
4.2 South Furious Field	A-14
4.2.1 層序および地質構造	A-14
4.2.2 油曆解析	A-15

	ベージ
5. 未開発フィールド	A-17
5.1 West Emerald Field	A-17
5. 1. 1 地質概略	A-17
5.1.2 油層解析	A-17
5.2 Saint Joseph Field	A-18
5. 2. 1 地質概略	A-18
5. 2. 2 油層解析	A-18
5.3 Erb South Field	A-19
5.3.1 地質概略	A-19
5. 3. 2 油層解析	A-20
6. 結論と勧告	A-21

PART B	生産施設	ページ
1. 既	存生産施設の評価	B-1
1. 1	既存生産施設の現況	B-1
1. 1. 1	Labuan 系列	B-1
1. 1. 2	Tembungo 系列	B-6
1. 2	既存生産施設の処理能力の評価	в-9
1. 2. 1	Labuan 系列	B-10
1. 2. 2	Tembungo 系列	В-13
	予測生産量に対する既存生産施設処理 能力の評価	B - 15
1. 3. 1	Labuan 系列	B-15
1. 3. 2	Tembungo 系列	B-17
1. 3. 3	結 論	B-17
1. 4	現在の生産形態に関する考察	B-19
1. 4. 1	Labuan 系列	B-19
1. 4. 2	Tembungo 系列	B-22
2. 施	設計画	B-24
2. 1	概念設計の基礎資料	B-24
2. 1. 1	収集資料に基づく設計条件	B-24
2. 1. 2	想定設計条件	B-25
2. 1. 3	施設容量の決め方	B-25
2. 2	概念設計	B-27
2. 2. 1	Erb West 油田およびSouth Furious 油田	B-27

		ページ
3.	結論と勧告	B-32
3. 1	既存生産施設の評価	B-32
3. 2	施設計画	B-35

PART	C コストの算定および経済検討	ベージ
1.	コストの算定	C-1
1. 1	コスト算定基礎共通事項	C-1
1. 1.	.1 基礎データ	C-1
1. 1.	.2 その他のコスト算定法	C-1
1. 1.	.3 既投資額の算定法	C-2
1. 1.	.4 年間操業費の算定	C-3
1. 2	コストの算定	C-4
1. 2	.1 Erb West 油田およびSouth Furious 油田	C-4
2.	経済検討	C-6
2. 1	経済検討の基礎	C-6
2. 1	. 1	C-6
2. 2	原油の収益性分析	C-9
2. 3	感度分析	C-11
3.	結論と勧告	C-12
3. 1	コストの算定・	C-12
3. 2	経済検討	C-13

TABLE

FIGURE

APPENDIX

PART A 油・ガス田の評価と生産予測

1. フィールド概況

既存生産油田は Samarang 及び Tembungo の 2 フィールドであり 1976年6月末の時点でそれぞれ 28,000 STB / D、 4,300 STD / D の日産油量をあげている。両油田共、生産実績は少い。 この地区では、その規模と生産能力の点で Samarang が今後の生産の中心になり、 Tembungo Field には殆んど期待出来ないと予測出来る。

この地区にはErb West 、South Furious の 2 開発待機油田があるが 前者は埋蔵量が比較的少く、一方後者はかなりの埋蔵量があると見込ま れるも、集油構造に問題があり、良好な回収率を期待出来ないと予想さ れた。

未開発の油田として3構造あるがそれらは今後更に評価作業をす」める必要がある。

サバ地区の埋蔵量はTables A-1~3に示してある。

2. 地質概略

Sabah の西海岸地域は Paleocene から Miocene 時代の地層が露出しているが、その大部分は硬化した地向斜性堆積物である。しかし西方沖合では Sarawak からの Miocene - Pliocene 時代の地層の続きが分布しており、炭化水素の賦存を伴っているものと考えられる。 Sabah 地域の対象構造では、一般に上部 Miocene 層に大規模な不整合がみられるが、広域的な層序が統一的に確立されていないようである。 Palynologic dataをもとにした Sarawak 地域の堆積サイクルの対応が Sabah 地域にも適用できるのかどうかは未解決の問題として残されている。

堆積層は砂岩および泥質岩であり、一般に泥質岩の発達が著しいことが特徴とも言える。貯留層は一般に細粒の砂岩からなるが、いくつかの構造において岩相による対比が容易ではない。

堆積環境や構造の発達形式も変化に富んでいて、炭化水素のトラップ も背斜や断層によるものの他に不整合トラップも見られる。

3. 既存生産油田

3.1. Samarang Field

3.1.1 油田概況

Samarang Field は Sabah の西岸沖約50km に位置し、この地区で最大級の埋蔵量をもつField である。この油田は1975年6月に生産を開始し、29坑井の生産井により1976年6月迄に累計8.28MMSTBの生産量に達している。油層は4,300ftから7,400ft に至って発達する砂層からなり、殆んどの層にあって上部にガスキャップを持ち、下部は水層に接している。

油田は比較的良好な推移挙動を示し、今後の開発と、生産管理が必要とされるフィールドである。

3.1.2 地質概略

Samarang 油田は Sarawak 地域の堆積サイクル VI および V に対応した地層に含油している。主要油層は比較的少ない層準に集中していて、概して連続性の良い砂岩層である。貯留層の対比を Table 1-2-1 に示す。 主要層は a 2 、 b 、 c 1-5 の 3 グループである。 a 1 層は全層厚 200 ft 前後の砂岩層で 1 5 ft 以下の頁岩を多数夾み、 a 2 層は約 250 ft の砂岩層で 同様に 15 ft 以下の頁岩を 1 0 枚前後夾み、また b 層も 270 ft の間に 20 ft 以下の頁岩を 多く夾んでいる。しかしこれらの頁岩の夾在にもかかわらず、上記砂岩層内では共通の 0 W C 、 G O C を所有している。 c 1 ~ c 5 層はそれぞれの砂岩層の間に 40~70 ft の頁岩を夾み OW C もそれぞれ別個のものをもつ。

a₂、b、c₁ 層の地質構造図をFigs·1-2-1~3 K、構造断面図をFig·1-2-4 K示す。Samarang 構造はNNE-SSW方向の背斜であり、その東南東側は数本の正断層によって階段状に落ちている。 これらの断層は背斜の延びに大体平行な走向をもち、傾斜は 4 5 ~ 6 0° ESEである。断層は南東側のものほど投部に達しており、 また落差も大きく最南東の断層では 5 3 0 ft の落差を示す。

3.1.3 油層解析

油層計算は、a、b、c+dの3 zone に分けて行った。 各 zone の油層パラメーターをFigs.1-3-5~16 に示す。各 zone の History Match の結果に基く油層推移挙動をFigs.1-3-2~4 Tables 1-3-2~4に示し全油田についてのものをFig.1-3-1、 Table 1-3-1 に示してある。

zone a は 1975年6月に生産を開始し、76年4月に水の生産が始まり76年6月現在のWORは0.0048である。又、この層に9本の新掘井が予定されているので既存の5坑と合せ、14本の坑井で予測が行なわれた。この油層の油はAPI26°~27°の重い性質であり、初期溶解ガス油比も285SCF/STBと低く又Gas Capも小さいので生産ガス油比のコントロールも比較的容易と思われる。zone b にあっては、1975年8月に生産を開始し、75年12月に水の生産が開始した。3本の坑井により76年6月現在WOR0.0036、累計生産油量は0.571 MMSTBである。油層推移予測計算では、7本の新掘により合計10坑井で生産する場合を考えた。油層のGORの変化は比較的ゆるやかであり、WORは上昇を

zone c+dにあっては、1976年6月現在21本の生産井で日産27.51MSTBの生産量を上げ、確認埋蔵量の5.85%に相当する6.83MMSTBの累計油量をあげている。 油のAPI比重も37~38°とzone bと大差なきも、構造の頂部にガスキャップが存在し、実際の操業ではGORのコントロールが重要と考えられる。予測計算に於てもこのzone は僅かながらも上昇し続ける傾向 にあり、追加井の必要性はないと考えられる。

続けるも生産打切り時点で0.24程度である。

生産量を高める見地からおよび二次回収のための情報を得るために Additional Well Case を行った。Fig. 1-3-20に示すような 11本の追加井を想定し各 Zone との関係は次のとおりである。

- A ZONE SM-A, 1, 2, 3
- B ZONE SM-A, 1, 2, 4, 5, 6, 8, 9, 11
- C ZONE SM-A, 6, 7, 8, 10

追加井は1976年7月より生産を開始するものとして油層推移挙動を計算し、その結果をFig 1-3-1 およびTable 1-3-5に示す。追加井の位置はAreal Sweep Efficiency を増加することを目的として決定され、一次回収率はExisting Conditionの26.4パーセントに比べてわずかに増加し27.8パーセントになった。生産増加は経済的寿命を短縮する。

最適生産量はAdditional Well Case より技術的見地および 油田 操業の面から考えて求められる。現時点でインジェクションについ ての決定は困難であり、もう2年の油層推移挙動の情報が必要とさ れる。

最適生産レート

最大の回収率を得るための最も重要な要素は、生産ガス油比を制御することである。その数値は生産過程において変化するものである。

最適生産 ガス油比は、油の 累積生産量の 関数 として、 個々の Zone に対して述べ、 Figs. 1-3-17 ~ 19 に表わした。

3.2 Tembungo Field

3.2.1 油田概况

Tembungo Field は Sabah の西岸沖約70 ㎞に位置する油田である。油田は南北の断層により多くの Block に分けられている。油層は深度 4,500 ~ 7,500 ft s.s. に発達し大きく 5 つに分けられる。又、各 Block は各々独立した集油構造と考えられる。この Field に 据られた井戸は Side Track した坑井も含め 13 本であるが生産井として仕上げられたのは 4 坑井だけである。この 4 坑井はその生産 Zoneが各々独立している。

3.2.2 地質概略

Tembungo 油田はMiocene 時代の砂岩層より産油している。 掘削された地層はMiocene 後期からPleistocene 時代の海成の主として砂岩と泥岩からなるが、Pliocene 時代に100~500ftの石灰岩の堆積のあったことが知られる。

上部 Miocene 層の 1700ft にも及ぶ厚い頁岩の下に500~800ftの砂泥互層(Tembungo Sandstone)があり、これが油ガスの貯留層となっている。

貯留層は一般に良い対比を見せないが、20~50ftの層厚をもつ砂岩層であり、a~dが区別された(Table 2-2-1)

 a_1 層は泥質砂岩、 b_{1-2} は $20\sim30$ ft の厚さからなる砂泥互層である。 c および d 層は良く発達した砂岩層で 5 、A-4 、A-7 号井で典型的な発達を見せていて、 c_1 は約 100 ft 、 d は 100 -150 ft の層厚をもつ。

Tembungo 構造は ENE - WSW 方向の背斜構造であり、かつ背斜軸 にほぼ直交する正断層によって多くのプロックに分断されている。 厚い頁岩層が油層部分の上に存在するため坑井資料で断層位置を決 定するのは容易でない。

A-3号井で深度 4130ft において約550ft の落差をもつ西落 ち正断層が確認されるけれども、この断層は震探記録断面上では不 明瞭である。

他の断層も一般に西落ち、同程度の最大落差をもっていると思われる。 b_1 と c_1 層の構造深度図をFigs.2-2-1、2 に、 貯留層部分の断面図をFig.2-2-3 に示すように、断層で境されたプロックを貯留層の連続性を考慮し $I \sim VII$ に分けた。

(震探解析)

腰探解析の対象とした層準は c₁ 層のトップと c₂ 層のトップの間である。記録の質は一部を除き非常に悪い。本構造は多くの断層によって分断されていると推定されるが記録の質が悪いため、記録

断面図上でそれ等の断層は明瞭ではない。又断層を越えての反射波 対比が出来ないので、各断層のプロック内での坑井資料に基いて反 射波を選定した。

坑井内速度測定資料は1号井、4号井及び5号井のものが入手出来たので、この資料を使用して反射走時を深度に変換した。解析結果及び代表的な記録断面図はFig.2-1-1及びFig.2-1-2に示されている。

3.2.3 油層解析

この油田は南北に構造を切る断層により幾つかのプロックに分断されている。又油層はa、b、c、d層と大きく分類出来る4層が存り、この内生産が行われているのはbとc層である。油層解析は次に示した様な各プロックの生産層を独立したモデルとして行った。

	坑井名	油層名	プロック番号
モデル1	A - 1	b 2 層	N
モデル 2	A - 7	c 1 層	N
モデル3	A - 4	b 2 層	V
モデル 4	A - 2A	b 1 と b 2 層	VI

又上記モデル以外の未開発油層の内、生産性が大きいと思われる 4 zone に対しこれを Additional well case として油層解析を行った。 この油田に対し容積法により求められた確認埋蔵量は 3 4.3 MMRB 推定埋蔵量は 3 0.5 MMRB である。

1976年6月における生産状況を基に求められたこの油田全体の 生産挙動をFig·2-3-1、Table 2-3-1に示す。各モデルの計算に 用いた油層パラメターは、Tembungo - 2号井と 5号井でのFluid Analysis Data、Core 解析、又各坑井での圧力測定の値を基にした。 最適生産レート

最大の回収率を得るための最も重要な要素は、生産ガス油比を制御することである。その数値は生産過程において変化するものである。

最適生産ガス油比は、油の累積生産量の関数として、個々のモデルケースに対して述べ、Figs. 2-3-31~37に表わした。

(a) モデル 1 ····・・プロック N b 2 層の解析

このプロック N b 2層はこの油田の中央部に位置している。ことには A - 1 と A - 7 井の 2 坑井が掘られており A - 7 井の深度 5 5 0 5 feet subsea で油水接 触面を確認している。ここで生産井として仕上げられたのは A - 1 井のみである。生産は 1974 年 1 0 月 より初日産 1 3 6 7 S T B / D (油比重 A P I 3 7.5 度)で開始され 1976 年6 月において累計生産量 1.1 0 7 MM S T B に違した。この生産量は容積法により求められた確認埋蔵量 3.1 6 4 MM S T B の 3 5 %に相当する。又このモデルにおける推定埋蔵量は 1 8.2 8 MM R C F この時点でこれが油であるか、ガスであるかを限定することは困難である。

プロックモデルにより求められたモデル 1 の油層推移挙動の予測は Fig. 2-3-2 Table 2-3-2 に示した。又計算に使用した油層パラメーターを Figs. 2-3-7、 12、 17、 24 に示す。

この結果このモデルの生産挙動は生産されるガスと水の抑制をすれば良好な生産が行われると思われる。

(b) モデル 2 ·····ブロック N c 1 層の解析

このモデル 2 は、モデル 1 と同じプロックの下の層である。とこには A - 1 と A - 7 層が 掘られており A - 7 井が生産井となっている。 遊離ガスは確認されていないが A - 7 井の深度 6 6 4 0 feet subsea で油水接触面が確認された。 生産は 1975 年 5 月より初日産 2500 STB/D で開始された。しかし 1976 年 6 月において累計生産量 0.26 MMS TBで日産 600 STB/D と減退した。

モデル 2 の油層推移挙動の予測は Figs. 2-3-8、13、18、25 に示した油層バラメーターを使用し Fig. 2-3-3 Table 2-3-3 に示した結果が求められた。

との結果今後水油比の増加が予想される。とれはA-7においてとの層の下部で確認された油水接触面よりの水の浸入によるものであ

る。将来との層よりの生産方法として A - 1 井及び南側構造を開発する事も考慮できる。

(c) モデル 3 ······プロック V b 2 層の解析

このプロック V b 2層には A - 4 と 5 号井の 2 坑井が構造の中央部に約100m の近接した間隔で掘られている。しかしこの 2 坑井では顕著な地質変化が認められた。この層では油水接触面は確認されなかった。容積法により求められた確認埋蔵量は 2,584 MMSTB 推定埋蔵量として 0.601 MMRCF である。

生産は A - 4 井により 1975年3月より開始され1976年6月において日産2,200 STB/Dである。この間生産量圧力の降下は非常に小さい。このモデルの油層推移挙動の計算は、 減退曲線法により求められた埋蔵量により行った。この結果Fig. 2-3-4 Table 2-3-4 に示した挙動が求められた。

この計算に使用した油層 パラメーターを Figs. 2-3-9、14、19、 26 に示した。

(d) モデル 4 ·····プロック VI b 1 + b 2 層の解析

この b 1 + b 2 層には、A - 2 井からの 2 度目の枝掘井の A - 2 A 井が仕上げられ生産井となっている。深度 7,9 8 6 feet subseaで油水接触面が確認されている。又この層は 1 度目の枝掘井の A - 2 (S.T) 井においてガス層となっている。

生産は1974年11月初日産2,000STB/Dで開始されたが急激に生産量と圧力が降下し1975年3月から坑井は密閉されたままである。この事実より判断しこのA-2A井は非常に限定された排油構造にあることを示している。

このモデルに対し生産を再開した場合の可能性を試算してみた。との結果 Fig 2-3-5、Table 2-3-5に示した様に現在の A-2 A 井でこのまま生産を再開してもこの層より良好な回収が出来ないと判明した。この計算に使用した油層パラメーターを Figs.2-3-10、15、20、27に示した。

(e) Additional Well Case

Tembungo Field では前述の生産井以外に試掘井などによって油の存在が確認されている。との内生産テスト、電気検層の結果を基に、Additional Wellの可能性を study した。との結果 Block Iの c 1、d屬、Block Vの a + b 1 層、Block VIの c 1 層に新たな開発対象となる比較的大きな埋蔵量が確認された。とれらに対し Additional Well を掘った場合の油層挙動の予測を既存生産井の挙動を考慮して行った。

計算に用いた油層流体の性状についてはTM-2とTM-5で求め られた Lab 結果を各層に対比させて用いた。

 $(Figs. 2-3-21 \sim 23, Figs. 2-3-28 \sim 30)$

浸透率については T M - 2 の Core データーより平均的数値を用いた。 (Figs 2-3-11、16)

油層圧力は各層で測定された値を基にした。

各層に掘られる Additional Well Name を次の様にした。

Well TM AD-1 = Block I, zone c1

Well TM AD-2 = " I, " d

Well TM AD-3 = "V, " a+b1

Well TM AD-4 = " VI, " c1

とした。又これらの位置は Fig 2-3-38 に示した。

以上の Data より求められた生産挙動を Fig.2-3-6、Tables 2-3 $-6\sim 10$ に示した。

又、この時の累計生産量に対する油層圧力、生産GORの関係を Figs 2-3-34~37に示した。

又、計算に用いた埋蔵量はLog 解析の結果を基に容積法により算出された値を基に次の値を使用した。

			0.0.I.P.	Free Gas	
			(MM STB)	(MMM SCF)	
Block	I zone	e 1	2.2 3 5	5.6 0 0	
Block	I zone	d	2.1 3 6	0 .	
Block	V zone	a + b 1	5.6 5 3	0 .	
Block	VII zone	c i	7.4 4 8	1 0.8 8 1	

4. 開発待機フィールド

4.1 Erb West Field

4.1.1 地質概略

Erb West 構造では 4 坑井が掘削され、坑井地質の示すところでは後期 Miocene から Pliocene 時代の地層からなっている。 Pliocene 層の最下部は約 1,000ft の泥質の地層でこの下に主としてGas を含む約 2,000ft の砂岩泥岩互層があり、これを a のガス層、 b の油層として区分した。貯留層である砂岩は一般に 30~60ftの層厚をもち連続性は比較的良い。さらにこの下に 1000ft の厚さの頁岩層を帽岩として油ガスを含む砂泥互層がある。(c 層)。主要貯留層である c 2 層は全層厚 400ft をもち、数 ft ~ 20ft の砂層を夾んでいる。

a 2 と c 1 層準の構造図を Figs.3 - 2 - 1、 2 に断面図を Fig 3 - 2 - 3 に示す。 Erb W・構造は東西に延びる背斜構造であり数多くの正断層の発達が見られる。断層の多くは b 層以後において発達しているが、より大きいものは c 層に達する。

c層のGOC、OWCは断層に 横切って構造図内では一定であると考えられる。

(震探解析)

震探解析の対象とした層準は a 2 層のトップ及び c 1 層のトップである。記録の質は a 2 層のトップに関しては構造周辺部では比較的良好であるが頂部ではいくらか悪くなっている。 C 1 層のトップに関しては全体的に a 2 層のトップよりも劣っている。断層を越えての反射波の対比は難しい。坑井内速度測定資料が入手出来なかったので、 2 号井の音波検層により(この坑井での音波検層が一番浅くまで記録されている)走時曲線を作成し、これによって反射走時を深度に交換した。解析結果及び代表的な記録断面図は Fig.3-1-1 Fig.3-1-2 及び Fig. 3-1-3 に示されている。

4.1.2 油層解析

炭化水素の堆積は深度約6,000ft ~7,000ft s.s. に発達する c 層に見られ、浅層では1号井を含むプロックに於てわずかに見られるのみである。油層は c 2 層に発達し、頂部にガスキャップ、下部は帯水層に接している。ログ資料の定性的判断では、油層部分は薄い頁岩と砂岩の互層の様に見え、決して良好な油層とは言えないが3号井のProduction Test では1770 STB/D PI 118B/D/psi と非常に良好な産出能力を示している。

この c 層にあっては、 掘削された 4 坑井は、 それぞれ断層によって分断された独立したプロックに属し、中でも 3 号井を含む北側のプロックが有望であると考えられる。

油層の推移挙動の予測はGOC-6705ft s.s., OWC-6960ft s.s. 油の平均 API 比重 30° として Table 3-3-1 の如く 油層パラメター を設定し、ガスキャップ及び水押しの Combination Drive として行った。

この結果は、Table 3-3-2、 Fig. 3-3-1 に示してある。

最適生産レート

最大の回収率を得るための最も重要な要素は、生産ガス油比を制御することである。その数値は生産過程において変化するものである。

最適生産ガス油比は、油の累積生産量の関数として述べFig·3-3-2 に表わした。

結論と勧告

油層単位の産出能力は高いが、マレイシア油田一般に見られる多層の砂層より成る油田の型と異り、わずかに一つの油層より成り、その埋蔵量も小規模である。産出能力については、各ブロック毎、かなり不均質性がある事も油層の発達状況より推察出来る。

開発にあたっては北側のプロックを中心として油層の発達状況を確認すると同時に、構造中央のガスキャップに掘られた2号井を含

むプロックでの油層の発達状況を把握する事及び未確認の西側プロックについて資料をとる事が必要であり、これらを基に油田の再評価が必要である。

4.2 South Furious Field

4.2.1 層序及び地質構造

S.Furious 構造の坑井地質は、中期 Miocene から Plioceneの地層を示している。 Miocene 上部層の大部分が不整合において欠けており、 Miocene 時代の末期に構造の隆起と侵食の後海進があったが、 これによって東から西に厚くなる海成の泥質岩が堆積した。

炭化水素はこの泥質岩によって不整合で被われた中部 Miocene 層の砂泥互層に賦存している。

7本の坑井がほぼ東西に並ぶよりに掘削されているが、1号井は 構造の西翼下にあり、構造本体に掘削されているのは2~6号井の 5 坑井である。

炭化水素を含む砂泥互層は全体で 5000ft の厚さに対し、一般に数 ft から数+ft の砂岩および頁岩が交代する。この特徴に乏しい地層の堆積環境は、Non-Deltaic な Upper/Lower Coastal Plain であると解釈されていて、よって坑井間での地層の対比は困難を極める。

加えて坑井コア資料、 Dipmeter 結果、および襲探記録断面から構造的に極めて攪乱があることが知られる。ゆえに Table 4-2-1に示した地層対比は必らずしも全層準にわたり決定的なものとは言い難い。

Fig. 4-2-1 に c 層の 護探解釈による構造を示したように全体として構造は東西に延びた背斜であり、断層により多くのプロックに切られている。断層は非常に頻繁に起っており、おそらく 1 坑井につき数本から10本の重要な断層が交っているものと解釈される。 炭化水素の分布域としての構造の大きさは、東西 6 ㎞、南 2 ㎞ぐら いて Sub-Closure として 2 、 3 、 4 号井のグループと、 5 、 6 号井のグループに分かれているもようである。

構造頂部に位置する2号井のばあい、油ガスを含むのみで水の存在を示さない3400ftもの地層間隔のあることが、Well Log より知られる。地質構造の解析とともに地層対比を充分を時間をかけて行うことが望ましい。

(露探解析)

展探解析の対象とした層準は c 層のトップである。記録の質は全体的に非常に悪い。又断層も多くあると推定されるが、その位置は記録断面上で明確ではない。反射波の連続性は悪く、又断層を越えての反射波の対比も不可能である。この為断層を越えての反射波は各坑井での深度に矛盾が生じないように、かつ断層の落差があまり大きくならないように選定した。従って、この構造の解析結果の信頼度は低い。

坑井内速度測定資料で入手出来たのは 4 号井、 5 号井及び 6 号井の 3 坑井であり、との資料に基づいて反射走時を深度に交換した。解析結果及び代表的な記録断面図は Fig. 4-1-1 及び Fig. 4-1-2 に示されている。

4.2.2 油層解析

Production Test は 2、3、4、5号井に於てそれぞれ主要油層に対して行なわれ、かなり高い生産レートを確認しているものの、非常に大きな Draw Down が必要であり産出指数も 2 STB/D/psi 以下で各坑井の排油面積半径も 1,000 ft 以内である。

油、及びガスは深度約1,000ft より7,800ft s.s. の区間に分布しているが主要貯留層は2,000ft より5,000ft s.s. の区間に存在し、貯留層は数ft より数10ft の砂層で構成され、油の平均比重はAPI 32°である。確認している油柱(Net Oil Column)は200ft より600ft 迄の非常に沢山のSand Layer を持つ油層であるも完全に閉じられた油層であって個々の坑井の排油面積も小さく、又大きな

ガスキャップも見当らない。排油エネルギーは溶解ガスが主力であ り、ごく一部にガスキャップの膨脹によるエネルギーもあると考え られる。

容積法で確認及び推定出来る埋蔵量は確認及び推定の領域に対してであり、この領域を囲む包絡線内を予想領域として確認、推定及び予想埋蔵量に対し油層バラメータを Table 4-3-1の如く設定し、油層推移挙動を推定した。この結果は Fig.4-3-1、 Table 4-3-2 に記載してある。

最適生産レート

最大の回収率を得るための最も重要な要素は、生産ガス油比を制御することである。その数値は生産過程において変化するものである。

最適生産ガス油比は、油の累積生産量の関数として述べFig.4-3-2 に表わした。

結論と勧告

多数の断層によって非常に沢山の Block に分けられ、確認出来る領域もどくかぎられているので、推定した埋蔵量も過少評価の可能性は充分ある。多層同時仕上げの手法により、又1 Block 1 坑井の仕上げによりかなり回収率を上げる事が可能である場合もあり得る。更に詳細な資料の蒐集とその解析が必要とされる油田である。

5. 未開発フィールド

5.1 West Emerald Fild

5.1.1 地質概略

West Emerald 構造はドーム状に隆起した構造で 2 坑井が掘削されているが、震探記録断面の質は良くない。

坑井地質は6,000ft 以上の後期 Miocene 時代の地層であり約1,000 ft の泥質岩よりなる上部層、3,000ft の砂岩泥岩互層よりなる中部層、および2,000ft 以上の泥質岩よりなる下部層からなる。 震探記録解釈による地質構造を Fig. 5-2-1 に示す。

断層は500m かそれ以下の間隔の密度で発達しており、坑井対比の結果でも1号井の中部層の上部において2号井に対し約1,000 ft の正断層による地質欠損が見られる。

(旞探解析)

展探解析の対象とした層準はゾーン a のトップである。解析に使用した記録断面図は一番新しい 1974年のものであるが、記録の質は全体的に非常に悪い。断層の位置に関しては記録断面図上であまりはっきりしておらず、断層を挟んでの反射波の対比も非常に悪く解析結果の信頼度は低い。

反射走時は 2 号井の坑井内速度測定結果に基づいて深度に交換した。解析結果及び代表的な記録断面図は Fig. 5-1-1 及び Fig. 5-1-2 に示されている。

5.1.2 油層解析

2 坑井が掘削されているも構造頂部に掘られた 2 号井に於て浅層 a に於てGOC,OWCを確認出来、その確認及び推定埋蔵量は極め て小さい。(Table A-3)

構造中央南北に走る断層の西側での油の堆積状況が未確認であるが、東側の堆積状況から類推するに、その規模は小規模であろうと思われる。

結論と勧告

確認出来る東プロックの規模は小さく、これのみでは開発の対象にはならない。未確認の西プロックでも例え良好な油の堆積を見た場合でも断層によるClosed Systemでの生産は、排油エネルギーに限界があり、大きなガスキャップがない限り開発の対象にはなり得ない。

これを確認する上でも西プロック頂部に比較的近い位置に 1 坑掘る価値はあるが、期待薄である事は否めない。

5.2 Saint Joseph Field

5.2.1 地質概略

St. Joseph 1 号井での坑井地質は、厚い中部 Miocene 層 が 7,000 ft 近くあることを示している。

堆積コラムは頁岩よりなる上部層(250-1,670ft)、砂岩互層よりなる中部層(1670-5740ft) および以下 6,800ft まで頁岩よりなる下層部に分けられる。

さらにこの中部層の上部 3 分の 1 は泥質層が優越しており油ガスが賦存する。

貯留層は泥質砂岩であり、20~70ftの層厚を有する。

St. Joseph 構造が存在するとみられる地域で震探記録断面図上に 反射波が全然みられない。このため本構造の震探解析は行わなかっ た。代表的な記録断面図は Fig. 6-1-1 に示されている。

5.2.2 油層解析

この構造には1号井のみが掘削され、そこでは深度1,672ftから2,565ft s.s.の区間に発達する6枚の砂層にAPI 比重約30度の油が存在し、油柱の合計も150ft を超えると解釈出来る。2,397ft ~ 2,412ft BDF について行った Production Test の結果は良好である。

結論と勧告

現在入手している震探記録は、その質が悪く構造の形態を推定し 断層解析する事は出来ない。

油層の産出能力はかなり期待出来るので、展探をやり直す必要がある。

5.3 Erb South Field

5.3.1 地質概略

Erb South 構造は Erb W.の約12km 南東に位置する。1号井による坑井地質の示すところでは、頁岩からなる中部 Miocene 層のの上に不整合でもって Pliocene 層と考えられる砂泥互屬が載っている。

この砂泥互層の最下部に190ft の砂岩層(a層)があり油層に になっている。

含油層における構造をFig.7-2-1 に示すように、Erb S・構造はNNE-S SW方向の背斜で、頂部は南部にあって 1号井が掘削されている。

構造中央部から西側にかけて基盤の Miocene 層に起源をもつ断層が存在しているが、北西翼は Pliocene 層あるいは上部 Miocene 層が、中部 Miocene 層に abut しており かつ 1 号井で OWC を見ていないことから構造北西部をさらに探鉱掘削することが望まれる。

(震探解析)

護探解析の対象とした層準は a 層のトップ付近である。記録の質は冠部及び断層周辺部では不鮮明になっているが、他の部分では比較的良好である。

反射走時の深度への変換は1号井の坑井内速度測定資料に基づいて行われた。解析結果及び代表的な記録断面図はFig.7-1-1 及びFig.7-1-2 に示されている。

5.3.2 油層解析

深度 2,706ft から 2,829ft s.s. にかけ 1 号井で良好な油層を見、油の性質は API 20° と非常に重い。

構造の頂部付近にある1号井で約90ftの油柱が確認出来、この位置でOWCを見ていない事より更に評価井の掘削が必要である。 結論と勧告

今後の探鉱活動の必要なフィールドであって現段階で埋蔵量の規模の大小を論ずべき性質の油田ではない。

北西部及び東南部についてさらに探鉱を行うだけの価値のある油田である。

6. 結論と勧告

1. Samarang フィールドは Sabah 地域において主要な油田である。油田の排油機構は端水、溶解ガス、ガスキャップの組み合せであると思われる。

これまで高い生産レートが報告されていたが、しかし効果的に排油 エネルギーを利用する為には、厳しい生産ガス油比の制御が必要とされる。

適切な生産ガス油比は油の累積生産量の関数として表わしてある。 もちろん、その関係は年々実際の推移挙動を見直すことにより修正されるべきである。急速に生産レートが下がると予想される油田に対して、油田の推移挙動予測が追加抗井を考え行われた。

この油田は短い生産実績しかない。構造の頂部及び翼部における井戸の性質を調査することが、主要な油の排油エネルギーが何であるかを確認するために必要である。

ほんの少しのスペシャル・コア データしか利用できなく、又そのデータはガス圧入を行うには不向きであると思われる。しかし、最も適した二次回収の方法を決めるには、より多くのデータが必要とされる。

2. Tembungo フィールドから油を生産することの過大な努力は、回収可能な油の量が少なく、又油の排油エネルギーが小さいことから無意味であると思われる。

将来の推移挙動は4本の追加抗井を考え行われた。

- Erb-Westフィールドの油田評価のためには最低3本の井戸が必要である。
- 4. South-Furious フィールドにおいて、生産地域は多くの断層によって多数のプロックに分けられている。

個々の井戸の排油半径は極端に制限されていると解釈され、又個々のブロックに対して強い水押しが働くとは全く予想できない。

抗井仕上げと同時に詳細な生産テストが必要であり、又最大生産レートが決められるべきである。

主要油層の排油エネルギーはわずかなガスキャップの膨張を伴う溶解ガスによるものと思われる。

5. St-Joseph フィールドにとって、油層の性質は比較的良好であると 評価されたが、選探解析は、選探データの質が悪い 為行われなかっ た。追加選探が必要である。

現在の油田生産管理において必要と思われる事項を次に示す。

- (1) 特殊コア分析データは個々のフィールドの主要油産出ゾーンに対して収集されるべきであり、又最も適した二次回収方法の確立と推 移挙動解析に有益である。
- (2) 特殊流体分析が坑井仕上げ時に収集された流体に対して行われるべきである。そのデータは、最適な操業条件(セパレーターの圧力と温度)を決定するのに利用できる。又その結果として油の回収率を増大させる。
- (3) 坑井仕上げ時の生産テストの必要性

坑井の仕上げの際の生産テストは少なくとも3種類のチョーク・サイズで行うべきである。このテストにより坑井のドロー・ダウン、生産能力、生産ガス油比のデーターが得られ、これにより適正な生産レートが決定出来る。

(4) 生産ガス油比の制御

排油機構が、ガスキャップや溶解ガスによる油田では油層の排油エネルギーを保持するために生産ガス油比を抑える様な生産を行うべきである。

この最適生産ガス油比は一定ではなく生産過程で変化する。各生産油田に対し最適生産ガス油比を油層からの累計生産量の関数として示している。

(5) 高生産ガス油比に対する対策

生産ガス油比が大きくなった場合必要に応じてコンビネーション・プロダクション・ログ解析でその原因を調査すべきである。

生産ガス油比の制御は坑口のチョークを絞るだけでなく、抗井の

改修作業によりガス飽和の高い部分を閉じるか、その部分のスライ ディング・サイド・ドアを密閉することが必要である。

(6) 多層同時仕上げと坑井調査

スライディング・サイド・ドアによる多層同時仕上げは、多層を 仕上げるのに効果的な方法であるが、定期的な生産テストと各種テ ストにより生産状況を知ることが適切な操業をするのにとって必要 欠くべからざるものである。

PART B 生産施設

1. 既存生産施設の評価

1.1 既存生産施設の現況

1.1.1 Labuan 系列

Samarang 油田は、 Labuan 島の北西 3 2 マイルに位置し、 Sabah Shell Petroleum Company (SSPC)が、操業している。 陸上基地を島の西部に設けている。

Fig 8-4-1 にこの系列の施設配置を示した。

各油井からの産出流体は 2 基の production platform (SMP-A およびSMP-B) に集め、ここでガスを分離する。ガスは一部、動力源、計装機器、ガスリフトなどに利用している。これらからの排出ガスと残りのガスを、3 本の直径 1 0 インチ長さ 1 千から 2 千フイートの海底 vent line を通じて vent structure に導き、そこで大気放散する。

SMP-AとSMP-Bで処理した産出流体(原油+油田水)はそれぞれ8インチの海底パイプラインによつて、 riser platform (SMR-A)に送り、ここより1本の18インチパイプラインによつて、Labuan 基地へ送る。

Labuan 基地では、原油を貯油タンク中で脱水、貯蔵した後、48インチ loading line を通じてSBMからタンカーへ積み込む。 現地調査時の生産量は原油・油田水併せて70千BPDである。

(1) 海上生産施設

1) Drilling Platform

Samarang 油田では以下の drilling platformを設置している。

SMDP-A: 8 脚 / 2 1 坑井用 self-contained drilling platform

SMDP-B: 8脚/28坑井用 tender assisted drilling platform

SMJT-C: 4 脚/ 6 坑井用 cluster drilling platform

SMJT-D: 4 脚/ 6 坑井用 cluster drilling platform

SM-4 : 1 脚/ 1 坑井用 isolated well structure
1976年12月現在、SM-4およびSMDP-Aでは掘削
が完了しているが、SMDP-B、SMJT-CおよびSMJT
- Dでは進行中乃至準備中である。

drilling platform は安全上の理由により production platform とは離して設置しており、相互に橋で結んでいる。 SMDP-Aには生産井が19あり、その内1坑井は fluid lift によつて生産している。

2) Production Platform

Samarang 油田においては標準モジュール構成による production platformを採用している。現地調査時には、2基の4脚 production platform が設置してあつた。

SMP-Aには2系列のセパレーターと5台の送油ポンプを設置しており、約65千BPDを処理している。

一方、SMD一Bには一系列のセパレーターと 2 台の送油ポンプを設置しており、SMP-Aから海底パイプラインを通じて送られる 7 坑の高圧井の産出油を処理している。

セパレーターは、 test separator も含めて数種類あるが、現 地調査時のSMP-Aにおける運転圧は次の通りである。

HHP separator: 1,000PSIG

HP separator: 250 PSIG

LP separator: 60PSIG

surge vessel : 5 PSIG

各油井を通常 4 時間、 test separator でテストするが、備え付けの test programmer は使わず、マニュアル操作によつている。液体(油+油田水)の計量には A . O . Smith 社製の容積式流量計を用いている。

各プラットフォーム単位の計量は行なつていないが、ガスの計量は必要箇所にオリフイス流量記録計を配して行なつている。 廃水は水中ケーソン型油水セパレーターに集めて処理している。 主要機器のリストを簡単な仕様と共に Table 8 - 4 - 1 および Table 8 - 4 - 2 に示した。また mechanical flow diagramを Fig 3 0 - 4 - 1 に示した。

3) 海底パイプライン

loading line を除いた海底パイプラインには次の様なものがある。

a 原油ライン

- (I) single isolated well structure(SM-4)からの産 出流体を production platform (SMP-A)へ送るもの。
- (II) SMDP-Aの産出流体をSMP-Bへ送るもの。
- (iii) ガスを分離した原油を油田水と共に、SMP-AとSMP-Bから riser platform (SMR-A)へ送るもの。
- (V) 原油および水をSMR-Aから Labuan 基地へ送るもの。 b ガスライン
 - (i) 分離したガスを production platform から vent structure へ送るもの。
 - (ii) ガスリフトガスを離れたところにあるプラツトフォーム へ送るもの。

上記のパイプラインの概要を Table 2 8 - 4 - 2 に、その配置を Fig 8 - 4 - 2 に示した。

(2) Labuan 基地

1)基地施設

基地はLabuan島の西側に位置している。

Fig 8-4-3に見られる様に、基地の主要施設は Samarang 油田からの原油受入施設、脱水および貯蔵用のタンク、出荷施設 およびユーテイリテイ施設である。

貯油タンクは浮屋根式で、容量 4 3 9 千バレルのものを 3 基設置している。原油は直接これらのタンクに受入れ、脱水のため 3 6~4 8 時間静置した後、出荷ポンプによつて S B M から船 積みする。

この流れを Fig 8 - 4 - 4 に示した。

原油の含水率は 1 9 7 6 年 1 2 月の現地調査時には 2.7 %であった。 Fig 8 - 4 - 5 に示した如く、タンクで分離した水とターミナルでの含油廃水は、CPI(corrugated plate

intercepter) と holding basin で油分を除去し、海に排出する。

原油の生産量および輸出量の公式の計量は、貯油タンクにおいて検尺により行なつている。輸出原油のBS&Wは約0.05%である。

本基地にはこの他、容量 3 5 千パーレルの消火用タンク、 2 台の消火ポンプ、海水取入施設、またユーティリティ施設として発電機、エアコンプレツサー、海水蒸留装置、更に事務所、発電所、ポンプ室、消防署、検問所等の建物を設置している。 これらユーティリティ施設の流れ図を Fig 8 - 4 - 6 および Fig 8 - 4 - 7 に示した。

主要機器のリストを簡単な仕様と共に Table 8-4-3にまとめ、添付した。

2) 出荷施設

310千DWTの係留能力を持つSBMをLabuan 島の西方約15千フィートに設置しており、48インチの海底パイプラインが基地より通じている。

1975年9月から1976年12月末までに50隻のタンカーが来航し、過去1隻のタンカーに出荷した最大量は約645 千バーレルである。

出荷ポンプは3台設置しており、能力は全体で54千BPH

(7.2 千トン/時)であるが、将来更に 1 台増設するためのスペースを確保している。ポンプ、 loading line、S B M 等の出荷施設は将来 7 2 千 B P H (9.6 千トン/時)の能力を持つ様な設計となつている。

1.1.2 Tembungo 系列

Tembungo 油田はサバの北西沖合約47マイルに位置し、現在Exxon Production Malaysia,Inc.が開発を行なつている。現在までに、8 脚の self-contained type platform を1 基設置し、ここに掘削および生産のための全装置および居住施設を搭載している。海上原油出荷用としては、Single Anchor Leg Mooring System (SALM)をプラツトフォームより、7千フイート離れた位置に設置し、プラツトフォームとSALMを、10インチの海底パイプラインで結んでいる。産出原油については、海上の生産施設で処理および出荷を行ない、陸上の補助施設を除いては陸上の生産施設、または貯油基地は全くない。

Tembungo 油田は以上の様な開発方式によつて、特徴づけられる。
1976年5月の原油の平均日産量は、現在の施設の生産能力、20
千BPDに対して、5294千BPDとなつている。

(1) 海上プラツトフォーム

本プラツトフオームの概要を Table 2 8 - 4 - 1 に、プラツトフオーム上の主要機器の配置を Fig 8 - 4 - 8 に示した。ジャケツトは従来からのテンプレート・タイプで、 Brown & Root 社が組み立て、McDermott 社が据え付を行なつた。

デッキ部分は上部デッキと下部デッキから成り、上部を掘削用として、下部を生産用として用いている。原油処理施設の他に、最大72名用の居住施設を設け、気象観測所、ガス検知パネル、火災警報パネル等を備えている。居住施設の上には、heliport がある。また、掘削用スロットを、18坑分用意している。

(2) 原油処理施設

mechanical flow diagram を Fig 8-4-9 に示した。

Tembungo(A) プラットフォームからは 1 9 7 7 年 1 月現在既に 6 坑井を掘削し、内 3 坑井が生産を行なつており、ポンピングおよびガスリフト等の人工採油は行なつていない。

4本の坑井用ヘツダーを備えており、内テスト用と、B-Train 用の2本のヘツダーを現在使用している。残りの2本のヘツダーの内、1本は低圧の坑井用、1本は別系列のセパレータ用であり、共に、将来のためのものである。

産出原油およびガスは最初 production separator で分離(運転圧力 150 PSIG、温度 135 F)し、セパレーター内に集積した 遊離水は手動排水する。

production separator で、ガスおよび遊離水を分離した原油は次に free water knockout and surge へ送り、(運転圧力 5 PSIG、温度 1 2 0°F)更に分離する。

とのベツセルは、三相セパレーターで、ことでの遊離水を自動的に 排水する。

free water knockout and surge で分離した原油は、 2 台の S.P.M. oil pump により 1 0 インチの海底パイプラインを通して、 S A L M に送る。

production separator および free water knockout and surge で 分離したガスは、それぞれ HP flare scrubber および LP flare scrubber で処理し、ブラツトフオームから張り出した flare stack で焼却する。これらのスクラバーに集積した液分は、それぞれ HP flare transfer pump および LP flare transfer pump により、free water knockout and surge に送る。

デッキ上の廃水および種々のベッセルからの圧力廃水は、それぞれ単独のヘッダーに集め、 submerged caisson separator に送る。 とこで回収した原油は、 free water knockout and surge の入口ラインまで caisson oil pump により戻す。

各坑井は、1週間に1度 test separator でテストし、分離したガス、液体をそれぞれ、オリフイス型およびタービン型の流量計で計量する。 production separator は気液二相分離用であるため、原油と水、それぞれの計量はできない。これに対して、 free water

knockout and surge では、ガス、原油、水の計量ができる。 産出原油の総量は、SPM oil pump の下流側に並例に設けた。 2個の容積式流量計(A.O.Smith 社製、公称:1425 BPH)に より計量する。

mechanical flow sheet 上に見られるもう一つの流量計は、キャリプレーション用と考えられるが、現在まで設置していない。これらの流量計の数値は単に技術目的に用いているだけで、販売目的には用いておらず、販売用の計量は来航タンカー上で行なつている。公式の計量は、毎月末とタンカー積込終了時に行なつている。

施設のコントロールについては、リモートコントロール方式は採用 しておらず、パネル上に警報シグナルを表示するのみである。主要 機器のリストを簡単な仕様と共に、 Teble 8 - 4 - 4 に示した。

(3) 貯油および出荷施設

貯油および出荷システムは、SALMに原油貯蔵用のタンカーを係留し、来航タンカーがこれに接舷して積込を行なう様な設計となっているが、現在までに、原油貯蔵用タンカーは設置していない。従つて、産出原油はSALMより直接来航タンカーに積込む。SALMの係留能力は94千DWTである。

1.2 既存生産施設の処理能力の評価

既存生産施設の処理能力を吟味し、それが将来の生産挙動に十分対応し得るか否かの判断を下す基礎資料とするため評価作業を行なつた。主たる対象施設と調査項目は以下の通りであるが、ここに挙げたものが生産施設全体の能力を左右すると考えられる。調査遂行上必要なデータを補うため幾つかの仮定を設けた。

対象施設

- 1)海上生産施設
 - •油・ガスセパレーター
 - · Vent Line
 - · Gathering Line
 - · Transmission Line
- 2) 陸上生産施設
 - 貯油タンク
 - ・出荷システム 調査項目
- 1)セパレーター
 - 液体処理能力、即ち適切な油、ガス分離と液体の脈動の吸収に 必要な滞留時間
 - ガス処理能力
- 2) Vent Line # tt Flare line
 - ガス処理能力
- 3) Gathering Line および Transmission Line
 - 現在の生産量および production platform の最大処理能力における圧力バランス
- 4) 貯油タンク
 - 最大来航タンカーの大きさと日産量に見合う貯油能力
- 5) 出荷システム
 - loading line における圧力損失と流速

1.2.1 Labuan 系列

(1) 海上生産施設

production platform の設計には標準モジュール構成を取り入れており、基本的なガス液体分離システムは30千BPDの液体(油+油田水)と90百万SCFDの随伴ガスを処理できるような設計となつている。この処理量はセパレーターを2系列にすることによって60千BPDまで増やすことができる。

送油ポンプは5台まで設置可能である。

1)セパレーター

計算基礎データ

液体流量 30,000 BPD

H.P. separator L.P. separator surge vessel

運転圧力 250 PSIG 50 PSIG 10 PSIG 運転温度 1 2 3°F 1 I 3°F 1 I 0°F サイズ 72″I.D.×20′ 72″I.D.×20′ 126″I.D.×32′

比重(想定值)

 ガス
 0.671
 0.764
 1.077

 油
 0.830
 0.830
 0.830

 ガス速度係数
 0.40
 0.40
 0.40

結 果

滞留時間 ガス処理能力
H.P.separator 2.7分 61.5MMSCFD
L.P.separator 2.7分 28.9MMSCFD
surge vessel 13.6分 46.4MMSCFD

2) Vent Line

計算基礎データ

セパレーターの項に同じ

結 果

径および長さ 最大ガス流量

髙 E vent line 10"×2,000' 167MMSCFD

低圧 vent line 10"×2.000' 36MMSCFD

低圧 vent line 10"×2,000' 11MMSCFD

3) Gathering Line ₺ よび Transmission Line

gathering line および transmission line の能力を Lutong 系列の際と同様の手法で確かめた。現在の流量と production platform の最大処理能力時の圧力バランスを Fig 8-4-10 と Fig 8-4-11 に示した。

- (2) 陸上生産施設
 - 1) 貯油タンク

公称容量439千バレルの浮屋根式タンクを3基設置している が、そのうち1基をプラットフォームから送られてくる産出流体 (油+油田水)の受入、静置用に使用している。

以下は操業会社による貯油タンク容量の内訳である。

総貯油量

1,317,000バレル

積出不能量

(一) 156,000バレル

(-) 387,000パレル

积出可能量

1,161,000パレル

受入、静置脱水

正味貯油量

774.000バレル

正味貯油量の774千バレルはほぼ100千DWTタンカーの 積載量、または現在の Labuan 系列の生産量10日分に相当する。

2) 出荷システム

計算基礎データ

loading line 外径

48インチ

loading line 肉厚(仮定値) 0.500インチ

loading line 長さ

15,000フイート

出荷時流量

ケース1(100,000DWTタンカーの場合) 30,200BPH

ケース 2 (150,000 DWTタンカーの場合) 45,300 BPH ケース 3 (200,000 DWTタンカーの場合) 60,400 BPH ケース 4 (300,000 DWTタンカーの場合) 90,600 BPH

注:これらの流量はそれぞれのタンカーを24時間で満載するための流量である。

結 果

	圧力損失	流 速
	(PSI)	(フィート/秒)
ケース1	2 2. 0	1 0.8
ケース 2	2 4, 5	1 1. 3
ケース3	4 I. I	1 5. 0
ケース4	8 6, 3	2 2. 5

既設の出荷ポンプの水頭は各出荷時流量に対して十分であるが、容量についてはケース 1 および 2 に対してのみ十分である。 3 台のポンプは各々 2 7 5 フイートの水頭に対して 1 8 千 B P H の容量を持つ。実際には、既設の S B M が 3 1 0 千 D W T タンカーの係留能力は持つてはいるがケース 3 および 4 は貯油能力の点からみて非現実的である。

(3) 結 論

・既設の vent line および 2 系列の気液分離システムの設計処理能力は妥当かつ十分なものである。

設計処理能力は液については 6 0 千 B P D、ガスについては 1 8 0 百万 S C F D である。

- gathering line および transmission line は送油ポンプも含めて production platform の最大処理能力をカバーするだけの能力を持つ。
- ・タンクの貯油能力は生産量が現在より増えず、200千DWTクラス以上のタンカーを満載することがなければ妥当と考えられる。
- ・出荷システムは現在の生産量に対して十分な能力を持つている。 生産量の増加に対しても出荷ポンプを増設することで対応できる。

1.2.2 Tembungo 系列

Tembungo ブラットフォームの設計処理能力は20千BPDである。評価作業はこの生産量に基づいて行なつた。

(1) セパレーター

計算基礎データ

液体流量 20,000BPD

高圧セバレーター 低圧セバレーター 運転圧力 150PSIG 5PSIG 運転温度 135°F 120°F サイズ 72″I.D.×20′ 144″I.D.×30′ 比重(想定値)

 ガス
 0. 6 7 1
 1. 0 7 7

 油
 0. 8 3 8
 0. 8 3 8

ガス速度係数 0.4 0.4

結 果

滞留時間 ガス処理能力

高 E セ パ レ ー タ ー 4 分 4 9.0 MM S C F D 低 E セ パ レ ー タ ー 1 7.1分 5 3.9 MM S C F D

(2) Flare Line

計算基礎データー

セパレーターの計算に同じ

結 果

径および長さ 最大ガス流量

高 圧 ラ イ ン 1 2 "×2 4 0 ' 1 1 3 MM S C F D

低圧 ライン 10"×240' 15 MMSCFD

(3) 出荷システム

計算基礎データ

loading line 外径 10インチ

loading line 肉厚(仮定値) 0.5インチ

loading line 長さ 7,000フイート

出荷時流速

4,983BPD ケース1(現在の原油生産量) ケース2(現在の施設の処理能力) 20,000BPD ケース3(将来の最大処理能力) 30,000BPD

果 結

	圧 力 損 失	流 速
	(PSI)	(フィート/秒)
ケース 1	1. 0	0. 8
ケース2	1 1. 3	3. 0
ケース3	2 3. 5	4. 4

注:プラットフォーには2台の送油ポンプが設置してあり、送 油能力は60PSIの圧力差において各々600GPM (20.6千BPD)である。

(4) 結 論

- ・既設の気液分離システムおよび flare line は GOR 800FT³ ∕BBL の油20千BPDに対して妥当かつ十分な処理能力を持つといえる。
- プラットフォームからSPMへのパイプラインおよび送油ポンプ は現在および将来の最大設計処理能力に対し、十分な能力を持つと いえる。

1.3 予測生産量に対する既存施設処理能力の評価

前節の評価作業で得られた結果と将来予測される最大生産量とを比較し、既存施設処理能力の評価を行なつた。

従って、推定生産挙動と関係のない増設や変更に対する既存施設の適 応性については本作業の対象には含まれない。

油層推移挙動調査の結果に基づく、各油田の原油+油田水およびガスの1977年以降における予測最大生産量を以下に示す。

1977年以降の予測最大生産量

油田	原油+油田水(年度) BPD	原 油 BPD	油 田 水 BPD	ガス(<i>年</i> 度) MMSCFD
Samarang	38,530(1977)	38,230	300	56.6 (1979)
Tembungo	4.060(1977)	3, 4 7 0	590	4.8(1977)

との表に示す如く、各々の油田の原油+油田水の予測最大生産量は、いずれも現在の生産量より少ない。将来 South Furious および Erb. West 程度の油田が新たに加わるにしても、既存油田の生産量減少により全体の処理量が増加することはないと考えられる。

1.3.1 Labuan 系列

- (1) 既存施設処理能力の評価
 - 1) 海上 Production Platform

Samarang 油田の現在の生産量と production platform の処理能力の比較を Table 28-4-3 に示した。また、1977年以降の予測最大生産量と海上 production platform の処理能力の比較を原油+油田水について、 Table 28-4-4 に、ガスについて Table 28-4-5 に示した。

Samarang 油田の2基の production platform (SMP-A、SMP-B)は、現在の原油+油田水の生産量 3 9.7 4 1 千 B P D に対し、合せて 9 0 千 B P D の処理能力を有する。

1976年12月には、生産量は、約70千BPDまで増加しているが、油層推移挙動調査によれば、将来において、それ以上に増加することはない。

従つて、プラットフォームは将来に対しても十分なる処理能力を 有する。

ガスについても同様である。

(2) Gathering Line および Transmission Line

Fig 8-4-12に既設パイプライン網の現在および原油+油田水の予測最大生産量時の圧力バランスを示す。

この図からわかるように、既設のパイプライン網は、1977年以降の最大生産量を輸送するのに十分な能力を有する。一方、Lutong系列と同様に、送油ポンプ用に高圧ガスが必要となるが、Samarang油田の予測ガス生産量によれば、必要ガス量は十分得られる。

(3) 貯油施設

前節で論じた如く、Labuan 基地は現在の生産水準に対して十分な貯油容量を有する。さらに、予測生産量も現生産水準以上にはならないので、将来においても貯油能力については問題ないと言つてもよい。

(4) 出荷施設

現在、出荷施設は、54千BPH(7.2千トン/時)の出荷能力と、310千DWTのタンカー係留能力を有する。

ポンプ、 loading line および係留装置(SBM) などの施設は、将来の最大出荷時流量である 7 2 千 B P H (9.6 千トン/時)で設計している。

現地調査時の生産量約70千BPDに対してタンカーの来航頻度は一週間に一度で、運転上窮屈な頻度ではない。以上から既設の出荷施設は予測最大生産量に対し、特に拡張や改造をしなくても十分対応し得ると考えられる。

1.3.2 Tembungo 系列

(1) 海上 production platform

各油田の現在の生産量と production platform の処理能力の比較を Table 28-4-3 に示した。また、1977年以降の油田別予測最大生産量と各油田の海上 production platform の処理能力の比較を原油+油田水について、Table 28-4-4に、ガスについて Table 28-4-5 に示した。

Tembungo プラットフォーム A の処理能力は、20千 B P D であるが、これに対して、現在の原油+油田水の生産量は、5.294千 B P D にすぎず、1977年以降も増加しない。

従って、このプラットフォームは将来に対しても十分な処理能力を 有すると考える。又、ガスについても同様である。

(2) Gathering Line および Transmission Line

Tembungo 油田内の海底パイプラインはSPMへの送油ラインの みであるので、後の貯油および出荷施設の項に含めた。

(3) 貯油施設

との系列では、海上貯油および海上出荷方式を採用しているが、 現在、固定した貯油タンカーは使用していない。

産出油については、SPMに係留した輸出用タンカーに直接送り貯蔵する。

との方式を採用している限り、貯油容量は、係留されたタンカーの大きさに依存する。いずれにせよ、予測最大原油生産量 3.47年BP D程度の規模であるから、常時、係留、出荷ができるタンカーが得られれば、貯油能力に関する限り問題はない。

(4) 出荷施設

設計出荷能力は、20千BPDであるが、これに対し予測最大原油生産量は3.47千BPDである。

1.3.3 結 論

各油田の生産、貯油および出荷施設の評価作業を通じ、現在の施

設が基本的には将来予測される油、ガスおよび油田水の生産量を処理し得る能力を持つており、特に、ネックになる箇所は無いとの結論に達した。

もちろん、この結論は各油田における原油生産量が次第に減退し、 また新たに別の油田をつなぎ込むにしてもその開発に必要なリードタ イムから生じるタイムラグがあることに起因するものである。

人工採油法としてはガスリストが考えられるがそれを採用する場合 にもガスは高圧ガス層や高ガス油比の油井より得られ、施設の改造 も高圧セパレーター増設等比較的簡単なものとなろう。

1.4 現在の生産形態に関する考察

この項では現地調査を含む既存の原油生産施設の評価作業中に生じたいくつかの問題について検討し、必要な勧告を行なうものである。

1.4.1 Labuan 系列

(1) 随伴ガスの利用

Table 2 8 — 4 — 6 に示す如く、1 9 7 6 年 5 月における Samarang 油田の海上ブラットフォームでの分離ガス量は約 4 0 百万 S C F D である。

とのガスの利用状況は次の如くである。

	MMSCFD	%
ポンプ駆動用	1 0. 2	2 4. 8
大 気 放 散	3 0. 9	7 5. 2
合 計	4 1, 1	1 0 0.0

ガスは送油ポンプ駆動に消費される膨張エネルギー以外には利用していない。この随伴ガスの利用については悲観的にならざるを得ない。何故なら1980年以降ガス生産量は、急速に減退し、例えいかなる需要があつても建設の際のリードタイムを考えると実際に施設が動き出すのはそれ以降になるからである。

(2) 計量システム

1) 海上プラツトフォーム

海上 production platformには液体の計量設備がない。

流量計の選定にあたつては、現在、往復ポンプを使用している関係上一般的な考え方をあてはめるわけにはいかず、流量、圧力の変動、設置スペースの制限等多くの要素を勘案しなければならない。

との場合の計量施設は、2基の海上プラットフォームからの産出油を計量するのみで、その守備範囲は一油田に限られている。

それ故、産出原油の計量に対しては現在のシステムで十分である。

2) Labuan 基地

海上から移送される産出油と輸出原油の計量は、貯油タンク上での検尺によつて行ない、輸出原油の公式の計量もタンク上での検尺によつている。

この様な方式は古くから使われており、現在でもサウジ・アラビア等では、この方式を用いているが最近の施設では一般的ではない。

しかし、出荷原油の計量に対しては、現在のシステムで十分である。

(3) 廃水処理システム

海上プラットフォームで産出する油田水が廃水の大部分であるが、これは油と共に海底パイプラインを通じてLabuan 基地へ移送している。この油水混合物を貯油タンクで24時間静置し、脱水する。海上プラットフォームで廃水を処理する方が、パイプラインの効率という点では優れているが、全油田の予測生産量から判断してこのデメリットは問題とはならず、現在のシステムを変更する必要は無い。

(4) 原油脱水システム

原油と共に生産される油田水を Labuan 基地の貯油タンク内で分離している。この方式はタンク底板および側板の腐食に対して防護策を施さなければならないが、現時点では、少量の産出水に対してタンク貯油量は十分に有り適当である。

(5) 制御・監視システム

Lutong および Labuan の両系列には、陸上基地から海上施設の運転状況を監視できる様なシステムは導入していない。しかしながら監視用のテレメータリングシステムを導入し、安全性の向上を図ることを考慮する必要があろう。

何故なら居住用プラットフォームを新たに設置しなければ、夜間は海上施設を監視する者が誰も無く、一度事故が起れば現在のシステムではそれを発見し、現場に人が到着するまでに時間がかかりすぎ

るからである。

テレメータリングシステムを導入し、陸上の制御室から運転状況を 監視することにより、生産の効率化と安全性の向上を図ることがで きる。

少なくとも下記の状態は。警報によつて監視することが望ましい。

- a 緊急閉止バルプの閉止
- b 各セパレーターの圧力低下
- c 各セパレーターの圧力上昇
- d 各セパレーターのレベル上昇
- e 火 災
- f 送油ポンプ停止

1.4.2 Tembungo 系列

(1) 随伴ガスの利用

1976年5月の時点でTembungo プラツトフオームでは、3.7 百万SCFDの分離ガスを焼却しており、その利用を図つていない。 しかしながら、プラツトフオームが陸から遠く、ガスも少量を比較 的短期間しか供給できないので焼却せざるを得ないであろう。

(2) 計量システム

Tembungo プラットフォーム上での計量箇所と対象液体は、次の如くである。

計 量 箇 所	流 体	メーターの種類
Production Separator のガス出口	ガス	オリフイス
Test Separator の液出口	油と油田水	タービン流量計
Test Separator のガス出口	ガ ス	オリフイス
Free Water Knockout & Surge の油田水出口	油田水	タービン流量計
Free Water Knockout & Surge のガス出口	ガス	オリフイス
S.P.M. Oil Pump の出口	油	容積型流量計

現在、原油販売量の計量はタンカーのタンクにおいて検尺によつて行なつており、公式の計量は、各月末とタンカーへの原油出荷完了時に行なつている。

この様な方式は、公式の計量法としては、下記の理由により一般的でない。

現在のタンカーにおいて出荷量を計る方式は、海上が穏やかでタンカーが常に水平を保つていなければ不正確な値を示す恐れがある。 上の様な状態をこの様な外洋域で期待することは困難であると考え られる。また、載荷量が増すに従つてタンカーのタンクが膨張し、 それによつて販売量の数値に誤差を生じる恐れもある。 しかしながらこの油田は、低生産量のために海上出荷方式を採用しているという特殊な状態にある。

この様な場合には、貯油タンカーを使用する場合でも容積式流量計あるいは他の適当な流量計をプラットフォーム上に設置し、販売量を計量するのが一般的である。

流量計については、仕様が現在の生産状況に合致するもので、メーターブルーバもしくはメーカーの工場で1~2年間隔で検定される標準流量計と併用することが望ましい。

(3) 廃水処理システム

油田水は、水中ケーソン型油水セパレーターで処理し海へ排出している。水中ケーソン型油水セパレーターはスペース的な問題がないので、海上プラツトフォームで60GPM(2千BPD)以下の比較的少量の水を処理するのに適する。廃水処理能力は廃水温度に依存するが、既設ケーソンセパレーターは約1千BPDの処理能力を持つ。この量は、将来の予測最大油田水生産量に比べても十分大きく問題はないと思われる。

(4) 原油脱水システム

原油と共に生産される油田水はセパレーターおよび free water knockout vessel で分離している。

現在、含水率および産出油田水量とも少ないので、このシステムで 問題ないと思われる。

(5) 制御・監視システム

Tembungo プラットフォームでは従来の現場側御システムを用いており、警報シグナルだけを中央のパネルに表示する。

この程度の規模の生産システムに対しては現在の制御システムで十分であろう。

2. 施設計画

2.1 概念設計の基礎資料

資料収集および現地調査時に主に収集した全資料を評価し、概念設計に必要かつ適格な資料を選択した。全収集資料の一部には設計資料として不完全、或いは不明瞭なものを含んでいる。

したがつて、これらは本調査の性格上必要とする精度を考慮に入れて 仮定した。

ここには全ての油、ガス田に共通する設計資料を列記してあり、各油、ガス田特有の設計資料を、以下の個別の油、ガス田の記述の際に提示する。

2.1.1 収集資料に基づく設計資料

(1) 原油ガス用位置図既存及び概念設計を行なう油ガス田の位置図を Fig 3 0 - 9 - 1 に示す。

(2) 気象及び海象資料

大気温度	最	蘑	1	1	0°F
	最	低		6	5°F
海水温度	最	低		6	0°F
相対湿度	最	髙		9	0 %

(3) 水 深

新たに開発する油、ガス田の海上プラットフォームは各油、ガス田の掘削報告書より得た最大水深によつて設計する。また、既存油田地域に設置する海上プラットフォームは現在建設されているプラットフォームの最大水深によつて設計する。

以下は、その最大水深である。

フィールド名 水深(フィート)
South Furious 188
Erb West 252

(4) 土 質

プラットフォーム設計のためには、収集した土質資料中の平均的な値を仮に採用する。

2.1.2 想定設計条件

(1) 生產井

生産井は以下 2 種の掘削装置で行なうものと仮定する。

- . self-contained drilling rig
- · tender assisted drilling rig
- 2.1.3 施設容量の決め方
- (1) 陸上基地の原油貯蔵量

原油貯蔵量は下記の式による量と仮定する。

{(生産施設設計容量の 6 日分) + (1 0 0 千 D W T 級のタンカーの容量)} ÷ 0.9

また、貯油タンクの数は受入、静置、水切りの目的のため最小3基とする。

(2) 海上貯油施設および容量 海上貯油バージは新造するものとし、その容量は次式による。 (生産施設設計容量の6日分)+(100千DWT級のタンカーの

容量)

- (3) 出荷用ポンプおよびライン容量 原油出荷ポンプおよびラインの容量は 1 0 0 千 D W T 級のタンカ - に 2 4 時間で出荷が完了できるものとする。
- (4) 出荷用ライン 原油出荷ラインの流速は静電気発生防止のため 1 0 フィート/砂 に制限し、出荷用ホースの最高許容圧力は 1 5 0 P S I G とする。
- (5) 係留施設

現在世界中で一般的に使用しているSBM(一点係留方式)はマレイシアにおいても採用している。

しかし、200フイート以上の水深の場合はSALM(single anchor leg mooring)を採用している。

海上貯油出荷方式の場合、SBM(又はSALM)は2基設置し一方のSBM(又はSALM)に貯油バージを係留し、他方は出荷用

タンカーを係留する。

安全上の見地から、一基のSBM(又はSALM)に貯油バージを 係留し、バージにタンカーを横づけする方式は採用しない。

2.2 概念設計

2.2.1 Erb West 油田 および South Furious 油田

(1) 設計基礎データ

サバ地区における生産施設を次のような基礎データに基づき設計した。

1)生産量および坑井数

油田名	生 産 量(BPD)	坑 井 数
Erb West	2 0, 0 0 0	1 0
South Furious	1 6, 0 0 0	1 0

2)原油の性状

油田名	API比重	粘 度 (60°F)CP	最大ガス油比 (SCF/STB)		
Erb West	3 0°	1 9	2 2, 0 0 0		
South Furious	3 2°	1 4	5. 0 0 0		

(2) 概念設計

Erb West および South Furious の位置を Fig 3 0 - 9 - 1 に示す。既述の設計基礎データに基づきこれらの油田で考えうる、さまざまな開発形式の概念設計や費用の概算を行なった。

地理的、環境的、経済的そして運転上の観点よりいくつかの開発 形式を検討した結果、以下に述べる3ケースを選択しこれらの3ケースは、他ケースに比べて現実的でありかつ妥当と思われる。

1) ケース設定

a ケース I 両油田を組合せて開発し、 Labuan 基地を利用するケース

これは、Erb West と South Furious の両油田を開発するケースである。

Fig 9 - 5 - 1 に示すように生産された原油を既設の Labuan 基地に輸送しそこで貯油出荷する。 block flow diagram を Fig 9 - 5 - 2 に示す。

b ケースⅡA Erb West油田のみを開発し、Labuan基地を利

用するケース

これは、Erb West 油田だけを開発するケースである。生産された原油をケース I と同様で Fig 9 - 5 - 3 に示すように、既設の Labuan 基地に輸送する。

block flow diagram を Fig 9-5-4に示す。

c ケースⅡB Erb West 油田のみを開発し、Mangalum 島に基 地を置くケース

ケース II Aと同様に Erb West 油田だけを開発するケースである。 Erb West 油田で生産された原油は、 Fig 9-5-5に示すように、もつとも近い Mangalum 島に送られる。 Mangalum 島には、新たに基地を基ける。 block flow diagram を Fig 9-5-6に示す。

2) 生産施設の概要

3つのケースについて投資額および操業費用を Part C において 算定し、続いて経済検討を行なつた。

その結果として3ケースの中でケースII Aが最も有利であることがわかつた。従つて以下にこのケースII Aと両油田の施設を包含したケースI について生産施設の概要を述べる。

a ケース I 両油田を組合せて開発し、Labuan 基地を利用するケース

両油田を開発する場合の原油生産システムは、次のような施 設から成る。

Erb West 油田

- 6 脚 well and production platform (EWWP-AおよびB)・・2
- 4 脚 accommodation platform (EWA-A) ·······1

海底パイプライン

South Furious 油田

6 脚 well and production platform (SFWP-AおよびB)・・2

3 脚 flare jacket (SFV-AおよびB) ••••••2 海底パイプライン

これらの facilites arrangement を Fig 9 - 5 - 1 に、そして Table 9 - 5 - 1 に major equipment list を示す。

(j) Erb West 油田

(a) 6 脚 Well and Production Platform

2 基の 6 脚 well and production platform (EWWP-A およびB)を Erb West 油田(水深約252フィート)に設置する。

最大 6 坑まで tender assisted drilling rig により掘ることができる。 typical plan and elevation を Fig 3 0 - 5 - 16 に示す。

このプラットフォーム上には、10千BPDまでの抗井流体を処理できる生産施設を設置する。 typical mechanical flow diagram および typical utility flow diagram をそれぞれ Fig 30-5-2と Fig30-5-10 に示す。 EWWP-Bより 生産された原油は、6インチの海底 gathering line を通り EWWP-Aに送られる。

