2.2.1 Population Density

Population densities, both present and future, by sewerage zones, range approximately from 0 person per hectare in zone 2 of Seberang Jaya district and zone 1 of Prai district to 124 persons per hectare in zone 1 of Butterworth district, as presented in Table H-1 and Figures H-1 and 2. For purpose of rating, 200 points are given to both present and future population densities:

Assigned Points	Present and/or Future population density
200	100 p/ha or more
150	75 - 100 p/ha
100	50 - 75 "
50	25 - 50 "
0	0 25 "

R

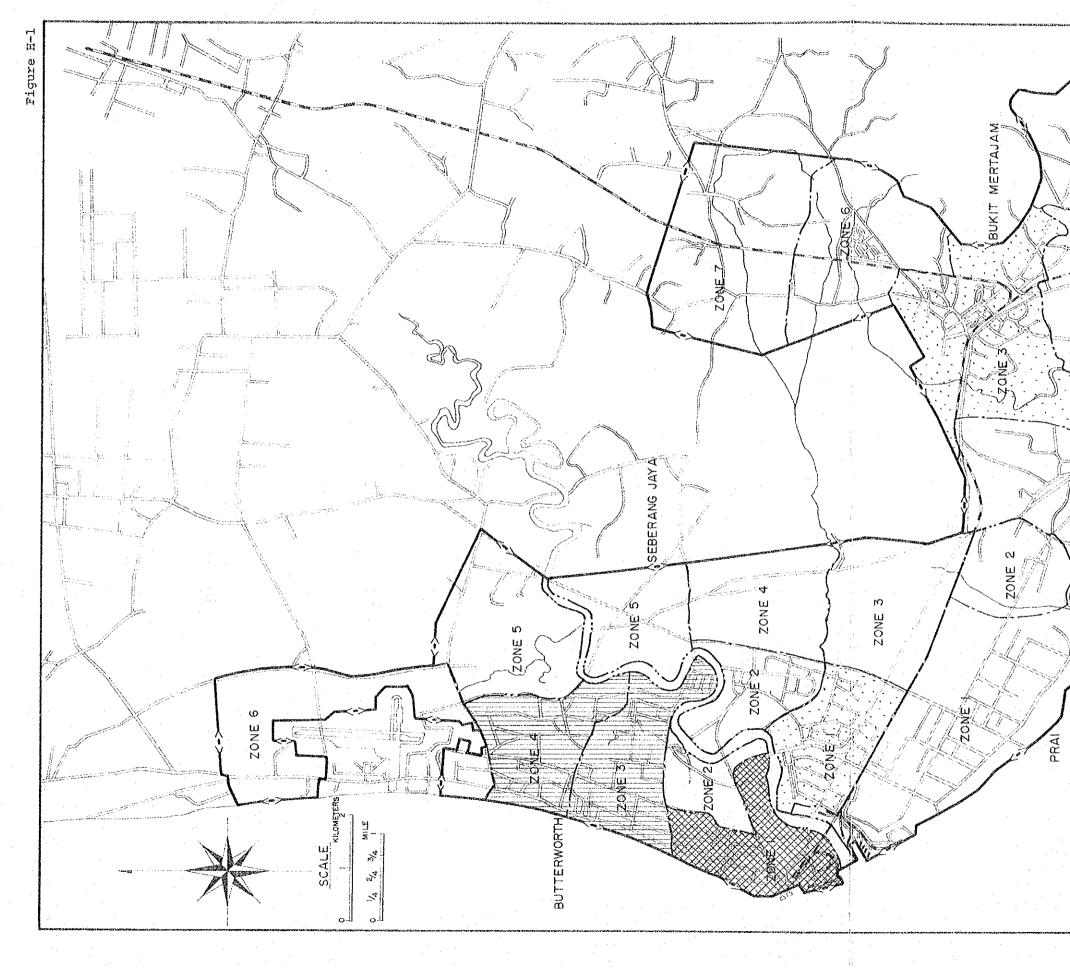
As shown in Table H-2, the highest rating zone is Zone - 1 of Butterworth district, which is assigned as full 400 points, followed by zones 3 and 4 of Butterworth, and zone 1 of Seberang Jaya district.

TABLE H-1 Population Density by Sewerage Zone

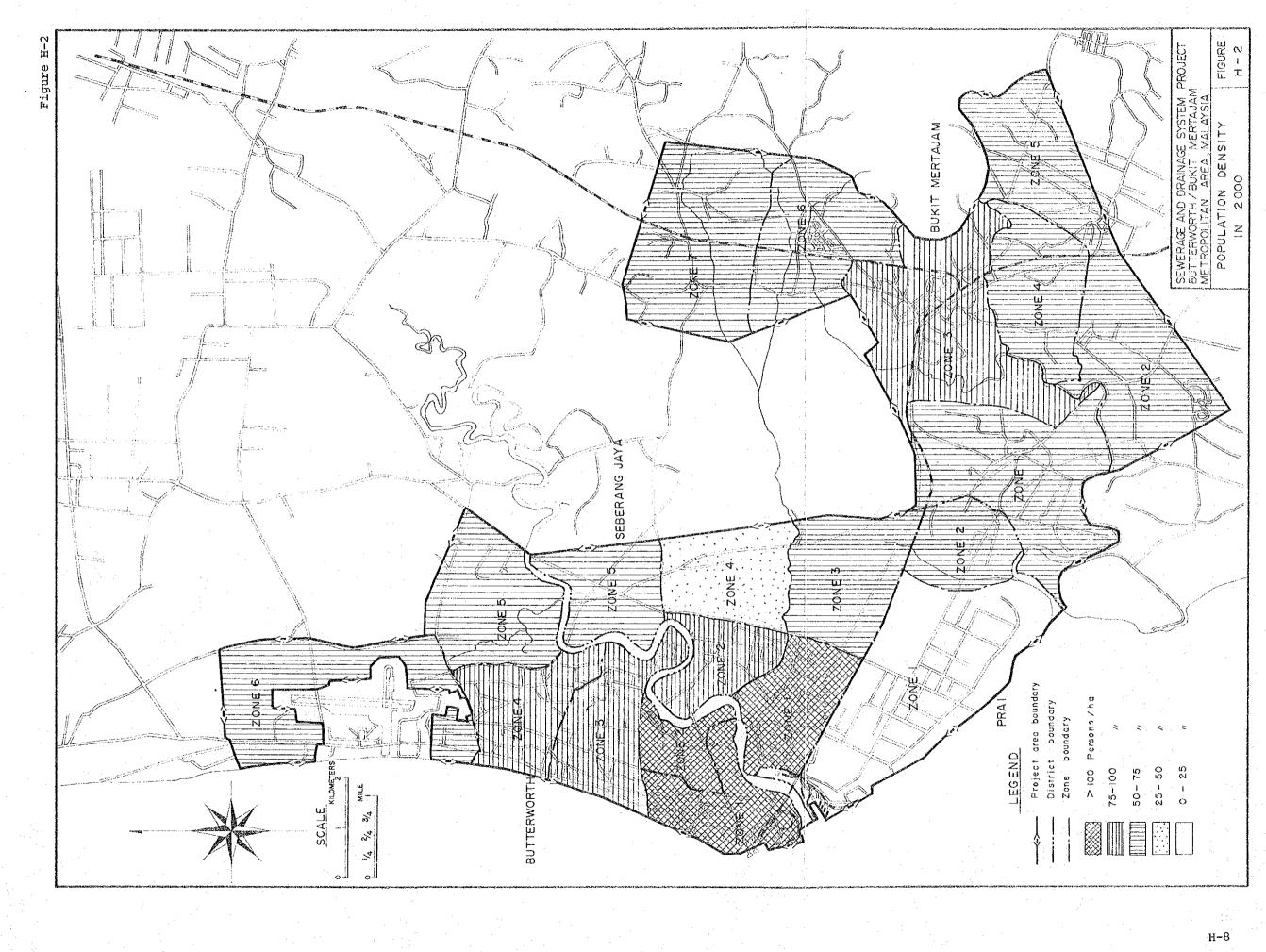
		Sewer- age	19	976	20	000
District	Zone	Area Consi- dered	Population	Population Density	Population	Population Density
· · · · · · · · · · · · · · · · · · ·	· · · · · ·	* (ha)	(persons)	(persons/ha)	(persons)	(persons/ha
Butterworth	1	367	37,920	103.3	45,440	123.8
	2	182	3,585	19.7	21,840	120.0
	3	457	28,255	61.8	37,039	81.0
	4	444	26,332	59.3	37,514	84.5
	5	551	3,961	7.2	33,705	61.2
	6	670	8,902	13.3	37,316	55.7
Seberang Jaya	1	438	13,657	31.2	46,748	106.7
	2	305	69	0.2	25,178	82.6
	3	510	2,991	5.9	26,543	52.0
	. 4	430	7,518	17.5	20,818	48.4
	5	368	4,369	11.9	19,152	52.0
Prai	1	1,063	1,860	1.7	0	0
	2	268	1,974	7.4	13,948	52.0
Bukit Mertajam	1	892	7,559	8.5	47,512	53.3
	2	715	6,387	8.9	39,794	55.7
1471 14	3	927	45,540	49.1	73,729	79.5
	4	467	6,077	13.0	24,917	53.4
	5	459	7,257	15.8	23,889	52.0
н н.,	6	573	13,840	24.2	32,948	57.5
	7	768	9,947	13.0	39,970	52.0
Total		10,854	238,000	21,9	648,000	59.5

P

* These figures do not include areas of mountain, rivers and ponds.


TABLE H-2 Result of Assessment for Population Density Aspect

	-	A	ssessment Point	ts
District	Zone	1976	2000	Tota
Butterworth	1	200	200	400
	2	0	200	200
	3	100	150	250
	4	100	150	250
	5	0.	100	100
	6	0	100	100
Seberang Jaya	l	50	200	250
	2	0	150	150
	3	Ō	100	100
	4	0	50	50
	5	. 0	100	100
Prai	1	0	. 0	0
	2	0	100	100
Bukit Mertajam	1	.0	100	100
	2	0	100	100
	3	50	150	200
	4	0	100 .	100
	5	0	100	100
	6	0	100	100
	7	0	100	100


H-6

10 C

al a

Jaco Maga SEWERAGE AND DRAINAGE SYSTEM PROJECT BUTTERWORTH / BUKIT MERTAJAM METROPOLITAN AREA, MALAYSIA POPULATION DENSITY FIGURE IN 1976 H - I FIGURE H - I S ZONE مربعة عن من المراجعة من ال مراجعة من المراجعة من المراج ZONE -----ZONE ZONE Project area boundary Distrct boundary Zone boundary Persons 2 LEGEND 75 - 100 0 0 12 20 00 V I J. ł 50 20 0 н-7

2.2.2 Waste Loads

According to the investigation on present project carried out in the Project Area, streams are generally polluted by the depositary of domestic sewage, and industrial waste, hence it is necessary to control the waste load discharged into waterways. For the purpose of rating, waste load originating the area of each sewage zone is estimated from two viewpoints considered, namely per hectare waste load production and per capita burden aspect, and then calculation of waste load is made both for the present and the year 2000 projections.

Table H-3 indicates the result of the per hectare waste load produced. The calculation of waste load within the residential area is made by served population, water consumption of 230 l/day/ cap (50 IMG/day/cap) and waste load production of 200 mg/l in terms of BOD. For the industrial area, calculation also is made by multiplying waste water production of 100 cu m/day/ha to the waste load production of BOD of 150 mg/l.

Table H-4 indicates the result of per capita waste burden in terms of BOD, which could be cut off by the provision of sewerage system throughout residential and industrial areas.

As will be seen from Table H-3, zone 1 of Prai district of industrial area, shows the most heavily produced waste load on the basis of per hectare production, both at present and by the year 2000 on the basis of the expected development of industrial area, but there is no waste load production indicated in Table H-4, on the year 2000, in terms of per capita waste burden, because this is an industrial area which has no served population. Therefore, an assessment for this sewerage zone will be given to the lower priority.

In this rating, a total of 250 points are assigned, divided into an assessment of 100 points for the per hectare production, and 25 points for per capita burden production both for the present and the year 2000 respectively, and then an evaluation is made of each of sewerage zones with respect to the point of waste load produced in the project area in terms of BOD level, as presented in Tables H-5 and H-6.

As shown in Tables H-5 and H-6, the calculation of evaluated number on the basis of per hectare production and per capita burden is indicated by the percentage of the waste loads to be produced in each of sewerage zone, to the total waste loads in Project Area.

Then for the rating of each of sewerage zone, the following points both for the present and the year 2000 is given, according to the above mentioned, and calculated numbers are:

(1) Based on Per Hectare Production

Assessment points	Evaluation	Numbers
	1976	2000
100	20 more	15 more
75	15 - 20	10 - 15
50	10 - 15	5 - 10
25	5 - 10	3 - 5
0	0 ~ 5	0 - 3

(2) Based on Per Capita Burden

Evaluation	Numbers
1976	2000
40 more	10 more
20 - 40	5 - 10
10 - 20	3 - 5
0 - 10	0 - 3
	40 more 20 - 40 10 - 20

The result of the assessment is indicated in Table H-7.

Ŷ

H-10

1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

		Waste Load	(Kg BOD/day/ha
District	Zone	1976	2000
Butterworth	1	8.6	8.4
	2	1.8	4.2
	3	7.2	7.2
	4	2.8	3.9
	5	0.6	2.8
	6	0.6	2.6
Seberang Jaya	1	1.8	5.0
	2	1.7	6.3
	3	0.3	2,4
	4	0.9	2.2
	5	0.8	2.4
Prai	1	11.7	15.0
· · · · ·	2	0.4	2.4
Bukit Mertajam	1	0.5	2.5
	2	0.4	2.6
	3	3.0	3.7
· · · · · · · · · · · · · · · · · · ·	4	0.6	2.5
	5	0.7	2.4
	6	1.1	2.6
	7	0.6	2.4
Total		46.1	83.5

T

TABLE H-3 Estimated Waste Load

		Waste Load	(Kg BOD/day/cap
District	Zone	1976	2000
Butterworth	1	73	68
	2	46	46
	3	103	89
	4	46	46
	5	46	46
	6	46	46
Seberang Jaya	1	48	47
	2	6,350	77
	3	46	46
	4	46	46
	5 -	46	46
Prai	1	5,199	0
	2	46	46
Bukit Mertajam	1	46	46
	2	46	46
с	3	46	46
	4	46	. 46
	5	46	46
· · · · · · · · · · · · · · · · · · ·	6	46	46
	7	46	46
Total		12,415	924

TABLE H-4 Estimated Waste Load Production

TABLE H-5 Evaluation Numbers for Waste Load (per Hectare)

		Evaluati	on Number
District	Zone -	1976	2000
Butterworth	1	19	10
	2	4	5
	3	16	9
	4	6	5
	5	1	3
	6	1	3
Suberang Jaya	1	4	6
	2	4	8
	3	1	3
	4	2	3
	5	2	3
Prai	1	25	18
	2	1	3
Bukit Mertajam	1	1	3
· · ·	2	1	3
	3	7	4
	4	1	3
	5	2	- 3
· · · ·	6	2	3
	7	1	3

Ŷ

*

	•	Evaluati	on Number	
District	Zone	1976	2000	
Butterworth	1	1	7.	
	2	0	5	
	3	1	10	
	4	0	5	
	5	0	5	
	6	0	5	
Seberang Jaya	1	0	5	
	. 2	51	- 8	
	3	0	- 5	
	4	0	5	
	5	0	5	
Prai	1	42	0	
	2	0	5	
Bukit Mertajam	· 1 :	0	5	
	2	0	5	
	3	0	5	
	4	0	5	
	5	0	5	
	6	0	5	
	7	0	5	

The second secon

TABLE H-6 Evaluation Numbers for Waste Load (per Capita)

· · · ·	· .	Per hectare	production	Per capit	a burden	Total Asses
District	Zone	1976	2000	1976	2000	ment Point
Butterworth	1	75	75	0	15	165
	, 2 , ,	0	50	0	15	65
	3	75	50	0	25	150
	4	25	50	0	15	90
	5	0	25	0	15	40
	6	0	25	0	15	40
Seberang Jaya	1	0	50	0	15	65
	2	0	50	25	15	90
· · · ·	3	0	25	0	15	40
	4	0	25	· 0 ·	15	40
·	5	0	25	0	15	40
Prai	1	100	100	25	0	225
	2	0	25	0	15	40
Bukit Mertajam	1	0	25	0	15	40
	2	0	25	0	15	40
	3	25	25	0	15	65
	4	0	25	0	15	40
	5	0	25	0	15	40
	6	ан о ал	25	0	15	40
	7	O ¹	25	0	15	40

r

×

TABLE H-7 Result of Assessment for Waste Loads

2.2.3 Excreta Disposal System

The existing excreta disposal system in the Project Area is generally represented by two systems, namely septic tank and bucket systems. Most of the population in the new housing development areas use the flush toilets with communal septic tank, while rural population use the bucket system, and some of the built-up areas are covered by mixture of the septic tank and bucket systems.

Figure H-2 shows location of the present excreta disposal system covered by the septic tank and bucket systems. But, no information is available on the exact condition of these excreta disposal systems and its serving population throughout the sewerage zones.

However, according to the population and housing census in Malaysia in 1970, excreta disposal conditions relative to the sewerage district are shown in proportion to the types of toilet as shown in Table H-8.

Name of local		Type of	Toilet	in Pero	centage	
council area	Flush	Bucket	Pit	River	None	Total
Butterworth	31	60	6	1 .	2	100
Prai	24	67	3	4	2	100
Bukit Mertajam	28	69	2	***	1	100
Other*	28	64	16	5	8	100

TABLE H-8 Type of Toilet Used in the Project Area

Other is the estimation by the weighted ratio of population density in the rural area of various Kampong.

For the purpose of rating, proportion of toilet systems in each sewerage zone is determined arbitrarily by distributing the same with the above percentages, with 150 points for the sewerage zones where no excreta disposal system exists, but for the areas where septic tanks are generally functioning satisfactorily, proportionately lower points are given according to the functioning condition with the idea that the existing facilities will be reserved for the time being until further investment for complete sewerage system coverage warrants.

As indicated in Table H-9, the evaluation in each sewerage zo zone is thus made by the proportion of unsatisfactory excreta disposal system to the population density, and the following points are given by the number estimated.

Assessment Point	Evaluation Number
150	60 more
75	30 - 60
0	0 - 30

For all the sewerage zones, rating is given as summarized in Table H-10.

*

Table H-9

TABLE H-9 Evaluation Number for Excreta Disposal System

Ŷ

X

District	Zone	Percentage of un- satisfactory excreta disposal system (%) (a)	Population density on 1976 (b)	Evaluation Number by population density (a)x(b)x100
Butterworth	1	69	103.3	71
· · ·	2	69	19.7	14
	. 3	69	61.8	43
	4	69	59.3	41
	5	93	7.2	··· 7
	6	93	13.3	12
Seberang Jaya	1	76	31.2	24
-	2	93	0.2	0
	3	.93	5.9	5
	4	93	17.5	16
• •	5	93	11.9	11
Prai	1	76	1.7	1
	2	93	7.4	7
Bukit Mertajam	<u>1</u>	93	8.5	8
	2	93	8.9	8
	3	72	49.1	35
	4	72	13.0	9
	5	93	15.8	15
	6	93	24.2	23
	. 7	93	13.0	12

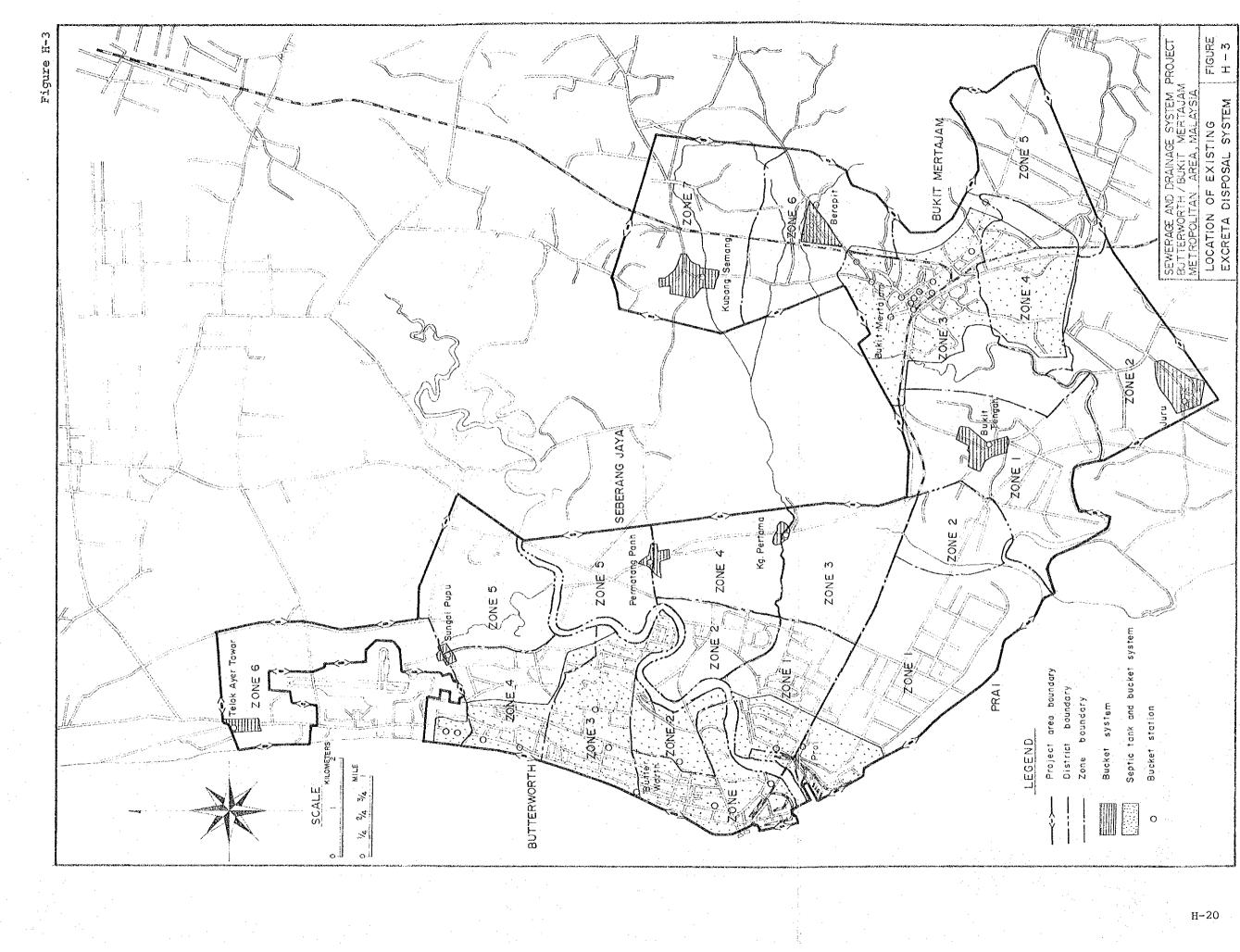

		· · ·	
District	Zone	Assessment Poi	nt
Butterworth	1	150	
	2	0	
	3	75	
	4	75	
	5 [′]	0	
	6	0	
Seberang Jaya	1	0	
:	2	0	
	3	0	
	4	0	
	5	0	
Prai	1	0	
	2	0	
Bukit Mertajam	1	0	
	2	0	
	3	75	
	4	0	
	5	0	
	6	0	
	7	0	

TABLE H-10 Result of Assessment for Excreta Disposal System

/

*

۲

2.2.4 Flooding

ě

T

As shown in Figure H-4, in the areas marked, flooding has occurred most frequently.

