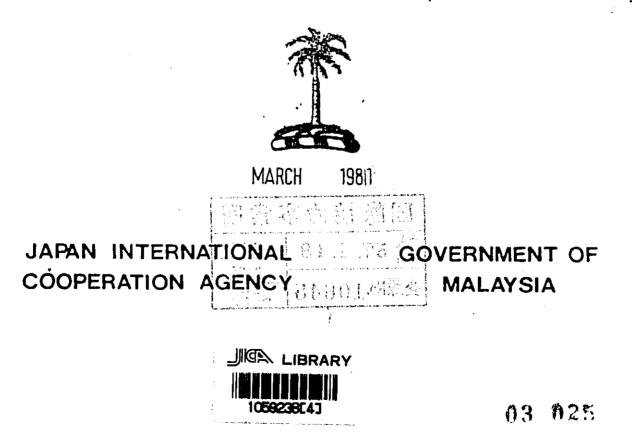
URBAN TRANSPORT STUDY IN GREATER METROPOLITAN AREAS OF GEORGETOWN, BUTTERWORTH AND BUKIT MERTAJAM

MALAYSIA

SOIL INVESTIGATION OUTER RING ROAD PROJECT (PHASE II)

TECHNICAL REPORT - 03



GOVERNMENT OF MALAYSIA URBAN TRANSPORT STUDY IN GREATER METROPOLITAN AREAS OF GEORGE TOWN, BUTTERWORTH AND BUKIT MERTAJAM

MALAYSIA

SOIL INVESTIGATION

OUTER RING ROAD PROJECT (PHASE II) TECHNICAL REPORT - 03

。 《新聞·國法國國國語》的目前中

国際協力事	業団
受入 月日:5'84.15.16	1-1-1-1-1-
叠绿No.114545;;	S.D.F.

.

HERE SAN RESULTED

.

• ,

2. 注意稿: 这一次

CONTENTS

۴.

•

.

.

.

• •

1.	FIELD SURVEY 1
1.1	Outline of Works Performed 1
1.2	Geotechnical Investigation 4
1.2.1	Field Investigation and Laboratory Soil Tests 4
1.2.2	Subsurface Ground Conditions along the
	Alternative Road Alignments41
1.2.3	Investigation for Construction Materials48
1.3	Notes on Construction Works67
1.4	Notes on Further Investigations70

.

,

٢

• . .

•

.

LIST OF TABLES

	[1] A SAME AND RANK D. HARALING, AND REPORT OF DEPARTMENTAL PROCESSION CONTRACTOR AND
1.1	INVESTIGATION WORKS PERFORMED2
1.2	INVESTIGATION WORKS PERFORMED3
1.3	SUMMARY OF SOIL TEST (BH-1)23
1.4	SUMMARY OF SOIL TEST (BH-1')24
1.5	SUMMARY OF SOIL TEST (BH-2)25
1.6	SUMMARY OF SOIL TEST (BH-3)26
1.7	SUMMARY OF SOIL TEST (BH-4)27
1.8	SUMMARY OF SOIL TEST (BH-5)28
1.9	SUMMARY OF SOIL TEST (BH-6)29
1.10	NATURAL WATER CONTENT AND ATTERBERG LIMITS
1.11	UNIT WEIGHT AND NATURAL VOID RATIO33
1.12	GRAIN SIZE DISTRIBUTION35
1.13	COHESION LAYERS36
1.14	INDEX AND COEFFICIENTS OBTAINED FROM CONSOLIDATION TESTS38
1.15	SUMMARY OF SUBSURFACE GROUND CONDITIONS
1.16	SOURCE OF FINE AGGREGATE (SAND)50
1.17	SOURCE OF SUBGRADE MATERIAL50
1.18	SOURCE OF COARSE AGGREGATE51
1.19	SUMMARY OF MATERIAL TEST52
1.20	SUMMARY OF MATERIAL TEST60

.

(1) A second state of the second state of the second state state of the second stat

(i) A set of the product of the set of th

LIST OF FIGURES

.

۰.

1.1	GEOLOGICAL MAP WITH LOCATION OF DRILLING HOLES	5
1.2	GEOLOGICAL PROFILE ALONG ALTERNATIVE ALIGNMENT A	6
1.3	GEOLOGICAL PROFILE ALONG ALTERNATIVE ALIGNMENT B	7
1.4	GEOLOGICAL CROSS-SECTION, BH-1 TO BH-4	8
1.5	TYPICAL GEOLOGICAL CROSS-SECTION (ALTERNATIVE ALIGNMENT A)	9
1.6	TYPICAL GEOLOGICAL CROSS-SECTION (ALTERNATIVE ALIGNMENT A)	10
1.7	TYPICAL GEOLOGICAL CROSS-SECTION (ALTERNATIVE ALIGNMENT A)	11
1.8	TYPICAL GEOLOGICAL CROSS-SECTION (ALTERNATIVE ALIGNMENT B)	12
1.9	DRILLING LOG, BH-1	
1.10	DRILLING LOG, BH-1'	15
1.11	DRILLING LOG, BH-2	16
1.12	DRILLING LOG, BH-3	17
1.13	DRILLING LOG, BH-4	18
1.14	DRILLING LOG, BH-5	19
1.15	DRILLING LOG, BH-6	20
1.16	DRILLING LOG, BH-7	21
1.17	DRILLING LOG, BH-8	22
1.18	ENGINEERING PROPERTIES OF SOIL vs DEPTH (for BH-1 to BH-4)	30
1.19	ENGINEERING PROPERTIES OF SOIL vs DEPTH (for BH-5 to BH-8)	31
1.20	GRADING TEXTURE vs DEPTH	34
1.21	RESULTS OF UNCONFINED AND TRIAXIAL COMPRESSION TESTS	37
1.22	PRECONSOLIDATION PRESSURE AND COMPRESSION INDEX vs DEPTH	
1.23	VOID RATIO vs PRESSURE	40
1.24	VOID RATIO vs PRESSURE	41
1.25	LOCATION OF MATERIALS	49
1.26	GRAIN SIZE DISTRIBUTION	53
1.27	GRAIN SIZE DISTRIBUTION	54
1.28	GRAIN SIZE DISTRIBUTION	55
1.29	GRAIN SIZE DISTRIBUTION	56
1.30	GRAIN SIZE DISTRIBUTION	58
1.31	CBR TEST RESULT	62
1.32	CBR TEST RESULT	63
1.33	CBR TEST RESULT	64

•

.

ţ

•

i

FIELD SURVEY

É.

1.1 Outline of Works Performed

1) Geotechnical Investigation

Geotechnical investigation was started on 17th April, 1980 and completed on 30th June, 1980.

This geotechnical investigation consisted of:

a. Exploratory drilling with Standard Penetration Test and undisturbed sampling.

 Laboratory tests on soil and material samples obtained from the site.

c. Study for coarse and fine aggregates and embankment material.

Drilling works were performed by Geotechnique (Malaysia) Sdn. Bhd. in Kuala Lumpur.

Almost all laboratory tests on soil and material samples were carried out at the laboratory of Kiso-Jiban Consultants Co., Ltd. in Singapore. Los Angeles Abrasion tests were conducted at JKR laboratory in Kuala Lumpur. The standards used for this study were the Japanese Industrial Standard ^(JIS) and American Association of State Highway and Transportation Officials (AASHTO). Investigation works performed are listed in Table 1.1 and Table 1.2. Table 1.1 INVESTIGATION WORKS PERFORMED

,

					•	·) 		
Notes		Offshore Drilling by Percussion rig	- Ditto -	- Ditto -	- Ditto -	On Land by Percussion rig	On Land by Rotary rig	- Ditto -	- Ditto -	- Ditto -	
Sampling U-4 Sampler	-	6	e	5	-	4	0	0	1	. 2	25
Penetration	lest	26	14	27	15	. 25	3	3	12	18	143 Nos.
Land	Coring	1	- -	1	r		9.11	11.0	7.0	•	29.6
O	Soil	1	1	ı		46.15	5.2	5.8	15.9	25.3	98.35 251.35m
Offshore		40.0	21.7	40.0	21.7	P	3	1	I	1	123.4
Bore Hole Number		BH-1	- L - H8	BH-2	BH-3	BH-4	BH-5	BH-6	BH-7	BH-8	TOTAL
	On Land Penetration U-4 Sampler	Offshore On Land Statuate Sampling Offshore 0n Land Penetration U-4 Sampler Soil Coring Test U-4 Sampler	OffshoreOn LandDu autuationSamplingOffshoreSoilCoringPenetrationU-4 Sampler40.0269	OffshoreOn LandStandard PenetrationSampling U-4 Sampler040.026921.7143	OffshoreOn LandDu LandSamplingOffshoreSoilCoringPenetrationU-4 Sampler40.026921.714340.025940.014340.055	Offshore0n Landoutliar PenetrationSampling U-4 Sampler 01 SoilCoringTestSampling 40.0 269 21.7 143 40.0 275 21.7 275 21.7 7151	OffishoreOn LandSamplingoffishoreSoilCoringPenetrationU-4 Sampler40.026921.714340.027521.771521.7715-46.15-7254	OffishoreSoil CoringSampling PenetrationOffishoreSoilCoringPenetration TestSampler U-4 Sampler40.026921.714340.027521.727521.771521.7715-46.15254-5.211.630	OffshoreOn Land SoilCoringScandard PenetrationSampling Let Sampler40.026921.714321.727521.715121.727521.7151-46.15-254-5.211.630-5.811.030	OffestoreOn LandSolutionSolutionSolutionSolution0 0 0 1 0 1 0 0 40.02214321.72726921.7275121.7275121.7275121.7275121.7275421.7275421.7275421.72754-5.211.630-5.211.630-5.811.030-15.97.0121	OffshoreOn LandPerturbation PertubationSampling Lest 01 $Coring$ Fest $Campling$ 40.0 269 21.7 269 40.0 275 40.0 275 40.0 275 40.0 275 40.0 275 40.0 -27254 $-$ 5.211.630 $-$ 5.811.030 $-$ 5.811.030 $-$ 15.97.0121 $-$ 25.3 $-$ 182

•

.

- 2

Table 1.2 INVESTIGATION WORKS PERFORMED

.

	Los Angeles	Abration	t	I	1	t	I	1	1	1	I	1	m	t	3	•
	Specific L Gravity	-		t	1	t	•••••	1	1	1	1	7	Э	l	IQ	
	CBR	(Modified)		1	ł	1	•	i	I	1	I	I	t	4	4	
	Compaction	T180 D	1	1	1	1	1	I	.	t	1	1	I	4	4	
	Compa	T99 D	1	1	1	1	1 -	1	F		•	I	1	4	4	
	Consoli-	dation	2	£	5	1	'n		3	-	2	1	1	I	13	
Laboratory Test	Triaxial	Compression Compression	2	Э	2	0	8	8	1	-		1	I	1	11	
Labo			4	Е	2	L	2	•	1	-	. 2	1	1	ı	15	J Type
	Grain	Size	9	7	б	2	6	- ,	1	ഹ	7	7	Э	4	63	is U-l
	Unit	Weight	4	2	2	l	. ന	I	1		2	ı	ı	t	15	on Test
	6	LL,PL	7	9	ĸ	2	7	-	1	2	4	1	I	4	36	Triaxial Compression Test is U-U
	Specific	Gravity	2	2	6	2	6		1	ഹ	1	7	£	4	64	Triaxial
	Water	Content	2	9	6	S	6	-		പ	7	t	1	4	53	<u>NOTE</u> :
	Bore Hole And Sito No	21 LE M0.	RH-1	•1-H8	BH-2	BH-3	BH-4	BH-5	BH-6	BH-7	BH-8	Fine Aggregate	Coarse Aggregate	Earth Work Material	Total	

•

.

ک ۔...

1.2 Geotechnical Investigation

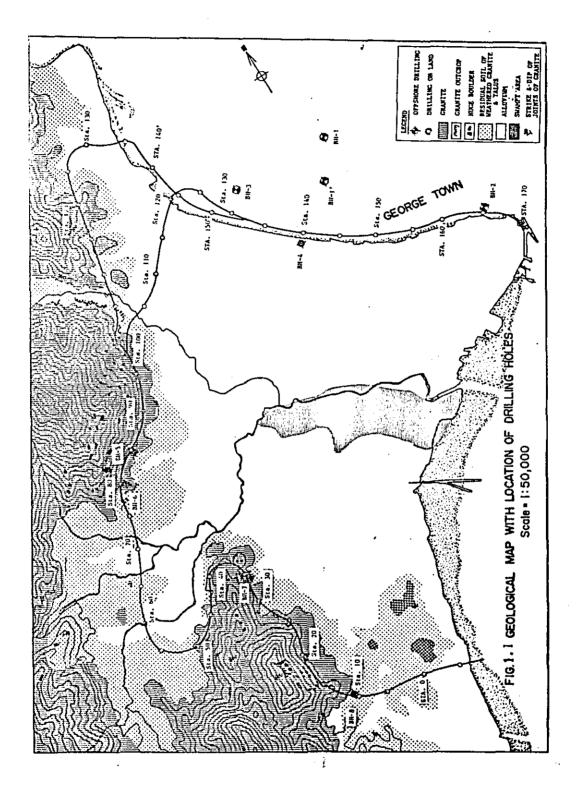
1.2.1 Field Investigation and Laboratory Soil Tests

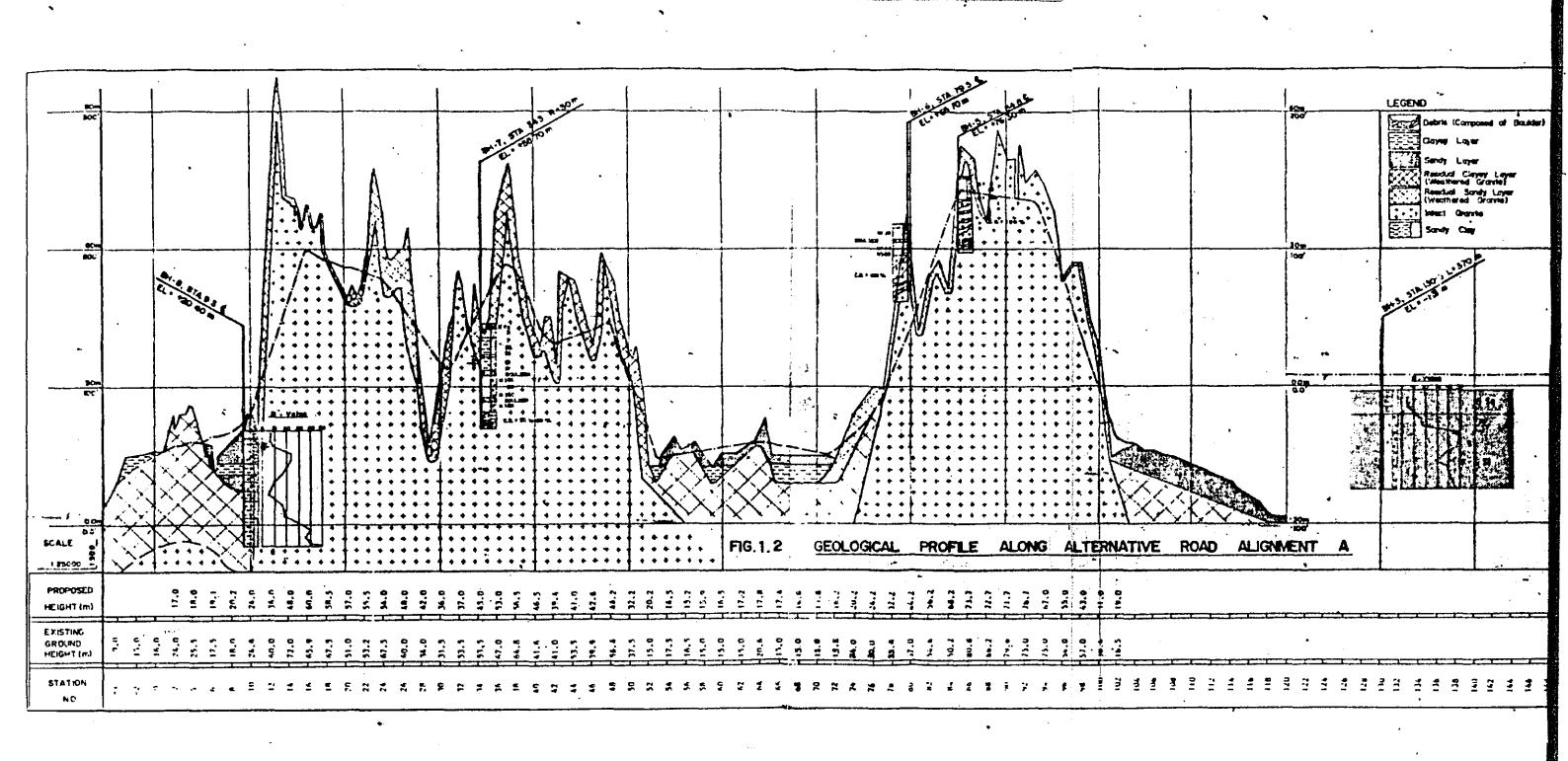
The alternative road alignments and drilling holes are shown in Fig. 1.1, Geological Map with Location of Drilling Holes.