South Furious 油田より生産された原油をEWWP-Aへ送り Erb West 油田の原油と一緒にし12インチの海底パイプラインで既設の Labuan 基地へ送る。

(b) 3 脚 Flare Jacket および Flare Line

3 脚の flare jacket を各々の well and production platform から約2,000フィート離して設置し、その間を2本の8インチの高圧用、低圧用、海底 flare lineを通す。

各 well and production platform 上の3段のセパレーターで分離されたガスを安全な排ガス処理のため flare jacket で燃やす。

(c) Accommodation Platform

4 脚 accommodation platform (EWA-A)を水深約252フイートの所に well and production platform (EWWP-A)に隣接して設置し、その間は、橋で接続する。これは両油田の操業要員用である。ヘリポートを Labuan 島にある基地との交通のため用意する。

typical plan and elevation を Fig 30 - 5 - 31 に示す。
(||) South Furious 油田

(a) 6 脚 Well and Production Platform

2 基の 6 脚 well and production platform (SFWP-A およびB)を South Furious 油田 (水深約188フイート)に設置する。

これらのプラツトフォームは Erb West に設置する 6 脚 well and production platform と同型である。

SFWP-Bより生産された油は、6インチの海底 gathering line を通り、SFWP-Aに送られそこより Erb West 油田にある well and production platform (EWWP-A)へ10インチの transmission line を通つて送る。

(b) 3 脚 Flare Jacket

3脚の flare jacket は Erb West で述べたものと同様である。

(iii) Labuan 基地

Labuau 基地は Samarang 油田からの原油受け入れのための既設の基地である。 Samarang 油田の将来の生産能力から判断すれば、この Labuan 基地は、拡張をしなくとも Erb West 油田と South Furious 油田より生産された原油を受け入れる余裕が十分にある。両方の油田より送られてきた原油を既存の施設を用い貯油出荷する。

Labuan 基地の概要については Fig 8 - 4 - 3 を参照されたい。
b ケースⅡ A Erb West 油田のみを開発し、Labuan 基地を利用するケース

生産施設の設置や生産システムはケースIと同様であるが、 このケースは、Erb West 油田だけを開発した形態である。生 産施設の概要は次のものからなる。

- 6 脚 well and production platform (EWWP-AおよびB)・・2
- 4 脚 accommodation platform (EWA-A) •••••••1
- 3 脚 flare jacket (EWV-AおよびB)・・・・・・・・2

海底パイプライン

これらの施設の facilities arrangement は Fig 9 - 5 - 3 に、major equipment listを Table 9 - 5 - 1 に示す。

なお Erb West 油田より Labuan 基地に行く海底パイプラインは、12インチより10インチに変わる。

3. 結論と勧告

- 3.1 既存生産施設
- (1) 既存生産施設の現況

サバ地区においては現在2つの海洋油田から原油を生産している。 これら既存生産施設の現況を調査するために、1976年9月および 1977年1月にそれぞれデータ収集と現地調査を行つた。 これら各油田の操業会社名、油田名及び1976年5月現在の原油生 産量を下記に示す。

油田名	原油日産量(BPD)	主要施設
Samarang	3 9, 0 5 5	Drilling Platforms
(Sabah Shell		Production Platforms
Petroleum Co.)		Labuan Terminal
		Single Buoy Mooring System
		Submarine Pipelines
Tembungo	4, 9 8 3	Drilling and Production
(Exxon Production		Platform
Malaysia, Inc.)		Single Anchor Leg Mooring
		System
		Submarine Pipelines

(2) 既存生産施設の処理能力の評価

既存生産施設の処理能力の評価を、上記の油田について行つた。 この評価より得た結果を既存施設が、将来の原油生産季動に十分対応 出来るか否かを判断する基礎資料とする。主たる対象施設は以下のと おりであり、これらが、生産施設全体の能力を判断するための基礎と なるものである。

- · Oil and Gas Separator
- · Vent or Flare Line
- 集油、集ガスパイプライン
- 貯油タンク

• 出荷システム

検討の結果、処理施設については概ね、当初の設計量を処理する十分な能力を持つものであることを確認した。貯油タンクと出荷システムについては、それ自身の貯油設備を保有していない Tembungo 油田を別にすれば、現在の生産量水準に対し、Labuan 基地の貯油能力はほぼ、妥当なものと判断される。

沖合生産施設処理能力を下記に示す。

 油田名
 海上施設

 処理能力(BPD)

 Samarang
 9 0, 0 0 0

 Tembungo
 2 0, 0 0 0

(3) 予測生産量に対する既存施設処理能力の評価

既述の施設能力の評価作業に基づき、将来予測される坑井流体の最大生産量に対する既存施設処理能力の評価を行つた。

その結果、各油田における原油生産量は、今後次第に減退し、下記のように予測最大生産量は概ね現在の水準より低いことから、随伴ガスおよび、油田水の増加を考慮に入れても、基本的には今後処理能力の点で、ネックになるような問題は生じないと判断できる。

All FF C			1977年以降予測最大生產量			
油田名	1976年5月 (B)	月 現 在 の 生 産 量 3PD)		(原油+油田水)およびその内訳 (BPD)		
	原油+油田水	原油	油田水	原油+油田水	原油	油田水
Samarang	3 9, 7 4 1	3 9, 0 5 5	686	3 8, 5 3 0	38,230	300
Tembungo	5, 2 9 4	4,983	3 1 1	4,060	3,470	5 9 0

(4) 現在の生産形態に関する考察

現地調査を含む既存施設の評価作業に関連し、直接的には施設の処理能力には関係しないが、下記項目について考察を行つた。

- 随伴ガスの利用
- 計測システム
- 廃水処理システム
- 原油脱水システム

• 制御 • 監視システム

又、下記に示す既存施設については、改善する事を勧める。

1) 制御・監視システム

Labuan 系列における海上操作においては、陸上基地での監視体制が現在行なわれていない。

海上操作の安全性を増すために telemetering system による海上操作監視体制を考慮する事を勧める。何故ならば、夜間においては、Accommodation platform を新たに設置しない限り、海上施設は目視出来ず又、事故発生の場合、その発見と現場への到着に時間がかかるからである。

陸上の制御室における作業状況監視体制を確立する事により、原油 生産業務は、より効果的になりかつ、安全性は向上する。

3.2 施設計画

サバ地区の油田開発を行うにあたり、下記に示すサバ地区の油田について、それらを共同もしくは、単独で開発するいくつかのケースを 設定した。

各ケースについての概念設計を Part A に示されている原油生産挙動 に従つて行い、その結果に基づいて flow diagrams と facilities layouts 等を示した。

- · Erb West and South Furious group (crude oil)
- (1) 開発待機油田の開発計画
 - 1) Erb West 油田(原油)

設定したケースの中には、Erb West 油田と South Furious 油田を共同開発するケースも含まれている。しかしながら既存の Labuan 基地と Erb West 油田単独を結び開発するケースが、経済的な観点で最も有利である。

しかし、この Erb West 単独開発計画でさえ、主に投資額に比べて、原油の生産年数が短いという理由等から経済的な問題を包含している。

この油田の最大予測生産量は、20千バーレルである。

との油田の施設は主に、well and production platform, accommodation platform そして海底パイプラインよりなる。

PART C コストの算定および経済検討

- 1. コストの算定
- 1.1 コスト算定基礎共通事項

1.1.1 基礎データ

掘削費、施設建設費、操業及び維持補修費算出に必要な施設機器類及び、工事費等のデータは、種々算定及び、作成し、図および表中に、1976年央の値に換算して掲げてある。基礎コストデータに関する表および図は、次のごとくである。

掘削及び施設費に関する基礎コストデータ

坑井掘削費 Fig 31-6-1

海上施設費 Table 29-6-1~29-6-10

海底パイプライン費 Table 29-6-11、29-6-12

その他生産設備費 Table 29-6-15

海上貯油バージ費 Table 29-6-16

陸上付帯施設費 Table 29-6-17

施設運転に関する基礎コストデータ

操 菜 直 接 人 件 費 Table 29-6-18

化学薬品費 Table 29-6-19

請負契約費 Table 29-6-20

(内訳: work boat, crew boat, tug boat, helicopter, catering service)

なお、コストの算定は、米ドル価格によつて、行ない、その計算 結果を、マレイシアドル価格に換算した。

換算レートは、下記の通りである。

換算レート; 1米ドル=2.54マレイシアドル

1.1.2 その他のコスト算定法

投資額および年間操業費中の次に掲げる項目は、前述したコストデータを基に下記計算式によつて算出した。

(1) 投資額

設計費(C1) : (C2+C3)×10%

操業前費 : (C1+C2+C3)×1%

臨時費 : (C1+C2+C3)×10%

(2) 年間操業費

操業管理費(C4) : C5×10%

維持補修費

パイプライン : C 6 × 0.1 %

その他の施設 : 陸上貯油の場合(C7+C8) × 2 %

: 海上貯油の場合(C7+C8)×3%

消耗品費 : (C6+C7+C8)×0.3%

間接人件費 : (C 4 + C 5) × 5 0 %

保険費

パイプライン : C 6 × 0.5 %

その他の施設 : (C7+C8)×1.5%

但し

C 1 : 設 計 費

口2 : 坑井掘削費(基礎データによる)

C 4 : 操業管理費

C5 操業直接人件費(基礎データによる)

C6 諸経費を含むパイプライン費

C7 : 諸経費を含む掘削費

C8 : パイプライン費を除く諸経費を含む施設費

注)上でいう諸経費とは、設計、操業前費及び、臨時費の事であ

る。

1.1.3 既投資額の算入法

既投資額については、既に掘削した試掘井の掘削費のみを投資額 に算定し、既に投資した探鉱費、土質調査費および海象データ測定 費等は一切算入していない。

1.1.4 年間操業費の算定法

年間操業費は各フイールドについて、原油又はガスの生産期間中 についてのみ算定した。

1.2 コストの算定

1.2.1 Erb West 油田および South Furious 油田

(1) コストの算定基礎

Erb West 油田および South Furious 油田に対する投資額と操業費は、下記事項について考慮し、1.1 に述べた積算方式、および基礎コストデータを基に算定した。

- Labuan 基地の既存施設を、Samarang 油田と同様に、Erb West 油田および South Furious 油田に対しても利用すると想定した。
- Labuan 基地の既存施設を含め、対象とする油田の操業組織を Fig 3 1 - 6 - 2 のように設定した。この組織図を基に人件費 を算定した。
- ・ Samarang 油田と新規油田の間の既存施設に関する操業費の割り振りや、その算定は難しい。その為、現段階としては、新規油田の初期生産量と同一年度の Samarang 油田の予想生産量との比を基に操業費の配分を行つた。また、 Labuan 基地の 1976年時点での建設費を US\$20百万と仮定して算出の基とした。ここでの操業費とは、補修維持費、消耗品費、および保険費の事をいう。

(2) 投資額の算定

Erb West 油田および South Furious 油田の開発に対する投資額をTable 9 - 6 - 1 に要約した。また、各々の投資額は、次の様になる。

ケース I M \$ 4 0 6, 3 1 4, 0 0 0
ケース II A M \$ 2 6 1, 8 7 2, 0 0 0
ケース II B M \$ 2 7 2, 2 3 4, 0 0 0

(3) 年間操業費の算定

Erb West 油田および South Furious 油田の生産施設に対する年間操業費を、各ケースについてそれぞれ Table 9 - 6 - 2、 9 - 6 - 3 および 9 - 6 - 4 に要約した。

(4) 工事計画および投資計画

Erb West 油田と South Furious 油田の工事計画を下記の装置および建設機材を使用するものとして作成し、最適ケースについのみFig 9 - 6 - 1 に示した。

tender assisted	drilling rig	••••••• 1
derrick barge (50012)	••••••• 1
lay barge (12インチ)	•••••••

上記工事計画表を基に作成した投資計画を Table 9 - 6 - 6 に示した。

なお、他ケースについての投資計画は Table 9-6-5 および Table 9-6-7 に参考として示す。

2. 経済検討

2.1 経済検討の基礎

2.1.1 原油

(1) 経済検討方式

生産物分与方式に基づいたベトロナスおよび操業会社別の収益計算項目および計算式は、Appendix II に述べてある。

(2) 収益性指標

Part B. 2の概念設計段階で選定された一種類、またはそれ以上の原油生産施設計画案に対する収益性分析およびそれらの比較において、採用する指標は、次の各値とする。

- ーネツト・キャツシュ・フロー累計
- DCF ROR
- 一現在価値累計
- ーペイアウト・タイム

(3) 生産計画

Part A で推定された各油田別の日産量に暦日(365日)を乗じ年間生産量とする。 Table 30 - 6 - 1 は、各油田別の年間生産量を示す。生産開始時期は、全ての施設が完成した時点とする。

(4) 原油価格

原油の販売価格の設定方法は、下流部門担当チームの資料に基づき次の様に定めた。

1)1976年年央の時点で、実際の価格がつかめる油種については、その実績値を適用する。

Miri 原油 M \$ 3 2.00(US\$12.60)/バレル Labuan 原油 M \$ 3 1.88(US\$12.55)/バレル

- 2) 同時点での実績値が存在しない、あるいはつかめなかつた油種 については、上記の原油価格、および他原油の実績値を基準値に APIプレミアムに対する価格の設定は、以下の通りである。
 - a API 4 0.3° を越える油種に対しては、基準価格 M \$3 2.0 0 (US\$ 1 2.6 0) / バレルに M Ø 7.6 2 (US Ø 3)

/ ゜APIを加える。

- API36.4° を下まわる油種に対しては、基準価格MS
 31.88(US\$12.55)/バレルにM Ø 7.62(US Ø 3)
 /° APIを減じる。
- c API36.4° と40.3° の間の油種に対しては、比例計算によって、価格を設定する。

ただし幾つかの油種が混合した原油の販売価格の設定は、各 油種の年間生産量の加重平均を計算して算出する。

との方法によつて設定された価格を、各油田別の年間生産量と 共に Table 30-6-1に示す。

(5) 投資計画

生産施設工事計画案に基づき算出した各年の投資計画を Table 3 1 - 6 - 1 に示す。

(6) 年間操業費

生産施設工事計画案に基づき算出した年間操業費を Table 3 1 - 6 - 2 に示す。

(7) 共通インプツト・データ

設備計画案の経済検討について全ケースに共通して用いられるインプット・データは、以下の通りである。

・ロイヤルテイ・レイト	10%
・ 最大コスト回収比率 原 油	20%
(ガ ス	2 5 %)
• 原油利益配分率 ペトロナス	7 0 %
操業会社	30%
・研究基金の支払率	0. 5 %
基準価格の初期値(1976年) M\$32.31	(US\$1272)
• 基準価格の上昇率	5 % / 年
• 基準価格を越える利益原油の支払率	70%
• 所 得 税 率	45%

• 発見ボーナス支払額

M \$ 2.5 百万

・生産ポーナス基準生産量 50千パレル/日

生産ポーナス支払額(50,000BPD以上) M \$ 5百万

•割引率

5 % , 1 0 % , 1 5 %

2.2 原油の収益性分析

各油田の生産量およびその可採年数が原油の収益性に大きな影響を及ぼす。また、生産量が同じ場合でも、操業費が異なる場合は、投資額の大小の比較において有利なケースが必ずしも収益性の上から見て操業会社にとつて有利なケースと言えないことが分析結果から分かる。また、概念設計において選定された各種ケースには、油田をグループまたは単独で開発するケース、および同一油田または同一油田グループを陸上貯油出荷方式で開発する代替案のケースを含んでいるが、これらについてここで各ケースの収益性分析の結果を比較検討し、収益性より見てより有利な案を選択し、この結果を加味して決定したケースについて施設の詳細な説明を行なつている。

なお、概念設計で選択されたケースの選択基準は、ペトロナスにとっては原油生産量の多いケースが常に有利ということになり、収益性の選択基準となり得ないため、操業会社の収益性が最大となる年度での DOF ROR の値を採用することとした。

この地区においては、 Erb West 油田および South Furious 油田を対象とし生産設備計画案として次の 3 ケースが選定され、各ケースに対する収益性分析を行なつた。

ケース I :両油田を組み合わせて開発し、Labuan 基地を利用するケース

ケース II A: Erb West のみを開発し、Labuan 基地を利用する ケース

ケースⅡB: Erb West のみを開発し、Mangalum 基地を利用するケース

各ケースに対して得られた収益性指標の各値を、 Table 31-6 一 6 に示し、ペトロナスおよび操業会社のキャッシュ・フローを Table $9-6-8\sim1$ 0 に示す。

ケース I : South Furious 油田は、Labuan 晶より離れた位置にあ

るため、投資額も多く、生産量および生産年数も Erb West 油田に比較し、条件が不利である。

操業会社より見た収益は投下した投資額がプロジェクト全期間終了時においても回収できない程できわめて 悪い。

得られる年度は、プロジエクト開始後 8 年目(生産開始後 5 年目)であり、その DCF ROR は 1.3 1 あである。

ケースⅡB:地理的にはケースⅡAより有利な位置にあるが、新た に陸上ターミナルを建設しなければならずその分だけ 投資額が増える。

操業会社のキャッシュ・フローを見ると最大収益が得られる年度はプロシエクト開始後8年目(生産開始後5年目)であり、そのDCFRORは0.23%である。

以上の3ケースは、いずれの場合も操業会社から見た収益性は極端に悪いが、比較という観点から見れば、ケースII Aが他のケースに比較しより有利であると考える。

2.3 感度分析

Part B。2 で述べた各地区の生産計画案の最も有利なケースについて収益性に対する感度分析を行なつた。

感度曲線を Fig 3 1 - 6 - 7 に描いた。感度分析の結果は次の通りである。

ケースIIA

販 売 価 格	0 %	1 0	95 2	2 0	96	
DCF ROR(%)	1. 3	1 4.	3 8	7.	2	2
投資額	- 2 0 %	- 1 0	%	0	%	
DOF ROR(%)	7. 2	4 4.	0 6	1.	3	1

このケースに対しては、収益性から見て生産量を除いて収益を上げる要素の感度分析のみを行なつた。

3. 結論と勧告

3.1 コストの算定

各ケースについて、原油生産施設の概念設計をもとに投資額と年間 操業費の算定を行つた。その結果に従い後述する経済検討のための基 礎資料として、投資計画を示した。

投資額の算定は、生産井の掘削、海上プラットフォーム、海底パイプライン、油・ガス処理設備、陸上貯油・出荷施設、補助施設等について行つた。

操業費については、上記の施設における操業人件費、化学薬品費、請 負契約費、補修維持費、保険料などを対象に算定を行つた。

算定した投資額の合計を生産施設の設計処理能力と共に下に示す。 単位はマレイシアドル(M\$)である。

Erb West and South Furious グループ (原油)

ケースI	3 6, 0 0 0 BPD	M\$ 406,314,000
ケース II A	2 0, 0 0 0 BPD	M\$ 261,872,000
ケース∏ В	2 0 0 0 0 BPD	MS 272234,000

3.2 経済検討

概念設計の段階で設定された原油開発計画の各ケースについて経済 検討を行つた。各原油生産計画の収益性をマレイシアの生産物分与方式 に基づいてペトロナス及び操業会社別に検討した。

販売価格については、下流部門担当チームより報告を受けた。 その結果、下記に示すケースが、もつとも収益性が高いと判明した。

• Erb West 単独で開発し既存の Labuan 基地を使うケース しかしながらこのケースは、比較上選定されたが、なおその収 益性については問題がある。

経済検討の要約を下記に示す。ことに示されるのは、収益率が最大に 選した年のものである。

	ベトロナ	ス		操業	社	
	累積	DCF	累	積	投資回収	
油田名	ネツトキヤツシユ	ROR	ネツトキ -	ヤツシユ	期間	
	(M\$1,000)	(%)	(M\$1,	000)	(年)	
Erb West	297,213	1. 3 1	1 3, 9	964	7. 7	

TABLE LIST VOL. III SABAH AREA

TITLE

Table A-1	ORIGINAL HYDROCARBONS IN PLACE - PRODUCING FIELDS OF SABAH
A-2	ORIGINAL HYDROCARBONS IN PLACE - DEVELOPMENT FIELDS OF SABAH
A-3	ORIGINAL HYDROCARBONS IN PLACE - POTENTIAL FIELDS OF SABAH
1-2-1	CORRELATION TABLE, SAMARANG FIELD
1-3-1	PREDICTED PERFORMANCE OF SAMARANG FIELD
2	PREDICTED PERFORMANCE OF A ZONE, SAMARANG FIELD
3	PREDICTED PERFORMANCE OF B ZONE, SAMARANG FIELD
4	PREDICTED PERFORMANCE OF C ZONE, SAMARANG FIELD
5	PREDICTED PERFORMANCE OF SAMARANG FIELD - ADDITIONAL WELL CASE -
2-2-1	CORRELATION TABLE, TEMBUNGO FIELD
2-3-1	PREDICTED PERFORMANCE OF TEMBUNGO FIELD
2	PREDICTED PERFORMANCE OF MODEL-1, TEMBUNGO FIELD
3	PREDICTED PERFORMANCE OF MODEL-2, TEMBUNGO FIELD
4	PREDICTED PERFORMANCE OF MODEL-3, TEMBUNGO FIELD
5	PREDICTED PERFORMANCE OF MODEL-4, TEMBUNGO FIELD
6	PREDICTED PERFORMANCE OF TEMBUNGO FIELD - ADDITIONAL WELL CASE-
7	PREDICTED PERFORMANCE OF TEMBUNGO FIELD, ADDITIONAL WELL CASE, WELL TM AD-1
8	PREDICTED PERFORMANCE OF TEMBUNGO FIELD, ADDITIONAL WELL CASE, WELL TM AD-2
9	PREDICTED PERFORMANCE OF TEMBUNGO FIELD, ADDITIONAL WELL CASE, WELL TM AD-3
10	PREDICTED PERFORMANCE OF TEMBUNGO FIELD, ADDITIONAL WELL CASE, WELL TM AD-4
3-2-1	CORRELATION TABLE, ERB WEST FIELD
3-3-1	RESERVOIR PARAMETERS USED IN PERFORMANCE CALCULATION, ERB WEST FIELD
2	PREDICTED PERFORMANCE OF ERB WEST FIELD
4-2-1	CORRELATION TABLE, SOUTH FURIOUS FIELD
4-3-1	RESERVOIR PARAMETERS USED IN PERFORMANCE, SOUTH FURIOUS FIELD
2	PREDICTED PERFORMANCE OF SOUTH FURIOUS FIELD
5-2-1	CORRELATION TABLE, WEST EMERALD FIELD
6-2-1	CORRELATION TABLE, SAINT JOSEPH FIELD
7-2-1	CORRELATION TABLE, ERB SOUTH FIELD
8-4-1	MAJOR EQUIPMENT SPECIFICATIONS OF PRODUCTION STATION SMP-A
2	MAJOR EQUIPMENT SPECIFICATIONS OF PRODUCTION STATION SMP-B

Vol. III

TITLE

	WATER CONTRIBUTE CRECIPICATIONS OF LABRIAN TERMINAL
Table 8-4-3	MAJOR EQUIPMENT SPECIFICATIONS OF LABUAN TERMINAL
4	MAJOR EQUIPMENT SPECIFICATIONS OF TEMBUNGO "A"
9 - 5-1	MAJOR EQUIPMENT LIST FOR ERB WEST AND SOUTH FURIOUS OIL FIELDS - CASE I
9-6-1	CAPITAL INVESTMENT COST ESTIMATION ERB WEST AND SOUTH FURIOUS OIL FIELD
2	ANNUAL OPERATION COST ESTIMATION ERB WEST AND SOUTH FURIOUS OIL FIELDS-CASE I
3	ANNUAL OPERATION COST ESTIMATION ERB WEST AND SOUTH FURIOUS OIL FIELDS-CASE IIA
4	ANNUAL OPERATION COST ESTIMATION ERB WEST AND SOUTH FURIOUS OIL FIELDS-CASE IIB
5	INVESTMENT SCHEDULE ERB WEST AND SOUTH FURIOUS OIL FIELDS -CASE I
6	INVESTMENT SCHEDULE ERB WEST AND SOUTH FURIOUS OIL FIELDS -CASE IIA
7	INVESTMENT SCHEDULE ERB WEST AND SOUTH FURIOUS OIL FIELDS -CASE IIB
8	CASH FLOW TABLE FOR OIL ERB WEST AND SOUTH FURIOUS OIL FIELDS -CASE I
9	CASH FLOW TABLE FOR OIL ERB WEST AND SOUTH FURIOUS OIL FIELDS -CASE IIA
10	CASH FLOW TABLE FOR OIL ERB WEST AND SOUTH FURIOUS OIL FIELDS -CASE IIB
28-4-1	SUMMARY OF OFFSHORE STRUCTURES
2	SUMMARY OF SUBMARINE PIPELINES
3	COMPARISON OF PRESENT PRODUCTION RATE VS. PLATFORM CAPABILITY
4	COMPARISON OF MAXIMUM PREDICTED PRODUCTION RATE VS. PLATFORM CAPABILITY GROSS LIQUID BASE
5	COMPARISON OF MAXIMUM PREDICTED PRODUCTION RATE VS. PLATFORM CAPABILITY GAS BASE
6	SUMMARY OF GAS UTILIZATION
29-6-1	4-LEG OFFSHORE PLATFORM COST
2	6-LEG OFFSHORE PLATFORM COST
3	8-LEG OFFSHORE PLATFORM COST
4	3-LEG VENT AND FLARE JACKET COST
5	COST OF 3 CONDUCTORS
6	COST OF 4 CONDUCTORS
7	COST OF 6 CONDUCTORS
8	COST OF 8 CONDUCTORS
9	COST OF 12 CONDUCTORS
10	COST OF 18 CONDUCTORS
11	UNIT COST OF SUBMARINE PIPELINE
12	UNIT COST OF RISER PIPE

Vol. III

TITLE

Table 29-6-14	OIL PRODUCTION EQUIPMENT COST
15	UNIT COST OF OTHER PRODUCTION EQUIPMENT
16	NEWLY BUILT STORAGE BARGE COST
17	ONSHORE SUPPORT FACILITIES COST
18	OPERATING PERSONNEL COST
19	UNIT COST OF VARIOUS CHEMICALS
20	UNIT COST OF SERVICE CONTRACTORS
30-6-1	ANNUAL OIL PRODUCTION AND FOB PRICE PER BARREL
31-6-1	INVESTMENT SCHEDULE FOR OIL
2	ANNUAL OPERATING COST FOR OIL
6	PROFITABILITY YARDSTICKS OF OIL AT THE YEAR OF MAX. R.O.R. FOR OPERATING COMPANY

Vol. III Table A-1 ORIGINAL HYDROCARBONS IN PLACE - PRODUCING FIELDS OF SABAH

SAMARANG A Zone B Zone C Zone TOTAL		(MMSTB)	(MMMSCF)	(MMSTB)	(MMMSCF)	(MINSTB)	(MMMSCF)
TOTAL		137.84 72.14 116.72	44.04 54.61 220.47	0.873 0.571 6.832	0.329 0.338 8.834	28.319 20.131 42.485	29.695 39.557 129.070
PROVED RESVS.	RESVS.	326.70 326.70	319.12 319.12	8.276	9.051	90.935	198.322
TEMBUNGO MODEL-1 MODEL-2 MODEL-3 MODEL-4 ADD. WELL UNDEVLP.	MODEL-1 MODEL-2 MODEL-3 MODEL-4 ADD. WELL	4.63 3.41 8.84 2.36 17.47	3.24 3.19 4.86 3.37 16.48 31.26	1.108 0.260 0.883 0.070 0.0	0.499 0.201 0.633 0.029 0.0	2.056 0.865 2.561 0.070 5.605	1.572 1.928 3.004 0.229 14.826
TOTAL PROVED PROBABLE RESVS GRAND TOTAL PROVED RESVS. PROBABLE RESVS	TOTAL PROVED PROBABLE RESVS. TOTAL PROVED RESVS.	46.97 24.86 22.11 373.67 351.56 22.11	62.40 49.35 13.05 381.52 368.47 13.05	2.321	1.562	11.157	21.559

Vol. III Table A-2 ORIGINAL HYDROCARBONS IN PLACE - DEVELOPMENT FIELDS OF SABAH

RECOVERABLE RESVS. OIL GAS (MMSTB) (MMMSCF)		475.374	82.389
RECOVER OIL (MMSTB)		25.122	22.957
O.H.I.P.	28 0.00 0.00 0.00 0.00 0.00 0.00	301.7	0.0
O.S.G.I.P.	0.0 0.0 0.0 0.0 0.0 5.41 84.95	90.36 0.67 1.44 2.94 10.35 0.74 0.0	35.18 35.18
O.C.G.I.P.	8.39 0.0 0.0 0.0 0.22 0.36 0.0 8.76 0.0	524.44 291.23 251.21 10.88 10.98 10.97 27.72 32.48 13.24 1.38	114.79
O.O.I.P.	0.0 0.0 0.0 0.0 0.0 169.90	179.02 19.85 159.17 7.82 15.98 33.08 31.84 6.95 20.23 1.69	122.53
BLOCK & ZONE	ар ар ар со со со	TOTAL PROVED RESVS. PROBABLE RESVS. POSSIBLE RESVS. a bl bl b2 c c d d e f	TOTAL PROVED RESVS PROBABLE RESVS. POSSIBLE RESVS.
FIELD NAME	ERB WEST	SOUTH FURIOUS	

Vol. III Table A-3 ORIGINAL HYDROCARBONS IN PLACE - POTENTIAL FIELDS OF SABAH

RECOVERABLE RESVS. OIL GAS (MMSTB) (MMMSCF)						
O.H.I.P. (MMCF)	0.0	0.0	1.94 8.09 0.88 0.0 1.18	23.05	0.0	0.0
O.S.G.I.P. (MMMSCF)	0.97	1.01 0.46 0.55	0.0 0.0 1.29 0.0 0.13	1.42	0.29	0.29
O.C.G.I.P. (MMMSCF)	0.94	1.16	0.0 0.0 0.0 0.44 0.25	0.69	0.0	0.0
O.O.I.P. (MMSTB)	14.86 0.19	15.04 7.59 7.45	0.0 8.04 0.0 0.0	8 8 2 8 8 2 8 8 8 9	1.97	1.97
BLOCK & ZONE	ល .ឯ	TOTAL PROVED RESVS. PROBABLE RESVS. POSSIBLE RESVS.	al a2 b1 b2 b3 b4	TOTAL PROVED RESVS. PROBABLE RESVS. POSSIBLE RESVS.	rd	TOTAL PROBED RESVS. PROBABLE RESVS. POSSIBLE RESVS.
FIELD NAME	WEST EMERALD		SAINT JOSEPH		ERB SOUTH	

Table 1-2-1 CORRELATION TABLE Vol. III SAMARANG FIELD

6	5	Subsea		3445	ر ا	5231	6175	27	37	46	57	1	6750			
	8	Log		3718	0.4 1	6197	7420	S	68	80	დ დ		8196			
5	15	Subsea		3485	7	5332	\vdash	~	25	35	44	.7315	8915			
	8	Log		3571	40	5417		6263	34	43	53	7400	0006			
		Subsea		3528	ر ا	5392	32	6420	50	9	80	7675	7966			,
4	70	fooı		3696	9	5573	50	6603	69	78	90	7859	8150			
3	2	Subsea		3890	28	5307	11	6191	26	35	41	7227	8005		<u></u>	
	7	Log		3962	99	5379	18	6263	33	42	48	7299	8077			
2	72	Subsea		3775	1	5407	23	6338	42	52	63	7596	8428			
	7	Log		3847	ı	5479	l w	6410	4	9	~	1668	8500			
	111	Subsea	6214	3684	4497	5250	6050	6142	6213	6299	6387	7181	10329		-	
		Log	6325	3795	4608	5361	1919	6253	6324	6410	6498	7292	10440			
Well No.	D.F.E.	Cycle/Zone	Top V?	Top aı	a2	d qor	Top C,	ີ່ບົ	້ບຶ	ຶບ້	င်း	Top d	T.D.			

Table 1-2-1 (Continued)
Vol. III

CORRELATION TABLE SAMARANG FIELD

	- 1									·		
5	Subsea		3553 4465	5347	~	$^{\circ}$	S	ず	വ	ı	6647	
8	Log		3814 4938	6052	07	128	28	38	49	_	7600	
5	Subsea		3528 4423	5229	04	13	20	29	38	7153	7483	
8	Log		3877 4963	6011	0	20	29	40	51	8555	9028	
5	Subsea		3546 4436	5274	11	20	28	36	45	7261	7508	
8	Log		3786 4785	5719	4	S	3	3	\sim	7913	1818	
5	Subsea		3675 4403	5364	27	38	45	55	63	•	6862	
8	Log		3955 4745	5901	15	29	39	52	62	-	7930	
5	Subsea		3675 4403	5385		3	ന	4	ഹ	Į	6891	
	Log		3955 4737	5773	57	67	75	85	95	-	7363	
. 2	Subsea		3530 4414	5299	18	28	37	46	55		6601	
80	Log		3758 4738	5697	6659	6770	0989	6958	7063	ı	7110	
D.F. E.	Cycle/Zone	Top V?	Top a ₁	Top b	Top c ₁		້ບ	. d	Cs	Top d	T.D.	
	85 85 8	ne Log Subsea Log Subsea Log Subsea Log Subsea Log Subsea Log Subsea	ne Log Subsea Log Subs	ne Log Subsea Subsea Log Subsea Subsea Log Subsea Log <th< td=""><td>ne Log Subsea Log Su</td><td>ne Log Subsea Log Su</td><td>ne Log Subsea Log Su</td><td>ne Log Subsea Log Su</td><td>ne Log Subsea Log Su</td><td>ne Log Subsea Log Su</td><td> 1.09 Subsea Log Log </td><td>ne Log Subsea Log Su</td></th<>	ne Log Subsea Log Su	ne Log Subsea Log Su	ne Log Subsea Log Su	ne Log Subsea Log Su	ne Log Subsea Log Su	ne Log Subsea Log Su	1.09 Subsea Log Log	ne Log Subsea Log Su

Table 1-2-1 (Continued) CORRELATION TABL Vol. III SAMARANG FIELD

7	2	Subsea		3579 4389	5256	ı		5953	
	85	Log		4114 5088	6105	1		6265	
16	85	Subsea		3436 4351	5311	6116 6219 6303 6397 6502	1	6705	
τ	8	Log		3662 4677	91/5	6588 6699 6789 6890 7002	1	7218	
15	5	Subsea		3577 4396	5258	6197 6303 6388 6490 6598		6762	
1	8	Log		3966 4910	5883	6924 7039 7132 7242 7359		7537	
4	85	Subsea		3587 4454	5276	ı		5590	
7	8	Log		4014 4917	5743	ı		6057	
<u>ه</u>		Subsea		3458 4339	ı	6169 6276 6369 6473 6586	l	6763	
	8	Log		3967 5124	ı	7547 7683 7801 7933 8076		8300	
12	85	Subsea		3498 4361	ı			4687	
1	8	Log	-	4016 5031	ı			5407	
Well No.	D.F.E.	Cycle/Zone	Top V?	Top a ₁ a ₂	Top b	Top c ₁ c ₂ c ₃ c ₄ c ₅	Top d	T.D.	

Table 1-2-1 (Continued) Vol. III

23	77	Subsea		3390	4433	5237	ı						5536	
2	- 1	Log		3838	95	5761	1						0909	
22	85	Subsea		3512	45	5254	14	24	6327	41	21	•	6999	
2	8	Log		3645	4617	5454	6372	6475	6558	6647	6746	-	0069	
21	7	Subsea		3342	4391	5306	സ	4	6515	9	<u>- </u>	ı	6269	
2	7	Log		3859	5106	6074	80	18	7287	40	51	-	1577	
20	5	Subsea		3652	4391	5277	1						5624	
2	8	Log		Ιœ	4552	5438	-						5785	·
19	77	Subsea		3469	4297	5234	6226	6333	6430	6541	6999	ı	6891	
	7	Log		3546	4391	5373	6402	6513	6612	6727	6853	1	7090	
8	85	Subsea		51	4397	5318	04	14	6222	31	40	I	6594	
I	8	Log		3728	4679	5642	6402	6505	6586	6682	62.29	ı	6974	
NON LIEM	7 THE CO.	Cycle/Zone	Top V?	TOD 3,	a 2	Top b	-ըս Ե		7 O	, ₄	ပိ	Top d	T.D.	

CORRELATION TABLE SAMARANG FIELD

Table 1-2-1 (Continued) CORRELATION TABLE Vol. III

ļ	sea		88				1	
ហ	Subsea		348	5250	1		5512	
∞ 	Log		3573	5405	I		5675	
	Subsea		3549 4483	5278	ı		5589	
85	Log		4151 5371	6373	I		0929	
lod)	Subsea		3529 4407	ı			4748	
85 (Log		3701 4645	ı			4996	
7	Subsea		3358 4307	_			4696	
2	Log		3956 5004	1			5400	
7	Subsea		3480 4339	5211	ı		5585	
	Log		3705 4621	5535	ı		2869	
7	Subsea		3346 4347	5292	ı		2685	
7	Log		3721	5806	1		6200	
T. F. C.	Cycle/Zone	Top V?	Top a ₁	Top b	Top c ₁ c ₂ c ₃ c ₄	Top d	T.D.	
	77 77 85 (loq) 85 8	ne Log Subsea Log	Zone Log Subsea Log	Zone Log Subsea Log	Zone Log Subsea Log	Zone Log Subsea Log	Cone Log Subsea Log	Cone Log Subsea Subsea Subsea Subsea

Vol. III Table 1-3-1 PREDICTED PERFORMANCE OF SAMARANG FIELD

PRODUCTION START: Jun.1975 PRODUCTION END: Mar.1995

CTION WATER (MMSTB)	0.009	0.104	0.213	0.348	0.532	0.712	0.843	0.931	1.006	1.073	1.17	1.284	1.286	1.288	1.29	1.291
CUMULATIVE PRODUCTION OIL GAS WAT MSTB) (MMMSCF) (MMS	2.341	16.55	33,95	52.24	72.9	92.13	106.91	118.71	128.97	138.1	144.88	150.8	155.11	159.23	163.11	166.84
CUMULA OIL (MMSTB)	2.218	15.934	29.889	41.409	51.473	59.833	960.99	70.651	74.374	77.501	79.201	80.618	81.494	82,309	83.069	83.806
W.O.R. (STB/STB)	0.004	6900-0	0.0078	0.0117	0.0177	0.0214	0.0213	0.0191	0.0201	0.0214	0.0572	0.0805	0.0023	0.0025	0.0026	0.0014
G.O.R. (SCF/STB)	1055	1034	1247	1588	1992	2289	2401	2557	2755	2917	3994	4183	4921	5063	5101	5268
GAS PROD. RATE (MMSCF/D)	12.83	38.93	47.66	50.11	56.60	52.69	40.51	32.32	28.11	25.01	18.57	16.23	11.81	11.29	10.61	10.22
OIL PROD. RATE (MSTB/D)	12.16	37.57	38.23	31.56	28.41	23.02	16.87	12.64	10.2	8.57	4.65	3.88	2.4	2.23	2.08	1.94
RECOVERY (%)	0.68	4.88	9.15	12.67	15.76	18.31	20.21	21.63	22.77	23.72	24.24	24.68	24.94	25.19	25.43	25.65
TIME (YEAR)	Dec.1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990

Vol. III Table 1-3-1 (Continued) PREDICTED PERFORMANCE OF SAMARANG FIELD

PRODUCTION START: Jun.1975 PRODUCTION END: Mar.1995

	ا الاين	وبسيسي					
CTION	WATER	(MMSTB)	1.293	1.296	1.296	1.297	1.297
CUMULATIVE PRODUCTION	GAS	(MMMSCF)	170.3	173.57	176.73	179.74	180.49
CUMULAI	OIL	(MMSTB)	84.43	85.38	85.613	86.16	86.293
	W.O.R.	(STB/STB)	0.0031	0.0016	0.0035	0.0018	0.0027
	G.O.R.	(SCF/STB)	5302	6365	5487	5493	5662
GAS PROD.	RATE	(MMSCF/D)	9.49	96.8	8.67	8.24	8.21
OIL PROD.	RATE	(MSTB/D)	1.79	1.67	1.58	1.50	1.45
	RECOVERY	(8)	25.84	26.13	26.21	26.37	26.41
	TIME	(YEAR)	1991	1992	1993	1994	Mar.1995

Vol. III Table 1-3-2 PREDICTED PERFORMANCE OF A ZONE,

SAMARANG FIELD

PRODUCTION START: Jun. 1975 PRODUCTION END: Dec. 1984

CTION	WATER (MMSTB)	0.021	0.069	0.122	0.187	0.295	0.408	0.494	0.546	0.587	0.62
CUMULATIVE PRODUCTION	GAS (MMMSCF)	0.249	0.845	2.066	4.635	10.284	16.588	21.623	25.205	27.774	29.693
CUMULA	OIL (MMSTB)	0.873	2.966	7.151	11.337	15.522	19.646	22.916	25.299	27.027	28.318
	W.O.R. (STB/STB)	0.02	0.02	0.01	0.02	0.03	0.03	0.03	0.02	0.02	0.03
	G.O.R. (SCF/STB)	285	285	292	614	1482	1394	1540	1503	1488	1485
GAS PROD.	RATE (MMSCF/D)	1.43	3.27	3.35	7.04	17.00	15.75	13.80	9.81	7.04	5.26
OIL PROD.	RATE (MSTB/D)	5.38	11.47	11.47	11.47	11.47	11.30	96.8	6.53	4.73	3.54
	RECOVERY (%)	0.63	2.15	5.19	8.22	11.26	14.25	16.62	18.35	19.61	20.54
RESERVOIR	PRESSURE (PSIG)	1939	1824	1698	1542	1285	1015	809	684	586	507
	TIME (YEAR)	Jun.1976	Dec.1976	1977	1978	1979	1980	1981	1982	1983	1984

Vol. III Table 1-3-3 PREDICTED PERFORMANCE OF B ZONE,

SAMARANG FIELD

PRODUCTION START: Aug. 1975 PRODUCTION END: Sep. 1986

CTION WATER (MMSTB)	0.005	0.024	0.074	0.138	0.210	0.273	0.316	0.349	0.380	0.412	0.507	0.619
CUMULATIVE PRODUCTION OIL GAS WAT MSTB) (MMMSCF) (MMS	0.357	1.262	3.774	7.693	12.753	17.512	20.986	23.607	25.962	28.107	30.067	31.420
CUMULA OIL (MMSTB)	0.571	1.957	4.728	7.500	10.251	12.338	13.649	14.556	15.350	16.081	16.760	17.233
W.O.R. (STB/STB)	0.01	0.01	0.02	0.02	0.03	0.03	0.03	0.04	0.04	0.04	0.14	0.24
G.O.R. (SCF/STB)	623	.653	206	1415	1839	2279	2651	2895	2960	2938	2887	2857
GAS PROD. RATE (MMSCF/D)	1.37	4.96	6.88	10.74	13.86	13.04	9.52	7.18	6.45	5.88	5.37	4.94
OIL PROD. RATE (MSTB/D)	2.20	7.59	7.59	7.59	7.54	5.72	3.59	2.48	2.18	2.00	1.86	1.73
RECOVERY (%)	0.79	2.71	6.55	10.40	14.21	17.10	18.92	20.18	21.28	22.29	23.23	23.89
RESERVOIR PRESSURE (PSIG)	2324	2247	2074	1855	1604	1386	1237	1121	1028	942	861	805
TIME (YEAR)	Jun. 1976	Dec.1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	Sep.1986

VOL. III Table 1-3-4
PREDICTED PERFORMANCE C ZONE,

SAMARANG FIELD

PRODUCTION START : Jun. 1975 PRODUCTION END : Mar. 1995

FION WATER (MMSTB)	800.0	0.011	0.017	0.023	0.027	0.031	0.033	0.036	0.039	0.041	0.043	0.045	0.047	0.049	0.051	0.052	0.054	0.055	0.057	0.058	0.058
CUMULATIVE PRODUCTION OIL GAS WAT MSTB) (MMMSCF) (MMS	8.503 0	14.447 (28.111 (39.915 (49.866 (57.855 (64.100 (969.69	75.034 (060.08	84.916 (89.489 (93.799 (97.921 (101.793 (105.522 (108.986	112.258 (115.420 (118.427 () 921.611
TIVE	ω	14	28	36	45	'n	9	9	7.	8	8	8	6	9.	101	10	108	113	11.	77	119
CUMULA OIL (MMSTB)	6.832	11.011	18.010	22.572	25.700	27.894	29.471	30.796	31.997	33.102	34.123	35.067	35.943	36.757	37.518	38.225	38.879	39.487	40.062	40.609	40.742
W.O.R. (STB/STB)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
G.O.R. (SCF/STB)	1303	1422	1952	2587	3181	3642	3961	4224	4445	4580	4713	4837	4920	5064	5100	5266	5302	5368	5483	5492	5622
GAS PROD. RATE (MMSCF/D)	36.36	32.57	37.44	32.34	27.26	21.89	17.11	15.33	14.62	13.88	13.20	12.53	11.81	11.29	10.61	10.22	9.49	8.96	8.66	8.24	8.21
OIL PROD. RATE (MSTB/D)	24.18	22.90	19.18	12.50	8.57	6.01	4.32	3.63	3.29	3.03	2.80	2.59	2.40	2.23	2.08	1.94	1.79	1.67	1.58	1.50	1.46
RECOVERY (8)	5.85	9.43	15.43	19.34	22.02	23.90	25.25	26.38	27.41	28.36	29.23	30.04	30.79	31.49	32.14	32.75	33.31	33.83	34.32	34.79	34.91
RESERVOIR PRESSURE (PSIG)	2589	2507	2327	2179	2055	1956	1880	1809	1738	1674	1619	1564	1510	1456	1404	1361	1321	1281	1240	1201	1191
TIME (YEAR)	Jun.1976	Dec.1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	Mar.1995

PREDICTED PERFORMANCE OF SAMARANG FIELD TABLE 1-3-5 Vol. III

PRODUCTION START : Jun.1975 PRODUCTION END : Mar.1995

- ADDITIONAL WELL CASE -

CTION WATER (MMSTB)	0.009	0.129	0.310	0.540	0.753	0.923	1.158	1.546	1.899	2.209	2.431	2.434	2.436	2.438	2.439	2.441
CUMULATIVE PRODUCTION OIL GAS WAT MSTB) (MMMSCF) (MMS	2.341	18.802	42.863	69.814	93.493	112.010	126.486	138.595	148.070	155.657	162.262	167.180	171.775	176.132	180.112	183.940
CUMULA OIL (MMSTB)	2.218	18.287	36.043	50.108	60.284	67.885	73.524	77.904	80.787	82.680	84.232	85.209	86.108	86.931	87.682	88.379
W.O.R. (STB/STB)	0.004	0.008	0.010	0.016	0.021	0.022	0.042	0.089	0.122	0.163	0.143	0.002	0.002	0.002	0.002	0.003
G.O.R. (SCF/STB)	1055	1024	1355	1916	2327	2436	2567	2765	3287	4007	4255	5035	5112	5294	5497	5497
GAS PROD. RATE (MMSCF/D)	12.83	45.10	65.92	73.04	64.87	50.73	39.66	33.17	25.96	20.78	18.10	13.47	12.59	11.94	10.90	10.49
OIL PROD. RATE (MSTB/D)	12.16	44.03	48.65	38,53	27.88	20.82	15.45	12.00	7.10	5.19	4.25	2.68	2.46	2.26	2.06	1.91
RECOVERY (%)	0.68	5.59	11.03	15,34	18.45	20.78	22.51	23.85	24.73	25.31	25.78	26.08	26.36	26.61	26.84	27.05
TIME (YEAR)	Dec.1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990

VOL. III TABLE 1-3-5 (CONTINUED)
PREDICTED PERFORMANCE OF SAMARANG FIELD

- ADDITIONAL WELL CASE -

CTION	WATER	(MMSTB)	2.443	2.445	2.446	2.448	2.448
TIVE PRODU	OIL GAS WAT	(MMMSCF)	187.545	191.051	193.378	197.547	198.322
CUMULA	۱.	(MMSTB)	89.034	89.654	90.239	90.798	90.935
	W.O.R.	(STB/STB)	0.003	0.003	0.003	0.002	0.002
	G.O.R.	(SCF/STB)	5297	5644	5677	5673	6672
GAS PROD.	RATE	(MMSCF/D)	9.88	9.61	9.11	8.68	8.49
OIL PROD.	RATE	(MSTB/D)	1.80	1.70	1.61	1.53	1.50
	RECOVERY	(%)	27.25	27.44	27.62	27.79	27.83
	TIME	(YEAR)	1991	1992	1993	1994	1995

Table 2-2-1 CORRELATION TABLE Vol. III TEMBUNGO FIELD

		sea	19		26 89	92	13	34	
A-1	94	Subsea	20		53	54	57	19	
A		Log	2117 3828		5612	5801 5948	6046	6518	
5		Subsea	1674 3943	5323	5595 5635	5740 5849	6026	6584	•
5	m	Log	1705	5354	5626 5666	5771 5880	6057	6615	
4		Subsea	2833 5859		7583 7648	7772	7982	8753	
,	31	Log	2864 5890		7614 7679	7803 7880	8013	8784	
3	-1	Subsea	3194 4280		6279 6380	6479 6608		7277	
	31	Log	3225 4311		6310 6411	6510 6639		8057	
2		Subsea	2681 5077			6699 6891	7002	7639	
	31	Log	2712 5038			6730 6922	7033	7670	
		Subsea	1991 4035	5735	5884 6024	6065 6185	6263	7427	
	31	Log	2022 4066	5766	5915 6055	9096	6294	7458	
ON LIEM	THE CO.	Cycle/Zone	Top Cycle VII? Cycle VI?	Top a	Top b ₁	Top c ₁	Top d	T.D.	

Table 2-2-1 (Continued) Vol. III

CORRELATION TABLE TEMBUNGO FIELD

Well No.	A-	A-2A	A-2	.2	A-3	.3	A-4	-4	A-5	ن	A-7	7
D.F.E.	6	94	٩	94	5	94	01	94	- 1	94		94
Cycle/Zone	Log	Subsea										
Top Cycle VII? Cycle VI?	2210 5293	1996 3787	2210 5172	1996 3767	2043 6761	1902 4839	2122 3686	2022 3467	2246 5973	2067 4167	2084 4026	1918 3460
Тора					-	-	5638	5214	8684	5664	6144	5150
Top b ₁	7858	5223	7290 5470	4904			5913 6020	5454 5521	9053 9172	5888 5962	6405 6476	5372 5434
Top c ₁			7700 8017	5113 5287			6150 6275	5662 5768	9308	6045	6612 6802	5551 5717
Top d			8143	5358			6424	5896			6870	5776
T.D.	8219	5421	9482	6083	9523	6523	0099	6047	9733	6290	7131	6002

Vol. III Table 2-3-1 PREDICTED PERFORMANCE OF TEMBUNGO FIELD

PRODUCTION START: Oct. 1974 PRODUCTION END: Sep. 1982

CTION	WATER (MMSTB)	0.0	0.038	0.131	0.347	0.579	0.682	0.756	0.818	0.877
CUMULATIVE PRODUCTION	GAS (MMMSCF)	0.12	0.999	2.424	4.163	5.497	5.945	6.232	6.525	6.733
CUMULA	OIL (MMSTB)	0.219	1.561	3.129	4.397	5.199	5.397	5.465	5.519	5.551
	W.O.R. (STB/STB)	0.0	0.03	90.0	0.17	0.27	0.52	1.07	1.13	1.73
GAS PROD.	G.O.R. (SCF/STB)	558	655	907	1372	1527	2278	4158	5333	6143
	RATE (MMSCF/D)	1.31	2.41	3.90	4.76	3.65	1.23	0.79	0.80	0.43
OIL PROD.	RATE (MSTB/D)	2.4	3.68	4.30	3.47	2.39	0.54	0.19	0.15	0.07
	RECOVERY (%)	1.14	8.12	16.27	22.50	27.03	28.06	28.42	28.70	28.86
	TIME (YEAR)	Dec.1974	1975	1976	1977	1978	1979	1980	1981	Sep.1982

Vol. III Table 2-3-2 PREDICTED PERFORMANCE OF MODEL-1,

TEMBUNGO FIELD

PRODUCTION START: Oct. 1974 PRODUCTION END: Jun. 1978

CTION	WATER (MMSTB)	900.0	0.011	0.030	0.039
CUMULATIVE PRODUCTION	GAS (MMMSCF)	0.490	0.663	1.273	1.572
CUMULA	OIL (MMSTB)	1.108	1.414	1.893	2.056
	W.O.R. (STB/STB)	0.01	0.02	0.04	90.0
	G.O.R. (SCF/STB)	463	565	1275	1843
GAS PROD.	RATE (MMSCF/D)	0.75	0.95	1.67	1.64
OIL PROD.	RATE (MSTB/D)	1.68	1.68	1.31	0.89
	RECOVERY (%)	23.92	30.54	40.88	44.40
RESERVOIR	PRESSURE (PSIG)	1774	1586	1190	1018
	TIME (YEAR)	Jun. 1976	Dec.1976	1977	Jun. 1978

Vol. III Table 2-3-3

PREDICTED PERFORMANCE OF MODEL 2,

TEMBUNGO FIELD

PRODUCTION START: May 1975 PRODUCTION END: Sep.1982

CTION	WATER (MMSTB)	0.053	0.083	0.147	0.223	0.282	0.356	0.418	0.477
CUMULATIVE PRODUCTION	GAS (MMMSCF)	0.210	0.330	0.594	0.864	1.14	1.427	1.72	1.928
CUMULA	OIL (MMSTB)	0.26	0.357	0.510	0.625	0.711	0.779	0.833	0.865
	W.O.R. (STB/STB)	0.19	0.31	0.42	0.65	0.67	1.07	1.13	1.80
	G.O.R. (SCF/STB)	1085	1241	1722	2312	3151	4138	5352	6332
GAS PROD.	RATE (MMSCF/D)	0.63	99.0	0.72	0.74	0.76	0.79	0.80	0.76
OIL PROD.	RATE (MSTB/D)	0.61	0.53	0.42	0.32	0.24	0.19	0.15	0.12
	RECOVERY (8)	7.62	10.48	14.97	18.33	20.86	22.86	24.44	25.39
RESERVOIR	PRESSURE (PSIG)	2136	1987	1742	1504	1334	1125	972	842
	TIME (YEAR)	Jun.1976	Dec.1976	1977	1978	1979	1980	1981	Sep.1982

Vol. III Table 2-3-4
PREDICTED PERFORMANCE OF MODEL-3,
TEMBUNGO FIELD

PRODUCTION START: Mar. 1975 PRODUCTION END: Mar. 1979

CTION	WATER (MMSTB)	0.0	0.034	0.167	0.313	0.358
FIVE PRODU	OIL GAS WATER MSTB) (MMMSCF) (MMSTB)	0.775	1.202	2.067	2.832	3.004
CUMULA	OIL (MMSTB)	0.883	1.289	1.924	2.449	2.561
	W.O.R. (STB/STB)	0.0	80.0	0.22	0.28	0.40
	G.O.R. (SCF/STB)	1064	1054	1362	1458	1528
GAS PROD.	RATE (MMSCF/D)	2.49	2.34	2.37	2.10	1.88
OIL PROD.	RATE (MSTB/D)	2.34	2.22	1.74	1.44	1.23
	RECOVERY (%)	10.00	14.59	21.78	27.72	28.99
RESERVOTE	PRESSURE (PSIG)	2147	1847	1330	910	805
	TIME (YEAR)	Jun.1976	Dec.1976	1977	1978	Mar.1979

Vol. III Table 2-3-5 PREDICTED PERFORMANCE OF MODEL-4,

TEMBUNGO FIELD

PRODUCTION START: Nov. 1974 PRODUCTION END: Mar. 1975

WATER (MMSTB)	0.003	0.107
CUMULATIVE PRODUCTION OIL GAS WAT!	0.069 0.229	0.893
CUMULA' OIL (MMSTB)	690.0	0.149
W.O.R. (STB/STB)	0.34	1.30
G.O.R. (SCF/STB)	5227	8269 20125
GAS PROD. RATE (MMSCF/D)	1.24	1.82
OIL PROD. RATE (MSTB/D)	0.22	0.22
RECOVERY (%)	3.00	6.31 8.05
RESERVOIR PRESSURE (PSIG)	2142	1591 1093
TIME (YEAR)	Mar.1975	1 L 5.5

VOL. III TABLE 2-3-6
PREDICTED PERFORMANCE OF TEMBUNGO FIELD
- ADDITIONAL WELL CASE - TOTAL

CTION	WATER (MMSTB)	0.236	0.497	0.644	0.740	0.853
CUMULATIVE PRODUCTION	GAS (MMMSCF)	2,383	6.350	10.172	12.554	14.826
COMULA	OIL (MMSTB)	2,751	4.575	5.159	5.427	5.605
	W.O.R. (STB/STB)	0.086	0.143	0.247	0.369	0.635
	G.O.R. (SCF/STB)	998	2177	6536	8940	12714
GAS PROD.	RATE (MMSCF/D)	6.53	10.87	10.47	6.53	6.23
OIL PROD.	RATE (MSTB/D)	7.54	4.99	1.60	0.73	0.49
	RECOVERY (%)	15.75	26.18	29.52	31.06	32.08
	TIME (YEAR)	1.0	2.0	3.0	4.0	5.0

VOL. III TABLE 2-3-7
PREDICTED PERFORMANCE OF TEMBUNGO FIELD
- ADDITIONAL WELL CASE - WELL TM AD-1

CTION	WATER (MMSTB)	0.016	0.052	0.102
CUMULATIVE PRODUCTION	GAS (MMMSCF)	0.391	1.744	3.361
CUMULA	OIL (MMSTB)	0.365	0.693	0.811
	W.O.R. (STB/STB)	0.044	0.110	0.425
	G.O.R. (SCF/STB)	1071	4119	13737
GAS PROD.	RATE (MMSCF/D)	1.07	3.71	5.91
OIL PROD.	RATE (MSTB/D)	1.00	06.0	0.43
	RECOVERY (%)	16.33	31.01	36.29
RESERVOIR	PRESSURE (PSIG)	2957	2176	1465
	TIME (YEAR)	1.00	2.00	2.75

Vol. III TABLE 2-3-8

PREDICTED PERFORMANCE OF TEMBUNGO FIELD
- ADDITIONAL WELL CASE - WELL TM AD-2

	RESERVOIR		OIL PROD.	GAS PROD.			CUMULA	TIVE PRODU	CTION
TIME (YEAR)	PRESSURE (PSIG)	RECOVERY (%)	RATE (MMSTB/D)	RATE (MMSCF/D)	G.O.R. (SCF/STB)	W.O.R. (STB/STB)	OIL (MMSTB)	OIL GAS WATER MMSTB) (MMSTB)	WATER (MMSTB)
1.00	1844	15.47	06.0	0.92	1017	0.192	0.330	0.334	0.063
2.00	1024	24.42	0.53	96.0	1804	0.352	0.522	0.683	0.131
2.25	893	26.02	0.37	0.82	2221	0.444	0.556	0.758	0.146

VOL. III TABLE 2-3-9
PREDICTED PERFORMANCE OF TEMBUNGO FIELD
- ADDITIONAL WELL CASE WELL TM AD-3

CTION	WATER	(MMSTB)	0.112	0.205
TIVE PRODU	OIL GAS WATER	(MMMSCF)	0.707	1.374
CUMULA	OIL	(MMSTB)	0.975	1.541
	W.O.R.	(STB/STB)	0.11	0.16
	G.O.R.	(SCF/STB)	727	1179
GAS PROD.	RATE	(MMSCF/D)	1.94	1.83
OIL PROD.	RATE	(MSTB/D)	2.67	1.55
	RECOVERY	(8)	17.26	27.26
RESERVOIR	PRESSURE	(PSIG)	1409	898
	TIME	(YEAR)	1.0	2.0

VO1. III TABLE 2-3-10
PREDICTED PERFORMANCE OF TEMBUNGO FIELD
- ADDITIONAL WELL CASE - WELL TM AD-4

NOI	WATER (MMSTB)	0.045	0.108	0.188	0.286	0.400
IVE PRODUCE	OIL GAS WATER (MASTB) (MMSTB)	0.951	2.548	4.678	7.060	9.333
CUMULAT	OIT (MMSTB)	1.081	1.819	2.251	2.519	2.697
	W.O.R. (STB/STB)	0.042	0.085	0.186	0.368	0.637
	G.O.R. (SCF/STB)	880	2166	4945	8940	12709
GAS PROD.	RATE (MMSCF/D)	2.61	4.38	5.84	6.53	6.23
OIL PROD.		2.96	2.02	1.18	0.73	0.49
	RECOVERY (%)	14.52	24.42	30.22	33.82	36.21
RESERVOIR	PRESSURE (PSIG)	2415	2018	1613	1208	837
	TIME (YEAR)	1.00	2.00	3.00	4.00	5.00

Table 3-2-1 CORRELATION TABLE Vol. III ERB WEST FIELD

			<u> </u>								,		,		
	7	Subsea	3736	3736	4119	4272	4492	4657	4871	5152	5452	6827 6886		7557	
4	717	Log	3853	3853	4253	4414	4644	81	5041	33	5650	7099 7162		7878	
	Ţ	Subsea	3197	3197	3537	3670	3849	4021	4260	4504	4790	6490 6644		8420	
3	T T T	Log	3308	3308	3648	3782	3960	4132	4371	4615	4901	6601 6755		8531	
	2	Subsea	3381	3381	3734	3879	4080	4223	4435	4770	ı	6173 6273		8663	
2	112	Log	3493	3493	3846	3991	4192	4335	4547	4882	ı	6285 6385		8775	
	.2	Subsea	3683	3683	3830	3979	4186	4347	4552	4893	5080	6350 6438	7660	7903	
7	112	Log	3795	3795	3942	4091	4298	4459	4664	2002	5192	6462 6550	7772	8015	
Well No.	D.F.E.	Cycle/Zone	Top Upper V	Top al		1 10	, d	. KO	, co	a7	Top b	Top c1 c2	Top d	T.D.	

FIELD NAME; ERB WEST

RESERVOIR NAME;

NATURAL DEPLETION CASE

VISG	u	.0120	.012	0.01252	015	013	.014	0.01597	.0190	0.01919			•						
VISO	(C.P.)	1.3900	1.2900	1.2100	1.1400	1.0300	0.9400	0.8400	725									•	
FVFG		1.191258	0.080132	0.040746	0.026989	0.015826	0.011007	0.007538	0.004939	0.004897									
RS	(SCF/STB)	•	33.	65.	-86	163.	228	326.	. 500	.500	KRO	0.0668	0.1146	0.1828	0.2761	0.3992	0.5573	0.7557	0000
FVFD		1.048	•	1.060	1.069	•	•	1.135		1.186	KG/KD	70.0000	26.5000	10.0000	3.0000	1.2000	4.0000	0.1300	0.0200
PRESSURE	(PSIG)		. 002	400+	•009	1000.	1400.	2000	О	3100.	SL	0.65	0.70	0.75	0.80	0.85	06.0	0.95	00.1

Vol. III Table 3-3-1 RESERVOIR PARAMETERS

OIL PRODUCTION RATE (MSTB/D) = 2 FRACTION OF RESERVOIR GAS AND OIL VOL.=

1.0250 0.2900 500.0000 169.5115

WATER FORMATION VOLUME FACTOR IREDUCIBLE WATER SATURATION FINAL PRESSURE (PSIG)

ORIGINAL DIL IN PLACE (MMSTB)

BUBLE POINT PRESSURE (PSIG) = 3070.0000 INITIAL RESERVOIR PRESSURE (PSIG) = 3101.0000 EFFECTIVE COMPRESSIBILITY = 0.0000142

FIELD NAME; ERR WEST

RESERVOIR NAME;

NATURAL DEPLETION CASE

PRODUCTION WATER GAS ENCROACH• (MMMSCF) (MMBBL)	2.098 0.05	7.932 0.55	17.892 1.74	34.895 2.64	69.561 3.52	231.192 4.36	475.374 4.97
CUMULALIVE OIL (MMSTB)	3.650	7.301	10.951	14.602	18.252	21.902	25.122
GAS OIL RATIO (SCF/STB)	611.	2244.	3587.	5958	10935.	48602.	750144.
PRODUCTION RATE OIL GAS (MSTB/D) (MMSCF/D)	11.49	31.97	54.57	93.15	189.93	885.56	1337.83
PRODUCT OIL (MSTB/D)	20.00	20.00	20.00	20.00	20.00	20.00	17.64
RECOVERY (%)	2.15	4.31	94.9	8.61	10.77	12.92	14.82
RESERVOIR PRESSURE (PSIG)	3066.	3014.	2942.	2827.	2619.	1781.	545
rime (Ear)	0.50	1.00	1.50	2.00	2.50	3.00	3.50

Vol. III Table 3-3-2 PREDICTED PERFORMANCE

Table 4-2-1 CORRELATION TABLE Vol. III SOUTH FURIOUS FIELD

Well No.	1			2		3		4		5		9
	111	1	7	70	-		4	41	4		4.	
Cycle/Zone	Log	Subsea	Log	Subsea	Log	Subsea	Log	Subsea	Log	Subsea	Log	Subsea
Top Upper V Lower V	2540? 6635	2429 6524	1680 28263	1610	1580 2722?	1505	1822 3124?	1781 3083?	1170 22062	1129 2165?	1140	1099 2589?
			1680	1610	1580	1505	1822	1781	1170	1129	1140	1099
			2065	1995	2120	2045	2590	2549	1258 1870	1217 1829	1534 2290	1493 2249
			2826	2756	2722	2647	3124	3083	2206	2165	2630	2589
			3261	3191	3225	3150	3504	3463	2681	2640	3068	3027 ·
			3707	3637	3837	3762	4014	3973	3153	3112	3497	3456
			4259	4189	4640	4565	4539	4498	3886	3845	4216	4175
			5110	5040	5696	5621	5297	5256	4710	4669	4987	4946
			5872	5802	6456	6381	6044	6003	5620	5579	5990	5949
	0006	6888	6847	2229	7880	7805	6800	6229	9010	8969	6503	6462

Table 4-2-1 (Continued) CORRELATION TABLE Vol. III SOUTH FURIOUS FIELD

	41	Log Subsea	2138 2097 4757? 4716?	2138 2097	4213 4172	4757 4716	5275 5234	6306 6265	6709 6668	7681 7640	8290 8249	9100 9059	
Well No.	L C	Cycle/Zone	Top Upper V Lower V	Тора	Top b ₁ b ₂	Top c	Top d	Top e	Top f	Top g	Top h	T.D.	

FIELD NAME; SOUTH FURIOUS

RESERVOIR NAME;

NATURAL DEPLETION CASE

VISG (C.P.) 0.01202 0.01225 0.01247 0.01352 0.01445 0.01639		0000 00167 0250 3500 0649 0000
VISO (C.P.) 1.6600 1.5150 1.4100 1.3200 1.1840 1.0700 0.9200		G)= 2000. = 0.000 = 0.000 = 500. = 340. IL VOL.=
FVFG 1.185485 0.079568 0.026674 0.015556 0.010780 0.007343		(PSIG) SSURE (PSI LITY E FACTOR RATION G) (MMSTB) MSTB/D) GAS AND O
RS (SCF/STB) 0. 35. 70. 105. 175. 240. 350.	KRO 0.0983 0.1561 0.2330 0.4552 0.6058 0.7865	PRESSURE (RESSIGNOR PRESSION VOLUME WATER SATURA SOURE (PSIG) (L IN PLACE (MSIGN RATE (MSIGN RATE (MSIG) RESERVOIR G
FVFO 1.048 1.066 1.079 1.107 1.124 1.149	KG/KD 70.0000 26.5000 6.0000 2.5000 0.9500 0.1380 0.1300	BUBLE POINT PINITIAL RESEREFECTIVE COMMATER FORMATIINELE WAFINAL PRESSUORIGINAL OIL OIL PRODUCTIC
PRESSURE (PSIG) 0. 200. 400. 600. 1000. 1400. 2101.	SL 0.65 0.70 0.75 0.85 0.90 1.00	

Vol. III Table 4-3-1 RESERVOIR PARAMETERS

FIELD NAME: SOUTH FURIOUS

RESERVOIR NAME;

NATURAL DEPLETION CASE

																٠
WATER ENCROACH.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
PRODUCTION GAS (MMMSCF)	2.942	8.148	13.857	20.106	26.826	33,791	40.804	47.760	54.511	60,586	65.984	70.808	75.103	78.942	82,389	
CUMULATIVE OIL (MMSTB)	1.825	3.650	5.476	7.301	9.102	10.829	12,455	13.988	15,439	16.818	18,138	19.406	20.629	21.812	22,957	
GAS DIL RATIO (SCF/STB)	2724.	2988•	3274.	3579.	3886	4184.	4436.	4635.	4563.	4244	3943.	3658	3373.	3121.	2893.	
ION RATE GAS ((MMSCF/D)	32.24	57.05	62.55	68.48	73.64	76.32	76.85	76.22	73.97	66.57	59,15	52.86	47.07	45.06	37.77	
PRODUCTION OIL (MSTB/D) (MMS	20.00	20.00	20.00	20.00	19,74	18.92	17.82	16.80	15,90	15,12	14.46	13.90	13.41	12,96	12.54	
RECOVERY (%)	0.54	1.07	1.61	2.15	2.68	3.18	3.66	4.11	4.54	4,95	5.33	5.71	4.07	6.41	6.75	
RESERVOIR PRESSURE (PSIG)	1935.	1821.	1703.	1580.	1455.	1323•	1190.	1063.	. 244	848.	762.	687.	621.	563.	511.	
TIME Year)	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25	2.50	2.75	3.00	3,25	3.50	3.75	

vol. III Table 4-3-2 PREDICTED PERFORMANCE

Table 5-2-1 CORRELATION TABLE Vol. III WEST EMERALD FIELD

Well No.		1		2
D.F.E.		72	3	80
Cycle/Zone	Бол	Subsea	rog	Log Subsea
Top V				
Top a	1250	1250 1178	1120	1040
Top b			4710	4630
T.D.	6523	6451	5400	5320

Table 6-2-1 CORRELATION TABLE Vol. III ST. JOSEPH FIELD

	E. 71	e/Zone Log Subsea	Middle V 809 738 Lower V 2321 2250 IV 5546 5475	a ₁ 1741 1670 a ₂ 1819	b ₁ 2198 2127 2321 2250 b ₃ 2396 2325 b ₄ 2610 2539	6928 6857	nf. 5808
Well No.	D.F.E.	Cycle/Zone	Top Middle V Lower V IV	Top a ₁ a ₂	Top b ₁ b ₂ b ₃ b ₄	T.D.	unconf.

rable 7-2-1 CORRELATION TABLE Vol. III ERB SOUTH FIELD

Well No.		1
D.F.E.	7	1
Cycle/Zone	Log	Subsea
Top VI Middle V	2964	2893
Top a	2778	2707
T.D.	4726	4655
unconf.	2965	ı

Table 8-4-1 MAJOR EQUIPMENT SPECIFICATIONS (Vol. III) OF PRODUCTION STATION SMP-A

SEPARATOR

Name & Tag No.	No.	Туре	Size	Design Capacity BPD	Pressure Design/ Operation PSIG
HP Separator V-100 & 101	2	Hori.	72"øx20'	30,000	385/250
LP Separator V-200 & 201	2	ditto	72"øx20'	30,000	125/50
Surge Vessel V-300 & 301	2	ditto	126"øx32'	30,000	85/10
Test Separator V-400	1	ditto	60"øx15'	•	385
Gas Lift Separator V-500	1	ditto	42"øx15'		1,440/950

PUMP

Name & Tag No.	No.	Capacity BPD	Туре	S	eader uction ischan		
Crude Oil Transfer Pump P-801 - 805	5	13,000	Recipro. Gas Expansion Driven		150# 600#	ANSI/ ANSI	

ELECTRICAL GENERATOR

No.	Туре	Voltage volts	Phase	Frequency Hz	Capacity Kw	Speed RPM	Service
1	Gas Expansion Turbine- driven	415	3	50	20	1,500	Lighting, Instr., etc.

