CHAPTER 9

CONSTRUCTION AND DISBURSEMENT PROGRAMME FOR THE FIRST PHASE PROGRAMME

Due to the constraint of time of implementation and availability of financial sources, the following construction and disbursement programme is recommended as the first phase programme for the drainage implementation covering the 5 years from 1981 to 1985.

9.1 Implementation Programme

In order to establish the most realistic drainage implementation schedule for the first phase programme, following basic concept is given for determination of the works necessary to meet the order of priority for the drainage requirements.

- (1) Prepare the immediate measures including rehabilitation and improvement of trunk and secondary drains together with reconstruction of bridges and box culverts for alliviation of the existing flood problems.
- (2) Provide the embankment along the Sg. Kedah and install the gates at the outlets of drains, to protect the low-lying area from the nuisance flooding causing by the backing up of water from the high river water level.
- (3) Provide the pumping station, reservoir and floodway to protect the flooding when critical storms coincide with the high river water level.
- (4) Establish the total drainage system to meet estimated increase of runoff as the future requirements.

On the basis of the results of the preliminary engineering design, the facilities required for each work itemized the above are classified as shown in Table 9.1.

Using the above classification, an implementation schedule for the first phase programme is developed taking the order of priority among those facilities referred above into account. However, the facilities required in item 4) are eliminated in the works necessary for the first phase drainage implementation programme, since those facilities would be provided to meet the future urban development programme. Thus, the development of the implementation programme for the first phase drainage requirements is made based on the works required from item 1) to 3). In determining the schedule, three sets of alternative construction programme are considered, identifing their advantages and disadvantages. The three alternatives are as follows:

- Alternative 1: Minimum improvement requirements to alleviate the existing flood problems by constructing the trunk and secondary drains, at a cost of about M\$3.7 million on 1979 price level as shown in Table 9.2 and Figure 9.1.
- Alternative 2: Alternative 1 plus protection of flooding in Iow-lying area from river water, by provision of embankment and installation of gates, at a total cost of M\$4.4 million on 1979 price level as shown in Table 9.3 and Figure 9.2.
- Alternative 3: Alternative 2 plus construction of pumping station reservoir and floodway to protect the flooding caused when critical storms coincide with the high river water level, at the cost of M\$11.4 million on the same price level as above, as shown in Table 9.4 and Figure 9.3.

Alternative 1 covers only for solving the existing inundation problems caused by short duration of high intensity local storm. However, in view of the actual situation of the area, the first phase programme is considered not advisable to limit only to remedy the problem of local inundation but rather to include river flooding which occurs in long duration low intensity storm. On the other hand, although Alternative 3 is the most comprehensive of all the measures purposed, the flood problems in the Study Area which have been experienced so far are caused mainly by the short duration and magnitude of the flooding does not necessarily warrant the investment required for this Alternanative 3.

In view of the above conditions, Alternative 2 is considered sufficiently adequate, and the cost required for this alternative seems to be reasonable to implement as the first phase programme. It is therefore recommended that Alternative 2 is selected and be implemented as the first phase programme starting from 1981 to 1985.

Table 9.1 Classified Facilities Required for Determination of First Phase Implementation Schedule

Des- cription	Proposed Activities	Length	Existing Size (m)	Proposed Size (m)	Remarks
eviation of us	Construction of trunk drains R20, R19, R18, R17, R16, R15, R14, R13, R7, R6, R5, R4, R3, R2, R1	Tota1 2,655 m	3	RB ${5.4 \atop 3.5}$ x 1.9 \int RB ${11.0 \atop 8.0}$ x 2.2	E: Earth Drain RB: Rabble Wall Drain (Upper width) x (Depth) (Bottom width)
for Allev d Problems	Reconstruction of bridges R14, R5, R1	-	3.0 x 7.0 5 5.0 x 30.0	6.0 x 20.0 \ 9.0 x 40.0	(Width) x (Length)
 Immediate Measure for Alleviation the Existing Flood Problems 	Construction of secondary drains R14-1, R26	Total 440 m	nil E 2.5 \$ E 1.0 × 1.0	RB 1.80 x 1.44 RB 3.50 x 1.40	
(1) Immediathe Ex	Conversion of pipe to box culvert R27, R23	Total 30 m	⊙ 0.11 ⊙ 0.10	2x [.] 1.68 x 1.53 2x	2x: 2 Nos. Parallel 3: R.C. Pipe Box Culvert
on of the g Area er	Installation of gates at outlet of drains R2O, R28, L6	_	nil	1.0 x 2.0 x 2 2.0 x 2.0 x 5	(Width) x (Height) x (Nos.)
(2) Protection of the Low-Lying Area from River Flooding	Construction of Band along Sg. Kedah between Jalan Raja and railway	600 m	n11	Refer to Figure 7.6	
cting the occurred when Storms Coin-the High er Level	Construction of Pumping Station	-	nil	120 m ³ /min.	
	Construction of Reservoir	-	nil	127,000 m ³ 5.7 ha	
(3) Prote Flooding Critical cide with River Wath	Construction of Floodway	800 m	nil	RB ^{11.0} x 2.2	(Upper width) x (Depth)
1 Drainage Predicted as Future	Construction of secondary drains R15-1, R11-5, R11-4 R11-2, R11-1, R10-1 R8-1, R1-1, R21 R22, R24, R28, P2 P4, P7, P9, P11, P13, P15, L6, L5, L4, L3, L2	Total 4,390 m	1 : " (RB 1.5 x 1.2 0.7 x 1.2 RB 5.5 x 1.8	E: Earth Drain RB: Rabble Wall Drain (Upper width) (Bottom width)
he he R	Construction of bridge R11-5	-	5.0 x 10.0	6.0 x 25.0	(Width) x (Length)
(4) Establish to M System to M Increase of Requirement	Construction of box culvert R11-3, R25, P3, P6, P8, P10, P14, P16 L1	Total 295 m	$\begin{bmatrix}1.4 \times 0.4 \\ 5.5 \\ 1.0 \times 0.6 \end{bmatrix}$	1.37 x 1.37 2x 1.83 x 0.92	E : Earth Drain 2x: 2 Nos. Paralle1

Table 9.2 Implementation Schedule, Alternative I (at 1979 Price Level)

× 1,000)	Total	Cost	270	1,866	142	646	41	0	O	2,695 405 620 3,720	3,720
(MS		Cost		344	5. T	146	14			582 29 122 733	733
	1985	Facilites		R4, R3, R2 R1	R26	7.1	R27, R23				
		Cost		398		260				658 33 138 829 0	829
	1984	Facilities		RIO, R9, R8 R7, R6, R5		2 2					
		Cost		280	16	240				611 31 128 770 0	770
Price Level)	1983	Facilities		RIS, R14, R13 R11	R14-1	R14					
		Cost		589						589 29 124 742 0	742
(at 1979	1982	Facilities		R18, R17, R16							
		Cost	270	255						255 283 108 646 0	483
	1861	Facilities		R20, R19							
		Item	Engineering Design	Construction of Trunk Drain	Construction of Secondary Drain	Reconstruction of Bridge	Construction of Box Culvert	Installation of Gates at Outlet of Drain	Construction of Embankment	Construction Cost Engineering Fee Contingency Sub-Total Land Cost	Grand Total

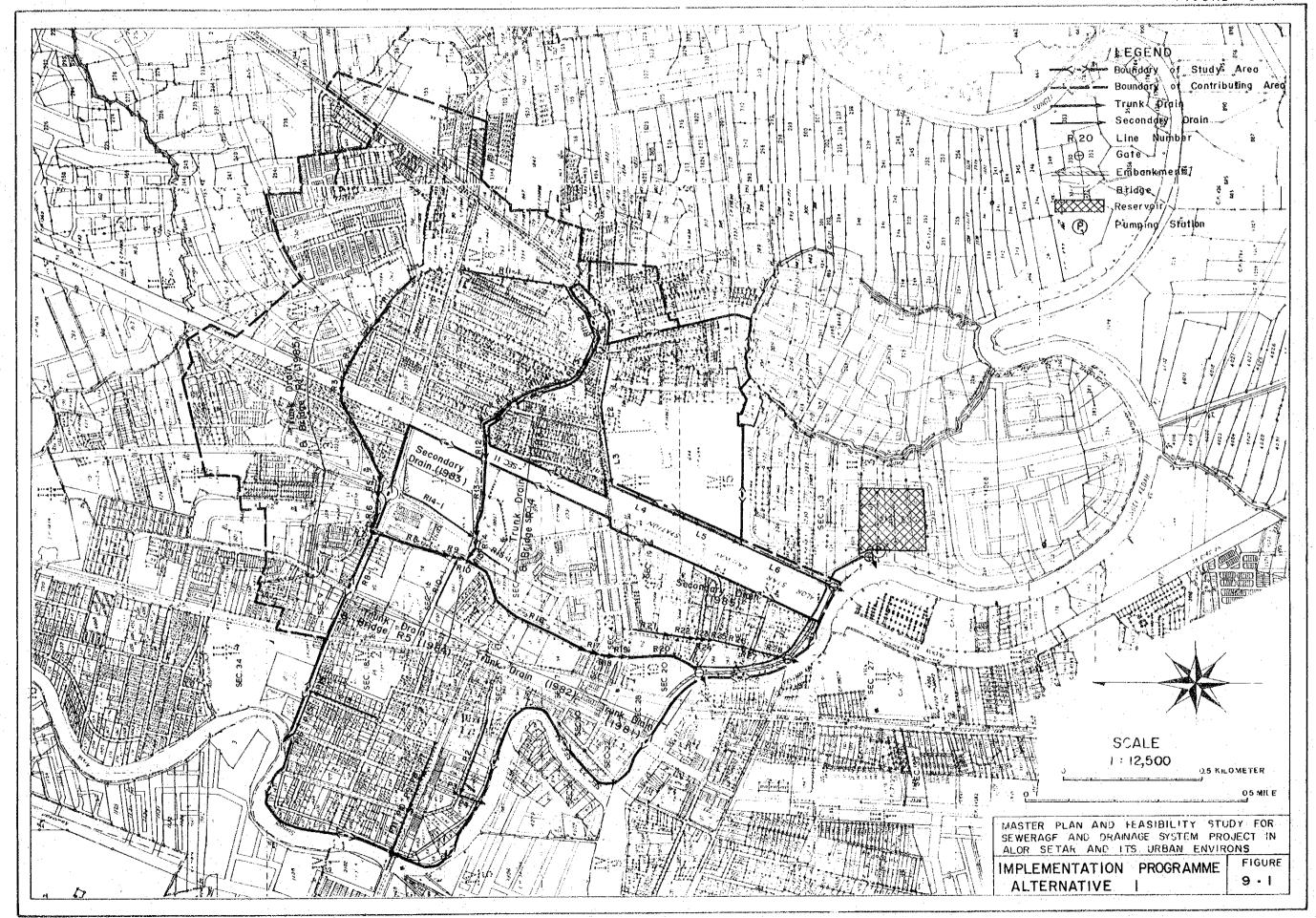
Table 9.3 Implementation Schedule, Alternative 2 (at 1979 Price Level)

