#### 10.1 所用資金

提案された1981年から1985年までの第一期雨水排除計画の年別建設費用と建設後の 施設維持管理費を年8%の物価上昇を見込んで年次毎にそれぞれ積算した。

(表101から表104参照)

所要資金の目的を明らかにするため、上記の積算は大きく三つの工事項目に分けられた。すなわち、幹線排水路、準幹線排水路および築堤に大別した。

#### 10.2 資金源

実施機関に予定されているMPKSはプロジェクト実施開始の前に、年次毎の必要資金計画 に準じた予算案の作成を早急に準備して、プロジェクト実施のための資金の調達を考えること が望ましい。資金をどこからどのようにして調達するかは、資金を必要とする工事の内容や実 施機関の財政能力に負うところが大きい。

通常雨水排除に類する公共工事は市民個人の責に帰すべき原因に依らず、降雨等の天然現象に起因しており、地域全体の供水予防やその他環境整備のために行なわれる。市民は昔からかかる雨水排除関連工事は政府資金、それも補助金で国の地域開発事業の一環として行なわれるべきものとの見方が強い。

料金等の恒常収入が見込めない雨水排水事業の実施機関にとって、ローンを設定することは 返済金が大きな財政負担となることから余り推奨出来ない。現行法規にのっとって住民から建 設資金の一部を、例えば、雨水排水税として徴収出来るならばこれにこしたことはないが、前 述した様にこのような支払いを住民に要求することはかなり困難が予想されるので、政府機関 側の周到な準備と対策が必要となろう。

MPKSが本事業を行なった場合の、収入と支出の関係を表わしたのが表 1 0.4 である。

建設費は連邦政府からのローンを充当し、維持管理費は固定資産税の5%に相当する排水税でまかなうものとする。



表 10.1 建 散 費

|                            |           |            |             |             |            | (M\$1,000)   |
|----------------------------|-----------|------------|-------------|-------------|------------|--------------|
| Year                       | 1981      | 1982       | 1983        | 1984        | 1985       | Total        |
| Engineering Design         | 309 (360) |            |             |             |            | 309 (360)    |
| Trunk Drain (Including     | i.<br>C   |            | r           | C<br>C<br>T |            | 1            |
| bridges & Gates)           | 472       | 048        | <b>411</b>  | /38         | 964        | 2,/12        |
| Engineering Fee            | 21        | 32         | 21          | 37          | 25         | 136          |
| Contingency                | . 68      | 136        | 86          | 155         | 103        | 569          |
| Sub-Total                  | 535(624)  | 816(1,028) | 518(705)    | 930(1,366)  | 618(981)   | 3,417(4,704) |
| Secondary Drain (Including |           |            |             |             |            |              |
| Box Culvert & Gates)       |           | :          | 16          |             | 142        | 233          |
| Engineering Fee            |           |            | :<br>:<br>: |             | 7          | 1.2          |
| Contingency                |           |            | . 87        | :           | 28         | 46           |
| Sub-Total                  |           |            | 144(155)    |             | 177(281)   | 291(436)     |
| Band Alignment             |           |            |             |             | 144        | 144          |
| Engineering Fee            |           |            |             |             | 7          | 7            |
| Contingency                |           |            |             |             | 29         | 29           |
| Land Acquisition           |           |            | 230         |             |            | 2.30         |
| Sub-Total                  |           |            | 230(313)    |             | 180(286)   | 410 (599)    |
| Total                      | 844 (984) | 816(1,028) | 862(1,173)  | 930(1,366)  | 975(1,548) | 4,427(6,099) |

在 ( ) 書は物価上昇を見込んだ場合

| 廋  |
|----|
| 畑  |
| Am |
| 炸  |
| 繗  |
|    |
| 2  |
| c  |
| ς  |
| 罴  |
|    |

|                     |      | *    | й    |      | <br>Äl |      |      |      |      | (M\$1,000) | (00  |
|---------------------|------|------|------|------|--------|------|------|------|------|------------|------|
|                     | 1981 | 1982 | 1983 | 1984 | 1985   | 1986 | 1987 | 1988 | 1989 | 1990       | 1991 |
| Salaries            | 1.7  | 19   | 20   | 22   | 24     | 26   | 28   | 8    | 32   | . 35       | 38   |
| Trunk Drain (b)     |      | σ'n  | 34   | 8 7  | 65     | 81   | 120  | 130  | 140  | 152        | 164  |
| (Including Bridges  |      |      |      |      |        |      |      |      |      |            |      |
| & Gates)            |      |      |      |      |        |      |      |      |      |            |      |
| Secondary Drain (b) |      |      |      | m    | ന്     |      | 9    | 9    | S    | _          | œ    |
| (Including Bridges  |      | •    |      |      |        |      | -    |      | -    |            |      |
| & Gates)            |      |      |      |      |        | •    |      |      |      | :          |      |
| Band Alignment (b)  |      |      |      | :    |        |      | 7    | 7    |      | 2          | m    |
|                     |      | ļ    |      |      |        |      |      |      |      |            |      |
| Total               | 17   | 28   | 54   | 7.3  | 92     | 112  | 156  | 168  | 180  | 196        | 213  |
|                     |      |      |      |      |        |      |      |      |      |            |      |
|                     |      |      |      |      |        |      |      |      |      |            |      |

表10.3 物価上昇を見込んだ場合の支出計画

|              |       |       |       |       | -     |      |      | :    |      | MSTUUU | U O ) |
|--------------|-------|-------|-------|-------|-------|------|------|------|------|--------|-------|
|              | 1981  | 1982  | 1983  | 1984  | 1985  | 1986 | 1987 | 1988 | 1989 | 1990   | 1661  |
| Construction | 786   | 1,028 |       | ' '   | 1,548 |      |      |      |      |        |       |
| Maintenance  | 17    | 28    | 54    | 73    | 108   | 112  | 156  | 168  | 180  | 196    | 213   |
| Total        | 1,001 | 1,056 | 1,227 | 1,439 | 1,656 | 112  | 156  | 168  | 180  | 196    | 213   |
|              |       |       |       |       |       |      |      |      |      |        |       |

表 10.4 財 欧 計 画

|                           |       |       |       |       |       |       |       |       |         | (M\$1,000 | 1,000)   |
|---------------------------|-------|-------|-------|-------|-------|-------|-------|-------|---------|-----------|----------|
|                           | 1981  | 1982  | 1983  | 1984  | 1985  | 1986  | 1987  | 1988  | 1989    | 1990      | 1991     |
| Receipts                  |       |       |       |       |       |       |       |       |         |           |          |
| Drainage Tax              | 550   | 605   | 999   | 732   | 802   | 886   | 974   | 1,072 | 1,179   | 1,297     | 1,427    |
| Municipal Fund Allocation | I     | 1     | 1.    |       | ł     | 1     | 1     |       | 1       | I         | I .      |
| Federal Government Loan   | 686   | 1,028 | 1,173 | 1,366 | 1,548 | . 1   | ì     | i     | i       | į.        | ٠.       |
| Total Receipts            | 1,534 | 1,633 | 1,839 | 2,098 | 2,353 | 886   | 974   | 1,072 | 1,179   | 1,297     | 1,427    |
|                           |       |       |       |       |       |       |       |       |         |           |          |
| Expenditures              |       |       |       |       |       |       |       |       | . · · . |           |          |
| Capital Expenditure       | 984   | 1,028 | 1,173 | 1,366 | 1,548 |       |       |       |         |           |          |
| Maintenance               | 17    | 28    | 54    | 73    | 108   | 112   | 156   | 168   | 180     | 96T       | 213      |
| Dept Service              |       |       |       |       |       |       |       |       |         |           |          |
| Principal                 |       |       |       | •     | ٠     | 77    | 83    | 87    | 92      | 97        | 90<br>80 |
| Interest                  |       | ٠     |       |       |       | 366   | 361   | 356   | 346     | 345       | 339      |
| Total Expenditures        | 1,001 | 1,056 | 1,227 | 1,439 | 1,656 | 555   | 009   | 611   | 618     | 638       | 650      |
| Cash Surplus (Deficit)    | 533   | 577   | 612   | 629   | 269   | (331) | (374) | (461) | (261)   | (629)     | (777)    |
| Cash Accumulated          | į     | 533   | 1,110 | 1,720 | 2,381 | 3,078 | 2,748 | 2,373 | 1,912   | 1,351     | 692      |
| Total                     | 533   | 1,110 | 1,720 | 2,381 | 3,078 | 2,748 | 2,373 | 1,912 | 1,351   | 692       | -85      |
|                           |       |       |       |       |       |       |       |       |         |           |          |

#### 11.1 概要

雨水排水施設が建設され効果的に維持管理されていくことによって、定量的または定性的な 便益が得られ、一般的には次のようなことが考えられる。

- (a) 浸水による被害の軽減
- (h) その地域社会に対する環境衛生上の改善
- (c) 土地価格の増加

### 11.2 便益とその程度

#### 11.2.1 浸水被害の減少

市街地の局所的な浸水は適切な排水施設の整備により解消することが出来る。この施設の整備は道路の冠水をなくし、個人の財産を浸水から救う等、人々の生活環境の改善に大きく寄与する。浸水防止による利益の算定は浸水の被害額と同値であるとみなせるが、その資料が存在しないため、ここでは示せない。しかし、もし施設が整備されなければ、洪水被害の復旧に要する費用は公私にかかわらず毎年必要となり、しかもそれは年々増加する傾向をもつものであることを認識しなければならない。