Table 8-4-2 MAJOR EQUIPMENT SPECIFICATIONS (Vol. III) OF PRODUCTION STATION SMP-B

SEPARATOR

Name & Tag No.	No.	Туре	Size	Design Capacity BPD	Pressure Design/ Operation PSIG
HP Separator V-100	1	Hori.	72"øx20'	30,000	385/250
LP Separator V-200	1	ditto	72"øx20'	30,000	125/50
Surge Vessel V-300	1	ditto	126"øx32'	30,000	85/10
Test Separator V-400	1	N/A	N/A		385

PUMP

Name & Tag No.	No.	Capacity BPD	Туре	Header Suction/ Discharge
Crude Oil Transfer Pump P-801 - 802	2	13,000	Recipro. Gas Expansion Driven	20" 150# ANSI/ 8" 600# ANSI

ELECTRICAL GENERATOR

No.	Туре	Voltage volts	Phase	Frequency Hz	Capacity Kw	Speed RPM	Service
1	Gas Expansion Turbine- driven	415	. 3	50	20	1,500	Lighting, Instr., etc.

Table 8-4-3 MAJOR EQUIPMENT SPECIFICATIONS (Vol. III) OF LABUAN TERMINAL

STORAGE TANK

Name & Tag No.	No.	Nominal Capacity BBLS	Size	Туре
Crude Oil Storage Tank T-1 - T-3	3	439,000	214'øx72'	Floating Roof

CRUDE OIL LOADING PUMP SYSTEM

Name & Tag No.	No.	Capacity BPH x Head	Туре
Crude Oil Loading Pump P-21 - P-23	3	18,000 x 275'	Centrifugal, Diesel Engine Driven

SINGLE BUOY MOORING

Name & . Tag No.	No.	Water Depth	Tanker Mooring Capacity, DWT
SBM	1	95'	310,000

SURFACE/FORMATION WATER DRAINAGE SYSTEM

Name & Tag No.	No.	Туре
CPI	1	Corrugated Plate Interceptor
Holding Basin	1	Gravity Separation

Table 8-4-3 MAJOR EQUIPMENT SPECIFICATIONS (Vol. III) OF LABUAN TERMINAL (Cont'd)

FIRE FIGHTING SYSTEM

Name & Tag No.	No.	Capacity	Туре
Firewater Tank T-61	1.	35,000 BBLS	Open Top
Fire Fighting Pump P-61 - P-62	2	7,200GPM x 430'	Centrifugal, Diesel Engine Driven

POWER PLANT

Name & Tag No.	No.	Capacity HP	Туре
Generator	3	325	Diesel Engine Driven

SEA WATER DISTILLATION UNIT

Name & Tag No.	No.	Output	Type
Aqua-Chem Unit	l Unit	167 UKGPH	Aqua-Chem/ Type S200 Spec. E

UTILITIES TANK

Name & Tag No.	No.	Capacity	Type
Diesel Fuel Tank T-51 - T-52	2	300 BBLS	Cone Roof
Potable Water Tank V-73	1	6,000 UKGA	L.

Table 8-4-4 (Vol. III)

MAJOR EQUIPMENT SPECIFICATIONS
OF TEMBUNGO "A"

SEPARATOR

Name & Tag No.	No.	Туре	Size	Design Capacity BPD/MMSCFD	Pressure Design/ Operating PSIG
Test Separator V-190	1	Hori.	48"øx15'	6,000/	710/ 100-600
Prod. Separator V-200	1	Hori.	72"øx20'	20,000/	710/ 100-600
FWKO & Surge V-250	1	Hori.	144"øx30'	30,000/	50/ ATM.
LP Flare Scrubber V-400	1	Hori.	48"øx10'	20/0.5	50/ ATM.
HP Flare Scrubber V-410	1	Hori.	72"øx15'	20,000/ 15.5	50/ ATM.
Caisson Separator V-535	1	Vert.	30"øx172'		

PUMP

Name & Tag No.	No.	Туре	Capacity GPM	Head PSI	Motor Power HP
SPM Oil Pump P-290 & 300	2	Centri. Motor-driven	600	60	40
LP Flare Transfer Pump P-405	1	ditto	80	15	3
HP Flare Transfer Pump P-415	1	ditto	80	15	3
Caisson Oil Pump P-535	1	ditto	40	45	

ELECTRICAL GENERATOR

No.	Туре	Capacity	Service
1	Diesel Engine	400 kw	Motor Drivers, Lighting, Instrumentation, etc.

<u>Table 9-5-1</u> (Vol. III)

MAJOR EQUIPMENT LIST

FOR ERB WEST AND SOUTH FURIOUS OIL FIELDS-CASE I

ITEM NO. & NAME	LOCATION	, QUANTITY.	DESCRIPTION
V - 1 1ST STAGE PRODUCTION SEPARATOR	SFWP-A SFWP-B EWWP-A EWWP-B	1 1 1	SIZE: 4'-6" I.D. x 13'-6" S-S DESIGN PRESS.: 300 PSIG @ 150°F TYPE: HORIZONTAL
V - 2 2ND STAGE PRODUCTION SEPARATOR	SFWP-A SFWP-B EWWP-A EWWP-B	1 1 1	SIZE: 4'-6" I.D. x 13'-6" S-S DESIGN PRESS.: 100 PSIG @ 150°F TYPE: HORIZONTAL
V - 3 3RD STAGE PRODUCTION SEPARATOR	SFWP-A SFWP-B EWWP-A EWWP-B	1 1 1	SIZE: 11'-0" I.D. x 22'0" S-S DESIGN PRESS.: 50 PSIG @ 150°F TYPE: HORIZONTAL
<u>V - 4</u> TEST SEPARATOR	SFWP-A SFWP-B EWWP-A EWWP-B	1 1 1	SIZE: 3'-6" I.D. x 10'-0" S-S DESIGN PRESS.: 300 PSIG @ 150°F TYPE: HORIZONTAL
C - 151 INSTRUMENT AIR COMPRESSOR	SFWP-A SFWP-B EWWP-A EWWP-B	2 2 2 2	CAPACITY: 35 SCFM
P - 2	SFWP-A SFWP-B	2 2	CAPACITY: 240 GPM TYPE: HORIZONTAL
CRUDE TRANSFER PUMP	EWWP-A EWWP-B	2 2	CAPACITY: 300 GPM TYPE: HORIZONTAL
<u>P - 152</u> FIRE WATER PUMP	SFWP-A SFWP-B EWWP-A EWWP-B	1 1 1	CAPACITY: 1,500 GPM TYPE: VERTICAL
TK - 1 DEEMULSIFIER TANK	SFWP-A SFWP-B EWWP-A EWWP-B	1 1 1	SIZE: 6'-0" I.D. x 15'-6" H
TK - 2 DEFOAMANT TANK	SFWP-A SFWP-B EWWP-A EWWP-B	1 1 1	SIZE: 6'-0" I.D. x 15'-6" H
TK - 152 DIESEL STORAGE TANK	SFWP-A SFWP-B EWWP-A EWWP-B	1 1 1	CAPACITY: 500 BBL SIZE: 15'-6" I.D. x 16'-0" H
M - 1 INLET MANIFOLD	SFWP-A SFWP-B EWWP-A EWWP-B	1 1 1	HIGH PRESSURE HEADER LOW PRESSURE HEADER TEST HEADER
G - 151 DIESEL DRIVEN GENERATOR	SFWP-A SFWP-B EWWP-A EWWP-B	2 2 2 2	CAPACITY: 300 KVA
FM - 1 FLOW METER	SFWP-A SFWP-B	1 1	DESIGN RATE: 280 GPM (MAX.)
	EWWP-A EWWP-B	1	DESIGN RATE: 350 GPM (MAX.)

	Table 9-6-1 (Vol. III) CAPITAL INVES	CAPITAL INVESTMENT COST ESTIMATION		
	ERB WEST AND SOUTH FURIOUS OIL FIELDS	CASE I	CASE II A	(M\$ 1,000) CASE II B
н.	Exploration & Appraisal Wells	63,259	63,259	63,259
2.	Engineering	28,096	16,266	17,115
m	Development Wells	090'66	57,150	57,150
4.	Facilities			•
	a. Offshore Platforms	82,515	50,071	39,733
•	b. Offshore Production Equipment	21,864	13,355	7,633
	c. Submarine Pipelines	77,523	42,088	11,054
	d. Offshore Storage & Loading Facilities .		1	1
	e. Onshore Terminal & Loading Facilities .	ı	ı	35,802
	f. Support Facilities	ı	ı	. 19,779
	Sub Total	181,902	105,514	114,001
5.	Pre-start up Expense	3,091	1,788	1,883
•	Contingencies	30,906	17,895	18,826
	TOTAL	406,314	261,872	272,234
		,		

ANNUAL OPERATION COST ESTIMATION

Table 9-6-2 (Vol.III)

(M\$ 1,000)

ERB WEST	r AND SOUTH	FURIOUS OIL F	IELDS CASE I				.(M\$ 1,0		
	1	2	3	4	5	6	7	8	9
. Direct Cost									
a. Operating Personnel					1,801	1,801	1,801	1,801	1,801
b. Operating Management					180	180	180	180	180
c. Repair & Maintenance					5,992	5,992	3,091	3,091	3,091
d. Operating Supplies		=			1,135	1,135	602	602	602
e. Chemical					1,494	1,494	- 843	843	650
f. Service Contract					2,972	2,972	2,972	2,972	2,972
Sub Total					13,574	13,574	9,489	9,489	9,296
. Indirect Cost									
a. Indirect Personnel					991	991	991	991	991
b. Insurance					4,486	4,486	2,525	2,525	2,525
Sub Total					5,477	5,477	3,516	3,516	3,516
TOTAL					19,051	19,051	13,005	13,005	12,812

.

ANNUAL OPERATION COST ESTIMATION

Table 9-6-3 (Vol.III)

(M\$ 1,000)

able 9-6-3 (Vol.III) ERB	WEST AND SOL	UTH FURIOUS	OIL FIELDS	CASE IIA	 		(M\$ 1,00	· · · · · · · · · · · · · · · · · · ·
	1	2	3	4	5	6	7	8
l. Direct Cost								; ;
a. Operating Personnel				1,801	1,801	1,801	1,801	1,801
b. Operating Management		ļ		180	180	180	180	180
c. Repair & Maintenance	1			3,739	3,739	3,739	3,739	3,739
d. Operating Supplies		-		691	691	691	691	691
e. Chemical				843	843	843	843	.650
f. Service Contract		í		2,083	2,083	2,083	2,083	2,083
Sub Total				9,337	9,337	9,337	9,337	9,144
. Indirect Cost								
a. Indirect Personnel				991	991	991	991	991
b. Insurance				3,000	3,000	3,000	3,000	3,000
Sub Total				3,991	3,991	3,991	3,991	3,99
TOTAL				13,328	13,328	13,328	13,328	13,135

ANNUAL OPERATION COST ESTIMATION

Table 9-6-4 (Vol.III)

ERB WEST AND SOUTH FURIOUS OIL FIELDS CASE IIB

(M\$ 1,000)

		1	2	3	4	5	6	7	8
1.	Direct Cost								
	a. Operating Personnel				1,801	1,801	1,801	1,801	1,801
-	b. Operating Management				180	180	180	180	180
	c. Repair & Maintenance				3,990	3,990	3,990	3,990	3,990
	d. Operating Supplies				622	622	622	622	622
	e. Chemical		-		843	843	843	843	650
	f. Service Contract				2,083	2,083	2,083	2,083	2,083
	Sub Total				9,519	9,519	9,519	9,519	9,326
2.	Indirect Cost								
	a. Indirect Personnel				991	991	991	991	991
	b. Insurance				3,028	3,028	3,028	3,028	3,028
•	Sub Total				4,019	4,019	4,019	4,019	4,019
·	TOTAL				13,538	13,538	13,538	13,538	13,345

(M\$ 1,000)

-													
(M\$ 1,000)	4TH	t	. 1	45,481	8,819	1,572	34,262	-	1		901	9,013	100,048
	3RD	9	-	42,863	40,960	5,974	43,261	-	•	1	1,331	13,306	147,695
	2ND		1	10,716	31,255	13,538	1	-	18	1	555	5,551	61,615
FIELDS CASE I	lsT	63,259	28,096	-	1,481	780	-	-	•	J	304	3,036	96,956
ERB WEST AND SOUTH FURIOUS OIL	Year	1. Exploration & Appraisal Wells	2. Engineering	3. Development Wells	4. Offshore Platforms	5. Offshore Production Equipment	6. Submarine Pipelines	7 Offshore Storage & Loading 7. Facilities	8. Onshore Terminal & Loading 8. Facilities	9. Support Facilities	10. Pre-start up Expense	11. Contingencies	Total

Table 9-6-6 (Vol. III)

INVESTMENT SCHEDULE

ERB WEST AND SOUTH FURIOUS OIL FIELDS CASE II A

(M\$ 1,000)

2,164 7,375 924 737 81,863 28,575 42,088 3RDı ı ı ١ 969 6,967 28,575 32,888 77,320 8,194 2ND t ı 1 l ı 4,237 3,553 355 16,266 15,019 102,689 63,259 lsT ı 1 1 5. Offshore Production Equipment 1. Exploration & Appraisal Wells Offshore Storage & Loading Facilities Onshore Terminal & Loading Facilities Year 10. Pre-start up Expense Submarine Pipelines Support Facilities 4. Offshore Platforms 3. Development Wells 11. Contingencies Total Engineering Item

7.

. œ

9

. თ

Table 9-6-7 (Vol. III)

INVESTMENT SCHEDULE

(M\$ 1,000)													
	3RD	I	1	28,575	2,164	282	11,054		13,264	1	553	5,534	61,426
В	ZND		l.	28,575	26,685	5,146	1	•	18,563	13,185	922	9,215	102,291
FIELDS CASE II	18T	63,259	17,115		10,884	2,205	ı	ţ	3,975	6,594	408	4,077	108,517
ERB WEST AND SOUTH FURIOUS OIL	Year	1. Exploration & Appraisal Wells	2. Engineering	3. Development Wells	4. Offshore Platforms	5. Offshore Production Equipment	6. Submarine Pipelines	7. Offshore Storage & Loading 7. Facilities	8 Onshore Terminal & Loading 8 Facilities	9. Support Facilities	10. Pre-start up Expense	11. Contingencies	Total

** FCONOMICA CONTRACT CONTRACT

. TABLE 9-6-8 CASH FLOW TABLE FOR OIL ERB WEST AND SOUTH FURIOUS. OIL FIELDS

CASE I : ERB WEST & SOUTH FURIOUS, LABUAN TERMINAL CASE VOL.111

PAGE

PREMISES

: 5 YEARS : 4 YEARS : 100.00 % : 8.00 %	ENTS #	10.00 % 20.00 % 170.00 % 10.00 % 10.00 % 10.00 % 170.00 %
PRODUCTION LIFE PRE-STARTUP PERIOD EQUITY RATIO OF OIL COMPANY INTEREST RATE	* BASIC TERMS OF P/S AGREEMENTS	ROYALTY RATE MAXIMUM COST RECOVERY RATIO PROFIT OIL SHARE PETRONAS OPERATING COMPANY RATE OF PAYMENT FOR RESEARCH FUND INITIAL BASIC PRICE (AT 1976 BASE) RATE OF PAYMENT FOR RESEARCH FUND RATE OF INCREASE FOR BASIC PRICE RATE OF PAYMENT FOR PROFIT OIL ABOVE BASIC PRICE PRODUCTION BONUS ABOVE 500008BL/DAY DISCOVERY BONUS INCOME TAX RATE

1		
	Y	
2		
1	5	
:	2	

9YR Total

TERM	1	2	En	4	'n	40	7	æ	6	TOTAL
CAPITAL INVESTMENT (MS 1000)	96956.	61615.	61615. 147695. 100048.	100048.	•	•0	ċ	•	•0	406314.
OIL PRODUCTION (M BBL/YEAR)	ċ	0	0	•	12932.	12063.	7300.	7300•	5625.	45220.
SALES PRICE OF DIL (M\$/BBL)	0.0	0.0	0.0	0.0	31.45	31.45	31.39	31,39	31,39	
BASIC PRICE OF OIL (M\$/BBL)	35.62	37.40	39.27	7.40 39.27 41.24 43.30 45.46 47.74	43.30	45.46	41.14	50.12	52.63	

TABLE 9-6-8 CASH FLOW TABLE FOR OIL ERB WEST AND SOUTH FURIOUS OIL FIELDS

CASE
TERMINAL
LABUAN
FUR I OUS,
SOUTH
•¢
WEST
ER8
••
\leftarrow
CASE
VOL.111

	#		CASH FLOW TABLE FOR PETRONAS (X M\$ 1000)	18LE FOR PETR (X M\$ 1000)	#					(CONT'D) PAGE 2
TERM		~	W	4	'n	9	~	ω	ው	9YR. TOTAL
1 SALES REVENUE FROM PROFIT OIL	ċ	ċ	ċ	•	199289.	185897.	112282.	112282.	86519.	696268•
2 REVENUE FROM OIL BASIC PRICE	ċ	ò	ċ	•	ò	ċ	ò	ò	°	•
3 BONUS FROM OIL COMPANY DISCOVERY BONUS PRODUCTION BONUS	÷				2500. 2500. 0.	• • •		000	•••	2500. 2500. 0.
4 RESEARCH FUND FROM OIL CO.	ô	•	•	ò	834.	778.	470.	470•	362.	2913.
5 TOTAL CASH INFLOW	•	•	0.	0	202622.	186674.	112752.	112752•	86881.	701681.
6 INCOME TAX	·o	•0	0	ô	91180.	84003.	50738.	50738.	39096	315756.
7 NET CASH FLOW	•0	ċ	•	ö	111442.	102671.	62013.	62013.	47784.	
8 CUMULATIVE NET CASH FLOW	ò	0	ò	ċ	111442.	111442. 214113.	276127.	338140.	385924•	

TABLE 9-6-8 CASH FLOW TABLE FOR DIL ERB WEST AND SOUTH FURIDUS DIL FIELDS VOL.III CASE I: ERB WEST & SOUTH FURIDUS, LABUAN TERMINAL CASE

*		ORTH OF N	PRESENT WORTH OF NET CASH FLOW FOR PETRONAS (X M\$ 1000)	.OW FOR PETRO (X M\$ 1000)	ETRONAS 1000)	# #				(CONT'D) PAGE 3
TERM	•	2	ĸì	4	æ	9	7	æ	6	
PRESENT WORTH										
5.00% DISCOUNT RATE PRESENT WORTH	0.98	0.93	0.89	0.84	0.80	0.76 78507.	0.73 45160.	0.69	0.66 31563.	
CUMULATIVE PRESENT WORTH	0	0	• 0	0.	89475.	167981.	213142.	256152.	287715.	
10.00% DISCOUNT RATE	0.95	0.87	0.79	0.72	0.65	0.59	0.54	. 0.49	0.44	
PRESENT WORTH CUMULATIVE PRESENT WORTH	• •	••	.0	00	72574 . 72574.	60784. 133358.	33376. 166734.	30342• 197076•	21254. 218331.	
15.00% DISCOUNT RATE	0.93	0.81	0.71	0.61	0.53	0.46	0.40	0.35	0.30	
PRESENT WORTH CUMULATIVE PRESENT WORTH	00	••	••		59417.	47600. 107017.	25001. 132018.	21740. 153758.	14566. 168324.	

TABLE 9-6-8 CASH FLOW TABLE FOR OIL ERB WEST AND SOUTH FURIOUS OIL FIELDS VOL.111 CASE I: ERB WEST & SOUTH FURIOUS. LABUAN TERMINAL CASE

¥	
Ħ	
_	=
ξ	10001
į	
COMPANY	¥
	×
Ξ	_
٩	
UPERAL ING	
⋽	
Ĭ	
ABLE	
Ξ	
-	
Ŧ	
5	
Š	
3	
.	

(CONT'D) PAGE 4

TERM	1	2	m	4	'n	. •	-	æ	6	9YR. TOTAL
1 SALES REVENUE FROM PROFIT OIL	ö	0	•	•	85409.	79670.	48121.	48121.	37079.	298400
2 SALES REVENUE FROM COST OIL	0.	•	9.	0.	81342.	75876.	45829.	45829.	35314.	284191.
3 SALES REVENUE FROM ROYALTY OIL	•	•	•	•	40671.	37938.	22915.	22915.	17657.	142095.
4 TOTAL CASH INFLOW	•	0	0.	•	207423.	193484.	116865.	116865.	•05006	724687.
5 ROYALTY	•0	0	0.	0	40671.	37938	22915.	22915	17657.	142095.
6 PAYMENT FOR OIL BASIC PRICE	å	•	ô	ò	0	0	ò	ò	ó	0
7 BONUS DISCOVERY BONUS PRODUCTION BONUS		000	000	000	2500• 2500• 0•	000		. 000	000	2500. 2500. 0.
8 RESEARCH FUND TO PETRONAS	0	Ď	0.	0.	834.	778.	470.	470-	362.	2913.
OPERATING EXPENSES (M\$/BBL) 9 OPERATING COST CAPITAL COST RECOVERY	000	0000	0000	0000	81342. 6.29 19051. 62291.	75876. 6.29 19051. 56825.	45829. 6.28 13005. 32824.	45829. 6.28 13005. 32824.	35314. 6.28 12812. 22502.	284191. 6.28 76924. 207267.
INCOME BEFORE TAX	•	ô	0	ċ	82076.	78892.	47651.	47651.	36717.	292987.
10 INCOME TAX	0	0	0	0	36934.	35502.	21443.	21443-	16523.	131844.
11 CAPITAL INVESTMENT	•95696	61615.	147695.	100048.	0	•0	ò	ò	ó	406314.
12 TOTAL CASH OUTFLOW	96956.	61615.	147695.	100048.	-06666	93268.	57832.	57832.	47354.	762591.
13 NET CASH FLOW	-96956•	-61615.	-147695.	-100048.	107433.	100216.	59033	59033.	42696.	
14 CUMULATIVE NET CASH FLOW	-96956-	-158571.	-306266.	-406314.	-298881.	-198665.	-139633.	-80600.	-37904.	
15 DCF ROR OF NET CASH FLOW (%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
16 CORPORATE CAPITAL	96956	61615.	147695.	100048.	o	ċ	ò	ò	ċ	406314
17 INTEREST	°	ò	•	ċ	ö	0	ò	•0	ć	ö
18 BANK BORROWING	0	0	•	•	•	0	ò	•	ċ	•0
19 REPAYMENT	0	0	ò	ô	•	•	•	ċ	•	•0
20 BORROWING BALANCE	0	o .	0	•0	0.	•0	0	°	0	
21 PAYOUT TIME 0.0 YEARS	1 1 1 1 1 1									

TABLE 9-6-8 CASH FLOW TABLE FOR OIL ERB WEST AND SOUTH FURIOUS OIL FIELDS VOL.III CASE I: ERB WEST & SOUTH FURIOUS, LABUAN TERMINAL CASE

PRESENT WORTH OF NET CASH FLOW FOR OPERATING COMPANY * *		
OPERATING	X MS 1000)	
FOR	×	
F104		
CASH		
NET		
Я		
WORTH		
PRESENT		
#		

(CONT'D) PAGE 5

3 4 5 6 7 8 9		0.98 0.93 0.89 0.84 0.80 0.76 0.73 0.69 0.66 -946195726713073584343. 86255. 76630. 42990. 40942. 282029461915188628262236696428070920407916108912014791945.	77 0 67 0 28 0 27 0 27 0 27 0 27 0 27 0 27 0 2	-116382, -71670, 69963, 59331, 31772, 28883, 18991.	-92444145851262232333902263939204608172836143953124962.	0.61	13,1
7		0.93 -57267. -151886.	0	-53407	-145851.	0.81	-49962. -140374.
1	4	0.98 -94619. -94619.		74776-	-92444•	0.93	-90412. -90412.
TERM	PRESENT WORTH	5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH		DORUGE DISCOON NAIR	CUMULATIVE PRESENT WORTH -9244414585	15.00% DISCOUNT RATE	PRESENT WORTH CUMULATIVE PRESENT WORTH -9041214037

TABLE 9-6-9 CASH FLOW TABLE FOR DIL ERB WEST AND SOUTH FURIDUS DIL FIELDS

CASE II A : ERB WEST, LABUAN TERMINAL CASE VOL.III

PAGE 1

*PREMISES#

				80	•	5625.	31,39	50.12
YEARS YEARS 10%	#	% % % % % % % % % % % % % % % % % % %		7	ô	7300.	31,39	41.14
5 YEAR 3 YEAR 100.00 %	ENTS	10.00 % 20.00 % 70.00 % 30.00 % 60.00 % 10.00		9	•	7300.	31.39	45.46
•	ш ш	BASIC PRICE		ın	•	7300.	31,39	43.30
	P/S A G R		¥	4	•	7300.	31.39	41.24
ANY	S 0 F	TIO ARCH FUNIT T 1976 BA T 1976 BA T 00008BL/I	11 A BT 15,	m	81863.	ċ	0.0	39.27
OIL COMP	TERMS	RATE COST RECOVERY RATIO DIL SHARE NAS TING COMPANY PAYMENT FOR RESEARCH FUND BASIC PRICE (AT 1976 BASE) INCREASE FOR BASIC PRICE PAYMENT FOR PROFIT OIL ABOVE TON BONUS ABOVE 50000BBL/DAY RY BONUS ** IMDIT DATA BY VEAR **	INPUL DA	2	77320.	•0	0.0	37.40
PRODUCTION LIFE PRE-STARTUP PERIOD EQUITY RATIO OF OIL COMPANY INTEREST RATE	* BASIC	ROYALTY RATE MAXIMUM COST RECOVERY RATIO PETRONAS OPERATING COMPANY RATE OF PAYMENT FOR RESEARCH FUND INITIAL BASIC PRICE (AT 1976 BASE) RATE OF PAYMENT FOR PROFIT OIL ABOVE RATE OF PAYMENT FOR PROFIT OIL ABOVE DISCOVERY BONUS INCOME TAX RATE		-	102689.	•	0.0	35.62
PRO FOU		PROY PROY INI INC PROY INC		TERM	(MS 1000)	BL/YEAR)	(MS/BBL)	(MS/BBL)
					CAPITAL INVESTMENT (MS 1000)	OIL PRODUCTION (M BBL/YEAR)	SALES PRICE OF OIL (M\$/BBL)	BASIC PRICE OF OIL (MS/BBL)
					CAPIT	01L PF	SALES	BASIC

8YR Total

34825. 261872.

TABLE 9-6-9 CASH FLOW TABLE FOR OIL ERB WEST AND SOUTH FURIOUS OIL FIELDS

	(CONT'D)	PAGE 2
III CASE II A : ERB WEST, LABUAN TERMINAL CASE	* * CASH FLOW TABLE FOR PETRONAS * *	(X MS 1000)
V0L.11		

G

TERM	-	2	m	4	īV	•	~	₩	87K. TOTAL
1 SALES REVENUE FROM PROFIT OIL	ċ	ċ	ċ	112282.	112282.	112282.	112282.	86519.	535647.
2 REVENUE FROM OIL BASIC PRICE	ċ	ö	ò	•	ò	•	•	ċ	.•0
3 BONUS FROM OIL COMPANY DISCOVERY BONUS PRODUCTION BONUS		000		2500. 2500. 0.		000	000	• • •	2500. 2500. 0.
4 RESEARCH FUND FROM OIL CO.	ċ	0	ċ	470.	470.	470	470.	362.	2241.
5 TOTAL CASH INFLOW	ċ	ô	6	115252.	112752.	112752.	112752.	86881.	540388
		0.	0.	51863.	50738.	50738.	50738.	39096•	243174.
7 NET CASH FLOW	ò	•	0	63388.	62013.	62013.	62013.	47784•	
8 CUMULATIVE NET CASH FLOW	ċ	•	ô	63388	125402.	187415.	63388. 125402. 187415. 249429.	297213•	

TABLE 9-6-9 CASH FLOW TABLE FOR OIL ERB WEST AND SOUTH FURIOUS OIL FIELDS VOL.III CASE II A: ERB WEST, LABUAN TERMINAL CASE

**	PRESENT W	PRESENT WORTH OF NET CASH FLOW FOR PETRONAS (X M\$ 1000)	T CASH F	LOW FOR PETRO (X M\$ 1000)	PETRONAS 1000)	#			(CONT'D) PAGE 3
TERM		8	m	4	ĸ	9	7	ω	
PRESENT WORTH									
5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.98	0.93	0.89	0.84 53438. 53438.	0.80 49789. 103227.	0.76 47418. 150645.	0.73 45160. 195806.	0.69 33141. 228947.	
10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.95	0.87	0.79 0. 0.	0.72 45408. 45408.	0.65 40385. 85793.	0.59 36714. 122507.	0.54 33376. 155883.	0.49 23380. 179263.	
15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.93 0. 0.	0.81 0.	0.71 0. 0.	0.61 38866. 38866.	0.53 33063. 71929.	0.46 28751. 100680.	0.40 25001. 125680.	0.35 16751. 142432.	

TABLE 9-6-9 CASH FLOW TABLE FOR OIL ERB WEST AND SOUTH FURIOUS OIL FIELDS VOL.III CASE II A: ERB WEST, LABUAN TERMINAL CASE

и	* * CASH FLOW	LOW TABLE		FOR OPERATING COMPANY (x M\$ 1000)	PANY # # 1000)				(CONT'D) PAGE 4
TERM	-	2	m	4	'n	. •		æ	BYR. TOTAL
1 SALES REVENUE FROM PROFIT DIL	6	•	•	48121.	48121.	48121.	48121.	37079.	229563.
2 SALES REVENUE FROM COST OIL	ò	0	0	45829.	45829.	45829.	45829.	35314.	218631.
3 SALES REVENUE FROM ROYALTY OIL	الـ 0•	•	0	22915.	22915.	22915.	22915.	17657.	109316.
4 TOTAL CASH INFLOW	•	•	o	116865.	116865.	116865.	116865.	•05006	557510.
5 ROYALTY	0	0	0	22915.	22915.	22915	22915.	17657.	109316.
6 PAYMENT FOR DIL BASIC PRICE	0	6	0	0	•	•	•	•	•
7 BONUS DISCOVERY BONUS PRODUCTION BONUS	•••			2500. 2500. 0.	•••	• • •		•••	2500. 2500. 0.
8 RESEARCH FUND TO PETRONAS	0	.0	•	470.	470.	410.	440.	362•	2241.
OPERATING EXPENSES (M\$/BBL) 9 OPERATING COST CAPITAL COST RECOVERY	0000	0000	0000	45829. 6.28 13328. 32501.	45829. 6.28 13328. 32501.	45829. 6.28 13328. 32501.	45829. 6.28 13328. 32501.	35314. 6.28 13135. 22179.	218631. 6.28 66447. 152184.
INCOME BEFORE TAX	ò	0	•	45151.	47651.	47651.	47651.	36717.	224822•
10 INCOME TAX	0	•	•	20318.	21443.	21443.	21443.	16523.	101170.
11 CAPITAL INVESTMENT	102689.	77320.	81863.	•	•	ċ		•	261872•
12 TOTAL CASH OUTFLOW	102689.	77320.	81863.	59530.	58155.	58155.	58155.	47677•	543545.
13 NET CASH FLOW	-102689•	-77320.	-81863.	57335.	58710.	58710.	58710.	42373.	
14 CUMULATIVE NET CASH FLOW	-102689.	-180009.	-261872.	-204538.	-145828.	-87119.	-28409•	13964.	
15 DCF ROR OF NET CASH FLOW (%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.31	
16 CORPORATE CAPITAL	102689.	77320.	81863.	0	0	ò	·	ċ	261872.
17 INTEREST	ò	o	o	•	•	ò	ċ	ò	•0
18 BANK BORROWING	•	•	•	ċ	•0	•	•	•	•0
19 REPAYMENT	ò	•	•	°	•0	•0	•	•	•0
20 BORROWING BALANCE	•0	0.	•0	0.	•	0.	0	•0	
21 PAYOUT TIME 7.7 YEARS									

TABLE 9-6-9 CASH FLOW TABLE FOR DIL ERB WEST AND SOUTH FURIDUS DIL FIELDS

VOL.III CASE II A: ERB WEST, LABUAN TERMINAL CASE

**	PRESENT WORTH		OF NET CASH FLOW FOR OPERATING COMPANY * (X M\$ 1000)	W FOR OPERATING (X M\$ 1000)	RATING CO 1000}	JMPANY # #			(CONT'D) PAGE 5
TERM	ı	8	m	4	ĸ	9	~	æ	
PRESENT WORTH									
5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.98 -100214. -100214.	0.98 0.93 0.89 0.84 0.80 0.76 -1002147186372463. 48334. 47137. 44892. -100214172078244540196206149070104178.	0.89 -72463. -244540.	0.84 48334. -196206	0.80 47137. -149070.	0.80 0.76 47137. 44892. 149070104178.	0.73 42754. -61423.	0.69 29388. -32035.	
10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.95 -97910. -97910.	0.95 0.87 0.79 0.72 0.65 0.59 -97910, -67020, -64507, 41072, 38233, 34758, -97910, -164930, -229437, -188365, -150132, -115374,	0.79 -64507. -229437.	0.72 41072. -188365.	0.65 38233. -150132.	0.59 34758. -115374.	0.54 31598. -83776.	0.49 20732. -63044.	
15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	0.93 -957586	0.93 0.81 0.71 0.61 0.53 0.46 -957586269757722. 35154. 31302. 27219. -95758158455216177181023149721122502.	0.71 -57722. -216177.	0.61 35154. -181023.	0.53 31302. -149721.	0.46 27219. -122502.	0.40 23669. -98834.	0.35 14855. -83979.	

TABLE 9-6-10 CASH FLOW TABLE FOR OIL ERB WEST AND SOUTH FURIOUS OIL FIELDS

CASE II B : ERB WEST, MANGALUM TERMINAL CASE VOL.111

PAGE

P R E M I S E S

			(œ
5 YEARS 3 YEARS 100.00 % 8.00 %	# S L N	10.00 % 20.00 % 70.00 % 0.50 % 0.50 % 70.00 % 70.00 % 70.00 % M\$ 5000000.	1	2 9
** ** ** **	ш			
	P/S AGREEMENTS	BASIC PRICE		ī
	9	\\$10		
	•••	8	*	
IL COMPANY	* BASIC TERMS OF P/S	ROYALTY RATE MAXIMUM COST RECOVERY RATIO PROFIT DIL SHARE PETRONAS OPERATING COMPANY RATE OF PAYMENT FOR RESEARCH FUND INITIAL BASIC PRICE (AT 1976 BASE) RATE OF PAYMENT FOR PROFIT DIL ABOVE RATE OF PAYMENT FOR PROFIT DIL ABOVE PRODUCTION BONUS ABOVE 50000BBL/DAY DISCOVERY BONUS	* INPUT DATA BY YEAR *	ر د
PRODUCTION LIFE PRE-STARTUP PERIOD EQUITY RATIO OF OIL COMPANY INTEREST RATE	BASICI	ROYALTY RATE MAXIMUM COST RECOVERY RATIO PROFIT OIL SHARE PETRONAS OPERATING COMPANY RATE OF PAYMENT FOR RESEARC! RATE OF PAYMENT FOR BASIC RATE OF PAYMENT FOR PROFIT PRODUCTION BONUS ABOVE 5000 DISCOVERY BONUS	*	,
PRODUC PRE-ST EQUITY INTERE	#	ROYALI MAXIM PROFIT OPET NATE C INITIC RATE C RATE C RATE C PRODUC DISCOM		TERM

TERM	1	7	m	4	īU	9	7	80	
CAPITAL INVESTMENT (M\$ 1000)	108517.	108517. 102291.	61426.	•	•	•	ò	ċ	
OIL PRODUCTION (M BBL/YEAR)	•	ċ	•	7300.	7300.	7300.	7300.	5625.	
SALES PRICE OF OIL (M\$/BBL)	0.0	0.0	0.0 0.0 0.0 31.39 31.39 31.39 31.39 31.39	31,39	31.39	31.39	31.39	31.39	
BASIC PRICE OF OIL (MS/BBL)	35.62	37.40	39.27	41.24	43.30	45.46	47.74	50.12	

8YR Total

272234. 34825.

TABLE 9-6-10 CASH FLOW TABLE FOR OIL ERB WEST AND SOUTH FURIOUS DIL FIELDS

VOL.III CASE II B : ERB WEST, MANGALUM TERMINAL CASE

	# #		OW TABL	CASH FLOW TABLE FOR PETRONAS (X M\$ 1000)	RONAS *				(CONT'D) PAGE 2
TERM		2	м	4	ភេ	•0	7	œ	8YR. TOTAL
1 SALES REVENUE FROM PROFIT OIL	ċ	°	•	112282.	112282.	112282.	112282.	86519.	535647.
2 REVENUE FROM OIL BASIC PRICE	•	•	Ġ	0	ò	•	ó	•0	•0
3 RONUS FROM OIL COMPANY DISCOVERY BONUS PRODUCTION BONUS		000	000	2500. 2500. 0.	000		000	•••	2500. 2500. 0.
4 RESEARCH FUND FROM OIL CO.	ô	•	å	470.	470-	470.	410.	362.	2241.
5 TOTAL CASH INFLOW	0.	0.	0	115252.	112752.	112752.	112752.	86881.	540388.
6 INCOME TAX	0.	0.	0	51863.	50738.	50738. 50738.	50738.	39096	243174.
7 NET CASH FLOW	ċ	ô	ô	63388.	62013.	62013.	62013.	47784•	
8 CUMULATIVE NET CASH FLOW	•	ò	ó	63388.	125402.	187415.	125402. 187415. 249429.	297213.	

TABLE 9-6-10 CASH FLOW TABLE FOR DIL ERB WEST AND SOUTH FURIOUS DIL FIELDS VOL.III CASE II B : ERB WEST, MANGALUM TERMINAL CASE

		(X M\$ 1000)		X W\$	1000)				PAGE 3
TERM	.	8	m	4	ĸ	9	۲	æ	
PRESENT WORTH	-								
5.00% DISCOUNT RATE	0.98	0.93	0.89	0.84	0.80	0.76		69*0	
PRESENT WORTH	•	ċ	•	53438.	49789.	47418.			
CUMULATIVE PRESENT WORTH	o	0	ô	53438.	103227.	150645.	195806.		
10.00% DISCOUNT RATE	0.95	0.87	0.79	0.72	0.65	0.59	0.54	0*49	
PRESENT WORTH	o	•	•	45408.		36714.	33376.		
CUMULATIVE PRESENT WORTH	0.	0.	0	45408.	į	122507.	155883.	!	+
15.00% DISCOUNT RATE	0.93	0.81	0.71	0.61	0.53	0.46	0.40	0.35	
PRESENT WORTH	ò	•	•	38866.	33063.	28751.			
CUMULATIVE PRESENT WORTH	ċ	0	•	38866.	71929.	100680.			

TABLE 9-6-10 CASH FLOW TABLE FOR OIL ERB WEST AND SOUTH FURIOUS OIL FIELDS VOL.III CASE II B: ERB WEST, MANGALUM TERMINAL CASE

* * CASH FLOW TABLE FOR OPERATING COMPANY * * (X M\$ 1000)

(CONT'D) PAGE 4

TERM	-	2	m	4	'n	. 9	7	ω	BYR. TOTAL
1 SALES REVENUE FROM PROFIT DIL	•	•0	•	48121.	48121.	48121.	48121.	37079.	229563.
2 SALES REVENUE FROM COST OIL	•	•	0	45829.	45829.	45829.	45829.	35314.	218631.
3 SALES REVENUE FROM ROYALTY OIL	It 0.	•	0	22915.	22915.	22915.	22915.	17657.	109316.
4 TOTAL CASH INFLOW	•	•	ò	116865.	116865.	116865.	116865.	90050•	557510•
5 ROYALTY	•0	0	0.	22915.	22915.	22915.	22915.	17657.	109316.
6 PAYMENT FOR OIL BASIC PRICE	•	•	0	•	•	ò	•	0.	•0
7 AGNUS DISCOVERY RONUS PRODUCTION RONUS	000			2500. 2500. 0.	000	000	000	000	2500.
8 RESEARCH FUND TO PETRONAS	0	0.	ò	470.	410.	470.	410.	362.	2241.
C	0.0	000	000	45829. 6.28	45829. 6.28	45829. 6.28	45829. 6.28	35314. 6.28	218631. 6.28 6.28
9 UPERALING CUST CAPITAL COST RECOVERY				13558. 32291.	13538. 32291.	32291.	32291.	21969.	151134.
INCOME BEFORE TAX	•	0	•	45151.	47651.	47651.	47651.	36717.	224822•
10 INCOME TAX	•	•	•	20318.	21443.	21443.	21443.	16523.	101170.
11 CAPITAL INVESTMENT	108517.	102291.	61426.	ċ	•	•	•	ċ	272234.
12 TOTAL CASH OUTFLOW	108517.	102291.	61426.	59740.	58365.	58365.	58365.	47887.	554957.
13 NET CASH FLOW	-108517.	-102291-	-61426.	57125.	58500.	58500.	58500.	42163.	
14 CUMULATIVE NET CASH FLOW	-108517.	-210808.	-272234•	-215110.	-156610.	-98111	-39611.	2552•	
15 DCF ROR OF NET CASH FLOW (%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.23	
16 CORPORATE CAPITAL	108517.	102291.	61426.	ò	°	ô	ċ	°	272234.
17 INTEREST	•	0	0	ô	0	0	0	•	•0
18 BANK BORROWING	•	•	ô	ô	•	•	0	•0	•0
19 REPAYMENT	•	0	0	•	•	•0	°	•0	•0
20 BORROWING BALANCE	•0	0	0	0	0	0	0	0.	

21 PAYOUT TIME 7.9 YEARS

TABLE 9-6-10 CASH FLOW TABLE FOR OIL ERB WEST AND SOUTH FURIOUS OIL FIELDS

VOL.III CASE 11 B : ERB WEST. MANGALUM TERMINAL CASE ..

(CONT'D) PAGE 5				
	ω	0.69 29243. -43646.	0.49 20630. -74768.	0.35 14781. -95748.
	۲-	0.73 42601. -72889.	0.54 31485. -95398.	0.40 23584. -110529.
MPANY # #	•0	0.76 44731. -115490.	0.59 34633. -126883.	0.93 0.81 0.71 0.61 0.53 0.46 0.40 -1011938294543312. 35025. 31190. 27122. 23584101193184138227450192424161235134113110529.
OF NET CASH FLOW FOR OPERATING COMPANY # # { X M\$ 1000}	n	0.98 0.89 0.84 0.80 0.76 -1059029507254373. 48157. 46968. 44731. -105902200974255347207189160221115490.	0.95 0.87 0.79 0.72 0.65 0.59 -1034678866448403. 40921. 38097. 34633. -103467192131240534199613161516126883.	0.53 31190. -161235.
W FOR OPERATIN (X M\$ 1000)	4	0.84 48157. -207189.	0.72 40921. -199613.	0.61 35025. -192424.
. CASH FLO	m	0.89 -54373. -255347.	0.79 -48403. -240534.	0.71 -43312. -227450.
	8	0.98 0.93 -10590295072. -105902200974.	0.95 0.87 -10346788664. -103467192131.	0.81 -82945. -184138.
PRESENT WORTH	, .	0.98 -105902. -105902.	0.95 -103467. -103467.	0.93 -1011938
*	TERM PRESENT WORTH	5.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	10.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH	15.00% DISCOUNT RATE PRESENT WORTH CUMULATIVE PRESENT WORTH

Table 28-4-1 SUMMARY OF OFFSHORE STRUCTURES (Vol. III)

	DATE	
	GEOGRAPHICAL	LONGE
FACILITY LOCATION	RDOED	LATN
FACILI	GRID	EAST
	BORNEO GRID	NORTH
PLATFORM	CVERALL DIMENSION	
	PLATFORM TYPE	
W.D.	FT	
FIELD/	FACILITY	

TEMBUNGO		47 Miles NNW off K. Kinabalu					-				•	
æ	277	8P/16W Self-Cont. Drill & Prod. P/F	90'-0" x 185'-0"			မှ	6° 37' 8.848"	115°	115° 47' 12.889"	.889		
SALM	292	Single Anchor Leg Mooring System										
SAMARANG	32	32 Miles off Labuan		2,040,000FT	1,894,000FT	ιΩ	; 37 7	114	53 10	_		
SMDP-A	35	8P/21W Self-Cont. Drill. P/F	45'-0" x 18'-10-1/2"	2,040,200	1,894,040	S	37 9	114	53 10		Mar. '75	
SMDP-B	160	8P/28W Tender-Ass. Drill. P/F		2,046,250	1,897,300							
SMJT-C	32	4P/6W Cluster Drill. P/F	30'-0" x 30'-0"									
SMJT-D	32	4P/6W Cluster Drill. P/F	30'-0" x 30'-0"									
SM-4	35	1P/IW WHPJ				Ŋ	36 39.27	114	52 33	33.02 K	Mar. '75	
SMP-A	35	4P Prod. P/F	50'-0" x 62'-0"				·			Ē.	Feb. '75	
SMP-B	160	4P Prod. P/F	50'-0" x 62'-0"	2,046,432	1,897,405							
SMV-A	35	3P Vent Structure								Σ	Mar. '75	
SMV-B	156	3P Vent Structure										
SMR-A	35	4P Riser P/F	35'-0" x 35'-0"	2,039,330	1,900,000					מ	Jan. '75	

Table 28-4-1 SUMMAR: (Vol. III)

-1 SUMMARY OF OFFSHORE STRUCTURES (Cont'd)

	DATE	
	GEOGRAPHICAL	IONGE
FACILITY LOCATION	GEOGRA	LATN
FACILL	GRID	EAST
	BORNEO GRID	NORTH
PLATFORM	OVERALL	
· · · · · · · · · · · · · · · · · · ·	PLATFORM TYPE	
3	FT	}
PTELD/	FACILITY	

IABUAN TERMINAL		1,909,667 ^{FT} 1,992,808 ^{FT}	1,992,808 ^{FT}	
SBM 95	Single Buoy Mooring System 1,999,667 1,992,808	1,909,667	1,992,808	

LUTONG TERMINAL WL-M.P. 50 4P Manifold P/F

Mid. '66

113° 56' 37"

. 40° 29¹ 33"

Single Buoy Mooring System

SBM-1

SBM-2 ditto

SBM-4 ditto

E PIPELINES	
SUBMARINE	
SUMMARY OF	
28-4-2	·
Table	1

The second secon	NOS. REMARKS		н		2 VIA SMP-A	I	m	4	ľ	ı	Ţ	Ľ	ı	m	
	SERVICE		CRUDE		WELL FLUID	WELL FLUID	WELL FLUID	WELL FLUID	CRUDE	CRUDE	CRUDE	GAS LIFT	GAS LIFT	VENT	
	LENGTH (FT.)		7,000		7,000	5,200	5,460		15,300	10,300	156,412	5,460	2,150	2,000	
(TTT •TOA)	DIAMETER (IN.)		10		9	9	9	9	ω	ω	18	10	ĸ	10	
and the state of t	TERMINAL		SALM		SMP-B	SMP-A	SMP-A	SMJT-C	SMR-A	SMR-A	LABUAN T.	SMJT-C	SM-4	SMV-B	
	ORIGIN	TEMBUNGO FIELD	TEMBUNGO "A"	SAMARANG FIELD	SMDP-A	SM-4	SMJT-C	SMJT-D	SMP-B	SMP-A	SMR-A	SMP-A	SMJT-C	SMP-B	

(Cont'd)	
PIPELINES	
SUBMARINE	
SUMMARY OF	
Table 28-4-2	

		Table 28-4-2 (Vol. III)	SUMMARY OF S	SUMMARY OF SUBMARINE PIPELINES (Cont'd)	NES (Cont'd)	
ORIGIN	TERMINAL	DIAMETER(IN.)	LENGTH (FT.)	SERVICE	NOS.	REMARKS
TUKAU FIELD						·
TK-3	TKP-A	9	4,910	WELL FLUID	П	
TKP-B	TKP-A	10	3,000	CRUDE	H	
TKP-A	WLDP-C	10	076,79	CRUDE	н	
TKP-B	TKV-B	10	2,000	VENT	м	
TKP-A	TKV-A	10	2,000	VENT	м	
TKP-A	TKDP-B	9	3,000	GAS LIFT	Н	
LABUAN TERMINAL			AND			
LABUAN T.	SBM	48	15,000	CRUDE	H	
LUTONG TERMINAL						
LUTONG T.	SBM NO. 1	12	20,454		H	1B
LUTONG T.	SBM NO. 1	12	20,700		ᆏ	10
LUTONG T.	M.P.	9	26,550	GAS OIL	H	la
LUTONG T.	M.P.	12	19,212		Н	2B
LUTONG T.	M.P.	12	19,630		1	2C

COMPARISON OF PRESENT PRODUCTION RATE VS. PLATFORM CAPABILITY

	Table 28-4-3	COMPARISON OF	OF PRESENT PRODUCTION RATE VS. PLATFORM CAPABILITY	ION RATE VS.	PLATFORM CAPA	BILITY			
	(Vol. III)	PRESENT PR	PRODUCTION RATE @	@ MAY, 1976		PRODUCTION	PRODUCTION PLATFORM CAPABILITY	ILITY	
OIL FIELD	PRODUCTION PLATFORM	GROSS LIQUID (BPD)	NET OIL (BPD)	GAS (MMSCFD)	WATER (BPD)	NO. OF SEPARATION BANKS	GROSS LIQUID THROUGHPUT (BPD)	GAS (MMSCFD)	EFFICIENCY* (%)
TEMBUNGO	ď	5,294	4,983	3.7	311	7	20,000	16	26.5
BARONIA	BNP-A	51,977	49,162	106.1	2,815	7	000,09	180	86.6
WEST LUTONG	WLP-A	23,191	10,033	24.6	13,158	· H -	30,000	06 06	77.3
	WLP=C	33,130	14,333	35.2	18,797	4 N	000,09	180	55.2
ВАКАМ	BAP-A BAP-B	33,503 14,358	21,478 9,205	82.2	12,025 5,153	0 н	30,000	180	55.8
		47,861	30,683	117.4	17,178	m	90,000	270	53.2
BAKAU	BKP-A	5,316	5,203	10.5	113	.	30,000	. 06	17.71
TUKAU	TKP-A TKP-B	6,706	6,516 6,515	ထ ထ	190	ਜ ਜ	30,000	06 06	22.4
		13,411	13,031	17.6	380	7	60,000	180	22.4
SAMARANG	SMP-A	65,000**				81	60,000	180	108.3
	SMP-B	5,000**				н	30,000	06 	16.7
		70,000**				m	900,000	270	77.8

NOTE: * EFFICIENCY = GROSS LIQUID/GROSS LIQUID THROUGHPUT

** ROUNDED FIGURE IN DECEMBER, 1976

* EFFICIENCY = GROSS LIQUID/GROSS LIQUID THROUGHPUT = ADDITIONAL WELL DEVELOPMENT CASE NOTE

*EFFICIENCY = GROSS LIQUID/GROSS LIQUID THROUGHPUT
[] = ADDITIONAL WELL DEVELOPMENT CASE

NOTE:

270

90,000

. რ

500 [630]

56.6 [73.1]

28,410 [38,530]

28,910 [39,160]

Table 28-4-6 SUMMARY OF GAS UTILIZATION (UNIT: MMSCFD) (Vol. III)

TOTAL	106.1	35.2	117.4	10.5	17.6		286.8		41.1
VENT GAS	82.8	16.7	106.0	8.7	14.6		228.8		30.9
GAS TO SHORE		11.2					11.2		
PUMP DRIVE GAS	23.3	7.3	11.4	1.8	3.0	,	46.8		10.2
LUTONG STREAM	BARONIA	WEST LUTONG	BARAM	BAKAU	TUKAU		TOTAL	LABUAN STREAM	SAMARANG

* Figures are as of May, 1976

Table 29-6-1 (Vol. III)

4-LEG OFFSHORE PLATFORM COST

riold Name	Field Name Water Total Cost			Breakdown	
LIGIA Name	Depth	10001 0000	Material Cost (Weight: ton)	Fabrication Cost	Installation Cost
Sarawak Area				· -	
Central Luconia					
E-8	207 '	3,618,000	682,000 (852)	546,000	2,390,000
E-11	230'	3,805,000	772,000 (965)	618,000	2,415,000
F-6	285 1	4,289,000	962,000 (1,202)	790,000	2,537,000
F-13	250'	4,054,000	864,000 (1,080)	691,000	2,499,000
F-14	347 1	4,899,000	1,272,000 (1,590)	1,018,000	2,609,000
F-23	280 '	4,239,000	958,000 (1,197)	760,000	2,521,000
Temana	991	3,261,000	426,000 (532)	341,000	2,494,000
E-6	239 !	3,910,000	819,000 (1,023)	655,000	2,436,000
Betty	247'	3,998,000	853,000 (1,066)	683,000	2,462,000
Bokor	228 '	3,788,000	765,000 (956)	612,000	2,411,000
Baronia	254'	4,086,000	880,000 (1,100)	705,000	2,501,000
B-12	298 '	4,425,000	1,025,000 (1,281)	830,000	2,570,000
Şabah Area					
South Furious	1887	3,481,000	610,000 (762)	485,000	2,386,000
Erb West	252'	4,070,000	872,000 (1,090)	698,000	2,500,000
Peninsular Area					
Bekok	234'	3,849,000	793,000 (991)	634,000	2,422,000
Pulai	245'	3,981,000	844,000 (1,055)	675,000	2,462,000
Seligi	248'	4,003,000	856,000 (1,070)	685,000	2,462,000
Tapis	225'	3,767,000	754,000 (942)	604,000	2,409,000
Jerneh	205 1	3,590,000	668,000 (835)	534,000	2,388,000

Table 29-6-2 6-LEG OFFSHORE PLATFORM COST (Vol. III)

,	,	•	•	•			
Field Name	Water	Total Cost		Breakdown			
	Depth		Material Cost (Weight: ton)	Fabrication Cost	Installation Cost		
Sarawak Area							
Central Luconia							
E-8	207 '	5,011,000	1,339,000 (1,673)	1,071,000	2,601,000		
E-11	230'	5,347,000	1,504,000 (1,880)	1,203,000	2,640,000		
F-6	285	6,063,000	1,820,000 (2,275)	1,452,000	2,791,000		
F-13	250'	5,781,000	1,680,000 (2,100)	1,344,000	2,757,000		
F-14	347'	7,204,000	2,400,000 (3,000)	1,920,000	2,884,000		
F-23	280'	5,915,000	1,736,000 (2,170)	1,397,000	2,782,000		
Temana ·	99'	3,955,000	744,000 (930)	593,000	2,618,000		
E-6	239'	5,451,000	1,551,000 (1,938)	1,241,000	2,659,000		
Betty	247'	5,655,000	1,649,000 (2,061)	1,319,000	2,687,000		
Bokor	228'	5,329,000	1,495,000 (1,868)	1,197,000	2,826,000		
B-12	298 1	6,631,000	2,103,000 (2,628)	1,702,000	2,020,000		
Sabah Area	•				٠		
South Furious	188'	4,827,000	1,241,000 (1,551)	997,000	2,589,000		
Erb West	252'	5,831,000	1,706,000 (2,132)	1,364,000	2,761,000		
Peninsular Area							
Bekok	234'	5,396,000	1,525,000 (1,906)	1,220,000	2,651,000		
Pulai	245	5,595,000	1,618,000 (2,022)	1,295,000	2,682,000		
Seligi	248 1	5,669,000	1,655,000 (2,068)	1,324,000	2,690,000		
Tapis	225'	5,260,000	1,466,000 (1,832)	1,173,000	2,621,000		
Jerneh	205'	4,980,000	1,322,000 (1,652)	1,058,000	2,600,000		

Table 29-6-3 (Vol. III)

8-LEG OFFSHORE PLATFORM COST

	•									
Field Name	Water	Total Cost	Breakdown							
	Depth		Material Cost	Fabrication Cost	Installation Cost					
•		·	(Weight: ton	,	•					
Sarawak Area			•							
Central Luconia			. •							
E-8	207'	7,459,000	2,518,000 (3,147)	2,015,000	2,926,000					
E-11	230'	8,180,000	2,864,000 (3,580)	2,291,000	3,025,000					
F-6	285	9,805,000	3,683,000 (4,603)	2,947,000	3,175,000					
F-13	250'	8,688,000	3,120,000 (3,900)	2,496,000	3,072,000					
F-14	347'	12,251,000	4,960,000 (6,200)	3,968,000	3,323,000					
F-23	2801	9,596,000	3,574,000 (4,467)	2,857,000	3,165,000					
Temana	99'	5,568,000	1,447,000 (1,808)	1,158,000	2,963,000					
E-6	239	8,419,000	2,990,000 (3,737)	2,392,000	3,037,000					
Betty	247'	8,613,000	3,086,000 (3,857)	2,468,000	3,059,000					
Bokor	228'	8,125,000	2,837,000 (3,546)	2,269,000	3,019,000					
B-12	298'	10,139,000	3,839,000 (4,798)	3,085,000	3,215,000					
Sabah Area										
South Furious	188'	7,012,000	2,280,000 (2,850)	1,824,000	2,908,000					
Erb West	252'	8,740,000	3,149,000 (3,936)	2,519,000	3,072,000					
Peninsular Area										
Bekok	234 '	8,283,000	2,920,000 (3,650)	2,336,000	3,027,000					
Pulai	245 '	8,563,000	3,062,000 (3,827)	2,450,000	3,051,000					
Seligi	248	8,644,000	3,097,000 (3,871)	2,477,000	3,070,000					
Tapis	225'	8,032,000	2,796,000 (3,495)	2,237,000	2,999,000					
Jerneh	205'	7,413,000	2,496,000 (3,120)	1,997,000	2,920,000					
	•		(-,,							

Table 29-6-4 (Vol. III) 3-LEG VENT AND FLARE JACKET COST

Water Depth	Total Cost	В:	reakdown	
nacer bepon	19441 4004	Material Cost (Weight: ton)	Fabrication Cost	Installation Cost
20'	343,000	100,000 (125)	80,000	163,000
40'	395,000	120,000 (150)	96,000	179,000
60'	447,000	140,000 (175)	112,000	195,000
100'	595,000	204,000 (255)	163,000	228,000
160'	660,000	240,000 (300)	192,000	228,000
180'	696,000	260,000 (325)	208,000	228,000
200'	764,000	280,000 (350)	224,000	260,000
220'	800,000	300,000 (375)	240,000	260,000
240'	869,000	320,000 (400)	256,000	293,000
260'	905,000	340,000 (425)	272,000	293,000
280'	973,000	360,000 (450)	288,000	325,000

Field Name	Water	Total Cost		Breakdown	
	Depth		Material Cost	Fabrication Cost	Installation Cost
•			(Weight: tor	1)	
Sarawak Area					
Central Luconia		·			:
E-8	207 '	571,000	128,000 (160)	38,000	405,000
E-11	230'	581,000	135,000 (168)	41,000	405,000
F-6	285	609,000	152,000 (190)	46,000	411,000
F-13	250'	587,000	140,000 (175)	42,000	405,000
F-14	347'	627,000	166,000 (207)	50,000	411,000
F-23	280'	606,000	150,000 (187)	45,000	411,000
Temana	99'	411,000	92,000 (115)	28,000	291,000
E-6	239'	584,000	138,000 (172)	41,000	405,000
Betty	247'	587,000	140,000 (175)	42,000 40,000	405,000
Bokor	228 '	580,000	135,000 (168)		411,000
B-12	298'	614,000	156,000 (195)	47,000	411,000
Sabah Area					
South Furious	188'	546,000	150,000 (187)	36,000	360,000
Erb West	252!	588,000	141,000 (176)	42,000	405,000
Peninsular Area					
Bekok	234'	582,000	136,000 (170)	41,000	405,000
Pulai	245'	587,000	140,000 (175)	42,000	405,000
Seligi	248'	587,000	140,000 (175)	42,000	405,000
Tapis	225'	579,000	134,000 (167)	40,000	405,000
Jerneh	205'	569,000	126,000 (157)	38,000	405,000

Table 29-6-6 (Vol. III)

COST OF 4 CONDUCTORS

Field Name	Water	Total Cost		Breakdown	
	Depth	•	Material Cost (Weight: ton)	Fabrication Cost	Installation Cost
Sarawak Area					•
Central Luconia	,		•		
E-8	207 '	778,000	171,000 (213)	51,000	556,000
E-11	230'	791,000	181,000 (226)	54,000	556,000
F-6	285'	841,000	204,000 (255)	61,000	576,000
F-13	250	802,000	189,000 (236)	57, 000	556,000
F-14	347'	868,000	225,000 (281)	67,000	576,000
F-23	280'	839,000	202,000 (252)	61,000	576,000
Temana	99'	534,000	122,000 (152)	36,000	376,000
E-6	239'	795,000	184,000 (230)	55,000	556,000
Betty	247	800,000	188,000 (235)	56,000	556,000
Bokor	228'	790,000	180,000 (225)	54,000	556,000
B-12	2 98'	846,000	208,000 (260)	62,000	576,000
Sabah Area		•			
South Furious	188'	658,000	162,000 (202)	48,000	448,000
Erb West	2521	803,000	190,000 (237)	57, 000	556,000
Peninsular Area					
Bekok	234'	793,000	182,000 (227)	55,000	556,000
Pulai	245'	800,000	188,000 (235)	56,000	556,000
Seligi	248'	802,000	189,000 (236)	57, 000	556,000
Tapis	225'	789,000	179,000 (223)	54,000	556,000
Jerneh	205'	777,000	170,000 (212)	51,000	556,000

(Vol. III)

Table 29-6-7 COST OF 6 CONDUCTORS

Diela Vene	23 a A a a a		Breakdown							
Field Name	Water Depth	Total Cost	-	····						
		•	Material Cost	Fabrication Cost	Installation Cost					
			(Weight: ton)	CUSL	Cosc					
Sarawak Area				`						
Central Luconia										
E-8	207'	1,269,000	256,000 (320)	77,000	936,000					
E-11	230'	1,286,000	269,000 (336)	81,000	936,000					
F-6	285 '	1,378,000	312,000 (390)	94,000	972,000					
F-13	2501	1,308,000	286,000 (357)	86,000	936,000					
F-14	347'	1,422,000	346,000 (432)	104,000	972,000					
F-23	280'	1,367,000	304,000 (380)	91,000	972,000					
Temana	99'	919,000	182,000 (227)	55,000	682,000					
E-6	239'	1,300,000	280,000 (350)	84,000	936,000					
Betty	. 2471	1,306,000	285,000 (356)	85,000	936,000					
Bokor	228'	1,284,000	268,000 (335)	80,000	936,000					
B-12	298'	1,386,000	318,000 (397)	96,000	972,000					
Sabah Area										
South Furious	188'	1,087,000	242,000 (302)	73,000	772,000					
Erb West	252'	1,309,000	287,000 (358)	86,000	936,000					
Peninsular Area		•								
Bekok	234'	1,290,000	272,000 (340)	82,000	936,000					
Pulai	245'	1,302,000	282,000 (352)	84,000	936,000					
Seligi	. 248 '	1,306,000	285,000 (356)	85,000	936,000					
Tapis	225'	1,284,000	268,000 (335)	80,000	936,000					
Jerneh	205'	1,266,000	254,000 (317)	76,000	936,000					

Table 29-6-8 (Vol. III)

COST OF 8 CONDUCTORS

Field Name	Water	Total Cost		Breakdown	
	Depth	•	Material Cost (Weight: to	Fabrication Cost	Installation Cost
Sarawak Area					
Central Luconia					
E-8	207'	1,903,000	384,000 (480)	115,000	1,404,000
E-11	230'	1,934,000	408,000 (510)	122,000	1,404,000
F-6	285 1	2,061,000	464,000 (580)	139,000	1,458,000
F-13	250 '	1,955,000	424,000 (530)	127,000	1,404,000
F-14	347'	2,130,000	517,000 (646)	155,000	1,458,000
F-23	280'	2,051,000	456,000 (570)	137,000	1,458,000
Temana	99'	1,234,000	275,000 (343)	77,000	882,000
E-6	239'	1,945,000	416,000 (520)	125,000	1,404,000
Betty	247'	1,952,000	422,000 (527)	126,000	1,404,000
Bokor	228'	1,934,000	408,000 (510)	122,000	1,404,000
B-12	298 '	2,080,000	478,000 (597)	144,000	1,458,000
Sabah Area					
South Furious	188'	1,643,000	364,000 (455)	109,000	1,170,000
Erb West	252'	1,958,000	426,000 (532)	128,000	1,404,000
Peninsular Area					
Bekok	234 '	1,942,000	414,000 (517)	124,000	1,404,000
Pulai	245	1,950,000	420,000 (525)	126,000	1,404,000
Seligi	248 '	1,953,000	422,000 (527)	127,000	1,404,000
Tapis	225'	1,926,000	402,000 (502)	120,000	1,404,000
Jerneh	205'	1,901,000	382,000 (477)	115,000	1,404,000

Table 29-6-9 (Vol. III)

COST OF 12 CONDUCTORS

Field Name	Water	Total Cost	Breakdown						
	Depth		Material Cost (Weight: ton	Fabrication Cost	Installation Cost				
Sarawak Area									
Central Luconia			•						
E-8	207'	2,442,000	512,000 (640)	154,000	1,776,000				
E-11	230'	2,478,000	540,000 (675)	162,000	1,776,000				
F-6	285 1	2,649,000	616,000 (770)	185,000	1,848,000				
F-13	250'	2,514,000	568,000 (710)	170,000	1,776,000				
F-14	347'	2,737,000	684,000 (855)	205,000	1,848,000				
F-23	280'	2,638,000	608,000 (760)	182,000	1,848,000				
Temana	99'	1,748,000	366,000 (457)	110,000	1,272,000				
E-6	239'	2,494,000	552,000 (690)	166,000	1,776,000				
Betty	247'	2,512,000	566,000 (707)	170,000	1,776,000				
Bokor	228'	2,473,000	536,000 (670)	161,000	1,776,000				
B-12	298'	2,678,000	638,000 (797)	192,000	1,848,000				
Sabah Area									
South Furious	188'	1,978,000	488,000 (610)	146,000	1,344,000				
Erb West	252'	2,517,000	570,000 (712)	171,000	1,776,000				
Peninsular Area									
Bekok	234 '	2,483,000	544,000 (680)	163,000	1,776,000				
Pulai	245	2,504,000	560,000 (700)	168,000	1,776,000				
Seligi	2481	2,512,000	566,000 (707)	170,000	1,776,000				
Tapis	225'	2,468,000	532,000 (665)	160,000	1,776,000				
Jerneh	205'	2,439,000	510,000 (637)	153,000	1,776,000				

Table 29-6-10 (Vol. III)

COST OF 18 CONDUCTORS

Field Name	Water	Total Cost	· ·	Breakdown					
	Depth	·	Material Cost (Weight: ton)	Fabrication Cost	Installation Cost				
Sarawak Area			·						
Central Luconia									
E-8	207'	3,600,000	762,000 (952)	228,000	2,610,000				
E-11	230'	3,681,000	824,000 (1,030)	247,000	2,610,000				
F-6	2851	3,914,000	920,000 (1,150)	276,000	2,718,000				
F-13	250'	3,733,000	864,000 (1,080)	259,000	2,610,000				
F-14	347	4,018,000	1,000,000 (1,250)	300,000	2,718,000				
F-23	280'	3,893,000	904,000 (1,130)	271,000	2,718,000				
Temana	99'	2,615,000	. 544,000 (680)	163,000	1,908,000				
E-6	239'	3,702,000	840,000 (1,050)	252,000	2,610,000				
Betty	247	3,723,000	856,000 (1,070)	257,000	2,610,000				
Bokor	228 '	3,671,000	816,000 (1,020)	245,000	2,610,000				
B-12	2981	3,945,000	944,000 (1,180)	283,000	2,718,000				
Sabah Area									
South Furious	188'	2,962,000	728,000 (910)	218,000	2,016,000				
Erb West	252'	3,738,000	868,000 (1,085)	260,000	2,610,000				
Peninsular Area					•				
Bekok	234 '	3,692,000	832,000 (1,040)	250,000	2,610,000				
Pulai	245'	3,702,000	840,000 (1,050)	252,000	2,610,000				
Seligi	. 2481	3,723,000	856,000 (1,070)	257,000	2,610,000				
Tapis	225'	3,650,000	800,000 (1,000)	240,000	2,610,000				
Jerneh	205'	3,598,000	760,000 (950)	228,000	2,610,000				

S 211 - HINTH	S		Installation	22,000	22,000	22,000	22,000	28,000	28,000	28,000	35,000	35,000	35,000	47,000	47,000	47,000	95,000	95,000
SUBMARINE PIPELINE (PER 1,000 FEET)	•	Breakdown	Corrosion & Weight Coating*	2,000	3,000	3,000	4,000	4,000	5,000	5,000	6,000	8,000	10,000	13,000	15,000	18,000	29,000	40,000
			Materials	7,000	8,000	11,000	13,000	14,000	17,000	20,000	20,000	25,000	31,000	34,000	37,000	41,000	48,000	69,000
UNIT COST OF		Total		31,000	33,000	36,000	39,000	46,000	50,000	53,000	61,000	68,000	76,000	94,000	000,66	106,000	172,000	204,000
Table 29-6-11 (Vol. III)		Size		6 "	 8	10"	12"	14"	16"	18"	20"	24"	28"	30"	32"	36"	42"	48"

Pipelines of size from 6" to 10" exclude weight coating cost.