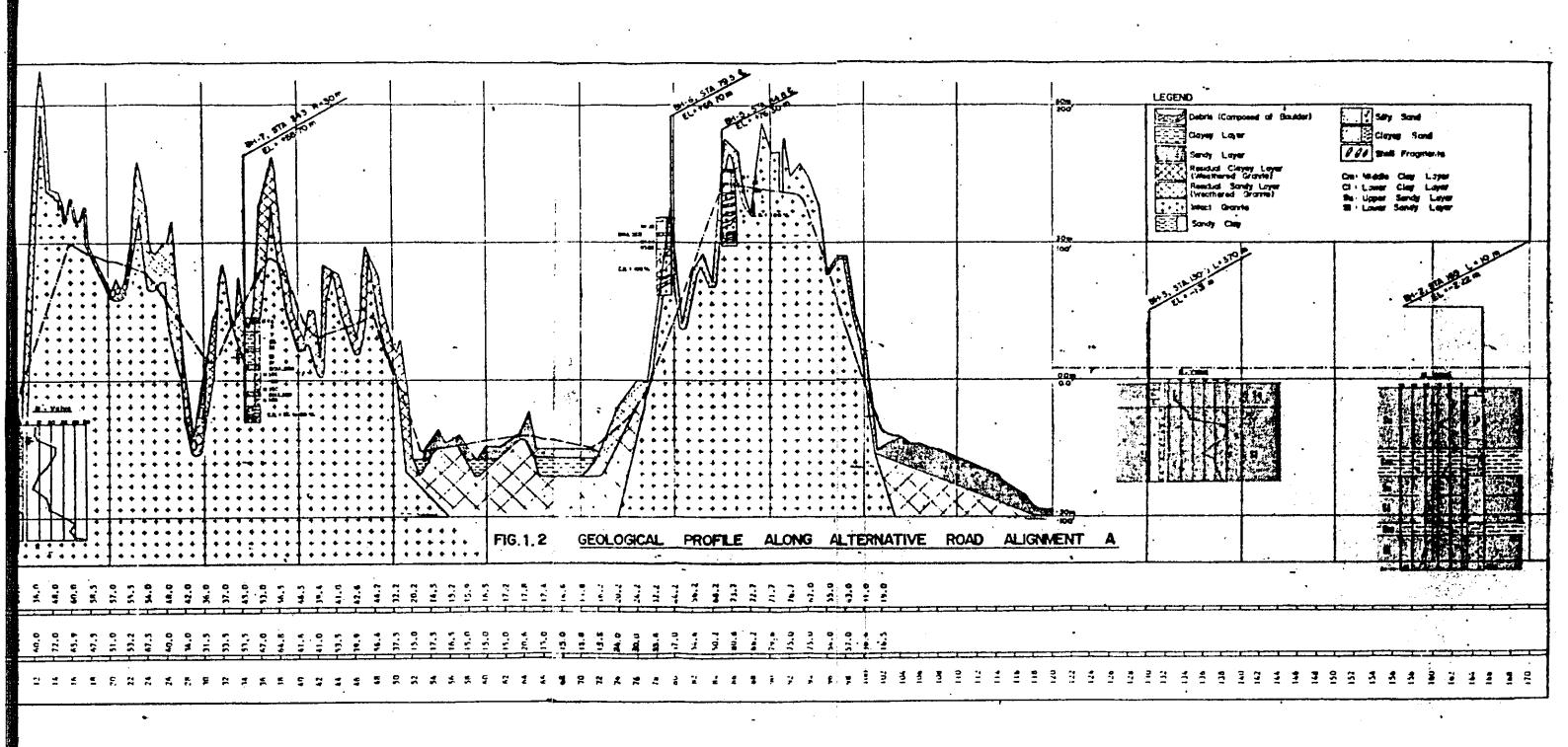
1) <u>Geological Reconnaissance</u>

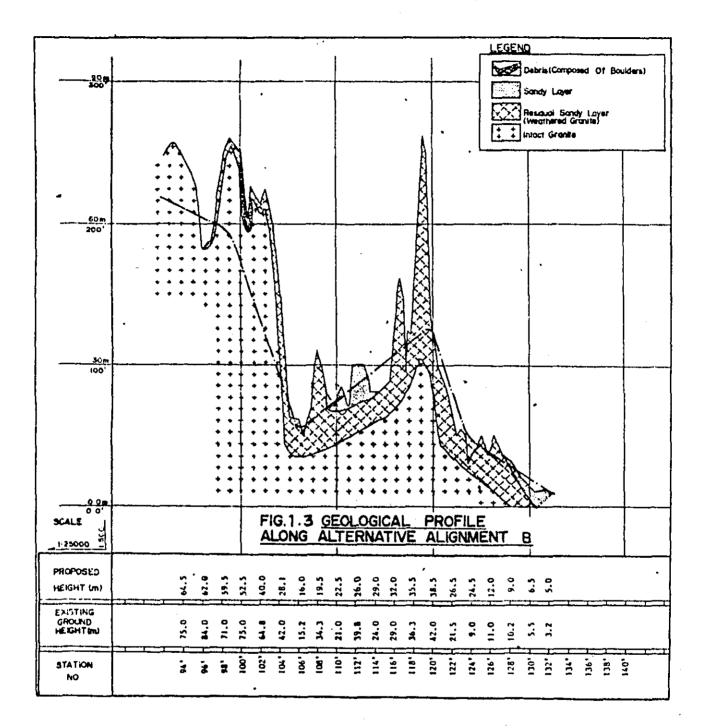
Geological reconnaissance along the alternative road alignments was conducted. Strikes and dips of joints of rocks were recorded at quarry sites and outcrops. Probable geological profiles and cross-sections were plotted based on drillings and geological reconnaissance and these are illustrated in Fig. 1.2 to Fig. 1.4, Geological Profile, Fig. 1.5 to Fig. 1.8, Typical Geological Cross-Section. Other geological information is shown in Fig. 1.1, Geological Map with Location of Drilling Holes.

2) Exploratory Drillings

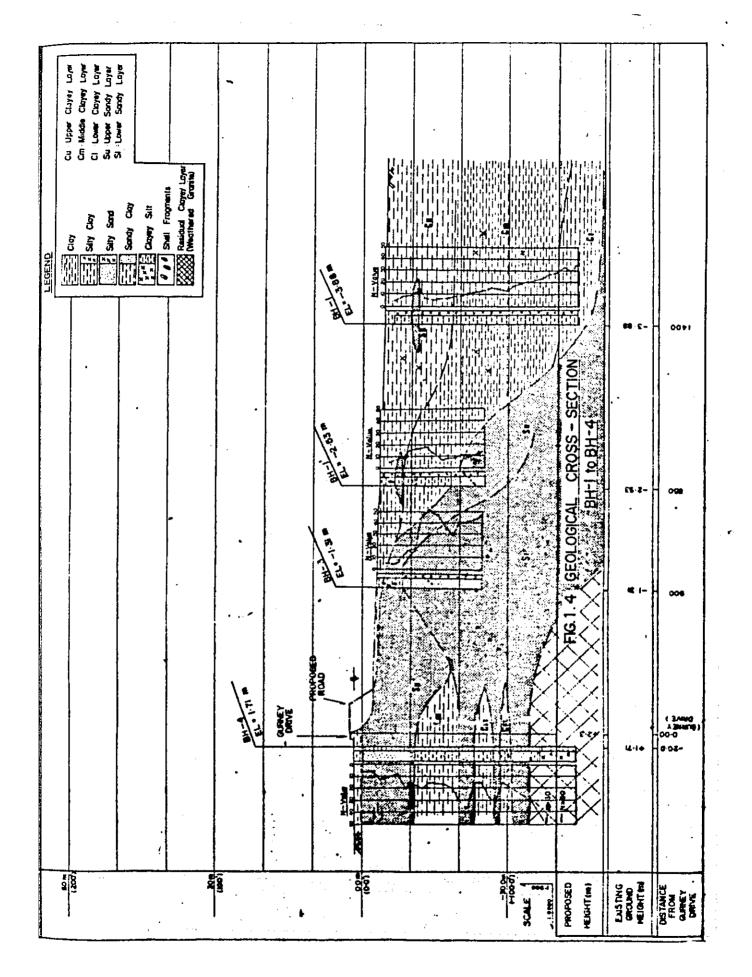

(1) Drilling Works

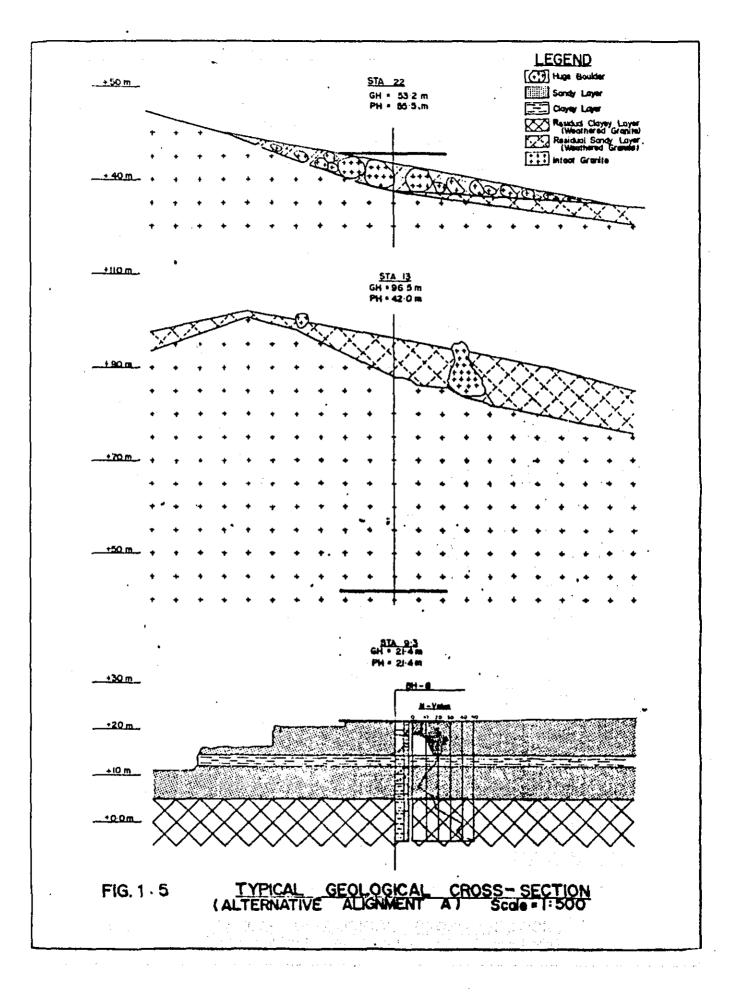

Five (5) exploratory drillings were performed on land along alternative road alignments.

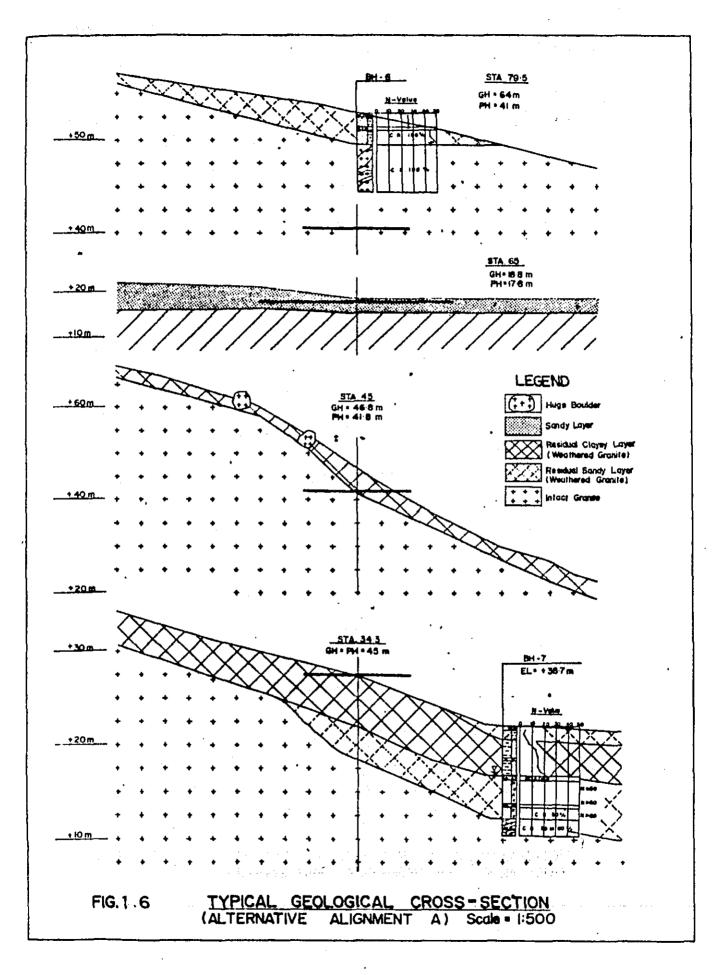

Four (4) of these were performed by rotary boring rigs, and one (1) was done by a percussion rig.

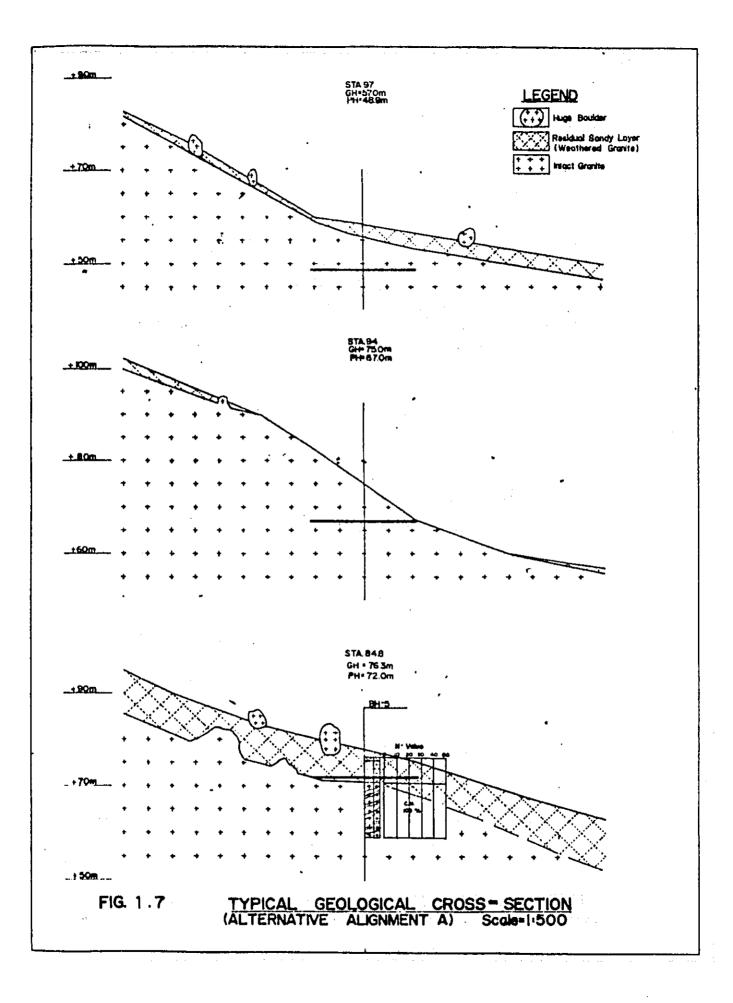

Four (4) offshore exploratory drillings were carried out by a percussion rig fixed on a pontoon. A steel boiler with an outside diameter of 140mm was used as a cutting tool and steel casings with an outside diameter of 165mm were used for drillings by percussion rigs to prevent collapse of bore-hole walls. Two rotary boring rigs were used for the drilling at hilly areas. Diamond bids with an inner diameter of 55mm were used for coring rocks and boulders. Steel casings with outside diameters of 114mm and 89mm were used for drilling by rotary machines to prevent the collapse of the bore-hole walls and the cuttings of soil or rock were washed out by circulating water.

- 4 -

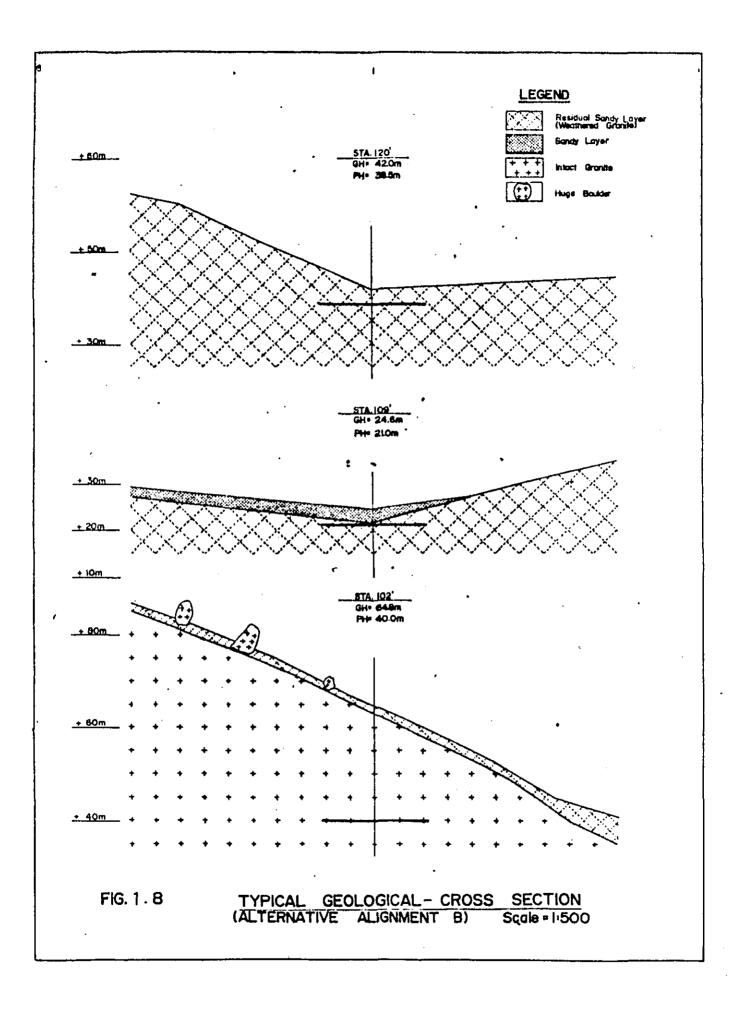





- 7 -


8 -

- 9 -



- 10 -

- 11 -

İ

(2) Sampling and Standard Penetration Tests

Undisturbed sampling was performed using steel tubes with an inner diameter of 100mm and a length of 450mm (U4 tube). The tubes were advanced by means of a hydraulic jack or drop hammer.

After the tubes of undisturbed samples were sealed with paraffin at both ends, they were well packed in foam rubber cushions to avoid any disturbance during transportation, and were sent to Singapore by air. Standard Penetration Tests were conducted at intervals of approximately 1.5m or 3.0m for each drilling hole except at the depths where boulders or rocks were encountered. Disturbed samples taken from split tube samplers of Standard Penetration Tests were packed in plastic jars as observational samples, and remaining samples were sealed in plastic bags and sent to Singapore for the laboratory soil tests.

The results of drilling are summarized in Figs. 1.9 to 1.17. Drilling Logs, and shown in Figs. 1.2 to 1.3, Geological Profile and Fig. 1.4, Geological Cross-Section.

3) Laboratory Soil Tests

Laboratory soil tests were performed in Singapore on selected disturbed and undisturbed samples.

The results of the laboratory soil tests are summarized in Tables 1.3 to 1.9, "Summary of Soil Test", and discussed in this section.

(1) Physical Property Tests

į

 a) Natural Water Content (Wn) and Atterberg Limits (LL, PL) The results of natural water content and Atterberg Limits
 tests are shown in Figs. 1.18 to 1.19, Engineering Properties of
 Soil vs Depth, and summarized in Table 1.10, Natural Water Contents
 and Atterberg Limits.

hava di fi pa hvi Berge .	FIG. 1 class take stat stat Ne = === ==============================	1 <u>n: 13.34</u> 7438 -			5. ari Uttabuta Svittiva	1
L - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		3.55	5	Salas Prot	ran last ar East Nasions Literature	
		1721) 1722) 18-11	Yooy olicby		••••••••••••••••••••••••••••••••••••••	
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		art parties		- 10 - 10 - 10		
<u>10.66</u> 7.0		Light Leap Stiff	Vick Staces of quality and			
2 2- 1- 1- 1-		Bard Land Jan Life	Annigotanus Antino clay, E s			
		14451		17 17 19 19 19 19 19 19 19 19 19 19 19 19 19		
			•	0 10 		
		4.66	with anali quear "Life of anali fragments,			
с. 				29.040 		
			Vich empli pertiries of sound ecologicate)	10.6.4 1		
				11.10 11		
	44 13.60 - Clay End al	Lighe Goty Back	The second	H. 75 H. 75 H. 10 H.		
	Las af	87#335100				

I.

