D ZANAB PUDNAG ANGDAR KADD DEDIRAMAD. Dep AND KATAND SIND[®] D PAR A PAR SAT UNI D ZANAB PUNNAG DIRAMAS D IND

G BERNER WERE BERNER

LAMPUNG AGRICULTURAL DEVELOPMENT PROJECT IN LAMPUNG INDONESIA

DESIGN REPORT

FEBRUARY 1973

OVERSEAS TECHNICAL COOPERATION AGENCY JAPAN

国際	協力事	業団
受入 月日 '01	4 2 0	108
<u>パロ 04.</u> チャムキュー		83
贫 돠No.	02771	AF

The Overseas Technical Cooperation Agency, being entrusted by the Government of Japan, sent a Survey Team (the third Survey Team) for the detail design of Lampung Agriculture Development headed by Mr. Motoo Tanaka, Directer General of Extension Department, Agricultural Administration Bureau, Ministry of Agriculture and Forestry for a period of 45 days from September 1, 1972.

The current detail design survey, basing on the Record of Discussion signed April 1972 between the head of the second survey team which was dispatched March 1972 and the Indonesian authority concerned, is aimed at executing the detail design on the equipments for the agricultural extention center and the land improvement works in the center which form parts of Lampung agriculture development project as well as on the land consolidation for the large and small demonstration farm.

The report, now ready for presentation, is summarized as to the result and findings of the detail design and of the survey. I sincerely extend my gratitude to the efforts exerted by the members of the team, which enabled the survey successful, and am convinced that the guideline for the promotion of Lampung Agriculture Development Project is given by the report.

As is well-known, the Government of the Republic of Indonesia decided to explore such remote areas as Sumatra, Karimamtan and Sulawesi in order to cope with the high population density in the Java island. The Lampung province located at the south tip of the Sumatra island receives the tip priority of the development due to the facts that it is included in Jakarta economic zone and that it has vast uncultivated land. The province is also favored with the advantageous conditions for various plants growing and for the agriucltural development such as topography and soil.

The Government of Japan, in view of the above mentioned situation in Indonesia and in Lampung, decided to render an aid to the wide-range Lampung Agriculture Development Project. We will not hesitate to overcome the difficulties which are supposed to emerge with the increasingly big project, by means of treating them as the problems attached to the project aid.

The Japanese, both official and private, are deeply interested in this project with much expectation for the development. I wish the further support extended by those authorities concerned to this project.

Lastly I take this opportunity to express my heart felt thanks to Directorate General of Agriculture, Ministry of Agriculture and the Agriculture Extension Bureau, Lampung Provinse, offices concerned in Indonesia

December 1972

Keiichi Tatsuke Director General Overseas Technical Cooperation Agency

<u>Contents</u>

			rage
CHAI	PTER 1	INTRODUCTION	
1-1	Historic	al Background	1
1-2	Purpose	of the Survey Mission	1
1-3	÷	ation of the Survey Team and ve Assignment	2
1-4		f the Indonesian Government and Local Cooperators Concerned	3
1-5	Survey S	chedule	4
CHAI	PTER 2	OUTLINE OF PROJECT	
2-1	Project	Area	10
	2-1-1	Location	10
2-2	Agricult	ural Extension Center	10
	2-2-1	Design of Building Arrangement	10
	2-2-2	Design of Reservoir	10
	2-2-3	Design of Pilot Farm	14
	2-2-4	Approximate Work Costs and Scheme of Execution	18
2-3	Large D	emonstration Farm	20
	2-3-1	Land Consolidation Plan	20
	2-3-2	Elements of Main Works	24
	2-3-3	Approximate Estimation of Construction Cost and Construction Program	26

CHAI	PTER 3	REARRANGEMENT PLAN OF AGRICULTURAL EXTENSION CENTER	
3-1	Farm P	lanning	28
	3-1-1	Scale and Arrangement of Farm	28
	3-1-2	Computation of Facility Capacity	28
	3-1-3	Paddy Irrigation Pilot Farm	30
	3-1-4	Determination of size of Pump	31
	3-1-5	Pilot Farm of Upland Irrigation	34
3-2	Facility	of Water Source	40
	3-2-1	Topography and Geology	40
	3-2-2	Survey and Test Result	40
	3-2-3	Dam Axis and Dam Type	47
	3-2-4	Determination of Design Flood Discharge	47
	3-2-5	Determination of Scale of Dam Body	51
	3-2-6	Design of Dam Body	62
	3-2-7	Design of Spillway	74
3-3	Facility	of Center	78
	3-3-1	Arrangement and Outline of Buildings	78
	3-3-2	Estimation of Generator Capacity	79
	3-3-3	Quality-of-Water Test	83
CHA	PTER 4	LARGE DEMONSTRATION FARM	

4-1	Purpose of Land C	onsolidation Plan and It's	
	Present Condition		84
	· ·	:	

a.	4-1-1	Purpose of Project	84
	4-1-2	Present Conditions in the Project Area	84
4-2	Land Co	nsolidation Plan	87
	4-2-1	Form and Size of Paddy Field Plots	87
	4-2-2	Design of Road	89
	4-2-3	Ground Leveling Work	90
	4-2-4	Irrigation Canal	93
	4-2-5	Drainage	97
	4-2-6	Canal Structure	97
CHAI	PTER 5	SMALL DEMONSTRATION FARM	
5-1	Purpose	and Plan of Investigation	100
5-2	Present	Condition	100
5-3	Guidanc	e of Land Consolidation	104
CHA	PTER 6	CONSTRUCTION PROGRAM	
6-1	Constru	ction Program	115
	6-1-1	Construction Program of Facilities of Water Source	115
	6-1-2	Construction Program of Pilot Farm and Facility Buildings	121
	6-1-3	Construction Program of Large Demo Farm	121
6-2		ations	123
	6-2-1	Working Specifications	123
	6-2-2	Machine Specifications	125

CHAPTER 7	APPENDIX	• • • • • •	• • •	• • • •	• • • • • • •	••••	•••	 • • •	134
		e to s		· .	· · · ·			•	
CHAPTER 8	PROJECT COST					•			·. ·

. .

•

•

•

- 8-1 Statement of Quantity Accounts
- 8-2 Project Cost Estimate

.

•

1-1 Historical Background

1. The agricultural development of middle Lampung and its consecutive project have been adopted in the negotiation between the Government of Indonesia and the Government of Japan in June, 1971 from the necessity of improving the outer islands and the establishment of a food supply base for the counterplan of improvement of the Indonesia economy as a result of the increasing population of Java Island.

and think a

2. The foundation survey was executed by the 1st Survey Mission in August, 1972 to accept the above requirement for studying the basic concept of the cooperation of agricultural development at Lampung area. It being found that this area is favoured with natural conditions and suitable as the area for comprehensive cooperation which has the greatest feasibility of development, after discussion with all authorities concerned, the following plan has been proposed.

a. Agricultural Development Center

This center will be the base for developing agriculture in Lampung province.

b. Program for the Improvement of Farm Villages in Paddy Field Zones.

The improvement of paddy field zones in the middle Lampung area will be executed.

c. Program for the Improvement of Upland Fields

The improvement of upland fields in the middle Lampung area will be planned.

3. The second survey conducted by the Government of Japan was implemented in March, 1972 for examination of the details of the cooperation program. This survey was discussed with the Government of Indonesia after field survey. The necessity of establishing the detailed final design of buildings and farms for Agricultural Extension Center and Demonstration Farms which will be the Center of this cooperation program was confirmed.

1-2 Purpose of the Survey Mission

In accordance with the Tani Makmur project which will be implemented by the Government of Indonesia and the result of the second survey. Various technical tests on paddy crops, upland crops and the training of extension service personnel and key farmers will be performed. A large scale demonstration farm will be provided at Totokaton, a small scale demonstration farm will be provided at another village. Detailed final design of land improvement works will be executed for better living in agriculture in the surrounding area to plan the stability of agriculture management and the increased income to cooperate such as extension and guidance of new agricultural management technics and organization of farmers.

1. Agricultural Extension Center

a. Program of Facility Arrangement

(Classification, scale, quantity, arrangement of facilities, building structure, construction of site.)

b. Design of Reservoir

(Catchment area, hydrology, reservoir, coffer dam and attached facilities.)

c. Design of Farm

(Scale of paddy field and upland field arrangement, construction plan, pump, farm pond, irrigation and drainage, farm road.)

d. Estimation of Construction Costs and Construction Program

e. Investigation, Survey and Design for the above.

2. Large Demonstration Farm (L.D. Farm)

a. Land Readjustment Program

(Facilities in present condition, land category, block condition, design farm road, irrigation water, construction of block allotment.)

b. Construction of Elements of Main Work

(Irrigation water, analysis of hydraulics, section structure, water intake, water-diversion, scale of structure, arrangement of farm roads.)

- c. Estimation of Construction Cost and Construction Program.
- d. Investigation, Survey and Design for the above.
- 3. Small Demonstration Farm (S.D. Farm)

Investigation and examination regarding land improvement in seven blocks.

1-3 Organization of the Survey Team and Respective Assignment:

Motoo Tankaka	Leader	Chief of Extension Department, Agricultural Administration Bureau, Ministry of Agriculture & Forestry.
Yuji Hirano	Sub. Leader General Planning	Designing Officer, Design Section Kanto Agricultural Administration Bureau

	Takashi Tauchi	Planning of Irrigation & Drainage	Agricultural Cooperation Depart- ment O. T. C.A (Overseas Tech- nical Cooperation Agency)
·	Tadashi Nishioka	Land Consolidation	Chief of Engineering Department JIRCO (Japan Irrigation and Reclamation Consultants)
	Satoshi Hirai	Structural Designer	Design Section JIRCO
	Takeshi Sato	Canal Designer	Design Section JIRCO
	Shigeru Takeishi	Road Designer	Design Section JIRCO
	Junji Konda	Hydrology	Design Section JIRCO
	Tose Watanabe	Liaison	Agricultural Cooperation Depart- ment O.T.C.A.
	Hideo Sugita	Estimation of Construction Costs	Design Section JIRCO

1-4 Names of The Indonesian Government Officials and Local Cooperators Concerned

1.	Cou	unterparts Personnel:	
	a.	Ir. Nusjirwan Zen	Chief of Dinas Pertanian, Lampung
	b.	Thamrih Bastari	Secondary of Dinas Pertanian, Lampung
	c.	Ir. Mattjik Gani	Staff of Dinas Pertanian, Lampung
	d.	Ir. Achmad Sjarnadi, h.m.	Staff of Dinas Pertanian, Lampung
	e.	Ir. Kamaludin Sipajung	Staff of Dinas Pertanian, Lampung
	f.	Ir. Muzakir Noor	Staff of Dinas Pertanian, Lampung
	g.	Ir. Sukirno	Chief of Tegineneng Center
	h.	Ir. Sachruddin	Staff of Tegineneng Center
	i.	S. Sochadies B.I.E.	Chief of Irrigation Section D. P. U. Lampung
	j.	Ir. Rubini Jusuf	Staff of Irrigation Section D.P.U. Lampung

B.I.E.

2. Cooperators:

- Dr. Nojima, (Expert from Japan) a.
- Mr. Ohata, (Expert from Japan) ь.
- c. Solrman Simin Kapara Desa Totokaton Extension Worker, Kajamatan Punggur

.

d. Mathan Charman

Extension Worker, Kajamatan Panggur

1-5 Survey Schedule

Date	Contents of Works	Counterparts
Fri. Sept. 1	Left Tokyo; Haneda Air Port by JAL No. 711 at 9:50 A.M., arrived at Djakarta at 7:30 P.M	• • • •
Sat. Sept. 2	Paid a courtesy visit to Mr. Sugiyama, Chief of O. T. C. A. Paid a courtesy visit to the Embassy of Japan and met with Mr. Sugimoto, First Secretary. Greeting to the Directorate General of Agri- culture, the Central Government and spoke with Mr. Soekendro and Mr. Smantory.	h
Sun. Sept. 3	Attended a briefing conducted by Mr. Sugo, Project Leader, and others pertaining to the Tjihea project and other areas.	
Mon. Sept. 4	Discussed with Mr. Soekendro and Mr. Smanto of the Directorate General of Agriculture and along with Mr. Nojima, Mr. Sugimoto and paid a courtsey visit to Mr. Uthman, Chief of the D partment of Irrigation, the Directorate General River, the D. P. U.	1 e-
Tue. Sept. 5	Attended a briefing conducted by Mr. Kawamata and Mr. Kanai pertaining to Tadjum Project. Left Djakarta at 2:20 P.M., arriving at Tanjun Karang, Branti Airport at 4:00 P.M. and discu sed with Mr. Nojima and Mr. Ohata.	g
Wed. Sept. 6	Greeting to the Department of Agricultural Ext sion of Lampung province and discussed with Mr. Thamrih, sub-Chief. Greeting to the D.F and discussed with Mr. Skadis, Head of Irrigat Section.	.U.

Thu.	Left Tanjung Karang for Metro. Greeting	Sjachrum
Sept.	and discussion on Lampung Tengah,	Mattjikgam
7	Kabpaten. Mr. Sjachrum, of the Direc-	
•	torate General of Agriculture, of the Central	
	Government followed. Greeting to Mr.	
	Mathan Charman, Chief of Kajamatan Punggur	
	Greeting to Chief of Totokaton Desa and held	•
	a discussion. Greeting and discussion with	
	8	
	Mr. Skirno Sjarif, Chief of the Tegineneng	
	Center. Implementation of preliminary re-	
	connaissance of Large Demonstration Farm and Center.	
Fri.	At the Center: The establishment of base	Sjachrum
	line, border, and the reconnaissance of	Sukirno
Sept.		Sjarif
8	leveling area.	Slatit
Sat.	At the Center: A plane table survey and	Sukirno
Sept.	others were conducted by Mr. Sugita and	Sjarif
-	Mr. Takeishi.	0,4111
9		
	At L.D.F: The establishment of borders,	Sjachrum
	and the installation of stakes for traverse	Kamaluddin
	surveying and minor control were conducted	
	by the survey team excluding Mr. Sugita	
	and Mr. Takeishi.	
	and MI. Takeishi.	
Sun.	At the Center: Profile leveling and cross	Sjarif
Sept.	sectional leveling of coffer dam was con-	Sjachrum
10	ducted by Mr. Sugita and Mr. Takeishi.	5
	At the L.D.F: The traverse survey and	
	the survey of establishment of the stakes	
	for minor control were conducted by the surve	v
	team excluding Mr. Sugita and Mr. Takeishi.	
Mon.	At the Center: The plane table survey of	Sjarif
Sept.	farm areas was conducted by Mr. Sugita	Sjachrum
11	and Mr. Takeishi.	
	At the L.D.F: The traverse survey, level-	Kamaluddin
	ing, and survey of installing the stakes for	
	minor control. Due consideration was paid	
	on the center program to conform with the	
	conception of D. P. U. with Mr. Sjachrum,	
	Mattjik Gani, Kamaluddin.	
Tue.	At the Center: The plot of buildings was	
Sept;	surveyed by Mr. Sugita and Mr. Takeishi.	
12		
	At the L.D.F: The traverse survey and	Sjarif,
	leveling were carried out by the sur-	Sjachrum
	vey team excluding Mr. Sugita and Mr.	Kamaluddin
	ACA CONTROVOTORING MIT' ORBITO OND MIT'	T 204 1 7 1 04 T CA

Date	Contents of Works	Counterparts
Wed. Sept. 13	Rearrangement and computation of the results of surveying, minor control lines and plots.	
Thu. Sept. 14	At the Center: Establishment of the center of reservior basin was made by Mr. Sugita and Mr. Takeishi.	Sjarif Kamaluddin Sjarnadi
	At the L.D.F: Traverse survey and level- ing survey were conducted in the southern portion.	
Fri. Sept. 15	At the Center: The survey of reservior basin, measurement of full water basin and the reconnaissance of establishing a catch- ment area was made.	
	At the L.D.F: A survey of each plot was executed.	Kamaluddin
Sat. Sept. 16	At the Center: The investigation of ele- ments on the permeability of reservoir basin, soil property, ground layer, ver- tical permeability in the farm and soil stratum, etc. were made.	
	At the L.D.F: A survey of each plot was excuted.	Kamaluddin
Sun. Sept. 17	At the Center: The rearrangement of profile leveling and cross sectional leveling of swamp was conducted.	
	At the L.D.F: The computation of traverse survey and others.	
Mon. Sept. 18	At the Center: The plane table survey, in- vestigation of soil texture, and additional bore holes of reservoir basin were executed.	
,	At the L.D.F: A plane table survey and investigation of each plot were made.	Sjarnadi
Tue. Sept. 19	At the Center: The plane table survey was conducted.	
	At the L.D.F: Investigation of soil texture and vertical permeability was performed at three separate locations of proposed fields. Observation of the discharge of torrent and the installation of a N-type water requirement	

-6-

Date	Contents of Works	Counterparts
Wed. Sept. 20	At the Center: The survey of leveling and the drilling of additional bore holes in weak foundation of the reservoir basin were exe- cuted.	
	At the L.D.F: The plane table survey of each plot, the investigation of intake system and the cross section of the canal were per- formed.	Sjarnadi
Thu. Sept. 21	At the Center: Leveling and investigation of bore holes of reservoir basin were performed.	
21	At the L.D.F: The plane table survey of each plot, the investigation of existing block, border diversion and farms were performed.	Sjarnadi.
Fri. Sept. 22	At the Center: Leveling and investigation of farm earth work was performed.	
	At the L.D.F: A plane table survey of each plot was conducted.	Sjarnadi
Sat. Sept. 23	At the Center: The installation of a water level staff in the reservoir basin.	
	At the L.D.F: The Plane table survey of each plot. The investigation of intake level, the cross section, the gradient of the canal and intake facilities were conducted.	Sjarnadi
Sun. Sept. 24	At the Center: The rearrangement of survey results.	
	At the L.D.F: The rearrangement of survey and investigation.	
Mon. Sept. 25	At the Center: The study of elements of the reservoir.	
-	At the L.D.F: The plane table survey and investigation of each plot. Discussion with the Directorate General of Agriculture, Lampung province, D.P.U.	Kamaluddin
Tue. Sept. 26	At the Center: Rough design of the reservoir and attached facilities.	
20	At the L.D.F: The plane table survey of each plot. Discussion with Kapara desa on sum-	L

-7-

Date	Contents of Works	Counterparts
Wed. Sept.	At the Center: The design and drafting of farm	18.
27	At the L.D.F: The plane table survey and leveling of each plot. Preparation of the maste plan of farm rearrangement was conducted.	Kamaluddin r
Thu. Sept. 28	At the Center: The study of rearrangement of reservoir capacity and rough design of water distribution system was conducted.	
	At the L.D.F: The leveling of each plot, and the field check of designed irrigation water system were performed.	Kamaluddin
Fri. Sept. 29	At the Center: The computation of soil re- quired to construct earth works, and to utilize surplus soil from canal and reservoir excavation was performed.	
	At the L.D.F: The leveling survey of each plot and investigation of road program. The discussion on the whole plan with Kapara desa.	Kamaluddin
Sat. Sept. 30	At the Center: The design of upland irriga- tion facilities was conducted.	· .
	At the L.D.F: The surveying of design route of main works. Rearrangement of elements of irrigation water and data.	Kamaluddin
Sun. Oct.	At the Center: The rearrangement of survey and investigation data.	
1	At the L.D.F: Ditto.	
Mon. Oct. 2	At the Center: A rough reconnaissance survey of added uplaned farms was performed.	
	At the L.D.F: The survey of design route of main works and the establishment of block allotment were conducted.	
	At the L.D.F: The survey of design route of main works and the establishment of block allotment were conducted.	
Tue. Oct.	Removed from Metro to Tandjung Karang.	
3	At the Center: Establishment of borders of added farms.	Kamaluddin
Wed. Oct.	At the Center and L.D.F: Discussion on the project and study of summarized plan.	
4	At the S.D.F: Plane table survey (Trimurdjo).	Kamaluddin

Thu.	At the Center and L.D.F: Detailed design.	
Oct.		
5	At the S.D.F: Plane table survey (Trimurdijo).	Kamaluddin
Fri. Oct. 6	At the S.D.F: Plane table survey (Punggur).	Kamaluddin
Ţ	Arrangement with Mr. Rubini, Irrigation Section, D. P. U. Lampung Provinsi on Center Dam.	· ·
Sat. Oct. 7	At the S.D.F: Plane table survey (Punggur). Went to Prefecture Office in Metro for the arrangement of the Interim Report, the Governor was not present.	Mattjik Jani Kamaluddin
Sun. Oct. 8	Team leader arrived in Djakarta.	
Mon. Oct. 9	Survey team leader arrived in Lampung province. A meeting was not held with Mr. Nusjirwan as he did not return from Djakarta as scheduled.	
Tue. Oct. 10	The Interim Report was accepted by the Gov- ernor of the province and authorities concerne in Metro. The Leader of Mission conducted a field investigation survey. (Totokaton, Tegineneng and others.) After meeting with Mr. Nusjirwan Inspector and others, a dinner party was held.	d
Wed. Oct. 11	Discussed with Mr. Nusjurwan, Inspector, Lampung Provinsi concerning the arrangemen and scale of buildings. The Leader of Mission left Lampung Provinsi for Djakarta and made a report to the Embassy of Japan and a party was held for the minister.	
Thu. Oct. 12	A meeting was held at the Embassy in the morning. A report was made to Mr. Sadikin, Director of the Directorate General of Agri- culture and was accepted.	
Fri. Oct. 13	The annual project program and detailed pro- ject schedule was explained by Mr. Soekendro Head of Liaison Section, the Directorate Gen- eral of Agriculture and Officers concerned and was understood after discussion.	
Sat. Oct. 14	Arranged for return and shipment of equipmen	ts.
Sun. Oct.	Left Djakarta by Cathey Pacific Cx-550 at 7:00 A.M., arriving at Tokyo at 10:30 P.M.)

CHAPTER 2 OUTLINE OF PROJECT

2-1 Project Area

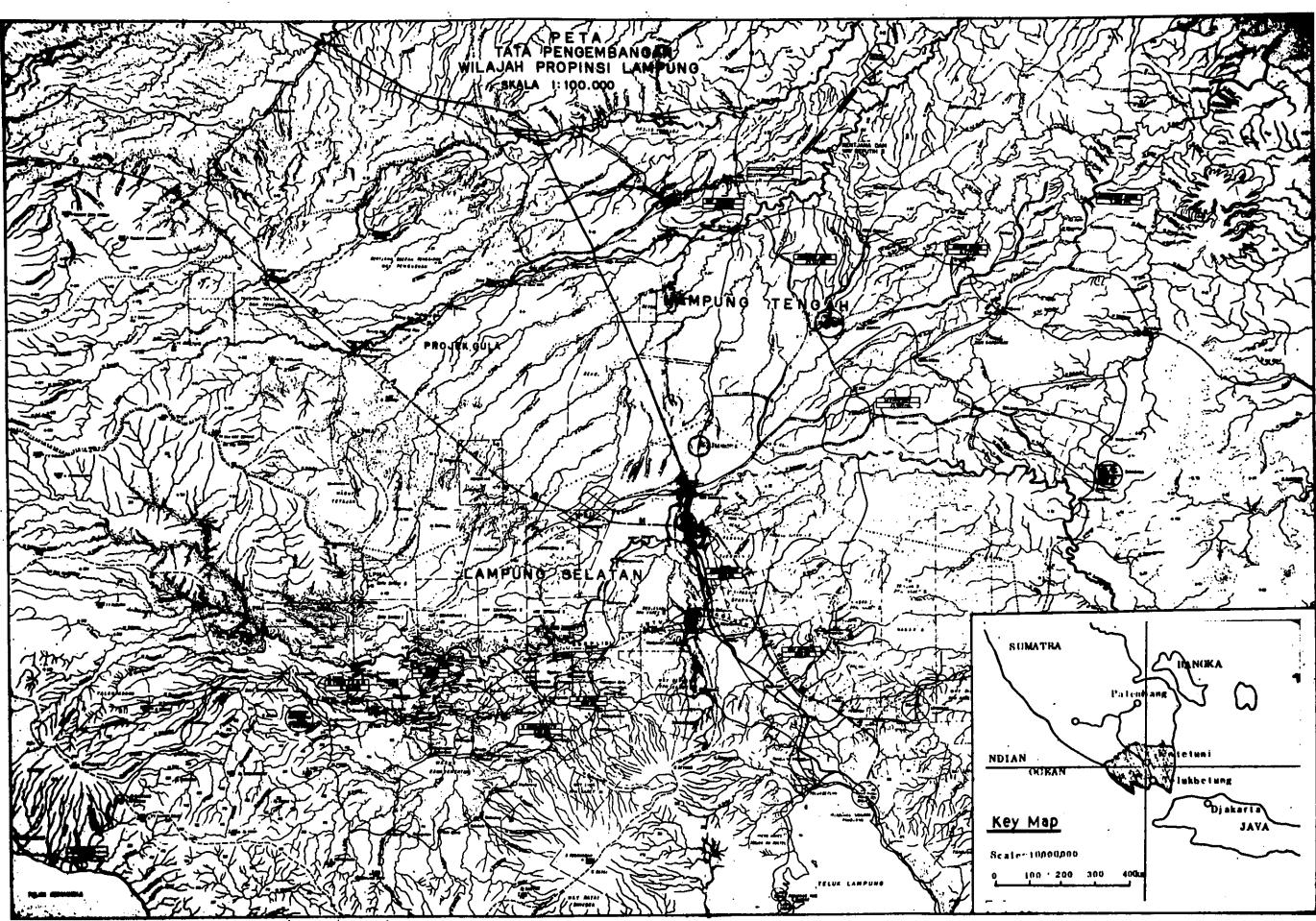
2-1-1 Location

The Agricultural Extension Center together with the Extension Farm, which is the agricultural development center of Lampung, is located at Tegineneng, 36 km north of Jandjun Karang, the provincial capital of Lampung Province in the southernmost extremity of Sumatra Island. This farm is being used at present as the Government Seed Growing Farm of Lampung Province. The full-scale Demonstration Farm is situated at Totokaton village, Punggur County, 15 km to the north-east of the above mentioned Agricultural Extension Center. Totokaton village is located in the region of the Punggur Utara Irrigation Project which is administered under the auspices of the Department of Water Sources of the Ministry of Public Works; the area, comprising 108 hectars, is irrigated by Tertiary Canal diverted at BPU 10 of the Main Canal of the above project.

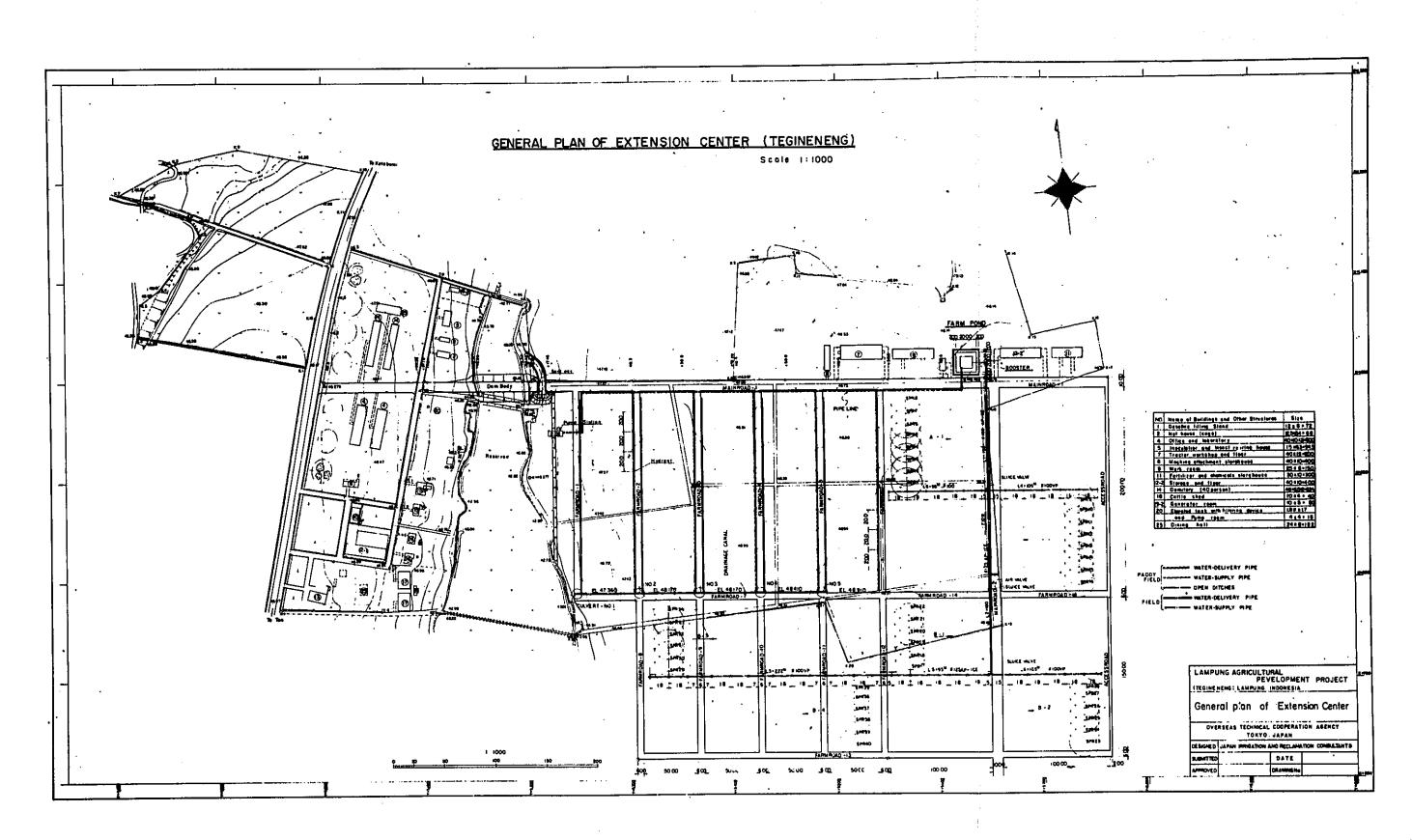
2-2 Agricultural Extension Center

The matters necessary for the agricultural development of Lampung province (e.g. tests and experiments required for selection of suitable crops, introduction of superior varieties and agricultural machinery; agricultural exhibition; technical instruction of extension workers and key farmers; propagation and distribution of seeds) will be carried out at this center, and the following facilities will be installed:

Total building area:	5,490 m ²
Irrigation facility :	Reservoir
Pilot farm :	15 ha
Paddy field irrigation farm	5 ha
Upland irrigation farm	10 ha


2-2-1 Design of Building Arrangement

The contents and scale of the facilities included in the following chart should be considered in utilization of the effective existing facilities for the above purpose, and the arrangement has been planned as per attached Fig. 2-2.


2-2-2 Design of Reservoir

Outline:

The farms for tests and experimental purposes, as well as for training and exhibition, will be provided with 5 ha. of paddy and 10 ha. of upland fields (mainly for upland irrigation) on the plateau to the east of the area. In view of the shortage of water in the dry season and some parts of the rainy season, the water

-11-

-12-

requirement will be met by building a dam (total storage capacity: 210,000 m³) at the narrowest part of the valley. The basic requirements of the dam facilities will be in accordance with the following table.

Elements of Dam Design

Location	:	Teginneng
Name of River	:	Swamp
Dam Type	:	Homogeneity
Name of Dam	:	Reservoir
Ground Foundation	n:	Sandy Clay

Hydrology	Catchment A rea	$A = 2.73 \text{ km}^2$
	Spillway Basic Rainfall	r _t = 185 mm/day x 1.2 = 222 mm/day
	Total Storage Capacity	$V = 210,000 m^3$
	Amount of Sand Accu- mulation	$V_{nr} = 6,320 \text{ m}^3$
	Effective storage	$V_n = 164,000 \text{ m}^3$
Reservoir	Capacity	
	Full Water Area	$A = 0.095 \text{ km}^3$
	Storage Level	HWL = 45.75 m FWL = 45.00 m DWL = 43.00 m
	Available Depth	H = 2.00 m
	Dam Height	$H_0 = 6.100 m$
	Dam Length	$L_0 = 124.00 m$
	Crest Width	B _o = 10.000 m
Dam Body	Gradient of Slope	Upstream Side: 1:2.0 Downstream Side: 1:1.8
	Volume of Dam Body Embankment	6520.00 m ³
	Spillway Type	Flowover Weir Type Sillway

Spillway	Design Flood Dis- charge	$Q_s = 18.9 \text{ m}^3/\text{sec}$
	Length of Flowover Weir	B _s = 20.00 m
I	Overflow Depth	$H_{s} = 0.75 m$
Water Intake	Intake Type	Pump (Single Suction Centrifugal Pump)
Installation	Maximum Amount of Intake Water	0.015 m ³ /sec/set x 2 sets x 10 HP
Division	Туре	Existing Pump & Existing Pipe
Channel	Diversion Drainage	By Existing Drainage Canal

2-2-3 Design of Pilot Farm

1. Scale and Arrangement of Farms

The function of pilot farms will be to suitably organize the permanent paddy plot and the changeable farmland to have it conform to the present requirements, in addition to the tests and experiments, and also to any alterations in the future, as indicated in Fig. 2-2.

2. Water Requirement

Cropping patterns will be prepared as Fig. 2-3 from the view point of the efficiency ratio of facilities for the cropping of paddy fields. The water requirement in depth and water requirement of upland irrigation was considered and added to measured values.

Paddy Field

$Qmax = 24.61 \ 1/s \ (24 \ hr/day)$	$32.81 \ 1/s \ (18 \ hr/day)$
Qmean = 10.96 $1/s$ (24 hr/day)	14.61 1/s (18 hr/day)

<u>Upland</u>

Qmax = 11.43	1/s (24 hr/day)	$15.24 \ 1/s \ (18 \ hr/day)$
_		$18.29 \ 1/s \ (15 \ hr/day)$
Qmean = 8.47	1/s (24 hr/day)	$11.28 \ l/s (18 \ hr/day)$
		13.55 l/s (15 hr/day)

Facility Capacity: The capacity of water pipe and pumps will be 18 hr, each irrigation hour will be 24 hr in surface soil puddling, 18 hr in the normal for paddy fields, and 15 hr for the farm operation of upland irrigation. The facility capacity will be roughly estimated by the water requirement for preparation of paddy fields. Surplus water will be stored in the farm pond and may be used for upland irrigation when desired.

	Figz3Operation Plan of Fields
МОЛТН	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
Paddy I	
2	
3	Puddling
4	
5	
Upland	
	I

-15-

Name of Facility	Kind	Quantity	Unit	Remark
	Pilot Farm	15.0	ha	Paddy irrigation farm 5 ha Upland irrigation farm 10 ha
Farm Consoli-	Main Farm Road	545	m	Width of road 10 m
dation	Lateral Farm Road	2,866	m	Width of road 6 m
	Small Drainage Ditch	1,000	m	Bottom width 0.3 m, depth 0.5 Side slope 1:1
	Drainage Canal	280	m	Bottom width 0.5 m, depth 0.5 Side slope 1:1
Paddy Irriga- tion Facility	Pump	2	No.	Diameter: 100 m Discharge: 0.9 m ³ /m Total head: 18 m Prime mover: Diesel engine 10 PS Kind: Single suction Centrifugal pump Driver by Diesel engine
	Pump House	28	[.] m ²	Structure: Constructe of brick
	Water Pipe	382		Kind: Vinyle chloride pipe for domestic use Diameter: 150 mm
	Water- Supply Pipe	1,000	m	Kind: Vinyle chloride pipe for domestic use.
	Water Application Apparatus	50	Piece	Hydrant (50 ¢)

Facility Schedule of Pilot Farm

Name of Facility	Kind	Quantity	Unit	Remark
	Farm Pond	1	Place	Storage capacity: 330m ³ Structure: Plan 26 m x 26 m
Upland Irrigation Facility	Booster Pump	1	No.	Diameter: 125 mm Discharge: 1.32 m ³ /m Total head: 53 m Driver: Diesel engine 40 PS Kind: Horizontal shaft Multistage centrifuged Direct engine
	Water Pipe	305	'n	Kind: Asbestos cement pipe Diameter, length $150 \neq 1_1 = 125 \text{ mm}$ $125 \neq 1_2 = 180 \text{ mm}$
Upland Irrigation Facility	Water- Supply Pipe	622	m	Kind: Solid vinyle chloride pipe for domestic use Diameter, length: $0001_3+1_4+1_5+1_6 = 527$ Kind: Asbetos-Cement pipe
Facility	Sprinkler	6	Set	Diameter, length: $125 \neq 1_5 = 95$ Kind: $T_5 = 30$ type and the like Nozzle size: $3/16'' \times 3/32''$ 8 stands (dist) 2 sets

Facility Schedule of Pilot Farm (Continued)

2-2-4 Approximate Work Costs and Scheme of Execution

Work costs necessary for each facility will be as follows:

		<u> </u>				(Unit : Yen)
	Item	Quantity	Unit	Local Currency	Foreign Currency	Total
1.	Dam			1,698,000	2,137,000	3,835,000
	a. Dam Body	6,600	m^3	452,000	878,000	1,330,000
	b. Spillway	1	Place	1,092,000	1,259,000	2,351,000
	c. General Tempo- rary Construc- tion			154,000	-	154,000
2.	Pilot Farm			2,137,000	11,979,000	14,116,000
	a. Farm Consoli- dation	5.0	ha	735,000	2,443,000	3,178,000
	b. Founda- tion of Pump Station	1	Place	483,000	241,000	724,000
	c. Pump	1	Place	5,000	829,000	834,000
	d. Water Pipe Work	440	m	783,000	3,660,000	4,443,000
	e. Booster Pump	1	Place	6,000	1,628,000	1,634,000
	f. Water- Supply Pipe	930	m	125,000	1,967,000	2,092,000
	g. Sprinkler	6	Set	-	1,211,000	1,211,000
3.	Building	5,490	m ²	39,152,000	7,073,000	46,225,000
	TOTAL			42,987,000	21,189,000	64,176,000

Fig 2-4 Construction Schedule Agricultural Development Center

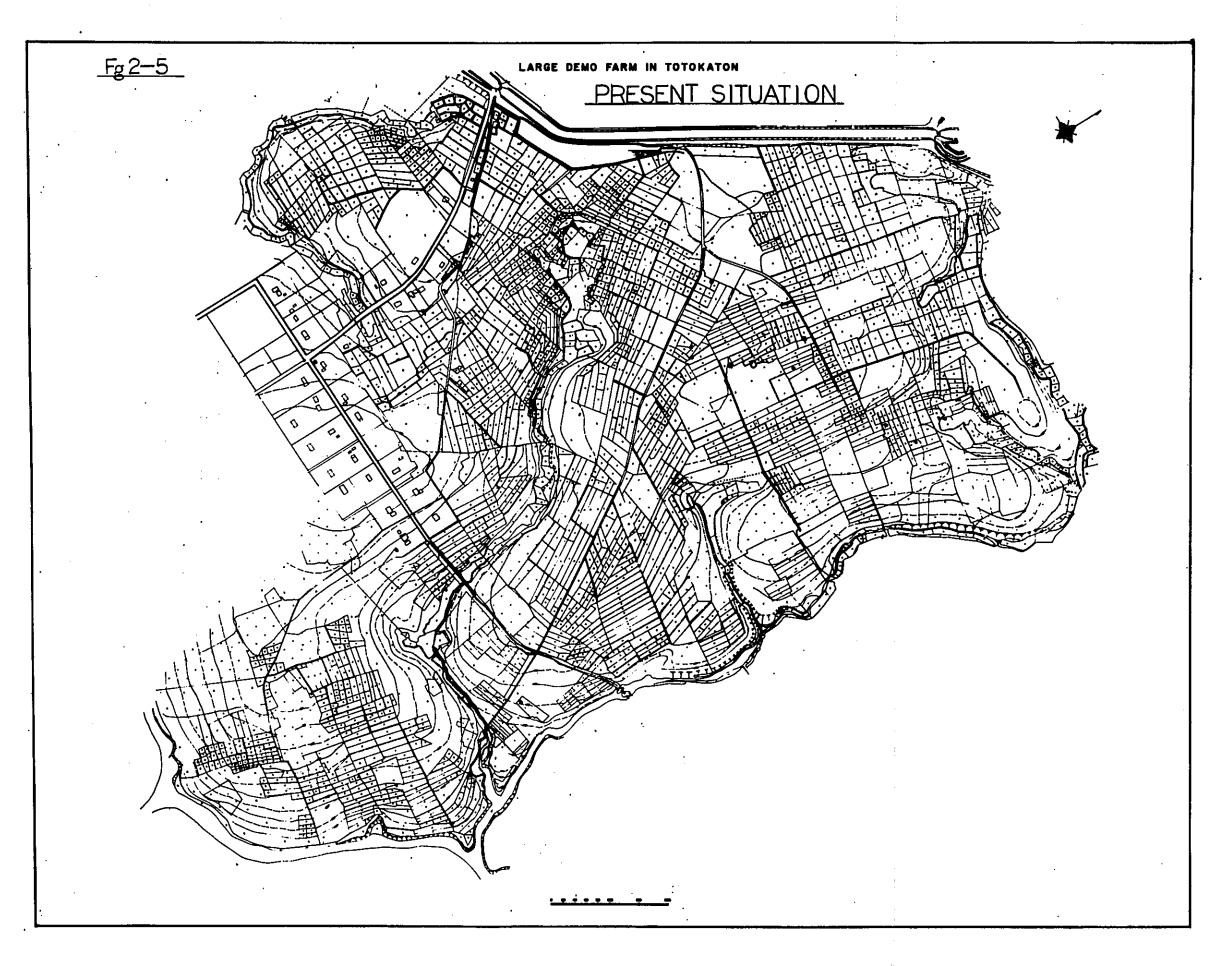
								···· 1		•					1		 									•••••				
	Item	Amount		· 1	st	1	• · ·			· 21		year			11	ି 3 .	rds - F	e te se la g				4	th)	· . · ·		10		:5 . 1	in .) }
			2	4	6	8	10	12	2	4	6	3	10	12	2	4	6	8	10	12	2	4	6	1 E 1 E	10	12	2	4.1	6	i -
	Preparatory works							1					1.									: 							,	:.
	Surface soil	1586	m								H	1			·							 			. 1					:
ا د	Excavation		"								H	ł			· ·								í							
ļ o	Embankment	6,417									:⊬	<u>+</u>	4	,								t i	! {				-		- 1	;
Ias	Spill way Excavation	1080				 				i	H	:	-				: 1						• • • • • •			1 :***				
Ř	Embankment	i	4			 			, , .		!	1	H	:				1	1											
and	Stone Pitchin	14.7	. "			-	‡ •				┣┥	:	•	•		:	1					} ·								
Deim	Masonry	134			ļ	; ,	1	;			-				-								1 							
<u>ٽ</u>	Bridge		Sou			:			. ;			F−4	ţ				:	-							5		-		i	
I	Intake	<u> </u>			! ∤			•			•		• ⊧				1					; ;	;						••••••	, ,.
	Pump House	28	m		:					:				4			;					•					,		: سيم يە	
	Pump	2	So		-	•	• .	•	-			•)1			`				•	} :				1 				:
j ü	Ding Ling Lag	442) m	÷	1	*								∢			1						:						ا ،	
nental	Pipe line for	900	τ υ :	!		:	÷	ļ	•	• • ·		i.									-	• ••	-			1 .1 · · · 1				
me	•	1			: 	! 	• • •	-			. .	• •	· •	4	1 .		-				•• • •	•	· • - • • • • • •					• • • • •		
Der I	Boostor Pump	1				-		;	•				i.)4 								•	••• ·						•	•
d Exp			m † }	•	1	1	·		• •	• • • • • •	4			9	. :		· · · · -		·		•••••		.	1						•
a l	Drainage cana Access road		3		i								4		1			: 		, , ,	•								.	
jue,	Access road embankment Farm road		m	•		1	•	1		•]		1				1		•		•	1			- -	r - -	· . :	•
Làir	·	2,866		1		i :	• •		•		; . <u>.</u>				٠		• •	• • • · • •	• •	 	i 						, •• • • • • • •	+ + +- -	• •• • • • •	•••
	Land leveling	68	m³ m²									-		•			>	'				•						• •	**	•
}	Dry floor	72	m -					1				1			;				• •	;			-	:		;		i		•
v	Office and	800							ł	(:	:			i			-		;		:	;	1		÷		: 1	• - • - 1	ł
1.0	Inoculation	<u>· 800</u> 95		Í	i :	!	•					:	.						i	•	•		į •	la ser l		i		•	• - • • • •	•
Facilit	Office and _laboratory Inoculation Nouse Workshop and root	600		Ì	1	•	•		•	· +	:	ļ		:		i :		4] :	1	 :		1		i .			· · ·			
1	MACHINE			į					•) -	·	•	; 	4	t	1				•		• ;		-	1				•	•
- da	storage Fortilizer storehouse	300	<i>p</i> .	1			•		!	┝───	• •		4	1					1	•			t in	•		i. ; , , ,	:	• •	• ••	•
1 1	Storage and	600					• •				1	ł	4 :		:	:	}	<u> </u>	• +	ł		-		•	:			•	•	•
ildin	Dormitory	630			1	1		+	•	 -		1		:	1		•		1		1		ļ - · · •	1	!	1	•	†		•
	Cattle Shee	- And and the state of the stat		1	• • •	1		ł	ļ	}			I		1) — —	∮`	ļ ;	-		i	•					•	!	•	•
-	Generator	50	11 -	1 -	ļ	÷.	1					}	4	•	-		•			: 1		- -	•		•		•		•	
	Work room		Г 4		1	,			ļ	! 	1	;	•		÷		┝	<u> </u>	ŧ.			1			•	,	•			
	Basoline st		2	T 	:					 -	i	ļ	ĺ	1			1	┝	4				•					1	•	-
	Pump room	16	a			•				ł	}			4	ĺ	 ,		i			ļ						!	.	•	•
																									•	1		•		

: :

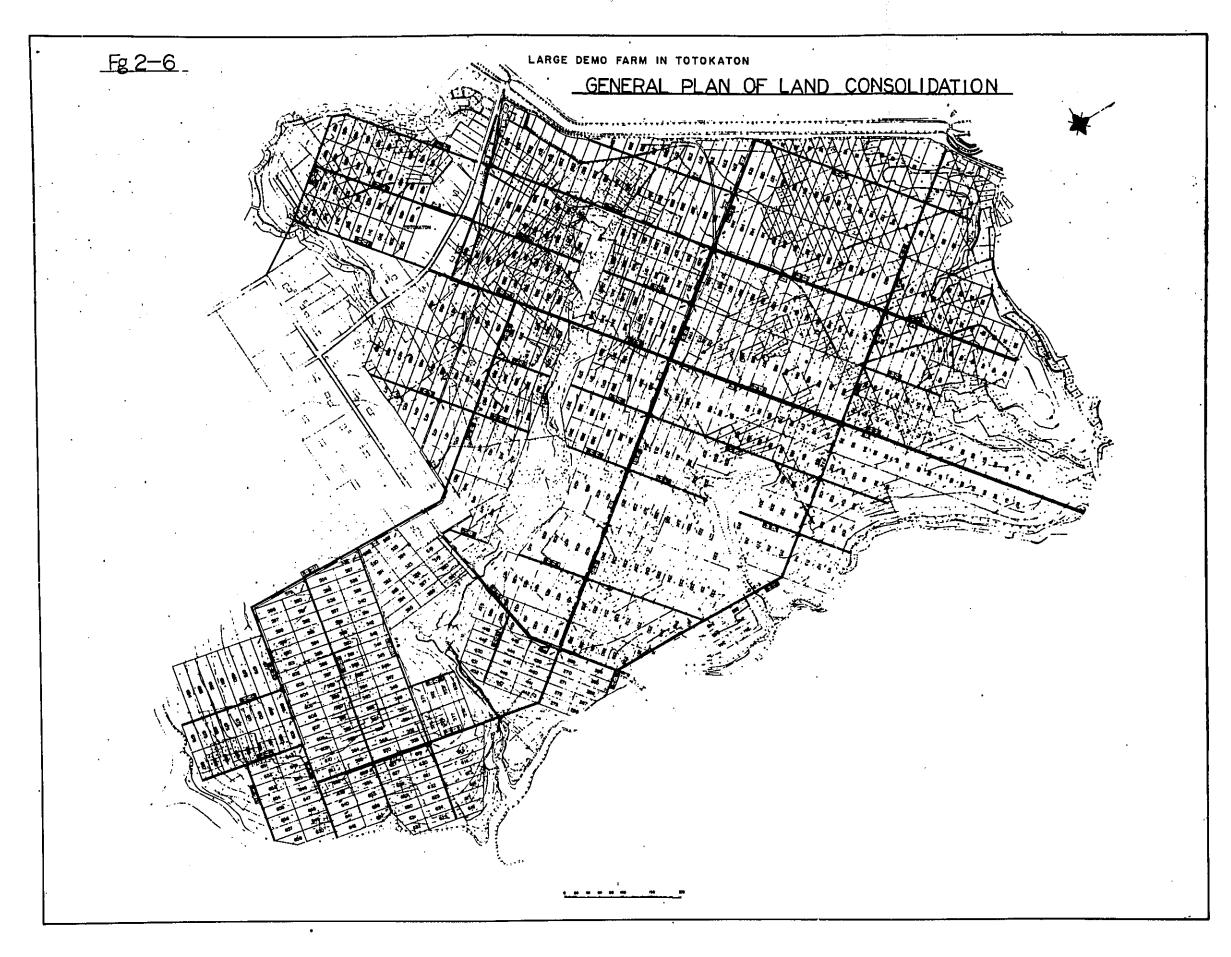
yser ÷. • 8 -! 10 12 - -...... -1 • 1, • • a da sua conditionada ten de la serie en en energie · · · · د منطقه و المرد الدور الدور الدور ال - ; ganani a na shi wa s ÷ *** سار مشعبت مد . . ÷ \$**.** . .**.** ÷ . 4 - ± ÷., • ÷ - ÷ ì • • • - **- --**--, • • • . ~ 00083

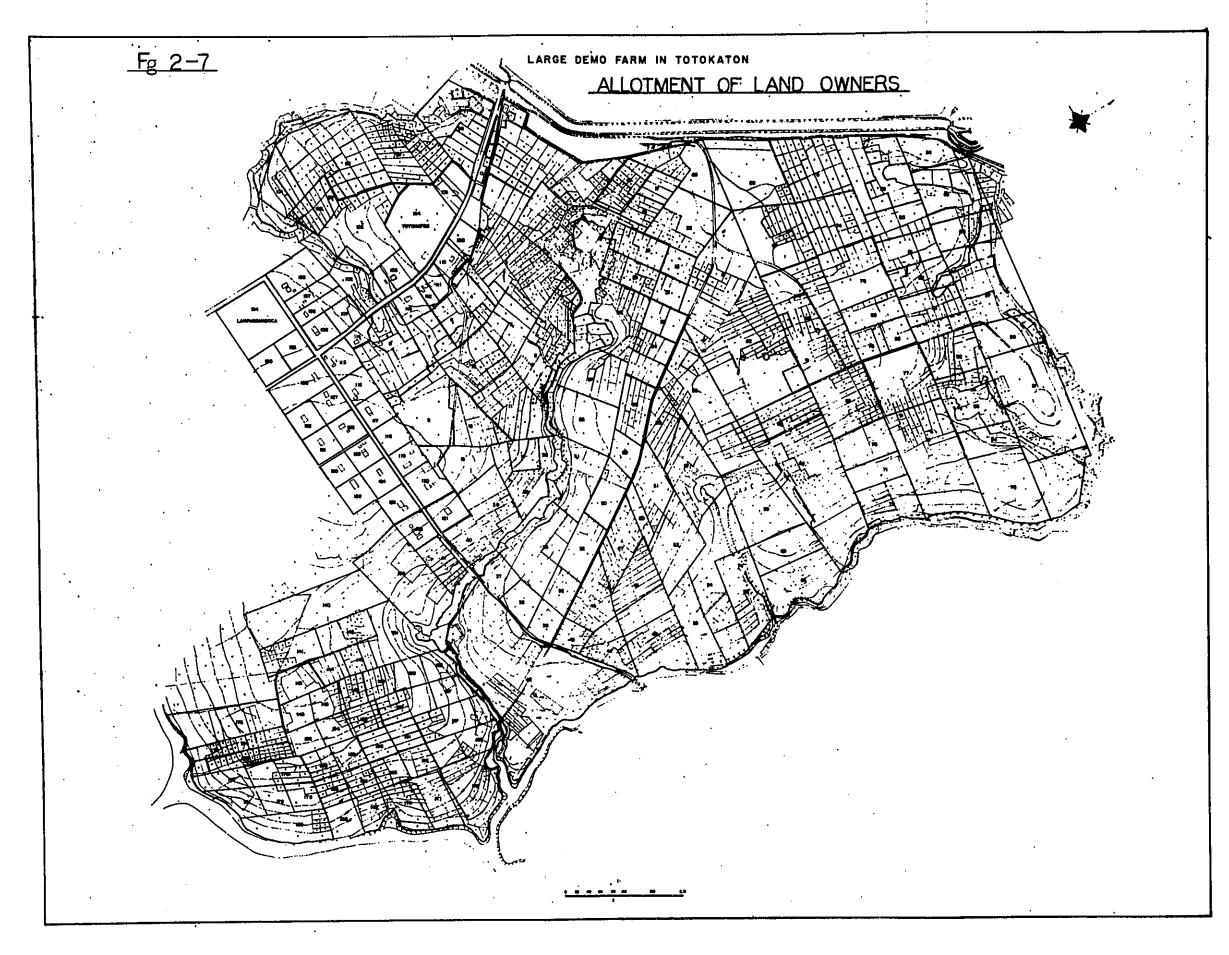
-19-

2-3 Large Demonstration Farm


2-3-1 Land Consolidation Plan

The purpose of this project deals with land improvement, mainly for rice production which is the center of food production of the Tani-Makmur Project. The Government of Indonesia plans to introduce the second cropping and to extend the scope of management to include the development of alang-alang grass.


Outline of Land Consolidation Plan


In compliance with the completion of main canal under the D.P.U., the tertiary canal, which was constructed by Goton Royon due to mutual aid of farmers five years ago, runs on the high land in the direction of east west at the north side of the area, the other one having been traversed along a group of villages in the southern direction as shown in the following diagram. Though the fourth canal is being extended to conform with the degree of reclamation to make the tertiary canal as base, due to shortage of the planning capacity regarding the location and section, circulating irrigation has been adopted occasionally wherever met with shortage of water. Further these are such conditions that regarding water diversion, continuous irrigation has been done after had cut plot borders of field water as may be required and satisfied water control has not been implemented by the reasons of water shortage and ununiformity of cropping. Concerning the drainage canal, there is no drainage system in this area. Although continuous irrigation has been carried out, it is in such a condition that surplus water floods the low paddy fields. As the arable areas are the lands which have been reclaimed by the mutual aid of farmers, the paddy fields are small in area and irregular in shape, the average ploted area is 0.15 ha. Many small ploted areas are located on reclaimed land in swamp areas, average width of each plot is 6-7 m and the difference in height between plots is 30-40 cm. Access roads are not found in paddy fields, farm workers are using the embankment of the tertiary canal and borders of paddy fields as foot paths. Farmers using water buffalo also use the same paddy borders and slowly destroy them in the process.

To rectify the above situation, the land consolidation plan of Fig. 2-5 has been employed. Namely, concerning the irrigation canal, two lines will be installed in the south east direction to follow the present water system and to the utmost will be bank type so as to be able to carry out a complete water management program. The fourth canal will be installed so as to extend water management over an additional 21 plots. Water management in each plot will benefit from the continuous irrigation water provided by the fourth canal. Maximum control area of each turnout will be limited to 3 ha. for controlling the tendency that upstream paddy fields are profitable but not downstream fields, the continuous irrigation reduces the unbalance of arrival time of irrigation water.

-21-

--23--

Concerning the size of the paddy fields, it is considered that as a tentative measure, tillage, weeding and other maintenance and operation tasks will be performed by man and animal powers. Power cultivators in small type will be used in the future, due to the farm management system, progression and improvement of cultivation technics. In view of the present topographic condition, the size of plots will be 20 m x 100 m = 2,000 m² and be 20 m x 50 m = 1,000 m² in less 1/100 of the gradient of topography.

Density and Arrangement of Farm Road

Main Farm Road

Concerning roads in the areas which will become the farming center, two lines of roads will be constructed as shown in Fig. 2-5 to conform with farmers' desires. Roads will be 2.5 m wide and 0.5 m high.

Lateral Farm Road

Lateral farm roads of 1.5 m width, spaced 200 m apart will be constructed to provide easy access to all areas and equipment of each paddy field.

Small Farm Road

Smaller farm road, 1.0 m in width, will be installed in the spacing of 100-200 m in connection with main and lateral farm roads to allow the smaller farm road to connect with one side of each farm area.

2-3-2 Elements of Main Works

General Table of Land Improvement Planning Facilities

		Item	Quantity	Unit	Remark
1.	Irr	igation Area	108.0	ha	
	a.	Net Irrigation Area	89.2	ha	Only paddy field, no upland
	Ъ.	Number of Block	21.0	Block	
	с.	Number of Paddy Field (A)	450.0	No.	Size 50 m x 20 m = 1,000 m ²
	d.	Number of Paddy Field (B)	221.0	No.	Size 100 m x 20 m = 2,000 m ²

2. Irrigation Facilities

	Item	Quantity	Unit	Remark
A.	Irrigation Method			Continuous flowing irrigation
b.	Design Unit Water Requirement	1.84	l/s/ha	Due to design standard of Ministry of Public works, Indonesia
c.	Lateral	4,600	m	Trapezoidal earth canal
	Tertiary Canal	1,413	m	b = 0.5-1.0 m H = 0.7 m n = 1:1
	Fourth Canal	3, 187	m	b = 0.3 m H = 0.5 m n = 1:1
d.	Diversion Devices	41		Overflow weir type, built of Pasangan
	Turnout (A)	6	Place	$B \approx 1.0 m$
	Turnout (B)	7	п	$B \approx 0.5 m$
	Turnout (C)	28	н	$B \approx 0.3 m$
e.	Culvert	54	п	Built of Pasangan, cover built of Pasangan
	Culvert (A)	4	11	
	Culvert (B)	10	н	
	Cuivert (C)	40	п	
£.	Cross Drainage Culvert	3	**	Corrugated pipe
	Culvert D-C-1 D-C-3	2		$\phi = 600$ 1 = 5.0 - 8.0 m
	Culvert D-C-2	1	* *	$\phi = 800$ 1 = 5.0 m
g.	Border	50,715	m	u = 1:1 D = 0.3 m H = 0.3 m

3.	Roa	lds	11,077	m	
	a,	Main Farm Road	1,900	m	B = 2.5 m height of fill 0.5 m
	b.	Lateral Farm Road	5,563	m	B = 1.5 m height of fill 0.5 m
	c.	Farming Road	3,614	m	B = 1.0 m height of fill 0.5 m
4.	Fa	cility Buildings	2.0	Each	Brick made, roofing with galvanized steel plate
	a.	Storage House	1.0	13	
	ь.	Granary House	1.0	11	$24 \text{ m x } 7.5 \text{ m} = 180 \text{ m}^2$

2-3-3 Approximate - Estimation of Construction Cost and Construction Program

.

Construction Costs for Land Improvement will be as following Table

					(Unit	- Yen)
	Item	Quantity	Unit	Currency (Domestic)	Currency (Foreign)	Total Cost
1.	Road	11,077	m	478,491	322,762	801,253
2.	Irrigation Channel	4,600	m	147,100	-	147,100
3.	Culvert	54	Place	398,534	9,558	408,092
4.	Turnout Cross Drainage	41		162,763	-	162,763
5.	Culvert	3		96,378	93,625	190,003
6.	Border	50,715	m	365,120	-	365, 120
7.	Land Leveling	74,017	m ³	222,051	2,294,527	2,516,578
SU	B TOTAL			1,870,437	2,720,472	4,590,909
		-	Rp	28,438	41, 363	69,709 Rp/ha
	oject Cost ha		Yen	20,969	30,499	51,400 Yen/ha
			Dolla r	70	100	170 \$/ha
8.	Facility Building	2	Ridge	3,812,000	-	3,812,000
SU	B TOTAL			3,812,000		3,812,000
то	TAL			5,682,000	2,720,000	8,402,000

Annunit 1 2 3 nd 1900 m 5563 x 3 nd 5563 x 3 1 3614 x 3 3614 x 3 1413 x 4 1413 x 4 1413 x 4 1413 x 1 3187 x 1 3187 x 1 3187 x 1 23187 x 1 3187 x 1	Item And Farm And Farm 2563
--	---------------------------------------

CHAPTER 3. REARRANGEMENT PLAN OF AGRICULTURAL EXTENSION CENTER

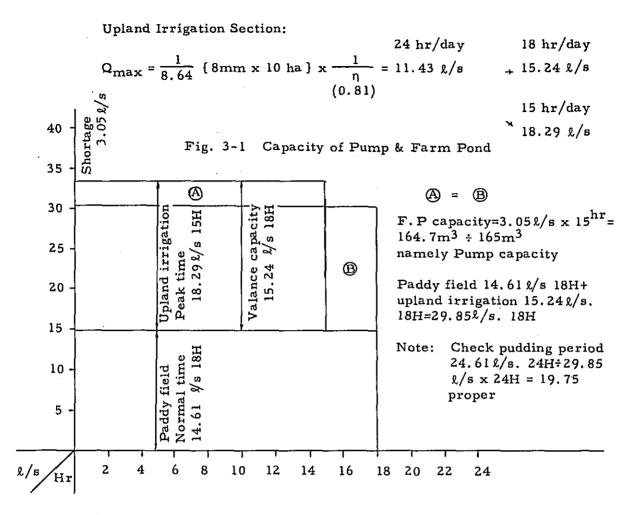
- 3-1 Farm Planning
 - 3-1-1 Scale and Arrangement of Farm

The function of farms will be organized into permanent farm plots and changeable paddy blocks to correspond to various matters such as tests, studies, and exhibitions of agricultural technics. Function of the pilot farm is shown in the purpose paragraph of the second Report of The Agricultural Development Center. Namely, concerning paddy block, it will be the facility to correspond to future conditions. The formation of farm plots will be as reflected in Fig. 2-2. The pilot field will consist of about 5 ha of fields of J-O blocks in the existing seeds growing farm. An upland irrigation pilot farm of 10 ha will be formed with tobacco fields of P.N.P. (State owned farms) located at south side and farmer's upland fields of 7 ha to be purchased at a future date.

3-1-2 Computation of Facility Capacity

Cropping of paddy fields will eliminate fallow land and place for all available land in effective use. The cropping pattern will be established by Fig. 2-3. The water requirement in depth and water requirement of upland irrigation was considered and added to measured values.

1. Water Requirement


As May is the beginning of the dry season, it will become the maximum used period to conform with Fig. 3-1.

Paddy Field Section:

Paddling Curing Water Water 1 ha Growing Water $Q_{max} = \frac{1}{8.64} \{ 130 \text{mm x 1 ha} + 18 \text{mm x 4 ha} \} \times \frac{1}{\eta}$ (0.95) 24 hr/day 18 hr/day = 24.61 $\ell/s \rightarrow 32.81 \ell/s$

 $Q_{\text{mean}} = \frac{1}{8.64} \{18 \text{mm x 5 ha}\} \times \frac{1}{\eta} = 10.96 \ \text{l/s} \rightarrow 14.61 \ \text{l/s}$ (0.95)

So in the puddling end, operation capacity will be 24 hr and stationary capacity will be 10.7 ℓ/s .