For the purpose of rating, only the areas marked in Butterworth and Bukit Mertajam districts are considered, because the other marked areas in Seberang Jaya, Prai and some areas of Bukit Mertajam district are defined to be the area of wet land, and these areas have yet to develop with the ponding, when there are incidences of heavy rainfall and hightides.

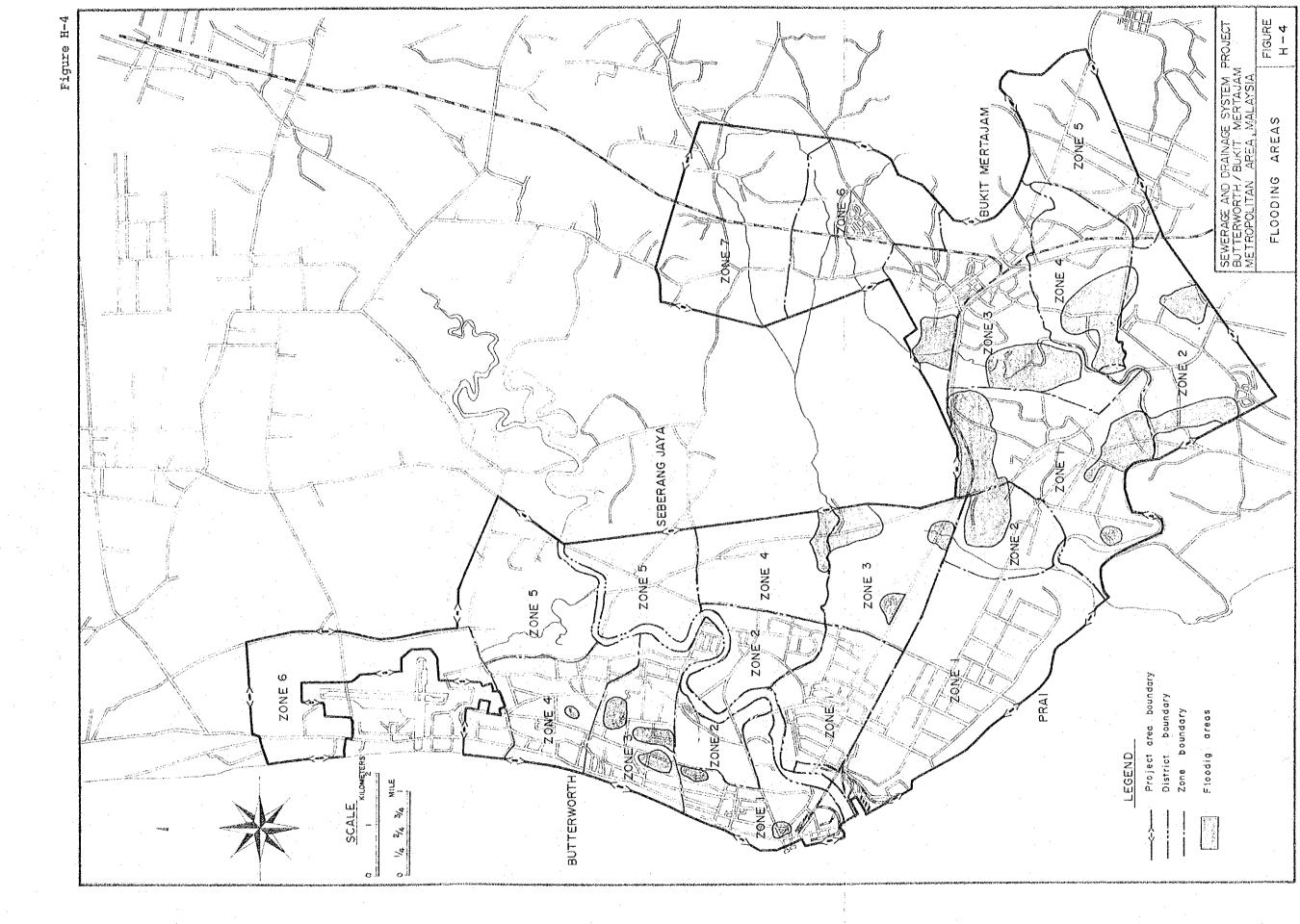
Therefore, following sewerage zones are given arbitrarily to be considered for the rating, even though there are no available records with regard to flood incidence on damage caused in these areas.

District	Zone	Flooded Area (ha)
Butterworth	1	7.9
	3	70.8
	4	4.1
Bukit Mertajam	3	70.0

Depending on conditions, a total of 100 points are assigned to the flooding aspect, and the ratio of extent of flooding to the total area of each sewerage zone is calculated for the assessment points as shown in Table H-11.

TABLE H-11 Flooding Area

Zone	Area (ha)	Flooded Area(ha)	Ratio
1	390	7.9	2
3	490	70,8	14
4	450	4.1	1
3	980	70.0	7
	Zone 1 3 4 3	1 390 3 490 4 450	1 390 7.9 3 490 70.8 4 450 4.1


Then, an assessment point for rating is given the following points according to the ratio of extent of flooding.

Assessment points	Ratio
100	5 more
50	1 - 5

The results of the rating are as follows:

District	Zone	Point
Butterworth	1	50
	3	100
	4	50
Bukit Mertajam	3	100

H-22

.

2.2.5 Availability of Water Supply

The master plan of water supply for the state of Penang including Project Area in Province Wellesley, prepared by Binnie & Partners, is programmed to be implemented by stages followed by the first, second and third stage projects.

The first stage is planned to construct the barrage, canal, pumping stations, pipelines in Penang Island, Butterworth and Prai which are covering the Project Area, and 22,727 cu m (5 MIG) reservoirs at Bukit Dumbar and Bukit Indira Muda to be completed during the years from 1968 to 1977.

The second and third stages are planned to extend in predicting future water requirement up to the year 2000, and will be covered 100 percent of the served population area. Figure H-6 shows the existing water supply service area in Project Area, covering the main pipes of water supply.

On the basis of the review of the existing water supply and master plan, the entire area of sewerage zones are evaluated to determine their ratio of water supply service area to the sewerage zone area at present and the year 2000, as shown in Table H-12, and multiplied by the assigned points, 25 points for the sewerage zones where water supply system is available in 1976, 25 points for the sewerage zones to be provided by the year 2000. The result of rating is indicated in Table H-13.

	Zone A:	D		Served Area (ha)		
District		Area -	1	976	2	000
Butterworth	1	367	367	(100)	367	(100
	2	182	182	(100)	182	(100
	3	457	457	(100)	457	(100
	4	444	444	(100)	444	(100
	5	551	375	(68)	551	(100
	6	670	570	(85)	670	(100
Seberang Jaya	1	438	381	(87)	438	(100
	2	305	305	(100)	305	(100
	3	510	474	(93)	510	(100
·	4	430	254	(59)	430	(100
	5	368	298	(81)	368	(100
Prai	1	1,063	617	(58)	1,063	(100
	2	268	161	(60)	268	(100
Bukit Mertajam	1	892	580	(65)	892	(100
	2	715	458	(64)	715	(100
	3	927	751	(81)	927	(100
	4	467	425	(91)	467	(100
	5	459	399	(87)	459	(100
	6	573	350	(61)	573	(100
	7	768	507	(66)	768	(100

TABLE H-12 Water Service Areas by Sewerage Zone

Note: The Numbers put in parentheses show the percentage of served water supply area.

н-25

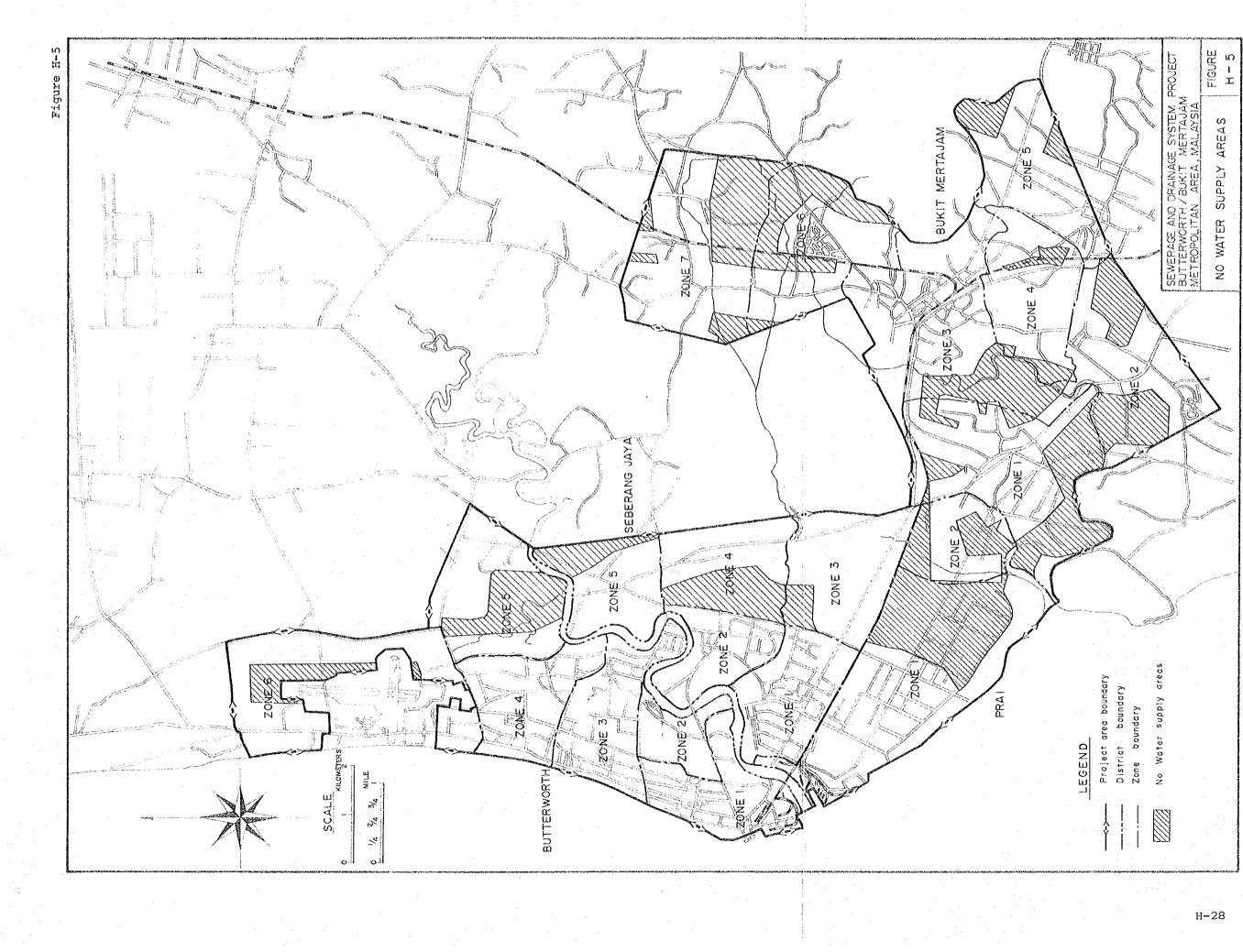
5. 5. 1	E	A	Assessment Points		
District	Zone	1976	2000	Tota	
Butterworth	1	25	25	50	
	2	25	25	50	
	3	25	25	50	
	4	25	25	50	
	5	17	25	42	
	6	21	25	46	
Seberang Jaya	1	22	25	47	
	2	25	25	50	
	3	23	25	48	
	4	15	25	40	
	5	20	25	45	
Prai	1	15	25	40	
and and a second se Second second	2	15	25	40	
Bukit Mertajam	. 1	16	25	41	
	2	16	25	41	
	3	20	25	45	
	4	23	25	48	
	5	21	25	46	
	6	15	25	40	
· .	7	17	25	42	

Ľ

TABLE H-13 Result of Assessment for Availability of Water Supply

н-26

2.2.6 Incidence of Water Borne Diseases


For the purpose of rating on incidence of water borne diseases, in the year 1974, a consideration is given to the whole Project Area, and then the number of diseases occurred in each sewerage zone is estimated by the ratio of served population to the total population of the Project Area, as indicated in Table H-15.

For an assessment, 50 points are assigned to each of sewerage zones according to the level of incidence estimated as follows:

	Number of
Assessment Point	Incidence of Diseases
50	10 more
25	5 - 10
0	0 - 5

ş

The results of the assessment for each of sewerage zones are shown in Table H-16.

Disease	1970	1971	1972	1973	1974	1975
Cholera	62	. .	7		10	-
Dysentery	1	6	11	35	19	11
Infections Hapatitis	-	-	·	67	49	53
Leptospiral Infectious	_	-	-	1	. - .	-
Typhoid Fever	3	18	51	58	11	13
Total	66	24	69	161	89	77

1

TABLE H-14 Number of Patients of Water Borne Disease

The data was obtained from Medical and Health Department of Penang.

н-29

District	Zone	Population at 1976	Ratio of Population (a) (percent)	Incidence of disease presumed (persons) (a) x 89
Butterworth	1	37,920	16	14
	2	3,585	1	1
	3	28,255	12	10
	4	26,332	11	10
	5	3,961	2	2
	6	8,902	4	3
Seberang Jaya	l	13,657	6	5
	2	69	0	0
	3	2,991	l	1
	4	7,518	3	3
	5	4,369	2	2
Prai	1	1,860	1	1
	2	1,974	1	1
Bukit Mertajam	1	7,559	3	3
	2	6,387	3	3
	3	45,540	19	17
• 	4	6,077	2	2
	5	7,257	3	3
	6	13,840	6	5
	7	9,947	4	3
Total		238,000	100	89

TABLE H-15 Distribution of Water Borne Disease in 1974 by Sewerage Zone

11. Sec. 1.

CHAPTER 3

EVALUATION AND SUMMARY OF RATING SYSTEM

The consideration of rating on the basis of six elements as stated earlier in determining construction stages of sewerage systems of Butterworth/Bukit Mertajam Metropolitan Area is summarized in Table H-17 with the following comments and conclusion.

- (a) The densely populated areas exist in the Project Area and undoubtedly will increase by the year 2000. As such areas will have greater impact of the environmental sanitation and maximum beneficiaries of the population by the satisfactory sewerage system, higher rating is justified.
- (b) Sewerage zones which make the heaviest contributions to the waste load production are surrounded by the areas of industrial estate and combination of residential and industrial area, like in case of zone l of Prai district, which produces most heavy waste load, and is assessed accordingly. However, the overall priority is lower due to the fact that this is an industrial area and has no served population. In our opinion, industrial waste control should have special consideration for itself in addition to the municipal sewerage system facilities.
- (c) In view of lack of exact data on existing excreta disposal systems, an assessment of urban and rural area has been given arbitrarily 150 and 75 points in proportion to the population without served excreta disposal system in each of sewerage zones.

High ratings are given to each of the sewerage zones where the existing excreta disposal system is not functioning well or does not exist. The rating reflects the actual sanitary conditions in the Project Area.

- (d) With respect to flooding, the rating is considered according to the extent of flood in connection with drainage facilities. Inclusion of flooding in the evaluation appears to be appropriate for the areas without adequate facilities for storm drainage.
- (e) Availability of water supply are given fewer assessment points than other factors because it is deemed less meaningful in determining the priority of sewerage system construction.

(f) The results of the rating on incidence of water borne disease indicates that the congested and high population density zones get higher assessment points. Generally speaking, rate of incidence of such diseases are low in the Project Area.

The results of the rating indicate that zone-1 of Butterworth District has the highest total number of points, representing the combined ratings for all six elements, followed by zones 3 and 4 of Butterworth, and zone-3 of Bukit Mertajam as listed in the following.

E.

District	Zone		Assessment Points
Butterworth	l		50
	2		0
	3		50
	4	•	50
	5	· · ·	0
	6		0
Seberang Jaya	. 1		25
	2		0
	3		0
	4		0
а.	5		0
Prai	l		0
	2		0
Bukit Mertajam	1		0
	2		0
	3		50
	- 4		0
	5		0
	6		25
	. 7		0

TABLE H-16 Result of Assessment for Incidence of Water Borne Disease

TABLE H-17 Result of Rating for Overall Aspect

District	Zone	Popu- lation Density	Waste Load Produc- tion Aspects	Excreta Disposal System	Flood- ing	Avail- ability of Water Supply	Incidence of Water- Borne Diseases	Total
Butterworth	Ч	400	165	150	50	50	50	865
	N	200	65	0	0	50	0	315
	m	250	150	75	100	50	50	675
	4	250	06	75	50	50	50	565
	ហ	100	40	0	0	42	o	182
	9	TOO	40	O	0	46	0	186
Seberang	T	250	65	0	0	47	25	387
Јауа	3	150	06	0	0	20	0	290
	ო	TOO	40	0	0	48	0	188
	4	50	40	0	0	40	0	130
	S	100	40	0	0	45	0	185
Prai	ы	0	225	0	0	40	0	265
	5	100	40	0	0	40	0	180
Bukit		100	40	0	0	41	o	181
Mertajam	0	100	40	0	0	41	0	181
	en L	200	65	75	100	45	50	535
· .	ব	100	40	0	0	48	0	188
	ับ	100	40	0	0	46	0	186
	Q	100	40	0	0	40	25	205
	2	100	40	0	0	42	0	182

н-34

Table H-17

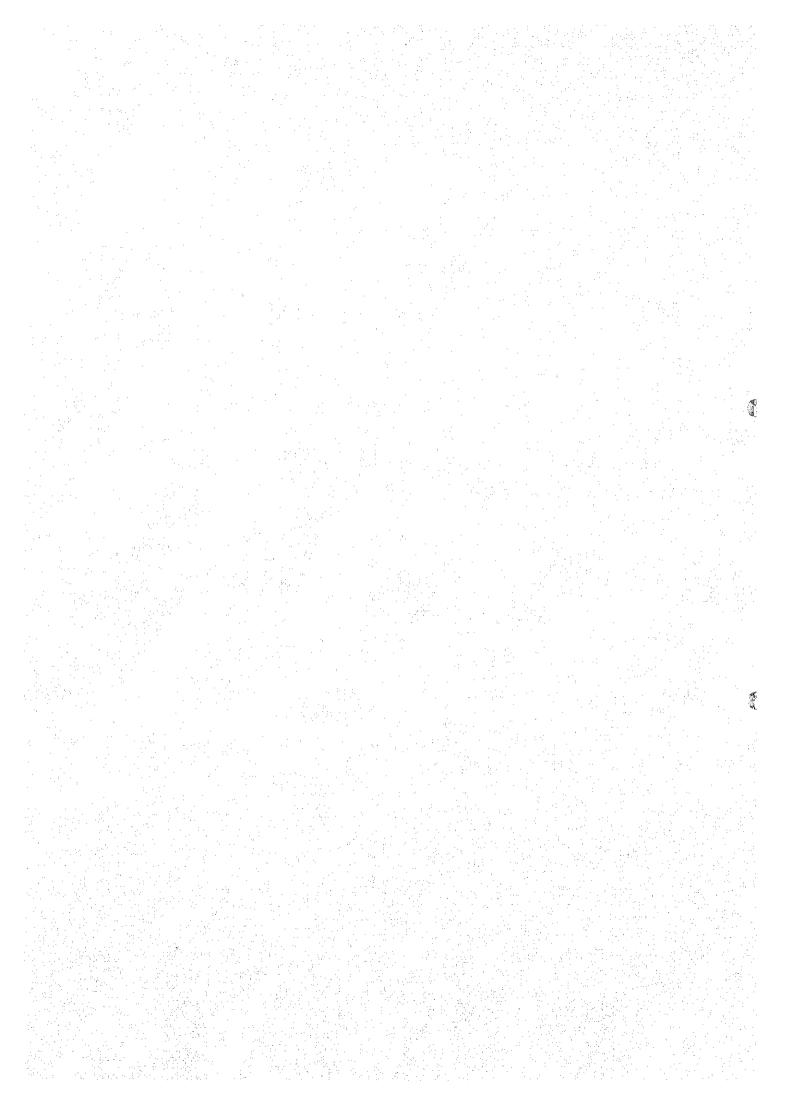
	المداسي .			
Priority of Construction	District	Zone	Assigned Points	
1	Butterworth	1	865	
2	11	3	675	
3	n	4	565	
. 4	Bukit Mertajam	- 3	535	
5	Seberang Jaya	1	387	
6	Butterworth	2	315	
7	Seberang Jaya	2	290	
8	Prai	1	265	
9	Bukit Mertajam	6	205	
10	Seberang Jaya	3	188	
10	Bukit Mertajam	4	188	
12	Butterworth	6	186	
12	Bukit Mertajam	5	186	
14	Seberang Jaya	5	185	
15	Butterworth	5	182	
15	Bukit Mertajam	7	182	
17	II	1	181	
17	.	2	181	
19	Prai	2	180	
20	Seberang Jaya	4	130	

T

Ŷ

TABLE H-18 Priority of Construction

It is concluded that the rating system adopted in this study, while arbitrary in many respects, reasonably reflects and quantifies both present and future conditions of the Project Area with respect to need for sewerage and drainage systems. The results are considered as a good indication of the overall needs of the various zones and should be taken into consideration in determining the staging of the sewerage construction programme.


