REPORT ON WATER SUPPLY FACILITIES IN MENTIONE CITY THE KINGDOM OF LAOS

MAY 1972

GOVERNMENT OF JAPAN

LIBRARY

国際協力事	業団
美入 '84. 3.26	1/2
<u>ин</u>	61.8
登録No. 01961	EX

CONTENTS

- 3			:
CHAPTER	1	INTRODUCTION	1
1.	Con	struction of Water Supply Facilities in Vientiane	1
2.	Obje	ect of Investigation	1
3.	Con	nposition of Survey Team	2
4.	Peri	iod and Activities for Investigation	- 2
5.	Loc	al Personnel Concerned	3
CHAPTER	. 2	GENERAL SITUATION OF THE KINGDOM OF LAOS	4
1.	Geo	ography and Climate	4
2.	Pop	ulation, Race, Language and Religion	4
3.	·For	m of Government and Political Situation	5
4.	Indi	ustry and Trade	, 6
5.	Tra	ensportation	6
CHAPTER	8 3	PRESENT CONDITION OF AND MEASURES FOR THE WATER SUPPLY FACILITIES	7
1.	Out	tline of the Water Supply Facilities	7
	1)	Intake Equipment	7
	2)	Filtration Equipment	7
	3)	Distribution System	8
	4)	Elevated Tank	8
	5)	Electric Equipment	8
	6)	Instrumentation	8
2.	Pre	esent Condition	8
	1)	Organization of Nam Papa Lao	10
	2)	Water Rates and Collection	10
	3)	Works for Water Service and Water Supply Pervasion	12
	4)	Control of Water Quality	13
	5)	Others	14
		a) Electric Power Cost	14
		b) Revetment Works and Flood Measures	15
		c) Change in Exchange Rate	15

CHAPTER	4	REPAIR	17
1.	Pro	blems	17
	1)	Intake Pump	17
	. 2)	Orifice Meter	17
7	3)	Flash Mixer in Mixing Basin	17
	4)	Chemical Feeding Equipment	18
	5)	Flow Controller	18
	6)	Chlorination Equipment	18
	7)	Distribution Pump	18
	8)	Starting Compensator for Distribution Pump	18
	9)	Venturi Meter	19
2.	Par	ts and Cost Necessary for Repair	19
CHAPTER	. 5	IMPROVEMENT	24
1.	Pro	oblems	24
2.	Imp	provement	32
3.	Cos	st of Improvement	40
	1)	Estimation Bases for Construction Costs	40
	2)	Construction Costs	40
CHAPTER	6	FUTURE EXTENSION	41
1.	Co	nsideration on Future Extension	41
	1)	Population and Designed Water-Consumption	41
	2)	Outline of Extension Plan	42
CHAPTER	. 7	CONCLUSION	47

கள் கொண்டிக்கிக்கு அடு Report on Water Supply, Facilities மாழிக்கிக்கிக்கிக்கு அழித்த விரு அதிக்கு இன்ற இன்ற நடித்துள் Vientiane City, athe Kingdom of Laos அதிக்கு கொண்டிக்கு இதிக்கி திக்கு இதிக்கு இதிக்கு கண்டுக்கு அதிக்கி அன்று இது அரசிற்கு அதிக்கிக்கு இதிக்கு இதிக்கு இதிக்கு இதிக்கு இதிக்க

Course with a strong chapter 1. In the Court of the control of the court of the cou

Construction of Water Supply Facilities in Vientiane.

In return for the abandonment by the Laotian Government of the right to demand war reparations the Japanese Government promised to provide an economic aid amounting to one billion yen in December 1956. Mr. Kishi, the then Prime Minister of Japan, paid a friendship visit to Laos in November in the following year, 1957, and made the formal offer for the economic aid at the talks with Prince Phouma, the Prime Minister of Laos, when it was decided to construct water supply and power generation facilities for the city of Vientiane.

Controller and the state of the same of a fit of the same of the

The Japanese Government who adopted this waterworks project as a priority matter started to design for it at once but the project was interrupted for a time due to a coup d'etat which took place abruptly in the country in August 1960. Later in January 1962 the Laotian Government requested the Japanese Government anew to make an on-the-spot investigation, upon which request the latter Government sent the engineers to the site for the study of construction method, adjustment of the amount of money and the concrete consultation with the Laotian authorities, which led a final agreement. In June of the same year Société Centrale des Eaux du Laos (hereinafter referred to as Nam Papa Lao) signed a contract with the Japanese contractor for constructing the water supply facilities.

The contract provided that construction materials and equipments equivalent to ¥573.3 million is supplied from Japan without cost, that the costs of inland transport and construction at the site amounting to U. S. \$1,180,800 is paid by semi-annual installments spread over thirteen years including two-year grace period after the completion of works, and that the construction period is two years after the approval by the Japanese Government.

With the said contract authorized by the Japanese Government on 30 November 1962, the construction work was started on 24 January 1963, and the work which had been completed in September 1964, more than four months earlier than the prescribed date was formally delivered to the Loatian Government on 21 of that month.

2. Object of Investigation

~ ~ ~

For nearly eight years since its services were started in September 1964, the waterworks in Vientiane has been operated anyway without a suspension of water supply even for one day and the redemption of loan to Japan made punctually, although there have been various technical and financial problems such as the collection of water rates, measure to counter flood, extension of distirbution pipe networks, power cost and increased loss from the difference of quotations on foreign currency debts due to devaluation.

However, various facilities of the filtration plant have become so deteriorated owing to an inadequate maintenance resulting from the lack of repair parts as well as skilled technicians that they need all-out repair. While, the extension of distribution pipe networks was carried out by the Laotian authorities to meet the demand of repidly increasing population in recent years around the supply areas planned at the time of designing, and the absence of any fundamental measure conjointly with the increase in the consumption of water exceeding the estimates for the planned supply areas has caused wide areas to have poor water supply, with the dissatisfaction of citizens increasing. Salar Salar Salar

In order to solve the problem Nam Papa Lao requested the Japanese Government \cdot through the Laotian Government to send a survey team, upon which request the present investigation has been carried out.

The investigation is to be conducted in three stages for repair, improvement and future extension of the existing water supply facilities; the present survey has been carried out focussing especially on the technical investigation for the repair and improvement and at the same time the problem of extending the said facilities in future has been taken up as far as possible.

We desire that the present investigation will contribute in some measure to solve. the problem of the water supply facilities in Vientiane which were completed with the aid of the Japanese Government and have been thanked for by the citizens of Vientiane in that it has served to raise their living level for eight years since then, doing very much for furthering the friendly relations between both countries.

3. Composition of Survey Team

The survey team was composed of the following members:

Toshiya Sano Kazushige Sasaki

· , · · .

Non-regular staff member of Japan Water Works Association Non-regular staff member of Japan Water Works Assocation

Period and Activities for Investigation 4.

Date Weekday		Activities
Mar. 28	Tue.	Left Tokyo and arrived in Bangkok.
29	Wed.	Left Bangkok and arrived in Vientiane.
%3 °,		Paid a visit of courtesy to the Japanese Embassy and the persons concerned of Nam Papa Lao.
g has had a see that the see th	Fri.	Made arrangements as to affairs and conducted investigation at the filtration plant. Examined the equipments to be repaired and collected data.
		The second of the second secon

Apr.	1		Surveyed the areas having poor water supply areas Areas (Areas Areas)	er supply and the extended
	2 .	Sun.	u v	
	3, .,	Mon.	Made a detailed examination of equi and collected data.	pments to be repaired
. ~	. 4	Tue.	Collected data; made arrangements plan for improvement.	
-	5 ^	Wed.	Collected data; made arrangements	
	6	Thu.	Made on-the-spot investigation.	•
	7	Fri.	11	
	8	Sat.	Collected data; heard about the situation Ministry of Public Works.	ation of city planning at the
	9	Sun.	Adjusted the collected data.	
	10	Mon.	Made arrangements; Explained the Embassy.	circumstances to the
	11	Tue.	Paid a visit of courtesy to the Emba before returning to Japan; Left Vien Bangkok.	
	12	Wed.	Left Bangkok and arrived in Tokyo.	

Local Personnel Concerned

Japanese Embassy --

Mr. Tani, Ambassador

Mr. Yamashita, Councelor

Mr. Yamakawa, Secretary

Mr. Nishii, Secretary

Ministry of Planning and Cooperation --

Dr. Pane Passavong, Commissioner Gerneral

Dr. Oudone Voratanouvong, Commissioner General

Nam Papa Lao --

Mr. Sengkham Phinith, Director General

Mr. Kitsana Vongpouthone, Works Manager

Japan Overseas Cooperation Volunteer --

Mr. Masaharu Fijimura (in charge of machinery)

Mr. Masakazu Ishii (in charge of water quality)

CHAPTER 2: GENERAL SITUATION OF THE KINGDOM OF LAOS

1. Geography and Climate

Laos has a area of about 237,000 km² approximating to that of Honshu of Japan. It has a distinctive feature that it is a land-locked country with no outlet opened to the sea and its territory extends lengthwise from south to north. It is bordered by six countries, South and North Vietnams, Cambodia, Thailand, Burma and People's Republic of China, and the Mekong, a great river of 4,200 km in length coming from Tibet forms the whole of borderline between Burma and a part of it between Thailand.

The climate is divided broadly into rainy season from May to September and dry season from October to April. The country as a whole receives the annual mean rainfall of 2,000 mm, while it ranges from 1,000 to 4,000 mm according to different places. The temperature fluctuates little during the rainy season and that in Vientiane is 27°C on the average with small difference of temperatures between day and night. In the dry season the temperature goes down gradually from October to January when it is most cool and then it turns to rising from February. Having no rain, the period from March to May just before the rainy season is the most unbearable in the year.

2. Population, Race, Language and Religion

As there has been no complete census in Laos the population is unknown; one putt it at 1.5 million and other at 4 million. But the estimates published by the Statistics Bureau of the Government in March 1967 place the population at 2.7 million. Therefore it is sparsely populated with the density of 11.4 capita per 1 kg². The population of Vientiane, the capital of Laos, was 132,000 in November 1966, and is 175,000 as of 1972.

The population consists of Laotians and other minorities, 40,000 people, including Thais, Vietnamese, Chinese, Black Thais (refugees from North Vietnam; and other nationals including French, Filipinos, Indians, Cambodians, Americans, Pakistanis and Japanese.

By race, the population is broadly divided into the Thai peoples (Lao, Lum, Black Thai, and Red Thai), the natives of Indonesian origin, the peoples of Chinese origin and those of Tibet origin. The Thai peoples account for 60 % of the total population; the Lao peoples who advanced south from Yunnan in the 10 th century and thereafter to settle in the flat land of Mekong river basin hold a dominant position in Laos.

Lao and Thai are the sister languages since Lao and Siamese races are the sister races. Among foreign languages French which is used as an official language holds an important position and although English is being rapidly popularized in recent it is still far behind French.

The state religion is Buddhism introduced from Cambodia in the 12th century and the constitution provides that the king must be a devout Buddhist. There are two religious parties, Mahanikhai sect and Thamahuto sect introduced from Thailand, and the former is more predominant as in Cambodia.

3. Form of Government and Political Situation

The Kingdom of Laos became independent as a constitutional monarchy freed from the control by France, the then suzerain state, in March 1945 when the former Japanese armed forces dealt with French Indo-China.

After that the people split into the rightists, leftists and neutralists and the hostilities were repeated several times. In 1961 the Lactian problem was referred to the conference met by 14 nations at Geneva and though an international agreement was reached on the neutralization of Laos it took time to solve the problem of setting up a coalition government of three factions in the country. After the so-called three-faction's top talks between Princes Boun Oum (rightist), Phouma (neutralist) and Souphannouvong (leftist) were held lengthily at Geneva of Swiss and Hin Heup, Vientiane or Jars Pleateau in Laos, a government of National Union (the present government) was formed in June 1962 under Prince Phouma. In the following month, July, Laotian united delegation was sent to Geneva to declare the nuetralization of Laos which was accepted by the 13 countries attended the conference with the declaration to respect the neutrality of Laos, putting an end to the conference continued over one year and two months.

Though Laos started as a neutral state blessed internationally the neutralist army split into right-and left-wings taking advantage of the assassination of Quinim Pholsena, the left-wing neutralist Foreign Minister, in April 1963 and a hostility took place again on Jars Plateau. Leftist Prince Suphannouvong who attended the commencement ceremony for the construction of Vientiane waterworks held in January in that year representing the Laotian Government drew off Vientiane together with the Pathet Lao (patriotic party) ministers and the government of National Union has now become a mere scrap of paper.

After that, in spite of the endeavors to restore to the status quo Pathet Lao inclined more to the left and the Phouma Administration more to the right with the intensification of Vietnamese War, widening the gaps between them. For the present, the contact between them is scarecely maintained by means of the exchange of letters and the control of Laotian internal trouble is dependent on the settlement of war in the neighboring country, Vietnam.

Since the Laotian Constitution which was promulgated on 11 May 1947 had been framed after the type of the Franch Constitution it did not match with the actual conditions of Laos and was revised several times since then.

The Parliament consists of the two chambers, Upper House (Conseil de Roi) and Lower House (Assemble Nationale).

In Laos there is no steady organization which can be called as a political party except Pathet Lao (a patriotic party) that may be called as an antigovernment belligerent body rather than a political party judging from its actual condition.

Now that the Pathet Lao ministers dropped off, the Phouma Government of National Union has diminished its value to exist as a neutralist government and it may be a right-ist government under the cloak of neutralism.

4. Industry and Trade and the second sec

Owing to the hostilities the development of Laos is much delayed and it may be said that there is no industry worthy of mention. The articles manufactured in the country are confined to matches, sandals, cigarettes and soft drinks, depending on the import for all other goods. Rice was self-sufficient previously but its production has become so unsufficing that it is imported from Thailand due to the shortage of labor resulting from the rapid increase of soldiers called out for the civil war.

the same of the first of the same The war expenditure accounts for more than half of the budget of which two thirds in the red are covered by foreign aids every year.

1.0

- Although it is said that Laos is rich in underground resources their exploitation is delayed owing to the impact of the hostilities and also to the difficulty of transportation as the greater part of trade is handled through the port of Bangkok for geographical reason. The only article exploited so far is tin produced in Central Laos and 6.8 million tons of it is exported annually, constituting the most important article of export. Woods and coffee are also exported but they account for only 3% of the total amount of export. Besides, the intermediary trade of gold is an important revenue source for Laos in the form of import duty. The principal articles of import include rice, gasoline, cars, motorcycles, textile goods, machineries, and processed foods.

At present, the imbalance of export and import is covered by the foreign aids which are by no means sufficient due to the financial limitation of contributing countries and the Laotian economy is continuously troubled with inflation.

The long-awaited Nam Ngum dam was completed in December 1971 and a concrete movement has been started for the construction of bridge across the Mekong to connect Thadeua (Laos side) with Nongkhai (Thailand side). In addition to these facts, if the possibility of exploiting the underground resources is taken into consideration it is expected that the economy will be normalized gradually in the future.

5. Trasportation

At present, the international air services are maintained on three routes between Vientiane and Bangkok by Thai Airways, Saigon and Vientiane by Air Vietnam and Vientiane and Hong Kong by Royal Air Lao. The air services inside Lao are maintained by Royal Air Lao on the north route from Vientiane to Ban Houei Sai via Sayaboury and Luang Praband and the south route from Vientiane to Pakse via Savannakhet.

Although it is possible to reach Vientiane by land routes respectively from Bangkok, Phnom Penh and Saigon the roads except one coming from Bangkok are in poor: condition and the use of them is difficult also in view of public peace.

There is no railway in Laos, but the Thai railway system extends to Nongkhai, on the Thai bank of the Mekong opposite to Vientiane.

CHAPTER 3 PRESENT CONDITION OF, AND MEASURES FOR THE WATER SUPPLY FACILITIES

The state of the s

1. Outline of the Water Supply Facilities

The dimensions of the water supply facilities in Vientiane delivered to Laos in September 1964 are as follows:

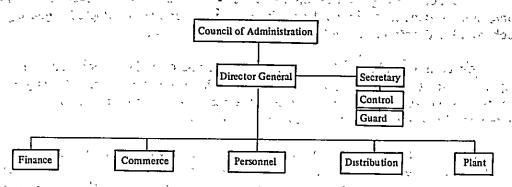
Estim Water	nated water-consumption	
(1)	Intake Equipment	
,	Intake tower	4.5 m x 7.5 m x 31.7 m (in height), Oval, reinforced concrete-made.
	Intake pump	22,000 m ³ /d. in capacity, 350 mmø, $Q = 7.65 \text{ m}^3/\text{min.}$, H = 19 m, $37 kw - 3 sets(of which 1 set for reserve).$
	Water pipe bridge	1.5 m x 1.5 m x 30.0 m (in span), water main = 500 mmø, steel supporting structure.
(2)	Filtration Equipment	•
	Mixing basin	2.8 mø x 4.0 m (in height), 7.5 ps, with flash mixer, circular, reinforced concrete-made.
	Chemical sedimention basin	6.0 m x 32.0 m x 5.1 m, reinforced concrete-made 4 units
	Chemical dissolving and feeding equipment	Alumina Sulphate solution tank 2 unit Soda ashes solution tank 2 unit Rock-salt solution tank 2 unit
	Rapid filter basin	Filter area of 5.6 m x 8.5 m = 47.6 m^2
		filtering capacity = 5,700 m ³ /d./unit, of perforated pipe collection system, with stationary surface and back washin equipment, hand operated, with loss of head gauge, and double-sheet type controller.

		32 m x 16 m x 4 m x 2 reservoirs = 4,000 m ³ , reinforced concrete-made, built underground.
	Chlorination room	4 m x 8 m, block-made, built on clean water reservoir, of soda hypochlorite feeding system by electrolysis as rock-salt is available easily on the spot.
	Pump	
	Distribution pump	250 mmø x 200 mmø, 6.3 m ³ /min. x 67 m x 110 kw 4 sets (of which 1 set for reserve).
	Back washing pump	14.5 m ³ /min. x 16 m x 55 kw 2 sets.
	Vacuum pump	25 mmø, 0.75 kw 2 sets.
(3)	Distribution System	•
	Distribution pipe	Cast iron pipe, of 450 mmø - 75 mmø, 49,000 m in length. Galvanized steel pipe, of 50 mmø, 5,000 m in length.
	Venturi meter	450 mmø
	Post hydrant	at 155 points
	Public tap	at 37 points
(4)	Elevated Tank	25 m high, 2,000 m ³ in capacity, surge tank installed at the terminal of distribution pipe networks.
(5)	Electric Equipment	750 KVA transformer 1 set, 15,000 V/380 V/220 V high voltage receiving equipment, distribution equipment.
(6)	Instrumentation	Concentrated equipment for transmitting changes in raw water run, water delivery and water levels of clean water reservoir and elevated tank.
٠, ,		

2 Present Condition

The characteristics of the water supply facilities in Vientiane city are as follows:

- a) In order to simplify the maintenance of various facilities for the treatment plant, the equipments of manual operating system have been adopted rejecting mechanical and automatic equipments as far as possible.
- b) As regards chlorination, the feeding method of soda hypochlorite has been adopted at the strong request of the Laotian authorities at the time of designing, in order to use soda hypochlorite to be obtained by electrolyzing the solution of rock-salt which is produced in abundance on the spot.
- c) Since the topography of Vientiane city is flat all over its city area with the difference of elevation being only 5 m, the pressure direct conveyance method of water by means of distribution pump has been adopted to distribute the water, with the elevated tank of 2,000 m³ in capacity installed at the terminal of distribution pipe networks to adjust the water pressure and store any surplus water.


Being nearly 8 years old since the start of services the waterworks of Vientiane city as it is now poses several problems including the repair of various facilities in the treatment plant (see Chapter 3, 2 - Repair), the improvement measures for the areas having poor water supply which have increased rapidly with the growth of population served and the extension of supply areas, and the extension of water supply facilities for the future development of the city. All these problems are related to the financial circumstances of Nam Papa Loa and it seems most difficult to solve them immediately by Nam Papa Lao's own efforts, judging from the result of examination of the data furnished by Nam Papa Lao during the present investigation.

According to the data mentioned above, it is deemed that the financial problems were caused to arise during the first four years in particular after the start of services. In brief, it may be said that they have resulted from the inexperience in any waterworks business. To put it concretely, the problems may be summalized as follows:

- 1) Inconsistent collection of water rates.
- 2) Free services from public taps.
- 3) Stolen water from hydrants during the night.
- 4) Increased burden for the cost of installing water service equipments.
- 5) Comparatively high cost of electric power.
- Expenses for revetment works.
- Special outlays for flood protection measures.
- 8) Loss resulted from the change of exchange rate due to devaluation, in relation to the loans in foreign currency.

Nam Papa Lao is tackling with these problems including the inconsistent collection of water rates and in the following is described the general situation.

(1) Organization of Nam Papa Lao

The Council of Administration, an organ which controls Nam Papa Lao and decides on important problems, consists of nine members including those representing respectively the ministries of Finance, Civil Works and Home Affairs, Planning and Electric Bureaus and the National and the Development Banks, the mayor of Vientiane, and one representing the National Hotel Operating Bureau of the Ministry of Foreign Affairs. At present, the Minister of Finance hold office as the President and a director of bureau of the Ministry of Civil Works as the Vice-President.

The office of Managers of Commercial and Plant Departments is held concurrently by Director General at present.

(2) Water Rates and Collection

The fixing of water rates is subject to the resolution of the Council of Administration. The present rate is 90 Kip per 1 m³ to which water meter rent and taxes are added to make the final rate of 100 Kip per 1 m³ (about \$50). (U.S.\$1 = K. 600)

This rate is very higher compared with that in Japan and the percentage of water rates accounted for in the household expenses is 3-5% for the family of an average income earner as against 0.4-0.5% of national average for Japan.

The water rates were revised four times since the start of services.

Year		Rate per 1 m ³
1964 - 1967		104 Kip
1968 - 1969		95 Kip
1970		92 Kip
1971	14 4	90 Kip

At present, Nam Papa Lao is endeavoring for the collection of water rates by replacing time-worn water meters with new ones to effect more accurate metering or suspending water supply to the deliquents of the rates. The actual results of consumption of water (indicated by water meters) and collection of water rates are shown in Tables - 2 and - 3.

The present quantity of water conveyed being about 16,000 m³ per day there is a difference of about 3,000 m³ per day (20%) between the conveyance and consumption

judging from the related data; for this the principal cause seems to be attributable to the inadequate functioning of water meters. Apart from the above, there are accounts receivable corresponding to about 2,000 m3 per day (13%). The loss due to the metering error can be solved by the renewal of water meters for which the work is under way. As for the accounts receivable, it is desired that Nam Papa Lao will take a drastic measure to collect them and tha Laotian Government give an all-out cooperation to it. and the second of the second o

Table-2 Actual Amount of Water Rates Collected

The state of the s

Angline in a tour the own and am

ج پسر ج	4		100 100	<u>- , , , , , , , , , , , , , , , , , , ,</u>
	Year 4	Consumption (in Kip)	Collected amount (in Kip)	Percentage
reig ga	1965	88,934,000 🐍	63,589,000	77.8
** * * ;	1966	138,749,000	107,990,000	77.8
,	1967	205,241,000	177,587,000	86.5
Se. "	1968	247,321,000	241,138,000	97.5
	1969	282,186,000	250,389,000	88.7
	1970 .	313,006,000	251,705,000	80.4
	1971	167,383,000	203,315,000	120.7

Note - For 1971, the consumption is that for the first half of the year and the collected amount includes the balance carried over from the preceding year.

