

是遊戲情題資態倚管

公和148年2月

類外段術物對色質圖

国際情	品力事	業団
受入 月日 '84.	3. 1 9	108
登録No.	00858	80,7 45

•

.

.

はじめに

海外技術協力事業団は外務省の委託を受け1972年9月1日から45日間にわたり農林省農政局普及部田中基堆部長を団長とするインドネシアランポン農業開発実施設計調査団をインドネシア国に派遣いたしました。

本実施設計調査は、1972年4月に締結されたインドネシアランポン農業開発実施計画調査 団々長とインドネシア国との間のランポン農業開発計画に関する合意議事録に基づき、ランポン 農業開発計画のうち農業普及センター計画の諸施設、剛場整備等に関する実施設計 および水稲振 興計画における大規模展示農場(Large Demo、Farm) ならびに小規模展示農場(Small

Demo. Farm) の間場整備等に関する実施設計を取りまとめることを目的に実施いたしました。本報告書はこれら調査および実施設計の結果を収まとめたものでありますが、調査団各位の御尽力により所期の目的を十分に果し、今後のランポン農業開発計画実施のため、重要な指針とな

ること、確信いたしております。

御高承のとおり、インドネシア政府はジャワ島での人口稠密化に対処するためスマトラ、カリマンタン、スラウエシなどの外領開発を積極的に推進しております。なかでもスマトラ島の南端に位置するランポン州はジャカルタの経済圏に入る上、広大な未開地を有するため開発の最も高いプライオリティがおかれております。同地域はまた気象、土壌などの自然的条件に思まれ各種農産物の生育に適し農業開発にとって極めて有利な条件を持っております。

わが国はこうしたインドネシア側の事情を十分ふまえかつてない大規模なランポン農業開発計画を取り上げることになりました。当然のこととしてプロジェクトが大規模化すればする程,困難な面も多々生じるものと思われますが,プロジェクト協力に対する一つの試練として全力を傾注してこれに当る覚悟でおります。

同地域の開発につきましては、わが国政府はもとより民間におきましても強い関心と期待を持たれているところ本報告書の挨拶を兼ねまして関係者各位の一層の御指導と御支援をお願いいたします。

最後に、本調査の実施に際し、種々の御協力いただきましたインドネシア政府農業総局、ランポン州農業普及局ならびに関係各機関に対し厚く御礼申し上げます。また本調査団派遣に御協力いただきました外務省、農林省ならびに関係各機関に対し謝意を表するとともに調査団長はじめ団員各位の御苦労に対し御礼申し上げます。

昭和47年12月

海外技術協力事業団 理事長 田 付 景 一 目

第	1	章			序				説	,	••••	••••	****	•••	••••	***	••••	••••	•••	•••		•••	•••	••••	••••	••••	•••	••••	••••	•••	••••	••••	****	••••	••••	••••	••]
	1	-	1			経				槹	•	••••	••••	•••	••••	•••	••••	••••	•••	•••		•••	• • • •	••••	••••	••••	•••	••••	••••	•••	••••	••••	••••	••••	••••	••••	••		j
	1	_	2			調	査	Ø	目	的	•	••••	••••	•••	••••	•••	••••	••••	•••	•••	•••	•••	•••	••••	••••	••••		••••	••••	•••	••••	••••	•••••	••••	••••	••••	••		1
	1	-	3			団	þ	į :	名	簿		••••	••••	•••	••••	••••	••••	•••	•••	•••	•••	•••	• • •	••••	••••	••••	•••	••••	••••	•••	••••	••••	•••••		••••	••••	••		2
	1	-	4			カ	v	Þ	-	۶:	-	۲	等	4	3 \$	存		••••	•••	•••	• • • •	•••	••••	••••	••••	••••	•••	••••	••••	•••	••••	••••	•••••	••••	••••	••••	••		2
	1	-	5			調	査	行	程	表	•	••••	••••	•••	••••	•••	••••	••••	•••	•••	•••	•••	••••	••••	••••	••••	•••	••••	••••	•••	•••	••••	•••••	••••	••••	••••	••		3
第	2	章			計	画	Ø	概	要		••••	••••	••••	•••	••••		••••	••••	•••	•••	•••	•••	• • • •	••••		••••	•••	••••	••••	•••	•••	•••	••••	••••	••••	••••	••		8
	2	-	1			計	重	į :	地	X	•	••••	••••	•••	••••	•••	••••	••••	•••	•••	•••	•••	• • • •	••••	••••	••••	•••	••••	••••	•••	•••	••••	••••	••••	••••	••••	••		8
		2	_	1	-	1		位				置	•	•••	••••	•••	••••	••••	•••	•••	•••	•••	•••	••••	••••	••••	•••	••••	••••	•••	•••	••••	••••	••••	••••	••••	••		8
	2	-	2		也	ン	,	g	-		••••	••••	••••	•••	••••	•••	••••	••••	•••	•••	•••	•••	••••	•••	••••	••••	•••	•	••••	•••	•••	••••	••••	••••	••••	••••	••		8
		2	-	2		1		施	設	7	置	計	画	İ	••	• • • •	••••	••••	•••	•••	•••	•••	••••	•••	••••	•••	•••	••••	••••	•••	•••	••••	••••	••••	••••	••••	••		8
		2		2	-	2		貯	水	池	計	画	•	•••	••••	•••	•••	••••	•••	•••	•••	•••	••••	•••		•••	•••	•••	••••	•••	•••	••••	•••••		••••	••••			8
		2	-	2	-	3		盙	堤	3	計	画		•••	••••	•••	••••	••••	•••	•••	••••	•••	••••	•••	• • • •	•••	•••	•••	••••	•••	•••	••••	••••	••••	• • • •	••••	••		12
		2	-	2	-	4		エ	#	費	概	箅	٤	K	ģ <u>-</u>	Ľ	計	画	i		•••	••••	• • • •	••••	••••	••••	***	••••	••••	•••		••••	••••	••••	,	••••	••		15
	2	_	3		L.	A R	G	E	D	ΕN	10	F	'Α	R	M	•••	•••	••••	•••		• • • •	•••	• • • •		••••	•••	••••	••••	••••	•••		••••				••••			15
		2	-	3	_	1		圃	場	整.	備	計	画	i	••	•••	•••	••••	•••	•••	•••	•••	• • • •		••••	•••	•••	• • • •	• • • •	•••	•••		••••	••••	••••	••••	•		15
		2	-	3	-	2		主	要	I	事	Ø	諸	7	Ġ	•••	•••	••••	•••	•••	•••	•••	••••		••••	•••	***	••••	••••	•••	•••	••••	•••••		,	••••	•	1	19
		2		3	-	3		I.	Ħ	費	概	箅	٤	Ħ	5 .	Ľ	計	画	į	•	•••	•••	••••	•••	••••	•••	•••	•••	••••	•••	•••	••••	••••	••••		••••		2	20
第	3	章			農	業	開	発	也	ン	g	_	整	循	# 1	+	画		•••	•••	•••	•••	••••		••••	•••	•••	•••	••••	•••	•••	••••		••••		••••	••	2	22
	3	-	1			圃	場	} }	Ħ	画	•	••••	••••	•••	• • • •		•••		•••	•••	••••	•••			••••	***	••••	•••	••••	••••	•••	••••	••••	••••		••••		2	22
		3	_	1	_	1		M	埸	Ø	規	模	٤	đ	2 6	T.		••••	•••	•••	• • • •	•••	•••		••••		•••	•••	••••	••••	•••	••••	••••	••••		••••		2	22
		3		1	-	2		施	設	容	盘	Ø	算	ዃ	₹	•••	•••	••••	•••	•••	•••	•••			••••	•••	***	•••	••••	•••	•••		••••	****		••••		2	22
		3	-	1	-	3		水	田	か	ん	が	5	į,	t p	倹	圃	埸	İ		••••		•••		••••	•••	•••	•••	••••	•••	***	••••	••••	••••	1444	****	•	2	23
		3	-	1		4		ボ	ン	プ	規	模	Ø	Ħ	ት 5	Ē		••••	•••	•••	• • • •	•••	•••		••••	•••	••••	•••		•••	•••	••••	•••••	••••		••••	••	2	24
		3		1	_	5		畑	地	か	ん	ぉ	5	迼	t ß	倹	圃	埸	•	••••	••••	•••	•••	••••	••••	•••	• • • •	•••	• • • •	•••	••••	••••	••••	••••	••••		••	2	26
	3	_	2			水	源	į	施	設	• •	••••	••••	•••	••••	••••	•••	••••	•••	•••	••••	•••	•••	•••	••••	•••	••••	•••	••••	••••	••••	••••				••••	•	3	30
		3	_	2	_	1		地	形	及	v	地	質		••		•••	••••		•••	••••	•••	•••	••••	••••	•••	••••	•••	••••	••••	•••	••••		• • • • •		••••		3	10
		3		2	_	2		調	査	及	v	試	験	和	5 5	Ł		••••	• • •		••••	•••	•••	••••	••••	•••	••••	•••	••••	••••	••••	••••		••••	****	••••	•	3	12
		3	-	2		3		ø	ᇫ	軸	及	v	Þ.	L		Ģ.	1	ブ		•	••••	•••	•••	••••	••••	•••	••••	•••	••••	···	••••	••••	••••		••••	••••	••	3	8
		3	_	2		4		設	計	洪	水	畳	Ø	Ä	. 5	Ē			•••	•••	• • • •	•••	•••	•••	••••	•••	••••	•••	••••	••••	••••	••••	••••	••••		••••		3	9
		3	_	2		5		堤	体	規	模	Ø	决	定	3	•••	••••	***	•••	• • • •	•••	•••	•••	••••	••••	•••	••••	• • • •	•••	••••	••••	••••	••••	••••	••••		•	4	
		3	_	2		6		堤	体	Ø	設	計		• • • •		••••	•••	••••	•••	•••	• • • •	•••	•••	••••	••••	•••	••••	•••	••••	••••	••••	••••	••••	••••	••••	••••	••	5	
		3		2		7		余	水	吐	Ø	設	計		•••	••••	••••	•••	• • • •	•••	••••	•••	•••	••••	••••	•••	••••	•	••••	•••	••••	••••	••••	••••		••••	•	6	

										, ,	5 -																								س بے
	3																																		65
		3		3	-	1																													65
		3	-	3	-	2																													67
		3	-	3	-	3		上	水	道	Ø	水	質	試	験	į	•••	• • • • •	••••		••••	••••	••••			•••••	••••	•••••	• • • • •	*****	·•••	••••		(58
鄒	4	乖			L.	A F	≀G.	E	D.	ΕN	10	— F	٦A	RI	VI		•••	••••	••••			••••	••••	••••	••••	••••	••••	••••			••••			(6 9
	4	_	1				埸	整.	備	計	画	Ø	目	的	Ø	現	Ľ	兄	••		••••	••••	•••	••••		••••	••••	••••	••••		••••	••••		(69
		4	_	1		1		郡	菜	Ø	目	的		••••	••••		•••	••••	••••	••••	••••	•••••	•••	••••	••••	••••	****	••••	••••	•••••	••••	••••		(69
		4	_	1	_	2		地	区	Ø	现	況	٠.	••••	••••	••••	•••	••••	•••	••••	••••	••••	••••	••••		••••	••••	••••	••••	•••••	••••	••••		(69
	4	_	2			圃	場	整.	備	計	画	•••	••••	••••	••••	••••	•••		••••	••••	••••	••••	••••	••••		••••		••••	••••		••••	••••		•	71
		4	_	2	_	1		水	田	区	画	Ø	形	妆		大	: 7	<u> </u>	ž.	••		••••	••••	••••		••••		••••	••••	•••••	••••			•	72
		4	_	2	_	2		道	路	.	計	硱		••••	••••	••••	•••		••••	••••	••••	••••	••••	••••		••••	••••	••••	••••	•••••				•	72
		4	_	2	_	3		整		地		I		••••		••••	•••	••••	••••	• • • •	••••	••••	••••	••••	••••	••••	••••	••••		•••••	••••			•	74
		4		2	_	4		用		水		路		• • • •	••••		•••	••••	••••		••••		••••	••••		••••	••••	****		•••••	••••	••••			74
		4	_	2	_	5		排				水		••••	••••		•••	••••	••••	••••	••••	••••	••••	••••		••••			••••	•••••	••••	••••		į	80
		4	_	2	_	6		水	路	構	造	物	, ,	••••	••••		•••		••••		••••	••••	••••	••••	•••••	••••	••••			•••••	••••			;	80
赛	5	牽			S	M A	ΑL	L	D	ΕN	ИО	-1	F A	.R	M		•••		• • • •	,, .,	,,	••••	,,	••••	••••	••••	••••		••••	•••••		••••		1	83
	5	-	1			目	的	及	V.	踏	查	力	到	ŀ	•••	••••	•••	••••	• • • •	• • • •	••••	••••	••••	••••	••••	••••	••••	••••	••••	•••••	,	•••••		į	83
	5	-	2			現	ļ		況				••••	••••	••••	••••	•••	••••	••••	••••	••••	••••	••••	••••	•••••	••••	••••	••••	••••	•••••		••••		ł	83
	5	-	3			土	地	基	盤	整	備	jo	推	金	t	••••	•••	••••	••••	••••	••••		••••	••••	• • • • •	••••		••••	•••••	•••••	****	••••		1	86
第	6	章			施	: <u>-</u>	Г	計	画		••••	••••	••••	••••	••••		•••	••••	••••	••••	••••	••••	••••	••••	•••••	••••	••••	••••	•••••	••••		••••		ç	97
	6	-	1			施	_	Ε.	計	曲	i ·	••••	••••	••••	••••	••••	•••	••••	••••	••••	•••	••••	••••	••••	••••	•••••	••••	••••	•••••		••••	•••••		9	97
		6	_	1	_	1		水	B	施	i	色化	施	i]	日言	t i	ũ	•••	••••	••••	••••	••••	••••		••••	•••••		••••	•••••	••••	••••	••••		•	97
		6	-	1	_	2		活	験	I	場	g 0	施	i]	二 君	十画	ũ	•••	••••	••••	•••	••••	••••	••••	••••	•••••	••••	••••	••••	••••		••••		10	10
		6	-	1	_	3		ラ	_	**	・デ	f -E	: 7	, 7	r –	- 4	. (Ø	施	エ	計	画	••	••••	••••	••••	••••	••••	••••	•••••	••••	••••		10	01
	6	_	2			仕	:	様	:	書	F	••••	••••	••••	••••	••••	•••	••••	•••	••••	•••	••••	••••	••••	••••	•••••	••••	••••	••••	•••••	•••••	••••		10	04
		6	-	2		1		J	即	仕	: 朸	建	ŧ		••••	••••	• • •	••••	••••	•••	•••	••••	••••	••••	• • • • •	••••	••••	••••	• • • • •		••••	••••		10	04
		6	~	2	-	2		機	柚	t H	持	存程	ŧ	••••				••••	••••		***	••••	***	••••	••••	••••	****	••••	••••	•••••	••••	•••••		10	06
第	, 7	章	:		資	į			*	ł	•••	••••	••••	••••	****	••••	•••		****	•••	••••	••••	••••			••••	••••	••••	••••		••••	••••		1	15
第	8	種	:		ill	;	業	į	費	ć		••••	• • • • •	••••	••••		•••	••••	••••	••••	••••		• • • • •	••••	••••	•••••	••••	••••	••••	•••••	••••	•••••	別	J	fff)
	8	-	1			B	l 🖺	· il	· அ	围	F		••••	••••	••••	••••	•••	••••	••••	•••	••••		••••		••••	****	••••	••••	••••		••••			"	
	8		2			ij	菜	受	Ø	移	t JE	Į	•••	••••	••••	••••	•••	••••	••••	••••	••••	••••	••••	• • • • •	••••	•••••	••••	••••	••••	•••••	•••••	•••••		#	

第1章 序 説

1-1 経 緯

- (1) インドネシャ経済振興並びにジャワ島の人口細密化対策として外領開発、食糧基地設定の 必要性から、1971年6月1政府、政府間交渉がもたれ、中部ランポンの農業開発と関連 プロジェクトが総合的に取り上げられた。
- (2) 上記要請を受け、1972年8月第1次調査団によりランポン地域の農業開発協力の基本 構想を検討するため基礎調査を実施した。

調査の結果、この地域は自然条件等に恵まれ、開発の可能性が高く総合的な協力の対象地域として有望であると判断され関係各省とも協議の上、次の基本構想に基づき協力することが望ましい旨の方針が打ち出された。

- ① 農業開発センター:ランポン州全体の農業開発の拠点とする。
- ② 水田地帯の農村振興計画:中部ランポンの水田地帯の振興を計る。
- ③ 畑地帯の振興計画:中部ランポンの畑地帯の振興を計る。
- (3) 1972年3月上記開発協力の基本構想につき、現地の実情を調査し、更にイ政府とも協議し、協力計画の細部を検討するため第2次調査を実施した。

調査の結果、本協力計画の中核をなす農業普及センターの建物及び圃場とDemonstration Farm の細部実施設計を樹立することが緊要であることが確認された。

1-2 調査団の目的

第2次調査の結果に基づき、1政府の実施するタニマムール計画に即応して テギネネンに農業普及センターを設置し、種々の稲作、畑作技術の試験及び普及員、 Key Farmer の訓練を行うと共にトトカトンの大規模な D. Farm と他町村の小規模な D. Farm を設置し、新しい営農技術の普及、指導、農民の組織造り等の技術協力を行い、 農業経営の安定、所得向上を計り、併せて周辺地域農業の生活向上に資するため、土地等 基盤整備事業の細部実施設計を行う。即ち

- ① 農業普及センター
 - (a) 施設配置計画

(施設の種別,規模,数量,配置,建物構造,敷地造成)

(b) 貯水池計画

(流域,水文,貯水池,締切堰堤並びに付帯施設)

(c) 圃場計画

(水田, 畑別規模, 配置, 造成計画, ポンプ, Farm Pond 用排水, 農道)

(d) 工事費積算と施工計画

- (e) 以上のための調査, 測量, 設計
- ② Large Demonstration Farm
 - (a) 圃場整備計画

(現況の施設, 地目, 区画状況, 計画の農道, 用水, 区画割造成)

(b) 主要工事の諸元・工法

(用水,水理解析,断面構造,取水,分水,農道規模,構造,配置)

- (c) 工事費積算と施工計画
- (d) 以上のための調査, 測量, 設計
- ③ Small Demonstration Farm7 地区の土地基盤整備に関する調査,診断

1-3 団 員 名 簿

B	Ę	名		業 務 :	所 属
田	中	基	堆	団 長 農林	省農政局普及部長·
. 平	野	勇	<u> </u>	副 団 長 関東	農政局設計課 設計官
Œ	内		堯	3' , - 1	.C. A.農業協力部
西	岡		公	圃 場 整 備 JII	RCO技術部長
平	井	逵 '	之	構造物設計	改計 課
佐	藤		武	水路設計 /	<i>"</i>
武	石		茂	農道 設計	<i>"</i>
根	Ħ	順	=	水 文 /	"
渡	辺	登	生	涉 外 O. T	C. C. A 農業協力部
(協)杉	田秀	雄	積算,施工 JII	RCO設計 課
	J	以 」	<u>t</u> 1	0 名	

1-4 Counter-parts 等名簿

(A) Counterparts

a. Ir. Nusjirwan Zen

Chief of Dinas Pertanian, Lampung

b. Thamrih Bastari

Secondary of Dinas Pertanian, Lampung

c. Ir. Mattjik Gani

Staff of Dinas Pertanian, Lampung

d. Ir. Achmad Sjarnadi, h.m. Staff of Dinas Pertanian, Lampung

e. Ir. Kamaludin Sipajung

Staff of Dinas Pertanian, Lampung

f. Ir. Muzakir Noor

Staff of Dinas Pertanian, Lampung

g. Ir. Sukirno

Chief of Tegineneng Center

h. Ir. Sachruddin

Staff of Tegineneng Center

i. S. Sochadies B.I.E.

Chief of Irrigation Section D. P. U. Lampung

j. Ir. Rubini Jusuf

Staff of Irrigation Section D. P. U. Lampung

k. Mr. A. Hafied Gani B.I.E.

Staff of D. P. U. Lampung Tengah

(B) Cooperators:

- a. Dr. Nojima, (Expert from Japan)
- b. Mr. Ohata, (Expert from Japan)

c. Solrman Simin

Kapara Desa Totokaton Extension Worker, Kajamatan Punggur

d. Mathan Charman

Extension Worker, Kajamatan Punggur

1-5 調 査 行 程

ı——			
	Ť	日	作業内容
月	日	曜	
9	1	金	東京羽田発JAL711号(9:50 A.M)→Djakarte
;			
"	2	土	OTCA 挨拶 杉山所長打合せ
			大使館挨拶 杉本書記官打合せ
			中央政府農業総局挨拶 スケンドロ スマントリー打合せ
"	3	日	チヘヤ地区(菅生団長他)他事例地区調査聴取
"	4	月	農業総局細部打合せ スケンドロ スマントリー, 野島,
			杉本氏
			D. P. U河川総局がんがい局長 ウスマン挨拶
٠,,,	5	火	Tadjum地区(川俣,金井氏)聴取
		!	Djakarte 発(14時20分)→ Tanjung Karang
			B anti 空港着(16時) 野島, 大畠氏打合せ
"	6	水	Lampung 州農業普及局挨拶 次長Thamrih打合せ
			〃 D. P. U 挨拶 かんがい課長,
			スカディス打合せ
"	7	木	Tanjung Karang → Metro へ
			中部1県挨拶, 打合せ 中央政府農業総局
			Sjachrum 同行
			Punggur 郡挨挨拶打合せ 部長 マタンチャーマン

			
_			作業内容
月 9		曜	Totokaton 村長挨拶打合せ
		"	Tegineneng Center 挨拶打合せ 所長 Skirno Sjarif
	,		註 L. D. F及びCenter の予備踏査も実施
"	8	金	センター Base line 境界設定 準水地域踏査
"	9	±	センター測量(杉田,武石),平板他
			L. D. F (残り全員)
	,		境界設定,トラバース杭,方眼図根点杭設置
ff	10	且	センター測量(杉田,武石)締切堤縦横断他
			L. D. F (残り全員)
			トラバース測量,図根点設定測量
,,	11	月	センター測量(杉田,武石)圃場地区平板他
		1	L. D. F (残り全員)
			トラバース測量,水準測量,図根点設定測量
			センター計画についてD. P. U 構想検討,
	,		Sjachrum, Mattjik gani, Kamaluddin
. "	12	火	センター測量(杉田,武石)建物敷地測量
1			L. D. F (残り全員)
			トラバース測量,水準測量
"	13	水	測量成果整備計算, トラバー図根線, ブロット
"	14	木	センター測量(杉田,武石)池敷中心線設定
Ì	l		L. D. F 南部トラバー, 水準測量
"	15	金	センター測量
Ì			他敷測量-满水敷測定,流域設定踏查
ļ	•		L. D. F 各筆測量
"	16	土	センター 諸元 調査
ļ	Ì	}	池敷透水性,地質地属,圃場內鉛直慘透,
1	1		土屠他調 <u>套</u>
ſ			L. D. F 各筆測量
"	17	日	センター
_		[]	L. D. F トラバー 他計算
"	18	月~	センター 平板測量, 圃場土性並びに池敷追加孔調査
			L. D. F 平板測量, 各筆調查

	j	月	日	
	月	日	曜	作業内容
	9	19	火	センター 平板測量
				L. D. F 土性調查,開田地鉛直惨透3所調查
				溪流流量観測, 既成田 N 型減 水深設置
				平板測量, 各筆調査
	#	20	水	センター 水準測量 池敷軟弱部分追加孔掘削
				L. D. F 平板測量 各雜調查
				取水系統並びに用水断面調査
	#	21	木	センター 水準測量 池敷掘削孔調査
				L. D. F 平板測量 各筆調查
				既成用区面,畦畔分水,形憩調査
	#	22	金	センター 水準測量 圃場造成土工
				L. D. F 平板測量 各筆調查
	"	23	土	センター 満水位標示板設量 (Leveling)
ļ				L. D. F 平板測量 各筆調查
				取水工取水位, 断面, 勾配等取水施設調查
	#	24	日	センター 測量成果整備
				L. D. F 測量, 調査整備
	#	25	月	センター 貯水池諸元検討
				L. D. F 平板測量, 各筆調查
				L 州農業総局 同 D. P. U 打合せ
	#	26	火	センター 貯水池並に付帯施設概定設計
				L. D. F 平板測量 各筆調查
				概略整備構想 Kapara Desa 協議
	"	27	水	センター 圃場 基本設計
				L. D. F 平板測量 各筆水準測量
				圃 場整備 マスタープラン 作成
	"	28	木	センター 貯水池容量,再検討整備,給配水概定設計
	İ			L. D. F 各筆水準測量
			}	計画用水系統現地照合
	"	29	金	センター 土工計算
				L. D. F 各筆水準測量
				道路計画調査
				Kapara Desaと全体構想協議

.

	 月	-	
月	1	曜	作業内容
9	30	土	センター 畑かん施設,設計
	ĺ	ĺ	L. D. F 主要工事, 計画路線測量
{			用水赭元,資料整備
10.	1	日	センター 測量,調査データー整備
			L. D. F 測量, 調査データー整備
"	2	月	センター 畑地追加圃場概定踏査
		İ	L. D. F 主要工事計画路線測量
			区画割設定
			S. D. F 7ヶ所概定踏査
"	3	火	基地移動 Metro → T. Karang
	<u> </u>		センター 追加圃場境界設定
<i>"</i>	4	水	センター] 全体協議 要約案検討
			L. D. F
			S. D. F 平板測量 (Trimurdjo)
#	5	木	センター 細部設計
			L. D. F 細部設計
			S. D. F 平板測量 (Trimurdjo)
"	6	金	S. D. F 平板測量 (Punggur)
			L州D. P. Uかんがい課Rubini 氏とDam Center に
			ついて打合せ
"	7	±	S. D. F 平板測量 (Punggur)
}			県,郡,村中間報告打合せのためMetro 県庁出向(メト
		_	ロ町)知事不在のため後日打合せとする。
"	8		o団長 Djakarta 到着 出迎え
"	9	月	o 団長 Djakarta → L州入り
,,	10	火	O Metro 化子隐如用 那包 杜尼西土思和上一西。
"			o Metro にて県知事,郡長,村長に中間報告了解を得た o 団長 現地調査 (Totokaton, Tegineneng,他)
			o L州 Inspector Nusjirwan 他と打合せ並びに夕
			食会

月	Ħ	76. MHz. at-a 0777
月	日曜	作
10 1	1 水	o Lampung Propinsi Inspector Nusjirwan と打
		合せ(施設配置,規模他)
		o 団長 L州→ジャカルタ 大使館報告 公使夕食会
# 1	2 木	o 大使館午前中打合せ
		o 中央政府農業総局サディキン局長に報告,了解を得る
// 1	3 金	o 中央政府農業総局渉外課長スケンドロ他担当係員年次
		別事業計画他,細部事業計画説明,検討協議 了解
# 1	4 土	ο 帰国準備(並びに出荷手続き)
		o Cathey Paciffic CX-550 Djakarta
		(7:00A. M → Tokyo 10:30 P. M)

第2章 計画の概要

2-1 計画地区

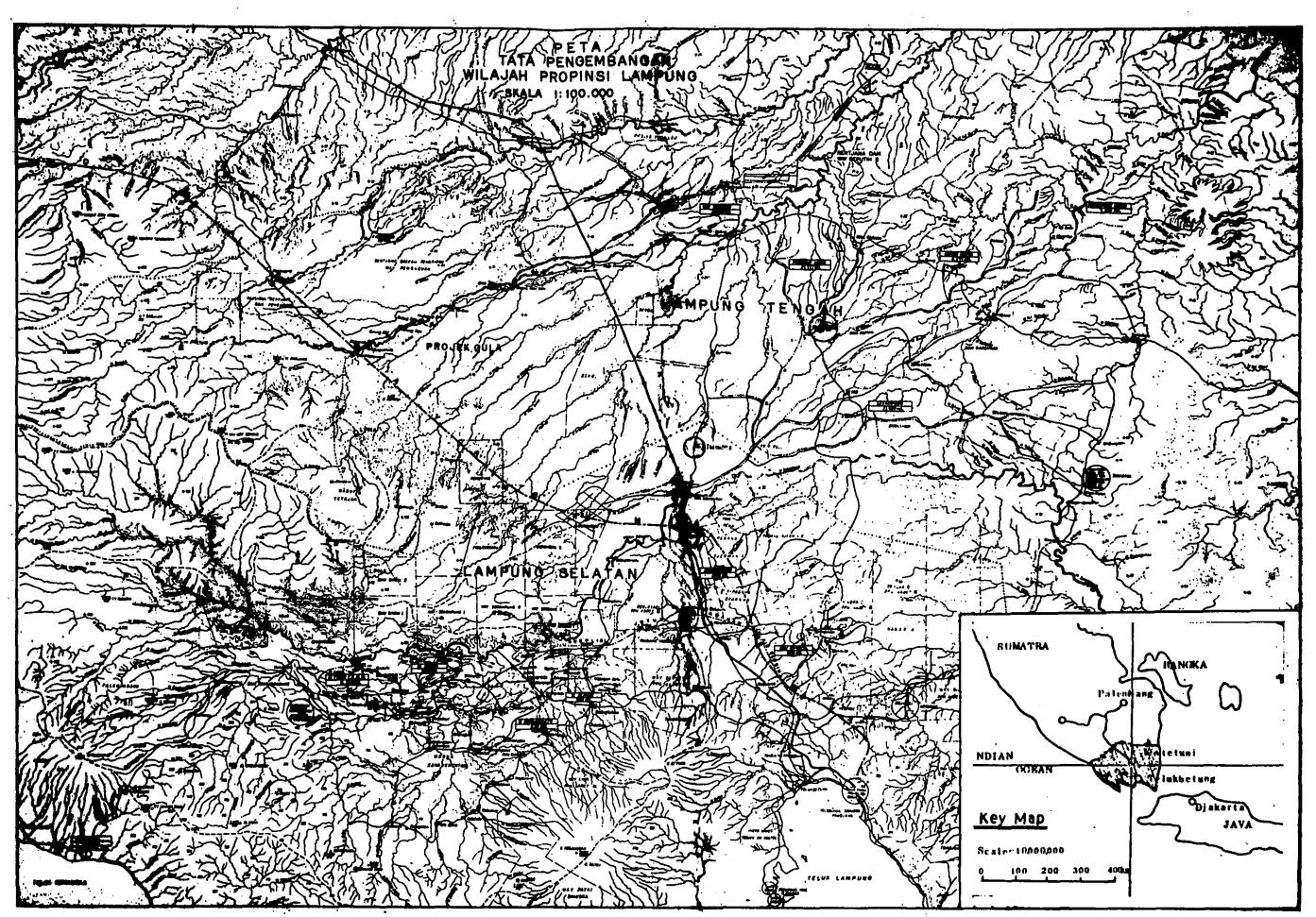
2-1-1 位 置

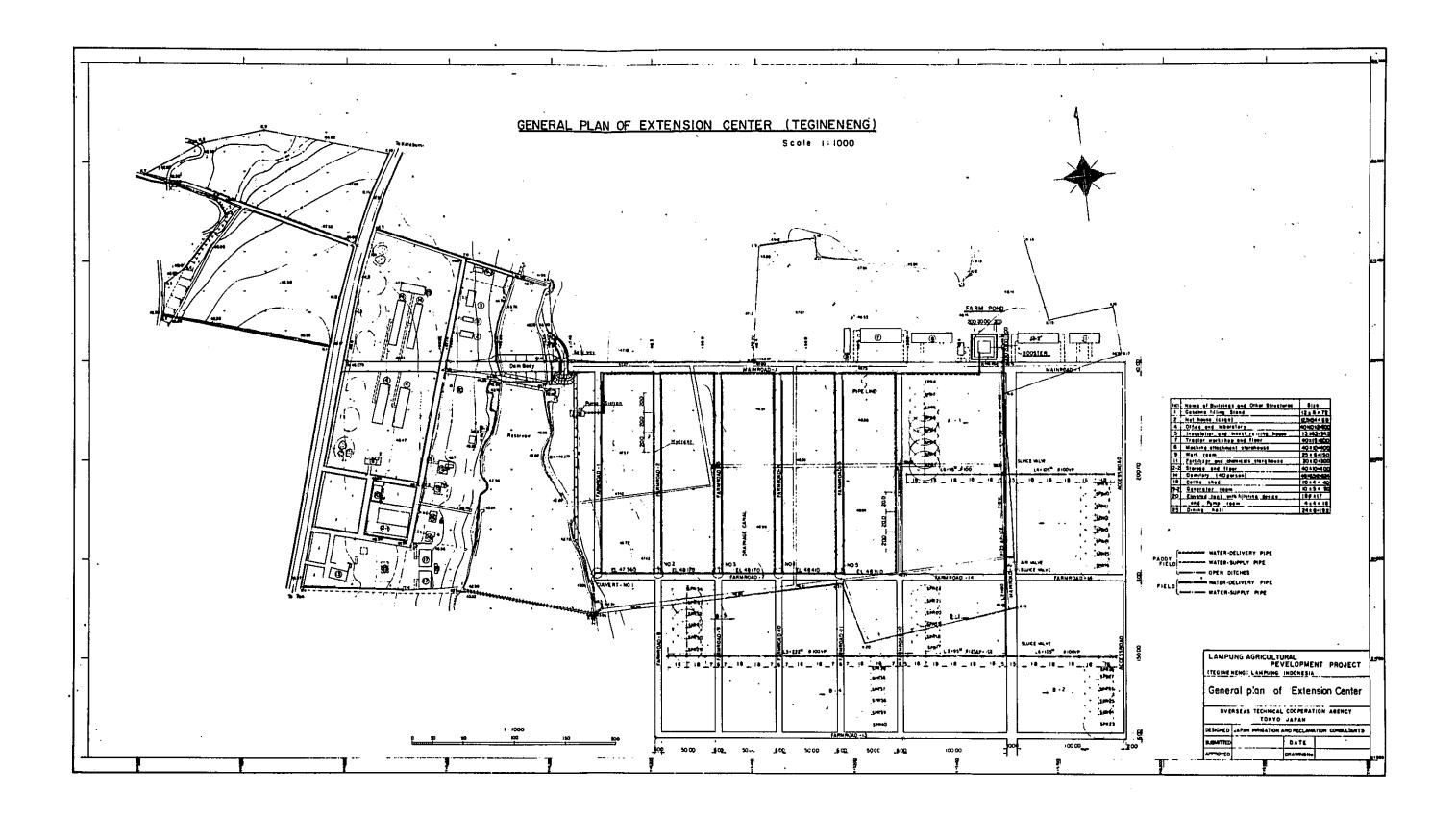
ランポン農業開発の拠点農業開発センター (The Agricultural Extension Center with Extension Farm)は、スマトラ島最南端のランポン州にあり、Fig 1 の位置図に見る如く州都TANDJUN KARANG の北方3 6 km地点のTEGINENENGにあり、現在はランポン州政府の採種農場となっている。一方の拠点 Large Scale Demo-Farm は、上記の農業開発センターより北東15km地点のPUNGGUR郡、TOTOKATON村に位置している。TOTOKATON村は現在公共事業省水資局で実施中のPunggur Utara Irrigation Project の区域内にあり、上記Project の幹線水路のBPU10 の地点から分水される第3支線水路掛りの118haの地域である。

2-2 農業開発センター

ランポン州の農業開発に必要な事項(適作目の選定,優良品種の導入,農業の機械等に必要な試験,研究,農業の展示及技術指導,普及員(Extension worker)及び中核農民(Key-farmer) に対する研修,種子の増殖,配布等)の訓練を本センターで行うため次の諸施設を設置する。

2-2-1 建物配置計画


上記の目的の為, 既存の施設の有効利用を計り, 次の様な施設規模の内容とし, その配置については別添 Fig 2-2 の様な計画とした。


2-2-2 貯水池計画

概要-試験,研究並びに訓練展示のための圃場は後述する様に地区東方台地に水田5 ha, 畑地10 ha(主に畑地かんがい)を新設造成することとしたが,水源流量並に降雨量よりして雨期の一部と乾期には全面的に用水不足を余儀なくされるので現地谷地田を貫流している建地の最狭窄部を締切り必要水量(総貯水量 210,000 m)を確保するものである。

貯水池地点の設定-Fig2-2に見る如く築堤費,貯水効率,圃場揚水,築堤地点地質状況,水没関係,築堤材料,施工計画等を綜合検討して原位置を選定した。地形,地質についてはFig3-5に示す通りである。

貯水池容量-①基準年: %確率年とし貯水池容量は決定的因子の乾期降雨について算定し

1966年を採用した。

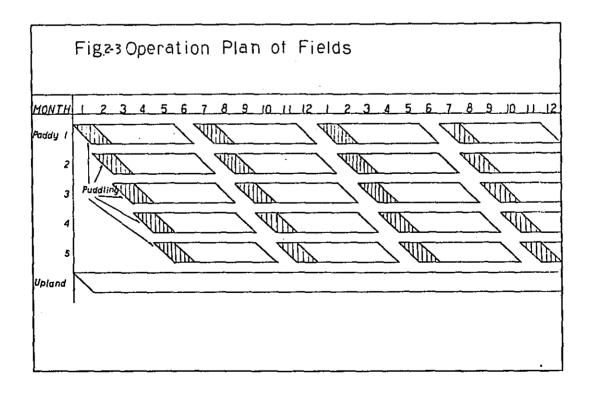
②地区内用水量:生育期別減水深(鉛直浸透+葉水面蒸発散)を地区内2ヶ所の実測値を基礎に、前期16~18 mm, 乾期12~13 mmとする。なお代掻水については130 mm期間/ha/dayとする。水田は各1ヶ月のTime ragを設定し、畑灌用水については6~8 mm, 有効降雨5 mm以上各upper Limitまでの80%とした。

ダム施設の諸元及び内容は次表の如くである。

ダム計画諸元表

位	置	Tegineneng
河	川名	沼 沢 地
9.	ム 名	AEC貯水池
#	ム 型 式	均 一 型
基	遊 地 盤	砂利交り粘土
	流域面積	$A = 2.73 km^2$
水 文	余水吐基準雨量	$\gamma t = 185 \text{ mm/day} (1/100) O 1.2 倍= 222 \text{ mm/day}$
	仮排水路 基準雨量	
	総貯水量	$V = 2 \ 1 \ 0, \ 0 \ 0 \ m^3$
	堆 砂 量	$V \le n = 6,3 \ 2 \ 0 \ m^3$
貯水池	有効貯水量	$V w = 1 6 4, 290 m^2 (= 164, 000 m^2)$
NJ /K IE	満 水 面 積	$A w = 9 5,4 0 0 m^2 = 0.0 9 5 km^2$
	貯 水 位	HWL=45.75m FWL=45.00m DWL=43.00m
	利用水深	H w = 2.0 0 m
	堤 高	H o = 6, 1 0 0 m
	堤 長	$L_0 = 1 \ 2.400 m$
	提 頂 巾	B c = 1 0.000 m
堤 体	斜面傾度	上流侧=1:2.0 下流侧=1:1.8
%E 11**	仮締切堤盛土	- m²
	堤体積 本 堤 盛 土	6, 5 2 0. 0 0 m ³
4	英 体質 本 英 ドレーン	– nt
	B†	6, 5 2 0. 0 0 m ³
	余水 吐型 式	越流堰型式余水吐
余 水 吐	計画 洪水 量	Q s = 1 8.9 m^2 /sec (q=6,93 m^2 /sec/km ²)
* * *	越 流 堰 長	B s = 2 0.0 0 m
	越流水深	H s = 0.75 m
	取水型式	ポンプ(片吸込渦巻ポンプ 2台)
取水設備	最大取水量	0.0 1·5 m / 8 / 台× 2 台× 1 0 円
	常時取水量	
仮排水路	型式	既設ポンプ及び既設パイプ φ 2 0 0 mm
	仮 排 水 量	·

2-2-3 試験圃場計画


試験圃場の機能は前記の試験研究他数項目の事項に対応する必要上恒久的な圃区施設と 可変的な耕区の構成が妥当である。

即ち、耕区については将来の変化に対応出来る様適宜運営することとし、圃区構成についてはFig2-2の如く設計した。

(2) 用 水 量

水田作付は施設の利用効率の観点より Fig 2-3 により作況バターンを設定し、減水 深並びに畑かん等の用水量については、インドネシア国かんがい用水量基準特にランポン 州既プロジェクト計画基準を参考にし、実測値を加味して算出した。

施設容量: Pump 送水管は18 hr容量とし水田部代掻時24 hr, 普通時18 hr, 畑かん圃場作業15 hrの各灌水時間とし代掻用水量を以って施設容量を概定し普通時はその余力を一部畑かんに充当し、不足についてはファームポンドに事前貯溜するものとする。

試験圃場の諸施設は次表の如くである。

試験圃場施設一覧表

施設名	工 積	数量単	位 備 考
	試験 圃場	150 h	水田かんがい圃場 5 ha a 畑地かんがい圃場 1 0 ha
	幹級農道	545 7	道路幅員 10 m
圃場整備	支 線 農 道	2,866	// 6 m
	小排水路	1,000	底幅 0.3 m 深さ 0.5 m 側法 1:1
	排水路	280	# 0.5 # 0.5 # #
			口径:100 mm 流量:0.9 ml/m/台
			全揚程: 18 m
水田かんがい用	ポップ	2	原動機: ディゼルエンザン 10Ps
施 . 設			機 種:重油機関Vベルト
ł			駆 動:片吸込禍巻ポンプ
į	ポンプハウス	28 7	₹ 構 造:レンガ造り
		1	1 管 種:水道用塩化ビニール
	送 水 管	382	管 径:150mm
ĺ	給 水管	1,000 7	送水管と同じ
į	かんすい装置	50	■ 給水栓 (50¢)
			貯水量: 330 m²
	ファームポンド	1 /	所 構 造:平面26m×26mパサンガンパカリ張
			口 径: 125 mm 流 量: 1.32㎡/m
			全場程:53 m
	加圧ポンプ	1	☆ 原動機 * ディゼルエンヂン 40Ps
畑地かんがい用			機 種:横軸多段渦巻ポンプ エンデン直結
施 設			管 種:石綿セメント管
	送 水 管	305	n 管径, 管長: 150 ø ℓ1=125 mm
}			1 2 5 φ
			管 種:水道用硬質塩化ビニールパイプ
			管径, 管長: ø 100
	給 水 管	622	l3+l4+l5+l6=527
Ì		,	管 種:石綿セメント管
	1		管径,管長:125 ¢
			£5 = 95
•			種 類:TS-30型相当
	スプリンクラー	_	· ノズルサイズ 3/16" ×3/32"
J	~ / 1 / / 2 / 2 -	6	ト 8本立(dist) 2セット
			6本立(dist) 4セット

					F	7	Z-4	•	<u>C</u>	onst	ruci	tion	S	ched	ule	·	Ąકા	icul	tura	11 De	evelo	ob w	ent	Ç€	enter	·. =	٠.										
	l t e	m	Amount	=	.		st y	/ear	,			21	ìd	year				3	rd .	: yea!	 r			. 4	4 th				}	. 5	th	yser					
}				Uni	2	4	6	1 8	10	12	2	4	6	3	10	12	2	4	6	8	10	12	2	4	. 6	. E	10	12	2	4	6	8	10	12			
	Surta	aratory rks ce soil oving	1586						!			}-						;		Ì					1			! 	; ;	1							
	1	ovina vation	600	<u> </u>					-			!				:			;					!	•			1	1					uts j			
	Emba	nkment		,,	_						-	!		! 4					į				!	1	:	ļ		í Í				: -					
	Spill Exca	va i iou	1080	7								, ,	Н	:					İ					į 1.			!	ļ				, .		;			
ן מ	•	<u>ankment</u>	170	"		j								,	4	:	i								; •	!	-	:			; 		, 				
		Pitchire		″					1		•		Η,	, , : : _a				1			!	!		{	•	;	•				.l	**************				}	
C. C.	Maso Brid		134	, sou	İ				;	ļ									:	!	!					}	4	ļ			4						
	Intak			_ <u></u> .		-						-		' ' :				1	į.			٠.	; !	:		· ·	!	; ·	•		•		. :			·••• }	
!		House	28	m²					•	•				1		•	**	:					• • • · · · · · · · · · · · · · · · · ·		j					 	****			1			
	Pump)	2_	SQU				•		•				. i		,			•	j			<u>;</u>		•	:		! !				:					
_ I _	Delive	ery Pipe ine for ind	442 900	m;	. ‡	!	:				:			,		4							<u> </u>	:	. ;	:	1		:		Agent of						···
	Farm		<u>900</u> 1	nos .	1	. (:			!	•	•		i :	, -	i		i I		i			: [-	÷	1		•		! 	· · · · · ·	: 	j				
	Baodor	Pump	1		!	1				:		; !)_ i	:			:	 		-	• ••	-; .1							·	!				
1		ine for		m			1							}		4		1							,	· ·	<u> </u>	† :	†								
	Across	gecanal		3		1								·			i			i						•		:	:	1			i				
	Access emban Farm		<u>545</u> 2866	m		·			•		•	: . ;)				1	:				•			÷	ì) ;					•			•	;	
10 m	·		10,570	m ^a	;]		1				ļ !		·		•i			į			! !					- -		 	.' 		·•	د دد سسر ه د	<u> </u> 				· ^
	Net h	ouse	68	m ^z	-	į				1				;	,	•	-	:	—	<u> </u>						:	1			•	• • •	•					•
	Dry 11	1001	72	"	-						!			i ;			:			†				•		:			:			:					
0		and ration lation	800	"	1 ∫		!			•	;	, }-			-		:	1												i		• • • • •					
11,00	Works	use nop	95			; 		-						·		•	!				,	-		!	÷			••	1			·					~
- 1		root ne torage	600 400	"	,	į	1		• •		; }	, r	·		1 ——	ĺ	!	:	:			•	1			÷	1				• •			:		}	
1 6	Fortili	izer Phouse :	300	,					1	!	i !)		·i		ŧ.			:	[;			<u> </u>	•	•		:		,		•					
,	Storage	ge and	600	.,										: :			· !	1	-		4			: 1			-l	i	:	1					1		
1			630			-				 	}	-				1	}	-	i		! :			<u> </u>			•		1	;							
٥	Gener Gener	e Shed		"	1	ļ	,							L		1	•	-	1	:				:		i	1		; ;	;							
		room	50 ; 150	"		j		•]	:			1	:	!	_	<u> </u>				:		t i	•			İ	·			·	•	. ;	
	; gasol	ine sta	nd 68	10	, {	į	į	İ	İ		_		ļ			į	1			-	;						:			!		:	;	oh	023	\ \ \	~ .
		Loom	. 16	n	}	1]		-						-	<u>i</u>				<u> </u>	i				!								