### 1122 地域社会の環境衛生の改善

このことについては例えば洪水によってし尿を含む各種の汚水が流出し、伝染病等の発生 が考えられることなどを想定するときわめて理解しやすい。

雨水排水施設は下水道施設と同様に衛生上の改善にきわめて有効であり、特にバケット方式やビット式便所を用いている人達にとっては著しいものがある。

#### 11.2.3 地価の上昇

排水設備を含む基幹設備の整備により私的、公的を問わず地域開発は進むであろうし、地価も高騰するであろう。この排水設備によって付加される価値は、全開発費に占める排水設備費の率に等しいか、それ以上の率で地価高騰分に寄与している。地価の高騰は通貨の動きの増大をもたらし、経済に好影響を与えるし、公的には税の増大、ひいては歳入の増加になる等その効果は大きい。

#### 113 便益の妥当性

上述してきたとおり、雨水排水施設の整備による利益の主なものは金額的に計量化して表わ すのが難しい。それにも拘らず、この施設を完成することで得られる利益が大きいことは疑い のないところであり、浸水問題の解消、生活環境の向上、地域社会生活の快適化などに大きく 貢献するものである。

## 付 A. ポンプ場および貯留池

#### 1. 序 論

雨水流出量が排水路施設の貯留容量を越える場合には貯留池およびポンプ施設が必要となる。 そこで以下に貯留池およびポンプ施設の適切な規模についての検討を行なうものである。

#### 2. ポンプのタイプの選定

排水のためのポンプとしては渦巻ポンプとスクリューポンプの2者があるので、この両者について操作の難易、建設および維持管理費などの面から検討を行なった。

#### 2.1 建設かよび維持管理費

#### 2.1.1 建設費

図 A.1 および A.2 に示すように標準的な施設の概略設計を行ない、3.8 章の表 8.1 に示した単価を用いて建設費の積算を行ない、3.2 ト関数を作成した。3.2 ト関数の作成に当っては、その容量が 6.0 、2.4 0、4.2 0、6.0 0 10 かの各規模について積算した。その結果は表 A-1 に示すとおりである。

表 A.1 規模別建設費

(1,000M\$)

| ポンプタイプ   | 6 0      | 2 4 0    | 4 2 0      | 600 ㎡/分 |
|----------|----------|----------|------------|---------|
| 渦巻ポンプ    | 1, 0 5 6 | 1, 7 8 9 | 2,4 0 7    | 3,861   |
| スクリューポンプ | 1, 2 4 2 | 2,4 5 5  | 3, 3, 0, 0 | 5,3 1 0 |

#### 2.1.2 維持管理費

維持管理費は以下に示す条件のもとに建設費と同様、コスト関数を作成した。

- (i) 運転は1年間に15回、1回につき3時間と仮定する。
- (ii) ディーゼルエンジンの燃料は次式により見積った。

 $V = 0.44 \times Hp \times N$ 

ことに V: 必要燃料 (ガロン/時間)

IIp:エンジンの馬力

N:ポンプ台数

0.44:定 数

- (iii) 重油の単価は18マレーシア・ドル/ガロンとする。
- (iv) ポンプ場の操作員は各ポンプ場とも常時1名とする。 勤務は3交代とするので各ポンプ場に3名必要となる。
- (v) 職員の賃金は月800マレーシア・ドルとする。
- (vi) 修理、修繕費は土木費の1%、機械費の2%とする。

以上の条件の下に、規模別に維持管理費を積算した結果は表A.2のとおりである。又これ に基づいて作成したコスト関数は図A.4に示すとおりである。

表 A. 2 規模別維持管理費

(1,000M\$)

| ボンプのタイプ  | 種 | 別            | 6 0    | 能 力<br>240  | (n³/分)<br>420 | 600     |
|----------|---|--------------|--------|-------------|---------------|---------|
|          | 賃 | 金            | 2 8.8  | 2 8 8       | 2 8.8         | 2 8.8   |
| 渦巻ポンプ    | 重 | 油            | 3. 6   | 1 2.8       | 2 0.0         | 2 9.9   |
|          | 補 | 修            | 1 5.5  | 2 6 0       | 4 1. 4        | 6 8.3   |
|          | Ê | <del> </del> | 4 7. 9 | 6 7. 6      | 9 0.2         | 1 2 7 0 |
|          | 賃 | 金            | 2 8.8  | 2 8.8       | 2 8.8         | 2 8 8   |
| スクリューポンプ | 重 | 油            | 3. 6   | 1 4.3       | 2.6.6         | 4 6.5   |
|          | 補 | 修            | 2 1. 5 | 3 6.7       | 4 9.3         | 7 9. 4  |
|          |   | 計            | 5 3.9  | 7 9.8       | 1 0 4.7       | 1 5 4.7 |
|          |   |              |        | <del></del> |               |         |

### 2.2 排水ポンプの比較

スクリューポンプは構造が単純であり、補修が簡単である。又、回転数が遅いので摩耗も 少ない。しかし、一方、表 A. 1に示すように建設費は高い。

本計画では、費用比較の点から渦巻ポンプを採用する。ポンプの機種は揚程の変化かよび キャビテーションに耐えられるように軸流ポンプを採用する。

#### 3. 貯 留 池

貯留池とポンプは一体として機能するものであり、貯留池を大きくすればポンプは小さく てすむ。どのような組み合せが最も望ましいかについては別の項で述べることとする。

図 A.5 に示すような標準的貯留池の概略設計を行なった。そして、その容量が 500 m³ および 150,000 m³ のものについて建設費を見積り、その結果を用いて図 A.6 に示すようなコスト関数 を作成した。

٠.

#### 4. 貯留池とポンプ場のケーススタディー

オ 7 章 7.1 で述べてあるように 3 種類の幹線ルートの検討を行なっている。そこで、ことでは これらのケースにおける貯留池の規模、ポンプ場の規模について検討を行りものとする。

各ケース毎の設定条件は表A.3に示すとおりである。

表 A.3 ケース別基本条件

| ケース   | 面 積<br>(ha) | 流 入 時 間<br>(分) | 流 下 時 間<br>(分) | 平均流出係数 |
|-------|-------------|----------------|----------------|--------|
| ケース1  | 295         | 7              | 8 0            | 0.61   |
| ケース 2 | 239         | 7              | 8 0            | 0.56   |
| ケース3  | 5 6         | 7              | 17             | 0.84   |

貯留池の規模は図 A.7を用いて決定される。各ケース毎に表 A.4 に示したような組み合せを 考えるものとする。

表 A.4 貯留池とポンプ場の組み合せ

| the second secon | +               |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|
| ケース                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ポンプ能力<br>(m²/分) | 貯留池能力<br>(m³) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 0             | 151000        |
| ケース1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 2 0           | 1 2 7, 0 0 0  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 8 0           | 1 0 8,0 0 0   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 0             | 1 1 0,0 0 0   |
| ケース2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 2 0           | 8 3,0 0 0     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 180             | 67000         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | å D             | 3 1, 0 0 0    |
| ケース 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 2 0           | 2 0,0 0 0     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 180             | 1 5,0 0 0     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |               |

各ケース別にポンプ場の建設費、貯留池の建設費、用地費等の積算を行った。その結果は表 A5に示すとおりである。

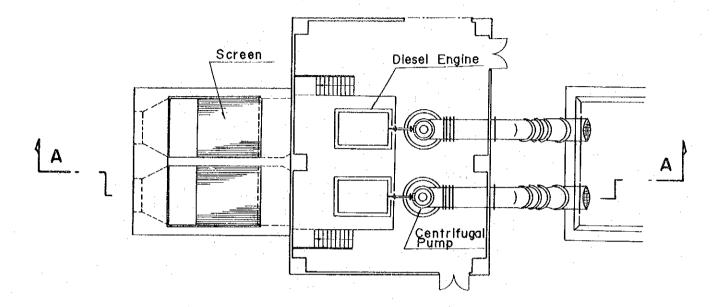
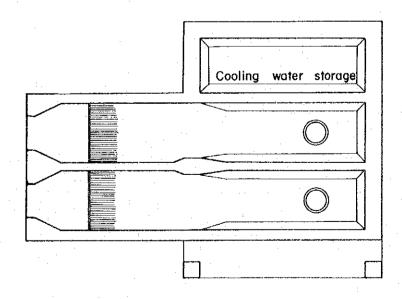
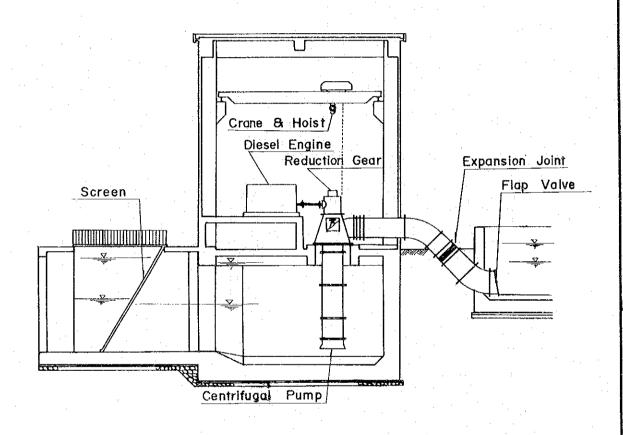