•

- 14 -

٠

			-		FIG. 1	.10	<u>DR</u>	ILLING LO	<u>G</u>					<u> </u>	emarks	•			
					PORT STUDY			Type al Drall						•	01	í shor	e Dri	11in	i.
ΤŪ	<u>n har</u> :	¥	<u>N</u>	<u>, Bil-</u>	Water	n i - i Teole	<u></u>	m Dele i Hay m . Drillar i GEO				_	hen)	-					
	e s	đ			Ŗ		i i i	2		······	Ştar	derd	Pene	ration	Test o	r Cone	Receiv	a'y	
ч Х Я	Eleneur	4 49 0	Incersiv	legend	Type of	Cale	Relative Derity or Constanty	ઉત્તર કે ઉત્તારીય	Depth mai	Sanding 13		each each each	911 150 150		ly.	_ <u>_</u> _N	- <u>Vacej</u>	4.0	
 								With decumposed	0.92						†	Cure	Record	<u>-</u>	1
	•			Ľ,		bluist Grey		organic matter					2 :						
	-5.58	3.05	1.55		Silvy Clay	to Dark Grey		With shell fragments	3.05								· • • • •		
ا د	-7 119	4.50			Sandy Clay	Light	Piedium	With gravel	3.51			+							
		4.00			Clay	Grey		occasionally	2:37	P-3		(2) (3)			ų 		 -		
-	-4 63	7.00	7 45		#Liry	Grey	Very	With some sand	5.80 <u>6.10</u>	<u>r</u>	-16-	4	4	.	<u> </u>	 			
					Clay		SLIFE	and gravel	7.33	11-5		5	, , , ,		·		•		•
Ľ į													ľ	1	• • •]		·		-
j								: -	9.30 9.60	4-6	18	(4)	B 11		·	į			•
									10.37	P-7	14	5	6	 	7	·		}	
									12.20	ļ					-# [· · · · ·
-				" *		ſ			1	Ü L- 1 1-1	,	(2)	4						
-	17 (8	14.65	4 15		Silty	Dark	Medium	With laminates of time sand.			B	ω I	4		 - }				
<u>.</u>		ì			<u>Clay</u>	Brey	Yety,	<u> </u>	15,40					 	 .	ļ	. 		
<u>14</u>									15.70 16.47 16.11	É .		(3)		 		i T	·	. 	
년									56-11 					1	<u>]</u>		1		
<u>ب</u>		l 1							18.45	r-12	10	(2)	4	<u> </u>	. •	••••			
-			• • •													.,	- 		; . ;
2				副	Sitty		Loose to	With gravel in	20.00				5	1		1	1		
	24.23	21,70	1 7.05	<u>r</u>	Sand End of	1	Hedium	some parts	21.40	P-14	112	(5)	6	<u> </u>		 		:	

			-		FIG, 1	11	DR	LLING LQG		deners.
ž	n a	n ye i	-	That	sever store	·		وبعاليهم المراجع	LE PER-ESSION	utfalmte beşiling
5	t.An	2,	<u>بد</u> .	. ₩12	وروا. _{مو}		<u>.</u>		8 34 41 <u>4 3984</u>	
<u> </u>				.	* 1 94					
$ \cdot $	•	•			3		ŝ	3		tan las a Can Antony
		3		Ę		3		ŝ		. <u>[herphy]</u>
			;	<u>.</u>		+		neth pime gianel		1 Salema
·	-s	 1.45		,1	443146 84 108848		And Lug dense	and start) frog- : monto. tom co	······································	
·				┢┯┥	<u>ve1</u>			\$*************************************		
								850, uf saud da 8,5 ta 2,4 mm.		
1				1.						
1				· · •					tritione 0 11 1 1	· • • · · · · · · · · · · · · · · · · ·
1								vich some gravel	1.21 pr. 10 10 1	
									,	····
1 *				1		•			2. 311 P=4 30 23 10 10	
				[·. ··					11 P.7 6 11/2 .	
<u> </u>					Course Base	G	la Parti ca	•••		
1-1	16.64		1.45		\	<u> </u>	4	Ussa ebell Dragmenta	10 14 P-0 12 (1) 5 P	
						Barb	1	Mith post: quar- tilp of shell Elognosite.		
1-	18.64	11.50	3.00	LI.	Sand	64.87				
1 "	1	l		H	Actig Clay Vite	 Ge e y			1771 P-10 10 11 1 1	
15	20. M	هد. دا با	3.00	14	- fami			····-		···· • ·· • ·· • ·· • ·· • ·· • ·· • ·· • ·· • ·· • ·· • ·· • ·· • ·· • ·· • ·· • • ·· • • ·· • • ·· •
1.		'		E		ĺ		Mary attosy elay		V
\ <u>"</u>	1	{		[]	5	ł	{] \
1	1		ļ		4.117	50	HUE	with shall		
1	10.4	418.50	6.QL	1-1	6147		ب منتخر	ffagdamits,	Tarter 21 10 (81)	
1	1		1				1			
12	1			.				Vich smill particles of gravel. (da-hum.)	-1.10	
	ł				'			(###3#9998-1		
-		1	1				ł	}	There is is its in	
	1		ł							
	1	i i		1.1			1		1 1 1 1 1 1	1 \
	ł	ł	1		}		}	fand 10 marts.	4.04 /	
2	1				-			ļ	1	
	1	Į.,	l	1.6	Courses James	64 09	1			
	<u>h.n</u>	1 -39.94	ia. 4		1	1	Ld Decad	Viek shall fragmenta.		
1	1		1	F	1	1		Louis lise segilfertres the	141.50 ¹	
	h1.44	- 3 1. 5 4	 '	Ŀ	Chay			and is very Cobestion		$\{\boldsymbol{\langle}\}$
	\vdash	<u> </u>	1	Fi	<u></u>	F		<u>}</u>	terteren la senen	
Ι.	1	1]	1		Balle 10 flos La Emelodi	11,741 -23 228 27915 1	
1	1	1			4	1		i		
1.	1		1			1	1	has dimeter of		4
1.		! 1	İ		1			Aravel La apresa	10.11 - 13 14 1013 11	
	1	1	1							
1.	1	•	÷		a Bilip Band	1			A	4
.	-3.	HI 44,1	4 1.3	-		stor	0		14 24 -27 11 14 120 10 07	
1.					Last -1		i ••	1		
1.			1		1					
L	1	1	1		<u> </u>	1	!	!		<u>, </u>
										· .
				•						
					2					

4

••			-	-	PORT STUDY	<u></u>	. 31	<u>Type of Oria</u> <u>m</u> <u>Date : Hay 2</u> <u>m</u> <u>Driller : GEC</u>	ig : PERI 3 to 20	6, 198	0		 	-	Remark: Of £ a	-	Drill	ing :	
,	E P STOR	н е 1133 1133	Tokies	legard .	ی در 14	5 2	Reletive Deraity or Consistency			P H P H S D	Stan	dard	Pena	talon	Test o		- facos - facos		
	·6.51	5.20	13.55		Saudy Clay	Bluish Grey		20% of the soil is send. With some shell fragments.	0.00 0.45 1.68	UD-1 P-1 P-2 P-3	5 6	(2)	3			Core	Rece		
			-					With a lot of clay at 7.0 to 8.0 m.	6.26 <u>6.56</u> 7.78 <u>A.04</u>	P-5 P-6	18	(4)	7 8	2			/		
ц Ц Ц								Vith some gravel	10.80	P-7 P-8			27 1 23 2				N	>20	
- - - -									12.36 12.66 13.90 13.20	¥-9 P-10			22 2 15 2	1					
								With a lot of clay.	15.41 15.71 16.90 17.29				15 1	-	•••	•••		 	· · · · · · · · · · · · · · · · · · ·
							i h Hædii to		18.45 18.73 20.00 20.30				16 2	-		•••			
	-23.01	21.7		ote)	Sand	Light Grey samp 5.5 to	Very Dense • for (esting was obtain	21.40				19 2	6 	•••••	••		-++	
																•••		·	*

.

- 17 -

. Ł

				-		FIG. 1	13	DRI	LLING LOO	kiroja t <u>a</u>
		i și e Sear				naj shur (Para 4.4 *				4. (18.1.19).4. 11.10.4.4. (190) 14.51.41.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
					ing t	2 <u>e</u>	3 !			Sinne formar las e Ces labors b B an for an for the second secon
		. 29 1	.00	». د	-		6-a 7 6 81 - 2-46	belt	Vish urganle matter and gravel	
1						•			The side of east is g 0.3-1.6 east	
-					•				•	
-				•						
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						Clayor		1	L - Band is quarts,	
-			17,10	10.11	-	84nd	<u></u>	Rad 100	Aburt 322 15 Stalf.	(1) (1) (1) (1) (1) (1) (1) (1)
ے در ایر			-							3 41 5 41
ц 4	4							•	-	• • • • • • • • • • • • • • • • • • •
2 	•	4 19	31.99	9.20		Sandy Clay	1411- 148 Gray	81117 10. 10.11		
	1	•).18		Clayor	nd i to Lab Lery		Vith some gravel	
					Ξ			-iz	fami 18 costan (8 0.1-0.2m)	
	÷			4.00	1:1	Lasty Clay	148 148 1,703	Sulff La Bard		
· · ·	-			1.34		Elsysy Bood	4.,	3	f	20 10 P-30 (3 53 4 9
1		0, 14	33.61	2.15				ntit	fine.	1 1 1 P-20 13 14 9 2
	-	19.64	34.7	6.18		Clayer Land	لما المع الما المع المع	Paral In Sector		
	2. 1.	17.0L	<u></u>	 }***	-	Landy Clay	 inter inter i		land (s vary	
1	- -				X X X				Weathered grantin The suil rotains	
	 U				XXX	•			the conture of grantic. /	
	•		j.,	1 3.44	×	C) e y e y #1 11	844- 4118 8119			1

.

¢

- 18 -

			-		FIG.	.14	DR	LLING LOC	<u>i</u>						Re	marks				
<u>h</u> a	rn <u>et</u>	Project	URBAN	TRAN	PORT STUD	·		Type of Dista	y: k	DTARY	•			_ '						1
He i	ie Nymi	057	Ni	BH-	Elevatio	1 • 7	b.10	m. Date : May						_						
				_	Water	able :		m. Digler Fülsvill	CHNIQ	UE	(<u>HR</u> :	LEE	2						
	- E - E	É			3		(jug)	Renards			Sta	dard	Pen	etralı	on T	nst or	Core	Recurs	ry 	
	21.1	Depti II	Thekness	2 Aug	172 0	Glor	Relative Density or Consistency	(areal R	Oepti nin	Sanding to Le		Biow	s Par h 15: a • a	- - -	1	-	(N—			.,
	75.64	0.61			Silty- Clay	Brown		With organic matte					-	- -			Core 1	ecover	 Fg	
				-					1.00	1-1	t t			-	•••				••••	
		:	i 1	-			1		-1-54	<u> P-1</u>	14	5)	7	4.	• - •			, . .	••••	.
1		1	! !	J.					-1-20	P-2	23	(10)		1.			[••••		.
- 1			;	الفحم	Clayey	linht	Medium							1.		••••				
1	71.10	5.20	4.99		Sand	Light	Very Dense	With some gravel	4.95 5.20	P-3	64 25	(8)	14	끏	-••		••••	 	: 125 ·	3
-		i T		++				generally, the	Cor	e len	eth		200		107 7	00 -	 	; ; 5; 20	ίια	
			!					granite is sound.		ры. ры.							ļ			.
			i					Joints are	Lon	Kest i	oru	i.	ı.þ	ı.					Í L.	
1		ļ		+ +				generally 80 ^d from the horizon-		e len;	1	•	50	tq_	1000	æ.	at 6	20		
۔ ب				54				vertical.	10	10.40	.									-
<u>п</u> .		1		+ +				Vertical jointe at 11.9-12.8 m.									COT#	recov = 11	very 101	•
ц.		.		2				No clay at joints	Cor	e len	[ath		00		400	TH .		40		-
_			i 1	سمرز						85æ.				Ţ			Ι		Ī	-
		1		+ +				Jointe are verti-	• •	i es of ained		e l	a i e	ie (9 20	-50	am.)	Pere		
	ł		;	H		1]	cal and the faces are yellow at around 15.30m.		[·]				••••		1			
-	ł		1	+ +										ł	• • • •	• • • • •		•••-		
	+ 59.5	16,80	; - 60	+ +	Granite	Whit- Lsh Grey	Hard				ł	ļ		ľ		••••		†		
		;								,	1				••••	••••	•••••••••••••••••••••••••••••••••••••••	} • • • •	••••	
نڈ ا	İ	:			End of	Prilli 	ng			:							•••••			•
<u>بل</u> د			į		l					I	•				••••		·•• ···		÷	-

	FIG. 1.15 DRILLING LOG												Re	martia			<u> </u>				
N	ma of F	rowci	URBAN	TRANS	PORT STUD	<u>r</u>			Type of Dnille	<u>.</u>	ROTAR										ļ
Ha	ie, humb	Ľ	No.	<u>, 88</u> -	- 6 Elevator	1 : + 1	65.70	<u> </u>	Data i Ha	y 24 t	a 29,										ł
	Water Table : m. Dniler:GEOTEC								CHNIQU	<u>r</u>		MR.	LEE	2	L						
ε	6	e	ĺ		3		ansity Mercy		stran -					_		ition T	est a	Com	Recover	Y	
Sole n	มีครับ	• tt •	Thetrass	legend	10 a	5 S	Relative Density or Consistency		Gereral R.	Depth in M.	Sending to Lat	N.Y.K.	Blo eat	ns Pr ch 15	5	1	- 0 2	<u>(#!</u>)			
	65.10		0.60	-74	Saudy Clay	Uark Grey		WICH G	21010					-	-		<u> </u>	Care R	acovert	<u> </u>	-
				-					ORE gravel.	1.68						••••]
4				8	Clayey	fellow Lah	Hedium			1.98	<u>P-1</u>	26	(7)	14	12	••••		·•			••••
	h2.65	<u>1.09</u> 3.65	2.45	(Sand Boulder	Grey	Dense	Gra	nite											002	
<u>.</u>								With m	Tavel (\$20	4.73						••••				1	
<u> </u>				Å	Clayey	Light	•	-40 🚥	·)_ ∓ .	5.03	P-2	44	$\frac{m}{2}$	22	20		<u> </u>	••••		\sim	
<u>د</u>	59.30	6.40	2.75		Sand	Brown	"Dense	Weathe	red granite	6.10 0.40	P-3	50	18	50	-					·	<u>\</u>
<u> </u>				† †				Core 1 to 250	ength is 20							om ti			•••••	•••••	••
- I		ļ		+/+			•	20 230			in c	olou		ana		e br		[••••		••••
				A +/						{			·				})0 z	
<u></u>				≯ /+					ength is 500 mm.							 	<u></u>	 	<u> </u>	}	·]
뿌			•	ŦŦ				No ala	y at joints							••••		····	} .		
				++					, me jointe	Ī					l	 		}	 -	 -	[]
-				\star					ces of the are fresh							 	<u>}</u>	<u>+</u>	}	<u>-</u>	[]
<u> </u>				 ≁+			•	of oth	t any trace ar material		:		1		ł		<u> </u>			}	
<u>н</u>				++					a firmly tact with							 	• - • •	 	<u> </u>	.]]
-	48.90	16.80	10,40	++	Grenite	Grey	Hard										<u> </u>			} -	
<u>}</u> -								<u> </u>		<u> </u>	+	+	┢	┼╌	┢	<u> </u>	<u> </u>	 	<u> </u>	 	
<u>с</u> .					End of D	illin.									l	 				<u>}</u>	
							ł									 	· ····			}	<u></u>
	1					<u> </u>	<u> </u>					1				<u> </u>		<u> </u>	 	1	

.

•• --

.

.

.

			-		FIG. 1	.16	DR	LLING LO	3			,		Remaras	:
-					ORT STUDY			Type of Drda							;
hç	<u>Nano</u>	¥	N	<u>вн</u> -			-	m Date : Huy 2							Í
<u> </u>					<u>4119</u>			0 m. Duller (GEOT	CUNIQ		()	<u></u>	hơ j		
E	E 5	2 .6	3		ઝે		Dens () Sterci	Renard	F					ation Test of Com Recovery	
in an an an an an an an an an an an an an	Centor	500	Theires	legerd	Type of	Catar	Relative Density or Consulercy	General Remark	Deptermm	Serving to Leo	EH VA	eact ia + e	15cm	<u>(HYaius)</u> 10 20 30 40	
	12,80	0,90	0.90	ŧΝ	Top soil Silty Sand	Brown	Loose	With some gravel	0.46	8-1	4	Ð	2 2	Core Recovert	
-		2.00	1.00		Clayey Sand with		Very		1.68 1.98	<u> 2-7</u>	3	5	2 1		
1	15.90	2.80	1.90	···	Gravel	arown	LOONE		3.05	UD-1					
_						Red- dish			3.51 <u>1.67</u> 3.97	P-]_	1	2)	3 4		
1						Ye 110	r		4.73	<u>P-4</u>	n	5	۰lı	· · · · · · · · · · · · · · · · · · ·	-
1					Sandy Clay	Brown	Madium to Stiff		6.26						
4	• 32.0	6,70	3.90				51111		5.56	<u> </u>	14_	6)	<u>5 8</u>	••••••••••••••••••••••••••••••••••••••	
	• 30.45	8.25	1.55	••	Granite Boulder	Grey	Hard		8.25						001
1			ļ	<u>F-1</u>			1	: -	0 11	¥-6					
ц.	28.60	10.10	1.85	<u> -</u> -	Sandy Clay	Brown	Hedium	Residual soll of granity.	7.61	P-7	117	7)	8 9		ļ
1	27.40	11.30	1.20	$\left(\begin{array}{c} \bullet \\ \bullet \end{array} \right)$	Granite Boulder	Gran	Hird								
프			1		PSULLEL.										
Ш						tellov Brown		Weathered granit	12 8	<u>9-9</u>	52	rie	<u>25 2</u>		
L.	24.50	14.20	2.90		Silty Sand	iith Red Parchs	Dense		11.8	P-9	50		ر د اد در		-
<u>.</u>					···										
ے بال	22.50	16.20	2.00		Silty Sand	ish	Very Dense	Weathered granits	15.40	<u>r-10</u>	50	-	- -		N > 50
	21.60		†		Granite Boulder	Light			1	Co		ze	10	tout tom. sog	•
-							<u> </u>	Veathered	8.09		50				R.> 50
12					Siley	Light		Branite	18.19	<u>r-11</u>	TO.	-			
	19.15	19.55	2.45	厚	Sand	Grey		l	19.55	P-12	10	14	Rebou	ded)	
1		ł		F++						ļ			ļ	soz	···· •
		•		THE PARTY		1		Cores of gravel size (15-40 mm)		Crack	in in	er	1	are 15 to 40 mm.	
24	15.80	22.90	3.35	1	Granite	Grey	Hard	were obtained.		Verti I	da1	tra	ka v	ure Edund:	• •
					End of		n x								1
							ĺ								· · · • · · · · · · · · · · · · · · · ·
- <u>-</u>	1						1						ŀ		

.