2-2-4 工事費の概算と施工計画

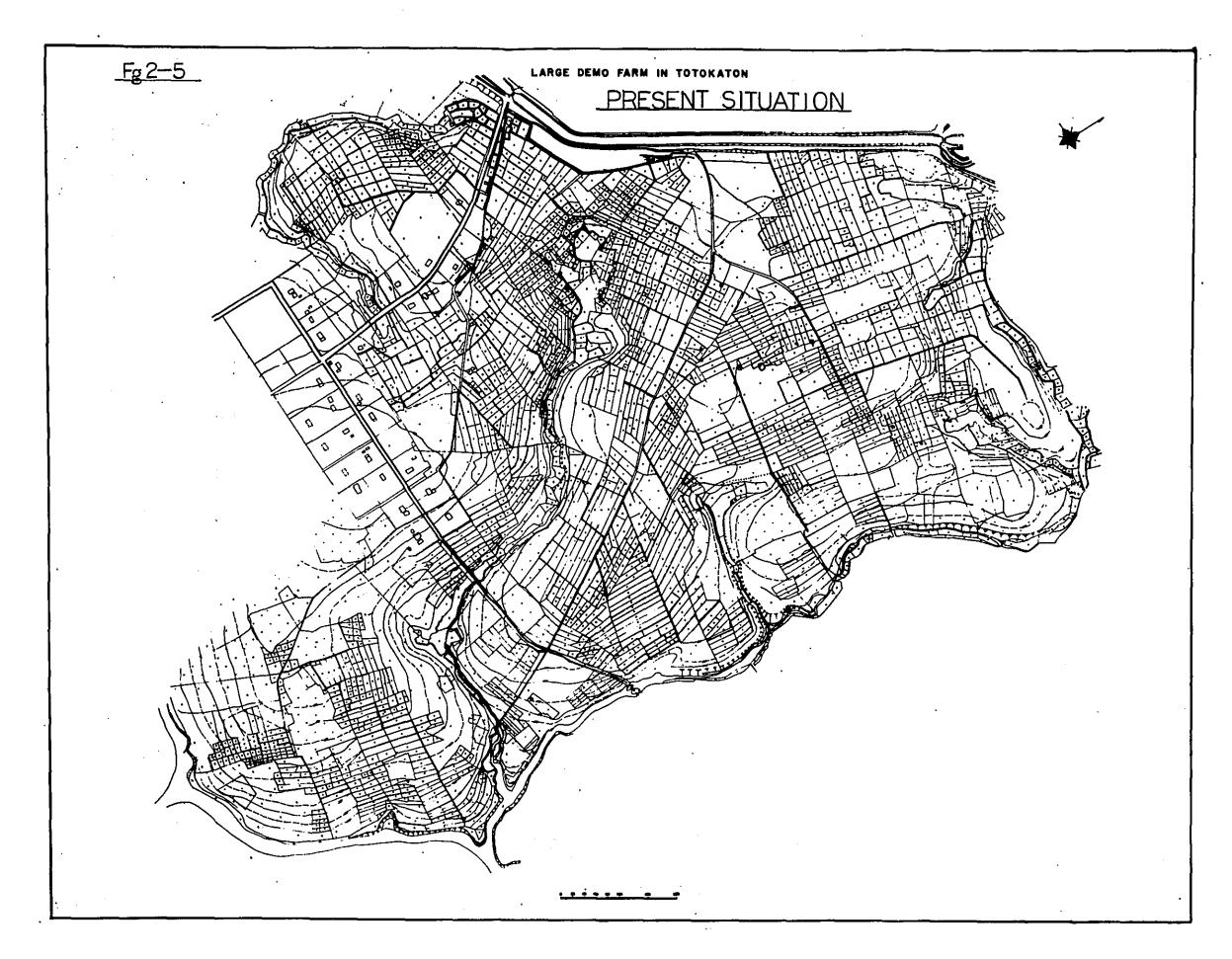
各施設に必要な工事費は下記の如くである。

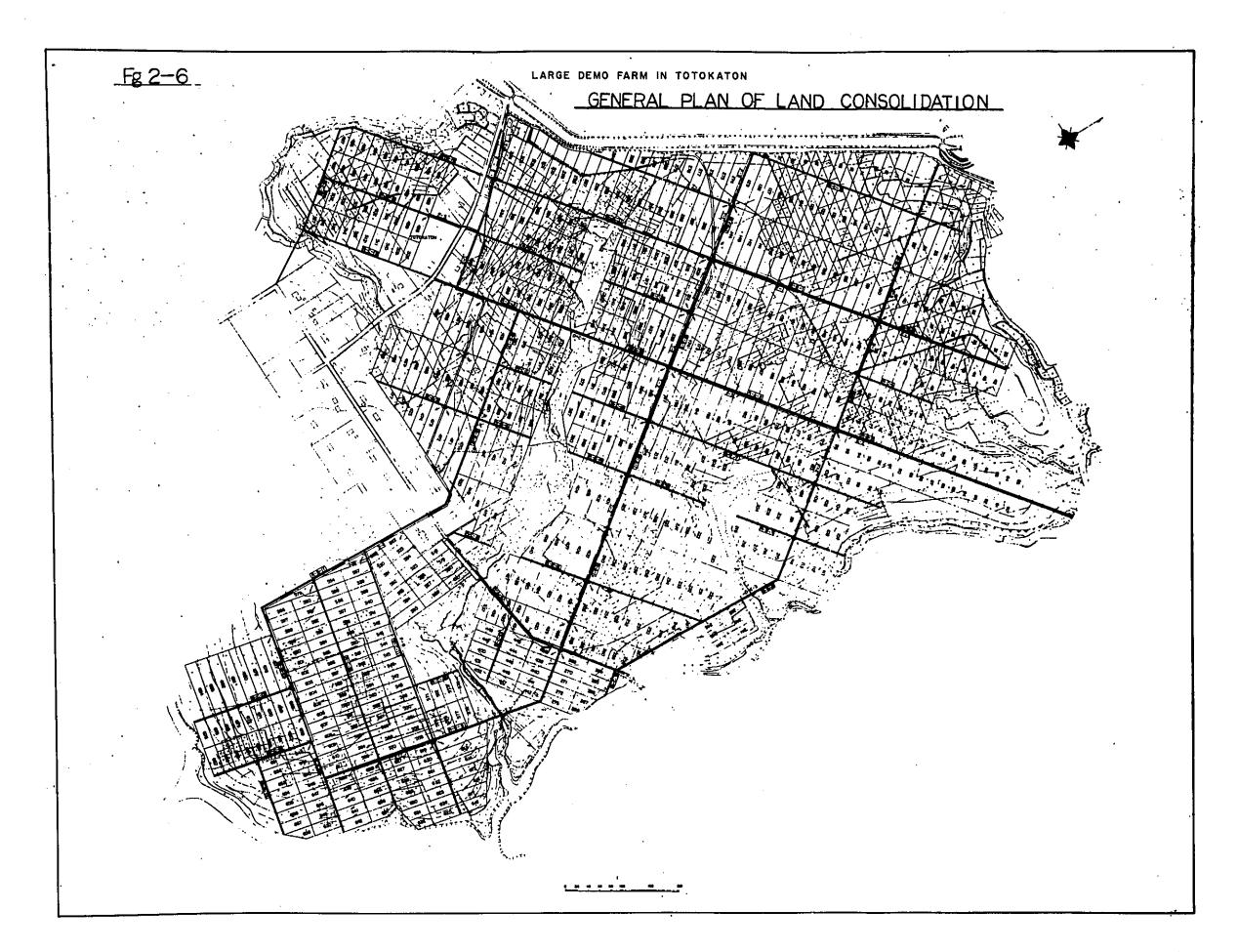
(単位 円)

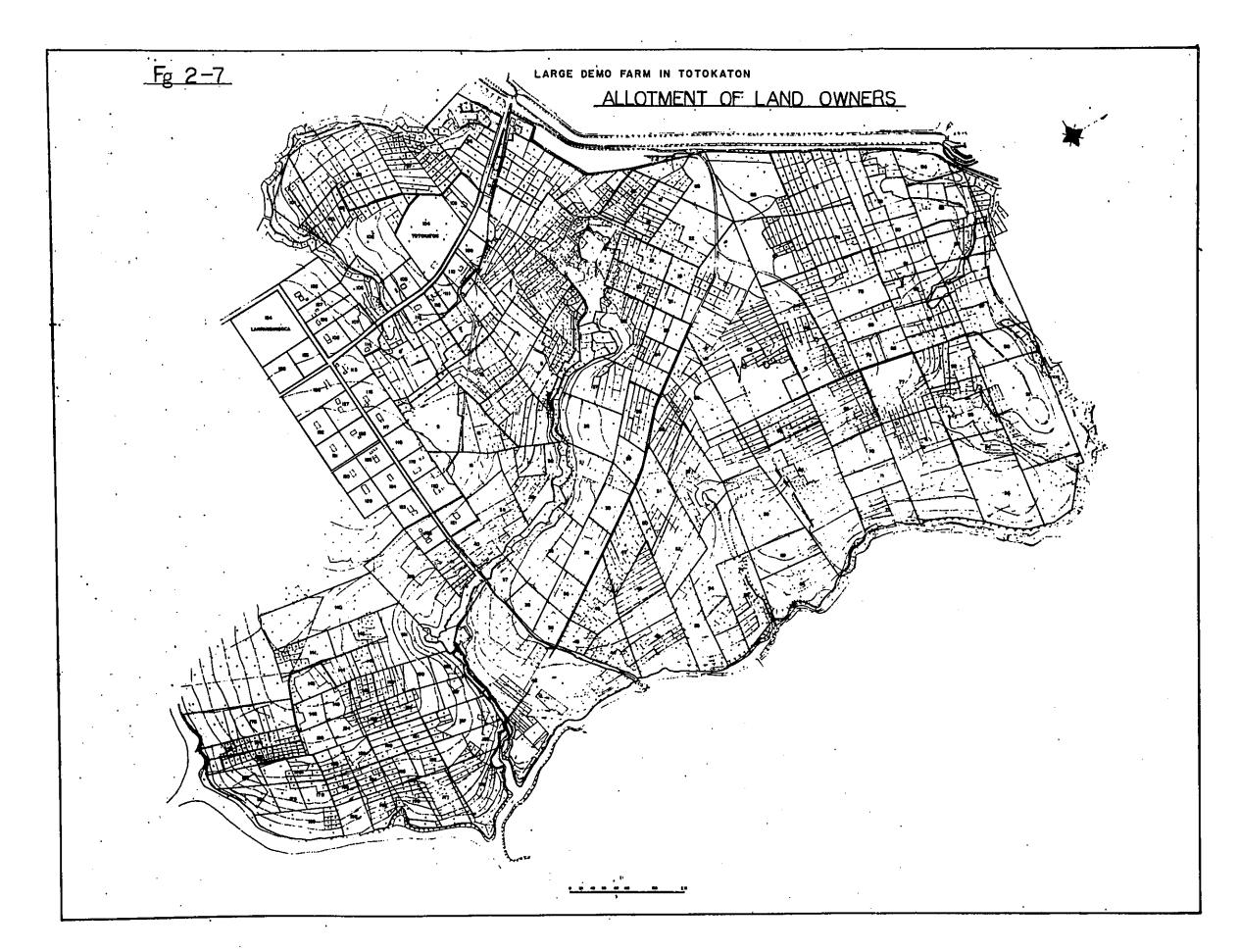
項 目	数量	現地通貨分	外国通貨分	合 計
1. <i>5</i> ° A		1,6 9 8,0 0 0	2,1 3 7,0 0 0	3,8 3 5,0 0 0
①ダ ム 本 体	6,600 m²	: 452,000	878,000	1,330,000
②余 水 吐	1.0 ケ所	1,0 9 2,0 0 0	1,259,000	2,3 5 1,0 0 0
		154,000	1 1,9 7 9,0 0 0	1 5 4,0 0 0
2. 試験圃場		2,137,000	2,4 4 3,0 0 0	1 4,1 1 6,0 0 0
①圃 場 整 地	5.0 Ha	7 3 5,0 0 0	2 4 1,0 0 0	3,178,000
②ポンプ場基礎	1.0 5	4 8 3,0 00	1	7 2 4,0 0 0
③ポ ン ブ	1.0	5,000	8 2 9,0 0 0	8 3 4,0 0 0
④送 水 管 工	440 m	7 8 3,0 0 0	3,6 6 0,0 0 0	4,4 4 3,0 0 0
⑤プースタポンプ	1.0 ケ所	6,000	1,6 28,000	1,634,000
⑥ 給水管	930 m	1 2 5,0 0 0	1,9 6 7,0 0 0	2,0 9 2,0 0 0
① スプリンクラー	6.0 セット	_	1,2 1 1,0 0 0	1,2 1 1,0 0 0
3. 建 物	5,5 8 3 m²	3 9,1 5 2,0 0 0	7,0 7 3,0 0 0	4 6,2 2 5,0 0 0
合 計		4 2,9 8 7.0 0 0	2 1,1 8 9,0 0 0	6 4,1 7 6,0 0 0

2-3 Large Demo Farm (L. D. F)

2-3-1 圃場整備計画


本事業はインドネシア政府の唱導するタニマムールプロジェクトの具体的手段として食糧生産の中核をなす稲作を中心とする土地基盤整備を行い、2期作又は裏付の導入を計ると共に一部Alan~ の開発により経営規模の拡張を計る事を目的としたものである。


圃場整備計画の概要


(1) 地区の現況

本地区はD. P. Uの幹線水路の完成に伴い5年前より農民の相互扶助(Gton Royon)による第3次支線水路がFig 2-5の如く標高の高い地点を地区北方を東西に1条、南方に集落に沿って1条貫流している。これを基幹として第4次水路が開墾の進展に応じて伸長しているがゴトンロヨンによる施工で完全を期し難く用水不足に遭遇するや輪番かん水をその都度実施している。なお分水は第3次支線水路以下の水路の畦畔をその都度開削取水し掛流しかんがいを行っている。又水源不足作付の不統一に原因して充分な水管理が行い得ない現状である。

排水路については計画的な排水路はなく、掛け流しかんがいを行っているため余水は自然と圃区内の低位部の谷津田に流れ込んでいる状態である。耕区についても農民の人力開墾であるから零細から不整形の水田であり平均区画は0.015 haである。特に沢沼地の傾

斜地帯は田差0.3~0.4 m, 短辺6~7 mまで開田しており極めて小区画のものが多い。地区内の農道についても見るべき道路はなく、第3次支線水路の堤防, 畦畔等を利用して通作している状況で、牛耕にも支障を来している。

(2) 圃場整備計画

以上の様な現況に対してFig 2-5の圃場整備計画を行った。

即ち、用水路については現在の水系に則り東南方向に2条設けることとし、完全利水の出来る様、極力築堤型とし、かんがい地域を21 圃区に分け、各圃区毎の水管理が可能なるように第4次支線水路を設置する。各圃区に於ける水管理はかけ流しかんがいとする。又、かけ流しかんがいに於ける上流有利、下流不利の弊害を極力押え且つ用水到達時間のアンバランスを少くするため分水工1ヶ所に於ける最大支配面積を3haに押える。水田区面の大きさについては耕運、除草、その他の管理作業は人力、畜力を主体とし、一部の小型動力耕耘機を前提とするが、一方将来営農体系、耕耘技術の進歩、改良に対処し うる区画形状及び現況地形条件より地形勾配1/100以下は20×100 m=2,000 m² 1/100以上は20×50=1,000 m² の大きさとする。

農道の密度及配置については

幹線農道……… 集落からの通作と各プロック内の交通の離合集散の根源となる部分については幅員2.5 m, 道路高0.5 mの道路をFig 2-5 の如く2条設定する。

支線農道……… 或る程度自由に水管理, 圃区内, 各耕区への進入, 耕作道路の派生を容易ならしめる必要から概ね300 m間隔に設置した。巾員は1.5 m とする。

耕作道路…… 各耕区の一辺には道路が接する様に幹支線農道の関連で100~200 m間隔に配置する。人力、畜力を考慮し、幅員は1.0 mとする。

2-3-2 主要工事の諸元

圃場整備計画施設一覧表

種目	数量	単位	. 備 考
1. かんがい面積	1 0 8.0	ha	
⑥純かんがい面積	8 9.2	hа	水 田
60 國区数	2 1.0		
⑥田 区 数 (A)	4 5 0.0	枚	大きさ 50m×20m=1,000m
(d)田区数(B)	2 2 1.0	枚	大きさ 100m×20m=2,000m ¹
2. かんがい施設			
®かんがい方式			かけ流しかんがい
⑥ 設計 単位用水路	1.8 4	l/s ha	1政府公共事業省設計基準による
⑥支 線 水 路	4,600	m	台形土水路
第 3 次支線水路	1,4 1 3	m	b=0.5~1.0 H=0.7 n=1:1
第 4 次支線水路	3,187	<i>m</i> .	b=0.3m H=0.5m n=1:1

極 且	数量	単 位	(億 考
①分 水 施 設	41	ケ所	濫流堰タイプ パサンガン造り
分水工 (A)	6	ヶ所	B=1.0 m
分水工 (B)	7	ヶ所	B=0.5~m
分水工 C)	28	ケ所	B=0.3~m
@暗 集	5 4	ケ所	パツサンガン造り RC造甲蓋
暗 集 (A)	4	ヶ所	
· · · · · · · · · · · · · · · · · · ·	10	例	
暗 渠 (C)	40	ヶ所	
① 横断排水暗渠	3	ヶ所	コルゲートバイプ
暗県 D-C-1 D-C-3	2	ケ所	$\phi = 600$ $\ell = 5.0 \sim 8.0 m$
暗渠 D—C−2	1	ケ所	$\phi = 800 \qquad \ell = 5.0$
Ø 畦 畔	5 0,7 1 5	m	n = 1 : 1 $b = 0.3 m$ $H = 0.3 m$
3. 道 路	1 1,0 7 7	m	
⑧幹 線 農 道	1,9 0 0	m	B = 2.5 m 盛土高 0.5 m
り 支線 農 道	5,5 6 3.0	m	B = 1.5 m " "
⑥耕作道路	3,6 1 4.0	m.	B = 1.0 m " "
4. 施設建物	2.0	棟	レンガ造り 屋根:亜鉛引鉄板
⑧収 納 舎	1.0	棟	$29 \text{ m} \times 7.5 \text{ m} = 180 \text{ m}^2$
り 穀物 倉庫	1.0	棟	

2-3-3 工事費の概算と施工計画

圃場整備に必要な工事費は次表の如くである。

(単位:円)

工種	数量	単位	現地通貨分	外国通貨分	合 計
1. 道 路	1 1,0 7 7	m	478,491	3 2 2,7 6 2	801,253
2. 用 水 路	4,600	m	147,100	_	147,100
3. 暗 渠	5 4	ヶ所	398,534	9,558	408,092
4.分 水 工	4 1	ケ所	. 162,763	-	162,763
5. 横断排水暗渠	3	ケ所	9 6,3 7 8	9 3,6 2 5	190,003
6. 畦 畔	5 0,7 1 5	m	365,120	_	365,120
7. 整	74,017	m²	2 2 2,0 5 1	2,294,527	2,5 1 6,5 7 8
小計			1,8 7 0,4 3 7	2,7 2 0,4 7 2	4,5 9 0,9 0 9
		ルピ	28,438	4 1,3 6 3	69,709 RP/ħa
ha 当りの事業費		l HS	20,969	3 0,4 9 9	5 1,4 0 0 Yen / fia
		1° 12	70	100	170 \$ /ha
8. 施 設 建 物	2	棟	3,8 1 2,0 0 0	_	3,8 1 2,0 0 0
小 計			3,8 1 2,0 0 0		3,8 1 2,0 0 0
合 計		}	5,6 8 2,0 0 0	2,7 2 0,0 0 0	8,402,000

												•	
	Remark w=2,5 m	" = 1,5 "	" = 10 "						()1:1dct.ine	ZE WORNERS JAN	Total =	756(241) d3y	
aton)	9 10 11 12												
in Totok	d year 6 7 E		8 (3)	O	o	0	m		100 (65)	30	00		
Schedule (L.D.F. in Totokaton)	4 rd 2 3 4 F 11(3)								001			7	
I El	11 12 1			-						,			V. (2) 201
Construction	01 6 3 - 7	(a)	(2)			2	3	<u>m</u>					105.6
Consti	3 nd year year 25(5)	32 (1	16 (71	121				180 (130	70	00		
	2	*	*	"	"	N-3	*		H4 m³	۳	E.	13	
	1tem Anaint Farmodas 1900 III		3,614	A 1,413	3,187	54	3	41	89.2 740.17	50,715	180 0 80		
	Farm Road		:	Carral Tyre		Culverts	For Drainage	יַרנּי -כּתּנְ	Leveling	Eorden	Strege aid Steller	Preparatory	

第3章 農業開発センター整備計画

3-1 圃 場 計 画

3-1-1 圃場の規模と配置

試験圃場の機能は目的の項に見る如く試験,研究,農業技術の展示,指導等他数項目の事項に対応する必要上,恒久的な圃区施設と,可変的な耕区の構成が妥当である。即ち耕区については将来の状況変化に対応出来る施設とし,圃区構成についてはFig 2-2 に示す如くである。

試験田は現在の採種農場の J~O区画の畑約5 haを畑地かんがい試験圃場はその南側の P. N. P (国営農園)のたばと畑及び農民の畑7 haを買収し10 haとし田畑計15 haを 造成する。

3-1-2 施設容量の算定

水田作付は施設の効率的利用を計るため、Fig 2-3 により作況パターンを設定する。滅水深並びに畑かん等の要水量については3-2-5の如く実測値を加味して算出する。

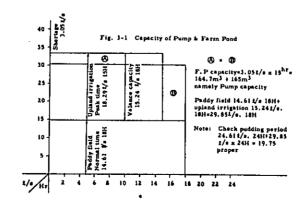
(1) 要 水 量

最大使用時期はFig 3-1より乾期5月が最大となる。

水 田 部

Q max =
$$\frac{1}{8.64}$$
 { 130 mm × 1 ha + 18 mm × 4 ha } × $\frac{1}{Y}$ = 24.61 ℓ /s → 32.81 ℓ /s (0.95)

故に、代掻末期、24hr運転容量とし、常時は10.7hrで可畑かん部


$$Q \text{ m ax} = \frac{1}{8.64} \left\{ 8 \text{ max} \times 10 \text{ ha} \right\} \times \frac{1}{Y} = 11.43 \text{ l/s}$$

$$18 \text{ hr/day}$$

$$15.24 \text{ l/s}$$

$$15 \text{ hr/day}$$

$$18.29 \text{ l/s}$$

(2) 送水システム

送水方法としては、ダムサイト右岸にポンプ場を設置し、パイプライン($\ell=442m$)でファームポンドに送水する。途中プランチしてパイプで試験田(5 ha)にかんがいする。ファームポンドに畑かん用加圧ポンプを設置し、スプリンクラーで10 ha の畑地かんがいを行う。なお、ファームポンドは次の理由により設置した。

① 水田用機場内に畑かん用加圧ポンプを設置した場合、その全揚程は80 m程度となり 送水管の管種は鋼管となる。

さらに全程差が異るため水田用送水管と2本併行させなければならないため送水管の工 事費は大きくなり経済的でない。

- ② 水田用ポンプと畑かん用加圧ポンプの揚程は極端(15mと80m)に異るため同一のポンプを使用する事は、ポンプの機能上問題があり従って水田と畑かんとは別個に整備することとした。
- ③ ファームポントの設置予定地点は、作業室等の諸施設が建設されるため生活雑用水が 必要である。

(3) ポンプ容量

ポンプ容量,送水管は18hr容量とし,水田代掻時24hr,普通時18hr,畑かん圃場作業15hrの各灌水時間とし,代掻時容水を以ってポンプ容量を概定し,普通時はその余力を一部畑かんに充当し,不足についてはファームポンドに貯溜するものとする。 この際 Fig 3-1によりポンプ運転の適正稼動18hrとする為にはA=Bであることが妥当であり同表算出により

水田 畑かん ポンプ容量= 1 4.6 1 l/s(18hr/day) + 1 5.2 4 l/s(18hr/day) = 2 9.8 5 l/s (18hr/day) = 30 l/s

となる。

(4) ファームポンド容量

{ 18.29 l/s(15hr/day)-15.29 l/s(18hr/day)}×(18hr-15hr)=165m 上記の畑かん不足分と、この他に洗車、作業場等の生活雑用水、浸透、蒸発等同等見込み 165×2=330m を貯溜可能な容量とする。

3-1-3 水田かんがい試験圃場

試験水田 5 haは Fig 2-2 の如く 1 ha(200×50)の区割とし、各区画割の境界には 6 m中の農道を設け、短辺方向の一辺は中 1 0 mの幹線道路に沿わせる。

各区画割の長辺方向の上段側には給水パイプを設置し、各面場は適宜畦畔により区分して利用出来る様に20m毎に給水栓を設ける。又下段側には排水路として底巾0.3m、側面勾配1:0.5の土水路を設ける。短辺方向南側の農道に畑かん部の排水を含めた排水路を設け堰堤に導くボンプからの送水管及び給水管は水道用硬質塩化ビニール管(JISK6742)とし、給水管の取水管の取付部に制水弁を設ける。

3-1-4 ポンプ規模の決定

- 1. ポンプの諸元
 - a) 計画 揚水量 0.03 m/8
 - b) 2 台従って1 台当り揚水量 0,0 1 5 m/8 (0.7 m/m)
 - c〉機 種 片吸込ポリュートポンプ 100%×100%
 - d) 計画吸水位 EL 43.00
 - e) 計画吐出水位 EL 49.50
 - f) 実 揚 程 6.50 m
 - g) 吸 水 管 100%

(水道用硬質塩化ビニール JIS K 6742)

2. 損失水頭

管内流速
$$V_1 = \frac{Q/2}{\frac{\pi}{4} \times D^2} = \frac{0.015}{\frac{3.14}{4} \times 0.10^2 = 1.91 \text{ m/s}}$$

速度水道 V1²/28 = 0.186

- (1) 流 入 損 失 $h_1 = f_1 \frac{V_1^2}{2g} = 0.2 \times 0.186 = 0.037$
- (2) マ サ ツ 損 失 ウィリアムヘーゼン公式 C=100としm当り損失を図表より

求めると 0.065m 吸水管長 12.3m

 $h 2 = 0.065 \times 12.3 = 0.80 m$

- (3) 曲 管 損 失 $h_3 = f_3 \cdot \frac{V_3^2}{2g} = 0.13 \times 0.186 = 0.024 m$
- (4) 弁 損 失 フート弁及びスルース弁 f 4=1.50+0.14=1.64

吐出管(ø60mm) 流速 V=2.98 m/s

吐出管内速度水頭 $\frac{V^2}{2 g} = 0.453 m$

 $h 4 = 0.186 \times 1.5 + 0.453 \times 0.14 = 0.342 m$

h = 0.35 (0.453 - 0.186) = 0.093 m

" 速度水頭
$$\frac{V^2}{2g} = 0.147m$$

f 6 = 0.46

 $h 6 = 0.46 \times 0.147 = 0.068 m$

(7) 送水管マサツ損失 管径 150㎜の硬質塩化ビニール管を使用する。

ウィリアムへ-ゼン公式の図表よりC=140として損失を求

めると1.4m/100m 送水管延長=462m

 $h 7 = 1.8 \times 4.62 = 8.316 m$

(8) 送水管の Bend 損失 f8=0.15×4ヶ所=0.6 ······R/D=2.0 90° Bend

 $h 8 = 0.6 \times 0.1 4 7 = 0.0 8 8$

(9) 出 口 損 失 f 9=1.0

 $h 9 = 1.0 \times 0.147 = 0.147$

以上より全損失水頭は

9 Σ R=0.037+0.800+0.024+0.342+0.093+0.068+8.316 +0.088+0.147 = 9.915 m

従つて全揚程は

T. Head = 6.50 + 9.915 = 16.415 m

約10年の余裕を見込むと

 $1 \ 6.4 \ 1 \ 5 \times 1.1 \Rightarrow 1 \ 8.0 \ m$

原動機出力の決定

- a) 水 動 力 P10=0.222×r×Q×H
 = 0.222×1.0×0.90m/m×18.0
 = 3.6 (PS)
- b) 軸 動 力 $Pm = \frac{P10(1+\alpha)}{qp \times qt}$ $\alpha : 余裕 20\%$ qp: ポンプ効率 59% qt: 伝達効率 95% $Pm = \frac{3.6(1+0.2)}{0.59 \times 0.95} = 7.7 (PS)$

原動機は1,800rpm ディーゼルエンヂン10PSとする。

3. ウォーターハンマーに対する検討

L=管 長 382m

K=水の体積弾性係数 2.07×10 kg/m

E=管の縦弾性係数 2.5 ×10 kg/m

D=管 の 肉 径 0.148m(V・P)

t = 管 の 肉 厚 0.0085m(V・P)

a = 圧力伝播速度 (m/sec)

(1) 圧力伝播速度

 $a = \frac{\frac{1420}{\int_{1 + \frac{K}{E}} \frac{D}{t}}}{\int_{1 + \frac{2.07 \times 10^{8}}{2.5 \times 10^{8}}} \times \frac{0.148}{0.0085}} = 324 \, \text{m/sec}$

$$V_0 = \frac{Q}{60 \times \frac{W}{4} \times D^2}$$

$$= \frac{1.8}{60 \times \frac{W}{4} \times (0.148)^2}$$
= 1.7 4 4 m/sec

(3) 管路 定数 P

$$2 P = \frac{a \cdot to}{g \cdot Ho}$$
 g : 重力加速度 9.8 m/sec² Ho : 全 揚 程 18 m
$$= \frac{324 \times 1.744}{9.8 \times 18} = 3.203$$

(4) 圧 力 上 昇

(a) 弁の急閉鎖の場合

弁閉鎖時間To

$$T \circ \le \frac{2 L}{a} = \frac{2 \times 382}{324} = 2.36 \text{ sec}$$

$$\triangle \text{Hm ax} = \frac{\text{a \cdot Vo}}{\text{g}} = \frac{324 \times 1.744}{9.8} = 57.66$$

 $_{LoT}$ 、 $V \cdot P$ の耐圧は $6.0 \, kg/Cm^2$ (常用圧)であるから $5.77 \, kg/Cm^2 < 6.0 \, kg/Cm^2$ で十分である。

3-1-5 畑地かんがい試験圃場

- (1) かんがい地区の地形及び気象状況について
- (2) かんがい水量の決定
 - ① かんがい対象作物及びその消費水量の決定……3-1-2及び3-2-5 A 参照
 - ② かんがい面積 Au=10ha
 - ③ 1回当りかんがい水量の決定→かんがい施用水深Wa=50mm

区分層	根群層深	作物の 水分消 費比率	F.C 24	P.F ao	仮比重 Sa	A • M	制限層	T.R. A.M	1回当り のかんが い水趾
第1層	10 cm	40%	30%	10%	1.12	2 2 4 mm	第1層	5 5.8 mm	5 5.8 mm
2	10	80	}	١	<u> </u>	224		:	× a 8 5
8	10	20				224]) ÷≒50 nm.
4	10	10		\]	224		}	
計	4 0	•				896			-

④ 間断日数 → 6日間

T.R.A.M×085	かんがい対象作物の 日最大消費水量	間断日数
5 0 mm	8 mm/day	$\frac{50}{8} = 622 \cdots$ $\Rightarrow 6$

- ⑤ 1日の運転時間数 T=15 hrs
- 純用水量 8.0 mm/day ⑥ 用 水 量

粗用水量 8.0÷0.81=9.9 mm/day÷1.14 l/sec/ha

ただし、かんがい効率 E=Ec×Ea=0.95×0.85=0.81 水搬送效率

水滴用效率

- (3) スプリンクラー諸元
 - ① かんがい面積の形状 Fig 2-2 参照

長 方 形 ········ 200 m×100 m 区画→2 区画

150m×100m // →2区画

150m× 50m " →4区画

② スプリンクラー・ラテラルの長さ Fig 3-2 参照

区画の一辺長 100mの場合 92m

75 m // 68 m "

③ スプリンクラー型式及び性能

中間圧型 Rain Bird No 30B 相当, Nozzle size

3/16"× 3/32" 7° 使用圧力 3.1 6 kg/Cm⁴

散水量 32.4 L/min

散水直径 D=29.9 m

④ スプリンクラー間隔(S)とラテラル間隔(S2)

S1 = 12 mS2 = 18 m

⑤ スプリンクラー数

ラテラル長 92mの場合 8コ(Fig 3-2参照)

68 # 6 = (同上)

- (4) 散水強度とセット数
 - ① 散 水 強 度 $I(m/hr) = \frac{60 \times q}{S1 \times S2} = \frac{60 \times 32.4}{12 \times 18} = \frac{1940}{216}$

⇒ 9.0 mm/hr

$$t_1 = \frac{\text{Wd} \times 1/\text{Ea}}{\text{I}} = \frac{50 \times 1/85}{9.0} = 6.55 \,\text{hrs}$$

t 2 = 0.5 hrs

要ラテラル所要時期 t1+t2=6.55+0.5=7.05hrs

1日当り移動回数 7.05hrs×2回=14.1hrs→2回移動とする。

⑥ 必要セット数の決定

A-Type=sprinkler 8コ立 支管長 92m $q_6 = 32.4 \, \ell / min \times 8^2 = 259.2 \, \ell / min$

1日当り1セットのCover面積(ha)

1セット cover 面積 100m×18m=1,800m?

∴1日2回移動

 $1.800m \times 2 = 3.600m/\Box$

6 日間断であるので cover 面積 3,600m//日×6日=21,600 m=2.16 ha

B-Type=sprinkler 6 コ立 支管長 68 m

 $q_6 = 32.4 \ \text{min} \times 6 = 194.4 \ \text{min}$

1日当り1セットのCover面積 (ha)

1 セット cover 面積 75m×18m=1.350m

∴1日2回移動 $1,350m \times 2 = 2,700m / \Box$

6日間断であるので cover 面積 2,700m×6日=16,200m=1.62 ha

0.K

o A-Type 2セット 6 日間で支配する面積

$$2.16 \text{ ha} \times 2 = 4.32 \text{ ha} > 4.0 \text{ ha}$$
 O·K

 $1.62 \text{ ha} \times 3 = 4.86 \text{ ha} < 6.0 \text{ ha}$ 不 可

4 セット

$$1.62 \text{ ha} \times 4 = 6.48 \text{ ha} > 6.0 \text{ ha}$$

(5) System Capacity (組織容量)の決定

① Field stream

$$Qf = \frac{9.9 \times 1.0}{8.64} \times \frac{24}{15} = 18.29 \, \ell/sec/10 \, ha$$

= 1097.4 2/min/10ha

② Rotation Block Area

$$A = \frac{18.29}{0.185 \times 9.9} \Rightarrow 10 \text{ ha}$$

③ しかし A-Type sprinkler set

6セット同時に運転するためには

1296 L/min > 1097.4 L/min となるから Farm Pond によって調整することが必要となる。

Field stream 1,097.4 2/min の場合 6 日間で10 ha 支配できるか

になる。

- ④ 2のPilot Farmでは6セット同時に運転できる組織容量とする。
- (6) Main Pipe 及び Lateral Pipe の size 決定
 - ① Main Pipe の配置(Fig 3-2参照)

将来の維持管理及び操作上有利なるよう送水を主目的とする送水路と給水栓構造を備えた。

給水路に別け、それぞれ制水弁で区分する。

給水栓構造は圃場内に配置したので耕作上障害にならないよう地下埋設式とする。

② Main pipe Ø size

別紙摩擦損失水頭の計算より管内流速をV=1.0~1.5m/8 の範囲で管径を決定した。管 種は既に日本国内で実績のある石綿セメント管と硬質塩化ビニール管(水道用)を採用 した。

③ Lateral pipe の配置及び size

Lateral pipe はアルミパイプの可搬式とし Fig 3-2 A-1, A-2, B-1, B-1 B-2, B-3, B-4 の配置とする。

各 Lateral 上の最初と末端のスプリンクラー間の圧力低下が20 名以下になるよう Lateral size を決定する。

A-Type (8本立)
$$q = 259.2 \ell/min = 4.32 \ell/s$$

 $\phi 50 mm T n$ ミ Hf ÷ $\frac{140}{1000}$ V ÷ 2.3 m/s

$$0.4 \Sigma \text{ H f} = 0.4 \times 92 \times \frac{140}{1000} = 5.16 < 6.3 \dots O \text{ K}$$

% 3.16 kg/Cm² × 0.2 \Rightarrow 0.6 3 kg/Cm² → 6.3 m

B-Type (6本立) $q=194.4 \ell/min=3.24 \ell/s$

$$\phi 50 \text{ mmTn}$$
: H f = $\frac{63}{1000}$ 0.4 Σ H f = 0.4 \times 68 \times $\frac{63}{1000}$ = 4.28 V = 1.55 m/s \Rightarrow 4.3 m $<$ 6.3 O K

- (7) 必要動力の決定
 - ① 所要揚程の決定
 - ① Main pipe 及び給水栓構造の Loss → 設計条件点は給水路 ℓ5 末端の給水栓構造を含まる。

Σℓ =ℓ1+ℓ2+ℓ5=125+180+317=622m

ΣHs=ΣHf1+ΣHf2+ΣHf5=1.5+1.8+7.6=10.9 m

φΖ* マチノ式アングルバルフ付立上り管のロス=2.5 m

ΣH=10.9+2.5=13.4 m

- Lateral pipe の Loss
 B-3 set の末端 sprinkler で 3.1 6 kg/Cm を与えるとした場合
- ② Sprinkler の圧力 → 3.16 kg/Cm²

 $0.4 \times \Sigma \text{ Hf} = 4.3 \text{ m}$

所要揚程 13.7 + 4.3 + 31.6 + 3.6 = 53.0 m

約10 多の余裕を見込 53.0×1.1=58.3 m ÷ 59.0 m

原動機出力 → Pw = 0.222×r×Q×H

 $= 0.222 \times 1.0 \times 1.32 \times 59.0 = 17.3 \text{ (PS)}$

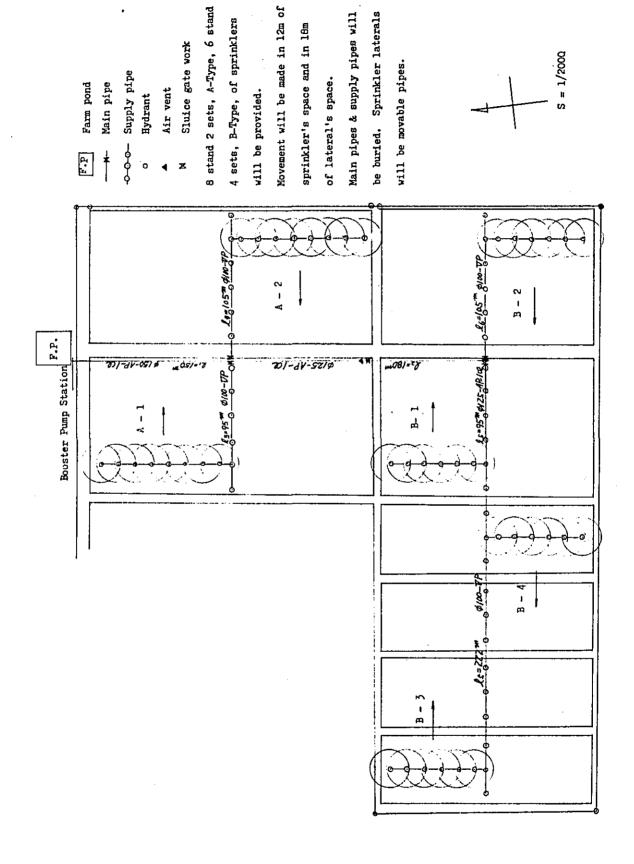
軸 動 力
$$\rightarrow$$
 Pm= $\frac{\text{Pw}(1+2)}{\text{qp}\times\text{pt}} = \frac{17.3(1+0.20)}{0.59\times0.95} = 37.0 \text{ PS}$

2 : 余裕 20%

qp : ポンプ効率 59%

qt: 伝達効率 95%

原動機出力は 1800rpm ディゼルエンヂン 40P.S.


- (8) 加圧ポンプの諸元
 - (a) 計画揚水量: 0.022ml/s 1.32ml/min
 - (b) 機 種: 横型多段渦巻ポンプ 125 mm 口径 1台
 - (c) 計画吸水位: 4 6.5 0 m
 - (d) ポンプ軸中心高: 49.50 m
 - (e) 吸 水 管:125mm 鋼管
 - (f) 送 水 管:125mm 鋼管

3-2 水源施設

3-2-1 地形および地質

(A) 地 形

農薬開発センターは起伏の少ない台地に位置する。台地に狭まれて谷地田の低地が存在するが台地と低地との標高の違いは4 m~8 m程である。本計画のダムサイトとして選ばれた谷地田の狭窄地点から上流側谷地田を遡ると、その地形勾配は1:100以下であり、ダムサイト上流560m地点で谷地田は三方に分岐しており、規模の最も大きい谷地田で、その奥行は分岐点より約1,400m、その平均幅約70mであり、谷地田はほとんどが水田であ

り、周囲の台地は畑地となっている。流域は踏査の結果2.73 Kmである。

(B) 地 質

現地の地質に関しては、詳しい地質資料少く、ダム設計に際し、それらに期待する事が 困難な為、ダム築造に必要である土取場地点及びダム基礎地盤の地質調査を行った。(調 査に関する記号、調査方法、調査位置、調査結果については、次項3-2-2 "調査及び 試験結果"参照)

とこでは分析した結果、踏査、観察に基づいた判断を述べる。

農業開発センターは台地状の高地と、谷地田の低地とから構成される。全域にわたって 熱帯地方特有のラテライト系の茶褐色の土壌が表面を覆っている。(Surface Soil)と の層は15~20㎝の厚さで存在し、下層に向って灰白色でシルト分の多い粘質土壌へと移 行する。(Silt with Fine Sand 及びSilt層)地表より1.00m以下の深所になると 風化鉄を多く含む茶褐色の土壌と灰白色の土壌とが混ざり合う層が現われる。(Silt and Clay層)地表よりの深度170~200㎝で砂利や礫を含む(Fine Sand Silt層)とな る。また4つのテストピット掘削時、試掘穴は垂直に掘り進んだが直壁の崩壊は見られず、 地下水の現出は穴によってかなりまちまちであった。

3-2-2 調査及び試験結果

(A) 基礎地盤の調査及び試験結果

ダムサイトの基礎地盤に関しては、ダム軸予定線上にほぼ14mの間隔で直径1.5mのテストピットを4本掘り、Surface Soil 以下の土層の肉眼観察、層厚の測定、構成成分の分析、地下水位の判定を行った。(テストピット位置: Figure-1、ダム縦横断図参照)またテストピット-1、2より代表層をサンプリングし、比重、自然含水比、粒径分析を行った。

(a) 地質調査

ダムサイトの基礎地盤は、 表土直下部においては、 シルト粘土の粘質土で、 その下部は、 礫および砂混りシルト、 粘土の砂質土である。 調査結果の大略を示せば下表のとおりである。

		テスト	ピット		層厚の合計	平均層厚		THE STATE OF THE S
眉序	16 1 (n)	16. 2 (n)	16 8 (n)	No. 4 (n)	(m)	(m)	摘	要
表 土	0.20	0.12	0.20	0.20	0.72	0.18	深度	0.18
砂質シルト	020	0.18	010] –	0.48	0.16		0.84
シルト	0.50	0.60	0.70	0.50	280	0575		0915
シルト混り粘土	0.70	0.40	080	100	290	0.725	}	1.640
礫混り 砂質シルト	0.70	1.00	0.80	0.60	810	0.775		2415
計	280	280	2.60	280		-		

ダムサイト土質層序一覧表

(b) 試験結果

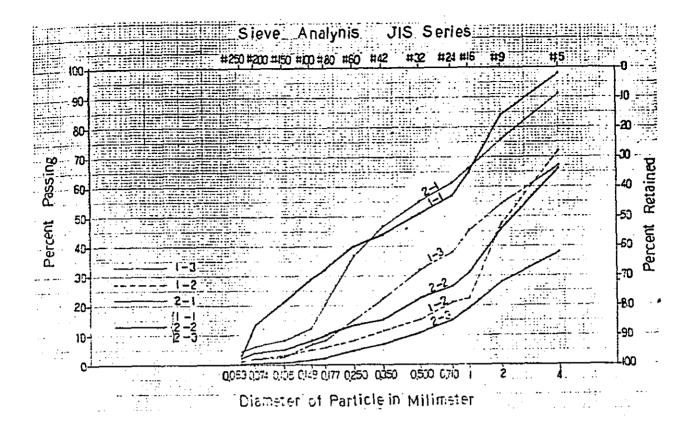
(i) 現地盤の透水係数

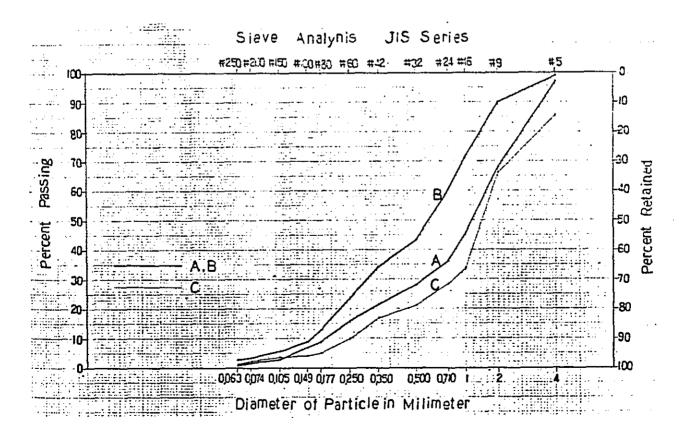
透水係数(K)一覧表

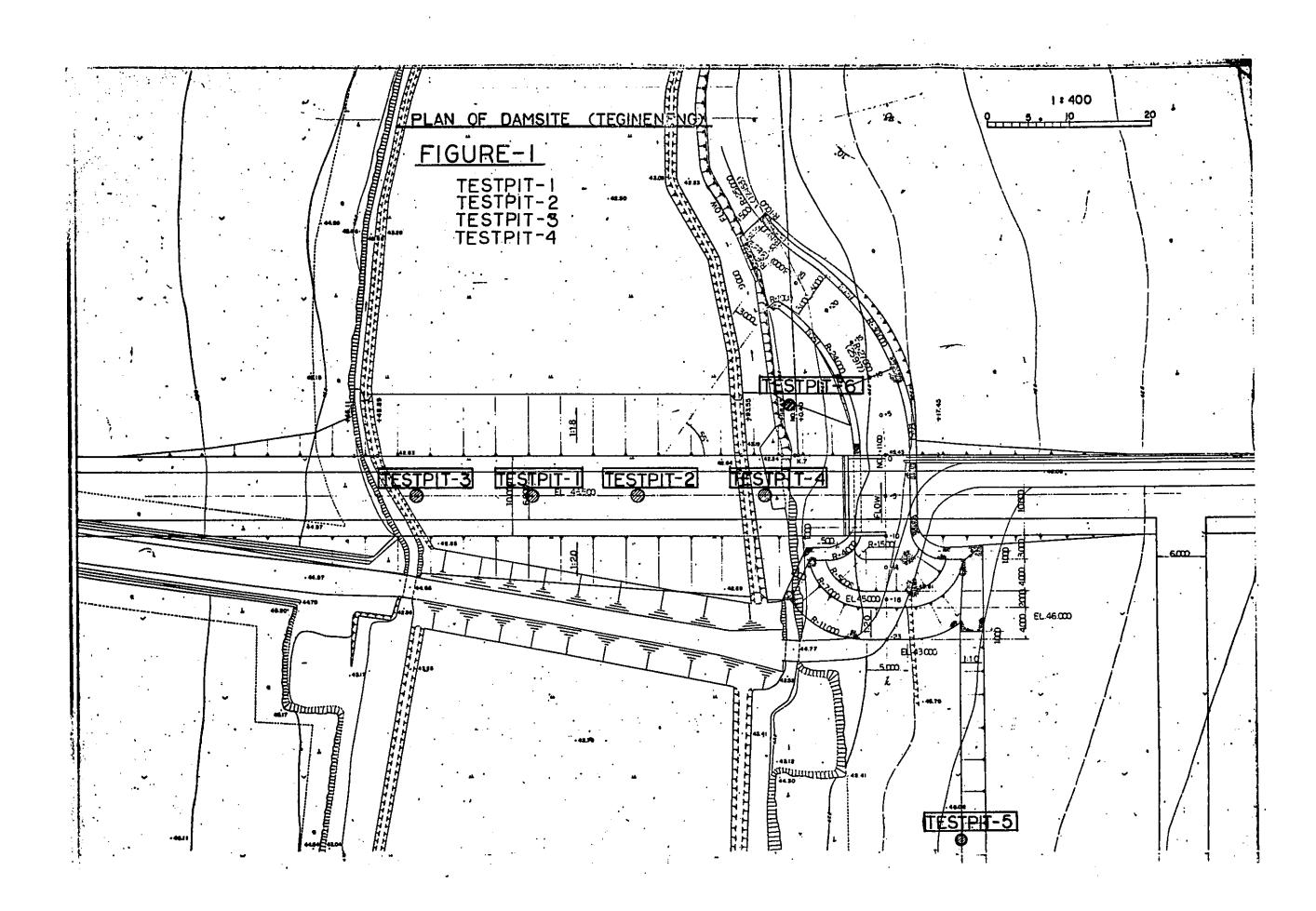
土 質	K (cm/sec)	摘 要
砂質シルト シルト混り粘土	5. 5 × 1 0 ^{- 4}	平均深度÷ 1.60 m
礫混り 砂質シルト	4.5 × 1 0 ⁻⁸	

(ii) 現況地盤の土質常数

現況地盤の土質常数一覧表


武料 番号 //a	試料名	試料採 取深度 D (m)	比重 Gs	自 然 含水比 WF(%)	粒 60多径 D60	径 (80%径 D30	nun) 10多径 D10	均等 紧数 Cu	曲率 係数 Cc	分数	摘要
1-1	0.5D	0.50	2518	1011	0.668	0.200	0128	5.4 8	0.49	SW-SM	ピンホールあり
1-2	100C 100	1.00	2890	8180	8000	1.800	0.810	9.68	1041	SP	
1-8	200B	2.00	2616	2 4.7 6	8.000	0.455	0.200	1 5.0 0	0.85	SP	
2-1	0.70	0.70	2617	1 5.2 8	0.880	0.155	0071	11.69	0.40	SW-SM	
2-2	1.20	1.20	2225	715	8400	0.942	0177	1921	1.47	SP	ピンホール
2-8	280A	280	2520	967	_	2200	0.440	_	_		


(B) 築堤材料の調査及び試験結果


築堤材料はダムサイト直上流の右岸台地から採取する計画である。ことを土取場と決定したのは、土取場から築堤計画点までの平均運土距離が70 mと近く、池敷内からの表土はぎ及び掘削等の諸作業が容易かつ経済的に恵まれている。

しかし、現況は竹などの樹木が繁茂し、抜根、表土処理、掘削後ののり面の維持に不安を感じるであろう。との点に関しては、インドネシア国タチム地区及びチヘヤ地区の掘削工事の実績を参考にし、本計画の1:1.0 勾配であれば十分対処でき得ると考える。また掘削によるメリットは、Dead Water 域の拡大でポンプアップに有利であり、ダムサイトの美観を良くすることである。

また、土取場予定点からは、築堤材料としての適否を判定する為、土壌サンプルを採取し、 土壌分析試験を行った。以下に表によりその結果を要約する。

Test Pit - 2

										
Remarks		Ash-colored	0.1-1) Yellowish Brown and Ash-colored	Ho.1-2)	Brown and . Ash-colored			No.1-3)	Brown	
Soil Texture	Surface Soil	Silt with Fine Sand	Silt Ash	Sample	Silt and Clay		Fine Sand and Silt with Gravel and	(Sample No.1-3)	Fine Sand and Silt with Gravel	
Mark							aborded aborded	Proposition of	POLOGO POLOGO POLOGO POLOGO POLOGO POLOGO PO	
Depth (m)	00.0	2 0		06.0	···	napangini SahuSbuSbuSbuSbu Si 1	9 H	2.00	, <u>Paritali</u>	3
Elev. (m)								*		·

Yellowish Brown and Ash-colored Renarks Brown and Ash-colored Ash-colored (Sample No.2-3) (Sample No.2-2) Вточи Fine Sand and Silt with Gravel Fine Sand and Silt with Gravel Mark | Soil Texture Silt with Surface Soil 1.9 2.30 Elev. Depth (m) 1.30 8.0 0.12 8.0

Test Pit - 3

Test Pit - 4

 	· · · · · · · · · · · · · · · · · · ·		,			
Renarks		Ash-colored	Yellowish Brown and Ash colored	Brown and Ash colored	1 Silt nnd G.T.	Brown
Soil Texture	Surface soil	Silt with Fine Sand	511t	Silt & Clay	Fine Sand an	Fine Sand and Silt with Gravel
Mark					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	And the state of t
Depth (cm)	8.0	0.20	0,60	1.00	1.80	2.30
Elev.					to the second se	