この結果に基づいて最も望ましい組み合せを決定した。SDIDが作成した排水基本計画書によれば貯留池の面積は排水受け持ち区域の2%以下にすべきであるとあるので、本計画では表A.5にアンダーラインを引いたケースを採用した。

表 A.5 ケース別建設費


|                    |        |                                            |                                            |                                        |                                               | ( M                      | (M\$1,000、1979年佰格)                   | <b>小角格</b> )           |
|--------------------|--------|--------------------------------------------|--------------------------------------------|----------------------------------------|-----------------------------------------------|--------------------------|--------------------------------------|------------------------|
| Alternative & Case | & Case | Pump<br>Capacity<br>(m <sup>3</sup> /min.) | Construction Cost of Pumping Station (m\$) | Storage<br>Volume<br>(m <sup>3</sup> ) | Construction<br>Cost of<br>Reservoir<br>(M\$) | Required<br>Area<br>(ha) | Land<br>Acquisition<br>Cost<br>(M\$) | Total<br>Cost<br>(M\$) |
|                    |        | 09                                         | 1,060                                      | 151,000                                | 870                                           | 6.80                     | 204                                  | 2,134                  |
| Alternative 1      | Case 1 | 120                                        | 1,350                                      | 127,000                                | 765                                           | 5.70                     | 171                                  | 2,286                  |
|                    |        | 180                                        | 2,750                                      | 108,000                                | 680                                           | 4.80                     | 144                                  | 3,574                  |
|                    |        | 09                                         | 1,060                                      | 111,000                                | 069                                           | 5.00                     | 150                                  | 1,900                  |
|                    | Case 2 | 120                                        | 1,350                                      | 83,000                                 | 575                                           | 3.80                     | 114                                  | 2,039                  |
| 1                  |        | 180                                        | 2,750                                      | 67,000                                 | 510                                           | 3.10                     | 93                                   | 3,353                  |
| שונפוחמרו אפ כ     |        | 09                                         | 1,060                                      | 31,000                                 | 335                                           | 1.50                     | 135                                  | 1,530                  |
| •                  | Case 3 | 120                                        | 1,350                                      | 20,000                                 | 285                                           | 1.00                     | 06                                   | 1,725                  |
|                    | :      | 180                                        | 2,750                                      | 15,000                                 | 260                                           | 0.81                     | 73                                   | 3,083                  |
|                    |        |                                            |                                            |                                        |                                               |                          |                                      |                        |

# PUMPING STATION (Centrifugal Pump)


## PLAN VIEW

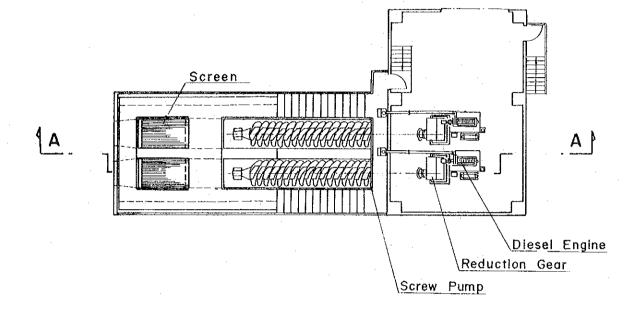


## GROUND FLOOR LEVEL

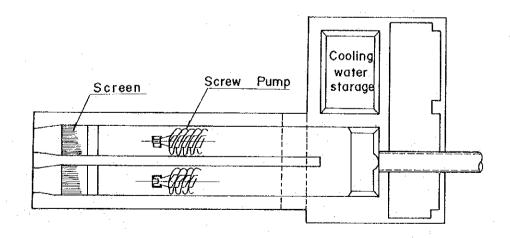


### SECTION A-A

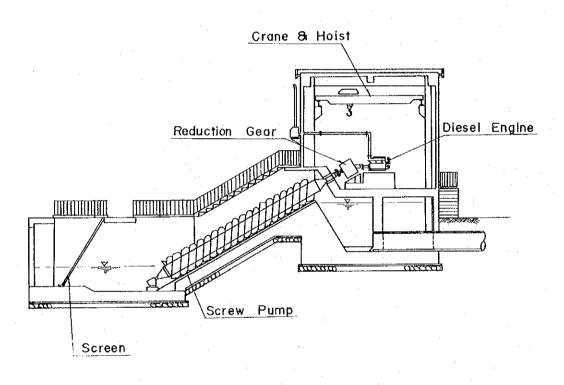



MASTER PLAN AND FEASIBILITY STUDY FOR SEWERAGE AND DRAINAGE SYSTEM PROJECT IN ALOR SETAR AND ITS URBAN ENVIRONS

渦巻ポンプの代表例


FIGURE A · I

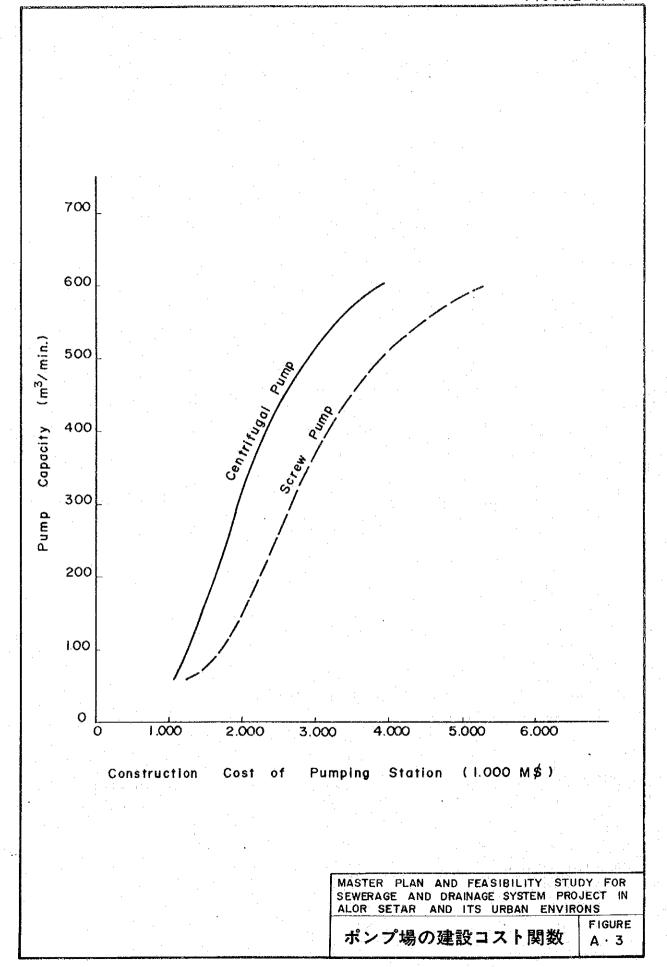
# PUMPING STATION (Screw Pump)

