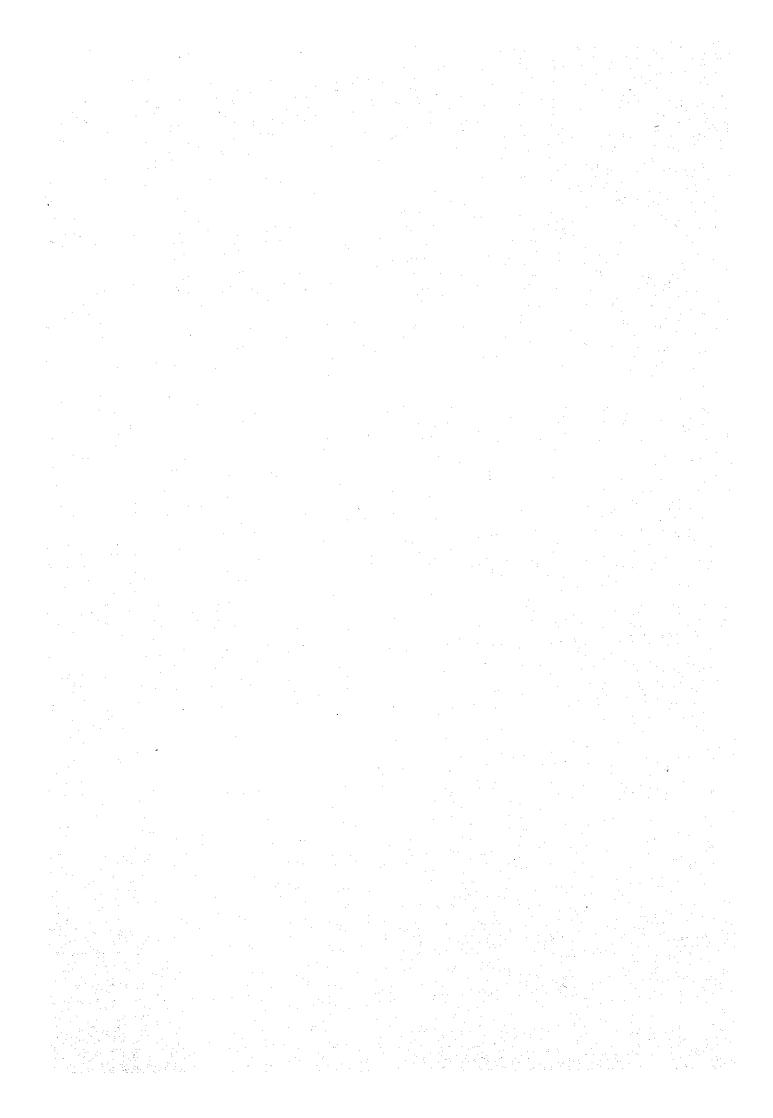
韓国農業気象災害研究計画

昭和60年度(第4年次)報告書

——The Agrometeorological Disaster Research Project in the Republic of Korea——

昭和61年(1986年)6月

国際協力事業団農業開発協力部


農開技

JR

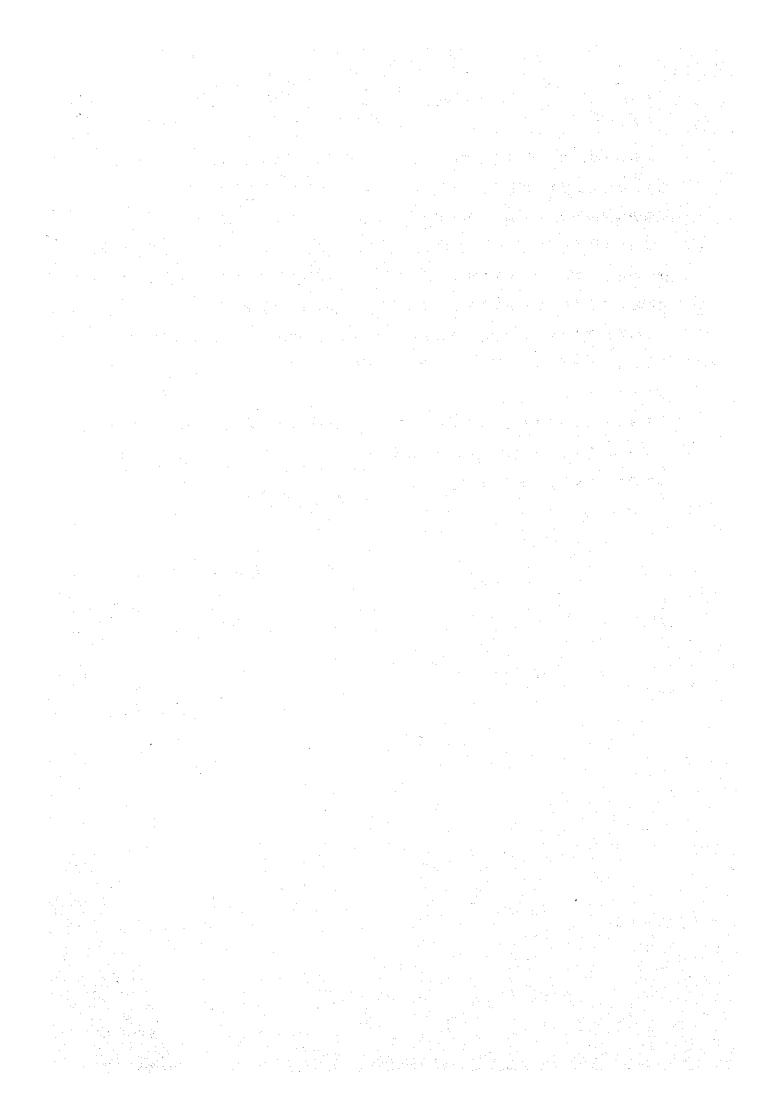
86 - 44

|| LIBRARY || LIBRARY | 1058509[9]

国際協力事	業団
受入 '86.10.15	110
HU	82 I
登録No. 15503	ADT

はじめん

当事業団は、韓国における水稲冷害を中心とした農業気象災害に関する研究の推進に協力することを目的として、昭和57年9月24日に署名された「韓国農業気象災害研究」に関する討議議事録に基づき、昭和57年10月1日から5年間の研究協力事業を実施している。


協力第4年次の昭和60年度は、第4次合同委員会(内島立郎氏を団長とする巡回指導調査団が出席)で議決された実施計画にもとづき、33項目の試験研究、長期専門家2名及び短期専門家8名の派遣、各種農業気象関係の機材供与および5名の研修員受入れを行った。

この報告書は昭和 6 0 年度に実施したプロジェクトの事業実績及び専門家の総合報告書をとりまとめたものである。今後、プロジェクトの実施にあたり参考資料として活用されることを望むものである。

最後に、この報告書をとりまとめるに際してご尽力をいただいた森谷睦夫団長はじめ派遣専門家各位に謝意を表するとともに、本プロジェクト運営にあたり多大のご支援をいただいている関係各位に厚くお礼を申し上げる。

昭和 61年 6 月

国 際 協 刀 事 葉 団 農 業 開 発 協 力 部 部長 宮 本 和 美

はじ		
	· 第 4 年次 研究協力概要 · · · · · · · · · · · · · · · · · · ·	1
1. 4	を表計画の策定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
2. 1	多力 の 実 績	1
(1)	試験研究の実施 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
(2)	日本人専門家の派遣・来韓	4
(3)	韓国側研修員及び視察団の日本受入れ	5
(4)	· 機· 資· 材· 供· 与	6
3. 🗍	吉果の評価等	10
(1)		10
(2)	本年度の結果	11
付	k年度の気象と主要作物の生育収量	11
第2章	四半期別業務状況	14
	第1四半期(昭和60年 4 月~ 6 月)分	14
	第2四半期(昭和60年7月~9月)分	15
	53四半期(昭和60年10月~12月)分	19
2	84四半期(昭和61年 1 月~ 3 月)分 ···································	22
第3章	專門家技術状況報告	25
1.	長期専門家年間報告	25
(1)	谷 信 輝(専門家)	25
1) 年、次 報 告	25
	2) 四半期別技術状況報告	28
2. 英	5期専門家帰国報告	32
(1)	工 藤 哲 夫(水稲栽培)	32
	冷害地帯適応性水稲品種の生態的反応に関する研究	32
(2)	西山岩男(作物生理)	40
	作物生理とくに水稲の冷害に関する研究	40
(3)	橋本頭二(大豆)	47
	大豆品種の冷害生態反応に関する研究及び大豆品種の耐病虫性検定方法の	
	確立に関する研究	47
	고 있는 일은 전문 이렇게는 일하는 가 많은 이 나는 이 다쳤다. 그는 나가 가는	

(4)	吉 野 嶺 一(植物	勿結押 \			60
	気象要因による業利		· · · · · · · · · · · · · · · · · · ·		60
(5)	古賀野 完 爾(土均				85
(0)	有機物の施用効果の		************	*****	85
(6)	村 上 利 男(水和				93
	二毛作地帯にかける		の安全作期策定に	関する研究	93
(7)	千葉和彦(果樹				103
	作物の気象反応の解			and the first of the second	
	減収推定		•••••		103
(8)	林 陽 生(農業	类気象)			114
	冬期の最低気温及び	が地温に関する研究			114
•				and the second s	• : :
				en de la companya de La companya de la co	
					in in the second
		1			
		•			
			·		
			en de la companya de La companya de la co	ing the second s	
				n de la composition de la composition La composition de la	
			in the property		
	et et en group te teknologie. Geografie		on tata kinegin og okkita (f.). Også		n vere en vere else el

第1章 第4年次研究協力概要

1 年度計画の策定

昭和 60 年度(第4年次)の本プロジェクト年間計画については、 日本側で韓国案をもとに検討中であったが、巡回指導調査団を派遣して合同委員会に出席せしめることになり、 農業環境技術研究所業務科長内島立郎氏を団長とする3名のチームが3月12~16日の間来 韓した。

第4次合同委員会は3月14日に農村振興庁に於て開催された。本委員会では、第3年次の実績評価、第4年次の実施細目計画が協議決定され、日本側研究団長と韓国側共同研究事業管理所長との間で署名が取り交わされた。本委員会開催期は前回よりも更に20日ほど早められ、爾後の事務手続の促進上有効であるが、準備の都合等からこれ以上の促進は困難な点もあり、今後ともこの項が適当であろうと両国側で認めた。この決定結果に基づき、日本への要請書(A1~4フォーム)は4月始めに農村振興庁から発表された。

合同委員会の議事内容・協議結果(試験研究の内容・日本人専門家の派遣・韓国側研修員及び視察団の受入れ・機資材供与等)については、巡回指導調査団報告書(農開技・JR85-80 昭和60年6月)に収載されているので、ここでは再録せず、次節以下で実績のみを記述する。計画と実績との間は、大筋では変らないが、変更された点についてはそれぞれの項で触れる。

2. 協力の実績

(1) 試験研究の実施

本年度実施の研究項目数は、前年と同じ 33 項目で、うち25 項目が継続、8項目が新規開始であった(表1)。これらを、延102名(重複担当あり)の韓国側研究者が担当して実施し、それに長短期9名の日本側専門家が協力した。試験研究は、特段の障災害等の支障もなく、順調に遂行された。この結果、12項目が本年度をもって完了となり、残り21項目が次年度に継続される予定である。これまでの試験研究のながれを、実施項目数の推移で整理してみると表2のようになる。

表2 に見られるように、課題-題目(以下同じ)I-2(災害危険度の推定と分布)は 実施計画表の予定通り本年度をもって終了した。また、I-1(災害発生の限界気象条件の確定)及びII-2(水管理による環境調節技術)は、実施計画表より1年早く終了と なり、次年度の計画項目はない。

Ⅱ-3 (防風施設による環境調節技術) については、これまで未着手(予備試験段階) であったが、この種の調査研究には多大の観測器機類と労力とが必要であり、対象場所が

(表1) 本年度実施研究項目一覧

研究課題 題 目 項 目 の関係 実施機関 つながり	4 1					
□ 機作物気象災害 1. 農業気受買護量 (1) 地域別水田士壌超度調査 超 税 義素技術研究所 縣 税 の気候区分 2. 災害企験成の権 (1) 地域別は異水分変化検料調査 超 税 義素技術研究所 第 税 定と分布 (2) 災害反験を仲の分類と出現態度 " " " " " " " " " " " " " " " " " " "	研究課題	題目	項目		実施 機 関	次年への
②気候区分 K 図 する研究 2 。				の関係		つながり
動調査	I. 農作物気象災害	1. 農業気候資源量	(1) 地域別水田土壤温度調査	継続	農業技術研究所	継続
(3) 高所得作物農業地帯気候区分 新 規 " " 度之分布 (1) 地域列 + 環水分変化様相關查 継 統 農業技術研究所 (2) 災害気象染件の分類と出場態度 " " 第明と災害対策 (4) 特執局地気象調查研究 新 規 農業技術研究所 無(完了) 無限のと災害対策 (4) 未能部意内熱収支特性解明 継 統 農業技術研究所 " " " " " " " " " " " " " " " " " " "	の気候区分に関	の分布と変動	(2) 農業地帯の気候特性分布と変	"	"	"
2. 災害危険度の推定と分布 (2) 災害気象条件の分類と田助政度 (2) 災害気象条件の分類と田助政度 (3) 特異局地気象調査研究 新規 農業技術研究所 無(完了) 特異局地気象調査研究 新規 農業技術研究所 無(完了) 無人物の気象反応の (4) 共一部の大力を (2) 災害交生の限界 (3) 生殖生態的関連 (4) 共一部の大力を (4) 生殖生態的関連 (5) 大部・主程す影響 (5) 生殖生態的解明 (6) 生殖生長期配度か上び光条件 維 統 作物 試験場 無(完了) 影響 (6) 生殖生態的解明 (7) 生殖生長期配度か上び光条件 維 統 作物 試験場 無(完了) 影響 (7) 生殖生態的解明 (7) 水福・音楽研究 (7) 湖南作物試験場 無(完了) 影響 (7) 水福・音楽で・音楽なら対解性の主化学の研究 (7) 水福・音楽で・音楽で・音楽を (7) 生殖生を (7) 水福・大力で (7) 水 高速を (7) が (7)	する研究		動調査			
定と分布 (2) 災害気象染件の分類と出現態度 " " 農業技術研究所 無(完了) 特異局地気象製養研究 類 農業技術研究所 無(完了) 特異局地気象製養研究 類 機 競 競 農業技術研究所 無(完了) 別の会数反応の 1. 災害発生の限界 (2) 出種生態に基づく生育特性の 証 続 調商作物試験場 無(完了) 空動に関する研究 (2) 低温持続時間が果樹康害発生 " 園 芸 試 験 場 " にかよぼす影響 (2) 被害発生機構の (4) 生殖生長期温度かよび光条件 が 報 表 (2) 生理生態的解明 (3) 陈書型哈書にかよぼす影響 (2) 温度別土壌改良剤地用が水稲 の変分吸収にかよぼす影響 (3) 陈書型哈書にかよぼす影響 (4) 水稲音医保育・事発現にかよぼす影響 (5) 水配と気配が水稲初期生育に かなけず影響 (5) 水配と気配が水稲初期生育に かなど、変 場 無 (完了) 関界温度実明試験 (4) 水稲音医体育・生化学的研究 " 農業技術研究所 継 続 (5) 水配と気配が水稲初期生育に かなど、変 場 無 (完了) 以 水石 と 大田 と 大			(3) 高所得作物農業地帯気候区分	新規	"	
3. 局地気象の特性 (1) 特異局地気象調査研究 新 規 農業技術研究所 無(完了) 解明と災害対策 4. 耕地飲気象の特 (1) 水福部落内熱収支特性解明 維 統 統 農業技術研究所 " " " " 子察研究 (2) 気象象区にの 解明に関する研究 (1) 出種生態に基づく生育特性の 継 統 調商作物試験場 無(完了) 変動に関する研究 (2) 低温持熱時間が果樹凍害発生 " 国 芸 試 験 場 " にかよばす影響 (2) 被害発生機構の (1) 生殖生長期配度かよび光条件 か障害型冷害発現にかよぼす影響 (2) 温度別土壌改良剤施用が水稲 の変分吸収にかよぼす影響 (3) 障害型冷害を発現にかよぼす影響 (3) 障害型冷害を発現にからにする影響 (3) 障害型冷害を発現にからにする影響 (4) 水福冷害液介の生化学的研究 " 湖南作物試験場 無(完了) 股界破疾究明試験 (4) 水福冷害液介の生化学的研究 " 農業技術研究所 継 統 (5) 水温と気温が水福初期生育に かよぼす影響 (3) 体育型冷毒な水福初期生育に かまばす影響 (2) 果樹凍害接害量の早期診断と 郷 作物 試験場 無(完了) に 対し、 大条性 大谷 で 大谷		2. 災害危険度の推	(1) 地域別土壤水分変化様相調査	継続	農業技術研究所	
解明と災害対策 4. 耕地敷気象の特性解明と影響 (2) 気験要因による業稲熱病発生 デ系研究 (1) 水福都流内熱収支軽性解明 が 農薬技術研究所 " " " " " " " " " " " " " " " " " " "		定と分布	(2) 災害気象条件の分類と出現頻度	"	//	"
4. 耕地級気象の特 (1) 水福部港内熱収支特性解明 継 続 農業技術研究所 "		3. 局地気象の特性	(1) 特異局地気象調査研究	新 規	農業技術研究所	無(完了)
世解明と影響 (2) 気候製囚による兼稲熱病発生 " " " " " " " " " " " " " " " " " " "		解明と災害対策				
性解明と影響		4、耕地微気象の特	(1) 水稲郡落内熱収支特性解明	継続	 農業技術研究所	
II. 作物気象反応の				"	"	"
田. 作物気象反応の 1. 災害発生の限界 気象条件の確定 変動に関する研究 2. 被害発生機構の 生殖生態に基づく生育特性の 変動に関する研究 2. 被害発生機構の 生殖生態的解明 生殖生長期温度かよび光条件 継 続 作 物 試 験 場 無(完了) 影響 (2) 極温持続時間が果樹康害発生 " 園 芸 試 験 場 " をおよぼす影響 (2) 強度別土壌改良剤焼用が水稲 " 湖南作物試験場 継 続の美分吸収におよぼす影響 (3) 障害型冷害におよぼす影響 (3) 障害型冷害におよぼす影響 (3) 障害型冷害におよぼす影響 (3) 障害型冷害におよぼす影響 (4) 水稲冷害機作の生化学的研究 " 農業技術研究所 継 続い 水福と気温が水稲初期生育に " 作 物 試 験 場 無(完了) かよぼす影響 (1) 水福主要生育時期別形水が生 越 続 湖南作物試験場 継 続 育および収量におよぼす影響 (2) 果樹康害被害量の早期診断と " 園 芸 試 験 場 " 凍収推定 (1) 保温苗代の床内敵気象が苗生 新 規 作 物 試 験 場 無(完了) 育におよぼす影響 立 (2) 野菜の簡易被獲栽培による微 継 続 園 芸 試 験 場 "						
原明に関する研究	Ⅱ 作物気象反応の	1 災害発生の限界		继続	湖南作物試驗場	無(完了)
 完 (2) 低温持続時間が果樹康書発生 (2) 低温持続時間が果樹康書発生 (2) 被害発生機構の (1) 生殖生長期温度および光条件 が障害型冷害発現におよぼす 影響 (2) 温度別土壌改良剤施用が水稲 の 変分吸収におよぼす影響 (3) 障害型冷害におよぼす影響 (3) 障害型冷害におよぼす影響 (4) 水稲冷害機作の生化学的研究 (5) 水温と気温が水稲初期生育に かよぼす影響 (5) 水温と気温が水稲初期生育に かよぼす影響 (7) 水稲主要生育時期別冠水が生 (7) 水稲・木田・大田・大田・大田・大田・大田・大田・大田・大田・大田・大田・大田・大田・大田						
2. 被害発生機構の 生理生態的解明 (1) 生殖生長期温度 かよび光条件 が障害型冷害発現にかよぼす 影響 (2) 温度別土壌改良剤施用が水稲 の養分吸収におよぼす影響 (3) 障害型冷害にかよぼす影響 (4) 水稲冷害機作の生化学的研究 (5) 水温と気温が水稲初期生育に かよぼす影響 3. 被害量の推定方 法と収量予測法 の検討 (2) 果樹凍害被害量の早期診断と 液収推定 (3) 標本はです影響 (4) 水稲冷害機作の生化学的研究 (5) 水温と気温が水稲初期生育に かよび収量におよぼす影響 (6) 水稲主要生育時期別冠水が生 育なよび収量におよぼす影響 (7) 水稲主要生育時期別形水が生 育なよび収量におよぼす影響 (8) 農薬技術研究所 継 続 湖南作物試験場 継 続 湖南作物試験場 継 続 海南作物試験場 継 続 が 湖南作物試験場 継 続 海南作物試験場 継 続 資本はび収量におよぼす影響 (9) 果樹凍害被害量の早期診断と 液収推定 (1) 保温苗代の床内酸気象が苗生 新 規 作物 試験 場 無(完了) 資収推定 (2) 野菜の簡易被複栽培による微 継 続 園 芸 試験 場 "		X(XXXIII) HEAL		,,	周本試験場	"
2. 被害発生機構の 生理生態的解明 (1) 生殖生長期温度 かよび光条件 が障害型冷害発現にかよぼす 影響 (2) 温度別土壌改良剤施用が水稲 の養分吸収にかよぼす影響 (3) 障害型冷害にかよぼす 窒素の 原界温度究明試験 (4) 水稲冷害機作の生化学的研究 水温と気温が水稲初期生育に かよぼす影響 (5) 水温と気温が水稲初期生育に かよぼす影響 (1) 水稲主要生育時期別冠水が生 なと収量予測法 の検討 (2) 果樹凍害被害量の早期診断と が被収推定 (1) 保温苗代の床内微気象が苗生 対病確立に関す る研究 (2) 野菜の簡易被複栽培による微 継 続 帽 芸試 験 場 無 (完了)	7.				2, 3, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	e e e e e e e e e e e e e e e e e e e
生理生態的解明 が障害型冷害発現にかよぼす 影響 (2) 温度別土壌改良剤施用が水稲 " 湖南作物試験場 継 続 の 養分吸収にかよぼす影響 (3) 障害型冷害にかよぼす窒素の 新 規 湖南作物試験場 無 (元了) 限界濃度究明試験 (4) 水稲冷害機作の生化学的研究 " 農業技術研究所 継 続 作 物 試 験 場 無 (元了) かよぼす影響 3. 被害量の推定方 (1) 水稲主要生育時期別冠水が生 意 続 湖南作物試験場 継 続 清 なと収量予測法 の検討 (2) 果樹凍害被害量の早期診断と " 園 芸 試 験 場 " 減収推定 (1) 保温苗代の床内微気象が苗生 新 規 作 物 試 験 場 無 (完了) 技術確立に関す 境調節技術の確 立 (2) 野菜の簡易被複栽培による微 継 続 園 芸 試 験 場 "		0 が実込み機構の		204 £±	死勤致 縣 塩	毎(字で)
影響 (2) 温度別土壌改良剤施用が水稲				ME TOL		WK (2017)
(2) 温度別土壌改良剤施用が水稲 の養分吸収におよぼす影響 (3) 障害型冷害におよぼす影響 新 規 湖南作物試験場 無 (完了) 限界濃度究明試験 (4) 水福冷害機作の生化学的研究 # 農業技術研究所 継 続 作 物 試 験 場 無 (完了) 水温と気温が水稲初期生育に * ** ** ** ** ** ** ** ** ** ** ** **		主连主席印》辞明				
の養分吸収におよぼす影響 (3) 障害型冷害におよぼす窒素の 新 規 湖南作物試験場 無(完了) 限界濃度究明試験 (4) 水稲冷害機作の生化学的研究 " 農業技術研究所 継 続 作 物 試 験 場 無(完了) 水温と気温が水稲初期生育に " 作 物 試 験 場 無(完了) およぼす影響 (5) 水温と気温が水稲初期生育に " 作 物 試 験 場 無(完了) 法と収量予測法 育および収量におよぼす影響 の検討 (2) 果樹凍害被害量の早期診断と " 園 芸 試 験 場 " 減収推定 (1) 保温苗代の床内微気象が苗生 新 規 作 物 試 験 場 無(完了) 技術確立に関す 境調節技術の確 立 でおよぼす影響 2 野菜の簡易被覆栽培による微 継 続 園 芸 試 験 場 ")				////////////////////////////////////	级 焦
(3) 障害型冷害におよぼす窒素の 新 規 湖南作物試験場 無(完了) 限界濃度究明試験 (4) 水稲冷害機作の生化学的研究 " 農業技術研究所 継 続 (5) 水温と気温が水稲初期生育に " 作 物 試 験 場 無(完了) かよぼす影響 3. 被害量の推定方 法と収量予測法 育および収量におよぼす影響 の検討 (2) 果樹凍害被害量の早期診断と " 園 芸 試 験 場 " 」 「 保温苗代の床内酸気象が苗生 新 規 作 物 試 験 場 無(完了) 技術確立に関す 境調節技術の確 育におよぼす影響 立 野菜の簡易被獲栽培による徴 継 続 園 芸 試 験 場 "				"	的用TF物码表物	ALC AL
限界濃度究明試験 (4) 水稲冷害機作の生化学的研究 "農業技術研究所 継 続 (5) 水温と気温が水稲初期生育に 作 物 試 験 場 無(完了) およぼす影響 (1) 水稲主要生育時期別冠水が生 継 続 湖南作物試験場 継 続 音かよび収量におよぼす影響 の検討 (2) 果樹凍害被害量の早期診断と "園 芸 試 験 場 " 減収推定 1. 被覆物による環 (1) 保温苗代の床内微気象が苗生 新 規 作 物 試 験 場 無(完了) 技術確立に関す 境調節技術の確 育におよぼす影響 立 (2) 野菜の簡易被複栽培による微 継 続 園 芸 試 験 場 "					VICTOR OF STREET ID	L 1
(4) 水稲冷害機作の生化学的研究				新 現	御用作物試験場	無(元))
(5) 水温と気温が水稲初期生育に "作物 試験場無(完了) およぼす影響 3. 被害量の推定方 法と収量予測法 育および収量におよぼす影響 の検討 (2) 果樹凍害被害量の早期診断と "園 芸 試験場 " 滅収推定 (1) 保温苗代の床内徴気象が苗生 新規 作物 試験場 無(完了) 技術確立に関す 境調節技術の確 育におよぼす影響 立 (2) 野菜の簡易被獲栽培による徴 継続 園 芸 試験場 "						
3. 被害量の推定方 法と収量予測法 の検討 (2) 果樹凍害被害量の早期診断と " 園 芸 試 験 場 " 減収推定 (1) 保温苗代の床内酸気象が苗生 新 規 作 物 試 験 場 無(完了) 技術確立に関す る研究 立 (2) 野菜の簡易被覆栽培による徴 継 続 園 芸 試 験 場 "				"		
3. 被害量の推定方 (1) 水稲主要生育時期別冠水が生 経 続 湖南作物試験場 経 続 法と収量予測法 育かよび収量にかよぼす影響 の検討 (2) 果樹凍害被害量の早期診断と ル 園 芸 試 験 場 ル 減収推定 1. 被覆物による環 (1) 保温苗代の床内徴気象が苗生 新 規 作 物 試 験 場 無 (完了)技術確立に関す 境調節技術の確 育にかよぼす影響 立 (2) 野菜の簡易被覆栽培による徴 経 続 園 芸 試 験 場 ル				"	作物試験場	無(完了)
法と収量予測法						
の検討 (2) 果樹凍害被害量の早期診断と		3. 被害量の推定方	(1) 水稲主要生育時期別冠水が生	継続	湖南作物試驗場	継続
in 耕地の気象管理 1. 被覆物による環 (1) 保温苗代の床内酸気象が苗生 新 規 作 物 試 験 場 無 (完了) 技術確立に関す 境調節技術の確 育におよぼす影響 立 (2) 野菜の簡易被覆栽培による徴 継 続 園 芸 試 験 場 "		法と収量予測法	育および収量におよぼす影響			
III. 耕地の気象管理 技術確立に関す 方の 1. 被覆物による環 (1) 保温苗代の床内徴気象が苗生 新 規 作 物 試 験 場 無 (完了) 技術確立に関す 境調節技術の確 育におよぼす影響 立 (2) 野菜の簡易被覆栽培による徴 継 続 園 芸 試 験 場 "		の検討	(2) 果樹凍害被害量の早期診断と	"	園芸試験場	"
技術確立に関す 境調節技術の確 育におよぼす影響 る研究 立 (2) 野菜の簡易被覆栽培による徴 継 続 園 芸 試 験 場 "			減 収推定			
る研究 立 (2) 野菜の簡易被覆栽培による徴 継 続 園 芸 試 験 場 "		1. 被覆物による環	(1) 保温苗代の床内徴気象が苗生	新規	作物試験場	無 (完了)
制造, 돌아는 그 시 그는 어떤 이 내려면 교환금은 사람들이 가지다고 한다고 한다면 하다. 그	技術確立に関す	境調節技術の確	育におよぼす影響	la production		
気象環境解析	る研究	並	(2) 野菜の簡易被覆栽培による微	継続	園芸試験場	"
	With the second second		気象環境解析			
	respective sections]	<u></u>	·