H-35

APPENDIX I

STORMWATER QUANTITY

Ŷ

P

CHAPTER 1

RUNOFF COEFFICIENT

It has been generally recognized that the values assigned to the runoff coefficient depend mainly upon the surface characteristics including the imperviousness and the slope.

On the basis of numerous experiences in the past, the surface characteristics in terms of the impervious factor of the different types of surface such as roof, road, yard and others, can be estimated.

Using these impervious factors of individual type of surface, the composite runoff coefficients, expressed by the following equation, have been developed for this Project.

$$C = \sum_{i=1}^{m} CiAi / \sum_{i=1}^{m} Ai$$

where

C = composite runoff coefficient Ci= impervious factor by the type of surface Ai= area by surface type, in ha m = number of the surface type

1.1 Selected Representative Area

Four districts representing typical patterns of the land use were selected in the Project Area and their coefficients in the future were estimated as follows:

Type of land use

Representative area (refer to Figure I-1)

1) Residential-A (residential ----- planned housing development area with semi-detached houses) area along Juru river

*2

P

2)	Residential-B (residential area with detached houses)	outskirt of Bukit Mertajam
3)	Commercial area	central part of Bukit Mertajam
4)	Industrial area	Mak Mandin area in Butterworth

1.2 Runoff Coefficient by Surface Type

Coefficients with respect to surface type currently in use are shown below.

TABLE I-1 Runoff Coefficient with respect to Surface Type

Runoff Coefficient			
Range	Used		
0.85 - 0.95	0.90		
0.80 - 0.90	0.85		
0.75 - 0.80	0,80		
0.10 - 0.30	0.20		
0.05 - 0.20	0.10		
	Range 0.85 - 0.95 0.80 - 0.90 0.75 - 0.80 0.10 - 0.30		

Source: WPCF Manual of Practice No.9 (USA) (1970) Manual of Sewerage Facility Design, 1972, JAPAN

1.3 Estimation of Coefficients in the Selected Areas

The various types of surfaces were calculated, in percentage of total surface, for each of the selected four representative districts. After that the runoff coefficients of representative district were calculated and shown in Table I-2.

I-2

Type of	Runoff Co- efficient	Residential	Residential	Commercial	Industrial
Surface	of Individual Type of Surface	area (semi- detached)	area (detached)	area	area
Roofs	0.90	0.30/0.27	0.25/0.23	0.28/0.25	0.18/0.16
Paved roads	0.85	0.35/0.30	0.35/0.30	0.26/0.22	0.30/0.25
Other pave- ment	0.80	0.05/0.04	0.05/0.04	0.46/0.37	0.05/0.04
Vacant lots	0.20	0.05/0.01	0.05/0.01	- / -	- / -
Lawns	0.10	0.25/0.03	0.29/0.03	- 7 -	0.47/0.05
Total		1.00/0.65	1.00/0.61	1.00/0.84	1.00/0.50

TABLE I-2Percentage of Individual Surface Typeand Runoff Coefficient (in 2000)

Note: percentage of individual type of surface/runoff coefficient

Sparsely inhabited residential area, with population density of 52 persons/ha, is proposed in the future land use plan.(*1)

The runoff coefficient in such areas are determined on the basis of an assumption in which a habitation would take place in association with the housing development project with population density around 120 persons/ha in some parts of the areas. The percentage of areas with 120 persons/ha is $\frac{52}{120} = 0.44$ and remaining part (1 - 0.44 = 0.56) would be areas non-habited with runoff coefficient of 0.1. The composite coefficient in the sparsely inhabited area, therefore, can be estimated as follows:

(*1) This residential area is defined as the residential-C in the discussion of runoff coefficients.

$$\frac{52}{120} \ge 0.65 + \frac{(120-52)}{120} \ge 0.10 = 0.35$$

In this Project the runoff coefficient of 0.35 is used for sparsely inhabited residential area.

1.4 Runoff Coefficient at Present

Existing land use types in the Project Area are the residential area with detached house, commercial area and industrial area. The runoff coefficient of individual land use mentioned above is calculated in the same manner as that used in the case of future coefficient estimation.

In Table I-3, the present runoff coefficient is shown.

	1			
Туре	Runoff co- efficient of Individual Surface	Residential area	Commercial area	Industrial area
Roofs	0.90	0.10/0.09	0.35/0.31	0.11/0.10
Paved roads	0.85	0.10/0.09	0.35/0.30	0.18/0.15
Other pave- ment	0.80	- / -	-/-	- / -
Vacant lots	0.20	0.30/0.06	0.30/0.06	- / -
Lawns	0.10	0.45/0.05	-/-	0.66/0.07
Palm tree coverage	0.10	0.05/0.01	- / -	- / -
Total		1.00/0.30	1.00/0.67	1.00/0.36

TABLE I-3 Present Runoff Coefficient

Note: Percentage of individual type of surface/runoff coefficient.

Remaining parts of the Project Area are mountenous areas and agricultural areas. The runoff coefficients of those areas are 0.5 and 0.1 respectively.

1.5 Comparison with Other Areas

The calculated coefficients are also compared with those used for other cities.

Type of	Coefficient proposed for	Standard in	Practice	Standard
Land Use	this Project	Malaysia	in U.S.A.	in Japan
Residential	0.65	0.75	0.60 - 0.75	0,65
Commercial	0.85	0.90	0.70 - 0.95	0.80
Industrial	0.50	0.80	0.50 - 0.80	0,65

TABLE I-4 Coefficients Adopted in Other Areas

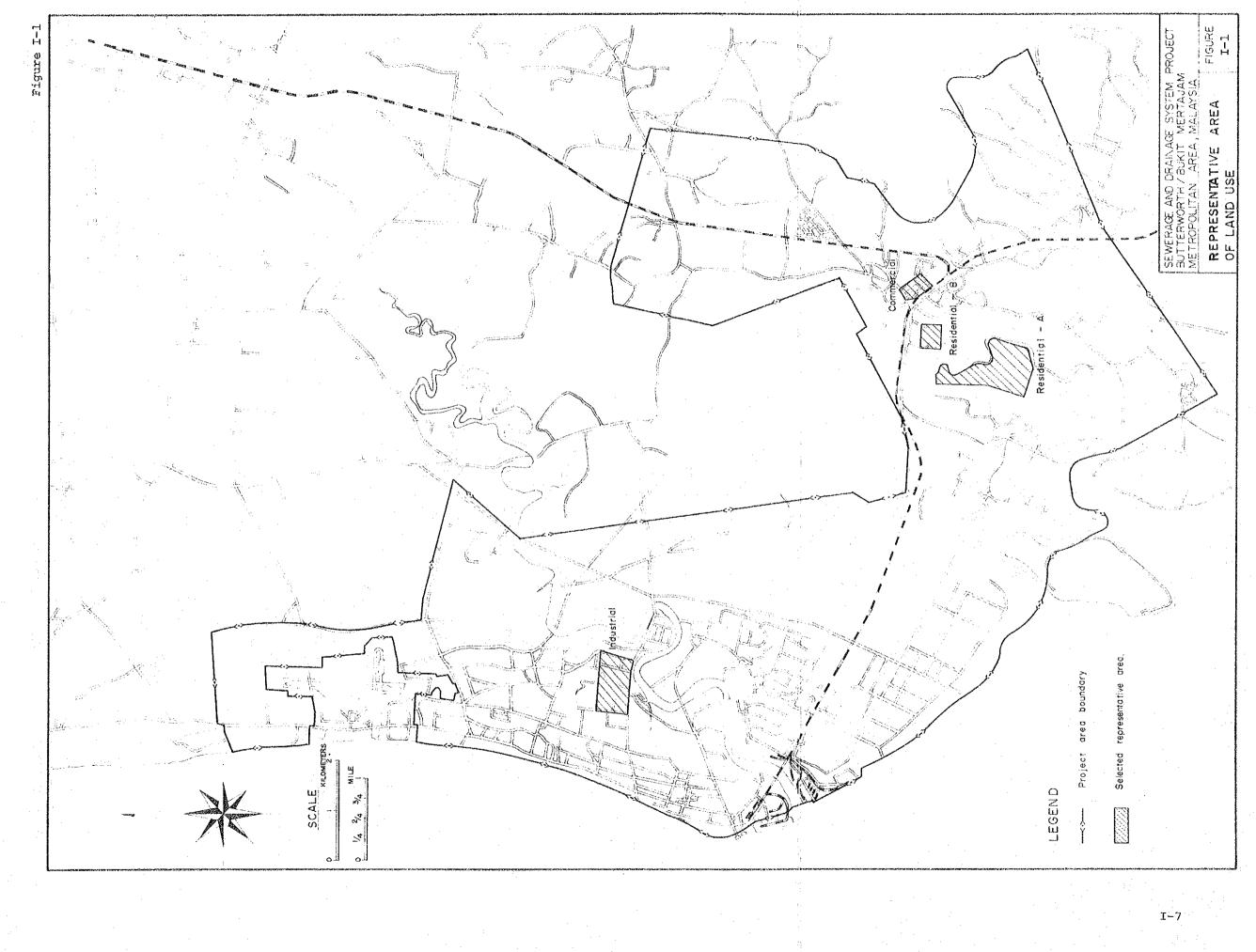
As indicated in the above table, the coefficients for the Project Area coincide substantially with those in other places.

1.6 Recommended Runoff Coefficients

T

Taking the facts and assumptions mentioned above into account, the following runoff coefficients are recommended for drainage system planning.

		,	
La	nd Use	in 1976	in 2000
	Residential-A	0.65	0.65
Residential area	Residential-B	0.30	0.65
unou	Residential-C	-	0,35
Commercia	l area	0.70	0.85
Industria	l area	0.35	0.50
Agricultu	ral area	0.10	0.10
Mountaino	us	0.50	0.50


TABLE I-5 Recommended Runoff Coefficients

Note: Residential-A ----- residential area with semi-detached houses and population density of 120 persons per hectare in 2000. Residential-B ----- residential area with detached houses and population density of 120 persons per hectare in 2000.

Residential-C ----- residential area with population density of 52 persons per hectare in 2000. 100 M

S.

I-6

CHAPTER 2

TIME OF CONCENTRATION

An estimation of the time for the flow to concentrate at the point under consideration must be made for the purpose of application of the Rational method. For urban storm sewers, the time of concentration consists of inlet time plus time of flow in the sewer from the most remote inlet to the point under consideration.

The time of flow in the sewer is dependent upon the distance, slope and type of conduits or channels, and is calculated in individual sewer line when it is designed. However, the inlet time is in similar range in areas in which surface slope, nature of surface cover, and length of path of surface flow are of the same character. Therefore it is a general practice to use the fixed inlet time in areas with similar characteristics.

In this project the inlet time has been estimated as follows.

2.1 Inlet Time

Ľ

An equation which represents the inlet time for urban sewer design was originally proposed by Horton(*1) and later modified and formulated by Kerby(*2) in the form:

$$T_{i} = \left[\frac{2}{3} \times 3.28 \times L \times \left(\frac{n}{\sqrt{s}}\right)\right]^{0.467}$$

where $T_i = inlet time, minutes$

- L = distance from the most remote point to the point of inlet, meters

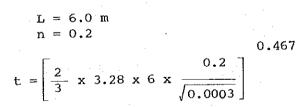
(*1) R.E. Horton, The Role of Infiltration in the Hydrologic Cycle. Trans. AGU, Vol. 14, 1933.

(*2) W.S. Kerby, Civil Engineering 29,174 (1959).

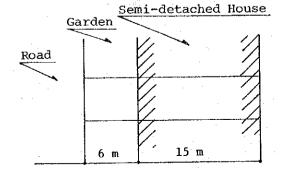
I-8

Character of Surface	Coefficient of Roughness
Smooth pavement	0.02
Bare, packed soil, free of stone	0.10
Poor grass cover	0.20
Moderately rough bare surface	0.20
Average grass cover	0.40
Forest (decidous tree)	0.60
Dense grass cover	0.80
Forest (deciduous tree, with deep dead leaves)	0.80
Forest (needle-leaved tree)	0.80

TABLE I-6 Coefficient of Roughness in Kerby's Equation


The surface slope in the Project Area except Bukit Mertajam area is around 0.3/1000 and length of path of surface flow was decided for individual type of land use. The inlet time of individual land use is estimated as described below.

2.1.1 Inlet Time of Individual Land Use


(1) Residential Area

From the layout plan of a new housing development area the distance from the remote point of the premise is estimated as shown in the figure below.

The inlet time can be calculated as:

= 10.4 minutes

¥Э:

.

(2) Commercial Area

The commercial area in Butterworth and Bukit Mertajam are served with roads which run in parallel approximately in every 50 meters or so. The average width of these roads is approximately 10 meters.

Based on the condition above, the distance from the center of an area between two roads is assumed to be 20 meters.

The inlet time of 6.2 minutes is calculated when the distance of surface flow is 20 meters and "n" = 0.02.

(3) Industrial Area

Y

Y

In case of industrial area, Mak Mandin area was investigated and the average distance of the surface flow is determined to be 15 meters. When coefficient "n" is 0.2, the inlet time is 16.0 minutes.

(4) Mountainous Area

The path of surface flow consists of two parts with different characteristics as shown in the figure below.

part "a": established drainage channels

part "b": natural water way

part "c": path of overland flow

The inlet time consists of the time of flow of part "b" plus part "c".

part h а c

For the purpose of estimation of the inlet time Rziha formula is used for the part "b" and Kerby formula for the part "c". The Rziha formula is in the current use for the estimation of the average velocity in mountainous area and expressed as;

$$V = 20 (H/L)^{0.6}$$

where

V = velocity of flood, m/sec

L = horizontal distance of the part "b", m

H = head in the part "b", m

The time of flow in the part "b" is, therefore, calculated as follows.

$$Tb = \frac{1}{V} + 60$$

where

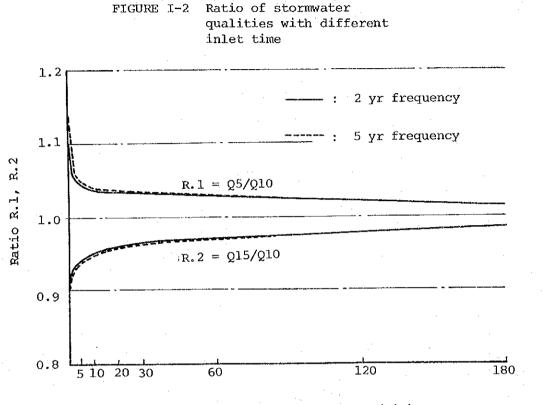
Tb = time of flow in the part "b" in minutes.

By applying Kerby formula, the time of flow in the part "c" was investigated in eight existing major streams in the Project Area. The range of results is 17 - 21 minutes with the average of 19.5 minutes. It is concluded that the use of 20 minutes for the inlet time would yield satisfactory results.

The inlet time discussed is summerized as follows:

÷	Residential area	10	minut	es
:	Commercial area	 5		
, ¹ .	Industrial area	 15	11	· · · ·
	Mountainous area	 20	+ Tb	minutes

In order to simplify the application of the inlet time, a comparison of results derived by using 5, 10 and 15 minutes was carried out. The ratio


$$\frac{Q5}{Q10} = R.1, \quad \frac{Q15}{Q10} = R.2$$

were calculated and are shown in Figure 1-2.

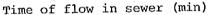

I-11

Figure I-2

The subscripts denote the inlet time, so Q5 represents the stormwater runoff quantity of any rainfall, which will be expected in the drainage systems with the inlet time of 5 minutes.

Ľ

From Figure I-2, it is understood that the difference between stormwater quantities yielded with the inlet time of 5, 10 and 15 minutes is not noticeable.

It was concluded, therefore, the same inlet time of 10 minutes is used for residential, commercial and industrial areas in this Project.

I-12

2.1.2 Comparison with Practice in Other Areas

The inlet time recommended for this Project is compared with practices in USA and Japan as shown in Table I-7.

TABLE I-7 Comparison of Inlet Time

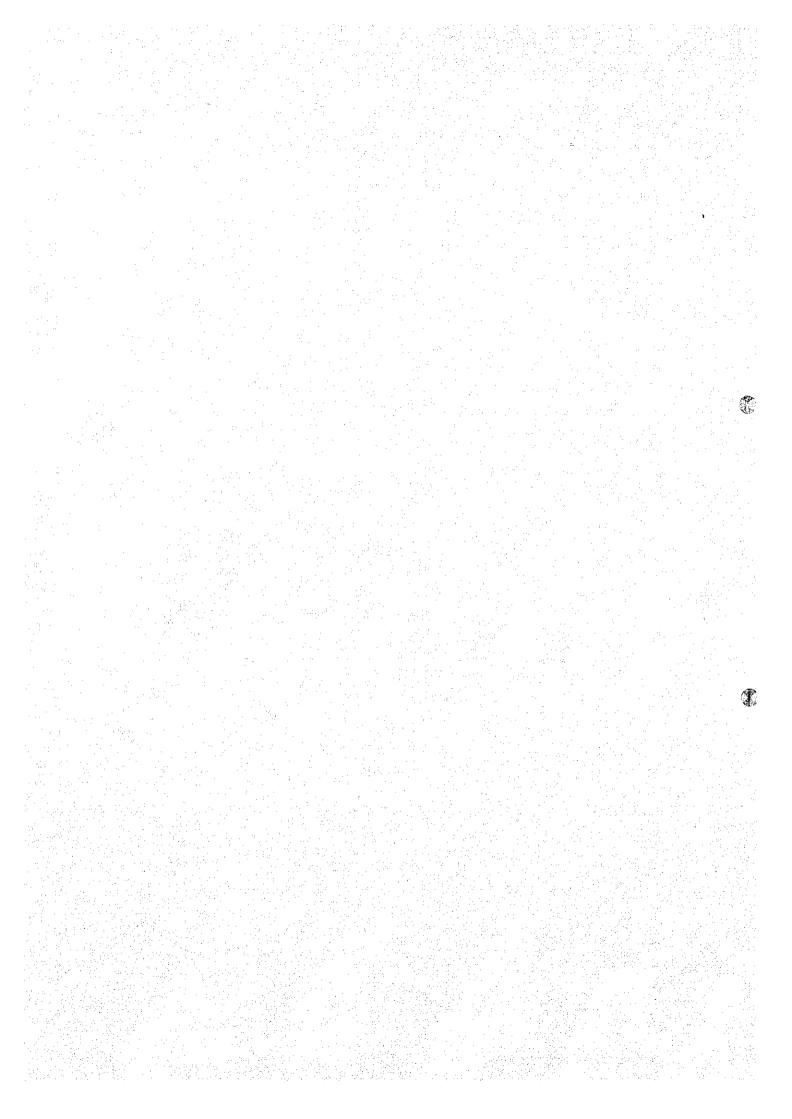
(in minutes) Recommenda-Practice Standards Definition of Area tions for in ASCE in Japan this Project Densely populated 5 5 10 area with paved roads and drainage systems Sparsely populated 10 10 10 - 15 area

2.1.3 Recommended Inlet Time

The recommended inlet time is shown in Table I-8.

TABLE I-8 Inlet Time

(in minutes)


SP

Area	Inlet time	
Urban area	10	
Mountainous area	20 + Tb	

APPENDIX J

DRAINAGE SYSTEM CONSIDERATION

×

CHAPTER 1 ALTERNATIVE DRAINAGE SYSTEMS CONSIDERED IN BUTTERWORTH AREA

Studies on alternative drainage systems have been carried out including the construction diversion drains to the sea and the provision of reservoirs.

Following principles are applied for the study.

- i) Because the area is low-lying, it is preferable for the drainage systems proposed here to have characteristics in which the least head loss is required. In other words, the gradient of water surface should be as small as possible. The type of drainage system described above would make it possible to graviate stormwater runoff into the Prai river or the sea. Thus the construction of pumping stations would be avoided, resulting in the savings of initial costs.
- ii) For the lowest areas, it is considered that filling-up of land would be required.
- iii) The involvement of constructions of reservoirs as parts of drainage systems is taken into consideration.

Three alternatives have been considered and investigated as described below.

(1) Alternative-I (Ref. Figure J-3)

ЧР.

Except slight alignment of meandering parts, existing routes of major drains are left unchanged. However, extention of the Butterworth Drain C (hereafter called as B.D.C.) in its upstream portion is proposed, for providing smooth collection and removal of stormwater runoff of the tributary area. Because considerable parts of the area have already been built-up, the land availability would have limitations to such degree as to prevent application of trapezoidal cross section. The reinforced concrete rectangular channel, therefore, is proposed to use. It is found, as a result of investigation, that existing channels have to be widened and deepened considerably. The water level in proposed ditch comes up as high as RL + 1.94 meters (+6.36 ft) at the area of lowest ground elevation of about RL + 1.80 meters (+5.9 ft). Considering 0.3 meter's head loss expected in branches, land fill up to RL + 2.30 meters (+7.5 ft) will be required around this area in order to cope with expected flooding due to backing up from the sea resulted from the highest sea water level of RL +1.68 meters (+5.5 ft). It can be concluded that the current recommendation of DID for land fill saying that the newly developed areas should be filled up to RL + 2.30 meters (+7.5 ft), is completely justified with this investigation.

The construction costs of this alternative is lower than costs required for alternative-II. (Ref. Table J-1 Construction Costs of Alternatives).

Ŷ,

) Alternative-II (Ref. Figure J-4)

The diversion channels of B.D. (A), (B) and (C) are weighted in this alternative. Because the space for the construction of diversion ditches is not available except existing major roads, a construction of box culverts is considered and the costs are estimated.

As can be seen from Table J-1, the construction costs are higher than other alternatives.

It is found that the cross section at downstream of individual drain is not reduced by the diversion to the sea of discharges from upstream tributaries. For example drain 1.D.4 with drainage area of 437 hectares in alternative-I conveys stormwater runoff of 18 cu m/sec and after the diversion of the upstream parts to the sea, the same drain with 212 hectares, designated 2.D.2 in alternative-II, is still to convey runoff of 15 cu m/sec which is 85 percent of the 18 cu m/sec. This means that although the drainage area are reduced to about 50 percent of the alternative-I, stormwater runoff quantities are reduced only 15 percent. The results might be mainly from characteristics of rainfalls in the tropical zone, i.e., intense and short shower type. It is apparent that the effect of diversion to reduce the cross section in downstream is not conspicuous.