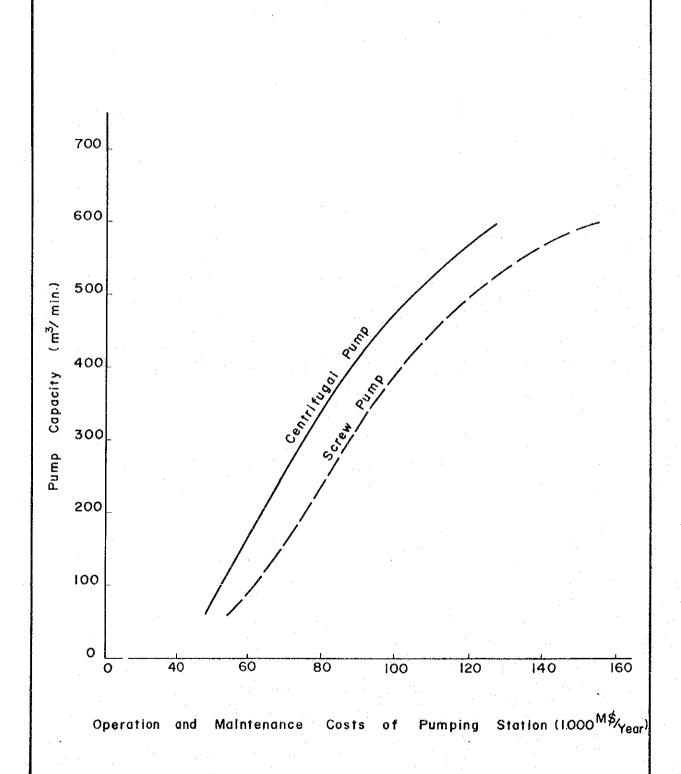

### PLAN VIEW



### GROUND FLOOR LEVEL




### SECTION A-A

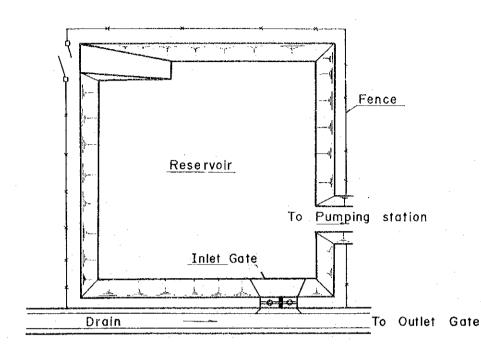



MASTER PLAN AND FEASIBILITY STUDY FOR SEWERAGE AND DRAINAGE SYSTEM PROJECT IN ALOR SETAR AND ITS URBAN ENVIRONS

スクリューポンプの代表例

A · 2






MASTER PLAN AND FEASIBILITY STUDY FOR SEWERAGE AND DRAINAGE SYSTEM PROJECT IN ALOR SETAR AND ITS URBAN ENVIRONS

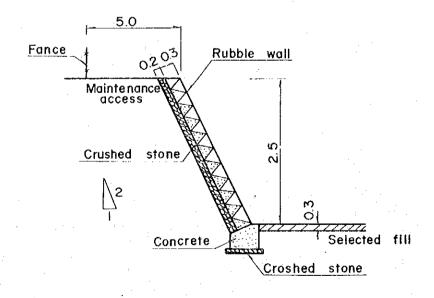

ポンプ場の維持管理コスト関数

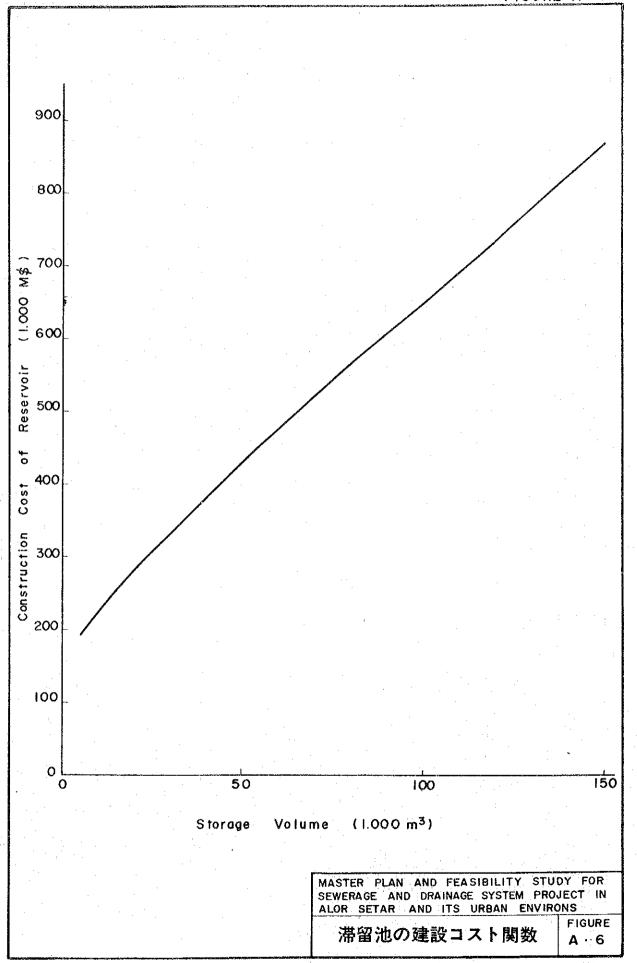
FIGURE A . 4

### PLAN



### Sectional Area of Wall




MASTER PLAN AND FEASIBILITY STUDY FOR SEWERAGE AND DRAINAGE SYSTEM PROJECT IN ALOR SETAR AND ITS URBAN ENVIRONS

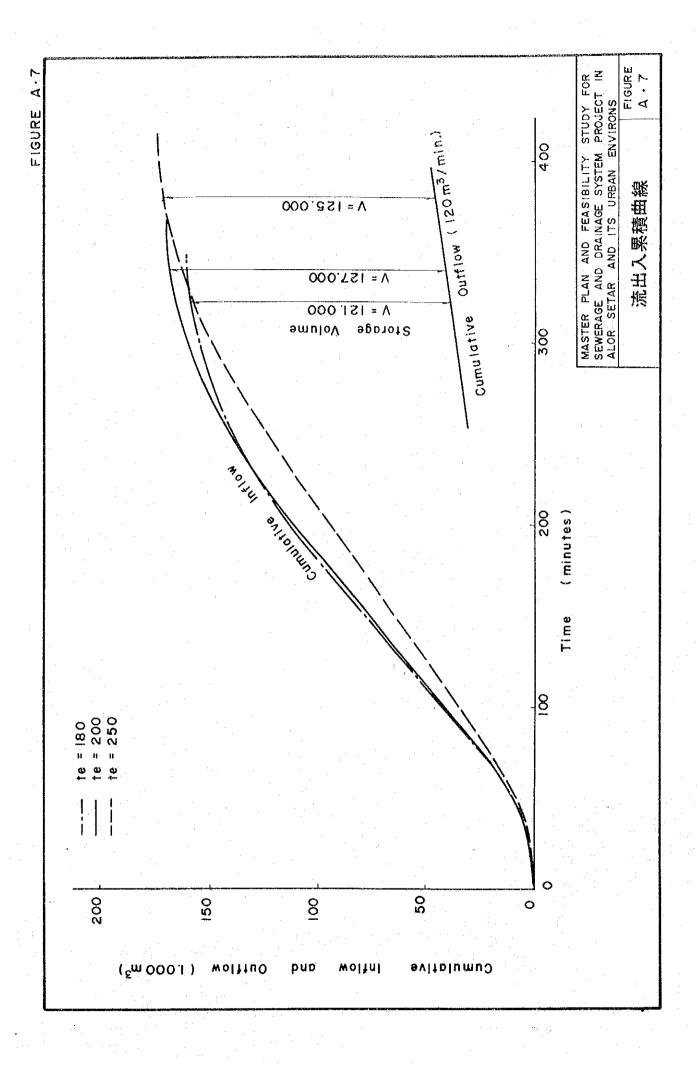

滞留池の代表例

FIGURE A · 5

en de la companya de la co







付B. フロンテジャッキイング工法

#### 1. 序 論

フロンテジャッキィング工法は比較的新しい工法であり、鋼管、コンクリート管、ボックスカルバート等種々なものに適要可能である。適要管径としては内径 150mm から 3.500mm まで使用可能である。索引距離としては  $20m \sim 100m$  まで施工可能であり、ボックスカルバートの場合は巾 1.5m、高さ 2.0m、長さ 1.5m の小規模から巾 2.1m 高さ 1.0m、長さ 3.0m のものまで種々の実績がある。

との工法の場合は相互に索引するととが出来るため推進工法に比べ大きな反力を必要とすると とはないため、軟弱地盤にも適用出来る。

## 2. 特 徵

- 1) 土地の隆起、沈降の恐れが少ない。
- 2) 他の工法に比べ管の破損が少ない。
- 3) 建設の際に薬注、ウエルポイント、凍結等の補助工法を用いなくてすむ。
- 4) 軟弱地盤の場合でも反力壁の必要がない。
- 5) バイブルーフ工法等の併用によって土被りの少い鉄道横断個所も安全に施工可能である。
- 6) 単純な構造であるため索引材も安価である。
- 7) 作業は安全、迅速かつ低廉である。

### 3. 工法の種類

フロンテジャッキィング工法には、次の3種類がある。

(i) 片索引工法……一方に索引ジャッキを設置し、もう一方に索引される構造物をセットする。 圧力は地盤にとる。

この工法は小規模なものに適用することが出来る。

- (ii) 両索引工法……この工法は索引する構造物を両側に設置し、索引ジャッキも両側にセットする方法である。反力は互いの構造物にとる。この工法は大規模な構造物の索引に適用出来る。
- (iii) 補 助 工 法……補助工法としては、パイプルーフおよびガイドレールを併用する工法がある。

この工法の併用の場合には土被りが少ない鉄道横断個所に適用出来る。 この工法は、上部にはパイプルートを設け、下部にはガイドレールを布 設した後構造物を索引する工法であり安全かつ確実な施工が可能である。

