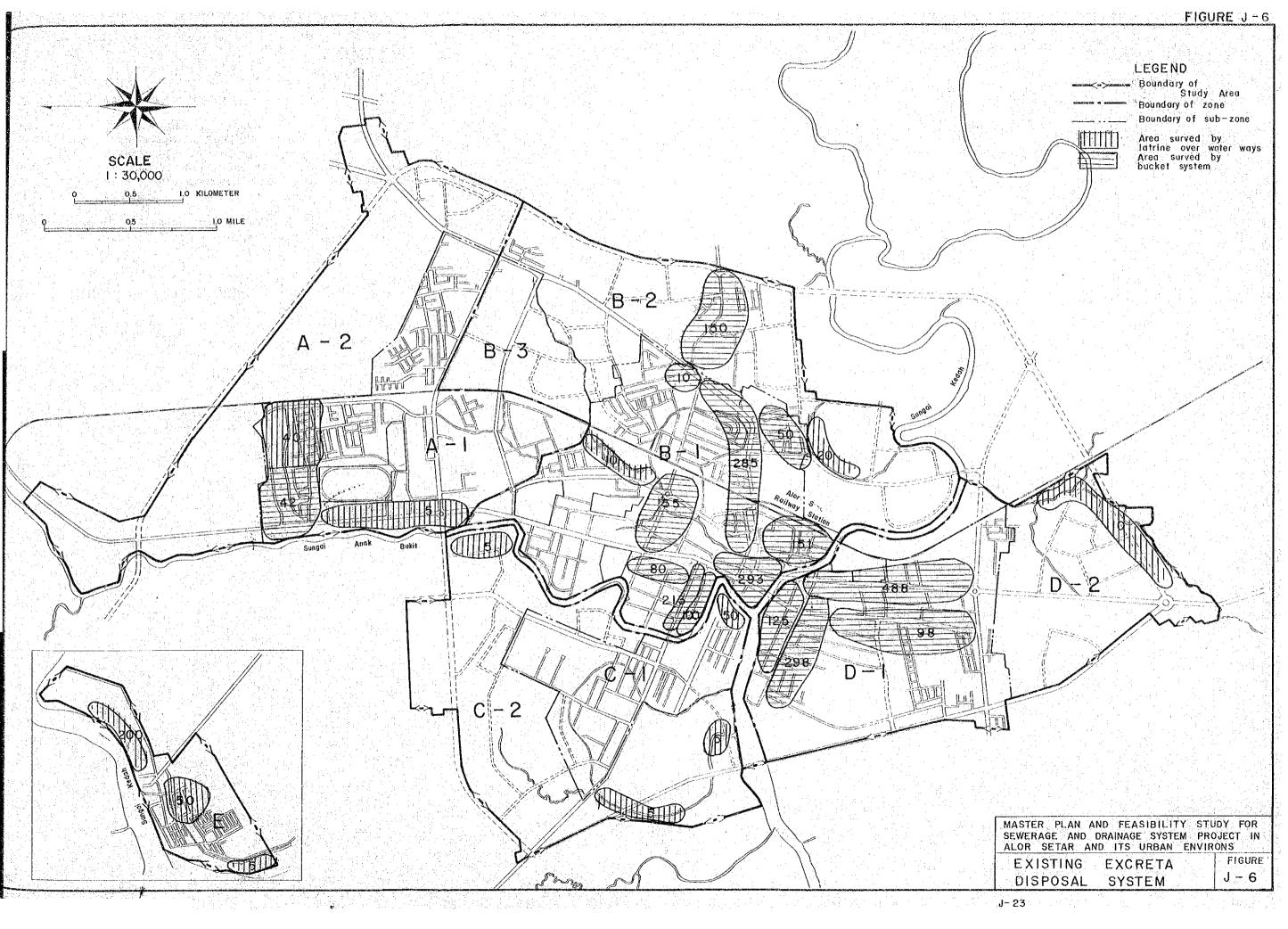
2.2.4 Excreta Disposal System

The existing excreta disposal system in the Study Area is represented by two systems, namely septic tank and bucket system. Most of the population in the new housing development areas use flush toilets with individual or communal septic tank and most of the population in the build-up areas are served by mixture of individual septic tanks and bucket systems, while rural population use bucket system dominantly.

Table J-4 shows estimated number of houses served either by bucket system or by various kinds of latrines (such as pit privy, over-river latrine, etc.) according to data in Section 8 in Chapter 3 with additional assumptions based on the field investigations. Assessment as to present excreta disposal situation is made considering the availability of bucket system and latrines which should be higher in priority to be replaced into sewerage system than septic tanks exist.

For the purpose of rating, a maximum of 100 points is assigned to sewerage sub-zones wherein more than 10 percent of households provided either bucket system or latrines, that is, the remaining 90 percent of households were provided with septic tanks, while a minimum of 0 point to sub-zones wherein less than five percent of households provided either bucket system or latrines as shown below:


Assigned Point	Households Served by Bucket System or Latrine (%)
100	10
50	5 - 10
0	0 - 5

Each sewerage sub-zone is evaluated as shown in Table J-4 and Figure J-6. B-1 comes top in priority as to excreta disposal aspect gaining 16.2 points, followed by D-1 and E.

1 1 1		Bucket System including	
euoz-ans	Number of Houses	over-river latrine system	
		Number Ratio (%)	%) Points
A - 1	2,748	42 1.5	0
А 1 2	667	45 6.7	50
г-1 і Щ	8, 296	1,347 16.2	100
۲ ۱ ۵	2,074	170 8.2	50
ო ფ	226	0	0
C - 1	1,423	3.5	0
⊳ 1 0	527	15 2.8	0
н 1 Д	6,368	1,009 15.8	100
D D	1,398	10 0.7	0
ы	1,656	255 IS	00T
Total	25,383	2,938	

Evaluated Points for Existing Excreta Disposal System by Sewerage Sub-Zone

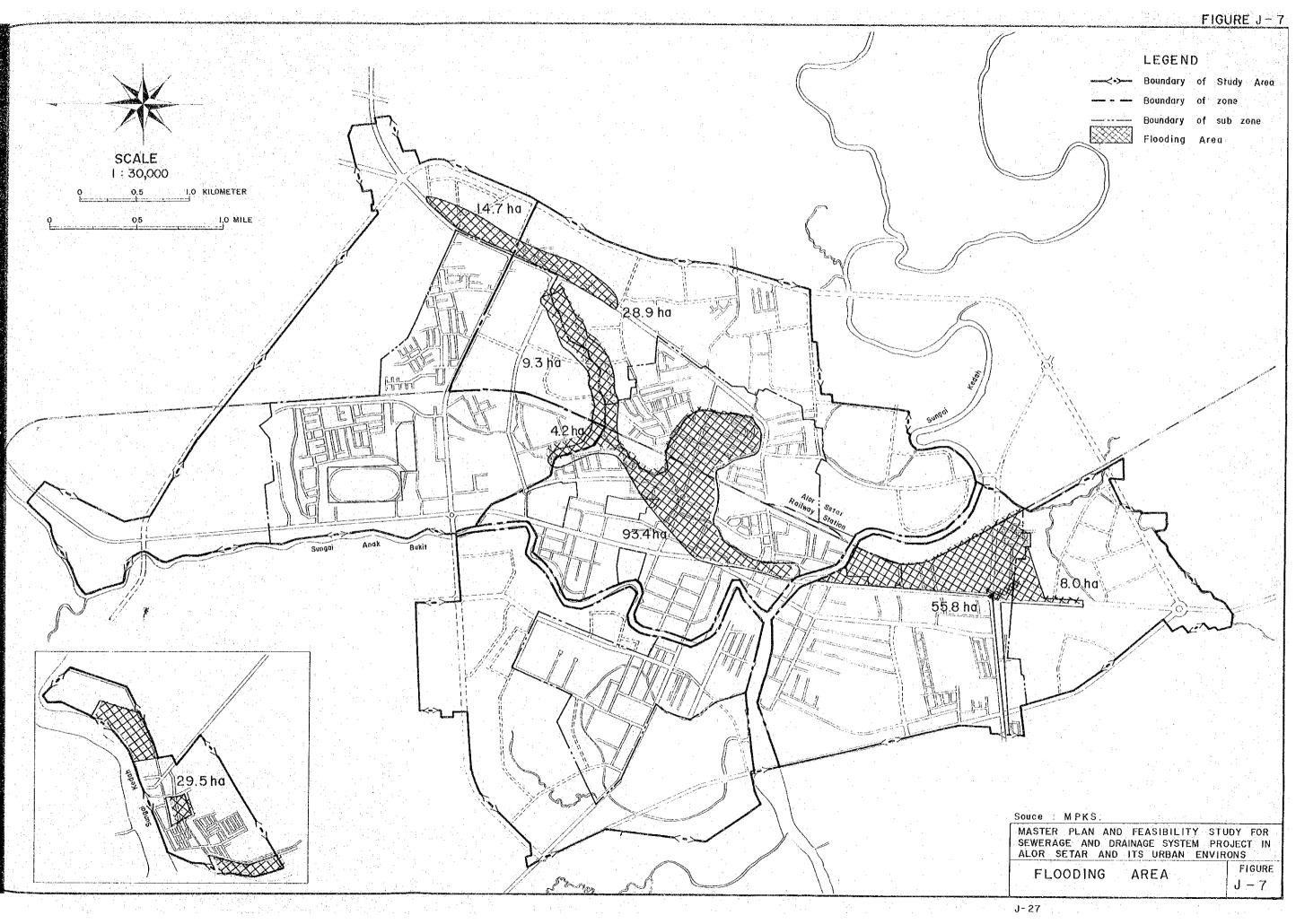
Table J-4

2.2.5 Flooding Condition

As shown in Figure J-7, flooding occurs in the Study Area except in zone C. However, sewerage zones (or sub-zones) heavily affected by flooding are limited into three, namely B-1, D-1 and E. More than 20 percent of area in sub-zone B-1 and zone E is liable to flooding and more than 14 percent of area in subzone D-1.

An assessment point for rating is given according to the extent of flooding in sewerage sub-zones as follows;

Assigned Point	Percentage Area Flooded
50	above 20
25	10 - 20
0	0 - 10


All sewerage sub-zones are evaluated based on the assessment points given in above table as resulted in Table J-5.

