0.654 0.781 1.210 0.774 0.170 0.210 0.094 0.013 0.70 0.70 72 -2 1.08 0.70 0.70 2 3.02 Calculation Sheet of Water Requirement for Paddy 1.26 1.12 1:23 62 1.33 1.16 1.32 1.27 7. ä 29 ž 1.20 1.28 1.36 1.32 ន 2 2 2 3 2nd Paddy 7.04 8 8 0 0.38 8 . 08 0.054 0.452 0.307 0.314 0.736 0.82 0.93 0.98 0.83 0.80 0.9 0.80 0.84 0.80 0.83 ... -1/20 Table 4.1.20 (9) Diversion water req. (Dw) (mm/N days) Pocential evapocranaptraction (MTo) L. Unic diversion req. (Qe) (1/s/ha) J. Parm water req. (Put (mm/N daya). Water req. for paddy field (Wp) Consumptitive use of water (Cu) I. Water req. for puddling (Wd) Water req. for nursery (Wn) Effective rainfall (Re) A. Cropping intensity (Ic) E. Percolation loss (No) Crop coefficient (Xc) Veighting average Larly cropping Early cropping " elbbim Middle Cropping Pattern TOCAL Calculation 5

Calculation Sheet of Water Requirement for Polowilo Tehle 4.1.21 (1)

	125	Ĭ.		AUX.		~ 61 20 20 20 20 20 20 20 20 20 20 20 20 20	ال	<u> </u>) (4)	Į,	Nov.
	1	375	385	1							Į.
Croming Pattain									/		
		/			o Pr	vt > 0	\$			/	
		/							ļ		1
Calculation			•							•	
A. Cropping intensity (ic)						•		-	•		
Barly eropping	ri o		-	•	_	do.	do	do.	40	,	
MAGGLe	1	· ·	~¦~	40	40	40	n	-	40		
		.•	-	-		-¦-	4	~ ~	n lo	-d-	n o
Total		~ ~	n¦o	e4 e4	ਜ	н	-4	-4	nlo		rdo
b. Grop coefficient (No)											
Early cropping	0.31 0	0.41	なる	0.67 0.75	5 0.76	5 0.72	0.65	0.55	0,40		
: • • • • • • • • • • • • • • • • • • •	•	0.31.0	0.41 0	0.54 0.67	57 0.75	5 0.76	0.72	0.65	0.55	0,40	
Maria		0	0.33 0	0.41 0.54	54 0.67	7 0.75	0.76	0.72	0.65	25.5	07.0
entrick of the second	0.31 0	0.38	0.44.0	0.54 0.65	55 0.73	3 0.74	4.0	9.0	0.56	8.0	0,40
C. Posential evapotranapiration (MIO)	37	17	77	4 44	97 87	97	97	S	ያ	8	67
D. Consusprive use of varet (Cu)	ជ	23	61	24 31	23	አ	ង	g	73 73	80	17
Effective reinfall (Re)	٥	23	Φ.	12 61	33	77	13	ន	77	£	17
F. Farm water req. (Tw) (nm/N days)	0.33	ò	ø¢.	'n	0 01	유	H	77	ń	n	٥
G. Diversion value req. (Dv) (um/N days)	0.55		ដ	8 17	0	7	8	8	'n	'n	0
same accordance to the (1/a/ha)	9000	0	0.154.0	0.0960.0	0 271.0	0.192	2 0.231		0.231 0.058 0.053	0.053	0

Water Requirement for Polowijo

Table 4.1.21 (2)	Colculation	tion	Sheet	t of	Water		Requirement	i L	ror ro	NOTON-10	: 0	
	Jul. Lat 2nd	ž.	14c 21	Aug.	7 Jat	3 op.	3rd	0 P 7	Oct.	37.0	Nov.	
Cropping Pattern												
			. /		0	સ 3 ૦	0				/	
Calculation											1	
A. Cropping intensity (Ic)				•	•	•		•				
Early eropping	но	40	네 -	 	rden J-∵	40	do.	10	40	•		
** • TPPTW		alo	-in	طان سان		40	n n	40	40	, a		
			l n∤o	4h	rijen Ja	-4-	-¦	-	-¦-	ula I	- 4 0	
TOCAL	no	-164	ηb	4	et -a	ત.	A	-4	n o	-¦~	, \o	
b. Grop coefficient (Kc)						:			٠			
Early cropping	16.0	17.0	0.54	0.67 0	0.73 0.	0.76 0.72	2 0.65	0.35	070			
* services		0.31	0.41	0.5%	0.67 0.	0.75 0.76	5 0.72	0.65	0.35	07.0		
יי פינפין			0.21	0.41 0	٥٠ ۲۰ ٥٠	0.67 0.75	5 0,76	0.72	0.65	0.55	07.0	
きのきょううぎ かしていたがいやさ	0.31	0.38	0.44	0.34.0	0.65 0.	0.73 0.74	4 0.71	\$	0.56	8	07.0	
C. Potential evapotranapitation (ETO)	33	179	3	77	7 87	97 97	.:	Š	ደ	23	6.3	
D. Consumptive use of water (Cu)	ជ	Ħ	61	77	31 3	33 34	ន	35	238	73 73	11	
T. Effective tainfall (Ne)	ដ	n	•			'	*:	'n	\$	28	•	
W Warm Langer Teo. (7V) (SB/N Caya)	0	•	6 0	77	г п	33	33	77	22	Ö	~	
(ayab K'asi) (ad) . oan manan oo saasaan oo	0	9	7.	0,		55 57	3	\$7	∞	0	es	
x, Unite diversion req. (Qe) (1/s/bs)	0	0.103	0.105 0.161 0.463 0.544 0.636 0.656	0.463 0	.544.0.	636 0.6	56 0.636	36 0.52	0.521 0.212	•	0.035	
												l

Table 4.1.21 (3) Calculation Sheet of Water Requirement for Polowijo

	301. 1st 2md	E	790	Aug.	P24	Je S		185	38	E	196 2nd
Croming Pattern					o 24) 0 H	0 55				
Calculation)								ĺ
A. Cropping intensity (Ic)			i					•	•		
Eatly eropeing	нb	-4-0	-k-			•	•	ļe,	do .	•	
97797W	•	·	-4-	عاد. ماد.	40		-40	n o	ed e	مإد	
is to		•	-{:-	•		•	•	do	m n	4	~ »
Total	, -10	4 2	n¦o	-r		ਜ	-	-1	nlo	4/2	, ,
b. Crop coefficient (Kc)											
Early eropping	0.31	0.41	9.34	0.67 0.	0.75 0.	0.76 0.72	2 0.63				
Middle "	Ū	0.31	0.41	0.54 0.	0.67 0.	0.75 0.76	6 0.72	2 0.65	0.55	0,40	
: " " " " " " " " " " " " " " " " " " "		Ū	0.31	0.41 0.	0.34.0	0.67 0.75	92.0 \$	5 0.72	0.65	0.55	07.0
setter a setter a	0.31	0.38	9,44	0.34 0.	0.65 0.	0.73 0.74	17.0 . 2	79.0	0.56	0.50	07.0
C. Potential evapotranspiration (ETO)	37	17	77	7 77	7 87	97 97	97	9	ጵ	\$\$	63
D. Consumptive use of water (Cu)	ដ	23	19	24 3	16	33 34	33	32	28	28	17
R. Miffective resofell (Re)	•	90	ø		•	7		ł	•	•	
F. Farm water req. (Pw) (mm/N days)	64	-3	ដ	26 3	27 3	31 34	33	ម្ត	23	74	m
G. Diversion water req. (Dw.) (mm/N days)	ń	٠	æ rt	7 07	\$ \$4	52 57	55	53	ŝ	23	'n
(av/a/1) (av)	0.035 0.061		0.209	0.463 0.	0.473 0.	0.598 0.6	0.656 0.6	0.636 0.617	7 0.450	0.246	0.055

Table 4.1.21 (4) Calculation Sheet of Water Requirement for Polowijo

	Jul. 3nd Jrd lac 2nd 3rd lac 2nd 3rd lac 2nd	3rd ist 2nd 3
Cropping Pattern		
	9010450	
Calculacton		1
A. Cropping intensity (Ic)	# # # # # # # # # # # # # # # # # # #	
Early cropping		-
אינקטיא.		
, \$1 5 5		do ·
Total	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40
b. Grop coefficient (Kc)		
Marty cropping	0.65 0.55	
2 	0.31 0.41 0.54 0.67 0.75 0.76 0.72 0.65 0.55	9,0
	0.31 0.41 0.54 0.67 0.75 0.76 0.72 0.65	0.55 0.40
	0.31 0.38 0.44 0.54 0.65 0.73 0.74 0.71 0.64 0.56	07.0 05.0
Velkynting everege	77 74 17	55 43
C. Potential evaportaneoutanton (5.10)	9	28 17
D. Consumptive tes of water (Gu)		23 16
t. titective reinfall (Re)		o
F. Farm vacer req. (Pv) (mm/N days)	0 80 64 64 64 64 64 64 64 64 64 64 64 64 64	4
C. Diversion vacar req. (Dv) (ms/R days)		0 97%
(2/8/h) (00) (1/8/h4)	0 0 0.080 0 0.491 0.328 0 0.154 0.114 0.11	

0.019 0.077 0.305 0.463 0.544 0.077 0.656 0.251 0.579 0.450 0.228 0.055 0.31 0.41 0.54 0.67 0.75 0.76 0.72 0.65 0.55 0.40 0.31 0.38 0.44 0.54 0.65 0.73 0.74 0.71 0.64 0.56 0.50 0.40 Table 4.1.21 (5) Calculation Sheet of Water Requirement for Polowijo 0.31 0.41 0.54 0.67 0.75 0.76 0.72 0.65 0.55 0.40 0.31 0.41 0.54 0.67 0.75 0.76 0.72 0.65 0.55 0.40 POLOVALIO C. Diversion water req. (Dw) (mm/N days) C. Potential evapotranepiration (NIO) N. Unic diversion req. (Qs) (1/s/ha) F. Farm water req. (Tw) (mm/N days) D. Consumptive use of water (Cu) E. Effective tainfall (Re) A. Cropping intensity (Ic) Crop coefficient (Ka) Weighting everage Early cropping Early cropping : •34. M1ddle " Cropping Pattern MIGGI. 3 Total Calculacion

Table 4.1.22 (1) Unit Diversion Requirement for the Project

Year : 1975	ADY. AND
Description	3rd lat 2nd 3rd lat
1. Gropping Patrain	1975 lat Paddy
2. Unit Diversion Requirement (1/s/hs) 1975 let Paddy	0 0.049 0.326 0.312 0.759 0.163 0 0.280 0 0.204 1.042
Total	0 0.049 0.326 0.312 0.759 0.163 0 0.280 0 0.204 1.042
Description	July and let a
1. Gropping Pattern	1975 Polewijo
2. Unic Diversion Requirement (1/s/ha) 1975. Lat Paddy 1975 Polovijo	0.262 0.174 0 0.006 0 0.154 0.096 0.175 0 0.192 0.231 0.231 0.058 0.053 0
Total	0.262 0.180 0 0.154 0.096 0.175 0 0.192 0.231 0.231 0.058 0.069 0.018 0.706 0.764 1.192 0.235 0.818

Table 4.1.22 (2) Unit Diversion Requirement for the Project

	Year : 1976	Jun.
	Description	374 145
i.	Cropping Pattern	1975 2nd Paddy
.:	Unic Diversion Requirement (1/e/ha) 1975 Ind Paddy 1976 Let Paddy	1.215 0.654 1.029 0.651 0.862 0.499 0.170 0 0.052 0.324 0.347 0.938 0.018 0.691 0.970 0 0.186 0.210
i	renor.	1.215 0.654 1.029 0.651 0.862 0.499 0.170 0 0.052 0.324 0.347 0.938 0.018 0.691 0.970 0 0.186 0.210
- 1	Dascribotion	1911, 1rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 3rd 3rd 3rd 3rd
- i	ဦ	
~i ·	Unit Diversion Requirement (1/a/ha) 1976 Int Paddy 1976 Polowijo 1976 Znd Paddy	0 0.283 0.109 0 0.105 0.161 0.463 0.344 0.636 0.636 0.638 0.512 0.212 0 0.035 0 0.069 0.139 0.556 0.937 0.613 0.588
ł	Total	0 0.283 0.214 0.161 0.463 0.544 0.636 0.656 0.636 0.521 0.212 0 0.104 0.139 0.556 0.937 0.613 0.558

Table 4.1.22 (3) Unit Diversion Requirement for the Project

Year 1 1977	Ann.
Description	Sed lat
1. Gropping Pactern	1976 2nd Paddy
2. Unic Diversion Requirement (1/s/ha) 1976 2nd Paddy 1977 let Paddy	0 (
Total	0 0.166 0 0.704 0.102 0.380 0.112 0 0.052 0.347 0.741 0.706 0.869 0.528 0.395 0.222 0 1.044
Describtion	
1. Cropping Pattern	
2. Unic Diversion Requirement (1/s/ha) 1977 lat Paddy 1977 Polowijo 1977 ind Paddy	0.201 0.500 0.109 0.035 0.061 0.209 0.463 0.473 0.598 0.656 0.617 0.450 0.246 0.055 0.035 0.061 0.209 0.463 0.473 0.598 0.656 0.636 0.617 0.450 0.246 0.055
fotal	0.201 0.535 0.170 0.209 0.463 0.473 0.598 0.656 0.636 0.617 0.450 0.264 0.127 0.669 0.253 0.072 0.540 0.555

Table 4.1.22 (4) Unit Diversion Requirement for the Project

Xear : 1978

Description	Jan. Jan. May Jun. Jun. Apr. May Jun. Jun. Jac 2nd 3rd lat 2nd 3rd lat 2nd 3rd lat 2nd 3rd
1. Cropping Pattern	1977 2nd Paddy
2. Unit Diversion Requirement (1/s/ha) 1977 Ind Paddy 1978 let Paddy	0.401 0.763 1.26 0.774 0.685 0.504 0 0 0.016 0.486 0.602 0.428 0.832 0.510 0.543 0.675 0.438 0.771
Total	0.401 0.763 1.26 0.774 0.685 0.504 0 0 0.016 0.486 0.602 0.428 0.832 0.510 0.543 0.675 0.458 0.771
Description 1. Cropping Pattern	las 2nd 3rd 3rd 3rd 3rd 3rd 3rd 3rd 3rd 3rd 3r
2. Unic Diversion Requirement (1/e/ha) 1978 lat Paddy 1978 Polovijo 1978 2nd Paddy	0.352 0 0.207 0 0.080 0 0.491 0.328 0 0.154 0.212 0.129 0.044 0 0.054 0.452 0.307 0.814 0.736 0
Total	0.352 0 0.207 0.080 0 0.491 0.328 0 0.154 0.212 0.129 0.044 0.054 0.452 0.307 0.814 0.736 0

Table 4.1.22 (5) Unit Diversion Requirement for the Project

	lat 2nd 3rd	1978 2nd Paddy) 0.654 0.781 1.210 0.774 0.170 0.210 0.094 0.013 0.016 0.312 1.088 0.307 0.109 0.745 0 0.024 0 0.572	0.654 0.781 1.210 0.774 0.170 0.210 0.094 0.013 0.016 0.312 1.088 0.307 0.109 0.745 0 0.024 0 0.572	Jul. Jul. Jul. Jul. Jul. Jec. Jec.	1979 Polowijo		0.744 0.401 0.191 0.305 0.463 0.544 0.077 0.656 0.251 0.579 0.450 0.228 0.055
Year 1 1979	Description	1. Cropping Partern	2. Unic Diversion Requirement (1/s/ha) 1978 End Paddy 1979 lat Paddy	Total	Description	1. Gropping Pateern	2. Unic Diversion Requirement (1/s/ha) 1979 lsc Paddy 1979 Polowijo	tocat

Table 4.1.23 (1) Balance Calculation between Diversion Requirement and Dependable Flow

Work Division I

3000		-													3			, en	
14ak : 47/7	i ka		Ç,			reb.	ļ		Nor.	Š		200 200	3rd	190	2nd	24	12	3ug	725
Trem		je	744 744	뢰		PE 7	210	1	nu v	, ,	140 1 080 1.030 2.520	0.0	2.520	3	6	930	٥	99	3,450
Diversion	(0/3)								•	3	2								•
Topontable Ples	,								2,700	2,650	2,700 2,650 3,130 3,500 3,260 3,090 3,090 3,090 3,370 3,370	3,500	3,260	3,090	3,090	3,090	3,370	3,370	8
in Tributaries	3																		2,550
Deficit	(*/3)																		
			į												Nov.			244.	
	Time		, 7nc	P. C.	IAE	725 235 236)rd	7.8.0	2 pu 2	3rd	146	Ē	맖	Ä	2mg	3rd	186	2nd	ğ
Ttem Diversion	1	, c	e e										ន	8	2,340 2,530 3,950	2,530	3,950	780	2,710
Requirement)	2	3	•				•	•		9	ć	0,7	1 120 1.200 1.070	200	1.070	3,430 7,460 1,500	7,460	8
Dependable Flow (4/8)	(1 /3)	970	930	930 3,180	1.100	1,100 3,450 1,140	3,140	0.00	2) n	ξ	Š				477	5		1.210
Defised	(*/ <u>Y</u>)														7074 0747	20			
																		:	
A501					ļ										28.2			Sun.	
	7. B		2 c	71	100	reb.	3rd	100	Z W	Jrd	1	į			<u>2</u>	3rd	180	Sud Sud	3rd
Item Diversion	(4/7)		4.030 2.170 3.410	3.410		2,160 2,860 1,650	1,650	860	0	172	001.2 03.100 1,150 3,100	1,150	3,100	9	60 2,290 3,210	3,230	0	620	8
Requirement			0,000	0		950	340	8	1.600	1,860	900 1.600 1.860 2,010 1.970 1.000	1,970	1,000	3,160	076	1.000	940 1,000 2,300 2,040 1,800	2.040	1.800
in Intbutation	(4)		2	•									2,100		1,350 2,210	2,210	:		

(com	Park 4	J.	Ę), Jyd	冒	2md	2rd	1	Zad) F	j	Jage 1	Į Į						
Diversion	(#/ÿ)	0	96 076	360									0	330	077	440 1,750 2,950 1,930 1,850	056*	066*1	8
Dependable Flow	,	020 7	070	1.290	1,110 1,450 1,160	1.450	1,160	900	8	410	240	800	280	1,140 2,070 1,360 3,530 4,850	2,070	1,360	3,530	.850	300
An Triabutaries (1/8) 1.000 miles	2	<u> </u>		:		•										390			ያ
Deficit	(*/ <u>*</u> /)																		

310

076.1 067

2,430

2,850

(*/<u>)</u>

Deficat

[:] Double Cropping of Paddy 1 2,900 na 1. Area

^{2.} Cropping Pattern 3. Intake Efficiency

^{4.} Irrigation Efficiency : 56%

Balance Calculation between Diversion Requirement and Dependable Flow Table 4.1.23 (2)

Division I	
Vork	

Item Item Diversion Recutrement (4/8)																		
raton	JAC	Jan. 2nd	3rd	lac	Zab.	Srd	7,85	Apr.	3rd	LAC	Zud Zud	Jrd	Yuc	2md	3rd	796	2,44	P.C
		550	_	2,330	340	340 1,260	370	0	170	170 1,130 2,460 2,340 2,880 1,750	2,460	2,340	2,880	1,750	1,310	740	0 3,450	3.4
Dependable Flow (4/s) 10,210 7,860 16,060	012,01	7.860		3,910	3,910 21,860 14,500 7,660 3,860 5,340 8,150 7,620 2,620 2,130 5,660	4,500	7,660	3,860	5,340	8,150	7,620	2,620	2,130		3,720	3,720 3,160 11,160 2,140	1,160	7
Deficit (4/m)	~		Ì										82					1,310
											į			Nov.			Dec.	
Part.	200	Zul.	3rd	lat	F	3rd	10.1	P. P.	374	į	Ě	248	1	2mg	3rd) at	2nd	λig
Diversion (1/a)		670 1,660	360							٠		\$	240	240 2,210	078	240	3,120 1,840	ы. 20
Dependable Flow (1/a)		4,350 2,700	1,610 1,680 1,870 1,280	1,680	1.870	1,280	430	380	260	870	88	430	430 1,040 1,100 1,840 2,470	1,100	1.840		5,360 5,100	4
Deficit (4/a)		1					į							1,130	j			- }
								į										
Year : 1978						j								MAN			, En	1
17.004 I Cen	3.6.6	2nd)rd	Je.	. P	Jrd	100	Sud Sud	214	744	Sug.	Srd	191	Şwq	E.		2nd	Ŗ
ceton	(4/4) 1,330 2,530 4,180	2,530	4,180	2,570	2,570 2,270 1,670	1,670	0	•	380	380 1,610 2,000 1,420 2,820 1,690 1,800 2,240 1,520	2.000	1.420	2,820	1,690	1.800	2,240	1,520	2,560
		2,790	,	;					5	4000	040	2,40	3.340	4.520	2.410	3,190	2,790	2.80

10/67 : 10/0						į			May			ADT.			A W				ŀ
	17.0			Pre	196	234	Jed lat	lac	2nd	3rd	3rd lac	2nd 3rd 1st 2nd 3rd	3rd	305	2nd		int 2nd	2nd	E C
Diversion	3	(4/%) 1,330 2,530 4,180 2,570 2,270 1,670	2,530	4,180	2,570	2,270	1,670	0	0	380	380 1,610 2,000 1,420 2,820 1,690 1,800 2,240 1,520 2,560	2.000	1,420	2,820	1,690	1.800	2,240	1,520	2,560
Dependable Flow (1/s)	(4 /3)	2,590 3,730 4,570	3,730		1,690	3,340	2,760	1,690 3,340 2,760 3,060 3,620 3,570 2,920 1,960 2,160 3,340 4,520 2,410 3,190 2,790 2,540	3,620	5,570	2,920	1,960	2,160	3,340	4,520	2,410	3,190	2,790	2,540
in Tributaries	3				88							07							ន
															إ			Dec Dec	
	3	֓֞֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֡֓֡֓֡֓	; 3 3 3 4 3	3rd	7.5	Aux.	3rd	lat	Snd 2nd	3rd		S S	P		182	P.	111	249	Ĕ
Diversion	(¢/y)	0/1.1 (4/)	٥										0	180	7 200	1,020	180 1,500 1,020 2,700 2,440	2,440	o :
Dependable Flow (L/s) 5,570 3,150 2,510 in Tributaries	(%/%)	5,570	3,150	2,510	1,990 1,320 1,430 1,170	1,320	1,430	1.170	530	530 1,100 1,690	1,690	730	8	2,190	3,570	5,920	630 2,190 3,570 5,920 4,990 5,480	2,480	7.750