# 付 C. 流 量 計 算 表

表0-1 流 雪 計 算 表

| ure 7.3         | aria-apr.   |              | Remorks                          |                                  |        | 0000         | 0.124        | 0.121         | 611.0            | 0,111       | 0, 117    | 0.116    | 0.107   | ******** | 8810                                     | 0.125        | 0.125        |       | 0.188   | 0.184   |         | 0.116    | \$01.0    | 0.101          | 0 097    |
|-----------------|-------------|--------------|----------------------------------|----------------------------------|--------|--------------|--------------|---------------|------------------|-------------|-----------|----------|---------|----------|------------------------------------------|--------------|--------------|-------|---------|---------|---------|----------|-----------|----------------|----------|
| refer to Figure |             |              | Perend                           | Œ.                               |        | 5.00         | 200          | 2.00          | 12.00            | 8           | 000       | 13.00    | 75.00   | •i       | 1.70                                     | 10 00        |              |       | 250     | 15.00   |         | 8        | 2 40      | 8 00           | 8.00     |
| 12              | Condition   | ng Drain     | Copacity                         | (m)* 1                           |        | 0.051        | 2601         | 005"          | 2.030            | 3.270       | 2.255     | 2225     | 2256    | *        | 300.0                                    | 2.210        | £ 323        |       | 258.0   | 4.323   |         | 0.576    | 0.576     | 0.410          | 0.540    |
|                 | Existing Co | Existing     | 82128                            | ( <del>m</del> )                 |        | 5.0 20.0     | 70 -0.9      | 0.1 = 0.5     | 12.0 +1.0        | 01 2 0 6    | 9.0 . 1.0 | 2.0 0.0  | 000     |          | 50 2 50                                  | 67200        | 15.0 × 1.2   |       | 20 2 50 | 51204   |         | 20 2 50  | 5.5 × 0.0 | 5.5 x 0.0      | 20 4 0 5 |
|                 | W           |              | Runoff                           | { m} }                           |        | 2 760        | 0 443        | 501.5         | 5.034            | 6.804       | 6 533     | 7 846    | 8.099   |          | 0.051                                    | 10,127       | 10. 704      |       | \$500   | 11.036  |         | 0.515    | 1.840     | 1.781          | 2,398    |
|                 |             |              | рынред<br>Неметия<br>Міфій       | (E)                              |        | 10.0         | 10.4         | 10.4          | 10.4             | 12.0        | 12.0      | 13.0     | 13.0    |          | 0.4                                      | 14.5         | 14.5         |       | 4       | ان<br>ب |         | 2.0      | Ь,<br>6   | -              | 10.5     |
|                 |             | Orain        | Copocity                         | (m)/s)                           |        | 9. 025       | 6.800        | c 800         | c 800            | 8.800       | 8 800     | 10,800   | 10. 800 |          | 0 66 0                                   | 000 51       | 13,000       |       | 0.66.0  | 000 61  |         | 0 884    | 2,059     | 2 668          | 4 152    |
|                 |             | pasc<br>pasc | Yelocity<br>Velocity             |                                  |        | 60 58        | 25 0.9       | 5 0.9         | 808              | 6.0.32      | 5 0.9     | 5 0.0    | 25 0.9  |          | 0.000                                    | 6<br>0<br>0  | 6<br>0       |       | 6000    | 6.0 29  |         | 0.7      | 25 0.7    | 0.0            | 50 0     |
|                 |             | Proposed     | Slops                            | χ.                               |        | 0.0          | 119 02       | 1.9 0.25      | 1.9 0.25         | 20          | 20 0.85   | 220 0.25 | 0.0     |          | 2 00                                     | 20 025       | 2.0 0.25     |       | 1200    | 0.0     |         | 0 0      | 0.9       | 050 260        | 200 0112 |
| K<br>K          |             |              | Size                             | Ê                                |        | 00.4         | بر<br>را زرا | * 1.5         | *<br>*<br>*<br>* | 0.0         | 5.0       | 00       | 00      |          | * 10 10 10 10 10 10 10 10 10 10 10 10 10 | 0 V<br>12 12 | 55<br>6 C    |       | 5.0     | 7 2 2   |         | 000      | 7.0       | 2 × 60 × 0 9 2 | 78       |
| - E             | •           | Runoff       | Major<br>Storm                   | (m <sup>3</sup> / <sub>5</sub> ) |        | 7,176        | 9000         | 810.01        | 10.378           | 12 856      | 13 537    | 15,152   | 16 880  |          | 1.522                                    | 18.797       | 050 61       |       | 1.527   | 20 471  |         | 7379     | 3 464     | 4 972          | 6.798    |
| -               | 2 000       | Runoff       | Total<br>Runoff                  | (m) )                            |        | 2764         | 5.900        | G 750         | 6,750<br>(6,720) | 8 272       | 8 710     | 9 700    | 10.748  |          | 4100                                     | 01611        | 12 508       |       | 0.918   | 12.994  |         | 0.769    | 1.000     | 6000           | 3504     |
| <u>χ</u><br>2   | Year        | Design       | e<br>À                           | (m) <sub>S</sub> )               |        | 0.132        | 0.166        | 0 100         | 651.0            | 0 140       | 0 148     | 0.144    | 0.142   |          | 0.264                                    | 0.147        | 0.147        |       | 0 26    | 0 140   |         | 0,73     | 551.0     | 1510           | 0.105    |
|                 | ٤           | lo<br>notion | emiT<br>inecoco                  | (ele)                            | •      | 4.2. S       | 4<br>0;<br>0 | \$<br>\$<br>* | A.7. S           | 536         | ς,<br>2,  | 372      | 57.0    |          | 22.9                                     | 62.8         | t<br>G       |       | 23.1    | 0 65    |         | 22.9     | 31.1      | 31.6           | 34.7     |
|                 |             | of Flow      | Total                            | (min)                            |        | 3.5. S       | 9.5.9        | 8.00          | 40.5             | U<br>U<br>V | 47.0      | 50.2     | 50.8    |          | 15.9                                     | 55.8         | بر<br>م<br>4 |       | 10.     | 57.0    |         | 631      | 24        | 24.6           | 22.7     |
|                 |             | Time of      | Each                             | [e]w                             |        | 0.5<br>(30E) | 4            | r)            | 9.9              | in<br>G     | ช<br>6    | 0 6      | o<br>G  |          | 4.23                                     | ه.<br>ه.     | 0<br>0       |       | 33      | u<br>o  |         | 9.0      | 0)<br>0)  | L5             | 3,       |
|                 |             | tn           | Storage<br>Coefficie             |                                  |        | 14.0         | 0.77         | 0.70          | 0.70             | 0.70        | 0 70      | 0.70     | 000     |          | 0. V                                     | 0.09         | 000          |       | 9. 7.   | 0 69    |         | 0.7A     | 0 72      | 0.72           | 0.70     |
| <u> </u>        |             | •            | Composite<br>Runott<br>Coefficie |                                  | pasin  | 000          | 000          | 0.00          | 0.00             | 0.00        | 0.00      | 000      | 0.00    |          | ر<br>د<br>د                              | 0            | 0.65         |       | 28.0    | 0.65    |         | 0.00     | 0.0       | 0.0            | 0.00     |
|                 |             | Area         | g<br>g                           | (ha)                             | 9      |              | 50.67        | 50 27         | 60.43            | 58.64       | 80 08     | 0000     | 02 601  |          | 1.7                                      | 117.42       | 120 11       |       |         | 98 95   |         |          | 16.88     | 24 49          | 34.33    |
|                 |             | Ā            | වි                               | (pt)                             | ngai A | 76.06        | 55 01        | 28 6          | 0 16             | 19 42       | 23        | 55 81    | 13 07   |          | A<br>6                                   | 304          | 600          | 4     | 4.70    | 810     |         | 000      | 1001      | 70             | 284      |
|                 |             | . 1          | rength<br>rength                 | Œ)                               |        | 240.00       | 20.00        | 00 061        | 50.00            | 340 00      | 20 00     | 160 00   | 30 00   | TORB     | 225.00                                   | 270.00       | 30.00        | TO R1 | 180.003 | 30.00   | TO R IG | (00 005) | 345.00    | 25.00          | 165.00   |
|                 |             | -            | § 8                              |                                  |        | ر<br>د<br>د  | Ŕ            | Α Α           | R3               | Q.          | y<br>Q    | ა<br>დ   | 2       |          | R 8                                      | RB           | R 9          |       | R 10    | 410     |         | Q.       | 2.5       | 11 A           | 1, G.    |