2. Water Supply System

A pump Station will be provided on the right bank of dam site for water supply method and will supply the water to the farm pond by pipe line (L = 640m). Water will be provided to the pilot farm of 5 ha by means of a branch pipe from the main pipe line. A booster pump for upland irrigation will be installed on the farm pond and uplands of 10 ha will be irrigated to use sprinklers. The farm pond will be established by the following reasons:

a. In case of installing booster pump for upland irrigation, the total head will be about 80 m at the pump station of paddy fields. Piping cost of water pipes will be extremely high as two pieces of steel water pipes will be utilized in parallel.

b. The head of pumps for paddy fields and the booster pumps for upland irrigation will be extremely different, so no same pump size will be used. Consequently the available ratio of paddy field pumps is low and uneconomical.

c. Installation of farm pond will provide necessary water for daily living in support of several facilities being constructed at the proposed farm land.

3. Pump Capacity

The capacity of water pipes and pumps will be 18 hr, each irrigation hour will be 24 hr in surface soil puddling, 18 hr in normal for paddy fields, and 15 hr for the farm operation of upland irrigation. The facility capacity will be roughly estimated by the water requirement for preparation of paddy fields. Surplus water will be stored in the farm pond and may be used for upland irrigation when desired.

In this case, for adequate operation of pumps to be 18 hr by Fig. 3-1, A = B will be necessary. The pump capacity will be as shown below. (See Fig. 3-1.)

Paddy Field Upland Irrigation Pump Capacity = 14.61 L/s (18 hr/day) + 15.24 L/s (18 hr/day) = 29.85 L/s (18 hr/day) ÷ 30 L/s

4. Farm Pond Capacity

 $18.29 \ \text{l/s} (15 \ \text{hr/day}) - 15.29 \ \text{l/s} (18 \ \text{hr/day}) \times (18 \ \text{hr} - 15 \ \text{hr}) = 165 \ \text{m}^3$

To estimate the above amount of shortage of upland irrigation water and the same amount required for daily living and the amount of percolation and evaporation, the storage capacity will be $165 \times 2 = 330 \text{ m}^3$.

3-1-3 Paddy Irrigation Pilot Farm

1. 5 ha of pilot paddy farms will be blocked to 1 ha (200 m x 50 m) as Fig. 2-2. Farm roads 6 m wide will be provided along the long side of each block. A main road 10 m wide will be provided along the short side of each block.

2. Hydrants will be provided in every 20 m along the upper portion of the long side of the block. Earth canal of side slope, 1:0.5 and bottom width 0.3 m will be provided as a drainage canal on the low level side. The water pipe and water supply pipe leading from the pump to the dam to provide drainage in the south side road in the short side direction, will be vinyl chloride pipe (JISK 6742). Regulating valves will be fitted to the approach of water supply pipes.

3-1-4 Determination of Size of Pump

1.	Ele	ments of Pump	
	a,	Design pump lift capacity	$0.03 \text{ m}^3/\text{s}$
	ь.	Number of pumps	2 units
		Pump lift capacity per unit	0.015 m ³ /s
	c.	Type of pump	Single suction volute pump
	d.	Design intake level	EL 43.00
	e,	Design discharge level	EL 49.50
	£.	Actual head	6.50 m
	g.	Suction pipe	100 m/m
	h.	Water supply pipe (solid vinyle	
		chloride pipe)	ϕ 150 L = 462 m

2. Head Loss

Velocity of flow in pipe $V_1 = \frac{Q/2}{4} \times D^2 = \frac{0.015}{3.14} \times 0.10^2 = 1.91 \text{m/s}$

Velo	ocity head	$V_1 2/2 g = 0.186$
a,	Inlet loss	$h_1 = f_1 V_1^2 = 0.2 \times 0.186 = 0.037$ $\frac{1}{2g}$

b. Friction loss

In case of obtaining the loss per m as C = 100 by William Hazen formula:

Length of suction = 12.3 m

 $h_2 = 0.065 \times 12.3 = 0.80 m$

c. Bend loss

 $h_3 = f_3 \frac{V^2 3}{2g} = 0.13 \times 0.186 = 0.024 m$

d. Valve loss

Foot value and sluice value $f_4 = 1.50 \pm 0.14 = 1.64$ Discharge pipe (\$\$\overline\$ 60 mm\$) velocity of flow V = 2.98 m/s Velocity head in discharge pipe $\frac{V^2}{2g} = 0.453$ m $h_4 = 0.186 \times 1.5 \pm 0.453 \times 0.14 = 0.342$ m

e. Transition loss

 $\phi 80 - \phi 100$ f₅ = 0.35

 $h_5 = 0.35 (0.453 - 0.186) = 0.093 m$

Confluence loss f.

> 1.70 m/s ϕ 150 mm velocity of flow in pipe $\frac{v^2}{2g} = 0.147 \text{ m}$

 ϕ 150 mm velocity head in pipe

 $f_6 = 0.46$

 $h_6 = 0.46 \ge 0.147 = 0.068 m$

Friction loss of water pipe g.

Solid vinyl chloride pipe of 150 mm in diameter will be used. In case of obtaining the loss by the Chart of William Hazen formula as C = 140, the loss will be 1.4 m/100 m. Therefore, total length of water pipe = 462 m.

 $h_7 = 1.8 \times 4.62 = 8.316 m$

Bend loss of water pipe h.

 $f_8 = 0.15 \times 4$ places = 0.6 R/D = 2.0 (90° Bend)

 $h_8 = 0.6 \ge 0.147 = 0.088$

i. Outlet loss

 $f_q = 1.0$ $f_9 = 1.0 \ge 0.147 = 0.147$

From the above, the total head loss will be:

h = 0.037 + 0.800 + 0.024 + 0.342 + 0.093 + 0.068+8.316+0.088+0.147=9.915 m

Accordingly, the total head loss will be:

T. Head = 6.50 + 9.915 = 16.415 m

Estimate about 10 % surplus, 16.415 x 1.1 ÷ 18.0 m

Determination output of Prime Mover (Diesel engine)

 $Pw = 0.222 \times r \times Q \times H$ (1) Water horsepower $= 0.222 \times 1.0 \times 0.90 \text{m}^3/\text{m} \times 18.0$ = 3.6 (PS)

(2) Shaft power $Pm = \frac{Pw(1 +)}{q_p \times q_t}$ Where, = Surplus 20 % q_p = Pump efficiency 59 % q_t = Drive efficiency 95 % $P_m = \frac{3.6(1 + 0.2)}{0.59 \times 0.95} = 7.7 (PS)$

The prime mover will be 10 (PS) of Diesel engine of 1,800 R. P. M.

3. Study on Water Hammer

L = Length of Pipe	382 m
K = Volve elastic modulus of water	$2.07 \ge 10^8 \text{kg/m}^2$
E = Longitudinal elastic modulus of pipe	$2.5 \ge 10^8 \text{kg/m}^2$
D = Inner diameter of pipe	0.148 m (V.P.)
t = Thickness of pipe	0.0085m (V.P.)
a = Pressure Propagation Velocity	(m/sec)

(1) Pressure Propagation Velocity

$$a = \frac{1420}{1 + \frac{K}{E} \frac{D}{t}} = \frac{1420}{1 + \frac{2.07}{2.5} \times \frac{108}{108} \times \frac{0.148}{0.0085}} = 324 \text{ m/sec}$$

(2) Velocity of Flow in Pipe

$$= \frac{Q}{60 \times \frac{W}{4} \times D^2}$$
 Q = 1.8 m³/min
= $\frac{1.8}{60 \times \frac{W}{4} \times (0.148)^2}$ = 1.744 m/sec

(3) Constant of Pipeline: P

 $2P = \frac{a. to}{g. h.}$ Where, g: Gravity acceleration 9.8 m/sec

- Ho: Total head 18 m
- (4) Up-Surging
 - (a) In case of rapid valve closing

Valve closing time To

$$T_{0} = \frac{2L}{a} = \frac{2 \times 382}{324} - 2.36 \text{ sec}$$
$$H_{max} = \frac{a.v_{0}}{g} = \frac{324 \times 1.744}{9.8} = 57.66$$

Therefore, as the water pressure proof of V.P. will be 6.0 kg/cm^2 (normal pressure), $5.77 \text{ kg/cm}^2 < 6.0 \text{ kg/cm}^2$ will be sufficient.

3-1-5 Pilot Farm of Upland Irrigation

- 1. Topography and Climate Condition of Irrigation Area.
- 2. Determination of Amount of Irrigation Water Required.

a. Crops for irrigation and determination of its consumption of water (See 3-1-2 & 3-2-5A).

b. Irrigation area. Au = 10 ha

c. Determination of amount of irrigation water for one time irrigation. In case of water requirement in depth in use. (Wd = 50mm)

Layer	Depth of Root Zone	Crop Water Con- sump- tion Ratio	F.C. 24	D.F. 3.0	Assumed Specific Gravity	А.М.	Limit- ted layer	T. R. A. M.	Amount Irriga- tion Water/ Time
1	lOam	40%				mm 22.4	lst layer	55.8mm	55.8mm
2	10	30							x 0.85
3	10	20	30%	10%	1.12	11			≠ 50 mm
4	10	10				11			
Total	40		·			89.6			

d. Irrigation interval - Days necessary for covering irrigation area, 6 days.

T.R.A.M. 2	x 0.35	Daily Maximum Co Water for Irrigatio	-	Irrigation Interval	
50 mm		8 mm/day	7	$\frac{50}{8} = 6.22 \pm 6$	
e.	Daily oper	ration's time	T = 15 hrs		
f.	Water req	luirement			
		requirement ter requirement	8.0 mm/day 8.0 = 0.81 = 9.9 mm/day = 1.14 %/s/ha		
How	vever, irri	gation efficiency wi	11 be:		
	Ec = Wate	Ea = 0.95 x 0.85 = (er movement efficie er application efficie	ncy		

3. Elements of Sprinkler

4.

From of irrigation area. (See Fig. 2-2) a. 200 m x 100 m block ---- 2 blocks Rectangular 150 m x 100 m block ---- 2 blocks 150 m x 50 m block ---- 4 blocks Length of sprinkler lateral (See Fig. 3-2) ь. Length of one side of blocks 92 m In case of 100 m In case of 75 m 68 m Type and capacity of sprinkler c. Intermediate pressure type, Rain Bird No. 30B equivalent, Nozzler size 3/16" x 3/32" 7° Working Pressure 3.16 kg/cm² $32.4 \, 1/min$ Precipitation amount Precipitation diameter D-29.9 m d. Distance of sprinklers (S_1) and of laterals (S_2) $S_1 = 12 \text{ m}, \quad S_2 = 18 \text{ m}$ Number of sprinklers e. Length of laterals, in case of 92 m 8 (See Fig. 3-2) in case of 68 m 6 (See Fig. 3-2) Sprinkling Strength and Set Number Sprinkling Strength a. $1 \text{ (mm/hr)} = \frac{60 \text{ x q}}{S_1 \text{ x } S_2} = \frac{60 \text{ x } 324}{12 \text{ x } 18} = \frac{1940}{216} \div 9.0 \text{ mm/hr}$ Irrigation hour requirement ь. $t_1 = \frac{Wd \times 1/Ea}{1} = \frac{50 \times 1/85}{9.0} = 6.55 \text{ hrs}$ Moving and setting hours $t_2 = 0.5 \, hrs$ с.

d. Lateral hour requirement $t_1 + t_2 = 6.55 + 0.5 = 7.05$ hrs Number of moving per day 7.05 hr x 2 times = 14.1 hrs

moving, 2 times

- e. Determination of set number required.
 - A type = sprinkler 8 numbers, length of lateral 92 m q6 = 32.4 1/min x 8 = 259.2 1/min

Covering area (ha) of 1 set per day. Covering area of 1 set 100 m x 18 m = 1,800 m² Two time movement per day 1,800m²x2=3,600m²/day In 6 day irrigation interval. Covering area 3,600 $m^2/day \ge 6 day = 2,600m^2 = 2.16ha$ In case of B type sprinkler 6 sets Length of lateral 68 m $q_6 = 32.4 \ 1/\min x \ 6 \ sets = 194.4 \ 1/\min$ Covering area (ha) of 1 set 75 m x 18 m = 1,350 m^2 Two time movement per day 1,350 m² x 2 = 2,700 m²/day Covering area 2,700 $m^2 x 6 days = 16,200 m^2 = 1.62 ha$ In case of A type 2 sets, areas supplied in 6 days will be: 2.16 ha x 2 = 4.32 ha 4.0 ha proper In case of B type 3 sets, areas supplied in 6 days will be: $1.62 \text{ ha} \ge 3 = 4.86 \text{ ha} = 6.0 \text{ ha}$ improper In case of B type 4 sets, areas supplied in 6 days will be: $1.62 \text{ ha} \ge 4 = 6.48 \text{ ha} = 6.0 \text{ ha}$ proper

5. Determination of System Capacity

a. Field stream $Q_f = \frac{9.9 \times 10}{8.64} \times \frac{24}{15} = 18.29 \text{ 1/sec/10 ha}$

 $= 1,097.4 \ 1/min/10 \ ha$

b. Rotation block area A = $\frac{18.29}{0.185 \times 9.9} \neq 10$ ha

c. But A type sprinkler set 259.2 1/min x 2 set = 518.4 1/min/set B type sprinkler set 194.4 1/min x 4 set = 777.6 1/min/set
6 set/10.8

For running 6 sets at the same time, it will become 1,296 1/min 1,097.4 1/min. Therefore, it will be regulated by farm pond.

In case of 1,097.4 1/min of field stream, 10 ha will be supplied in 6 days and in 1,296 1/min of field stream, 10.8 ha will be supplied in 6 days. d. In this pilot farm, the system capacity will be the capacity of 6 sets which will be operated at the same time.

6. Determination of Size of Main and Lateral Pipes

a. Arrangement of main pipe (see attached diagram). The structure of water pipe and hydrant will be useful in maintenance and operation. Pipes will be classified with regulating valve from water supply pipe. An underground hydrant system will be installed to prevent damage to farm area.

b. Size of Main pipe: The diameter of pipes was decided in the scope of the velocity of flow in pipes, v = 1.0 1.5 m/s from the computation of friction head loss (see paragraph 3-1-4, 2). Asbestos cement pipe and solid vinyl chloride pipe (JISK 6742), were selected.

c. Arrangement and Size of Lateral Pipe: The lateral pipe will be portable type, the arrangement will be that of A-1, A-2, B-1, B-2, B-3 and B-4 in Fig. 3-2. The size of laterals will be decided so as to be 20 % or less difference between the first and the end of each lateral.

A-type (8 piece stand $q = 259.2 \ 1/min = 4.32 \ g/s$)

 $\phi 50 \text{ mm Almi } H_{f} \neq \frac{140}{1000} \qquad V \neq 2.3 \text{ m/s} \\
0.4 x H_{f} = 0.4 x 92 x \frac{140}{1000} = 5.16 \qquad 6.3 \dots \text{ proper} \\
* 3.16 \text{ kg/cm}^{2} x 0.2 \neq 0.63 \text{ kg/cm}^{2} \qquad 6.3 \text{ m} \\
B-type (6 \text{ piece stand}) \qquad q = 194.4 \text{ } \text{l/s} = 3.24 \text{ } \text{l/s} \\
\phi 50 \text{ mm Almi } H_{f} = \frac{63}{1000} \quad v = 1.55 \text{ m/s} \\
0.4 x H_{f} = 0.4 x 68 x \frac{63}{1000} = 4.28 \\
\neq 4.3 \text{ m} \qquad 6.3 \dots \text{ proper}$

7. Determination of Required Power

a. Determination of Head Required

(1) Loss of the structure of main pipe and supply hydrant. Design condition will be the structure of hydrant at the end of water supply pipe, L5.

 $1 = 1_{1} + 1_{2} + 1_{3} = 125 + 180 + 317 = 622 m$ $H_{s} = H_{f1} + H_{f2} + H_{f5} = 1.5 + 1.8 + 7.6 = 10.9 m$ Loss of stand pipe with Machino's type, angle pipe, $\oint 2'' = 2.5 m$ H = 10.9 + 2.5 = 13.4 m

--37--

(2) Loss of Lateral Pipe

In case of applying water pressure of 3.16 kg/cm² by the sprinkler at the end of B- 3 set, $0.4 \times H_f = 4.3 \text{ m}$

- (3) Pressure of Sprinkler ---- 3. 16 kg/cm²
- (4) Loss of Pump 3.60 m

Required head 13.7 + 4.3 + 31.6 + 3.6 = 53.0 mEstimate about 10% surplus $53.0 \times 1.1 = 58.3 \text{ m} \neq 59.0 \text{ m}$ Output of motive power $P_W = 0.222 \times r \times Q \times H$ $= 0.222 \times 1.0 \times 1.32 \times 59.0$ = 17.3 (PS)

Shaft power $P_m = \frac{Pw(1+)}{q_p x q_t} = \frac{17.3(1+0.20)}{0.59 x 0.95} = 37.0 PS$

- : Surplus 20 % q_p: Pump efficiency 59 %
- q_t : Transmission efficiency 95 %

The prime mover will be 40 PS of Diesel engine of 1,800 R. P. M.

- 8. Elements of Booster Pump
 - a. Design pump lift capacity: $0.022 \text{ m}^3/\text{s} = 1.32 \text{ m}^3/\text{min}$
 - b. Type: Horizontal multistage suction volute pump:
 125 mm aperture 1
 - c. Design intake level: EL 46.50 m
 - d. Center height of pump shaft: 49.50 m
 - e. Intake pipe: 125 mm steel pipe
 - f. Water pipe: 125 mm steel pipe

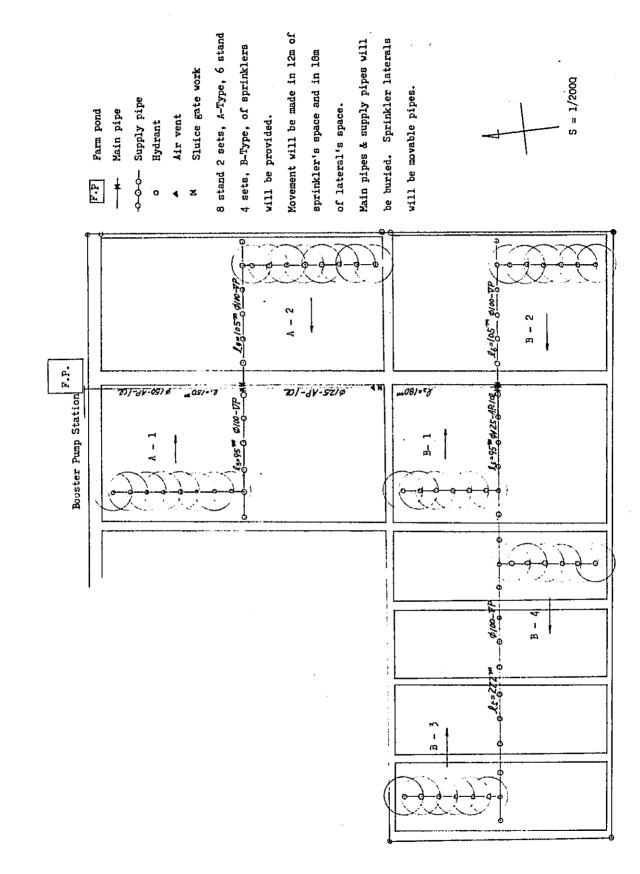


FIG 3-2 SPRINKLER IRPIGATION LAYOUT (PLANE)

3-2 Facility of Water Source

3-2-1 Topography and Geology

1. Topography

The Agricultural Development Center is located on the plateau of a small hill, low paddy fields are located between small hills. The difference in elevation between plateau and low paddy fields will be about 4-8 m. Topographical gradient at the neck part of the low paddy field upstream of the proposed dam site is less than 1/100, and here low paddy fields branch into three directions at a point 560 m from the dam site. The largest area is about 1,400 m in length, and about 70 m in average width from the junction. Catchment area (2.73 km²) was determined by the result of the survey.

2. Geology

The Tegineneng Center consists of high land and low lands formed by torrents of water during past rain seasons. On the whole, soil is gray brown in color and of Laterite type, which is a characteristic of tropical zones and covers the entire surface. This layer will be 15-20 cm in thickness and changed into cohesive soil containing soil in gray white color to the lower layer and a layer containing weathered iron of gray brown is mixed with cohesive soil of gray white at over 1.00 m in depth and the lower layer will become fine sand and silt layer containing coarse sand and gravel at 170-200 cm in depth. In the excavation of test pit, the test hole has been excavated vertically and no failure of walls could be found. The revealed water level of ground water has been different in each hole.

3-2-2 Survey and Test Result

1. Foundation Survey and Test Result

Concerning the foundation of the dam site, the observation with the naked eye of the substratum under surface soil, the measurement of the thickness of course, the analysis of structural component, the estimation of underground water level have been made to excavate four test pits of 1.5 m in depth at the distance of about 14 m on the proposed dam axis line. (The locations of test pit, see Fig. 1, Dam Lateral-Profile), and the specific gravity, natural moisture percentage and analysis of grain size have been carried out to collect sample, from representative layers of test pit 1 and 2.

a. Geology Survey

The foundation of dam site consists of cohesive soil containing silt at the substratum of surface soil and sandy soil containing gravel, sandy silt and clay at the lower part. A summary of the investigation and results are as follows:

		Test	t Pit	_	Total Thick-	Average Strata	
	No. 1 (m)	No. 2 (m)	No. 3 (m)	No. 4 (m)	ness Strata	Thick- ness	Remarks
Surface Soil	0.20	0.12	0.20	0.10	0.72	0.18	0.18
Sanday Silt	0,20	0.18	0.10	-	0.48	0.16	0.34
Silt *	0.50	0.60	0.70	0.50	2.30	0.575	0.915
Cohesive Soil Containing Silt	0.70	0.40	0.80	1.00	2.90	0.725	1.640
Sanday Silt Containing Gravel	0.70	1.00	0.80	0.60	3.10	0.775	2.415
TOTAL	2.30	2,30	2.60	2.30	-	-	

Table of Soil Strata at Dam Site

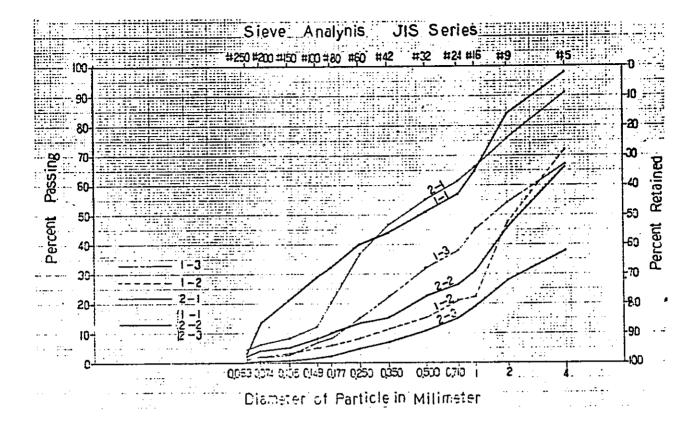
b. Rest Result

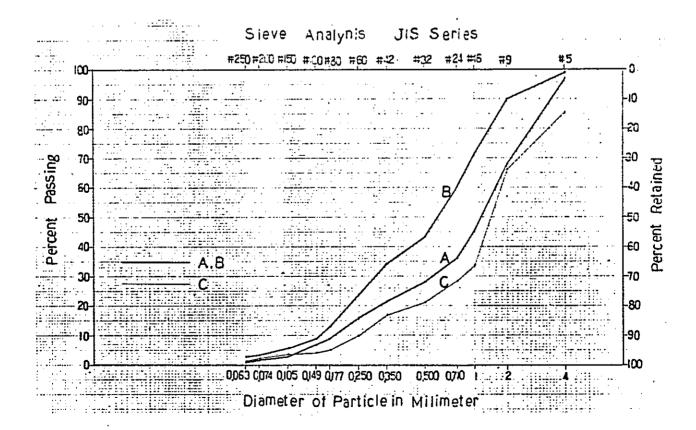
(i) Coefficient of Permeability

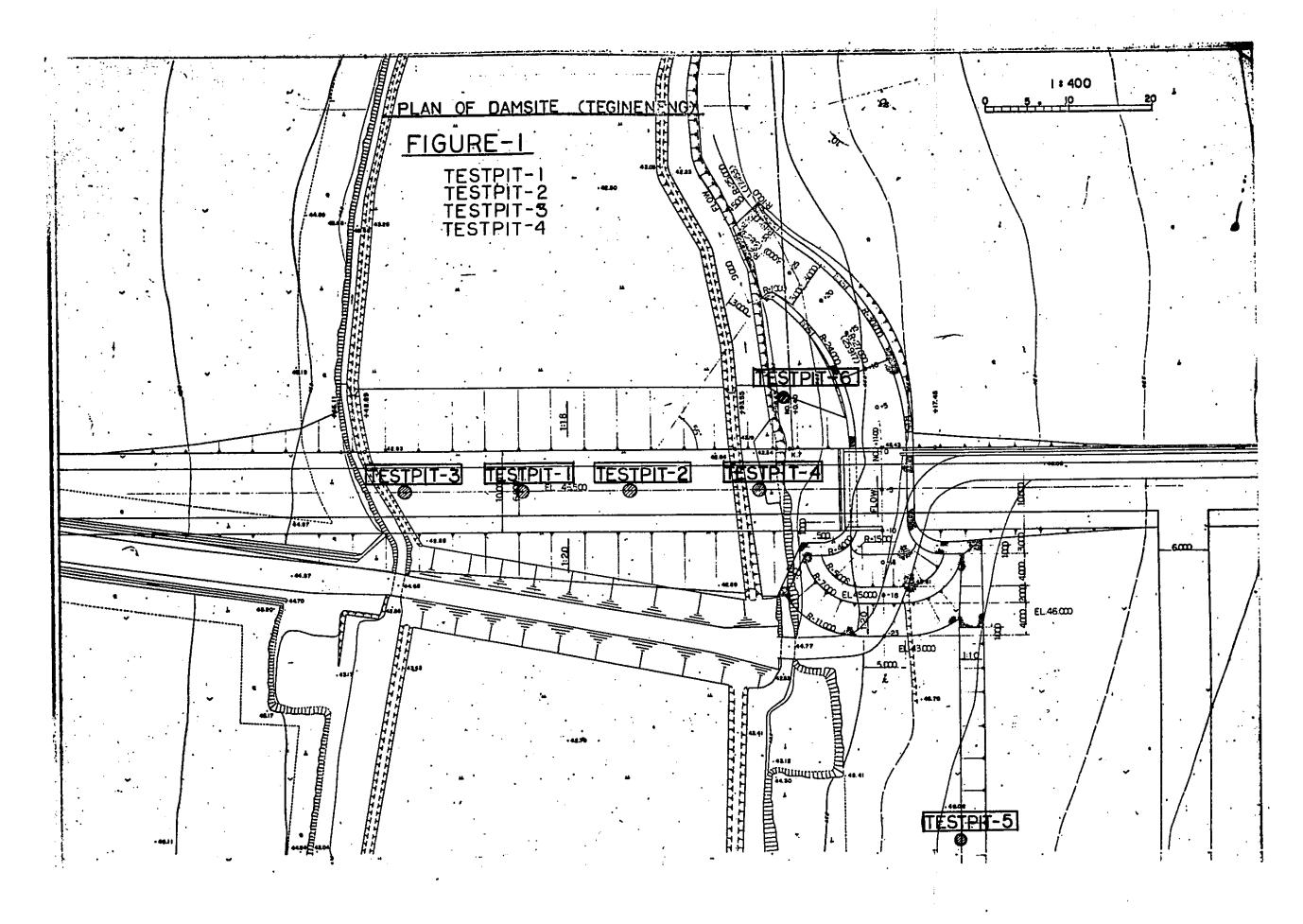
Tal	ble
-----	-----

Coefficient of Permeab. Soil Texture	K (cm/sec)	Remarks
Sandy Silt and Clay	5.5×10^{-4}	
Sandy Silt and Gravel	4.5×10^{-3}	

(ii) Soil Constant


.


.


Table

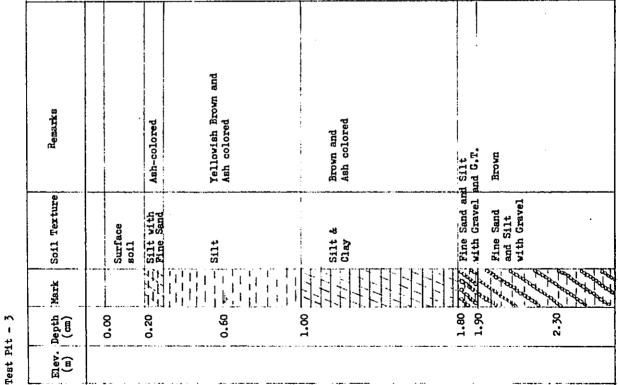
٠

Sample No.	Sample	• •	Gravity GS	Natural Moisture Content WF (%)		Particle		Mean Factor	Curva- ture	Classifi- cation	Remarks
		Depth D(m)			D60	D30	D10	Cu	Factor Cc		
1-1	0.5D	0.50	2.513	10.11	0.668	0.200	0.123	5.43	0.49	SW-SM	Pin hole
1-2	100C 1.00	1.00	2,390	31.80	3.000	1.300	0.310	9.68	10.41	SP	
1-3	2.00B	2.00	2.616	24.76	3,00	0.455	0.200	15.00	0.35	SP	
2 - 1	0.70	0.70	2.617	15.23	0.830	0.155	0.071	11.69	0.40	SW-SM	
2-2	1.20	1.20	2.225	7.15	3.400	0.942	0.177	19.21	1.47	SP	Pin hole
2-3	230A	2.30	2.520	9.67	-	2.200	0.440	-	_	-	

-43-

Remarks		Ash-colored	Yellovish Brown and Ash-colored	No.2-1)	Brown and Ash-colored	No.2-2)			Втомп	Ho. 2-3)
Soil Texture	Surface Soil	Silt with Fine Sand	silt	← (Sample No.2-1)	Silt and Clay	Sample	Fine Sand and Silt with Gravel		Fine Sand and Silt with Gravel	e ← (Sample
Mark								44 49 49 49 444 494 494 494 444 494 494 494	AND	
Depth (m)	8.0	0.12	0.30		0.9 -0		1.30		1.90	2.30
Elev. (m)		- ha ann in 180								·

Yellovish Brown and Ash-colored Brown and Ash-colored Ash-colored Remarks Left Fine Sand and Brown Silt with Cavel 0.90 //// (Sample No.1-2) Silt (Sample To.1-1) (Sample No.1-3) 1.60 Frine Sand Frine Sand and Silt with Gravel and (Samula Wo Depth Mark Soil Texture (m) جزيخ Silt with Surface Soil 2.3012 2.001 0.20 0.40 8.0 Пеу. (ш)


Test Pit - 2

•

Test Pit - I

-44--

Г		·····		r	T
	Remarks		Ash-colored	Brown and Ash-colored	
	Soil Texture	Surface Soil	Silt	Silt and Clay	Coarse Sand
	Mark				
	Depth	00 . 0	0.20	0.70	1.70
	Elev (m)				

Test Pit - 4

--45--

2. Investigation of Banking Materials and Test Results

a. Proposed banking materials will be collected from the plateau on the right bank immediately upstream of the dam site. The reasons for deciding on the plateau as borrow pit are that the average distance of transporting the earth to the proposed place of banking is quite close (70 m) and that works such as surface soil removal and excavation from the reservoir basin will be easy and economical.

b. The test of soil analysis has been executed to collect soil samples from the proposed place of borrow pit for judging the suitability as banking material. Its results will be summarized according to the following table.

(1) Survey of Amount of Assessment

Borrowing area of the proposed borrow pit of dam materials will be A = 3,300 m², borrowing mean depth, D = 2.0 m.

Therefore, the amount of assessment, V will be:

 $V = 3,300 \text{ m}^2 \times 2.0 \text{ m} = 6,600 \text{ m}^2$

(Concerning its shortage, the amount of the excavated soil of spillway, 1,080 m^3 will be used.)

(2) Test of Dam Materials

The test has been made for the estimation of suitability for banking material. Concerning the borrowing location, test pit - 5, test pit - 6 are shown in the general plan (1:200).

Sample No.	Sample	Sampling Depth D (m)	Gravity	Moisture Content W (%)	Practicle			Mean	Curva- ture		Remarks
			Gs		D60	D30	D10	Factor Cu	Factor Cc	cation	
A	F.A.	0.7	2.51	-	1.600	0.598	0.192	8.33	2.16	SP	Farm
в	F.B	0.8	2.53	33.8	0.710	0.310	0.157	4, 52	0.86	SP	Borrow pit
С	DamR	0.0	2.51	-	1.800	0.797	0.257	7.20	1.41	SP	Spillwa y

3-2-3 Dam Axis and Dam Type

.

1. Determination of Dam Axis

The dam axis will agree with the center line of the main road of 10 m in the farm as shown in the general plan.

2. Determination of Dam Type

According to the result of geological survey in the borrow-pit and spillway area, it was concluded that both soil was nearly the same. A homogeneous type dam was adopted by considering the scale of Dam and the execution of the work.

3-2-4 Determination of Design Flood Discharge

1. Probable Rainfall

a. Rainfall Data (Period 1952-1970, in Metro)

Date	Daily R	Daily Rainfall					
1952 November	131 mr	n/day					
1953 May	144	† †					
1954 May	81	11					
1955 March	130	н					
1956 August	144	н					
1957 January	87	11					
1958 January	103	11					
1959 May	68	11					
1960 December	90	11					
1961 February	115	11					
1962 September	134	11					
1963 February	105	11					
1964 January	120	f f					
1965 November	75	**					
1966 April	80	н					
1967 January	56	11					
1968 July	96	н					
1969 April	95	11					
1970 January	109	11					

	/n	Daily Rainfall	Date
1 .	0.053	144 mm/day	1953 May
2	0.105	144 "	1956 August
3	0.158	134 "	1962 September
4	0.211	131 "	1952 November
5	0.263	130 "	1955 March
6	0.316	120 "	1964 January
7	0.368	115 "	1961 February
8	0.421	109 "	1970 January
9	0.474	105 "	1963 February
10	0.526	103 "	1958 January
11	0.579	96 "	1968 January
12	0.632	95 ^{יי}	1969 April
13	0.684	90 ^{''}	1960 December
14	0.737	87 "	1957 January
15	0.789	81 "	1954 May
16	0.842	80 "	1966 April
17	0.895	75 ''	1965 November
18	0.947	68 ''	1959 May
19	1.000	56 "	1967 January

- b. Computation of Probable Rainfall and Results
- (1) Computation

.

.

The computation was performed by computer.

۰.

PROBABILITY RAINFALL IN METPO ***** ****

.

TABLE TE OPOBABILITY PAINEALL (1)

	44*44	•			0.0137		•	•						r.0121	•		•			•	
	VV .	0891°0	-	, - i	-	-	Ċ	۷.	٠.	٢,	ارب ا	C.	٤.	-0 - 0461	ť.,	L,	C.	-	-	<u>د</u>	
	[[10] [X]+3]	•158	.158	.127	5-1173	.113	• ت 7 a	رينا ا	しゃん.	120.	• r12	• n.32	. 077	54	~	àuc.	lijo.I	10 10 10 10 10 10 10 10 10 10 10 10 10 1	"	£ 4	•
	ʻ±+ 1X	44	44	4	131. 50	55	ي ئ	u.	ę	Ľ,	"			U J J J J J J J J J J J J J J J J J J J			٠	25 • د ت		55.71	
	(1X)90T	.153	•15a	.127	-117	•113	.079	19J.	+C37	0.21	210.	- 9 RZ	-770.	1.7542	456.	α 	• 303	.875	2, 8.	5	
•	XI	.+	. 7		_		e .	10	~	10	- 	. ^	10	ປີ 26	~	-		10	610	. Co	
	0N	-	(\;	r i)	t	u٦	6	~	a	U	1,	11	12	15	71	۲. 		17			

ABILITY RAINFALL IN METRO ***** ŝ Ĺ ļ. ž

TABLE OF PROBABILITY RAINFALL (2)

B X

1 = = = = =

ц i

•

cć ÷D

!

;0

.

ບ :

į

KSI' ÷

i

,3

;

4

:

į

į

ł

:

•

1

ţ

124,98 100-09

i

Į

124.98

2.0968 2.0968 2.1473

2.0004 2.0004 2.0004 2.0004

8.7257 8.7257 8.7257 8.7257 8.7257

9.9062 . 4522 -6450

10 × 20

001

<u>0.5951</u>

İ

0.0965

0.0

20.31

0.0

172.09 184.93 40.37

2.2358

- ;	Ľ.
	냁
- 1	-
	z
	_
1	•
1	
÷	-
	2
1	
	느
1	Z
	-
	-
- 1	¢
-1	
ļ	>
ł	*
- 4	
	-
1	đ
1	4
	2
- 4	С
1	2
1	Τ
	-
1	
-	10
	1

-49-

(2) Results

2	year	100.09 m	m/day
5	, II	124.98	П
10	11	140.37	11
50) II ¹	172.09	н
100) II	184.93	H i

Results of Computation of Probable Daily Rainfall

2. Design Flood Discharge of Spillway

a. Determination of Design Flood Discharge

(1) Determination of Design Rainfall Intensity

The design rainfall intensity will be calculated by the following formula:

$$r_{t} = \frac{r24}{24} \left(\frac{24}{t}\right)^{n}$$

Where, r_t: Design hourly rainfall intensity (mm/hour)

- r24: Probable daily rainfall of 100 years 184.93 (mm/day)
 - t : Arrival time of flood 1.0 hour
 - n: Precipitation index 0.5
- $r_t = \frac{184.93}{24} \left(\frac{24}{1}\right) 0.5 = 37.75 \text{ mm/hour}$
 - $37.75 \times 1.2 = 45.3 \text{ mm/hour}$
- (2) Determination Design Flood Discharge

The design flood discharge will be calculated by the following formula:

$$Q = \frac{1}{3.6} \cdot f \cdot r_t \cdot A$$

Where, Q: Design flood discharge m^3/sec

f:	Rounoff ratio	0.55				
r _t :	Design rainfall instensity	45.3 mm/hour				
A =	Catchment area	2.73 km ³				
$A = \frac{1}{3.6}$	x 0.55 x 45.3 x 2.73 = 18.8	9 m ³ /sec				

Therefore, the design flood discharge will be $18.9 \text{ m}^3/\text{sec}$.

3-2-5 Determination of Scale of Dam Body

1. Design of Reservoir

The scale of reservoir will be decided by field investigation survey and data concerned.

a. Reservoir Water Level and Reservoir Height-Capacity Curve.

The reservoir capacity has shown the relation with the resorvoir water level due to the topography survey. (See Reservoir Height-Capacity Curve.)

- b. Reservoir Capacity
- (1) Determination of Net Reservoir Capacity

(a) Designed Basic Year: The designed basic year will be probable rainfall of 10 years and be computed with the rainfall in dry season which is a definite factor and the year of 1966 has been adopted.

	ļ .			ł	, ,		i 		. H		Curve		.				+		•		: 					
				Ţ	:						Rea	ervo	r C	apaci	v		210,	• 000	6,3	20 = .	203,6	80 m	: •		: •	
							•		 		Eſ	ecti	re S	torage	саря	oity	(108	s 207	6)		164,0	00 m ³	ş : 			
					; 1	1										.; .					1		 			
		15.	00						FWL.	45.00	:.														. د. مع <u>د د</u>	
Ĺ													, . 			ŗ	ļ						!			
		4.	00 -			:		 						<u> </u>	ļ					; 	· · · · · · · · · · · · · · · · · · ·		· · ·		: .	
r le	. 	:				 	 			<u> </u>					. .			 					 		: • •••••	
Water	 	43.	bo		 	Surf	106 C	Ac	 umul	ating	San			-	· · · · · · ·					 	<u> </u> +	 	} }	‡ : ‡		
(m	<u>)</u>				/					 	 	[.]				 	 								· .	
		2.	x	1					. i. 			1 	. . 							 	.: 			 		
	. . 				•····			· ·,			····			···	-				• • . •				ļ.,	· . ·		<u> </u> ;
	 					:		-;· -		, . 	↓ ; . ↓	-	•• •		. . : 				. : 		+	¦.		.i 		4
ļ	!	• •		.	•					5		· · ·			10 ···					5				2	b ::	i -: ;
•	:			1				1.		· 		Vol	ume	of Wa	ter x	104	(<u>m</u> 3)	• • • •	···	 		i 		↓ +	 	

(b) Water Requirement in Area: 16-18 mm in the rain season and 12-13 mm in the dry season will be employed to conform with measured values of water requirement in depth (vertical percolation + evapotranspiration) in the growing season respectively at two places in the area. Concerning puddling water, 130 mm/ha/day will be used. (See attached Table 3-1). Time lag in each month will be established for paddy fields 6-8 mm being for water requirement for uplands. (See attached Table 3-2.)

(c) Inflow: After established runoff in each rainfall instensity respectively in designed basic year and investigation of the catchment area, 2.73 km² will be adopted. (See attachment Table 3-3.)

(2) Determination of Total Reservoir Capacity

(a)	Net Reservoir Capacity:	158,877 m ³
(b)	Reservoir Percolation: Allowable maximum percolation Mean percolation Period (May-October) ∴ 158.877 x 0.025 %/day x 184 day	0.05 %/day 0.025 %/day 184 days rs = 7,300 m ³

(c) Lake Evapo-Transpiration:

May	June	July	August	September	October					
6 mm/day	6	6	6	6	3					
Total 6 mm/day x 153 days + 3 mm/day x 31 days = 1,011 mm										
.			1 1/2	0.101-						

Lake Area 9.54 ha x mean lake area 1/3 = 3.18 ha

 \therefore Evaporation 3.18 ha x 1,011 mm = 32.150 m³

(d) Assumed Amount of Accumulated Sand:

Compacted volcanic sand; therefor, $30 \text{ m}^3/\text{year km}^2$ will be adopted.

Mean durable year will be 80 years.

. Among of accumulated sand

= $(2.73 \text{ km}^2 - 9.54 \text{ ha}) \ge 30 \text{ m}^3/\text{year km}^2 \ge 80 \text{ year}$ = 6,323 m³ (e) Daily Living Water Requirement and Other Water Required:

Daily living water requirement 250 $1/day man \ge 100$ mm/day $\ge 184 days$

		$= 4,600 \text{ m}^3$
Oth	er water required	$= 742 \text{ m}^3$
(f)	Total Reservoir Capacity:	
	Net reservoir capacity	158,877 mm ³
	Reservoir percolation	7,308
	Lake evapo-transpiration	32,150
	Amount of accumulated sand	6,323
	Daily living water require- ment	5,842
	And other water required.	

=210,000

The total reservoir capacity will be 210,000 m³.

TOTAL

The stationary full water level (F.W.L) will be F.W.L. = EL. 45.00 m from H-Q curve.

c. Summary of Design of Reservoir

(1)	Catchment Area	$A = 2.73 \text{ km}^2$
(2)	Total Reservoir Capacity	$V = 210,000 \text{ m}^3$
(3)	Amount of Accumulated Sand	$V_{wn} = 6,320 \text{ m}^3$
(4)	Effective Reservoir Capacity	$V_w = 164,290 m^3$ (\ne 164,000 m^3)
(5)	Full Water Area	$A_w = 95,400 m^2 = 0.095 km^2$
(6)	Reservoir Water Level	H.W.L. = 45.75 m F.W.L. = 45.00 m D.W.L. = 43.00 m
(7)	Available Depth	$H_{w} = 2.00 m$

d. Attached Table

Attached Table 3-1. Water Requirement in Depth.

Puddling Water: Field capacity 100 mm + depth of flooding water, 30 mm = 130 mm

Vertical Percolation: Field constant head injection test

$$K = \frac{2.30 \times Q}{2h^2} \qquad 10g_{10} \frac{h}{r_0} + 1 + \left(\frac{h}{r_0}\right)^2 - 1$$

$$Q = 1.18 \text{ cm}^3/\text{s}$$

$$h = 53 \text{ cm}$$

$$r_0 = 6 \text{ cm}$$

$$= 0.5 \, \mathrm{cm}$$

$$K = 9.4 \times 10^{-5}$$

Water requirement in depth 8.1 mm/day \pm 8 mm/day

Evapotranspiration

Month	Atomometer Amount of Evaporation	*2 Evapo- Transpiration	*3 Lake Evaporation	Water Requirement in Depth
JAN	4 mm	4 mm	2 mm	12 mm
FEB	4	4	2	12
MAR	6	5	3	13
APR	7	8	5	16
MAY	9	10	6	18
JUN	9	10	6	18
JUL	9	10	6	18
AUG	9	10	6	18
SEP	*1 9	10	6	18
OCT	6	5	3	13
NOV	4	4	2	12
DEC	4	4	2	12

* 1 The amount of evaporation in September was observed at the Metrological Observatory, Tegineneng Center, Bogor, and others. This data was considered and is annually alocated.

* 2 Concerning evapo-transpiration, 1.1 will be adopted for the dry season, 0.9 for the raining season.

* 3

Lake evaporation will be 0.7 in the dry season, and 0.5 in the rainy season.

40	860		=1 , 680	096 [,] t=	=2 400	=2,480	-2,400	400	=2,480	=2,400	960	=2,400	480
Inland I wat mation	6mmx 31 Ex10ha=1,860		" × 28 × * =1,		8 × 30 × = -2	" × 31 × " =2,	" × 30 × " =2,	" × 31 × " =2,400	" × 31 × "=2,	т × 30 × т =2,	6 × 31 × * =1,860	" × 30 × " =2,	" × 31 × " =2,480
Sub Total	1,440.9		1,296.9	1,549.6	1,611.7	2,651.1	2,160.0	2,093.1	2,093.1	2,031.1	1,549.6	1,752.9	1,488.0
ĸ	Normal 12ma×31B=372		12 × 28 =336	13 x 31 ~403	Preparation	Nursery bed 1/20 130 + 16 × 14 =19.1 Curface soil pudiing 130 Normal 18 × 15 =270 149.1	18 × 30 ±540	18 × 31 =558	18 × 31 =558	18 × 30 =540	Freparation	Nursery bed 1/20 130 + 12 × 14 =14.9 Surface soll pudding 130 Normal 12 × <u>14-9</u> 312.9	12 × 31 =372
elć P2	Kormal 12mm×jlE=j72		12 × 28 =}36	Preparation	<pre>"ref = 18 × 14 = 17-7 /20 130 + 18 × 14 = 17-7 urface soil puddiing 130 07mal 16 × 14 = 224 </pre>	18 × J1 =558	18 × 30 =540	18 × 31 +558	18 × 31 =558	Preparation	Mursery bed 1/20 130 + 13 × 14 ±15.6 Surface soil puddling Normal 13 × <u>15 ±155</u>	12 × 30 =360	12 × 31 =372
Paddy fleld	Normal 12max31B=372		Freparation	Nursery bed 1/20130 + 13 × 14 =15.6 Surface soil pudding Sormal 13 × <u>15=195</u>	16 × 30 ±480	18 × 31 =558	16 × 30 =540	18 × 31 +558	Freparation	Nursery bed 1/20 130 + 18 × 14 =19.1 Surface soil puddling 130 Normal 18 × 14 =270		12 × 30 =360	12 × 31 =372
2	reparation		ursery bed /20 130mm+12mmx14B =14. urface soil puddling 130 ormel 12×12B=144	13mmt318m403	16 × 30 =480	18 × 31 =558	16 × 30 =540		Nursery bed 1/20 130 + 18 × 14 =19.1 Surface soil puddling 18 × <u>15 =270</u> 419.1	Normal 16 × 30=540	13 × 31 =403	12 × 30=360	12 × 31 #372
14	Nursery bed 1/20 130mmx12mmx14B =14.9 Surface soil puddling P	Normel 12mmx15B=180 324.9	Normal l2mmx28B=336	Kormel 1 James 1 Bado 7	Normal l6mmx30H-480	Normal lemmer31B=558	Preparation	Nursery bed 1/20 130 + 18 x 14 =19.1 Surface soil pudding Normal 18 x <u>15 =210</u> Normal 18 x <u>15 =210</u>	Normal 18 × 31 =558	Mormal 18 x 30 =540	Normal 13 × 51 =405	Mormal 12 × 30 =360	Preparation
	Jan.		Feb.	Mar.	Apr.	May	June	, tut	Aug.	Sept.	Oct.	Hov.	Dec.
		1	TORASS VILLER	<u></u>				Dry Season			a uo	Rainy seas	

Attached Table 3-2

•

lisin 			Padáy	Items of Paddy field (5 ha)		calculation of water requirement Upl	ement Upland fi	ent Upland field (10 ha)	Gunden under	Amount Height of run- off Amount of	Amount of Inflow f run- Amount of inflow unt of Height of runoff
		Net water requirement	rainfall	Remainder	requirement	requirement	rainfall	Remainder	requirement		(2.73 km ²)
	1		x 5 ha		/0.95		x 10 ha		/0.81	x 85 %	
		mm 1 440 9	mm 475 0	mm 1.015.3	mm 1. 068. 7	mm 1.860	mm 1.312	mm 548	mm 676.5	mm 271.0	مت 740,376
2 62		1,296.9	0	1,296.9	1, 365. 2	1, 680	0	1,680	2,074.1	x 70 % 55.3	150, 969
Mar. 139		1,549.6	0	1,549.6	1, 631.2	1,860	0	1,860	2,296.3	x 85 % 118.2	322, 686
Apr. 199		1,811.7	696	1, 115.7	1, 174. 4	2,400	1, 392	1,008	1,244.4	x 55 % 109.5	273, 110
12		2, 651. 1	0	2,651.1	2,790.6	2,480	0	2,480	3,061.7	x 20 % 2,4	6, 552
26		2,160.0	O	2,160.0	2,273.7	2,400	Ø	2,392	2, 953. 1	× 30 % 7.8	21,294
32		2,093.1	o	2, 093. 1	2,203.3	2,480	256	2, 224	2, 745.7	x 30 % 9.6	26,208
I		2,093.1	0	2,093.1	2,203.3	2,480	, O	2,480	3,061.7	01	0
28		2,031.1	0	2,031.1	2,138.0	2,400	0	2,400	2, 963.0	x 30 % 8.4	22, 932
39		1,549.6	O	2,549.6	1, 631.2	1,860	0	1,860	2,296.3	x 55 % 21,5	58, 695
149		1, 752. 9	٥	1, 752. 9	1,845.2	2,400	0	2,400	2,963.0	× 80 % 119.2	325, 416
Dec. 131		1,488.0	0	1,488.0	1,566.3	2,480	o	2,480	3, 061. 7	x 80 % 104.8	286, 104
al 1. 154										·	

-56-

Reservoir
g
Reliance
Ч
Amount
3-4
e
abl
Ĥ
ched

			farm land	land	i			
ų						Amount		Amount
ļuo	or	Paddy	Upland	Sub	Volume	of	Remainder	of
M		field	field	Total	$\times 10^{4}$	inflow		reliance
ł	uuu	шш	un Un	шш	m ³	ិ៍ដ	m ³	m ³
Jan.	319	1,068.7	676.5	1,745.2	17.452	740,376	+722,924	0
Feb.	61	1,365.2	2,074.1	3,439.3	34.393	150, 969	+116,576	0
ſar.	139	1, 631.2	2,296.3	3,927.5	39.275	322, 686	+283.411	0
Apr.	199	1, 174.4	1,244.4	2,418.8	24.188	273, 110	+248,922	0
ſay	12	2,790.6	3,061.7	5,852.3	58,523	6, 522	- 61,971	-51,971
une	26	2,273.7	2,953.1	5,226.8	52.268	21,294	-30,974	-82,945
uly	32	2,203.3	2,745.7	4,949.0	49,490	26,208	-23,282	-106,227
-ug.	I	2,203.3	3,061.7	5,265.0	52.650	0	-52, 650	-158,877
Sept.	28	2,138.0	2,963.0	5,101.0	51.010	22,932	+17,831	-141,046
Oct.	39	I, 631.2	2,296.3	3,927.5	39.275	58, 695	+19,420	-121, 626
Nov.	149	1,845.2	2,963.0	4,808.2	48.082	325,416	+277,334	0
Dec.	131	1,566.3	3,061.7	4,628.0	46.280	286,104	+239,224	0

.

.

- 2. Determination of Scale of Dam Body
 - a. Determination of Free Board

The free board of low dam will be computed by the following formula.

 $H_f = 0.05 H + 1.0$

Where, H_f : free board (m)

H : Height from foundation to the maximum proposed water level (m)

HWL = 45.75 m, GH = 42.40 m

H = HWL - GH = 3.35 m

 \therefore H_f = 0.05 x 3.35 + 1.0 = 1.168 m

Free board, H_f will become 1.168 m

(1) The Scale of Reservoir is small, but full water area $A = 95,400 \text{ m}^2$ is large to total storage capacity $V = 210,000 \text{ m}^3$. That is, due to $V/A \neq 2.2$, the efficiency of storage will be high.

(2) This area is an area of no typhoon, strong wind and earthquake.

(3) The crest of dam will be proposed to use as main canal connecting road to the model farm. The width of the crest of dam will be 10.0 m, being 3 times wider than the normal width of low dam.

(4) Non-regulating type will be adopted for the spillway. A consideration has been paid to the reduction of the rising of water level to the runoff.

(5) The free board of 1.5 m from EL. 45.00 m at the normal water level till EL. 46.50 m at the dam crest will have a big portion to 2.00 m of normal water depth.

Considering the above, 100 % of 0.75 m of the overflow depth will be adopted for the free board. The free board over the normal full water level will be 1.5 m and the free board over the flood level will be 0.75 m.

b. Determination of Dam Height

(1) Determination of Elevation of Dam Crest

Elevation of Crest = Normal full water level + overflow water depth + free board = 45.00 + 0.75 + 0.75

= 46.50 m

(2) Determination of Dam Height

According to the topographical profile, the elevation of the lowest foundation will be EL 40.40 m and will be considered as the elevation of the lowest excavation line.

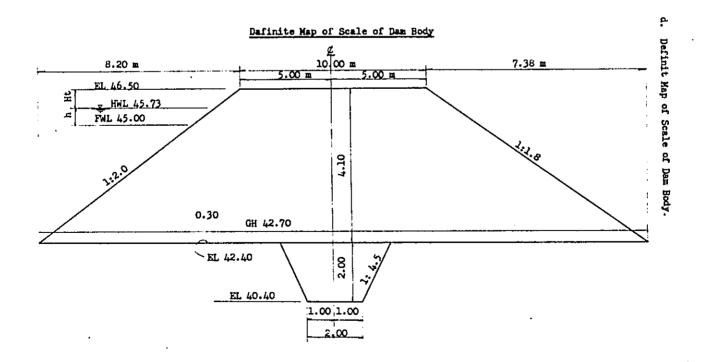
Dam Height = Elevation of Dam crest - lowest elevation of ground

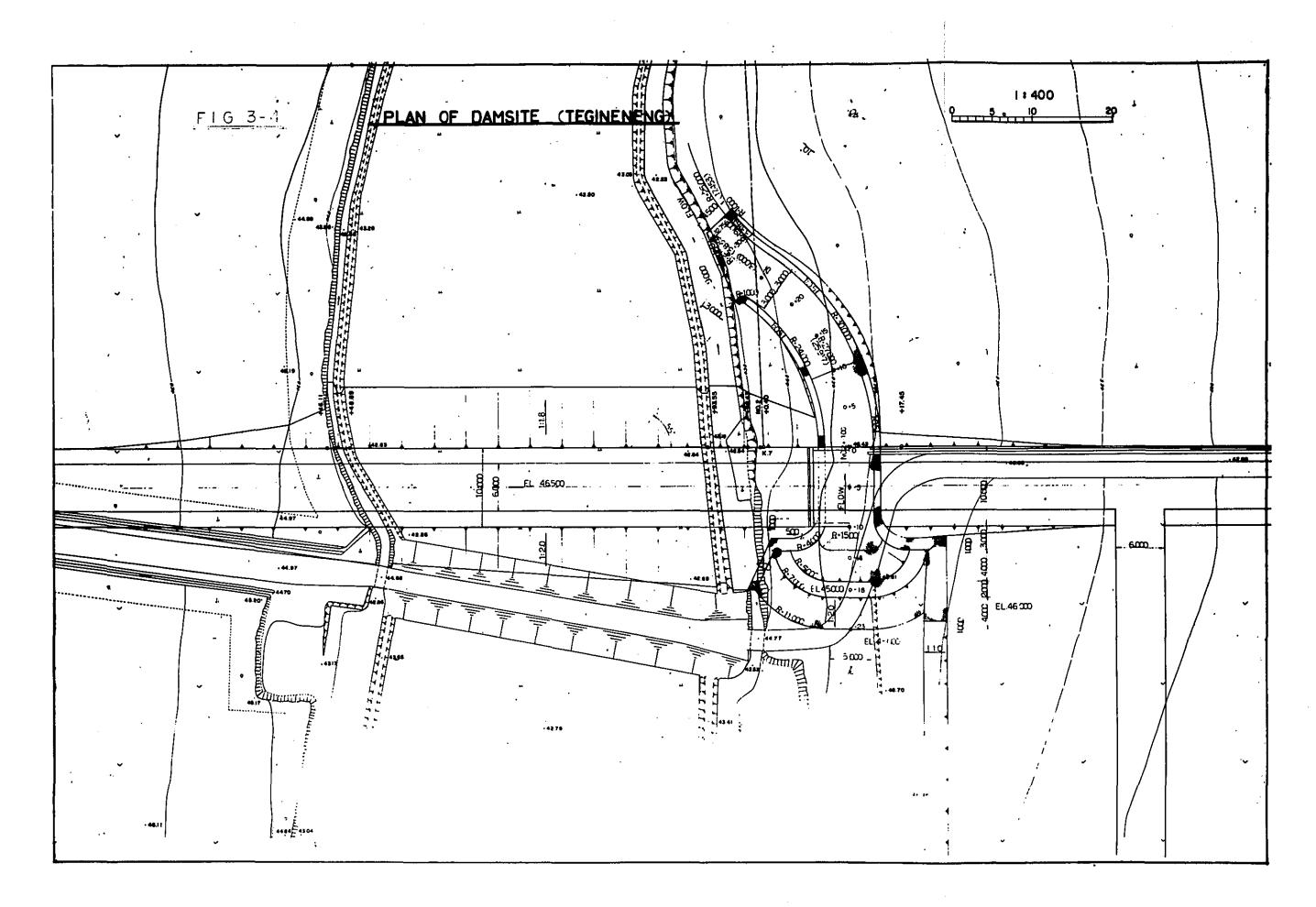
 $H_D = EL 46.50 - EL 40.40 = 6.10 m$

c. Determination of Width of Dam Crest

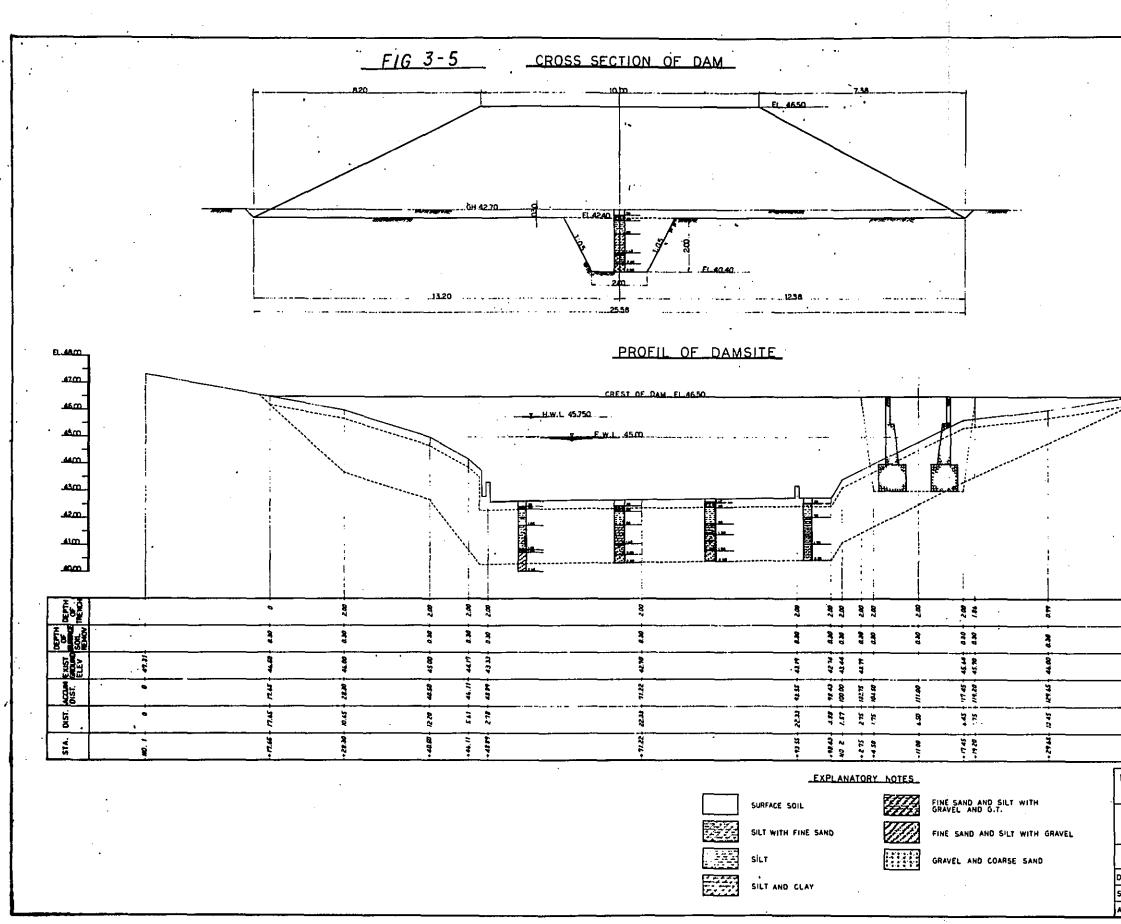
(1) The width of crest of the low dam will be computed by the following formula.

 $B_{p} = 0.2 H + 2.0 m = 3.0 m$


Where, B_{p} : Width of crest (m)


H: Height of dam: $H_D = H = 6.10 \text{ m}$

 $B_p = 0.2 \times 6.1 + 2.0 = 3.22 m$ 10 m


(2) The crest of dam will be utilized as main canal connecting road, the width being the same as that of model farm.