^{1.} Area : 2,900 ha 2. Cropping of Paddy 2. Cropping of Paddy

3/3

Defacte

^{3.} Intake Efficiency : 80% 4. Irrigation Efficiency : 36%

Table 4.1.23 (3) Balance Calculation between Diversion Requirement and Dependable Flow

4/47 . 1									3			Anr.			Xay		:	Jun.	
Time	1				1	9	1		200	374	180	2nd 3rd lat 2nd	3rd lst 2nd	180	2nd	3rd	181	2nd	P.L.
Cen	<u>ا</u>	ist 2nd	320		7 8 7	700	7	,			1			9,50	0777	C	S	0	006.1
	(1/s) 2,170 2,590 4,010 2,570	170 2,5)*7 065	010	570	260	560 700	310	0,	8	1,000	50 1,030 5,010 4,040 500 1,000 5,100 500 1,000 500 500 500 500 500 500 500 500 500	7 7 7	3		•	}	•	
Regular termin. Despendable Flow /// 1000 2,000 2,000 7,300 5,500 1,930 2,990 4,010 2,140 2,490 6,240 1,800 2,030 3,770 5,100 2,880	,	0	, , ,	90	880	2.560	7.300	5,500	1,930	2,990	4,010	2,140	2,490	6,240	1,800	2,030	3,770	5,100	۷. پې
in Tributaries (1/	101	266	2	: }											670	٠			
(e/y) arattag	<u> </u>			710	9														

Trem	Time	Jul. Jud 3rd let 2nd	Jul. 2nd	3rd	181	Aug.	3rd	1.85	Sep.	3rd	186	2nd	3rd	lst	2nd	3rd	18t	2nd	3rd
Diversion Requirement	(9/))	0/2,1 074,2 (8/1)	1,270										-		•				
Dependable Flow (4/s) 1,950 2,220 1,560 1,670 1,170 in Tributaries	(4/8)	1,950	2,220	1,560	1,670	1,170	1,050	390	390	650	740	360	380	380 1,100					
Deficit	(e/y)	520																	
		24 860 0	3, 89,																

1. Area : 2,900 ha 2. Cropping of Raddy 2. Cropping Pattern : Double Cropping of Raddy

2. Gropping Pattern : Doubl 3. Intake Efficiency : 80%

4. Irrigation Efficiency: 56%

Table 4.1.23 (4) Balance Calculation between Diversion Requirement and Dependable Flow

Work Division II

Year : 1975					j													,	
						1.10			14			νυχ.			Ž				1
	113.		ZAn.]	Ž	2	145	2nd	3rd	180	2nd	Sid
Item		385	2nd	3rd	3.07	2nd	Jrd	287	2ug	 		7117							
Division	(*/3)			÷					0	220	1,470	220 1,470 1,460 3,410	3.410	730	0	0 1,260	0	920 4.690	069.7
Kequirement Amontohia Wige	;								2,700	2,650	2,700 2,650 3,130 3,500	3,500	3,260	3,090	3,260 3,090 3,090 3,090 3,370 3,370	3,090	3,370	3,370	006
An Trabonantes	3												Ş						3,790
Deficit	(*/);												3						o y
Water Supply from (L/m)	(1/1)												3,130						2.930
Defacts	(1)																		
																	,		•
												ě			χ δ			o O	
	Time		Jul.			Λυ <u>β</u> .					;	246	P	194	Znd	3rd	100	2nd	P
ICen		lat		취	4	Zuq	P.	2	700	לחם שלם	1						· •		600
Division	(•/3)	1,130	810		969	629	790	0	860	1.040	860 1.040 1.040	260		8	3,180	3,180 3,440 5,300 1,000 3,000	2,360	8	30.5
Dependable Flow	(4))	670		3,180	1.100	939 3,180 1,100 3,450	1.140	\$40	470	720	300	380		1,120	410 1,120 1,200 1,070 3,430 7,460 1,500	1.070	3,430	7.460	1.50
in Tributaries					•				Ç	60	. 93			•	1,380	1,380 2,370 1,930	1,930		2,180

740

230 1,340

7.460

1,150 1,030 3,290

540

390 390

210

Deficit

Š

Water Supply from (4/a) Langhamme River

(*/S

Deficit

1,230 1,170 1,180

44 005.4 : 1 Proposed

4. Irrigation Efficiency : 64%

2. Cropping Pattern 3. Intake Efficiency

1. Area

Table 4.1.23 (5) Balance Calculation between Diversion Requirement and Dependable Flow

Work Division II

									:			111			> 4 ×				
	73.00		Jan	!		7										1		7	3
Item		160	ine and 3rd	3rd	Lat	2nd	ing 2nd 3rd ing 2nd 3rd ing 2nd 3rd ing 2nd 3rd ing 2nd	100	Zug Zug	Pr.	1	244	PL	187	Ž.	P.		F	
Diversion Requirement	3	(1/4) 5,470 2,940 4,630	2,940	7,630	2,930	3,886	2,930 3,880 2,250	770	٥	230	1,460	230 1,460 1,560 4,220	4,220	8	3,110	80 3,110 4,370	•	078	950
8	(4/3)	1,180 10,760	10.760	980	1.690	920	1,690 920 1,340		1.600	1,860	2,010	1,970	7,000	900 1,600 1,860 2,010 1,970 1,000 3,160	076	940 1,000 2,300 2,040 1,800	2,300	2,040	1,800
1047404		4,290		3,650	1,240 2,960	2,960	910						3,220		2,170	3,370			
Water Supply from (1/a)	(e/3)	1,140		940	1,620	1,620 880 1,290	1,290						960		8	96			
Langkemme River		3,150		2,710		2,080							2,260		1,270 2,410	2,410			

									١			0		•	200.			ž	
	Time		347.			Vug.				3		Aug.	ķ	, i	2nd	370	Jec	2mg)rd
Lten		JAR.	lac 2nd 3rd	됢	1	Pu2	729		200	DIC.									
Diversion Requirement	(=/7)	0	0 1,270 960	960	720	2,080	720 2,080 2,450 2,860 2,950 2,860 2,340	2,860	2,950	2,860	2,340	920	0	670	630	2,500	4.220	470 630 2,500 4,220 2,760 2,650	2,650
Dependable Flow	(*/7)	4,070	4,070 2,040 1,290	1,290	1,110	1,110 1,450 1,160	1,160	300	8	410	074	800	280	1,140	2,070	590 1,140 2,070 1,360 3,530	3,530	4,850 1,800	88.
in intoucenses	(1/)					630	1,290	2,560 2,650 2,450	2,650	2,450	1.600	150				1,140	069		850
Water Supply from (//s)	(9/3)					1,390	1,110	780	770	1,060	770 1,060 1,740 1,900	1,900				1,300	3,380		1,730
Langkamme Alver Deficit	(•/))						180	180 1,780 1,880 1,390	1,880	1,390									

^{: 4,500} ha : Proposed 2. Cropping Pattern

^{3.} Intake Efficiency : 80% 4. Irrigation Efficiency : 64%

Table 4.1.23 (6) Balance Calculation between Diversion Requirement and Dependable Flow

															Ž			Jun.	
+	1.4 me			!		Feb.			Mar'.			VDE.			;]	<u>.</u>	200	25
Item		3.65	1 1	P	,	2md	3rd	lat	2nd	3rd	195	Zwq	22	1	cma cma	est.	lat 2nd 3rd lat 2nd 3rd lat 2nd 3rd lat 2nd Jrd Jrd		
Division	(4/3)	0	750	٥	0.3,170	097	460 1,710 500	200	0	230	1,560	3,330	3,180	230 1,560 3,330 3,180 3,910 2,380 1,780 1,000	2,380	1,780	1,000	0	069*7 0
30		(//*) 10,210 7,860 16,060 3,910 21,860 14,500 7,660 3,860 5,340 8,150 7,620 2,620 2,130 5,660 3,720 3,160 11,160 2,140	7,860 1	9 060	3,910 2	11,860	14,500	7.660	3,860	5,340	8,150	7,620	2,620	2,130	5.660	3,720	3,160	1,160	2,140
	è												560	560 1,780					2,550
Defiate ((#/¥)													• •					2,060
Water Supply from (L/#)	(• /)												010	210 4.040					
	(*///												S,						ş

												oet.			NOV.			Š	
	75m		Jul.			Avg.			dae]	֝֟֝֟֝֟֞֞֟֝֟֟֝֟֟֝֟֟	lat	2nd	Ļ	1 AC		žď
Ites		100	let 2nd	3rd		2nd	744	746	2nd	249	7.4.5	4,TIG				rd hat 2nd Jrd lat 2nd Jyd Lat and Jyd			
Diversion	(*/3)	8	900 2,410	770	076	1.080	2,130	2,690	2,950	2,860	2,780	2,030	1,190	570	3.010	940 1,080 2,130 2,690 2,950 2,860 2,780 2,030 1,190 570 3,010 1,140 320 4,230 2,500	320	4,230	2,500
Requirement	:		ć	1.280	689	1.870	1,280	630	380	8	870	200		1.040	1,100	430 1.040 1.100 1.840 2,470 5,360 5,100	2,470	5,360	5,100
in Tributation	(* /3)	000.4	3	*		•			1	4	5	95	760		1,910				
Deficat	(*/3)					22	210 850	2,260	2,260 2,370 4,300 4,340	3	7	}	<u>:</u>						-
Water Supply from	(4)//					1.790	1,790 1,220 1,110	1.110	980	1,460	980 1,460 2,060	1,190 1,030	1,030		1,050				
Langkenne River								9	1.1590 840	940		Å.			860				
Deficat	(¥/\$)																		

Proposed 4,500 ha 2. Gropping Pattern : Propo 3. Intake Efficiency : 80% 4. Irtgation Efficiency : 64%

1V - 94

Table 4.1.23 (7) Balance Calculation between Diversion Requirement and Dependable Flow

(4/4) 2,590 3,730 4,570 1,690 3,340 2,760 3,660 3,620 3,570 2,920 1,960 2,160 3,340 4,520 2,420 3,190 2,790 2,540 70 2,190 2,710 1,930 3,830 2,300 2,440 3,040 2,060 3,470 2,310 ጸ Ž 8 5,210 š 1.880 let 2nd 3rd 7 Ę (K/#) 1,800 3,430 5,670 3,480 3,080 2,270 24 2mg 4,330 1,620 1,100 1,790 P. JAn. ž (•) (*) Mater Supply from (1/e) Langkamma River Work Division II Dependable Flow in Tribucaries Diversion Requirement Year : 1978 Deficie ı K

170

(*/3)

Deficie

Š

£

6,430

						-			Ş			966			Mary.	ĺ		3	İ
	, ,]	The hand he had he had he had he had he had he had	ž	ļ,	796	Ž	ž) yet	345	2.5	Zec	£	ž
76		7.0	oc znd	EX.		7								;	;				<
Diversion Requirement	(*/3)	(4/4) 1,580	•	120	380	0	2,210	0 2,210 1,480 0 690 950	0	8	950	3	8	% 0	2,030	7,380	260 Z,030 J,380 J,880 J,880	25.5	>
914	(°/3)	3,570	3,150	2,510	1.990	1,320	1,430	(4/m) 3,570 3,150 2,510 1,990 1,320 1,430 1,170		1,100	530 1,100 1,690	¥	\$5 \$	2,190	3,570	5,920	630 2,190 3,570 5,920 4,990 5,480 7,750	5,480	7,750
Deficie	(*/3)		-				8	310											
Water Supply from (g/s) Langkamme River	(*/3)						1,380 3,020	3,020											
Deflete																			

4.500 h : Proposed 2. Cropping Pattern

4. Irrigation Efficiency : 64%

3. Intaka Efficiency

Table 4.1.23 (8) Balance Calculation between Diversion Requirement and Dependable Flow

						1			,			Apr.			Ž	!		Jun.	
	12me		Jan]]	;		3rd	3.85	2nd	3rd	1nt		3rd	100	2nd	3rd	185	Zud	ž.
Diversion		14c 2nd 3ca 2 940 3,510 5,450	3.510	1 _	3,480	765	\$50	750	Ş	6	7 007*	70 1,400 4,900 1,380	380	064	3,350	0	110	0	2,570
			6	_		2,560 7,300	7,300	5.500	1,930	2,990 4	010.	5,500 1,930 2,990 4,010 2,140 2,490 6,240 1,800	9 067	240	1,800 2	2,030 3,770 5,100	077.8		2,880
in Tributaries	3	V6.6 10,990 6,920 (4/)	076.0	2							•	2,760			550		-		
) atsete ((*/3)			2,150	1,600					٠	-					-	÷		
Water Supply from (4/a)	(*/);			3,170	1,800							2,060			1.730				
Langkenne Xiver				**	2					:	•	200		•	ī.		•	:	
Derseit	()															_	• •		-
-	, : • •					٠.	• •							٠			٠	•	
-			.									٤			Nov.			á	
	75.00		Jul.			AUR.			Sop.				Į į	79.5	2nd	3rd	7	2mg	ř.
Item		1 ac	34	F	H	2ud	Pr.	7	74g	240	1					-			
	(*/)	008"1 050"5 (#/7)	1,800	860	1.370	1,370 2,080 2,450	2,450	320	2,950	1,130	2.610	1,130 2,610 2,030 1,030	1,030	250					
	(2)	1.950	2,220	1.950 2,220 1,560	1.670		1,170 1,050	390	390	650	240	360	380	1.100					
		007		-		916	1.400		2,560		480 1,870	1.670	85	•					
WARRY Supply from (//s)		1.870		÷.		1,120	1,010	٠	1,020	1,020 1,670 1,760	1.760	860	910						
Langkemen River Deficit	(*) (*)		٠				290	·	1,540		110	810							

1 Proposed

2. Cropping Pattern : Prop. 3. Intake Efficiency : 80% 4. Irrigation Efficiency : 64%

Table 4.1.23 (9) Balance Calculation between Diversion Requirement and Dependable Flow

Work Divinion III Year : 1975

											1			7			Jun.	
	777	=		~ ()				TAT.	ŀ		Vor.	77		,	3	1	23.0	P
Item		22,	, Pr	Jet.	Ę,	E	191	Zug	2	7.00	OH))TC	4.0.4	2	,	Ž.		
Diversion Requirement	(• /3)				•				310	1,910	1,910	1,910 1,910 4,720 1,640	7,640	•	7,00	4	1,310	6,670
Dependable Flow in Iributaries (K/s)	(*/ <u>3</u>)								2,650	3,130	3,500	2,650 3,130 3,500 3,260 3,090	3,090	3,090	3,090 3,090	3,370	3,370	8 8
Deficat	3								1	•	•	997.1	•		\$	1	•	2,,,
Macer Supply from Langkemer River (K/m)	(*/X								•	•	1	1,460	1	ï	•	•		98
Deficie	(*/3)								•			•	ı	•	ŧ	j		27.6.4
Water Supply from Sero River	(*/3									•	ı	,			ı	:	1	930
Deficit	?• /3								•	ı	ı	•	ı	•	t			3
Deficit Req. Ratio	\mathfrak{S}										İ					:		3

						And			Sen.			Sec.			So.		,	ž	
Item	43,000	786	2nd	3rd) oc	Sug-	774	į	2nd	3rd	194	2nd	Įž,	7	2nd	H	700	Ę	Ĕ
Diversion Requirement	(•/Y)	1,680 1,110	1,110	•	1,080	•	1,270	•	026,1 061,1	1,320	1.	•	8	120	4,520	120 4,520 4,600	7,440 1,500 5,240	7,500	5,240
Dependable flow		970	930	930 3,180	2,100	3,430	1,140	540	0.70	720	300	380	017	1,120	7,20	1,070 3	1,070 3,430 7,460 1.	7,460	2.500
Deficit	(* /3)	710	180	•	•		ž		999	870			•		3,320	3,530	0.00	•	3,740
Water Supply from Langkenne River (L/m)	(*/ <u>*</u> /)	710	180	٠.			230	•	9	870		:	ı	•	1.450	1,030		1	1,440
Deficate	(#/ <u>%</u>)	t	1	•	•		ı		•	•	•	1	4		2,470	8	1,510		200
Water Supply from Sero River		:	•	•	ı	ı		ı	,		ŧ		i	ı	2,770	2,500	1.510	1	2,300
Deficie	(*/y)	ŧ	•	•	1		•	•					•	•		•	•	,	ŧ
Deficit Req.	£																		

Table 4.1.23 (10) Balance Calculation between Diversion Requirement and Dependable Flow

1	
l	
1	
•	
!	
	н
	111
	-
	£
	æ
	. •
	3
	Ý.
	A
	×
	ĸ
	Work Division

							١					3.00			200			.un
Item	73.me	lat	r p	Jed	180	Zug.	2rd	יישנ	3 od	Fig	JAC	Je s	25	i,	24	P	794	2nd
Diversion Requirement	(*/))	061,8 7,780 4,190	4,190		6,590 4,170 5,520	5,520	3,190	1,090		330	1,910	1,910 2,090	3,760	120	4,460 6,210	6,210	•	1,190
Dependable Flow			476	e c	64	0,0	1, 140	900	1.600	1.860 2.010	2.010	1,970	8	3,160	076	000	2,300	2,040
in Intourantes (4/8) Deficit (4/8)	3 3		4,500 LOS.20	5,610	2,480	4,600	1,650	130		ı		120	4,760	•	3,520	5,210		
Water Supply from	£ ,	071		070	1.620	880	1.290	130	. 1	5	•	120	960	ı	8	960	1	ı
Lengkemme Kiver Deficic	33	3,460		4,670	860	3,720	560			•		٠	•	•	2,620	4,250	•	•
pply fr				ć	048	\$	945		•	,			•	*	3,400	1,430	•	ŧ
Sero River Deficit	(*/ <u>*</u>)	2,960		2,170	8			•	•		•	•		ŧ	227	2,820	•	1
Deficit Req. Racio	8	38		33		22										\$4		

1,340

1,800

												8			, 20,		•	•	
	٠ ۲		ı			Vak.						200)rd	Jac	2nd	3rd	lac	249	Pre
Item		LAC	2nd	376	1	Zug	2		2116										
Diversion Recutrement	(•/))	1	1,810	700	1,380	2,930 3,520 4,130 4,220 4,030 2,840	3,520	4,130	4,220	000,4	2,840	2,160	•	670	810	3,440 5,890	5.890	3,870	3,760
le Flor cerses	3	4.070	4,070 2,040 1,290	1,290	270	1,480 1,360	2,360	300	300	410	2,100	800	88 1	1,140	2,070	1,360	3,530	. 850	2.800
Derreat	3	Ì								-							;		
Water Supply from	: ·		!	ı	270	ŏ	1,110	780	770	1,060	1,740	1,360	•	ı		8	200	ı	3
Langkanne River	(*/)			ı	•			000		2,560	360	1	. 1	•	,	780	:	•	8
Daffest	3	•	•		•	₹	7.4			1									3
Macer Supply from				1		Ş	1.070	1.050	9	660	360	•	•	:	ı	8 8	•	ı	8
Sero Kiver	3	•	•	•	ŀ	*		8	4 490	900	\$	•			ŧ	•	•	•	1
Deflete	3	•	ı	•	ı		3		•										
Deficit Req.	(**	97	39	4.7		-							
KALSO	<u>}</u>																		

: 6,400 ha : Proposed : 80% :

> 2. Gropping Pattern 3. Intake Efficiency 4. Irrigation Efficiency

Table 4.1.23 (11) Balance Calculation between Diversion Requirement and Dependable Flow

Hork Division III Year : 1977

						4						ç			è				
TC##	1778		2nd	Srd	184	2nd	3rd) and	2nd	Srd	Lac	2nd	3rd	TW.	Snd	Srd Srd	lac	210	ž
Diversion Requirement	3		7.060		4,510	650	650 2,430	720		330	330 2,050 4,500 4,370 5,560 3,380 2,530	.500	4,370	5,560	3,380	2,530	1,420	1	6,670
Dependable flow	(*/3)	090'91 098'1 013'01 (4/7)	7.860	16,060	3,910 2	3.860	3,910 21,860 14,500 7,660 3,860	7,660	3,860	5.340	5,340 8,150 7,620		2,620	2,130	5,660	3,720	2,130 5,660 3,720 3,160 11,160	1,160	2,140
Deficit	(*/ 5)	•	1	8	000		•				•	•	1,730	3,430		£		,	3
Water Supply from Language River (4/m)	(*/3)	•	•	•	9		•		•				1,750			ŧ		•	2,060
Deficie	(*/3)	•				•	1	•	•			1	:	1,3%		1	•	•	2,470
Water Supply from Sero Aiver	(*/)	•	•	•	•	•	1	1	•	•	•	•	,	1,390		•	•	ě	1,470
Deficie	(*/ <u>*</u>)	•		ŧ	•		•	•	•	•		,			ı		•	•	1
Deficit Req. Ratio	8																		

									3			ۇ ق			Nov.			į	
### 121	1	7.0	2nd 2nd)rd	J. C	, pd Zud	37.0	Yet.	, Zug	旦	į	Ĕ	P.C		Ę	H	اغر	Şuç	ST.
Diversion Requirement	(a/y)		1,290 3,420 1,090	1,090	3,340	2,960	3,030	5,830	7,200	4,070 3,950 2,890 1,690	3,950	2,890	1,690	810	4,280	1,620	9	5,950	3,550
Dependable Flow in Tributaries Deficit	(6/3)	4,350	4,350 2,700 3,610	1,610	1,680	1,870	1,280	2,400	3,820	3,510 3	289	500 1	430 260	1,040	3,180	1,840	2,470	3,360	5,100
Water Supply from Langkerme Kiver (1/e) Deficit (1/e)	(*/3)		720			940	1,220	2,290	086	1,460-	1,020,1	200	230	1 . 1	1,050		ž 1	8 .	E .
Water Supply from Sero River Deficit	(*/)	•				250	530	300	460	420	009	420	23 .		420		i 1	1 1	
Deficit Req. Ratio	8					ı		47	37	0,4	33	27			×				

