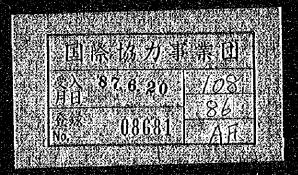
# SERICULTURAL DEVELOPMENT PROJECT


INDONESIA

FINALISTUDY REPORT

NO

QCTÖBER 1975

JAPAN INTERNATIONAL COOPERATION AGENCY



### CONTENTS

| -          |                                                             | Page |
|------------|-------------------------------------------------------------|------|
| Chapter 1. | Introduction                                                | 1    |
| •          | 1-1 Antecedents                                             | 1    |
| •          | 1-2 Purposes and objectives of the survey                   | 2    |
| Chapter 2. | Outline of the final design engineering                     | 4    |
|            | 2-1 Siting                                                  | 4    |
|            | 2-2 Sericulture centre                                      | 5    |
| •          | 2-2-1 Design of farms                                       | 5    |
|            | 2-2-2 Size and Layout of Buildings                          | 9    |
|            | 2-2-3 Design of Irrigation Facilities                       | 11   |
| •          | 2-2-4 Rough Cost Estimation and Construction Schedule       | 12   |
|            | 2-3 Sericulture subcentre                                   | 15   |
|            | 2-3-1 Engineering for farm development                      | 15   |
|            | 2-3-2 Size and Layout of Buildings                          | 17   |
|            | 2-3-3 Design of Irrigation Facilities                       | 20   |
|            | 2-3-4 Rought Cost Estimation and Constructions Schedule     | 21   |
| -1         |                                                             |      |
| Chapter 3. | Field Survey - Approach and Analysis (Centre and Subcentre) | 24   |
|            | 3-1 Water System Survey                                     | 24   |
|            | 3-1-1 Water resources survey                                | 24   |
|            | 3-1-2 Hydrographic survey                                   | 24   |
|            | 3-1-3 Water quality survey                                  | 27   |
|            | 3-2 Soil survey                                             | 28   |
|            | 3-2-1 Chemical properties of soil                           | 28   |
|            | 3-2-2 Physical characteristics of soil                      | 30   |
|            | 3-2-3 Dynamic behaviour of soil moisture                    | 45   |
|            | 3-3 Hydrological and meteorological survey                  | 46   |
|            | 3-4 Socio-economic survey                                   | 51   |
|            | 3-4-1 Communities and farming around the proposed site      | 51   |



|             | 하는 보통하는 이 생활에 하는 것이 되는 것을 하는 것이 있는 것이 되는 것이 되었다.<br>사람이 보통하는 것이 하는 것이 불편되었다.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Page       |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|             | 3-4-2 Labour conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 51       |
|             | 3-4-3 Survey of construction materials,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
|             | equipment and labour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 51         |
| Chapter 4.  | Final Design of Sericultural Centre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 55         |
|             | 4-1 Field Design (incl. Building Site Design)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 55       |
|             | 4-1-1 Mulberry Field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 55         |
|             | 4-1-2 Building Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 56         |
|             | 4-1-3 Road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|             | 4-1-4 Drainage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
|             | 4-1-5 Irrigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 59         |
|             | 4-1-6 Appurtenant Structures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 76         |
|             | 4-2 Water Source Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 76         |
|             | 4-2-1 Diversion Works                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 76         |
|             | 4-2-2 Pumping Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 81         |
|             | 으로 가는 사용하는 사람들은 사용하는 것이 되면 생활하면 보고 하는 것이 되었다. 그런 것이 되었다.<br>- 사용하는 사용하는 사용하는 사용하는 사용하는 사용하는 사용하는 사용하는                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| Chapter 5.  | Design for the Establishment of Sericulture Sub-centre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 153        |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|             | 5-1 Field desing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 153        |
|             | 5-1-1 Mulberry field design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
|             | 5-1-2 Soil improvement (ventilation improvement)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 153        |
|             | 5-1-3 Preparation of building site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 159        |
|             | 5-1-4 Roadway design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 159        |
|             | 5-1-5 Drainage design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200        |
|             | 5-1-6 Design of Irrigation Facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
|             | 5-2 Water resources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 165        |
|             | 5-2-1 Water Intake work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 165<br>168 |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 171        |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| San San San | 5-3 Basic Building Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 180        |
|             | 5-3-2 Layout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 180        |
|             | 5-3-3 Accompanying Facilities Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 180        |
|             | The second of th | 100        |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|             | - <b>ii</b> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |

### Chapter 1. Introduction

### 1-1. Antecedents

In Indonesia, sericulture is a time-honoured industry brought up with enthusiasm. In 1971, the output of raw silk was 144 tons. But in the following years, heavy drought and pebrine raged; the year 1974 ended in a token output of 23 tons.

Tropical though Indonesia is, she has a good reason to have sericulture - the great blessings of climate.

Encouraged by this, the Indonesian Government mapped out a sericulture promotion program and established a sericultural department in the Forestry Experiment Station, with a view to increase the sericultural farmers' earnings through increased production of cocoons. Regretably enough, the program was stalled for want of except sericulturalists, and due to the lower techniques.

Against this backdrop, the Indonesian Government requested the Japanese Government to formulate a project for invigorating the sericultural industry.

At the request of the Indonesian Government, in March, 1974, a first mission, headed by Mr. M. Asino, visited Indonesia and conducted a preliminary survey. The diligence and eagerness of sericultural farmers and high potentials in sericultural industry reasoned the mission into concluding that the project should be implemented as early as possible.

of the project, a long-term resident survey team, led by Dr. K. Aoki, was despatched for a period of one year from March 1975. They put together the various type of information, including statistical data, and carried out a fact-finding survey with energy.

As a result of close analysis of the findings and comments in the report submitted by the team, the Indonesian Government made a decision to go. Following this, the Japanese Government sent a project implementation planning team, directed by Mr. M. Kumamoto, in November 1975, in order to determine the place and scope of technical cooperation to be rendered

by the Japanese Government.

As a result, South Sulawesi, which has turned out 80 to 90% of cocoons produced in Indonesia, was selected as a project site, and it was also determined to install a sericulture centre at Bili-Bili Vilage in the suburbs of the District of Ujung Pandang, a subcentre at the Soppeng Sericulture Station now in operation, and five pilot units in major sericultural areas, together with necessary mulberry farms, sericultural facilities and land lots.

In March 1976, Dr. K. Hazama, head of a Japanese mission, and Ir. Soedjono Soerjo, Secretary of the Directorate General of Forestry, agreed each with the other, and signed the Record of Discussion on the project implementation plan.

### 1-2. Purposes and objectives of the survey

The survey to be conducted this time pursuant to the Record of Discussion agreed upon between the Japanese Government and the Indonesian Government purposes to cover the following undertakings.

As regards the sericulture centre and subcentre, soil survey, meteorological survey and socio-economic survey, plane table surveying, and topographic surveying will be conducted in order to study whether mulberry fields and land lots are available in the proposed site as planned and where the mulberry fields should be located as classified by purpose, and also to make up a blueprint for the formation of mulberry fields. In addition, a profile surveying will be carried out to determine the sources of crinking water, utility water and irrigation water and their intake methods; to determine the routing of the aqueducts to the farm ponds and their water requirements; to plan the water quality survey; and finally to blueprint the water system.

As regards the sericultural facilities, a blueprint for land adjustment and a basic design drawing and a plat for buildings will be prepared. For the cold storage for silkworm egg speed and the nursery for male silk moths, blueprinting will be made. In addition, building appurtenances, including equipment and furnishings, will be stated in detail as to type, quantity, specifications and cost estimate.

Blueprints, land reclamation method, basic design drawings and other necessary data will be submitted to the indonesian Government, and the Indonesian Government will make arrangements with Japanese exports and undertake the formation of multerry fields and the construction of buildings and water system.

Remarks: Formation of the survey team, itinerary, and Indonesian

Personnel will be detailed in a separate survey report.

### Chapter 2. Outline of the final design engineering

### 2-1. Siting

The sericulture centre and subcentre are the subjects of implementation design.

[발생님들] [1] 공식 [1] 보고 있다. 이 사람들은 사람들이 되었다. 함께

The sericulture center will be located at Bili-Bili Village, lying along Marino Road, some 30 km east of Ujung Pandang, the capital of South Sulawesi in Sulawesi Island.

The proposed site for the center is in a hilly area at an altitude of 150 to 215 m.

On the other hand, two subcentres will be located at Soppeng in South Sulawesi, about 180 km north of Ujung Pandang; one at the sericulture substation of the Forestry Experiment Station in Donri-Donri Village, and the other at Lalabata Riaja, about 10 km north of the substation.

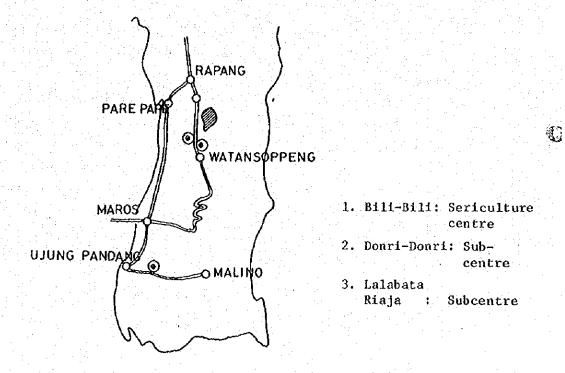



Fig. 2-1 Location of sericulture centre and subcentres

### 2-2. Sericulture centre

The construction of the sericulture centre aims at establishing the sericultural technology in Indonesia.

The functions and activities there will include: establishment of technological norms for mulberry cultivation and silkworm nursery, production
and distribution of original strain and mulberry cuttings, pest control of
silkworm and mulberry, training of subcentre engineers, and short-term
education of leading farmers.

The planned facilities are as follows.

Mulberry fields : 8.0 ha

Aggregate floor space of

buildings : 3,510 m<sup>2</sup>

Water system : Pump station, conduit, and form Ponds

pond

The candidate site for the sericulture centre is measured as follows.

Total area : 8.8 ha

Effective area : 7.33 ha

Mulberry fields : 6.21 ha

Buildings : 1.12 ha

The area of mulberry fields is 0.67 ha too short.

### 2-2-1 Design of farms

### a) Scale and layout of farms

The site picked up for the sericulture centre is in a hilly area, and this topographical restriction prevents gathering the farms at one place.

Farm No. 1 is sited on a hill, 200 to 215 m above the sea level, major facilities are put together in it.

Farm No.2 is sited on the side of a hill having an altitude of 155 to 170 m, to operate mulberry fileds alone. The existing microwave road (asphalt pavement of 3.5 m wide) will be used for inter-

### connecting the Farms No.1 and No.2.

Table 2-1. Area of Farm

|           | egg-production | testingfarm | glass land |
|-----------|----------------|-------------|------------|
| Farm No.1 | 2.14ha         | 0.82ha      | 0.98ha     |
| Farm No.2 | 1,12           | 0.90        | 0.25       |
| Total     | 3.26           | 1.72        | 1.23       |

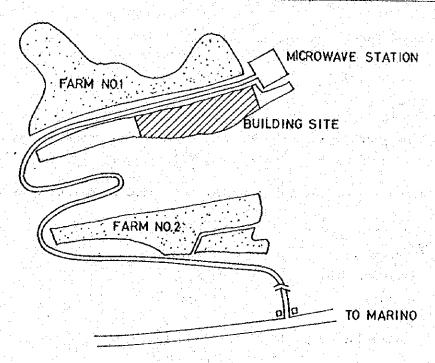
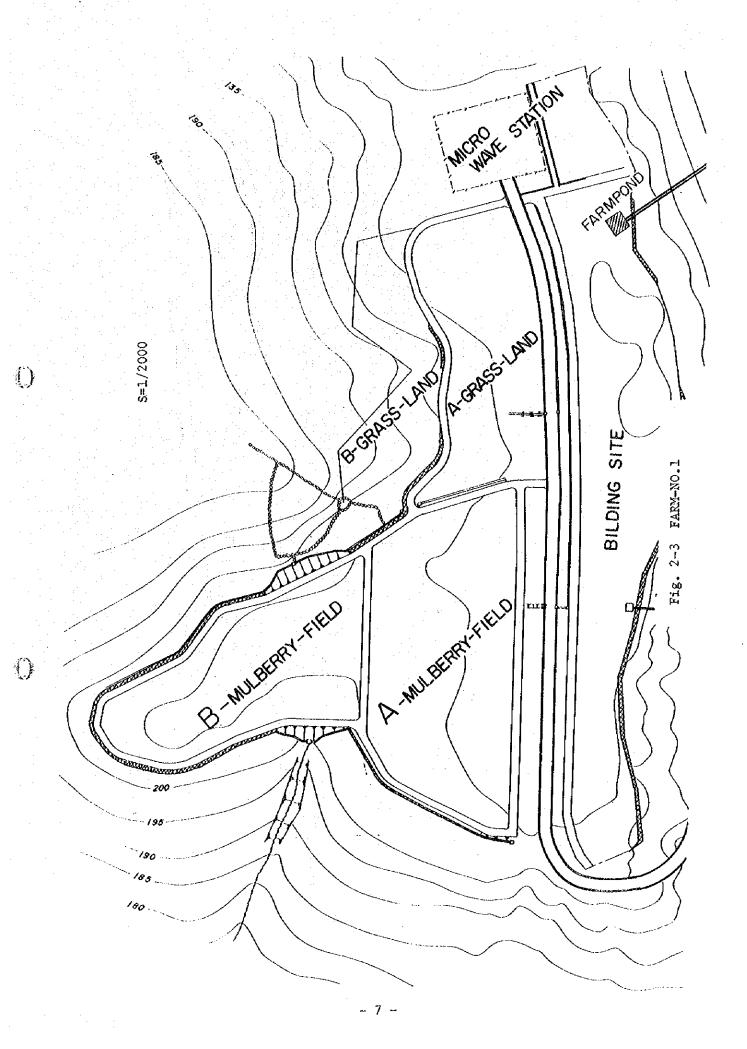
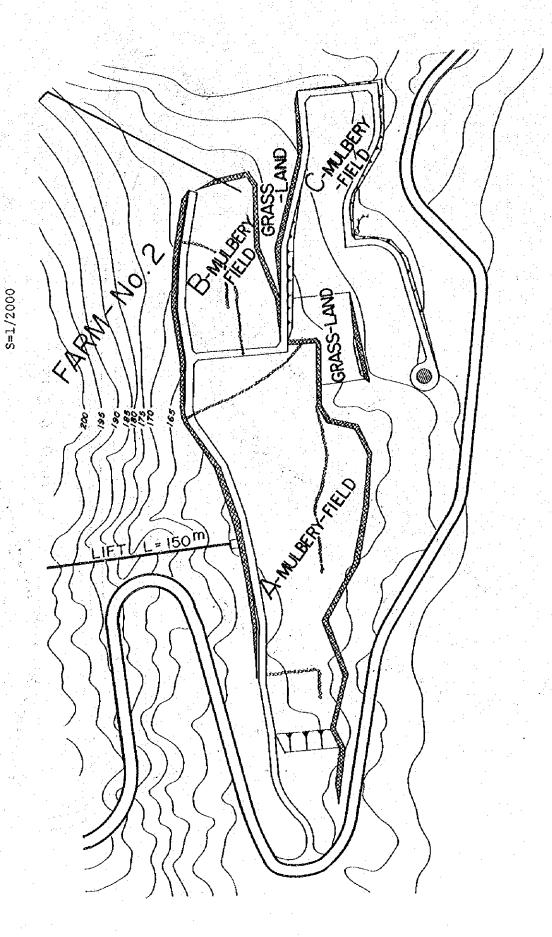





Fig. 2-2





- 8 -

### 2-2-2 Size and Layout of Buildings

Table 2-2 shows the kinds and size of buildings and Fig. 2-2 their layout. The buildings to be constructed in Sericulture Centre and their size are shown in the following table.

Table 2-2 List of New Construction in Sericulture Centre

|                  |                                         |                                        | Im . 3 ~3          | 75 1474            |
|------------------|-----------------------------------------|----------------------------------------|--------------------|--------------------|
|                  | Building Name                           | Brief Description                      | Total Floor        |                    |
|                  |                                         |                                        | Area               | Area               |
| Λ                | Main building                           | 2-storied reinforced concrete building | 848 m <sup>2</sup> | 413                |
| V,               | Cocoon testing room                     | 1-storied brick building               | 242                | 180                |
| В                | Rearing room for rearing method         | - do -                                 | 456                | 192                |
| C                | Rearing room for egg<br>production (1)  | - do -                                 | 456                | 192                |
|                  | u (2)                                   | - do -                                 | 456                | 192                |
|                  | Research room                           | - do -                                 | 86                 | 46                 |
| , D              | Pathological rearing room               | - do -                                 | 264                | 96                 |
| E                | Pebrine inspection room                 | - do -                                 | 372                | 252                |
| F                | Silkworm egg refrigerator               | - do -<br>(prefabricated<br>partition) | 270                | 180                |
| G                | Artificial hatching room                | - do -                                 | 48                 | 24                 |
| Н                | Chemicals warehouse                     | do                                     | ••                 | 4                  |
| I                | Garage                                  | do                                     |                    | 60                 |
| J                | Mulberry field maintenance building     | – do –                                 | 165                | 117                |
| K                | Compost shed                            | - do -                                 | 264                | 200                |
| $\mathbf{L}_{-}$ | Agricultural machine and tool warehouse | - do -                                 | 187                | 120                |
|                  | Sericultural equipment pool             | 2 places                               | -                  | $(40 \text{ m}^2)$ |
|                  | Tota1                                   | ,                                      |                    | 2,268              |

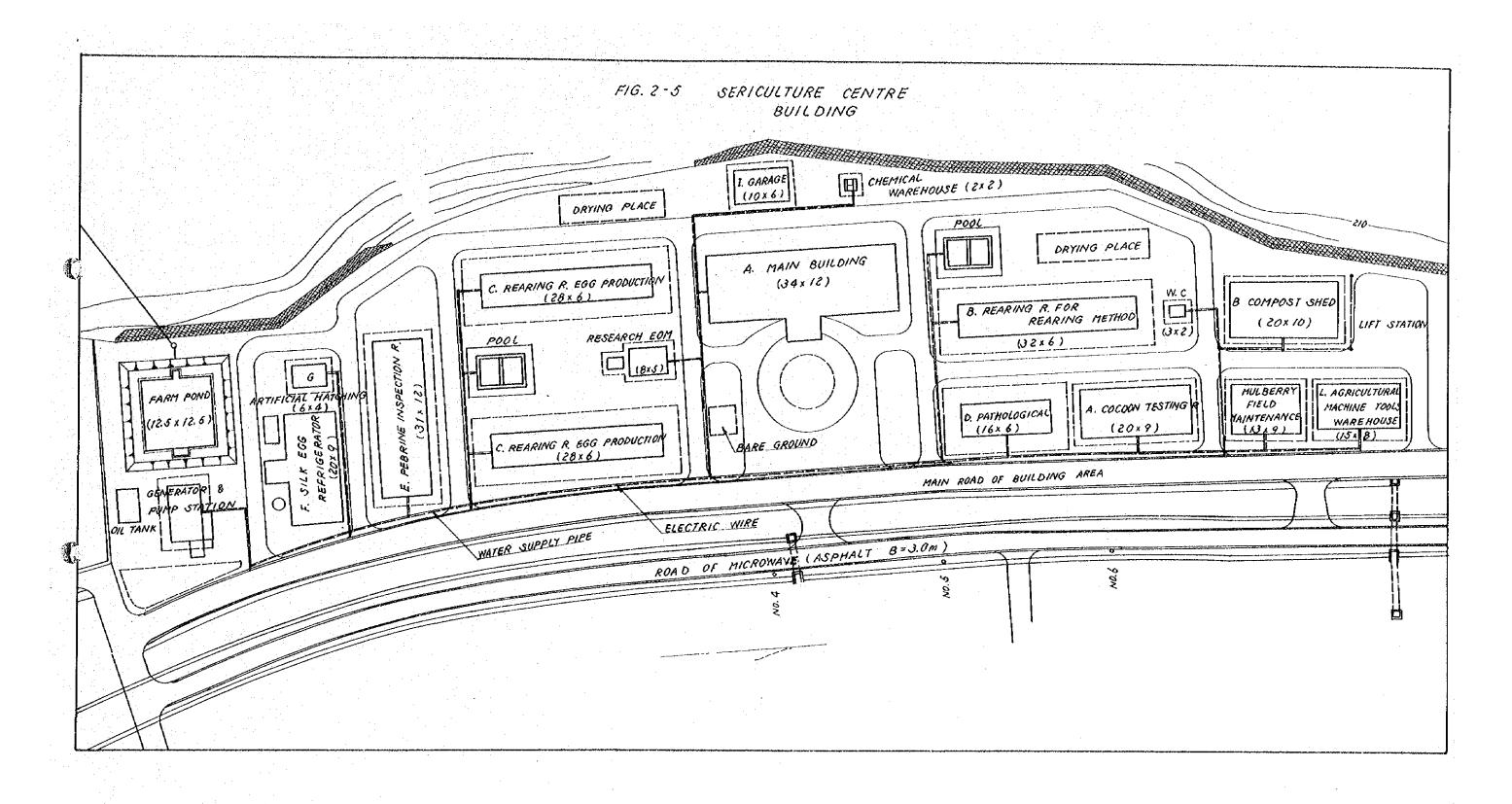



Fig. 2-5 Arrangement Plan for the Sericulture Centre

### 2-2-3 Design of Irrigation Facilities

In the capacity calculation of irrigation facilities, the irrigation area (mulberry field) was taken at 8.0 ha, the water supply hours from the water source to the farm pond at 24 hours, and the irrigation hours at 16 hours. Further, it was assumed that gun type sprinkler irrigation would be introduced.

The following table shows the quantity and specifications of irrigation facilities.

Table 2-3 List of Irrigation Facilities

| Table 2-3 List of Irrigation Facilities |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                              |  |  |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------|--|--|
| Name of Facility                        | Structure/<br>Equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Quantity            | Remarks                                                      |  |  |
| Inktake and conveyance facilities       | Intake works                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 set               | Structure: Ø300mm porous pipe                                |  |  |
|                                         | Ритр                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 units             | Port diameter: 65x80m/m Discharge : 0.51 m <sup>3</sup> /min |  |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Total head : 172m                                            |  |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Power plant : 50 PS diesel engine                            |  |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Type : Multi-stage horizontal centrifugal pump               |  |  |
|                                         | Pump house                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 33.12m <sup>2</sup> | Structure: RC construction                                   |  |  |
|                                         | Water pipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1368.37m            | Type : Ductile cast iron pipe                                |  |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Diameter : Ø 100                                             |  |  |
| Irrigation facilities                   | Farm pond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 300 m <sup>3</sup>  | Structure: RC construction                                   |  |  |
|                                         | Pressure pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 units             | Port diameter: 80 mm                                         |  |  |
| Stranger Land                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Discharge : 0.744 m <sup>3</sup> /min                        |  |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Total head : 51m                                             |  |  |
|                                         | eren de la composition della c | :                   | Power plant : 15kW motor                                     |  |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Type : Single-suction single-<br>stage centrifugal pump      |  |  |
|                                         | Farm 1∿Farm 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 185.34m             | Type : Ductile cast iron pipe                                |  |  |
|                                         | connecting pipeline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · .                 | Diameter: Ø 100                                              |  |  |
|                                         | Water supply pipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1376.8m             | Type : Vinyl chloride pipe<br>Diameter : ø 100               |  |  |
|                                         | Hydrant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20 places           | Diameter : ø 75                                              |  |  |
|                                         | Sprinkler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 sets              | Type: No.70 (24 units per set)                               |  |  |

### 2-2-4 Rough Cost Estimation and Construction Schedule

## a) Construction Cost

Table 2-4 Construction Cost of Sericulture Centre Facilities

| Type of<br>Work/Facility          | Main Components                                                                      | Specification/<br>Standard                                       | Quantity                      | Direct Construction Cost |
|-----------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------|--------------------------|
| 1. Reclamation works              | Mulberry field for<br>silkworm egg product-<br>ion<br>Experimental mulberry<br>field |                                                                  | 3.26 ha<br>1.72 ha            | 16,156,000               |
|                                   | Grassland<br>Building site                                                           |                                                                  | 1.23 ha<br>1.12 ha            |                          |
|                                   | Farm road                                                                            | Gravel pavement, B = 4.0                                         | 1684.62 m                     |                          |
|                                   |                                                                                      | Asphalt pavement,<br>B = 5.0<br>Gravel pavement,<br>B = 3.0      | 378.30 m                      |                          |
|                                   | Stone mansory<br>Drainage side ditch                                                 | H=2.0m B=1.0m                                                    | 1629.10 m<br>1186.50 m        |                          |
| 2. Water source<br>works          | Intake works                                                                         | Collecting conduit, \$\phi\$ 300  Draft tank(RC)                 | 1 place                       | 4,674,000                |
|                                   | Pump house                                                                           | 9.2m × 3.6m                                                      | 33.12m <sup>2</sup>           | 7,242,000                |
|                                   | Pump                                                                                 | \$80 x 65 m/m<br>H172m, 50PS<br>Multistage cent-<br>rifugal pump | 2 units                       | 10,188,000               |
| 3. Water con-<br>veyance<br>works | Water pipe<br>Aqueduct                                                               | Ductile cast<br>iron pipe, ø100<br>Steel pipe                    | 1368.37 m<br>5 places         | 15,480,000               |
| 4. Irrigation facilities          | Farm pond<br>Pressure pump                                                           | 12.5x12.5x2.4 Single stage centrifugal pump, \$\psi 100          | 375 m <sup>3</sup><br>2 units | 11,668,000               |
|                                   | Connecting pipeline                                                                  | Ductile cast<br>iron pipe, ø100                                  | 185.34 m                      | 9,521,000                |
|                                   | Water supply pipe                                                                    | Vinyl chloride<br>pipe, ø100                                     | 1376.80 m                     |                          |

| Type of<br>Work/Facility       | Main Components                   | Specification/<br>Standard            | Quantity             | Direct Const-<br>ruction Cost |
|--------------------------------|-----------------------------------|---------------------------------------|----------------------|-------------------------------|
|                                | Hydrant<br>Sprinkler set          | ∮75<br>Type No. 70,<br>24 units/set   | 20 places<br>24 sets |                               |
| 5. Sericultural buildings      | 13 buildings                      |                                       | 2.268 m <sup>2</sup> | 232,273,000                   |
| 6. Appurtenant facilities      | Pump and generator<br>house       | 10m × 6m                              | 60m <sup>2</sup>     | 13,776,000                    |
|                                | Cable                             |                                       | 1 set                | 96,034,000                    |
|                                | Water supply pump<br>and tank     | 0.75 kW centri-<br>fugal pump         | 1 unit               |                               |
|                                | Water supply and drainage pipe    | Vinyl chloride<br>pipe                | 1 set                |                               |
|                                | Generator                         | (incl. fuel tank)                     |                      |                               |
|                                | For pressure pump                 | 40 KVA                                | 2 units              |                               |
|                                | For cold storage                  | 65 KVA                                | 2 units              |                               |
|                                | For lighting and electric heating | 40 KVA                                | 1 unit               |                               |
|                                | Electric wiring work              |                                       | 1 set                |                               |
| Total direct construction cost |                                   |                                       |                      | 417,012,000                   |
| Overhead cost                  |                                   | · · · · · · · · · · · · · · · · · · · |                      | 86,434,000                    |
| Total const-<br>ruction cost   |                                   |                                       |                      | 503,446,000                   |

### b) Construction Schedule

The construction schedule is shown in Table 2 - 5

Table 2-5 Construction Schedule of the Sericultural-Centre

| Remarks  | lst year bulloozer is rentaled                   | After 2nd year bul. will be provided from Japan | ry season only included installation of pumps          | Aqueouct 5 places support 82 places buried 989M surface 326M | ist : Mulberry field maintenance room 2nd : Silkworm egg refrigerator room |
|----------|--------------------------------------------------|-------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------|
| 3rd Year | 1. OHA                                           |                                                 |                                                        |                                                              |                                                                            |
| 2nd Year | 4.0HA                                            | 1.0HA                                           | L=31M 6300<br>1,000M <sup>2</sup>                      | L=1,390M                                                     |                                                                            |
| lst Year | 3.0HA                                            |                                                 |                                                        |                                                              | •                                                                          |
| Items    | l Land Preparation<br>Muberry field<br>Glassland |                                                 | 2 Pump Staion<br>Intaice work<br>Pump house (2 places) | 3 Pipe Laying Foundation Pipe Laying                         | 4 Buildings                                                                |

3rd year 78° 4 ~ 79° 3 Buildings of centre will be disgned and constructed by indonesian side therfore, the schedule of buildings is not clear. Note lst year 76' 10 ~ 77' 3 2nd year 77' 4 ~ 78' 3

### 2-3. Sericulture subcentre

The subcentre mainly undertakes the production of silkworm egg, and also performs testing and investigations for the purpose of adapting to specific areas the standard techniques established by the sericulture centre.

It also assigned to guide and manage the pilot unit, educate and train the leaders and sericultural farmers.

The planned facilities are as follows.

Mulberry fields

: 19.50 ha

Buildings

: 2,592 m<sup>2</sup>(in aggregate floor space)

Water system

: Pump station, Form pond

The candidate place for the subcentre is measured as follows.

### Land area

Sericulture substation,

: 0.5 ha

Forestry Experiment

Station

Lalabata Riaja Village

: 18.4 ha

Total

: 18.9 ha

### Effective area

Mulberry fields

: 17.8 ha

Building lots

1.1 ha

Total

: 18.9 ha

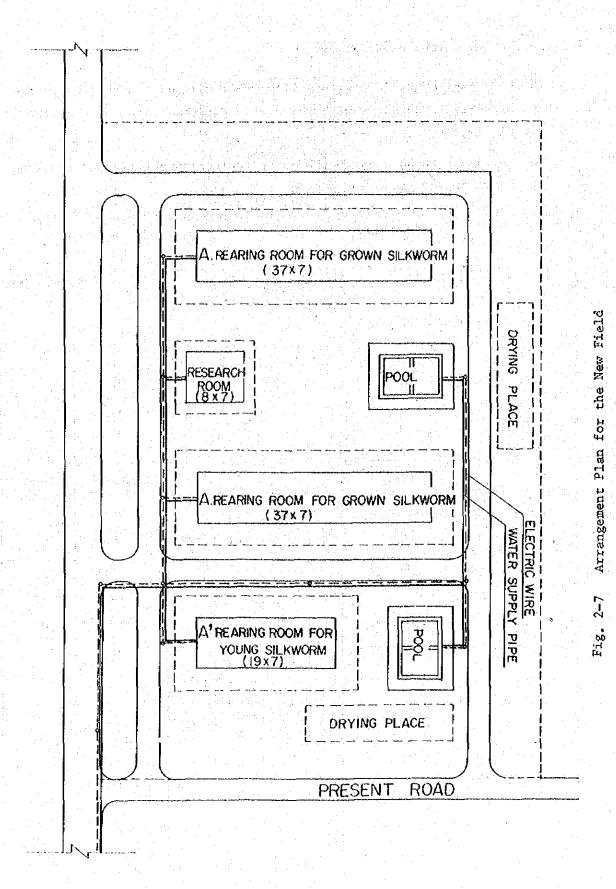
### 2-3-1 Engineering for farm development

### (a) Scale and layout of farms

The mulberry fields will be locates at a belt-like national land, measuring about 1.0 km east to west and 50 to 200 m south to north, and 120 to 129 m in altitude, available in Lalabata Riaja.

For the purpose of maximizing the area of mulberry fields, the lotting of the land and the construction of a trunk road are arranged as shown in Fig. 2-6.

Fig. 2-6 The Map of the New Field (SUB CENTRE)


### 2-3-2 Size and Layout of Buildings

The buildings shown in the following table will be constructed in the new mulberry field site and Sub-Centre. For the layout of these buildings, see Fig. 2-7  $\sim$  2-8.

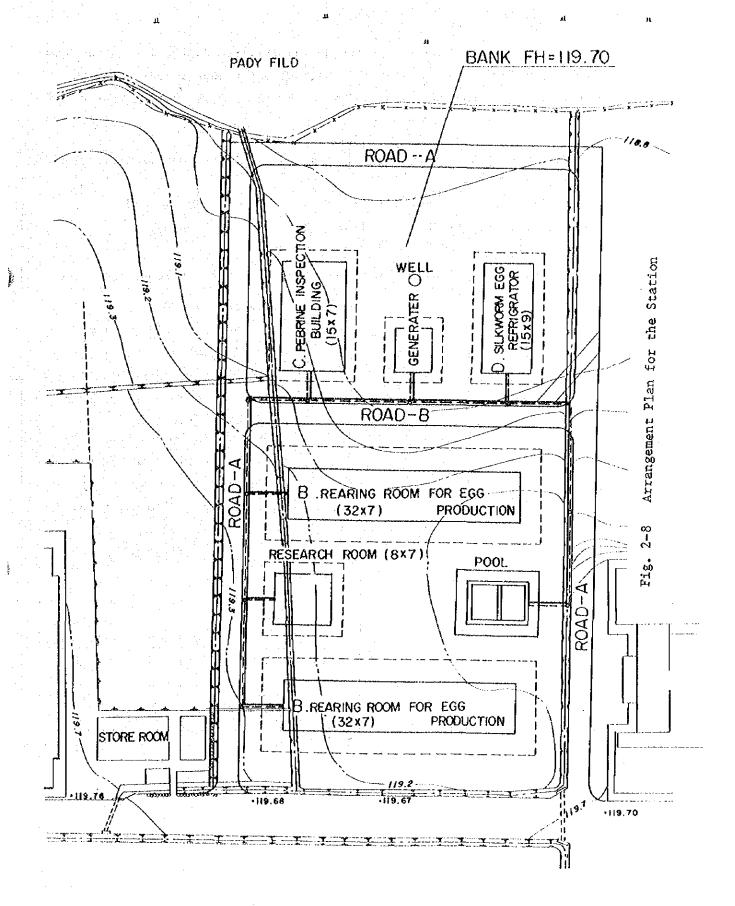

The buildings to be constructed in Sericulture Subcentre and their size are shown in the following table.

Table 2-6 List of New Construction or Remodelting in Sericulture Subcentre

|    | Building Name                       | Description Brief                                        | Total Floor<br>Area                    | Bullding<br>Area   |
|----|-------------------------------------|----------------------------------------------------------|----------------------------------------|--------------------|
|    | New Mulberry Field                  |                                                          |                                        |                    |
| Λ  | Rearing room, grown silkworm (1)    | Single storied brick<br>building w/gable roof            | 494 m <sup>2</sup>                     | 224 m <sup>2</sup> |
|    | n (2)                               | - do -                                                   | 494                                    | 224                |
|    | Research room                       | - do -                                                   | 110                                    | 56                 |
| A¹ | Rearing room, young silkworm        | - do -                                                   | 338                                    | 140                |
|    | Total                               |                                                          | 1,436                                  | 644                |
|    | Sericulture Sub-Station             |                                                          |                                        | ,                  |
| В  | Rearing room for egg production (1) | Single storied brick                                     | 494                                    | 224                |
|    | (2)                                 | - do -                                                   | 494                                    | 224                |
|    | Research room                       | - do -                                                   | 110                                    | 56                 |
| C  | Pebrine inspection room             | - do -                                                   | 180                                    | 105                |
| D  | Silkworm egg refrigerator           | - do -<br>(Prefabricated<br>partitions)                  | 310                                    | 286                |
|    | Silkworm nursery                    | Existing building in the Subcentre site to be remodelled | ************************************** | <b></b>            |
|    | Artificial hatchery                 | - do -                                                   |                                        | -                  |
|    | Chemicals storage<br>Storeroom      | - do -                                                   | ~                                      |                    |
|    | Total                               |                                                          | 1,588                                  | 895                |



- 18 -



### 2-3-3 Design of Irrigation Facilities

In the capacity calculation of irrigation facilities, the irrigation area (mulberry field) was taken at 19.5 ha, the water supply hours from the water source to the farm pond at 24 hours, and the irrigation hours at 16 hours.

The following table shows the quantity and specifications of irrigation facilities.