Elev Depth Mark Soil Texture . Remarks

0.00
Surface
Soil

0.20
---- Silt Ash-colored
---- Silt and Ash-colored
Clay and Ash-colored

1.70

0.70
---- Glay and Ash-colored

2.30

2.30

(a) 賦存量の調査

土取場予定点の採取予定面積A=3,300m, 採取予定平均深度D=2.0mである。 従って賦存量(V)は

 $V = 3,3 \ 0 \ 0 \ m^3 \times 2.0 \ m = 6,6 \ 0 \ 0 \ m^3$

(なお、築堤用土不足分については、余水吐掘削土1,080㎡を用いる。)

(b) 築堤材料の試験

築堤材料としての適否を判定する為に行った。その採取位置については、一般平面図 (1:200) に記入した TEST-PIT-5 TEST-PIT-6 である。またその結果は次表の通りである。

土質試験結果一覧表

試料 番号 //a	試験名	試料採 取深度 D (m)	比重 Gs	自 然 含水比 WF(%)	粒 60%径 D 60	径 (m 80%径 D80	m) 10多径 D10	均等 係数 Cu	曲率 系数 Cc	分類	摘要
A	開田A	0.7	251	_	1.600	0.598	0.192	8.88	216	SP	圃場
В	開田B	0.8	258	888	0710	0.810	0.157	4.5 2	0.86	,,	土取場
С	DamR	露出	251	_	1.800	0.797	0250	720	1.41	#	余水吐

3-2-3 ダム軸及びダムタイプ

(A) ダム軸の決定

 $oldsymbol{\mathcal{S}}$ $oldsymbol{\mathsf{S}}$ 本軸は,一般面面図に示した如く圃場内 $oldsymbol{\mathsf{S}}$ $oldsymbol{\mathsf{S}}$ の $oldsymbol{\mathsf{S}}$ を設した。

- ① 本計画のダム天端は、モデル圃場への連絡道路として利用する。
- ② 圃場内10 m幹線道路を一直線に国道まで延長しても圃場内施設に何ら支障なく、将来のセンターの機能(農業機械の搬入など)に有利である。

(B) ダムタイプの決定

土取場及び余水吐掘削地点の地質調査結果によれば両者はきわめて近似した土壌である と判断され、かつダム規模、施工領域を勘案して採取可能の粘質土を材料とし、施工の容 易で確実な均一型とする。

3 - 2 - 4 設計洪水雅の決定 おおさい (A) - 確率雨量 たいままた (A) -

(a) 雨量データ (1952~19	970 Metro)	三、其代的"是其何为"。至	
		经的现在分类		
프로프랑 경찰 중요 공장 경기 호환 공공			그 옷 되고 되었습니다. 하기를 하고 오랜드라.	
	年 月	The state of the s	Last Trans.	
	19521	1 8 1 🛲	/day	
한민은 현대를 즐겁지 않는데 그는 다음	1958	5 144	····································	
	1 9 5 4.	5 8 1	发展的发展的影响。	
	1 9 5 5	8 180		ela (denial de)
 그는 전 강국학생님도 보고 하고 보고 보장 한 경기에 그는 표면 하고 보고 되었다. 그는 글로 하는 것이 되었다. 	1956	8 144	사람들은 물을 보고 있는데 그는	
	1957	1 8 7		
하는 함께 발생한다면 얼굴하고 되었습.	1958	1 08		
그 이렇는 홍요그랑도 빌린다음 다	19.59	5 68		
	1960 1	2 90		
	1961	2 1.1.5	(1)	Paris (Paris) Assessment
그리는 환경한, 발표하는 함께 충행한	1962	9 184		
	1968	2 105		
	1964	1 2 0		
	1965. 1	1 7 5	 Street, S	
	1966	4 8 0		
	1967	1 5 6		
化砂罐 化碱质光谱 电电路传播	1968	7 9 6		
and the Committee of the second section of the second section in	1'9:6:9	4 9 5		Augusta de la companya del companya del companya de la companya de
	1970	1 109		
	•			-

1					resta i allera de ra
·	i	i /n	Rainfall	Date	Tay Ayestoni ya Niciolay
1000	1 2 8	0.058	144 mm/day	1958 5	
	4 5	0 1 5 8 0 2 1 1 0 2 6 8	1 8 4 1 8 1 1 8 0	6 2. 9 5 2. 1 1 5 5. 8	
	6 7 8	0.816 0.868 0.421	1 1 5	6 4 1 2 7 0 1	
	9 10 11	0 4 7 4 0 5 2 6 0 5 7 9	1 0 5 1 0 8	6 8 2 5 8 1 6 8 1	
	1 2	0.682 0.684 0.787	9 5 9 0 8 7	6 9 4 6 0 1 2 5 7 1	
	15 16 17	0.789 0.842 0.895	8 1 8 0 7 5	5 4. 5 6 6. 4 6 5. 1 1	
	18 19	0.947 1.000	6 8 5 6	5 9 5 6 7 1	

** PROBABILITY RAINFALL IN METPO

PROBABILITY PAINFALL (11) TABLE DE

															200						in the				8	(在) (在) (在) (在) (在) (在) (在) (在)	0.0	000	0.0
AA*AA	.025	. 25	٠ 16	• •	.012	٠٠٠٥	(03	100	ځ	Ç.		ے د د	\ (\n:\•:	C		. 2 B	. 63	(株) (株) (株) (株) (株) (株) (株) (株) (株) (株)	4年 1年 1年 1年 1日 1日 1日 1日 1日 1日 1日 1日 1日 1日 1日 1日 1日		The second secon					S	124,98	•
W	58	152	125	116	113	0.78	<u>ار</u> 50	750	72	n. f 12	0.018	27.000	C (0.00	760.0	7.125	761.0	252							0.33		000	2.0968	1+1
[.ng(XI+B)	. 100	2.1584	~	<u>-</u>	Ω.	2	۲,	2.0374	<u> </u>	~:	2	7 7 20 6	\$ (L 4000	. 6	, T.	- G	743						LATWEALL 123	.		2.0004	2.0004	4000°Z
¥I +8	44	144.00	124,00	7	139.00	120.39	115.00	100.30		173.77	96.00	13° CO			00,0	75.00		5.5.00					N METRO	PROBABIL ITY RAINFALL	<u>ဗ</u>			0.0965	ç
LDG(XT)	.153	.154	121	.117	1.13	6600	. 60	165.	120	61 (1)	9.982	7.70	\$0 t	ריירים ב	000	875	5.6	.749					FARINFALL IN	TABLE OF PRO	U		8.7257	8.7257	8.7257
XI	144.0	144.0	134.0	131.0	130.0	120.0	115.5	130.0	105.4	123.0	ປ 🥫	90.00	: () C	. C.	75.0	63.0	. ۶6.۴					PROBABILITY A	12	KSI		0.0	0.5951	0.9062
ON	~	~	۳)	4	u۱	9	~	a.	Ø.	À	T.	Z (c, ,	3 L	, , , , , , , , , , , , , , , , , , ,	17	ю П	10						100 Mg.) 		2	En (10
																							₹ 1.00 mm 1.0						
																													(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)(本)

(b) 確率雨量の計算と結果

(i) 計 算

確率雨量の計算は全て電子計算機による。(別紙)

(2) 結 果

電算機結果

2 年	1 0 0.0 9	mm/day
5	1 2 4.9 8	
1 0	1 4 0.3 7	
5 0	172.09	
100	1 8 4.9 3	

- (B) 余水吐設計洪水量
 - a 設計洪水量の決定
 - (1) 設計降雨強度は次式によって算定

$$\gamma t = \frac{\gamma 24}{24} \left(\frac{24}{T} \right)^n$$

ととに、rt : 設計時間降雨強度 (mm/hour)
r24 : 1/100 確率日雨量 (mm/day)
184.93

T : 洪水到達時間 1.0 hour

n : 雨量指数 0.5

 $\therefore r \ t = \frac{184.93}{24} \ \left(\frac{24}{1}\right)^{0.5} = 37.75 \text{ mm/hour}$ $37.75 \times 1.2 = 45.3 \text{ mm/hour}$

(2) 設計洪水量の決定

設計洪水量は次式によって算定

$$Q = \frac{1}{3.6} \cdot f \cdot \gamma t \cdot A$$

ととに, Q : 設計洪水量 m/sec

f:流出率 0.55

rt: 設計降雨強度 45.3 mm/hour

A :流域面積 2.73km²

 $\therefore Q = \frac{1}{3.6} \times 0.5 5 \times 4 5.3 \times 2.7 3 = 18.89$ m²/sec

よって設計洪水量は18.9m/sec

3-2-5 堤体規模の決定

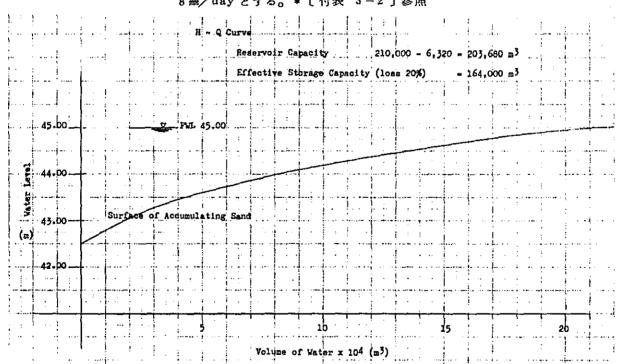
(A) 貯水池計画

貯水池の規模は、現地踏査、資料より決定する。

a 貯水位と貯水容量曲線

貯水容量は、地形測量に基づき、貯水位との関係を示した。後述の「貯水位~貯水容 量曲線」参照

b 貯水容量


(1) 貯水池純容量の決定

基 準 年 1/10 確率年とし、貯水池容量に決定的因子の乾期降雨につき 算定し、1966年を採用。

地区内用水量 生育期別減水深(鉛直浸透+葉水面蒸発散)を地区内2ヶ所の 実測値を基礎に雨期16~18 mm/day, 乾期12~13 mm/dayと する。なお代掻水については130 mm/ha/dayとする。

*[付表 3-1]参照

田は各 1 ϕ 月の T ime Lag を設定。畑かん用水については $6\sim8$ m/day とする。 * [付表 3-2] 参照

流 入 量 基準年に於ける各降雨強度別流出量を設定し、流域は踏査の結果 2.73 km² とする。 * [付表 3-3]参照

貯水池 純容量 純要水量,有効降雨,粗要水量より 純容量 158,877㎡算出。 * 〔付表 3-4〕参照

(2) 総貯水容量の決定

貯水池納容量 158.877㎡

貯 水 浸 透 許容最大浸透 0.05%/day

平均 0.025%/day

一期(5月~10月) 184日

1 5 8,8 7 7 × 0.0 2 5 % / day × 1 8 4 day

= 7,3 0 8 m

湖面蒸発量

Total $6 \, \text{mm} / \text{day} \times 153 \, \text{day} + 3 \, \text{mm} / \text{day} \times 31 \, \text{day} = 1.011 \, \text{mm}$

湖面積 9.54 ha ×平均湖面積 1/3 = 3.18 ha

∴蒸発量 3.18 ha×1,011 mm = 32,150 m²

想 定 堆 砂 量 火山堆積層ではあるが、非常に固結されているので30㎡/ year kg³ とする。

平均耐用年数は80年

∴ 堆砂量 = (2.7 3 km² - 9.54 ha) × 30 m²/year km² × 80 year

 $= 6,323m^3$

生活用水その他 生活用水 250 L/日・人×100 人/日×184日

= 4,600m

その他= 742㎡

総貯水容量

貯水池純容	量 1	5 8,8 7	7 m
貯水 浸	透	7, 3 0	8
湖面蒸発	盘	3 2,1 5	0
堆 砂	量	6, 3 2	3
生活用水その	他	5, 3 4	2
		_	_

Σ

2 1 0,0 0 0 m

: 総貯水容量は210,000mとなる。

また、H~Q曲線より常時満水位(FWL)は,

FWL=EL 45.00 m

c 貯水池計画の総括

流域面積 A=2.73㎡

総 貯 水 量 V=210,000m²

堆 砂 量 Vwn=6,320m

有効貯水量 Vw=164,290m(÷164,000m)

満 水 面 積 Aw=95,400m=0.095m

貯 水 位 HWL=45.75 m, FWL=45.00 m, DWL=43.00 m

利 用 水 深 Hw=2.00m

d 付 表

付 表 3-1 減 水 深

- 0 代 掻 水 圃場容水量 100㎜+湛水深30㎜=130㎜
- o 鉛 直 浸 透 圃場定水頭注入試験

$$k = \frac{2.30 \times Q}{2\pi h^2} \left[\log_{10} \left\{ \frac{h}{r_0} + \sqrt{1 + \left(\frac{h}{r_0}\right)^2} - 1 \right\} \right] \times \eta$$

$$\gamma o = 6 cm$$

$$\eta = 0.5 cm$$

$$\therefore k = 9.4 \times 10^{-6}$$

0 葉水面蒸発

		蒸発計蒸発量	※2葉水面 蒸発散量	※8 湖 面 蒸発量	波水深
	1 月	4. mm	4 mm	2. non.	12 mm
	2	4	4	2	12
	8	6	5	8	18
1	4	7	8	5	16
乾	5	9	10	6	18
	6	9	10	6	18
期	7	9	10	6	18
<i>"</i> [8	Ж⊥ ₉	10	6	18
Į	9	9	10	6	18
	10	6	5	а	18
	11	4	4	2	12
	12	4	4	2	12

- ※1. 9月蒸発量は、MetroならびにTeginenengセンター内とで観測し、Bogorその他地区を参考にして策定。
- ※2 葉面,水田水面別蒸発散については、水稲の活着期、分蘖期等 稲葉の生長活動、繁茂被覆度合と気温、湿度に関係するが、これ等の相対比を乾期1.1、雨期0.9とする。
- ※ 8 湖面蒸発量は乾期 0.7、雨期 0.5 とする。

(1)	8 0	0.0	0.9	0.0	80	0 8	0.0	0 8 3	0.0:	091	08:	0 9	-	
(3) (13 × 12 × 12 × 12 × 13 × 13 × 13 × 13 ×	=2480	= 2400	0981= 1	* = 2400	# = 2.480	. = 2480	=2400	=2480	= 24	. = 1860	1680	0ha=1.8]
(1)	×	×	×	×	×	×	×	×	×	×	×	(81 EX 10		1
(表 12	× 81											 	Γ:	_
#	1.4880	17529	15496	20811	20981	20931	21600	26511	18117	1,5496	12969	14409		
(表 12	12×31=372	1/20 { 130 +	®	18X30=540	18X31=558	18×31=558	18×30=540	1/20 { 130 + 18×14 }	€	13×31=408	12×28=336	ł		
(表)	12×31=372			•	18×31=558	18X31=558	18×30=540		1/20 { 130 + 16×14 }	€	12×28=336	12mx31E=372		Œ
国代告 苗代告 苗代告 BE 代基連 机铁连	12×31=372	12×30=360		720 { 130 +			18×30=540	18×31=558	-	西代 1/20{130+13×14}=15.6 代数 13×15=19.5 発通 13×15=19.5 340.6	•	12mx81B=372		
1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12×31=872	12×30=360	13×31=403		毎代 1/20 {130+18×14}=191 代数 18×15-270 日本語 18×15-270	•	18×80=540	18X81=558	16×30=480	13mm×31日≒403	120[130+			*
下 1 (代数 12m×15m 141)= 12m×15H 15m 15m 15m 15m 15m 15m 15m 15m 15m 15m	②			18×30=540	18×81=558	苗代 1/20 {130+18×14}≃191 代本 代本 18×15-270 4131	€				1 2mx2 8 H=3 3 6	苗代 1/20[180mH2m244]=149 代塔 180mH2m244]=149 指通 12m×15日 180 指通 8243	7 1	
	21		2				·			es				

ŧ

付 表 3-3 貯水池容量

貯 水 池 流 入 量

		降		尹	水	1 3	<u>н</u>	内	烬		旐	入量
	月	酹	7.	k E	(5 h	L)	<u> </u>	ヨかん	(101	1a)	旋出高	流入量
		#	純要水量	有效時雨	差納要水量	租要水量	純硬水量	有效解析	差 純政水量	相要水量	降用量 × f	统出度×流域 (2.78 km²)
				×5 ha		∕0.95)	×10ha		/081	× 85 %	
17	1	## 819	1,440.9	425.6	7.0158	1,0687	1,860	1,812	548	6765	271.0	กร้ 740876
Ц	2	79	12969	0	12969	1,8652	1,880	0	1,680	20741	×70% 558	150969
Ŋ,	8	189	1,5496	0	1,5496	1,6812	1,860	0	1,860	22968	×85% 1182	822686
1	4	199	1,811.7	696	1,115.7	1,1744	2400	1,892	1.008	1,2444	×55% 1095	278110
1	5	12	2,651.1	0	2,651.1	27906	2480	0	2480	80617	×20 % 24	6,552
ξ	6	26	21600	0	21600	2,2787	2400	8	2892	29581	×80% 78	21294
	7	82	20981	0	2,0981	22088	2480	256	2224	2,745.7	×8095 9.6	26,208
	8	1	20981	0	20981	22088	2480	Q	2480	8061.7	a	a
Ŋ	9	28	20811	o	2081.1	21880	2400	0	2400	29680	× 80 96 8.4	22982
F)	10	89	15496	0	1,549.6	1,681.2	1,860	0	1,860	22963	×55 % 21.5	58695
	11	149	1.7529	 0	1.7529	18452	2400		2400	29680	×80% 1192	825416
וט	12	181	1.488.0	0	1.4880	1.5668	2480	0	2480	8,061.7	×80% 1048	286104
~	at	1,154		<u> </u>								

付 表 3 - 4 貯水池依存量

	降	in the	場必要	粗要水	1 .	P	宁水池依存	B
月	崩,		A #	水 量		76. 7 M		*******
	量	⊞ 5ha	畑がん10	小計	Volume × 10 ⁴	流入量	差	依存量
1	### 819	1,0687	6765	1.7452	m² 17452	nt 740,876	mt +7 2 2 9 2 4	nd 0
2	79	1,8652	20741	84898	84898	150,969	+116576	a
8	189	1,681.2	22968	89275	89275	822686	+288411	0
4	199	1,1744	1,2444	24188	24188	273110	+248922	0
5	12	27906	80617	5,8528	58528	6,522	- 51,971	- 51,971
6	26	22787	29581	5,2268	52268	2 1, 2 9 4	- 80974	- 82945
7	82	22088	2745.7	49490	49490	26,208	- 28282	-106,227
8	1	22088	806 L7	52650	52650	0	- 52650	-158877
9	28	21880	2,9680	5,101.0	51,010	22982	+ 17881	-141,046
10	89	16812	22963	8,9275	89275	58,695	+ 19420	-121,626
11	149	1,8452	29680	48082	48082	8 2 5,4 1 6	+277884	0
12	181	1,5668	806L7	4,628.0	46280	286104	+289224	0
et	1,154							

(B) 堤体規模の決定

a 余裕高の決定

低ダム余裕高の算定(一般式)

Hf = 0.05 H + 1.0

ととに Hf:余裕高(m)

H:基礎地盤から計画最高水位までの高さ(m)

HWL = 45.75 m

GH = 42.40 m

:: H = HWL - GH

= 3.35 m

 \therefore H f = 0.0 5 × 3.3 5 + 1.0 = 1.1 6 8 m

余裕高 Hf=1.168mとなるが

① 貯水池の規模が小さく, 総貯水量

 $V=2\,1\,0.0\,0\,0$ が に対し、 満水面積 $A=9\,5.4\,0\,0$ が 大きい。 すなわち V/A=2.2 であり、 貯溜効果が大である。

- ② 台風襲来、強風、地震のない地域である。
- ③ モデル圃場への連絡幹線道路として、ダム天端を利用する計画であり、ダム天端巾は低ダムの通常の巾より約3倍大きい10.0 mを計画している。
- ④ 余水吐は非調節型の越流式を特に採用し、流出量に対する水位上昇の低減に配慮している。
- ⑤ 常時満水位EL. 45.00, ダム天端EL. 46.50まで1.5 mの余裕高は, 常時水深2.00mに対し, 大きな比率を有する。

などを考慮し、常時満水位上1.5 mの余裕高洪水水位上0.75 mの余裕高とする。

- b 堤高の決定
 - 1) 堤頂標高の決定

堤頂標高=常時滿水位+越流水深+余裕高

= 45.00+0.75+0.75

= 46.50 m

2) 堤高の決定

最低基礎地盤は、地形縦断図よりEL. 40.40 m とし、最低掘削面とする。

堤高=堤頂標高-最低地盤標高

 $\therefore HD = EL$, 4 6.5 0 -EL, 4 0.4 0

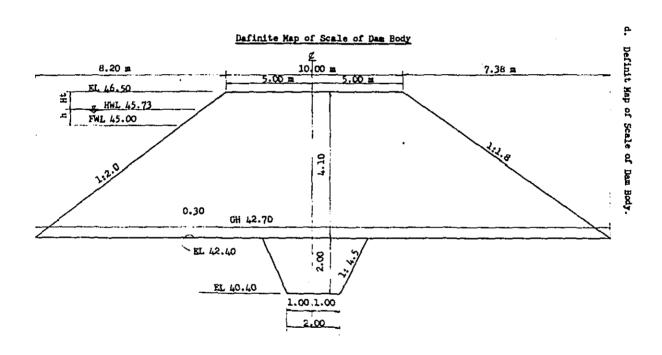
= 6.10 m

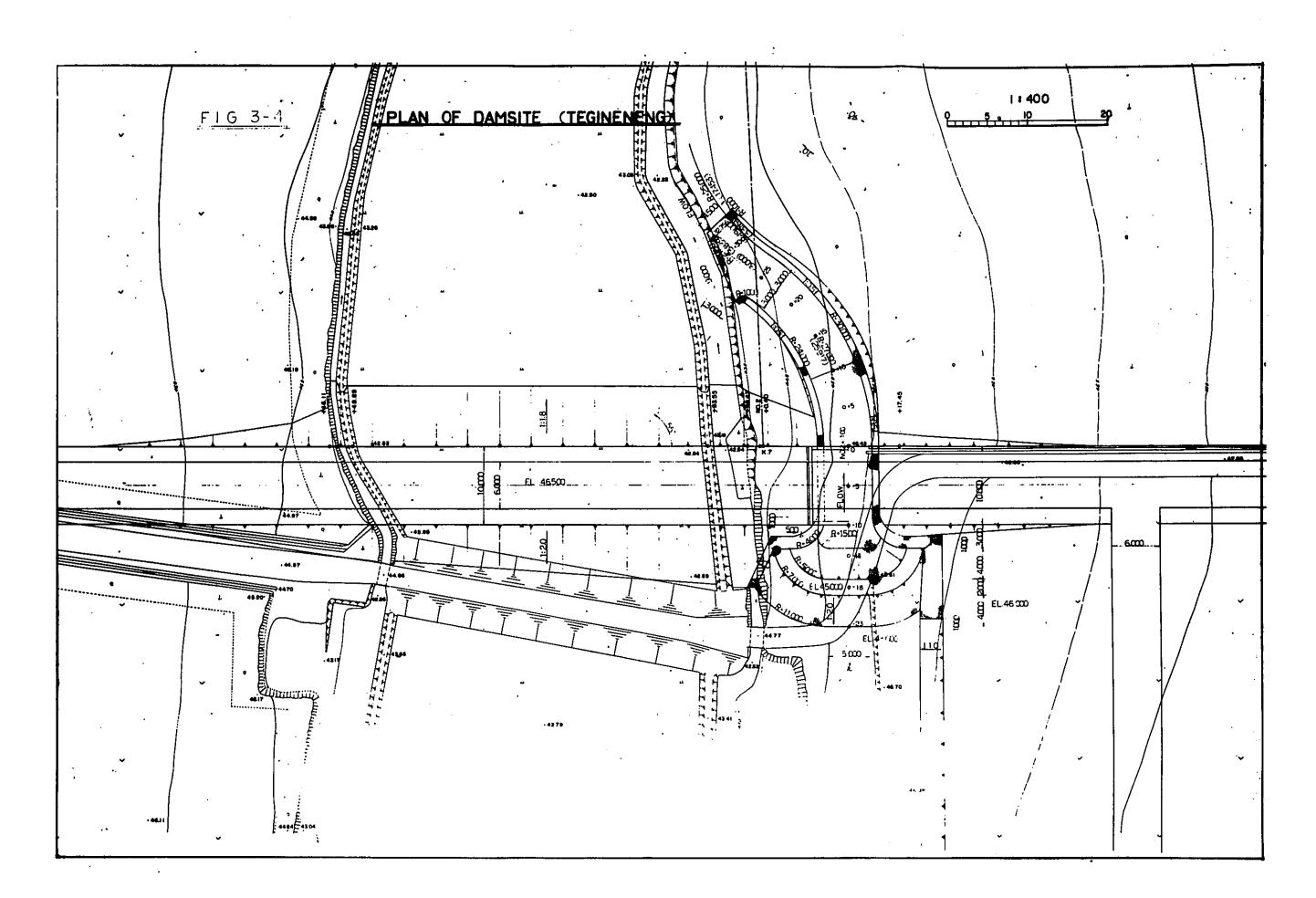
c 堤頂幅の決定

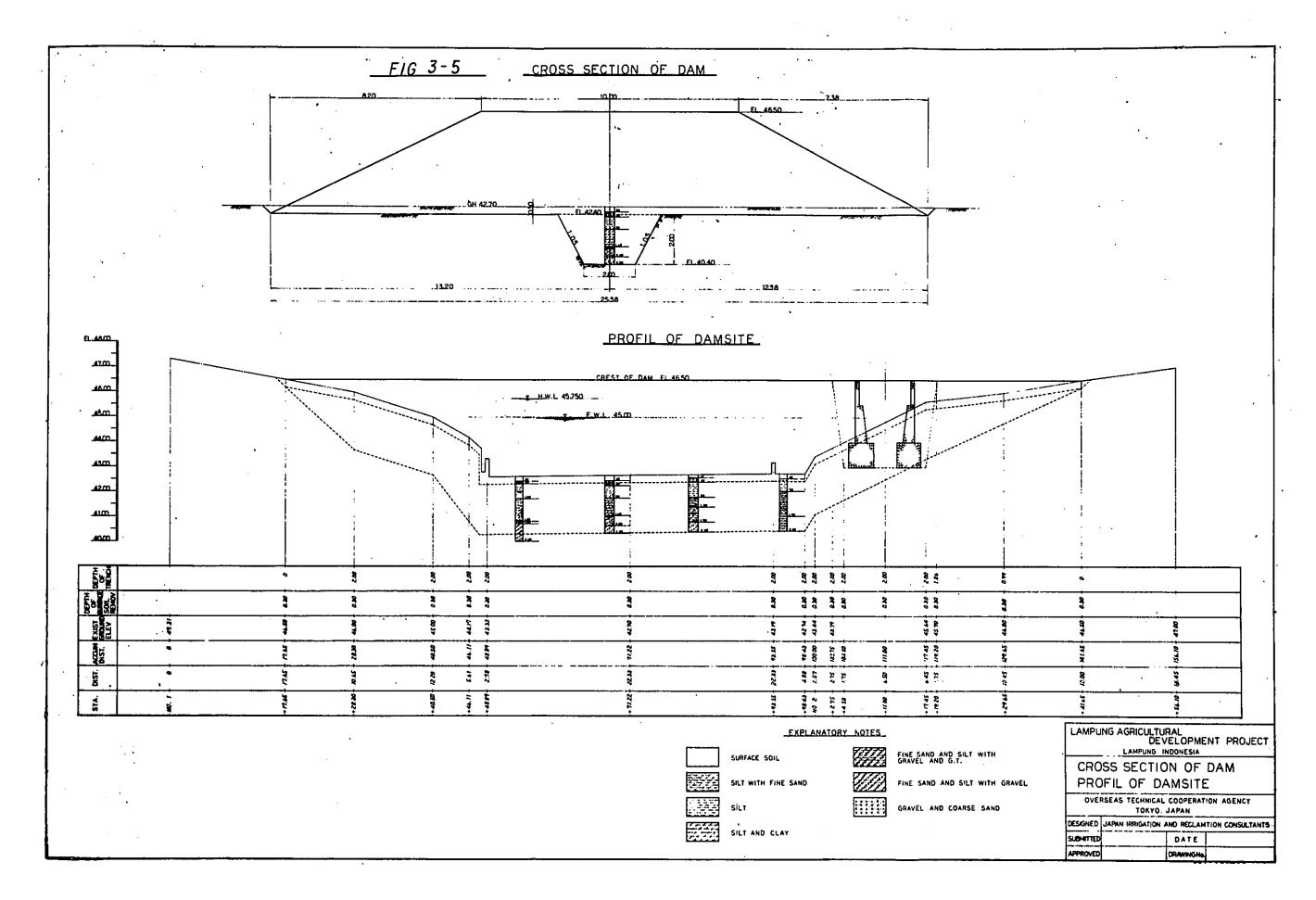
低ダム堤頂巾の算定(一般式)

BD = 0.2 H + 2.0 m > 3.0 m

ととに BD:堤頂幅 (m)


H :堤窩


H = HD = 6.10 m


 $\therefore BD = 0.2 \times 6.1 + 2.0 = 3.2 \ 2 \ m < 10 \ m$

タム天端はモデル圃場への連絡幹線道路として利用するので、モデル圃場の幹線道路 幅員と同じ幅員とする。

 $\therefore BD = 1 \ 0.0 \ 0 \ m$

3-2-6 堤体の設計

(A) 築堤材料の設計数値

本計画の築堤材料は粒度試験結果から"SP"材料と推定されるが、ダムサイト近傍の 土壌は、そのほとんどがラトソル系のシルト分の多い粘質土であり、「Earth and Earth-Rock Dams」などの資料に示される"SP"の材料とは異質のものと考えられる。 「ICHTISAR HASIL'PENIELIOIKAN LABORATORIUM MEKANIKA TANAN L,P,M,A, UNTUK TJONTOH'TANAH DARI:WAY UMPU-LAM-PUNG」に示される資料と比較すると、現場試料に近似していると考えられ、これらを参 考に試験結果をまとめた。

試 料	試料摄		突	固め試	験	直接セン	断試験	透水試験
番号	取深度	比重	最 高 含水比	最大乾燥 密度(t/m)	湿潤密度	粘着力	内 部マサツ角	透水係数
No.	D (m)	Gs	wopt(%)	rdmax	rt(t/m)	C(1,413)	φ (BE)	k(cm√sec)
ST-A1	a50~150	267	892	L2 1	1,68	1.5 0	28°80'	81×10 ⁻⁹
ST-A2	"	267	4 2 1	1.24	1.76	1.10	87°80′	5.7×10 ⁻⁹
ST-B	200~800	266	4 6.5	1.18	L78	1,90	14°80'	5.0 × 1 0 ⁻⁹
SI	050~150	2.61	485	1.22	L75	2.80	28°15′	85×10 ⁻⁹
平均	值	2.65	4 2.8	1.21	(178)	1.70	27°11'	68×10 ⁻⁹

土質試験結果表

注 1): $rt = (1 + \frac{w}{100}) \gamma dmax$

a 基本数值

1) 土粒子の比重(GSM)

$$GSM = \frac{\sum_{i=1}^{n} GSi}{n} = \frac{2.51 + 2.53 + 2.51}{3} = 2.517 \div 2.52$$

2) 自然含水量 (WFM)

$$WFM = 33.8 \div 34.0 \%$$

3) 最適含水比 (Woptm)

Woptm =
$$\frac{i = 1 \text{ Wopt i}}{n}$$
 = $\frac{171.30}{4}$ = 42.825 \pm 42.8%

4) 最大乾燥密度 (rdmax M)

$$\gamma \, \text{dmax M} = \frac{\sum_{i=1}^{n} \gamma \, \text{dmax M}}{n} = \frac{4.85}{4} = 1.213 \div 1.21 \, \text{t/m}^3$$

b 单位重量

- 1) 乾燥密度(rd)
 - i) 最大乾燥密度 (rd max M)

平均值

 $\gamma \, \text{dmax M} = 1.21 \, \text{t/m}^2$

標準編差

乾燥密度

$$\gamma \operatorname{dmax} M' = \gamma \operatorname{dmax} M - \frac{1}{2} r \operatorname{rd}$$

$$= 1.21 - \frac{1}{2} 0.03 = 1.195 \div 1.19 \operatorname{t/m^2}$$

||) 90%乾燥密度

$$\gamma d95 = \gamma dmax M \times 0.9$$

= 1.21 × 0.9 = 1.089 \(\div \)1.00 t/m²

よって γd90<γdmaxM'となるので,施工条件を考慮してγd90 を採用する。

$$\therefore rd = rd90 = 1.0 t/m$$

- 2) 含水比 (W)
 - i) 自然含水比 (WFM)

WFM = 34.0 %

||) 最適含水比 (Wopt M)

Wopt
$$M = 42.8\%$$

標準編差

$$r \text{ wopt} = \frac{1}{4-1} \times 27.63 = 3.0347 \div 3.03$$

含水比

 $WoptM' = WoptM \pm r wopt$

$$= 42.8 \pm 3.03 = \left\{ \begin{array}{r} 45.83 \div 45.8\% \\ 39.77 \div 39.8\% \end{array} \right.$$

よって、 |), ||) および堤体の安全性、施工の時期等を考慮して含水比はWFMを採用する。

$$:W = WFM = 34.0 \%$$

3) 湿潤密度 (rt)

$$rt = rd (1+W)$$

$$\therefore r t = 1.0 (1 + 0.34) = 1.34 t/m^2$$

$$e = \frac{Gs}{rd} - 1$$

$$\therefore e = \frac{2.52}{1.34} = 1.88$$

5) 飽和重量 (rsat)

$$\gamma$$
sat = $\frac{G + e}{1 + e} \gamma w$

$$\therefore \gamma s a t = \frac{2.52 + 1.88}{1 + 1.88} \times -1.0 = 1.527 \ \div 1.53 \ t/n^2$$

6) 水中重量

$$r \text{ sub} = r \text{ sub} - r \text{ w}$$

$$\therefore r \text{ sub} = 1.53 - 1.0 = 0.53 \text{ t/m}^2$$

- c セン断強さ
 - 1) 内部マサッ角 (ø)

$$\phi m = \frac{\sum_{i=1}^{N} \phi_{i}}{n} = \frac{108.75}{4} = 27.1875 \div 27^{\circ} 11'$$

$$r \phi = \sqrt{\frac{1}{n-1}} (\phi - \phi_{m})^{2} + (\phi_{2} - \phi_{m})^{2} + \dots + (\phi_{n} - \phi_{m})^{2}$$

$$= \sqrt{\frac{1}{4-1}} \times 271.482 = 9.5128 \div 9^{\circ} 30'$$

$$\phi = \phi_{m} - \phi$$

$$= 27.1875 - 9.5128 = 17.6747$$

$$\therefore \phi = 17.6747 \div 17^{\circ} 40'$$

$$\therefore \tan \phi = 0.3185$$

2) 粘着力 (C)

$$Cm = \frac{\frac{n}{1-1} C_i}{n} = \frac{68}{4} = 1.7 t/m^2$$

$$rC = \sqrt{\frac{1}{4-1} \times 0.8} = 0.5163$$

$$C = Cm - rC$$

$$\therefore C = 1.7 - 0.5163 = 1.2 t/m^2$$

d 透水係数

透水係数の平均値 $k_m=6.8\times10^{-9cm}/\mathrm{sec}$ となるが、設計密度は、 $\gamma\mathrm{dmax}\times90\%$ であり、このときの間グキ比は e=1.88 等を考慮し、設計透水係数は下記の値とする。 $\therefore k=5.0\times10^{-6\,cm}/\mathrm{sec}$

e 設計数値の総括

堤体の設計数値を総括すれば下表のとおりである。

設計数値の総括表

		単 位	重 量		t	ン断強	ਰ <u>ੋ</u>	透水係数
含水比 W (%)	γ d t/m²	γ t t/m²	r sat	γ sab t/m²	C t/m²	φ (度)	tan ø	k (cm/sec)
8 4.0	1,0	1.34	1.58	0.58	1.2	17° 40′	0.8185	5.0×10 ⁻⁶

(B) 浸透水に対する検討

a 堤体の浸潤線

浸潤線はカサグランドの方法により、常時満水位(FWL 45.00)について求める。

1) 基本数值

$$\ell 1 = 5.20 m$$
 $\ell 2 = 0.3 \,\ell 1 = 1.56 m$
 $d = 0.3 \,\ell 1 + \ell 2 = 21.94 m$
 $h = 2.60 m$

2) 基本放物線

$$Y_0 = \sqrt{h^2 + d^2} - d = \sqrt{2.60^2 + 21.94^2} - 21.94 = 0.154 m$$

$$\therefore X = \frac{Y^2 - Y_0^2}{2Y_0} = \frac{Y^2 - 0.154^2}{2 \times 0.154} = \frac{Y^2 - 0.024}{0.308}$$

基本放物線(浸潤線)の計画表

Y	0	0.5	1.0	1. 5	2.0	2.5
х	0.077	0.784	8.169	7 227	12909	20.021

3) 基本放物線の修正

$$\tan d = \frac{4.10}{7.38} = 0.555$$

浸出面 (a)は

$$a + \triangle a = \frac{Y_0}{1 - \cos \alpha}$$

$$\cos \alpha = 0.8742$$

$$Y_0 = 0.154 m$$

$$a + \triangle a = \frac{0.154}{1 - 0.8742} = 1.224 m$$

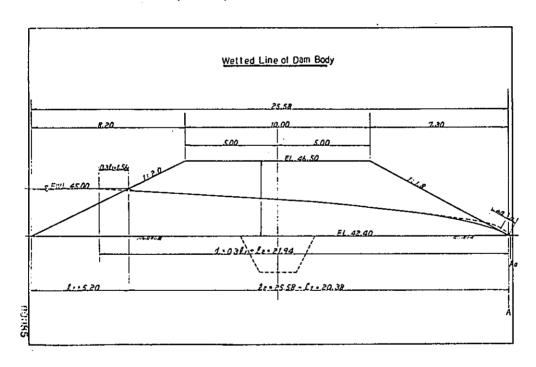
$$a = \frac{d}{\cos \alpha} - \sqrt{\left(\frac{d}{\cos \alpha}\right)^2 - \left(\frac{h}{\sin \alpha}\right)^2}$$

$$2 \le V = 0$$
 d = 21.94 m

$$h = 2.60 m$$

$$cos a = 0.8742$$

$$\sin a = 0.4855$$


$$\therefore a = \frac{21.94}{0.8742} - \sqrt{\left(\frac{21.94}{0.8742}\right)^2 - \left(\frac{2.60}{0.4855}\right)^2} = 0.478 \ m$$

$$\therefore \triangle a = 1.224 - 0.478 = 0.737 m$$

またaおよび(a+△a)の垂直成分は

$$\therefore a = a \sin \alpha = 0.478 \times 0.4855 = 0.232 m$$

∴a + △a = (a+△a)
$$\sin \alpha = 1.224 \times 0.4855 = 0.594 m$$

b 堤体の浸透量

1) 堤体の単位巾当り浸透量 (qD)

$$qD = K, Yo$$

ここに K :透水係数 =
$$5.0 \times 10^{-6}$$
cm/sec

$$\therefore K = 5.0 \times 10^{-8} \text{m/sec}$$

Yo: 没出面高さ(6-2-1 2)参照) = 0.154 m

$$\therefore qD = 5.0 \times 10^{-8} \times 0.154 = 7.7 \times 10^{-9} m/sec/m$$

2) 堤体からの全浸透量 (Qo)

$$Qo = qo\ell$$
.

ここに &: 堤体の漫透平均巾 = 66.0 m

 $\therefore Q_0 = 7.7 \times 10^{-9} \times 66.0 = 5.082 \times 10^{-7} m^2 / sec$

$$\therefore Qday = 5.082 \times 10^{-7} \times 86.400 = 4.4 \times 10^{-2} / day = 0.044 \text{ m}^2 / day$$

3) 漏水量の比率

総貯水量: V = 210,000 m

$$\triangle W = \frac{Q \, day}{V} \times 100$$

$$\therefore \triangle W = \frac{0.044}{210.000} \times 100 = 2.0952 \times 10^{-5\%} \text{/day}$$

c 堤体, 基礎の浸透量

ダムサイトの基礎は、半透水性地盤 $(K=4.5 \times 10^{-3} cm/sec)$ の上に、粘質土が滞積し、低度自然プランケットを形成していることが推察される。したがって基礎地盤からの浸透量は自然プランケットとして、近似的に求める。

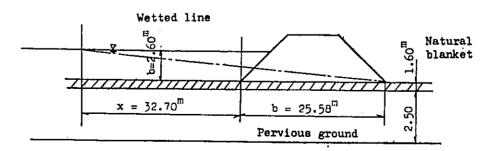
1) 有効浸透路長

$$X = \sqrt{\frac{t,d,k}{k}}$$

ことに、X: 有効浸透路長(m)

t: 自然プランケットの厚さ = 1,640m ÷ 1.60m

d: 基礎の深さ = 2.5 m (仮定)


k: 自然プランケットの透水係数

$$\therefore 5.5 \times 10^{-4} cm/sec = 5.5 \times 10^{-6} m/sec$$

k : 基礎の透水係数

$$\therefore 4.5 \times 10^{-3} \text{ cm/sec} = 4.5 \times 10^{-5} \text{ m/sec}$$

$$\therefore X = \sqrt{\frac{1.60 \times 2.50 \times 4.5 \times 10^{-5}}{5.5 \times 10^{-6}}} = 32.727 \div 32.7 \text{ m}$$

2) 基礎の浸透量

1) 単位巾当りの浸透量 (q)

$$q = \frac{k, d, h}{0.62x + b}$$

$$\therefore q = \frac{4.5 \times 10^{-5} \times 2.5 \times 2.6}{0.62 \times 32.7 + 25.58} = 6.38 \times 10^{-6} m^{2} / \sec c / m$$

ii) 全浸透量 (Q)

Q = q,
$$\ell$$
 $\geq \ell$ ℓ = 66.0 m • \therefore Q = 6.38×10⁻⁶×66.0 = 4.21×10⁻⁴ m^2 /sec \therefore Qday=4.21×10⁻⁴×86.400 = 36.374 m^2 /day

3) 漏水量の比率

$$\triangle W = \frac{Qday}{V} \times 100$$

$$\therefore \triangle W = \frac{0.044}{210,000} \times 100 = 2.0952 \times 10^{-5} \%/day$$

d 漫透量の総括

堤体および堤体基礎地盤からの漫透量を示せば下表のとおりである。

浸透量の総括表

区	分	総貯水量 V (n²)	有効貯水量 VW (m)	溺 水 量 Q (m/day)	$\triangle W = \frac{Q}{V} \times 100$ (%)	$\triangle W' = \frac{Q}{\triangle W} \times 100$	摘要
堤	体			0.044	0000021	00000268	ок
基	礎	210,000	164,000	86,874	0017821	00221779	ок
		,		86,418	0.017842	002220	ок

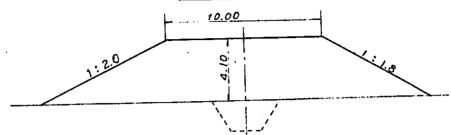
上表で明らかなように、漏水量は Q=36.418m/day であるが、有効貯水量 Vw=164.000mに対する比率 $\triangle W=0.02228$ である。

(C) 堤体の安定計算

a 安定計算条件

テーラーの安定計算図表から堤体斜面の安定計算を行う。

1) 築堤材料


設計数值表

华位	重量	-1	ヒン断強さ			
乾 燥 yd t/m	湿 潤 rt t/m	粘着力 C t ∕m²	内部マサッ角 ø (医)	tan ø	摘	要
1.00	1.84	1.2	17~40	0.8185		

2) 堤体構造

標準断面

Standard Section

ダムタイプ:均一型アースダム

堤 高: HD' = 4.10 m

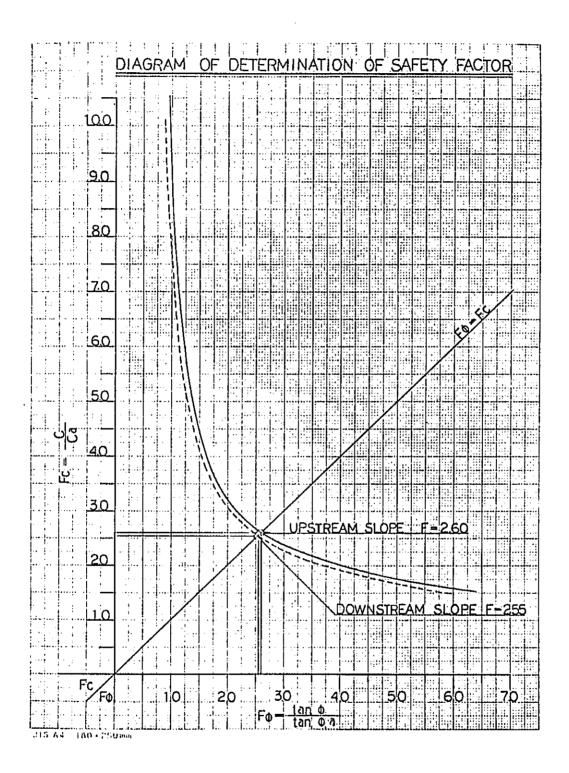
单位重 量: rtHD= 1.34×4.10=5,494=5.5 t/m²

斜面倾 度:上流側:1:2.0(26°34')

下流側: 1:1.8(29°03')

b 安定計算

1) 上流側


上流斜面安定計算表

仮 定 内部マサッ角 ø a	安定	必要 粘着力 Ca=rtH ¹ Ns	粘着力による 安 全 率 Fc=C a	tan øa	内部マサツ角 による安全率 Fø=tanø tanøa
0	0.154	0.847	1.417	. 0	0
5	0.102	0.561	2189	0.0875	8640
1 0	0.062	0.841	8519	0.1768	1.806
15	0.084	0.187	6.417	0.2679	1.189
2 0	0.015	0.088	1 4.4 5 8	0.8689	0.875

2) 下硫側

下流斜面安定計算表

фв	1 N s	Ca=rtH 1/Ns	$Fe = \frac{C}{Ca}$	tan øa	$Fa = \frac{\tan \phi}{\tan \phi a}$
0	0.155	0.852	1.408	0	0
5	0.107	0.588	2040	0.0875	8.640
10	0.064	0.852	8.409	0.1768	1.806
1 5	0.040	0.220	5.454	0.2679	1.189
20	0.024	0.132	2090	0.8689	0.875
2 5	0.008	0.044	27272	0.4668	0.688

c 安全率の総括

粘着力による安全率Fc および内部マサッ角による安全率を、それぞれ、Fc、 $F\phi$ の 座標にプロット(安全率の決定 参照)し、堤体の安全率を求めた結果を示せば、下 表のとおりである。

安全率の総括表

斜	面	斜面傾度	安全率 Fs	摘 要
上北	充 側	1:20	260	$C = 1.2 t / m^2 \phi = 1.7^{\circ} - 4.0'$
下	流 側	1:18	2.55	C= " \$\phi = "

D ダム計画規模

ダム計画諸元

位	饠	Tegineneng
河	川名	沼 沢 地
Ŋ.	ム 名	A.E.C 貯水地
<i>y</i> ,	4 型 式	均 一 型
- 基	楚 地 盤	砂り混り粘土
水文	流域面積	$A = 2.73 \text{ Km}^3$
	余水吐基準雨量	γt=185mm/day(1/100)の12倍-222mm/day
	総貯水量	$V = 2 \ 1 \ 0,000 \ m^4$
	堆 砂 量	$Vwn = 6820 m^3$
num t. Mr.	有 効 貯 水 畳	$Vw=164,290m^3(\div 164,000m^3)$
貯水池	满水 面積	$Aw=95,400m^2=0095 Km^2$
	貯 水 位	HWL=45.75 m FWL=45.00 m DWL=4800 m
	利用水梁	Hw=2.00m
	堤 髙	HD=6.1 0 0 m
	堤 長	LD=1 2 4.0 0 m
堤 体.	堤 頂 巾	$BD=1 \ 0 \ 0 \ 0 \ m$
	斜面傾度	上流側=1:20 下流側=1:18
	堤体積 本堤 盛土	6, 5 2 0 0 0 m ²
	余 水 吐 型 式	越流堰型式余水吐
ا به بد م	計画 洪水量	Qs=189m²/sec (q=692m²/sec/Km²)
余水吐	越 流 堰 長	B s = 2 0.00 m
	越流水深	Hs=0.75 m
取水設備	取 水 型 式	ポンプ(片吸込渦巻ポンプ2台)
~以 八八以 (四)	最大取水量	0.015m²/s/台×2台×10円
仮排水路	型式	既設ポンプ及び既設パイプ

3-2-7 余水吐の設計

(A) 位置タイプ路線の選定

a 余水吐の位置

余水吐の位置の選定についてはダムサイト付近の地形、地質、掘削材料利用の可能性 貯水池の目的ならびに管理上の諸点を考慮して、最も安全で経済的な位置に選定する。

本計画のダムサイトは既述の如く貯水池敷として埋没する低地谷地田の両側を雨期に排水路としての機能を持つ開水路が存在する。この開水路の位置を参考にして、本計画の余水吐を貯水池右岸か左岸に設ける事を考える。

右岸に余水吐を設ける場合、地山の傾斜を利用して少い掘削量で十分余水吐を地山に くい込ませるととが出来、また余水吐放水路長も左岸側より短くて良く経済的である。

また締切堤直下流90 m地点に下流側谷地田の畦畔が存在する。(Fig 3-4 参照) 余水吐が左岸の場合、排除された洪水がとの畦畔を破壊し、下流域へ悪影響を及ぼすお それがある。

また、左岸側の畑地には、開発計画により、Net House や Cattle Shed また昆虫飼育室を設ける予定がある。

また右岸土取場に接し、一連の土工工事として施工、管理が容易であり、施工後の安全 性、美観、管理にも有利である。

以上より本計画の余水吐は右岸側に設ける。

b 余水吐の型式

小規模で特に低堤高のダムであり、しかも流域面積や水文資料を充分には把握できない計画に対しては、固定開放式の越流余水吐が最も良い。維持管理、調節が不要で安全確実な利点がある。水位上昇に対しても水理学的に有効作用となり、洪水量の排除能力が他の型式に較べ、格段に大きい。

よって本計画の余水吐は越流式余水吐とする。

c 路線の決定

余水吐中心線は、堤体と余水吐の安全を確保し、地形的制約及び経済性から、ダム平面図に示した如く、ダム軸と直交させ、堤体のり尻を十分離れた地点で曲線とし、可能な限り短いものとした。

(B) 水理計算

a 設計条件

設計洪水量 Q=18.9 m²/s
 粗度係数 n=0.025
 越流水深 H=0.75 m
 常時満水位 F.W.L = EL 45.00 m

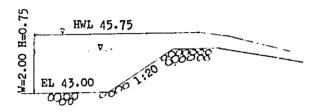
設計洪水位 H.W.L = EL 45.75 m

越流堰頂標高 EL 45.00m

流入部敷高標高

EL 43.00 m

b 越流部


(1) 接近水路深さの影響

$$W \ge \frac{1}{5}H$$
 ····· ①

H=0.75 W=200を①へ代入すると①を満足する。OK

(2) 堰上流面勾配の影響

最も有利な勾配 W/H=2.7 より直壁で良いが、パサンガン張りとなる越流堰の安全 を考慮して, 2割とする。


(3) 越流係数

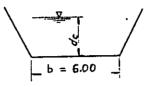
前項(イ)。(ロ)の条件を考慮し越流係数を C=1.7 とする。

(4) 越流堰長の決定

Q=CBH
$$^{3/2}$$
 Q= 18.9 m /s
H= 0.75 cm
C= 1.7
B= $\frac{Q}{CH^{3/2}} = \frac{18.9}{1.7 \times (0.75)^{3/2}} = 17.12$

c 取付水路

(1) 取付水路末端 (Control Point)


底巾 6.00 m 斜面勾配 1:0.5 の台形断面に Q=18.9 m/sec の設計洪水量を流した時の限界水深(dc)は

$$\frac{Q}{b^{25}} = g \left(\frac{dc}{b}\right)^{3/2} \left[\left(1 + Z \frac{dc}{b}\right)^{3/2} / \left(1 + 2Z \frac{dc}{b}\right)^{3/2} \right]$$
= k''

$$Q = 18.9 \text{ m}^3 / \text{sec}$$

$$b = 6.00 m$$

Z = 0.5

$$\therefore k'' = \frac{18.9}{6.25} = 0.2 1 4 3 \rightarrow \frac{dc}{b} = 0.1 6 3$$

$$\therefore dc = (\frac{dc}{b}) \times b = 0.163 \times 6 = 0.978 m$$

また、との時の水理諸元は以下の通りである。

$$dc = 0.978m$$

$$Ac = dc (b + Zdc) = 0.978 (6.000 + 0.5 \times 0.978) = 6.346 m^{2}$$

$$Pc = b + \sqrt{dc^2 + (Zdc)^2} = b + dc \times \sqrt{1.25} = 7.093 m$$

$$Rc = Ac/Pc = 6.346/7.093 = 0.895$$

$$Rc^{2/3} = 0.9287$$

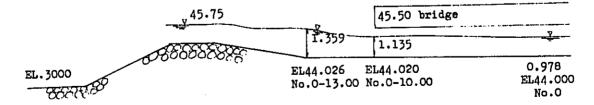
$$Vc = Q/Ac = 18.9/6.346 = 2.978 \text{ m/sec}$$

$$I c = \left(\frac{n \cdot Vc}{Rc \ 2/3}\right)^2 = \left(\frac{0.025 \times 2.978}{0.9287}\right)^2 = 0.006426 = \frac{1}{156}$$

よって、取付水路末端より -13.00 m 地点までを 1/500 の常流勾配とする。また +10.00 m 地点までを1/5 の射流勾配とする。

(2) Control Point より上流側水路の水位計算

(計算は別紙付表 3-5参照)


No.0 - 10.00 (橋梁下部工始点)

$$d = 1.135m$$
 $V =$

$$V = 2.536 \, m/sec$$

No.0 - 13.00 (越流堰のり先)

$$d = 1.359 m$$
 $V = 1.437 m/sec$

以上より

No.0-13.00 m 点の水位 EL45.385 < EL45.00 $+\frac{2}{3}$ \times 0.75 橋梁とのクリア ランス 45.500-(45.155)=0.345 m となり、越流堰のおぼれ、橋梁とのクリアランスとも問題ないと言える。

d 射流部(シュート部)

(計算は付表 3-5 に掲げる)

No.0 + 10.00点 d = 0.436m V = 6.972m/sec (ここで、湾曲、渦による損失水頭は無視する)

e 静水池の計算

$$4$$
 によりシュート部末端 $d1 = 0.436$ m $V1 = 6.972$ m/sec $Q = 18.9$ m/sec

が決まった。

以上よりⅠ型(自然)静水池が適当

(1) フルード数(F1)

$$F_1 = \frac{V_1}{\sqrt{g \, d_1}} = \frac{6.972}{\sqrt{9.8 \times 0.436}} = 3.373$$

$$\left\{ \begin{array}{cccc} V_1 : 跳水前の流速 & 6.972 \, m/s \\ d_1 : & \# & 0.436 \, m \end{array} \right\}$$

(2) 跳水深 (d2)

$$\frac{d2}{d1} = \frac{1}{2} \left(\sqrt{1 + 8 F 1^2 - 1} \right)$$

$$\therefore d2 = \frac{d1}{2} \left(\sqrt{1 + 8 F 1^2 - 1} \right)$$

$$= 0.436/2 \times \left(\sqrt{1 + 8 \times 3.373^2} - 1 \right) = 1.873 m$$

(3) 静水池の長さ (L)

F1 = 3.3 7 3 に対する L/d2 ≒ 6.0

 $L = 6.0 d2 = 6.0 \times 1.873 = 11.238 m$

以上より 静水池壁高を2,000m

静水池長さを12,000m以上とする。

(Table -3-5)

No. 1 b d A V V²/2g P R R4/3 n²v²/ R4/3 Sf Sf./ EL EL+d Error C.K.