: 6,400 ha : Proposed : 80% 2. Cropping Pattern

3. Intake Efficiency 4. Irrigation Efficiency

Table 4.1.23 (12) Balance Calculation between Diversion Requirement and Dependable Flow

Work Division III

						1			1			Any.			¥A.			, ca.	
Itom	17,000	, A	Znd.	3rd	184		24		Pu-	맖	192	2nd	3rd	785	2nd	324] NC	2nd	3rd
Diversion Requirement	(4/3)	2,570	2,570 4,880 8,060		4,950 4,380		3,230	•	ŧ	100	2,900	3,630	2,420	5,450	3,260	3,480	7,320	2,930	4.930
Dependable flow in Tribucaries Deficic	(*/y)	2,590	3,730		3,260	3,340	2,760	3,060	3.620	5,570	2,920	1,960	2,160	3,340	4,520	2,410	3,190	2,790	3,390
Water Supply from Langkemme River Deficit	(*/ <u>)</u>		1,150 4,330	4.330	1,620	1,040	0.47	, 1 1				1,850	260	2,110	, ,	1,070	1,130	1 170	2,430
Water Supply from Sero Miver Deficit Wes.	(*/ <u>)</u>)	1	•	1,050	1.640			•	•		•	•	. •	•	1	•	•	•	096
retto	ß																		
			Snd.	3rd) ac	Aug.	350	JAC	Sep.	3rd	746	2nd	P	7.00	ž Ž	P	197	ž p	몺
Diversion Requirement	(*/3)	2.250		170	097		3,070	2,150	•	820	740	017	•	230	2,730	1,850	4,970	4,710	
Dependable Flow in Tributaries Deficit	• • • • • • • • • • • • • • • • • • •	3,570	3,150	2,520	1,990	1,320	1,640	1,170	8 '	1,100	1,690	8 '	900	2,190	3,570	240	066*7	5,480	7,750
Water Supply from Langkemme River (K/s) Deficit (K/s)	(*/))			• 1		1 1	1,380	986 1	•	• •	1 1	i i		1 1 1	1 1 .	2,0	1 1	1 ()	• •
Macer Supply from Sero River Deficit Ref. Mario	* 3 B	1	•	•	•	•	260	1 , .	•	•			•		•	12		•	1
1. Area 2. Croping Pattern 3. Intake Efficiency	tern	· · · · · ·	6,400 ha	5 9 .													•		

Table 4.1.23 (13) Balance Calculasion between Diversion Requirement and Dependable Flow

1000 Total Office (1000)	
*	
-	Work Division III

Year : 1979

20 3,300 1,880 2,560 7,300 3,500 1,930 2,990 4,010 2,140 2,490 6,240 4,440 3,070 2,490 2,490 2,490										,			Ant	İ		> # T			3	Ì
## ## ## ## ## ## ## ## ## ## ## ## ##	i.	*											į		1	Şuq	P.	1ec	200	Sign
######################################			387		PL.		252	ı	2	Su2		,	2							
(L/*) 10.990 6,920 3,200 1,860 2,360 7,300 5,500 1,930 2,990 4,010 2,140 2,490 6,240 (L/*) 4,440 3,070 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000	reson	(*/*		066'7	7,740		3,00	1,340	8	8		1,780	069*9	7,960	8	4, 770	•	55		3,660
(1/*)		;	6	6		6	2,660						2,140	2,490	9,240	1,800	2,030	3,770	5,100	2,880
(L/a) 3,170 1,800 2,490 2,490 2,490 2,490 2,490 1,940 1,270 2,490 2,490 2,490 2,490 2,490 2,490 2,490 2,490 2,490 2,490 2,490 2,490 2,490 2,490 2,490	10 e 17 e e		74.4			3,070							4,550		:	1,970	ŝ	•	1	86
te (1/s) 1,940 1,270 2,490 2,490 2,490 2,490 2,490 2,490 2,490 2,490 2,490 2,490 2,490 2,490 2,490 2,490 2,490 2,490 - 2	acer Supply from	(3)	•	•	3.170	1.800	1	,	•		•		2,060	1	•	1,730	•		4	780
Supply from (i/a) 1,940 1,270	Angranda Area: C		1	•	1,940	1.270	•	•	t	ı		:	2,490			1,240	•	1	•	•
15. Req. (I/a)	upply from	(*/)	•	•	1,940	1,270	•	ı	•	•			2,490			1,240	•		s ' (• 1
12. Req. (Z) Time		(*/);	•		•		•	•				•		4		•	•)	l
Time	it Req.	£																		
Time																3		ľ	Š	
reton ((/*) (.760 2,440 730 2,900 2,930 3,520 540 4,220 1,690 3,950 2,880 1,540 - Lrement ((/*) 1,950 2,220 1,560 1,670 1,117 1,050 390 650 740 360 380 1,100 Ct		17,000	100	Jul. 2nd	Srd	ARE	λνς. 2nd		11	, 25 2		19		3rd	Jac Jac	Į.	E	7,000	Sud Sud	Ħ
Terbutantem (L/m) 1,950 2,220 1,560 1,670 1,117 1,050 390 650 740 360 360 1,100 Terbutantem (L/m) 2,810 220 - 330 1,760 2,470 150 1,040 3,210 2,520 1,160 - 1,660 500 500 500 500 500 500 500 500 500	reton Lrewent	(4/4)	7,760	2,440	55.					4,220		3,950		1,540	•	1,960	5,260	2,940 7,630		967.9
tacte (t/m) 2,810 220 - 330 1,760 2,470 150 3,320 2,320 1,160 - 3120 2,520 1,160 - 3120 2,520 1,160 - 3120 2,520 1,160 - 3120 1,010 1,010 1,020 1,040 1,760 860 910 - 3120 2,010 1,010 1,020 1,040 1,760 860 910 - 3120 2,010 1,010		(* /))	1,950	2,220	1,560	3,670		1,050	390					380					7,170	6,980
eer Supply from (I/a) 1,870 220 - 330 1,120 1,020 1,040 1,760 860 910 - ficir (I/a) 940 - - - 640 1,460 - 2,810 - 1,450 1,660 250 - ficir Rick (I/a) 940 - - - 640 1,320 - 1,450 860 250 - ficir Req. (I/a) -		(4/3)	2,810		•	330	1,760	2,470	ş					291,1	•		7,4,7	766.4	}	
Test Supply from (L/m) 940 640 1,320 - 1,500 - 1,450 860 ficts Req. (L/m) 140 - 1,310 800 ficts Req. (L/m) 140 - 1,310 800 ficts Req. (L/m) 140 - 1,310 800 ficts Req. (L/m) 140 - 1,310 800 ficts Req. (L/m) 140 - 1,310 800 ficts Req. (L/m) 140 - 1,310 800 ficts Req. (L/m) 140 - 1,310 800 ficts Req. (L/m) 140 - 1,310 800 ficts Req. (L/m) 140 - 1,310 800 ficts Req. (L/m)	Water Supply from Langkamme Kiver Deficit	(*) (*)	1,870			65 .	1,120	1,010	720				360	910		ģ	2,190	1,220	ş ,	1 1
// / / / / / / / / / / / / / / / / / /	Water Supply from Sero-River	(#/3)	076	٠	•	•	079	1,320	ŧ	1,500		1,450	998	250		, ,	787 I	ş.	3 I	
Area : Cropping Pattern :	ກອດ ເຄື່ອ	€ €	•	t	•		•	97		orc't	•	,	§ #	'			•			
3. Intake Efficiency : 80%		ern ency		6,400 h Propose 80Z	4 P			· 									•			

Table 4.1.24 Operation Frequency of Sero

Intake (for 5 years)

O	Freque	ency	Cumulative	Frequenc	<u>y .</u>
Conveyed Discharge	Time	%	Time	%	·
(m3/s)					:
0 - 0.5	14	29	14	29	
0.5 - 1.0	12	25	26	54	
1.0 - 1.5	11	23	37	77	
1.5 - 2.0	3	6	40	83	
2.0 - 2.5	4 %	9	44	92	_
2.5 - 3.0	1	2	45	94	
3.0 - 3.5	0	. 0	45	94	
3.5 - 4.0	1	2	46	96	
4.0 - 4.5	o	0	46	96	
4.5 - 5.0	1	2	47	98	
5.0 - 5.5	1	2	48	100	

Table 4.1.25 Operation Frequency of Langkemme
Intake (for 5 years)

Conveyed	Preque	ency	Cumulative	Frequency
Discharge	Time	<u> </u>	Time	Х
(a ³ /s)				
:				
0 - 0.5	13	16	13	16
0.5 - 1.0	21	26	34	42
1.0 - 1.5	27	33	61	75
1.5 - 2.0	10	172	71	87
2.0 - 2.5	8	10	79	97
2.5 - 3.0	o	0	 79	97
3.0 - 3.5	2	2	81	99
3.5 - 4.0	1	1	82	100

Table 4.2.1 Breakdown of Construction Cost in Each Alternative (Intake Site Study)

					000 to 00	1000	Alternative	artve - 2	Alternative	ative - 3
X	orkin,	Working Items		Unit	Quantity	l g	Quantity	Amount	Quantity	Amount
						(ssn)		(ass)		(680)
H	202	Earth Work		c		4	4	110	001 373	864.150
	r-1	Excavation	(Common)	B	160.550	240,825	519,030	010.07/	2216	200
	2	Excavation		e P	160,550	963,300	12,500	75,000		007
	ค่	Embankment		e B	108,450	488,025	83,200	374,400	69,200	277,400
						1.692,150		1,227,945		1,175,550
		Suo-total				(1,693,000)		(1,228,000)		(1,176,000
HH.	Str	Structure Work			•		Ċ	000	-	68,000
	Ţ	Syphone		Nos.	ന	204.000	7 -	200,001	10	270,000
	2	Culvert		Nos.	15	225,000	99 Y	270,000	1 0 F	000
	· «	Bridge		Nos.	'n	000,09	ف	000,77	•	1
	7	ช	structure	1	ı	430,500	ı	535,500	1	211,000
	•	4				919,500		1,013,500		000 : 266.
		Sug-cour		,		(920,000)		(1,014,000)	•	
III		Intake Structure	re			1	. •	. 000	1	170,000
		Diversion Works	Works	F	ı	170,000	i	000,000] !	95,000
	ا ا	Earth Works	Vā	ı	E	90,00	•	120,000	•	000
	, ,	Charles Work	, .	1	•	450,000	1	610,000	ı	000
	ጎ ֊	Section Control	4	ı	ı	150,000	1	150,000	ı	20,000
	.	STOR TRUBE	_	ı	ł	340,000	1	340,000	1	340,000
	ለ	Head Neach			ŀ	40,000	1	000,07	ı	70,000
	ò	Orners						000		1.260.000
		Sub-total				1,240,000		1,430,000		2001202
Ì		4	" 0"			73,000		1		ı ·
• •		Construction seed	,							
		Total				3,926,000		3,672,000	•	3,369,000

Table 4.2.2 Center of Gravity of the Weir (Langkemme Intake Weir)

		ATH LE	Arm Lengto (m)	Tione is	מסמפנור ורים
Own Weight (ton)		°X	Ϋ́ο	×	XX.
1 1 1 0 X 2.0	3.60	1.00	3.80	3.60	13.68
- 1/2 × 1.8 ×	1.76	2.47	3.57	4.35	6.28
× ∞	- 2.38	0.30	1.70	0.71	4.05
x 4.0	2.03	1.40	0.70	2.83	1-41
0.1 x 8.0 x 8.4 m 8 0	06.0	0.50	0.25	0.45	0.23
C 6 = 1.8 x 1.8 x 0.6	1.94	3.10	2.10	6.01	4.07
C 7 * 1/2 x 1.8 x 1.8 x 1.8	- 2.92	4.00	1.90	11.68	5.55
C 8 * 1.8 x 0.8 x 8.2	- 11.81	06.9	0.90	81.49	10.63
C 9 = 1/2 x 1.8 x 1.6 x 1.6	- 2.30	6.47	1.83	21.78	4.21
C10 = 1.8 x 1.6 x 1.0	- 2.88	10.50	2.10	30.24	6.05
C11 = 1.8 x 0.5 x 1.0	06.0	10.50	0.25	9.45	0.23
$c12 = 2.4 \ (2.2^2 - 0.8^2\pi)$	6.79	1.70	2.00	11.54	13.58
s = 1.8 × 0.5 × 9.0	8 10	5.50	0.25	44.55	2.03
Total	V = 48.3			228.68	72.00

Table 4.2.3 Stability Analysis of the Weir (Langkenne Intake Weir, Case I)

	Force (t)	Arm length (m)	Moment (t.m)
1. Own Weight (V)	48.30	4.13	228.68
2. Seismic force (S)	7.25	1.49	10.80
3. Water Pressure			
$P_1 = 1/2 \times 4.5^2$	10.13	1.50	15.19
$P_2 = 1/2 \times 2.9^2$	-4.21	0.97	-4.08
4. Earth Pressure			
$Pe = 1/2(1.8-1) \times 0.5 \times 4.5^2$	4.05	1.50	6.08
5. Uplift Pressure		•	
$v_1 = 1/2 \times 4.5 \times 11.0$	-24.75	3.67	-90.83
$U_2 = 1/2 \times 2.9 \times 11.0$	-15.95	7.33	-116.91
$\Sigma V = V + U_1 + U_2 = 7.60$		ΣΝ = 4	8.93
$\Sigma H = S + P_1 + P_2 + Pe = 17.2$	22		

$$e = \frac{\Sigma M}{\Sigma V} - \frac{B}{2} = 6.44 - 5.5 = 0.94 < \frac{B}{6} = 1.83$$

$$n = \frac{f.\Sigma V + C.B}{\Sigma H} = \frac{0.6 \times 7.60 + 25 \times 11.0}{17.22} = 16.23 > 4.4$$

Where, B: Width of the bottom (m)

f: Friction coefficient between the bottom and foundation (0.60)

C: Cohension between the bottom and foundation (25 t/n^2)

e: Eccentricity of resultant force on the bottom

n: Safety factor of horizontal shearing and friction

Table 4.2.4 Stability Analysis of the Weir (Langkenme Intake Weir, Case II)

		Force (t)	Arm length (m)	Moment (t.m)
1.	Own Weight (V)	48.30	4.73	228.68
2.	Dead Weight			
	$W_1 = 2 \times 4.8$	9.60	1.00	9.60
	$W_2 = 1/2 \times 2.7^2$	3.65	2.90	10.59
	$W_3 = 2.1 \times 3.2$	6.72	3.60	24.19
	$W_4 = 1/2 \times 3.2^2$	5.12	4.13	21.15
	$W_5 = 5.3 \times 3.2$	16.96	6.80	115.33
	$W_6 = 3.7 \times 1.6$	5.92	9.20	54.46
	$W_7 = 1/2 \times 1.6^2$	1.28	8.93	11.43
	$W_8 = 3.7 \times 1.0$	3.70	10.50	38.85
	$W_9 = 0.8^2 \times 3.14$	2.01	1.70	3.42
3.	Water Pressure			
	$P_1 = 1/2 \times 4.5^2$	10.13	1.50	15.19
	$P_2 = 4.8 \times 4.5$	21.60	2.25	48.60
	$P_3 = 2.9 \times 3.7$	-10.73	1.45	-15.56
	$P_4 = 1/2 \times 2.9^2$	-4.21	0.97	-4.08
4.	Earth Pressure			
	$Pe = 1/2(1.8-1) \times 0.5 \times 4.5^2$	4.05	1.50	6.08
5.	Uplift Pressure			
	$U_1 = 1/2 \times 9.3 \times 11.0$	-51.15	3.67	-187.72
	$U_2 = 1/2 \times 6.6 \times 11.0$	-36.30	7.33	-266.08
	g			

 $\Sigma V = V + \sum_{i=1}^{9} W_i + U_1 + U_2 = 15.81$

 $\Sigma H = 114.12$

$$\Sigma H = \sum_{i=1}^{4} P_i + P_e = 20.34$$

$$e = \frac{\Sigma H}{\Sigma V} - \frac{B}{2} = \frac{114.13}{15.81} - \frac{11}{2} = 1.72 < \frac{B}{6} = 1.83$$

$$n = \frac{f\Sigma V + CB}{\Sigma H} \times \frac{0.6 \times 15.81 + 25 \times 11.0}{20.34} = 13.99 > 4.0$$

Table 4.2.5 Center of Gravity of the Weir (Jupang Intake Weir)

		Arm length (m)	oth (a)	Momen	(u-1)
Own Weight	(ton)	ν	Yo	ΜX	Μy
C1 11.8 x 2.9 x 2.0	10.44	1.00	4.45	10.44	46.46
0.2 1.8 x 3.0 x 1/0	5.40	0.50	1.50	2.70	8.10
03 11.8 × 1.0 × 7.7	13.86	4.85	1.00	67.22	13.86
4 = 1.8 x 2.9 x	1 2.61	2.25	4.30	5.87	11.22
5 * 1.8 × 0.5 ×	1.04	3.08	2.95	3.20	3.07
6 * 1/2 × 1.8 ×	¥ 6.14	5.28	3.75	32.43	23.03
7 = 1/2 × 1.8 ×	2.70	4.17	2.30	11.26	6.21
8 1.8 x 1.2 x 1.9	4.10	5.95	2.10	24.42	8.62
9 1/2 x 1.8 x	1.94	7.50	2.10	14.55	4.07
0 = 1/2 × 1.8 × 1.	1.35	9.20	0.83	12.42	1.12
1.8 × 0.5 × 2.0	1.80	9.20	0.25	16.56	0.45
2.4 × 2.1 ×	1.01	2.60	4.45	2.62	67.7
= 2.4 × 1.5 ×	- 0.72	3,55	4.15	2.56	2.99
* 2.4 × 0.2 ×	0.55	3.08	3.30	1.70	1.82
* 2.0 × 3.5 ×	3.00	1.50	2.25	4.50	6.75
- 1/2 × 2.0 ×	4.50	3.00	2.00	13.50	00-6
- 1.8 x 0.5 x 7.2	6.48	7.60	0.25	29.81	1.62
	v = 67.64	:		255.76	152.88

Table 4.2.6 Stability Analysis of the Weir (Jupang Intake Weir, Case I)

		Porce (t)	Arm Length (m)	Moment (t.m)
1.	Own Weight (V)	67.64	3.78	255.76
Ż.	Seismic force (S)	10.15	2.26	22.94
3.	Water pressure			
	$P_1 = 1/2 \times 5.9^2$	17.41	1.97	19.38
	$P_2 = -1/2 \times 2.7^2$	-3.65	-0.90	-3.32
4.	Earth pressure			
	Pe = $1/2 \times 0.5 \times 5.9^{2}(1.8-1)$	6.96	1.97	13.71
5.	Uplift pressure			-
	$v_1 = -1/2 \times 5.9 \times 10.2$	-30.09	3.4	-102.31
•	$U_2 = -1/2 \times 2.7 \times 10.2$	-13.77	6.8	-93.64

$$\Sigma V = V + U_1 + U_2 = 23.78$$

 $\Sigma H = S + P_1 + P_2 + Pe = 30.87$

Σ112.44

$$e = \left| \frac{\text{YM}}{\text{V}} - \frac{\text{B}}{2} \right| = \left| \frac{112.44}{23.78} - \frac{10.2}{2} \right| = 0.37 < \frac{\text{B}}{6} = 1.7$$

$$n = \frac{\text{EXV} + \text{CB}}{\text{YR}} = \frac{0.6 \times 23.78 + 25 \times 10.2}{30.87} = 8.72 > 4.0$$

Table 4.2.7 Stability Analysis of the Weir (Jupang Intake Weir, Case II)

:.		Force (t)	Arm Length (m)	Moment (t.m)
1. 0	wn Weight (V)	67.64	3.78	255.76
2. D	ead Water			
	$w_1 = 6.5 \times 20$	13.00	1.00	13.00
	$W_2 = 1/2 \times 4.2 \times 4.8$	10.08	3.60	36.29
	$W_3 = 2.3 \times 8.2$	18.86	6.10	115.05
	$W_4 = 1/2 \times 5.4 \times 8.2$	22.14	7.47	165.39
-	$W_5 = 0.75 \times 1.78$	1.34	2.97	3.48
}. ¥	ater Pressure			
	$P_1 = 1/2 \times 5.9^2$	17.41	1.97	34.30
	$P_2 = 5.9 \times 6.5$	38.35	2.95	113.13
	$P_3 = -2.3 \times 5.9$	-13.57	2.95	-40.0
	$P_4 = -1/2 \times 5.9^2$	-17.41	1.97	13.7
4. E	arth Pressure			
	$Pe = 1/2 \times 0.5 \times 5.9^2 (1.8-1)$	6.96	1.97	13.7
5. U	plift Pressure		. 1	
	$U_1 = -1/2 \times 12.4 \times 10.2$	-63.24	3.4	-215.0
	$U_2 = -1/2 \times 8.2 \times 10.2$	-41.82	6.8	-284.3
٤	$v = v + \sum_{i=1}^{4} w_i + u_1 + u_2 = 28$.00		X 176.8
Σ	$H = \sum_{i=1}^{4} Pi + Pe = 31.74$:	
	$\frac{2}{2} = \frac{2}{2} = \frac{176.88}{28.00} - \frac{1}{2}$			
r	$a = \frac{f\Sigma V + CB}{\Sigma H} = \frac{0.6 \times 28.00 + 31.}{31.}$	25 x 10.2	= 8.56 > 4.0	0

Work Quantities and Construction Cost of Each Alternative (Study for Main Canal Route) Table 4.2.8

	12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	1947 TACI	Alternative I	fve I	Alternative II	ive II
	mp94 4704	(Rp)	Quantity	Amount (103 Rp)	Quantity	Amount (103 Rp)
႕	Earth Work					
	- Excavation Common	1,200/m ³	26,000 m ³	31,200	127,000 m ³	152,400
	- Excavation Rock	6,200/m ³	17,000 m ³	105,400	130,000 m ³	806,000
	- Embankment	1,100/m ³	700 B ³	770	19,000 m ³	20,900
6	Structures					
	- Cross Drain	3,000,000	ľ	ı	S Nos.	15,000
	- Culvert	3,500,000	•	1	1 No.	3,500
,	- Junction	1,000,000	. oz 1	1,000	l No.	1,000
. લં	Tunnel	820,000/m	720 B	290,400	ı	
	lotal			728,770		008,866

Table 4.2.9 Equivalent Length of Link Canal to an Intake Weir (Alternative 3 of Link Canal System)

	Link Canal			Equivalent Length	1
Canal Type	Design Discharge	Construction Cost	Weir Type I	Weir Type II/2	Wedr Type III
	(m3/sec.)	(10 ³ Rp/Km)	(Km)	(Km)	(Xm)
a '	9.0	28,500	0.3	7.0	1.2 1.2
8	7.0	21,200	7.0	0.5	1.6
en.	0.1	12,500	9.0	∞ . ο	80
:					

21 : Tirol type weir of 30 m width, construction cost ; 7,220 x 103 Rp.