-25

Sub - Zone	Агеа (ћа)	Flooded Area (ha)	Ratio (%)	Evaluated Points
A - 1	385	4.2	1.1	0
A - 2	437	14.7	3.4	
ן ו ש	459	93.4	20.3	20
Сі Г Г Г П	410	28.9	2 .0	
ლ 1 4	102	6 . 3	6.1	
г , ч	187			
0 0	427	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	
1 1 0	388	55.8	14.4	25
D 1 2	270	0°8	3.0	
ы	125	29.5	23.6	50
Total	3,190	2 43. 8		· · · · · · · · · · · · · · · · · · ·

Evaluated Points in terms of Flooding

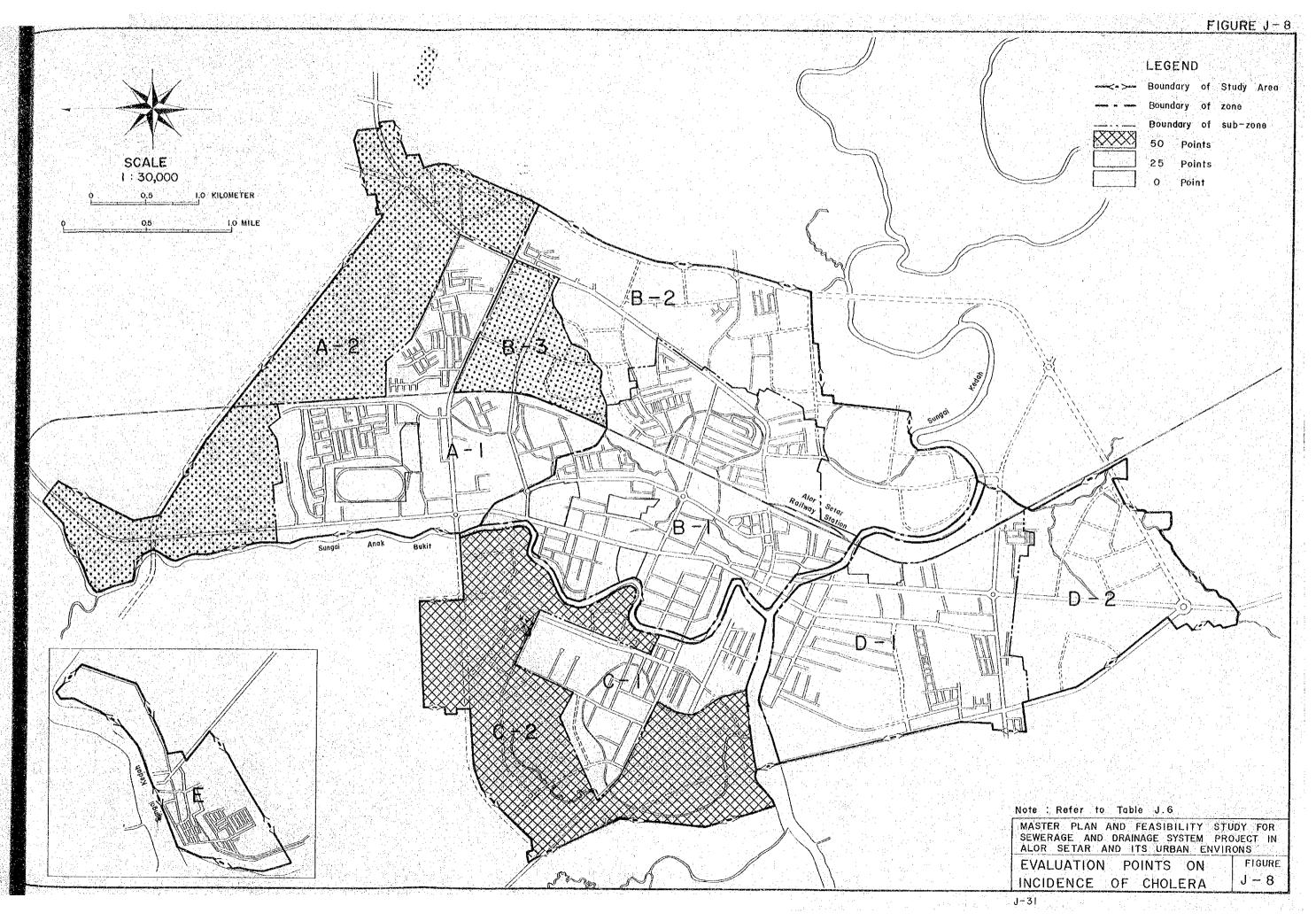
Tabel J-5

2.2.6 Incidence of Water Borne Diseases

For the purpose of rating on incidence of water borne diseases, cholera cases are taken as the indicator.

Cholera patients recorded are listed below on the basis of Mukim (administrative unit) in Alor Setar Areas, including the Study Area ;

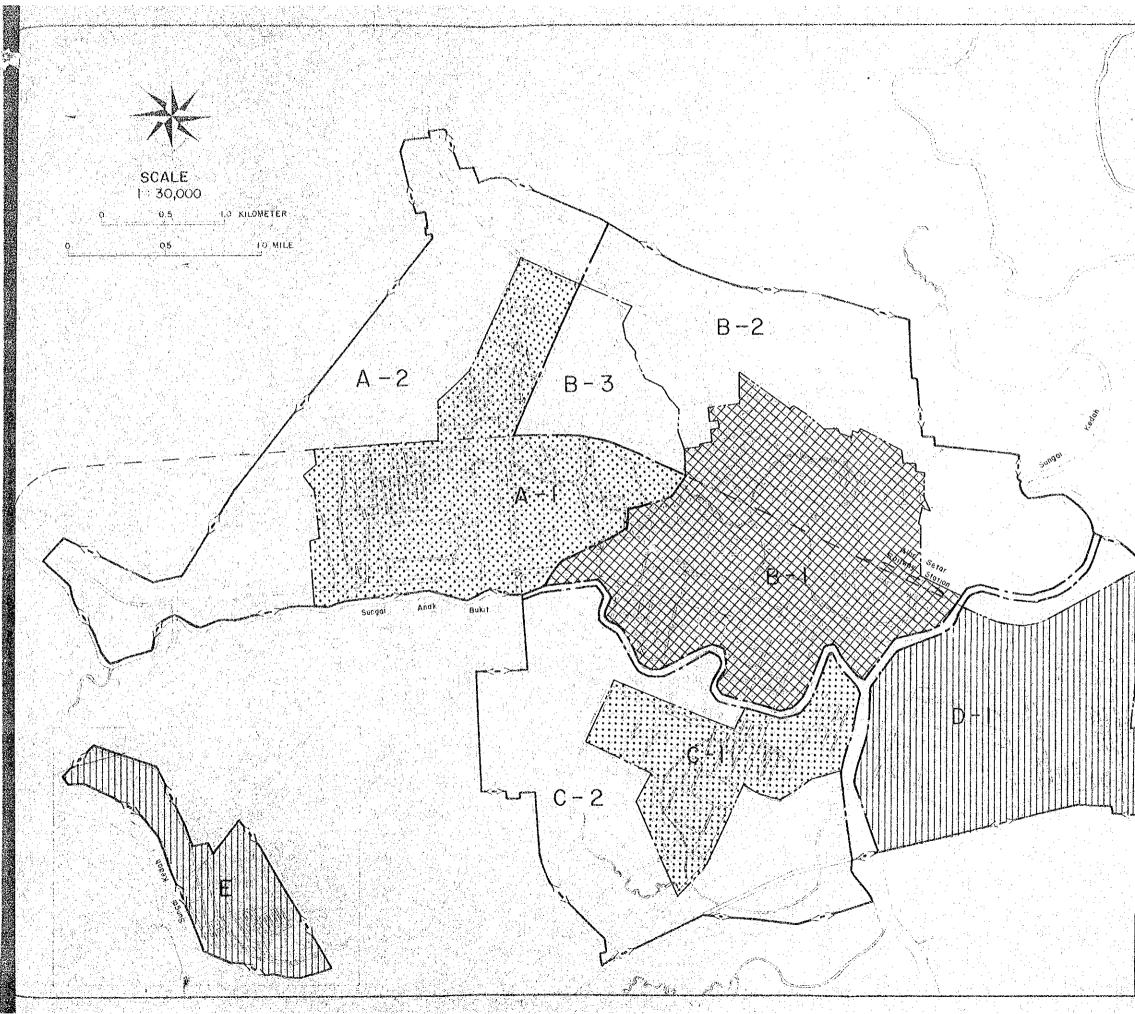
Mukim	Cholera Patier	<u>it</u>
Hutan Kampong	11	
Anak Kukit	9	
Alor Merah	2	
Alor Malai	11	
Kota Setar	19	
Pumpong	7	
Mergong	9	
Pengkalan Kundor	25	
Kuala Kedah	13	
Total :	106	


A maximum of 50 points are assigned and each of sewerage sub-zones are evaluated according to the level of incidence set out as follows :

50	More than 2
25	2
20	1 - 2
0	0 - 1

The result of the assessment for each of sewerage sub-zones are shown in Table J-6 and Figure J-8.

Sub-Zone	Population at 1979 (Persons)	Number of Cholera Patients	Ratio (Person/1,000 Perns)	EVa	Evaluated Points
A - 1	15,112	2			C
A - 2	3,666	ب	1.36		22 C
r-l I Q	45,629	σ	0.20		
11 12 12	11,407	10	0.88	· ·	Ó
сл I Д	1,243	3	2.61		25
	7,827		0.13		0
1 1 1	2,897	S	2.07		20
г 1 Д	35,025	• • • •	60°0		O
ц П П	7,689	m	0.39		0
БŢ	9,105	4	0.44		O
ФО+а ¹	1 30 A00				


139,6

2.2.7 Overall Evaluated Points by Sewerage Sub-Zone

All assessment points for six major items are listed in Table J-7 and Figure J-9 according to sewerage sub-zones.

	Total	340	205	950	240	265	380	150	795	300	730	
	Distribution of Water Borne Disease	0	25	0	0	52	м О	г 20 2		е 	0	
	Flooded Area	0	. 0	50	Ö	0	0	о 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25	0	50	
	Existing Excreta Disposal System	o	50	100	50	O	0	0	0001	O	100	
Sub-Zone	Waste Loading	100	20	300	50	50	0	50	200	50,	300	
Overall Evaluated Points by Sub-Zone	Urbanization	150	50	200	50	100	200	50	200	100	100	
Overall Evalu	Population Density	0.	30	300	06	06	180	0	270	150	180	
Table J-7	Sub-Zone	-1 	А - -	н I M	0 1 20	ო 1 #	н 1 0	7 1 0	П Ц Д	Р 1 Д	۲Щ) الم	
						J	-34					

CANAL PL

FIGURE J-9 LEGEND Boundary of Study Area Boundary of zone includes and Boundary of sub-zone $\times\!\!\times\!\!\times\!\!\times$ 900 Points ППП 700~900 Points 300~700 Points 300 Points D - 2 Note : Refer to table J.7 MASTER PLAN AND FEASIBILITY STUDY FOR SEWERAGE AND DRAINAGE SYSTEM PROJECT IN ALOR SETAR AND ITS URBAN ENVIRONS FIGURE OVERALL EVALUATED J - 9 POINTS BY SUB-ZONE J−35

APPENDIX K

COMPUTATION FOR TRUNK SEWER DESIGN

Separate sewerage system proposed collects and conveys all wastewaters from residential, commercial and industrial areas to waste stabilization ponds provided at the terminal of the system.

The design sewage flows are calculated for the conditions in the year 2000, including extraneous flows such as groundwater infillration.

Sewer capacity has been determined using the design criteria as discussed in Section 5, Chapter 5, Sewerage Master Plan Report.

Hydraulic computations are shown in Table K-1 for the trunk sewers in every sewerage zone as shown in Figure 5-3 of the main report, applying the conveniently provided hydraulic computation chart in Table K-2 on the basis of Manning's Formula.