 $B_{D} = 10.0 m$

-60-

-61-

AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION ADENCY TOKYO. JAPAN IRRIGATION AND RECLANTION CONSULTANTS USENTED DATE PROVED DATE					
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS					
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS					
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS		•			
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS					
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS					
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS					
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS		•.			
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS				•	
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS					
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS					
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS					
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS					
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS					
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS					
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS					
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS					
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS					
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS					
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS					
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS					
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS					
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS					1
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS					
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS					
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS			-1		
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS	1.				·
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS	-1				
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS			Į		•
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS	1				
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS					
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS					
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS	1				
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS			Ì		
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS	1		1		
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS	÷		1		
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS	1				·
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS			1		
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS	÷		i		1
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS	:				
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS					
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS					
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS					•
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS	3				
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS		······	_ 		
AMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS	8		8		
LAMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS UBMITTED DATE					
LAMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS UBMITTED DATE	5771		8.4		
LAMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS UBMITTED DATE	*		· <u></u>		
LAMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS UBMITTED DATE	8		59.1		
LAMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOXYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS UBMITTED DATE	<u> </u>				
LAMPUNG AGRICULTURAL DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOXYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS UBMITTED DATE	24145	•	1.12	•	
DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO, JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS UBMITTED DATE			<u>.</u>	,	
DEVELOPMENT PROJECT LAMPUNG INDONESIA CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO, JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS UBMITTED DATE		NG AGRICULTU	RAL		
CROSS SECTION OF DAM PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESCONED JAPAN IRRIGATION AND RECLAMTION CONSULTANTS UBMITTED DATE		DEN	/ELOPME	NT PRO	JECT
PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO, JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS UBMITTED DATE					
PROFIL OF DAMSITE OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO, JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMITION CONSULTANTS UBMITTED DATE	CRC	SS SECTIO	N OF	DAM	
OVERSEAS TECHNICAL COOPERATION AGENCY TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMTION CONSULTANTS UBMITTED DATE					
TOKYO. JAPAN ESIGNED JAPAN IRRIGATION AND RECLAMTION CONSILTANTS UBMITTED DATE	-				
ESIGNED JAPAN IRRIGATION AND RECLAMTION CONSULTANTS	OVE			ON AGEN	CY
UBMITTED DATE	CONTRACTO				
· / / / / / / /				TION CONS	R,TANTS
PPROVED DRAWING No.	UBMITTED	+ ·	DATE		
	PPROVED		DRAWINGHO		

3-2-6 Design of Dam Body

1. Design Value of Embankment Materials

Though embankment materials of this project are deemed to be "SP" materials as a result of the mechanical analysis, almost all soil near the dam site consists of clay containing silt in Latosol system and is considered that these are different in quality from "SP" materials which are shown in the information of (Earth and Earth-Rock Dams). It is decided to conform with informations reflected in (ICHTISAR HASIL² PENIELIOIKAN LABORATORIUM MEKANIKA TANAN L, P, M, A, UNTUK, TJONTOH² DARI). (See p. 83. Table of Soil Test Results)

- a. Standard Value
- (1) Specific Gravity of Soil Particle (G_{SM})

$$G_{SM} = \sum_{n=1}^{n} \frac{1}{n} \frac{GSi}{S} = \frac{2.51 + 2.53 + 2.51}{3} = 2.517 \div 2.52$$

(2) Natural moisture content (WFM)

WFM = $33.8 \div 34.0 \%$

(3) Optimum moisture content (WoptM)

$$WoptM = \frac{\frac{n}{\Sigma}}{\frac{Li = 1 \ Wopti}{n}} = \frac{171.30}{4} = 42.825 \div 42.8 \ \%$$

(4) Maximum dry density (T dmax M)

$$TdmaxM = \frac{\frac{n}{\Sigma}}{\frac{Li = 1 \ TdmaxM}{n}} = \frac{4.85}{4} = 1.213 \pm 1.21 \ tm^3$$

- 2. Unit Weight
 - a. Dry density (Td)
 - (1) Max. dry density (T dmaxM)

Mean value

$$T dmaxM = 1.21 t/m^3$$

Standard deviation

$$Trd = \sqrt{\frac{1}{n-1} (Tdmax_1 - TdmaxM)^2 + \dots (Tdmax - TdmaxM)^2}$$
$$= \sqrt{\frac{1}{4-1} \times 0.0019} = 0.025 \div 0.03$$

			·	Tamping T	est	Dire	ect Shear	Permeability Test	
Sample Number No.	Depth of Sampling D(m)	Specific Gravity	Max. Moisture Content Wopt (%)	Max. Dry Density Dmax (t/m ²)	Moisture Density (t/m ²)	Cohesion C(t/m ²)	Angle of Interval Friction (Degree)	Permeability Coefficient (cm/sec)	Remark
ST-A1	0.50 1,50	2.67	39.2	1.21	1,68	1.50	28°30'	8.1×10 ⁻⁹	
ST-A2	0.50 1.50	2.67	42.1	1.24	1.76	1.10	37*301	5.7×10 ⁻⁹	
ST-B	2,00 3,00	2.66	46.5	1.18	1.73	1.90	14°30'	5.0x10 ⁻⁹	
S 11	0.50 1.50	2,61	43.5	1,22	1.75	2.30	28°15'	8.5x10-9	
Mean '	Value	2.65	42.8	1.21	(1.73)	1.70	27°11'	6.8×10-9	

Note 1) : $Tt = (1 + \frac{W}{100})T dmax$

Т

Dry density

dmaxM' = TdmaxM -
$$\frac{1}{2}$$
 δ rd
= 1.21 - $\frac{1}{2}$ 0.03 = 1.195 \div 1.19 t/m³

(2) Dry density 90 %

 $Td95 = TdmaxM \times 0.9$

 $= 1.21 \times 0.9 = 1.089 \neq 1.00 \text{ t/m}^3$

Therefore, as that will become Td90 < TdmaxM, Td90 will be adopted to consider construction condition.

 \therefore Td= Td90 = 1.0 t/m³

b. Moisture Content (W)

i) Natural moisture content (WFM)

WFM = 34.0 %

ii) Optimum moisture content (WoptM)

Mean value

WoptM = 42.8 %

Standard deviation

$$\delta$$
 Wopt = $\sqrt{\frac{1}{4-1}} \times 27.63 = 3.0347 \div 3.03$

Moisture content

 $WoptM' = WoptM \pm \delta Wopt$

$$= 42.8 \pm 3.03 = \{ \begin{array}{c} 45.83 \div 45.8\% \\ 39.77 \div 39.8\% \end{array} \}$$

_

Therefore, WFM will be adopted for moisture content to consider i), ii) and safety of dam body, term of construction & etc.

$$: W = WFM = 34.0 \%$$

c. Moisture density (Tt)

$$T_t = Td(1+W)$$

$$\therefore$$
 Tt = 1.0 (1 + 0.34) = 1.34 t/m³

d. Porosity (l)

$$\ell = \frac{Gs}{Td} - 1$$

$$\therefore \quad \ell = \frac{2.52}{1.34} = 1.88$$

e. Saturated Weight (T sat)

T sat =
$$\frac{G + \ell}{1 + \ell}$$
 T w
∴ T sat = $\frac{2.52 + 1.88}{1 + 1.88}$ x -1.0 = 1.527 ≑ 1.53 t/m³

f. Weight in Water

Tsub = Tsub - Tw

$$\therefore$$
 T sub = 1.53 - 1.0 = 0.53 t/m³

- 3. Shearing Strength
 - a. Angle of internal friction (ϕ)

$$\phi_{\rm m} = \frac{\prod_{i=1}^{n} \phi_{i}}{n} = \frac{108.75}{4} = 27,1875 \div 27^{\circ}11^{\circ}$$

$$\rho \phi = \sqrt{\frac{1}{n-1} (\phi - \phi_{\rm m})^2 + (\phi_2 - \phi_{\rm m})^2 + \dots (\phi_{\rm m} - \phi_{\rm m})^2}$$

$$= \sqrt{\frac{1}{4-1} \times 271,482} = 9.5128 \div 9^{\circ}30^{\circ}$$

$$\phi = \phi m - \rho \phi$$

= 27.1875 - 9.5128 = 17,6747
$$\therefore \phi = 17,6747 \div 17^{\circ}40^{\circ}$$

$$\therefore \tan \phi = 0.3185$$

b. Cohesion (C)

....

$$Cm = \frac{\frac{1}{1}}{n} = \frac{1}{6} \frac{1}{4} = 1.7 \text{ t/m}^2$$

$$C = \sqrt{\frac{1}{4-1}} \times 0.8 = 0.5163$$

$$C = Cm - \delta C$$

$$\therefore C = 1.7 - 0.5163 \div 1.2 \text{ t/m}^2$$

Coefficient of Permeability c.

The mean value of coefficiency of permeability will be km - $6.8 \ge 10^{-9}$ cm/sec, the design density being dmax ≥ 90 %.

The value of coefficiency of design permeability will be as follows.

$$k = 5.0 \times 10^{-6} \text{ cm/sec}$$

Summary of Design values d,

The summary of design values in dam body will be as follows.

General Table of Design Values

Mois-	١	Unit W	eight		She	aring Stro	ength	Coefficiency of
ture Con-	rd	rt	r sat	r sub	С	ø	tanø	Permeability Remark k
tent W(%)	t/m ³	t/m ³	t/m ³	t/m ³	t/m ²	(degree)		(cm/sec)
34.0	1.0	1.34	1.53	0.53	1.2	17°40'	0.3185	5.0×10^{-6}

2. Water Seepage Examination

a. Wetted Line of Dam Body

In case of stationary full water level (FWL 45.00), the wetted line will be obtained to use Casagrande Method.

.

(1) Basic Values

1 = 5.20 m 2 = 0.3 1 = 1.56 m d = 0.3 1 + 2 = 21.94 mh = 2.60 m

(2) Basic Parabola

$$Y \circ = \sqrt{h^{2} + d^{2}} - d = \sqrt{2.60^{2} + 21.94^{2}} - 21.94 = 0.15m$$

$$\therefore X = \frac{y^{2} - yo^{2}}{2yo} = \frac{y^{2} - 0.154^{2}}{2 \times 0.154} = \frac{y^{2} - 0.024}{0.308}$$

Y	0	0.5	1.0	1.5	2.0	2.5
-						
x	0.077	0.734	3.169	7.227	12.909	20.021
the second se						

(3) Revision of Basic Parabola

$$\tan d = \frac{4.10}{7.38} = 0.555$$

$$\therefore d \div 29^{\circ}03^{\circ}$$

Percolated sheet (a) is:

$$a + \Delta a = \frac{y_0}{1 - \cos \alpha}$$

Cos \alpha = 0.8742
yo = 0.154 m
$$a + \Delta a = \frac{0.154}{1 - 0.8742} = 1.224 m$$

$$a = \frac{d}{\cos \alpha} - \sqrt{\left(\frac{d}{\cos \alpha}\right)^2 - \left(\frac{h}{\sin \alpha}\right)^2}$$

where, d = 21.94 m

h = 2.60 m $\cos \alpha = 0.8742$ $\sin \alpha \approx 0.4855$

-66-

$$\therefore a = \frac{21.94}{0.8742} - \sqrt{\left(\frac{21.94}{0.8742}\right)^2 - \left(\frac{2.60}{0.4855}\right)^2} = 0.478 \text{ m}$$

$$\therefore \Delta a = 1.224 - 0.478 = 0.737 \text{ m}$$

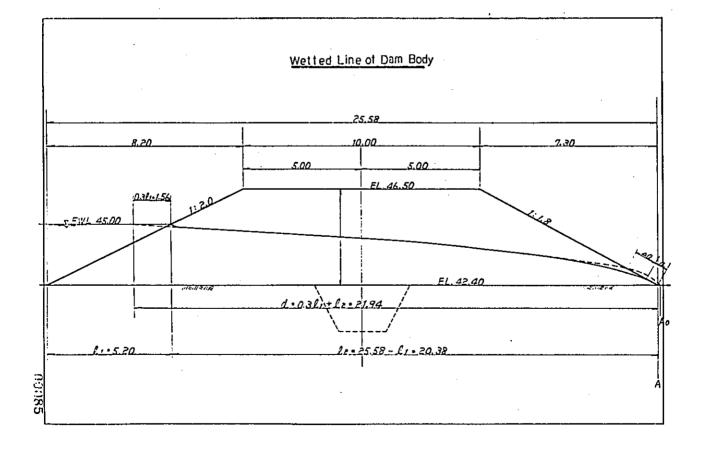
Also vertical constituent of a and $(a + \Delta a)$ is:
$$\therefore a = a \sin \alpha = 0.478 \times 0.4855 = 0.232 \text{ m}$$

$$\therefore a + \Delta a = (a + \Delta a^*) \sin \alpha = 1.224 \times 0.4855 = 0.594 \text{ m}$$

3. Amount of Percolation of Dam Body

a. Amount of Percolation per unit width of Dam Body

qD = k, yo


where, K: Percolation factor = 5.0×10^{-6} cm/sec

$$\therefore$$
 K = 5.0 x 10⁻⁸ m/sec

yo: Height of percolated sheet

(See 6-2-12) = 0.154 m

$$\therefore q_{\rm D} = 5.0 \times 10^{-8} \times 0.154 = 7.7 \times 10^{-9} \, {\rm m}^3/{\rm sec/m}$$

b. Total Amount of Percolation from Dam Body (Qo)

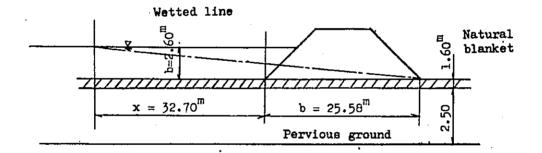
 $Qo = q_0 l$

where, *l*: Average width of percolation of dam body = 66.0 m

 $\ell_1 = 80.0 \text{ m} (\text{FWL } 45.00)$

 $l_2 = 52.0 \text{ m}$ (width of dam bottom)

$$\therefore \ l = \frac{l_1 + l_2}{2} = \frac{80.0 + 52.0}{2} = 66.0 \text{ m}$$


:. Qo = 7.7 x 10^{-9} x 66.0 = 5.082 x 10^{-7} m³/sec

:. Qday = 5.082 x
$$10^{-7}$$
 x 86.400 = 4.4 x 10^{-2} /day = 0.044m²/day

c. Proportion of Amount of Leakage

Total amount of storage : $V = 210,000 \text{ m}^3$

$$\Delta W = \frac{Q da y}{V} \times 100$$

$$\therefore \Delta W = \frac{0.044}{210.000} \times 100 = 2.0952 \times 10^{-5} \%/day$$

4. Amount of Percolation from Dam Body and Foundation

It is considered that the foundation of dam site consists of accumulating clay on semipervious ground ($k = 4.5 \times 10^{-3} \text{ cm/sec}$) and forms a natural blanket. Therefore, the amount of percolation from the ground of foundation will be approximately obtained as natural blanket.

a. Length of Effective Percolation

$$X = \sqrt{\frac{t, d, k}{k}}$$

where, x: Length of effective percolation (m)

- t : Thickness of natural blanket = 1.640 m \Rightarrow 1.60 m
- d : Depth of foundation = 2.5 m (assumed)

-68--

k1: Percolation factor of natural blanket

$$\therefore 5.5 \times 10^{-4} \text{ cm/sec} = 5.5 \times 10^{-6} \text{ m/sec}$$

k: Base of permeability factor

$$\therefore 4.5 \times 10^{-3} \text{ cm/sec} = 4.5 \times 10^{-5} \text{ m/sec}$$
$$X = \sqrt{\frac{1.60 \times 2.50 \times 4.5 \times 10^{-5}}{5.5 \times 10^{-6}}} = 32.727 \Rightarrow 32.7 \text{ m}$$

- b. Amount of Percolation from Foundation
 - i) Amount of Percolation per unit width (q)

$$q = \frac{k, d, h}{0.62x + D}$$

:. $q = \frac{4.5 \times 10^{-5} \times 2.5 \times 2.6}{0.62 \times 32.7 \times 25.58} = 6.38 \times 10^{-6} \text{m}^3/\text{sec/m}$

ii) Total Amount of Percolation (Q)

Q = q,
$$\ell$$
 where, $\ell = 66.0 \text{ m}$
 \therefore Q = 6.38 x 10⁻⁶ x 66.0 = 4.21 x 10⁻⁴ m³/sec
 \therefore Qday = 4.21 x 10⁻⁴ x 86.400 = 36.374 m³/day

c. Proportion of Amount of Leakage

Total amount of storage : $V = 210.000 \text{ m}^3$

$$\Delta W = \frac{Qday}{V} \times \frac{100}{V}$$

:
$$\Delta W = \frac{36.374}{210.000} \times 100 = 0.0173\%$$

d. Summary of Amount of Percolation

The mount of percolation from the dam body & its foundation will be as follows.

Specification	Total amount of storage V (m ³)	Effective amount of storage VW (m ³)	Amount of leakage Q (m ³ /day)	$W = \frac{Q}{V} \times 100$ (%)	$W' = \frac{\Omega}{W} \times 100$ (%)	Remark
Dam body		<u></u>	0.044	0.000021	0.0000268	ок
Foundation	210,000	164.000	36.374	0.017321	0.0221779	ок
			36.418	0.017342	0.02220	ок

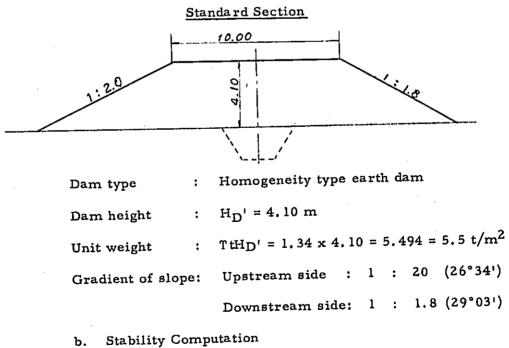
General Table of Amount of Percolation

The amount of leakage is $Q = 36.418 \text{ m}^3/\text{day}$ as specified in the above table. The proportion of effective amount of storage, $Vw = 164,000 \text{ m}^3$ is W' = 0.0222 %.

The amount of leakage is $Q = 36.418 \text{ m}^3/\text{day}$ as specified in the above table. The proportion of effective amount of storage, $Vw = 164,000 \text{ m}^3$ is $\Delta W' = 0.0222 \%$.

5. Computation of Stability of Dam Body

a. Condition of stability computation


Stability computation of the slope of dam body will be made to use Taylor's stability computation chart.

(1) Embankment Materials

Unit v	veight	Sh	earing strengt	h	Remark
Drying	Wetting	Cohesion	Angle of interval		
^{Td} t/m ³	$T^{t}t/m^{3}$	t^{C/m^2}	friction ϕ (degree)	tan ø	
1.000	1.34	1.2	17"-40	0.3185	4

Table of Design Values

(2) Dam Body Structure

Blability Computer

(1) Upstream Side

Assumed angle of internal friction	Stability factor	Necessary cohesion	Safety factor for cohesion	tan Øa	Safety factor for angle of internal friction
Øa	l Ns	Ca: $TtH\frac{1}{Ns}$	$Fc = \frac{C}{Ca}$		$F\phi = \frac{\tan\phi}{\tan\phi}$
0	0.154	0.847	1,417	0	0
5	0.102	0.561	2.139	0.0875	3.640
10	0.062	0.341	3.519	0.1763	1.806
15	0.034	0.187	6.417	0.2679	1.189
20	0.015	0.083	14.458	0.3639	0.875

Stability Computation Table of Slope at Upstream Side

(2) Downstream Side

Øa	<u>1</u> Ns	$Ca = T tH \frac{1}{Ns}$	$Fc = \frac{C}{Ca}$	tan Øa	$Fa = \frac{\tan \phi}{\tan \phi a}$
0	0.155	0.852	1,408	0	0
5	0.107	0.588	2.040	0.0875	3.640
10	0.064	0.352	3.409	0.1763	1,806
15	0.040	0.220	5.454	0.2679	1.189
20	0.024	0.132	9.090	0.3639	0.875
25	0.008	0.044	27.272	0.4663	0.683

Stability Computation Table of Slope at Downstream Side

.

c. Summary of Stability Factor

The results which the safety factor of dam body was obtained to plot safety factor for cohesion, Fc and safety factor for angle of internal friction into coordinate of Fc, Fb (see definite chart of safety factor), will be as follows:

General Table of Safety Factor Safety factor Gradient Remark Slope of slope Fв $C = 1.2 t/m^2$ 2.60 1:2.0 Upstream side $\phi = 17^{\circ} - 40^{\circ}$ C ≓ ... Downstream 2,55 1:1.8 ø = 11 side OF DETERMINATION OF SAFETY -ΤĒŢ 1 i • DIAGRAM FACTOR į •• ÷ 1 . + ale: . : 100 .1. 1 : † 4 . . ··· I· 9.0 . 1 ÷ 80 **[**] **:** . 7.0 1., ., ÷i; ~.<u>i</u> 60 -; 1 ł 50 :: ج ن .. - ----40 ١. j. . 1 Ľ 1 3.0 ٠I ÷. F=2.60 . SLOPE UPSTREAM i **-** j.| ÷. ٠.(1 20 <u>ب</u>لې . . . ł ï 1 1 SI OPE F-255 DOWNSTREAM 1.0 į 1 . . . ÷ 30 Fc ŀ 20 50 60 Ш 10 40 D FΦ Ó tan -----Fø-..... .i.. tan; 6.0

215 A4 180 + 250mm

Element of Dam Design

 \vec{x}

•

.

•

Location Name of 1 Dam Type Name of 1 Ground F	e :	Teginneng Swamp Homogeneity Reservoir Sandy Clay
Hydrology	Catchment Area Spillway Basic Rainfall	A = 2.73 km ² r _t = 185 mm/day x 1.2 = 222 mm/day
	Total Storage Capacity Amount of Sand Accumu- lation	$V = 210,000 m^3$ $V_{nr} = 6,320 m^3$
Denematic	Effective Storage Capacity	V _n = 164,000 m ³
Reservoir	Full Water Area	$A = 0.095 \text{ km}^3$
	Storage Level	HWL = 45.75 m FWL = 45.00 m DWL = 43.00 m
	Available Depth	H = 2.00 m
Dam Body	Dam Height Dam Length Crest Width Gradient of Slope	$H_0 = 6.100 \text{ m}$ $L_0 = 124.00 \text{ m}$ $B_0 = 10.000$ Upstream Side : 1:2.0 Downstream Side: 1:1.8
	Volume of Dam Body Embankment	6520.00 m ³
Spillway	Spillway Type Design Flood Discharge Length of Flowover Weir Overflow Depth	Flowover Weir Type Sillway $Q_s = 18.9 \text{ m}^3/\text{sec}$ $B_s = 20.00 \text{ m}$ $H_s = 0.75 \text{ m}$
Water Intake Installation	Intake Type	Pump (Single Suction Centrifugal Pump)
	Maximum Amount of Intake Water	0.015 m ³ /sec/set x 2 sets x 10HP
Division Channel	Type Diversion Drainage	Existing Pump & Existing Pipe By Existing Drainage Canal

3-2-7 Design of Spillway

1. Determination of Location, Type and Route

a. Location of Spillway

(1) Concerning the determination of the location of spillway, the location shall be selected on the basis of safety and economy considering various points such as the topography, geology and possibility of utilizing excavation materials of surroundings of the dam site, the purpose of the reservoir and on the management.

(2) In the dam site of this program, two open canal exist, both having been used as drainage canals in past rainy seasons. Subject canals are located on both sides of low paddy fields, which will be submerged as reservoir basin as stated before. The spillway of this program will be provided on either the right bank or the left bank of the reservoir to refer to the location of this open canal.

(3) In case of providing the spillway on the right bank, the spillway will fully be able to intrude into the natural ground with less excavation in proper utilization of the slope of the natural ground and the short length of canal of the spillway will result in lower construction costs than that on the left bank. (This is due to that in case of installing the spillway on the left bank, the spillway shall be provided to close the side of the natural ground.) Borders of low paddy fields exist withing 90 m of down stream side of the coffer dam (see general plan). In case of installing the spillway on the left bank, there is danger in the down stream area to damage these barders by the flood which will be excluded.

(4) Also a net house, a cattle shed and an insect rearing room will be proposed on the upland of the left bank side to conform with the development program. The spillway of this program will be installed on the right bank in conformance with the above.

b. Type of Spillway

In reference to the regulating section of the spillway in this program, non-regulating type will be adopted as complete maintenance and control is impossible. And the spillway shall be that which can sufficiently correspond with the flood proposed than design flood discharge as the catchment area can not be cleared due to little hydrological date on this area. Therefore, the spillway will be desirable to be good in hydraulic coefficiency and to be able to ensure excess unexpected water capacity to flow. The overflow spillway which is best suited to the topography has been selected.

c. Determination of Route

The center line of spillway will be short from the view point of the stability of Dam-Body, spillway and the topographical limitations. Then, the center line will cross the dam axis and will be curved at a sufficient distance from the downstream toe of the dam body and to prevent scoring.

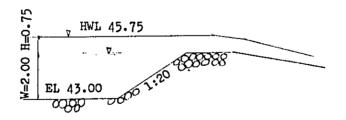
<u>.</u>

2. Hydraulic Computation

a. Design Condition:

(1)	Design flood discharge	$Q = 18.9 \text{ m}^3/3$
(2)	Coefficient of roughness	n = 0.025
(3)	Overflow depth	H = 0.75 m
(4)	Stationary full water level	F.W.L. = EL 45.00 m
(5)	Design flood level	H.W.L. = EL 45.75 m
(6)	Elevation of crest	EL = 45.00 m
(7)	Elevation of intake skill	EL = 43.00 m

b. Overflow Section


(1) Affection of Depth of Approaching Canal

$$W \ge \frac{1}{5}H \dots (1)$$

(H = 0.75) (W = 2.00)
2.00 > $\frac{1}{5} \times 0.75$

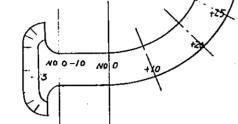
Then, the condition of (1) will be satisfied.

(2) Affection of Upstream Face Gradient of Dam

Considering the most advantage grade to conform with $w/H \neq 2.7$, a right angle wall would be good, but a 20 % gradient will be adopted to consider the safety of overflow dam which will be constructed with Pasangan.

(3) Coefficient of Overflow (Discharge)

The coefficient of overflow will be C = 1.7 to consider the condition of the previous items (1) & (2).


(4) Determination of Overflow Crest Width of Spillway

$$Q = CBH 3/2$$
 $Q = 18.9 m^3/s$
H = 0.75 cm
C = 1.7

$$B = \frac{Q}{CH^3/2} = \frac{18.9}{1.7 \times (0.75)^3/2} = 17.12$$

Then, this spillway will be non-regulating type, the effective crest width will be 20.00 m to allow for surplus.

c. Transition Canal

(1) Terminal of Transition Canal (control point)

When the design flood discharge, $Q = 18.9 \text{ m}^3/\text{s}$ is flooded on the trapezoidal section of base width of 6.00 m and grade of slope of side wall is 1:0.5, the critical water depth (dc) will be:

$$\frac{Q}{b^2 \cdot 5} = \sqrt{g} \left(\frac{d_c}{b}\right) 3/2 \times \left[\left(1 + Z \frac{d_c}{b}\right)3/2 / \left(1 + 2Z \frac{d_c}{b}\right) 1/2\right]$$

$$= k''$$

$$Q = 18.9 \text{ m}^3/\text{s}$$

$$b = 6.00 \text{ m}$$

$$Z = 0.5$$

$$\therefore k'' = \frac{18.9}{6^2 \cdot 5} = 0.2143 \frac{d_c}{b} \Rightarrow = 0.163$$

$$\therefore d_c = \left(\frac{d_c}{b}\right) \times b = 0.163 \times 6 = 0.978 \text{ m}$$

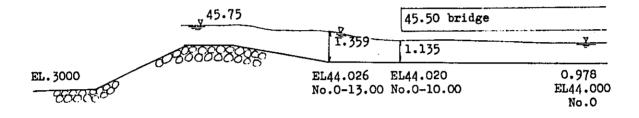
In this case, the hydraulic elements will be as follows:

$$d_c = 0.978 \text{ m}$$

 $AC = d_c (b + Zdc) = 0.978 (6.000 + 0.5 \times 0.978) = 6.346 \text{ m}^2$
 $P_c = b + \sqrt{d_c 2 + (Zdc)^2} = b + d_c \times \sqrt{1.25} = 7.093 \text{ m}$
 $R_c = A_c/P_c = 6.346/7.093 = 0.895$
 $R_c2/3 = 0.9287$
 $v_c = Q/A_c = 18.9/5.346 = 2.978 \text{ m/s}$

$$I_{c} = \left(\frac{n. V_{c}}{R_{c}^{2/3}}\right)^{2} = \left(\frac{0.025 \times 2.978}{0.9287}\right)^{2} = 0.006426 \neq \frac{1}{156}$$

Then, the ordinary flow slope of 1/500 will be adopted from the terminal of transition canal to - 13.00 m point and the jet flow slope of 1/5 till + 10.00 m point.


(2) Computation of Water level of Upstream Side Canal from Control Point. (See computation of attached Table 1.)

NO. 0 = 10.00 (Starting point of bridge sub-structure work)

d = 1.135 m v = 2.536 m/s

NO. 0 = 13.00 (Toe of overflow weir.)

d = 1.359 m v = 1.437 m/s

Due to the above, the water level at NO. O - 13.00 m will be EL 45.385 < EL 45.000 + $\frac{2}{3}$ x 0.75 and the bridge clearance will be 45.500 - (45.155) = 0.345 m. There will be no problem on submerged overflow and bridge clearance.

d. Chute Section

(Computation is stated in Table 1)

NO.O + 10.000 point d = 0.436 m v = 6.972 m

(Head loss due to bend and vortex will be ignored)

e. Computation of Stilling Basin as Stated in d. above the terminal of the chute section is as follows:

 $d_1 = 0.436 \text{ m}$ $v_1 = 6.972 \text{ m/s}$ Q = 18.9 m³/s

From the above, natural stilling basin (I type) will be suitable.

(1) Froude Number (F_1)

$$F_1 = \frac{v_1}{\sqrt{g_x d_1}} = \frac{6.972}{9.8 \times 0.436} = 3.373$$

Where, v_1 : velocity of flow before hydraulic

jump 6.972 m/s

d₁: water depth before hydraulic

jump 0.436 m

(2) Depth of Hydraulic Jump (d_2)

$$\therefore \frac{d_2}{d_1} = \frac{1}{2} \quad (\sqrt{1 + 8F_1^2} = p)$$

$$\therefore d_2 = \frac{d_1}{2} \quad (\sqrt{1 + 8F_1^2} - 1)$$

$$= 0.436/2 \times (\sqrt{1 + 8 \times 3.373^2} - 1) = 1.873 \text{ m}$$

From the above, the wall height of stilling basin will be 2.000 m and the length of stilling basin will be over 12.000 m.

3-3 Facility of Center

3-3-1 Arrangement and Outline of Buildings

1. The following scale of facilities will be arranged in order to satisfy this function as stated above as well as to utlize existing facilities effectively. The arrangement will be planned as attached Fig. 2-2. Namely, farm operation buildings will be installed near the farm, such as tractor garage, work shop and vehicle floor (NO. 7), machine attachment storehouse (NO. 8), work room (NO. 9), fertilizer and chemical storehouse (NO. 11), storehouse with concrete floor for drying crops (NO. 12-2) and etc.

2. The other buildings will be arranged to consider the systematic utilization of existing buildings.

n²v²/ R 4/3 st. / v^2/z_g R4/3 ŝ£ No. 1 ь d A v Р R EL EL+d Error C.K. + re Computation of Water Level of Upstream Side Canal from Control Point 6.000 0.978 6.346 2.978 0.453 7.093 0.894 0.861 0.00644 44,000 45.431 --No. 0 No. 0--10 10.000 6.000 1.135 7.454 2.536 0.328 7.269 1.025 1.034 0.00389 0.00516 0.052 44.020 45.483 45.431 0 ок No. 0--13 3.000 9.000 1.359 13.154 1.437 0.105 10.519 1.250 1.347 0.00096 0.00243 0.007 44.026 45.490 45.483 0 ок Computation of Water Level of Downstream Side Canal from Control Point - 6.000 0.978 6.346 2.978 0.453 7.093 0.894 0.861 0.00444 -- 44.000 45.431 No. 0 No. 0-+10 10.000 6.000 0.436 2.711 6.972 2.480 6.487 0.418 0.313 0.0971 0.0518 0.518 42.000 44.916 45.343 0.003 OK

(Table -3-5)

3. Floor space and construction materials of each building will be as the following table.

Table of Buildings and Other Structures

No.	Name of Buildings	Existing or New	5	lize
1	Gasoline Filling Stand	New	72m ²	12mx6m
2	Net House (Cage)	**	68	12.5x5.4
3	Drying Room with Plastic Roof	11	72	12×6
4	Office and Laboratory	14	800	40x10x2
5	Inoculator and Insect Rearing House		94.5	15x6.3
6	Exhibition Room and Library	Existing	120	-
7 -	Tractor Workshop and Floor	New	600	40x15
8	Machine Attachment Storehouse	н	400	40×10
9	Work Room		150	25x6
10	Tractor Warehouse	Existing	120	-
11	Fertilizer and Chemicals Storehouse	New	300	30x10
12-1	Storage and Floor	Existing	400	-
12-2	Storage and Floor	New	600	40x15
13	House of the Head of Center	Existing	120	-
14	Domitory (40 persons)	New	624	48x6.5x2
15	House of Permanent Officers	Existing	240	-
16	House of Semipermanent Officers		240	-
17	House of Laborers	68	430	
18	Cattle Shed	New	40	10x4
19-1	Pump Room	Existing		
19-2	Generator Room	New	50	10×5
20	Elevated Tank and Pump Room	н	16	4x4
21	Meteorological Observatory	0		
22	Insect Trapping Light			
23	Generator Room	Existing		
24	Street Light	New		
25	Dining Hall		192	24x8
	TOTAL		5,749m²	

•

No.	Name of Buildings	Outline of Buildings	Building Area(m ²)	Floor Space(m ²)
1	Gasoline, Filling Stand	Made of Brick, One-storied, Wooden Support Roof (steep- plate roof slope 1:4)	72	18
2	Net House		68	68
3	Drying Room	Made of Brick, One-storied, Wooden Support Roof (plastic corrugated plate roof slope 1:4)	72	72
4	Office and Laboratory	Made of Brick, One-storied, Wooden Support Roof (color steelplate roof slope 1:4)	300 x 2 units	304 x 2 units
5	Inoculator and Insect Rearing House		95	95
7	Tractor Workshop	Made of Brick, One-storied, Wooden Support Roof (steel- plate roof slope 1:4)	600	600
8	Machine Attachment Storehouse	Made of Brick, One-storied, Wooden Support Roof (steel- plate roof slope 1:4)	400	400
9	Work Room	Made of Brick, One-storied, Wooden Support Roof (color steelplate slope 1:4)	150	150
11	Chemical Storehouse	Made of Brick, One-storied, Wooden Support Roof (steel- plate roof slope 1:4)	300	300
12-2	Storage and Floor	Made of Brick, One-storied, Wooden Support Roof (steel- plate roof slope 1:4)	400	400
14	Domitory	Made of Brick, One-storied, Wooden Support Roof (color steelplate roof slope 1:4)	318 x 2 units	216
18	Cattle Shed	Made of Brick, One-storied, Wooden Support Roof (color steelplate roof slope 1:4)	40	40
19-2	Generator Room	Made of Brick, One-storied, Wooden Support Roof (steel- plate roof slope 1:4)	50	50
20	Pump Room	Made of Brick, One-storied, Wooden Support Roof (color steelplate roof slope 1:2)	16	16
25	Dining Hall	Made of Brick, One-storied, Wooden Support Roof (color steelplate · roof slope 1:2)	192	192

щ.	Nare of Buildings	Outside Wall	Roof	Floor	Plinth	Inner Wall	Ceiling	Remark
-	Office	Plaster Painting	Steelplate	Tiling	Lauan O.P.	Plaster V.P.	Asbestos Flate	
2	Net House			1	1		1	
ŕ	Drying Room	T	Ŧ	Concrete by trovel		Brick		
4	Office and Laboratory	t	Color Steelplate	Tiling	F	Plaster V.F.	Sound-Absorbent-Tex	
	Toilet and Material Hoom		1	Morter by trowel		8	Asbestos Flate	
5	Inoculator and Insect House	1		1			1	
7	Tractor Workshop	F	Steelplate	Concrete by trovel		Brick		
69	Machine Attachment Storehouse	£	=	£		L	1	
6	Work Room	F	Color Steelplate	Tiling	£	Plaster V.P.	Sound Absorbent Tex	
11	Fertilizer and Chemicals Storehouse	:	Steelplate	Concrete by trowel	1	Brick	1	
12-2	2 Storage and Floor	£	ł	Ŧ		E	 	
14	Domi tory	£	Color Steelplate	Tiling		Plaster V.P.	z	
	Toilet and Shower Room		£	Morter by trowel		£	Asbestos Plate	
	Bath Hoom	1	t	Tiling	1	2	z	
18	Cattle Shed	£	:	Concrete by trovel	1	Brick	-	
19-2	2 Generator Room	÷	Ŧ	Ľ	1	±		
20	Ршр Коов	£	t	t	1	<u> </u>	1	
ß		£	£	Tiling	£	Plaster	Sound Absorbent Tex	
	Cocking Room	E	£	r	Tile	2	Asbeatos Flate	•
		-						
								-

and the second secon

-81-

Name of Buildings and Other Structures Gasoline Pilling Stand Net House (Cage)	Existing or Nev Nev	Stze 72 m ² 68	128.3	Load of Elect- ricity (W) 240 240	Connection Kethod U.O. U.O.	Петагк	·····
JITYING MOOM WITH FLABTIC MOOL Office and Laboratory Trochlator and Treat Rearing House	. 1 1	800 84.5	40 × 10 × 2 15 × 6.3	8,000 3.800	п.о. U.O.		
Exhibition Room and Library	Existing	120		1,400	u.o.		-
Tractor Workshop and Floor Kachine Attachment Storehouse	Nev. 	600 400	40 × 15 40 × 10	2,400 4,000	и.о. v.o.	* Explanation of Connection Method	
	Ŧ	150	25 x 6	3,000	п.о.		
Tractor Warehouse	Existing	120	ı	480	V.O.		
Fertilizer and Chemicals Storehouse	Keu	300	30 × 10	1,440	ν.O.		:
Storage and Floor	Existing	400	ı	720	U.O.		
Storage and Floor	Nev	600	40 x 15	720	ν.ο.		
House of the Head of Center	Existing	120	ı	1,200	U.O.		
	Nov	624	48 x 6.5 x 2	12,600	Ψ.Ο.		
House of Permanent Officers	Existing	240	ı	1,000	ν.0.		
House of Semipermanent Officers	I	240	I	4,800	U.O.		
House of Laborers	£	430	I	6,450	V.0.		
	Nev	40	10 x 4	400	¥.0.		
	Existing		ı				
	Nev	3	10 x 5	720	л.о.		* t + -
Elevated Tank and Pump Room	£	16	4 z 4	3,700	U.O.		<u> </u>
Meteorological Observatory	F	<u></u> ,					<u> </u>
Insect Trapping Light	Ŧ						
	Existing						
	Nev						
	£	292	24 x 8				

3-3-2 Estimation of Generator Capacity

3-3-3 Quality-of-Water Test

A quality-of-water test was performed on a sample of ground water in the area of the dam site. Water test was performed to judge the quality of well water in the pilot farm and to determine the adaptability. The result of quality-of-water test will be in accordance with the following table. In case of comparing the test result with that in Japan, the following will be specified:

1. PH is low.

- 2. A small amount of nitrogen is contained in nitrous acidity.
- 3. The amount of residual chlorine is small.
- 4. Coloring degree is a little high.

It is understood that the well water in the pilot farm can be distributed for use as drinking water from the view point that at present, the same well water is being consumed by local people and no indisposition has been found among them, as they are boiling the water prior to drinking. Future tests are planned to ensure well water is safe after testing for city and living water.

No. of Sampling	No.	Reference
Item	NO,	Keierence
Water Sampling Place	Proposed Site of Dam (Test Pit)	
Water Sampling Date	Sept. 29, 1972	
Climate in Water Sampling	Fine	Japan Quality of Water Standard
Temperature *C	31°C	
Coloring Degree	7.5	5 and less
Odor	None	None
PH Value	5.6	5.8-8.6
Residual Chlorine (ppm)	0,05 and less	0.8 and less
Ammoniacai Nitrogen (ppm)	No Detection	No Detection
Nitrous Acidity Nitrogen (ppm)	0.002 and less	14
Nitric Acidity Nitrogen (ppm)	10 and less	10 and less
Chloric Ion	2.5 and less	200 and less
Consumption Amount of Potassium Permanganate (ppm)	10 and less	10 and less
Hardness (ppm)	No Measurement	300 and less
Test Date	October, 1972	
Test Method	Simple Water Quality Inspec- tion Apparatus (Shibata Chemi- cal Machine Co.)	

Result of Quality-of-Water Test

CHAPTER 4 LARGE DEMONSTRATION FARM

4-1 Purpose of Land Consolidation Plan and It's Present Condition

4-1-1 Purpose of Project

Concerning the agricultural development of Lampung province, the Government of Indonesia intends this development as the future base of farm provisions to Java island, it also intends to adopt a policy of immigrating farmers of Java island into this area and planning the increment of agricultural products due to this as a means of settlement for Java farmers and the shortage of provisions. In order to increase production and promote the management systematically, the obtaining of irrigation water and the rational and suitable distribution of such water will be needed. The hauling of materials and rational farm management will be attained by the improvement of farm roads. Systematization of agricultural works such as harvest, plowing and farm management will be performed easily by enlargement of farm fields. This project shall not be a civil engineering work restricted in the project area but shall also serve as a center for the improvement of agricultural technics including the establishment of fertilization standards, water management, guidance on maintenance of facilities, introduction of mechanization, storage and processing of agricultural products and the guidance on marketing technics. This project will be gradually extended by this activity to systematically connect with the neighbouring villages.

4-1-2 Present Conditions in The Project Area

1. River system - River system in this area as shown in table 4-1, figure 2-1 is a part of Punggur-Utara district, one of the large scale irrigation areas of 4 river systems at the middle part of Sekampung. That is, water intake will be made by the diversion weir which has been constructed at Argogurch located at the middle stream of the river Sekampung. After being trained for about 9 km, the water is divided into the river Sekampung in 32.19 m³/s and Punggur Utra in 26.09 m³/s respectively at a point of Trimurdjo (Diversion facility No. KH₂). The training to this area has been performed for about 13 Km, the object have being attained for 118 ha to make the tertiary canal as starting point from BPU 10 turnout.

2. Land Utilization

Being under reclamation as shown in the following table, the percentage of utilized land is low (64%), being 12 % of the overall arable lands of the second crapping. As the arable areas are the lands which have been reclaimed by the mutual aid of farmers, the paddy fields are small in area and irregullar in shape, its average plated area is 0.02 ha. In recent years reclaimed fields were constructed on high lands, but these fields consist of soil accumulated at an average of 7-12 cm in depth. At deeply sloped parts, the difference in height of fields will be 30-40 cm, lands have been reclaimed till where the short edge will be 6-7m. Most of the borders are small plots of a width of 20-30 cm and a height of 20-30 cm.

Area	Related Farm Hous	e Fira	st Paddy		n Field Paddy		d Sub Tota
Present Condition	n 181	!	50.38	(10.	20)	18.36	69.04
Planing Condition	181	ł	89.20	(50.	00)	39.20	89.20
······							
Alang-Alan I	Building Lot	Canal	Others	Total	No. Paddy	of Block	No. of Block
Alang-Alan J 29.66	Building Lot 9.79	Canal 1.86		Total 123.19		Block	

3. Farm Roads in Project Area

Present roads in project area are standardized at 7-8 m in width. Access roads are not found in paddy fields, farm workers are using the embankment of the tertiary canal and borders of paddy fields as foot paths. Farmers using water buffalo also use the same paddy borders and slowly destroy them in the process.

4. Irrigation Water

In compliance with the completion of main canal, Tertiary which was constructed by Gotong Rojong 5 years ago has ran as one line in the direction of east west at the north side of the area, the other one having been traversed along in the groupe of villages in the south direction as shown in the following map. Though laterals are being extended to conform with degree of reclamation to make Teritrary as base, due to shortage of the panning capacity regarding the location and section, alternative irrigation has been adopted occasionally wherever met with shortage of irrigation water. Only some ten hectares of areas have been recognized which will be able to cultivate the second paddy to use reduction water along swamps. Irrigation has been done after cutting plot borders of field water as may be required.Satistactory water control has not been implemented by the reasons of water shortage and ununiformity of cropping.

5. Drainage Canal

As there is no designed drainage canal and irrigation has been carried out, the surplus water has flowed into low paddy fields in natural field areas. It seems that in the rainy season, considerable deep submerging water will be expected. In the dry season, it will be possible for the second paddy cultivation. to use remaining water and seepage water.

Location Items	SEKAMPUNG	RAMAN UTARA	BATANGAARI UTARA	PUNGGUR UTARA	SEPUTH I
Area	35,000 ha	9, 100 ha	10, 000 ha	40,000 ha	
Irrigation Area	21,000 ha	6, 300 ha	7, 300 ha	30, 000 ha	25,000 ha
Construction Period	1935 - 1956	1956 - 1967	1953 - 1967	1969 - 1972	1958 - 1974
Irrigation Water Supply River	Way Sekampung	Way Raman	Dam Garongan	Dam Argoguruh	
Intake Point	Dam Argoguruh	Dam Remen	Dam Garongan	Dam Argoguruh	
Design Amount of Water Intake	32.19 m ³ /sec	$5.24 \text{ m}^3/\text{sec}$	$10.00 \text{ m}^3/\text{sec}$	26.09 m ³ /sec	25.00 m ³ /sec
Structure for water Utilization					
(1) Intake Dam					
Design Elevation of Water In- take	EL. + 58.90 m	EL. + 42.40 m	EL. +28.20 m	EL. + 58.90 m	
Length of Crest	80.8 m	15.0 m	15.0 m	80.8 m	
Crest of Dam	EL. + 59.00 m	EL. +40.60 m	EL.	EL. + 59.00 m	•
Height of Dam	7.70 m	3.90 m	2.80 m	7.70 m	•
Dam Body	Wet Stone Pitching	Wet Stone Fitching	Wet Stone Pitching	Wet Stone Pitching	
Scouring Sluice	Width 6.00 m	Width 2.00 m Height 1.70 m	Width 2.00 m Height 2.60 m	Width 6.00 m	
Intake	Left bank intake 2.55 x 2.50 x 5	Right- bank intake 1.60 x 1.70 x 2	Right-bank intake 1.50x 1.50 x 3	Left ⁻ bank intake 2.55 x 2.50 x 5	:
(2) Canal					•
Main Canal	•				
Total Length	70.9 km	27.7 km	35.1 km	36.3 km	42 km
Structure	Trapezoidal Earth Canal	Trapezoidal Earth Canal	Trapezoidal Earth Canal	Trapezoidal Earth Canal	1
Total Length	42.9 km	22.6 km	24.0 km	98.2 km	
Structure	Trapezoidal Earth Canal	Trapezoidal Earth Canal	Trapezoidal Earth Canal	Trapezoidal Earth Canal	
Accessory Structures					•
Diversion Works	54 Places	41 Places	33 Places	134 Places	
Intake	133 Places	88 Places	74 Places	119 Places	

Table 4-1 Large Irrigation Design in the Basin of Way Sekampung

•

--86--

6. Repeating Irrigation Water

Water remaining in low land area will be almost dried out except tourent running in the east section of the area and a small amount of 9 g/s following down (in the dry season) from the culvert under village roads which flows into the tourent in the middle part of the area. Concerning the utilization of this, it is considered that the natural flowing down method will be unsuitable for use. Under various circumstances so as to manage the villages in agriculture as a group changes will be necessary in the future in accordance with the alternation of future cropping and its marketing, pump irrigation and other technical studies will be further required.

4-2 Land Consolidation Plan

Outline - The main purpose will be irrigation water improvement and farm road rearrangement. The extention of paddy blocks has been decided to execute from the part of small volume of earthwork in the latitude of farmers' liability.

Namely, concerning the irrigation water, a complete arrangement of water diversion and water distribution will be planned to keep the canal line straight to maintain the function of passing water for easy irrigation into the irrigation area.

As regards to the farm road, the main farm roads have been provided at a base of the groups of villages and lateral farm roads have been provided in minimum in connection with the formation of paddy blocks.

Farming roads will be prepared in the paddy block as much as possible, being installed every 200 m distance, generally. The general plan will be shown at Figure 2-6.

4-2-1 Form and Size of Paddy Field Plots

With regard to the form and size of paddy field plots, it is considered that as a tentative measure, tillage, weeding and other maintenance and operation work will mainly be executed by man power and animal power, and partially by the small powercultivators at present in use. But in determining size and form of paddy plots, future developments in farm management systems, and future progress and improvement in agricultural techniques should be taken into account. The plotting of fields will therefore be governed by the following conditions:

1. Technical Process in Farming Operations

In the execution of manual transplantation, the efficiency of the operation will be reduced if the size of plots is too big, so it is desirable that each plot be of such a size that it can be finished in one day by a group of 4-5 men, that is to say with a standard area of 20-30 areas.

With regard to the size of fields, the proportion of long to short field sides is economical when it is 3:1, as far as running cultivators are concerned. In the use of spreaders, on the other hand, efficiency of operation will drop owing to the long sides of the fields being too long.

2. Condition of Topography in Paddy Block

Though the topography of the area seems flat, the gradient has become 1/30 - 1/280 owing to a swamp of 3-4 metres depth having spread into this area.

The long side of the paddy field will be designed to run parallel to the contour line. Where the controur line is straight and there is no topographical restriction the long side of the field will be 100 m; and where the contour is not straight the long side of the field will be 50 m. The short side in either case will be 20 m due to the fact that if the length of the short side is extended, the amount of earth moving will be increased, because the short sides of the fields are at right angles to the contour line and, where the difference between the field surface and the adjacent plots becomes greater than 30 cm., stronger slope fortification at the borders is legally required, and efficiency of farming will be reduced.

3. Area of Land Possessed by Farmers: Possibility of Grouping Farms and Management Areas.

The average area of lands possessed by the farmers concerned will be twice the unit of 0.25 hectares per house (50 m x 50 m) as in Figure 2-7, Table 7-2.

The farmers concerned have already agreed to grouping of land.

4. Design Standard of Agricultural Land Bureau (Japan)

In addition to the above various conditions it is also necessary to consider the following Design Standards of the Japan Agricultural Land Bureau.

Gradient of topography	1/200 -	1/100-1/200	1/50-1/100	1/10-1/50
Size of plot	30 a -	15 a-30 a	7.5 a-15 a	5.0 a-7.5 a
Short side- Long side	30 m-100 m	15 m-100 m	10 m-15 m 75 m-100m	10 m-50 m-75 m

The size of plots will be 20 m x 100 m = 0.2 ha. in gradients of more than 1/100, and be 20 m x 50 m = 0.1 ha. in gradients of less than 1/100.

4-4-2 Design of Road

Arrangement of roads will be determined after consideration of the mutual relationship of hamlets, farm lands and markets.

Access Farm Roads

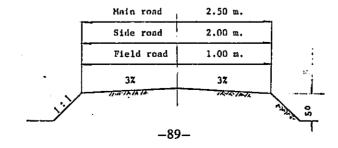
Existing access farm roads are in comparatively good condition. The gradient at the junction of the Main Canal Inspection Road and the road to the hamlets will be adjusted from its present steep gradient of 1/6 - 1/7 to a gentler gradient of less than 1/10. The existing width is 6.0 m.

Main Road

This is the road which links the farming areas with the villages and serves traffic coming to and leaving each block; 2 lines of roads will be installed as in attached figure and in conformity with the farmers' wishes.

Side Roads

Side roads will generally be constructed every 200 m. with a view to facilitating water control and giving easy access to each farm plot in the farming area.


It is considered that cultivators will be used for farming operations and gathering of harvests will be made by cultivators or ox-carts for the foreseeable future. These vehicles have a width of 1.0 m - 1.4 m, so the width of main farm roads shall be 2.5 m, and side roads 2.0 m.

Field Roads

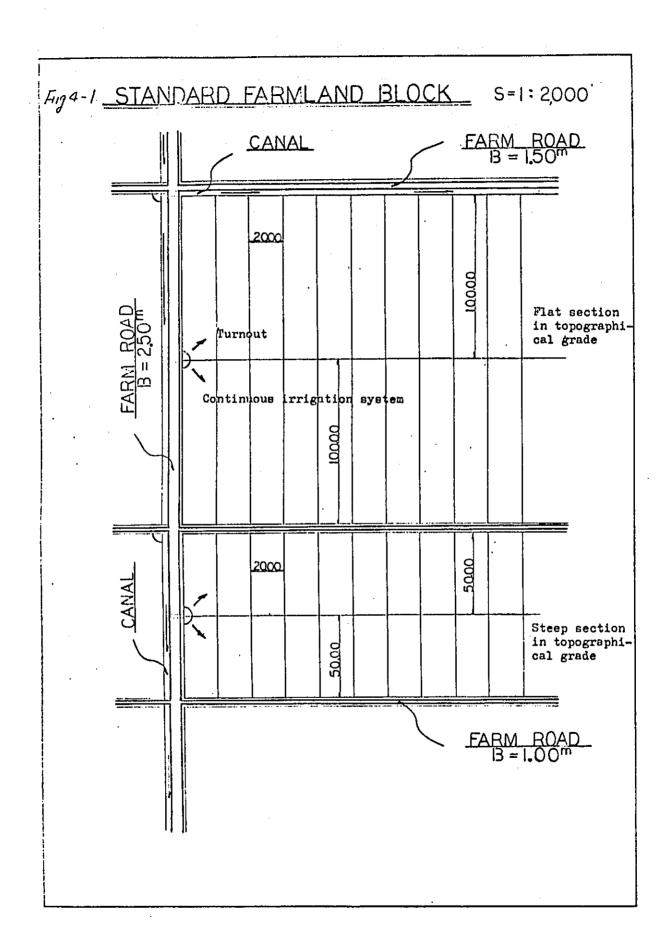
Field roads will be placed every 100 - 200 m, depending on the arrangement of main and side roads, in such a way that each field is served by a field road on one side. The width of field roads will be 1.0 m, since they will mainly be used by men and animals.

The elevation of roads will be 50 cm at road shoulder with a cross gradient of 3 %.

Foundations must be laid for roads across the existing paddy fields. Most of the paddy fields were developed 2 or 3 years ago. The arable soil is in a thin layer of 7 - 13 cm and is silty in quality and the subsoil has been well compacted. There is no fear that ox-carts or cultivators will cause the roads to break or settle. Filling materials will be obtained from adjacent field areas. The standard section will be as follows:

4-2-3 Ground Leveling Work

The construction cost of ground leveling will be reduced by arranging paddy plots and fields as far as possible along contour lines, and ground leveling work will be most satisfactorily carried out by moving earth within respective field areas and will be designed so as to incorporate complete irrigation water drainage. To avoid poor drainage the paddy fields should be terraced with steps of 5 cm.


With regard to arable soil: considering that most of the arable soils contain humus of 7 - 13 cm in a thin layer with a little organic humus, and that these are fields which were developed 2-3 years ago, or were waste lands of Alang Alang, treatment of surface soil will not be undertaken.

R-A Type		R-B 1	ype	R-C 7	R-C Type		
No.	L	No.	L	No.	L		
R-A-1	943	R-B-1	972	R-C-1	221		
R-A-2	767	R-B-2	444	R-C-2	163		
R-A-3	190	R-B-3	295	R-C-3	393		
		R-B-4	250	R-C-4	142		
		R-B-5	204	R-C-5	100		
		R-B-6	334	R-C-6	. 143		
		R-B-7	788.	R-C-7	328		
		R-B-8	330	R-C-8	84		
		R-B-9	510	R-C-9	48		
		R-B-10	430	R-C-10	125		
		R-B-11	285	R-C-11	498		
		R-B-12	461	R-C-12	433		
		R-B-13	260	R-C-13	141		
				R-C-14	181		
				R-C-15	18:		
				R-C-16	24(
				R-C-17	197		
				R-C-18	26		
ub Total	1,900		5,563		3,614		
Fotal	11,077 m	n F	load densi	.y 124 m/h	a		

Table of Roads

Main road .. R-A Type Field road .. R-C Type

Side road....R-B Type

The plan for each field area, the elevation of field surfaces and the amount of earth moving in each field area will be shown in Annex. For instance, where the amount of earth in one field area is not sufficient, where the planned water level can not be attained, or where the effluent side is higher than the affluent side, earth-moving should be planned within the respective field areas so as to involve minimum amounts of earth and minimum earth-removal distances. Operations involving computation of areas from design plans, computation of amounts of earch and earth-removal distances will be made by use of electronic computers. The computation will be made after establishing a program of land-levelling calculations based on the following chart.

Outline of Operation Schedule (For Computation of Earthworks from Design Plan)

Operation schedule for plan- ning and design	Planning and design	Planning, design and reference numbering of field plots and field sections, roads, and irrigation and drainage canals.
Operation schedule of compu- tation of area	Establishment of coordinates; computation of area	Measuring borders of each exist- ing plot and attribution coordi- nates. Coordinate values will be punched on papers by use of auto- matic recording devices, or be obtained by print electronic com- puter (including adjustment of computation).
Operation schedule of soil computa- tion	lst computa- tion of present mean amoun; of soil	By electronic computor, as may be required, taking into account the amount of soil in the border dikes.
	lst planning and design of field rearran- gement	Determing planned amount of soil.
Operation schedule of soil computa- tion	2nd computa- tion of pre- sent mean amount of soil	Taking into account the amount of soil required for general ground leveling, specific ground leveling and new installation of irrigation and drainage systems, and roads, etc.
	2nd planning and design of field rearran- gement	Determining the final planned amount.
	Computation of final plan- ned amount	Including amount of soil to be moved between field sections.
	Computation of soil cut and banked on existing plots	Computed from final planned amount of soil.
Computation schedule of hauling distances and amounts of soil to be hauled	Computation of amounts of soil to be hauled and hauling distances	Computation of amounts of soil to be hauled between plots and hauling distances.

4-2-4 Irrigation Canal

1. Irrigation Requirement

Generally the irrigation requirement will be determined by analizing practical example of such variable factors as increasing improvement of plots and deep plowing; increasing amount of percolation due to distance of terminal plot and reduction of the amount of percolation due to tramping pressure of mechanical construction methods. However, as satisfactory data was in short supply irrigation requirement was surveyed to conform with practical examples among areas. Except the gray white soil area south east of the villages, the land is generally covered with surface layers of Latosol soil in brown red color.

The water requirement in depth is comparatively less even in submerged fields due to poor permeability and durability of soil measured by Conepenetrometer is larger than qa=5.0 t/m², execution of mechanical construction will be easy.

Concerning the water requirement in depth, a measurement and observation test, using a vertical angle measurement was performed at 3 locations in the south east area and also tried to install N type measuing device at one place where is considered as a representative field in the future due to less affection of ground water, arable soil being thick (see Appendix Figure 7-1). In the results of comparing with the values of Design Standard of the D. P. U., those were found to be of approximate value. It will depend upon the following table to determine unification of water management and water diversion in areas under D. P. U. hereafter.

(* 100 Bau = 141 ha)

Max	imum Water Requirement	Bau	ha	$q^1/s/ha$
	•	0-5	3.5	4.00
a.	Due to D. P. U. Computation	5-10	7.0	3.35
	Standard.	10-25	17.5	2.80
		25-30	35.0	2.30
		50-100	70.0	1.84
b.	In Case of Field Measure- ment Water for Puddling.	130 mm	10 days	
	Water Requirement in depth	Rainy Season	13mm	Dry Season 18mm
	Canal Loss	20 %		

Irrigation Requirement

Qmax (rainy season) = $\frac{1}{8.64}$ ($\frac{1}{10}$ x 130 mm + $\frac{9}{10}$ x 13 $\frac{1}{0.8}$) = 3.57 $\ell/s/ha$

$$(dry season) = \frac{1}{8.64} \left(\frac{1}{10} \times 130 \text{ mm} + \frac{9}{10} \times 18 \right) \times \frac{1}{0.8}$$
$$= 4.22 \ \text{l/s/ha}$$

2. Irrigation Canal

The irrigation canal will start at the turnout of the tertiary canal where water has been taken from D.P.U. 10 and 2 lines will be installed in a south east direction to follow the present water system and to the utmost will be bank type so as to be able to carry out complete water management program, cropping of each farm lot is not an urgent program and continuous irrigation will be employed. Though this type will be limitted in free degree of water management in each farm plot and in the view of irrigation, there is a tendency that upstream paddy fields are profitable, but not in downstream fields. On the other hand, irrigation canals in a longitudinal direction become unnecessary and such canals will be reduced, small farm roads will be constructed in place of longitudinal canals thereby ma making hauling easy. In take structure and labors of water management will be reduced under management of one unit plot and as circulating irrigation in some extent can be executed in the same area, this farm will be adaptable for this area which is short irrigation water.

In the future, in case of causing necessity of paddy field draining and drainage due to such as program and alteration of cultivation technics, drainage after sprouting, mid-summer drainage for flooding direct-sowing, free operation of irrigation and drainage for spraying chemicals and fertilizing liquid fertilizer or giving proper permeability to the soil, the designing will be made to instal a drainage at the middle part of plots and some additional intake facilities for this equivalent and regarding water application block, it will be settled as Figure 2-6 in accordance with the above ideas for topography and system of water requirement.

3. Design of Canal Section

The design discharge of canals will be the section which can flow the discharge to multiply the maximum irrigation water.

In this case, the discharge of each canal will be changed due to continuous irrigation. Though shortage of the section shall be considered for that identical section will be adopted to give a function of drainage. Having a drainage function, the canal bottom section is 20 cm lower than the height of field surface.

The water level intake of each paddy field will be 20 cm higher than the field surface. In case of minimum discharge, the water intake will be made to raise the weir at diversion weir. The type of canal section will be the following 3 types, S.B.C. to conform with the gradient of canal discharge.

T - A Type

$$A = \frac{1}{2} (1.00 + 2.00)$$

$$x 0.50 = 0.75 m^{2}$$

$$P = 1.00 + 2\sqrt{2} x 0.5$$

$$= 2.414 m$$

$$R = A/P = 0.3107$$

$$R = A/P = 0.3107$$

$$R = 0.439$$

$$I = \frac{1}{10,000}, n = 0.035$$

$$V = \frac{1}{n} \cdot R^{\frac{3}{2}} \cdot I^{\frac{1}{2}} = 0.131 m/s$$

$$Q = 0.75 x 0.131 = 0.098 m^{3}/s \qquad > 0.096 m^{3}/s \dots ok$$

$$T - B Type$$

$$A = 0.50 m^{2}$$

$$P = 1.914 m$$

$$R = 0.261 m$$

$$I = 1/100 \sim 1/1000$$

$$Q = 0.663 m^{3}/s \sim 0.215 m^{3}/s$$

$$F - A Type$$

$$A = 0.18 m^{2} \qquad P = 1.148 m$$

$$R = 0.157$$

$$I = 1/100 \sim 1/1000$$

$$Q = 0.174 \sim 0.055 m^{3}/s$$

$$F - 3 - C$$

$$I = \frac{1}{2000} \qquad n = 0.035$$

$$V = \frac{1}{0.035} \cdot 0.157^{\frac{2}{3}} \cdot (\frac{1}{2000})^{\frac{1}{2}} = 0.186 m/s$$

$$Q = 0.18 x 0.186 = 0.033 m^{3}/s > 0.006 m^{3}/s \qquad \dots ok$$

$$F - 2 - B$$

$$I = \frac{1}{3000} \qquad n = 0.035$$

$$V = \frac{1}{0.035} \cdot 0.261^{\frac{2}{3}} \cdot (\frac{1}{3000})^{\frac{1}{2}} = 0.212 m/s$$

 $Q = 0.50 \times 0.212 = 0.106 \text{ m}^3/\text{s} > 0.028 \text{ m}^3/\text{s}$ ok

-95-

.