Table 2-7 List of Irrigation Facilities In the New Field

| Name of Facility      | Structure/<br>Equipment | Quantity             | Remarks                                                                                                                            |
|-----------------------|-------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Intake and conveyance | Intake works            | 1 set                | Structure: Porous pipe, \$300                                                                                                      |
| facilities            | Pump                    | 2 unit               | Diameter: 100 mm  Discharge: 1.178 m³/min  Total head: 12 m  Power plant: 1p PS diesel engine  Type: Single-stage centrifugal pump |
|                       | Pump house              | 33.12 m <sup>2</sup> | Structure: RC construction                                                                                                         |
|                       | Water pipe              |                      | Type : Ductile cast iron pipe Diameter : ø150 mm                                                                                   |
| Irrigation Facilities | Farm pond               | 600 m <sup>3</sup>   | Structure: RC construction                                                                                                         |
|                       | Pressure pump           | 2 units              | Diameter: 150 mm                                                                                                                   |
|                       |                         |                      | Discharge: 1.788 m <sup>3</sup> /m Total head: 61m                                                                                 |
|                       |                         |                      | Power plant: 45 kW motor                                                                                                           |
|                       |                         |                      | Type: Single-suction single-<br>stage centrifugal pump.                                                                            |
|                       | Water supply<br>pipe    | 1273.0 m             | Type : Vinyl chloride pipe<br>Diameter : 150 mm                                                                                    |
|                       | Hydrant                 | 22 places            | Diameter : ø 100                                                                                                                   |
|                       | Sprinkler               | 2 sets               | Type : No.70 (10 units/set)                                                                                                        |

| a) Constr<br>Table           | uction Cost 2-8 Construction Cos | at of the New Fiel                        | d and Stati          | ion                    |
|------------------------------|----------------------------------|-------------------------------------------|----------------------|------------------------|
| Type of<br>Work/Facility     | Main Components                  | Specification/<br>Standard                | Quantity             | Direct Co<br>ruction C |
| 1. Reclamation<br>New Field  | Mulberry field                   | Underdrainage<br>(bamboo)                 | 17.8 ha              | 14,442,                |
|                              | Building site                    |                                           |                      |                        |
|                              | Arterial road                    | Gravel pavement B = 5.0 m                 | 1165.0 m             |                        |
|                              | Parm road                        | Gravel pavement B = 4.0 m                 |                      | ·                      |
|                              | Collecting gallery               | No timbering                              | 1162.0 m             |                        |
|                              | Intra-site road                  | Grave1 pavement.<br>B = 3.0 m             | m                    |                        |
| Station Station              | Building site                    |                                           | 1.0 ha               | 1,488,                 |
|                              | Intra-site road                  |                                           | m                    |                        |
| 2. Water source<br>New Field | Intake works                     | Collecting<br>gallery, \$600              |                      | !                      |
|                              |                                  | Draft tank, RC                            | 1 place              | 2,901,                 |
|                              | Pump house                       | 9.2m x 3.6 m                              | 33.12 m <sup>2</sup> | 7,242,                 |
|                              | Pump                             | ø100 H = 14m<br>8 PS<br>Single stage      | -                    |                        |
|                              |                                  | centrifugal pump                          | 2 units              | 2,600,                 |
| 3. Water con-<br>veyance     |                                  | Ductile cast<br>iron pipe                 | 88 m                 | 351,0                  |
| works New<br>Field           |                                  |                                           |                      |                        |
| 4. Irrigation facilities     | Farm pond                        | 25mx16mx1.8m                              | 720 m <sup>3</sup>   | 13,971,0               |
| New field                    | Pressure pump                    | Single stage<br>centrifugal<br>pump, ø150 | 2 units              | 9,159,                 |
|                              | Water supply pipe                | Vinyl chloride<br>pipe, \$150             | 1273.0 m             |                        |
|                              | Hydrant                          | ø100                                      | 22 places            |                        |
|                              | Sprinkler set                    | Type No. 70                               | ! [                  | 2                      |

| Type of<br>Work/Facility          | Main Components                         | Specification/<br>Standard | Quantity                                 | Direct Const-<br>ruction Cost |
|-----------------------------------|-----------------------------------------|----------------------------|------------------------------------------|-------------------------------|
| 5. Sericultural<br>buildings      | STATION<br>NEW-FIELD                    |                            | 895 m <sup>2</sup><br>644 m <sup>2</sup> | 80,588,000                    |
| 6. Appurtenant facilities station | Pump and generator<br>house             | 5 x 6                      | 30 m <sup>2</sup>                        | 9,657,000                     |
|                                   | Water supply pump and tank              |                            |                                          |                               |
|                                   | generator                               |                            |                                          |                               |
|                                   | For pressure pump                       | 70 KVA                     | 2 units                                  | 139,264,000                   |
|                                   | For lighting                            | 10 KVA                     | 1 unit                                   | (NEWFIELD )                   |
|                                   | Water supply and<br>drainage facilities |                            | l set                                    |                               |
|                                   | Electric wiring work                    |                            | 1 set                                    |                               |
| New-Field                         | Pump & generator house                  | 10m x 6 m                  | 60 m <sup>2</sup>                        | 13,776,000                    |
|                                   | Pressure pump                           |                            | 2 units                                  |                               |
|                                   | Water supply pump and tank              | 0.1 m <sup>3</sup> 0.75KW  | 1 unit                                   |                               |
|                                   | Radiator                                | 30 KVA                     | 2 units                                  |                               |
|                                   | Water supply and<br>drainage facilities |                            | 1 set                                    |                               |
|                                   | Electric wiring work                    |                            | 1 set                                    |                               |
| Total direct construction cost    |                                         |                            |                                          | 293,283,000                   |
| Overhead cost                     |                                         |                            |                                          | 57,567,000                    |
| Total const-<br>ruction cost      |                                         |                            |                                          | RP<br>350,850,000             |
| <u></u>                           |                                         |                            | L.                                       | <u> </u>                      |

### b) Construction Schedule

The construction schedule is shown in Table 2 - 9

| 2 Pump Station Intaice work Intaice work Pump house 3 Buildings SOPPENG SERICULTURAL STATION I Building site preparation Dry season only Included installation of pum and pipe laying Dry season only | Building site | NEW FIELD.  1 Land Preparation  3.5%A 6.0%A 5.0%A Expected dry season only diestland | Items   St Year   3rd Year   Remarks | lation lation | S.OHA | 13,0 |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------|--------------------------------------|---------------|-------|------|--|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------|--------------------------------------|---------------|-------|------|--|

The above schedule will be affected with the condition of the road from national road to the new field. Note

### Chapter 3. Field Survey - Approach and Analysis (Centre and Subcentre)

### 3-1. Water System Survey

### 3-1-1. Water resources survey

The survey was carried out in search of such resources that are nearest to the beneficiary areas; that can supply ample, quality water throughout the year; and that are easy to convey to the beneficiary areas.

### (1) Sericulature centre

According to the report prepared by the project implementation planning team (1975), several springs at the foot of a mountain which were nearest the beneficary were reconnoitered. They all were found depleted and unable to supply water in the dry season.

For this reason, the Berang, flowing about 1.3 km east of the beneficiary areas, was selected as a source, and its potential, quality and intake method were investigated.

### (2) Subcentre

A tributary of the Tawelng is flowing along a proposed mulberry field. It was selected as a source and its potential, quality and intake method were investigated.

### 3-1-2. Hydrographic survey

At each intake site, the flow velocity by depth was measured across the river by making use of a Price's current meter, and the flow rate was calculated. The results of the computation of flow rate of the Berang at the proposed intake site are as shown in Table 3-1; in the low-water season, the flow rate is as high as 1.891 m<sup>3</sup>/sec. or more. The flow rate at the intake site from which water is to be supplied to the Subcentreis as low as about 9 lit./sec. (See Table 3-1). Judging from the observation of

0 31.0 0 30.0 0 38 28.0 0 Ο. 19 500 0 o SVO 82 0.113 819 1 070 0 0 22.0 16 147 818.1 180 0 0 96 S0 0 180 0 991 0 T 930 Belang · quantities of Belar 0 105 18.0 0 213 S 070 0.103 0 150 0.01 960 0 0.225 \$ 368 0 140 132 0 331 S 485 0 033 D 154 150 0 163 S 200 240 0 Water 0 181 0.01 991 0 S 625 £90 Ö H. 0 071 0.8 191 0 2 738 990 0 Table 154 0.9 0.138 S 468 990 0 103 07 0.101 S 063 610 0 07 83 0.027 860 0 F 203 0 00 0 zu S/wDIS DELLH VEEV **VELOSITY** 

168 7

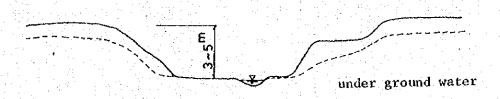
- 25 -

flow rate at the head works site some 1 km downstream of the intake site and the topography shown in Fig. 3-2, a large underflow is suspected to be.

According to the intake method illustrated under item 5-2-1, 19.5 lit./sec. or more of water necessary for irrigation in the right time will be available.

Fig. 3-1 Hydrographic measurement

Date of measurement: Aug. 21, 1976


The overall width of the waterway is 60 cm, and the velocity at the depth of 5 cm in the center is taken as the mean velocity for computation of discharge.

Area of section, A: 300 cm2

Velocity, v : 0.291 m/sec. = 29.1 cm/sec.

Flow rate, Q :  $300 \times 29.1 = 8,730 \text{ cm}^3/\text{sec}$ .

= 8.73 lit./sec.



Pig. 3-2 Rough sketch of Cross Section at Intake Site (tributary of the Berang)

### 3-1-3. Water quality survey

By making use of a AM = 7B type pH meter and a DO = 1B type dissolved oxygen measuring apparatus, pH and COD of water at each intake and of water available in the sub-centre were measured.

The results are as shown in Table

Table 3-2 PH and COD

| Place                          | Sampling Siste                                                  | pН  | COD<br>(ppm) | Remarks   |
|--------------------------------|-----------------------------------------------------------------|-----|--------------|-----------|
| Sericulture centre (Bili-Bili) | Intake of the<br>Bearing                                        | 8.1 | 0.70         |           |
| Subcentre<br>(Soppeng)         | Well at fila-<br>ture                                           | 7.7 | 0.70         |           |
|                                | Proposed intake<br>site of the tri-<br>butary of the<br>Tawelng | 8.1 | 0.75         |           |
| Ujung Padang                   | Grand Hotel                                                     | 7.4 | 0.50         | Tap water |

As shown above, pH value of the river water is as high as 8.1. This is because the soil of the catchment area contains much limestone. So long as irrigation is concerned, there is no problem. But, a water prification plant is indispensable for the sericulture, reeling, drinking or other purposes. Also for the refrigerator, demineralizer is required. COD, an index of water pollution, is 0.75 ppm or lower, manifesting that pollution has not been developed yet.

### 3-2 Soil survey

The soil survey has a great bearing on the reclamation of farms, subsoil improvement, determination of irrigation system and water system planning, fertilizing and eventually on the results of the project.

For this reason, the survey was conducted in a planned way as shown in Table 3-3.

Table 3 - 3 Survey subjects

| Subjects                                    | Sericulture centre<br>(Bili-Bili) | Subcentre<br>(Soppeng) |
|---------------------------------------------|-----------------------------------|------------------------|
| Chemical properties:                        |                                   |                        |
| pH (kCl)<br>Lime requirement                | 0                                 | 0                      |
| Phosphate-absorption coefficient            | 0                                 | <b>o</b>               |
| Physical properties: /<br>Water retentivity | Ö                                 | o                      |
| Water permeability                          | o                                 | O                      |
| Three phases of soil                        | 0                                 | o                      |

### 3-2-1. Chemical properties of soil

### (1) Sampling

Surface soil and bottom soil were sampled for chemical analysis from three stops each at the proposed mulberry fields of the scriculture centre and subcentre.

### (2) Method of analysis

ph (KC1), lime demand and phosphate absorption coefficient which are influential factors in soil improvement were measured by making use of a portable soil tester (Yagi type).

### (3) Results of analysis

The results of analysis are shown in Table 3 - 4.

| Table 3-4 PI       | and PAC          |       |             |                                  |
|--------------------|------------------|-------|-------------|----------------------------------|
| Place              | Sampling<br>spot | Layer | рН<br>(KC1) | Phosphate-absorption coefficient |
| Sericulture        | No.1             | 1     | 5.25        | 1,000~1,250                      |
| center (Bili-Bili) |                  | ÌΙ    | 4.75        |                                  |
|                    | No.2             | I     | 5,50        | 850∿1,250                        |
|                    |                  | II    | 5.00        |                                  |
|                    | No.3             | 1     | 4.75        | 850√1,000                        |
| Subcenter          | No.1             | 1     | 6.00        | 700                              |
| (Soppeng)          |                  | II    | 6.00        | 850                              |
|                    | No.2             | 1     | 5.75        | 500                              |
|                    |                  | II    | 6.50        | 700                              |
|                    | No.3             | T.    | 5.75        | 600                              |
|                    |                  | ıı    | 6.00        | 700                              |

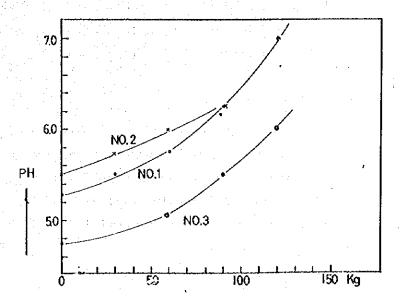



Fig. 3 - 3 Measurement of Lime Requirement (Sericulture Centre)

### 3-2-2. Physical characteristics of soil

### (1) Survey spot

At the same spots as with the chemical analysis, test holes of 1.0 to 1.5 m deep were dug, and two to three samples were taken from each layer by means of a 100 cc cylinder in a manner not to disturb the stratigraphic profile. The samples were put to the measurement of physical properties.

### (2) Survey subjects

The survey covered such subjects that have close relation with the reclamation of mulberry fields, subsoil improvement and irrigation planning, etc., including soil texture, bulk density, porosity, field capacity, first wilting point, available moisture, three phases of soil and water permeability.

### (3) Results of survey

The findings are outlined in Table 3 - 5.0f them, those having close relation with subsoil improvement and irrigation planning are put together in (1) through (4) below.

### Available moisture

The field capacity (FC) meaning the water content in soil emptied of gravity water to the extent of no tangible water movement after being supplied with water to the full, first wilting point (WP) as viewed from cultivation, and the thickness of soil layer (d) have the following relationship.

$$AM = \frac{1}{10} (FC - WP) \cdot d \qquad (mm)$$

Where, AM: available moisture with respect to a soil layer having a thickness of d cm (mm)

FC: field capacity in volumetric percentage (%)

WP: first wilting point in volumetric percentage

(%)

d: thickness of soil layer (cm)

FC was taken as water content in volumetric percentage 1 to 2 days after supply of 200 lit. of water per m<sup>2</sup> (water depth, 200 mm), and WP was determined by a regression formula obtained by experiments in the fields covered by the Aichi Irrigation Canal, one of the most famous in Japan.

 $WP = 0.36Fc^{1.08}$ 

Where, WP: first wilting point (vol.%)

FC: field capacity (vol.%)

As is clear from Table 3-5, the AM values per 10 cm of soil layer thickness were, for the most part, arount 20 mm.

### 2) Water quantity per irrigation

The water quantity per irrigation is determined chiefly by available moisture, effective root zone, and soil moisture extraction pattern.

Taking layer-wise available moistures as  $(AM)_1$ ,  $(AM)_2$ , ...  $(AM)_n$ , effective root zone as d, and the moisture extraction patterns for respective layers as  $a_1$ ,  $a_2$ , ...  $a_n$  (in decimal fractions), the water quantity per irrigation (Wd) is given as follows.

1st layer 
$$Wd_1 = (AM)_1 \frac{d}{na_1}$$

2nd layer 
$$Wd_2 = (AM)_2 \frac{d}{na_2}$$

: 
$$n$$
-th layer  $Wd_n = (AM)_n \frac{d}{na_n}$ 

Of these values, the minimum is the upper limit of the water quantity per irrigation, and when the soil moisture in the corresponding layer has attained WP, it is the time to start the irrigation.

On the other hand, the moisture extraction pattern changes with the kind of crop, or more precisely, with the stage of growth and the kind of soil even in regard to the same crop. In fact, it cannot be said decisively. For want of actually measured data, the following extraction pattern which has widely accepted in many countries, including U.S.A., is applied for computation, and the results are given in Table 3-5.

40% from 1st later, 30% from 2nd layer, 20% from 3rd layer, and 10% from 4th later.

|          |                            |       | Table       | 3-5  | Physica             | 1 Charact                    | eristics  | of the S         | oil                        |                                |                              |                |                 |              |        |          |                |
|----------|----------------------------|-------|-------------|------|---------------------|------------------------------|-----------|------------------|----------------------------|--------------------------------|------------------------------|----------------|-----------------|--------------|--------|----------|----------------|
|          |                            |       |             |      | (1) Se              | riculture                    | center -  |                  | Ma]                        | berry Orc                      | hard Planned                 | l Site         |                 |              |        |          |                |
| Location | Vegeta-                    |       | Soil        |      | True                | Hypothe-                     |           | Field            | Initial                    | 10cm ef-                       | Water<br>quantity            | 3 phase        | division        | (FC time)    | Intake | constant | Basi.c         |
| number   | tion                       | Depth | color       | tex- | specific<br>gravity | tical<br>specific<br>gravity | Porosity  | water<br>content | period<br>wilting<br>point | fective<br>moisture<br>content | per 1<br>irrigation<br>cycle | Solid<br>phase | Liquid<br>phase | Gas<br>phase | С      | n        | intake<br>rate |
| 1        | Fallow                     | 0∿ 5  | 7.5<br>R3/3 | L    | 2.65                | 1.02                         | %<br>61.6 | %<br>34.0        | %<br>16.2                  | mm<br>17.8                     | min 57.8                     | 38.4           | %<br>34.0       | %<br>27.6    | 27     | 0.62     | mm/hr<br>127.6 |
| •        | area                       | 15^20 | ìi.         | 11   | t)                  | 1.13                         | 57.4      | 41.6             | 20.2                       | 21.4                           | 57.0                         | 42.6           | 41.6            | 15.8         |        |          | 127.0          |
|          |                            | 0∿ 5  | 10<br>R2/3  | L    | 15                  | 0.86                         | 67.8      | 37.9             | 18.3                       | 19.6                           |                              | 32.3           | 37.9            | 29.8         |        |          |                |
| 2        | Weed<br>area               | 20    | 11          | н    | ) r                 | 0.91                         | 65.9      | 37.8             | 18,2                       | 19.6                           | 61.3                         | 34,1           | 37.8            | 28.1         | 66     | 0.80     | 1216.0         |
|          |                            | 40~45 | 10<br>R3/4  | CL   | U                   | 0.96                         | 63,8      | 35.4             | 17.0                       | 18.4                           |                              | 36,2           | 35.4            | 28.4         |        |          |                |
|          |                            | 0∿ 5  | 7.5<br>R3/2 | L    | II.                 | 1.02                         | 61.6      | 37,2             | 17.9                       | 19.3                           |                              | 38.4           | 37.2            | 24.4         |        |          |                |
|          | uru e<br>Salah di<br>Salah | 10v15 | и           | 12   | 11                  | 1,07                         | 59.5      | 41.2             | 20.0                       | 21.2                           |                              | 40.6           | 41.2            | 18.2         |        |          |                |
| .3       | Banana<br>orchard          | 20~25 | 11          | 71   | 11                  | 1,16                         | 56.7      | 40.1             | 19.4                       | 20.7                           | 61.5                         | 43,4           | 40,1            | 16.5         | 11     | 0.58     | 37.6           |
|          |                            | 30∿35 | 7.5<br>R3/2 | CL   | и                   | 1.15                         | 56.8      | 44.7             | 21.9                       | 22.8                           |                              | 43,3           | 44.7            | 12,0         |        |          |                |
|          |                            | 50∿55 | H           | Н    | и                   | 1,15                         | 56.9      | 38,3             | 18,5                       | 19.8                           |                              | 43.2           | 38.3            | 18.5         |        |          |                |

|              |                     |       | er er er ville.<br>Kommunik |    |       |                              |           |                  |                            |                                |                                 |                |                 |              |          |          |          |
|--------------|---------------------|-------|-----------------------------|----|-------|------------------------------|-----------|------------------|----------------------------|--------------------------------|---------------------------------|----------------|-----------------|--------------|----------|----------|----------|
| Location     | Vegeta-             |       | Soil                        |    |       | Hypothe-                     |           | Field            | Initial                    | the second second              |                                 | 3 phase        | division        | (FC time)    | Intake   | constant | Ba       |
| number       | tion                | Depth | color                       |    |       | tical<br>specific<br>gravity | Porosity  | water<br>content | period<br>wilting<br>point | fective<br>moisture<br>content | quantity per 1 irrigation cycle | Solld<br>phase | Liquid<br>phase | Gas<br>phase | <b>C</b> | n        | in<br>ra |
|              |                     | 0∿ 5  | 7.5<br>R3/1                 | С  | 2.65  | 1,38                         | %<br>47.8 | 38.8             | %<br>18.7                  | mm<br>20.1                     | mm                              | %<br>52,2      | %<br>38.8       | %<br>9.0     |          |          |          |
|              |                     | 10∿15 | <b>11</b>                   | нс | 31.   | 1,34                         | 49.6      | 46.7             | 22.9                       | 23.8                           |                                 | 50.4           | 46,7            | 2.9          |          |          |          |
| 1            | Corn                | 20    | 11                          | 11 | rt    | 1,37                         | 48.2      | 43.4             | 21.1                       | 22.3                           | 65.1                            | 51.8           | 43,4            | 4,8          | 10       | 0.43     | 9        |
| *            | 001.                | 30    | 7.5<br>R2/2                 | 11 | 11    | 1,38                         | 48.2      | 42.3             | 20.6                       | 21.7                           |                                 | 51.9           | 42.3            | . 5.8        |          |          |          |
|              |                     | 40    | 11                          | п  | 11    | 1,33                         | 50.0      | 44.7             | 21.8                       | 22.9                           |                                 | 50.0           | 44,7            | 5,3          |          |          |          |
|              |                     | 55~60 | n                           | 11 | Ħ     | 1.31                         | 50.0      | 46.4             | 22.7                       | 23.7                           |                                 | 50.1           | 46.4            | 3,5          | 4        |          | <u> </u> |
|              |                     | 0∿ 5  | 7.5<br>R3/1                 | С  | 2.65  | 1.26                         | 52.5      | 33.6             | 16.0                       | 17,6                           |                                 | 47.6           | 33.6            | 18.8         |          |          |          |
|              | Corn                | 10    | 11                          | 11 | н     | 1,46                         | 45.0      | 35.1             | 16.8                       | 18,3                           |                                 | 55.0           | 35,1            | 9.9          |          |          | 11.2     |
| 2            | (inter-<br>cropping | 20    | 11                          | нс | н     | 1,48                         | 44.2      | 39.9             | 19.3                       | 20.6                           | 55.4                            | 55.9           | 39.9            | 4.2          | .11      | 0.44     |          |
|              | - soy<br>beans)     | 30    | 7.5<br>R4/2                 | н  | 14    | 1,53                         | 42.4      | 35.8             | 17,2                       | 18,6                           |                                 | 57.6           | 35,8            | 6.6          |          |          |          |
|              |                     | 40    | 11                          | C  | 11    | 1,51                         | 43.9      | 34,4             | 16.5                       | 17,9                           |                                 | 56,1           | 34.4            | 9.5          |          |          |          |
|              |                     | 50v55 | н                           | CC | н     | 1,40                         | 47.1      | 30.0             | 14.2                       | 15.8                           |                                 | 52.9           | 30.0            | 17.1         |          |          |          |
|              |                     | 0∿ 5  | 7.5                         | С  | 2,65  | 1.37                         | 48,4      | 38,6             | 18.6                       | 20.0                           |                                 | 51,6           | 38,6            | 9.8          |          |          |          |
| 95.<br>1 5 4 |                     | 10    | R3/1                        | НС | 11    | 1,47                         | 44,5      | 42.3             | 20.6                       | 21.7                           |                                 | 55.5           | 42.3            | 2,2          |          |          |          |
| 3            | Weed<br>area        | 20    | řI .                        | 11 |       | 1.44                         | 45.9      | 41.1             | 19.9                       | 21,2                           | 63,6                            | 54.2           | 41,1            | 4.7          | 20       | 0.46     | 24       |
|              |                     | 30    | 7.5<br>R2/2                 | It | II    | 1,47                         | 44,4      | 40.9             | 1.9.8                      | 21,1                           |                                 | 55.6           | 40.9            | 3.5          |          |          |          |
|              |                     | 40    | 11                          | Я  | ii ii | 1,41                         | 47.1      | 42 ,5            | 20.7                       | 21,8                           |                                 | 52,9           | 42,5            | 4.6          |          |          |          |
|              | •                   | 50∿55 | 11                          | и  | Jt .  | 1.44                         | 45.6      | 39,8             | 19.2                       | 20.6                           |                                 | 54.4           | 39,8            | 5,8          |          |          |          |

## 3) Three phases of soil

The soil is composed of solid phase, liquid phase and vapour phase. The quantitative relationship between these three is very significant for the soil fertility and the living conditions of agroccological system. The most important theme of agrophysics is to find out and formulate the best tri-phase relations. In Europe and the U.S.A., the best conditions are said to have the solid, liquid and vapor phases at a ratio of 50 to 30 to 20 or 50 to 25 to 25.

The research track records in Japan suggest the following norms for soil improvement required for mulberry field construction. (Table 3-6).

Table 3-6 Norms for mulberry field subsoil improvement for efficient use of water

| Name                        | Soil factors                                                 |
|-----------------------------|--------------------------------------------------------------|
| Effective soil layer        | 50 - 60 cm (mainly in case of non-volcanic soil)             |
| Consistency                 | 20 mm or less                                                |
| Bulk density                | Surface soil, 1.2 - 1.3 (0.7 - 0.8 in case of volcanic soil) |
| Three-phase distribution    | Vapor phase, more than 20%                                   |
| Porosity                    | 5 - 10% or more, pF 1.5 or more                              |
| Water permeability          | 10 <sup>-2</sup> -10 <sup>-4</sup> cm/sec.                   |
| Optimum soil moisture range | pH 1.5 - 3.0 (1.8 - 3.0 in case of volcanic soil)            |
| Available moisture          | 50 mm or more (pF 1.6 - 3.0)                                 |
| Factors to be avoided       | Spring water level, ground water level (lm or less)          |

Source: Study on Soil Conditioning for Efficient Use of Water in Orchards - Agriculture, Forestry and Fishery Technology Conference (Nov. 1974).

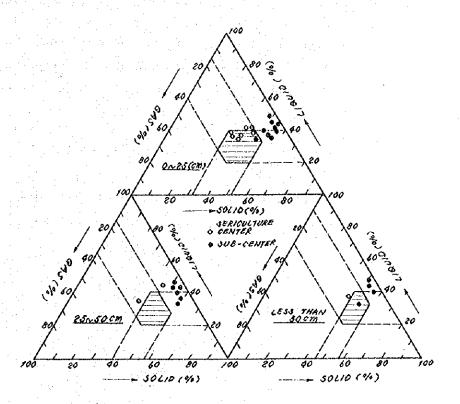

The survey findings are as shown in Figures 3-4 through 3-6.

Fig. 3-6 shows the vertical 3-phase distribution of the soil per each survey point.

Fig. 3-4 shows the plotting on an equitriangle chart of the measured 3-phase distribution of the soil by depth.

Based on these findings, following comments can be made:

- (1) 3-phase distribution of the soil at the planned construction site of the mulberry orchard for sericulture center (at Billi-billi) is relatively good, and no special soil improvement work is necessary at the construction period.
- 2) The soil at the sub-center (Larabatariniya Village) has extremely small gas phase ratio (especially at No. 1 and No. 3 points), and is not suited to perrenial crops like mulberry without soil improvement. Therefore, it is necessary to increase the gas phase ratio during the mulberry orchard construction by soil and drainage improvement according to the method shown in 5-1-2.



Lined portions represent the range where the 3 phases of the soil is deemed appropriate.

(The soil conditions are considered to be proper when measurements of 3 phases are within this range.)

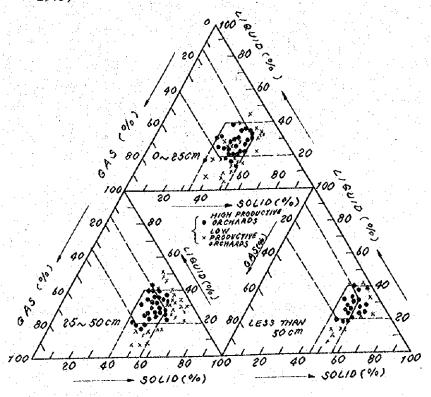
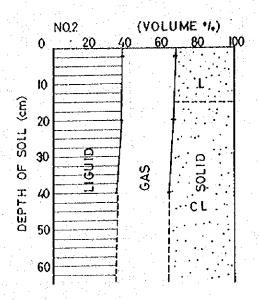
Fig. 3-4 3-phase distribution of the soil at the construction site

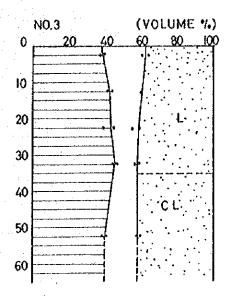
Fig. 3-5 shows the 3-phase soil distribution of orange orchards classified by high productive and low productive orchards. Soil strata are classified for 0  $\sim$  25cm, 25  $\sim$  50cm and deeper than 50cm, and the 3-phase distribution of the sample corresponding to each stratum is shown.

For most of the high productive orchards, the ranges of 3 phases of the soil are shown by hexagons on the equitriangle charts, and the ranges are considered as "proper ranges of 3 phases of the soil".

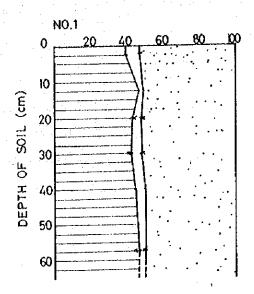
The ranges are roughly 40  $\sim$  50% (solid), 20  $\sim$  40% (liquid) and 15  $\sim$  37% (gas).

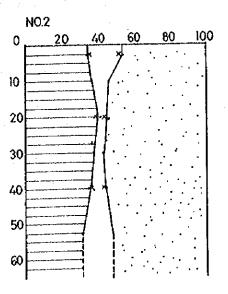
(See soil physical characteristics measurement method - 1975)

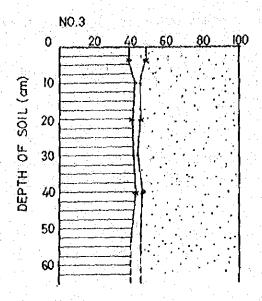





Fig. 3-5 Proper Ranges of 3 phases of the Orchard Soil

The results of measurement are as shown in Fig. 3-4.


Fig. 3 - 6 Three-phase distribution of soil


# (1) Sericulture centre






# (2) Subcentre







# (4) Intake rate of soil

The intake rate refers to a rate at which the soil absorbs rainwater or irrigation water, and is usually expressed in mm/hr. It serves as one of the most important determinants of irrigation method, irrigation intensity and irrigation period. Namely, it is no exaggeration to say that the intake rate is the basis of the irrigation planning for the present project.

# i) Measuring method

The measuring method is usually classified into two in relation to the irrigation method to be applied.

For the projected site, the so-called cylinder method was applied.

Table 3 - 7 Classification of measuring methods by application

| Classifica             | tion of methods                                                                           |                                                                                          |
|------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Measuring method       | Procedure                                                                                 | Applied irrigation method                                                                |
| Cylinder method        | Measurement of water supply rate with surface water flow checked                          | Border irrigation,<br>contour ditch irrigation,<br>basin irrigation, spray<br>irrigation |
| Furrow flushing method | Measurement of the difference between water supply rate in furrow and surface runoff rate | Mainly, furrow irrigation                                                                |

The preparation of measuring instruments, installation of cylinder, and measuring work were carried out in accordance with the standards established by the Soil Preservation Committee of the Bureau of Reclamation, U.S.A.

#### ii) Analysis of measured results

Of the measurements obtained as to three cylinders, the medians were taken up to prepare a penetration curve in order to determine the intake constants.

The integrated penetration obtained by the measurement of the cylinder intake rate is given by the following general equation.

 $D = CT^n$ 

Where, D: integrated penetration, mm

T: lapse of time of irrigation, min.

C,n: intake constants

However, the integrated penetration varies widely depending on the soil nature, stratographic structure, soil moisture, surface covering, temperature of supply water, turbidity, ground temperature at the time of measurement, and many other factors, and its representative value is hard to come by. In the projected site, the measurement was conducted by simulating the conditions of the season when the irrigation is required, and the value obtained was taken as the representative value of the spot at which measurement was conducted.

The results of measurement are as shown in Fig. 3-5, 3-6. Usually, the intake rate goes down with the lapse of time from the start of irrigation, and eventually is settled at a certain fixed value. The intake rate under this final state is called the basic intake rate, and is used as an index showing the water permeability of the soil.

Usually, the basic intake rate is determined as one whose rate of change is 10% of itself.

The time required to attain the basic intake rate is 600 times the exponent (min.) of the following intake rate equation.

 $I = KT^m$ 

Where, I: intake rate (mm/hr)

T: lapse of time (min.)

k, m: constants

Hence, the basic intake rate is given by the following formula.

 $I_R = K (600m)^m (mm/hr)$ 

Using  $D = CT^n$ ,  $I_B$  can be rewritten as follows.

 $I_B = 60Cn \{600(1 - n)\}^{n-1}$  (mm/hr)

The results of calculation are as shown in Table 3 - 5.

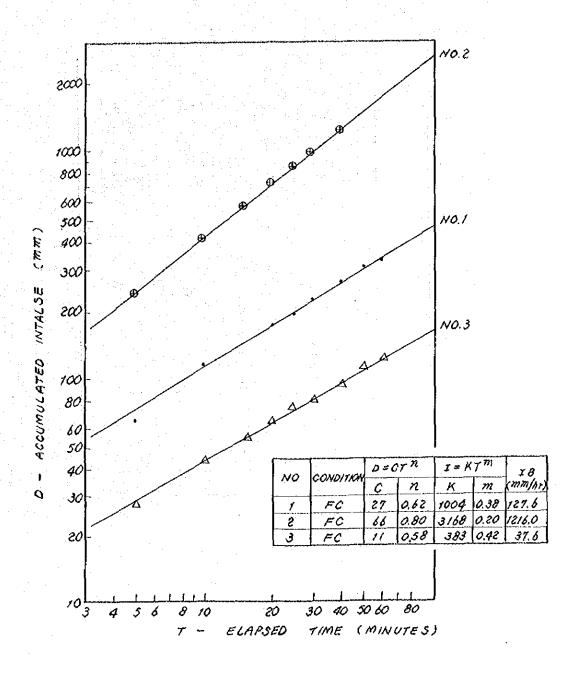



Fig. 3-7 Cylinder intake curves (Bili-Bili)

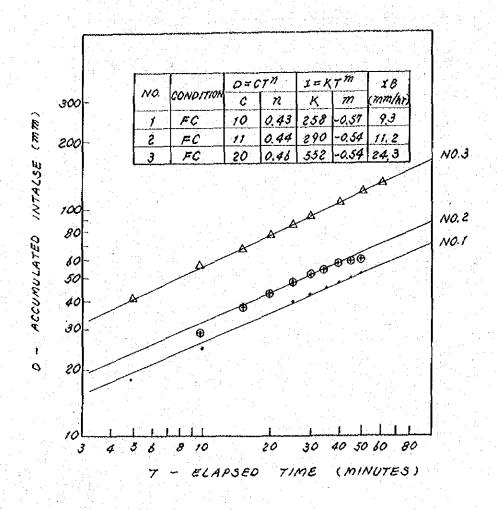



Fig. 3-8 Cylinder intake curves (Soppeng)

#### 3-2-3. Dynamic behaviour of soil moisture

Usually, the water content in the soil is retained by two forces. Part of the water thus retained is directly used for cropping.

One force is the attraction force acting upon water molecules on the surfaces of soil particles. This force acts to form a thin layer in the boundaries between solids and liquids, retaining the water by a strong force. This water is called the hygroscopic moisture (pF 4.5 - 7.0), and is no use for the growing of crops. On the other hand, as the soil moisture gets increased, the other force (inter-molecular force of water) functions to increase the thickness of the aforesaid thin layer. The water in this thickened later is classified into two parts; one is called gravity water which can easily be drained away gravitationally, and the other is capillary water which is hard to drain (water of pF 1.6 or more can be moved gravitationally, while water of pF 1.6 - 2.7 moves on both gravitational force and capillarity pressure).

The modes of moisture are dependent on the soil nature; it is therefore important in irrigation to take clear inventory of the soil nature.

The measurement could not be made for want of time.

It is desired to spot representative measuring stations as early as possible, and to clarify the daily change in soil moisture, seasonal change of moisture consumption, and water consumption ratio by layer, etc. by setting tension meters or other suitable soil moisture measuring instruments at various levels of depth, for the purpose of acquiring basic data on irrigation control.

As is clear from the hydrological and meteorological survey results, the yearly behaviour of soil moisture is inferred to assume the following patterns as the year is divided into the dry season (June to September) and the rainy season (November to March).

I. All-layer wet type

December to February

II. Dry surface layer, wet bottom layer type

March to May

III. All-layer dry type

June to September

IV. Wet surface layer, dry bottom layer

October to November

# 3-3. Hydrological and meteorological survey

The climate in Indonesia is tropical as represented by high temperature, much rain and high humidity.

The continental air mass develops east monsoon during the June-September dry season, while the oceanic wet air mass creates west monsoon during the November-March rainy season.

The meteorological data (air temperature, humidity, rainfalls, etc.) in Ujung Pandang and Soppeng are summarized in Table 3-8  $\circ$  3-11.

Table 3-8 Temperature, humidity and sunshine time in Ujung Pandang

| Item                                    | Year of<br>Observation | Jan. | Feb. | Mar. | Apr. | May  | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. |
|-----------------------------------------|------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| 0                                       | 1971                   | 25.6 | 24.2 | 25.4 | 26.1 | 26.0 | 25.7 | •    | 25.6 | 26.0 | 26.1 | 25.8 | 1    |
| Average temp.,                          | 1972                   | 24.8 | 25.4 | 25.5 | 26.0 | 26.2 | 26.3 | 25.7 | 26.2 | 27.8 | 27.8 | 28.0 | 26.9 |
| :                                       | 1971                   | 30.1 | 30.0 | 29.8 | 31.1 | 31.5 | 30.8 | 1    | 31.6 | 32.1 | 31.7 | 30.2 |      |
| Average max. temp.,°C                   | 1972                   | 29.1 | 30.1 | 30.0 | 31.8 | 32.5 | 33.1 | 33.2 | 34.0 | 34.8 | 34.3 | 34.2 | 32.2 |
| ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) | 1971                   | 28.1 | 21.5 | 21.8 | 21.5 | 21.8 | 21.1 | ŀ    | 20.4 | 21.2 | 21.6 | 21.8 | 1    |
| Average min. cemp., o                   | 1972                   | 21.3 | 21.7 | 21.7 | 21.1 | 20.9 | 20.2 | 19.1 | 19.7 | 20.5 | 20.6 | 22.2 | 22.7 |
| Ayerage relative hu-                    | 161                    | 98   | 88   | 87   | 79   | 83   | 82   | ī    | 99   | 77   | 82   | 83   |      |
| w.t.r.y. %                              | 1972                   | 86   | 84   | 84   | 79   | 77   | 69   | 89   | 79   | 54   | 19   | 89   | 08   |
| Average sunshine                        | 1971                   | 1    | þ.   |      | 87   | 74   | ſ    | í    | ı    | 65   | 62   | 75   | _    |
| time, %                                 | 1972                   | 30   | 84   | 6.7  | 77   | 87   | 98   | 8    | 86   | 100  | 66   | 18   | 99   |

Table 3-9 Air temperature

| Table     | Air temperature |
|-----------|-----------------|
| Morning   | 25 ∿ 26°C       |
| Daytime   | 29 ∿ 30         |
| Nighttime | 28 ∿ 29         |

Note: Surveyed by Mr. Kiyoshi Aoki, Sept. 1972

Table 3-10 Rainfalls and number of rainy days in W. Soppens

| Voor |          |           | Monthly t | total, mm/                              |          |           | <u>()</u> |
|------|----------|-----------|-----------|-----------------------------------------|----------|-----------|-----------|
| Year | Jan.     | Feb.      | Mar.      | Apr.                                    | May      | Jun.      | Jul.      |
| 1952 | 36 (4)   | 174 ( 9)  | 123 ( 9)  | 246 ( 5)                                | 264 (13) | 1.56 ( 6) | 76 ( 6)   |
| 1954 | 108 (4)  | 106 (5)   | 188 ( 8)  | 106 (6)                                 | 309 (8)  | 291 (14)  | 131 (8)   |
| 1957 | 105 (4)  | 113 ( 9)  | 167 (8)   | 82 ( 2)                                 | 327 (15) | 143 (8)   | 109 (12)  |
| 1960 | 241 (5)  | 155 (10)  | 52 (4)    | 292 (11)                                | 314 (11) | 188 (12)  | 305 (12)  |
| Mean | 123 (5)  | 137 (8)   | 133 ( 7)  | 182 (6)                                 | 304 (12) | 194 (10)  | 155 (8)   |
| 1972 | 291      | 132       | 64        | 112                                     | 207      | 9         | 295       |
| 1975 | 270      | 279       | 98        | 226                                     | 339      | 324       | 295       |
| ,,,  | Mont     | hly total | , mm/day  | # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |          | Yearly to | otal      |
| Year | Aug      | Sep.      | Oct.      | Nov.                                    | Dec.     |           |           |
| 1952 | 60 ( 4)  | 74 (3)    | 123 (5)   | 73 ( 5)                                 | 221 (11) | 1,625     | 80        |
| 1954 | 111 ( 6) | 63 (4)    | 115 (8)   | 119 ( 9)                                | 305 (12) | 1,952     | 92        |
| 1957 | 60 (4)   | 0 (0)     | 41 (2)    | 81 (11)                                 | 210 ( 9) | 1,438     | 77        |
| 1960 | 88 (10)  | 54 (4)    | 31 (1)    | 149 (11)                                | 68 ( 9)  | 1,937     | 102       |
| Mean | 80 (6)   | 48 (3)    | 78 (4)    | 106 (9)                                 | 201 (10) | 1,741     | 88        |
| 1972 | 21       | 0         | 0         | 21                                      | 205      | 1,357     |           |
| 1973 | 2        | 236       | 112       | 301                                     | 103      | (2,538)   |           |

Note: According to the survey by Mr. Kiyoshi Aoki and Mr. Den Kuzuma.

