
2.2.6 Incidence of Water Borne Diseases

For the purpose of rating on incidence of water borne diseases, in the year 1974 is considered in terms of the whole Project Area, and then the number of diseases occurred in each sewerage zone is estimated by the ratio of served population to the total population of Project Area, as indicated in Table H-14.

For an assessment, 50 points are assigned to each of sewerage zones according to the level of incidence estimated as follow:

Ase	essment	. Point	· 1 	Number of Incidence of Dise	ses
• .	50		· .	10 more	
	25		:	5 - 10	
	0			0 - 5	

The results of the assessment for each of sewerage zones are shown in Table H-15.

	· .	· · · · · · · · · · · · · · · · · · ·		1	:		
Disease		1970	1971	1972	1973	1974	1975
Cholera		62		7	_	1.0	
Dysentery		1	6	11	35	19	11
Infectious Hapatitis		-	-	-	67	49	53
Leptospiral Infectious		-		-	1		
Typhoid Fever		3	18	51	58	• 11	13
Total		66	24	69	161	89	77

TABLE H-13 Numbers of Patient of Water Borne Disease

The data was obtained from Medical and Health Department of Penang.

н – 30

TABLE H-14

Distribution of Water Borne Disease in 1974 by Sewerage Zone

District	Zone	Population at 1976	Ratio of Population (a) (%)	Incidence of disease presumed (persons) (a) x 89
	1	37,920	16	14
	- 2	3,585	.1	1
	3	28,255	12	10
Butterworth	4	26,332	11	10
	5	3,961	2	2
	6	8,902	4	3
	1	13,657	6	5
	2	69	0	0
Seberang Jaya	3	2,991	1	1
beberang baya	4	7,518	3	3
	5	4,369	2	2
	1	1,860	1	1
Prai	2	1,974	1	1
	1	7,559	3	3
	2	6,387	3	3
Dutit to	3	45,540	19	17
Bukit	4	6,077	2	. 2
Mertajam	5	7,257	3	3
	6	13,840	6	5
	7	9,947	1900 - 1 4 - 1 1998 - 1999 - 1999	3
Total	· · · · · · · · · · · · · · · · · · ·	238,000	100	89

н - 31

District	Zone	Assessment Points
	1	50
	2.3	0 50
Butterworth	4	50
	5	0 0 0
	1	25
Seberang Jaya	2	0
Jeberang Jaya	4	0
Prai	1	0
	1	0
Bukit	2 3	0 50
Mertajam	4 5	0
	6	25
1	7	0

TABLE H-15 Result of Assessment for Incidence of Water Borne Disease

CHAPTER 3

EVALUATION AND SUMMARY OF RATING SYSTEM

The consideration of rating on the basis of six elements as stated earlier in determining construction stages of sewerage systems of Butterworth/Bukit Mertajam Metropolitan Area is summarized in Table H-16 with the following comments and conclusion.

- (a) The densely populated areas exist in the Project Area and undoubtedly will increase by the year 2000. As such areas will have greater impact of the environmental sanitation and maximum beneficiaries of the population by the satisfactory sewerage system, higher rating is justified.
- (b) Sewerage zones which make the heaviest contributions to the waste load production are surrounded by the areas of industrial estate and combination of residential and industrial area, like in case of zone 1 of Prai district, which produces most heavy waste load, and is assessed accordingly. However, the overall priority is lower due to the fact that this is industrial area and has no served population. In our opinion, industrial waste control should have special consideration for itself in addition to the municipal sewerage system facilities.
- (c) In view of lack of exact data on existing excreta disposal systems, an assessment of urban and rural area has been given arbitrarily 150 and 75 points in proportion to the population who have no served excreta disposal system in each of sewerage zones.

High ratings are given to each of the sewerage zones where the existing excreta disposal system is not functioning well or does not exist. The rating reflects the actual sanitary conditions in the Project Area.

- (d) With respect to flooding, the rating is considered according to the extent of flood in connection with drainage facilities. Inclusion of flooding in the evaluation appears to be appropriate for the areas without adequate facilities for storm drainage.
- (e) Availability of water supply are given fewer assessment points than other factors because it is deemed less meaningful in determining the priority of sewerage system construction.
- (f) The results of the rating on incidence of water borne disease indicates that the congested and high population density zones get higher assessment points. Generally speaking, rate of incidence of such diseases are low in the Project Area.

The results of the rating indicate that the zone 1 of Butterworth District has the highest total number of points, representing the combined ratings for all six elements, followed by the zone 3 and 4 of Butterworth, and zone 3 of Bukit Mertajam as listed in the following.

	÷	· · · ·		n an		and the second second		
District	Zone	Popu- lation Density	Waste Load Produc- tion Aspects	Excreta Disposal System	Flood- ing	Avail n ability of Water Supply	Incidence of Water- Borne Diseases	Total
	1	400	165	150	50	50	50	865
	2	200	65	0	0	50	0	315
Butter-	3	250	150	75	100	50	50	675
worth	4	250	90	75	50	50	50	565
÷	5	100	40			42	0	182
е.	6	100	40	0	0	46	0	186
	1	250	65	0	0	47	25	387
	2	150	90	0	0	50	0	290
Seberang	3	100	40	0	0,5	48	0	188
Jaya	4	50	40	0	1 0	40	0	130
ender Provinsioner Provinsioner Provinsioner	5	100	40	0	0	45 45	0	185
	1	0	225	0	. 0	40	0	265
Prai	2	100	40	0	0	40	0	180
· · · · · · · · · · · · · · · · · · ·	1	100	40	0	0	41	0	181
	2	100	40	0	0	41	0	181
	3	200	65	75	100	45	50	535
Bukit	4	100	40	0	0	48	0	188
Mertajam	5	100	40	0	0	46	0	186
	6	100	40	0	0	40	25	205
	7	100	40	0	0	42	0	182
			·					

TABLE H-16 Results of Rating for Overall Aspects

Priority of Construction	District	Zone	Assigned Points
1	Butterworth	1	865
2	11	3	675
3	11	4	565
4	Bukit Mertajam	3	535
5	Seberang Jaya	1	387
6	Butterworth	2	315
7	Seberang Jaya	2	290
8	Prai	1	265
9	Bukit Mertajam	6	205
10	Seberang Jaya	3	188
10	Bukit Mertajam	4	188
12	Butterworth	6	186
12	Bukit Mertajam	5	186
14	Seberang Jaya	5	185
15	Butterworth	5	182
15	Bukit Mertajam	. 7	182
17	II.	1	181
17	11	2	181
19	Prai	2	180
20	Seberang Jaya	4	130

It is concluded that the rating system adopted in this study, while arbitrary in many respects, reasonably reflects and quantifies both present and future conditions of the Project Areas with respect to need for sanitary and drainage sewerage. The results are considered as a good indication of the overall needs of the various zones and should be taken into consideration in determining the staging of the sewerage construction programme.

APPENDIX I

STORMWATER QUANTITY

Table of Contents

<u>Chapter</u>

1.	RUNO	FF COEFFICIENT I - 1
	1.1	Selected Representative Area I - 1
:	1.2	Runoff Coefficient by Surface Type I - 2
	1.3	Estimation of Coefficients in the Selected Areas I - 2
	1.4	Runoff Coefficient at present I - 4
	1.5	Comparison with Other Areas I - 5
	1.6	Recommended Runoff Coefficients I - 5
2.	TIME	OF CONCENTRATION I - 8
	2.1	Inlet Time I - 8
·		2.1.1 Inlet Time of Individual Land Use - I - 9
· · ·		2.1.2 Comparison with Practice in Other Areas I -13
		2.1.3 Recommended Inlet Time I -13

Page

CHAPTER 1 RUNOFF COEFFICIENT

It has been generally recognized that the values assigned to the runoff coefficient depend mainly upon the surface characteristics including the imperviousness and the slope.

On the basis of numerous experiences in the past, the surface characteristics in terms of the impervious factor of the different types of surface such as roof, road, yard and others, can be estimated.

Using these impervious factors of individual type of surface, the composite runoff coefficients, expressed by the following equation, have been developed for this Project.

$$C = \sum_{i=1}^{m} CiAi / \sum_{i=1}^{m} Ai$$

where

C = composite runoff coefficient Ci= impervious factor by the type of surface Ai= area by surface type, in ha m = number of the surface type

1.1 Selected Representative Area

Four districts representing typical patterns of the land use were selected in the Project Area and their coefficients in the future were estimated as follows:

Type of land use

Representative area (refer to Figure - I-1

 Residential-A (residential ----- planned housing development area with semi-detached houses) area along Juru river

I - 1

- 2) Residential-B (residential -----outskirt of Bukit Mertajam area with detached houses)
- 3) Commercial area ----central part of Bukit Mertajam
- 4) Industrial area -----Mak Mandin area in Butterworth

1.2 Runoff Coefficient by Surface Type

Coefficients with respect to surface type currently in use are shown below.

TABLE I-1 Runoff Coefficient with respect to Surface Type

	Runoff Coefficient		
Type of Surface	Range	Used	
Roofs	0.85 - 0.95	0.90	
Paved Roads	0.80 - 0.90	0.85	
Other pavement	0.75 - 0.80	0.80	
Vacant lots	0.10 - 0.30	0.20	
Lawns	0.05 - 0.20	0.10	

Source: WPCF Manual of Practice No. 9 (USA) (1970) Manual of Sewerage Facility Design, 1972, JAPAN

1.3 Estimation of Coefficients in the Selected Areas

The various types of surfaces were calculated, in percentage of total surface, for each of the selected four representative districts. After that the runoff coefficients of representative district were calculated and shown in Table I-2.

TABLE 1-2Percentage of Individual Surface Typeand Runoff Coefficient

				(in y	ear 2000)
Type of Surface	Runoff Co- efficient of Individual Type of Surface	Residential area (semi- detached)	Residential area (detached)	Commercial area	Industrial area
Roofs Paved roads	0.90 0.85	0.30/0.27 0.35/0.30	0.25/0.23	0.28/0.25	0.18/0.16
Other pave- ment Vacant lots	0.80	0.05/0.04	0.05/0.04	0.46/0.37 - / -	0.05/0.04
Lawns Total	0.10	0.25/0.03	0.29/0.03	- / - 1.00/0.84	0.47/0.05

Note: percentage of individual type of surface/runoff coefficient

Sparsely inhabited residential area, with population density of 53 persons/ha, is proposed in the future land use plan. $\frac{1}{}$

The runoff coefficient in such areas are determined on the basis of an assumption in which a habitation would take place in association with the housing development project with population density around 120 persons/ha in some parts of the areas. The percentage of areas with 120 persons/ha is $\frac{53}{120} = 0.44$ and remaining part (1 - 0.44 = 0.56) would be areas non habited with runoff coefficient of 0.1. The composite coefficient in the sparsely inhabited area, therefore, can be estimated as follows:

1/ This residential area is defined as the residential-C in the discussion of runoff coefficients.

L – 3

In this Project the runoff coefficient of 0.35 is used for sparsely inhabited residential area.

1.4 Runoff Coefficient at Present

Existing land use types in the Project Area are the residential area with detached house, commercial area and industrial area. The runoff coefficient of individual land use mentioned above is calculated in the same manner as that used in the case of future coefficient estimation.

In Table 1-3, the present runoff coefficient is shown.

	14976 T-2 1***	sent nunsti soc		
Туре	Runoff co- efficient of Individual Surface	Residential area	Commercial area	Industrial area
Roofs	0.90	0.10/0.09	0.35/0.31	0.11/0.10
Paved Roads	0.85	0.10/0.09	0.35/0.30	0.18/0.15
Other pave ment	0.80	- /	- / -	0.05/0.04
Vacant lots	0.20	0.30/0.06	0.30/0.06	-/-
Lawns	0.10	0.45/0.05	- / -	0.66/0.07
Palm tree coverage	0.10	0.05/0.01	-/-	-/-
Total	under einer States eine seinen States auf de States under States einer	1.00/0.30	1.00/0.67	1.00/0.36

TABLE 1-3 Present Runoff Coefficient

Note: Percentage of individual type of surface/runoff coefficient

I - 4

Remaining parts of the Project Area are mountenous areas and agricultural areas. The runoff coefficient of those areas are 0.5 and 0.1 respectively.

1.5 Comparison with Other Areas

The calculated coefficients are also compared with those used for other cities.

			, 바이 아파 1 가 바이 ¹ 같이	and the second second
Type of	Coefficient	Standard in	Practice	Standard
Land Use	proposed for this Project	Malaysia	in U.S.A.	in Japan
Residential	0.65	0.75	0.60 - 0.75	0.65
Commercia1	0.85	0.90	0.70 - 0.95	0.80
Industrial	0,50	0.80	0.50 - 0.80	0.65

TABLE I-4 Coefficients Adopted in Other Areas

and the second second

As indicated in the above table, the coefficients for the Project Area coincide substantially with those in other places.

1.6 Recommended Runoff Coefficients

Taking the facts and assumptions mentioned above into account, the following runoff coefficient are recommended for drainage system planning.

Land	d Use	in 1976	in 2000
Residential	Residential-A	0.65	0.65
	Residential-B	0.30	0.65
i	Residential-C		0.35
Commercial a	area	0.70	0.85
Industrial a	area	0.35	0.50
Agricultural	l area	0.10	0.10
Mountainous		0.50	0.50

TABLE 1-5 Recommended Runoff Coefficients

Note : Residential-A---- residential area with semi-detached houses and population density of 120 persons per hectare in 2000.

> Residential-B---- residential area with detached houses and population density of 120 persons per hectare in 2000.

Residential-C---- residential area with population density of 53 persons per hectare in 2000.

CHAPTER 2 TIME OF CONCENTRATION

An estimation of the time for the flow to concentrate at the point under consideration must be made for the purpose of application of the national method. For urban storm sewers, the time of concentration consists of inlet time plus time of flow in the sewer from the most remote inlet to the point under consideration.

The time of flow in the sewer is dependent upon the distance, slope and type of conduits or channels, and is calculated in individual sewer line when it is designed. However, the inlet time is in similar range in areas in which surface slope, nature of surface cover, and length of path of surface flow are in the same charactor. Therefore it is general practice to use the fixed inlet time in areas with similar characteristics.

In this project the inlet time has been estimated as follows.

2.1 Inlet Time

An equation which represents the inlet time for urban sewer design was originally proposed by Horton $\frac{1}{}$ and later modified and formulated by Kerby $\frac{2}{}$ in the form:

$$T_{i} = \left(\frac{2}{3} \times 3.28 \times L \times \left(\frac{n}{\sqrt{5}}\right)\right)^{0.46}$$

where T_i = inlet time, minutes

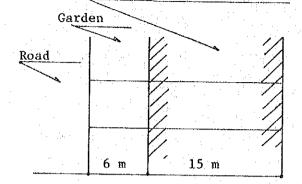
- 1/ R.E. Horton, The Role of Infiltration in the Hydrologic Cycle. Trans. AGU, Vol. 14, 1933.
- 2/ W.S. Kerby, Civil Engineering 29,174 (1959).