		Ту	pe	Canal Length	Irrigation Area	Discharge
Tertiary	Cana1	т-	-1	735.0	54.3	0.096 ^{m2} /s
11	11	т-	-2	538.0	19.1	0.053 "
11	11	Т-	-3	813.7	33.6	0.077 "
	11	т-	-4	593.0	17.6	0.049 "
Fourth Ca	anal	F-	-1	552.0	5.4	0.018 "
11	11	F-	-2	753.0	8.3	0.028 "
tt	11	F-	-3	203.5	1.5	0.006 "
11	11	F	-4	11	4.4	0.018 "
11	11	F-	-5	90.0	4.0	0.016 "
11	11	F-	-6	361.0	1.8	0.007 "
11	u	F	-7	153.0	2.3	0.009 "
11	**	F-	-8	100.0	1.8	0.007 "

Table o	of Tertia	ry, Fourth	Canal Length

. .

	TYPE	В	h	F-b	н	B _c	1- _m	I	Q ¹ /s
A	T - 1	1.00	0.50	0.20	0.70		635	1/4000	98
В	T - 1	0.50	ri	н	- 11		100	1/1000	215
B	т – 2	11	"	19	11		200	1/1000	11
С	T - 2	0.30	0.30	0.20	0.50		338	1/250	110
A	T - 3	100	0.50	0.20	0.70		330	1/4000	98
В	т – З	0.50	11		,,		483	1/1000	215
С	T - 4	0.30	0.30	11	0.50		338	1/4000	87
С	т –	"		**	11		255	1/150	142
С	F - 1	11	"	11	11		307	1/500	78
С	F - 1	11	11	11	- 11		245	1/150	142
С	F - 2	11	"	11	11		307	1/3000	
С	F - 2	11					445	1/200	123

4-2-5 Drainage

Concerning drainage, it is necessary to examine the surface drainage and under-ground discharge. However, regarding surface drainage, the necessity of non-submerged condition is less due to high utilization of paddy fields such as second crop introduction, rotation of fields and uplands, direct sowing on dry paddy fields. On the contrary, it will fully be able to correspond to high borders, installation of the outlet of irrigation water, and providing canal bottoms to below field surface. The designing of under ground water drainage will not be considered as stated above as a tentative measure. Therefore, only under-drainage in the area, where drainage will be disturbed to comply with installation of farm roads, will be newly provided.

1. Determination of Section of Under Rainage

a. Design probable daily rainfall of 10 years (140 mm), will be adopted as drainage standard rainfall in this project.

The rainfall condition will be continued for a few hours each day. Assuming daily rainfall for average 3 hours, it will be r = 47mm.

b. Design drainage discharge

Q = 0.2778 f r A where Q \Rightarrow drainage discharge m3/3 f = runoff ratio 0.8 r = rainfall intensity 47m/m A = area 0.2 km² \therefore Q = 0.2778 x 0.8 x 47 x 0.2 = 2.09 m³/3

4-2-6 Canal Structure

1. Irrigation Culvert

As canal section is small in scale at the crossing point of canals and farm roads, a cover type flume or pipe culvert is generally used. A type, which is a cover set on a flume and covered with pasangan, easily obtained at the site, will be employed. The kind and place of culverts will be as shown on following table.

2. Turnout

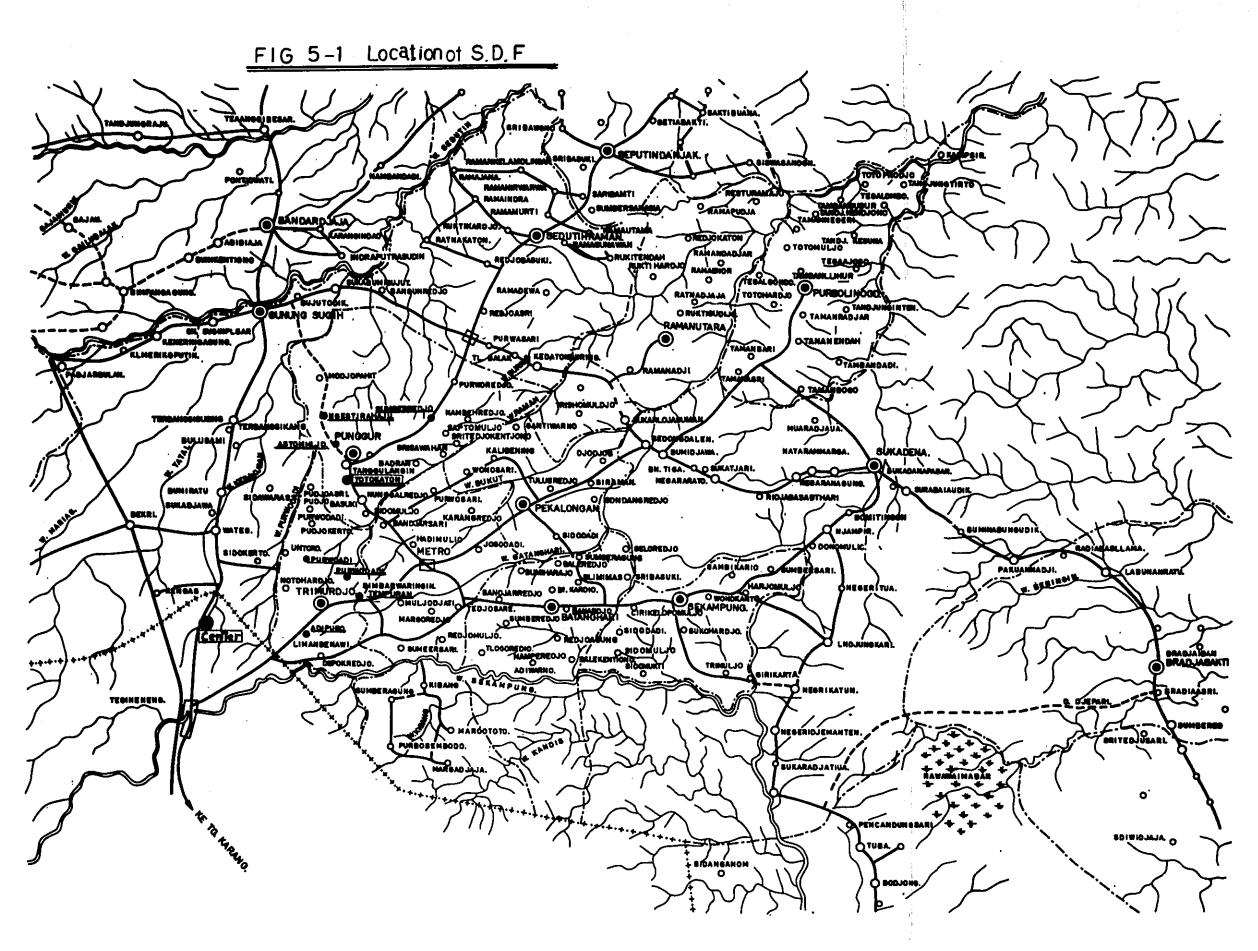
Irrigation water of this area will be supplied from D. P. U. 10 turnout of main canal and delivered a distance of 4,600 m, the total length of the tertiary and fourth canal. 120 ha will be irrigated with 41 turnouts.

The maximum control area in one turnout will be controlled in less 3 ha as possible to control the disturbance of being profitable at upstream, not at downstream in continuous irrigation and to reduce unbalance of driving hours of irrigation water in each plot. In turnouts of small scale, the measurement of diversion in precision is difficult; therefore, the overflow weir type, a simple structure which can be made for fluctuation of water intake level in the canal will be adopted.

3. Drainage Culvert

Due to thickness of over-burdon and culvert section, pipe culvert is easy in construction execution and profitable in economy. Therefore corrugated pipe culverts of 600 ϕ and 800 ϕ will be installed at 3 locations except one which has a drainage culvert.

.


Туре	Size	Q'ty	Remark
CAA	B H L 1.20 x 0.60 x 2.50 (Pasangan Batukali) (Concrete Cover)	1	Across A Type Farm Road of A Type Canal
CAB	1.20 x 0.60 x 1.50 (Pasangan Batukali) (Concrete Cover)	2	Across B Type Farm Road of A Type Canal
CAC	1.20 x 0.60 x 1.00 (Pasangan Batukali) (Concrete Cover)	1	Across C Type Farm Road of A Type Canal
CBA	0.70 x 0.60 x 2.50 (Pasangan Batukali) (Concrete Cover)	6	Across A Type Farm Road of B Type Canal
CBB	0.70 x 0.60 x 1.50 (Pasangan Batukali) (Concrete Cover)	2	Across B Type Farm Road of B Type Canal
СВС	0.70 x 0.60 x 1.00 (Pasangan Batukali) (Concrete Cover)	2	Across C Type Farm Road of B Type Canal
CCA	0.50 x 0.40 x 2.50 (Pasangan Batukali) (Concrete Cover)	6	Across A Type Farm Road of C Type Cana
ССВ	0.50 x 0.40 x 1.50 (Pasangan Batukali) (Concrete Cover)	24	Across B Type Farm Road of C Type Cana
ccc	0.50 x 0.40 x 1.00 (Pasangan Batukali) (Concrete Cover)	8	Across C Type Farm Road of C Type Cana
CCD	1.20 x 0.60 x 5.60 (Раваngan Batukali) (Concrete Cover)	1	Across D Type Farm Road of C Type Cana
CCE	1.20 x 0.60 x 8.60 (Pasangan Batukali) (Concrete Cover)	1	Across E Type Farm Road of C Type Cana
тота	T	54	

Diversion Works

Туре	Size	Q'ty	Remark
	BH		
WA	1.00 x 0.55 (Pasangan	6	Attached to A-Type
	Batukali)		Canal
WВ	0.60 x 0.55 (Pasangan	7	Attached to B-Type
	Batukali)		Canal
wc	0.40 x 0.35 (Pasangan	28	Attached to C-Type
	Batukali)		Canal
TOTA	L	41	

Cuivert for Drainage

Туре	Size	Q'ty	Remark
D-C-1	600 ø x 5.00 & (Corrugate Pipe)	1	
D-C-2	600 ø x 5.00 ^g (Corrugate Pipe)	1	
D-C-3	800 \$ x 8.00 \$ (Corrugate Pipe)	1	

-99-

5-1 Purpose and Plan of Investigation

The purpose will be to provide a model farm for farm lands and lands to be developed in the future to execute the rational development of rice culture technics.

Namely, by implementation of land improvement work, the rationalization of irrigation and drainage, reduction of labour and increased farm production will be promoted, and with improvement of upland crops in dry season, development of the productivity of lands, the rationalization of currency system, the introduction of new technics and training of farmers organization will be promoted. Therefore, in the land consolidation, the investigation and consideration were comprehensively carried out to conform with the following matters under such back ground.

As various values in planning and designing haven't been detailed due to the term of survey of the mission being limitted, it will be desired to make measuring and analyzing by expects hereinafter.

1. Demonstration farm will be essential as standard of industrialization for adjacent areas to conform with social, natural and various technical conditions of the areas.

2. In regards to land readjustment, some improvement of the present management process concerning man and animal power (in the scope of tiller at present); and to improve the practical conditions such as form and area of plots, land possession, distribution of arable lands, the improvement of productivity has been anticipated by the extention, rearrangement and grouping of plots.

3. Concerning farm roads, investigation and consideration have been made on necessity of the improvement of various functions such as arrangement, density, width, height of road function, access structures to traffic conditions (including farming operation) based on form of villages or farming system as improvement of plots.

4. Concerning irrigation and drainage, main canals will be controlled under D. P. U. Comprehensive management is required in connection with its improvement scheme and a special consideration has been paid on quality of the function of irrigation and drainage, specially on the function of water distribution, water diversion and proper arrangement of canal lines.

5. Various plans of land improvement work has been determined also to consider the improvement of soil layers, preservation of farm lands and other infrastructures.

5-2 Present Condition

This design area will include Kabupatan Trimurdjo, a nine other Katjamatan in Lampung province, and Kabupatan Lampung, Tengah. Lampung province is situated in about 2 % of the area of Indonesia and also contains 2 % of the total population of Indonesia. The population of Kabupatan L. T. is 959,220 as of 1970, recently this area experienced a population increase of 8.5 %.

In the promotion of the development of outer islands, this area is extremely favoured in natural and various economical factors. However, the ultimate population policy and the core of BIMAS, which is mainly promoted by the Government, will be development and improvement in this area. Realization of this goal is an urgent problem.

Therefore, small demonstration farms will be installed at 40 separate locations in this area. An investigation has been performed to consolidate 7 areas of land into two separate locations, one location consists of 3 areas around Trimurdjo and the other consists of 4 areas around Punggur quickly.

The objective area is located upstream comparatively and its intake facility has been completed, being proposed area in the first year of proposed project. Namely, Dam Argoguruh was constructed at Way Sekampung in 1935 and those areas are that which the construction of paddy fields has comparatively performed consequently to comply with the completion of each turnout facility at Trimurdjo and KH point downstream.

But it is considered that the discharge of water resource will be extremely reduced in dry season (in the plan of water intake of head work: A = 30.483 ha and Q = 26.09 m³/s at Punggur Utar, A = 22.00 ha Q = 32.19 m³ at Sekempang, being A = 52.483 ha Q = 58.28 m³/in total. As of the 8th of September 1972, the discharge of water resource is 12 m³/s in the total amount of intake water except some partial leakage on the 8th of September 1972 being 8 m³/s on the 9th of October) and the water demand will be considerably increased to

conform with development of downstream area and improvement of Teriary canal. So another counter plan of water resource will be needed. Also, the implementation of the project on irrigation and water management will be as follows.

The operation of sluice at Mondor, Wokkor can not be done as water gauges are short or have not been provided and gate flash boards

KatJamatan	SDF No.	Objective No.
Trimurdjo	4	4
Punggur	3	3
Metro	5	
Peklongan	4	
Batnhari	5	
Sekampung	· 3	
Septih Raman	4	
Raman Utra	4	
Purbolingo	4	
Sukadava	4	
TOTAL	40	7

Classification	D. P. U.	Gotong Rojong or Each Farmera
Control of Canal	Main Canal + Secondary Canal +	Tertiary canal Branch ditches (till approach 15 m by D. P. U.)
Control of Water Supply	Irrigation District Resort → Mondor → Wakker → Pekerdjo	Each Kabupatan P.M.D. → ili-ili

are rotten, the operation of this sluice is not easy. For example, no gate in design has been provided at some places and even in the weir operation, square timber for sluice gate has remained. Therefore, in order to reduce the damage, circulating irrigation is excuted as a temporary measure in Desa at the end.

Existing paddy fields belong to Latsole or Podosole system, most of these consist of red brown soil. But gray white soil has penetrated into some parts of the south area. Every substratum of subsoil under arable lands is in solid condition (at over 40 in Penetrometer value $A = 3.23 \text{ cm}^2$), the effective soil layer is some 10 cm except partial rawa paddy, being quite thin and contains little humus.

Concerning the average amount of rainfall for the period 1950-1967 (Metro observation EL +57 m), 1,973 mm/year was served. Rainfall in the dry season will be light due to alternating east seasonal wind, monthly rainfall will be 5-6 days. It seems that every 6 to 7 years a drought occurs during the dry season at this time the cassava plant becomes withered and loose their drought resistance.

Farmers of this area mostly consist of immigrants from Java except for a number of Lampung people. Immigration to this area was started about 1930 but was not prosperous to this area until after independance. As a result, the government adopted a policy of developing promising areas and encouraged immigration to control problems such as drought, flood, wild mice, and noxious insects.

Ordinally, in case of immigration, its allocation will be 20 ha in total of 1.0 ha of paddy fields, 0.5 ha of uplands, 0.25 ha for permanent cropping and 0.25 ha for building lots. The mean scale of obstraction will be 1.65 ha in total of allocating 1.2 ha of paddy fields, 0.2 ha of uplands and 0.25 ha of building lots. Although field reclamation has been promoted to accorde with extension of irrigation facilities in recent years, past local customs coupled with an increasing population is having an adverse affect on the farm reclamation program. With each men generation farms are reduced in size as they are divided among new family members. Small farms in this area lack proper farm management technics and equipment, relying almost entirely on ancient farm instruments such as Ani Ani (pinching heads), Todjok (soil scraper) and tugol (seeding hole stick), etc. Only 30-40 % of puddling and cultivation are carried out by the use of cattle. technics to such land conditions, with an ultimate plan to extend arable land into the Alang-Alang plain.

	·		5	S.D.F. (Pa	addy Field)	Another	District	
Katjamatan	Desa	No. of Farmhouse	Cadas	ter	Actual	Survey		Upland	
-		Concerned	No. of Fields	Area	No. of Fields	Area	Paddy	Ordinary	
				ha		ha	ha		
Trimurdjo	Limonlienawa	8	54	3.125	90	4.115	6.165	-	
	Tempuran	5	39	3.140	52	3.470	5.420	-	
	Purwoadi	7	33	3.725	36	5.583	7.725	0.525	
	Purwodadi	4	59	3.150	58	2.429	7.200	0.800	
Punggur	Sumberredjo	7	51	3.125	57	2.984	1.375	2.000	
	Ngestirapaju	7	35	3.080	38	2.737	2.245	1.000	
	Astomhljo	7	41	3.000	42	2.737	1.750		
Total		45	312	22.345	373	24.055	31.880	4.325	
Average (per Hours)			6.63	0.497	8.29 (per	0.535	0.708	0.096	
					field)	0.065			

Outline of Small Demonstration Farm

Notice: See Figure 5-2.

Concerning transplantation of rice seedling, normal planting methods will prevail. Most farmers adopt careful farming technics such as spacing in the row is quite close and depth of root is 6-7 cm. They hope the paddy field will be pooled as soon as possible in order to prevent noxious insects from appearing.

The condition of arable lands has comperatively been possessed in grouping, being such a small area as less &a/plot due to these having been reclaimed in case of utilizing a small amount of natural and surplus water. Lack of farm roads and improper utilization of farm borders as roads are caused for low production (2 TON/ha).

Accordingly, it is necessary to promote the consolidation of land foundation to improve irrigation facilities, not only to expect an increase in production but also to introduce modern new agricultural

5-3 Guidance of Land Consolidation

Eventhough proposed small demonstration farm which have comparatively affluent irrigation water, excluding Simbarwaringun, Purwoadi, only 20-30 % of paddy fields were planted in the dry season of 1972. It will be necessary to expect effective management of investment not only to introduce upland cops such as maize, cassava, soybean and peanut but also to consider high utility of lands. Concerning irrigation facilities and structure of farm road (for instance, the height or road surface), it is necessary to divide into permanent and temporary structure in accordance with the demand, the condition and frequency of use. It will also be necessary to consider the effectiveness of investment.

In regards to the plot and form of arable lands, the implementation will as much as possible respect the existing facilities and habitual water use to agree with the topography and gradient as may be required, but it will be essential to reduce the amount of soil as much as possible and not to consolidate areas uniformly. The present arable area consists of small plots of less than 1 ha each as stated before and the possessed plots consist of 10 or less plots. Rational water management is needed to extend and to improve farm areas to group and reduce farm labor, and improve irrigation facilities.

Concerning farm roads, lateral class, it has been comperatively rearranged but main farm roads almost haven't been rearranged. Therefore, farm roads will be necessary to install along the short side of paddy block in each farm plot.

Important points of the result of investigation and consideration of each place will be summarized as follows.

Name of Place	Items of Rearrangement	Guidance and Summary of Rearrangement
Limanbenawi	Paddy Block	The direction of long side of plots will be from north east to south east, (gen- erally the central part in present situa- tion has been generally in this direc- tion), and the short side will be some 20m at generous slope zone, being 10 m at north side and along Tertiary canal at south side. This is unavoidable due to topography gradient.
	Drainage Canal	One line of drainage canal will be instal- led in the direction from south east to north east at the central region of this area so as to be able to control sub- merging and drainage treatment in the area. In this case, it will be necessary to investigate in detail on various hy- draulic functions as catchment area,

amount of collecting water, crossing structure of roads (the surface of road base has been lowered), canal bottom, water level at the upstream and drawing feasibility of connection with the end of downstream.

Road

Structure

Paddy

Block

The existing road located in the west of the area (above and less 5 m in width) will be adopted as main line, lateral roads being provided along drainage canal. Farming works will become easy to construct a farm road in the direction from north east to south east to cross at the near middle point.

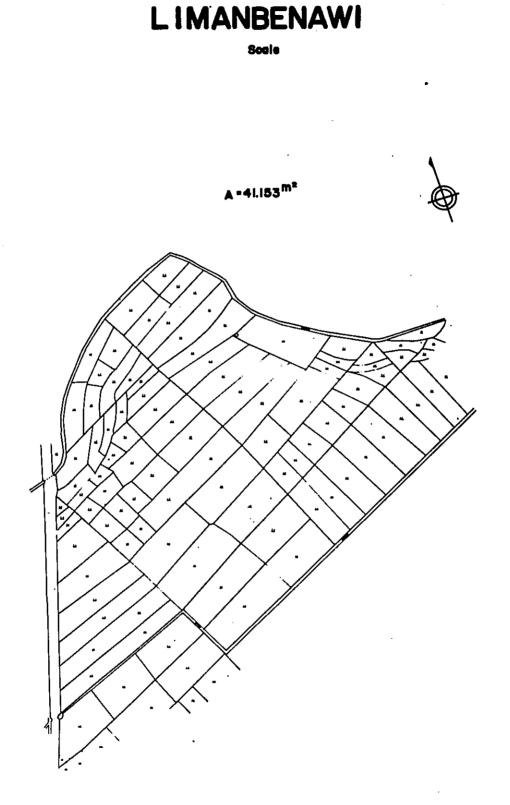
Irrigation Water Water intakes will be provided at 6 locations in total, 3 locations of both sides of Tertiary canal. Continuous irrigation will be adopted.

> Dimensions of the 2 conduits that cross the main road are 0.6 m in bottom width and 0.55 m in height. However, in case of the reconstruction in the future due to considerable amount of sedimentation at the canal bottom, its structure will be needed to keep the velocity of flow required (including survey of the position).

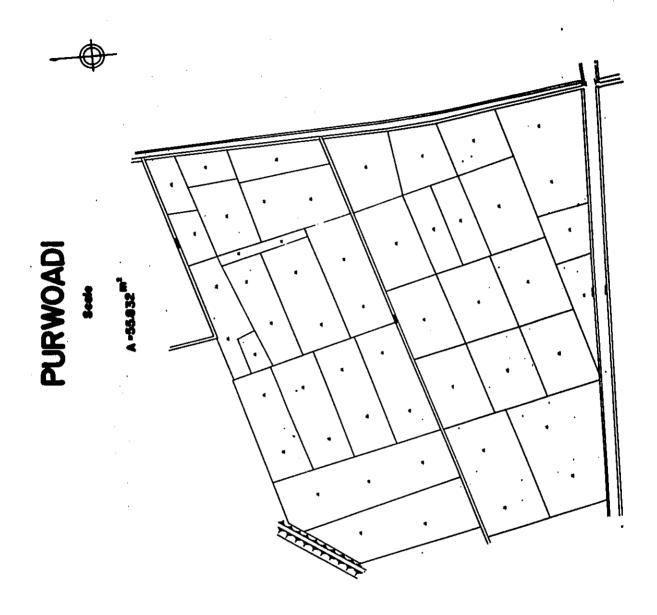
or to have the possibility of silt removal.

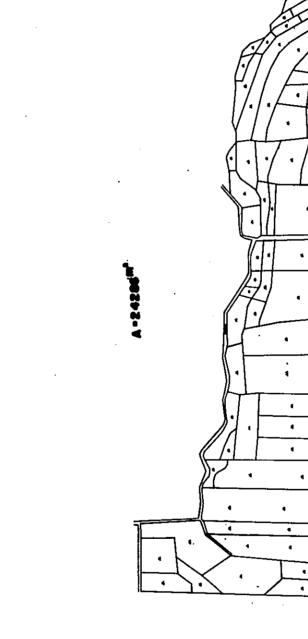
Concerning arable area of the south east part, which occupies most of the area, the establishment of farm plots will be made at right angles to Djalan Raja re Metro and at a high place along Saluran, the paddy block will parallel to the Teriary canal and the block will become large in size. In this case, as the gradient between both areas is somewhat steep, it is necessary to adjust at the short side of paddy blocks along the tertiary canal so as not to become different in the height of fall.

Irrigation There is a fall of 10-20 cm between Water canal bottom and arable lands west of the site. Concerning the water level, complete water intake is easy, complete installation of the intake will be necessary at the lowest point of the south east parts of the area and at two places of the tertiary canal in the west direction.

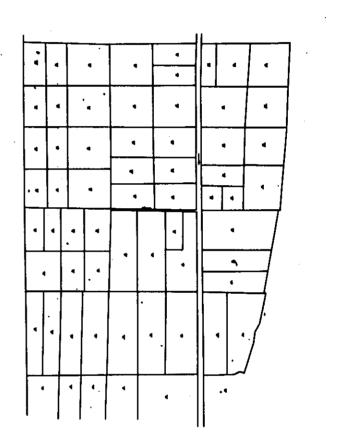

Tempuran

-105-


	Road	This area is cut by 2 lines of tertiary
		canals at south and east sides. One line of farm road will be necessary to con- struct from Djalan Desa to the borders of both farm plots at the low part in south direction and high part in north direction.
Purwoadi	A rable Land	The area will be expected high produc- tivity and intensive agricultural manage- ment at an early stage following the in- troduction of fertilizing and agronomical technics due to the topographical condi- tion is favoured through constant im- provement. In the connection with small irrigation canal which is running through the center of this area to the east west, paddy blocks will be established at right angles to the irrigation canal.
	Road	It is necessary to install one line of lateral road in an east west direction along the existing canal to make Kantor Lurah as the starting point.
	Structure	Although the intake of water diversion weir was designed to be made of logs, etc., at turnout from tertiary canal in east direction of the area, the construc- tion of water diversion weir will be made from Pasangan from the viewpoint of the operation, maintenance, and distribu- tion of water.
Purwodadi	Paddy Block	The operation ration of cultivations will be reduced to provide the long side of paddy blocks along Djalan Desa in south direction of the area. But as there is a gradient even in the direction of design long side of this area, it is profitable that its fall will be settled to 20-30 cm and the short canals, it is desirable to make a comparison to the habitual water use and the gradient of topography of connecting lands.
	Road	One line of farm road will be constructed in a east-west direction from the main road along Pungur Utara and along the existing canal. In this case, it is neces- sary to make a comparison with the line running up to the north along the east direction of the area from Djalan Desa.
	Irrigation Canal	The field surface of farm plots in the south direction of tertiary canal is high at about 10-20 cm from canal bottom.


.

		Due to this, easy water intake can not be constructed side will be provided till alternation of gradient along Rawa. Also paddy blocks along Rawa will be obliged to settle small plot allocation to respect the present plot allocation not to conform to the topography.
	Structure	The installation of entering roads will be needed at 3 locations to cross the ex- isting canal by the use of simple conduits after improvement of entering roads along the border of both paddy blocks.
Sumberredjo	Paddy Block	The long side of paddy blocks will be provided to cross the tertiary canal at a right angle where water intake has been directly made from B. P. U. 15. Concerning blocks in west direction of opposite the farm plot, accordingly it will be necessary to construct a simple water intake at the head part of the area.
Ngestirahaju •	Arable Block	Paddy block ownership will basically conform to the present system. It is desirable that regarding Mr. Sahiti and Mr. Bissis' possession, their land con- solidation will be made from two blocks each in total and for Mr. Djarto and Mr. Suarno's, the short side of blocks will be at least above 20 cm to exclude borders. Regarding Mr. Amat Danuris in the south east section of the plot, such comprehensive improvements as 2 paddy blocks will be desirable.
	Road	Farming operations will be made easy after installation of farm roads on every other farm border.
	Irrigation	It will be rational to install irrigation canal to alter irrigation water at the borders of Mr. Djanto and Mr. Suarnos'.
A stomhljo	Paddy Block	It is necessary to extend plots to estab- lish the long side of the paddy block to cross in a right angle to the present Djalan Desa. Therefore, the long side will become block border at 100 m and the water intake will be freely settled for each paddy block.
	Structure	Entering roads will be constructed at two locations in the north and three locations in the south of farm plots.


4

 \otimes

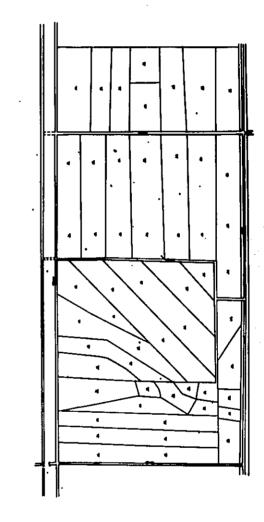
PURWODADI

SUMBERREDJO

A-29.844

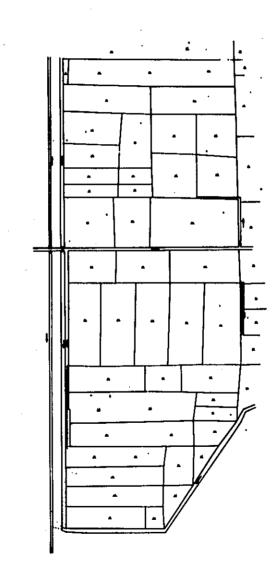
•

.


.

A-27456

.



•

6-1 Construction Program

6-1-1 Construction Program of Facilities of Water Source

1. Outline

a. Farms of 5 ha and uplands of 10 ha will be constructed for test as well as training and exhibition on the east plateau in this area. Judging from discharge and annual. rainfall in the proposed water source site, irrigation water will be in short supply during a portion of rainy season and dry season. So, in order to ensure the water required (Total reservoir capacity 210,000 m³), low paddy fields will be used as a reservoir. Irrigation water will be supplied to the farms on the plateau by pump from the reservoir.

b. Concerning the scale of dam, the length of the dam is long, but the height is extremely low. Main works will be composed of the excavation for dam materials at the borrow pit, the embankment of the dam, the excavation of the spillway site and the masonry of Pasangan Batukali. The construction program of each work is as follows.

2. Order of Execution

Starting with the construction of a road leading to the work and then proceeding on to the completion of dam construction, all work will be carried out in an orderly marner.

(1) Vehicles will be allowed to pass the dam basin freely by making a road from the present connection road in the basin. 11 ton buildozer will be used for this work.

(2) After the completion of work of (1), an open canal, which runs at the left edge of low paddy field in the dam basin, will be utilized as a temporary diversion channel, and this canal will be excavated by man power, and the cross section will be enlarged.

(3) Surface soil removal will be carried out by diverting from 11 ton bulldozer for temporary road works in parallel with the works of (2).

After the completion of this work, the excavation of spillway site will be performed by using the bulldozer. Concerning the spillway, the construction of bridge abutment made of Pasangan will begin immediately. The trench excavation will be started with a backhoeshovel (0.35 m^3) in the dam basin area when surface soil removal is completed.

(4) The 11 ton bulldozer which completed the surface soil removal and the excavation of spillway site will be transferred to the borrowpit on the right bank of the reservoir basin, being used for cutting trees and stumping. (5) After the completion on works of (4), the excavation of embankment material and temporary deposit of soil will be performed with the same bulldozer.

When there is the possibility that the moisture ration of the embankment material will become high due to rain, suitable treatment of drainage such as providing trenches will be needed.

(6) After completion of the bridge abutment of the spillway, masonry of Pasangan Batukali will be performed at the overflow section and floodway.

(7) After the bridge abutment will be cured for 28 days, the embankment will be implemented by carrying the earth of the borrow pit along the center-line of proposed embankment in accordance with specification.

(8) The dam creat will be paved by asphalt with thickness in 8 cm, width in 6 m and length in 124 m so that the dam crest will be utilized as a connection road after completing the embankment.

3. Execution of Each Work

Each work will be proceeded as stated in (2) Order of Execution. In this paragraph, the construction machine and disposal of soil will be stated definetly.

(1) Construction of Temporary Boad

The embankment of temporary road will be carried out by using 11 ton bulldozer so that the vehicles can pass freely in the dam basin from the present connection road. After removing the border of the low paddy field on the right bank in the dam basin, this soil will be applied to the embankment.

(2) Temporary Drainage Canal

An old connection road will be used as a cofferdam and existing canal will be used as a temporary canal so that drainage during construction period will not be obstructed.

After excavating the existing canal by manpower, it will be arranged in shape, and the necessary section of temporary drainage canal will be provided.

(3) Surface Soil Removal and Excavation of Spillway Site

The work will be performed with 11 ton bulldozer and removed humus soil will be abandoned to the place where it will not disturb the work.

Excavated earth of the spillway site will be temporarily deposited in the dam basin of the downstream dam body, being applied for embankment of the dam.

(4) Trench Excavation

Trench will be excavated with 0.35 m^3 backhoe-shovel and the excavated earth will be temporarily deposited in the dam basin of downstream dam body, being applied to the embankment of the dam.

(5) Excavation of Borrow-Pit

Excavation will be made with 11 ton bulldozer and the excavated earth will be deposited temporarily in the dam basin, being prepared for embankment.

(6) Disposal of Old Bank (Existing Connection Road)

Old bank will be used as a cofferdam. Concerning the old bank in the design line of new dam, the surface soil removal will be carried out.

After that, compaction required for the dam body will be made, and old bank will be used as a part of the dam body. However, the execution should be done so as to unite the new enbankment and old bank in a body.

(7) Embankment

Excavated soil from the borrow-pit and spillway site will be used as embankment materials. 11 ton bulldozer will be employed for compaction and compression. 80 kg rammer will be used at around the bridge abutment of spillway and old embankment section. In this case, an attention should be paid to construction so that the embankment part may not separate easily. After the work proceeds till the elevation of new embankment will be nearly the same as the elevation of cofferdam, the temporary drainage will be changed to drainage by using the existing pump of 1 set and new type pump of 2 sets (total capacity 3 m^3/min), which have been installed on the left bank of the dam basin. After that, the embankment of the temporary drainage section will be started and the embankment of the whole dam body will be advanced.

(8) Transport of Embankment Material

Embankment materials, which are excavated and temporarily deposited with 11 ton bulldozer at the borrow-pit, will be loaded with 0.4 m^3 tractor-shovel and transported to the proposed site of the embankment with 4 ton dump truck (average hauling distance 70 m).

(9) Pasangan Batukali

Pasangan Batukali, which is used at the bridge abutment, overflow weir section and floodway of the spillway, is Indonesian special masonry. These materials will be transported to each execution place, its mixing and placing being carried out by manpower. (10) Mold

The mold will be used at placing place of Pasangan Batukali, and materials which can be obtained in the place will be used after prefabrication at the appointed place.

(11) Asphalt Pavement

After the completion of embankment, dam crest will be paved with asphalt in 124.00 m of length, 6.00 m of width and 0.08 m of depth.

4. Scheduling

Construction machines necessary for various works as stated above will be bulldozer, backhoe, tractor-shovel, etc. The required number and workable days will be estimated as follows to examine the amount of works and work efficiency of machines so that these construction machines may be smoothly and effectively used.

(1) Construction Period

The work which workable day per month will be 25 days will be implemented for 6 months of the dry season from May to October.

Mean daily earthwork = total earthwork/25 day x 6 month Daily maximum earthwork = mean daily earthwork x 1.2

(2) Amount of Work and Execution Efficiency of Construction Machinery and Required Number

Structure	Work	Quantity	Mean Daily Earthwork	Daily Maximum Earthwork	Work Efficiency per Hour	Work Efficiency per Day	Number Required	Kind of Machine
	Surface Soil Removal	740m ³	59.22m ³	71.06m ³	53.33m ³ / hr	·266m ³ / ·a day	1	ll ton Bull- dozer
Dam Body	Trench Excava- tion	645	51.58	61,89	16.9	84.5	1	0.35m ³ Backhoe shovel
	Embank- ment	52.5	41.99	50.39	47.9	239.4	1	ll ton Bull.
Borrow- Pit	Surface Soil Disposal	600	59.22	71.06	53.3	266	1	†1
	Excava- tion	6600	43.12	51.75	18.3	91.7	1	11
Spillway	Excava- tion	1080	43.12	51.75	18.3	91.7	1	II

Amount of Work and Execution Efficiency of Construction Machine and Required Number

Surface Soil Removal

ll ton bulldozer Daily work hour Daily work efficiency

Required number

Trench Excavation

0.35³ backhoe Daily work hour Daily work efficiency

Required number

Embankment

ll ton buildozer Excavation transport of earth Daily work hour 5 hours Daily work efficiency m^3/day $\frac{50.39}{239.4} \doteqdot 1$ Required number

Excavation

11 ton buildorzer Daily work hour Daily work efficiency

Required number

(3) Work	Days of Each C	onstruction M	achine		
Construction Machine	Kind of Work	Amount of Work	Amount of Work per day	Day	Remark
11 ton Bulldozer	Preparatory Work	200 m ³	266,0 m ³	1	
1	Dam Body Surface Soil Disposal	740 m ³	266.0 m ³	3	
	Spillway Excavation	1,080 m ³	91,7	12	
	Old Levse Disposal	54	266.0	1	Old levee Surface Soil dia- posal 180 m x 0, 3 m = 54 m ³
	Borrow-Pit Surface Soil Disposal	600	266.0	3	
	Borrow-Pit Excevation	6,600	91.7	72	
	Dam Body Embankment	5,250	145.5 .	36	
0.4 m ³ Tractor Shovel	Borrow-Pit Loading	6,600	116.0	57	
4 ton Dump 2	Transport	6,600	86,4	77	
0,35 m ³ Backhoe	Dam Body Trench Excavation	645	84.5	8	

5 hours

 $\frac{51.75}{91.7} \doteqdot 1$

5 hours $53.3 \text{ m}^3/\text{ha} \ge 5 = 266 \text{ m}^3/\text{ha}$ $\frac{71.06}{266.00} \div 1$

5.0 hours $16.9 \text{ m}^3/\text{ha} \ge 5.0 = 84.5 \text{ m}^3/\text{day}$ $\frac{61.89}{\pm 1}$ 84.5

 $53.3 \text{ m}^3/\text{ha} \ge 5 \ge 0.9 = 239.4$

 $18.33 \text{ m}^3/\text{hr} \ge 5 = 91.7 \text{ m}^3/\text{day}$

			ER		н Настоя 1 ст. т.	ΥS	
125			LDOZER			TDAYS	
<u>S</u>		AMAN-POWER	ON BUC	36PAYS			
		EL FL	NO N	Ş			
<u>8</u>	ZEP	MAN HOV K					
		L character in the second seco			<u>v</u>		
- 12	.	IS TOUCKTC			SODAYS 30DAYS 30DAYS		
	LON COL	2 DAYS M ³ TRUC TON DU			3 3		
	DOZER			<u>g</u>			ATION
ပြို မြို	이번 바람이 🎞 - 이상님의		<u> </u>	20 00			NAN SAL
AYS 5	B	Dore 170	M ³ BUCKHOV	ITON BULLDOZER	<u>, i i i i i i i i i i i i i i i i i i i</u>		REMOVING C OPERATI
JLF 25 ^{DAYS} BULLDO	-POWER	J. J.	۳ ک	N N			
		<u>г</u>	10.5 0				RT_O
	MAN MAN	<u> </u>	<u>y</u> <u>a</u>				SURFACE SOI SLOPE PLAS TRANSEORT
		9 9 9	NCH NCH P P P P P P P P P P P P P P P P P P P	NORKS	SXR NRS		
		8		<u>, 5 8</u>			
- V V		× ×		AY VGAN	- д <u>л</u> - щ -		NOIES SSR TEPO
I TEM PREPARATORY WORKS	DIVERSION CHANNEL EXCAV. BORGOW-PIT S.S.R.	EXCAV. S.P.O. T.E. DAM BODDY	SSR. OLD LEVEE	EXCAV. J2200 EXCAV. 1080 ABUT ABUT ABUT	DTHER PASANGAN WORKS BRIDGE	ACCESS ROAD ASPHALT PAVEMENT	
· - 🛱 :				u Fu 40		V dr	

TDOZER	$rac{200 \text{ m}^3}{266 \text{ m}^3/\text{day}} = 0.75 \div 1 (\text{day})$	<u>740 m³ 266 m³∕day</u> = 2.78 ≑3 (day)	<u>1080 m³</u> = 11.78 † 12 (day) 91.7 m ³ /day = 11.78 † 12 (day)	<u>54 m³</u> 266 m ³ /day = 0.20 ÷1 (day)	<u>600 m³ 266 m³/day</u> = 2.26 + 3 (day)	$\frac{6600 \text{ m}^3}{91.7 \text{ m}^3/\text{day}} = 71.97 \div 72 \text{ (day)}$	<u>5250 m³ - 36.08 + 36 (day)</u> 145.5 m ³ /day	<u> or - shovel</u>	$\frac{6600 \text{ m}^3}{116.0 \text{ m}^3/\text{day}} = 56.90 \div 57 \text{ (day)}$	AP TRUCK	<u>6600 m³</u> 86.4 m ³ /day = 76.39 ÷77 (day)	ACKHOE	$\frac{64.5 \text{ m}^3}{84.5 \text{ m}^3/\text{day}} = 7.63 \pm 8 \text{ (day)}$		
11 TON BULLDOZER	1. Preparatory work	2. Dam Body Surface Soil Disposal	3. Spillway Excavation	4. Old Levee Disposal	5. Borrow-Pit surface Soil Disposal	6. Borrow-Pit Excavation	1 7. Dam Embankment	0 0.43 m ³ TRACTOR	1. Borrow-Pit Transport	4.0 TON DUMP TRUCK	l. Borrow-Pit Transport	<u>0.35 m³ BACKHOE</u>	1. Dam Body Truck Excavation		

6-1-2 Construction Program of Pilot Farm and Facility Buildings

The pilot farm reclamation will start at the same time as dam work. The paddy field reclamation of 5 ha will be carried out by using bulldozer due to the volume of earthwork in ground leveling being considerably large as 10,500 m³. The farm road work will be completed to bury water pipes after completion of the paddy field reclamation. The construction execution will be finished in all in the second year and will be managed with the cropping of the third year. Regarding the construction of facility buildings, these will be constructed to divide the term into 5 in accordance with the necessity from the first year to the fifth year.

6-1-3 Construction Program of Large Demonstration Farm

The construction will be carried out in May-October of dry season in order to minimize the reduction of agricultural products, to increase efficiency of work and to reduce the construction cost. About 85,600 m³ of the soil will be treated in the ground leveling work and the embankment of the road. But it is not economical to carry out these works for 6 months because many labour and construction machine will be needed. Therefore, 60 ha of the north east part at the D.P.U. 10 turnout will be constructed in the third year and 30 ha of the remainder in the fourth year.

Scheme of Execution

(1) Construction Period

Workable days per month will be 25 day and 7 months in the year (from May to October in the dry season).

Mean daily earthwork = total amount/25 days Daily maximum earthwork = mean daily earthwork x 1.2 2.3 of the amount of work will be executed in the third year and the 1/3 remaining in the fourth year.

(2) Amount of work and number requirement of main machines

() shows the total amount of works.

Item	Amount	Mean Daily Earthwork	Daily Maximum Earthwork	Working Capacity Per Hour	Working Capacity Per Day	No. Re- quired	Kind of Machine
Main Road	1,900m ³ (2,850)	10.8m ³	13.0m ³	75.8m ³ /hr	37.9m ³ /day	1	11 ton Bull.
Lateral Road	3,709 (5,563)	21.2	25.4	ti	11	1	
Farm Road	1,807 (2,710)	10.3	12.4	11	. 11	1	11
Land Leveling	49,345 (7,017)	282.0	338.0	ti	19	1	11

Lateral Road:	14 ton Bulldozer daily working hour 5.0 hr Working capacity per day = 75.8 x 5.0 = 379 m ³ /day Number requirement n $\frac{25.4}{379} \div$ number 1
Land Leveling:	14 ton Bulldozer daily working hour 5.0 hr Working capacity per day = 75.8 x 5.0 = 379 m ³ /day Number requirement n $\frac{338}{379} \div 1.0$

•

.

(3) Calculation of Working Hour per Number

.

Working day per number =	Amount Working Capacity	hr/number	×.	number
--------------------------	----------------------------	-----------	----	--------

			Total Ca	pacity per	Hour	. Working	Working	Day
Kind of Works	Item	Amount	Working Capacity/Hr	Number	Total Capacity/Hr	Hr/Number	Hour	Required
Connecting Road	Excavation & Push Soil	1,900 (2,850)	75.8 m ³ /hr	l	75.8m ³ /hr	25hr/Number (37)	50 hr	5.0 day (7.5)
Lateral Farm Road		3,709 (5,563)		1	"	45 (74)	н	10.0 (14.7)
Land Leveling		49,345 (74,017)	11	1	*1	650 (076)	н	130 (195.3)
Farm Land	11	1,807 (2,710)	11	1	11	23 (35)	ŦI	5.0 (7.1)
TOTAL								150.0 (224.6)

·~ .

· · · · ·

6-2 Specifications

6-2-1 Working Specifications

1. Type of Works: Scope of Works These specifications provide general conditions for the execution of the following works.

- a. Dam Body
- b. Spillway
- c. Access Road

2. Excavation: Clearance and Surface Soil Removal

a. For the removal of surface soil and corrosive substances as weed, wood scraps, stumps, roots, etc. and organic matters shall be removed completely.

b. The removed surface soil, the corrosive substances and the organic matters shall be disposed of by means approved by the supervisor. Filling excavation or borrowing shall be started after the inspection and approval of the supervisor.

c. These works are to be executed with the use of 11 ton bulldozer.

Excavation at the Borrow-Pit and the Spillway

a. Excavation shall be finished to the required side slope with 11 ton bulldozer comforming to the standard cross sectional drawing. (Required side slope = 1:1.0)

b. Where the removal of exposed stumps or rocks is difficult or unappropriate for management reason, appropriate steps must be taken under the direction of the supervisor.

c. When encounted with unexpected inferior soils, buried materials or wood, they must be disposed of as ordered by the supervisor.

Excavation Trench

a. This work is to be done by 0.5 m^3 Backhoe shovel.

b. The excavated earth is to be kept in the reservoir basing of Damdownstream site for future use as banking material.

Old Levee Treatment

a. Old levee is to be executed surface soil removing with the use of 11 ton bulldozer.

b. After surface soil removal at old levee is finished, compaction of old levee is to be done in 5 times of passage of 2 ton Rolley.

Embankment

a. All the obstructions of embankment bed shall be cleared prior to the commencement of the works.

b. When there is spring water or impounded water in embankment bed or when embankment has to be provided on soft foundations or foundations of high groundwater level, effort shall be made to dry the embankment bed through such means as drainage or replacements of soil.

c. Materials for embankment at borrow-pit and spillway must be used priority to ones in reservoir basin.

d. Banking layer thickness and compaction density will be as follows;

The banking layer thickness will be less than 20 cm when compaction is provided by machineries or rollers, and less than 10 cm when compaction is provided by rammer or other light weight compaction equipments. The standard compaction dencity will be obtained after about five passages of 2 ton roller.

e. Excavation of embankment materials and embankment layer work will be done in such a manner as to provide sufficient mixture to obtain optimum compaction and stability when materials are compacted.

Stone Masonry

<u>Materials</u>

a. Stone materials will be of uniform quality and with hardness, and be free from weathering and defects such as cracks, etc.

b. Shapes of boulders and quary stones will not be flat or such that is not suitable for masonry works. The boulder will be of the natural shape with diameters of 10-30 cm crosswise and 15-40 cm lengthwise.

Miscellaneous stones have the same finish as the boulders mentioned above.

c. Mixing of concrete and materials used for Pasangan Batukali will be as per Indonesian Standard.

<u>Works</u>

a. The foundation for direct laying of rubbles (including Pasangan Batukali) will be thoroughly compacted and will be finished at right angle to the masonry surface.

b. Bulders, rubbles and miscellaneous crushed stones used for masonry except for Pasangan Batukali will not be less than 15 cm in diameter. c. Pasangan Batukali to be used will have a diameter of over 10 cm crosswise and the surface of masonry will be finished uniform with the use of miscellaneous crushed stones.

d. Pasangan Batukali used at the place in contact with water (for example; Spillway, Abutment of the bridge, etc.) will be filled with concrete or mortar at least 3 cm above the surface.

e. Though the laying method and the corsswise diameter of Pasangan Batukali are not specified, the diameter will not be less than 10 cm.

f. Pasangan Batukali and stones used for wet masonry will be clean and free from mud, dust, etc. Such foreign matters will be cleaned thoroughly with water.

g. Pasangan Batukali will be provided with levee concrete of more than 5 cm even when not specified.

Asphalt Paving on Access Road

a. After embankment is all finished, dam crest is to be used as an access road.

b. It is necessary to pave with asphalt on access road.

Length of asphalt paving = 124 m

Wide of asphalt paving = 6 m

Thickness of asphalt paving = 8 cm

6.2.2 Machine Specifications

1 D60A - Bulldozer

a.	Туре	Crawler
ь.	Engine Type	Water-cooled, 4-cycle, Overhead valve, direct- injection type diesel
c.	Starting Method	By electric starting motor
d.	Flywheel Horsepower	140 hp/1600 rpm
e.	Max, Draw Bar Pull	15620 kg
f.	Angledozer Equipment	
	Operating Weight Overall Length Overall Width Overall Height	15250 kg 5305 mm 3970 mm 3015 mm

.

g. Ground Pressure

 0.62 kg/cm^2

h. Blade Equipment

Туре

Length Height Max. Lift Above Ground Max. Drop Below-Ground

2 D50A - Bulldozer

a. Type

c.

d.

е.

b. Engine Type

Angling and titlting blade, hydraulically controlled

3970 mm 1050 mm 1110 mm 520 mm

Crawler

Water-cooled, 4-cycle, overhead valve, pre-combustion chamber type diesel

By electric starting motor

90 hp/1750 rpm

10340 kg

11000 kg 4700 mm

3350 mm

2690 mm

 0.66 kg/cm^2

f. Angledozer Equipment

Flywheel Horsepower

Max, Draw Bar Pull

Starting Method

Operating weight Overall Length Overall Width Overall Height

g. Ground Pressure

h. Blade Equipment

Control TypeHydraulicBlade Length3350 mmBlade Height855 mmMax. Lift above Ground1050 mmMax. Drop Below Ground380 mm

3 D30S - Dozer Shovel.

Starting Method

a. Type

c.

b. Engine Type

Crawler

Water-cooled, 4-cycle, overhead valve, directinjection type diesel

By electric starting motor

d. Flywheel Horsewheel 55 hp/2000 rpm

			· · ·
e.	Max. Draw Sar Pull	6170 kg	•
f.	Operating Weight	6800 kg	
	Overall Length	4385 mm	
	Overall Width	1685 mm	•
	Overall Height	2570 mm	
g.	Ground Pressure	0.55 kg/cm ²	
L	Bucket Capacity	0.80 m^3	
h.	Max. Loading Capacity	1600 kg	
	Max. Docume capacity	1000 Kg	
i.	Max. Tilt-Back Angle, at Ground	40°	
	Max. Dumping Angle, Fully Raised	50°	
4	Backhoe (as a attachment of D	ozer-Shovel)	
a.	Angle of Swing	95°	
L# ,	Thighe of owing	,5	
Ъ.	Range of Offset	560 mm	
c.	Bucket Capacity	0.2 m ³	
d.	Digging Width	580 mm	
e.	Digging Depth	-3150 mm	
5	4 ton Dump-Truck		
a.	Max. Loading Capacity	4000 kg	
ь.	Right-side Handle		
c.	Speed	Forward Backward	5 stages 1 stage
d.	Engine	Water-cooling	diesel engine
e.	Starting Method	Battery System starting moto:	
f.	Front-wheel	2	
	Back-wheel	2 4	
		-	
g۰	Hydraulic Control	Packing Syste	m

. 6 .	Tamper		ч
a.	Weight	80 kg	
ь.	Percussion Number	550-700 time:	s/min
c.	Impact Stroke	30-60 mm	
d.	Impact Plate	330 x 330 mm	1
e.	Horsepower	3 рв	1600 rpm
7	Concrete Mixer		
a.	Capacity	0.09 m ³	
b.	Drum Revolution Number	25 times	
c.	Drum Dimension	Bore Inlet	700 mm 450 mm
d.	With Gasoline Engine Engine Horsepower	3.0 рв	
8	Concrete Vibrator		
a.	Туре	Vibration sys	tem
ь.	Bar Diameter	27 mm	
c.	Generator	Gasoline Eng	ine
d.	Horsepower	4.0 ps	
e.	Vibrator Frequency Vibrator Amplitude Vibrator Length	8000 VPM 10 mm 360 mm	
f.	Tool for Disjointing		
9	Portable Pump		
a,	Туре	Gasoline Eng	ine
Ъ.	Diameter	70 mm	
c.	Total Head	5.00 m	
d.	Engine Horsepower	3.0 рв	
•	Note: It is important that nu	mn and engine	ie unit etruct

e. Note: It is important that pump and engine is unit structure and easy to transport.

f. Notes of Attached Hose

(1) It is necessary that hose consist of either synthetic fibre rubber and vinyle or compound products, that products can make resistance to the pressure of above 1.0 kg/cm².

(2) It's also necessary that the products are light in weight and easy to handle.

- (3) The size of it will be 50-80 mm.
- (4) The length of a piece of hose will be about 20 m.
- (5) Quantity of hose 60 m
- g. Tool set
- 10 I. Pump Installation (for Paddy Irrigation)
- 1. Item of Pump

Type

Horizontal shaft, single suction, two stages, centrifugal pump

Suction Size	100 mm
Discharge Size	100 mm
Capacity	0.9 m ³ /m
Total Head	18 m
Speed	1800 rpm
Efficiency	59%
Engine Output	10 ps

Driving System Directly Driven by Engine

Quantity

2 nos.

Operation System Field Independent Operation

2. Materials

Main materials of this pump shall be as follows:

a.	Pump Casing	Cast iron (FC)
ь.	Impelier	Bronze cast (BC)
c.	Liner Ring	Leaded Bronze (LBC)
d.	Shaft	Carbon steel (S 35C)

3. Structure

Casing	This pump shall be multistage, centrifugal pump. Rotary part shall be detachable for inspection to remove the suction cover of the from.
	A vortex part, which the velocity head of the water having been released from the impeller is changed into the pre- ssure head, is provided in the drum. The inside of vortex part has a smooth casting body to reduce the friction.
Impeller	Impeller is monobloc casting. The characteristic of the water quantity and total head shall be downward curve and safety driving will be able to expect to the fluctuation of paral- lel operation.
Main Shaft	Main shaft will be well considered on power transmission, critical speed and deflection, making a high accuracy work.

4. Accessories

Accessories for one pump shall be as follows:

Foot Valve	l piece	Cock for air vant l piece
Drain Cock	l piece	Priming water funnel 1 set
Foundation Bolts	l set	Companion flange 2 sheets
Flexible Coupling	l set	Drain pipe for bearing 1 set
Disassembling Tool	l set	Compound gauge 1 piece

- II. Installation of Attachment Machine
- 1. Manual Sluice Valve for Discharge

Opening Size	100 mm
Туре	Manual Sluice valve (inner screw type)
Material	Cast iron (FC)
Quantity	2 nos

2. Check Valve

Opening Size	100 mm
--------------	--------

Type Spring internal type rofid choking check valve.

Materials Cast iron (FC) This value is a check value which keeps self-closing power high by spring and will have a high efficiency for reducing the rising of pressure of water-hammer.

3. Piping of Suction and Discharge

These piping materials shall be used at suction and discharge sides and shall be of SGP.

III. Operation System

- 1. Close Discharge Valve
- 2. Sufficient priming shall be conducted.
- 3. Drain Air Completely.
- 4. Engine Starting
- 5. Open Discharge Valve

IV. Engine for Driving Pump

1.	Type	4 cycle horizontal Diese	el Engine
2.	Number	2 nos.	
3.	Continuous Rating	12 OPS/22000 rpm	
4.	Maximum Output	13.5 PS/2200 rpm	
5.	Starting System	Manual operation	
6.	Accessory	Fuel Tank Air Cleaner Sound Exhauster Fitting Volts Maintenance Equipment Fan Velt	l piece " l set l set l set l piece

I. Pump Installation (for Field Irrigation)

1. Item of Pump

1

Type Horizontal shaft, single suction, two stages, centrifugal pump Suction size 125 mm Discharge size 125 mm $1.32 \text{ m}^2/\text{m}$ Capacity Total Heal 55 m 1800 rpm Speed Efficiency 61 % Engine Output 30 ps Driving System Directly driven by engine Quantity l nos. Operation System Field independent operation

2. Materials

Main materials of this pump shall be as follows:

a.	Pump Casing	Cast iron (FC)
b.	Impeller	Bronze (BC)
c.	Liner Ring	Leaded bronze (LBC)
d.	Shaft	Carbon Steel (S35C)
e.	Shaft Sleeve	Bronze (BC)

3. Structure

Casing

This pump shall be horizontal shaft, multistage, centrifugal pump, consisting of suction, intermediate and discharge casings, and side suction, top discharge. Guide Vane shall not be used in the pump casing. It shall be keep a high efficiency at any capacity.

ImpellerImpeller is monobloc casting. The
characteristics of the water quantity
and total head shall be downward
curve and safety driving will be able
to expect to the fluctuation of parallel
operation.Main ShaftMain shaft shall be well considered
on power, transmission, critical
speed and deflection, making a high

accuracy work.

4. Accessories

Accessories for one pump shall be as follows:

Foot Valve	l piece	Cock for air vent 1 piece
Drain Cock	l piece	Pumping Water funnel 1 set
Foundation Bolts	l set	Companion flange 2 sheets
Flexible Coupling	l set	Drain pipe for bearing 1 set
Disassembling tool	l set	Compound gauge 1 piece

II. Installation of Attachment Machine

1. Manual Sluice Valve for Discharge

Opening Size	125 mm
Туре	Manual sluice valve
Quality	Cast iron (FC)
Quantity	l nos.

2. Check Valve

Opening Size	125 mm
Туре	Spring internal type, rofid choking check valve
Materials	Cast iron (FC) This valve is a check valve which keeps self closing power high by spring and will have a high efficiency for reducing the rising of pressure of water hammer.

Piping of Suction and Discharge 3.

These piping materials shall be used at suction and discharge sides and shall be of SGP.