(The data for the years 1972 and 1973 are according to the statistics by the General Bureau of Forestry.)

Table 3-11 Temperatures and rainfalls in Java and South Sulawesi

|       | Djakar             | ta       | Bogo               | r        | Ujung Pand         | lang     |
|-------|--------------------|----------|--------------------|----------|--------------------|----------|
| Month | Air<br>temperature | Rainfall | Air<br>temperature | Rainfall | Air<br>temperature | Rainfall |
| Jan.  | 25.4°G             | 270mm    | 24.1°C             | 424mm    | 25.6°C             | 276mm    |
| Feb.  | •                  | 241      | 24.2               | 422      | 25.8               | 590      |
| Mar.  | 25.8               | 175      | 24,5               | 387      | , (tr              | 41.7     |
| Apr.  | 26.2               | 1.31.    | 25.1               | 403      | 26.4               | 153      |
| May   | 26.4               | 139      | 25.2               | 347      | 26.2               | 87       |
| Jun.  | 26.0               | 105      | 25.0               | 268      | 25.4               | 74       |
| Jul.  | 25.8               | 72       | 25,2               | 243      | 25.2               | 36       |
| Aug.  | 25.9               | 65       | 25.3               | 238      | 25.6               | 11       |
| Sep.  | 26.2               | 146      | if                 | 328      | 25.4               | 15       |
| Oct.  | 26.3               | 169      | 24.6               | 420      | 26.0               | 173      |
| Nov.  | 26.0               | 183      | 24.4               | 408      | 26.2               | 182      |
| Dec.  | 25.7               | 185      | 24.8               | 338      | 25.4               | 597      |

Note: According to the findings by Mr. Kiyoshi Aoki and Mr. Den Kuzuma

Table 3-12 shows the weather conditions at Ujung Pandang arranged from the 1972 RIKA NENRYO (Annual Statistics of Natural Science) for reference purpose.

Table 3-12 Weather Conditions at Ujung Pandang
(1972 Annual Statistics of Natural Science)

| Item                            | Jan   | Feb  | Mar   | Apr    | May  | Jun    | Ju1  | Aug  | Sept | 0ct   | Nov    | Dec  | Aver-<br>age<br>or<br>Total | Period    |
|---------------------------------|-------|------|-------|--------|------|--------|------|------|------|-------|--------|------|-----------------------------|-----------|
| Average<br>temperature          | 26 •1 | 26 🛂 | 26 •4 | 26 • 7 | 27+0 | 26 • L | 25.6 | 25.6 | 25.9 | 26 +4 | 26 • 7 | 26.1 | 26 • 4                      | 1879∿1933 |
| Average<br>relative<br>humidity | 85    | 84   | 84    | 82     | 81   | 79     | 77   | 76   | 75   | 78    | 81     | 85   | 81                          | п         |
| Rainfall                        | 686   | 5 36 | 424   | 150    | 89   | 74     | 36   | 10   | 15   | 43    | 178    | 610  | 2,850                       | ti        |

Fig. 3-9 shows the shortage of rainfalls calculated based on the rainfalls (Table 3-11) and evapotranspiration (Table 4-2) in Ujung Pandang.

In Indonesia, the difference between the evapotranspiration and rainfalls is taken as the shortage of rainfalls.

If this is viewed from the effective rainfalls (about 50 to 60% of monthly rainfalls, though dependent on rainfall intensity), the shortage is further increased.

Naturally, the irrigation is almost indispensible to the growing of mulberry and other crops in the projected area.

Table 3-12 shows the meteorological conditions in Ujung Pandang as excerpted from the Science Yearbook (1972 edition) by way of reference.

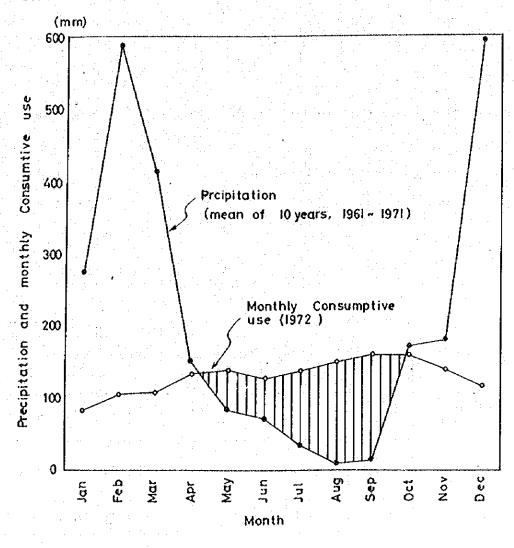



Fig. 3-9 Rainfall shortage in dry season (Ujung Pandang)

## 3-4 Socio-economic survey

3-4-1. Communities and farming around the proposed site

The communities around the proposed site are each composed of 100 to 200 farmhouses governed by a village headman. Several communities (villages) are governed by a provincial governor. Bili-Bili Village where the sericulture center is to be located is in a rural area forming a debouchure between a plan and the mountains. Paddy rice is the main crop, and dry fields and banana plantations are seen on the moderate slopes of mountains. The subcenter extends over two villages - Donri-Donri Village and Lalabata Riaja; sericulture substation of the Forestry Experiment Station is in Donri-Donri, and mulberry fields stretches between Donri-Donri and Lalabata Riaja. In addition to paddy fields, there are many mulberry fields.

#### 3-4-2. Labour conditions

There are no industrial sites around that attract labour, and both sericulture center and subcenter can take recourse to a considerably large labour potential of farmers.

In an interview survey at Bili-Bili Village, it was found that about 50 labourers would always be ready to bear a hand in shifts. The wages for heavy physical labour currently are RP500 (approx. ¥350) a day. Since the rental charges of heavy machinery are high in Indonesia, it stands to reason that the labour should be employed as much as possible for construction work.

3-4-3. Survey of construction materials, equipment and labour According to the statistics available from the authorities concerned, the principal construction materials and supplies and labour force are as follows.

Labour cost - 1976 (values parenthesized refer to 1972)

| a)         | Foreman              | RP/day                 |
|------------|----------------------|------------------------|
|            | Equipment repair :   | 850.                   |
|            | Equipment operation: | 850                    |
|            | Carpentry :          | 750 (400)              |
|            | Masonry :            | 750                    |
|            | Others :             | 750 (375)              |
|            |                      |                        |
| <b>b</b> ) | Skilled worker       |                        |
|            | Mechanic :           | 600                    |
|            | Operator :           | 650 (400)              |
|            | Carpenter :          | 650                    |
|            | Mason :              | 650                    |
|            | Barman :             | 600 (400)              |
|            | Others :             | 550 (325)              |
|            |                      |                        |
| c)         | Semi-skilled worker  | 인하는 사람들은 사람들이 다른 그 없다. |
|            | Mechanic :           | 500 (300)              |
|            | Operator :           | 550 (400)              |
|            | Driver :             | 550 (350)              |
|            | Carpenter :          | 500 (350)              |
|            | Mason :              | 500 (350)              |
|            | Barman ;             | 450 (350)              |
|            | Others :             | 400 (275)              |
|            |                      |                        |
| d)         | Utility hand :       | 500                    |

| (2) Mate | rials and supplies - 1976                                            |
|----------|----------------------------------------------------------------------|
| a)       | Stone and aggregate                                                  |
|          | Crushed stone (for masonry): $RP/m^3$ 2,000 - 3,000 (1,250)          |
|          | Boulder (for masonry) : $RP/m^3$ 2,000 - 3,000 (1,500)               |
|          | Coarse aggregate (crushed, : RP/m <sup>3</sup> 3,000 - 4,000 (1,250) |
|          | Fine aggregate (natural sand) : $RP/m^3$ 1,500 - 3,500 (1,000)       |
| •        | Crushed stone (for pavement): $RP/m^3$ 3,000 - 3,500                 |

```
b)
     Cement
     Portland cement (40 kg/bag):
                                       RP/bag
                                                 2,000 - 2,300
     Iron and steel
c).
     Reinforcement bar
                                       RP/kg
                                                 400 - 450
     Binding wire
                                       RP/kg
                                                 500 - 550
     Wire, 3 - 4 mmø
                                      RP/kg
                                                 500 - 550
     Nail
                                       RP/kg
                                                 450 ~ 500
d)
     Lumber
     Lumber, Class 1
                                       RP/m<sup>3</sup>
                                                 40,000 - 45,000
                                       RP/m^3
     Lumber, Class 2
                                                 30,000 - 35,000
                                       RP/m^3
     Lumber, Class 3
                                                 25,000 - 30,000 (14,500)
                                       RP/m^3
                                                 20,000 - 25,000 (12,000)
     Log
     Bamboo, 5 m
                                       RP/pc.
                                                 300
e)
     Asphalt pavement
     Asphalt
                                       RP/kg
                                                 80 - 100
                                       RP/m^3
                                                 900
     Heating
f)
     Br ick
                                       RP/pc.
                                                8 - 9
g)
     Oils and greases
     Gasoline
                                       RP/lit.
                                                57
     Diesel oil
                                       RP/lit.
                                                28
     Engine oil
                                       RP/lit.
                                                450
     Gear oil
                                       RP/lit.
                                                500
     Hydraulic oil
                                       RP/lit.
                                                500
     Brake oil
                                       RP/lit.
                                                2,000
     Grease
                                      RP.kg
                                                670
```

#### (3) Cost by type of work

 $RP/m^2$ a) Bushing clearing 200  $RP/m^2$ b) Top soil removing 544  $RP/m^2$ Excavation, A (ordinary) c) 755 Excavation, B (gravel & RP/m<sup>3</sup> d) 1,360 sand)

```
Excavation, C (soft rock)
e)
                                            RP/m<sup>3</sup>
                                                        2,030
f)
                                            RP/m<sup>3</sup>
      Banking
                                                        1,000
                                            RP/m^3
g)
      Back filling (for structure):
                                                        204
h).
                                            RP/m^3
                                                        132
1)
      Road ballsting
                                            RP/m^2
                                                       810 ~ 910
j):
      Mortar masonry, A (1:4)
                                            RP/m^3
                                                       15,820 - 16,920
                                            RP/m<sup>3</sup>
k)
      Mortar masonry, B (1:3)
                                                       17,820 - 19,120
1)
      Concrete work, A (1:2:4)
                                            RP/m^3
                                                       46,500 - 51,600
m)
      Concrete work, B
                                            RP/m<sup>3</sup>
                                                       102,000 - 113,000
      (ferro-concrete)
n)
                                            RP/m<sup>2</sup>
      Plastering (1:2), t=50 \text{ mm}
                                                       3,600 - 4,000
                                            RP/m^2
      Plastering (1:3), t=30 \text{ mm}
0)
                                                       1,600 - 1,800
      Plastering (1:4), t=30 \text{ mm}
p)
                                            RP/m^2
                                                       1,315 - 1,485
q)
      Masonry jointing (1:2)
                                            RP/m<sup>2</sup>
                                                       603 - 658
```

# (4) Charges for heavy machinery

a) Bulldozer rental charge : RP/hr. 13,000 b) Bulldozer freightage : RP/unit 150,000

#### Chapter 4. Final Design of Sericultural Centre

## 4-1. Field Design (incl. Building Site Design)

## 4-1-1. Mulberry Field

a) Since four-wheeled riding tractors will be used after reclamation, it is planned that the mulberry fields will have a gradient of less than 14% (=8°). Reclamation of both Farm No.1 and No.2 will be conducted in natural slope because of their heavy undulation, with the area having a gradient of more than 14% turned into a grassland as illustrated in Fig. 4-1.

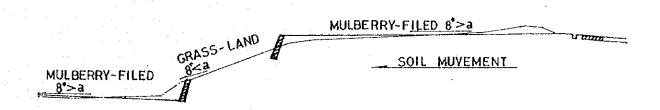



Fig. 4-1

- b) Gravels of different sizes are found in the plot of both farms so that the reclamation work will be carried out in parallel with the gravel removing work using bulldozers which will be so operated as will move earth from the upper to the lower part of each farm.
- c) Gravels will be removed in time with the deep ploughing to be conducted by bulldozers to a depth of 0.50 m. At this time, gravels in the grassland area will be also removed.
- d) In order to secure as large an area as possible for the mulberry fields, stone masonry with filling will be conducted in places where the gradient changes sharply, using gravels in the project area.

e) For the sake of safety, the stone masonry will have a maximum height of 2.0 m, a gradient of 1:0.5, and a backing height of 1.0 m. Further, it is planned to avoid mortar caulking of more than 50% to ensure satisfactory drainage of groundwater as illustrated in Fig. 4-2.

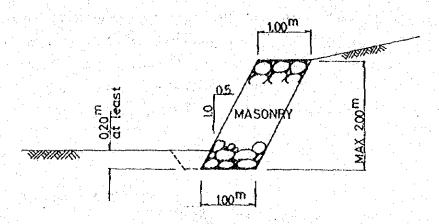



Fig. 4-2

#### 4-1-2 Building Site

a) The building site extends with a mild slope along the existing road and does not call for intensive levelling work. Accordingly, the ground levelling work will be required only to grade off the surface undulation. However, it is planned that the gradient of the whole building area will be reduced to less than 1%.

## 4-1-3 Road

- a) For easy operation and maintenance of the farms which will be operated for experimental purposes, the road area ratio is set at a high value. The roads within the farm area will be serve as butts, and it is planned that the shorter side of each block in the farms will be smaller than 70 m. in length.
- b) The maximum gradient of the roads is set at 10%.

- llowever, the road to be constructed between Field A and the existing road which loads to the microwave station will not be covered with gravels because it is expected to serve as butt for the most part.
- d) The thickness of the gravel layer is set at 30 cm.
- e) Since there is a height difference of about 1.00 m between the building site and the microwave road site, it is planned to construct a connecting road running through the building site in parallel with the microwave road. The connecting road will be 4.00 m in effective width and protected by random asphalt pavement having a roadbed thickness of 0.25 m and a surface course thickness of 0.05 m.

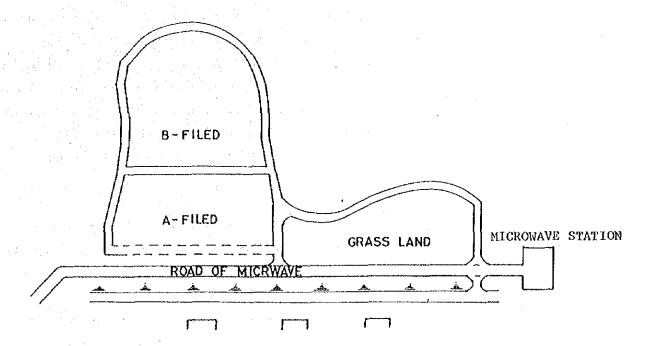



Fig. 4-3 Farm Road Arrangement

f) Curves will be provided only in those sections where the degree of curvature exceeds 30°

#### 4-1-4 Drainage

- a) The pronect area is situated near the mountain top an embraces a water shed so that the catchment area is small and the flow rate during rainfall is not very large. Accordingly, it is planned that the side ditches to be provided for surface water drainage will be approximately equivalent in size to those already found along the existing roads. No specific drainage work including underdrainage is required for the farm area because its soil condition is generally favourable except that gravels are found in abundance. Design of drainage structures is therefore intended only to cope with surface water, drinking water and miscellaneous waste water.
- b) There are found neither drainage channels nor rivers in the neighbourhood of the project area, so that it is planned that effluent water will be drained on the mild mountain slope. On the side of the building site, however, the slope is steep and the site of Farm No.2 is found downwards. For these reasons and also because of the need for maintaining the limit gradient in the building site, effluent water on this side will be drained down in the direction of the mulberry field and grassland.
- c) A stilling basin will be provided for hillside drainage in order to reduce the flow velocity of drainage and protect the slope from erosion.
- d) As for the drainage of Farm No.2, only the falling water from the mountain side will be led into a drainage canal to be linked to the side ditches along the microwave road, and drainage water from all other directions will be let down the slopes.
- e) It is planned that the alignment of the drainage ditch in the site of Farm No.1 will be changed after it is filled up during the reclamation work, and a new concrete pipeline with a diameter of 600 m/m will be installed for connection with the side

ditch along a branch agricultural road.

#### 4-1-5 Irrigation

#### a) Calculation of Irrigation Requirement

The irrigation requirement is calculated in the sequence shown below from the soil moisture and the water consumption of crops in the area under consideration.



#### b) Evapotranspiration

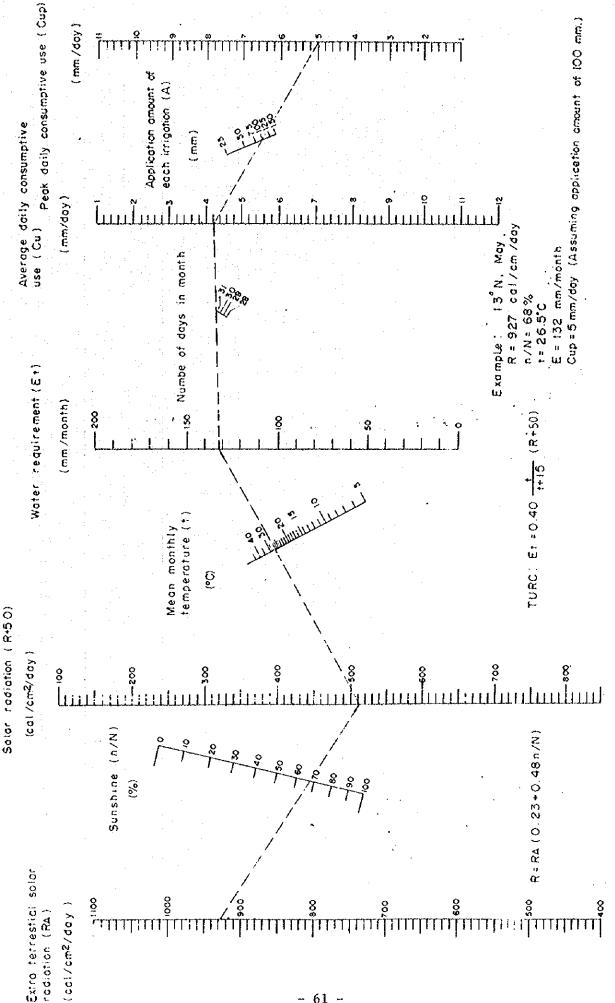
The evapotranspiration from a crop growing farm varies by the climatic condition, soil type, moisture content, surface covering, kind of crops and growing period of crops, etc. Its value should preferably be obtained directly by the soil moisture measuring method, the lysimeter method or Chamber's method. If this is not applicable it is obtained by a suitable calculation method.

Of a number of measuring methods shown in Table 4-1, Turc's method and Penman's methods are known to produce a relatively correct value. Since the former method is often applied in areas not favoured with an abundant water source, it is employed for measuring of evapotranspiration in the project area.

Table &-1

|    | Name                              | Temper-<br>ature | Relative<br>humidity | Sunshi<br>Duration |   | Wind<br>Velocity |
|----|-----------------------------------|------------------|----------------------|--------------------|---|------------------|
| 1. | Blaney-Criddle                    | o                |                      | 0                  |   | 0                |
| 2. | Hargreaves                        | <b>o</b>         | 0                    | 0                  |   |                  |
| 3. | Lowing-Johnson                    | o                |                      | 0                  |   |                  |
| 4. | Olivier                           | 0                | 0                    |                    | 0 |                  |
| 5. | Penman                            | 0                | <b>9</b> . , ;;      |                    | O | 0                |
| 6. | Thornthwait                       | 0                | 0                    | o                  |   |                  |
| 7. | Turc                              | 0                |                      |                    | 0 |                  |
| 8. | Evaptranspiration<br>Ratio Method | 0                | ٥                    |                    | 0 | O                |

In Turc's method, potential evapotranspiration (Et) is obtained by the following equation.


Et = 0.4 x 
$$\frac{T}{T-15}$$
 {Ra (0.23 + 0.48  $\frac{n}{N}$  + 50} ... (mm/month)

where, T: Mean monthly temperature (°C)

Ra: Extra terrestial solar radiation (Cal/cm<sup>2</sup>/day).

n/N: Sunshine (%),

Results of the calculation are shown in Table 4-2.



Monograph for estimating water requirement in lower latitudinal regions. Fig. 4-4

Table 4-2 Calculation of Irrigation Requirement

(Ujung Pandang)

|                                                              | Jan. | Feb. | Mar. | Apr. | May. | Jun. | Jal. | Agt. | Sep. | Oct. | Nov- | Des. |
|--------------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Extra terrestial Solar radiation (RA) (cal/cm $^2$ /day)     | 880  | 915  | 930  | 895  | 845  | 815  | 830  | 870  | 910  | 915  | 068  | 870  |
| Sunshine (n/N) (%)                                           | 30   | 85   | 67   | 77   | 87   | 98   | 92   | 86   | 001  | 66   | 18   | 99   |
| * Solar radiation (R+50) (cal/cm <sup>2</sup> / day)         | 330  | 422  | 431  | 532  | 545  | 520  | 560  | 605  | 879  | 079  | 550  | 472  |
| Mean monthly temperature (t) (C°)                            | 25.6 | 25.8 | 25.8 | 26.4 | 26.2 | 25.4 | 25.2 | 25.6 | 25.4 | 26.0 | 26-2 | 25.4 |
| * Water requirement (Et) (mm/month)                          | 83   | 106  | 108  | 135  | 139  | 130  | 140  | 152  | 162  | 162  | 140  | 117  |
| Number of days in month                                      | 31   | 28   | 31   | 30   | 31   | 30   | 31   | 31   | 30   | 31   | 30   | 31   |
| Average daily consumptive use (Cu) (mm/day)                  | 2.7  | 3.8  | 3.5  | 4.5  | 4.5  | 4.3  | 4.5  | 6.4  | 5.4  | 5.2  | 4.7  | 3-8  |
| Application amount of each irrigation (A) (mm)               | 20   | 50   | 20   | 50   | 50   | 20   | 90   | 20   | 50   | 50   | 05   | 20   |
| * Peak daily consumptive use (Cup) (mm/day)                  | 3.8  | 5.2  | 4.8  | 6.2  | 6.2  | 0-9  | 6.2  | 2.9  | 7.3  | 7.1  | 7.9  | 5.3  |
| Average monthly consumptive use (Cu) <sup>1</sup> (mm/month) | 84   | 106  | 109  | 135  | 140  | 129  | 140  | 152  | 162  | 191  | 141  | 118  |
| Precipitation (mean of 10 years, 1961 - 1971) (P) (mm)       | 276  | 590  | 417  | 153  | 87   | 74   | 36   | 11   | 15   | 173  | 182  | 597  |
|                                                              |      |      |      |      |      |      |      |      |      |      |      |      |

Note: Asterisked figures were obtained from the nomograph illustrated in Fig. 4-4

# c) Irrigation Requirement

If the irrigation efficiency is taken at 75% (0.85  $\times$  0.90 = 0.75) with the effective rainfall assumed to be 60% of monthly rainfall, the irrigation requirement turns out to be as shown in the following Table 4-3 and 4-4.

Table 4-3 Irrigation Requirement

(mm)

|   |                                          |     |     | ,   |     |      |     |     |     |     |      |     |     |       |
|---|------------------------------------------|-----|-----|-----|-----|------|-----|-----|-----|-----|------|-----|-----|-------|
|   |                                          | 1   | 2   | 3   | 4   | 5    | 6   | 7.  | 8   | 9   | 10   | 11  | 12  | Total |
| ① | Effective rainfall                       | 111 | 141 | 144 | 92  | 52   | 44  | 22  | 7   | 9   | 1.04 | 109 | 156 | 991   |
| 2 | Evapo-<br>trance-<br>piration<br>(net)   | 83  | 106 | 108 | 135 | 1.39 | 130 | 140 | 152 | 162 | 162  | 140 | 117 | 1,574 |
| 3 | Evapo-<br>trance-<br>piration<br>(gross) | 111 | 141 | 144 | 180 | 185  | 173 | 187 | 203 | 216 | 216  | 187 | 156 | 2,099 |
| 4 | Irrigation require-                      | 0   | 0   | 0.  | 88  | 133  | 129 | 165 | 196 | 207 | 112  | 78  | 0.  | 1,108 |

Note: ① ... 60% of monthly rainfall. If it exceeds ③,③ is taken as the upper limit. ② is obtained from

Table 4-2

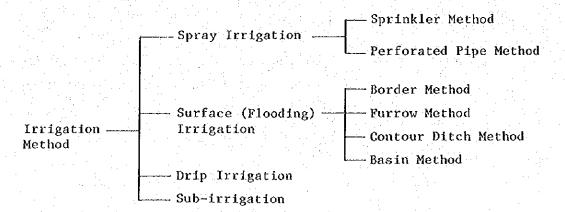
③ ... ②/0.75;

**4** ... **3** - **1** 

Table 4-4 Water Requirement

 $(m^3)$ 

|                       |              |   |    |   |        |        |        |        |        | <u>\m~</u> / | ,      |
|-----------------------|--------------|---|----|---|--------|--------|--------|--------|--------|--------------|--------|
|                       | Area<br>(ha) | 1 | 2  | 3 | 4      | 5      | 6      | 7      | 8      | 9            | 10     |
| Sericulture<br>centre | 8.0          | 0 | 0  | 0 | 7,040  | 10,640 | 10,320 | 13,200 | 15,680 | 16,560       | 8,960  |
| Sub centre            | 19.5         | 0 | 0  | 0 | 17,160 | 25,935 | 25,155 | 32,175 | 38,220 | 40,365       | 21,840 |
|                       | 11           |   | 12 |   | Tota   | 11     |        |        |        |              |        |
| Sericulture<br>centre | 6,240        |   | 0  |   | 88,6   | 40     |        |        |        |              |        |
| Sub centre            | 15,210       |   | 0  |   | 216,0  | 60     |        |        |        |              |        |


## d) Selection of Irrigation Method

While there are a diversity of irrigation methods, selection is generally made according to the following three conditions.

- Site conditions including the physical conditions of soil, such as water holding capacity of soil, intake rate, etc. and gradient.
- 2. Managing conditions such as kind of crops and managing scale.
- 3. Management conditions such as cost of farm reclamation work, cost of irrigation facilities, management cost, etc.

It is often the case that the latter two conditions cannot be determined by technical studies alone because they are influenced by the socio-economic conditions of each locality.

For reference, general classification of irrigation methods is shown below.



In some parts of the project area, the soil and topographical conditions make the furrow irrigation preferable over other irrigation methods. However, considering the present technical level of farmers and the expediency for the experts in providing guidance services, it is planned that the spray irrigation will be applied in the whole area.

#### e) Spray Irrigation

## (1) Selection of Sprinkler

There are about 100 different sprinklers available on the market. They differ from each other in shape, nozzle diameter, rotation mechanism, sprinkling pattern, service pressure, delivery rate, spray diameter etc. It is therefore possible to select the one that most suits the planned capacity of irrigation facilities, scale of irrigation farming, kind of soils, topography, and kind of crops.

For irrigation of mulberry fields, it is preferable to use sprinklers like Rainbird No. 70E which can simultaneously cover an extensive area by stationary irrigation from tree tops or high pressure sprinklers like furrow guns which can cover even a larger area by moving irrigation from tree tops. In the sub-centre farm (New Field) where the intake rate is limited, however, application of these large type sprinklers calls for careful previous studies because their high spray intensity is prone to cause soil erosion or decline of irrigation efficiency.

In view of the present soil and topographical conditions in the two farms, it is considered both safe and reasonable to use medium or lower pressure type having a relatively low spray intensity. In the project area, it is planned to increase the soil permeability by soil and soil layer improvement, reduce the gradient to less than 8°, and introduce contour cropping. Accordingly, labour-saving large type sprinklers which involve a low installation cost and permit easy management are selected.

Table 4-5 shows the specifications of the sprinklers reviewed for application in the project area.

Table 4-5 Specifications of Sprinklers

| Remarks                                     |                                                     |                                          |                                          |                               |
|---------------------------------------------|-----------------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------|
| Spray<br>Intensity<br>(mm/hr)               | 6.9<br>7.4<br>7.8<br>8.3                            | 11.7<br>12.2<br>12.8<br>15.4             | 15.0<br>16.5<br>17.7<br>25.6             | 18.5<br>19.5<br>14.3          |
| Spray Area (m <sup>2</sup> )                | 21.6<br>21.6<br>21.6<br>21.6<br>384                 | 384<br>384<br>384<br>1200                | 1400<br>1400<br>1400                     | 1120<br>1232<br>1872          |
| Spacing (m)                                 | 18 x 12<br>18 x 12<br>18 x 12<br>18 x 12<br>24 x 16 | 24 x 16<br>24 x 16<br>24 x 16<br>40 x 30 | 40 x 35<br>40 x 35<br>40 x 35<br>32 x 20 | 40 x 28<br>44 x 28<br>52 x 36 |
| Spray Diamenter (m)                         | 27.4<br>28.0<br>29.0<br>29.0<br>40.8                | 41.5<br>42.4<br>43.3<br>62               | 66<br>70<br>72<br>54                     | 66<br>74<br>84                |
| Nozzle<br>Flow<br>Rate<br>(%/min)           | 24.9<br>26.6<br>28.2<br>29.8<br>71.2                | 74.6<br>78.0<br>82.1<br>308              | 350<br>383<br>412<br>273                 | 346<br>400<br>446             |
| Nozzle<br>Pressure<br>(kg/cm <sup>2</sup> ) | 2.46<br>2.81<br>3.16<br>3.62<br>3.52                | 3.87<br>4.22<br>4.57                     | 5.0<br>6.0<br>7.0<br>2.85                | 4.28<br>5.71<br>7.14          |
| Nozzle<br>Diamenter                         | 11/64" ×<br>3/32"                                   | 1/4" x<br>11/64"                         | 14.5 x 6.0<br>x 4.0 mm                   | 17 mm                         |
| Model                                       | Rainbird<br>No. 30B                                 | Rainbird<br>No. 70E                      | NAAN<br>268                              | Rarrow Gun<br>Mod. 50         |

Note:  $S\ell = 0.6D$ ,  $Sm = 0.4D \sim 0.5D$ 

## (2) Spacing of Sprinklers

Where there is no wind, it is acceptable to set the nozzle spacing at 30 - 50% of the spray diameter and the branch pipe spacing at less than 60% of the spray diameter. When there is wind, however, the spray distribution becomes poor unless the spacing is reduced according to the wind velocity. It is therefore planned that the criteria shown in Table 4-6, will be observed as far as practicable in determining the branch pipe spacing for sprinkling under windy weather.

Table 4-6 Relationship between Wind Velocity and Branch Pipe Spacing

| Wind Velocity        | Rainbird<br>No. 30B | Rainbird<br>No. 70E | Naan 286 | Furrow<br>Gun 50 |
|----------------------|---------------------|---------------------|----------|------------------|
| Less than<br>2 m/sec | 0.6D                | 0.6D                | 0.60     | 0.55D            |
| 2 - 4 m              | 0.5D                | 0.5D                | 0.5D     | 0.4D             |
| More than<br>4 m/sec | 0.4D                | 0.4D                | 0.40     | 0.40             |

Note: D denotes the spray diameter (m).

Table 4-7. Design Criteria of Sprinkler Irrigation

|                                                |                  | Rainbird<br>No.30B | Rainbird<br>No.70E | Furrow Gun<br>Mod.50 | NAAN<br>268        |
|------------------------------------------------|------------------|--------------------|--------------------|----------------------|--------------------|
| Nozzle Diameter                                |                  | 11"/64×3"/327°     | 1/4"x11/64"        | 17mm                 | mm<br>14.5x6.0x4.0 |
| Service Pressure kg                            | /cm <sup>2</sup> | 2.8                | 3.9                | 4.3                  | 5.0                |
| Delivery Flow 2/Rate                           | min.             | 26.6               | 74.6               | 345.3                | 350.0              |
| Branch Pipe Spacing                            | m                | 18                 | 24                 | 40                   | 40                 |
| Sprinkler Spacing                              | m                | 12                 | 16                 | 28                   | 35                 |
| Spray Area                                     | <sub>m</sub> 2   | 216                | 384                | 1120                 | 1400               |
| Spray Intensity mm                             | /hr              | 7.4                | 11.7               | 18.5                 | 15.0               |
| Irrigation<br>Efficiency                       | %                | 85                 | 85                 | 85                   | . 85               |
| Gross Water Duty<br>per Sprinkler<br>Operation | l)               | 60                 | 60                 | 60                   | 60                 |
| Time Required hi<br>for Each<br>Sprinkler      | r                | 8.1                | 5.2                | 3.3                  | 4.0                |
| Irrigation  Daily Number of                    |                  |                    |                    |                      |                    |
| Sprinkler<br>Movements                         |                  | 2                  | 3                  | 5                    | 4                  |
| Daily Watering hr                              |                  | 16.2               | 15.6               | 16.5                 | 16.0               |

# (3) Terminal Irrigation Capacity

The irrigation plan of the project area is based on the seven day intermittent irrigation of 51 mm (7.3 mm x 7 days), irrigation efficiency of 85%, and daily irrigation time of 16 hours. Accordingly, the terminal irrigation capacity per ha, Q. turns out to be 1.49 l/sec as calculated below.

 $Q = 166.7 \times \frac{1}{16} \times \frac{51}{0.85 \times 7} = 89.3 \text{ l/min} = 1.49 \text{ l/sec}$ 

Assuming that Reinbird No. 70E having a working pressure of  $3.9 \text{ kg/cm}^2$  and a delivery flow rate of 74.6 l/min will be used, the irrigable area per sprinkler turns out to be 0.84 ha (=74.6/89.3).

Table 4-8 shows the operational data of different types of sprinklers in Sericulture Centre and Sub-Centre areas.

Table 4-8 The Operational Data of Different Types of Sprinklers

|                       | Sericulture Center      | 1              | ha, Q=714%/         | min, T=16hr)             | (A=8 ha, Q=7142/min, T=16hr) Sub-Center (A=19.5 ha, Q=1741 2/min, T=16hr) | (A=19.5 ha,    | , Q=1741 g/m:       | in, T=16hr)              |
|-----------------------|-------------------------|----------------|---------------------|--------------------------|---------------------------------------------------------------------------|----------------|---------------------|--------------------------|
|                       | Number<br>of Sprink-    | Capacity       | Daily Net           | Net Number<br>of Days of | Number of<br>Sprinklers                                                   | Capacity       | Daily Net           | Net Number<br>of Days of |
|                       | lers in<br>Simultaneous | of the<br>left | Irrigation<br>Hours | Irrigation<br>Interval   | in Simul-<br>taneous                                                      | of the<br>left | Irrigation<br>Hours | Irrigation<br>Interval   |
|                       | Operation               | 2/min          | hr                  |                          | Operation                                                                 |                | hr                  |                          |
| Rainbird<br>No. 30B   | 26 (2)                  | 9.169          | 16.2                | 7.0                      | 66 (2)                                                                    | 1755.6         | 16.2                | 6.9                      |
| Rainbird<br>No. 70E   | 10 (3)                  | 746.0          | 15.6                | 6.9                      | 24 (3)                                                                    | 1790.4         | 15.6                | 0.7                      |
| Furrow Gun<br>Mod. 50 | 2 (5)                   | 9.069          | 16.5                | 7.0                      | 6 (5)                                                                     | 2071.8         | 16.5                | 5.7                      |
| NAAN 286              | 2 (4)                   | 700.0          | 16.0                | 7.0                      | (7) 9                                                                     | 2100.0         | 16.0                | 5.7                      |
|                       |                         |                |                     |                          |                                                                           |                |                     |                          |

Note: Figures in parentheses indicate the number of simultaneous sprinkler operations.