- L = distance from the most remote point to the point
 of inlet, meters
- n = coefficient of roughness, similar to runoff coefficient, as given in table below

Character of Surface	Coefficient of Roughness		
Smooth pavement	0.02		
Bare, packed soil, free of stone	0.10		
Poor grass cover	0.20		
Moderately rough bare surface	0.20		
Average grass cover	0.40		
Forest (deciduous tree)	0.60		
Dense grass cover	0.80		
Forest (deciduous tree, with deep dead leaves)			
Forest (needle-leaved tree)	0.80		

TABLE I-6 Coefficient of Roughness in Kerby's Equation

The surface slope in the Project Area except Bukit Mertajam area is around 0.3/1000 and length of path of surface flow was decided for individual type of land use. The inlet time of individual land use is been estimated as described below.


2.1.1 Inlet Time of Individual Land Use

(1) Residential Area

From the layout plan of a new housing development area the distance from the remote point of the premise is estimated as shown in the figure below.

I - 9

Semi-detached House

The inlet time can be calculated as:

L = 6.0 m n = 0.2

$$t = \left[\frac{2}{3} \times 3.28 \times 6 \times \frac{0.2}{\sqrt{0.0003}}\right]^{0.467}$$

= 10.4 minutes

(2) Commercial Area

The commercial area in Butterworth and Bukit Mertajam are served with roads which run in parallel approximately in every 50 meters or so. The average width of these roads is approximately 10 meters.

Based on the condition above, the distance from the center of an area between two roads is assumed to be 20 meters.

The inlet time of 6.2 minutes is calculated when the distance of surface flow is 20 meters and "n" = 0.02.

(3) Industrial Area

In case of industrial area, Mak Mandin area was investigated and the average distance of the surface flow is determined to be 15 meters. When coefficient "n" is 0.2, the inlet time is 16.0 minutes.

(4) Mountainous Area

The path of surface flow consists of two parts with different characteristics as shown in the figure below.

I - 10

part "a": established drainage channels part "b": natural water way part "c": path of overland flow

The inlet time consists of the time of flow of part "b" plus part "c".

part

For the purpose of estimation of the inlet time Rziha formula is used for the part "b" and Kerby formula for the part "c".

The Rziha formula is in the current use for the estimation of the average velocity in mountainous area and expressed as;

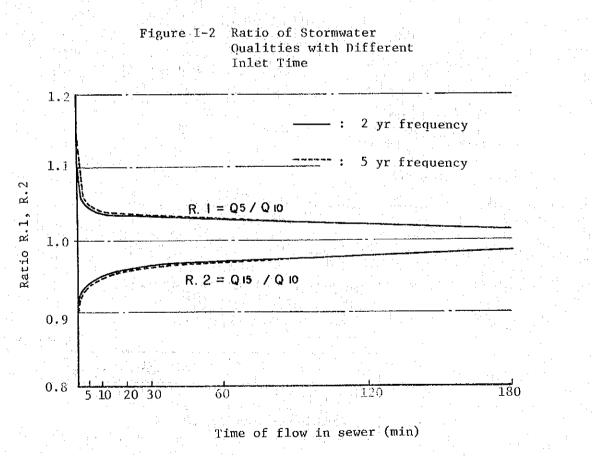
V = 20 (H/L)^{0.6}
where V = velocity of flood, m/sec
L = horizontal distance of the part "b", m
H = head in the part "b", m

The time of flow in the part "b" is, therefore, calculated as follows.

where

 $Tb = \frac{L}{V} \times 60$

Tb = time of flow in the part "b" in minutes.


By applying Kerby formula, the time of flow in the part "c" was investigated in eight existing major streams in the Project Area. The range of results is 17 - 21 minutes with the average of 19.5 minutes. It is concluded that the use of 20 minutes for the inlet time would yield the satisfactory results.

;;; I - 11

The inlet time discussed is summerized as follows: Residential area ----- 10 minutes Commercial areas ----- 5 " Industrial area ----- 15 " Mountainous area ----- 20 + Tb"

In order to simplify the application of the inlet time, an comparison of results derived by using 5, 10 and 15 minutes was carried out. The ratio $\frac{Q_5}{Q_{10}} = R.1$, $\frac{Q_{15}}{Q_{10}} = R.2$ were calculated and is shown in Figure 1-2.

The subscripts denote the inlet time, so Q_5 represents the stormwater runoff quantity of any rainfall, which will be expected in the drainage systems with the inlet time of 5 minutes.

- 12

From Eigure I-2, it is understood that the different between stormwater quantities yielded with the inlet time of 5, 10 and 15 minutes is not noticeable.

It was concluded, therefore, the same inlet time of 10 minutes is used for residential, commercial and industrial areas in this Project.

2.1.2 Comparison with Practice in Other Areas

The inlet time recommended for this project is compared with practices in USA and Japan as shown in Table I-7.

TABLE I-	7.	Comparison	of	Inlet	Time
----------	----	------------	----	-------	------

(in minutes)

Definition of Area	Recommenda- tions for this Project	Practice in Japan	Standards in ASCE
Densely populated area with paved roads and drainage systems		5	5
Sparsely populated area	10	10	10 - 15

2.1.3 Recommended Inlet Time

The recommended inlet time is shown in Table I-8.

TABLE I-8 Inlet Time

(in minutes)

Area	Inlet time		
Urban area	10		
Mountainous area	20 + Tb		

APPENDIX J

DRAINAGE SYSTEM CONSIDERATION

Table of Contents

<u>Cha</u>	pter				Page
1.	ALTERNATIVE DRAINAG	E SYSTEMS C	ONSIDERED IN		
	BUTTERWORTH AREA				J 1
2.	CALCULATION OF RESE	RVOIR		موند وحدة وحدة وحدة مارية تحري وحدة العدة وحد الله	J - 5
3.	SUPPLEMENTAL FIGURE	S AND TABLE	S OF DRAINAGE	· ·	
	SYSTEM PLANNING				J -10
			TOUL LAND BE		
4.	RECOMMENDED ELEVATION	UN UP IU WH	TCH LAND BE		J -30

ALTERNATIVE DRAINAGE SYSTEMS CONSIDERED IN BUTTERWORTH AREA

CHAPTER 1

Studies on alternative drainage systems have been carried out including the construction diversion drains to the sea and the provision of reservoirs.

Following principles are applied for the study.

1) Because the area is low-lying, it is preferable for the drainage systems proposed here to have characteristics in which the least head loss is required. In other words, the gradient of water surface should be as small as possible. The type of drainage system described above would make it possible to graviate stormwater runoff into the Prai River or the sea. Thus the construction of pumping stations would be avoided, resulting in the savings of the initial costs.

ii)

For the lowest areas, it is considered that filling-up of land would be required.

iii) The involvement of constructions of reservoirs as the past of drainage systems is taken into consideration.

Three alternatives have been considered and investigated as described below.

(1) Alternative-I (Ref. Figure J-3)

Except slight alignment of meandering parts, existing routes of major drains are left unchanged. However, extention of the Butterworth Drain C (hereafter called as B.D.C.) in its upstream portion is proposed, for providing smooth collection and removal of stormwater runoff of the tributary area. Because the considerable parts of the area have already been built-up, the land availability would have limitations to such degree as to prevent application of trapezoidal cross section. The reinforced concrete rectangular channel, therefore, is proposed to use. It is found, as a result of investigation, that existing channels have to be widened and deepened considerably. The water level in proposed ditch comes up as high as +1.94 meters (+6.36 ft) at the area of lowest ground elevation of about +1.80 meters (+5.9 ft). Considering 0.3 meter's head loss expected in branches, land fill up to +2.30 meters (+7.5 ft) will be required around this area in order to cope with expected flooding due to backing up from the sea resulted from the highest sea water level of +1.68 meters (+5.5 ft). It can be concluded that the current recommendation of DID for land fill saying that the newly developed areas should be filled up to +2.30 meters (+7.5 ft), is completely justified with this investigation.

The construction costs of this alternative is lower than costs required for alternative-II. (Ref. Table J-1 Construction Costs of Alternatives).

(2) Alternative-II (plan: Ref. Figure J-4)

The diversion channels of B.D. (A), (B) and (C) are weighted in this alternative. Because the space for the construction of diversion ditches is not available except existing major roads, a construction of box culverts is considered and the costs are estimated.

As can be seen from Table J-1, the construction costs are higher than other alternatives.

It is found that the cross section at down stream of individual drain is not reduced by the diversion to the sea of discharges from upstream tributaries. For example drain 1.D.4 with drainage area of 437 hectares in alternative-I conveys stormwater runoff of 18 cu m/sec and after the diversion of the upstream parts to the sea, the same drain with 212 hectares, designated 2.D.2 in alternative-II, is still to convey runoff of 15 cu m/sec which is 85 percent of the 18 cu m/sec. This means that although the drainage area are reduced to about 50 percent of the alternative-I, stormwater runoff quantities are reduced only 15 percent. The results might be mainly from characteristics of rainfalls in the tropical zone, i.e., intense and short shower type. It is apparent that the effect of diversion to reduce the cross section in down stream is not conspicuous.

The engineering difficulties expected in this alternative are the construction of box culverts under trunk roads for considerably long period and the countermeasure to consider for preventing accumulation of sea sand at the outfall of diversion drains.

Serious inconveniences for the traffic are expected at the time of constructions of box culverts. On top of that the space assigned for roads will be occupied by the diversion culverts with large cross sections required and least space for other utilities can be assigned.

From Table J-1, it is noted the construction of box culverts hikes the total initial costs of the alternative. Shallow shoreline of Butterworth makes it difficult to construct any deep structures without problems of sand accumulation to them. The constructions of larger outfalls of diversion ditches will raise the initial cost up and will increase difficulties on maintenance work.

(3) Alternative-III (plan: Ref. Figure J-5 profile: Ref. Figures J-6, 7 and 8)

This alternative differs from the alternative I in providing reservoir. The total construction costs of this alternative is lowest among three alternatives, and special technical problem will not be expected.

This alternative is therefore proposed for the drainage system in Butterworth area, because of its lower initial cost and absence of any special engineering difficulties.

a da baran da karan da karan da baran da karan d Baran da karan da kara	(1,000 M\$)
Open Channel Box Culvert	Land Acquisition Total
Alternative I 39,500 -	3,220 42,720
Alternative II 27,100 23,300	1,970 52,370
Alternative III 37,030 350 (Reservoir)	3,400 40,780

			A		 A Maximum Control of Control of
10 A D Y T	T 1	<i>n</i>	<u> </u>	-	
TAKLE		CODEFFINETION	Coste	nt.	Altornatiszog
TTTTTT	<u>с</u> т	oouseructiou	- <u>vv</u> ala	UL.	Alternatives

Note: Construction cost of individual line in each alternative is shown in Tables J-2, 3, and 4.
: Calculation of required volume of the reservoir is described

in the following chapter.

			(1,000 M\$)
7	Construct	ion Cost	· · · · · · · · · · · · · · · · · · ·
Line No.	Open channel	Box culvert	Land Acquisition Total
1.A.1 - 2	3,800	-	530 4,330
1.B.1 - 7	15,600		1,610 17,210
1.0.1 - 6	11,400	-	680 12,080
1.D.1 - 4	8,700	-	400 9,100
Total	39,500		3,220 42,720

TABLE J-2 Construction Costs of Alternative-I

TABLE J-3 Construction Costs of Alternative-II

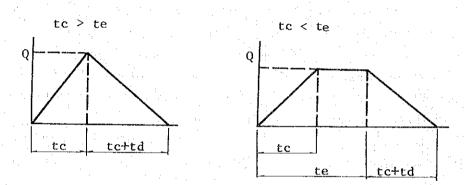
(1,000 M\$)

Line No.	Construc	tion Cost			
DING NO.	Open channel	Box culvert	Land	Acquisition	Total
2.A.1	200			50	250
2.8.1	2,200			330	2,530
2.C.1 - 2	4,900			40	4,940
2.D.1 - 3	4,800		. 4	30	4,830
2.E.1 - 3	3,100	4,800	. :	140	8,040
2.E.4	1,600			300	1,900
2.F.1 - 6	4,300	13,100	. 19 1.	440	17,840
2.F.7 - 8	3,300			210	3,510
2.F.9 - 10	2,700			430	3,130
2.G.1 - 2	e Alexandre en la composición de la com La composición de la c	5,400			5,400
Total	27,100	23,300		1,970	52,370

TABLE J-4 Construction Costs of Alternative-III (1,000 M\$)

Line No.	Constructi		Land Acquisi	tion Total
	Open channel	Reservoir		
BWA 1 - 7	15,600	-	1,610	17,210
BWB 1 - 6	10,400	150	790	11,340
BWC $1 - 4$	8,600	200	600	9,400
BWD 1	230		70	300
BWE 1	2,200	999 - 1992 <u>-</u> 1993 - 1993 1994 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 -	330	2,530
Total	37,030	350	3,400	40,780

J = 4


CHAPTER 2

CALCULATION OF RESERVOIR

In the Alternative-III, (Ref. Section 4.1, PART-IV) the construction of two reservoirs is included. The volume of these is calculated as follows:

(1) Inflow hydrograph

Two types of inflow hydrograph are developed as described below;

Where tc: Time of concentration

1) Reservoir in Butterworth Drain B

For this reservoir following three cases are calculated.

tc = 60 min.	Q = 6.5 cu m/sec
te = 80 min.	Q = 5.7 cu m/sec
te = 100 min.	Q = 5.1 cu m/sec
• · · · · · · · · · · · · · · · · · · ·	(i) A set of the se

Cumulative inflow curves are developed as shown in Figure J-1.

Reservoir in Butterworth Drain C

For following three cases, the inflow hydrographs are considered.

tc = 70 min. Q = 8.9 cu m/sec

te = 90 min. Q = 7.9 cu m/sec

te = 110 min. Q = 7.1 cu m/sec

Cumulative inflow curves for these three cases are developed as shown in Figure J-2.

(2) Outlet discharge rate

2)

The relationship between outlet discharge rate and construction costs of facilities concerned have to be investigated on various cases for the purpose of difining the economical volume of reservoirs. However, in this Master Plan two cases of discharge rate are considered for comparison purpose and elaborate study will be carried out in the feasibility studies of the Project Area.