K-l

		tion	Lower Frid (m)				3.06			3.05		3.27			3.05		2.22	2.34		1	40.7 60 F		· · · ·		40	Z 14	cz - 7		2.00 IOYCE	1.73		2.75
		Elevation Ground Surface	1 E	() C) C			1 C	Ţ.	0			0.6.7		27	2.04					1					 	1	7 57 7		2 C2 C	<u>L</u>		2.75
	א פ ג	Sewer Invert Elevation	Lower D End (m)				-2.436				0117 0		-i		C/ C . T - 1	; <u>-</u>	-	-0.675	- 1 307	219 6		011			10.00	0 F	100.0-		5 0 1 1 1 1	-0.423		-0-904
	פי. קי	Sewer	Upper End (m)	0.787	-1.052		0.386	-2 586			0 676					000		0.066	0.407	-1 460	-3.916	-4.327		0 567	0.068		+		0 526	2	oo c	0.2
IERS	9 0 0	- Capa- city	(m3/s)	0.047	0.086		0.025	0.086			0.035		2000			0.231			0.047	0.086	0.303	0.385		0.047	0 086	0.1.06		0.153	1.52.0		0.025	
TRUNK SEWERS	ь Р	Full Velo-	(m/sec)	0.65	0.75		0.61	0.75	0 77		0.61		0 75	2 2 2		0.79	0 1 0		0.65	0, 75	0.82	0.85		0.65	0.75	0.77		1.34	0.79		0.61	
ц Ц		Slope	1900 (%)	2.2	2.2		2.8	2.2			2.8		2.2			1.3			2.2	2.2	1.2	1.1		2.2	2.2	1.8			1.3		2.8	
DESIGN		Dia.	(mm)	· · · ·	375		225	375	450		225		375	375		600	600		300	375	675	750		300				375	600		225	
ION FOR	Pcak	Total	(m3/s)	0.042	0.056		0.020	0.064			0.025	0-024	0					<u></u>	0.043	0.081	0.295	-		0.026	0.063		0.151	0.151	0.197	1	0.019	
COMPUTATION	M	5- Extra-		0.003	0.004		0.001	0 005	600.0		0.002		0.005	0 007	0.018	0.018	0.020		0.003	0.006	0.028	0.030		0.002	0.005	0.008	0.013	0:013	10.0		0.001	
5	Peak Flow	subul -se		39			61	59	02		23		62	77	80	80	98		40	75	57	33		24	89	o	ĉ	88	0		0	
· · · · · · · · · · · · · · · · · · ·		n Domes-		6 0.039		_	4 0.019	<u> </u>	9 0.102		7 0.023		5 0.062	5 0.077	1 0.180				1 0.040	0.075	0.267	0.283		0.024	0.058		0.138	0.138	0.180		0.018	
- - -	Popul			3,486	4,905				10,759		1,847		6,036	7,736	20,901	20,901	23,307		3,584	7,529	33,007	35,379		1,952	5,510	9,241	15,253	15,253	20,903		1,452	
	Area	t Total	(ha)	. :	57-23			66.10	1 125.49	tation		21.54	70-41	90.23					1	87-82	385.00	412.10			62.96	105-60	174.30	174.30	238.86			0 1 1 1
	Å	Incremen	(ha)	40.66	16.57	р О И	18.13	47.97	2.16		21.54	0.00	48.87	19.82	28.07	0.00	28.07	to 13	41.80	46.02	25.32	27.10	to 28	22.31	40.65	42.64	68.70	0	64-56	to 28	16.59	38.80
K-1 A (1)	Sewer	Length (m)		630	069		520	720	200		1220	-	620	250	0	630	570		640	980	280	720		200	0601	550	0	830	730		500	630
Table Zone		Line No.			~		λ	d" 1	<u>م</u>		9	24 -	7	ø	- ¹ -	6	10			12	13	14		15	16	17	Б3]8	19		1	21

	:		ce Kemarks	m)		-				force main									- - -	; ; ; ;											
	·.		Elevation Ground Surface	End (m) End (m)	2.40		2.40	2.40		2.44	2.40	1.73	1.73									1									
					2.44		2 44	2.40		2.40	i i	2.40	1.73								1					i .	- -				
÷		א ש א	Sewer Invert Elevation Ubber Lower	14	-3.502		-1.077	-2.692			-0.235	-1.935	-5.299								1		; ; ; ;								
		م ب	Sewer Elev Upper	End (m)	-1.940		LOV O	-1.152			0.365	-0.235	-5.269				· · · · · · · · · · · · · · · · · · ·								•						- - -
s		b o s e	Capa- city	(m3/s)	0.086		- 10 U	0.086		0.174	0.174	0.174	0.598												;						-
TRUNK SEWERS	:	.0 	Full Velo- city	(m/sec)	0.75		0.65	0.75		1.52	0.78	0.78	16.0																		
OF TRUN			Slope of Sewer	(£)	2.2		2.2	2.2			1.5	н. С	l.ō	 																 	
DESIGN				(mm)	375		300	375		375	525	525	00.6							: :										 	
FOR		Peak	Flow Total	(m3/s)	0.068		0.025-	0.065	0.121	0.121	0.143	0.148	0.576							:	·							 			
COMPUTATION			Extra- neous	(m3/s)	0.005		0.002	0.005	0.010.0	0.010.0	0.012	0.013	0.060															;	 	 	
COME		Peak Flow																													· ·
:			Domes- tic	(m3/s) (m3/s)	0 063		0.023	·	0.111	0.111	0.131	0.135	0.516																		
		Popu-	lation		6,111			5 779	11,890	11,890			71,250	 cilities														 · · · · · · · · · · · · · · · · · · ·			
•		. roj	Total	(114)	69.83	··· ··· ······	in the second	66.04		135.87	164.70	171.04	822.00	 to treatment facilities	· ·		:														•
(continuo)	/opnitairo	Area	Increment	119,	14.44	to P4-	23.05	42.99			28.83	6.34	00-00	to trea	-												 			 	:
	ļ	Sewer	<u>-</u>		017		530	200		300	400	600	30																	 	
Table K-J Zone A (2)			Linc No.		77	. <u>.</u>	23	24	P4	25	26	. 17	28	 							 		· · · · · · · · · · · · · · · · · · ·	:			. 1				
							-		-		ļ				 ĸ-	3		· · · ·					ļ		·						

rable K-l

Table K-1

		Ch Remarks		10 (m)	2.30	2.28			2.00		2.61	2.00	1 as		2.01					e la				00						2.00		2.14
		Elevation	Upper L		-	2 - 5 C		3.71		-	3.19	-		-	1.95	+	_				· ·					C 07 C				-		3.36 2.
		-	. ม		1.	· ; • • •	4	1	ξ.,	<u> </u>		t.		- 			. 1	!		1	•	1	!		:	<u>.</u>		00	1			!
	2	Thve	3	(m) kna (m)		<u></u>		1			50 -0.348			÷	1.006					- 2 003		- <u>-</u>		7 -0 945		7 -2.401		· • •	6 -3 620		-!	7 -0.833
	יט קי			End (m)		1000 F		1.715	-2.790		1.360	-0-498	-3.549		-3.923		0 167			-0-132		-3,388		1.387		0.567		0 697	-2.476	-3,695		1.827
SRS	6 0 0	Capa- city	(m3/s)	0 0 0		0.174		0.139	0.303		0.047	0.126	0.385		0.385		980 0	805.0		0.086	0 086	0.598		0.086		0.047		0.047	0.086	0.126		0.047
TRUNK SEWERS	о н н	Full Velo	city (m/sec)	0.61	0.75	0.78		0.85	0.82		0.65	0.77	0.85		0.85		0.75	16-0		0.75	0.75	0.91		0.75		0.65		0.65	0.75	0.77		0.65
0F		Slope of	Sewer (%)	2.8	2.2	1.5 1	1	2.2	1.2		2.2	1.8			1.1		2.2	0.1		2.2	2.2	T.O.I		2.2		2.2		2.2	2.2	1.8		2.2
DESIGN		Dia.	(uuu)	225	375	52.5		450	675		300	450	750		750		375	006		375	375	900		375		300	:	300	375	450		300
ULATION FOR	Peak	Flow Total	(m3/s)	0.025	0.056	0.143		0.093	0.259		0.039	0.110	0.376	0.376	0.376		0.055	0,414		0.061	0.077	0.516		0.057		0.033		0.037	0.075	0.121		0.041
PUTATIC		6	neous (m3/s)	100.0	0.002	0.006		0.005	0.012		100.0	0.004	0.018		0.018		0.002	0-020		0.002	0.003	0.027		0.004		0.002		0.002	0.005	600.0		0.002
СОМР	Peak Plow	Indus-	(m3/s)								,,							 	1													
	d	Domes-	tic (m3/s)	0.024	0 054	0.137		0.088	0.247		0.038	0.106.	0.358		0.358		0.053	0.394		0.059	0.074	0.489		0.053		0.031		0.035	0.070	0.112		0.039
		ropu- lation		2,023	5,125	15,207		12,059	30,143		3,405	11,192	46,594	46,594	46,594		5,342			5,695	7,375	66,995		5,027		2,689		3,100	6,941	12,048		3 483
·	ក	Total	(ha)		29.52	87.59			173.62			64.46		268.37	268.37		-	300.09			42.48	392.71	ation						68.44	118.80	tation	
(continue)	Arca	Incremon	(ha)	11.65	17.87	58.07	to t	69.46	16.57	2 R	19.61	44.85	30.29		0.00	to 11	30.77	0.95	to 14	32.80	9.68	50.14	pumping sta	49.57	to 19	26.51	to 18	30.57	11.36	0.79	10	31.53
(T)	1000 S	Length	(III)	500	310	760		1270	570		610	860	340		560		450	370		700	350	0011	to P4 pi	1060		1060		870	520		- mi	950
Zone B		Line		Ч	~	м		4	ю		9		ω	<u>با</u> ۴۰	6		10	11		12	13	14		15		16		17	18	19		07
	-	· · · ·	I	· !		 :	ł	. 1		1	1	•	 - -	ĺ	 K-4	 1			•.		ĺ		ļ				:	· 1				Į

			Remarks	·. ·									k : :			force main															torce main		_
s.			Elevation Ground Surface	Lower End (m)		7	2.82	0000	4	0 84			04 0	07 0	2	2.40	2.19	1.68	00000	4	1 97	***	CO 1.			3.71		77.7	3. /1	r L	TCOT		
			Elev Ground	<u>्र</u> ्य		1	2 40	2 82		1.83	a c		1.83	2 40		2.40	2.71	2.19	1.68		2.20		2 2 2		7.4	12-1			27.2	i i c			
· · ·		ц e z	Sewer Invert Elevation	End (m)	1 01			-0.776		-2.019	414 F-		-1.679	-2.106			-0.370	-3.990	-4.449		-0.628		-2.823			· · · · · · · · · · · · · · · · · · ·							-
		9 20 7	Sewer Elev	Upper End (m)	187	1020	005.1	0.966		-0.003	-2.094		-0.083	-1.754			0.635	-3.639	-4.065		-0.278	, i	-0.303	-2 472		CT0.0-	101 0						_
IRS		P C S e	Capa- city	(m3/s)	0.086	901.0		0.231		0.047	0.086		0.086	0.126		0.174	0.174	0.231	0.303		0.598		0.047	0.598			EVO 0	2010		0.553			-
TRUNK SEWERS		0 뇌 태	Full Velo-	(m/sec)	0.75	0.77		0, 79		0.65	0.75		0.75	0.77		1.52	0.78	0.79	0.82		16.0	 - - -	0.65	16.0	16.0		0.65	0 77		1.50			•••
OF			Slope of Sever	стен (%)	2.2	8.1		1.3		2.2	2.2		2.2	1.8			1.5	1.3	1.2		1.0		2.2	1.0	0-1		2.2	0					-
FOR DESIGN			Dia.	(mm)	375	450		600		300	375		375	450		375	525	600	675	· ·	900		300	006	006		300	450		675			_
		Peak	Total	(m3/s)	0.050	0.099		0.195		0.044	0.078		0.040	0.098	0.111	0.111	0.140	0.217	0.221	0.400	0.400		0.023	0.418	0.420		0.045	0.093	0.509	0.509			-
COMPUTATION			Extra-		0.004		600.0	0.013		0.002	0.003		0.003	600-0	0.010	0.010	0.013	1	0.017		0.031		0.002	10	0.036		0.002	0.005	0.041	0.041			
CON		Peak Flow	Indus-		0		0	0.057		0.023	0.043		0	¢	0	0	0 008	0.051	0.053	0.114	0.114		o	0.114	0.114		0.017	0.034	0.148	0.148			-
		ф 	Domes-	(m3/s)	0.046	060.0	÷	0.125		0.019	0.032			0.089	101 0	0.101	0.119	0.149	0.151	0.255	0.255		0.021	0.270	0.270		0.026	0.054	0.3200	0.3200			_
		-ndog	lation		4,255	9,257	9,257	13,646	ation		2.774	i	3,290	9,169	10,591	10,591				31,375	31,375	•	1,729	33,494	35,713	Station	2,208	5,136	40,849	40,849	facilities		
		ъ с		(ha)	· .	126.28	126.28		Fumping S		54,33			125,08	144.48	144.48	182.40	255.03	257.98	472.15	472.15			513.66	543.94	s buidund		70.06	614.00	614.00			
inue)	-	Area	Incremen	(ha)	58.05	68.23	0.00	72.53	to P3 F	28.92	25.41	to 10	44 88	80.20	19.40	0.00	37.91	18.31	2.95	15.36	0.00	to 14	33.86	7.65	30.28	to P4 P	30.12	39.94		0.00	to Treatment		a la serence a la serence
C (continue)		Sewer	Length (m)		00.058	750.00		.340.00	1	720.00	600.00		570.00	,170,00	0,0	570.00		270,00	320.00	0.00	350.00		00.006	190.00	1		800-00	470.00	0.00	350,00			
Zone -		,	No.	F	-1	2	P1	m		4	ŝ		ا ع		52 6	β	ת			P3	12		13	14	_		16	17	P4	18			