23-: Ordinary type with scouring sluice, construction cost ; 34,740 x 103 Rp.

 L_2 : Tirol type weir of 50 m width, construction cost; 10,100 x $10^3~{
m Rp}$.

Table 4.2.10 Main Features & Direct Construction Cost

į		Altern	Alternative-1	Al ceri	Al cernactive-2	Alter	Alternative-3
	I tem	Quantity	Construction	Quantity	Construction	Quantity	Construction
	1. Link Canal (Km)	М	59,325	79.1	1,340,745	39.5	669,525
2.	Intake Weir (Nos.)						
	- Type 1 (tirol type 30 m)	ø	43,320	1 .	•	\$	43,320
	- Type II (throl type 50 m)	27	272,700	œ	80,800	r E	131,300
	- Type III (ordinary cype)	ო	104,220	•	•	m	104,220
	Sub-total	쓁	420,565	ω1	80,800	띪	278,840
e,	Related Structures						
	- Spillway or Release	Ø	12,000	<u>ෆ</u> ස	19,500	36	24,000
	- Turnout	ı		81	2,400	1	ı
	- Aqueduct	•		H	10,600	н	10,600
	- Culvert	į	;	56	33,800	Ŋ	6,500
	Sub-total	i	12,000	•	66,300		41,100
1	Toral		491,565		1,487,845		597 080

Table 4.2.11 Hydraulic Features of Canals

Type I. Mountainous Area 1 (Hard Rock, n = 0.035, m = 0.3)

(m/s)	 Base Width (m) Water Depth (m) Velocity on the Indonesian Standard (m/s) Side Slope of Canal Section 	m) (m) the Indonesi f Canal Sect	Base Width (m) Water Depth (m) Velocity on the Indonesian Side Slope of Canal Section	a w u w g d d d d d d d d d d d d d d d d d d	charge (m3/s) Gradient (m/s) Coefficient of	. 🔾	Where, Q: Design Dis I; Hydraulic V: Velocity n: Manning's Roughness	
	0.50	1.59	0.50	1.25	1/1,800	2.0	1.0 - 1.5	
	09.0	1.32	0.54	1.51	1/1,800	2.0	1.5 - 2.0	
	09.0	1.63	0.55	1.54	1/2.000	2.5	2.0 - 2.5	
	0.60	1.45	0.58	1.73	1/2.000	2.5	2.5 - 3.0	
	0.65	1.32	09.0	1.91	1/2,000	2.5	3.0 . 3.5	
	0.65	1.64	0.61	۳. 83.	1/2,000	3.0	3.5 - 4.0	
-	0.65	1.52	79*0	1.97	1/2,000	9.0	4.0 - 4.5	
	0.70	1.42	0.65	2.11	1/2,000	o.e	4.5 - 5.0	
	VIS	B/h	Δ	д.	2-4	ф	8	

Table 4.2.12 Hydraulic Features of Canals

Type II. Mountainous Area 2 (Weathered Rock, n=0.035, m=0.5)

	ø	ρ	H	æ	A	B/h	Vls
\$.4	4.5 - 5.0	9.0	1/2,000	1.92	99.0	1.56	0.70
4.0	4.0 - 4.5	9.0	1/2,000	1.80	0.64	1.66	0.65
3.5 -	0.4	2.5	1/2,000	1.87	0.62	1.34	0.65 .
1 0 8	બ લ 1	2.5	1/2,000	1.73	09.0	1.45	0.65
2,5	3.0	2.5	1/2,000	1.58	0.58	1.59	0.60
5.0	. 2 . 5	2.5	1/2,000	1,41	0.55	1.77	0,60
1.5 -	- 2.0	2.0	1/1,800	1.37	0.54	1.46	09.0
1.0 1	1.5	5.0	1/1,800	1.15	0.50	1.74	0.50

Table 4.2.13 Hydraulic Features of Canals

Type III Flat Area (Earth, n=0.025)

ď	8	ρά	1-1	ď	۵	B/b	VIS
4.5 - 5.0	1.5	4.5	1/5,000	1.38	0.55	3.26	0.70
4.0 - 4.5	1.5	4.2	1/5,000	1.35	0.54	3.12	0.65
3.5 - 4.0	7.5	0.7	1/5.000	1.29	0.52	3.10	0.65 🕰
	1.5	3.5	1/3,000	1.19	0.63	2.94	0.65 12
3.0 - 3.5	ብ ኢ.ዓ	3.5	1/3,000	러 다 다	0.61	3.20	0.65
2.5 - 3.0	٥٠٢	3.5	1/3,000	1.08	0.61	3.24	09-0
2.0 - 2.5	٠. 0	2.8	1/3,000	1.09	0.59	2.52	0.60
•	0° f	3.0	1/5,000	1.22	67.0	2.50	0.60
1.5 - 2.0	o. H	2.8	1/3,000	96.0	0.55	2.91	09.0
1.0 - 1.5	1.0	2.8	1/3,000	0.82	0.51	3.43	05.0

1 : for the canal aligned in the upstream of Hydropower station
2 : for the canal aligned in the downstream of Hydropower station
2 : for the Langkemme Main canal
4 : for the Sero Diversion canal

Table 4.2.14 Hydraulic Features of Canals

Type IV. Flat Area (Earth, n=0.028, m=1.0)

0	ស	н	Æ	Δ	B/h	Vis
0.75 - 1.00	8	1/3,000	98.0	0.43	2.08	0.50
0.50 - 0.75	9.4	1/3,000	0.78	07.0	2.05	0.45
0.25 - 0.50	1.2	1/3,000	0.71	0.37	7.69	07.0
- 0.25	7.0	1/3,000	0.61	0.31	7.14	0.30

Table 4.2.15 Dimension of Canal Section

Discharge	Freeboard	Width of Berm
(m ³ /s)	(13)	(a)
4.5 - 5.0	0.6	2.0
4.0 - 4.5	0.6	1.5
3.5 - 4.0	0.6	1.5
3.0 - 3.5	0.6	1.5
2.5 - 3.0	0.6	1.5
2.0 - 2.5	0.6	1.5
1.5 - 2.0	0.6	1.5
1.0 - 1.5	0.5	1.5
0.75 - 1.0	0.5	1.5
0.50 - 0.75	0.5	1.5
0.25 - 0.50	0.4	1.0
- 0.25	0.3	0.5

. .

Table 4.2.16 Required Numbers of Canal Related Structure

Structures	Nos. of R	elated Structures	
and the state of t	Work Division II	Work Division III	Total
Turnout	15	5	20
Release	6	0	6
Check Structure	16	0	16
Culvert	11	2	13
Tunnel	1 (720 m)	0	1
Syphon	6	o	6
Acqueduct	1	3	4
Cross Drain	18	13	41
Spillway	6	0	34
Drop and Chute	35 (chute;1)	0	35 (chute;
Junction	14	0	14

Table 4.3.1 Financial Cost of the Project

Work Item	Local Currency	Foreign Currency	Total
	1		1 .
I. Construction Cost		:	# * * * * * * * * * * * * * * * * * * *
(Work Division I)			
Preparation	260,000	-	260,000
Heir in Tributeries	417,000	100,000	517,000
Link Canal in NT Area	1,266,000	240,000	1,506,000
Tertiary Development	412,000	~	412,000
Land Aquisition	163,000		163,000
Sub-total	2,518,000	340,000	2,858,000
(Work Division II)			
Preparation	803,000	_	1803,000
Langkeame Intake Weir	195,000	99,000	294,000
Langkemme Canal	1,875,000	3,631,000	5,506,000
Link Canal in ST Area	85,000	23,000	108,000
Tertiary Development	3,702,000	-	1,702,000
Land Aquisition	415,000	-	415,000
Sub-total	5,075,000	3,753,000	8,828,000
(Work Division III)	:		
Preparation	440,000	_	440,000
Sero Intaké Weirs	108,000	26,000	134,000
Sero Diversion Canal	1,062,000	2,014,000	3,076,000
Link Canal in DPU Area	126,000	27,000	153,600
Tertiary Development	889,000	_	889,000
Land Aquisition	149,000	-	149,000
Sub-total	2,774,000	2,067,000	4,841,000
Total	10,367,000	6,160,000	16,527,00
II. Engineering Service	464,000	3,238,000	3,702,00
II. Administration Cost	384,000	_	384,00
IV. Physical Contingency (15%)	1,682,000	1,410,000	3,092,00
V. Price Contingency (L-10%, P-7%)	7,162,000	3,708,000	10,870,00
Grand Total	20,059,000	14,516,000	34,575,00

(to be cont'd)

		*	Unit Price	rice	Cost	Cost Amount	, , , , , , , , , , , , , , , , , , ,
working item	להמחבדה	3 5 10 0	Local	Foreign	Local	Foreign	S. S. S. S. S. S. S. S. S. S. S. S. S. S
(WORK DIVISION I)							
1. Preparation	1	i	1		ı	ı	10% of Direct Cost
2. Weir in Tributaries					260,562,000	62,738,000	
Intake Type I	13	Nos.	7,596,000	1,424,000	98,748,000	18,512,000	
Intake Type II	•	Nos.	10,219,000	2,409,000	61,314,000	14,454,000	
Intake Type III	ო	Nos.	33,500,000	9,924,000	100,500,000	29,772,000	
A. Intake Type I	н	Š.	ı	1	7,596,000	1,424,000	
- Soil	711	B	550	ı	64,350	•	
- Rock (Pick)	161	e B	830	3,370	158,530	643,670	
(2) Gabion	98	e B	15,800	1	1,358,800	ı	
(3) Stone Masonry							
- Type A	136	ក្ន	18,200	ı	2,475,200	ı	
- Type B	07	e E	11,000		740,000	ı	
(4) Filling	7,4	E E	061	ŧ	14,060	1	
(5) Concrete	ਜ ਼	ന് g	21,400	ı	23,540	i	
(6) Reinforced Bar	0.055	ħ	11,760	444,240	279	24,433	
(7) Wooden form	10	2 8	1,770		17.700	;	

Table 4.3.2 Breakdown of Construction Cost

			Unit Price	100	Cost Amount	ount	Remarks
Working Item	Quantity	Unit	Local	Foreign	Local	Foreign	
(8) Wooden Gate	0.3	tî.	50,000	100,000	15,000	30,000	
(9) Metal works	0.03	n	255,000	425,000	7,650	12,750	
(10) Screen	0.39	ր	255,000	425,000	99,450	165,750	
Sub-total					(4,674,927)	(876,603)	
(11) Others	ដ	3-2	¥.		467,493	87,660	
(19) Temporary Works	50	24	#.* T. E.		934,985	175,321	
Sub-total					(6,077,405)	(1,139,584)	
TOOK SOLVEY	25	. >			1,519,351	284,896	
(13) Over nead Total	;			· ·	(7,596,756)	(1,424,480)	
		-			1000106011		
B. Intake Type II	ન	No.	1 		10,219,000	2,409,000	
(1) Excavation			950	1	111,650	1	
Losi	203) M	830	3,370	266,430	1,081,770	
- Kock (flek) (2) Cabion	 	l E	15,800	1	1,343,000	ı	
(3) Stone Masonry	216	M	18,200	•	3,894,800	.	
- Type B	27	က (<u>B</u> (11,000	1	297,000	; !	
8477774 (7)	227	e E	190	•	001101	• I	

				Unit Price	rice	Cost Amount	Amount	Romarke
WORK	Working Ltem	Quantity	0 0 0	Local	Foreign	Local	Foretgn	
છ	(5) Concrete	4.1	E E	21,400	ı	87,740	8	
9	(6) Reinforcement Bar	0.205	ย	11,760	444,240	2,411	91,069	
3	(7) Wooden form	35	m ₂	1,770	1	61,950	1	
8	(8) Wooden Gate	0.5	B ₂	20,000	100,000	25,000	50,000	
<u> </u>	(9) Metal works	90.0	ħ	255,000	425,000	15,300	25,500	
65	(10) Screen	0.551	ħ	255,000	425,000	140,505	234,175	
	Sub-total					(6,288,916)	(1,482,514)	
(11)	(11) Others	70	N			628,892	148,251	
(22)	(12) Temporary Works	70	к			1,257,783	296,503	
	Sub-total					(8,175,591)	(1,927,268)	
(13)	(13) Over head	25	×			2,043,897	481,817	
:	lotal					(10,219,488)	(2,409,085)	
Int	C. Intake Type III	H	No.	ı	•	33,500,000	9,924,000	
\mathfrak{E}	(1) Excavation							
	- Sofi	413	ല	550	•	227,150	E	
	- Rock (Pick)	650	B B	830	3,370	539,500	2,190,500	
3	(2) Gabion	202	É	15,800	i	3,191,600	i	

			Unit Price	1,00 1,00	Cost Amount	ount	Romarks
Working Item	Quantity	unit unit	Local	Foreign	Local	Foreign	
(3) Stone Masonry							
- Type A	743	ព	18,200	5	13,522,600	1	
- Type B	87	e e	11,000	1	957,000	ı	
Sufilia (7)	450	B 33	190	1	85,500	1	
(5) Concrete	7.7	e B	21,400	1	87,740	ŧ	
(6) Reinforcement Bar	0.205	ħ	11,760	777,770	2,411	690,16	
(7) Wooden form	12	^B 2	1,770	ı	21,240		
(8) Wooden Gate	0.3	2 _B	50,000	100,000	15,000	30,000	
(9) Metal works	0.52	ų	255,000	425,000	132,600	221,000	
(10) Screen	r∹	ມ	255,000	425,000	255,000	425,000	•
(11) Steel Gate	10.5	e B	150,000	300,000	1,575,000	3,150,000	
(12) Cobble	4.1	es B	810	. •	3,321	. • .	
Sub-total					(20,615,662)	(6,107,569)	
(13) Others	Ó	**	· · · · · · · · · · · · · · · · · · ·	·	2,061,566	610,757	
(14) Temporary Works	20	**			4,123,132	1,221,514	
Sub-total	•				(26,800,360)	(7,939,840)	
(15) Over head	25	şe			6,700,090		
Total		÷			(33, 500, 450)	(9, 924, 800)	

	1	• •	Unit Price	rice	Cost Amount	mount	2 / m c m c c
working item	Quanti ty	0.03.5	Local	Foreign	Local	Foreign	vendr As
3. Link Canal in NT Area			•	1	791,530,000	149,812,000	33.9 km
(1) Excavation (BHS)	36,960	ម្ព	40	490	1,478,400	18,110,400	
(2) Assistance by Man power	7.392	e H	550	ı	4,065,600	ï	
(3) Transport from bellow pit							
- Exca (BHS)	18,979	es Es	40	067	759,160	9,299,710	
- Trans (D.T)	18,979	e e	160	1,540	3,036,640	29,227,660	1 = 5,000
(4) Embankment							
- Spread (Bull)	55,940	er B	20	310	1,118,800	17,341,400	
- Compaction	55,940	ല	190		10,628,600	1	
(5) Face Smoothing	339,000	ტ მ	170	•	57,630,000	j	
(6) Stone Masonry	20,420	ല	18,200	•	371,644,000	ı	
(7) Concrete	77	ម	21,400		299,600	1	
(8) Concrete form	28	#5 #5	1,770	t	49,560	1	
(9) Cobble	100	B	810	.1	81,000	ľ	
(10) Reinforced Bar	4.0	ħ	11,760	444,240	4,704	177,696	
(11) Mortal	77	e E	20,200	ŧ,	282,800	ı	
(12) Wooden Plate	9	É	130,000	•	780,000	ı	
(13) Metal Work	34	t)	255,000	425,000	8,670,000	14,450,000	

		4 1	Unit Price	rice	Cost Amount	nounc	Remarks
working Ltem	לממטבד בא	ם דונים	Local	Foreign	Local	Foreign	
(14) Gate	21.9	8 2	20,000	100,000	1,095,000	2,190,000	0.9×0.9×27
(15) Turfing	48,900	B 5	370	ŧ	18,093,000		
Sub-total					(479,716,860)	(90,796,866)	
(16) Others	01	**			47,971,000	9,079,000	
(17) Temporary Works	8	24			105,537,000	19,975,000	
(18) Over head	25	84			158,306,000	29,962,000	
Total					791,530,860 (791,530,000)	149,812,866 (149,812,000)	
4. Terriary Development				٠	257,141,000		•
[D + 1	370	å	88,670	i	32,807,000	ı	
D - 2	1,270	g	88,670	ı	112,610,000	ı	
e - a	1,260	ņ	88,670	í	111,724,000	•	
(Estimate for 100 ha)							
(1) Diversion Box							
- Tertiary	4.0	Nos.	62,500		25,000	1	
- Quarternary	3.4	Nos.	30,200	f .	102,680	1	
(2) Outlet	730	Nos.	16,200	•	000 * 996 * 9	1	
(since the contract of the co					(7.093.680)		Unit 100 ha

			9. 4 1	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		# 4::00	
Working Item	Quantity	Unit	Local	Foreign	Local	Foreign	Remarks
(3) Over head Total	25	24			3,867,100		Unit 100 ha
:					(000*/08*8)		ea/0/0.co
Land Aquisition (1) Link Canal	339,000	8	3008		101,700,000		
FORK DIVISION II)							
Preparation			ı	· •	•	ı	10% of Direct Cost
Langkemme Intake Weir	٠				121,826,000	62,162,000	
(1) Excavation							
- Soil (BHS)	5,730	e E	07	067	229,200	2,807,700	
- Rock (Pick)	1,236		830	3,370	1,025,880	4,165,320	
- Rock (Blasting)	776.7		2,590	1,660	12,804,960	8,207,040	
(2) Assistance by Man Power							
Lios -	1.146		550	i	630,300	ı	5,730x20%
- Rock (Pick)	988		830	3,370	\$20,040	3,329,560	4,944×20Z

		4 7 1 4 4	Unit Price	100	Cost Amount	ount	Remarks
Working Ltem	Quancity	3 4120	Local	Foreign	Local	Foreign	
(3) Loading (BHS)							
- Rock	6,180		20	550	309,000	3,399,000	
(4) Transplanting by Dump-Truck							H 1,000 H
- Soil	2,480		70	089	173,600	1,686,400	
- Rock	6,180		000	1,040	618,000	6,427,200	
(5) Filling				÷			
- Trans by Man Power	2,340		011	į	257,400	ı	
- Compaction	2,340		190		444,600	ı	•
(6) Stone Masoury							
- Type A	2,620	B 3	18,200	1	47,684,000	1	
- Type B	390	E B	11,000	•	4,290,000	•	
(7) Concrete Works						•	
- Concrete	130	e B	19,590	310	2,546,700	40,300	
- Reinforced Bar	6.5	ħ.	11,760	444,240	76,440	2,887,560	
- Wooden form	650	#5 #	1,770	1	1,150,500	•	
- Cobble	€N.	es B	810		7,290	i	
(8) Gabioa	180	E E	15,800	1	2,844,000	•	
(9) Screen & Gate							
400	7 6	4	000 886	425,000	918,000	1,530,000	

おきませ かなががける語	Quantity to	17.00 4	Unit Price	1.ce	Cost	Cost Amount	Remarks
WOLKLING LICEL	Kammer ch	3 1100	Local	Foreign	Local	Foreign	SW TANKEN
- Mortal	7	ម	20,200		141,400	•	
- Wooden Plate	7	e E	70,000	ı	000,067	ı	\$\langle \chi_{\text{Z}}\$
- Gate	Φ	B 2	150,000	300,000	000,006	1,800,000	2.0x1.5x2
- op-	00	85	150,000	300,000	1,200,000	2,400,000	2.0x2.0x2 "
- Metal works	6.5	Ð	255,000	425,000	1,657,500	2,762,500	
Sub-total					(81,218,810)	(41,442,580)	122,654,100
(10) Temporary works	20	к	ės-	1	16,243,000	8,288,000	
(11) Over head	25.	×			24,365,000	12,432,000	
Total					(121,826,810) (121,826,000)	(62,162,580) (62,162,000	٨
3. Langkemme Canal							
(F = 1)	Ţ	ı	1	ı	517,397,000	517,397,000 1,320,895,000	
Canal	•	į	;		234,115,000	861,842,000	
Tunnel	ı	· 1	1	ı	136,800,000	370,800,000	
Rerated Structure	t .	ı		· I	146,482,000	88,253,000	
A. Canal							L = 7.57 km
(1) Excavacion - Soil (Bull)	58,800	e E	99	\$50	1,764,000	32.340.000	· ·

	•	3	Unit Price	rice	Cost Amount	mount	Remarks
Working Item	Quantity	ם דשה	Local	Forcign	Local	Foreign	
Set 1 (SHS)	88.200	e E	07	767	3,528,000	43,218,000	
(BHS) LES -	10.000	ဗ	80	550	500,000	5,500,000	
- X-1 (Pick)	000.07	e B	830	3,370	33,200,000	134,800,000	
- H-R (Blasting)	4,000	ម្ព	2,590	1,660	10,360,000	6,640,000	
(2) Assist by Man Power							
• Exca. of Soil	29,400	e E	550	1	16,170,000	•	x 20%
חשלטי אל אם ד	2,000	e B	830	3,370	4,150,000	16,850,000	x 50%
- Pick. of H-R	800	ဗ္ဗ	830	3,370	664,000	2,696,000	× 20%
(3) Transport to Deposit Area					·		
(a) Handling							
אניים בנית	58,800	et B	09	1,010	3,528,000	59,388,000	
(1-a) ona	000 07	es E	80	550	2,000,000	22,000,000	
(N-H) SHR	000.4	e e	\$	550	200,000	2,200,000	
	, ,						1 = 5,000 m
(b) Transporting	000	ო £	160	1,540	4,944,000	47,586,000	
(TEOS) 1.0		i (230	2,370	2,300,000	23,700,000	:
D-X (X-0)	000	. c		010	900 000	94,800,000	
D.T (R-L)	000.07	B	730	0/5.7	2224		
(H-H)	000.7	e B	230	2,370	920,000	9,480,000	