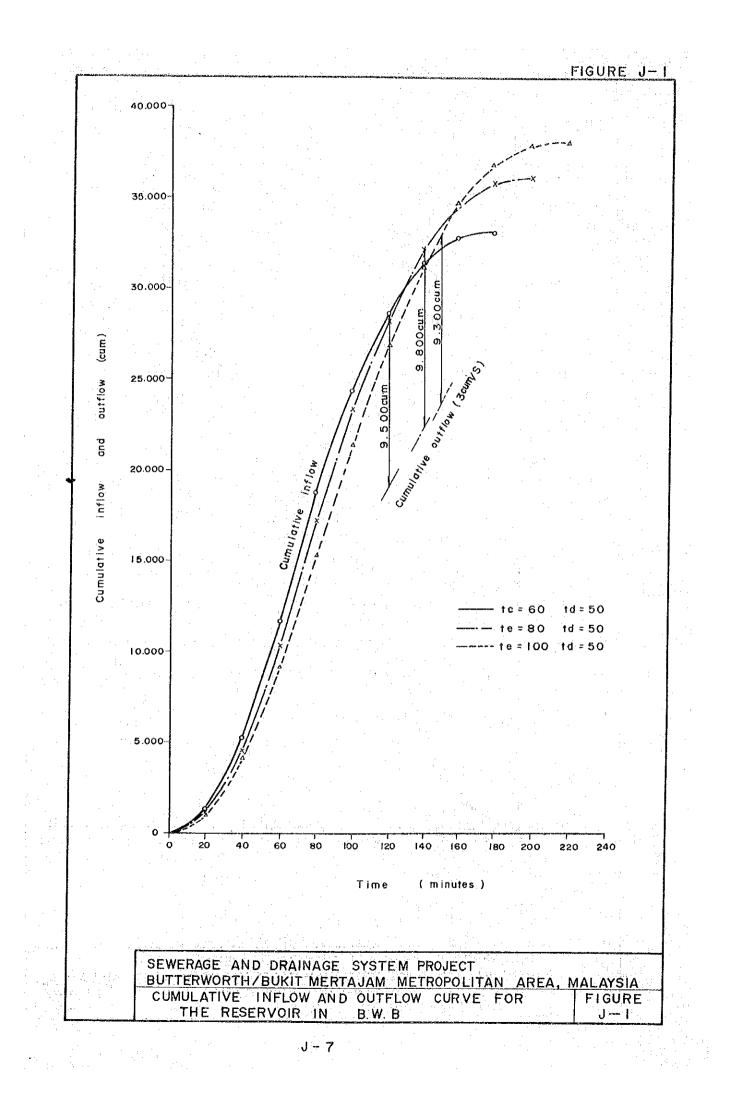
1) Reservoir in Butterworth Drain B

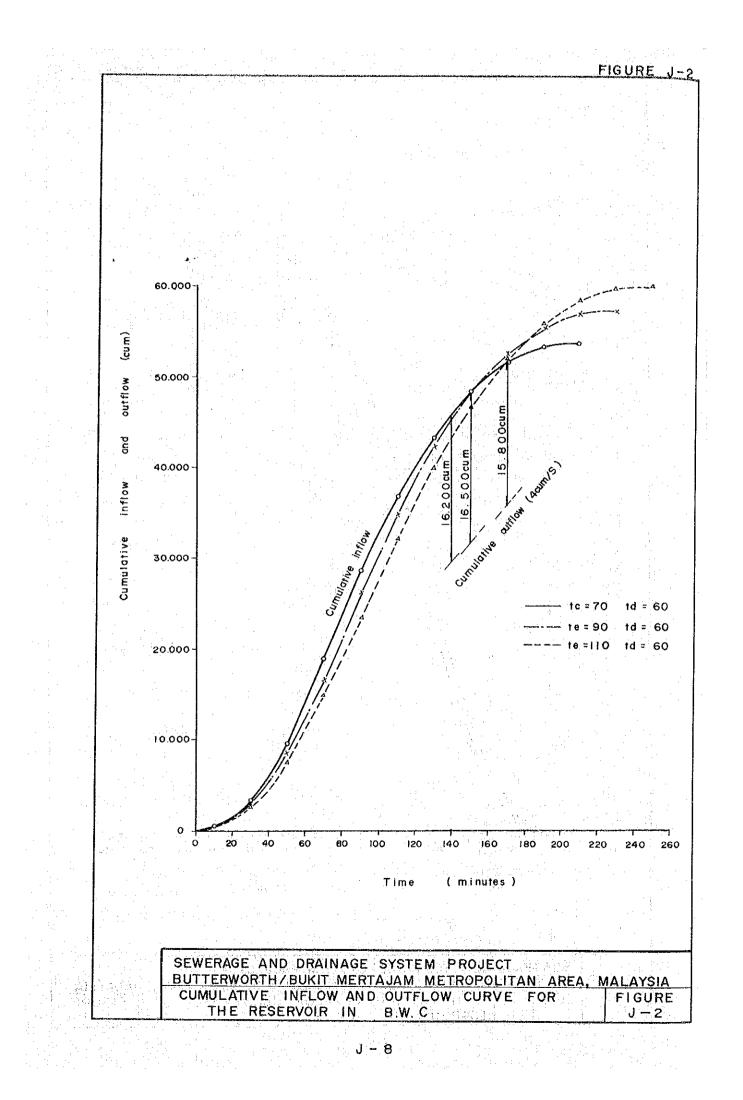
A 3 cu m/sec and 5 cu m/sec are considered as outlet discharge rate and 3 cu m/sec is selected.

2) Reservoir in Butterworth Drain C

A 4 cu m/sec is taken to be suitable discharge rate on the basis of results of the comparison in the reservoir in Butterworth Drain B.

(3) Volume of Reservoir


From Figure J-1 and J-2, the volume of each reservoir is determined as follows.


Reservoir in B Drain B. V = 10,000 cu m

Size: 65 m x 65 m x 2.8 m (depth)

Reservoir in C Drain C. V = 17,000 cu m

Size: 80 m x 80 m x 3.2 m (depth)

CHAPTER 3

SUPPLEMENTAL FIGURES AND TABLES OF DRAINAGE SYSTEM PLANNING

Following Figures and Tables are supplement of the drainage systém master planning.

Figure No.

- J-3 Drainage System Alternative-I in Butterworth Area (B-IV) (Ref. Section 4.1 PART-IV)
- J-4 Drainage System Alternative-II in Butterworth Area (B-IV) (Ref. Section 4.1, PART-IV)
- J-5 Drainage System Alternative-III in Butterworth Area (B-IV) (Ref. Section 4.1 PART-IV)
- J-6 Profile of Butterworth drain A (Ref. Section 4.1, PART-IV)
- J-7 Profile of Butterworth drain B and D (Ref. Section 4.1, PART-IV)
- J-8 Profile of Butterworth drain C and E (Ref. Section 4.1, PART-IV)
- J-9 Design Sketches of Reservoir (Ref. Section 4.2.3, PART-IV)

Trapezoidal section is applied for the reservoir considered which has compacted earth face of slope.

Gate is made of woods, which presently is the common type in the Project Area.

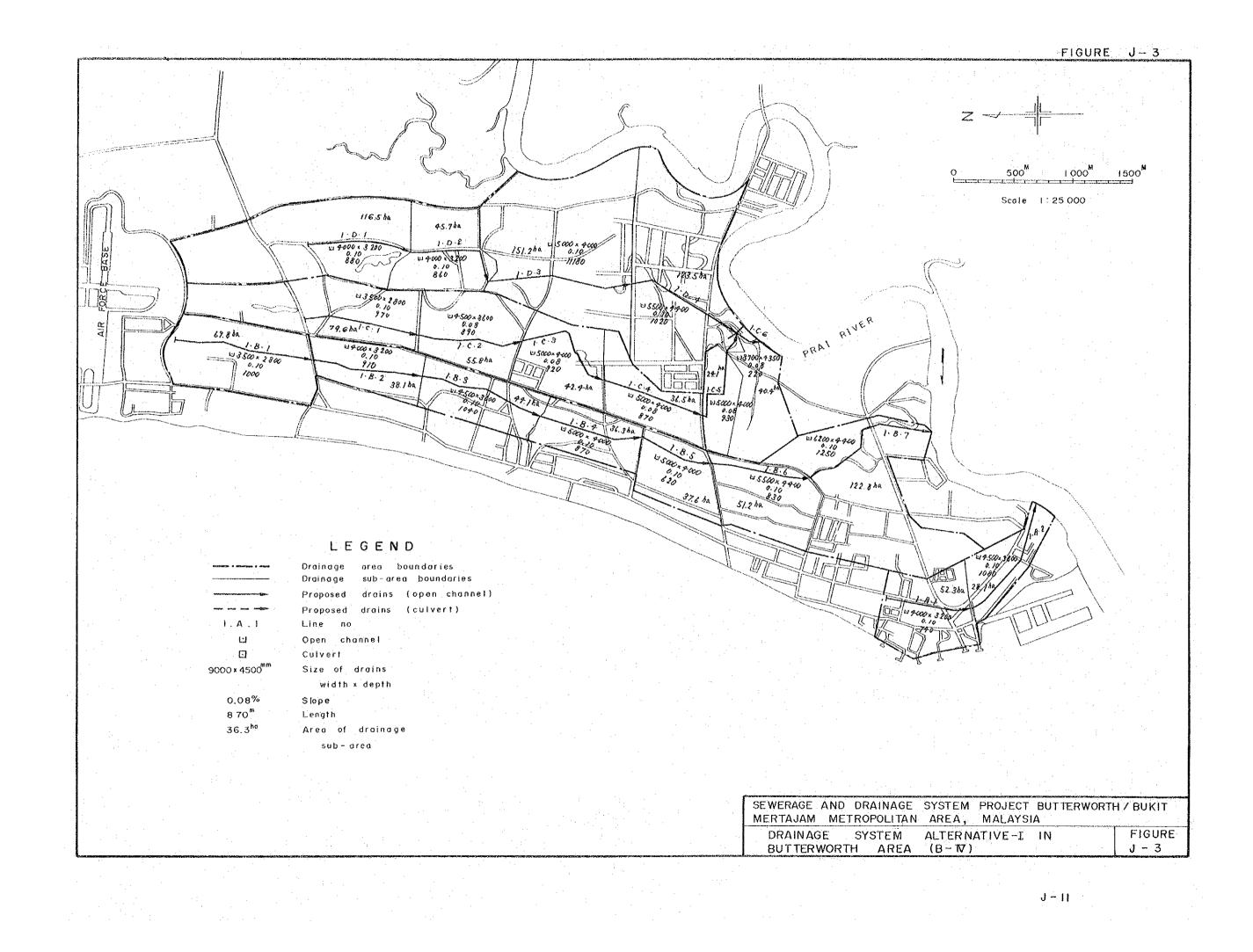
J-10 Construction Cost Curve (Ref. Section 5.1, PART-IV)

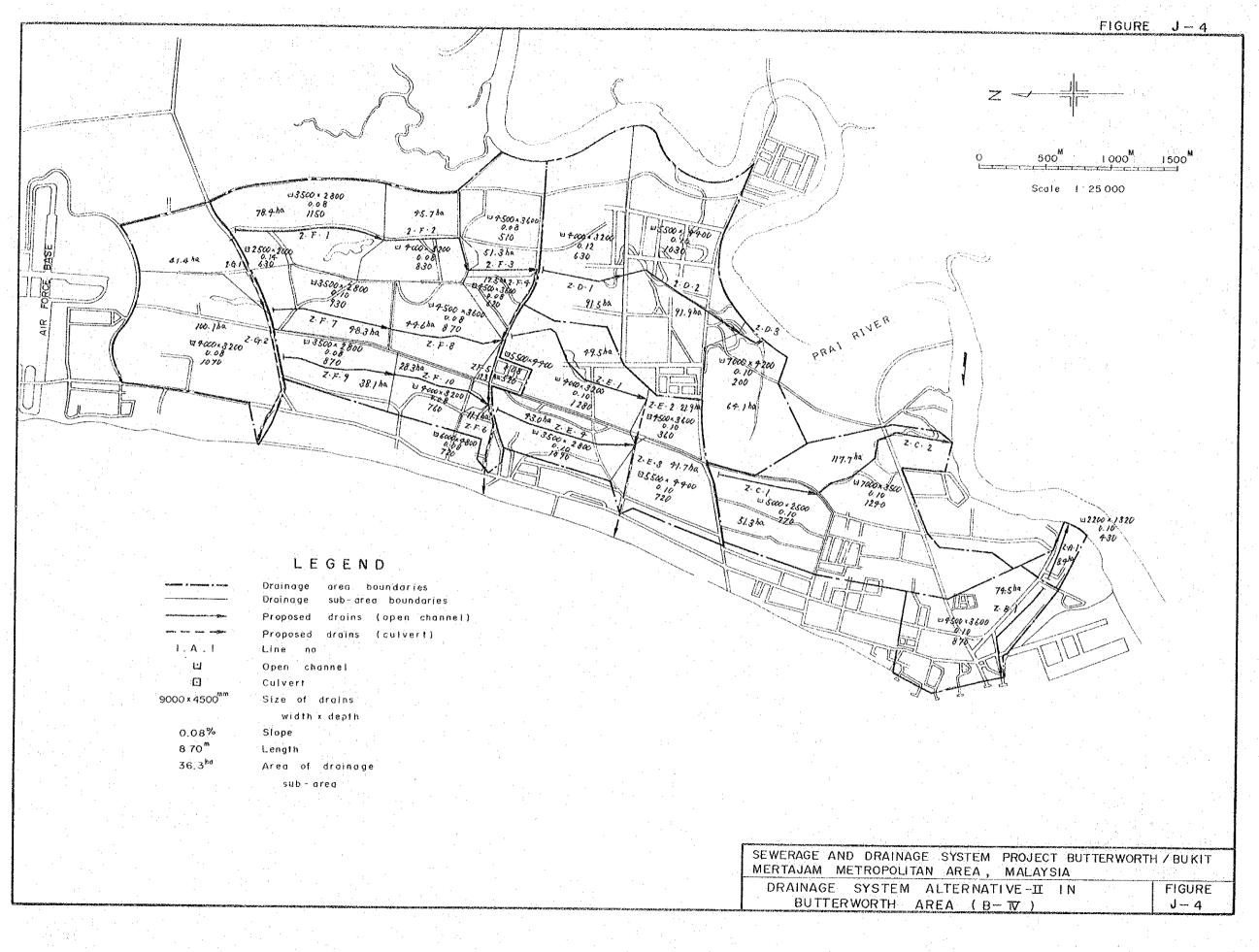
J-11 Estimated Space Required for Maintenance Work (Ref. Section 5.1, PART-IV).

Desilting from larger size drain of more than 6.0 meters will require the major equipments such as dragurain and clamshell grabbing crane. The estimated space for maintenance work is on the basis of the dimension of these equipments.

In case of drains of the width less than 6.0 meters, desilting will be carried out by hand. The space for equipments to carry out removed desposits is also required. If there is no road beside the drains the spaces mentioned in Figure J-11 has to be assigned.

J-12 Representative Network of Smaller Drains in Residential Area


The Figure is used for the construction cost estimates of network of smaller drains in the residential area.