#### f) Pump (Centre)

#### i. Total head



Fig. 4-5

Actual head

$$Ha = 209.8-212.8 = -3.00m$$

Capacity

$$Q = 12.4^{l/s} = 744$$
  $l/min$ 

Type and diameter of pipe VP \$ 100 m/m

Required terminal

$$H_1 = 39.0 \text{ m}$$

pressure

Pipeline frictional loss

Branch pipeline

$$H_{cd1} = 7.15 \text{ m}$$

Sprinkler pipeline

$$H_{cd2} = 6.36 \text{ m}$$

Valve and reducer loss (10% of frictional loss)

$$H_{is} = (7.15+6.36) \times 0.10=1.35 m$$

Total head (H):

$$H = H_a + H_1 + H_{cd1} + H_{cd2} + H_{1s}$$

$$= -3.00 + 39.0 + 7.15 + 6.36 + 1.35$$

$$= 50.86^{m} = 51^{m}$$

### 1i. Shaft power and motor output

$$P = \frac{0.163 \times \gamma \times Q \times H}{\eta_p} \qquad R = \frac{P \times (1 + \alpha)}{\eta_t}$$

$$P = \frac{0.163 \times 1.0 \times 0.744 \times 51}{0.70} = 8.8 \text{ kW}$$

$$R = \frac{8.8 \times (1 + 0.2)}{0.95} = 11.0 \text{ kW}$$

where, P: Shaft power (kW).

R: Prime mover output (kW).

Q: Pump capacity (0.744 m<sup>3</sup>/min).

H: TTotal head (51m).

ð: Bulk density of pumped water (1.0).

 $\mu_p$ : Pump efficiency (0.70).

μ.: Transmission efficiency (0.95)

#### iii. Type of pump

# Pump Specifications:

Type Centrifugal pump

Head 51 m

Capacity 12.4 l/s - 744 l/min.

Suction port diameter 6 80 m/m

Delivery port diameter ø 80 m/m

Motor output 11 kW.

|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |       | Table 4-9                  | - Results                                | of Hydrau | lic Calcula            | tion            |                |                |   |            |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------|----------------------------|------------------------------------------|-----------|------------------------|-----------------|----------------|----------------|---|------------|
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |       |                            |                                          |           |                        |                 |                |                |   |            |
|                 | in the second of |    |       |                            |                                          |           |                        |                 |                |                |   |            |
| STATION         | DISTANS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TL | EL.   | DISCHARGE                  | DIAMETER                                 | VELOCITY  | HYDRAULIC<br>GRANDIENT | HEADLOSS        | ELEVATION HEAD | EFFECTIVE HEAD |   |            |
| Pipe Line No.1  | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m  | m     | l/s                        | mmi                                      | m/s       |                        | m in            | m              | m              |   |            |
| Pump            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 214.0 |                            |                                          |           |                        |                 | 262.31         | 48.31          |   |            |
| Pipe line No.4  | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | 214.0 | 12.4                       | 100                                      | 1.58      | 22.13                  | 0.22            | 262.09         | 48.90          | • | C=150      |
| Pipe line No. 3 | 157.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | 213.5 | 12.4                       | н                                        |           | 9                      | 3.47            | 258.62         | 45.12          |   |            |
| Pipe line No.5  | 33.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | 212.0 | 12.4                       | n n                                      | 0.        | II .                   | 0.74            | 257.88         | 45.88          |   |            |
| Pipe line No.2  | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | 211.5 | 12.4                       | 0                                        | Ħ         | 11                     | 0.08            | 257.80         | 46.30          |   | 1          |
| lydrant No. 1   | 23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | 211.8 | 12.4                       | o o                                      | н         | 11                     | 0.52            | 257.28         | 45.48          |   |            |
| 2               | 48.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | 211.0 | 12.4                       | tt                                       | H         | H                      | 1.06            | 256.22         | 45.22          |   |            |
| 3               | 48.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | 211.5 | 12.4                       | ·. • • • • • • • • • • • • • • • • • • • | 1         | 11                     | 1.06            | 255.16         | 43.66          |   | 74.6x10÷60 |
| 4               | 48.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | 210.5 | 8.7                        | D                                        | 1.11      | 11.49                  | 0.55            | 254.61         | 44.11          | • | 74.6x7÷60  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |       |                            |                                          |           |                        | $\Sigma = 7.70$ |                |                |   |            |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |       |                            |                                          |           |                        |                 |                |                |   |            |
| ipe line No.2   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |       | The transfer of the second |                                          |           |                        |                 |                |                |   | ,          |
| Pipeline No.2   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |       |                            |                                          |           |                        |                 | 257.80         | 46.30          |   |            |
| Hydrant No.5    | 123.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | 205.0 | 12.4                       | 100                                      | 1.58      | 22.13                  | 2.72            | 255.08         | 50.08          |   |            |
| 6               | 52.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | 205.0 | 12.4                       | н                                        |           | 11                     | 1.16            | 253.92         | 48.92          |   | 74.6x10÷60 |
| 7               | 65.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | 204.0 | 8.7                        | ir .                                     | 1.11      | 11.49                  | 0.75            | 253.17         | 49.17          |   | 74.6x7÷60  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |       | •                          |                                          |           | Σ                      | = 4.63          |                |                |   |            |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |       |                            |                                          | ٠         |                        |                 |                |                |   |            |
| ipe line No.3   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |       |                            |                                          |           |                        |                 |                |                |   |            |
| Pipe line No.3  | . *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | 213.5 |                            |                                          |           |                        |                 | 258.62         | 45.12          |   |            |
| Hydrant No.8    | 78.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | 212.5 | 11.2                       | 100                                      | 1.43      | 18.34                  | 1.43            | 257.19         | 44.69          |   |            |
| 9               | 84.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | 211.3 | 11.2                       | 100                                      | 1.43      | 18.34                  | 1.54            | 255.65         | 44.35          |   | 74.6x9÷60  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •  |       | •                          |                                          | •         | Σ                      | = 2.97          | •              |                |   |            |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |       |                            |                                          |           |                        | •               |                | •              |   |            |
| ipe line No.4   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ÷     |                            |                                          |           |                        |                 |                |                |   |            |
| Pipe line No.4  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 214.0 |                            |                                          |           |                        |                 | 262.09         | 48.09          |   |            |
| Hydrant No.10   | 53.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | 213.5 | 9.9                        | 100                                      | 1.26      | 14.59                  | 0.78            | 261.31         | 47.81          |   | 74.6x8÷60  |

|                  |            |        | $\gamma_{n} = \frac{4}{n} = -1$ |            |                                         |                                |              |                |                |          |
|------------------|------------|--------|---------------------------------|------------|-----------------------------------------|--------------------------------|--------------|----------------|----------------|----------|
|                  |            |        |                                 |            |                                         |                                |              |                |                |          |
|                  |            |        |                                 |            |                                         |                                |              |                |                |          |
| STATION          | DISTANS TL | EI.    | DISCHARGE                       | DIAMETER   | VELOCITY                                | HYDRAULIC<br>GRANDIENT         | HEADLOSS     | ELEVATION HEAD | EFFECTIVE HEAD |          |
| Pipe line No.5   | m n        | m      | l/s                             | nm         | m/s                                     |                                | m            | <b>m</b>       | m              |          |
| Pipe line No.5   |            | 212.0  |                                 |            |                                         |                                |              | 257.88         | 45.88          |          |
| Hydrant No.11    | 29.0       | 211.5  | 12.4                            | 100        | 1.58                                    | 22.13                          | 0.64         | 257.24         | 45.74          |          |
| 17 12            | 48.0       | 213.0  |                                 | H .        | ir .                                    | in .                           | 1.06         | 256.18         | 43.18          |          |
| 13               | 48.0       | 213.5  | 0                               | n n        | 11                                      | o o                            | 1.06         | 255.12         | 41.62          | •        |
|                  |            |        |                                 |            | •                                       | Σ                              | = 2.76       |                |                |          |
|                  |            |        |                                 |            |                                         |                                |              |                |                |          |
| Pipe line No.6 ( |            |        |                                 |            | in Service<br>Service                   |                                |              |                |                |          |
| Pump             |            | 214.0  |                                 |            |                                         |                                |              | 262.31         | 48.31          |          |
| No. 44           | 42.50      | 214.13 | 12.4                            | 160        | 1.58                                    | 22.13                          | 0.94         | 261.37         | 47.24          |          |
| No. 43           | 26.04      | 202.29 | 61                              | n          | Ħ                                       | n in                           | 0.58         | 260.79         | 58.50          |          |
| No.42            | 28.24      | 195.56 | Ħ                               | <b>n</b>   | н                                       | n                              | 0.62         | 260.17         | 64.61          |          |
| No. 41           | 25.60      | 184.04 | a                               | n .        | H                                       | $\mathbf{n} = \mathbf{n}^{-1}$ | 0.57         | 259.60         | 75.56          |          |
| No.1             | 22.51      | 178.08 | ŧ                               | 31         | 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / | and the second                 | 0.50         | 259.10         | 81.02          |          |
| No.2             | 19.02      | 177.52 | 0                               | H          | 5 20 m                                  | 11                             | 0.42         | 258.68         | 81.16          |          |
| No.3             | 27.89      | 168.88 | ri .                            | <b>a a</b> | 0                                       | D                              | 0.62         | 258.06         | 89.18          |          |
| No.4             | 19.02      | 168.74 | и                               | <b>u</b>   | 0                                       | В                              | 0.42         | 257.64         | 88.90          |          |
| No.5'            | 17.02      | 169.50 | n                               | <b>u</b>   | i i i i i i i i i i i i i i i i i i i   | <b>I</b> f                     | 0.38         | 257.26         | 87.76          |          |
| Hydrant No.14    | 42.5       | 173.50 | 11                              | n          | n .                                     | H                              | 0.94         | 256.32         | 82.82          |          |
| Pipe line No.7   | 53.0       | 173.80 | 11.2                            | n          | 1.43                                    | 18.34                          | 1.02         | 255.30         | 81.50          |          |
| Hydrant No.15    | 23.0       | 173.20 | 11.2                            | n          | H                                       | П                              | 0.42         | 254.88         | 81.68          |          |
| 16               | 53.0       | 172.0  | 11.2                            | н          | n .                                     | 11                             | 0.97         | 253.91         | 81.91          | 74.6x9÷  |
| 17               | 49.0       | 171.8  | 8.7                             | 11         | 1.11                                    | 11.49                          | 0.56         | 253.35         | 81.55          | 74100,00 |
| 18               | 60.5       | 171.0  | 8.7                             | . 4        | 11                                      | • 11                           | 0.70         | 252.65         | 81.65          | 74.6×7÷  |
|                  |            |        |                                 | •          |                                         | Σ                              | = 9.66       | 552.00         | 01.03          | 77100711 |
|                  |            |        | •                               |            |                                         | J                              | <b>7.0</b> 0 |                |                |          |
| Pipe line No.7   |            |        |                                 |            |                                         |                                |              |                |                |          |
| Pipe line No.7   |            | 173.80 |                                 | ÷          |                                         |                                |              | 255.30         | 81.50          |          |
| Hydrant No.19    | 85.0       | 165.50 | 9.9                             | 100        | 1.26                                    | 14.59                          | 1.24         | 254.06         | 88.56          |          |
| 1 20             | 62.0       | 160,50 | 9.9                             | . 11       | 11.20                                   | 14.39                          | 0.90         | 253.16         | 92.66          | 74.6×8÷6 |
| 4-7              | ··         | 200,00 | 2 + 2                           | -          |                                         |                                | ひ・フひ         | 4.J.J. 1U      | 74.UU          | 74.0X870 |

.

|                |         |        |       |             |                                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                |             | ,       |            |
|----------------|---------|--------|-------|-------------|----------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------|-------------|---------|------------|
|                |         |        |       |             |                                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                |             | ·.<br>· |            |
| STATION        | DISTANS | TI,    | EL    | DISCHARG    | B DIAMETER                             | VELOCITY | HYDRAULIC<br>GRANDIENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HEADLOSS             | ELEVATION HEAD | EFFECTIVE H | EAD     |            |
| Pipe line No.3 | m       | m      | m     | <b>%</b> /: | s mm                                   | m/s      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m .                  | m              |             | m       |            |
| Pipe line No.3 |         |        | 211.5 |             |                                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 255.16         | 43.66       |         |            |
| . <b>A</b>     | 1.0     |        | 211.5 | 12.4        | 75                                     | 2.81     | 89.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.09                 | 255.07         | 43.57       |         | 74.6x10÷60 |
| В              | 18.0    |        | 211.1 | 6.2         | 50                                     | 3.16     | 179.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.23                 | 251.84         | 40.74       |         | 74.6x5÷60  |
| C              | 16.0    |        | 210.3 | 5.0         | a                                      | 2.55     | 120.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.93                 | 249.91         | 39.61       |         | 74.6x4÷60  |
| D              | 16.0    |        | 209.1 | 3.7         | ti .                                   | 1.88     | 69.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.11                 | 248.80         | 39.70       |         | 74.6x3÷60  |
| Е              | 16.0    |        | 208.0 | 2.5         | 11                                     | 1.27     | 33,45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.54                 | 248.26         | 40.26       |         | 74.6x2÷60  |
| F              | 16.0    |        | 206.5 | 1.2         | 0,                                     | 0.61     | 8.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.14                 | 248.12         | 41.62       | •       | 74.6x1÷60  |
|                |         |        |       |             |                                        |          | Σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = 7.04 <sup>tt</sup> |                |             |         |            |
|                |         |        |       |             |                                        |          | ing distribution of the second |                      |                | •           |         |            |
| <b>A</b>       |         |        | 211.5 |             |                                        |          | .* *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      | 255.07         | 43.57       |         |            |
| <b>G</b>       | 18.0    |        | 211.4 | 6.2         | 50                                     | 3.16     | 179.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.23                 | 251.84         | 40.44       |         |            |
| Н              | 16.0    |        | 210.5 | 5.0         | 111                                    | 2.55     | 120.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.93                 | 249.91         | 39.41       |         |            |
|                | 16.0    |        | 209.8 | 3.7         | u                                      | 1.88     | 69.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.11                 | 248.80         | 39.00       |         |            |
| J              | 16.0    |        | 208.6 | 2.5         |                                        | 1.27     | 33.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.54                 | 248.26         | 39.66       |         |            |
| K              | 16.0    |        | 207.1 | 1.2         |                                        | 0.61     | 8.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.14                 | 248.12         | 41.02       |         |            |
|                |         |        |       |             |                                        |          | Σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = 6.95               | •              |             |         |            |
|                |         |        |       | 1           |                                        | •        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                    |                |             |         |            |
|                |         |        |       |             | ************************************** |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                |             |         |            |
|                |         |        |       |             |                                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                |             |         |            |
|                |         |        |       |             |                                        |          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                |             |         |            |
|                |         | *<br>* |       |             |                                        |          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                |             |         |            |
|                |         |        |       | •           |                                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                |             |         |            |
|                |         |        |       |             |                                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                |             |         |            |
|                |         |        |       |             |                                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                |             |         |            |
|                |         |        |       |             |                                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                |             |         |            |
|                |         |        |       |             |                                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                |             |         |            |
|                | •       |        |       |             |                                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                |             |         |            |
|                |         |        |       |             |                                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                |             |         |            |
|                |         |        |       |             |                                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                |             |         |            |

#### 4-1-6 Appurtenant Structures

#### a) Collecting Pit

A brick collecting pit will be constructed in places where small drainage canals cross roads in closed conduit or in confluences of such canals.

#### b) Stilling Basin

Since drainage water in the project area is designed to be drained down the hillside, a stilling basin will be constructed to prevent the slope erosion. The basin will be constructed along the contour line using gravels in the project area and will have a large overflow width so as to obtain a high stilling effect per unit overflow width.

#### c) Underground Drain Pipe

Since the drainage ditch in the mulberry field area will be filled up during the reclamation work, a new concrete drain pipe with a diameter of 600 mm will be laid beneath the selected branch farm road.

#### 4-2 Water Source Design

#### 4-2-1 Diversion Works

For the purpose of water intake, it is planned to employ the collecting drain method in which a multiporous pipe will be so buried in the river bed that it will be covered with sand and gravels.

#### a) Collecting Drain

Irrigation requirement: Irrigation area - 8.0 ha

Peak daily consumption- 7.5 mm/day

Irrigation efficiency - 85%

7.3mm/day x  $1/0.85 \times 8.0 \text{ ha x } 10 = 687.06 \text{ m}^3/\text{day}$ 

Water requirement for sericultural operation

:  $30.60 \text{ m}^3/\text{day}$ 

Water requirement for drinking and 1 19,40 m<sup>3</sup>/day other purposes

TOTAL

:737.06 m<sup>3</sup>/day

 $737.06/24 = 30.71 \text{ m}^3/\text{hr}$ 

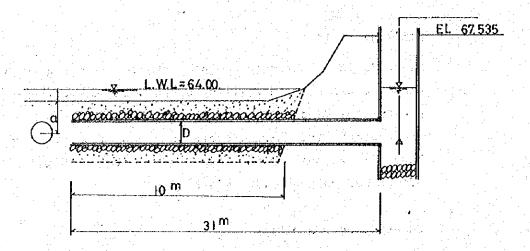



Fig. 4-6

The diameter of the collecting gallery is to be obtained by the following equation.

$$q = \frac{2 k\pi (H-P/w)}{2n\frac{4a}{d}}$$
 (MUSKAT's formula)

where, q: Flow rate per unit length (30.71/10 m =  $3.07 \text{ m}^3/\text{hr/m}$ ),

k: Permeability coefficient  $(10^{-3} = 3.6 \text{ m/hr})$ .

H: Depth from the river bed (1.00 m).

P: Water pressure in the pipe (1.60 m).

a: Depth of gallery from river bed (0,60 m).

w : Unit weight of water (1.0)

d : Pipe diameter

$$3.07 = \frac{2\pi \times 3.6 \times 0.6}{\ln \frac{2.f}{d}} = \frac{13.5648}{\ln \frac{2.4}{d}}$$

$$2.4 = \frac{13.5648}{3.07} = 4.419$$

Taking safety factor at 3.0,  

$$lnd = -3.726/3 = -1.242$$
  
 $d = 0.289$ 

Hence, a pipe with a diameter of 300 mm will be used.

#### b) Draft Tank

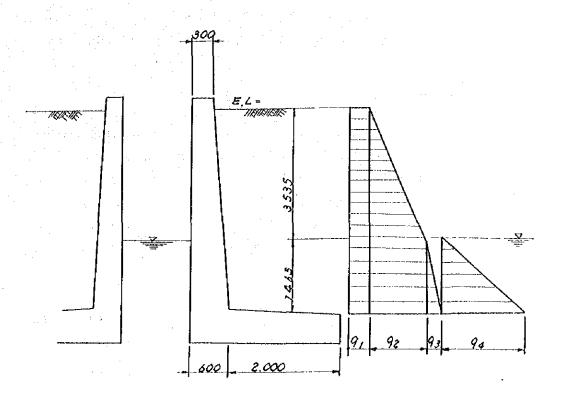



Fig. 4-7

#### (1) Design Criteria

| Unit weight of unsaturated soil                | $r_c =$          | 1.8c/m <sup>3</sup>     |
|------------------------------------------------|------------------|-------------------------|
| Unit weight of saturated soil                  | ra =             | 1.0                     |
| Unit weight of water                           | r <sub>w</sub> = | 1.0                     |
| Coefficient of active earth pressure           | KA ≃             | 0.3                     |
| Allowable tensile stress of reinforcement SD30 | sa "             | 1800 kg/cm <sup>2</sup> |
| Allowable bending stress of concrete           | ca =             | 70                      |
| Surface load                                   | q <sub>o</sub> = | $0.5 \text{ t/m}^2$     |

#### (2) Load

$$q_1 = KA \times q_0 \times 0.3 \times 0.5$$
 = 0.150 t/m<sup>2</sup>  
 $q_2 = KA \times r_c \times 3.535 = 0.3 \times 1.8 \times 3.535 = 1.909 \text{ t/m}^2$   
 $q_3 = KA \times r_a \times 1.465 = 0.3 \times 1.0 \times 1.415 = 0.440 \text{ t/m}^2$   
 $q_4 = r_w \times 1.465 = 1.0 \times 1.465$  = 1.465 t/m<sup>2</sup>

#### (3) Moment

# Point A $M_1 = 1/2 \times q_1 \times 5.0^2$ =1.875 t-m/m $M_2 = 1/2 \times q_2 \times 3.535 \times (1.465+1/3\times3.535)=8.919$ $M_3 = 1/2 \times q_2 \times 1.465^2$ = 2.049 $M_4 = 1/6 \times q_3 \times 1.465^2$ = 0.157 $M_5 = 1/6 \times q_4 \times 1.465^2$ = 0.524

Total MA =13.524

## Point B

$$M_1 = 1/2 \times q_1 \times 3.535^2$$
 = 0.937 t.m/m  
 $M_2 = 1/6 \times q_2 \times 3.535^2$  = 3.976

Total MB= 4.913

#### (4) Amount of Reinforcement

Point A.

D19 ctc 15cm Member thickness 60 cm Covering 10 cm

As = 19.10 cm<sup>2</sup> j = 0.905 k= 0.287 b = 100cm  
Ms = 
$$\frac{MA}{As \cdot j \cdot d}$$

$$= \frac{13.52400}{19.10 \times 0.905 \times 50} = 1565 \text{ kg/cm}^2 < 1800 \text{ kg/cm}^2$$

$$Mc = \frac{2MA}{k. j. b. d^2}$$

$$= \frac{2 \times 1352400}{0.287 \times 0.905 \times 100 \times 50^2} = 42 \text{ kg/cm}^2 < 60 \text{ kg/cm}^2$$

Point B

D 16 ctc 15cm Member thickness 40 cm Covering 10 cm

$$As = 13.24 \text{ cm}^2$$
  $j = 0.91$   $k = 0.27$   $b = 100$ 

$$b = 100$$

$$Ms = \frac{MB}{As. j. d}$$

$$= \frac{491300}{13.24 \times 0.91 \times 30} = 1359 \text{ kg/cm}^2 < 1800 \text{ kg/cm}^2$$

$$MC = \frac{2MB}{k. j. b. d^2}$$

$$= \frac{2 \times 491300}{0.27 \times 0.91 \times 100 \times 30^2} = 44 \text{ kg/cm}^2 < 60 \text{ kg/cm}^2$$

## 4-2-2 Pumping Station

- a) Determination of Pump Capacity
- 1) Pumping Capacity

$$q = 0.51 \text{ m}^3/\text{m} = 0.0085 \text{ m}^3/\text{sec}$$

2) Water Level and Actual Head

Maximum design delivery level Minimum design suction level

64 m

214.8 m

Actual design head

Ha = 150.8 m

3) Head loss

Pipe diameter

 $D_1 = 0.080 \text{ m}$ 

Flow velocity in pipe  $V_1 = \frac{q}{A_1} = \frac{q}{\frac{\pi}{4} \times D_1^2} = \frac{0.0085}{0.0050} = 1.70 \text{ m/s}$ 

Velocity head

 $\frac{v_1^2}{2a} = \frac{1.7^2}{2x9.8} = 0.15 \text{ m}$ 

Pipe diameter

 $D_2 = 0.065 \text{ m}$ 

Flow velocity in pipe  $V_2 = \frac{q}{A_2} = \frac{q}{\frac{\pi}{4} \times D_2^2} = \frac{0.0085}{0.0033} = 2.58 \text{ m/s}$ 

Velocity head

 $\frac{V2^2}{2g} = \frac{2.58^2}{2x9.8} = 0.33 \text{ m}$ 

Pipe diameter

 $D_3 = 0.10 \text{ m}$ 

Flow velocity in pipe  $V_3 = \frac{q}{A_3} = \frac{q}{\frac{\pi}{4} \times D_3^2} = \frac{0.0085}{0.00785} = 1.08 \text{ m/s}$ 

Inlet head loss

$$h = f \times \frac{v_1^2}{2g} = 0.03 \times 0.15 = 0.0045$$

ii) Bend head loss

$$h = f \times \frac{{v_1}^2}{2g} = 0.146 \times 0.15 = 0.0219$$

f = 
$$\{0.131+1.847(\frac{D}{2R})^{7/2}\}$$
  $(\frac{6}{90})^{1/2}$  ..... Weisbach  
=  $\{0.131+1.847(\frac{0.08}{2x0.158})^{7/2}\}$   $(\frac{90}{90})^{1/2}$  = 0.146

5 places

$$5 \times h = 0.2415$$

111) Check valve head loss

$$h = f \times \frac{{V_2}^2}{2g} = 1.50 \times 0.33 = 0.495$$

iv) Sluice valve head loss

$$h = f_1 \times \frac{{v_2}^2}{2g} = 0.14 \times 0.33 = 0.046$$

v) Ductile cast iron pipe will be used with C taken at 130.

h = f c L/D x 
$$\frac{{V_3}^2}{2g}$$
 = 0.024 x  $\frac{1368.37}{0.10}$  x 0.06 = 19.7 m

$$f = \frac{134}{C1.35} \times \frac{1}{D \cdot 1/6 \times V_3 \cdot 0.15}$$
 .... Hagen & Williams

$$= \frac{134}{130^{1.85}} \times \frac{1}{0.1^{1/6} \times 1.09^{0.15}}$$

$$= 0.0165 \times 1.451 = 0.021$$

Accordingly, the total head, H turns out to be 172 m as calculated below.

$$H = Ha + \Sigma h$$

$$= 150.8 + 0.0045 + 0.2415 + 0.495 + 0.046 + 19.7$$

# (4) Output of Prime Mover

1. Pump shaft power

$$L = \frac{Q \times H \times r}{4.5 \text{ np}} = \frac{0.51 \times 172 \times 1.0}{4.5 \times 0.52} = 36.8 \text{ PS}$$

where, Q: Delivery capacity (0.51 m3/m)

H: Total head (172 m)

r : Bulk density of pumped water (1.0 kg/lit.)

np: Pump efficiency (52%)

ii. Required output

$$LW = \frac{L(1 + A)}{nG} = \frac{36.8 \times 1.2}{0.95} = 46.4 \text{ PS}$$

where, A: Allowance (20%).

nG: Reducer efficiency (95%)

Hence, an output of 50 PS planned for the prime mover.

(5) Study of Water Hammer

Table  $4-9\sim 4-10$  show the results of calculation worked out to by the electronic computer to determine the water hammer action.

If there are no flywheels, negative pressure is generated because  $\mathrm{GD}^2$  of the pump is extremely small. However, if calculations are worked out with  $\mathrm{GD}^2$  taken at about 10 kg.m, no negative pressure develops and the pressure rise can be held near the hydraulic-gradient line.

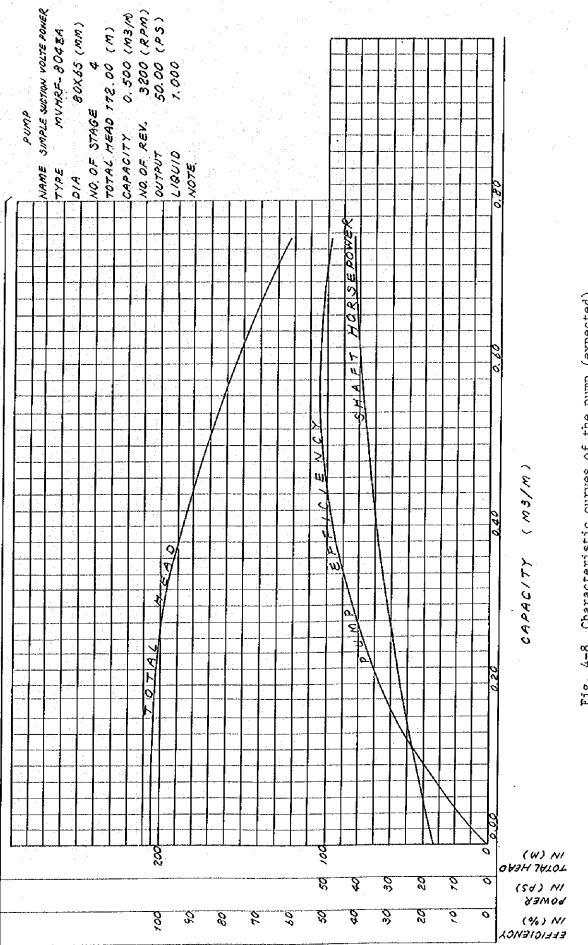



Fig. 4-8 Characteristic curves of the pump (expected)

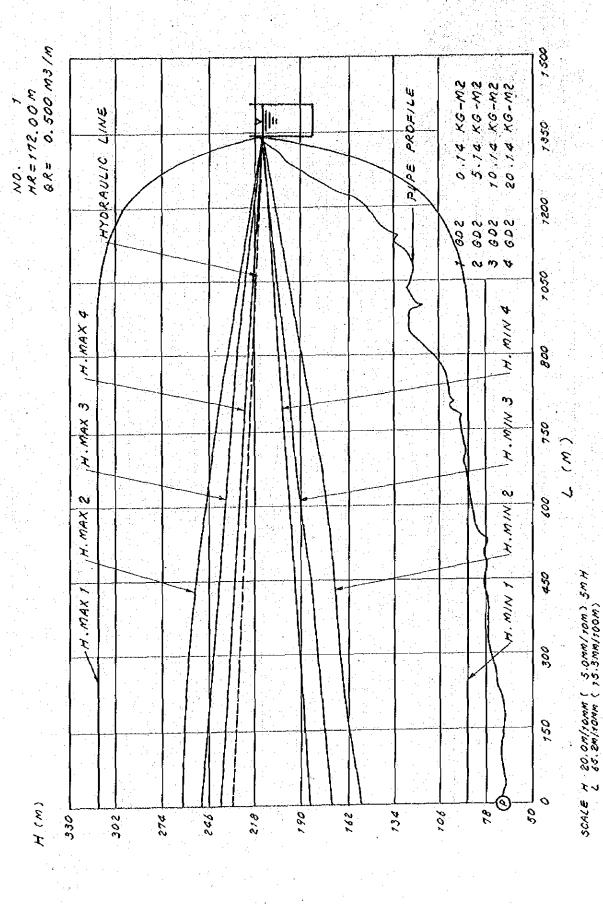
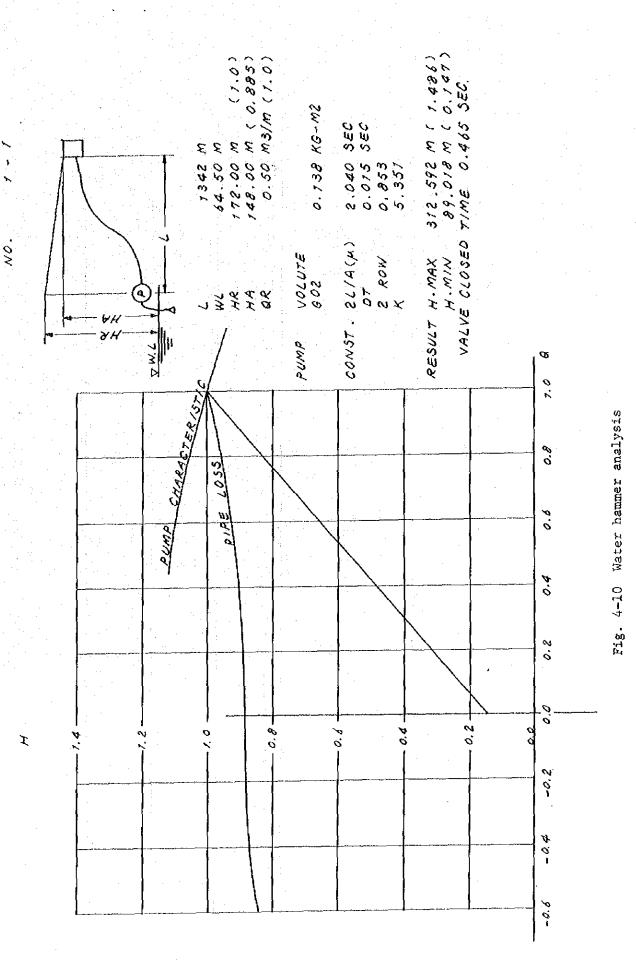




Fig. 4-9 Water hammer pressure curve



- 86 -

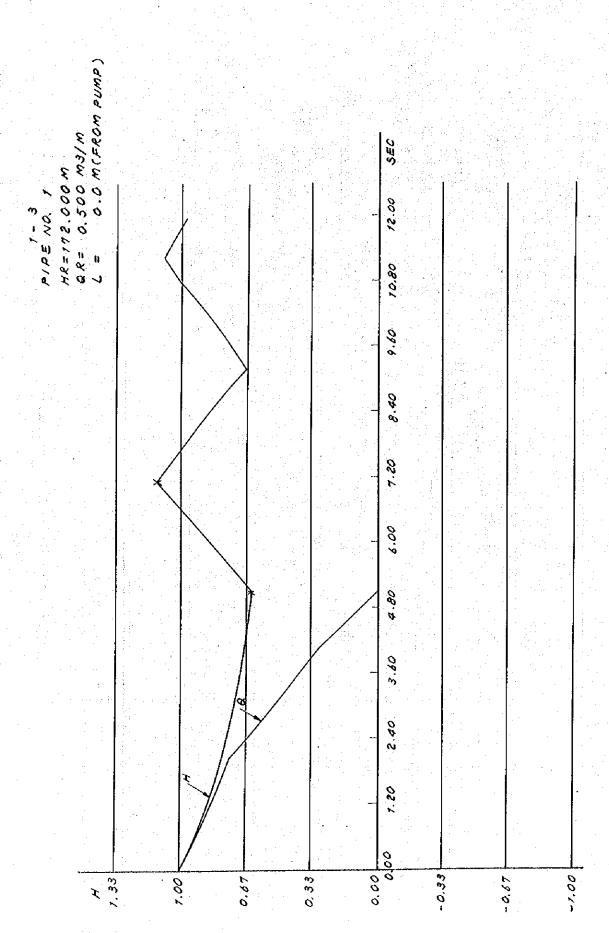
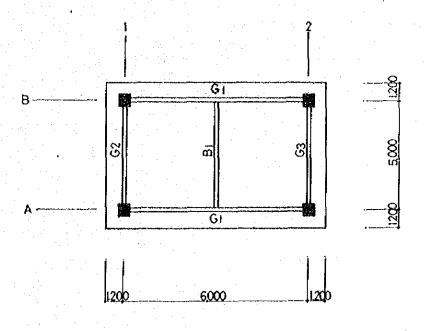
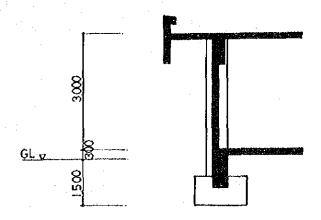





Fig. 4-11 Water hammer H. Q. analysis

# (b) Structural Calculations for Pump House



R Stage



Cross-sectional view

#### 1. Preparatory estimates

#### 1-1 Outline of structure:

Definitions

PUMP HOUSE

Location

BILI-BILI

Size

RC structural single-storied building

#### 1-2 Allowable stress etc.:

Allowable stress etc.

Structural references, reinforced concrete structural estimates

Standard references.