Table-3 Actual Quantity of Water Conveyed

(In 1,000 m³)

				٠, ٠		(111 27002 111)	
Year Month	1965	1966	-1967	1968 -	1969	1970	1971
Jan.	29	109	178	·, 210	240	285	282
Feb.	44	120	192	230	261	295	298
Mar.	75	136	204	251	270	300	308
Apr.	99	148	228	275	285	317	326
May	115	160	248	280	300	320	335
June	94	-147	- 200	233	270 -	- 306	308
July	74	110 -	-170 ~	185	226	264	283
•	. 85	122	162	197 :	242	253	268
Aug. Sept.	.98	134	182	226 - 1	263	289	214
- (, ,	_	,	
Oct.	/ -110	150	200	248		305	312
Nov.	120	162	., 195	225 - ; '	275	294	307
Dec.	- 119	150	220	260	297	302	320
Total	1,062	1,648	2,374	2,820	3,217	3,520	1,857
Proceeds	769 ,	1,200	1,783	2,149	2,454	2,790	1,525
Loss	293	448	591	671	763	740	. 352
Percentage	27.5	27.0	24.0 -	24.0	24.0	20.0	19.0

(3) Works for Water Service and Water Supply Pervasion

The works for supplying water to the consumers were carried out by the staffs of Nam Papa Lao itself who had received on-the-spot technical training by the Japanese engineers for about 6 months after the completion of the water supply facilities.

The present water supply pervasion is 55 - 60% and there are new applications from about 50 consumers every month for which the works are being rather delayed.

As seen clearly in the map of distribution pipe-lines (Fig. 9 - 3), the city of Vientiane extends along the Mekong long and narrow and the distribution pipes are laid along the streets. Later, with the gradual extension of residential districts into the back land outside the initially planned supply areas many of new consumers, except a part of shopping district, have been separated considerably far from the water main and to that extent the distributing branches tapped the main have become longer to reach the service equipments at the consumers. The networks of distributing branches laid so far are shown in the plan (Fig. 9 - 3) and Tables - 4 and - 5 shows the actual layings by year.

Table-4 Actual Installations of Water Meters by Year

Year —	No, of meters installed	
1964	600	
1965	1,100	
1966	942	
1967	914	
1968	707	
1969	497	
1970	547	
1971	621	
Total	5,928	

Note - The figure for 1964 is the actual number of meters installed for 4 months.

Table-5 Works for Water Service

Year	Work cost (In Kip)	Collected amount (In Kip)	Rate of collection (%)
1965	35,357,000	33,024,000	93.4
1966	22,590,000	20,358,000	90.1
1967	35,754,000	27,724,000	77.5
1968	46,156,000	30,141,000	65.3
1969	23,545,000	23,678,000	100.5
1970	30,871,000	22,131,000	71.7
1971	30,706,000	10,894,000	35.5

Note - (1) Work cost includes that of distributing branch.

⁽²⁾ Collected amount for 1969 includes the balance carried over from the preceding year.

The reason for the low percentage of collection for 1971 is that Nam Papa Lao executed the works by the advance of costs for the convenience of consumers.

The work cost for distributing branch is allotted to the consumer along that branch to recover it together with the work cost for water service after the completion of the work. However, as the number of consumers has not yet reached that estimated initially, Nam Papa Lao has been compelled to bear the balance.

(4) Control of Water Quality

. . . .

The results of examination of water quality carried out in the dry and rainy seasons (February and August) by Nam Papa Lao are shown in Tables - 6 and - 7.

Since the Mekong is used as a water source any special water pollution is not found. During the rainy season from May to September the turbidity becomes very high, reaching 2,500 - 3,000 degrees on some days. Alkalinity is 85 - 95 degrees throughout the year and the turbidity is eliminated by only a coagulant (aluminum sulphate) of which annual mean rate of feeding is 40 - 50 p.p.m.

The coagulant is wholly imported at present and its import amounted to K. 13,700,000 (18 - 25 tons per month) in 1971.

As regards chlorination, the feeding equipment of soda hypochlorite installed initially was removed because of frequent troubles and difficulties of repair and replaced with a feeding apparatus of high-power bleaching powder easy for maintenance. The feeding rate of high-power bleaching powder (available chlorine of 60%) is 2.00 p.p.m in annual average.

This agent is too wholly imported and its actual amount of import was K.3, 800,000 (1.8 - 2 tons per month) in 1971.

The water quality test room is equipped with sufficient laboratory equipments and chemicals with the aid of Japan and operated in a satisfactory manner under the administration and instruction by the member in charge of water quality of Japan Overseas Cooperation Volunteer.

Table 6 Examination of Water Quality

Vientiane Date 15/8/71

Item	Raw Water (Mekong)	Supplywater
Temperature (Atmosphere) oc	29	29
Temperature (Water) oc	26	26
Turbidity (P.P.M.)	1280	• 0
Color (P.P.M.)	100	0
Odor ,	Undetected	Undetected
pH (B.T.B)	7.4	7.0
M - Alkalinity (P.P.M.)	0.0	66.0
Total Acidity (P,P,M)	7 0.6 ° . · · · ·	0.6
Ammonia - Nitrogen (N)	Detected	Trace
🐺 🔩 - Nitrite - Nitrogen (N) 🕡 🕟	Trace	Trace
Nitrate - Nitrogen (N)	Trace	Undetected -
market with the		

Chlorine (Cl-) P.P.M	9.50	6.38	7.
Sulfate (SO ₄ ⁻) P.P.M	• • •		
KMnO ₄ Consumed (P.P.M)	12.00	4.74	1_ ' ' ' ' ' '
Residual Chlorine (P.P.M)	. 0.0	0.3	_
Specific Conductance Ohm.cm	5500	4500	1 1
Total Hardnese (P.P.M)	91.8	103.2	
Iron (Fe) (P.P.M)	0.02	. 0.0	:
Manganese (Mn)	Undetected	Undetected *	r - 2
Aluminium (Al) (P.P.M)	0.002	0.001	

Table 7 Vientiane Water Supply
Date 15/2/71

, Item	Raw Water (Mekong)	Supply Water
Temperature (Atmosphere) OC	23	24
Temperature (Water) OC	21	`14
Turbidity (P.P.M)	120	0
Color (P.P.M)	0	0
Odor	Undetected	Undetected
pH (B.T.B)	7.4	7.0
M-Alkalinity (P.P.M)	85.0	65.8
Total Acidity (P.P.M)	0.26	0.9
Ammonia - Nitrogen (N)	Undetected	Undetected
Nitrate - Nitrogen (N)	Undetected	Undetected
Nitrate - Nitrogen (N)	Detected	Trace
Chlorine (Cl ⁻) P.P.M	0.70	13.5
Sulfate (SO ₄ -) P.P.M	-	•
KMnO ₄ Consumed (P.P.M)	8.55	4.74
Residual Chlorine (P.P.M)	0	0.6
Specific Conductance Ohm. cm	4100	5000
Total Hardnese (P.P.M)	57.6	76.0
Iron (Fe) (P.P.M)	0.01	0.
Manganese (Mn)	Undetected	Undetected
Aluminuum (Alo)	0.001	0.2

(5) Others

Even after nearly eight years since its start of services the business of Nam Papa Lao is yet hard going in spite of the water rates that are high compared with those in Japan as stated above. Apart from the causes such as the problems of collection of water rates and increased burden for equipment costs to meet new demands as aforesaid, the following special circumstances can be pointed out as the factors which cause the increase in expenditures of Nam Papa Lao and restrain its management remarkably.

(a) Electric Power Cost

In order to supply the electric power to the water supply facilities including the pumping station, Nam Papa Lao installed the high-voltage receiving and transforming equipments at the time when the facilities were completed, to buy the electricity at K. 30 per kwh. The power cost per 1 m³ amounted to K. 14.91 as much as twice that of Japan, accounting for a very large percentage of prime cost. The unpaid power rates accumulated to K. 98,600,000 by March 1971 and in that month Nam Papa Lao completed its non-utility generating facilities with 4 generators each of 250 kw installed, spending

K. 41,800,000 for construction cost. As a result the power cost has lowered to K. 16 per kwh, only half of the cost when the electricity was purchased and, nevertheless, it is still considerably high compared with the general prices.

Since the Nam Ngum Dam waited for by the Laotian Government was completed in December 1971 and the supply of abundant power has become possible, it is desired that the power will be provided at a low cost in view of the water supply business as a public utility.

(b) Reverment. Works' and Flood Measures (b) The Company of the Co

The treatment plant of these facilities is adjacent to the Mekong with the intake tower installed at a distance of 25 m from the river shore. When the intake tower was constructed the revetment works should have been conducted as a matter of course together with the main works as there is much of fears for any change in the river stream and any erosion of the river shore. However, such works were omitted from the plan for budgetary reasons, and after that Nam Papa Lao had to carry out the revetment works for itself over a period of several years spending K. 16,000,000 for them.

On the other hand, the treatment plant was submerged under the flood of the Mekong for three times in 1966, 1969 and 1970. Though any suspension of water supply was avoided anyhow by the strenuous efforts of the staffs of Nam Papa Lao, the plant suffered considerable damage which costs Nam Papa Lao as much as K. 5,000,000 for the works of restoration.

(c) Change in Exchange Rate

The contract for these water supply facilities provides that the dollar portion amounting to U.S.\$1,180,800 is to be paid by semi-annual installments spread over thirteen including two-year grace period after the completion of works. The schedule of payment is shown in Table-9 and the payment has been made punctually as of December 1971.

The par of exchange was U.S.\$1 = K. 80 at the time point, June 1962, when Nam Papa Lao made the contract, but after that the Laotian Government effected the devaluations as follows:

	Fixed rate	Free rate	,
Oct. 1958 Jan. 1964	80 Kip/U.S.\$1 240	- Kip/U.S.\$1 500	Exchange stabilization
	- A A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A		fund was set up.
Nov. 1971	240	600	

When Kip was devaluated to U.S.1 = K. 240 the double exchange rates, fixed rate (U.S.1 = K. 240) and free rate (U.S.1 = K. 500), were adopted and the fixed rate has been applied to quite limited transactions of the Government. At the same time, an exchange stabilization fund was set up with the foreign currency contributed by the advanced nations in order to stabilize the exchange rate.

After the fixed rate (U.S.\$1 = K. 240) was applied to the payment of debt in dollar currency of Nam Papa Lao for first several times, the payment was excluded from the application of it with the deterioration of foreign currency situation of the Government.

Therefore, the amount provided in domestic currency by Nam Papa Lao has been increased by more than seven times of that calculated by the basic rate of U.S.\$1 = K. 80 at the time when the contract was made. On the other hand, the water rates which are the revenue source have been lowered gradually from K. $104/m^3$ at first to K. $90/m^3$ at present partly from the viewpoint of social policy, and coupled with this the increase in expenditures due to the changes of exchange rate has been constituting an extremely heavy burden on the finance of Nam Papa Lao.

Table-9 Schedule of Payment

Nr.	Date of payment	Amount	Exchange Rate	Remarks
		(In U.S.\$)	(In Kip)	
1	1 Dec. 1966	90,415	240	
2	1 June 1967	131,221	240	
3	1 Dec. 1967	128,508	240	
4	1 June 1968	125,796	240	
5	1 Dec. 1968	123,830	Unknown	
6	1 June 1969	120,379	whether	Paid
7	1 Dec. 1969	72,664	240 or	
8	1 June 1970	71,302	500	
9	1 Dec. 1970	69,939	500	
10	1 June 1971	68,577	500	
11	1 Dec. 1971	67,215	600	
12	1 June 1972	65,852	600	
13	1 Dec. 1972	64,490		
14	I June 1973 .	63,127		
15	1 Dec. 1973	61,765		
16	1 June 1974	60,402		
17	1 Dec. 1974	59,039	Exchange	Not
18	1 June 1975	<i>57,677</i>	rate	repaid
19	1 Dec. 1975	56,314	unknown	U.S.\$844, 7 32
20	1 June 1976	54,952		
21	1 Dec. 1976	53,590		
22	1 June 1977	52,228		
23	1 Dec. 1977	50,865		
24	1 June 1978	49,503		
25	1 Dec. 1978	48,140		
26	1 June 1979	46,788		

CHAPTER 4 REPAIR

1. Problems

The various facilities in the treatment plant of which maintenance has been carried out so far by the staffs of Nam Papa Lao and the members of Japan Overseas Cooperation Volunteer, has been in a condition necessitating some repair but they are operated under a defective state owing to the difficulties of obtaining repair parts in Vientiane or Bangkok.

The present states of various facilities needing repairs are as described below and later is shown the lists of spare parts for repair which have been prepared after examining the individual items.

1) Intake Pump

Three sets of intake pump are installed, of which two are for regular operation and one is in reserve. Due to the unavailability of spare parts the operation of two sets is maintained making use of parts taken from the reserve set which is, therefore, unserviceable. In addition, the two sets in service are operated repairing one of them by turns and thus it is unable to attain the designed quantity of water intaken, 22,000 m³ per day; the present intake seems to be about 16,000 m³ per day.

One of the causes for trouble has been of course the inadequacy of periodic inspections; one among others has been a heavy load imposed on the vertical shaft at the time of starting pump by the mud which had been accumulated at the bottom in the intake tower and frequently reach the inlet port of the pump.

Therefore, in order to provide for an occasion when the turbidity of the Mekong exceeds 3,000 degrees during a rainy season, it is necessary to install a blow-off pump apart from any repair of the intake pumps.

2) Orifice Meter

In the operation of water supply business, it is very important to grasp accurately the quantity of water conveyed and that of water intaken as well. However, the orifice meter to measure the latter quantity has broken down due to the floods on three past occasions and is left intact.

3) Flash Mixer in Mixing Basin

The flash mixer plays an important role in the first stage of treating process to mix the raw water and coagulant rapidly to effect a sedimentation of higher degree.

The flash mixer is unserviceable due to the wear of its vertical shaft and bearings. Accordingly, the treated water sent to the rapid filter while the sedimentation effect is yet inadequate imposes a heavy burden on the filter bed and this is uneconomical because the effect duration of filter bed is reduced, leading to the lowered functioning of facilities as a whole.

4) Chemical Feeding Equipment

Each two solution tanks are installed respectively for coagulant and alkaline material. As seen from the results of water examination (see Tables - 6 and - 7) the alkalinity of raw water is as high as 85 - 95 degrees and from the first a satisfactory coagulation and sedimentation effects have been attained by the use of only aluminum sulphate, a coagulant. It is necessary to replace the flow controller, vinyl pipe and valve of the feeding equipment to which coagulant has sticked heavily.

5) Flow Controller

The rapid filter is equipped with a flow controller of Simplex type to regulate the rate of filtration (run) and its diaphragm (of rubber made) is so worn away due to flowing water that the flow controller is not functioning properly.

It is necessary to replace such diaphragm with a new one because if the rapid filter is left over in a condition in which any flow control is impossible the rate of filtration will become unstable giving an unfavorable effect on the quality of water.

6) Chlorination Equipment

The initial method adopted for chlorination was to feed soda hypochlorite obtained by electrolyzing the solution of rock-salt.

For four years after the start of operation the system carried out the chlorination at a low cost as designed. However, an overload on the cooling plant due to the high temperature of the surroundings caused frequent troubles in the circulating system of cooling water and the aquisition of specific parts being impossible the plant was removed to install instead a device of simple structure for dissolving and feeding bleaching powder.

The flow meter of this equipment is in trouble at present.

7) Distribution Pump

Though the 4 sets of distribution pump (of which 1 set is in reserve) are working or serviceable at present, an adequate maintenance of them is not conducted for the lack of spare parts and the absence of periodical inspections as well as the technician in charge of their adjustment, resulting in the lowering of their efficiencies by 10% - 15% (see CHAPTER 5; Characteristic Curve of Pump).

Alike the intake pumps, many parts are necessary to repair these distribution pumps.

8) Starting Compensator for Distribution Pump

Four sets of starting compensator in use now are of hand-operated type, and all of them are in dangerous conditions under the influence of abnormal heat due to severe wear of contact parts of their interiors. The replenishment of spare parts from Japan being difficult because of the old types of their main bodies, it is needed to replace

them with the starting compensators of push-button type for easy operation.

As for the parts in the pannel, the thermal relays, etc. must be replaced too with new ones.

9) Venturi Meter

Alike the orifice meter, the venturi meter to measure the water delivery is unserviceable with its transmitter damaged by the floods in several occasions.

Since the grasping of quantity of water intaken and water delivery is an essential requirement fundamental to the operation of facilities and the management of water supply business, the instruments must be repaired so that their metering functions can be restored.

2. Parts and Cost Necessary for Repair

The particulars of parts and the estimates of cost necessary for the repairs mentioned above are shown in the separate tables (for parts numbers of the intake and distribution pumps, see the related Fig. 9 - 1 and - 2).

The estimates of costs include the expenses for sending 2 specialist respectively in charge of repairs of pumps and electric equipments.

No.	of parts	Names of parts	20011	Unit	Quantity
*,: 1) ,	Spare Pa	rts for 3 sets of EBARA PUN	MP Model 260 VYM		
	39.	Taper pin	SUS-27	pcs	24
	38.	Bell mouth	FC-20	11	3
	37. .	Nut .	BC-6	11	. 3
	36 .	Liner ring	LBC-1	11	. 6.
•	-35.	. Key	SUS-22	11	3
	34.	Impeller	BC-7	11	· ′5`
	33.	Liner ring	LBC-1		6
	32.	Bearing metal	Graphite _		
	30.	Bearing metal case	BC-6	sets	6
	31.	Top casing	FC-20	pcs	3
	29.	Joint	SUS-22	**	6
	28.	Pump shaft	SUS-22	*1	6
	27.	Internal pipe	SGP & SS-41	11	36
	25.	Middle shaft	SS-22	**	15
	24.	Stabilizing spider	Rubber	**	8
	23.	Internal pipe for spider	SGP & SS-41	**	8
	22.	Middle bearing metal	BC-6	11	33
	21.	Shaft coupling	SS-41	11	18
	19.	Top shaft	SUS-22	11	3
	18.	Shaft enclosing tube	SGS & SS-41	11	3
	16.	O-ring .	Rubber	11	6
	15.	Top distance piece	FC-20	11	3
	14.	Stuffing box	BC-6	11	3
	13.	Packing	Valqua	11	12
	12.	Gland	BC-6	11	3
	11.	Oil tube	SGP & SS-41	11	3
	10.	Bearing case	FC-20	**	3
	9.	Ball bearing	7215 B	11	6
	8.	Bearing cover	FC-20	tı	3
-	7.	Felt ring	Felt	tt	3
	6.	Journal	FC-20	11	3

No.	of parts	Names of parts		Unit	Quantity
	5.	Key	S45C	, m	6 :
	4.	Coupling	FC-20	sets	3
	3.	Coupling bolts	SS-41 & Rubber	pcs	48
	1.	Nut	SS-41	sets	3
		Copper pipe		m	20
		Cap nut and union		sets	12
2)	Mercury	switch for flow relay			
		Type: F1B9. 10HB		pcs	9
3)	Orifice pl	ate			
		Pipe dia. 500 mm,	SUS27	set	1
4)	Flexible of	diaphram for flow rate contr	oller		
		Dia: 250 mm	Rubber	pcs	8
5)	Flow met	er for chloride of lime			
		Type: Rota meter		sets	2
6)	Flow met	er for Al ₂ SO ₄			
		Type: Rota meter		**	2
7)	PVC Pipin	g materials		11	2
8)	Vacuum t	ube			
		NEC, 12AU7 J2		pcs	6
9)	Micro sw	itch			
		AC 15A - 125, 250 V, DC 0.25 A - 250 V	0.5 A - 125 V,	11	6
10)	Magnetic	contactor			
		Type: RC 3631-8		***	4
11)	Graphite	packing for valve			
		t = 16 mm, 5 kg/roll		rolls	10

No.	of parts	Names of parts	unit	. Quantity 4
12)	Spare Par	ts for 4 Sets of KUBOTA PUMP DVL 250/200		
	3.	Impeller _	pcs	4
	5.	Liner ring	*1	12
	6.	Shaft	**	4
	7.	Sleeve	` 11	8
	8.	Packing sleeve	"	16
	9.	Packing ring	**	16
	10.	Shuft nut	11	32
	11.	Lantern ring	**	16
	12.	Grand packing	**	160
	13.	Grand follower	11	8
	14.	Water slinger	**	8
	15.	Rubber ring	11	16
	16.	Coupling key	11	4
		Coupling between pump and motor	sets	4
	17.	Impeller key	pcs	4
	18.	Sleeve key	**	8
	19.	Distance ring	ŦŦ	4
	20.	Angular contact ball bearing #7314	11	24
	21.	Radial ball bearing #6314	11	12
	22.	Bearing nut	11	8
	23.	Lock washer	**	8
		Bearing for motor #6315	11	12
		Bearing for motor #6318	11	12
13)	Vacuum	pump and motor		
		Capacity 0.17 m ³ /min	sets	2
14)	Nozzle f	for fire hydrant hose ø2"	pcs	4
15)	Drain po	imp for Intake pump		
	1.	Submersible motor pump for drain	sets	· · · 2
•	· 2.	Hose with coupling 150 mmø x 25 m	**	2
	3.	Control panel for pumps	11	1

	16)	Hose with	couplings for pump	$\sqrt{2!} p_{j} L = 20 \text{ m}^{1}$	pcs	10
(17)	Shaft bea	ring, 55 mmø		, tt ,	· · · · 2 ·
	18)'	Shaft of r	nixer	and the second of	, i	
			$L = 4200 \text{ mm} \times 55 \text{ r}$	nmø, with bolt & nut	11	· ·1
	19)	Spare bla	de of pipe cutter		sets	4
	20)	Iron lid o	of surface box		pcs	200
	21)	Reactor	starting compensator	•		,
			for 110 KW, Push b	outton type, 380 V	sets	4
	22)	Spare par	rts for electric panel	s		
		1.	Pipe fuse	300 A, L = 120 mm	pcs	10
		2.	Thermostat relay	RCA 3737-4	11	4
	•	3.	Thermostat relay	RCA 3737-4	*1	4
		Whole se	ts of parts for repair	ring		
			listed above C.I	.F Vientiane	U.S.\$59	9,000
		Mechanic	cian and electrician			
	<u> </u>		each @U.S.\$2,000		U.S.\$	4,000
			TOTAL		U.S.\$6	3,000

~ 3

CHAPTER 5 IMPROVEMENT

1. Problems

The important problems that Nam Papa Lao confronts are to carry out the repair works and at the same time to improve the services for the districts having a poor water supply in the supply areas which so far have been expanded by Nam Papa Lao.

The districts having a poor water supply are --

Thatlouang; Sisangvone; Dongtaohai; Khouakhao; and Ban Nong Lo.