'rable K-1

T-X sldrT

COMPUTATION FOR DESIGN OF TRUNK SEWERS

	Elevation Ground Surface	Upper Lower Lnd (m) End (m)	1.22 2.12			.53 1.53	53	13		-73 2.04		2.04 2.36 force main	3.04			.53 1.53	53		.83 1.83 force main		2.40 2.14	:		2.14 2.40	! !		2.40 1.83 force main			
ม ย ม ย บ	Sewer Invert Elevation G:	Upper Lower U End (m) End (m) Unv	-3.007	 		-0.456 -3.069 I.	-4.239	1		0.817 -2.347 2.		2	-0.118 -1.861 2.	631		-0.303 -4,055 1.	-4.963		-1		0.487 -2.887 2.	-5.377		0.227 -1.817 2.	-3.476		1			
ы Ч Ч С С С С С С С С С С С С С С С С С	Full Capa- Velo- city	clty (m/sec) (m3/s)	0.89 0.146	0 77 0 126		0.96 0.157	0.78 0.174	0.82 0.303		0.75 0.086	 	1.52 0.249	0.91 0.598			0.65 0.047			1.63 0.476		0.75 0.086	0.78 0.174		0.75 0.086	0.77 0.126		1.52 0.249			
	Dia.	s) (mm) (%)	89 450 2.4	I		98 450 2.8	54 525 1.5	44 675 1.2		69 375 2 .2		92 450	1.1 006 00			27 300 2.2	51 900 1.1		51 600		58 375 2.2	<u>-</u>		75 375 2.2	450 I.	15	15 450			
Flow	Indus-[Extra- Total	trial neous (m3/s) (m3/s)	0.004 0.0	0.006 0.113	· · ·	0.005 0.098	0.008 0.154	0.014 0.244		0.003 0.069	0.017 0.292	0.292	0.025 0.400			0.001 0.027	0.029 0.461	0.461	0.461	· · · · ·	0.004 0.068	0.010 0.147		0.005 0.075		0.018 0.245	0.245			
Popula-	n Domes-	tic (m3/s)	8,751 0.085	11,363 0.107		9,680 0.093	16,237 0.146	27,797 0.230		6,483 0.066	34,279 0.275	34,279	49,089 0.375	55,015 0.413		2,162 0.026	55,015 0.432	55,015	55,015	ilities	6,279 0.064	15,175 0.137		6,968 0.070	12,000 0.112		27,424	es.		
Area	Total		61.72	18.42 80.14	to 5			196.04	to Pl	45.72	0.00 241.76	0.00 241.76	104.45 346.21		to 11	19.19	414.64	0.00 414.64	0.00 414.64	to treatment fadi	55.72	1 134.66	to P3	61.83		0.00 243.36		reatment facilities		
с С С С С С	Length		1 930	2 730			4 730	0		6 1130	L L	7 400	830	6 700		10 1340	11 280		12 1480		1050	14 1560		15 730	16 880	P3	17 1500	to		

K~ 7

	· · ·		Remarks																			**							
			Elevation Ground Surface	Lower		2 - 40 2 - 40		7 7 6	2	04 0	2.40		2.40	2.40	07 0	2 2 3		-											
	•		Elev Ground	i Li		0 4 6				2.07		ļ.,	1.95																
	•	ы 9 3	Sewer Invert Elevation	End (m)	<u> </u>	- 524		010		-1.723	-4.069		-1.363	-2.727	-4.573							1							
		đ S e	Sever	Upper End (m)		-0.456	-1.609	-2.869		0 237	-3.394		0.037	-1.363	-4.144														
ERS		b o s e	Capa- city	(m3/s)		0.086	0.126	0.126		0.047	0.174		0.086	0.086	0.231		-												
TRUNK SEWERS		ола	Full Velo- Citu	(m/sec)	0.61	0.75	0.77	0.77		0.65	0.78		0.75	0.75	0.79								:				:		
			Slope	(%)	2.8	2.2	1.8	1.8		2.2	I.S		2.2	2.2	1.3					-							:		-
C DESIGN OF	:		Dia.	(unu) (L	375	450	450			÷			375															
ION FOF		Peak	Total	(m3/s)		0.055				0.035	0.142		0.052		0.211		-												
COMPUTATION FOR		- - -	- Extra-		C	4 0.001	0	4 0.003		100.0 0	4 0.005		!	0 0 003	0.008						-								
20		Peak Flow	s- Indus- trial	s) (m3/s)	610°0 0	0 0.054					33 0.054				9 0.054							-							
			on Domes-	(m3/	0	0	8 0.031	2 0.044			8 0.033		<u> </u>		1 0.149	es		1				 			. 				
-	:	-ndog	al lation				4 2,668	0 4,052		╧┽	0 8,478		4,719		0 16,791	facilities							 					 -	
		Area	ent Total	(ha		18.76	35.64	44			72.40		-			to Treatment			:				. 						
(continue)		· ·	<u> </u> 	(ha)	6.53		1 16.88						÷		-	to								:					-
i 4 1			Length (m)		340.00	490.00	700.00	250.00		700.00	450.00		500.00		330 00	۰ ۰ ۰			 										
Zone			No.			5	m	4		ι Ω	0			0 (5				4 10						- -				

K--8

Chart of Manning's Formula for Circular Pipes, N=0.013

0.610 (600) * 0.732 0.673 0.642 0 0.759 0.609 0.592 0.574 0.556 0.517 0.497 0.476 0.454 0.430 0.406 0.380 0.351 0.351 0.327 0.321 0.314 0.301 0.287 0.287 0.292 1.916 0.152 2.503 2.405 2.303 2.083 2.024 1.964 1.902 1.837 1.770 1.701 1.628 1.553 1.473 1.389 1.299 1.203 1.162 1.120 1.098 1.076 1.030 0.982 0.957 2.598 Ь (525)* 0.493 0.427 0.415 0.402 0.390 0.377 0.532 0.513 0.472 0.363 0.349 0.334 0.334 0.338 0.285 0.266 0.246 0.238 0.238 0 0.450 0.225 0.220 0.211 0.201 0.196 0.534 0.224 1.678 0.133 1.906 1.852 1.797 1.740 1.681 1.620 1.556 1.490 1.421 1.348 2.377 2.291 2.201 2.107 2.009 1.271 1.189 1.101 1.063 1.005 0.984 0.942 0.899 0.876 5 0.457 (450)* 0.164 1.436 0.114 С 0.352 0.339 0.325 0.312 0.312 0.282 0.274 0.266 0.257 0.257 0.240 0.230 0.220 0.210 0.199 0.188 0.176 0.163 0.157 0.157 0.149 0.146 0.139 0.133 0.133 ь 2.065 1.984 1.900 1.811 1.718 1.670 1.620 1.569 1.515 1.460 1.403 1.343 1.281 1.215 1.145 1.072 0.992 0.958 0.906 0.887 0.850 0.810 0.789 2.143 *(346) 0.216 0.209 0.192 0.183 0.174 0.169 0.164 0.158 0.158 0.147 0.142 0.136 0.136 0.129 0.116 0.108 0.100 0.097 0.093 0.091 0.086 0.088 0.088 0 0.381 0.114 1.197 0.095 1.898 1.829 1.757 1.683 1.683 1.522 1.479 1.435 1.389 1.342 1.293 1.243 1.190 1.134 1.076 1.015 0.949 0.879 0.849 0.818 0.802 0.786 0.753 0.717 0.717 Δ * (DOE) 0.081 0.078 0.074 0.071 0.067 0 0.119 0.114 0.110 0.105 0.095 0.092 0.090 0.087 0.087 0.063 0.055 0.055 0.053 0.050 0.049 0.047 0.045 0.100 0.304 0.073 0.955 0.076 1.574 1.512 1.448 1.380 1.309 1.272 1.234 1.195 1.155 1.113 1.069 1.024 0.976 0.926 0.873 0.817 0.756 0.730 0.704 0.690 0.676 0.647 0.617 0.602 Δ 1.633 (225) 0 0.056 0.054 0.052 0.049 0.047 0.045 0.043 0.042 0.041 0.039 0.038 0.036 0.035 0.033 0.030 0.028 0.026 0.025 0.025 0.024 0.023 0.022 0.021 0.021 0.229 0.041 0.719 1.352 1.303 1.252 1.198 1.143 1.084 1.053 1.022 0.990 0.956 0.921 0.885 0.847 0.808 0.767 0.723 0.676 0.626 0.683 0.571 0.560 0.536 0.531 0.511 > 0.153 (150)* 0.018 0.010 0.009 0.008 0 0.018 0.018 0.017 0.015 0.014 0.014 0.014 0.013 0.012 0.012 0.011 0.008 0.008 0.008 0.007 0.019 0.016 0.481 0.038 0.552 0.517 0.478 0.462 0.445 0.996 0.957 0.916 0.873 0.828 0.805 0.781 0.756 0.731 0.704 0.676 0.648 0.617 0.586 0.437 0.428 0.410 0.391 0.381 1.033 Þ Wetted Perimeter (m) Hydraulic Radius (m) Dia. of Sewer (m) Sectional Area (m²) Slope of Sewer (00/0) 9002 1002 0 8 0 5 8 0 5 7 12.0 11.0 0 0 0 0 0 13.0 7.5 5.0 2.5 9.0 3.0 សា 14.0 10.0 ō ŝ 0 មា å ഫ്

continue -

Full Velocity (m/s) Full Capacity (m³/s)