J-13 Representative Network of Smaller Drains in Industrial Area

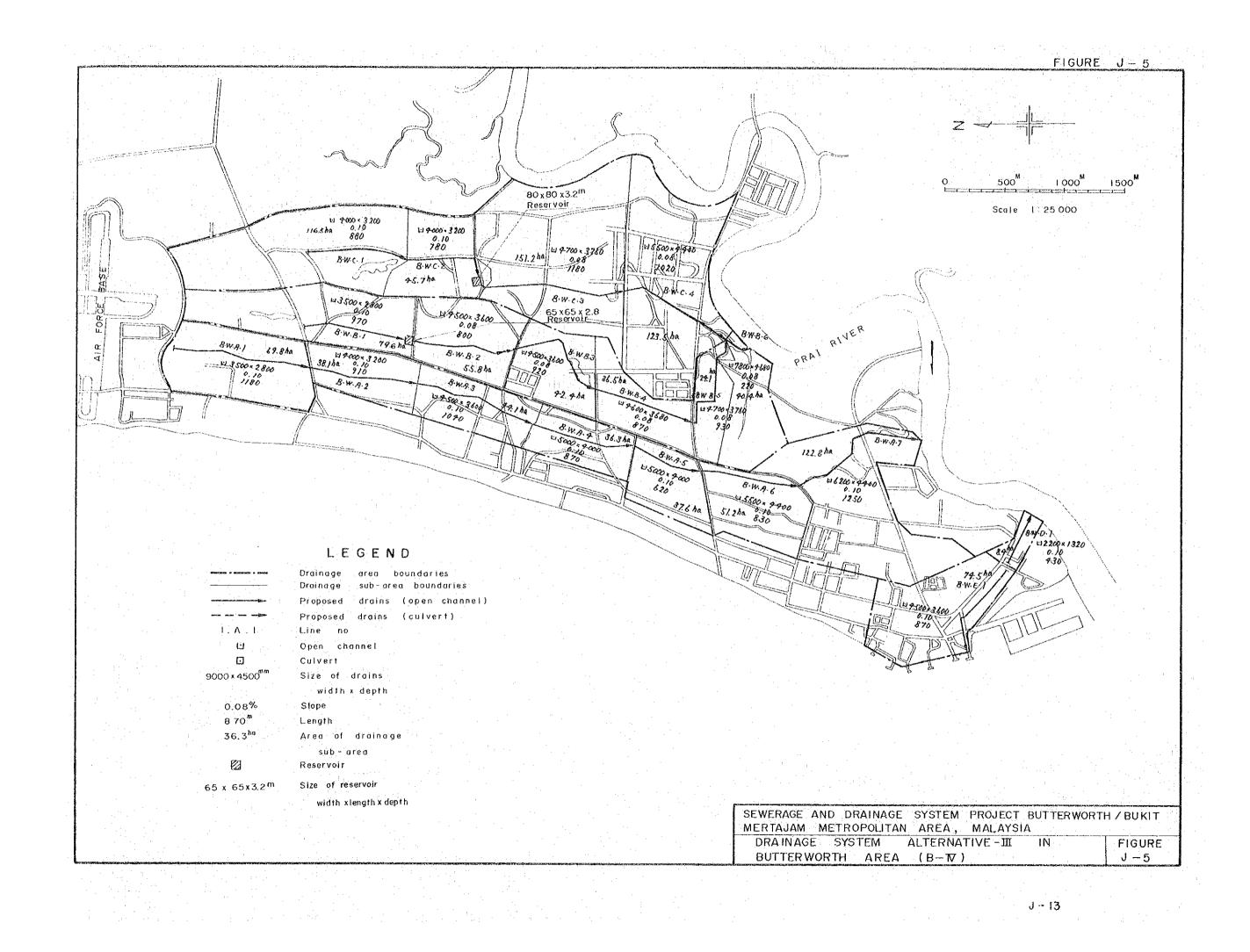
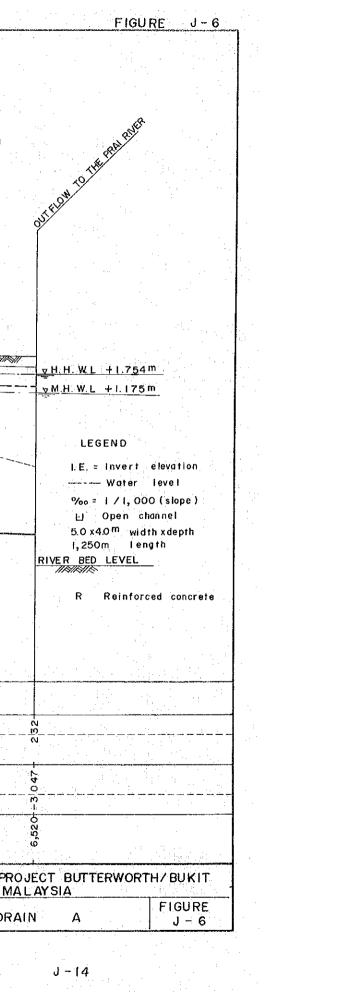
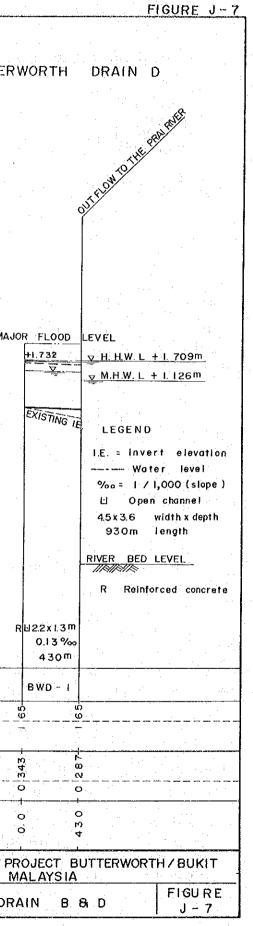
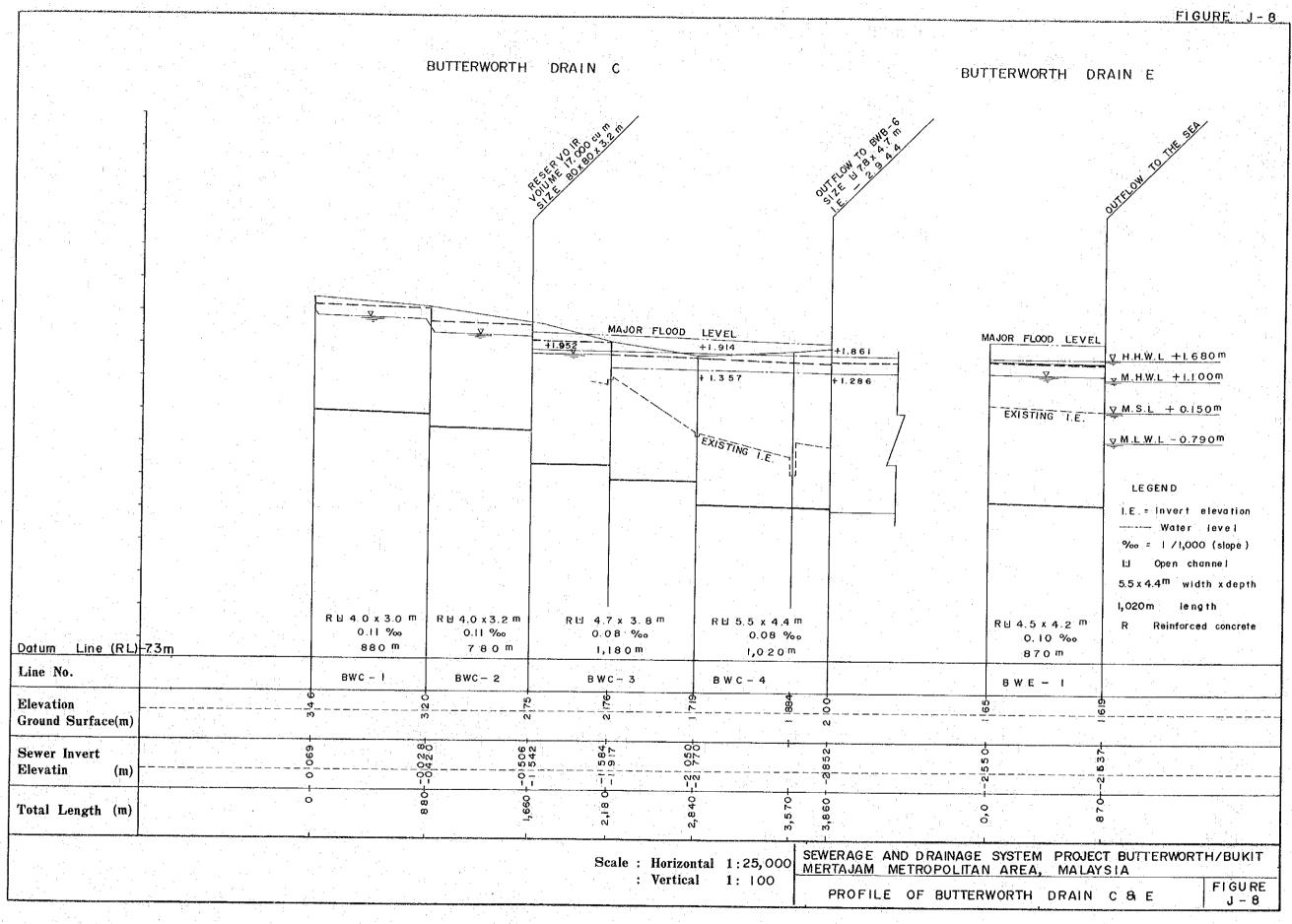
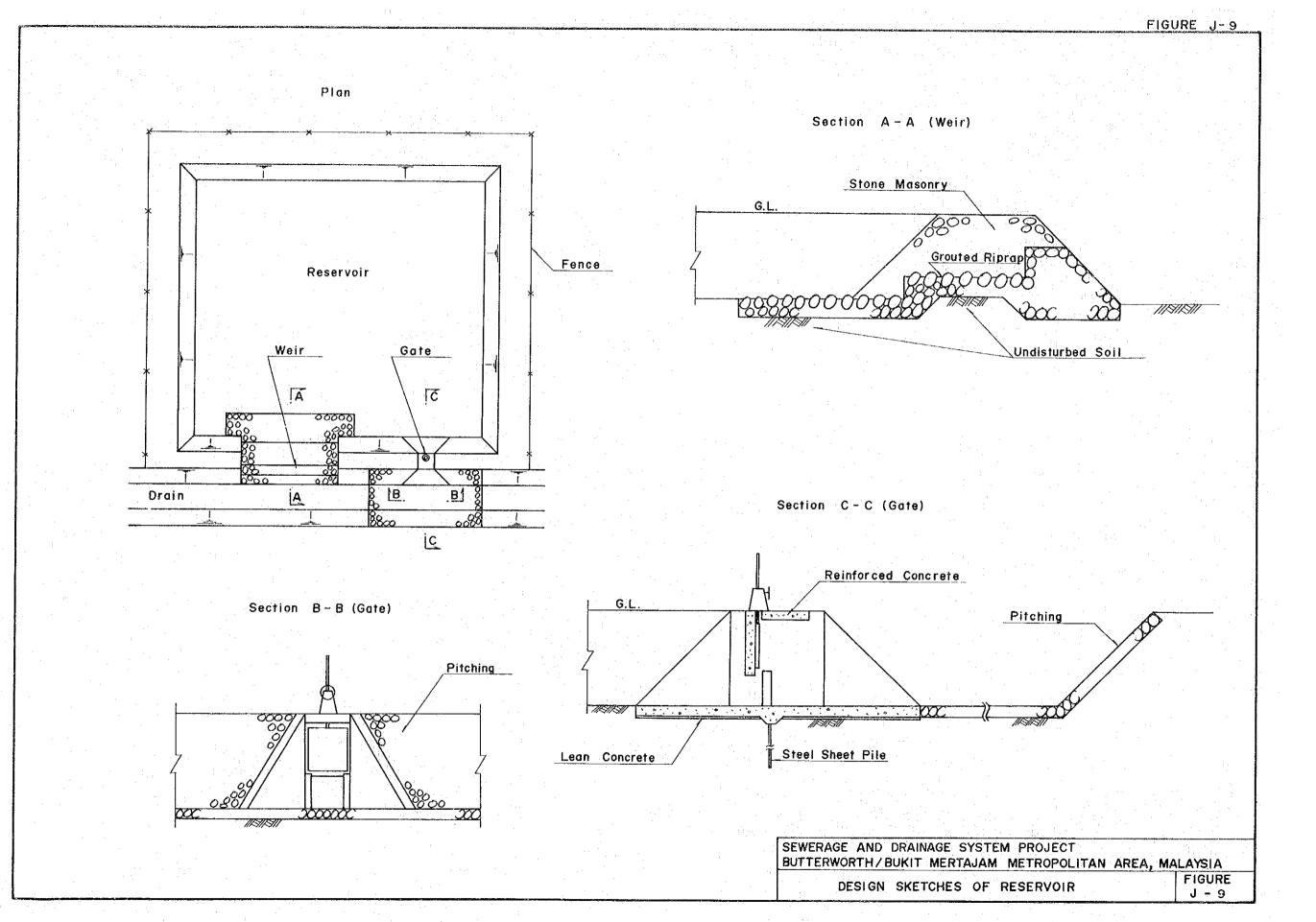

The estimated construction costs of network of smaller drains in the industrial area are based on this Figure. (Ref. Section 5.1, PART-IV).

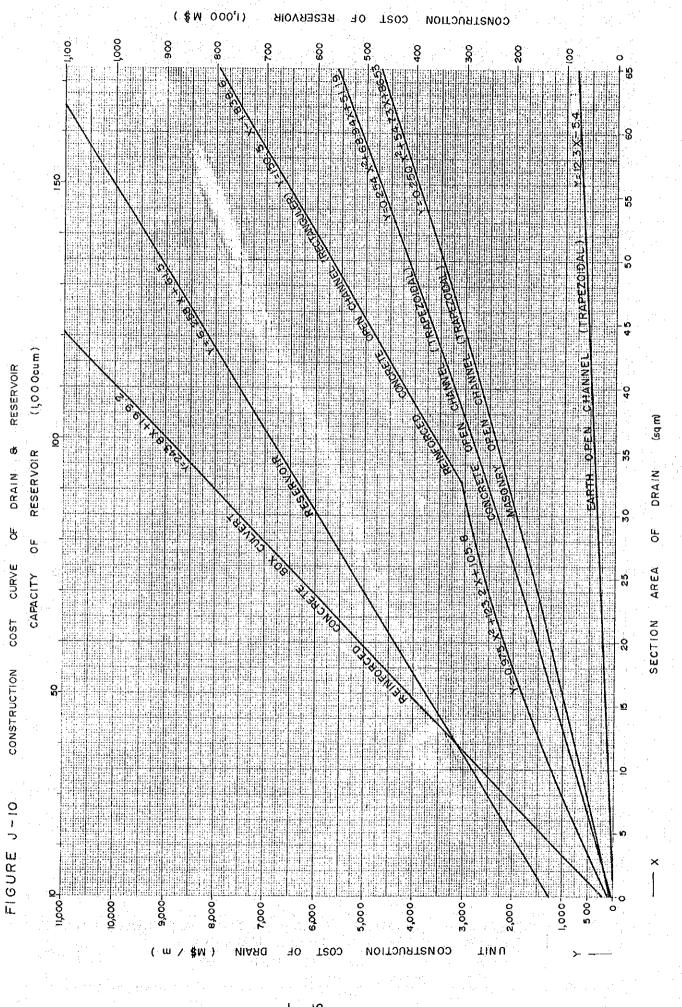
Table No.