	FIG. 1.17 DRILLING LOG													marks				-
ta	the_of ∣	Project	URBAN	TRAN	SPORT STUD			Type of Dralia		 ARY (B.B.S.10	ŋ .						
-	in Numr			, BH-8		n : +2(),40	m. Dete 1 Huy 2				-						
					Water		21-3.97					(ho)	L					
	đ				~		fe 5	¥ I		_	Şlandard	Paneltz	ton T	est or	Care R	acover	 V	1
E	.s 5	8	а		3. a		Relative Density or Constancy	للمتعا لاستواد	Ē,	20	Bioes	,					, 	
3	Develo	8	Thebres	pudar	1. 1. 1. 1.	5	63	5	Depth en m	Sending to Let				 0 20	(N V.		<u> </u>	
F	<u> </u>																	
1				j f	61			With roots of trees.	0.46	P-1	7 2) 4	3	•		care Re	xovern	٤ +	
\mathbf{I}	18.55	1.85	1.85	۰.	Clayey Sand	Dark Grey	Hedium	· ·	1.51				1					
					Silty			With traces of	는 11 +	P-2	<u> </u>	2 4	•	}			••••	•••
-	17.35	3.05	1.20	÷	Sand	arown	Loose	gravel.	3,20	P-3	9 21	6 5	·./·	<u>├</u> •••		••••	•••••	• -
1	Ì			-		reyis							•••••	A	}		••••	
		1		::::F		Brown		With some gravel.	4.73	P-4	23 (5)1	1 12			•		! l	
	:																	
			۰.		Clayey	Light	Looss		0.35	<u>p-5</u>	23 (5)	11 12	• • • • •	 	[}	••••		
1 -	13,10	7.30	4.25	-	Sand		to Nedium		7.78						Į}	····		•••
										P-6	20 (5	9 11		ļ				
9		Į			Sanda	tellov E Red-		With a lot of and.	9.30					i A				.,
	10.65	9.75	2.45	[-]	Clay	ish Trown	Stiff		9.50	P-7	16 (6)	8 8	•-••				••••	
<u>F</u>				1 i s	Clayey	Light		Size of gravel is					• • • • •	}/···		••••		
<u> </u>	+9.10	11.30	1.55		Sand with Gravel	Brown	en Logee	2-5 22.		P-8	10 (3)	46	• • • •	•	· • • • • • •	••••		••••
<u>u</u>		[vellow	+		12.20	JD-2-								
 	+7.15	13.25	1.95			ish & hitis	Loose	With some gravel.			6 (4)	3 3						
		<u> </u>				rovn	LOOSE		113.88					[]				
14		ļ				t			15-18	<u>P-10</u>	5 (5)	23			•••••	• • • •		
<u> </u>	.4.70	15.70	1	-+	Sandy Clay	Yellow Seh	Neger Same	With rad patches.	15.25				\	ł				
1		13.70	2.43			<u>lärmn</u>	neu L Ga			UD-3	16 (9)	9 7		$[\Lambda]$				
, ,		}		┣-┩		1		With some gravel			17 (7)							
		1	1			Í		1	17.37	r-12	17 (7)	B 9			••••		••••	
			1	-	Sandy	Reddi	h Mad ium		18.45	P11	18 /01	A 10	·	∱ ••}•	•••••			• · · •
<u>.</u>	+1.20	19.20	3.50		Clay		Dense	Weathered granite	11.15	1-13			. . .	į s				
		i L	1	<u> </u>				The soil retains	19.96						$\left \right\rangle$		ļ	
		ļ	·	┝╶╣	1		1	the texture of granits.	20 28	<u>P-14</u>	10 (8)	1913	1			N		1
		۱.				1	1		21.50	8-15	40 (7	17 23		· • • • • •		[.]		r 1
1		:	1	-				1. A. A. A. A. A. A. A. A. A. A. A. A. A.					 	· [· · · ·]	• • • •	/	••••	•••
		ŧ	•			Beddia		Highly decomposed 2		P-16	35 0	17 18	.	. 	••••	J		
1 :		1 •	1	<u> -</u> -		d grej (ah	1.	granite.					1	.		Ν.	İ	
		i . 	 0 0.92	╞╶┤	Sandy	Brown Dark			24.55	9-17	40 (8)	<u>19</u> 21		[$ \rangle$		•
	[· · · · · ·			Clay "	Brown	Hard	1	15.70	P-18	50(10)	20, 3(1	· • • • •		•		•
	14	·	-		End of	 DFIII	1						···	1 :	r -		:	
ł			4		1				1				1	•		•	1	
[.			1 1				!			•			1 -		;		_	
	1		;	1	1	ĺ				· ·			ĺ	•				
L	1		·			1	1	•	<u> </u>			:	1					

· · ·

··· ·· ·· ·

SUMMARY OF SOIL TEST

Urban Transport Study in Penang JIS Standard: _____ Project: Borehole No. BH-1 P-16 Sample No. UD-3 UD-7 UD-2 UD-5 P-20 P-24 2.44 36.75 6.10 2.6]8.3 " 30.67 30.9 E E E 25.0 m 25.3 m m 1 0 Sample depth Disturbed Disturbed Disturbed Disturbed Disturbed Condition of sample Undisturbed Undisturbed Undisturbed Undisturbed Undisturbed Undisturbed Undisturbed Undisturbed Undisturbed % 76.4 12.6 78.1 76.5 78.4 57.1 Natural water content, 47.6 2.568 2.617 2.638 2.636 Specific gravity 2.671 2.664 2.642 Wet density, g/cm³ 1.52 2.14 1.54 1.55 Dry density, g/cm³ 0.87 1.90 0.87 0.88 -Natural void ratio 1.961 0.377 2.089 2.034 ----Degree of saturation , % 100.0 87.5 100.0 100.0 -Atterberg limits . % 129.0 42.1 119.2 117.2 Liquid limit 88.5 101.1 74.0 Plastic limit . % 51.5 14.0 35.7 37.6 28.2 31.5 23.2 77.5 28.1 83.5 79.6 **Plasticity** index 60.3 69.6 50.8 Gravel , % 0 18 0 0 0 0 , % Sand 3 29 1 3 16 12 Grain size analysis Silt , % 2] 19 31 27 15 30 Clay & colloid . % 76 34 68 70 69 58 Max. diameter, mm 4.76 0.84 0.42 0.84 2.00 4.76 Diam. at 60% 0.0018 0.52 0.0029 0.002 0.0018 0.0065 Diam. at 10% Silty Silty Clay Sandy Silty Silty Silty Visual soil description Clay **Clay** C1<u>ay</u> Clay Clay Unified soil classification -_ -_ -Undisturbed Unconfined compression test 0.20 0.38 1.09 0.58 ---sample, kg/cm² Remoulded sample, kg/cm² -••• Sensitivity ratio - .. -_ -_ -3.5 -12.0 9. 2.0 Strain at failure,% ī4.2 (20)~5.9 Angle of Triaxial compres -sion test 00 00 ~ internal friction _ -0.15 Cohesion, kg/cm² 0.14 -----Condition of U-U U-U drainage -------Consoli-dation test Preconsolidation pressure, kg/cm² 0.95 3.0 _ -_ -----Compression index 0.81 1.75 ----Remarks:

Condition of sample Unamone Unamone <th></th> <th>Table 1.4</th> <th>S</th> <th>ummary</th> <th>OF SOI</th> <th>L TEST</th> <th>•</th> <th></th> <th></th> <th></th> <th></th>		Table 1.4	S	ummary	OF SOI	L TEST	•				
Sample No. UD-1 UD-2 UD-3 P-1 P-2 P-6 P-12 Image: Constraint of the state of the	Projec	Urban Transp	ort Stu	dy in Pe	enang	Stand	lard:	. JI	S		
Sample depth 0.92 m 1.37 m 1.37 m 1.2.00 m 1.83 m 1.95 m 1.9	Boreho	ole No.				BH-1'			<u> </u>		
Condition of sample Database Underside Unders	Sample	No.	UD-1	UD-2	UD-3	P-1	P-2	P-6	P-12		
Condition of sample Database Unsultive Unsult	Sample	depth	0.92 m	3.05 m 3.51 m	12.20m 12.69m	1.53m 1.83m	3.66 m 3.96 m		18.45 ⁿ 18.75 ^m	Ë - Ë	₽
Specific gravity 2.648 2.596 2.637 2.619 2.591 2.654 2.619 Wet density, g/cm ³ 1.64 2.02 - - - -	Conditio	on of sample	Disturbed	Disturbed	Disturbed	Disturbed	Disturbed		Disturbed		Disturbed Undisturbed
Wet density, g/cm ³ 1.64 2.02 -	Natural	water content, %	110	25.2		102	30.3	36.1	13.3		
Dry density, g/cm ³ 0.70 1.61 - </td <td>Specific</td> <td>c gravity</td> <td>2.648</td> <td>2.596</td> <td>2.637</td> <td>2.619</td> <td>2.591</td> <td>2.654</td> <td>2.619</td> <td></td> <td></td>	Specific	c gravity	2.648	2.596	2.637	2.619	2.591	2.654	2.619		
Natural void ratio 2.747 0.609 -	Wet den	sity, g/cm³	1.64	2.02		-	-	-	-		
Degree of saturation , % 100.0 100.0 - <	Dry der	nsity, g/cm³	0.70	1.61		-	-	_	-		·
Basic Liquid limit % 88.9 47.4 99.0 128.8 - 85.5 32.8 Plastic limit % 30.8 21.7 30.8 41.1 - 25.9 13.8 Plasticity index 58.1 25.7 68.2 87.7 - 59.6 19.0 Sand ,% 4 49 2 4 55 23 47 Sand ,% 8 7 26 3 13 6 11 Clay & colloid % 88 21 72 92 26 62 25 Max. diameter, mm 2.00 9.52 0.42 4.76 4.76 4.76 Diam, at 60% - 0.87 0.0014 - 0.44 0.0034 0.61 Diam. at 10% - - - - - 0.0098 - - Visual soil description S11ty S11ty S11ty S11ty Clay	Natural	void ratio	2.747	0.609		-	-	-			
Image: Street Plastic limit 0000 0111 0210 1011 0210 0010 0111 0210 0010 0111 0210 0010 0111 0210 0010 0111 0210 0010 0110 0010 0010 0110 0010 <t< td=""><td>Degree</td><td>of saturation , %</td><td>100.0</td><td>100.0</td><td></td><td>-</td><td>-</td><td>-</td><td>~</td><td></td><td></td></t<>	Degree	of saturation , %	100.0	100.0		-	-	-	~		
is Gravel ,% 0 23 0 1 6 9 17 Sand ,% 4 49 2 4 55 23 47 Silt ,% 8 7 26 3 13 6 11 Clay & colloid % 88 21 72 92 26 62 25 Max. diameter, mm 2.00 9.52 0.42 4.76 4.76 4.76 4.76 Diam. at 60% - 0.87 0.0014 - 0.44 0.0034 0.61 Diam. at 10% - - - - 0.0098 - - Visual soil description Silty Clayey Silty Clayey Silty Clayey Sand Silty Clayey Sand Clay Sand Clay Sand Clay Sand Unified soil classification - - - - - - - Sensitivity ratio - - - - - - - - Sensitivity ratio - - - - - -	Ð	Liquid limit , %	88.9	47.4	99.0	128.8	-	85.5	32.8		
Image: State Gravel % 0 23 0 1 6 9 17 Sand % 4 49 2 4 55 23 47 Silt % 8 7 26 3 13 6 11 Clay & colloid % 88 21 72 92 26 62 25 Max. diameter, mm 2.00 9.52 0.42 4.76 4.76 4.76 4.76 Diam. at 60% - 0.87 0.0014 - 0.44 0.0034 0.61 Diam. at 10% - - - - 0.0098 - - Visual soil description Silty Clayey Silty Clayey Silty Clayey Sand Silty Clayey Sand Clay	erbe nits	Plastic limit , %	30.8	21.7	30.8	41.1	_	25.9	13.8		
Sand ,% 4 49 2 4 55 23 47 Silt ,% 8 7 26 3 13 6 11 Clay & colloid ,% 88 21 72 92 26 62 25 25 Max. diameter, mm 2.00 9.52 0.42 4.76 4.76 4.76 4.76 Diam. at 60% - 0.87 0.0014 - 0.44 0.0034 0.61 Diam. at 10% - - - - 0.0098 - - Visual soil description Silty Clayey Silty Clayey Silty Clayey Sand Silty Claye Sand Sand Clay Sand Sand Clay Sand Unified soil classification - - - - - - - - Sensitivity ratio - - - - - - - - Sensitivity ratio - - - - - - - - - - Sensitivity ratio -	Att	Plasticity index	58.1	25.7	68.2	87.7	-	59.6	19.0		
Silt ,% 8 7 26 3 13 6 11 Clay & colloid , % 88 21 72 92 26 62 25 Max. diameter, mm 2.00 9.52 0.42 4.76 4.76 4.76 Diam. at 60% - 0.87 0.0014 - 0.44 0.0034 0.61 Diam. at 10% - - - - 0.0098 - - Visual soil description Silty Clayey Sand Silty Clayey Sand Silty Claye Sand Clay Sand Clay Sand Clay Sand Unified soil classification Undisturbed sample, kg/cm ² 0.054 0.144 0.639 - - - Sensitivity ratio - - - - - - - - Sensitivity ratio - - - - - - - - - Sensitivity ratio - - - - - - - - Sensitivity ratio - - - -		Gravel , %	0	23	0	1	6	9	17		
Diam. at 10%0.0098Visual soil descriptionSilty ClaySilty SandClayey ClaySilty ClaySilty ClayClayey SandSilty ClayClayey SandSilty ClayClayey SandSilty ClayClayey SandSilty ClayClayey SandSilty ClayClayey SandSilty Clayey SandClayey SandSilty ClayClayey SandSilty Clayey SandClayey SandSilty Clayey SandClayey SandSilty Clayey SandClayey SandSilty Clayey SandClayey SandSilty Clayey SandClayey SandSand<	is.	Sand ,%	4	49	2	4	55	23	47		
Diam. at 10%0.0098Visual soil descriptionSilty ClaySilty SandClayey ClaySilty ClaySilty ClayClayey SandSilty ClayClayey SandSilty ClayClayey SandSilty ClayClayey SandSilty ClayClayey SandSilty ClayClayey SandSilty Clayey SandClayey SandSilty ClayClayey SandSilty Clayey SandClayey SandSilty Clayey SandClayey SandSilty Clayey SandClayey SandSilty Clayey SandClayey SandSilty Clayey SandClayey SandSand<	alys	Silt , %	8	7	26	3	13	6	11	· · · · · · · · · · · · · · · · · · ·	
Diam. at 10%0.0098Visual soil descriptionSilty ClaySilty SandClayey ClaySilty ClaySilty ClayClayey SandSilty ClayClayey SandSilty ClayClayey SandSilty ClayClayey SandSilty ClayClayey SandSilty ClayClayey SandSilty Clayey SandClayey SandSilty ClayClayey SandSilty Clayey SandClayey SandSilty Clayey SandClayey SandSilty Clayey SandClayey SandSilty Clayey SandClayey SandSilty Clayey SandClayey SandSand<	e an	Clay & colloid , %	88	21	72	92	26	62	25		
Diam. at 10%0.0098Visual soil descriptionSilty ClaySilty SandClayey ClaySilty ClaySilty ClayClayey SandSilty ClayClayey SandSilty ClayClayey SandSilty ClayClayey SandSilty ClayClayey SandSilty ClayClayey SandSilty Clayey SandClayey SandSilty ClayClayey SandSilty Clayey SandClayey SandSilty Clayey SandClayey SandSilty Clayey SandClayey SandSilty Clayey SandClayey SandSilty Clayey SandClayey SandSand<	n siz	Max. diameter , mm	2.00	9.52	0.42	4.76	4.76	4.76	4.76		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Grair	Diam. at 60%	-	0.87	0.0014	-	0.44	0.0034	0.61		
Visual soli description Clay Sand Sa	•	Diam. at 10%									
Unified soil classification Undisturbed sample, kg/cm ² 0.054 0.144 0.639 -	Visual s	oil description		Clayey Sand			Clayey Sand	Silty Clay			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Unified	soil classification									
Angle of	- 5	Undisturbed sample, kg/cm ²	0.054	0.144	0.639	-	-	-	-		
Angle of	lfine essi	Remoulded sample, kg/cm ²	-	-	• -	-	-	-	-		
Angle of	and a	Sensitivity ratio	-	-	_	-	-	-	-		
* * * Angle of internal friction 0° 0° 0° - - - - * * E Cohesion, kg/cm² 0.04 0.12 0.32 - - - - - * E O O O 0° 0.32 - - - - - Cohesion, kg/cm² U-U U-U U-U U-U - - - - - Condition of drainage U-U U-U U-U U-U - - - - - Preconsolidation pressure, kg/cm² 0.15 - 0.5 - - - - - Compression index 1.20 0.11 1.29 - - - - - Remarks : - - - - - - - - - -	<u>⊐8</u> ₽		(20.0)	14.5	2.0	-	-	-	-		
Image Cohesion, kg/cm² 0.04 0.12 0.32 - - - - Image U-U U-U U-U U-U -	st -	Angle of internal friction	0 ⁰		00		-	-	-		
Image U-U U-U U-U U-U - <	axia npre n te	Cohesion, kg/cm ²	0.04	0.12	0.32	-	-	-	-		
Preconsolidation pressure, kg/cm ² 0.15 - 0.5 -	sio III		U-U	U-U	U-U	-	-	-			
Set Compression index 1.20 0.11 1.29 -	500	Preconsolidation pressure, kg/cm ²	<u> </u>	-	· · · · ·			-	-		
Remarks:	te te C	Compression index	1.20	0.11	1.29	-	-	-	-		
Remarks:											
Remarks:	ļ			L	<u> </u>	<u> </u>		<u> </u>	L		
- 24 -	Remar	ks:				- 24 -					

Table 1.5 SUMMARY OF SOIL TEST Project: Urban Transport Study in Penang Standard: JIS														
Projec	t: Urban Transpo	ort Stud	y in Per	nang	Stand	lard:	JIS	; 						
Boreho	ole No.					BH- 2								
Sample	No.	P-1	P-4	P-8	UD-1	UD-3	P-15	<u>P-18</u>	P-21	P-25				
Sample	depth	1.05 m 1.35 m	4.7 m 5.0 m	10.8 m 11.1 m	13.7 m 14.2 m	16.8 m 17.2 m	20.0 20.3	26.1 m 26.4 m	31.0 m 31.3 m	35.2 m 35.5 m				
Conditio	on of sample	Disturbed Unristurbed	Disturbed Undisturbed											
Natural	water content, %	9.72	14.3	14.4	77.3	78.1	17.6	12.6	39.9	14.5				
Specific	; gravity	2.609	2.611	2.619	2.646	2.642	2.606	2.641	2.612	2.611				
Wet den	sity, g/cm ³	-	-	4	1.60	1.53	-	-	-	·-				
Dry der	nsity, g/cm³		-	_	0.90	0.86	-	-	-	-				
Natural	void ratio		-	-	1.932	2.075		-	-	-				
Degree	of saturation , %	-	-		100.0	100.0	-	-	-	-				
5	Liquid limit , %	-			126.1	130.5	_		42.1	_				
Atterberg limits	Plastic limit , %	-	-	-	44.2	50.5	-	-	22.6	-				
Attellim	Plasticity index	- -	-	-	81.9	80.0	_		19.5	-				
	Gravel , %	25	35	13	0	0	22	31	0	11				
2	Sand , %	71	63	84	1	1	73	67	1	80				
Grain size analysis Area of the size analysis	Silt , %		2	3	9	7	5	.2	39	9				
	Clay & colloid , %	4	2	. 3	90	92	5		60					
size	Max. diameter , mm	4.76	9.52	4.76	0.25	0.25	9.52	4.76	0.25	4.76				
irain	Diam. at 60%	1.40	1.80	1.30	-	-	1.50	1.70	0.0053					
	Diam. at 10%	0.55	0.85	0.65	-	-	0.52	0.50	-	0.15				
Visual s	oil description	Sand	Sand	Sand	Silty Clav	Silty Clay	Sand	Sand	Silty Clay	Silty Sand				
Unified	soil classification		•											
	Undisturbed sample, kg/cm ²		-	-	0.77	0.70			<u> </u>					
Unconfined s- compression st test	Remoulded sample, kg/cm ²	-		-										
три и три	Sensitivity ratio		-	-	-	-								
5 Š ₽	Strain at failure,%				1.7	2.03.8	<u> </u>							
	Angle of internal friction	-	-		00	00								
Triaxial compres - sion test	Cohesion, kg/cm ²	-	-	-	0.50	0.45								
iria Con	Condition of drainage	_	_	_	U-U	U-U								
₫⊊	Preconsolidation pressure, kg/cm ²	-		-	2.7	3.4								
Preconsolidation pressure, kg/cm22.73.4State StateCompression index1.311.35														
Remar	 ks:	I	L	- 25	-	L	L	I	L	L				

Proje	ct:				Stand	lard:	JI	<u>ې</u>		
Boreh	ole No.			BH-3	- 	, <u>.</u> .				
Sample	No.	UD-1	P-2	P~5	P-7	P-12		•		
Sample	depth	0.00 m 0.45 m	2.60 -	6.26 m 6.56 m	9.38 m 9.63 m	18.45 18.75	т 1 П	E-E	E-E	, ,
Conditi	ion of sample	Disturbed Undisturbed	Disturbed Undisturbed	Disturbed Undisturbed	Disturbed Undisturbed	Disturbed Undisturbed	Disturbed Undisturbed	Disturbed Undisturbed	Disturbed Undisturbed	Disturbed Undisturber
Natura	l water content, %	63.6	32.2	19.6	15.3	19.1				
Specifi	c gravity	2.639	2.624	2.606	2.597	2.594				
Wet de	nsity, g/cm³	1.66	-	-	-	-				
Dry de	nsity, g/cm³	1.02	-	-	-	-				
Natural	l void ratio	1.601	-	-	-	1				
Degree	of saturation , %	100.0	-		-	-				
ចួ	Liquid limit , %	51.0	47.8	-	-	-				
Atterberg limits	Plastic limit , %	20.8	19.2	-	_	-				
Atte lin	Plasticity index	30.2	28.6	_		_				
	Gravel , %	9	19	8	16	10				
5	Sand , %	26	38	55	46	61				-
alysi	Silt , %	18	11	2	2	10				
e an	Clay & colloid , %	47.	32	35	36	19	·			
Grain size analysis	Max. diameter, mm	4.76	9.52	4.76	9.52	4.76				
Grair	Diam. at 60%	0.038	0.33	0.55	0.66	0.60				
Ŭ	Diam. at 10%		_	_	-	0.0011				
Visual :	soil description	Sandy Clav	Sandy Clav	Silty Sand	Clayey Sand	Silty Sand				
Unified	soil classification		U I U		Jana	Juna				
ъŚ	Undisturbed sample, kg/cm ²	0.03	~	-	-	-		·		
erii essi	Remoulded sample, kg/cm ²		-		-	_				
Unconfined compression test	Sensitivity ratio		-	-	-	-				
<u>⊐ 8 ₽</u>	Strain at failure,%	(20)	-	_	-	_				
cial Dres - test	Angle of internal friction	-	-	-	-	_				
		-	-	-		-				
Tria) com	Condition of drainage		-	~	-	-			·	
Consoli- dation test	Dropppeolidation	-	-	-	-	- !				
Consol dation test	Compression index	_ ·	-	-	-	~				