Computation of Water Level of Upstream Side Canal from Control Point

No. 0 6.000 0.978 6.346 2.978 0.453 7.093 0.894 0.861 0.00644 - - 44.000 45.431

No. 0--10 10.000 6.000 1.135 7.454 2.536 0.328 7.269 1.025 1.034 0.00389 0.00516 0.052 44.020 45.483 45.431 0 OK

No. 0--13 3.000 9.000 1.359 13.154 1.437 0.105 10.519 1.250 1.347 0.00096 0.00243 0.007 44.026 45.490 45.483 0 OK

Computation of Water Level of Downstream Side Canal from Control Point

No. 0 - 6.000 0.978 6.346 2.978 0.453 7.093 0.894 0.861 0.00444 - - 44.000 45.431

No. 0-+10 10.000 6.000 0.436 2.711 6.972 2.480 6.487 0.418 0.313 0.0971 0.0518 0.518 42.000 44.916 45.343 0.003 OK

3-3 センター施設

3-3-1 建物の配置及び概要

前記の目的, 並に組織により, この機能を充足する一方既存の施設の有効活用を計り次の 様な施設規模の内容とした。

その配置については別添付図Fig 2-2の様な計画とした。即ち、トラックター収納車、修 理工場, 洗車床(167), 大型農機具の附属品類格庫(168), 作業室(169), 肥料倉庫(1611) 収納舎(日乾用コンクリート床付) 1612-2 等の主として農作業を対象とした建物は圃場の 近くに設けた。その他の建物は既設建物との有機的利用を考慮しつつ隣接に配置した。 各棟の床面積及び建築材料は次表の通りである。

翅 物 施 設 一 覧 表

	名	既存・新の別	大	है है
A6 1	ガソリンスタンド	新	. 66	
<i>N</i> 6. 2	網 室	,	68	1 25×5.4m
<i>№</i> 8	塩ピ歴根つき乾燥場	,	7 2	1 2×6
<i>1</i> 6. 4	事務室および実験室	,	800	40×10×2
<i>1</i> 6. 5	病菌接種室かよび昆虫飼育室	,	95	15×68
<i>1</i> 6, 6	展示室および図書室(旧事務室)	既 存	120	_
<i>1</i> € 7	トラクター収納庫・修理工場・洗車床	新	600	40×15
<i>1</i> 6⊾8	大型農機具の附属品類格納庫	, ,	400	40×10
<i>N</i> £ 9	作 葉 窒		150	25×6
A6.10	トラクター格納躍	既存	120	_ `
<i>1</i> 6,11	肥料倉庫	新	8.0 0	80×10
A≦ 1 2 - 1	収納舎(日乾用コンクリート床つき)	既 存	400	_
AG 12-2	収納会(日乾用コンクリート床つき)	新	600	15×40
A6.18	センターの所長の宿舎	既存	120	
A6 1 4	研修受開者宿舍	新	680	45×7×2
Æ15	上級職員用宿舍	既存	240	_
A6 1 6	一般職員用宿舍	,	240	-
NG 17	農夫宿舍	,	480	_
A618	牛 告	新	40	10×4
A≨ 19−1	ポンプ室	既 存		-
A619−2	ポンプ室および発電機室	3 57	16 50	4×4 5×10
A620	禮水塔		""	~ ~ ~
<i>1</i> 621	気象観測所	,		-
1622·	势破灯	,		-
A6.28	発電機電	既 存		_
No. 2 4	外灯	新		
<i>1</i> 6.25	食 堂		92	
	蟾 物 延 面 積		5,5 8 8m²	
		1	1	I

1人1日当り給水使用量 200 l/day

収容人員 150人

 $V = 200 \times 150 = 30.000 \ell/day$

1日作業時間 10時間とすると

高架水 槽 容量は1時間分を取る故

$$V = \frac{3\ 0.0\ 0\ 0}{1\ 0} = 3.0\ 0\ 0\ \ell/day$$

	建 物 名 称	姚 物 概	要	建築面積㎡ 床面積 ㎡
<i>1</i> 6 1	ガソリンスタンド	レンガ造 平 凰 木造	小園組 屋根:鉄板平葺 勾配4寸	66 18
2	網 室	軽合金切麥型平屋	選根:硝子張	68 68
8	塩ビ歴根付乾燥場	レンガ造 平 屋 木造	小屋組 屋根:塩ビ波板 勾配4寸	72 72
4	事務室及び実験室	同止 同	上 屋根:カラー鉄板平井 勾配4	寸 400×2棟 804×2棟
5	病菌接種室及び 昆虫飼育室	軽合金切婆型平度	壁根:硝子 張	95 95
7	トラクタ- 収納庫 修理工場洗車床	レンガ造 平 閨 木造	小里組 蟹根:鉄板平井 勾配4寸	600 600
8	大型農機具 附属品類格納庫	師 上 同	.t. 🕫 .t.	400 400
9	作業室	间上同	上	寸 150 150
11	肥料倉庫	同上同	上 屋根:鉄板平井 "	800 800
12-2	収納合	间上 同	上 闰 上	400 400
14	研修受講者宿舍	何 上 同	上 屋根:カラー鉄板平井 勾配4	寸 818×2棟 216
18	牛 🏫	同上同	上 屋根:鉄板平井 "	40 40
19-1	ポンプ室	间 上 同	上 同 上 勾配 2	寸 16 16
19-2	ゼネレーターポンプ室	间上 同	上 何 上 勾配4	
	,,	同上岡	L O L	16 16 28 28
25	女 堂	间上间	上 屋根:カラー鉄板平葺 勾配 4	寸 192 192

	建物名称	外職	毘 根	床	巾木	壁	天 井	備 考
<i>1</i> √a 1	事 務 寵	プラスター途	鉄板平 葺	タイル貼	ラワンOP	プラスターV . P	石綿大平板	
2	網 宝							
8	乾 懆 埸	ブラスター <u>流</u>	鉄板平葺	コンクリート 木ゴテ		レンガ素地		
4	所長室・事務室・講義	プラスター流	カラー鉄板平葺	タイル貼	ラワンOP	プラスタ-V.P	吸音テックス	テラス床。タイル貼
1	会議室・専門家居室 実験室・便所・材料室	,		モルタル金鏝		间 上	石綿大平板	軒ゥラ・石綿大平板 # 壁・プラスター
5	病菌接種室及び昆虫 飼育室							
7	トラクター収納庫	プラスター強	鉄板平茸	コンクリート 木コテ		レンガ素地		
8	大型農機具 附属品類格納庫	同 上	同上	甲上.		雨 上		
9	作 業 窒	同上	カラ- 鉄板平葺	タイル貼	ラワンOP	プラスタ-V ,P	吸音テックス	軒ゥラ:石綿大平板
11	肥料食麻	同上	鉄板平葺	コンクリート 木ゴテ		レンガ素地		
12-2	収 納 會	间上	同上	间上		闰 上		
14	寝室・集会室	同上	カラー鉄板平珠	タイル貼	ラワンOP	プラスタ-V.P	吸音テックス	
	便所・ シャワー室			モルタル金鏝		同上	石棉大平板	
	浴 窒			タイル貼		同上	同 上	
18	牛 会	プラスター塗	鉄板 平耳	コンクリート		レンガ素地		
19-1	ポンプ窒	间上	同上	同上		同上		
1 9⊷2	セネレーター室	同上	同上	同上		同上		
	ポーン プー窒	间上	同上	同上		同上		
2 5	食堂・寝室・DK	同上	同上	タイル帖	ラワンOP	プラスタ-V.P	吸音テックス	軒ゥラ『石綿大平板
	野 財	<u> </u>		同上	タイル	同上	石棉大平板	<u> </u>

浜 浴室・便所 水14に倣う

3-3-2 給水タンク及び発電容量の算定

自家発電の容量算定

	名称	既存•新2別	大きさ	電灯、電熱の負荷
<i>N</i> 6. 1	ガソリンスタンド	新		240
<i>1</i> 6. 2	網 室	n,	72 12×6m	240
<i>N</i> a. 8	塩ピ屋根つき乾燥場	"	" 12×6	.9
No. 4	事務室および実験室	,,	800 40×10×2	8,000
<i>N</i> a. 5	病菌接種室および昆虫飼育室	,,	400 20×20	8,800
<i>N</i> 6. 6	展示室および図書室(旧事務室)	既存	120 —	1,400
NG 7	トラクター収納庫・修理工場・洗車床	新	600 40×15	2400
<i>1</i> 6.8	大型農機具の附属品類格納庫	"	400 40×10	4,000
16.9	作業室	"	150 25×6	2,000
<i>M</i> 610	トラクター格納庫	既存	120 -	480
<i>1</i> 611	肥料倉庫	新	800 80×10	1, 4 4 0
<i>1</i> 612−1	収納舎(日乾用コンクリート床つき)	既 存	400 —	720
<i>1</i> 612—2	収納舎(日乾用コンクリート床つき)	新	# 1/612-1 K国じ	"
<i>N</i> a18	センターの所長の宿舎	既 存	1 2 0	1,200
Na1 4	研修受講者宿舍	新	680 45×7×2	12600
<i>N</i> a15	上級職員用宿舍	既 存	240 —	1,000
<i>1</i> 61 6	一般職員用宿舍	#	240 —	4,800
<i>1</i> 617	農夫宿舍	#	480 —	6,450
<i>1</i> 618	牛 😩	新	40 10×4	400
<i>M</i> 619−1	ポンプ室	既存	_	
Ma19-2	ポンプ室および発電機室	新	42 —	720
<i>M</i> 620	港水塔	"		8,700
<i>1</i> 62 1	気象観測所	,,	_	
<i>1</i> 62 2	誘蛾灯	#		2000
<i>1</i> 62 3	発電機室	既存	_	
<i>1</i> 62 4	外灯	新		2400
<i>1</i> 62 5	食 堂	#	9 2	920
合	ā†			6 1,9 5 0w

電灯、電熱の負荷 KVA = Σ $\frac{\sqrt{3}}{P_5}$ KW \div $\frac{\sqrt{8}}{0.8} \cdot \Sigma$ KW = 184KVA

但し、この中同時に使用する負荷を65%とすると 184×0.65 + 90 KVA 発電機は時別需要を考慮し 80 KVA 8台とする。

ジーゼル機関出力…… PS = $\frac{\text{KVA} \times \text{Pf}}{\eta \times 0.785} \times \epsilon' = \frac{80 \times 0.80 \times 1.05}{0.88 \times 0.785} = 41.8 \text{ PS}$

3-3-3 上水道の水質試験

将来の試験の上水道,生活用水として,従来の如く井戸水によりとれらを確保する計画とする。そこで試験場内の井戸水の水質状態を判定し,その適否を決定する為ダムサイトのテストピット試掘時湧き出した地下水を採取しその水質試験を行った。

水質試験の結果は以下の表に述べる通りであるが、試験結果を日本国内の水質試験と比べると

- (i) PHが低い。
- (2) 亜硝酸性窒素が少量含まれている。
- (3) 残留塩素量が少い。
- (4) 色度が少し高い。

などが指摘される。しかし現在住民は附近の同様の井戸水を生活用水として使用しており彼らは井戸水を必ず煮沸して飲料としている点から観て, この試験場内井戸水を, 飲料水をはじめとする生活用水としても何ら差しつかえないものと判断できる。

水質試験結果書

項 目 試料番号	Ма	参 考
採水場所	堰堤設置予定地点 (デストビット) 昭和47年9月27日	
採水华月日		F1 -44- 56 14- 34
採水時天候	晴	日本水質基準
気 温 で	810	
色 度 (度)	7 5	5 以下
臭味	なし	なし
P H 値	5, 6	5.8 ~ 8.6
残 留 塩 素(ppm)	0.05以下	0.1 以下
アンモニア性 窟 累 (ppm)	検出せず	検出せず
亜 硝 酸 性 窟 素(ppm)	0002以下	"
硝 素 性 窒 索(ppm)	10 以下	10 以下
塩 累 イ オ ン	25 以下	200 以下
過マンガン酸カリウム消費量(ppm)	10 以下	10 以下
硬 度(ppm)	測定できず	800 以下
試 験 年 月 日	昭和47年10月	
試験方法	簡易水質検査器 (柴田化学器械社製)	

第4章 LARGE DEMO-FARM

4-1 圃場整備計画の目的と現況

4-1-1 事業の目的

ランポン州の農業開発についてはインドネシア政府はジャワ島農民及び食糧不足に対する解決策としてジャワ島農民の同地域への移住政策とこれによる農産物の増産を計り将来ジャワ島に対する食糧基地としての発展を計画している。まずその基礎となる農地開発及び農業技術の開発と普及が何より重要である。

本事業は増産の飛躍的進展と省力化経営を推進するため、用水施設の完全整備による用水確保と配水の合理化、適性化を行い農道整備により生産機の搬出入、圃場管理の合理化、圃場区画の大型整備により耕耘管理、収穫等の農作業の省力化を期する。なお本事業を契機として換地、集団化を計る事が必須である。当事業は単に当該地区の面的な土木事業に終結することなく施肥基準の確立を含む栽培技術の改善、用水管理、施設維持の指導、機械化の導入、生産物の貯蔵、加工、流通に関する指導等と有機的連繋活動を計り、地域的には周辺農村へ普及漸増して行く内容のものである。

4-1-2 地区の現況

(1) 水 系

本地区は表 4-1 Fig 2-1 に見る如く Sekampung 川中流 4 水系大規模かんがい事業地域の1つ Punggur-Utara 地区の一部である。即ち Sekampung 川中流のArgogurohに設けた頭首工によって取水する。そして約9 km導水した後 Trimurdjo 地点(分水施設番号 KH2)に於いて Sekampung と Punggur Utara にそれぞれ32.19㎡/sと26.09㎡/s分水する。本地区は分水点より約13km導水しBPU10の分水工より第3次水路を起点とし118 ha を目標に実施されつつある。

(2) 土地利用

次表に見る如く,開拓中であるから土地利用率は64%と低く,且つ2期作は全体耕地の12%である。耕区については農民の相互扶助による人力開田であるから零細かつ不整形の水田であり平均区画は0.02 ha である。

特に台地の開田はこと2~3年の新田が多く耕土は7~12㎝の痩薄地が多い。沢沿いの急傾斜部分は田差30~40㎝,短辺6~7㎜の所迄開田してあり畦畔は巾20~30㎝,高さ20~30㎝の小さい区画のものが多い。

以乐農家			·····································	地		
区域		天	1 期水稲	2期水稲	畑	小 計
現	況	181	5088ha	(1020) ha	1866	6 2 0 4 ha
at	画	181	892	(5000)	(8920)	8 9 2 0 ha

Table 4-1 Large Irrigation Design in the Basin of Way Sekampung

1		i			
Location	SEKAMPUNG	RAMAN UTARA	BATANGAARI UTARA	PUNGGUR UTARA	SEPUTIH I
Area	35, 000 ha	9, 100 ha	10, 000 ha	40, 000 ha	
Irrigation Area	21, 000 ha	6, 300 ha	7, 300 ha	30,000 ha	25,000 ha
Construction Period	1935 ~ 1956	1956 - 1967	1953 - 1967	1969 - 1972	1958 - 1974
Irrigation Water Supply River	Way Sekampung	Way Raman	Dam Garongan	Dam Argoguruh	
Intake Point	Dam Argoguruh	Dam Remen	Dam Garongan	Dam Argoguruh	
Design Amount of Water Intake	32.19 m ³ /sec ,	5.24 m ³ /sec	10.00 m ³ /sec	26.09 m ³ /sec	25.00 m ³ /sec
Structure for water Utilization					
(1) Intake Dam					
Design Elevation of Water In- take	EL. + 58.90 m	EL. + 42.40 m	EL. +28.20 m	EL. + 58.90 m	
Length of Grest	80.8 m	15.0 m	15.0 m	80.8 т	
Crest of Dam	EL. + 59.00 m	EL. + 40.60 m	EL.	EL. +59.00 m	
Height of Dam	7.70 ш	3.90 m	2.80 m	7.70 m	
Dam Body	Wet Stone Pitching	Wet Stone Pitching	Wet Stone Pitching	Wet Stone Pitching	
Scouring Sluice	Width 6.00 m	Width 2.00 m Height 1.70 m	Width 2.00 m Height 2.60 m	Width 6.00 m	
Intake	Left bank intake 2.55 x 2.50 x 5	Right-bank intake 1.60 x 1.70 x 2	Right-bank intake 1,50×1.50 × 3	Left-bank intake 2.55 x 2.50 x 5	
(2) Ganal					
Main Canal					
Total Length	70.9 km	27.7 km	35. 1 km	36.3 km	42 km
Structure	Trapezoidal Earth Canal	Trapezoidal Earth Canal	Trapezoidal Earth Canal	Trapezoidal Earth Canal	
Total Length	42.9 km	22.6 km	24.0 km	98.2 km	
Structure	Trapezoidal Earth Canal	Trapezoidal Earth Canal	Trapezoidal Earth Canal	Trapezoidal Earth Canal	
Accessory Structures					
Diversion Works	54 Places	41 Places	33 Places	134 Places	
Intake	133 Places	88 Places	74 Places	119 Places	

プランプラン	宅地	道水路	その他	計	耕区数	団地数
2966	9.79	L 8 6	284	12819	1	5,000
5.1 8	979	867	1 5.4 0	12819	21	684

(3) 地区内農道

部落内の道路及び他部落への道路は巾員7~8mと比較的整備されているが,圃場内は 見るべき道路はなく,Tertiary Canal の堤防,畦畔等を利用して通作している状況で 牛耕にも支障を来たしている。

(4) 用 水

Main canal の完成に伴い 5 年前よりGotong Rojong による Tertiary が Fig 2-5 の如く地区北方を東西に 1 条南方に集落内に沿って 1 条貫流し、これを基幹として 開墾の進度に応じて遂一伸長しつつあるが、位置、断面等に計画性を欠き、用水不足に遭 遇するや、輪番灌水をその都度実施している。 2 期水稲は沢沿いの還元水により実施し得る 1 0 数 ha を見るのみである。なお分水は Tertiary 以下の Canal の畦畔をその都度 開削取水し掛流しかんがいを行っている。

又, 水源不足, 作付の不統一に原因して充分な水管理が行い得ない現状である。

(5) 排 水

計画的な排水路はなく、掛け流しかんがいを行っているため余水は自然圃区内の低位部の谷津田に流れ込んでおり雨期にはその為相当深い湛水となるようであるが乾期には残水 滲出水等により2期水稲作を可能ならしめている。

(6) 反覆水

地区内凹地の残水部は地区東方を流れる溪流を除いて乾期には殆ど枯渇し地区中央部の 溪流の部落道暗渠部で僅かに9 L/s (渇水年で)の流下を見るのみで、これの利用につい ては自然流下方式では困難であるが将来作況変化、市場変化により農村を囲繞する諸般の 情況が変って来た暁には Pump - Irrigation その他技術的検討が抬頭して来よう。

4-2 圃場整備計画

概要 - 重点事項を用水整備と農道整備とし耕区拡大は農家負担の範囲内で土工量の小なる部分から実施することとした。

即ち用水については灌水地域へのかんがいを容易にし、通水機能保持の為、直線化を計り、分水、配水の完備を計る。

道路については集落を拠点とし、幹線農道を設置し、圃区形成との関連で最少限の支線を設置 した。

又耕区には出来るだけ耕作道路を設ける事とし,概ね200m間隔に設置した。全体プランは

Fig 2-6 の如くである。

4-2-1 水田区画の形状, 大きさ

当面耕耘,除草その他の管理作業は人力,畜力を主体とし、一部小型の動力耕耘機を前提とするが、一方将来営農体系、耕耘技術の進歩、改良に対応しうる区画の形状、大きさでなければならない。よって実際に現地区画を設定するには以下の条件により求める。

(1) 耕耘、除草等の農作業の技術手段

手植作業に於いて区画が余り大きいと作業能率が落るので基準としては1区画は4~5 人のグループで1日の作業が終る大きさ、即ち20~30 a が望ましい。

耕耘機の作業と圃場区画については運転面のみから見れば長辺と短辺の比が 3:1 以上が経済的であり、他方防除機を使用する作業では長辺が余り長くなると作業効率は低下する。

(2) 地形条件と耕区

地区内の地形は一見フラットの様であるが深さ3~4 mの沢が入り込み地形勾配は 1/30~ 1/280 となっている。

耕区の長辺は等高線に平行に設ける。等高線が直線の部分は地形上制限がないので100 m 直線でない部分は50 m, 短辺は等高線に直角に設ける為, 長くすると整地土工量が増大 し, 又隣接耕地との田面標高差が30 cm以上となると畦畔法面の保護工の必要性, 農作業 の効率低下等が考えられる為20 mとする。

- (3) 関係農家の土地所有面積(集団化の可能性と経営面積)関係農家の土地所有面積はFig 2~7, 付表7-2の如く概ね0.25 ha/戸(50 m×50 m)の単位としその倍数の面積を所有している。
- (4) 上記の各種条件を考慮すると次表の様な区画の大きさが想定される。

地形勾配	1/200 ~	1/100~1/200	1/50 ~1/100	1/10 ~ 1/50
区画の大きさ	80a ~	15a ~ 80a	75a ~ 15a	5.0a ~ 75a
短辺一長辺	30~-100~	15~ - 100~	10~15 - 75~100	10~ - 50~75

以上より区画の大きさは地形勾配 1/100 以下については 20 m×100 m=0.2 ha 1/100 以上については 20 m×50 m=0.1 ha とする。

4-2-2 道路計画

農道の配置及び密度については集落、農地、市場の相互関係より検討の上決定する。 連絡農道……… 比較的整備されているが幹線水路の管理用道路から部落に入る入口部分は 1/6 ~ 1/7 の急勾配の為1/10 以内の緩勾配に是正する。既設部分の巾員は6.0 m である。 幹線農道……… 集落からの通作と各ブロック内の交通の離合集散の根源となる部分について 関係農家の要望もありFig 2-6の通り2条設定する。

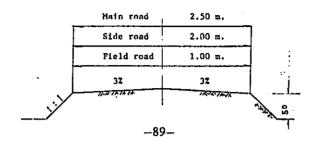
支線農道…… 或る程度自由に水管理, 圃区内各耕区への進入, 耕作道路の派生等を容易ならしめる等の必要から概ね300m間隔程度に設置する。

圃場作薬として将来耕耘機による耕耘或は収穫物の運搬も耕耘機或は牛車により行う事が考えられる。 これらの車輛全巾は $1.0\sim1.4\,m$ であるので幹線農道は巾員 $2.5\,m$, 支線農道は $1.5\,m$ とする。

耕作道路…… 各耕区の一辺には道路が接する様に幹支線農道の関連で 100~200m間隔に配置する。

人力, 畜力を考慮し巾員は1.0 m とする。

道路高は路肩において50cmとし、横断勾配を3分とする。現状の水田に盛土する訳であるが開墾歴2~3年の所が大半であり耕土も7~13cm前後と痩薄で心土も良く締った砂質シルトである。牛車、耕耘機による荷重を対象とする場合、道路の破壊、或は沈下のおそれはない。


盛土材料は隣接する耕区より取る。

標準断面は次の通りとする。

種別道路一覧表

R-A	Гуре	R-В Ту	рe	R-C T	ype
16.	L	М	L	Ма	L
R-A-1	9 4 8	R-B-1	972	R-C-1	221
<i>"</i> 2	767	2	444	# 2	168
<i>"</i> 8	190	8	295	" 8	898
		4	250	" 4	142
		5	204	" 5	100
		6	884	" 6	148
		7	788	" 7	828
		8	880	" 8	8 4
		9	510	# 9	48
		10	480	# 10	125
		11	285	// 11	498
		12	461	# 12	488
		18	260	# 18	141
				# 14	181
				# 15	181
				# 16	240
			ļ.	" 17	198
		ļ		# 18	267
計	1,900		5,568		8614
1	計 1	1,077 m ····	道路密	度 124 m	/ ha

幹線農道 ----- R-Aタイプ 支線農道 ---- R-Bタイプ 耕作道路 ---- R-Cタイプ

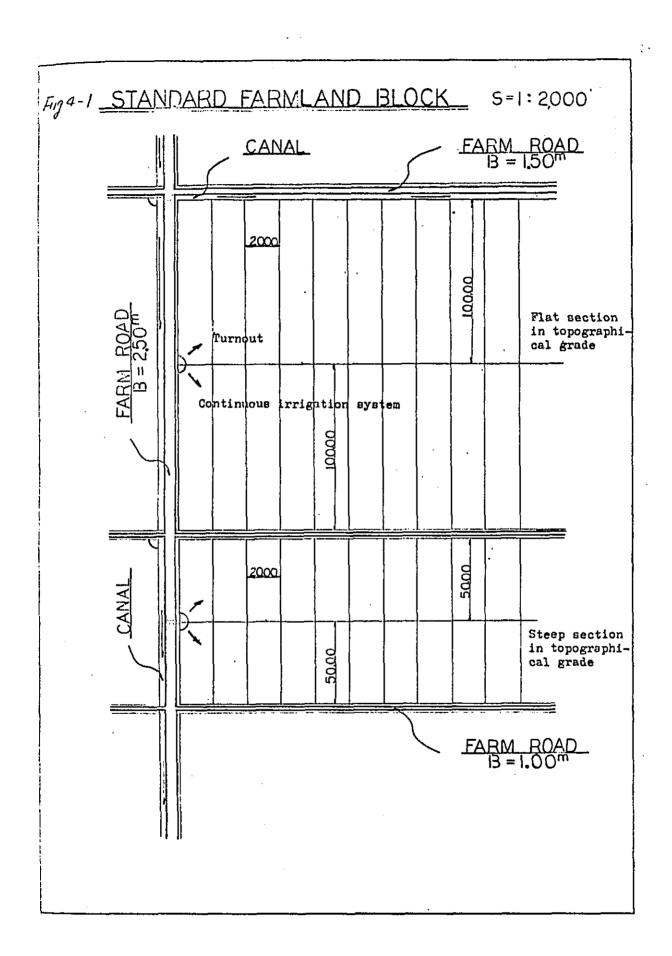
4-2-3 整地工

耕区, 画区の配置は極力地形に順応させ且つ1 耕区内の移動土量で済む様に計画し, 工事 費の節減を計る。

又用水掛りの完全を期し、排水不良耕区にならぬ様に逆田を避け田差を 5 cm 以上となる様に 計画する。

耕土については前項でもふれた様に 7 ~ 1 3 ㎝ 前後の huma s が大半で積薄であり有機腐植の 含有量少く開墾歴 2 − 3 年乃至はアランアランの原野であることを相併せ検討して表土扱いをし ないこととする。

各耕区の計画田面標高及び移動土量は(附録表 7-3)に示す。1耕区内の土量のみではすまない場合例えば計画水位が乗らない耕区,或は下流部側が上流部より高い場合は圃区内で最小限の土量最短距離の土量の移動を計画する。なお計画平面図からの面積計算,土量計算並びに土量運搬距離計算に至る一連の作業は電子計算機により行う。下記の地均計算工程表に従い土量計算プログラムを作成し計算を行う。


上記の事項耕区の大きさ、農道、用水路の配置を図示すると Fig 4-1 の如くである。

4-2-4 用水路

(1) 用水量

通常用水量は区画整理,深耕に伴う増加分,末端到達増加による浸透量の増加分,機械施工路圧による浸透量の減少分等の変化要因を実例解析により決定すべきであるがこれらの資料に乏しいために地区間の実測等によって検討した。

即ち、集落東南部の一部灰白色土壌を除いては全般的に表局から赤褐色のラトソール土壌で覆れ、透水性小さく湛水田でも減水深は割合少く且つコーンペネトロメーターによる地耐力も qa = 5.0 t/m 以上と大きく機械施工も割合容易である。

作菜工程の概要(計画平面図から土量・運搬距離計算まで)

計作画業設工計程	計画 設計	計画設計で圃区,田区割,道路,用排水路 等の計画線および整理番号を記入
面作 積楽 計工 算程	座標 測 定面 積計 算	各旧錐境界点座標測定 座標値は自動記録装置により紙テープにパ ンチまたはブリント 電子計算機による(調整計算を含む)
土量計算作業工程	現状平均高計算 第 1 次 圃 場 整 備 設計 計 画 第 2 次 現 況 平 均 高 計 算	電子計算機による{場合により畦畔土量等} を考慮 計画機関で計画高を決定する 一般整地,特定整地および用排水路 道路新設に伴う必要土量等その他の要素を 加味する 計画機関で最終計画高を決める
	計画高决定計算 旧各 鉅 切 盛 土 量 計 算	田区間移動土量を含む 最終計画高より算定する
計算作業工程	運搬土量ならび に運搬距離計算	任意に区割りしたブロックにおける運搬土 量ならびに運搬距離計算

減水深については地区 東南の 3 ケ所について鉛直浸透を計測すると共に地区 西北の乾期 田の中地下水の影響少く耕土厚等からも将来の代表田と思われる所に 1 ケ所 N 型減水深を設置観測し、(附録 Fig 7-1)とれと公共事業省(D.P.U)の設計基準値を比較検討した 結果類似値であり、今後の D.P.U の配水管理、地区内分水の一元化を考慮して次表による とととする。 (× 100Bau = 71 ha)

į	最大必要水量 Ba		ı ha		q l/s/Ra
0	D.P.U 算出基準	0~	5	3, 5	4.0 0
	による場合	5 ∼	1 0	7.5	3.3 5
		10~	2 5	1 7.5	2.80
		25~	5 0	3 5. 0	2.3 0
		50~1	0 0	7 0.0	1.8 4

② 地区実測による場合

用水量 q max (雨期) =
$$\frac{1}{8.64}$$
 ($\frac{1}{10}$ ×130 mm + $\frac{9}{10}$ ×13}× $\frac{1}{0.8}$ = 3.57 ℓ /s/ha
(乾期) = $\frac{1}{8.64}$ ($\frac{1}{10}$ ×130 mm + $\frac{9}{10}$ ×18}× $\frac{1}{0.8}$ = 4.22 "

(2) 用水路

D.P.U10から取水している第3次水路分岐点を起点とし、現在の水系に則り東南方向に2条設けることとし、完全利水の出来る様極力築堤型とし、各耕区毎の水管理、作付は当面緊急を課題ではないので掛け流し方式とする。本方式は耕区毎の水管理の自由度が制約され、利水上上流有利、下流不利となる傾向はあるが、一方縦方向の用水路不要となり、水路の節減と農道からの搬出入を容易にし、又1圃区単位の運営から取水施設、水管理労力の節減となり、反覆還元を同一区内である程度実施されるので用水不足の本地区としては妥当であるう。

なお、将来栽培技術の進歩、改変、湛水直播の芽干し、中干し、薬剤散布、液肥施用等の自由なかん排操作又は土壌に適正透水性を与える等乾田化、排水の必要を生じる場合は圃区中央部の排水路新設と若干の取水施設の追補で対応し得る様設計すると共に灌水ブロックについても、地形、用水系統を上記理念に基づき Fig 2-6の如くに設定する。

(3) 水路断面の設計

水路の設計流量は各水路の支配面積にD.P.Uの基準による最大必要用水量を乗じ流量を流し得る断面とする。

この場合かけ流しかんがいのため各々の水路流量は各々の取水地点で変化する。よって断面縮少を考慮すべきであるが排水路の機能を有する為,水路底を20 cm 田面高より下げた断面とし,上下流共同一断面とする。

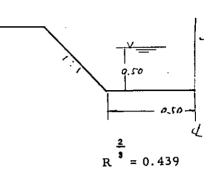
各水田の取入れ水位は田面より20cm高とする。流量過少の場合は取水堰で堰上げ取水する。

水路断面は水路勾配及び流量から下記のA.B.C3 つのタイプとする。

$$T-A$$
 Type

$$A = \frac{1}{2} (1.00 + 2.00)$$

$$\times 0.50 = 0.75 m^3$$


$$P = 1.00 + 2\sqrt{2} \times 0.5$$

$$= 2.414 n$$

$$R = A/P = 0.3107$$
 $R^{2/3} = 0.459$

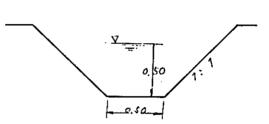
$$I = \frac{1}{10.000}$$
 $n = 0.035$

$$n = 0.035$$

$$V = \frac{1}{n} \cdot R^{2/3} \cdot I^{1/2} = 0.131 \text{ m/s}$$

$$Q = 0.75 \times 0.131 = 0.098 \text{ m/s} > 0.096 \text{ m/s} OK$$

T-B Type 附錄表 7-3 水理計算表 参照

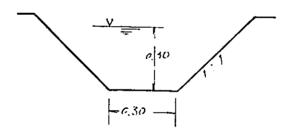

$$A = 0.50 m^3$$

$$P = 1.914 m$$

$$R = 0.261 m$$

$$I = 1/100 \sim 1/1000$$

$$Q = 0.683 \text{ m/s} \sim 0.215 \text{ m/s}$$



F - A Type

$$A = 0.18 m^3$$
 $P = 1.148 m$ $R = 0.157$

$$I = 1/100 \sim 1/1000$$

$$Q = 0.174 \sim 0.055 \text{ m/s}$$

$$F - 3 - C$$

$$I = \frac{1}{2000}$$
 $n = 0.035$

$$V = \frac{1}{0.035} \cdot 0.157^{2/3} (\frac{1}{2.000})^{1/2} = 0.186 \text{ m/s}$$

$$Q = 0.18 \times 0.186 = 0.033 \text{ m/s} > 0.006 \text{ m/s} \cdots \text{OK}$$

$$F-2-B$$

$$I = \frac{1}{3.000}$$
 $n = 0.035$

$$V = \frac{1}{0.035} \cdot 0.261^{2/3} \cdot (\frac{1}{3000})^{1/2} = 0.212 \text{ m/s}$$

$$Q = 0.50 \times 0.212 = 0.106 \text{ m/s} > 0.028 \text{ m/s} \cdots OK$$

第3次及び第4次支線水路の延長調査

	タイプ	延長	かんがい面積	流 量
第 8 次水路	T - 1	7 8 5. 0	5 4.8	0.096 m²/s
"	- 2	5880	191	0.058
#	— 8	8 1 8 0	8 8 6	0077
,,	– 4	5980	176	0.049
第 4 次水路	F-1	5 5 2 0	5. 4	0.018
#	-2	7580	8.8	0.028
#	— a	2085	1.5	0.006
"	- 4	#	4.4	0.018
#	- 5	9 0. 0	4.0	0.016
#	- 6	8 6 L 0	1.8	0.007
"	- 7	1580	2.8	0.009
	- 8	1000	1.8	0.007

	Туре	В	h	Fb	н	Вс	Lm	I	Q L/s
A	T - 1	1.00	0.50	0.20	0.70		685	1/4ρ00	98
В	– 1	0.50	"	"	, ,		100	1/1,000	215
В	- 2	, ,	"	,,	, ,		200	1/1,000	#
С	- 2	030	080	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.50		888	1/ 250	110
A	8	1.00	0.50	"	0.70		880	1/4000	98
В	8	0.50	#	n	"		488	1/1,000	215
С	- 4	0.80	0.80	"	0.50		388	1/ 400	87
С	– 4	"	#	#	"		255	1/ 150	142
С	F - 1	"	"	"	,,		807	1/ 500	78
С	— 1	"	"	"	"		245	1/ 150	142
С	– 2	"	"	#	'#		807	1/8,000	"
С	– 2	"	#	Ħ	"		4 4 5	1/ 200	128
С	— 8 с	n	"	#	л.		208	1/2,000	8 8
С	4 c	"	"	#	"		"	1/ 100	174
С	— 5 с	"	n	#	"		9 0	1/1,000	5 5
С	— 6 с	"	#-	ı	"		861	1/ 150	142
С	— 7 с	"	,,	11	"		150	1/1,000	55
С	— 8 с	"	*	"	"		100	1/1,000	"

4-2-5 排 水

排水については地表排水と地下排水の検討が必要であろうが地表排水については裏作導入 田畑輪換, 乾田直播等, 水田の高度利用の為の非湛水状態の必要少く, 一方畦畔高と落口の 設定, 水路底の田面以下の設定により充分対応出来る。一方地下排水については既述の状況 であるので当面は設計対象としない。よって排水施設として農道の新設に伴って排水が阻害 される区域の排水暗渠の新設のみとする。

(1) 排水暗渠の断面設定

① 対象雨量

本計画に於いて排水基準雨量として10年確率雨量(140mm)を採用する。 本地区の降雨状況は1日の中の数時間に降るため、降雨強度は日雨量が平均3.0時間に降るとして r = 47mmとする。

② 計画排水量

Q = 0.2778 f.r.A

Q:排水流量 m/s f:流出率 0.8

r:降雨強度 47% A:面積 0.2 Km

 $Q = 0.2778 \times 0.8 \times 47 \times 0.2 = 2.09 \text{ m}^2/\text{s}$

4-2-6 水路構造物

(1) 用水暗渠

水路と農道との交叉地点は水路断面が小規模であるからパイプ暗渠又はフルームタイプ に甲蓋を乗せる形式が一般的である。ここでは材料も現地で取得可能であるパサンガン張 のフルームに甲蓋を乗せたタイプを採用する。

暗渠の種類及びヶ所数は次表の通りである。

(2) 分水工

本地区のかんがい用水は幹線水路 D.P.U.10 分水工から供給され、第3 水路、第4 次水路の延長4,600 mにより配水され41 ケ所の分水工で120 ha をかんがいする。 かけ流しかんがいに於ける上流有利、下流不利の弊害を極力押え、且各圃区の用水到達時間のアンバランスを少くする様、分水工1 ケ所に於ける最大支配面積を3 ha 以下に押える。

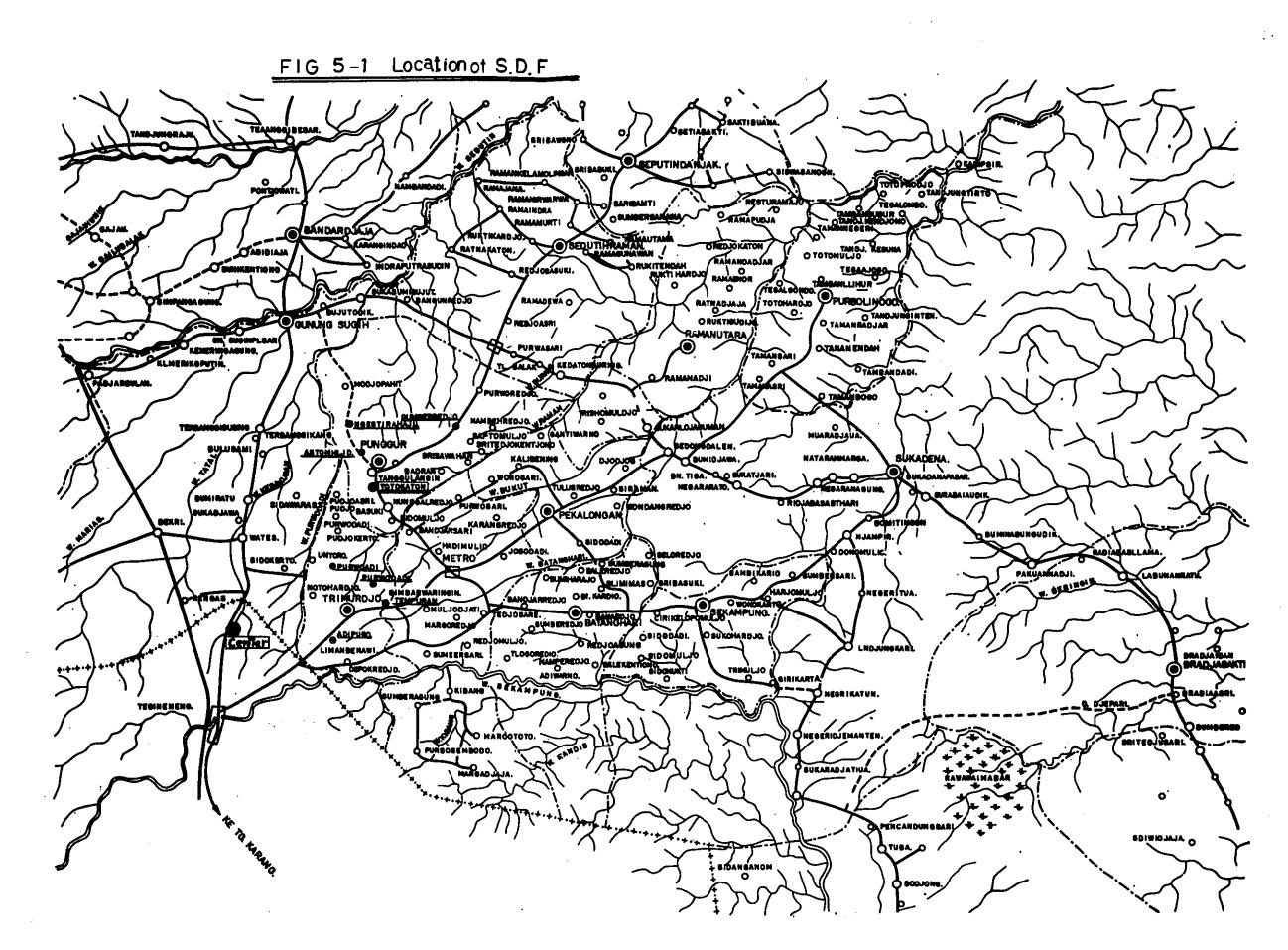
小規模の分水工に於いて精度の高い分水量の計測は困難であり水路内水位の変動等に対しても取水し得る構造簡単な越流堰タイプとする。分水工の種類及びケ所数は次表の如くである。

(3) 排水暗渠

土被り厚及び暗渠断面よりパイプ暗渠が施工の容易さ、経済面からも有利である。よって既設排水暗渠1ヶ所を除いて新設3ヶ所は600¢と800¢のコルゲートパイプの暗渠とした。

内 水 暗 渠

タイプ	寸 法	数量	摘	要
CAA	B H L パサンガン構造 1.20×0.60×250 コンクリート甲蓋	1	A 型水路	のA型農道横断
CAB	" × " ×150 "	2	" "	В "
CAC	" × " ×100 "	1	" "	C "
CBA	Q70× " ×250 "	6	В #	A n
СВВ	" × " ×150 "	2	" "	В "
свс	" × " ×100 "	2	" "	C "
CCA	050×040×250 "	6	C "	A #
ССВ	" × " ×150	24	, ,	В "
ccc	" × " ×100	8	" "	C "
ССБ	1,20×0.60×5.60	1	" "	D "
CCE	" × " ×860 "	1	,, ,,	E "
合計		5 4		


, • .

分 水 工

3	イブ	4.		数量	摘	要
w	A	B H 100×055	パサンガン構造	6	A型水路に前	ひける堰
w	В	0.60× #	#	7	В "	
w	С	Q40×Q85	"	28	C #	
合	計			4 1		

排水暗渠

タイプ	. 寸	法	数	量	摘	要
D-C-1	6 0 0 Ø× 5.0 0 €	コルゲートバイプ		1		
D-C-2	" × "	n		1		:
D-C-8	800 ×800	#		1		,

第5章 SMALL DEMO-FARM

5-1 目的並びに踏査方針

L.D.F と同様に稲作技術の合理化を計りもって周辺農地並びに今後開発地の亀鑑的圃場と することにある。

• .