During the peak demand hours the districts of Thatlouang, Sisangvone and Ban Nong Lo, in particular, have the worst supply and the reasons for this are supposed to be as follows:

- (1) The functionings of distribution pumps have lowered due to the inadequate maintenance of pumps.
- (2) The supply areas have been expanded in excess of those that can be supplied as designed originally and wide differences have been produced between the actual consumption of water by district and the presumed consumption in the supply areas at the time of original designing.

The further examination of these causes reveals that the lowered functioning of pump has direct influences on the water delivery and service pressure as the direct pumping system has been adopted. This fact, as a matter of cource, constitutes a cause of poor water supply alike the extension of supply to the outside of the planned supply areas.

In many cases the distribution pipe networks are designed on the basis of consumption of water allotted evenly to the planned supply areas in proportion to the sizes of land as it is difficult to estimate the consumption by district in such areas. By the present investigation it has been found that the actual consumption differs from the consumption estimated for the designing by far beyond that expected.

In the districts lying between the treatment plant (Kaoliao district) and Houamuang district, for example, the actual consumption of water is only about 2,000 m³ per day compared with the estimated comsumption of about 5,000 m³ per day. On the other hand, mast of high-class residential quarters which are the large consumers at present are situated in an uneven manner at the ends of distribution pipe networks or in the supply areas increased newly.

For these facilities that adopt the direct pumping system, such a wide difference between the actual consumption and the estimated one for the designing has lead to the inability to attain the effective operation of distribution pumps. Thus, the insufficient demonstration of designed pump capacity coupled with the lowered functioning by about 10% due to the high head pumping operation at present has caused a decrease in the quantity of water conveyed, with the present capacity being only about 16,000 m³ per day (see the result of investigation of pumps described later).

Unless these problems are solved, it is impossible to attain the full functioning of these facilities that have the distribution capacity of 20,000 m³ per day and it is not too much to say that the electric power is being used wastefully.

In view of the development (population at present and its growth rate) of Vientiane city it is judged that the time has already come when any extension plan should be considered for the future in order to serve a sufficient quantity of water to the areas spreading widely, and in advance of this the above problems involving the said facilities must be solved at an early date.

The results of investigation of water distribution pumps are as follows.

a) Data of Measurement

Head and current value when respective sets of pump are operated one by one and those when each set of pump is in shutdown operation.

Table	1	0
-------	---	---

Pump NO.	Ordinary (normal operation)	2 min. after shutdown	3 min. after shutdown	Full delivery (normal operation)	Remarks
	Discharge pressure 74 mAq	82	83	74	Full delivery 200 mm
1	Suction pressure -3.2 mAq	-2.5	-2.5	-3.2	
	Head 77.2 mAq	84.5 m	85.5 m	77.2 m	
	Current value 140 A	75 A	75 A	138 A	
	79	88	88		
2	-2.7	-2.2	-2.2	Operation suspended	•
2	81.7 m	90.2 m	90.2 m		
	150 A	_ 80 A	80 A		
	72	81	81.5	72	Leakage at full delivery
	-3.2	-2.7	-2.7	-3.2	(Opening 175 mm)
3	75.2 m	83.7 m	84.2 m	75.2 m	Leakage at full shutdown
	136 A	85 A	85 A	135 A	(No opening)
	69 (-27 cmHg)	82.5 (-24 cm Hg)	82.5 (-24 cm Hg)	69 (-26 cm Hg)	Leakage at full delivery
4	-3.6 mAq	-3.2	-3.2	-3.4	(Opening 170 mm)
4	72.6 m	85.7 m	85.7 m	72.4 m	,-, <u>-</u>
	150 A	80 A	80 A	152 A	

b) Study

(1) Head after shutdown

For the heads after shutdown, it is judged that the capacities have lowered due to the wears of suction rings, etc. (see the characteristic curves). However, in the case of no. 3 set shown on the data of measurement, the current value after shutdown is rather high even at the full delivery because of leakage. In the case of no. 2 set, the

head after shutdown has become higher than that at the time of its installation, and this seems to be due to the defective meter.

(2) Operation at Full Delivery

The quantity of water conveyed is estimated from the current value and head for the operation at full delivery for each pump (see the characteristic curves of pumps).

The quantity of water pumped up which have been found from -intersection A (\$\dop\$) found on the graph from the current value; and
intersection B (\$-\dop{\dop}\$-) found on the graph from the head;
shows the approximate values for no. 1, 2 and 3 sets but the head is low for no. 4 set
showing a great difference.

The average values of quantity of water pumped up found from respective intersections for respective pumps are as follows:

Table 11

Pump	Value found from current value	Value found from head	Average quantity of water pumped up	Remarks
i	4.05 (m ³ /min)	3.75	3.90	
2	4.22	4.25	4.24	
3	3.55	3.90	3.73	
4	4.07	5.15	4.61	

Average quantity of water pumped up $4.14~\text{m}^3/\text{min}$. However, such quantity for no. 4 pump is 3.99 m $^3/\text{min}$., if 4.07 m $^3/\text{min}$. is presumed to be a correct value.

(3) Quantity of Water Conveyed per Day

Operating hours are --

from 6:00 a.m. to 8:00 p.m. with 3 sets working; from 8:00 p.m. to 6:00 a.m with 2 sets working.

Therefore, the operating hours of pumps are -14 hrs. x 3 sets + 10 hrs. x 2 sets = 62 hrs.

The quantity of water conveyed per day is -- $3.99 \text{ m}^3/\text{min.} \times 60 \text{ mins.} \times 62 \text{ hrs.} = 14,850 \text{ m}^3/\text{d.}$ (4.14 m³/min. x 60 mins x 62 hrs. = 15,400 m³/d.)

If the difference in operating hours is taken into account, the quantity of water conveyed per day will be 16,000 m³/d. agreeing with the actual quantity.

200 (mm) 250 (mm) 67 (m) 6.3 (m³/mn) 1450 (r.p m) 387731 E-NNR 110 (KW) 1470 (r.p.m) No. 1 set Specifications of motor Specifications of Pump Quality of liquid :

Dia. of discharge bore :

Dia of suction bore :

Total head .

Discharge quantity :

Nr. of revolution :

Product No : Type (Meidensha) Output Nr of revolution Remarks Total head Efficiency Revolutions per minute Type: DVL, Double Suction Volute Pump Caliber: 250 x 200 mm, Single Stage -Shaft power Revolutions per minute 100 20 1500 1400 100 80 9 40 20 100 20 30 96 80 70 9 40 20 2

Table 12 Characteristic Curve of Pump

2

9

Discharge quantity (in m3/min.)

(m) bead letoT

Shaft power (KW) o

(%)

Elliciency

Table 13 Characteristic Curve of Pump

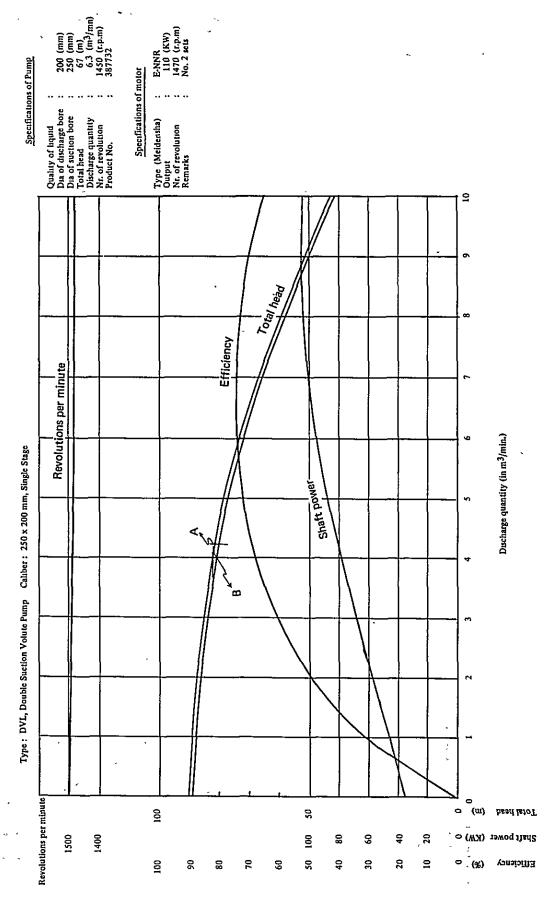


Table 14 Characteristic Curve of Pump

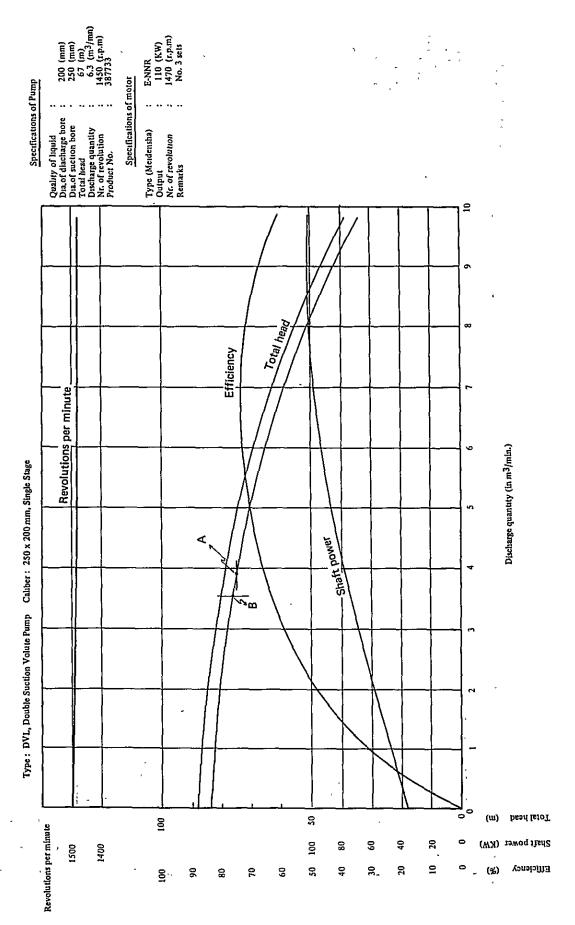
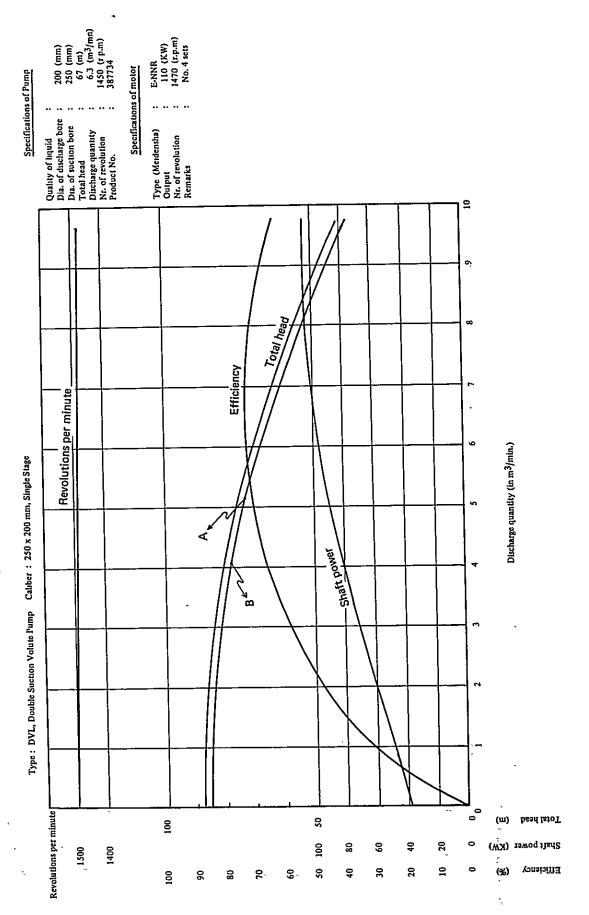



Table 15 Characteristic Curve of Pump

Table 16 Quantity of Water Intaken and Delivered, and Behavior of Water Level of Service Reservoir

16,200 m³/d. 16,090 m³/d. Intake : Delivery: $X 10 m^3$ As of 11 May 1972 100 90 Intake 80 Delivery 70 60 50 40 4 ^m Water Level of Service Reservoir 3 2

12 hr.

18 hr.

24 hr.

0

6 hr.

2. Improvement

Some alternative measures conceivable to improve the above state of things are as follows:

- A) To replace the existing distribution pumps by those with high head and to lay additional distribution pipes along some parts of the existing ones.
- B) To repair the existing distribution pumps without changing their capacities and to lay some additional distribution pipes. Further, to install a booster pump and elevated tank of about 150 200 m³ in capacity in a district for which the service pressure is inadequate.
- C) To repair the existing distribution pumps without any change in the present capacities and to construct a new reservoir of about 3,000 m³ in capacity and a pumping plant at a proper location for distributing water to the districts having poor water supply and also to install an elevated tank of about 150 200 m³ in capacity at a necessary place.

In order to obtain the data to study the above three method the calculation of pipe networks has been made to indicate where the unreasonableness presents on the pipelines in making the actual water conveyance of $16,000~\text{m}^3$ per day, and the results of such calculation are shown in Calculation Sheet - I and Reference Fig. 9 - 4.

Also the results of such calculation made for the water conveyance of 20,000 ${\rm m}^3$ per day assumed on the basis of the present consumptions by district are shown in Calculation Sheet - II.

Calculation	Sheets -	III for	Improvement	~	В

	Calculation	AL DALLES - III	L TOL IMPLOYE	iche o b															
LOOP NO.	PIPE NO.	Q 231,4800 DQ 0.0	1 8.9376	V 1,4641	15 15 15	39 -40 -36	9.0388 -2.5394 -9.4433 DQ 0.0001	0.8929 -0.3461 -0.9682	0.2903 0.1452 0.3033	29 29 29	71 72 -28	-2.3110 15.2460 -15.2431 DQ 0.0001	-0.2907 2.3487 -2.3479	0.1321 0.4894 0.4893	45 45 45 45	32 ~101 ~100 ~99	20.3798 -9.4990 -9.4990 -12.3539 DQ 0.0014	4.0180 -3.9732 -3.9732 -6.4607	0.6540 0.5423 0.5423 0.7051
2	2	237.5900 DQ 0.0 205.6200	6,1872 5,5722	1.3763	16 16 16 16 16	37 41 -42 -43 -44	3.8381 0.5607 0.1410 -0.9035 -0.7096	0.7431 0.3383 0.0482 -1.4960 -0.2357	0.2193 0.1513 0.0323 0.2068 0.0914	30 30 30	75 -76 -31	5,7927 -26,1148 -5,7396 DQ 0,0008	1,5914 -6,3567 -1,5645	0.3309 0.8379 0.3279	46 46 46	43 -103 -102	0.9035 -2.6957 -2.6957 DQ 0.0003	1.4960 -1.4942 -1.4942	0.2068 0.3468 0.3468
4	4 5	DQ 0.0 93.8587 85.6187	9.4081 7.9373 6.3280	1.3368 1.2195 1.0791	17 17	20 45	DQ 0,0003 2,9724 11,4351 -0,8645	0.1141 1.3795 -0.3396	0.0956 0.3672 0.1113	31 31 31	35 -74 -75	13.5109 -13.5111 -13.5111 DQ 0.0001	1.8783 -1.8783 -1.8783	0.4338 0.4338 0.4338	47 47 47	42 -105 -104	-0.1410 0.4197 0.4197	-0.0482 0.0479 0.0479	0.0323 0.0541 0.0541
4	6 -7 -8	75.7487 -10.5020 -88.8514 DQ 0.0000	-1.1785 -8.5006	0.3373 1.2655	17 17	-48 -47 96	-5.1846 pq 0.0004 23.0233	-1,2962 5,0350	0.2962	32 32 32	83 82 -41	1,9713 1,9713 -0,8607 DQ 0,0003	0.8375 0.8375 -0.8383	0,2537 0,2537 0,1513	48	106	1,6196 DQ 0.0	0.0125	0.0334
5 5 5 5	8 9 -10 -11	88.8514 5.4487 -12.9082 -14.9582 DQ 0.0000	8,5006 0,3501 -7,0071 -9,2038	1.2655 0.1751 0.7367 0.8536	18 18 18 18 18	97 98 48 -49 -45	7.3469 7.3469 10.2019 -2.3603 -11.4351 DQ 0.0012	2.4702 2.4702 1.1170 -2.1776 -1.3795	0.4196 0.4196 0.3276 0.3036 0.3672	33 33 33 33 33	40 80 -81 -82 -83	2.5394 2.1883 0.5887 -1.9713 -1.9713	0.3461 0.0218 0.0840 -0.8375 -0.8375	0.1452 0.0450 0.0733 0.2537 0.2537		FROM NODE	1		
6 6 6 6	12 13 -14 -68 -66	19.8921 12.5025 -2.5322 -25.2508 -28.0131 DQ 0.0001	15,5954 6,6051 -0,3443 -5,9731 -7,2878	1.1349 0.7136 0.1448 0.8102 0.8987	19 19 19 19 19	100 101 50 -51 -48	9.4990 9.4990 7.0137 -4.2767 -10.2019	3.9732 3.9732 2.2869 -6.5396 -1.1170	0.5423 0.5423 0.4006 0.5498 0.3276	34 34 34	76 79 -50	26.1148 9.7733 -7.0137 DQ 0.0010	6.3567 2.2474 -2.2669	0.8379 0.5582 0.4006		NODE NO. 1 2 3 4	Dynamic Water Level 233.3000 221.5755 211.5523 204.4198	Ground Height 166.3000 170.0000 169.0000 169.0000	Effective Head 67.0000 51.5755 42.5523 35.4198
7 7 7 7	16 -17 -18 7	28.0136 -21.1333 -49.3493 10.5020 DQ 0.0002	7.2380 -4.2971 -6.9599 1.1785	0.8987 0.6782 1.0127 0.3373	20 20 20 20 20 20	78 -52 -53 -87 -79	8.7737 2.5711 -1.1388 -10.7903 -9.7733	1.8407 2.5512 -2.2955 -2.6991 -2.2474	0.5011 0.8307 0.2606 0.8162 0.5582	35 35 35	34 71 -78	13.3612 2.1723 -8.7737 DQ 0.0003	1.8399 0.2593 -1.8407	0.4290 0.1242 0.5011		5 6 7 8 9 10	202.3949 201.4092 198.8692 198.0849 196.3441 198.2287 192.8098	170,0000 170,0000 170,0000 170,0000 170,0000 170,0000	32,3949 31,4092 28,8692 28,0849 26,3441 26,2287 22,8098
8 8 8 8	93 95 -20 -21 -9	12.8610 10.5910 -2.9724 -12.4470 -5.4487 DQ 0.0001	6.9598 4.9445 -0.1141 -6.5510 -0.3501	0.7341 0.6103 0.0956 0.7104 0.1751	21 21 21 21	51 54 55 -56	90 0.0001 4.2767 7.7033 1.4245 -1.4771	6.5398 2.6965 3.4734 -3.7141	0.5498 0.4399 0.3259 0.3379	36 36 36 37 37	38 -84 -77 44 -85	5.9824 -8.3750 -2.1723 DQ 0.0001 0.7096 -2.8897	1,6891 -1,6890 -0,2593 0,2357 -0,2359	0.4784 0.1242 0.0914 0.1652		12 13 14 15 16 17	187,0834 186,0348 188,0260 187,1788 188,1954 189,1408 188,0127	170.0000 170.0000 170.0000 170.0000 170.0000 170.9000	17.0634 16.0348 16.0260 17.1788 18.1954 18.2408 17.0127
9 9 9	14 22 23 -70	2.5322 9.1047 0.7417	0.3443 3.6735 0.0355 -2.8152	0.1448 0.5198 0.0425 0.5397	21 21	-57 -58	-10.2648 -5.6454 DQ 0.0014 2,3603	-4.5860 -1.5173 2.1776	0.5860 0.3225 0.3036	37 37	-86 -86	-2.8897 DQ 0.0003	-0.2359	0.1652		18 19 20 21 22	186,8190 187,3308 187,9538 187,9743	169.0000 170.0000 170.0000 170.0000	16.8490 17.3808 17.9538 17.9743
9 10 10	26 26	-16.8145 bq 0.0001 4.5730 0.6530	1.0276 0.2021	0.2613 0.0841	22 22 22 22	49 58 -59	5.6454 -7.6094 DQ 0.0010	1,5173 -2,6360	0.3225 0.4345	38 38	+88 -54	-2.6788 -7.7068 DQ 0.0009	-2.7523 -2.6965	0.3445 0.4399		23 24 25 26 27	186.0482 186.9058 187.4984 187.5596 183.0527	170,0000 170,0000 170,0000 170,0000 170,0000	16.0482 16.9958 17.4984 17.5596 13.0527
10 10 10	27 -72 -23	-1.7469 -15.2460 -0.7417 DQ 0.0000	-0.1732 -2.3487 -0.0355	0.0999 0.4894 0.0425	23 23 23 23 23	46 59 57 -60	0.8645 7.6044 10.2548 -2.8901 DQ 0.0003	0.3396 2.6360 4.5860 -3.1673	0.1113 0.4345 0.5860 0.3717	39 39 39	88 -89 -55	2,6788 12,3303 -1,4245 DQ 0,0013	2,7523 3,4546 -3,4734	0.3445 0.7040 0.3259		28 29 30 31 32	183.9662 183.2020 186.1006 184.1248 180.7956	168.0000 168.0000 170.0000 170.0000 169.0000	15.9662 15.2020 16.1006 14.7248 11.7956
11 11 11 11 11	17 29 -30 -98 -19	21,1333 19,0365 -15,8773 -23,0233 -22,7951	4,2971 3,5418 -2,4731 -5,0860 -4,9431	0.6782 0.6110 0.5033 0.7388 0.7315	24 24 24 24	56 -61 -62 -63	1.4771 1.2492 0.4767 -8.5578	3.7141 2.7240 0.4583 -3.2758	0.3379 0.2858 0.1092 0.4886	40 40 40	-90 91 61	10.7528 4.7874 -1.2492 DQ 0.0013	2.6817 32.7067 -2.7240	0.6140 1.0939 0.2858		33 34 35 36 37 38	180.4336 171.8136 185.4542 185.2096 185.2512 184.7440	170,0000 175,0000 169,0000 170,0000 170,0000 172,0000	10.4336 -3.1864 16.4542 15.2096 15.2512 12.7440
12 12 12	15 31 -32	DQ 0.0007 25.2726 5.7396 -20.3798	5.9826 1.5645 -4.0180	0.8109 0.3279 0.6540	25 25 25 25	92 -64 -65	DQ 0.0013 -4.3253 1.6400 -1.8999	-0.4974 4.5073 -4.8167	0.2472 0.3751 0.3888	41 41 41	-91 -92 62	-4.7874 4.3253 -0.6767 DQ 0.0013	-32,7067 0,4974 -0,4583	1.0939 0.2472 0,1092		39 40 41 42 43	183.3154 183.5628 184.1127 184.0406 183.2443	173,0000 175,0000 169,0000 173,0000 175,0000	10.3154 8.5628 15.1127 11.0406 8.2443
12	-29 24	-19.0365 DQ 0.0009 16.8046	-3.5418 2.8121	0.6110	26 26	66 67	DQ 0.0000 28.0131 2.7623	7,2378 0,0996	0.8987 0.0888	42 42 42	18 -94 -93	49.3493 -2.1700 -12.8810 DQ 0.0002	6.9599 -0.2587 -6.9598	1.0127 0.1241 0.7341		44 45 46 47 48	183.2178 183.3128 188.1958 187.1804 186.0263	178,0000 175,0000 170,0000 170,0000 170,0000	5.2178 8.3128 18.1958 17.1804 16.0263
13 13 13	33 -34 -75	0,9833 -13,3612 -5,7927 BQ 0,0006	0.0576 -1.8399 -1.5914	0.0551 0.4290 0.3309	26 27	-16 68	-28.0136 pq 0.0002 25.2508 5.9041	-7.2380 5.9731 1.6485	0.8987 0.8102 0.3372	43 43 43	94 16 -95	2,1700 22,7951 -10,6910	0.2587 4.9431 -4.9445	0.1241 0.7315 0.6103		49 50 51 52 53	184.9694 186.8128 186.0120 184.0773 183.9709	170,0000 170,0000 169,0000 169,0000 168,0000	14.9694 16.8128 17.0120 15.0773 15.9709
14 14 14 14 14 14	28 73 74 36 -37 -38 -33	15.2431 13.5111 13.5111 9.4433 -3.8381 -5.9822 -0.9633	2.3479 1.8783 1.8783 0.9682 -0.7431 -1.6891 -0.0576	0.4893 0.4338 0.4338 0.3033 0.2193 0.3417 0.0551	27 27 27 28 28 28 28	-69 -15 -67 70 -71 -24 69	5.9041 -25.2726 -2.7823 DQ 0.0006 16.8145 2.3110 -16.8046 -5.9041 DQ 0.0004	-5.9826 -0.0996 2.8152 0.2907 -2.8121	0.8109 0.0888 0.5397 0.1321 0.5394 0.3372	44 44 44 44	30 99 -98 -97	DQ 0.0003 15.6773 12.3539 -7.3469 -7.3469 DQ 0.0011	2,4731 1,5916 -2,4702 -2,4702	0.5033 0.3967 0.4196 0.4196		54 55 56 57 58 59 60 61 62 63	180.8283 183.4121 189.1407 187.9496 187.9425 187.3744 187.0971 183.2193 183.2442 183.3109 183.1568	169,0000 175,0000 170,9000 170,0000 170,0000 170,0000 170,0000 178,0000 175,0000 177,0000 169,1000	11,8283 8,4121 18,2407 17,9496 17,9425 17,3744 17,0971 5,2193 8,2442 6,3109 14,0568