The engineering difficulties expected in this alternative are the construction of box culverts under trunk roads for considerably long period and the countermeasure to consider for preventing accumulation of sea sand at the outfall of diversion drains.

J-2

(MC1 000)

Serious inconveniences for the traffic are expected at the time of constructions of box culverts. On top of that the space assigned for roads will be occupied by the diversion culverts with large cross sections required and least space for other utilities can be assigned.

From Table J-1, it is noted the construction of box culverts hikes the total initial costs of the alternative. Shallow shoreline of Butterworth makes it difficult to construct any deep structures without problems of sand accumulation to them. The constructions of larger outfalls of diversion ditches will raise the initial cost up and will increase difficulties on maintenance work.

Alternative-III (Ref. Figures J-5, 6, 7 and 8) (3)

This alternative differs from the alternative I in providing reservoir. The total construction costs of this alternative is lowest among three alternatives, and special technical problem will not be expected.

This alternative is therefore proposed for the drainage system in Butterworth area, because of its lower initial cost and absence of any special engineering difficulties.

1			(MŞT,000)			
	Open Channel	Box Culvert	Land Acquisition	Total		
Alternative I	39,500		3,220	42,720		
Alternative II	27,100	23,300	1,970	52,370		
Alternative III	37,030	350 (Reservoir)	3,400	40,780		

TABLE J-1 Construction Costs of Alternatives

Note:

Construction cost of individual line in each alternative is shown in Tables J-2, 3, and 4.

J--3

Calculation of required capacity of the reservoir is described : in the following chapter.

Ŷ

· · ·	· .		(M\$1,	000)
Line No.	Construct	ion Cost	Land Acquisition	Total
Line No.	Open channel	Box culvert		
1.A.1 - 2	3,800		530	4,330
1.B.1 - 7	15,600	-	1,610	17,210
1.C.1 - 6	11,400		680	12,080
1.D.1 - 4	8,700	_	400	9,100
Total	39,500	: :	3,220	42,720

TABLE J-2	Construction	Costs	of	Alternative-I
-----------	--------------	-------	----	---------------

TABLE J-3 Construction Costs of Alternative-II

+

(M\$1	,000)	

Line No.	Construct	ion Cost	Land Acquisition	Total	
Line no.	Open channel	Box culvert	_		
2.A.1	200		50	250	
2.B.1	2,200		330	2,530	
2.C.1 - 2	4,900		40	4,940	
2.D.1 - 3	4,800		30	4,830	
2.E.1 - 3	3,100	4,800	140	8,040	
2.E.4	1,600		300	1,900	
2.F.1 - 6	4,300	13,100	440	17,840	
2.F.7 - 8	3,300		210	3,510	
2.F.9 - 10	2,700		430	3,130	
2.G.1 - 2	· -	5,400	-	5,400	
Total	27,100	23,300	1,970	52,370	

×.

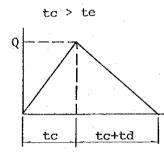
Ŷ

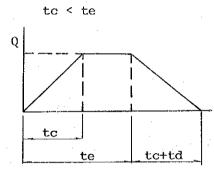
TABLE J-4 Construction Costs of Alternative-III

			(M\$1,0	(M\$1,000)			
Line No.	Construct:	lon Cost	Land Acquisition	Total			
hine no.	Open channel	Reservoir	~				
BWA 1 - 7	15,600		1,610	17,210			
BWB 1 - 6	10,400	150	790	11,340			
BWC 1 - 4	8,600	200	600	9,400			
BWD 1	230		70	300			
BWE 1	2,200		330	2,530			
Total	37,030	350	3,400	40,780			

Ĵ−5

Ś


CHAPTER 2


DESIGN OF RESERVOIR

In the Alternative-III, (Ref. Section 4.1, PART-IV) a construction of two reservoirs is included. The capacity of these is calculated as follows:

(1) Inflow hydrograph

Two types of inflow hydrograph are developed as described below;

T

Where tc: Time of concentration

te: Storm duration (critical storm duration is determined by trial and error.)

td: Time of flow in channel

1) Reservoir in Butterworth Drain B

For this reservoir following three cases are calculated.

tc	=	60	min.		Q =	6.5	cu	m/sec
te	=	80	min.		Q =	5.7	cu	m/sec
te	=	100	min.		Q =	5.1	cu	m/sec

Cumulative inflow curves are developed as shown in Figure J-1.

2) Reservoir in Butterworth Drain C

For following three cases, the inflow hydrographs are considered.

ŧc	=	70	min.	Q	*	8.9	cu	m/sec
te	=	90	min.	ŶQ	=	7.9	cu	m/sec
te	=	110	min.	Q	ï	7.1	cu	m/sec

Cumulative inflow curves for these three cases are developed as shown in Figure J-2.

(2) Outlet discharge rate

The relationship between outlet discharge rate and construction costs of facilities concerned have to be investigated on various cases for the purpose of difining the economical capacity of reservoirs. However, in this Master Plan two cases of discharge rate are considered for comparison purpose and elaborate study will be carried out in the feasibility studies of the Project Area.

1) Reservoir in Butterworth Drain B

A 3 cu m/sec and 5 cu m/sec are considered as outlet discharge rate and 3 cu m/sec is selected.

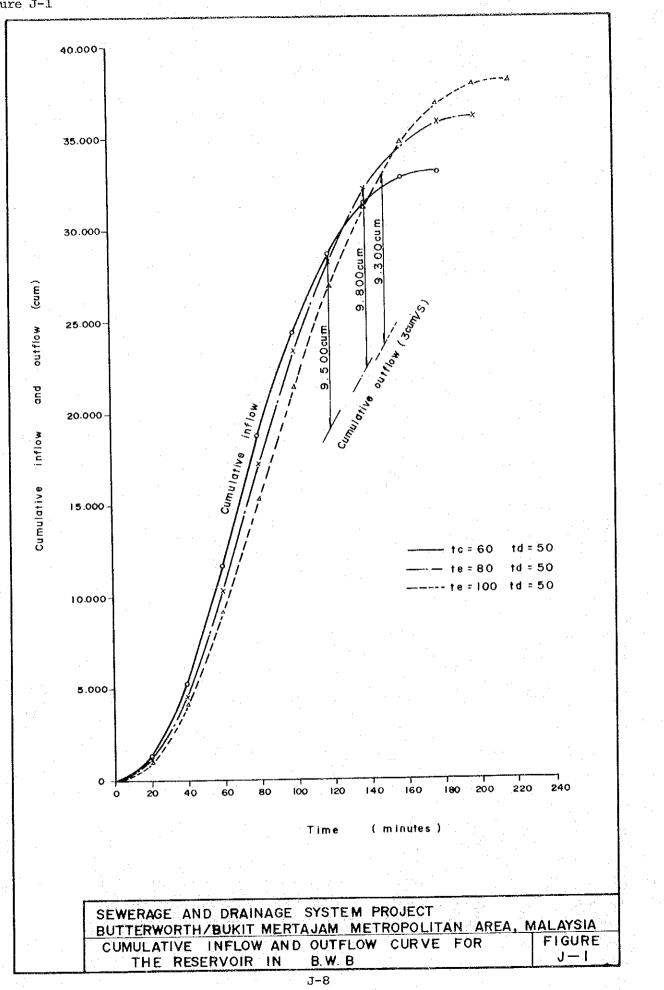
2) Reservoir in Butterworth Drain C

A 4 cu m/sec is taken to be suitable discharge rate on the basis of results of the comparison in the reservoir in Butterworth Drain B.

(3) Capacity of Reservoir

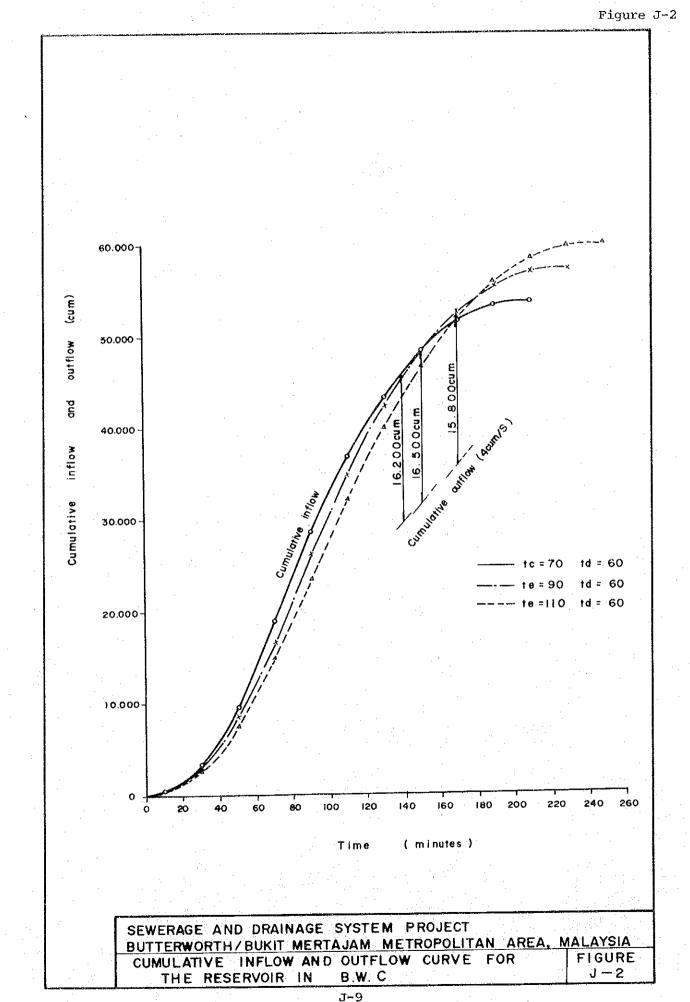
From Figures J-1 and J-2, the capacity of each reservoir is determined as follows.

Reservoir in B Drain B. V = 10,000 cu m


Size: 65 m x 65 m x 2.8 m (depth)

Reservoir in B Drain C. V = 17,000 cu m

J-7


Size: 80 m x 80 m x 3.2 m (depth)

Ş.

1.11

Ê

8

CHAPTER 3

SUPPLEMENTAL FIGURES AND

TABLES OF DRAINAGE SYSTEM PLANNING

Following Figures and Tables are supplement of the drainage system master planning.

Figure No.

J-3	Drainage System Alternative-I in Butterworth Area (B-IV) (Ref. Section 4.1 PART-IV)
J-4	Drainage System Alternative-II in Butterworth Area (B-IV) (Ref. Section 4.1, PART-IV)
J- 5	Drainage System Alternative-III in Butterworth Area (B-IV) (Ref. Section 4.1 PART-IV)
J6	Profile of Butterworth drain A (Ref. Section 4.1, PART-IV)
J-7	Profile of Butterworth drain B and D (Ref. Section 4.1, PART-IV)
J⊷8	Profile of Butterworth drain C and E (Ref. Section 4.1, PART-IV)
J-9	Design Sketches of Reservoir (Ref. Section 4.2.3, PART-IV)

1

Trapezoidal section is applied to the reservoir considered which has compacted earth face of slope.

Gate is made of woods, which presently is the common type in the Project Area.

J-10 Construction Cost Curve (Ref. Section 5.1, PART-IV)

J-11 Estimated Space Required for Maintenance Work (Ref. Section 5.1, PART-IV).

Desilting from larger size drain of more than 6.0 meters will require the major equipments such as dragurain and clamshell grabbing crane. The estimated space for maintenance work is on the basis of the dimension of these equipments.

In case of drains with width less than 6.0 meters, desilting will be carried out by hand. The space for equipments to carry out removed deposits is also required. If there is no road beside the drains the space mentioned in Figure J-11 has to be assigned.

J-12 Representative Network of Smaller Drains in Residential Area

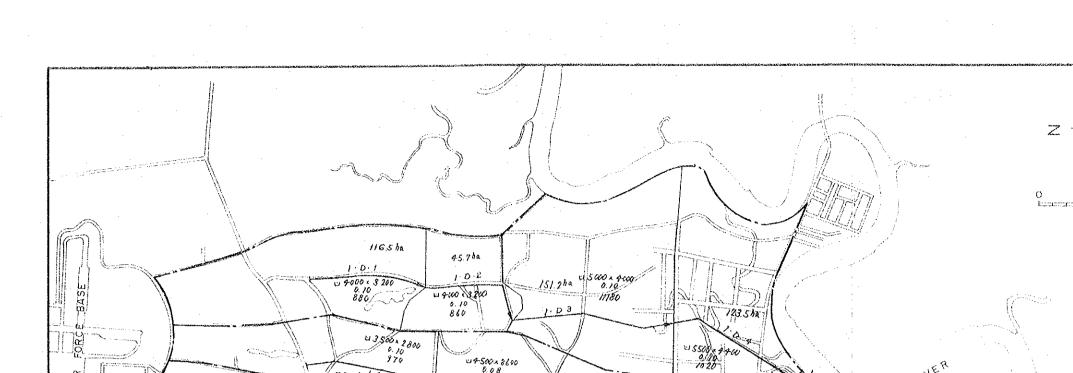
The Figure is used for the construction cost estimates of network of smaller drains in the residential area.

J-13

3 Representative Network of Smaller Drains in Industrial Area

The estimated construction costs of network of smaller drains in the industrial area are based on this Figure. (Ref. Section 5.1, PART-IV).

Table No.


J-5 Analysis of Proposed Drainage System (Ref. Chapter 4 PART-IV)

J-6

Construction Cost of Facilities by Stage (Ref. Chapter 5 PART-IV)

J-7

Construction Cost of Network of Smaller Drains by Stage (Ref. Chapter 5 PART-IV)

1. C-3 10 Secon geo 200920

44 That

42.4-ha

sap

0.08 890

1.0.2

102013600 10201

1.8.3

55.8ha

15500 + 4 4 CU

4 500, 900 0,0800 870

36.3ha

130

31.5 ha

1.8.5

37.6 ha

4 Sav \$ 200 6.10 200 6.20

105

W5000× 7000 0.08 930

LEGEND

79.6hal.c.

U f cco : 3 200 0. 10 910 1.B. 2 38.1 ha

1.B.1 1.B.1 0.10 1000

69.8 ba

#____

AIR

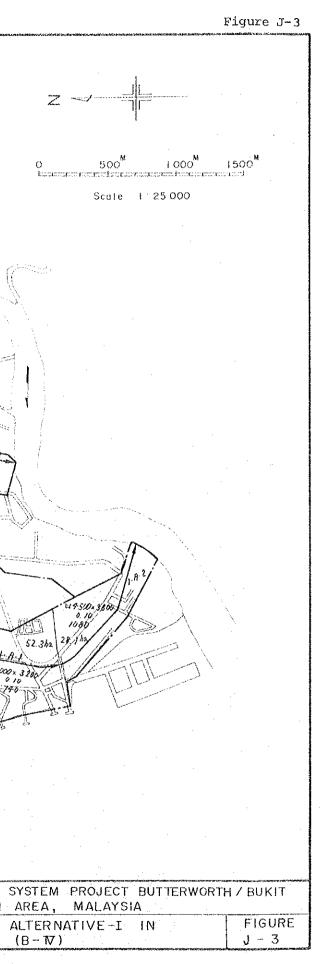
eliyfalaigh a madarca a train	Drainage area boundaries
<u> </u>	Drainage sub-area houndaries
	Proposed drains (open channel)
	Proposed drains (culvert)
L.A.I	Line no
u U	Open channel
	Cuivert
9000 × 4500 ^{mm}	Size of drains
•	width x depth
0.08%	Slope
8 70 [°]	Length
36.3 ^{ha}	Area of drainage
	sub-area

				the state of an end of the back back and an	THE R. LEWIS CO., LANSING MICH.	
SE WE	RAGE	AND	DRA	INAGE	SYSTEM	F
MERT	AJAM	MET	ROP	OLITAN	AREA,	
DR	AINAC	SE .	SYS	TEM	ALTERN	A
BU	T TER	NORT	Н	AREA	(B-₩)	

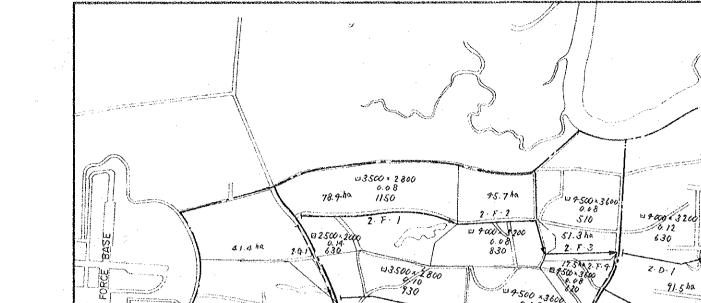
PRAL

1250 A 410

1.8.7


2 4000 × 3200

122.8 ha


220 1200

190.4

U 5500 9900 0.1990 57.2 ha

J-12

LEGEND

143500 1800 910 930

11 3500× 2800 0.08 870

98.3 ha

Z.F. 9 38.1 ha

2.F.7

44.6ha 8 70

Z.F.8

28.3ha 2. F. 10

9000 x 160

	Ð
	Di
₩₩₩₽₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	Ρ
	P
I.A.I	· L
Ŀ	Ö
	C
9000 × 4500 ^{mm}	S
*	
0.08%	S

8 70‴

36.3^{ho}

100. jha

₩ 4000×3200^{2.67.2} 0.08 1070

AIR

Drainage boundaries area sub-area boundaries Drainage drains (open channel) roposed drains (culvert) roposed _ine no Open channel Culvert Size of drains width x depth Slope Length

Area of drainage

sub - area

SEWERAGE AND DRAINAGE SYSTEM PROJECT BUTTERWORTH / BUKIT MERTAJAM METROPOLITAN AREA, MALAYSIA DRAINAGE SYSTEM ALTERNATIVE-II IN BUTTERWORTH AREA (B-TV)

RIVER

2. C.

= 4500×3600

2.14

PRAL

117.7 ha

11 TOCON 3500

4030 X 19900

· D.