| fgure 7.3       |             | de la recal  | Remarks                       | <del></del>                      | 0.097                                 | 0.115       | 0.114              | 0102                                         |           | 201.0       | 0 146        |          | 0.176     | 4.0                  | \$110     | 0 118      | 6//0          | 9110       | 6166     |        |   | 0.025     | 0113            | 0.176       | 0.173     |
|-----------------|-------------|--------------|-------------------------------|----------------------------------|---------------------------------------|-------------|--------------------|----------------------------------------------|-----------|-------------|--------------|----------|-----------|----------------------|-----------|------------|---------------|------------|----------|--------|---|-----------|-----------------|-------------|-----------|
| refer to Figure |             |              | Reserve<br>Width              | Ê                                | 1                                     | 7.0         | ı                  | 0 1/                                         |           | 1           | 0.0          |          | 1.300     | 20 81                | 50.00     | 80.8       | 1000          | 00.51      | 14.50    |        |   | 1.65      | 3.70            | l           | 052       |
| <b>b.</b> ,     | Condition   | ing Orain    | Copacity                      | (æ)s)                            | 0540                                  | 1.030       |                    | 6,120                                        |           |             | 5 800        |          | 0.500     | 2 800                | 2076      | 568'*1     | 19.380        | 14,801     | 14, 522  |        |   | 0.297     | 0.524           |             | 284.0     |
|                 | Existing Co | Existing     | Size                          | (w.)                             | 5.5                                   | V 0 × 0 ×   | 81.0 x 8           | 14.0 110                                     |           | -           | 50 4         |          | 1.1 × 1.1 | 41 × 00              | 20.0 . 15 | 20.0 x 1.5 |               | 15.0 × 1.9 | 612 0.81 |        |   | 1.55 40.9 | 40.00           | 0100        | 25 - 1.0  |
| ·               |             |              | Runoff                        | (m <sup>3</sup> <sub>S</sub> )   | 115 2                                 | . A 056     | 4.040              | 1667                                         |           | 0.109       | 6.560        |          | 0.592     | 5560                 |           | 16 373     | 16,774        | 17.189     | 26691    |        |   | 1600      | 1.065           | 1.407       | 1.449     |
|                 |             |              | beninges<br>eviseeve<br>Vibiv | (a)                              | 1                                     | 70.5        | 1                  | 2.01                                         |           | 67          |              |          | 4.0       | 25                   | 10.0      | 16.0       | 16.0          | 10.0       | 16.0     |        |   | 4.5       | 0.0             | 1           | 0.0       |
|                 |             | Orain        | Copacity                      | (m <sup>3</sup> / <sub>5</sub> ) | 3 862                                 | 0000        | c 200              | 0000                                         |           | 1.137       | 8.300        |          | 0.903     | B. 300               |           | 20.000     | 20 000        | 20 300     | 01810    | :      |   | 1.200     | 2113            | 1.968       | 5113      |
|                 |             | paso         | Viloola/                      | (%) (m/s)                        | 60 500                                | 25 08       | 50 05              | 80 52                                        |           | 200         | 80.00        |          | 000       | 50.0                 | 01 20     | 25 16      | 01 52         | 5 10       | 57 52    |        |   | 000       | 25.08           | ۸<br>ن<br>ن | 80 50     |
|                 |             | Proposed     | :                             |                                  | 1.10                                  | 16.00       | 20.08              | 20                                           |           | 250 00012   | 20           |          | 1.2 0.50  | 20 02                | 0 0       | 2 2        | 0             | 22 0.25    | 0        | ·<br>· |   | 2.0       | 2 /             | 122 0.25    | × 1.2     |
|                 |             |              | Size                          | (E)                              | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | ٠<br>٢ د    | 0 * 0              | 7. 2. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. |           | #8 0<br>8 / | 200          |          | x 4.0     | اد<br>در بی<br>در بی | 1.0 %     | 0.0        | ×<br>00<br>10 | 000        | × 00%    | :      |   | * 22'     | )<br>000<br>500 | 2 X B       | 0 00<br>× |
|                 |             | Runoff       | Major<br>Storm                | (m <sup>3</sup> / <sub>8</sub> ) | 7067                                  | 9 275       | 9 275              | 262 21                                       |           | 1637        | 11.967       |          | 6121      | 550 21               | 555 10    | 5% 5 10    | 31.675        | 32 384     | 24 772   |        |   | 1 994     | 2624            | 1418        | 3217      |
|                 | 2 000       | Runoff       | Total<br>Runoff               | (m)'s)                           | .\$ 754.                              | 1019        | G. 101<br>(G. CGC) | 6 507                                        |           | 886 0       | 7.728        |          | 0.046     | 112 8                | 19.745    | 19 834     | 19.834        | 20 259     | 21713    |        |   | 1.005     | 1851            | 854 /       | 1 526     |
|                 | Year        | Design       | g<br>Z                        | (۳)ع)                            | 0.145                                 | 5010        | 1210               | 0.160                                        |           | 0.271       | 6.172        |          | 0,250     | 0170                 | 2010      | 2510       | 5610          | 0.138      | 9810     |        |   | 275.0     | 0 220           | 0.220       | 0.2/8     |
| א<br>נ          | E           | To<br>noiton | emiT<br>InsɔၮϽ                | rc<br>(min)                      | \$ S. ₹                               | 38.7        | 29.9               | 8.0                                          |           | 012         | لې<br>ن<br>۲ |          | 270       | 2 62                 | 235       | 70.0       | S. 24         | 78.9       | 000      |        |   | 6.61      | 2,8             | 22.2        | 22.8      |
| 700             |             | of Flow      | Total                         | td<br>(min)                      | 28.4                                  | 2, 7        | 22.9               | 30.7                                         |           | 14.0        | 39.5         |          | 30.0      | 20%                  | 5 2       | 0 20       | 6.09          | 6.85       | 9.50     |        |   | 631       | 8               | 15.2        | 15.8      |
| -               |             | 나는           | Foch                          | tq!<br>(wju)                     | 50                                    | (3<br>(3)   | Ú                  | 8.8                                          |           | (67)        | Ö            |          | 117.87    | 7.0                  | ι,<br>0   | 0          | e2            | 0<br>0     | b<br>U   |        |   | ⟨ 0 0 0 0 | 6 7             | 0           | 0         |
|                 | :           | Įu           | Storoge<br>Socifficie         |                                  | 0.77                                  | 0.77        | 9.7                | 0 70                                         |           | 340         | 0 70         |          | 6.72      | 0.70                 | 080       | 0          | 000           | 0.89       | 0        |        |   | ķ         | 24.0            | 0<br>A      | 0.78      |
|                 | 114         |              | Composite<br>Runott           |                                  | 0 0 0                                 | 0           | i<br>U             | 000                                          | :         | 005         | 0 6.5        |          | 0 65      | 0.65                 | 2000      | 0 65       | 0             | 0 0        | 0.70     | Kedoh  |   | 20.0      | 540             | 240         | 9.75      |
|                 | :           | Area         | Total                         | (ha)                             | 3,000                                 | V<br>V<br>V | 665                |                                              |           | 2. 25       | 6/ 25        |          |           | 69.00                | 22,5/2    | 12.018     | 215.14        | 6766       | 55663    | Sangal |   |           | 9.58            | 0801        | 11.32     |
|                 |             |              | E G Ch                        | (ha)                             | E1 & 0                                | 13.81       | e<br>e             | 22                                           | **        | 4 66        | 0.70         | 57       | 60        | 0.00                 | 28.50     | 0          | 0<br>0        | 2 2 2      | 09.5     | 70     |   | )<br>*    | 1 1             | 601         | 0 0       |
|                 | - , : :     | C            | Length                        | (w)                              | 55.52                                 | 16000       | ر<br>در<br>در      | 23000                                        | 70. R. 14 | 308         | 3000         | TO P. 1. | 0 0       | 20.00                | ~i        |            | 80 60         | 35.00      | 20 05.6  |        | : | 1505 CC   | 3006            | 1500        | 30 00     |
|                 |             |              | <u> </u>                      |                                  | ; ; ;                                 | , c         | 5,0                | 5                                            |           | 4,0         | 0            |          | R 15      | ر<br>د<br>د          | G<br>G    | 6          | Ø,            | 610        | y 30     |        |   | 75 0      | 5<br>6          | G<br>C<br>C | O.        |