, N Q

Note:

rable K-2

··· .	*			1
• • •	0.610 (600)* 0.292 1.916 0.152	0.272 0.272 0.255 0.257 0.259	0.231 0.222 0.213 0.203 0.193	0.181 0.170 0.157 0.157 0.143
·		V 0.932 0.878 0.850 0.850	0.792 0.761 0.728 0.654 0.655	0.581 0.581 0.538 0.491 0.439
	0.534 (525)* 0.224 (525)* 1.678 0.133	0.191 0.191 0.186 0.174 0.174	0.162 0.156 0.149 0.149 0.135	0.127 0.119 0.110 0.110 0.101 0.090
	· ·	ν 0.852 0.828 0.804 0.778 0.778	0.724 0.699 0.666 0.635 0.603	0.568 0.532 0.492 0.449 0.402
	0.457 (450)* 0.164 1.436 0.114	0 0.126 0.119 0.119 0.1115 0.1115	0.107 0.103 0.099 0.089	0.084 0.079 0.073 0.056 0.056
		V 0.768 0.747 0.724 0.724 0.701	0.653 0.627 0.573 0.573 0.573	0.512 0.479 0.444 0.405 0.362
	0.381 (375)* 0.114 1.197 0.095	0.078 0.075 0.073 0.073 0.073	0.066 0.063 0.061 0.058 0.058	0.052 0.048 0.045 0.045 0.041
		V 0.681 0.661 0.642 0.621 0.600	0.578 0.556 0.532 0.537 0.481	0.454 0.454 0.393 0.359 0.321
	0.304 (300)* 0.073 0.955 0.076	0.043 0.041 0.040 0.039 0.037	0.036 0.033 0.033 0.033	0.028 0.027 0.025 0.022 0.022
		V 0.586 0.535 0.535 0.516	0.498 0.478 0.458 0.458 0.436 0.436	0.390 0.365 0.338 0.338 0.338 0.276
	0.229 (225)* 0.041 0.719 0.057	0 0.019 0.019 0.018 0.018	0.017 0.016 0.016 0.015 0.014	0.013 0.012 0.012 0.012 0.009
		V 0.485 0.471 0.457 0.443 0.428	0.412 0.396 0.379 0.361 0.343	0.323 0.302 0.280 0.256 0.229
	0.153 (150)* 0.018 (0.481 0.038	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.006 0.006 0.005 0.005 0.005	0.005 0.004 0.004 0.004 0.003
ue)	ê e	V 0.370 0.360 0.349 0.338 0.338	0.315 0.303 0.290 0.276 0.276 0.262	0.247 0.231 9.214 0.195 0.175
Table K-2 (continue)	Dia. of Sewer (m) Sectional Area (m ²) Wetted Perimeter (m Hydraulic Radius (m) Slope of Sewer	(0/00) 1.7 1.6 1.5 1.5 3.4	миное миное	00000 00000
	: 	1 .		· .

Note: V: Full Velocity (m/s) 2: Full Capacity (m³/s) - continuo -

÷.	, 850) *					:	•			· .	·.	•					•	. 1	۴	• .					1 T.
	372 (1 478 310 343	0	6.593	6.354 6.104	5.844		5.287	5.138	4.984	4.826 4.662		207 7	4.316	4.133	3.940	3.738		3.524	27.7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.949	2.841	ν ο Γ Υ	2.730	2.614	2.492 2.429
			4.460	4.298 4.129	3.953 3.769		3.576	3.475	3.371	а. 264 д. 154		3.039	2.920	2.795	2.665	2.528		2.384	2.230	1.994	1.922	100 C	1.847	1.768	1.686 1.643
	19 (1,200)* 67 30 05	0	4.810	4.635 4.454	4.264 4.066		3.857	3.748	3.636	3.521 3.401		3.278	3.149	3.015	2.875	2.727		2.571	2.227	2.151	2.073	0 020 0	1-992	1.907	1.818 1.772
	* 1.219 1.167 3.830 0.305	^	4.122	3.816 3.816	3.654 3.484		3.305	3.212	3 116	3.017 2.915		2.809	2.698	2.583	2.463	2.337		2-203	1.908	1.843	1.776	677 1	1.707	L.634	1.558 1.518
	6 (1,050)* 2 6	0	3.364	3.114	2.982 2.843			621	543	2.379		2.292				907			1.557						1.239 1.239
	1.066 0.892 3.349 0.266	Δ		3.490	-		022	· · ·		2.665 2.665		۰.	:		2.253	- · · · · · ·			1.745 1						
	* (006)	8	2.239		L.984		• .			1.583					1 338				1.036 L			946	927	887	640 825
	0.915 0.658 2.875 0.229	>			2.877	•	2.730 1			2.407	:		2.229 1		2.034 1					1.522 l		1.439 0	410 0.4		1.254 0
	(825) *	0	771 3					- 380 2 330 2			· · ·						946	885	820	792	763	748	733	702	200
	0.838 0.552 2.633 0.210								 -	70 1				· ·			Ċ	0	0	°.	о	0	0	o c	
	(750) *	>					~ ~			÷.,		6 2.188	•						5 1.486				9 1.329		
	0.762 (7 0.456 2.394 0.191	0	1.374 1.324		1.161	•		1.039		0-972		0.936	0.900		170.0		0.735	0.68	0.636	0.615	292.0	0.581	0.569	0.519	0.506
·		⊳	3.013 2.904	2.790	2.547		2.416	2.278	2.206	2.131		2.053		100 - T	1.70B	2	1.611	1.507	1.395	1.348	7.7 Y	1.273	1-248 1-248	1.139	1.110
	0.685 (675)* 0.369 2.152 0.171	0	1.034 0.997	0.958	0 874		0.829	0.782	0.757	0.731		0.705		0.619.0	0.586		0.553	0.517	0.479	0.463		0.437	0.428	0.391	0.381
nue)		Δ	2.807 2.705	2.599 2.488	2.372	1.3. 	2-250	2.122	2.054	1.985		1.912	1.00/	1.677	1-59L		1.500	1.403	1 299	1.205		1.186	1.162	1.061	1.034
K-2 (continue)	(a) E E ⊂ ⊢ ທ	Sewer	• •• •	•								-	•								• •				
Table K-	Dia. of Sewer (m) Sectional Area (r Wetted Perimeter Hydraulic Radius	Slope of Sewer (0/00)	14.0 13.0	12.0	0.01		ວ່∩ ທີ	8.0	7.5	7.0		ה היים היים	o in in	0 5	4.5		4.0	ທ. ຕໍ	00	0 V V C) 1	5 2 5	2.2	2.0	1.9
ů,	uw,≾a; (M											•			:				:	-		·	•	

- continue -

Note: V: Full Velocity (m/s) Q: Full Capacity (m³/s)

K-11

(1,850) *	· .		÷	•	: .
372 310 343	O	2.364 2.298	2.229 2.158 2.085	2.009 1.930 1.848 1.762 1.672	1.576 1.474 1.365 1.2465 1.114
440	Δ	1-599 1-554	1-508 1-460 1-410	1.359 1.356 1.250 1.192 1.131	1.066 0.997 0.843 0.754
1.219 (1,200)* 1.167 3.830 0.305	۵	1.725 1.676	1.521 1.521	1.466 1.403 1.348 1.286 1.220	1.150 1.076 0.996 0.809 0.813
	Δ	1.478 1.436	1- 349 1- 303 1- 303	1.256 1.256 1.155 1.155 1.045	0.985 0.922 0.853 0.779 0.697
1.066 (1,050)* 0.892 3.349 0.266	0	1.206 1.172	1.101	1.025 0.985 0.943 0.899 0.853	0.804 0.752 0.696 0.636 0.569
	^	1.352 1.313	1. 192 1. 192	1.149 1.104 1.057 1.007 0.956	0.901 0.843 0.780 0.712 0.637
915 (900)* 658 875 229	0	0.803 0.780 0.757	0.708	0.682 0.655 0.598 0.598 0.588	0.535 0.501 0.463 0.423 0.378
0000	Δ	1.221 1.186	1.077	1.037 0.997 0.954 0.910 0.863	0.814 0.761 0.705 0.643 0.575
0.838 (825)* 0.552 2.633 0.210	a	0.635 0.617 0.599	0.580	0.540 0.518 0.496 0.473 0.449	0.423 0.396 0.335 0.335 0.299
	>	1.151 1.119 1.085	1.051	0.978 0.940 0.900 0.858 0.814	0.767 0.718 0.665 0.607 0.543
0.762 (750)* 0.456 2.394 0.191	0	0.493 0.479 0.465	0.450	0,419 0.402 0.385 0.367 0.348	0.328 0.307 0.284 0.260 0.232
1 - - -	Λ	1.080 1.050 1.019	0.986 0.953	0.918 0.882 0.845 0.845 0.865	0.720 0.674 0.624 0.569 0.509
0.685 (675)* 0.369 2.152 0.171		0.371 0.350 0.350	0.339	0, 315 0. 303 0. 290 0. 262 0. 262	0.247 0.231 0.214 0.195 0.175
	Δ	1.006 0.978 0.949	0.919 0.888	0.855 0.822 0.787 0.750 0.712	0.671 0.628 0.581 0.530 0.474
Dia. of Sewer (m) Sectional Area (m ²) Wetted Perimeter (m) Hydraulic Radius (m)	Slope of Sewer (0/00)	т. 1.68 Г.	। । । । । । । । । । । । । । । । । ।	41140 60409 60409	οςςςος αν. ου 4

Table X-2 (continue)

Note: V: Full Velocity (m/s) Q: Full Capacity (m³/s)

APPENDIX L ANALYSIS FOR WATER POLLUTION CONTROL

1. General

Alor Setar town has been developed in the tributary area of Sg. Kedah and Sg. Anak Bukit. Wastewaters from the town including domestic, commercial and industrial wastes, flow into these two rivers through existing drains, contributing to the pollution of the rivers at present. Water pollution of the rivers is increasing with the expansion of the town. Thus it is evident that river's pollution will be further advanced in the future unless adequate pollution control measure is taken.

Appendix L, therefore, study the effect of sewerage system to control water pollution of the two major rivers towards the future in contrast with the case without the system.

The two rivers had been tidal rivers before the barrage was constructed at the point of a little downstream from confluente point of the two rivers. After construction of the tidal barrage, qualities and quantities of the rivers are greatly influenced by gate operation.

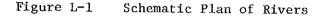
The gate operation is largely affected by season. In rainy season, the gates are opened at least once a day, and especially in monsoon season, a whole day. In dry season, however, the gates are opened only once a few days, or for navigation of boats through the barrage.

Ľ

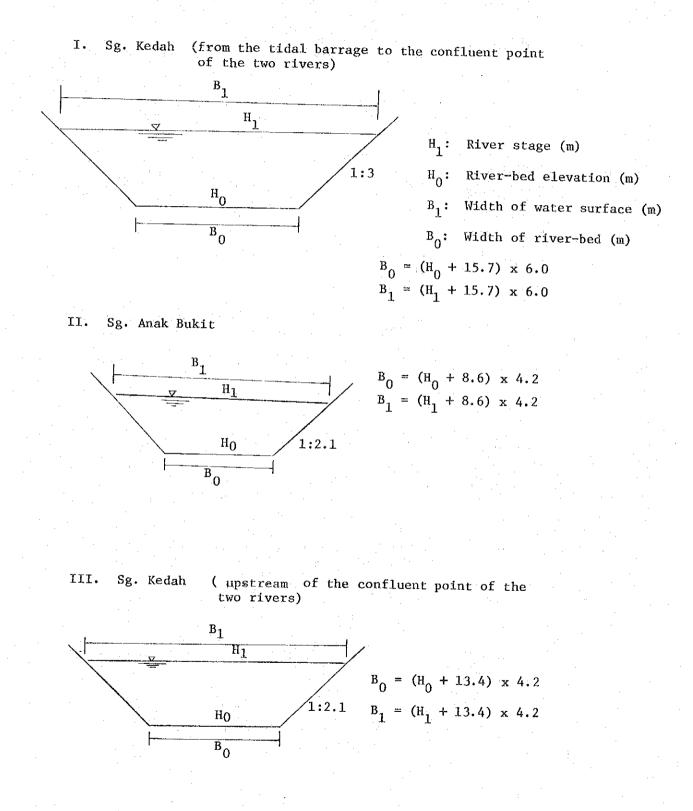
1

2. Cross Sections, Mass Balance and Water Pollution Forecast of Rivers

2.1 Cross Sectional Area of Rivers


Cross sectional areas of the rivers vary with locations and flow valumes. For easiness estimating quantities and qualities of the rivers, the cross sectional areas of rivers are simplifed as follows:

a. Slope of River-bed


Average slope of river-bed is assumed as 0.0084% for both the Sg. Kedah and the Sg. Anak Bukit based on the data obtained from MPKS.