12	
-9-	_
29.	i
Je	<u>,</u>
rab1	2

UNIT COST OF RISER PIPE (PER ONE RISER)

•		Riser Installation & Tie-in	181,000	181,000	181,000	181,000	272,000	272,000	272,000	362,000	362,000	362,000	453,000	453,000	453,000	543,000	543,000
1	Breakdown	Prefabrication	2,000	2,000	2,000	2,000	3,000	3,000	3,000	4,000	4,000	4,000	5,000	2,000	5,000	000'9	000'9
		Materials	7,000	11,000	15,000	20,000	24,000	28,000	33,000	38,000	43,000	48,000	50,000	55,000	60,000	65,000	70,000
	Total		190,000	194,000	198,000	203,000	299,000	303,000	308,000	404,000	409,000	414,000	208,000	513,000	518,000	614,000	619,000
	Size		9	: :	10"	12"	14"	16"	18"	20"	24"	28"	30"	32"	36"	42"	48"

(Vol. III)

Table 29-6-14 OIL PRODUCTION EQUIPMENT COST

CASE	10,	0001	3PD
------	-----	------	-----

	Material Cost	Installation Cost	Total Cost
Process Equipment (including Piping)	593,000	322,000	915,000
Electrical Equipment	320,000	80,000	400,000
Instrument Equipment	105,000	27,000	132,000
Total Cost	1,018,000	429,000	1,447,000
CASE 20,000 BPD			*.
	Material Cost	Installation Cost	Total Cost
Process Equipment (including Piping)	664,000	340,000	1,004,000
Electrical Equipment	336,000	84,000	420,000
Instrument Equipment	113,000	29,000	142,000
Total Cost	1,113,000	453,000	1,566,000
CASE 30,000BPD			
	Material Cost	Installation Cost	Total Cost
Process Equipment (including Piping)	795,000	400,000	1,195,000
Electrical Equipment	368,000	93,000	461,000
Instrument Equipment	128,00	32,000	160,000
Total Cost	1,291,000	525,000	1,816,000

Table 29-6-15 (Vol. III)

UNIT COST OF

OTHER PRODUCTION EQUIPMENT

1.	ONSHORE TANKAGE	5 / BBL
2.	PUMP WITH ELEC. MOTER & ACCESSORIES	650 / HP
3	. GAS COMPRESSOR WITH GAS TURBINE	600 / HP

Table 29-6-16 (Vol. III)

NEWLY BUILT STORAGE BARGE COST

STORAGE CAPACITY	STORAGE BARGE COST
940,000 BBLS	19,000,000
1,100,000 BBLS	23,000,000
1,200,000 BBLS	25,000,000
1,270,000 BBLS	27,000,000
1.400.000 BBLS	32,000,000

Table 29-6-17 (Vol. III)

ONSHORE SUPPORT FACILITIES COST

(IN CASE OF 30,000BPD)

UNIT: US\$

ONSHORE STORAGE CASE	173,000	2,000,000	2,000,000	1,252,000	2,360,000	
OFFSHORE STORAGE CASE	50,000	1,960,000	2,000,000	1,203,000		
	SITE PREPARATION	BUILDING	JETTY	OTHERS	AUXILIARY FACILITIES FOR TANKAGE	-

7,785,000

5,213,000

TOTAL

^{*} Cost for the other capacity case is estimated based on above shown table considering scale factor.

Table 29-6-18 (Vol. III)

OPERATING PERSONNEL COST

US\$/Person/Year

1.	Manager	72,000
2.	Superintendent	44,000
3.	Supervisor	28,800
4.	Engineer	19,200
5.	Geologist	19,200
6.	Clerk	4,800
7.	Officer	4,800
8.	Mechanician	1,800
9.	Electrician	1,800
10.	Instrument	1,800
11.	Foreman	1,800
12.	Field Operator	1,500
13.	Store Keeper	960
14.	Laborer	1,200

UNIT COST

<u>OF</u>

VARIOUS CHEMICALS

		UNIT : US\$
1.	Tri-Ethylene-Glycol	3.30/ gal.
2.	Corrosion Inhibitor for Gas	20.0/ gal.
3.	Deemulsifier	0.74/lb
4.	Defoamant	o.73/1b

Table 29-6-20 (Vol. III)

UNIT COST

<u>OF</u>

SERVICE CONTRACTORS

UNIT: US\$

1.	One Work Boat		30,000 per y ear
2.	One (Crew Boat	10,000 per y ear
3.	One !	Iug Boat Fleet*	18,000 for each berthing and unberthing operation
4.	One l	Helicopter	150,000 per year assuming one flight a day
5.	Cate	ring Service Personnel	
	a.	Cook	8,760 per ye ar
	b.	Waiter	6,570 per year
	c.	Room Boy	4,380 per ye ar

* Consisting of one tug boat, one hose handling boat and one mooring line handling boat.

Table 30-6-1 (Vol. III) Sabah Area

ANNUAL OIL PRODUTION AND FOB PRICE PER BARREL

		South	South Furious & I	Erb West Fields		
(South F	CASE I (South Furious & Erb	Erb West Fields)	ields)	CASE IIA, IIB (Erb West Field)		
Annual Production (M BBLS)	oduction 3LS)	F.O.B. (M\$)	Price (US\$)	Annual Production (M BBLS)	F.O.B. (M\$)	Price (US\$)
				1,300	31.39	12.36
12,932	32	31.45	12.38	7,300	31.39	12.36
12,063	593	31.45	12.38	7,300	31.39	12.36
7,300	00	31.39	12.36	7,300	31.39	12.36
7,300	00	31.39	12.36	5,625	31,39	12.36
5,625	25	31.39	12.36			;

Note: Crude price is as of middle of 1976

Table 31-6-1 (Vol. III)

INVESTMENT SCHEDULE FOR OIL

UNIT: M\$1,000

	eld	CASE IB	80,694 197,443 175,568
	Tapis Field	CASE IA	72,691
ir area		CASE III	150,020 205,658 153,643
PENINSULAR AREA	gi Fields	CASE II	179,848 262,407 193,549
	Bekok, Pulai & Seligi Fields	CASE IB	240,976 305,619 241,490
	Bekok, Pu	CASE IA	201,002 275,415 259,019
	West	CASE IIB	108,517 102,291 61,426
SABAH AREA	South Furious & Erb West Fields	CASE IIA	102,689 77,320 81,863
vi	South Fur Fields	CASE I	96,956 61,615 147,695 100,048
	skor	CASE II	30,537 33,133 58,496
	Betty & Bob Fields	CASE I	54,093 67,270 110,837
SARAWAK AREA		CASE IIB	51,365 115,072 132,697
SARA	West Temana & E-6 Fields	CASE IIA	48,153 172,085 65,128
	West Teman	CASE I	102,168
AREA	FIELD	YEAR	1 2 5 4 3 9 6 6 11 11 12 12 12 12 12 12 12 12 12 12 12

Table 31-6-2 (Vol. III)

ANNUAL OPERATING COST FOR OIL

-	_
CC FUZ	3
Ξ	=
c	⋾
	_
,-	₹
٠.	ď.
v	2
٠,	7
-	4
•	
_	٠
5	4
	:
H	4
۰.	÷
×	÷
	٦.
_	•

	7			_					_																		
	p) q	CASE IB	· 			22,276	22,108	21,885	21,445	21,095	20,444																
	Tapis Field	CASE IA				27,486	27,318	27,095	26,655	26,305	25,654																
		CASE III				31,560	31,523	31,286	30,487	29,184	28,286	27,636	27,151	22,917	22,221	21,987	21,780	21,603	21,512	21,396	21,316	21,227	21,148	21,108	20,796		
PENINSULAR AREA	i Fields	CASE II			_	38,158	38,120	37,904	37,166	31,277	30,347	29,688	29,182	28,203	24,066	23,822	23,626	23,456	23,324	23,211	23,108	23,018	22,963	22,899	22,582	-	
	Dekok, Pulai & Seligi Fields	CASE IB			 -	36,097	36,019	35,663	34,778	32,208	30,943	23,799	23,288	22,308	18,662	18,418	18,200	18,042	17,920	17,801	17,714	17,625	17,539	17,495	17,173		
	Bekok, Pu]	CASE IA		_		44,319	44,241	43,885	43,000	40,430	39,165	30,408	29,897	28,917	24,861	24,617	24,399	24,241	24,119	24,000	23,913	23,824	23,738	23,694	23,372		
	West	CASE IIB				13,538	13,538	13,538	13,538	13,345				<u></u>					•					-			
SABAH AREA	South Furious & Erb West Fields	CASE IIA	•			13,328	13,328	13,328	13,328	13,135		_					-	•	-				-				
18 S	South Furi Fields	CASE I					19,051	19,051	13,005	13,005	12,812					<u> </u>	-						•				
	Bokor Fields	CASE II				7,119	940,7	7,031	.6,886	6,766	4,882					•											
	Betty & B	CASE I				11,297	11,246	9,380	7,081	6,961	5,027			,													
		CASE IIB		-		15,256	15,256	15,256	15,256	15,145	14,901	14,649	14,426	14,327	14,268	14,223	14,190	14,159	14,139	8,216							
SARAWAK AREA	na & E-6 Fields	CASE IIA		ľ		21,525	21,525	21,525	21,525	21,414	21,170	20,918	20,695	20,596	20,537	20,492	20,459	20,428	20,408	10,202						•	-
SARA	West Temana & E-6 Fields	CASE I				22,155	20,409	18,658	18,658	18,547	18,303	18,051	17,828	17,729	17,670	17,625	17,592	17,561	17,541	8,768							
AREA	CIBIA	YEAR	П	2	e	4	'n	9		89	on.	ន	ដ	12	EE	14	15	16	17	18	19	20	27	22	53		
		YEAR	<u></u>								-	<u>.</u>	_			_		_									

Table 31-6-6 (Vol. III)

AT THE YEAR OF MAX. R.O.R. FOR OPERATING COMPANY PROFITABILITY YARDSTICKS OF OIL

UNIT : M\$1,000

			PETRONAS	NAS			OPERATING COMPANY	MPANY	
	YARDSTICK	ICK	Cumulative Net Cash	Cumulative Present	Max. ROR	Maximum ROR	Maximum Cumulative	Maximum Cumulative	Payout Time
AREA	FIELD		MOT4	worth at Discount Rate 10%	Year (*)	ROR (%)	rec casii Flow	Worth at Discount Rate 10%	
		CASE I	688,786	369,459	14	7.88	174,935	-29,685	7.5
	West Temana & E-6	CASE IIA	653,618	352,124	13	15.48	259,503	57,673	6.3
Sarawak		CASE IIB	697,320	363,228	91	16.75	282,672	. 70,265	6.2
Area		CASE I	223,742	140,256	ω	ı	-21,229	-64,611	ı
	Betty & Bokor Fleius	CASE II	188,132	116,397	æ	12.62	58,526	8,266	5.7
		CASE I	385,924	218,331	ο̈́	ι	-37,904	-124,962	1
Sabah	Erb West &	CASE IIA	297,213	179,263	ω	1.31	13,964	-63,044	7.7
Area	237347	CASE IIB	297,213	179,263	8	0.23	2,552	-74,768	7.9
		CASE IA	1,770,974	1,015,256	14	21.04	727,775	252,866	5.1
Peninsular	Bekok, Pulai & Seligi	CASE IB	1,826,413	1,028,039	1.7	19,42	748,844	239,115	5.2
Area		CASE II	1,529,282	858,248	15	19.78	622,606	202,485	5.2
		CASE III	1,337,232	738,332	15	20.77	547,063	184,618	5.2
		CASE IA	702,728	428,202	6	15.05	239,153	53,873	5.6
	Tapis Field	CASE IB	702,728	428,202	6	12.51	224,444	30,337	ლ დ

the year shown above is a peak year of cumulative net cash. Note: (*) - In the case that cumulative net cash flow is not positive,

FIGURE LIST VOL. III SABAH AREA

Fig. 1-2-1	STRUCTURE CONTOUR MAP, SAMARANG FIELD, TOP a2
2	STRUCTURE CONTOUR MAP, SAMARANG FIELD, TOP b
3	STRUCTURE CONTOUR MAP, SAMARANG FIELD, TOP cl
4	STRUCTURAL CROSS-SECTION, SAMARANG FIELD
1-3-1	PREDICTED PERFORMANCE OF SAMARANG FIELD
2	PREDICTED PERFORMANCE OF A ZONE, SAMARANG FIELD
3	PREDICTED PERFORMANCE OF B ZONE, SAMARANG FIELD
4	PREDICTED PERFORMANCE OF C ZONE, SAMARANG FIELD
5	GAS-OIL RELATIVE PERMEABILITY RATIO OF A ZONE, SAMARANG FIELD
6	GAS-OIL RELATIVE PERMEABILITY RATIO OF B ZONE, SAMARANG FIELD
7	GAS-OIL RELATIVE PERMEABILITY RATIO OF C ZONE, SAMARANG FIELD
8	OIL RELATIVE PERMEABILITY CURVE OF A ZONE, SAMARANG FIELD
9	OIL RELATIVE PERMEABILITY CURVE OF B ZONE, SAMARANG FIELD
10	OIL RELATIVE PERMEABILITY CURVE OF C ZONE, SAMARANG FIELD
11	OIL PROPERTIES OF A ZONE, SAMARANG FIELD
12	OIL PROPERTIES OF B ZONE, SAMARANG FIELD
13	OIL PROPERTIES OF C ZONE, SAMARANG FIELD
14	GAS PROPERTIES OF A ZONE, SAMARANG FIELD
15	GAS PROPERTIES OF B ZONE, SAMARANG FIELD
16	GAS PROPERTIES OF C ZONE, SAMARANG FIELD
17	CUMULATIVE OIL PRODUCTION VS. RESERVOIR PRESSURE AND PRODUCING GAS OIL RATIO OF A ZONE, SAMARANG FIELD
18	CUMULATIVE OIL PRODUCTION VS. RESERVOIR PRESSURE AND PRODUCING GAS OIL RATIO OF B ZONE, SAMARANG FIELD
19	CUMULATIVE OIL PRODUCTION VS. RESERVOIR PRESSURE AND PRODUCING GAS OIL RATIO OF C ZONE, SAMARANG FIELD
20	ADDITIONAL WELL CASE - WELL LOCATION MAP, SAMARANG FIELD
2-1-1	TIME CONTOUR MAP, TEMBUNGO FIELD, TOP b 1/2
2	SEISMIC SECTION, TEMBUNGO FIELD, LINE S74B101
2-2-1	STRUCTURE CONTOUR MAP, TEMBUNGO FIELD, TOP bl
2	STRUCTURE CONTOUR MAP, TEMBUNGO FIELD, TOP cl
3	STRUCTURAL CROSS-SECTION, TEMBUNGO FIELD

Vol. III

	TITLE
Fig. 2-3-1	PREDICTED PERFORMANCE OF TEMBUNGO FIELD
2	PREDICTED PERFORMANCE OF MODEL-1, TEMBUNGO FIELD
3	PREDICTED PERFORMANCE OF MODEL-2, TEMBUNGO FIELD
4	PREDICTED PERFORMANCE OF MODEL-3, TEMBUNGO FIELD
5	PREDICTED PERFORMANCE OF MODEL-4, TEMBUNGO FIELD
6	PREDICTED PERFORMANCE OF ADDITIONAL WELL CASE, TEMBUNGO FIELD
7	GAS-OIL RELATIVE PERMEABILITY RATIO OF MODEL-1, TEMBUNGO FIELD
8	GAS-OIL RELATIVE PERMEABILITY RATIO OF MODEL-2, TEMBUNGO FIELD
9	GAS-OIL RELATIVE PERMEABILITY RATIO OF MODEL-3, TEMBUNGO FIELD
10	GAS-OIL RELATIVE PERMEABILITY RATIO OF MODEL-4, TEMBUNGO FIELD
11	GAS-OIL RELATIVE PERMEABILITY RATIO - ADDITIONAL WELL CASE, TEMBUNGO FIELD
12	OIL RELATIVE PERMEABILITY CURVE OF MODEL-1, TEMBUNGO FIELD
13	OIL RELATIVE PERMEABILITY CURVE OF MODEL-2, TEMBUNGO FIELD
14	OIL RELATIVE PERMEABILITY CURVE OF MODEL-3, TEMBUNGO FIELD
15	OIL RELATIVE PERMEABILITY CURVE OF MODEL-4, TEMBUNGO FIELD
16	OIL RELATIVE PERMEABILITY CURVE - ADDITIONAL WELL CASE, TEMBUNGO FIELD
17	OIL PROPERTIES OF MODEL-1, TEMBUNGO FIELD
18	OIL PROPERTIES OF MODEL-2, TEMBUNGO FIELD
19	OIL PROPERTIES OF MODEL-3, TEMBUNGO FIELD
20	OIL PROPERTIES OF MODEL-4, TEMBUNGO FIELD
21	OIL PROPERTIES OF WELL TM AD-1 and AD-4, TEMBUNGO FIELD
22	OIL PROPERTIES OF WELL TM AD-2, TEMBUNGO FIELD
23	OIL PROPERTIES OF WELL TM AD-3, TEMBUNGO FIELD
24	GAS PROPERTIES OF MODEL-1, TEMBUNGO FIELD
25	GAS PROPERTIES OF MODEL-2, TEMBUNGO FIELD
26	GAS PROPERTIES OF MODEL-3, TEMBUNGO FIELD
27	GAS PROPERTIES OF MODEL-4, TEMBUNGO FIELD
28	GAS PROPERTIES OF WELL TM AD-1 AND AD-4, TEMBUNGO FIELD
29	GAS PROPERTIES OF WELL TM AD-2, TEMBUNGO FIELD
30	GAS PROPERTIES OF WELL TM AD-3, TEMBUNGO FIELD
31	CUMULATIVE OIL PRODUCTION VS. RESERVOIR PRESSURE AND PRODUCING GAS OIL RATIO OF MODEL-1, TEMBUNGO FIELD

Vol. III

Fig. 2-3-32	CUMULATIVE OIL PRODUCTION VS. RESERVOIR PRESSURE AND PRODUCING GAS OIL RATIO OF MODEL-2, TEMBUNGO FIELD
33	CUMULATIVE OIL PRODUCTION VS. RESERVOIR PRESSURE AND PRODUCING GAS OIL RATIO OF MODEL-3, TEMBUNGO FIELD
34	CUMULATIVE OIL PRODUCTION VS. RESERVOIR PRESSURE AND PRODUCING GAS OIL RATIO OF WELL TM AD-1, TEMBUNGO FIELD
35	CUMULATIVE OIL PRODUCTION VS. RESERVOIR PRESSURE AND PRODUCING GAS OIL RATIO OF WELL TM $\mathtt{AD-2}$, TEMBUNGO FIELD
36	CUMULATIVE OIL PRODUCTION VS. RESERVOIR PRESSURE AND PRODUCING GAS OIL RATIO OF WELL TM $AD-3$, TEMBUNGO FIELD
37	CUMULATIVE OIL PRODUCTION VS. RESERVOIR PRESSURE AND PRODUCING GAS OIL RATIO OF WELL TM AD-4, TEMBUNGO FIELD
38	ADDITIONAL WELL CASE - WELL LOCATION MAP, TEMBUNGO FIELD
3-1-1	TIME CONTOUR MAP, ERB WEST FIELD, TOP a2
2	TIME CONTOUR MAP, ERB WEST FIELD, TOP cl
3	SEISMIC SECTION, ERB WEST FIELD, LINE 71-ERB-01
3-2-1	STRUCTURE CONTOUR MAP, ERB WEST FIELD, TOP a2
2	STRUCTURE CONTOUR MAP, ERB WEST FIELD, TOP cl
3	STRUCTURAL CROSS-SECTION, ERB WEST FIELD
3-3-1	PREDICTED PERFORMANCE OF ERB WEST FIELD
2	CUMULATIVE OIL PRODUCTION VS. RESERVOIR PRESSURE AND PRODUCING GAS OIL RATIO OF ERB WEST FIELD
4-1-1	TIME CONTOUR MAP, SOUTH FURIOUS FIELD, TOP C
2	SEISMIC SECTION, SOUTH FURIOUS FIELD, LINE 74-SF-34
4-2-1	STRUCTURE CONTOUR MAP, SOUTH FURIOUS FIELD, TOP c
4-3-1	PREDICTED PERFORMANCE OF SOUTH FURIOUS FIELD
2	CUMULATIVE OIL PRODUCTION VS. RESERVOIR PRESSURE AND PRODUCING GAS OIL RATIO OF SOUTH FURIOUS FIELD
5-1-1	TIME CONTOUR MAP, WEST EMERALD FIELD, TOP a
2	SEISMIC SECTION, WEST EMERALD FIELD, LINE 74-EM-46
5-2-1	STRUCTURE CONTOUR MAP, WEST EMERALD FIELD, TOP a
6-1-1	SEISMIC SECTION, St. JOSEPH FIELD, LINE 73-839
7-1-1	TIME CONTOUR MAP, ERB SOUTH FIELD, NEAR TOP a
2	SEISMIC SECTION, ERB SOUTH FIELD, LINE 73-358
7-2-1	STRUCTURE CONTOUR MAP, ERB SOUTH FIELD, TOP a

Vol. III

Fig.	8-4-1	LABUAN STREAM GENERAL FACILITY LAYOUT
	2	SAMARANG FIELD FACILITY LAYOUT
	3	LABUAN TERMINAL FACILITY LAYOUT
	4	MECHANICAL FLOW DIAGRAM OF LABUAN TERMINAL
	5	UTILITY FLOW DIAGRAM OF LABUAN TERMINAL NO. 3
	6	UTILITY FLOW DIAGRAM OF LABUAN TERMINAL NO. 1
	7	UTILITY FLOW DIAGRAM OF LABUAN TERMINAL NO. 2
	8	MAJOR EQUIPMENT ARRANGEMENT OF TEMBUNGO PLATFORM "A"
	9	MECHANICAL FLOW DIAGRAM OF TEMBUNGO "A"
	10	LABUAN STREAM PRESSURE BALANCE AT PRESENT PRODUCTION RATE
	11	LABUAN STREAM PRESSURE BALANCE AT MAXIMUM HANDLING CAPACITY OF PRODUCTION PLATFORMS
	12	PRESSURE BALANCE FOR THE PRESENT AND MAXIMUM PREDICTED PRODUCTION RATE IN LABUAN STREAM
	9-5-1	FACILITIES ARRANGEMENT FOR ERB WEST AND SOUTH FURIOUS OIL FIELDS - CASE I
	2	BLOCK FLOW DIAGRAM FOR ERB WEST AND SOUTH FURIOUS OIL FIELDS - CASE I
	3	FACILITIES ARRANGEMENT FOR ERB WEST AND SOUTH FURIOUS OIL FIELDS - CASE IIA
	4	BLOCK FLOW DIAGRAM FOR ERB WEST AND SOUTH FURIOUS OIL FIELDS - CASE IIA
	5	FACILITIES ARRANGEMENT FOR ERB WEST AND SOUTH FURIOUS OIL FIELDS - CASE IIB
	6	BLOCK FLOW DIAGRAM FOR ERB WEST AND SOUTH FURIOUS OIL FIELDS - CASE IIB
	9-6-1	PROJECT SCHEDULE ERB WEST AND SOUTH FURIOUS OIL FIELDS - CASE IIA
3	30-4-1	TYPICAL MECHANICAL FLOW DIAGRAM OF STANDARD PRODUCTION PLATFORM
3	30-5-2	TYPICAL MECHANICAL FLOW DIAGRAM FOR OIL PRODUCTION PLATFORM
	10	TYPICAL UTILITY FLOW DIAGRAM FOR OIL & GAS PRODUCTION PLATFORM
	16	TYPICAL PLAN AND ELEVATION FOR 6-LEG WELL & OIL PRODUCTION PLATFORM
	31	TYPICAL PLAN AND ELEVATION FOR 4-LEG ACCOMMODATION PLATFORM
	32	LEGEND FOR FLOW DIAGRAMS
3	30-9-1	GENERAL FIELD LOCATION
3	31-6-1	DRILLING & COMPLETION COST OF DEVELOPMENT WELL
	2	TENTATIVE ORGANIZATION FOR FIELD OPERATION (80 PERSONS CASE)
	3	TENTATIVE ORGANIZATION FOR FIELD OPERATION (128 PERSONS CASE)
	4	TENTATIVE ORGANIZATION FOR FIELD OPERATION (135 PERSONS CASE)
	5	TENTATIVE ORGANIZATION FOR FIELD OPERATION (146 PERSONS CASE)
	7	SENSITIVITY CURVE OF SABAH AREA

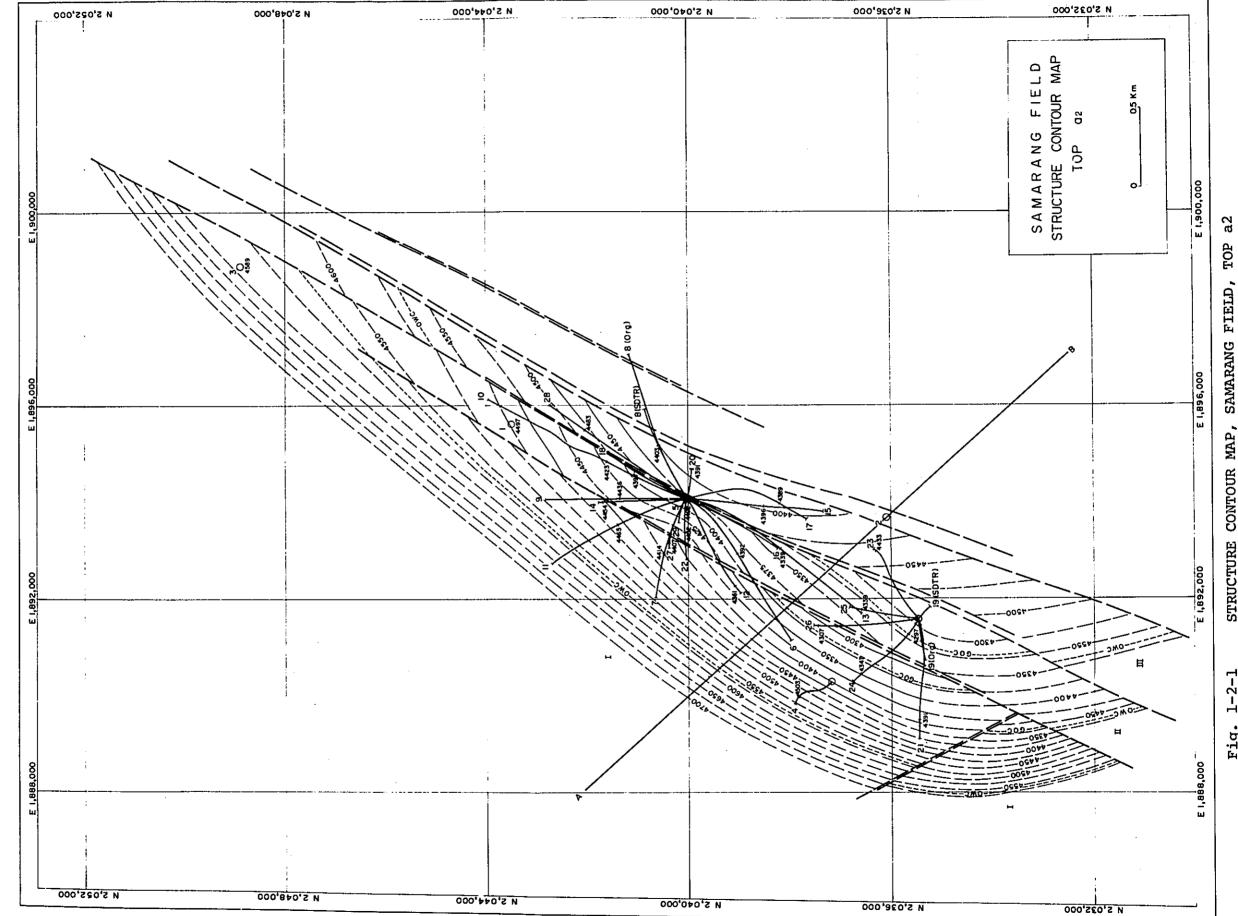
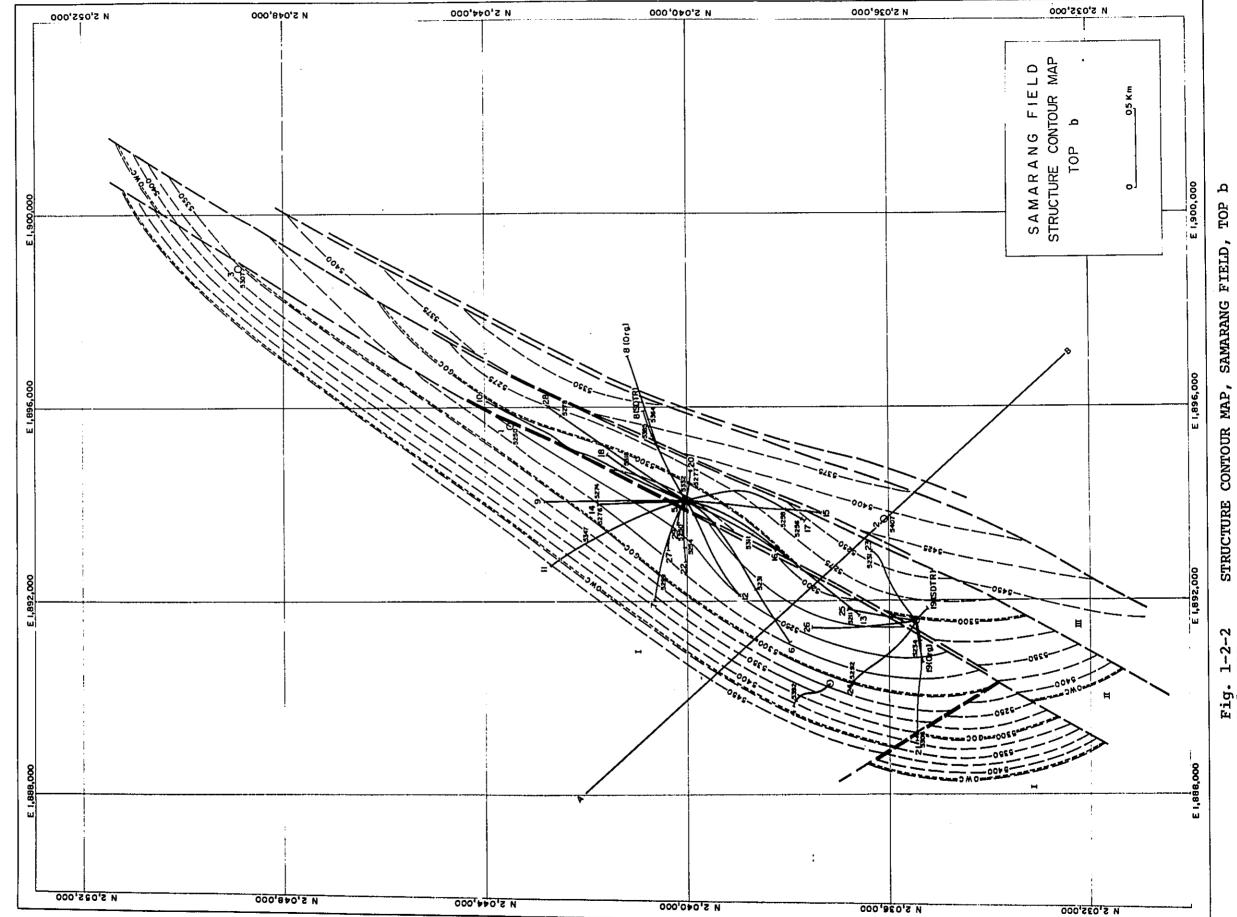



Fig. 1-2-1 Vol. III

SAMARANG FIELD, STRUCTURE CONTOUR MAP,

1-2-2 III

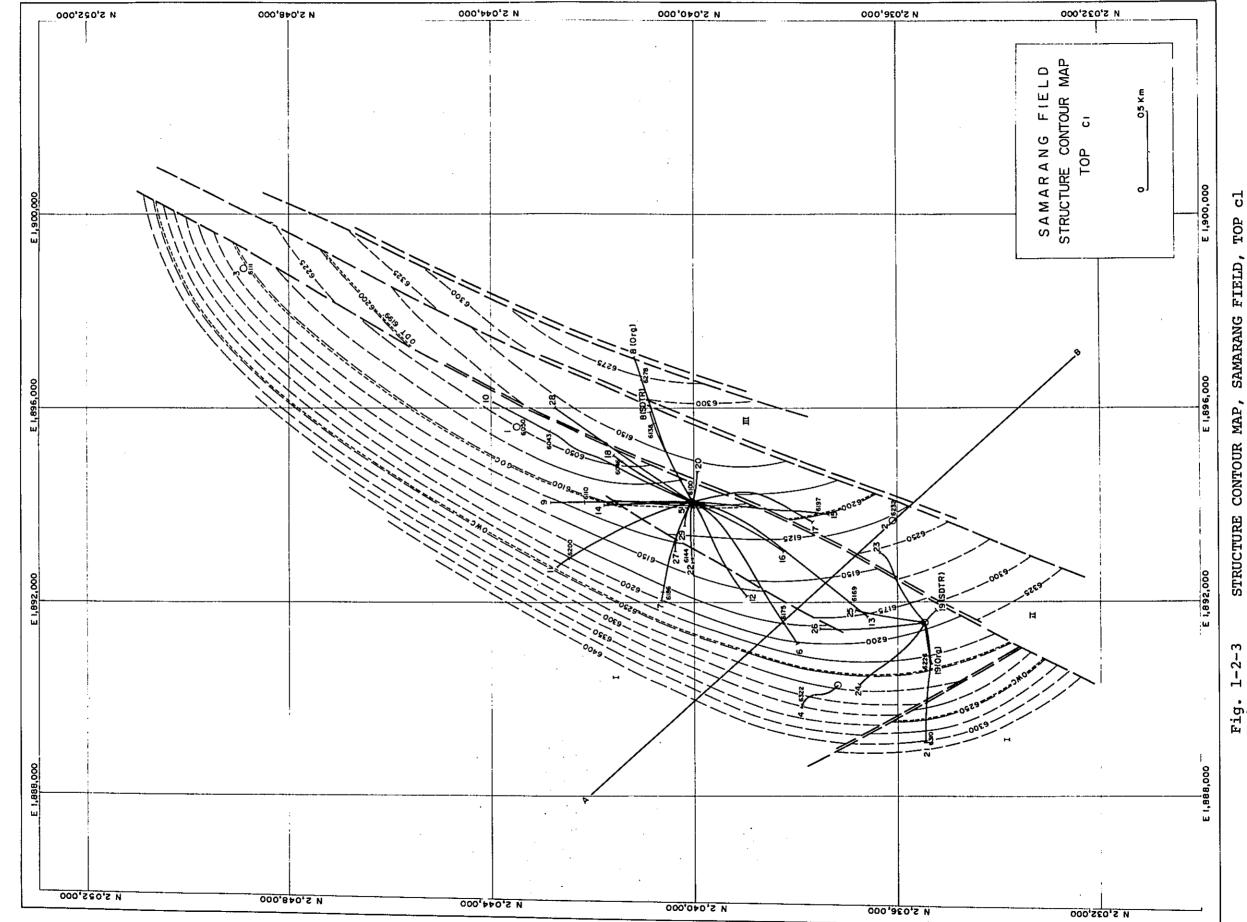
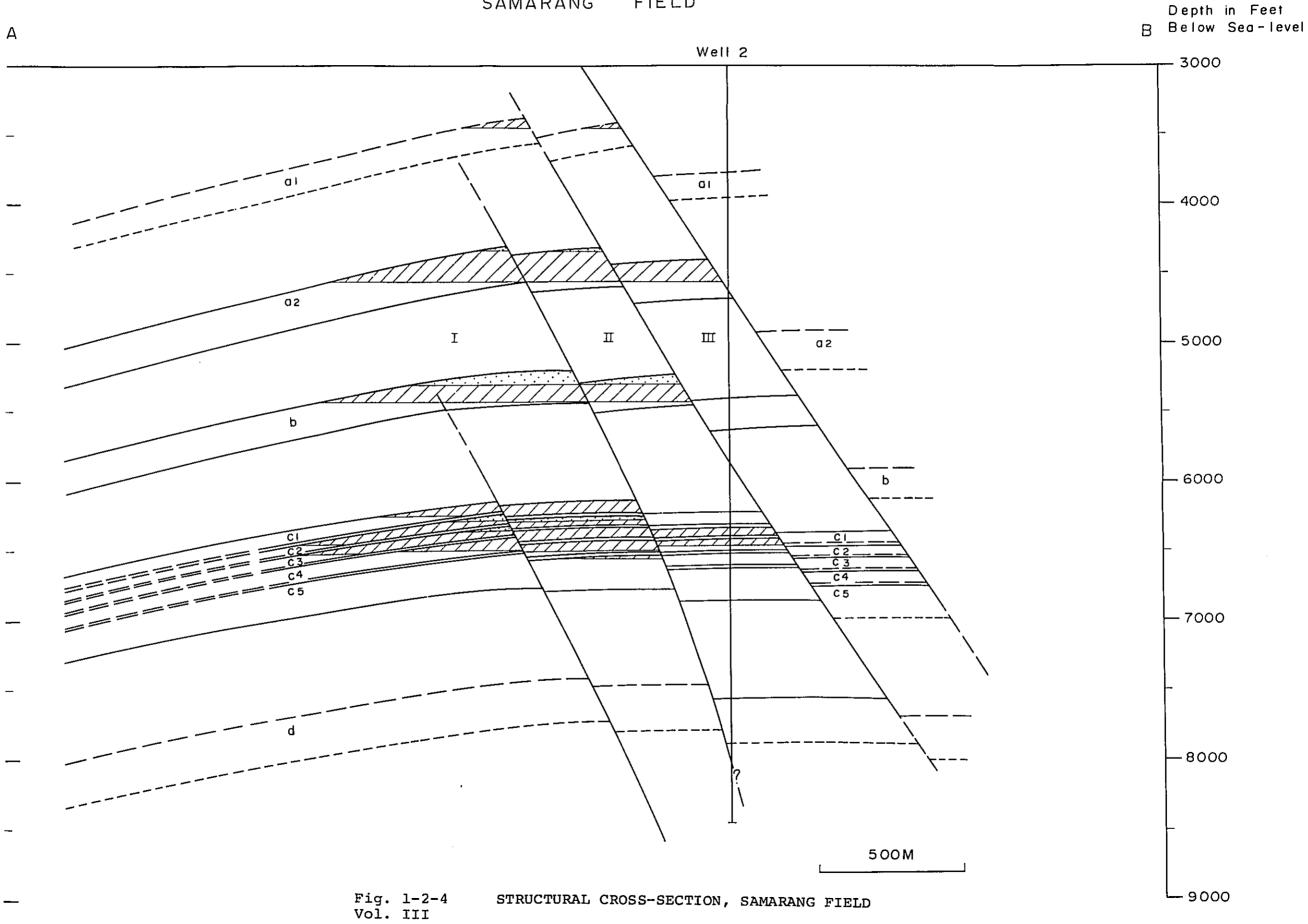



Fig. 1-2-3 Vol. III

STRUCTURE CONTOUR MAP, SAMARANG FIELD,

STRUCTURAL CROSS-SECTION SAMARANG FIELD

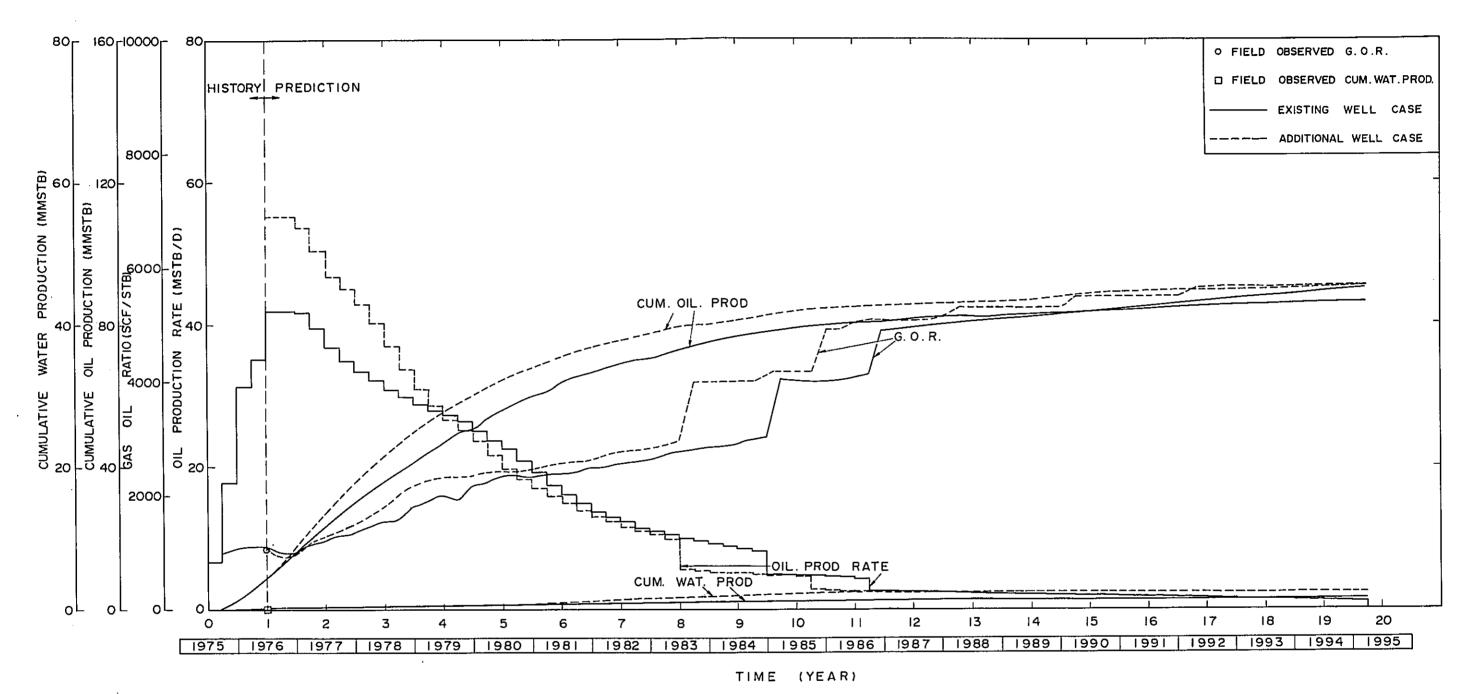
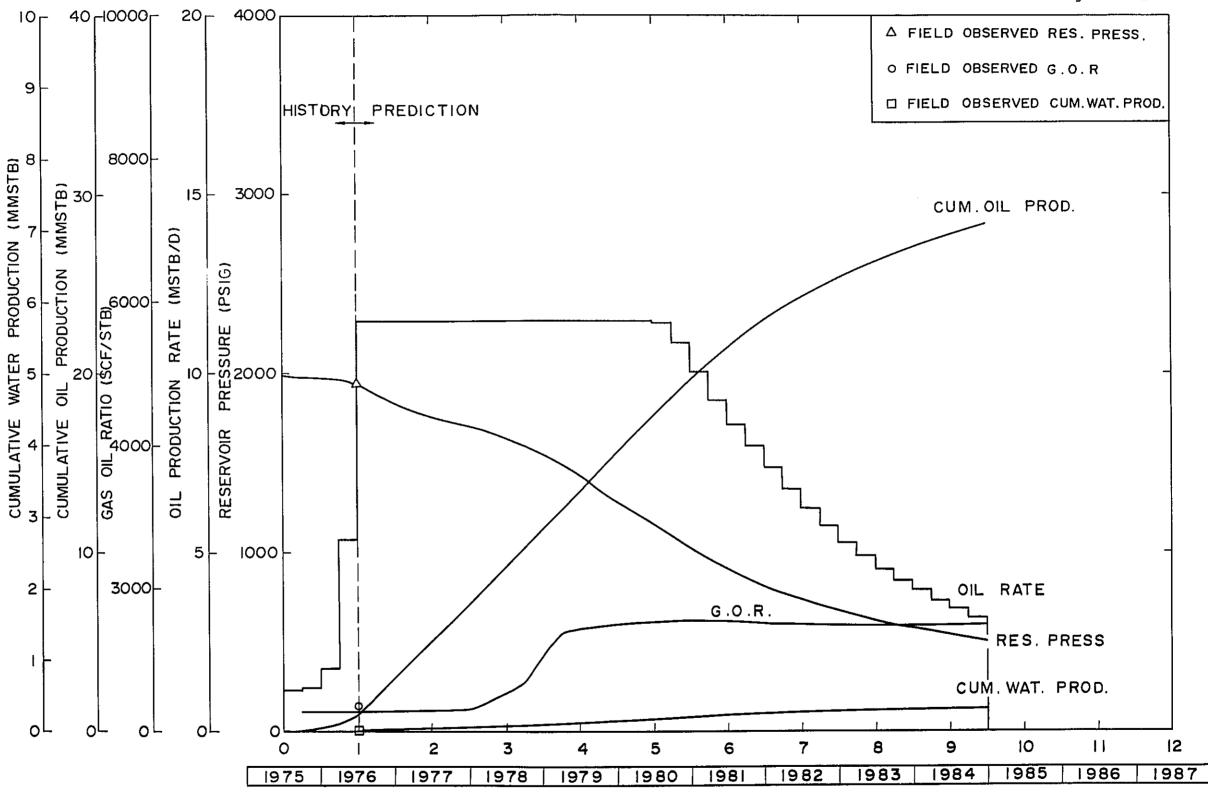



Fig. 1-3-1 PREDICTED PERFORMANCE OF SAMARANG FIELD Vol. III

TIME (YEAR)

Fig. 1-3-2 PREDICTED PERFORMANCE OF A ZONE, SAMARANG FIELD Vol. III

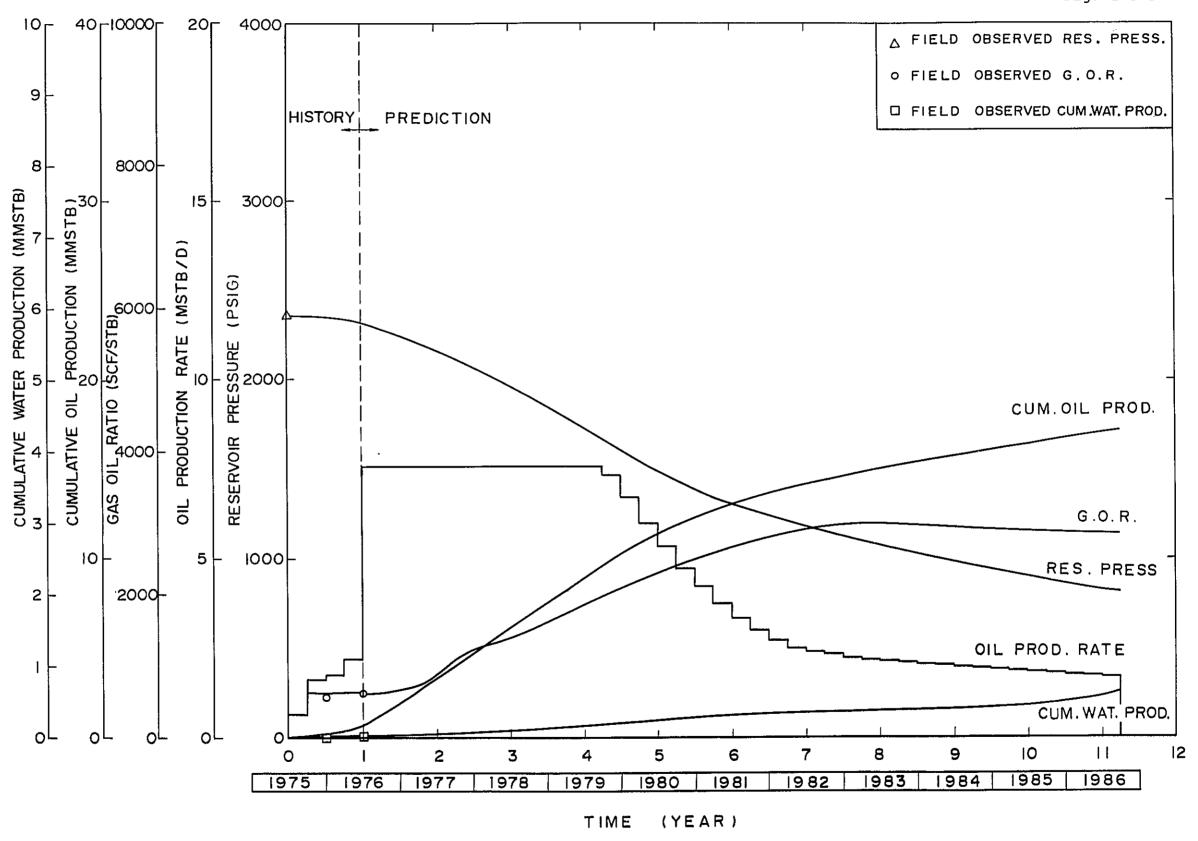
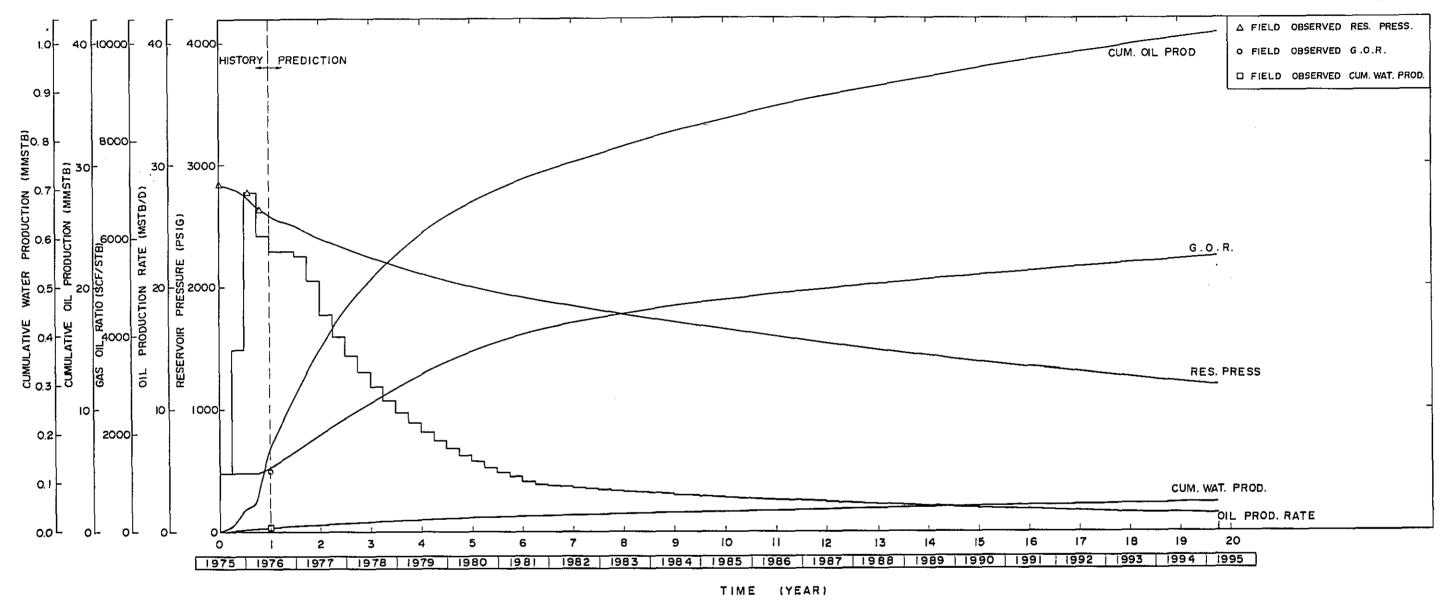
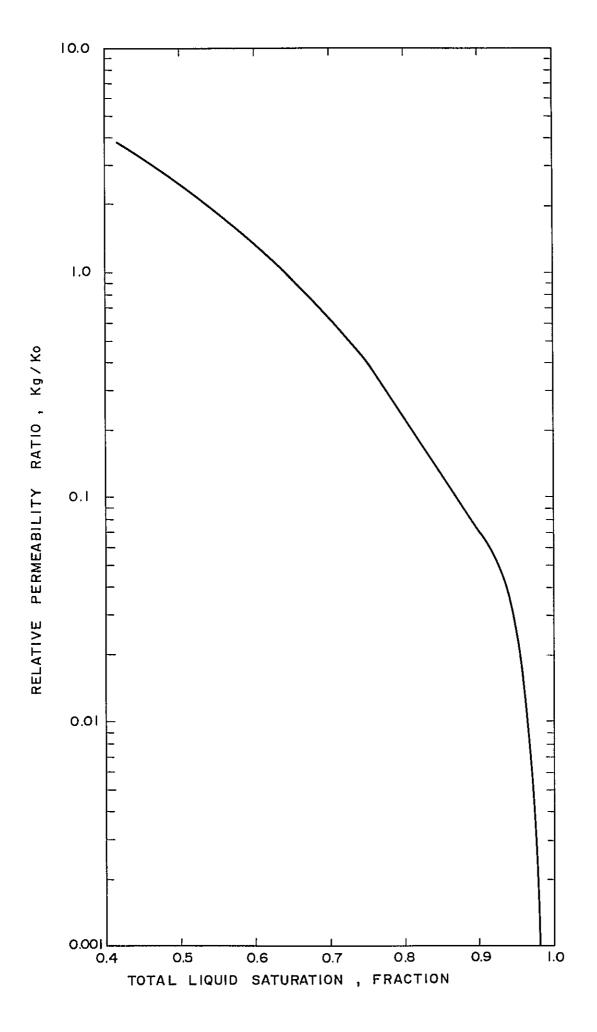
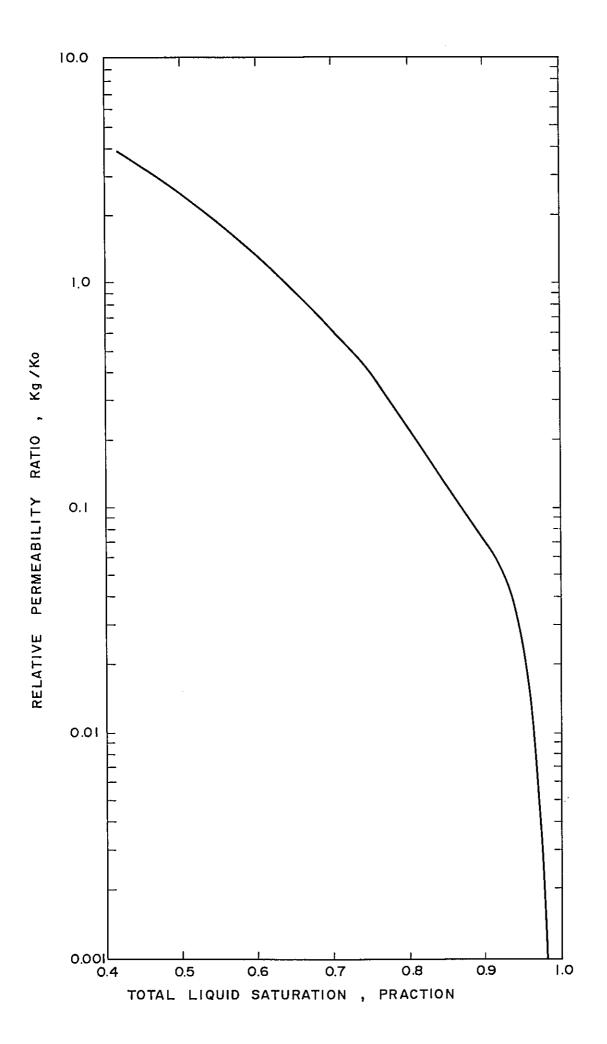
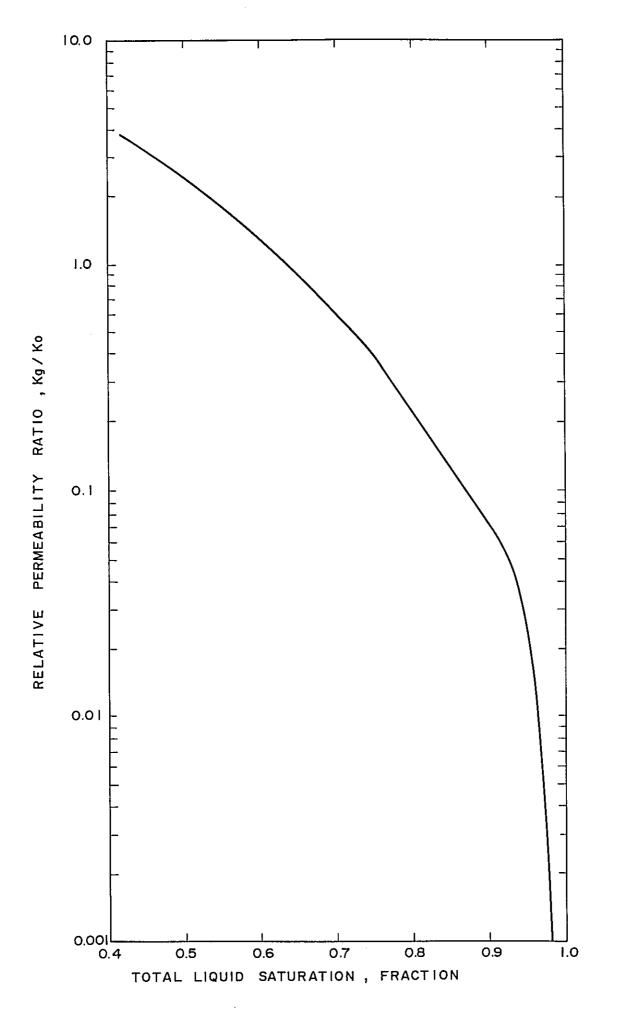


Fig. 1-3-3 PREDICTED PERFORMANCE OF B ZONE, SAMARANG FIELD Vol. III


Fig. 1-3-4 PREDICTED PERFORMANCE OF C ZONE, SAMARANG FIELD Vol. III

GAS-OIL RELATIVE PERMEABILITY RATIO OF A ZONE, SAMARANG FIELD

GAS-OIL RELATIVE PERMEABILITY RATIO OF B ZONE, SAMARANG FIELD

GAS-OIL RELATIVE PERMEABILITY RATIO OF C ZONE, SAMARANG FIELD

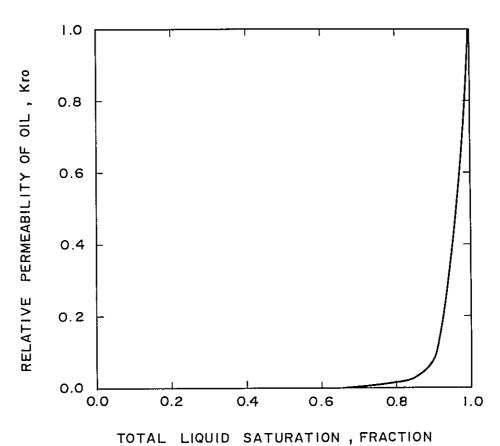


Fig. 1-3-8 OIL RELATIVE PERMEABILITY CURVE OF Vol. III A ZONE, SAMARANG FIELD

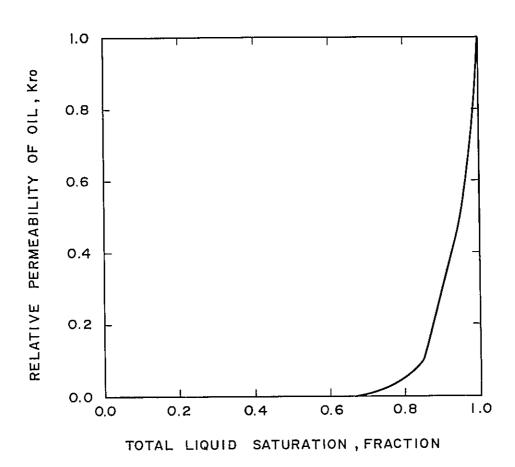


Fig. 1-3-9 OIL RELATIVE PERMEABILITY CURVE OF Vol. III B ZONE, SAMARANG FIELD

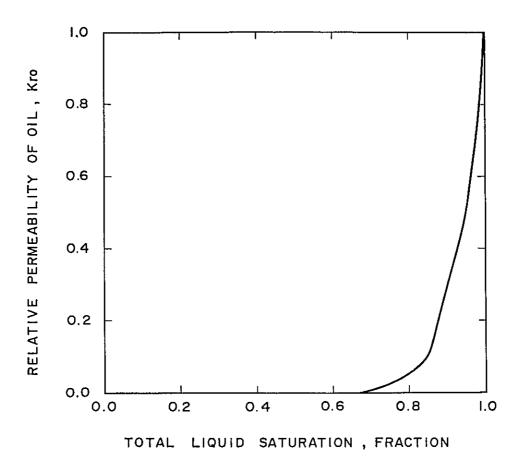
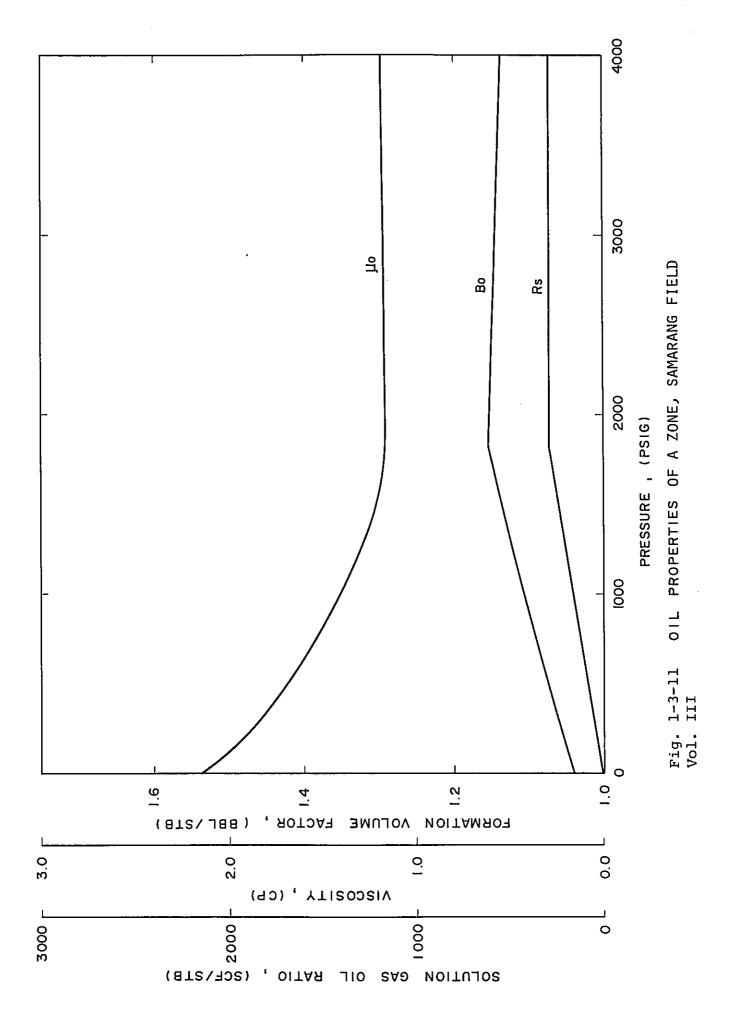
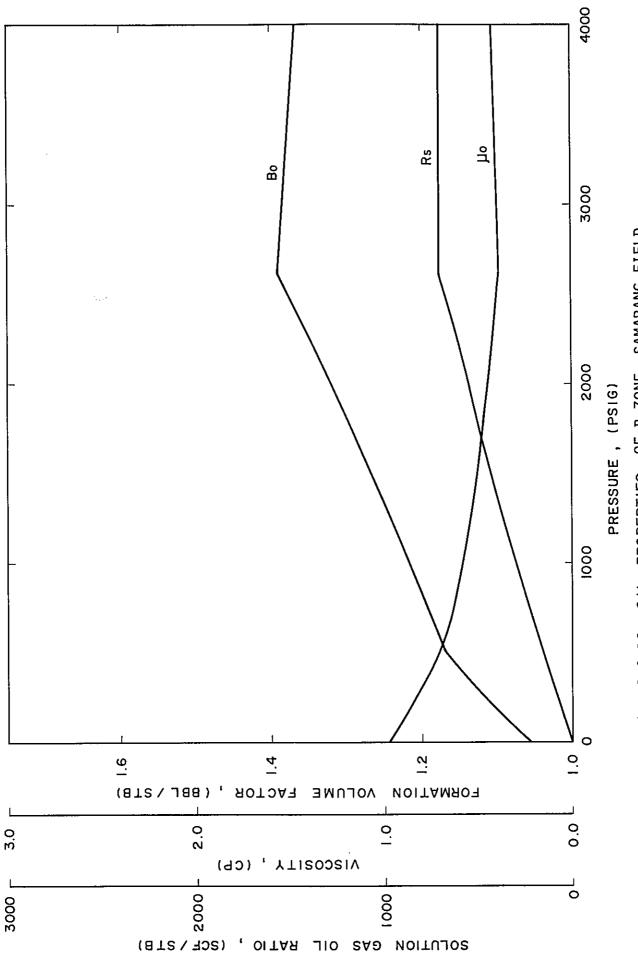
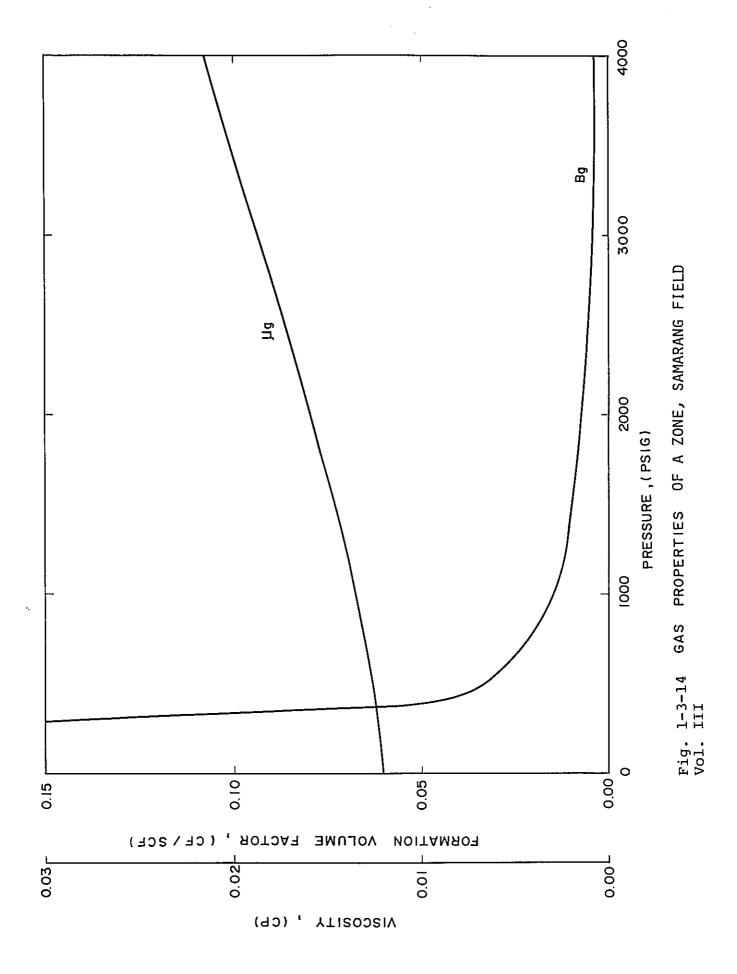
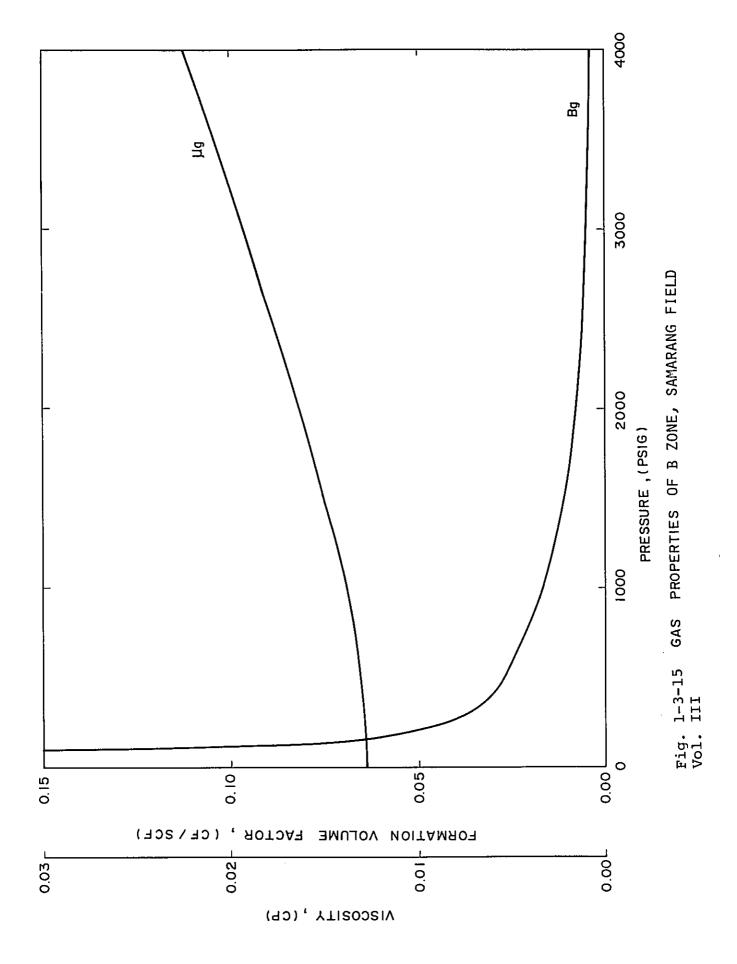
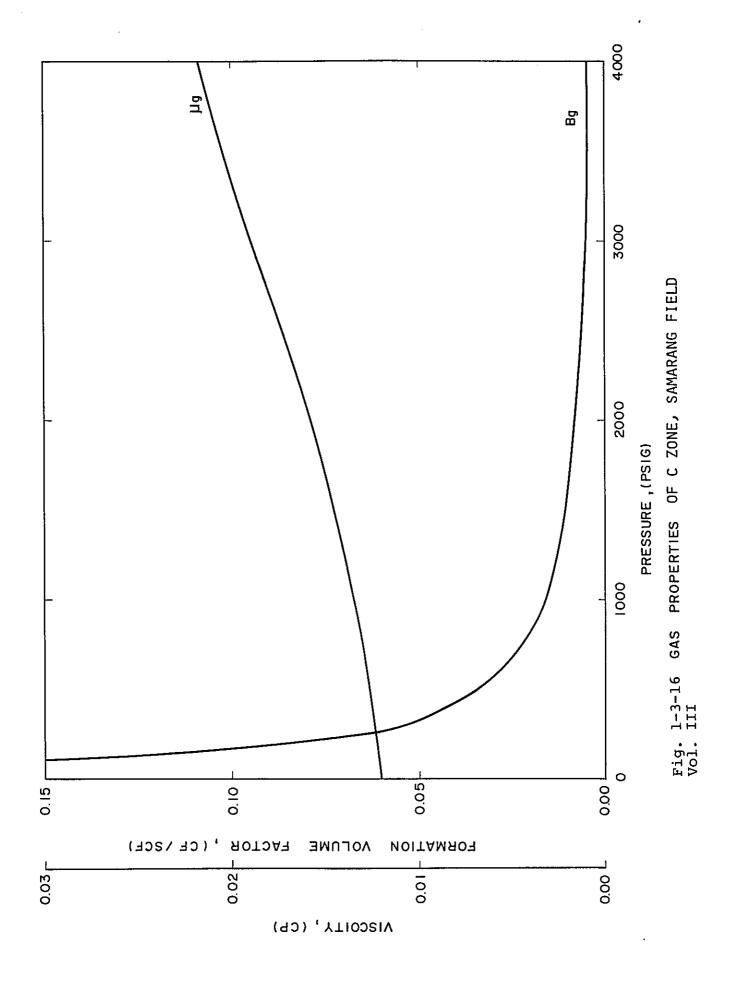
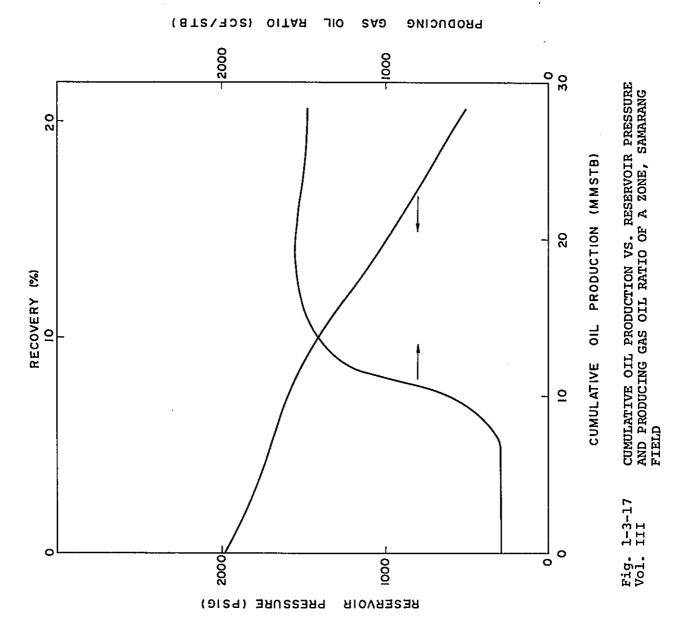



Fig. 1-3-10 OIL RELATIVE PERMEABILITY OF Vol. III C ZONE, SAMARANG FIELD




Fig. 1-3-12 OIL PROPERTIES OF B ZONE, SAMARANG FIELD VOl. III

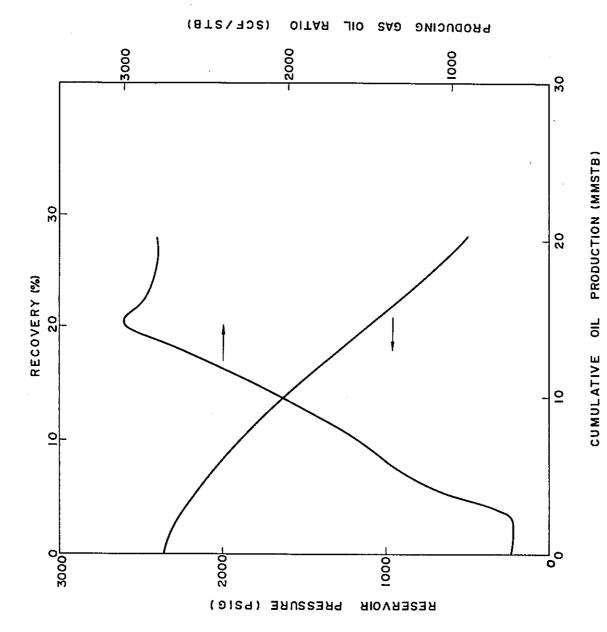
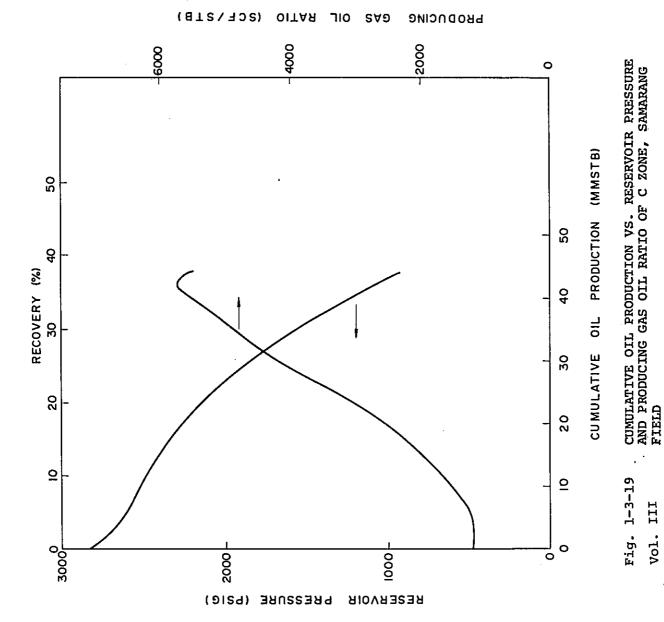
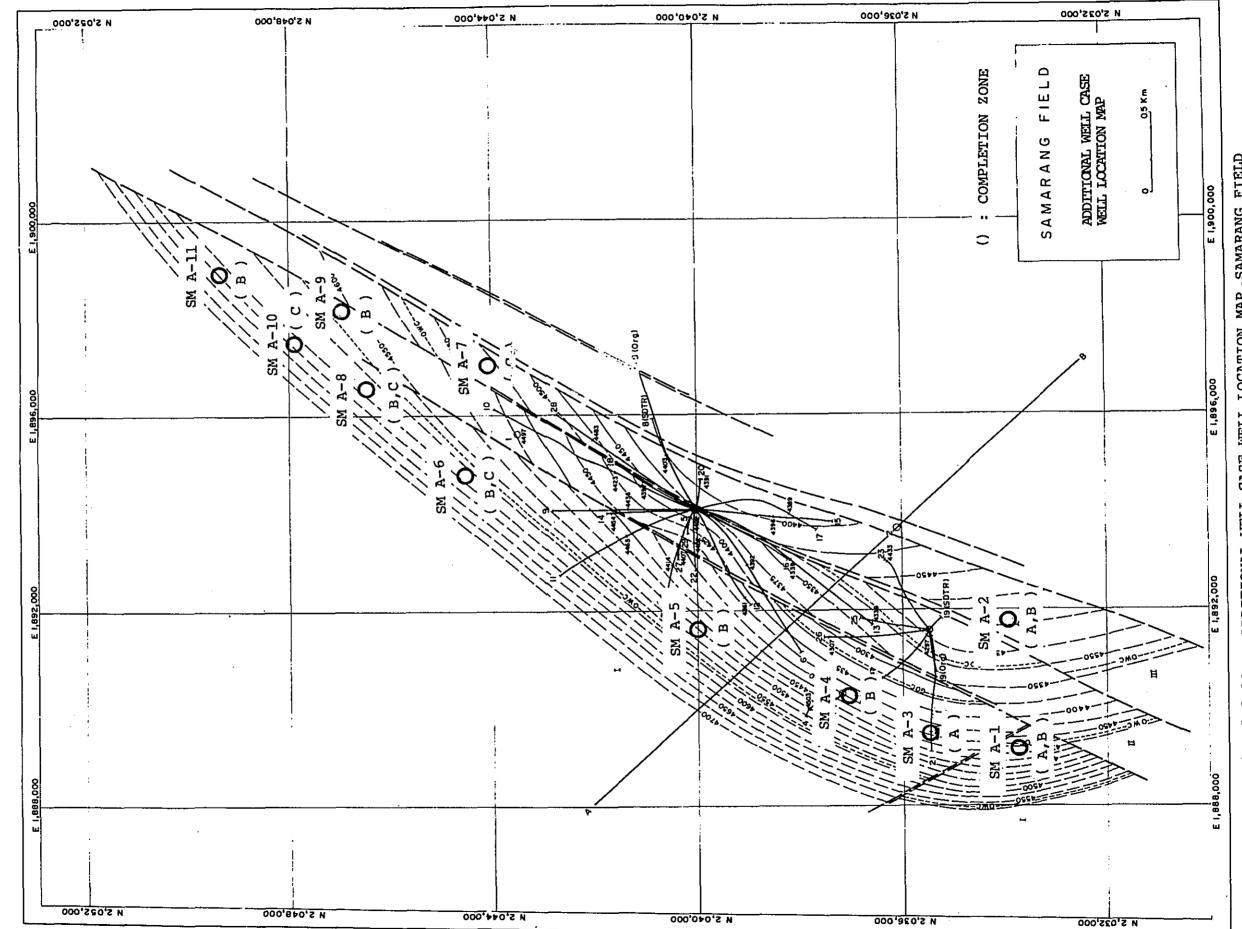




Fig. 1-3-18 CUMULATIVE OIL PRODUCTION VS. RESERVOIR PRESSURE VOL. III AND PRODUCING GAS OIL RATIO OF B ZONE, SAMARANG FIELD

1-3-20 III Fig. Vol.