研究課題	題 目		ラブスター - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	前年と	実 施 機 関	次年へ	0
	K2	<u> </u>		の関係		つなが	b.
	2. 水管理による環	(1)	高冷地灌漑水温別水深の差異	継続	湖南作物試験場	無(完)	了)
	境調節技術の確		が水稲生育および収量におよ				
	Δ̈́		馆才影響		Margaret.		
IV. 気象災害の対応	1、品種的対応技術	(1)	大豆品種の冷害生態反応	継続	作物試験場	継	続
技術確立に関す	の確立	(2)	水稲耐旱魃性品種選抜試験	"	嶺南作物試験場		1
る研究		(3)	大豆耐旱魃性品種選抜試験	"	"	無(完、	1)
		(4)	主要果樹別品種別耐凍性検定	"	園芸試験場	継	続
			法確立				.: 1
		(5)	果樹耐凍性の遺伝に関する試	// :	"	"	
egister i de de disco			験				:
		(6)	冷害地帯適応性水稲品種の生	新規	作物試験場	"	
			態的反応に関する研究		10 N.		. :
	2. 栽培的对応技術	(1)	土壤有機物含量別施肥窒素利	継続	農業技術研究所	継	続
	の確立		用		la de la la deservación de la la deservación de la la deservación de la deservación de la deservación de la de La deservación de la		1 13
		(2)	米麦二毛作地带水稻機械移植	"	湖南作物試験場	無(完)	3)
			安全作期試験				
		(3)	二毛作地带機械移植安全作期		嶺南作物試驗場	継	続
			究明試験				
		(4)	東海岸冷潮風地帯水稲機械移	"	"	.: #	4
		"	植安全作期究明試験				
	الحائز والمنافوم والأسوادو	(5)	中山間,高冷地水稲機械移植	,,		· · · · · · · · · · · · · · · · · · ·	
			安全作期究明試験				
	3 奥娄丁学的勃氏	713	旱魃時灌漑による養分移動に	继続	農業技術研究所	纅	続
	技術の確立	\``	関する研究	<i>D</i> a	DENIZINI VI JUNI		
en e	4. 地域性に基づく	(1)		新規	作物試験場	絥	続
	計画栽培法の策	(1)	時期究明試験	אלו ועא	1	Ver:	n/u
			h4391315-91514 ak				
and the second of the second	定。					S	

(表2) とれまでの研究実施項目数の推移

		Γ	h det i et			=,
課題及び題目	年 次	9	天)顔 ラ	施項目数		計画
	計画	82	83	84	85	86
1. 農作物気象災害の気候区分に関する研究	100					
1. 農業気候資源量の分布と変動	82-86	1	2	2	3	3
2. 災害危険度の推定と分布	83-85	1	2	2	2 (2)	.
3. 局地気候の特性解明と災害対策	83-87				1	1
4. 耕地微気象の特性解明と影響	83-86		1	2	2	2
Ⅱ、作物気象反応の解明に関する研究						
1. 災害発生の限界気象条件の確定	82-86	1	5 (2)	3 (1)	2 (2)	
2. 災 害発生機構の生理生態的解明	83-86		5 (2)	3 (2)	5 (3)	2
3. 被害量の推定方法と収量予測法の検討	82-86	1	4(1)	4 (2)	2	2
Ⅲ、耕地の気象管理技術確立に関する研究	- :					
1. 被覆物による環境調節技術の確立	83-87		2(1)	2 (1)	2(2)	1
2. 水管理による環境調節技術の確立	83-86		1(11)	1	1(,1)	-
3. 防風施設による環境調節技術の確立	83-87				(削除)	_
Ⅳ. 気象災害の対応技術確立に関する研究						
1. 品種的対応技術の確立	82-87	1	7 (2)	6 (1)	6 (1)	5
2. 栽培的対応技術の確立	8287		7(1)	6(1)	6 (1)	6
3. 農業工学的対応技術の確立	83-86			1	(統合)	
4. 地域性に基づく計画栽培法の策定	83-86			1	1	1
実 施 項 目 数		5	36(10)	33(8)	33(12)	23

(注) 実績の括弧内は当該年度完了又は中断項目で内数。

東海岸地方と遠隔であるなど、残余2年間で実用技術化のメドがつき難いこと、他機関(気象研究所)で実施されているこの種研究の成果が利用可能と見込めることなどを理由に、本プロジェクトでは実施しないという方向に韓国側の意向が固まり、第5次合同委員会(中間評価のための合同委員会で、これについては後述する)においてこの題目を実施計画表から削除することを承認した。同じく、N-3(農業工学的対応技術)も削除し、この題目の下で現在実施中の研究項目はN-2(栽培的対応技術)に統合し、N-4を3に繰上げることにした。理由は、農業工学(土木)的手法による研究実施が体制的(農村振興庁傘下の研究機関は農業土木部門を欠いている)に困難であり、現在実施中及び今後予想される研究は広義の栽培的対応に含めて差支えないと考えられるからである。

以上の結果, 次年度へ持ち越されをのは、4課題、9題目ということになる。

(2) 日本人専門家の派遣

本年度は、表3に示したように、長期専門家2名のほか、8名の短期専門家が派遣され

(表3) 派遣日本人専門家

乓	名	所属	派遣期間	実施機関	專門分野(担当研究項目)
森谷	陸 夫	J I C A	83. 4. 10 ~	農村振興庁	全般(団長)
谷	信 輝	,,	83. 4. 16 ~	農 技 研	農業気象(1-1~3)
工族	哲夫	青森農試	7. 2. ~ 8. 31	作 試	水稲育種 (N - 1 - (6))
橋 本	鏑 二	東北農試	7. 5. ~ 9. 3	"	大 豆(N-1-(1))
吉野	嶺 一	北陸農試	7. 5. ~ 9. 4	農 技 研	植物病理(1 - 4 - (2))
西山	岩 男	農研センター	7. 17. ~ 8. 16	"	作物生理(Ⅱ-2-(4))
古賀野	完 爾	北海道農試	8. 16. ~ 10. 15	"	土壤肥料 (N-2-(1))
村上	利 男	"	9. 26. \sim 10. 25	湖南作試	水稲栽培(N-2-(21)
千葉	和彦	" "	10. 15. \sim 11. 25	園試	果 樹(Ⅱ-3-(2))
林	陽生	環 境 研	11. 1. \sim 12. 14	農 技 研	気象物理(1-4-(1))

(注) 担当研究項目は韓国側研究者と共同担当で項目番号は表1に同じ。

たが、これは計画通りであった。

短期専門家は、この表に併せ示した研究項目について韓国側研究担当者と短期間なから 共同研究を実施したほか、それぞれの専門に係る関連事項について指導助言を行った。各 専門家個別の活動状況については第3章に記載する。

短期専門家8名の平均滞在期間(派遣期間から旅行日を除く)は46.75日であった。これから日祝日平均8日、地方視察旅行平均3回7~8日、それに入出国時の挨拶等2~3日を除くと、配属場所での研究参加は30日に充たないことになる。日本人専門家の指導助言等に対する期待が大きいだけに、これではいかにも短かすぎるという韓国側研究担当者の不満が大きい。なお、この平均滞在期間は、前年4925日、前々年5886日と、短縮の傾向が明瞭であるのも問題で、日本側の協力熱意の冷却を疑われかねない点が危惧される。

専門家にしても、自己本来の業務(研究室長の場合は更に管理的業務も加わる)との両立を図らねばならず、3カ月までの現職出張が可能とはいっても、年間計画が決まってからの突然の派遣話しでは時期や期間等の調整がつき難いことは十分察せられる。可能な場合は、A1フォーム取り付け、人選等を前年度にやっておくことも検討されてよいのではないか。

(3) 韓国側研修員及び視察団の受入れ

韓国側研究者の研究能力の開発のための研修はすべて1年間の長期研究研修であり、前年度受入れの5名が研修を終えて帰国したほか、本年度枠の4名が受入れられた〔表4〕。計画では受入枠は5で、このほかに水稲育種分野の研修生を受入れることになっていたが、

氏 名 所 研 修 分 野 研修期間 研修受入機関 쁫 仲 烈 慶 北 道 亚 '84. 9. 5 ~ 85. 9. 4 院 印 '84. 10. 16 ~'85. 10. 15 茂 БŻ. 南 道 院 植 物 病 140 東 北 忠 金 沅 111 農 技 研 軁 肥 料 *84. 11. 20 ~ 85. 11. 19 九 土 州 僌 崔 香 農 業 灵 象 '85. 1. 6~'85. 12. 27 北 陸 農 爽 *85. 2.20~86. 2.19 生物資源研 金 試 東 大 ₽. 車 植 中国農 光 弘 全 南 道 院 物 病 理 '85. 6.18~ 1年間 具 然 忠 作 湉 水 栽 培 '85. 9. 25 ∼ 北 李 定 澤 技 研 農 炅 象 '85. 10. 1 ∼ 九 W 試 '86. 1. 6 ~ 金 夢 園 果 孌 樹 試

(表4) 韓国側研修員の日本受入れ

(注) 上 5 名は前年度枠。本年度枠は計画では 5 であったが、 5 ち 1 (水稲育種)は受入機関の都合により次年度枠に繰越し(同年度枠に追加)となった。

日本の受入機関の都合により年度内受入れは実現せず、ためにこの1枠は次年度に繰越し、 4月1日受入れということになった。

研修生の専門分野はもちろん、研究経歴・能力水準等いろいろであり、一概には論じられないが、研修期間中本人達の努力と受入機関の協力によって、それぞれに成果をあげている。研究能力開発のための研修であるから、成果はプロジェクト運営にとって速効的なものよりも、長期的・持続的なものがより大きく期待される。

視察団の日本受入れは、前年度に引続き枠外(派遣費用韓国負担)で行われ、下表のよ うに概ね計画通り実施された。

					<u> </u>	
氏	名	所	属・官	職	派遣	期間
朴	俊 奎	農業技術研究所	土壌化学科長・	農業研究官	11月6~	~ 19 日

(表5) 韓国側視察団の日本受入れ

視察の目的は土壌肥料研究,特に塩類集積の問題について日本の関係機関を訪問視察し, 意見・情報の交換を行うことにあった。このため、農業研究センター・環境技術研究所・ 野菜試験場・中国農業試験場等を訪問し、所期の成果をあげたようである。

(4) 資機材供与

本年度の供与資機材は表 6 に示した通りで、気象観測・実験用機器及びそれらの部品・消耗品等が主体で、供与価額 49,200,000 円、C.I.F.仁川 49,777,785 円であった。 資機材は12月14日横浜で船積み、12月23日に当該貨物船は仁川に入港していたようであるが、農村振興庁が日本大使館の連絡でB/L を受領したのが12月28日,引取りは年が明け