Table 1.7 SUMMARY OF SOIL TEST Urban Transport Study in Penang JIS													
Projec	Urban Transp	ort Stu	dy in Po	enang	Stand	lard:	J	S	<u></u>				
Boreho	ole No.	<u> </u>	<u></u>		,	BH-4			·				
Sample	No.	UD-1	00-1 (2)	UD-3	P-6	P-11	P-15	P-18	P-21	P-23			
Sample	depth	2.6 m 3.1 m	3.1 m 3.6 m	6.26 m 6.55 m	9.8 m 10.1 m	16.9 m 17.2 m	23.0 m 23.3 m	27.6 m 27.9 m	33.7 m 40.0 m	39.8 m 41.1 m			
Çonditi	on of sample	Disturbed Undisturbed	Disturbed Undisturbed	Disturbed Undisturbed	Disturbed Undisturbed	Disturbed Undisturbed	Disturbed Undisturbed	Disturbed Undisturbed	Disturbed Undisturbed	Disturbed Undisturbed			
Natural	water content, %	44.1	27.4	16.9	17.8	22.2	20.3	27.2	15.9	29.8			
Specific	: gravity	2.567	2.612	2.603	2.584	2.584	2.593	2.602	2.614	2.622			
Wet den	sity, g/cm³	1.74	1.94	2.12	-	-	_	-	-	-			
Dry der	nsity, g/cm³	1.21	1.52	1.81	-	_	-	-	-	-			
Natural	void ratio	1.126	0.715	0.435	-	_	-	I	1	-			
Degree	of saturation , %	100.0	100.0	100.0	1	-	-	-		-			
<u>B</u>	Liquid limit ,%	49.0	75.3	80.1	82.6	80.3	-	60.5	-	54.7			
Atterberg limits	Plastic limit , %	21.9	23.3	23.5	29.9	28.9	-	23.1	-	34.1			
Att	Plasticity index	27.1	52.0	56.6	52.7	51.4	-	37.4	-	20.6			
	Gravel , %	3	11	26	10	8	. 3	1	15	2			
Xis.	Sand , %	25	23	43	-33	42	29	53	61	40			
Grain size analysis	Silt , %	12	8	6	31	22	36	10	2	31			
18 91 19	Clay & colloid , %	60	58	25	26	28	32	36	22	27			
in si	Max. diameter, mm	4.76	4.76	4.76	4.76	9.52	4.76	4,76	9.52	4.76			
Grai	Diam. at 60%	0.0053	0.011	1.1	0.12	0.44	0.0062	0.17	1.15	0.11			
	Diam. at 10%	-	-	-	-	-		-	-	-			
Visual s	oil description	Sandy Clay	Sandy Clay	Clayey Sand	Clayey Sand	Clayey 'Sand	Clayey Sand	Sandy Clay	Clayey Sand				
	soil classification												
g.g	Undisturbed sample, kg/cm ²	0.20	-	0.30	-	-	-	-	5	_			
Unconfined compression test	Remoulded sample, kg/cm ²	_	-	-	-	-	-	-	-	-			
inco est est	Sensitivity ratio	-	-	-	-	-		-	-	-			
تە ن ب 	Strain at failure,%	14 ~(20)	-	5.1 ~9.0	-	-	-	-	t				
cial pres - test	Angle of internal friction		0 ⁰	24°, 0°	-	-	_		-	-			
Triaxial compres sion test	Cohesion, kg/cm ²	-	0.18	0.15,1.14	-	-	-		-	-			
	Condition of drainage		U-U	U-U,	-	-	-		-	-			
Consoli- dation test	Preconsolidation pressure, kg/cm ²	0.57	(1.25)	(>2.0)		_	-		_	-			
<u>8</u> <u>8</u> <u>8</u>	Compression index	0.41	0.16	0.08	_	-	-	-	-				
Bomawi													

Remarks:

Proje	ct:	ort Stu	dy in Pe	nang	Stand	lard:	JI	<u>s</u>		
Boreh	ole No.	BH 5	<u> </u>		- /-	BH-7				
Sample	No.	D		UD-1	P-2	P-3	P-5	P-7		
Sample	depth	r. t.	m 1 m	3.05m 3.50m	1.68 m 1.98 m	3.67 m 3.97 m	6.26 m 6.56 m	9.31 m 9.61 m	m † m	
Conditi	on of sample	Disturbed Unristurbed	Disturbed Undisturbed							
Natura	water content, %	22.6		14.8	14.3	24.5	18.1	17.9		
Spēcifi	c gravity	2.579		2.610	2.588	2.601	2.600	2.609		
Wet der	nsity, g/cm³	-		2.00	-	-	-	**		
Dry de	nsity, g/cm³	-		1.74	-	-	-	-		-
Natural	void ratio	-		0.498	_	-	-	-		
Degree	of saturation , %	-		77.5		-	-	-		
ຼູ	Liquid limit , %	62.7		58.9	-	-	57.6	→		
Atterberg limits	Plastic limit , %	30.7		22.0	-	-	22.4	-		
Atte	Plasticity index	32.0		36.9	<u></u>	-	35.2			
	Gravel , %	8		8	22	3	11	7	<u> </u>	
<u>.</u>	Sand , %	43		44	45	49	47	38		
alys	Silt , %	12		7	3	5	5	18		
e an	Clay & colloid , %	37		41	30	43	37	, 37		
Grain size analysis	Max. diameter , mm	4.76		4.76	4.76	4.76	9.52	4.76		
Grain	Diam. at 60%	0.22		0.29	0.64	0.27	0.36	0.15		<u> </u>
Ŭ	Diam. at 10%	_		-	-	-	-	-	·-··· ·	
Visual s	oil description	Clayey Sand		Sandy Clay		Sandy Clay	Sandy Clay	Sandy Clay		
Unified	soil classification	U						0.147		
<u>5</u>	Undisturbed sample, kg/cm ²			0.85	-	-	-	-		
afine 1655j	Remoulded sample, kg/cm ²			-	-		-	-		
Unconfined compression test	Sensitivity ratio			-	-		-	-		
582	Strain at failure,%			1.2			-	-		<u></u>
cial pres - test	Angle of internal friction			100	-	-	-	-		<u> </u>
Triaxial compres - sion test	Cohesion, kg/cm ²			0.36	-	-	-	-		. <u> </u>
	al all tall of			U-U	-	-	-	-		
ы Чор Гор	Preconsolidation pressure, kg/cm ²			(>1.5)	-		-	-		
Consoli- dation test	Compression index			(0.14)	-		-	-		

	Table 1.9		UMMARY	0F S03	IL TEST		<u></u>						
Projec	t: Urban Transp	ort Stud	y in Pe	nang	Stand	lard:	J	<u>IS</u>					
Boreho	ole No.				BH-8								
Sample	No.	UD-2	UD-3	P-1	P-4	P-7	P-13	P-15					
Sample	depth	12.2 m 12.7 #	15.3 m 15.8 m	0.5	3.2 m 3.5 m	9.3 m-m 9.6	18.5 m 18.8 m	21.5 m 21.8 m	É≁E	m 1 m			
Conditio	on of sample	Disturbed Undisturbed	Disturbed Undesturbed	Disturbed Undisturbed									
Natural	water content, %	20.0	24.5	19.2	18.9	18.7	26.9	23.0					
Specific	: gravity	2.605	2.620	2.588	2.600	2.616	2.631	2.632		.'			
Wet den	isity, g/cm³	2.00	1.82	-	-	-	-	-					
Dry der	nsity, g/cm³	1.67	1.46		-	-		-					
Natural	void ratio	0.563	0.792		-	-		-					
Degree of saturation , % 92.5 81.0 - <th< td=""></th<>													
Atterberg limits	Plastic limit , %	29.1	37.1	19.7	-		36.1	-					
Atte	Plasticity index	57.5	22.9	21.5	-	-	27.7	-					
	Gravel , %	9	7	1	9	21	30	20					
10	Sand , %	45	31	69	56	47	28	33]			
Grain size analysis	Silt ,%	15	26	10	5	7	20	22					
ane	Clay & colloid , %	31	26	20	30	25	. 22	25					
size	Max. diameter , mm	4.76	4.76	4.76	9.52	4.76	9.52	9.52					
rain	Diam. at 60%	0.48	0.28	0.63	0.85	1.25	1.40	0.64					
U	Diam. at 10%		-	-		-		-					
Visual s	oil description	Clayey	Sandy	Clayey	Clayey	Clayey	Clayey	Sandy					
	soil classification	_Sand	<u>Clay</u>	<u>Sand</u>	Sand	<u>Sand</u>	Sand	Clay					
	Undisturbed	0.97	1.05			_							
Den 55 o	sample, kg/cm ² Remoulded	-	-	-			-	-					
sonfi opre	sample, kg/cm ² Sensitivity ratio			,			<u></u>						
Unconfined compression test	Strain at failure,%		2.9		-	-		-					
	Angle of	8.5°, 0°	-8.9										
Triaxial compres - sion test	internal friction Cohesion, kg/cm ²	0.22,0.72	-	-	-	-		-					
Triaxial compre sion te	Condition of	U-U	-	1	-	-		-		<u> </u>			
	drainage Preconsolidation												
Consoli- dation test	pressure, kg/cm ² Compression index	(1.8) 0.21	-	-	-	-	-	-					
<u>078</u> 2	South Ession Hinds	0.41	0.30					_					
										<u></u>			
Remar	_1 ks:				I	}							
					- 29 -								

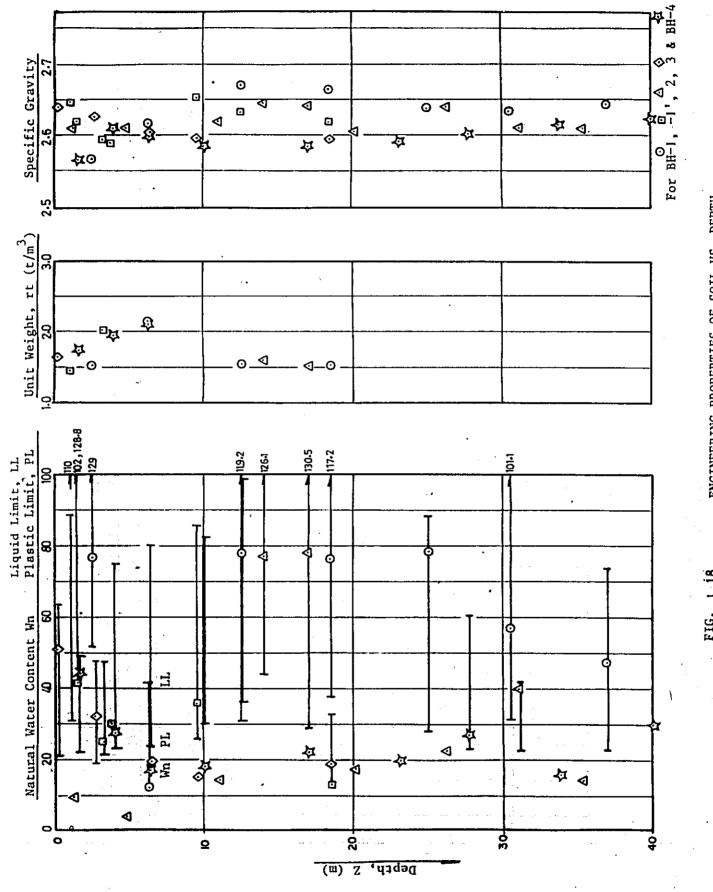


FIG. 1.18

ENGINEERING PROPERTIES OF SOIL VS. DEPTH

- 31 -

	Tab	le	1.	10
--	-----	----	----	----

.

NATURAL WATER CONTENT AND ATTERBERG LIMITS

Area	•	Natural	Atterberg Limits				
Area	Layer	Water Content	Liquid Limit	Plastic Limit	Plasticity Index		
	Clayey Layer	19-25%	60%	37%	23		
Hilly Area	Sandy Layer	19-20%	41-87%	20-24%	22-(58)		
Area	Residual Clayey Layer	14-27%	58-64%	22-36%	28-37		
	Residual Sandy Layer	23%	63%	31%	32		
	Upper Clayey Layer, Cu	76-110%	89-129%	31-52%	58-88		
	Middle Clayey Layer, C _m	22-78%	42-130%	23-51%	20-88		
Gurney Drive	Lower Clayey Layer, Cl 48%		74%	2372 ·	51		
& Offshore Area	Upper Sandy 10-41% Layer, S _u (64)		33-51% (83)	14-24% (30)	19-30 (57)		
	Lower Sandy Layer, S ₁	15-20%		-	-		
	Residual Clayey Layer	30%	55%	34%	21%		

.

2

Note: () = Abnormal Value.

b) Specific Gravity, Unit Weight and Void Ratio

Specific gravity and unit weight at natural water content vs. depth are shown in Figs. 1.18 and 1.19, Engineering Properties of Soil vs. Depth. The specific gravity (Gs) for any layer is generally in the range of 2.57 to 2.66. The unit weight and natural void ratio of soil at natural water content are shown in Table 1.11.

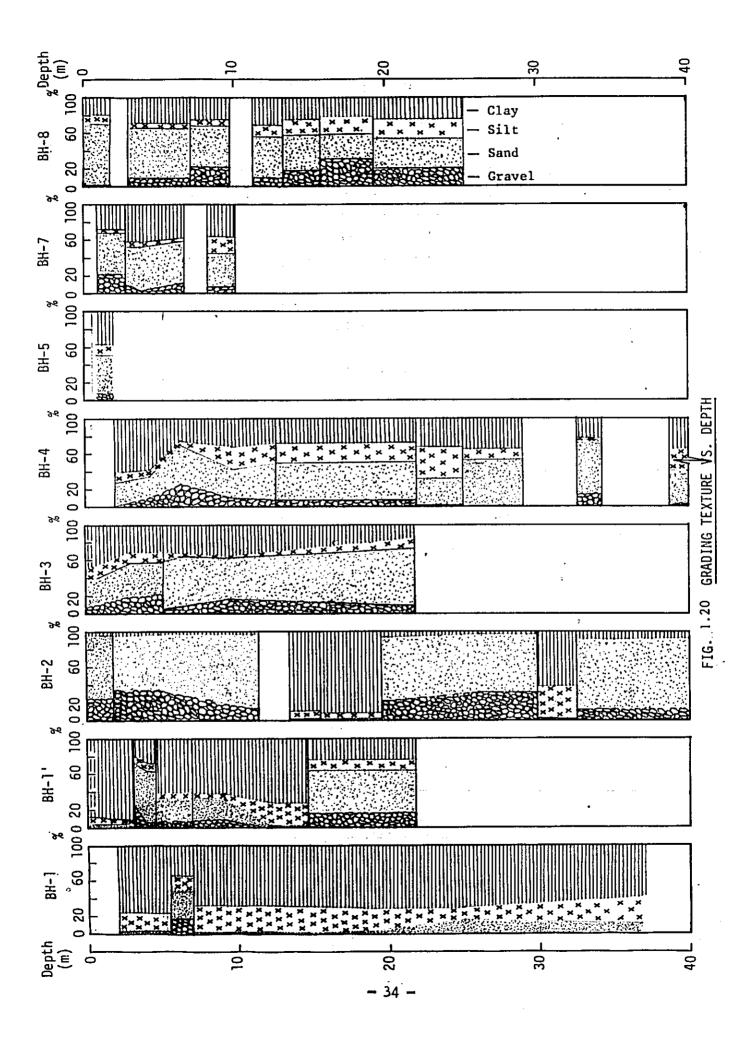

Area	Layer	Unit Weight	Natural Void Ratio
	Clayey Layer	$rt = 1.82t/m^3$	0.79
Hilly Area	Sandy Layer	2.00t/m ³	0.56
	Residual Clayey Layer	2.00t/m ³	0.50
	Upper Clayey Layer, Cu	$1.52 - 1.64 t/m_3^3$ (Ave. = 1.57t/m ³)	1.96 - 2.089 - (2.747) (Ave. = 2.02)
Gurney Drive &	Middle Clayey Layer, Cm	$1.53 - 1.60t/m_3^3$ (Ave. = 1.56t/m ³)	1.93 - 2.08 (Ave. = 2.01)
Offshore Area	Upper Sandy Layer, Su.	$(1.66) - 1.74_{3} - 2.14t/m^{3}$ (Ave. = 1.94t/m ³)	0.38 - 1.13 - (1.60) (Ave. = 0.65)

Table 1.11 UNIT WEIGHT AND NATURAL VOID RATIO

c) Grain Size Analysis

Grain size distribution curves of soil are shown in Fig. 1.20, Grading Texture vs Depth.

Grain size distribution for each layer is shown in Table 1.12.

Table 1.12 GRAIN SIZE DISTRIBUTION

Area	Layer	Clay & Colloid(%)	Silt(%)	Sand(%)	Gravel(%
	Clayey Layer	25-26	7-26	31-47	7-21
Hilly	Sandy Layer	20-31	5-15	45-69	1-9
Area	Residual Clayey Layer	22-41	3-22	28-49	3-30
	Residual Sandy Layer	37	12	43	8
	Upper Clayey Layer, C _u	68-92	3-31	1-4	0-1
	Middle Clayey Layer, C _m	28-72-(92)	6-39	2-42- (53)	0-9
Gurney Drive &	Lower Clayey Layer, Cl	, 58 ,	30	12	0
Offshore Area	Upper Sandy Layer, S _u	21-60	2-31	23-84	3-35
	Lower Sandy Layer, S ₁	19-36	2-10- (36)	29-46- (80)	3-16
	Residual Clayey Layer	27	31	40	2

,

•

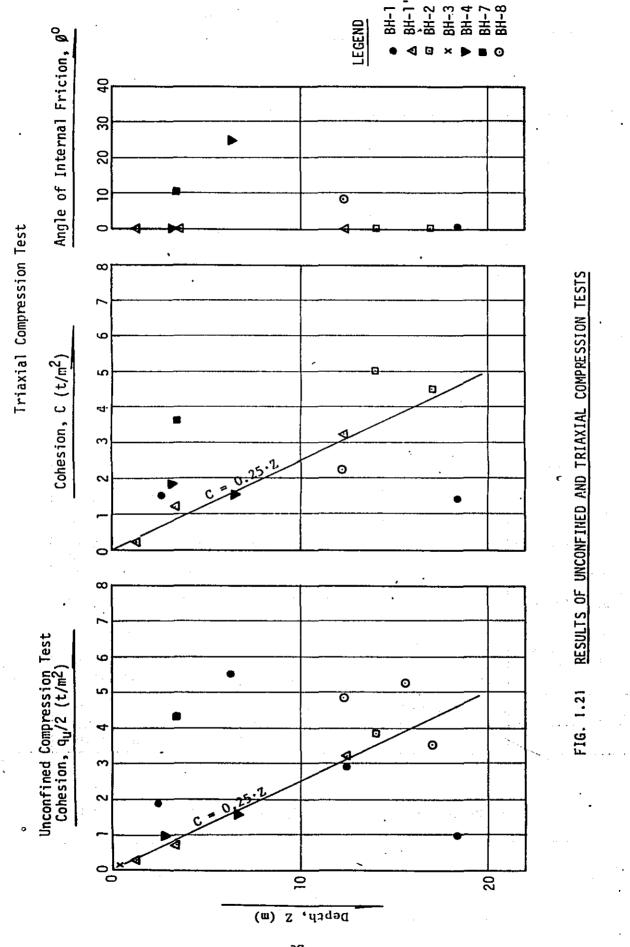
•

.