- J-5 Analysis of Proposed Drainage System (Ref. Chapter 4 PART-IV)
- J-6 Construction Cost of Facilities by Stage (Ref. Chapter 5 PART-IV)
- J-7 Construction Cost of Network of Smaller Drains by Stage (RNf. Chapter 5 PART-IV)

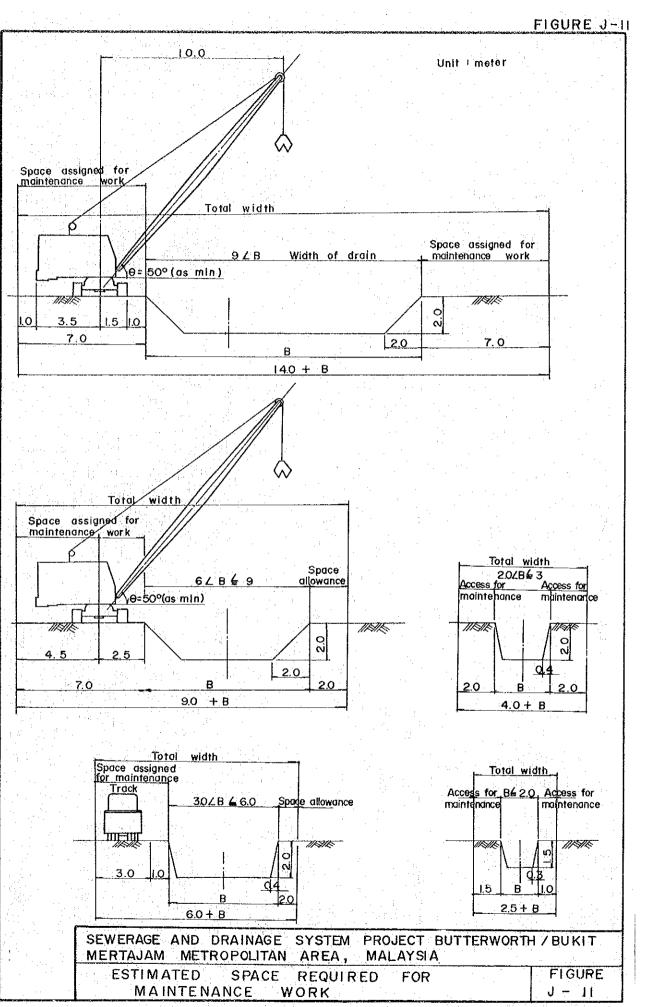





		141, 1 , 700, 1997, 19			NONTRESS, CORP. 4	tean a statistic provider the state of the state		
				BL	JTTER WORTH D	RAIN A		
							· · · · · · · · · · · · · · · · · · ·	
					e Geografie de la composition			
		<u> </u>		+1.999	DR FLOOD LEVEL		+1.966	+1.828
				+1.511	+ 1. 428	+1.376	+1. 327	+1276
				-	EXISTING I.E.			
Datum Line		R ⊟ 3.5 x 2.8 m 0.11 ‰ 1,000 m	R.b. 4.0 x 3.2 m 0.11 ‰ 910 m	R.⊍ 4.5 x 3.6 0.10 ‰ 1,040 m	0.10 ‰	0.10 ‰	R.⊎ 5.5 x 4.4 m O.IO ‰o 8 3 0 m	R.네 6 2 x 4 . 4 ^m 0.10 ‰
Line No.	(RL)-7.3m	BWA ~ 1	BWA - 2	BWA - 3	B WA - 4	6 2 0 m BWA - 5	BWA - 6	1,250 m BWA - 7
Elevation Ground Surface(m)	 			N	<u>.</u>	0 0 N	2 2 V	0 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Sewer Invert Elevatin (m)		ā					N	
Total Length (m)	0			-	5, 95 5, 95	O O		8 20 20 20 20 20 20 20 20 20 20 20 20 20
					Scale : Horizontal : Vertical	1:25,000 M 1: 100		RAINAGE SYSTEM PR DPOLITAN AREA, M BUTTERWORTH DR



I			<u></u>	*** **********************************	₩₩₩₽₩₩₽₩₩₽₩₩₽₩₩₽₩₽₩₽₩₩₩₩₽₩₽₩₽₩₽₩₩₽₩₩₽₩₩			
			В	UTTERWORTH DR	AIN B			BUTTER
			REC	Ethic 621 11111 11111 11111 11111 111111			In Con In the	190% + 4 52 m 10 mt 10 m
					MAJOR FLC	20D_ LEVEL		
				+ 2.063	+2.019	+1.975		MAJ <u>↓ 8.61</u> <u>↓ H.H.W.L + 1848m</u> <u>↓ 8.6</u> <u>↓ 8.6</u> <u>↓ 8.6</u> <u>↓ 1.269</u> ^m
. *								RIVER BED LEVEL
			R 년 3.5 x 2,8 m 0.12 %o	RLJ 4.5 x 3.6 ^m 0.08 ‰	R∐ 4.5 x 3,6 m 0.08 ‰	R년 4.6 x 3.7 m 0.08 ‰	R빈 4.7 x 3.8 ጦ F 0.08 ‰	0.08%
1	<u>Datum Line (RL)-</u> Line No.	<u>73m</u>	970 m BW B 1	800 m 8 W B - 2	920 M BWB - 3	870 m BWB-4	930 m BWB-5	2201 BW8-6
	Elevation Ground Surface(m)		<u>1</u> <u>5</u> <u>7</u>		2 			
	Sewer Invert Elevatin (m)							1 ¹ 1 1 0 ⁰ 0 00 0 14 0 44 0
	Total Length (m)					2,690+ 3,5690		4 4 6 7'
				L1		Horizontal 1:25,000 Vertical 1:100	MERTAJAM	ND DRAINAGE SYSTEM P METROPOLITAN AREA, M OF BUTTERWORTH DR
								999 Martin - La Constantina de Canada de



18

J-19

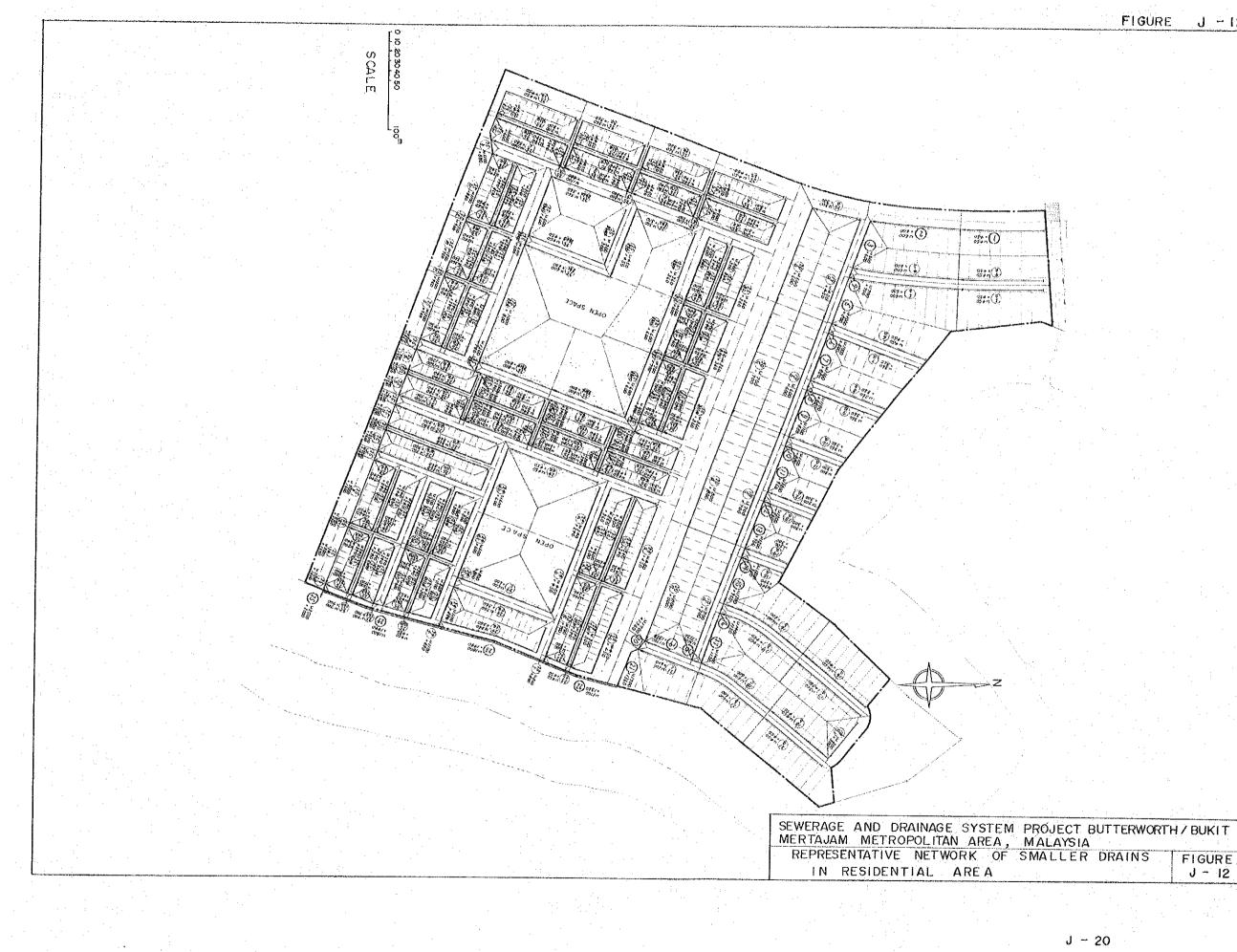
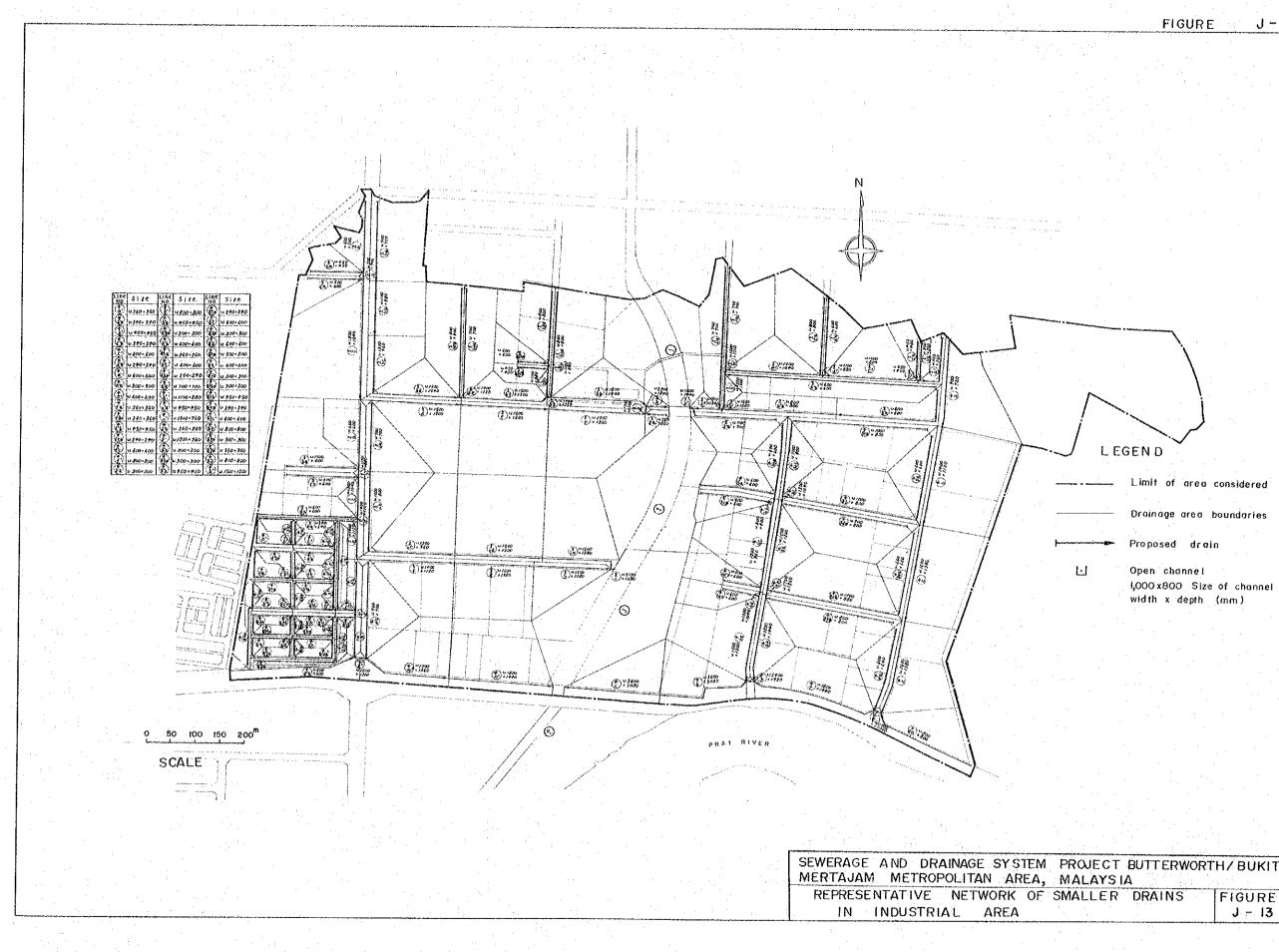
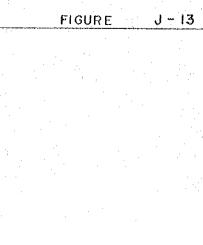




FIGURE J - 12 FIGURE J - 12 J - 20

OJECT	BUTTERWO	RTH/ BUKIT
ALAYSI	Α	and the second second
ALLER	DRAINS	FIGURE
an a		J - 13