機				
o Oxygen electrode o Digital Hygrometer 2577 type with Lic1 (30 cc) 5 pcs. o Soil Hardness Tester Yamanaka standard type o Digital Thermometer Delta SK-1250 type o Digital Thermometer Delta SK-1250 type o Digital Thermometer Delta SK-1250 type o Brix-meter Digital Refractometer OFIX Type o Brix-meter Digital Refractometer Digital Hygrometer Determination Balance Model DBX-30 o Hlectronic Moisture Determination Balance Model FC-220 o Infrared Gas Analyzer UR-12 type O Digital Hygrometer 2577 type with Lic1 (30cc) 5 pcs. o Incubator Low Temperature EL-75 type O Digital Temperature EL-75 type O Digital Temperature Recorder mini ODBAC-E type O Anemovane and anemometer portable A-Oll type O Bimetalic Sunshine Recorder 43-2 type O Anemovane and anemometer portable A-Oll type O Battery Source DEW Detector Model MN-040 O Wide temperature Range Anemometer Portable type V-01-A O Maximum and Minimum Thermometers O Plant Moisture Tensiometer DIK-7000 type O Generator Portable Type Power 500W AC O Therocouple Wire T - G 0.32 mmx 2 300/roll 12 rolls 312,000		(表6) 佚 与 機 材		
o Digital Hygrometer 2577 type with Lic1 (30 cc) 5 pcs. o Soil Hardness Tester Yamanaka standard type o Digital Thermometer Delta SK-1250 type o Redox Meter (portable ORP meter) RM-IK type o Brix-meter Digital Refractometer o Blectronic Moisture Determination Balance Model DEX-30 o Electronic Moisture Determination Balance Model FC-220 o Infrared Gas Analyzer UR-12 type o Digital Hygrometer 2577 type with Lic1 (30cc) 5 pcs. o Incubator Low Temperature EL-75 type o Steady State porometer Model LI-1600 with LI-190S lpc, LI-1600 lpc o Digital Temperature Recorder mini with LI-190S lpc, LI-1600 lpc o Digital Temperature Recorder mini A-011 type o Anemovanc and anemometer portable A-011 type o Battery Source DEW Detector Model MH-040 o Wide temperature Range Anemometer Portable type V-01-A o Naximum and Minimum Thermometers o Plant Moisture Tensiometer DIK-7000 type o Generator Portable Type Power 500W AC J Therocouple Wire T - G 0.32 mmx 2 300/roll 12 rolls 312,000		機 資 材 名	数量	金 額(円)
Lic1 (30 cc) 5 pcs. o Soil Hardness Tester Yamanaka standard type o Digital Thermometer Delta SK-1250 type c Redox Meter (portable ORP meter) RM-IK type o Brix-meter Digital Refractometer o Brix-meter Digital Refractometer o Brix-meter Digital Refractometer o Brix-meter Digital Refractometer o Brix-meter Digital Refractometer o Brix-meter Digital Refractometer o Brix-meter Digital Refractometer o Brix-meter Digital Refractometer o Brix-meter Digital Refractometer o Digital Rygrometer Determination Balance i nos fo00,000 Model FC-220 o Infrared Gas Analyzer UR-12 type o Digital Hygrometer 2577 type with lic1 (30cc) 5 pcs. o Incubator Low Temperature EL-75 type o Steady State porometer Model LI-1600 with LI-190S 1pc, LI-1600 1pc o Digital Temperature Recorder mini s nos f,920,000 YODAC-E type o Anemovanc and anemometer portable o A-011 type o Battery Source DEW Detector Model MH-040 o Wide temperature Range Anemometer Portable type V-01-A o Maximum and Minimum Thermometers o Plant Moisture Tensiometer DIK-7000 type o Generator Portable Type Power 500W AC o Therocouple Wire T - G 0.32 mmx 2 300/roll 12 rolls 312,000		o Oxygen electrode	1 set	185.000
o Soil Hardness Tester Yamanaka standard type o Digital Thermometer Delta SK-1250 type O Redox Meter (portable ORP meter) RM-IK type O Brix-meter Digital Refractometer Model DEX-30 O Electronic Moisture Determination Balance Model FC-220 O Infrared Gas Analyzer UR-12 type O Digital Rygrometer 2577 type with Lic1 (30cc) 5 pcs. O Incubator Low Temperature EL-75 type O Steady State porometer Model LI-1600 With LI-190S lpc, LI-1600 lpc O Digital Temperature Recorder mini YODAC-E type O Anemovane and anemometer portable A-011 type O Battery Source DEW Detector Model NH-040 Wide temperature Range Anemometer Portable type V-01-A O Maximum and Minimum Thermometers O Generator Portable Type Power 500W AC O Therocouple Wire T - G 0.32 mmx 2 300/roll D 1 nos O 60,000 O 700,000		그는 중에 강한테 그 말을 하는 것 같아. 그는 것 같아 있는 것 같아.	l nos	415,000
o Soil Hardness Tester Yamanaka standard type o Digital Thermometer Delta SK-1250 type O Redox Meter (portable ORP meter) RM-IK type O Brix-meter Digital Refractometer Model DEX-30 O Electronic Moisture Determination Balance Model FC-220 O Infrared Gas Analyzer UR-12 type O Digital Rygrometer 2577 type with Lic1 (30cc) 5 pcs. O Incubator Low Temperature EL-75 type O Steady State porometer Model LI-1600 With LI-190S lpc, LI-1600 lpc O Digital Temperature Recorder mini YODAC-E type O Anemovane and anemometer portable A-011 type O Battery Source DEW Detector Model NH-040 Wide temperature Range Anemometer Portable type V-01-A O Maximum and Minimum Thermometers O Generator Portable Type Power 500W AC O Therocouple Wire T - G 0.32 mmx 2 300/roll D 1 nos O 60,000 O 700,000		Lic1 (30 cc) 5 pcs.		
type o Digital Thermometer Delta SK-1250 type o Redox Meter (portable ORP meter) RM-IK type o Brix-meter Digital Refxactometer Model DEX-30 o Electronic Moisture Determination Balance Model FC-220 o Infrared Gas Analyzer UR-12 type o Digital Hygrometer 2577 type with Lic1 (30cc) 5 pcs. o Incubator Low Temperature EL-75 type o Steady State porometer Model LI-1600 with LI-190S lpc, LI-1600 lpc o Digital Temperature Recorder mini YODAC-E type o Anemovane and anemometer portable A-011 type o Bimetalic Sunshine Recorder 43-2 type o Battery Source DEW Detector Model MN-040 o Wide temperature Range Anemometer Portable type V-01-A o Maximum and Minimum Thermometers o Plant Moisture Tensiometer DIK-7000 type o Generator Portable Type Power 500W AC 100V 60 HZ o Therocouple Wire T - G 0.32 mmx 2 300/roll 12 rolls 312,000		o Soil Hardness Tester Yamanaka standard	2 nos	125,000
o Redox Meter (portable ORP meter) RM-IK type o Brix-meter Digital Refractometer Model DBX-30 o Electronic Moisture Determination Balance Model FC-220 o Infrared Gas Analyzer UR-12 type o Digital Hygrometer 2577 type with Lic1 (30cc) 5 pcs. o Incubator Low Temperature EL-75 type o Steady State porometer Model LI-1600 with LI-190S lpc, LI-1600 lpc o Digital Temperature Recorder mini VODAC-E type o Anemovane and anemometer portable A-011 type o Bimetalic Sunshine Recorder 43-2 type o Battery Source DEW Detector Model MH-040 wide temperature Range Anemometer Portable type V-01-A o Maximum and Minimum Thermometers of Plant Moisture Tensiometer DIK-7000 type o Generator Portable Type Power 500W AC 100V 60 HZ o Therocouple Wire T - G 0.32 mmx 2 300/roll 1 nos 600,000 700,000 1 nos 740,000 1 set 412,000 2 nos 4,635,000 4,635,00				
RM-IK type o Brix-meter Digital Refractometer Model DBX-30 o Electronic Moisture Determination Balance Model FC-220 o Infrared Gas Analyzer UR-12 type O Digital Hygrometer 2577 type with Lic1 (30cc) 5 pcs. o Incubator Low Temperature EL-75 type O Steady State porometer Model LI-1600 with LI-190S 1pc, LI-1600 1pc O Digital Temperature Recorder mini NODAC-E type O Anemovane and anemometer portable A-011 type O Bimetalic Sunshine Recorder 43-2 type O Battery Source DEW Detector Model MH-040 Rate Type Surce DEW Detector Model MH-040 Naximum and Minimum Thermometers O Plant Moisture Tensiometer DIK-7000 type O Generator Portable Type Power 500W AC Therocouple Wire T-G 0.32 mmx 2 300/roll 1 nos 7,00,000 740,000 740,000 740,000 750,00		化氯化二甲基甲基酚医氯甲基酚 医二氯化物 医二氏病 化二氯化物 化二氯化物 化二氯化物 化二氯化物	2 nos	60,000
o Brix-meter Digital Refractometer Model DBX-30 o Electronic Moisture Determination Balance Model FC-220 o Infrared Gas Analyzer UR-12 type Inos Obigital Hygrometer 2577 type with Lic1 (30cc) 5 pcs. o Incubator Low Temperature EL-75 type Steady State porometer Model LI-1600 with LI-190S lpc, LI-1600 lpc Obigital Temperature Recorder mini YODAC-E type Anemovane and anemometer portable A-011 type OBimetalic Sunshine Recorder 43-2 type OBattery Source DEW Detector Model MN-040 Wide temperature Range Anemometer Portable type V-01-A OMAXimum and Minimum Thermometers OFICE Thermometer Source DEW Detector Model MN-040 OFICE Thermometer Source DEW Detector DIK-7000 type OFICE Thermometer Source DEW Detector DIK-7000 type OFICE Thermometer DIK-7000 type OFICE Thermometer Source DEW Detector MAC OFICE THE MODEL TO THE MODEL SOURCE DEVISION AC OFICE THE MODEL SOURCE DEVISION AC OFIC THE MODEL SOURCE DEVISION AC OFIC THE MODEL SOU	:	o Redox Meter (portable ORP meter)	1 nos	65,000
Model DBX-30 o Electronic Moisture Determination Balance Model FC-220 o Infrared Gas Analyzer UR-12 type		RM-IK type		
o Electronic Moisture Determination Balance Model FC-220 o Infrared Gas Analyzer UR-12 type o Digital Hygrometer 2577 type with Lic1 (30ce) 5 pcs. o Incubator Low Temperature EL-75 type o Steady State porometer Model LI-1600 with LI-190S lpc, LI-1600 lpc o Digital Temperature Recorder mini YODAC-E type o Anemovane and anemometer portable A-Oll type o Bimetalic Sunshine Recorder 43-2 type o Battery Source DEW Detector Model MH-040 o Wide temperature Range Anemometer Portable type V-01-A o Maximum and Minimum Thermometers or Plant Moisture Tensiometer DIK-7000 type o Generator Portable Type Power 500W AC Therocouple Wire T-G 0.32 mmx 2 300/roll 1 nos 600,000 740,000 1 nos 2,010,000 2 nos 4,690,000 40,000 7,920,000		o Brix-meter Digital Refractometer	2 nos	700,000
Model FC-220 o Infrared Gas Analyzer UR-12 type o Digital Hygrometer 2577 type with Lic1 (30cc) 5 pcs. o Incubator Low Temperature EL-75 type o Steady State porometer Model LI-1600 with LI-190S lpc, LI-1600 lpc o Digital Temperature Recorder mini YODAC-E type o Anemovane and anemometer portable A-O11 type o Bimetalic Sunshine Recorder 43-2 type o Battery Source DEW Detector Model MH-040 o Wide temperature Range Anemometer Portable type V-01-A o Maximum and Minimum Thermometers o Plant Moisture Tensiometer DIK-7000 type o Generator Portable Type Power 500W AC 100V 60 HZ o Therocouple Wire T - 6 0.32 mmx 2 300/ro11 12 rolls 312,000	Ì	Model DBX-30		
o Infrared Gas Analyzer UR-12 type o Digital Hygrometer 2577 type with Lic1 (30cc) 5 pcs. o Incubator Low Temperature EL-75 type o Steady State porometer Model LI-1600 with LI-190S lpc, LI-1600 lpc o Digital Temperature Recorder mini YODAC-E type o Anemovane and anemometer portable A-Oll type o Bimetalic Sunshine Recorder 43-2 type o Battery Source DEW Detector Model MH-040 o Wide temperature Range Anemometer Portable type V-01-A o Maximum and Minimum Thermometers o Plant Moisture Tensiometer DIK-7000 type o Generator Portable Type Power 500W AC 100V 60 HZ o Therocouple Wire T - G 0.32 mmx 2 300/roll 1 set 1 nos 1 set 3,690,000 1 set 3,690,000 1 nos 7,920,000 7,920,0		o Electronic Moisture Determination Balance	l nos	600,000
o Digital Hygrometer 2577 type with Lic1 (30cc) 5 pcs. o Incubator Low Temperature EL-75 type Steady State porometer Model LI-1600 with LI-190S 1pc, LI-1600 1pc Digital Temperature Recorder mini YODAC-E type Anemovane and anemometer portable A-Oll type Bimetalic Sunshine Recorder 43-2 type Battery Source DEW Detector Model NH-040 Wide temperature Range Anemometer Portable type V-01-A Maximum and Minimum Thermometers Plant Moisture Tensiometer DIK-7000 type Generator Portable Type Power 500W AC 100V 60 HZ Therocouple Wire T - G 0.32 mmx 2 300/rol1		Model FC-220		
Lic1 (30cc) 5 pcs. o Incubator Low Temperature EL-75 type o Steady State porometer Model LI-1600 , with LI-190S 1pc, LI-1600 1pc o Digital Temperature Recorder mini		o Infrared Gas Analyzer UR-12 type	1 nos	740,000
o Incubator Low Temperature EL-75 type o Steady State porometer Model LI-1600 with LI-190S lpc, LI-1600 lpc o Digital Temperature Recorder mini YODAC-E type o Anemovane and anemometer portable A-011 type o Bimetalic Sunshine Recorder 43-2 type o Battery Source DEW Detector Model MH-040 o Wide temperature Range Anemometer Portable type V-01-A o Maximum and Minimum Thermometers o Plant Moisture Tensiometer DIK-7000 type o Generator Portable Type Power 500W AC 100V 60 HZ o Therocouple Wire T - G 0.32 mmx 2 300/rol1 2,010,000 1 set 3,690,000 1 nos 7,920,000 7,920		o Digital Hygrometer 2577 type with	l set	412,000
o Steady State porometer Model LI-1600		Lic1 (30cc) 5 pcs.		
with LI-190S 1pc, LI-1600 1pc o Digital Temperature Recorder mini YODAC-E type o Anemovane and anemometer portable A-011 type o Bimetalic Sunshine Recorder 43-2 type o Battery Source DEW Detector Model MH-040 o Wide temperature Range Anemometer Portable type V-01-A o Maximum and Minimum Thermometers o Plant Moisture Tensiometer DIK-7000 type o Generator Portable Type Power 500W AC 100V 60 HZ o Therocouple Wire T - G 0.32 mmx 2 300/rol1 8 nos 7,920,000 7,920,000 1 nos 62,000 4,635,000 2,009,000 2 nos 4,635,000 410,000 2 nos 1,104,000 3 nos 291,000		o Incubator Low Temperature EL-75 type	2 nos	2,010,000
o Digital Temperature Recorder mini YODAC-E type o Anemovane and anemometer portable A-Oll type o Bimetalic Sunshine Recorder 43-2 type o Battery Source DEW Detector Model MH-040 o Wide temperature Range Anemometer Portable type V-01-A o Maximum and Minimum Thermometers o Plant Moisture Tensiometer DIK-7000 type o Generator Portable Type Power 500W AC 100V 60 HZ o Therocouple Wire T - G 0.32 mmx 2 300/roll 8 nos 7,920,000 7,920,000 62,000 7,000 9 nos 4,635,000 410,000 9 nos 410,000 7,104,000 3 nos 291,000		o Steady State porometer Model LI-1600	1 set	3,690,000
YODAC-E type o Anemovane and anemometer portable A-O11 type o Bimetalic Sunshine Recorder 43-2 type o Battery Source DEW Detector Model MH-O40 o Wide temperature Range Anemometer Portable type V-O1-A o Maximum and Minimum Thermometers o Plant Moisture Tensiometer DIK-7000 type o Generator Portable Type Power 500W AC 100V 60 HZ o Therocouple Wire T - G 0.32 mmx 2 300/roll 1 nos 62,000 1 nos 2,009,000 2 nos 4,635,000 2 nos 410,000 2 nos 1,104,000 3 nos 291,000	:	with LI-1908 1pc, LI-1600 1pc	ed de	
o Anemovane and anemometer portable A-Oll type o Bimetalic Sunshine Recorder 43-2 type o Battery Source DEW Detector Model MH-O40 o Wide temperature Range Anemometer Portable type V-Ol-A o Maximum and Minimum Thermometers o Plant Moisture Tensiometer DIK-7000 type o Generator Portable Type Power 500W AC 100V 60 HZ o Therocouple Wire T - G 0.32 mmx 2 300/roll 100V 60 HZ 3 nos 62,000 62,000 62,000 62,000 62,000 62,000 64,635,000 64,635,000 64,035,000 64,000 6	4	o Digital Temperature Recorder mini	8 nos	7,920,000
A-Oll type o Bimetalic Sunshine Recorder 43-2 type o Battery Source DEW Detector Model MH-O40 o Wide temperature Range Anemometer Portable type V-Ol-A o Maximum and Minimum Thermometers o Plant Moisture Tensiometer DIK-7000 type o Generator Portable Type Power 500W AC 100V 60 HZ o Therocouple Wire T - G 0.32 mmx 2 300/roll 7 nos 2,009,000 4,635,000 410,000 2 nos 1,104,000 1,590,000 3 nos 291,000		YODAC-E type		
o Bimetalic Sunshine Recorder 43-2 type o Battery Source DEW Detector Model MH-040 o Wide temperature Range Anemometer Portable type V-01-A o Maximum and Minimum Thermometers O Plant Moisture Tensiometer DIK-7000 type o Generator Portable Type Power 500W AC 100V 60 HZ o Therocouple Wire T - G 0.32 mmx 2 300/roll 7 nos 2,009,000 9 nos 4,635,000 410,000 11,104,000 1,590,000 1,590,000 3 nos 291,000		o Anemovane and anemometer portable	1 nos	62,000
o Battery Source DEW Detector Model MH-040 o Wide temperature Range Anemometer Portable type V-01-A o Maximum and Minimum Thermometers o Plant Moisture Tensiometer DIK-7000 type o Generator Portable Type Power 500W AC 100V 60 HZ o Therocouple Wire T - G 0.32 mmx 2 300/roll 9 nos 4,635,000 410,000 1,104,000 1,590,000 1,590,000 3 nos 291,000		A-011 type		
o Wide temperature Range Anemometer 2 nos 410,000 Portable type V-01-A o Maximum and Minimum Thermometers 40 pcs 1,104,000 o Plant Moisture Tensiometer DIK-7000 type 2 nos 1,590,000 o Generator Portable Type Power 500W AC 3 nos 291,000 100V 60 HZ o Therocouple Wire T - G 0.32 mmx 2 300/roll 12 rolls 312,000		o Bimetalic Sunshine Recorder 43-2 type	7 nos	2,009,000
Portable type V-01-A o Maximum and Minimum Thermometers o Plant Moisture Tensiometer DIK-7000 type o Generator Portable Type Power 500W AC 100V 60 HZ o Therocouple Wire T - G 0.32 mmx 2 300/roll 100V 60 HZ 11,104,000 1,590,000 1,590,000 1,590,000 1,590,000 1		o Battery Source DEW Detector Model MH-040	9 nos	4,635,000
o Maximum and Minimum Thermometers o Plant Moisture Tensiometer DIK-7000 type o Generator Portable Type Power 500W AC 100V 60 HZ o Therocouple Wire T - G 0.32 mmx 2 300/roll 100V 60 HZ 11,104,000 2 nos 1,590,000 3 nos 291,000		o Wide temperature Range Anemometer	2 nos	410,000
o Plant Moisture Tensiometer DIK-7000 type o Generator Portable Type Power 500W AC 100V 60 HZ o Therocouple Wire T - G 0.32 mmx 2 300/roll 2 nos 1,590,000 3 nos 291,000		Portable type V-01-A		
o Generator Portable Type Power 500W AC 3 nos 291,000 100V 60 HZ o Therocouple Wire T - G 0.32 mmx 2 300/roll 12 rolls 312,000		o Maximum and Minimum Thermometers	40 pcs	1,104,000
100V 60 HZ o Therocouple Wire T - G 0.32 mmx 2 300/roll 12 rolls 312,000		o Plant Moisture Tensiometer DIK-7000 type	2 nos	1,590,000
o Therocouple Wire T - G 0.32 mmx 2 300/roll 12 rolls 312,000		o Generator Portable Type Power 500W AC	3 nos	291,000
T - G 0.32 mmx 2 300/roll 12 rolls 312,000		100V 60 HZ		
그는 그 전화가 되었다면 하다고는 선생들 전 그 것 같습니다. 그 사고 생각하는 전략적 한 작성을 하내다고 극하다는 위		o Therocouple Wire		
T - G 0.10 mmx 2 200/roll 2 rolls 40.000		T - G 0.32 mmx 2 300/roll	12 rol1	s 312,000
。 李枫的地方,是一切好话,就是一些人的方式,大家的人,以此数据的方式,以后数据的方数据数据的特别,就是经验的影响。		T - G 0.10 mmx 2 200/roll	2 roll	s 40,000

機資材名	数量	金 額(円)
o Refrigeration Machine	2 nos	5,070,000
RCU-2003E type		
o Multiplex Deta Logger Solar	2 sets	2,920,000
Model MP080		
o NEO Pyranometer MS-42 type	1 nos	394,000
o Viscotester VT-03 type	1 nos	90,000
o Heatflow Sensors	3 nos	168,000
o "NEO COOL DIP" for Water Bath		
- Coolers & Immersion DB-11	1 set	120,000
- Heater " HD-21	1 set	38,000
o Tube Type Solarimeter MS-33	2 nos	370,000
o Automatic Clave SM-51 type	2 nos	1,425,000
o Auto Expansion Valve		
1. M81 - 8056 F	8 pcs	132,000
2. M81 - 6056 F	9 pcs	144,000
o Saye Water Valve		
1. Awr-2510 Glw	8 pcs	208,000
2. Awr-2006 Glw	9 pcs	108,000
o Agricultural Meteorological Recorder		
Pepair Converter & Supplement Parts		
1. Solar radiation board Sri 535	1 pce	205,000
2. Rain fall board Rpi-536 H	1 pce	205,000
3. Sun shine board Spi-536	1 pce	205,000
4. Wind ran board Api-536	1 pce	206,000
5. Humidity board EHI-535	1 pce	205,000
6. Temperature INT board STI-535	1 pce	260,000
7. Humidity Amp EHI-505	1 pce	100,000
8. Humidity souvonotor EHI-505	l pče	26,000
9. Switch assembly E9662xA	6 pcs	420,000
10. Contact assembly E9660 MX	6 pcs	60,000
11. Pulley E9662 AJ	6 pcs	84,000
12. Gear assembly E9656 RQ	6 pcs	72,000
	1	5,700
13. Ink pad wheel E9661 HA	6 pcs	
14. Printer drive cable E9662 EQ	6 pcs	30,000
15. Tank assembly E9508 TN E9506 AY	1 pce	2,500

機資材名	数量	金 額(円)
16. Tank assembly E9508 TN E9506 BY	1 pce	1,100
17. Storing Assembly E9507 LJ	1 pce	6,000
18. Screw Y9203 HB	1 pce	2,000
o Portable Spectroradio Meter Parts		
1. 1800-12	2 pcs	3,200,000
2. 1800-12 B	2 pcs	520,000
3. Battery for 12 B	4 pcs	30,000
4. 1800-10	2 pcs	1,900,000
5. 1800-11	2 pcs	540,000
6. 1800-05	1 pcs	240,000
o Sensor (LI-190 S-1) of Steady	2 pcs	370,000
Steady Porometer (LI-1600)		
o Mercury Vapor Lamp Reflection Type		
1. HRF-1000 X	55 pcs	935,000
2. HRF-100 X	24 pcs	108,000
o Fluorescent Light	100 pcs	160,000
- FLR110HW/A/100 110V 100W		
o Oscilloscope LBO-5251	1 nos	210,000
- Prove LP-012X	2 pcs	25,000
- Signal generator LAG-27	1 nos	25,000
o Text Books 17 vols & 5 sets	1 set	280,700
Total 37 種		49,200,000

て1月8日になった。韓国側は年度内(12月まで)に引取れることが予算執行上望ましいようであるが、この点は本年も間に合わなかった。なお、すべて本部調達で、現地調達したものはない。

米韓専門家の携行資機材は表7に示す通りであった。

(表7) 来韓専門家携行資機材

 _		, -				1	r 	
ŧ	亨門家	Ĺ	X : 5	分	機資材名	引取日	配付先	備考
I	藤	機		械	葉緑素計 (SPAD. 501)	7. 2	作試	本人携行
橋	本		"		光電管照度計 (PI.303)	7. 8	"	"
吉	野	消	耗	댎	Cover glass 等 8 種		:	"
	* :	焆		薬	Pimaricin 等 12 種	. "	農研	
	,	文		献	原色 野菜病虫害防除等 2種		•	
西	Щ.	機	-	械	小型超音波沪器等 3 種			"
		消	耗	멾	Slide glass 1種	7. 19	"	橋本,吉野携 } 行機材の一部
		試		薬	Vancomycin 等 4 種	1. 19		「1115X49」の一部
		文	٠.	献	イネの冷害生理学 1種			
古	賀 野	機		械	Digital pH meter 1種			本人携行
		消	耗	ß	比較電極等 5種	8. 19	· // · · ·	
	:	試		薬	硫酸Ammonium 1種			
村	上	機		械	高感度記録計等 5種			"
		消	耗	品	高感度記錄計用記錄紙等 3種	9. 2	湖試	
		試		楽	Cellulase 等 5種			
Ŧ	葉	機		械	土壤水分計 J - 3 型等 3 種	10 12	4-5 国	"
	,	消	耗	aa	C.C 熱電対 (0.1 mm) 線等 3種	10. 17	園試	
	林	機		械	携帯用風向風速計等 3種	11. 4.	農研	"
					<u> </u>			

3. 結果の評価等

(1) 中間評価

本プロジェクト3年経過の時点で残余2年間の計画を見直すかどうか中間評価を実施するというR/Dの取り決めに従い、第5次合同委員会が9月19日に開催された。この委員会に出席させるため、北海道農試作物第一部稲第3研究室長佐竹徹夫を団長とする巡回指導調査団が、9月13~21日の間派遣された。調査団の調査結果の報告は、農開技JR85-105、昭和60年10月として刊行されているので、ここでは結果の要点のみ摘記する。

合同委員会は3年間の実施進捗状況に関する全般的検討を行った結果,実施計画に沿って概ね順調に進捗しつつあり、特に韓国の農業気象災害研究は軌道にのり、また満足すべき成果をあげつつあることを認めた。これは、韓国側研究担当者の努力はもちろん、日本人専門家の積極的研究協力、研修による韓国研究員の資質の向上及び必要機資材の供与に負うところが大きい。残余2年間についても、基本的には見直すべきことなく、実施計画に従って円滑に遂行できるよう、両国が協力することで合意された。

(2) 本年度の結果

前節で述べたように、本年度事業計画に従って各事項とも概ね計画通り達成された。試験研究について言えば、実施計画表の課題 - 題目は当初年度計画通り、又は多少それより早いペースで進捗しており、本年度も広範囲にわたって新しい成果を積み重ねた。プロジェクトは順調に軌道にのって、そして集束の方向に動いている。

ただ、研究の実質的な進展度、目標達成度ということになると、これはよく判らないし、韓国側管理当局も全体を十分には把握していないかも知れぬ。本プロジェクトは、研究のおよその範囲と方向とは決めてスタートしているが、各年度毎の、そして全体の到達目標を具体的に、あるいは概念的(フローチャートをど)にも、決めているわけではないからである。参加の研究分野、あるいは組織(一専門分野が研究機関の一研究科を構成している場合が多いがそうでないこともある)の数が多く、毎年の研究担当者も100名内外という多数(他の経営的あるいは特別の研究の担当も兼ねて)である。各分野の事情、それらが抱えている研究上のニーズ・シーズも多様である。本プロジェクトに期待し、そこで達成しようとした目標も、分野によって一様でないと思われる。本プロジェクト研究の実質的進展度、目標達成度は、その最終時点において、参加各分野の研究担当責任者に総括して貰う以外にないように思われる。

このことはともかく、全般的に、そして概括的に見る限りでは、韓国側研究担当者の努力と日本側専門家の協力とによって、研究はスムースに、特に問題もなく進捗していると見てよいであろう。

付、本年度の気象と主要作物の生育収量

本年度の水源における気象表を付表1として掲げておく。 なお, 第一年次報告書(農開技83-56, 1983年9月刊)関係の気象表(1982年10月~83年3月)を付表2としてことに収載しておく。