(2) Unconfined and Triaxial Compression Tests

Unconfined and triaxial compression tests were performed on undisturbed samples. Triaxial compression tests were carried out under unconsolidated undrained (U-U) condition.

Results of the tests are summarized in Tables 1.3 to 1.9 and are plotted in Fig. 1.21, Results of Unconfined and Triaxial Compression Tests.


.

Cohesion and angle of internal friction of each layer is tabulated in the following table.

Area	Ť	Unconfined Compression	Triaxial Compression Test			
	Layer	Test, $C = qu/2 (t/m^2)$	C (t/m ²)	ø (°)		
	Clayey Layer	5.25	-	-		
Hilly Area	Sandy Layer	4.85	2.2	8.5		
	Residual Clayey Layer	4.25	3.6	10		
Gurney Drive & Offshore Area	Upper Clayey Layer, C _u	(0.27) - 1.9 - 2.9	0.4 - 1.5	0		
	Middle Clayey Layer, C _m	(1.0) - 3.2 - 3.85	(1.4) - 3.2 - 4.5	0		
	Upper Sandy Layer, S _u	(0.72) - 1.0 - 1.5 - (5.5)	í 1.2 – 1.8 1.5	0 24		

Table 1.13 COHESION OF LAYERS

Cohesion vs depth for any layer is roughly given in the following formula: $C = 0.25 \cdot Z (t/m^2)$

2

- 37 -

(3) Consolidation Tests

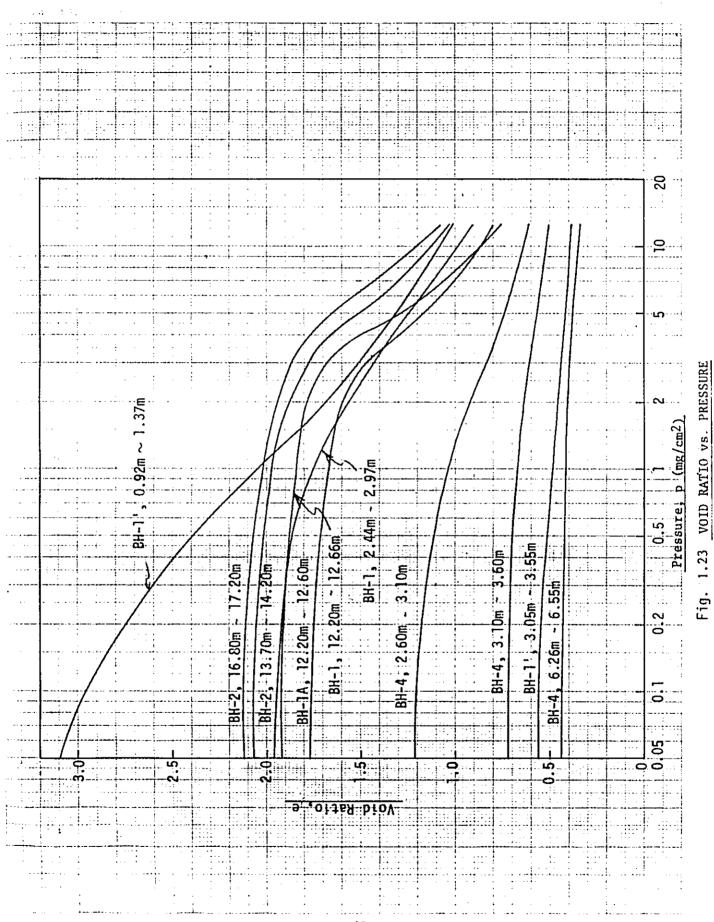
The test results are illustrated in Tables 1.3 to 1.9, Summary of Test .

Preconsolidation pressure and compression index versus depth is plotted in Fig. 1.22 and according to the figure, almost all layers are over-consolidated.

All e-log p curves obtained are plotted in Figs. 1.23 to 1.24.

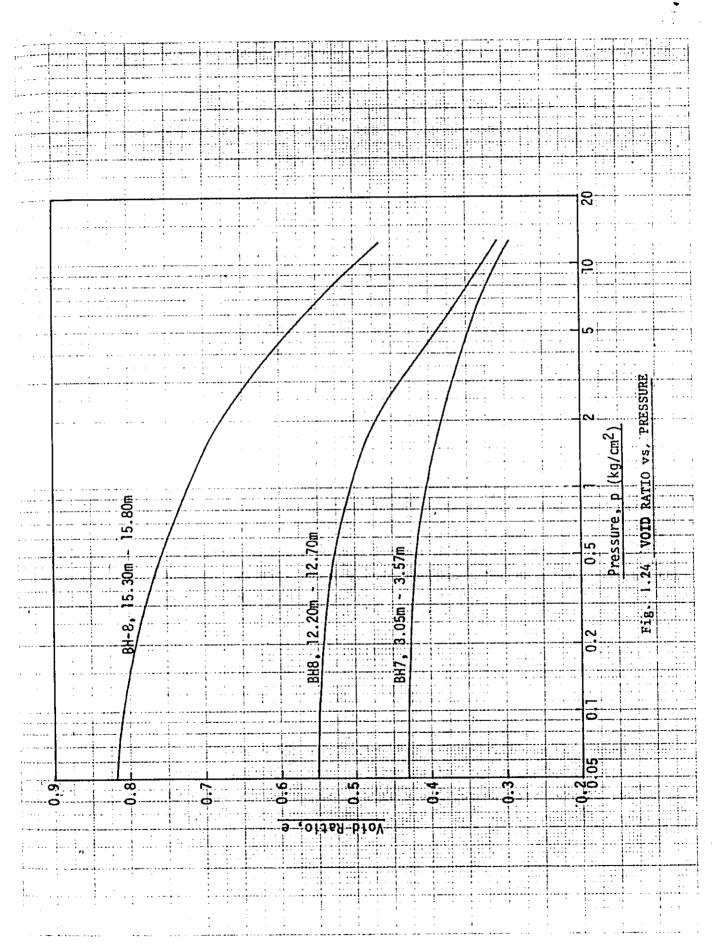
The compression index, C_c , the coefficient of consolidation, C_v , the coefficient of volume compression, mv, and the coefficient of permeability, k, are shown for each layer in Table 1.14.

Area	Layer	Cc	C _v	mv	k
Hilly	Clayey Layer	0.30	$7 \times 10^{-1 \text{ cm}^2/\text{min}}$	$5 \times 10^{-2 \text{ cm}^2/\text{kg}}$	$2.3 \times 10^{-5 \text{ cm/min}}$
Area	Sandy Layer	0,21	3×10^{-1}	2.4×10^{-2}	7.1 x 10 ⁻⁶
	Residual Clayey Layer	0.14	4.2×10^{-1}	1.6×10^{-2}	6.4 x 10^{-6}
Gurney	Upper Clayey Layer, C _u	0.81-1.75	1.25×10^{-2} - 2 × 10	2.1×10^{-2} -1.7 x 10 ⁻¹	$(2 \sim 6) \times 10^{-6}$
Drive & Offshore Area	Middle Clayey Layer, C _m	1.29-1.35	1.6×10^{-2} -1.1 x 10 [°]	$(1.1 - 7.3) \times 10^{-2}$	1.2×10^{-6} -1.2 x 10 ⁻⁵
	Upper Sandy Layer, S _u	0.08-0.16 -(0.41)	8.3×10^{-2} -1.9 x 10 ⁻¹	(2.6~3.0) x 10 ⁻²	(2.7~5) x 10 ⁻⁶


Table 1.14 INDEX AND COEFFICIENTS OBTAINED FROM CONSOLIDATION TESTS

Note : C_v , mv and k are given at a pressure of 10 t/m².

BH-8 BH--1 BH--1 BH-2 BH-4 LEGEND BH-7 0 থ Θ 2.0 Compression Index, C_C 1.5 Ö Θ ⊲ ⊘ PRECONSOLIDATION PRESSURE AND COMPRESSION INDEX VS. DEPTH 1.0 . 0.5 0 Θ 0 10 20 0 2 r Preconsolidation Pressure, σ^{i}_{D} (t/m²) 0 4 ø Э. О. Е (0'n>20) 0 • ; 4 >15) 0 FIG. 1.22 N b Θ 1 0 20 10 (w) Z • 41dəg


- 39 -

...

- 40 -

.

- 41 -

1.2.2 <u>Subsurface Ground Conditions along the Alternative</u> Road Alignments

1) Geological Outline

The proposed road alignments are laid out on the hilly topography to the south and west of George Town.

Geologically, the area consists of a mass of granite, talus and alluvium. A swampy area of alluvium is found around the mouth of Sungei Pinang.

a. Granite

Granite bodies are extensively distributed throughout the country and commonly form topographic heights. The basic formation of Penang Island is a single mass of granite isolated from the Peninsular. The granite of Penang Island seems to be intruded during the Jurrassic period, radiometrically between 165 million to 208 million years ago. The granite mass has been highly weathered by the tropical climate in this region, the surface portion of which have changed into residual soil. The depth of weathered granite is great and a thickness in excess of 10m is not uncommon. In areas of massive granite, weathering have produced rounded core boulders of granite which are "floating" in a thick layer of residual soil derived from heavily weathered granite. In drilling at field investigation, such core boulders pose a further difficulty in ascertaining whether drilling has reached the bedrock or have only reached the core boulder.

b. <u>Talus</u>

Talus which is a collection of fallen disintegrated materials transported from weathered granite mass has formed a slope at the foot of steep hills and mountains.

c. <u>Alluvium</u>

About 20,000 years ago, sea water level was more than 100m below the present level. Then as the level gradually started to rise erosion worked severely and cut valleys through the area. Simultaneously the eroded materials were deposited under the water. About 6,000 years ago, the invasion of sea ceased at about 5m above the present sea level and the present town area became calm shallow sea where sedimentation continued. About 2,000 years ago, by a regression to the present sea level the area became coastal plain and the Sungei Pinang river started to flow around the present route with a much wider flood area and the present swampy area was also formed.

2) <u>Subsurface Ground Conditions along the Alternative Road</u> Alignments

Ground conditions along the Alternative Road Alignments based on the results of geological reconnaissance, exploratory drillings and laboratory soil tests are summarised below.

(1) Subsurface Ground Conditions according to Field Works

Geological stratifications are shown in Figs. 1.2 to 1.3, Geological Profile, Fig. 1.4, Geological Cross-Section and Figs. 1.5 to 1.8, Typical Geological Cross-Section. The stratification in the figures are explained from Station to Station.

A. Stratification along Alternative Road Alignment A

a. From Station -5 to Station 6

Subsurface ground in the area may consist mainly of a clayey layer derived from weathered granite.

b. From Station 6 to Station 12

Subsurface ground in the area consists of a sandy layer (mainly Clayey Sand) and a clayey layer (Sandy Clay). N value-blow counts by Standard Penetration Test for sandy layer varies from 6 to 23 and N value for clayey layer is in the range of 16 to 20 (very stiff).

c. From Station 12 to Station 31

Subsurface ground in the area may consist of intact granite and residual sandy soil of granite with a thickness of 0.3m to 15m. The weathered depth may be thicker around Station 24 to Station 27 than in the other areas; the depth may reach a maximum of 15m from ground level.

Debris consists mainly of boulders with a diameter of 1m to 5m at Station 20 to Station 22. Boulders with a diameter of 5m to 10m can be seen in the debris at Station 27 to Station 30. Diameters of boulders along the area are generally 2m to 20m and approximately 150 of these boulders may be required to be removed or blasted to make them stable at construction time. The average size of the boulders are 4m in diameter. Joints of granite in the area do not have the same direction of strikes, however, the main strikes are north-south with main dips of 80° to 83°SE. d. From Station 31 to Station 52

Ground in this area may consist mainly of intact granite and residual clayey soil of granite. At BH-7, residual soil is encountered from ground level to 10m below ground level and the N-value of the soil varies from 3 to 17. Two boulders were found at the depths of 11m and 17m and their vertical thicknesses were 1.55m and 1.20m respectively. Intact granite was found at a depth of approximately 20m and the rock core length obtained by diamond bid was 15mm to 40mm which is short. The joints of granite around Station 34 strikes N 35° E and dips 50° SE. The number of boulders that have to be treated to make them stable at construction time is approximately 100 in the area, and the average size of the boulders is approximately 3m.

e. From Station 52 to Station 72

The ground may be composed of sandy and clayey layers and residual clayey layer of granite. Generally, the ground will be well consolidated. No significant problems of earthwork for embankment is expected.

f.. From Station 72 to Station 102

The ground may consist mainly of intact granite and residual sandy layer. The thickness of residual sandy layer may be 5m to 10m at Station 72 to Station 78. The thickness of residual sandy layer at Station 78 to Station 88 will be 3m to 7m and the thickness at Station 88 to Station 96 may be 0.5m to 3.0m which is comparatively thinner.

N-value (SPT) of the sandy layer varies from 14 to more than 50.

The rock cores obtained by diamond bid at BH-5 and BH-6 are generally 200mm to 1000mm long and the rocks are in firm contact with each other. The rock at a depth of around 15.3m at BH-5 has many joints and the core length was 20mm to 50mm which is short. However, no clay was observed at the joints at any depth at the bore-holes of BH-5 and BH-6.

- 44 -

The joints of intact rock in the area have irregular strikes and dips. Boulders of size 2m to 20m can be observed and the number of boulders to be removed or blasted to avoid them falling at construction time are in the range of 100 to 120 and the average size is 5m in diameter in the area. Outcrops of intact granite were seen at previous quarry sites along the alignment at Station 88 to Station 95, and the outcrops are cut with the vertical height of 10m to 25m. The interval of joints of outcrops are generally 0.3m to 1.5m and the rocks are in firm contact with each other at the joints.

g. From Station 102 to Station 120

The ground in the area may compose mainly of sandy layer and residual clayey layer derived from weathered granite. The soils may be well consolidated.

h. From Station 120 to Station 165

Subsurface ground in the area consists of several types of soil.

The soil stratification is shown in Fig. 1.2, Geological Profile and Fig. 1.4, Geological Cross-Section. In the figures, the stratification can be explained from upper to lower layers as follows:

Cu layer	:	Upper Clayey Layer
		Soft to medium marine clay with decomposed
		organic matter, shell fragments and some sand
		and gravel.
		N-value blow counts : 4 to 8.
Cm Layer	:	Middle Clayey Layer
		Stiff to very stiff silty clay with shell
		fragments and fine sand.
		N-value : 9 to 28.
		Colour : Light grey - Dark grey - Grey
Cl Layer	:	Lower Clayey Layer
		Hard silty clay with traces of sand
		N-value : 30 to 34
		Colour : Lighț grey
		:

Su Layer	:	Upper Sandy Layer
		Loose to medium sand to clayey sand with
		shell fragments.
		N-value : 5 to 20
		Colour : Bluish to whitish grey
Sl Layer	:	Lower Sandy Layer
		Medium to dense clayey or silty sand
		N-value : 15 to more than 50
		Colour : Grey - reddish light grey
	:	Hard clay silt from weathered granite
Clayey Layer		N-value : 31 to more than 50
20,21		Colour : Reddish brown

B. Stratification along Alternative Road Alignment B

a. From Station 94' to Station 105'

The subsurface ground may be composed mainly of intact rock and residual sandy layer. The thickness of the residual sandy layer may be in the range of 1.0m to 5.0m. There is debris with huge boulders (ϕ 2m to 6m) around Station 101'. According to the outcrop of granite at Youth Park, the interval of joints is 0.2m to 2.0m. Joints are generally firm in contact with each other and are not weathered. However, open joints can also be seen at a few spots.

The number of huge boulders to be removed or blasted will be approximately 60 and the average size is about 5m in diameter.

b. From Station 105' to Station 132'

Subsurface ground may consist of intact rock, residual sandy layer and sandy layer. Generally, these sandy layers may be well consolidated. From field observation, there does not seem to be any need to remove any boulders during construction time.

3) Summary of Subsurface Ground Conditions

The physical and mechanical properties of soil along the alternative road alignments were described under Laboratory Soil Tests earlier and are summarized in Tables 1.3 to 1.9.

Subsurface ground conditions are summarized in Table 1.15.

- 46 -

SUMMARY OF SUBSURFACE GROUND CONDITIONS Table 1.15

.

	Content Liquid	2.616 19-25 60Z	2.588 - 19-20X 41-87 2.605	2.588 - 14-27 58-64 2.032	2.579 23 63	2.671 76-110 89-129	2.584 - 22-78 42-130 2.664	2.642 48 74	2.67 - 10-41 33-51 2.641 -(64)(83)	2.593 - 15-20 - 2.614	2.622 30 55
	Plastic Plasti- Limit city Index	37Z 23	20-24 22-(58)	22–36 28–37	31 32	31-52 58-88	23-51 20-88	23 51	14-24 19-30 -(30) -(57)	1	34 21
	Gravel G	7-21 31-47 7 2	1-9 4569	3-30 28-49	-7 -80	0-1	0-9 2-42 -(53)	0	3-35	3-16 29-	2
Grading Analysis	Sand Silc S M	47 7-26 Z	69 5-15	49 3-22	43 12	16-6 4	42 6-39	12 30	23-84 2-3	29-80 2-10	40
e)	: Clay c	25-26 Z	6 20-31	22-41	15	68-92	28-92	58	2-31 21-60	10 19-36 5)	27
.Unic Weight	Ye	1.82t/m ³	2.00	2.00	2.00	1.57	1.56	1.60	1.94	2.00	2.00
Cahesion & Angle of	Internal Friction [*] c 6	5.25t/m ² -	4.85 2.2 850	4.25 3.6 10	E 	(0.27) 1 1.9 2:9	3.2 1 4.5	t 1	1.0 1 1.8 1.5 24	1	ŧ
ŭ	70	0.30	0.21	0.14 4.2	1	0.81 - 1.75	1.29	1	-0.08 -0.16 -(0.41)	1	1
onsolidation	ک	7 × 2/min 10 ^{-1cm} /min	3 × 10 ⁻¹	4.2 × 10 ⁻¹	1	1.25 ×10 ⁻² - 2 ×10 ⁻¹	1.6×10^{-2} -1.1×10 ⁰	1	8.3 x 10 ⁻² +1.9x 10 ⁻¹	I	ŧ
Consolidation Properties	È	5 × 2 10 ^{-2cm} /kg	2.4 × 10 ⁻²	1.6 x 10 ⁻²		$\begin{bmatrix} 2.1 \times 10^{-2} \\ -1.7 \times 10^{-1} \end{bmatrix}$	(1.1-7.3)× 10 ⁻²	-	(2.6-3.0)× 10 ⁻²	1	1
	ĸ	2.3 x 10 ^{-5cm/min}	7.1 × 10 ⁻⁶	6.4 × 10 ⁻⁶	E .	(2-6) × 10 ⁻⁶	1.2 × 10 ⁻⁶ -1.2 × 10 ⁻⁵	E	(2.7-5) × 10 ⁻⁶	1	ł .

Cv : Coef. of Consolidation k : Coef. of Permeability Cv. mv and k are given at a pressure of 10 t/m²

---- : Assumed Value

,

- 47 -

1.2.3

Investigation for Construction Materials

Construction of the road requires concrete materials, earth, and also some dumping area for waste soil.

Details for such materials are given in this section.

1) Fine Aggregate

Fine aggregates are available from several sand borrow pits in Penang Island. The sand is washed sand of heavily weathered granite.

The sources are indicated as sand borrow pits from S-1 to S-8 in Fig. 1.25, Location of Materials.