1-3

Concrete

 $fc = 210 \text{ kg/m}^2$ 

Reinforcing bars

SD 30

Earthquake force

K = 0.2

Pile resistance

Ra =

## 1-4 Assumed loads:

Roof

| Finishing        | <sup>60</sup> Ղ |     |
|------------------|-----------------|-----|
| Cinder           | 110             |     |
| Waterproof layer | 20              | 630 |
| Evening          | 40              |     |
| Slabs ( , 50)    | 360             |     |
| Ceiling ( )      | 40 ]            |     |

|      | Floor | Beams | Ground |
|------|-------|-------|--------|
| D.L. | 630   | 630   | 630    |
| L.I  | 100   | 50    | 0      |
| T.L. | 730   | 680   | 630    |

Columns 45 x 45 650 kg/m

Beams 30 x 60 400 kg/m 25 x 45 250 kg/m

Parapet 850 kg/m

Walls W15 450 kg/m<sup>2</sup>

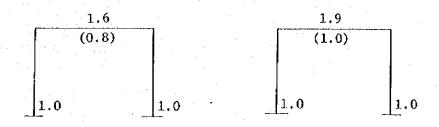
## 2. Preparatory estimates

# 2-1 Column axial Force

 $c_{\Lambda 1}$   $c_{\Lambda 2}$ 

 $c_{B1}$ 

|           |    | :              |                      |
|-----------|----|----------------|----------------------|
| Parapet   |    | 85 x 7.9       | = 6.8                |
| Roof      |    | 68 x 3.7 x 4.2 | = 10.6               |
| Beams     |    | 40 x 5.5       | = 2.2                |
| Small bea | ms | 25 x 1.25      | = 0.4                |
| Walls     |    | 45 x 5.5 x 3.0 | = 7.5                |
| Columns   |    | 65 x 3.3       | $= \frac{2.2}{29.7}$ |


CB2

#### 2-2 Calculation of C, Mo, and Q

G<sub>1</sub> 
$$\lambda = 1.67$$
 W<sub>1</sub> = 0.68 W<sub>2</sub> = 0.85 + 0.82 + 0.40 = 2.07  
C = 6.4 x 0.68 + 1/12 x 2.07 x 6.0<sup>2</sup>  
= 4.4 + 6.3 = 10.7  
Mo = 11.3 x 0.68 + 1/8 x 2.07 x 6.0<sup>2</sup>  
= 7.7 + 0.4 = 17.1  
Q = 4.98 x 0.68 + 1/2 x 2.07 x 6.0  
= 3.4 + 6.3 = 9.7  
G<sub>2</sub>  $\lambda = 1.67$  W<sub>1</sub> = 0.68 W<sub>2</sub> = 0.85 + 0.82 + 0.40 = 2.07  
C = 2.7 x 0.68 + 1/12 x 2.07 x 5.0<sup>2</sup>  
= 1.9 + 4.4 = 6.3  
Mo = 4.5 x 0.68 + 1/8 x 2.07 x 5.0<sup>2</sup>  
= 3.1 + 6.5 = 9.6  
Q = 2.6 x 0.68 + 1/2 x 2.07 x 5.0  
= 1.8 + 5.2 = 7.0

#### 2-3 Calculation of stiffness ratio

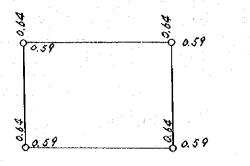
|              | В                                     | D     | Ι.       | ø   | r  | 0    | Q    | K   |
|--------------|---------------------------------------|-------|----------|-----|----|------|------|-----|
| Beams        | 30                                    | 60    | 55       | 2.0 |    | 6.00 |      |     |
| <del> </del> | · · · · · · · · · · · · · · · · · · · | ·<br> | <u> </u> | · . |    | 5.00 | 22.0 | 1.9 |
| Columns      | 45                                    | 45    | 35       | 1.0 | 35 | 3.00 | 11.7 | 1.0 |



AB rigid frame

1.2. rigid frame

#### Calculation of earthquake force


Roof 
$$0.63 \times 8.4 \times 7.4 = 39.2$$
  
Parapet  $0.85 \times 31.6 = 26.9$   
Beams  $0.40 \times 22.0 = 8.8$   
 $0.25 \times 5.0 = 1.25$   
Walls  $0.45 \times 22.0 \times 3.0 \times 1/8 = 14.9$   
Columns  $0.65 \times 4 \times 3.0 \times 1/2 = 3.9$ 

#### Stress distribution coefficients

| k              | 1.6  | k | 1.9  |
|----------------|------|---|------|
| a              | 0.59 | а | 0.62 |
| $\mathbf{D}$ . | 0.59 | D | 0.62 |
| у              | 0.55 | У | 0.55 |

AB rigid frame

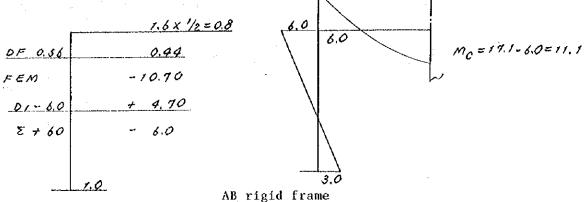
1.2. rigid frame

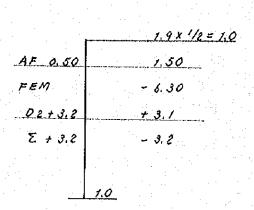


$$Q = 19.0t$$

$$\Sigma Dx = 2.36$$

$$\Sigma Dy = 2.48$$

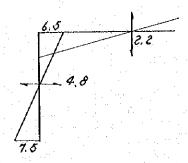

$$\mu x = 8.05$$

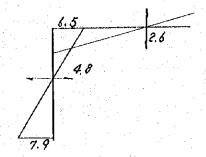

$$\mu y = 7.70$$

9.7

#### 3. Stress estimates

#### Stress under vertical load






1.2. rigid frame

#### 3-2 Stress under horizontal load





AB rigid frame

1.2. rigid frame

#### 4. Sectional designs

### 4-1 Floor

$$S_1$$
 3.00 x 5.00 5 = 15  $\lambda$  = 1.67  $W = 0.73$   $W \& x^2 = 6.57$ 

$$Mx_1 = 0.074 \times 6.57 = 0.49$$
 at =  $49000/1600 \times 10.5 = 2.9$   
 $Mx_2 = 0.049 \times 6.57 = 0.33$  33000/ " =  $1.96$  9.13\$\psi - 200\$\emptyset\$ My\_1 = 0.042 \times 6.57 = 0.28 28000/ " = 1.66 My\_2 = 0.028 \times 6.57 = 0.25 25000/ " = 1.48

$$CS_1$$
 W = 0.73 P = 0.85 t = 15

$$M = 1/2 \times 0.73 \times 12^2 + 0.85 \times 12$$
$$= 0.53 + 102 = 155$$


at = 
$$155000/1600 \times 10.5 = 9.3 \quad 13\phi - 1000$$

#### 4-2 Small beams

$$B_1$$
 25 x 45  $\lambda$  = 1.67  $W$  = 0.73  $Beams$  = 0.25  
 $C = 2 \times 2.7 \times 0.73 + 1/12 \times 0.25 \times 5^2$   
 $= 3.95 + 0.53 = 4.5$   
 $Mo = 2 \times 4.5 \times 0.73 \times 1/8 \times 0.25 \times 5^2$   
 $= 6.57 + 0.79 = 7.4$   
 $Q = 2 \times 2.6 \times 0.73 \times 1/2 \times 0.25 \times 5$ 

$$0.6C = 0.6 \times 4.5 = 2.7$$
  
Mo -  $0.6C = 7.4 - 2.7 = 4.7$ 

= 3.80 + 0.63 = 4.5



$$D = 45$$
  $\alpha = 40$   $j = 35$ 

(Outer edge) at = 
$$270000/2000 \times 35 = 3.9$$
  
 $\psi = 4500/14 \times 35 = 9.2$ 

(Center) at = 
$$470000/2000 \times 35 = 6.8$$
 3 - D19

(Stirrup) 
$$Q_L = 4.5 < 7 \times 25 \times 35 = 6.2$$
 pw = 0.2%  $2 - 9\phi$   $X = 2 \times 0.64/25 \times 0.002 = 25.6 \rightarrow 9\phi \sim 2000$ 

#### 4-3 Main beams

$$G_1 = 30 \times 60 \quad d = 55 \quad j = 48 \quad bd = 1650 \quad bd^2 = 89000$$

$$Outer edge \qquad Center$$

$$Ms = 12.5 \qquad Ms = 11.1$$

$$C = 14.0 \qquad C = 12.3$$

$$Pt = 0.53 \qquad Pt = 0.69$$

$$at = 8.8 \qquad at = 11.3$$

$$Upper edge \qquad 4 - D19 \qquad 3 - D19$$

$$Lower edge \qquad 3 - D19 \qquad 5 - D19$$

Stirrup 
$$Q_{L} = 9.7$$
  $Q_{S} = 2.2$  afs·b·j (long)  $7 \times 30 \times 48 = 10.1 > 9.7$ 

afs·b·j (short) 
$$10.5 \times 30 \times 48 = 15.0 > Qo = 9.7 + 2.2 \times 1.5$$
  
= 13.0

$$pw = 0.2\%$$

$$2 - 9\phi$$
  $X = 2 \times 0.64/30 \times 0.02 = 21.2 \rightarrow 9\phi \sim 2000$ 

#### 4-4 Columns

C<sub>1</sub> 45 x 45 BD = 2020 BD<sup>2</sup> = 91000  

$$xMs = 12.5$$
 M/BD<sup>2</sup> = 13.8 Pt = 0.36  
 $xMs = 31.9$  M/BD = 15.8 at = 7.3 4 - D19  
27.7 13.8  
 $yMs = 9.7$  M/BD<sup>2</sup> = 10.7 Pt = 0.23  
 $yMs = 31.9$  M/BD = 16.0 at = 4.7 3 - D19  
= 27.1 = 13.5

 $2 - 9\phi$   $X = 2 \times 0.64/30 \times 0.002 = 21.2 \rightarrow 9\phi \sim 2000$ 

#### 4-5 Foundation design

Allowable bearing force 18.0t Dead weight of foundation 1.5t Design bearing force 16.5t  $\mathbf{F}_{1}$ N = 29.7 + 5.0 = 34.7  $X = 34.7/16.5 = 2.1 \rightarrow 36$ Q = 34.7/3 = 11.6 $M = 11.6 \times 0.5 = 5.8$ at =  $580000/1600 \times 63 = 5.8$ 5 - 13¢  $\psi = 11600/105 \times 63 = 17.6$  $t = 11600/80 \times 63 = 2.3 < 9.0$ FG<sub>1</sub>  $35 \times 100$ d = 92 j = 81M = 10.9at =  $1090000/3000 \times 21 = 4.5$  3 - D19  $Qs = 3.2 (3.2 \times 1.5 = 4.8)$ afs  $\cdot$  b  $\cdot$  j = 10.5 x 35 x 81 = 30 > 4.8 Stirrup pw = 0.2% $2 - 9\phi$   $X = 2 \times 0.64/35 \times 0.002 = 18.2 \rightarrow 1500$ 

Piles

300¢ RCg

# 4-2-3 Farm pond

# (a) Capacity estimates

#### Parameters:

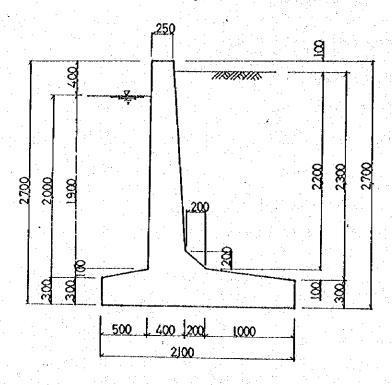
| Water supply time                                           | 24 hr      |
|-------------------------------------------------------------|------------|
| Irrigation time                                             | 16 hr      |
| Peak daily consumption                                      | 7.3mm/day  |
| Irrigation area                                             | 8.0 ha     |
| Irrigation efficiency                                       | 85%        |
| Quantity of water available for sericulture                 | 30,6m³/day |
| Quantity of water available for drinking and other purposes | 19.4m³/day |

# Capacity estimates

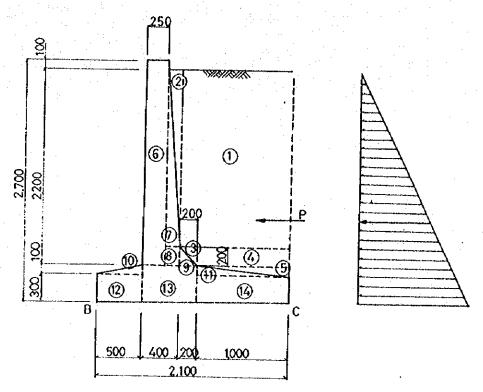
$$V_1 = 10 \times 8 \times 7.3 \times 1/0.85 (1 - 16/24)$$

$$= 229.7 \text{m}^3 = 230 \text{m}^3$$

$$V_2 = 30.60$$


$$V_3 = 19.40$$

$$= 19.40$$


$$= 280 \text{m}^3$$

# (b) Structural calculations

1. Cross-section - Shape and dimensions



Consideration of earth pressure loads (only) from outer surface



#### 2. Fixed determinants

# 3. Stability calculation

#### Earth pressure

o Under normal circumstances

$$P = \frac{1}{2} \cdot W \cdot K^{2} \cdot Ka$$

$$= \frac{1}{2} \cdot 1.255 \cdot 2.6^{2} \cdot 0.69$$

$$= 2.93t$$

Reight of force application

$$Y = \frac{h}{3}$$
$$= 0.867m$$

o During earthquakes

$$P = \frac{1}{2} \cdot W \cdot K^{2} \cdot Ke$$

$$= \frac{1}{2} \cdot 1.255 \cdot 2.6^{2} \cdot 0.95$$

$$= 4.03$$

Height of force application

$$Y = \frac{h}{3}$$
$$= 0.867m$$

Total earth pressure

| <u> </u>             |                                              |         | أحضب مستحدث |                 |
|----------------------|----------------------------------------------|---------|-------------|-----------------|
| Туре                 | Weight (t)                                   |         |             | Moment<br>(t-m) |
| Soil 1               | 1.255 x 1.200 x 2.000                        | 3.012   | 1.500       | 4.518           |
| 2                    | $1.255 \times 2.000 \times 0.143 \times 0.5$ | 0.179   | 0.845       | 0.151           |
| u 3                  | $1.255 \times 0.200 \times 0.200 \times 0.5$ | 0.025   | 1.033       | 0.026           |
| 4                    | 1.255 x 0.200 x 1.000                        | 0.251   | 1.600       | 0.402           |
| 11 5                 | $1.255 \times 0.100 \times 1.000 \times 0.5$ | 0.063   | 1,767       | 0.111           |
| Vertical 6           | 2.400 x 0.250 x 2.300                        | 1,380   | 0.625       | 0.863           |
| 11 7                 | $7.400 \times 0.150 \times 2.300 \times 0.5$ | 0.414   | 0.800       | 0.331           |
| 11 8                 | 2.400 x 0.150 x 0.200                        | 0.072   | 0.825       | 0.059           |
| 11 g                 | $2.400 \times 0.200 \times 0.200 \times 0.5$ | 0.048   | 0.967       | 0.046           |
| Base<br>slab         | 2.400 x 0.100 x 0.500 x 0.5                  | 0.060   | 0.333       | 0.020           |
| 11                   | $2.400 \times 0.100 \times 1.000 \times 0.5$ | 0.120   | 1.433       | 0.172           |
| " 12                 | $2.400 \times 0.300 \times 0.500$            | 0.360   | 0.250       | 0.090           |
| " 13                 | 2.400 x 0.400 x 0.400                        | 0.384   | 0.700       | 0.269           |
| " 14                 | 2.400 x 0.300 x 1.000                        | 0.720   | 1.600       | 1.152           |
| Horizontal component | 2 00 000591510011                            | (2.918) | 0.867       | -2.530          |
| of earth<br>pressure | 2.93 x C005°15'00"                           | (2.918) | 0.00/       | -2.550          |
| Tota1                |                                              | 7.088   |             | 5.680           |

## Stability calculation

## Earth pressure

Check against falling

$$d = \frac{\Sigma M}{\Sigma V} = \frac{5.680}{7.088} = 0.801$$

$$e = \frac{L}{2} - d = \frac{2.1}{2} - 0.801 = 0.249 < \frac{L}{6} = 0.350$$

Safety factor

$$S = \frac{7.088 \times 0.801}{2.918 \times 0.867} = 2.244 > 1.5$$

#### During earthquakes

Check against falling

$$d = \frac{\Sigma M}{\Sigma V} = \frac{8.210 - 3.784}{7.088} = 0.624$$

$$e = \frac{L}{2} - d = \frac{2.1}{2} - 0.624 = 0.426 < \frac{5k}{12} = 0.875$$

- 4. Stress calculations for protective wall
  - i) Lateral wall (estimated for earthquakes)
    - a. Load estimates

$$\Lambda = 6 + 4 + 9 = 1.914t$$

Horizontal forces

$$A(h) = A \cdot Kh = 1.914 \times 0.15 = 0.287$$

Height of application of force

$$Y_1 = \frac{h}{2} = \frac{2.3}{2} = 1.15m$$

Earth pressure

$$P = \frac{1}{2} \cdot W \cdot Ke \cdot h^{2}$$

$$= \frac{1}{2} \times 1.255 \times 0.95 \times 2.3^{2}$$

$$= 3.154$$

Height of force application

$$Y = \frac{h}{3} = \frac{2.3}{3} = 0.767m$$

b. Bending moment and shear force

$$M = A(h) \cdot Y_1 + P \cdot Y_2$$
  
= 0.287 x 1.15 + 3.154 x 0.767  
= 2.749 t.m

$$S = A(t) + P$$
  
= 0.287 + 3.154  
= 3.441t

# c. Calculation of cross-sectional force

$$M = 2.749t.m = 274.900kg.cm$$

$$S = 3.441t = 3441kg$$

$$d = 35cm$$

$$d' = 5cm$$

$$b = 100cm$$

$$\Lambda_{s} = \Lambda_{s}^{1} = D13 \text{ cte } 200 = 6.335 \text{cm}^{2}$$

$$P = \frac{As}{b \cdot d} = \frac{6.335}{100 \times 35} \times 0.0018$$

$$\frac{M}{bd^2} = \frac{274900}{100 \times 35^2} = 2.244 \text{kg/cm}^2$$

$$\frac{d'}{d} = \frac{5}{40} = 0.125$$

#### Nomogram estimation

$$\frac{1}{Lc} = 10.4$$
  $\frac{1}{Ls} = 520$   $j = 0.932$ 

$$\delta s = \frac{M}{b \cdot d^2} \cdot \frac{1}{Lc} = 2.244 \times 10.4 = 23 \text{ kg/cm}^2$$

$$\delta c = \frac{M}{b \cdot d} \cdot \frac{1}{Ls} = 2.244 \times 520 = 1167 \text{ kg/cm}^2$$

$$\tau = \frac{s}{b \cdot j \cdot d} = \frac{3441}{100 \times 0.932 \times 55} = 1.1 \text{ kg/cm}^2$$

#### At 1 meter below top of wall.

## a. Load estimates

$$A_1 = 0.25 \times 1.00 \times 2.4 = 0.600t$$
 $A_2 = 0.32 \times 1.00 \times 2.4 \times 0.5 = 0.384t$ 
 $A = A_1 + A_2 = 0.600 + 0.384 = 0.984t$ 

Horizontal forces

$$\Lambda(h) = \Lambda \cdot K(h) = 0.984 \times 0.15 = 0.148$$

Height of force application

$$Y_1 = \frac{h}{2} = \frac{1.0}{2} = 0.5m$$

Earth pressure

$$P = \frac{1}{2} \cdot W \cdot he \cdot h^{2}$$

$$= \frac{1}{2} \times 1.255 \times 0.95 \times 1^{2}$$

$$= 0.596$$

Height of force application

$$Y_2 = \frac{h}{3} - \frac{1.0}{3} = 0.333m$$

b. Bending moment

$$M = A(h) \cdot Y_1 + PY_2$$
  
= 0.148 x 0.5 + 0.596 x 0.333  
= 0.272tm

c. Calculation of cross-sectional force

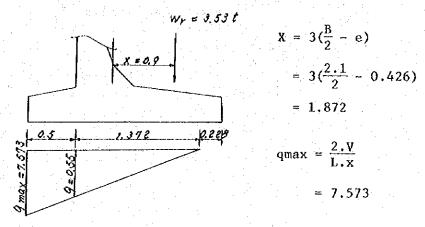
$$M = 0.272 \text{ t.m} = 27200 \text{ kg/cm}$$
 $d = 27\text{cm}$ 
 $d' = 5\text{cm}$ 
 $d = 100\text{cm}$ 

As = As' = D13 cte 400 = 3.168cm<sup>2</sup>

$$P = \frac{As}{b \cdot d} = \frac{3.168}{100 \times 27} = 0.012$$

$$\frac{M}{bd^2} = \frac{27200}{100 \times 27^2} = 0.373$$

Nomogram estimation


$$\frac{1}{Lc} = 12.4 \qquad \frac{1}{Ls} = 880$$

$$\delta c = \frac{M}{bd^2} \cdot \frac{1}{Lc} = 0.373 \times 12.4 = 4.6 \text{kg/cm}^2$$

$$\delta s = \frac{M}{bd^2} \cdot \frac{1}{Ls} = 0.373 \times 380 = 328 \text{ kg/cm}^2$$

#### iii) Base slab

Estimation includes base slab reaction to earthquake load plus weight of soil.



a. Bending moment and shear force

$$M = 5.55 \times 0.5^{2} \times 1/2 + 2.023 \times 0.5^{2} \times 1/3$$

$$= 0.69 + 0.17$$

$$= 0.86t.m$$

$$S = (7.573 + 5.55) \times 0.5 \times 1/2$$

$$= 3.28t$$

#### b. Calculation of cross-sectional force

M = 0.86t.m = 86000kg.cm  
S = 3.28t = 3280kg  
b = 100cm d = 35cm d' = 5cm  
As = As' = D13 cte 200 = 6.335cm<sup>2</sup>  
P = 
$$\frac{As}{b \cdot d} = \frac{6.335}{100 \times 35} = 0.0018$$
  
 $\frac{M}{b \cdot d^2} = \frac{86000}{100 \times 35^2} = 0.70$ 

Nomogram estimation

$$\frac{1}{Lc} = 10.5 \qquad \frac{1}{Ls} = 600 \qquad j = 0.931$$

$$\delta c = \frac{M}{b \cdot d^2} \cdot \frac{1}{Lc} = 0.70 \times 10.5 = 7.35 \text{kg/cm}^2$$

$$\delta s = \frac{M}{b \cdot d^2} \cdot \frac{1}{Ls} = 0.70 \times 600 = 420 \text{ kg/cm}^2$$

$$\tau = \frac{S}{b \cdot j \cdot d} = \frac{3280}{100 \times 0.931 \times 35} = 1.0066$$

#### a. Bending moment and shear force

$$M = 3.932 \times 0.972^{2} \times 1/6 - 3.53 \times 0.6$$

$$= 0.62 - 2.12$$

$$= -1.50t.m$$

$$S = 1/2 \times 3.932 \times 0.972 - 3.53$$

$$= 1.91 - 3.53$$

$$= 1.62t$$

#### b. Calculationof cross-sectional force

M = 1.50t.m = 150000kg.cm  
S = 1.62t = 1620kg  
b = 100cm d = 35cm d' = 5cm  
As = As' = D13 etc 200 = 6.335cm2  
P = 
$$\frac{As}{b \cdot d} = \frac{6.335}{100 \times 35} = 0.0018$$
  
 $\frac{M}{b \cdot d^2} = \frac{150000}{100 \times 35^2} = 1.224$ 

#### Nomogram estimation

$$\frac{1}{Lc} = 10.5 \qquad \frac{1}{Ls} = 600 \qquad j = 0.931$$

$$\delta c = \frac{M}{b \cdot d^2} \cdot \frac{1}{Lc} = 1.224 \times 10.5 = 12.852 \text{kg/cm}^2$$

$$\delta s = \frac{M}{b \cdot d^2} \cdot \frac{1}{Ls} = 1.224 \times 600 = 734.4 \text{ kg/cm}^2$$

$$\tau = \frac{D}{b \cdot j \cdot d} = \frac{1620}{100 \times 0.931 \times 35} = 0.497 \text{ kg/cm}^2$$

#### 4-3 Design of Service Pipe Line Route (Incl. Sub-center)

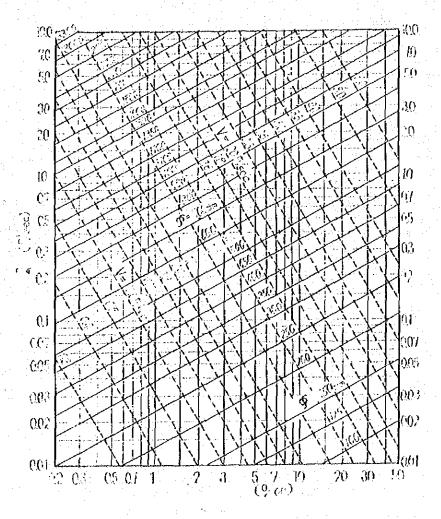
#### 4-3-1 Pipe type selection

Table 4-10

| Pipe type                                                     | Test water pressure                | Max. operating<br>hydrostatic pressure               |
|---------------------------------------------------------------|------------------------------------|------------------------------------------------------|
| Asbestos-cement pipe-type 1 2 2 3 3 4 4                       | 2kg/cm <sup>2</sup> 22 " 18 " 13 " | 9 kg/cm <sup>2</sup><br>6.5 "<br>5 "                 |
| Vinyl chloride pipe                                           | <u> </u>                           | 7, 5 <sup>H</sup>                                    |
| Ductile cast iron pipe-type 1  2  3  Reinforced concrete pipe | 60 "<br>50 "<br>6 "                | 20 " or around " " " " " " " " " " " " " " " " " " " |

At the center, the level difference between the headwaters and the field amounts to 150 cm. Accordingly, most parts are applied with over 100 m ( $10 \text{kg/cm}^2$ ) water pressure. Especially in the neighborhood of the pump station, over 180 m ( $18 \text{kg/cm}^2$ ) inside water pressure is applied when added, with the water hammer pressure.

Therefore, vinyl chloride or asbestos-cement pipe cannot be used because of the lack of strength. In the actual installation design, ductile cast iron pipes are adopted considering the safety and workability.


At the sub-center, vinyl chloride pipes are adopted as the applied water pressure is about 17 m  $(1.7~{\rm kg/cm^2})$  even when the water hammer is generated.

## 4-3-2 Hydraulic Calculation

Table 4 - 11 shows the inside water pressure, hydraulic gradient, etc. at each station as disclosed by hydraulic calculation.

The calculation was worked by referring to Hazen-William chart, with the roughness coefficient taken at 130.

## HAZEN-WILLIAMS



|           |          |         | Table  | 4-11 - Rest  | ilts of Hydi | raulic Calc | ulation              |          |                                       |                |
|-----------|----------|---------|--------|--------------|--------------|-------------|----------------------|----------|---------------------------------------|----------------|
|           |          |         |        |              |              |             |                      |          | · · · · · · · · · · · · · · · · · · · |                |
|           |          |         |        |              |              |             | HYDRAULIC            |          |                                       |                |
| STATION   | DISTANS  | TL      | EL     | DISCHARGE    | DIAMETER     | VELOCITY    | GRADIENT             | HEADLOSS | ELEVATION HEAD                        | EFFECTIVE HEAD |
|           |          |         |        | l/s          |              |             |                      | m        | m                                     | m              |
| No.0      |          |         | 66.475 | 8.5          | <b>ø</b> 100 | 1.05        | 13.849               |          | 233.424                               | 166.949        |
| No.1      | 69.800   | 69,800  | 66.475 | n i          | a .          |             | H                    | 0.967    | 232.457                               | 165.767        |
| No.2      | 50,670   | 120.470 | 67.600 | n ·          | ti.          | an .        | u                    | 0.702    | 231.755                               | 165.065        |
| + 37.538  | 57.590   | 178.060 | 65,160 | $\mathbf{u}$ | 11           | , n         | 11                   | 0.798    | 230.957                               | 165.797        |
| No.3      | 4.244    | 182.304 | 65.920 | u            | . 11         | u u         | - 1 m - 1            | 0.059    | 230.898                               | 164.978        |
| + 10.40   | 10.570   | 192.874 | 64.030 | 11           | <b>u</b> , ; | u           | TI.                  | 0.146    | 230.752                               | 166.722        |
| + 20.00   | 9.600    | 202.474 | 64.909 | u ;          | ii.          | a           | 11                   | 0.133    | 230.619                               | 166.529        |
| No.4      | 21.382   | 223.856 | 67.835 | <b>u</b>     | ŧi           | 11          | n n                  | 0.296    | 230.323                               | 162.488        |
| No.5      | 25.760   | 249.616 | 71.300 | a            | et i         | 11          | <b></b>              | 0.357    | 229.966                               | 158.666        |
| No.6      | 39.920   | 289.536 | 72.975 | Ħ            | <b>u</b> :   | m .         | and the state of the | 0.553    | 229.413                               | 156.438        |
| No.7      | 37.120   | 326.656 | 75.545 | D            | ŧi           |             | 11                   | 0.514    | 228.899                               | 153.354        |
| No.8      | 56.070   | 382.726 | 77.335 | ii .         | u            | The second  | 11                   | 0.777    | 228.122                               | 150.787        |
| + 58.682  | 58.724   | 441.450 | 79.565 | n            | 11           | n           | n                    | 0.813    | 227.309                               | 147.744        |
| No.9      | 6.933    | 448.383 | 78.885 | n .          | 41           | n i         | 11                   | 0.096    | 227.213                               | 148.328        |
| + 40.588  | 40.620   | 489.003 | 77.265 | D D          | 11           | H           |                      | 0.563    | 226.650                               | 149.385        |
| No.10     | 1.414    | 490.417 | 76.265 | <b>D</b>     | tr .         | <b>H</b> (  | Œ                    | 0.020    | 226.630                               | 150.365        |
| No. 11    | 8.798    | 499.215 | 76.265 | n.           | 11           | . 11        | 11                   | 0.122    | 226.508                               | 150.243        |
| No.12     | 6.385    | 505.598 | 79.300 | D            | ff ,         | 31          | ti                   | 0.088    | 226.420                               | 147.120        |
| + 21.043  | 21.079   | 526.677 | 78.070 | • •          | 11           | 11          | 111                  | 0.292    | 226.128                               | 148.058        |
| + 22.043  | 1.000    | 527.677 | 78.070 | 13           | Ð            | 31          | 11                   | 0.014    | 226.144                               | 148.074        |
| + 23.543  | 2.121    | 529.798 | 79.570 | 11           | 1)           | <b>11</b>   | 11                   | 0.029    | 226.085                               | 146.515        |
| + 32.543  | 9.000    | 538.798 | 79.570 | 11           | ii           | rt .        | 11                   | 0.125    | 225.960                               | 146.390        |
| No.13+0.4 | 1.414    | 540.212 | 78.570 | O            | 11           | Ħ           | . 11                 | 0.020    | 225.940                               | 197.370        |
| + 1.40    | 1.000    | 541.212 | . 11   | ,00          | \$1          | 11          | 11                   | 0.014    | 225.926                               | 147.356        |
| No.14     | 16.696   | 557.908 | 83.435 | , u          | <b>\$1</b>   | 11          | 0                    | 0.231    | 225.595                               | 142.160        |
| No. 15    | 77.170   | 635.078 | 88.485 | O            | . #          | 11          | tl                   | 1.069    | 224.626                               | 136.141        |
| No. 16    | 47.330   | 682.408 | 89.785 | . ••         | 11           |             | 11                   | 0.655    | 223.971                               | 134.186        |
| 707.10    | ,,,,,,,, |         |        | •            |              |             |                      |          |                                       |                |
|           |          |         |        |              |              |             |                      |          |                                       | - 110 -        |
|           |          |         |        |              | •            |             |                      |          |                                       | - 110          |

•

|               |         |           | 1       |                           |               |           | HUNDAMETA             |          |                |               |
|---------------|---------|-----------|---------|---------------------------|---------------|-----------|-----------------------|----------|----------------|---------------|
| STATION       | DISTANS | TL        | EL      | DISCHARGE                 | DIAMETER      | VELOCITY  | HYDRAULIC<br>GRADIENT | HEADLOSS | ELEVATION HEAD | EFFECTIVE HEA |
|               |         |           |         | l/s                       |               |           |                       | m        | m m            |               |
| No.17         | 10.230  | 692.638   | 91.470  | 8.5                       | ø 100         | 1.05      | 13.849                | 0.142    | 223.829        | 132.359       |
| No. 18        | 17.580  | 710.218   | 89.125  | В                         | n             | [f        | 11                    | 0.243    | 223.586        | 134.461       |
| No. 19        | 35.700  | 745.918   | 91.595  | er e                      | n i           | 11        | 11                    | 0.494    | 223.092        | 131.497       |
| No. 20        | 21.650  | 767.568   | 92.505  | ff                        | n             |           | •                     | 0.300    | 222.792        | 130.287       |
| + 12.429      | 12.432  | 780.000   | 92.800  | u                         | <b>u</b>      | 11        | 11                    | 0.172    | 222.620        | 129.820       |
| + 13.420      | 1.000   | 781.000   | 92.800  | 11                        | n ,           | 11        | • • • • • •           | 0.014    | 222.606        | 129.806       |
| No.21 + 0.50  | 2.121   | 783.121   | 94.300  | 11                        | . u           | 11        | 11                    | 0.029    | 222.577        | 128.277       |
| + 8.30        | 7.931   | 691.052   | 95.736  | ti                        | 11            | n         | 41                    | 0.110    | 222.467        | 126.731       |
| + 9.30        | 1.120   | 792.172   | 96.240  | 13.                       | H             | H         | 11                    | 0.016    | 222.451        | 126.211       |
| + 14.296      | 5.585   | 797.757   | 98.736  | 11                        | <b>11</b>     | Ħ         | a .                   | 0.077    | 222.374        | 123.638       |
| + 18.296      | 4.272   | 802.029   | 100.236 | $\mathbf{u} = \mathbf{u}$ | the <b>Hi</b> | n         | $\mathbf{a}$          | 0.059    | 222.315        | 122.079       |
| No. 22        | 2.062   | 804.091   | 100.736 | O                         | 11            | n en      | 11                    | 0.029    | 222.286        | 121.550       |
| + 5.672       | 5.682   | 809.773   | 100.400 | $\boldsymbol{u}_{i}$      | H             | n         | 11                    | 0.079    | 222.207        | 121.807       |
| + 19.172      | 13.500  | 823.273   | 11      | 0                         | 41            | 4<br>11   | 11                    | 0.187    | 222.020        | 121.620       |
| + 20.172      | 1.414   | 824.687   | 99.400  | <b>u</b>                  | 14            | <b>31</b> | 11                    | 0.020    | 222.000        | 122.600       |
| + 21.172      | 1.000   | 825.687   | 99.400  | U                         | H .           | Ħ         | 11                    | 0.014    | 221.986        | 122.586       |
| No. 23        | 5.935   | 831.622   | 100.046 | D                         | 11            | Ħ         | tt                    | 0.082    | 221.904        | 121.858       |
| No. 24        | 25.480  | 857.102   | 100.201 | 0                         | 11            | If .      | 11                    | 0.353    | 221.551        | 121.350       |
| + 28.248      | 28.450  | 885.552   | 103.631 | B                         | 11            | , 51      | i.                    | 0.394    | 221.157        | 117.526       |
| No. 25        | 5.212   | 890.764   | 105.101 | i i m                     | 11:           | <b>31</b> | 11                    | 0.072    | 221.085        | 115.984       |
| No. 26        | 28.940  | 919.704   | 113.264 | n                         | 11 - 1        | 11        | 11                    | 0.401    | 220.684        | 107.420       |
| + 40.746      | 42.240  | 961.944   | 124.400 | rı                        | 11            | Ħ         | 11                    | 0.585    | 220.099        | 95.799        |
| No.27         | 4.409   | 966.353   | 124.311 | II .                      | 11            | Ħ         | 11                    | 0.061    | 220.038        | 95.727        |
| + 33.212      | 33.220  | 999.573   | 123.600 | 11                        | 11            | . 30      | et e                  | 0.460    | 219.977        | 96.377        |
| + 34.212      | 1.000   | 1,000.573 | 123.600 | H                         | 19            | Ħ         | 11                    | 0.014    | -219.517       | 95.917        |
| + 35.512      | 1.830   | 1,002.411 | 124.900 | . и                       | 11            | н         | <b>11</b>             | 0.025    | 219.503        | 94.603        |
| No. 29+1. 232 | 14.081  | 1,016.492 | 122.100 | ri .                      | Œ             | Ħ         | 11                    | 0.195    | 219.478        | 97.378        |
| + 2.232       | 1.412   | 1,017.904 | 121.100 | 11                        | 11            | <b>11</b> | 11                    | 0.020    | 219.283        | 98.183        |
| + 3.232       | 1.000   | 1,018.904 | н       | 11                        | 11            | Ħ         | 11                    | 0.014    | 219.263        | 98.163        |

.

| STATION      | DISTANS | TL        | EL      | DISCHARGE                              | DIAMETER                          | VELOCITY        | HYDRAULIC<br>GRADIENT | HEADLOSS | ELEVATION HEAD | EFFECTIVE HEAD |
|--------------|---------|-----------|---------|----------------------------------------|-----------------------------------|-----------------|-----------------------|----------|----------------|----------------|
|              |         |           |         | l/s                                    | on the party Marian<br>The second |                 |                       | m        | <b>m</b>       | n              |
| No. 30       | 27.827  | 1,046.731 | 126.106 | 8.5                                    | <b>ø</b> 100                      | 1.05            | 13.849                | 0.385    | 219,249        | 93.143         |
| No. 31       | 20.460  | 1,067.191 | 121.938 | ii.                                    | н                                 | 11              | it                    | 0.283    | 218.864        | 96.926         |
| No. 32       | 25.450  | 1,092.641 | 121.877 |                                        | н                                 | 11              | н                     | 0.352    | 218.581        | 96.704         |
| + 28.984     | 29.206  | 1,121.847 | 125.473 | 10                                     | 11                                | 11              | 'n                    | 0.404    | 218.229        | 92.756         |
| No.33        | 5.393   | 1,127.240 | 127.495 | ) <b>H</b>                             | 11                                | 1)              | 11                    | 0.075    | 217.825        | 90.330         |
| + 16.05      | 17.318  | 1,144.558 | 134.000 | 11                                     | 41                                | #               | ii .                  | 0.240    | 217.750        | 83.750         |
| + 17.05      | 1.077   | 1,145.635 | 134.400 | ii.                                    | บ                                 | n e             | tt.                   | 0.015    | 217.510        | 83.110         |
| No.35 +1.505 | 12.603  | 1,158.238 | 135.550 | н                                      | an and an analysis of the second  | U U             | n .                   | 0.175    | 217.495        | 81.945         |
| + 2.505      | 1.059   | 1,159.297 | 135.900 | 11                                     | · January Communication           |                 | TF.                   | 0.015    | 217.320        | 81.420         |
| No.36        | 29.037  | 1,188.334 | 145.656 | <b>11</b>                              | n .                               | H               | II.                   | 0.402    | 217.305        | 71.649         |
| No. 37       | 32.350  | 1,220.684 | 152.152 | <b>:</b>                               | u u                               |                 | ii ii                 | 0.448    | 216.903        | 64.751         |
| No.38        | 12.760  | 1,233.444 | 157.583 | H                                      | 11                                | Ħ               | u u                   | 0.177    | 216.455        | 58.872         |
| No. 39       | 25.510  | 1,258.954 | 172.705 | Ħ                                      | 11                                | и               | n n                   | 0.353    | 216.278        | 43.573         |
| No.40        | 8.100   | 1,267.054 | 176.329 | 11 · · · · · · · · · · · · · · · · · · | 11                                |                 | II .                  | 0.112    | 215.925        | 39.596         |
| No.41        | 19.430  | 1,286.484 | 184.038 | 41                                     | n n                               | e in the second | III                   | 0.269    | 215.813        | 31.775         |
| No. 42       | 25.600  | 1,312.084 | 195.559 | 11                                     | t1                                | tt .            | <b>II</b>             | 0.355    | 215.544        | 19.985         |
|              | · ·     |           | *.      |                                        | 11                                | <b>51</b>       |                       | 0.391    | 215.189        | 12.899         |

.