TABLE J-5 ANALYSIS OF PROPOSED DRAINAGE SYSTEM

	· .	÷.,	Y Y	EAR	197€	6	Y	EAR	2 000) .			p the		an tata. An tata						···	1.	· .
Γ	· · ·		••••••••••••••••••••••••••••••••••••••						T ⁱ		Details of	Proposed	Drains	to ac	cept ru	inoff	Existing C	Drain	1			1	
		÷	To ta l	Runoff	Storage		Total	Runoff	Storage			Slope		of ation					Runoff	Reserve	Volume	2	
	Line	NO.	Area	Coefficient	Coefficient	Runoff	Area	Coefficient	Coefficient	Runoff	Length		Velocity	Ti me	Capa city	Size	Size	Capa city	Major Storm	Width	of Reservoir		
	:		ha			cum/S	ho			cu m/S	m	%~	m/S	1 8	cu m/S	m	m	cu m/S	(C=0.65) m /S		l000cu m		
-	RAM	5	*4 99 53	0.20	0.72	16.20	*4 99 53	0.35	0.70	17.4	660	0.14	0.6			E 19.5 ⊎13.9×2.8			21.4	40			
		- 6	501	0.22	1	32.20	501	0.42			70	0,14	0.7	127.7	391	Е 25.0 <u>ы 9.0</u> х 3.0	Е Ы 5.9 x .8	12.4	70.4	42			
Ŀ	ARA	<u> </u>	60				60	0.48	0.89	10.4	860	1.10	2.0			R <u>H</u> 30x3.0 M 65			22.3	8			
		2	223				223	0.40		21.4	1.400			43.6	21.5	M 6.5 ⊎ 5.5 x 2.6 M 0.0	E :		57.6	15			
ŀ	TAN	-3	448	0.26	0.77	25.40	448 77	0.43	1 A A		1.220	1.00				M 0.0 ⊔ 8.8 x 3.0 R	<u>u 2.3 x I.4</u>		112.9	19			
	PAY		77				78	0.48		12.5	960 970	I.10 I.60	2.0 2.3	28.3		R <u>H</u> 30 x 3.0 R H 2 7 x 2.2			27.6	8			
╞		- 2	128	0.27	0.82	9.70	128	0.48	· · · · ·		830	1	2.6	33.6		R U <u>3.2x2.6</u>	Е H 2.3 x I.4	4.2	40.1	8			
	BUK	- 1	44	<u> </u>			44	0.45	0.87	6.6	1.090	6.50	2.4	28.4	7.6	M 2.8 ⊔ 2.2 × I.4			15.7	8		· · .	
	: : ::::::::::::::::::::::::::::::::::	- 2	120	0.31	0.84	10.8	120	0.61	0.81	19.5	1.390	3.50	2.5	37.7	21.0	M 4.6 x2.3	R 4.8 U 2.2×I.2	12.5	34.6	9	·:		
1	PAS	- 1	64	<u></u>			64	0.48	0.90	11.0	660	1.60	1.1			к <u>ы 2.7 х 2.2</u> Р	 E 7 0		24.6	10	<u> </u>		
	<u> </u>	- 2	106	0.33	0.83	10.5	106	0.45			660	1.50		30.5	15.6	R ш 3.0 x 2.4 М 6.5	<u>ш3.1x1.7</u> Е	5.1	35.7	10			
: : :		~ 3	186	0.26		10.7	186			197	980	0.90	1, 5	(a) (a) (b) (b) (b) (b)		M 6.5 <u>⊌</u> 5.5 x2.6 R	<u>ы 6.6хі.7</u>	10.0	49.7	14			÷
	PEK		71				71	0.47	0.92		410	1.50	2.4 1.6	24.7 37.8		⊔ <u>3.0 x2.4</u> M 6.0 ⊌ 5.0 x2.4	E	3.4	28.5 45.2	8	·		
		- 2 - 3	210	0.28	0.79	11.0	210	0.41			1.320	1.20	1.6	51.6		M 6.0 ■ 5.0 × 2.4		6.4	48.1	14			
	BKD		132	0.14	0.70		132	0.43	0.71	10.8	1.300	0.10	0.5			E 3.0 E 3.0 W 7.8 x2.6			27.4	24			•
	вкс		113	0.10	0.70	1.8	113	0.44	0.70	· .	1.360	0.10	0.4	66.7	8.1	Е 10.0 ш 4.0 x 3.0	Е 8.0 ы 3.0x2.5	4.6	19.9	. 19			
	BWD		8	0.33	0.72	0.6	8	0.56	0.77	1.4	430	0.13	0.5	24.3		R 19 2.2 x I. 3		0.3	2.7	7	· · ·		
_	B WE		75				75	0.62	0.76	14 1	870	0.10	0.8	26		R ш 4.5 x 4.2			23.5	9			
	A W B		70	<u> </u>			70	0.35	0.73	6.0	000.1	0.11	0.7	38.1	6.4	<u>ы 3.5х2.8</u> R	F 2 3		18.0	10			
		- 2	108				108	0.45			910			57.1	91	R U 4.0 x 3.2 R	E 2 3	1.2	21.4	10		14	· · .
	1 A A A	- 3	152		1		152	· · · ·	·	11.2	1.040		. 1	78.8	1 9	R 4.5 x 3.6 R 1.5.0 x 4.0	$E = \frac{1}{5} + \frac{1}{5} + \frac{1}{5} = \frac{1}{5} + \frac{1}{5} + \frac{1}{5} = \frac{1}{5} + $	0.8	24.0 25.5	10			LEG
		- 4 - 5	188 226	0.18	0.68	3.0 3.6	188	0.54 0.56			870 620	0.10	0.9			u 50x40 R u 50x40		2.1	28.2	10			- Eor
		- 6	277	0.22	0.68		277	0.57			830	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		121.8	20.3	R U 5.5 x4.4	М 7.5 ы 5.5 x 0.9	1.3	31.1	10			E Ear 1 Mas
		7	400	0.23	0.68	5.9	400	1. A. A.			1.250	0.10	1.0	142.6	24.0	R ⊔ 6.2 x 4.4	E 10.5 ⊌ 7.0 × 1.5	3.4	39.5	.11			Rein
	BWB	- 1	80				8.0	0.46	0.71	6.5	970	0.12	0.7	· · ·		R u 3.5 x 2.8	·		15.4	9	10		Drai
		- 2	135	<u></u>			135	0.60	0.70	7.8	80 0	0.08	0.7	1.1	1 A A A A A A A A A A A A A A A A A A A	u 45x36			21.2	9			Oper
		- 3	178				178	0.62	1.	10.2	920	0.08				u 4.5 x 3.6 R			23.0	9		0	Box
		4	214		 		214	0.63	1. 1. 1. 1.		870	80.0				ш 4.6 x 3.7 R			24.5	9		%	
		- 5	238				238			1 A 4	930 220	0.08				й 47х3.8 R и 7.8х4.7			23.7	9		*	: Cont
	BWC	6 1	716				716	0.52 0.35			8.80	0.08	1.0 0.8			<u>U 7.8 x 4.7</u> R ы 4.0 x 3.0			24.0	11			Agri
	11.	- 2	162				162	0.35		8.9	780	0.11	0.8	70.3	· · · ·	на 4.0 x 3.2 на 4.0 x 3.2			27.7	11	17		Ared
		- 3	313	· · · · ·			313		0.69		1.180	0.08	1911 M 4	11.11.11.11.11.11	1	R ш 4.7 x 3.8			41.4	12		·	·
-		- 4	437				437		1 A.		1.020	0.08	1	· · · · · · · ·		R ⊔ 5.5 x 4.4			49.7	12			

J - 22

LEGEND

ΕÏ	Earth Drain
M :	Masonry Drain
R	Reinforced Concrete Drain
ы:	Open Channel
0	Box Culvert
‱.	1/1,000
* :	Contributing Agricultural Area

TABLE J-5 ANALYSIS OF PROPOSED DRAINAGE SYSTEM

د. مربعه المربعة ا	:	a da se da di se cana da se cana da	rain	Existing D	noff	cept ru	to ac	Drains	Proposed	Details of								· .		
Volum e of	Reserve	Runoff Major		<u> </u>			e. of httation		Stope			Storage		Total		Storage	Runoff	Total		
Reservoir		Storm (C=0.65)	Capa city	Size	Size	Capa city	T i m Concer		of Sewer	Length		Coefficient	Coefficient			Coefficient	Coefficient	Area	NO.	Line
1000 cu m	m	_m /S	cum/S	m	 M 55	cum/S	min	m/S	%00	m	cum/S			ha	cum/S			ha		<u></u>
	40	52.8			M 5.5x2.2 H 4.6x2.2 M 7.5.2	22.2	44.7		2.60	1.420	20.0		0 41	181				181	· — 1	кив
	50	96.7			M 7.5x2.3 H 6.6x2.3 M 8.7 H 7.7x2.6	33.5	53.7		2.40	1 290	33.0		0.37	392	· · · · · · · · · · · · · · · · · · ·			392	- 2	
·	50	131.5		E	U 7.7×2.8 E 30.8 U 24 9×2.8		56.1		2.00	340	44 8		0.37	554			1 1 1 1 1 	554	- 3	· · ·
	50	134.8	12.1		E 30.8 E 24.9×2.8		72.8		0.15	700	44.8		0.36	717	7 4	0.74	0.15	7 7 7	-4	
560	50	140.6	121	<u>ы 0.0 x 1.3</u>	<u>ы 24.9*2.3</u> М 4.6 ы 3.7×2.3		84.7		0.15	500	46.3	· · ·	0.36	854	18.3	0.73	0 15	854	:5	
	40	39.9			Maa		29.6		1 40	860		:	0.35	115				115	· · ·	
······	40	33.8	· <u>· · ·</u>		Ш <u>3.5</u> x2.2 М 6.0 Ы 5.0x2.4	17 4	27.0		1.30	630 500			0.35	91				91		TEN
	40 30	49.7 27.3			⊔ 5.0×2.4 E 9.0 ⊔ 3.6×2.7	9.7	33.2	0.0		560	16.2		0.35	156				156	- 2	
					ш <u>3.6^2</u> М <u>3.6</u> ш 2.9х∣.8	<u>9.(</u>	36.1		0.25	580	· .	1 · · · · ·	0.35	92				92		PET
	30	27.6		·	M 4 6 I		31.9		2.80	1.360			0 36	85				85		TUA
120	40	42.4	2.8	E 3.2 x 1 1 U 3 0 x 1 1	ы 3.9×1.8 Е 14.7x2.0 ы 0.7x2.0		39.7 55.4		2.80	940 660	14.0		0.36	153		0.77		153	- 2	
	40	34.6		<u>us.</u>	R								0.35	206	4.6	0.77	0.11	206	- 3	
	40	59.5			⊔ 4.0x2.4 М 8.5 ⊔ 7.5x2.6		27.9		0.70	780	.14.2		0 44	95		<u> </u>		95		RAM
· <u> </u>	40	60.3			M 8.5 M 7.5x2.6	25.2	39.7 49.9		0.70	990 860	24.9		0.45	215		·		2 5	- 2	
190	40	61.4	1.0	E	E 19.5 19.3 9x 2.8						24.9	· .	0.43	258				258	3	· · · · · ·
320	50	90.8			E 20.3 U 13.1×3.0		<u>59.1</u>	0.6	0.14	330	24.9		0.42	300	16.6	0.77	0.27	300	- 4	
	40	32.2	7.4	<u>B 9.0 X 1.5</u>	M 4.8 M 3.8×2.4	33.2	70.2 27.6	·	0.16	780 590	33.0		0.40	503	15.7	0.72	0.22	503		PAS
	40	43.9		· · · · · · · · · · · · · · · · · · ·	M 5.0 ⊎ 4.0×2.5	£ : I	42.6	· · ·	1.40	1.530	13.9		0.46	88				88		KEL
	50	104.2	7.7	E 145 x 0 9	M 9.5 W 8.4x2.9		60.4	1.8	1.00	1.920	39.0	:	0.41	515	· · · · · · · · · · · · · · · · · · ·			167	-2	
·	60	152 6	11.9		E 31 2 E 22.0x 3.0		97.3	0.7	0.11	1.550	59.0		0.36	1.097		0.75	0.28	515	- 3	· .
960	60	132.3			E 31.2 x 3.0		146.1	0.7	0.11	2.050	50 7		0.30	1.345	34.9		0.24	I 097 I 345	4	· ·
_	40	69.0	· <u>·</u> .		M 7.5 ω 6.3×3.0		28.3			900		0.86	1.1	195		<u> </u>				BIN
	40	58.6			M 7.0x2.8	23.4	42.7		0.80	1.300			0.41	225			· · · · ·	1 95 2 2 5	2	<u>.</u>
	40	40.9			М 6.0 ш 5.0×2.4	17.4	41.0	· .	1.00	1.900			0.46	151		· · · · · · · · · · · · · · · · · · ·	·	151	1.1	UBI
·	40	81.0		·	M 7.5x3.0	29 9	75.4		0.90	3. 300	29.7		0.41	478				478	- 2	<u>voi</u>
	40	39.5			M 6.0x2.4	17.4	38.9		1.00	1.700	16.5		0.46	141		· · · · · · · · · · · · · · · · · · ·		141		GHE
	40	59.7	·		M 7.0 H 5.9×2.8	23.4	36.0		0.80	1.450	22.2		038	2 00				200		вна
	40	38 I		· · · · · · · · · · · · · · · · · · ·	E12.0 U 7.2×2.4	12.6	28.9		0.20	680	12.5		0.35	125				125		MIN
160	40	53.7	·		E 14.0 u 8.4x2.8		53.3		0.18	880	17.3		0.35	258	····			258	- 2	
460	40	80.7	— —		E 41.0 136. 1x 2.5	53.2	70.5		0.14	1.700	38.6		0 3 5	*503 225	· · · · · · · · · · · · · · · · · · ·			* 503 225		РМТ
	40	39.3		· · · · · · · · · · · · · · · · · · ·	Е 12.0 ш 7.2×2.4	8.1	153.8	0.4	0.10	1.030	1		0.19	331				331		JÜR
320	40	44.5			E 14 0 U 8 4×2.8	13.4	175.8	1	010	660			0.25	439		· · · · ·		439	- 2	<u></u>
	30	10.0		<u> </u>	E 7.0 U 2.8×2.1	3.1	56.3		0.10	0			0.35	50			* ·	50		вкв
	40	24.7	:		E 12.0 U 7.2x2.4	8.9	85.9	0.4	0.10	710			0.35	169				169	- 2	UND
140	40	32.3	·	· · · · ·	E 13. 0 U 7. 8×2.6	11.0	87.6	- <u> </u>	0.10	50	10.3		0.35	224				224	- 3	
			•															227		

· I	EGEND
E :	Earth Drain
M	Masonry Drain
R.	Reinforced Concrete Drain
U :	Open Channel
	Box Culvert
‰ .	1/1,000
* :	Contributing
	Agricultural
	Area