The name of the company, address and present production capacity of each site is shown in Table 1.16.

Fine aggregates are produced by the method of crushing granite and this is only done at one site (TEIK QUARRY SDN).

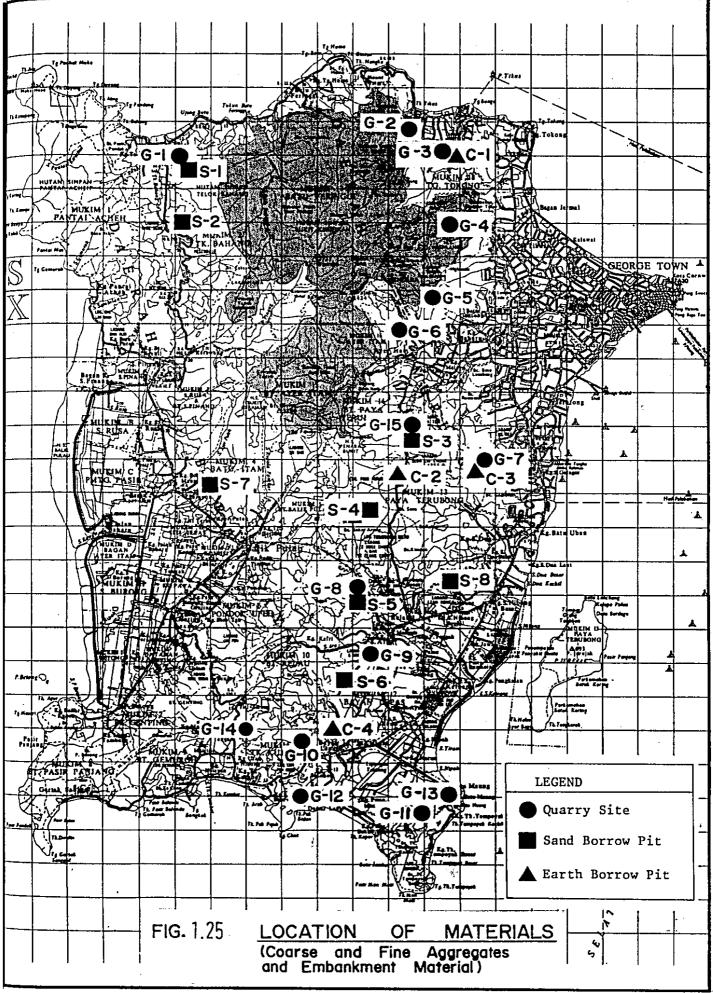
Some laboratory tests were performed on the collected samples and the results are indicated in Table 1.19. Grainsize distribution curves are shown in Figs. 1.26 to 1.29.

a. Specific Gravity

True and apparent specific gravity tests were performed and the results are given below.

True specific gravity (Gs) : 2.602 to 2.618 Apparent specific gravity (Gsa) : 2.263 to 2.416 (Saturated surface dry condition)

Both values of Gs and Gsa are less than the values obtained for normal fine aggregates. Gsa values obtained for normal fine aggregates are generally 2.50 to 2.70.


b. Water Absorption of Fine Aggregates

Water absorption of fine aggregates was from 2.15% to 10.4%, which is very high.

c. Fineness Modulus

Fineness Modulus was from 3.55 to 4.21.

- 48 -

Table 1.16 SOURCE OF FINE AGGREGATE (SAND)

•

SOURCE NO.	SOURCE OF BORROWED SAND	ADDRESS OF OFFICE	PRESENT APPROX. PRODUCTION CAPACITY
S-1	LIM KHENG KIM	82-H, Free School Road.	100 to 300 tons/day.
S-2	FAR EAST DEVELOPMENT CO.	700, Mk.2, Jln. Sungei, Telok Bahang*.	100 to 300
S-3	LAU GEOK SWEE CO. LTD.	324, Mk. 17, Batu Ferringhi.	100 to 300
S-4	RELAU ESTATE	-	100 to 300
S−5	LIM KHENG KIM	82-H, Free School Road.	100 to 300
S-6	POSSIBLE SOURCE (SEPULOH KONGSI)	-	-
S-7	NIMBUS SDN. BHD. (LIM TENG HOE)	156, Mk. 4, Ayer Puteh, Balik Pulau.	500
S-8	TEOH CHEE KEONG	156, Beach Street	100 to 200

Note: * means site location

•

Table 1.17	SOURCE	OF	SUBGRADE	MATERIAL

٢

SOURCE NO.	NAME OF LOCATION	
C-1	Mukim 18, Tanjong Tokong.	
C-2	Paya Terubong Estate.	
C-3	Mukim 13, Paya Terubong	
C-4	Bukit Lada Mati	

Table 1,18 SOURCE OF COARSE AGGREGATE

SOURCE NO.	NAME OF QUARRY SITE	ADDRESS OF OFFICE	PRESENT APPROX. PRODUCTION CAPACITY
G-1	LIM KHENG KIM	82-H, Free School Roads	500 to 1000 tons/day
G-2	CHEE SENG STONE	1, Jln. Maxwell, Penang.	500 to 1000
G-3	TEIK QUARRY SENDIRIAN	77, Leboh Bridge, Penang.	500 to 1000
G-4	WATERFALL QUARRY	(PDC) Batu Gantong	Not in operation
G-5	TEIK GRANITE QUARRY	77, Leboh Bridge, Penang.	Occasional operation (500)
G-6	SOON GIM QUARRY	790, Mk. 16, Ayer Itam, Penang.	500
G-7	CHOONG LIM LIM SDN. BHD.	82-H, Free School Road.	500
G-8	LIM KHENG KIM	- do -	500
G-9	LIM KHENG KIM & ISMAIL BIN HASHIM	- do -	500
G-10	LIM KHENG KIM	82-H, Free School Road	500
G-11	POSSIBLE SOURCE (LOH POH HENG)		
G-12	POSSIBLE SOURCE	* Bukit Payong	-
G-13	POSSIBLE SOURCE	* Batu Maung	-
G-14	POSSIBLE SOURCE	* Telok Kumbar	-
G-15	TAT SENG QUARRY	20W, Jln. Paya Terubong, Penang.	-

Notes: * means site location

Each manufacturer generally produces the following sizes of aggregates.

,

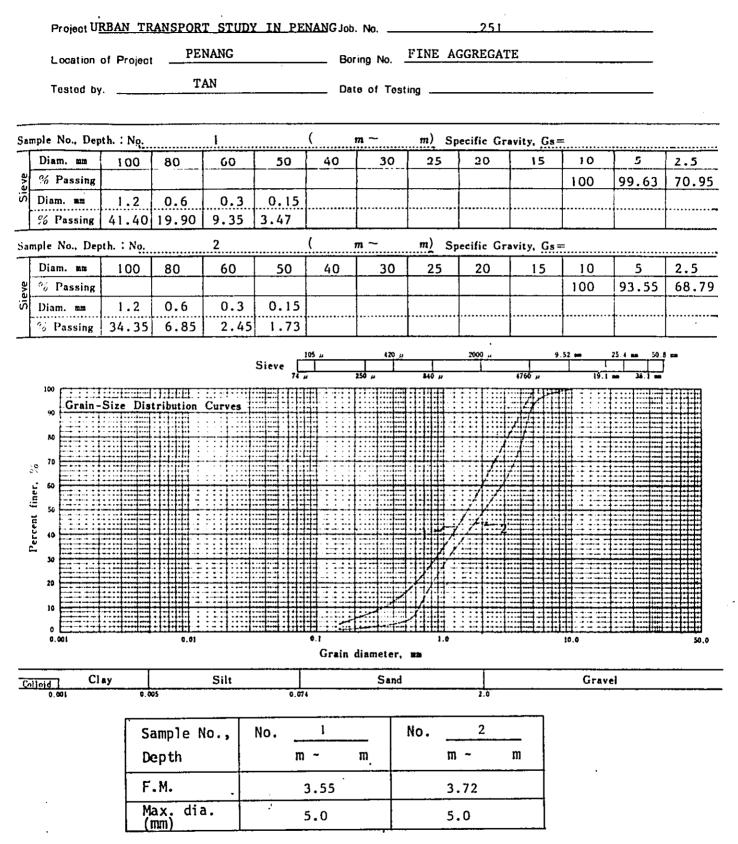
a. Diameter 3" & 4" (CRUSHER RUN)

Ъ. " 1<u>1</u>"

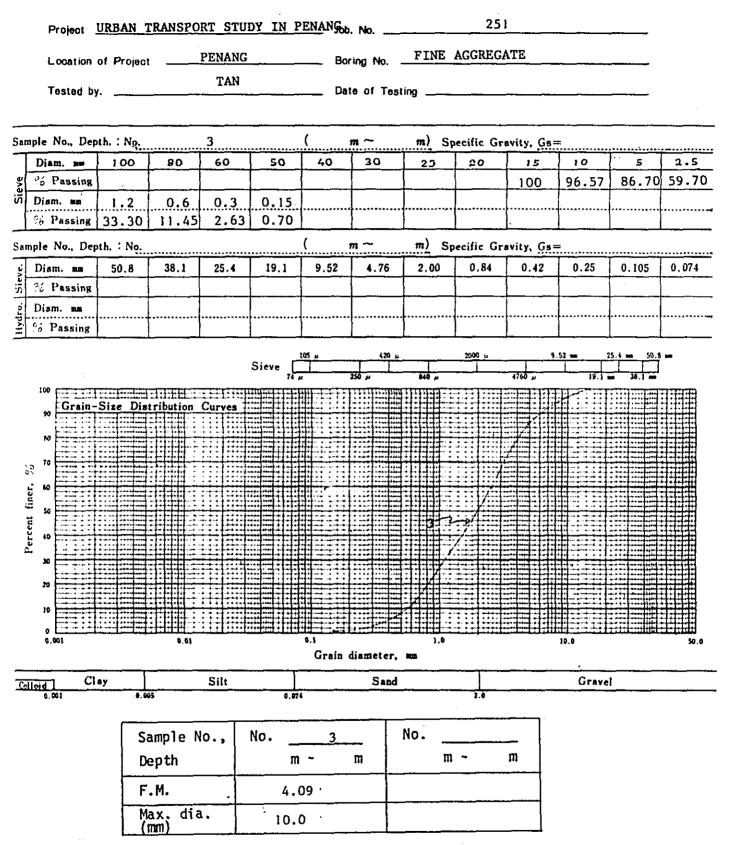
```
c. " 3/4"
```

- d. " 3/8"
- e. Quarry Dust (is sometimes used as fine aggregate)

Table 1.19 SUMMARY OF MATERIAL TEST


Project:

Urban Transport Study in Penang


Standard: JIS

Aggregate			•	<u> </u>	Fine	Aggreg	ate				
Samp1	.e No.		1	2	3	4	5	6	7		
Sourc	e No.		S-1	S-1	S-2	S-8	G-3	S-7	S-7		
Water	Abso	rption, %	2.15	6.61	8.45	7.92	9.53	7.75	10.4	·	
Speci		Apparent	2.340	2.341	2.349	2.416	2.263	2.404	2.354		
Gravity True		2.607	2.609	2.602	2.616	2.609	2,618	2.608			
	Grav	el ,7	.40	52	50	40	54	· 52	38	}	
analysis	Sand	, 7.	60	48	50	60	46	48	62		
anal	Silt	, 73	-	-	-		_		-	Seive	only
size	Clay	&colloid ,7	-	-	-		-	-	-)	
Grain s	Max.	diameter,mm	5.0	5.0	10.0	5.0	5.0	20	20		
Cra	F.M.		3.55	3.72	4.09	3.66	3.99	4.21	3.92		
Description of Aggregate			<u>Lim Khe</u> White	Brown	Far East	Teoh Teik Chee Quarry Kong Sand		<u>Nimbus</u> White	<u>S Sdn.</u> Brown		
			Sand	Sand	Dev.) J	Sand	Sand		
Agg			Sand		Dev.	Kong) J		1 1		
Agg Aggre	gregat	e 	Sand	Sand	Dev.	Kong) J		Sand		
Agg Aggre Samp1	gregate	e	Sand Coars	Sand	Dev.	Kong) J		Sand		
Aggre Samp Sourc	egate le No.	e	Sand Coars	Sand se Aggro 2	Dev.	Kong	Sand		Sand		
Aggre Sampl Source Water	egate le No. ce No.	e	Sand Coars 1 G-3	Sand se Aggro 2 G-15	Dev.	Kong	Sand		Sand	•	
Agg Aggra Samp Sourc	gregate le No. ce No. r Absc	e prption, %	Sand Coars 1 G-3 0.4	Sand Se Aggre 2 G-15 0.7	Dev. 29ate 3 G-7 0.6	Kong	Sand		Sand		
Aggre Sampl Source Water Spec: Grav:	egate le No. ce No. r Absc ific ity	e prption, % Apparent True es Abrasion	Sand Coars 1 G-3 0.4 2.625	Sand 2 G-15 0.7 2.613	Dev. 293te 3 G-7 0.6 2.619	Kong	Sand		Sand		
Aggre Sampl Source Water Spec: Grav: Los A Desci	egate le No. ce No. r Absc ific ity Angele	e prption, % Apparent True es Abrasion ,%	Sand Coars 1 G-3 0.4 2.625 2.670	Sand 2 G-15 0.7 2.613 2.660	Dev. 29ate 3 G-7 0.6 2.619 2.632	Kong	Sand		Sand		

GRAIN SIZE DISTRIBUTION

GRAIN SIZE DISTRIBUTION

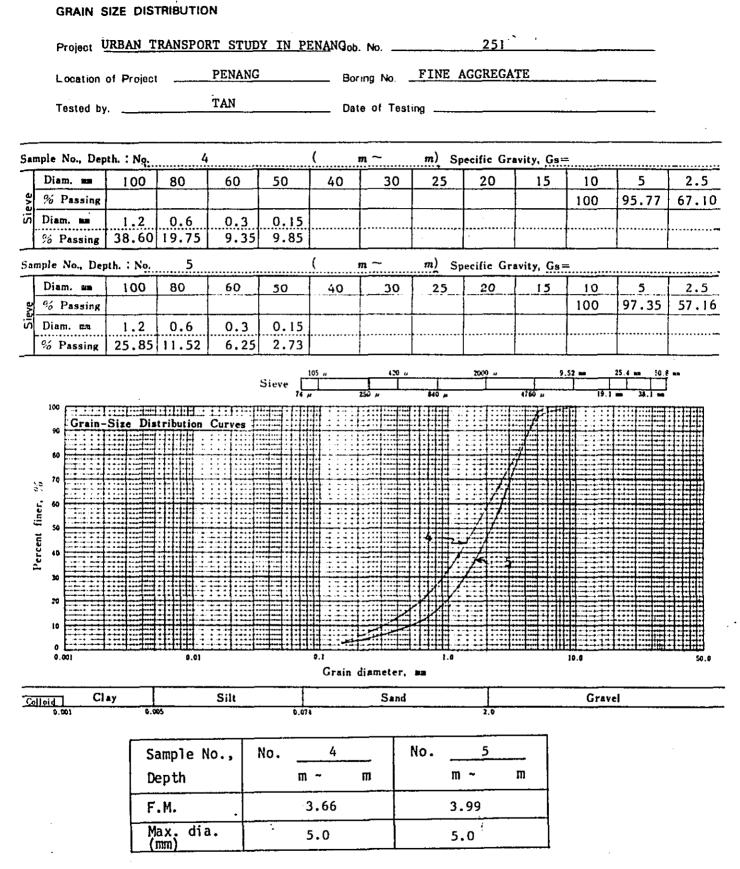
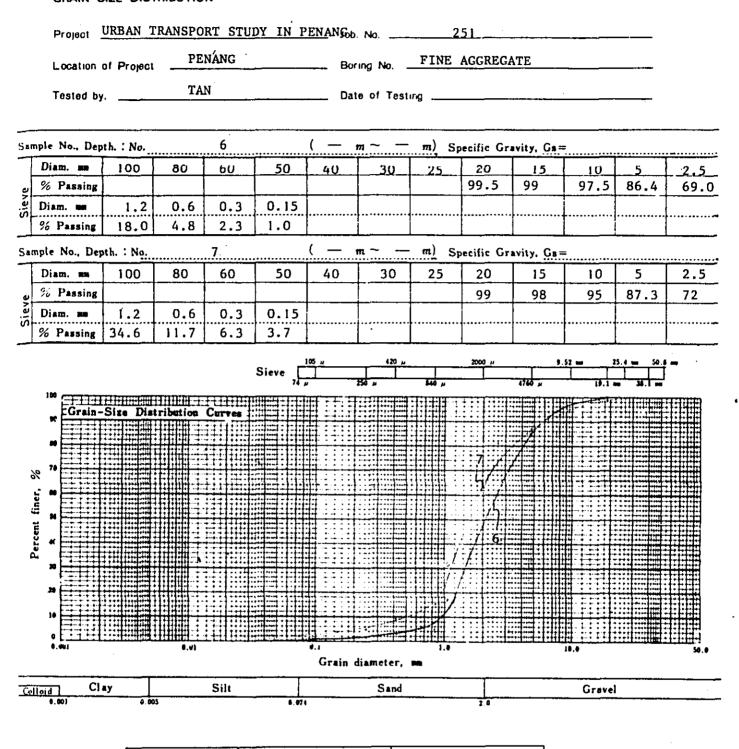



FIG. 1.29 GRAIN SIZE DISTRIBUTION

Sample No.,	No. <u>6</u>	No
Depth	m ~ m _.	m ~ _ m
F.M.	4.21	3.92
Max. dia. (mm)	20.0	20.0

2) Coarse Aggregate

Crushed aggregates of granite are used as coarse aggregates for construction works in Penang Island.

The location of quarry sites presently in operation, abandoned quarry sites and some possible future quarry sites are shown in Fig. 1.25.

The present rate of production at each site is approximately 500 tons per day while the maximum rate is 1000 tons per day at some sites.

Some laboratory tests were performed on the crushed coarse aggregates and the results are illustrated in Table 1.19, Summary of Material Test.

Grain-size distribution curves of the tested aggregates are shown in Fig. 1.30.

a. Specific Gravity

True specific gravity (Gs) is in the range of 2.632 to 2.670 and apparent specific gravity (Gsa) varies from 2.613 to 2.625. Both values of Gs and Gsa are in the range of values obtained for normal coarse aggregates.

b. Water Absorption of Coarse Aggregates

Water absorption of coarse aggregates is in the range of 0.4 to 0.7 and showed the value for normal aggregates.

c. Los Angeles Abrasion Test

Los Angeles Abrasion values (after 500 rotations) are from 29 to 40 and showed the values obtained for normal crushed aggregates.

d. Fineness Modulus

Fineness modulus is in the range of 6.78 to 7.08.