(Table 12 ) Composite angle

Name of pipe line:

| · · · · · · · · · · · · · · · · · · ·                              | <del></del> - |             |           |            |            |           |          |           |           |           |            |           |          |            |          |
|--------------------------------------------------------------------|---------------|-------------|-----------|------------|------------|-----------|----------|-----------|-----------|-----------|------------|-----------|----------|------------|----------|
|                                                                    | 0             | (1)         | <b>(</b>  | <b>(</b>   | <b>(+)</b> | <b>①</b>  | $\oplus$ | <b>(</b>  | <b>(</b>  | (1)       | <b>(+)</b> | <b>(</b>  | ①        | <b>(1)</b> | 0        |
| ×                                                                  | 3547'47"      | 21.24'32"   | 3828/56"  | 8.01'41"   | 1044'05"   | 1751'41"  | 2123/35" | 8734/11"  | 28.24'21" | 33,30,35" | 16'58'47"  | 34,34,40" | 4.12.40" | 25,56'01"  | 170925"  |
| cos X=<br>®±®                                                      | 0.8111        | 0.9310      | 0.7828    | 0.9902     | 0.9825     | 0.9518    | 0.9311   | 0.0424    | 0.8796    | 0.8338    | 0.9564     | 0.8234    | 0.9973   | 0.8993     | 0.9555   |
| @@                                                                 | 0.0007        | 0.0320      | 0.0236    | 0.0056     | 0.0022     | 0.0012    | 0.0039   | 0.0000    | 0.0000    | 0.0189    | •          | 0.0091    | 0.0018   | 0.0045     | 0.0220   |
| (4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4) | 0.8118        | 0.9630      | 0.7592    | 0.9846     | 0.9803     | 0.9500    | 0.9272   | 0.0424    | 0.8796    | 0.8527    | 0.9564     | 0.8043    | 0.9955   | 0.8948     | 0.9775   |
| sia B                                                              | 0.0395        | 0.1788      | 0.1345    | 0.0420     | 0.0319     | 0.0380    | 0.0399   | 0.0000    | 0.4755    | 0.0397    | 0.2914     | 0.0654    | 0.0275   | 0.1647     | 0.1334   |
| cos B                                                              | 0.9992        | 0.9839      | 0.9909    | 0.9991     | 0.9995     | 0.9993    | 0.9992   | 1.0000    | 0.8797    | 0.9992    | 0.9566     | 0.9979    | 0.9996   | 0.9863     | 0.9911   |
| Д                                                                  | 2,15/51"      | 10,18,00%   | 7.43/49"  | 224'17"    | 1,49/46"   | 210/35"   | 2,17,08" | ပံ        | 823/31"   | 216/34"   | 1656/26"   | 3,45,08"  | 134'26"  | 9.28/51"   | 739/56"  |
| Sin A                                                              | 0.0180        | 0.1791      | 0.1752    | 0.1345     | 0.0692     | 0.0319    | 0.0980   | 0.7071    | 1.0000    | 0.4755    | 1.0000     | 0.2914    | 0.0654   | 0.0275     | 0.1647   |
| © Cos A                                                            | 86660         | 0.9838      | 0.9845    | 6066.0     | 0.9976     | 0.9995    | 0.9952   | 0.7071    | 1.0000    | 0.8797    | 1.0000     | 0.9566    | 0.9979   | 9666.0     | 0.9863   |
| Ą                                                                  | 1.01'45"      | 10,18,01%   | 100515"   | 7,43'49"   | 3.58/12"   | 1°49′46″  | 5,37'21" | 45,00.00% | .0        | 28,23/31" | 0          | 1656/26"  | 3,45,08" | 1°34′26″   | 9.28/51" |
| Cos C                                                              | 0.8126        | 0.9949      | 0.7782    | 0.9945     | 0.9831     | 0.9517    | 0.9324   | 0.0599    | 0.9999    | 0.9701    | 8666.0     | 0.8426    | 0866.0   | 0.9076     | 1.0000   |
| O                                                                  | 3538'40"      | (-)5,46,45" | 38'54'25" | (-)C05.00" | 1032/55"   | 17.53'00" | 21,1145" | 8633752"  | 0,46,40"  | 1402/50"  | 1.07/15"   | 3235/00"  | 3.36'00" | 24.49'37"  | 0.23/55" |
| 出                                                                  | 63            | n           | 4         | iO.        | 7          | 00        | 0        | 0 1       | 11        | 12        | 13         | 14        | 15       | 9 7        | 17       |
| Station                                                            | 16.2          | 16.3        | 16.4      | /6 S       | 1,0%       | 8 %/      | 16.9     | 16:0      | 1611      | //612     | 1613       | 16.1.4    | 1615     | 16 16      | 1617     |

Cos X = cos A + cos B + cos C = sin B

note X: Composite angle
A.B: Vertical angle
C: Horiyontal angle

) Composite angle (Table 12

| •            |               | ~         | <u> </u>  | - <del></del> - |           | <i></i>    | ~          | ·        |             |          |           |           |           |           |           |           |  |
|--------------|---------------|-----------|-----------|-----------------|-----------|------------|------------|----------|-------------|----------|-----------|-----------|-----------|-----------|-----------|-----------|--|
|              |               | ①<br>•    | <u> </u>  | <b>①</b>        |           | <b>(+)</b> | <b>(+)</b> | +        | <u>_</u> +, | +        | +         | -†<br>    |           | +-        | ···       | +         |  |
|              | x             | 2731/34"  | 22,27,07" | 3543721"        | 66,01/39" | 6.59/30"   | 3742'08"   | 2.25/52" | 3.08/19     | 1223/33" | 14.01/17" | 3.40′24″  | 1931/27"  | 0,31,25"  | \$02.27   | 11,12/58" |  |
|              | ©∓©           | 0.8868    | 0.9242    | 0.8119          | 0.4063    | 0.9926     | 0.7912     | 0.9991   | 0.9985      | 0.9767   | 0.9702    | 0.9979    | 0.9425    | 0.9999    | 0.9902    | 0.9809    |  |
| line:        | 36=I          | 0.0092    | 0.0029    | 0.1281          | 0         | 0.0007     | 0.0007     | 0.0787   | 0.0740      | 0.0004   | 0         | 0.0366    | 0.0003    | 0.1394    | 0.0675    | 0.2523    |  |
| fpipe        | COA           | 09680     | 0.9213    | 0.6838          | 0.4063    | 0.9919     | 0.7905     | 0.9204   | 0.9245      | 0.9763   | 0.9702    | 0.9613    | 0.9428    | 0.8605    | 0.9227    | 0.7286    |  |
| Name o       | G<br>sin B    | 0.0692    | 0.0420    | 0.1811          | 0         | 0.0061     | 0.1206     | 0.2806   | 0.2636      | 0.0202   | 0         | 0.2037    | 0.1231    | 0.3714    | 0.2008    | 0.5928    |  |
|              | E sos         | 0.9976    | 0.9991    | 0.9835          | 1.0000    | 1.0000     | 0.9927     | 0.9594   | 0.9646      | 0.9998   | 1.0000    | 0.9790    | 0.9924    | 0.9285    | 96760     | 0.8054    |  |
|              | æ             | 3.58703"  | 224'32"   | 1025/53"        | O         | 0.20755    | 6,25/29"   | 1623'00" | 1517/09"    | 1,08/32" | 0         | 11'45'15" | 70421"    | 21'48'05" | 11,35/02" | 3621/17"  |  |
|              | sin A         | 0.1334    | 0.0692    | 0.7071          | 0.2425    | 0.1088     | 0.0061     | 0.2806   | 0.2806      | 0.0202   | 0.0214    | 0.1799    | 0.0024    | 0.3756    | 0.3360    | 0.4256    |  |
| ු<br>න       | © 800         | 0.9911    | 0.9976    | 0.7071          | 0.9701    | 0.9941     | 1.0000     | 0.9594   | 0.9594      | 0.9998   | 0.9998    | 0.9836    | 1.0000    | 0.9268    | 0.9419    | 0.9049    |  |
| Composite an | A             | 739/56"   | 3.58'03"  | 4500'00"        | 14'02'10" | 614'55"    | 020/55     | 1623'00" | 1623'00"    | 109/32"  | 1,13/35"  | 1021/50"  | 0.08/14"  | 2203'45"  | 1937/56"  | 25,11'29" |  |
| ) Com        | ၂ sos         | 0.9062    | 0.9243    | 0.9833          | 0.4188    | 0.9978     | 0.7963     | 0.9999   | 06660       | 0.9767   | 0.9704    | 0.9982    | 0.9500    | 1.0000    | 1.0000    | 26660     |  |
| ble 12       | O             | 25.00/30" | 22,26,10" | 0.28.00%        | 65'14'25" | 347/30"    | 3713/35"   | 056/55"  | 230'40"     | 1222/55" | 13.59/10" | 327740"   | 16'11'15" | 031/22"   | 0.05/12"  | 1.21/40"  |  |
| (Table       | НР            | 18        | 6 .       | 2.1             | 22        | 23         | 24         | 25       | 26          | 17       | 8         | 30        | 32.       | ω<br>4    | 36        | 00<br>m   |  |
|              | Station<br>Má | 16.18     | 16.19     | 1623            | 162 2     | 1623       | 1624       | 1625     | 1626        | 1627     | 16.2.8    | 1630      | 1632      | 1634      | 1636      | 1638      |  |

Cos X = cos A · cos B · cos O z sin A · sin B

note X: Composite angle
A.B: Vertical angle
C: Horiyontal angle

|                   |            |           |             | <br>  | ·   |      |     |   |  |
|-------------------|------------|-----------|-------------|-------|-----|------|-----|---|--|
|                   |            | +         | <b>-</b> }- |       |     | <br> |     |   |  |
|                   | ×          | 3.20/29"  | 12.58'01"   |       |     |      | : : |   |  |
|                   | ©∓©<br>©∓© | 0.9983    | 0.9745      |       |     |      |     |   |  |
| line:             | (Z—(S)(S)  | 0.1775    | 0.1072      |       |     |      |     |   |  |
| Name of pipe      | 9=<br>900  | 0.8208    | 0.8673      |       |     | · .  |     |   |  |
| Name o            | ©<br>sin B | 0.3968    | 0.2383      |       |     |      |     |   |  |
|                   | & sos      | 0.9179    | 0.9712      |       |     |      |     |   |  |
|                   | 8          | 23,22/33" | 13'47'21"   |       |     |      |     |   |  |
|                   | ©<br>Sin A | 0.4474    | 0.4500      | <br>: | ··. |      |     |   |  |
| ngie              | ©<br>cos A | 0.8943    | 0.8930      |       |     |      |     | · |  |
| 12 ) Composite an | ¥          | 2634'40"  | 26'44'46"   |       |     |      |     |   |  |
| ), 00;            | . (E)      | 6666.0    | 1.0000      |       |     |      |     |   |  |
| (Table 12         | 0          | 0.49/50"  | 0.03735"    |       |     |      |     |   |  |
| (Ta               | HP         | 40        | 4 2         | <br>  |     | <br> |     |   |  |
|                   | Station    | 16.4.0    | 1642        |       |     |      |     |   |  |

Cos X = cos A · cos B · cos C ± sin A · sin B

note X : Composite angle A-B : Vertical angle

C : Horiyontal angle

| 1              |                                        |          |           |          |           |            |           |           |             | : .       |          |           |          |           |          |       |                     |  |   |  |
|----------------|----------------------------------------|----------|-----------|----------|-----------|------------|-----------|-----------|-------------|-----------|----------|-----------|----------|-----------|----------|-------|---------------------|--|---|--|
| 0(2/5)         | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |          |           |          |           |            |           |           |             |           |          |           |          |           |          |       |                     |  |   |  |
| D (III)        |                                        | 1.00     |           |          |           |            |           |           |             |           |          |           |          |           |          |       |                     |  |   |  |
| ×              |                                        | 0.10435" | 35'47'47" | 3.27     | 21.24/32" | 12.00      | 10,38/29" | 38.28756" | 8.01.41"    | 5.19/32"  | 44′(     | 17,51,41" | 0.20.4   | 23/3      |          |       |                     |  |   |  |
| 0              |                                        | 1        | 3538740"  | ı        | -5,46,45" |            | ŀ         | 3854/25"  | (-)6°02′00″ | 1         | 1032/55  | 1753/00"  | 1        | 21,11/45" |          |       |                     |  |   |  |
| <b>ئ</b>       |                                        | 0.10/35" | 0.21/10"  | -327/27" | 12'44'43" | -20'37'01" | 10.39729" | 9,43,46"  | -221,26"    | -5'19'32" | 1,33/55" | -2.08/26" | 0.20'49" | -747'56"  | 3.20/13" |       |                     |  |   |  |
| L (M)          |                                        | 69.800   | 50.670    | 57.590   | 4.244     | 10.570     | 9.600     | 21.382    | 25.760      | 39.920    | 37.120   | 56.070    | 58.724   | 6.933     | 40.620   |       |                     |  |   |  |
| sec Ø          |                                        | 1.0000   | 1.0002    | 1.0009   | 1.0164    | 1.0164     | 1.0000    | 1.0157    | 1.0092      | 1.0009    | 1.0024   | 1.0005    | 1.0007   | 1.0048    | 1.0008   |       |                     |  |   |  |
| ò              |                                        | 010'35"  | 101/45"   | -225'42" | 10,6101   | -1018'00"  | 0.21/29"  | 1005/15"  | 7,43'49"    | 22417"    | 35812"   | 1,49/46"  | 2.10'35" | -53.7721" | -217'08" |       |                     |  |   |  |
| tan ذ          |                                        | 0.0031   | 0.0180    | -0.0424  | 0.1820    | -0.1817    | 0.0063    | 0.1779    | 0.1357      | 0.0420    | 0.0694   | 0.0319    | 0.0380   | -0.0986   | -0.0399  |       |                     |  | : |  |
| Lv (m)         |                                        | 0.215    | 0.910     | -2440    | 0.760     | - 1.890    | 0.060     | 3.745     | 3.465       | 1.675     | 2.5 7 0  | 1.790     | 2.230    | -0.680    | -1.620   | -:    | - ø <sub>n</sub>    |  |   |  |
| Lh=(m)         |                                        | 69.800   | 50.662    | 57.538   | 4.175     | 10.400     | 009.6     | 21.051    | 25.526      | 39.885    | 37.031   | 56.041    | 58.682   | 0.06.9    | 40588    | 87879 | $: dv = \phi_{n+1}$ |  |   |  |
| EL (m)         | 66.475                                 | 6.6.6.90 | 6 7.6 0 0 | 65.160   | 6 5.9 2 0 | 6 4.0 3 0  | 64.090    | 67.385    | 71.300      | 72.975    | 75.545   | 77.335    | 79,565   | 78885     | 77.265   | 7     | note                |  |   |  |
| Station<br>//a | 0 %                                    | 16.1     | 16.2      | +57.538  | 163       | +10.40     | +20.00    | 4. 24.    | 165         | 16.6      | 16.7     | 8 %       | +58.682  | 6 %       | +40.588  |       |                     |  |   |  |

(Table 13 ) Pipe line

|          |              |           |           | · .        |         |           | 2021      | Ž         |             |           |          |              |              |             |           |          |            |          |
|----------|--------------|-----------|-----------|------------|---------|-----------|-----------|-----------|-------------|-----------|----------|--------------|--------------|-------------|-----------|----------|------------|----------|
| (8/8)0   |              |           |           |            |         |           |           |           |             |           |          |              |              |             |           |          |            |          |
| D (mm)   |              |           |           |            |         |           |           |           |             |           |          |              |              |             |           |          |            |          |
| X        | 8734'11"     | 2824'21"  | 33°30′32″ | 3144'14"   | 320'43" | 45'00'00" | 4500'00"  | 45.00.00" | 1658'47"    | 34°34′40″ | 4°12′40″ | 2556'01"     | 1709/25"     | 2731/34"    | 2227'07"  | 1,31/31" | 102/57"    |          |
| 0        | (-)86,33752" | 0,46/40"  | 1402750"  | 1.         | 1       |           | l         | l         | (-) 107/15" | 3235'00"  | 336/00"  | (-)24,49/37" | (+) 0°23′55″ | (-)2500/30" | 22,26/10" | -1       | ı          |          |
| Λp       | -42'42'52"   | 45,00,00% | 28.23.31" | -31°44′14″ | 320'43" | 4500,00%  | -4500000" | -45"00"   | 45.00.00"   | 16.56/26" | 1311/18" | - 2,10,42"   | 754'25"      | 1708/47"    | 1137/59"  | 1°33′31″ | - 1.02/57" |          |
| L (m)    | 1.414        | 8.738     | 6.383     | 21.079     | 1.000   | 2.121     | 00006     | 1.414     | 1.000       | 16.696    | 77.170   | 47.330       | 10.230       | 17.580      | 35.700    | 21.650   | 12.432     | 290.997" |
| ∘ø oes   | 1.4142       | 1.0000    | 1.1367    | 1.0017     | 1.0000  | 1.4142    | 1.0000    | 1.4142    | 1.0000      | 1.0454    | 1.0021   | 1.0004       | 1.0138       | 1.0090      | 1.0024    | 1.00.09  | 1.0003     |          |
| °ø       | -4500,00%    | 0         | 2823/31"  | -320'43"   | 0       | 45,00,00% | 0         | -4500,00% | 0           | 16'56'26" | 345'08"  | 1,34,26"     | 9.39751"     | -758'56"    | 3.24'03"  | 224'32"  | 1,21/35"   |          |
| ton ذ    | -1.000       | 0         | 0.5405    | -0.0585    | 0       | 1.0000    | 0         | 1.0000    | 0           | 0.3046    | 0.0656   | 0.0275       | 0.1670       | 0.1346      | 0.0694    | 0.0421   | 0.0237     |          |
| Lv (m)   | -1.000       | 0         | 3.035     | -1.230     | 0       | 1.500     | 0         | 1.000     | 0           | 4.865     | 5.050    | 1.300        | 1.685        | -2.345      | 2.470     | 0.910    | 0.295      |          |
| Lh = (m) | 1.000        | 8.798     | 5.615     | 21.043     | 1.000   | 1.500     | 9.000     | 1.000     | 1.000       | 15.972    | 77.005   | 47.312       | 10.090       | 17.423      | 35.614    | 21.631   | 12.429     | 287.432  |
| EL (m)   | 76.265       | 76.265    | 79.300    | 78.070     | 78.070  | 79.570    | 79.570    | 78.570    | ,,          | 83.435    | 88.485   | 89.785       | 91.470       | 89.125      | 91.595    | 92.505   | 92.800     |          |
| Station  | 1610         | 1611      | 16.1.2    | +21.043    | +22.043 | +23.543   | +32.543   | 13+0.40   | +1.40       | 16 1 4    | 16.1.5   | 16.1 6       | 16.1.7       | 16.18       | 1619      | 1620     | +12.429    |          |

note:  $dv = \phi_{n+1} - \phi_n$ 

Pipe line (Table

|                                 |           | aqueduct   | $\Sigma l = 11.30 m$ |          |           |            |           |           |         | aqueduct   | $2^{k}=15.50m$ |             |             |          |              |              |           |             |          | •      |
|---------------------------------|-----------|------------|----------------------|----------|-----------|------------|-----------|-----------|---------|------------|----------------|-------------|-------------|----------|--------------|--------------|-----------|-------------|----------|--------|
| Q(L/s)                          |           |            |                      |          |           |            |           |           |         |            |                |             |             |          |              |              |           |             |          |        |
| D (mm)                          |           |            |                      |          |           |            |           |           |         |            |                |             |             |          |              |              |           |             |          |        |
| ×                               | 121/35"   | 3543'21"   | 34°34′07″            | 1619'00" | 0.11/55"  | 559'26"    | 6601/39"  | 1725/35"  | 323/25" | 45.00,00"  | 45'00'00"      | 6.59/30"    | 3742'08"    | 634/34"  | 2,25/52"     | 3.08/19"     | 1.05/51"  | 1223733"    |          |        |
| Ö                               | I.        | 0.29.00    | 1                    | 1        | 1         |            | 65'14'25" | Í         | 1       | ŀ          |                | (-) 347'30" | (-)3713/35" | 1        | (→) 0°56′55″ | (-) 2°30′40″ | ŀ         | (-)1222755" |          |        |
| άv                              | - 121/35" | 45,00,00%  | -3434'07"            | 1619/00" | - 011/55" | - 5'59'26" | - 631/12" | -1725'35" | 323725" | -4500'00"  | 4500,00"       | 614'55"     | - 5.54'00"  | 634'34"  | 927'31"      | 0            | - 105/51" | -1626/41"   |          |        |
| L (m)                           | 1.000     | 2,121      | 7.931                | 1.120    | 5.585     | 4.272      | 2.062     | 5.682     | 13.500  | 1.414      | 1.000          | 5.935       | 25.480      | 28.450   | 5.212        | 28.940       | 42.240    | 4.409       | 186.353" |        |
| sec Ø                           | 1.0000    | 1.4142     | 1.0168               | 1.1198   | 1.1179    | 1.0680     | 1.0308    | 1.0018    | 1.0000  | 1.4142     | 1.0000         | 1.0060      | 1.0000      | 1.0073   | 1.0423       | 1.0423       | 1.0367    | 1.0002      |          |        |
| ô                               | 0         | 4500'00"   | 1025/53"             | 2644'53" | 26,32'48" | 20°33′22″  | 14.02'10" | - 323/25" | 0       | -45.00'00" | 0              | 614'55"     | 0,20,55"    | 6.55'29" | 1623'00"     | 1623'00"     | 1517'09"  | - 1°09'32"  |          |        |
| ton Ø                           | 0         | 1.0000     | 0.1841               | 0.5040   | 0.4996    | 0.3750     | 0.2500    | -0.0592   | •       | -1.0000    | 0              | 0.1095      | 0.0061      | 0.1215   | 0.2940       | 0.2940       | 0.2733    | 0.0202      |          |        |
| Lv (m)                          | 0         | 1.500      | 1.436                | 0.504    | 2.496     | 1.500      | 0.500     | -0.336    | 0       | -1.000     | 0              | 0.646       | 0.155       | 3.430    | 1.470        | 8.163        | 11.136    | -0.089      |          | 1      |
| $L_{\rm h} = \langle m \rangle$ | 1.000     | 1.500      | 7.800                | 1.000    | 4.996     | 4.000      | 2.000     | 5.672     | 13.500  | 1.000      | 1.000          | 5.900       | 25.480      | 28.242   | 5.000        | 27.765       | 40.746    | 4.400       | 181.001  | φ    Δ |
| EL (m)                          | 008.26    | 94.300     | 95.736               | 96.240   | 98.736    | 100.236    | 100.736   | 100.400   | *       | 99.400     | 99.400         | 100.046     | 100.201     | 103.631  | 105101       | 113.264      | 124.400   | 124.311     |          | 9+02   |
| Station<br>Ná                   | +13.429   | Na 21+0.50 | +8.30                | +9.30    | +14.296   | +18.296    | 1622      | + 5.672   | +19.172 | +20.172    | +21.172        | 16.2 3      | 1624        | +28248   | 16.2.5       | 1626         | +40.746   | 16.27       |          |        |

note:  $dv = \phi_{n+1} - \phi_n$ 

|        |               |                 |          | 0.100     | 20000000000000000000000000000000000000 | )<br> <br> |           |              |                                       |              |         |                |              |            | aduceduc.   |          |              |           |              |          | 1       |
|--------|---------------|-----------------|----------|-----------|----------------------------------------|------------|-----------|--------------|---------------------------------------|--------------|---------|----------------|--------------|------------|-------------|----------|--------------|-----------|--------------|----------|---------|
|        | D(mm) Q(L/s)  |                 |          |           |                                        |            |           |              |                                       |              |         |                |              |            |             |          |              |           |              |          |         |
|        | D(mm)         |                 |          |           |                                        |            | · ·       |              |                                       |              |         | <del></del>    | ·            |            |             |          |              |           |              |          |         |
|        | ×             | 14'0117"        | 1,1335"  | 45,0000,  | 562810"                                | 33,3150"   | 45,00.00% | 3'40'24"     | 220705"                               | 193127"      | 71235"  | 14°56′45″      | 0'31'22"     | 0.15/40"   | 1633/57"    | 14.0376" | \$02.27"     | 802/54"   | 11,12/58"    | 110948"  |         |
|        | 0             | 13.59/10"       | · 1      | 1         | ì                                      | ı          |           | (→) 3°27′40″ | · · · · · · · · · · · · · · · · · · · | (-)16'11'15" | i       |                | (→) 0°31′22″ | ı          | 1           | 1        | (→) 0°05′12″ | I         | (-) 1°21′40" | 1        |         |
|        | γþ            | - 0.04.03"      | 1,13/35" | 45,00,00% | -5628/10"                              | -33,31/50" | 45,00,00" | 1021/50"     | -2207705"                             | 11,37,01"    | 712/35" | 14,56,45"      | 002/39"      | - 0,15/40" | -1633/57"   | 1403/16" | 0.20/32"     | - 802/54" | 1336/27"     | 1109'48" |         |
|        | L (m)         | 33.220          | 1.000    | 1.838     | 14.081                                 | 1.412      | 1.000     | 27.827       | 20.460                                | 25.450       | 29.206  | 5.393          | 17.318       | 1.077      | 12.603      | 1.059    | 29.037       | 32.350    | 12.760       | 25.510   | 292.601 |
|        | ∘¢ oes        | 1.0002          | 1.0000   | 1.4142    | 1.0204                                 | 1.4142     | 1.0000    | 1.0166       | 1.0214                                | 1.0000       | 1.0077  | 1.0787         | 1.0790       | 1.0770     | 1.0042      | 1.0595   | 1.0617       | 1.0208    | 1.1051       | 1.2417   |         |
|        | \$            | - 1.13/35"      | 0        | 4500,00%  | -11'28'10"                             | -4500000   | 0         | 1021/50"     | -11'45'15"                            | - 0.08/14"   | 704/21" | 22'01'06"      | 2203/45"     | 2148'05"   | 514'08"     | 1917/24" | 19,37/56"    | 11,35'02" | 25,11,29"    | 3621/17" |         |
| line   | on 6°         | -0.0214         |          | 1.0000    | -0.2029                                | -1.0000    | 0         | 0.1829       | -0.2081                               | -0.0024      | 0.1241  | 0.4044         | 0.4053       | 0.4000     | 0.0916      | 0.3500   | 0.3567       | 0.2050    | 0.4704       | 0.7360   |         |
| Ріре   | Lv (m)        | -0.711          | 0        | 1.300     | -2.800                                 | -1.000     | 0         | 5.006        | -4.168                                | -0.061       | 3.596   | 2.022          | 6.505        | 0.400      | 1.150       | 0.350    | 9.756        | 6.496     | 5.431        | 15.122   |         |
| 13     | Ln=(m)        | 33.212          | 1.000    | 1.300     | 13.800                                 | 1.000      | 1.000     | 27.373       | 20.031                                | 25.450       | 28.984  | 5.000          | 16.050       | 1.000      | 12.550      | 1.000    | 27.349       | 31.691    | 11.546       | 20.545   | 279.881 |
| (Table | EL (m)        | 123.600         | 123.600  | 124.900   | 122.100                                | 121.100    | 121.100   | 126.106      | 121.938                               | 121.877      | 125.473 | 127.495        | 134.000      | 134.400    | 135.550     | 135.900  | 145.656      | 152.152   | 157.583      | 172.705  |         |
|        | Station<br>Ná | 7627<br>+33.212 | +34.212  | +35.512   | //a 29+1.232                           | +2.232     | +3.232    | /k 3 0       | ,<br>,<br>,<br>,<br>,                 | 1632         | +28.984 | <i>8</i> 8 8 8 | 76 33+16.05  | +17.05     | NG 35+1.505 | +2.505   | 16.36        | 11537     | 1638         | 683/     |         |

note:  $dv = \phi_{n+1} - \varphi$ 

Table 13 ) Pipe line

| 1                         | <del></del>           | ·            |                 |                       |               |            | <br><del></del>   |         |
|---------------------------|-----------------------|--------------|-----------------|-----------------------|---------------|------------|-------------------|---------|
|                           |                       |              |                 |                       |               |            | 1366.243/1336.751 | =1.0221 |
| D(mm) (Q(L/s)             |                       |              |                 |                       |               |            |                   |         |
| D (IIII)                  |                       |              |                 |                       |               |            |                   |         |
| ×                         | 3.207.29"             | 3.12.07"     | 12°58′01″       | 12,577,25"            | 13'15'22"     | 22,11'13"  |                   |         |
| 0                         | (-)0°49'50"           |              | (-)0"03735"     | 1                     |               | 1          |                   |         |
| Þ                         | - 946/37" (-)049/50"  | - 312'07"    | 322713"         | -12'57'25"            | 1315/22"      | -22'11'13" |                   |         |
| L(m)                      | 8.100                 | 19.430       | 25.600          | 28.240                | 26.039        | 2.007      | 1368.370          |         |
| sec Ø                     | 1.1182                | 1.0894       | 1.1198          | 1.0297                | 1.1228        | 1.0036     |                   |         |
| °ø                        | 3.624 0.5003 2634'40" | 23.22/33"    | 0.5040 2644'46" | 6.731 0.2454 1347/21" | 2702'43"      | 4.51/30"   |                   |         |
| ton 🎸                     | 0.5003                | 7.709 0.4322 | 0.5040          | 0.2454                | 0.5105        | 0.085      |                   |         |
| Lv (m) ton $\phi^{ullet}$ | 3.624                 | 7.709        | 11.521          |                       |               | 0110       |                   |         |
| Bι (m) ιη = (m)           | 7.244                 | 17.835       | 22.861          | 27.426                | 23.192 11.840 | 2.000      | 1336.751          |         |
| BL (m)                    | 176.329               | 184.038      | 195.559         | 202.290               | 214.130       | 214.300    | : :               |         |
| Station<br>//&            | 164.0                 | 16.4 1       | 1642            | 16.4.3                | 16.4.4        | + 2.0 0    | Total             |         |

100.338 30te: dv=0,1,7

#### 4-3-3 Safety Facilities

a. Thrust blocks

Thrust blocks are placed along the pipe at bends and coners, and at sluice valves where the action of water pressure may possibly cause dislocations of pipe connections etc.

1. At lateral bends along the pipe

Checking against slippage

$$R_{H} \ge SP' = SR_{H}$$

$$P' = P_{H} = 2(Pa_{C} + \frac{aWwV^{2}}{g}) \sin \frac{\theta}{2}$$

where,

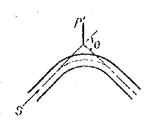
R<sub>H</sub>: horizontal resistance =

(frictional resistance) + (passive earth pressure at block surface) + (passive earth pressure (against rear surface of block) (t)

P': displacement force = lateral thrust =  $P_H$  (t)

a: cross-sectional area of pipe (outer diameter) (m2)

P: internal pressure = static water pressure + thrust of water flow  $(t/m^2)$ 


a: corss-sectional area of water flow = 2D / 4 (m<sup>2</sup>)

D: internal diameter of pipe (m)

Ww: unit weight of water within the pipe  $1.0 t/m^3$ 

v: average flow rate of water within the pipe (m/s)

π : ratio of circumference to diameter



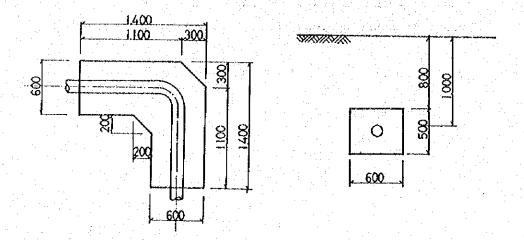



Fig. 4-12 Cross section yiew of thrust block

Weight of soil above thrust block

$$W_1 = (0.60 \times 1.40 - 1/2 \times 0.30^2 + 0.60 \times 0.80 + 1/2 \times 0.20^2) \times 0.80 \times 1.80$$
  
= 1.865t

Dead weight of thrust block

$$W_2 = (0.60 \times 1.40 - 1/2 \times 0.30^2 + 0.60 \times 0.80 + 1/2 \times 0.20^2) \times 0.50 \times 2.30 - 1/4 \times \pi \times 0.10^2 \times (0.584 + 1.5085) \times 2.30 = 1.451t$$

Dead weight of pipe + weight of water

$$W_3 = (0.018 + 1.5085 \times 0.0186) + 1/4 \times \pi \times 0.10^2 \times (0.584 + 1.5085)$$
  
= 0.062t

Frictional resistance at bottom surface of thrust block

$$R_{H_1} = f \cdot W = 0.5 \times \Sigma = 0.5 \times 3.378 = 1.689t$$

where f is frictional coefficient = 0.5

Passive earth pressure on rear surface of block

$$Kp = \tan^{2}(45^{\circ}+\phi/2) + \frac{2 \cdot C}{\gamma t \cdot Z} \tan(45^{\circ}+\phi/2)$$

$$= \tan^{2}(45^{\circ}+30^{\circ}/2) + \frac{2 \times 0}{1.8 \times 1.3} \tan(45^{\circ}+30^{\circ}/2)$$

$$= 3.00$$

$$P_{1} = Kp \cdot \gamma t \cdot H_{1} \cdot B = 3.00 \times 1.80 \times 0.80 \times 1.40 = 6.048t$$

$$P_{2} = Kp \cdot \gamma t \cdot H \cdot B = 3.00 \times 1.80 \times 1.30 \times 1.40 = 9.828t$$

$$R_{H_{2}} = 1/2 \times (P_{1} + P_{2}) \times H_{2} = 1/2 \times (6.048 + 9.828) \times 0.50 = 3.969$$

$$R_{H} = R_{H_{1}} + R_{H_{2}} = 1.689 + 3.969 = 5.658t$$

$$P' = P_{H} = 2(p \cdot a_{c} + \frac{a \cdot Ww \cdot V^{2}}{g}) \sin \frac{0}{2}$$

$$P = 172.16 + 55 = 227.16t/m^{2}$$

$$a_{c} = 1/4 \times \pi \times 0.118^{2} = 0.01093m^{2}$$

$$a = 1/4 \times \pi \times 0.100^{2} = 0.00785m^{2}$$

$$Ww = 1.00t/m^{2}$$

$$V = 0.00853/0.00785 = 1.087m/s$$

$$\theta = 90^{\circ}$$

$$P' = 2 (227.16 \times 0.01093 + \frac{0.00785 \times 1.00 \times 1.087^{2}}{9.8}) \sin \frac{90}{2}$$

$$= 2 \times 2.484 \times 0.7071 = 3.513t$$

$$S = R_{H}/P_{H} = 5.658/3.513 = 1.61 > 1.5$$

#### Strength calculations for aqueduct

#### 1. Fixed determinants:

Form

Effective span

: & = 12.0m

Pipe diameter

: ø100m/m

Pipe thickness

t = 4.5 m/m

Design internal

pressure

: 22.7kg/cm<sup>2</sup>

(static water pressure 17.2kg/cm<sup>2</sup>,

thrust of water flow 5.5kg/cm<sup>2</sup>)

Steel material

: SS.41

Allowable stress

: tensile stress

 $1300 \, \mathrm{kg/cm^2}$ 

compressive stress

1300kg/cm<sup>2</sup>

shear stress

750kg/cm<sup>2</sup>

Allowable deflection

: 1/350

Earthquake load

: horizontal seismic coefficient 0.2

2. Loads:

Dead weight of pipe

 $: 12.8 \text{kg/m} \times 12.0 \text{m} = 153.6 \text{kg}$ 

Weight of water

 $: 1/4 \times 3.14 \times 0.10^2 \times 12.0 \times 1.0 = 94.2 \text{kg}$ 

Total 247.8kg

Vertical load

: Wv = 247.8/1200 = 0.21 kg/cm

Horizontal load

: Wh =  $0.21 \times 0.20 = 0.04 \text{kg/cm}$ 

#### 3. Check against stress produced within pipe itself

#### 1) Circumferential stress

Tensile stress due to internal pressure

$$\sigma t = \frac{P \cdot y}{t} = \frac{22.7 \times 5}{0.45} = 252.2 \text{kg/cm}^2 < 1300 \text{kg/cm}^2$$

where,

P is internal pressure (kg/cm<sup>2</sup>)

r is internal radius of pipe (cm)

t is pipe thickness (cm)

2) Bending stress around pipe axis

Bending stress as a beam

$$\sigma_{D} = \frac{M}{\pi \gamma^{2} t} = \frac{0.125 \text{ Wy } \ell^{2}}{\pi \gamma^{2} t} = \frac{0.125 \text{ x } 0.21 \text{ x } 1200^{2}}{3.14 \text{ x } 5^{2} \text{ x } 0.45}$$
$$= 1070.0 \text{kg/cm}^{2} < 1300 \text{kg/cm}^{2}$$

3) Shear force perpendicular to pipe axis

$$\tau = \frac{5 \cdot \text{Wv} \cdot \text{l}}{8 \cdot \text{w} \cdot \text{v} \cdot \text{t}} = \frac{5 \times 0.21 \times 1200}{8 \times 3.14 \times 5 \times 0.45} = 22.3 \text{kg/cm}^2$$

- 4) Check against horizontal loads
  - a) Ratio of horizontal to vertical loads

$$n = \frac{Wh}{Wv} = \frac{0.04}{0.21} = 0.20$$

b) Bending stress caused by horizontal loads

$$\sigma_{R} = \sqrt{\sigma_{D}^{2} + \sigma_{R}^{2}} = \sqrt{1070^{2} + 214^{2}} = 1091.2 \text{kg/cm}^{2} < 1300 \text{kg/cm}^{2}$$

4. Check against buckling

Critical buckling stress

$$\sigma_{K} = 0.6E \frac{t}{\gamma}$$

$$= 0.6 \times 2.1 \times 10^{6} \frac{0.45}{5}$$

$$= 113.400 \text{kg/cm}^{2}$$
E: Young's modulus for the pipe material (kg/cm<sup>2</sup>)
$$= 2.1 \times 10^{6}$$

#### 5. Check against deflections

$$\delta \max = \frac{Wv \cdot \ell''}{185E \cdot I}$$

$$= \frac{0.21 \times 1200''}{185 \times 2.1 \times 10^6 \times 340}$$

$$= 3.3cm$$

$$\frac{3.3}{1200} = \frac{1}{364} < \frac{1}{350}$$

#### 4-4 Basic Design of Buildings

#### 4-4-1 Buildings

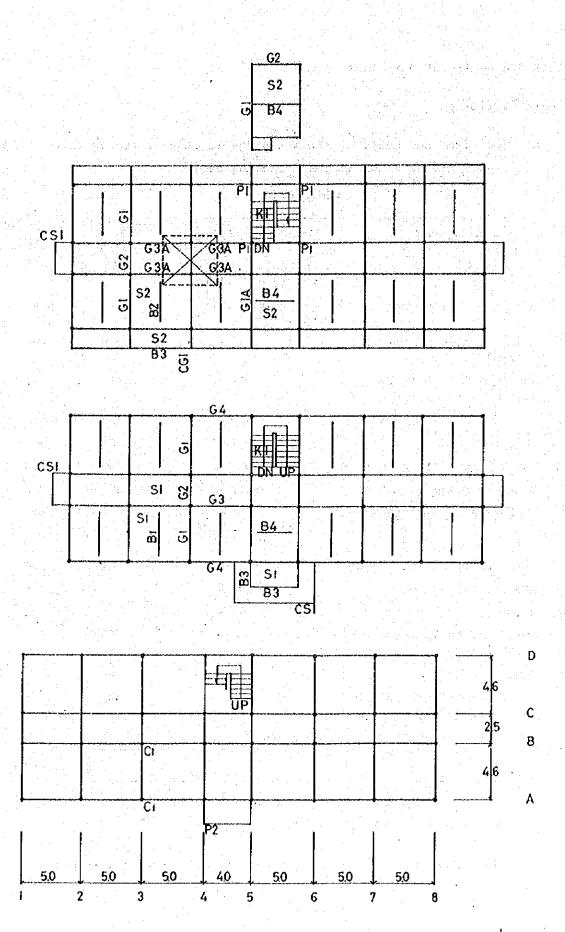

a) The kinds and scale of the buildings to be constructed in Sericulture Centre are as shown in the following table.