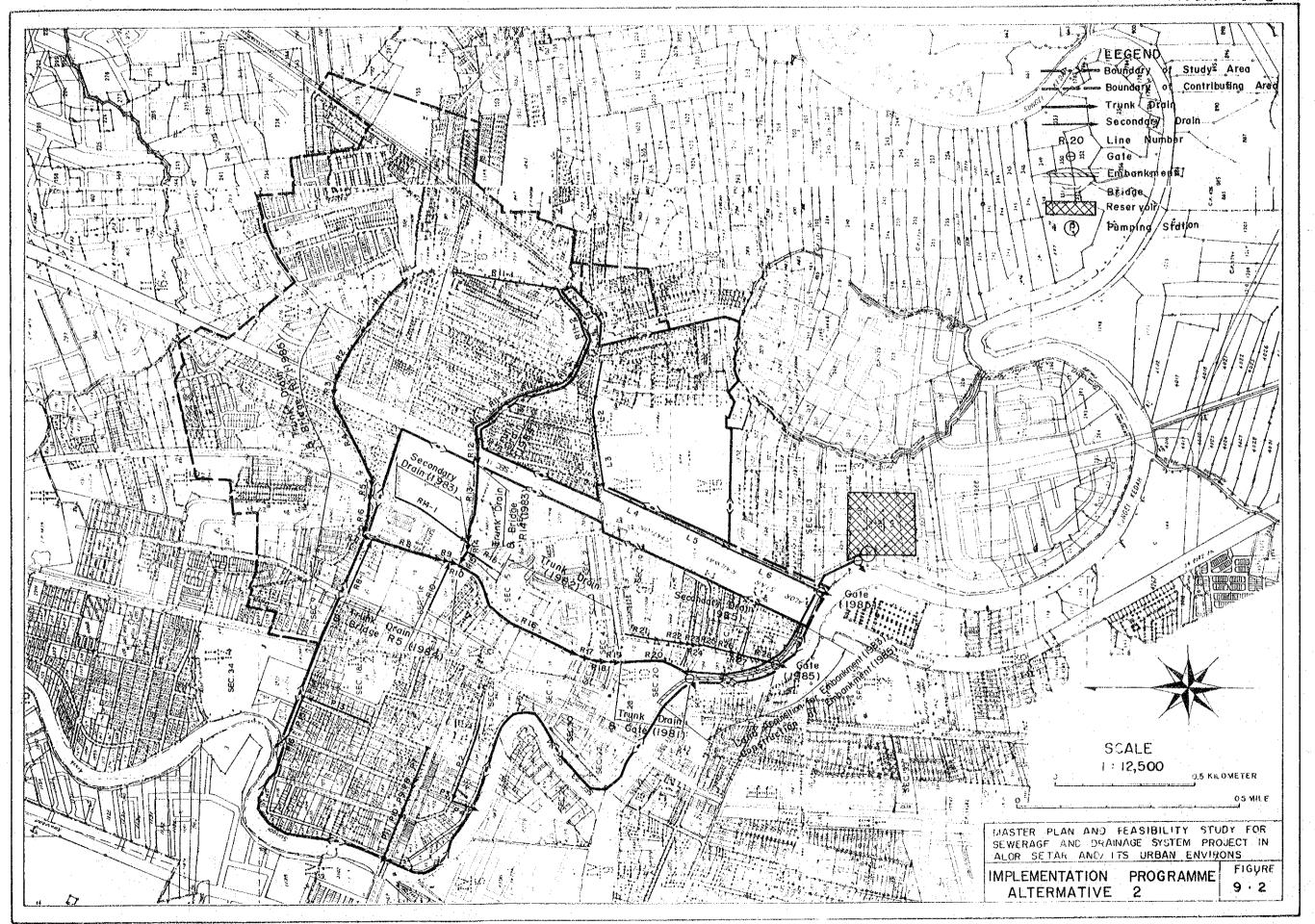
1,000)	Total	Cost	309	1,866	142	646	41	250	144 (230)	3,089 463 710 4,262 230	4,492
(MS x		Cost		344	51	146	41	50	777	776 39 163 978 0	978
	1985	Facilities		R4, R3, R2 R1	R26	RI	R27, R23	R28, L6	Between Jalan Raja and Railway		
		Cost		478		260				738 37 155 930	930
	1984	Facilities	-	RII, RIO, R9 R8, R7, R6, R5		33					
		Cost		171	91	240			(230)	502 25 105 632 230	862
	1983	Facilities		R14, R13	R14-1	R14			Land Acquisi- tion for Embankment		
		Cost		648						648 32 136 816	816
	1982	Facilities		R19, R18, R17 R16, R15		: :					
		Cost	309	225				200		425 330 151 906 0	906
	1981	Facilities		R20				R20			
	Item		Engineering Design	Construction of Trunk Drain	Construction of Secondary Drain	Reconstruction of Bridge	Construction of Box Culvert	Installation of Gates at Outlet of Drain	Construction of Embankment	Construction Cost Engineering Fee Contingency Sub-Total Land Cost	Grand Total

Note: Figures in brankets are costs for land acquisition.

Table 9.4 Implementation Schedule, Alternative 3 (at 1979 Price Level)

	1981		1982		1983		1984		1985	can)	Total
Item	Facilities	Cost	Facilities	Cost	Facilities	Cost	Facilities	Cost	Facilities	Cost	Cost
Engineering Design		796									796
Construction of Trunk Drain	R20, R19, R18 R17	350	RI6, RI5, R14 R13, R11, R10 R9, R8	1,025	R7, R6, R5, R4, R3, R2, R1	167					1,866
Construction of Secondary Drain			R14-1	91	R26	51					142
Reconstruction of Bridge		. :	R14	240	R5, R1	406					979
Construction of Box Culvert					R27, R23	41					77
Installation of Gate at Outlet of Drain	R20	200		-	R28, L6	50		i,			250
Construction of Embankment					Embankment	144 (230)					144 (230)
Construction of Floodway							Floodway	2,508 (60)			2,508 (60)
Construction of Reservoir		·							Reservoir	1,010	1,010
Construction of Pumping Station	1	:							Pumping Station	1,350	1,350 (171)
Construction Cost Engineering Fee		. 550 824 275		1,356		1,183 59 248		2,508		2,360 118 496	7,957
Contingency Sub-Total Land Cost		1,649		1,709		1,490	:	3,160		2,974	10,982
Grand Total		1,649		1,709		1,720		3,220		3,145	11,443
		_									


Note: Figure in brankets are costs for land acquisition.