CASE-WELL LOCATION MAP, SAMARANG FIELD ADDITIONAL WELL

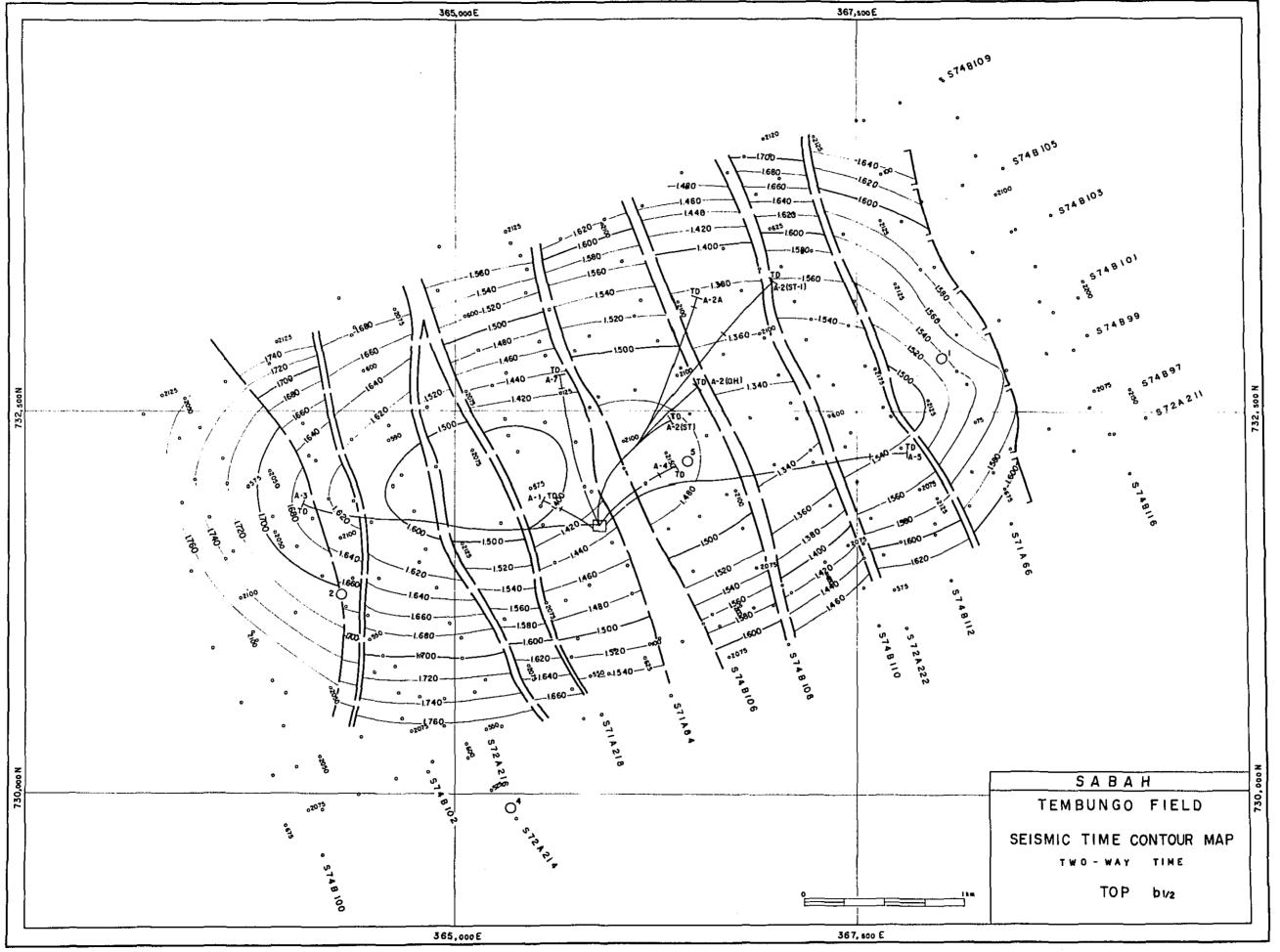


Fig. 2-1-1 Vol. III TIME CONTOUR MAP, TEMBUNGO FIELD, TOP b 1/2

Fig. 2-1-2 SEISMIC SECTION, TEMBUNGO FIELD, Line S74B101 Vol. III

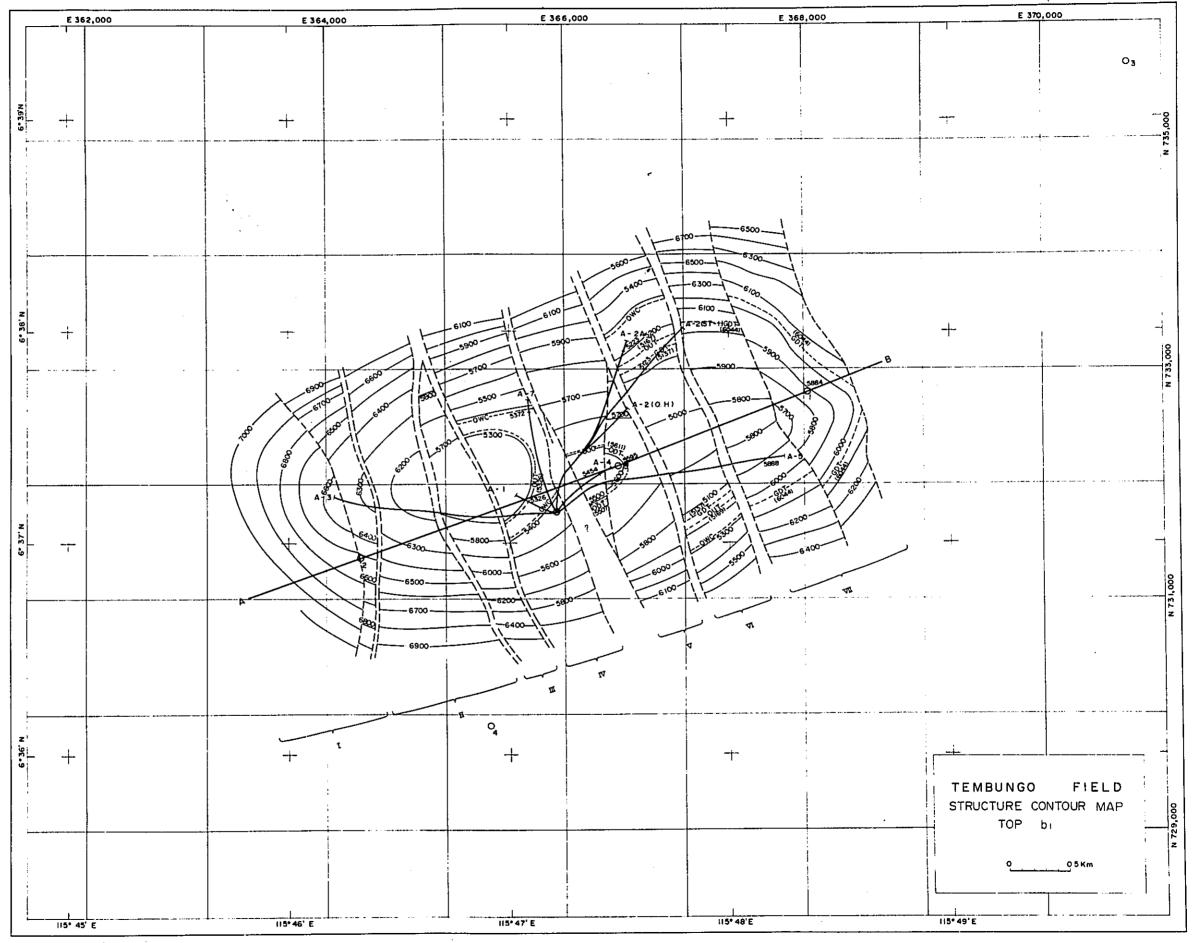


Fig. 2-2-1 Vol. III

STRUCTURE CONTOUR MAP, TEMBUNGO FIELD, TOP bl

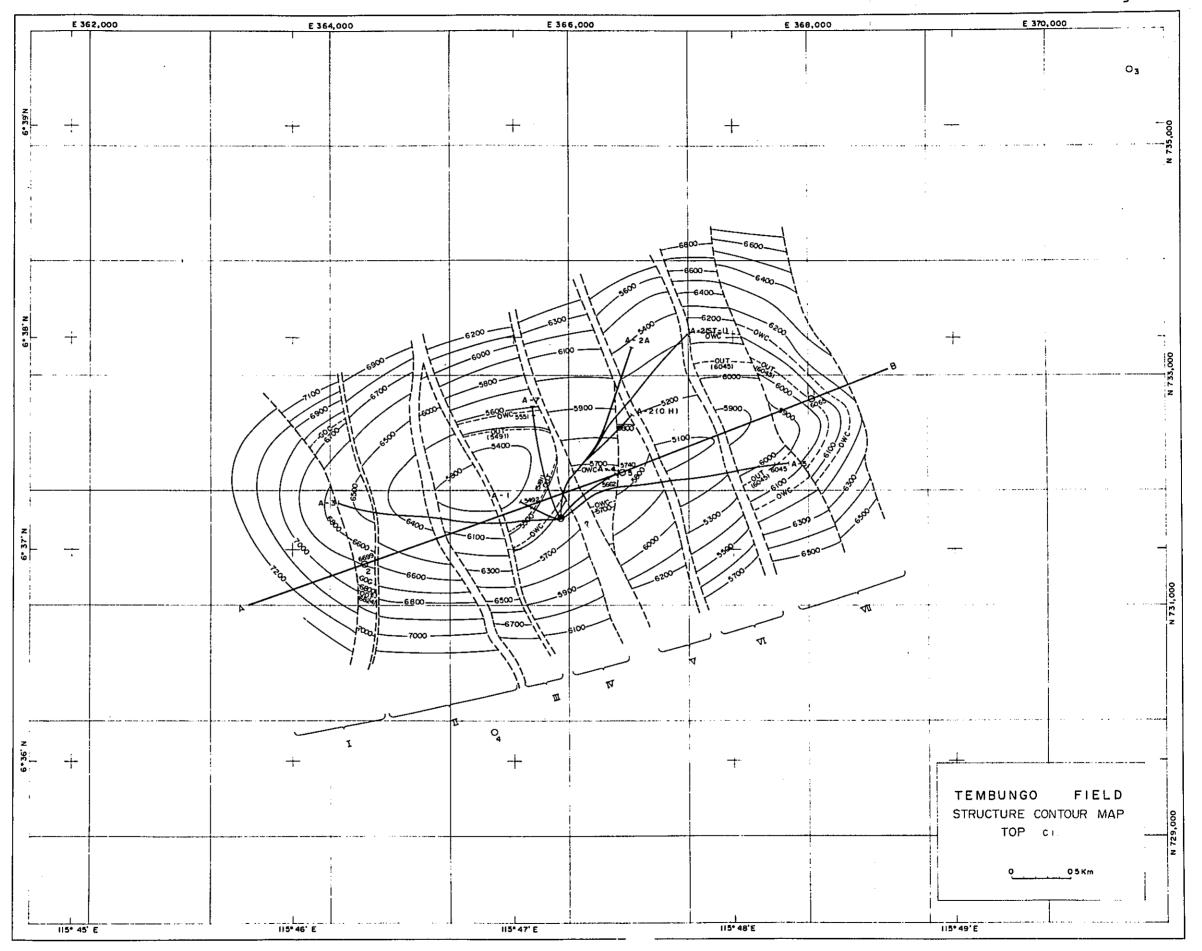


Fig. 2-2-2 Vol. III

STRUCTURE CONTOUR MAP, TEMBUNGO FIELD, TOP cl

STRUCTURAL CROSS-SECTION TEMBUNGO FIELD



Fig. 2-2-3 STRUCTURAL CROSS-SECTION, TEMBUNGO FIELD Vol. III

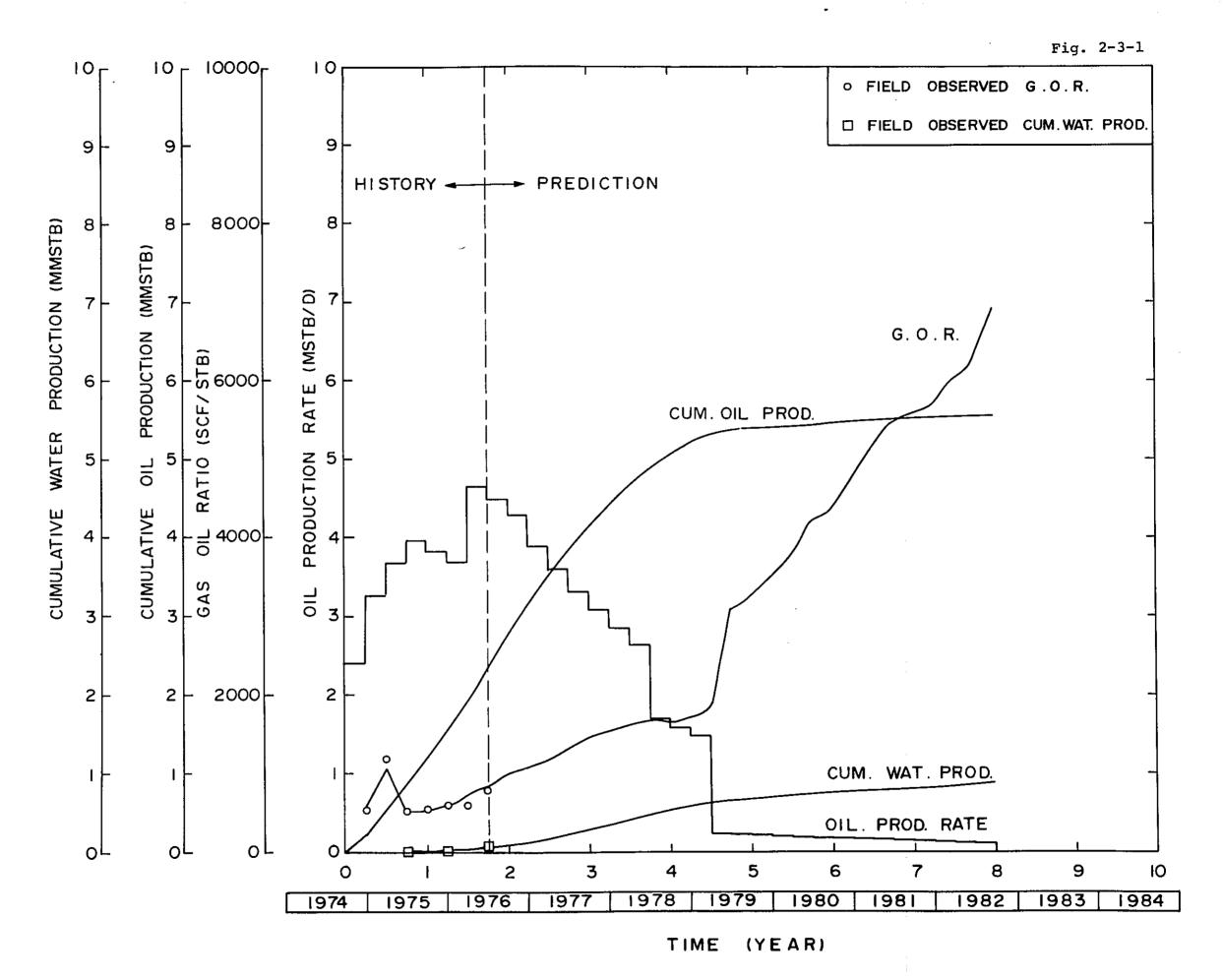


Fig. 2-3-1 PREDICTED PERFORMANCE OF TEMBUNGO FIELD Vol. III

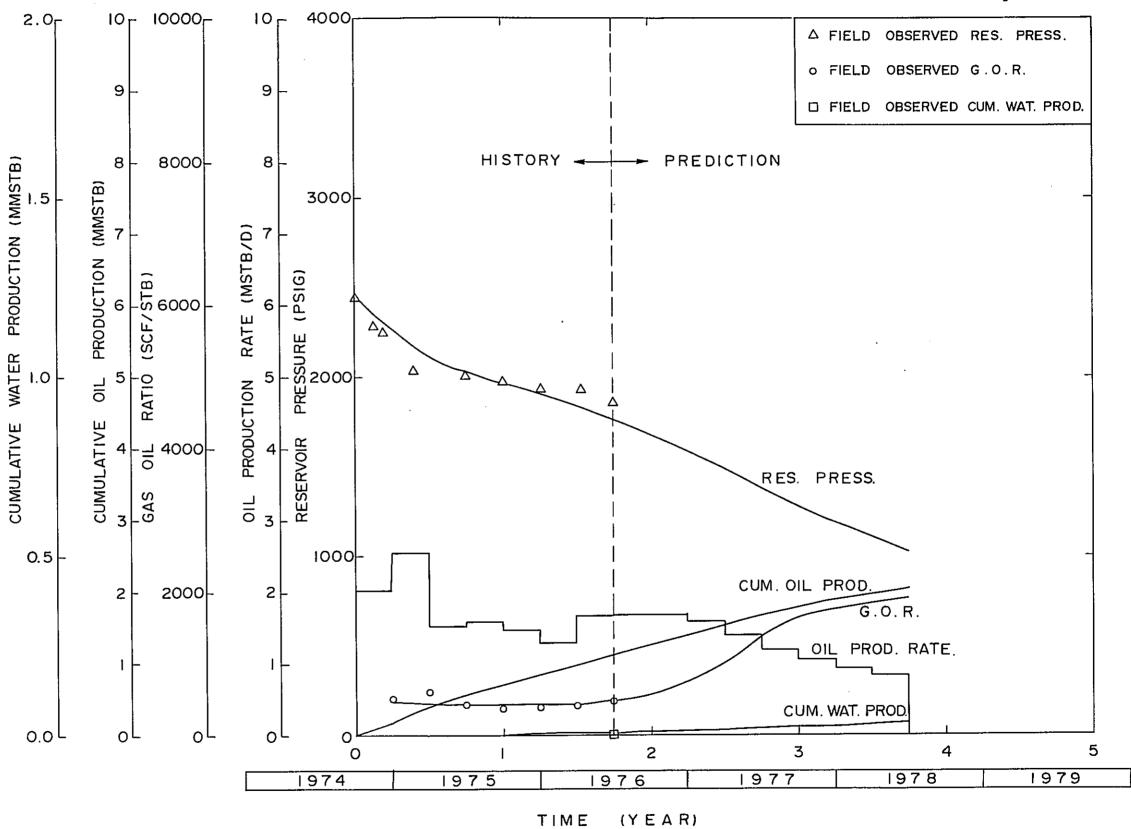


Fig. 2-3-2 PREDICTED PERFORMANCE OF MODEL-1, TEMBUNGO FIELD Vol. III.

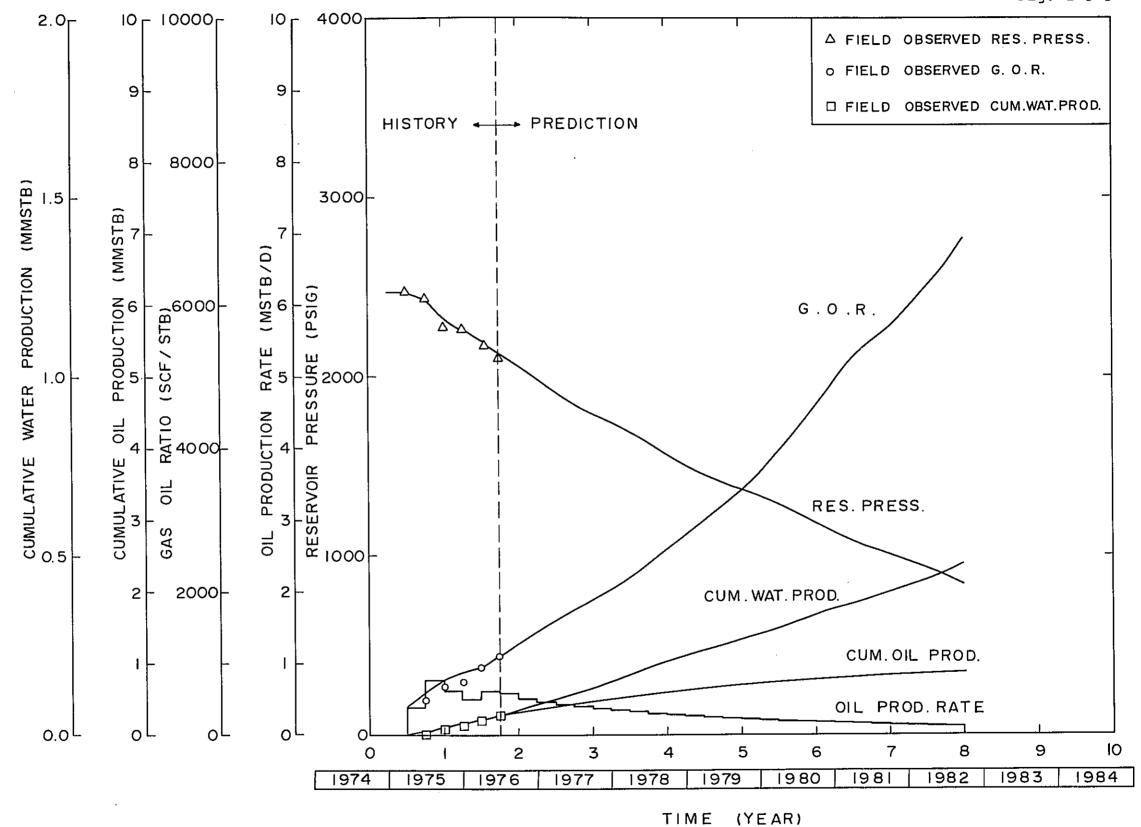


Fig. 2-3-3 PREDICTED PERFORMANCE OF MODEL 2, TEMBUNGO FIELD Vol. III

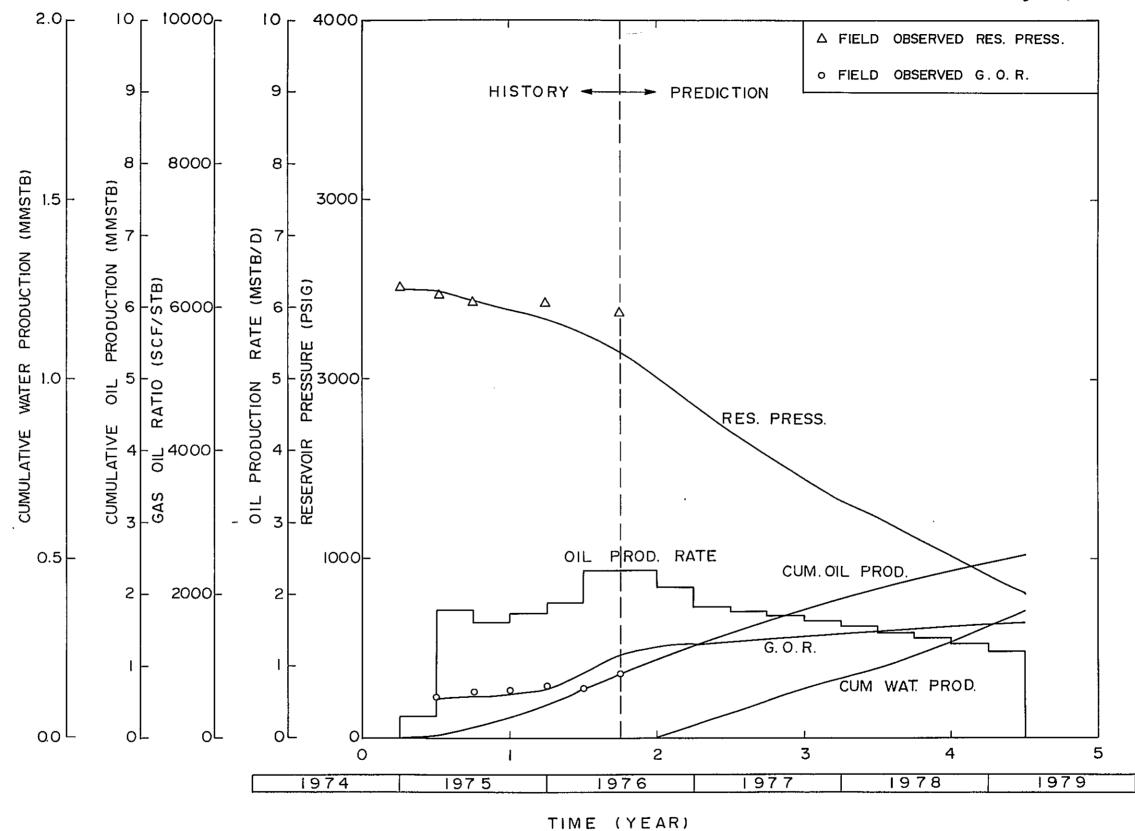
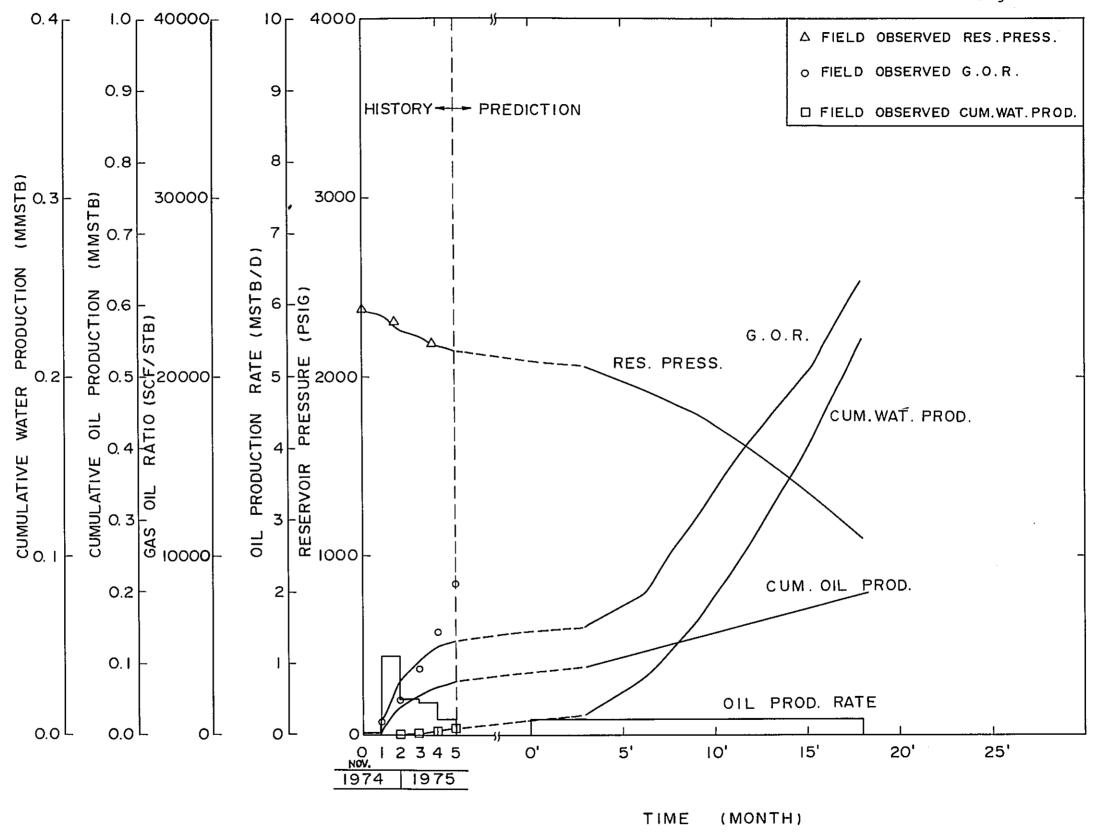
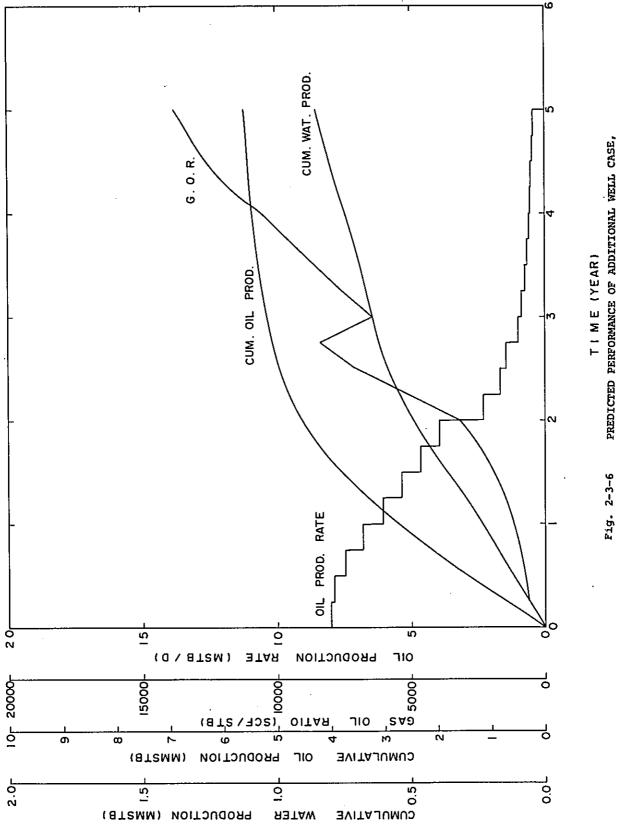
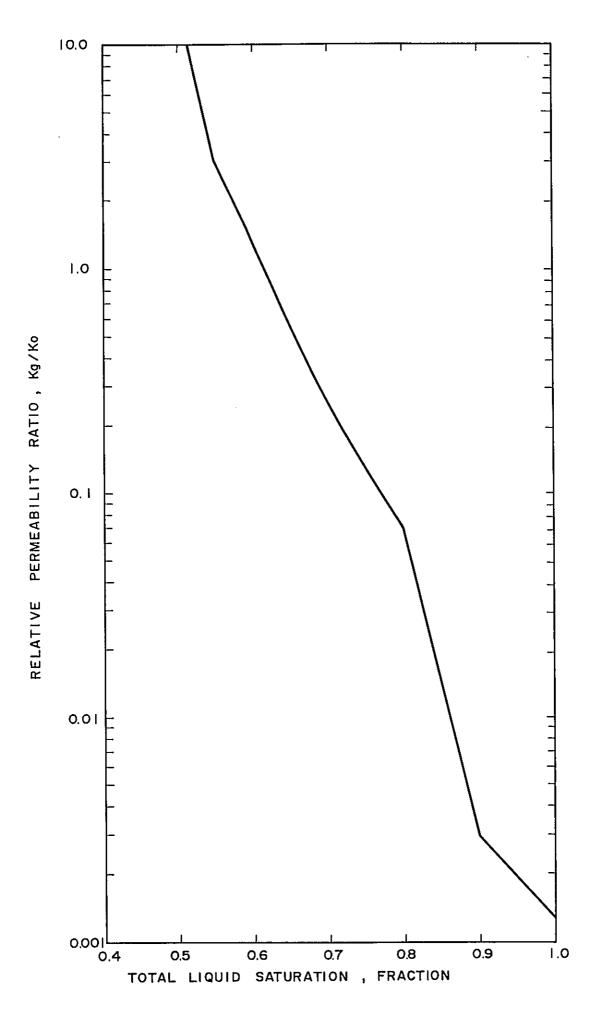
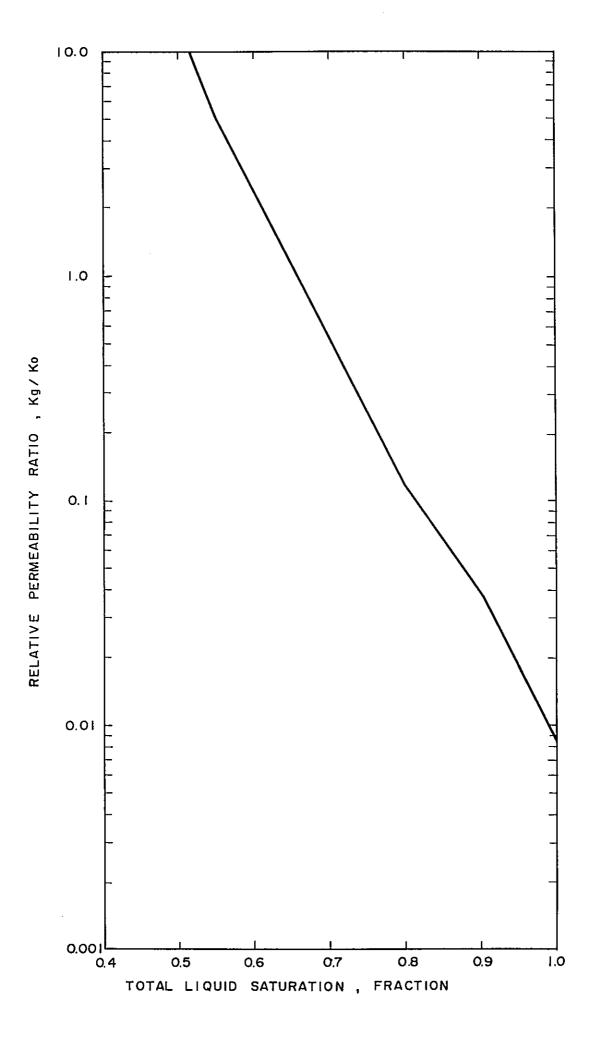
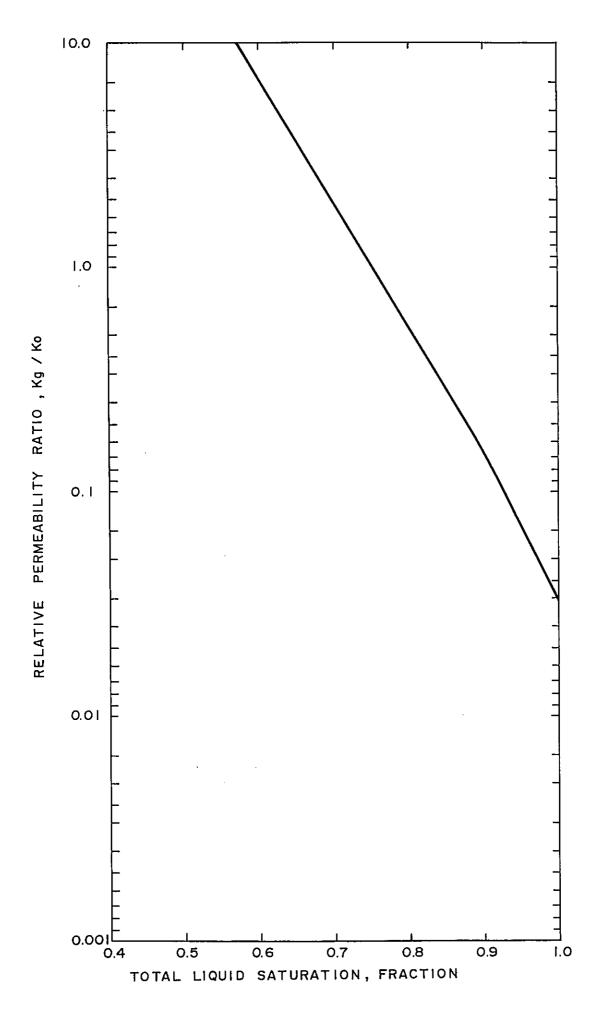
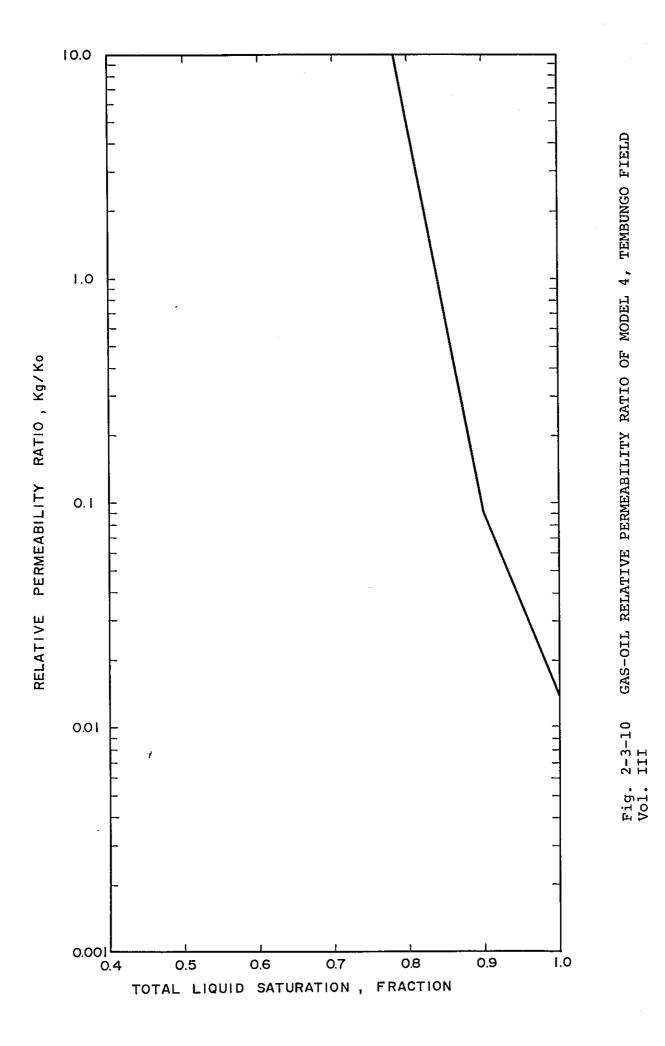


Fig. 2-3-4 PREDICTED PERFORMANCE OF MODEL 3, TEMBUNGO FIELD Vol. III


Fig. 2-3-5 PREDICTED PERFORMANCE OF MODEL 4, TEMBUNGO FIELD Vol. III


PREDICTED PERFORMANCE OF ADDITIONAL WELL CASE, TEMBUNGO FIELD Fig. 2-3-6 Vol. III


GAS-OIL RELATIVE PERMEABILITY RATIO OF MODEL 1, TEMBUNGO FIELD

GAS-OIL RELATIVE PERMEABILITY RATIO OF MODEL 2, TEMBUNGO FIELD Fig. 2-3-8 Vol. III

GAS-OIL RELATIVE PERMEABILITY RATIO OF MODEL 3, TEMBUNGO FIELD Fig. 2-3-9 Vol. III

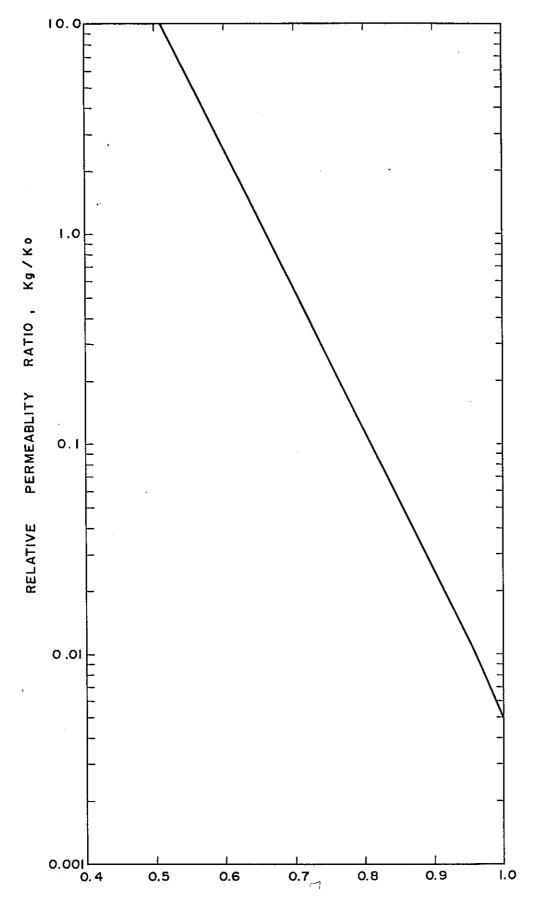


Fig. 2-3-11 GAS-OIL RELATIVE PERMEABILITY RATIO - ADDITIONAL Vol. III WELL CASE, TEMBUNGO FIELD

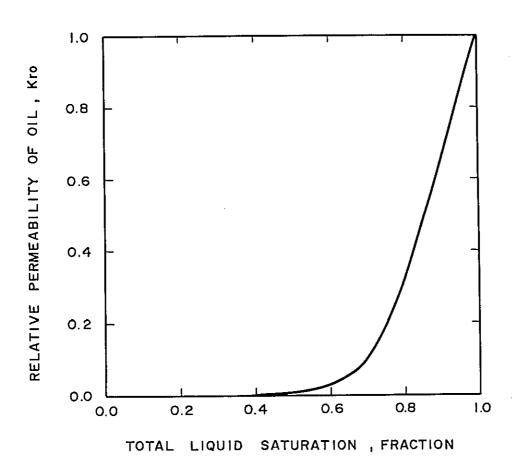


Fig. 2-3-12 OIL RELATIVE PERMEABILITY CURVE OF Vol. III MODEL 1, TEMBUNGO FIELD

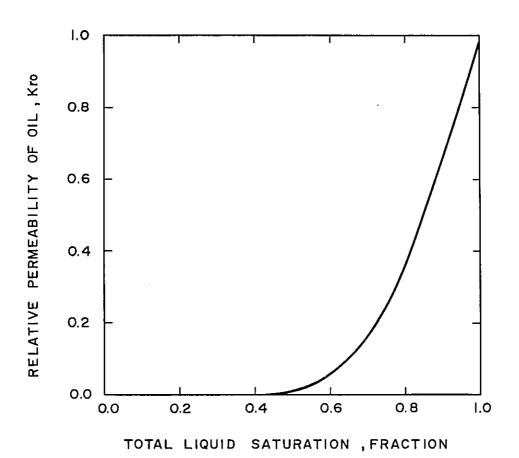


Fig. 2-3-13 OIL RELATIVE PERMEABILITY CURVE OF Vol. III MODEL 2, TEMBUNGO FIELD

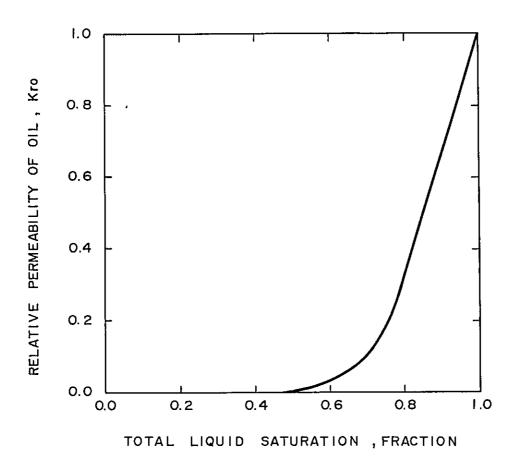


Fig. 2-3-14 OIL RELATIVE PERMEABLITY CURVE OF Vol. III MODEL 3, TEMBUNGO FIELD

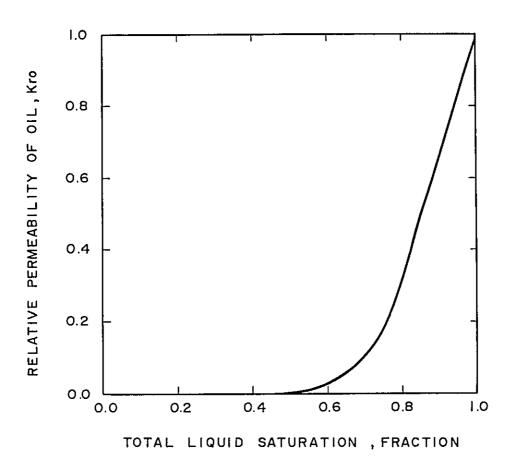
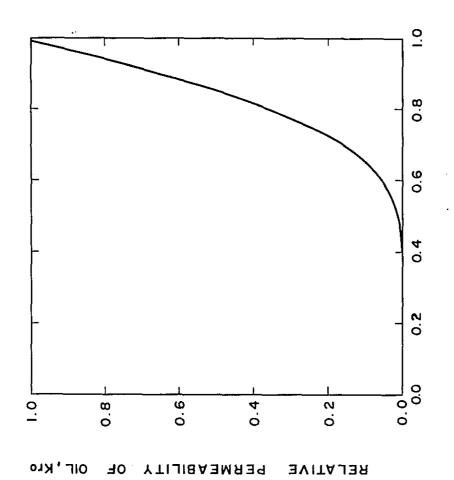
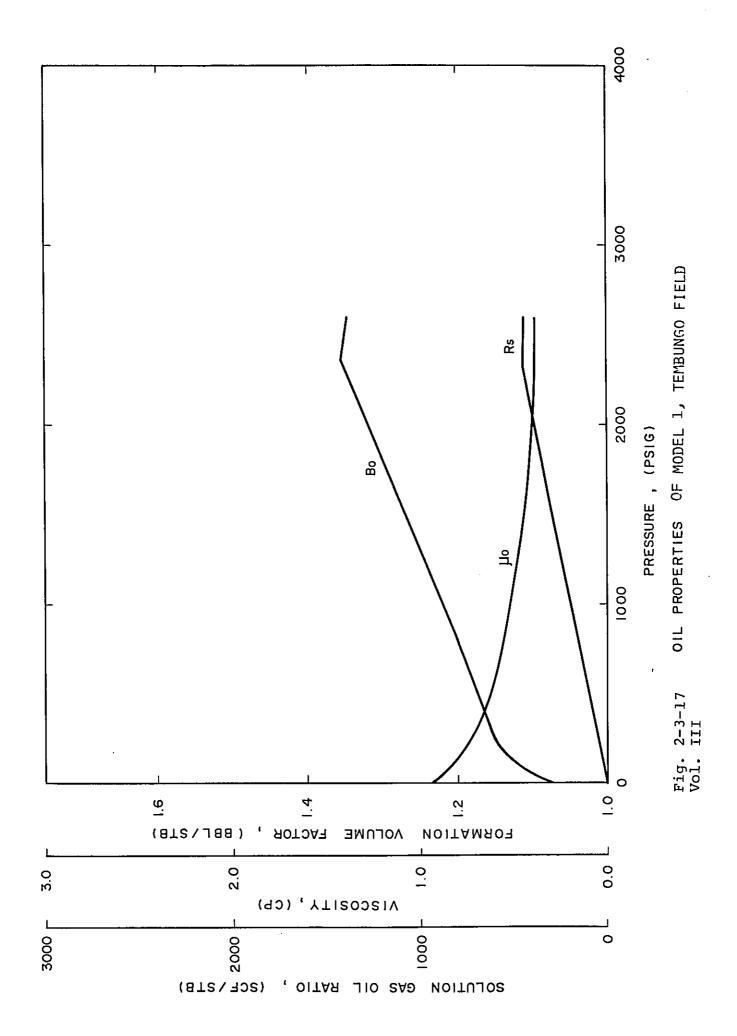
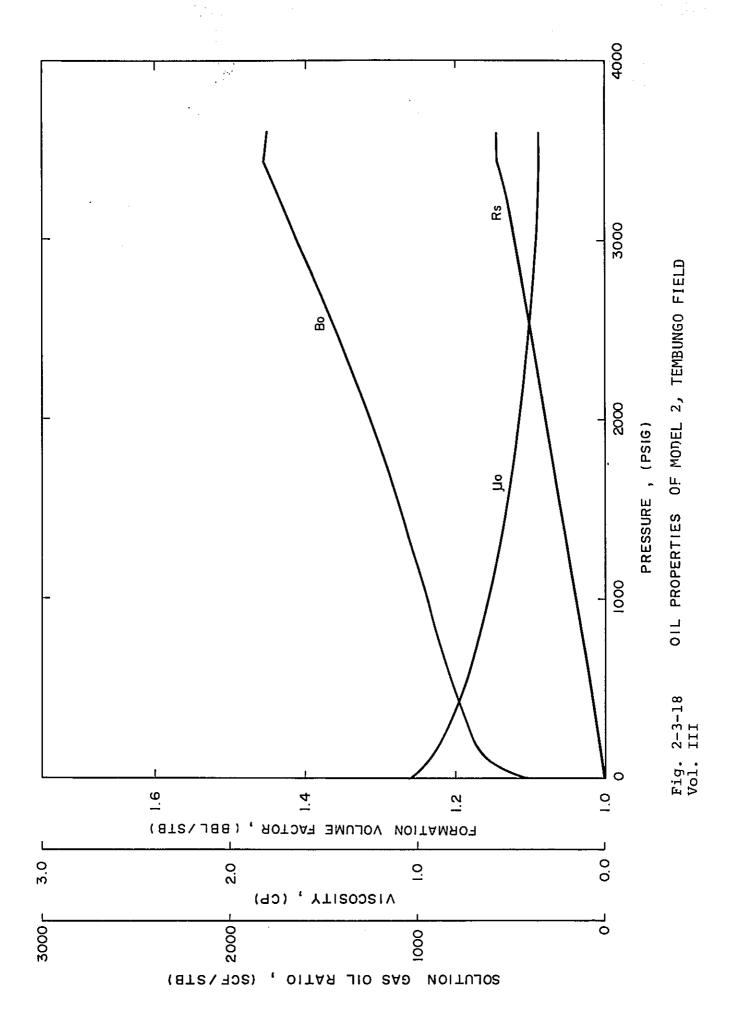
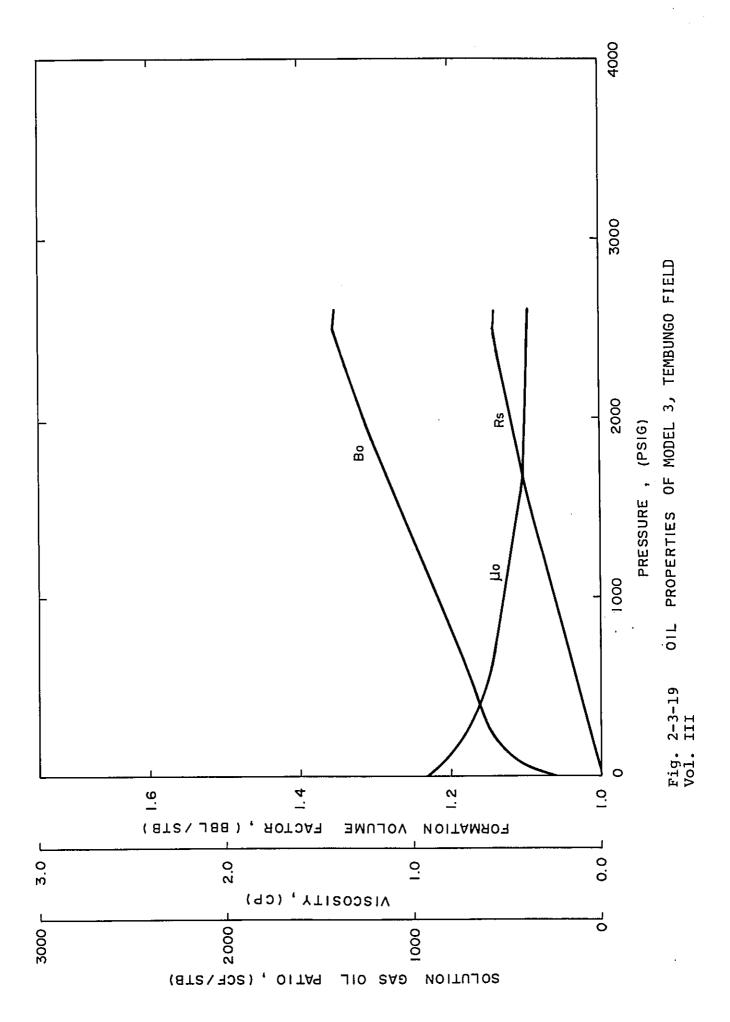
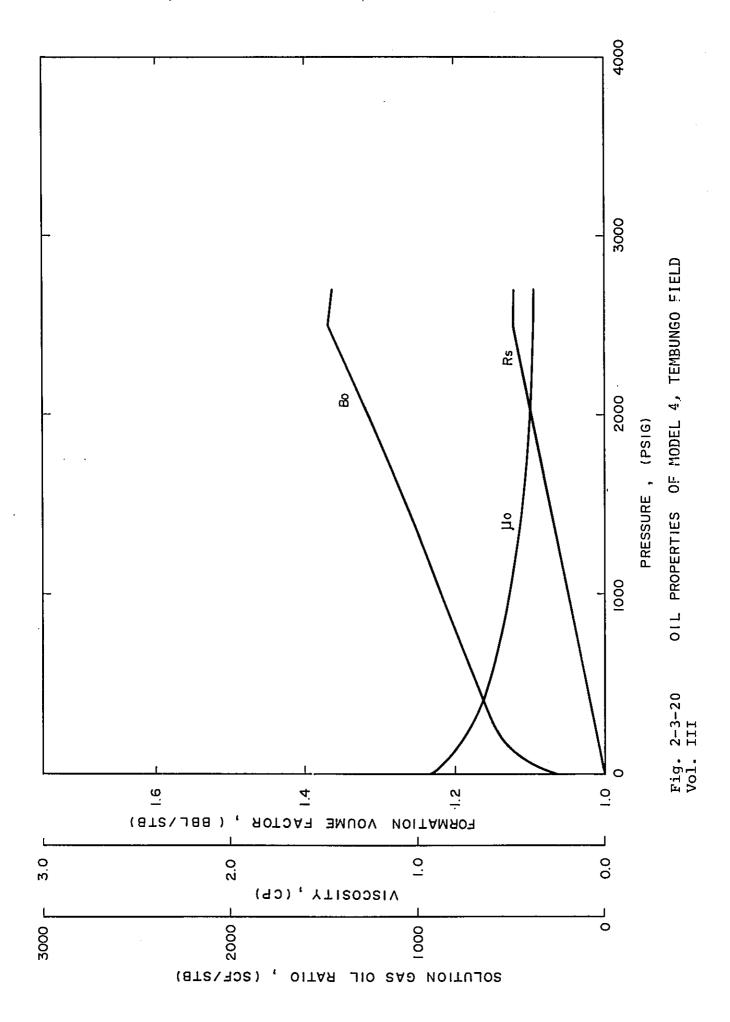
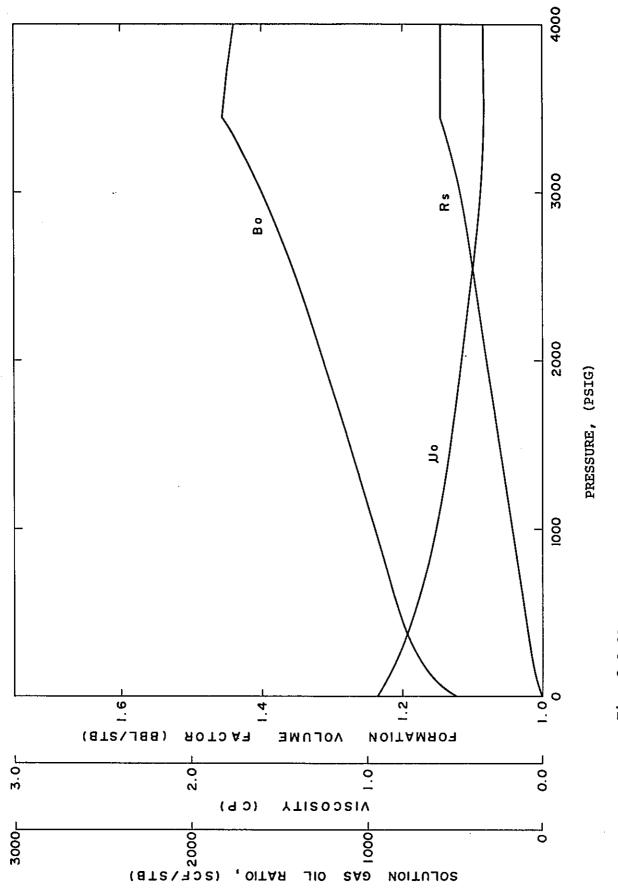