2

- 57 -

GRAIN SIZE DISTRIBUTION

	Proje	ot <u>Ui</u>	RBAN	TRANSP	ORT STU	DY IN I	PENANJob	. No	251			<u>-</u>		
	Loca	tion of	Project	PE	NANG		Bo	ring No.	COAR	SE: AGO	REGATE		<u> </u>	
	Teste	od by.	<u></u>	•	TAN		Dat	te of Tesi	ting	· · · ·			- <u></u>	
Sample No., Depth. : No. 1 (G-3) (m~ m) Specific Gravity, Ga=														
٦	Diam.			80	60	50	40	30	25	20	15	10	5	2.5
e S	% Pass	ling						100	95.7	88.75	62.75	22.00	3.75	2.25
Sleve	Diam. 1		1.2	0.6	0.3	0.15								
	% Pass	ing	2.0	1.0	0.75	0.25	<u> </u>	L		;				
Sa	mple No.,	Depth	. : N <u>o.</u>		2 (G-15)	(m ~	<u>m)</u> Sp	ecific Gra	vity, <u>Gs</u> =	=	**********	
	Diam.		100	80	60	50 ·	40	30	25	20	15	10	5	2.5
97%1C	% Pass	sing			ļ			100	98.3	95.75	70.25	8.25	1.0	0.9
กี.	Diam. 1		1.2	0.6	0.3	0,15			.			 		
	% Pass		0.85	0.75	I	0.3	<u> </u>	l	<u>l</u>					
5 a.) 	mple No.,		. : No.			G-7)		m ~			wity, Gs=			
.	Diam. 1		100	80	60	50	40	30	25	20	15	10	5	2.5
STEVE	% Pass	<u> </u>					[100	95	85.75	36.75	2.5	1.0	0.9
1 5 	Diam. a % Pass		1.2 0.75	0.6 0.6	0.3	0.15								••••••
						<u>نے ہے۔</u>	ـــــــــــــــــــــــــــــــــــــ	بر 420	L1]		52 m 2	5.4 = 50.1	L,
						Sieve		B.	840		6760 ju			-
	, (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)												Acited	
	*	ain-Si		ribution	Carves 1						GI	1		
2	e n													
	· · · · · · · · · · · · · · · · · · ·													
Press transferre														
1														
0													67	
		i III									60 5	¥/-)		
			,									//		
	0			0.01			0.1							
		<u> </u>				_	Grain d	iameter,		. •	ľ			a. 4
ଭ	leid 0.001	Clay			Silt			Sand				Gravel		
	4. 47 1		9.60	•		0.874				1.0				
	Ĩ	Sa	mple	No	No.	1		No.	2	1	No.	3		
			ource		No	G-3	_	No	<u> </u>			G-7	-	
		F.	м.		6.	79		6.	92		7.	08		
	F.M. 6.79 Max. dia. 30.0							6.92 7.08 30.0 30.0						

_

.

- 3) Embankment and Reclamation Materials
 - (1) Embankment Material on Land

Earth materials are available in abundance from the foothills. The soils are residual sandy and clayey materials or talus deposit derived from heavily weathered granite, and are composed mainly of clayey sand with gravel and silty sand with gravel.

The location of possible sources of the materials is shown in Fig. 1.25 and in Table 1.17.

Laboratory soil tests were conducted for the samples obtained at C-1, C-2 and C-3. The engineering properties are given in Table 1.20, Summary of Material Test, and are discussed below.

- a. <u>Natural Water Content and Atterberg Limits</u> Natural water content (wn) is in the range of 15% to 20%. Atterberg limits (LL, PL and PI) are given below: LL = 39% to 69% PL = 27% to 38% PI = 12.7 to 31
- <u>Specific Gravity</u>
 Specific gravity is in the range of 2.57 to 2.61.
- c. Grain Size Analysis

17% to 23% gravel 34% to 55% sand 12% to 26% silt 11% to 24% clay

d. Compaction Test

Compaction tests on three samples (C-1, C-2 and C-3) performed according to Standard AASHTO (T-99) and Modified AASHTO (T-180).

Max. Dry Density	Optimum Moisture Content (%)	Standard
1.81 to 1.88t/m ³	13.2 - 15.0	Standard AASHTO
1.88 to 1.95t/m ³	9.8 - 13.4	Modified AASHTO

The difference in maximum dry density between Standard and Modified AASHTO is approximately 4% to 6%.

Table 1.20	Tab	le	1.20
------------	-----	----	------

SUMMARY OF MATERIAL TEST

Project: Urban Transport Study in Penang Standard: _____JIS

Sample	ole No.	C-1	C-2	C-3	BH-3					_
				0.5]		m	m		m	r
Sample		0.5 m Disturbed	0,5 H	Disturbed	5.5 m 8.0 m Disturbed	t M Disturbed	 Disturbed	Disturbed	m Disturbed	n Disturbed
<u>.</u>	on of sample	Undisturbed	Undisturbed	Undisturbed	Undisturbed	Undisturbed	Undisturbed	Undisturbed	Undisturbed	Undisturbéd
	water content, %	2.614	2.614	2.573	2.605				_ <u></u>	
	c gravity		2.014	2.573						
	nsity, g/cm ³	-	-	-	-					
	nsity, g/cm ³									
	void ratio	-								
	of saturation , %	-	-	-						
619	Liquid limit , %	68.9	43.7	39.4	80.0	·				
Atterberg limits	Plastic limit , %	38.2	30.9	26.7	24.9			- <u>-</u>		
₹≔ 	Plasticity index	30.7	12.8	12.7	55.1					
	Gravel , %	23	17	22	9					
8	Sand , %	34	39	55	52					_
ze ans	Silt , %	19	26	12	5					
	Clay & colloid ,%	24	18	11	34					
Max. diameter, n		9.52	9.52	9.52	4.76					
Grai	Diam. at 60%		0.45	0.86	0.48					
_	Diam. at 10%	1		0.0043	-				<u> </u>	
Visual	soil description	Clayey Sand	Clayey Sand	Clayey Sand	Clayey Sand	•				-
Unified	soil classification						! 			
	Max, Dry Den- sity g/cm3	1.81	1.88	1.83	1.796	Stand	ard AAS	HTO.		
ti.	0.M.C %	14.8	13.2	15.0	16.2					
Cômpaction Test	Max. Dry Den- sity g/cm3	1.88	1.89	1.95	1.87	Modii	ied AAS	нто		
Cột	0.M.C %	12.2	13.4	9.8	14.7					
CBR TEST	CBR % at 95% of Max. Dry Density (Modified AASHO)	6.5	11.0	22.5	11.5					
Consoli- dation test	Preconsolidation pressure, kg/cm ² Compression index									

-. e. California Bearing Ratio (CBR) Test

CBR at 95% of maximum dry density compacted according to Modified AASHTO Standard varies from 6.5% to 22.5%.

The results are illustrated in Table 1.20, Summary of Material Test and in Fig. 1.30 to 1.33, CBR Test Result.

According to the results of the laboratory soil test, soils obtained at C-1, C-2 and C-3 can be used as subgrade or basement soil for roads as well as filling material for offshore reclamation.

(2) Reclamation Material from the Sea

In order that reclamation work can be carried out by dredging ship along Gurney Drive, a study of the material from the sea to be used for filling is required.

At BH-1 to BH-4, along Gurney Drive, a sandy layer of about 600m from the seashore is encountered and this layer deepens gradually with distance from the shore and the layer is found at the depth of 14.7m from the seabed at BH-1' underneath a soft to medium clayey layer.

The soil test results for BH-3 and BH-1' are summarized in Tables 1.4 and 1.6, Summary of Soil Test. Stratification and the main results of soil tests at BH-3 are given below.

a. Stratification by Soil Test

0 m - 1.0m Sandy clay with shell fragments 2.0m - 5.2m Clayey sand with gravel, silt and shell fragments 5.2m - 21.7m Clayey (or silty) sand with gravel

b. Grain Size Analysis

At	the	depth of 0 m to 1.0 m
	9%	gravel 18% silt
	26%	sand 47% clay
At	the	depth of 2.0m to 21.7m
	8%	to 19% gravel 2% to 11% silt
	38%	to 55% sand 19% to 36% clay

- 61 -

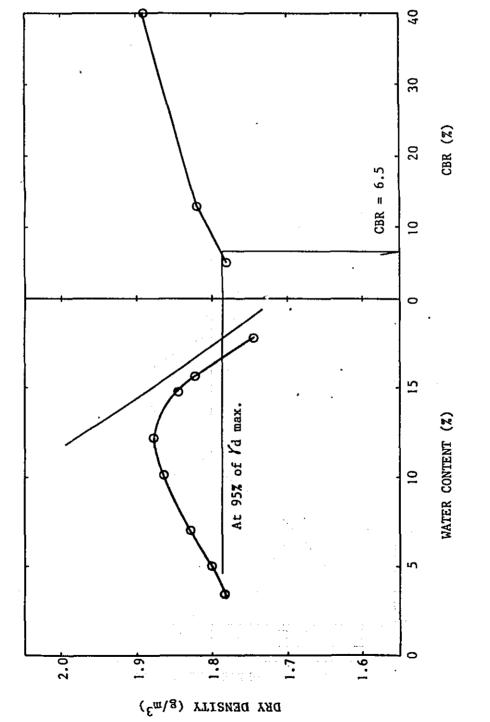


FIG. 1.31 CBR TEST RESULT

Sample No. C-1

÷

- 62 -

ę

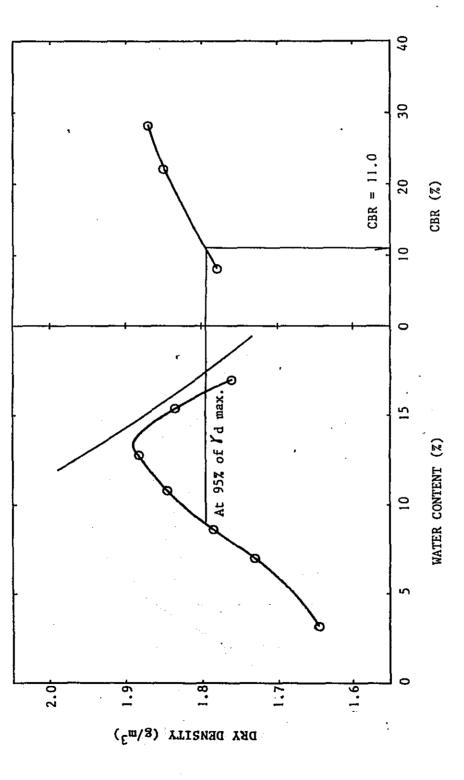
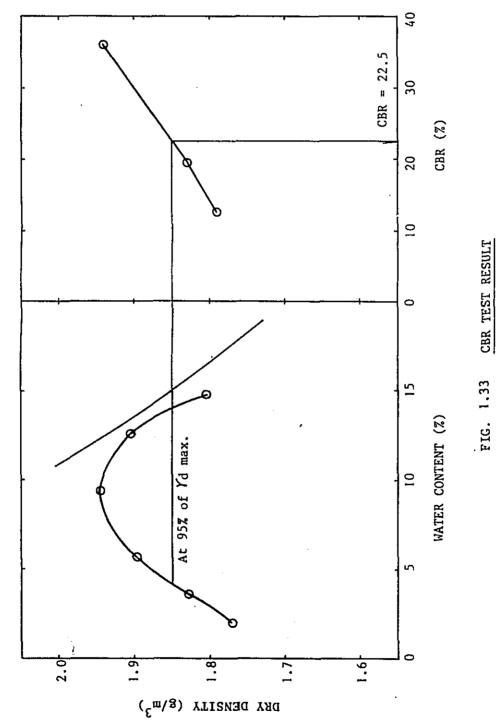



FIG. 1.32 CBR TEST RESULT

- 63 -

c. Compaction and CBR Tests

Compaction tests and CBR tests were performed on the disturbed soil obtained by bailer at the depth of 5.5m to 8.0m at BH-3.

Max. Dry Density	Optimum Moisture Content	Standard
1.796 t/m ³	16.2%	Standard AASHTO
1.87 t/m ³	14.7%	Modified AASHTO

Compaction Test

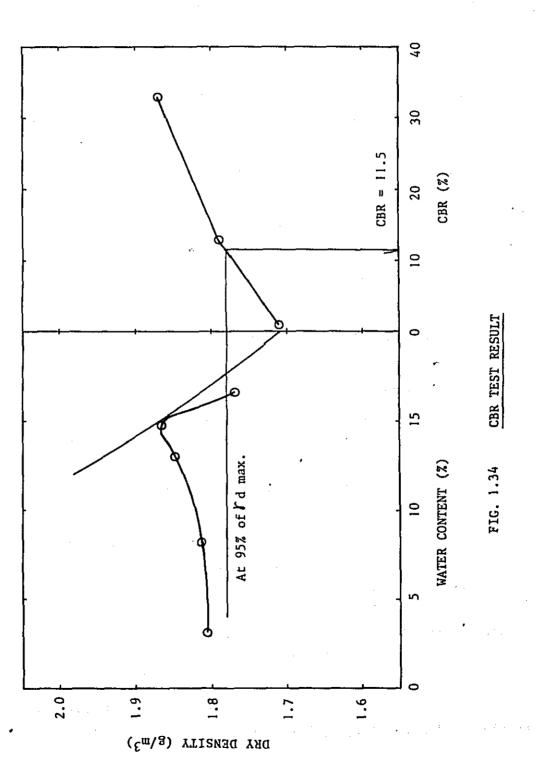
CBR Test

The CBR at 95% of maximum dry density compacted according to Modified AASHTO Standard was 11.5% which is a rather high value.

Results of laboratory soil tests on disturbed sample obtained from BH-3 are shown in Table 1.20, Summary of Material Test.

CBR results are shown in Fig. 1.34, CBR Test Results. According to the results of soil test, sandy soil from the sea to be used as filling material will be obtained from around BH-3.

4) Dumping Area of Waste Soil


During earth works of road construction, dumping area of waste soil will be required.

The most possible areas in this stage are as follows:-

- 1. Offshore Area of Tanjong Tokong
- 2. Offshore Area of Jelutong

۶,

1.3 Notes on Construction Work

The proposed road alignments are laid out on hilly topography south and west of George Town. The ground in the hilly area mainly consists of weathered and intact granite, and there are many huge boulders along the alignments. Occasionally, houses and cemeteries are located along the alignments. The road construction will entail problems in (1) cutting the intact granite (2) stabilizing and/or retaining the huge boulders (3) protecting cut slopes of weathered and intact rocks (granite) (4) obtaining sufficient quantities of material suitable for the offshore road embankment and stabilizing the embankment slope after construction.

Regarding the design and construction works, the following points should be noted.

- As houses and cemeteries are near the road alignments, in order to minimize vibration and damage due to blasting, relatively small amounts of explosive should be employed and nets or other devices should be used to protect houses from flying debris.
- Suitable steps should be taken to prevent the numerous huge boulders, with diameters of 2m to 20m, from dropping on the proposed roads. The erection of retaining nets or fences and the planting of trees could afford protection.

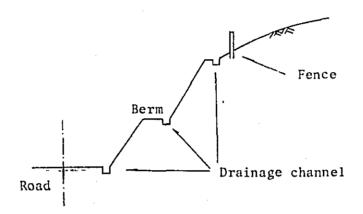
3. The recommendable slopes for cuts and embankments are:

- a. For Onshore Embankment
 - ^o Slope : 1/1.5 ~ 1/1.8 (Vertical/Horizontal)
 - Berm interval : 5m to 7m in height Berm width : 1.5m

b. For Cuts

о

Slope : 1/0.5 for intact rock
 0.8/1.0 ~ 1.0/1.0 for weathered rock and
 other soils
Berm interval : 5m to 7m in height or at the boundary


```
of different layers
```

Berm width : 1.0m ~ 1.5m

c. For Offshore Embankment

Slope : 1/2 (Stone armour slope protection is required)

- 4. Protection of side slopes
- 4-1. Side slopes must be properly protected against erosion
 - a. For Onshore Embankment : Planting grass
 - b. For Cuts : ^O Nothing for intact rock or stable weathered rock
 - ^o Planting grass for weathered rock and other soils
 - ^o Nets if required
- 4-2. To avoid the erosion of slopes, drainage channels must be provided at the shoulder, the berms, and the base of slopes.

- 5. Onshore road embankments will be built with fill materials obtained from adjacent cuts or from suitable borrows in the hilly area. Weathered granite (residual clayey or sandy soil) and alluvial clayey or sandy soil can be used as subgrade materials.
- 6. Offshore road embankments will be built with fill materials from both the borrows in the hilly area and the seabed.
- Coarse and fine aggregates which are produced locally can be used for concrete and pavement works. Local producers can provide the volume of aggregates required for construction.
- 8. Foundation
- 8-1. Direct foundation or caisson foundation will be adequate for major structures because bearing layers are shallow in the hilly area.

The following vertical design bearing capacities are generally recommended:

For intact rock (granite) 70 t/m^2 For weathered rock (SPT N-value > 50) 50 t/m^2

8-2. If long driven piles are required, the following formula is recommended for deciding the design bearing capacity of each pile.

$$Qa = \frac{1}{3} \left[30 \cdot \overline{N} \cdot Ap + \left(\frac{Ns \cdot Ls}{5} + C \cdot Lc \right) \psi \right] - W$$

Where, Qa = Design bearing capacity per pile

 \overline{N} = Mean N-value at tip of pile

 $\frac{1}{1} \cdots \text{ Mean N in 4D } \overline{N} = \frac{N_1 + N_2}{2}$ $\frac{1}{2} \cdots \text{ Mean N in 1D}$

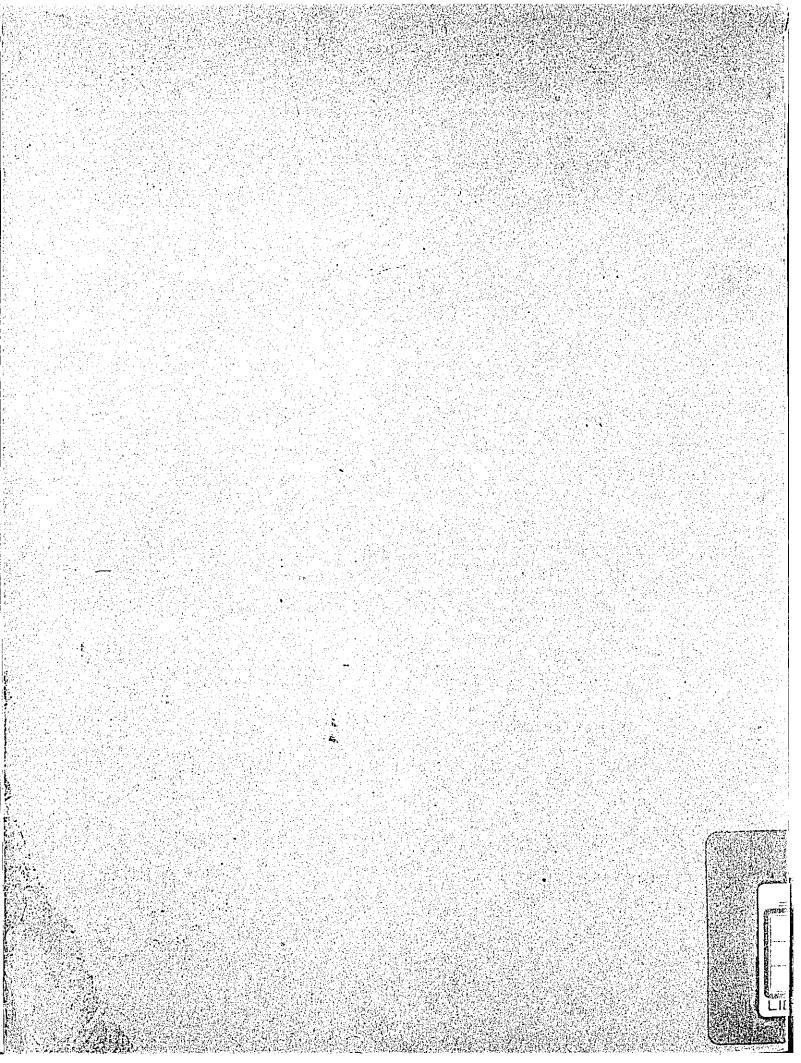
Ap = Sectional Area

Ns = N-value of bearing sandy layer

Ls = Thickness of bearing sandy layer

Lc = Thickness of bearing clayey layer

C = Cohesion of bearing clayey layer


= Circumference of pile

W = Weight of pile

1.4 Notes on Further Investigations

The extent of geotechnical investigation performed to date is sufficient for the feasibility study. For the detailed design, the following additional geotechnical study will be necessary.

- Borings at the foundation points of each onshore structure and loboratory soil tests of soil samples obtained from the bore holes.
- b. A few offshore borings and laboratory soil tests to check the settlement and bearing capacity of the present seabed, and to accurately confirm the stability of the road embankment.
- c. Compaction and CBR tests of the soil materials to be used in constructing the road embankment.
- d. Trial mixing of concrete using local aggregates to decide the most economical, yet structurally adequate designstrength of concrete.
- e. Detailed geological reconnaissance survey to check the stability of hanging boulders in the hilly area.