9.2 Disbursement Programme

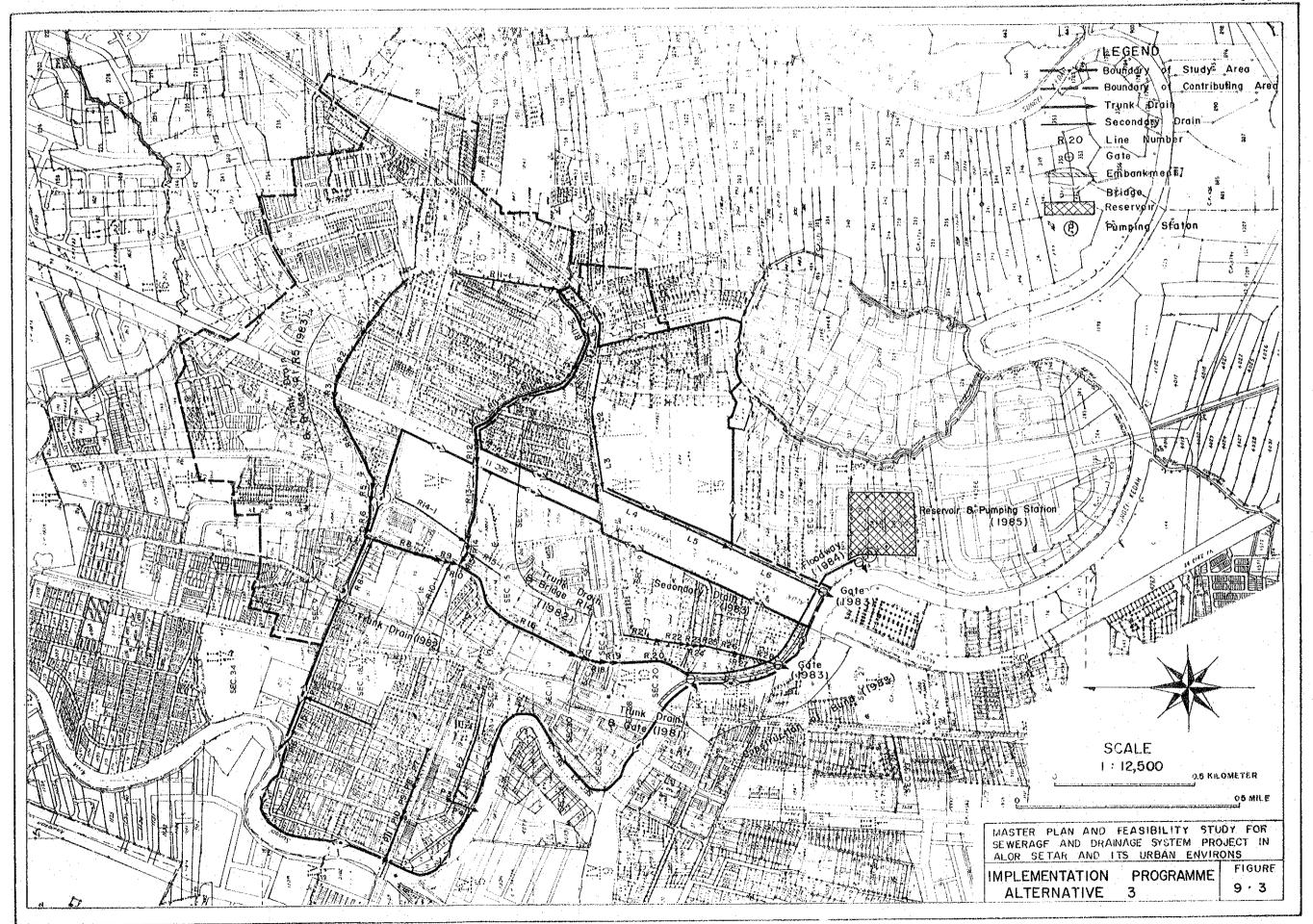

On the basis of the construction schedule and cost estimates as developed previously, a reasonable disbursement programme including both construction and maintenance costs over the 5 years span of the first phase drainage implementation programme is made as shown in Table 9.5. The disbursement programme for the construction works includes those costs of detailed engineering design, supervisional works for construction, construction of trunk and secondary drains and bund alignments, contingency allowance and land acquisition for bund. At starting the Project in 1981, the detailed engineering design is required prior to the commencement of the construction works. The cost allocated in 1981 for this work is to the all design works for facilities required in the first phase programme. The maintenance costs include payroll for the staff required in the works, cost of cleaning and desilting works and repairing cost for facilities.

Table 9.5 Disbursement Programme (at 1979 Price Level)

							(000°T × 633)
Desc	Description	1981	1.982	1983	1984	1985	Total
	Engineering Design	309	-				608
	Trunk Drain (Including Bridge & Gate)	425	879	411	738	067	2,712
	Engineering Fee (Supervision)	21	32	21	37	25	136
	Contingency	88	136	98	155	103	569
· .	Sub-Total	535	816	518	930	618	3,417
າຂວຽ	Secondary Drain (Including Box Culvert & Gate)			16		142	233
uc	Engineering Fee (Supervision)			ŗ.		7	12
ттэ	Contingency			18		28	746
nza	Sub-Total			114		177	291
suog	Embankment	-	:			144	144
)	Engineering Fee (Supervision)				1.	2 2	7
	Contingency	· ·		· .		29	29
	Land Acquisition	:		230	·.		230
	Sub-Total			230		180	710
	Total	844	816	862	930	975	4,427
1 .	Payroll	1.5	1.5	15	15	1.5	75
əəu	Trunk Drain (Including Bridge & Gate		7	25	33	51	116
ena st	Secondary Drain (Including Bridge & Gate)				7	2	7
o) auti	Embankment	·	·				0
M	Total	1.5	22	40	50	68	195
	Grand Total	859	838	902	086	1,043	4,622

CHAPTER 10 FINANCIAL CONSIDERATION

10.1 Required Capital

The capital costs required for the proposed drainage construction to be implemented for five years from 1981 to 1985 and subsequent maintenance/operation expenditures are estimated including allowance for price escalation assumed at 8 percent per annum as shown in Table 10.1-10.4. Such costs estimation are broken down largely to three categories of works each related to trunk drain, secondary drain and bund alignment to indicate the substance of the required fund for the project.

10.2 Source of Fund

As indicated in the Table 10.1 the substantial portion of the construction cost is related to the trunk drains equivalent to approximately 80 percent of the total cost and this might be borne by MPKS which is to be responsible to undertake the project implementation as proposed in "Institutional Study Report" (Volume VI). It may therefore necessary for MPKS to ensure the required fund and establish an annual disbursement programme prior to the project implementation.

The various funds for the public utilities works are normally considered to be financed by the income from general taxation of the public office concerned supplemented by subsidies or loans from federal and/or state government or by revenue collection from the beneficiaries of such utilities. Such funding arrangement is, however, dependent on the nature of the works and financial capability of executive agency. The drainage construction and improvement works are normally considered for improvement of environmental sanitation of the community as a whole

by way of mitigation of floods and elimination of general nuisance which are caused by natural phenomena such as stormwater runoffs. The tax payers normally regards such drainage works as public services to be undertaken by the government funds and such funds are to be provided from the governments of different level out of their general revenues as implementation programme of national development plan.

Table 10.4 shows projected statement of receipts and expenditures of MPKS for proposed drainage construction and maintenance. MPKS is to receive a loan from the federal government for capital works under the condition now available in the country. No operating revenues are included in the statement since MPKS has not found it feasible to levey direct charges on beneficiaries of drainage services. MPKS is proposed to cover the costs of the services by general tax revenues of 5 percent to the property tax in accordance with the provisions of the Local Government Act.

According to the table, deficit is expected after 1986 and thereafter. However accumulated cash surplus from 1981 to 1985 can cover such deficit upto 1991. In order to cover expected expenditures after 1991, MPKS is expected to prepare fund to recover such deficit.

It is noted in the annual report of State Budget for 1979 that State Government received subsidy amounting to M\$ 13 million from the Federal Geovernment and approximately M\$ 4 million was allocated to drainage activities. It is therefore recommended that a certain arrangement be made between the State Government and the Federal Treasury to finance the agreed amount of fund for the project in a form of annual allocation to MPKS.

Table 10.1 Project Cost Estimates at 1979 Price (Escalated Price) (a)

	. !	<i>:</i>				(M\$1,000)
Year Description	1981	1982	1983	1984	1985	Total
Engineering Design	309 (360)					309 (360)
Trunk Drain (Including Bridges & Gates)	425	648	411	738	067	2,712
Engineering Fee	21	32	21	37	25	136
Contingency	68	136	86	155	103	569
Sub-Total	535(624)	816(1,028)	518(705)	930(1,366)	618(981)	3,417(4,704)
Secondary Drain (Including Box Culvert & Gates)			91		142	233
Engineering Fee			5		7	12
Contingency			18		28	97
Sub-Total			144(155)		177(281)	291(436)
Band Alignment					144	144
Engineering Fee					7	7
Contingency				4	59	29
Land Acquisition	•		230			230
Sub-Total			230(313)		180(286)	410 (599)
Total	844 (984)	816(1,028)	862(1,173)	930(1,366)	975(1,548)	4,427(6,099)

(a): Figures in brackets are prices escalated at 8% per annum from 1979 price level.

Table 10.2 Maintenance Costs at Escalated Prices (M\$1,000) (a)

991	38	o	0	m	213
	35 152	. L	: •	7	
1989	32 140		٥	5	180
1988	88	:	 Ω	~ ~	168
1987	28 120		٥	2	156
1986	26 81	,	.Ω		112
1985	24 65		ന്	21	92
1984	22 48		ന		73
1983	20 34				54
1982	9 6				28
1981	17				17
	·	٠			
	Salaries Trunk Drain (b)	(Including Bridges & Gates)	Secondary Drain (b) (Including Bridges	& Gates) Band Alignment (b)	Total

Escalated at 8% per annum from 1979 price level.

(a) Escalated at 8% per annum from 1979 price level.(b) Cost related to repair and improvement works to be done by local contractors.

Estimated Annual Disbursement at Escalated Prices (M\$1,000) Table 10.3

1991	213	213
1990	196	196
1989	180	180
1988	168	168
1987	156	156
1986	112	112
1985	1,548	1,656
1984	1,366	1,439
1983	1,173	1,227
1982	1,028	1,056
1981	984	1,001
	٠.	
:	i.	•
	Construction Maintenance	Total

Table 10.4 Receipts and Expenditures (M\$1,000)

						!					
	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1661
Receipts	:								·		
Drainage Tax	550	605	999	732	805	886	974	1,072	1,179	1,297	1,427
Municipal Fund Allocation	i	1	1	ı	1.	1	1	l	1		. 1
Federal Government Loan	686	1,028	1,173	1,366	1,548	1			1	· 1	1
Total Receipts	1,534	1,633	1,839	2,098	2,353	886	974	1,072	1,179	1,297	1,427
Expenditures								:	•		
Capital Expenditure	984	1,028	1,173	1,366	1,548						
Maintenance	17	28	54	73	108	112	156	168	180	961	213
Dept Service								:			
Principal						77	83	87	92	97	98
Interest		÷				366	361	356	346	345	339
Total Expenditures	1,001	1,056	1,227	1,439	1,656	555	909	611	618	638	650
Cash Surplus (Deficit)	533	577	612	629	269	(331)	(374)	(197)	(261)	(629)	(777)
Cash Accumulated	1	533	1,110	1,720	2,381	3,078	2,748	2,373	1,912	1,351	692
Total	533	1,110	1,720	2,381	3,078	2,748	2,373	1,912	1,351	692	-85

CHAPTER 11 BENEFITS

11.1 Anticipated Benefits

Proper construction and operation of drainage systems are expected to result in certain types of benefits towards inhabitants of the areas concerned. These benefits include either quantifiable or non-quantifiable benefits as follows:

- (a) Reduction of flood damage
- (b) Improvement of Public Health and Convenience of Community
- (c) Increase of Land Value

The items above are discussed in the following sections.