Table 4-14

|     | Building Name                           | Brief Description                      | Total Floor<br>Area                   | Building<br>Area   |  |
|-----|-----------------------------------------|----------------------------------------|---------------------------------------|--------------------|--|
| ٨   | Main building                           | 2-storied reinforced concrete building | 848 m²                                | 413                |  |
| A   | Cocoon testing room                     | l-storied brick<br>building            | 242                                   | 180                |  |
| В   | Rearing room for rearing method         | - do -                                 | 456                                   | 192                |  |
| C . | Rearing room for egg production (1)     | ~ do ~                                 | 456                                   | 192                |  |
| ٠   | <b>(2)</b>                              | - do -                                 | 456                                   | 192                |  |
|     | Research room                           | do                                     | 86                                    | 46                 |  |
| D   | Pathological rearing room               | - do -                                 | 264                                   | · 96               |  |
| E   | Pebrine inspection room                 | - do -                                 | 372                                   | 252                |  |
| F   | Silkworm egg refrigerator               | - do -<br>(prefabricated<br>partition) | 270                                   | 180                |  |
| G   | Artificial hatching room                | - do -                                 | 48                                    | 24                 |  |
| Ħ   | Chemicals warehouse                     | - do -                                 | -                                     | 4                  |  |
| ľ   | Garage                                  | - do                                   |                                       | 60                 |  |
| J   | Mulberry field maintenance<br>building  | do                                     | 165                                   | 117                |  |
| K   | Compost shed                            | do                                     | 264                                   | 200                |  |
| L   | Agricultural machine and tool warehouse | do                                     | 187                                   | 120                |  |
|     | Sericultural equipment pool             | 2 places                               | <b></b>                               | $(40 \text{ m}^2)$ |  |
|     | Total                                   | <u> </u>                               | · · · · · · · · · · · · · · · · · · · | 2,268              |  |

#### b) Structural Calculation of Main Buildings

The calculation is worked out for the main centre building.



#### (1) Preparatory Calculation

- i. Design Criteria
  - a. Basic plan

Rigid frame structure in both X and Y directions.

b. Standard for operation

Standard of Structural Calculation, Japan Architectural Institute.

c. Foundation work

Independent footing considering bearing capacity.

d. Aseismatic design

Rigid drame earthquake proofing.

e. Consideration of rigid zone

Beam ---- column surface, column ---- beam surface.

f. Correction of column base fixed load

Rigidity of footing beam is considered.

- g. Increase rate of seismic shearing force1.5 times.
- ii. Assumptions for calculation
  - a. Material

Reinforcement DS30

Tensile strength

2,000 kg/cm<sup>2</sup>(long time)

Shearing strength

(1.5 times the above value for short time)

Concrete (ordinary concrete), FC = 210

Compressive strength 70 kg/cm $^2$ (long) 140 kg/cm $^2$ (short) Shearing strength 7.0 " ("),10.5 " (")

Adhesive strength 21 " ( " ),1.5 times ( " (14 upper the long limit) time strength

# b. Bearing capacity (long time) 50 t/m<sup>2</sup>

| C: | Exte | ernal | force |
|----|------|-------|-------|

| :      | Seismic force                  | Standard           | seismic intensity -0.12 |
|--------|--------------------------------|--------------------|-------------------------|
|        | Wind Pressure                  | $q = 60 	ext{ } 1$ |                         |
| d.     | Load term (kg/m <sup>2</sup> ) |                    |                         |
|        | Water tank (RF)                | - 50t              |                         |
|        | Roof:                          |                    |                         |
|        | Finishing mortar               | 330                | 60                      |
|        | Covering concrete              | 60                 | 144                     |
|        | Protective mortar              | 15                 | 30                      |
|        | Evening mortar                 |                    | 15                      |
| ٠      |                                | 20                 | 40                      |
|        | RC slab                        | 135                | 324                     |
| ·<br>: | Ceiling                        |                    | <u>20</u><br>633        |
|        |                                |                    | 640                     |
|        | Office room:                   |                    |                         |
|        | Finishing mortar               | 330                | 60                      |
|        | RC slab                        | 120                | 288                     |
|        | Ceiling                        |                    | <u>20</u><br>368        |

#### Toilet:

| Finishing mortar    | 330 | 60               |
|---------------------|-----|------------------|
| Covering concrete   | 60  | 144              |
| Waterproofing layer |     | 15               |
| Evening mortar      | 20  | 40               |
| RC slab             | 120 | 282              |
| Ceiling             |     | <u>20</u><br>567 |
|                     |     | 570              |

370

#### Staircase

Landing 
$$\frac{370}{2} \div 600$$

#### Parapet:

$$h = 800$$
 0.6t/m

#### Wall weight:

| Interior  | t = 100 | 120 | 180 |
|-----------|---------|-----|-----|
| RC        | 240     | 290 | 440 |
| Finishing | 80      | 80  | 80  |
|           | 320     | 370 | 520 |

| Exterior  | ŧ = | 150 | 180 |
|-----------|-----|-----|-----|
| RC        |     | 360 | 440 |
| Finishing |     | 100 | 100 |
|           |     | 460 | 540 |

#### Beam weight:

Small 
$$W = 2.4 \times 0.25 \times 0.33 \times 4.6 = 0.92t$$

$$A = 2.5 \times (4.6-1.25) = 0.4 \text{ m}^2$$

$$W = \frac{920}{8.4} = 109.5 \quad 110 \text{ kg/m}^2$$
Large (R. 2F)
$$W = 2.4 \times 0.3 \times 0.48 \times (9.2+10+2.4 \times 0.15 \times 0.48 \times 5.0 \times 2 +2.4 \times 0.3 \times 0.33 \times 2.5 +2.4 \times 0.25 \times 0.33 \times 4.6 \times 2 = 6.64 + 1.73 + 0.6 + 0.76 = 9.73t$$

$$A = 5.0 \times 12 = 60 \text{ m}^2$$

$$W = 162 \qquad 170 \text{ kg/m}^2$$

Column 
$$W = 2.4 \times 0.5 \times 0.5 \times 3.38 \times 2 + 2.4 \times 0.5 \times 0.35 \times 3.38 \times 2$$
  
 $= 4.06 + 2.84 = 6.90$   
 $\Lambda = 60 \text{ m}^2$   
 $W = 115$   $120 \text{ kg/m}^2$ 

Table 4-14 Floor Load for Building Design (kg/m<sup>2</sup>)

| Room/Section |    | S1ab  | Small<br>beam | Large<br>beam | Column<br>footing | Earthquake | Re  | marks  |
|--------------|----|-------|---------------|---------------|-------------------|------------|-----|--------|
|              | DL | 640   | 750           | 810           | 930               | 930        | В   | 110    |
| Roof         | LL | 180   | 160           | 130           | 130               | 60         | B+G | 170    |
|              | TL | 820   | 910           | 940           | 1,060             | 990        | С   | 120    |
|              | DL | 640   | 750           | 810           | 930               | 930        |     |        |
| Pent-roof    | LL | 90    | 60            | 60            | 60                | 30         |     | 11     |
|              | TL | 730   | 810           | 879           | 990               | 960        |     | · .    |
|              | DL | 370   | 480           | 540           | 660               | 660        |     |        |
| Office room  | LL | 400   | 340           | 280           | 280               | 180        |     | ti , · |
|              | TL | 770   | 820           | 820           | 940               | 840        |     |        |
|              | DL | 570   | 680           | 740           | 860               | 860        |     |        |
| Toilet       | LL | 180   | 160           | 130           | 130               | 60         |     | 11     |
|              | TL | 850   | 840           | 870           | 990               | 920        |     |        |
|              | DL | 600   | 710           | 770           | 890               | 890        |     |        |
| Staircase    | LL | 400   | 340           | 280           | 280               | 180        | -   | #1     |
|              | TL | 1,000 | 1,050         | 1,050         | 1,170             | 1,070      |     |        |

#### (2) Design of Slab and Small Beam

Slab:

S1. 
$$\ell_{x} \times \ell_{y} = 2.3 \times 4.6$$
  $\lambda = 2.0$ 
 $W = 0.77 \text{ t/m}^{2}$ 
 $D = 12 \quad d = 9 \quad j = 7.9$ 
 $M_{x1} = \frac{1}{12} \times 0.77 \times 2.3^{2} = 0.34 \quad \text{at} = \frac{34}{2 \times 7.9} = 2.2 \text{ D}10-2.24-200}^{0}$ 
 $M_{x2} = \frac{1}{18} \times 0.77 \times 2.3^{2} = 0.23$ 

S2. 
$$l_x \times l_y = 2.3x4.6$$
  $\lambda = 2.0$ 
 $W = 0.82$ 
 $D = 13.5$   $d = 10.5$   $j = 9.2$ 
 $M_{x1} = 0.36$   $at = 2.0$   $D10 = 200^{0}$ 
 $M_{y}$ 

CS1. 
$$P = 0.46 \times 0.2 - 0.1t$$
  
 $W = 0.77 \text{ t/m}^2$   
 $M = 0.1 \times 1.5 + 1/2 \times 0.77 \times 1.5^2 = 0.15 + 0.87 = 1.02 \text{ t.m}$   
 $Q = 0.1 + 0.77 \times 1.5 = 1.3 \text{ t.}$   
 $D = 15 \quad d = 12 \quad j = 10.5$   
at  $= \frac{102 \times 1.5 \times 1.0.5}{2 \times 10.5} = 7.3 \quad D13.174 \quad 150^{\frac{1}{2}}$   
(Bottom end thickness -180)

#### Small beam:

B1.  
B2. 
$$W = 0.91 \text{ t/m}^2$$
  
B4  
 $C = 2 \times 0.91 \times 1.95 = 3.5 \text{ t.m}$   
 $M_2 = 2 \times 0.91 \times 3.0 = 5.5 \text{ t.m}$   
 $Q = 2 \times 0.91 \times 2.1 = 3.8 \text{ t}$ 

$$BxD = 25x45$$
 d=40 j=35

E. C
$$\frac{2 + 19}{25 + x} = \frac{2}{45}$$
 $\phi$  at  $= \frac{550}{2.0 \times 35} = 7.9 \text{ m}^2$  3-D19
$$\psi = \frac{3800}{14 \times 35} = 7.8 \quad 2-D19$$

$$\tau = \frac{3800}{25 \times 35} = 4.3 \quad 7$$

в3

#### Staircase:

K1 
$$W = 1.0$$
  
 $M_2 = 1/8 \times 1.0 = 4.5^2 = 2.53$   
 $D = 15$   $d = 12$   $j = 10.5$   
at = 12.0  $D13 - 100$ 

```
(3) C, M<sub>o</sub> and Q under Vertical Load
```

RG1 (2G1) 
$$W = 0.94 \text{ t/m}^2 (0.82)$$

$$C = 2 \times 0.94 \times 1.95 = 3.7 \text{ t.m}(3.2)$$

$$M_2 = 2 \times 0.94 \times 3.0 = 5.6 \text{ t.m}(4.9)$$

$$Q = 2 \times 0.94 \times 2.1 = 3.9 \text{ t.m}(3.4)$$

$$C = 2 \times 0.94 \times 0.4 = 0.8 (0.7)$$

$$M_0 = 2 \times 0.94 \times 0.65 = 1.2 (1.1)$$

$$Q = 2 \times 0.94 \times 0.8 = 1.5 (1.3)$$

$$W = 0.94 (0.82)$$

$$C = 2 \times 0.94 \times (2.3+4.0) = 11.8 (10.3)$$

$$M_0 = 2 \times 0.94 \times (3.5 + 7.2) = 20.1 (17.5)$$

$$Q = 2 \times 0.94 \times (2.3 + 3.7) = 11.3 (9.8)$$

$$RCG1$$

$$P = 0.6 \times 5 + 0.94 \times 0.75 \times 5.5 = 3+3.9 = 6.9 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$P = 0.6 \times 5 + 0.94 \times 0.75 \times 5.5 = 3+3.9 = 6.9 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

$$M = 6.9 \times 1.5 = 10.4 \text{ t.m}$$

ST D10-200<sup>®</sup>

| (h) Audal Bana at Caluma (h)               |                                   |                                    |
|--------------------------------------------|-----------------------------------|------------------------------------|
| (4) Axial Force of Column (t)              |                                   |                                    |
| $\mathbf{A} + 1$                           |                                   |                                    |
| W18 0.54 x 4.3 x 4.0                       | 9.2                               |                                    |
| 0.6 x 2.5                                  | 1.5                               |                                    |
| RF 1.06 x 2.5 x (2.5+1.5)                  | 10.6                              | ar i tradicionale.<br>Tradicionale |
| OW 0.54 x 4.3 x 3.5                        | 8.1                               | e first                            |
| $0.46 \times 25 \times 3.5 \times 0.7$     | 2.8                               |                                    |
| $CB = 0.2 \times 1.2 \times 3.1$           | 0.7                               | 32.9                               |
| $2F = 0.94 \times 2.5 \times 2.5$          | 5.8                               |                                    |
| 0W 0.54 x 2.5 x 3.5 x 0.7                  | 3.3                               |                                    |
| CB 0.2 x 1.2 x 3.1                         | 0.7                               | 42.7                               |
|                                            |                                   |                                    |
|                                            |                                   |                                    |
| B-1                                        | andra (1945)<br>Karangan Bangaran |                                    |
| W18 $0.54 \times 3.5 \times 4.0$           | 7.5                               | History<br>Elektrical              |
| RF 1.06 x 3.5 x 2.5                        | 9.2                               |                                    |
| $0.6 \times 1.5 \times 1.2$                | 1.0                               |                                    |
| $0.54 \times 3.5 \times 3.5 \times 0.7$    | 4.6                               |                                    |
| CB $0.2 \times 2.2 \times 3.1$             | 1.8                               | 24.1                               |
|                                            |                                   |                                    |
|                                            |                                   |                                    |
| A-2                                        |                                   |                                    |
| 0.6 x 5.0                                  | 3.0                               | :                                  |
| RF $1.06 \times 5.0 \times (2.5 + 1.5)$    | 21.2                              |                                    |
| OW $0.46 \times 5.0 \times 3.5 \times 0.7$ | 5.6                               |                                    |
| CB 0.2 x 2.5 x 3.1                         | 1.6                               | 31.4                               |
| $2F = 0.94 \times 5.0 \times 4.0$          | 18.8                              | ·                                  |
| $0.46 \times 5.0 \times 3.5 \times 0.7$    | 5.6                               | •                                  |
| $0.2 \times 2.5 \times 3.1$                | 1.6                               | 57.4                               |
|                                            |                                   | •                                  |
|                                            |                                   |                                    |
| B-2                                        |                                   | •                                  |
| RF 1.06 x 5.0 x 3.5                        | 18.6                              |                                    |
| $0.2 \times 6.5 \times 3.1$                | 4.0                               | 22.6                               |

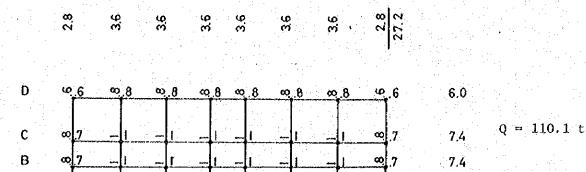
| · ·        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|
| 21         | $0.94 \times 5.0 \times 3.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16.5 |      |
| •          | $0.2 \times 6.5 \times 3.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.0  | 43.1 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |
| . "        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |
| B-4        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 1  |      |
|            | $0.6 \times 2.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2  |      |
|            | $0.46 \times 3.0 \times 3.25 \times 0.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.6  | 4.8  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |
| RF         | $1.06 \times 3.5 \times 4.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16.7 | *.   |
|            | $0.2 \times 4.0 \times 3.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.5  | 24.0 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·    |      |
| 2 <b>F</b> | $0.94 \times 3.5 \times 4.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.8 |      |
|            | 0.37 x 2.3 x 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.6  | 41.4 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |
| C-4        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |
|            | $0.6 \times 3.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.1  |      |
|            | 0.99 x 3.5 x 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.9  |      |
| OW         | $0.46 \times 3.5 \times 3.25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.2  | 14.2 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |
| RF         | 1.06 x 3.5 x 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.8  |      |
|            | $0.52 \times 2.5 \times 3.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.0  |      |
|            | $0.2 \times 4.0 \times 3.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.5  | 25.5 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |
|            | Control of the second of the s |      |      |
| 2 <b>F</b> | 0.99 x 3.5 x 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15.6 |      |

# (5) Seismic Force (t)

|          | (3)        | Seismic Force (t)                                     |       |                  |       |      | 1    |       |
|----------|------------|-------------------------------------------------------|-------|------------------|-------|------|------|-------|
|          |            |                                                       | W     |                  | W     | k    | kW   | ΣkW   |
|          |            | 0.6 x 20                                              | 12.0  |                  |       |      |      |       |
|          | PRF        | 0.96 x 4 x 6                                          | 23.0  |                  |       |      |      |       |
|          |            |                                                       |       | 66.2             | 66.2  | 0.18 | 11.9 |       |
|          | OW         | 0.46 x 22 x 3.25 x 0.95                               | 31.2  |                  |       |      |      |       |
|          | OW         | 0.54 x 15.7 x 4.0 x 2                                 | 67.8  | 67.8             | 67.8  | 0.18 | 12.2 |       |
|          |            | 50t                                                   | 50.   | 50.              | 50    | 0.18 | 9.   | . :   |
| ٠.       |            | 0.6 x 34 x 2                                          | 40.8  |                  |       | 4    |      |       |
|          | RF         | $0.99 \times 34.0 \times 15.0$                        | 504.9 | 547.6            |       |      |      |       |
|          |            | $0.6 \times 1.5 \times 3.0$                           | 2.7   |                  |       | `    |      |       |
| 2        |            |                                                       |       | entite<br>Entite | 641.5 | 0.12 | 77.0 | 110.1 |
|          | OW         | 0.54 x 15.7 x 3.5                                     | 29.7  | 93.9             |       |      |      |       |
| 1,11     |            | $0.46 \times 34.0 \times 2 \times 3.5 \times 0.7$     | 76.6  | 187.8            |       |      |      |       |
|          | iw         | 0.52 x 5 x 2 x 3.1                                    | 16.1  | 93.9             |       |      |      |       |
|          |            | $0.2 \times (5 \times 12 + 3.5 \times 13) \times 3.1$ | 65.4  |                  |       |      |      |       |
|          | 2 <b>F</b> | 0.84 x 34 x 12                                        | 342.7 |                  |       |      |      |       |
| 1        |            | (1.07-0.84) x 9 x 5                                   | 10.4  | 376.6            | 568.5 | 0.12 | 68.2 | 178.3 |
|          |            | 0.84 x 1.5 x 3                                        | 3.8   |                  |       |      |      |       |
|          |            | 0.96 x 6.4 x 3.2                                      | 19.7  |                  |       | · *  |      |       |
| <i>:</i> |            |                                                       |       |                  |       |      |      |       |
| <i>:</i> | OW         | $0.54 \times 12 \times 2 \times 3.5 \times 0.7$       | 31.8  |                  |       | • '  |      |       |
|          |            | $0.46 \times 34.0 \times 2 \times 3.5 \times 0.7$     | 76.6  | 98.0             |       | 100  |      |       |
|          | iw         | 0.52 x 5 x 2 x 3.1                                    | 16.1  | 196.0            |       |      |      |       |
|          | 1.         | $0.37 \times 5 \times 2 \times 3.1 \times 0.8$        | 9.2   | 98.0             |       |      |      |       |
|          | •          | $0.2 \times (5\times11 + 3.5\times13)\times3.1$       | 62.3  |                  |       |      |      |       |

|              |          |          |                                     |                                       |                        |         | :                                 |     |
|--------------|----------|----------|-------------------------------------|---------------------------------------|------------------------|---------|-----------------------------------|-----|
|              | (6)      | Relativ  | e Stiffness l                       | Rat 1o                                |                        |         |                                   |     |
| Code         | B<br>em  | D<br>cm  | I x 10 <sup>4</sup> cm <sup>4</sup> | <b>ø</b>                              | I x 10 <sup>4</sup> cm | L<br>cm | Kx10 <sup>3</sup> cm <sup>3</sup> | k   |
| R<br>G1<br>2 | 30       | 55       | 41.6                                | 2.0                                   | 83.2                   | 4.6     | 18.1                              | 1.3 |
| R<br>G2<br>2 | 30       | 40       | 16.0                                | 2.0                                   | 32                     | 2.5     | 12.8                              | 0.9 |
| R G3<br>2 G4 | 30       | 55       | 41.6                                | 2.0<br>1.5                            | 83.2<br>62.4           | 5.0     | 16.6<br>12.5                      | 1.2 |
|              |          |          |                                     | 2.0<br>1.5                            | 83.2<br>62.4           | 4.0     | 20.8                              | 1.5 |
| 2 C1<br>1 C1 | 50<br>50 | 50<br>50 | 52.1<br>52.1                        |                                       |                        | 3.5     | 14.9                              | 1.0 |
| FG           | 35       | 70       | 100                                 | · · · · · · · · · · · · · · · · · · · |                        | 5.0     | 20.                               | 1.4 |
|              |          |          |                                     |                                       |                        | 4.6     | 21.7<br>25                        | 1.5 |
|              | 35       | 55       | 48.5                                |                                       |                        | 2.5     | 19.4                              | 1.4 |

#### (7) Stress due to Vertical Load

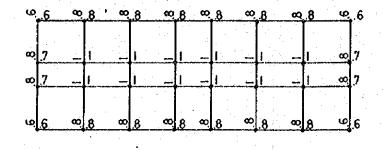

# (8) Stress due to Seismic Force

Distribution coefficient and Height Ratio of Inflection Point

|     |     |      | G1  |     | 1<br>200 | * * * * * * * * * * * * * * * * * * * | G2   |
|-----|-----|------|-----|-----|----------|---------------------------------------|------|
|     |     |      | 1.3 |     |          | · · · · · · · · · · · · · · · · · · · | 0.9  |
|     | k = | 1.3  |     |     |          | 2.2                                   |      |
|     | a   | 0.4  | у = | 0.7 | 12       | 0.52                                  | 0.45 |
| 1.0 | D   | 0.4  |     |     | 1.0      | 0.52                                  |      |
|     | D'  | 0.8  |     |     |          | 1.0                                   |      |
| Ì   |     |      | 1.3 |     | ا        |                                       | 0.9  |
|     |     | 1.4  |     |     |          | 2.5                                   |      |
|     |     | 0.41 |     | 0.5 | 57       | 0.55                                  | 0.55 |
| 1.0 |     | 0.41 |     |     | 1.0      | 0.55                                  | •    |
|     |     | 0.8  |     |     |          | 1.0                                   |      |
|     |     |      | 1.5 |     |          |                                       | 1.4  |

|     | G    | 3    |      |      |
|-----|------|------|------|------|
|     | 1    | . 2  |      | 1.2  |
|     | 1.2  |      | 2.4  |      |
|     | 0.37 | 0.42 | 0.54 | 0.45 |
| 1.0 | 0.37 | 1.0  | 0.54 |      |
| 1   | 0.7  |      | 1.0  |      |
|     | 1    | , 2  |      | 1.2  |
|     | 1.3  |      | 2.6  |      |
|     | 0.4  | 0.57 | 0.56 | 0.55 |
| 1.0 | 0.4  | 1.0  | 0.56 |      |
|     | 0.7  |      | 1.0  |      |
|     | 1    | . 4  |      | 1.4  |

#### Distribution Coefficient

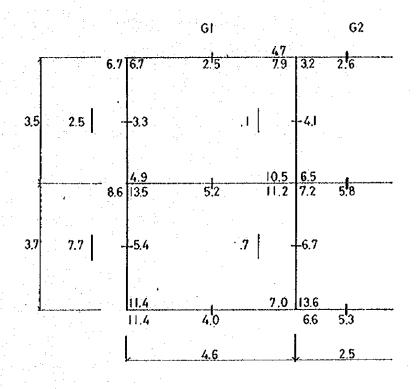


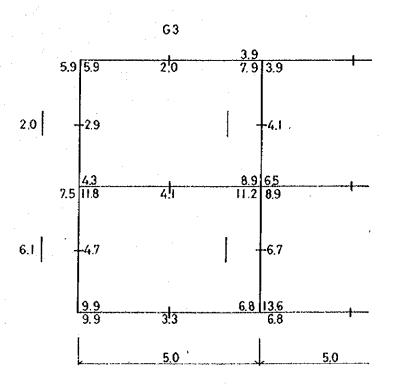

 $\frac{10}{26.8} \mu_{\rm Q} = 4.1$ 

2 3 4 5 6 7 8

2nd flr.

Q = 178.3 t





7.4  $\mu Q_x = 6.7$ 

6.0

 $\frac{6.0}{26.8}$   $\mu Q_y = 6.7$ 

lst f1r.





### (9) Design of Large Beam

RG2

E 
$$M_L = 0.8$$
  $Q_L = 1.5$   $M_K = 3.2$  (2.6)  $Q_K = 2.6 \times 1.5 = 3.9$   $M_S = 3.4$   $Q_S = 3.$ 

Pent house

$$\begin{array}{r}
3 - D19 \\
\hline
RRG1,G2 & 30 \times 50 \\
3 - D19 \\
ST. & D10 - 200^{0}
\end{array}$$

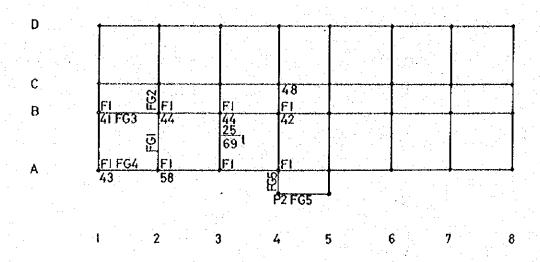
(10) Design of Column

2 C1 
$$N_L = 22.6 t$$
  $M_L = 0$   $M_K = 0$   $M_K = 7.9 (6.8)  $Q_K = 4.1 \times 1.5 \times 6.2$   $N_S = 22.6$$ 

B x D = 50 x 50 d = 45 j = 39.4  
BD = 2.5 x 
$$10^3$$
 BD<sup>2</sup> = 1.25 x  $10^5$ 

$$\frac{N}{BD} = 9.1$$

$$Pt = 0.1$$


1 C1 
$$N_{L} = 43.1$$
  $M_{L} = 0$   $M_{K} = 13.6 (11.8) Q_{K}=6.7x1.5x10.1  $M_{S} = 43.1$   $M_{S} = 50 \times 50$$ 

$$\frac{N}{B \times D} = 17.2$$
Pt = 0.15 at = 3.8
 $\frac{M}{B \cdot D^2} = 9.4$ 

2.1 C1 
$$\tau = 5.1$$

Pent house P1.

### (11) Design of Footing



# Axial Force (t)

Bearing capacity(long time) 50  $t/m^2$  Effective bearing capacity  $50-2x1 = 48 t/m^2$ 

F1 N = 69t Required A = 1.44 m<sup>2</sup> 1.2 m<sup>2</sup>

P = 17.2 t M = 17.2 x 0.35 x 0.6 = 3.6 D = 60 d = 50 j = 43 at = 4.1  $\psi$  = 19  $\tau$  = 3.3

D=40 0.6=0.6 3-D13 Design of footing beam, etc.

FG1 
$$M_{L} = 1.2$$
  
 $M_{K} = 11.4 (10.4)$   $Q_{K} = 4.0 \times 1.5 = 6.0$   
 $M_{S} = 11.6 \text{ t.m}$ 

 $B \times D = 35 \times 70 \quad d = 62$ 

$$\begin{array}{rcl}
 & 3-D22 \\
\hline
FG1 & 35\times70 & \text{at} = 7.2 & 3-D22 \\
\hline
FG3 & 3 \\
FG4 & \text{ST} & D10-200 \\
\end{array}$$

Inner wall C,B 150 D10-800<sup>@</sup>
Staircase 180 D13-200<sup>@</sup>

Outer wall of 2nd floor

Wind pressure P =  $1.2 \times 60$  10 x 4.0 = 0.9 t/m At time of earthquake P =  $0.18 \times 0.54 \times 4.0 = 0.4$  t/m

$$M = 0.9 \times 2.0 - 1.8 \text{ t.m}$$
  
 $D = 18 \quad d - 15 \quad j = 13.1$   
 $at = 4.6 \quad D13-276 \quad 200^{Q}$ 

P2 column of 1st floor 400 x 200

6-D19

### 4-4-2 Layout of Buildings

Layout of the buildings is shown in Fig. 2-5, Chapter 2.

#### 4-4-3 Design of Appurtenant Facilities

#### a) Drinking Water Service System and Supply Volume

Drinking water delivered from the water source will be stored in the farm pond and supplied to each building by the automatic operation of the pressure tank type pump after puried in the small clarification device installed immediately in the back of the elevated water tank. The pump will be driven by a motor

#### (1) Supply Volume

With the number of persons to be served taken at 97 (p.23 and 72 of the previous report) and the daily supply volume at 20  $\ell$ person, the total daily supply volume turns out to be 19.4 m<sup>3</sup> as calculated below.

$$V = 0.20 \times 97 = 19.4 \text{ m}^3/\text{day}$$

Assuming that the daily average service time is 10 hours and the elevated tank is to be have a capacity for one hour's water supply the tank capacity turns out to be about 2.0 m<sup>3</sup> as calculated below.

$$v = 19.4/10 = 1.94 = 2.0 \text{ m}^3$$

The number of persons to be served is the total of counterparts, full- and part-time staff members and general affairs workers, and excludes temporary labourers.

### b) Capacity of Isolated Power Plant

Table 4-15 Capacity Calculation of Isolated Power Plant

| Building                                  | Size   | Lamp and Heater Load |
|-------------------------------------------|--------|----------------------|
| A Main building                           |        | 20,000 W             |
| A' Cocoon testing room                    |        | 1,000                |
| B Rearing room for rearing method         | 6 x 32 | 1,800                |
| C Rearing room for egg<br>production (1)  | 6x32   | 1,000                |
| $\mathbf{n}$                              |        |                      |
| " (2)                                     | 6 x 32 | 1,000                |
| Research room                             | 7x10   | 2,000                |
| D Pathological rearing room               | 6x16   | 2,000                |
| E Pebrin inspection room                  | 9x28   | 2,600                |
| F Silkworm egg refrigerator               |        | (60,000KVA) 2 units  |
| G Artificial hatching room                | 4x6    | 200 W                |
| H Chemicals warehouse                     | 2×2    | 80                   |
| I Garage                                  | 6x10   | 400                  |
| J Mulberry field maintenance building     | 9x13   | 800                  |
| K Compost shed                            |        | 400                  |
| L Agricultural machine and tool warehouse | 8x15   | 800                  |
| otal Total excluding cold stor            | ages   | 34,080 W             |

| Water supply pump | 750      |
|-------------------|----------|
| Irrigation pump   | 11,000   |
| Total             | 11,750 W |

The lamp and heater load will be as follows.

$$KVA = 2 kW/0.8 = 34.08 kW/0.8 = 42.6 KVA$$

For simultaneous power supply to lamps and heaters, the load will be 80% of the above value.

$$KVA = 42.6 \times 0.8 - 34.1 KVA$$

The pressure pump load calculated with the starting torque load (stardelta connection) taken at 200% and the small water tank load at 600 %

is as given below.

$$KVA = \frac{2 \times 11 + 6 \times 0.75}{0.8} = 33.2 \text{ KVA}$$

Connection of generators for pump operation at 220 V, 60 Hz and lamp illumination at 100 V incures an increase of installation cost. Hence, I KVA generator will be installed for lighting and heating and 240 KVA generators will be installed for pump operation as well as to meet emergency or special power demand. As for cold storages, 2 units of 65 KVA generators will be required.

#### c) Fuel Tank Capacity

The 40 KVA generator consumers 60% of fuel per hour, so that the daily fuel consumption turns out to be as follows.

For irrigation 16 hrs/day x 60 = 
$$0.96 \text{ m}^3/\text{day}$$
  
For lighting & 10 hrs/day x 60 =  $0.60 \text{ m}^3/\text{day}$   
heating Total :  $1.56 \text{ m}^3/\text{day}$ 

Assuming that fuel supply is required during the peak 10 days because power supply for irrigation is needed only in the specific period, the total fuel requirement turns out to be as given below.

$$1.56 \times 10 = 15.6 \text{ m}^3$$
  
Hence, 2 fuel tanks each having a capacity of 8 m<sup>3</sup> will be installed.

### Chapter 5 Design for the Establishment of Sericulture Sub-centre

#### 5-1 Field desing

#### 5-1-1 Mulberry field design

The field is located in a flat area at 120 to 129 meters above sea level. It is a long narrow field measuring about 1 km long and 50 to 200 meters wide, running slightly towards east-north-east. The soil is a heavy clay type which absorbs water rather poorly.

Therefore, surface undulations have been leveled out, and an underdrainage (covered conduits) system installed.

#### 5-1-2 Soil improvement (ventilation improvement)

Normal conditions in mulberry cultivation require that the vapor phase at a depth of 40 to 50 cm below the surface be at least 18%.

The moisture conditions of the soil at the proposed mulberry field site, however, were very poor indeed. Consequently, subsoil break, deep plowing, and multilayer plowing of the whole field, and adoption of the "filled moat" system (wich involves the digging of "moats" 50 cm deep and 50cm wide) have been considered

#### - 1 Deep plowing

A subsoil plow is often used when there is a hard layer of soil about 15 to 20 cm below the surface. But a large rotor breater, or a bruck breaker plow may also be used.

The subsoil plow, as shown in Fig. \_\_\_\_\_, is equipped with two blades. The front blade removes, and inverts the topsoilm while the rear blade breaks up the hard layer underneath. Usually, the front blade plows to a depth of about 15cm, while the rear blade plows a further 15cm, that is, a total of 30cm. A regular tractor of about 40 to 60PS is normally used to pull the plow.

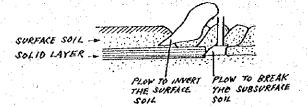



Fig. 5-1 Subsurface Soil Plowing

With the subsoil plow, it is also possible to remove the topsoil rather cleanly, this being of great advantage when the subsoil is rather poor in nutrition.

In order to plow below 30cm, 1 a large sized inversion low, or 2 a bulldozer or raker dozer should be employed.

#### - 2 Multilayer plowing

In cases where the subsoil is harder than the top soil, but is richer in nutrients, it will have to be broken up, and mixed with the top soil, or the top soil and subsoil simply interchanged. This is the purpose of multilayer plowing.

The job can usually be handled by a large tractor pulling a large plow, but when plowing to depths greater than 80cm, very large plows, and an 18-ton tractor will be required. But since such equipment takes-up 7 to 10 meters across, it is not very practical for narrow or odd shaped fields.

#### - 3 Subsoil break

The proposed site for the subcenter mulberry field contains large quantities of clay soil below some very hard top layers, resulting in very poor seepage. The ground becomes very boggy after rains, but very hard (like concrete) during dry spells. This makes farming very difficult since labor efficiency and land productivity deteriorate.

In Hokkaido, considerable improvements were made in this kind of clay soil by employing a pan-breaker to break up the subsoil (from around 1965). This pan-breaker is very similar to the mole drain escavator, the projecting section being replaced by a set of chisel-like plows.

Normally, 2 or 3 "chisels" are arranged in a row at about 70 to 80cm apart. With a medium or large sized tractor, the subsoil may be broken up to a depth of 40 to 60 cm.

The diagram below (Fig. 5-2) shows one example of how the pan-breaker breaks up the lower hard layers.

Fig. 5-3 shows an example of the hardness distribution of the fracture by the pan-breaker.

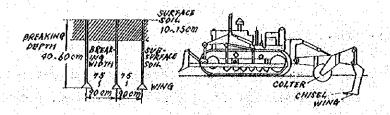



Fig. 5-2 Subsurface Soil Breaking by Pan-Breaker

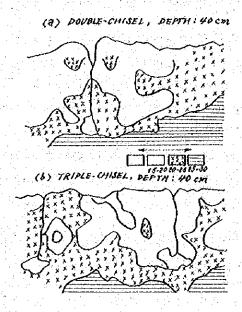



Fig. 5-3 Cross-section of soil broken up by pan-breaker, showing distribution of relative hardness.

(Hokkaido Development Bureau)

And Table 5-1illustrates how well subsoil break has improved the moisture conditions.

Improvement in Vapor Phase due to Subsoil Break (Hokkaido)

| Depth(cm)          | 5 <b>^</b> 10 | 15\20 | 25∿30 | 35∿40 | 45∿50 |
|--------------------|---------------|-------|-------|-------|-------|
| Comparative area   | 3,8           | 4,3   | 7.3   | 2.4   | 4.1   |
| Subsoil break area | 21.0          | 14.5  | 18,1  | 2,2   | 5.8   |

Note: Figures are the values measured one month after subsoil breaking.

Although these figures indicate that subsoil break combined with closed conduit drainage, would be the most effective in the vicinity of the subcenter, it was found that a simple covered drain employing bamboo or gravel laid along the bottom of a "filled moat" (50 cem deep, and 50cm wide, dug out by a drench digger) (see Fig. 5-4) or a proper closed drain employing a drain hose, was required for efficient drainage of water.