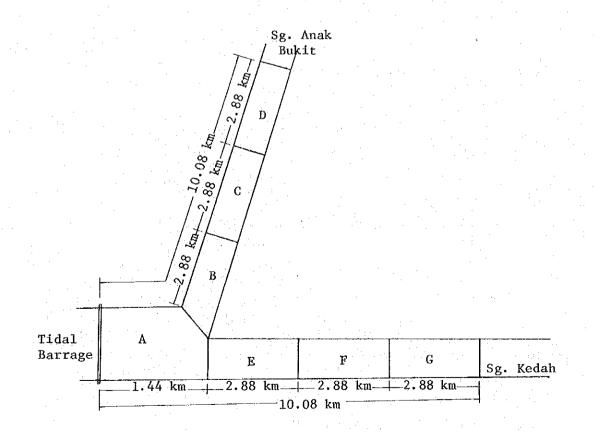
b. Cross section

The two rivers in the Study Area are divided into three zones as shown in Figure L-1, and simplified cross section of each zone is assumed as shown in Figure L-2.

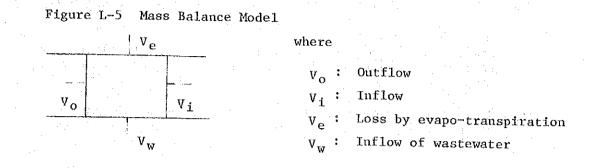
		Zone I:	Sg. Kedah, downstream of the confluent point
			of the two rivers
		Zone II:	Sg. Anak Bukit
	¹ 88e An _{ak} B _{ukit}	Zone III:	Sg. Kedah, upstream of the confluent point of the two rivers
Tidal B			
downstream	Υ		
		III	
		Sg. Kedah	
	L ~ 2		

Based on the assumptions and formulas for B_0 and B_1 developed for each zone, water surface elevations, river bed elevations and widths of river-beds at key points of the zones are obtained as shown in Figure L-3.

Figure L-3 Elevations and Widths at Key Points Along the Rivers

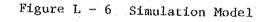

Sg. K	edah	Distance	Sg. Anak I	Bukit
Width of River-Bed (m)	Elevation of River-bed	from Tidal Barrage	Elevation of River-bed	Width of River-bed
(111)	(+M)	(km)	(+M)	(m)
72.252 -	-3.658	- 0.00		
72.978 41.425	-3.537	- 1.44 -	-3.537 -	21.265
				· ·
42.441	-3.295	4.32 -	-3.295 -	22.281
43.457 -	-3.053	7.20	-3.053 -	23.297
44.474	-2.811	10.08	-2.811 -	24.314

2.2 Mass Balance


Mass balance is calculated based on the following assumptions;

- (a) Study area of the rivers is confined from the tidal barrage to the point of the Study Area line or 10.08 km upstream for both rivers.
- (b) River stage is constant regardless upstream or downstream because rivers can be considered as a isolated pond in dry season.
- (c) The three zones of the rivers area further divided into 7 sub-zones as shown in Figure L-4, to calculate mass balance of each sub-zone.

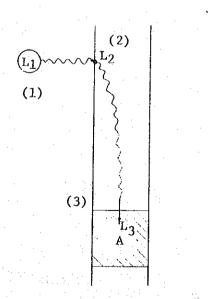
Figure L-4 Rivers Divided into Seven Sub-zones



Mass balance in one differential area of a stream is shown in Figure L-5.

2.3 Simulation Model for Waste Loads (BOD)

Waste organic load (L_1) originated at point (1) reaches the river (point (2)) reducing waste load to (L_2) on the way to point (2). Further, L_2 reduces to L_3 by the purification capacity of the river between point (2) and point (3).



Α:

 L_1 :

L₂;

L₂:

Sub-zone A BOD load Produced (kg/day) BOD load which reaches a main river (kg/day) BOD load which arrives at sub-zone A (kg/day) Coefficient of BOD reaching to $(= \alpha)$ L₂/L₁: a stream from source

 L_{3}/L_{2} : Coefficient of BOD reduction in (= β) a stream

Coefficient of BOD reducing in a stream (β) differs with microbic living environment, water velocity, flow time, etc. River condition in dry season, is almost similar to that of stabilization pond, thus β can be obtained by following equation (2-1).

$$\beta = \frac{L_3}{L_2} = \frac{1}{1 + k_t} \qquad (2-1)$$

where

t: Flow time from inlet point to the point under consideration (day)

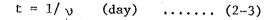
k: Self-purification coefficient (1/day)

The value k = 0.23 (base e) is adopted at 20°C, and its variation with temperature is described by equation (2-2).

$$k(T) = k (20) \times \Theta^{T-20}$$
..... (2-2)

where

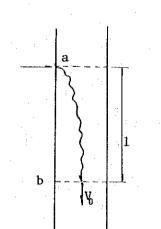
k(T): k value at T°C (1/day)


 Θ : Arrhenius coefficient, 1.08 for stabilization pond

Assuming water temperature as 30°C, k value is calculated as follow;

$$k(30) = 0.23 \times 1.08^{10}$$
$$= 0.4965$$

Figure L-7 Flow Model


Flow time (t) is calculated by the following equation;

where

1: distance between point a and point b (km)
v: velocity (km/day)

- $v = V_{\rm J}/A_{\rm b}$
- V_0 : Outflowing quantity from sub-zone under consideration
- A_b: cross sectional area at point b
- ь - 7

Charging point of wastewater from tributary area in each subzone is assumed as Figures L-8 and L-9 for two cases that sewerage system is not provided and is provided.

. . .

Figure L-8 Charging Points of Wastewater from Tributary Areas of Each Sub-zone through Existing Drains (In case sewerage system is not provided)

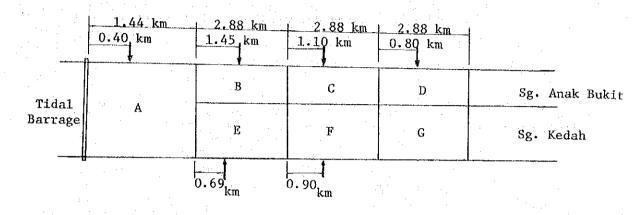
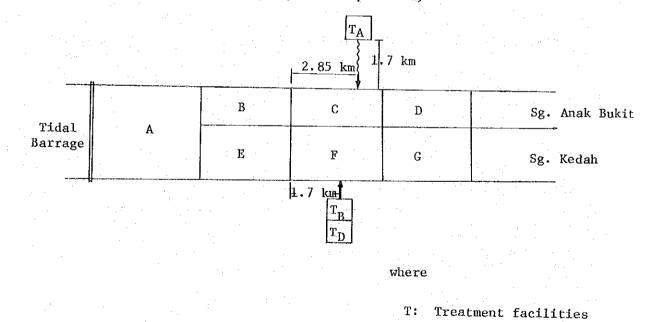



Figure L-9 Charging Points of Wastewater through Treatment Facilities (In case sewerage system is provided)

2.4 Flow Sheet for Waste Load Simulation Procedure

Simulation of waste load is carried out by the following procedure.

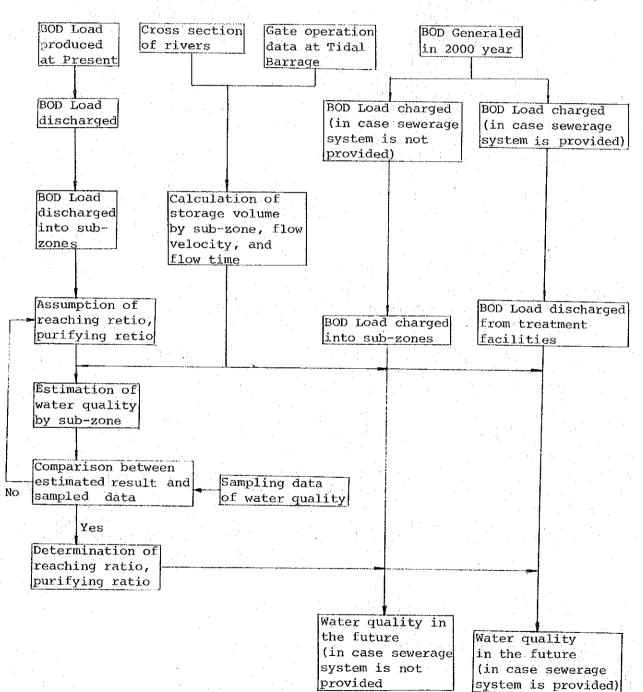


Figure L-10 Flow Sheet for Waste Load Simulation Procedure

- 3. BOD Load Charged to Sub-zones of the Rivers
- 3.1 Present BOD Load Generated and Discharged for Source

Present BOD Load generated and discharged from source as follows:

- (1) to estimate present population according to tributary to each sub-zone of the rivers
- (2) to estimate population and BOD Load with respect to night soil disposal systems.
 - a. BOD Load removed through septic tank is assumed to be 50 percent, thus BOD load discharged from source is calculated to be 6.5 g/capt.
 - b. BOD Load discharged through Buket system is assumed to be O.
 - c. BOD Load discharged through latrine over waterways is assumed to be 13 g/capt.

(3) to estimate BOD Load generated by sullage water

3.2 Future BOD Load Generated and Discharged from Source

BOD Load generated and discharged from source in the future is estimated in the same manner as described in 3.1.

3.3 BOD Load Charged to Sub-zones of Rivers

BOD Loads charged to the sub-zones in the rivers are calculated assuming that in case no sewerage system is provided in the future all night soil generated in the Study Area is discharged through septic tank system, while in case sewerage system is provided, all sanitary wastes are discharged of 50 mg/l (BOD) from treatment facilities.

3.4 Present and Future Wastewater Quantity and Quality Generated and Charged Sub-zones of Rivers

Wastewater volumes and BOD Loads generated and charged to subzones of the rivers both at present and in the future are summarized in table L-1.