11.2 Recognition and Measurement of Benefits

11.2.1 Reduction of Flood Damage

On urban area, local flooding can and does cause considerable nuisance and hardship to those affected, which can be alleviated by proper remedial work on the drainage system. The implementation of such works will result in considerable benefit to the community at large, in terms of public road and private properties becoming flood free, and also, in a more significant benefit, on the living condition of people whose houses and business premises are previously flood prone.

The quantifiable benefit expected by preventing flooding is equivalent to the amount of damages due to the flood. In the absence of data concerning flood damages the quantity of benefit is not figured. However, it should be kept in mind that the expenditure to recover

flood damage is the recurrent cost upon residents or the municipality and will increase unless flood relief measures are undertaken, whereas initial investment with comparatively small amount of fund for operative and maintenance will be sufficient for prevention of the floodings.

11.2.2 Improvement of Public Health and Convenience of Community

Benefits under this item can be understood easily when situations in which certain area is flooded and all kinds of waste water including sullage, human excreta and discharge from industry, are mixed each other spreading coliforms, disease germs and toxic materials.

It is generally recognized through abundant experiences in the past that after flooding the cases of waterborne disease increase. Together with that of the sewerage system, contribution of the drainage system to public health improvement can be expected to be very significant, especially in areas where people depend on bucket system and pit privies for disposal of excreta.

11.2,3 Increase of Land Value

With the provision of infrastructure including drainage system, development programme, for both public and private sectors, will be greatly stimulated and land values increased. The value added to the land tends to equal or exceed the prorated share of the total investment involved.

The added land value will be major economic benefit which will stimulate larger scale of financial transaction, and will cause additional source of taxation for the revenue in favour of the government agencies concerned.

11.3 Benefits Justification

As has already been described in the previous paragraph, major portion of the benefits by the drainage improvement is hardly quantifiable in monetary terms. Nevertheless, there will no doubt be high social benefits if the project is completed because the system will make significant floodfree land for further development, upgrade the existing living environment, and also contribute to improving the inconvenience of the community life.

- ANNEX A. PUMPING STATION AND RESERVOIR
 - B. FRONTE JACKING METHOD
 - C. ANALYSIS OF PROPOSED DRAINAGE SYSTEM

ANNEX A PUMPING STATION AND RESERVOIR

1. General

In providing an adequate drainage system for the Study Area, pumping station and reservoir are required to drain off the runoff when the volume of the runoff exceeds the storage capacities of drains. The provision of these facilities shall be incorporate system together with installation of the outlet gate. In order to select the most suitable pumping station and reservoir, following comprehensive study is made including selection of types of pump, and determination of the reasonable capacities of pump and reservoir to be applied for the drainage system.

2. Selection of Pump Type

For selection of the drainage pump, two types of pump namely centrifugal and screw pump are considered and studied with due attention to their advantages and disadvantages as the drainage pump to be applied to the Study Area including characteristics of the operating conditions and construction, and operation and maintenance costs to be required.

2.1 Construction, and Operation and Maintenance Costs

2.1.1 Construction Cost

Using the typical structure of each type of pumping station as proposed in Figures A.1 and A.2, construction costs are estimated based on the basic costs described in Table 8.1 of Chapter 8. The estimated construction costs are expressed in cost function curves for easy reference. The costs reflected by cost function curves

include civil works, plumbing, mechanical equipment and other miscellaneous items.

In developing the cost function curves, four different capacities of $60 \text{ m}^3/\text{min}$, $240 \text{ m}^3/\text{min}$, $420 \text{ m}^3/\text{min}$ and $600 \text{ m}^3/\text{min}$ are considered and their construction costs for each of pumping station are made as summarized in Table A.1 with the cost function curves presented in Figure A.3.

Table A.1 Construction Costs of Each Pumping Station by Different Capacity

		(at 197	9 Price Leve	1, M\$1,000)
Types of Pump	60 m ³ /min	240 m ³ /min	420 m ³ /min	600 m ³ /min
Centrifugal Pump	1,056	1,789	2,407	3,861
Screw Pump	1,242	2,455	3,300	5,310

2.1.2 Operation and Maintenance Costs

Operation and maintenance costs are also estimated by use of the cost function curves. In developing the function curves, following assumption is made;

- (1) Frequency of operation is 15 times a year in working of per 3 hours.
- (2) Heavy oil used for diesel engine is calculated in the following equation.

 $V = 0.44 \times Hp \times N$

where V : Required heavy oil (gal/hour)

Hp : Horsepower of engine

N : Number of pump

0.44: Constant

- (3) Unit cost of heavy oil is M\$1.8/gal
- (4) Three operators are required at the pumping station with three working shifts.
- (5) Wage of operator is M\$800/month
- (6) Repairing and replacement costs of equipment are to be 1 percent of capital cost of civil works and 2 percent of mechanical equipments.

On the basis of the above assumption, the operation and maintenance costs of each type of pumping station in terms of the four different capacities as in the estimation of construction cost are estimated as shown in Table A.2. Using these results, cost function curves are then developed as presented in Figure A.4.

Table A.2 0 & M Costs of Each Pumping Station by Different Capacity

		(at 1979 Price Level, M\$1,000)			
Type of Pump	Capacity	60m ³ /min	240m ³ /min	420m ³ /min	600m ³ /min
	Wage	28.8	28.8	28.8	28.8
Centrifugal Pump	Heavy Oil	3,6	12.8	20.0	29.9
	Repair & Repla- cement Total	15.5 47.9	26.0 67.6	41.4 90.2	68.3 127.0
Screw Pump	Wage	28.8	28.8	28.8	28.8
	Heavy Oil	3.6	14.3	26.6	46.5
	Repair & Repla- cement	21.5	36.7	49.3	79.4
	Total	53.9	79.8	104.7	154.7

2.2 Comparison and Recommendation on Drainage Pump

Although, screw pump is generally simple, easy to overhauling and maintenance works and comparatively free from corrosion even operation is in low speed revolution, the screw pump is essentially high construction cost to be required as shown in Table A.1, in comparison with the centrifugal pump. From the cost comparison, centrifugal pump are thus recommended as the drainage pump in the Study Area. The advantages of the centrifugal pump especially axial flow pumps are applied to the wide range of head fluctuations, and free from cavitations in pump.

3. Reservoir

The reservoir incorporated with the pumping station is the most considerable measure to reduce the expenditure required for the drainage system to drain off the runoff. In determining the desirable capacity of the reservoir, various sizes of reservoir are considered on the basis of the design volume of stormwater runoff discharging from each catchment area delineated in the actual design works, and compared in selection of the most adequate capacity of reservoir together with the pumping capacity. Details are presented in the succeeding section.

For the study, cost estimates are required. The estimated costs are to those capacities varying from 500 m³ to 150,000 m³ using the typical structure as presented in Figure A.5, and basic cost described previously. Those costs are expressed by cost function curve as presented in Figure A.6.

4. Case Study for Pumping Station and Reservoir

In the study on selection of "Alternative Routes of Trunk Drain" as reference in section 7.1, Chapter 7 of this report, three sets of

pumping station and reservoir are required by the alternative consideration. In this conditions, the capacity required for the reservoir for each case are computed by use of the inflow hydrograph curves developed as presented in Figure A.7. Parameters of three case used in this study are summarized in Table A.3.

Table A.3 Parameters Used for Case Study

Alternative	Item	Area (ha)	Inlet Time (min.)	Flow time (min.)	Composite Runoff Coefficient
Alternative 1	Case 1	295	7	80	0.61
Alternative 2	Case 2	239	7	80	0.56
	Case 3	56	7	17	0.84

Using the above inflow hydrograph curves, the estimated storage capacity of reservoir by alternative pump capacity for each case is summarized as shown in Table A.4.

Table A.4 Combinations of Pump and Reservoir

Λlternative	Case	Pump Capacity (m ³ /min.)	Storage Capacity (m ³)
Alternative l	Case 1	60 120 180	151,000 127,000 108,000
	Case 2	60 120 180	110,000 83,000 67,000
Alternative 2	Case 3	60 120 180	31,000 20,000 15,000

For each cases referred in the above Table, the total construction costs of pumping station and reservoir including land acquisition cost are estimated as shown in Table A.5, and compared for determination of the most desirable capacity of reservoir together with the pumping capacity.

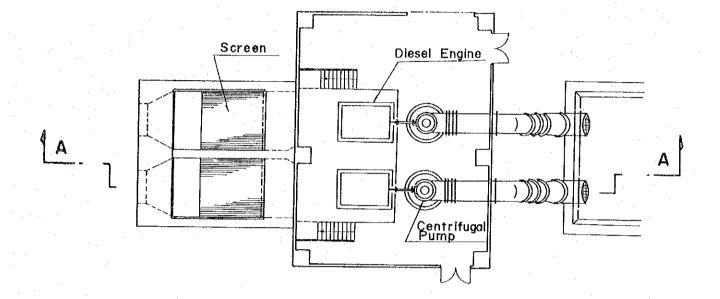
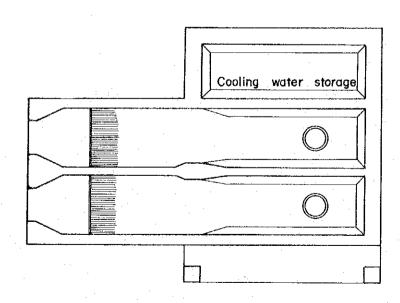
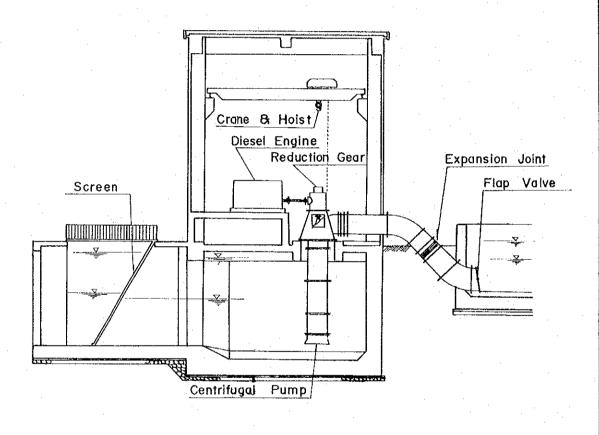

According to Master Plan proposals prepared by SDID, practical size of storage pond is to be not more than 2 percent of the total area concerned by the system, so that same ratio is applied for determination of the reservoir capacity. The recommended pump and reservoir capacities for each alternative cases are presented in Table A.5 with indication of the under line.