即ち、土地基盤の整備により用排水の合理化、労力の節減、増産を進め、乾期畑作等の振興 と併せて土地生産性の向上を計り、流通機構の合理化、新技術の導入、農民組織の健全育成等 なを容易ならしむるものである。

従って、土地基盤の整備に際し、この様な背景の下に、次の諸事項について総合的に踏査検 計を進めた。

なお、計画、設計上の諸値については、調査期間の制約もあり詳らかにし得なかったので、 後刻の専門家による計測解析に待ちたい。

- i. 地域の社会的, 自然的諸条件に応じて附近地域への事業化の規範として必要且つ充分であること。
- 2. 区画整理については、人畜力並びに一部機械化(当面ティラー他小規模のもの)等現況の 経営手段を Base に若干の改善を与件として、区画の形状、面積、土地所有、耕地分散等の 実態を把握し、区画の拡大、整形、集団化によって労働生産性の向上を期した。
- 3. 農道についても,区画整理と同様,集落の形態,農作業体系に基づく交通事情(通作を含む)に対し,配置,密度,巾員,路盤高,付帯構造物等,諸機能の改善の要否について踏査検討した。
- 4. 用排水については、基幹部分は、D.P.U所管となり、これが改造、施策については広域的且つ総合的措置が必要であるので、Tertiary cannal 以下の直接所属領域内に止め、用排水の機能の良否、特に配水、分水の機能診断と路線の適正配置化を重視した。
- 5. 土層改良, 農地保全, その他の infrastructure についても, 併慮して, 土地基盤諸 策の方向付けを行った。

5-2 現 況

本計画地域は Kabupaten Lampung Tengah, Provinsi Lampung の内 Kabupaten Trimurdjo 他 9 Katjamatan を対象としている。

L州が、Indonesia 全体に対し面積、人口共に2 多前后で、平均的な位置付けとなっているが、Kabupaten Lampung Tengah は1970年現在、959,220人となり、近年8.5%の人口増加率となっている。

外領地域開発が進む中で、自然的、経済的諸要因に極めて思まれている本地域ではあるが、極地的な人口対策と政府が主唱する"BIMAS"の主核は本地域では農業の開発改良であり又 これの実現は緊急の課題でもある。 そのため、S.D.Fを本地域に40ヶ所設置せんとしているが、今回はその中でも特に急を要する Trimurdjo 4地区 Punggur 3地区の計7地区を調査対象として、土地基盤整備のための路査、診断を実施した。

対象ケ所は水利的に比較的上流に位置し、取水施設も一応施工していて、事業実施初年度の予定とされた地区である。即ち Way Sekampung に1935年 Dam Argoguruh が築造され、その后、Trimurdjo並びにその下流のKHII 地点の各分水施設の完成に伴い比較的早く水田造成された地域である。

然し、水源流量は乾期には著しく低下(頭首工 取水計画 Punggur UtaraA = 30.483 ha

Q = 26.09 m/s Se kampung

A = 22.00 ha Q = 32.19 m/s

計 52.483 ha Q = 58.28 m/s

に対し 8 th Sep 1 9 7 2 年現在一部の漏水を
除き、全量取水で 12 m/s 同 9 th Oct 現

在 8 m/s) し、今后下流地域の開発並びに、

Tertiary canal の整備に伴い水需要が極度

また、Inrigation に関する事業実施並び に水管理については下表のとおりになっている

に増加して来ることが予想されるので、 別途水

源対策が必須である。

が

Kat jamatan	S.D.F 数	今回調 査対象
Trimurdjo	4	4
Punggur	3	8
Metro	5	
Pekalongan	4	
Batankari	5	
Sekampung	8	
Septih Raman	4	İ
Raman utra	4	
Purbolingo	4	
Sukadana	4	,
at	4 0	7

区	分	D • P • U	Gotong Rojong or each farmera
娅	設	Main canal → Secondary canal →	Tertiary canal Branch ditches
		I rigation District	(但し取付15m迄は D•P•U)
配水	管理	Resor → Mondor → Wakker → pekerdjo	each Kabupatan P•M•D → ili - ili

問題の乾期には Mondor Wakker の水門操作も行われず(量水標欠又は不備, ゲート, 角落し等も腐朽し, 且つ操作も容易ではない)例えば或るケ所に於ける設計上のゲートはなく main canal の堰操作にしても角材が落下挿入されたままの状態で, そのため末端のDesa 内では臨機に輸番灌漑を行う等, 見透しのない応急措置を講じ risk の平均化を計っている始末である。

既水田は主として Latsole 又は Podosole 系で大半は赤褐色土壤であるが南部地区並びに一部に灰白色土壌が介在しているが、何れも耕盤以下の心土基層は固結状態(ベネトロ値 a = 323 Cm² で40以上)有効土層は一部の rawa pady を除き 数cm~10 cm前后で腐植含量少なく極めて復薄である。

降雨量については、1950~1967年平均 (Metro 観測EL+57m)によれば1,973 mm /年で内陸平地型で若干少めであり乾期降雨は取季節風に交代し少く、月降雨日数も5~6日である。特に乾期旱魃は6~7年の周期型を有しているようで本年の如く激盐の時は耐旱性のキャッサバも枯死状態となる。

又本地域の農家はLampung 人以外は、ジャワからの移民が大半を占め1930年頃に端を発し、独立后、国の施政に沿って特に有望な本地域への移民は旺盛であったようであるが、旱魃、洪水、野鼠、メイ虫等大きな被害と打克って今日に至っている。

通常入植の場合,田 1.0 ha,畑 0.5 ha,永年作 0.25 ha,宅地 0.25 ha 計2.0 ha であるが,抽出の平均規模は田1.2 ha,畑0.2 ha,宅地0.25 ha 計1.65 haで,水利施設の拡張と相俟って開田化されているが,経営規模は減少化の様でありこの事は世代交代を契機として土地の均分相続という現状では極度に急速に零細化する恐れがある。

経営手段も低位で、農機具にも見る可きものは少なく ani — ani (穂縞具) Todjak(土削り), tugol(播種穴の棒)を代表とし代掻耕耘も僅か3~4割が役牛を擁している状態である。然し、田植えは正条植が大分普及して来ているが、株間は極めて短かく植付深は6~7㎝と入念な農作業を実施し、灌漑処理にしても、メイ虫発生のためにも出来るだけ早く湛水しておきたいと望んでいる。

なか, 耕地条件は, 割合まとまって所有しているが, 耕区は少水量, 天水利用と余力を生じた時細々と開墾して行った等の関係で1枚当り, 1 a 弱と極めて小面積であり圃区, 耕区内農 追は見る可きものはなく, 畦畔利用で低生産(=2ton/ha)の圃場型態となっている。

従って水利施設を整備し、土地基盤の整備を積極的に推進し、斯る土地条件の上に近代的な 農業新技術の導入を計り生産力の増強を期すると共に、アランアランの開拓による耕地の外延 的拡大を計ることが最も必要なことであるう。

Katja-		88 <i>H</i>		S • D •	F (田)		他 地 区			
matan	Desa	関 係 農家数	台	帳	実	測	4 - 1 - 1	up land		
11,000		展亦 权	耕区数	面積	耕区数	面積	paddy	ordinary		
Trimurdjo	L imanbenawi	8	5 4	ha 8 1 2 5	9 0	ha 4.115	ha 6 1 6 5	_		
	Tempuran	5	8 9	8140	5 2	8470	5,420	-		
	Purwoadi	7	8 8	8725	86	5.588	7725	0.525		
	Purwodadi	4	5 9	8150	58	2429	7200	0.800		
Punggur	Sumberredjo	. 7	5 1	8125	5 7	2984	1.875	2000		
	Ngestirahaju	7	8 5	8080	8 8	2787	2245	1.000		
	Astomhljo	7	4 1	8000	4 2	2787	1750	–		
計		4 5	812	2 2 8 4 5	878	24055	81880	4.825		
平均(戸当り)			6.68	0.497	8.29	0,585	0.708	0.096		
			 	 	1枚当り	0.065				

Out line of Small Demo Farm

注) 別忝 S = 1/1000 図 参照

5-3 土地基盤整備の指針

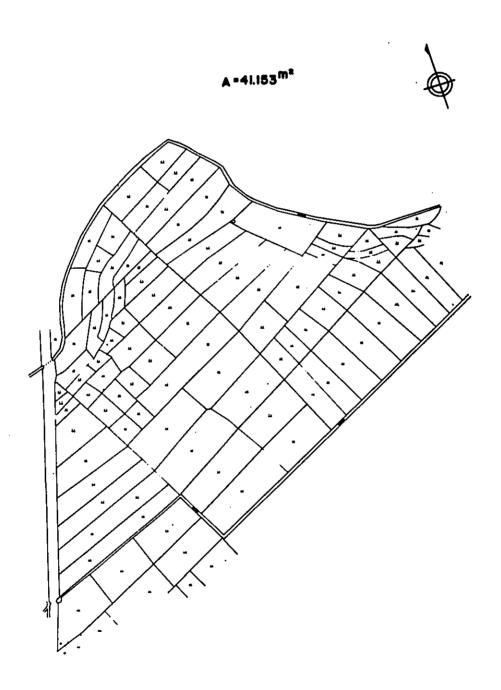
水利的に比較的恵まれている筈のとれらS.D.F候補地区でも本年の乾期にはSIMBAR-WARINGIN PURWOADIを除いては20~30%の水稲しか作付けが出来ず、水源水量の 要打ちされていない地域が非常に多い状況に鑑みて乾期水稲に固執することなく、メーズ、キャッサバ、大豆、落花生等畑作の導入、又はローテンション化等土地利用の高度活用を配慮すると共に、水利施設、農道構造(例えば、路盤高)等にしても需要態様、頻度に応じ、恒久的 なものと簡単なものに分ける等配慮して、投資の有効効率化を期する必要があるり。

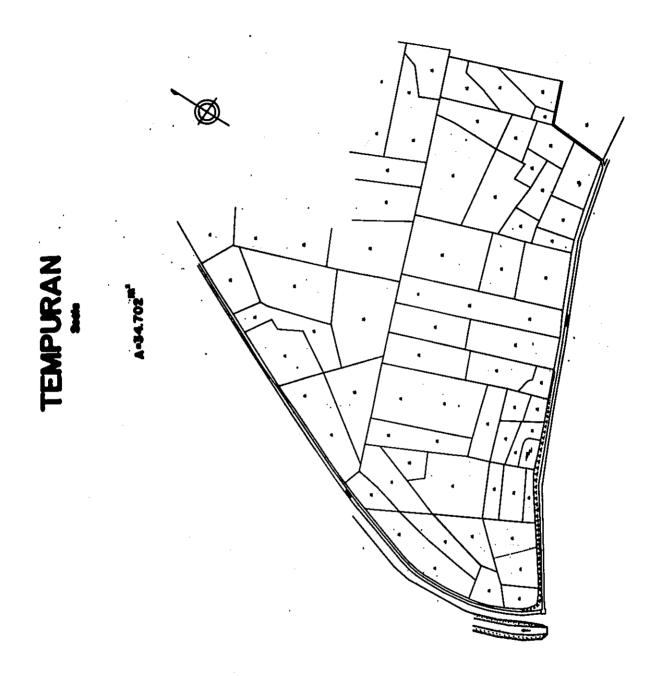
耕地の区画,形状については,既施設,用排慣行等を極力尊重し,且つ地形勾配に準じつつ 実施することとするが,画一的な整型化に促われることなく,極力土工の節減を計ることが当 面緊要であろう。ただ現在の耕区は既述の通り1 a に満たない小区画であり,所有筆数も1 0 筆前後と多くなっているので集団化して耕区の拡大整備を計り,営農労力の節減を期すると共 に併せて1 部水利施設の改造を行って,水管理の合理化を計る必要がある。

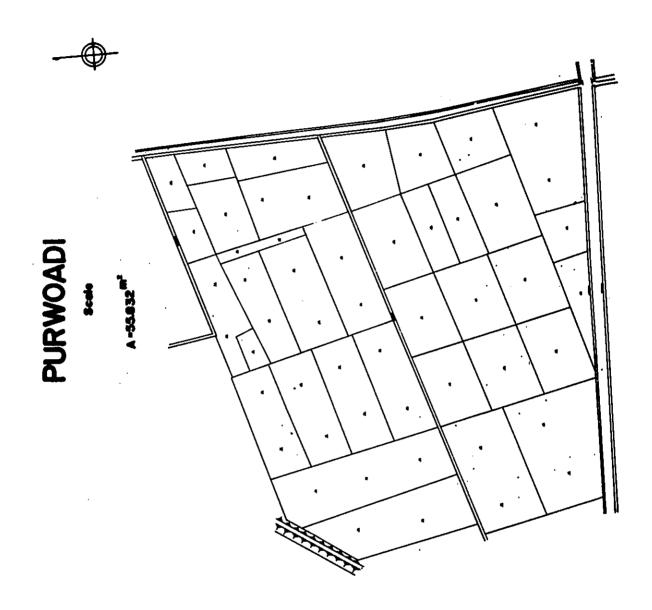
農道については、支線クラス迄は比較的整備されているが、耕作農道クラスについて殆ど配慮されていないので、各圃区界に耕区の短辺沿いに設置する等の考慮が必要である。

以下に各ケ所別の踏査、診断結果の重点を要約する。

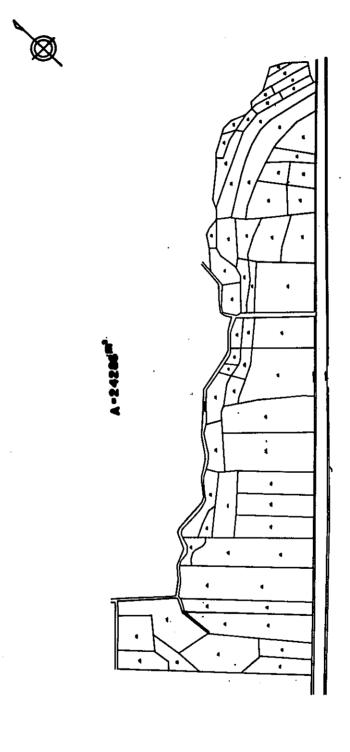
ケ 所 名	整備事項	整備要領,指針
LIMANBENAWI	耕地区画	区画の長辺方向は、東北←→南西(現況の中央部は概略
		との方向になっている)とし,短辺は中央緩傾斜地帯は
		20m前後、北側並びに南側Tertiary Canal 沿は
		10m前後とするも地形勾配から止むを得ないだろう。
	排水路	地区中央地帯に南西←→東北に排水路を一条整備し、地
		区内の谌水,排水処理をコントロール出来るように埋設
,		する。との際,上端部は当該点の流域,集水量,道路交
		叉構造(路盤面も若干低くなっている)水路底,水位並
		びに下流端接続排水可能性等水理学的諸機能については
		精査を要する。
	道路	地区西方に既設道(巾員5m前後)があるのでとれを幹
		線とし,排水路沿いに支線道路を配し,略中央点よりと
		れと直交して西北☆ 東南方向に耕道を一条設けること
		により各耕区への通作が容易になろう。
	用水	現況の両側の Tertiary — canal より各3ヶ所計6
		ケ所の取入を整備するととゝし、掛け流し灌漑方式をと
		る ₀
	構造物	幹線道路と交叉する2ヶ所の暗渠は底巾0.6 m, 高さ


ヶ所名	整備事項	整備要領,指針
		0.55mの半円径断面で当面その機能を擁するも、水路
		底に相当の沈泥あり、将来改築の際に必要流速が保持
		(位置の検討を含む)又は排泥可能の構造とすること
		必要である。
TEMPURAN	耕地区画	地区の大半を占める東南部の耕区については, DJALAN
		 RAJA RE METRO と直角方向に耕区設定を行い
		SALURAN沿の一段高い所はこの Tertiary-canal
		 に併行して耕区を設け、旁々区画の大型化を計る。こ
		 の際,両地帯の間は傾斜が若干急であるので,高段差
		とならぬよう Tertial 沿の耕区短辺で adjust す
		ることが必要であろう。
	用水	 現況西方の水路底と耕地は10~20㎝の落差があり,
	,,,	水位関係は完全取水が容易であるので、取入口を地区東
		南部の低位部用に1ヶ所,西方Tertial canal に2ケ
		所程度、完全設備の必要があろう。
	 道 路	本地区は、地区南側と西側を2条の Tertiary canal
	_ ~ ~	により切断された形になっているが、南方の低位部と北
		方の高位部の両圃区界に DJALAN DESA より耕作道路
		を 1 条設け、耕作の便宜を計る必要があろう。
PURWOADI	耕地計画	地形条件に恵まれ,比較的よく整備され,又main
		canal BPU5よりの取水も好条件にあるため、施肥
		 耕種技術の導入と相まって高生産,集約的な営農が早期
		に期待出来る地区であるが、地区中央を東西に貫流する
		小用水路との関係でこれに直角方向に耕区設定すること
		が合理的と思れる。
	道路	KANTOR LURAHを起点とし,現況用水路沿いに支線道
	, A	路1条を東西方向に配置し耕作の便宜を計る必要がある
		5.
	構造物	^ o 分水堰, 地区東方の Tertiary canal からの分岐ケ
·	117 121 170	所は現在丸太杭・丸太材等で堰止めし、取水確保されて
	i e	いるが配水操作,維持管理の見地よりパサンガン造りの
		分水堰を構築する必要があろう。
PURWODADI	耕地区画	カハスなも特殊する記録がある。 地区南方のDJALAN DESA 沿いに耕区長辺を設定し耕耘
	गुरा श्रम्भ स्टिन स्थि	型料率を低減する必要があろう。然し、本地区は計画長
	<u> </u>	対土が一年の日の名がのシンク 高し、本地には日間又

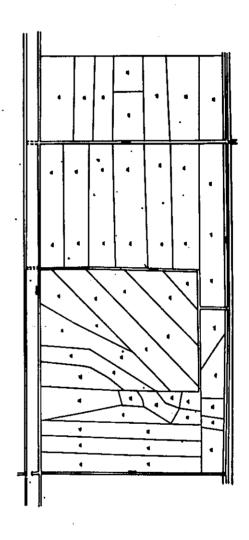

ケ所名	整備事項	整備要領,指針
		辺方向にも傾斜があるので、段差20~30㎝程度に止
		るよう設定し,短辺は RAWA 沿いの傾斜変換迄設定す
	}	ることが得策である。
		なお,RAWA沿いの耕区は現状の区割を尊重しつつ地形
		に逆らわず小区割に設定せざるを得ないだろう。
	構造物	進入路,両耕区界に進入路を整備し現況水路を簡易暗渠
		で横断し3.ケ所前后設置することが必要であろう
SUMBERREDJO	耕地区画	BPU15より直接取水している Tertiary canal に
] 	<u>}</u> [直交する方向で耕区長辺を設定することとなろうが,水
j	·	路西方のブロックについては,接続地の用水慣行,地形
		傾斜を精査し比較検討することが望ましい。
}	道:路	PUNGUR UTRA の main canal 沿いの基幹道路より東
j	,	西方向に且つ現在の Tertiary canal 沿って1条耕
		作道路を設置する。との際関係農家 7 戸の他地区への分
}		布状況・耕作条件等を熟慮検討の上 DJALAN DESA か
		ら地区東方沿いに北上する線について比較検討の要があ
		ろう。
	用 水路	Tertiary canal 南方の圃区は,現在の水路底より田
		面が約10~20㎝高く,このため対面の圃区のように容
		易に取水するわけにいかず,従って地区頭部に簡易取水
		堰を設置する必要があろう。
NGESTIRA HAJU	耕地区画	基本的には現状形態方向に即し,所有者 Mr Sahiti,
12.00		Mr Bissi の持分については,各2耕区を1耕区とし,
		計3耕区つつに整備し Mr Djarto, Mr Suarno の
		各持分の中で畦畔を除却し少くとも短辺を20m以上と
		することが望ましい。
,		なお, 地区西南方のMr Amas Danuri については, 2
		耕区程度に統合整備した方がよかろう。
	道路	各所有界の内1条おきに、計2条の耕作道路を設けると
!		とにより各耕区への通作が容易となる。
	用水	上記に関連し,西方の Mr Djanto と Mr Suamo の境
	 	に用水を入れ換え設置することが合理的であろう。
ASTOMHLJO	耕地区面	現在のDJALAN DESA に直交して耕区長辺を設定し,区
		画の拡大を計るととが必要であろう。


ケ 所 名	整備事項	整 備 要 領, 指 針
		斯くすることにより長辺は概略 100m で地区界となり
		小用水から各耕区への取水も自由に設定し得ることとな
		ಹ ಂ
	構造物	進入路,北の圃区に2ヶ所,南の圃区に3ヶ所程度設置
1		することになろう。
		この際, 暗渠の詰り, 溢水を危惧, 設置ケ所を節減して
,		副道案にすることについては比較検討を要する。
		分水堰, 地区中央部の分水ヶ所は3方向に分岐し, 且つ
	i	各線の受益規模の相違があるため適正な配水管理を行な
		うことが必要なので,パサンガン造り等による簡易分水
		堰を設置することが必要である。

LIMANBENAWI


Socie

PURWODADI

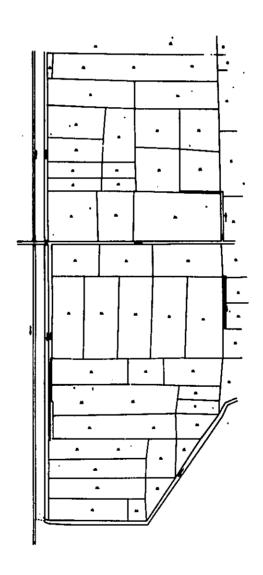


--

SUMBERREDJO

A-28844M²

NGESTIRAHAJU



0.5

ASTOMHLJO

A-27366^m

第6章 施工計画

6-1-1 水源施設の施工計画

(A) 概 要

本地区は試験ならびに訓練展示の為の圃場を地区東方台地に水田 5 ha, 畑地 10 ha 新設造成するが、水源予定点の流量かよび年間の降雨量を考えると雨期の一部と乾期には用水不足をきたすので必要水量(総貯水量 210,000㎡)を確保する為、現在の谷地田を貯水池とし、ポンプによって台地上の圃場に用水を供給するものである。堰堤の規模は堤長に比べ堤高が極めて小さい。作業は主として土取場からの築堤用土の掘削と堰堤の盛土および余水吐の掘削と Pasangan Batukali による石積工が中心となる。以下、工種毎の施工計画を樹立する。

(B) 施工順序

工事用道路の造成から築堤工事完了までを順序通りに述べる。

- (i) 現在の連絡道路より池敷内へ道路を造成し、池敷を車輛が自由に通行できる様にする。 この作業は11 ton プルドーザを用いる。
- (2) (1)の作業完了後、池敷内谷地田の左端を走る開水路を仮排水路として利用する為、これを人力にて掘削補強する。
- (3) (2)の作業と平行して仮設道路作業の11 ton ブルドーザを転用して敷地内の表土はぎを 行ない、この作業完了後余水吐の掘削をこのブルドーザを用いて行なり。余水吐に関して は掘削完了後 Pasangan Batakali による橋梁アパットの築造を直ちに開始する。表土 はぎの完了した築堤敷地内は 0.5㎡ーパックホーショベルを用いて床掘を開始する。
- (4) 表土はぎ及び余水吐掘削を完了した11 ton ブルドーザは貯水池右岸の土取場地点へ移動し、伐開及び抜根作業に使用する。
- (5) (4)の作業が完了後, 築堤用土の掘削土取り, 及び掘削土の仮置きを同じブルドーザを用いて行なり。雨水により築堤用土の含水比が高くなるようなおそれのある場合にはトレンチを設けるなど適当な排水処理が必要である。
- (6) 橋梁アパットメントの完成した余水吐は、越流部及び放水路部の Pasangan Batukali による石積工を行なう。
- (7) 橋梁アバットを28日間養生した後,土取場の用土を運搬して築堤計画線に沿って仕様 書に準拠して盛土する。
- (8) 盛土の完了した堤体天端は連絡道路として利用する為、幅員6 m, 厚さ8 cm, 長さ124 m でアスファルト舗装する。

(C) 各工種の施工

施工順序で述べた如く作業は進められるがととでは施行機械,処理方法について具体的に 述べる。

(1) 仮設道路造成

現在の連絡道路から池敷内へ支障をく車輛が通行出来る様に、11 ton ブルドーザを用いて盛土を行なり。この用土は池敷内右岸の谷地田畦畔を除去し、それに充当する。

(2) 仮排水路

旧連絡道路を仮締切堤として使用し、既存水路を仮排水路として使用して工事中の排水 に支障ないようにする。既存水路を人力により掘削し、整形を行ない仮排水路として必要 な断面を作る。

(3) 表土はぎ、余水吐掘削

作業は11 ton プルドーザにより行ない,はぎとった腐植物は工事の支障のない所へ廃棄する。余水吐掘削土は堤体下流側池敷内へ仮置きし,堤体の盛土へ流用する。

(4) 床 掘

作業は0.5 ㎡ バッホウショベルを用いて掘削し、掘削土は堤体下流側池敷内に仮置きし、 堤体の盛土へ流用する。

(5) 土取場掘削

作業は11 ton プルドーザにより行ない, 掘削土は貯水池池敷内に仮置きし, 盛土に備える。

(6) 旧堤(既存連絡道)処理

旧堤は仮締切堤として用い既存のままとするが、新堤の築堤計画線内の旧堤に関しては 表土はぎを行ない堤体として必要な締固めを行ない、本堤の一部として利用する。即ち、 旧堤と本堤とが一体となるよう施工する。

(7) 盛 土

盛土材料は土取場から運搬してきた用土及び余水吐掘削土を使用する。転圧締固めは 11 ton ブルドーザを用いる。余水吐橋梁アバット附近及び旧堤部分では80 kg タンパー を用いるが、この時盛土部が分離せぬようその造成には注意を用する。

新堤の盛土が仮締切堤の標高にほぼ等しくなるまで作業が進行したならば仮排水を池敷 左岸に設けられた既設ポンプ1台及び新設小型ポンプ2台(総能力約3㎡/min)による 排水に切り替え、仮排水路部分の盛土を開始し、以後は築全体の盛土作業を進行する。

(8) 盛土材料運搬

土取場において、11 ton ブルドーザにより掘削、集積(仮置き)された盛土材料は0.4 m トラクターショベルで積込み、4 t ダンプトラックで築堤予定点へ運搬する。(平均運搬距離 70 m)

(9) Pasangan Batukali

余水吐の橋梁アパットメト,越流堰部,放水路部に用いられるインドネシア特有の石積 工である。これらは各施工場所に材料を運搬し,人力による混練,打設を行なり。

. - :

(1) 型 枠

型枠は、余水吐の Pasangan Batukali 打設場所に使用される。現地で入手可能の木材を所定の場所で組立てて使用する。

(1) アスファルト舗装

築堤完了後, ダム天端を幅員 6,000m, 厚さ0.080m, 長さ124.000 m に亘ってアスファルトにより舗装する。

(D) 工程計画

以上の様な各種工事に必要な施工機械はプルドーザ, バックホウトラクターショベル, ダンプトラック等である。

とれらの施工機械が円滑にしかも有効に使用されるよう,工事量と機械作業能力を検討し, 所要台数及び稼動日数を算定すると次のとおりである。

(1) 工、期

1 ヶ月当り作業可能日数を 2 5 日とする。工事は乾期の 5 月~1 0 月の 6 ヶ月に行なり。 日平均土工量=土工全量/25日×6ヶ月 日最高土工量=日平均土工量×1.2

(2) 工事量及び施工機械の施工能力及び所要台数

工種	種目	数量	日平均 土工量	日最高土工量	1 時間当 作業能力	1日当 ※ 作業能力	所要 台数	機種
	表土はぎ	740 m²	5 9 2 2 m²	7 1.0 6 m	5 8 8 m²/hr	266 mt/day	1	11 tプル
堤 体	床 掘	645	5 1 5 8	6 1.8 9	169	8 4.5	1	Q5/%/かけ
	盛土	5,2 5 0	41.99	50.89	479	2894	1	11 tプル
	表土処理	600	5922	7 i 0 6	588	266	1	" .
土取場	堀 削	6,600	4812	5 1.7 5	188	9 1.7	1	"
余水吐	搥 削	1,080	4812	51.75	188	9 1.7	1	"

〔※ 日作業能力に関しては積算資料参照〕

表土はぎ 11 t プルドーザ

日作業時間 5 hour

日作菜能力 $53.3 m/ha \times 5 = 266 m/ha$

所要台数 $\frac{71.06}{266.00} \div 1$

床 掘 0.5 ㎡パックホウ

日作業時間 5.0 hour

日作業能力 $16.9 m/hr \times 5.0 = 84.5 m/day$

所要台数 $\frac{61.89}{84.5} \div 1$

盛 土 11t プルドーザ 掘削押工

日作薬時間 5 hour

日作業能力 53.3 m/hr×5×0.9 = 239.4 m/day

所要台数 $\frac{50.39}{239.4} \div 1$

掘 削 11t プルドーザ

日作業時間 5 hour

日作業能力 18.33 m/hr×5 = 91.7 m/day

所要台数 $\frac{51.75}{91.7} \div 1$

(3) 施工機械工種別稼動日数

施工機械	工種	五 事 量	1 日当工事量	日数	, (佛 考
11は ブルドーザ	準 備 工 事	2 0 0m²	2660m	1	
(1台)	堤体表土処理	740	2660m³	8	
	余水吐掘削	1,080	9 1.7	12	
	旧堤処理	54	2660	1	
	土取場表土処理	600	2660	. 8	旧堤表土処理
	土取場堀削	6,600	9 1.7	7 2	$m m m m$ $180 \times 08 = 54$
·····	堤 体 盛 土	5,250	1 4 5.5	8 6	
0.4トラクターショペル	土取場積込	6,600	1160	5 7	
4t ダンプ 2台	運 搬	6,600	8 6 4	77	
0.5㎡ バックホウ	堤 体 床 掘	645	8 4.5	8	

11t プルドーザ

①
$$\overset{200 \text{ m}^3}{}$$
 = 0.75 \Rightarrow 1 (day)

② 堤体表土処理
$$\frac{740 \text{ m}}{266 \text{ m/day}} = 2.78 \div 3 \text{ (days)}$$

③ 余水吐掘削
$$\frac{1,080 \text{ m}^3}{91.7 \text{ m}^2/\text{day}} = 11.78 \div 12 \text{ (days)}$$

④ 旧 堤 処 理
$$\frac{54 \text{ m}^2}{266 \text{ m}^2/\text{day}} = 0.20 \div 1 \text{ (days)}$$

⑥ 土取場表土処理
$$\frac{600 \text{ m}^2}{266 \text{ m}^2/\text{day}} = 2.26 \div 3 \text{ (days)}$$

⑥ 土取 場 掘 削
$$\frac{6,600 \text{ m}}{91.7 \text{ m/day}} = 71.97 \div 72 \text{ (days)}$$

⑦ 堤 体 盛 土
$$\frac{5,250 \text{ m}}{145.5 \text{ m}/\text{day}} = 36.08 \div 36 \text{ (days)}$$

0.4 ㎡ トラクターショベル

① 土取 場積 込
$$\frac{6,600 \text{ m}^2}{116.0 \text{ m}^2/\text{day}} = 56.90 \div 57 \text{ (days)}$$

4.0 ton ダンプトラック

① 土取場運搬
$$\frac{6,600 \text{ m}^2}{86.4 \text{ m}^2/\text{day}} = 76.39 \div 77 \text{ (days)}$$

0.5 ㎡ バックホウ

① 堤 体 床 掘
$$\frac{645 \text{ m}^3}{84.5 \text{ m}/\text{day}} = 7.63 \div 8 \text{ (days)}$$

6-1-2 試験圃場及び施設建物

試験水田は前記のダム工事と同時に着工し、その開田工事 5 ha は整地土工量 10,500 ㎡ とかなりの Volum であるためプルドーザを使用する。開田工事完了後に送水管の埋設を行い、 農道工事を完了する。いずれも2年度に完了し3年度の作付に間合う様に施工する。施設建物の建設については初年度より5年度までに必要性のある順に5期に分けて建設する。

6-1-3 Large Demo - Farm

施工時期は生産物の減少を最小限に押えること及び作業能率を上げ工事費の節減を計る為にも乾期の5~10月に行う。整地工及び道路盛土最は約85,600㎡であり、これを6ヶ月で行ううことは多数の労働力及び建設機械を必要とし経済的でない。

よって第3年度にD.P.U 10分水地点の北東部60haを施工し4年度に残り30haを施工する。

施工計画

(i) 工 期

1ヶ月25日とする(1月当り作業可能日数)

年間7ヶ月とする (乾期を対象 4月~10月)

日平均土工量 = 全量/25日

日最髙土工量 = 日平均土工量×1.2 とする。

	S	CHE	DUL	E	-1 - 1					,		ī.] i
ITEM	VOL	;	25	DAYS	50		. 7	5 -	i	IC	0		1	25	
PREPARATOR: WORKS) m Y , }	- IITC	N BL	JLLDOZI	R		1-1	- -							
DIVERSION CHANNEL	, ja	MAN	-POV	ver											
EXCAV. BORROW-PIT		3DAYS		TON BU	LLD	DZE	₹				•			- -	
S.S.R. EXCAV.	600 6600		ZDAY.	s'	,		TON	BU	LLD	οZε	ΞŖ			 -	
5.P.O.					1	12 DA	YS RUC	Υ Τ <i>′</i>) 	M. HC	. 1		WEF		
T.E.				4		10T	ı_D(JMP DAYS	TR.	JĊ	K.	□ 			1
DAM BODDY	;	11170	N BL	JLLDOZI	R					-		<u> -</u> - - - - - -		<u> </u>	
S.S.R. EXCAV. TRE	740 645 NCH	30AYS().5 M	1 ³ BUCK	HOV										
S.S.R. OLD L	i		BDAYS H LIDAY								[[]	ON.	BÜI	மல	 ZF
EMBANK.	5250		· 👀	BULL	OOZE	R							DAYS	_	- -
EXCAV.	1080	l Ii	AYS												
ABUT. PASANGAN				25 DAY	s i									<u> </u>	
OTHER PASANGAN	WORK	s					50 DA	YS.							
BRIDGE ACCESS ROA							3	O DAY	S						
ASPHALT PAVEMENT					3.1									70/	Į _Y
NOTES S.S.R. S.P.O. T.E.	SUR	FACE PE PL NSPO	SOIL ASTI	REMOY C OPE	VING RATI	ON									

工事量の2/3を第3年度 残り1/3を第4年度に行う。

(2) 工事量及び主要機械所要台数 ()は全工事量である。

種目	数 量	日平均 土工量	日最高土工量	1 時間当 作業能力	1 日 当作業能力	所要 台数	摘 要
幹線道路	1900 m² (2850)	m¹ 108	m² 180	<i>m</i> ³∕hr 758	m∕day 879	1	15 t級プル
支線道路	8,709 (5,568)	212	25A	n	,,	1	. #
耕作道路	1,807 (2,710)	108	124	,,	,,	1	,,
整 地	49845 (74017)	2820	8880	#	"	1	n

支線道路

15 t 級プル 日作楽時間 5.0 hr

1 日作業能力= 75.8 × 5.0 = 379 m/day

所要台数
$$n = \frac{25.4}{379} = 1$$
台

整

15 t 級プル 日作業時間 5.0 hr

1 日作業能力= 75.8 × 5.0 = 379 m/day

所要台数
$$n = \frac{338}{379} \div 1 台$$

(3) 1台当稼働時間の計算

1 台当稼働日数 = 数 量 1 台1 時間当り作業能力×台数

工種	種目	数量	時 間 作業能力	当全的台数	も力 時間当 全能力	1 台 当 稼働時間	稼働 時間	所要日数
			<i>m</i> ³∕h		m²/ha	hr /台	hr	日
連絡道路	掘削押土	1,900 (2,850)	7 5.8	1	7 5.8	25 (87)	50	50 (75)
支線農道	"	8709 (5568)	"	1	n	45 (74)	Ħ	100 (14.7)
整 地	"	49845 (74017)	,,	1	"	650 (976)	"	1800 (1958)
耕作地	"	1,807 (2,710)	"	1	"	28 (85)	Ħ	50 (71)
合 計		ļ						1500 (2246)

6-2-1 工事仕様書

(A) 作業種類

適用範囲 本仕様書は下記の仕事の実施に関する一般事項を示すものである。

- (a) 築 堤
- (b) 余 水 吐
- (c) 連絡道路
- (B) 据 削

伐開及び抜根表土処理

- (a) 抜根聚土処理は原則として草木片,切株,植物根等の腐植物及び有機物質を除去しなければならない。
- (b) はぎとった腐植物及び有機物質は、監督員に承認された寸法で処理し、はぎとり面は 監督員の検査を受け合格した後でなければ掘削、土取りの作業にかかってはならない。
- (c) これらの作業は11 ton プルドーザを使用して行なう。

土取り場及び余水吐の掘削

- (a). 掘削は 1 1 ton ブルドーザを用い土工定規図に従って行なう。 仕上面は人力にて所定ののり勾配に仕上げなければならない。(1:1.0)
- (b) 仕上面に切り株,転石などが露出して、取り除きが困難な個所及び取り除く事が管理上不適当と思われる個所については監督員の指示に従って処理しなければならない。
- (c) 予期しない不良土, 埋設物又は埋もれ木等があった場合には監督員の指示に従って処理しなければならない。

床 掘

- (a) 作業は 0.5 mバックホウショベルを用いて掘削する。
- (b) 掘削土は堤体下流側池敷内に仮置きし、堤体の盛土へ流用する。

旧堤(既存連絡道)処理

- (a) 旧堤に対しては既述の表土処理を11tonプルドーザを用いて行なう。
- (b) 表土処理の完了した旧堤は、2 ton ローラーで5回通過程度の転圧を行なう。

(C) 盛 土

- (a) 盛土の施工前には盛土敷の清掃を行なわなければならない。
- (b) 盛土敷地内に湧き水や滞水がある場合、地下水位の高い地盤上に盛土を行なり場合適当な排水処理を行ない、盛土敷の乾燥を講じなければならない。
- (c) 築堤盛土用土は、貯水池右岸の土取り場及び余水吐掘削土を優先し、不足分のみ池敷内を用いる。
- (d) 盛土のまき出し厚さ及び締め固め密度について。まき出し厚さは転圧機械及びローラー転圧を行なう場合は20cm以下のランマー及び軽量な転圧器具で転圧を行なう場合は

10㎝以下とする。

締め固め密度は2 ton ローラーで5回通過程度の転圧を標準とする。

(e) 盛土材料の掘削及びまき出し作業は、材料を締め固めた時最良の締め固めと安定度が 得られるよう十分混ざり合うように行なう。

(D) 石積工

材 料

- (a) 石材はその質緊硬均一で風化のおそれがなく、割れ目その他の欠点のないものでなければならない。
- (b) 玉石及び野面石の形状は扁平その他積石として不適当なものであってはならない。 (玉石とは、胴径約10~30㎝, 長さ15~40㎝の天然の形状のものをいう。また雑石とは雑割石に比して粗雑なもので、玉石と同程度に仕上げたものをいう。)
- (c) パサンガンバッカリ (Pasangan Batukali) に用いるセメントの配合及び材質については、インドネシアのスタンダードに依らなければならない。

施工

- (a) 石積 (Pasagan Batukali を含む)を直接地盤に積み上げる場合の基礎地盤は、十分に突き固め石積のり面に直角に仕上げなければならない。
- (b) Pasangan Batukali 以外の石積に使用する玉石, 野面石, 雑割石は, 胴径 15 cm 以下のものを使用してはならない。
- (c) Pasangan Batukali は、胴径10 cm以上を用い、表のり面は雑割石を用いて平滑 に仕上げなければならない。
- (d) 余水吐越流部,水路部,傾斜部,橋梁アバットメント及び水と接する個所に設けられる Pasangan Batukali は少なくとも表面から3cm以上はコンクリートかモルタルで填充しなければならない。
- (e) Pasangan Batukali の積み方及び胴径は特に規制しないが、胴径10 cm以下は使用してはならない。
- (f) Pasangan Batukali に用いる積石に泥土、ゴミ等が付着している場合には、清浄にしなければならない。
- (g) Pasangan Batukali は特に指示のない場合でも天端コンクリートを 5 cm以上施工しなければならない。

ED 連絡道路舗装

- (4) 築堤完了後ダム天端を連絡道路として利用する。
- (b) ダム天端を幅6m, 長さ124m, 厚さ8cmにわたってアスファルト舗装する。

6-2-2 機械の仕様

(A) D60A-Bulldozer

(a) 型 式 : Crawler

(b) エンジン型式 :水冷式, 4サイクル

Overhead valve, directinjection

type diesel

(c) 始 動 方 式 : 電動機式

(d) 出力, 定格回転速度 : 140HP, 1600RPM

(e) 最大けん引力 : 15620kg

(f) 排土装置付

操作時重量 : 15250 kg

全 長 : 5305 mm

全幅: 3970 mm

全 高 : 3015 mm

(g) 接 地 圧 : 0.62 kg/cm²

(h) 土 工 板

操作方式 :油 圧

幅 : 3970 mm

髙 さ : 1050 mm

上 昇 限 : 1110 mm

下降限: 530 mm

(B) D 5 0 A - Bulldozer

(a) 型 式 : Crawler

(b) エンジン型式 : 水冷式, 4 サイクル

Overhead valve, directinjection

type ディーゼル

(c) 始 動 方 式 : 電動機式

(d) 出力, 定格回転速度 : 90HP 1750RPM

(e) 最大けん引力 : 10340 kg

(f) 排土装置付

操作時重量 : 11000kg

全 長 : 4700 mm

全幅: 3350 mm

全 高 : 2690 mm

地 圧 : 0.66 kg / cm2 (g) 接

I (h) 土

> 操作方式 :油 圧

幅 : 3350 mm

髙 2 8 5 5 mm

上昇限 : 1050 mm

下降 限 380 mm

(C) D30S-Dozer Shovel

(a) 型 大 : Crawler

(b) エンジン型式 :水冷式、4サイクル

Overhead valve, directinjection

: -

type ディーゼル

(c) 始 動 方 式 : 電動機式

(d) 出力, 定格回転速度 : 55 PP, 2000 RPM

(e) 最大けん引力 6 1 7 0 kg

(f) 重 : 6800 kg 量

> 全 臣 : 4385 mm

> 全 幅 : 1685 mm

> 全 髙 2 5 7 0 mm

(g) 接 地 匥 0.55 kg/cm2

(h) パケット容量

最大荷重 : 1600 kg

(i) 最大チップパック角度 : 40度

(バケット地上位置にて)

最大ダンプ角度 : 50度

(バケット最高位置にて)

(D) Backhoe* * Attachment of D30S-Dozer Shovel

0.80 m

(a) パケット容量 : 0.2 m

(b) 掘 削 幅 : 580 mm

(c) 最大掘削深さ 3 1 5 0 mm

(d) 振 り幅 95度

(e) Range of Offset : 560 mm

(E) 4-ton ダンプトラック

(1) 数 量:2台

(2) 仕 様

(a) 最大積載量 : 4000 kg

(b) 右側ハンドル

(c) 速 度 : 前進5段, 後進1段

(d) エ ン ジ ン :水冷ディーゼルエンジン

(e) 始 動 方 式 :パッテリーシステムが他の電気的な機構による一般的

なもの

(f) 前輪2,後輪4でタイヤサイズは 7.50-16-14PR

(g) 油 圧 : パッキングシステム

(h) 主 制 動 装 置 : 油圧内拡或は油圧真空補助

(i) 1 台毎に一般に使用する工具一式 (ジャッキ, ポンプを含む)

(j) スペヤーパーツ :品目リストを付して全価格の10%

(k) 機関の修理方法,操作方法及び全てのスペヤーパーツのカタログ等のコピー3部

(F) ランマー

(1) 数 量:2 台

(2) 仕 様

(a) 重 量 : 80 kg

(b) 打 黎 数 :550~700回/分

(c) 衝撃ストローク : 30~60 mm

(d) 打 撃 板 : 330×330 mm

(e) 定格出力 : 3 PS

(f) 定格回転速度 : 1600 r p m

(g) スペヤーパーツ :品目リストを付して全価格の10%

(h) 機関の修理方法,操作方法及び全スペヤーパーツのカタログ等のコピー3部

(G) コンクリートミキサー

(1) 数 量 :1 台

(2) 仕 様

(a) 型 式 :可傾式

(b) 一回練り上り容量 : 0.09 ㎡

(c) ドラム回転数 : 25回以上

(d) 傾動方式· :手動操作

(e) ドラム寸法 : 内径700 mm以上, 投入排出口径450 mm

(f) ガソリンエンジン付

(g) エ ン ジ ン : 3.0 PS以上

(h) 移 動 :可搬式 台座付

(i) 機関の修理方法,操作方法及び全てのスペヤーパーツのカタログ等のコピー3部

; • .