| gure 7.3            |             |                              | Remarks                           | 0.173    | 5510        | 2010     | Earth<br>C.132 |       |   |                |   | · |          |   | · · |          | yes 11, a. D. |      | <br>     |   |   |  |
|---------------------|-------------|------------------------------|-----------------------------------|----------|-------------|----------|----------------|-------|---|----------------|---|---|----------|---|-----|----------|---------------|------|----------|---|---|--|
| refer to Figure 7.3 |             |                              | Reserve<br>Width<br>(m)           |          | 258         | l        | 4.70           |       |   |                |   |   |          |   |     |          |               |      |          |   |   |  |
|                     | Condition   | ng Drain                     | Capacity (m)s.)                   |          | 2560        |          | 2622           |       | - |                |   |   |          | - |     |          |               |      |          |   |   |  |
|                     | Existing Co | Existing                     | Size<br>(m)                       | 01.4×1.4 | 8.50 - 1.50 | 11.00    | 4.7 x1.45      |       |   |                |   | · |          |   |     |          |               |      |          |   |   |  |
|                     | 3           |                              | Runoff (m/s)                      | 1.529    |             | 2252     |                |       |   |                |   |   |          |   |     |          |               |      |          |   |   |  |
|                     |             |                              | Bequired E Width                  | 1        | 2.0         |          | 0.0            |       |   |                |   |   |          |   |     |          |               |      |          |   |   |  |
|                     |             | Orain                        | Copacity (m/s)                    | 2340     | 891.5       | 6.158    | 4. 5.S.3       |       |   |                |   |   |          | : |     |          | - 1           |      |          |   |   |  |
|                     |             | ·                            | VibolaV 🖺                         | 0.7      | 9.0         | 0        | 6.9            |       |   |                |   |   |          |   |     |          |               |      |          |   | , |  |
|                     |             | Proposed                     | Slope                             | 0.25     | 20.25       | 30.25    | 20.25          |       |   |                |   |   |          |   |     |          |               |      |          |   |   |  |
|                     |             |                              | Size<br>(m)                       | 2.4      | 35Cx100     | 21       | 4.00 × 1.00    |       |   |                | · |   |          |   |     |          |               |      |          |   |   |  |
|                     |             | Runoff                       | Major<br>Storm<br>(m/s)           | 595      |             | \$ 119   | 5.03           |       | - |                |   |   |          |   |     |          |               |      |          |   | : |  |
|                     | 2 000       | Runoff                       | Total<br>Runoff<br>(m/s)          | 1.926    | 2.617       | 2.826    | 3.219          |       |   | draims         |   |   |          |   |     |          |               |      |          |   |   |  |
|                     | Year        | Design                       | Per 73<br>(m)s)                   | 0100     | 0           | 0.207    | 0.184          |       |   | tural          |   |   |          |   |     |          |               |      |          |   |   |  |
| ე<br>- ე            | <u>r</u> .  | ro<br>noita                  | Time o                            | 23.2     |             | ()<br>() | 28.9           |       |   | in fra.structu |   |   |          |   |     |          |               |      |          |   |   |  |
| ABLE                |             | Time of Flow<br>In the Orein | Toto:<br>1d<br>(min)              | 16. 2    | 0.61        | 6,       | 21.9           |       |   | by infr        |   |   |          |   |     |          |               |      |          |   |   |  |
| _                   |             |                              | l                                 | 0        | 9           | 6        | . 2            |       |   | served t       |   |   |          |   |     |          |               |      |          |   |   |  |
|                     |             |                              | Storage<br>Storage                | 0.0      | ø           | 0.4      | 840 6          | la h  |   |                |   |   |          |   |     |          |               |      |          |   |   |  |
|                     | :           |                              | Composite<br>Runoff<br>Coefficier | 0.75     | 0.75        | 6.75     | 0.70           | ×     |   | a Tea          |   |   | 256 0 ha |   |     |          |               |      | <br>     |   |   |  |
|                     |             | Area                         | Too!<br>(ha)                      | 11.94    | 17 32       | 18.70    |                | Sunga |   |                |   |   | 13       |   |     | <b> </b> |               | <br> |          | : |   |  |
|                     |             | ব                            | F3 ch<br>(7 c)                    | 0.62     | 1.0         |          |                | 70 8  |   | 4              |   |   | Total    |   |     |          |               | -    |          |   | : |  |
| į                   |             |                              | Drain<br>Length<br>(m)            | 15.00    |             | 15:00    | 140.0C         | 3     |   |                |   |   |          |   |     |          |               |      |          | • |   |  |
|                     |             |                              | S S                               | \$ 0 d   | 98 9        | p 27     | 82 a           | 1 1 1 |   | R 23           |   |   |          |   |     |          |               |      | <u> </u> |   |   |  |

| gure 7.3        |             |                  | Remarks                              |       |                  |   |   |           |        |          |            |      |           |                 |   |            |           |         | :          |           |             |      |
|-----------------|-------------|------------------|--------------------------------------|-------|------------------|---|---|-----------|--------|----------|------------|------|-----------|-----------------|---|------------|-----------|---------|------------|-----------|-------------|------|
| refer to Figure |             |                  | Reserve<br>Width                     |       |                  |   |   | 130       |        | ı        | 1.80       |      |           |                 |   | 1          | 1.00      | ı       | 250        | 1         | 515         |      |
|                 | Condition   | ng Drain         | Copacity (m)s.)                      |       |                  |   |   | 1166      |        | 6846     | 2776       |      |           |                 |   | 0000       | 0.799     | 0.840   | 1 524      | 0.327     | 3,610       |      |
|                 | Existing Co | Existing         | Size<br>(T)                          |       |                  |   |   | 1.30 =080 |        | 060 0    | 1.80 -1.00 |      |           |                 |   | 0000       | 000 x 000 | 0.000   | 2.00 =1.10 |           | 5.10 x 1.80 |      |
|                 |             |                  | Runoff (m/s.)                        |       |                  |   |   | 0.0       |        | 0.760    | 1.976      | .:   |           |                 |   | 0.854      | 1.007     | 1.377   | 1.503      | 1601      | 1.968       |      |
| `               |             |                  | Hequired E                           |       |                  |   |   | 0.4       |        | l        | e)         |      |           | :               |   | 1          | کیک       | ı       | 8.0        | 1         | 25          |      |
|                 |             | Drain            | Copacity (m/s)                       |       |                  |   |   | €060      | ٠      | 1 463    | 2.058      |      |           |                 |   | 1,90       | 1.538     | 2005    | 2315       | 2418      | 3106        |      |
|                 |             | pes              | ¥ijodsV €                            |       |                  |   |   | 0.0       |        | 0.0      | 9          |      |           |                 |   | <br>9      | 000       | 80      | 000        | 0,        | 0,          |      |
| ļ               |             | Proposed         | Slope                                | -     |                  |   |   | 050       |        | 22 030   | 500 85     |      | · · · · · |                 |   | <br>0.30   | 200,00    | 500 22  | 0.30       | 2005      | 2000        | <br> |
|                 |             |                  | Slze                                 |       |                  |   |   | 031.040   |        | 651x6510 | 260 1      |      |           |                 | - | 168×C,92   | 250 ×1.00 | 2012001 | 2000       | 0,83×1.87 | 25C x1.40   |      |
|                 |             | Runoff           | Major<br>Storm                       |       | rains            |   |   | 2001      | :      | 1.004    | 3 705      |      |           | ريم زمري        |   | 1839       | 8568      | 3.013   | 3,305      | 3629      | 4433        |      |
|                 | 2 000       | Runoff           | Total<br>Runoff<br>(m/s)             |       | ural d           |   |   | 0.000     |        | 1000     | 2 2 GA     |      |           | ural d          |   | 5811       | 1 041     | 1.932   | 1513       | 23/2      | 5/82        |      |
|                 | Year        | Design           | (ع) الج<br>(ع) الج                   |       | structural       |   |   | 1430      | :      | 8980     | 0861       |      |           | infrastrucdural |   | <br>0.270  | 0.268     | 0 268   | 9520       | 0 250     | 0 240       |      |
|                 | ڃ           | To<br>noitar     | emiT <u>E</u><br>Insວກວັດ <u>ເຮັ</u> |       | infra            |   |   | 118       | •      | 553      | 0 40       |      |           | نسقه            |   | 1 61       | 22.1      | 22.4    | 28 57      | 0 00      | 27 6        |      |
|                 |             | of Flow<br>Drain | Total<br>Id<br>(min)                 |       | d by             |   |   | 18/       |        | 551      | 17.0       |      |           | 4 6%            |   | <br>15,1   | 15.1      | 15.0    | 175        | 17.0      | 20.0        |      |
|                 |             | Time o           | Each<br>1d;<br>(min)                 |       | Serve            | : |   | 000       |        | (0.5.0)  | 7.7        | Bkit | :         | Served          |   | <br>(0110) | 08        | 0.0     | 10         | 00        | 28          |      |
|                 |             | ‡u:              | Slorage<br>Coefficie                 |       | S<br>P<br>P<br>P |   |   | 22.0      |        | 0.74     | 4          | nort |           | ares            |   | <br>076    | 22.0      | 070     | 0 4        | 074       | 0.73        |      |
|                 |             |                  | Compositi<br>Stroot<br>Coetficie     |       |                  |   |   | 280       |        | 0.05     | 0.65       | 200  |           |                 |   | 0 85       | 2.85      | 0.05    | o es       | 20.0      | 200         |      |
|                 |             | 9                | Total<br>(ha)                        | 50S12 |                  |   | : |           |        |          | 1224       | Sun3 |           |                 |   |            | 217       | 2 74    | 1116       | 1121      | 62.51       |      |
|                 | •           | Ared             | Each<br>(he)                         | era   | 7 96             |   |   | 6. 8.3    |        | 88.5     | 5.43       | 70   |           | 501             |   | 65.5       | 1.56      | 657     | 1 A 2      | 560       | 858         |      |
|                 | <b>-</b>    |                  | Length (m.)                          | Pur   |                  |   |   | 290.00    | 70 9.4 | 15.00    | 00 00      |      |           |                 |   | (\$0.5/    | 00 581    | 15.00   | 100 00     | 00 00     | 720 051     |      |
|                 |             |                  | \$ 2<br>2                            |       | , d              |   |   | 9         |        | Ω<br>(2) | 0.         |      |           | ď               |   | ů<br>a     | 27        | Ø.      | 2          | 0,0       | ñ           |      |