- III. **Operation System**
- Close Discharge Valve. 1.
- 2. Sufficient Priming shall be conducted.
- Drain Air Completely.
 Engine Starting.
- 5. Open Discharge Valve.
- IV. Engine for Driving Pump

1. 2.	Type Continuous Rating	4 cycle vertical Diesel Er 30 ps/1800 rpm	igine
3.	Starting System	Electric motor	l piece
4.	Accessories	Tachometer	l piece
		Pressure gauge for lubricating oil	l piece
		Thermometer for lubricating oil	l piece
		Thermometer for cooling water	l piece
		Air Cleaner	l piece
		Fitting Volts	l set
		Radiator Cooling Fan	l piece
		Vatery Charger	l set
		Tools	l set

Chapter 7 Appendix

MEASUREMENT OF EVAPO-TRANSPIRATION

1.00

MEASUREMENT OF EVAPO-TRANSPIRATION (BY EVAPORIMETER) TEGINENENG (A) EVAPORIMETER: DEPTH 70 mm EXTENSION CENTER DIAMETER 120mm

DATE	POTENTIAL EVAPORTRANSPIRATION
	(mm)
SEPT 17	11
18	9
19	8
20	9
21	9 9 7
22	7
23	11
24	10
25	9
26	10
27	9
28	19
29	12
30	10
OCT 1	11
2	12
3	8
4	10
5	11
6	9
7	10
8	11
9	13
10	11

		•	: luas tonah	
No. Urut	nama pemilik	Tempat tinggal	: Ha	No.Kav.
	***************************************	**********************		
1.	: Sulaiman Simin	: Kp. Totokaton	: 4	: 1
2.	: Parto Wirono	: "	: 1,75	: 2
3.	: Njono	: "	: 0,75	: 5
4.	: Djakimin	: 11	: 0,50	: 4
5.	: Minto Sudarmo	· · ·	: 1,25	: 5
6.	: Parto wirono	: "	: 0,25	: 6
7.	: Rabin	: "	: 0,50	: 7
8.	: Kartosemito	: "	: 1,50	: 8
9.	: Pirut	: "	: 0,75	: 9
10.	: Mbok reken	: 11	: 0,75	: 10
11.	: Samiran	: "	: 0,75	: 11
12.	: Raban	: 11	: 0,25	: 12
13.	: Dulah Subarl	• 11	: 0,25	: 13
14.	: Karman		: 0,25	: 14
15.	: Rahman		: 0,50	: 15
16.	: Mukiman	: II	: 0,25	: 16
17.	: Baidi	11	: 0,25	: 17
18.	: Ponidjo		: 1,25	: 18
19.	: Dikin	. 11	: 0,50	: 19
20.	: mbok Kartoredjo		: 0,50	: 20
21.	: Wagimin	• 11	: 0,25	: 21
22.	_	• • U	: 1	: 22
22.	: Ansjori : Suradi	•	: 0,25	: 23
	: Suradi : Samsudin	• • • • •		: 24
24.		• 11	: 0,25 : 1	: 24
25.	: Rusdi	• •	• -	: 26
26.	: Tupan		: 0,25	
27.	: Kamidin	• • • •	: 0,75	: 27
28.	: Miswati	• 0	: 0,75	: 28
29.	: Tarno	: ···	: 0,25	: 29
30.	: Panggih		: 0,50	: 30
31.	:Sitar	•	: 1,75	: 31
32.	: Samiran	: "	: 0,50	: 32
33.	: Kasanredjo	: "	: 0,75	: 33
34.	: Kartoredjo	: U . N	: 0,25	: 34
35.	: Dulah Muin	•	: 0,25	: 35
36.	: Djoreno	: "	: 0,25	: 36
37.	: Djoreso	: "	: 0,25	: 37
38.	: Susah	; "	: 0,50	: 38
39.	: Adbullah	: "	: 0,75	: 39
40.	: Suradi	: Totokaton	: 0,29	: 40:
41.	: Suradi	: "	: 0,50	: 41:
42.	: Bustami	: "	: 4	: 42 :
43.	: Bustami	: **	: 0,25	: 43 :
44.	: Saimin	; 11	: 0,25	: 44 : Ka
45.	: Keni	: "	: 0,50	: 45 : no.
46.	: Saimin	: 11	: 0,25	: 46 : da
47.	: Karnen	11	: 0,25	: 47 : dja
48.	: Kasmiri		: 0,75	: 48 : sat
49.	: Sitar	•	: 1	: 49 :
50.	: Dulah Subari	• 11	: 0,25	: 50 :

				
51.	: Nadenan	:	: 0,25	: 51:
52.	: Ponidjo	: "	: 1.	: 52 :
53.	: Samiran Rt	. 11	: 0,50	: 53 :
54.	: Pawirodimedjo	: "	: 1,50	: 54 :
55.	: Kasno	: "	: 1	: 55 :
56.	: Kastam	: 11	: 0,50	: 56 :
57.	: Sujut	: 11	: 1,50	: 57 :
58.	: Muzamman Ali	: "	: 2	: 58 :
59.	: Karijotiko	: !!	: 1	: 59:
60.	: Muharto	t 11	: 0,50	: 60 :
61.	: Burza	: !!	: 2	: 61:
62.	: Zuhdi	: 11	: 0,50	: 62 :
63.	: Kardido	; "	: 0,50	: 63 :
64.	: Supardi	1 11 .	: 2,50	: 64 :
65.	: Dulah Subari	1 11	: 0,50	: 65 :
66.	: Suwardi	· · ·	: 1	: 66 :
67.	: Sukarno	: 11	: 1	: 67 :
68.	: Sarni	: "	: 2	: 68 :
69.	: Pawiro	: "	: 1	: 69:
70.	: Djaimin	• • • • • •	: 0,50	: 70 :
71.	: Tukiman	11 11	: 0,50	: 71:
72.	: Djarimin	+ 11	: 0,50	: 72 :
73.	: Djajus		: 1	: 73 :
74.	: Djureni		: 1	: 74 :
75.	: Anwar	• • • • •	: 1	: 75 :
76.	: Dul Djalal	•	: 0,25	: 76 :
77.	: Adenan Zen	: Metro	: 1	: 77 :
78.	: Usup Alam	: Tanjungkorang	: 2	: 78 :
79.	: Ramelan	: Totokaton	: 1,50	: 79:
80.	: Salimi	t t	: 0,50	: 80:
81.	: Ramelan	• 11	: 0,50	: 81:
82.	: Sjamsudin	; II	: 0,50	: 82 :
83.	: Sungkono	•	: 0,50	: 83:
84.	: Ramelan	: Totokaton	: 0,25	: 84 :
85.	: Sirad	: "	: 1,50	: 85:
86.	: Mudjahit	: "	: 0,50	: 86:
87.	: Mursidi	: "	: 1,50	: 87:
88.	: Dawan	: 11	: 0,25	: 88 :
89.	: Sutarno	: "	: 0,50	: 89 :
90.	: Ramelan	: "	: 0,50	: 90:
91.	: Mangun Parwito	t ¹¹	: 2	: 91:
92.	: Hasan Manap	: Tanjungkarang	: 1	: 92 :
93.	: Abuhasan	: Metro	: 1	: 93 :
94.	: Ibrahim	: Totokaton	: 0,50	: 94 :
95.	: Supriono	: "	: 1	: 95 :
96.	: Sarwono	: "	: 1,50	: 96 :
97.	: H. Parid	: 11	: 1,50	: 97 :
98.	: Tarno	: "	: 2	: 98 :
99.	: Djuari	: "	: 0,125	: 99:
100.	: Akad	: "	: 0,375	: 100 :
101.	: Maidi	: "	: 0,50	: 101 :
102.	: Sppian	: 11	: 1	: 102 :
103.	: Dulah subari	: 11	: 0,25	: 103 :tanah
104.	: Sulaiman Simin	: 11	: 1	: 104 :pekarangan
105.	: Maidi	: 11	: 0,25	: 105 : "
106.	: mbok Kunah	: "	: 0,50	: 106 : "
		-137-	-	

· ·				
160.	: Situr	: "	: 0,25	: 160 :
159.	: Ardjo	; "	: 0,25	: 159 :
158.	: Sagi	• • • • • • • •	: 0,25	: 158 :
157.	: Rebo		: 0,25	: 157 :
155.	: Dirno		: 0,50	: 156 :
154.	: Redjo	• 11	: 0,25	: 154 :
153.	: Setra : Tukiem	• 11	: 0,25 : 0,25	: 153 : : 154 :
152. 153.	: Paimin	: 11	: 0,25	: 152 :
151.	: Dulhalim	: " . "	: 0,50	: 151 :
150.	: Somosuratin	: ¹¹ . II	: 0,25	: 150 :
149.	: Pirut	: "	: 0,25	: 149 :
148.	: Sopian	: "	: 0,25	: 148 :
147.	: Darkup.	; **	: 0,25	: 147 :
146.	: Misri	: "	: 0,25	: 146 :
145.	: Djuari	: "	: 0,25	: 145 :
144.	: Ngadi	: "	: 0,25	: 144 :
143.	: Busrowi	t	: 0,375	: 143 :
142.	: Tarmidi	: **	: 0,50	: 142 :
141.	: Bakir	: "	: 0,50	: 141 :
140.	: Darmawan B	11	: 1	: 140 :
139.	: Darmawan A		: 1	: 139 : "
138.	: Karnen		: 0,50	: 138 : "
130.	: Pawiro		: 0,125	: 137 : "
135.	: Karmin	t tt	: 0,25	: 136 : "
134.	: Likin	•	: 0,25	: 135 : "
135.	: Lapangan	• • • •	: 1	: 134 : "
132.	: Miswadi	: 11	: 0,25	: 133 : "
131.	: Dulah subari		: 0,25	: 132 : "
130.	: Sitar	• • • • •	: 0,25	: 131 : "
129.	: Panggih		: 0,25	: 130 : "
128.	: Saimin		: 0,25	: 129 : "
127.	: Keni	: Totokaton	: 0,50	: 128 : Tanah pe
120.	: Ljuari : Kamidin	i 11	: 0,25	: 127 : "
125.	: Djuari		: 0,25	: 126 : "
124.	: Susah	. 11	: 0,25	: 125 : "
123.	: Kasanredjo : Abdulah	• tt	: 0,25	: 124 : "
122. 123.		· 11	: 0,25	: 123 : "
121.	: Ngadinan : mbok tuninah	• •	: 0,25	: 122 : "
120.	: Ngadi	• • • •	: 0,25 : 0,25	: 120 : "
119.	: Mintosudarmo	: 11	: 0.25	: 119 : " : 120 : "
118.	: Suradi	• •	: 0,25	. 110 .
117.	: Raban	• •	: 0,25	4 441 4
116.	: Tupan	: "	: 0,25	. 110 .
115.	: Suradi	: "	: 0,25	: 115 : "
114.	: Kartosemito	: "	: 0,25	: 114 : "
113.	: Robin	: "	: 0,25	: 113 : "
112.	: Partowirono	: **	: 0,125	: 112 : "
111.	: Njono	; **	: 0,125	: 111 : "
110.	: Kasanwijono	; "	: 0,25	: 110 : "
109.	: Partowirono	: "	· · · · ·	: 109: "
108.	: Samiran	: "	: 0,25	: 108 : "

161. 162.	: Daiman : Saimin	: II • II	:	0,25 0,50	: 161 : 162
163.	: Muhari	• 11	:	0,25	
164.	: Paidjo	• #1		•	: 164
165.	: Atmo	• • •	•	0,25	
166.	: Sikat	• •		0,50	
167.	: Sumpono	• •	:	-	
168.		• 11	:	0,25	
169.	: Pardi		:	•	
170.		*1	:	0,25	: 170
171.	: Darmi	. u	:	-	
172.	: Katidjo	11	:	0,50	: 172
173.	: Buhari	: Totokaton	:	•	: 173
174.	: Rusdi	: 11	:	0,25	: 174
175.		: 11	:	•	
176.	-	: "	:	•	: 176
177.	: Sak Dulah Pati	: Metro	:	•	
178.		: Totokaton	:	0,25	: 178
179.	-	: 11	:	-	
180.		: 11	:	+	: 180
x00.	: Karijopawiro	. 11	:		: 181

Metro, 3 Oktober 1972

Potugas Kasubdit Agraria Kab. Lampung Tengah ttd. (ACH AR BASRI)

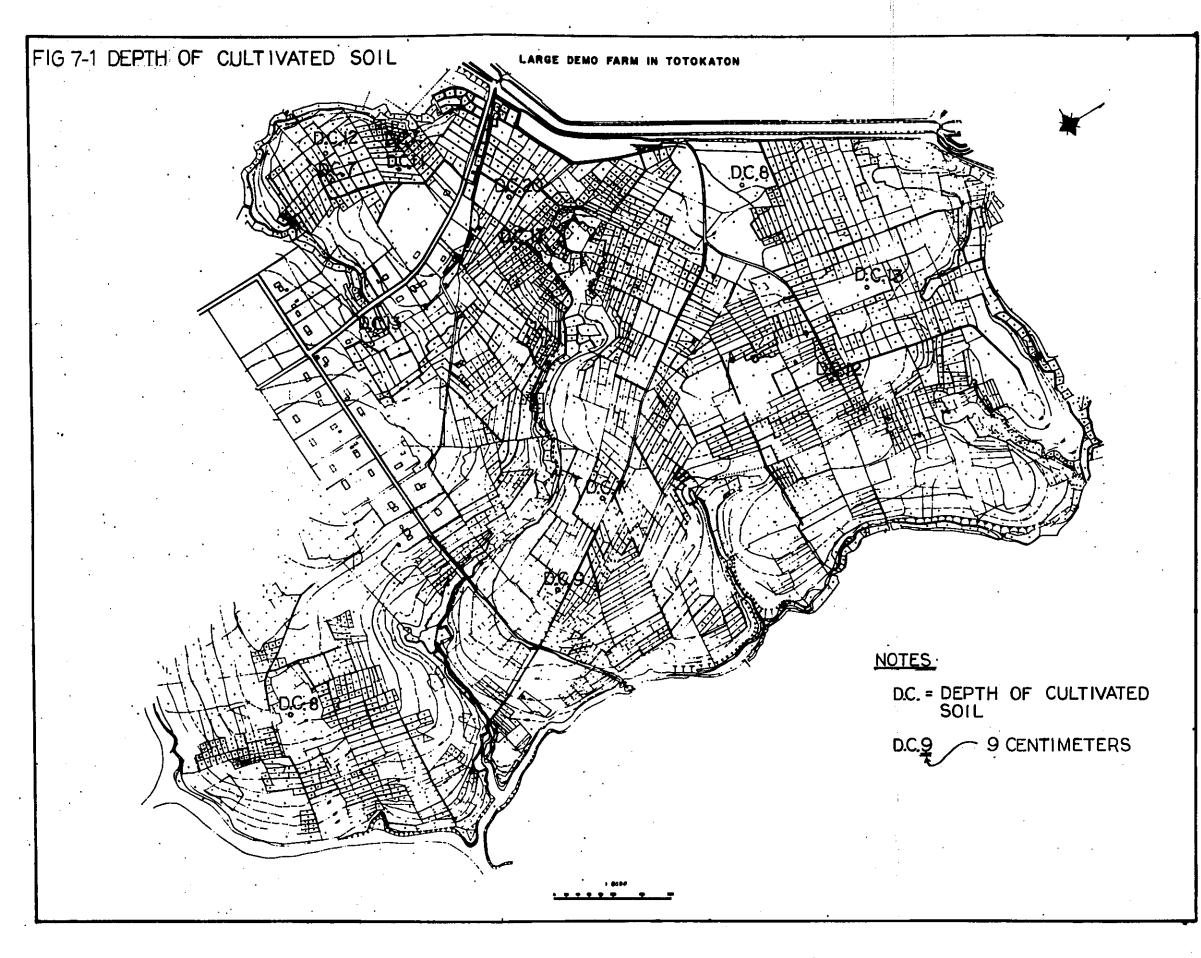
KGK1L0.1EARTH VOLUME (D 0) (C 1 0) (C 1 0 0) (C		5	·	(ບິນ	70 510	KEIHYUJ		· · · .	EMBAYEXCA	v = 0.900			108
12A3785,2632, -306 ,0,0, -32 ,7024,0011890,009047.007627.002364161,3257, -552 ,0,0, -106 ,12239.001356.008000,009201.003353A62,2970, -554 ,0,0, -43 ,8262,001356.008271.007160,004437339,5730, -979 ,0,0, -278 ,2326.001356.0013241.001999,005306004,4432, -1047 ,0,0, -279 ,14174.0020151.0014133.0013552.006455768,4544, -737 ,0,0, -119 ,12116.0012751.001449.001451.007273606,2556, -725 ,0,0, -117 ,12116.0012751.001460,001362.708316793,4626, -610 ,0,0, -1172 ,921.0021765,001460,00924.509282654,2056, -400 ,0,0, -1371 ,921.001211.607748.00774.0011384011,3174, -483 ,0,0, -277 ,13534.001297,0011687,008104.0012202674,2194, -230 ,0,0, -277 ,13534.001297,001687,007142.0013273106,2305, $+542$,0,0,	•		(KTRIDO)	(HOR 1:HO)	6 0080	SHIPO.	KETHAN					AREA	A
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	2R						-32,	7024,00	11890,00	9047.00	7527,00	35:
0000-27823245.0U23506.0U13241.0U19509.0U53060044432-104700-29914174.0020151.0U14133.0D13552.0U64557684544-73700-10818557.0U14954.0U12394.0D14515.0D72736062536-72500-1912116.0U12751.0U11440.0U 9070.00 83167984626-61000-13219221.0U21765.CU227.0U1362.0U92826542056-4C0000-13219221.0U21765.CU227.0U1362.0U103033552771-2620007042.0D12111.0U9341.0U944.0U113840113174-48300-27713534.0U12977.0U11687.0U8104.0U122026742194-230C00-776189.0D11046.0U4410.0D7494.0D132731062305+54200-776189.0U11994.0U7597.0U7344.0D142554134270-675D0-13<1	2	36	4181.	3257.	-552	Ο,	0.	-106.	12239.00	13560,00	8000.00	9201,00	431
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	35	3902,	2970.	-558.	Ο,	с,	÷43 ;	8295,00	13927,00	8271.00	7100,00	370
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	43	7339.	5730.	-979.	۰.	0.	-278,	23245.00	23506+00	13241.00	19009,00	790
7273606,2576,-725,0,0, -19 , 12116.00 $12751,00$ 11440.00 $90/0,00$ 8316793,4626, -610 ,0,0, -1321 , 9221.00 $21765,00$ $6227,00$ $13662,00$ 9282652,2055, -400 ,0,0,0,7211.00 $9341,00$ 9164.30 $9244,00$ 10303355,2771. -262 ,0,0,0, 742.00 $12111,00$ 7748.00 $97.9,00$ 11384011, 3174 , -483 ,0,0, -27 , 13534.00 $12977,00$ 11685.00 8104.00 1220 2674 , 2194 , -230 ,0,0, -27 , 13534.00 $12977,00$ 11685.00 8104.00 1327 3106 , 2305 , -542 ,0,0, -27 , 13517.00 $11994,00$ 9981.00 7132.00 1425 5413 , 4270 , -675 ,0,0, -261 , 6317.00 $1996,00$ 7597.00 7734.00 1540 3358 , 2389 , -694 ,0,0, -133 , 12650.00 $11909,00$ 7597.00 7734.00 16262812, 2313 , -234 ,0,0, -145 , 6996.00 $11530,00$ 2764.00 8541.00 17 35 4131 , 3241 , -525 ,0,0, -1453 , 6996.00 $11530,00$ 2764.00 <	. 5	. 30	6864.	4432,	-1047,	Ο,	ο.	-299,	14174.00	20151+00	14193.00	13552.00	65(
3 1 6793 , 4626 , -610 , 0 , 0 , -1321 , 9221.00 $21765.C0$ $e227.00$ 13462.00 9 28 265^2 , 2056 , -400 , 0 , 0 , 0 , 7211.00 9341.00 9164.00 9244.50 10 30 3355 , 2771 , -262 , 0 , 0 , 0 , 7211.00 9341.00 9164.00 9749.00 11 38 4011 , 3174 , -483 , 0 , 0 , -27 , 13534.00 12977.00 11685.00 8104.00 12 20 2674 , 2194 , -230 , 0 , 0 , $e77$, 6159.00 11094.60 9991.00 7132.00 13 27 3106 , 2305 , $e542$, 0 , 0 , $e77$, 6159.00 11046.00 4410.00 7494.00 14 25 5413 , 4270 , -675 , 0 , 0 , $e261$, 6317.00 19517.00 7843.00 13248.00 15 40 3358 , 2389 , -694 , 0 , 0 , $e133$, 12650.00 1190.00 7597.00 7734.00 16 26 2812 , 2313 , $e234$, 0 , 0 , $e145$, 6966.00 11530.00 593.00 11100.00 17 35 4131 , 3241 , $e529$, 0 , 0 , $e122$, 11437.00 9736.00 4662.00 6079.00 19 31 3216 , 2674 , <th< td=""><td>6</td><td>45</td><td>5768,</td><td>4544,</td><td>-737.</td><td>ο,</td><td>0,</td><td>-108.</td><td>18502.00</td><td>14958+00</td><td>12394.00</td><td>14515,00</td><td>6<u>0</u>4</td></th<>	6	45	5768,	4544,	-737.	ο,	0,	-108.	18502.00	14958+00	12394.00	14515,00	6 <u>0</u> 4
928265 ² 2055-4090007211.00 9341.00 9164.30 9244.50 103033552771-2620007042.0012111.007748.30 7749.00 113840113174-48300-2713534.0012977.0011680.008104.00122026742194-23000 $e8$ 6362.0011994.009981.007132.00132731062305 $e542$ 00 $e7$ 6189.0011046.004410.007494.00142554134270 $e675$ 00 $e264$ 6317.001951A.007843.0013248.00154033582389 $e694$ 00 $e133$ 12650.001190.007597.007734.00162628122313 $e234$ 00 $e133$ 12650.001190.005793.001100.00173541313241 $e525$ 00 $e145$ $e696.00$ 11530.005793.001100.00183330132241 $e529$ 00 $e122$ 13432.00 9736.004662.006079.00193132162674 $e233$ 00 $e122$ 1246.00 5321.00 7325.00204242743223 $e666$ 000 $e12106.00$ 14167.0011053.0012346.00	7	27	3606,	2556,	-725,	σ,	٥.	-19,	12116.00	12751,00	11480,00	40 1 0*00	454
10303355,2771. -262 .0,0,0,7042.0012111.007748.00 9749.00 11384011,3174, -483 ,0,0, -27 , 13534.00 12977.00 $1168\pi.00$ 8104.00 1220 2674 , 2194 , -230 ,0,0, $e8$, 6362.00 11994.00 9981.00 7132.00 1327 3106 , 2305 , $+542$,0,0, $e7$, 6169.00 11046.00 4410.00 7494.00 1425 5413 , 4270 , -675 ,0,0, $e74$, 6317.00 19516.00 7843.00 13248.00 1540 3358 , 2389 , -694 ,0,0, $e13$, 12630.00 11909.00 7597.00 7734.00 1626 2812 , 2313 , $-23d$,0,0, $e145$, $e696.00$ 11530.00 5293.00 11100.00 1735 4131 , 3241 , -525 ,0,0, $e122$, 11432.00 9736.00 4662.00 $e079.00$ 1931 3216 , 2674 , $e233$,0,0, $e122$, 11432.00 9736.00 12346.00 2042 4274 , 3223 , -666 ,0,0, 0 , 1214.00 , 14167.00 14167.00 12346.00	6	31	6798,	4520.	-610,	ο,	٥.	.1321,	9221,00	21765,00	9552,00	13602,00	52
1011384011, 3174 , -483 ,0,0, -27 , 13534.00 12977.00 $1168\times,00$ 8104.00 1220 2674 , 2194 , -230 ,0,0, $e8$, 6362.00 11994.00 9991.00 7132.00 1327 3106 , 2305 , -542 ,0,0, $e7$, 6169.00 11046.00 4410.00 7494.00 1425 5413 , 4270 , -675 ,0,0, $e261$, 6317.00 19516.00 7843.00 13248.00 1540 3358 , 2389 , -694 ,0,0, $e133$, 12650.00 $1190e.00$ 7597.00 7734.00 1626 2812 , 2313 , -236 ,0,0, $e145$, 6696.00 11530.00 5293.00 11100.00 17 35 4131 , 3241 , -525 ,0,0, $e145$, 6696.00 11530.00 5293.00 11100.00 1833 3013 , 2241 , $e529$,0,0, $e311.00$ $12e67.00$ 5321.00 7325.00 2042 4274 , 3223 , -666 ,0,0,0, 12100.00 14167.00 11053.00 12346.00	9	28	2667.	205ô,	-400.	0.	0.	Ο.	721:,00	9341,00	9164.30	\$2a4 , 50	320
1220 2674 , 2194 , -230 ,C,0, t^8 , 6362.00 11994.00 9981.00 7132.00 1327 3106 , 2305 , $t542$,0,0, t^7 , 6159.00 11046.00 4410.00 7494.00 1425 5413 , 4270 , -675 ,0,0, t^261 , 6317.00 19515.00 7843.00 13248.00 1540 3358 , 2389 , -694 ,0,0, t^13 , 12650.00 $1190t.00$ 7597.00 7734.00 1626 2812 , 2313 , $-23d$,0,0, t^145 , 6966.00 11530.00 5293.00 11100.00 17354131, 3241 , -525 ,0,0, t^145 , 6966.00 11530.00 5293.00 11100.00 1833 3013 , 2241 , $t529$,0,0, 0 , 0 , 6311.00 12667.00 5321.00 7325.00 2042 4274 , 3223 , -686 ,0,0,0, 14167.00 11053.00 12346.00	10	30	3355,	2771.	-262.	Ο,	ο.	0,	7042.00	12111,00	7748.00	9749,00	3.6
1213273106,2305, $\cdot 542$,0,0, $\cdot \epsilon 7$, $61 \epsilon 9$,00 $11046,00$ 4410.00 $7494,00$ 1425 5413 , 4270 , -675 ,0,0, $\cdot 261$, $6317,00$ $19516,00$ 7843.00 $13248,00$ 1540 3358 , 2389 , -694 ,0,0, -133 , 12650.00 $11909,00$ $7597,00$ $7734,00$ 1626 2812 , 2313 , $-23d$,0,0,0, $4304,00$ $9644,00$ $2764,00$ $65d1,00$ 1735 4131 , 3241 , -525 ,0,0, -1455 , $0696,00$ $11530,00$ $5293,00$ $11100,00$ 1833 3013 , 2241 , -529 ,0,0, -122 , $11432,00$ $9736,00$ $4662,00$ $6079,00$ 19.31.3216,.2674,,233,0,0,0, $6311,00$ $12867,00$ $5321,00$ $7325,00$ 2042.4274,.3223,0,0,0,14167,00 $11053,00$ $12346,00$	11	3B	4011,	3174,	-483,	Ο,	0.	-27,	10534,00	12977,CU	11680.00	8194,00	46
14255413,4270,-675,0,0, $*261$, 6317.00 19517.00 7843.00 13248.00 15403358,2389,-694,0,0, $*13$, 12650.00 11909.00 7597.00 7734.00 16262812,2313,-233,0,0,0, 4304.00 9644.00 2764.00 6531.00 17354131,3241,-525,0,0, $*145$, 6696.00 11530.00 5293.00 11100.00 18333013,2241, $*529$,0,0, $*122$, 11432.00 9736.00 4662.00 6079.00 19313216,2674, -233 ,0,0,0, 6311.00 12667.00 5321.00 7325.00 20424274, 3223 , -686 ,0,0,0, 14167.00 14167.00 1053.00 12346.00	12	20	2674,	2194,	-230,	G .	0.	₹8 ₁	6362+00	11994,00	9981.00	- 7132,00	35
1540 3358 , 2389 , -694 ,0,0, $+13$, 12650.00 11909.00 7597.00 7734.00 1626 2812 , 2313 , -236 ,0,0,0, 4304.60 9644.00 2764.00 8561.00 1735 4131 , 3241 , -525 ,0,0, $+145$, 6696.00 11530.00 5293.00 11100.00 1833 3013 , 2241 , -529 ,0,0, $+122$, 11432.00 9736.00 4662.00 6079.00 1931 3216 , 2674 , -233 ,0,0,0, 0 , 6311.00 12867.00 5321.00 7325.00 2042 4274 , 3223 , -686 ,0,0,0, 14167.00 11053.00 12346.00	13	27	3106.	2305,	-542.	.0.	0.	. 7,	61,09,00	1,1046,00	4410.00	7494,00	29
16 26 2812, $2313,$ $-236,$ 0, 0, $4304,60$ $9644,00$ $2764,00$ $6561,00$ 17 35 4131, $3241,$ $-525,$ 0, 0, $+145,$ $6696,00$ $11530,00$ $5293,00$ $11100,00$ 18 33 $3013,$ $2241,$ $+529,$ 0, 0, $+122,$ $11432,00$ $9736,00$ $4662,00$ $6079,00$ 19 31 $3216,$ $2674,$ $-233,$ 0, 0, 0, $6311,00$ $12867,00$ $5321,00$ $7325,00$ 20 42 $4274,$ $3223,$ $-686,$ 0, 0, 0, $14167,00$ $11053,00$ $12346,00$	14	25	5413.	4270+	-675+	. D.	0 .	= 261,	6317,00	19518,00	7843.00	13248,00	46
17 35 4131, 3241, -525, 0, 0, -145, 0696,00 11530,00 5293,00 11100,00 18 33 3013, 2241, -529, 0, 0, -122, 11432,00 9736,00 4662,00 6079,00 19 31 3216, 2674, -233, 0, 0, 0, 0, -12867,00 12867,00 5321,00 7325,00 20 42 4274, 3223, -686, 0, 0, 0, 0, 0, 12106,00 14167,00 11053,00 12346,00	15	40	3358.	2389+	-694	0.	0.	-13,	12650,00	11909100	7597 <u>+</u> 00	7734:00	39
18 33 3013, 2241 , $+529$, 0, 0, $+122$, 11432.00 9736.00 4662.00 6079.00 19 31 3216 , 2674 , -233 , 0, 0, 0, 6311.00 12887.00 5321.00 7325.00 20 42 4274 , 3223 , -686 , 0, 0, 0, 12106.00 14167.00 11053.00 12346.00	. 16	. 26		2313,	-23d+		0	0,	4304,00	9644 t0U	2764,00	65a1:00	25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	35	4131.	3241.	-525,	<u>,</u> D ,		+1,45+	6696,00	11530.00	5293+00	11100,00	34
20 42 4274, 3223, -686, 0, 0, 0, 12106,00 14167,00 11053,00 12346,00	18 .	33	3013,	2241,	-529.	. 0,	Ο,	-122,	11432.00	9736,00	4662,00	6079,00	31
	19		3216,	. 2674	-233,	0	0.	D,	6311.00	12887,00	5321,00	7325,00	33
131 32 2747, 1983, -543, 0, 0, 0, 11358.00/ 6863.00 6301.00 5022.00	20	42	. 4274.	3223,	-686.	. 0,	Q.	0,	12100+00	14167:00	11053.00	12346,00	. 49
	131	32	2747,	1983,	-543,	0,	Ο,	0.	11.358.00	រ ៦៩៩៩ <u>៖</u> 00	6301.00	5022,00	. 33

A TABULATION (OF EARTH-VOLUME (2)	
005370 SP4,	UREIHYU S	·

		וטמ	κ γ υ	FI	ITSU	เรลยล	H Y O		RI = 0,900 0 98088KI		D MENSEKI	
KOKU NO.	HORUSU	#1FID0	HORTUD	C 0080	SUIRO	KETHAN	DENKUKAN)	(0 ~10)	(11-)	(0 -10)	(j,j -)	MENS
. 1	21	85611,	65621.	-11594.	0.	0,	-2769	216435.00	236226100	180740.00	204614,00	A92623
GOKFI	21	85611.	65621,	-11594,	Ο,	Ο,	-2769,	215435.00	230224.00	180744.00	204614,00	392020

-140-

8 2511


AREA(M2)

5584,00 13000±00 57040.00 9601,00 2060+00-0429,00 5417,00 52595,00 10005400 36550,00 46303.00 35465+00 29139,00 46720,00 39890:00 25353.00 34619,00 31929.00 38839,00 49672,00 33004,00 92020100

JOH 2511

VSEKI

s?.00

-141-

Chapter 8 Project Cost

INDEX

		KIND	SHEE	T NO
	АМО	UNT IN CONSTRUCTION COST		A-1
(I)	COST	GOF EXTENSION CENTER	••••	A-1
	(1)	CONSTRUCTION COST OF DAM	•••	A-1
	(2)	FARM CONSOLIDATION	•••	A-3
	(3)	COST OF BUILDING	•••	A-11
(II)	COST	Г OF LARGE-DEMO FARM	•••	A-40
	(1)	COST OF FARM CONSOLIDATION	•••	A-40
	(2)	COST OF BUILDING	•••	A-45
(111)	UNI	r Cost	•••	A-48
(IV)	CAL	CULATION OF MATERIAL		A-57
	(1)	CALCULATION OF DAM	•••	A-57
	(2)	CALCULATION OF FARM CONSOLIDATION	• • •	A-62
	(3)	CALCULATION OF LARGE DEMO FARM		A-77

AMOUNT IN CONSTRUCTION COST SPECIFICATION

¥72,578,000 Yen

						er Part: er Part:	Domestic Currence (D.C) Forein Currency (F.C)
Description of Items Material	Size	Quantity	Unit	Unit Price	Cost	No.	Remark
(I) Cost of extension					42, 987, 000	D.C	64,176,000 yen
center					21, 189, 000	F.C	· · ·
(II)Cost of large					5,682,000	D.C	8,402,000
demo farm					2, 720, 000	F,C	
Grand total					48,669,000	D.C	72,578,000
					23,909,000		

COST OF EXTENSION CENTER SPECIFICATION

			¥64,17 42,987, 21,189,	,000 E	, c		Jpper Part: Juder Part:	Domestic Curren: (D.C) Forein Currency (F.C)
Descr	iption of Item's Material	Size	Quantity	Unit	Unit Price	Cost		(F, G) Remark
(1)	Dam .	·				1,698.0	000	•
						2,137,0		3,835,000
(2)	Farm Consolidation					2,137,0		14,116,000
(3)	Building					39,152,0		14,110,000
• •	•					7,073,0		46,225,000
	Total					42, 987, 0	000	
						21,189,0	000	64,176,000

(1)

(1)

CONSTRUCTION COST OF DAM SPECIFICATION

¥3,835,000 yen

1,698,000 D.C 2,137,000 F.C

Deac	ription of Items Material	Size	Quantity	Unit	Unit Price	Cost	No.	Remark
1.	Dam body				1, 330, 000	452,000 878,000		
2,	Spillway				2,351,000	1,092,000		
3.	Common temporary cost					154,000		10% of above amoun but except ripairing cost
	Total				3,835,000	1,698,000 2,137,000		D. C F. C
						3,835,000		

CONSTRUCTION COST OF DAM BODY SPECIFICATION

			¥1,330,0	uu yen		 Upper 	Part:	Domestic Currency (D. C)
			452,000 878,000			Under	Part;	Foreign Currency (F.C)
Description of Items	Material	Size	Quantity	Unit	Unit Price	Cost	No.	Remark
Surface soil					4	4,880		
removing			1,220	m3	33	40,260		
LeuroAring					120	43,920		By man power
Do			366	m3				1,220 x 0,3 = 366 m 3
Do Excavation					8	3,600		By machine
Excavation trench			450	m3	102	45,900		644 x 0.7 = 450
trenca					245	47,530		By man power
-			194	m3				644 x 0.3 = 194
Do Excavation and			• • • •		6	34.63B		net loss
			5,773	m3	39	225,147		5,248 x (1.+0, 1)=5,77
transport of earth			31113		4	23,092		,
Excavation and				m 3	85	490,705		
Loading					10	57,730		· · ·
				m3	65	375,245		
Carring				mu	7	40, 411		
Leveling and				т3	60	346, 380		
compaction				111.2	15	17, 325		By rammer
Soil compaction		·	1,155	m3	22	25,410		$5,773 \times 0.2 = 1,155$
					237	176.328		
Asphalt-pavement			744	m2	631	110, 340		$124m \times 6m = 744 m^2$
		t=8cm	744	m2		2,576		$124m \times 0m = /44mz$
Removal of			• • •	_	4			
surplus soil			644	m 3	33	21,252		
						452,030		D.C
Total						877,539		F.C
						1, 329, 569		
						≠ 1,330.000		•

2

.

1

CONSTRUCTION COST OF SPILLWAY SPECIFICATION

¥2,351,000 yen

1,092,000 1,259,000 Description of Items Material No. Remark Size Quantity Unit Unit Price Cost By machinery 1,078 x 0.7 = 755 By man power 1,078 x 0.3 = 323 4,530 29,445 38,760 6 755 m3 39 Excavation 120 m 3 323 Excavation 6,800 40 170 Embankment m3 4, 415 649,005 Pasangan-batukali 588m2 x 0.25m = 147m3 147 m3 Bridge . • 4,415 592,713 Pasangan batukali Substructure 134 25 m3 Super structure 120,000 x 1.15 = 138,000 932,052 Steel 6754 ton 138,000 Guard-rail 3,570 Y/mx 1.15 = 17 0 m 4,105 69, 785 6,350 125,730 Concrete 198 m3 44, 454 46, 000 991 220,047 227,700 105,541 40,000 yen/ton x 1.15 = 46,000 Rein. forcement Wooden 4 950 ton 106 5 mZ form 1,092,121 1,258,982 Total 2,351,103 ⇒ 2,351,000

¥14,116,000 yen

Desc	ription of Items Material	Size	Quantity	Unit	Unit Price	Cost	No.	Remark
1,	Cost of farm					735,000		
••	consolidation					2,443,000		3,178,000
Ζ.	Cost of pump-					483,000		
	station works	•				241,000		724,000
3.	Cost of pump					5,000		
	• •				•	829,000		834,000
4.	Cost of					783,000		
	delivery and					3,660,000		4,443,000
	supply pipe							
	lying		,					
5.	Cost of	-				6,000		
	booster pump				14	1,628,000		1,634,000
6.	Cost of supply	•				125,000		3 003 000
	pipe for					1,967,000		2,092,000
	sprinkler							
7.	Cost of					1 7 1 600		1 111 000
	sprinkler head					1,211,000		1,211,000
						2,137,000		14,116,000
	Total	1				11,979,000		14,110,000

2,137,000 D.C 11,979,000 F.C

COST OF FARM CONSOLIDATION SPECIFICATION

¥3,178,000 yen

735,000 D.C 2,443,000 F.C

.

Der	cription of Items Material	Size	Quantity	Unit	Unit Price	Cost	No.	Remark
ı.	Land-leveling							
	Excavation and transport of soil		10,570	m3	13 115	137,410 1,215,550		
	Leveling		10,570	m3	2	21,140		
2.	Main road	B = 10 m £ = 545m						
			(120	8,124		
	Excavation		67 7	m3	53	209,037		
	Embankment		3,944 1	m3	115	453, 571		
3.	Farm road				13	14,865		
	Excavation		1,145 0	m3	115 115 53	14,865 131,675 285,643		
	Embankment		5,389 5	m3	115	619, 792		
4.	Drainage- culvert		. 5	pcs				
	Concreat		1 45	m3	7,110	10, 309		
	Mortal Pasangan-		0 5 0	m3	6,350	3, 175		
	batukal		15 16	m3	4,415	66,931		
	Total					735,514 2,442,726	D.C F.C	
						3, 178, 242		

1

¥724,000 yen

483,000 D.C 241,000 F.C

2

3

Description of Items Material	Size	Quantity	Unlt	Unit Price		Cost	No.	Remark
******							21,22	
Filter		37 68	m 3	895		33,723		
Currugated	3000 ø m/m							
pipe	t = 3.2	6 40	m	46,700		298,880		
Base				7,110		55,031		
concrete		7 74	m3					
concrete				991		12,773		
Wooden form		12 89	m2					
a . 1		0 10	ton	46,000		4,600		
Steel		0.10	1011	4,415		399,557		
Pasangan -		90 5	m3	4, 410				
batukali		70 5		245		15,386		
Excavation		62 8	m3	245				V=2.5π x3.2=62.8r
n 1.		62	n0.8	70		4,340		$56pc \ge (1, +0, 1) \neq 6$
Bolt		01	10.5	10		482,747		D, C
						241,620		F,C
						,		
Total						724, 367		
					ŧ	724,000		

COST OF PUMP SPECIFICATION (FOR PADDY FIELD)

¥834,000

5,000 D.C 829,000 F.C

Description of Items	Material	Size	Quantity	Unit	Unit Price	Cost	No.	Remark
I. Pump		Suction bove 100 mm Capacity 0.9 m3/min Total head 18 m Speed 1800 rpm Engine lating 10 ps	2 0	set	47,000	94,000		Horizontal single suction volute pump directly driven by diesel engine
Accessories								
Foot valve			20	pc				
Drain cock			20	pc				
Air cock			20	pc				
Priming funnel cock			20	pc				
Foundation bolt			Z 0	set				
Drain plpe			20	set				
Companion flange			4 0	pcs				
2. Manual sluice valve	100	100 ¢	20	set	13,500	27,000		
 Self closing chech valve 		100 ¢	20	set	15,000	30,000		
4. Suction and discharge pipe			10	set	105,500	105,500		
with flange		1004×2,900 L	20	pc				Suction side
		100ø×1,800 [£]	20	рс				tr.

	100øx4, 100 ¹	20	рс		
	100øx1,500 L	2 0	. bc	•	
	100øx1,600 ¹	20	pe		
	100øx1,550 ¹	20	ре		
U	100øx 900 ¹	Z 0	pcs		
	100ø×1,240 [£]	10	pcs		
	100øх 400ø ø100	10	pcs		
Bend pipe	90° elbow stoo	10 0	PCB		
	45° elbow	40	pc=		
	100ptx 150p	10	pcs		
Cheese	100px 100p	1 0	pc#		
TS flange		10	Pcs		
Pipe	100px 500 ¹	10	p ca		
5. Diesel engine	Continuoua latin	20	•et	270,000	540,000
Accessories	12ps/2200rpm				
Fuel tank		20	рс		
Air cleaner		20	pc		
Muffler		20	рc		
Bolt		20	Pc		
Tools		2 O	pe		
Fan velt		20	рс		
•					

" Discharge

.

.

6, Pa	ackage and lipping	10	set	33,000	33, 000	
	imp setting					
	sbor per	15 0	man	110	1,650	
	intendent	8 0	man	400	3,200	
Te	otal				4,850 4,850 829,500	F.C
					834, 350	

.

.

• .

¥4, 443, 000 yen

4

•

.

783,000 D.C 3,660,000 F.C

Description of Items Material	Size	Quantity	Unit	Unit Price	Cost	No,	Remark
Material cost VW pipe (delivery)	150øx5,000	(444 5)	m) nos				CF JIS K 6742 - 6743 unplasticized polyviniy
VW pipe (supply)	150øx5,000	(900	m) nos	8,485	2,545,500		chloride pipe for wate works service
TS mocket	150¢	30	11	800	24,000		
90° bend pipe	150¢ - 90°	3	"	6,500	19,500		
Cheese	150 × 150	5	••	4,485	22, 425		
Flexible flange	150	5	11	3, 680	18,400		
Sluice valve	150¢	5	11	34, 800	174,000		
Dresser joint	150¢	13	**	3,670	47, 710		
Сарв		5	"	1,590	7,950		
TS flange	150¢	10	pc	1,500	15,000		
Cheese	150 x 50	50	206	7,500	375,000		
VW pipe	50ø x 0.50	50	pc	480	24,000		
Hydrant	50ø	50	pc	3,220	161,000		
Sub Total					3, 434, 820		
Pipe laying	150¢	1, 344 5	m	50	67,225		
Hydrant setting		50	plc	1,028	51,400		
Sub Total					118,625		
Farm-pond							
Excavation		742 7	m3	120	89, 124		702+28.8+11.9=742.7
Embankment		134 3	m3	40	5,372		108+26, 3=134, 3
Pasangan- batukali		126 6	m3	4,415	558, 939		506.3m2 x 0.25m = 126.6m3
Currugated pipe	600øx2.7t	95	m	6,440	61,180		
	2000øx3.2t	48	m	32,700	156,960		
Bolt		41	n 0 8	70	2,870		loss 37 x (1+0. J) = 41
Steel	Angle 50x50x6 ~ 4	0 1	ton	46,000	4,600		
Base concrete		18	m3	6,350	11,430		
Sub Total				-	664,865 225,610	•	
					890, 475		
Total					783, 490 3, 660, 095	D.C F.C	
					4, 443, 585		
					= 4, 443, 000		

COST OF BOOSTER PUMPS SPECIFICATION

....

¥1,634,000 yen

5

6,000 D.C 1,628,000 F.C

Description of Items Material	Size	Quantity	Unit	Unit Price	Cost	No.	Remark
1. Pump	Suction bove 125 mm Capacity 1, 32m3/min	10	set	210,000	210/000		Multistage centrifuge pump directly driven by diesel engine
	Total head 53m Speed 1800 rpm Engine rating 40 ps	· <u>·</u>	-				
Accessories		• ·					
Foot valve	125¢	10	pc	•			
Drain cock	•	10	pc				
Air cock		10	pc	•••			
Priming funnel		. 10	pe				<i></i>
Foundation		·		ан ал то Ге			n an
bolt		10	set				
Drain pipe Companion		10	set				
flange		20	pcs				
2. Manual				10.000	10 000		
sluice valve	125¢	10	pc	18,000	18,000		
3. Self closing	105/	10		17,000	17,000		
chech valve	125¢		pc	11,000			
4. Suction and discharge pipe					60, 820		
with flange	125øx2,600x1	39 0	kg				SGK
	" x1,000x2	30	kg				· · · ·
	" x400x1	60	kg				
· ·	" x1,450x1	21 0	kg				
	" x600x1	90	kg				
	" x170x1	25 0	kg				
	125ø90*	4 0	в рс				
	125¢ 45°	20	pc				
	125¢ x 150¢	1 0	p¢				
5. Diesel Engine		10	set	1,300,000	1,300,000		Continuous lating
	Sel-motor	10	pc				40 pe/1800 rpm
Accessories							
Speed meter		10	pc				
Press gage for lubrication oil Thermometer for		10	pc				•
lubrication oil		10	pc				
Thermometer for cooling water		10	pc				
Air cleaner	,	10	pc				
Bolt		10	PC				
Radiator fan		10	pc				
Battery		10	pc				•.
Tools		10	pç				

A-7

6.	Package and shipping	10	set	22,000	22,000	
7.	Pump setting					
	Labor	20 0	man	110	2,200	D.C
	Super- intendent	10 0	man	400	4,000	p.c
	Total				6,200 1,627,820	D.C F.C
					1,634,020	
					÷ 1,634,000	

COST OF SUPPLY PIPE SPECIFICATION (FOR SPRINKLER)

.

6

¥2,092,000 yen

125,000 D.C 1,967,000 F.C

Des	cription of Items	Material	Size	Quantity	Unit	Unit Price	Cost	No.	Remark
	Delivery pipe-Ll Asbestos. cement pipe	Class- A	¢150 x 4000 m/m	(125 35 0	m) pc	4,700	164,500		
	Collar joint		¢150	35 0	pc	900	31,500		
	Gross-pipe	FC.20	¢150×100	10	pc	6,700	6,700		24.4 kg/pc
	Givolt joint	FC.20	For ¢150	80	act	1,650	13,200		
2,	Delivery								
	pipe-L2 Asbestos cement pipe	Class- A	¢125 x 4000 m/m	(180 500	m) pc	4,000	200,000		With collar joint
	Reducer pipe	FC. 20	ø150 x 125	10	рс	4, 320	4, 320		17.2 kg/pc
	Saddle of ferrle		ø125	10	pc	1,100	1,100		17.2 kg/pc
	Cross-pipe	Class A FC, 20	¢125 x 125	10	pc	2,020	2,020		17.2 kg/pc Short pipe (B)
	Regulating valve work		¢125	10	place	38, 420	38,420		<pre>// fill fill fill fill fill fill fill fi</pre>
	Exhaust valve work		¢20	10	place	6,860	16,860		Single alt valve Socket 20øx1 pc Long nipple 20øx200 ¹
	Givolt joint		∳125 G.J	13 0	рс	1,360	17,680		8.14 kg/pc (JISA 5520)
3,	Supply			•					
	Pipe-L3 VW pipe		¢100 x 5000	(95 21 0	m) pc	4, 350	91,350		With sleeve joint A ty JIS K 6742
	Regulating valve work		¢100	1 0	place	27,650	27,650		Short pipe (B) ø100 x 2 pc x 10.1 kg Regulation valve
	Dressor joint	.	¢100	60	place	e 1,530	9,180		for water supply (JIS B 2062)
	Asbestos cement pipe	Class- A	ø100 x 3000 ¹	1 0	place	a 1,500	1,500		\$100 x 1 pc Regulating valve
	Hydrant (B)			60	place	e 8,400	50,400		50ø x 1 pc Long nipple
	VA socket		¢100	10	рс	1,730	1,730		50β x 300 ⁴ x 1 pc Iron cheese 100β x 50β x 1 pc Valve socket 100β x 3
	Plug	FC.20	for plain Cheese ¢100	10	рс	600	600		JIS B-2301
	Givolt joint		¢100 GJ	30	рс	1,180	3,540		JIS A5520 6.93 kg/pc

4.	Supply							
ч.	pipe - L4			(105	m)			With sleeve joint
	VW pipe		¢100 x 5000	21 0	pc	4, 350	91,350	(A type) Short pipe (B)
	Regulating valve work		ø100	10	pla ce	27,650	27,650	100ø x 2 pc x 10.1 kg
								Regulating valve 100s x 1 pc
	Hydrant (B)			60	place	8,400	50,400	Regulating valve 50¢ x 1 pc
	VA socket		¢100	10	pç	1,730	1, 730	lron cheese 1000 x 500 x 1 pc
			,					Long nipple 50ø x 300 x 1 pc
			••					Valve socket 100s x 2 pc
	D 1	PC 10		10	рс	600	600	For plain cheese \$100
	Plug	FC.20	GT (100	30	-	1,180	3,540	
	Givelt joint Asbestos	Class-	GJ ¢100		pc		1,500	
	cement pipe	A	100ø x 3000	10	pc	1,500	1,500	
5.	Water supply							
	canal-1.5 Asbestos	Class-		(95	1			a
	cement pipe	A	ø125 x 4000	27 0	m) pc	4,000	108,000	With collar joint
	Regulating valve work		, é125	10	place	38, 420	38, 420	Regulating valve 1256 x 1 pc
				·				Short pipe (B) 100ø x 2 pc x 10.1 kg
	Hydrant (A)			60	place	9,200	55,200	Regulating valve 50ø x l pc
								Long nipple 50¢ x 300 x 1 pc
								Givolt cheese 125g x 50g x 1 pc
	Hydrant (B)			12 0	place	8,400	100,800	Regulating valve 50¢ x 1 pc
			•					Long nipple 50g x 300 x 1 pc
								Iron cheese 1000 x 500 x 1 pc
	Reducer pipe	Class- A	¢125 x 100	10	рс	4,030	4,030	Valve socket 100¢ x 2 pc
	VW pipe		¢100 x 5000	(222 45 0	m) pc	4, 350	217,500	With sleeve joint A type JIS K 6742
	VA socket	**	¢100 VP	10	pc	1,730	1,730	
	Plug	FC.20	p100 41	10	•	600	600	For plain
	-	F 0.20	\$125 GJ	90	pc pc	1,360	12,240	cheese ∮100
	Givolt joint		6100 GJ	10	pc	1,180	1,180	
6.	Dressor joint Water supply		¢100	12 0	рс	1,530	18, 360	
	canal-L6			(105	m)			
	VW pipe	٧P	6100 x 5000	23	pc	4, 350	100,050	With sleeve joint A type
	Regulating valve work		¢100	10	place	27,650	27,650	Regulating valve 100s x 1 pc
								Fiexible flange 100p x 1 pc
								Short pipe (B) 100g x 2 pc x 10, 1 kg
	Hydrant (B)			60	place			Regulating valve 50ø x 1 pc
	Reducer pipe	Class A FC, 20		10	рс	4,030	4,030	Long nipple 50g x 300 x 1 pc
	••-		¢100 JP	10	pc	1,730	1,730	Iron cheese 100ø x 50ø x 1 pc
	Givelt joint		, ø100 GJ	4	pc	1,180	4, 720	Valve socket 100p x 2 pc
	Plug	FC.20		10	pc	600	600	For plain cheese ø100
	Dressor joint		100¢	70	pc	1,530	10,710	····· ,
	Flexible flage		100¢	10	pc	2,140	2,140	
	Sub Total					-,	1,619,560	

7.	Pipe lying							
	Pipe lying	150¢	125	m	50	6,250		
	Pipe lying	125¢	275	m	45	17, 375		
	Pipe lying	100¢	527	'n	45	23, 715		
	Hydrant (A)		6	pc.	1,721	10, 326		
	Do (B)		30	pcs	1,721	51,630		
	Regulating valve work		5	pc.	3,130	15,650		Cutter, monkey wrench
	Tools					105,000		bond for pipe etc.
	Sub Total					229, 946		
	Shipping and Transport		1,619 56	0 × 0.15		242, 934		
	Total					124, 946 1, 967, 494	D,C F.C	
						2,092,440		
						= 2,092,000		

1

7

COST OF SPRINKLER HEAD SPECIFICATION

¥1,211,000 (F.C)

Description of Items Material	Size	Quantity	Unit	Unit Price	Cost	No.	Remark
Sprinkler	8 stands set	Z 0	set	217, 910	435,820		
Sprinkler	6 stands set	4 0	set	158,820	635,280		
Ames valve S type	50¢	35 0	pc	4,000	140,000		
Total					1,211,100		
				· +	1,211,000		

SPRINKLER (8 stands set) SPECIFICATION

¥217,910

Description of Items	Material	Size	Quantity	Unit	Unit Price	Cost	No.	Remark
Sprinkler		3/16x3/32"	80	pcs	2,350	18,800		3.16 kg/cm2, 324 ¹ /min 29.9m
Riser pipe		20 øx 1 m	80	pcs	2,300	18,400		With 3 leg sockets
Riser pipe Plug for		20¢ x 2 m	80	pcs	4,500	36,000		With sockets of nylon lope 3 leg
spigot socket			15 0	pes	45 0	6,750		
Aluminium pipe with ames Aluminium pipe		50 ¢ x 4 m	8 0	pca	4,500	36,000		With riser
with ames		50 øx4 m	17 0	pcs	4,400	74,800		No riser
JET hose			1 0	pcs	3,400	3,400		With joint
Ames plug			10	pcs	1,800	1,800		
Ames elbow			10	pca	3,500	3,500		For hydrant with 1/4" rimovar
Water gage		7 kg/cm2	10	pc#	1,800	1,800		With cock
Pipe foot			25 0		500	12,500		

pares	· · ·				
Ames plug	10	1,800	1,800	1.12	
Seal for ames	8 0	140	1,120		
Spring for			960		
ames U ling for	80	120	460		
spigot socket	4 0	70	280		•
					·
Total			217,910		

SPRINKLER (6 stands set) SPECIFICATION

¥158,820

Description of Items	Material Size	Quantity	Unit Unit Price	Cost	No. Reinark
Sprinkler	3/16x3/32"	6 0	2, 350	14, 100	3.16 kg/cm2, 32.4 ² /m 29.9 m
Riser pipe	20 ¢ x 1 m	60	2,300	13,800	With 3 log sockets With sockets of nylon
Riser pipe Plug for	20¢ x 2 m	6 0	4,500	27,000	lupe 3 log
spigat socket		11 0	450	4, 950	
Aluminium pipe with ames	50 pí x 4 m	. 60	4,500	27,000	With riser
Aluminium pipe with ames	50¢ x 4 m	11 0	4,400	48,400	No riser
Jet hose	50∮xlm	10	3,400	3, 400	With joint
Ames plug		10	1,800	1,800	
Ames albow		10	3,500	3,500	For hydrant with 1/4" rimover
Water gage	7 kg/cm2	10	1,800	1,800	With cock
Pipe foot		19 0	500	9,500	
* Spares					
Ames plug		10	1,800	1,800	
Seal for ames		60	140	840	
Spring for		60	120	720	
U ring for spigot socket		30	70	210	
Total				158,820	

(3)

•

COST OF BUILDINGS SPECIFICATION

¥46,225,000 yen

39,152,000 D.C 7,073,000 F.C

De	cription of Items	Material	Size	Quantity	Unit	Unit Price	Cost	No.	Remark
							Rp.		
1,	Gasoline								
	filling stand	(No. 1)					509,423		(¥ 375,623)
Ζ.	Net house								(,,
	(cage)	(No.2)					4,445,656		(¥3,278;000)
3.	Office and	(No. 4-							(**)=:=;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
	laboratory	`1-2)					10,613,820		(¥7, 826, 094)
4.	Inoculator and	,							(*************
	insect rearing								
	house	(No.5)					3,747,208		(¥2, 763, 000)

5.	Tractor work -	4		
6,	shop and floor Machine	(No, 7)	4,500,514	(¥3, 318, 451)
	attachment store house	(No. 8)	2 100 433	(
	store nouse	(10.8)	3, 199, 032	(¥2,358,804)
7.:	Work room	(No. 9)	2, 154, 539	(¥1,588,648)
8.	Fertilizer and chemicals			*
	storehouse	(No. 11)	2,584,924	(¥1,905,992)
9,	Storage and	(No, 12-	1 446 47 1	
	floor	2) (No. 14-	1, 448, 154	(¥1,067,795)
10,	Domitory	1-2)	9, 854, 814	(¥7,266,442)
n,	Cattle shed	(No. 18)	306, 475	(¥ 225,980)
12.	Generator room	(No. 19- 2)	528, 150	(¥ 389,430)
13.	Pump room for paddy field		302, 718	(¥ 223,209)
14.	Dining hall	(No. 25)	2, 885, 641	{¥2, 127, 726}
	-			•••••
15. 16.	Drying shop Pumping room	(No. 3)	691, 071	(¥ 509,561)
10.	for buildings	(No.20)	241,576	(¥ 178,125)
17.	Pumping room			(),) \
18.	for booster pu Cost of installa-		241,576	(¥ 178,125)
	tion work 1		10,515,000	(¥7, 753, 230)
	" work Z		3, 921, 000	(¥2,891,147)
	Total		62, 691, 291	(¥46,225,382)
			= 62,691,000	= 46,225,000

1

GASOLINE FILLING STAND SPECIFICATION (NO. I)

Rp. 509,423 (¥375,623)

escription of Items Material Size	Quantity	Unit	Unit Price	Cost	No.	Remark
				Rp.		
Temporary work	1	set		22 500		
		RCC.		33,500		
Earth work	1	set		14, 482		
Concrete work	1	set		148,996		
Wood work	, 1 ,	set		-163,605		
Roofing work	1	set		122, 720		
Painting work	1	set		26,120	1	US\$= 415 Rp. 306 yen
Total			R	p. 509,423		
			ć	¥ 375,623)	(5217 Yen/m2)
Temporary work						
d consolidation reling batter	1	Act		3,500		
bard	1	#ct		1,000		
folding	120	m2	150	18,000		
ring	1	#et		1,000		
nsportation	1	4et		5,000		
nporary Alding	1	act		5,000		
Total				33,500		

	2. Earth work	22 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		·· ·· •				
	Root excavation		24	m3	160	3,840		
	Rubble foundation	·	32	m3	1,450	4,640		
	Sand leveling	-	3 6		1,020	3,670		
	Back filling		13		120	1,560		
	Waste treatment		11		70	770		
	Total					14, 482		
	3. Concrete work					en e		
	Foundation		78	m 3	5,810	45,318		
•	Brick masonry		4 2	m3	5,740	24, 108		
	Parquet concrete	,	34	m3	9,200	31,280		
	Plaster painting	. 1	93	m2	280	26,040		
	Floor tile		13 5	m2	1,200	16,200		
	Floor mortar		45	m²	500	2,250		
	Lavatory		1	nos		2,000	•	
	Fixtures mortar		1	set		1,800		
	Total					148,996		
	4. Wood work	-						
	Wood materials (including roof, ceiling bed etc.)		39	m3	15,000	58,500		
	Carpenter labors		1	set		14, 700		
	Nail etc.		L	set		5,000		
	Glass window		45	m2		19,215		
	Louver window		10	m2		46,100	-	
	Door acreen		47	m2		17, 390		
	Plinth		15	m		2,700		
	Total					163, 605		
	5. Roofing work Iron plate flat seam roofing		112	m2	1,060	118,720		
	Iron plate ridge		8	m	500	4,000		
	Total					112,720		
	6. Painting work							
	Painting		70	m2	260	18,200		
	Ceiling		18	m2	440	7,920		
	Total					26, 120		

A-13

NET Rp. NET HOUSE (NO. 2) SPECIFICATION

• (¥3, 278, 000)

97,000 D.C 3,190,000 F.C

		3,190,000	F.C				
Description of Items Mate	ertal Size	Quantity	Unit	Unit Price	Cost	No,	Remark
1. Net house							
(No corrosive type o	falminum	1	مارامه		1, 472, 424		
alldy and other subr	naterials)	1	ridge		11-10-10-1		
2. Doors		•			163 000		
(Entrance door)		1	ridge		153,000		
 Glass roofvent (3mm clear glass ro 	(100	1	ridge		127,250		
4. Wire net	•		-				
(Screen		1	ridge		577,500		
Stainless #30-20 m	csn)	•					
5. Roofvent electric					70/ 100		
Automatic Thermometrical operato	a and automatic	1	ridge		206,100		
voltage controller	r and automatic						
6. Basement							
(Reinforced concrete	e,	1	set		149,000		
mold)		•					
7. Tools 8. Package and					165,000		
shipping					427,500		1 US\$ = 415 Rp. 306 yen
9 Cattler							,
9. Setting					9,500 97,500	D.C	
Total					3, 190, 274	F.G	
					3,287,774		
I. Net house							
Alumi extruded							
material		1,006	kg	508	728,344		
Post, pafter, barcap, ventprocess							
fee					357,000		
A1							
Alumite process fee		1,006		80			
Plates Volt, nut		1	set				
(stainless, alumi)		1 -	≢et				
Seal, calking		-					
material		1	set				
Collar with plate		1	set				
Gutter with		•					
fittings		1	set				
Total							
2. Doors Entrance door with							
lock	1,820x1,770	2	set				
. Glass							
3. Glass 3 m/m Clear							
plate	36 x 24	75	box	4,700			
" curved	30 x 24	9 E	h e	37 000			
241 YEU	JV A 69	75	box	37,000			
Total							
4. Wire net Screen #30-20 mesh)							
Side wall screen with	3,000 m x						
almi flame	0.830 m	30	sheet				
Sable wall with	1,700 m x						
almi flame	0,830 m 2,800 m x	8	sheet				
	0.830 m	12	sheet				
Roofvent with	2,500 m x	• -					
almi flame	0,800 m 1,250 m x	18	sheet				
	0.800 m	4	sheet				
Clip for stopping			-				
almi flame screen		1	set				
Total							

•

2

A-14

5. Roofvent electr	ic		1				terre de la composition
automatic			1997 - 1997 1997 - 1997				-
thermometric operator	a)					2000 - A.	
Automatic control a							
and reduction devi		2	nos		9,800		
Fitting pipe, hanger	•						
arm joint		1	set -				
Ditto electric wiring (cord)		1	set			1	
Automatic voltage		•	Bet.				
control		í	nos				
Total							
 Basement material 							
Cement		200	bag	350	70,000		
Temporary form	Plywood	20	sheet	900	18,000		
	Sashbar Nail Separator	30	piece	250	7,500		
	(60 mm) annealedwire				7,600		
Reinforcement	9 mm						
	For uditch	775	kg	60	46,500		
Total					149,000		
7. Tools							
		ſ	#et		16,500		
Total					16,500		•
8. Package and						15% of amount of	
shipping					427,500	above	
9. Setting	Labor	50 0	men	110	5,500		
	Super intendent	10 0	men	400	4,000		

3-1

OFFICE AND LABORATORY (NO. 4-1) SPECIFICATION

Rp. 5, 306, 910

(¥3, 913, 047)

Description of Items Material Size	Quantity	Unit	Unit Price	Cost	No.	Remark
,				Rp.		····
1. Temporary work	1	set	1	159,000		
2. Earth work	1	set	:	180,590		
3. Concrete work	1	set	1,8	339, 960		
4. Wood work	1	set	1,	516,780		
5. Roofing work	1	set	2.0	045,400		
6. Painting work	1	set	5	65,180	1	US\$ ≈ 415 Rp. 306 yen
Total			Rp. 5, 3	306,910		
			(¥ 3, 9	913,047)	(*	9763 yen/mZ)
l. Temporary work						
Land consolidation	1	set		20,000		
Leveling batter board	1	set		20,000		
Scaffolding	380	m2	150	57,000		
Curing	1	set		12,000 .		

.

Transportation	1	set		40,000	
Temporary building	1	set		10,000	
Total				159,000	· .
2. Earth work					
Root excavation Rubble	216	m3	160	34, 560	
foundation	25	m3	1,450	36,250	
Sand leveling	88	m3.	1,020	89,760	
Back filling	98	m3	120	11,760	
Waste treatment	118	m3	70	8,260	
Total				180,590	
3. Concrete work					
Foundation	82	m3	5,810	476, 420	
Parquef concrete	44	m3	9,200	404, 800	
Brick masonry	41	m 3	5,740	235,340	
Plaster painting	900	m2	280	252,000	
Floor tile	352	m2	1,200	422,400	
Floor mortar	52		500	26,000	
Lavatory	4	nas.	2,000	8,000	
Arch	10	nos.	500	5,000	
Fixtures mortar	1	set		10,000	
Total				1,839,960	
4. Wood work					
Wood materials	46 8	m3	18,000	842,400	
Carpenter labors	1	set		127,000	
Nail, metalic materiala	1	set		89,000	
Glass window	40	m2	4,270	170, 800	
Louver window	40	m2	4,610	184, 400	
Door acreen	22	m2	3,700	81,400	
Plinth	121	m	180	21,780	
Total				1,516,780	
5. Roofing work					
Iron plate flat seam roofing	550	m2	1,800	990,000	
Ditto ridge	56	m	700	39,200	
Eaves gutter	108	m	120	12,960	
Vertical gutter	36	m	90	3, 240	
Total				1,045,400	
6. Painting work				1,013,100	
Painting	643	m2	260	167,180	
Celling (including back of			200	107,180	
cauce)	200	m2	450	90,000	
" (indoor)	280	m2	1,100	308,000	

.

OFFICE AND LABORATORY (NO. 4-2) SPECIFICATION

Rp. 5, 306, 910 (¥3, 913, 047)

Description of Items Material S	Size Quantity	Unit	Unit Price	Cost	No.	Rema
1. Temporary work	1	set		159,000		
2. Earth work	1	set		180,590		
3. Concrete work	1	Bet		1, 839, 960		
4. Wood work	1	set		1,516,780		
5. Roofing work	1	set		1,045,400		
6. Painting work	1	set		565,180		
					1	US\$ = 415 R 306 y
Total			Rp	5,306,910		
			((¥ 3, 913, 047)	(9783 yen/m2)
 Temporary work Land 						
consolidation Leveling batter	L	set		20,000		
board	1	set		20,000		
Scaffolding	380	m2	150	57,000		
Curing	1	set		12,000		
Transportation	1	set		40,000		
Temporary building	1	set		10,000		
Total				159,000		
2. Earth work		• .				
Root excavation	216	m3	160	34,560		
Rubble foundation	25	m 3	1,450	36,250		
Sand leveling	68	m3	1,020	89,760		
Back filling	98	m3	120	11,760		
Waste treatment	118	m3	70	8,260		
Total				180,590		
3. Concrete work				,		
Foundation	82	m3	5,810	476, 420		
Parquet concrete	44	m3	9,200	404,800		
Brick masonry	41	m3	57,400	235,340		
Plaster painting	900	mZ	280	252, DDD		
Floor tile	352	m2	1,200	422, 400		
Floor mortar	, 52	m2	500	26,000		
Lavatory	. 4	n0.8	2,000	8,000		
Arch	10	nos	500	5,000		
Fixtures mortar	1	set		10,000		
Total				1,839,960		
4. Wood work	•			, , ,		
Wood materials	46 8	m3	18,000	842,400		
Carpenter, labors	1	#et		127,000		
Nail, metalic materials	-					

Glass window	40	m2	4,270	170,800	
Louver window	40	m2	4,610	184, 400	
Door screen	22	m2	3,700	81,400	
Plinth	121	m	180	21,780	
Total				1,516,780	
5. Roofing work					
Iron plate flat scam roofing	550	m2	1,800	990, 000	
Ditto ridge	56	m	700	39,200	
Eaves gutter	108	m	120	12,960	
Vertical gutter	36	m	90	3, 240	
Total				1,045,400	
6. Painting work				·	
Painting Ceiling	643	mZ	260	167,180	
(including back of eaues)	200	mZ	450	90,000	
" (indoor)	280	m2	1,100	308,000	
Total				565,180	

INOCULATOR AND INSECT REARINGHOUSE (NO. 5) SPECIFICATION

•

.