Calculation Sheets - IV for Improvement ~ C

	Calcula	District -	· IV for Impro 1	vement ~ C								District -	2	ŧ					
LOOP NO.	PIPE NO.	Q	1	٧	н	FROM NODE	1			LOOP NO.	PIPE NO.	Q Q	ı	v (н	FROM NODE	1		•
ı	ı	231,4800	6,9376	1.4641	11.7245	NODE NO.	Dynamic Water Level	Ground Height	Effective Head	1	-1	-29,8663	-2.7487	0,6132	-0.9345	NODE NO.	Dynamic Water Level	Ground Height	Effective Head
	•	0.0 pg			11.7245	1	233,3000	166,3000	67.0000	1	14 ~15	61.6935 -0.5963	31.1839 -0.1709	1,9777	13.5650 -0.1982	1	210,0000	170,0000	40.0000
2	2	217.5900	6.1872	1,3763	10.0232	2 3	221,5755 211.5523	170.0000 169.0000	51.5755 42.5523	1 1	-16 -37	-4.3064 -21.1224	-26.8880 -509.5994	0.9841 4.8193	-10.7552 -0.5096	2 3	209.0654 207.8980	170.0000 168.0000	39.0654 39.8980
		DQ 0.0			10.0232	4 5	204.4198 202.315B	169,0000 170,0000	35.4198 32.3158	1	-3 -2	-21.6531 -21.6531	-1.5162 -1.5162	0.4447 0.4447	-0.5837 -0.5837	4 5	205,6151 206,3434	169,0000 169,0000	36.6151 37.3434
3	3	205,6200	5,5722	1,3007	7,1325	6 7	201.4624 198.9717	170,0000 170,0000	31.4624 28.9717			DQ 0.0000			0.0000	6 7	206.1261 197.4195	170.0000 175.0000	36,1261 22,4195
		DQ 0.0			7.1325	8	196,2483 196,2449	170,0000 170,0000	26.2483 26.2449	2	37	21,1224	509.5994	4.8193	0.5096	8 9	194.5767 196.4350	170,0000 169,0000	24.5767 27.4350
4	4 5	92,9581	9.2418	1.3240	2.9574	10 11	195.8698 191.6723	170,0000 170,0000	25,8698 21,6723	2 2	-5 -6	16.8161 6.5778	0.9498 0.1673	0.3455 0.1353	1.0448 0.0002	10 11	196.6332 194.7903	170.0000 170.0000	28.6332 24.7903
4	6 -7	84.7181 74.8481 0.9992	7.7836 6.1895	1,2067	2.4907 2.7234	12 13	182,1313 180,5012	170,0000 170,0000	12.1313 10.5012	2 2	-7 -8	0.6561 -2.5739	0.8276 -10.3766	0.1502 0.5885	0.7283 -2.2829	12 13	193.9067 192.2803	169.0000 170.0000	24.9067 22.2803
4	-8	-89,4399	0.0152 -8.6051	0.0322 1.2739	0,0033 -8,1748 -0,0000	14 15	181.2228 182.6902	170,0000 170,9000	11.2228 11.7903			pq 0.0000			-0.0000	14 15	192.2858 190.2117	170.0000 172.0000	22.2858 18.2117
		DQ 0.0000			-0.0000	16 17 18	173,4485 178,3093	170,0000 170,0000	3.4485 8.3093	3	-11	8.6072	0,2751	0.1769	0.1087	16 17	188.7329 189.0611	175.0000 169.0000	13.7329 20.0611
5 5	8 9	89,4399 10,2974	8.6051 1.1364	1.2739 0,3307	8.1748 0.3750	19 20	180,0613 180,1876 178,3113	170.0000 170.0000 170.0000	10.0613 10.1876	3	-10 -9	8,6072 -0,3618	0.2751 -0.2751	0.1769 0.0829	0.1087 -0.2173	18 19	188.2379 182.3099	170.0000 178.0000	18.2379 4.3099
5 5	-10 -11	-13.2214 -15.2714	-7.3249 -9.5635	0.7546 0.8715	-6.4460 -2.1040	21 22	179.5525 179.7427	170.0000 170.0000	8,3113 9,5525 9,7427	3	6	-6.5778	-0.0002	0.0	-0.0000 0.0000	20 21	184.4972 188.7290	175,0000 173,0000	9.4972 15.7290
_		DQ 0.0001	-7.5435	0,0,15	-0.0001	23 24	178.1816 177.7960	170.0000 170.0000	8.1816 7.7960	4	19	DQ 0.0000 1.6311	4,4620	0,3731	8,9239	22 23	185.2584 207.3884	175.0000 168.0000	10.2584 39.3884
6	12	23,8344	21,7904	1,3595	4.5760	25	176.5426	170.0000	6.5426	4	-13 -12	-1.7089 -8.6072	-4.8640 -0.2751	0.3731 0.3909 0.1769	-8.7066 -0.1087	24 25	208,4817 206,3434	170.0000 168.0000	38.4817 38.3434
6 6	13 14	16.4444 10.5145	10.9666 4.7946	0.9383 0.6002	9.5409 1.6302					4	10 11	-8.6072	-0.2751	0.1769	-0.1087 -0.0000	26 27	206.2348 195.6270	169.0000 170.0000	37.2348 25.6270
6 6	-15 -16	-20.9934 -39.6842	-4.2446 -13.7857	0.6737 1.2727	-0.7216 -15.0264							0000.0 9q			-0.0000	28 29	185,2565 184,4687	177.0000 169.1000	8.2565 15.3687
		DQ 0.0005		-,	-0.0010					5 5	2 3	21.6531 21.6531	1.5162 1.5162	0.4447 0.4447	0.5837 0.5837				
7	16	39,6842	13.7857	1,2727	15.0264					5	-4	-5.6431	-1.5162	0.3224	-1.1675 0.0				
7	-17 -18	-26,8232 -69,4516	-6.6793 -13.0963	0.8606 1.4248	-1.4694 -13.5547							DQ 0.0			0.0				
7	7	-0.9992	-0.0152	0.0322	-0.0033 -0.0010					6 6	-17 19	-13.9408 29.7283	-8.0793 8.0789	0.7956 0.9537	-1.8582 0.8079				
		DQ 0.0012								6	18	29.7283	8.0789	0.9537	1,0503 -0,0001				
8 8	18 19	69.4516 35.0382	13.0963 10.9494	1.4248 1.1238	13.5547 2.6278							DQ 0,0001							
8 8	20 -21	-7.9336 -17.6088	-0.7015 -12.4462	0.2548 1.0047	-0.1263 -15.6822					7 7	20 21	9.5284 5.7384	3.9960 1.5639	0.5440 0.3278	0.9590 0.8836				
8	-9	-10,2974	-1.1364	0.3307	-0.3750 -0.0010					7 7	22 23	1,8184 -0,5816	1.3441 -0.0226	0.2340 0.0333	1.6264 -0.0054			•	
	22	DQ 0.0007			7 0507					7	-24	-34.2475	-10.4967	1,0985	-3.4639 -0.0003				
9	22 23 -24	28.6681 -65.3816	30.6638 -34.7200	1.6349 2.0958	7.0527 -4.8608							DQ 0,0002							
ģ	15	-37.9139 20.9934	-12.6696 4.2446	1.2160 0.6737	-2,9140 0,7216 -0,0006					8 8	24 25	26.5244 28.9292	6.5423 7.6817	0.8510 0.9281	2.1590 2.0741				
		DQ 0.0011			-0.0000					8 8	26 -27	11.1673 -2.9034	1.3204 -0.4434	0.3586 0.1660	1.6108 -0.3281				
10 10	24 -25	37.9139 -28.8422	12.6696 -7.6391	1,2160 0,9253	2.9140 -1.7570					8 8	-28 17	-12.4507 13.9408	-6.5546 8.0793	0.7107 0.7956	-7.3739 1.8582				
10 10	-19 17	-35.0382 26.8232	-10.9494 6.6793	1.1238 0.8606	-2.6278 1.4694							E000.0003		1	0.0001				•
		DQ 0.0037	-,		-0.0014					9	27	2.9034	0.4434	0.1660	0.3281				
11	26	-0.6050	-0.0060	0.0195	-0,0020					9 9	29 -30	2,6741 1,5327	11,1360 3,9769	0.6114 0.3506	4,2317 2,1873				
11 11 11 11	-27 -28	-3.8722 -12.1296	-5.4415 -1.5385	0.4978 0.3895	~1.2516 -0.5077					9 9	-31 -32	-2.6273 -2.6273	-10.7783 -2.6552	0.6007 0.3379	-5.9281 -0.8231				
11	25	28,8422	7.6391	0.9253	1.7570 -0.0043							DQ 0.0005			-0.0041				
		DQ 0.0088			***************************************					10	33 -34	9.2220	0.9266 -0.0055	0.2962 0.0155	1.4826 -0.0039				
12 12	28 29	12.1296 -1.5965	1,5385 -1.0565	0.3895 0.2054	0.5077 -0.1902					10 10	-26	-0.2697 -11.1673	-1.3204	0.3586	-1.4788 -0.0001				
12 12 12	-30 -20	-5.3852 7.9336	-1.3905 0.7015	0.3076 0.2548	-0.4450 0.1263							DQ 0.0000		•	-0.0001				
		DQ 0.0031			-0.0011					11 11	24 35	34,2475 3,1185	10.4967 0.0421	1.0985 0.0642	3,4639 0.0050				
13	27	3,8722	5,4415	0,4978	1.2516					11 11	-36 -29	1.4986 -2.6741	0.9398 -11.1360	0.1928 0.6114	0.7612 -4.2317				
13 13 13	31 -32	0.6272 -7.5239	0.1876 -2.5814	0.0808 0.4297	0.1107 -1.3682							DQ 0.0014		******	-0.0015				
	,	DQ 0.0061			-0.0059					12	38	1,6199	0.0125	0.0334	0.0019				
14 14	32	7.5239	2,5814	0.4297	1.3682							DQ 0.0			0.0019				
14 14	33 -34 -29	5.1611 -2.3588	1.2853 -2.1750	0.2948 0.3034	0.3856 -1.9467					13	39	0.9499	1.6413	0.2174	0.7878				
		1.5965	1.0565	0.2054	0.1902 -0.0027							DQ 0.0			0.7878				
15	35	DQ 0.0020 4.3999	0.9568	0.2514	1.2534									,					
		DQ 0.0	0.2500	0.4314	1.2534														
		-,																	
														ì	,	- 3	44—		
														.					

The results of calculation - I (for 16,000 m³/d!) shows clearly the defect of service pressure at No. 34 and No. 44 cross points of pipe-net. Also these results correspond with the values measured actually at the time of our investigation at No. 45 cross point where the elevated tank locates and with the actual conditions that the water supply is very poor particularly in Sisavone and Ban Nong Lo districts.

The results of calculation - II (for 20,000 m³/d.) shows the negative pressures presenting at many cross points. The reasons for this seems to be that the water consumptions estimated by district on the basis of the size of planned supply areas at the time of initial designing do not correspond with the actual consumptions causing very wide differences between them, and that at present the supply areas have been extended over the areas planned by the original design with the distributing branches increased.

The aforesaid measures for improvement are discussed on the basis of results of calculation shown above.

- Plan-A for Improvement

This plan which suggests to install new pumps with high head is worth considering if an overall improvement can be expected only by the replacement of the existing pumps with a head of 67 m by ones with a head of up to 80 m. However, as seen from the results of Calculation - II, the pumps with a head of 112 m, one higher by 45 m, will be required in order to secure the service pressure only with pumps. On the other hand, even if the friction loss of head is reduced by the partial replacement of pipline a head of about 90 m will be required. Further, in order to assure a distribution system well flexible to meet the fluctuation of consumption it will need to install an elevated tank of about 150 - 200 m³ in capacity in Ban Nong Lo district.

Merits: 19 Ball Carolina Ball Carolina

- 1) The improvement can be completed in a short period.
- 2) The increase of pipeline is required only for a very limited part.

Demerits:

- The service pressure in the supply areas will become remarkably uneven with a fear for leakage from the water main near the pumping station.
- 2) The replacement of the existing water main by one of 450 mmø requires much construction cost and the use of pumps with high head without any replacement of water main is not preferable from the viewpoint of economical bore of pipe.
- 3) This plan has very little relationship with the future extension plan described later for the developing districts of Vientiane city.
 - 4) Not only much electric power is consumed affecting greatly the prime cost of services but it will prove to be mere waste of expensive power.

5) Not only the replacement of pumps and motors but of electric equipments is required at the same time.

the second of the state of the second of the second of the second

Plan-B for Improvement

Christa Commence

The existing distribution pumps will be repaired thoroughly and new distribution pipes will be installed additionally along the existing unreasonable pipeline identified by the results of calculation of pipe networks. The service pressure can be secured by the increase of distribution pipes in the districts except Ban Nong Lo district in which it will be required to provide an elevated tank of about 150 - 200 m³ in capacity and a booster pump together with connecting pipes between them.

The merits and demerits of this improvement plan are as follows.

Merits:

- 1) Only small increase in the electric power cost is required to operate the new booster pump.
- 2) The restoration of designed operating point of the distribution pumps can be expected by a partial increase of pipeline.
- 3) In view of the relationship with the future extension plan described later, the new elevated tank and additionally laid distribution pipes will be utilized fully in the future.

Demerits:

- The length of pipeline to be laid additionally is longer compared with that for plan - A.
- 2) Separate electric equipment is needed to supply the electric power to the booster pump.

Plan-C for Improvement

The existing distribution pumps will be repaired thoroughly and a reservoir of about 3,000 m^3 in capacity and a pumping station will be constructed at a suitable location according to the results of calculation of pipe networks.

Though this improvement method requires only to increase some distribution pipelines on very limited routes, the whole supply areas must be separated into two parts to be served respectively by the supply system of the existing pumping station and that of new station.

In addition, elevated tanks each of about 150 - 200 m³ in capacity will be required in Ban Nong Lo and Simuang districts.

The merits and demerits of this improvement plan are as follows.

Merits:

- 1) The restoration of initially designed operating point of distribution pumps can be made by the construction of a reservoir and the electric power can be used effectively.
- 2) The increase of two elevated tanks provides a flexible distribution method to meet the increase and decrease in the consumption of water.
- 3) The increase of distribution pipeline is needed only for very limited parts.

Demerits:

- A longer period is necessary for the construction compared with the Plans
 A and B.
- 2) The construction cost is far more expensive compared with the Plans A and B.
- 3) The reservoir and pumping station proposed by this plan will lose their values to exist after the completion of future extension work mentioned later.

Based on the merits and demerits of the Plans - A, - B and - C from a general point of view, it has been concluded that the Plans - B and - C are worth considering further in detail.

Therefore, for the Plans - B and - C the calculations of pipe networks have been made with the assumed bore of pipe of modified route for the water conveyance of 20,000 m³ per day, in order to find in a concrete way which parts of the routes should be improved and which locations are suitable to construct the elevated tank and reservoir. The results of calculations are shown in Calculation Sheet - III and Reference Figure - III for the Plan - B and Calculation - IV and Reference Fig. 9 - 6 for the Plan - C.

Fundamentary, the calculation of pipe networks should be made naturally on the basis of the maximum water supply per hour in designing any distribution networks, but a very extensive improvement will be required as shown in the results of calculation - II made on such basis. Therefore, the Plans - B and - C have been studied on the assumption that at least the water of 20,000 m³ per day can be supplied satisfactorily.

As the improvement Plan - B has been considered most suitable in view of the cost and construction period for improvement and the utilization of facilities in future, the necessary expenses have been worked out for this plan.

- Calculation Sheet - I 16,000 m3/day

		•••									
LOOP NO.	PIPE NO.	Q	I	V	н						
1	1	185,2000	4.5919	1.1716	7.7144 7.7144	14	-38	2.4295	0.3189	0.1389	0,(/33 0,0000
		DQ 0.0			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			DQ-0,0000			
2	2	174./800	4,1254	1.1058	6.6419 6.6419	15 15	39 -40	7,7665 -1,1233	0.6744 -0.0765	0.2495 0.0643	1.0790 -0.0528
		0.0 pg			0.0415	15 15	-36	-8.7909	-0.8481	0.2824	-1.0262 0.0000
3	3	185.8000	3,7419	1.0490	4.7522			DQ 0.0			5,5500
		DQ 0.0			4 7522	16	37	1.9029	0.2029	0.1088	0.1502 5.1304
4	4	74.5353	6,1418	1.0618	1.9347	16 16	-41 -42	3.0105 0.8806	13.8659 1.4264	0.6882 0.2015	0.7845 -5.3256
4	5 6	67.8753 59.3953	5.1652 4.0983	0.9670 0.8534	1.6012 1.7622	16 16	-43 -44	-2,4794 -2,4794	-9,6830 -2,3854	0.5669 0.3189	-0.7395
4	-7 -8	-1.3006 -72.8080	-0.0247 -5.8810	0.0419 1.0372	-0.0052 -5.2929			DQ 0.0000			0.0000
		DQ-0.0000			0.0000	17	20	2,7963	0.1019	0.0899	0.0183
5 5	-8 -9	72,8080 7,6133	5.8810 0.6500	1.0372 0.2446	5.2929 0.2145	17 17	45 -46	12.5107 1.6449	1.6291 1.1165	0,4017 0,2117	0,5213 0,2121 -0,7516 0,0002
5 5 5 5	-10 -11	-10.8363 -12.4963	-5.0695 -6.5991	0.8186 0.7183	-4.0556 -1.4518	17	-47	-7.4032	-2.5054	0.4228	-0.7516 0.0002
•	-11	DQ 0.0000	-0.5771	011103	0.0000			DQ-0.0002			
4	12	20.6462	16.706/	1.1778	3.5084	18 16	30 48	14.5166 10.0796	2.1451 1.0923	0.4660 0.3237	0.4505 0.3714
6 6	13 14	14.6763 -1.2980	8.8855 -0.1000	0.8376 0.0743	7.5527 -0.0340	16 18 18	-49 -45	-1.8340 -12.5107	-1.3655 -1.6291	0.2360 0.4017	-0.3004 -0.5213
6	-15	-29.7314 -32.1859	-8.0805	0.9538	-1.2929 -9.7340			DQ-0.0011			0.0001
6	-16		-9.3596	1.0326	0.0002	19	32	22,4080	4.7889	0.7191	0.6704
_		pq-0,0001		. 0246	0.7240	19 19	-50 -51	5.4436 -3.9250	1.4185 -5.5798	0.3110 0.5046	0.4823 -0.7812 -0.3714
7 7	16 -17	32.1895 -23.2629	9.3596 -5.1324	1.0326 0.7465	9.7340 -1.0778	19	-48	-10.0796	-1.0923	0.3237	-0.3714 0.0002
7	-18 7	-55,2440 1,3006	-B.5766 0.0247	1.1336 0.0419	-8.6613 0.0052			DQ-0.0002			0.0002
		DQ-0.0003			0.0001	20	34	19.3046	3.6346	0.6196 0.2448	1.5265
8	18	55.2440	8.5756	1.1336	8.6613	20 20	-52 -53	1.9029 -1.0971	1.4619 -2.1424 -2.4341	0.2511	1,6812 -0.8998
8 8	19 -20	25.8507 -2.7963	6.2382 -0.1019	0.8294 0.0899	1.4660 -0.0183	20 20	54 50	-7,2886 -5,4436	-2.4341 -1.4185	0.4162 0.3110	-1.8256 -0.4823
8 8	-21 9	-13.6696 -7.6133	-7.7908 -0.6500	0.7802 0.2446	-9.8944 -0.2145			DQ-0.0001			0.0001
		DQ-0.0001			0.0001	21 21	51	3.9250	5,5798	0.5046	0.7812
9	22	11,1743	5,3660	0.6379	1.5025	21 21 21	-54 -55	7.2886 3.2816	2.4341 16.2631	0.4162 0.7501	1.8256 3.2526 -3.4615
9	23 -24	4.8970 -21.7731	1.1663 -4.5409	0.2798 0.6987	0.2799 -1.8164	21 21 21	-56 -57	-2.3333 -10,5803	-8.8537 -4.8502	0.5335 0.6040	-3.4615 -1.4550 -0.9425
9	-14	1,2980	0.1000	0.0743	0.0340	21	-56	-5.8585	-1.6250	0.3346	-0.9425 0.0003
		DQ-0.0001						DQ-0.0001			
10 10	25 26	3.2173 0.0473	3.8625 0.0016	0.4137 0.0061	2.5879 0.0017	22 22	58 -59	5.8585 -7.1417	1.6250 -2.3441	0.3346 0.4079	0.9425 -1.2424
10	27	-1.8926	-0.2009	0.1082 0.8582	-0.0502 -2.2595	22	49	1,8340	1.3655	0,2360	0.3004
10 10	-28 -23	-26.7497 -4.8970	-6.6455 -1.1663	0.2798	-0.2799 0.0000			DQ-0.0003			
		DQ-0.0000			0.0000	23 23	59 57	7.1417 10.5803	2.3441 4.8502	0.4079 0.6040	1.2424 1.4550
11	17	23.2629	5.1324	0.7465	1.0778	23 23	-60 46	-7.8982 -1.6449	-2.8240 -1.1165	0.4510 0.2117	-2.4851 -0.2121
11 11	29 -30	19.5710 -14.5166	3.7279 -2.1451	0.6281 0.4660	0.8388 -0.4505	25	40	DQ-0,0005	-1,1103	3,111	0.0002
11	-19	-25.8507	-6.2382	0.8294	-1,4660 0,0001	n.	56	•	8.6537	0.5335	3,4615
		DQ-0,0002				24 24	-61	2.3333 3.0049	13,8176	0.6869	13.8176 -7.0565
12 12	15 31	29.7314 4.3602	8.0805 0.9409	0.9538 0.2491	1.2929 0.2164	24 24	-62 -63	-2.3736 -13.6251	-8.9322 -7.7440	0.5427 0.7776	-10,2221
12 12	-32 -29	-22.4080 -19.5710	-4.7889 -3.7279	0.7191 0.6281	-0.6704 -0.8388			DQ-0.0000			0.0005
		DQ-0.0005			0.0000	25	62	2.3736	8.9322	0.5427	7.0565
13	24	21.7731	4.5409	0.8987	1.8164	25 25	-64 -65	0.8785 -1.8315	1,4203 -5,5290	0.2011 0.4189	2.8406 -9.8969
13 13	33 -34	-2.4295 -19.3046	-0.3189 -3.6346	0.1389 0.6196	-0.0733 -1.5265			DQ-0.0000			0.0001
13	-31	-4.3802	-0.9409	0.2491	-0.2164 0.0001	26	66	1.2997	0.0083	0,0268	0.0022
		DQ-0.0001						DQ 0.0			0.0022
14 14	28 35	26.7497 23.4672	6.6455 5.2160	0.8582 0.7530	2.2595 1.6691	27	67	0,7597	1.0857	0.1739	0.5211
14	36	8,7909	0.8481	0.2824 0.1088	1.0262 -0.1502			DQ 0.0			0.5211
14 14	-37 -38	-1.9029 -9.9824	-0.2029 -4.3553	0.5699	-4.8780						