Table A.5 Construction Costs of Pumping Station and Reservoir by Alternatives (at 1979 Price Level M\$1,000)

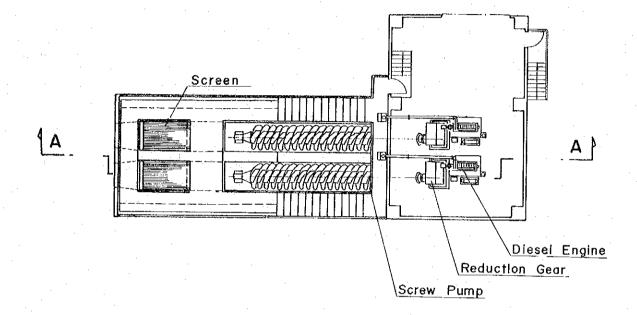

Alternative & Case	ه Case	Pump Capacity (m ³ /min.)	Construction Cost of Pumping Station (m\$)	Storage Volume (m ³)	Construction Cost of Reservoir (M\$)	Required Area (ha)	Land Acquisition Cost (M\$)	Total Cost (M\$)
		09	1,060	151,000	870	6.80	204	2,134
Alternative 1	Case 1	120	1,350	127,000	765	5.70	171	2,286
		180	2,750	108,000	680	4.80	144	3,574
**************************************		09	1,060	111,000	069	5.00	150	1,900
	Case 2	120	1,350	83,000	575	3.80	114	2,039
		180	2,750	67,000	210	3.10	93	3,353
Alternative 2		09	1,060	31,000	335	1.50	135	1,530
	Case 3	120	1,350	20,000	285	1.00	90	1,725
		180	2,750	15,000	260	0.81	73	3,083

PUMPING STATION (Centrifugal Pump)

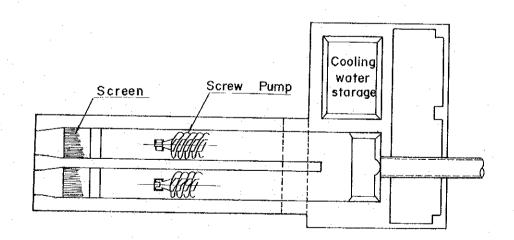

PLAN VIEW

GROUND FLOOR LEVEL

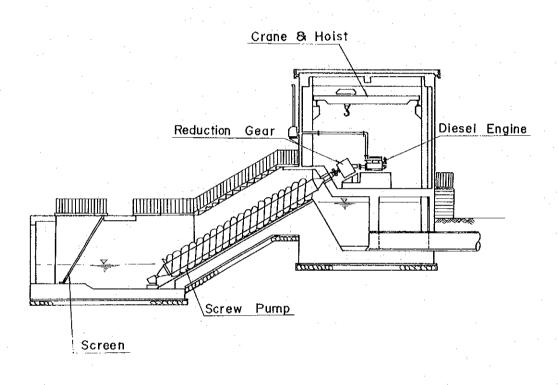
SECTION A-A


MASTER PLAN AND FEASIBILITY STUDY FOR SEWERAGE AND DRAINAGE SYSTEM PROJECT IN ALOR SETAR AND ITS URBAN ENVIRONS

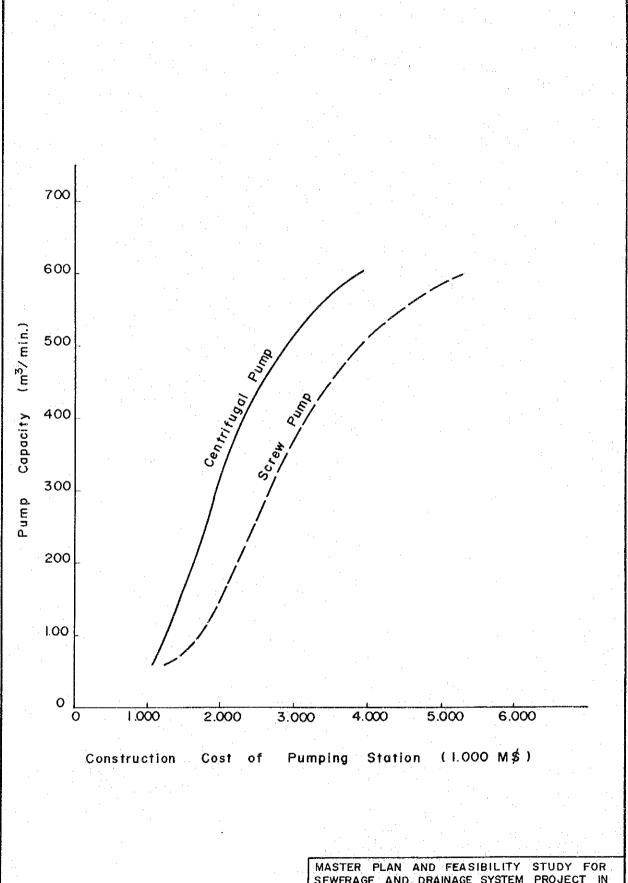
TYPICAL PUMPING
STATION (Centrifugal Pump)


ump) A · I

PUMPING STATION (Screw Pump)


PLAN VIEW

GROUND FLOOR LEVEL


SECTION A-A

MASTER PLAN AND FEASIBILITY STUDY FOR SEWERAGE AND DRAINAGE SYSTEM PROJECT IN ALOR SETAR AND ITS URBAN ENVIRONS

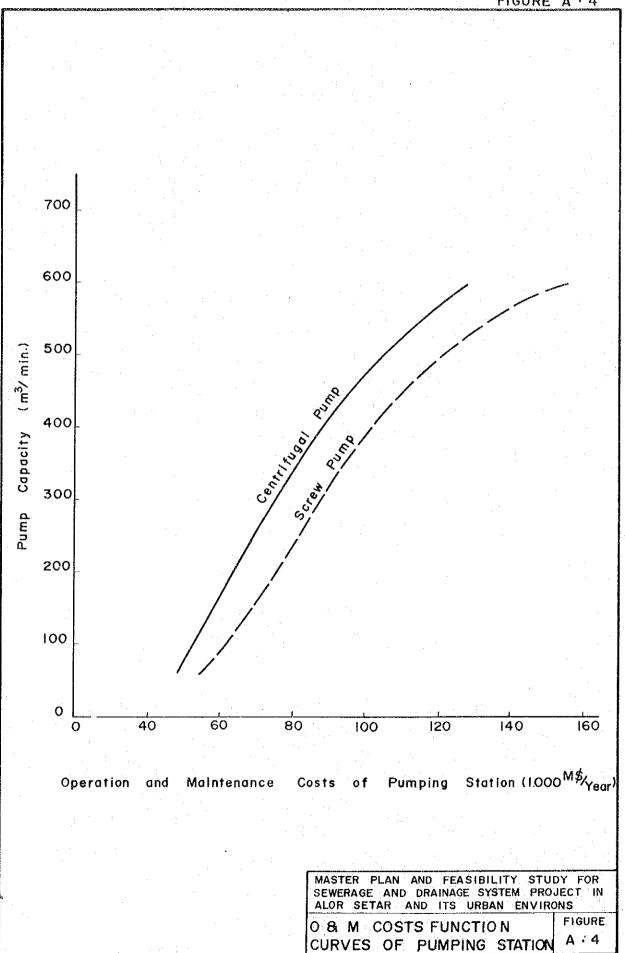
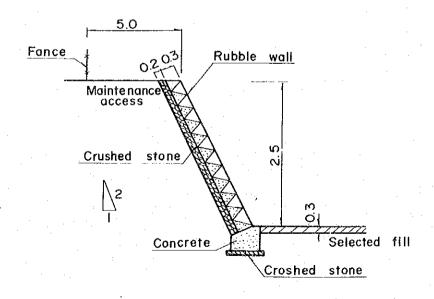

TYPICAL PUMPING STATION (Screw Pump)