本年の夏作期間は低低平常ないしゃや高温年と言ってよく、特に気象災害というべきほどのものはなかった。 9~10月にやや多雨寡照ではあったが、水稲は作況指数 108.5 の豊作であった。他の夏作物も一般に豊作型であった。冬期間はやや寒冬型に属するであろうが、冬作物の寒凍害として特に問題になるほどのことはなかった。

(付表1) 1985年度水原旬別気象表 (1985.4~1986.3)

(水原測候所)

平月旬 平均気温 最高気温 最低気温 降水量 月飛時間	<u></u>		70 11	· YE			E (ri	A= XP	PSC	· 二二		DE RH]
本年 平年差 本年 平年差 本年 平年表 本年 平年比 本年 平年比 本年 平年比 1985 年 上 8.7 + 0.4 15.9 + 1.5 2.4 + 0.1 25.0 78.1 64.8 86.1 11.2 + 0.1 17.8 + 0.6 5.7 + 0.5 19.7 48.8 66.0 95.9	 年月旬		平均	温 浸	東島	显 灵	玻也			 		1	
1985 年			本 年	平年差	本年	平年差	本 年	平年差	本 年	平年比	本 年	平年比	
上 8.7 + 0.4 15.9 + 1.5 24 + 0.1 25.0 78.1 64.8 86.1			C	C	r	c	С	r	mm	%	hr	%	
4 月 中 112 + 01 178 + 0.6 57 + 0.5 19.7 488 66.0 93.9 下 12.6 - 0.7 19.1 - 0.5 58 - 1.5 21.8 46.7 74.1 100.3 上 17.3 + 2.7 22.6 + 1.7 12.3 + 3.7 83.8 249.4 52.6 66.8 5月 中 17.9 + 1.6 23.1 + 0.5 12.7 + 2.6 128.3 534.6 52.6 66.9 下 17.5 - 0.7 23.5 - 0.7 11.9 - 0.8 0 0 0 90.6 102.7 □ 19.7 + 0.6 25.4 + 0.7 15.2 + 1.0 2.5 81 66.6 92.6 102.7 □ 19.6 + 0.9 26.9 + 0.8 16.9 + 0.7 0.6 22 81.6 103.0 □ 21.6 + 0.9 26.9 + 0.8 16.9 + 0.7 0.6 22 81.6 103.0 □ 23.5 + 0.5 26.9 - 0.2 20.9 + 1.3 90.2 82.2 21.1 41.1 □ 19.7 + 0.6 27.6 - 0.5 21.5 + 0.4 61.5 44.7 40.2 85.0 □ 19.8 + 1.9 106.3 15.0 15.6 92.2 135.4 □ 19.8 + 1.9 106.3 15.0 15.6 92.2 135.4 □ 27.5 + 1.4 32.2 + 2.1 23.3 + 0.6 15.0 15.6 92.2 135.4 □ 19.8 + 1.9 10.8 19.4 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5	l .		8.7	+ 04	15.0	+ 15	2.4	+ 0.1	25.0	78.1	64.8	86.1	
下 12.6					I .	1 .	1			1			
上								i			1	3	
5月中 17.9 + 1.6 23.1 + 0.5 12.7 + 2.6 128.3 534.6 56.2 66.9 102.7								1.0				N 1 1	
下 17.5					1		\$ ·	1	3	•	4	ı	[
上 19.7 + 0.6 25.4 + 0.7 15.2 + 1.0 2.5 8.1 66.6 92.6 日本						1					i .		
6 月 中 21.6	, ,		17.5	- 0.7	23.5	- 0.7	11.9	- 0.8		U	90.0	102.7	
日月 中 21.6 + 0.9 26.9 + 0.8 16.9 + 0.7 0.6 22 81.6 103.0	1 1 }	.	19.7	+ 0.6	25.4	+ 0.7	15.2	+ 1.0	2.5	8.1	66.6	92.6	
下 23.4 + 1.2 28.2 + 0.8 19.8 + 1.9 106.3 162.0 52.7 75.8 上 23.5 + 0.5 26.9 - 0.2 20.9 + 1.3 90.2 82.2 21.1 41.1 7月 中 24.2 0 27.6 - 0.5 21.5 + 0.4 61.5 44.7 40.2 85.0 下 27.5 + 1.4 32.2 + 2.1 23.3 + 0.6 15.0 15.6 92.2 135.4 上 25.9 + 0.3 29.3 + 0.5 23.0 + 0.8 194.5 175.4 29.0 50.4 8月 中 26.3 + 1.1 30.9 + 1.3 22.0 + 0.5 78.5 72.2 69.9 115.9 下 26.8 + 2.7 31.3 + 2.6 23.4 + 3.2 27.2 35.0 74.7 113.0 上 24.0 + 1.9 27.8 + 1.1 21.1 + 3.0 75.6 85.4 41.9 77.0 9月 中 19.7 + 0.2 22.8 - 2.6 17.4 + 2.9 93.3 266.6 10.7 15.1 下 16.9 + 0.6 22.4 - 1.5 12.2 + 0.7 6.0 46.2 53.8 71.9 上 15.5 + 0.3 20.9 - 0.9 10.6 + 1.5 162.4 1.135.6 50.3 74.5 下 13.3 + 2.8 19.6 + 2.5 7.6 + 3.1 0.2 0.7 73.6 106.2 上 10.1 + 1.3 15.2 - 0.2 5.4 + 3.1 29.8 164.6 39.0 64.4 11.月 中 3.0 - 2.2 7.3 - 3.8 - 1.2 - 1.2 14.9 105.7 46.0 86.5 下 4.2 + 1.6 8.8 + 0.8 - 0.1 + 2.1 30.5 196.8 38.7 76.6 上 - 1.7 - 2.5 21 + 3.8 - 5.5 - 1.6 8.5 123.2 54.7 110.3 12.9 中 - 6.6 - 5.4 - 1.7 - 6.0 - 10.6 - 4.7 1.0 12.3 66.0 127.2 12.7 12.7 12.7 12.7 12.7 12.7 12.			* * * * * * * * * * * * * * * * * * * *			1		*	0.6	2.2	81.6	103.0	İ .
7月 中 24.2 0 27.6 - 0.5 21.5 + 0.4 61.5 44.7 40.2 85.0 下 27.5 + 1.4 32.2 + 2.1 23.3 + 0.6 15.0 15.6 92.2 135.4 上 25.9 + 0.3 29.3 + 0.5 23.0 + 0.8 194.5 175.4 29.0 50.4 15.9 下 26.8 + 2.7 31.3 + 2.6 23.4 + 3.2 27.2 35.0 74.7 113.0 日				+ 1.2	28.2	+ 0.8	19.8	+ 1.9	106.3	162.0	52.7	75.8	
7月 中 24.2 0 27.6 - 0.5 21.5 + 0.4 61.5 44.7 40.2 85.0 下 27.5 + 1.4 32.2 + 2.1 23.3 + 0.6 15.0 15.6 92.2 135.4 上 25.9 + 0.3 29.3 + 0.5 23.0 + 0.8 194.5 175.4 29.0 50.4 15.9 下 26.8 + 2.7 31.3 + 2.6 23.4 + 3.2 27.2 35.0 74.7 113.0 日] .	1							00.5			}]
下 27.5 + 1.4 32.2 + 2.1 23.3 + 0.6 15.0 15.6 92.2 135.4 上 25.9 + 0.3 29.3 + 0.5 23.0 + 0.8 194.5 175.4 29.0 50.4						· .	ŀ				1 .	1	
日本						ı	ı						
8月 申 26.3 + 1.1 30.9 + 1.3 22.0 + 0.5 78.5 72.2 69.9 115.9			ລຸ ກວ	1 1.1	02.5	1 2.1	20.0	. 0.0	10.0	10.0	0.0.0	100	* 1
8月中 26.3 + 1.1 30.9 + 1.3 22.0 + 0.5 78.5 72.2 69.9 115.9 74.7 113.0 上 24.0 + 1.9 27.8 + 1.1 21.1 + 3.0 75.6 85.4 41.9 77.0 19.7 中 19.7 + 0.2 22.8 - 2.6 17.4 + 2.9 93.3 266.6 10.7 15.1 下 16.9 + 0.6 22.4 - 1.5 12.2 + 0.7 6.0 46.2 53.8 71.9 上 15.5 + 0.3 20.9 - 0.9 10.6 + 1.5 162.4 1.135.6 50.3 74.5 下 13.8 + 0.8 18.8 - 1.3 8.9 + 2.2 101.0 731.9 57.3 78.8 下 13.3 + 2.8 19.6 + 2.5 7.6 + 3.1 0.2 0.7 73.6 106.2 上 10.1 + 1.3 15.2 - 0.2 5.4 + 3.1 0.2 0.7 73.6 106.2 上 10.1 + 1.3 15.2 - 0.2 5.4 + 3.1 29.8 164.6 39.0 64.4 11月中 3.0 - 2.2 7.3 - 3.8 - 1.2 - 1.2 14.9 105.7 46.0 86.5 下 4.2 + 1.6 8.8 + 0.8 - 0.1 + 2.1 30.5 196.8 38.7 76.8 上 - 1.7 - 2.5 2.1 + 3.8 - 5.5 - 1.6 8.5 123.2 54.7 110.3 12.3 66.0 127.2 下 - 1.4 + 2.6 4.1 + 2.5 - 6.6 + 2.4 24.3 433.9 52.3 88.2 1986 年 上 - 9.5 - 3.3 - 4.1 - 6.3 -14.7 - 6.5 11.1 258.1 53.6 96.4 1月中 - 4.5 - 0.2 2.0 0.8 - 9.6 - 0.4 0.7 13.0 47.7 80.3 下 - 4.2 - 0.9 0.8 - 1.3 - 8.5 - 0.4 0 0 0 77.5 123.0 上 - 7.9 - 4.0 - 1.4 - 2.9 - 13.7 - 4.7 3.0 43.5 74.6 126.0 2月中 - 0.6 + 0.8 40 0 - 4.8 + 1.4 8.3 55.3 48.0 76.1 下 - 2.8 - 2.2 1.9 - 2.7 - 7.8 - 2.3 0.0 0 6 69.8 130.0 上 2.0 + 0.5 9.1 2.3 - 3.9 - 0.6 18.9 109.2 82.8 122.1 3.月中 3.8 + 0.8 8.4 - 0.3 - 0.1 + 1.8 11.3 106.6 43.7 62.0	l _F		25.9	+ 0.3	29.3	+ 0.5	23.0	+ 0.8	194.5	175.4	29.0	504	
上					30.9	+ 1.3	22.0	+ 0.5	78.5		69.9	115.9	<u> </u>
9月中 19.7 + 0.2 22.8 -2.6 17.4 +2.9 93.3 266.6 10.7 15.1 下 16.9 + 0.6 22.4 -1.5 12.2 +0.7 6.0 46.2 53.8 71.9 10月中 13.8 + 0.8 18.8 -1.3 8.9 +2.2 101.0 731.9 57.3 78.8 13.3 + 2.8 19.6 +2.5 7.6 +3.1 0.2 0.7 73.6 106.2 上 10.1 + 1.3 15.2 -0.2 5.4 +3.1 29.8 164.6 39.0 64.4 11月中 3.0 -2.2 7.3 -3.8 -1.2 -1.2 14.9 105.7 46.0 86.5 下 4.2 + 1.6 8.8 +0.8 -0.1 +2.1 30.5 196.8 38.7 76.8 上 - 1.7 -2.5 2.1 +3.8 -5.5 -1.6 8.5 123.2 54.7 110.3 12月中 -6.6 -5.4 -1.7 -6.0 -10.6 -4.7 1.0 12.3 66.0 127.2 下 -1.4 +2.6 4.1 +2.5 -6.6 +2.4 24.3 433.9 52.3 88.2 1986年 日	下		26.8	+ 2.7	31.3	+ 2.6	23.4	+ 3.2	27.2	35.0	74.7	113.0	
9月中 19.7 + 0.2 22.8 -2.6 17.4 +2.9 93.3 266.6 10.7 15.1 下 16.9 + 0.6 22.4 -1.5 12.2 +0.7 6.0 46.2 53.8 71.9 10月中 13.8 + 0.8 18.8 -1.3 8.9 +2.2 101.0 731.9 57.3 78.8 13.3 + 2.8 19.6 +2.5 7.6 +3.1 0.2 0.7 73.6 106.2 上 10.1 + 1.3 15.2 -0.2 5.4 +3.1 29.8 164.6 39.0 64.4 11月中 3.0 -2.2 7.3 -3.8 -1.2 -1.2 14.9 105.7 46.0 86.5 下 4.2 + 1.6 8.8 +0.8 -0.1 +2.1 30.5 196.8 38.7 76.8 上 - 1.7 -2.5 2.1 +3.8 -5.5 -1.6 8.5 123.2 54.7 110.3 12月中 -6.6 -5.4 -1.7 -6.0 -10.6 -4.7 1.0 12.3 66.0 127.2 下 -1.4 +2.6 4.1 +2.5 -6.6 +2.4 24.3 433.9 52.3 88.2 1986年 日					07.0				75.0	05.4	410	770	
下 16.9 + 0.6 22.4 -1.5 12.2 + 0.7 6.0 46.2 53.8 71.9 10月中 13.8 + 0.8 18.8 -1.3 8.9 + 2.2 101.0 731.9 57.3 78.8 13.3 + 2.8 19.6 + 2.5 7.6 + 3.1 0.2 0.7 73.6 106.2 11月中 3.0 -2.2 7.3 -3.8 -1.2 -1.2 14.9 105.7 46.0 86.5 下 4.2 + 1.6 8.8 + 0.8 -0.1 + 2.1 30.5 196.8 38.7 76.8 12月中 -6.6 -5.4 -1.7 -6.0 -10.6 -4.7 1.0 12.3 66.0 127.2 下 -1.4 + 2.6 4.1 + 2.5 -6.6 + 2.4 24.3 433.9 52.3 88.2 1986年 1月中 -4.5 -0.2 2.0 0.8 -9.6 -0.4 0.7 13.0 47.7 80.3 下 -4.2 -0.9 0.8 -1.3 -8.5 -0.4 0 0 77.5 123.0 上 -7.9 -4.0 -1.4 -2.9 -13.7 -4.7 3.0 43.5 74.6 126.0 下 -2.8 -2.2 1.9 -2.7 -7.8 -2.3 0.0 0 69.8 130.0 上 2.0 +0.5 9.1 23 -3.9 -0.6 18.9 109.2 82.8 122.1 3月中 3.8 +0.8 8.4 -0.3 -0.1 +1.8 11.3 106.6 43.7 62.0						l .	,			1 .		ı	
上 15.5 + 0.3 20.9 -0.9 10.6 + 1.5 162.4 1.135.6 50.3 74.5 78.8 7 73.1 73.9 73.6 106.2 101.0 731.9 57.3 78.8 7					,	I .		!				1	
10月中	l '	ļ	10.0	, 0.0	25.4	1.0	12.2	· · · · ·		10.2	0.0.0		ļ
10月中	<u> </u>	:	15.5	+ 0.3	20.9	- 0.9	10.6	+ 1.5	162.4	1,135.6	50,3	74.5	
上 10.1 + 1.3	10月 中	1	13.8		18.8		8.9	1		731.9		.	
11月中 3.0 - 22 7.3 - 38 - 12 - 1.2 14.9 105.7 46.0 86.5 下 4.2 + 1.6 8.8 + 0.8 - 0.1 + 2.1 30.5 196.8 38.7 76.8 上 - 1.7 - 2.5 2.1 + 3.8 - 5.5 - 1.6 8.5 1232 54.7 110.3 12.3 66.0 127.2 66.0 127.2 7	下		13.3	+ 2.8	19.6	+ 2.5	7.6	+ 3.1	0.2	0.7	73.6	106.2	
11月中 3.0 - 22 7.3 - 38 - 12 - 1.2 14.9 105.7 46.0 86.5 下 4.2 + 1.6 8.8 + 0.8 - 0.1 + 2.1 30.5 196.8 38.7 76.8 上 - 1.7 - 2.5 2.1 + 3.8 - 5.5 - 1.6 8.5 1232 54.7 110.3 12.3 66.0 127.2 66.0 127.2 7	.	.	10.7	L 19	15.2	- 02	5.4	_ 1 3 1	20.8	1646	200	64.4	
下 4.2 + 1.6 8.8 + 0.8 - 0.1 + 2.1 30.5 196.8 38.7 76.8 上 - 1.7 - 2.5 2.1 + 3.8 - 5.5 - 1.6 8.5 123.2 54.7 110.3 12.3 66.0 127.2 7 1.0 1.0 12.3 66.0 127.2 1.0 12.3 66.0 127.2 1.0 12.3 66.0 127.2 1.0 12.3 66.0 127.2 1.0 12.3 66.0 127.2 1.0 12.3 66.0 127.2 1.0 12.3 66.0 127.2 1.0 12.3 66.0 127.2 1.0 12.3 66.0 127.2 1.0 12.3 66.0 127.2 1.0 12.3 66.0 127.2 1.0 12.3 66.0 127.2 1.0 12.3 66.0 127.2 1.0 12.3 66.0 127.2 1.0 12.3 66.0 127.2 1.0 12.3 66.0 127.2 1.0 12.3 66.0 127.2 1.0 12.3 66.0 127.2 1.0 12.3 66.0 127.2 1.0 12.3 12.3 1.0 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3							the second of the second of						:
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.					F)		1		
										5 5 35			
下 -1.4 $+2.6$ -1.4 $+2.5$ -6.6 $+2.4$ -1.4						,	,	h			1		
1986 年 上													
$egin{array}{c c c c c c c c c c c c c c c c c c c $			- 1.4	+ 2.6	4.1	+ 2.5	- 6.6	+ 2.4	24.3	433.9	52.3	88.2	
$egin{array}{c c c c c c c c c c c c c c c c c c c $	1986 年	.					 						
1月中 下 -4.5 -4.2 -0.2 -0.9 2.0 08 08 08 08 -13 -9.6 -8.5 -0.4 -0.4 0 0.7 0 13.0 0 0 47.7 70.5 80.3 123.0 上 2月中 下 -7.9 -0.6 -0.6 -0.8 -4.0 4.0 -0.8 -2.2 -13.7 0 -4.8 -2.7 -4.7 -4.8 -4.8 -2.3 3.0 3.0 -4.8 -4.8 -2.3 43.5 55.3 48.0 0 0 0 69.8 74.6 48.0 76.1 130.0 上 3月中 3.8 -2.2 -2.2 1.9 -2.7 -2.7 -7.8 -2.3 -2.3 -2.3 -2.3 -2.3 -2.3 -2.3 -2.3	1	:	- 9.5	- 3.3	- 4.1	- 6.3	-14.7	- 6.5	11.1	258.1	53.6	96.4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1月中							← 0.4			47.7	80.3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	下		4.2	- 0.9	08	- 13		- 0.4	0	0	77.5	123.0	
$egin{array}{c c c c c c c c c c c c c c c c c c c $					4.4	44		1.77		40.5	746	1060	÷
下 - 2.8 - 2.2 1.9 - 2.7 - 7.8 - 2.3 0.0 0 69.8 130.0 上 2.0 + 0.5 9.1 2.3 - 3.9 - 0.6 18.9 109.2 82.8 122.1 3月中 3.8 + 0.8 8.4 - 0.3 - 0.1 + 1.8 11.3 106.6 43.7 62.0	上 9日 H											1	
上 2.0 + 0.5 9.1 2.3 - 3.9 - 0.6 18.9 109.2 82.8 122.1 3月中 3.8 + 0.8 8.4 - 0.3 - 0.1 + 1.8 11.3 106.6 43.7 62.0					the same of the sa						The second secon		
上 2.0 + 0.5 9.1 2.3 - 3.9 - 0.6 1 8.9 109.2 82.8 122.1 3月中 3.8 + 0.8 8.4 - 0.3 - 0.1 + 1.8 1 1.3 106.6 43.7 62.0	· '				2.0	 -	•••					l	
3月中 3.8 + 0.8 8.4 - 0.3 - 0.1 + 1.8 11.3 106,6 43.7 62.0			2.0		9.1		3.9	- 0.6	1 8.9			1221	
6.3 + 1.0 13.9 24 0.5 + 0.8 2.0 11.8 82.8 100.9	3月 中												
	<u> </u>		6.3	+ 1.0	13.9	2.4	0.5	+ 0.8	2.0	11.8	82.8	100.9	

(付表 2) 1982年度水原旬別気象表 (1982.10~1983.3)

(水原農業気象観測所)

					r			 		
年月旬	平均	気温	最高	気温	最低	泉温	降、	水。量	別日	時間
т л ч	本 年	平年差	本 年	平年差	本。年	平年差	本 年	平年差	本 年	平年差
	c	c	c	C	r	r	nn	%	hr	%
1982年	No.					1				
<u> </u>	1 7.2	+ 2.0	5.3	+ 3.5	0.2	+ 1.1	0.1	1	74.3	110
10月 中	160	+ 3.0	2.3	+ 2.2	0.8	+ 4.1	48.8	354	5 2.9	73
下	10.3	- 0.2	7.0	- 0.1	3.8	- 0.7	7.8	29	799	115
上	1 0.8	+ 2.0	7.2	+ 1.8	5.5	+ 2.4	24.8	137	5 2.2	86
11月 中	7.4	+ 2.2	2.7	+ 1.6	2.6	+ 2.6	3 7.0	262	4 8.1	90
	2.6	0	8.0	- 0.1	- 2.2	0	8.88	573	501	99
										*+
l l	0.0	- 0.8	5.2	- 0.7	4.1	- 0.2	28.3	410	47.0	95
12月 中	- 3.1	- 2.0	1.7	- 2.6	- 7.5	- 1.6	1 1.0	136	5 3.1	102
下	0.2	+ 4.2	4.9	+ 3.3	+ 3.9	+ 5.1	1 3.5	241	60.9	103
,	ر م.ب	1	1.0	3.0			2 0.0		0 0.0	
1983 年							113			
1	- 3.0	+ 0.3	2.8	1 + 0.6	- 7.3	+ 0.9	0.9	20	5 8.5	105
上 上 月 中	- 3.0 - 4.2	+ 0.3	1.0	- 0.2	- 8.9	+ 0.3	0.5	7	53.1	89
		1 -	4.2	1	1	+ 1.4	8.1	54	55.9	89
下	- 1.9	+ 1.4	4.2	+ 2.1	- 6.7	T 14	0.1	3.4	5 5.9	69
		0.0	2.0	+ 1.7	- 5.2	+ 3.8	100		900	
上	- 1.1	+ 2.8	3.2				1 0.0	145	388	66
2月 中	- 5.3	- 3.9	- 1.1	- 5.1	- 9.3	3.1	4.4	29	648	103
下	- 2.1	- 1.5	4.9	+ 0.3	7.5	- 2.0	0	0	70.0	117
_ 上	2.3	+ 0.7	6.9	+ 0.1	- 1.9	+ 1.4	37.3	216	598	88
3月 中	4.0	+ 1.0	10.3	+ 1.6	- 1.5	+ 0.4	146	138	64.7	92
下	8.8	+ .3.5	1 5.7	+ 4.2	+ 2.5	+ 2.8	1 5.2	89	8 6.9	106
		L					<u>.</u>		نــــــا	