ROM	NODE			
ODE	NO.	Dynamic	Ground	Effective
IODE	MV.	Water Level	Height	Head
1		233,3000	166.3000	67.0000
2 3		225,5855	170,0000	55.5855
3		218.9436	169,0000	49.9436
4		214.1914	169.0000	45.1914
5 6		212,7396	170.0000	42.7396
- 5		212,2567	170,0000	42.2567
7		210,6555	170,0000	40.6555
8		208.8933	170.0000	38.8933
9		208.8985	170,0000	38,8985
10		208.6840	170.0000	38,6840
11		205.3848	170.0000	35.3848
12		197.8322	170.0000	27.8322
13		196.3297	170.0000	26.3297
14		196.0498	170,0000	26,0498
15		197.8662	170.0000	27.8662
16		199.1590	170.0000	29.1590
17		200.2371	170.9000	29.3371
18		196,1231	169,0000	27.1231
19		197.6498	170.0000	27.6498
20 21		198.3202	170.0000	28.3202
22		198.7713	170.0000	28.7713
23		198.7896	170.0000	28.7896
24		197.1675	170,0000	27,1675
25		197.9486 198.2501	170.0000 170.0000	27.9486
26		198.0380	170.0000	28.2501
27		194,4419	170.0000	28.0380
28		195.3417	168,0000	24.4419 27.3417
29		192.0891	168.0000	24.0891
30		197.0079	170.0000	27,0079
31		195,5529	170,0000	25.5529
32		178,2743	169,0000	9,2743
33		185.3308	170.0000	15.3308
34		175.4337	175.0000	0.4337
35		193.7418	169.0000	24.7418
36		193.7401	170,0000	23.7401
37		193,7903	170,0000	23.7903
38		192,1211	172,0000	20,1211
39		191.0421	173,0000	18.0421
40		191.0949	175,0000	16,0949
41		191.2451	169,0000	22.2451
42		190.5056	170.0000	20.5056
43		185,9645	175.0000	10.9645
44		185,1800	178,0000	7,1800
45		191,0399	177,0000	14.0399
46		190.5187	169.1000	21:4187

Calculation Sheet - II 20,000 m3/day

,	LOOP NO.	PIPE NO.	Q	ı	v	R						
	1	1	231,4800	6,9376	1,4641	11.7245 11.7245	14	-33	3,2034	0.5319	0.1831	0.1223 -0.0000
			DQ 0.0			11,7143			DQ 0.0000			-0,0000
	2	2	217.5900 DQ 0.0	6.1872	1.3763	10,0232 10,0232	15 15 15	39 -40 -36	9.8350 -1.1747 -11.1866	1,0438 -0,0381 -1,3202	0.3159 0.0672 0.3586	1.6701 -0.0594 -1.6107
	3	3	205.6200	5.5722	1,3007	7.1325			DQ 0.0000			-0.0000
			DQ 0.0			7,1325	16 16	-41 -42	3.7183 1.0783	20.4821 2.0749	0.8498 0.2467	7.7870 1.1412
	4	4 5 6	92.9848 84.7446	9,2466 7,7881	1.3244	2.9589 2.4922	16 16 16	-43 -44	-3.0817 -3.0817	-14.4784 -3.5667	0.7045 0.3963	-7.9681 -1.1057
	4 4 4	6 -7 -8	74.8746 -0.6301 -89.4399	8.1886 -0.0065 -8.6051	1.0666 0.0203 1.2739	2.7252 -0.0014 -8.1748 0.0000	16	37	1.8363 DQ 0.0000	0,1900	0,1050	0.1406 -0.0000
			DQ 0.0000			0,000	17 17	45 -46	15.5244 -1.1337	2.4286 -0.5809	0.4983 0.1459	0.8015 -0.1010
	5 5 5	8 9 -10	89,4399 9,8329 -13,1949	8.6051 1.0434 -7.2977	1,2739 0,3158 0,7531	8.1748 0.3443 -6.4220	17 17	-47 20	-7.2275 5.6002	-2.3964 0.3683	0.4128 0.1800	-0.7669 0.0663 -0.0001
	5	-11	-15.2449	-9.5327	0.8700	-2.0972 -0.0000	18	48	DQ 0.0002 13.8320		0,4441	0.6670
	6	12	DQ 0.0000 25.7333	25.1104	1.4677	5.2732	18 18	-49 -45	-2.6764 -15.5244	-3.1397 -2.4286	0.3699 -/4093	-0.7221 -0.8015
	6 6	13 -14	18.3433 -1.9740	13.4237 -0.2172	1.0466 0.1129	11.6786 -0.0738	18	30	19.5578	3.7233	0.6277	0.8564 *-0.0003
	6 6	-15 -16	-36.6380 -39.4409	-11.8922 -13.6298	1.1751 1.2649	-2,0217 -14,8565			DQ 0.0006	2 2612		
	_	.,	DQ 0,0001	12 0000	1.2649	-0.0002 14.8565	19 19 19 19	-50 -51 -48 32	7.1754 -4.7700 -13.8320 28.1635	2,3648 -8,0033 -1,9617 7,3098	0,4098 0,8131 0,4441 0,9035	0.8039 -1.1605 -0.6670 1.0234
	7 7 7	16 -17 -18	39.4409 -29.2146 -68.2870	13.8298 -7.8225 -12.8929	0.9372	-1.7210 -13.1372	19	JŁ	DQ 0.0002	7,3036	0.9033	-0.0001
	7	7	0,6301	0.0085	0.0203	0.0014 -0.0002	20	-52	2,4206	2.2817	0.3114	2,6468
			DQ 0.0003			10 1070	20 20	-53 54	-1.2894 -9.3754	-2.8884 -3.8781	0.2950 0.5353	-1.1554 -2.9861 -0.8039
	8 8 8	18 19 -20	68.2870 31.4820 -5.8002	12,6929 8,9826 -0,3683	1,4009 1,0099 0,1800	13.1372 2.1558 -0.0663	20 20	50 34	-7.1754 23.6318	-2,3646 5,2839	0.4098 0.7583	2.2985 -0.0001
	8 8	-21 -9	-17,1176 -9,8829	-11.8115 -1.0434	0.9767 0.3158	-14.8825 -0.3443			DQ 0.0000			
			DQ 0.0001			-0.0002	21 21	-54 -55	9.3754 4.4860	3,8781 29,0002	0.5353 1.0251	2,9801 6,3800
	9 9	22 23	14.3875 4.5214	0.5647 1.0062	0.8211 0.2583	2.3981 0.2415	21 21 21	-56 -57 -58	-2.6469 -17.7599 -9.2984	-10.9278 -12.6445 -3.8194	0,6052 1,0133 0,5309	-4.4803 -3.7934 -2.2534
	9	14	1.9740	0.2172	0.1129	0.0738 -0.0000	21	51	4.7700	8.0033	0.6131	-2.2534 1.1605 -0.0004
			DQ 0.0001	. 3005	0.0171	0.0000		5 D	DQ 0.0001	2 2224	0.5000	
	10 10 10	25 26 27	6.0760 2.1560 -0.2440	1.7383 1.8419 -0.0045	0.3471 0.2774 0.0140	0.9822 2.2287 ~0.0011	22 22 22	58 -59 49	9.2984 -11.4517 2.8764	3,9194 -5.6150 3,1397	0.5309 0.6537 0.3699	2.2534 -2.9759 0.7221
	10 10	-28 -23	-0.2440 -31.5052 -4.5214	-8.9949 -1.0062	1,0106 0,2583	-2.9683 -0.2415		77	DQ 0.0004	•••••	0.0033	-0.0004
			DQ 0.0000			-0.0000	23	59	11.4517	5.6150	0,6537	2,9759
	11 11	29 -30	24.4175 -19.5578	5.6135 -5.7233	0.7835 0.6277	1.2911 -0.8564	23 23 23	57 -60 46	17.7599 -4.8638 1.1337	12.6645 -7.6786 0.5609	1.0133 0.5995 0.1459	3.7934 -6.8705 0.1010
	11 11	-19 17	-31,4820 29,2146	-8.9826 7.8225	1,0099	-2.1558 1.7210			DQ 0.0001		-11-12-2	-0.0003
			pq 0.0004			-0.0001	24	-61	3,4029	22,4146	0.8920	19,7248
	12 12	31 -32	5.1336 -28.1835	1.2727 -7.3098	0.2933 0.9035	0.2927 -1.0234	24 24 24	-62 -63 56	-2.7865 -16.6569 2.6469	-12.0176 -11.2302 10.9276	0.6371 0.9505 0.6052	-9.4939 -14.7115 4.4803
	12 12	-29 15	-24,4175 36,8380	-5.6135 11.8922	0.7835 1.1751	-1.2911 2.0217	-	•	DQ 0.0000		******	-0,0003
			DQ 0.0004			-0.0001	25	-64	1,1295	2.2609	0.2585	4.5217
	13 13	33 -34	-3.2034 -23.6318	-0.5319 -5.2839	0.1831 0.7583	-0.1223 -2.2985	25 25	-65 62	-2.2105 2.7865	-7.8301 12.0176	0.5055 0.6371	-14.015B 9.4939 -0.0002
	13 13	-31 24	-5.1336 26,8304	-1.2727 6.6182	0.2933 0.8563	-0.2927 2.7135			DQ 0.0000			
			DQ 0.0002			-0.0001	26	66	1.8197	0.0125	0.0334	0.0034 0.0034
	14 14	28 35	31.5052 29.5415	8.9949 7.9852	1.0106 0.9477	2.9683 2.1560	27	67	DQ 0.0 0.9497	1.6405	0.2174	0,7874
	14 14 14	38 -37 -38	11.1666 -1.8363 -11.8380	1.3202 -0.1900 -5.9704	0.3586 0.1050 0.6757	1.6107 -0.1406 -6.7167	•	٠,	0.0 pg	2.4702	V.111.4	0.7874
		-										

1 2 3 4 5		Ground Height	Effective Head
3 4	233,3000	166.0000	67.0000
4	221.5755	170,0000	51.5755 42.5523
	211.5523 204.4198	169.0000 169.0000	35,4198
	202,3226	170.0000	32,3226
6	201,4609	170.0000 170.0000	31.4609 28.9687
7 8	198.9687 196.2435	170.0000	26.2435
9	196.2449	170.0000	26.2449
10	195.9000	170.0000	25.9006
11 12	190.9703 179.2917	170,0000 170,0000	20,9703 9,2917
13	176.8936	170.0000	6.8936
14	176.6521	170.0000	6.6521
15 16	179.3655 181.3872	170.0000 170.0000	9.3655 11.3872
17	183,1078	170.9000	12.2078
18	176.7744	169.0000	7.7744
19 20	179.0728 180.0962	170.0000 170.0000	9,0728 10,0962
21	180.9518	170.0000	10.9518
22	181.0180	170.0000	11.0180
23 24	178.2689 179.4293	170.0000 170.0000	8.2689 9.4293
25	180,1502	170.0000	10.1502
26	180,2512	170,0000	10.2512
27 28	174.1276 175.2830	170,0000 168,0000	4.1276 7.2830
29	168,9029	168,0000	0.9029
30	177.1740	170.0000	7.1740
31 32	173.3807 149.1752	170,0000 169,0000	3,3807 -19,8248
33	158,6691	170.0000	-11.3309
34	144.6535	175.0000	-30.3465
35 36	175.9114 173.6827	169,0000 170,0000	6.9114 3.6827
37	173,6838	170,0000	3,6838
38	171.5278	172,0000	-0.4722
39 40	169.8577 169.9171	173,0000 175,0000	-3,1423 -5,0829
41	170.0577	169.0000	1,0577
42	168,9520	170.0000	-1.0480
43 44	162,1301 160,9889	175.0000 178.0000	-12,8699 -17,0111
45	169,8543	177,0000	-7.1457
46	169.0669	169.1000	-0.0331

–39–

3. Cost of Improvement

- 1) Estimation Bases for Construction Costs
 - a) The construction costs have been estimated basing on unit prices of materials and labors in Vientiane, using the standard quantity per unit of construction work applied to such estimating generally in Japan.
 - b) Cost iron pipes, polyvinyl chloride pipes, iron bars and elevated tank (of steel made) will be imported from Japan, and cement and temporary materials will be procured on the spot.
 - c) Land expenses for elevated tank and booster pump station are not included in the estimation.
 - d) Operation panel is included in the booster pump equipment but power line outside the station is not included in the cost.
 - e) Back-filling of excavation for additional installation of distribution pipes and gravel laying (in 10 cm thick) on the route portion under which cast iron pipes have been laid are included in the cost estimation but not the restoration of pavement.
 - f) Any taxes including duties levied on the imported materials are not taken into account for the estimation.

The construction costs estimated on these bases are as follow:

2) Construction Costs

	Description	Total amount	Foreign currency portion	Local currency portion	Remarks
1)	Distribution pipeline	US\$197,600	US\$169,300	US\$ 28,300	Length of c.i.p. (200 mmø, 150 mmø) = 4,360 m Length of p.v.c pipes (150 mmø, 100 mmø, 75 mmø) = 9,720 m
2)	Elevated tank	81,800	56,100	25,700	150 m ³ in capacity, steel- made, 25 m high above ground
3)	Booster pump	9,770	9,180	590	H = 35 m, $Q = 0.9 \text{ m}^3/\text{min}.$
	Sub-Total	US\$289,170	US\$234,580	US\$ 54,590	
4)	Expenses for chief engineer	US\$ 14,700	US\$ 14,700	US\$ 0	1 person for 7 mos.
5)	Expenses for technicians	12,000	12,000	0	2 persons for 6 mos. in all for installation of elevated tank
	Sub-total	US\$ 26,700	US\$ 26,700	US\$ 0	`
6)	General expenses	US\$ 14,730 .	_US\$ 12,000	US\$ 2,730	5% of 1) - 6)
<u> </u>	. Total , _y -`	US\$330,600	US\$273,280	US\$ 57,320	, , `

(Exchange rate - US\$1 = K. 600)

CHAPTER 6 FUTURE EXTENSION

1. Consideration on Future Extension

(1) Population and Design Water-consumption

Table 17 Population in Vientiane

Year	Popuration	Rate of Increase	Population in Service Area
1962	270,147	2.4%	Report unavailable
1963	276,631	2.4	31
1964	283,270	2.4	11
1965	298,069	2.1	132,253
1966	Report unavailable	Report unavailable	Report unavailable
1967	304,000	2.6	**
1968	312,000	2.2	"
1969	319,000	2.2	**
1970	326,000	2.2	11
1971			175,235

The population served in 1971 was -----

175, 235
$$^{\text{pop.}}$$
 x 60% = 105, 141 $^{\text{pop.}}$ (\$\displant 105, 000)

The water-consumption after the improvement works have been completed will be

$$20,000 \text{ m}^3/\text{d.} \times 90 - 95\% = 18,000 - 19,000 \text{ m}^3/\text{d.}$$

Therefore, the application of the maximum water-consumption per capita per day, or 2007, which was taken into account as the basis at the time of original designing will produce ----

18,000 - 19,000 m³/d. - 105,000
$$^{\text{pop.}}$$
 x 200 l . = -3,000 ~ 2,000 m³/d.

In the same manner, the application of the maximum water-consumption per capita per day, or 1801, will produce -----

18,000 - 19,000 m³/d. - 105,000^{pop.} x 180
$$l$$
 = -900 ~ + 100 m³/d.

As seen clearly from the results of these calculations, even if the supply of water up to 18,000 - 19,000 m³ per day is to be enabled after the improvement works have been carried out, it is expected that the problem of water shortage will become considerably serious in 1974, two years after now.

Now, the estimated water-consumption for the future may be calculated as follws:

Present population in the service areas	175,235 pop.
Period of design	15 years (to 1986)
	75%

The service capacity of $30,000 \,\mathrm{m}^3$ per day will be appropriate for the future extension plan to meet the demands in the period of design for which the situation 15 years ahead is assumed. It is noted that Chinaimo district in the southern part is too covered in this plan.

During the present investigation, an inquiry was made into the conceptions of the future city planning and road project for Vientiane developed by the Ministry of Public Works, in order to use them as data for considering the future extension plan of water supply facilities proposed.

As a result of this inquiry, it has been ascertained that the paved road between Vientiane and Thadua running along the Mekong via Chinaimo and Bang Hong Heo was submerged by the floods of the Mekong occurred three times since 1966 and, therefore, the construction of new road has been already undertaken by the Ministry of Public Works to connect both cities by an approximately straight route extending through the higher ground of inland.

The city planning is being developed along this new road.

If these facts are taken into consideration, the hill on the east of Ban Nong Lo district will be proposed as a suitable site of treatment plant for the future extension plan of the water supply facilities proposed. (See Fig. 10 - 1)

In implementing the extension plan, it is advisable to carry out the works dividing them into two stages, No. 1 and No. 2, as the financial problems troubling Nam Papa Lao now must be settled first.

The works of No. 1 stage will cover the new construction of intake and treating facilities and a part of distribution pipeline (connection of new treatment plant with the existing distribution pipe networks and installation of pipeline leading to Chinaimo district), and in No. 2 stage the distribution pipe networks will be extended into the new service areas in line with the city planning.

(2) Outline of Extension Plan (See Figs. 10 - 1 ~ 10 - 10.)

In the following, the basic designs of various facilities covered by the extension plan are considered from the above viewpoint.

i. Intake Equipment

The intake facilities are constructed in Ban Nong Lo district downstream the Caorio intake tower on the Mekong.

The quantity of water intaken is 1.1 times of the estimated maximum waterconsumption per day, including that of water to be used in the treatment plant.

Estimated quantity of water intaken:

$$30,000 \text{ m}^3/\text{d. x 1.1} = 33,000 \text{ m}^3/\text{d.}$$

$$= 1,375 \text{ m}^3/\text{hr.}$$

$$= 22.92 \text{ m}^3/\text{min.}$$

$$= 0.382 \text{ m}^3/\text{sec.}$$

Intake tower:

4.50 m x 7.50 m x 33.20 m (in height)

Oval, reinforced concrete-made.

Intake pump:

Dia. of suction bore $D = 35.7 \text{ x} \sqrt{\frac{q}{v}} = 35.7 \text{ x} \sqrt{\frac{191}{2.0}} = 350 \text{ mm/s}$

Head

Actual head $(h_1) = 17.00 \text{ m}$ Pipe loss of head $(h_2) = 15.00 \text{ m}$ $H = h_1 + h_2 = 32.00 \text{ m}$

Shaft power

 $P_{S} = \frac{0.0098 \times Q \times H}{V}$ $= \frac{0.0098 \times 191 \times 32}{0.82}$

≠ 74 kw

Output of motor

$$P = P_S (1 + \alpha)$$

= 74 x 1.4 = 103.6
= 104 kw

Incidental establishment: Electric equipment for blow-off

submergible pump

Water pipe bridge: 1.50 m x 1.50 m x 32.0 m ... 2 spans

Length 64 m

Water main 600 mmø

Steel supporting structure

ii. Transmission Pipe

Length 1,100 m

Bore of pipe 600 mmø

Quantity of water conveyed 33,000 m³/d.

iii. Filtration Equipment

Receiving Well The quantity of raw water is metered in this

well.

Size 7.00 m x 3.60 m x 3.25 m

Capacity 63.0 m³

Retention period .. 2.7 mins.

No. of chamber .. 1

Incidental

establishment ... Weir flow meter

Mixing basin: This basin has the object to feed chemicals

and mix raw water --- reinforced concrete-

made.

Size 2.50 m x 3.00 m x 3.30 m

Capacity 21.0 m³/chamber

Retention period .. 2.7 mins.

No. of chamber ... 3

Incidental

establishment 7.5 ps flash mixer

Flocculation basin: This basin has the object to form flock and

is of vertical circuit flow type, reinforced

concrete-made.

Size 9.60 m x 5.00 m x 3.30 m

Capacity 130 m³ /chamber

Retention period .. 34 mins.

Current velocity ... 0.25 m/sec.

No. of chamber 6

Chemical sedimentation basin:

This basin has the object to deposit floc and is of sloping plates settling system --- reinforced concrete-made.

depth

Capacity 175 m³/chamber

Retention period ... 45 mins.

Current velocity ... 0.35 m/sec.

No. of chamber ... 6

Chemical dissolving and feeding equipment:

It is a chemical feeding equipment to improve the sedimentation effect.

Solution tank of almina sulphate 2 units

Solution tank of soda ashes 2 units

Rapid Filter: Green leaf filter type.

Filter area 245 m²/unit

Filtering capacity .. 16,500 m³/d./unit

Rate of filtration ... 140 m/d.