Table L-1 Wastewater volumes and BOD Loads Generated and Charged to Rivers

	·····	·····							
	Pre	sent	Future (2000)						
Sub-	Waste-	BOD	In case facility	No sewerage is provided	In case S Facility	ewerage is provide			
zone	waste water Gene- rated 1,000 m ³ /day	Load Gene- rated kg/day	Waste- water charged 1,000 m ³ /day	BOD Load charged kg/day	Effluent of Treatment Facility 1,000 m ³ /day	BOD Load charged through Treatment Facilitie kg/day			
A	7.31	1,054.1	12.47	1,973.8	A 21.57	1,078.4			
В	4.80	829.7	12.50	2,018.6					
C	3.40	629.7	19.68	3,384.7					
D	0.54	89.2	2.96	422.4		<u> </u>			
E	10,40	1,901.4	24.97	4,295.9					
F	1.55	242.5	6.37	1,095.6	B 36.39 D 23,73	1,819.7 1,186.3			
Total	28.00	4,746.6	78.45	13,191.0	81.69	4,084.4			

4. Storage Volumes of Sub-zone in Rivers

Based on the simplified cross sections of the rivers in Figure L-2 and average slope of river bed of 0.0084%, storage volumes of the subzones in the two rivers are calculated by the derived formulas as follows:

$$V_{A} = 4.32 \text{ H}^{2} + 135.70 \text{ H} + 432.44$$

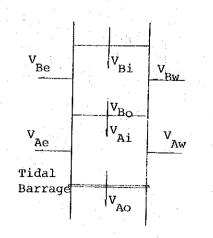
$$V_{B} = 6.05 \text{ H}^{2} + 104.05 \text{ H} + 284.75$$

$$V_{C} = 6.05 \text{ H}^{2} + 104.05 \text{ H} + 269.25$$

$$V_{D} = 6.05 \text{ H}^{2} + 104.05 \text{ H} + 253.04$$

$$V_{E} = 6.05 \text{ H}^{2} + 162.14 \text{ H} + 483.11$$

$$V_{F} = 6.05 \text{ H}^{2} + 162.14 \text{ H} + 453.56$$


$$V_{G} = 6.05 \text{ H}^{2} + 162.14 \text{ H} + 423.31$$

$$\Sigma V = 40.62 \text{ H}^{2} + 934.27 \text{ H} + 2599.46$$

H : River stage (m)

Storage capacity by sub-zone (1000 m^3) G

5. Verocity in Sub-zones of Rivers

Velocity v is calculated by the form, $v = \frac{Vo}{A}$ (refer to Section 2.3) (5-1) V_{AO} (outflowing, quantity from sub-zone A) is calculated by estimating discharge

14

1)

through the tidal barrage.

Vno (outflowing quantity from n sub-zone) is culculated by the following equation;

$$V_{n+1} = V_n - V_0 + V_1 - V_e + V_w \dots \dots \dots (5-2)$$

Where V_n : Storage Volume on nth day (m³) V_o : Outflowing volume (m³) V_i : inflowing volume (m³) V_o : Loss by evapo-transpiration (m³)

5.1. Estimation of V AO

In case the main gates of the tidal barrage are closed, outflowing volume from sub-zone A is assumed to be 3,000 m³/day based on the opening time of the lock chamber for nevigation of boats. Similarly in case the main gates are opened, outflowing volume (v_{AO}) is calculated by the difference of settled water stages before and after the gates opening.

5,2. Estimation of V_{nw}

Inflowing wastewater to n sub-zone (V $_{\rm NW}$) are obtained from Table (L-1).

5.3. Estimation of V ne

Average evapo-transpiration rates in dry and rainy seasons are assumed to be 5.1mm/day and 3.3mm/day respectively, based on the record obtained from Meteorological Station, ALOR SETAR. Infiltration rate is disregarded in this study due to lack of data applicable.

5.4. Flow Velocities (v_x) in Sub-zones of the Rivers

The records of the river stage and the gate operation are analyzed as follows:

- (1) The gate opening period differs significantly between dry and rainy seasons
- (2) The difference of the river stage before and after the gate
- opening ranges from 1.2m to 0.25m.
- (3) Average gate opening frequency is once in 4.7 days in dry season, and once in 0.7 day in rainy season.

Based on the data mentioned above and applying the quation (4-1), outflowing quantities through tidalbarrage are assumed as follows:

- (a) Outflowing quantity by one gate operation $256,000 \text{ m}^3/\text{NO}$
- (b) Outflowing quantity in case the gate are clossed: $3,000 \text{ m}^3/\text{day}$

Therefore, average outflowing quantity per day is obtained as follow :

- (c) In dry season: $256,000/4.7 + 3,000=57,470 \text{ m}^3/\text{day}$
- (d) Inrainy season: 256,000/0.7 + 3,000= 368,710 m³/day

The gate operation frequency has to be changed by the increase of wastewater by the year 2000 as indicated below to avoid flowing in low upstream areas.

- (1) In case no sewerag system is provided: once per 3.21 days
- (2) In case sewerage system is provided: once per 2.09 days

Mass balance and average flow velocity in each sub-zone of the rivers are summarized by case in Figure L-11 and Table L-2 respectively.

Table L-2 Estimated Average Velocity in Sub-zones of the Rivers

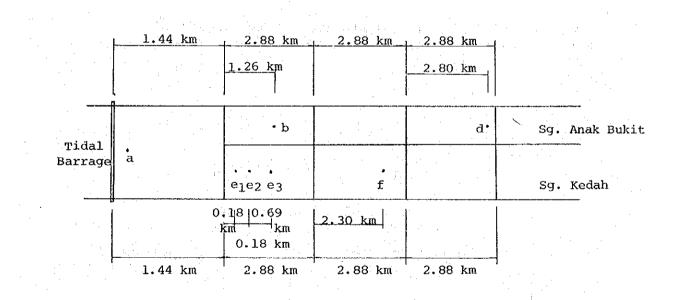
Unit Km/day

Unit Kit/day								ku/day
		A :	В	Ċ	Ð	Е	F	G
Present	Dry season	0.145	0.151	0.144	0.141	0.150	0.137	0.144
- resente	Rainy season	0.927	1.013	1.039	1.075	1.002	1.028	1.080
Future in dry season	In case no sewerage system is provided	0.208	0.246	0.213	0.149	0.192	0.148	0.144
	In case sewerage system is provided	0.315	0.277	0.292	0.139	0.389	0.411	0.144

Note: (1) Average velocity v_x is obtained by dividing outflowing volume V_0 by average sectional area of each sub-zone.

1.0

(2) Average river stage adopted is assumed to be 1.0 m.


Figure L-11 Mass Balance by Case Unit 1000 m³/day Dry season (Present Condition) 0.73 366 0.59 1.70 0.59 0.59 2.40 0.27 v_{Ae} V AW V De v Be V Bw v_{Ce} V_{CW} V – V – CO V_{Bi}-V Ai V BO v_{ci}-V -- DO VDi 57.47 20.73 18,92 17.81 ___В C 18.13 D. V EO V FO V Ei V Fi____ GO V ____Gi Ai v AO Α 33.81 29.49 29.59 É 30.47 F С V_{Ee} V_{Ge} v Fe Έw Fw 0.88 5.20 0.88 0.78 0.88 Rainy Season (Present Condition) 0.48 3.66 0.38 2.40 0.38 1.70 0.38 0.27 ·· B С A 138.90 136.88 135.56 135.67 E F 368.71 G 226.63 222.00 221.79 222.36 0.57 5.20 0.57 0.78 0.57 Case I : Mass Balance in the Year 2000 (In case no sewerage system is provided) 0.73 6,23 0.59 6.25 0,59 9.84 0.59 1.23 A 33.68^B 28.02^C 18.77 D 18.13 82.69 Е F 43.51 31,90 29.59 30.47 0.88 12.49 0.88 3.19 0.88 Case II; Mass Balance in the year 2000 (In case sewerage system is 0,.73 0.59 provided) 0.59 | 21.57 10.59 А 37<u>93 B</u> 38,52 C 17.54D 18.13 125.15 Е F C 87,95 88.83 29.58 30.47 0.88 88'.0 60.12 0.88

6. Water Quality Analysis for Present Conditions of the Rivers Sampling data for BOD obtained by the survey is summarized in Table L-3. The locations of the sampling points are shown in Figure L-12.

Table L-3 Sampling Data

Paint Name	עזע	Season	Daires Com			(mg/1
- calle Hunc	DLY	beason	Rainy Seas	ion	date ().
a	1	4 (21/3)	3.8 (17	/6)		
b	1	6 (21/3)	7.0 (17	/6)		
d			3.4 (8/	7)		
el			3.6 (3/	7)	-	1 -
e2	1	7 (21/3)	2.1 (18	/6)	÷ .	
e3			2.3 (18	/6)		
f		· . · ·	1.4 (18	/6)		

Figure L-12 Locations of Sampling Points

For grasping the present condition of rivers, seven sampling data are obtained in the dry season, and three in the rainy season. then three points are selected as monitoring points for future reference. The monitoring points should be representative to view the degree of river pollution. The three points are point a (upstream at the tidal barrage), point b (confluent point of Sg. Anak Bukit and Jl. Putera) and point e_2 (confluent point of Sg. Kedah and Jl. Sungai Korok).

BOD load which reaches to L_3 from L_2 is calculated in Table L-4 by equations (2-1), (2-3), assuming four cases for α (i.e., 0.4, 0.5, 0.6 and 0.7) and using V (in Table L-2), 1 (in Figur L-7), and L_1 (Table L-1) and V_0 (in Figure L-10) values already estimated.

Table L-4	Water Quality	(BOD)	Surveyed	and	Estimated	for	Varying α
1.00	at Monitoring	Points	5.			i sa ti	

·····		D	Dry Season				Rainy Season	
Point	n an an an Ara An Ara Ara An Ara Ara Ara	а	b	e ₂	a	b	e ₁	e ₂
Sampling	Data (BOD mg/l) 14	16	17	3.8	7.0	3.6	2.1
	40 %	8,0	13.0	13.0	2.9	3.3	3.1	3.4
α	50 %	9.6	15.7	15.7	3.6	4.1	3.9	4.2
	60 %	11.1	18.5	18.5	4.3	5.0	4.7	5.0
	70 %	12.7	21.2	21.2	5.1	5.8	5.4	5.9

[α; Coefficient of BOD reaching to a stream from source]

It is noted that estimated BOD values of the points a,b,and e2 are closed to the analyzed BOD values of the points, in case α is in a range of 50 to 60%.

 Estimated Water Qualities of the Monitoring Points in the Future Water quality simulation at the monitoring points is carried out in two cases as follows; and the results are summarized in Table L-5 and L-6.

Case 1 : In case no sewerage system is provided by the year 2000. Case 2 : In case sewerage system is provided by the year 2000.

(BOD mg/1)

Table L-5 Case 1.

4 - 14 -						
Point		a	b	e 2		
			·····	<u>_</u>	.	
α	40.8	13.6	24.6	23,9		
e de la composition en la composition de la composition de la composition de la comp	50 %	16.6	30.4	29.5		
	60 %	19,7	36.3	35.1		
	70 %	22.8	42.1	40,7		
- et	· · ·			1. 1	· · · ·	

Table L-6 Case 2.

Point	â	b	e ₂
BOD (mg/l)	4.7	5.8	7.2

Based on the tables above, it is noted that;

- BOD of the rivers will be degraded from 1.5 to
 times than present condition, in case no sewerage system is provided.
- (2) BOD of the rivers will be reduced to $1/3 \sim 2/5$ of the present condition in case sewerage system is provided.

8. Conclusion and Recommendation

In this study, simulation of water quality in the rivers is carried out for the year 2000. Assuming outflow volume V_0 , self-purification coefficient k and coefficient of BOD reaching to streams from source α . The simulation results reveal that water quality will be greatly improved by provision of sewerage treatment facility.

However, it is noted that the study results stand on the broad assumption of the values. Therefore, it is suggested that in the future, the following data should be fully collected to obtain more dependable results;

(1) Wastewater quanity generated from each sub-zone.

(2) BOD load reaching to sub-zones of the rivers

(3) Collection of sampling data about water quality at the monitoring points.