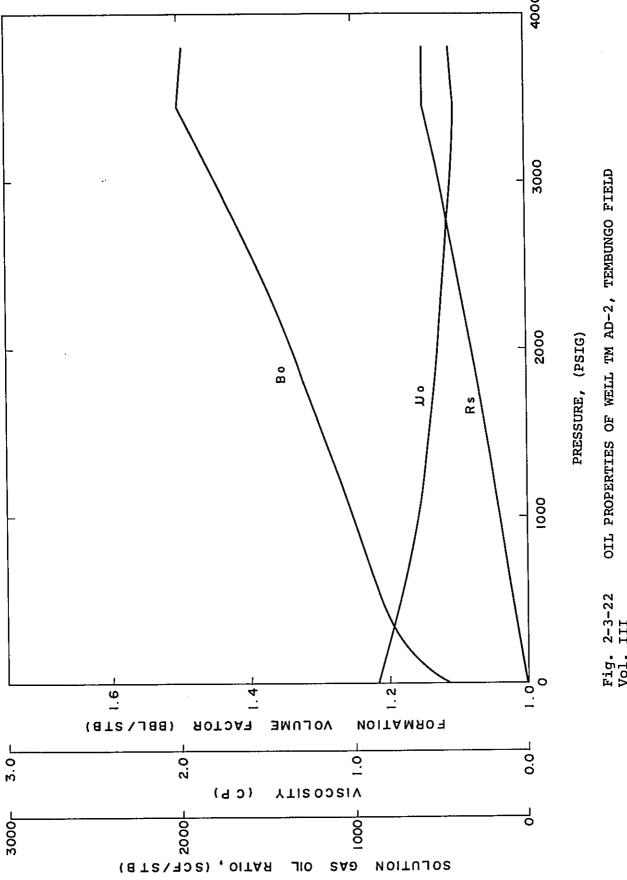
Fig. 2-3-15 OIL RELATIVE PERMEABILITY CURVE OF VOL. III MODEL 4, TEMBUNGO FIELD

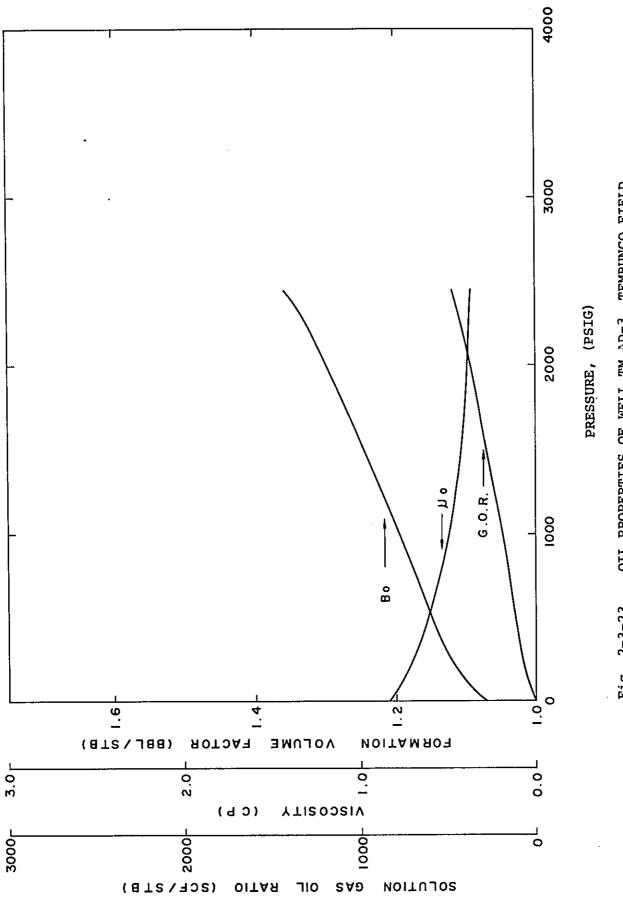
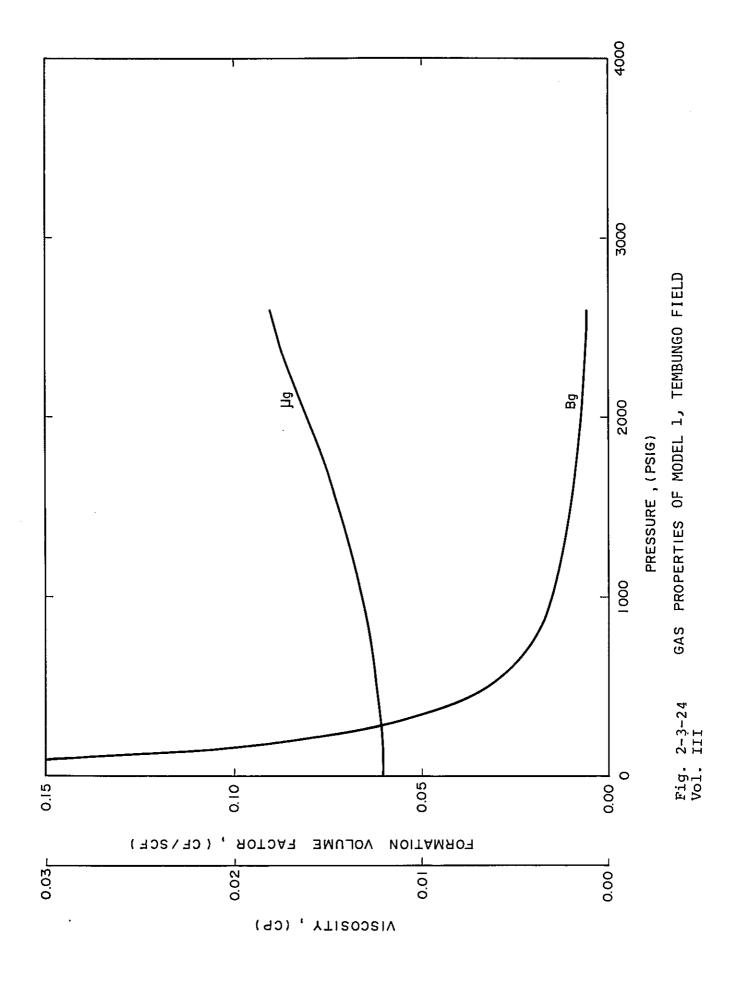
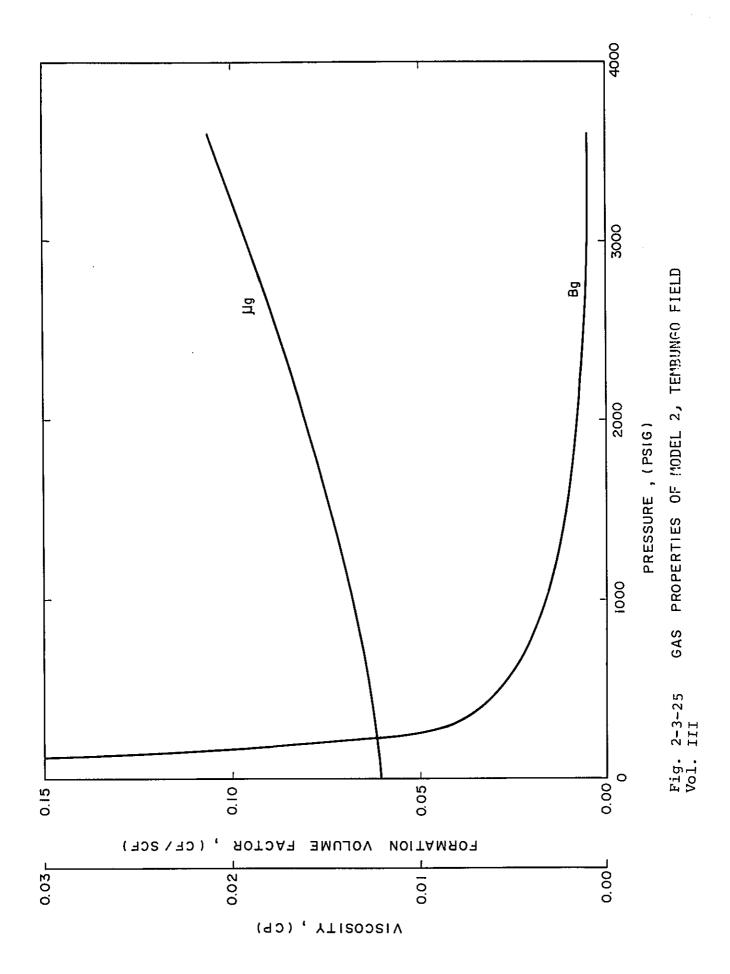
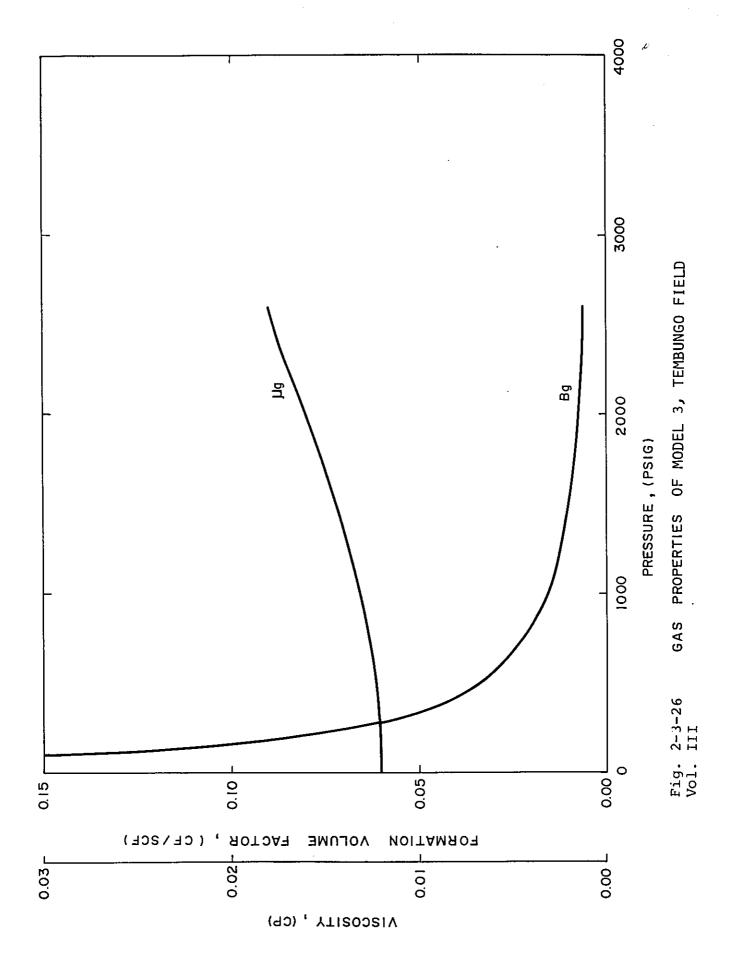
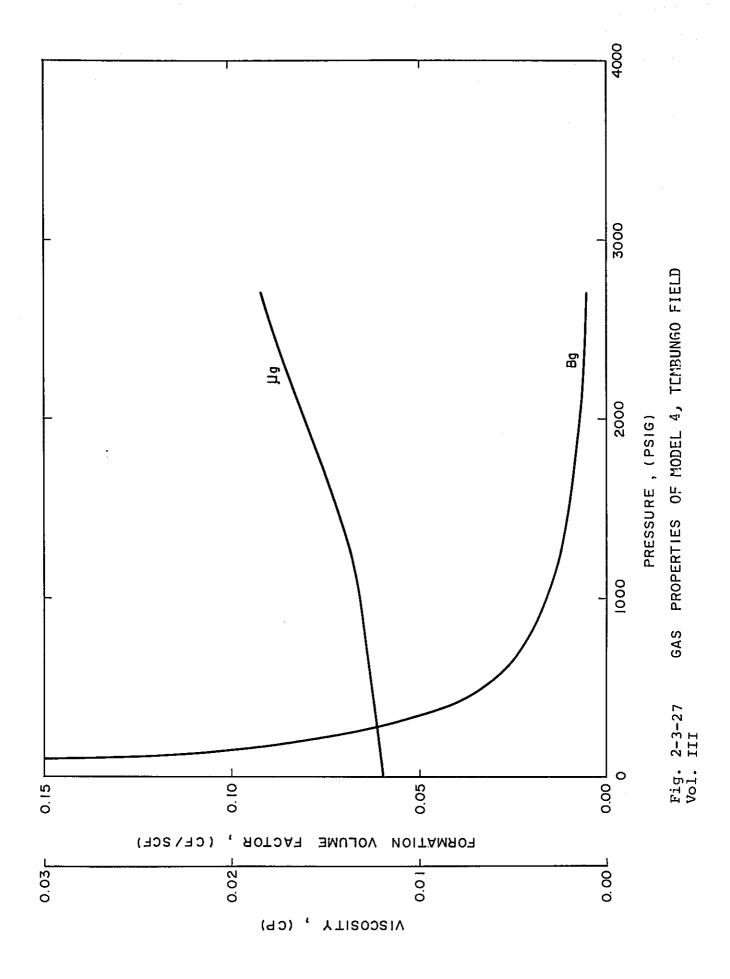

Fig. 2-3-16 Vol. III

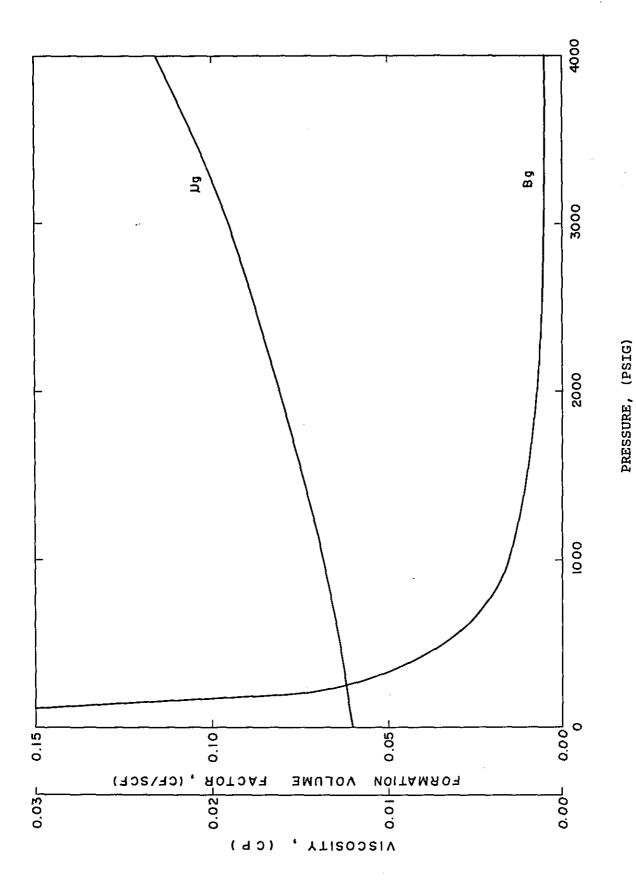

OIL RELATIVE PERMEABILITY CURVE - ADDITIONAL WELL CASE, TEMBUNGO FIELD

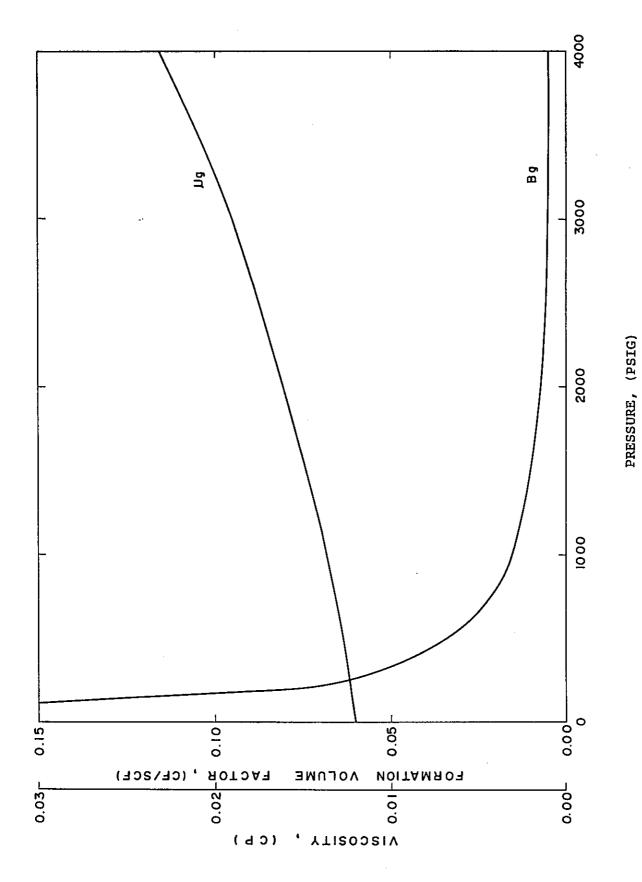

TOTAL LIQUID SATURATION, FRACTION



OIL PROPERTIES OF WELL TM AD-1 AND AD-4, TEMBUNGO FIELD Fig. 2-3-21 Vol. III


Fig. 2-3-23 OIL PROPERTIES OF WELL TM AD-3, TEMBUNGO FIELD Vol. III



GAS PROPERTIES OF WELL TM AM-1 AND AD-4, TEMBUNGO FIELD Fig. 2-3-28 Vol. III

GAS PROPERTIES OF WELL TM AM-1 AND AD-4, TEMBUNGO FIELD Fig. 2-3-28 Vol. III

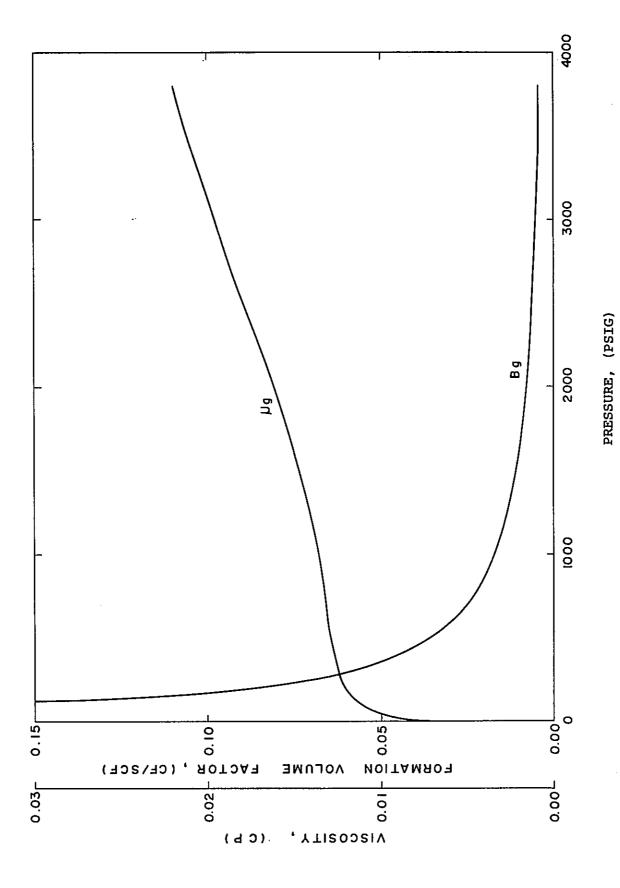
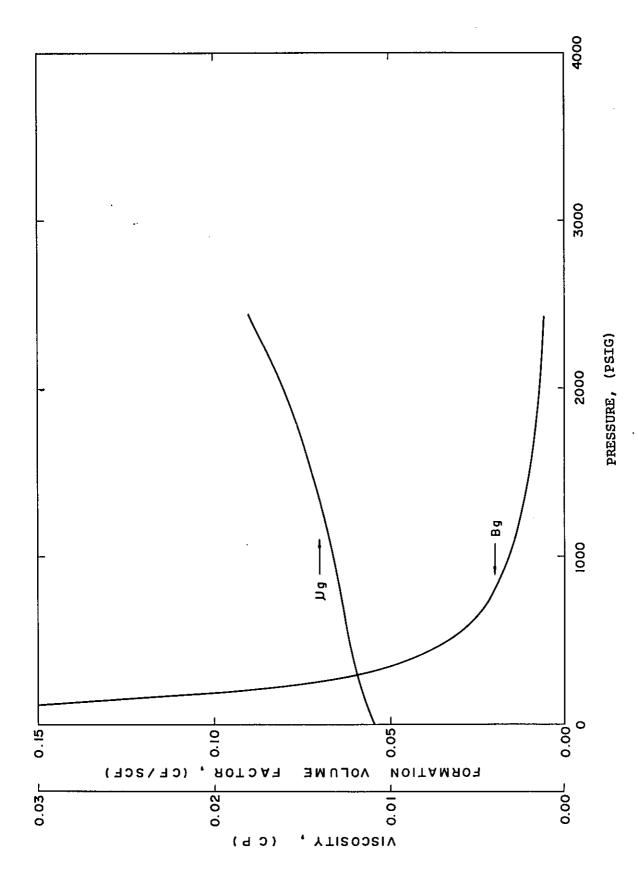
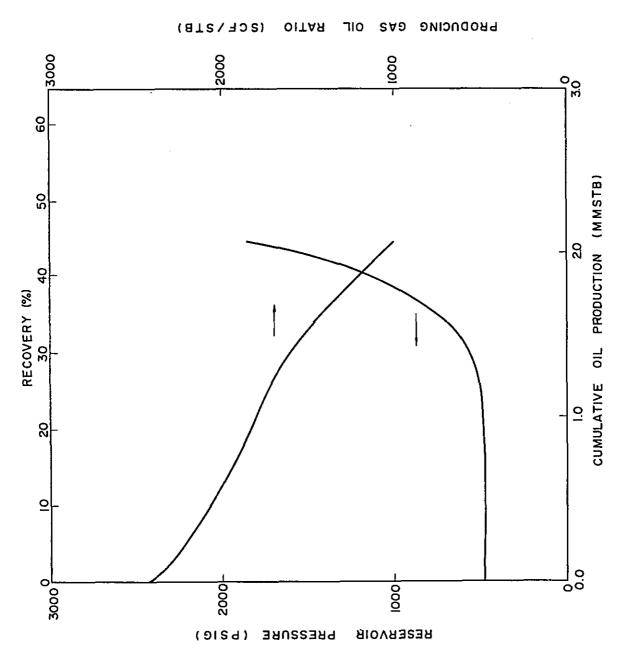
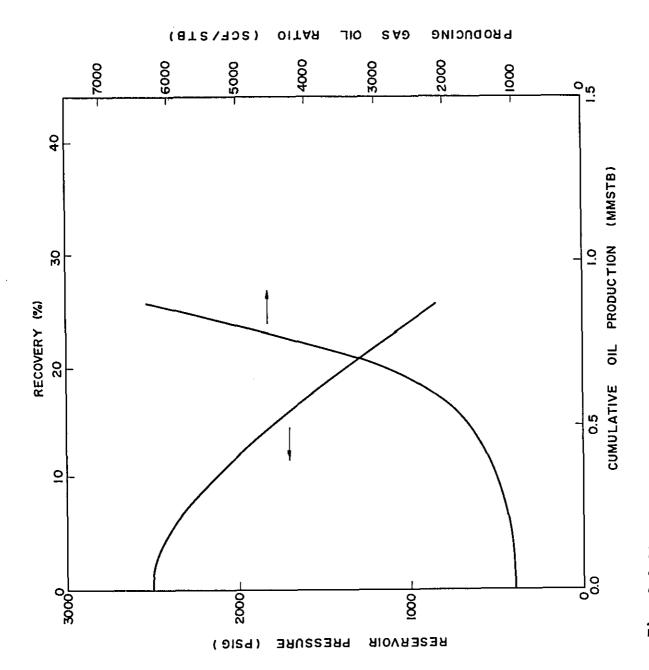
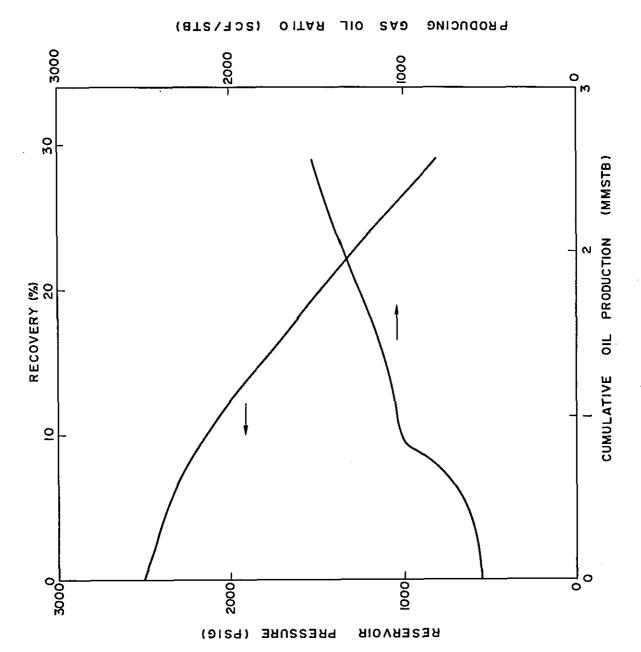
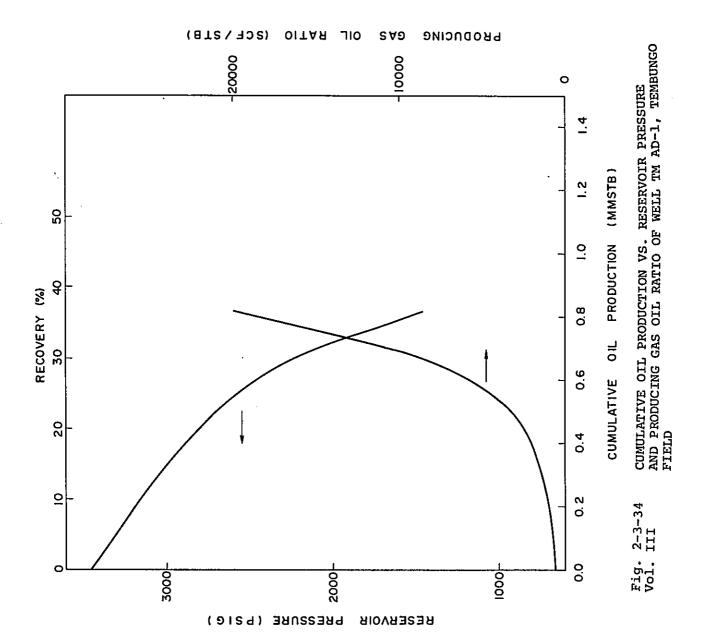
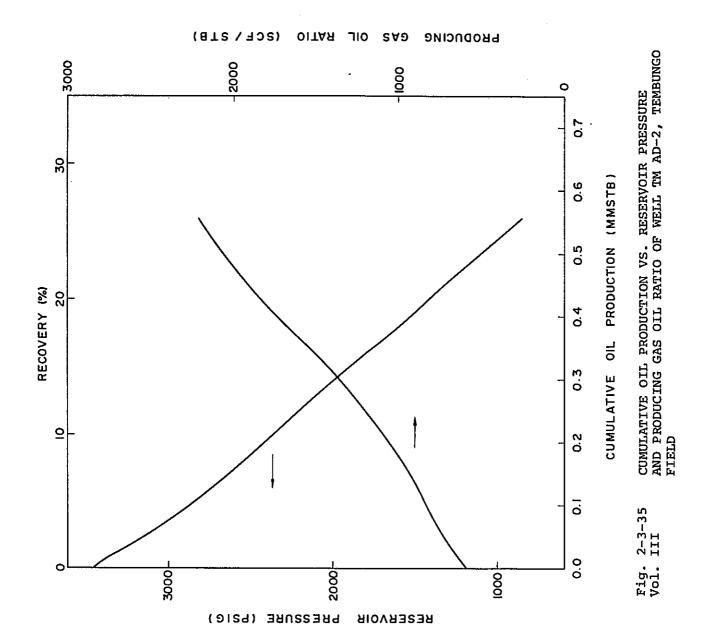


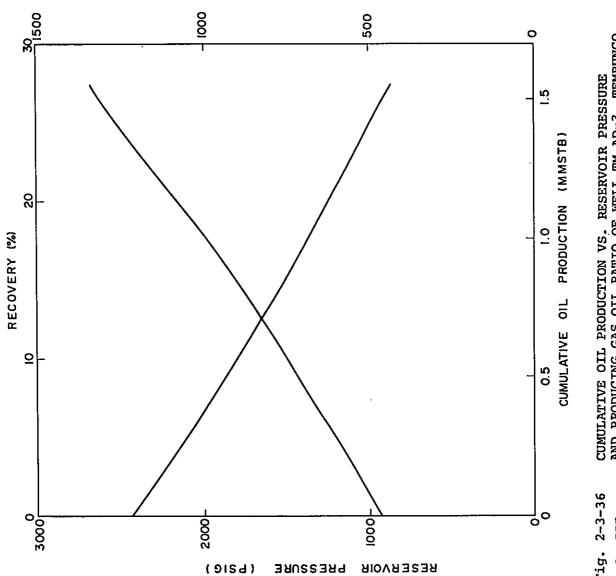
Fig. 2-3-29 GAS PROPERTIES OF WELL TM AD-2, TEMBUNGO FIELD Vol. III

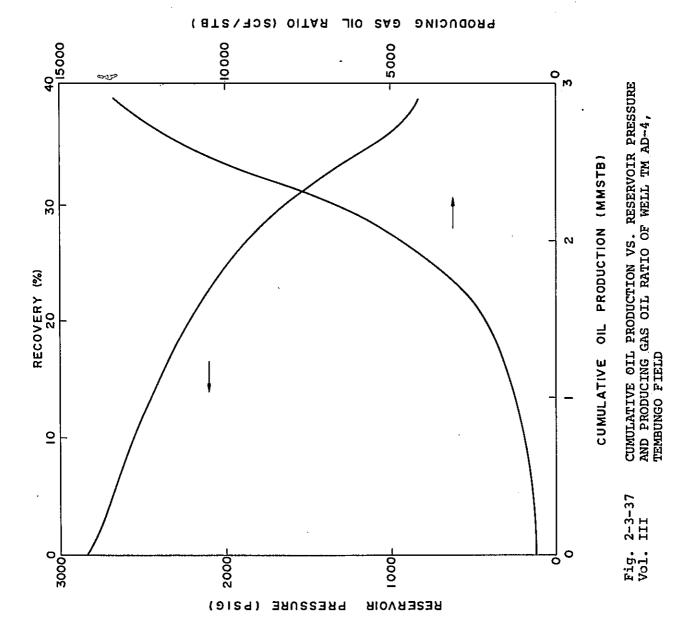

Fig. 2-3-30 GAS PROPERTIES OF WELL, TM AD-3, TEMBUNGO FIELD Vol. III


CUMULATIVE OIL PRODUCTION VS. RESERVOIR PRESSURE AND PRODUCING GAS OIL RATIO OF MODEL-1, TEMBUNGO FIELD Fig. 2-3-31 Vol. III




CUMULATIVE OIL PRODUCTION VS. RESERVOIR PRESSURE AND PRODUCING GAS OIL RATIO OF MODEL-2, TEMBUNGO FIELD Fig. 2-3-32 Vol. III

CUMULATIVE OIL PRODUCTION VS. RESERVOIR PRESSURE AND PRODUCING GAS OIL RATIO OF MODEL-3, TEMBUNGO FIELD Fig. 2-3-33 Vol. III


OIL RATIO

SAĐ

РВОDUCING

(SCE\SLB)

CUMULATIVE OIL PRODUCTION VS. RESERVOIR PRESSURE AND PRODUCING GAS OIL RATIO OF WELL IM AD-3, TEMBUNGO FIELD Fig. 2-3-36 Vol. III

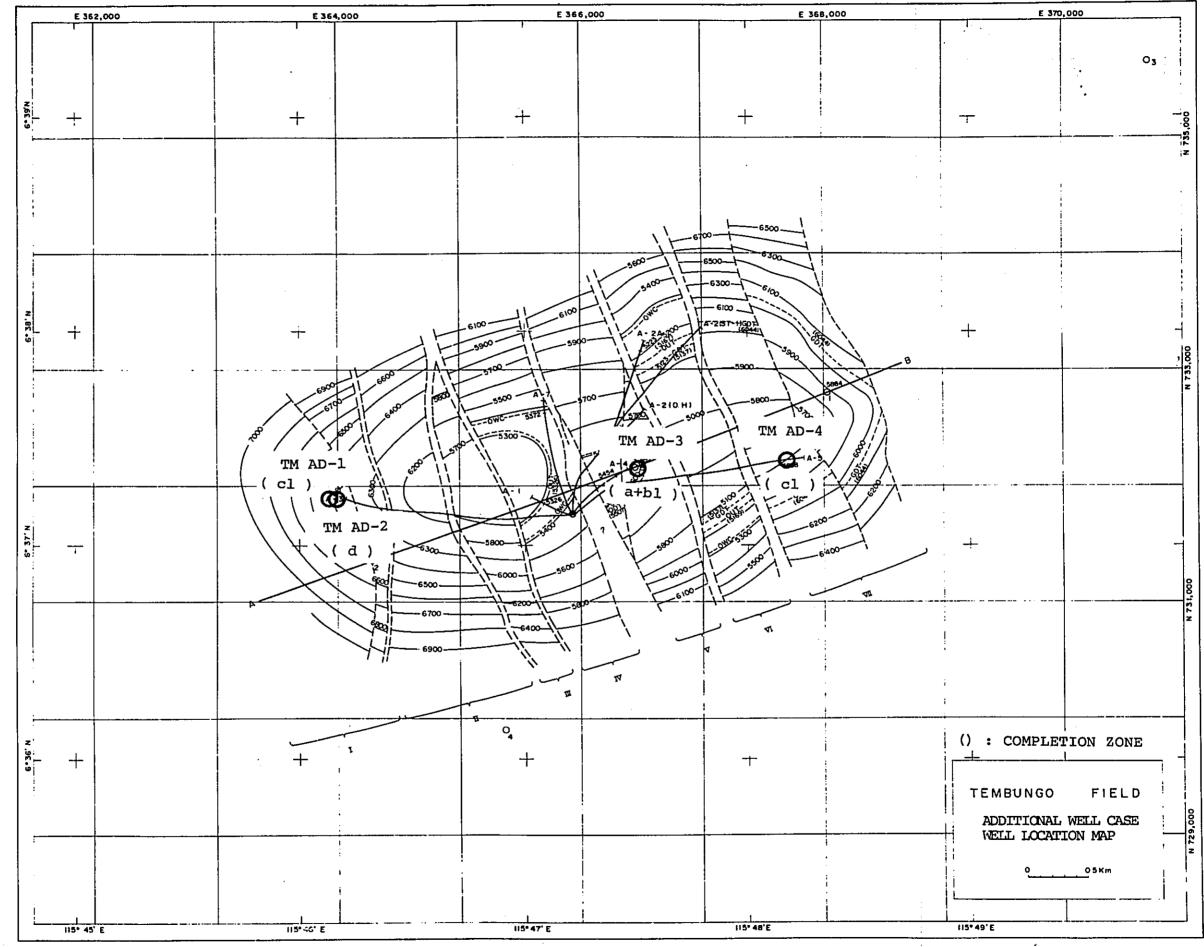


Fig. 2-3-38 Vol. III ADDITIONAL WELL CASE-WELL LOCATION MAP, TEMBUNGO FIELD

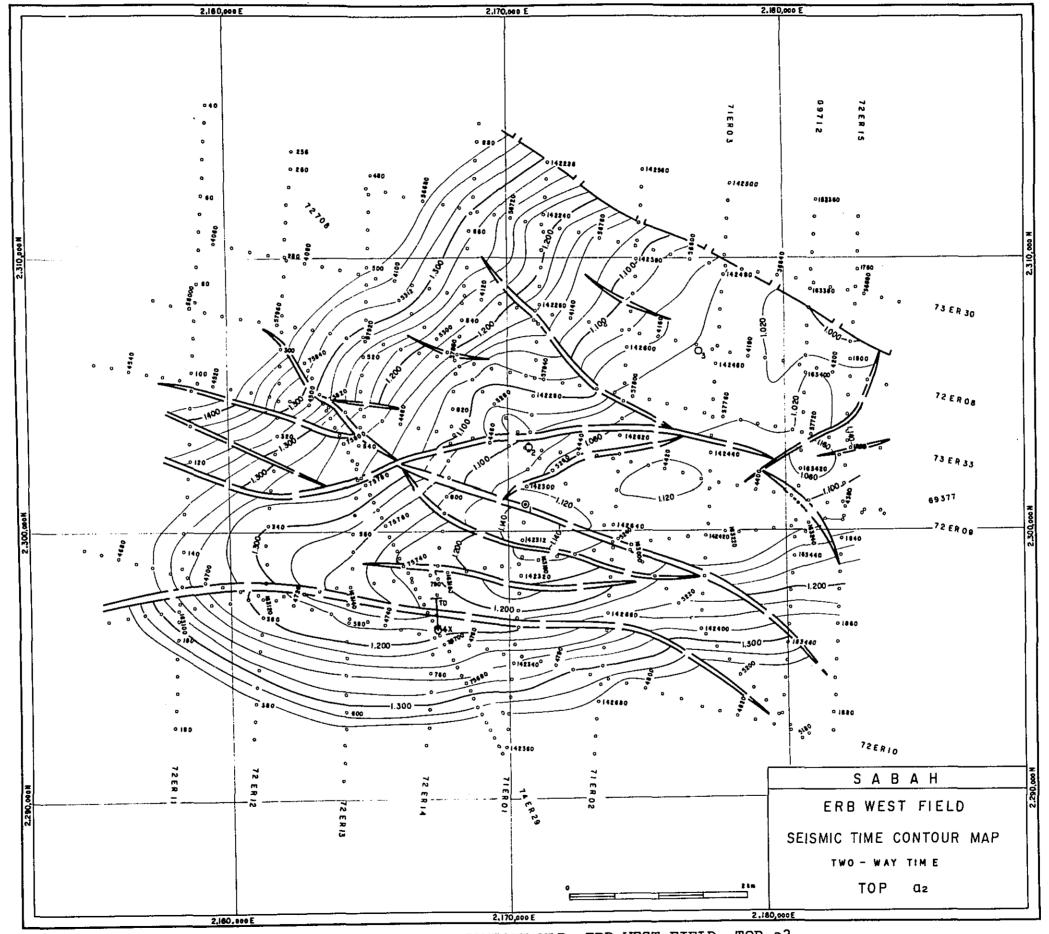
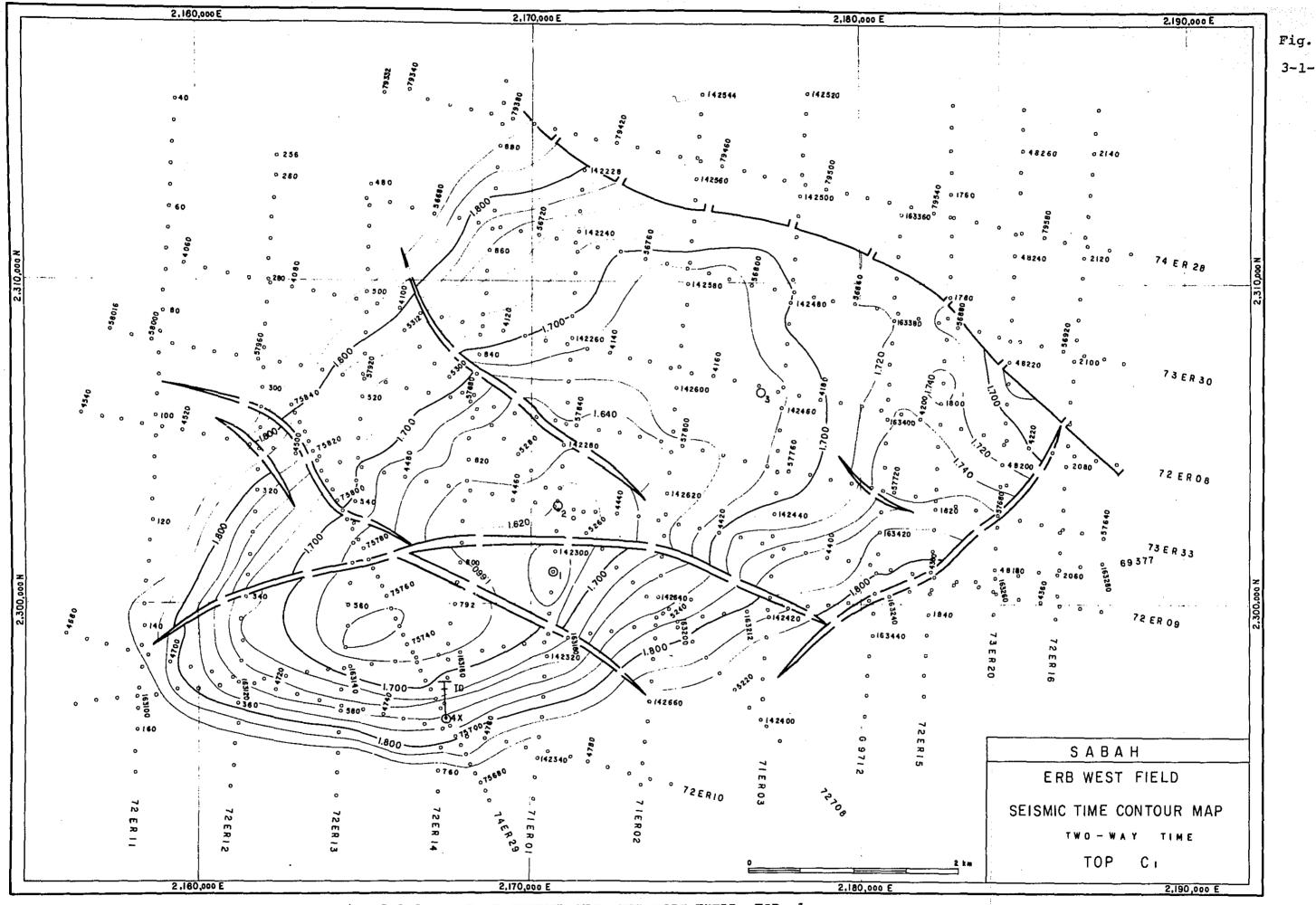



Fig. 3-1-1 TIME CONTOUT MAP, ERB WEST FIELD, TOP a2 Vol. III

3-1-2

TIME CONTOUR MAP, ERB WEST FIELD, TOP c1

Fig. 3-1-2 Vol. III

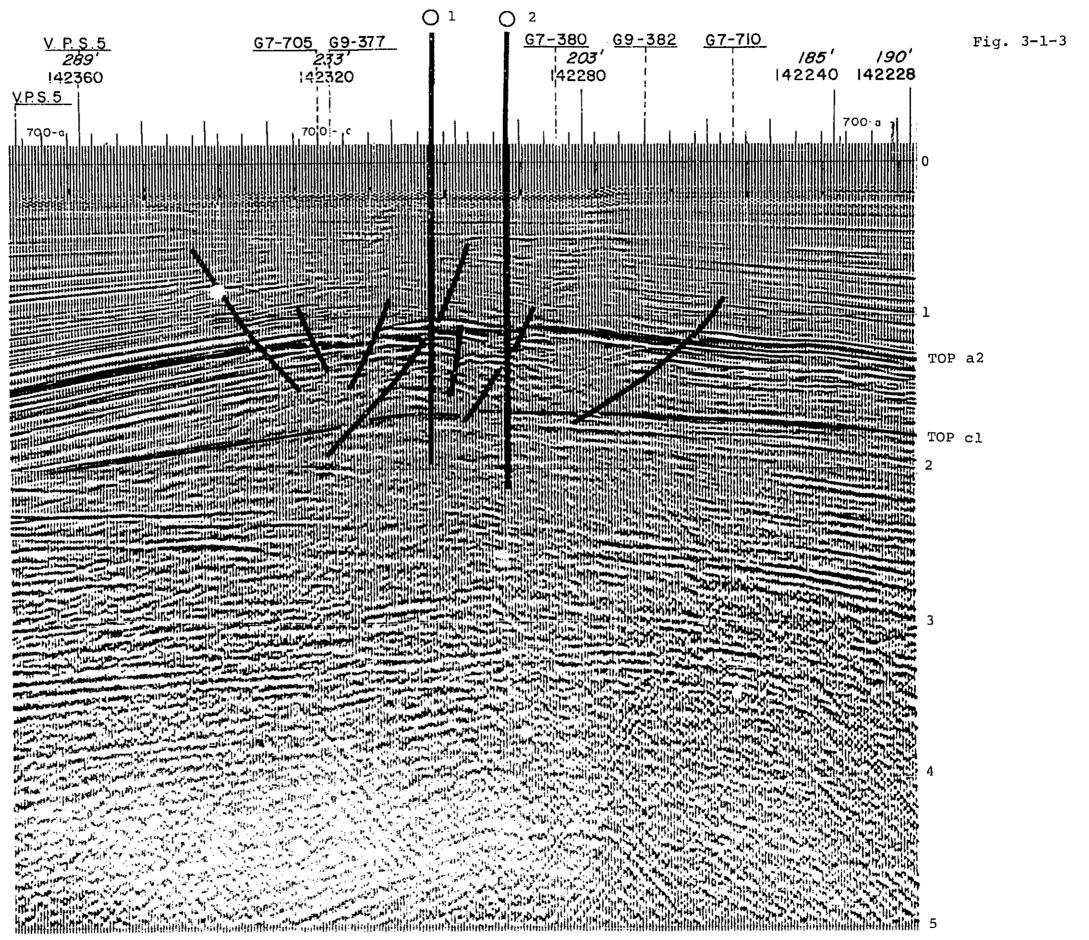


Fig. 3-1-3 SEISMIC SECTION, ERB WEST FIELD, Line 71-ERB-01 Vol. III

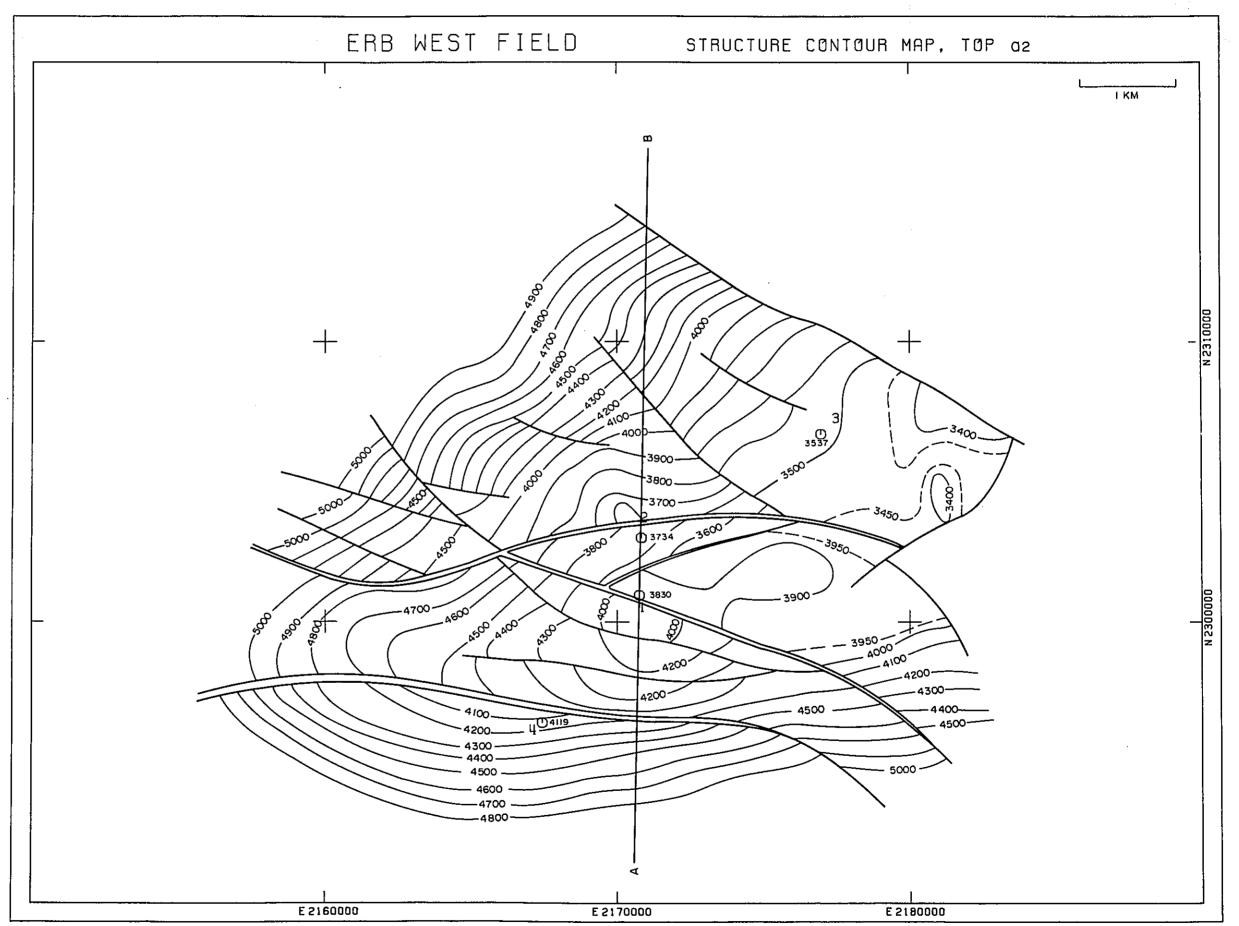


Fig. 3-2-1 Vol. III

STRUCTURE CONTOUR MAP, ERB WEST FIELD, TOP a2

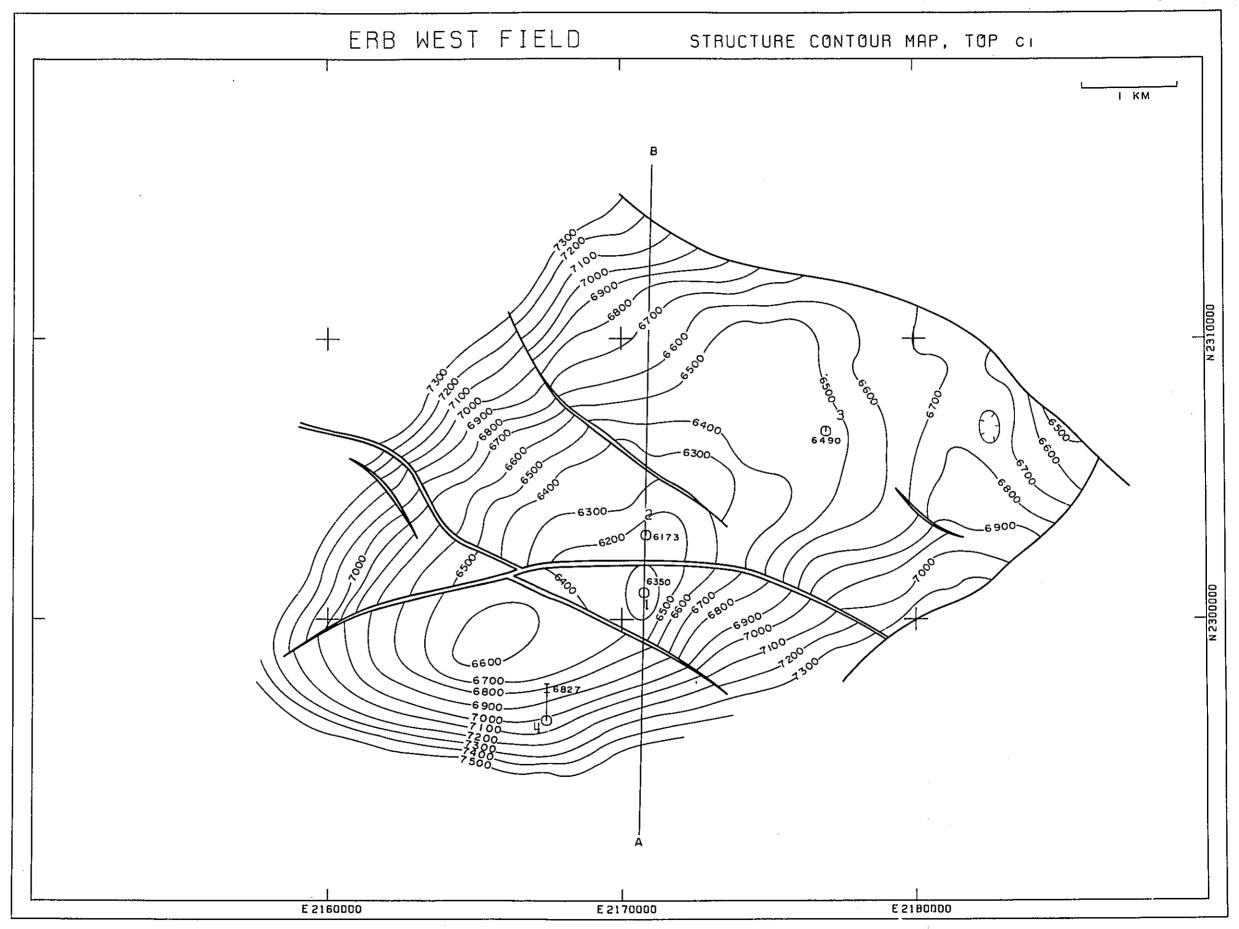


Fig. 3-2-2 STRUCTURE CONTOUR MAP, ERB WEST FIELD, TOP cl Vol. III

ERB WEST FIELD

മ

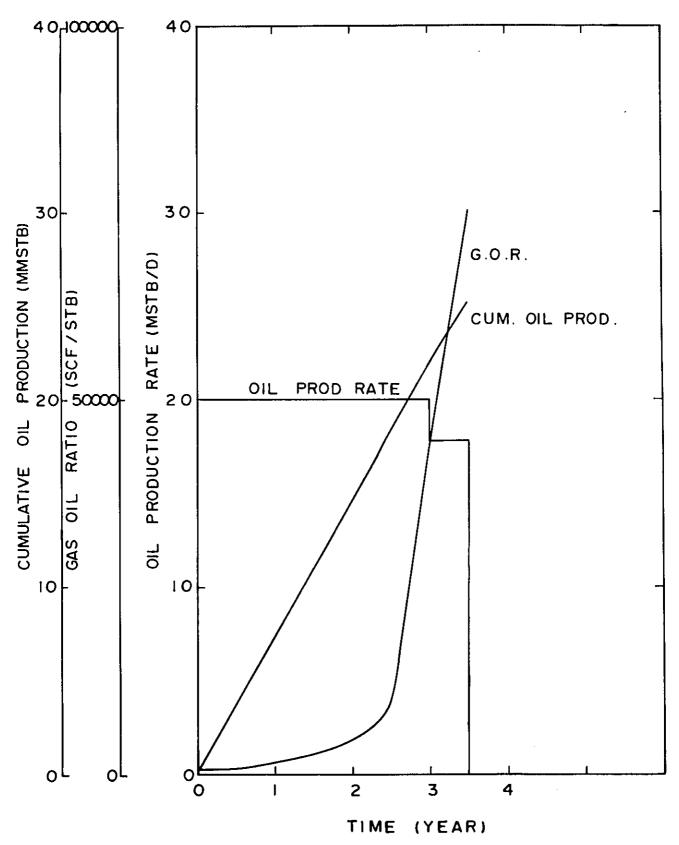
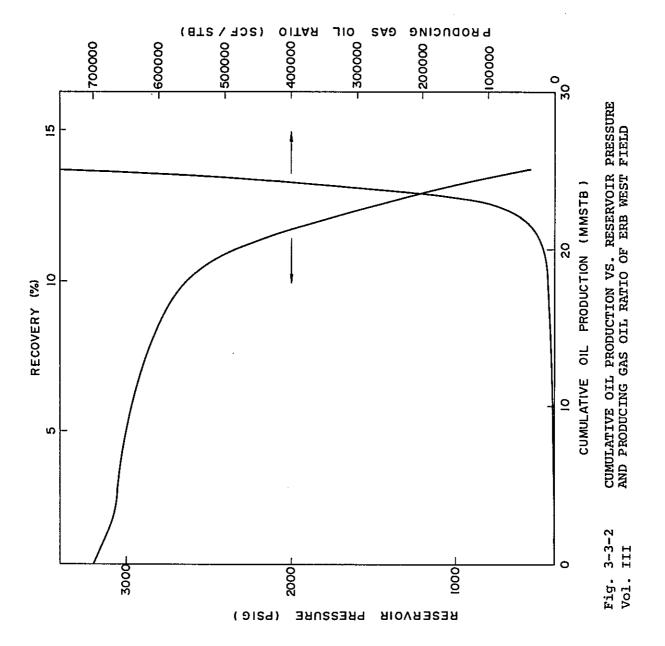
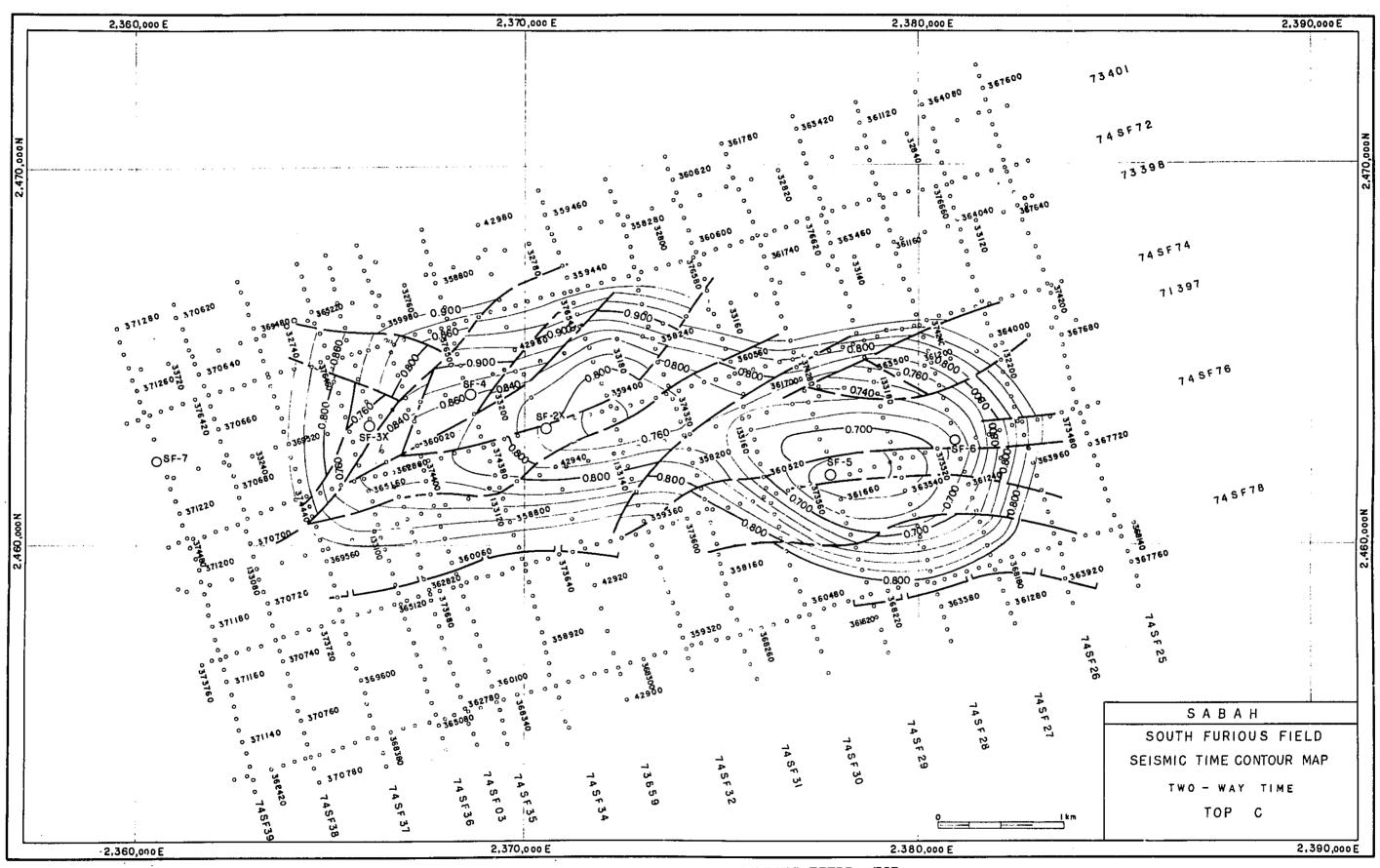




Fig. 3-3-1 PREDICTED PERFORMANCE OF ERB WEST FIELD Vol. III

4-1-1 TIME CONTOUR MAP, SOUTH FURIOUS FIELD, TOP C

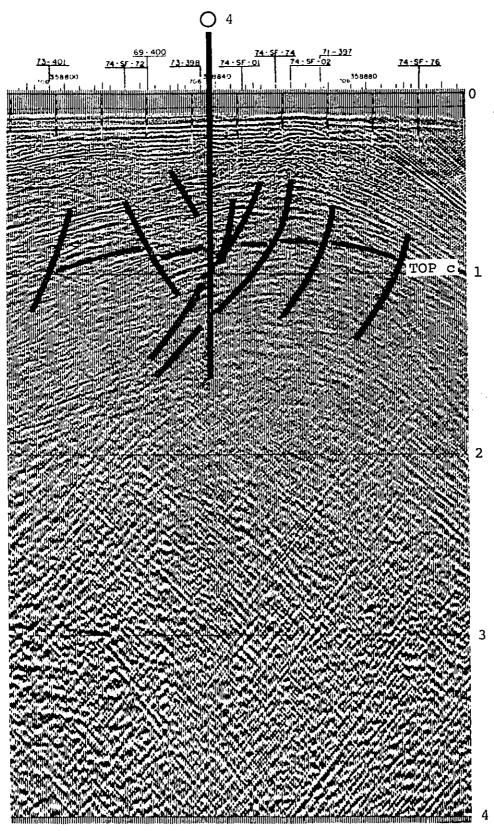


Fig. 4-1-2 SEISMIC SECTION, SOUTH FURIOUS FIELD, Line 74-SF-34 Vol. III

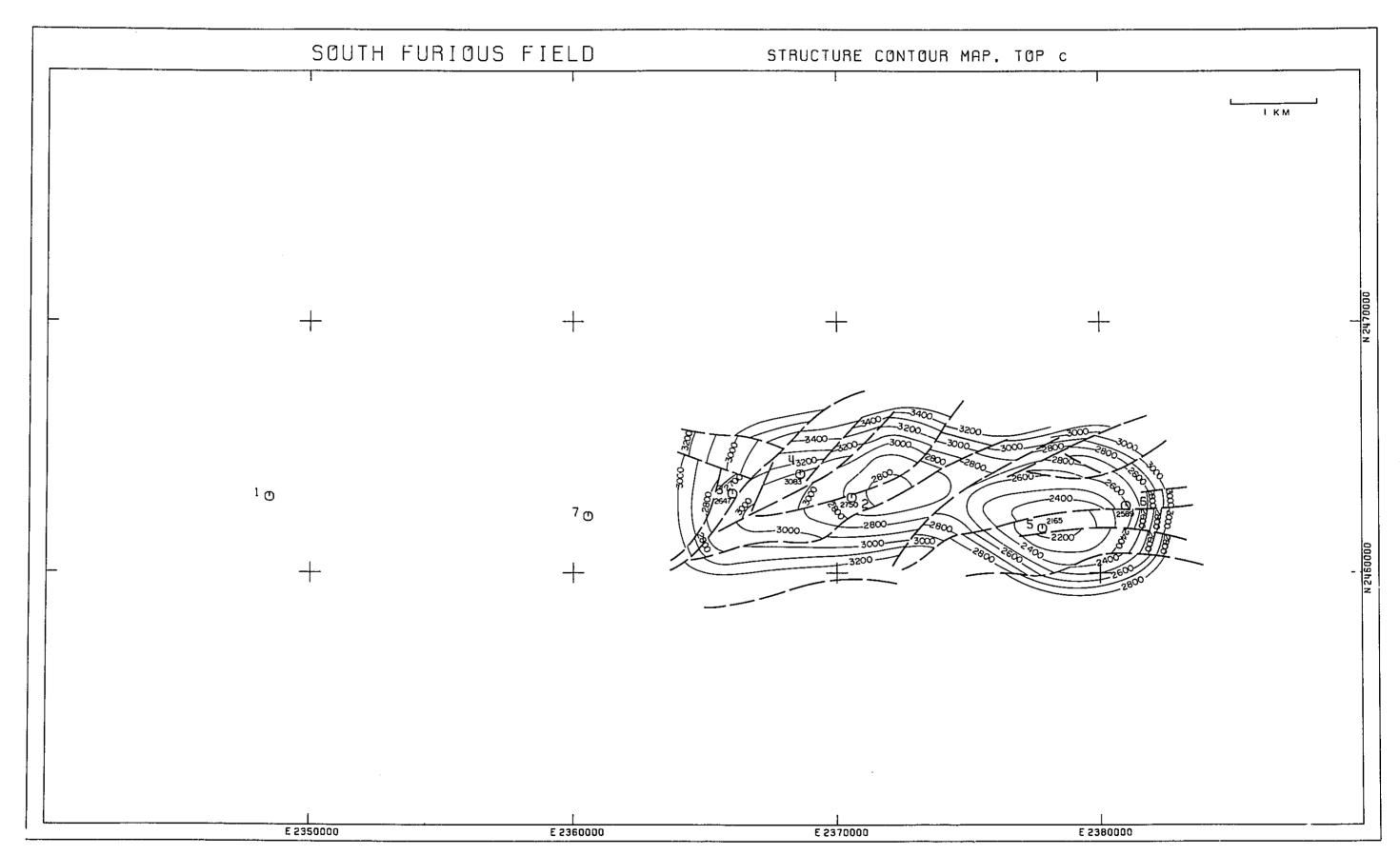


Fig. 4-2-1 STRUCTURE CONTOUR MAP, SOUTH FURIOUS FIELD, TOP c Vol. III

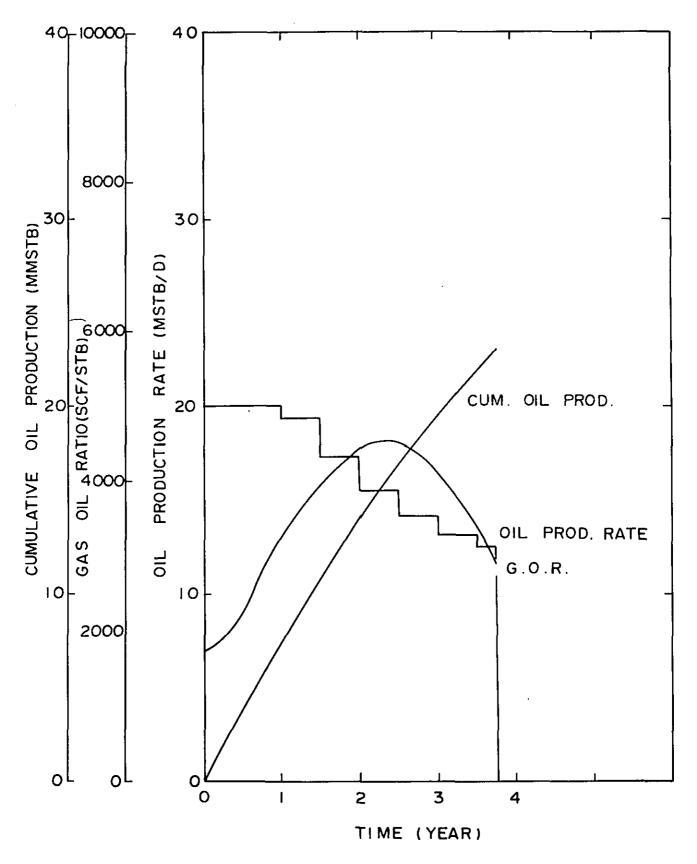
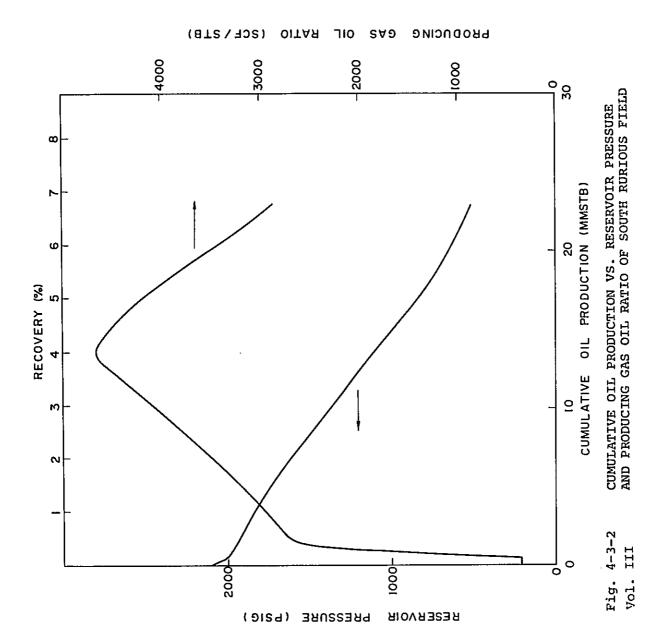



Fig. 4-3-1 PREDICTED PERFORMANCE OF SOUTH FURIOUS FIELD Vol. III

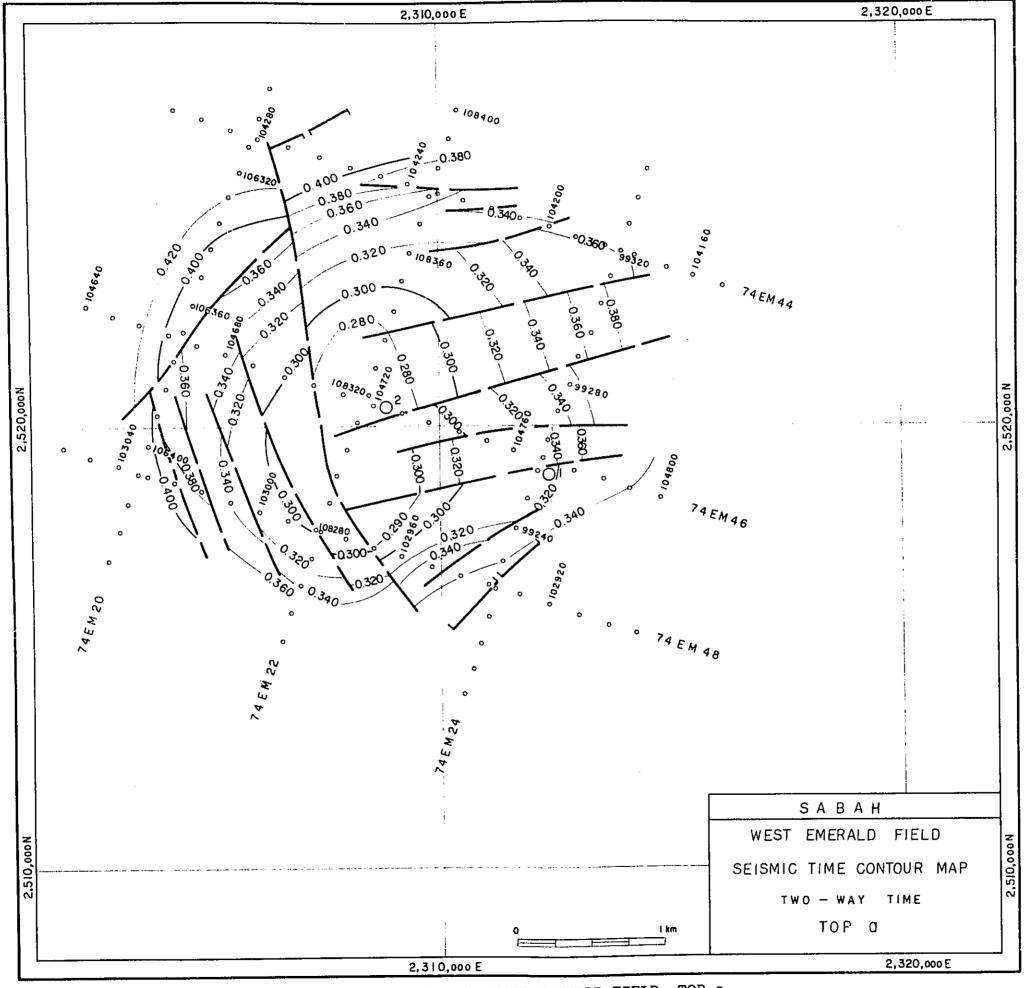


Fig. 5-1-1 TIME CONTOUR MAP, WEST EMERALD FIELD, TOP a Vol. III

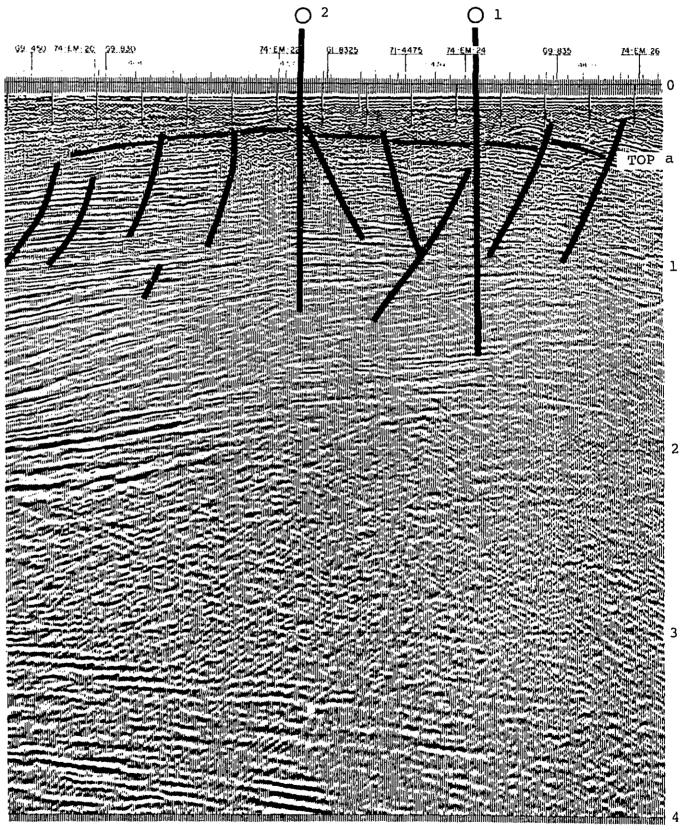
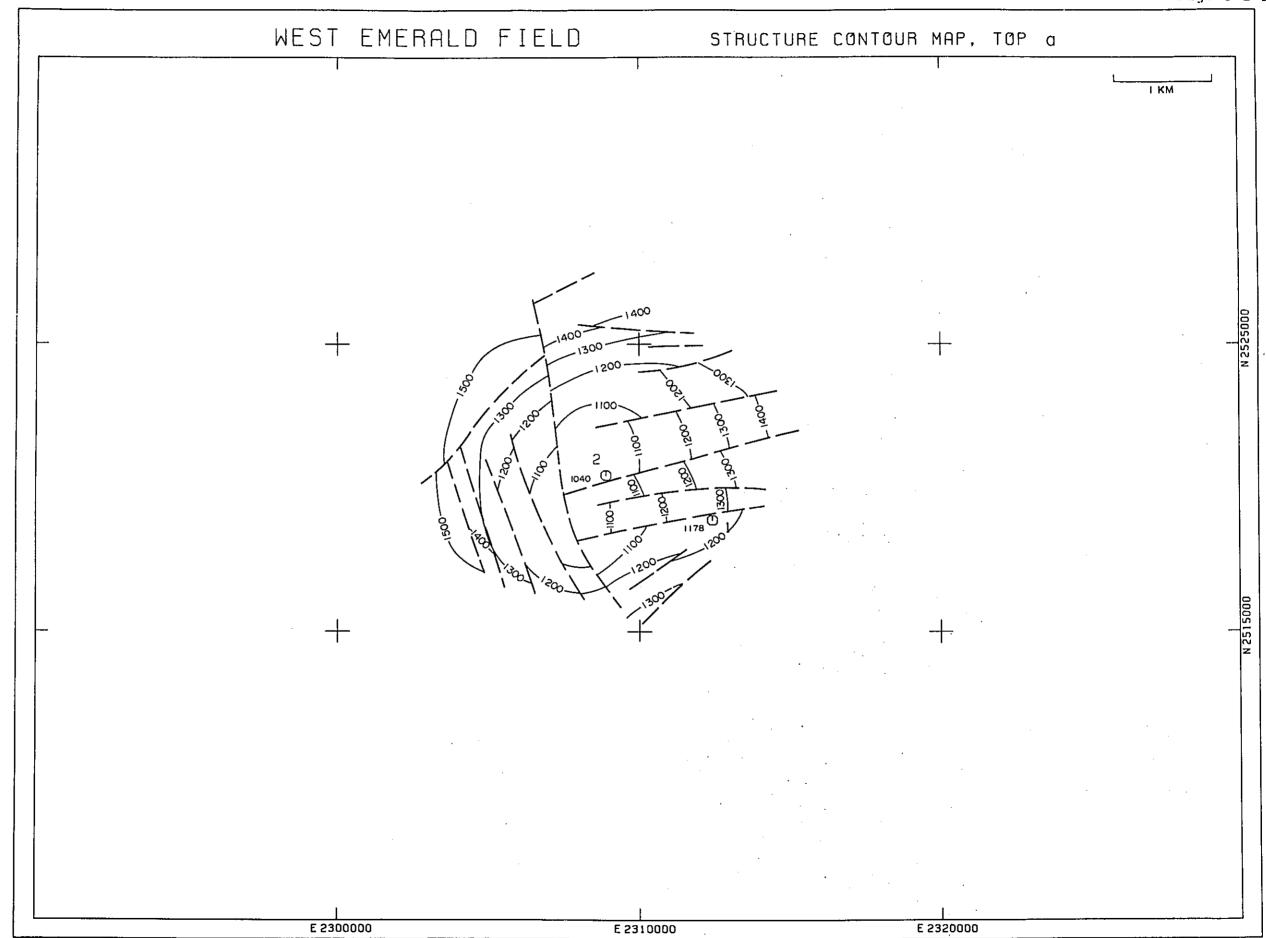
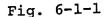




Fig. 5-1-2 SEISMIC SECTION, WEST EMERALD FIELD, Line 74-EM-46 Vol. III

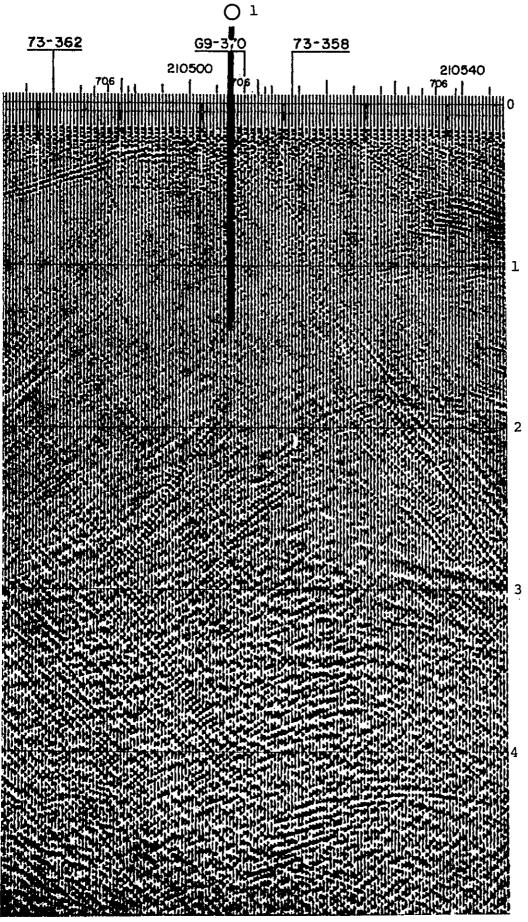


Fig. 6-1-1 SEISMIC SECTION, St. JOSEPH FIELD, Line 73-839 Vol. III

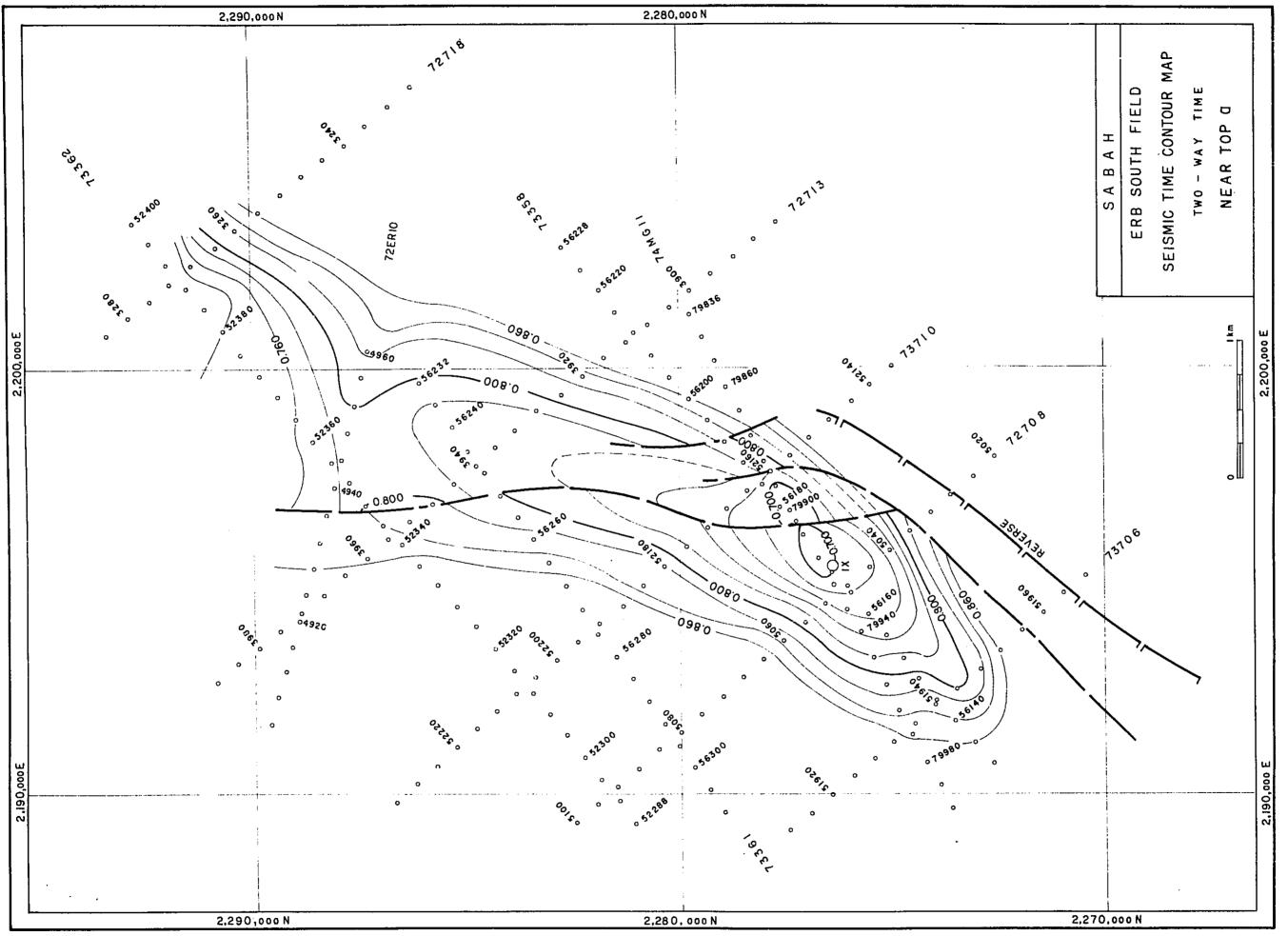


Fig. 7-1-1 TIME CONTOUR MAP, ERB SOUTH FIELD, NEAR TOP a Vol. III

Fig.