Incidental establishment

Stationary surface washing equipment

Clean Water Reservoir:

It is constructed under the ground of administration house and has the object to store the surface water washed.

Size 5.60 m x 9.20 m x 3.0 m

Capacity 128 m³

Chlorination Room:

It has the object to conduct the feeding of soda hypochlorite and is of block-made on the service reservoir Area 63 m²

Administration room: It is a two-storied reinforced concrete building with walls of hollow concrete blocks.

Area 1st floor - 168 m²

2nd floor - 168 m²

Accommodations.. 1st floor - operator room, electricity

room, pump room, chemical feeding room, information and night duty room,

hall, toilet, hot water room.

2nd floor - bacterial culture room, water examination room, office room, assembly-room, superintendent's room, toilet, hot water room

Distribution Equipment:

Service reservoir - The capacity of which shall be such

that can supply the estimated maximum water-consumption for more than 6 hours. It is of covered type and reinforced concrete-made, with a chlorination room of hollow concrete block-made built on its inflowing side

for chlorinating

Size \dots 45.00 m x 22.50 m x 4.0 m in effective

depth

Capacity 4,050 m³/chamber

No. of chamber ... 2

Distribution pump - The pumping up capacity of distribution pump shall be 1.5 times of the estimated maximum

water-consumption, taking into account the

water for hydrants.

 $30,000 \text{ m}^3/\text{d.} \times 1.5 = 45,000 \text{ m}^3/\text{d.}$

 $= 31.25 \text{ m}^3/\text{min.}$

= 527.5 l/sec.

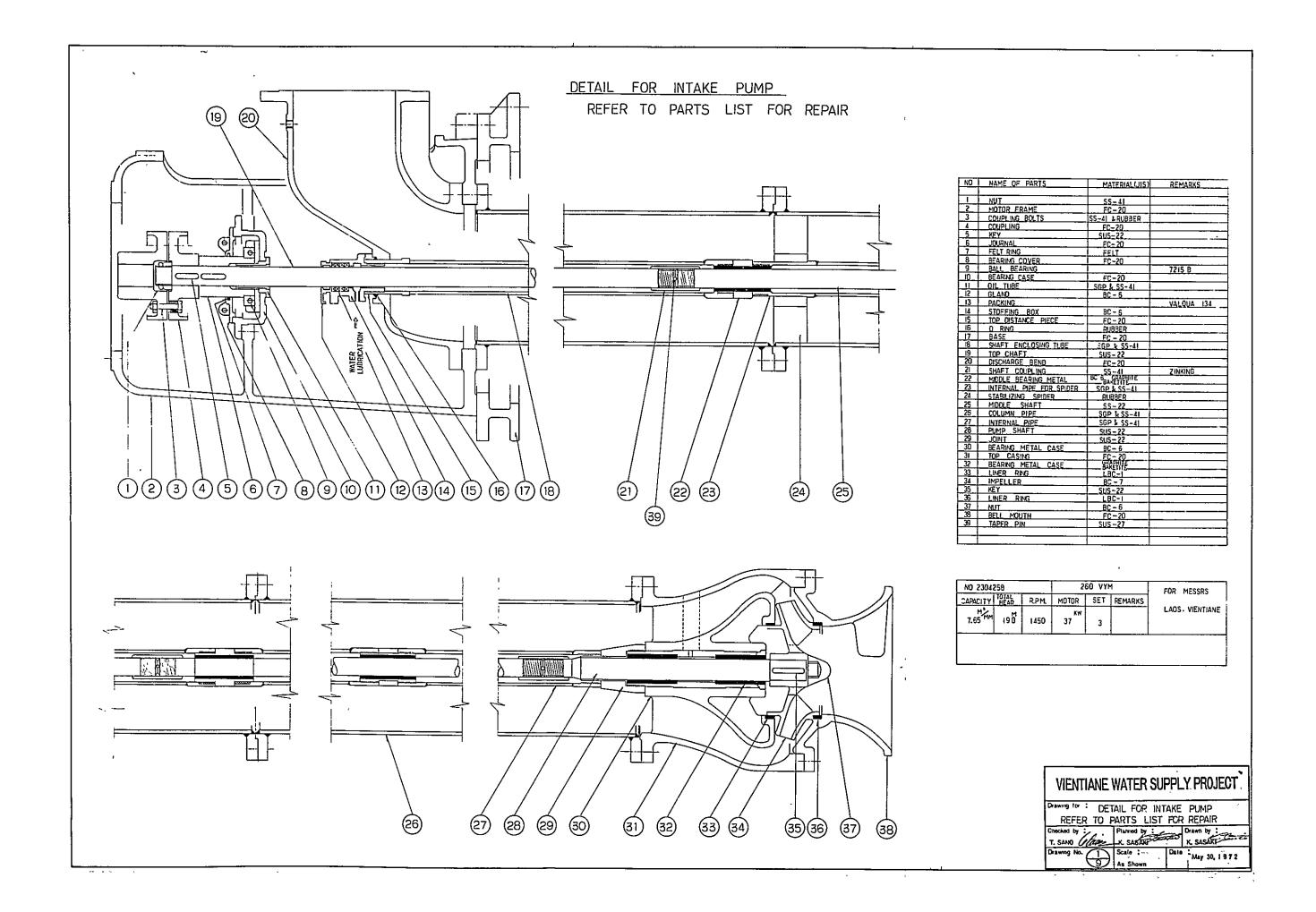
The selection of head and type of pump shall be made after the distribution pipe networks and the location of elevated tank has been determined.

Distribution pipe network -

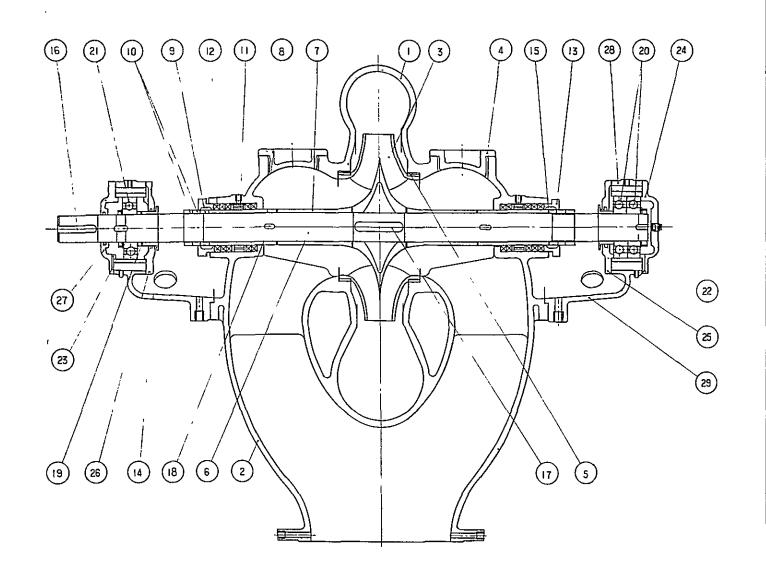
shall be decided at the time of 2nd stage works.

CHAPTER 7 CONCLUSION

In completing the present investigation, the fact which has impressed us is that the services of the water supply facilities have been continued, though with difficulty, without any suspension of water supply even for one day by the endeavors of the staffs of Nam Papa Lao and the members of Japan Overseas Cooperation Volunteer sent from Japan, for eight years since the start of services regardless of their maintenance being by no means adequate due to the impossibility to replenish the needed spare parts of various equipments.


As stated previously in this report, the intake and treating facilities has been already in such conditions that need some overall repair and improvement urgently. Moreover, in order to tackle with the extended service areas lead by the growth of population in recent years, the time has come already when some extension plan must be studied for the future.

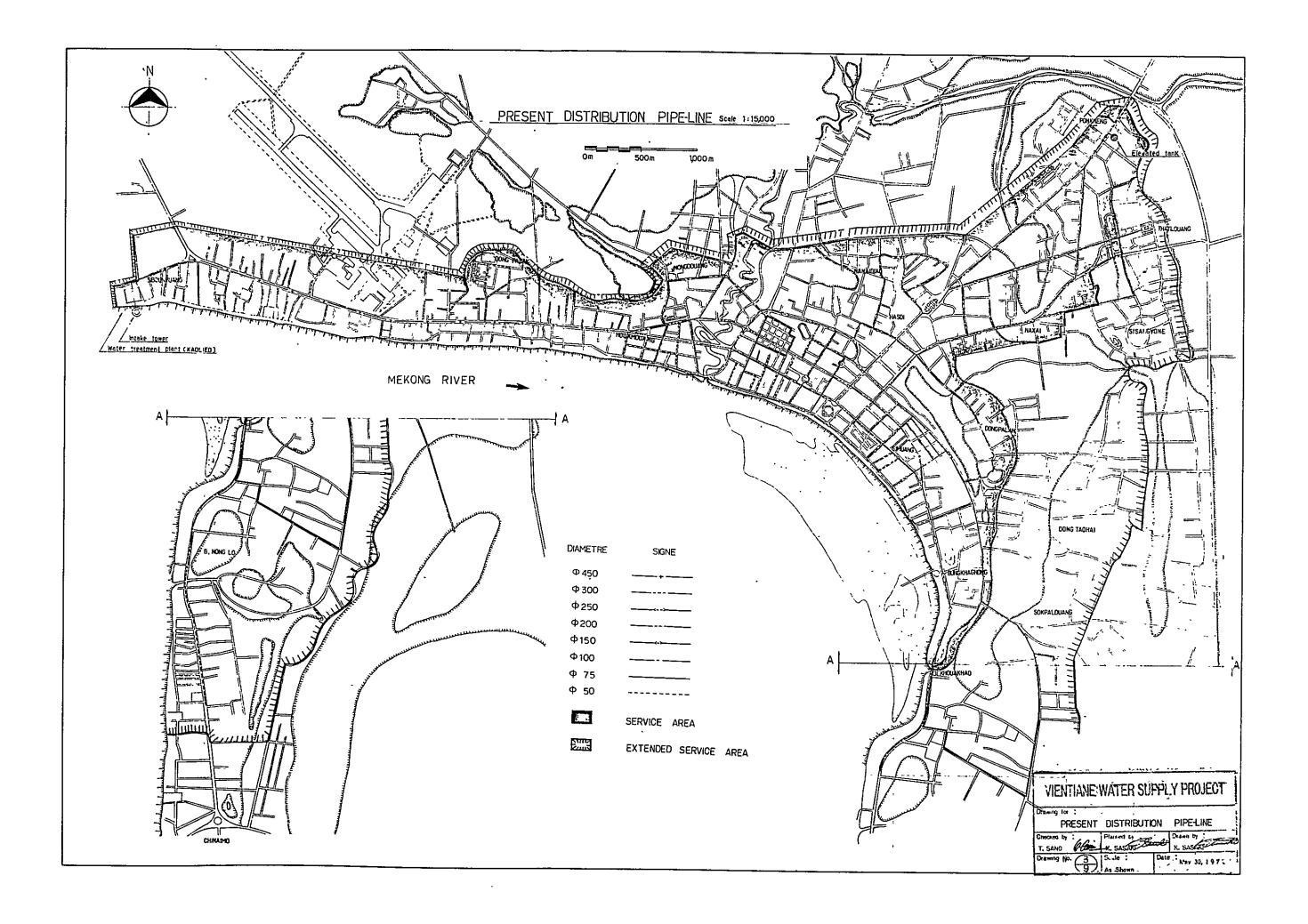
We desire earnestly that Nam Papa Lao will make its own hard efforts to solve the financial problems troubling it such as the increased burden for the liabilities in foreign currency due to devaluation, or others, so that the sound management of this water supply business can be attained as soon as possible.

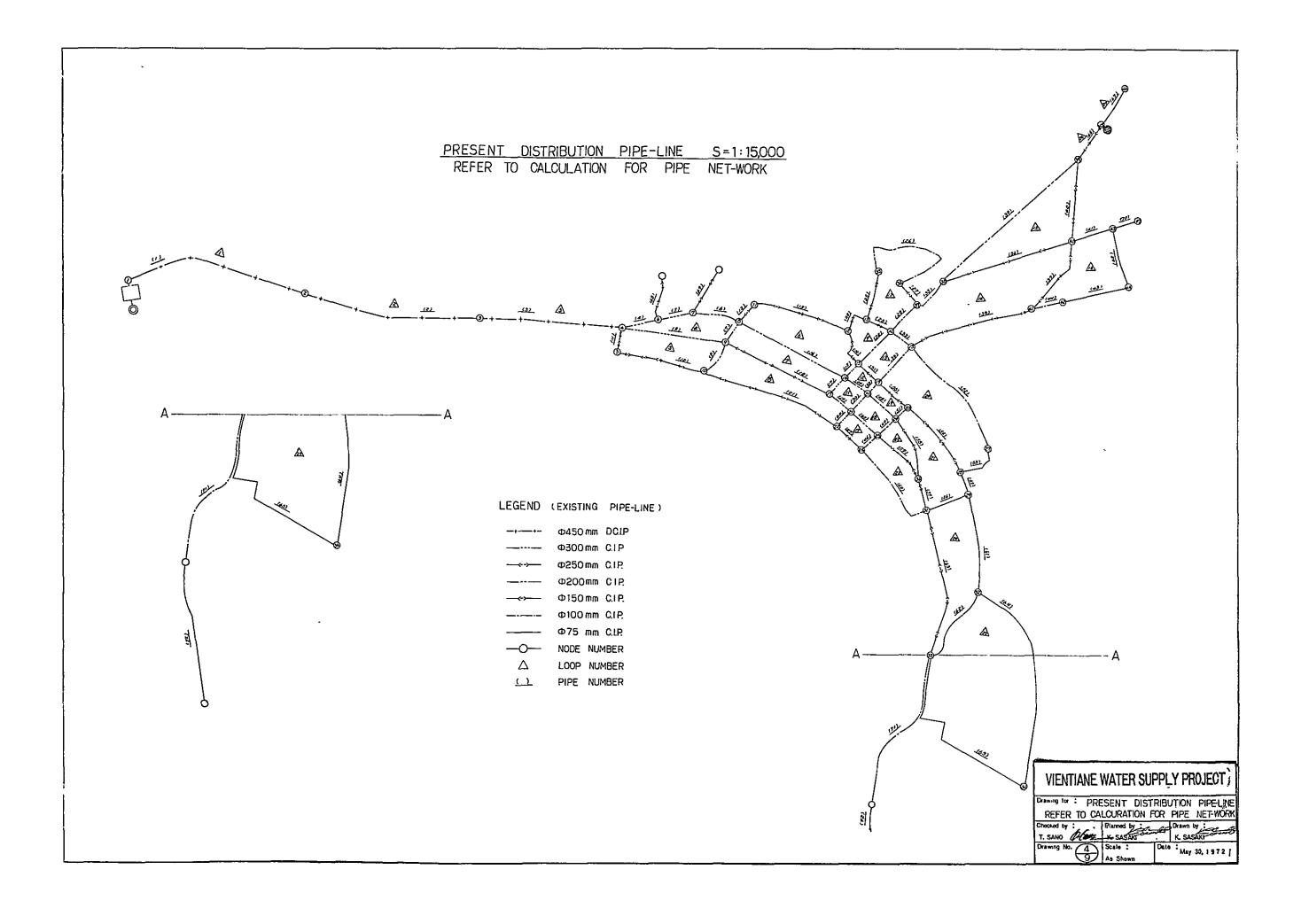

REPAIR AND IMPROVEMENT PLAN OF

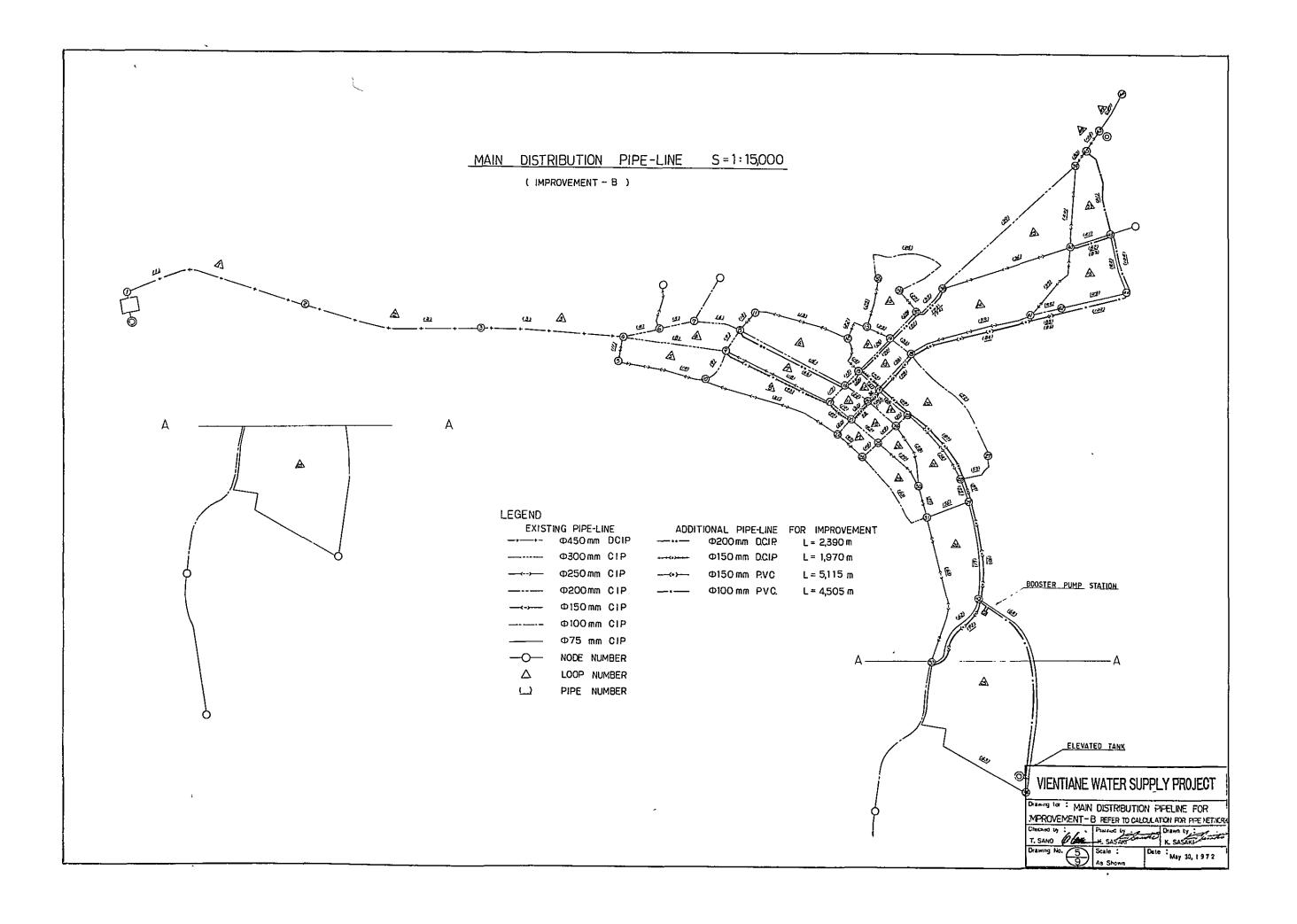
VIENTIANE WATER SUPPLY SYSTEM

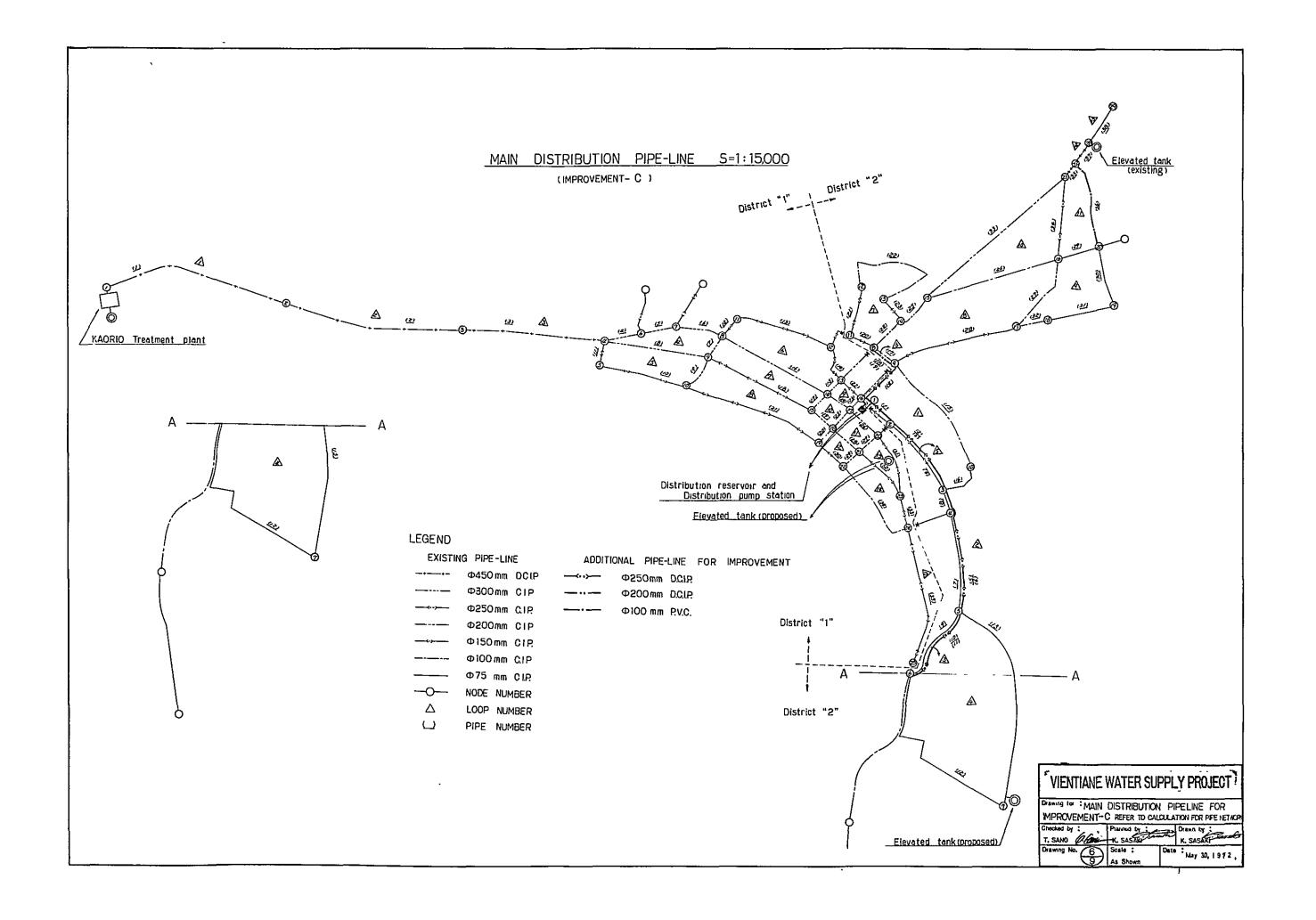
	INDEX OF DRAWING
NO	DESCRIPTION
1	DETAIL FOR INTAKE PUMP - REFER TO PARTS LIST FOR REPAIR -
2	DETAIL FOR DISTRIBUTION PUMP —REFER TO PARTS LIST FOR REPAIR—
5	PRESENT DISTRIBUTION PIPE-LINE
4	PRESENT DISTRIBUTION PIPE-LINE —REFER TO CALCULATION FOR PIPE NET-WORK —
5	MAIN DISTRIBUTION PIPE-LINE FOR IMPROVEMENT -B - REFER TO CALCULATION FOR PIPE NET-WORK
6	MAIN DISTRIBUTION PIPE LINE FOR IMPROVEMENT -C -REFER TO CALCULATION FOR PIPE NET-WORK
7	EXISTING AND ADDITIONAL DISTRIBUTION PIPE-LINE FOR IMPROVEMENT - B
8	BOOSTER PUMP STATION FOR IMPROVEMENT - B
9	ELEVATED TANK FOR IMPROVEMENT - B