ANALYSIS OF PROPOSED DRAINAGE SYSTEM TABLE J-5

Tota I Runoff Storage Tota I Runoff Storage St	Capa city cu m/s	Runoff Major Storm (C=0.65) m /S 11.0 39.9
Tota I Runoff Storage Tota I Runoff Storage	Capa city cu m/s 	Major Storm (C=0.65) m/S 11.0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	eu m/s	Major Storm (C=0.65) m/S 11.0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	eu m/s	(C=0.65) m /S
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		m /S
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		39.9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 ·	54.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		60.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		88.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		88.1
SEB -1 107 0.10 0.71 2.0 107 0.35 0.71 6.7 1.150 0.10 0.4 57.9 7.1 E 9.5 x 2.3 2 216 0.10 0.69 2.4 216 0.40 0.69 10.2 1.310 0.10 0.4 101.6 11.0 w 7.8 x 2.3 # 222 # 222 # 222 # 222 # 222 # 222 # 222 # 222 # 222	52.1	98.2
-2 216 0.10 0.69 2.4 216 0.40 0.69 10.2 1.310 0.10 0.4 101.6 11.0 U 7.8 x2.6 U 5.0 x2.3		107.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6.3	21.0
	6.3	28.0
SAM - 1 168 168 0 35 0.78 23.3 1.780 0.18 0.6 89.4 24.4 U17.6 X2.2 -		41.6
$-2 292 124 0.35 0.76 26.9 800 0.18 0.6 111.6 27.5 4 \times 2.3 - 110.0 \times 10^{-1}$		53.1
LUB 220 0.23 0.75 14.8 220 0.57 0.78 42.2 960 0.45 1.3 22.3 43.8 11.8 × 3.0 1 6.0 × 1.6	11.2	78.1
SAN 1 195 195 0.32 0.97 8.1 360 0.25 0.6 128.0 8.3 U 3.4 × 2.6	<u> </u>	9.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		32.6
<u>9</u> -3 308 308 0.35 0.84 35.2 1.700 0.14 0.6 188.5 37.1 <u>21.6^{x2.7}</u>		45.2
$-4 526 526 0.35 0.83 55.7 530 0.14 0.6 203.2 60.3 37.8 \times 2.6$		78.7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	·	93.0
JAY 7 7 0.35 0.97 21.9 250 0.20 0.6 126.9 22.7 N16.8 X2.1		22.6
≥ MER 24 24 0.35 0.82 6.6 550 0.25 0.6 35.3 7.1 ⊌ 3.2×2.4 * 465 </td <td></td> <td>11.5</td>		11.5
LOK 199 199 0.35 0.87 21.5 2.000 0.14 0.6 [85.6 21.5 07.6 × 2.2 -		35.1
<u>MAN -1 79 79 0.35 0.80 7.0 740 0.25 0.6 40.6 7.1 5 8.0 79 0.35 0.80 7.0 740 0.25 0.6 40.6 7.1 5 8.0</u>	·	21.6
$\frac{1}{1000} - 2 - 164 164 - 0.35 - 0.74 - 9.7 - 1.000 - 0.25 - 0.6 - 68.4 - 9.7 - 0.6 -$		30.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		16 5
		16.5
		20.6
		19.1
	· · · ·	
	·	38 6
		25 . 7 28 . 1
		20 1
		<u> </u>
	: :	
	<u>I</u>	<u></u>
的话,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们就是我们的人,我们 我们就是我们就是我们就是我们的人,我们就是我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们	1	

	3
Reserve	Volume of
Width	Reservoir
n. 1	l000cum
30	
40	
40	250
40	
50	310
50	
50	2.100
50	
30	
30	
40	
40	350
40	
30	
40	
40	
40	· · · ·
50	1.300
30	·
30	
40 30	
40	
30 30	
30	120
30	
30	
40	
30	
30	
1	

J - 24

LEGEND

Ε:	Earth Drain
м:	Masonry Drain
R:	Reinforced Concrete Drain
មៈ	Open Channel
D:	Box Culvert
%00:	171,000
× :	Contributing
	Agricultural
	Area

			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Facility		Construction	Land Cost	Total
		Cost (1,000 M\$)	(1,000 M\$)	(1,000 M\$)
		an a	an national B arana and the B arana and the second s	
<u>lst Stage</u>				-
a) Main Drain			· · ·	
	Length(m)	1	
RAM-5,6	730	510	500	1,010
ARA-1 - 3	3,480	5,200	550	5,750
TAN	960	1,300	140	1,440
PAY-1,2	1,800	1,900	200	2,100
PAS-1 - 3	2,300	2,500	80	2,580
BWD	430	230	70	300
BWE	870	2,200	330	2,530
BWA-2 - 7	5,520	14,100	1,230	15,330
BWB-1 - 6	4,710	10,400	630	11,030
BWC-1 - 4	3,860	8,600	380	9,190
b) Reservoir		le de la composition		
	Volume(1000	cum)		
BWB	10	150	160	160
BWC	17	200	220	210
			· · · ·	
Sub-Total		47,290	4,490	51,780
Contingency		4 -		10,350
Engineering Fee				6,200
Total of 1st Stage				68,330
			<u>.</u>	<u>.</u>
2nd Stage				and a start of the second s
a) Main Drain			· · · ·	*
	Length(m)	and the second	
LUB	960	2,000	-	2,000
BEN-1 - 3	2,600	620	<u>_</u>	620
BAG-1 - 3	3,280	1,080	·	1,080
BUK-1,2	2,480	1,350	330	1,680
		 ,		_,000
b) Reservoir				and the second
	Volume(1000 c	u m)		
BEN	120	1,000	· _	1,000
	120	1,000		*1000
Sub-Total	이 문제 가지 않는 것	6,050	330	6,380
JUD IULAL		0,000	0.00	1,270
				· 1,270 ·
Contingency				
Contingency Engineering Fee Total of 2nd Stage			······	760 8,410

TABLE J-6 Construction Cost of Facilities by Stage

(to be continued)

Facility		Construction Cost	Land Cost	Total
· · · · · · · · · · · · · · · · · · ·		(1,000 M\$)	(1,000 M\$)	(1,000 M\$)
3rd Stage				
a) Main Drain				÷
a) main brain				
TUA1 - 3	Length(m)			
RAM - 1 - 4	2,960	1,470	-	1,470
PEK-1 - 3	2,960	4,420		4,420
BKD	2,990	2,950	250	3,200
BKC	1,300	320	· · ·	320
BWA-1	1,360	220		220
SAN-1 - 5	1,000	1,500	380	1,880
JAY	3,970	3,910	-	3,910
MER	250 550	130	·	130
LOK-1,2	550	90	-	90
MAN-1,2	2,000	1,100		1,100
GEL-1,2	1,740	330	-	330
	1,880	640		640
) Reservoir				
, Kebel volt				
TUA	Volume(1000cu			
RAM	120	1,000	en en 🗖 🖓	1,000
SAN	190	1,500	1997 - 19 1 7 - 1997 - 1997	1,500
0/11	1,260	9,000	· -	9,000
Sub-Total		28,580	630	29,210
ontingency			0.00	5,840
ngineering Fee				3,500
otal of 3rd Stage	2			38,550
		·	· · · · · · · · · · · · · · · · · · ·	
th Stage				
en otage				
) Main Drain				
) Main Drain	Length(m)			
) Main Drain KUB-1 - 5	4,250	4,560		4,560
) Main Drain KUB-1 - 5 ULU	4,250 860	640		4,560 640
) Main Drain KUB-1 - 5 ULU TEN-1,2	4,250 860 1,190	640 990		
) Main Drain KUB-1 - 5 ULU TEN-1,2 PET	4,250 860 1,190 580	640 990 130		640
) Main Drain KUB-1 - 5 ULU TEN-1,2 PET PAS-4	4,250 860 1,190 580 780	640 990 130 250		640 990
) Main Drain KUB-1 - 5 ULU TEN-1,2 PET PAS-4 KEL-1 - 5	4,250 860 1,190 580 780 7,640	640 990 130 250 9,270		640 990 130
) Main Drain KUB-1 - 5 ULU TEN-1,2 PET PAS-4 KEL-1 - 5 BIN-1,2	4,250 860 1,190 580 780 7,640 2,200	640 990 130 250 9,270 3,200		640 990 130 250 9,270
) Main Drain KUB-1 - 5 ULU TEN-1,2 PET PAS-4 KEL-1 - 5 BIN-1,2 UBI-1,2	4,250 860 1,190 580 780 7,640 2,200 5,200	640 990 130 250 9,270 3,200 7,000		640 990 130 250 9,270 3,200
) Main Drain KUB-1 - 5 ULU TEN-1,2 PET PAS-4 KEL-1 - 5 BIN-1,2 UBI-1,2 GHE	4,250 860 1,190 580 7,640 2,200 5,200 1,700	640 990 130 250 9,270 3,200		640 990 130 250 9,270 3,200 7,000
) Main Drain KUB-1 - 5 ULU TEN-1,2 PET PAS-4 KEL-1 - 5 BIN-1,2 UBI-1,2 GHE BHA	4,250 860 1,190 580 780 7,640 2,200 5,200 1,700 1,450	640 990 130 250 9,270 3,200 7,000		640 990 130 250 9,270 3,200 7,000 1,700
) Main Drain KUB-1 - 5 ULU TEN-1,2 PET PAS-4 KEL-1 - 5 BIN-1,2 UBI-1,2 GHE BHA MIN-1,2	4,250 860 1,190 580 780 7,640 2,200 5,200 1,700 1,450 1,560	640 990 130 250 9,270 3,200 7,000 1,700		640 990 130 250 9,270 3,200 7,000 1,700 2,000
) Main Drain KUB-1 - 5 ULU TEN-1,2 PET PAS-4 KEL-1 - 5 BIN-1,2 UBI-1,2 GHE BHA MIN-1,2 PMT	4,250 860 1,190 580 780 7,640 2,200 5,200 1,700 1,450 1,560 1,700	640 990 130 250 9,270 3,200 7,000 1,700 2,000		640 990 130 250 9,270 3,200 7,000 1,700 2,000 540
) Main Drain KUB-1 - 5 ULU TEN-1,2 PET PAS-4 KEL-1 - 5 BIN-1,2 UBI-1,2 GHE BHA MIN-1,2 PMT JUR-1,2	4,250 860 1,190 580 780 7,640 2,200 5,200 1,700 1,450 1,560 1,700 1,690	640 990 130 250 9,270 3,200 7,000 1,700 2,000 540		640 990 130 250 9,270 3,200 7,000 1,700 2,000 540 2,400
) Main Drain KUB-1 - 5 ULU TEN-1,2 PET PAS-4 KEL-1 - 5 BIN-1,2 UBI-1,2 GHE BHA MIN-1,2 PMT JUR-1,2 BKB-1 - 3	4,250 860 1,190 580 780 7,640 2,200 5,200 1,700 1,450 1,560 1,700	640 990 130 250 9,270 3,200 7,000 1,700 2,000 540 2,400		640 990 130 250 9,270 3,200 7,000 1,700 2,000 540 2,400 640
) Main Drain KUB-1 - 5 ULU TEN-1,2 PET PAS-4 KEL-1 - 5 BIN-1,2 UBI-1,2 GHE BHA MIN-1,2 PMT JUR-1,2 BKB-1 - 3 BKA-1 - 3	4,250 860 1,190 580 780 7,640 2,200 5,200 1,700 1,450 1,560 1,700 1,690	$\begin{array}{r} 640\\ 990\\ 130\\ 250\\ 9,270\\ 3,200\\ 7,000\\ 1,700\\ 2,000\\ 540\\ 2,400\\ 640\\ 420\end{array}$		640 990 130 250 9,270 3,200 7,000 1,700 2,000 540 2,400 640 420
) Main Drain KUB-1 - 5 ULU TEN-1,2 PET PAS-4 KEL-1 - 5 BIN-1,2 UBI-1,2 GHE BHA MIN-1,2 PMT JUR-1,2 BKB-1 - 3 BKA-1 - 3 DEJ-1 - 3	4,250 860 1,190 580 780 7,640 2,200 5,200 1,700 1,450 1,560 1,700 1,690 1,870	$ \begin{array}{r} 640 \\ 990 \\ 130 \\ 250 \\ 9,270 \\ 3,200 \\ 7,000 \\ 1,700 \\ 2,000 \\ 540 \\ 2,400 \\ 640 \\ 420 \\ 610 \\ \end{array} $		640 990 130 250 9,270 3,200 7,000 1,700 2,000 540 2,400 640 420 610
) Main Drain KUB-1 - 5 ULU TEN-1,2 PET PAS-4 KEL-1 - 5 BIN-1,2 UBI-1,2 GHE BHA MIN-1,2 PMT JUR-1,2 BKB-1 - 3 BKA-1 - 3 DEJ-1 - 3 DER-1	4,250 860 1,190 580 780 7,640 2,200 5,200 1,700 1,450 1,560 1,700 1,690 1,870 2,100	640 990 130 250 9,270 3,200 7,000 1,700 2,000 540 2,400 640 420 610 1,530		640 990 130 250 9,270 3,200 7,000 1,700 2,000 540 2,400 640 420 610 1,530
) Main Drain KUB-1 - 5 ULU TEN-1,2 PET PAS-4 KEL-1 - 5 BIN-1,2 UBI-1,2 GHE BHA MIN-1,2 PMT JUR-1,2 BKB-1 - 3 BKA-1 - 3 DEJ-1 - 3 DER-1 SEB-1,2	4,250 860 1,190 580 780 7,640 2,200 5,200 1,700 1,450 1,560 1,560 1,700 1,690 1,870 2,100 3,330 2,150	$\begin{array}{r} 640\\ 990\\ 130\\ 250\\ 9,270\\ 3,200\\ 7,000\\ 1,700\\ 2,000\\ 540\\ 2,400\\ 640\\ 420\\ 610\\ 1,530\\ 1.300\\ \end{array}$		640 990 130 250 9,270 3,200 7,000 1,700 2,000 540 2,400 640 420 610 1,530 1,300
) Main Drain KUB-1 - 5 ULU TEN-1,2 PET PAS-4 KEL-1 - 5 BIN-1,2 UBI-1,2 GHE BHA MIN-1,2 PMT JUR-1,2 BKB-1 - 3 BKA-1 - 3 DEJ-1 - 3 DER-1	4,250 860 1,190 580 780 7,640 2,200 5,200 1,700 1,450 1,560 1,560 1,700 1,690 1,870 2,100 3,330	640 990 130 250 9,270 3,200 7,000 1,700 2,000 540 2,400 640 420 610 1,530 1.300 380		640 990 130 250 9,270 3,200 7,000 1,700 2,000 540 2,400 640 420 610 1,530 1,300 380
) Main Drain KUB-1 - 5 ULU TEN-1,2 PET PAS-4 KEL-1 - 5 BIN-1,2 UBI-1,2 GHE BHA MIN-1,2 PMT JUR-1,2 BKB-1 - 3 BKA-1 - 3 DEJ-1 - 3 DER-1 SEB-1,2	4,250 860 1,190 580 780 7,640 2,200 5,200 1,700 1,450 1,560 1,700 1,690 1,870 2,100 3,330 2,150 2,460	$\begin{array}{r} 640\\ 990\\ 130\\ 250\\ 9,270\\ 3,200\\ 7,000\\ 1,700\\ 2,000\\ 540\\ 2,400\\ 640\\ 420\\ 610\\ 1,530\\ 1.300\\ \end{array}$		640 990 130 250 9,270 3,200 7,000 1,700 2,000 540 2,400 640 420 610 1,530 1,300
) Main Drain KUB-1 - 5 ULU TEN-1,2 PET PAS-4 KEL-1 - 5 BIN-1,2 UBI-1,2 GHE BHA MIN-1,2 PMT JUR-1,2 BKB-1 - 3 BKA-1 - 3 DEJ-1 - 3 DER-1 SEB-1,2	4,250 860 1,190 580 780 7,640 2,200 5,200 1,700 1,450 1,560 1,700 1,690 1,870 2,100 3,330 2,150 2,460 2,580	640 990 130 250 9,270 3,200 7,000 1,700 2,000 540 2,400 640 420 610 1,530 1.300 380 1,660		640 990 130 250 9,270 3,200 7,000 1,700 2,000 540 2,400 640 420 610 1,530 1,300 380 1,660
) Main Drain KUB-1 - 5 ULU TEN-1,2 PET PAS-4 KEL-1 - 5 BIN-1,2 UBI-1,2 GHE BHA MIN-1,2 PMT JUR-1,2 BKB-1 - 3 BKA-1 - 3 DEJ-1 - 3 DER-1 SEB-1,2	4,250 860 1,190 580 780 7,640 2,200 5,200 1,700 1,450 1,560 1,700 1,690 1,870 2,100 3,330 2,150 2,460 2,580	640 990 130 250 9,270 3,200 7,000 1,700 2,000 540 2,400 640 420 610 1,530 1.300 380		640 990 130 250 9,270 3,200 7,000 1,700 2,000 540 2,400 640 420 610 1,530 1,300 380 1,660

		an An	n de la seconda de la secon En esta de la seconda de la		
	· .	· · · · · · · · · · · · · · · · · · ·			
			Construction	Land Cost	Total
Facility			Cost		
* uciticy			(1,000 M\$)	(1,000 M\$)	(1,000 M
1) 0		- 67.7 - 7 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -			· · · ·
b) Reservoir	Π-1		ou m)		an a
KUB	VOL	ume(1000 560			
PAS	· .	320	4,300		4,300
KEL	· ·	960	2,500		2,500
MIN		960 160	7,300	-	7,300
PMT		460	1,300	· _	1,300
JUR		460 320	3,500	. –	3,500
BKB			2,500		2,500
BKA		140 250	1,100	. –	1,100
DEJ	• •	310	2,000		2,000
DER			2,400	·	2,400
SAM	-	2,110	16,000		16,000
SAT		350	2,700	-	2,700
Sub-Total		4	84,820		84,820
Contingency			- · ,		16,960
Engineering Fee					10,160
Total of 4th Stag	е		·····		111,940
· · · · · · · · · · · · · · · · · · ·	······		<u></u>		
lst to 4th Stage					
Sub-Total				_	170 100
Contingency			166,740	5,450	172,190
Engineering Fee					34,420
Total of 1st to 4					<u>20,620</u> 227,230