130 m Jest		7		Unit Price	rice	Cost	Cost Amount	Semarks
MOTENT	MOTERIAS FLOW	Karamak	•	Local	Foreign	Local	Foreign	
3	(4) Trans. to Filling point	57,300	e B	99	570	3,438,000	32,661,000	1 1,000 E
9	(5) Filling							
,	- Spreading	76.400	۳ 8	50	310	928,000	14,384,000	
-	- Compaction	76.400	6	190	ı	8,816,000	:	
9	(6) Spreading at Deposit Arca	84.900	មា ដ	20	310	1,698,000	26,319,000	
3	(7) Face Smoothing	151,400	# ₂	170	•	25,738,000	1	20m × 7,570
8)	(8) Turfing	1,500	#5	370		555,000	÷	
6	(9) Lining	1,180	E E	18,200		21,476,000		ż
·	Sub-total					(156,077,000)	(574,562,000)	
(10)	(10) Temporary Works Sub-total	50	**			31,215,400	114,912,000	
(11)	(11) Overhead Total	25	6 %			46,823,000 234,115,400 (234,115,000)	172,368,000 861,842,000	
B. Tunnel	Tunnel Constant of	230	ı	6	600	136,800,000	370,800,000	ć
7	00712071600 70	3	3	700	1 1 1 1 1	0000	000,000,000	bata Book

						***************************************	14	
		•		Unit Price	Price	בייים בייים	סמוזר	Remarks
Work	Working Item	Quantity	unt t	Local	Foreign	Local	Foretgn	
8	Overhead	25	7.4			27,360,000	74,160,000	
	Total							
5	000 S					146,482,000	88,253,000	
] :	C. Netaced selections	•	Nos.	6.730.000	1,080,000	13,460,000	2,160,000	6 5.0
$\widehat{\Xi}$	Cross Drang	1 0		2 420 000	930,000	21,360,000	7,440,000	0.5.0
3	(I-II) :	×	0 2	70704070)))	6 630 000	1,620,000	3 Nos.
3	(3) Jurn Out	rt	complete		•	000000000000000000000000000000000000000	000 8	
3	Junction (Type-II)	п°	No.	1,070,000	5,000	000,070,000		2 Nos.
\$	Check Gate	н	complete			7,870,000	00040644	, ,
	Structure				•	000		
9	(6) Spill Way (Type S)	г С	No.	5,230,000	>	2,430,000	!	
9	(7) Spill Way Special	ત	No.	33,845,000	1	33,845,000		
(8)	Culvert (Type I)	м	Nos.	3,890,000	240,000	7,780,000	380 000	
(6)	\ " (Type II)	н	No.	3,220,000		3,220,000	540,000	
(01)	, r	 	No.	2,670,000		2,6/0,000	080,000	
3	(Type IV)	r1	No.	6,110,000	1,080,090	000 000	51,898,000	
(77)	(12) Waste Way	H		8,941,000	8,941,000 51,897,000	000477640	(70,603,000)	
	Sub-total				-	(300:00=:/1=)		
· .		ζ.	*			29,296,000	17,650,000	
E .	(13) Overhead	3	2	:		(146,482,000)	(88, 253,000)	
	Total							

		1	Unit Price	rice		Cost Amount	Remarks
Working Item	Quantity	בשח	Local	Foreign	Local	Foreign	
(- 1)					268,378,000	758,618,000	
Canal	•	1	1	ı	171,452,000	713,786,000	
Related Structures	i S	ı	•	1	96,926,000	44,832,000	
A. Canal					171,452,000	713,786,000	Z = 9.38 km
(1) Excavation	:						
- Soil (Bull)	49,200		30	550	1,476,000	27,060,000	
- Soil (BHS)	73.800		40	067	2,952,000	36,162,000	
- R-U (BHS)	8,800		80	550	440,000	4,840,000	
- R-L (Pick)	35,200		830	3,370	29,216,000	118,624,000	
	ı		2,590	1,660	1	ı	
(2) Assistance by Man Power							
- Exca. of Soil	24,600		550	ı	13,530,000	ı	x 20%
- Pick of R-U	4,400		830	3.370	3,652,000	14.828,000	x 50%
- Pick of H-R			830	3,370	ı	!	× 20%
(3) Transport to Deposit Area							
(a) Handling							
- Bull only	49,200		09	1,010	2,952,000	49,692,000	
- BHS (R-L)	35,200		50	550	1,760,000	19,360,000	

į							
		•	Unit Price	rice	Cost Amount	ount	Remarks
Working Item	Quantity	שינהט	Local	Foreign	Local	Foreign	
- BHS (H-R)	1		20	550	i	i	
(b) Transcorting							1 = 5,000 m
- D.T (Soil)	9,400		160	1,540	1,024,000	9,856,000	
- D.T (\$-0)	8,800		230	2,370	2,024,000	20,856,000	
- D.T (N-L)	35,200		230	2,370	000,960,8	83,424,000	
- D.T (H-R)	1		230	2,370	ı	•	
(4) Transport to Stock-pile	38,900		06	1,340	3,501,000	52,126,000	
(5) Trans. to Filling point	28,500		9	570	1,710,000	16,245,000	
(6) Filling						•	
- Spreading	23,100		20	310	462,000	7,161,000	
- Compaction	23,100		190	•	4,389,000	1	
(7) Spreading at Deposit Area	20,400		50	310	1,008,000	15,624,000	000
(8) Face Smoothing	187,600		170	1	31,892,000	ı	1005 X 405
(9) Turfing	11.400		370		4,218,000	1	
Sub-total				-	(114,302,000)	(475,858,000)	
(10) Temporary Works	50	×			22,860,000 (137,162,000)	95,171,000	
		,					

			Unic	Unit Price	Cost	Cost Amount	Romorke
Working Icem	Quantity	ם לעם	Local	Foreign	Local	Foreign	
(11) Overhead	25	*			34,290,000	142,757,000	
Total					(171,452,000)	(713,786,000)	
B. Related Structures					96,926,000	44,832,000	
(1) Aqueduct (Maddenra)	rł	, 0	10,400,000	5,190,000	10,400,000	2,890,000	
(2) Syphon (H.P.S.)	H	No.	4,450,000	2,890,000	4,450,000	2,890,000	
	н	o o	4,360,000	3,300,000	4,360,000	3,300,000	
(4) Syphon (Labempha)	н	No.	4.970,000	4,020,000	4,970,000	4,020,000	,
(5) Cross Drain (II+II)	'n	Nos.	2,160,000	690,000	10,800,000	3,450,000	0.0
(6) Turn Out	F1	complete			6.770.000	1,820,000	4 Nos
(7) Junction (Type I)	ч	No.	960.000	5,000	000.096	5,000	
(8) " (Type II)	71	Nos.	1.070,000	5.000	2,140,000	10,000	
(111 ogra) " (9)	н	No.	000 01111	2,000	1,110,000	2,000	
(10) Drop (Type=1)	rđ	No.	4.900,000	0	4,900,000	0	
(11) " (Type-III)	rt	No.	3,420,000	0	3,420,000	0	
(12) Check Gate Structure	н	complete			000.062.6	7,080,000	4 Nos.
(13) Spill Way (Type-B)	H	No.	500,000	0	200,000	0	
(14) " (41)	Н	No	350,000	0	350,000	o.	

			Unit Price	24700	111000		0445154
Working Item	Quantity	Unit t	Local	Foreign	Local	Foreign	
(15) Culvert (Type V) (16) " (Type VI) (17) Wasteway Sub-total	1 1 240	a	5,630,000	3,400,000	5,630,000 2,370,000 4,821,000 (77,541,000)	1,030,000 3,400,000 3,666,000 (35,866,000)	
(18) Overhead Total	25	**			19,385,000 (96,926,000)	8,966,000 (44,832,000)	
(L - 3) Canal Related	1 1	1 1	1 1	1 1	386,295,000 143,193,000 243,102,000	189,789,000 153,607,000 36,182,000	
A. Canal					143,193,000	153,607,000	L = 11.75km
(1) Excavation - Soil (Bull) - Soil (BES) - R-U (BES) - R-L (Pick) - R-L (Pick)	54,000 200 800		30 40 50 830 2,590	550 490 550 3,370	2,160,000 10,000 664,000	26,460,000 110,000 2,696,000	

			Unit Price	rice	Cost	Cost Amount	ANTEROR
Working Item	Quantity	ਹ ਰ ਰ ਰ ਰ ਰ ਰ ਰ ਰ ਰ ਰ ਰ ਰ ਰ ਰ ਰ ਰ ਰ ਰ ਰ	Local	Foreign	Local	Foreign	
(2) Assistance by Man Power						·	
- Exca. of Soil	10,800		550		5,940,000	1,1	× 20%
- Pick of R-U	100		830	3,370	83,000	337,000	× 50%
- Pick of H-R	•		830	3,370	1	1	× 20%
(3) Transport to Deposit Area							
(a) Handling							
vino ting -	1		60	1.010	ŕ	1	
- BHS (R-L)	800		S	550	40,000	440,000	
- BHS (H-R)			80	550	ı	1	1 = 5,000 H
(b) Transporting					. :		
- D.T (Soil)	16,200		160	1,540	2,592,000	24,948,000	
- D.T (R-U)	200		230	2,370	46,000	474,000	
- D.T (R-L)	800		230	2,370	184,000	1,896,000	
- D.T (H-R)	1		230	2,370	i	ı	
(4) Transport to Stock-pile	i		06	1,340	•	1 .	1 = 5,000 H
(5) Transport to Filling point	37,800		09	570	2,268,000	21,546,000	

	3		1 1 1	Unit Price	Price	Cost Amount	mount	Remarks
Worki	working item	Quantity	ם אתם	Local	Forcign	Local	Foreign	
9	(6) Filling							
	- Spreading	58,600		20	310	1,172,000	18,166,000	
	- Compaction	58,600		190	1	11,134,000	.1	
3	(7) Spreading at Deposit Area	17,200		20	310	344,000	5,332,000	
8)	(8) Face Smoothing	235,000		170		39,950,000	•	20m x 11750m
6	(9) Turfing	31,800		370		11,766,000		
(10)	(10) Lining Sub-rotal	076	en H	18,200		17,110,000	(102,405,000)	
(11)	(11) Temporary Works Sub-total	20	ж			19,092,600	20,481,000 (<u>122,886,000</u>)	
(12)	(12) Overhead Total	25	×			28,638,000 (143,193,600) (143,193,000)	30,721,000	_
B. Rels	B. Related Structures				٠.	243,102,000	36,182,000	·
3 6 6 6	(1) Syphon (Cong Kai) (2) " (Panincong) (3) " (Macope) (4) Cross Draft (I-II)			5,560,000 3,480,000 3,690,000 5,210,000	5,410,000 2,850,000 3,300,000 780,000	5,560,000 3,480,000 3,690,000 5,210,000	2,850,000 3,300,000 780,000	0 = 2.5

;	1	į	74 1	4 1 1 1 1	Unit Price	Tice	4 DSO	Cost Amount	Remarks
WOTK	WOTKIRG LCCM	.	Karamer ey	3	Local	Foreign	Local	Foreign	
9		Cross Drain (I-III)	H	No.	5,060,000	730,000	5,060,000	730,000	9 = 2.0
9		(VI-II)	ed	No	2,090,000	640,000	2,090,000	640,000	0 = 2.0
3	Turn Out	•	н	complete			13,560,000	1,530,000	10 Nos.
(8)	Junction (Type I)	(Type I)	m	Nos.	960,000	5.000	2,880,000	15,000	
6)	•	(Type II)	ო	Nos.	1,070,000	5,000	3,210,000	15,000	
800	Ξ.	(Type III)	é	Nos.	000,011,1	5,000	3,330,000	15,000	
(11)	Drop (Type I))c I)	4	Nos.	4,900,000	0	19,600,000	0	
(12)	. =	(Type II)	φ	Nos.	3,910,000	o	35,190,000	0	
(33	=	(Type III)	ო	Nos.	3,420,000	0	10,260,000	0	
(17)	=	(Type IV)	4	Nos.	4.140,000	0	16,560.000	0	•
(15)	=	Type V)	н	No.	3,640,000	0	3,640,000	0	
(36)	=	(Type VI)	တ	Nos.	3,220,000	0	25,760,000	0	
(12)	=	(Type VII)	8	Nos.	2,940,000	0	5,880,000	0	
(18)	Check Gate Structure	11 m	러	complete			17,350,000	10,230,000	10 Nos.
(19)		Spill Way (Type-A2)	ო	Nos.	330,000	0	000,066	0	
(50)		Culvert (Type VII)	н	No No	1,440,000	290,000	1,440,000	290,000	
(21)	=	(Type VIII)	н	No.	1,700,000	290,000	1,700,000	290,000	
(22)	=	(Type IX)	н	No	2,260,000	490,000	2,260,000	490,000	
(23)	£	(Type X)	н	o _N	1,840,000	290,000	1,840,000	290,000	

			Unit Price	rice	Cost Amount	nount	Remarks
Working Item	Quantity	Unit	Local	Foreign	Local	Foreign	
(24) Junction of Outlet (25) Wasteway Sub-total (26) Overhead Total	118 118 25	. e %	1,070,000	2,000	1,070,000 2,872,000 (194,482,000) 48,620,000 (243,102,000)	5,000 2,066,000 (28,946,000) 7,236,000 (36,182,000)	
4. Link Canal in ST Area (1) Excavation (2) Assistance by Man Power	2,300	e e	550	490	53,333,000 22,000 253,000	1,127,000	
(3) Transport from bellow pit - Exca. (BHS) - Trans. (DI)	1,983	ម ម ម ម	40	490 1,540	79,320	971,670	
(4) Embankment - Spread (Bull) - Compaction (5) Face Smoothing (6) Stone Masoury	1,350	8 8 8 8 8 7 8 8	20 190 170 18,200	310	27,000 256,500 3,570,000 24,570,000	418,500	10m × 2,100

				Unit Price	rice	Cost Amount	mount	Romanks
Works	Working Item	Quantity	Unit	Local	Foreign	Local	Foreign	:
(5)	(7) Concrete	2	£	21,400	ı	42.800	•	
}	- Concrete form	•	日2	1,770	ı	7,080	* \$	
	- Cobble	Ó	e E	810	1	7,860	1,	
	- Reinforced Bar	0.2	π	11.760	444.240	2,352	88,848	
8	(8) Mortal	7	e E	20,200		007.07	•	
(e) (e)	(9) Wooden Plate	2	e E	130,000		260,000		
(10)	(10) Metal works	9	ม	255,000	425.000	1,530,000		
	(11) Gate	3.24	8 2	50,000	100.000	162,000	324,000	0.9x0.9x4
(12)	(12) Turfing	3.000	6 E	3.70		000.011.1		
	Sub-total					(32, 324, 592)	(8, 533, 838)	
(13)	(13) Others Sub-cotal	ot .	24			3,232,000	\$53,000 (<u>9,386,838</u>)	
(71)	(14) Temporary Works Sub-total	70	?. *			7,111,000 (42,667,592)	1,877,000	
(32)	(15) Overhead & Others Total	2 2 2	×			10,666,000 (53,333,592) (53,333,000)	2,815,000 (14,078,838) (14,078,000)	

ઈ
cont
0
(10

			Unit Price	rice	Cost Amount	onuc	Remarks
Working Item	Quantity	Unde	Local	Foreign	Local	Foreign	
5. Tertlary Development	4,500	ha	236,380	ŧ	1,063,710,000	4	
(Estimate for 100 ha)							
(1) Canal Construction					•		
- Territory	800	Ħ	2,230	ſ	1,784,000		
	3,200	8	1,170	i	3,744,000	1 .	
(2) Canal Rehabili.	001	д	14,670	•	1,467,000	ı	
(3) Structures							
(a) Division Box					000	ı	ı
- Tertiary	0.56	Nos.	62,500	ı	000,68	I	i
- Onarterbary	5.1	Nos.	30,200	•	154,020	1	
(b) Outlet	723	Nos.	16,200	ı	11,712,600		
(c) Welt			,		087 7	ı	
- Tertiary	0.18	Nos.	36,000	•	20 00 00 00 00 00 00 00 00 00 00 00 00 0	ı	
- Quarternary	0.71	Nos.	11,900	ı	0,444	· (1)	
Sub-total					/ <u>cartificat</u>))	
(4) Overhead	25	**			4,727,000	, (unit 100 ha
Total					(23,638,000)		236,380/ba

<u>^</u>	
2	
••	
u	
뉨	
ġ	

			Unit Price	rice	1 SO2	Cost Amount	Remarks
Working Item	Quantity	ons t	Local	Foreign	Local	Foreign	
					259,410,000	•	
6. Land Aquisicion		71	200	:	142,560,000	1	
Tertiary Develop.	4/2,400	e E	>				
Link Canal	21,000	B 5	00 8		6,300,000	\$	
	205,500	a2	100		20,550,000	i	
1 00 1	300,000	8	300		000,000,06	i	
(III NOISIAIG MAOM)							
1. Preparation	1	,	ı	1	•	1	10% of Direct Cost
2. Jupang Intake Weir	ŧ	ı	3	. 1	40,175,000	7,587,000	
(1) Excavation							
- Soil (BHS)	1,790	က္မ	07	067	71,600	877,100	
- Bock (Pick)	თ ო		830	3,370	31,540	128,060	
- Rock (Blasting)	ri		2,590	1,660	393,680	252,320	
(2) Assistance by Man Power							
- Soil	358		550	•	196,900	;	ર્ન
- Rock (Pick)	30		830	3,370	24,900	101,100	152 × 20%

			Unit Price	بر دو	Cost Amount	ount	Remarks
Working Item	Quantity	Unit	Local	Foretan	Local	Foreign	
(3) Loading (BHS)					o o	005.401	
Rock	190		O O	950	00046)) () ()	
(4) Transporting							
- By Dump. T.			i	0	00%	877,200	
Soft	1,290		10	089) ·	44	
- Rock	061		100	1,040	000 4 6 T	197,000	
(5) Filling					39, 600	1	
- Transport by	360		011				
Man Power			0		68,400	ı	•
- Compaction	360) N		•		
(6) Stone Masoury		c			000 000 81	1	
- Type A	1,000	B	18,200	1	000000000000000000000000000000000000000		
- Type B	190	e B	11,000	•	2,090,000		
(7) Concrete Works		r		6	089 087	6,820	
- Concrete	22	ያ ያ	19,590	2			
- Reinforced Bar	3	,			702 701	1	$22m^3 \times 5m^2/m^3$
- Wooden form	110	H 7	1,770	f	080 /	ŧ	
- Cobble	S	H	810	ı	000*	ı	į
(8) Gabton	200	e H	15,800	•	3,160,000		

			Unit Price	TICO	COST AMOUNT	TO CONTRACT	Remarks
Working Item	Quantity	Unit	Local	Foreign	Local	Forcign	
	8 %	1	255,000	425,000	000*696	1,615,000	·
(9) Metal works (10) Cate) O	H 2	150,000	300,000	450,000	000,006	1.5x1.0x2Nos.
(11) Other Materials					•		
Tourson I	61	e E	20,200	1	70,400	i	
	หา	ლ ქ	60.000		300,000	ı	
Sub-total	•				(26,784,550)	(5,059,700)	
	ć	3			5,356,000	1,011,000	
(12) Temporary Works	07	ę			(32,140,550)	(6.070,700)	
Sub-total							
(13) Overhead	25	×			8,035,000	1,517,000	٠
Tone					(40,175,550)	(7, 587, 700)	
					1000 × 0 × 1 * 0 ± 2		
					12,767,000	4,150,000	
3. Uhya intaka wali							
(1) Excavation		c	1		000	1	
Soft	160	ខ	550	ı	000.00		
: == TO () ()	160	e E	830	3,370	132,800	539,200	
יינייאט דיייטט דיייטטט דיייטטט דיייטטטט דיייטטטטער	01.6	en E	830	3,370	174,300	707,700	
ראטמא אטסא ו	4	i			008.66	3	
(2) Back Filling	120	B	061	i	222		

			Unit Price	rice	Cost Amount	ount	Remarks
Working Item	Quantity	Uni t	Local	Foreign	Local	Foreign	
(3) Stone Masonry		۲,	0	i	2,730,000	1	
- Type A	150	ឧ	18,200	1			
5 to 1	01	e E	11,000	1	110,000	1	
e odki -	0 0 0 0	e E	15,800	1	3,634,000	:	
(4) Gabion	3	۲. ا	0.50	T va	24,300	i	
(5) Cobble	Q () El 4	0300	425,000	714,000	1,190,000	
(6) Metal works	2.8	u "	000.00		20,200	1	
(7) Mortal	1.0	B	002407		000 87	i	
(8) Wooden Bar	4.0	e	120,000	<u>.</u>	000 00	80,000	80.000 0.8x0.5x2
(0) (0)	8-0	B 5	50,000	100,000	200,000		•
(2) Gast					(7,738,000)	(2,516,900)	
פתפ-בסבמד	,	à	I	ı	773,800	251,000	
(10) Others	ort	*	l		(8, \$12,200)	(2,767,900)	
Sub-total							
· · · · · · · · · · · · · · · · · · ·		ì	ı	1	1,702,440	555,000	
(11) Temporary Works	27	•			(10,214,640)	(3,320,900)	·
100-00-000			:		2,553,000	830,000	
(12) Overhead	25	**		-	(12,767,000)	(4,150,000)	

			Unit Price	rice	Cost Amount	mount	Remarks
Working Item	Quantity	Unit	Local	Foreign	Local	Foreign	
4. Pising Intake Weir					15,275,000	4,527,000	
(1) Excavation							
Soft.	175	ВЭ	550		96,250	ļ	
1 604	175	e G	830	3,370	145,250	589,750	
(A) 54) A300 -	250	e E	830	3.370	207,500	\$42,500	
(2) Back Filling	06	£ 33	190	ı	17,100	ı	
(3) Stone Masonry							
A Section 1	180	က္ခ	18,200	ı	3,276,000	1	
S odkr -	20	e 8	11,000	1	220,000	ŧ	
0 0 0 (V)	280	ម្ព	15,800	•	4,424,000	;	i
(5) Cobble	08	E E	810	ı	24,300	ı	
(6) Metal works	2.9	ħ	255,000	425,000	739,500	1,232,500	
(7) Mortel	н	က E	20.200	:	20,200	ı	
(8) Wooden Bar	7.0	ෆ සි	120,000	1	48,000		
(6) (320	8.0	5 E	50,000	100,000	40.000	80,000	0.8x0.5x2
Sub-total					(9,258,100)	(2.744.750)	
(10) Orbers	O	**			925,800	274,000	
Sub-total					10,183,900	3,018,750	
(11) Temporary Works	. 20 _.	8 .2			2,036,780	603,750	
Sub-total					(12,220,680)	(3.622.500)	