第2章 四半期別業務状況

1 第1四半期(昭和60年4月~6月)分

1. プロジェクト概況

1) 一般概况

前期中(3.14) に開催された合同委員会で決定された事業計画に基づき、本年度の 夏作関連試験研究が参加各場所で一斉に開始された。ただし、日本人専門家の派遣は今 期中には実現しなかった。韓国人研修生は1人が出発した。

- 2) 日本人専門家の派遣・帰国等
 - ① 短期専門家着任:なし
 - ② 同, 帰国

4月13日 鴨田福也(果樹気象)3月1日から在韓

- 3) 韓国側研修員の派遣・帰国等
 - ① 派遣

全羅南道農村振興院所属農業研究士 車光弘 は中国農試において植物病理の研修の ため 6 月18日出発

- ② 帰国:なし
- 4) 供与及び携行機材の引取り状況

該当なし

5) 資料受領

受領月日	資	料	名		送付者
4. 8	農林水産省広報ほか	8 点			JICA
4. 25	国際協力 85.4				"
5. 6	国際開発ジャーナル	2 部			#
5. 22	国際協力 85.5			·	. ,,
5. 28	国際開発 ジャーナル	2 部	•		#
6. 11	国際協力 85.6				//

- 6) カウンターパート配置の異動:なし
- 2. 日本人専門家の活動状況

短期専門家 鴨田福也 については帰国時報告書(既送付),長期専門家 谷信輝 について今期技術情勢報告書(別添)を、それぞれ参照。なお今期における各専門家の出張は下記の通り。

専門家	出張期間	出 張 先	用務
鴨田	4. 1~ 6	園試羅州・釜山両支場	樹園地気象調査及び現地視察
谷	4. 18~ 20	済州試及び済州道院	気象観測指導
//	4. 30~5. 1	湖試及び界火島出張所	//
// //	5, 30~ 31	農研利川試験地	水田微気象観測
森谷	6. 19~ 20	園試釜山支場, 南海出張所, 湖試	研究打合せ及び視察

3. 韓国側の協力体制

特記すべき変化なし

4. 機資材の状況

年度末現在, 利用管理状況(故障状況)で報告した以外の特記事項なし

- 5. その他の特記事項
 - 1) 昨年9月に実施した日韓農業研究協力事業10周年記念シンポジウム記録及び両国関係 者の思い出等を集めた日韓農業研究交流の十年の印刷が5月始めにできあがり、両国の 関係方面に発送した。
 - 2) 駐韓日本大使館付農務官の交替があり,前任の川上博志氏は農蚕園芸局に復帰して 5 月18日帰国,後任の新庄忠夫氏は水産庁からで 5 月13日着任した。
 - 3) 田植は順調に進捗し、6月末現在極く一部の裏作跡晩植田を残すのみ、水稲状況も順調である。畑作物・野菜等の生育も一般に良好のようである。6月末、梅雨前線が北上し、この国も雨期に入ったが、その当初から南部に豪雨があり、局地的被害が出た模様。

2 第2四半期(昭和60年7月~9月)分

- 1. プロジェクト概況
 - 1) 一般概况

今期は夏作物の主要生育期間であり、本年度派遣予定専門家の大部分が来韓し、それ ぞれの配属場所において共同研究の担当・指導・助言を実施した。

R/Dの取り決めに従い、本プロジェクト開始以来3年間の中間評価のため合同委員会(第5次)が9月19日開催され、これにJICAを代表して出席するための巡回指導調査団が派遣された。調査団は北海道農試作物第一部稲第3研究室長 佐竹徹夫 を団長とする3名で、9月13~21日の間滞在した。

中間評価は、3年間の実施・進捗状況に関する全般的検討を行った結果、実施計画に 沿って概ね順調に進捗し満足すべき成果をあげつつあることを認め、実施計画表の細部 的修正や多少の改善点はあるものの、残余期間について基本的には見直すべきことなく、 当初実施計画に従って遂行することで合意した。

2) 日本人専門家の派遣・帰国等

① 派遣(短期専門家着任)

着任月日	専門家氏名	所 属(日本国内)	専門分野	配属先
7. 2	工 藤 哲 夫	青森農試藤坂支場(指)	水稲育種	作試
7. 5	橋本鋼二	東北農試(刈和野)	大豆育種栽培	"
//	吉 野 嶺 一	北陸農試	植物病理	農 技 研
7. 17	西山岩男	農研センター(鴻巣)	作物生理	. //
8, 16	古賀野 完 爾	北海道農試	土壤肥料	#
9, 26	村 上 利 男	#	水稲栽培	湖南作試

② 帰国

8.	16	西	Щ	岩	男	(作物生理	7.	17	より1カ月)
8. ,	31	工	藤	哲	夫	(水稲育種	7.	2	より2カ月)
9.	3.	橋	本	鋼	=	(大豆育種栽培	7.	5	より2カ月)
9.	4	吉	野	嶺	_	(植物病理	7.	5	より2カ月)

3) 韓国側研修員の派遣帰国等

① 派遣

作物試験場水稲栽培科所属,農業研究士 具然忠 は東北農試において水稲栽培の研修を受けるため9月25日出発した。

② 帰国

昨年9月5日出発, 野菜試において野菜栽培の研修中であった慶北道院所属, 農業研究士 呉仲烈 は9月4日帰国した。

4) 供与機材及び携行機材の引取り状況

供与機材なし、派遣専門家の携行機材下表の通り。

専門家	機材名	引取日	引取地	備考
.工 藤	葉 緑 素 計 1台	7. 2	金浦	本人携行
橋本	光電照度計 1台	7. 8	"	"
吉 野	消耗機材・消耗品等15種, 図書2冊	1.17	<i>"</i>	ÿ+ i r
西山	ロータリエポポレータ,超音波洗滌器,図書	7. 19	11	橋本, 吉野携行 機材の一部含む
古賀野	pHメータ,電極,リード線,アダプター,N ¹⁵ 硫安	8. 19	"	本人携行
村上	pHメータ,記録計,計算機,試薬等	9, 28		#

5) 資料受料

受領月日	資 料 名	送付者
7. 12	国際協力 85/6 1冊	JICA
13	Look Japan No. 349~352 各2部	: " "
23	国際開発ジャーナル 85/7 Expert 85/7 各1冊	"
8. 5	機械標準仕様集・機械ガイドブック 各 1	"
7	Look Japan No. 353 2部	
20	昭 59. 農林水産協力プロジエクト技術者連絡会議報告書 1部	"
23	国際協力 85/8 1部	"
9. 5	韓国農業気象災害研究計画巡回指導調查団報告書 10部	"
9	Look Japan No. 354 ヤマト科学カタログ 各2部	n

6) カウンターパート配置の異動

今期着任の短期専門家に対するカウンターパート下表の通り。A-1 Form 記載者と多少の違いがあるかも知れぬが、言語の関係等から実質的な、そして代表的なカウンターパートを記載した。

専門家	配 属 先	カウンターパート官職氏名
工藤	作 試	水稲育種科 研究士 崔 海 椿
橋本	1	田作一科長 研究官 洪 殷 憙
吉 野	農 技 研	病 理 科 研究士 金 章 圭
西山	<i>j</i>	生理遺伝科 研究官 許 一 鳳
古賀野	"	土壤化学科 研究士 安 培
村上	湖南作試	水 長 研究官 金 鐘 昊

2. 日本人専門家の活動状況

短期専門家はそれぞれの配属先において計画に基づく試験研究の共同推進・指導助言の ほか、セミナー等を通じて研究及び技術の情報提供を行った。帰国専門家については帰国 時報告書(既提出)、長期専門家谷については、今期技術情勢報告書(別添)参照

なお、今期における各専門家の出張は下記の通り。

出張月日	専門家	山 張 先	用。游游
7. 10	吉 野	京畿道利川郡	いもち病現地調査
7. 13~16	"	湖南・嶺南地方一帯	水稲主要病害発生調査
7. 18	'n	京畿道利川郡	いもち病発病調査及び標本採取
7. 20~22	工藤	作試・珍富出張所、連谷試験地	水稲生態反応現地試験視察
7. 25~27	橋本	江原道院及び珍富出張所	北部地方大豆生育及び系統選抜圃視察
7. 26~30	谷	京畿道楊平郡農村指導所	局地気象調査
8. 1~ 3	西山	湖試・嶺試	現場視察及びセミナー実施
8. 8~10	橋 本	嶺試及び慶北道院	大豆試験圃場視察
8. 9~10	工 藤	作試・春川出張所	水稲耐冷傷性調査
"	西山	江原道院及び珍富出張所	水稲耐冷性試験圃場視察
8. 12~14	吉 野	春川・珍富及び江原道現地圃場	早生水稲の穂首いもち発生状況調査
8. 14~18	工藤	湖試・同雲峰出張所・嶺試	水稲育種圃場視察
8. 26~28	吉 野	湖試・嶺試	南部地方穂首いもち発生状況視察
8. 29~31	橋本	作試・木浦支場,全南道院	全南地方大豆試験圃場試察
9. 2~ 4	古賀野	湖試及び忠北・全北道院	有機物連用試験圃場視察・資料採取
9. 23~25	"	嶺試及び慶北道院	試験圃場視察及び試料採取
9. 30~10.1	森本	湖試	村上専門家赴任及び研究打合せ

3. 韓国側の協力体制

特に変化なし

4. 機資材の状況

故障中の機器(年度末現在の状況報告書)のことが中間評価の際問題となり、韓国側の 責任において修理するが、韓国内で入手困難な部品等の供給、特殊技術者の派遣等が必要 な場合は日本側に要請することになった。

5. その他の特記事項

- ① 1983 年度の研修生,農技研病理科所属,農業研究士 金章圭 は研修期間中に学位請求論文を東京農大に提出中であったところ,此度審査を通り学位記等が外務省を通じて駐韓日本大使館に送付越され,9月9日御巫大使から本人に伝達された。この際,森谷と李銀鐘病理科長とが立会した。
- ② 本年度の水稲, 畑夏作物, 野菜, 果樹等概ね豊作型の順調な生育経過をたどっていたが, 9月上中旬に著しい寡照多雨であったこと, 8月中に続けざまに台風3個(8号: 8月10日黄海から南部地方横断, 9号:8月14日黄海通過, 13号:8月31日東海岸に豪

雨)来襲という珍事もあり、豊作基調は不変としても、収穫予想は多少下方修正される 見込み。

3 第3四半期(昭和60年10月~12月)分

1. プロジェクト概況

1) 一般概况

本年度水稲収穫量最終予想は約589万トン、平年比108.4 多と発表されたが、夏作一般に前年に引続き豊作であった。本プロジェクト関係夏作試験研究も順調に遂行された 模様である。

本年度派遣予定の日本人専門家 8 名は、今期まですべてその任務を終了して帰国した。 韓国研究者の研修受入れは2 名が次期にもち越された。本年度の供給機材は、この国の 年度末である今期までの供与は実現しなかった。

2) 日本人専門家の派遣・帰国等

① 派遣(短期専門家着任)

着任月日	専門家氏名	所 属(日本国内)	専門分野	配属先
10. 15	千 葉 和 彦	北海道農試	果樹栽培	園 試
11. 1	林陽生	環境技研	気象物理	農 技 研

② 帰国

10. 15	古賀野 完 爾	(土壌肥料 8.15より2カ月)
10. 25	村上利男	(水稲栽培 9.26より1カ月)
11. 25	千 葉 和 彦	(上記)
12. 14	林 陽生	(上記)

なお, 団長 森谷陸夫 は11.3~11.18 一時帰国(私費)

3) 韓国側研修員の派遣・帰国等

① 派遣

農技研所属,農業研究士 李定沢 は九州農試において農業気象の研修を受けるため 10月1日出発した。予定期間1年。

② 帰国

東北農試(大曲)で植物病理の研修中であった忠南道院所属,農業研究士 印茂成 は10月15日に,九州農試で土壌肥料の研修中であった農技研所属,農業研究官金元出 は11月19日に,北陸農試で農業気象の研修中であった農技研所属,農業研究士 崔燉香 は12月27日に,それぞれ1年の研修を終えて帰国した。

③ 視察団派遣

本プロジェクト年度計画の一環であるが研修員等受入れの枠外(旅費韓国負担)の 視察団として、農技研・土壌化学科長・農業研究官・朴俊奎が派遣され、11月6~19 日の間、土壌肥料研究、特に塩類集積の問題について、日本の関係機関(農研センタ ー、環境研・野菜試・中国農試等)を訪問視察し、情報・意見の交換を行うなど、所 期の目的を達成したようである。

4) 供与機材・携行機材の引取状況

本年度供与機材は、年末ぎりぎりにBLが到着、12月半ばに横浜港で船積みされた模様であるが、この国の年度末までの引取り・受預という形にはならなかった。

(A-4 Formは4月始めに発出(農振庁)されている。

今期来韓の短期専門家の携行機材は下記の通り。(*印 前期村上携行の交換品)

専門家	機 材 名	引取月日	引取地 備 考
千 葉	薄層クロマト装置・土壌水分計・熱流計等 6 種	10.17	金 浦 本人携行
林 管型日射計・風向風速計・高感度記録計*)		11. 4	

5) 資料受領

6) カウンターパート配置の異動

今期着任の短期専門家に対するカウンターパートの配置下記の通り。

(資料受領)

受領月日	資 料 名	送付者
10. 4	本プロジェクト昭和 59 年度 (第3年次)報告書 10部	JICA
10.21	EXPERT 85/9 国際開発ジャーナル 85/10	"
10. 23	技術会議だより等 4種 17部	"
10.28	JARQ 85/5 農林水産省公報 85/3~7月 等8種 25部	"
11. 5	国際開発ジャーナル 85/11 Look Japan No.355~6	. #
11. 19	国際協力 85/11	"
11.25	農業及園芸 85/4~9月, 国際農林業協力 No.2 第 9 種 14 部	. "//
12. 2	本プロジェクト巡回指導調産団(中間エバ)報告書 10部	"
12. 10	国際協力 85/12 EXPERT 85/11 等4種 6部	"

(カウンターパート配置)

専門家	配属先	カウンターパート官職氏名
千 葉	園 試	果 樹 一 科 農業研究官 金 基 烈
林	農 技 研	生理遺伝科 農業研究官 鄭 英 祥

2. 日本人専門家の活動状況

短期専門家はそれぞれの配属先において計画に基づく試験研究の共同推進・指導助言の ほか、セミナー等を通じて研究及び技術の情報提供を行った。詳細は既送付の帰国時報告 書参照。長期専門家については今期技術情勢報告書を別添する。

なお、今期各専門家の出張は下記の通り。

	出張月日	専門家	出 張 先) 用 游
	10. 17~18	村上	嶺 南 作 試	試験研究視察及びセミナー実施
.	10. 24~25	千 葉	慶 尚 北 道	リンゴわい化栽培現況視察
١	10. 22~26	谷	楊平地区	局地気象観測
İ	11. 27~12.1	谷・林	湖試・釜山大学・嶺試	気象調査及び研究討議
	12. 8~15	谷	タイ国バンコク市	技術者連絡会議(JICA主催)

3. 韓国側の協力体制

特に変化なし

4. 機資材の状況

特記すべきその後の異常は承知していない。

5. その他の特記事項

- 1) 第18次日韓農林水産技術協力委員会がソウルで開催されたが、日本側代表芦沢技術総 括審議官等一行全員が10月23日農村振興庁訪問,作試・農技研・園試等の研究機関を視 察した。
- 2) 農村振興庁の招聘で、生物資源研究所 鳥山国士所長が 12月10~14日の間来韓し、「農業におけるバイオテクノロジーの利用」と題する講演を行ったほか、関係研究機関を訪問、視察した。

また、同庁・農業経営官(この国の農業経営研究は試験場所に分属せず、本庁のこの 官職 ― 局長待遇 ― の下で行われている)の招聘により、農業研究センター経営管理 部 松原茂昌室長が 11月25日~12月24日の1カ月間滞在し、農業経営関係では始めての 日本人専門家として研究の指導・助言を行った。農業経営官室では次年度以降も継続す る意向で、予算の手当もしている模様である。

3) G-G Base 枠で、農村振興庁(傘下試験研究機関)から派遣、日本でバイオテクノロジー関係の研修を受ける研究者 4 名が12月20日出発した。研修期間 3 ~ 6 カ月の予定。

4. 第4四半期(61年1月~3月)分

1. プロジェクト概況

1) 一般概況

今期の試験研究事業は冬期実施の一部(冬期局地気象調査,果樹寒凍害研究等)が行われただけである。

日本人短期専門家は不在,韓国研究員の研修は一名派遣,一名帰国した。本年度供与 機材は今期初頭に引取った。

第6次合同委員会が3月25日開催されたが、JICA代表の出席は実現せず、日本側は在韓中の長期専門家だけで対応した。本委員会は'86及び'87(最終)年度の事業計画('87年度試験研究実施計画を除く)を審議・決定した。これは最終年度が9月迄であるため、特に同年度の専門家派遣、研修員受入れ、機資材供与等を急ぐ必要があり、日本への要請書(A1~4 フォーム)は両年度分をまとめて可及的速かに発出して貰うためである。

2) 日本人専門家の派遣・帰国等

短期専門家については該当なし。なお、団長 森谷睦夫 は日本で開催された本年度チームリーター会議出席のため、2月24日帰国、3月4日帰任した。

3) 韓国側研修員の派遣・帰国等

① 派遣

園芸試験場果樹一科所属,農業研究官 金夢燮 は果樹試験場(主として盛岡支場)で果樹栽培の研修(一年間)を受けるため1月6日出発した。

なお,本年度枠5名のうち,水稲育種の研修員については、受入機関の都合から年 度内の受入れは実現せず、ために本年度実績は4名となり、この1名については次年 度枠に追加し、4月1日受入れが予定されている。

② 帰国

作物試験場田作一科所属,農業研究官 金爽東 は,昨年2月20日以来,農業生物資源研究所において大豆(特に窒素固定)に関する研修中であったが2月19日に帰国した。

4) 供与機材・携行機材の引取り状況

本年度供与機材は昨年12月14日横浜で船積み,12月23日仁川に入港していたようであるが、引取りは1月8日になった。低温恒温槽その他実験機器及び気象観測機器等 8 sets,57nos,318pcs,14rolls価格¥49,200,000(CIF 49,777,785円),外装・内容共に異常なく受領した。

携行機材なし

5) 資料受領

受領月日	資 料 名	送付者
1. 4	農水省広報 85 / 9~11 月,農業及園芸 85 / 10~13 月 海外農業開発 85 / 4~9 月等	JIOA
1. 17	国際開発ジャーナル 86/1 月 2 部	"
1. 24	国際協力 86/1月 1部	<i>II</i> -
1. 30	技術会議だより No.61	"
2. 3	Look Japan No.359 2部	"
2. 11	国際開発シャーナル 86/2 月、国際協力 86/2 月 各 1 部	"
2. 13	農水省広報85/8.12月,農業技術85/4~9月,農業及園芸86/1月等	u
2. 17	技術会議だより No.62,63	
3. 5	機材標準仕様集,機材ガイドブック、日本語研修テキスト,カセットテープ 等	"
3. 11	EXPERT 86/2月, 国際協力 86/3月	"
3. 13	国際ジャーナル No.347,348,353 各2部	· //
3. 17	農業技術 85/10~86/3, 農業及園芸 86/2月 等	#

6) カウンターパート配置の異動

該当なし

2. 日本人専門家の活動状況

長期専門家 谷 については今期技術情勢報告(別添)参照。なお、今期専門家の出張は 下記の通り。

出張月日	専門家	出 張 先	用務
1. 10~11	谷	湖南作試	気象調査及び観測装置取扱指導
1. 17~21	谷	京畿道楊平郡農村指導所	局地気象観測
3. 7~ 8	谷	農技研・利川試験地	気象調査及び観測装置取扱指導

3. 韓国側の協力体制

特に変化はないが、関連する主要人事として、湖南作物試験場長 裵聖浩氏 は 3 月12日 停年退職、後任には I R R I 駐在員であった趙正翼氏が 3 月19日付発令、済州試験場長に 鄭順圭氏(国立種畜院長)が 3 月27日付発令。前場長の金容培氏は忠清北道農村振興院長 に転出した。また、湖試水稲科長金鐘昊氏は 3 月27日付,作試水稲栽培科付(IRRI駐 在員として派遣予定)に、その後任に作試水稲育種科 農業研究官 林茂相氏が同日付で 発令された。

4. 機資材の状況

主要機資材について年度末現在の利用・管理状況を韓国側に依頼して調査して貰っている。全国の参加・協力機関に分散・配置されているので調査に時間を要するが、まとまり 次第別途報告する予定。

5. その他の特記事項 特になし

第3章 専門家技術状況報告

1 長期専門家年間報告

報告 者谷 信輝

専門分野 農業気象

派 遣 期 間 昭和58年4月16日~昭和61年10月15日

報告期間 昭和60年4月1日~昭和61年3月31日

1. 経過 概要

前年度に引続き農業技術研究所に駐在し、1985年度研究計画に基づき、韓国側と共同研究を行った。また適時他場所に出張し、関連事項について指導助言した。

JICA主催技術者連絡会議に出席のため、昭和60年12月8~15日タイ国バンコック市へ海外出張をした。

当初派遣期間は、昭和 60 年 10 月 15 日までであったが、 60 年 8 月 19 日付で 61 年 10 月 15 日までに延長となった。

この期間中農業技術研究所におけるカウンターパート, 共同研究者等に異動はなかった。

2. 共同研究実施

(1) 特異局地気象調査研究

京畿道楊平邑は、南漢江沿いの盆地の中央にあり、ここで観測された-32.6 ℃ (1981. 1.5)は韓国の最低極値1位となっており、特異局地気象現象として注目されている所である。

農技研農業気象研究室はここの局地気象観測を 5, 7, 10, 1 月各 4~5 日の日程で実施した。これらの観測に当り、測器、観測法等に助言し、また観測に協力した。

今年度は気温の標高別分布の観測に重点が置かれ、楊平市街地を通るほぼ南北線上に 観測点を設け、最高最低気温の観測を行った。また北側斜面中腹に観測基地を設け、風 向風速、日射等の観測を行った。

日最低気温の分布をみると、盆地中心の最低地点より 150~200 m 高い斜面の中腹部 に最低気温の高い場所が見出された。この地帯の果樹は凍害被害の少ないことが知られており、サーマルベルトの存在が認められた。

斜面中腹観測基地においては、昼間の風は斜面を昇る方向、夜間は降る方向を示した。 風速は一般に弱く1~2 m/s以下であった。盆地内の風速が非常に弱いことが放射冷却 を助け最低気温を低下させると考えられた。 今後の問題として、盆地内の気温の水平分布の調査が必要である。

(2) 耕地微気象の特性解明

水田と畑とにおいて徴気象観測を実施したが、これらの観測に助言指導を行った。 この うちトウモロコン群落で行った太陽放射スペクトル観測のデータを整理し、太陽高度別、天気別の散乱光、反射光、透過光の特性を求めた。