¥2,763,000 yen

4

.

148,000 D.C 2,615,000 F.C

		2,615,000	F.C				
Description of Items Material	Size	Quantity	Unit	Unit Price	Cost	No.	Remark
1. Green house							
(Insect rearing room, germ culture room)		1	set		1,472,680		
2. Door							
(Entrance door)		1	act		80,000		
3. Glass (3mm clean flat,							
curve)		1	set		274,900		
4. Roof vent							
electric							
thermometrical							
Operator and voltage							
controler		1	set		206,100		
 Basement work material 							
(Cement, rein for							
cement, flame)		1	# et		196,000		
6. Tools					165,000		
7. Package and					359,000		
shipping					357,000		Labor 50 man x 110
8. Setting					9,500		5,500 Super intendent 10 man x 400 = 4,0
Total					2,614,687	F.C	
					148,500	D.C	
					2, 763, 187		
I. Green house							
(insect rearing room, germ culture room)							
Alumi extruded type							
material		1,320	kg	724	955,680		

	ent process	an dina an				10	1
fee						184,000	
Alumito fee	e process		1,320	kg	80	105,600	
Plates			1	set		40,000	
Volt an (stainle	d nut res slumi)	• • •	1	set		68,000	
Seal ca mater		· · · · •·		• • •		89,000	
Coller plate	with	N.				30,400	
•	stal					1,472,680	
2. Do	ors						
Entran (with lo	ce door ock)		z	set	4,000	80,000	• •
Ta	otal	1				80,000	
3. GI	a 8 5	N. 1					
3mm c	lean flat	36 x 24	27	box	4,700	126,900	
11 C	urve	30 x 24	4	box	37,000	148,000	
4. Ro t	otal of vent electric hermometric: operator and voltage contro					274,900	
and r Fitting	atic controler eduction devi- pipe, arm,		2	s et		98,000	
	er joint galvaniged set	.)	1	set		43,100	
cord,	lectric wiring pipe stic voltage	5	1	set		20,000	
contro			1	set		45,000	
5. Ba	stal sement work natorials	. •				206, 100	
Cemen	t,	(Ply wood,	250	bag	350	87,500	
Tempo	rary form	sash, etc.) (for 9mm	1	set		51,500	
Reinfor	rcement	U-ditch)	950	kg	60	57,000	
То	tal					196,000	
6. То	ols		1	set		165,000	
To	tal					165,000	

٠

•

A-19

,

TRACTOR WORK SHOP AND FLOOR (NO. 7) SPECIFICATION

Rp. 4,500,514 (¥3,318,451)

5

.

Description of Items Material	Size Qu	antity	Unit	Unit Price	Cost	No.	Remark
. Temporary work		1	set		189,000		
. Earth work		1	set		263,080		
. Concrete work		1	set		1,712,814		
. Wood work		1	set		1, 383, 440		
. Roofing work		1	set		840, 380		
, Painting work		1	set		111,800		
Total				R	p. 4,500,514		1 US\$ = 415 Rp. 306 yen
					(¥ 3, 318, 451)		(5531 yen/m2)
. Temporary work	•						(,
and consolidation		1	set		30,000		
eveling batter board		1	set		30,000		
uring		1	set		15,000		
ransportation		1	set		50,000		
emporary building		1	set		10,000		
caffolding	3	66	mZ	150	54,000		
Total					189,000		
, Earth work							
loot excavation	3	60	m2	160	58,560		
ubble foundation	1	19	m2	1,450	172,550		
ack filling	1	27	m2	120	15,240		
laste treatment	2	39	mZ	70	16,730		
Total					263,080		
. Concrete work							
oundation		95	m3	5,810	551,950		
arguet concrete		95	m3	9,200	874,000		
rick masdnry		336	m3	5,740	192,864		
laster painting			m2	280	84,000		
ixtures mortar		1	set		10,000		140+36+24 = 200
Total		÷			1, 712, 814		
. Wood work							
ood materials		44 7	m3	15,000	670,500		
arpenter labors		1	set		100,000		
lass window		40	m2		170, 800		
ouver window		54	m2		248, 940		
007		36	m2		133, 200		
all, metalic materials		1	set		60,000		
Total					1, 383, 440		

5. Roofing work Iron plate flat seam roofing	773	m2	1,060	819, 380	
Ditto ridge	42	m	500	21,000	an an an an Araba. An anns
Total	÷			840,380	• .
6. Painting work			· .		
Painting	430	m2	260	111,800	
Total				111,800	

MACHINE ATTACHMENT STOREHOUSE (NO. 8) SPECIFICATION

Rp. 3,199,032

•

6

(¥2, 358, 804)

Description of Items Material Siz	e Quantity	Unit	Unit Price	Cost	No.	Remark
. Temporary work	1	sat		146,000		
. Earth work	1	set		172, 160		
i, Concrete work	1	set		1,051,222		
I, Wood work	1	set		1,146,610		
. Roofing work	1	set		604,000		
5. Painting work	1	set		79,040		1 US\$ = 415 Rp 306 yer
Total			Rp	3,199,032		
			(1	¥ 2, 358, 804)		(5897 yen/m2)
1. Temporary work Land						
consolidation Leveling batter	1	set		20,000		
board	1	set		20,000		
Scaffolding	340	m2	150	51,000		
Curing	1	ınZ		10,000		
Transportation	1	set		35,000		
Temporary	1	set		10,000		
Total				146,000		
2. Earth work						
Root excavation	197	m3	160	31,520		
Rubble foundation	85	m3	1,450	123, 250		
Back filling	72	m3	120	8,640		
Waste treatment	125	m3	70	8,750		
Total				172,160		
3. Concrete work						
Foundation	77	m 3	5,810	447, 370		
Parquet concrete	37	m3	9,200	400,400		
Brick masonry	29 8	m3	5,740	171,052		
Plaster painting	330	m2	280	92,400		
Total				1,051,222		

.

4. Wood work					
Wood materials	42 5	m3	15,000	637,500	
Carpenter labors	1	set		95,000	
Glass window	16	set	4,270	68, 320	
Louver window	- 39	m2	4,610	179,790	
Door Nail, metalic	30	m2	3,700	111,000	
materials				55,000	
Total				1,146,610	
5. Roofing work					
Iron plate roof	550	m2	1,060	583,000	
Iron plate ridge	42	m	500	21,000	
Total				604,000	
6. Painting work					
Painting	304	m2	260	79,040	
Total				79,040	

•

.

WORK ROOM (NO. 9) SPECIFICATION

Rp. 2, 154, 539 (¥1, 588, 648)

7

(-----

Description of Items Material Siz	e Quantity	Unlt	Unit Price	Cost	No.	Remark
. Temporary work	l	set		71,000		
Earth work	1	set		61,014		
. Concrete work	1	set		623, 635		
Wood work	1	set		650,440		
. Roofing work	1	set		476,200		
. Painting work	1	set		272,250	1 (JS\$ = 415 Rp. 306 yen
Total			R	p. 2, 154, 539		
• Temporary work and				(¥1,588,648)	(10	591 yen/m2)
consolidation eveling batter	1	set		7,500		
board	I	#et		7,500		
uring	1	sat		4,500		
ransportation	1	set		12,000		
emporary building	1	set.		8,000		
Caffolding	210	m2	150	31,500		
Total				71,000		
Earth work						
ost excavation	69	m 3	160	11,040		
ubble foundation	84	m3	1,450	12, 180		
and leveling	30 7	m3	1,020	31, 314		
tck filling	33	m3	120	3,960		
Aste treatment	36	m3	70	2,520		
Total				61,014		

	3. Concrete work		· ·			1	
	Foundation		27 3	m3	5,810	158, 613	۰ ۱۹۰۰ - ۲۰۰۰ - ۲۰۰۰
	Parquet concrete		15 7	m3	9,200	144, 440	
	Brick masonry		11.3	m3	5,740	64, 862	×
	Plaster painting		249	m2	280	69, 720	
	Floor tile	1.00	150	m2	1,200	180,000	
4	Fixtures mortar		1	set		6,000	
	Total					623, 635	
	4. Wood work					·	
	Wood materials		15 7	m3	18,000	282,600	-
	Carpenter labors		1	set		41, 100	
	Glass window		38	m2	4, 270	162,260	· .
	Louver window		18	 m2	4,610	82,980	
			11	m2	3,700	40, 700	
	Door Nail, metalic materials		1	set	3,100	30,000	
	Plinte		60	m	180	10,800	a ser a ser
	Total					650,440	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	5. Roofing work					- '	الميني بالم المالة المالي الم
	Iron plate flat seam roofing		243	m2	1,800	437, 400	· -
	Ditto ridge		40	m	700	28,000	
	Eaves gutter		72	m	120	8,600	. ,
	Vertical gutter		24	m	90	2,140	·· .
	Total					476,200	, .
	6. Painting work						10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
	Painting		300	m2	260	78,000	арана н ана. На
	Ceiling (indoor)		150	m2	1,100	165,000	
	" (back of eaves)		65	m2	450	29,250	
	Total					272,250	

•.•.

FERTILIZER AND CHEMICAL STOREHOUSE (NO. 11) SPECIFICATION

Rp. 2,584,924 (¥1,905,992)

8

•

.

Description of Items Material Size	Quantity	Unit	Unit Price	Cost	No.		Remark
l. Temporary work	1	set		119,500			
-	-	set		147,070			
2. Earth work 3. Concrete work	1	set		989, 114			
	1	set		759, 220			
4. Wood work	-	set		460, 820			
5. Roofing work	-	set		109,200			
6. Painting work	•					1 US\$	= 415 Rp. 306 yen
Total			Rp	. 2,584,924			
1. Temporary work			(1	¥ 1,905,992)		(6353)	/m2)
Land consolidation	1	set		15,000			
Leveling batter board	1	set		15,000			
Curing	1	set		9,000			
Transportation	1	set		30,000			
Temporary building	1	set		10,000			
Scaffolding	270	m2	150	40,500			
Total				119,500			
2. Earth work							
Root excavation	209	m3	160	33,440			
Rubble foundation	65	m3	1,450	94,250			
Back filling	95	m3	120	11,400			
Waste treatment	114	m3	70	7,980			
Total				147,070			
3. Concrete work							
Foundation	87	m3	5,810	505,470			
Parquet concrete	33	m3	9,200	303,600			
Brick masonry	20 6	m3	5,740	118,244			
Plaster painting	185	m2	280	51,800			
Fixtures mortar	1	set		5,000			
Arch	8	nos		5,000			
Total				989,114			
4. Earth work							
Wood materials	17 9	m3	15,000	268,500			
Carpenter labors	1	set		45,000			
Louver window	72	mZ	4,610	331,920			
Door	24	m2	3,700	88, 800			
Nail, metalic materials	1	set	:	25,000			
Total				759,220			

 Roofing work Iron plate flat seam roofing 	377	m2	1,160	437, 320	
Ditto ridge	47	m	500	23,500	
Total				460, 820	
6. Painting work					
Painting	420	mZ	260	109,200	
Total				109,200	

STORAGE AND FLOOR (NO. 12-2) SPECIFICATION

Rp. 1,488,154

a í

•

9

.

(¥1, 067, 795)

Description of Items Material Size	Quantity	Unit	Unit Price	Cost	jýn,	Remark
1. Temporary work	ı	set		80,000		
2. Earth work	1	sct		74,540		
3. Concrete work	1	set		503, 394		
4. Wood work	1	set		443,020		
5. Roofing work	1	set		293,900		
6. Painting work	1	set		53, 300	1 US	\$\$ = 415 Rp. 306 yen
Total			Rp	. 1, 448, 154		
			(¥1,067,795)	(266	9 yen/m2)
1. Temporary work						
Land consolidation Leveling batter	1	set		9,000		
board	1	set		9,000		
Curing	1	set		6,000		
Transportation	1	set		15,000		
Temporary building	1	set		8,000		
Scaffolding	220	m2		33,000		
Total				80,000		
2. Earth work						
Root excavation	83	m3	160	13,280		
Rubble foundation	37	m3	1,450	53,650		
Back filling	36	m 3	120	4, 320		
Waste treatment	47	m 3	70	3, 290		
Total				74,540		
3. Concrete work						
Foundation	30	m 3	5,810	174, 300		
Parquet concrete	18	m 3	9,200	165,600		
Brick masonry	18 1	m3	5,740	103, 894		
Plaster painting	195	mZ	280	54,600		
Mortar	1	set		5,000		
Total				503, 394		

4. Wood work					\$
Wood materials	13	m3	15,000	195,000	
Carpenter labors	1	set		30,000	
Louver	32	m2	4,610	147,520	•
Door	2 15	m2	3,700	55,500	
Mortar	1	set		15,000	
Total				443, 020	
5. Roofing work					
Iron plate flat seam roofing		m2	1,060	280,900	
Ditto ridge		m	500	13,000	
Total				293, 900	
6. Painting work					
Painting	205	m2	260	53, 300	
Total				53, 300	

.

10

,

DOMITORY (NO. 14-1) SPECIFICATION

Rp, 4, 927, 407 (¥3, 633, 221)

Description of Items Material Size	Quantity	Unit	Unit Price	Cost	No.	Remark
. Temporary work	1	set		142,000		
. Earth work	1	set		164, 087		
. Concrete work	1	act		1,831,040		
, Wood work	1	set		1,159,300		
. Roofing work	1	set		917, 480		
, Painting work	1	set		713,500		1 US\$ = 415 Rp. 306 yer
Total			Rp	. 4, 927, 407		
. Temporary work			(1	¥ 3, 633, 221)		(11534 yen/m2)
and consolidation	1	set		15,000		
Leveling batter board	1	set		15,000		
caffolding	400	m2	150	60,000		
Curing	1	set		12,000		
Fransportation	1	set		30,000		
Comporary building	1	set		10,000		
Total				142,000		
. Earth work						
loot excavation	220	m3	160	35,200		
lubble foundation	30 7	m3	1,450	44,515		
Sand filling	63 6	m J	1,020	64, 872		
Back filling	82	m 3	120	9,840		
Waste treatment	138	m3	70	9.660		

	3. Concrete work		an tha an an		1. A.		· · ·
	Foundation		100	m3	5,810	581,000	
	Parquen concrete		32 2	m3	9,200	296, 240	н. С
	Brick masonry		47	m3	5,740	269, 780	
	Plaster painting		1,034	m2	280	289,520	н 1. — 2. м.
	Tile (terrace)		280	mZ	1,200	336,000	· .
<i>.</i> .	Tile (bathroom)	đ	9	mZ	1,500	13,500	
	Floor mortar		30	mZ	500	15,000	· · · ·
	Lavatory	· ·	4	nos	2,000	8,000	
	Bath-tub		2	110 <i>8</i>	3,500	7,000	•
	Fixtures mortar		1	set		15,000	$\mathbf{v}_{1}=\left(\mathbf{v}_{1}^{*}\right)^{-1}$
	Total	•	-			1,831,040	· ·
	4. Wood work	· •				1,001,010	
5	Wood materials		30 2	m3	1,500	453,000	
	Carpenter labors	a ser tran	1	set	1,000	79,500	
	Glass window		22	m2		93, 940	
	Louver window		56	m2		258,160	1
	Door screen Nail, metalic		51	m2		188,700	1
	materials		. 1	set		50,000	
	Plinth		200	m	180	36,000	
	Total					1,159,300	
	5. Roofing work Iron plate flat						
	seam roofing		476	m2	1,800	856,800	
	Ditto ridge		62	m	700	43,400	
	Eaves gutter		117	m	120	14,040	
	Vertical gutter		36	m	90	3,240	
	Total					917,480	
	6. Painting work						
	Painting Ceiling		1,500	m2	260	390,000	
	(back of eaves etc.)		230	mZ	450	103,500	
	" (bed room)		200	m2	1,100	220,000	
	Total					713,500	

•

÷ .

10 DOMITORY (NO. 14-2) SPECIFICATION

Rp. 4,927,407		(¥3, 633, 221)	
	1.1		and the second second
		1	
			1

Description of Items Material Size	Quantity	Unit	Unit Price	Cost	No.	Remark
. Temporary work	1	set		142,000		t
Earth work	1	set		164, 087		
. Concrete work	1	set		1,831,040		
. Wood work	- 1	set		1,159,300		
. Roofing work	1	set		917,480		• • •
. Painting work	-	set		713,500		
, remind work	•	200				1 US\$ = 415 Rp. 306 yen
Total			1	Rp. 4, 927, 407		
				(¥3,633,221)		(11534 yen/m2)
. Temporary work						
and consolidation	1	set		15,000		
Leveling batter board	1	set		15,000		
scaffolding	400	m2	150	60,000		
Curing	1	set		12,000		
Transportation	1	set		30,000		
Temporary building	1	sct		10,000		
Total				142,000		
. Earth work						
Root excavation	220	m3	160	35,200		
Rubble foundation	30 7	m 3	1,450	44, 515		
Sand filling	63 6	m3	1,020	64, 872		
Back filling	82	m3	120	9, 840		
Waste treatment	138	m3	70	9,660		
Total				164,087		·
3. Concrete work						
Foundation	100	m3	5,810	581,000		
Parquet concrete	32 2	m3	9,200	296, 240		
Brick masonry	47	m3	5,740	269, 780		
Plaster painting	1,034	m2	280	289,520		
Tile (terrace)	280	m2	1,200	336,000		
Tile (bathroom)	9	т2	1,500	13,500		
Floor mortar	30	m2	1,500	15,000		
Lavatory	4		2,000	8,000		
Bath-tory	2	nos	3,500	7,000		
Fixtures mortar	1	set	-,	15,000		
Total				1,831,040		
4. Wood work						
Wood materials	30 2	m3	15,000	453,000		

lass window	22	· m2		93, 940	
Louver window	56	m2		258, 160	$s_{1}^{2} = \epsilon^{-1}$
Door screen	51	mΣ		188, 700	
Nail, metalic materials	1	set		50,000	
Plinth	200	m	180	36,000	,
Total				1,159,300	
5. Roofing work					
iron plate flat seam roofing	476	Sm	1,800	856,800	
Ditto ridge	62	m	700	43, 400	
Eaves gutter	117	m	120	14,040	
Vertical gutter	36		90	3, 240	<i>i</i>
Total				917,480	· · ·
6. Painting work					
Painting	1,500	mZ	260	390, 000	
Ceiling (back of eaves etc.)	230	m2	45 0	103,500	
" (bed room)	200	m2	1,100	220,000	
Total				713,500	1.5

11 *

CATTLE SHED (NO. 18) SPECIFICATION

Rp. 306, 475 (¥225, 980)

• • • •

Description of Items Material S	ilze Quar	tity Unit	Unit Price	Cost	No.	Remark
				Rp.		
. Temporary work	· 1	set		22, 300		
2. Earth work	:	l set		21,720		
3. Concrete work		l set		113, 155		
ł. Wood work		1 94)L		58,500		
. Roofing work		l set		90,800		

			·		1 US\$ ≈ 415 Rp. 306 yen
Total			Rp.	306, 475	
				(¥ 225, 980)	(5650 yen/m2)
1. Temporary work					
Land consolidation	1	set		1,000	
Leveling batter board	1	set		1,000	
Scaffolding	90	m2	150	13,500	
Curing	1	= et		800	
Transportation	1	# et		3,000	
Temporary building	1	s e t		3,000	
Total				22,300	
2. Earth work					
Root excavation	29	m3	160	4,640	
Rubble foundation	10	m 3	1,450	14,500	

Back filling	11	m3	120	1,320
Waste treatment	18	m3	70	1,260
Total				21,720
3. Concrete work				
Foundation	89	m3	5,810	51,709
Brick masonry	35		5,740	20,090
Parquet concrete	4 5		9,200	41,400
Total				113, 155
4, Wood work				
Wood materials	33	m3	1,500	49,500
Carpenter labors	1	set		6,000
Nail, metalic materials	1	set		3,000
Total				58,500
5. Roofing work	1			
Iron plate flat	80	m2	1,060	84,800
seam roofing	12	m2	500	6,000
Ditto ridge	12	m4	500	
Total				90,800

GENERATOR ROOM (NO. 19-2) SPECIFICATION

Rp. 528,150 (¥389,430)

Description of Items Material Size	Quantity	Unit	Unit Price	Cost	No.	Remark
. Temporary work	1	set		23,300		
. Earth work	1	set		24,270		
. Concrete work	1	set		223,800		
. Wood work	1	set		131,340		
. Roofing work	1	set		111,400		
. Painting work	1	set		14,040		1 US\$ ≠ 415 Rp. 306 yen
Total			F	lp. 528,150		
				(¥389, 430)		(7,788 yen/m2)
. Temporary work						
and consolidation eveling batter	1	set		1,500		
board	1	set		1,500		
caffolding	76	mZ	150	1,400		
Curing	1	set		900		
ransportation	1	set		3,000		
emporary building	1	set		5,000		
Total				23, 300		

2. Earth work	.				
Root excavation	34	m3	160	5,440	
Rubble foundation	11	m3	450	15,950	
Back filling	10	m3	120	1,200	
Waste treatment	24	m3	70	1,680	
Total				24,270	
3. Concrete work					
Foundation	15 0	m3	5,810	87,150	
Parquet concrete	5 5	m3	9,200	50,600	
Brick masonry	75	m 3	5,740	43,050	
Plaster painting	150	m2	280	42,000	
Mortar	1	set		1,000	
Total				223,800	
4. Wood work					
Wood materials	35	m3	15,000	52,500	
Garpenter labors	* 1	set		10,200	
Louver window	12	m2	4,610	55,320	
Dear	36	m2	3,700	13, 320	
Total				131,340	
5. Roofing work Iron plate flat	90	m2	1,060	95,400	
seam roofing	90 12	m	500	6,000	
Ditto ridge	12	m	500	111,400	
Total	<i>.</i>	-	760		
6. Painting work	54	m2	260 260	14,040	
Painting	54	m2	200	14,030	
Total		_		14,040	

PUMPING ROOM FOR PADDY FIELD

Rp. 302,718 (¥223,209)

De	scription of Items	Material	Size	Quantity	Unit	Unit Price	Cost	No.	Remark
۱.	TEMPORARY	WORK		1	SET		23, 900		
z .	EARTH	WORK		1	"		8,410		
3.	CONCRETE	WORK		1			135,953		
4.	WOOD	WORK		1	••		73,935		
5.	POOFING	WORK		1	0		52,200		
6.	PAINTING	WORK		1	••		8,320		
	TOTAL					R	p. 302,718		1U5\$= 415 Rp. 306 YEN
							(¥ 223,209)		(4464 YEN/M ²

.

LAND CONSOLIDATION 1 SET 1,500 LEVELING BATTER BOARD 1 " 1,500 SCAFFOLDING 80 M ² 150 12,000 CURING 1 SET 900 TRANSPORTATION 1 " 3,000 TEMPORARY BUILDING 1 " 5,000 TOTAL 23,900 5,000 5,000 TOTAL " 1,450 2,990 BACK FILLING 2 " 1,450 2,990 BACK FILLING 2 " 1,450 2,990 BACK FILLING 9 " 120 1,080 WASTE TREATMENT 13 " 70 910 TOTAL State State 30,793 PARQUET CONCRETE 5.4 M3 5,740 34,400 MORTAR 1 SET 1,000 1,500 TOTAL IST, ST 1,500 34,500 LOUVER WINDOW 1.5 M ² 4	I. TEMPORARY WORK					
SCAPFOLDING 80 M ² 150 12,000 CURING 1 SET 900 TRANSPORTATION 1 " 3,000 TEMPORARY BUILDING 1 " 5,000 TOTAL 23,900 23,900 2. EARTH WORK 2 " 1,450 2,900 BACK FILLING 2 " 1,450 2,900 BACK FILLING 9 " 120 1,080 WASTE TREATMENT 13 " 70 910 TOTAL . . 8,410 . 3. CONCRETE WORK . . . 8,410 3. CONCRETE WORK FOUNDATION 5.3 M ³ 5,810 30,793 PARQUET CONCRETE 5.6 M ³ 5,740 34,440 PLASTER PAINTING 1 SET 1,000 TOTAL . 135,953 . . 4. WOOD WORK WOOD MATERIALS 2.3	LAND CONSOLIDATION	1	SET		1,500	
CURING 1 SET 900 TRANSPORTATION 1 " 3,000 TEMPORARY BUILDING 1 " 5,000 TOTAL 23,900 TOTAL 23,900 2. EARTH WORK " 1,450 2,900 RUBBLE FOUNDATION 22 " 1,450 2,900 DACK FILLING 9 " 120 1,080 WASTE TREATMENT 13 " 70 910 TOTAL 5.3 M3 5,810 30,793 PARQUET CONCRETE 5.6 M3 5,740 34,440 PLASTER PAINTING 65 M2 280 18,200 MORTAR 1 SET 1,000 135,933 4. WOOD WORK I I IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	LEVELING BATTER BOARD	1	11	•	1,500	
TRANSPORTATION 1 " 3,000 TEMPORARY BUILDING 1 " 5,000 TOTAL 23,900 . . 2. EARTH WORK . . . ROOT EXCAVATION 22 M ² 1.60 3,520 RUBBLE FOUNDATION 2 " 1,450 2,900 BACK FILLING 9 " 120 1,080 WASTE TREATMENT 13 " 70 910 TOTAL S. CONCRETE WORK FOUNDATION 5.3 M ³ 5,810 . . S. CONCRETE WORK PLASTER PAINTING 6.5 M ³ MORTAR 1 A. WOOD WORK MOOD MATERIALS 2.3 M ³ 15,000 <td< td=""><td>SCAFFOLDING</td><td>80</td><td>м²</td><td>150</td><td>12,000</td><td></td></td<>	SCAFFOLDING	80	м ²	150	12,000	
TEMPORARY BUILDING 1 " 5,000 TOTAL 23,900 2. EARTH WORK ROOT EXCAVATION 22 M ² 160 3,520 RUBBLE FOUNDATION 2 " 1,450 2,900 BACK FILLING 9 " 120 1,080 WASTE TREATMENT 13 " 70 910 TOTAL 8,410 . . . J. CONCRETE WORK 5 M ³ 5,810 30,793 PARQUET CONCRETE 5.6 M ³ 5,740 34,440 PLASTER PAINTING 65 M ² 280 18,200 MORTAR 1 SET 1,000 1,35,953 4. WOOD WORK . . . 135,953 4. WOOD WORK MORTAR 1 SET 4,610 16,135 DOOR 5 " 3,700 18,500 LOUVER WINDOW 3.5 M ² 1,060 4,7700 DOOR 5 " <td< td=""><td>CURING</td><td>1</td><td>SET</td><td></td><td>900</td><td></td></td<>	CURING	1	SET		900	
TOTAL 21,000 TOTAL 23,900 2. EARTH WORK ROOT EXCAVATION 22 M ² 160 3,520 RUBBLE FOUNDATION 2 " 1,450 2,900 BACK FILLING 9 " 120 1,080 WASTE TREATMENT 13 " 70 910 TOTAL 8,410 30,793 940 34,440 J. CONCRETE WORK 5.3 M ³ 5,810 30,793 PARQUET CONCRETE 5.6 M ³ 5,740 34,440 PLASTER PAINTING 65 M ² 280 18,200 MORTAR 1 SET 1,000 135,953 4. WOOD WORK 1 SET 4,800 LOUVER WINDOW 3.5 M ² 4,610 16,135 DOOR 5 " 3,700 18,500 TOTAL 73,935 5. ROOFING WORK 73,935 5. ROOFING WORK 1000 1011 1011 1011 DOOR 5 " 3,700 18,	TRANSPORTATION	1	14		3,000	
2. EARTH WORK ROOT EXCAVATION 22 M2 160 3,520 RUBBLE FOUNDATION 2 " 1,450 2,900 BACK FILLING 9 " 120 1,080 WASTE TREATMENT 13 " 70 910 TOTAL " 8,410 8,410 3. CONCRETE WORK " 30,793 9,440 FOUNDATION 5.3 M3 5,810 30,793 PARQUET CONCRETE 5.6 M3 5,740 34,440 PLASTER PAINTING 65 M2 280 18,200 MORTAR 1 SET 1,000 1,000 TOTAL ITAL 135,953 1,000 A. WOOD WORK 1 SET 4,800 MOOD MATERIALS 2.3 M3 15,000 34,500 LOUVER WINDOW 3.5 M2 4,610 16,133 DOOR 5 " 3,030 16,500 TOTAL TOTAL 73,935 34,500 16,500 DOOR 5	TEMPORARY BUILDING	1	н		5,000	
ROOT EXCAVATION 22 M ² 160 3,520 RUBBLE FOUNDATION 2 " 1,450 2,900 BACK FILLING 9 " 120 1,080 WASTE TREATMENT 13 " 70 910 TOTAL 8,410 . . . 3. CONCRETE WORK T . . . FOUNDATION 5.3 M ³ 5,810 . . PARQUET CONCRETE 5.6 M ³ 5,740 . . MORTAR 1 SET MORTAR 1 SET 4. WOOD WORK . . SET .	TOTAL				23, 900	
ROOT EXCAVATION 22 M ² 160 3,520 RUBBLE FOUNDATION 2 " 1,450 2,900 BACK FILLING 9 " 120 1,080 WASTE TREATMENT 13 " 70 910 TOTAL 8,410 . . . 3. CONCRETE WORK T . . . FOUNDATION 5.3 M ³ 5,810 . . PARQUET CONCRETE 5.6 M ³ 5,740 . . MORTAR 1 SET MORTAR 1 SET 4. WOOD WORK . . SET .						
RUBBLE FOUNDATION 2 " 1,450 2,900 BACK FILLING 9 " 120 1,080 WASTE TREATMENT 13 " 70 910 TOTAL 8,410 8,410 J. CONCRETE WORK 5.3 M ³ 5,810 30,793 PARQUET CONCRETE 5.6 M ³ 5,740 34,440 PLASTER PAINTING 65 M ² 280 18,200 MORTAR 1 SET 1,000 100 TOTAL SET 1,000 135,953 4. WOOD WORK 1 SET 4,800 LOUVER WINDOW 3.5 M ² 4,610 16,135 DOR 5 " 3,700 18,500 TOTAL 73,935 5 ROP 3,700 18,500 LOUVER WINDOW 3.5 M ² 1,660 47,700 DOR 5 " 3,700 4,500 TOTAL 73,935 500 4,500 52,200 6. PAINTING WORK 12 260 8,320 <td>2. EARTH WORK</td> <td></td> <td></td> <td></td> <td></td> <td></td>	2. EARTH WORK					
BACK FILLING 9 " 120 1,080 WASTE TREATMENT 13 " 70 910 TOTAL 8,410 J. CONCRETE WORK 5.3 M ³ 5,810 30,793 PARQUET CONCRETE 5.6 M ³ 5,740 34,440 PLASTER PAINTING 65 M ² 280 18,200 MORTAR 1 SET 1,000 TOTAL I SET 1,000 TOTAL SET 1,000 MORTAR 1 SET 4,800 LOUVER WINDOW 3.5 M ² 4,610 16,135 DOOR 5 " 3,700 18,500 TOTAL 73,935 S. 73,935 S. 73,935 S. ROOFING WORK 1 TOTAL 73,935 S. 5,00 4,500 S. ROOFING WORK 1 SET .5,00 4,500 4,500 52,200 S. ROOFING WORK 10TAL S2,200 S2,200 S2,200 S320	ROOT EXCAVATION	22	м2	160	3, 520	
WASTE TREATMENT 13 " 70 910 TOTAL 8,410 3. CONCRETE WORK 5.3 M3 5,810 30,793 PARQUET CONCRETE 5.6 M3 5,740 34,440 PLASTER PAINTING 65 M2 280 18,200 MORTAR 1 SET 1,000 TOTAL 135,953 135,953 4. WOOD WORK	RUBBLE FOUNDATION	2	м	1,450	2,900	
INALLY INDEXTING 13 13 10 10 10 TOTAL 6,410 3. CONCRETE WORK 5.3 M ³ 5,810 30,793 PARQUET CONCRETE 5.6 M ³ 5,740 34,440 PLASTER PAINTING 65 M ² 280 18,200 MORTAR 1 SET 1,000 TOTAL 1 SET 1,000 TOTAL 1 SET 1,000 Yood WORK 2.3 M ³ 15,000 34,500 CARPENTER LABORS 1 SET 4,800 LOUVER WINDOW 3.5 M ² 4,610 16,135 DOOR 5 " 3,700 18,500 TOTAL 73,935 S. ROOFING WORK 73,935 S. ROOFING WORK 1,060 47,700 10 DITTO RIDGE 9 M 500 4,500 TOTAL 52,200 52,200 53,20	BACK FILLING	9	м	120	1,080	
3. CONCRETE WORK 5.3 M ³ 5,810 30,793 PARQUET CONCRETE 5.6 M ³ 5,740 34,440 PLASTER PAINTING 65 M ² 280 18,200 MORTAR 1 SET 1,000 TOTAL 1 SET 1,000 4. WOOD WORK 1 SET 4,800 4. WOOD MATERIALS 2.3 M ³ 15,000 34,500 CARPENTER LABORS 1 SET 4,800 LOUVER WINDOW 3.5 M ² 4,610 16,135 DOOR 5 " 3,700 18,500 TOTAL TOTAL T3,935 73,935 5. ROOFING WORK 1 500 4,500 MORTAR 9 M 500 4,500 DITTO RIDGE 9 M 500 4,500 TOTAL 52,200 52,200 52,200 52,200 6. PAINTING WORK 32 M ² 260 8,320	WASTE TREATMENT	13	н	70	910	
FOUNDATION 5.3 M ³ 5,810 30,793 PARQUET CONCRETE 5.6 M ³ 5,740 34,440 PLASTER PAINTING 65 M ² 280 18,200 MORTAR 1 SET 1,000 TOTAL I SET 1,000 4. WOOD WORK IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	TOTAL				8,410	
PARQUET CONCRETE 5.6 M ³ 5,740 34,440 PLASTER PAINTING 65 M ² 280 18,200 MORTAR 1 SET 1,000 TOTAL 135,953 135,953 4. WOOD WORK 2.3 M ³ 15,000 34,500 CARPENTER LABORS 2.3 M ³ 15,000 34,500 LOUVER WINDOW 3.5 M ² 4,610 16,135 DOOR 5 " 3,700 18,500 TOTAL 73,935 5 ROOFING WORK 73,935 5. ROOFING WORK 45 M ² 1,060 47,700 DITTO RIDGE 9 M 500 4,500 TOTAL 52,200 52,200 52,200 52,200	3. CONCRETE WORK					
PLASTER PAINTING 65 M ² 280 18,200 MORTAR 1 SET 1,000 TOTAL 135,953 135,953 4. WOOD WORK	FOUNDATION	5,3	м3	5,810	30,793	
MORTAR I SET 1,000 TOTAL 135,953 135,953 4. WOOD WORK 2.3 M ³ 15,000 34,500 CARPENTER LABORS 2.3 M ³ 15,000 34,500 CARPENTER LABORS 1 SET 4,800 LOUVER WINDOW 3.5 M ² 4,610 16,135 DOOR 5 " 3,700 18,500 TOTAL 73,935 73,935 73,935 5. ROOFING WORK 5 M ² 1,060 47,700 DITTO RIDGE 9 M 500 4,500 TOTAL 52,200 52,200 53,320	PARQUET CONCRETE	5.6	м3	5,740	34,440	
TOTAL 135, 953 4. WOOD WORK 2.3 M ³ 15, 000 34, 500 WOOD MATERIALS 2.3 M ³ 15, 000 34, 500 CARPENTER LABORS 1 SET 4,800 LOUVER WINDOW 3.5 M ² 4,610 16,135 DOOR 5 " 3,700 18,500 TOTAL 73,935 73,935 73,935 5. ROOFING WORK 73,935 73,935 74,00 JITTO RIDGE 9 M 500 4,500 TOTAL 52,200 52,200 52,200 52,200	PLASTER PAINTING	65	м2	280	18,200	
4. WOOD WORK WOOD MATERIALS 2.3 M ³ 15,000 34,500 CARPENTER LABORS 1 SET 4,800 LOUVER WINDOW 3.5 M ² 4,610 16,135 DOOR 5 " 3,700 18,500 TOTAL TOTAL 73,935 73,935 5. ROOFING WORK IRON PLATE FLAT SEAM ROOFING 45 M ² 1,060 47,700 DITTO RIDGE 9 M 500 4,500 52,200 6. PAINTING WORK 32 M ² 260 8,320	MORTAR	ı	SET		1,000	
WOOD MATERIALS 2.3 M ³ 15,000 34,500 CARPENTER LABORS 1 SET 4,800 LOUVER WINDOW 3.5 M ² 4,610 16,135 DOOR 5 " 3,700 18,500 TOTAL TOTAL 73,935 73,935 5. ROOFING WORK 1 45 M ² 1,060 47,700 DITTO RIDGE 9 M 500 4,500 52,200 6. PAINTING WORK 32 M ² 260 8,320	TOTAL				135,953	
WOOD MATERIALS 2.3 M ³ 15,000 34,500 CARPENTER LABORS 1 SET 4,800 LOUVER WINDOW 3.5 M ² 4,610 16,135 DOOR 5 " 3,700 18,500 TOTAL TOTAL 73,935 73,935 5. ROOFING WORK 1 45 M ² 1,060 47,700 DITTO RIDGE 9 M 500 4,500 52,200 6. PAINTING WORK 32 M ² 260 8,320						
CARPENTER LABORS 1 SET 4,800 LOUVER WINDOW 3.5 M ² 4,610 16,135 DOOR 5 " 3,700 18,500 TOTAL 73,935 73,935 73,935 5. ROOFING WORK 1,060 47,700 DITTO RIDGE 9 M 500 4,500 TOTAL 52,200 52,200 52,200 6. PAINTING WORK 32 M ² 260 8,320	4. WOOD WORK					
LOUVER WINDOW 3.5 M ² 4,610 16,135 DOOR 5 " 3,700 18,500 TOTAL 73,935 73,935 5. ROOFING WORK	WOOD MATERIALS	2, 3	м³	15,000	34,500	
DOOR 5 " 3,700 18,500 TOTAL 73,935 5. ROOFING WORK	CARPENTER LABORS	1	SET		4,800	
TOTAL 73,935 5. ROOFING WORK 73,935 IRON PLATE FLAT SEAM ROOFING 45 M2 1,060 47,700 DITTO RIDGE 9 M 500 4,500 TOTAL 52,200 52,200 6. PAINTING WORK 32 M2 260 8,320	LOUVER WINDOW	3.5	м ²	4,610	16,135	
5. ROOFING WORK IRON PLATE FLAT SEAM ROOFING 45 M ² 1,060 47,700 DITTO RIDGE 9 M 500 4,500 TOTAL 52,200 52,200 6. PAINTING WORK 32 M ² 260 8,320	DOOR	5	••	3,700	18,500	
IRON PLATE FLAT SEAM ROOFING 45 M2 1,060 47,700 DITTO RIDGE 9 M 500 4,500 TOTAL 52,200 52,200 6. PAINTING WORK 32 M2 260 8,320	TOTAL				73, 935	
IRON PLATE FLAT SEAM ROOFING 45 M2 1,060 47,700 DITTO RIDGE 9 M 500 4,500 TOTAL 52,200 52,200 6. PAINTING WORK 32 M2 260 8,320						
DITTO RIDGE 9 M 500 4,500 TOTAL 52,200 6. PAINTING WORK PAINTING 32 M ² 260 8,320	5. ROOFING WORK					
TOTAL 52,200 6. PAINTING WORK 32 PAINTING 32	IRON PLATE FLAT SEAM ROOFING	45	мZ	1,060	47,700	
6. PAINTING WORK PAINTING 32 M ² 260 8,320	DITTO RIDGE	9	м	500	4,500	
PAINTING 32 M ² 260 8, 320	TOTAL			-	52,200	
	6. PAINTING WORK					
TOTAL 8, 320	PAINTING	32	м²	260	8,320	
	TOTAL				8,320	

•

. .

Rp. 2,885,641 (¥2,127,726)

Description of Items Material	Size Quantity	Unit	Unit Price	Cost	No.	Remark
1. TEMPORARY WORK	1	SET		96,000		
2. EARTH WORK	1			92, 315		
3. CONCRETE WORK	1			944,610		
4. WOOD WORK	1			820,100		
5. ROOFING WORK	1			551,800		
6. PAINTING WORK	1	Ħ		372,496		
						105 = $\frac{415}{306}$ Rp.
TOTAL				Rp. 2,805,641		100.12
••••				(¥2,127,726)		(11082 YEN/M ²)
1. TEMPORARY WORK						
LAND CONSOLIDATION	1	SET		10,000		
LEVELING BATTER BOARD	1	••		10,000		
SCAFFOLDING	220	м²	150	35,000		
CURING	L	SET		8,000		
TRANSPORTATION	1	"		25,000		
TEMPORARY BUILDING	1	н		10,000		
TOTAL				96,000		
2. EARTH WORK						
ROOT EXCAVATION	127	м ³	160	20, 320		
RUBBLE FOUNDATION	14.5		1,450	21,025		
SAND FILLING	. 39	••	1,020	39,780		
BACK FILLING	46	**	120	5,520		
WASTE TREATMENT	81	**	70	5,670		
TOTAL				92,315		
3. CONCRETE WORK						
LOUVER WINDOW	35	м²	4,610	161,350		
DOOR, SCREEN	20		3,700	74,000		
COUNTER	1	SET		5,000		
PLINTH	1	"		6,000		
TOTAL				820,100		
5. ROOFING WORK						
IRON PLATE FIAT SEAM ROOF	'ING 285	м ²	1,800	513,000		•
DITTO RIDGE	40	м	700	28,000		
EAVES GUTTER	72	п	120	0 8,640		
VERTICAL GUTTER	24	.,	90	0 2,160	,	
TOTAL				551,800	1	

.

14

6. PAINTING WORK			e di seren		
PAINTING	750	м ²	260	195,000	
CEILING (BACK OF EAVES etc.)	52	м ²	450	23,400	
" (DININGROOM, BEDROOM)	140		1,100	154,000	
TOTAL				372,400	
			1 .		
FOUNDATION	47	м3	5,810	273,070	
PARQUET CONCRETE	19,2	. "	9,200	176, 640	
BRICK MASONRY	21	"	5,740	120, 540	
PLASTER PAINTING	462	м ²	280	129, 360	
FLOOR MORTAR	3		500	1,500	· .
FLOOR TILE	185	"	1,200	222,000	
" (BATHROOM)	5	u	1,500	7,500	
LAVATORY	1	NOS		2,000	
BATHROOM	1	11		3,000	
MORTAR	1	SET		9,000	
TOTAL				944,610	
4. WOOD WORK					
WOOD MATERIALS	21.7	м3	15,000	325,500	
CARPENTER LABORS	1	SET		58,800	
NAIL, METALIC MATERIALS	1	**		40,000	
GLASS WINDOW	35	м ²	4,270	149,450	

DRYING SHOP (NO. 3) SPECIFICATION

Rp. 691,071 (¥509,561)

Description of Items Material Size	Quantity	Unit	Unit Price	Coat	No.	Remark
. TEMPORARY WORK	ı	SET		40,500		
, EARTH WORK	L	11		33, 645		
. CONCRETE WORK	1	U		231,614		
. WOOD WORK	1			200, 958		
, ROOFING WORK	1	11		162,150		
. PAINTING WORK	1	н		22, 204		
						1US\$= 415 Rp. 306 YEN
TOTAL				Rp. 691,071		
				(¥509,561)		(7,077 YEN/M ²)
. TEMPORARY WORK						
AND CONSOLIDATION	1	SET		3, 500		a de la de
LEVELING BATTER BOARD	1	•		3,500		
CAFFOLDING	130	м²	150	19,500		
CURING	1	SET		2,000		
TRANSPORTATION	1	14		7,000		
TEMPORARY BUILDING	1	"		5,000		
TOTAL				40, 500		

			х. 		·
2. EARTH WORK		an a t			
ROOT EXCAVATION	36	м ³	160	5,760	
RUBBLE FOUNDATION	17	11	1,450	24, 650	
BACK FILLING	14.3	"	120	1,716	
WASTE TREATMENT	21.7	11	70	1,519	
TOTAL 3. CONCRETE WORK		•••	•	33, 745	
FOUNDATION	12.6	м ³	5,810	73, 206	
BRICK MASONRY	9.2	м3	5,810	52,808	
PARQUET CONCRETE	8		5,740	73, 600	
PLASTER PAINTING	100	м ²	9,200	28,000	
MORTAR			280	4,000	
TOTAL				231,614	
4. EARTH WORK					
WOOD MATERIALS	4.4	м ³	15,000	66,000	
CARPENTER LABORS	1	SET		10,000	
NAIL AND METALIC METERIALS	1	"		6,000	
GLASS WINDOW	12	м²	4,270	51,240	
LOUVER WINDOW	11.8		4,610	54, 398	
DOOR	3.6	11	3,700	13, 320	
TOTAL				200, 958	
5. ROOFING WORK					
POLYVINYL CHLORIDE ROOF	123	м2	1,250	153,750	
DITTO RIDGE	14	м	600	B,400	
TOTAL				162,150	
- 6. Painting Work				· · ·	
PAINTING	85.4	м ²	260	22, 204	
TOTAL				22, 204	

16, 17 .

PUMPING ROOM SPECIFICATION (FOR BOOSTER PUMP AND FOR BUILDINGS) Rp. 241,576 (¥178,125) NO. 20

			•							
Description of Items Material	Size	Quantity	Unit	Unit Price	Cost	No.	Remark			
							•			
I. TEMPORARY WORK		i	SET		19,100	•	· .			
2. EARTH WORK		1	.11		8,760	1 T.	• .			
3. CONCRETE WORK	, *	1	.0		108,666	e 19				
4. WOOD WORK		1	."		54,750		N +			
5. ROOFING WORK		1	"		43, 280					
6. PAINTING WORK		1	••		7,020					
						105\$	415 Rp. 306 YEN			
TOTAL					Rp. 241,576					
. TEMPORARY WORK					(¥178,125)					
LAND CONSOLIDATION		1	SET		1,500					
LEVEING BATTER BOARD		1			1,500					
SCAFFOLDING		48	M٤	150	7,200	· · · ·				
CURING		1	SET		900					
TRANSPORTATION		1			3,000					
TEMPORARY BUILDING		1	н		5,000					
TOTAL					19,100					
2. EARTH WORK										
ROOT EXCAVATION		13	м3	160	Z, 080					
RUBBLE FOUNDATION		4	41	1,450	5,800					
BACK FILLING		5	"	120	600					
WASTE TREATMENT		4		70	280					
TOTAL					8,760					
3. CONCRETE WORK										
FOUNDATION		3.9	м3	5,810	22, 659					
PARQUET CONCRETE		1.6	м3	9,200	14,720					
BRICK MASONRY		4,2	14	5,740	24,108					
PLASTER PAINTING		84	м²	280	23, 520					
MORTAR		1	SET		1,000					
TOTAL					108,666					
4. WOOD WORK										
WOOD MATERIALS		1.6	м³	15,000	24,00D					
CARPENTER LABORS		1	SET		3,600					
LOUVER WINDOW		3	M ²	4,610						
DOOR		3,6		3,700						
TOTAL										

5. ROOFING WORK

.

IRON PLATE FLAT SEAM ROOFING	38	M ²	1,060	40,280	
DITTO RIDGE	6	м	500	3,000	
TOTAL			·	43, 280	
6. PAINTING WORK					
PAINTING	27	MS	260	7,020	
TOTAL				7,020	·

•

COST OF INSTALLATION WORK SPECIFICATION

Rp. 9,703,000 (¥7,155,000)

7,983,000 DC (5,887,000) 1,720,000 FC (1,268,000)

Description of Items	Material	Size	Quantity	Unit	Unit Price	Cost	No.	Remork
I. ELECTRIC INST	ALLATIO	N WORK						
LIGHTING EQUIPMI	ENT		34	Light	6,960	236,640		
(FL20W PREVENTIC	ON OF CR	IMES LIGHT, A	UTOMATI	C SWITC	н)			
ELECTRIC WIRE	150		3, 240	м	1,315	4,260,600		
	100		720		850	612,000		
	38		170	11	315	53, 550		
"	22		120	0	185	22,200		
38	14		1,560	11	123	191,880		
ELECTRIC POLE								
		12M x 19	35	POLE	24,660	863,100		
ELECTRIC POLE B	ASE (CON	CRETE PRODU	JCT) 1	SET		232,900		
TRANSFORMER	75 kVA	SCOT TRANS	1	PIECE		616,500		
	200*/200	V∕100 ^V						
GROUNDING			1	5ET		41,100		
SUPPLIES MISCEL	LANEQUS	MATERIALS	1	ч		94, 268		
TRANSPORTATION	FEE		1	Ħ		933, 941		
LABOR COST			1	11		150,000		400Rp/man x 375 ma
						1,219,679 7,089,000	D.C. F.C.	1US\$= 415 Rp. 306 YEN
TOTAL						8,308,679		
2. WATER-SUPPL	Y INSTAL	LATION WORK	:					
V.W. PIPE		204	505	м	69	34,845		
		25A	522	u	96	50,112		,
		32A	198	11	123	24, 354		
		40A	260	,1	178	46, 280		
		95A	12	м	521	6, 252		
GALVANIZED STE	EL PIPE		1	SET		72,810		
GATE VALVE		(10kg/cm ² 20GV BOX)	16	PIECE	3,014	48, 214		
		(25GV ")	6		7,534	45, 270		

(32GV	14)	1	H.		9,453	
(75GV	17)	1			21,920	
SUPPLIES MISCELLANEOUS	MATEI	ua I	.5	1	SET		10,900	
TRANSPORTATION FEE (TRANSPORTATION IN THE I	FARM)			1	**		10,800	
SUB-TOTAL							381,210	r.c.
PIPING COST								
ROOT EXCAVATION BACK F	LLING			1,497	м	60	89,820	
TOWER WATER TANK		3 to	n	1	PIECE		315,100	
DITTO SILL	. 1	0 м	L	1	11		698,700	
DITTO PROCESSING COST				1	SET		411,000	
(Including Installation of wate	r tank)							
TOTAL							1,514,620	1US\$= 415 Rp.
							500,820 1,395,010	10541 306 YEN

(1)

COST OF FARM CONSOLIDATION SPECIFICATION

¥4,590,000

1,870,000 D.C. 2,720,000 F.C.

Description of Items Material	Size	Quantity	Unit	Unit Price	Cost	No.	Remark
, ROAD							
MAIN ROAD	w=2.5m	1,900	м	64.5 43.5	122,550 82,650	. 1	
LATERAL ROAD	w=1,5m	5,563		43.0 29.0	239,209 161,327	2	
FARM ROAD	w=1.0m	3,614	п	32.3 21.8	116,732 78,785	3	
SUB-TOTAL					478, 491 322, 762		
					801,253		
2. CANAL							
TYPE A		1,413	"	60.8	85, 910	4	
TYPE B		3,187	"	19.2	61,170	5	
SUB-TOTAL		-			147,100		
3. CULVERT							
CAA TYPE		1	PLS	14,950 1,140	14,950 1,140	6	
CAB TYPE		2	11	9,967 644	19,934 1,288	7	
CAG TYPE		1	**	8,014 506	8,014 506	8	
СВА ТҮРЕ		6	19	10,186	61,116 276	9	
CBB TYPE		2	ш	7,394	14,788 184	10	
CBC TYPE		Z		6,162 92	12, 324	11	
CCA TYPE		6		8,124	48,744	12	
CCB TYPE		24		184 5,887	1,104 141,288 2,209	13	
				92 4, 632	2,208	14	
CCC TYPE		8		46 25, 261	368 25,261	15	
CCD TYPE				920 29,995	920 29,995	16	
CCE TYPE		1		1,380	1,380	10	
					398,534		
SUB-TOTAL					9,558 408,092		

4. FLASH BOAD WEIH	ι		a states	· · · ·				
WA TYPE			6	PLS	5,006	30,036	17	
WB TYPE			7	Ħ	4,629	32,403	16	
WC TYPE			28		3,583	100, 324	19	
SUB-TOTAL						162,763		
	1	•"		· · ·	· · ·	an an the state of		
5. DRAINAGE CULVE	RT				· .	<i>2</i>	1 - 14 1	
D-C-1 TYPE			1			49,837	20	
D-C-2 TYPE			1	11		69,765	21	
			1			70,40)	22	
D-C-3 TYPE						96, 378 93, 625		
SUB-TOTAL		-				190,003		
						• • • • • • • •		
6, BORDER				M ³		365,120		50,715m x 0.18m
EMBANKMENT			9,128	·M-	40	365,120		301110111
SUB-TOTAL						305,120		
7. LAND LEVELING EXCAVATION AND				-	1	222, 051		·
TRANSPORT		•	74,017	М3	3 29 0	2, 146, 493		
LEVELING			74,017	**	2	148,034		
SUB-TOTAL						222, 051 2, 294, 527		
						2, 516, 578		.21
								· .
TOTAL						1,870,437 2,720,472		
						4, 590, 909		
						≈4,590,000		
PER	1.0 Ha	•				51,457	Yen	
						(169,8	\$)	.*

.

144

A-39

.

¥8,402,000 Yen

5,682,000 D.C. 2,720,000 F.C.

Description of Items Material	Size	Quantity	Unit	Unit Price	Cost	No.	Remark
(1) COST OF FARM CONSOL	IDATION				1,870,000 2,720,000	D.C. F.C.	4, 590, 000
(2) COST OF BUILDINGS					3,812,000	D.C.	3,812,000
TOTAL					5,682,000 2,720,000		8,402,000
(1) MAIN ROAD	Per 10.0m						
EXCAVATION AND TRANSPORT		15.0	м ³	3 29	45 435		
EMBANKMENT		15.0	н	40	600		
TOTAL					1,080		
					645 435	•	
(2) LATERAL ROAD	Per 10.0m						
EXCAVATION AND TRANSPORT		10.0	"	3 29	30 290		
EMBANKMENT		10.0	н	40	400		
TOTAL					720		
					430 290		
(3) FARM ROAD	Per 10.0m						
EXCAVATION AND TRANSPORT		7.5		29 29	23 218		
EMBANKMENT		7.5	"	40	300		
TOTAL		•			541 32 218	•	
(4) CANAL A	Per 10.0m						
EXCAVATION		2.4	м3	120	288	1	
EMBANKMENT		8.0	*1	40	320)	
TOTAL					608	l	
(5) CANAL B	Per 10.0m						
EXCAVATION		1.0	11	120	120)	
EMBANKMENT		1.8	11	40	72	2	
TOTAL					197	2	
(6) CULVERT(CAA)							
PASANGAN BATUKALI REINFORCED		1.51	н	4,415	6,666		
CONCRETE		0.488	"	7,110	3, 47()	
FORM		2,3	м ²		2,279		
REINFORCEMENT		0,022	TON	44,454 46,000	978 1,012		
EXCAVATION		9.5	м3	120	1,140	•	

BACKFILLING	5.3	м3	40	212
REMOVAL OF SURPLUS SOIL	4.1	H 1	50	205
TOTAL				14,950 1,140
				16,090
(7) CULVERT(CAB)				•
PASANGAN BATUKALI	1.06	••	4,415	4,680
REINFORCED CONCRETE	0.28		7,110	1,990
FORM	1.5	м²	991	1,486
REINFORCEMENT	0,014	TON	44,454 46,000	622 644
EXCAVATION	7,2	м3	120	864
BACKFILLING	4.1	"	40	164
REMOVAL OF SURPLUS SOIL	3.2	11	50	160 9,967
TOTAL		÷		9,987
				10,611
(8) CULVERT(CAC) Pasangan				
BATUKALI	0,85	м3	4,415	3,752
REINFORCED CONRETE	0,22	"	7,110	1,564
FORM	1.2	м²	991	1,189
REINFORCEMENT	0,011	TON	44,454 46,000	489 506
EXCAVATION	6,2	м ³	120	744
BACKFILLING	3.5	**	40	140
REMOVAL OF SURPLUS SOIL	Z, 7	11	50	135
TOTAL				8,014 506
				8,520
(9) CULVERT(CBA)				
PASANGAN		н		/ 755
BATUKALI REINFORCED	1.53		4,415	6,755
CONCRETE	0.20	" "	7,110	1,422
FORM	0.8	м ²	991 44, 454	793 44
REINFORCEMENT	0.003		46,000	46
EXCAVATION	7.1	м ³	120	852
BACKFILLING REMOVAL OF	3.3	п	40	132
SURPLUS SOIL	3.0	п	50	190
TOTAL				10,186 46
				10,232
(10) CULVERT(CBB) Pasangan				
BATUKALI REINFORCED	1.13		4,415	4,989
CONCRETE	0.13	"	7,110	924
FORM	0.5	м ²	991 44,454	495 89
REINFORCEMENT Excavation	0.002	тон м ³	46,000	92
	5.4	м ³	120	648
BACKFILLING REMOVAL OF	2.6		40	104
SURPLUS SOIL	2.9	**	50	145
TOTAL				92
·				7,486

• •

•

.

.

•

(11) CULVERT(CBC) Pasangan			· · ·
BATUKALI REINFORCED	0,93 M ³	4,415	4,106
CONCRETE	0,10 "	7,110	711
FORM	0,5 M ²	991 .	495
REINFORCEMENT	0.002 TON	44,454 46,000	89
EXCAVATION	4.6 M ³	120	552
BACKFILLING	2.1 "	40	. 84
REMOVAL OF SURPLUS SOIL	2.5 "	50	125
TOTAL			6,162 92
			6,254
(12) CULVERT(CCA)			
PASANGAN BATUKALI	1.26 "	4,415	5,562
REINFORCED CONCRETE	0.15 "	7,110	1,065
FORM	0.6 M ²	991	594
REINFORCEMENT	0,004 TON	44, 454	177
	•	46,000	184
EXCAVATION		120	528
BACKFILLING REMOVAL OF	2,5 "	40	100
SURPLUS SOIL	1.9 "	50	95
TOTAL			8,124 164
			8,308
(I3) COLVERT(CCB) Pasangan			
BATUKALI REINFORCED	0.92 "	4,415	4,061
CONCRETE	0.10 "	7,110	711
FORM	0,5 м ²	991	495
REINFORCEMENT	0.002 TON	44,454 46,000	90 92
EXCAVATION	3.2 M ³	120	384
BACKFILLING	1,4 "	40	56
REMOVAL OF SURPLUS SOIL	1.8 "	50	90
TOTAL			5,887 92
			5,979
(14) CULVERT(CCC) Pasangan			
BATUKALI REINFORCED	0.75 M ³	4,415	3, 311
CONCRETE	0.08 "	7,110	568
FORM	0.3 M ²	991	297
REINFORCEMENT	0,001 TON	44,454 46,000	44 46
EXCAVATION	2.5 M ³	120	300
BACKFILLING	1.4 "	40	56
REMOVAL OF SURPLUS SOIL	1.1 "	50	55
TOTAL			4,632 46
			40
(15) CULVERT(CCD)			
PASANGAN Batukali	2,95 M ³	4,415	13,024
REINFORCED Concrete	0.43 "	7,110	3,057
FORM	1,9 M ²	991	1,883
REINFORCEMENT	0.020 TON	44,454	889
	0.020 ION	46,000	920

	EXCAVATION		10,5	м ³	120	1,260	gar te	
	BACKFILLING		6.1	11	40	244	1. 1987 (M. 1997) 1. 1987 (M. 1997)	
	REMOVAL OF		4.5		50	225		
	SURPLUS SOIL		,			25, 261		
	TOTAL			11 A.		920	· ·	
						26,181	1.1.1	
						۰.		
	(16) CULVERT(CCE) PASANGAN				4 455	10 (75		
	BATUKALI		4,23	н	4,415	18,675		
	REINFORCED CONCRETE		0.64		7,110	4,550		
	FORM		3,0	м ²	991	2, 973		
	BEINFORCEVENT		0.030	TON	44,454	1,333		
	REINFORCEMENT			м ³	46,000	1,380 1,800		
	EXCAVATION		15.0	M-	120	1,000	•	
	BACKFILLING		8.7	••	40	348		
	REMOVAL OF		6,3		50	315		
	SURPLUS SOIL					29, 995	· · · ·	
	TOTAL			1.1	. ,	1,380	. *	
						31, 375		
	(17) FLASH BOAD					· · · ·		
	WEA (A) Pasangan Batukali		0.57	мз	4,415	2,516		
	FORM		2,0	M ²	991	1,982		
	RIP RAP		0,28	м3	1,215	340		
	SHUTTERING							
	BOAD		1.0	UNIT	500	500		
	EXCAVATION	-	1.4	мз	120	168		
	BACKFILLING		1.0		40	40		
	REMOVAL OF		0.4		50	20		
	SURPLUS SOIL		3. 1		••			
	TOTAL	,				5,006		
							2.4	
	(18) FLASH BOAD WEA (B)							
	PASANGAN BATUKALI		0.50		4,415	2, 207		
·	FORM		2,0	м²	991	1,982		
			0.2	м ³	1,215	243		
	RIP RAP		0.2	м	1,213	245		
	SHUTTERING BOAD		1.0	UNIT	500	500		
	EXCAVATION		1.1	м3	120	132		
	BACKFILLING		0.9	м ³	40	36		
	REMOVAL OF		0.3		50	15		
	SURPLUS SOIL		0.9		50			
	TOTAL					4,629		
	(19) FLASH BOAD WEA (C)							
	PASANGAN		0, 21	м3	4, 415	927		
	BATUKALI Form		2,0	M ²	991	1,982		
	RIP RAP		0.09	м ³	1,215	109		
	SHUTTERING							
	BOAD		1.0	UNIT	500	500		
	EXCAVATION		0.4	м3	120	48		
	BACKFILLING		0.3		40	12		
	REMOVAL OF		0.1	.11	50	5		
	SURPLUS SOIL				- -			
	TOTAL					3, 583		
	DD 4 1114 CD							
	(20) DRAINAGE CULVER(D-C-1)							

EMBANKMENT		32.6	м ³	40	1,304	
PASANGAN Batukali	. •	5,00	"	4,415	22, 075	
SAND BED	· .	1.9	**	500	950	
CORRUGATED- PIPE	600ø t=2mm	5,0	м	4,830	24,150	F.C.
PIPE LAYING LABOR		1.0	MAN	110	110	
SUB-TOTAL					25,687 24,150	
					49,837	
					12 ¹	
(21) DRAINAGE CULVERT(D-C-2)						
EXCAVATION		14.7	м ³	120	1,764	
EMBANKMENT		36,6		40	1,464	
PASANGAN Batukali		7,74	"	4, 41 5	34, 172	
SAND BED		2.4	*1	500	1,200	
PIPE LAYING LABOR		1,5	MAN	110	165	
CORRUGATED- PIPE	800∮ t≖2mm	5.0	м	6,200	31,000	F.C
SUB-TOTAL					38,765 31,000	
					69,765	
(22) DRAINAGE CULVER(D-C-3)						
EXCAVATION		10.3	м ³	120	1,236	
EMBANKMENT		97.6	**	40	3,904	
PASANGAN BATUKA LI		5.63	u	4, 415	24,856	
SAND BED		3.Z		500	1,600	
CURRUGATED- PIPE	600¢ t-2mm	8.0	м	4,830	38,640	
CURRUGATED PIPE LYING		1.5	MAN	110	165	
SUB-TOTAL					31,926 38,640	
					70, 401	

.