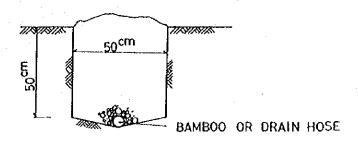
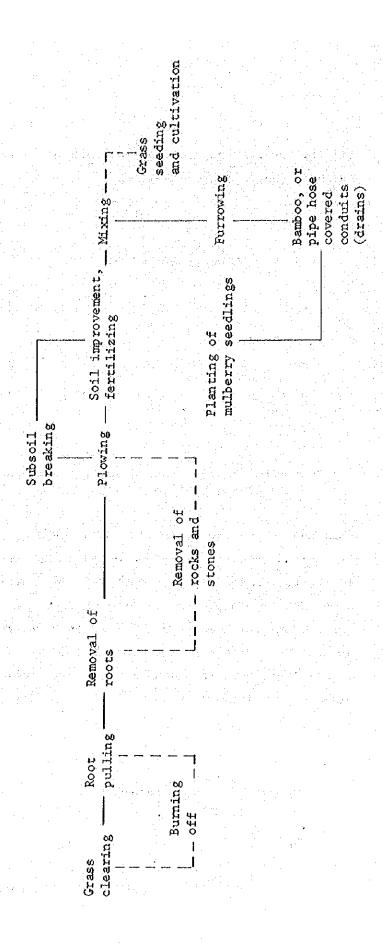
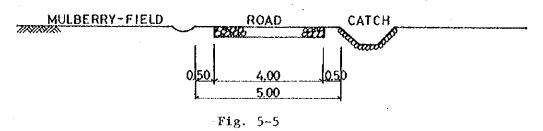




Fig. 5-4 Cross-section of Filled Moat




### 5-1-3 Preparation of building site

The building site has a slope of 0.8% in the south-east direction, so it will be made level will the main road.

Drain gutters along roadways within the building site will flow into the drain running along the main road.

#### 5-1-4 Roadway design

- a) The present road within the area is an unsealed road running east to west, and 3 to 5 meters in width. But because of its poor condition, it shall be graveled, and used as the main road.
- b) As far as has been possible, this road has been made straight between the gate and the building site.
- c) The effective width of the road is 4.00 meters, with a strip of 50cm along both sides. The drain along the mulberry field side is just a simple ditch which will not hinder the maneuvering of plowing and tilling equipment etc. The drain on the other side will be laid with stone, forming a proper drain (catch).
- d) 30cm of gravel will be laid.
- e) Branch roads will connect with the main road at right angles, and at 100 meter intervals. These roads will similarly be graveled with 30cm of gravel, and have an effective width of 3 meters, and 50cm strips along both sides.




#### 5-1-5 Drainage design

- The proposed site for the mulberry field slopes gentely a) towards east-north-east, and is about 50 to 60cm above the neighboring paddy fields. Consequently, drainage from the mulberry field also will serve to supply water for the paddy fields.
- Surface water will be drained off between furrows, running into a channel along the north border of the This will then run into the neighboring mulberry field. paddy fields.

A covered conduit drainage system will be employed because of the heavy clay conditions, and the high underground water level.

#### 5-1-6 Design of Irrigation Facilities

- Pump (Sub-Centre) a)
  - Total Head of Pump



Actual head

 $H_a = 121.5-125.74 = -4.24 \text{ m}$ 

Capacity

17075

 $Q = 29.8 \text{ l/s} = 1.788 \text{ m}^3/\text{min}$ 

Type and diameter

of pipe

Vp ø 150 m/m

Required terminal

 $H_1 = 39.0 \text{ m}$ 

pressure

Branch line frictional loss

 $H_{\text{cd1}} = 15.97 \text{ m}$ 

Sprinkler line frictional loss

 $H_{cd2} = 7.73 \text{ m}$ 

Value and reducer loss H =  $(15.97+7.73) \times 0.10 = 2.37m$  (10% of frictional loss)

Total head (II):

$$H = H_a + H_1 + H_{cd1} + H_{cd2} + H_{is}$$

$$= -4.24 + 39.0 + 15.97 + 7.73 + 2.37$$

$$= 60.83 \text{ m} = 61 \text{m}$$

(2) Shaft Power and Motor Output

$$P = \frac{0.163 \times \gamma \times Q \times H}{\eta_p} = \frac{0.163 \times 1.0 \times 1.788 \times 61}{0.75}$$

= 23.70 kW

$$R = \frac{P \times (1 + \alpha)}{n_t} = \frac{23.70 \times (1+0.2)}{0.95} = 29.9 \text{ kW}.$$

(3) Type of Pump

Туре

Centrifugal pump

Head

61 m

Capacity

 $1.788 \text{ m}^3/\text{min}$ 

Suction port diameter

150 min

Delivery port

diameter

150 mm

Motor output

30 kW.

|                 |            |       | m 1 1 2 0    | D. 1                                  | £ 11        | 0-1-1-1                |             |                  |                |
|-----------------|------------|-------|--------------|---------------------------------------|-------------|------------------------|-------------|------------------|----------------|
|                 |            |       | Table 5-2 ·· | Results c                             | or nyaraari | e carculati            | .on         |                  |                |
|                 |            |       |              |                                       |             |                        |             |                  |                |
| STATION         | DISTANS TL | BL.   | DÍSCHARGE    | DIAMETER                              | VELOCITY    | HYDRAULIC<br>GRANDIENT | HEADLOSS    | ELEVATION HEAD   | EFFECTIVE      |
| Pipe line No.1  |            | m m   | l/s          | mm                                    | m/s         |                        |             | ń                |                |
| Pump            |            | 217.0 |              |                                       |             |                        |             | 184.20           | 57.20          |
| Pipe line No.2  | 63.0       | 127.0 | 29.8         | 150                                   | 1.69        | 15.56                  | 0.98        | 183.22           | 56.22          |
| Hydrant No.1    | 39.0       | 127.3 | 29.8         | 150                                   | 1.69        | 15.56                  | 0.61        | 182.61           | 55.31          |
| 2               | 25.0       | 127.4 | 29.8         | 150                                   | 1.69        | 15.56                  | 0.39        | 182.22           | 54.82          |
| 3               | 25.0       | 127.5 | 29.8         | 150                                   | 1.69        | 15.56                  | 0.39        | 181.83           | 54.33          |
| н 4             | 54.0       | 127.6 | 29.8         | 150                                   | 1.69        | 15.56                  | 0.84        | 180.99           | 53.39          |
| n 5             | 25.0       | 127.9 | 28.6         | 150                                   | 1.62        | 14.42                  | 0.36        | 180.63           | 52.73          |
| 6               | 25.0       | 128.2 | 28.6         | 150                                   | 1.62        | 14.42                  | 0.36        | 180.27           | 52.08          |
| 7               | 54.0       | 128.0 | 28.6         | 150                                   | 1.62        | 14.42                  | 0,78        | 179.49           | 51.49          |
|                 |            |       |              |                                       |             | Σ                      | c = 4.71    |                  |                |
| Pipe line No.2  |            |       |              |                                       |             |                        |             |                  |                |
| Pipe line No. 2 |            | 127.0 |              |                                       |             |                        |             | 183.22           | 56.22          |
| Hydrant No.8,9  | 55.0       | 126.5 | 29.8         | 150                                   | 1.69        | 15.56                  | 0.86        | 182.36           | 55.86          |
| " 10,11         | 104.0      | 126.3 |              | B                                     | #1          |                        | 1.62        | 180.74           | 54.44          |
| " 12            | 194.0      | 126.5 |              | i i i i i i i i i i i i i i i i i i i |             | Ħ                      | 3.02        | 177.72           | 51.22          |
| " 13            | 80.0       | 125.8 | 11           | O.                                    | H           | †I                     | 1.24        | 176.48           | 50.68          |
| 14              | 50.0       | 125.3 | 11           | 11                                    | 11          | 1 <b>1</b>             | 0.84        | 174.86           | 50.36          |
| " 16            | 50.0       | 124.0 | <b>u</b>     | et .                                  | TT .        | 11                     | 0.78        | 174.08           | 50.08          |
| 17,18           | 168.0      | 123.1 | 11           | <b>11</b>                             | řt          | H                      | 2.61        | 171.47           | 48.37          |
| " 19.20         | 104.0      | 121.5 |              | 11                                    | 11          | 11                     | 1.62 $1.62$ | 169.85<br>168.23 | 48.35<br>47.93 |

|   | OMANIXON                  | STORANO | en e | T3T   | DYCOHADOD | D.T.A.M.P.MILID | AND COLONY | HYDRAULIC | TIP LOCA        |           |        |             |         |  |
|---|---------------------------|---------|------|-------|-----------|-----------------|------------|-----------|-----------------|-----------|--------|-------------|---------|--|
|   | STATION                   | DISTANS | TI.  | KI,   | DISCHARGE | DIAMETER        | VELOCITY   | GRANDIENT | HEADLOSS        | ELEVATION | HRAD R | FFECTIVE II | EAD     |  |
|   | Pipe line No.             | . 21 m  | m    | m     | l/s       | mm              | m/s        |           | m               |           | m      |             | m       |  |
|   | Pipe line No              | 21      |      | 120.3 |           |                 |            |           |                 | 168.23    |        | 47.93       |         |  |
|   | A                         | 1.0     |      | 120.3 | 29.8      | 100             | 3.80       | 112.08    | 0.11            | 168.12    |        | 47.82       |         |  |
|   | В                         | 12.5    |      | 120.5 | 14.9      | 100             | 1.90       | 31.09     | 0.39            | 167.73    |        | 47.23       |         |  |
|   | C                         | 30.0    |      | 120.6 | 7.5       | 75              | 1.70       | 35.44     | 1.06            | 166.67    |        | 46.07       |         |  |
|   | D                         | 15.0    |      | 120.7 | 6.2       | 50              | 3.16       | 179.55    | 2.69            | 163.98    |        | 43.28       |         |  |
|   | <b>B</b>                  | 15.0    |      | 120.8 | 5.0       | H .             | 2.55       | 120.60    | 1.81            | 162.17    |        | 41.37       |         |  |
|   | F                         | 15.0    |      | 121.0 | 3.7       | ri di           | 1.88       | 69.09     | 1.04            | 161.13    |        | 40.13       |         |  |
|   | G                         | 15.0    |      | 121.3 | 2.5       | 11              | 1.27       | 33.45     | 0.50            | 1.60.63   |        | 39.33       |         |  |
|   | H                         | 15.0    |      | 121.5 | 1.2       | 11              | 0.61       | 8.60      | 0.13            | 160.50    |        | 39.00       |         |  |
|   |                           |         |      |       |           |                 |            | 7         | $\Sigma = 7.73$ |           |        |             |         |  |
|   |                           |         |      |       |           |                 |            |           |                 |           | **     |             |         |  |
|   | В                         |         |      | 120.5 |           |                 |            |           |                 | 167.73    |        | 47.23       |         |  |
|   | <b>I</b>                  | 5.0     |      | 120.5 | 7.5       | 75              | 1.70       | 35.44     | 0.18            | 167.55    |        | 47.05       |         |  |
|   | J                         | 15.0    |      | 120.6 | 6.2       | 50              | 3.16       | 179.55    | 2.69            | 164.86    |        | 44.26       |         |  |
|   | <b>K</b>                  | 15.0    |      | 120.7 | 5.0       | "               | 2.55       | 120.60    | 1.81            | 163.05    |        | 42.35       |         |  |
|   | L                         | 15.0    |      | 120.8 | 3.7       | 11              | 1.88       | 69.09     | 1.04            | 162.01    |        | 41.21       |         |  |
|   | М                         | 15.0    |      | 120.9 | 2.5       | 11              | 1.27       | 33.45     | 0.50            | 161.51    |        | 40.61       |         |  |
|   | N                         | 15.0    |      | 121.3 | 1.2       | II.             | 0.61       | 8.60      | 0.13            | 161.38    |        | 40.08       |         |  |
|   |                           |         |      | o.    |           |                 |            | Σ         | E = 6.35        |           |        |             |         |  |
|   |                           | i e     |      |       |           |                 |            |           |                 | •         |        |             |         |  |
|   | Λ                         |         |      | 120.3 |           |                 |            |           |                 | 168.12    |        | 47.82       |         |  |
|   | 0                         | 12.5    |      | 120.2 | 14.9      | 100             | 1.90       | 31.09     | 0.39            | 167.73    |        | 47.53       |         |  |
|   | <b>P</b>                  | 15,0    | -    | 120.2 | 7.5       | 75              | 1.70       | 35.44     | 0.53            | 167.20    |        | 47.00       |         |  |
|   | $\mathbf{Q}_{\mathbf{q}}$ | 15.0    | •    | 120.3 | 6.2       | 50              | 3.16       | 179.55    | 2.69            | 164.51    |        | 44.21       |         |  |
|   | R                         | 15.0    |      | 120.4 | 5.0       | ff.             | 2.55       | 120.60    | 1.81            | 162.70    |        | 42.30       |         |  |
|   | S                         | 15.0    |      | 120.5 | 3.7       | U               | 1.88       | 69.09     | 1.04            | 161.66    |        | 41.16       |         |  |
|   | T                         | 15.0    |      | 120.6 | 2.5       | 11              | 1.27       | 33.45     | 0.50            | 161.16    |        | 40.56       |         |  |
|   | U                         | 15.0    |      | 120.8 | 1.2       | 50              | 0.61       | 8.60      | 0.13            | 161.03    |        | 40.23       |         |  |
|   |                           |         |      |       |           |                 |            | Σ         | 2 = 7.09        |           |        |             |         |  |
|   |                           | ·       |      |       |           |                 |            |           |                 |           |        |             |         |  |
|   |                           |         |      |       |           |                 |            |           |                 |           |        |             | - 163 - |  |
|   |                           |         |      |       |           |                 |            |           |                 |           |        |             | .EUJ ~  |  |
|   |                           |         |      |       |           |                 |            |           |                 |           |        |             |         |  |
| * |                           |         |      |       |           |                 |            |           |                 |           |        |             |         |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | and the second |        |                   |          |                                                                                                                      |                                         |              |                  |      |             |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------|--------|-------------------|----------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------|------------------|------|-------------|------|
| STATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DISTANS 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>r</b> L                 | EI.            | DISCHA | ARGE              | DIAMETER | VELOCITY                                                                                                             | HYDRAULIC<br>GRANDLENT                  |              | ELEVATION        | HEAD | EFFECTIVE I | IEAD |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m                          | m<br>120.2     |        | l/s               | mm       | m/s                                                                                                                  |                                         | m            |                  | m    |             | m    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | 119.8          | 7.5    |                   | 75       | 1.70                                                                                                                 | 35.44                                   | 1.06         | 267.73           |      | 47.53       |      |
| W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | the transfer of the second | 120.0          | 6.2    |                   | 50       | 3.16                                                                                                                 | 179.55                                  | 1.06<br>2.69 | 166.67           |      | 46.87       |      |
| X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | 120.0          | 5.0    |                   | 11 %     | 2,55                                                                                                                 | 120.60                                  | 1.81         | 163.98           |      | 43.98       |      |
| <b>Y</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | 120.0          | 3.7    |                   | 11       | 1.88                                                                                                                 | 69.09                                   | 1.04         | 162.17<br>161.13 |      | 42.17       |      |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and the second             | 120.1          | 2.5    | \$ + <sub>1</sub> | 11       | 1.27                                                                                                                 | 33.45                                   | 0.50         | 160.63           |      | 41.13       |      |
| I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | 120.2          | 1.2    |                   | n .      | 0.61                                                                                                                 | 8.60                                    | 0.13         | 160.50           |      | 40.53       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                |        |                   |          |                                                                                                                      | * * * * * * * * * * * * * * * * * * * * | C = 7.23     | 100,50           |      | 40.30       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                |        |                   |          | * .                                                                                                                  |                                         | , ,,,,,      | ·<br>·           |      |             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                |        |                   |          |                                                                                                                      |                                         |              |                  |      |             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                | e i    |                   |          | ÷ .                                                                                                                  | •                                       |              |                  |      |             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                |        |                   | 4        | es.<br>Esta de la companya |                                         |              |                  |      |             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                |        |                   |          |                                                                                                                      | 1                                       |              |                  |      |             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                |        |                   |          |                                                                                                                      |                                         |              |                  |      |             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                |        |                   |          |                                                                                                                      | 4                                       |              |                  | •    | •           |      |
| and the control of th | and the second s |                            |                |        |                   |          |                                                                                                                      |                                         |              |                  |      |             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                |        |                   |          |                                                                                                                      |                                         |              |                  |      |             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                |        |                   |          |                                                                                                                      |                                         |              |                  |      |             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                |        |                   |          |                                                                                                                      |                                         |              | ·                |      |             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                |        |                   |          |                                                                                                                      |                                         |              |                  |      |             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                |        |                   |          |                                                                                                                      |                                         |              |                  |      |             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                |        |                   |          |                                                                                                                      |                                         |              |                  |      |             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                |        |                   |          |                                                                                                                      |                                         |              |                  |      |             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ċ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | ·              |        |                   |          |                                                                                                                      |                                         |              |                  |      |             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                |        |                   |          |                                                                                                                      |                                         |              |                  |      |             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ċ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                | ·      |                   |          |                                                                                                                      |                                         |              |                  |      |             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | ·              | ·      |                   |          |                                                                                                                      |                                         |              |                  |      |             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                | ·      |                   |          |                                                                                                                      |                                         | ,            |                  |      |             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                |        |                   |          |                                                                                                                      |                                         |              |                  |      |             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                | ·      |                   |          |                                                                                                                      |                                         | ,            |                  |      |             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                |        |                   |          |                                                                                                                      |                                         |              |                  |      |             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                |        |                   |          |                                                                                                                      |                                         |              |                  |      |             |      |

.

#### 5-2 Water resources

#### 5-2-1 Water intake work

a) Underground collecting conduits

Quantity of water available for irrigation:-

Irrigation area 19.5 ha

Peak daily water consumption 7.3 mm/day

Irrigation efficiency 85%

 $\frac{\text{mm/day}}{7.3 \times 1/0.85 \times 19.5}$  ha  $\times 10 = 1674.71 \text{ m}^3/\text{day}$ 

Water required for sericulture

 $11.00 \text{ m}^3/\text{day}$ 

Drinking and other purposes

 $10.00 \text{ m}^3/\text{day}$ 

Total

1695.71

$$\frac{1695.71}{24} = 70.65 \text{ m}^3/\text{hr}$$

The covered conduit drain system has been adopted because of the expected low flow rate within the river, but considerable quantity of subterranean water. And in order to further make sure of the quantity of water collected, a porous pipe will be connected directly to the well. This is estimated to reach the level of the river bed.

Quantity of water available for irrigation:-

Irrigation area 19.5 had

Peak daily water consumption 7.3 mm/day

Irrigation efficiency 85%

mm/day  
7.3 x 1/0.85 x 19.5 ha x 10 = 
$$1674.71 \text{ m}^3/\text{day}$$

Water required for sericulture

 $20.00 \, \text{m}^3/\text{day}$ 

Drinking and other purposes

 $1.00 \text{ m}^3/\text{day}$ 

$$\frac{1695.71}{24} = 70.65 \text{ m}^3/\text{hr}$$

The covered conduit drain system has been adopted because of the expected low flow rate within the river, but considerable quantity of subterranean water. And in order to further make sure of the quantity of water collected, a porous pipe will be connected directly to the well. This is estimated to reach the level of the river bed.

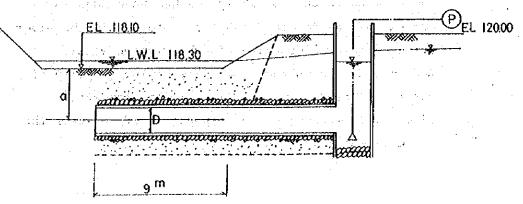



Fig. 5-7 Water Intak System

The required diameter of the water conduit pipes is calculated by the following formula:-

$$-q = \frac{2\pi k (H-P/W)}{4a \over \ln \frac{1}{d}}$$
 (Muskat formula)

where q is the flow rate per unit length = 70.65/9-7.8bm<sup>3</sup>/hr

k is a permeability coefficient = 183 = 3.6 m/hr

H is the water level above the river bed

= 0.20m

P is water pressure within the pipe

= 1.20m

a is the depth of the covered conduit below the river bed

= 1.0 m

d is pipe diameter and

7.85 
$$\frac{2\pi \times 3.6 \times 1.0}{\ln \frac{4 \times 1.0}{d}}$$

$$\ln \frac{4}{d} = \frac{22,608}{7.85} = 2.00$$

Then with a safety factor of 3,

In 
$$d = -149/3 = -0.497$$

$$d = 0.60$$

That is, piping of 600mm diameter will be used.

#### 5-2-2 Pump House

# a) Pump Specifications

#### (1) Design Capacity

Pump capacity

$$q = 1.178 \text{ m}^3/\text{m} = 0.02 \text{ m}^3/\text{sec}$$

# Water Level and Actual Head

Design maximum delivery side water level

127.54 m

Design minimum suction side water level

118.30 m

Design actual head

$$H_a = 9.24 \text{ m}$$

#### (3) Head Loss

Pipe diameter

$$D_1 = 0.10$$

Velocity in pipeline

$$V_1 = \frac{q}{A} = \frac{q}{\frac{\pi}{4} \times D_1^2} = 2.55 \text{ m/s}$$

Velocity head

$$\frac{v_1^2}{2g} = \frac{2.552}{19.6} = 0.33 \text{ m}$$

Pipe diameter

$$D_2 = 0.08$$

Velocity in pipeline

$$V_2 = \frac{q}{A_2} = \frac{q}{\frac{\pi}{4} \times D_2^2} = 3.98$$

Velocity head

$$\frac{{v_2}^2}{2g} = \frac{3.98^2}{19.6} = 0.81$$

Pipe diameter

$$D_3 = 0.15$$

Velocity in pipeline

$$\frac{{v_3}^2}{2g} = \frac{1.11^2}{19.6} = 0.063$$

i. Inlet head loss

$$h = f \times \frac{v_1^2}{2g} = 0.03 \times 0.33 = 0.010 \text{ m}$$

ii. Bend head loss

h = f x 
$$\frac{V_1^2}{2g}$$
 = 0.17 x 0.33 = 0.056 m  
f =  $\{0.131 + 1.847 \left(\frac{D_1}{2R}\right)^{7/2}\}$   $\left(\frac{D}{90}\right)^{1/2}$  .... Weisbach  
=  $\{0.131 + 1.847 \left(\frac{0.1}{2x0.16}\right)^{7/2}\}$   $\left(\frac{90}{90}\right)^{1/2}$  = 0.17

5 places

$$5 \times h \approx 0.28m$$

iii. Check value head loss

$$h = f \times \frac{{V_2}^2}{2g} = 1.50 \times 0.81 = 1.215 \text{ m}$$

iv. Sluice valve head loss

$$h = f \times \frac{v_2^2}{2g} = 0.14 \times 0.81 = 0.113 \text{ m}$$

v. Water pipe head loss

Ductile cast iron pipe, C = 130.

$$= 0.0165 \times \frac{1}{0.73 \times 1.016} = 0.022$$

Hence, the total head, II, turns out to be as caldulated below.

$$H = H_a + \Sigma h$$

$$= 9.24 + 2.458 = 11.728 + 12m$$

With an allowance of 20% assumed,

- (4) Prime Mover Output
  - i. Pump shaft power

$$L = \frac{Q \times H \times \gamma}{4.5 \, \eta_p} = \frac{1.178 \times 14 \times 1}{4.5 \times 0.73} = 5.03 \text{ PS}$$

where, Q: Delivery capacity  $(1.178 \text{ m}^3/\text{mm})$ .

H: Total head (12m).

 $\gamma$ : Bulk density of pumped water (1.0).

 $\eta_p$ : Pump efficiency (73%)

ii. Required output

$$L_W = \frac{L(1+A)}{\eta_G} = \frac{5.03(1 + 0.2)}{100} = 6.04$$

where,  $\Lambda$ : Allowance (20%).

 $\eta_{G}$ : Reducer efficiency (100%)

Hence, the required output is set at 8 PS.

#### 5-2-3 Farm pond

### a) Quantity calculations

| Water supply time                               | 24 hr             | · '      |
|-------------------------------------------------|-------------------|----------|
| Irrigation time                                 | 16 hr             |          |
| Peak daily consumption                          | 7.3mm             | /day     |
| Irrigation area                                 | 19.5              | ha       |
| Irrigation efficiency                           | 85%               |          |
| Water available for sericulture                 | (V <sub>2</sub> ) | 11m³/day |
| Water available for drinking and other purposes | (V3)              | 10m³/day |

#### Quantity calculations

$$V = 10 \times 19.5 \times 7.3 \times 1/0.85 (1 - 16/24)$$

$$= 558.2 \stackrel{?}{=} 560^{m^3}$$

$$V = 11$$

$$V = 10$$

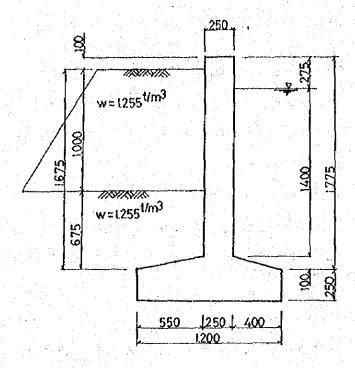
$$= 10$$

$$= 10$$

That is, capacity of farm pond should be  $600\ m$  .

#### b) Structural calculations

### 1. Predetermined conditions


Unit weight of soil 
$$w = 1255 \text{ t/m}^3$$

Soil friction angle  $d = 10^{\circ} - 30^{\circ}$ 

Soil coefficient during KA = 0.69 normal situation

Soil coefficient during KE = 0.95 earthquake

#### 2. General shape and dimensions



# 3. Stress calculations in vertical wall

Since horizontal forces are greater during earthquakes, only these forces have been considered.

### i) Load calculations

Horizontal stress in vertical wall due to horizontal vibration

$$P_1 = 240 \times 0.25 \times 1675 \times 0.15 = 2.15^{t}$$

Position of application

$$y_1 = hr/2 = \frac{1675}{2} = 0.838$$

Water pressure

$$P = 1/2 \times w \text{ hr}^2$$
$$= 0.50 \times 1.00 \times 1.40^2 = 0.98^{t}$$

Position of application

$$y = hr/3 = \frac{1.40}{3} = 0.467$$

ii) Bending moment and shear stress

$$M = P_1.y_1 + P_2.y_2$$

$$= 0.15 \times 0.838 \times 0.98 \times 0.467$$

$$= 0.584^{t.m}$$

$$S = P_1 + P_2 = 0.15 + 0.98 = 1.13^{t}$$

iii) Calculation of amount of reinforcing steel required

$$M = 0.584^{t.m} = 58,400^{kg/m}$$
  
 $S = 1.18^{t} = 1.130^{kg}$ 

Thickness of member h = 25 cmEffective thickness d = 20 cmReinforcing steel covering d' = 5 cm

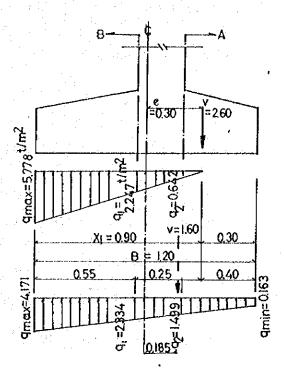
Amount of steel according to approximate formula  $AS = \frac{M}{\text{sa.j.d.}} = 1.85^{\text{cm}^2}$ 

Amount of steel (rough estimate)  $D10 \text{ ctc } 300 = 2.378^{\text{cm}^2}$ 

$$P = \frac{As}{b \cdot d} = \frac{2.378}{100 \times 20} = 0.001189$$

$$\frac{d^{\dagger}}{d} = \frac{5}{20} = 0.25$$

According to nomogram


M-7 K = 0.18 M-11 j = 0.952  
M-17[
$$\frac{1}{\text{Lo}}$$
] = 119 [ $\frac{1}{\text{Ls}}$ ] = 920  

$$\frac{M}{b \cdot d^3} = \frac{58,400}{100 \times 20^2} = 1.46 \text{ kg/cm}^2$$
Pc = [ $\frac{M}{b \cdot d^2}$ ] - [ $\frac{1}{\text{Le}}$ ] = 1.46 × 11.9 = 17.4 Kg/m<sup>2</sup> 90 Kg/cm<sup>2</sup>  
s = [ $\frac{M}{b \cdot d^2}$ ] [ $\frac{1}{\text{Ls}}$ ] = 1.46 × 920 = 1343 kg/m<sup>2</sup> 1,800 kg/m<sup>2</sup>  
=  $\frac{S}{b \cdot j \cdot d} = \frac{1.130}{100 \times 0.952 \times 20} = 0.59$  kg/m<sup>2</sup> < 8 kg/m<sup>2</sup>

Consequently, arrangement of reinforcing bars in the wall will be D10 ctc 300.

### 4. Stress calculations in

Calculations for normal circumstances, and for earthquakes were compared, and the larger value adopted.



Load diagram

q max = 
$$\frac{2 \cdot r}{Lr} = \frac{2 \times 2.60}{100 \times 0.90} = 5.778$$
/m  
x =  $3(\frac{B}{2} - e) = 3(\frac{1.20}{2} - 0.30) = 0.90$ 

Normal

$$q \max_{min} = \frac{V}{L.B} + \frac{.M}{L.B^2}$$

$$= \frac{2-60}{1.00 \times 1.20} + \frac{L \times 260 \times 0.185}{1.00 \times 1.20^{2}}$$

$$= \left\{4.171^{t/m}\right\}$$

Stress calculations in A - A cross-section

1) Bending moment and shear stress

Normal

$$M = 0.163 \times 0.40^{2} \times 1/2 + 1.336 \times 0.40^{2} \times 1/2 \times 1/3$$

$$- 2.60 \times 0.10$$

$$= 0.013 + 0.036 - 0.26 = - 0.211$$

During earthquakes

$$M = 0.642 \times 0.10^{2} \times 1/2 \times 1/3 - 2.60 \times 0.10$$
$$= 0.001 - 0.260 = -0.259$$
tm

Normal

$$S = 1/2 (0.163 + 1.499) \times 0.40 - 2.60$$
  
= -2.26<sup>t</sup>

During earthquakes

$$S = 1/2 \times 0.642 \times 0.10 - 2.60$$
$$= -2.568^{t}$$

#### Calculation of amount of reinforcing steel 1i)

$$M=0.259^{tm} = 25,900^{kg/cm}$$

$$s = 2.568$$
 t = 2.568 kg

Member thickness

Member thickness √h = 35 cm Effective thickness d = 5cm Reinforcing steel 5cm

\_\_\_\_\_d'= covering

Amount of steel according to approximate formula

$$AS = \frac{M}{\sigma_{sa.j.d.}} = 0.548$$

Amount of steel (rough estimate)

D10 etc 
$$300 = 2.378^{\text{cm}^2}$$

$$P = \frac{As}{b.d.} = \frac{2.378}{100 \times 30} = 0.00079$$

$$\frac{d^{i}}{d} = \frac{5}{30} = 0.167$$

According to nomogram

$$M-8$$
  $K = 0.15$ ,  $M-11$   $j = 0.952$ 

M-17 
$$\left[\frac{1}{Lc}\right] = 150$$
  $\left[\frac{1}{Ls}\right] = 1,350$ 

$$\left[\frac{M}{b \cdot d^2}\right] = \frac{25900}{100 \times 30^2} = 0.288 \text{ kg/cm}^2$$

$$\sigma_{c} = 0.288 \times 15.0 = 4.3^{\text{kg/cm}^{2}} < 70^{\text{kg/cm}^{2}}$$

$$\sigma_{s} = 0.288 \times 1350 = 389^{\text{kg/cm}^{2}} < 1,800^{\text{kg/cm}^{2}}$$

$$\tau = \frac{\text{S}}{\text{b.j.d}} = \frac{2,568}{100 \times 0.952 \times 30} = 0.9^{\text{kg/cm}^{2}} < 8^{\text{kg/cm}^{2}}$$

Consequently, the base slabs will be D10 ctc 300.

Stress calculations in B-B cross-section (for earthquakes only)

i) Bending moment and shear stress

$$M = 2.247 \times 0.55^{2} \times 1/2 + 3.531 \times 0.55^{2} \times 1/2 \times 2/3$$
$$= 0.696^{\text{tm}}$$

$$S = 1/2 (2.247 - 5.778) \times 0.55 = 2.207$$

ii) Calculation of amount of reinforcing steel

$$M = 0.696^{tm} = 69,600^{kg/cm}$$
  
 $S = 2.207^{t} = 2,207^{kg}$ 

Member thickness h = 35 cmBffective thickness d =Reinforcing steel covering  $d^1 = 5 \text{ cm}$ 

Amount of steel according to approximate formula

As 
$$x = \frac{M}{0 \text{ sa. j. d}} = 1.475^{\text{cm}^2}$$

Amount of steel (rough estimate)

D10 etc 300 = 2.378

$$P = \frac{As}{b.d} = \frac{2.378}{100 \times 30} = 0.00079$$

$$\frac{d^{1}}{d} = \frac{5}{30} = 0.167$$

According to nomogram

$$M-8$$
  $K = 0.15$   $M-11$   $j = 0.952$ 

M-19 
$$\left[\frac{1}{\text{Le}}\right] = 15.7$$
  $\left[\frac{1}{\text{Ls}}\right] = 1,350$ 

$$\frac{M}{b \cdot d^2} = \frac{69600}{100 \times 30^2} = 0.773 \text{ kg/cm}^2$$

$$\sigma_{c} = 0.773 \times 15.0 = 11.6 \text{ kg/cm}^2 < = 70^{\text{Kg/cm}^2}$$

$$\sigma_{s} = 0.773 \times 1350 = 1.043^{\text{kg/cm}^2} < = 1.800^{\text{Kg/cm}^2}$$

$$\tau = \frac{S}{b.j.d} = \frac{2,207}{100 \times 0.952 \times 30}$$
$$= 0.8^{Kg/cm^2} < \tau a = 8^{Kg/cm^2}$$

Consequently, D10 ctc 300 has been adopted.

### 5-3 Basic Building Design

#### 5-3-1 Building

The type and scale of the building constructed in the sericulture orchard shall conform to 2-3-2.

#### 5-3-2 Layout

For the building layout, see chapter 2, Fig. 2-7 \$\infty\$ 8(pages 18 and 19).

#### 5-3-3 Accompanying Facilities Design

(a) Drinking and miscellaneous water supply system

In the mulberry orchard, the drinking and miscellaneous water is pressure-fed to each building from the farm pond using a sole purpose pressure tank. In the sub-center, the water is pumped up from a well. Both pumps are to be motor-driven.

#### (1) Water supply amount

Sub-center

Number of persons

41

Water supply

When a person consumes 200%

per day,

 $V = 0.20 \times 41 = 8.2 \text{m}^3/\text{day}$ 

New field

Number of persons

50

Water supply

 $V = 0.20 \times 50 = 10.0 \text{m}^3/\text{day}$ 

# (b) Power generation capacity

New field

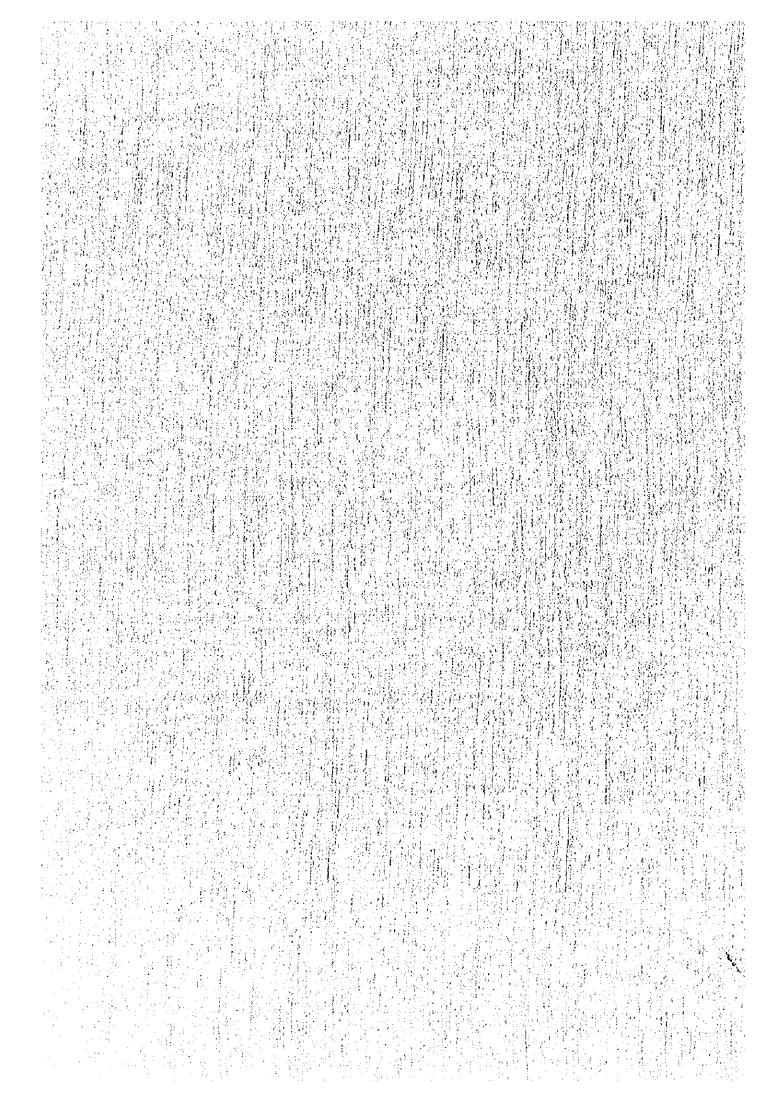
Table 5-3 Non-utility Generation Capacity

|                | Description                              | Existing/New                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Size   | Load    |
|----------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|
| Λ              | Adult silkworm species, raising room (1) | New                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 × 32 | 1200W   |
|                | " (2)                                    | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 x 32 | 1200    |
|                | Adult silkworm species, inspection room  | <b>n</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 x 8  | 2000    |
| A <sup>1</sup> | Larva silkworm species, raising room     | in the state of th | 7 x 20 | 1200    |
|                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total  | 5600    |
|                | Supply water pump                        | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | 750     |
|                | Irrigation water pump                    | <b>n</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | 30000   |
|                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total  | 30 750W |

For pump = 
$$\frac{30.75 \times 1.7}{0.8}$$
 = 65.34KVA (Starting torque: 70%)

For illumination = 
$$\frac{5.6}{0.8}$$
 = 7KVA

Accordingly, two 70KVA generators and one 10KVA generator shall be installed taking spare capacity into consideration.


Oil tank capacity is calculated as follows:

Daily consumption 
$$81$$
 $\ell/hr x 16 hr/day = 1.3m3/day (70KVA)$ 

$$20l/hr \times 10 hr/day = 0.2m^3/day (10KVA)$$

For 10 days supply,  $1.5 \times 10 = 15 \text{m}^3$ 

Therefore two 8m3 tanks shall be installed.