結果として特に目新しい事実は見出されなかったが、これらの観測を通し、手法の習 熟が得られ、次年度の計画に反映された。結果をまとめて、共同研究者と共著で韓国作 物学会に発表した。

今後観測を継続して、太陽光に関するデータの集積をはかることが望まれる。またこの種光学測定機械の検定方法を確立する必要がある。

(3) 気候要因によるイモチ病発生予察法

日本東北農試における成果に基づき韓国内に適用される方法を求めようと、病理科と共同して研究を行っている。日本の文献を参考にして、パソコンプログラムを作製したが水稲品種生育の違い、また気象情報入手法の違いがあり、その儘韓国に適合すると思われない。しかしこの方法で得られた発生要注意時期の長短と韓国内イモチ病発生消長とある程度の相関が見られ、このままでも驚戒を要する時期の予測に一応役立つものと思われる。今後さらにデータの集積につとめ、この国に適合する発生予察式にすることが望まれる。

3. 調査研究事項

耕地熱収支計算には、土壌の熱伝導率が必要であるが、その実測例は多くなく、韓国土 壌化ついては殆どない。

日本農環技研粕渕氏により開発された測定法により、測定を実施しようと準備を進めた。 出来るだけ現在ある機械を応用することを考え、テストを重ねている。

現在恒温槽の試作を終了,所期の性能が得られるまでに達した。しかし土壌の温度変化の測定には高感度の温度計が必要であるが,現有機械では十分な感度が得られないことが 判った。この為温度計を高感度にする方法について、検討を進めている。

4. 研究用機械の使用状況

供与された多くの機械は、大体において適正に使用され、それらより得たデータはそれ ぞれ有効に活用されているように思う。

しかし一部の機械は、その使用に当たり基礎的知識の不足、経験の不足から十分に性能 を発揮していない場合も見られる。これらも今後の研究速度、関連知識、経験の蓄積によ り改善されてゆくことを期待している。

時々機械の故障発生の報があり、それぞれ対応はしているが、故障の原因と考えられる ことに、自然消耗、天災、人為等が挙げられる。

- ① 自然消耗は避けられず、耐用年数が来れば更新する他はないが、日常の維持管理により寿命を延ばすことは可能である。この励行を要望しているが、結局は使用担当者の熱意の問題である。
- ② 天災的な原因として、雷撃がある。最近の電子機器は雷撃に弱く故障となる。これも 予防方法が困難で、故障になった時の修理対策を整備することが必要となる。天災とは 言えないかも知れないが、日本国内仕様のものが、韓国の条件に合わず故障となる場合 がある。特に停電の回数と時間の多いこと、電圧変動の大きいことでコンピュータ類が 不調となる。仕様書に韓国の条件を明らかにして、メーカに対策を十分講じて貰うこと、 一方使用する側でも機械の性能を熟知して使うことも必要である。
- ③ 人為的とは専ら使用者の不注意によるもので、誤接続、過負荷、バッテリー過充電、 過放電等がある。これには使用者の一層の点検、注意を喚起しているが、使用者の試行 錯誤の反覆で自ら体験で憶えて行く他はないだろう。現在はその段階にあると認識して いる。

5. 昭和60年度主要日程

昭和60年

4月18~20日 済州試験場, 済州道試験局訪問

4月30日~5月1日 湖南作試,界火島出張所

5月4日 韓国気象学会(ソール, 気象研究所)

5月30~31日 農技研利川試験地

7月26~30日 楊平局地気象観測

8月9日 農技研中間評価会

8月10日 韓国農工学会(ソール農大)

9月13~21日 プロジェクト中間評価会

10月19日 韓国作物学会(ソール農大)

10月22~26日 楊平局地気象観測

11月13日 梨花大,中央気象台訪問

11月27日~12月1日 湖南作試, 釜山大学, 園試釜山支場, 嶺南作試

12月8~15日 タイ国バンコック市技術者連絡会議

昭和61年

1月9日

昭和60年度機材検収

1月10~11日

湖南作試

1月17~21日

楊平局地気象観測

3月7~8日

農技研利川試験地

3月25日

日韓合同委員会

[[. 四半期別技術情況報告

1. 第1四半期(昭和60年4月1日~6月30日)

(1) 出 張

4月18~20日: 済州試験場,済州道試験局 気象観測機械の設置状況調査ならびに取扱い指導,済州道農業事情視察。試験局金有 燮研究官同行。

- ・4月30日~5月1日:湖南作試本場および界火島出張所 気象観測装置取扱い指導。農技研姜安錫研究士同行。
- ・5月30~31日:農技研利川試験地 気象観測装置取扱い指導,水田微気象観測測器設置。農技研李定沢研究士同行。

(2) 機 械 関係

昭和59年に供与された測定器類の取扱いに習熟し、取扱い上の注意点の発見に努め、 これら機器類の使用に当り、取扱い要領の指導を行った。

測器類の整備に伴い、微気象観測も本格化し、水田(李定沢担当)、畑(李亮秀担当) において、観測が開始された。これらの観測実施に当り、測器の試作、配置等に助言を 与え、観測が順調に進む様指導した。

農技研劇場における微気象観測用電源の強化をはかったり、観測塔、通風乾湿計、露 検知器等を、国内で容易に入手出来る材料を用いて試作し、観測、実験が出来る実例を 示した。韓国研究者もこれにならいほぼ使用可能なものを自作することが出来るように なった。

パソコンの使用にはかなり習熟して来たが、まだプログラムを自分で作ることは苦手 らしく、プログラムの作成を依頼されることがあった。今期には東北農試で開発された イモチ発生予察プログラムの翻案、水稲移植後に発生した低温による冷却量計算プログ ラム等を作成した。

(3) 学 会

・5月4日:韓国気象学会(中央気象台,気象研究所)

特別講演として日本気象庁北手武夫氏の「数値予報の現状」,韓国農技研鄭英祥氏の

「農業への気象資料の利用」があり、学術研究発表もあった。

- 2. 第2四半期(昭和60年7月1日~9月30日)
 - (1) 出 張
 - ・7月26~30日:京畿道楊平邑における局地気象観測

盆地中央にある楊平市街地を中心として南北両斜面に10余箇所の簡易観測点を配置 し、最高最低気温、積算日射量等を観測した。また北側斜面中腹にある栗園内に基地 を設け、同地で風向、風速、日射量の観測を行った。農技研鄭英祥研究官、李定沢、 李亮秀、姜安錫研究士同行。

- (2) 会議学会等
 - A. 8月9日, 農技研生理遺伝科の中間評価会を傍聴した。
 - B. 8月10日、ソール大農科大で韓国農工学会、日本法政大学大嶋教授のリモートセンシングに関する講演を聴講した。
 - C. 9月14~19日,本プロジェクトの中間評価会,協議会,合同委員会が開催され,委員として出席した。
- (3) 調査研究事項

7~8月の間、トウモロコン畑(李亮秀担当、)、水田(李定沢担当)における徴気象 観測に適時助言を与えるとともに、一部の観測に協力した。前者の観測の実施中多点記 録計に故障を生じ、当初の計画を縮小せざるを得なくなった。しかしこの間随時行った 太陽放射スペクトル観測は、支障なく進められ、多くのデータが得られ、低低目的を達 した。

このスペクトル観測データの解析結果,成果が得られたので、学会発表する様とりま とめの指導を行った。

また9月の中間評価会に備え、機械故障状況の調査およびその処置の原案を作成した。 3. 第3四半期(昭和60年10月1日~12月31日)

- (1) 出 張
 - ・10月22~26日:京畿道楊平邑における局地気象観測 前回(7月26~30日)同様観測を実施した。農技研鄭英祥研究官ほか同行。
 - ・11月13日:ソール市梨花女子大,中央気象台 梨花女子大金玉蓮教授,中央気象台金光植局長を訪問,それぞれの専門について意見 交換した。林専門家,鄭研究官同行。
 - ・11月27日~12月1日 :湖南作試、釜山大学、園試釜山支場、嶺南作試 湖南作試において、同場設置の農業気象観測装置のコンピューター電源部焼損発見した。 釜山大学において黄教授の通訳で、地学専攻学生を対象に気象災害に関する講演を行

った。

園試釜山支場, 嶺南作試をそれぞれ視察し研究状況について説明をうけた。林専門家, 李明珍通訳官同行。

・12月8~15日:タイ国バンコック市海外出張 JICA主催昭和60年度専門技術者連絡会議に出席、本プロジェクトの概要、成果、 問題点等の説明を行い、他プロジェクト専門家と意見交換した。

(2) 学 会

・10月19日:韓国作物学会(ソール農大) 李亮秀, 鄭英祥と共著で「トウモロコシ群落内における太陽光スペクトル観測」を発表した。

- (3) 調查研究事項
 - A. 農技研,湖南作試に設置した農業気象観測装置のコンピューター電源部が故障した。何れも長時間停電後に復電した時に発生した模様で、配電事情の悪い当国には不適切な設計であったと考えられる。メーカーである飯尾電機にその改善策の問合せを行った。農技研のコンピューター本体にも故障が生じているのでその対応策の検討も依頼した。
 - B. 農技研および作物試に配置した Li Cor 社製携帯型スペクトロメーターの電源電池 に故障が生じた。取敢えずの応急策で復旧することが出来たが、今後のため予備品を 整備する必要がある。
 - C. 土壌の熱伝導率を測定する準備を進めているが、装置の調整に手間どり、まだ実験 を開始するに至っていない。
- 4. 第4四半期(昭和61年1月1日~3月31日)
 - - · 1月10~11日:湖南作試
 - 同場設置の農業気象観測装置のコンピューター電源部を交換し、再設置した。試験した所誤動作があることが判り、プログラムの一部を手直し、ほぼ正常に復した。
 - ・1月17~21日:京畿道楊平邑,局地気象観測 前回同様の観測点配置の他,水源測候所楊平分室付近の漢江沿岸に測点を設け,風速, 気温高度分布,日射量,純放射量等の観測を行った。冬季としてはやや暖かく経過し たが目的を達した。農技研鄭英祥研究官,崔燉香,李亮秀,郭永植研究士同行。
 - ・3月7~8日:農技研利川試験地

同所設置の農業気象観測装置の記録計不具合は切替スイッチのカバー止めビスの緩み と判明した。また蒸発計発信器のフロートが破損していたので取外し持帰り修理する こととした。農技研崔 燉香研究士同行。

(2) 会 議

3月25日, 第7次日韓合同委員会に日本側委員として出席, 1986, 87年度計画を審議した。

(3) 機 槭 関 係

1月9日,昭和60年度供与機械の検収に立会った。外観,員数とも異常のないことを認めた。

1月13日,従前機械の国内場所配分に不適切な例が認められたので、 今回は振興庁研究管理課と協力して、本体、付属品、取扱い説明書等を揃えることに特に注意を払った。

1月28日,日本盟和商事斉藤和興氏が来訪したので、農技研、作試においてスパポロメーターの点検サービスを受けた。

2月25日~3月26日、韓国側より要請のあった86,87年度供与希望機械について 調査を行い、詳細仕様書を作成した。3月25日、合同委員会において機械リストが決 定され、仕様書はJICAに送付された。

(4) 調 査 研 究

1~2月の間土壌熱伝導率測定装置の試作を行った。1月中に恒温槽用温度調節器のテストと改造を繰返えし、2月中ばにほぼ目的とする精度が得られる様になった。測定用プローブは試作が終ったが、記録計の感度が不足であった。この改善が必要である。

今夏微気象観測に使用する通風乾湿計の設計、製作の指導を行った。

別途整備されたヒートバランスンステムのテスト、調整に当たり助言と指導を行った。

報告者 青森県農業試験場藤坂支場 工 藤 哲 夫

派遣先 農村振興庁作物試験場水稲育種科

業 務 冷害地帯適応性水稲品種の生態的反応に関する研究

期 間 1985年7月2日~8月31日(60日間)

1 緒 言

1985年7月2日から同年8月31日までの60日間、日韓農業共同研究団の短期専門家 (水稲育種)の一員として大韓民国水原市農村振興庁内作物試験場(水稲育種科)に滞在し, 気象災害の対応技術確立に関する研究の課題の中の冷害地帯適応性水稲品種の生態的反応に 関する研究について、趙水稲育種科長と崔同研究室研究士と共同で従事した。この研究の目 的は大韓民国における冷害発生危険地帯に安定した稲作を推進することと,南部平野地帯で の所得作目前後作栽培時の水稲の安定確収をはかるために、それらの地帯に好適する品種の 生理・生態的特性を主に収量性とそれを構成する主要形質との関係を究明しようとするもの である。後述する調査項目に示すように、収量構成要素を主体に作物試験場、同場鉄原出張 所、同場珍富出張所、連谷試験地(以下水原、鉄原、珍富、連谷と略称で記載)における試 験結果から結論を導きだすものである。私の滯在期間は7月2日から8月31日までのため, 試験途中から参加し,試験なかばで帰国する事になるので,移植期以後出穂期までの極く限 られた期間に調査可能な項目についての結果を推論するにとどまる。短かい限られた稲作期 間における考察となるので誤った所見を述べる危険もあるが,最後のとりまとめに際し,役 立つ事が出来れば幸甚である。研究推進に際し、作物試験場春川出張所、同場鉄原出張所、 同場珍富出張所,江原道連谷試験地,湖南作物試験場,同場雲峰出張所,嶺南作物試験場, 同場尚州出張所並びに各地の稲作を視察する機会を得ることができた。これらの結果を参照 にしながら,以下に研究結果を述べる。

結果のとりすとめに当り、朴作物試験場長の御高配と朴栽培科長、洪田一科長から受けた 多大の御支援、御教示に対し、厚く御礼申し上げる。

Ⅱ 研究内容

1. 冷害地帯適応性水稲品種の生態的反応に関する研究

(1) 目 的

韓国における冷害発生危険地帯である中北部極早生種および早生種栽培地帯に適応する水稲早生品種および極早生品種の生理・生態的特性を把握して、その地域に適応する水稲品種の理想型を具体化するとともに、冷害発生危険地帯の生態的反応と平野地帯における所得作目前後栽培(二毛作)時および冷水掛流し検定圃での生態的な反応との関

係を究明する。今回は冷水掛流し検定圃での生態的な反応との関係については検討出来なかった。

(2) 試験方法

1) 水原,鉄原,珍富,連谷の各試験地に16の共通品種を配置,供試材料の主要特性は下表のとおりである。

供試材料一覧

試験番号	類型	品種名	熟期	草 型	稈長	試験 番号	類型	品種名	熟期	草型	稈艮
1	一般系	五台	早 生	穂重型	中科	9	一般系	天 摩	早生	偏穗重型	中稈
2	"	雪嶽	"	偏穂数型	短 稈	10	"	小 自	"	"	中短稈
3	"	珍富 2 号	"	偏穗重型	中科	11	"	秋 光	"	中間型	中科
4	"	雉 岳	"	"	"	1 2	, , , , , , , , , , , , , , , , , , ,	白 岩	"	偏穂重型	"
5	: //	黎明	"	"	中短稈	13	"	水原335号	"	中間型	<i>"</i>
6	- //-	大 成	"	"	中稈	14	"	農 白	"	穗重型	中長稈
7	"	松 前	極早生	"	中短稈	15	jj	福光	"	偏穗数型	"
8	"	珍富1号	早 生	"	中長稈	16	"	冠 岳	"	"	"

注)類型は一般系と多収系に分類

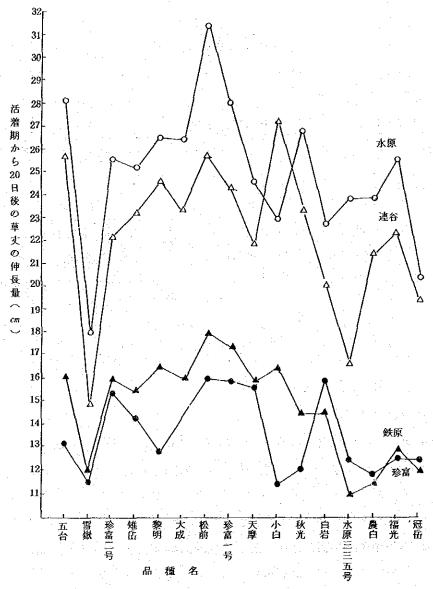
2) 栽培法

_					<u> </u>			
	試験地名	栽種期	移植期	栽植距離	株当苗	苗代種類	施肥量(Kg/10a)	備考
	64.88.48.40	(月・日)	(月 日)	(cm)	数(本)	田子以民共	$N-P_2O_5-K_2O$	Visi 45
	水原	4. 10	5. 20	30×12	5	保温畑苗代	1 2-9-1 1	二重トンネル式
	鉄 原	4. 10	5. 20	30×12	5	保温折裏苗代	12-12-13	
ĺ	珍富	4. 10	5. 20	30×12	5	保温畑苗代	12-12-13	
	連 谷	4. 10	5. 20	30×12	5	保温折裏苗代	1 2-1 2-1 3	

3) 試験区の配列:乱かい法, 二反復

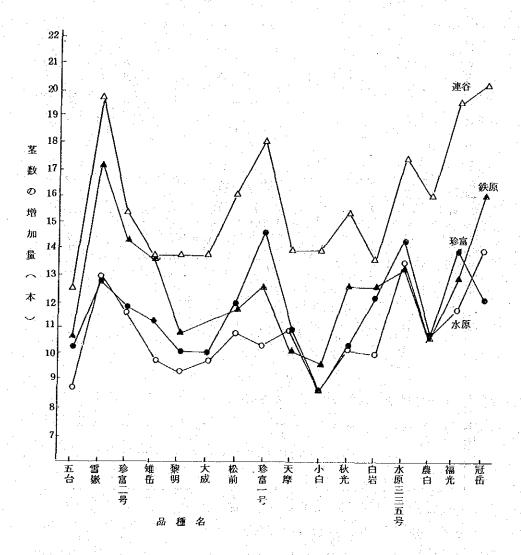
4) 主要調查項目

移植後10日目および30日目の生産調査(草丈,茎数)出穂期,稈長,穂長,穂数, 1穂頴花数,わら重、収量,登熟率,稔実率,干粒重(正租,玄米),その他生育特 性


(3) 試験結果の概要

移植後 10 日目および 30 日目の草丈, 茎数の調査結果と出穂期について概要を報告する。

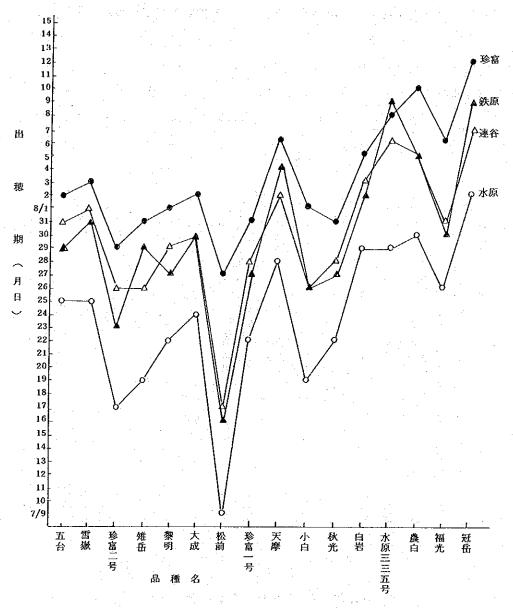
11 気象経過


各試験地が水原と同じ傾向にあったというので、水原における移植期(5月)から出穂期までの気象経過の概要を述べると5月第5半旬は最高気温、最低気温ともに平年よりやや低く経過したが、第6半旬より6月第2半旬まではほぼ平年並であった。6月第3半旬より最高気温、最低気温ともに高目に経過し、第6半旬から7月第2半旬までは平年並であったので、初期生育はほぼ平年並に確保することができた。7月第4半旬から第6半旬までは最高気温、最低気温とも平年よりやや低かったが、第5半旬から8月第6半旬まではほぼ平年並かやや高目に経過したため出穂期は極早生種の松前は特に早かったが、他の品種はほぼ平年並の出穂期を示した。

2) 試験成果の概要

第1図 活着期から20目後の草丈の伸長量(cm)と品種の関係

活着期から20日後の草丈の伸長量を試験地間で比較すると第1図に示すように伸長量の最も多かったのは水原で次いで連谷〉鉄原〉珍富の順で、連谷は水原と大きな差はみられなかったが、鉄原、珍富は水原、連谷に比較して、16品種の平均では約60%の伸長量にすぎなかった。品種間の比較では小白、水原335号が連谷、鉄原で特異な反応を示しており、品種本米の特性による結果かどうか検討を要する。



第2回 活着期から20日後の茎数の増加量(本)と品種の関係

活着期から20日後の茎数の増加量を各試験地間で比較すると第2図に示すように、草丈の伸長量とは異なった反応を示している。最も増加量の多かったのは連谷で、次いで鉄原〉珍富〉水原の順であった。連谷に対する水原の20日後の茎数は16品種平均で約60%にすぎなかった。移植後30日間の初期生育量を草丈の伸長量、茎数の増加量で比較すると連谷〉水原〉鉄原≥珍富の順であろうと推察された(乾物重の調査

結果がないので正確な判断は出来ないが)。移植時の状況から考えると鉄原の移植後, 特に6月に入ってからの生育量は非常に大きく、4試験地間では最も特異な生育相を 示した。

試験地間の品種と出穂期の関係をみると第3図に示すように16品種の平均出穂期の

第3図 試験地間の品種と出穂期の関係

最も早かったのは水原で次いで鉄原=連谷〉珍富の順であった。次に各品種の出穂性をみると水原、連谷、珍富は同一の傾向がみられるが、鉄原は品種間による出穂性に他の3試験地とは多少異なった反応を示した。この点については初期生育とも併せてその特異性を考慮する必要がある。

次に各試験地間における出穂期と活着期から20日後の草丈、茎数の増加量との関係をみると第1表に示すように草丈については水原と鉄原で負の相関がみられ、茎数については水原で正の相関がみられた。参考までに水原に対する鉄原、珍富、連谷の出穂遅延日数間の相互関係を第2表に示した。

第1表 草丈・茎数の増加量 と出穂期の相互関係

			1 1 2 1
試	倹 相	関係	数
地:	名 草	支 茎	数
水	原 — 0.7	709	0.599
珍 1	畫 - 0.1	100	0248
連 彳	S	181	$0.\hat{3}67$
鉄儿	頁 │ − 0.7	715 -	0.058

第2表 水原に対する鉄原,珍富,連谷 の出穂遅延日数間の相互関係

相関係数	試験地間						
0552	珍富と連谷						
0.294	珍富と鉄原						
- 0.0 6 0	連谷と鉄原						

第3表 供試品種の水原,鉄原,連谷および珍富での出穂期 までの日数間の相互関係

試験地間	相関係数	試験地間	相関係数
水原と鉄原	0899	鉄原と連谷	0.890
水原と連谷	0.982	鉄原と珍富	0.938
水原と珍富	0922	連谷と珍富	0.909

次いで供試品種の水原、鉄原、連谷および珍富での出穂期までの日数間の相互関係 を第3表に示した。試験地間に高い相関々係がみられ、この結果から考察すると、出 穂性に対する選抜は水原で十分行えるものと言える。