(j) スペヤーパーツ :品目リストを付して全価格の10%

(日) コンクリートバイプレーダー

(1) 数 量 :1 台

(2) 仕 様

(a) 型 式 :棒状内部振動式

(b) 公 称 棒 径 : 27 mm

(c) 原動 機種 類 : ガソリンエンジン

(d) 出 力 : 4.0 PS以上

(e) 連 結 方 式 : フレキシプル

(f) 振動体

振動数 : 8,000 VPM

振幅 : 10 ㎜以上

長 き : 360 m 以上

- (g) 分解工具一式付
- (h) 機関の修理,操作方法及び全てのスペヤーパーツのカタログ等のコピー 3 部
- (i) スペヤーパーツ : 品目リストを付して全価格の10%

(I) ボータブルポンプ

(1) 数 量 : 4 台

(2) 仕 様

(a) 型 式 : ガソリンエンジン付自吸式ポンプ

(b) 口 径 : 70 mm

(c) 全 揚 程 : 5.00 m以上

(d) エンジン出力 : 3.0 P S 以上

- (e) ポンプとエンジンは 1 本構造或は同等程度で運搬が容易であること
- (f) 付属ホースの仕様 (I) 合成繊維, ゴム, 布, ビニールのいずれか或は合成 加工したもので1.0 kg /cm² 以上の圧力に耐え漏水のない製品
 - (ii) 重量が軽く取扱が容易で耐久性のある製品

- ∭) サイズは50~80 ㎜でポンプ吐出管に接続可能な継手
- ·(V) 1本の長さは原則として20 m程度とし, 両端には接 続可能な継手付
 - (V) ホースの数量 60 m
- (g) 一般的工具一式付
- (h) 機関の修理方法,操作方法及び全てのスペヤーバーツのカタログ等のコピー3部

(i) スペヤーパーツ : 品目リストを付して全価格の10%

建設機械購入台数調書

単位:円

機 械 名	規格	台数	1 台当り購入価格	購入金額
プルドーザー	11 t	2	6,400,000	12800000
Ħ	15 t	1	8700000	8,700,000
トラクタージョベル	0.4m²	1	2700000	2700000
バックホウ	0.8m²	1	6,400,000	6400000
ダンプトラック	4 t	2	600,000	1,200,000
ラ ン マ ー	80 kg	2	120,000	2400000
コンクリートミキサー		1	86,000	86000
コンクリートパイプレーター		1	8 5,0 0 0	8 5,0 0 0
ポータプルポンプ		1	96,500	96,500
fi †				82257900

※ 15t級ブルドーザーはラージデモファームに於いて使用

(J) 第1項ポンプ設備 (水田かんがい用)

(1) ポンプ要領

式 形 :横軸片吸込渦巻ポンプ

吸込口径 : 100 mm

吐 込 口 径 : 100 mm

送 水 量 $0.9 \, m^2 / m$

全 揚 程 : 18 m

回転数 : 1,800 r pm

ポンプ効率 : 59%

原動機出力 : 10PS

駆動 方式 :エンジン直結, 駆動

台 数 : 2 台

操 作 方 式 :現場単独操作

(2) 材 質

本ポンプの主要材質は次の通りとする。

(a) ポンプケーシング : 鋳鉄品(FC)

(b) イ ン ペ ラ : 鋳鉄品(FC)

(c) ライナーリング : 鉛青銅鋳物 (LBC)

(d) シャフト : 炭素鋼(S35C)

(3) 構 造

胴 体 本ポンプは片吸込渦巻ポンプとし前面の吸込カバー を取り

はずすことにより内部点検回転部取りはずしが可能なもの

: •

とする。

胴体内部は羽根車から放出された水に速度水頭を圧力水頭 に変換するに十分な渦室を持ち渦室内面は摩擦抵抗を少な

くするため平滑な鋳肌とする。

羽 根 車 羽根車は一体鋳造であり、その水量-揚程特性は下降特性

であり、負荷の変動並列運転に対しても安定した運転を行

えるものとする。

主 軸 主軸は動力の伝達、危険速度、たわみを充分考慮した直径

のものとし高積度の加工を行りものとする。

(4) 付属品

本ポンプ1台に対する付属品は、下記の通りとする。

フート弁 1個 エア抜きコック 1個

ドレン抜きプラク 1個 呼水ロート及びコック 1個

基 礎 ポルト 1組 相 フランジ 2枚

軸 継 手 1組 軸受用ドレン配管 1式

分解工具 1式 速成計 1個

第2項 附属機械設備

(1) 吐出側手動制水弁

口 径 100 m

形 式 手動スルース弁(内ネジ式)

材 質 鋳鉄品(FC)

2 台 台 数

(2) 吐出側自閉式逆止弁

径 100 mm П

式 スプリング内装式急閉チェッキ弁 形

鋳鉄品(FC) 材 慆

> 本弁はスプリングにより自閉力を高めた逆止弁であり、ゥ ォーターハンマーの圧力上弁の軽減に高い効果を持つもの

とします。

本管はポンプの吸込側と吐出側配管とし材質はSGPにて (3) 吸吐出配管

製作するものとする。

第 3 項 運 転 方 式

- (1) 吐出側バルプ閉
- (2) 呼 水
- (3) カップリング手廻しによりエア抜き
- (4) エンジン始動
- (5) 吐出側バルブ開

ポンプ駆動用重油機関

(1) 形 横式4サイクルディーゼルエンジン 犬

(2) 台 2 台

12.0 PS/2,200 rpm (3) 連続定格出力

(4) 最大出力 1 3.5 PS/2,2 0 0 r pm

(5) 始 動 方 式 手 動

(6) 付属品 燃料タンク 1 個

> 空気清浄器 1 個

排気消音器 1個

取付ポルト 1 式

保守点検工具

1 式

ファンベルト 1本

第1項 ポンプ設備(畑かん用)

(1) ポンプ要項

形 式 横軸多段渦巻ポンプ

吸込口径 125 mm
 吐 出 口 径
 1 2 5 mm

 送 水 量
 1.3 2 m²/m

全 揚 程 50 n

回 転 数 1.800rpm

ポンプ効率 61%

原動機出力 40PS

駆 動 方 式 エンジン直結型

台 数 1 台

操 作 方 式 現場単独操作

(2) 材 質

本ポンプの主要材質は次の通りとする。

- (a) ポンプケーシング 鋳鉄品(FC)
- (c) ライナーリング **鉛青銅鋳物(LBC)**
- (d) シャフト 炭素鋼(S35C)

(3) 構 造

胴 体 本ポンプは横軸多段渦巻ポンプとし、吸込胴、中間胴、

吐出胴 よりなりたつ。

渦巻室内部は案内羽根を使用しておらず, 揚水量の広い範

; -

囲にわたって高い効率をもつものとする。

羽 根 車 羽根車は一体鋳造であり、その水量・揚程特性は下降特性

であり、負荷の変動並列運転に対しても安定した運転を行

えるものとする。

主 軸 主軸は動力の伝達、危険速度たわみを充分考慮した直径の

ものとし、高精度の加工を行うものとする。

(4) 付 属 品

本ポンプ1台に対する付属品は下記の通りとする。

フ - ト 弁 1個 エア抜きコック 1個

ドレン抜きコック 1個 呼水ロート及びコック 1組

基礎 ポルト 1組 相フランジ 2枚

軸 継 手 1組 軸受用ドレンパイプ 1式

分解工具 1式 連成計 1個

	第2項	附属機械設備
吐出側手動	制水弁	
口	径	1 2 5 mm
形	式	手動スルース弁(内ネジ式)
材	質	鋳鉄品(FC)
台	数	1 台
吐出侧自閉]式逆止弁	
口	径	1 2 5 mm
形	弐	スプリング内装式急閉チェッキ弁
材	質	鋳鉄品(FC)
		本弁はスプリングにより自閉力を高めた逆止弁でありウォ
		- ターハンマーの圧力上昇の軽減に高い効果をもつものと
		します。
吸吐出的	记 管	本質はポンプの吸込側と吐出側配管とし材質はSGPにて
	口形材台出口形材	吐出側手動制水弁 口 径 形 式 材 質 台 数 吐出側自閉式逆止弁 口 口 径 形 式

製作するものとする。

第3項 運転方式

- (1) 吐出側バルブ閉
- 2) 呼 カ
- (3) カップリング手廻しによりエア抜き
- (4) エンジン始動
- (5) 吐出側バルブ開

		第4項	ポンプ駆動用重油機関		
(1)	形	式	立型4サイクルディーゼル	エン	ジン
(2)	連続定格出	力	40PS/1,800rpm		
(3)	始 動 方	式	始動 電動 機	1	個
(4)	付 属	En .	回 転 計	1	個
			潤滑油圧力計	1	本
			潤滑油温度計	1	本
			冷却水温度計	1	個
			空 気 清净 器	1	個
			取付ポルト	1	弐
			ラジエーター冷却フアン	1	個
			充 電 装 置	1	式
			保弁点検用具	1	犬

Chapter 7 Appendix

附録7-1 蒸発計蒸発料

	TEGINENENO	ì			{深さ70%}
	EXTENSION	CENTER			\$ \$ 1 2 0 % }
SEP	1 7		1	1	700 700
	18			9	
	1 9			8	
	2 0			9	
	2 1			9	
	2 2			7	
	2 3		1	1	
	2 4		1	0	
	2 5			9	
	2 6		1	0	
	2 7			9	
	2 8		1	9	
	2 9		1	2	
	3 0		1	0	
OCT	1		1	1	
	2		1	2	
	3			8	
	4		1	0	
	5		1	1	
	6			9	
	7		1	0	•
	8		1	1	
	9		1	3	
	1 0		1	1	

Tab 7	-2	(1)		
=====	q=====================================		=======================================	=========
No. Urut	nama pemilik	Tempat tinggal	: .luas tonah : Ha	: No. Kav.
=====	=======================================		.==#==#==#==;	=======================================
1.	: Sulaiman Simin	: Kp. Totokaton	: 4	: 1
2.	: Parto Wirono	: "	: 1,75	: 2
3.	: Njono	; '' ; '!	: 0,75	: 5
4.	: Djakimin	; '' ; '!!	: 0,50	: 4
5. 6.	: Minto Sudarmo : Parto wirono	. "	: 1,25 : 0,25	: 5 : 6
7.	: Rabin	• "	: 0,25 : 0,50	. 6 : 7
8.	: Kartosemito	• 11	: 1,50	. , : 8
9.	: Pirut	; "	: 0,75	. 0 : 9
10.	: Mbok reken	n ·		: 10
11.	: Samiran	: n	· .	: 11
12.	: Raban	; ""		: 12
13.	: Dulah Subarl	; m	•	: 13
14.	: Karman	: "	-	: 14
15.	: Rahman	: "		: 15
16.	: Mukiman	‡. ¹¹	: 0,25	: 16
17.	: Baidi	: "	: 0,25	: 17
18.	: Ponidjo	: "	•	: 18
19.	: Dikin	: "		: 19
20.	: mbok Kartoredjo	; "	•	: 20
21.	: Wagimin	: "		: 21
22.	: Ansjori	; !! • !!		: 22
23. 24.	: Suradi	: ''		: 23
25.	: Samsudin : Rusdi		•	: 24
26.	: Tupan	• tt		: 25 : 26
27.	: Kamidin	•	•	: 20 : 27
28.	: Miswati	· · · · · · · · · · · · · · · · · · ·	•	: 28
29.	: Tarno		•	: 29
30.	; Panggih	: "		: 30
31.	: Sitar	· · · · · · · · · · · · · · · · · · ·		; 31
32.	: Samiran	: "		: 32
33.	: Kasanredjo	; ""	: 0,75	: 33
34.	: Kartoredjo	: "	: 0,25	: 34
35.	: Dulah Muin	: "	: 0,25	: 35
36.	: Djoreno	11		: 36
37.	: Djoreso	: 11	· •	: 37
38.	: Susah	; "	•	: 38
39.	: Adbullah	: "	: 0,75	: 39
40.	: Suradi	: Totokaton	• •	: 40:
41.	: Suradi	; 11	: 0,50	: 41:
42.	: Bustami	: "		: 42:
43. 44.	: Bustami	; tt	•	: 43 :
44. 45.	: Saimin : Keni	; '' ; 1)	•	: 44 : Kav.
46.	: Keni : Saimin	• 11	•	: 45 : no.5
47.	: Karnen	• 11	-	: 46 : da
48.	: Kasmiri	• · · · · · · · · · · · · · · · · · · ·		: 47 : djadi : 48 : satu
49.	: Sitar	• • 11		: 48 : satu : 49 :
50.	: Dulah Subari			: 50:
			. 0,-0	. 55.

```
11
       : Nadenan
                                                          0.25
                                                                        51:
51.
                                          11
       : Ponidjo
                                                       :
                                                          1.
                                                                     :
                                                                        52:
52.
       : Samiran Rt
                                          11
                                                          0,50
                                                                        53:
                                  :
                                                       :
                                                                     :
53.
       : Pawirodimedjo
                                                       :
                                                          1.50
                                                                        54:
54.
                                          11
       : Kasno
                                                                        55 :
                                                       :
                                                          1
                                                                     :
55.
                                          11
       : Kastam
                                  •
                                                          0.50
                                                                        56:
                                                       :
56.
                                         **
       : Sujut
                                                          1,50
                                                                        57:
                                                       :
57.
       : Muzamman Ali
                                  :
                                                          2
                                                                        58:
58.
                                         11
       : Karijotiko
                                                       :
                                                          1
                                                                        59:
59.
       : Muharto
                                          ..
                                  :
                                                          0,50
                                                                        60:
                                                       :
60.
       : Burza
                                          11
                                  :
                                                          2
                                                                        61:
61.
                                                       :
       : Zuhdi
                                                          0.50
62.
                                  :
                                                                        62:
       : Kardido
63.
                                  :
                                                          0,50
                                                                     :
                                                                        63:
                                          11
       : Supardi
                                  :
                                                       :
                                                          2,50
                                                                        64:
64.
                                         11
       : Dulah Subari
                                  :
65.
                                                          0,50
                                                                        65:
                                                                     :
       : Suwardi
                                         11
66.
                                  :
                                                          1
                                                                        66:
       : Sukarno
67.
                                  :
                                                          1
                                                                        67:
       : Sarni
68.
                                                          2
                                                                        68:
                                                       :
       : Pawiro
69.
                                  :
                                                       :
                                                          1
                                                                        69:
                                         ..
       : Djaimin
70.
                                  :
                                                       :
                                                          0,50
                                                                        70:
                                         **
71.
       : Tukiman
                                  :
                                                          0,50
                                                                        71:
                                                       :
72.
       : Djarimin
                                                          0,50
                                                                        72:
                                  :
                                                       :
                                         11
       : Djajus
73.
                                  :
                                                          1
                                                                        73:
                                         11
74.
       : Djureni
                                  :
                                                       :
                                                          1
                                                                        74:
75.
       : Anwar
                                         11
                                                         1
                                                                        75:
                                  :
                                                       :
                                         11
       : Dul Djalal
76.
                                                          0,25
                                                                        76:
       : Adenan Zen
77.
                                 : Metro
                                                          1
                                                                        77:
78.
       : Usup Alam
                                : Tanjungkorang
                                                          2
                                                                     :
                                                                        78:
79.
       : Ramelan
                                  : Totokaton
                                                          1,50
                                                                        79:
                                                                     :
80.
       : Salimi
                                                          0.50
                                                                        80:
                                                                     :
       : Ramelan
81.
                                                          0.50
                                  :
                                                                     :
                                                                        81:
                                         11
82.
       : Sjamsudin
                                  :
                                                          0,50
                                                                     :
                                                                        82:
                                         11
83.
       : Sungkono
                                  :
                                                          0,50
                                                                        83:
                                                                     :
84.
       : Ramelan
                                  : Totokaton
                                                          0,25
                                                                     :
                                                                        84:
85.
       : Sirad
                                                          1,50
                                 :
                                                                     :
                                                                        85:
86.
       : Mudjahit
                                                          0.50
                                  :
                                                                     :
                                                                        86:
87.
                                         11
       : Mursidi
                                 :
                                                          1,50
                                                                        87:
                                                                     :
88
       : Dawan
                                         11
                                                                        88:
                                                          0,25
                                                                     :
89.
                                         11
       : Sutarno
                                  :
                                                          0,50
                                                                        89:
                                                                     ;
90.
                                         11
                                                          0,50
       : Rameian
                                                                     :
                                                                        90:
91.
                                         11
       : Mangun Parwito
                                                          2
                                                                        91:
92.
       : Hasan Manap
                                  : Tanjungkarang
                                                          1
                                                                        92:
93.
       : Abuhasan
                                  : Metro
                                                          1
                                                                    . :
                                                                        93:
94.
       : Ibrahim
                                                          0,50
                                                                        94:
                                  : Totokaton
                                                       :
                                                                     :
95.
       : Supriono
                                  :
                                                                        95:
                                                          1
                                                                     ;
96.
       : Sarwono
                                                          1,50
                                  :
                                                                        96:
97.
       : H. Parid
                                         * *
                                  :
                                                          1,50
                                                                        97:
                                                                     :
98.
       : Tarno
                                         11
                                  ;
                                                          2
                                                                        98:
99.
                                         11
       : Djuari
                                  :
                                                          0,125
                                                                       99:
                                                                     :
100.
       : Akad
                                         11
                                                          0,375
                                                                     : 100:
101.
       : Maidi
                                         "
                                                          0,50
                                                                     : 101:
102.
       : Sppian
                                         11
                                                          1
                                                                     : 102 :
103.
       : Dulah subari
                                         11
                                                                     : 103 :tanah
                                                          0,25
104.
       : Sulaiman Simin
                                         11
                                                          1
                                                                      104 :pekarangan
                                                       :
                                                                     :
105.
      : Maidi
                                         11
                                  :
                                                          0,25
                                                                     : 105 : "
106.
       : mbok Kunah
                                         11
```

· .

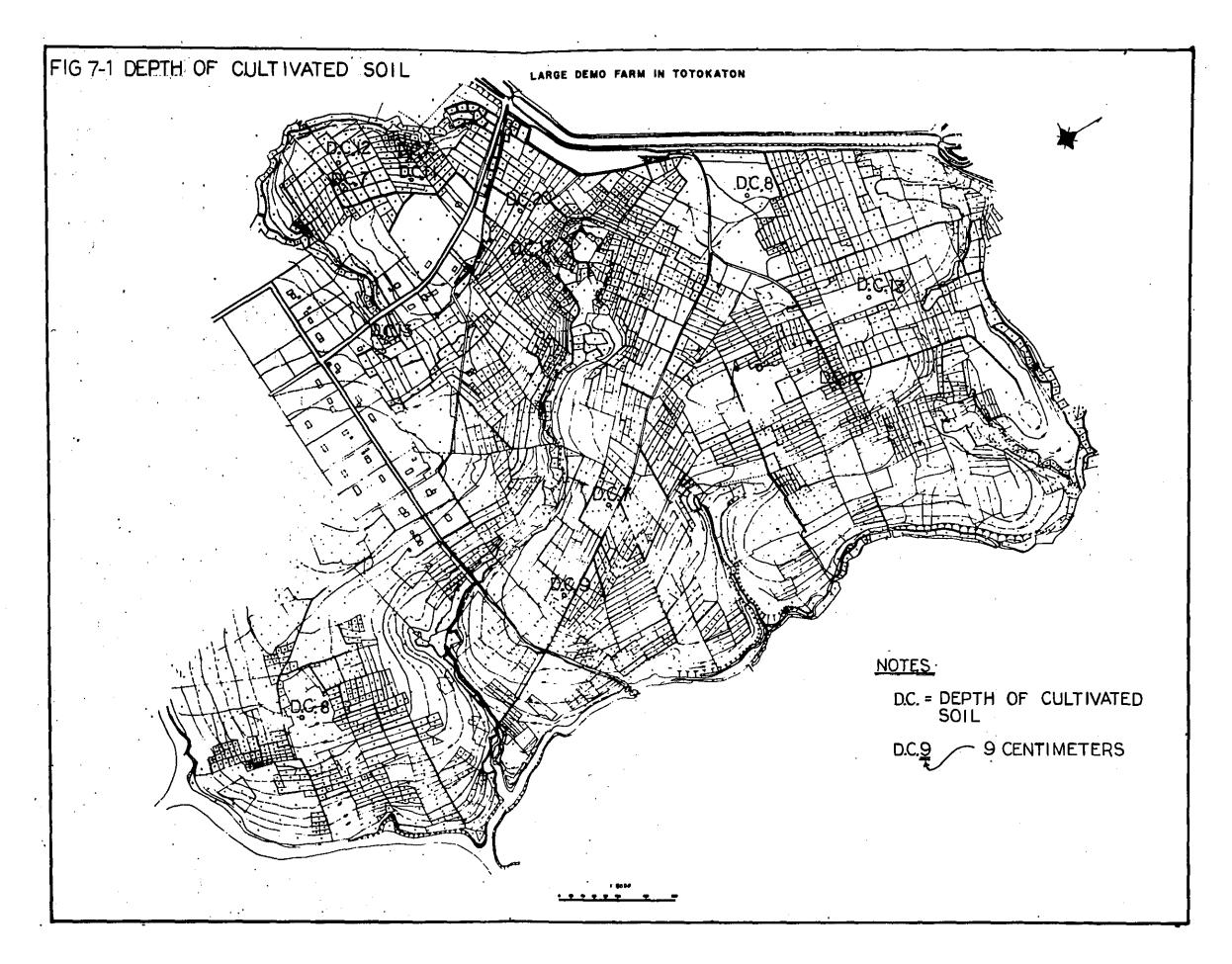
0,50

: 106 :

```
11
                                                        : 0,25
                                                                      : 107 : "
                                  :
       : mbok Reken
107.
                                                           0,25
                                                                      : 108 :
                                  :
108.
       : Samiran
                                                           0.25
                                                                   : : 109:
                                                        :
                                  :
109.
       : Partowirono
                                                           0,25
                                                                      : 110:
                                  :
                                                        :
110.
       : Kasanwijono
                                          11
                                                                      : 111:
                                                        :
                                                           0, 125
                                  :
111.
       : Njono
                                  :
                                          11
                                                        :
                                                           0,125
                                                                      : 112 :
112.
       : Partowirono
                                          11
                                                        : 0,25
                                                                      : 113 :
                                  :
113.
       : Robin
                                                                      : 114:
                                                        : 0,25
                                  :
114.
       : Kartosemito
                                          11
                                                                      : 115 :
                                                        : 0,25
                                  :
115.
       : Suradi
                                          11
                                                        : 0,25
                                                                      : 116:
       : Tupan
                                  :
116.
                                          ..
                                                        : 0,25
                                                                      : 117:
       : Raban
                                  :
117.
                                          11
                                                        : 0,25
                                                                      : 118 :
                                  :
118.
       : Suradi
                                                                      : 119:
                                                           0.25
       : Mintosudarmo
                                  :
                                                        :
119.
                                                                      : 120:
                                                          0,25
                                  :
                                                        :
120.
       : Ngadi
                                          п
                                                                      : 121:
                                                                               11
                                                           0,25
       : Ngadinan
                                  :
                                                        :
121.
                                          п
                                                           0,25
                                                                      : 122 :
                                                                               11
                                  :
                                                        :
122.
       : mbok tuninah
                                          н
                                                                               H
                                                           0,25
                                                                      : 123 :
123.
       : Kasanredjo
                                  :
                                                        :
                                          п
                                                           0,25
                                                                      : 124:
124.
       : Abdulah
                                  :
                                                        ;
       : Susah
                                  :
                                                        ;
                                                           0,25
                                                                      : 125 :
125.
                                          11
                                  :
                                                           0,25
                                                                      : 126 :
126.
       : Djuari
                                          11
                                                           0,25
                                                                      : 127 :
                                  :
                                                        :
127.
       : Kamidin
                                                                      : 128 : Tanah pe/
                                                           0.50
128.
       : Keni
                                  : Totokaton
                                                        :
                                                                      : 129 :
129.
       : Saimin
                                  :
                                          11
                                                        :
                                                           0,25
                                           11
                                                        : 0,25
                                                                      : 130 :
130.
       : Panggih
                                  :
                                           11
                                                           0,25
                                                                      : 131:
                                                                               Ħ
131.
       : Sitar
                                  :
                                           t t
                                                                               11
                                                           0,25
                                                                      : 132 :
132.
       : Dulah subari
                                  :
                                           11
                                                                               11
       : Miswadi
                                                           0,25
                                                                      : 133:
133.
                                   :
                                           11
134.
       : Lapangan
                                  :
                                                        :
                                                           1
                                                                      : 134:
                                           11
135.
       : Likin
                                   :
                                                        :
                                                           0,25
                                                                      : 135:
                                           п
       : Karmin
                                                           0,25
                                                                      : 136:
136.
                                  :
                                                        :
                                           11
                                                                      : 137 :
137.
        : Pawiro
                                   :
                                                           0,125
                                           п
                                                           0,50
                                                                               11
138.
                                                                      : 138:
        : Karnen
                                  :
                                           11
                                                                                "
139.
       : Darmawan A
                                  :
                                                           1
                                                                      : 139:
                                                        :
                                           11
140.
        : Darmawan B
                                                           1
                                                                      : 140 :
                                  :
                                                        :
                                           11
141.
                                                           0,50
                                                                      : 141:
        : Bakir
                                  :
                                                        :
                                           11
142.
        : Tarmidi
                                 :
                                                        :
                                                           0,50
                                                                      : 142 :
                                           11
143.
        : Busrowi
                                  :
                                                           0,375
                                                                      : 143 :
                                                        :
                                           11
144.
                                  :
                                                           0,25
       : Ngadi
                                                        :
                                                                      : 144:
                                           11
145.
       : Djuari
                                   :
                                                            0,25
                                                                      : 145:
                                                        :
                                           11
146.
       : Misri
                                                            0,25
                                                                      : 146 :
                                   :
                                                        :
147.
        : Darkup.
                                   :
                                                            0,25
                                                                       : 147 :
                                           п
148.
       : Sopian
                                  ٠.
                                                         : \cdot 0, 25
                                                                       : 148:
                                           11
149.
        : Pirut
                                  :
                                                        :
                                                            0,25
                                                                       : 149:
                                           п
150.
       : Somosuratin
                                  :
                                                         :
                                                           0,25
                                                                       : 150:
                                           п
151.
       : Dulhalim
                                  :
                                                           0,50
                                                                       : 151:
                                                         :
                                           11
152.
        : Paimin
                                  :
                                                           0,25
                                                                       : 152 :
                                                        :
                                           11
153.
       : Setra
                                   :
                                                            0.25
                                                                       : 153:
                                                        :
                                           п
154.
        : Tukiem
                                                            0.25
                                   :
                                                        ;
                                                                       : 154:
                                           11
155.
        : Redio
                                   :
                                                            0,25
                                                        :
                                                                       : 155:
156.
                                                            0,50
        : Dirno
                                   :
                                                                       : 156:
                                                        :
                                           11
157.
        : Rebo
                                   :
                                                        :
                                                            0,25
                                                                       : 157:
                                           11
158.
        : Sagi
                                   :
                                                        :
                                                            0,25
                                                                       : 158 :
                                           П
                                                                       : 159:
159.
        : Ardjo
                                   :
                                                         :
                                                            0,25
                                           11
160.
        : Situr
                                                            0,25
                                                                       : 160:
```

i	•	1					
161.	: Daiman	:	11	:	0,25	:	161:
162.	: Saimin	:	. 11	:	0,50	:	162:
163.	: Muhari	:	H	;	0,25	:	163:
164.	: Paidjo	:	11	· :	0,25	:	164:
165.	: Atmo	:	H	:	0,25	:	165:
166.	: Sikat	:	II .	:	0,50	:	166:
167.	: Sumpono	:	H	:	0,25	:	167:
168.	: Sandari	:	11	:	0,25	:	168:
169.	: Pardi	:	П	:	0,25	:	169:
170.	: Usup	:	11	:	0,25	:	170:
71.	: Darmi	:	11	:	0,25	:	171:
72.	: Katidjo	:	11	:	0,50	:	172:
173.	: Buhari	: To	tokaton	:	1	;	173:
74.	: Rusdi	:	H	:	0,25	:	174:
75.	: Sujut	:	**	:	0,25	:	175:
76.	: Noerdin	:	H	:	0,25	:	176:
77.	: Sak Dulah Pati	: M	etro	:	0,25	:	177:
178.	: Mudijat	: To	otokaton	:	0,25	:	178:
179.	: Sudin	;	11	:	0,25	:	179:
180.	: Sahri	:	11	:	0,50	;	180:
181.	: Karijopawiro	:	!!	:	0,25	:	181:
	Djumlah			:	103	:	:

Metro, 3 Oktober 1972


Potugas Kasubdit Agraria Kab. Lampung Tengah ttd. (ACH AR BASRI)

<u>b 7-3</u>	<u>) </u>	. <u> </u>	• • • • • • •		N OF	CAITI	H-VOLUN	ME (I)	= 0.900	4		JOS 2511
O NO.	1 DENKUSU		VOLUME	CDORO	CUTPO.	Y O D O KEIMAN	R Y O DECKUKAN	EXCAV.	AREA (11-)	EMBANK.	AREA (11-)	AREA(III
1	28	EXCAVATION	EMBANK.	ROAD	CAÑAL O .	BORDER Q.	-32,	7024,00	11890,00	9047.00	7627,00	35580,00
2	36	4181.	3257.	-552	0.	0.	-106	12239,00	13560,00	8 <u>0</u> 00.00	9201.00	43000±00
3	35	3862,	2970.	-558	0,	0.	+43,	8288.00	13927,00	8271,00	7160,00	37643.00
4	. 43	7339.	5730.	-979.	ο.	0.	-278,	23245.00	23506,00	13241.00	19509,00	79601,00
. 5	. 30	6004.	4432,	-1087.	0.	٥.	-299	14174.00	20151180	14153.00	13552.00	62060.00
6	45	5768	4544,	-737.	0,	ο,	-108.	18502.00	1495# ₊ CO	12394.00	14515,00	69 4 29,90
7	27	3606.	2586.	-725	ο,	ο.	-19,	12116.00	12751,00	11400,00	90/0,00	45417,00
8	31	6798.	4626,	-61U.	ο,	0.	1321,	9221.00	21765,80	# <i>2</i> 27,50	13602,00	52995,00
9	28	2652.	205á.	-400.		0 +	0.	721:.00	9341,00	9164,30	o2d4,50	33000.00
10	30	3355.	2771.	-262.	0.	0.	0.	7042.00	12111,00	7748,30	9749,00	პიანც, ძ
11	38	4011.	3174,	-483	٥,	0.	-27,	13534,00	12977,00	11687,00	8104,00	46303.00
12	20	2674.	2194,	-230,	0.	0.	e8.	6362.00	11994:00	9981.00	7132,00	35469.00
13	27	3106.	2305	-542	.0.	0.	e7,	61.59.00	1,1046:00	4410.00	7494,00	29139,0
14	25	5413.	427U+	-675,	0.	0 •	-261,	6317,00	19515:00	7843.Qu	13248,00	46720,00
15	. 40 .	3358.	2389,	-694,	0.	0.	-13,	12650.00	11909:00	7597,00	7734,00	39890,0
. 16 .	0.4	2812,	2313,	-238,			<u></u>	4304,00	9644,00	2764,00	8581.00	25353.00
17	35	4131,	3241.	-525,	, 0,	0	+1.45	6695,00	11530,00	5293.00	11100,00	34619,0
18	33	3013.	2241.	-529 ,	. 0.	0.	-122.	11432.00	9736,00	4652,00	6079,00	31929,0
19			2674.	-233,		0,		6311.00	12882,00	5321,00	7325,00	33839,0
20	42	4274	3223.	-686.	. 0.	0.	0.	12100,00	14167,00	11053,00	12346,00	4967210
131	32	2747	1983,	-543,	0.	D,	0 ,	11358,00	/ 8868+00	6301.00	5022,00	. 33004.0
KEI.	684	85611,	65621.	-11504,	e,	0.	-2789,	218435.00	288226400	180748+00	204614,00	89202010

A TABULATION OF EARTH-VOLUME (2)

JOB 2511

KOKU NO.	HOKUSU	роя кінію	· • -	_	I Y O D O KETHAM	H Y O DESKUKAN)	-	(I = 0,900) MEDSEKI (11-)	#87100 {0 -10}	(11-) MEDSEKI	Menseki
. 1	21	85611.	6562111994.	0.	0,	-2769.	216435,00	218225,00	180740.60	204614.00	892024.00
GOAFI	21	85611.	65621, -11574,	٥,	٥,	-2709.	215435,00	230224.00	180748.00	204614,00	392023.00

Chapter 8 Project Cost

AMOUNT IN CONSTRUCTION COST SPECIFICATION

¥72,578,000 Yen

* Upper Part: Domestic Currency (D. C)
Under Part: Forein Currency (F. C)

Description of Items Material	Size	Quantity	Unit	Unit Price	Cost	No.	Remark
(I) Cost of extension					42,987,000		64,176,000 yen
center					21, 189, 000	F.C	·
(II)Cost of large				•	5,682,000	D. C	8,402,000
demo farm					2,720,000		0, 102, 000
Grand total					48,669,000	n c	72,578,000
					23,909,000		12,316,000

(1)

COST OF EXTENSION CENTER SPECIFICATION

¥64,176,000 yen

42,987,000 D.C 21,189,000 F.C * Upper Part: Domestic Currency (D.C)
Under Part: Forein Currency (F.C)

Descr	iption of Items Material	Size	Quantity	Unit	Unit Price	Cost	No.	Remar)
(1)	Dam		_			1,698,000		
						2,137,000		3,835,000
(2)	Farm					2,137,000		
	Consolidation					11,979,000		14, 116, 000
(3)	Building					39, 152, 000		1
						7,073,000		46,225,000
	Total					42, 987, 000		
						21, 189, 000		64, 176, 000

(1)

CONSTRUCTION COST OF DAM SPECIFICATION

¥3,835,000 yen

1,698,000 D.C 2,137,000 F.C

Desc	ription of Items Material	Size	Quantity	Unit	Unit Price	Cost	No.	Remark
1.	Dam body				1 110 000	452,000		
					1,330,000	878,000		
z.	Spillway				2,351,000	1,092,000		
					6,331,000	1,259,000		
3.	Common temporary					154,000		10% of above amoun
	cost							but except ripairing
								cost
	Total				1 015 000	1,698,000		D. C
					3,835,000	2, 137, 000		F.C
						3,835,000		

CONSTRUCTION COST OF DAM BODY SPECIFICATION

Y1,330,000 yen

452,000 878,000

* Upper Part: Domestic Currency (D.C)
Under Part: Foreign Currency (F.C)

Description of Items Material Size	Quantity	Unit	Unit Price	Cost	No.	Remark
Surface soil			4	4,880		
removing	1,220	m3	33	40,260		
temoving	•		120	43, 920		By man power
Do	366	m3				1,220 x 0.3 = 366 m3
Excavation			8	3,600		By machine
trench	450	m3	102	45,900		644 x 0,7 = 450
			245	47,530		By man power
Do	194	m3				644 x 0. 3 = 194
Excavation and			6	34,638		net loss
transport of earth	5.773	m3	39	225, 147		5,248 x (1.+0.1)=5,773
Excavation and			4	23,092		
Loading	0	m3	85	490, 705		
20208			10	57, 730		
Carring	II II	m3	65	375,245		
Leveling and			7	40,411		
compaction	11	m3	60	346,380		
Compaction			15	17, 325		By rammer
Soil compaction	1,155	m3	22	25,410		$5.773 \times 0.2 = 1.155$
Asphalt-pavement			237	176, 328		
t=8cm	744	m2		• '		124m x 6m = 744 m2
Removal of			4	2,576		
surplus soil	644	m3	33	21,252		
				452,030		D. C
Total				877,539		F. C
				1,329,569		
				\$ 1,330,000		

1

CONSTRUCTION COST OF SPILLWAY SPECIFICATION

¥2,351,000 yen

1,092,000 1,259,000

Description of Items	Material	Size	Quantity	Unit	Unit Price	Cost	No.	Remark
			· ·		6	4,530		By machinery
Excavation			755	m3	39	29, 445		1,078 x 0.7 = 755
					120	38,760		By man power
Excavation			323	m3				1,078 x 0.3 = 323
					40	6,800		
Embankment			170	m.3				
Pasangan-					4, 415	649,005		
batukali			147	m3				588m2 x 0.25m = 147m2
Bridge								
	Pasangan				4,415	592,713		
Substructure	batukali		134 25	m3	-•			
Super								
structure	Steel		6 754	ton	138,000	932,052		120,000 x 1.15 = 138,00
	Guard-							
	rail		17 0	m	4, 105	69,785		3.570 Y/m x 1.15 =
					6,350	125,730		•
	Concrete		198	m3				
	Rein.				44, 454	220,047		40,000 yen/ton x
	forcement		4 950	ton	46,000	227,700		1, 15 = 46,000
	Wooden				991	105,541		• • •
	form		106 5	m2				
						1,092,121		
	Total					1,258,982		
						2,351,103		
						÷ 2,351,000		

FARM CONSOLIDATION SPECIFICATION

¥14,116,000 yen

2,137,000 D.C 11,979,000 F.C

Desc	ription of Items Material	Size	Quantity	Unit	Unit Price	Cost	No.	Remark
1.	Cost of farm					735,000		
	consolidation					2,443,000		3, 178, 000
2.	Cost of pump-					483,000		
	station works					241,000		724,000
3.	Cost of pump					5,000		,
						829,000		834,000
4,	Cost of .					783,000		,
	delivery and					3,660,000		4,443,000
	supply pipe					• • • • • • • • • • • • • • • • • • • •		,
	lying							
5.	Cost of					6,000		
	booster pump					1,628,000		1,634,000
6.	Cost of supply					125,000		.,,
	pipe for					1,967,000		2,092,000
	sprinkler							
7.	Cost of							
	sprinkler head					1,211,000		1,211,000
	-					2, 137, 000		1,211,000
	Total					11,979,000		14, 116, 000

1

COST OF FARM CONSOLIDATION SPECIFICATION

¥3,178,000 yen

735,000 D.C 2,443,000 F.C

De	scription of Items Material	Size	Quantity	Unit	Unit Price	Cost	No.	Remark
1.	Land-leveling						-	**
	Excavation and				13	137,410		
	transport of		10,570	m 3	115	1,215,550		
	soil							
	Leveling		10,570	m3	2	21,140		
		B = 10 m			•			
2,	Main road	£ = 545m						
	Excavation		67 7	m3	120	8, 124		
				.113	53	209, 037		
	Embankment		3,944 1	m3	115	453,571		
3.	Farm road							
	Excavation				13	14,885		
	Lxcavation		1,145 0	m3	115	131,675		
	Embankment		5,3895	m3	53 115	285,643 619,792		
			-,,-		***	V.7, 172		
4.	Drainage- culvert							
	cnivert		5	pcs				
	Concreat		1 45	m3	7,110	10,309		
	Mortal Pasangan-		0 5 0	m3	6, 350	3, 175		
	batukal		15 16	m3	4, 415	66, 931		
	Total					735,514	D, C	
						2,442,728	F. C	
						3, 178, 242		
						3,178,000		

¥724,000 yen

483,000 D.C 241,000 F.C

Description of Items	Material	Size	Quantity	Unit	Unit Price	Cost	No.	Remark
							21.22	
Filter			37 68	m3	895	33,723		
Currugated	30	00 ∮ m/m						
pipe		3,2	6 40	m	46,700	298,880		
Pipe Base	-	••-			7,110	55,031		
concrete			7 74	m3				
concrete					991	12,773		
Wooden form			12 89	m2				
Steel			0 10	ton	46,000	4,600		
Pasangan -					4,415	399,557		
batukali			90 5	m3				
uptuveri					245	15,386		
Excavation			62 8	m3			•	V=2.5π x3,2=62.8r
Bolt			62	nos	70	4, 340		56pc x (1.+0.1) ≠ 6
Bott						482,747		D, G
						241,620		F.C
Total						724, 367		
						÷ 724,000		

3

COST OF PUMP SPECIFICATION (FOR PADDY FIELD)

¥834,000

5,000 D.C 829,000 F.C

Description of Items	Material	Size	Quantity	Unit	Unit Price	Cost	No.	Remark
l. Pump		Suction bove 100 mm Capacity 0.9 m3/min Total head 18 m Speed 1800 rpm Engine lating 10 ps	2 0	set	47,000	94,000		Horizontal single suction volute pumps directly driven by diesel engine
Accessories								
Foot valve			2 0	рc				
Drain cock			2 0	р¢				
Air cock			2 0	рc				
Priming funnel cock			2 0	рc				
Foundation bolt			2 0	set				
Drain pipe			2 0	set				
Companion flange			4 0	рсв				
2. Manual sluice valve	100	100 ø	2 0	set	13,500	27,000		
3. Self closing chech valve		100 ≴	2 0	set	15,000	30,000		
4. Suction and discharge pipe			1 0	set	105,500	105,500		
with flange		100¢x2,900 £	2 0	рc				Suction side
		100éx1,800 [£]	2 0	рс				п

		1006x4, 100 [£]	2 0	ÞС			n
		100¢x1,500 £	2 0	· pc			11
		100px1,600 t	2 0	рс			Discharge
		100¢x1,550 &	2 0	рс			n
	· ·	1006x 900 £	20.	pc.		11 1 1 1	
		100¢x1,240 [£]	10	pce.			
		100px 400p	1 0	рсв			
	Bend pipe	6100 90° elbow	10 0	pc=			
		∮100 45° elbow	4 0	pcs			
		. 100px 150p	10	pc.			
	Cheese	100\$x 100\$	1 0	pcs			
	TS flange		1 0	pcs			
	Pipe	100px 500 [‡]	10	pcs			
5.	Diesel engine	Continuous	2 0	set	270,000	540,000	
		latin 12ps/2200rpm					
Àς	cessorles	12ps/22001pm					
F	uel tank		2 0	р¢			
A	ir cleamer		2 0	р¢			
М	uffler		2 0	р¢			
_	olt		2 0	рс			
Ţ	cols		20	pc			
F	an velt		2 0	рc			
6.	Package and shipping		1 0	sat	33,000	33,000	
7.	Pump setting						
	Labor Super		15 0	man	110	1,650	
	intendent		8 0	man	400	3,200	
						4,850 4,850	
•	Total					829,500	F.C
						834, 350	

COST OF DELIVERY AND SUPPLY PIPE LAYING SPECIFICATION

¥4,443,000 yen

783,000 D.G 3,660,000 F.C

Description of Items Material	Size	Quantity	Unit	Unit Price	Cost	No.	Remark
Material cost VW pipe (delivery) VW pipe (supply)	150¢x5,000 150¢x5,000	(444 5) (900	m) nos m) nos	8, 495	2,545,500		CF JIS K 6742 - 6743 unplasticized polyviniy chloride pipe for wate: works service
TS socket	150%	30	11	800	24,000		
	150¢ - 90°	3	**	6,500	19,500		
90° bend pipe	150 x 150	5	11	4, 485	22, 425		
Chaese					·		
Flexible flange	150	5	**	3,680	18,400		
Sluice valve	150¢	5		34,800	174,000		
Dresser joint	150ø	13	"	3,670	47,710		
Сарв		5	н	1,590	7, 950		
TS flange	150¢	10	рc	1,500	15,000		
Cheese	150 x 50	50	nos	7,500	375,000		
VW pipe	50 p x 0,50	50	рc	.480	24,000		
Hydrant	5 0 p	50	р¢	3,220	161,000		
Sub Total					3, 434, 820		
Pipe laying	150¢	1,3445	m	50	67, 225		
Hydrant setting		50	plc	1,028	51,400		
Sub Total					118,625		
Farm-pond							
Excavation		742 7	m3	120	89, 124		702+28.8+11.9=742.7
Embankment		134 3	m3	40	5,372		108+26. 3=134. 3
Pasangan- batukali		126 6	m3	4, 415	558, 939		506, 3m2 x 0.25m = 126.6m3
Currugated pips	600px2.7t	95	m	6,440	61,180		
• •	2000øx3.2t	4.6	m	32,700	156, 960		
D.D.	•			70	2,870		loss 37 × (1+0, 1) = 41
Bolt	Angle	41	nos		4,600		31 A (17011) - 11
Steel	50x50x6 - 4	01	ton	46,000	•		
Base concrete Sub Total		1 8	m3	6, 350	11,430 664,865 225,610		
					890, 475		
Total					783, 490 3, 660, 095	D.C F.C	
					4, 443, 585		
					= 4,443,000		

¥1,634,000 yen

6,000 D.C 1,628,000 F.C

Description of Items M	faterial Size	Quantity	Unit	Unit Price	Cost	No.	Remark
1. Pump	Suction bove 125 mm Capacity 1, 32m3/min Total head 53m Speed 1800 rpm Engine rating 40 ps	10	ect	210,000	210,000		Multistage centrifugal pump directly driven by diesel engine
Accessories							
Foot valve	125¢	1 0	рc				
Drain cock		1 0	рc				
Air cock Priming funnel		1 0	рc				
cock		1 0	рc				
Foundation bolt		1 0	set				
Drain pipe		10	set				
Companion flange		2.0	рса				
& +			per				
2. Manual sluice valve	125¢	1 0	рс	18,000	18,000		
3. Self closing chech valve	125¢	1 0	рс	17,000	17,000		
4. Suction and discharge pipe with flange					60,820		
	125é×2,600×1	39 0	kg				SGK
	" x1,000x2	30	kg			•	
	" x400x1	6.0	kg				
	" x1,450×1	21 0	kg				
	" x600x1	9 0	kg				
	" x170x1	25 0	kg				
	125¢90° elbow	4 0	рс				•
	125ø 45°	2 0	pc				
	125¢ × 150¢	1 0	рc				,
5. Diesel Engine		1 0	set	1, 300, 000	1,300,000		
	Sel-motor	10	рс				Continuous lating 40 ps/1800 rpm
Accessories	541-1110101	• •	рс				10 pay 1000 - p
Speed meter		10	рс				
Press gage for lubrication oil		. 10	рс				
Thermometer for lubrication oil		10	рc				
Thermometer for cooling water		1 0	рс				
Air cleaner		1 0	рс				
Bolt		1 0	рс				
Radiator fan		1 0	рс				
Battery		1 0	рc				

6.	Package and shipping	1 0	set	22,000	22,000		
7.	Pump setting				•		
	Labor	20 0	man	110	2,200	D.C	
	Super- intendent	 10 0	man	400	4,000	D.C -	
	Total				6,200 1,627,820	D.C F.C	• •
					1,634,020		
					‡ 1,634,000		

COST OF SUPPLY PIPE SPECIFICATION (FOR SPRINKLER)

¥2,092,000 yen

125,000 D.C 1,967,000 F.C

_									
De	scription of Items	Material	Size	Quantity	Unit	Unit Price	Cost	No.	Remark
1.	Delivery pipe-Li Asbestos cement pipe	Class-	∮150 x 4000 m/m	(125 35 0	m) pc	4,700	164,500		
	Collar joint	**	ø150	35 0	рc	900	31,500		
	Cross-pipe	FC, 20	∮150×100	1 0	pc	6,700	6,700		24.4 kg/pc
	Givolt joint	FC.20	For #150	80	set	1,650	13,200		
2.	Delivery plpe-L2								
	Asbestos cement pipe	Class- A	∮125 x 4000 m/m	(180 500	m) pc	4,000	200,000		With collar joint
	Reducer pipe Saddle of	FC. 20	ø150 x 125	10	рс	4, 320	4, 320		17.2 kg/pc
	ferrle	Class A	ø125	1 0	рc	1,100	1,100		17.2 kg/pc
	Cross-pipe Regulating		ø125 x 125	1 0	рc	2,020	2,020		17.2 kg/pc Short pipe (B)
	valve work		ø125	1 0	place	38,420	38, 420		β125 x 2 pc x 12.5 kg/ Regulation valve for water supply JIS B2062 β125 x 1 pc
	Exhaust valve work		ø20	1 0	place	6,860	16,860		Single air valve Socket 20pxl pc Long nipple 20px200 ¹
	Givolt joint		ø125 G. J	13 0	р с	1,360	17,680		8.14 kg/pc (JISA 5520)
3.	Supply Pipe-L3								
	VW pipe		pi100 x 5000	(95 21 0	m) pc	4,350	91,350		With sleeve joint A ty JIS K 6742 Short pipe (B)
	Regulating valve work		ø100	1 0	place	e 27,650	27,650		\$100 x 2 pc x 10, 1 kg, Regulation valve
	Dressor joint Asbestos	Class-	p100	6 0	place	1,530	9,180		for water supply (JIS B 2062)
	cement pipe	A	ф100 ж 3000 ^в	1 0	place	e 1,500	1,500		p100 x 1 pc Regulating valve
	Hydrant (B)			6 0	place	e 8,400	50,400		50¢ x 1 pc Long nipple
	VA socket		ø100	1 0	pc	1,730	1,730		50g x 300 ^L x 1 pc Iron cheese 100g x 50g x 1 pc Valve socket 100g x 2
	Plug	FC.20	for plain Cheese \$100	1 0	рc	600	600		JIS B-2301
	Givolt joint		∮100 GJ	3 0	рс	1,180	3,540		JIS A5520 6, 93 kg/pc

4.	Supply pipe - 1.4							
	VW pipe		∮100 x 5000	(105 21 0	m) pc	4, 350	91,350	With sleeve joint (A type)
	Regulating valve work		¢ 100	1 0	place	27,650	27,650	Short pipe (B) 100\$\text{f} x 2 pc x 10, 1 kg Regulating valve 100\$\text{f} x 1 pc
	Hydrant (B)			60	place	8, 400	50,400	Regulating valve 50¢ x 1 pc Iron cheese
	VA socket		ø100	1 0	р¢	1,730	1,730	1006 x 506 x 1 pc Long nipple 506 x 300 x 1 pc Valve socket 1006 x 2 pc
	Plug	FC. 20		1 0	рс	600	600	For plain cheese \$100
	Givolt joint		CJ \$100	3 0	рc	1,180	3,540	
	Asbestos cement pipe	Class- A	100¢ × 3000	. 10	рс	1,500	1,500	
5.	Water supply canal-L5							
	Asbestos cement pipe Regulating	Class-	∮125 x 4000	(95 27 0	m) pc	4,000	108,000	With collar joint
	valve work		p ⁶ 125	1 0	place	38, 420	38,420	Regulating valve 125¢ x 1 pc Short pipe (B) 100¢ x 2 pc x 10.1 kg
	Hydrant (A)			6 0	place	9,200	55,200	Regulating valve 50 % x 1 pc Long nipple 50 % x 300 x 1 pc Givolt cheese
	Hydrant (B)			12 0	place	8,400	100, 800	125 x 50 x x 1 pc Regulating valve 50 x x 1 pc Long nipple 50 x x 300 x 1 pc Iron cheese 100 x 50 x x 1 pc
	Reducer pipe	Class-	\$125 x 100	1 0	р с	4, 030	4,030	Valve socket 1000 x 2 pc
	VW pipe		ø100 x 5000	(222 45 G	m)	4, 350	217,500	With sleeve joint A type JIS K 6742
	VA socket	"	∮100 VP	1 0	pc	1,730	1,730	115 K 5(45
	Plug	FC.20	•	10	pc	600	600	For plain cheese \$100
	Givolt joint		. ∮125 GJ ∮100 GJ	9 0 1 0	рc	1,360 1,180	12,240	cuessa hito
	Dressor joint		ø100	12 0	pc 	1,530	1,180	
6.	Water supply canal-L6		,	•••	рc	1,550	18, 360	
	VW pipe Regulating	۷P	∮100 x 5000	(105 23	m) pc	4, 350	100,050	With aleeve joint A type Regulating valve
	valve work		\$100	10	place	27,650	27,650	100¢ x i pc Flexible flange 100¢ x 1 pc Short pipe (B) 100¢ x 2 pc x 10.1 kg
	Hydrant (B)	.		6 0	place			Regulating valve 50\$ x 1 pc Long nipple
	Reducer pipe	Class A FC, 20	\$125 × 100	1 0	рс	4,030	4,030	500 x 300 x 1 pc Iron cheese
	,		∮100 JP	1 0	pc	1,730	1,730	100p x 50p x 1 pc Valve socket 100p x 2 pc
	Givolt joint		∮100 GJ	4	pe	1,180	4,720	
	Piug	FC.20		1 0	pc	600	600	For plain cheese #100
	Dressor joint		100¢	7 0	pc	1,530	10,710	
	Flexible flage		100≠	1 0	рс	2,140	2,140	
	Sub Total						1,619,560	

1+.