| 7.3                 |             |             | Remarks                        |                                  |   |              |     | } |            |           |            |                 |       |      | <u> </u> |          | <u> </u> |   |                | <u> </u> |        |    |   |
|---------------------|-------------|-------------|--------------------------------|----------------------------------|---|--------------|-----|---|------------|-----------|------------|-----------------|-------|------|----------|----------|----------|---|----------------|----------|--------|----|---|
| refer to Figure 7.3 |             | ·<br>       |                                |                                  |   |              |     |   |            |           |            | ·               | . 1   | <br> |          |          | <br>-    |   |                |          |        |    |   |
| refer to            |             | ٦           | Reserve<br>Width               | (E)                              |   |              | -   |   | 4.9        | .!        | ù          |                 |       |      |          |          |          |   |                | <br>     |        | -  |   |
|                     | Condition   | ng Drain    | Copacity                       | ( m) & )                         |   |              |     |   | 0.75/      | 1.100     | 1.479      | . 27.2          |       |      |          |          |          |   |                |          |        |    |   |
|                     | Existing Co | Existing    | \$2!S                          | (m)                              |   |              |     |   | 32 : 0.9   | 4.2 × 0.9 | 01461      | 27.56.0         |       |      |          |          |          |   |                |          |        |    |   |
|                     |             |             | Runoff                         | (4)3)                            |   |              |     |   | 0.520      | 1002      | 1 260      | 1417            |       |      |          |          |          | - |                |          |        |    |   |
|                     |             |             | Albiv<br>evisses<br>bailros    | (E)                              |   |              |     |   | 5.5        |           | 8.0        |                 | •     |      |          |          |          |   |                |          |        |    | : |
|                     |             | Drain       | Copacity                       | (m)s)                            |   |              |     |   | 1163       | 1714      | 1.090      | 2178            |       | :    |          |          |          |   |                |          |        |    |   |
|                     |             |             | Velocity                       | _ = 1                            |   |              |     |   | 7.0        | Ø         | 0.7        |                 |       |      |          |          |          |   |                |          |        |    |   |
|                     |             | Proposed    | Slope                          | (%)                              |   | :            |     |   | 27.0       | 030       |            |                 |       | <br> |          |          |          |   |                |          |        |    |   |
|                     | - 1         |             | Size                           | (E)                              |   | -            |     |   | 250 x 1.00 | 0168×182  | 200 - 1.20 | 2×<br>0122×1.22 |       |      |          |          | -<br>-   |   |                |          |        |    |   |
|                     |             | Runoff      | Major<br>Storm                 | (m <sup>3</sup> / <sub>3</sub> ) |   | drains       |     |   | 1.483      |           | 2054       | 000             |       |      |          |          |          |   |                |          | 3 Te   |    |   |
|                     | 2 000       | Runoff      | Total<br>Runoff                | (m) <sub>\$</sub> )              |   | ctural dr    |     |   | 0,837      | 1 404     | 1. 685     | 2687            |       |      |          |          |          |   |                |          |        |    |   |
| •                   | Year        | Design      | ž.                             | (m)s)                            | - | Stractu      |     |   | 9820       | 0.232     | 0.2/8      | 0.214           |       |      |          |          |          |   |                |          |        |    |   |
| ი<br>-              | ڃ           | 10<br>noite | Fime<br>Inecred                | r<br>(min)                       |   | infres       |     |   | 188        | 23 4      | 2<br>2     | 276             |       |      |          |          |          |   |                |          |        |    |   |
| ABLE                |             | of Flow     | Total                          | nin)                             |   | χ <b>ο</b> Α |     |   | 10'1       | 75.4      | 2.61       | 200             |       |      |          |          |          |   |                |          |        |    |   |
| -                   |             | Time of     | <u> </u>                       | r<br>Gigin<br>L                  |   | served       |     |   | (/'2/)     | 67        | 63         |                 | Bukit |      |          |          |          | ÷ |                | , :      |        |    |   |
|                     |             |             | Storage                        |                                  |   | д<br>7<br>8  |     |   | 0.74       | 0.74      | 0 73       | 0.73            | 71    |      |          |          |          |   |                |          |        | 1. |   |
|                     |             |             | nizogmoč<br>NoruR<br>Sioilleoû | )                                |   |              |     |   | 080        |           | 080        | 0.80            | A     | <br> |          | 40       |          |   |                |          |        |    |   |
|                     |             | Area        | Total                          | (ha)                             |   |              | : - |   | **         | 653       | 6501       | 12.13           | Sunga | <br> |          | 2800     |          |   | :              |          | :<br>: |    |   |
|                     |             | 1           | Each                           | (ha)                             |   | 7.57         |     |   | 4.84       |           | 0.00       | 75.7            | ۲,    |      |          | . 70 tad |          |   | .1<br>.1<br>.1 |          |        |    |   |
| :                   |             |             | Croin                          | <u>ε</u>                         |   |              |     |   | (350)      | 15.00     |            | 45 00           |       |      |          |          |          | : | 1.             |          |        |    |   |
|                     |             | . :         | g é                            |                                  |   | P. 12        |     |   | σ<br>Ω     | 4/0       | 51.0       | ď               |       |      |          |          |          |   |                |          |        |    |   |

|             |                   | Remarks                         |                     |         |                 |              |           | į                |                   |            |       |      |   |   |   |     |   |      |   |                                         |
|-------------|-------------------|---------------------------------|---------------------|---------|-----------------|--------------|-----------|------------------|-------------------|------------|-------|------|---|---|---|-----|---|------|---|-----------------------------------------|
|             |                   | Reserve                         | Ê                   | .,      |                 |              | 0         | 0,               | 69                | 0          |       |      |   |   |   |     |   |      |   |                                         |
| Condition   | 19 Drain          | Copacity                        | (m/s).              |         |                 |              |           | 0.373            | 0.373             | 1,029      |       |      |   |   |   |     |   |      |   |                                         |
| Existing Co | Existing          | 92 S                            | t m)                |         |                 | -            | 40.61     | 1.0 * 2.0        | 1.8 ×0.7          | 2.2 × 1.6  | 1     |      |   |   |   |     | i |      |   |                                         |
| ٠           |                   | Runoff                          | (m);s )             |         | 7.096           | 1.737        | 4067      | . 006 1          | 8002              | 2.038      |       |      |   |   |   |     |   |      |   |                                         |
|             |                   | banlıcd<br>Reserve<br>Vidih     | (m)                 |         |                 | 82           | 28        | 8.6              | 9.2               |            |       |      |   |   |   |     |   |      |   |                                         |
|             | Drain             | Copacity                        | (m <sup>3</sup> /s) |         | P, 34B          | 3 030        | 3 63 6    | 3 838            | 8586              | 3.838      |       |      |   | • |   |     |   |      |   |                                         |
|             | sed               | χ<br>γείοσίτη                   |                     |         | 80.00           | 000          |           | 6.0 5            | 0.0               |            |       |      |   |   |   | · · |   |      |   | 1                                       |
|             | Proposed          | Slope                           | (%)                 |         | 30.0            | 30 00        | 20 0.05   | 20 0.25          | 29.0              |            |       | <br> |   |   |   |     |   |      |   |                                         |
|             |                   | Size                            | (E)                 |         | 0163 K1 S3 0.25 | 3.20 09.1.90 | 320 - 190 | 320 = 1.96       | 320 × 1.90        | 320 - 1.90 |       |      |   |   |   |     | - |      |   |                                         |
|             | Runoff            | Major<br>Storm                  | ( s/ <sub>m</sub> ) |         | 3168            | 5.032        | 6665      | 6.123            | G 123<br>(S. 768) | (5505)     |       |      |   |   |   |     |   |      |   | *************************************** |
| 2 000       | Runoff            | Total<br>Runoff                 | (m)/s)              |         | 2.209           | 2,8/5        | 3 303     | 3,303<br>(3 803) | 3303              | 3.303      |       |      |   |   |   |     |   |      |   | 1                                       |
| Year        | Design            | <u>بة</u><br>2                  | (m) <sup>5</sup> )  |         | \$0.0           | 0.188        | 0.136     |                  | 5010              | 0.098      |       |      | - |   |   |     |   |      |   |                                         |
| چ           | to<br>noite:      | emiT<br>Ineomo                  | olm)                |         | 20.7            | 228          | 265       |                  |                   | P          |       |      |   |   |   |     |   |      |   | 1                                       |
|             | orain             | Total                           | nin)                | * .     | 13.7            | 8 5          | 261       | 25.0             |                   | 308        |       | •    |   |   |   |     | _ | <br> |   | +                                       |
|             | Time of<br>in the | - CO - C                        | ra;<br>(min)        |         | (011)           | 7            | ς,<br>Γ   | b,               | ر<br>ا            | o<br>U     |       |      |   |   |   |     |   |      |   |                                         |
|             | ţu                | Storage<br>SicitteeD            |                     |         | 25 3            | A. v. o      | 0.73      | 0 78             | 0.77              | 0.76       |       |      |   |   |   |     |   |      |   |                                         |
|             |                   | atizogmoč<br>HoruR<br>SicilisoO | 1                   |         | 0.65            | 0 65         | 0.50      | 050              | 20.0              | 000        | Kedan |      |   |   |   |     |   |      |   | -                                       |
|             | Area              | Total                           | (ha)                | basin   |                 | 20.24        | -         | 20.19            | ,                 | 200        | 56730 |      |   |   |   |     |   |      | : |                                         |
|             | Ar                | Fac.                            | (ha)                | Largear | 81:51           | 30 S         | 13.03     | 282              | '                 |            | 6     |      |   |   |   |     |   |      |   |                                         |
|             |                   | Drain<br>Length                 | (æ)                 | Lan     | 13000           | 115.00       | 500 002   | 205.00           | 545.00            | 37056      |       |      |   |   | : |     |   |      |   |                                         |
|             | •                 | <u> </u>                        |                     |         | , 7             | 2.7          | 2.3       | 7 7              | 5.7               | 9          |       |      |   |   |   |     |   |      |   |                                         |