7-1-1

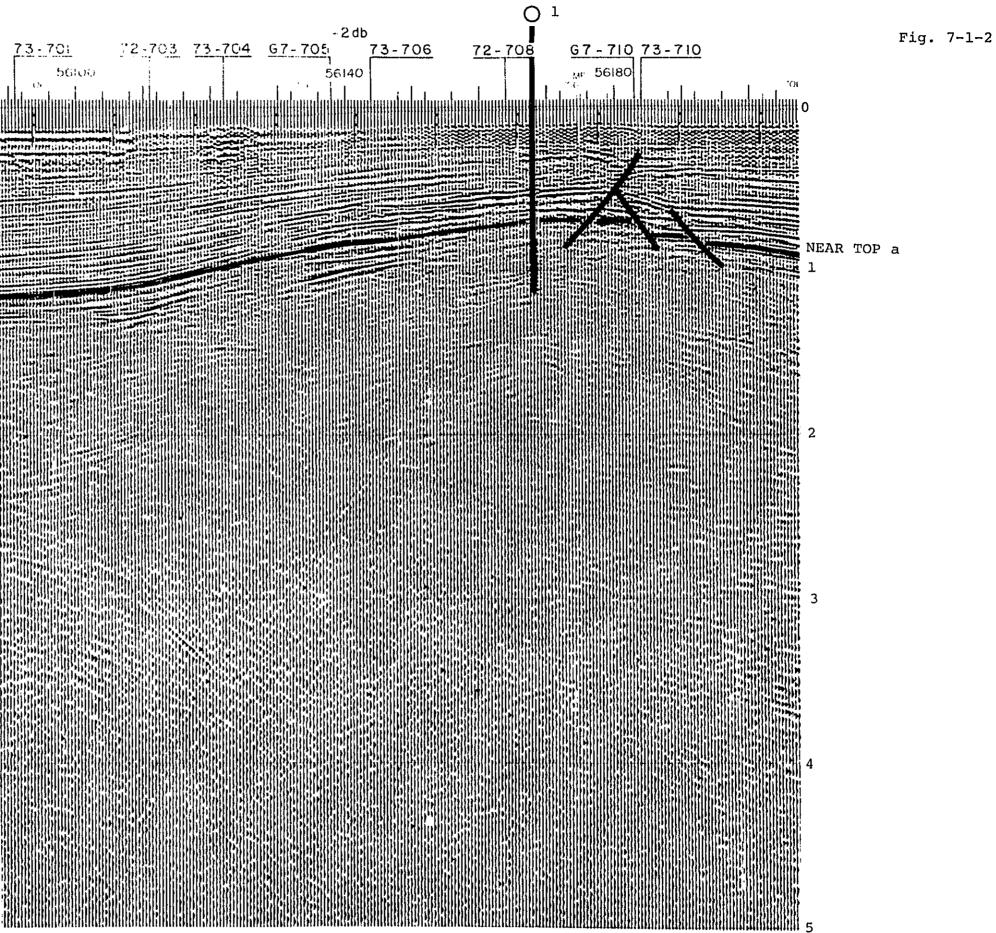
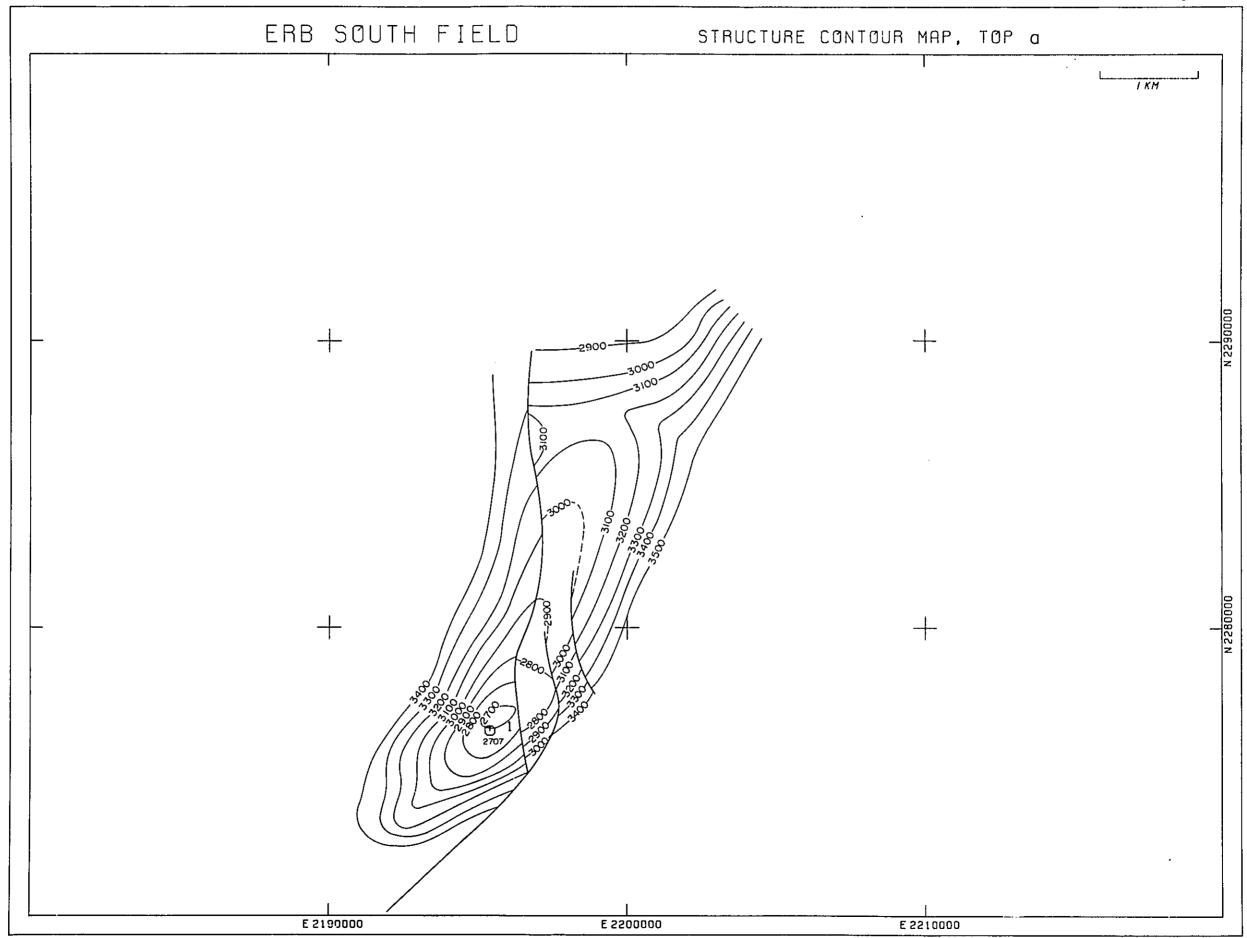
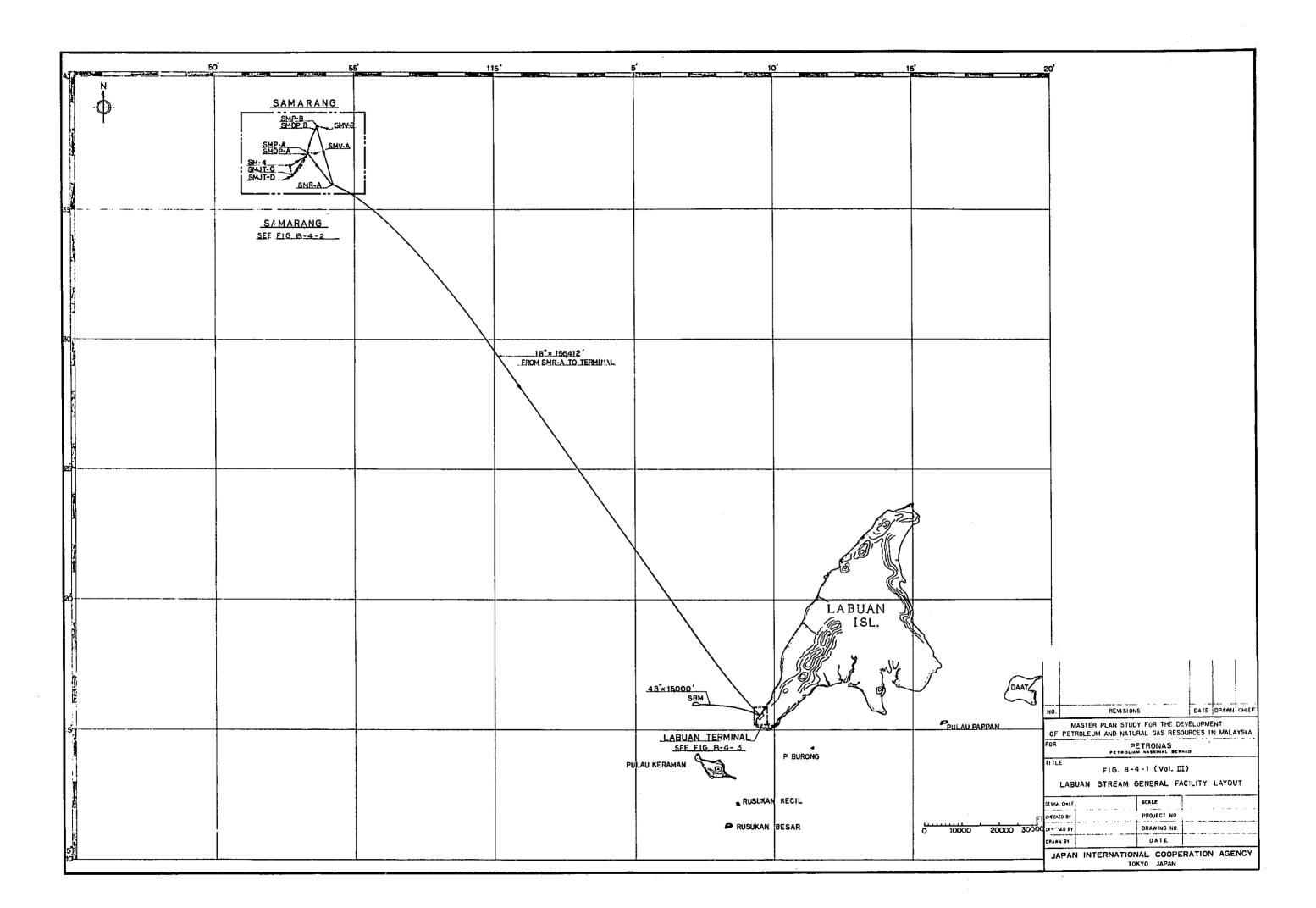
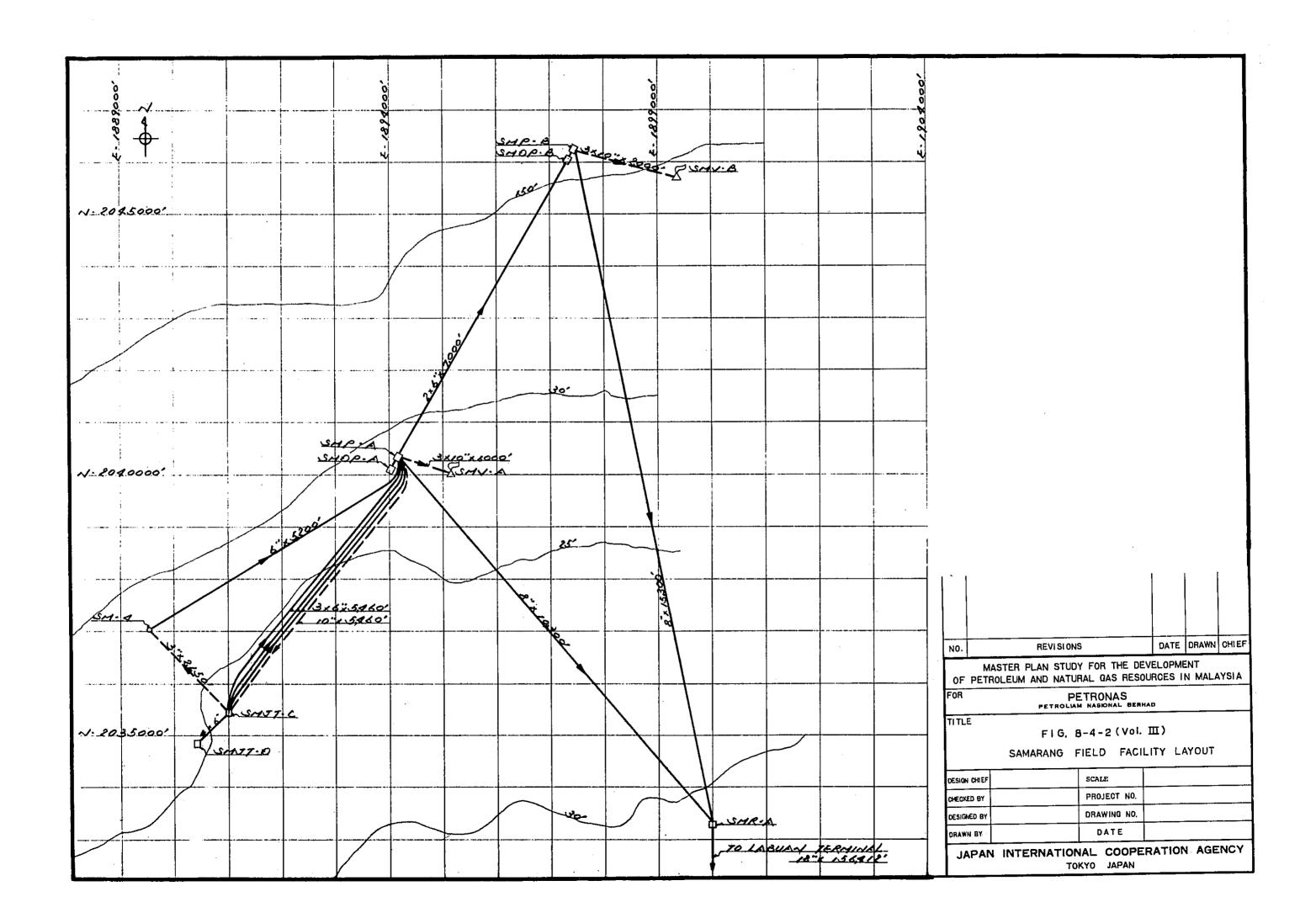
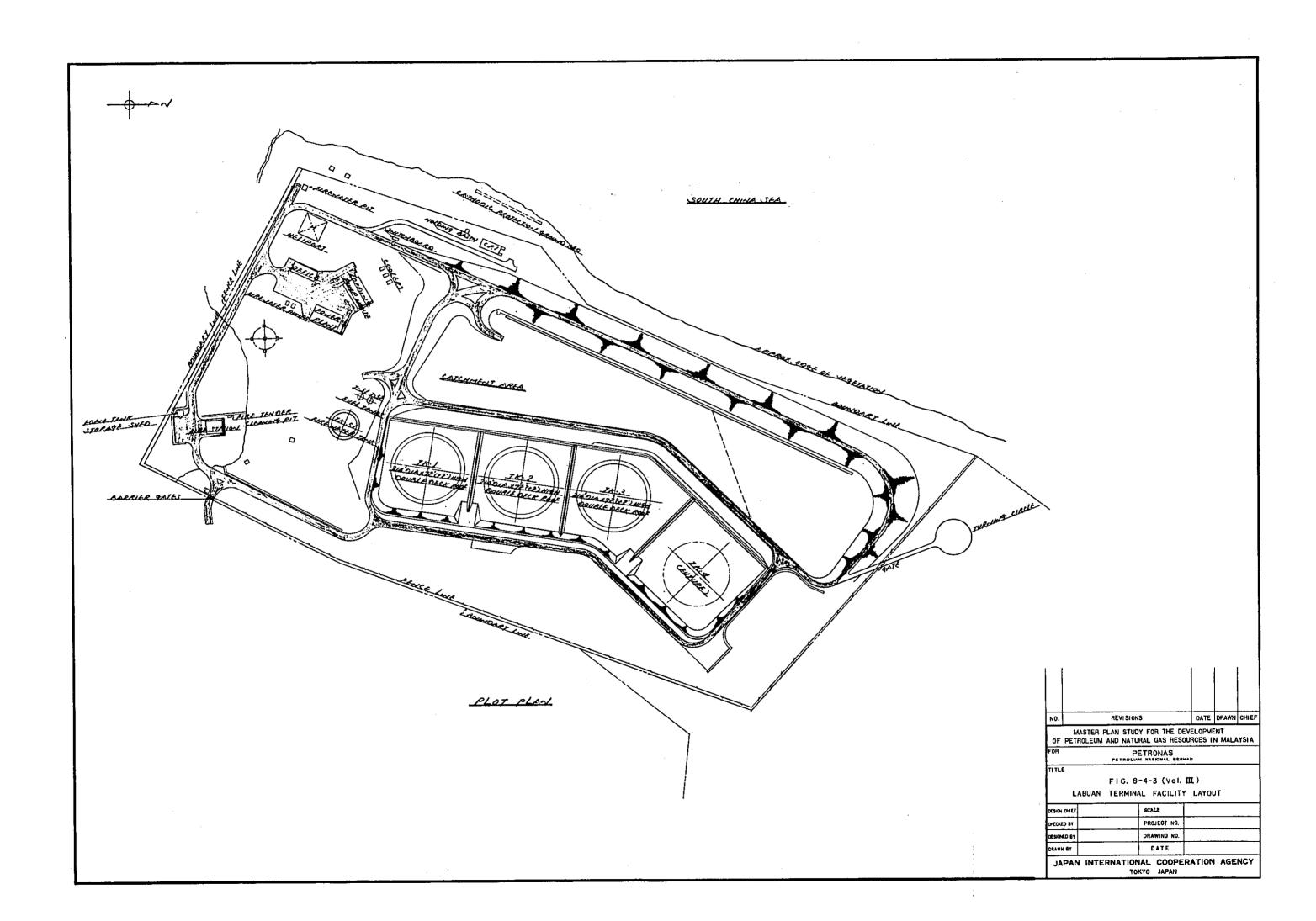
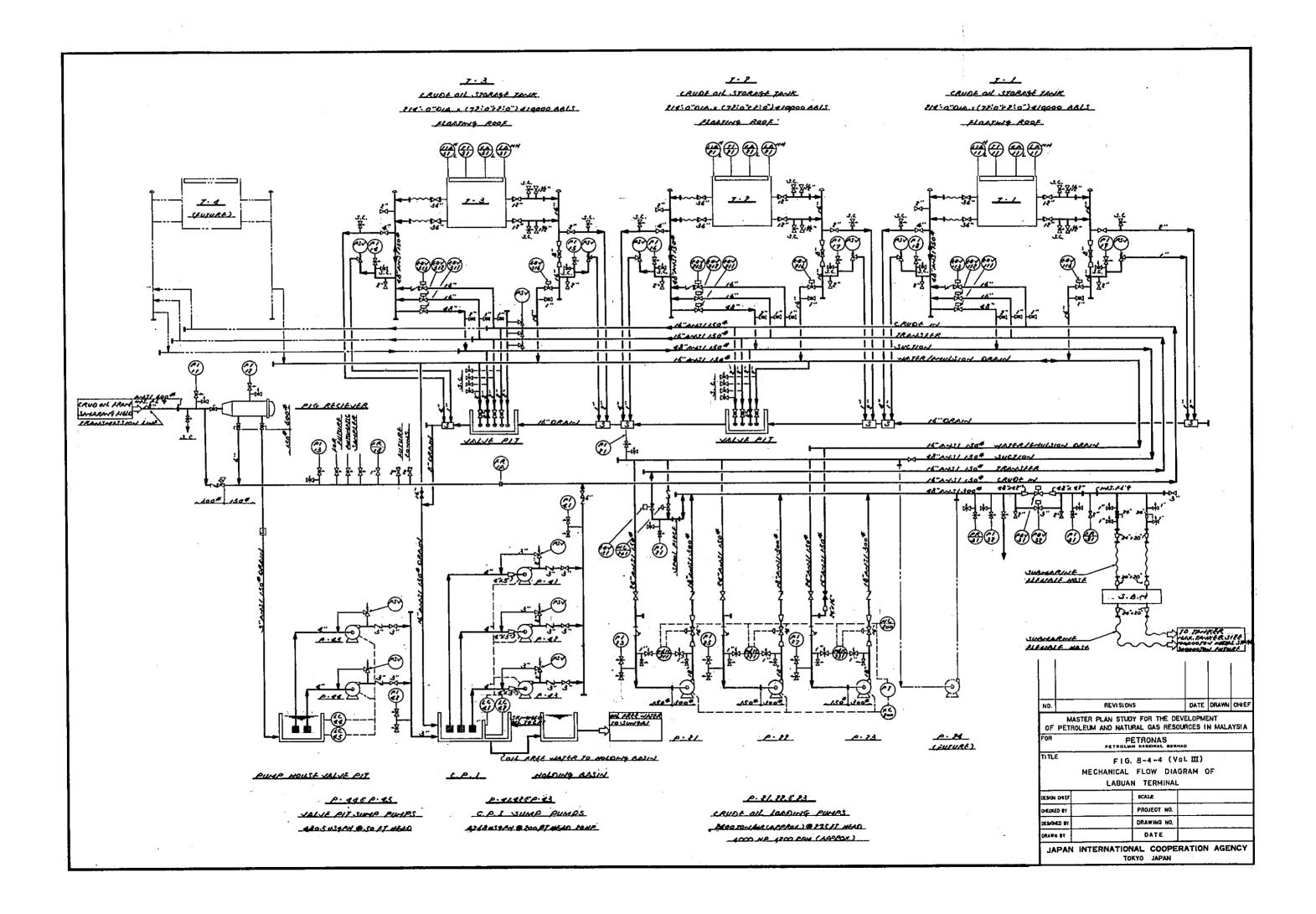
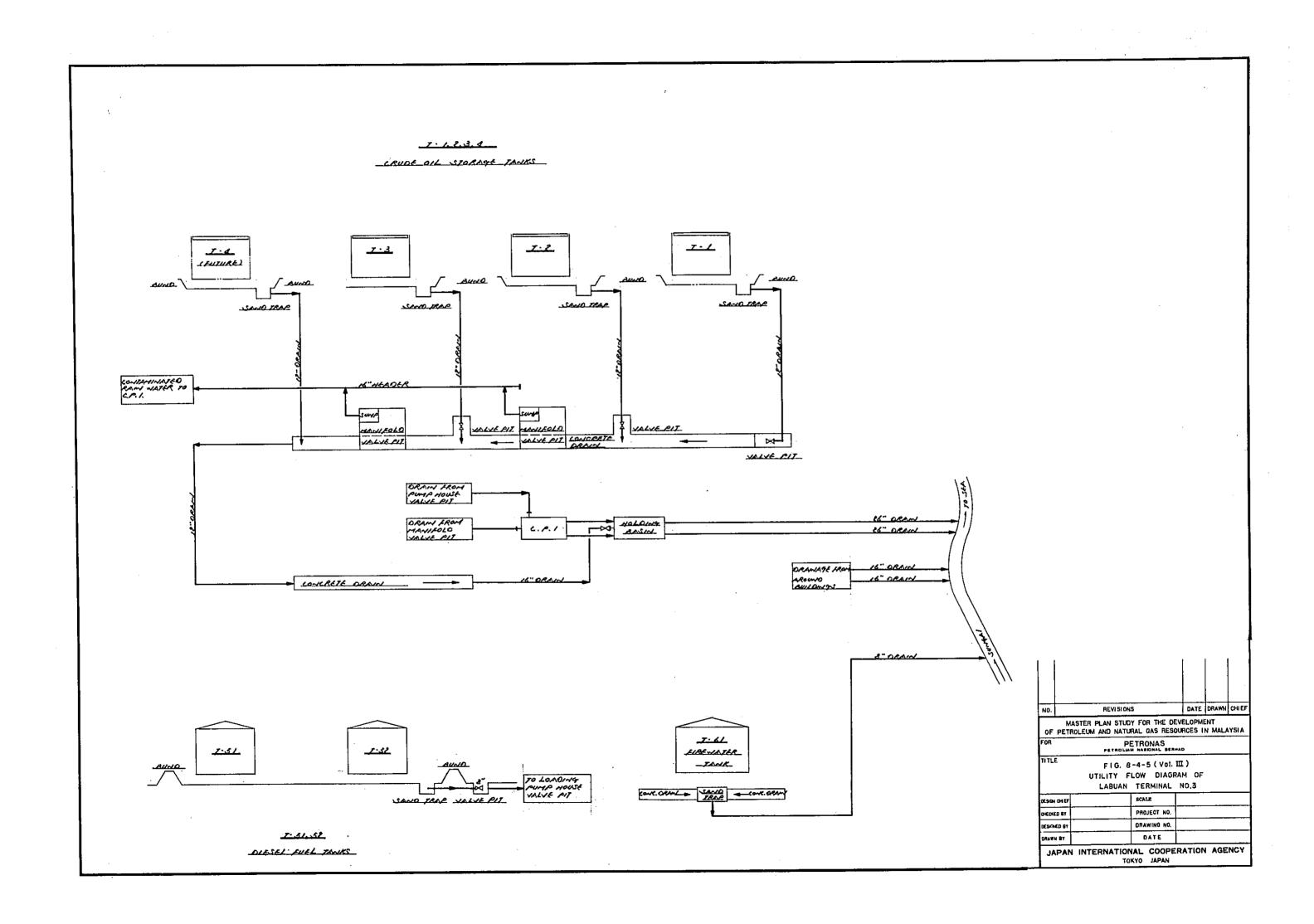
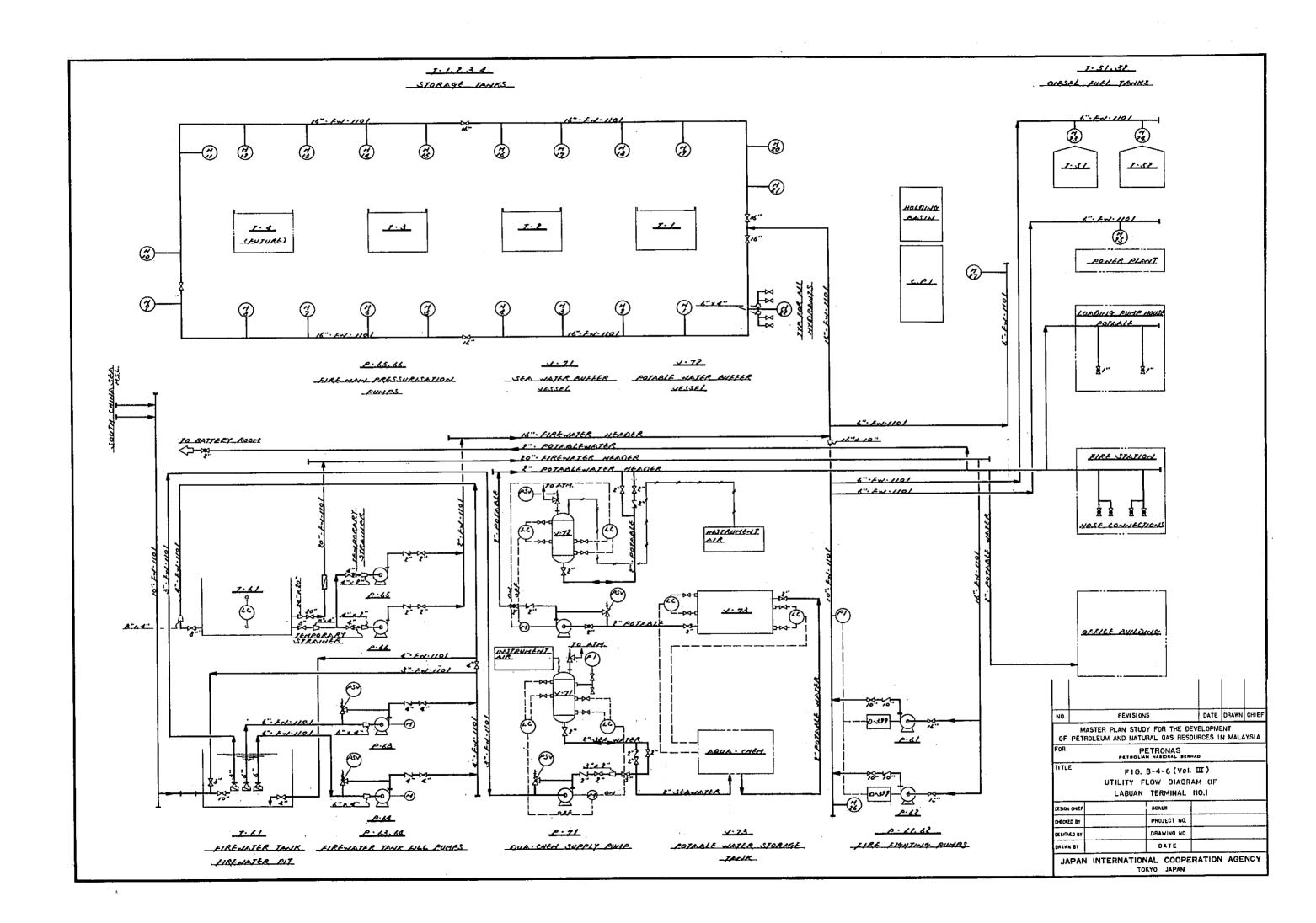
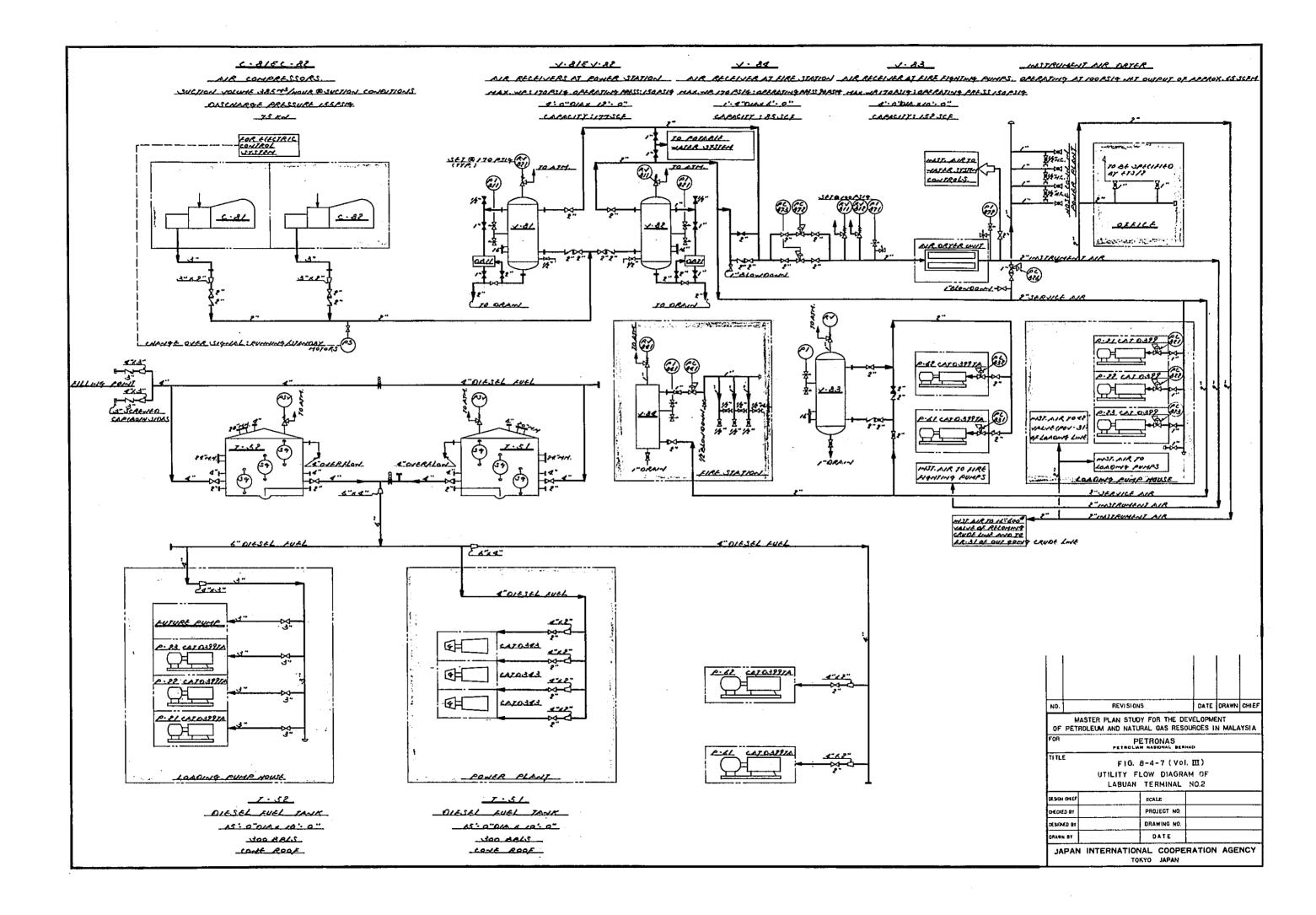


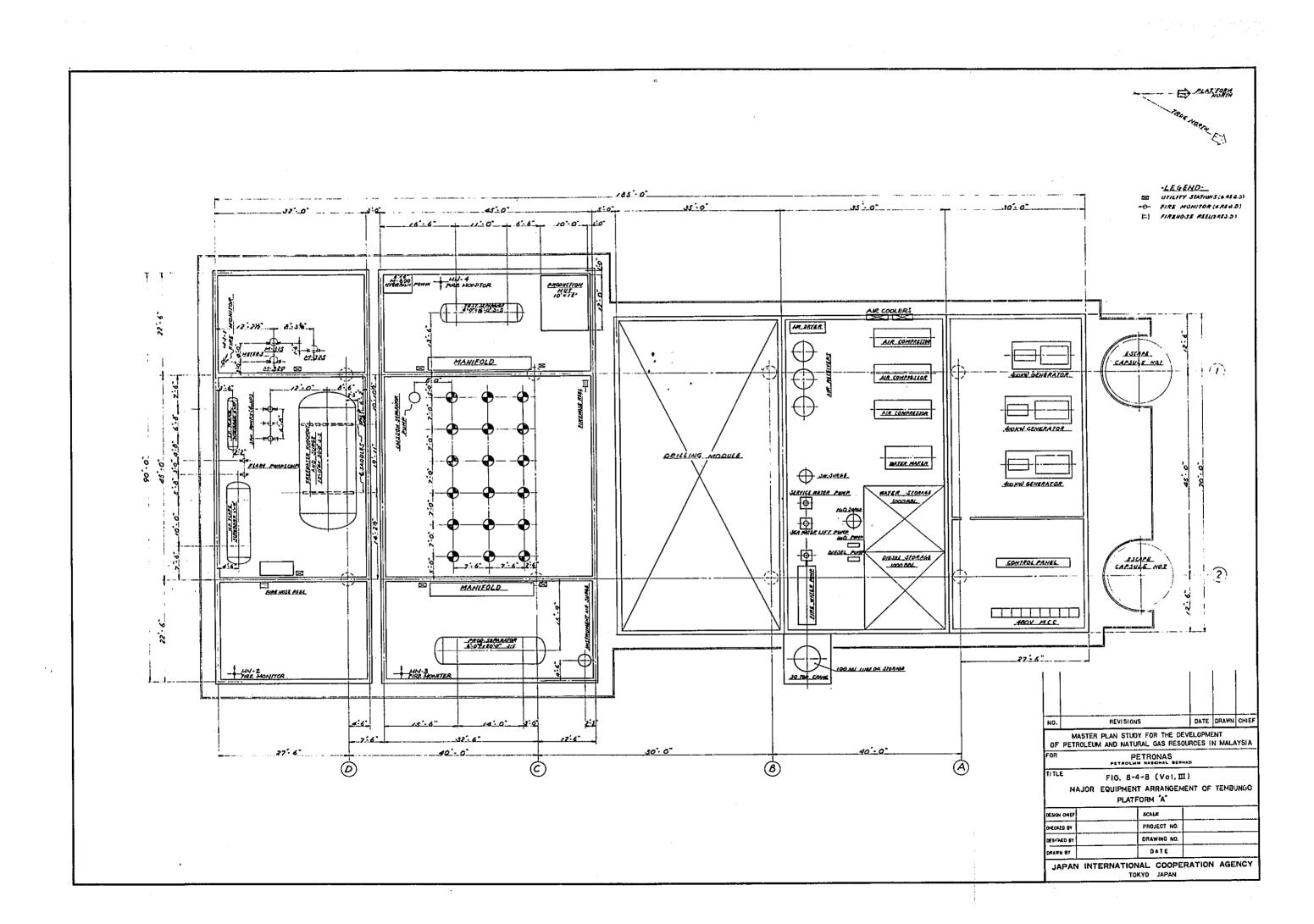
Fig. 7-1-2 SEISMIC SECTION, ERB SOUTH FIELD, Line 73-358 Vol. III

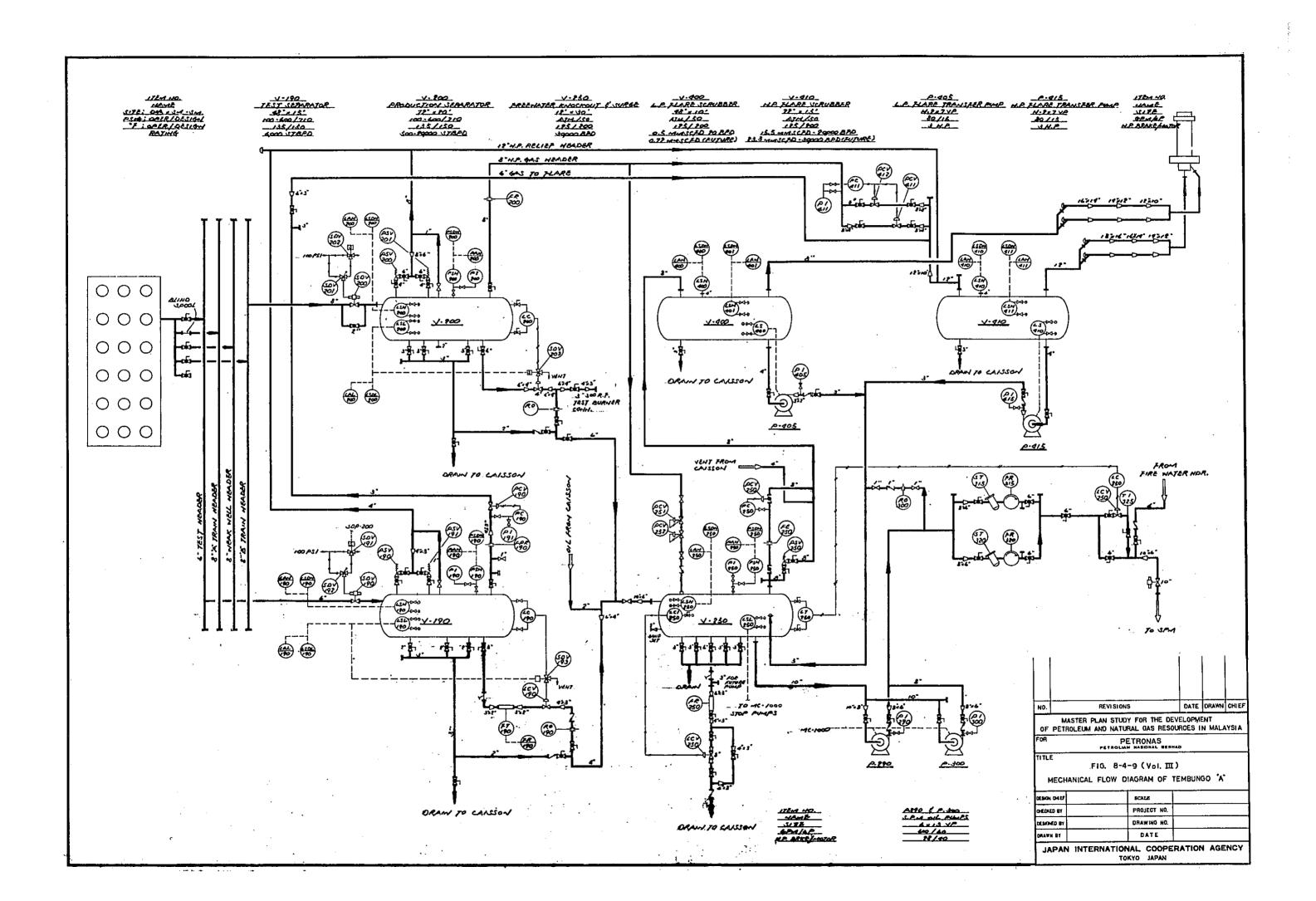







Fig. 7-2-1 STRUCTURE CONTOUR MAP, ERB SOUTH FIELD, TOP a Vol. III









AT PRESENT PRODUCTION RATE

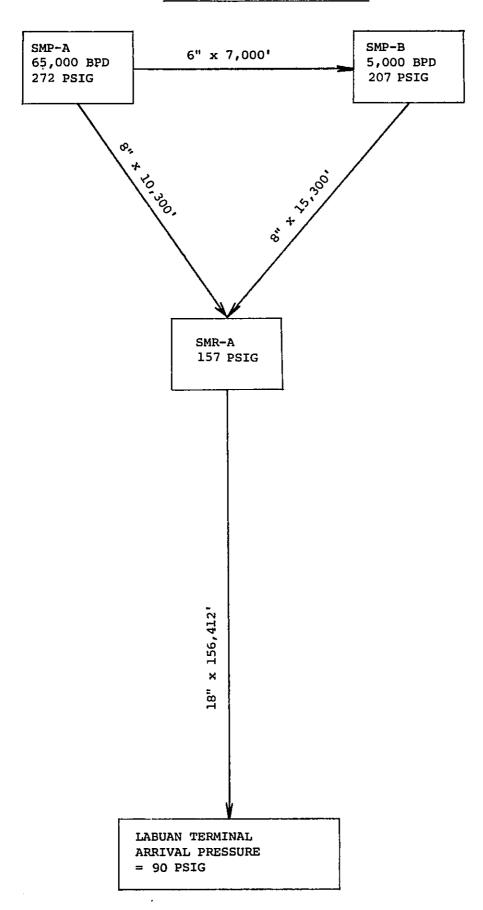
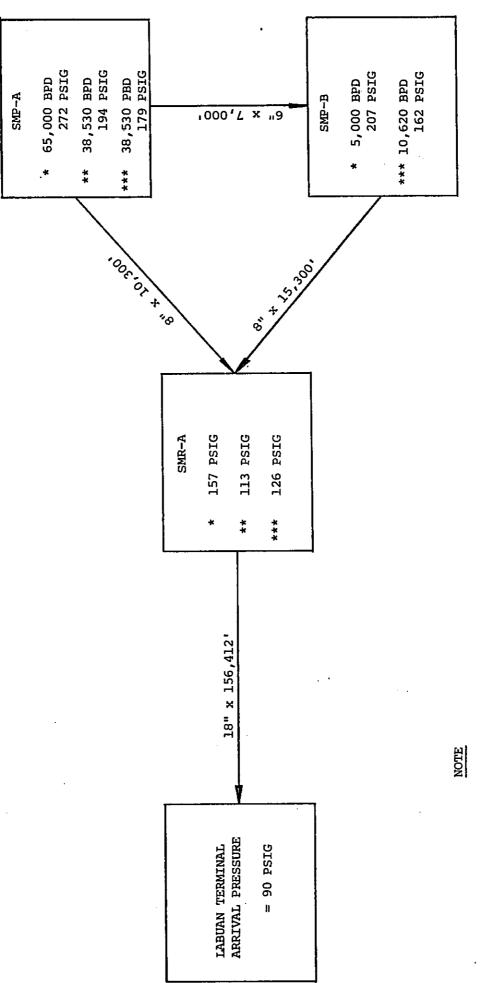
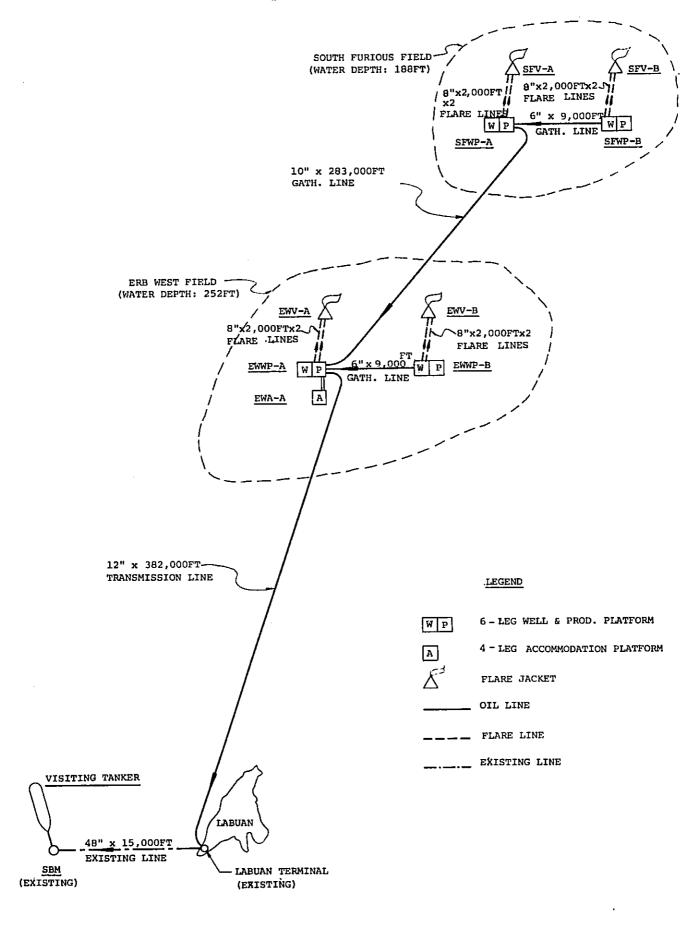
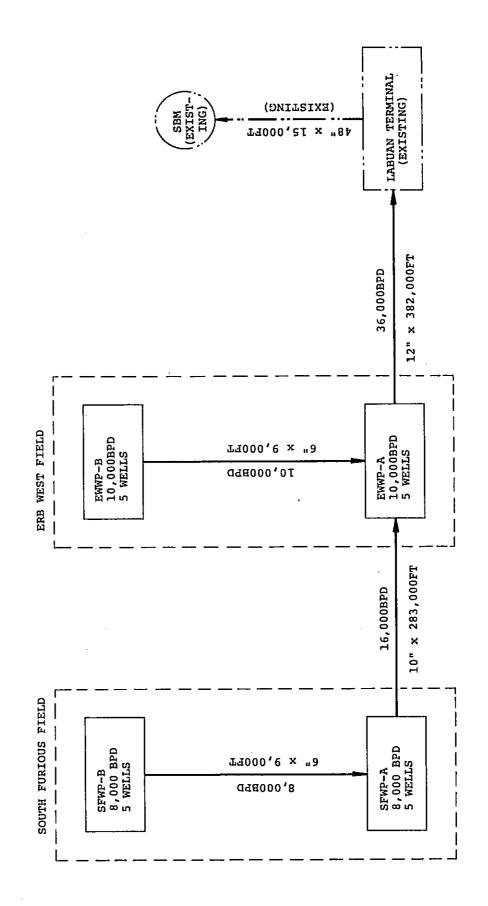



Fig. 8-4-11 LABUAN STREAM PRESSURE BALANCE (Vol. III)

AT MAXIMUM HANDLING CAPACITY OF PRODUCTION PLATFORMS


PREDICTED PRODUCTION RATE IN LABUAN STREAM PRESSURE BALANCE FOR PRESENT AND MAXIMUM Fig. 8-4-12 (Vol. III)


VALUE AT PRESENT PRODUCTION RATE

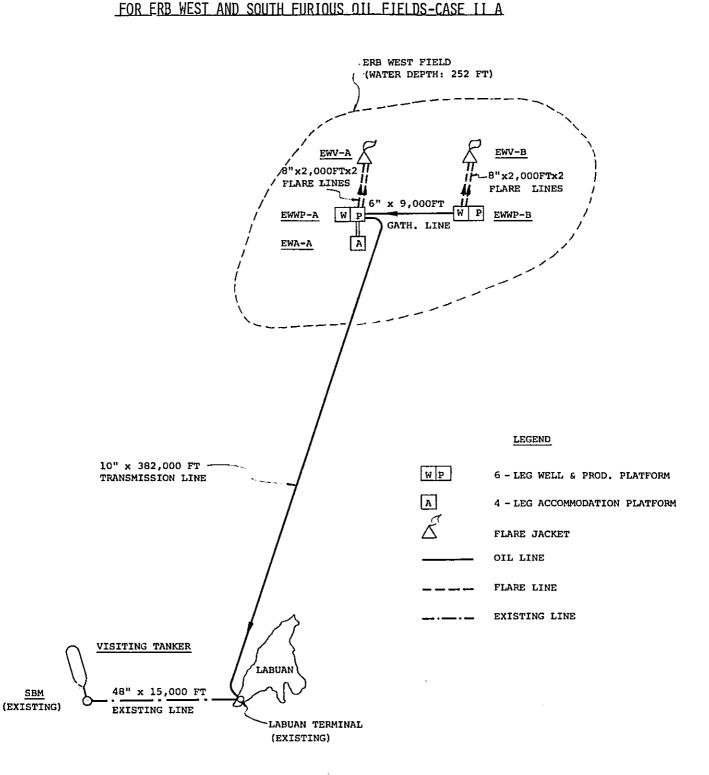
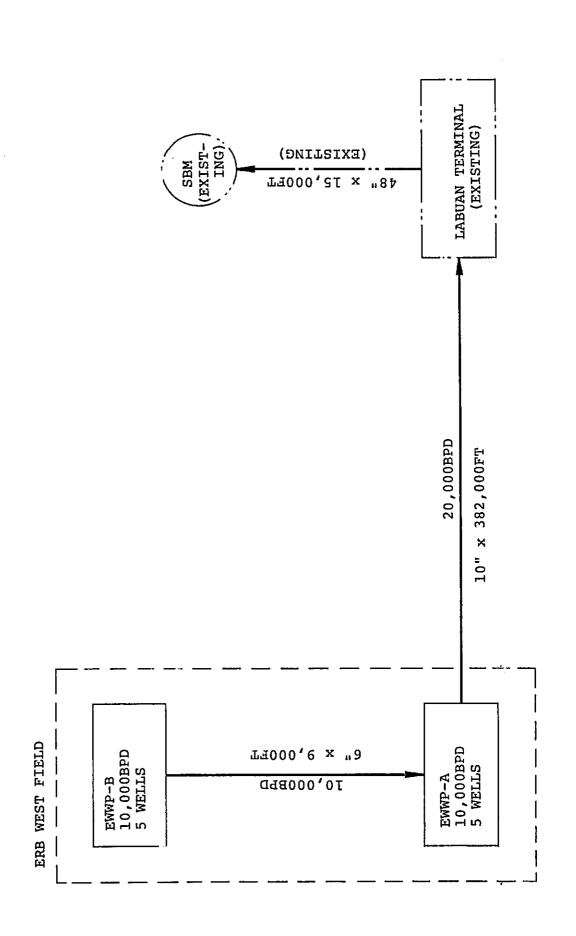
VALUE AT PREDICTED PRODUCTION RATE OF ADDITIONAL WELL CASE ***

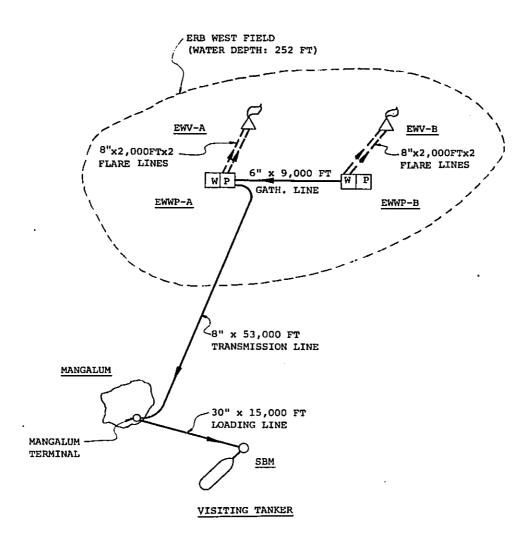
FIG. 9-5-1 (Vol. III) FACILITIES ARRANGEMENT FOR ERB WEST AND SOUTH FURIOUS OIL FIELDS - CASE I

BLOCK FLOW DIAGRAM
FOR ERB WEST AND SOUTH FURIOUS OIL FIELDS - CASE I

FIG. 9-5-3 (Vol. III)

FACILITIES ARRANGEMENT

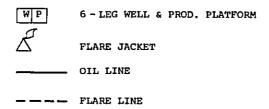
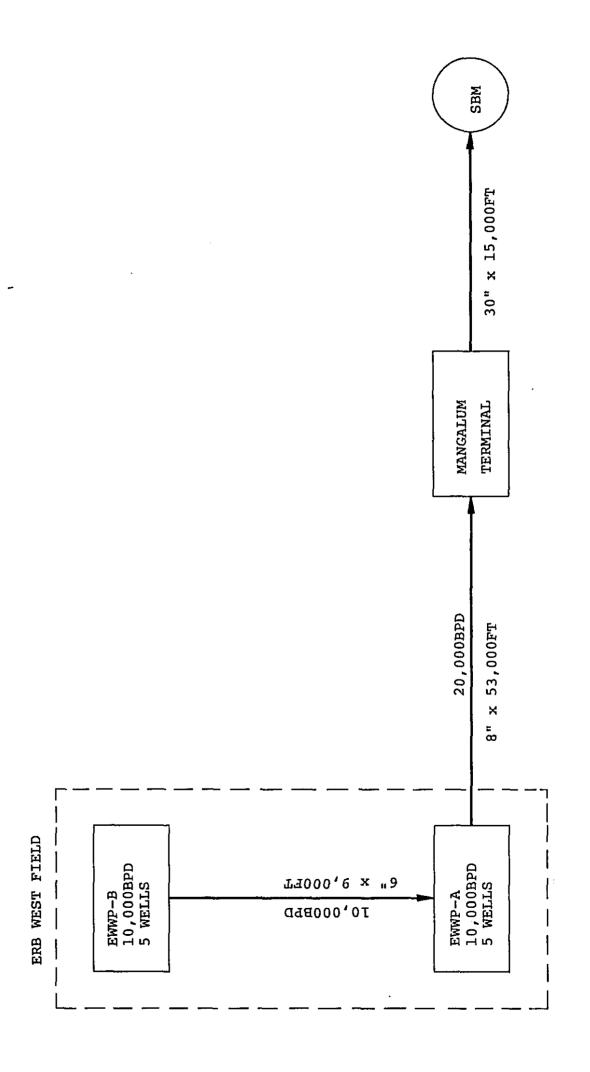

FIG. 9-5-4 (Vol. III)

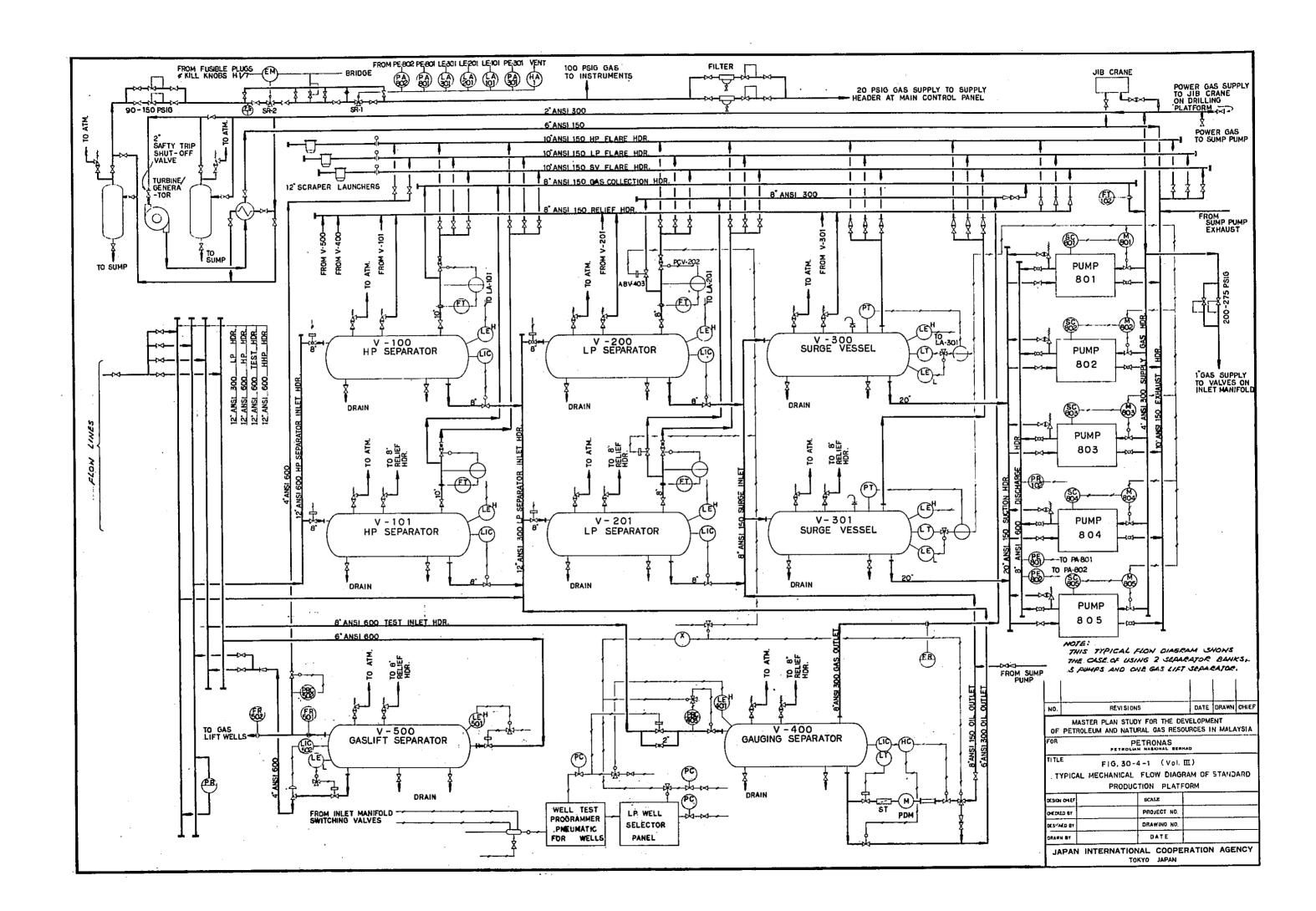
BLOCK FLOW DIAGRAM FOR ERB WEST AND SOUTH FURIOUS OIL FIELDS - CASE II A

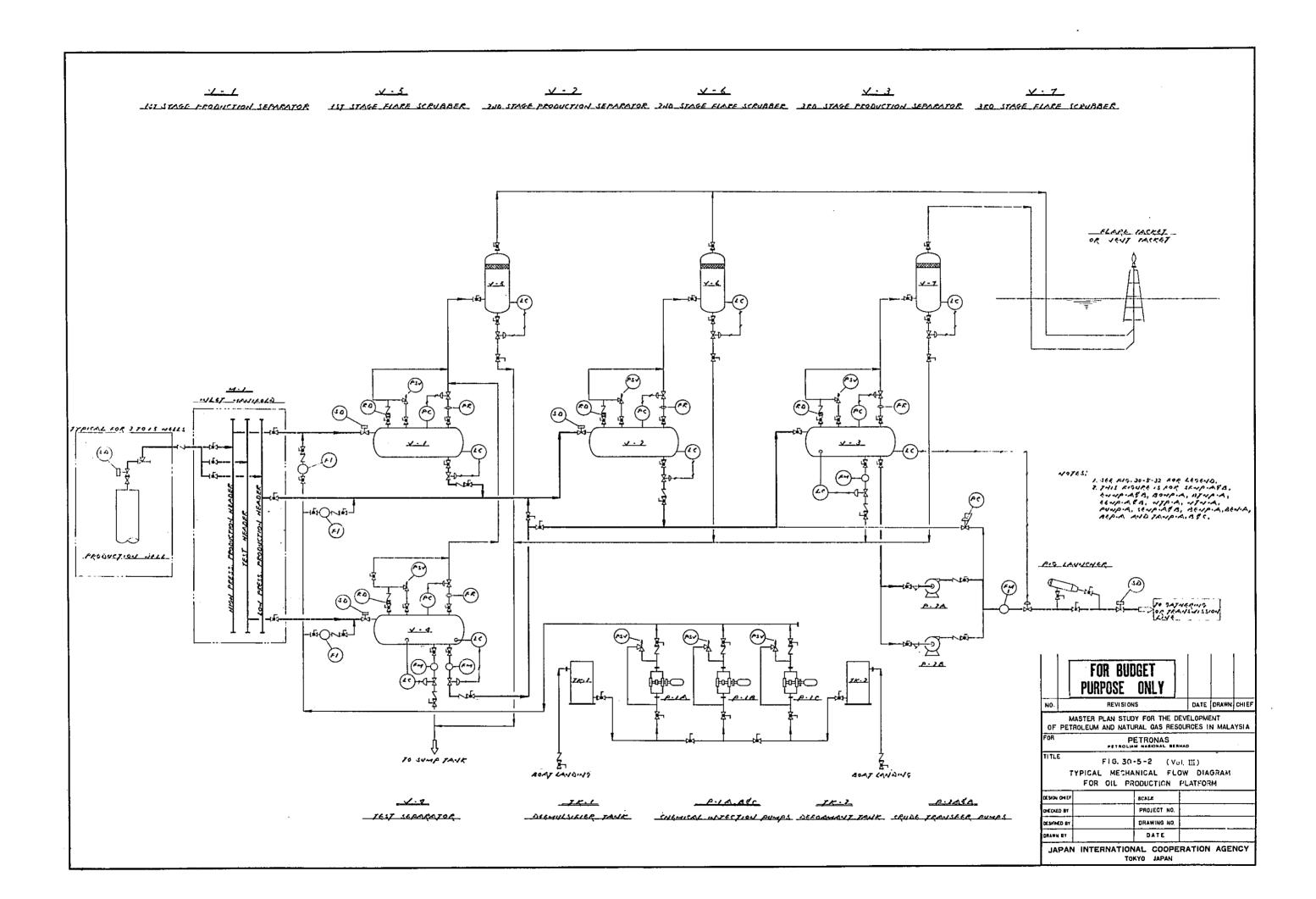
FIG. 9-5-5 (Vol. III) FACILITIES ARRANGEMENT

FOR ERB WEST AND SOUTH FURIOUS OIL FIELDS - CASE II B

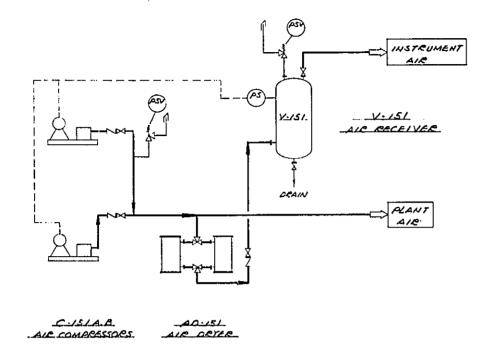
LEGEND

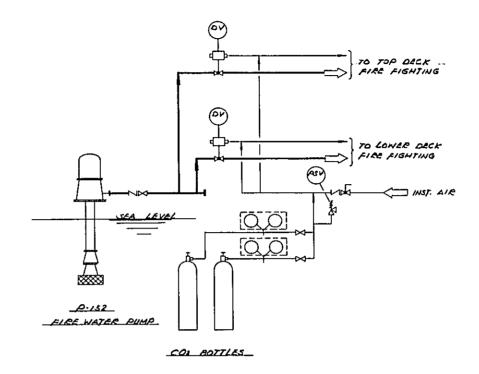

FIG. 9-5-6 (Vol. III)

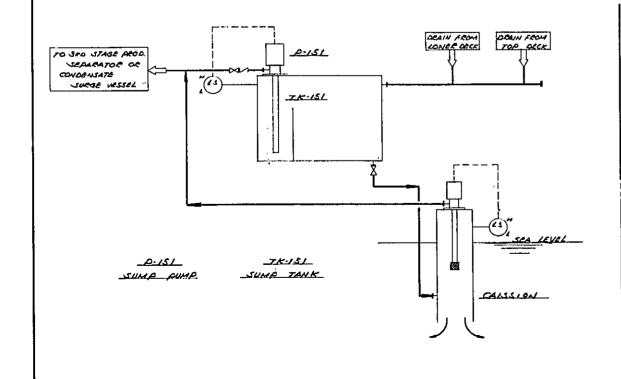

BLOCK FLOW DIAGRAM

FOR ERB WEST AND SOUTH FURIOUS OIL FIELDS-CASE II B



	_		-	-				-	 -						-											•		-							_
	_	-	- -	- - - -							-		 															<i>,</i>							<u>-</u>
	-		_	+						-					_				_											 					
				-																				_	_					_					
	1 chris		+	-									_			H			- -	- I			_			_	_		_			_	_	_	
	0 8	`∦	1																																
3rd	5 6 7	5	+	 	_		-		ļ	-	-											-	<u> </u>	_	<u></u>		_	_							
	⊢	7	1											T																					
	101	ij	+	_				_		-	-	_		#	_				_		-	-			_					-	-				_
	9	0	+	+						_	-	_			_	_	-	_	_	_			_			-		_	_		_				
2nd	5 6 7		+		_							1																_							
	2 2 4	7	+											<u> </u>	_	-		_			-	_	 	-		_						-	-	-	
\vdash	-	4		 																					 										
	0 10 1113		+						- -	-	-		<u> </u>		<u> </u> _	-	-	_	_					-	-	_	-		<u> </u>	-		-			-
يا ا	-	0			_							1			E																				
lst	A 15 6	7	-			_		_	-	-	-	-	-	<u> </u>	L	_			-	-	-	-	-	-	-	_		_	_	-		_	-		_
		C 7 T																	E																
\vdash	<u> </u>	→	\dagger				15	-	1,	-		+		2		į	4	-	-	-			-		 	-		\vdash			-	-	-	-	\vdash
							10 Wells		2017			4-160	i •	3-leg x		10"×382,000	8"x2.000'x4	6" x 9.0001													ļ				
		1	+	_		_	_		1 4	<u>}</u>	+	-	_	E	-	101	, "R	150	+	-	+	-	<u> </u>	_	<u> </u>	_	<u> </u>	-	ļ		<u> </u>	<u> </u>	<u> </u>	<u> </u>	_
Vooy	# /	/					¥e11		1+100			n Platform				peline																			
	Item			1. Engineering		Erb West	Development Well		Well a Droduction	merr a rroad	FIGURE	Accommodation Platform		Flare Jacket		Submarine Pipeline				3. Start - up	3-														




INSTRUMENT AIR SYSTEM

FIRE FIGHTING SYSTEM

DEAIN SYSTEM

40765:

5:

1, 546 F10. 30-5-32 FOR LEGEND.