7.	Pipe lying							
	Pipe lying	150¢	125	m	50	6,250		
	Pipe lying	125¢	275	m	45	17, 375		
	Pipe lying	مُ100	527	m	45	23,715		· ·
	Hydrant (A)		6	pc#	1,721	10, 326		
	Do (B)		30	рся	1,721	51,630		V
	Regulating valve work		5	рсв	3,130	15,650		Cutter, monkey wrench
	Tools					105,000		bond for pipe etc.
	Sub Total					229, 946		
	Shipping and Transport		1,619 560	× 0.15		242, 934		
						124, 946	D. C	
	Total					1, 967, 494	F.C	•
						2,092,440		
						= 2,092,000		

COST OF SPRINKLER HEAD SPECIFICATION

Y1,211,000 (F.C)

Description of Items Materi	al Size	Quantity	Unit	Unit Price	Cost	No.	Remark
Sprinkler	8 stands set	2 0	set	217,910	435,820		
Sprinkler Ames valve	6 stands set	4 0	set	158,820	635,280		
S type	50¢	35 0	рc	4,000	140,000		
Total					1,211,100		
				¢	1,211,000		

SPRINKLER (8 stands set) SPECIFICATION

¥217,910

Description of Items	Material	Size	Quantity	Unit	Unit Price	Cost	No.	Remark
Sprinkler		3/16x3/32"	8 0	рсв	2, 350	18,800		3. 16 kg/cm2, 324 [£] /min 29. 9m
Riser pipe		20 øx 1 m	8 0	pcs	2,300	18,400		With 3 leg sockets
Riser pipe Plug for		20¢ x 2 m	8 0	рсв	4,500	36,000		With sockets of nylon lope 3 leg
spigot socket			15 0	рсв	450	6,750		
Aluminium pipe with ames Aluminium pipe		50∮ x 4 m	8 0	pcs	4,500	36,000		With riser
with ames		50 ø x 4 m	17 0	рса	4,400	74,800		No riser
JET hose			. 10	pc#	3, 400	3,400		With joint
Ames plug			10	pcs	1,800	1,800		
Ames elbow			1 0	pcs	3,500	3,500		For hydrant with 1/4" rimover
Water gage		7 kg/cm2	1 0	pcs	1,800	1,800		With cock
Pipe foot			25 0		500	12,500		

* Spares				
Ames plug	10	1,800	1,800	
Seal for ames	. 80	140	1,120	
Spring for ames	8 0	120	960	
U ling for spigot socket	4 0	70	280	
Total			217,910	•

SPRINKLER (6 stands set) SPECIFICATION

¥158,820

Description of Items	Material Size	Quantity	Unit Unit Price	Cost	No.	Remark
Sprinkler	3/16×3/3	J2" . 60	2,350	14, 100		16 kg/cm2, 32.4 [£] /mm
Riser pipe	20 ø x 1 r	n 60	2,300	13,800		th 3 log sockets
Riser pipe Plug for	20¢ x 2 r	n 60	4,500	27,000		th sockets of nylon ope 3 log
spigot socket Aluminium pipe		. 11 0	450	4, 950		
with ames Aluminium pipe	50 p × 4 r	n 60	4,500	27,000	Wi	th riser
with ames	50¢ x 4 r	n 11 0	4,400	48,400	No	riser
Jet hose	50 ø×1≀	n 10	3, 400	3,400	Wi	th joint
Ames plug		1 0	1,800	1,800		
Ames elbow		1 0	3,500	3,500		r hydrant ith 1/4" rimover
Water gage	7 kg/cm	1 0	1,800	1,800	Wi	th cock
Pipe foot		19 0	500	9,500		
• Spares						
Ames plug		1 0	1,800	1,800		
Seal for ames		6 0	140	840		
Spring for ames		6 0	120	720		
U ring for spigot socket		3 0	70	210		
Total				158,820		

(3)

COST OF BUILDINGS SPECIFICATION

¥46,225,000 yen

39,152,000 D.C 7,073,000 F.C

De	scription of Items	Material	Stze	Quantity	Unit	Unit Price	Cost	No.	Remari
			-				Rp,		
1.	Gasoline		•						-
	filling stand	(No. 1)					509, 423	ť	¥ 375,623)
2.	Net house	•						•	. 313,043,
	(cage)	(No. 2)					4, 445, 656	t.	¥3,278,000)
3,	Office and	(No. 4-					.,	,	- 3,
	laboratory	1-2)					10,613,820		¥7, 826, 094)
4.	inoculator and	•					,,	•	1,000,074)
	insect rearing								
	house	(No.5)					3,747,208		¥2, 763, 000)

5.	Tractor work -	(No. 7)	4,500,514	(¥3, 318, 451)
6.	Machine attachment store house	(No. 8)	3, 199, 032	(¥2, 358, 804)
7.	Work room	(No. 9)	2, 154, 539	(¥1,588,648)
8.	Fertilizer and chemicals			(111 par app)
	storehouse	(No. 11)	2,584,924	(¥1,905,992)
9.	Storage and floor	(No. 12- 2) (No. 14-	1,448,154	(¥1,067,795)
10.	Domitory	1-2)	9, 854, 814	(¥7, 266, 442)
11, 12,	Cattle shed Generator	(No. 18) (No. 19-	306, 475	(¥ 225,980)
	room	2)	528, 150	(¥ 389,430)
13.	Pump room for paddy field		302,718	(¥ 223,209)
14.	Dining hall	(No. 25)	2,885,641	(¥2, 127, 726)
15.	Drying shop	(No. 3)	691,071	(¥ 509,561)
16.	Pumping room for buildings	(No. 20)	241,576	(¥ 178,125)
17.	Pumping room for booster pu	mn	241,576	(Y 178, 125)
18.	Cost of installa		10,515,000	(¥7,753,230)
	" work 2		3, 921, 000	(¥2, 891, 147)
	Total		62,691,291	(¥46, 225, 382)
			= 62,691,000	= 46,225,000

GASOLINE FILLING STAND SPECIFICATION (NO. 1)

1

Rp. 509,423 (¥375,623)

Description of Items Material	Size	Quantity	Unit	Unit Price	Cost	No.	Remark
					Rp.		
. Temporary . work		1	set		33,500		
Earth work		1	set		14, 482		
Concrete work		1	set		148, 996		
Wood work		. 1	set		163,605		
Roofing work		1	set		122,720		
Painting work		1	set		26, 120		1 US\$= 415 Rp. 306 yen
Total					Rp. 509,423		
					(¥ 375,623)		(5217 Yen/m2)
Temporary work							
nd consolidation		1	aet		3,500		
oard		1	ect		1,000		
affolding		120	m2	150	18,000		
ring		1	set		1,000		
ansportation imporary		1	set		5,000		
uilding		1	set		5,000		
Total					33,500		

2. Earth work	A Commence of the commence of				
Root excavation	24	rn 3	160	3, 840	
Rubble foundation	3 2	m3	1,450	4,640	
Sand leveling	3 6		1,020	3,670	
Back filling	. 13		120	1,560	
Waste treatment	11 .		70	770	
Total				14, 482	
3. Concrete work					
Foundation	7 8	m3	5,810	45,318	
Brick masonry	4 2	m3	5,740	24, 108	
Parquet concrete	3 4	m3	9,200	31,280	
Plaster painting	. 93	m2	280	26,040	
Floor tile	13 5	m2	1,200	16,200	
Floor mortar	4 5	mZ	500	2,250	
Lavatory	1	nas		2,000	
Fixtures mortar	1	set		1,800	
Total			-	148,996	
4. Wood work					
Wood materials (including roof, ceiling bed etc.)	3 9	m3	15,000	58,500	
Carpenter labors	3	set		14,700	
Nail etc.	1	set		5,000	
Glass window	45	m2		19,215	
Louver window	10	m2		46, 100	
Door screen	47	m2		17, 390	
Plinth	15	m		2,700	
Total				163,605	
5. Roofing work Iron plate flat seam roofing	112	m2	1.060	118,720	
Iron plate ridge	8	m	500	4,000	
Total	_			112,720	
6. Painting work				••••, ••	
Painting	70	mZ	260	18,200	
Ceiling	18	m2	440	7, 920	
Total				26, 120	

Total

Rp.

(¥3,278,000)

97,000 D.C 3,190,000 F.C

Description of Items Material	Size	Quant Ity	Unit	Unit Price	Cost	No.	Remark
Net house (No corrosive type of alm alldy and other submate	ninum rials)	1	ridge		1,472,424		
t. Doors (Entrance door)		1	ridge		153,000		
3. Glass roofvent (3mm clear glass roof)		1	ridge		127,250		
f. Wire net (Screen Stainless #30-20 mesh)		1	ridge		577,500		
i. Roofvent electric		1	ridge		206, 100		
Thermometrical operator and voltage controller basement	i automatic						
(Reinforced concrete, mold)		1	set		149,000		
7. Tools					165,000		1 +104 - 415 D-
8. Package and shipping					427,500		1 US\$ = 415 Rp. 306 yen
7. Setting Total					9,500 97,500 3,190,274	D.C F.C	
				•	3, 287, 774	1.0	
material Post, pafter, barcap, ventprocess fee		1,006	kg	508	728, 344 357, 000		
Alumite process		1.006		80			
Plates		1	eet .				
Volt, nut (stainless, alumi)		1	set				
Seal, calking material		1	set				,
Collar with plate		1	set				
Gutter with fittings		1	set				
Total							
. Doors Entrance door with							
lock	1,820x1,770	2	set				
l, Glass lm/m Clear plate	36 × 24	7 5	box	4,700			
' curved	30 x 24	7 5	ьох	37,000			
Total 4. Wire net (Screen #30-20 mesh)							
Side wall screen with	3,000 m x 0,830 m	30	sheet				
Sable wall with almi flame	1,700 m x 0.830 m	8	sheet				
1	2,800 m x 0,830 m	12	sheet				
Roofvent with alini flame	2,500 m x 0.800 m	18	sheet				,
ıı	1,250 m x 0,800 m	4	sheet				
Clip for stopping almi flame screen		1					

5. Roofvent electric automatic thermometric operator Automatic control and reduction dev Fitting pipe, hange	cal L ice	z 1	nos		9, 800	
arm joint Ditto electric	and the second second		***************************************			
wiring (cord)		1	set			
Automatic voltage control		1	nos			
*						
Total 6. Basement material						
Cement		200	bag	350	70,000	
Temporary form	Plywood	20	sheet	900	18,000	
	Sashbar	30	plece	250	7,500	
	Nail Separator (60 mm) annealedwire				7,000	
Reinforcement	9 mm					
	For uditch	775	kg	60	46,500	
Total '					149,000	
7. Tools		1			16,500	
		1	ect			
Total					16,500	
8. Package and						15% of amount of
ahipping					427,500	abova
9. Setting	Labor Super	50 0	men	110	5,500	
	intendent	10 0	men	400	4,000	
Total					9,500	

3-1

OFFICE AND LABORATORY (NO. 4-1) SPECIFICATION

Rp. 5, 306, 910

(¥3,913,047)

Description of Items Material Size	Quantity	Unit	Unit Price	Cost	No.	Remark
			· · · · · · · · · · · · · · · · · · ·	Rp.		-
l. Temporary work	1	set		159,000		
2. Earth work	1	set		180,590		
3. Concrete work	1	set		1,839,960		
4. Wood work	1	set		1,516,780		
5. Roofing work	1	set		1,045,400		
6. Painting work	1	set		565,180	1	US\$ = 415 Rp. 306 yer
Total			R	5, 306, 910		
			(¥ 3, 913, 047)	(9783 yen/m2)
l. Temporary work						
Land consolidation	1	sot		20,000		
Leveling batter board	1	set		20,000		
Scaffolding	380	m2	150	57,000		
Curing	1	set		12,000		

				40,000	
Transportation Temporary	1	set		40,000	
building	1	set		10,000	
Total			å	159,000	
2. Earth work					
Root excavation Rubble	216	m3	160	34,560	
foundation	25	m3	1,450	36,250	
Sand leveling	88	m3	1,020	89,760	
Back filling	98	m3	120	11,760	1
Waste treatment	118	m3	70	8,260	
Total				180,590	•
3. Concrete work					•
Foundation	82	m3	5,810	476, 420	
Parquef concrete	44	m3	9, 200	404, 800	
Brick masonry	41	m3	5,740	235,340	
Plaster painting	900	m2	280	252,000	
Floor tile	352	m2	1,200	422, 400	
Floor mortar	52		500	26,000	
Lavatory	4	nos.	2,000	8,000	
Arch	10	nos.	500	5,000	
Fixtures mortar	1	set		10,000	
Total	•			1,839,960	
4. Wood work				,,03,,,00	
Wood materials	46 8	m3	18,000	842,400	
Carpenter labors	1	set	10,000		
Nail, metalic materiāls	1			127,000	
		set		89,000	
Glass window	40	m2	4,270	170, 800	
Louver window	40	m2	4,610	184, 400	
Door screen	22	m2	3,700	81,400	
Plinth	121	m	180	21,780	
Total				1,516,780	
5. Roofing work Iron plate flat					
seam roofing	550	mZ	1,800	990,000	
Ditto ridge	56	m	700	39, 200	
Eaves gutter	108	m	120	12,960	
Vertical gutter	36	m	90	3,240	
Total				1,045,400	
6. Painting work					
Painting Ceiling	643	m2	260	167, 180	
(including back of eaues)	200	m2	450	00 000	
	200	1112	450	90,000	
" (indoor)	280	m2	1,100	308,000	
Total				565,180	

OFFICE AND LABORATORY (NO. 4-2) SPECIFICATION

Rp. 5, 306, 910 (¥3, 913, 047)

Description of Items Material	Size	Quantity	Unit	Unit Price	Cost	No.	Remark
1. Temporary work		1	set		159,000		
Z. Earth work		1	ect		180,590		
3. Concrete work		1	set		1, 839, 960		
4, Wood work		1	set		1,516,780		
5. Rooling work	•	1	eat		1,045,400		
6. Painting work		1	set		565,180		
,		•	•••		303, 100	1 7	JS\$ = 415 Rp. 306 yen
Total				Rp	5,306,910		
				(¥ 3, 913, 047)	(97	83 yen/m2)
l. Temporary work Land							•
consolidation Leveling batter		1	set		20,000		
board		1	set		20,000		
Scaffolding .		380	m2	150	57,000		
Curing		1	set		12,000		
Transportation		1	set		40,000		
Temporary building		1	set		10,000		
Total					159,000		
. Earth work							
Root excavation		216	m3	160	34,560		
Rubble foundation		25	m3	1,450	36, 250		
Sand leveling		88	m3	1,020	89,760		
Back filling		98	m3	120	11,760		
Waste treatment		118	m3	70	8,260		
Total					180,590		
. Concrete work							
Coundation		82	m3	5,810	476, 420		
Parquet concrete		44	m3	9,200	404,800		
Brick masonry		41	m3	57, 400	235,340		
Plaster painting		900	m2	280	252,000		
loor tile		352	m2	1,200	422,400		
loor mortar		52	mZ	500	26,000		
-avatory		4	nos	2,000			
arch		10	nos	·	8,000		
ixtures mortar				500	5,000		
Total		1.	set		10,000		
. Wood work					1,839,960		
ood materials		,, ,	_				
		46 8	m3	18,000	842,400		
ail, metalic		1	set		127,000		•
materials		1	set		89,000		

Glass window	40	m2	4,270	170, 800	
Louver window	40	Sm	4,610	184, 400	
Door screen	22	m2	3,700	81,400	
Plinth	121	m	180	21,780	
Total				1,516,780	
5. Roofing work Iron plate flat					
seam roofing	550	mZ	1,800	990, 000	
Ditto ridge	56	m	700	39,200	
Eaves gutter	108	m	120	12,960	
Vertical gutter	36	m	90	3,240	
Total				1,045,400	
6. Painting work					
Painting Ceiling	643	mZ	260	167, 180	
(including back of eaues)	200	m2	450	90,000	
" (indoor)	280	m2	1, 100	308, 000	
Total				565,180	

INOCULATOR AND INSECT REARINGHOUSE (NO. 5) SPECIFICATION

¥2,763,000 yen

148,000 D.C 2,615,000 F.C

1. Green house (Insect rearing room), germ culture room)		2,615,	000 F.C			
(Insect rearing room, germ culture room) 2. Door (Entrance door) 3. Glass (Jama clean flat, curve) 1 set 274,900 4. Roof vent electric thermometrical Operator and voltage controler 5. Basement work material (Cement, rein for cement, flame) 1 set 196,000 6. Tools 7. Package and shipping 8. Setting 7. Total 2.614,687 F.C 148,500 D.C 2.763,187	Description of Items Material	Size Quanti	ty Unit (Unit Price Cost	No.	Remark
germ culture room 2. Door 3. Glass 3mm clean flat, curve 1 set 274,900 4. Roof vent						
2. Door (Entrance door) 3. Glass (Jama clean flat, curve) 1 set 274,900 4. Roof vent electric thermometrical Operator and voltage controler 5. Basement work material (Cement, rein for cement, flame) 1 set 196,000 6. Tools 7. Package and shipping 8. Setting Total 2,614,687 F.C 148,500 D.C 2,763,187				1 472 600	•	
3. Glass (3mm clean flat, curve) 1 set 274,900 4. Roof vent electric thermometrical Operator and voltage controler 5. Basement work material (Cement, rein for cement, flame) 1 set 196,000 6. Tools 7. Package and shipping 8. Setting Total 2,614,687 F. C 148,500 D. C 2,763,187		•	361	1,414,080		
(Jmm clean flat, curve) 1 set 274,900 4. Roof vent slectric thermometrical Operator and voltage controler 1 set 206,100 5. Basement work material (Cement, rein for cement, flame) 1 set 196,000 6. Tools 165,000 7. Package and shipping 359,000 8. Setting 9,500 Labor 50 man x 400 = Total 2,614,687 F. C 148,500 D. C 2,763,187		1	set	80,000)	
Curve 1 set 274,900						
Sector Section Secti		1	#et	274,900	1	
Sectific thermometrical Section	4. Roof vent					
Operator and voltage controler 1	electric					
Controler eet 206,100	thermometrical					
5. Basement work material (Cement, rein for cement, flame) 1 set 196,000 6. Tools 7. Package and shipping 8. Setting 165,000 Labor 50 man x 5,500 Super intendent 10 man x 400 = Total 2,614,687 F.C 148,500 D.C	Operator and voltage					
material (Cement, rein for cement, flame) 1 set 196,000 6. Tools 7. Package and shipping 8. Setting 7. Setting 9,500 Labor 50 man x 5,500 Super intendent 10 man x 400 = Total 2,614,687 F.C 148,500 D.C 2,763,187		1	• et	206, 100	1	
(Cement, rein for cement, flame) 1 set 196,000 6. Tools 165,000 7. Package and shipping 359,000 8. Setting 9,500 Labor 56 man x 5,500 Super intendent 10 man x 400 s Total 2,614,687 F.C 148,500 D.C 2,763,187						
6. Tools 7. Package and shipping 8. Setting 9,500 Labor 50 man x 5,500 Super intendent 10 man x 400 = Total 2,614,687 F.C 148,500 D.C 2,763,187	(Cement, rein for					
7. Package and shipping 359,000 8. Setting 9,500 Super intendent 10 man x 400 = Total 2,614,687 F.C 148,500 D.C 2,763,187	cement, flame)	1	■ et	196,000	1	
shipping 359,000 8. Setting 9,500 Super intendent 10 man x 400 = Total 2,614,687 F.C 148,500 D.C 2,763,187				165,000	1	
8. Setting 9,500				350 000	•	
Super intendent 10 man x 400 = Total 2,614,687 F.C 148,500 D.C 2,763,187	PITPHINE			339,000		abor 50 man x 110 :
148,500 D.C 2,763,187	8. Setting			9,500	S	
148,500 D.C 2,763,187	Total			2,614,687	F.C	
				148.500		
				2, 763, 187	•	
				•		
l. Green house (Insect rearing room, germ culture room)						
Alumi extruded type	·					
material 1,320 kg 724 955,680	material	1,320	kg	724 955,680)	

Post, raften, bar cap vent process fee					184,000	
Alumita process		1,320	kg	80	105,600	
Plates		1	set		40,000	
Volt and nut (stainless alumi)		i	set		68,000	
Seal calking materials					89,000	
Coller with					30,400	
•					1,472,680	
Total					1,412,000	
2. Doors Entrance door						
(with lock)		2	set	4,000	80,000	
Total					80,000	
3. Glass						
3mm clean flat	36 x 24	27	box	4,700	126, 900	
" curve	30 x 24	4	box	37,000	148,000	
Tota1					274,900	
4. Roof vent electric thermometric operator and voltage contre						
Automatic controls and reduction dev Fitting pipe, arm,		2	set		98,000	
hanger joint (each galvaniged se	t)	1	set		43,100	
Ditto electric wirin card, pipe	g.	ı	set		20,000	
Automatic voltage control		1	set		45,000	
		•	***		-	
Total 5. Basement work materials					206, 100	
Cement	•	250	bag	350	87,500	
Temporary form	(Ply wood, sash, etc.)	1	eet		51,500	
Reinforcement	(for 9mm U-ditch)	950	kg	60	57,000	
Total					196,000	
6. Tools		1	set		165,000	
Total					165,000	

Rp. 4,500,514 (¥3,318,451)

Total. Tenand consoliceveling board board building Canfolding Canf	mporary work rth work ncrete work ood work ofing work inting work	1 1 1 1	set set set		189, 000 263, 080	
Total Tensport buildin Total Caffoldin Total Caffoldin Total Caffoldin Total Caffoldin Total Caffoldin Total Caffoldin Total Caffoldin Caffoldin Total Caffoldin Caffoldin Total Caffoldin Caffoldin Total Caffoldin Caf	ncrete work od work ofing work inting work	1	set			
Total Ten and consoli aveiling Franspor buildin Graffoldi Total	ood work ofing work inting work	1				
Total. Tenand consoli eveling board Curing Transportemport buildin Total. Ear	oling work		get		1,712,814	
Total Tennand consoling board Curing Franspore building Caffolding	inting work	1			1,383,440	
Total			set		840, 380	
Tensport building Total	tal	1	set		111,800	
and consolidate co				R	p. 4,500,514	1 US\$ = 415 Rp. 306 yen
and consolidate co					(¥ 3, 318, 451)	(5531 yen/m2)
consoli Leveling board Curing Franspo Cempori buildin Tot:	mporary work					
board Curing Cranspo Cempor, buildin Ccaffoldi Tota	lidation	1	set		30,000	
Transpo Tempori buildin Scaffoldi Tota		1	set		30,000	
Tempori buildin Scaffoldi Tota		1	*et		15,000	
buildin Scaffoldi Tota	ortation	1	set		50,000	
Tota		1	net		10,000	
. Ear	ding	366	m2	150	54,000	
	tal				189,000	
	rth work					
	cavation	360	m2	160	58,560	
lubble foundat	ation	119	m2	1,450	172,550	
Back fili	lling	127	mZ	120	15,240	
Vaste tr	realment	239	m2	70	16,730	
Tota	tal				263,080	
. Con	ncrete work				442,000	
oundati	tion	95	m3	5,810	551,950	
	t concrete	95	m3			
•	nasdnry	33 6		9,200	874,000	
	painting	23.0	m3	5,740	192,864	
	s mortar	·	m2	280	84,000	
Tota	-	1	set		10,000	140+36+24 = 200
	ai od work				1,712,814	
	-		_			
	aterials	44 7	m3	15,000	670,500	
-	er labors	1	set		100,000	
lass wi		40	m2		170, 800	
ouver v	window	54	m2		248,940	
loor lail, me	etalic	36	m2		133 300	
materia					133, 200	

5. Roofing work Iron plate flat	773	_1	1 060	910 100
seam roofing	æ	m2	1,060	819, 380
Ditto ridge	42	m	500	21,000
Total				840, 380
6. Painting work	•			
Painting	430	m2	260	111,800
Total				111,800

MACHINE ATTACHMENT STOREHOUSE (NO. 8) SPECIFICATION

Rp. 3, 199, 032 (¥2, 358, 804)

Description of Items Material Size	Quantity	Unit	Unit Price	Cost	No.	Remark
. Temporary work	1	set		146,000		
• •	1			172,160		
. Earth work		set				
. Concrete work		set		1,051,222		
. Wood work	1	set		1, 146, 610		
. Roofing work	1	sat		604,000		
Painting work	1	set		79, 040		1 US\$ = 415 Rp. 306 yen
Total			Rp	. 3, 199, 032		
			(¥ 2, 358, 804)		(5897 yen/m2)
1. Temporary work						
Land consolidation	1	ect		20,000		
Leveling-batter board	1	set		20,000		
Scaffolding	340	m2	150	51,000		
Curing	1	m 2		10,000		
Transportation	1	set		35,000		
Temporary	1	eat		10,000		
Total				146,000		
2. Earth work						
Root excavation	197	m.3	160	31,520		
Rubble foundation	85	m3	1,450	123,250		
Back filling	72	m 3	120	8,640		
Waste treatment	125	m.3	70	8,750		
Total				172, 160		
3. Concrete work						
Foundation	77	m3	5,810	447, 370		
Parquet concrete	37	m 3	9,200	340, 400		
Brick masonry	29 8	m 3	5,740	171,052		
Plaster painting	330	m2	280	92,400		
Total				1,051,222		

4. Wood work				
Wood materials	42 5	m3	15,000	637,500
Carpenter labors	1	set		95,000
Glass window	16	set	4,270	68, 320
Louver window	39	m2	4,610	179,790
Door	30	m2	3,700	111,000
Nail, metalic materials				55,000
Total				1, 146, 610
5. Roofing work				
Iron plate roof	550	m2	1,060	583,000
Iron plate ridge	42	m	500	21,000
Total				604,000
6. Painting work				
Painting	304	mZ	260	79,040
Total	_			79,040

WORK ROOM (NO. 9) SPECIFICATION

Rp. 2, 154, 539

(¥1,588,648)

Description of Items Material Size	Quantity	Unit	Unit Price	Cost	No.	Remark
. Temporary work	1	set		71,000		
. Earth work	1	set		61,014		
. Concrete work	1	set		623, 635		
. Wood work	1	set		650,440		
. Roofing work	1	set		476, 200		
. Painting work	1	set		272,250		1 US\$ = 415 Rp. 306 yen
Total				Rp. 2, 154, 539		
Temporary work				(¥1,588,648)		(10591 yen/m2)
consolidation eveling batter	ı	aet		7,500		
board	1	set		7,500		
uring	1	set		4,500		
ransportation	1	set		12,000		
emporary building	1	set		8,000		
caffolding	210	m2	150	31,500		
Total				71,000		
Earth work						
out excavation	69	m3	160	11,040		
ubble foundation	8 4	m3	1,450	12,180		
and leveling	30 7	m3	1,020	31, 314		
ack filling	33	m3	120	3,960		
aute treatment	36	m3	70	2,520		
Total				61,014		

3. Concrete work					
Foundation	27 3	m3	5,810	158,613	
Parquet concrete	15 7	m 3	9,200	144, 440	
Brick masonry	11 3	m3	5,740	64, 862	
Plaster painting	249	m2	280	69,720	
Floor tile	150	m2	1,200	180,000	
Fixtures mortar	1	set		6,000	
Total				623, 635	
4. Wood work					
Wood materials	15 7	m3	18,000	282,600	
Carpenter labors	1	set		41,100	
Glass window	38	mZ	4,270	162,260	
Louver window	18	m2	4,610	82, 980	
Door Nail, metalic	11	m2	3,700	40,700	
materials	1	set		30,000	
Plinte	60	m	180	10,800	
Total				650, 440	
 Roofing work Iron plate flat 					
seam foofing	243	m2	1,800	437,400	
Ditto ridge	40	m	700	28,000	
Eaves gutter	72	m	120	8,600	
Vertical gutter	24	m	90	2,140	
Total				476,200	
6. Painting work					
Painting	300	m2	260	78,000	
Geiling (indoor)	150	m2	1,100	165,000	
" (back of eaves)	65	m2	450	29,250	
Total				272,250	

FERTILIZER AND CHEMICAL STOREHOUSE (NO. 11) SPECIFICATION

Rp. 2,584,924 (¥1,905,992)

Description of Items Material Size	Quantity	Unit	Unit Price	Cost	No.	Remark
l. Temporary work	1	8-et		119,500		
2. Earth work	1	• et		147,070		
. Concrete work	1	*et		989, 114		
4. Wood work	1	set		759,220		
5. Roofing work	1	pet		460,820		
5. Painting work	1	set		109, 200		1 US\$ = 415 Rp. 306 yen
Total			R	. 2,584,924		
			(¥ 1, 905, 992)		(6353 yen/m²)
i. Temporary work						
Land consolidation Leveling batter	1	set		15,000		
board	1	set		15,000		
Curing	1	set		9,000		
Transportation	1	set		30,000		
Temporary building	1	set		10,000		
Scaffolding	270	m2	150	40,500		
Total				119,500		
2. Earth work						
Root excavation	209	m3	160	33, 440		
Rubble foundation	65	m3	1,450	94,250		
Back filling	95	m3	120	11,400		
Waste treatment	114	m3	70	7,980		
Total				147,070		
Goncrete work						
Foundation	87	m3	5,810	505,470		
Parquet concrete	33	m 3	9,200	303,600		
Brick magonry	20 6	m3	5,740	118,244		
Plaster painting	185	m2	280	51,800		
Fixtures mortar	1	set		5,000		
Arch	8	nos		5,000		
Total				989, 114		
4. Earth work						
Wood materials	17 9	m3	15,000	268,500		
Carpenter labors	1	∎et.		45,000		
Louver window	72	m2	4,610	331,920		
Door	24	m2	3,700	88,800		
Nail, metalic materials	1	set		25,000		
Total				759, 220		

	Roofing work n plate flat sam roofing	377	m2	1,160	437, 320
Dit	to ridge	47	m	500	23,500
	Total				460,820
6.	Painting work				
Pai	nting	420	m2	260	109,200
	Total				109,200

STORAGE AND FLOOR (NO. 12-2) SPECIFICATION

Rp. 1, 488, 154 (¥1, 067, 795)

Description of Items Material Size	Quantity	Unit	Unit Price	Cost	No.	Remark
l. Temporary work	1	set		80,000		
2. Earth work	1	set		74,540		
3. Concrete work	1	set		503, 394		
4. Wood work	1	set		443,020		
. Roofing work	1	set		293,900		
5. Painting work	1	set		53,300		l US\$ = 415 Rp. 306 yer
Total			R	. 1,448,154		
l. Temporary work			+	(¥1,067,795)		(2669 yen/m2)
Land consolidation	1	set		9,000		
Leveling batter board	1	aet		9,000		
Curing	1	set		6,000		
Transportation	1	set		15,000		
Temporary building	1	set		8,000		
Scaffolding	220	mZ		33,000		
Total				80,000		
2. Earth work						
Root excavation	83	m3	160	13,280		
Rubble foundation	37	m3	1,450	53,650		
Back filling	36	m3	120	4, 320		
Waste treatment	47	m3	70	3, 290		
Total				74,540		
3. Concrete work						
Foundation	30	m3	5,810	174, 300		
Parquet concrete	18	m3	9,200	165,600		
Brick mesonry	18 1	m3	5,740	103, 894		
Plaster painting	195	mZ	280	54,600		
Mortar	1	set		5,000		-
Total				503, 394		

4. Wood work				
Wood materials	13	m3	15,000	195,000
Carpenter labors	1	#et		30,000
Louver	. 32	m2	4,610	147,520
Door	15	m2	3,700	55,500
Mortar	1	set		15,000
Total				443,020
5. Roofing work				
Iron plate flat seam roofing		m2	1,060	280, 900
Ditto ridge		m,	500	13,000
Total				293,900
6. Painting work				
Painting	205	m2	260	53, 300
Total				53,300

DOMITORY (NO. 14-1) SPECIFICATION

Rp. 4,927,407

(¥3, 633, 221)

Description of Items Material	Stze	Quantity	Unit	Unit Price	Cost	No.	Remark
i. Temporary work		1	a e t		142,000		
2. Earth work		1	#et		164,087		
3. Concrete work		1	s et		1,831,040		
4. Wood work		1	aet		1,159,300		
5. Roofing work		1	set		917,480		
6. Painting work		1	Ret		713,500		1 US\$ = 415 Rp.
Total					Rp. 4, 927, 407		
l. Temporary work					(¥ 3, 633, 221)		(11534 yen/m2)
Land consolidation		1	set		15,000		
Leveling batter board		1	set		15,000		
Scaffolding		400	mZ	150	60,000		
Curing		ı	set		12,000		
Transportation		1	set		30,000		
Temporary building		1	ect		10,000		
Total					142,000		
2. Earth work							
Root excavation		220	m3	160	35,200		
Rubble foundation		30 7	m3	1,450	44,515		
Sand filling		63 6	m3	1,020	64, 872		
Back filling		82	m3	120	9, 840		
Waste treatment		138	m3	70	9,660		
Total					164, 087		

3. Concrete work				
Foundation	100	m3	5,810	581,000
Parquen concrete	32 2	m3	9,200	296,240
Brick masonry	47	m3	5,740	269,780
Plaster painting	1,034	m2	280	289,520
Tile (terrace)	280	m2	1,200	336,000
Tile (bathroom)	9	m2	1,500	13,500
Floor mortar	30	m2	500	15,000
Lavatory	4	nos	2,000	8,000
Bath-tub	2	nos	3,500	7,000
Fixtures mortar	1	set		15,000
Total				1,831,040
4. Wood work				
Wood materials	30 2	m3	1,500	453,000
Carpenter labora	1	set		79,500
Glass window	22	m2		93, 940
Louver window	56	mZ		258, 160
Door screen	51	m2		188,700
Nail, metalic materials	1	set		50,000
Plinth	200	m	180	36,000
Total				1, 159, 300
5. Roofing work				
Iron plate flat seam roofing	476	mZ	1,800	856,800
Ditto ridge	62	m	700	43,400
Eaves gutter	117	m	120	14,040
Vertical gutter	36	m	90	3, 240
Total				917,480
6. Painting work				
Painting	1,500	mZ	260	390,000
Ceiling (back of eaves etc.)	230	m2	450	103,500
" (bed room)	200	m2	1,100	220,000
Total				713,500

. . .

Rp. 4, 927, 407 (¥3, 633, 221)

Description of Items Material Size	Quantity	Unit	Unit Price	Cost	No.	Remark
. Temporary work	1	set		142,000		
Earth work	1	∎et		164, 087		
. Concrete work	1	ect		1,831,040		
. Wood work	1	set		1,159,300		
. Roofing work	1	set		917,480		
. Painting work	1	sat		713,500	;	l US\$ = 415 Rp. 306 yen
Total			R	p, 4, 927, 407		
				(¥3,633,221)		(11534 yen/m2)
1. Temporary work						
Land consolidation	1	sat		15,000		
Leveling batter board	1	eet		15,000		
Scaffolding	400	m2	150	60,000		
Curing	1	aet		12,000		
Transportation	1	set		30,000		
Temporary building	1	set		10,000		•
Total				142,000		
2. Earth work						
Rout excavation	220	m3	160	35,200		
Rubble foundation	30 7	m3	1,450	44,515		
Sand filling	63 6	m3	1,020	64, 872		
Back filling	82	m3	120	9,840		
Waste treatment	138	m3	70	9,660		
Total				164,087		
3. Concrete work						
Foundation	100	rn3	5,810	581,000		
Parquet concrete	32 2	rn 3	9,200	296, 240		
Brick masonry	47	m3	5,740	269, 780		
Plaster painting	1,034	mZ	280	289,520		
Tile (terrace)	280	m2	1,200	336,000		
Tile (bathroom)	9	m2	1,500	13,500		
Floor mortar	30	m2	1,500	15,000		
Lavatory	4	nos	2,000	8,000		
Bath-tory	2	Nos	3,500	7,000		
Fixtures mortar	1	aet		15,000		•
Total				1,831,040		
4. Wood work						
Wood materials	30 2	m3	15,000	453,000		
Carpenter labors	1	set		79,500		

Glass window	٠	22	m2		93, 940
Louver window		56	m2		258, 160
Door screen		51	m2		188,700
Nail, metalic materials		1	set		50,000
Plinth		200	m	180	36,000
Total					1,159,300
5. Roofing work					
Iron plate flat e seam roofing		476	m2	1,800	856, 800
Ditto ridge		62	m	700	43,400
Eaves gutter		117	m	120	14,040
Vertical gutter		36	m	90	3,240
Total					917,480
6. Painting work					
Painting		1,500	m2	260	390,000
Ceiling (back of eaves etc.)		230	mZ	450	103,500
" (bed room)		200	mZ	1,100	220,000
Total					713,500

CATTLE SHED (NO. 18) SPECIFICATION

Rp. 306,475

(¥2Z5,980)

Description of Items Material Size	Quantity	Unit	Unit Price	Cost	No.	Remark
· · · · · · · · · · · · · · · · · · ·				Rp.		
. Temporary work	1	set		22,300		
. Earth work	1	set		21,720		
. Concrete work	1	set		113, 155		
. Wood work	1	set		58,500		
. Roofing work	1	a e t		90,800		
						1 US\$ = 415 Rp. 306 yen
Total			Rp	. 306, 475		
. Temporary work				(¥ 225, 980)		(5650 yen/m2)
and consolidation eveling batter	1	aet		1,000		
powing patter	1	eet		1,000		
caffolding	90	m2	150	13,500		
uring	1	set		800		
ransportation	1	set		3,000		
emporary building	1	set		3,000		
Total				22,300		
. Earth work						
oot excavation	29	m3	160	4,640		
ubble foundation	10	m3	1,450	14,500		

Back filling	11	m3	120	1,320		
Waste treatment	18	m3	70	1,260		
Total				21,720		÷
3. Concrete work						
Foundation	8 9	m3	5,810	51,709		
Brick masonry	3 5		5,740	20,090		
Parquet concrete	4.5		9, 200	41,400		
Total				113, 155		
4. Wood work						
	3 3	m3	1,500	49,500		
Wood materials	1	set	2,000	6,000	•	
Carpenter labors Nail, metalic				3,000		
materials	ı	set				
Total				58,500		
5. Roofing work						
Iron plate flat seam roofing	80	m2	1,060	84, 800		
			500	6,000		
Ditto ridge	12	m2	500	•		
Total				90, 800		

GENERATOR ROOM (NO. 19-2) SPECIFICATION

Rp. 528, 150 (¥389, 430)

Description of Items Material Size	Quantity	Unit	Unit Price	Cost	No.	Remark
. Temporary work	1	set		23, 300		
. Earth work	1	set		24,270		
. Concrete work	1	met		223,800		
. Wood work	1	set		131,340		
. Roofing work	1	set		111,400		
. Painting work	1	aet		14,040		1 US\$ = 415 Rp. 306 yen
Total				Rp. 528,150		
				(¥389, 430)		(7,788 yen/m2)
Tamporary work						
and consolidation eveling batter	1	set		1,500		
board	1	set		1,500		
caffolding	76	m2	150	1,400		
uring	1	set		900		
ransportation	1	set		3,000		
emporary building	1	set		5,000		
Total				23,300		

2. Earth work				
Root excavation	- 34	m3	160	5,440
Rubble foundation	u	m3	450	15,950
Back filling	10	m3	120	1,200
Wasto treatment	24	m3	70	1,680
Total				24,270
3. Concrete work				
Foundation	15 0	m3	5,810	67,150
Parquet concrete	5 5	m3	9,200	50,600
Brick masonry	7 5	m3	5,740	43,050
Plaster painting	150	m2	280	42,000
Mortar	1	set		1,000
Total				223,800
4. Wood work				
Wood materials	3 5	m3	15,000	52,500
Carpenter labors	1	set		10,200
Louver window	15	m2	4,610	55,320
Door	3 6	mZ	3,700	13, 320
Total				131,340
5. Roofing work Iron plate flat				
seam roofing	90	mZ	1,060	95,400
Ditto ridge	12	m	500	6,000
Total				111,400
6. Painting work	54	m2	260	14,040
Painting	54	m2	260	14,040
Total				14,040

. . .

13
PUMPING ROOM FOR PADDY FIELD

Rp. 302,718 (¥223,209)

Description of Items	Material	Size	Quantity	Unit	Unit Price	Cost	No.	Remark
TEMPORARY	WORK		1	SET		23,900		
. EARTH	WORK		1	"		8,410		
. CONCRETE	WORK		1	11		135,953		
. WOOD	WORK		1	**		73,935		
. POOFING	WORK		1	•		52,200		
. PAINTING	WORK		1	••		8,320		
TOTAL					1	Rp. 302,718	11	US\$= 415 Rp. 306 YEN
						(¥ 223, 209)	(4	464 YEN/M ²

1. TEMPORARY WORK					
1, TEMPORARY WORK LAND CONSOLIDATION	-1	SET	•	1,500	
LEVELING BATTER BOARD	1	"		1,500	
SCAFFOLDING	80	m ²	150	12,000	
CURING	1	SET		900	
		11		3,000	
TRANSPORTATION	1			5, 000	
TEMPORARY BUILDING	•	••		•	
TOTAL				23,900	
2. EARTH WORK					
ROOT EXCAVATION	22	MZ	160	3,520	
RUBBLE FOUNDATION	2	11	1,450	2,900	
BACK FILLING	9	••	120	1,080	
WASTE TREATMENT	13		70	910	
TOTAL				8,410	
3. CONCRETE WORK					
FOUNDATION	5.3	M ³	5,810	30,793	
PARQUET CONCRETE	5,6	_M 3	5,740	34,440	
PLASTER PAINTING	65	M ²	280	18,200	
MORTAR	1	SET		1,000	
TOTAL				135,953	
4. WOOD WORK					
WOOD MATERIALS	2, 3	м ³	15,000	34,500	
CARPENTER LABORS	1	SET		4,800	
LOUVER WINDOW	3.5	M ²	4,610	16, 135	
DOOR	5	,,	3,700	18,500	
TOTAL				73, 935	
5. ROOFING WORK					
IRON PLATE FLAT SEAM ROOFING	45	MZ	1,060	47,700	
DITTO RIDGE	9	м	500	4,500	
TOTAL				52,200	
6. PAINTING WORK					
PAINTING	32	M ²	260	8,320	
TOTAL				8,320	

DINING HALL (NO. 25) SPECIFICATION

Rp. 2,885,641 (¥2,127,726)

Description of Items Material	Size Quantity	Unit	Unit Price	Cost	No.	Remark
. TEMPORARY WORK	· · · · · · · · · · · · · · · · · · ·	SET		96,000		
EARTH WORK	1	"		92, 315		
. CONCRETE WORK	1	11		944,610		
. WOOD WORK	1	11		820,100		-
. ROOFING WORK	1	,,	·	551,800		
. PAINTING WORK	1			372, 496	•	-
, PANTING TOM	•			372, 470		415.0-
TOTAL				D= 2 00E 641	1US\$ =	415 Rp. 306 YEN
				Rp. 2,885,641	(11003	VEN /1.21
, TEMPORARY WORK				(¥2,127,726)	(11082	YEN/M ²)
AND CONSOLIDATION	1	SET		10,000		
EVELING BATTER BOARD	1			10,000		
CAFFOLDING	220	MZ	150	33,000		
URING	1	SET		8,000		
'RANSPORTATION	1	11		25,000		
EMPORARY BUILDING	ı	**		10,000		-
TOTAL				96,000		
. EARTH WORK						
OOT EXCAVATION	127	M3	160	20, 320		
UBBLE FOUNDATION	14.5	19	1,450	21,025		
AND FILLING	39	Ħ	1,020	39,780		
ACK FILLING	46	п	120	5, 520		
ASTE TREATMENT	81	**	70	5,670		
TOTAL				92, 315		
CONCRETE WORK						
OUVER WINDOW	35	MZ	4,610	161,350		
OOR, SCREEN	20	11	3,700	74,000		
OUNTER	1	SET		5,000		
LINTH	1	11		6,000		
TOTAL				820,100		
. Roofing work						
RON PLATE FIAT SEAM ROOFIN	G 285	м ²	1,800	513,000		
ITTO RIDGE	40	м	700	28,000		
AVES GUTTER	72	••	120	8,640		
ERTICAL GUTTER	24	19	90	2,160		
TOTAL				551,800		

6. PAINTING WORK					
PAINTING	750	M ²	260	195,000	
CEILING (BACK OF EAVES etc.)	52	м ²	450	23,400	
" (DININGROOM, BEDROOM)	140		1,100	154,000	
TOTAL				372,400	. •
FOUNDATION	47	м3	5,810	273,070	
PARQUET CONCRETE	19.2	11	9,200	176, 640	
BRICK MASONRY	21	H	5,740	120,540	
PLASTER PAINTING	462	M ²	280	129, 360	
FLOOR MORTAR	3	11	500	1,500	
FLOOR TILE	185	н	1,200	222,000	
" (BATHROOM)	5	11	1,500	7,500	
LAVATORY	1	NOS		2,000	
BATHROOM	1	н		3,000	
MORTAR	1	SET		9,000	
TOTAL				944,610	
4. WOOD WORK					•
WOOD MATERIALS	21.7	M ³	15,000	325, 500	
CARPENTER LABORS	1	SET		58,800	
NAIL, METALIC MATERIALS	1	11		40,000	
GLASS WINDOW	35	м²	4,270	149,450	

15 DRYING SHOP (NO. 3) SPECIFICATION

Rp. 691,071 (¥509,561)

Description of Items Material Size	Quantity	Unit	Unit Price	Cost	No,	Remark
. Temporary work	1	SET		40,500		
. EARTH WORK	1	**		33,645		
. CONCRETE WORK	1	п		231,614		
, WOOD WORK	1	11		200, 958		
. ROOFING WORK	1	**		16Z, 150		
. Painting work	1	"		22, 204		
						1US\$= 415 Rp.
TOTAL				Rp. 691,071		
				(¥509, 561)		(7,077 YEN/M ²)
. TEMPORARY WORK						
AND CONSOLIDATION	1	SET		3,500		
EVELING BATTER BOARD	1	u		3,500		
CAFFOLDING	130	M²	150	19,500		
CURING	i	SET		2,000		
TRANSPORTATION	1	**		7,000		
EMPORARY BUILDING	ι	11		5,000		
TOTAL				40,500		

2. EARTH WORK					
ROOT EXCAVATION	36	M ³	160	5,760	
RUBBLE FOUNDATION	17	it.	1,450	24,650	
BACK FILLING	14,3	11	120	1,716	
WASTE TREATMENT	21.7	"	70	1,519	
TOTAL	-			33,745	
3. CONCRETE WORK		٠	÷	•	
FOUNDATION	12,6	M3	5,810	73, 206	
BRICK MASONRY	9.2	м ³	5,810	52,808	
PARQUET CONCRETE	8	a	5,740	73,600	
PLASTER PAINTING	100	M ²	9, 200	28,000	
MORTAR			280	4,000	
TOTAL				231,614	
4. EARTH WORK					
WOOD MATERIALS	4.4	M3	15,000	66,000	
CARPENTER LABORS	1	SET		10,000	
NAIL AND METALIC METERIALS	1	П		6,000	
GLASS WINDOW	12	м²	4,270	51,240	
LOUVER WINDOW	11.8		4,610	54, 398	
DOOR	3.6	**	3,700	13, 320	
TOTAL				200, 958	
5. ROOFING WORK					
POLYVINYL CHLORIDE ROOF	123	M ²	1,250	153,750	
DITTO RIDGE	14	М	600	8,400	
TOTAL				162, 150	
6. PAINTING WORK					
PAINTING	85.4	M ²	260	22, 204	
TOTAL				22, 204	

PUMPING ROOM SPECIFICATION (FOR BOOSTER PUMP AND FOR BUILDINGS) NO. 20

Ro.	241.	576	¥178,	125)

Description of Items Material Size	Quantity	Unit	Unit Price	Cost	No.	Remark
1. TEMPORARY WORK	1	SET		19,100		
2. EARTH WORK	1	11		8,760		
3. CONCRETE WORK	1	•		108,666		
4. WOOD WORK	1			54,750		
5. ROOFING WORK	1	•		43,280		
6. PAINTING WORK	1	n		7,020		
						1US\$= 415 Rp.
TOTAL				Rp. 241,576		306 YEN
				(¥178,125)		
1. TEMPORARY WORK						
LAND CONSOLIDATION	1	SET		1,500		
LEVEING BATTER BOARD	1	"		1,500		
SCAFFOLDING	48	M ²	150	7,200		
CURING	1	5ET		900		
TRANSPORTATION	1	11		3,000		
TEMPORARY BUILDING	1	**		5,000		
TOTAL				19,100		
2. EARTH WORK						
ROOT EXCAVATION	13	м3	160	2,080		
RUBBLE FOUNDATION	4	п	1,450	5,800		
BACK FILLING	5	*1	120	600		
WASTE TREATMENT	4		70	280		
TOTAL				8,760		
3. CONCRETE WORK						
FOUNDATION	3.9	м3	5,810	22,659		
PARQUET CONCRETE	1.6	M ³	9,200	14,720		
BRICK MASONRY	4.2		5,740	24,108		
PLASTER PAINTING	84	M ²	280	23,520		
MORTAR	1	SET		1,000		
TOTAL				108,666		
4. WOOD WORK						
WOOD MATERIALS	1,6	M ³	15,000	24,000		
CARPENTER LABORS	1	SET		3,600		
LOUVER WINDOW	3	M2	4,610	13,820		
DOOR	3,6	**	3,700	13,320		
TOTAL				54,750		

5. ROOFING WORK

M² IRON PLATE FLAT SEAM ROOFING 38 1,060 40,280 DITTO RIDGE 6 500 M 3,000 TOTAL 43,280 6. PAINTING WORK PAINTING M² 27 260 7,020 TOTAL 7,020

18

COST OF INSTALLATION WORK SPECIFICATION

Rp. 9,703,000 (¥7,155,000)

7,983,000 DC (5,887,000) 1,720,000 FC (1,268,000)

Description of Items	Material	Size	Quantity	Unit	Unit Price	Cost	No.	Remark
1. ELECTRIC INS	TALLATIO	n work			 -	1910		-
LIGHTING EQUIPM	ENT		34	LIGHT	6,960	236,640		
(FLZOW PREVENTI	ON OF CR	IMES LIGHT,	AUTOMATI	C SWIT	CH)			
ELECTRIC WIRE	150		3,240	M	1,315	4,260,600		
**	100		720	n	850	612,000		
11	38		170	11	315	53,550		
H •	22		120		185	22, 200		
а	14		1,560	"	123	191,880		
ELECTRIC POLE								
		12M x 19	35	POLE	24,660	863,100		
ELECTRIC POLE B	ASE (CON	CRETE PROD	JCT) 1	SET		232, 900		
TRANSFORMER	75 kVA	SCOT TRANS	1	PIECE		616,500		
	200 ^V /200	'/100 ^V						
GROUNDING			1	SET		41,100		
SUPPLIES MISCELI	LANEOUS :	MATERIALS	1	U		94, 268		•
TRANSPORTATION	FEE		1	**		933, 941		
LABOR COST			1	11		150,000		400Rp/man x 375 ma
						1,219,679 7,089,000	D.C. F.C.	1US\$= 415 Rp.
TOTAL						8, 308, 679		105\$= 306 YEN
2. WATER-SUPPL	Y INSTAĹI	LATION WORK						
V.W. PIPE		20A	505	M	69	34, 845		
		25A	522	n	96	50,112		
		32A	198	**	123	24, 354		
		40A	260	"	178	46, 280		
		95A	12	М	521	6, 252		
GALVANIZED STEE			1	SET		72,810		
GATE VALVE		10kg/cm ² 20GV BOX)	16	PIECE	3,014	48, 214		
	(25GV ")	6	"	7,534	45, 270		

(32	3V ")	1	u	9,	,453	
(75	gv ")	1	H .	21,	, 920	
SUPPLIES MISCELLANEOUS MA	TERIA	LS	1	SET	10,	, 900	
TRANSPORTATION FEE (TRANSPORTATION IN THE FAI	(M)		1	"	10,	,800	
SUB-TOTAL					381,	,210 F.C.	
PIPING COST							
ROOT EXCAVATION BACK FILE	ING		1,497	М	60 89,	,820	
TOWER WATER TANK	3 9	on	1	PIECE	315,	,100	
DITTO SILL	10	м	1	п	698,	,700	
DITTO PROCESSING COST			1	SET	411,	,000	
(Including installation of water to	nk)						
TOTAL					1,514, 500, 1,395,	,820 1US\$	415 Rp. 306 YEN

(1)

COST OF FARM CONSOLIDATION SPECIFICATION

¥4,590,000

1,870,000 D.C. 2,720,000 F.C.