.

-

•

¥1	812	000	

(2)	COST OF	BUILDINGS	SPECIF	ICATION	· · ·		
	¥3	,812,000	1	1			
Description of items Material	Size	Quantity	Unit	Unit Price	Cost	No.	Remark
. STORAGE HOUSE					1,906,000		
2. GRANARY					1,906,000		•
TOTAL					3, 81 2, 000		,

. . . .

STORAGE HOUSE SPECIFICATION

Rp. 2, 585, 446 (¥1, 906, 375)

Description of Items Material	Size	Quantity	Unit	Unit Price	Cost	No.	Remark
1. TEMPORARY WORK		1	SET		85, 200	·; ·	- •
2. EARTH WORK		1		• • •	76,139		
3. CONCRETE WORK		1	U.		748,013		
4. WOOD WORK		1	0		779, 808	. •	-
5. ROOFING WORK		1	a		571,440		
6. PAINTING WORK		1	"		326, 700		
•						1U5 5 =	415 Rp.
TOTAL					2,587,400	· · · •	306 YEN
					(1,906,375)	(10, 59)	YEN/M ²
I. TEMPORARY WORK						: .	
LAND CONSOLIDATION		1	SET		9,000	•••	
LEVELING BATTER BOARD		1	"		9,000		
CURING		1	19		5,400		
TRANSPORTATION		1	••		14,400		
TEMPORARY BUILDING		1	н		9,600		
SCAFFOLDING		252	м ²	150	37,800		
TOTAL					85,200		
2. EARTH WORK				1 00			
ROOT EXCAVATION	•	82.8	м3	160	13,248	•	
RUBBLE FOUNDATION	. •	12.1	v	1,450	17,539	1. A. M.	
SAND LEVELING		36,84	н	1,020	37, 576		•.
BACK FILLING		39.6		120	4,752	,	
WASTE TREATMENT		43.2		70	3,024		
TOTAL					76,139		19 A. A.

			-		
3. CONCRETE WORK					
FOUNDATION	32,7	мз	5,810	189, 987	
PARQUET CONCRETE	18.64	0.1	9,200	173, 328	
BRICK MASONRY	13,56		5,740	77,834	
PLASTER PAINTING	298.8	м²	280	83, 664	
FLOOR TILE	180.0	θ.	1,200	216,000	
FIXTURES MORTAR		SET		7,200	
TOTAL				748, 013	
4. WOOD WORK					
WOOD MATERIALS	18.8	м3	18,000	338,400	
CARPENTER LABORS	1	SET		49, 320	•
GLASS WINDOW	45.6	м ²	4,270	194,712	
LOUVER WINDOW	21.6		4,610	99, 576	
DOOR	13.2		3,700	48,840	
NAIL, METALIC MATERIALS	L	SET		36,000	
PLINTE	72.0	м	180	12,960	
TOTAL				779, 808	
5. ROOFING WORK					
IRON PLATE FLAT SEAM ROOFING	291,6	м ²	1,800	524,880	
DITTO RIDGE ,	48.0	м	700	33,600	
EAVES GUTTER	86,4	**	120	10,368	
VERTICAL GUTTER	28.8	*1	90	2, 592	
TOTAL				571,440	
6. PAINTING WORK					
PAINTING	360	м2	260	93,600	
CELLING(INDOOR)	180	п	1,100	198,000	
" (BACK OF EAVES)	78		450	35,100	
TOTAL				326, 700	

•

• •

2

.

GRANARY SPECIFICATION

Rp. 2,585,446 (¥1,906,375)

Description of Items Material Size	Quantity	Unit	Unit Price	Cost	No.	Remark
. TEMPORARY WORK	1	SET		85,200		
. EARTH WORK	1			76,139		
. CONCRETE WORK	1			748,013		
. WOOD WORK	1	U		779,808		
. ROOFING WORK	1	H		571,440		
. PAINTING WORK	1	••		326,700		
TOTAL				2, 587, 400	1US\$=	415 Rp., 306 YEN
				(1,906,375)	(10, 59)	YEN/M ²)

1. TEMPORARY WORK		25			
LAND CONSOLIDATION	1	SET		9,000	
LEVELING BATTER BOARD	1			9,000	
CURING	1	11		5,400	
TRANSPORTATION	L	••		14,400	
TEMPORARY BUILDING	1	".		9,600	
SCAFFOLDING	252	м ^z	150	37,800	
TOTAL				85,200	
2. EARTH WORK					
ROOT EXCAVATION	82.8	м3	160	13, 248	
RUBBLE FOUNDATION	12.1	н	1,450	17, 539	
SAND LEVELING	36.64	,,	1,020	37, 576	
BACK FILLING	39.6		120	4,752	
WASTE TREATMENT	43.2		70	3,024	
TOTAL				76,139	
3. CONCRETE WORK FOUNDATION	32.7	M3	5 810	190 007	
PARQUET CONCRETE	18,84	19	5,810 9,200	189,987 173,328	
BRICK MASONRY	13.56		5,740	77,834	
PLASTER PAINTING	29.88	м²	280	83, 664	
FLOOR TILE	180.0		1,200	216,000	
FIXTURES MORTAR		SET	1,200	7,200	
TOTAL				748,013	
				140,013	
4. WOOD WORK					
WOOD MATERIALS	18.8	м ³	18,000	338,400	
CARPENTER LABORS	1	SET		49, 320	
GLASS WINDOW	45.6	м²	4,270	194,712	
LOUVER WINDOW	21.6		4,610	99, 576	
DOOR	13,2		3,700	48,840	
NAIL, METALIC MATERIALS	1	SET		36,000	
PLINTE	72.0	м	180	12,960	
TOTAL				779,808	
5. ROOFING WORK					
IRON PLATE FLAT SEAM ROOFING	291.6	м²	1,800	524,880	
DITTO RIDGE	48,0	м	700	33,600	
EAVES GUTTER	86.4		120	10, 368	
VERTICAL GUTTER	28.8		90	2, 592	
TOTAL					
				571,440	
6. PAINTING WORK					
PAINTING	360	M2	260	93, 600	
CEILING(INDOOR)	180	н	1,100	198,000	
" (BACK OF EAVES)	78		450	35,100	
TOTAL	· .			326,700	

н на **н**

•

.

A-47

•

ŕ٦	71	۱.
4،		

Description of Items Material

Quantity Unit Unit Price Cost No. Remark

1. EXCAVATION (NORMAL SOIL)				
EARTH WORK	0.75 MAN	120	90	
SUPERINTENDENT	0.025 "	150	3	. ,
GENERAL EXPENSES			27	30% OF ABOVE AMOUNT
TOTAL			120	
2. EXCAVATION (SOLID SOIL)				•
EARTH WORK	1.0 MAN	120	1 Ż0	
SUPERINTENDENT	0.33 "	150	4	· ·
GENERAL EXPENSES			36	30% OF ABOVE AMOUNT
			160	· · ·
TOTAL			100	
3. EXCAVATION(SILTY MUD, DEPTH 1.0	m)		•	
EARTH WORK	1.50 MAN	120	180	
SUPERINTENDENT	0.05 "	150	7	· · · ·
GENERAL EXPENSES			58	30% OF ABOVE AMOUNT
TOTAL			245	
				. •
4. SOIL HAULING(DISTANCE 30m)				
EARTH WORK	0.33 "	120	39	
SUPERINTENDENT	0.01 "	150	1	
GENERAL EXPENSES		•	10	30% OF ABOVE AMOUNT
TOTAL	ι.		50	
5. SOIL HAULING (DISTANCE 75m)				
к			65	K=120/275×(L+75)
GENERAL EXPENSES			20	30% OF ABOVE AMOUNT
TOTAL			85	
			, ,	
6. EXCAVATION (DEPTH 1.0m MORE)	0.15 MAN	120	18	
EARTH WORK	0,0075 "	150	ı	
SUPERINTENDENT			6	30% OF ABOVE AMOUNT
GENERAL EXEPNSES			25	
TOTAL			50	
7. FILLING (INCLUDING CONPACTION)				
EARTH WORK	0.25 "	120	30	· . · · · ·
SUPERINTENDENT	0.01 "	150	1	·•
GENERAL EXPENSES	*		9	30% OF ABOVE AMOUNT

.....

Size

A-48

.

	8. SODDING	· · · ` •	200	174 - Genter Genter		saite i t
	EARTH WORK	. *	0.15 MAN	N 120	18	
	SUPERINTENDENT	· · ·	0.01		1	
	GENERAL EXPENSES			i sa sipa	6	30% OF ABOVE AMOUNT
	TOTAL	·	· · ·	e - 1 - 1	25	·
		· •	1.1	• • •		
	9. SOD HAULING				5	
	10. MASONRY (FOR ROAD)					
	QUARRY STONE		1.20 M ³	950	1,140	
	EARTH WORK	• :	0.30 MAN		36	· · · · ·
	SUPERINTENDENT	·			22	
	GENERAL EXPENSES	•	· · ·		17	30% OF ABOVE AMOUNT
	TOTAL			• • •	1,215	the second should
	11. PASANGAN (1:4)					
	RUBBLE STONE		1.20 M ³	950	1,140	
	P.C.		0,958 DRUI		2,098	• "
	SAND		0,522 M ³		266	
	MASON		1,20 MAN	180	216	
	SUPERINTENDENT		0.12 "	220	26	
	EARTH WORK		3.60 "	120	432	
	SUPERINTENDENT		0.18 "	150	27	
	GENERAL EXPENSES				210	30% OF ABOVE AMOUNT
•	TOTAL			•	4, 415	
	12. PLASTER (1:3)	* ,				
	P.C.		0.048 DRU	M 2,190	105	
	SAND		0.0194 M ³	510	9	
	MASON		0.20 MAN	1 180	36	
	SUPERINTENDENT		0.02 "	220	4	
	ASSISTANT OF					
	DRIVER SUPERINTENDENT		0,40 MAN 0,02 "	i 120 150	48 3	
	GENERAL EXPENSES	· ` •				
			. *		25	30% OF ABOVE AMOUNT
	TOTAL				230	•
	13. FOUNDATION $(1:2\frac{1}{2})$			4 .		
	P.C.		0.031 DRU	M 2,190	67	· .
	SAND		0.0085 M ²	510	4	
	MASON		0.12 MAN	180	21	
	EARTH WORK		0,35 "	120	42	
	SUPERINTENDENT		0.01 "	220	2	
	SUPERINTENDENT		0,02 "	150,	3	
	GENERAL EXPENSES				21	30% OF ABOVE AMOUNT
	TOTAL				160	

A=49

14. CONCRETE (1.2.3) RUPALE STORE 0.32 M ³ 1.440 457 SAND 0.44 " 510 275 P. C. 2.00 DRUM 2.190 4.300 EARTH WORK 6.00 MAN 120 720 SUPERINTENDENT 0.30 " 150 45 MASON 1.00 " 150 45 GENERAL EXPENSES 233 30% OF ABOVE AN 530 TOTAL - 530 10 94 JS. MASONKY (1:3)	
SAND 0.54 " 510 275 P. C. 2.00 DRUM 2,190 4,390 EARTH WORK 6.00 MAN 120 729 SUPERINTENDENT 0.30 " 180 45 MASON 1.00 " 180 180 GENERAL EXPENSES 233 395 OF ABOVE AN TOTAL 6,350	
P.C. 2.00 DRUM 2,190 4,380 EARTH WORK 6.00 MAN 120 720 SUPERINTENDENT 0.10 " 160 45 MASON 1.00 " 160 45 MASON 1.00 " 160 45 MASON 1.00 " 160 45 TOTAL 6.330 - 6.330 - - 15. MASONRY (1:3) - - - - - - UBBLE STONE 1.20 M ³ 950 1.140 -	
EARTH WORK 6.00 MAN 120 720 SUPERINTENDENT 0.10 " 150 45 MASON 1.00 " 160 180 GENERAL EXPENSES 283 J95 OF ABOVE AJ TOTAL 6.350 IS, MASONRY (IL3)	
SUPERINTENDENT 0.30 " 150 45 MASON).00 " 160 180 GENERAL EXPENSES 23 39% OF ABOVE AN 6.350 TOTAL 6.350 1.100 1.00 1.100 RUBBLE STONE 1.20 M ³ 950 1.140 P.C. 1.191 DRUM 2.190 2.668 SAND 0.186 MAN 913 C.F. NO.11 TOTAL 4.755 1.400 1.400 1.400 RUBBLE STONE 1.50 M ³ 950 1.425 SAND 0.522 M ³ 510 2.666 SAND 0.522 M ³ 510 2.66 SUPERINTENDENT 0.12 ".200 2.098 SUPERINTENDENT 0.12 ".200 2.091 SUPERINTENDENT 0.12 ".200 2.091 GENERAL EXPENSES 211 395 OF ABOVE AN TOTAL 4.235 1.1 IT. REINFORCED	
MASON 1.00 " 180 GENERAL EXPENSES 283 J9% OF ABOVE AJ TOTAL 6,350 TOTAL 6,350 IS, MASONRY (1:3)	
CINERAL EXPENSES 23 940 OF ABOVE AN 6,330 15. MASONRY (113) RUBBLE STONE 1.20 M ³ 950 1.140 2.408 P.C. 1.191 DRUM 2.190 2.408 SAND 0.186 M ³ 510 94 LAVORS MAN 913 C.F. NO.11 TOTAL 4.755 1.425 16. PITCHING (14) RUBDLE STONE 1.50 M ³ 950 1.425 P.C. 0.950 RUM 2.190 2.098 SAND 0.522 M ³ 510 246 MASON 1.20 MAN 180 SUPERINTENDENT 0.12 " 220 25 SUPERINTENDENT 0.12 " 220 25 SUPERINTENDENT 0.18 " 150 27 GENERAL EXPENSES 211 30% OF ABOVE AU TOTAL 4235 24,765 IT. REINFORCEED 24,765 (NO. 18+19+20) 18. CONCRETE 24,150 (NO. 18+19+20) 18. CONCRETE 210 210 215 SUPERINTENDENT 0.30 " 150 180 180 ONA 1.00 180	
TOTAL 5,350 13. MASONRY (1:3). RUBLE STONE 1,20 M ³ 950 1,140 P.C. 1.191 DRUM 2,190 2,668 SAND 0,186 M ³ 950 1,425 LAVORS MAN 913 C.F. NO.11 TOTAL 4,735 16. PITCHING (1:4) 4,735 RUBBLE STONE 1.50 M ³ 950 1,425 P.C. 0.552 M ³ 510 266 MASON 1.20 M ³ 910 2,998 SAND 0,522 M ³ 510 266 MASON 1.20 M ³ 950 1,425 P.C. 0.552 M ³ 510 266 SUPERINTENDENT 0.12 " 220 26 EARTH WORK 3.66 " 120 432 SUPERINTENDENT 0.18 " 190 27 GENERAL EXPENSES 211 30% OF ABOVE AI TOTAL 4,233 211 10 10 27 GENERAL EXPENSES 24,765 (NO. 18+19+20) 18. CONCRETE 24,765 (NO. 18+19+20) SUPERINTENDENT 0.10 " 220 22 TOTAL	
15. MASONRY (1:3) RUBDLE STONE 1.20 M ³ 950 1,140 F.C. 1.191 DRUM 2.190 2,600 SAND 0,164 M ³ 510 94 LAVORS MAN 913 C.F. NO.11 TOTAL 4.755 16. PITCHING (1:4) 4.755 RUBULE STONE 1.50 M ³ 950 1,425 P.C. 0.950 DRUM 2.190 2,098 SAND 0.522 M ³ 510 266 MASON 1.20 MAN 160 216 SUPERINTENDENT 0.12 " 220 26 SARTH WORK 3.60 " 120 432 GUPERINTENDENT 0.18 " 150 27 GENERAL EXPENSES 211 30% OF ABOVE AI TOTAL 4,235 1.197 SAND 0.54 " 510 275 JC. 2.00 DRUM 2.190 4.380 EARTH WORK 6.00 MAN 120 720 SUPERINTENDENT 0.30 " 150 45 MASON 1.00 " 180 100 SUPERINTENDENT 0.30 " 150 45 MASON 1.00 " 180 100 SU	Амоил
RUBBLE STONE 1.20 M ³ 950 1,140 P. C. 1.191 DRUM 2,190 2,608 SAND 0,166 M ³ 510 94 LAVORS MAN 913 C. F. NO.11 TOTAL 4,755 16. PITCHING (144) RUBBLE STONE 1.50 M ³ 950 1,425 P. C. 0.950 DRUM 2,190 2,095 SAND 0.522 M ³ 510 266 MASON 1.20 MAN 180 216 SUPERINTENDENT 0.12 " 220 26 SAND 0.522 M ³ 1.50 432 GENERAL EXPENSES 211 30% OF ABOVE AI 10 TOTAL 4,235 21 30% OF ABOVE AI TOTAL 4,235 24,765 (NO. 18+19+20) 18. CONCRETE 24,765 (NO. 18+19+20) 19. CONCRETE 2.00 DRUM 2,190 4,380 SUPERINTENDENT 0.30 150 45 MASON	AMOUN
P.C. 1.191 DRUM 2,190 2,608 SAND 0,186 M ³ 510 94 LAVORS MAN 913 C. F. NO.11 TOTAL 4,755 16. PITCHING (14) RUBBLE STONE 1.50 M ³ 950 1.425 P.C. 0.950 DRUM 2,190 2,098 SAND 0.522 M ³ 510 246 MASON 1.20 MN 180 216 SUPERINTENDENT 0.12 " 220 26 EARTH WORK 3.60 " 120 432 SUPERINTENDENT 0.18 " 150 27 GENERAL EXPENSES 211 30% OF ABOVE AI 130% OF ABOVE AI TOTAL 4,235	AMOUN
SAND 0,186 M ³ 510 94 LAVORS MAN 913 C.F. NO.11 TOTAL 4,755 16, PITCHING (14) RUBSLE STONE 1.50 M ³ 950 1,425 p.c. 0,950 DRUM 2,190 2,098 SAND 0.522 M ³ 510 266 MASON 1.20 MAN 180 216 SUPERINTENDENT 0.12 " 220 26 SUPERINTENDENT 0.18 " 120 432 TOTAL 4,235 211 39% OF ABOVE AI TOTAL 4,235 24,765 (NO. 18+19+20) 18. CONCRETE 24,765 (NO. 18+19+20) 20 SAND 0.54 " 510 275 275 P.C. 2.00 DRUM 2,190 4,380 24 30% OF ABOVE A SUPERINTENDENT 0.10 " 220 22 22	AMOUN
LAVORS MAN 913 C.F. NO.11 TOTAL 4,755 16. PITCHING (14) 1.50 M ³ 950 1,425 RUBBLE STONE 1.50 M ³ 950 1,425 SAND 0.522 M ³ 510 266 MASON 1.20 MAN 180 216 SUPERINTENDENT 0.12 " 220 26 SUPERINTENDENT 0.12 " 220 26 SUPERINTENDENT 0.18 " 150 27 GENERAL EXPENSES 211 30% OF ABOVE AI TOTAL 4,235 17. REINFORCED CONCRETE 24,765 (NO. 18+19+20) 18. CONCRETE 24,765 (NO. 18+19+20) 18. CONCRETE 24,765 (NO. 18+19+20) 18. CONCRETE 24,765 (NO. 18+19+20) 19. C. 2.00 DRUM 2,190 SUPERINTENDENT 0.30 " 120 19. C. 2.00 DRUM 2,190 SUPERINTENDENT 0.10 " 220 SUPERINTENDENT 0.10 " 220 SUPERINTENDENT 2.00 DRUM 2.100 IDENDINE 0.10 " <	AMOUN
TOTAL 4,755 16. PITCHING (1:4) 1.50 M3 950 1.425 RUBBLE STONE 1.50 M3 950 1.425 P. C. 0.500 DRUM 2.190 2.998 SAND 0.522 M3 510 266 MASON 1.20 MAN 180 216 SUPERINTENDENT 0.12 " 220 26 EARTH WORK 3.60 " 120 432 SUPERINTENDENT 0.18 " 150 27 GENERAL EXPENSES 211 30% OF ABOVE AI TOTAL 4.235 17. REINFORCED 24,765 (NO. 18+19+20) 18. CONCRETE 24,765 (NO. 18+19+20) 18. CONCRETE 24,765 (NO. 18+19+20) 18. CONCRETE 24,765 (NO. 18+19+20) 19. CONCRETE 24,765 (NO. 18+19+20) 18. CONCRETE 24,765 (NO. 18+19+20) 19. CONCRETE 24,765 (NO. 18+19+20) 19. CONCRETE 24,765 (NO. 18+19+20) 18. CONCRETE 200 (DRUM 2,190 4,380 EARTH WORK 6.00 MAN 120 720 SUPERINTENDENT 0.10 " 220 22 GENERAL EXPENSES 29 30% OF ABOVE A TOTAL 7,110 19. REINFORCIED EAR 210 100 MAN 140 1.620 SUPERINTENDENT 2.00 " 220	AMOUN
14. PTCHING (1:4) RUBBLE STONE 1.50 M ³ 950 1.425 P.C. 0.550 DRUM 2.190 2.098 SAND 0.522 M ³ 510 266 MASON 1.20 MAN 180 216 SUPERINTENDENT 0.12 " 220 26 EARTH WORK 3.60 " 120 432 SUPERINTENDENT 0.18 " 150 27 GENERAL EXPENSES 211 30% OF ABOVE AI TOTAL 4.235 17. REINFORCED CONCRETE 24,765 (NO. 18+19+20) 18. CONCRETE 2.4,765 (NO. 18+19+20) 18. CONCRETE 2.00 DRUM 2.190 4.380 EARTH WORK 6.00 MAN 122 720 SUPERINTENDENT 0.54 " 510 275 P.C. 2.00 DRUM 2.190 4.380 EARTH WORK 6.00 MAN 122 720 SUPERINTENDENT 0.10 " 120 2.22 GENERAL EXPENSES 29 30% OF ABOVE AI MASON 1.00 " 160 180 SUPERINTENDENT 0.10 " 220 22 GENERAL EXPENSES 29 30% OF ABOVE A TOTAL 7,110 19. REINFORCING BAR 29 30% OF ABOVE A REINFORCING BAR 20 520 REINFORCEMENT 1.00 " 220 520 SUPERINTENDENT <t< td=""><td>AMOUN</td></t<>	AMOUN
RUBBLE STONE 1.50 M ³ 950 1.425 P.C. 0.950 DRUM 2.190 2.098 SAND 0.522 M ³ 510 266 MASON 1.20 MAN 180 216 SUPERINTENDENT 0.12 " 220 26 EARTH WORK 3.60 " 120 432 SUPERINTENDENT 0.18 " 150 27 GENERAL EXPENSES 211 39% OF ABOVE AI TOTAL 4.235 17. REINFORCED 24,765 (NO. 18+19+20) 18. CONCRETE 24,765 (NO. 18+19+20) 18. CONCRETE 24,765 (NO. 18+19+20) 19. C.SCORGETE 24,765 (NO. 18+19+20) 19. CONCRETE 24,765 (NO. 18+19+20) 18. CONCRETE 24,765 (NO. 18+19+20) 19. CONCRETE 200 275 SUPERINTENDENT 0.54 " 510 275 SUPERINTENDENT 0.10 " 220 22 <td>AMOUN</td>	AMOUN
P. C. 0.950 DRUM 2,190 2,098 SAND 0.522 M ³ 510 266 MASON 1,20 MAN 180 216 SUPERINTENDENT 0.12 " 220 26 EARTH WORK 3.60 " 120 432 SUPERINTENDENT 0.18 " 150 27 GENERAL EXPENSES 211 30% OF ABOVE AI 4,235 17. REINFORCED 24,765 (NO. 18+19+20) 18. CONCRETE 24,765 (NO. 18+19+20) 19. CONCRETE 24,765 (NO. 18+19+20) 10. 0.54 " 510 275 P.C. 2.00 DRUM 2,190 4,380 EARTH WORK 6.00 MAN 120 720 SUPERINTENDENT <t< td=""><td>AMOUN</td></t<>	AMOUN
SAND 0.522 M3 510 266 MASON 1.20 MAN 180 216 SUPERINTENDENT 0.12 " 220 26 EARTH WORK 3.60 " 120 432 SUPERINTENDENT 0.18 " 150 27 GENERAL EXPENSES 211 30% OF ABOVE AI TOTAL 4,235 17. REINFORCED 24,765 (NO. 18+19+20) 18. CONCRETE 24,765 (NO. 18+19+20) SAND 0.54 " 510 275 P.C. 2.00 DRUM 2,190 4,380 EARTH WORK 6.00 MAN 120 720 SUPERINTENDENT 0.10 " 220 22	AMOUN
MASON 1.20 MAN 180 216 SUPERINTENDENT 0.12 " 220 26 EARTH WORK 3.60 " 120 432 SUPERINTENDENT 0.18 " 150 27 GENERAL EXPENSES 211 39% OF ABOVE AI TOTAL 4,235 17. REINFORCED 24,765 (NO. 18+19+20) 18. CONCRETE 200 219 30% OF ABOVE AI SUPERINTENDENT 0.54 " 510 275 P.C. 2.00 DRUM 2,190 4,380 44 SUPERINTENDENT 0.30 " 150 45 MASON 1.00 " 180 180 SUPERINTENDENT 0.10 "<	AMOUN
SUPERINTENDENT 0.12 " 220 26 EARTH WORK 3.60 " 120 432 SUPERINTENDENT 6.18 " 150 27 GENERAL EXPENSES 211 30% OF ABOVE AI TOTAL 4.235 17. REINFORCED 24,765 (NO. 18+19+20) 18. CONCRETE 24,765 (NO. 18+19+20) 19. CONCRETE 200 275 9.0. MAN 120 720 SUPERINTENDENT 0.30 " 150 0.10 " 220 22 GENERAL EXPENSES 29 30% OF ABOVE A TOTAL 7,110 19. 19. REINFORCEMENT 110.0 Kg 80 19. REINFORCEMENT 2.00 " 260 19. REINFORCEMENT 2.00 " 220 19.	амоил
SOFERATE WORK 3,60 120 432 SUPERINTENDENT 0,18 150 27 GENERAL EXPENSES 211 30% OF ABOVE AI TOTAL 4,235 17. REINFORCED 24,765 (NO. 18+19+20) 18. CONCRETE 24,765 (NO. 18+19+20) 19. SUPERINTENDENT 0.54 " 510 275 P.G. 2.00 DRUM 2.190 4,380 430 SUPERINTENDENT 0.30 " 180 180 180 SUPERINTENDENT 0.10 " 220 <td>AMOUN</td>	AMOUN
LINEN WORK 0.18 150 27 SUPERINTENDENT 0.18 150 27 GENERAL EXPENSES 211 30% OF ABOVE AI TOTAL 4,235 17, REINFORCED 24,765 (NO. 18+19+20) 18. CONCRETE 24,765 (NO. 18+19+20) 18. CONCRETE 0.82 M ³ 1,460 1,197 SAND 0.54 " 510 275 P.C. 2.00 DRUM 2,190 4,380 EARTH WORK 6.00 MAN 120 720 SUPERINTENDENT 0.30 " 150 45 MASON 1.00 " 180 180 SUPERINTENDENT 0.10 " 220 22 GENERAL EXPENSES 29 30% OF ABOVE A 7,110 19. REINFORCING BAR TOTAL 7,110 19 19. REINFORCEMENT 110.0 Kg 80 8,800 TIE-REINFORCEMENT 2.00 " 260 520 REINFORCEMENT 10.0 " 220 660	AMOUN
GENERAL EXPENSES 211 30% OF ABOVE AND TO ABOVE AND TO ABOVE AND TO ALD TO ALD TO ALD TO ADD TO ABOVE AND TO ALD TO ADD TO ABOVE AND TO ALD TO ADD TO ADD TO ABOVE AND TO ALD TO ADD	AMOUN
TOTAL 4,235 17. REINFORCED 24,765 (NO. 18+19+20) 18. CONCRETE 24,765 (NO. 18+19+20) 18. CONCRETE 0.82 M ³ 1,460 1,197 SAND 0.54 '' 510 275 P. C. 2.00 DRUM 2,190 4,380 EARTH WORK 6.00 MAN 120 720 SUPERINTENDENT 0.30 '' 150 45 MASON 1.00 '' 180 180 SUPERINTENDENT 0.10 '' 220 22 GENERAL EXPENSES 29 30% OF ABOVE A TOTAL 7,110 '' 10 19. REINFORCEMENT 110.0 Kg 80 8,800 TIE-REINFORCEMENT 2.00 '' 260 520 REINFORCEMENT 10.0 '' 220 660 SUPERINTENDENT 3.00 '' 220 660 EARTH WORK 9.00 '' 100 '' 100	AMOUN
17. REINFORCED 24,765 (NO. 18+19+20) 18. CONCRETE 0.82 M ³ 1,460 1,197 SAND 0.54 " 510 275 P. C. 2.00 DRUM 2,190 4,380 EARTH WORK 6.00 MAN 120 720 SUPERINTENDENT 0.30 " 150 45 MASON 1.00 " 180 180 SUPERINTENDENT 0.10 " 220 22 GENERAL EXPENSES 29 30% OF ABOVE A TOTAL 7,110 7,110 19. REINFORCEMENT 110.0 Kg 80 8,800 TIE-REINFORCEMENT 2.00 " 260 520 REINFORCEMENT 3.00 " 220 660 SUPERINTENDENT 3.00 " 220 660 SUPERINTENDENT 3.00 " 220 660	
17. CONCRETE 24,765 (NO. 18419420) 18. CONCRETE 0.82 M ³ 1,460 1,197 SAND 0.54 510 275 P.C. 2,00 DRUM 2,190 4,380 EARTH WORK 6.00 MAN 120 720 SUPERINTENDENT 0,30 150 45 MASON 1.00 " 180 180 SUPERINTENDENT 0.10 " 220 22 GENERAL EXPENSES 29 30% OF ABOVE A 7,110 19. REINFORCING BAR 7,110 7,110 19. 19. REINFORCEMENT 110.0 Kg 80 8,800 TIE-REINFORCEMENT 2.00 " 260 520 REINFORCEMENT WORKS 9.00 MAN 180 1,620 SUPERINTENDENT 3.00 " 220 660 EARTH WORK 9.00 " 120 1,080	
CRUSHED STONE 0.82 M ³ 1,460 1,197 SAND 0.54 " 510 275 P.C. 2,00 DRUM 2,190 4,380 EARTH WORK 6.00 MAN 120 720 SUPERINTENDENT 0.30 " 150 45 MASON 1.00 " 180 180 SUPERINTENDENT 0.10 " 220 22 GENERAL EXPENSES 29 30% OF ABOVE A 7,110 TOTAL 7,110 " 260 520 19. REINFORCING BAR 110.0 Kg 80 8,800 TIE-REINFORCEMENT 110.0 Kg 80 520 REINFORCEMENT 2.00 " 260 520 REINFORCEMENT 3.00 " 220 660 SUPERINTENDENT 3.00 " 220 660 EARTH WORK 9.00 " 120 1,080	
SAND 0.54 " 510 275 P. C. 2.00 DRUM 2,190 4,380 EARTH WORK 6.00 MAN 120 720 SUPERINTENDENT 0.30 " 150 45 MASON 1.00 " 180 180 SUPERINTENDENT 0.10 " 220 22 GENERAL EXPENSES 29 30% OF ABOVE A TOTAL 7,110 7,110 19. REINFORCEMENT 110.0 Kg 80 8,800 TIE-REINFORCEMENT 2.00 " 260 520 REINFORCEMENT 3.00 " 220 660 SUPERINTENDENT 3.00 " 220 660 EARTH WORK 9.00 " 120 1,080	
P. C. 2,00 DRUM 2,190 4,380 EARTH WORK 6.00 MAN 120 720 SUPERINTENDENT 0.30 " 150 45 MASON 1.00 " 180 180 SUPERINTENDENT 0.10 " 220 22 GENERAL EXPENSES 29 30% OF ABOVE A TOTAL 7,110 710 19. REINFORCING BAR 110.0 Kg 80 8,800 TIE-REINFORCEMENT 2.00 " 260 520 REINFORCEMENT 2.00 " 260 520 REINFORCEMENT WORKS 9.00 MAN 180 1,620 SUPERINTENDENT 3.00 " 220 660 EARTH WORK 9.00 " 120 1,080	
EARTH WORK 6.00 MAN 120 720 SUPERINTENDENT 0.30 " 150 45 MASON 1.00 " 180 180 SUPERINTENDENT 0.10 " 220 22 GENERAL EXPENSES 29 30% OF ABOVE A 7,110 TOTAL 7,110 " 260 520 REINFORCEMENT 110.0 Kg 80 8,800 TIE-REINFORCEMENT 2.00 " 260 520 REINFORCEMENT WORKS 9.00 MAN 180 1,620 SUPERINTENDENT 3.00 " 220 660 EARTH WORK 9.00 " 120 1,080	
SUPERINTENDENT 0.30 " 150 45 MASON 1.00 " 180 180 SUPERINTENDENT 0.10 " 220 22 GENERAL EXPENSES 29 30% OF ABOVE A TOTAL 7,110 19. REINFORCING BAR 110.0 Kg 80 8,800 TIE-REINFORCEMENT 110.0 Kg 80 8,800 SUPERINTENDENT 2.00 " 260 520 REINFORCEMENT 3.00 " 220 660 SUPERINTENDENT 3.00 " 220 660 EARTH WORK 9.00 " 120 1,080	
MASON 1.00 " 180 180 SUPERINTENDENT 0.10 " 220 22 GENERAL EXPENSES 29 30% OF ABOVE A TOTAL 7,110 19. REINFORCING BAR REINFORCEMENT 110.0 Kg 80 8,800 TIE-REINFORCEMENT 2.00 " 260 520 REINFORCEMENT WORKS 9.00 MAN 180 1,620 SUPERINTENDENT 3.00 " 220 660 EARTH WORK 9.00 " 120 1,080	
SUPERINTENDENT 0.10 " 220 22 GENERAL EXPENSES 29 30% OF ABOVE A TOTAL 7,110 19. REINFORCEMENT 110.0 Kg 80 8,800 TIE-REINFORCEMENT 2.00 " 260 520 REINFORCEMENT 2.00 " 260 520 REINFORCEMENT WORKS 9.00 MAN 180 1,620 SUPERINTENDENT 3.00 " 220 660 EARTH WORK 9.00 " 120 1,080	
GENERAL EXPENSES 29 30% OF ABOVE A TOTAL 7,110 19. REINFORCING BAR REINFORCEMENT 110.0 Kg 80 8,800 TIE-REINFORCEMENT 2.00 " 260 520 REINFORCEMENT WORKS 9.00 MAN 180 1,620 SUPERINTENDENT 3.00 " 220 660 EARTH WORK 9.00 " 120 1,080	
TOTAL 7,110 19. REINFORCING BAR 110.0 Kg 80 8,800 TIE-REINFORCEMENT 2.00 " 260 520 REINFORCEMENT WORKS 9.00 MAN 180 1,620 SUPERINTENDENT 3.00 " 220 660 EARTH WORK 9.00 " 120 1,080	
19. REINFORCING BAR REINFORCEMENT 110.0 Kg 80 8,800 TIE-REINFORCEMENT 2.00 " 260 520 REINFORCEMENT WORKS 9.00 MAN 180 1,620 SUPERINTENDENT 3.00 " 220 660 EARTH WORK 9.00 " 120 1,080	AMOUN
REINFORCEMENT 110.0 Kg 80 8,800 TIE-REINFORCEMENT 2.00 " 260 520 REINFORCEMENT WORKS 9.00 MAN 180 1,620 SUPERINTENDENT 3.00 " 220 660 EARTH WORK 9.00 " 120 1,080	
TIE-REINFORCEMENT 2.00 " 260 520 REINFORCEMENT WORKS 9.00 MAN 180 1,620 SUPERINTENDENT 3.00 " 220 660 EARTH WORK 9.00 " 120 1,080	
REINFORCEMENT WORKS 9.00 MAN 180 1,620 SUPERINTENDENT 3.00 " 220 660 EARTH WORK 9.00 " 120 1,080	
SUPERINTENDENT 3.00 " 220 660 EARTH WORK 9.00 " 120 1,080	
EARTH WORK 9.00 " 120 1,080	
CENERAL EVERNERS	
GENERAL EXPENSES 1,010 30% OF ABOVE A	
	AMOUN

.

A-50

20. FORM	• . •				
CARPENTER	5,00	MAN	180	900	
SUPERINTENDENT	0.50	11	220	110	
EARTH WORK	z.00	· •	120	240	an tanàna amin'ny fisiana Aratra dia mandritra dia ma
SUPERINTENDENT	0.10	11	150	15	
LUMBER	0.40	M3	4,750	1,900	
NAIL	4.00	κ _g	80	320	
EARTH WORK	4.00	MAN	120	.480	
TOTAL				3, 965	
21. FOUNDATION OF FINE AGGREGATE				•	
(INCLUDING SMALL HAULING)					
SAND	1,20	M3	400	480	
EARTH WORK	0, 375	MAN	120	45	
SUPERINTENDENT	0,199	11	150	29	
GENERAL EXPENSES		•		26	30% OF ABOVE AMOUNT
TOTAL				580	
22. GRAVEL FILLING					
CRUSHED STONE	1,20	м ³	950	1,140	_
EARTH WORK	0,30	MAN	120	36	-
SUPERINTENDENT	0,15	11	150	22	
GENERAL EXPENSES				17	30% OF ABOVE AMOUNT
TOTAL				1,215	
23. ASPHALT (DEPTH 3m 100m ²)					
BALLAST	4.0	М3	1,900	7,600	
SAND	2,0	11	400	800	
ASPHALT Asphalt	1000,00	Кg	20	20,000	
EMULSION	20,0	L	40	800	
EARTH WORK	6.0	DRUM	80	480	
EARTH WORK	20,0		120	2,400	
SUPERINTENDENT	1.00		150	150	
DRIVER	1,00		150	150	
EARTH WORK	1,00	MAN	120	1 Z O 1 Z O	
	1,00				····
GENERAL EXPENSES				880	30% OF ABOVE AMOUNT
TOTAL				33, 500	
• ASPHALT (DEPTH&cmPer m ²)				237	
24. PITCHING Per m ² , DEPTH 15cm)				÷	
CRUSHED STONE	0, 20	мз	1,170	234	
SAND	0,05		400	20	
EARTH WORK		MAN	120	45	
SUPERINTENDENT			290		
GENERAL EXPENSES				16	30% OF ABOVE AMOUNT
TOTAL				320	

A-51

					and the second	
		÷				1
* PITCHING (Per m ² , DEPTH 20cm)	• *	• 1		· · ·	425	*
	· · ·			$\gamma_{i}=-10^{-1}$		• • •
FILLING OF 25. SMALL CRUSHED STONE	1. 1 .	. *				1
(DEPTH 6cm, Per 100m ²)						
CRUSHED STONE	· .	8,00	м3	1,460	11,680	•
SAND		2,00		400	800	
EARTH WORK		7.50	MAN	120	900	
SUPERINTENDENT		0.375	н	150	56	• •
GENERAL EXPENSES					1,964	2/75 x NO. 26
TOTAL					15,400	
						•
26.		1.1				
OPERATOR		30.00	MAN	150	4,500	
OPERATOR ASSISTANT		30.00		110	3, 300	
WATER HAULING		30.00	MAN	110	3, 300	
WORK EARTH WORK		150.00		110	16,500	
SPRAY WORK		60,00		110	6,600	
GASOLINE		1200,00	L	20	24,000	. · · ·
ENGINE OIL	·	20.00	L,	130	2,600	
SUPERINTENDENT		B.00	MAN	150	1,200	
GREASE		5.00	Кg	220	1,100	
GENERAL EXPENSES					10,620	30% OF ABOVE AMOU
TOTAL					73,720	
				1 4 6 6 1		
27. SURFACE SOIL REMOVING	ORKING LENG			JULIOJ		
wi						

PER DAY 5 Hr. x 53.3 = 266M³/DAY

•

÷

COST OF FUEL		10.5 L	11	116		
OTHER MATERIAL		1		35	x 0.3 ⇒	
DRIVER		0.168 MAN	220	37		
DRIVER ASSISTANT		0,168 "	110	18		
SUB-TOTAL				206	F.C.	
REPAIRING COST				1,755		
SUB-TOTAL				1,755		
TOTAL	1. T			1,961		
PER 1M ³		206/53.3		4	D. C.	
14	. 1 .	755/53.3		33	F.C.	

. •

28. EXCAVATION AND TRANSPORT OF EARTH WITH BULLDOZER (11 TON CLASS)

WORKING LENGTH L=95M Q=QxfxE= 22 x 0.9 x 0.926 + 18.3 M^3/Hr . PER DAY 5 Hr. x 15.3 = 91.7 M^3/DAY

E=E1 x E2 x E3 x E4 =1.0x1.0x0.85x1.09=0.926

116 10.5 2 -11 COST OF FUEL 35 116 x 0.3 = 1.0 OTHER MATERIALS 25 DAY 30 DAY × 5 HF. = 0.168 220 37 0.168 DRIVER ... DRIVER 18 110 0.168 ASSISTANT 206 F.C. SUB-TOTAL 1,755 REPAIRING COST 1.755 SUB-TOTAL 1,961 TOTAL . 13 PER 1M³ 206/15.3 D.C. 1,755/15.3 115 F.C. п

29. LAND LEVELING WITH BULLDOZER (11 TON CLASS) S = So x E So = 520, 2 x W W = B-0, 30 W = 3, 35-0, 30 = 3, 05m

So = 520.2 x 3.05 = 1,586.6 E = 0.8 S = 1,586.6 x 0.8 = 1,269.3

TOTAL					
PER 1.0m ³	206/1,269.3	0.16	¢	0	D.C.
11	1,755/1,269.3	1,38	¢	2	F. C.

30. EXCAVATION TRENCH WITH BUCKHOW (0.35M³ CLASS)

 $Q = \frac{3600 \times q \times f \times E}{Cm} = \frac{3600 \times 0.31 \times 1.0 \times 0.5}{33} = 16.9 \text{m}^3/\text{Hr}.$ $q = q_0 \times K = 0.35 \times 0.85 \times 0.31$

f = 1,0	E = 0.5	Cm = 0.067\$ + 24	ø = 135°

≖ 33 SEC.

	1. S.			•	
COST OF FUEL	6.0	t	11	66	
OTHER MATERIALS	1	,	· · ·	20	x 0.3 =
DRIVER	0.16	58 MAN	220	2.	
DRIVER Assistant	0.10	58 ''	110	18	
SUB-TOTAL				141	
REPAIRING COST				1,729	
TOTAL				1,870	
PER 1.0M ³	141/16.9			8	D. C.
11	1,729/16.9			102	F.C.

31. LOADING WITH TRUCKTOR SHOVEL (0.4m³ CLASS) and the second second

$3600 \times 9 \times 1 \times E_{-} 3600 \times 0.30 \times 0.9 \times 0.5 = 23.2 m^3/Hr.$

	$Q = \frac{3600 \times q \times 1 \times 2}{Cm} = \frac{3600 \times 0.05}{42}$ $q_0 = 0.4m^3 \text{K} = 0.75 q = q_0 \times 1$	1 A A	23.2m-7n1.	:
	Cm = 42 SEC. $f = 0.9$ E = 0.5		1	
COST OF FUEL	2.5	11	28	
OTHER MATERIAL	1		8	30% OF ABOVE
DRIVER	0,167 MAN	220	37	
DRIVER ASSISTANT	0,167 "	110	18	
SUB-TOTAL			91	
REPAIRING COST			1,972	
TOTAL			2,063	
PER 1.0m ³	91/23.2		4	
	1,972/23.2		85	

.

32. CARRING WITH 4.0 TON DUMPTRUCK

	WORKING LENGTH L = 500m	1	· · · ·
	$Q = \frac{60 \times q \times f \times E}{Cm} = \frac{60 \times 2.2 \times 0.9}{11} = 8.64 \text{m}^3/\text{Hr}.$		
	q = T/W = 4/1.8 = 2.2 f = 0.9 E = 0.8		
	Cm = 11.0 (L = 500m)		
COST OF FUEL	4,0 t 11	- 44	
OTHER MATERIALS	1,0	13	30% OF ABOVE
DRIVER	0.139 MAN 220	31	$t = \frac{200 \times 7}{235} = 6.0$ 0.833/6 = 0.139
SUB-TOTAL		88	
REPAIRING COST	1.0 Hr.	560	
TOTAL		648	
PER 1.0m ³	88/8.64	10	D. C.
	560/8.64	65	F.C.

33, 1 LEVERING AND SOIL COMPACTION WITH BULLDOZER

 $Ql = \frac{60 \times V \times W \times D \times E}{N} = \frac{60 \times 67 \times 0.7 \times 0.15 \times 0.7}{6} = 49.2 \text{m}^3/\text{Hr}.$

• .

V = 67m/min, W = 0,7 D = 0.15 E = 0.7 N = 6 Q2= 10E (10D+8) = 10 x 0.75 x (10x0.15+8) = 71.3m³/Hr. $Q = \frac{Q1 \times Q2}{Q1 + Q2} = \frac{49.2 \times 71.3}{49.2 + 71.3} = 29.1 \text{ m}^3/\text{Hr}.$

33.2 PER 1.0m ³	. 206/29,1	7
н	1,755/29.1	60

SOIL COMPACTION WITH RAMMER

GASOLINE	0,55 £	26	14	
OTHER MATERIALS	1.0		4	30% OF ABOVE AMOUNT
DRIVER	0,143 MAN	200	28	1.0 man/7 Hr. = 0.143
SUB-TOTAL		1	46	

		an an an tao An				
REPAIRING COST		1.0	Hr.	70	70	495/7. = 70
TOTAL					116	
101114				1		
·	$V = \frac{60 \times A \times D}{N}$	x f x E _ 60	x 1.8 x	0.15 x 0.9 x 0.6 4	$\frac{36}{2} = 3.14 \text{m}^3$	/Hr.
	nd = 60 tim	e/min.A=	ndixa	≠ 60x0.03m ² ± 1.	8	
	D = 0,15cm	n_f≖0,90	E = El	x E2 = 0,9 x 0,9	5	÷ .
	N = 4			≠ 0 . 86		
					·	a secondaria de la companya de la co
PER 1,0m ³		46/3.14			15	D. C.
11		70/3,14			22	F. C.
4			• _	1	• •	
34. PIPE LYING	(150¢)					
EXCAVATION		13.5	м ³	120	1,620	0.6 x 0.45 x 50 = 13.5
BACK FILLING		12.5	.,	40	500	
÷.,						
LAYING	LABOR	1,0	MAN	110	110	
	TECHNICIAN	1.6	**	180	288	n
	TECHNICIAN	1.0		100		
TOTAL PER	1.0m 2	,518/50			2,518	· · ·
FER	1.011 2	, 510/ 50			50	
35. PIPE LYING	(125¢)					
EXCAVATION		12.3	м3	120	1,476	$0.57 \times 0.43 \times 50 = 12.3$
BACK FILLING		12.0		40	480	
LAYING	LABOR	0.6	MAN	110	66	$\mathcal{L}(\mathbf{r}_{i}) = \mathcal{L}(\mathbf{r}_{i}) + \mathcal{L}$
	TECHNICIAN	1,2	н	180	216	
TOTAL	•				2, 238	
PER	1.0m 2	,238/50		1	. 45	
36. SLUICE VALV PASANGAN	E BOX PER 1.0 PLACE		3			,
BATUKALI		0,55	м ³	4,415	2,428	5
CONCRETE		0,013		6,350	83	
FORM		0,35	м²	991	346	** ·
EXCAVATION		1.86	м ³	120	223	
BACK FILLING		1.25	"	40	50	
TOTAL					3,130	
37. HYDRANT (FC	R PADDY FIELD)					
CONCRETE		0.016		4,415	20	
FORM		0.16	м²	991	158	
POLY VINYL	¢300 L=0.35	1.0	PC	800	800	
CHLORIDE PIPE	• ••••					
TOTAL					1,028	

HYDRANT (FOR UPLAND FIELD)				
CONCRETE	0,084	м ³	4,415	371
FORM	1,3	м ²	991	1,288
EXCAVATION	0,36	м ³	120	43
BACK FILLING	0.24	11	40	10
TOTAL				1,712

38. EXCAVATION AND TRANSPORT OF EARTH WITH BULLDOZER (15 TON CLASS)

WORKING LENGTH L = 30M

THIS IS BLADE RATIO 101 x 0.9 = 91 E = El x E2 x E3 x E4 = 1.0x1.0x0.85x1.09=0.926

PER DAY	5 Hr. x 75.8 = 379M ³ /Hr.	
---------	---------------------------------------	--

 $Q = Q^1 \times f \times E = 91 \times 0.9 \times 0.926 = 75.8 M^3/Hr.$

COST OF FUEL		12.0 £	11	1 3 2	
OTHER MATERIA	LS	1.0		40	$132 \times 0.3 =$
DRIVER		0.168	220	37	25 day/30 day = 0.833 0.833/5 Hr. = 0.168
DRIVER Assistant		0.168	110	18	44 44
SUB-TOTAL				227	F.C.
PREPAIRING COS	т			2, 21 1	
SUB-TOTAL				2, 21 1	
TOTAL				2,438	
PER	1M3	227/75.8		3	D. C.
THA				-	5.4
11	"	2,211/75.B		29	F.C.

39. LAND LEVELING WITH BULLDOZER (15 TON CLASS)

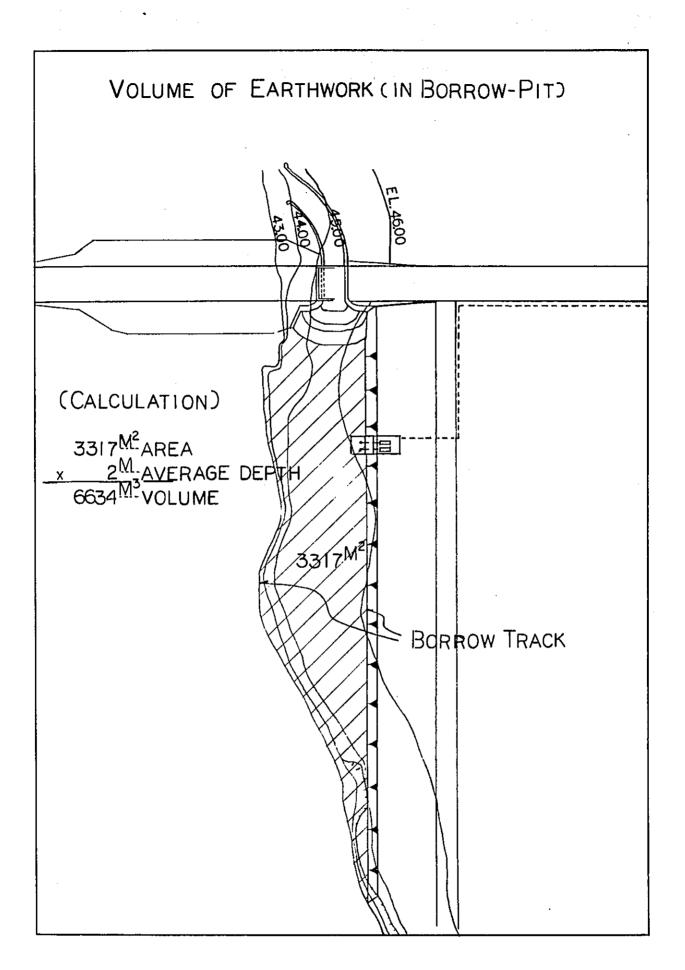
S = So x E So = 520, 2 x W W = B+0, 30
W = 3, 24 - 0, 30 = 29.4m
So = 520.2 x 2.94 = 1,529.4m ³ E = 0.8
S = 1,529.4 x 0.8 = 1,223.5m ³

TOT	AL							
PER	1.0M ³	227/1,223.5	0,18	\$	Û	D.C.		
п	"	2211/1,223.5	1.82	*	2	F.C.	<u> </u>	

(IV) CALCULATION OF MATERIALS

DAM BODY

			Excevatio	A	E	mbankmen	۱.	Surface Soil Removing			
Station	Distance	Section	Section	Volume	Section	Average Section	Volume	Section	Average Section	Volume	
	(m)	(m²)	(m²)	(m²)	(m²)	(m²)	(m?)	(m²)	(m²)	(m²)	
No. 1						-					
+17.65		0.00			3.17			3,43			
+28,30	10.65	6.00	3.00	31.95	15.22	9,20	97.98	4,00	3,72	39.62	
+40.50	12.20	6.00	6.00	73.20	30.16	22.69	276.82	5.14	4,57	55.75	
+46.11	5,61	6,00	6,00	33.60	45.45	37,81	212.11	6.09	5.62	31,58	
+71,22	53.89	6.00	6.003	323.34	78.94	78.94	425408	7.76	7.76	418.19	
No.2		6.00			59.69			6.85			
+ 2.75	2.75	6.00	6,00	16,50	53, 32	56.51	155.40	6.52	6.69	18.40	
+19.20	16.45	6.00	6.00	98.70	19.30	-	-	4.34	5,43	89.32	
+41.65	22.45	0.00	3.00	67.35	3.17	11.24	252.23	3.43	3,89	87.33	
	Total			644.70			5248.62	:		740.19	


SURFACE SOIL REMOVING OF BORROW-PIT $2,400^{m^2} \times 0.2 = 480^{m^3}$

TOTAL OF SURFACE SOIL REMOVING $740 + 480 = 1,220 \text{ m}^3$

SPILL WAY

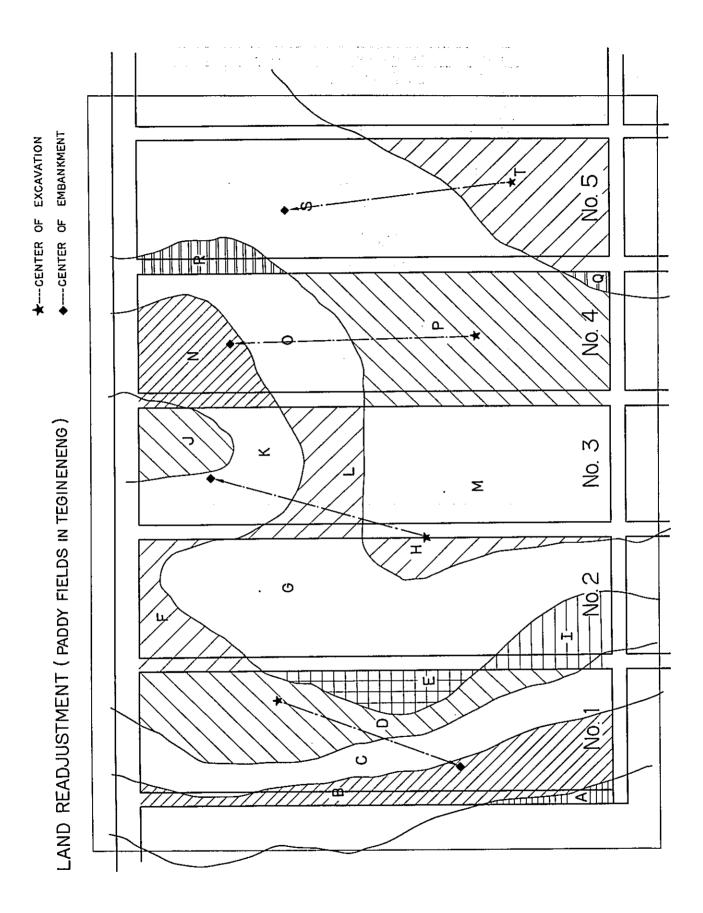
Station			Excernitio	nt -	1	Embankmer	nt	Sur	face Soil Rem	oving
	Distance	Section	Section	Volume	Section	Avenue Section	Volume	Section	Average Section	Volume
	(m)	(m²)	(m²)	(m²)	(m²)	(m²)	(m²)	(m²)	(m²)	(m²)
+30,00		7,64			0.00					
+20.00	10.00	17,48	12.56	125.60	0.00					
+10.00	10,00	20.68	19.08	190,80	0.00					
No.0	10.00	9,60	15,14	151,40	0,00					
-10.00	10.00	31,50	31.50	315.00	13.75	13.75	13,75			
-13,00	3.00	18.34	24.92	74.76	2.46	8.11	24.33			
-17.00	4.00	11.99	15.17	60.68	1,28	1.87	7.48			
-19.00	2,00	18.28	15.14	30.28	0.00	0.64	1.28			
-23.00	4,00	46.50	32.39	129.56	0.00		•			
		Total		078.08			170.59			

J,

					· .		
		an a			n. Sean an		
	Kinds	Calculated Process	Unit Quantities	Total	Remarks		
•			width length (m) (m)	•		· ·	
	STONE PITCHING	AREA	() ()			-	
	(I) INLET						
	a. UPSTEAM		ан сайта. Ал		•		
	SIDE	8 950 8	m m 4,48 25.00	112.00			
			4,48 23.00	112.00			
		4.00					
	b. DAMSITE	1. 02 10 10 10 10 10 10 10 10 10 10 10 10 10	1 10 10 00				
			3,20 10,00	32.00			
		$\frac{4.00+2.40}{2}=3.2$					
	c. CREST		2.00 21.85	44.00			
	d. BED OF APPROACH	5.00					
		/300					
		$A = 13.00 \times 8.00 - 4.00^2$	x2	72.00			
	5. TRANSI- TION OF DAM		1,00 7.83	8,00			
	f. SLOPE OF	A PPROACH	2.23 12.57	28,00			
			SUBTOTAL	296.00			
	(ii) CANAL a. BED OF						
	CANAL	6.00 x 25.9 + 4.00 x 8.0	00				
		x 1/2 + (4.50 + 3.00) x 3 x 6.50	1/2	195.00			
	b. SLOPE OF CANAL	$1.50 \times \frac{\sqrt{5}}{2} \times (25.9 \times 2)$ + 6.30)		97.00	•		
			SUBTOTAL	. 202 00			
			SUBIOINI				
	<u> </u>	TOTAL		588.00	m ²		

A-59

• • • • • • • • •


<u> </u>			
Kinds	Calculated Process	Unit Quantities	Total Remarks
CORSSING BRIG	е (н-веам)	, · · ·	
1. H-BEAM	H-596 x 199 x 10 x 15		
	L = 9.00 ^M N=5 9.00x(5x94.6 kg/m =	۰.	4,257 kg
	, -		
SS-41H	90 x 9 x 556 N=30		
	3.61 ^{kg} x 30 =		108 kg
SS-41 B.N	M22 x 60 N=120	(H-BEAM)	63 kg
5941 E	300 x 90 x 9 L=26.388 ^M	1	
5541- C	26.388 x 34.6 kg =		9,130 kg
	10,300 x 34.0 Kg -		71 100 NB
5541- <u>P</u> .	170 x 9 x 230 N=16	i i	
	3,964 ^{kg} x 16 =		63 kg
SLAB PLATE	570 x 3.2 L=10.00 ^M	N=16	
	20.8 ^{kg} x 10 x 16 =		3,328 kg
·			ANCHOR
SS41-B.N	M25 x 460 N - 20 1.88 x 20 =		BDLT 38 kg
	1.00 x 20 4		30 68
SS41-B.N	¢ 19 x 55 N=160		
	0.231 ^{kg} x 160 =		37 kg
5541-B.N	6 19x45 N-495		
	0.290 ^{kg} x 495 ≖		144 kg
FORM PLATE	455 x 3.2 x 2.250 N=8	ł	(5541)
	25.72 ^{kg} x 8 =		206 kg
6641 m	100 x 3.2 x 350 N =(,	
SS41-R	100 x 3, 2 x 350 N =0	9	5 kg
			- · · B
SS41-B, N	¢ 16 x 30 N≠6	4	
	$0.16^{kg} \times 64 =$		10 kg
SS41-B.N	¢16×30 N≈3	6	(FOR JOINT)
	0, 16 ^{kg} x 36 ≠	-	6 kg
FORM PLATE			
FORM PLATE (WOOD FORM)	{0.58 x (9.3 + 0.7)-(0.5	8×	
	5×0.199 + (0.2 × 9) ×		14.04 ^{m²}
SPACER	∲90 x 15 N≃6	0	
GUARD RAIL	L = 9.00 ^M N=2		
REINFORCE-	М	м	
MENT	1 D16 L=9.8 ^M L=0.4 N=12	4***	
	W = 12 x 10, 24 x	1,56	192 kg
	2 D10 L=0.86 ^M N=82		
	$W = 0.86 \times 82 \times 0.$		40 kg
	3 D13 L=880 ^M £=0.	. 35 ^M	
	N=10		

Kinds	Calculated Process	Unit	Quantities	Total Remarks
	4 D10 L=1.22 ^M N=72	-		
	W=1.22x72x0.56=			49kg
			$x_{i+1} = \{x_{i+1}\}$	
REINFORCE-	• • • • •			
MENT NET	¢ 6 x 150 x 150			
	10.0 x 9.0 =			90 mc
CONCRETE				
CONCRETE FOR PAVING	V = 0.05 x 9.30 x 9.0 =			4.20 m ³
	$V_1 = 0,162 \times 9,3 \times (9,0-1,0)$			
	= 12.05			
	$V_2 = 9.3 \times 0.5 \times (0.162 + 0.06)$ x 2 = 2.06			
*	V2 = 0.014 x 9.3 = 0.13			
	V4 = 0.35x0.30x9.0=0.95			15.19 m ³
JOINT FILLER	t = 20 m/m			
-	0,15x10.0x2=			2,30 m ²
DRAINAGE	o di 75 x 700 N≈4			
OUTLET(VP)	4 x 0,7 =			2.80 m
RUBBER SHOE	250 x 200 x 46 N-10			
	$3.2 \text{ kg} \ge 10 =$			32 kg
PASANGAN BATUKALI	(2 ABUTMENT)			
	{ (3.87x1.00)+(3.87+1.10)x			
	1/2 x 1.70 + (0.80x0.600)			
	10.00x2 =			171.40 m ³

•

.