2.0.3

0.10 200

69-1 ha

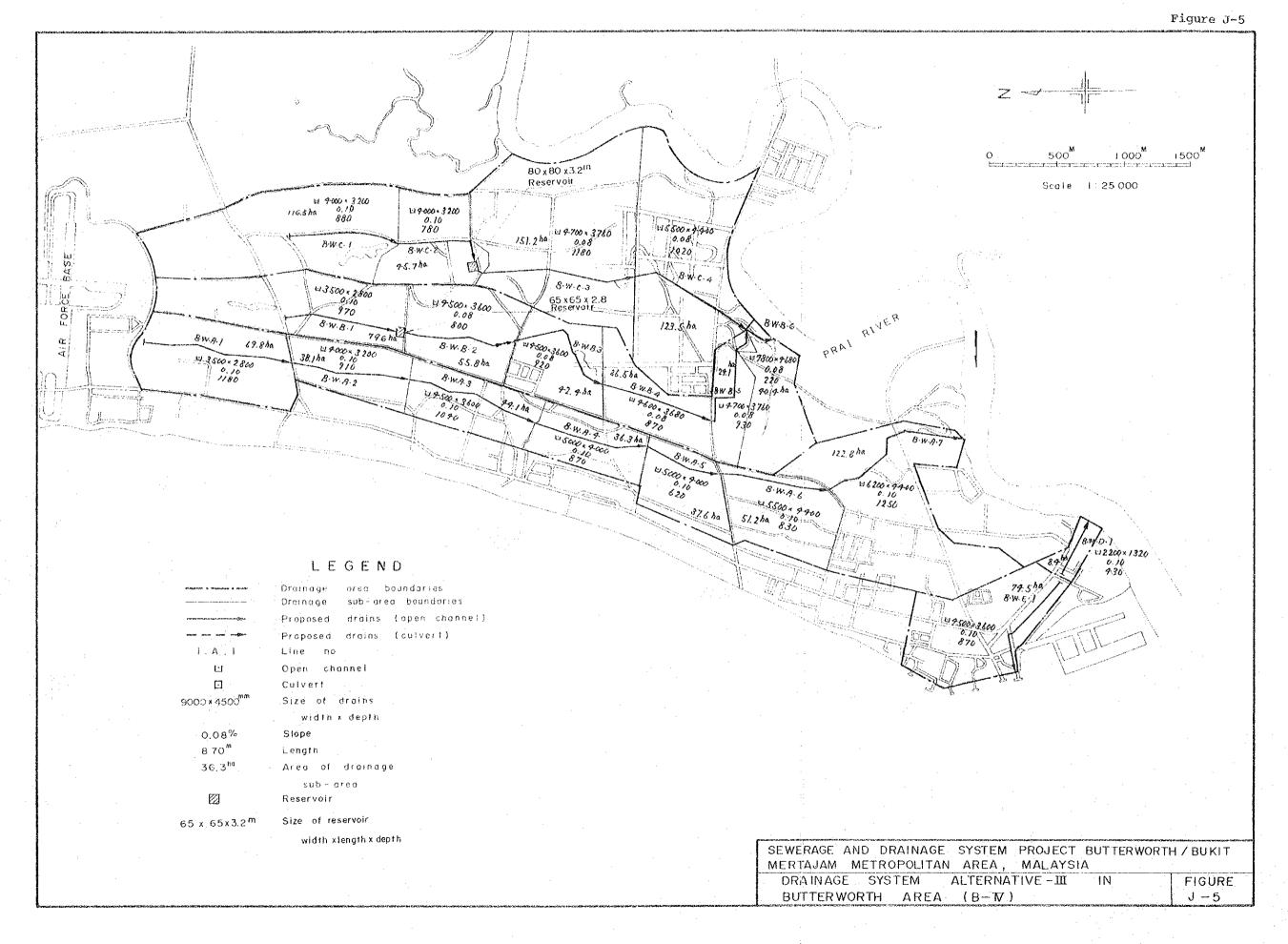
91.91

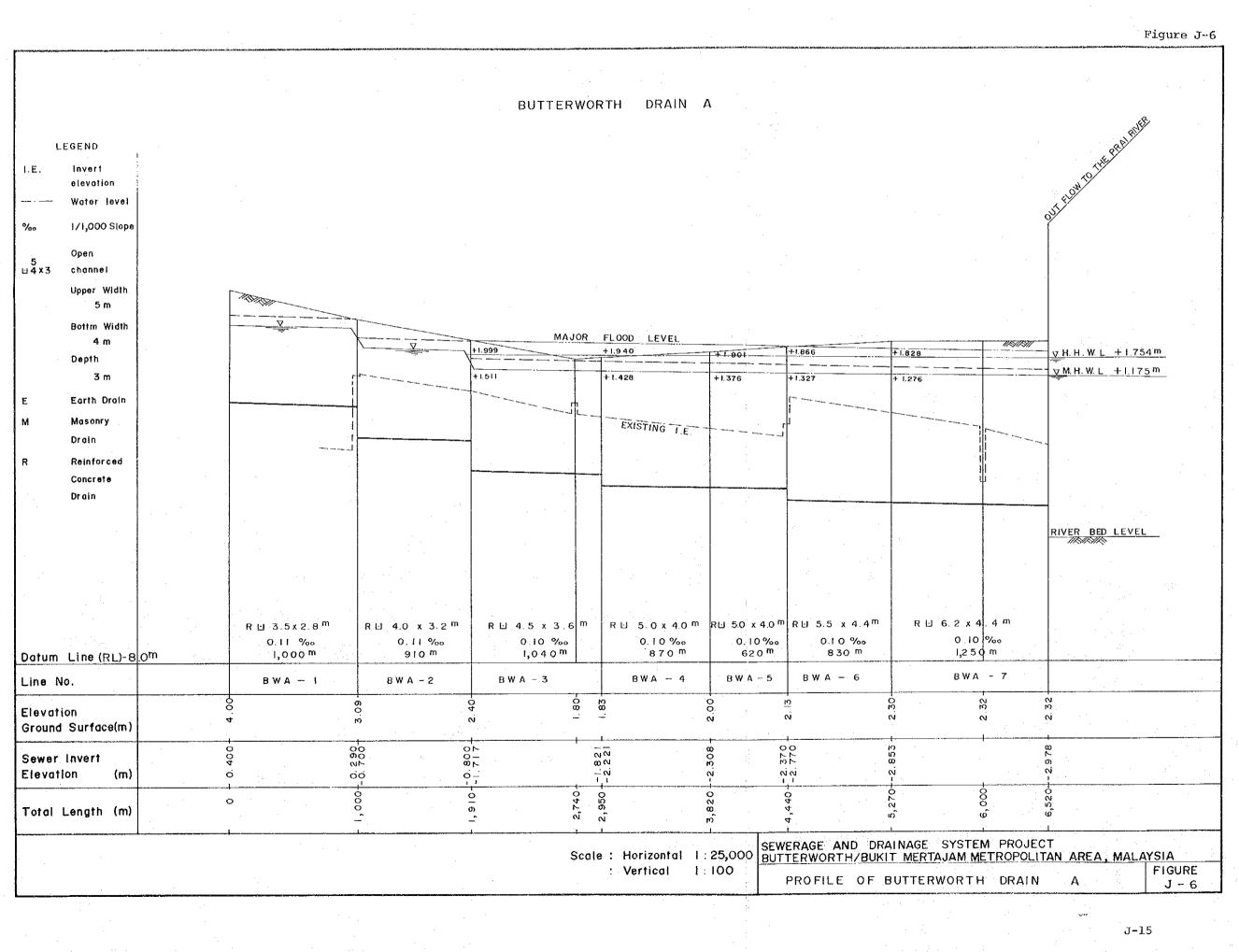
2.E.2 21.9h ET + 500 × 3600 0. 10 360

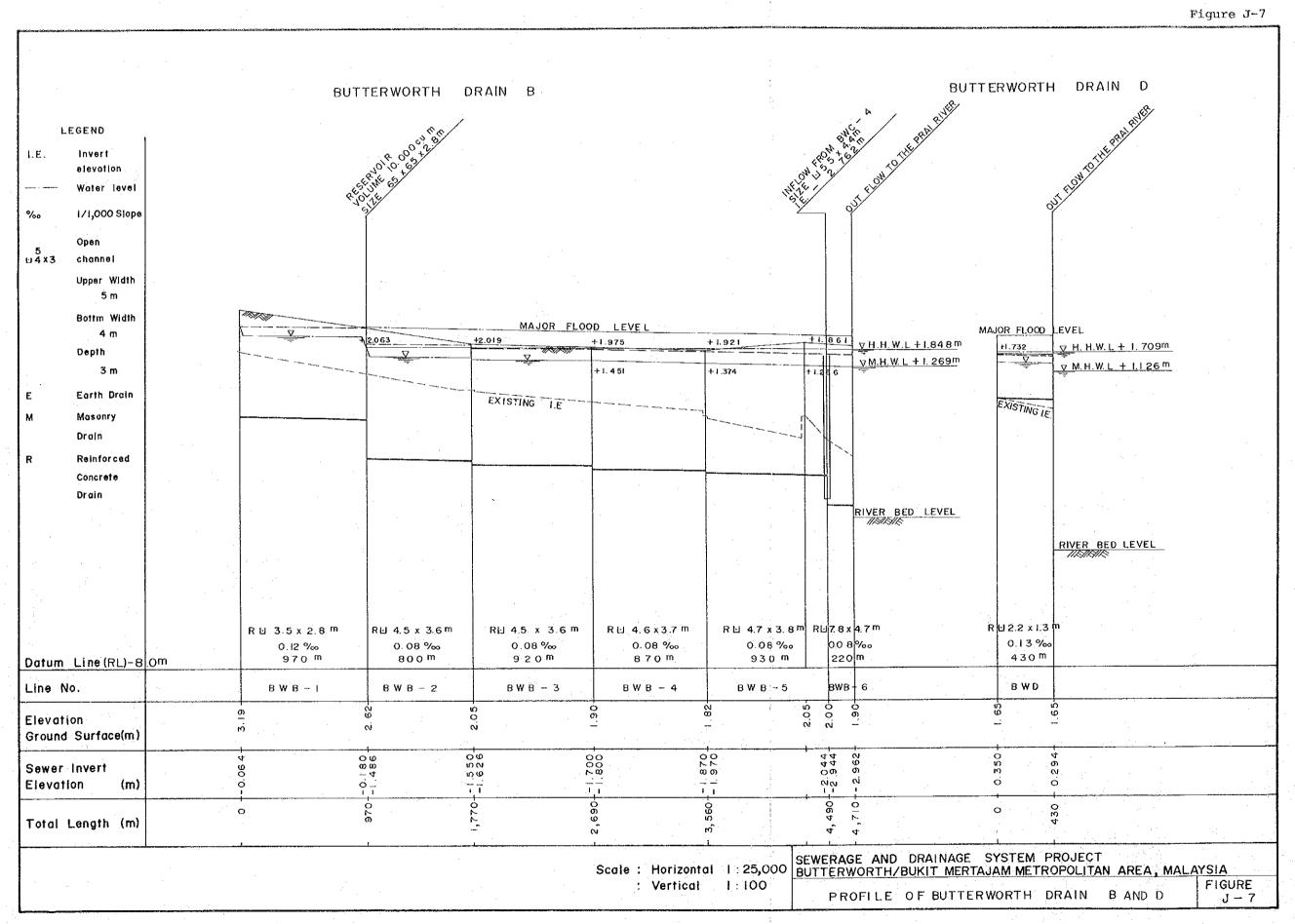
2. E. 3 41. 7ha 1 05500 + 9400 0 10 720

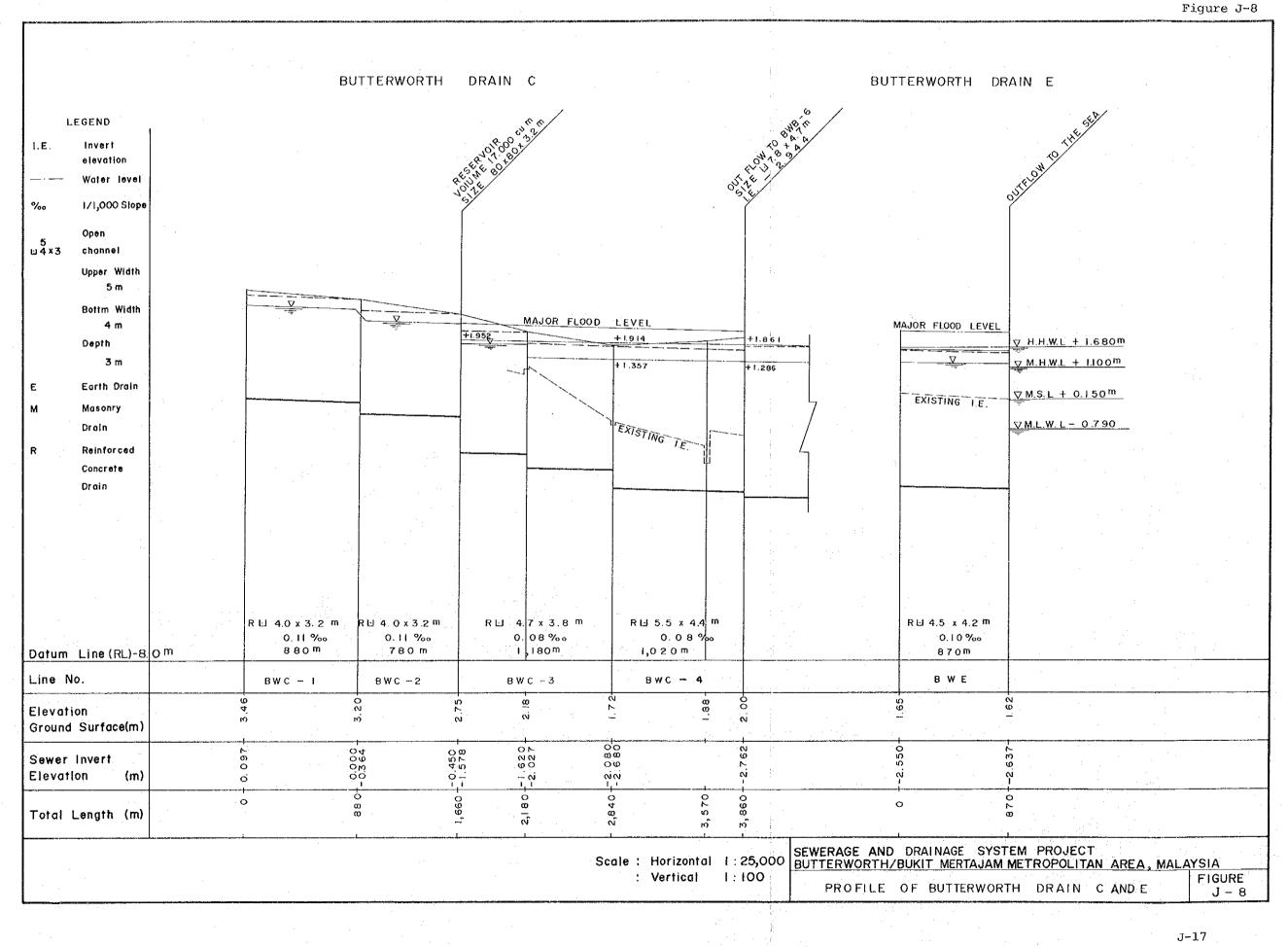

Z. D. 1

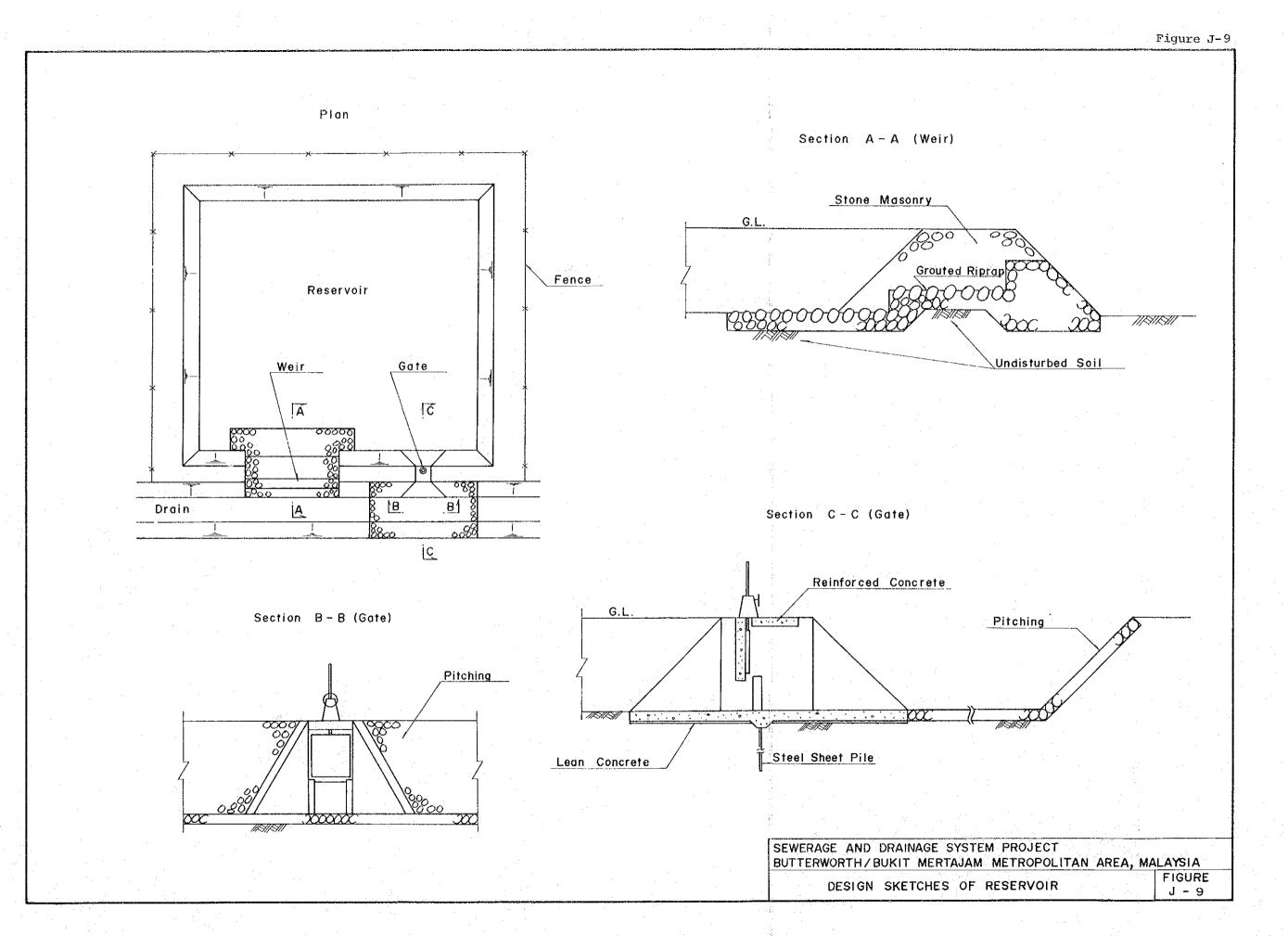
91.5 ha


49.5ha


940.320


0.10




J-13

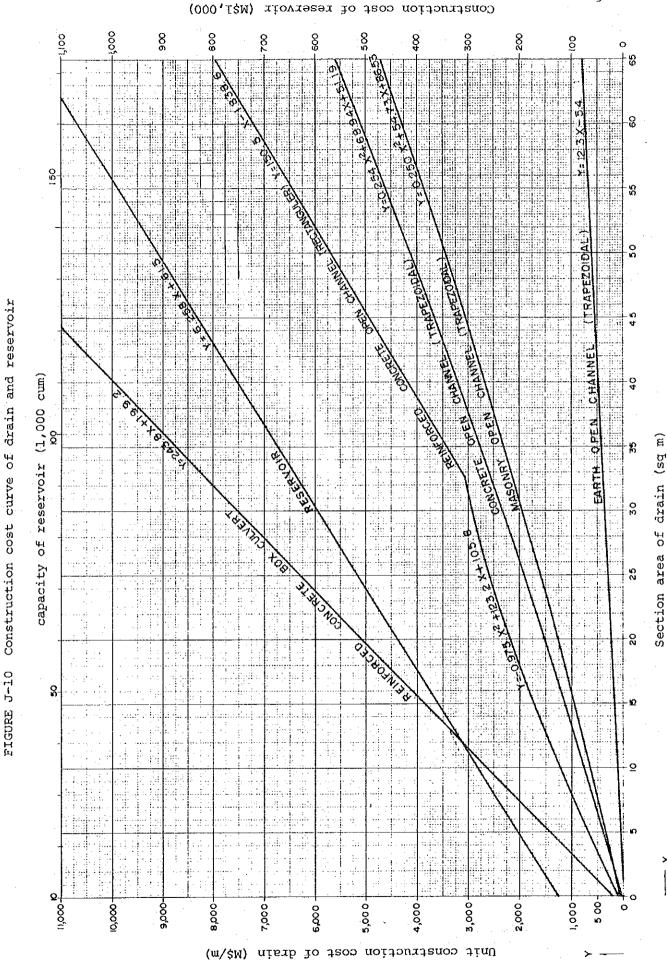
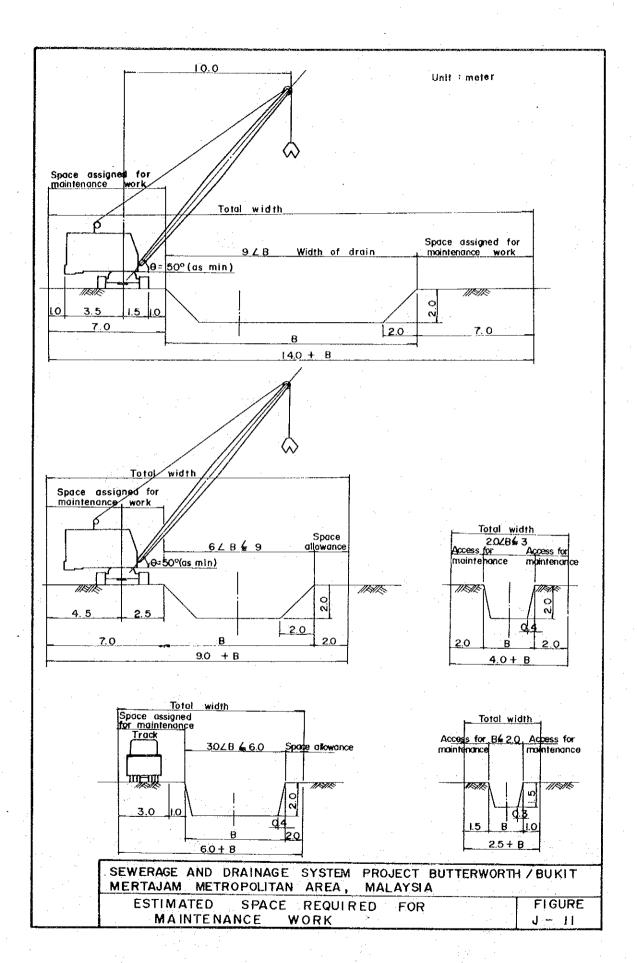
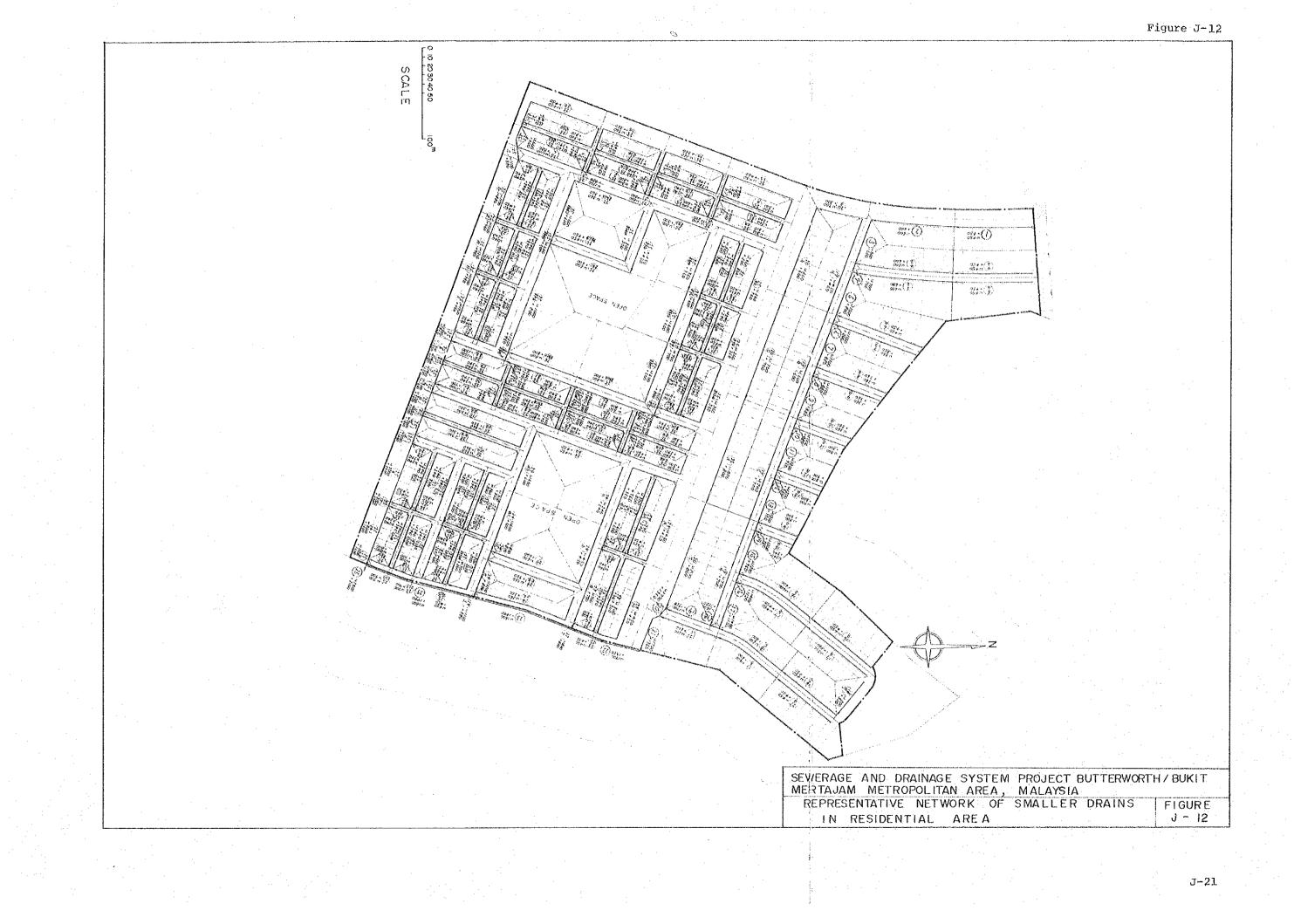
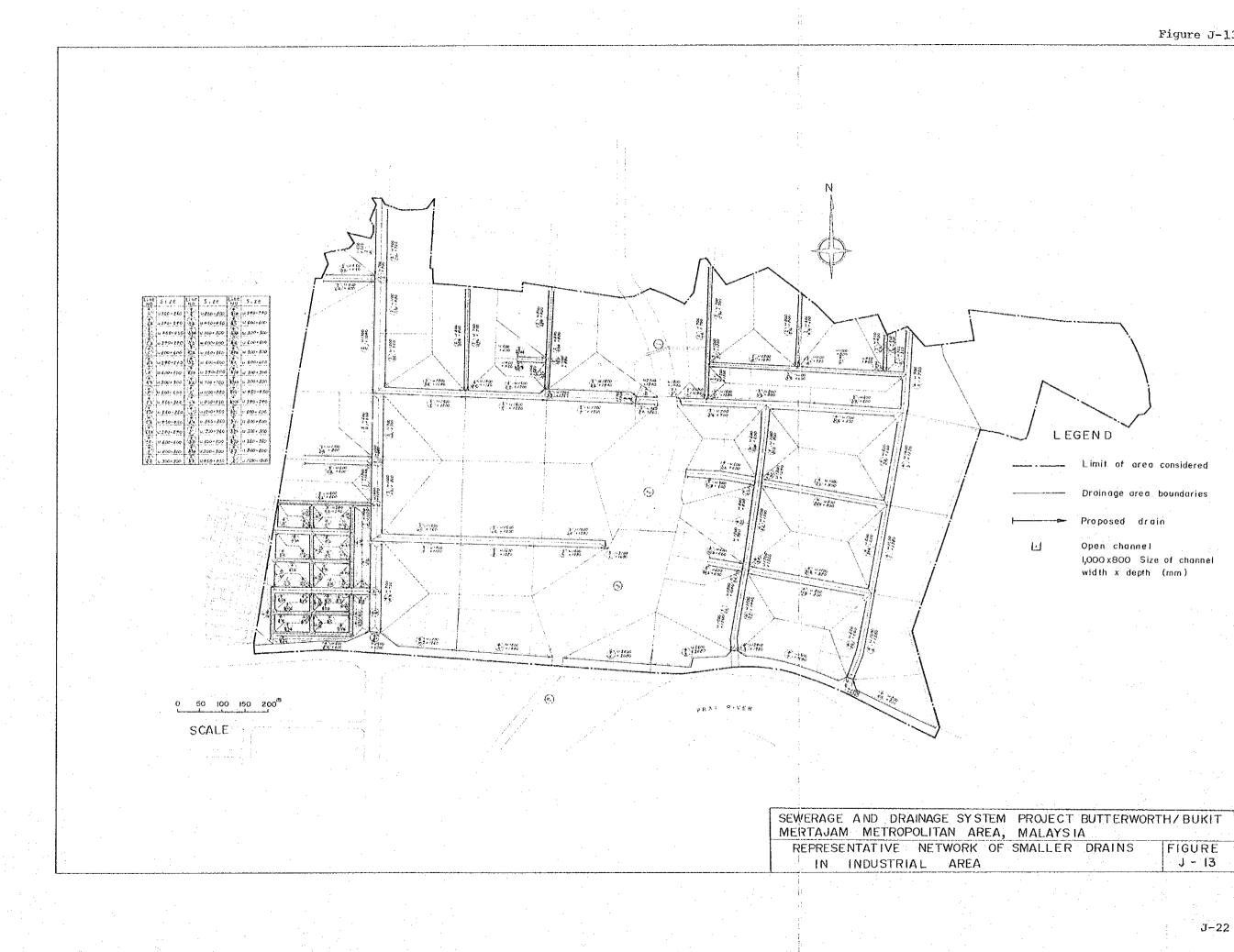