Facility		Construction Cost	Land Cost	Total
		(1,000 M\$)	(1,000 M\$)	(1,000 M\$
lst Stage				
o	Area (ha)			
S ₂₋₁	53	700		700
2-2	287	5,400	· <u> </u>	5,400
2-4	139	2,400	_	2,400
2-7	229	4,400	-	4,400
4-1	18	270	· · · · · · · ·	270
4-2	28	440	· · · · · · · · · · · · · · · · · · ·	440
4-3	52	830		830
4-4	47	1,500		
4–5	231	3,500		1,500 3,500
4~6	330			
4-8	248	7,300 7,300	-	7,300
4-9	378		-	7,300
4-10	37	4,600	e de Turnia	4,600
	57	1,200		1,200
Sub-Total		39,840		20.040
Contingency		39,040	-	39,840
Engineering Fee				7,960
lotal of 1st Stage		•		4,780
				52,580
nd Stage		:		
and brage	Area (ha)		· . · ·	
3-2	203	6,100	· · ·	6,100
3-7	306	4,200	••••	4,200
3-8	116	1,700	-	1,700
3-9	53	850	· · · · ·	850
3-10	159	4,800	, -	4,800
4-7	e: 89	1,400	· - ·	1,400
				line to personale second
ub-Total		19,050		19,050
ontingency				3,810
ngineering Fee				2,280
otal of 2nd Stage				25,140
rd Stage	a da			
ULUGL	Aron (ha)	e e Car		and the second s
	Area (ha)			
1-4	202	2,900		2,900
Z-1	235	4,100		4,100
2-5	152	2,300	· .	2,300
2-6	218	3,400	·	3,400
3-2	80	1,100		1,100
3-3	290	4,200	<u>.</u>	4,200
4-6	60	4,200	- -	
48	8	300	· · ·	800
4-9	49	700		300 700

TABLE J-7 Construction Cost of Network of Smaller Drains by Stage

			· · · · ·		
		the second s			
- - -		С	onstruction	Land Cost	Total
	Facility		ost	1	
	a de la composición d La composición de la c	(1,000 M\$)	(1,000 M\$)	(1,000 MŞ)
V		: EEA	6 000		C 000
6-1		551	6,900		6,900
		155	2,200		2,200
6-2 6-3	an shekeri ta	293 96	4,400 930		4,400 930
<u>, -</u> ,	e de la companya de l	50	016		9.50
ub-Total			34,230	-	34,230
ontingency					6,840
ngineering		· .			4,100
otal of 3r	d Stage			-	45,170
th Stage		Area (ha)			
1-1 1-2		, i tang tan si ta	760		760
1-1 1-2	n An an an Anna Anna Anna	53 38	760 550		760 550
1-2 1-3		687	9,900		9,900
2-4		107	1,600	-	1,600
2-6		583	8,600		8,600
2-8		388	6,100	- · ·	6,100
2-9		30	430	·	430
2-10		204	2,900		2,900
2-11		111	1,800	81.18 - 19	1,800
2-13 2-14		81 80	1,200 1,200		1,200 1,200
2-14	· · · ·	218	3,400		3,400
2-16		224	3,200		3,200
3-1		381	5,500	. · · · · · · · ·	5,500
3-2		184	2,700	- 	2,700
3–3		159	2,300	<u> </u>	2,300
3-4		216	3,800	· · · · ·	3,800
3-5		292	4,200		4,200
3-6 3-11	n an Thairtean thairtean thairtean	147 46	2,100 660		2,100 660
J-TT		40	000		000
ub-Total		1.	62,900		62,900
ontingency	en de la compañía. Na aige de la compañía de la compañí		, i Taliako		12,580
ngineering					7,540
otal of 4t	h Stage				83,020
st to 4th	Stage				
ıb-Total	<u></u>		166 000	and and a second se	156,020
ontingency	e de la composition References de la composition		156,020		31,190
ngineering		· · · · · · · · · · · · · · · · · · ·	an than the		18,700
	t to 4th Stage	e			205,910
······					
				· .	
			ter de la composición	1. i	
na serie de la composition En la composition de l		· · · · ·			1. 1. 1. 1.
4		T.	- 29		en de la Constante Novembre de la Constante
and the second					

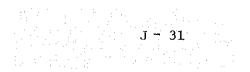
CHAPTER 4

RECOMMENDED ELEVATION UP TO WHICH LAND BE FILLED

The water level in the Prai and Juru river under the critical situaiton in which the river is flooded with heavy rains while influenced by the highest sea level of +1.68 meters (+5.5 ft) has to be estimated for the purpose of identifying the elevation up to which land is to be filled.

The planned flood water level^{1/} in the Prai river which is influenced by the tide with mean high sea level of +1.10 meters, is available in the "Project Report on Drainage and Reclamation of Sungai Prai Basin" prepared by JICA in 1973. According to the report, the water level at the point of Prai barrage, is +1.37 meters (+4.5 ft) under the influence of the tidal level of +1.10 meters (+3.6 ft). The gradient of river water surface at that time is 0.000035.^{2/}

It is therefore considered that the use of 0.000035 as a gradient of water surface expected in the flooded river influenced by the tide of +1.68 meters (+5.5 ft) would yield the safe estimation of river water level.


The distance from the mouth of the Prai river to the boundary of the Project Area is about 13 kilometers. Estimated waterlevel at the boundary of the Project Area, therefore, is $1.68 \pm 0.455 = 2.14$ (0.000035 x 13,000 = 0.455 m). If allowances in branches and main drains are added, the water level at upstream of the drainage channels would be about +2.30 meters (+7.5 ft).

In the tributary of the Juru river, land filling is also necessary for areas with least elevation. No data is available as to the water level in the Juru river in its flooded time. Further studies regarding needed cross section, water level at unusual time under the intense

<u>1</u>/: The rainfall intensity applied is that of 10-yr frequency. <u>2</u>/: $i = \frac{h}{L}$: Head loss $= \frac{1.372 - 1.097}{7,900} = 0.000035$

J- 30

rainfall, the highest sea level and the effect of existing tidal gate for the river water level have to be undertaken in order to clarify the required land elevation to be filled.

APPENDIX K

ALTERNATIVE ORGANIZATIONS

In conjunction with the implementation of sewerage and drainage systems programmed in Master Plan, the organization well conceived to achieve required objectives and functions is necessary. The matter has been taken up in PART V SOCIO-ECONOMIC ORGANIZATIONAL AND LEGISLATIVE STUDIES, but a few other alternatives were considered during the course of arriving at a proposal included in the above referred Master Plan Report. As a matter of information they are presented in the following:

 Creation of new regional organization as Penang Sewerage & Drainage Authority

As mentioned previously, there are local government councils under State of Penang Authority, i.e., Municipal Council, Penang Island, and Municipal Council, Province Wellesley.

While no sewerage systems exist in Province Wellesley, sewage disposal system exists in urban area of Penang Island with corresponding organization responsible for operation of the system in the Council of Penang Island.

This alternative is considered based on the concept to create a new organization expanding already developed organization responsible for existing sewerage works in Penang Island to include the one proposed for Province Wellesley, recruiting available sanitary engineers in charge of sanitary systems for operation and management in both areas.

The status of this new organization is to be similar to the existing Penang Water Authority, the fully autonomous statutory body authorized by Federal legislation and intends to promote administrative control, self support and maintain uniform technical standards for sewerage and drainage systems through the combined areas of Penang Island and Province Wellesley.

The strong capability and centralized enforcement for overall performance and direct control for satisfactory management and operation will be characteristics by this single authority as opposed to two seperate organizations to be provided in two municipal councils.

The possible disadvantage of this approach is, however, that it may require time consuming initial efforts for legislative and administrative review for the creation of a new organization. This will naturally include consideration on reorganization of various department in the existing municipal councils, which will be involved technically and administratively for a creation of a new organization.

While the idea of establishing single organization for sewerage administration is the logical one, the problems involved for consideration and implementation are considered to be great.

2. Combined Penang Water Supply, Sewerage & Drainage Authority

This alternative is the expansion of the function of existing Penang Water Authority to include the sewerage & drainage administrative functions covering both Penang island and Province Wellesley. The development of the sewerage system needs to be coordinated with the growth of infrastructure, particularly water supply for residential, commercial and industrial use and demand for sewerage service is closely related to its consumption. Technically and administratively, it is considered sound to conceive single organization, which include services for water supply, sewerage and drainage, for better coordination among the staff concerned for the implementation of various programmes.

It is important to note that a practice successfully followed as an equitable method to generate the revenue for sound operation of sewerage & drainage works is to impose a sewer & drain charges based on the quantity of water used. In this connection, PWA bas been demonstrating its capabilities not only in the operation and maintenance of the system, but also for financial management including its fee collection and debt service of both local and foreign currency loans since its formation on 1st, January,1977.

By placing water supply, sewerage and drainage works into an unified organization, sewer and drain charges can be collected with combination of water supply billing procedure. The delinquent users of service charges can be easily penalized by cutting off the water supply.

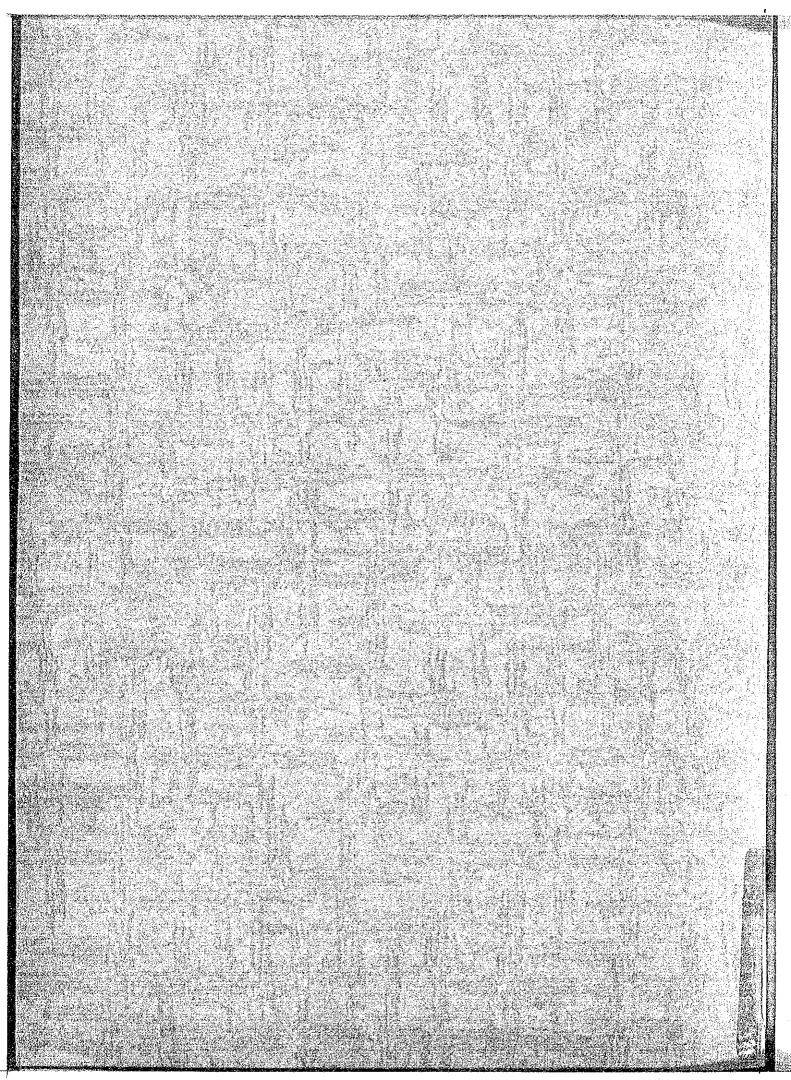
The additional advantage is that existing engineering and administrative key personnel in the established functional units are utilized to avoid the problem to recruite the experienced and gualified engineering and administrative man-power which are generally shorted.

In contrast to the advantages as mentioned above, there exist significant disadvantages in this approach similar to the disadvantage enumerated in the first alternative.

3. <u>Expansion and Modification of existing Engineering Department</u>, Province Wellesley

The all sanitary systems in the Project Area except for sewerage system are under the control of Municipal Council, P.W. in accordance with Municipal Ordinance enacted as Chapter 133 of the Straits Settlements in 1913 with its subsequent amendments.

The administrative authority has recently been strengthened by the amalgamation of previous three district councils into one local council, "Lembaga", and subsequent status promotion to Municipal Council from Local Council in December, 1976.


This ordinance empowers the Municipal Council to construct and maintain the sewerage and drainage disposal systems as well as all other sanitary systems within the Council's boundary.

The Ordinance also grants the power to the Council to raise the revenue for the sewerage and drainage works by levying the fees and other charges for the services to be provided.

Under this ordinance the Municipal Council would be able to undertake the sewerage and drainage development programme expanding the existing functions suited to meet planned sewerage and drainage systems without drastic jurisdictional reorganization as required in the first and second alternatives.

In addition, further expansion and development of administrative authority is expected for the Department in accordance with urban and industrial development in the area in line with the national policy, which will enable the reorganization in connection with the sewerage and drainage administration easier.

The major disadvantage may be a difficulty and disadvantage pertinent to the creation of a new functional units solely responsible for management and operation of proposed sewerage and drainage systems. The shortage of qualified and experienced personnel, together with the relationship with authorities in charge of agriculture, land development and health control programme, may impose a restraint for early implementation of satisfactory new public utility services.