	_
•	J
•	٠.
٠.	ц
	Ö
	Q
	Ç
	Ċ
	Ç
	_

		4	Unit Price	rtce	Cost Amount	mount	Remarks
Working Item	Quantity	nur c	Local	Foreign	Local	Foreign	
(12) Overhead Total	25.	2*			3,055,000 (15,275,680) (15,275,000)	905,000 (<u>4,527,500</u>) (4,527,000	
Sero Diversion Canal					190,277,000	385,217,000	
Canal					145,090,000	372,511,000	
Related Structures					45,187,000	12,706,000	
A. Canal					145,090,000	372,511,000	■ 5.83km
(1) Excavation			,	•	0.00	000	
- Soil (Bull)	41,600		30	044	000,047,1	20,000,000	
- Soil (BES)	62,400		07	067	2,496,000	30,378,000	
- R-U (BHS)	1.000		20	850	20,000	000,055	7 NO 0
- R-L (Pick)	7,000		830	3,370	3,320,000	13,480,000	*00
- H-R (Blasting)	7.000		2,590	1,660	18,130,000	11,620,000	
(2) Assistance by Man Power							
- Exca. of Soil	20,800	. :	550	; d	11,440,000	1 685 000	104,000%204 X 50%
- Pick of R-U	200	-	830	3.370	000 4 CT #	>>>> 100 × 1	

	. •	;	Unit Price	rice	Cost Amount	mount	Remarks
Working Item	Quantity	בשה	Local	Foreign	Local	Foreign	
A-H 50 Kot -	1,400		830	3,370	1,162,000	4,718,000	x 20%
(3) Transport to Deposit Area							
(a) Handling							707
Vino Ling -	41,600		09	010,1	2,496,000	42,016,000	
(1-8) SHE	4,000		20	550	200,000	2,200,000	
BHS (H-R)	7.000		δ. O	550	350,000	3,850,000	
(b) Transporting							1 = 5,000m
- D.T (Soil)	30,500		160	1,540	4,880,000	46,970,000	
(n-8) L'Q 1	1,000		230	2,370	230,000	2,370,000	
. D.T (R-L)	4.000		230	2,370	920,000	6,480,000	
1 D.7 (H-R)	7,000		230	2,370	1,610,000	16,590,000	
(4) Transport to Filling Point	31,900	ម	9	570	1,914,000	18,183,000	1 = 1,000m
(5) Filling						,	
- Spreading	25,800	ខ	20	310	516,000	7,998,000	
- Compaction	25,800	ក្ន	190	1	4,902,000	1	
(6) Spreading at Deposit Area	42,500	Ö E	20	310	850,000	13,175,000	
(7) Face Smoothing	116,600	# ₂	170	1	19,822,000	ı	20mx5,830m
(8) Turfing	1,800	7 H	370		666,000	•	

		;	Unit Price	Price	Cost	Cost Amount	Remarks
Working Item Qu	Quantity	2 100	Local	Foreign	Local	Foreign	:
(9) Lining	1,050	ខ	18,200	1 .	000,011,61	(000	
Sub-total					(96,727,000)	(248, 341,000)	
(10) Temporary Works Sub-total	0,	3.5			19,345,400	49,668,000	
(11) Overhead Total	25	*			29,018,000 (145,090,400) (145,090,000)	74,502,000	
B. Related Structures							•
(1) Aquiduct (Unyi)	H	No.	13,460,000	6,530,000	13,460,000	6,530,000	,
(2) Cross Drain (I-II)	m	Nos.	5,210,000	780,000	15,630,000	2,340,000	
(111-111) " (5)	73	Nos.	2,090,000	000,079	4,180,000	1,280,000	
(4) Small turnout Sub-total	ო	Nos.	000*096	5,000	2,830,000	15,000	0
(5) Overhead	25	×			9,037,000		
Total					(45,187,000)	(12,706,000)	
(s - 2)					473,866,000	873,547,000	
Canal					399,266,000	852,960,000	

ACTACH STATES		,	Local	Foreign	Local	Foreign	
[acc) <					399,266,000	852,960,000	
(1) Excavation							
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	23 600		30	550	1,608,000	29,480,000	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\)			0 0	000 316 6	30 305 000	
- Soil (BHS)	80,400		4) P	2,440		
- R-U (BHS)	6.800		50	550	340,000	3,740,000	
- R-L (Pick)	27,200		830	3,370	22,576,000	91,664,000	
- H-R (Blasting)	25.000		2,590	1,660	64,750,000	41,500,000	
(2) Assistance by Man Power							
- Exca. of Soil	26,800		550	1	14,740,000	1	x 20%
- Pick of R-U	3,400		830	3,370	2,822,000	11,458,000	× 50%
- Pick of H-R	5,000		830	3,370	4,150,000	16,850,000	x 20%
(3) Transport to Deposit Area							
(a) Handling							
- Bull only	53,600		9	1,010	3,216,000	54,136,000	
- BHS (R-L)	27,200		20	550	1,360,000	14,960,000	
- BHS (H-R)	25,000		50	550	1,250,000	13,750,000	
(b) Transporting							1 = 5,000m
- D.T (Soil)	26,800		760	1,540	4,288,000	41,272,000	

			Unit Price	rice	Cost Amount	mount	Renarks
Working Item	Quantity	Unit	Local	Foreign	Local	Foreign	
(n=8) . E · a =	6.800		230	2,370	1,564,000	16,116,000	
	27,200		230	2,370	6,256,000	64,464,000	
(R-E) T.G -	25,000		230	2,370	5,750,000	59,250,000	
(4) Transport to Filling Point	53,600		99	570	3,216,000	30,552,000	
(S) Filling			•	ć	000	13,454,000	
- Spreading	43,400		70	076	222		
- Compaction	43,400		061	1	8,246,000	I	
(6) Spreading at	85,800		20	310	1,716,000	26,598,000	
TO PERSON TO THE PERSON THE PERSON TO THE PERSON TO THE PERSON TO THE PERSON TO THE PERSON TO THE PERSON TO THE PERSON TO THE PERSON TO THE PERSON TO THE PERSON TO THE PERSON TO THE PERSON TO THE PERSON TO THE PERSON THE PERSON TO THE PERSON TO THE PERSON TO THE PERSON TO THE PERSO	182 800	±2	170	•	31,076,000	ı	20mx9,140m
(7) race smoothlas	000 × 400 ±	•	i c	!	1 998,000		
(8) Turfing	5,400	7 H	0/8	•	000 04 0 1 1 0		
(9) Lining	4,460	e B	18,200		81,17,000		
Sub-total					(266,178,000)	(568, 640, 000)	
	00	*			53,235,600	113,728,000	
(10) Temporary works		!			319,413,600	682,368,000	
	, ,	. 24			79,853,000	170,592,000	
(il) Overhead Total	}	ŧ			(399, 266, 600)	(852,960,000)	

(Unit : Rp.)

Working Item (4) Embankment - Spread (Bull) - Compaction (5) Face Smoothing 3	Quantity		THATE PERSON	977	1110 Jac 1 200	Junor	ながれる日のな
Bull) on hing		Unit	Local	Foretgn	Local	Foreign	
Bull) on hing							
.,	5,780	e E	20	310	115,600	1,791,800	
	5.780	e E	190	ı	1,098,200	•	•
•	35,000	8	170	ı	5,950,000	1	10mx3,500
	5.000	8	370	1	1,850,000		
	2,050	e E	18,200	ı	37,310,000		
5 +10 6 +1	, 61	e E	SIO	· •	8,100	ŧ	
(a) coore Sub-total	ř	!			(47,567,900)	(050, 293, 050)	
(9) Others	70	и			4,756,000	1,039,000	,
Sub-total					(52,323,900)	00017671T	
(10) Temporary Works Sub-total	50	\$*			10,464,000	2,286,000	
(11) Overhead	25	×			15,696,000	3,429,000	
Total					(78,483,900)	(17,147,050)	^^
7. Tertiary Development	1.900	្តជ	292,480	1	555,712,000	s	

			ርዕላታው ተለተነነ	ممئرم	Cost Amount	mount	£ 1
Working Item	Quantity	Unic	Local	Foreign	Local	Foreign	Kenarks
(1) Canal Construction	r o						
Tertiary	800	£	2,230	0	1,784,000	ı	
Quarternary	3,200	£	1,170	0	3,744,000	1	
(2) Canal Rehabilitation	001	ů,	14,670	0	1,467,000	ı	
(3) Structures							
(a) Division Box							
- Quarternary	4	Nos.	30,200	0	120,800	1	
(b) Outlet	1.000	Nos.	16,200	0	16,200,000	•	
(c) Weir							,
- Tertiary	H	No.	36,000	0	36,000	•	
- Quarternary	4	Nos.	11,900	0	47,600	ı	
Sub-total					(23,399,400)	J	
700044000	2.5	×			5,849,000	ı	
Total	}	!			(29,248,400) (29,248,000)	j	Unit 100 ha 292,480/ha
8. Land Aquisiton					93,147,000	1	
Tertiary Develop.	200,640	п 2	300	ı	60,192,000	1	

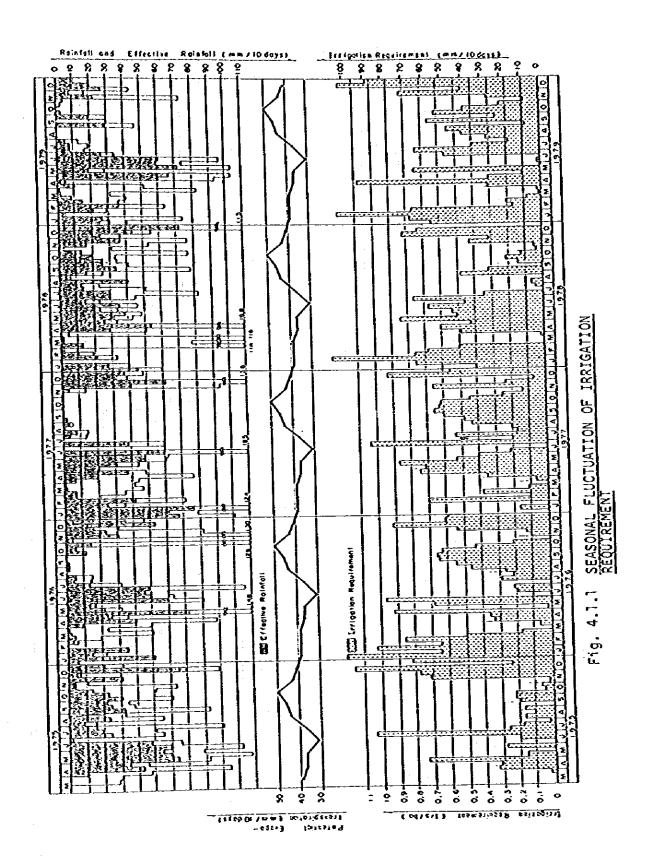
			Unit Price	rice	Cost Amount	nount	Renarks
Working Item	Quantity	Unit	Local	Foreign	Local	Foreign	
	35,000	82	300		10,500,000	1	
Link canal	226. 550	74 E	100		22,455,000	•	
Sero Diversion C.	>>	1			(93,147,000)	J	

IV - 156

Table 4.3.3 Operation and Maintenance Cost

		(10 ³ US\$)
I. Personnel Cost		170
II. Depreciation Cost of O/M equipment		120
1. Vehicle	27.1	
2. O/M equipment	93.2	
Sub-total	120.3 (120)	
III. Maintenance Cost for facilities	20.2 (20)	20
IV. Office & General Expense		100
1. Gasoline 0.1	58.3	
2. Office	13.0	
3. General Expense	29.0	
Sub-total	100.3 (100)	
V. Micro Power Station		35
Sub-total		445
VI. Physical Contingency (15%)		66.8 (67)
Total		512

Table 4.3.4 Replacement Cost


	Item	L/C	F/C	Total	Durable Period
		(10 ³ US\$)	(10 ³ US\$)	(10 ³ US\$)	(Year)
ī.	Gate	35	70	105	25
11.	Wooden bar	6	-	6	10
111.	Gabion	83	-	83	10
IV.		18	31	49	10

Note: L: Local portion F: Forein portion F: Fotal cost

Table 4.3.5 Annual Disbursement Schedule of Financial Project Cost

Index Lone truction Coet Work Division I Work Division II Work Division III Sub Total				1 50			1984			1985			1986		51	1987	1
	786		1.2	50 A	84	*3	p.,	H	,1	St.	F	.3	5.	f*	až.		
Work Division III. Sub Total		r.	844,3 1,190.8	68.0 789.6	912.3	937.4	146.4	1,083.8 3,048.2 740.0	736.3	125.6 831.3 1.089.5	861.9 1,569.8 1,729.2	1,682.3	\$47.3 876.4	2,229.6	121.8	3.2 125-0	125-0
		น์	2,035.1	857.6	2,892.7		1,829.1					3,052.7	1,423.7	4,476.4	121.8	2.5	125.0
Engineering Servicee 52.2 734.9		787.1	129.2	129.2 1.020.5 1.149.7	1.149.7	93.7	590.8	682.5	86.8	8.872	365.6	99.4	369.0	468.4	181	6.4.0	1.8.1
119.4		119.4 150.3 - 150.3 906.5 2,314.6 1,878.1 4,192.7	150.3	1,878.1	150.3	3,169.0	2,419.9	34.4	2,233.2	2,525.2	4,758.4	3,181.5	1,792.7	4,974.2	14.2	7.77	7.161
Physical Contingency 25.7 110.2		135.9	347.2	281.7	628.9	475.4	363.0	838.4	335-0	378.8	713.8	477.2	268.9	746.1	21.6	7.1	28.7
-	1.84	062.4	8.199.	2,159.8	4,821.6	3,644.4	2,782.9	6,427.3	2,568.2	2,904.0	5,472.2	3,658.7	2,061.6	5,720.3	165.8	ž.	220.1
								7,691.4	1,567.9	•	1,567.9	2,823.1	•	2,823.1	157.3	•	157.3
rride Continuenty Local (10%) 41.4 Foreign (7%) - 122	12255	41.4 122.5 (163.9)	881.1	7 987	486.0 (1.786.1)	1.691.4	864.9	864.9 (2,556.3)	•	1.169.2	1,169.2 (2,737.1)	. •	1,032.2	1,032.2	1	32.9	32.50 23.25 23.25
7,000 1,206.3 3,542.9	67.6. 3.	206.3 3	542.9	2,645.8	2,645.8 6,188.7	5,335.8	3,647.8	8,983.6	4,136.1	4,073.2	8,209.3	8-187-6	3,093.8	9,575.6 323.1	323.1	87.2	410.3
																Ş	(34,573.8)

IV - 158

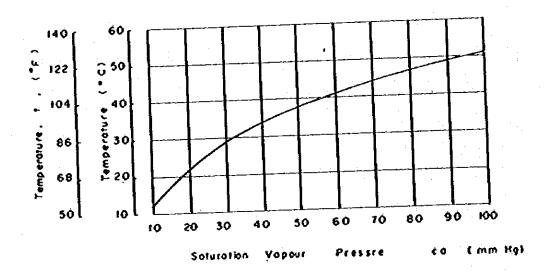


Fig. 4.1.2 SATURATION VAPOUR PRESSURE CURVE

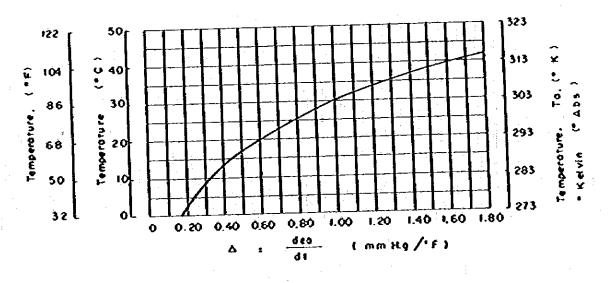
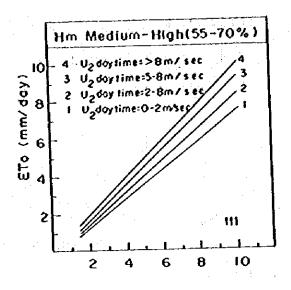
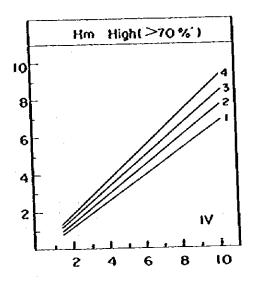
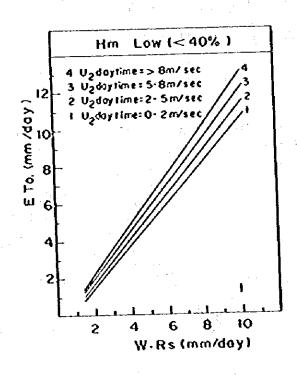


Fig. 4.1.3 SLOPE OF SATURATION VAPOUR PRESSURE CURVE

LEGEND


ETo: Potential evapotranspiration (mm/day)


Hm : Relative humidity (%)


Uzdaytime: Daytime wind velocity at zm above

W : Weighting factor for effect of radiation

Rs : Solar radiation (mm H2O/day)

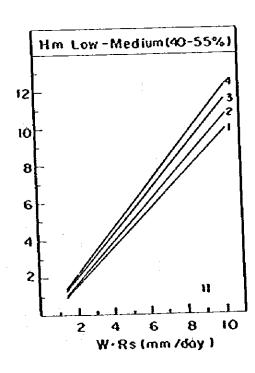


Fig. 4.1.4 PREDICTION OF ETO FROM W.RS FOR EACH HM AND U2DAYTIME

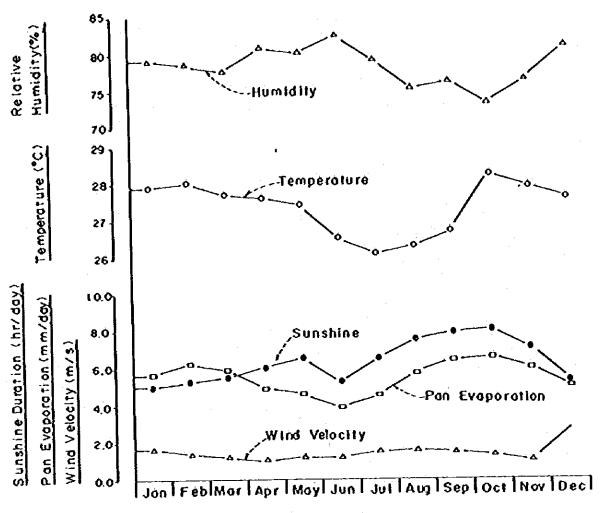


Fig. 4.1.5 METEOROLOGICAL DATA

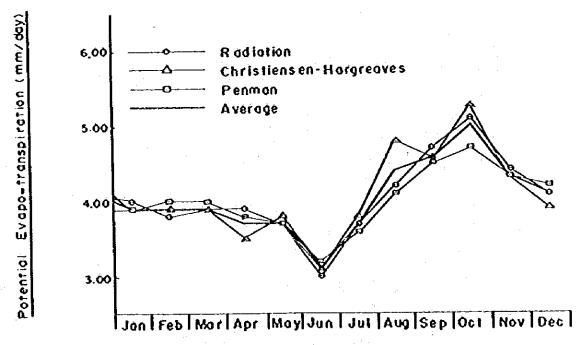
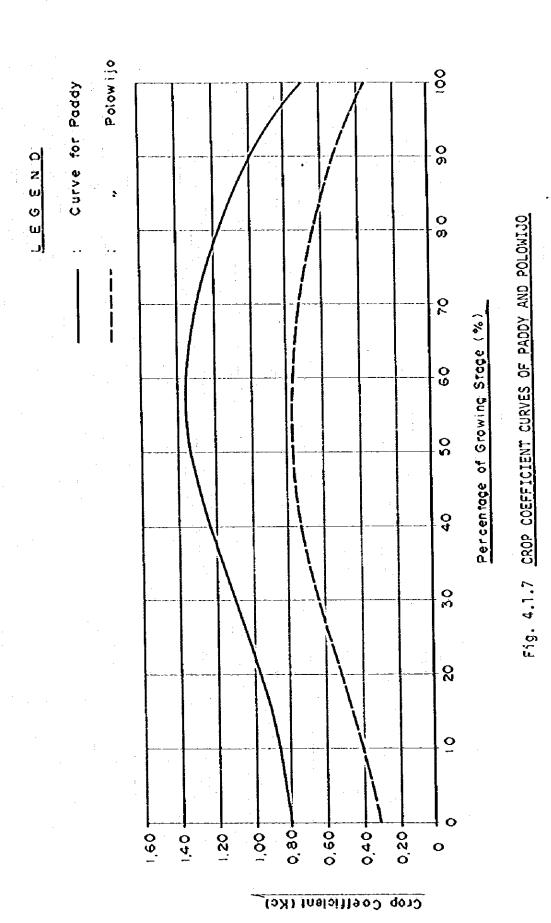
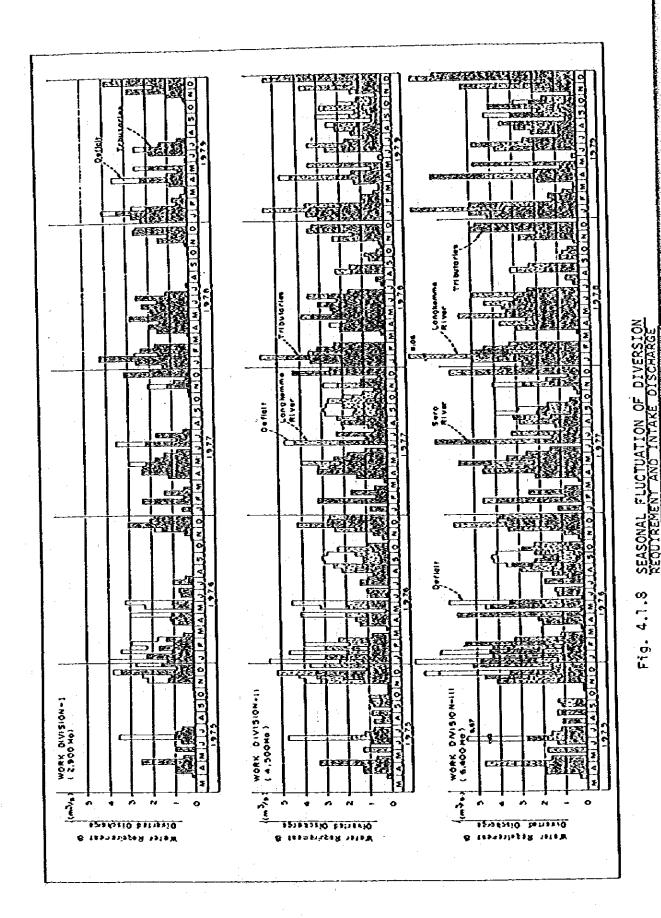