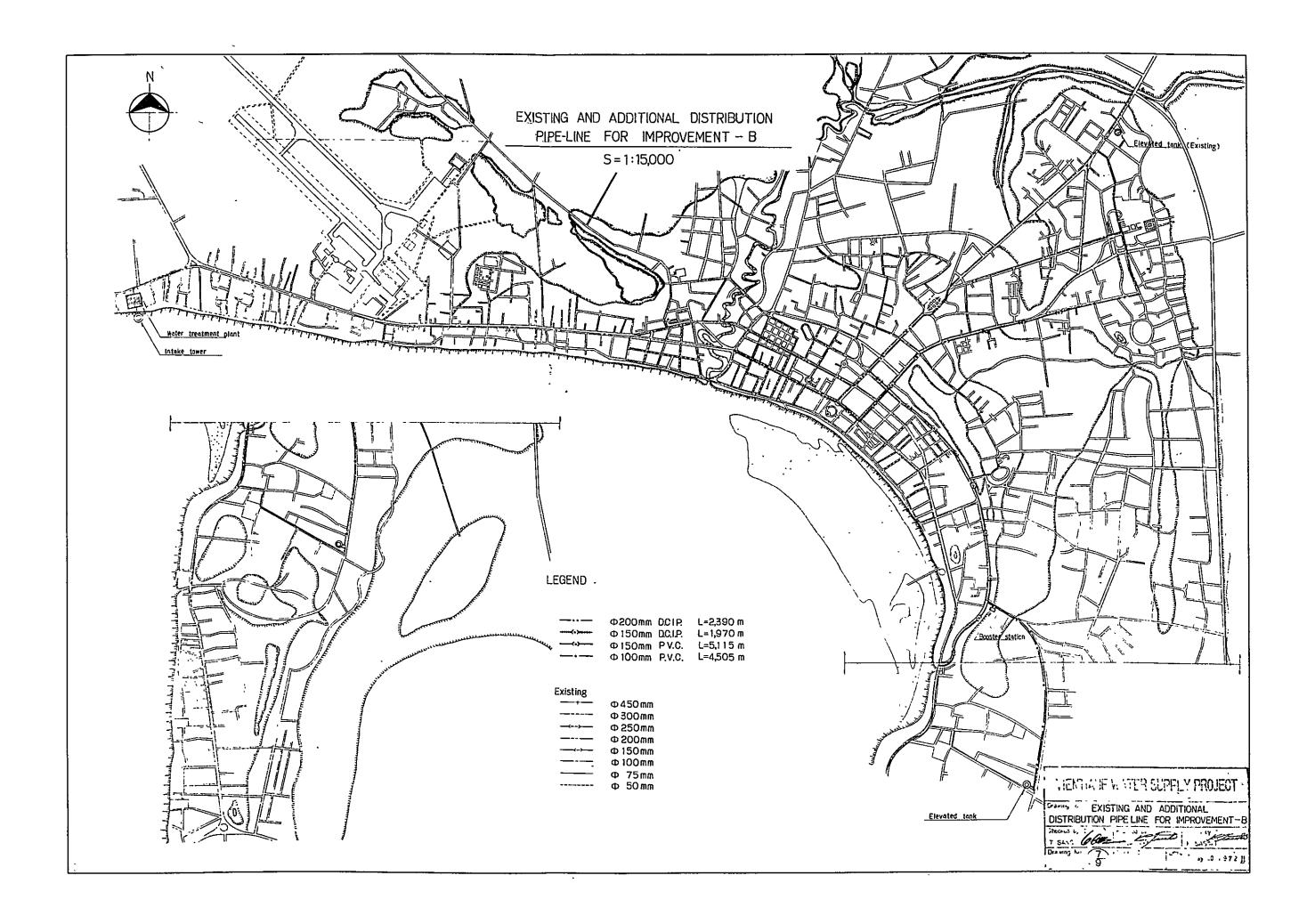
DETAIL FOR DISTRIBUTION PUMP REFER TO PARTS LIST FOR REPAIR

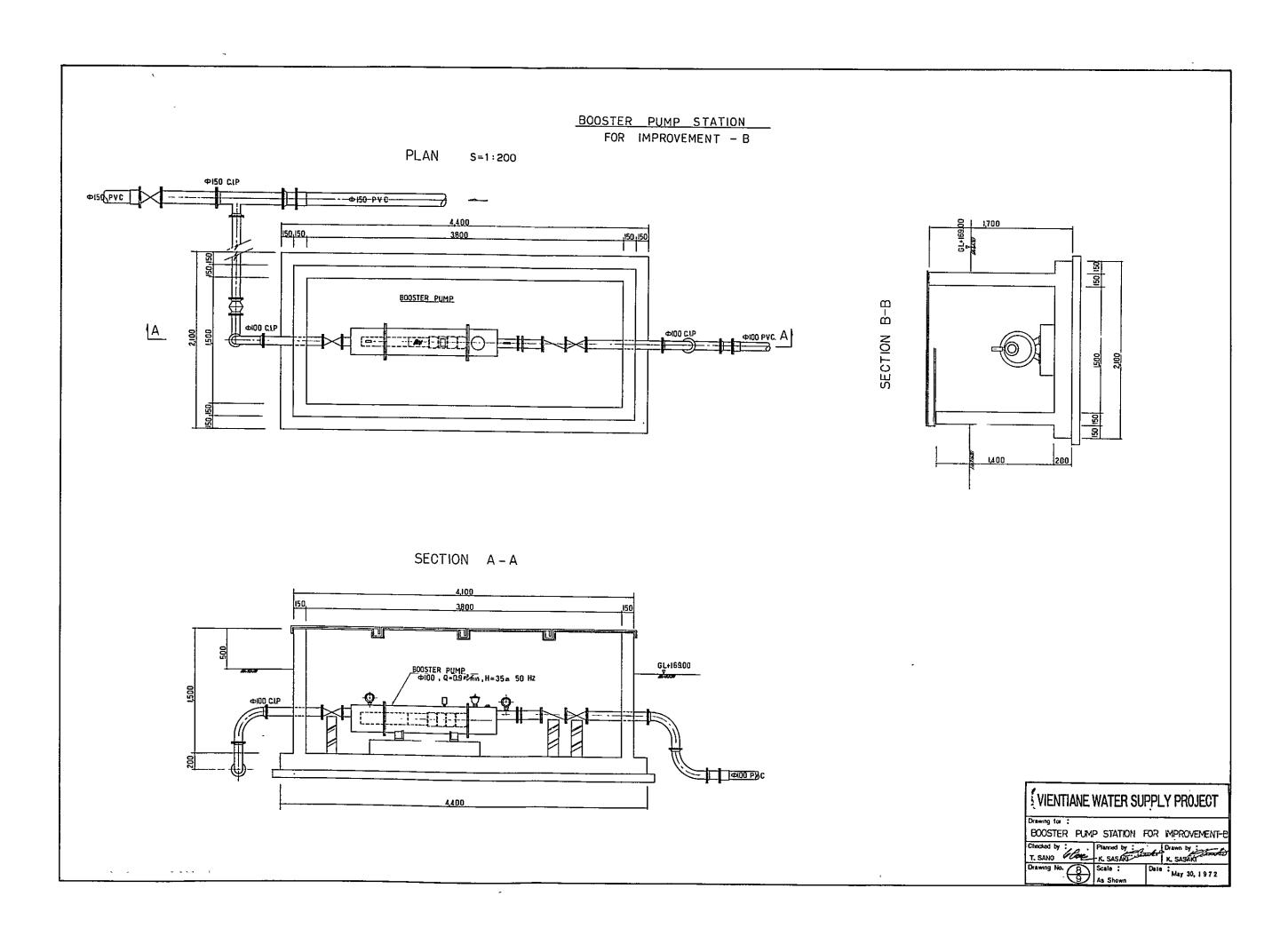


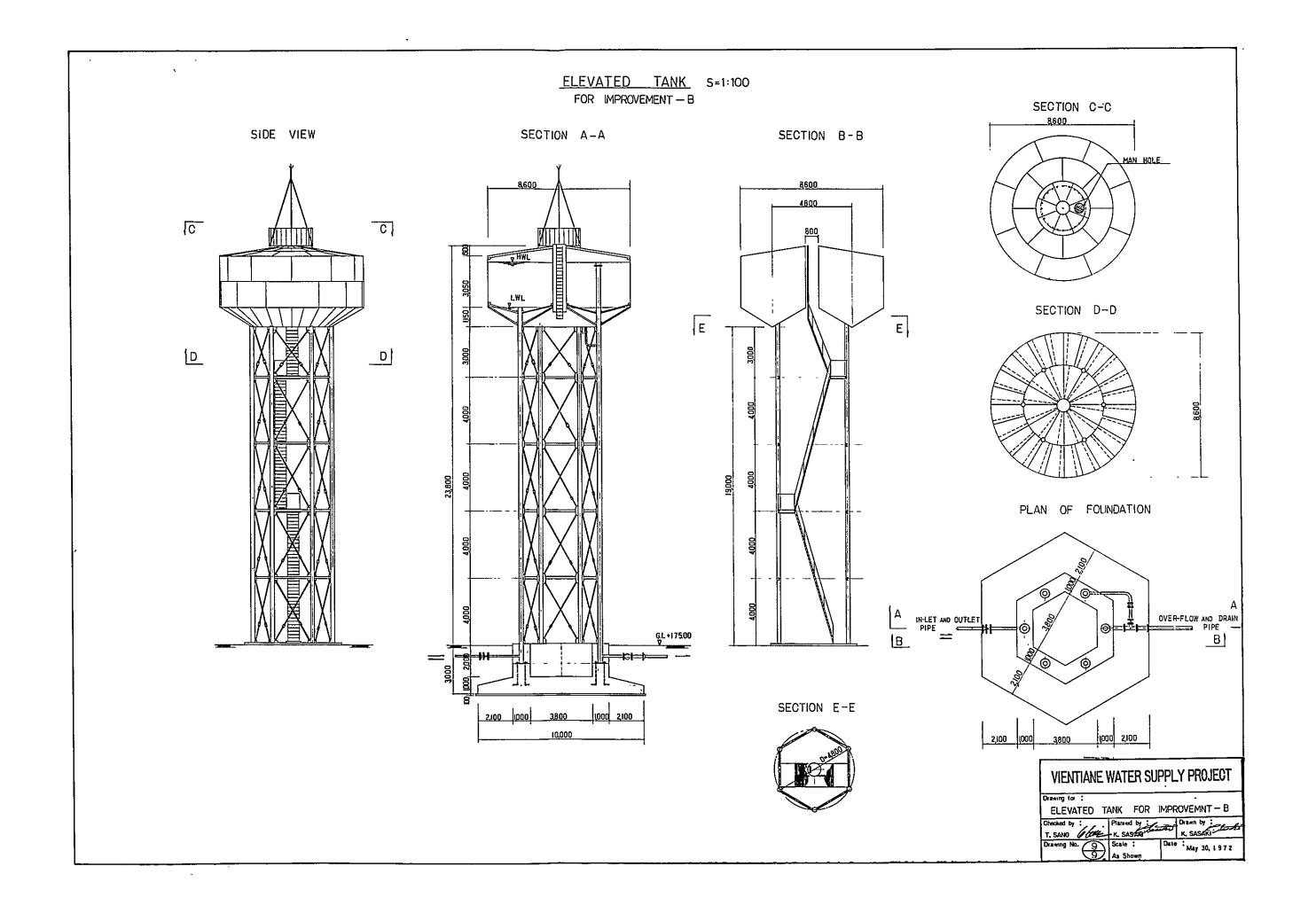

Parts No	Name of Parts	Materials	Q²ty
	Upper Casing	Cast Iron	1
2	Lower Casing	Cast Iron	1
3	Impelier	Bronze	1
4	Hand Hole Cover	Cast Iron	2
5	Liner Ring	Bronze	2
_6	Shaft	Carbon Steel	_ 1
7	Steeve	Bronze	2
8	Packing Steeve	Bronze	2
9	Packing Ring	Bronze .	2
10	Shaft	Bronze	4
Ш	Lantern Ring	Bronze	2
12	Grand Packing	Graphyte Cotton	10
13	Grand Follower	Bronze	5
14	Water Stinger	Bronze	2
15	Rubber Ring	Rubber	2
16	Coupling Key	Carbon Steel	1
17	lmpeller Key	Carbon Steel	1
t 8	Sleeva Key	Carbon Steet	1
19	Distance Ring	Cast Iron	1
20	Angular Contact Ball Bring	*7314	2
21	Radial Ball Bining	# 6314	1
22	Bearing Nut	Carbon Steel	2
23	Lock Washer	Carbon Steel	2
24	Bearing Cover (1)	Cast Iron	1
25	Bearing Cover (2)	Cast Iron	1
26	Bearing Cover (3)	Cast Iron	1
27	Bearing Cover (4)	Cast Iron	1
28	Upper Bearing Bracket	Cast Iron	2
29	_Lower Bearing Bracket	Cast Iron	2

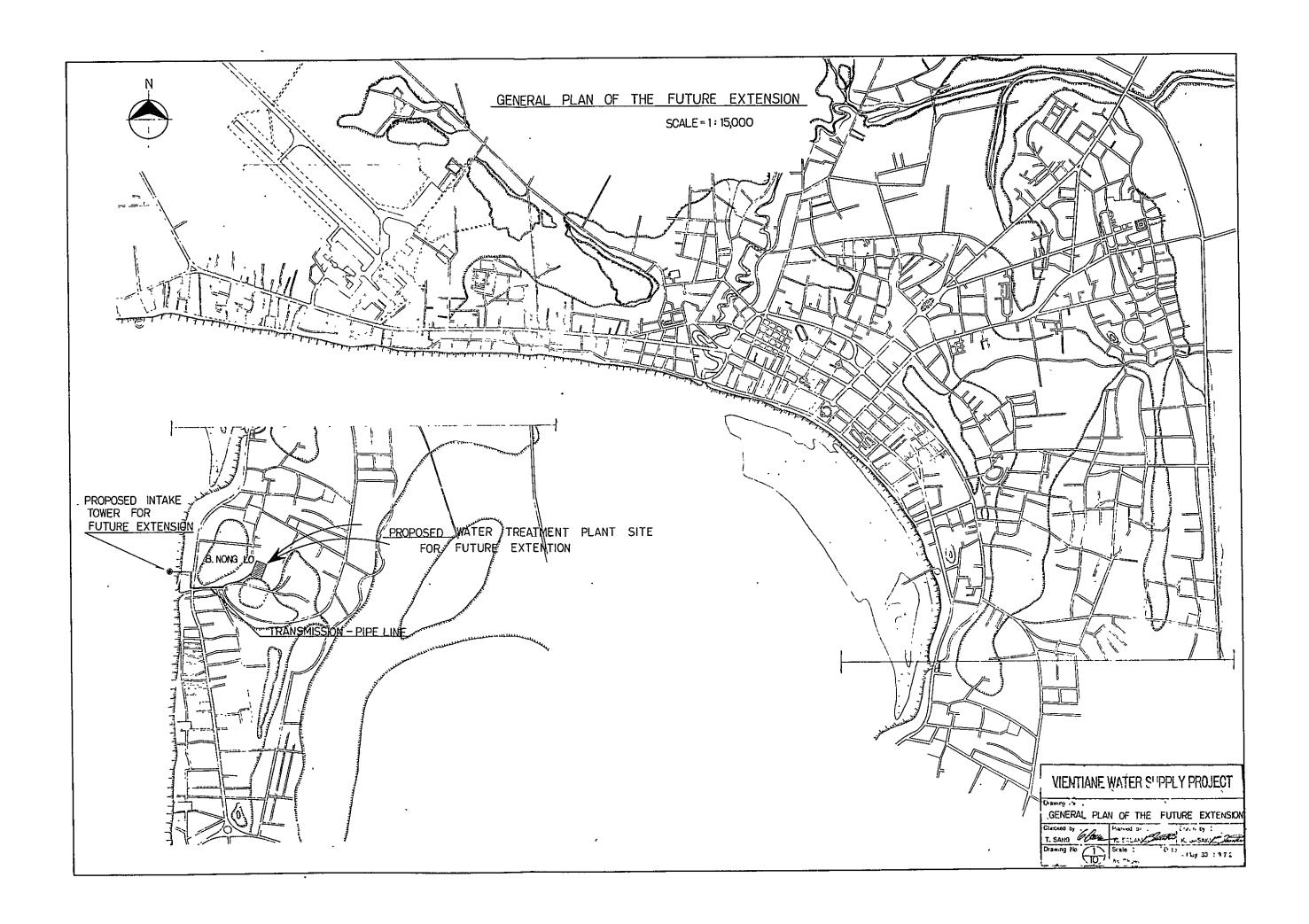

VIENTIANE WATER SUPPLY PROJECT

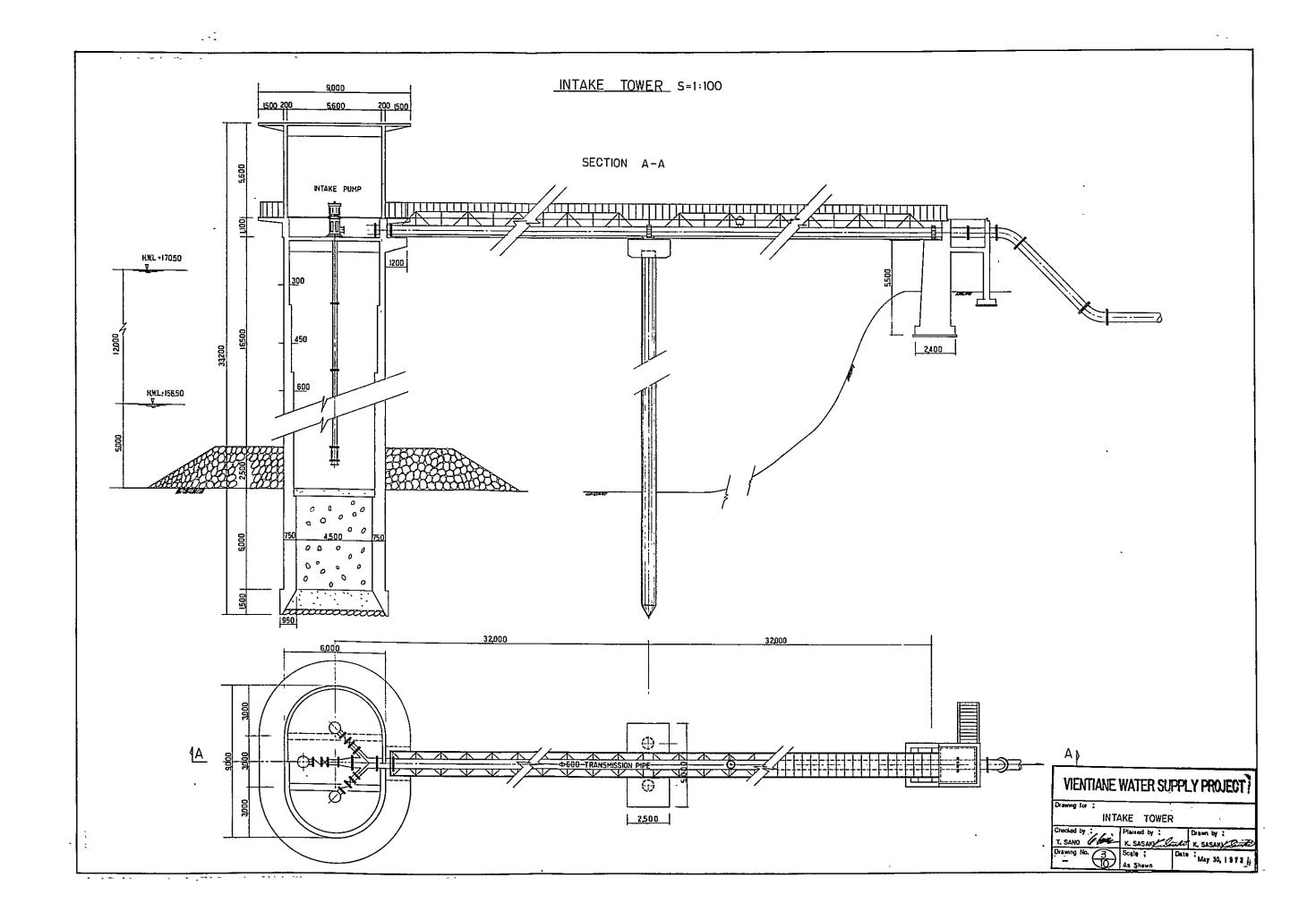

Oraming for DETAIL FOR DISTRIBUTION PUMP REFEP TO PARTS LIST FOR REPAIR

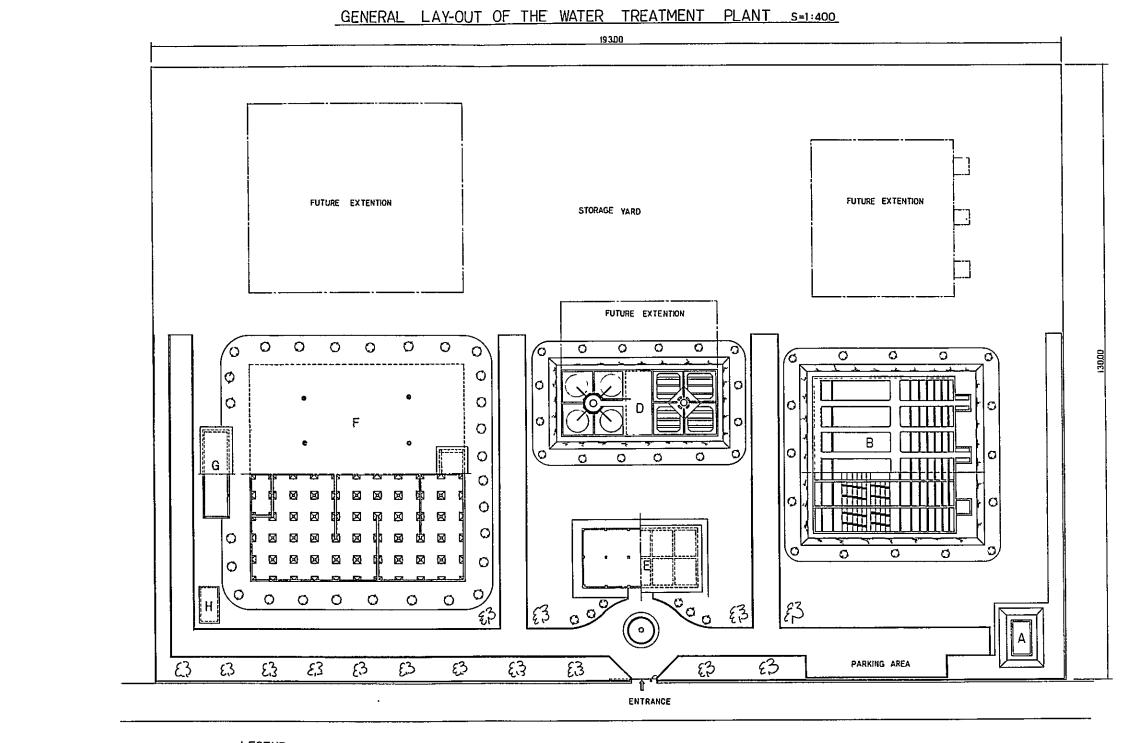

Drawing No. 2 Scale :