\$

 PADDY FIELD	EARTH WORK	AVERAGE DISTANCE			
No. 1	2,650 m ³	83.00	m		
No. 2, No. 3	3,970	96.00			
No. 4	2,360	105.00			
No. 5	1, 590	97.00		• •	
TOTAL	10, 570				

	Exist			Prop	E,	cavation	(-)	Em	Embankment (+)			
No.	Area (A)	Elev. (B)	(A)x(B)	Elev.	Area	Height	Vol. (m ³)	Area	Height	Vol.		
	m ²	m	m ³		2	<u>m</u>	m ³	2	<u>m</u>	^{m3}		
E	1,107.00	48,25	53, 412. 75	47,36	407.00	0,89	985,23					
D	4,257.00	47.75	203,771.75	47.36	4,257.00	0,39	1,660.23					
с	3,487.00	47.25	164,760.75	47.36				3,487.00	0,11	383.57		
в	3,210,00	46,77	150, 131. 70	47.36				3,210.00	0.59	1,893.90		
A	273,00	46.00	12,558,00	47.36				273,00	1.36	371.28		
	m ² 12, 334. 00		m ³ 584, 134, 95				m ³ 2, 645. 46			m ³ 2,648,75		

	Exist			Prop	Ex	cavation	(-)	Em	bankment	(+)
No.	Area (A) m ²	Elev.(B) m		Elev.	Area m ²	Height	Vol. (m ³) m ³	A rea m ²	Height m	Vol. m ³
н	940.00	48.50	45, 590.00	48.17	940.00	0.33	310.20			
C	8,253.00	48.25	398,707.25	46.17	8,253.00	0.08	660,24			
F	1,483.00	48.00	71,384.00	48.17				1,483.00	0.17	252.11
I	1,283.00	47.75	61,263.25	48.17				1,283.00	0.42	538,86
Fotal	m ² 11,959.00		m ³ 576, 244. 50				m ³ 970.44			m ¹ 790.97

	Exist			Prop	E,	cavation	(-)	Em	bankment	(+)
No.	Area (A)	Elev. (B)	(A)x(B)	Elev.	Area	Height	Vol (m ³)	Агеа	Height	Vol
	m ²	m	1	m	m ²	m	m ³	m ²	m	m ³
м	6, 195.00	48.63	301,262,85	48, 17	6, 195.00	0.46	2,849.70			
L	1,870.00	48.25	90,227.50	48.17	1,870.00	0.08	149.60			
к	2,723.00	47.50	129, 342. 50	48.17				2,723.00	0.67	1,824.41
J	1,160.00	47.00	54, 520. 00	48, 17				1,160.00	1.17	1,357.20
	m	2	m3				m ³ 2,999.30			m ³ 3, 181.61

	Exist			Prop	Ex	cavation	(-)	Em	bankment	(+)
No.	Area (A) m ²	Elev. (B) m	(A)x(B) m ³	Elev. m	A rea m ²	Height m	Vol. (m ³ m ³		Height m	Vol. m ³
Q	100.00	49.00	4,900.00	48.41	100.00	0.59	59.00)		
Р	6,737.00	4B,75	328,428.75	48.41	6,737.00	0.34	2,290.50	3		
o	2,973.00	48.25	143, 447. 25	48.41				2,973.00	0.16	475.68
N	Z,727.00	47.72	130, 132. 44	48.41				2,727.00	0.69	1,801.63
otal	m ² 12,537.00		m ³ 606, 908, 44	3				3		m ² 2,357.31

	Exist			Prop	Ex	cavation	(-)	Em	bankment	: (+)
No.	Area (A)	Elev. (B)	(A)×(B)	Elev.	Area	Height	Vot. (m ³)	Area	Height	Vol.
	m ²	m	m ³	m	m ²	m	m ³	m ²	m	m ³
т	3,706.00	49.33	182,816.98	48.91	3,706.00	0.42	1, 556, 52			
s	7,558.00	48.75	368,452.50	48.91				7,558.00	0.16	1,209.28
R	713.00	48.38	34, 494. 94	ł				713.00	0, 53	377.89
	m ²		m3				m3			m ³
otal	11,977.00	5	85, 764, 42				1, 556, 52			1,587,17

			Excertion			Embankment			Surface Soil Removing		
Station	Distance	Section	Average	Volume	Section.	Average	Volume	Section	Average Section	Volume	
	(m)	(m ²)	(m ¹)	(m ³)	(m ²)	(m ²)	(m²)	(m²)	(m ²)	(m²)	

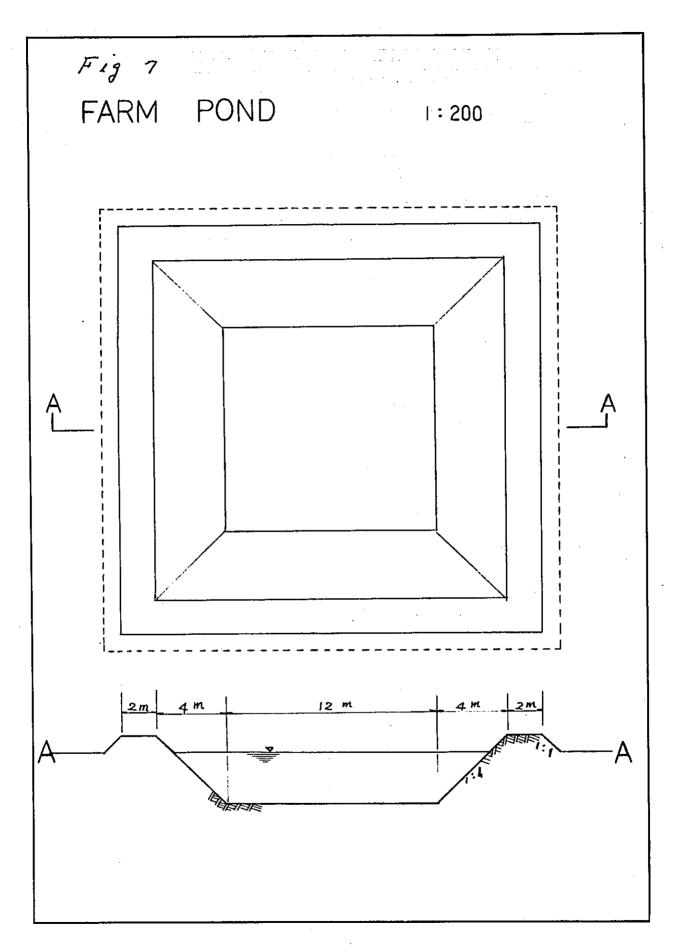
.

1. MAIN ROAD-1 (B=10.00m)

No. 2 +17.45 0.0	0.00	0,00	0.00	0.00	0.00	0.00
+41.65 24.2		-	-	14,48	12.24	296.21
+55.00 13.3	35 -	-	-	8.76	11.62	155.13
+81,00 26.0	- 0	-	-	7.50	8.13	211.38
No. 3 19,0	- 00	-	-	8.65	8.08	153, 52
+50.00 50.0	. 00	-	-	11.78	10,22	511.00
No, 4 50.0	• 0	•	-	23.19	17.49	874.50
+25.00 25.0	- 00	-	-	20,97	22.08	552.00
+50.00 25.0	- 00	-	-	12.68	16.83	420,75
+89.00 39.0	- 01	-	-	7.83	10,26	400.14
No. 5 11.0	- 00	-	-	5.81	6,82	75.02
+50.00 50.0	• 00	-	`-	2.98	4.40	220.00
No. 6 50.0	0 0,36	0.18	9.00	0,00	1.49	74.50
No. 7 +63.00 1630	10 0.36	0,36	58,68	0. QO	-	0.00
Total 545.5	5		67,68		3,	944.15

•	Excavation				Embankmen	1	Surface Soil Removine			
Station	Distance	Section	Average Section	Volume	Section	Average . Section	Volume	Section	Average Section	Volum
	(m)	(m²)	(m²)	(m²)	(m²)	(m ²)	(=2)	(m²)	(m²)	(m²)

. .


No.0 0.00 0.50 0.25 0.00 20.06 10.03 0.00 +12.50 12.50 0.50 0.50 6.25 12.86 16.46 205.75 +43.00 30.50 0.50 0.50 15.25 8.40 10.73 327.27 +69.00 26.00 0.50 0.50 13.00 6.88 7.74 201.24 +95.00 26.00 0.50 0.50 13.00 4.06 5.47 142,22 No. I +17.00 22.00 0.50 0.50 11.00 1.34 2.70 59.40 No. 2 +27.00 11000 0.50 0.50 55.00 1.04 1.19 130.90 No. 3 + 5.00 78.00 1.17 0.84 65.52 0.18 0.61 97.58 Total 179.02 1,114,36 3. FARM ROAD-1 (B=6.00^m) No.00 0.00 0.10 0.05 0.00 2.89 1.45 0.00 +34.00 34.00 0.10 0.10 3.40 2.64 2.79 94.86 +97.00 63.00 0.10 0.10 6.30 2.89 2.77 174.51 +16400 67.00 0.10 0.10 6.70 3.84 3.37 225.79 +20300 39.00 0.10 0.10 3.90 4.79 4.32 168.48

Total 20.30	663.64
-------------	--------

			Excavation			Embankmen		Su	risce Soil Rem	ining
Station	Distance	Section	Average Section	Volume	Section	Average Section	Volume	Section	Average Section	Volume
<u> </u>	(m)	(m²)	(m²)	(m ²)	(m²)	(m²)	(m²)	(m²)	(m²)	(m²)
4.	FARM R	.OA D - 2	(B=6.0	00 ^m L=2	203.00) ^m)				
	203.00	ł	0,10	20.30		3.18 (545.54			
5,	FARM R	OAD-3	(B=6.0	0 ^m L=2	03.00 ¹	^m)				
	203,00	•	0,10	20.30		3.968	103.88			
6.	FARM R	.0A D - 4	(B=6, C	0 ^m L≠2	03. 00 ¹	^m)				
	203.00	1	0.10	20, 30		3.77	765.31			
7.	FARM F	OAD-5	(B=6, (00 ^m L=2	03, 00 ¹	^m)				
	203.00	,	0.10	20.30		2,53	513.59			
8.	FARM RO	XD-6	(B=6,0	o ^m)						
No.				9 0.00						
	.00 93.00									
+20 Tot	اها) (1100	0.78	0.4	852.80 69.54	0.0		72.60 219.54			
9.	MA IN F	load (1	3=10,0	0 ^m L=3	62.00 ¹	m)				
	362.0	0	0.3	36 130. 3	2	0.00	0.00			
10,	MAIN R	.QA D-8	~ 14	(B=6.0	10 ^m L	.=1,428.	00 ^m)			
	142,8	o	0.3	36514.0	8	0.00	0.00	I		
11.	ACCES	SROAD	(B=20	0 ^m L=3	6Z.00	^m)				
			0,3							

Kinds	Calculated Process	Unit Quantities	Total Remarks	
1. SLUICE VAL	/E BOX (PER 10 PIECE)			-
PASANGAN BATUKALI ¢	0.2 x (0.8 + 0.4) x 0.95 x 2 + 0.2 x 0.8 x 0.8 = 0.56			•
	$ \Theta 0.05 \times (0, 5+0, 4) \times 0.05 \times 2 \\ + (0, 15^2 \times 3.14 \times 1/4) \times 0.4 \\ = 0.01 $		0.55 m ³	
CONCRETE	0.5 x 0.5 x 0.05 =		0.0125m ³	
FORM	0,5x0.5+0,05x0.5x4 =		0.350 m ²	ê
EXCAVATION	B=1.40 L=1.40 H=0.95 1.4 x p.4 x 0.95 =		1,862 m ³	:
BACK FILLING	(1.4 ^t x0.95)-0.8x0.8x0.95=		1,254 m ³	
2. HYDRANT (FOR PADDY FIELD)			
CONCRETE	0.4 x 0.4 x 0.1 =		0.016 m ³	÷
FORM	$10.4 \times 0.4 \times 4 =$		0.160 m ²	
ROLYVINYL CHORIDEPIPE	+300 ^{mm} <u>+</u> =0, 35 ^m			
3. HYDRANT (I	FOR UPLAND FIELD)			
CONCRETE	0.1x(0.5+0.4)x0.3x2 +0.5x0.6x0.1=		0.084 m ³	
FORM	0.3x(0.3+0.4)x2+0.4 x (0.5+0.6)x2=		1, 300 m ²	
EXCAVA- TION	B=0.8 L=0.9 H=0.4 0.8x0.9x0.4≖		0.360 m ³	
BACK FILLING	(0.8x0.9x0.4)-{0.5x6x0.4}=		0.240 m ³	

•.

Kinds	Calculated Process Unit Quantitie	a Total Remarks	
1	FARM- POND		
	12, 0x12, 0x3, 0=432, 00	and a second	
	(3.0x3.0x0.5x15.0)x4=270.00	702.00 m ³	
	•		
EMBANKMENT	(2,00 x 1.00 x 20) x4-1600	and the second second second	
	(1.00x1.00x0.5x21.0)x4=42.00		
	(1.00x1.00x0.50x25.0)x4=50.00	108.00 m ³	
PASANGAN BATUKALI	(/ piece x 4.00x16.0)x4=362.30		
-	12,00×12,00=144.00	506.30 m ²	
		and the second	
EXCAVATION		6	
(PIPING)		8 8 8	
	(AREA)	°]af~ ≠ 600	
	(1.30+2.80)×1.5×1/2=3.075	4070	
	0.70x1.20=0.84 3.915m ²		
	/ /0		
	3.915x6.0=23.49	28,78 m ³	
	x.915x2.70x1/2=5.29	28.78 m	
BACK	28.78 ^{m³} -(0.6 ² ×3.14×1/4		
FILLING	28,78 -(0,6 ² ×3,14×1/4 8,7)=	26.32 m ³	
	0,1,7~		
EXCAVATION			
(SUMP WELL)	2.0x2,0x3.14x1/4x3.8=	119.30 m ³	
	2. UX2, UX3. 14X1/4X3.3-	•••••	
DUMD STAT	TION (FOR PADDY FIELD)		
CORRUGATE PIR	$4 3000^{m/m} L=6.40^{m}$		
	$t=3,2^{m/m}$		
	t=3, 2		
FILTER			
	(5.00 ² -3.00 ²)x1/4x3.14x3.0*	37,68 m ³	
CONCRETE			
(SUMP WELL)	3.70 ² x3.14x1/4x0.8=8.60		
		7, 19 m ³	
	$3.00^2 \times 3.14 \times 1/4 \times 0.20 = -1.41$	7.19 m	
(PUMP BASE)	(0.30x0.65+0.50x0.85)x0.24		
	x = 0.30		
	(0.60x0.30x0.70)x2 =0.25	0.55 m ³	
FORM			
	3.70 x 3.14 x 0.8 = 9.29		
	(1,5+1,5+0,5+0,5)x0,24x2 =	а. С	
	1.92	,	
	(0,3+0,3+0,6)×0,70×2 =1,68	12, 89 ^{m²}	
PASANGAN BATUKALI			
PASANGAN BATUKALI	√2 x 3.2 x 20.0 =	90.50 m ²	
	√2 x 3.2 x 20.0 =	90.50 m ²	
BATUKALI	√2 x 3.2 x 20.0 = 50x50x6 mm L=500 N=8	90.50 m ²	
BATUKALI	50x50x6 mm L=500 N=8 50x50x6 mm L=470 N=8	90. 50 m ²	·
BATUKALI STEEL(ANGLE)	50x50x6 mm L=500 N=8	90.50 m ²	
BATUKALI	50x50x6 mm L=500 N=8 50x50x6 mm L=470 N=8	90.50 m ²	·
BATUKALI STEEL(ANGLE) BOLT AND UNIT	50x50x6 mm L=500 N=8 50x50x6 mm L=470 N=8 50x50x4 mm L=3000 N=2 ¢ 10mm x 32 N=50	90.50 m ²	·
BATUKALI STEEL(ANGLE) BOLT AND	50x50x6 mm L=500 N=8 50x50x6 mm L=470 N=8 50x50x4 mm L=3000 N=2	90.50 m ²	
BATUKALI STEEL(ANGLE) BOLT AND UNIT ANCHOR BOLT	50x50x6 mm L=500 N=8 50x50x6 mm L=470 N=8 50x50x4 mm L=3000 N=2 ¢ 10mm x 32 N=50	90.50 m ²	·

Kinds	Calculated Process	Unit Quantities	Total Remark
	BOOSTER PUMP		
CORRUGATE PIP	E	•	
	+600 ^{m/m} L=9.50 ^m		
	+2000 ^{m/m} L=4.80 ^m	t=3.2 ^{m/m}	
CONCRETE			
	2.50 ² x3.14x1/4x0.30x 0.90x2.0x0.2=0.36	1.47	1.83 m ²
STEEL (PLATE)	50x6 ^{mm} L=440 ^{mm}		
	50x6 L=440 50x5 ^{mm} L=440 ^{mm}		
FORM	50x5 1,440		
I OKM	2,5x3,14x0.3=2.34		
	(40+1,8)x0,Z=1,16		3,50 m ²
STEEL (ANGLE)	_		
,,	50x50x6 ^{m/m} N=4 L=4		
	50x50x6 ^{m/m} N=4 L=		
	50x50x4 ^{m/m} N=4 L=9	930''''''	
ANCHOR BOLT	¢150 ^{mm} x210 1	N=4	
BOLT AND NUT	∮ 10 ^{mm} x 32 1	N≖36	
	CULVERT		
NO, 1			~
PASANGAN Batukali			
	{ 0.25x1.00+(0.15+0. x0.44 } x 6.0=2.56	25)	
	(0.25+1.05)x0.25x0.9	}0≖0.29	
	{ 0, 20x0, 20x0, 80+{0,	80x0.80x0.5	
	x0.2)} x2=0.19		3
			3.04 m ³
CONCRETE	0.70x0.07x6.00=		1
			0.29 m ³
MORTAL	{ (0. 10×0. 15~0. 07×0. ×6.0=	1)} xZ	0.10 m ³
2022	~u. v=		
FORM REINFORCE- MENT	∮6 L=656. ^m 0.	.222 ^{mg/m}	2.00 m ² 14.54 kg
NO, 2			
PASANGAN TATUKALI	{ 0.25x1.0+(0.15+0.2 x 6 = 2.53	5)x0,43}	
	(0.56+1.19)×0.25×0.	9≖0.40	
	(0.2x0.5x0.94+0.94x		
	0,94x0.5x0.2)x2=0.2	5	3.18 m ³
CONCRETE	0.70×0.07×6.00=		0,29 m ³

.

.

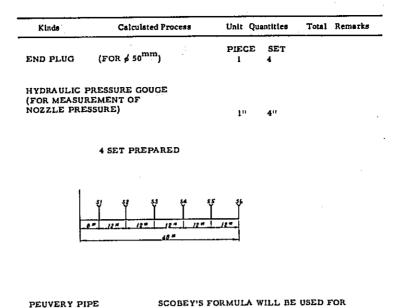
· .					
	Kinds	Calculated Process	Unit Quantities	Total Remarks	
ن	FORM			2.00 m ²	
	REINFORCE - MENT	ø6 L=65.5 ^m 0.222 ^{kg/m}	1	14.54 kg	
	NO.3 PASANGAN BATUKALI	{ 0.25x1.00+{0.15+0.25}x 0.63 } x6.0=3.10 0.25x0.9x0.53=0.12 { (0.2x0.2x0.53)+0.53x0.			· · · · · · · · · · · · · · · · · · ·
		x0.5x0.2 $x2==0.10$		3,32 m ³	
	CONCRETE	0.70×0.07×6.00=		0.29m ³	
	MORTAL	(0. 10x0, 15x0, 07x0, 10)x2	2x6.0	0.10 m ³	
	FORM			2.00 m ²	
	REINFORCEM	ENT ø 6mm L=65.5mm	n 0,222kg/m	14.54 kg	
	NO.4 PASANGAN BATUKALI	0,25x1,00+9(0.25+0,15 x6,0= 2,92)x0.59		
		0,25x0.90x0.53=0.12			
		(0,2x0,2x0,53+0,53x0,5 x2=0,10	3x0.5x0.2}	3, 14 m ³	
	CONCRETE	0.70x0.07x6.00=		0.29 m ³	
	MORTAL	10, 10x0, 15+0, 07x0, 10)x	2x6	0. 10m ³	
	FORM			2.00 m ²	
	REINFORCEME	CNT \$6mm L=65.5m 0	, 222kg/m	14.54 kg	
	NO. 5 PASSANGAN BATUKALI	{0.25x1.00+{0.15-0.25} 0.29}x6.0=2.20 (0.25+0.84)x0.25x0.90= (0.2x0.2x0.59+0.59x0.5	0,25		
		0.5x0.2)x2=0.12		2,57 m ³	
	CONCRETE	0.70×0.07×6.00≖		0.29m ³	
	MORTAL	{{0,10x0,15+0.07x0,10} x2x6.0)}	0,10 m ³	
				2,00 m ²	
	FORM			0100 111	

:

ITEM	MATERIAL	DIMENSION	ΩΤΥ	UNIT		
WATER-SUPPLY CANAL	7	<u></u>				
ASBESTOS CEMENT PIPE	A CLASS	¢125x4000		m) Piece		
REGULATING VALVE WORK		¢125	1	Place		
HYDRANT (A)		MACHINO TYPE WITH ANGLE PIPE OF $p^2 \times 45$		fi	А-Т ҮР	E
HYDRANT (B)		38	12	*1	B-TYP	E
REDNCER PIPE	A CLASS FC 20	ø125x100	1	Piece	12.6 kg/	piece
SOLID VINYL CHLORIDE PIPE	۷P	¢100×5000	(222 45	m) Piece	JISK.	6742
SOCKET FOR GIVOLT JOINT		¢ 100 VP	1	ч		
PLUG	FC 20	FOR PLAIN CHEESE \$100	1			
GIVOLT JOINT		¢ 100 G.J.	1	"		
WATER-SUPPL CANAL	Y					
SOLID VINYL CHLORDIDE PIPE	٧P	ø100 x 5000	(105 21	m) Piece		
REGULATING VALVE WORK		ø100	1	Place		
HYDRANT (B)		MACHINO TYP ANGLE VALVE OF \$2"x45*	E 6	ч		
REDNCER PIPE	ACLASS FC 20	ø 125 x 100	1	Piece		
SOCKET FOR GIVOLT JOINT		\$ 100 VP	1			
GIVOLT JOINT		ศ 100 GJ	3	••		
PLUG	FC 20	FOR PLAIN CHEESE \$ 100	1	**		
	OUANZIZI	UNIT WEIGHT	WEIC			
ITEM 90° VENT PIPE		GN11 WAIGHT	++ ±1C			
FOR \$150	1	23.1	23.	1		
CROSS-PIPE	1	24.4	Z4.	4		
REDNCER PIP	S 1	17.2	17.	2		
IF CROSS-PIPE FOR ¢125	: 1	17.2	17.	2		
CROSS- PIPE	1	17,0	17.	0		
SHORT PIPE						

ITEM	QUANTITY UN	T WEIGHT W	EIGHT		<u> </u>
CROSS-PIPE FOR GAS PIPE	6	(13.7)	82.2	••••••••••••••••••••••••••••••••••••••	•••
REDNCER PIPE	2	12.6	25.2		
SHORT PIPE FOR ∳100(B)	6	10.1	60.6		
TOTAL			kg 316.9		
G.J. \$150	4 SET	9.93 ^{kg}	39.72 ^{kg}		
'' ø 125	8	8, 14	65.12		
ر 100 و ۱۱	10	6,93	69.30		
TOTAL			kg 174. 14		
PLUG	4				
SOCKET FOR G Jø100	4				

.


ITEM	MATERIAL	DIMENSION	Q'TY	UNIT		
DELIVER Y PIPE						
ASBESTOS CEMENT PIPE	CLASS A	∳150×4000	(125 32	M) Piece		
BEND PIPE	FC 20	¢150	1	РС	23, 1	KG/piece
CROSS-PIPE	"	∲150 × 100	1	Þ	24.4	KG/piece
GIVOLT JOINT		FOR \$150	4	SET		
SELIVERY PIPI	E					
ASBESTOS CEMENT PIPE	A CLASS	¢ 125 x 4000	(180 45	M) Piece		
REELUCER PIPE	FC 20	ø 150 x 125	1	11	17.2	KG/piece
FLANZE CROSS-PIPE	H	ø 125 x 75	1	11	17.2	
CROSS-PIPE		¢ 125 x 125	1	••	17.0	
REGULATING VALVE WORK		¢ 125	1	Place	REGUL VALVE WATER	ATION

ITEM	MATERIAL	DIMENSION	Q'TY	UNIT	
XHAUST ALVE WORK		SINGLEAIR VALVE A TYPE	: 1	Piece	
ivolt Dint		∲ 125 G.J.	8	Piece	8.14 KG/piece JIS A5520
UPPLY PIPE					
OLID VINYL HLORIDE PIPI	E VP	∲100 × 5000	(95 19	M) Piece	JISK 6742
EGULATING ALVE WORK		¢ 100		Place	SHORT PIPE (B) \$100x2 piece x 10.1KG/piece REGULATING VALVE WATER SUPPLY JIS B2062 \$100 x 1 piece
YDRANT		MACHINE TYPI WITH ANGLE PIPE OF \$2"x 45*	E 6	.,	100 x 1 piece لو
OCKET FOR NVOLT JOINT		¢100 - VP	1	Piece	
PLUG	FC 20	FOR PLAIN CHEESE \$100	1		JIS B-2301
IVOLT JOINT		G. J∮100	3		JIS A-5520 693 KG/piece
UPPLY PIPE					
OLID VINYL HLORIDE PIP	E VP	¢ 100x 5000	(105 21	M) Piece	
EGULATING		¢ 100	1	Place	
VATER SUPPL VORK	Ŷ	MACHINO TYP. ANGLE PIPE O ∮2"x45"		41	
OCKET FOR NVOLT JOINT		\$ 100-VP	1	Piece	
LUG	FC 20	FOR PLAIN CHEESE ∳100	1	11	
IVOLT JOINT		G J ≠ 100	3	••	

÷.,

•

Kinds	Calculated Process	Unit Quanti	ties	Total	Remarks
A-TYPE	SPRINKLER-85TAND (LATE	RAL LENG	тн 92 ^н	b	
PER SET				:	÷.
SPRINKLER	*EQUIVALENT TO RAINBIR	D* No. 30B	. •	· .	
	3/16"x3/32" 70	8 ^{Pieces} EACH	2 ^{SETS}		
RISER	¢25 mm x 10m AND 2.0m	8 Pieces	2 "		
RISER	0.85 ^m TRIPOD 1.70 ^m	Each			
HOLDER	TRIPOD	8 Pieces			
RISER PLUG	d 3/4 "	15 Piece 23-8=			
		15 Pieces	2"	· .	
ALUMINUM		Disses			
PORTABLE PIPE	¢50 ^{mm} x 4.0 ^m	Pieces 23	2"		
PIPE FOOT	FOR \$ 50 mm	23	2"		
		Set			
JET HOSE	FOR " (LENGTH 1.U MACHINES TYPE, METAL	.) 1	2"		
	FITTINGS	Disco			
END PLUG	FOR \$ 50 mm	Piece 1	2"		
HYDRAULIC P	RESSURE GOUGE (FOR MEAS NOZZLE 1	PRESSURE)			
	2 SETS PREPARED				
* [NOTE] S	PRINKLEREQUIVALENT TO I		(O, 30E	1	
	NOZZLE SIZE 3/16" x 3/3	_			
	WARKING PRESSURE 3, 161 SPRAY AMOUNT 32, 4 2	-			
	SPRAY DIAMETER 29.9 n	-			
				•	
B-TYPE	SPRINKLER-6 STAND, (LA	IERAL LEI	NOTH 0	811)	
PER SET					
SPRINKLER	EQUIVALENT TO RAINBIRI	Pieces S			
÷		6	4.		
RISER	¢25 ^{mm} × 1.0 ^m	6"	4		
	¢25 ^{mm} x 2.0 ^m	6"	4"		
	R 0.85 ^m TRIPOD	<i></i>			
RISER HOLDE	1.70 ^m TRIPOD	6" 6"	4" 4"		
		•	-		
RIZER PLUG	ø 3/4"	11"	4"		
ALUMINUM					
A LUMINUM PORTA BLE PIPE	/ romm , m		4"		
PORTABLE	\neq 50 ^{mm} x 4.0 ^m	17"			
PORTABLE	\$ 50 ^{mm} x 4.0 ^m (FOR \$ 50 ^{mm})	17"	4"		
PORTA BLE PIPE	(FOR \$ 50 ^{mm})	17" m SET			

ERY PIPE	SCOBEY'S FORMULA WILL BE USED FOR COMPUTATION OF FRICTION LOSS.

 $Q_1=22L/a$ $L_1=125^m \neq 150-AP-1$ cf. Hf = $\frac{12}{1000}$, $V_1=1.25$ m/s, $EH_{f1}=125^m$ $\times \frac{12}{1000} = 1.5^{m}$

 $Q_2 = 13 t/s$, $t_2 = 180^{m} p 125 - AP - 1 c t H_{f2} = \frac{10}{1000}$, $V_2 = 1.10 m/s$, EH_{f2} $= 180^{m} \times \frac{10}{1000} = 1.8^{m}$

> EL = 330^m $\Sigma H_f = 3.3^m$

ZUFFLY PIPE

* $\Omega_3 = 9$ $\frac{1}{5}$, $t_3 = 95^{\text{m}}$, $\frac{1000 - \text{VP}}{100} + H_{f3} = \frac{15}{1000}$, $V_3 = 1.10 \text{ m/s}$ $E_{H_{f3}} = 95^{\text{m}} \times \frac{15}{1000}$ $= 1.425 \pm 1.5^{m}$

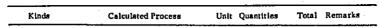
* $\Omega_4 = 9$ 4/s, $t_4 = 105^{\text{m}} \neq 100 \text{-VP}$ H_{f4} = $\frac{15}{1000}$, $V_4 = 1.10 \text{ m/s}$ $t_{\text{H}_{f4}} = 105^{\text{m}} \times \frac{15}{1000}$ = 1,575 ÷ 1.6^m

*Q₅ = 13 t/s $\begin{bmatrix} t_5 = 95^m \neq 125 \text{-} \text{AP-1} & \Sigma H_{fs} = \frac{10}{1000}, V_5 = 1.00 \text{ m/s} & \Sigma H_{fs} = 95^m \times \frac{10}{1000} = 0.95^m \\ t_5 = 222^m \neq 100 \text{-} \text{VP} & H_{fs} = \frac{30}{1000}, V_5' = 1.60 \text{ m/s} & \Sigma H_{fs} = 222^m \times \frac{30}{1000} = 6.66^m \end{bmatrix}$

 $\Sigma_{\rm H_{fs}} = 7.6^{\rm m}$

 ${}^{\circ}Q_{6} = 13$ %, ${}^{t}_{6} = 105^{m}$, \$\$\$ 100-VP H₁₆ = $\frac{30}{1000}$, V₆ = 1.60 m/s EH₁₆ = 10.5^m

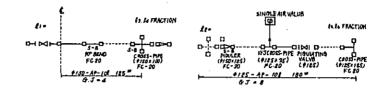
$$x \frac{30}{1000} = 3.15^{m}$$

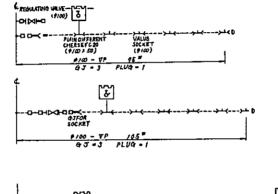

$$\times \frac{30}{1000} = 3.15^{m}$$

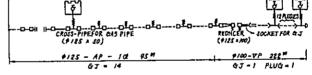
DESIGN CONDITION WILL BE THE END OF 5,

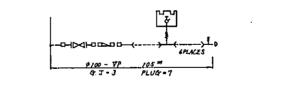
 $\Sigma t = t_1 + t_2 + t_3 = 125^m + 180^m + 317^m = 622^m$

 $LH_{f} = LH_{f1} + LH_{f2} + LH_{f5} = 1.5^{m} + 1.8^{m} + 7.6^{m} = 10.9^{m} + DESIGN FRICTION LOSE$


10.9m


PUMP H_f = HYDRANT LOSS + LATERAL LOSS + PUMP SURROUNDINGS + OTHER VALVE VEND LOSS ETC.


≖ 53^m


DELIVERY PIPE

ZUPPLY PIPE

FIELD NO.	٧	LxV	Ļ
1	2,910	80,014	27
	3,117	77.472	25
2 3 4 5 6	3,429	99,253	29
4	4,550	208,462	46
5	3,006	136, 158	45
6	4,685	131,045	2.8
7	3,409	125,444	37
8	2,942	121,868	41
9	2,675	71,649	27
10	3,324	110,134	33
11	3,724	108,602	29
12	2,584	104,454	40
13 •	3,031	98,507	32
14	2,798	104,663	37
15	3,202	79,983	25
16	2,802	47.414	17
17	2,665	59,950	22
18	1,746	28,472	16
19	3, 178	65,874	21
20	4,244	96.894	23
131	4,737	65,101	24
Σ	66,758	2,021,413	30 ^M
	٤v	ΣL×V	$\Sigma L = \frac{\Sigma L \times V}{\Sigma V}$

BULLDOZERWORKING DISTANCE (TOTOKATON)

V: VOLUME OF EARTH WORK L: AVERAGE DISTANCE OF EARTH WORK

Kinds	Calculated Process	Unit Qua	uities Total Remarks
PROPOSAL PAD- DY FIELD NO.	(LENGTH OF BORDER)	m
NO.1 _ NO.8	90+92.5+94+95.5+B1.5		453,5
NO.9 ~ NO.21	107+98,5+92+84+74+69.5		
	+63+54+47+40+29.5+2	Z	780.5
NO.22 ~ NO.41	200x4+100x4+50x4		
	+160+161,5		1,721.5
NO. 42~ NO. 55	100x7+50x5+140		1,090.0
NO.56 - NO.79	100x7+50x10+340		1,540
NO. 80 _ NO. 102	100x6+50x11+340		1,490
NO. 103 ~ NO. 110	100x4+80		480
NO.111 _ NO.114	80x4+80		400
NO. 115 ~ NO. 144	200×14+303		3, 103
NO, 145 - NO, 174	202x14+307		3, 135
NO. 175 - NO. 190	100×8+165		965
NO, 191 - NO. 197	100x6+100		700
NO. 198 ~ NO. 204	100x3+50+85		435

 The second se Second second sec		a an	
Kinds	Calculated Process	Unit Quantities Total Remarks	
PROPOSAL PAD- DY FIELD NO.	(LENGTH OF BORDER)	· m	
NO.205 - NO.209	50+102.5x3+60	417.5	
 NO.210 ~ NO.214	102, 5x4	410	
NO.205 - NO.219	80x2+76+49+24+60, 5+7+65	441.5	
NO.220 ~ NO.240	87+110.5+140+170.5+201 x7+220+108	2,243	
NO. 241 ~ NO. 246	100x3+60x3	480	
NO.247 ~ NO.263	34.5+59.5+80+107+130x5 +141	1,072	
NO, 264~ NO, 273	100x2+89+79+56+100 +30+22.5+16	592.5	
NO.274~ NO.284	لے 85+78+71,5+64,5+56+51,5 +42+37+31,5+23,5	540.5	
NO.285~ NO.304	100x13+97+94+97,5+103 +108+109+112.5	2,021	
NO. 305 - NO. 320	100x8+160	960	
NO, 321 ~ NO, 334	56+100x9+120	1,070	
NO, 335 - NO, 346	100x8+80	880	
NO. 347 ~ NO. 362	100x10+120	1, 120	
NO, 363 ~ NO, 372	100x6+43,5+28+60	731.5	
NO. 373 - NO. 380	100×5+60	560	
NO. 381 - NO. 390	100x5+82+46,5+60	688.5	
NO. 391 - NO. 400	100x5+100	600	
NO.401 ~ NO.410	200x4+61+65+45+80	1,051	
NO.411 ~ NO.420	204x3+155+140+100+75	1,082	
NO, 421 ~ NO, 433	130x2+120+109+97		
	+77 x2+140+ 20	900	
NO. (434)435 ~ NO. 437		204.5	
NO, 438 ~ NO, 447	100+100x4+47+92	639	
NO. 448 ~ NO. 452	80+42+12+50x4	334	
NO. 453 - NO. 469	204x6+102x2+94+200+13	1,735	

A-79

Kinds	Calculated Process Un	it Quantities	Total	Remarks
PROPOSAL PAD- DY FIELD NO.	(LENGTH OF BORDER)	an an An An	m	
NO. 470 - NO. 477	123+108+75, 5+60+45+32+15	5	598.5	
NO. 478 ~ NO. 497	29+100x9+200		1, 129	
NO. 498 ~ NO. 517	50+100x9+200		1,150	
NO.518 ~ NO.53	6 80.5+87+139+146+153.5			
-	+160+168+140+134.5+8	0	1,288.5	
NO. 536 - NO. 570	85+100×160+340		2,025	
NO. 571 ~ NO. 578	3 100x4+80		480	
NO, 579 ~ NO, 61	1 97x16+320		1,872	
NO. 612 ~ NO. 614	3 92.5+85+77.5+70+62.5			
	+55+47.5+150		640	
NO. 619 - NO. 63	2 100x4+96.5+87+79+140+53.	5	856	
NO. 633 ~ NO. 64	2 100x4+85+17.5+100		602.5	,
NO,643 ~ NO.65	8 100x7+66+40+160		966	
NO. 659 ~ NO. 67	6 100x9+180		1,080	
NO. 677 ~ NO. 68	4 100×8+160		960	
		Σ	50,714.5	m

Kinds	Calculated Process	Unit	Quantities	Total	Remarks
CULVERT					· · ·
CAA				1	
CAB			•	Z	
CAC				1	
CBA				6	
СВВ				2	
СВС				Z	
CCA				6	
CCB				24	
ccc				8	
CCD				1	
CCE	•			1	
FLASH BOARD WEIR					(54)
W.A				6	
WВ				7	
WC				28	
					(41)
DRAINAGE CULVERT					
D-C-1				1	
D-C-2				1	
D-G-3				1	
					(3)

	anati ing katalan sa		÷.,			
CCA TYPE	· · · · · · · · · · · · · · · · · · ·					
Kinds	Calculated Process	Unit	Quantities	Total	Remarks	_ ·
Pasangan Batukali	(0.20x0.60+0.10x0.10x1/2	-				
	+0.20x0.40)x2x3.20+(0.60					
	x0.60x1/2x0.20x4)+(0.10					
	x0.10x1/2x0.60x4) +{ <u>0.30+0.40</u> x 0.20x0.60	,			· · ·	
Reinforced concrete plate	x4)	m ³	3 1,510			
concrete piere	1,40x0,60x0,10x5					
	+1.40x0.20x0.10	m	3 0.448			
Form	Pasangan 2x(0.80+0.50+0.14+					
	0.20)x3.20+4x(0.20x0.60)					
		ł				
	+0.30x0.20x4	m	z 12.77			
	concrete					
	0.10x(0.60+1.40)x2x5+ 0.10x(0.20+1.40)x2	m	² 2,32			
		m	2	15.09		
Reinforcement	¢6 L=0.74 0.74x(14x5	5)				
	x0,222 kg/m	ke	g 11.50			
	L=1.54 1.54x(5x5+					
	2)x0.222	k	g 9.231			
	L=0.34 0.34x14x 0.222		' 1,057			
		· ks	1	21.788		
	7 00-1 10-4 70					
Excavation Backfilling	2.00x1.10x4.30 9.46-(1.60x0.60x4.30)		3 9.46			

CAB TYPE

Kinds	Calculated Process	Unit	Quantities	Total	Remarks
Pasangan Batukali	(0.20x0.60+0.10x0.10x1/2				
	+0.20x0.40)x2x2.10+(0.60x				
	0.60x1/2x0.20x4)+(0.10x				
	0.10x1/2x0.60x4)+(0.30+0.44	<u>0</u>			
	x0,20x0,60x4)	m ³	1.059		
Reinforced Concrete plate					
	1.40x0,60x0.10x3+				
	1.40x0.30x0.10	m	0.28		
Form	Pasangan. 2x(0.80+0.50+0.14+				
	0,20)x2,10+4x(0.20x0.60)				
	+(0.14x0.60x4)+(<u>0.60x0.60</u>				
	$+\frac{0.50 \times 0.50}{2} \times 4+0.30 \times 0.20$				
,	x4	m	9,16		
·	Concrete 0, 10x(0,60+1,40)xZ				
	x3+0, 10x(0, 30+1, 40)xZ	m	2 1.54		
		m		10.70	
Reinforcement	^m ¢6 L=0.74x(14x3)x0.222 ^{kg/n}				
	L=1.54x(5x3+3)x0.222	•	6.15		
	L=0,44x14x0,222		1.368		
		kg	1	14.418	
Excavation	2.00x1.10x3.30	m	3 7.26		

Backfilling	7.26-(1.60x0.60x3.30)	m ³	4.09	
Residual soil	7.26-4.09	m ³	3, 17	

Kinda	Calculated Process	Unlt	Quantities	Total	Remarks
Pasangan Batukali	(0.20x0.60+0.20x0.40)x				
	2x3.10+(0.60x0.60x1/2 x0.20x4)+(<u>0.40+0.20</u> x0.20				
	×0.60x4)	m	1.528		
Concrete plate	1.00x0.90x0.07x2				
Form	+1,10x0.90x0.07 pasangan	m	3 0.195		
-	(0.80+0.60+0.20)x2x3.10 +(0.20x0.60x4)+ <u>0.6x0.6</u>				
	x4 Concrete	m	2 11.1Z		
	0.07x(0.90+1.00)x2x2				
	+0.07x(0.90+1.10)x2	m ³		11.93	
Iron wire	64 0.097 kg/m (0.90x7x3				
	+0.80x7x3)	kg	3.46		
Excavation	1.50x1.10x4.30	m	3 7.10		
Backfilling	7.10-(0.80x1.10x4.30)	m	3 3.32		
Residual soil	7. 10-3. 32	m	3 3.78		

C B B TYPE

•

Kinds	Calculated Process	Unit	Quantities	Total	Remarks
Pasangan Batukali	(0.20x0.60+0.20x0.40)x2				
134 (4841)	x2. 10+(0.60x0.60x1/2x0.20				
	$x4)+(\frac{0.40+0.20}{2}x0.20x0.60$				
	-	m ³	1.128		
	×4)	m-	1,120		
Concrete plate	1,00x0.90x0.07 +				
	1,10x0.90x0,07	m ³	0,132		
	Pasangan.				
Form					
	(0.80+0.60+0.20)x2x2.10+				
	$(0, 20x0, 60x4) + \frac{0.60x0, 60}{2}$				
	x4	m ²	7.92		
	concrete				
	0.07x(0.90+1.00)x2+				
	0.07x(0.90+1.10)x2	m3	0.546		
		m ²		8,47	
	\$4 0.097 ^{kg/m} x{0.90x7				
Iron wire	¢4 0.097 a/ x(0.90x7				
	x2+0.80x7x2)	kg	2.309		
Excavation	L50x1, 10x3. 30	m ³	5,45		
	1130X1, 10X3. 30	m-	2,42		
Backfilling	5.45-(0.80x1.10x3.30)	m ³	2.55		
			2,37		
Residual soil	5.45-2.55	3	2.90		

Kinds	Calculated Process	Unit C	Juantities	Total	Remark
Pasangan Batukali	(0.20x0.60+0.20x0.40)x 2x1.60+(0.60x0.60x1/2x 0.20x4)+(<u>0.40+0.20</u> x0.20	· · · ·		•	
	x0.60x4)	m ³	0.928		
Concrete Plate	1,00x0,90x0.07+0.60x0.90	1 1			
	×0.07	т3	0.101		
Form	Pasangan. (0.80+0.60+0.20)x2x1.60+ (0.20x0.60x4)+ <u>0.60x0.60</u> 2				
	x4 concrete	m ²	6.32		
·	0.07x(0.90+1.00)x2+ 0.07x(0.90+0.60)x2	m ²	0.476		
		m ²		6,80	
Iron wire	\$4 0.097 kg/m x (0.90 x7+0.80x7+0.80x4+				
	0.50x7)	kg	1.853		
Excavation	1.50x1.10x2.80	m ³	4,62		
Backfilling	4.62-(0.80x1.10x2.80)	m ³	2.16		
Residual soil	4.62 - 2.16	m ³	2.46		

Kinds	Calculated Process	Unit	Quantities	Total	Remarks
Pasangan Batukali	(0.20x0.40x2+0.20x				
	0.90)x3.10+(0.20x				
	0.90x0.40)x2+				
	(0.40x0.40x1/2x0.20x				
	4)	m ³	1.262		
Concrete(Plate)	0,70x1,50x0,07	m3	0.074		
	0,70x1.60x0.07	"	0.078		
		11	0,152		
Form	Pasanga, outside (0.60x3,10x2)+(0.40 x0,20+ $\frac{0.40x0.40}{2}$)x4				
	+(0.20x0.90x2) Inside (0.40x3.10x2)+(0.40x0.40	m ²	4.72		
,	x1/2x4)	m ²	2,80		
	concrete form				
	0.07x(0.70+1.50)x2	m ²	0,308		
	0.07x(0.70+1.60)x2		0.322		
Iron wire	¢4mm (0.097 ^{kg/m} x1.40x5)	m ²	:	8.15	
	(0.097x1.50x5)+(0.097x				
	0.60x51)	kg	4,37		
Excavation	1.40x0,90x3.50	m ³	4.41		
Backfilling	4.41-(0.90x0.60x3.50)		2.52		
Residual soil	4.41-2.52		1.89		

.

. ·

CAC TYPE					
Kinds	Calculated Process	Unit	Quantities	Total	Remarks
Pasangan Batukali	(0.20x0.60+0.10x0.10x1/2+				
Batukan	0.20x0.40)x2x1.60+				
	(0.60x0.60x1/2x0.20x4)				
	+(0.10x0.10x1/2x0.60x4) + $\left(\frac{0.30+0.40}{2}$ x0.20x0.60x4)	m ³	0,854		
Reinforced Concrete Plate	1,40x0,60x0,10x2+				
00.0101000	1.40x0.40x0.10 Pasangan. 2x(0.80+0.50+0.14+0.20)	m ³	0,224		
	x1.60+4x(0.20x0.60)+(0.14 x0.60x4)+(<u>0.60x0.60</u> +				
	0.50x0,50 2)x4+0.30x0.20x4 concrete	m ²	12.77		
	0.10x(0.60+1.40)x2x2+				
	0.10x(0.40+1.40)x2	m² m²	1.20	13.97	
Reinforcement	¢6 L=0.74 0.74x(14x2) x0.222	kg	4.60		
	L=1.54 1.54x(5x2+4)				
	x0.222		4.786		
	L=0.54 0.54x14x0.222	**	1.678		
		kg		11.064	
Excavation	2.00x1.10x2.80	m ³	6.16		•
Backfilling	6.16-(1.60x0.60x2.80)	m ³	3,47		
Residual Soil	6,16-3.47	_m ³	2,69		
CCB TYPE					
Kinda	Calculated Process	Unit	Quantities	s Total	Remarks
Pasangan Batukali					
Datami	(0.20x0.40x2+0.20x0.90)				
	x2.10+(0.20x0.90x0.40) x2+(0.40x0.40x1/2x0.20x4)	m ³	0.922		
Concrete plate	0,70x1,50x0.07	m ³	0.074		
Toursers hund	0.70x0,60x0.07	••	0.029		
				0.103	
Form	Pasangan Aut aide (0.60x2.10x2)+(0.40 x0.204 ^{0.40x0.40} x0.204				
	x0.90x2) Inside (0.40x2.10x2)+(0.40x	m			
	0.40x1/2x4)	m	2 2.00		
	Concrete		2		
	0.07x (0.70+1.50)x2		2 0.308		
	0.07x(0.70+0.60)x2	m		6,01	
Iron wire	¢4 ^{mm} (0.097 ^{kg/m} x1.40x5)	1	•		
	+(0,097x0,50x5)+(0,097x				
	0.60x14)	k,	g 1.736		

Excavation	1.40x0.90x2.50	m ³	3, 15
Backfilling	3,15-(0,90x0.60x2.50)	m3	1,35
Residual soil		m ³	1.80

Kinds	Calculated Process	Unlt	Quantities	Total	Remarks
Pasangan Batukali	(0,20x0,40x2+0,20x0,90)				
Datukali	x1.60+(0.20x0.90x0.40)				
	x2+0.40x0.40x1/2x0.20x4)	m3	0,752		
Concrete plate	0.70x1.60x0.07	m ³	0,078		
Form	Passangan Aut side (0.60x1.60x2)+(0.40x0.20 + <u>0.40x0.40</u>)x4 +(0.20x0.9				
	x2) Inside (0,40x1,60x2)+(0.40x0.40	m	2 2.92		
	x1/2x4)	4	1.60		
	Concrete				
	0.07x(0.70+1.60)x2	ľ			
		m	2	4.84	
Iron wire	¢4mm 0.097 ^{kg/m} x1.50×5	i ki	5		
	+(0.097x0.60x11)		1.37		
Excavation	1.40x0.90x2.00	n	3 2.52		
Backfilling	2.52-(0,90x0.60x2.00)	:	" 1,44		
Residual soil			" 1.08		

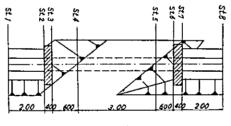
С	с	D	TYPE
---	---	---	------

Kinds	Calculated Process	Unit	Quantities	Total	Remarks
	$m N = 0.84 \times (13\times4+15) \times 0.222^{kg/m}$	kg	12.494		
	L=1.34x(5x4)x0.222	"	5,950		
	L=1.54 x 5 x 0.222			1.709	
		kg		20.153	
Excavation	1.50x1.00x7.00	m3	10.50		
Backfilling	10.50-{0.90x0.70x7.00}	m ³	6.09		
Residual soil		m ³	4.49	•	
Pasangan. Batukali	(0.20x0,40x2+0.30x0.90) x6,20+(0.30x0,90x0,40x2)				r.
	+(0.40x0.40x1/2x0.20x4)	m	2.946		

concrete (plate)	(0.70x1.20x0.10x4)			
	+{0.70x1.40x0.10}	m ³	0,434	
Form	Pasangan. Aut side			
	(0.70x6.20x2)+(0.40x			
	0.30+0.40x0.40x1/2)x4 +(0.30x0.90x2) Inside (0.40x6.20x2)+	m ³	10.98	
	(0.40x0.40x1/2x4)	m ²	5,28	
	Concrete			
	0.10x(0.70+1.20)x2x4			
	+0.10x(0.70+1.40)x2	տ ² ո2	1.94	18.20
Reinforcement	· .			
	$\begin{array}{c} 120 \\ 600 \\ 100 \\ 100 \\ 1100 \\$	P"	2 ^{kg} /m	
	120			

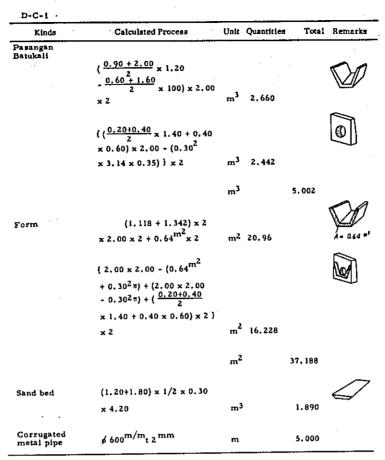
WA TYPE

.

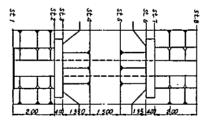

•

Kinds	Calculated Process	Unit	Quantities	Total	Remark
Cobble stone					
CONCrete	{(2.40 x 1.05)-{1.10x0.55}				
	+(0.05x0.05x1/2x2) }		•		
	x 0.30-(0.06x0.06x0.55)x2	m ³	0.571		
Form	(2.40x1.05-1.10x0.55				
	+0.55x0.05x1/2x2)				
	x2+(1.05x0.30x2)				
	+ {0.30x0.55+(0.06+				
	0.06)x0.55) x2	m ²	4.928		
Riprap +	$\left(\frac{1.00+1.20}{2} \times 0.20+\right)$				
	$ \begin{pmatrix} \frac{1.00+1.20}{2} & x0.20+\\ \frac{0.30+0.35}{2} & x0.20x2 \end{pmatrix} x0.80 $	m ³	0,28		
Churchen han ad	•				
Shuttering board	W H t 1200 x 500 x 50		1		
Excavation	$\frac{3.10+2.60}{2} \times 0.50 \times 0.75$	rL			
	+ +0.28	m3	1,35		
Backfilling	1.35-(0.50x2.40x0.30)	н	0.99		
Residual soil	1.35 = 0.99		0.36		

CCE TYPE					
Kinds	Calculated Process	Unit	Quantities	Total	Remarks
Pasangan Batukali	(0.20x0.40x2+0.30x0.90)				1. J. T. F.
Delukeli	x920+(0, 30x0. 90x0. 40				
	x2)+(0.40x0.40x1/2x0.20				
	x4)	m ³	4.236		
			1 A.A.		
Reinforced					
concrete plate	(0.70x1.20x0.10x7)+				
	(0.70x0.80x0.10)	m ³	0.644		
	(,				
Form	Pasangan. Autside				
Form	(0.70x9.20x2)+(0.40x				
	0.30+0.40x0.40x1/2)x4				
	+(0, 30x0, 90x2)	m2	15.18		
	Inside				
	(0.40x9.20x2)+	س 2	7,68		
	(0.40x0.40x1/2x4)		1100		
	Concrete				
	0.10x(0.70+1,20)x2x7+ 0.10x(0.70+0.80)x2	2	2,96		
	0. IUX(0, /0+0.80)x2		2,70		
	L=0.84 ¹¹³ 0.84x(13x7+9)	m²		25.82	
Reinforcement	L=0.84"0.84x(13x7+9) x0.222 ^{kg/m}	1	18.648		
		-			
	L=1,34 ^m 1.34x(5x7)x0.222 L=0.94 ^m 0.94x5x0.222	, 14 14	10,412 1,043		
	L=0.940.94x5x0.222		1.045	30.103	
	1 50 1 00-10 00	kg 3	15.00	50.105	
Excavation	1,50x1,00x10.00	m ³			
Backfilling	15.00-(0.90x0.70x10.00)	m- m3			
Residual soil			0.50		
WC TYPE					
Kinds	Calculated Process	Unit	Quantitie	s Total	Remar
Cobble stone				•	
concrete	((1.30x0.65)-(0.40x0.35)				
	+(0.05x0.05x1/2x2)} x0.30	1			
	-(0,06x0,06x0,35x2)		0.210		
			-		
	(1,30x0.65-0.40x0.35+				
Form	,				
Form	0.05x0.05x1/2x2)2+				
Form	0.05x0.05x1/2x2)2+ (0.65x0.30x2)+ ((0.30				
Form					
Form	(0.65×0.30×2)+ ((0.30	m ²	z.10		
	(0.65x0.30x2)+ {(0.30 x0.35+(0.06+0.06)x0.35 }x2	m ²	Z.10		
	(0.65x0.30x2)+ {(0.30 x0.35+(0.06+0.06)x0.35 }x2	m ²	Z.10		
	(0.65x0.30x2)+ {(0.30 x0.35+(0.06+0.06)x0.35 }x2	m ²	Z.10		
	(0.65x0,30x2)+ ((0.30 x0,35+(0.06+0.06)x0,35		2.10 6 0.085		
RIP rap 4	$(0. 65 \times 0. 30 \times 2) + \{(0. 30 \times 0. 35 + (0. 06 + 0. 06) \times 0. 35 \} \times 2$ + $(\frac{0. 30 + 0. 50}{2} \times 0. 20 + \frac{0. 20 + 0. 25}{2} \times 0. 20 \times 2) \times 0.50$		0.085		
	$(0. 65 \times 0. 30 \times 2) + \{(0. 30 \times 0. 35 + (0. 06 + 0. 06) \times 0. 35 \} \times 2$ + $(\frac{0. 30 + 0. 50}{2} \times 0. 20 + \frac{0. 20 + 0. 25}{2} \times 0. 20 \times 2) \times 0.50$				
RIP rap a	$(0. 65 \times 0. 30 \times 2) + \{(0. 30 \times 0. 35 + (0. 06 + 0. 06) \times 0. 35 \} \times 2$ $(0. 30 + 0. 50 \times 0. 20 + 0. 25 \times 0. 20 \times 2) \times 0. 50$ $W = H = t$ $(0. 05 + 0. 20 \times 2) \times 0. 20 \times 2)$ $W = H = t$		0.085		
RIP rap 4	$(0.65x0.30x2) + ((0.30)x0.35+(0.06+0.06)x0.35)x2(\frac{0.30+0.50}{2} \times 0.20+0.20+0.25}{2} \times 0.20x2)x0.50W H t1 500x300x50\frac{1.50+1.80}{2} \times 0.30x$		0.085		
RIP rap a	$(0. 65 \times 0. 30 \times 2) + \{(0. 30 \times 0. 35 + (0. 06 + 0. 06) \times 0. 35 \} \times 2$ $(0. 30 + 0. 50 \times 0. 20 + 0. 25 \times 0. 20 \times 2) \times 0. 50$ $W = H = t$ $(0. 05 + 0. 20 \times 2) \times 0. 20 \times 2)$ $W = H = t$	m ³	0.085		
RIP rap a	$(0.65x0.30x2) + ((0.30x0.35+(0.06+0.06)x0.35)x2 (\frac{0.30+0.50}{2} x 0.20+\frac{0.20+0.25}{2} x 0.20x2)x0.50W H t500x300x50\frac{1.50+1.60}{2} x0.30xMean Wt$	m ³	0.085 i 0.41		
RIP rap a	$(0.65x0.30x2) + ((0.30x0.35+(0.06+0.06)x0.35)x2 (\frac{0.30+0.50}{2} x 0.20+\frac{0.20+0.25}{2} x 0.20x2)x0.50W H t500x300x50\frac{1.50+1.60}{2} x0.30xMean Wt$	m ³	0.085 i 0.41		


Kinds	Calculated Process	Unit	Quantities	. Total	Remarks
Cobble stone concrete					
	((1.90x1.05)-(0.60x0.55)				
	+(0.05x0.05x1/2x2)}				
	x0.30-(0.06x0.06x0.55				
	x2)	m ³	0.496		
Form	(1.90x1.05-0.60x0.55+				
	0.05x0.05x1/2x2)x2				
	+(1.05x0.30x2)+{(0.30				
	x0.55+(0.06+0.06)x0.55}				
	x2	m ²	4.427		
Rip rap *	$(\frac{0.50+0.70}{2} \times 0.20+$				
	<u>0.30+0.35</u> x0.20x2)x0.80 2	m ³	0,20		
Shuttering board					
	₩ 700 λ ^H 500 × 50		1		
Excavation	Mean Wi 2.80+2.10 2 x 0.50x0.75	L			
	+ *0.20	m ³	1,14		
Backfilling	1.14-(0.50x1.90x0.30)		0.86		
Residual soll	1,14 - 0,86		0.28		

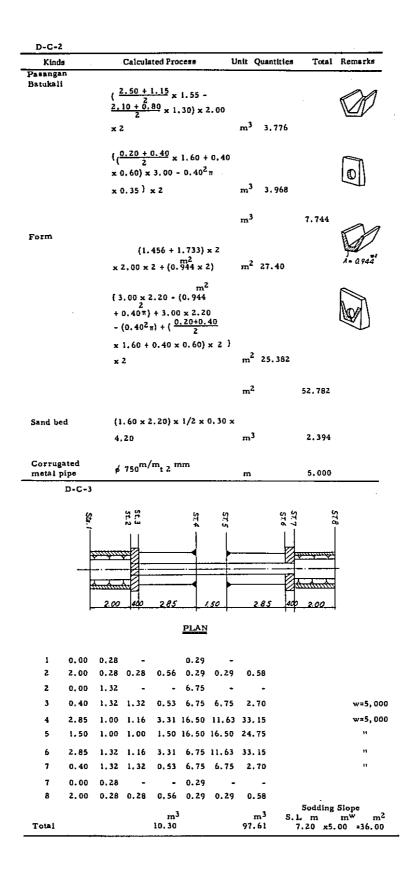
D-C-1



6 7 7 8	0.00 0.40 0.00		1.46	0.58				
6	0.00	1.46	-		0.40	1,20	4, 52	
5 6	3.00 0.60		1.20 1,20		8.00 6.40	8.00 7,20	24.00 4,32	
4	0.60	1,20	1.20	0.72	8.00	7.20	4, 32	
3	0.00	1.20	-	0.20	6.40	-		
2 3	0.00 0.40	1.46	- 1,46	0.58				
1 2	0.00 2.00	1.04 1.04	- 1,04	2.08				

D-C-2

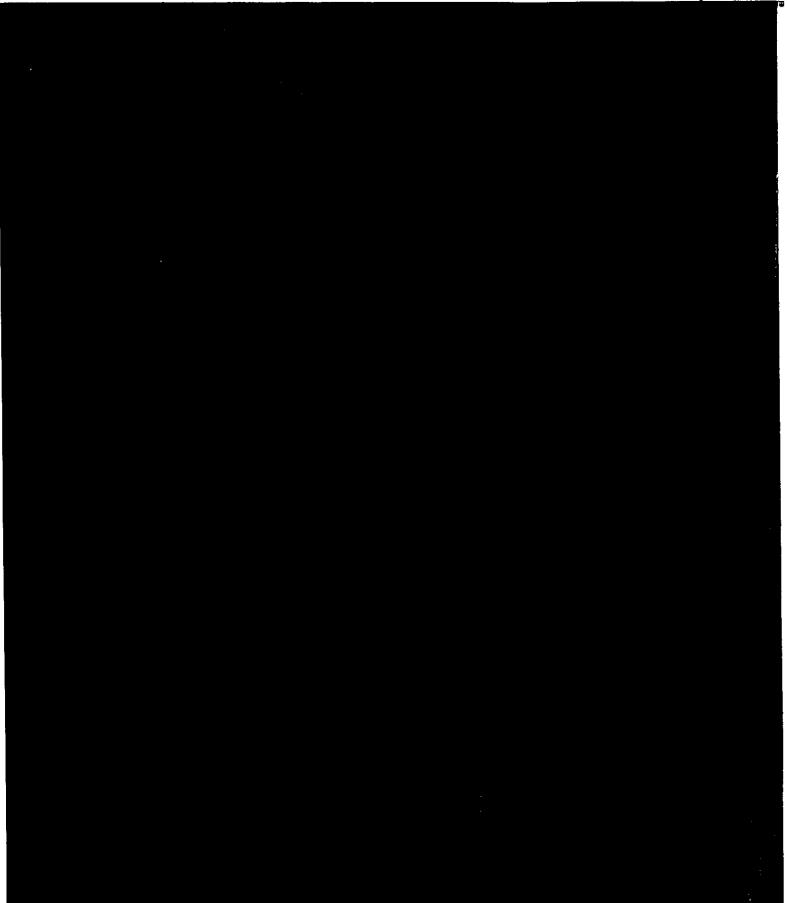
.


PLAN

Total				m ³ 14.72			m ³ 36,60	Sodding Slope $m m m^2$ $3, 6 \times 4.0 = 14.40$
8	2,00	1.88	1.88	3.76	-			
7	0.00	1.88	-		•			
7	0.40	3.75	3.75	1,50	-			a a an an
. 6	0,00	3,75	-		-			
6	1.35	1.00	1.00	1.35	6.00	8.00	10.80	0
5	1.50	1.00	1.00	1.50	10.00	10.00	15.00	н
4	1.35	1.00	1.00	1,35	10.00	8.00	10.80	w≖4,000
3	0.00	1.00	-		6.00			•
3	0.40	3,75	3.75	1,50	-			
2	0.00	3,75	-		-			
2	2.00	1.68	1,88	3.76	-			
1	0.00	1.88	-		•			

A-89

.


,

D-C-3					
Kinds	Calculated Process	Unlt	Quantities	Tota!	Remarks
Pasangan Batukali	(2.92		Ø
	$\left\{ \left(\frac{0.20+0.40}{2} \times 1.40 + 0.60 \times 0.40 \right) \times 2.20 - 0.30^2 \pi \times 0.35 \right\} \times 2$	m ³	2.706		0
		m ³		5.626	
Form	(1.118 + 1,342) x 2 x2.00 x 2 + 0.73 ^{m2} x 2	m ²	21.14		A 0.73 -
	m^{2} { 2.20 x 2.00 - (0.73 + 2 + 0.30 m) + (2.20 x 2.00 -0.30^{2}) + ($\frac{0.20 + 0.40}{2}$		·		
	x 1.40 + 0.40 x 0.60) x 2 } x 2	m²	17.65		
		m²		38.79	
Sand bed	(1.20 + 1.80) x 1/2 x 0.30 x 7.20	m ³	l.	3.24	
Corrugated metal pipe	¢ 600 ^{mm} t 2 ^{mm}	m		8,000	

}

.

LIE