Figure J-10


Figure J-11



J-20

(hang)

R

1	PROJECT MALAYSI		RTH7 BUKIT	•
	SMALLER	DRAINS	FIGURE J - I3	•

J-5 ANALYSIS OF PROPOSED DRAINAGE SYSTEM

l

YEAR 1976

TABLE

YEAR 2000

									-										1
									Details of	Proposed	Drains	to a	ccept ri	unoff	Existing D	Drain			
	Total	Runoff	Storage		Total	Runoff	Storage					of Ition					Runoff	Reserve	Volume
										Slope		່ວະສິ			<u>.</u>		Major		of
Line NO.	Area	Coefficient	Coefficient	Runoff	Area	Coefficient	Coefficient	Runoff	Length	of Sewer	Velocity	Ti m oncen	Capa city	Size	Size	Capa city	Storm (C=0.65)	Width	Reservoir
	ha			cum/S	ha			cum/S	m	%00	m/S 🗇	min	cu m/S	m	m	cu m/S	m/S	m	1000cu m
	*4 99 53	0.00	0.70	10.00	*499 53	0.75	0.70	17.4	660	0.14	0.6	126 0	25.6	Е 195 ш13.9 × 2.8	E		21.4	40	
RAM - 5		0.20	0.72	16.20		0.35	0.70		660				250	E 25.0 E 19.0 × 3.0	<u>ы 5.2 х I.7</u> Е	10.0			
- 6	501	0.22	0.72		501	0.42		36.7			0.7	127.7		នៃ	<u>⊎ 5.9 xl.8</u> _	12.4	70.4	42	
ARA - 1	60				60	0.48	0.89	10.4	860	1.10	2.0	27.2		<u>ы 30х3.0</u> М 6.5 до 6			22.3	8	
- 2	223				223	0.40	0.79	21.4	1.400	1.00	1 5	43.6		M 6.5 ⊔ 5.5 x 2.6 M I 0.0	F		57.6	15	
3	448	0.26	0.77	25.40	448	0.43	0:78	45.4	1.220	1.00	1.8	44.9		<u>щ 88х3.0</u>	u 2.3 x 1.4	4.2	112.9	19	
TAN	77.	*		·	. 77	0.48	0.88	12.9	960	1.10	2.0	28.0	13.4	R Ц <u>30 x 3. 0</u>	<u> </u>		27.6	8	
PAY - 1	78				7.8	0.42	0.87	11.6	970	1.60	2.3	28.3		к Ш 2.7 х2.2			27.9	8	
- 2	128	0.27	0.82	9.70	128	0.48	0.83	18.0	830	1.60	2.6	33.6	19.1	R <u>U</u> 3.2 x 2.6 M 2.8	L U 2.3 X I.4	4.2	40.1	8	
<u>вик — 1</u>	44				44	0.45	0.87	6.6	1.090	6.50	2.4	28.4	7.6	U 2.2 × 1.4			15.7	8	· —
- 2	120	0.31	0.84	10.8	120	0.61	0.81	19.5	1.390	3.50	2.5	37.7	21.0	М 4.6 x2.3 ⊔ 3.7 x2.3	R 4.8 ⊔ 2.2×1.2	12.5	34.6	9	
PAS - 1	64		<u>. </u>	·	64	0.48	0.90	: 11.0	660	1.60	2.3	25.9		R ⊔ 2.7 x 2.2			24.6	10	
- 2	106	0.33	0.83	10.5	106	0.45	0.85	· .	660	1.50	2.4	30.5	15.6	R J. J. O x 2.4	E 3.8 x 1.7	5.1	35.7	01	
- 3	186	0.26	0.77	10.7	186	0.43	0 79		980	0.90	1.5	41 4		M 6.5 ⊔ 5.5 x2.6	Е ы 6.6 x I.7	10.0	49.7	14	·
		<u> </u>			71	0.47	0.92		410	1.50	2.4	24.7		ш 3.5 R ш 3.0 x2.4			28.5	8	
	71		 							1.30	1.6	37.8	19.0	Ш 3.0 X2 4 М 6.0 Ш 5.0 X2 4	E	3.4	45.2	14	
2	157	0.28	0.79	11.0	15.7	0.41	0.81		1.260				19.0	ы 5.0 × 2.4 ы 5.0 × 2.4	ม 3.1x1.2 E				· .
- 3	210.	0.27	0.74	10.4	210	0.40	0.77	17.6	1.320	1.20	1.6	51.6	19.0	⊎ 5.0 * ^{2.4} E 13.0	ы 5.9x1.2 Е 8.0 _{x2.5}	6.4	48.1	. 14	
BKD	132	0.14	0.70	3. I	132	0.43	071	10.8	1.300	0.10	0.5	53.3	11.0	E 13.0 w 7.8 x 2.6 E 10.0 7 0	E 8.0 U 3.0×2.5 E 8.0	4.6	27.4	24	<u> </u>
BKC	113	0.10	0.70	1.8	113	0.44	0.70	8.0	1.360	0.10	0.4	66 2	8.1		$E = 8 0 \times 2.5$ $E = 3 3 \times 2.5$	4.6	19.9	19	
BWD	. 8	0.33	0.72	0.6	8	0.56	0 77	14	430	0.13	0.5	_24_3	1 4	<u>u 2.2 x I.3</u>	E 3.3x0.6	0.3	2.7	7	
BWE	75		·		75	0.62	0.76	14.1	870	0.10	0.8	26 i	14.4	<u>⊎ 4.5x4.2</u>	<u> </u>		23.5	9	
BWA - I	70	······		·	70	0.35	0.73	6.0	1.000	0.11	0.7	38.4	6.4	ม <u>3.5x2.8</u>	~	·····	18.0	01	
- 2	108	0.20	0.69	2.7	108	0.45	0.71	8.0	910	0.11	0.8	57	9.1	R u 4.0 x 3.2	U X .3	1.2	21.4	10	
- 3	152	0.16	0.68	2.5	152	0.51	0 70	11.2	1.040	0.10	0.8	78.8			E 2.3 U 1.1 × 1.3	1.2	24.0	10	
- 4	- 188	0.18	0.68	3.0	188	0.54	0.69	12.6	870	0.10	0.9	94.9	15.7	R ⊌ 5.0 x 4.0	E 3.5 x 1.6 <u>u</u> 2.0 x 1.6	0.8	25.5	10	
- 5	226	0.20	0.68	3.6	22.6	0.56	0.69	14.3	620	0,10	0.9	106.4	15.7	R U 5.0 x 4 0	E 5.5x1.9	2.1	28.2	10	<u> </u>
- 6	277	0.22	0.68		277	0.57			830	1 A		121.8	20.3	к ⊎ 5.5 x4.4	М 7.5 ⊔ 5.5 ×0.9	1.3	31.1	10	
- 7	400	0.23	0.68	5.9	400	0.60		21.4	1.250			142.6	24.0	R 10 62 x 4 4	E 10.5 J 7.0 × 1.5	3.4	39.5	11	
BW8 - I	80				80	0.46			970		0.7	59.8		R u 3.5 x 2.8			15.4	9	10
- 2	135				135	0.60		7.8	80 0				1	R ц 4.5 x 3.6	_		21.2	9	
					178				920	0.08	0.7	8.001		R 4.5 x 3.6			23.0	9	
- 3	178					0.62		10 2	1	· ·				R	···· ·			ÿ 9	
- 4	214				214	0.63			870	0.08	0.8		1	LI 4.6 x 3.7 R			24.5		
- 5	238				238	0.63		12	930	0.08	0.8	138.3	1	R <u>u</u> 4.7 x 3.8 R			23.7	9	
- 6	716				716	0.52		29.0	220	0.08	1.0	1		п 7.8 x 4.7 R	-		27.3		
<u>BWC - 1</u>	117				7	0 35	071	7.7	8.80	0.11	0.8	54 0	1 1	u 4.0 x 3.0 R			24.0	<u> </u>	
- 2	162				162	0 35	0 70	89	780	0.11	0.8	70.3	9.1	<u>u 4.0 x 3.2</u>	· · · · · · · · · · · · · · · · · · ·		27.7	· · · · ·	7
3	313				313	0.38	0.69	11.0	1,180	0.08	0,8	98.4	12.6	<u>u</u> 4.7 x 3. 8			41.4	12	·,
- 4	437		[437	0.43	0.69	16.2	1.020	0.08	0.8	1197	18.1	к <u>U 5.5 x 4.4</u>	· · · · · · · · · · · · · · · · · · ·		49.7	12	
																	(j te	o be co	ontinue

LEGEND

ε:	Earth Drain
М:	Masonry Drain
R:	Reinforced Concrete Drain
ម្ព	Open Channel
0:	Box Culvert
‰:	171,000
×:	Contributing
	Agricultural
•	Area

TABLE J-5

ANALYSIS OF PROPOSED DRAINAGE SYSTEM

YEAR 1976

YEAR 2000

$+$ $\frac{5}{3}$ (C=0.65)					. 1	EAR	1976			EAR	2 000												2
ba ound / bit		Γ											Details of	Proposed	Drains	to ac	cept r	unoff	Existing D)rain			
In Or.P/3 Ha Out/3 In In <t< td=""><td></td><td>Lin</td><td>e</td><td>NO.</td><td></td><td></td><td>-</td><td>Runoff</td><td></td><td></td><td></td><td>Runoff</td><td>Length</td><td></td><td>Velocity</td><td></td><td>Capa city</td><td>Size</td><td>Size</td><td>Capa city</td><td></td><td></td><td>Volume of Reservoi</td></t<>		Lin	e	NO.			-	Runoff				Runoff	Length		Velocity		Capa city	Size	Size	Capa city			Volume of Reservoi
FUN 1 (41 161 0.41 0.20 2.0.0 1.420 2.86 2.2. 41.2 2.2. 41.2 2.2. 41.2 2.2. 41.2 2.2. 41.2 2.2. 41.2 2.2. 41.2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>aum / 9</td> <td>L</td> <td></td> <td></td> <td>cum/s</td> <td></td> <td>0/ 1</td> <td>m/S</td> <td>Co H</td> <td>cum/S</td> <td>m</td> <td>m</td> <td></td> <td>(C=0.65)</td> <td></td> <td>1000 cu n</td>								aum / 9	L			cum/s		0/ 1	m/S	Co H	cum/S	m	m		(C=0.65)		1000 cu n
Image: 1 1 1 1 2 0 2 0 1 2 0 2 0 2 0 1 0<					······												4		111				
1000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 100000 100000 100000 100000 100000 100000 100000 100000 100000 1000000 1000000 10000000 10000000 10000000000000000 10000000		KU							· · · · · · · · · · · · · · · · · · ·		[. N.	1			· · · · · · · · · · · · · · · · · · ·	33.5	M 7.5 N 6 6 x 2.3		· · ·			· · · ·
4 717 0.15 0.71 717 0.36 0.70 0.15 0.7 78.8 47.5 528 8.2 8 10.013 121 94.6 50 -5 884 0.15 0.73 18.3 885 0.35 6.6 10.0 6.7 64.7 47.5 528 8.2 50 0.013 121 46.6 50 ULV 115 115 0.55 0.60 1.0 1.6 20.8 13.3 37.4 3.8 49 -2 156 158 0.83 0.42 0.5 580 1.0 1.5 2.0 1.4 8.5 583.6 7.7.3 3.0 -2 156 153 - 47.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 0.0									• • •		:		······					M 8.7 W 7.7x2.6		· · · · · · · · · · · · · · · · · · ·		50	
ULU 115 115 0.38 0.88 13.1 0.86 1.40 1.5 20.6 13.1 M 4.92 38.9 40 PET 91 166 13.1 52.7 11.6 3.92.2 33.2 40 PET 92 92 0.35 0.82 0.9 500 0.25 0.6 36.1 9.7 14.3 3.9 9.8 9.27.3 350 2 153 45 0.35 0.82 1.9 31.9 9.8 9.27.8 1.8 27.6 2.0 3 2 0.11 0.77 4.6 206 0.35 0.76 14.5 6.60 0.20 0.77 55.4 14.8 16.77.4 27.6 2.0 2.57.8 14.9 16.72.2 10.6 14.07.4 0.35.3 0.40 <								17.4			·					72.8		E 30.8 1124 9×2.8	Е ыЮ.О х I. З	12.1	134.8	50	
IEN I 01 51 0.98 0.09 11.1 630 1.30 1.5 27.0 11.4 W 3.4.2 33.9 40 -2 166 156 0.38 0.08 1.6.2 560 0.20 0.5 0.32 17.4 W 8.02.2 27.6 30 1UA -1 85 - 650 0.20 0.5 31.9 9.8 W 8.11.8 27.6 30 -2 153 - 153 0.76 0.80 14.0 910 24.0 2.0 33.7 14.2 14.2 14.0 10.47.2 0.38.11.8 47.4 40.2 -3 26.6 0.11<0.77				~ 5	854	0.15	0.73	18.3	854	0.36	0.77	46.3	500	0.15	0.7	.84.7	47.5		Е ы10.0 x 1.3	121	140.6	50	560
FR -1 -01 - -91 0 33 0 00 1 1 30 1.5 27 0 11 10 3 27 0 11 10 3 27 0 11 10 3 27 0 11 10 3 27 0 11 10 3 27 10 3 27 10 3 27 10 3 3 10 10 11 10 11 10 <th< td=""><td></td><td>UL</td><td>U</td><td></td><td>115</td><td></td><td> </td><td>•••••</td><td>115</td><td>0.35</td><td>0.86</td><td>13.1</td><td>860</td><td>1.40</td><td>1.5</td><td>29.6</td><td>13:3</td><td></td><td></td><td></td><td>39.9</td><td>40</td><td></td></th<>		UL	U		115			•••••	115	0.35	0.86	13.1	860	1.40	1.5	29.6	13:3				39.9	40	
1 2 156 156 0.38 0.94 16.2 560 1.00 1.8 3.3.2 17.4 1.5 49.7 40.7 PET 92 65 0.36 0.82 9.9 900 0.25 0.6 31.9 9.8 M 3.8 21.16 27.6 30 -2 153 - - 153 0.36 0.80 9.20 1.36 2.60 1.4.9 9.8 1.4.8 9.72.0 1.4.8 9.72.0 1.4.8 9.72.0 1.4.8 9.72.0 1.4.8 9.72.0 1.4.8 9.72.0 1.4.8 9.72.0 1.4.8 9.72.0 1.4.8 9.72.0 1.4.8 9.72.0 1.4.8 9.72.0 1.4.8 9.72.0 1.4.4 9.92.0 1.7.7 2.3.8 1.3.4.12 1.0.6 1.4.4 9.92.2 1.72.2.1 1.72.2.1 1.72.2.2 1.72.2.2 1.72.2.2 1.72.2.2 1.72.2.2		TE	N	'1	91	·	·	·	91	0.35	0.89	<u></u>	630	1.30	1.5	27.0	11.4	⊎ <u>3.5^x 2.2</u>	- <u> </u>		33.8	40	·
IUA IUA <td></td> <td><u> </u></td> <td></td> <td>- 2</td> <td>156</td> <td></td> <td></td> <td></td> <td>156</td> <td>0.35</td> <td>0.84</td> <td>16.2</td> <td>560</td> <td></td> <td></td> <td></td> <td>1</td> <td>⊎ 5.0×2.4</td> <td></td> <td></td> <td></td> <td>1</td> <td></td>		<u> </u>		- 2	156				156	0.35	0.84	16.2	560				1	⊎ 5.0×2.4				1	
		PE	Т		92				92	0.35	0.82	8.9						M 36			··		
3 206 0.11 0.77 4.6 206 0.35 0.76 14.5 660 0.20 0.7 85.4 14.8 16.8 72.2 15.8 4.02.4 - - 95.5 400 -2 215 - - 215 0.45 0.80 24.9 990 0.70 1.4 25.9 15.8 4.02.2 - - 95.5 400 -2 215 - - 226 0.43 0.77 24.9 900 0.70 1.4 49.9 25.2 4 75.2.6 - - 60.3 400 -4 300 0.27 0.77 16.6 300 0.42 0.75 24.9 330 0.14 0.6 59.1 25.6 1.3 x1.2 1.0 61.4 400 -2 16.7 - - - 68 0.90 1.40 1.6 27.6 1.4.9 138.2.4 - 3.3.9 400		<u>TU</u>	Α		85	<u> </u>			85	0.36			[]					MAG					
PAM 1 35 - - 95 0.44 0.88 14.2 780 0.70 1.8 27.9 15.8 R 0.02.4 - - 54.6 40 -2 215 - - 215 0.45 0.80 24.9 990 0.70 1.4 35.7 25.2 0 75.2 0 75.2 0 75.2 0 75.2 0 75.2 0 75.2 0 75.2 0 75.2 0 75.2 0 75.2 0 75.2 0 75.2 0 75.2 0 75.2 0 75.2 0 75.2 0 75.2 10 75.2 10 75.2 10 75.2 10 75.2 10 75.2 10 75.2 10 75.2 10 75.2 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10					· · · ·						· ·						14.3	E 14.7x2 0	E 3.2 x 1.1				120
2 215 215 0.45 0.80 24.9 990 0.70 1.4 39.7 25.2 M 9.32.6 59.5 40 5 258 258 0.43 0.77 24.9 360 0.70 1.4 49.9 25.7 M 9.32.6 60.3 40 4 300 0.27 0.77 16.6 300 0.42 0.75 24.9 330 0.14 0.6 59.1 25.6 113.9 153.0 10.0 61.4 40 PA5 -4 503 0.22 0.77 10.7 10.6 1.8 0.16 0.7 70.7 32.2 1.10 1.8 90.2 1.67 70.7 1.53.0 1.40 1.7 42.6 16.6 9.42.7 50.7 1.55.0 1.140 1.6 77.8 10.2 1.5 1.53.0 1.40 1.8 60.4 40.				· .		1.	0.77					1					(R	<u>U3.0</u>	1		-	
3 258 258 0.43 0.77 24.9 360 0.70 1.4 49.9 25.2 M. 3.82.6 60.3 40 -4 300 0.27 0.77 16.6 300 0.42 0.75 24.9 330 0.14 0.6 59.1 25.6 H 3.9 × 2.8 L 1.3 × 1.2 1.0 61.4 400 PAS -4 503 0.22 0.72 15.7 503 0.40 0.74 33.0 780 0.16 0.7 70.2 33.2 L 0.9 4.3 4.0 4.0 M 4.8 2.4 - 32.2 4.0 -2 1.67 - - 67.4 0.90 1.65 1.530 1.40 1.7 7.42 6.6 6.0 4.00.7 M 3.82.9 2.45 × 0.9 7.7 104.2 5.0 -2 1.67 2.80 0.70 3.7 4.00 0.70 5.0 0.11 0.7 9.3 </td <td></td> <td>RA</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td>		RA							· · · · · · · · · · · · · · · · · · ·														· · · · · · · · · · · · · · · · · · ·
6 -4 300 0.27 0.77 16.6 300 0.42 0.75 24.9 330 0.14 0.6 59 25.6 13.9 29.2 13.9 28.2 11.3 13.8 1.2 1.0 61.4 40 PAS -4 503 0.22 0.72 15.7 503 0.40 0.75 24.9 330 140 0.6 25.2 13.9 3.8.0 21.0 61.4 40 40 PAS -4 503 0.22 0.72 15.7 503 0.40 0.76 15.0 14.0 1.6 22.6 14.9 48 82.4 - - 32.2 400 -2 167 - - - 167 0.41 0.75 39.0 1.920 1.00 1.8 60.4 40.0 8.8 8.2.4 - - 43.2 50 -3 515.0 0.41 0.75 39.0 1.5 0.7 2.500 0.11 0.7 97.3 52.9 92.2 63.0 - -		ļ				1					· · · · · · · · · · · ·		· · · · ·							·		<u>.</u>	
A PAS -4 503 0.22 0.72 15.7 503 0.40 0.74 33.0 780 0.16 0.7 70 P 33.2 E120.3 33.0 E19.0 x1.5 74 90.8 500 KEL -1 98 - - 88 0.46 0.81 13.9 550 1.40 1.6 27.6 14.9 M 4.8 22.4 40 -2 167 - - 167 0.41 0.75 39.0 1.920 1.00 1.8 60.4 4.00 M 4.5 2.9 4.4 5.0.9 7.7 104.2 6.0 6.0 4.00 M 5.3 0.40 0.22 9.4 2.2 9.4 2.2 9.4 2.2 9.4 2.2 9.4 2.2 9.4 2.2 9.4 2.2 9.4 2.2 1.3 9.0 1.0 7.1 2.2 1.0 1.0 1.8 2.9 3.3.0	C 0	<u> </u>																E 19 5	E U 1.3 x 1.2	1.0		40	190
KEL 1 088 688 0.46 0.88 13.9 500 1.40 1.6 27.6 14.9 M 4.8 2.8 32.2 40 -2 167 167 0.41 0.79 16.5 1.530 1.40 1.7 42.6 16.6 M 5.0 2.5 43.9 40 -3 515 0.28 0.75 26.6 51.5 0.41 0.75 39.0 1.920 1.00 1.8 60.4 40.0 M 5.42.9 6.45.5 x0.9 7.7 104.2 50 -4 1.097 0.24 0.73 37.4 1.097 0.36 0.72 50.7 1.550 0.11 0.7 97.3 52.9 6.32.3 6.0 16.5 17.5 x.2.7 13.6 132.3 60 -2 22.5 - - 22.5 0.41 0.73 23.3 900 1.10 1.8	ā	1				1		· · · .	· · ·						· · ·		1	E 20 3	<u>г</u>	7.4	90.8	50	320
P -	L	κe				1		;						1	1.6	27.6					32.2	40	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	stel			- 2	167			1 - A - A -	167	0.41	0.79	16.5	1.530	1.40	1.7	42.6	16.6	⊾ 4.0 ^{x2.5}			43.9	40	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				- 3	515	0.28	0.75	26.6	515	0.41	0.75	39.0	1.920	1.00	1.8	60.4				1	104.2	50	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				- 4	1.097	0.24	0.73	37.4	1.097	0.36	0.72	50 7	1.550	0.11	0.7	97.3				11.9	152 ; 6	60	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ti∨e			- 5	1.345	0.26	0.70	34.9	1. 345	0.40	0.70	50.7	2 050	0.11	0.7	146.1				13₋6			960
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	enta	BI	N	- 1	195	<u> </u>		<u> </u>	195	0 48	0.86	32.3	900		+	1.1.1	33.0	⊎ 6.3 ^{×3.0}		<u> </u>		[· · · · ·	<u> </u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	're v	ļ			225			· · · ·	225								23.4	ы <u>5.6×2.8</u> М 6.0, 24					
GHE 141 141 0.46 0.80 16.5 1.700 1.00 1.5 38.9 17.4 $\frac{M}{5.0}x2.4$ 39.5 40 BHA 200 200 0.38 0.82 22.2 1.450 0.80 1.5 36.0 23.4 $\frac{M}{5.0}x2.4$ 59.7 40 MIN -1 125 125 0.35 0.75 12.5 680 0.20 0.6 28.9 12.6 $\frac{W}{2.0}x2.4$ 38.1 40 -2 258 - 258 0.35 0.71 17.3 880 0.18 0.6 53.3 18.0 $\frac{W}{2.0}$ 38.1 40 PMT 2553 258 0.35 0.78 38.6 1.700 0.14 0.7 70.5 53.2 $\frac{W}{4.0}$ $\frac{W}{2.2}$ 53.7 40 JUR -1 331 225 0.35 0.78 38.6 1.700	ц.	UB			an a			¹		: ** *	1. A. 1.	1. J.			1				··		· · ·	1.	
BHA 200 $ 200$ 0.38 0.82 22.2 1.450 0.80 1.5 36.0 23.4 W 7.0 23.4 W 2.0 W 2.2 W 2.2 2.4 W 2.2 2.4 W 2.3 2.4 W 2.3 40 1.2 1.2 1.2 1.2 0.2 0.2 $0.$				-2		1.		· · · ·									17.4	M 6.0 M 6.0 X 2,4					· · · · ·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						1											23.4	M 7.0 N 5 9x 2.8					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u> </u>	_,	1		1											1	F120	'			40	
PMT $\frac{\$ 503}{225}$ - - $\frac{\$ 503}{225}$ 0.35 0.78 38.6 1.700 0.14 0.7 70.5 53.2 $\frac{136}{122.5}$ - - 80.7 40 JUR -1 331 - - 331 0.19 0.88 6.9 1.030 0.10 0.4 153.8 8.1 $\frac{107}{72x2.4}$ - - 39.3 40 -2 439 - - 439 0.25 0.84 10.2 660 0.10 0.5 175.8 13.4 $\frac{107}{14}$ 8.4x2.8 - - 44.5 40 BKB -1 50 - - 50 0.35 0.71 3.1 1.10 0.10 0.4 56.3 3.1 $\frac{112}{12}$ - - 10.0 30 30 -2 169 - - 169 0.35 0.69 7.9 710 0.10 0.4 85.9 8.9 $\frac{1220}{12}$ - - 24.7 40 -2 169 - - 169 0.35 <td></td> <td>·</td> <td></td> <td></td> <td></td> <td></td> <td>18.0</td> <td>E 14.0 U 8.4x2.8</td> <td></td> <td></td> <td>53.7</td> <td>40</td> <td>160</td>												·					18.0	E 14.0 U 8.4x2.8			53.7	40	160
JUR -1 331 - - - 331 0.19 0.88 6.9 1.030 0.10 0.4 153.8 8.1 10.72×2.4 - - 39.3 40 -2 439 - - 439 0.25 0.84 10.2 660 0.10 0.5 175.8 13.4 1.40 1.45 40 BKB -1 50 - - 50 0.35 0.71 3.1 1.110 0.10 0.4 56.3 3.1 1.282 $ 10.0$ 30 BKB -1 50 - - 50 0.35 0.71 3.1 1.110 0.10 0.4 56.3 3.1 1.282 $ 10.0$ 30 -2 169 - - 169 0.35 0.69 7.9 710 0.10 0.4 85.9 8.9 $1.22.4$ - - 24.7 40 40.7 -2 169 - -		РМ							*503									F410		·	80.7	40	460
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					·									and the second second	21 C		8.1	E 12:0 U 7.2x2.4			39.3	40	
BKB -1 50 50 0.35 0.71 3.1 1 10 0.10 0.4 56.3 3.1 E 7.0 8×2.1 10.0 30 -2 169 169 0.35 0.69 7.9 710 0.10 0.4 56.3 3.1 E 12.0 10.0 30 -2 169 169 0.35 0.69 7.9 710 0.10 0.4 85.9 8.9 E 12.0 24.7 40									· · ·								13.4	E 14 0 U 8 4x 2 8			44.5	40	320
		вк							50	0.35	0.7	3.1	1.110	0.10	0.4	56 3	3.1	E 7.0 E 2.8x2.1			10.0	30	<u> </u>
$-3 224 224 0.35 0.69 10.3 50 0.10 0.5 87.6 11.0 = 7.8 \times 2.6 - 32.3 40$				- 2	169				169	0.35	0.69	7.9	710	0.10	0.4	85.9	8.9	E 12.0 E 7.2x2.4			24.7	40	·
		L		- 3	224				224	0.35	0.69	10.3	50	0.10	0.5	87.6	11.0	E 13. U ₩ 7.8×2.6	· · · · · · · · · · · · · · · · · · ·	·	32.3	40	140
																			Dest	· ·		· .	<u> </u>