FUTURE EXTENSION PLAN


OF

VIENTIANE WATER SUPPLY SYSTEM

	INDEX OF DRAWING
NO	DESCRIPTION
1	GENERAL PLAN OF THE FUTURE EXTENSION
2	WATER LEVEL DIAGRAM
3	INTAKE TOWER '
4	GENERAL LAY-OUT OF THE WATER TREATMENT PLANT
5	PLAN OF THE WATER TREATMENT PLANT (CONNECTING PIPE LINE)
6	RECEIVING WELL
7	CHEMICAL SEDIMENTATION BASIN
8	RAPID FILTRATION BASIN
9	ADMINISTRATION BUILDING .
10	DISTRIBUTION RESERVOIR

LEGEND

~ **,**

- A RECEIVING WELL
 B CHEMICAL SEDIMENTATION EQUIPMENT
- C RAPID FILTRATION BASIN
- D ADMINSTRATION BUILDING
- E DISTRIBUTION RESERVOIR
- PUMPING HOUSE
- G VENTURI METER CHAMBER

VIENTIANE WATER SUPPLY PROJECT

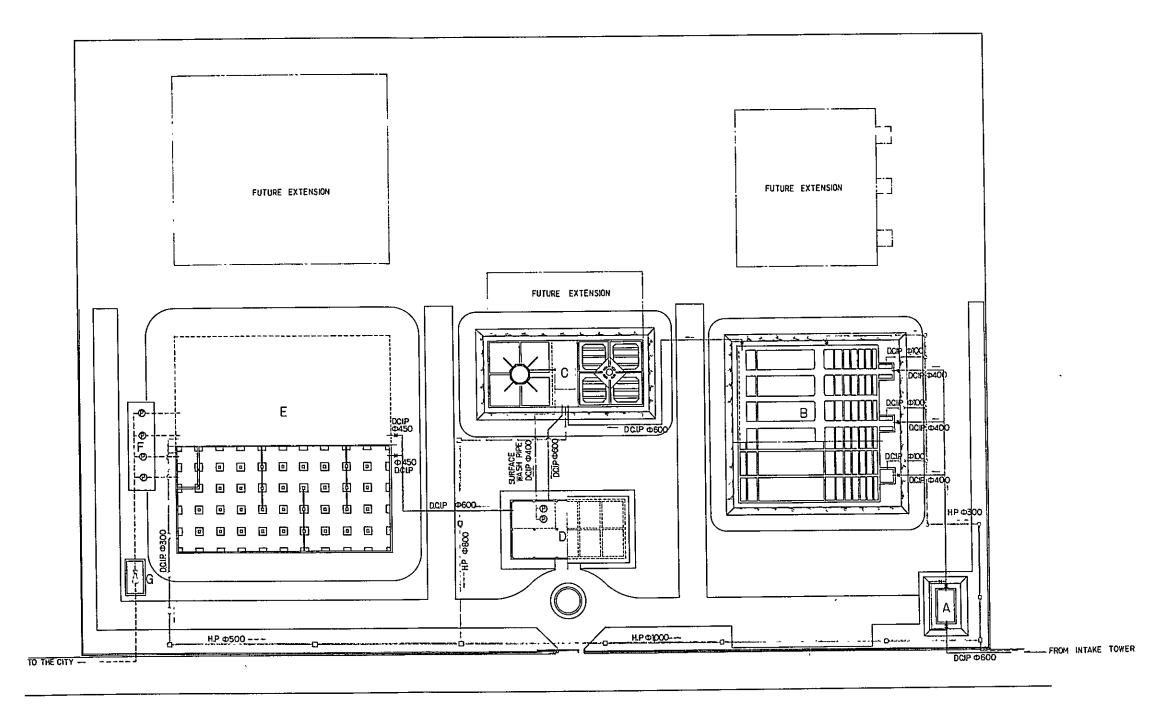
Drawing for : GENERAL LAY-OUT OF THE WATER TREATMENT PLANT

Checked by:

T. SANO

Checked by:

T. SANO

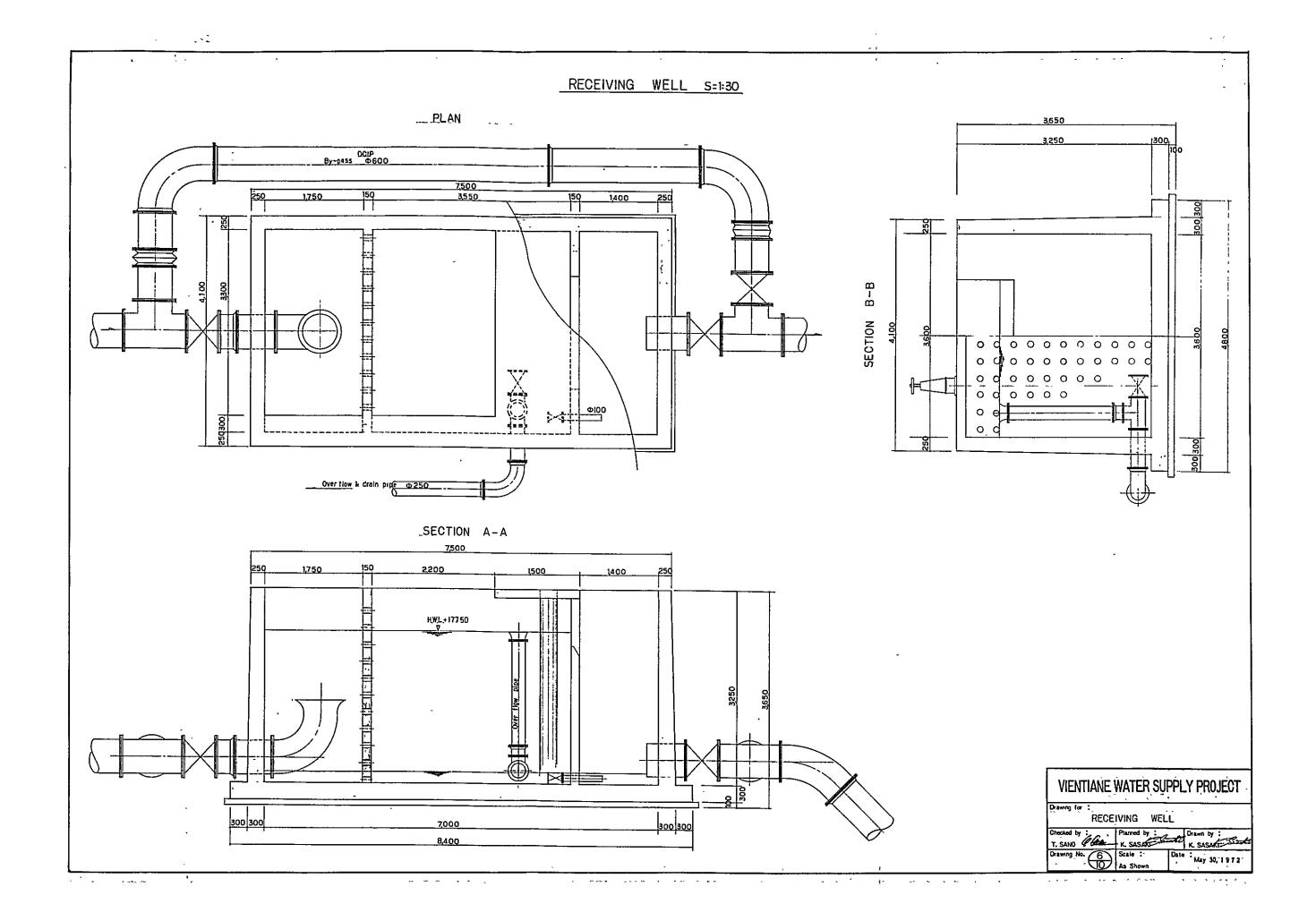

Checked by:

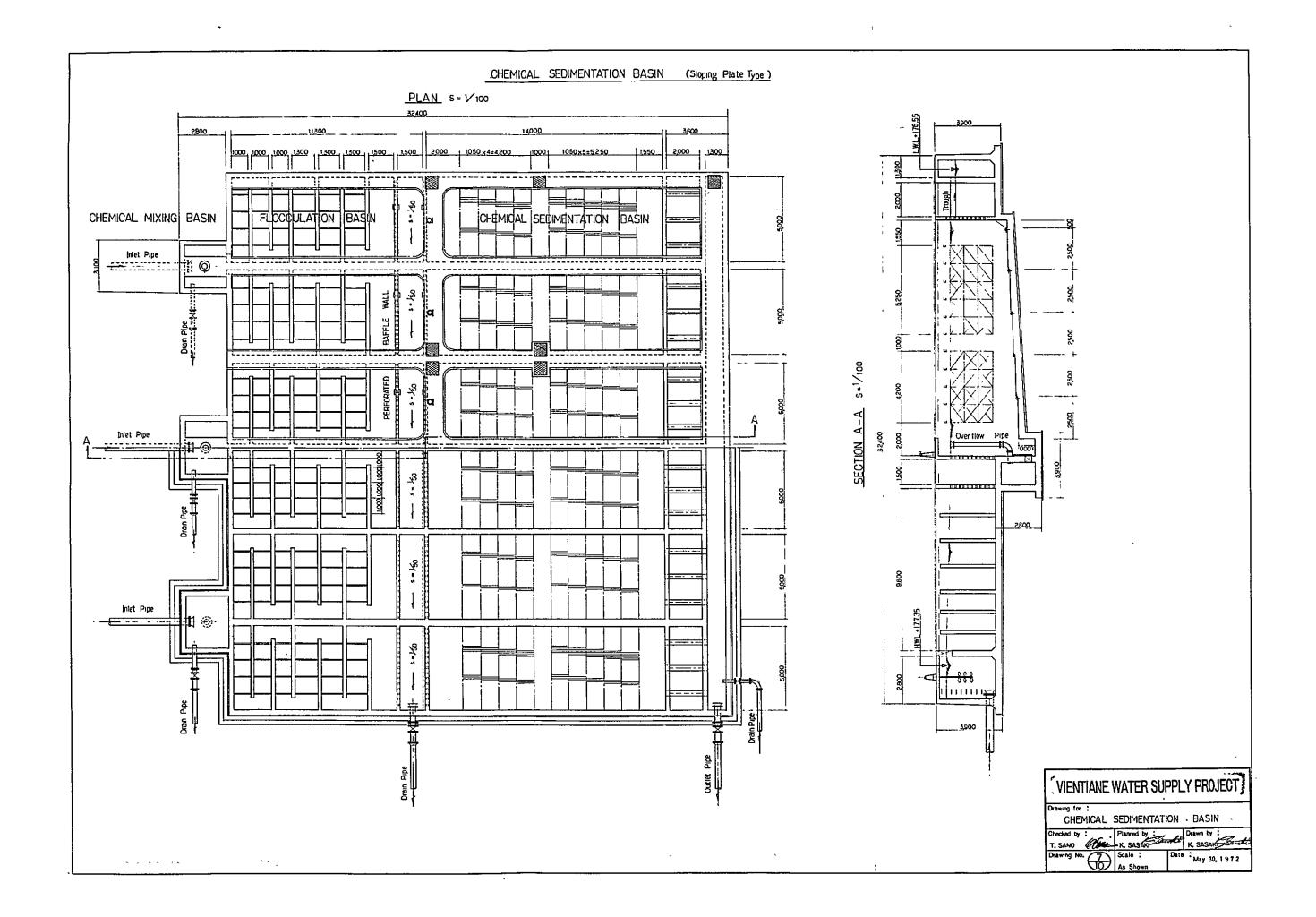
T. SANO

Checked by:

Chec

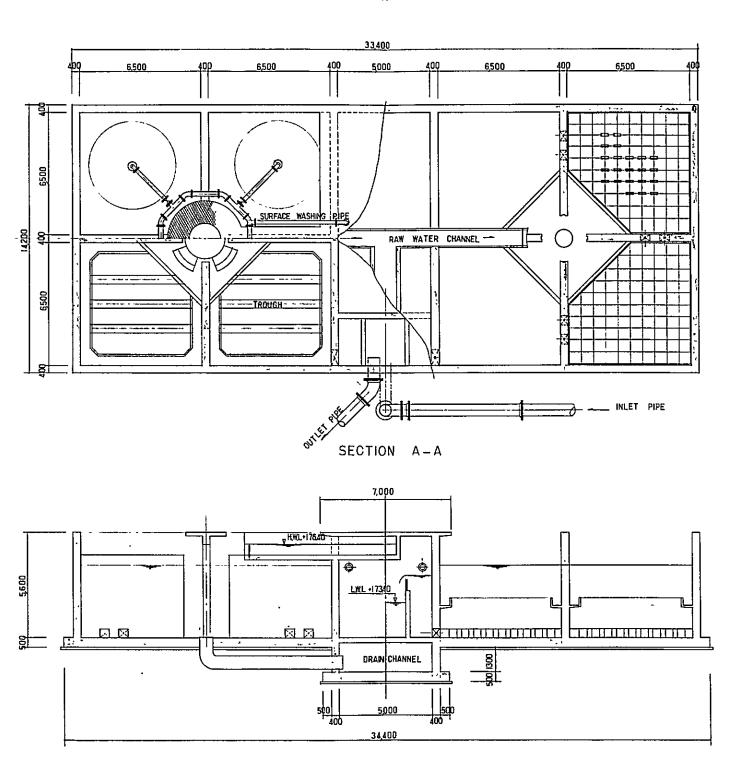
PLAN OF THE WATER TREATMENT PLANT S=1:400

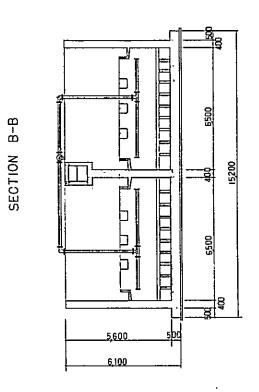



LEGEND

- A RECEIVING WELL
 B CHEMICAL SEDIMENTATION EQUIPMENT
- C RAPID FILTRATION BASIN
- D ADMINISTRATION BUILDING
- E DISTRIBUTION RESERVOIR
- F PUMPING HOUSE G VENTURI METER CHAMBER

VIENTIANE WATER SUPPLY PROJECT


Drawing for : PLAN OF THE WATER TREATMENT



RAPID FILTRATION BASIN 5=1:100

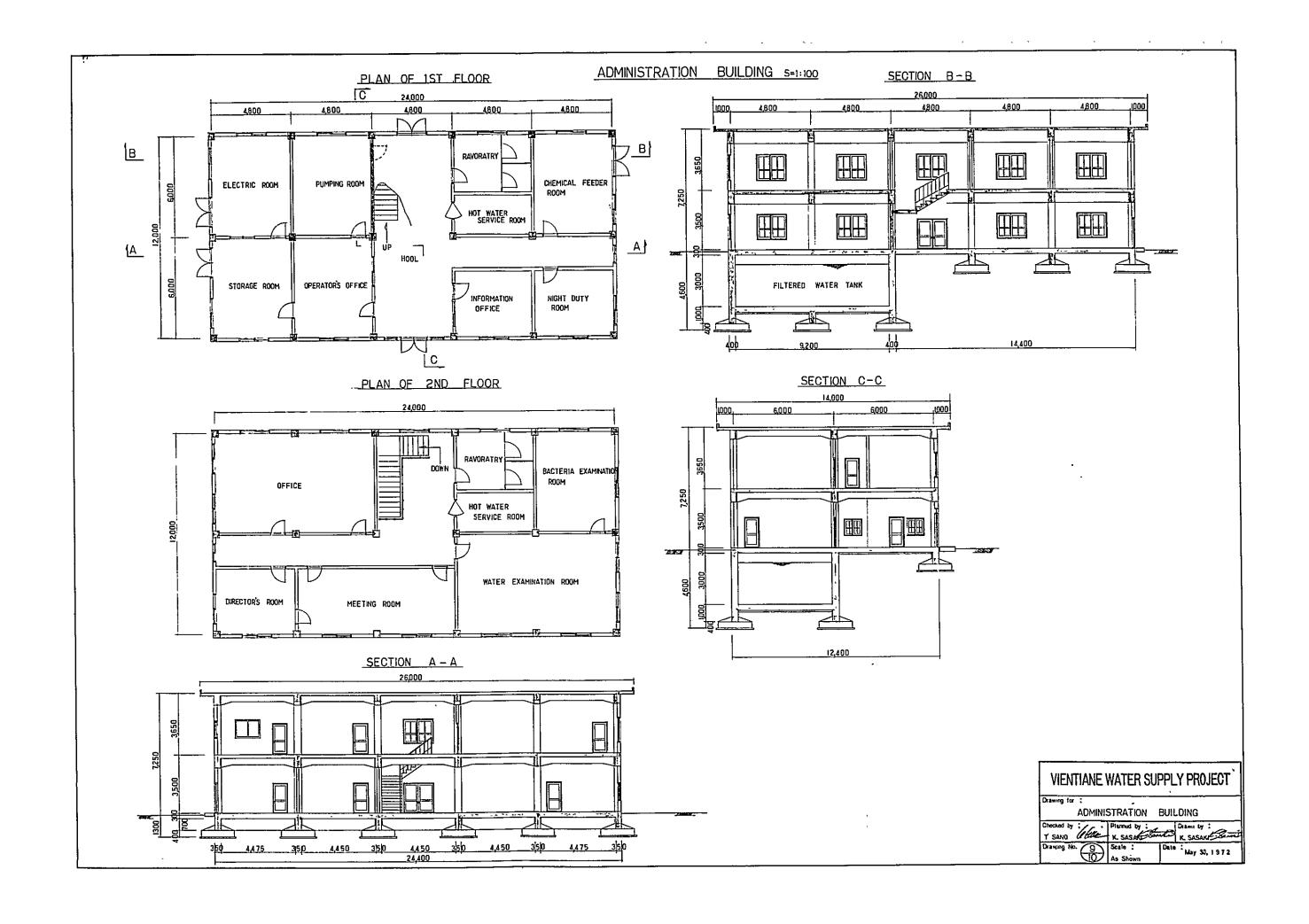
- - - - -

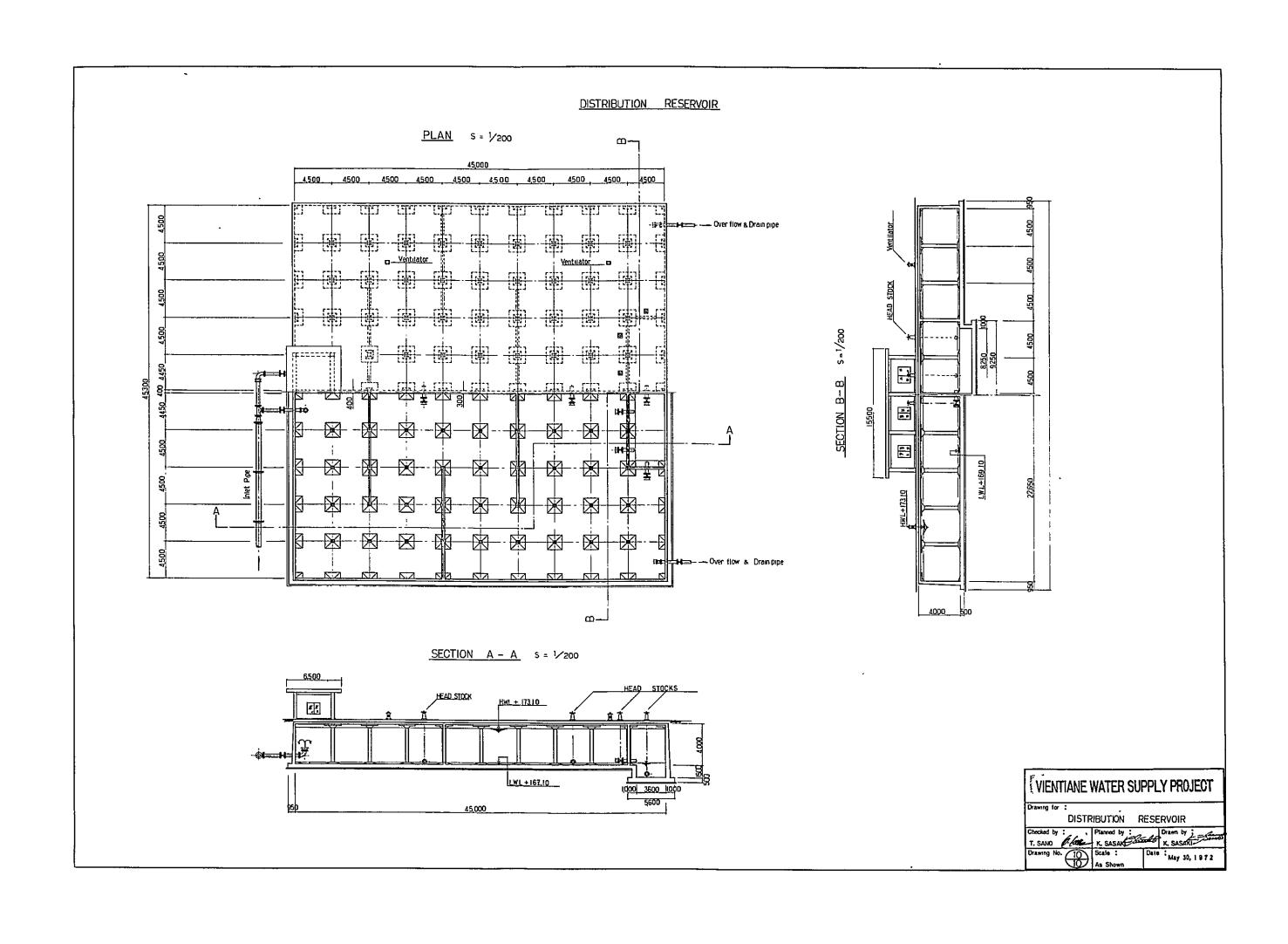
VIENTIANE WATER SUPPLY PROJECT

Drawing for:

RAPID FILTRATION BASIN

Checked by:


Planted by:


K. SASAN


K. SASAN

K. SASAN

Date : May 30, 1 9 7 2