Fig. 4.1.6 POTENTIAL EVAPOTRANSPIRATION

IV - 163

IV - 164

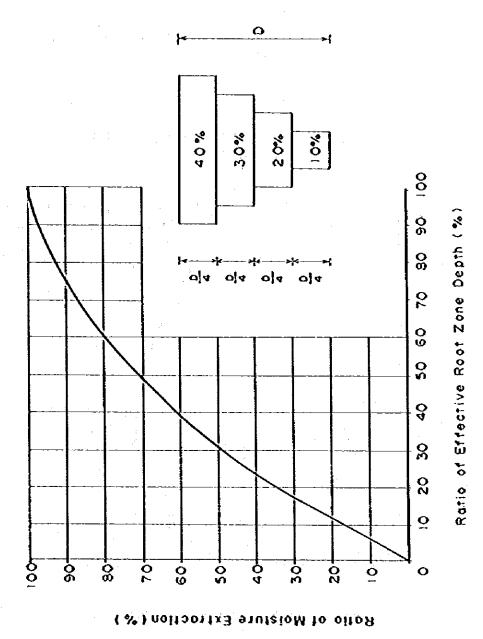


Fig. 4.1.9 BASIC MOISTURE EXTRACTION PATTERN

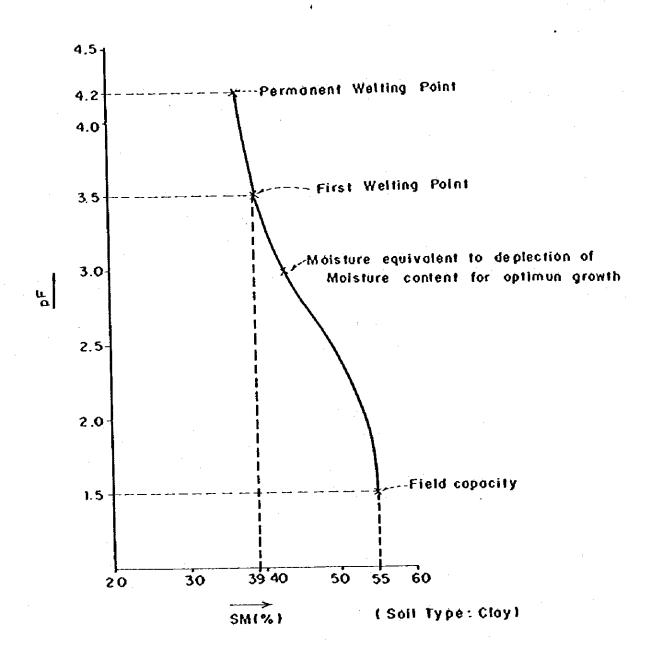


Fig. 4.1.10 MOISTURE CONTENT-PF CURVE

Fig. 4.2.1 ALTERNATIVE SITES OF INTAKE

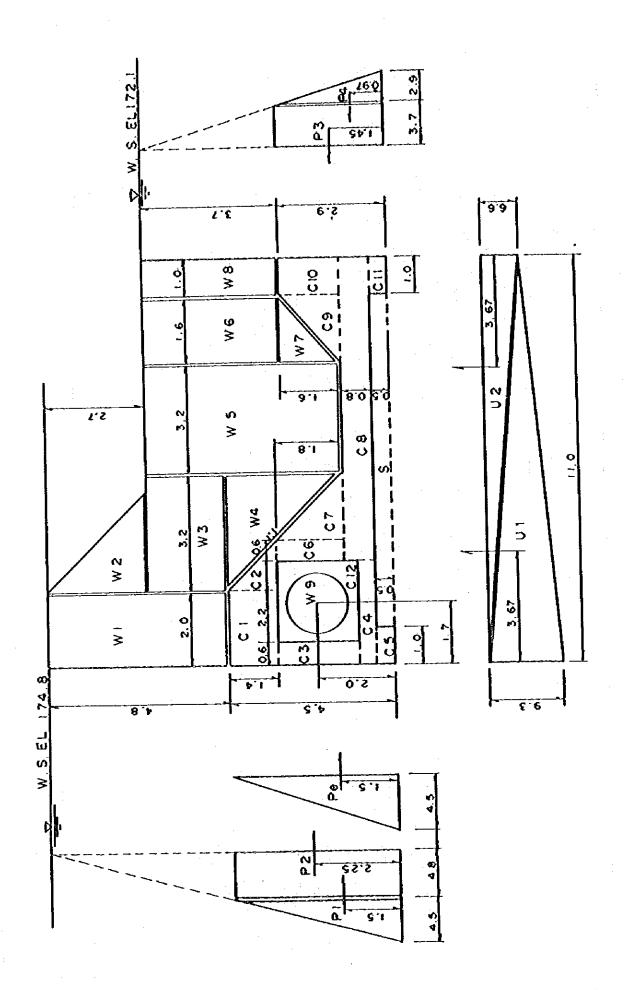


Fig. 4.2.2 LOADING CONDITION OF FLOOD TIME

(LANGKEMME INTAKE WEIR)

IV - 168

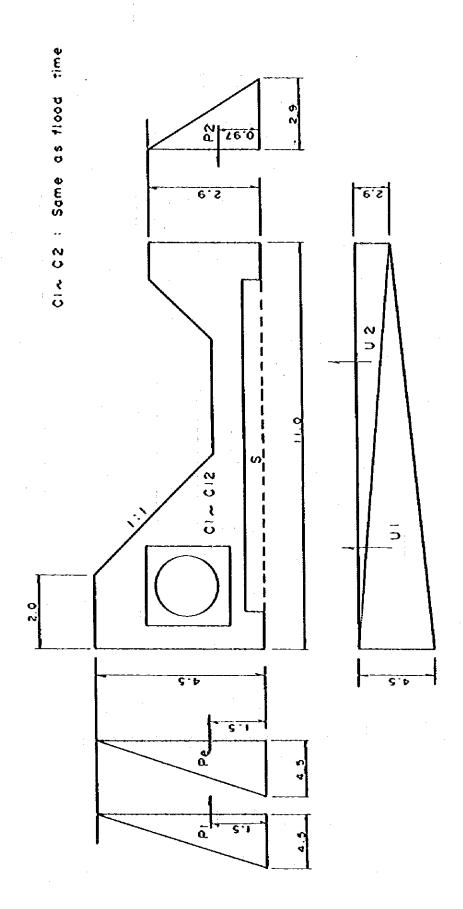
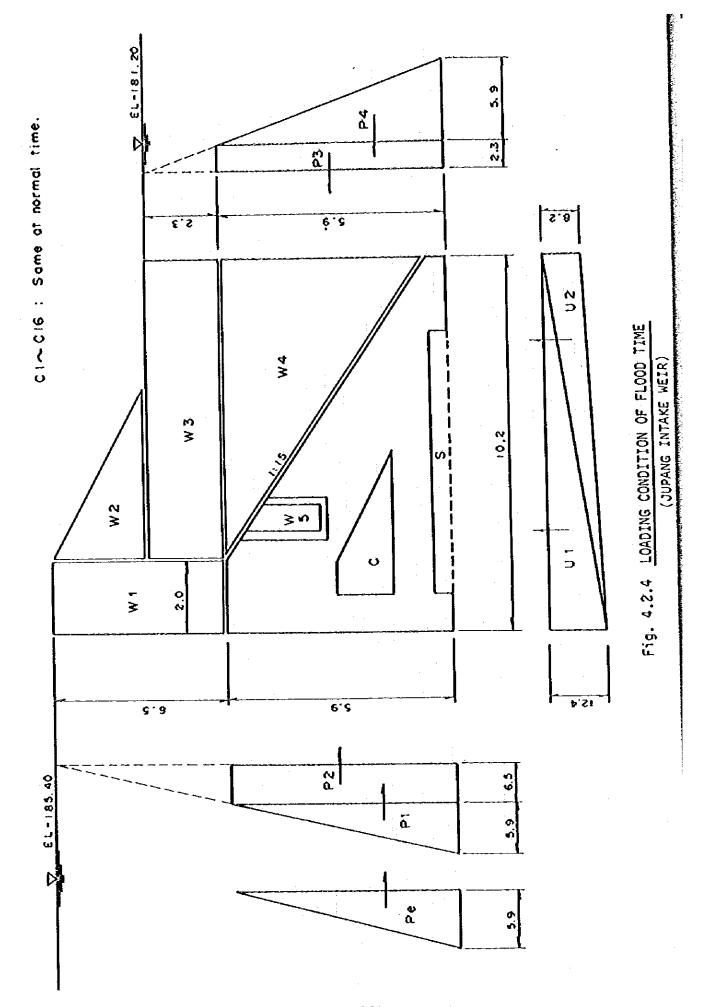



Fig. 4.2.3 LOADING CONDITION OF NORMAL TIME (LANGKEMME INTAKE WEIR)

17 - 170

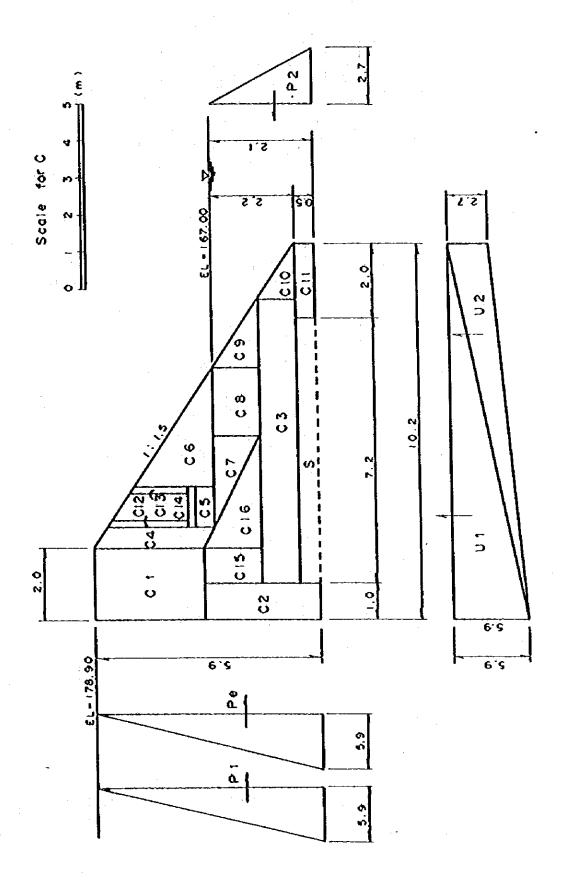
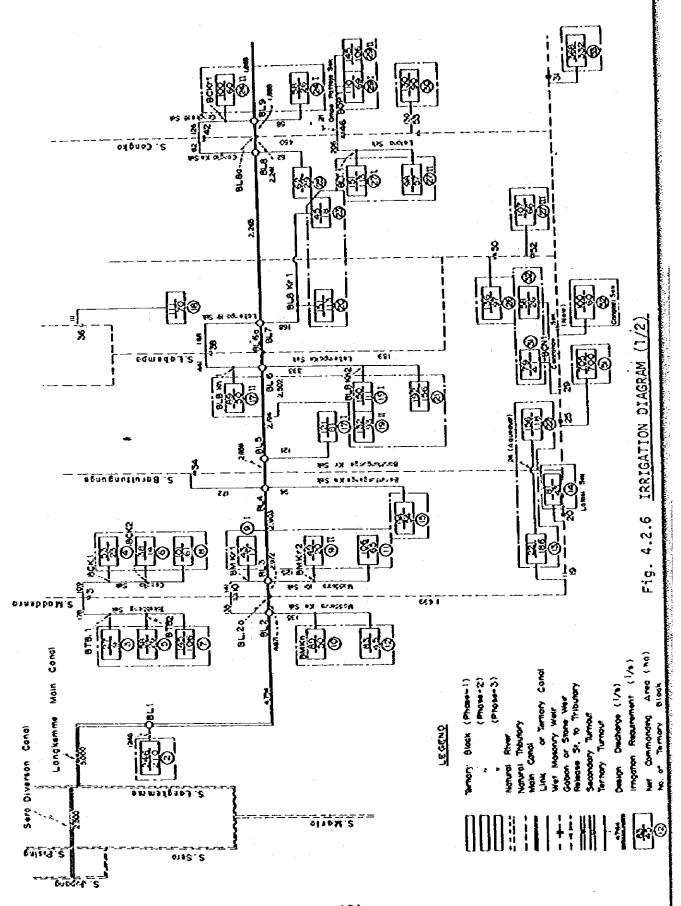
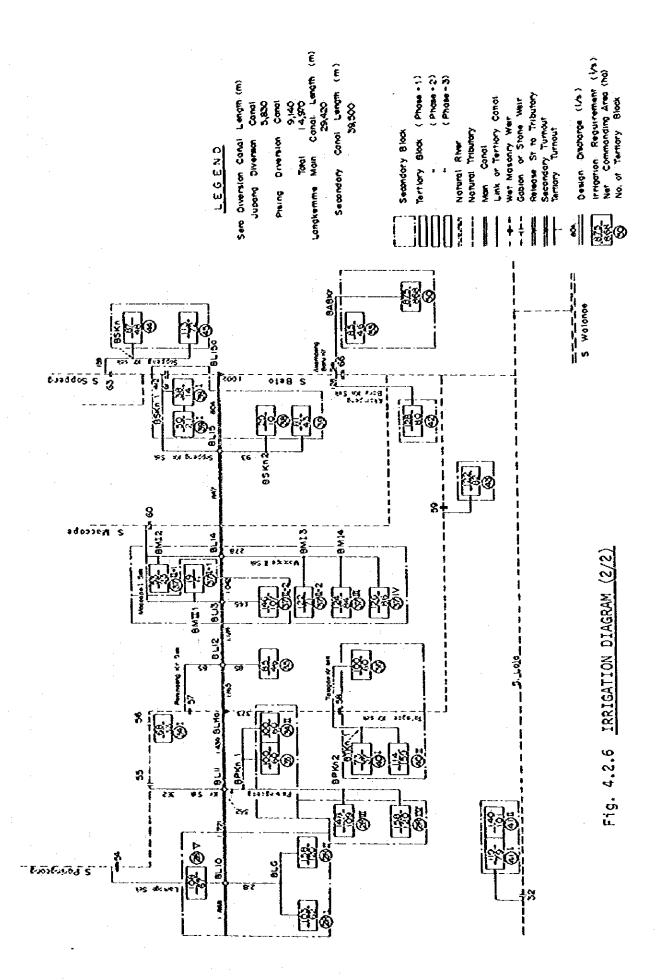




Fig. 4.2.5 LOADING CONDITION OF NORMAL TIME

(JUPANG INTAKE WEIR)

IV - 171

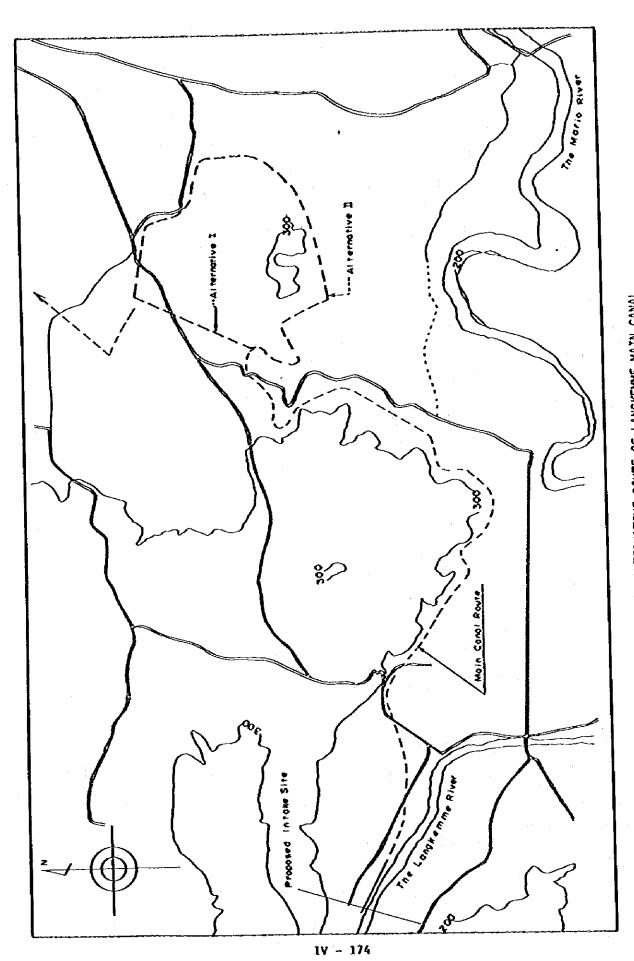
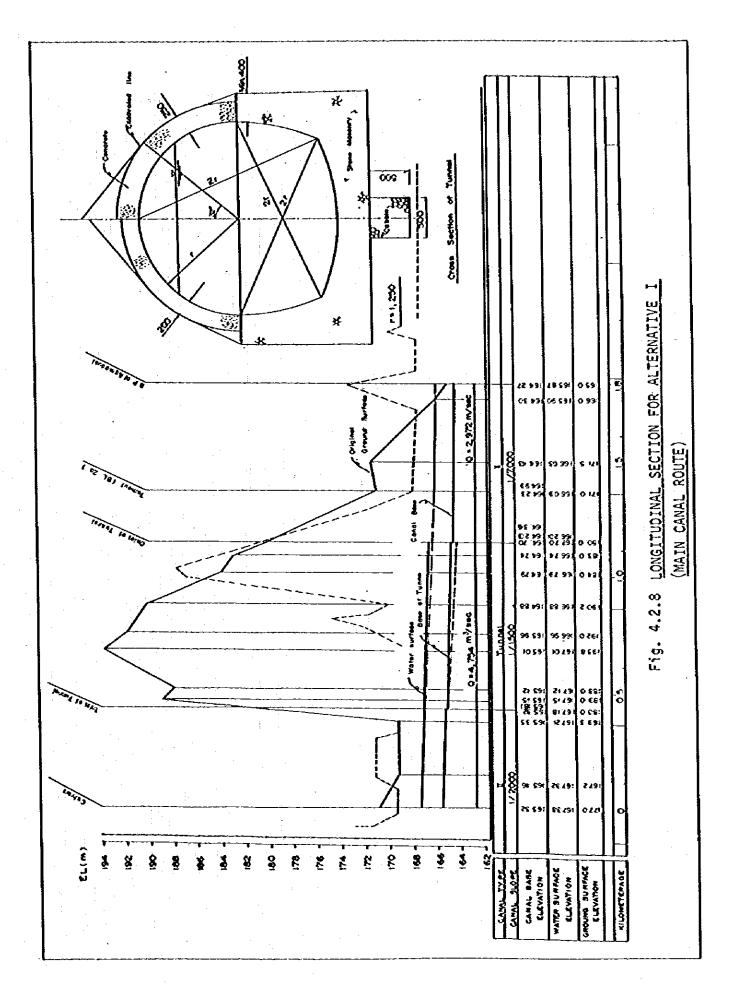
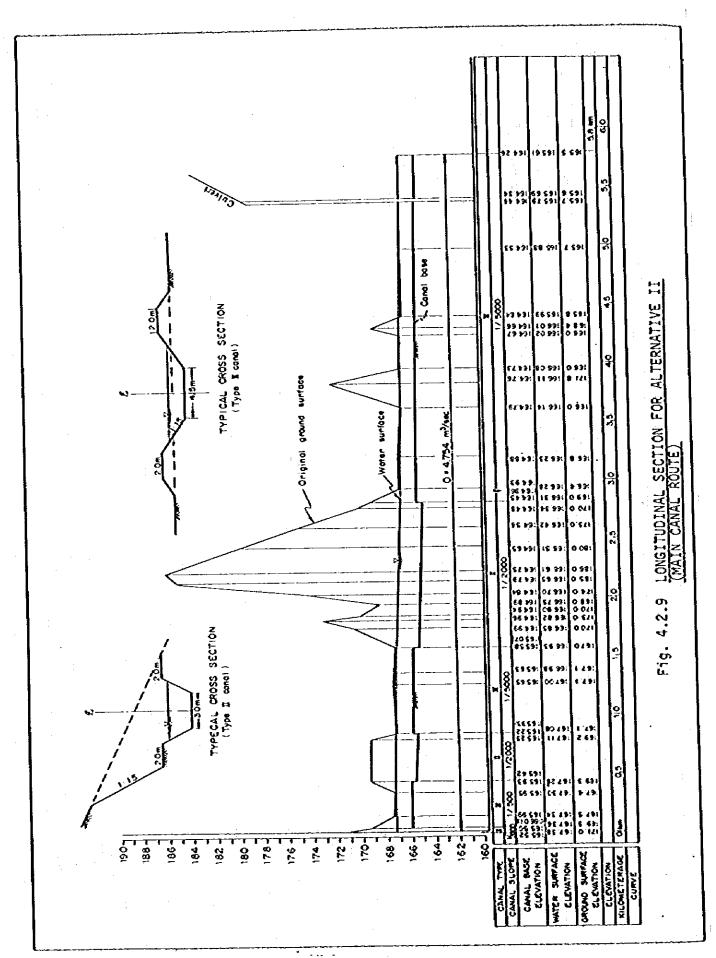




Fig. 4.2.7 ALTERNATIVE ROUTE OF LANGKEMME MAIN CANAL.