以上の結果を要約すると

- 1. 移植期から30日後の草丈の16品種の平均伸長量は水原≥連谷〉鉄原〉珍富の順 に多く、水原、連谷に比較し、鉄原、珍富は約60%の伸長量にすぎなかった。
- 2. 移植期から30日後の茎数の16品種の平均増加量は連谷〉鉄原〉珍富≥水原の順 に多く、草丈の伸長量とは異った結果が得られた。
- 3. 16品種の平均出穂期は水原〉鉄原〉連谷〉珍富の順に早かった。
- 4. 供試品種の各試験地間の出穂期までの日数間の相互関係をみると各試験地間に高い相関々係が認められ、この結果から出穂期の選抜は水原で十分行えるものと推察された。
- 5. 出穂生態反応による品種分類をすると下記のように分類される。

出穗生態 反応類型	特 徵	該当品種名
A	鉄原,連谷,珍富の順に直線的遅延	五台, 雪嶽, 珍富 2 号, 黎明, 珍富 1 号, 秋光, 白岩
В	連谷と鉄原での遅延度が似ており,特 に珍富での遅延が甚	大成, 松前, 小白, 福光
С	出 穂遅延程度が連谷, 鉄原, 珍富の順 位で直線的遅延	雉岳, 天摩, 冠岳
D	連谷,珍富,鉄原の順位で直線的遅延, 特に鉄原で遅延が甚	水原335号,農白

2. 耐冷性育種に関する問題点とその方策

この度, 訪韓の機会を得て, 韓国における耐冷性育種の現状をみることができました。 春川出張所を基幹に雲峰出張所等各試験地の立地条件を十二分に利活用しながら, 実に短 かい期間に大きな育種効果をあげているのには感心しました。

春川出張所を二度にわたり視察する機会に恵まれ、韓国の耐冷性検定方法(主に穂ばらみ期における障害型冷害抵抗性)を詳しくみる事が出来ました。検定方法は日本で実施している方法と全く同様で1冷水掛流しによる検定、2短期深水冷水処理による検定、3人工気象室(温室)による検定でした。耐冷性育種では韓国より長い歴史を持つ日本は1980~1983年にわたる4年連続の冷害を契機に現在実施している耐冷性検定方法に対する反省とその改善策がもとめられています。いつも冷害の危険にさらされている東北地方の試験場が連絡試験を実施して、耐冷性検定の精度向上の研究を行っています。

春川出張所を視察し、韓国においても今後早い時期に現在の検定方法に対する反省が要求されるものと思います。今日我々が進めている改善策を記載して参考に供したい。障害型冷害抵抗性を検定する方法で最も自然に近い状態で検定できるのが冷水掛流しによる検定方法である。ところがこの方法は上述の長所が現在のやりかたでは短所にもなり、検定結果が気温の影響を著しく受けやすく、年次間差や熟期群による不稔発生の乱れが大きく、品種間の強弱の正しい判定が容易には得られない。非常に弱い品種と強い品種の判別は比較簡単であるが、その中間に位置する多数の品種の判定はなかなか困難である。

今後、韓国においても米の需給関係から近い将来、量から質、食味に対する要望等品種 に対する要求が多様化するものと思われます。又地帯別には現在の耐冷性判定を更に細分 化し、各地帯に好適する良質耐冷品種の育成を進めてもよいのではないかと思われます。 そのためには現在実施している検定方法についてそれぞれ次のような事を奨めたいと思い ます。

冷水掛流し検定方法については、1.水深をもっと深くする事-10cm以上、2.熟期群別の判別品種の早急な作出、3.標準品種を弱・中・強の最低3品種以上とし、10系統毎に挿入すること、4.出来れば恒温深水圃場を設置すること。春川出張所は外気温が水原並なのでわずかの予算で設置可能と思われる:1~3をとり入れるだけでも現在の判定よりかなり精度の高い判定が可能と思われます。次に深水冷水処理による方法や人工気象室利用による検定方法については処理時期の検討をもう一度詳細に研究した上で利用しなければいけないと思われます。前述したことは現在日本でも諸検定方法の精度向上の為の解決策として研究を進めている事柄です。又障害型冷害抵抗性に限らず、開花期の抵抗性や遅延型冷害抵抗性に関する適切な検定方法もいまだ確立されていません。

今後両国間の研究情報を一層緊密にし、両国共同で精度の高い検定方法の開発や確立に 努め、稲作の安定化をすすめてゆく事を希望してやみません。

Ⅱ セミナーの実施

作物試験場

1. 青森県農業試験場藤坂支場における耐冷性育種の現状 7月12日

2. 耐冷性育種の諸問題 (1) 8月 2日

N 作物試験場において帰国報告会 8月29日

Vおわりに

大韓民国における2ヶ月の共同研究遂行にあたっては、農村振興庁長、同試験局長および同庁関係各位に大変御世話いただいた。共同研究は作物試験場を主体に同場鉄原出張所、同場珍富出張所、江原道連谷試験地の協力のもとに実施した。この間関係各位には絶大な御支援をいただいた。これら大韓民国農村振興庁関係各位に対し厚く御礼申し上げます。又このたび日韓農業共同研究団の一員として韓国に2ヶ月間の滞在の機会を与えてくれました事業団に感謝致します。"統一""密陽23号"等日印交雑による多収系品種育成に成功した韓国の育種事業を是非一度見聞したいものと思っておりました。この2ヶ月間作物試験場の育種圃場を自由に観察する事ができ、日印交雑による育種方法を詳細に知る事ができました。耐冷性や多収稲の優良母材も種子分譲を受けました。日本における超多収稲育成に役立つものと確信します。それらと共に沢山の韓国の研究者と親交を持つ事ができました。大きなおみやげを心に抱いて帰国する事ができます。未筆ながら初めての海外生活を無事に任務を終えて帰国できるのも森谷団長の暖かい心づかいの賜物と思っております。厚く感謝申し上げます。

報告者 農林水産省農業研究センター 西山岩男

派遣先 農村振興庁農業技術研究所

業 務 作物生理,とくに水稲の冷害に関する講演,講義、実習等

期 間 1985年7月17日~8月16日(31日間)

I はじめに

韓国における水稲の収量(籾)は1977年に698kg/10a,1978年に683kg/10aを記録し、この両年は世界第1位であった。この高収量は、統一をはじめとする韓国において国際稲研究所の協力のもとに開発された日本型一印度型交雑品種(統一系品種)の育成により達成されたものである。しかしながら統一系の諸品種はその後、いもち病および冷害に弱いことが明らかになり、収量が低下して作付面積も激減した。韓国の試験研究機関の関係者はこの対策のために多大の努力を傾注し、最近では統一系品種、系統の耐病性、耐冷性も相当に改善されてきており、栽培法の改善ともあいまって以前のような大災害は起こらない状況に至っているものと推察される。

とはいえ冷害問題は解決されたと言うには程遠く、今後長期間にわたって韓国稲作研究上の大問題の1つであると考えられる。冷害は統一系の品種のみでなく、一般系の品種においても山間高冷地では問題となる。冷害問題解決のためには耐冷性品種の育成が中心となるが、栽培法の改善も必要であり、また育種、栽培における研究、改良の基礎となる生理学的メカニズムの解明もおろそかにすることができない。

報告者は韓国農業気象災害研究計画の作物生理の専門家として,1985年7月17日から8月16日までの1か月間,農村振興庁農業技術研究所生物部生理遺伝科に席をおき、農村振興庁に所属するいくつかの研究機関において,冷害を中心とした水稲の生理,栽培に関する諸問題について講演,講義,実習,成績・設計の検討,一般的問題の論義等を行った。またこの間にそれらの機関の施設,圃場等の視察を行った。これらの概容については次項において記す。

報告者の韓国滞在に関し、また滞在中の業務遂行ならびに生活万般に関して下記の方々の協力と援助とを受けた。これらの支援がなければ業務の円滑な遂行は不可能であったものと考える。

農 村 振 興 庁 金文憲庁長,金東秀試験局長

農 葉 技 術 研 究 所 金萬寿所長,朴重秀生物部長,鄭泰英生理遺伝科長,

許一鳳生理化学研究室長,その他研究官,研究士

作 物 試 験 場 朴来敬場長,朴錫洪水稲栽培科長,李文熙研究官,

その他研究官、研究士

春 川 出 張 所 柳又昌栄所長, その他研究士

珍 富 出 張 所 文昌植所長, その他研究士

湖 南 作 物 試 験 場 裴聖浩場長,金鍾昊水稲科長,李善竜研究官,

その他研究官、研究士

嶺 南 作 物 試 験 場 鄭根植場長、金純哲水稲栽培研究室長、その他研究官、研究士

京 城 大 学 農 学 部 許文会教授, 権容雄助教授, 李弘拓教授

日韓農業共同研究団 森谷睦夫団長,谷信輝専門家,李明珍通訳官,その他

日本国際協力事業団

Ⅱ 業務内容

1. 日程

7月17日(水) 到着(制憲節)

18日(木) 午前 振興庁,農技研内あいさつ,午後 農技研内視察

19日(金) 午前 京城大学農学部訪問,午後 作物試訪問,あいさつ,圃場およびファイトトロン視察

20日(土) 午前 滞在スケジュールの作成

21日(日)

22日(月) 午前 農技研所長他あいさつ,午後 成績,設計の検討

23日(火) 午前 成績,設計の検討,午後 作物試圃場視察,論議

7月24日(水) 午前 講演, 午後 論議

25日(木) 午前 講演, 午後 論議

26日(金) 午前 論議,午後 実習準備,作物試訪問,論議

27日(土) 午前 農技研水田,作物試水田,ファイトトロン視察,実習材料の準備

28日(日)

29日(月) 午前 講義, 午後 論議

30日(火) 午前 講義,午後 栽培文献資料調查

31日(水) 午前 実習,午後 論議,実習準備,振興庁長あいさつ

8月 1日(木) 水原→裡里,湖南作物試,講演,圃場等視察および論議,裡里泊

2日 金) 裡里→大田→密陽, 嶺南作物試, 講演, 圃場視察および論議, 密陽泊

3日(土) 密陽→水原

4日(日)

- 5日(月) 午前 実習, 午後 実習
- 6日(火) 午前 実習, 午後 論議
- 7日(水) 午前 作物試, 講義, 午後 作物試, 講義, 講演
- 8日(木) 午前 作物試, 圃場視察および論議, 午後 作物試, 講義, 成績、設計の検討
- 9日(金) 水原→春川,春川出張所,圃場等視察と論議,春川泊
- 10日(土) 春川→珍富,珍富出張所,圃場等視察と成績,設計の検討,珍富→水原
- 11日(日)
- 12日(月) 午前 講演, 午後 実習
- 13日(火) 報告書とりまとめ
- 14日(水) 午前 農技研あいさつ、午後 振興庁あいさつ
- 15日(木) (光復節)
- 16日(金) 帰 国
- 2. 講演, 講義, 実習等の内容

講演,講義,実習等においては約200枚のスライド,単行書「イネの冷害生理学」(西山岩男著,北大図書刊行会),約30編の論文·摘録等の別刷等が使用された。

1) 講演

7月24日 農技研生理遺伝科 約15名 水稲頴花の穂上位置による障害型耐冷性の差異

7月25日 農技研 約30名

水稲障害型冷害の発生メカニズムの解明に関する生理学的および細胞組織 学的研究

- 8月 1日 湖南作物試 約35名 水稲頴花の穂上位置による障害型耐冷性の差異
- 8月 2日 横南作物試 約35名 水稲頴花の穂上位置による障害型耐冷性の差異(英語)
- 8月7日 作物試 約35名 水稲障害型冷害の発生メカニズムの解明に関する生理学的および細胞組織 学的研究
- 8月12日 農技研 約25名 水稲の発芽および初期生育における温度反応 (英語)

2) 講義

7月29日 農技研,作物試,京城大 約15名 水稲葯の生体観察による小胞子の発育段階の判定法(英語)

7月30日 農技研,作物試,京城大 約15名 水稲葯の生体観察による葯と花粉の大きさの計測と不受精発生の早期予測 (英語)

8月 7日 作物試 8名

(午前) 水稲の収量にたいする登熟期間の光合成有効放射量の意義ならびに関東地方における水稲の2期作

8月 7日 作物試 8 名

(午後) 水稲の冷害にたいする堆肥の効果

8月 8日 作物試 10名 水稲頴花の穂上位置による障害型耐冷性の差異 (英語)

3) 実 習

7月31日 農技研,作物試,京城大 約15名 水稲の葯の生体観察法(英語)

8月 5日 農技研,作物試,京城大 9名 (午前) 水稲葯の生体観察による小胞子の発育段階の判定(英語)

8月 5日 農技研,作物試,京城大 4名 (午後) 水稲葯のタペート細胞の異常の生体観察(英語)

8月 6日 農技研,作物試,京城大 8名 水稲葯の小胞子あるいは花粉の粒数測定法 (英語)

8月12日 農技研 1 名 水稲の葯の生体観察の顕微鏡写真の検討

4) 成績,設計の検討

7月22日 農技研 生理化学研究室 水稲の耐旱性の研究, とくに根の生理化学について

7月23日 農技研 生理化学研究室

(午前) 水稲の初期生育における耐冷性に関する試験

7月23日 作物試 水稲栽培科

(午後) 水稲の栽培および育種に関する試験

8月 8日 作物試 水稲栽培科

ファイトトロンにおける試験ならびにファイトトロンの使用法

- 8月 9日 作物試春川出張所 水稲の冷害試験ならびに耐冷性の険定法
- 8月10日 作物試珍富出張所 水稲の冷害試験ならびに耐冷性の検定法
- 5) 一般的な問題の論議
 - 7月19日 作物試 朴錫洪水稲栽培科長他 韓国における水稲栽培の現況ならびに栽培研究について
 - 7月24日 農技研 許一鳳生理化学研究室長他 水稲の冷害生理,とくに施肥,堆肥と不受精発生との関係,ならびに新し い耐冷性水管理法
 - 7月25日 農技研 許室長他 水稲の収量にたいする登熟期の光合成有効放射量の意義
 - 7月26日 農技研 許室長他
 - (午前) 生理学の立場からみた水稲冷害克服の戦略
 - 7月26日 作物試 朴科長他
 - ·(午後) 韓国における水稲品種の動向および栽培法について
 - 7月29日 農技研 朴俊奎土壌化学科長 土壌化学の問題
 - 7月29日 京城大学 李弘拓教授, 農技研 朴永大農化学科長 水稲栽培研究について
 - 7月31日 農技研 D. A. Brown 客員研究員(米国アーカンソー大学教授) 根の研究の新しい方法, Porousmembrane method について
 - 8月 1日 湖南作試 襄聖浩場長,金鍾昊水稲科長,李善竜研究官他 湖南における水稲栽培および冷害に関する問題点と湖南作試における研究
 - 8月 2日 嶺南作試 鄭根植場長,金純哲水稲栽培研究室長他 嶺南における水稲栽培および冷害に関する問題点と湖南作試における研究
 - 8月 6日 農技研 吉野専門家,金章圭病理研究室長 韓国におけるいもち病の発生
 - 8月 6日 農技研 谷専門家, 鄭英祥農業気象研究室長 韓国における作物気象分布の特徴
 - 8月 6日 農技研 石順鐘研究士 水稲の根の生育と根箱について
 - 8月 8日 作物試 朴科長, 李文熙研究官他

Ⅱ 所 見

1か月と短期の派遣であるので、独自の実験はしないで、講演、講義、実習、論議等にしてった。そのためにスケジュールはかなり多忙なものとなった。対談的なものから30人以上の講演会までを含めて、参加者の延人数は400人近いと思われる。来韓するまでは全て日本語でやるつもりでいたが、とくに若い人たちが英語の方を希望するので、通訳のいない場合には英語を使うように心がけた。報告者の研究成果やものの見方、考え方については公表されているものが多いが、韓国の研究者の中でそれらを知っている者は多くはない。1回や2回の話で十分に理解してもらえたかどうか心もとないが、それでも今後の研究の展開に多少なりとも刺戟になったとすれば幸甚である。

農技研,作物試に京城大学まで含めた若い人たちのための実習を行ったことは成功であったと思う。講演会場ではどうしても年輩者の質問,発言が多いが,実習では若い人たちが元気よく質問した。

講演, 講義, 論議等をとおして, 多くの示唆, 提案を行った。その中でもっとも重要なものは, 水稲の耐冷性品種育成のための検定方法の開発である。すなわち葯長および溢泌液が検定法として利用しうるのではないかという示唆である。これらの方法はまだ生理学的に証明されてもいないし, まして検定法として確立されてもいない。農技研, 作物試, 湖南作物試の共同研究で展開していただければありがたい。

水稲命害の研究についてみるとき、日本に基礎的研究はまかせて韓国ではその応用だけを やればよい、という考え方もできる。たしかにそれも1つの方策であろうが、長期的な視点 に立つならば基礎的な研究を重視した方がよいと思う。基礎研究というものは、1つのせま い目的だけのためにやっていると考えると効率が悪いように見える。しかし基礎研究は、直 接には1つの目的のために実施したとしても、その中から他方面への予期しない展開、応用 が生れてくるものである。水稲の冷害生理の研究は他の作物の冷害にも関連しているし、ま た高温障害や旱はつ、さらには光合成、物質生産などの問題とも関係してくる。このような 地についた研究が確立されれば、その国の研究全般に底力がついてくるものと思われる。

以上のような観点からみると、農技研の生理関係の研究は体制的にやや不十分のようにも 考えられる。物質生産の生理、環境反応の生理、代謝過程の生理等の研究を含めて科レベル の組織があっても良いのではないだろうか。

本共同研究実施上の反省すべき点の1つとして、派遣者と受け入れ研究室との間の事前の情報交換が不十分なことがある。この原因の1つは派遣決定から出発までの期間が短かいことであり、とくにお互いに直接知らない場合には不便なことが多く、韓国に到着してから何

をやるか決めている。この間に何日か遅れが生じ、実験材料の調達など決定的な違いが生じる場合もありうる。また日本で準備してきた材料、器具、資料等が不用になって、別のものが必要になる場合もある。この点について関係者の一考をお願いしたい。

本共同研究における韓国側の対応は、私の接触した範囲では、年令や職階の上下にかかわらずきわめてまじめかつ熱心であり、またつねに友好的なふんいきにあふれていた。そのととは1か月間、実質的には土曜日を含めて25日間に会食の招待が公私あわせて16回におよんだことにも現われている。韓国滞在中の業務遂行が円滑に進んだのは、本報告の最初に記した韓国側ならびに日本側関係者の心暖かい協力のおかげである。最後に、宿泊した官舎で食事、洗濯等の世話をしてくれた蔡点子さんの貢献も小さくないことを記して筆をおく。

報告者 東北農業試験場 橋本鋼二

派遣先 農村振興庁作物試験場田作1科

業 務 大豆品種の冷害生態反応に関する研究及び大豆品種の耐病虫性検定方法の確立に関する研究(大豆育種)

期間 昭和60年7月5日~9月3日(61日間)

研究項目

- 1. 大豆品種の冷害生態反応に関する研究
- 2. 大豆品種の耐病虫性検定方法確立に関する研究

I はじめに

1985年7月5日から9月3日までの61日間,日韓農業共同研究団の大豆育種専門家として農村振興庁作物試験場田作1科(水原市)において上記の研究項目につき研究・調査を行った。

この間に①春川(江原道農村振興院,作物試験場春川出張所,珍富(大豆耐冷性検定圃,作物試験場珍富出張所)など、②密陽(嶺南作物試験場),大邱(慶尚北道農村振興院)など、③光州(全羅南道農村振興院),務安(作物試験場木浦支場)など3回にわたって各地を視察する機会をあたえられた。韓国における大豆の育種・栽培に関する試験はもちろん,水稲の育種試験の概況を知るとともに、地域の農業事情の一端にもふれることができた。

任務を終えるにあたり、農村振興庁庁長、同試験局長、同庁関係官のご高配と朴来敬作物 試験場場長、洪殷惠田作1科長、陳文変研究官、黄永鉉研究士はじめ作物試験場各位のご支 援に対して厚くお礼申しあげる。

Ⅱ 研究内容

1. 大豆品種の冷害生態反応に関する研究

1) 緒論

大豆は夏作物の1つとして、生育期間中の低温、少照などによって減収し、「冷害」を受けることが知られており、日本では北海道や東北地方における大豆生産の重大な障害となっている。しかしながら、大豆は開花期間が長く低温を回避する花があること、通常の結莢率は30~40%程度なので、たとえ障害を受けて落花しても直ちに莢数減にならない場合があること、あるいは百粒重が増加し莢数減による減収が軽減される可能性があることなど水稲に比べて被害が分りにくい。

報告者らは1964年の北海道における豆類の冷害調査から、冷害の被害型を3型に分類した(表-1)。その後の豆類の冷害調査においてもこの分類が広く用いられ、気象と

の関連も明らかにされている。これらの被害型はその年の冷害気象と豆類の生育時期との関係で幾つかの型が併せて発現する場合もある(表-2)。冷害気象の発現する時期によって被害型が変ること、被害型によって冷害対策が異なることなどから、被害型の解析は重要視される。

表-1 豆類の冷害の被害型と主な症状,並びに影響を受け易い時期と条件

被	書	型	主な症状	影響を受け易い時期と条件
生育	育不.	良 型	節数, 特に分枝節数の減少,	生育初期~開花盛期の低温,
			(単位面積当たり)茎重の低下	過湿,少照
障	害	型	節当たり莢数減少,一莢内稔	個体として開花始の5日前
			実粒数の減少	から2~3週間の低温
遅	延	型	百粒重の低下, 品質不良	開花期間の後期から発熟期
				の低温, 早霜

表-2 日本における豆類の冷害発生年と主な被害型

× + +	地	域
冷害年	北 海 道	東北(太平洋側)
1983	不良+遅延	不 良
1981	遅延+不良	遅延十不良
1980	障害	障害+遅延
1976	不 良	不良+障害
1971	障害	

注 不良:生育不良型,障害:障害型,遅延:遅延型

1980年には韓国で水稲に著しい減収を招いた冷害が発生している。この年の大豆の全国平均単収(ha当り)は1.15 tで1979年の124 t, '81年の127 t に比し7%ないし9%低収となっている。しかし、大豆の場合は平年でも収量水準が低く、十分な肥培管理下における結果ではないので、この数字だけから冷害程度を推定するのは困難である。日本においても、北海道のように収量水準の高いところでは被害状況を反映した単収となっているが、東北地方のように収量水準が低いところでは実態を十分に反映していない現状である。

そこで、一定の栽培規準で管理されている地域適応試験に供試した標準品種の1980年の成績と、1978、79両年の平均値を平年値として比較することによって被害が生じているかどうかを検討し、もし被害が認められた場合には被害型の推定を試みることにした。

気象災害の対応技術確立に関する研究の一つとして大豆品種の冷害生態反応が作物試験場田作1科で研究課題となっている。1982年以来現在まで生育初期の低温処理や標高約600mの山間高冷地に栽培して生育状況を比較するなど品種・系統の耐冷性評価をいろいろと試みている。こうした試験の成績と現在までに日本などで得られている大豆の冷害に関する知見などを総括し、冷害に関する試験研究の方向について検討した。