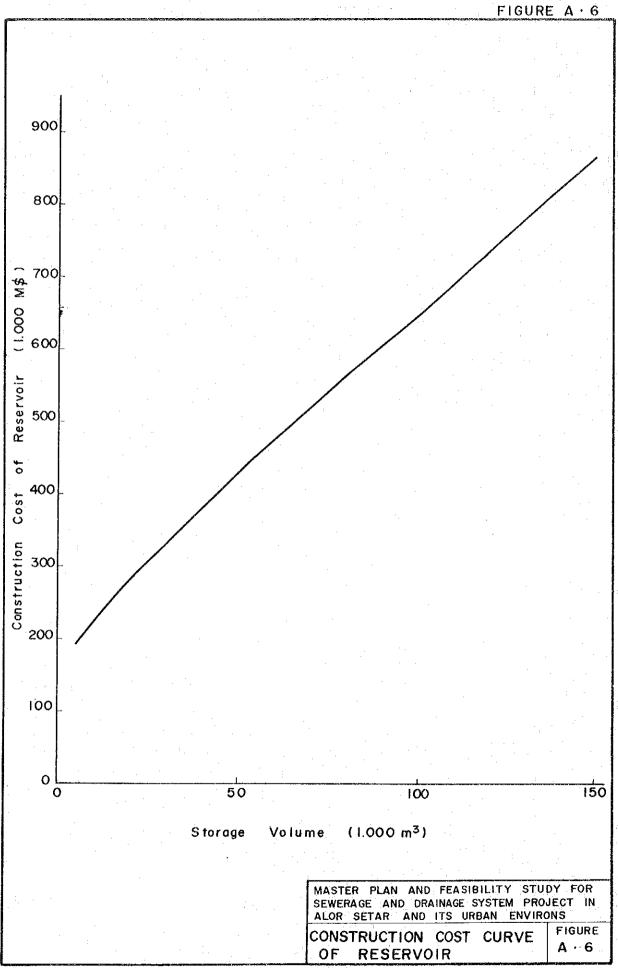
FIGURE A · 2

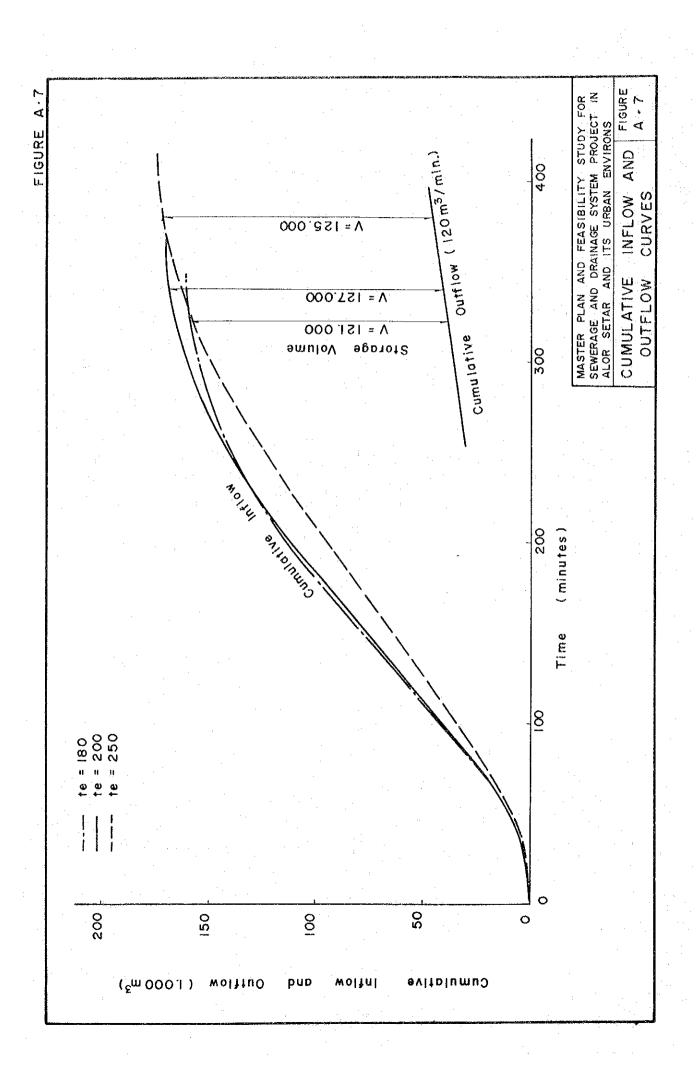
MASTER PLAN AND FEASIBILITY STUDY FOR SEWERAGE AND DRAINAGE SYSTEM PROJECT IN ALOR SETAR AND ITS URBAN ENVIRONS


CONSTRUCTION COST FUNCTION A 3

PLAN

Sectional Area of Wall


MASTER PLAN AND FEASIBILITY STUDY FOR SEWERAGE AND DRAINAGE SYSTEM PROJECT IN ALOR SETAR AND ITS URBAN ENVIRONS


TYPICAL RESERVOIR STRUCTURE

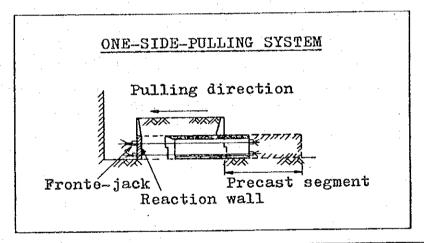
FIGURE

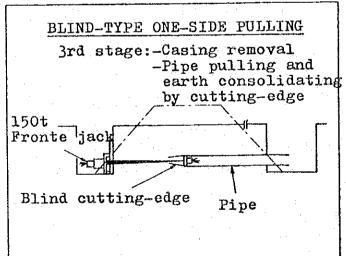
A · 5

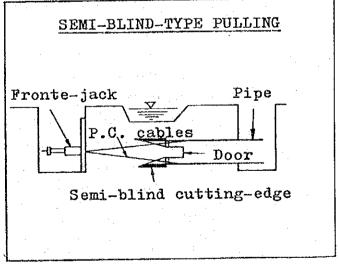
ANNEX B FRONTE JACKING METHOD

1. General

The "Fronte Jacking Method" is the unique method of tunnelling without the application of open-cut method or pipe jacking method. The types of structures which can be used by this method are steel pipes, concrete pipes, steel segments, reinforced concrete boxes, H-type steel I-type steel etc. The diameters of pipes used by this method are ranged from \$150 mm to \$3,500 mm and the lengths from 20.0 m to 100.0 m. Also, box-type reinforced concrete structures of various sizes (width=1.5 m, height 2.0 m, length=15.0 m of small size to width=21.0, height=10.0 m, length=30.0 m of giant type) have been applied by this method. This method, even in case of the soft ground, can manifest tremendous force without need of ground reaction, by using the reciprocal pulling system.

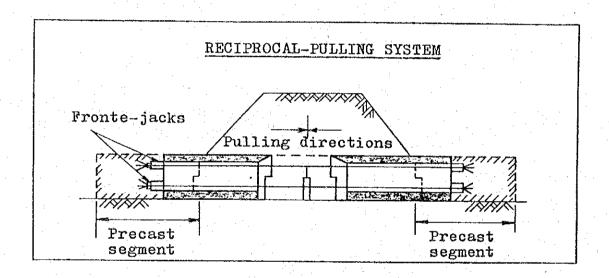

2. Advantage of the Method

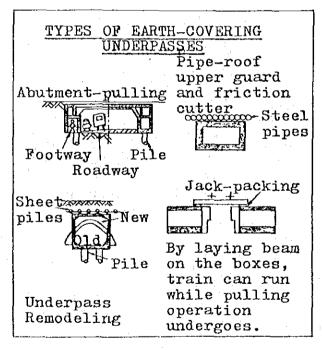

- (1) No fear of earth sinking or earth depression.
- (2) There is no pipe buckling comparing to the other drive method.
- (3) For the construction, there is no subsidy of either chemical grouting, or well point, or freezing operations.
- (4) There is no need of reaction wall, even in soft ground conditions.
- (5) Large underpass beneath thin earth-covering railway can be construct safely with this method by using pipe-roofing and guide-rail system.
- (6) Law cost of pulling materials because of its simplicity.
- (7) Works can be arranged safely, economically and rapidly.

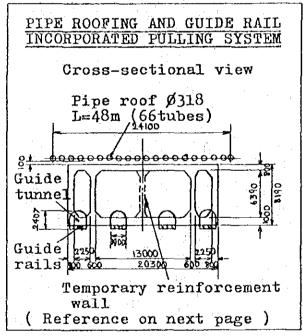

3. Kind of the Method

(1) One-side-pulling Method

Set pulling jack device to one side of the pre-arranged pulling material, and to the opposite side fasten the structure. Then pull forwardly in one direction. Reaction force is received from the ground. This method is used to pull pipes or other small type structures.




(2) Reciprocal Pulling System


Set the structures to both sides of the pre-constructed pulling material, set pulling jack device to the structure of one side, fasten cone to the structure of another side. By reciprocally taking reaction force from the opposite structure, the structure are pulled reciprocally. This method is used for constructions of giant-type structures which need tremendous force.

4. Pipe-roofing and Guide-rail-incorporated Box-type Underpass-pulling System

Under thin earth-covering railway, build horizontal roof-like structure with a number of pipes by arranging them is one row and inserting them transversally to the thin earth-covering railtrack. (this operation may be done by machine or by manpower.) At 10 to 30 cm below the pipes, dispose the upper slab of the box-type underpass, the main underpass is mounted on the guide-rails constructed through the small headings excavated during advance work. The lower slab of the underpass will slide on these guide-rails. It is a safe and practical method of pulling wide underpass straight along any inclination direction under thin earth-covering railway.