The following data are used for this study;

(1) Operation record of Tidal Barrage in 1978 (MADA)

(2) River stage at the Tidal Barrage both up and down streams (MADA)

(3) Structural drawing of the Tidal Barrage (MADA)

(4) Plan figure, cross section and profile of Sg. Anak Bukit (MPKS)

(5) Drainage Master Plan Report for Alor Setar (DID)

	Jaku	ary	Febru	ary	Marc		April	
	Frequency of Gate Opening	Duration Time (hour)	Frequency of Gate Opening	Duration Time (hour)	Frequency of Gate Opening	Duration Time (hour)	Frequency of Gate Opening	Durati Time (hour)
1	2	2.30	0		Q		0	·····
2	0	· · · · · · · · · · · · · · · · · · ·	0		0	· · · · · · · · · · · · · · · · · · ·	0	
3	0		0	· · · · · · · · · · · · · · · · · · ·	0		0	
4	0		0		0		0	
5	0		0	· · · · ·	0			
6	0		0		0		0	0.40
7	0		0				0	
8	0		Ó. ::					
9	1	2.20	0		0		0	
10	0		0		0			
11	1						0	
12	0	2.35	0	<u></u>	0		0	
13	0		0	<u> </u>	0		0	
14			·····		O		0	
15	0		0		<u> </u>		0	
	0	h ar	0		0		0	
16	1	4.15	0	·	0		0	
17					0		0	
18 19	1	2.00	0		0		0	
·	1	2.00	0		0		0	
20	2	3.00	0		0		0	
21	0		0		0		0	
22	2	2,00	0	-	0		0	
23	1	1.25	0		0		0	
24	0		0		0		0	
25	0		0		0		0	
26	0		0		0		0	
27	0		0		0		0	
28	0		0		0		0	
29	0	:			0		0	· · · ·
30	0				0		1	2,10
31	1	2,00			0			2,10

Gate Opening Data of Tidal Barrage

L - 20

	Мау	, 	June		July	Factor in the	Aug	usb
	Frequency of Gate Opening	Duration Time (hour)	Frequency of Gate Opening	Duration Time (hour)	Frequency of Gate Opening	Duration Time (hour)	Frequency of Gate Opening	Duratio Time (hour)
1	0		1	:55	2	11:50	2	11:15
2	1	:45	1	1:20	* 2	15:55	2	11:20
3	1	1:10	.1	1:05	* 2	14:30	2	7:55
4	0		. 1	2:10	* 1	15:00	2	4;35
5	0		1	2:35	* 1	11:15	2	, 3:10
6	2	3:10	1	2:15	* 1	12:55	2	2:55
7	4	7:50	2	3:45	* 1	18:00	2	3:10
8	3	12:00	3	5:25	1	16:25	. 1	
9	2	6:10	2	5:10	2	11:30	1	1:40 1:40
10	3	10:00	2	5:15	2	12:30	2	2:45
11	3	14:05	3	16:40	2			
12	2	10:10	2	16:40	2	12:00 8:00	1	1:55
13	2	10:05	2				1	2:35
14	1	23:00	¢	20:00	2	8:15	1	4:15
15	* 0	24:00	1	15:00 9:55	2	6:05	1	2:20
16	*				*	5:10	1	3:00
17	0 * 0	24:00	2	9:05	2	6:10	2	4:05
18	1	24:00	2	3:40	2	6:20	1	1:40
19	1	10:20		2:25	1	2:55	5	5:45
				1:55	2	10:35	2	10:55
20	2	5:35	1	2:10	2	14:15	2	6:15
21	2	5:30	1	1:30	2	9:05	2	2:50
22	2	4:35	1	1:15	2	6:35	2	3:10
23	2	3:40	1	1:05	2	7:10	2	2:15
24	2	3:45	0		2	6:40	2	2:30
25	5	4:15	1	1:10	2	5:00	1	4:10
6	2	2:15	1	:45	2	6:15	1	1:05
7	2	2:35	1	1:35	2	8:15	1	:30
8	1	1:30	1	2:30	• 1	18:00	1	3:00
9	0		* 2	17:45	* 0	24:00	1	2:40
0	1	:55	2	12:35	* 0	24:00	1	1:05
1	1	4:30			*1	18:05	- 1	
AL		240:20	<u>l</u>	167:35		352:00	2	17:10

Gate Opening Data of Tidal Barrage

	Мау	•	June		July	r	Aug	ust
	Frequency	Duration	Frequency	Duration	Frequency	Duration	Frequency	Duratio
	of Gate	Time	of Gate	Time	of Gate	Timo	of Gate	Time
	Opening	(hour)	Opening	(hour)	Opening	(hour)	Opening	(hour)
1	0		1	:55	2	11:50	2	11:15
2	1	:45	1	1:20	* 2	15:55	2	11:20
3	1	1:10	.1	1:05	* 2	14:30	2	7:55
4	0		1	2:10	· • 1	15:00	2	4;35
5	0		1	2:35	* 1	11:15	2	3:10
6	2	3:10	1	2:15	* 1	12:55	2	2:55
7	4	7:50	2	3:45	* 1	18:00	2	3:10
8 -	.3	12:00	3	5:25	1	16:25	1	1:40
9	2	6:10	2	5:10	2	11:30	1	1:40
10	3	10:00	2	5:15	2	12:30	2	2:45
11	3	14:05	3	16:40	2	12:00	1	1:55
12	2	10:10	2.	16:40	2	8:00	1	2:35
13	2	10:05	2	20:00	2	8:15	1	4:15
14	1	23:00	*	15:00	2	6:05	1	2:20
15	* 0	24:00	1	9:55	2	5:10	1	3:00
16	* 0	24:00	2	9:05	* 2	6:10	2	4:05
17	• 0	24:00	1	3:40	* 2	6:20	1	1:40
18	1	21:30	2	2:25	1	2:55	2	5:45
19	1	10:20	1	1:55	2	10:35	2	10:55
20	2	5:35	1	2:10	2	14:15	2	6:15
21	2	5:30	1	1:30	2	9:05	2	2:50
22	2	4:35	1	1:15	5	6:35	2	3:10
23	2	3:40	1	1:05	2	7:10	2	2:15
24	2	3:45	0		2	6:40	2	2:30
25	2	4:15	1	1:10	2	5:00	1	4:10
26	2	2:15	1	:45	2	6:15	1	1:05
27	2	2:35	1	1:35	2	8:15	1	:30
28	1	1:30	1	2:30	* 1	18:00	1	3:00
29	0		* 2	17:45	* 0	24:00	1	2:40
30	1	:55	2	12:35	* 0	24:00	1	1:05
31	1	4:30			* 1	18:05	2	
TAL	l	240:20	<u> </u>	167:35	• [352:00		17:10 123:35

Gate Opening Data of Tidal Barrage

AL		385:45		340:15		380:20		58:10
31			2	6:00			0	
30	1	2:35	2	5:55	0		0	
29	1	2:30	2	12:50	1	:55	0	
28	1	4:00	0	20:20	1	1:40	0	
27	2	7:30	• •	24:00	0		0	
26	* 2	17:30	* 0	24:00	o	4:00	0	
25		19:30	• 0	24:00	+ 1	6:25	0	
24	* 2	17:20	* 0	24:00	* 1	14:25	0	
23	2	18:05	* 0	24:00	* 2	10:05	. 0	
22	2	8:00	2	20:10	1	19:00	0	
21	2	8:15	* 3	17:45	2	18:20	0	
20	2	3:50	2	8:25	2	17:45	0	
	1	1:30	2	11:30	2	10:40	0	
19			+	14:20	2	18:00	0	
17 18	2	5:30 5:05	3	10:40	2	14:50	1	2:10
16	2	6:20	2	8:15	2	17:00	1	1:5
	· · · · · · · · · · · · · · · · · · ·		+			16:40	1	2:3
15	2	15:50	2	13:50 13:50	2	13:25	1	2:0
14	2	22:00	2	10;20	2	12:50	0	
13	1		-	_		11:55	·· 1	1:4
12	* 0	24:00	1	2:15	2	12:00	1	:5
11	* 0	24:00	* 2	4:45	+ 3	16:25	1	4:3
10	* 0	24:00	2			·	1	10:0
9	* 0	24:00	2	6:40	+ 0	24:00		
8	* 1	20:30	2	3:55	* 0	24:00	* 1	7:0
7	* 2	19:40	2	5:20	* 0	24:00	* 1	3:1
5	2	15:30	1	2:00	* 1	21:00	1	1:0
5	5	9:25	2	3:30	2	10:00	1	2:4
4	2	6:35	2				<u> </u>	
3	.2	16:55	1	1:45	2	8:20	0	

Gate Opening Data of Tidal Barrage

Frequency

of Gate

Opening

1

1

October

Duration

Time

(hour)

1:45

1:10

November

of Gate

Opening

2

2

Frequency Duration

Time

(hour)

12:20

8:00

December

Duration

Time

(hour)

Frequency

of Gate

Opening

0

0

September

Duration

Time.

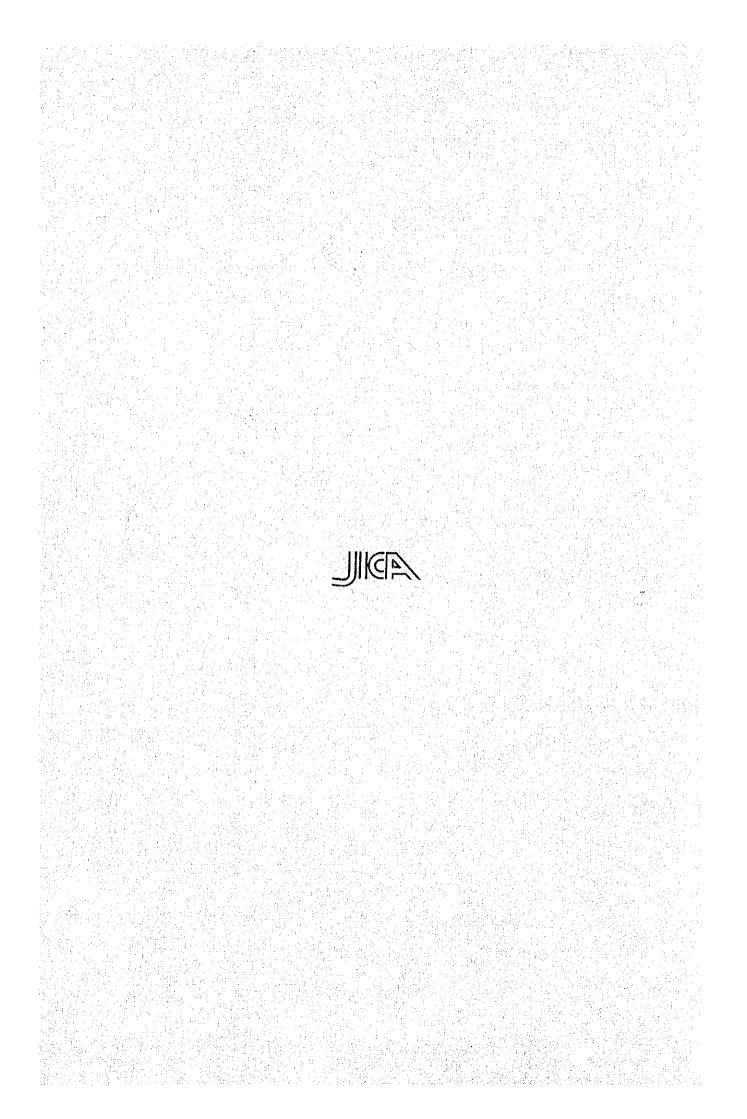
(hour)

15:00

8:40

Frequency

of Gate


Opening

2

3

1

2