2) 地域適応試験成績からみた 1980 年の生育収量

地域適応試験を実施した18場所の標準品種(3箇年共通)の1980年の成績と1978年と'79年の平均値を平年値として対比したのが表-3である。開花期と成熟期については平年値を0として早晩の日数を、その他の形質については平年値を100とする相対値で示した。番号1~3の場所は1年1作型で5月中旬播種、4~18は麦後作として、6月中、下旬に播種している。

開花期と成熟期については大部分の場所において平年値より遅くなっており、冷夏の 影響が認められる。

主茎長については場所により結果が異なるが、著しく短茎になったのは8と15の2場所だけであり、平年値を上まわった場所は10場所であった。

1年1作型の3場所は東北部に位置する。子実収量,百粒重,推定粒数の相対値は良く似ており,子実収量は9~10多減少し,その減少の理由は粒数が18~19%減少したためであり,百粒重で示した粒の肥大程度は平年値より10~12%まさり,そのため減収程度が軽減されているものと推定した。

1年2作型の14場所については平年値より増収となったのは3場所,ほぼ平年並み2場所, 減収となったのは9場所となった。

減収になったのは東部と西南部の場所が多い。減収した場所は済州を除き粒数が減少しており、しかも20%以上も減少している例が多い。これに対して百粒重は5%以上増加したのが4例、10%以上減少したのが5例で、東北部の1年1作型のように減収程度が軽減された例は少なかった。

参考のために報告者らが本州北部の農業試験場で実施した奨励品種決定試験において 1979 年と '80 年の両年にわたり供試された品種・系統の成績を比較し、1980 年における冷害の被害型を推定した結果の一部を表-4 に示した。ここでは本州北部の太平洋に面する地域で被害が大きく、減収は粒数の減少によることが明らかになっている。こ

表-3 平年と1980年の地域適応試験標準品種の生育・収量比較

						·		
番	⊒- P #≠	∆ 40 5€	開花期	成熟期	主茎長	子実収量	百粒重	推定粒数
号	武 岛	場所	(日)	(日)	(%)	(%)	(%)	(%)
1	漣	Ш	0	+ 4	126	90	110	8 2
2	洪	Л	- 6	+ 6	150	90	110	81
3	堤	Щ	+ 6	- 5	8 5	91	112	81
5	月中旬	播平均	0	+ 2	120	90	111	8 1
4	水	原	+ 2	+ 7	98	118	121	9.8
5	清	州	+ 5	+10	93	99	108	91
6	儒	城	+ 9	+ 4	135	133	120	111
7	禮	山	+8	- 6	106	78	103	76
8	裡	里	+ 8	+ 9	7 3	58	88	65
9	鎮	安	+9	+10	95	65	86	76
10	光	州	+ 5	+ 1	8 5	76	106	72
11	海	南	+ 7	+ 4	118	59	75	80
12	漆	谷	+ 2	+ 6	119	62	114	55
13	安	東	+ 9	+14	120	84	105	80
14	晋	州	- 2	+11	119	118	104	114
15	戍	陽	0	+12	69	70	87	81
16	務	安	+ 2	+ 6	93	70	90	78
17	密	陽	0	+ 4	113	101	106	9 5
18	済	州	+ 7	+ 6	110	94	90	105
6月	中~下	旬播平均	+5	+ 7	103	86	100	8 5
	総平	均	+ 4	+ 6	106	86	102	8 5

- 注 1. 1~3 は 5 月中旬播, 4~18 は 6 月中 下旬播。
 - 2. 1978,79年の平均を平年値として比較。開花期と成熟期は差の日数で示し早(一),晩(+)の記号を付した。その他の形質については平年を100として例で示した。
 - 3. 推定粒数=子実重:百粒重
 - 4. 試験場所のおおよその位置は右図に示した。

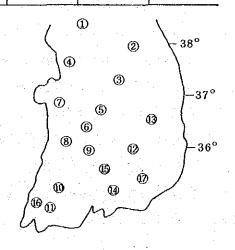
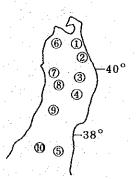



表-4 1979年と1980年の奨励品種決定試験供試品種・系統の生育・収量比較

(橋本ら:1981)

試験場所	開花期	成熟期	推定基重	子実収量	百粒重	推定粒数	2 苗年共通 供試品種・
番号	(日)	(日)	(%)	(%)	(%)	(%)	系統数
1	- 5	+17	112	4 9	101	4 9	11
2	+ 2	+13	125	74	116	64	11
3	+ 5	+10	122	77	103	7.5	9
4	+ 2	+ 9	137	79	103	77	. 7
5	+ 4	+10	94	99	118	84	11
6	- 4	+14	112	89	97	92	3
7	+ 2	+ 4	122	121	114	106	9
8 (標)	+ 4	+ 4	124	131	118	110	18
(晚)	- 1	+10	120	90	95	96	18
9 :	+10	+ 2	78	7 5	103	73	13
10(標)	+ 4	+ 4	61	86	104	82	4
(晚)	+ 3	+12	53	83	109	, je z 7 6	.# J4 J 4 - 8

- 注 1. (標):5月下旬播, (晚):6月下旬~7月上旬播
 - 2. 1979年の平均値を平年値として比較。開花期と成熟期は差の日数で示し早(-)、晩(+)の記号を付した。その他の形質については平年値を100として(%)で示した。
 - 3. 推定茎重=全長-(子実重×1.4)
 - 4. 推定粒数 = 子実重: 百粒重
 - 5. 2 箇年共通供試品種・系統の平均値で比較。
 - 6. 試験場所のおおよその位置は右図に示した。

れに対して推定基重で表わした栄養生長量をみると 1979 年に劣らぬ成績となっており、 被害状況は障害型冷害の特徴を示している。

韓国の1980年の結果についても広範囲にわたり粒数減が認められた。同年は7月, 8月の気温が低く、特に7月下旬から8月上旬にかけては平年に比べて著しく低温になっている。

大豆の障害型冷害の危険期は個々の花についてみると、開花の11ないし7日前の分化する1ないし2日前から滅数分裂期を経て四分子期に至る――が最大である。また、群落としては危険期の花が多く含まれる開花期前5日から2~3週間であることを考えると、大豆でも障害型冷害の発生した地域があるものと推定される。低温処理した場合の一英内稔実粒数の変動は英数の変動に比べてはるかに小さいのが通例なので、推

定された粒数の減少は主として莢数の減少によるものと考えられる。

1980年の水稲の冷害の被害の大きかったのは東部一帯である。また、試験場所の気温をみても 1, 2, 3, 12, 13 などの場所においては障害型冷害を受けたものと考えられる。

一方, 8, 9, 10, 15, 16 などの場所については平年より生育量が劣るものとみられ、 減収の要因としては生育量低下による節数の減少なども加わるものと思われるが、ここ ではそれ以上の論議を差し控えたい。

3) 生育初期の耐冷性検定について

温室内での温度調節や圃場に早播きしてビニール被覆の有無などによって開花期以前の生育温度条件を変え、適温区と低温区を設け、初期の低温が生育・収量に及ぼす影響を品種・系統間で比較する試験が1982年から現在まで行われている。

この試験においては初期生育の良否に加え、低温処理後の生育の良否を回復力として 評価した点が注目される。この試験を通じ、生育初期の低温による生育遅延は認められ てもその後の生育条件が良ければ十分回復し、適温条件下で生育したものに劣らぬ収量 をあげる品種・系統が多かった。

一般に生育可能期間の短かい地域においては冷涼な条件下での初期生育の良否を重視している。北海道、中国黒竜江省などがそれにあたる。三分一・土屋らは生育不良型冷 害抵抗性の指標として初期生育力が有効としている。

しかし、生育可能期間が長いと後期の回復力が重要になり、被害の軽減に寄与すると ころが大きい。生育可能期間の短かい北海道においても1956年あるいは、83年の冷害 においては秋の好天と初霜の遅れたことにより、回復力の差が被害程度を左右している と報告されている。

1983年は東北地方の太平洋に面する地域にあっては、6月、7月が史上第3位の低温となり、大豆の生育は著しく停滞、遅延した。この年の岩手県種市町における生育途次の大豆のLAI(葉面積指数)と収量の関係をみたのが図-1である。8月5日のLAIは1以下と著しい生育不良の状態にあり、収量との相関は有意でない。しかし、その後の天候回復により、8月20日のLAIとは高い相関が認められた。栄養生長が早く停止した早生群は低収、長く続いた晩生群が多収傾向を示している。この地方一帯で古くから晩生の在来種が多く栽培されていたことも、この地方にあった品種選定の結果と考えられる。

一方,韓国の気候条件からみて北部の5月中旬播,中部以南の6月中,下旬播のいずれも低温により初期生育が著しく抑えられることは少ないものと考えられる。初期耐冷性検定試験においては生育後期の回復力の重要性を示したことで一応の試験目的を達し

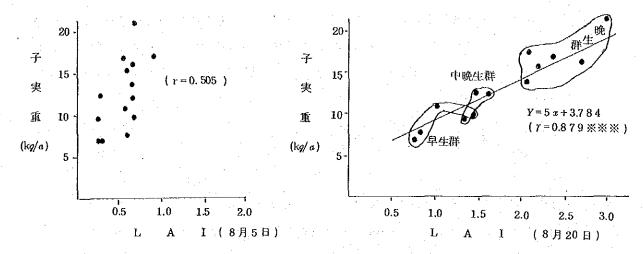


図-1 生育前半に著しい低温に見舞われた1983年のLAIと収量との関係(岩手県種市町)

たものと思われる。また、この試験から、生育期間を延ばして多収を図るという考え方も生まれてくるが、この場合には品種の耐冷性を比較する育種試験でなく、品種数を減らした栽培試験として考えた方が良いように思われる。

4) 山間高冷地における適応性検定について

標高 600 mの山間高冷地珍富における品種・系統の生育・収量を水原のそれと比較し耐冷性指数 (CTI)を求めている。

この試験では冷涼な気象条件下における品種 系統の適応性を調べることができ、生産力検定試験の材料から供試しているので、試験年次を重ねることによって冷涼な条件下で適応性の低い系統を除くことが可能と思われる。

しかし、9月に入ってからの温度はかなり低くなるので、晩生系統の評価は不十分で ある。

5) 冷害対策技術と耐冷性検定の方向

冷害に対する技術対策については被害型別に表-5 に示した。これは冷害研究並びに 冷害実態調査などを総括し、報告者がまとめたものである。

大豆の品種に対する要求も被害型によって異なっている。この中では障害型冷害または障害型冷害を含む複合型冷害に対する抵抗性について簡易で適切なものが少ないのが問題である。現在北海道で実施されている主要な方法は①低温実験室における低温処理で開花始から15℃(昼)12℃(夜)2週間程度の処理期間,②沿海及び山間の冷涼な現地での選抜,に2大別される。また、東北農試では冷涼地での系統適応性検定に頼っている。

韓国のように冷害の発生頻度が低く,被害程度が比較的軽い場合には冷涼地での現地 評価を中心に考えるのが無難である。現在,山間高冷地珍富において実施している検定 試験は高冷地向き品種の選定としても有用である。しかし、ここでは秋季早冷のため晩生種の評価がむづかしいと思われるので、夏季冷涼で比較的生育可能期間の長い冷潮風地帯にも1箇所現地試験圃場を設けることによって耐冷性を考えた育種試験は強化されるものと考えられる。

表-5 豆類の冷害被害型と技術対策

被害型	技
生育不 良型	① 豆類の連作を避け輪作体系を確立する
	② 土壌改良(燐酸と有機物を十分に施用)
	③ 排水対策
. '	④ 初期生育の良い品種を選定
障害型	① 耐冷性品種の選定
	②、③ 生育不良型の①と②に同じ
	④ 基肥として窒素を多肥しない
	⑤ 窒素追肥 (開花期以降, 温度が上ってから施用)
遅 延 型	① 早・中生品種の選定(晩播すると遅延しやすい品種は避ける)
. *	② 防霜対策
<u> </u>	③、④ 生育不良型の①と②に同じ

2. 大豆品種の耐病虫性検定方法確立に関する研究

1) 緒論

韓国の大豆栽培上重大な障害となっているのはダイズモザイクウイルス(SMVと略す)を病原とするウイルス病である。東北太、光教など日本からの導入品種やその血を引く品種は弱いモザイク症状を生じる病原系統に抵抗性があったが、これらの品種が普及するにつれてnecrosisを生ずる病原系統(SMV-N)の発生がみられるようになり、罹病すると頂部にnecrosisを起こし、ほとんど莢がつかなくなるため、多発すると著しく減収するようになった。主な発生地域は北部から中部である。

日本においても東北中・南部〜北陸北部, 関東・東山地方など韓国北部〜中部と類似 した緯度の地帯でウイルス病の発生が多く, 東北農業試験場では早くから病理, 育種の 両面から研究が行われてきた。

韓国においては趙らが1983年までに8系統のSMVの存在することを報告しており、 日本では越水ら、あるいは高橋らによって5系統のSMVを同定している。 両国で発生する病原ウイルスについては、それぞれ系統名が付されており、それらの 関連について明らかになれば育種的対応を考える上でも相互に有益なので、日本の判別 品種に韓国の品種を加え、韓国のウイルス系統が日本で同定されている系統と同じもの かどうかの検討を行うことにした。

ダイズシストセンチュウ(以下線虫またはシスト線虫)は寄主植物が限られており、 大豆の原産地またはその周辺部と考えられる中国(華北、東北部)、韓国、日本など極 未地域での発生状況やレース分布についての調査・研究の進展が期待されている。

韓国においては崔ら (1983) により忠北と慶北両道で調査が行われ、忠北道では調査地の70%、慶北道では50%にシスト線虫の生息することを認めている。しかしながら、被害面積については明らかでなく、被害の大きい圃場面積は比較的少ないものとみられる。

ここでは韓国における線虫抵抗性育種を行う場合の問題点について若干ふれることに した。

2) 病原ウイルスに対する日本の判別品種の反応

播種病原は光教にnecrosisを起こす既知の2病原(G₆, G₆H)に加え、圃場で抵抗性の異なるとみられる6品種の罹病個体各1個体ずつから1接種病原を調整(表-6)し、人工接種検定を行った。また、光教にnecrosisあるいは強い縮葉とモザイク症状を生じた病原を接種した材料で反応の不明瞭だった品種については、各品種毎に接種病原を調整し光教に戻し接種を行った。

接	美種番号	罹病葉採取品種		
	1	(G ₆ H)		
	2	(G ₆)		
	3	黄金コン		
	4	短葉コン		
	5	長白コン		
	6	光 教		
	7	Seal コン		
i .	. 8	長葉コン		

表 - 6 供試病原一覧

供試した日本の判別品種の日本のSMVに対する反応は表-7,韓国品種の韓国のSMV 系統に対する反応は表-8に示した。また、人工接種検定試験成績は表-9に示した。 検定結果をみると、病原ウイルスは光教にnecrosisを生じた接種番号1,2,5,6,強いモザイク症状(一部に縮葉を伴う)を生じた3,7,弱いモザイク症状を生じた4,8 に大別できた。

接種番号1と2は日本のSMV-E またはD 系統との関係が注目されたものである。SMV-E に対してはふくせんなりと白鳳1号以外の日本品種は罹病性、SMV-D に対してはデワムスメ、ふくせんなり、Harosoyを除き罹病性とされている。1 の $G_{\delta}H$ 系統に対してはふくせんなりがnecrosisを起こしたのでSMV-E の可能性はなく、しかもデワムスメも同様に罹病したことから、SMV-D の可能性もない。2 の G_{δ} 系統については確定は困難であるがSMV-D に対する反応と似ている。5 、6 についてもおおむね 2 と類似した反応を示している。

3 についてはデワムスメ、ふくせんなりにも強い病徴が発現し、しかも病徴が1の G₆Hと異なることから、これも1と同様に日本で同定されていない病原系統と考えられる。

4, 7, 8 については日本の SMV-C 系統と似た反応となったが一部で異なり決定は困難であった。

病原ウイルス系統間で干渉効果の有無、程度が分らないので、病原として罹病薬を採取した個体が重復感染しているかどうかの判断ができないが一部でその可能性がある。

本実験の結果韓国には日本で同定されていない病原ウイルスを含む相当数の系統が存在していることが認められた。

表-7 日本におけるウイルス病判別品種のSMV及びダイズ萎縮ウイルス系統に対 する反応 (東北農試)

する反応			. <u> </u>		٠.				東北加	農試)			
品 種 名		SMV					ズ萎縮	ウイル	ス (8)	R R S S R R S R R S R R S S S S			
	A	В	Ċ	D	E	Α	В	C	D	ΑE			
デワムスメ	R	\mathbf{R}	R	\mathbf{R}	s**	R	\mathbf{R}	\mathbf{R}	R	R			
ふくせんなり	R	${f R}$	8	\mathbf{R}	\mathbf{R}	S	\mathbf{R}	8	\mathbf{R}	8			
白 鳳 1 号	S	\mathbf{R}	8	8	\mathbf{R}	${f R}$	8	8	8	\mathbf{R}			
Harosoy	R	S	\mathbf{R}	\mathbf{R}	8*	${f R}$	\mathbf{R}	\mathbf{R}	8	${f R}$			
刈羽滝谷28号	S	8	S	, ,,,8 ,,	S	8	${f R}$	8	\mathbf{R}	S			
奥 羽 3 号	R	R	S	s*	8**	${ m R}$	\mathbf{R}	8	R	$\mathbf{R}_{\mathbf{r}}$			
ネマシラズ	R	${f R}$	8	8^*	s**	${ m R}$	R	8	S	8			
農 林 2 号	R	\mathbf{R}	S	8*	s **	s	8	8	S	8			
農 林 4 号	S	S	8	S	S	8	8	S	Š	S			
白豆豆	\mathbf{R}	85	\mathbf{R}	8	s*	s	s	· 8	S	8			
十 勝 長 葉	S	S	8	8	8	R	R	R	\mathbf{R}	R			

注 R:抵抗性, S:罹病性 (S*縮葉を伴った萎縮症状, S** 頂部 Necrosis)

表-8 供試した韓国品種のSMV系統に対する反応

(趙ら:1983)

					S M V								
					G ₁	G _a	G 8	G ₃ A	$G_{\mathfrak{s}}$	G,H	G 6	G,	
	黄	金	7	ン	_				. 🛶	N	_		
	光			教			· — :*		N	N	N	N	
	長	白	=	ン		·· _ ·	_	M	·	N	-	· _	
	徳	裕	ⅎ	ン									

注 N: Necrosis, M:モザイク, 一:症状なし

表-9 病原ウイルスに対する大豆品種の反応

<u> </u>									
品種名			接	種	番	号 -			
品種名	1	2	3	4	5	6	7	8	
デワムスメ	N	(M)	M [*]	(M)	(M)	(-)	(M)	(M)	
ふくせんなり	N	(M)	M*.	(M)	1. <u></u>	(-)	М	M	
白鳳 1号	(M)	(M)	(M)	M [*]	M*	M	()	M*	
Harosoy	M	(M)	(-)	(M)	(M)		(M)	(M)	
刈羽滝谷28号	M*	M	M	M	М	M	M	M	
奥 羽 3 号	·M	M	M	M	M	M	M	M	
ネマシラズ	N	N	M	M	(M)	N	M*	' (M)	
農 林 2 号	N	N	M [*]	(M)	M	M,N	M ^X	(M)	
農 林 4 号	M	M	M	М	М	M	M	M	
白 豆	M	· M	M	M	M	· (M)	M*	M	
十 勝 長 葉	M	М	(M)	M	М -	M	(M)	M [*]	
黄金コン	N	(M)	M	(M)	·M	(-)	(M)	(M)	
光教	N	N	M*	M	M,N	N,M	M*	(M)	
長白コン	M	M	M	M	M	M	-	. — ·	
徳裕コン	(M)	(M)	M	(M)	M	(M)	()	()	

注 N: Necrosis, M: Mosaic (*症状の激しいもの, ()症状の不明瞭なもの),

一:症状なし、(-):症状不明瞭)

3) ウイルス病抵抗性育種について

韓国において光教にnecrosisを生じるSMV-Nと総称する幾つかのウイルスの系統についての育種的対応は進展しておりnecrosisの発生の少ない品種、あるいは発生の認められない品種も育成されつつある。また、necrosisを起こす育種材料を淘汰するために、保毒品種として症状は軽いが種子伝染率の高い品種を検出し利用するなど応用研究にも成果がみられる。

育種的には多くのウイルス系統に罹病性であるが、症状が軽くnecrosisを生じない耐病性を狙うか、全く罹病しない抵抗性を狙うか、2つの方向がある。すでに、育種的にはかなり前進しているので、necrosisを起こさず、しかもモザイクを生じる病原系統にも抵抗性のものを中心に考えるべきである。

特にウイルス病抵抗性を育種目標として重視する組合せについては初期世代は保毒品種を多数栽植した圃場で罹病個体の淘汰を行うとともに、中・後期世代の系統については人工接種検定により抵抗性系統を選抜うるという選抜方法を体系化することが望ましい。

また、問題となる幾つかの病原系統毎に品種抵抗性についての検討を進めることが、 抵抗性育種を円滑に進めるためにも必要であろう。品種抵抗性の調査については日韓両 国の連絡試験を行うことも有益と考えられる。

4) タイズシストセンチュウ抵抗性育種について

崔ら(1983)の報告とその後の調査(未発表)によれば、韓国の北部〜中部にかけては線虫の分布する地域が多いとされる。しかし、大豆関係の研究者の認識としては、線虫によって大きく減収する圃場は限られているとしており、報告者も同様の印象を持った。

レースの分布については金ら(1983)と崔ら(未発表)の調査などからレース1,3,5及び未同定のCと呼ぶ4レースが見出されており、レース1と5が主力とされている。 この結果は日本と同様に、アメリカで問題になっているレース4あるいは2が未だ見出 されていない点でも興味深い。

育種的な対策としては現在小規模に試験を行っているものの、抵抗性の奨励品種を期待できる段階には達していない。

今後,必要性が高まれば試験規模を大きくするためにも線虫密度の高い現地圃場を借り上げるなどして初期世代から現地選抜を行うことが望ましい。室内検定については検 定施設を準備するとともに附近への汚染防止対策を考える必要がある。

対象とするレースとしてはレース 1 と 5 がある。レース 3 についてはレース 1 に抵抗 性の系統を選抜することによって解決できる。 日本の耐虫性品種はレース 3 による被害の程度を大幅に軽減できるものの、レース 1、 5 については、あまり効果が期待できない。現在利用できる日本はスズヒメだけである。

Ⅱ むすび

韓国国民にとって必須な食料である大豆の生産向上と安定のために、耐冷性並びに耐病虫性育種のより一層の充実を期待する。

Ν セミナー

- 1. 日本における大豆の育種の現況と大豆を通じての国際研究協力
 - 2. 日本の大豆育種体制と東北農業試験場における大豆育種研究
 - 3. 大豆を中心とした豆類の冷害と冷害研究