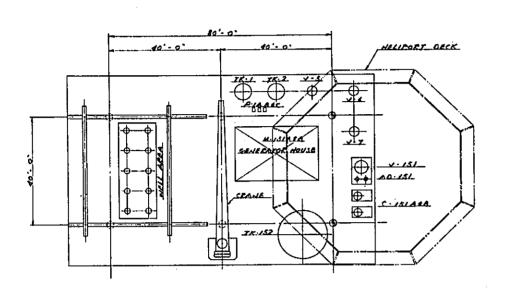
2. THIS ENGURE 15 FOR SEMP-MER.

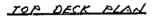
6-MP-MER. 20MP-A. ATMP-A.

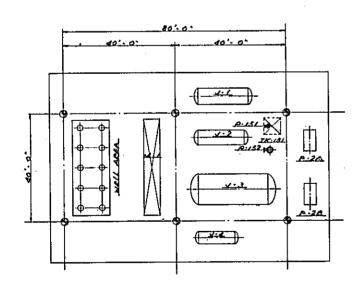
56-MP-MER. MTP-A. PUMP-A.

16-MP-MER. MEMP-A. REP-A.

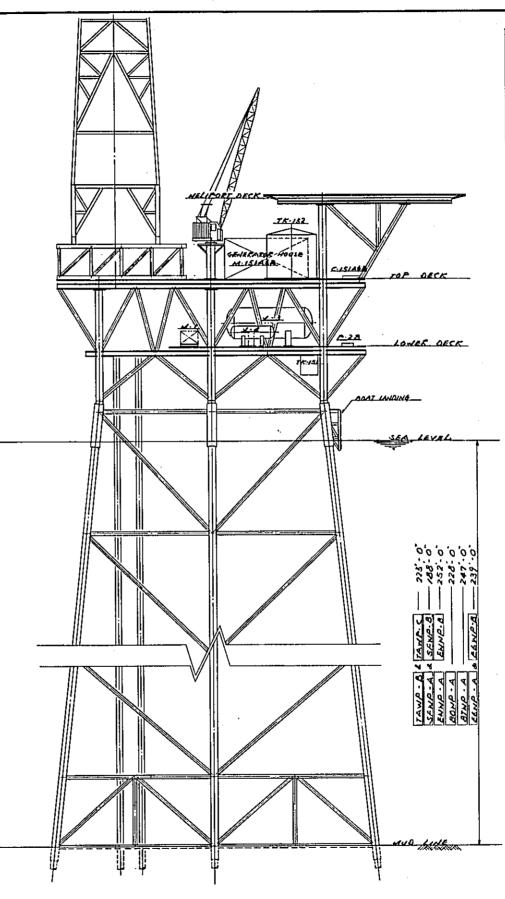
FAMP-A. BEC. F13-MP-A. F12-MP-A.


F2TP-A. F2MP-A. F8MP-A.


E1MP-A. REP-A. PUPC-A.


AND BEPC-A.

FOR BUDGET PURPOSE ONLY


		l							
NO.	REVISIONS	DATE	DRAWN	CHIE					
MASTER PLAN STUDY FOR THE DEVELOPMENT OF PETROLEUM AND NATURAL GAS RESOURCES IN MALAYSIA									
FOR PETRONAS									
TITLE F G. 30-5-10 (Vol. III)									
	TYPICAL UTILITY FLOW	DIAGE	RAM						
	FOR OIL & GAS PRODUCTION	PLAT	FORM						
DESION CHEF	SCALE								
D-ECKED BY	D-EDRED BY PROJECT NO.								
DESKRAED BY	DESKHED BY DRAWING NO.								
DRAWN BY	DATE								
JAPAI	INTERNATIONAL COOPER	ATION	AGE	NCY					

LOWER DECK PLAN

ELEVATION

	EQUIPMENT LIST
ITEM NO.	OESCRIPTION
	VESSEL
V - /	IST STAGE PRODUCTION SEPARATOR
V • 2	240 STAGE PRODUCTION SEPARATOR
	3 TAGE PRODUCTION SEPARATOR
Y : 3	
<u> </u>	TEST SEPARATOR
V · 5	I'T STAGE FLARE SCRUBBER
<u>v - 6</u>	240 STAGE FLARE SCRUBBER
<u> </u>	300 STAGE FLARE SCRUBBER
V · 151	INSTRUMENT AIR RECEIVER
	MACHINERY
C - 151A\$8	INSTRUMENT AIR COMPRESSORS
	INSTRUMENT AIR ORIER
	PUMP
A - / / A # C	CHEMICAL INJECTION PUMPS
	F 12.1 12.02-2
	CRUDE TRANSFER PUMPS
	SUMP PUMP
r · 152	FIRE WATER PUMP
<i></i>	7ANK
7K - 1	DEEMULSIFIER TANK
7K · 2	DEFOAMANT YANK
7K - 151	SUMP TANK
TK - 152	DIESEL STORAGE TANK
]
	MISCELLANEOUS
W · /	INLET MANIFOLD
	DIESEL DRIVAN GENERATORS
— — — — — — — — — — — — — — — — —	
	

FOR BUDGET PURPOSE ONLY

THIS FIGURE IS FOR SENP-ALB. _ ENWP-A&B, BONP-A, BINP-A, EGWP.A&B. AND TAMP.B&C.

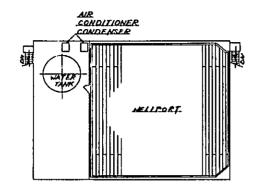
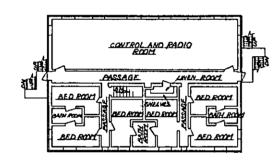
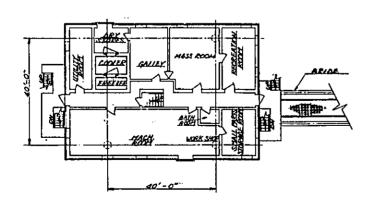
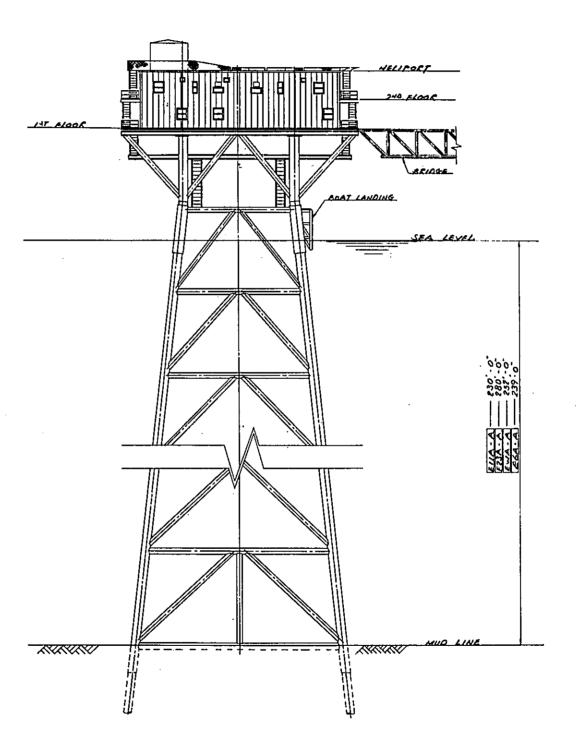

NO.	REVISIONS	DATE	DRAWN	CHIEF
OF	MASTER PLAN STUDY FOR THE DEV. PETROLEUM AND NATURAL GAS RESOU			YSIA
FOR	PETRONAS			

FIG 30-5-16 (Vol. 田)


TYPICAL PLAN AND ELEVATION FOR 6 - LEG WELL & OIL PRODUCTION PLATFORM

DESIGN CHEF	SCALE	
D-EOKED BY	PROJECT NO.	
DESIGNED BY	DRAWING NO.	
DRAWN BY	DATE	


JAPAN INTERNATIONAL COOPERATION AGENCY TOKYO JAPAN


HELIPORT DECK PLAN.

240 FLOOR PLAN

IST FLOOR PLAN

ELEVATION

NOTE: THIS PIGURE IS FOR FIRA-A, EITA-A, ENA-A AND EGA-A.

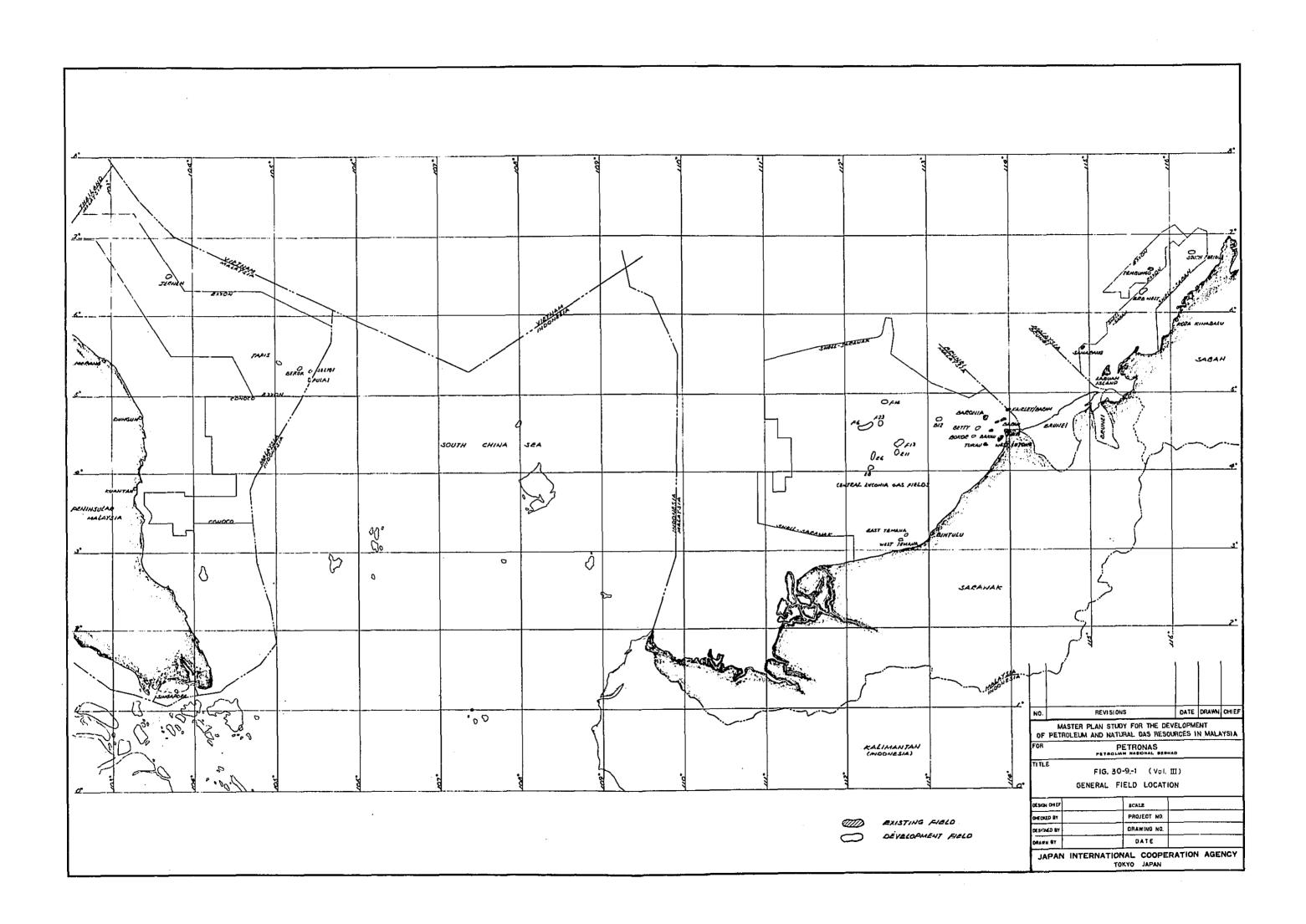
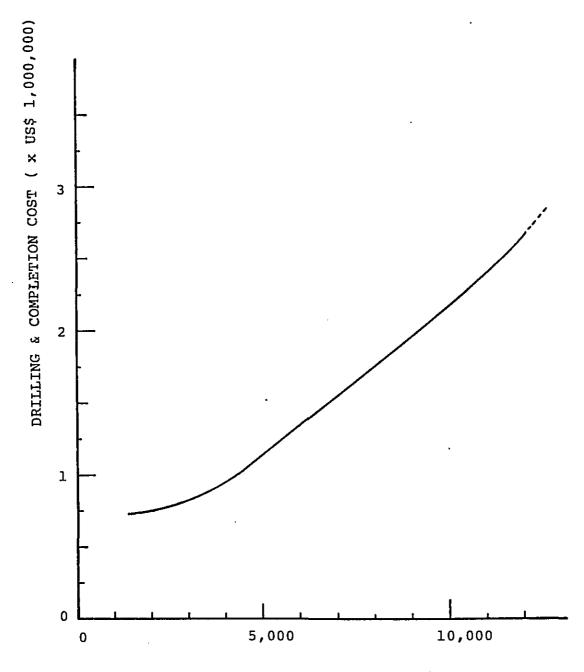
FOR BUDGET Purpose only

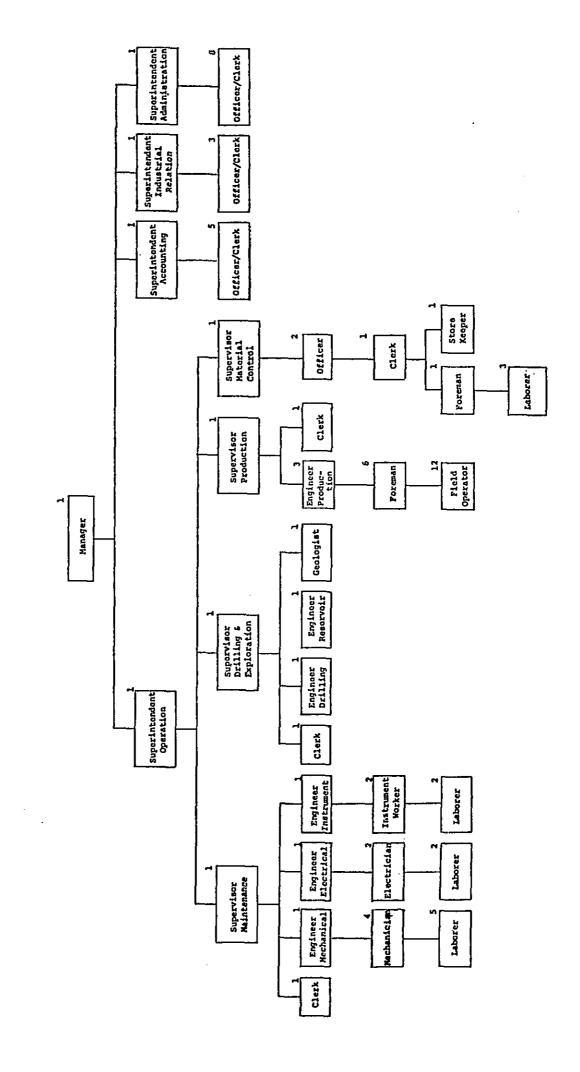
ļ							
		•					
NO.		RE	VISIONS	<u> </u>	DATE	DRAWN	CHI E
0F F	MAS ETRO	STER PLAN	STUDY	FOR THE DE	EVELOPMI DURCES I	ENT N MALA	YSIA
FOR PETRONAS PETROLAM NASIONAL BERNAD							
TITLE T	YPIC	AL PLAN	AND	0-5-31 (ELEVATION ATION PLA	FOR	e - LE(3
DESIGN O	HEF			BCALE			
O-ECVED	DECKED BY PROJECT NO.						
DESIGNE	DESCRED BY DRAWING NO.						
DETAM	17			DATE	<u> </u>		
		INTERN	ATION	DATE AL COOPE	RATION	AGE	NC

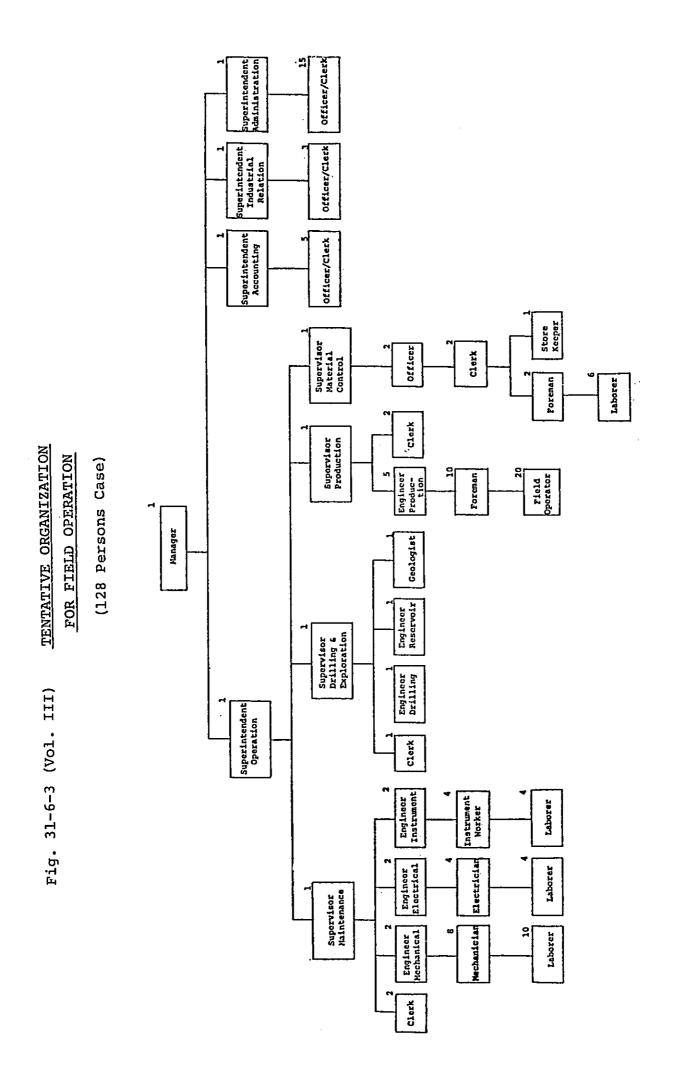
Fig. 30-5-32 (Vol. III)

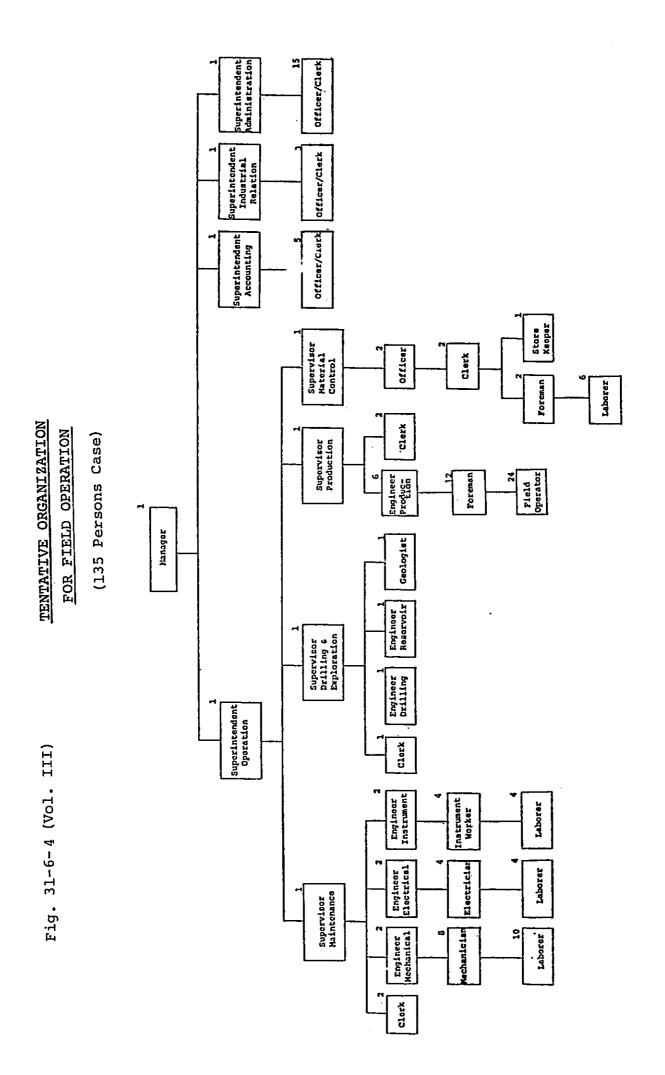
LEGEND FOR FLOW DIAGRAMS

PIC	PRESSURE INDICATING CONTROLLER
PC	PRESSURE CONTROLLER
PS	PRESSURE SWITCH
FRC	FLOW RECORDING CONTROLLER
FM	FLOW METER
FR	FLOW RECORDER
FI	FLOW INDICATOR
LC	LEVEL CONTROLLER
LS	LEVEL SWITCH
PSV	PRESSURE SAFETY VALVE
RD	RUPTURE DISC
DV	DELUGE VALVE
SD	SHUTDOWN VALVE
xv	MISCELLANEOUS VALVE
NOTE:	DT / DDECGUDE TADTCAMOD \ AND MT

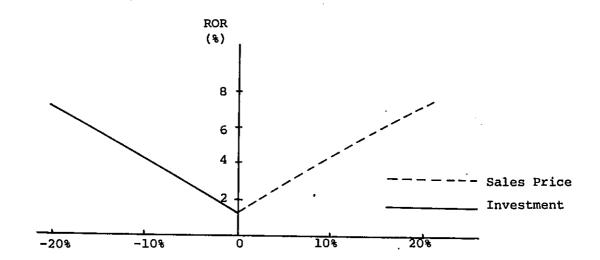

Fig. 31-6-1 DRILLING & COMPLETION COST (Vol. III) OF DEVELOPMENT WELL




DRILLING DEPTH (feet)

FOR FIELD OPERATION

(80 Persons Case)



Superintendent Administration Officer/Clerk Superintendent Industrial Relation Officer/Clerk Superintendent Accounting Officer/Clerk Store Supervisor Material Control Officer Clork Foreman Laborer Clork Supervisor Production TENTATIVE ORGANIZATION FOR FIELD OPERATION (146 Persons Case) Engineer Produc-tion Field Foreman Hanager Geologist Engineer Reservoir Supervisor Drilling & Exploration Fig. 31-6-5 (Vol. III) Engineer Drilling Superintendent Operation Clerk' Engineer Instrument Instrument Worker Laborer Enginear Electrical Electrician Laborer Supervisor Maintenanco Engineer Mechanical Kechanician Laborer Clerk

Fig. 31-6-7 (Vol. III) SENSITIVITY CURVE FOR SABAH AREA

Erb West & South Furious Fields

Optimum Case: Erb West, Labren Terminal Case - CASE IIA

APPENDIX

検 層解析結果

サバ地区

Samarang Field

Core Analysis の Formation factor と Porosity のデータを使ってアーチーの式のセメンテーション ファクター及び定数を求めるとそれぞれ 2.02, 0.36 となる。 しかしこの値は Saba Sarawak 地域の他のフィールドと較べて定数 a の値が低すぎると思われるので砂岩としての一般式 $F=0.62/\phi^{2.15}$ を使用した。

検層データのうち2'毎に数値化されてコンピュータによって水飽和率、孔 瞭率が計算されたのは2,3,14~29各号井である。コンピュータによっ て計算されなかった坑井のうち重要なSamarang 8号井については手計算 によって孔隙率、水飽和率が求められた。その結果は表に示してある。結果 のコア分析との比較はコア分析データ数が十分でないと判断して行わなかっ た。

Tembungo Field

Tembungo Field のログ解析は手計算によって行われた。
その結果は各炭化水素含有層毎にまとめて表に示した。
水飽和率は他のField と同じく比較的高い値を示した。
適当なコアデータがないため、コア分析の結果とログ解析の結果の比較は実行されなかった。

Erb West Field

Rw の値は 0.13Ω m e 145 Fを使用した。コア分析の結果によると、フォーメーション ファクター:Fと孔隙率: ϕ の関係は、 $F=^{1.1}/_{\phi}1.21$ と表されるが、他のフィールドと比較して違いが大きすぎるので、今回の計算では砂岩に対して確立された式、 $F=^{0.62}/_{6}2.15$ を使用した。水飽和率

は、20~60 %程度の値を示す。コア分析のデータが不十分であり、コア との比較はされなかった。

South Furious Field

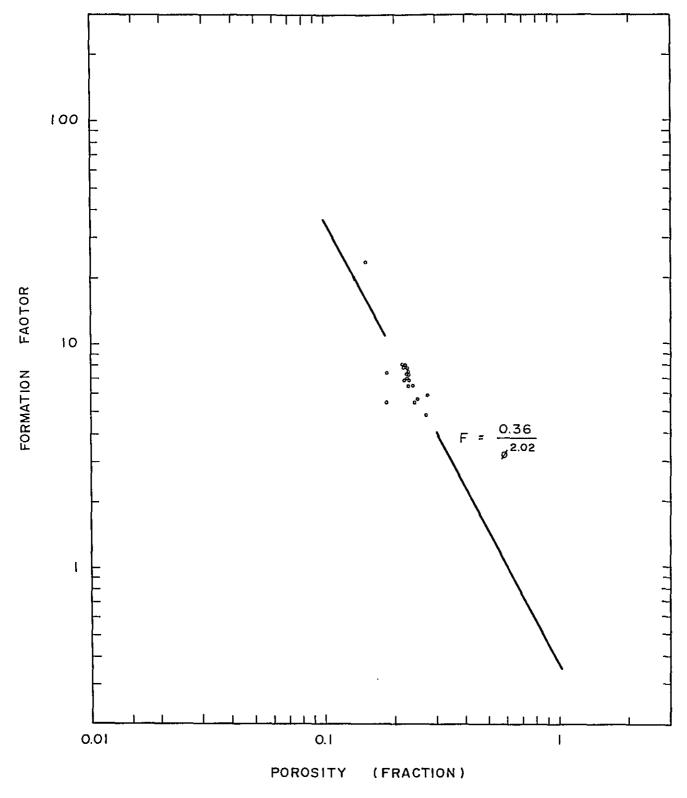
Rwの値は 0.22Ω m 2155 Fを使用した。コア分析の結果によって、 $F = \frac{1}{\phi^{1.69}}$ の関係式を使用した。コア分析は 2 号井及び 3 号井でなされているが比較に使える程度に十分な量のデータがそろっているのは 2 号井の 3513'-3540.5' の間である。この区間で頁岩含有率 20 多以下の点で比較するとコアの平均孔隙率 20.86 多、ログ平均孔隙率 19.63 多となってほとんど一致している値を示す。

West Emerald Field

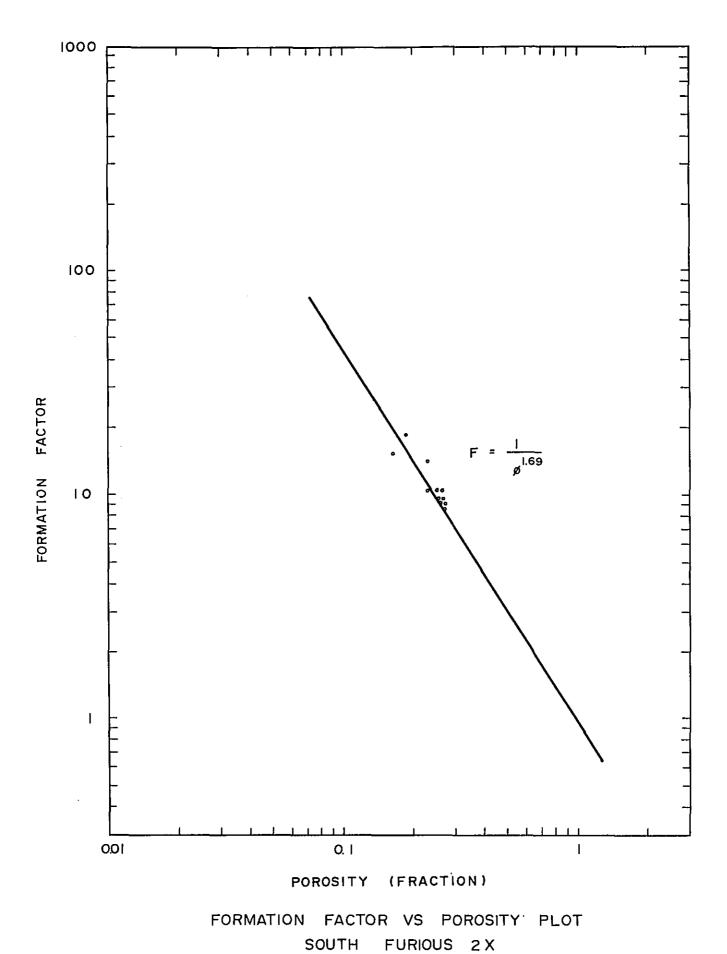
Rwの値は 0.21Ω m 0.135 Fを使用した。フォーメーション フェクター と孔隙率との関係式は砂岩の式、F=0.62/a2.15 を使用した。

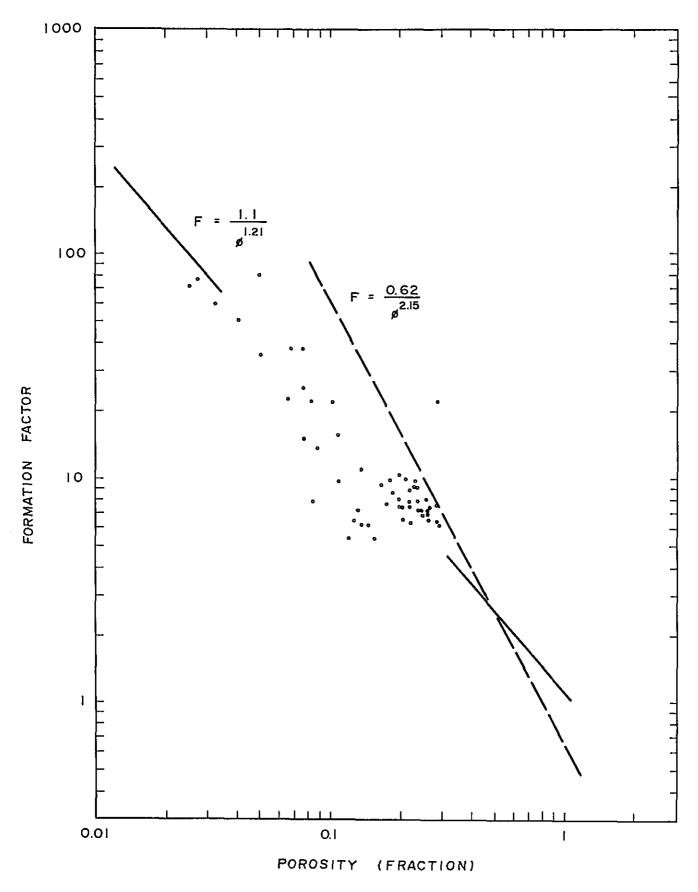
St. Joseph Field

Rwの値は 0.25Ω m @ 150 F、フォーメーション ファクターと孔隙率との関係式として砂岩の式、F = 0.62 $_{62.15}$ を使用した。


Erb South Field

Rwの値は $0.3\,\Omega$ m 0.120 Fを使用した。この値は地域の Rwの値に比べて高いが Sabah Area に属する他のフィールド South Furious、St. Joseph、 West Emerald も同様の値を示し、地域的特性と考えられる。コア分析は 実行されていない。したがってここでは、 $F=0.6\,2/_{\phi}2.15$ という砂岩のための式を使用した。


IMPORTANT PARAMETER USED FOR LOG-ANALYSIS


- SABAH AND SARAWAK -

FIELD	CEMENTATION FACTOR (m)	ARCHIE FORMULA'S CONSTANT (a)	SATURATION EXPONENT (n)	WATER RESISTIVITY (Ω-M @ F.T.)
TEMANA	2	1	2	0.15 @ 152°F
SOUTH FURIOUS	1.69	1	2	0.22 @ 155°F
BETTY	2	1.	2	0.11 @ 180°F
BOKOR	2.15	0.62	2	0.16 @ 140°F
ERB WEST	2.15	0.62	2	0.13 @ 145°F
ERB SOUTH	2.15	0.62	2	0.3 @ 120°F
ST. JOSEPH	2.15	0.62	2	0.25 @ 150°F
WEST EMERALD	2.15	0.62	2	0.21 @ 135°F
BERYL	1.87	0.7	2	
SIWA	2.15	0.62	2	0.4 @ 120°F
CENTRAL LUCONIA	1			
B12	1.84	1.04	1.84	0.096@ 240°F
E6	1.84	1.04	1.84	0.23 @ 70°F
E8	1.84	1.04	1.84	0.102@ 148°F
E11 .	1.84	1.04	1.84	0.096@ 165°F
F6	1.84	1.04	1.84	0.096@ 152°F
F9	2	1	2	0.208@ 170°F
F13	1.84	1.04	0.84	0.25 @ 184°F
F14	1.84	1.04	1.84	0.124@ 148°F
F22	1.84	1.04	1.84	0.2 @ 170°F
F23	1.84	1.04	1.84	0.16 @ 204°F
K4	2	1	2	0.102@ 175°F
Ml	1.84	1.04	1.84	0.11 @ 162°F
мз	1.84	1.04	0.84	0.06 @ 203°F
M5	1.84	1.04	1.84	0.06 @ 206°F
BARAM A	1.87	0.7	2	0.135@ 150°F
BARAM B	1.87	0.7	2	0.13 @ 170°F
BAKAU	2.15	0.62	2	0.11 @ 206°F
BARONIA	1.69	1	2.0	0.09 @ 150°F
RAIRLY BARAM	2.15	1	1.49	0.22 @ 70°F
SAMMARANG	1.8	1.	1.8	0.111@ 142°F
TEMBUNGO	1.93	1.14	1.93	0.14 @ 150°F
TUKAU	2.15	0.62	2	0.12 @ 140°F
WEST LUTONG	1.84	0.68	2	0.205@ 100°F

FORMATION FACTOR VS POROSITY PLOT SAMMARANG IX

FORMATION FACTOR VS POROSITY PLOT ERB WEST 4

WELL NAME : SAMARANG 002

00.06	0.0	50.00
••		••
IT OFF OF SW	SITY	SHALE
Ę	H ₀	
OFF	OFF	OFF
CUT	CUT	<u> </u>

REWAKKS	SAMARANG 02 'C2' UIL ZOME SAMARANG 02 'C3' UIL ZOME
AVERAGE SATURATION (%)	41.4
AVERAGE POROSITY (%)	22.8 17.9
NET THICKNESS (FT)	16
RASE RASE (FT)	6458.0 6515.0
INTERVAL TOP R (FT)	6444.0 - 6498.0 -

WELL NAME: SAWARANG 03
CUT OFF OF POROSITY:
CUT OFF OF SHALE:

90.00

REMARKS	000000000000000000000000000000000000000	
AVERAGE SATURATION (2)	42.5 55.8 40.5 42.6 55.8 75.0 63.8 63.8 64.6 54.6 54.6 54.6	,
AVERAGE PORUSITY (%)	18.3 17.9 18.7 12.4 13.7 17.0	15.2
NET THICKNESS (FT)	98 60 60 58 8 8 40 60	49
VAL RASE (FT)	5478.0 6228.0 6324.0 6398.0 6410.0 6476.0 7370.0	7440.0
INTERVAL TOP (FT)	5380.0 - 6184.0 - 6256.0 - 6424.0 - 64286.0 - 64286.0 - 7312.0 - 7312.0	7372.0 -

LOG INTERPRETATION RESULTS - SAMARANG 8 -

INTERVAL	NET SAND	AVERAGE	AVERAGE Sw		REMARKS
4742 - 4905					
5772 - 5820					
6040 - 6050			•		
6570 - 6630	38	19.58	48.51		c_1
6704 - 6722	17	23.06	19.39	Gas	c ₂
6760 - 6800	40	19.83	37.38	Gas	C3
6800 - 6855	55	17.87	29.66		
6856 - 6954	56	18.73	46.22		
6954 - 6965	5	23	57		

WELL NAME : SAMARANG 13

	AVERAGE REMARKS SATURATION (%)	31.1 SAMARANG 13 'A ' OIL ZONE 39.1 SAMARANG 13 'B ' GAS ZONE 38.1 SAMARANG 13 'B ' OIL ZONE SAMARANG 13 'C1' OIL ZONE SAMARANG 13 'C2' OIL ZONE SAMARANG 13 'C2' OIL ZONE SAMARANG 13 'C4' OIL ZONE
	AVERAGE PUROSITY (%)	24.1 23.4 22.1 17.5
3 90.00 : 90.00 : 50.00	NET THICKNESS (FT)	244 32 130 44
WELL NAME: SAMAKANG 13 CUT OFF OF SW CUT OFF OF SHALE	INTERVAL TOP 9ASE (FT) (FT)	5134.0 - 5410.0 5370.0 - 6404.0 5414.0 - 6560.0 7546.0 - 7574.0 7698.0 - 7908.0 7931.0 - 7984.0

CUT OFF OF SHALE :	50.00			
INTERVAL	ET	AVERAGE	AVERAGE	REMARKS
TOP BASE THICK	KNESS	POROSITY	SATURATION	
(FT) (FT)	FT)	(%)	(%)	
4920.0 - 5032.0 80	80	24.4	38.2	SAMARANG 14 'A ' OIL ZONE
5744.0 - 5764.0 20	20	18.3	64.4	SAMARANG 14 'B ' GAS ZONE
5772.0 - 5894.0	20	22.1	34.8	SAMARANG 14 'B ' OIL ZONE

WELL NAME : CAMARANG 15

	REMARKS	SAMARANG 15 'A ' DIL ZONE SAMARANG 15 'R ' GAS ZONE SAMARANG 15 'R ' OIL ZONE SAMARANG 15 'C2' DIL ZONE SAMARANG 15 'C3' OIL ZONE
	AVERAGE SATURATIUN (%)	34.5 37.7 30.4 39.1 42.4
	•	
	AVERAGE PORUSITY (%)	22 22 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25
0°0 : A1	MET THICKNESS (FT)	47 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
OPP OF SA OPP OF POPOSITY OPP OP SHALE	VAL RASF (FT)	5104.0 5924.0 5028.0 7102.0
CUT	INTERVAL TOP (FT)	4914.0 - 5938.0 - 7040.0 - 7134.0

WELL NAME : SAMARANG 16

CUT OFF OF SW : 90.00
CUT OFF OF POROSITY : 0.0
CUT OFF OF SHALE : 50.00

	AVERAGE POROSITY (%) (%) 26.1 26.1 13.9 17.8 13.4 13.4	NET (FT) 192 80 42 18 18 18 28 32 66		AVERAGE REMARKS Y (2)	31.1 SAMARANG 16 "A	50.6 SAMARANG 16	SAMARANG 16 'CI	SAMARANG 16 CZ	SAMARANG 16 CZ	SAMARANG 16 'C3	SAMARANG 16 'C3	SAMARANG 16 1C4	SAMARANG 16 CS
--	---	---	--	-----------------------	---------------------	------------------	-----------------	----------------	----------------	-----------------	-----------------	-----------------	----------------

WELL NAME : SAMARANG 17

	AVERAGE REMAKKS SATURATION (%)	34.8 SAMARANG 17 'A ' OIL ZONE 70.3 SAMARANG 17 'B ' GAS ZONE 33.4 SAMARANG 17 'B ' OIL ZONE
	AVERAGE POROSITY (%)	26.2 20.0 24.1
: 90.00 1TY : 90.0 50.00	NET THICKNESS (FT)	184 20 86
CUT OFF OF SW : CUT OFF OF POROSITY : CUT OFF OF SHALE :	INTERVAL TOP BASE (FT) (FT)	5087.0 - 5294.0 6106.0 - 6146.0 6154.0 - 6248.0

WELL NAME : SAMARANG 18

	AVERAGE REMARKS SATURATION	29.0 SAMARANG 18 'A ' OIL ZONE 38.0 SAMARANG 18 'B ' OIL ZONE 18.9 SAMARANG 18 'C1' GAS ZONE 23.8 SAMARANG 18 'C2' GAS ZONE 30.5 SAMARANG 18 'C4' GAS ZONE 46.6 SAMARANG 18 'C4' GAS ZONE 45.6 SAMARANG 18 'C4' GAS ZONE 45.6 SAMARANG 18 'C4' OIL ZONE 43.7 SAMARANG 18 'C5' OIL ZONE
	AVERAGE POROSITY (%)	26.8 20.4 19.4 22.4 20.5 19.0 13.4
SITY: 90.00	NET THICKNESS (FT)	158 88 88 56 30 76 30 42 144
CUT OFF OF SW. CUT OFF OF POROSITY CUT OFF OF SHALE	INTERVAL TOP BASE (FT) (FT)	4682.0 - 4854.0 5644.0 - 5748.0 6404.0 - 6460.0 6532.0 - 6560.0 6588.0 - 6662.0 6770.0 - 6762.0

WELL NAME : SAMARANG 19

	REMARKS	SAMARANG 19 'A ' GAS ZONE SAMARANG 19 'A ' OIL ZONE SAMARANG 19 'B ' GAS ZONE SAMARANG 19 'R ' OIL ZONE SAMARANG 19 'C2' OIL ZONE SAMARANG 19 'C3' OIL ZONE
	AVERAGE SATURATION (%)	32.3 34.0 38.9 39.5 57.4
00.06 0.0 00.06	AVERAGE: SS POROSITY (%)	20.7 20.2 15.4 18.5 16.1
CUT OFF OF SW : CUT OFF OF POROSITY : CUT OFF OF SHALE :	NET NET NET (FT)	4436.0 46 4672.0 178 5444.0 56 5576.0 104 6586.0 36
CUT OFF CUT OFF CUT OFF	INTERVAL TOP B.	4392.0 - 44 4438.0 - 46 5384.0 - 54 5446.0 - 55 6540.0 - 65

WELL NAME : SAMARANG 21

90.00

CUT OFF OF POROSITY :
CUT OFF OF SHALE :

AGE	SATURATION		2		48.	SAMAKANG ZI	SAMARANG 21	74.7 SAMARANG 21 'CZ' OIL ZONE	.9 SAMARANG 21 'C3' OIL ZONE
AVERAGE		9	25.6	29.4			23.9		19.6
LIN	THICKNESS	(FT)	38	50	26	160	102	,	10
VAL	BASE	(FT)	3897.0	3951.0	3981.0	5298.0	6192.0	7226.0	7296.0
INTERVAL	T0P	(FT)	3853.0 -	3902.0 -	3953.0	5108.0 -	4086-0	7222.0 -	7288.0 -

WELL NAME : SAMARANG 22

CUT OFF OF SW : 90.00

INTERVAL		H H N	1.7	AVER	VERAGE		AVERAGE	Ϋ́ L	REMARKS	
J' '	BASE (FT)	THICKNE (FT)	SS	POR(OSITY %)		SATURATION (%)			
ا	0 7727	102		2	5.1	,	46.3	SAMARANG 22	, *A •	OIL ZONE
, ,	5508.0	1 8 E)I	9.0		63.2	SAMARANG 22		7
1	5630.0	100		2.	1.4		29.7	SAMARANG 2		7
) - -	6428.0	50		Ī	9.9	· · · · · · · · · · · · · · · · · · ·	52.0	SAMARANG 22		٠.
i O	516.0	20	*	Ñ	0.8		28.8	SAMARANG Z	i i	7 7
	6526.0	10		, and	6.4	, '	36.0	SAMARANG ZZ		
	6570.0	12		Ñ	0.8		28.2	SAMARANG Z	- ;	DAS CONE
ا	6630.0	28		Ĩ	8.0		37.8.	SAMARANG 22	.63.	11 CUNE
: I	6714.0	ر د		Ä	9.2		43.1	SAMARANG 22	1C41	IL ZONE
	6782.0	1 W	: : : : : : : : : : : : : : : : : : : :	2	2.9	-	56.4	SAMARANG 22		IL ZONE

WELL NAME : SAMARANG 23

REMARKS	SAMARANG 23 'A ' OIL ZONE SAMARANG 23 'B ' GAS ZONE SAMARANG 23 'B ' OIL ZONE
AVERAGE SATURATION	26.9 44.7 43.3 39.7 45.1
AVEKAGE POROSITY	25.0 20.5 27.8 22.5 22.5
: 90.00 :1TY: 0.0 : 50.00 NET THICKNESS	28 8 36 120 30
CUT OFF OF SW CUT OFF OF SHALE INTERVAL TOP	111111

WELL NAME : SAMARANG 24

WELL NAME : SAMARANG 25

	* R EMARKS	SAMARANG 25 'A 'GAS ZONE SAMARANG 25 'A 'GIL ZONE SAMARANG 25 'R 'GAS ZONE SAMARANG 25 'R 'GIL ZONE
	AVERAGE AVERAGE POROSITY. SATURATION	22.7 26.7 25.5 25.5 25.7 23.4
SITY: 90.00 E: 50.00	NET THICKNESS (FT)	10 220 70 126
CUT OFF OF SW CUT OFF OF POROSITY : CUT OFF OF SHALE :	INTERVAL TOP RASE (FT) (FT)	4616.0 - 4624.0 4626.0 - 4852.0 5538.0 - 5630.0 5632.0 - 5764.0

WFLL MAME : SAMARANG 26

	REMAKKS			•			SAMAKANG 26 'A ' GAS JEHE	SAMARANG 26 18 1 OIL ZHEN
	AVERAGE	SATURATION	(x)	34.5	28.7	76.67	34.2 . 51	25.5 SA
	AVERAGE	PURNSITY	(%)	27.3	29.9	80°0	23.7	24.8
11Y: 90.00 17Y: 0.0	N.E.	THICKNESS	(FT)	32	56	16	18	210
CUT OFF OF SW : CUT OFF OF POROSITY : CUT OFF OF SHALE :	/A!	RASE	(FT)	3986	4045.0	4062.0	5016.0	5270.0
CUT CUT	INTERVAL	TITP	(FT)	3943.0 -	3989.0 -	4047.G -	5000.0	5018.0 -

WELL NAME : SAMARANG 27

	REMARKS
	AVERAGE AVERAGE REMARKS PORDSITY SATURATION (%)
	AVERAGE PORDSITY (%)
SITY: 90.00 E: 50.00	NET THICKNESS (F1)
OFF OF SW OFF OF POROSITY OFF OF SHALE	3VAL BASE (FT)
CUT CUT TUD	INTERVAL TOP (FT)

130 . 25.7 34.8 SAMARANG 27 'A ' OIL ZONE

4814.0

4648.0 -

WELL NAME : SAMARANG 28

00.06	0.0	50.00
••	••	••
OF SW	POROSITY	SHALE
	9	Н
OFF	OFF	OFF
	EGT.	

		OIL ZONE	OIL ZONE
REMARKS	and the grant of the state of t	SAMARANG 28 'A ' DIL ZONE	SAMARANG 28 'B '
AVERAGE	SATURATION (%)		27.1
AVERAGE .	POROSITY (%)	25.7	25.4
NET	THICKNESS (FT)	56	130
	BASE (FT)	5374.0 - 5458.0 50	6542.0
INTERVAL	T0P (FT)	5374.0 -	6412.0 -

WELL NAME : SAMARANG 29

00.06	0.0	50.00
** ;	 ≻	••
CUT OFF OF SW	PORUSITY :	SHALE
ᇤ	P	ä
OFF	0FF	OFF
CUT	CUT	LOJ LOJ

INTERVAI	LHZ	AVERAGE	AVERAGE	REMAND
TOP BASE	THICKNESS	POROSITY (%)	SATURATION (%)	
- 468420	134	26.0	30.1	SAMARANG 29 'A ' OIL ZONE
5452.0	4	18.8	50.7	SAMARANG 29 'B ' GAS ZONE:
t	811	20.8	30.3	SAMARANG 29 'B' OIL ZONE

LOG INTERPRETATION RESULTS

- TEMBUNGO 1 -

INTERVAL	NET SAND	AVERAGE	AVERAGE Sw	REMARKS
5916 - 5934	18	27.17	24.44	
5945 - 5956	11	25.86	25.70	
5966 - 5997	28	23.96	33.68	
6045 - 6075	24	25.21	25.64	
6096 - 6060	56	21.98	27.27	
6165 - 6175	10	17.75	53.63	

LOG INTERPRETATION RESULTS
- TEMBUNGO A-1 -

INTERVAL	NET SAND	AVERAGE	AVERAGE Sw	REMARKS
5535 - 5550	15	16.33	38.33	Oil
5560 - 5570	5	22.0	60.0	Oil
5585 - 5560				Oil
5615 - 5655	35	26.14	26.08	Oil
5670 - 5675	5	33.0	36.0	Oil
5685 - 5730	35	28.14	27.12	Oil
5800 - 5835	35	24.83	25.52	Oil

LOG INTERPRETATION RESULTS - TEMBUNGO 2 -

INTERVAL	NET SAND	AVERAGE	AVERAGE Sw	REMARKS
1415 - 4423	8	31	26	
1441 - 4466	25	28	28	
1474 - 4500	26	21	51	WUT 4508
5176 - 5187	8	16	36	
5114 - 6128				Shale
5413 - 6427				Tight
5742 - 6855	83	19	49	Gas,GOC 6800
5922 - 6933	11	19	41	Oil
7033 - 7074	22	21	43	Oil

LOG INTERPRETATION RESULTS
- TEMBUNGO A-2 -

INTERVAL	NET SAND	AVERAGE	AVERAGE Sw	R	EMARKS
7324 - 7338	14	26.94	33.26	Gas	
7358 - 7370	12	19.8	49.85	Gas	GOC 7370
7372 - 7414	8	19.65	56.26	Oil	WDT 7414
7698 - 7724	26	22.84	35.61	Gas	•
7784 - 7850	50	18.17	42.83	Oil	
8596 - 8906				Gas	
8746 - 8754					
9160 - 9178	10	18.46	54.78	Gas	
9206 - 9242	4	19.65	58.04	Oil	

LOG INTERPRETATION RESULTS - TEMBUNGO A-2A -

INTERVAL	NET SAND	AVERAGE	AVERAGE Sw	REMARKS
4094 - 4122				Tight
4192 - 4205				Oil
4296 - 4312				Tight
7858 - 7973	84	21.65	49.33	Oil (5223.4-5286.9 SS

LOG INTERPRETATION RESULTS - TEMBUNGO A-3 -

INTERVAL	NET SAND	AVERAGE	AVERAGE Sw	REMARKS
5420 - 5435				Tight
6730 - 6790	20	12	63.25	Oil
7930 - 7940	10	20	51	Gas
7965 - 7975	10	22	66	Gas

LOG INTERPRETATION RESULTS
- TEMBUNGO A-4 -

INTERVAL	NET SAND	AVERAGE ¢	AVERAGE Sw	REMARKS
5510 - 5525	15	17	54	Oil
5912 - 5972	56	24.80	29.70	Oil
6020 - 6128	96	19.32	37.39	Oil
6150 - 6162	9	23.5	44	Oil, OWC 6162
6424 - 6580	134	17.40	64.68	Oil, OWC 6580

LOG INTERPRETATION RESULTS
- TEMBUNGO 5 -

INTERVAL	NET SAND	AVERAGE	AVERAGE Sw	REMARKS
1276 - 4322				
4687 - 4727				
5244 - 5280	26	23.82	72.52	Oil
5296 ~ 5306	6.0	21.33	75.28	Gas
5345 - 5427	62	22.88	66.99	Oil
5470 - 5510	4	30.0	71.0	Oil
5536 - 5565	8	19.88	75.02	Oil
5620 - 5642	22	23.66	64.29	Oil
5660 - 5688	19	25.54	64.55	Oil
5697 - 5732	31	26.44	59.71	Oi1

LOG INTERPRETATION RESULTS
- TEMBUNGO A-5 -

INTERVAL	NET SAND	AVERAGE	AVERAGE Sw	REMARKS
4464 - 4470	·			Tight
4550 - 4583				Tight
4847 - 4860				Tight
5834 - 5892	51	23.24	53.54	Oil
5966 - 5978	12	25	40	Oil
7347 - 7400	9	17	47	Oil
7865 - 7874				Oil
7958 - 7963				Oil
7974 - 7979				Oil
8690 - 8703	12	24.38	39.99	Oil
9054 - 9090	32	18.37	50.77	Oil
9100 - 9138	38	22.94	34.01	Gas
9172 - 9234	58	23.12	27.24	Gas
9273 - 9279	10	28.6	44.93	Oil
9305 - 9394	92	22.11	38.42	Oil

LOG INTERPRETATION RESULTS - TEMBUNGO A-7 -

INTERVAL	NET SAND	AVERAGE	AVERAGE Sw	REMARKS
6310 - 6318	13	4	56	
6352 - 6360	12	21	89	
6405 - 6421	18	16.33 ,	49.29	OWC 6421
6477 - 6488	13	22	57	
6512 - 6538	26	25.5	31	
6550 - 6558	14	14	53	OWC 6558
6613 - 6640	36	24.50	28.94	OWC 6640

WELL NAME : ERBWEST 01

	REMARKS	HWC 3872 WUT 4000 WHWC 4131	HWC 4334	HWC 5218 GAS OIL	
	AVERAGE SATURATION (%)	48.6 53.9 28.5 25.4 67.1 18.3	41.8 28.9 61.0 42.4 69.0	42.1 48.3 34.9 16.7 43.5	
1	AVERAGE POROSITY (%)	26.5 28.6 33.1 35.8 19.6 40.7	37.3 37.2 22.0 30.9	32.7 29.8 15.7 22.7 15.5	
: 80.00 DSITY : 0.0 LF : 50.00	NET THICKNESS (FT)	26 8 26 10 10	18 8 10 20 13	24 162 162	
CUT OFF OF SW CUT OFF OF PORC CUT OFF OF SHAL	INTERVAL TOP BASE (FT)	3796.0 = 3833.0 3851.0 = 3872.0 3942.0 = 3990.0 4093.0 = 4131.0 4196.0 = 4208.0	1 1 1		

WELL NAME : ERB WEST 02

	AVERAGE SATURATION (%)		32.8	15.3	46.8	20.4	27.6	19.2	40.9	20.7
	AVERAGE POROSITY (%)		16.4	23.4	11.7	18.7	16.7	19.4	15.2	22.0
: 80.00 SITY: 0.0	• NET THICKNESS (FT)		9	26	2	52	16	58	8	
CUT OFF OF SW CUT OFF OF POROSITY CUT OFF OF SHALE	INTERVAL TOP BASE (FT) (FT)	5376-0 - 5376-0	6278.0 - 6338.0	ı	6416.0 - 6420.0	ı		1	1	6642.0 - 6736.0

WELL NAME : ERR WEST 03

80.00 0.0 50.00

CUT OFF OF SW :
CUT OFF OF POROSITY :
CUT OFF OF SHALE :

REMAKKS							
	GAS						GAS
AVERAGE SATURATION (%)		38.9	41.1	34.9	32.9	26.4	32.1
AVERAGE POROSITY (%)		17.6	14.8	15.3	22.6	22.4	20•3
NET THICKNESS (FT)		2	20	44	34	99	52
.VAL BASE (FT)	5461.0	5802.0	6372.0 6516.0	0.0699	6794.0	6930.0	7032.0
INTERVAL	ı	I I,	11	1	1	1	1
I TOP (FT)	5458.0	5796.0 6164.0	6342.0	6602.0	6756.0	6816.0	6930.0

WELL NAME : ERB WEST 04

80.00	0.0	50.00
••	••	
SW	POROSITY	SHALE
	0F	
OFF	OFF	OFF
CUT	CUT	CUT

	<u>ი</u>
AVERAGE	20•6
SATURATION	73•3
(%)	49•0
AVERAGE	33.7
POROSITY	15.8
(%)	21.3
NET	48
THICKNESS	2
(FT)	34
INTERVAL	3902.0
OP BASE	7126.0
T) (FT)	7204.0
INTER	3856.0 -
TOP	7100.0 -
(FT)	7162.0 -

REMARKS

GAS

WELL NAME : SOUTH FURIOUS 01

	REMARKS	710 710
	AVERAGE SATURATION (%)	59.3
	AVERAGE PORUSITY (%)	19.6
0.00 0.00 . Y	NET THICKNESS (FT)	2
CUT OFF OF SW : CUT OFF OF POROSITY : CUT OFF OF SHALE :	(VAL BASE (FT)	
TUD TUD	INTERVAL TOP	6634.0 - 6684.0 - 7054.0 -

WELL NAME : SOUTH FURIOUS 03

	REMARKS																											
	:	GAS	GAS	GAS	011	GAS	110						1		:							GAS	016		. ,			
	AVERAGE SATURATION (%)	42.5	46.8		36.6	•	46 . 8	'n			42.5	44.2	47.0		39.3		41.4	40•8	53.4	2.95	57.1	-	•	53.2	34.6			33*0
	AVERAGE POROSITY (%)	27.0	20•3	23.9	•	•	9	29.8			28.1	32.4	29.7		35.0		4	26.5		25.0	21.7	'n	m.	18.5	19.4			23.2
00.00 : YTI	NET THICKNESS (FT)	***************************************	2	38	16	40	10	9			10	4	8	12	4		16	9	9	2	2	20	112	4	18			4
OFF OF SW OFF OF POROSIT OFF OF SHALE	VAL BASE (FT)		1214.0 1570.0																									
0 TU2 0 TU3 0 TU3	INTERVA TOP (FT)	976.	1202.0 -	582	708.0	782.	846.0	120.0	164.0	176.0	280	304.	326.	356.	531.0	838.	364.	916.0	931.0	947.	132.	224.0	267.	906	128.	164.	204.	0.91

WELL NAME : SOUTH FURIOUS 03

		AVERAGE	SATURATION	96	:		41.3	,	44.5	57.8	37.3		•		36.6	
		AVERAGE	POROSITY	(%)			21.1		20.6	20•3	19.9				19•3	
•	00.09	NET	THICKNESS	(FT)			;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		24	4	18		1		œ	
H H	OFF	INTERVAL	BASE		0 - 4252.0	0 - 4364.0	0 - 4380.0	0 - 4394.0	0 - 5262.0	1	1	0 = 6086.0	0 - 6472.0	ı	0 - 7668.0	0 - 7814.0
		1	TOP	(FT.)	4232.0	4360.0	4374.0	4385.0	4698.0	5795.(5972.0	6008.0	6456.0	6640.0	0.0699	7730.0

GAS

GAS

REMARKS

WELL NAME : SOUTH FURIOUS 04

00*09	0.0	00.09
••	••	••
SW	POROSITY	SHALE
10	OF	u. O
OFF	OFF	OFF
CUT	CUT	CUT

REMARKS											
	011	OIL	OIL								011
AVERAGE SATURATION	52.4	28.9	51.4	41.6	•	24.2	4.94		•	26.4	43.1
AVERAGE POROSITY (%)	19.6	21.7	19.0	25.8		17.0	19.8			17.7	18.0
NET THICKNESS (FT)	9	48	16	9		9	4			9	34
/AL BASE (FT)	3298.0	3910.0	4085.0	4118.0	4162.0	4269.0	4386.0	0.6077	4416.0	4476.0	4810.0
INTERVAL	1	1	i	ı	ı	ı	ı	ı	ı	1	1
IN TOP (FT)	3123.0	3504.0	4014.0	4107.0	4118.0	4200.0	4344.0	4405.0	4412.0	4434.0	4529.0

WELL NAME : SOUTH FURIOUS 05

REMARKS

			7		GAS	OIL	OIL	OIL					i	OIL	GAS	OIL	GAS	OIL									:		:		GAS	OIL
		AVERAGE	SATURATION	€	37.0	54.2	48.5	47.2	47.9	37.5	44.6	47.1	49.5	35.8	29•3	46 *	21.2	32.7		34.7	49.1	39.9	57.5	33.3	28.3	31.9	£ 6£	43.1	o	30.0	32.0	
		AVERAGE .	POROSITY	(%)	27.4	28•3	28.8	29.7	25•6	24.8	19.1	17.6	16.3	23.2	21.9	20.5	26.2	18.3		22•3	18•3	21.1	14.8	19.6	23.2	21.2	20.0	17.0	20.7	19.2	20.1	
-URIOUS 05	00.09 : YTI	NET	THICKNESS	(FT)	54	. 2	12	9	80	32	4	σ	4	72	49	10		4		9	4	18	8	18	10	9	18	2	€	14	82	
ME : SOUTH FURIOUS	OFF OF SW OFF OF POROSITY OFF OF SHALE	VAL	BASE	(FT)	1213.0	1226.0	1424.0	1878.0	1957.0	2048.0	2105.0	2142.0	2188.0	2346.0	2604.0	2645.0	2798.0	2815.0	2824.0	2836.0	2846.0	2904.0	2923.0	2968.0	3004.0	3044.0	3086.0	3106.0	3133.0	3165.0	3380.0	3668.0
WELL NAME	CUT	INTERVAL	TOP	(ET)	1170.0 -	1221.0 -	1348.0 -	1870.0 -	1943.0 -	1992.0 -	2100.0 -	2120.0 -	2184.0 -	2205.0 -	2430.0 -	2634.0 -	2680.0 -	2810.0 -	2822.0 -	2829.0 -	2843.0 -	2884.0 -	2914.0 -	2948.0 -	- 0.2662	3024.0 -	3066.0 -	3096.0	3122.0 -	3152.0 -	3184.0 -	3665.0 -

WELL NAME : SOUTH FURIOUS 05

	REMARKS	GAS
	AVERAGE SATURATION (%)	31.2 36.5
	AVERAGE POROSITY (%)	20.8 19.3
. : 60.00 RDSITY : 0.0 ALE : 60.00	NET THICKNESS (FT)	28
CUT OFF OF POROSITY : CUT OFF OF SHALE :	INTERVAL TOP BASE (FT) (FT)	3707.0 - 3711.0 3834.0 - 3915.0 3919.0 - 4434.0

WELL NAME : SOUTH FURIOUS 06

	REMARKS	
	AVERAGE SATURATION (%)	37.7 01L 34.9 01L
	AVERAGE POROSITY (%)	25•1 26•3
00.09 : YTIS	NET THICKNESS (FT)	68 78
CUT OFF OF POROSITY : CUT OFF OF SHALE	INTERVAL TOP BASE (FT) (FT)	2288.0 = 2586.0 2610.0 = 2748.0

WELL NAME : WEST EMERALD B

	AVERAGE SATURATION (%)	19.9 (72.2 G 67.7 C
	AVERAGE POROSITY (%)	33.0 32.6	16.0 18.3
: 80.00 TY: 0.0	NET THICKNESS (FT)	20	8
CUT OFF OF SW CUT OFF OF POROSITY : CUT OFF OF SHALE	INTERVAL TOP BASE (FT) (FT)	- 1140.0 - 1174.0 - 4370.0	4712.0 - 4720.0 4720.0 - 4728.0

REMARKS

GAS GOC 1140 OIL OWC 1174 TIGHT GAS GOC 4720 OIL OWC 4728

WELL NAME : ST.JOSEPH

80.00	0.0	50.00
••	••	•••
SW	CUT OFF OF POROSITY	LE
9	PF	님
OFF	OFF	OFF
CUT OFF OF SW	CUT OF	CUT OFF OF SHA
	ł	i

REMARKS		And the state of t		المؤدن والمفاس فيترونها والمواجع فيترون والمتراط والمتراط والمتراط والمتراط والمتراط والمتراط والمتراط والمتراط									11L WUT 2642	TIGHT	TIGHT	LIGHT	right	AS		01 L 0WC 3188	
AVERAGE	SATURATION				!	68•3	54.6	58.3	38.6	74.7	60.7		65.8				70.5			65.4	
AVERAGE	POROSITY	*		A THE PARTY OF THE		18.7	18•1	12.7	20.4	10.8	18.2	19•3	14.9	31.3		A SECTION OF THE PROPERTY OF THE PERSON OF T	O•6			2.3	
NET	THICKNESS			AMERICAN PROPERTY OF A STATE AND ADMINISTRATION OF AN ADMINISTRATION OF THE PROPERTY OF THE PR		9	18	2	72	10	28	12	9	2			2			12	
, IV.		(FT)	•	1447.0	1493.0	1781.0	1914.0	2119.0	2273.0	2309.0	2360.0	2427.0	2636.0	2767.0	2842.0	2952.0	2981.0	3005.0	3123.0	3188.0	
INTERVAL	TOP	(FT)		1426.0 =	1483.0 -	1740.0 -	1890.0	2108.0 -	2196.0 -	2304.0 -	2320.0 -	7396.0 -	2584.0 -	2759.0 -	2840.0 -	2938.0 -	2975.0 -	- 0.8662	3114.0 -	3156.0 -	

WELL NAME : ERB SOUTH (AX)

	REMARKS			A COMMANDA STATE OF THE PERSON ASSESSMENT ASSESSMENT OF THE PERSON OF TH		*		DMC2914		
		TIGHT	TIGHT	TIGHT	TIGHT	116H1	011	OIL	011	016
	AVERAGE SATURATION (%)						47.3	74.8	48.1	66.2
	AVERAGE POROSITY (%)	-	TO THE TAX				26.2	21.9	21.5	23.4
: 80,00 (TY: 0,0	NET THICKNESS (FT)				•		50	0.	9	8
CUT OFF OF SW CUT OFF OF POROSITY CUT OFF OF SHALE	INTERVAL TOP BASE	- 2148.0	2388.0 - 2412.0	ı	1	ı		ı		ı

	•		
			-
	•		
·		•	