ANNEX C. ANALYSIS OF PROPOSED DRAINAGE SYSTEM

TABLE C-! ANALYSIS OF PROPOSED DRAINAGE SYSTEM

re 7.3	-	: .	Remorks			8600		0.121	9110	0,111			0.107		8810	0.125	0 125		0.188	0.184		2116	6	0.101	2800
refer to Figure			Perence Width	Ê		005	200	200	2.00	8	0000	13.00	00 51		1.70		8		250	L		8		8	00
10.	8	Drain	Copacity	(m) ⁵)		158		200	2.030 //	<u> </u>	25.5	252		*	0.365		כי		255.0		 -	27.0	23.0	0	
	Condition	Existing	8	5		0	,	7 0	1.0	0	20.	0	0		9	() ()	, t,	:	4	() ()	ļ	0	1	v	0
	Existing	Ü	\$215	Ē		5.0 0	20 00	30 % 1.	12.0 +1.	4.0 × 1.	200	2.0 47.	, 00 00		y 57	000	1 × 0.21		0.5 20	15.0 *		300	150 150	5.5	3.5
			Runoff	(m)*)		2 760	6 6 6 3	501.5	5 034	6 804	582 5	228 4	660 0	. · • •	0.051	121 01	10. 704		0 G S.A.			0.7.0	1.840	1.781	2,398
			segulard Segulard Midth	(a)		10.0	10.4	10.4	4.0.4	0 0	12.0	13.0	13.0		0.4	14.5	14.5		4.0	74,57		2, 8		-	2.01
		Drain	Copacity	(111/2)		9 825	008 3	c 800	6.800	9. 800	000 8	10,800	10. 800		0 88 0	000 61	13,000		0.000	000 81		0.884	2.059	800 2	251 0
			Velocity		:	0	6.0	0	60	6.9	9 9	0.	9		6.00	6.0	0		6.0	6.0		0.0			
		Proposed	Siop	(%)		25.0 0.7	20 6.1	25.0 6.1	1.9 0.25	20.05	20.00	20 0 25	2.0 0.25		2 0	20 0.25	20 025		2 000	2.0 0.25		0000	30 63	×098 020	
			ž.	(E)		00	7 2 5	* b	* b	5.0.2	5 0 x 8	0.0 0.0	000	- 1	7× 57	200	7 50		,, 5,	2.6 7.8 K		3000	2.7 4.0.	2 K	5.5 × 1.10
		Runoff	Major	(m/ _S)		7 176	9006	10.378	10.378	12, 850	13.537	15, 152	16 880		1.522	18.797	19 868		1.527	20 471		6461	3 464	4,972	6.798
	8 88	Ruhoff	Tatal Runaff	(ورس)		3.744	.r. 940		6,750 (a,786)	8 272	8.710	9.700	10,748		7160	016 11	12 588		916.0	766 31		0.769	1000	6 66.3	3504
	Year	Design	e Æ	(m)s)		0,132	0 /00	0 100	0.159	0.140	0.148	0. 1dd	0.142	:	0.264	0.147	0.147		0.264	0 140		8210	0.753	0.151	0 145
	ے	10 roitor	Tinns Intonoo	(eller)	•	12.5	4.0	\$ \$2	E)	23 6	28 23	57.2	578		22.9	62.8	4		23 /	0		22.9	1 16	3,0	34.7
	- 1	of Flow	Total	(min)	-	3.5.5	6 36	\$ 99.	60.00	U V	47.2	50.2	50.8		6.37	55.8	5.6		/0./	0.25		15.9	25	24.6	22.7
		Tina in the	Each	(mln)	•	(308)	9.	لى دى	6'0	(r) (s)	ں ة	0	ti Ti		611.73	5.0	o o		3.3	o o		9.9	8	25	67
			Storage Coettleic			14.0	14.0	0 V 0	0.70	0 70	0 70	0 00	0 0		0.7	0 69	000	·	0.74	0 69		0.74	0 72	0.72	0,10
		- 1	Composit Runoll Costficte	ļ	asin	000	000	0.0	000	0.00	0	000	0 0		500	0 65	0.65		0.85	. 6 . 6	-	0 00	0 80	000	000
		Area	Tog	(a f)	Pajab		C * 05	50 27	50.43	28 86	84 68	0000	02 501			117.42	120 11			66 821			16.88	24 49	
		∢	E GG	(94)	ngai	26 95 6	10.52	086	0 10	19 42	4 23	55 61 6	13 07		A G.F.	A0 C	0 0	<u>-</u>	4.70	6.18	12	000	7007	7.0	9.89
		Ę	Length	Ę.	Sa	240.00	20.00	180.00	20 00	340 00	40 00	160 00	30 00	TO R.S.	225.00	270.00	00 05	TO R.	180 00	30.00	70 8 15	380.00	00.546	25.00	165.00
		<u>2</u>	ž			α '	Ř	R 2	es ex	ď.	8	υ Q	ρ		ø;	8	8 9		2,0	0,0		D.	~ ·	G	G. 1

TABLE C-2 ANALYSIS OF PROPOSED DRAINAGE SYSTEM

		Remarks		0.007	3110	0 114	2010		\$610	0146		0.176	0.144	0110	8110	6110	0.112	82/0			0.025	0173	21.0	5410
		Reserve	ε		10	1	0		ı	0.0		1.300	13 00	20.00	30.00	1000	15.00	14.00			1.65	3.10	1	0,0
Condition	g Drain		(w/s)	0 540	1.538		6 120			2 800	:	0,500	2 000	3,976	14, 835	19.380	14.601	14.022			0 297	0.524		1
Existing Con	Existing	Size	(E.)	10 106	10 × 0.7	810×8	100000		1	20 . 1.4		17 87.1	60 × 1.4	21.000	20.0 x 1.5	6.0 × 19	15.0 × 1.9	4.0 2.9			602500	80.00		,
in in		Runoff	(m)x)	6511	2000	4.040	4391		0.109	095'5	:	265.0	5300		16 873	**************************************	17.789	16 993			1600	1.265	1.407	
		Regulred Reserve Width	Ê		201		10.5		5			4	5	16.0	16.0	10.0	10.0	16.0			*.5	0.0	1	
	Drain	Copacity	(m)'s)	3 862	6 200	c 200	6 600		1.137	005.8	:	6.903	300	20 000	20.000	20.000	20,300	61.600			1.200	8113	1 968	
		Velocity	(3/E)	0	0.0	0.0	60		0			0	5.08	`	21 52	01 52	5 1.0	27 58			30 0.7	20 0		
	Proposed	Sioo	3,	250 01.1	16 025	050 08	20 025		260 0212	0.0		11.2 0.50	80 025	9	2.2 0.2	28 0.2	28 0.25	0 0			1.2 03	8		
		Size	£	44.4	2,5)))	7 5.5		900	\ \(\)		2.40	* ان ان ان ان	000	011	7. C x	9 8 8	2011			× 00'	90	x 20 0	3
	Runoff	Major Storm	(m)/s)	7007	275.0	9.275	96707		1637	230 //		2181	5796		~	51 675	22.304	34 772			१ ६६३	2.624	17/6	
2 000	Runoff	Total Runoff	(m/s)	5 7.5 G	و /ن/ ہ	(000)	6		880 0			990	//0 4			3430	259	21.713			200'	1851	8541	
Year	Design F	٤	(s/m)	18.5		72/	9	1	7.00			0				600	138				2500	0.250	0 220	
드	⊢	oniT Concentro		55.4	38 7 0.	0	,		7.			0 0	i	, ,	0	fb ₂	0			:	19.9	878	25.2	
	Flow		(min)	28.4		0	1	+-	1	<u>, , , , , , , , , , , , , , , , , , , </u>	-	9) i		, 0	<i>L</i> J	0	d.	· · · · · · · · ·		18.9	9 %	2 5/	•
	Time of		td; (min)	S	(r)		J 0	<u>† </u>	00.7	,	5	(0.41)	2	, ,			0	1 17			\$ 60 60 6 60 6 60	6	0	
	-	Storage Coefficien		071	0.77	í	3	0			0 20	+		0 0		, 4	0	000			ķ	2.75	4 0	
		Sunposite Runoff Coefficient		0:00				is			3			0 0	200		200	, N	Kede		28			
	6	100	(p q)	5 P	7	,	, , , , , , , , , , , , , , , , , , ,	F 6 05	t t		2, 25			30.00	210	2 2	07000	23863	"" " " " " " " " " " " " " " " " " " " "			850		
	Area	Foch though	(pq)	67	6		ţ '	2 7 %		G.	0.70		0	0.50	5 6	3 6	3 6		,		, a		1 1.	
		Drain Length	Ê	200)))	230.062	70R 10	305.6	30 00	21000	30 800	20.00	00 00		3 0	2000			20508	, ,	005/	
		S S		: بر و ۱		10.	<u>, </u>	[7]	4/0	+	9/0	215		1	0 1	`i '	y c	,			G			

TABLE C-3 ANALYSIS OF PROPOSED DRAINAGE SYSTEM

gure, 7.3			Remorks		5710	5510	0 165	Earth															
refer to Figure 7.3			Reserve	Ê	1	250		07.70			-							1					
	Condition	marc br	Copecity	(m) ² ,1		564 0	1	2622															
	Existing Co	Existing	Size	Ê.	1.4 = 1.4	250 -1.00	,, 0 0	22 x1.45		· .													
:	Ð		Runoff	(s/w)	1.529 0		252							1					÷				
<u> </u>	 		banlupal 9v iszal Albiv	<u>. </u>	1	у Ф		0.0												 			:
1 0 0 0 d		Drain	Copacity	(m)'s)	2340	8918		535 3					 						:				
			Velocity	(%) (m/s)	0	9.0	9.0	9,9									·				:		
		Proposed	S139	(<u>*</u>	20.25	0.05	-30.25	0.0															
			Size	(m)	24	95Cx1.40	21.0811530.25	2.93 x 1.00				-			* 3								
5 .		Runoff	Major Storm	(m)/s)	505	126 4	8/18	500															
010 174514 174514	2 000	Runoff	Total Runoff	(m)s)	1.926	2617	2886	3.219			draims						-						
	Year	Design	Z Ž	(m) ^s)	0610	0.807	0 207	0 184			tural												
,	<u>c</u>	io noita	Time Cancent	رداس) (داسا	23.8	260	60	28.9		•	struct				-								
1		of Flow	Total	(min)	0	0.61	0,	0/2			infra			-									
		Time of	Fach	14; (min)	0.0	20	6	20			served by										-		:
:			Storage Softficie		0.74	0 73	0 1 3	0.73	Ę				:										
			tizoqmoC NomR SionilisoD	- 1	220	26.0	6.75	0 10	Kedo		area		 0 40									-	
		Area	<u>م</u>	(ha)	201	17.32	18 70	2397	20.00				952 73									:	
		4	Fech	(he)	0.0	2 3 8	1.28	5 2 7	70 \$		\$ 8		Tota			:	_						
	:	-	Length	Œ.	15.00	135.60	15.00	140.00															
		<u>}</u>	g g		200	\$ 26	0 27	. G			R 29									1,			