CHAPTER V CONSTRUCTION PLAN

主义 医氯化甲基苯酚酚 化氯化氯甲基			
[[4] (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)			
[2] . 斯里尔·马克·克克·克里尔·克萨克			
	美化建筑的 电流流线		
医三维氏氏性乳洗 医多类菌素病病			
			지계 회사 전체(소설 및 본 사기
되는 분들이 가는 그 가슴을 받았다. 연결 등			[발생님: 18 18 18 18 18 18 18
			보는 바로 그렇게 하겠다.
			, 즐겁을 통하는데 맛있었다.
내 이 나가 되는 것을 보고 하는데 하고 되었다.			
리엠 많은 비급하죠? 되는 학원 목표 되는			
오늘 잃었다면 그러면 그를 맞았다. 하는 밤			
그렇게 하는 사람들이 얼마나 그렇게 되었다.			
물꼬의 불병화 되는 양식을 하는 이 이 논문			
원생 교실 학교에 관리를 내려 있다. 그렇다			
그는 그들 얼굴한 불렀다. 그는 그 그 그 그 그			
		경험들이 보기를 되다	
			경기를 하고 있는 것을 하였다.
의용인 불발하는 병통했음을 보고 있었다.			
			医阿伯纳氏管腱管内部的
그래는 다른 생활보일은 하루를 살을 받는다고 있다.			
			경화하고 하다 하는 것이 살아 보다.
[
多点 医自由性 经净基金 机固定管管管管		and a magnification of the following the second sec	

CHAPTER V CONSTRUCTION PLAN

5.1 GENERAL

As mentioned below, whole project works would be executed by splitting three Work Divisions, taking into account of existing irrigation system and dependable water resources,

(1) WORK DIVISION - I

- Integration and rehabilitation of intake weirs of Desa irrigation schemes,
- Construction of link canals for integrated schemes, and
- Tertiary development

(2) WORK DIVISION - II

- Construction of Langkemme irrigation canal system including intake weir, main canal and related structures,
- Construction of link canals for integrated schemes, and
- Tertiary Development

(3) WORK DIVISION - III

- Construction of Sero diversion canal system including three intake weirs, diversion canal, and related structures,
- Construction of link canal, and
- Tertiary development

Construction works of the project are almost occupied by earth works. Due attention must be paid on earth moving plan. The earth works along canal alignments are classified into earth excavation, soft and weathered rock excavation, and hard rock excavation, based on the outcomes of geological and soil mechanic investigation along the proposed canal routes.

Major works of the Langkemme irrigation canal and the Sero diversion canal system would be executed by heavy construction machinery. The remaining minor works would be implemented by manpowers to increase the employment opportunity of the local people in and around the project area.

5.2 BASIC ASSUMPTION OF CONSTRUCTION PLANNING

5.2.1 Conversion Rate of Barth Volume

Barth volume is changeable according to the condition as it is. Naturally placed earth increases its volume after excavation and decreases after compaction. These changes of earth volume should be considered for arrangement of construction machinery and earth moving plan. The conversion rate of earth volume is assumed as follows:

in place	in loose	in compaction
1.00	1.11	0.95
1.00	1.25	0.90
1.00	1.13	1.03
1.00	1.65	1.22
	1.00	1.00 1.25 1.00 1.13

5.2.2 Classification of Excavation Work

Excavation work would be classified into three types according to geological and soil mechanical condition:

Excavation Type - 1

This type excavation would be proposed in the area bedded with hard rocks and be executed by blasting.

Excavation Type - 2

This type excavation would be mainly proposed in the area covered with naturally compacted soils and gravels, and be made by manpower only, manpower with pick-humner or Back-Hoe shovel.

Excavation Type - 3

This type excavation would be proposed for loosed normal soils which are easily excavated by manpower or excavation equipment.

5.2.3 Workable Days

Barth work is mostly affected by rainfall. Suspension of earth work caused by heavy rainfall would be assumed as follows according to daily rainfall intensity.

Daily Rainfall Intensity (mm/day)	Suspension of Work (day)
0 to 10	Workable
10 to 30	l day suspension
30 to 50	2
50 to 100	3 "
More than 100	4 *

Annual mean workable days are estimated on the basis of the above criteria and the rainfall records in Watan Soppeng for recent 10 years. Seven national holidays and annual Sundays are excluded out of the estimated workable days. The annual mean workable days of 256 days are finally estimated as shown in Table 5.2.1. The monthly mean workable days range from 19 days to 23 days, averaging 21 days. The rainfall distribution in the project area is relatively favourable for execution of earth work throughout a year.

5.3 CONSTRUCTION SCHEDULE

The whole project works would be broadly segmented into three Work Divisions in accordance with the development grade of existing Desa irrigation schemes and the dependability of respective water source.

The Work Division-I would cover up-grading works of the non-technical Desa irrigation area of 2,900 ha. The area would be up-graded to semi-technical level through the excution of the Work Division-I. To set up construction schedule, the Work Division-I is further sub-divided into three working blocks i.e. D-1, D-2 and D-3.

The Work Division-II would comprise up-grading work of semi-technical Desa irrigation area of 4,500 ha including 2,900 ha of the area up-graded in the Work Division-I and construction of Langkemme irrigation canal system. The construction of the lengthy Langkemme main canal would be executed by dividing into three working blocks i.e. L-1, L-2 and L-3.

The Work Division-III would consist of up-grading work of the Semi-technical DPU irrigation scheme area of 1,900 ha and construction of the Sero diversion canal system. The diversion canal is also divided into two working blocks i.e. S-1, S-2. (See Fig. 5.3.1). The working blocks of the respective Work Divisions can be summarized below;

- Work Division-I:
 i) D-1 tertiary development (Up-grading work from non-technical to semi-technical level, 370 ha), including integration of existing weir and construction of link canal.
 - ii) D-2 tertiary development (Up-grading work from non-technical to semi-technical level, 1,270 ha), including integration of existing weir and construction of link canal.

111) D-3 tertiary development (Up-grading work from non-technical to semi-technical level, 1,260 ha), including integration of existing weir and construction of link canal.

Work Division-II :

- i) Construction of Langkenme intake weir
- 11) L-1 (Upper reach of Langkemme main canal, 8.29 km)
- iii) L-2 (Middle reach of Langkemme main canal, 9.38 km)
- iv) L-3 (Lower reach of Langkent main canal, 11.75 km)
 - v) Tertiary development (Up-grading work from semi-technical level to technical level, (4,500 ha) including construction of link canal

Work Division-III:

- S-1 (Upper reach of Sero diversion canal, 5.83 km)
- 11) S-2 (Lower reach of Sero diversion canal,9.14 km)
- iii) Construction of Pising intake weir
 - iv) Construction of Unyl intake weir
 - v) Construction of Jupang intake weir
 - vi) Tertiary development (Up-grading work from semi-technical level to technical level, 1,900 ha, including construction of link canal.

The working blocks subdivided above would be broadly networked for effective construction work as shown below.

To network the above schedule, due attention is paid as follows;

- Construction of working block D-1 and the Langkemie intake weir would concurrently commence at the beginning of dry season, 1983, immediately after conclusion of contracts,
- ii) The working block D-2 and the construction of Langkemae intake weir and tunnel will be terminated at the same time of the completion of the working block L-1,

- iii) At the moment of the completion of the working block L-2, tertiary development works, D-1 and D-2 and tertiary development in Work Division II ended. In addition, the working block S-2 and the construction of Pising and Unyi Intake Weirs would also come to end. Then, irrigation water diverted at the Pising and Langkemme Intake Weirs will be distributed over about 3,000 ha.
 - iv) The remaining working blocks under respective Work Division would be simultaneously completed as far as possible.
 - v) The construction for the whole project works would be executed within five years after arrangement of construction fund.

According to the construction method mentioned in the succeeding section, working days required for major work items are calculated as shown in Table 5.3.1 and detailed construction schedule is finalized by Critical Path Method (CPM) as shown in Fig. 5.3.2. The bold arrow line in Fig. 5.3.2 shows a critical path of the construction schedule. The non-critical path indicated by fine arrow line has some spare times for the execution of assignment works. The Pig. 5.3.2 is converted into a bar-chart as shown in Fig. 5.3.3 to prepare annual disbursement schedule of the construction cost.

5.4 CONSTRUCTION METHOD OF MAJOR WORKS

5.4.1 Langkeame Main Canal and Sero Diversion Canal

The construction of both canals are the major works among the project works. The Langkemme main canal would be constructed from upper reach to lower reach. On the contrary, the Sero diversion canal would be excavated from lower reach to upper reach to early use the water resources in the Sero river system.

(1) Re-use Plan of Excavated Materials

In principle, filling and embankment would be made be excvated materials as far as possible. Actually, however, the excavated materials along the canal routes might contain considerable amount of pebbles and cobbles. Full volume of the excavated materials is, therefore, not available for the filling and embankment.

As a result of soil mechanical and geological investigation along the both canal routes, the re-useable ratio is estimated at about 65% of total excavated volume at the site of the working block S-1, S-2, I-1 and I-2, and about 70%, at the site of the working block L-3. Furthermore, about 10% and 20% losses of volume must be taken into account under the condition of direct re-use at the excavated site and re-use after stock-piling, respectively. The conversion rate of earth volume previously mentioned is also considered for setting up the re-use plan of earth materials. The Table 5.4.1 shows the re-use plan of the excavated materials along the Langkemme Main Canal and the Sero diversion canal.

(2) Excavation and Filling

In steep hilly area, stripping and surface excavation would be mainly made by bull-dozer, and sub-surface and deep excvation, by back-hoe shovel depending on the soil condition at the working site. Excavation of rocks, which are excessively hard beyond the capacity of equipments above, would be made by pick-hummer or rock-blasting. Manpower would contribute to the finishing work of canal section. The excavation material in excess of filling requirement would be spoil-banked by bull-dozer at the appropriate space along the canal route.

while, at the flat field, back-hoe shovel would be recommended for an effective excavation equipment. Materials excavated by back-hoe shovel are directly used for canal embankment. Excessive materials would be piled in the stock-yard for re-using or spoiled by dump truck.

Spreading of embankment materials would be mainly made by bull-dozer and supplementary, by manpower. Compaction of filling materials is also made by manpower with use of simple compactor.

5.4.2 Major Intake Weirs

(1) Langkenne Intake Weir

The construction works of the weir would be executed during drought season in due consideration of magnitude of flooding in the Langkenne river. Coffer dam is mounded with cobble and pebble to enclose the site of the left half of the intake weir and to divert riverflow into opposite side of the river channel. About half length of weir, sand sluice and intake structures would be constructed in the site enclosed by the coffer dam. These works would be completed by the end of drought season and the coffer dam would be drawn before the onset of flood season.

On the beginning of the subsequent drought season, second river diversion is made by mounding coffer dam at the right half side of intake weir. The riverflow is diverted through the sand sluice which has been constructed at the period of first river diversion. The remaining half portion of intake weir is also constructed by the end of the drought season.

Excavation method is dependent upon geological condition of the river bed. Soil and pebble layer are mainly excavated by back-hoe shovel, supplemented by manpower. Bedded solid rocks are excavated mainly by blasting. Blasted rocks are loaded and hauled by back-hoe, shovel. Excess materials are spread over the riverbed by bulldozer or spoiled in appropriate space by dump truck. Cobble masonry and reinforced concrete works for the weir and intake structures are carried-out mainly by skillful manpower.

(2) Jupang Intake Weir

Construction procedure of the Jupang intake weir is almost same as the Langkemme intake weir. The Jupang intake weir is of tirol type which is not provided with sand sluice. During the second diversion period, riverflow is guided into desilting chamber. After completion of whole construction works, the temporary entrance of the chamber is shut up by double stop logs and concrete blockade.

5.4.3 Tunnel

A tunnel of about 720 m long and with a diameter of about 2.5 m is constructed at the end portion of the working block L-1. The tunnel excavation concurrently commences at its inlet and outlet to shorten the construction period.

(1) Excavation

The full section of tunnel is simultaneously excavated since the section is relatively small. The excavation is executed by rock blasting. Two sets of legdrill and one set of pick-hummer are jointly used for rock blasting. The blasted materials are hauled outside of the tunnel by trolleys which are pulled by a winch, and dumped in appropriate deposit area. The work progress of tunnel excavation is estimated at 4.0 m/day based on the calculation of one cycle time as shown in Table 5.4.2.

(2) Lining

After completion of excavation, lining works for the tunnel section also start at its inlet and outlet. The invert and both side-walls of tunnel are lined with pebble masonry and the crown, with concrete. Wooden forms are used for the concrete lining of the tunnel crown. The lining works start at the invert and side walls, followed by the lining of crown. The daily work progress of the lining works is estimated to be the longitudinal four meters of the tunnel.

5.5 ARRANGEMENT OF CONSTRUCTION EQUIPMENTS

According to the construction schedule previously mentioned, the maximum numbers of construction equipments are decided as follows, in due consideration of capability of each equipment.

Equipment	Specification	Nos.
1. Bulldozer	11-ton class	4 sets
2. Bulldozer	21-ton class	3 sets
3. Backhoe shovel	$0.4 - 0.6 \text{ m}^3$	6 sets
4. Dump truck	6-ton	50 sets
5. Pick humaer	0.1 m3/min	21 sets
6. teg-drill	24 kg class	8 sets
7. Congressor	37 kW	7 sets
8. Drainage pump	0.3 m3/min	9 sets

To effectively use all of the selected construction equipments throughout the construction period, an operation schedule of the equipments is worked out as illustrated in Fig. 5.5.1.

Table 5.2.1 Summary of Workable Day

xear 1 1970 26 1971 23 1972 17	23	Ç~	-	v	7	r	O	c	Ç	, ,-	77	
		7	7	•	D	, ,	0	۲	3	1		
	5 24	24	21	21	19	23	23	56	26	50	27	280
		27	25	ន	89 F1	19	19	50	61	23	53 53	255
		25	12	50	92	26	23	56	25	26	50	277
1973	ı	24	ដ	51	14	76	70	18	22	87	21	213
	30	20	27	23	23	22	23	24	16	54	23	257
	3 24	22	91	19	77	17	12°	19	22	22	12	240
	22	25	20	77 7	21	27	23	26	22	61	23	269
		24	19	22	18	77	23	26	25	22	21	260
		∞ ∺	71	54	56	တ် က	22	18	17	27	61	245
		22	20	19	71	56	57	22	26	23	22	262
Total 208	8 215	231	193	202	193	212	221	225	220	218	220	2,558
		23	61	50	6T	21	22	23	22	22	22	256

Table 5.3.1 Calculation of Construction Days

Name	Name	Item	Quantity	Production per day	2 S	Change	Const. Days	No. Days	Const. D	Days		Rematka
Sero Diversion	Sm.	Exca. Soil	62,400	172.9	361	30/21	516	7		258	3.5	Bull-dozer
*****		Soil	41,600	179.4	232		33	H	165 >		SHS	Back-Noe Shovel
		Rock (U)	2,000	157.5	ដ		91	-4	18 >	707	ģ	•
		Rock (L)	2,000	55.0	23		78	H		78	۵.	5 party of Pick-
		x.x	2,000	40.0	175		250	~		ž	357	Blasting
		Embankment	25,800	376.6	69		98	a		98	SPD	Spreading
	S.	Exca. Soil	80,400	172.9	465		799	~		332	Ω.	
		Sofl	53,600	179.4	299		427	H	427	9	SXS	
		Rock (U)	13,600	157.5	86		123	٦	123 7	•	SXS	
		Rock (L)	20,400	55.0	371		530	0		177	e.	
		X.X	25,000	0.0	625		893	•		298	DST	
		Embankment	73,400	376.6	222		165	a		165	cas	
ease y Zur	3	Exca. Soil	88,200	172.9	767		702	ы		352	Q.	
Main Canal		Soll	58,800	179.4	328		897	11	234 3	415	BHS	
		Rock (U)	20,000	157.5	127		181	-1	181		BHS	
		Rock (L)	30,000	55.0	545		780	n		260	Ş.e	1
		¥.	000.4	0.04	8		143	H		7,7	151	
		Embaniment	007.97	376.6	724		176	H		176	25	
	Z	Exca. Soil	73,800	172.9	427		019	H	٠	610	D.	
		Soft	4,000	179.4	ಕ್ಷ		430	H	430	310	SHS	
		Rock (U)	9,800	157.5	×		80	ત	80	•	SHS.	
		Rock (L)	35,200	55.0	079		91.5	7		8 57	٨	
		Embanicaent	23,100	376.6	13		87	et		87	SPO	
	3	Excs. Soil	34,000	179.4	ğ		95,	14	भू	216	Ω	
		Rock (U)	8	157.5	-1		4	~	~ Н		SHS	
		Rock (L)	8	55.0	7 .		•	a		٠	٨	
		Enbankment	30,600	376.6	82		116	14	88	112	048	,
		Embankment	28,000	376.6	7.7	-	107	4			SZS	
Teaunt	13	Exca.	720 m	0.8	8		128	-1		128	Both	Both side of 4.0m/day
		Lining Scone M.	720	8.0	ጵ	. ,	158	. rt		128	ş	- 4.0m/day
		4444	720	0.8	Ô		128	-1				

Table 5.4.1 Re-use Plan of Earth Materials

						Filling			· [
Name of	Sos	Zarch	Excavation	S-1	S-2	1-1	1-2	r-3	Deposit	Remarks
Main Canal	Allotment	Condicton	732,000	(25,800) (4	97) (007 (57)	(46,400) ((001,52	(23,100) (58,600) 484,000	484,000	
Sero Diversion	2	Sofl	104,000	31,900 (25,800)					72,100	25,800 + 0.9 + 0.9 = 31,900
Canal		Rock	000*5						5.000	
		Hard Rock	7,000	-					7,000	
	S = 2	\$011	134,000		53,600 (43,400)				80,400	43,400 + 0.9 + 0.9 + 53,600
		Rock	34,000						34,000	
		Mard Rock	25,000						25,000	•
Langkampa Masin	3	Soil	147,000		55 (46	57,300			89,700	46,400 + 0.9 + 0.9 - 57,300
Canal		Rock	20,000						20,000	
		Hard Rock	000 7						000,7	
	r-2	Soil	123,000				28,500 (23,100)	38,900	55,600	23,200 + 0.9 + 0.9 = 28,500 28,000 + 0.8 + 0.9 = 38,900
		Rock	77,000						44,000	
	1- 1-	Soil	54,000				Ĭ	37,800	16,200	54.000 × 0.3 = 16,200 37,000 + 0.9 + 0.9 = 30,600
		Rock	1.000						1,000	

Table 5.4.2 Cycle Time of Tunnel Excavation

		(min
Work Item		Cycle Time
1. Excavation		
preparation		20
drilling		60
blasting		30
ventilation	•	20
chipping		20
others		10
Sub-total		160
2. Transporting of	Huck	e. Ta
preparation		10 :
transporting		120
arrangement		10
survey and ch	eck	10
extension of	rale	30
others		10
Sub-total		<u>190</u>
3. Assembling of t	unnel support	
preparation		10
assembling		60
others		10
Sub-total		80
Xiscellaneous		<u>20</u>
Total		450

One day's progress = $1.5m \times 1.200min/450min = 4.0m/day$

Fig. 5.3.1 GENERAL MAP FOR CONSTRUCTION PLANNING

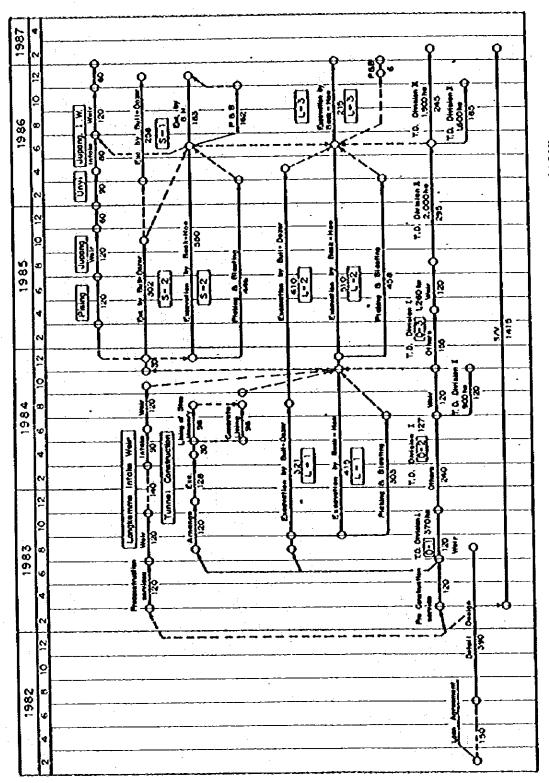


Fig. 5.3.2 IMPLEMENTATION SCHEDULE OF LANGKEMME IRRIGATION PROJECT

Fig. 5.3.3 CONSTRUCTION TIME SCHEDULE

	Nos			1983	10		-		-	984					~ ·	1985				•	9	1986	:		1987
EQUIPMENT		~	4	9	1	9	12	2	4	8	Ŏ,	21 13			9		2	H	^		9	6	Σ	2	7
	PEAK	-			П	Н	H	-	H	ert				_[-	_		_	\parallel						╁
Bull - Dozer (11 ton)	Ų				U	╫╴	\parallel	-	$\!$	╢	-	_	معتبات والمراجع والمراجع المستوي بيوا ويدارك والم	Application (1					, Leading					
B.11 - Co. es. (2) 404	4	1	ſ	1-				H			H	H	H					4						1	╂
Bock-Hoe Shovel (000)	v)	-		۲			-		+						Carlotte (America) (America) (America)						Ш				+
Dump - Truck (6 ton)	જ												W. W. W. W. W. W. W. W. W. W. W. W. W. W												
Pick - Hummer	22	<u> </u>			AND STATE OF THE PROPERTY OF T	AND AND AND AND AND AND AND AND AND AND	SAVAGO SAVAGO										WALL STATE					200			
Leg - Drill	8				"																				-1-
Compressor	6			·				11.0	73 T				AT NAMES		App.	NA.		Carried Constitution of the Carried Constitution of Carried Constitution of the Carried Constitution of Carried Co			Secretaria de la casa	11		1	_
Droinage Pump	51			ننقا ۔۔ اب						[]			- -]		15	- -	- -	- -	- -	$\parallel \parallel$				n

Fig. 5.5.1 OPERATION SCHEDULE OF CONSTRUCTION EQUIPMENT