LEG	E١	۱D
-----	----	----

ε:	Earth Drain
ΜI	Masonry Drain
R 1	Reinforced Concrete Drain
U :	Open Channel
0 :	Box Culvert
‰:	171,000
* :	Contributing Agricultural Area

(to be continued)

TABLE

J - 5

DRAINAGE SYSTEM

YEAR 2000

			Y	EAR	1976	6	Y	EAR	2 000)									- 		3
			a a na ann an an an Anna an Anna ann an		iyanan araa araa ahadadada						Details of	Proposed	Drains	to oc	cept ru	Inoff	Existing [Drain			
			Tota l	Runoff	Storage		Total	Runoff	Storage					of ation					Runoff	Reserve	Volume
	Line	NO.	Areo	Coefficient	Coefficient	Runoff	Area	Coefficient	Coefficient	Runoff	Length	Slope of Sewer	Velocity	T i m e (Concentra	Capa city	Size	Size	Capa city	Major Storm (C=0.65)	Width	of Reservoir
			ha			cumys	ha .			cu m/ s	m	%.0	m/S		cum/s	m	m	cu m _{/S}	m/S	m	1000 cu m
	вка	i	58				58	0.35	0.71	13.5	1.230	0.10	0.4	61.3	3.8	E 7.5 10 3.0 × 2.3			11.0	30	· · ·
·		- 2	275				275	0.35		12.7	820	0.10	0.5	88.6		E14.0x2.8	·		39.9	40	· · · · ·
ŀ		- 3	381		·	. :	381	0.35		17.3	50	0.10	0.5	90.3	1.9 2	Е 16.0 U 9.6 x 3.2			54.4	40	250
Ī	DEJ		184				184	0.35	0.75	197	750	0.20	0.6	30.8	20.0	E20.0x2.0	·	<u> </u>	60.2	40	
Ī		- 2	467				467	0.35	0.70	28.3	1.280	0.16	0.6	66.4	29.0	u19.2×2.4	<u> </u>	· <u></u>	88.1	50	310
Ī		- 3	467		·	<u> </u>	467	0.35	0.69	20.2	1.300	0 1 6	0.6	102.5	29.0	E 24.0 19.2 x 2.4		<u> </u>	88. I	50	
ſ	DER	1	*1759 604	0.15	0.89	55.1	* 759 604	0.35	0.89	63.2	2.150	0.12	0.6	229.7	66.8	E46.0 <u><u><u>40.5</u> x2.8</u></u>	u 12.0 x 2.5	52.1	98.2	50	5.100
ſ		2	924	0.15	0.83	57.4	924	0.43	0.83	73.0	2.100	0.55	. 1. 4	254.7	73.0	E25.0 u 8.0 x 3.5	125.0×3.5	95.3	107.1	50	ļ
	SEB	- 1	107	0.10	0.71	2.0	107	0.35	0.71	.6.7	50	0.10	0.4	57.9	. 7.1	Е 9.5 ы 3.8×2.9 Е 13.0		6.3	21.0	30	
		- 2	216	0 1 0	0.69	2.4	216	0.40	0.69	10.2	1.310	0 10	0.4	101.6	11.0		⊌ 5.0 ×2.3	6.3	28.0	30	
	SAM	- 1	* 222 168				* 2 2 2 168	0 3 5	0.78	23.3	1.780	0.18	0.6	89.4	24.4	U17.6 X2.2	<u></u>	· · · · ·	41.6	40	
		- 2	292	· <u>· · · · · · · · · · · · · · · · · · </u>			124	0.35	0.76	26.9	800	0.18	0.6	111.6		E 23.0 18.4 x2.3 M13.0	E 10.0	·	53.1	40	350
	LUB		220	0.23	0.75	14.8	220	0.57	0.78	42.2	960	0.45	1.3	22.3	43.8	ы I I.8 × 3.0 Е 8.5	ы 6.0 × 1.8	11.2	78.1	40	<u> </u>
	SAN	- 1	195				195	0.32	0.97	8.1	360	0.25	0.6	128.0	8.3	<u>⊔ 3,4 x 2.6</u> E25.0			9.4	30	
		- 2	210		,	·	210	0.35	0 92	30.4	480	0.14	0.6	141.3	1.	U20.0X 2.5			32.6	40	<u> </u>
Plan		- 3	308	<u> </u>			308	0 3 5	0 84	35.2	1 700	0.14	0.6	188.5	37.1	U21.6×2.7		<u> </u>	45.2	40	<u> </u>
<u>۹</u>		- 4	526	·		·	526	0.35	0.83	55.7	530	0.14	0.6	203:2	60.3	<u>⊎37.8^{×2.0}</u>		<u> </u>	78.7	40	
	1	- 5	757				757	0.40	0.81	62.2	900	0.12	0.6	228.2		E46.0 ×2.8 E21.0 ×2.4		<u> </u>	93.0	50	1.300
aste	JAY		* 553	<u> </u>			* 553	0 35	0.97	21 9	250	0.20	0.6	126.9	22.7				22.6	30	
Σ	MER		* 45				* 45	0.35	0.82	6.6	550	0.25	0.6	35.3	7.1	U 3.2×2.4	·		11.5	30	
	LOK		* 4 65 1 9 9				* 465 199	0.35	0.87	21.5	2.000	0.14	0.6	185.6		U17.6 × 2.2 טור א טו שני א טור	·	<u> </u>	35.1	40	
ke	MAN	- 1	79		·		79	0.35	0.80	7 0	740	0.25	06	40.6	<u>* 7.4</u>	E 8.0 U 3.2x 2.4 E 9.0		<u> </u>	21.6	-30	<u> </u>
ntati		- 2	164			<u> </u>	164	0.35	0.74	9.7	- 1.000	0.25	0.6	68.4	9.7	ы 3.6 ^{×2.7}	·		30 1	40	
Preve	BEN	1	84				84	1.1	0.71	4.8	50			57.9	11.	E 8.5 U 3.4 × 2.6 E 8.5 + 0.0			16.5	30	
ā		- 2	111		·		1	0.30	0.69	4.8.	650		0.4	85.0	5.2	E 8.5 ⊔ 3.4 x2.6 E 9.5 ⊔ 3.8x 2.9			16.5	30	1
		- 3	180		<u> </u>		180		0.69		8 00	0.10		118.3	li:	E 9.0	· · · · · · · · · · · · · · · · · · ·		20 6 19.1	<u>30</u> 30	
	BAG	- 1	83				83		0.72		850	0.10		45.4	6	⊔ <u>3.6×2.7</u> E 9.0 ⊎ 3.6×2.7			19.1	30	1 .
		2	121		·		121		0 69	1	1.130	0.10	1	92.5		U 3.6 X2.7 E 14.0 N 8.4X 2.8	<u> </u>			40	
		- 3	380 * 90				380 * 90 68	0.30		10.5	1.300	0.10		135.8		E130			38.6 25.7	30	-
	GEL	- 1	* 90 68			· · · · · · · · · · · · · · · · · · ·				13.9	850	0.16		43.6	3.9	E 13.0 N 7.8x 2.6			28.1	30	
		- 2	113				113	0.35	0.74	14.6	1.030	0.18	0.6	72.2	14.8	₩ 7.8*2.0		+	20.1		
				<u> </u>				·			· · · ·		·			·					+
			<u> </u>			<u> </u>													<u>.</u>	1	
				<u> </u>						·		_								1	
	<u> </u>											<u> </u>	<u> </u>		<u> </u>						
	· · ·		· · · · · · · · · · · · · · · · · · ·		·									· · · · ·	- 1)				l .	-	
						<u></u>		<u> </u>		L	2	<u> </u>	<u> </u>	<u> </u>	1	<u> </u>		<u> </u>	<u> </u>	<u>L</u> .	1

PROPOSED

L	Е	G	Ε	N	D

E.:	Earth	Drain	

M : Masonry Drain

- R: Reinforced Concrete Drain
- 日: Open Channel
- 🖸 Box Culvert
- ‰∶ I/l,000
- 🔆 : Contributing Agricultural Area

Facil	ity		Construction Cost	Land Cost	Total
			(M\$ 1,000)	(M\$ 1,000)	(M\$ 1,000
lst Stage					
a) Main Drain					·
.,		Length	(m)		
RAM-5, 6		730	510	500	1,010
ARA-1 - 3		3,480	5,200	550	5,750
TAN		960	1,300	140	1,440
PAY-1, 2		1,800	1,900	200	2,100
PAS-1 - 3		2,300	2,500	80	2,580
BWD		430	230	70	300
BWE		870	2,200	330	2,530
BWA-2 - 7		5,520	14,100	1,230	15,330
BWB-1 - 6		4,710	10,400	630	11,030
BWC-1 - 4		3,860	8,600	380	9,190
DHC I 4		57000	0,000	•••	
) Reservoir	1. 1. 1. 1.				· .
7 RESELVOIL	Volumo	(1,000	Cu m)		
BWB	VOLUNC	10	150	160	160
BWC		17	200	220	210
BWC		1,	200	220	
Sub-Total	•		47,290	4,490	51,780
Contingency			477250	4/450	10,350
Engineering					6,200
	ree	·		· · · · · · · · · · · · · · · · · · ·	
Total of 1s	t Stage			- <u></u>	68,330
nd Stage					
) Main Drain					
I Hain Diain		Length	(m)		
LUB		960	2,000	-	2,000
BEN-1 - 3		2,600	620		620
BAG-1 - 3		3,280	1,080	_	1,080
BUK-1, 2		2,480	1,350	330	1,680
DUK-1, 2		2,400	17330		_,
Decorricin					
) Reservoir	Volumo	(1,000	cu m)		
DINI	VOTANG	120	1,000	_	1,000
BEN		T%O	1,000	_	1,000
C			6 050	330	6,380
Sub-Total			6,050	330	1,270
Contingency					760
Engineering	ree		*		100
					8,410

TABLE J-6 Construction Cost of Facilities by Stage

(to be continued)

Table J-6(2)