TABLE C-4 ANALYSIS OF PROPOSED DRAINAGE SYSTEM

Jure 7.3			Remocks																						
refer to Figure 7.3			Reserve	Ê					130		ı	1.80							13	1	2.00	1	21.5		
Te.	Condition	g Orain	Copacity	(s(w)					1160		C 84G	2775						0000	0.799	0.840	1 524	0.327	3.010		
	Existing Con	Existing	8 z i S	(m)					0.30 2080		0000	1.80 -1.50						0000	0 co x 000	000	2.50 41.10	1	5,10 x1,90		
•	ų) ·		Runoff	(m3,8)					0 545		0.750	1.076			:			0.054	1007	1.277	1.503	1001	1000	· · ·	
3131EW			Vidih Veserva Vidih) (E)				,	4.0		1	8.5						I	5.5	1	0.0	i	<i>8</i> .5		
- 1		Drain	Copacity	(m/s)					6.903		1.483	2.060						0611	8651	2005	2188	2418	3 106		4.
URAINAGE			Velocity	/ ^E Z					0.8		000	500						0.0	200	0.30.00	000	0 / 9	65 0.9		
		Proposed	Slope	(%)				•	1.20 05.5	:	050 451	260 41.68 025						xc.92 030	250 0012 681	103×122 03	×12 030	30.078.1.80.06	0		
THO-TONE THO			Size	(m)					02.0		01.37×1.37							0 1 66		В	60				_
5		Runoff	Major Storm	(m)'s)		24.70			5081		7.00	3 705			Suia	-		183	2248	3013	3.305	6296	5000		
ANALYSIS	2 000	Runoff	Total Runoff	(m/s)		sural d			0.000		1.000	200			ural d			1.185	1.04)	1.9.22	N	2312	6 9/6		
ই	Year	Design	e ä	(m)s)		STruce			1400		0.868	1000			infrastructural			0220	0 268	0 220	0258	0050	0 249		
Ω 1 4	<u>c</u>) poito	o emiT HasonoO	lc (mln)		in fra			2/1		60				infr			161	22.1	22.4	205	8 89	27.0		:
ABLE		of Flow e Ordin	Total	nd (min)		ed by			Ž		67	1			60 64			121	1.51	٧ ٧	241	17.8	900		: : :
- !		Time of		1d; (min)		a Served	<u>L</u>		(10)		(05/)		Bk,		Served	ļ		2:0	0 6	0	12		3 20		
• • •			oelficien itoraga oefficier	S	:	200			360		,	,	70 4		area			070	0		0				
			anzogene NoonR	o Cc	u,				0		0	,	0 0					90	283 6	-	0	0	0		
		Area	th Total	(F)	basin	00		-	0		90	, ,	3	-	હે			97:50	1,58	0		 -	ļ		
i. I			Drain Length Each	(100)	Purera			-	(000)	3	60	3 8	2		8		-	(5%5)	<u> </u>	L.,		1	2	<u> </u>	
		•	* 	Ē		 			١,	v	,	,	1		Q			, K	,	q		· - ·	<u> </u>		
			ج ک 8			d		<u></u>	0			0		<u></u>							1		l	<u></u>	

TABLE C-5 ANALYSIS OF PROPOSED DRAINAGE SYSTEM

refer to Floure 7.3

	:	Remarks																					
		Reserve Width	Ē			 		9	,l	ù	6												
Condition	600	9	(s/m)					0.751	1 100	/ 479	2751												
Existing Co	i	Size	Ę.					32 . 09	6.0 × 0.4	0 x x x	1.4												
		Runoff	(s/m)					0250	2001	1260	1 417												
		benlupe evisee Albiv	3 K					\$	l	0.0													
	Orain	Coposity	(m ³ /s)	·				1163	1714	1.890	2118										-		
	Proposed	SO SO SO SO SO SO SO SO SO SO SO SO SO S	(%) (m/s)					20 27	00000	0.30 0.7	0.00						·						
	Proj	Size	(m)					250 100 0	0168 1 1 2 2 0.	300 × 1.20 0.	2× 0122×122 0.			i .									
	1,700.0	Major	(m) ₃)		drains			1.403	2613	2054	3000			:									
2 000	Runoff	Total Runoff	(m ³ / _S)					1880	, 004	1.685	2681												
Year	Design	E Ž	(m) s)		tractural			950	0.232	0 218	0.214			-									
5	roiti	o emiT mineama	folin)		infras			150	23 4	20	276		:										
	of Flow	Total	(mln)		9			(0)	16.0	79.5	200												
	Time of	L	7 d j (mln)		Served		- 1	() 0	0	<i>v</i>	``	Bikit											
		Slorage Storage Coefficien			area			0 0	0 4	0.73	0.73	Anak E		: .								-	
		atieogmoß Stanfie Tionitieoß	·		· ·		-	080	000 65	0800	13 0.80		-		· ·	78			_				
	Area	Total	(ha)					ğ	9	2000	67	Sunga			-	tad SBOC				-			
:		gth Each	(ha)		7.5.7	_		CO 4 B4	0)	20.2	25.1 00	ľ				70 t			_				
		Drain Length	Ē		20			3 255.00	15.00	5 136.60	¥	-		_	_			-			_	· .	
	-	2 % L			ď.			σ. ω	9	5)	Q												

TABLE C-6 ANALYSIS OF PROPOSED DRAINAGE SYSTEM

10	_				Ţ	T	T	Τ	T	Ţ	Γ		T	Τ	T	Τ	Τ-	7:	Т-	ή	Γ	Υ	T	T	T
7.3			Remorks										ŀ							1 :					
ênrê			ů.		1						ļ		-		1	1			:				1		
refer to Figure		T	2 g				†	U	v o	0	~	 	 	1	†	†	1	<u> </u>		-					
i.			Reserve	Ē			1	. 0		1	0						1								
'n		Orain	 		-	 	<u> </u>	_	. 62	63	٥		 	 	1.	ļ-~	 	 							
٠, ،	col	ြင်	Copacity	(m)s).		[ļ	ĺ.	373		620									l			. :		
	Condition	5	ပိ	_					io .	0	`			}											
	ပိ	Existing							0.7	N	O			1											
	50	ľΨ	92	Ê		: 1	1	Ú	. *	0.	* X														
	Existing		Size				'	2	80	20 O	90													1	
	ú		·	·		10								-			ļ								
			Runoff	(m) s)		99	4.02	7.00	086	030	2.038							·							
			<u>លី</u>	. €		, `	. <		`	Q.	0.5													,	
.			Midih	 \								-	<u> </u>	 											
!			sequired Reserve MibiN	Ē		l	60	8	60	9.2	6.6								-						
?						В		to.	8	8		- :		 											\neg
' :	•	.⊊	Copacity	(m/s)		9 348	629	388	3 838	9586	3838		: .							·					
		Drain	ပိ			Q)	P)	h ₃	. ")		l														
			Velocity	(m/s)		60.	0.0	0.	9.9	9.9	0.0														
		Proposed	Slope	(%)	 -		500	200			S														
´		Prop	-	2		9		O,	0	29.0	0														
}						28.0 83 11 83 0.28	380-1.90	0011	267 1	20 × 1.90	20 1.90										ļ		:		l
3			Size	(E)		69	000	320	320	00	00			:											
·						970	w.	(A) +	67	, ,	ω .								:		- 1	•			
.		Ę	. F			3/6	22	666	6	~ ô	527														
,		Runoff	Major Storm	(m3/s)		9	5,032	9.3	6.123	G. 123 (S. 768)	6,123	٠.				,									
		₁	-				-)				~														
}	8	=	=			2009	518	508	3.303	50000	3,303	:						* .				ł			
	· N	Runoff	Total Runaff	(s/m)		d a	6	(h)	000	30	60 60												4		
	١	- 1	2				6												• •						
.	Year	Design	Ę. Ž	(m)s)		104	188	13.6			860										ļ				
-						0	0	6		0	· v														
۱ .	٤	ro rolion	Time Cencent	<u> </u>		20.	22 8	20 20 20	3.0.A	-6	8 62					-			.	}			1		
,	- 1						- (,				- 4				:										
}		Pig.	1010	(min)		13.7	15.0	561	25.4	29.5	lo U											1		}	- 1
	- 1	ဝည္		. S	1		_ <		\ \ 	<i>\(\alpha\)</i>	() ()					· · ·									
		Time o	E .	(min.)		(011)	Q.	, c,	<i>b</i> .	لى كۆ	0			·							j				
			, iii			ડે			Y	4		-			i :										
		; ţu	Coefficie		:	5%	0 74	7,	0,78	N	10								.	.					
			Storage		:	۲		O		0.7	Ö	-£		- '											
		ţu	Runoff Coefficie			5	ر. او	0.50	0	7	Ş	Keda				:						1			
		. 8	nizoqmo			0	0		0	0	0				i'	:	:								
		Ì	Total	(pq)	basin		20.20	3327	0 / U	2000	43.00	Sangae							,				ĺ		
	:	Area	P —	÷	bas		1.1		السن			2	:												
1		4	Each	(ha)	100	91	ر د رو	0.3	2 9 2	25.23	256														
			ដ	=	ς υ	٨,	Ŋ	5		Ą	ان ا	10			1				·		;	1			
	1		Urein Length		Langsar	3 8	2	ÿ	8	খ	ं									1		1			
	. · .	(Urain Length	Ē	7	13050	115.00	500 00	20 202	245.00	32000										 				1
•							c.	m	٧	S	10					1	- 1				†	†			\neg
			Ē Š			J	7	7	J	7	L				1.1	+ ⁵									

Argana Arangan