	Facility		Construction Cost	Land Cost	Total
	· · · · · · · · · · · · · · · · · · ·		(M\$ 1,000)	(M\$ 1,000)	(M\$ 1,000
3rd	Stage				
a)	Main Drain				
		Length(m)	ł		
	TUA-1 - 3	2,960	1,470	-	1,470
	RAM-1 - 4	2,960	4,420	sett	4,420
	РЕК-1 - 3	2,990	2,950	250	3,200
	BKD	1,300	320	. -	320
	BKC	1,360	220		220
	BWA-1	1,000	1,500	380	1,880
	SAN-1 - 5	3,970	3,910		3,910
	JAY	250	130	-	130
	MER	550	90	_	.90
	LOK -1 , 2	2,000	1,100		1,100
	MAN-1, 2	1,740	330		330
	-		640	-	640
	GEL-1, 2	1,880	040	_	040
b)	Reservoir				
	Volume	(1,000 cu	1 m)		
	TUA	120	1,000	-	1,000
	RAM	190	1,500		1,500
	SAN	1,260	9,000		9,000
			28 500	630	29,210
	Sub-Total		28,580	0.00	5,840
	Contingency		·		5,040
	man and a second as a second				2 500
· · ·	Engineering Fee		· · · · · · · · · · · · · · · · · · ·		
· ·	Engineering Fee Total of 3rd Stage				
· · · ·					
4th	Total of 3rd Stage Stage				
4th	Total of 3rd Stage	Length (m)			
4th a)	Total of 3rd Stage Stage Main Drain	Length (m)			38,550
4th a)	Total of 3rd Stage Stage Main Drain KUB-1 - 5	4,250	4,560		38,550
4th a)	Total of 3rd Stage Stage Main Drain KUB-1 - 5 ULU	4,250 860	4,560 640		38,550 4,560 640
4th a)	Total of 3rd Stage Stage Main Drain KUB-1 - 5 ULU TEN-1, 2	4,250 860 1,190	4,560 640 990		38,550 4,560 640 990
4th a)	Total of 3rd Stage Stage Main Drain KUB-1 - 5 ULU TEN-1, 2 PET	4,250 860 1,190 580	4,560 640 990 130		38,550 4,560 640 990 130
4th a)	Total of 3rd Stage Stage Main Drain KUB-1 - 5 ULU TEN-1, 2 PET PAS-4	4,250 860 1,190 580 780	4,560 640 990 130 250		38,550 4,560 640 990 130 250
4th a)	Total of 3rd Stage Stage Main Drain KUB-1 - 5 ULU TEN-1, 2 PET PAS-4 KEL-1 - 5	4,250 860 1,190 580 780 7,640	4,560 640 990 130 250 9,270		38,550 4,560 640 990 130 250 9,270
4th a)	Total of 3rd Stage Stage Main Drain KUB-1 - 5 ULU TEN-1, 2 PET PAS-4 KEL-1 - 5 BIN-1, 2	4,250 860 1,190 580 780 7,640 2,200	4,560 640 990 130 250 9,270 3,200		38,550 4,560 640 990 130 250 9,270 3,200
4th a)	Total of 3rd Stage Stage Main Drain KUB-1 - 5 ULU TEN-1, 2 PET PAS-4 KEL-1 - 5 BIN-1, 2 UBI-1, 2	4,250 860 1,190 580 780 7,640 2,200 5,200	4,560 640 990 130 250 9,270 3,200 7,000		38,550 4,560 640 990 130 250 9,270 3,200 7,000
4th a)	Total of 3rd Stage Stage Main Drain KUB-1 - 5 ULU TEN-1, 2 PET PAS-4 KEL-1 - 5 BIN-1, 2 UBI-1, 2 GHE	4,250 860 1,190 580 780 7,640 2,200 5,200 1,700	4,560 640 990 130 250 9,270 3,200 7,000 1,700		38,550 4,560 640 990 130 250 9,270 3,200 7,000 1,700
4th a)	Total of 3rd Stage Stage Main Drain KUB-1 - 5 ULU TEN-1, 2 PET PAS-4 KEL-1 - 5 BIN-1, 2 UBI-1, 2	4,250 860 1,190 580 780 7,640 2,200 5,200 1,700 1,450	4,560 640 990 130 250 9,270 3,200 7,000 1,700 2,000		38,550 4,560 640 990 130 250 9,270 3,200 7,000 1,700 2,000
4th a)	Total of 3rd Stage Stage Main Drain KUB-1 - 5 ULU TEN-1, 2 PET PAS-4 KEL-1 - 5 BIN-1, 2 UBI-1, 2 GHE	4,250 860 1,190 580 780 7,640 2,200 5,200 1,700 1,450 1,560	4,560 640 990 130 250 9,270 3,200 7,000 1,700 2,000 540		38,550 4,560 640 990 130 250 9,270 3,200 7,000 1,700 2,000 540
4th a)	Total of 3rd Stage Stage Main Drain KUB-1 - 5 ULU TEN-1, 2 PET PAS-4 KEL-1 - 5 BIN-1, 2 UBI-1, 2 GHE BHA	4,250 860 1,190 580 780 7,640 2,200 5,200 1,700 1,450	4,560 640 990 130 250 9,270 3,200 7,000 1,700 2,000		38,550 4,560 640 990 130 250 9,270 3,200 7,000 1,700 2,000 540 2,400
4th a)	Total of 3rd Stage Stage Main Drain KUB-1 - 5 ULU TEN-1, 2 PET PAS-4 KEL-1 - 5 BIN-1, 2 UBI-1, 2 GHE BHA MIN-1, 2	4,250 860 1,190 580 780 7,640 2,200 5,200 1,700 1,450 1,560	4,560 640 990 130 250 9,270 3,200 7,000 1,700 2,000 540		38,550 4,560 640 990 130 250 9,270 3,200 7,000 1,700 2,000 540 2,400 640
4th a)	Total of 3rd Stage Stage Main Drain KUB-1 - 5 ULU TEN-1, 2 PET PAS-4 KEL-1 - 5 BIN-1, 2 UBI-1, 2 GHE BHA MIN-1, 2 PMT	4,250 860 1,190 580 780 7,640 2,200 5,200 1,700 1,450 1,560 1,700	4,560 640 990 130 250 9,270 3,200 7,000 1,700 2,000 540 2,400		38,550 4,560 640 990 130 250 9,270 3,200 7,000 1,700 2,000 540 2,400 640
4th a)	Total of 3rd Stage Stage Main Drain KUB-1 - 5 ULU TEN-1, 2 PET PAS-4 KEL-1 - 5 BIN-1, 2 UBI-1, 2 GHE BHA MIN-1, 2 PMT JUR-1, 2 BKB-1 - 3	4,250 860 1,190 580 780 7,640 2,200 5,200 1,700 1,450 1,560 1,700 1,690 1,870	4,560 640 990 130 250 9,270 3,200 7,000 1,700 2,000 540 2,400 640 420		38,550 4,560 640 990 130 250 9,270 3,200 7,000 1,700 2,000 540 2,400 640 420
4th a)	Total of 3rd Stage Stage Main Drain KUB-1 - 5 ULU TEN-1, 2 PET PAS-4 KEL-1 - 5 BIN-1, 2 UBI-1, 2 GHE BHA MIN-1, 2 PMT JUR-1, 2 BKB-1 - 3 BKA-1 - 3	4,250 860 1,190 580 780 7,640 2,200 5,200 1,700 1,450 1,560 1,560 1,560 1,560 1,870 2,100	4,560 640 990 130 250 9,270 3,200 7,000 1,700 2,000 540 2,400 640 420 610		38,550 4,560 640 990 130 250 9,270 3,200 7,000 1,700 2,000 540 2,400 640 420 610
4th a)	Total of 3rd Stage Stage Main Drain KUB-1 - 5 ULU TEN-1, 2 PET PAS-4 KEL-1 - 5 BIN-1, 2 UBI-1, 2 GHE BHA MIN-1, 2 PMT JUR-1, 2 BKB-1 - 3 BKA-1 - 3 DEJ-1 - 3	4,250 860 1,190 580 780 7,640 2,200 5,200 1,700 1,450 1,560 1,700 1,690 1,870 2,100 3,330	4,560 640 990 130 250 9,270 3,200 7,000 1,700 2,000 540 2,400 640 420 610 1,530		38,550 4,560 640 990 130 250 9,270 3,200 7,000 1,700 2,000 540 2,400 640 420 610 1,530
4th a)	Total of 3rd Stage Stage Main Drain KUB-1 - 5 ULU TEN-1, 2 PET PAS-4 KEL-1 - 5 BIN-1, 2 UBI-1, 2 GHE BHA MIN-1, 2 PMT JUR-1, 2 BKB-1 - 3 BKA-1 - 3	4,250 860 1,190 580 780 7,640 2,200 5,200 1,700 1,450 1,560 1,560 1,560 1,560 1,870 2,100	4,560 640 990 130 250 9,270 3,200 7,000 1,700 2,000 540 2,400 640 420 610		3,500 38,550 4,560 640 990 130 250 9,270 3,200 7,000 1,700 2,000 540 2,400 640 420 610 1,530 1,300 380

(to be continued)

and the second

×.

Facility		Construction Cost	Land Cost	Total
		(M\$ 1,000)	(M\$ 1,000)	(M\$ 1,000)
o) Reservoir	· · · · ·	··· .		
Vol	ume (1,000 c	um)		
KUB	560	4,300	· 🗕 .	4,300
PAS	320	2,500		2,500
KEL	960	7,300	·	7,300
MIN	160	1,300		1,300
PMT	460	3,500	<u> </u>	3,500
JUR	320	2,500		2,500
BKB	140	1,100		1,100
BKA	250	2,000		2,000
DEJ	310	2,400	-	2,400
DER	2,110	16,000	-	16,000
SAM	350	2,700	-	2,700
Sub-Total	• •	84,820	_	84,820
Contingency				16,960
Engineering Fe	e		-	10,160
Total of 4th S	tage	· · ·		111,940
lst to 4th Sta	ge			
Sub-Total	. *	166,740	5,450	172,190
Contingency				34,420
Engineering Fe	e		· • • · · ·	20,620
Total of 1st t	o 4th Stage		· · · · · · · · · · · · · · · · · · ·	227,230

*

Facility		Construction	Land Cost	Total	
· ·		(M\$ 1,000)	(M\$ 1,000)	(M\$ 1,000	
lst Stage				<u></u>	
	Area (ha)				
S ₂₋₁	53	700		700	
2-2	287	5,400	· .	5,400	
2-4	139	2,400	-	2,400	
2-7	229	4,400		4,400	
4-1	18	270		. 270	
4-2	28	440	_	440	
4-3	52	830	-	830	
4-4	47	1,500	- 	1,500	
4-5	231	3,500		3,500	
4-6	330	7,300	-	7,300	
4-8	248	7,300		7,300	
4-9	378	4,600		4,600	
4-10	37	1,200	-	1,200	
Sub-Total		39,840	· —	39,840	
Contingency		557040		7,960	
Ingineering Fee				4,780	
Potal of 1st Stage				52,580	
· · · · · · · · · · · · · · · · · · ·	· · · · ·		· · · · · · · · · · · · · · · · · · ·		
2nd Stage		· · ·		1. A.	
	Area (ha)				
3-2	203	6,100	· •	6,100	
3-7	306	4,200		4,200	
3-8	116	1,700	- .	1,700	
3-9	53	850	-	850	
3-10	159	4,800	. –	4,800	
4-7	89	1,400	-	1,400	
Sub-Total		19,050		19,050	
Contingency				3,810	
Ingineering Fee		.*	1	2,280	
Potal of 2nd Stage				25,140	
Brd Stage					
	Area (ha)	e. S			
⁵ 1-4	202	2,900		2,900	
2-1	235	4,100		4,100	
2-5	152	2,300	_	2,300	
2-6	218	3,400		3,400	
3-2	80	1,100	-	1,100	
3-3	290	4,200	· •	4,200	
4 - 6	60	800	- .	4, 200 800	
4-8	8	300		300	

TABLE J-7 Construction Cost of Network of Smaller Drains by Stage

(to be continued)

J-29

Ŷ

ŧ

205,910

Facility		Construction Cost	Land Cost (M\$ 1,000)	Total (M\$ 1,000)
		(M\$ 1,000)		
B-V	551	6,900	·	6,900
S 6-1	155	2,200		2,200
6-2	293	4,400	-	4,400
6-3	96	930		930
Sub-Total		34,230	_	34,230
Contingency		017250		6,840
Engineering Fee				4,100
Total of 3rd Stage			· · · · · · · · · · · · · · · · · · ·	45,170
Ath Ctars				
4th Stage	Area (ha)			
s 1-1	53	760	-	760
1-2	38	550		550
1-3	687	9,900		9,900
2-4	107	1,600		1,600
2-6	583	8,600	· _	8,600
2-8	388	6,100	_	6,100
2~9	30	430	_	430
2-10	204	2,900		2,900
2-10	111	1,800	_	1,800
			-	
2-13	81	1,200	-	1,200
2-14	80	1,200		1,200
2-15	218	3,400	••••	3,400
2-16	224	3,200		3,200
3-1	381	5,500	••• .	5,500
3-2	184	2,700	-	2,700
3-3	159	2,300		2,300
3-4	216	3,800	-	3,800
3-5	292	4,200		4,200
3-6	147	2,100		2,100
3-11	46	660	. –	660
Sub-Total		62,900	· · · · ·	62,900
Contingency				12,580
Engineering Fee				7,540
Total of 4th Stage				83,020
lst to 4th Stage				
Sub-Total	•	156,020		156,020
Contingency				31,190
Engineering Fee				18,700

P

Ŷ.

Total of 1st to 4th Stage

CHAPTER 4

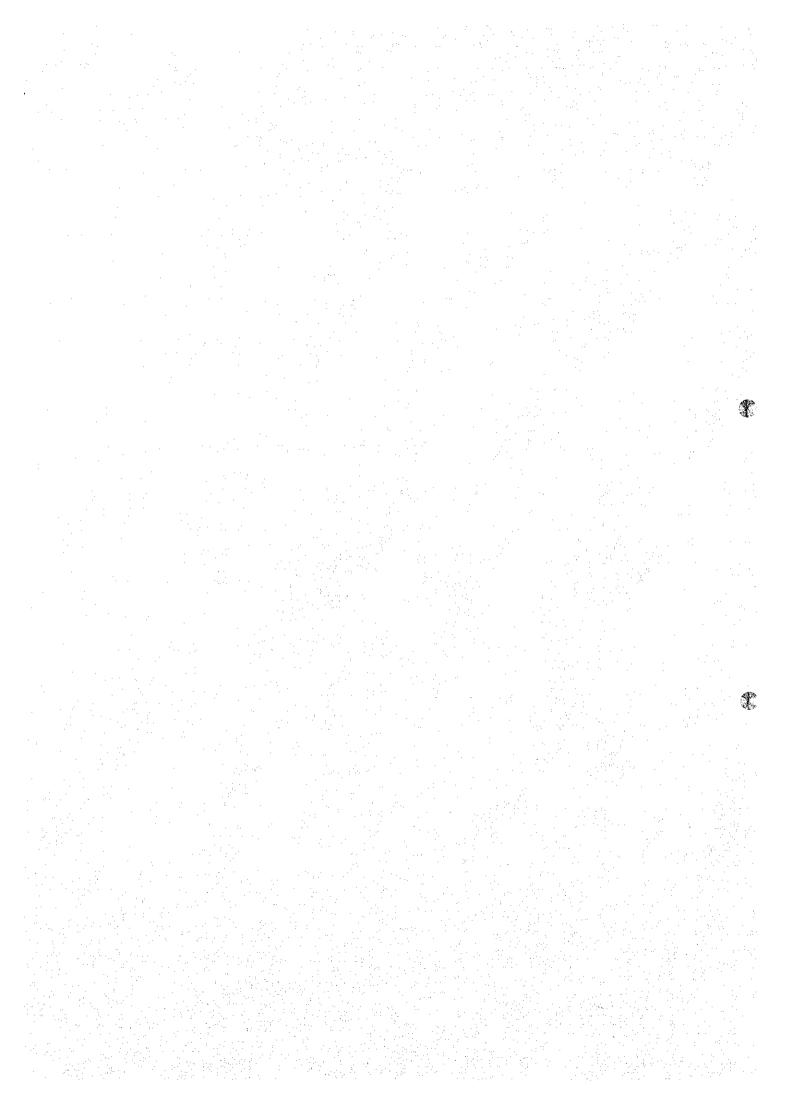
RECOMMENDED ELEVATION UP TO WHICH LAND BE FILLED

The water level in the Prai and Juru river under the critical situation in which the river is flooded with heavy rains while influenced by the highest sea level of RL + 1.68 meters (+5.5 ft) has to be estimated for the purpose of identifying the elevation up to which land is to be filled.

The planned flood water level(*1) in the Prai river which is influenced by the tide with mean high sea level of RL + 1.10 meters, is available in the "Project Report on Drainage and Reclamation of Sungai Prai Basin" prepared by JICA in 1973. According to the report, the water level at the point of Prai barrage, is RL + 1.37 meters (+4.5 ft) under the influence of the tidal level of RL + 1.10 meters (+3.6 ft). The gradient of river water surface at that time is 0.000035.(*2)

It is therefore considered that the use of 0.000035 as a gradient of water surface expected in the flooded river influenced by the tide of RL + 1.68 meters (+5.5 ft) would yield the safe estimation of river water level.

The distance from the mouth of the Prai river to the boundary of the Project Area is about 13 kilometers. Estimated waterlevel at the boundary of the Project Area, therefore, is 1.68 + 0.455 = 2.14 (0.000035 x 13,000 = 0.455 m). If allowances in branches and main drains are added, the water level at upstream of the drainage channels would be about RL + 2.30 meters (+7.5 ft).


In the tributary of the Juru river, land filling is also necessary for areas with least elevation. No data is available as to the water level in the Juru river in its flooded time. Further studies regarding needed cross section, water level at unusual time under the intense rainfall, the highest sea level and the effect of existing tidal gate for the river water level have to be undertaken in order to clarify the required land elevation to be filled.

X

(*1)	The rainfall intensity applied is that of 10-yr frequence	y.
(*2)	h Head loss	
	$i = \frac{h}{L}$: Head loss Distance from river mouth to Prai barrage	
	$= \frac{1.372 - 1.097}{7.900} = 0.000035$	

APPENDIX K

ALTERNATIVE ORGANIZATIONS

In conjunction with the implementation of sewerage and drainage systems programmed in Master Plan, the organization well conceived to achieve required objectives and functions is necessary. The matter has been taken up in PART V "Management Studies", but a few other alternatives were considered during the course of arriving at a proposal included in the above referred Master Plan Report. As a matter of information they are presented in the following:

1. Creation of new regional organization as Penang Sewerage and Drainage Authority

As mentioned previously, there are local government councils under State of Penang Authority, i.e., Municipal Council Penang Island, and Municipal Council Province Wellesley.

While no sewerage systems exist in Province Wellesley, sewage disposal system exists in urban area of Penang Island with corresponding organization responsible for operation of the system in the Council of Penang Island.

This alternative is considered based on the concept to create a new organization expanding already developed organization responsible for existing sewerage works in Penang Island to include the one proposed for Province Wellesley, recruiting available sanitary engineers in charge of sanitary systems for operation and management in both areas.

The status of this new organization is to be similar to the existing Penang Water Authority, the fully autonomous statutory body authorized by Federal legislation and intends to promote administrative control, self-support and maintain uniform technical standards for sewerage and drainage systems through the combined areas of Penang Island and Province Wellesley.

The strong capability and centralized enforcement for overall performance and direct control for satisfactory management and operation will be advantageous characteristics of this single authority as opposed to two separate organizations to be provided in two municipal councils.

The possible disadvantage of this approach is, however, that it may require time consuming initial efforts for legislative and administrative review for the creation of a new organization.

K-1

This will naturally include consideration on reorganization of various departments in the existing municipal councils, which will be involved technically and administratively for a creation of a new organization.

While the idea of establishing single organization for sewerage administration is the logical one, the problems involved for consideration and implementation are considered to be great.

Combined Penang Water Supply, Sewerage and Drainage Authority

2.

This alternative is the expansion of the function of existing Penang Water Authority to include the sewerage and drainage administrative functions covering both Penang Island and Province Wellesley. The development of the sewerage system needs to be coordinated with the growth of infrastructure, particularly water supply for residential, commercial and industrial use and demand for sewerage service is closely related to its consumption. Technically and administratively, it is considered sound to conceive single organization, which include services for water supply, sewerage and drainage, for better coordination among the staff concerned for the implementation of various programmes.

Ŷ

It is important to note that a practice successfully followed as an equitable method to generate the revenue for sound operation of sewerage and drainage works is to impose a sewer charges based on the quantity of water used. In this connection, PWA has been demonstrating its capabilities not only in the operation and maintenance of the system, but also for financial management including its fee collection and debt service of both local and foreign currency loans since its formation on lst, January, 1973.

By placing water supply, sewerage and drainage works into an unified organization, sewer charges can be collected with combination of water supply billing procedure. The delinquent users of service charges can be easily penalized by cutting off the water supply.

The additional advantage is that existing engineering and administrative key personnel in the established functional units are utilized to avoid the problem to recruite the experienced and qualified engineering and administrative manpower which are generally shorted. In contrast to the advantages as mentioned above, there exist significant disadvantages in this approach similar to the disadvantage enumerated in the first alternative.

Expansion and Modification of Existing Engineering Department, Province Wellesley

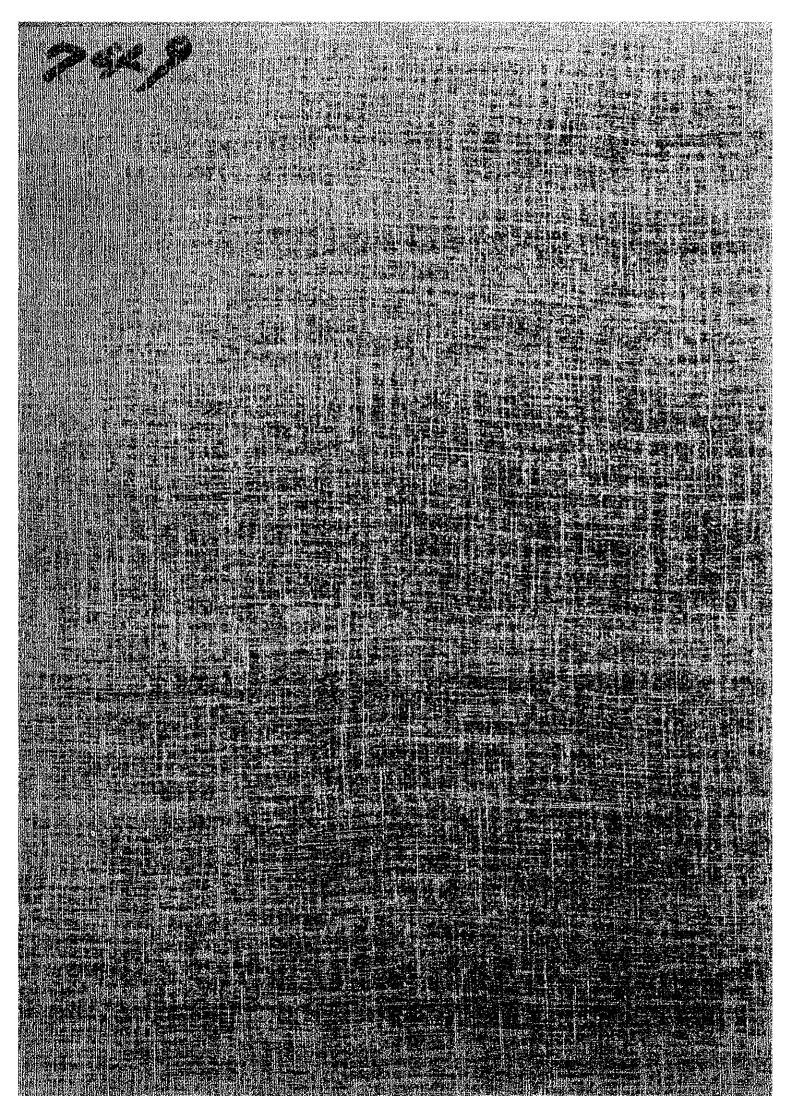
3.

The all sanitary systems in the Project Area except for sewerage system are under the control of Municipal Council P.W. in accordance with Municipal Ordinance enacted as Chapter 133 of the Straits Settlements in 1913 with its subsequent amendments.

The administrative authority has recently been strengthened by the amalgamation of previous three district councils into one local council, "Lembaga", and subsequent status promotion to Municipal Council from Local Council in December, 1976 by virtue of Local Government Act, 1976 recently promulgated.

Such ordinance and Act empower the Municipal Council to construct and maintain the sewerage and drainage disposal systems as well as all other sanitary systems within the Council's boundary.

The Ordinance and Act also grant the power to the Council to raise the revenue for the sewerage and drainage works by levying the fees and other charges for the services to be provided.


Under above legislations the Municipal Council would be able to undertake the sewerage and drainage development programme expanding the existing functions suited to meet planned sewerage and drainage systems without drastic jurisdictional reorganization as required in the first and second alternatives.

In addition, further expansion and development of administrative authority is expected for the Department in accordance with urban and industrial development in the area in line with the national policy, which will enable the reorganization in connection with the sewerage and drainage administration easier. The major disadvantage may be a difficulty and disadvantage pertinent to the creation of a new functional units solely responsible for management and operation of proposed sewerage and drainage systems. The shortage of qualified and experienced personnel, together with the relationship with authorities in charge of agriculture, land development and health control programme, may impose a restraint for early implementation of satisfactory new public utility services.

K-4

Ŷ

. T