Description of Items Material	Size	Quantity	Unit	Unit Price	Cost	No.	Remark
ROAD							
MAIN ROAD	w=2,5m	1,900	M	64.5 43.5	122,550 82,650	1	
LATERAL ROAD	w=1.5m	5,563	"	43.0 29.0	239, 209 161, 327	2	
FARM ROAD	w=1.0m	3,614	0	32.3 21.8	116,732 78,785	3	
SUB-TOTAL					478,491 322,762		
					801,253		
. CANAL							
TYPE A		1,413	••	60.8	85,910	4	
гүре в		3,187	Ħ	19.2	61,170	5	
SUB-TOTAL					147,100		
3. CULVERT							
CAA TYPE		1	PLS	14,950 1,140	14,950 1,140	6	
САВ ТУРЕ		2	11	9, 967 644	19,934 1,288	7	
CAC TYPE		1	**	8,014 506	8,014 506	8	
СВА ТҮРЕ		6	11	10,186 46	61,116 276	9	
СВВ ТҮРЕ		2	**	7, 394 92	14,788 184	10	
CBC TYPE		2	19	6,162 92	12, 324 184	11	
CCA TYPE		6		8,124 184	48,744 1,104	12	
CCB TYPE		24	••	5,887 92	141,288 2,208	13	
CCC TYPE		8	"	4, 632 46	37, 056 368	14	
CCD TYPE		1	**	25, 261 920	25, 261 920	15	
CCE TYPE		ì	"	29,995 1,380	29,995 1,380	16	
SUB-TOTAL					398, 534 9, 558		

4. FLASH BOAD WEIR						
WA TYPE	6	PLS	5,006	30,036	17	
WB TYPE	7	"	4,629	32,403	18	
WC TYPE	. 28	"	3,583	100, 324	19	
SUB-TOTAL	-			162,763		
	_		•			
5. DRAINAGE CULVERT						
D-C-1 TYPE	1			49,837	20	
D-C-2 TYPE	1	41		69,765	21	
D-C-3 TYPE	1	11		70,401	22	
SUB-TOTAL				96, 378 93, 625		
				190,003		
6. BORDER						
EMBANKMENT	9,128	м ³	40	365,120		50,715m x 0,18m ³ =
SUB-TOTAL				365,120		
7. LAND LEVELING						
EXCAVATION AND TRANSPORT	74,017	M3	3 29	222, 051 2, 146, 493		
LEVELING	74,017	11	0	148,034		
SUB-TOTAL			-	222, 051		
30B-101KL				2, 294, 527		
				2,516,578		
TOTAL				1,870,437 2,720,472		
				4,590,909		
				=4,590,000		
PER 1.0 Ha				51,457	Yen	
				(169, 8	\$)	
				¢ 170,0	5	

COST OF LARGE-DEMOFARM SPECIFICATION

¥8,402,000 Yen

5,682,000 D.C. 2,720,000 F.C.

Description of Items Material	Stze	Quantity	Unit	Unit Price	Cost	No.	Remark
(1) COST OF FARM CONSOL	IDATION		_		1,870,000 2,720,000	D.C. F.C.	4,590,000
(z) COST OF BUILDINGS					3,812,000	D. C.	3,812,000
TOTAL					5,682,000 2,720,000		8,402,000
(1) MAIN ROAD	Per 10.0m						
EXCAVATION AND TRANSPORT	•	15.0	м ³	29 29	45 435		
EMBANKMENT		15.0	••	40	600		
TOTAL					1,080 645 435		
(2) LATERAL ROAD	Per 10,0m						
EXCAVATION AND TRANSPORT		10.0	11	3 29	30 290		
EMBANKMENT		10.0	н	40	400		
TOTAL					720 430 290		
(3) FARM ROAD	Per 10.0m						
EXCAVATION AND TRANSPORT		7.5	F1	29	23 218		
EMBANKMENT		7.5	*1	40	300		
TOTAL					541 323 218		
(4) CANAL A	Per 10.0m						
EXCAVATION		2,4	M ³	120	288		
EMBANKMENT		8,0	11	40	320		
TOTAL					608		
(5) CANAL B	Per 10.0m						
EXCAVATION		1.0	u	120	120		
EMBANKMENT		1.8	**	40	72		
TOTAL					192		
(6) CULVERT(CAA)							
PASANGAN BATUKALI		1.51	ti.	4,415	6,666		
REINFORCED CONCRETE		0.488	**	7,110	3,470		
FORM		2, 3	M2	991	2,279		
REINFORCEMENT		0.022	TON	44,454	978		
				46,000	1,012		

BACKFILLING		5.3	м3	40	212
REMOVAL OF SURPLUS SOIL		4.1	11	50	205
TOTAL					14,950
					1,140 16,090
(7) GULVERT(CAB)					
PASANGAN		1.06	"	4 415	4 400
BATUKALI REINFORCED		0, 28		4,415 7,110	4,680 1,990
CONCRETE FORM	•	1,5	м ²		-
REINFORCEMENT				991 44, 454	1,486 622
		0,014	TON	46,000	644
EXCAVATION BACKFILLING		7.2 4.1	м ³	120 40	864 164
REMOVAL OF					104
SURPLUS SOIL TOTAL		3, 2	11	50	160 9,967
TOTAL					644
(8) CULVERT(CAC)					10,611
PASANGAN BATUKALI		0,85	_M 3	4,415	3,752
REINFORCED CONRETE		0,22	11	7,110	
FORM		1.2	м²	991	1,564
REINFORCEMENT		0.011	TON	44,454	489
EXCAVATION				46,000	506
BACKFILLING		6.2	м ³ "	120	744
REMOVAL OF		3.5	"	40	140
SURPLUS SOIL TOTAL		2.7	"	50	135 8,014
					506
					8,520
(9) CULVERT(CBA)					
PASANGAN BATUKALI		1.53	n .	4, 415	6,755
REINFORCED CONCRETE		0, 20		7,110	1,422
FORM		0.8	M ²	991	793
REINFORCEMENT		0,003	TON	44,454	44
EXCAVATION		7.1	м ³	46,000 120	10
BACKFILLING		3.3	,,	40	852 132
REMOVAL OF SURPLUS SOIL		3.8	11	50	190
TOTAL					10,186
					46
					10, 232
(10) CULVERT(CBB)					
PASANGAN BATUKALI		1,13	11	4,415	4 000
REINFORCED CONCRETE	•	0.13			4, 989
FORM	•	0.13	м ²	7,110	924
REINFORCEMENT			m- TON	991 44,454	495 89
EXCAVATION		5.4	м ³	46,000 120	92
BACKFILLING		2,6	<i>M</i>		648
REMOVAL OF		2.9	19	40	104
SURPLUS SOIL TOTAL		4.7		50	145 7, 394
- 			•		92
					7,486

1 - 1

(11) CULVERT(CBC) PASANGAN	0.93 M ³	4,415	4,106
BATUKALI REINFORCED	0.10 "	7,110	711
CONCRETE FORM	0.5 M ²	991	495
REINFORCEMENT	0.002 TON	44,454	69
	4.6 M ³	46,000 120	552
EXCAVATION BACKFILLING	2.1 "	40	84
REMOVAL OF	2.5	50	125
SURPLUS SOIL	2.5	50	6, 162
TOTAL			92 6, 254
			0,231
(12) CULVERT(CCA) PASANGAN	1.26 "	4,415	5, 562
BATUKALI REINFORCED			-
CONCRETE	0.15 "	7,110	1,065
FORM	0.6 M ²	991	594
REINFORCEMENT	0.004 TON	44,454 46,000	177 184
EXCAVATION	4.4 M ³	120	528
BACKFILLING	2.5 "	40	100
REMOVAL OF SURPLUS SOIL	1.9 "	50	95
TOTAL			8,124
			184 8,308
(13) COLVERT(CCB)			
PASANGAN	0.92 "	4,415	4,061
BATUKALI REINFORCED	0.10 "	7,110	711
CONCRETE FORM	0.5 M ²	991	495
REINFORCEMENT		44,454	90
	_	46,000	92
EXCAVATION		120	384
BACKFILLING REMOVAL OF	.,.	40	56
SURPLUS SOIL	1.8 "	50	90 5,887
TOTAL			92
(14) CULVERT(CCC)			5,979
PASANGAN BATUKALI	0,75 M ³	4,415	3,311
REINFORCED CONCRETE	0,08 "	7,110	568
FORM	0.3 M ²	991	297
REINFORCEMENT	0.001 TON	44,454	44
EXCAVATION	2.5 M ³	46,000	46
BACKFILLING	2.5 M ³	120	300
REMOVAL OF SURPLUS SOIL	1.1 "	40 50	56 55
TOTAL			4,632
			46
			4,678
(15) CHI VERTICON			
(15) CULVERT(CCD) PASANGAN			
BATUKALI REINFORCED	2.95 M ³	4,415	13,024
CONCRETE	0,43 "	7,110	3, 057
FORM	1.9 M ²	991	1,883
REINFORCEMENT	0.020 TON	44, 454 46, 000	. 889 920

EXCAVATION		10.5	м ³	120	1,260
BACKFILLING		6,1	11	40	244
REMOVAL OF SURPLUS SOIL		4,5	11	50	225
TOTAL					25, 261
	4				920
•					26, 181
(16) CULVERT(CCE)					
PASANGAN BATUKALI		4, 23	U	4,415	18,675
REINFORCED CONCRETE		0.64	**	7,110	4,550
FORM		3,0	м ²	991	2, 973
REINFORCEMENT				44, 454	1,333
		0.030		46,000	1,380
EXCAVATION		15.0	M ³	120	1,800
BACKFILLING		8,7	14	40	348
REMOVAL OF SURPLUS SOIL		6, 3	11	50	315
TOTAL					29, 995 1, 380
					31, 375
(17) FLASH BOAD					01,515
WEA (A)					
PASANGAN BATUKALI		0,57	M ³	4,415	2, 516
FORM RIP RAP		2,0	M ²	991	1,982
SHUTTERING		0,28	м3	1,215	340
BOAD		1.0	UNIT	500	500
EXCAVATION		1.4	M ³	126	168
BACKFILLING		1.0		40	40
REMOVAL OF SURPLUS SOIL		9.4	H	50	20
TOTAL					5,006
					3,000
(18) FLASH BOAD					
(18) WEA (B) PASANGAN					
BATUKALI		0,50	11	4,415	2, 207
FORM		2,0	M ²	991	1,982
RIP RAP		0.2	м ³	1,215	243
SHUTTERING BOAD		1.0	UNIT	500	500
EXCAVATION		1.1	M3	120	132
BACKFILLING		0,9	M ³	40	24
REMOVAL OF .		0, 3	M. H	50	36 15
SURPLUS SOIL TOTAL				30	
IOIAL					4,629
(19) FLASH BOAD	•				
(19) WEA (C)					
PASANGAN BATUKALI		0.21	M3	4,415	927
FORM		2.0	м ²	991	1,982
RIP RAP		0.09	_M 3	1,215	109
SHUTTERING BOAD		1.0	UNIT	500	500
EXCAVATION		0.4	M ³		
BACKFILLING				120	48
REMOVAL OF		0.3	u .	40	12
SURPLUS SOIL		0, 1	"	50	5
TOTAL					3, 583
(20) DRAINAGE CULVER(D-C-1)					
EXCAVATION		10.4	"	120	1,249
		•	•	-	-, = 70

		(M ³	40			
EMBANKMENT PASANGAN		32.6	M ²	40	1,304		
BATUKALI		5.00	••	4,415	22, 075		
SAND BED		1.9	"	500	950		
CORRUGATED- PIPE	600p t=2mm	5.0	м	4,830	24,150	F.C.	
PIPE LAYING LABOR		1.0	MAN	110	110		
SUB-TOTAL					25,687 24,150		
					49, 837		
(21) DRAINAGE CULVERT(D-C-2)							
EXCAVATION		14.7	м ³	120	1,764		
EMBANKMENT		36,6	н	40	1,464		
PASANGAN BATUKALI		7.74	11	4,415	34,172		
SAND BED		2.4	**	500	1,200		
PIPE LAYING LABOR		1.5	MAN	110	165		
CORRUGATED- PIPE	800¢ t=2mm	5,0	М	6, 200	31,000	F.C.	
SUB-TOTAL					38,765 31,000		
					69, 765		
(22) DRAINAGE CULVER(D-C-3)							
EXCAVATION		10.3	м³	120	1,236		
EMBANKMENT		97.6	**	40	3,904		
PASANGAN BATUKALI		5.63	n	4,415	24,856		
SAND BED		3.2		500	1,600		
CURRUGATED- PIPE	600¢ t-2mm	8.0	M	4,830	38,640		
CURRUGATED PIPE LYING		1.5	MAN	110	165		
SUB-TOTAL					31,926 38,640		
					70,401		
							-

COST OF BUILDINGS SPECIFICATION

¥3,812,000

Description of Items Material	Stze	Quantity	Unit	Unit Price	Coat	No.	Remark
						, -	
1. STORAGE HOUSE					1,906,000	•	
2. GRANARY					1,906,000	ı	
TOTAL					3,812,000	•	

STORAGE HOUSE SPECIFICATION

Rp. 2,585,446 (¥1,906,375)

Description of Items Material 5	Size Quantity	Unit	Unit Price	Cost	No.	Remark
1. TEMPORARY WORK	1	SET		85, 200		
2, EARTH WORK	1	11		76,139		
3. CONCRETE WORK	1	11		748,013		
4. WOOD WORK	1	п		779,808		
5. ROOFING WORK	1			571,440		
6. PAINTING WORK	1	11		326,700		
TOTAL				2,587,400		1US\$= 415 Rp. 306 YEN
•				(1,906,375)		(10,590 YEN/M ²
. TEMPORARY WORK						
LAND CONSOLIDATION	1	SET		9,000		
LEVELING BATTER BOARD	1	••		9,000		
CURING	1	н		5,400		
TRANSPORTATION	1			14,400		
TEMPORARY BUILDING	1	**		9,600		
CAFFOLDING	252	M ²	150	37,800		
TOTAL				85, 200		
. EARTH WORK						
ROOT EXCAVATION	82,8	м3	160	13,248		
RUBBLE FOUNDATION	12.1	11	1,450	17,539		
SAND LEVELING	36,84		1,020	37,576		
BACK FILLING	39.6	11	120	4,752		
WASTE TREATMENT	43, 2	**	70	3, 024		
TOTAL				76,139		

3. CONCRETE WORK					
FOUNDATION	32.7	M ³	5,810	189, 987	
PARQUET CONCRETE	18.84	"	9,200	173, 328	
BRICK MASONRY	13.56	п	5,740	77,834	
PLASTER PAINTING	298.8	M ²	280	83,664	
FLOOR TILE	180,0	**	1,200	216, 000	
FIXTURES MORTAR		SET		7,200	
TOTAL				748,013	
4, WOOD WORK					
WOOD MATERIALS	18.8	м3	18,000	338,400	
CARPENTER LABORS	1	SET		49, 320	
GLASS WINDOW	45.6	M ²	4,270	194,712	
LOUVER WINDOW	21.6	"	4,610	99, 576	
DOOR	13,2	"	3,700	48,840	
NAIL, METALIC MATERIALS	1	SET		36,000	
PLINTE	72.0	м	180	12,960	
TOTAL				779,808	
5, ROOFING WORK					
IRON PLATE FLAT SEAM ROOFING	291.6	M ²	1,800	524,880	
DITTO RIDGE	48.0	м	700	33,600	
EAVES GUTTER	86.4	**	120	10,368	
VERTICAL GUTTER	28.8	n	90	2, 592	
TOTAL				571,440	
6. PAINTING WORK					
PAINTING	360	M ²	260	93,600	
CEILING(INDOOR) .	180	ti	1,100	198,000	
" (BACK OF EAVES)	78	u	450	35,100	
TOTAL				326,700	

Z

GRANARY SPECIFICATION

Rp. 2,585,446 (¥1,906,375)

Description of Items Material Size	Quantity	Unit Unit Price	Cost	No. Remark
I. TEMPORARY WORK	1	SET	85,200	
Z. EARTH WORK	1	н	76,139	
3. CONCRETE WORK	1	••	748,013	
4. WOOD WORK	1	H	779,808	
5. ROOFING WORK	1	••	571,440	
6. PAINTING WORK	1	"	326,700	
TOTAL			2,587,400	1US\$= 415 Rp 306 YEN
			(1, 906, 375)	(10,590 YEN/M ²)

1. TEMPORARY WORK				0.000
LAND CONSOLIDATION	1	SET		9,000
LEVELING BATTER BOARD	1			9,000
CURING	1	11		5, 400
TRANSPORTATION	ì	11		14,400
TEMPORARY BUILDING	1	",		9, 600
SCAFFOLDING	252	M ²	150	37,800
TOTAL				85, 200
2. EARTH WORK		_		
ROOT EXCAVATION	82.8	м3	160	13, 248
RUBBLE FOUNDATION	12.1	н	1,450	17, 539
SAND LEVELING	36.84	"	1,020	37, 576
BACK FILLING	39.6	11	120	4,752
WASTE TREATMENT	43,2	FF	70	3,024
TOTAL				76, 139
3. CONCRETE WORK				
FOUNDATION	32.7	M3	5,810	189, 987
PARQUET CONCRETE	18.84	11	9,200	173, 328
BRICK MASONRY	13,56	н	5,740	77,834
PLASTER PAINTING	29.88	M2	280	83,664
FLOOR TILE	180.0	**	1,200	216,000
FIXTURES MORTAR		SET		7,200
TOTAL				748, 013
4. WOOD WORK				
WOOD MATERIALS	18.8	м ³	18,000	338,400
CARPENTER LABORS	1	SET		49, 320
GLASS WINDOW	45.6	M ²	4,270	194,712
LOUVER WINDOW	21.6	,11	4,610	99, 576
DOOR	13.2	Ħ	3,700	48,840
NAIL, METALIC MATERIALS	ı	SET		36,000
PLINTE _.	72.0	М	180	12,960
TOTAL				779,808
5. ROOFING WORK				
IRON PLATE FLAT SEAM ROOFING	291.6	M ²	1,800	524,880
DITTO RIDGE	48.0	М	700	33,600
EAVES GUTTER	86.4	n	120	10, 368
VERTICAL GUTTER	28.8	.,	90	2,592
TOTAL				571,440
6. PAINTING WORK				
PAINTING	360	M ²	260	93, 600
CEILING(INDOOR)	180	•	1,100	198,000
" (BACK OF EAVES)	78	R	450	35,100
TOTAL				326,700

Description of Items Material Size	Quantity	Unit	Unit Price	Cost	No. Remark
1. EXCAVATION (NORMAL SOIL)					
EARTH WORK	0,75	MAN	120	90	
SUPERINTENDENT	0,025		150	3	
GENERAL EXPENSES				27	30% OF ABOVE AMOUNT
TOTAL				120	
2. EXCAVATION (SOLID SOIL)					
EARTH WORK	1.0	MAN	120	120	
SUPERINTENDENT	0,33	11	150	4	
GENERAL EXPENSES				36	30% OF ABOVE AMOUNT
TOTAL				160	
3. EXCAVATION(SILTY MUD, DEPTH 1.0m)				
EARTH WORK	1.50	MAN	120	180	
SUPERINTENDENT	0.05	n	150	7	
GENERAL EXPENSES				58	30% OF ABOVE AMOUNT
TOTAL.				245	
4. SOIL HAULING(DISTANCE 30m)					
EARTH WORK	0,33	**	120	39	
SUPERINTENDENT	0.01	**	150	1	
GENERAL EXPENSES				10	30% OF ABOVE AMOUNT
TOTAL				50	
5. SOIL HAULING (DISTANCE 75m)				65	12-120/275-/1 - 75)
GENERAL EXPENSES				20	K=120/275×(L+75) 30% OF ABOVE AMOUNT
TOTAL				85	Jon of Made Mindows
6. EXCAVATION (DEPTH 1.0m MORE)	0.15	MAN	120	18	
EARTH WORK	0,007		150	1	
SUPERINTENDENT				6	30% OF ABOVE AMOUNT
GENERAL EXEPNSES				25	
TOTAL				50	
7. FILLING (INCLUDING CONPACTION)					
EARTH WORK	0.25	н	120	30	
SUPERINTENDENT	0.01		150	1	
GENERAL EXPENSES				9	30% of above amount
TOTAL				40	

8. SODDING				
EARTH WORK	0.15 MAN	120	18	
SUPERINTENDENT	0.01 "	150	1	
GENERAL EXPENSES			6	30% OF ABOVE AMOUNT
TOTAL			25	
9. SOD HAULING				
			5	
10. MASONRY (FOR ROAD)				
QUARRY STONE	1.20 M ³	950	1,140	
EARTH WORK	0.30 MAN	120	36	
SUPERINTENDENT	0.15 "	150	22	
GENERAL EXPENSES			17	30% of above amount
TOTAL			1,215	
11. PASANGAN (1:4)				
Rubble Stone	1.20 M ³	950	1,140	
P.G.	0.958 DRUM	2,190	2, 098	
SAND	0.522 M ³	510	266	
MASON	1.20 MAN	180	216	
SUPERINTENDENT	0.12 "	220	26	
EARTH WORK	3.60 "	120	432	
SUPERINTENDENT	0.18 "	150	27	
GENERAL EXPENSES			210	30% OF ABOVE AMOUNT
TOTAL			4,415	
12. PLASTER (1:3)				
P.C.	0.048 DRUM	2,190	105	
SAND	0.0194 M ³	510	9	
MASON	0.20 MAN	180	36	
SUPERINTENDENT	0.02 "	220	4	
ASSISTANT OF DRIVER	0.40 MAN	120	48	
SUPERINTENDENT	0.02 "	150	3	
GENERAL EXPENSES			25	30% OF ABOVE AMOUNT
TOTAL			230	
13. FOUNDATION $(1:2\frac{1}{2})$				
P.C.	0.031 DRUM	2,190	67	
SAND	0.0085 M ²	510	4	
MASON	0.12 MAN	180	21	
EARTH WORK	0, 35 "	120	42	
SUPERINTENDENT	0.01 "	220	2	
SUPERINTENDENT	0.02 "	150	3	
General Expenses			21	30% of above amount

	•			
14. CONCRETE (1:2:3) RUBBLE STONE	0,32 M ³	1,460	467	
	0.54 "	510	275	•
SAND				
P.C.	2,00 DRUM	2,190	4, 380	,
EARTH WORK	6.00 MAN	120	720	
SUPERINTENDENT	0, 30 "	150	45	
MASON	1,00 "	180	180	
GENERAL EXPENSES			283	30% OF ABOVE AMOUNT
TOTAL			6, 350	
				4
15. MASONRY (1:3)				•
RUBBLE STONE	1,20 M ³	950	1,140	
P.C.	1,191 DRUM	2,190	2,608	
SAND	0.186 M ³	510	94	
LAVORS	MAN		91 3	C.F. NO.11
TOTAL			4,755	
16. PITCHING (1:4)	•			
RUBBLE STONE	1,50 M ³	950	1,425	
P.C.	0,950 DRUM	2,190	2,098	
SAND	0.522 M ³	510	266	
MASON	1.20 MAN	180	216	
SUPERINTENDENT	0.12 "	220	26	
EARTH WORK	3, 60 "	120	432	
SUPERINTENDENT	0.18 "	150	27	
GENERAL EXPENSES			211	30% OF ABOVE AMOUNT
TOTAL			4, 235	
17. REINFORCED CONCRETE			24,765	(NO, 18+19+20)
CONCRETA				
18. CONCRETE				
CRUSHED STONE	0,82 M ³	1,460	1,197	
SAND	0.54 "	510	275	
P. G.	2,00 DRUM	2, 190	4 200	
EARTH WORK			4,380 720	
EARTH WORK	6,00 MAN	120	720	
EARTH WORK SUPERINTENDENT	6.00 MAN 0.30 "	120 150	720 45	
EARTH WORK SUPERINTENDENT MASON	6,00 MAN 0.30 " 1,00 "	120 150 180	720 45 180	
EARTH WORK SUPERINTENDENT MASON SUPERINTENDENT	6.00 MAN 0.30 "	120 150	720 45 180 22	
EARTH WORK SUPERINTENDENT MASON SUPERINTENDENT GENERAL EXPENSES	6,00 MAN 0.30 " 1,00 "	120 150 180	720 45 180 22 29	30% of above amount
EARTH WORK SUPERINTENDENT MASON SUPERINTENDENT	6,00 MAN 0.30 " 1,00 "	120 150 180	720 45 180 22	30% of above amount
EARTH WORK SUPERINTENDENT MASON SUPERINTENDENT GENERAL EXPENSES TOTAL	6,00 MAN 0.30 " 1,00 "	120 150 180	720 45 180 22 29	30% of above amount
EARTH WORK SUPERINTENDENT MASON SUPERINTENDENT GENERAL EXPENSES TOTAL 19. REINFORCING BAR	6,00 MAN 0.30 " 1.00 " 0.10 "	120 150 180 220	720 45 180 22 29 7,110	30% of above amount
EARTH WORK SUPERINTENDENT MASON SUPERINTENDENT GENERAL EXPENSES TOTAL 19. REINFORCING BAR REINFORCEMENT	6.00 MAN 0.30 " 1.00 " 0.10 "	120 150 180 220	720 45 180 22 29 7,110	30% OF ABOVE AMOUNT
EARTH WORK SUPERINTENDENT MASON SUPERINTENDENT GENERAL EXPENSES TOTAL 19. REINFORCING BAR REINFORCEMENT TIE-REINFORCEMENT	6.00 MAN 0.30 " 1.00 " 0.10 "	120 150 180 220 80 260	720 45 180 22 29 7,110	30% OF ABOVE AMOUNT
EARTH WORK SUPERINTENDENT MASON SUPERINTENDENT GENERAL EXPENSES TOTAL 19. REINFORCING BAR REINFORCEMENT TIE-REINFORCEMENT REINFORCEMENT REINFORCEMENT WORKS	6.00 MAN 0.30 " 1.00 " 0.10 " 110.0 Kg 2.00 " 9.00 MAN	120 150 180 220 80 260	720 45 180 22 29 7,110 8,800 520 1,620	30% OF ABOVE AMOUNT
EARTH WORK SUPERINTENDENT MASON SUPERINTENDENT GENERAL EXPENSES TOTAL 19. REINFORCING BAR REINFORCEMENT TIE-REINFORCEMENT	6.00 MAN 0.30 " 1.00 " 0.10 "	120 150 180 220 80 260	720 45 180 22 29 7,110	30% OF ABOVE AMOUNT
EARTH WORK SUPERINTENDENT MASON SUPERINTENDENT GENERAL EXPENSES TOTAL 19. REINFORCING BAR REINFORCEMENT TIE-REINFORCEMENT REINFORCEMENT REINFORCEMENT WORKS	6.00 MAN 0.30 " 1.00 " 0.10 " 110.0 Kg 2.00 " 9.00 MAN	120 150 180 220 80 260	720 45 180 22 29 7,110 8,800 520 1,620	30% of above amount
EARTH WORK SUPERINTENDENT MASON SUPERINTENDENT GENERAL EXPENSES TOTAL 19. REINFORCING BAR REINFORCEMENT TIE-REINFORCEMENT REINFORCEMENT WORKS SUPERINTENDENT	6.00 MAN 0.30 " 1.00 " 0.10 " 110.0 Kg 2.00 " 9.00 MAN 3.00 "	120 150 180 220 80 260 180 220	720 45 180 22 29 7, 110 8, 800 520 1, 620 660	30% of above amount

20. FORM					
CARPENTER	5.00		180	900	
SUPERINTENDENT	0.50	"	220	110	
EARTH WORK	2.00	"	120	240	
SUPERINTENDENT	0.10	n	150	15	
LUMBER	0.40	M ³	4,750	1,900	
NAIL	4.00	Kg	80	320	
EARTH WORK	4.00	MAN	120	480	
TOTAL			•	3,965	
FOUNDATION OF FINE AGGREGATE					
(INCLUDING SMALL HAULING)					
SAND	1.20	M ³	400	480	
EARTH WORK	0.37	5 MAN	120	45	
SUPERINTENDENT	0,19	9 11	150	29	
GENERAL EXPENSES				26	30% OF ABOVE AMOUN
TOTAL				580	
22. GRAVEL FILLING					
CRUSHED STONE	1.20	M ³	950	1,140	
EARTH WORK	0.30	MAN	120	36	
SUPERINTENDENT	0.15	•	150	22	
GENERAL EXPENSES				17	30% OF ABOVE AMOUN
TOTAL				1,215	SON OF REGIT AMOUN
BALLAST	4.0	м3	1,900	7,600	
SAND	2.0	**	400	800	
ASPHALT	1000.00	Kg	20	20,000	
ASPHALT EMULSION	20,0	L	40	800	
EARTH WORK	6.0	DRUM	80	480	
EARTH WORK	20.0	MAN	120	2,400	
SUPERINTENDENT	1.00	11	150	150	
DRIVER	1.00	11	150	150	
LABOR	1.00	MAN	120	120	
EARTH WORK	1.00	41	120	120	
GENERAL EXPENSES				880	30% OF ABOVE AMOUNT
TOTAL				33,500	
* ASPHALT DEPTH 8cmPer m ²)				237	
24. PITCHING Per m ² , DEPTH 15cm)					
CRUSHED STONE	0.20	м3	1,170	234	
SAND	. 0.05	M ³	400	20	
EARTH WORK	0,375		120	45	
UPERINTENDENT	0.019	ti	290	5	
GENERAL EXPENSES				16	30% OF ABOVE AMOUNT
TOTAL				320	
				360	

* PITCHING (Per m ² , DEPTH 20cm)				425	
FILLING OF 25. SMALL CRUSHED STONE (DEPTH 6cm, Per 100m ²)			·		
CRUSHED STONE	8,00	м ³	1,460	11,680	
SAND	2,00	"	400	800	•
EARTH WORK	7.50	MAN	120	900	•
SUPERINTENDENT	0.375	**	150	56	
GENERAL EXPENSES				1,964	2/75 x NO. 26
TOTAL				15,400	
26,					
OPERATOR	30,00	MAN	150	4,500	
OPERATOR ASSISTANT	30,00	H	110	3, 300	
WATER HAULING	30.00	MAN	110	3, 300	
WORK EARTH WORK	150,00	n	110	16,500	
SPRAY WORK	60.00		110	6,600	
GASOLINE	1200,00	L	20	24,000	
ENGINE OIL	20,00	L	130	2,600	
SUPERINTENDENT	8.00	MAN	150	1,200	
GREASE	5,00	Кg	220	1,100	
GENERAL EXPENSES				10,620	30% OF ABOVE AMOUNT
TOTAL				73,720	
27. SURFACE SOIL REMOVING WITH BUI	LLDOZER (11	t TON C	LASS)		
WORKING LE	NGTH L=30	М			
Q=QxíxE=64 x	0.9 × 0.926	= 53.3 N	43/Hr		E=E1 x E2 x E3 x E4 = 10x10x0.85x1.09=0,926
PER DAY 5 F	łr. x 53,3 =	266M ³ /D	AY		
COST OF FUEL	10,5	ı	11	116	
OTHER MATERIAL	1			35	x 0, 3 =
DRIVER	0.168	MAN	220	37	
DRIVER ASSISTANT	0.168	**	110	16	
SUB-TOTAL				206	F.C.
REPAIRING COST				1,755	
SUB-TOTAL				1,755	
TOTAL				1,961	
PER 1M ³	206/53,3			4	D.C.
" I	.755/53.3			33	F.C.

28. EXCAVATION AND TRANSPORT OF EARTH WITH BULLDOZER (11 TON CLASS) WORKING LENGTH L-95M E=E1 x E2 x E3 x E4 =1.0x1.0x0.85x1.09=0.926 Q=QxfxE: 22 x 0.9 x 0.926 , 18.3M3/Hr. PER DAY 5 Hr. x 15.3 = 91.7M3/DAY 116 10.5 1 -11 COST OF FUEL 116 × 0.3 = 35 1.0 OTHER MATERIALS 25 DAY 30 DAY x 5 Hr. = 0.168 37 DRIVER 0.168 220 п DRIVER 18 0.168 110 ASSISTANT F.Ç. 206 SUB-TOTAL 1,755 REPAIRING COST 1.755 SUB-TOTAL 1,961 TOTAL 13 D.C. PER IM3 206/15.3 115 F.C. 1,755/15.3 29. LAND LEVELING WITH BULLDOZER (II TON CLASS) S = So x E So = 520.2 x W W = B+0.30 W = 3.35-0.30 = 3.05m So = 520,2 x 3.05 = 1,586.6 $S = 1.586.6 \times 0.8 = 1.269.3$ TOTAL 0.16 0 D, C. 206/1,269.3 PER 1.0m3 .. 1,755/1,269.3 1.38 2 F.C. 30. EXCAVATION TRENCH WITH BUCKHOW (0.35M3 CLASS) $Q = \frac{3600 \times q \times f \times E}{3600 \times 0.31 \times 1.0 \times 0.5} = 16.9 \text{m}^3/\text{Hr}.$ Cm $q = qo \times K = 0.35 \times 0.88 = 0.31$ ps = 135° f = 1,0 E = 0.5 Cm = 0.0676 + 24 = 33 SEC. COST OF FUEL 6.0 £ 11 66 x 0.3 = OTHER MATERIALS 37 DRIVER 0,168 MAN 220 DRIVER

0.168 "

141/16.9

1,729/16.9

ASSISTANT SUB-TOTAL

PER 1.0M3

11

REPAIRING COST

TOTAL

110

18

141

1,729

1.870

8

102

D.C.

F.C.

```
31. LOADING WITH TRUCKTOR SHOVEL (0.4m3 CLASS)
                              Q = \frac{3600 \times q \times f \times E}{Cm} = \frac{3600 \times 0.30 \times 0.9 \times 0.5}{42} = 23.2 \text{m}^3/\text{Hr}.
                                  Cm 42
qo = 0.4m<sup>3</sup> K = 0.75 q = qo × K = 0.30
                                   Cm = 42 SEC. f = 0.9 E = 0.5
                                                2.5
                                                                                          28
                                                                       11
COST OF FUEL
                                                                                                     30% OF ABOVE
OTHER MATERIAL
                                                                                           37
                                                    0.167 MAN
                                                                         220
DRIVER
DRIVER
                                                    0.167 "
                                                                                           18
                                                                         110
ASSISTANT
                                                                                           91
   SUB-TOTAL
                                                                                        1,972
REPAIRING COST
                                                                                        2,063
       TOTAL
                                                91/23.2
PER 1,0m3
                                                                                           85
                                            1,972/23.2
32. CARRING WITH 4.0 TON DUMPTRUCK
                               WORKING LENGTH L = 500m
                               Q = \frac{60 \times q \times f \times E}{Cm} = \frac{60 \times 2, 2 \times 0.9}{11} = 8,64 \text{m}^3/\text{Hr}.
                                  q = T/W = 4/1.8 = 2.2 f = 0.9 E = 0.8
                                  Cm = 11.0 (L = 500m)
                                                    4.0 L
COST OF FUEL
                                                                                           44
                                                                                                      30% OF ABOVE
OTHER MATERIALS
                                                                                           13
                                                    1.0
DRIVER
                                                    0.139 MAN
                                                                        220
                                                                                           31
    SUB-TOTAL
                                                                                           88
REPAIRING COST
                                                    1.0 Hr.
         TOTAL
PER 1.0m3
                                                 88/8.64
                                                                                                     p.c.
                                                560/8.64
                                                                                           65
                                                                                                     F.C.
33.1 LEVERING AND SOIL COMPACTION WITH BULLDOZER
                              Q1= \frac{60 \times V \times W \times D \times E}{N} = \frac{60 \times 67 \times 0.7 \times 0.15 \times 0.7}{6} = 49.2 \text{m}^3/\text{Hr}.
                                  V = 67m/min. W = 0.7 D = 0.15 E = 0.7 N = 6
                              Q2= 10E (10D+8) = 10 x 0.75 x (10x0.15+8) = 71.3m^3/Hr.
                              Q = \frac{Q1 \times Q2}{Q1 + Q2} = \frac{49.2 \times 71.3}{49.2 + 71.3} = 29.1 \text{m}^3/\text{Hr}.
33.2 PER 1.0m<sup>3</sup>
                                             206/29.1
                                           1,755/29.1
                                                                                          60
SOIL COMPACTION WITH RAMMER
GASOLINE
                                                    0.55 4
                                                                                          14
OTHER MATERIALS
                                                    1.0
                                                                                                    30% OF ABOVE AMOUNT
```

200

28

46

1.0 man/7 Hr. = 0.143

0.143 MAN

DRIVER

SUB-TOTAL

1.0 Hr. 70 70 495/7 x 70 REPAIRING COST

TOTAL

 $V = \frac{60 \times A \times D \times f \times E}{N} = \frac{60 \times 1.8 \times 0.15 \times 0.9 \times 0.86}{4} = 3.14 \text{m}^3/\text{Hr}.$

nd = 60 time/min. A = $nd \times a = 60 \times 0.03 \text{m}^2 = 1.8$ D = 0.15cm f = 0.90 E = E1 x E2 = 0.9 x 0.95

N = 4 = 0.86

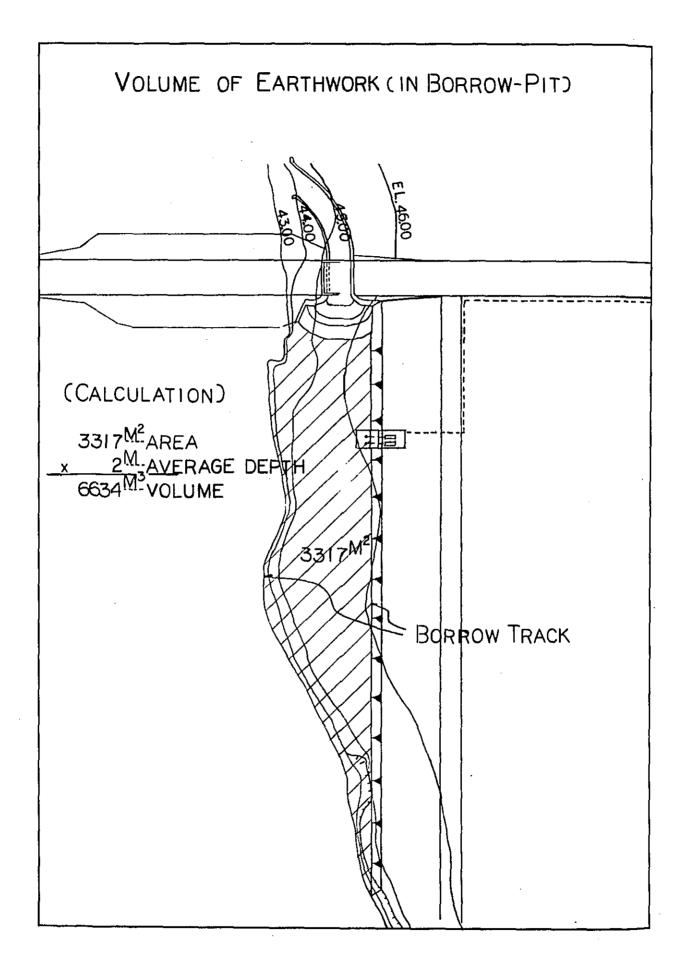
3						
PER 1.0m ³	et e	46/3.14		. •	15	D.C.
n		70/3.14			22	F.C.
34. PIPE LYING	(150¢)		_			
EXCAVATION		13,5	M ³	120	1,620	$0.6 \times 0.45 \times 50 \pm 13.5$
BACK FILLING		12,5	**	40	500	
LAYING	LABOR	1.0	MAN	110	110	
11,1110						
	TECHNICIAN	1.6	10	180	288	•
TOTAL					2,518	
PER	1,0m	2,518/50			50	
•						
35. PIPE LYING	(125¢)		3			
EXCAVATION		12.3	м ³	120	1,476	$0.57 \times 0.43 \times 50 = 12.3$
BACK FILLING		12.0	"	40	480	
LAYING	LABOR	0.6	MAN	110	66	
	TECHNICIAN	1, 2	19	180	216	
	· · · · · · · · · · · · · · · · · · ·			100		
TOTAL					2, 238	
PER	1.0m	2,238/50			45	
	E BOX PER 1.0 PLACE	E				
PASANGAN BATUKALI		0,55	M ³	4,415	2,428	
CONCRETE		0,013	п	6, 350	83	
FORM		0.35	M ²	991	346	
EXCAVATION		1.86	M ³	120	223	
BACK FILLING		1,25		40	50	
TOTAL					3,130	
37. HYDRANT (FC	R PADDY FIELD)					
CONCRETE		0.016		4,415	20	
FORM		0.16	M ²	991	158	
POLY VINYL CHLORIDE PIPE	∮300 L±0.3	5 1.0	PC	800	800	
TOTAL					1,028	

CONCRETE		0	. 084	м3	4,415		371			
FORM		1	. 3	M2.	991		1,288			
EXCAVATION		0	. 36	м ³	120		43			
BACK FILLING		0	. 24	**	40		10			
TOTAL							1,712			
38. EXCAVATION A	ND TRAN	SPORT OF EARTH W	VITH I	BULLD	OZER (15 TO	N CLA	ss)			
		WORKING LENGTH	L=	30M				THIS IS 1	BLADE RATIO 9 = 91	
		$Q = Q^1 \times f \times E = 91 \times$	0.9 >	0.926	= 75.8M ³ /Hr	•			E2 x E3 x E4 1.0x0.85x1.09≈0.9	26
		PER DAY 5 Hr. x	75.8 =	379M ²	3/Hr.					
									•	
COST OF FUEL		12	.o 4		11		132			
OTHER MATERIALS		ı	.0				40	132 x 0.		
DRIVER		0	168		220		37	25 day/3 0.833/5	0 day = 0.833 Hr. = 0.168	
DRIVER ASSISTANT		0),16B		110		18	11	11	
SUB-TOTAL							227	F.C.		
PREPAIRING COST							2, 211			
SUB-TOTAL							2, 211			
TOTAL							2,438			
PER	1 M ³	227/75	5.8				3	D.C.	•	
••		2, 211/75	5,8				29	F.C.		
39. LAND LEVELIN	G WITH	BULLDOZER (15 TON								
		S = So x E So = 57			V = B-0,30					
		W = 3,24 - 0,30 So = 520,2 x 2,9			.3 m.no					
		Se 1,529.4 x 0.8 =			n- Ero,o					
		5 ~ 1, JE7, T X U, O F	.,							
TOTAL										
PER	1.0m ³	227/1,2	23.5		0.18		0	D.C.		
11	11	2211/1,2	23,5		1.82	‡	2	F.C.		

HYDRANT (FOR UPLAND FIELD)

(IV) CALCULATION OF MATERIALS

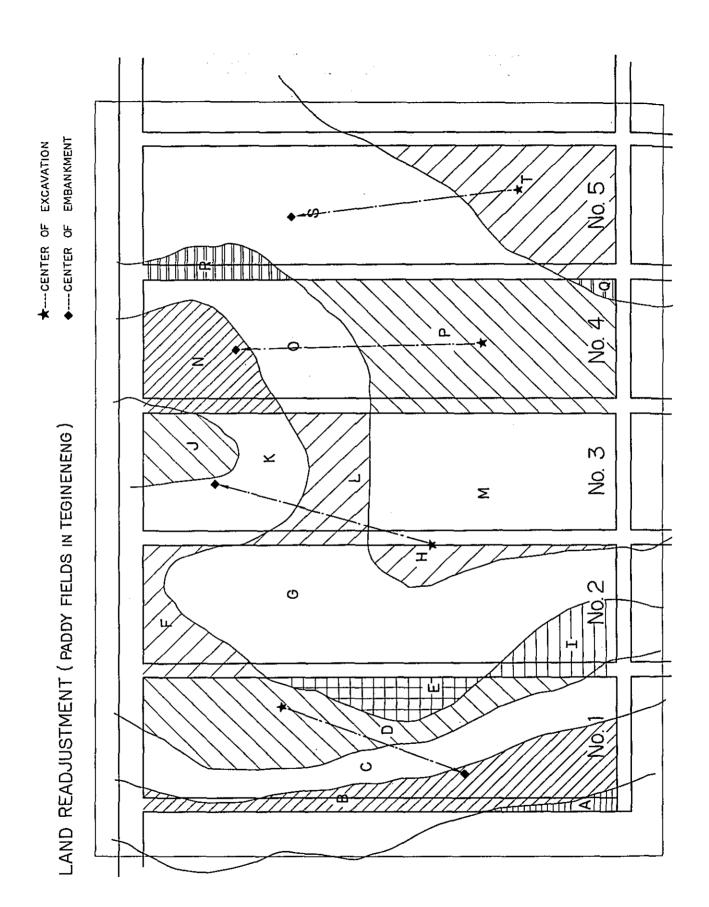
DAM BODY


			Excavetiq	4		mbankmen	ıt	Surface Soil Removing		
Station	Distance	Section	Approx.	Volume	Section	Average Section	Volume	Section	Average Section	Volume
	(m)	(m²)	(m ²)	(m²)	(m²)	(m²)	(m²)	(m²)	(m²)	(m²)
No. 1				_						
+17.65		0.00			3, 17			3.43		
+28.30	10.65	6.00	3.00	31.95	15.22	9.20	97.98	4.00	3.72	39.62
+40.50	12.20	6.00	6.00	73.20	30.16	22.69	276.82	5. 14	4.57	55.75
+46.11	5.61	6.00	6.00	33.60	45,45	37.81	212,11	6.09	5.62	31.58
+71,22	53.89	6.00	6.003	23.34	78.94	78.94	425408	7,76	7.76	418.19
No.2		6,00			59.69			6,85		
+ 2.75	2.75	6.00	6.00	16.50	53.32	56.51	155.40	6.52	6.69	18.40
+19.20	16.45	6.00	6.00	98.70	19.30	-	-	4.34	5.43	89.32
+41.65	22.45	0.00	3.00	67.35	3.17	11.24	252.23	3.43	3.89	87.33
	Total			44.70			5248.62			740. 19

Surface soil removing of borrow-pit $2,400^{\mathrm{m}^2} \times 0.2 = 480^{\mathrm{m}^3}$

TOTAL OF SURFACE SOIL REMOVING 740 + 480 = 1,220 m³

SPILL WAY


		Excevation			Embankme	nt	Surface Sail Removing			
Station	Distance	Section	Section	Volume	Section	Average Section	Volume	Section	Average Section	Volume
	(m)	(m2)	(m ¹)	(m³)	(m ₃)	(m ³)	(m ³)	(m²)	(m²)	(m²j
+30.00		7.64		•	0.00					
+20.00	10.00	17.48	12,56	125.60	0.00					
+10.00	10.00	20.68	19.08	190.80	0.00					
No.O	10.00	9.60	15, 14	151.40	0.00					
-10.00	10.00	31.50	31.50	315.00	13.75	13,75	13.75			
-13.00	3.00	18.34	24. 9Z	74.76	2.46	8,11	24,33			
-17.00	4.00	11.99	15.17	60.68	1.28	1.87	7.48			
-19.00	2.00	18.28	15. 14	30.28	0.00	0,64	1.28			
-23.00	4.00	46,50	32.39	129.56	0.00					
	7	Cotal	1.	078.08			170, 59			

Kinds Calculated Process Unit Quantities Total Remarks width length (m) (m) STONE PITCHING AREA (i) INLET SLOPE OF B. UPSTEAM SIDE m m 4.48 25.00 112.00 b. DAMSITE 3.20 10.00 32.00 c. CREST 2.00 21.85 44.00 d, BED OF APPROACH $A = 13.00 \times 8.00 - 4.00^{2} \times 2$ 72.00 c. Transi-Tion of Dam 1.00 7.83 8,00 f. SLOPE OF APPROACH 2.23 12.57 28.00 SUBTOTAL 296.00 (ii) CANAL a. BED OF CANAL 6.00 x 25.9 + 4.00 x 8.00 \times 1/2 + (4.50 + 3.00) \times 1/2 195,00 b. SLOPE OF CANAL + 6.30) 97.00 SUBTOTAL 292.00 TOTAL 588.00 m²

	Calculated Process Unit Quantities	Total Remarks
CORSSING BRIGE		
1. H-BEAM	H-596 x 199 x 10 x 15 L = 9.00 ^M N=5 9.00x(5x94.6 kg/m =	4,257 kg
S5-41 fL	90 x 9 x 556 N=30 3.61 ^{kg} x 30 =	108 kg
SS-41 B.N	M22 x 60 N=120 (H-BEAM)	63 kg
5541- C	300 x 90 x 9 L=26.388 ^M 26.388 x 34.6 kg =	9, 130 kg
SS41-12.	170 x 9 x 230 N=16 3,964 ^{kg} x 16 =	63 kg
SLAB PLATE	570 x 3.2 L=10.00 ^M N=16 20.8 ^{kg} x 10 x 16 =	3,328 kg
SS41-B.N	M25 x 460 N-20 1.88 x 20 =	ANCHOR BDLT 38 kg
SS41-B.N	∮ 19 x 55 N=160 0,231 ^{kg} x 160 =	37 kg
SS41-B. N	ø 19×45 N-495 0.290 ^{kg} × 495 =	144 kg
FORM PLATE	455 x 3.2 x 2.250 N=8 25.72 ^{kg} x 8 =	(SS41) 206 kg
SS41-H.	100 x 3,2 x 350 N =6 088 x 6 =	5 kg
SS41-B. N	p ['] 16 x 30 N=64 0.16 kg x 64 =	10 kg
SS41-B.N	ø 16 x 30 N=36 0, 16 ^{kg} x 36 =	(FOR JOINT) 6 kg
FORM PLATE (WOOD FORM)	$\{0.58 \times (9.3 + 0.7) - (0.58 \times 5 \times 0.199)\} + (0.2 \times 9) \times 2 =$	14.04 ^{m²}
SPACER	∮ 90 x 15 N=60	
GUARD RAIL	L = 9.00 ^M N=2	
REINFORCE- MENT	1 D16 L=9.8 ^M ±=0.44 ^M N=12	
	W = 12 × 10,24 × 1,56	192 kg
	2 D10 L=0.86 ^M N=82 W = 0.86 x 82 x 0.56= 3 D13 L=880 ^M L=0.35 ^M N=10	40 kg
	N=10 W = 9.15x10x0.995	91 kg

D10 L=1,22 ^M N=72 W=1,22x72x0.56= \$\frac{6}{6} \times \t			49kg 90 mc :0 m ³
W=1,22x72x0.56= \$6 x 150 x 150 10.0 x 9.0 = 0.05 x 9.30 x 9.0 = 0.162x 9.3 x (9.0-1.0) 12.05 19.3x0.5x(0.162+0.06) x 2 = 2.06 = 0.014 x 9.3 = 0.13			90 mc
10.0 x 9.0 = 0.05 x 9.30 x 9.0 = 10.162x 9.3 x (9.0-1.0) 12.05 19.3x0.5x(0.162+0.06) x 2 = 2.06 = 0.014 x 9.3 = 0.13		4.2	0 m ³
10.0 x 9.0 = 0.05 x 9.30 x 9.0 = 10.162x 9.3 x (9.0-1.0) 12.05 19.3x0.5x(0.162+0.06) x 2 = 2.06 = 0.014 x 9.3 = 0.13	1 •	4.2	0 m ³
0.05 x 9.30 x 9.0 = 10.162x 9.3 x (9.0-1.0) 12.05 19.3x0.5x(0.162+0.06) x 2 = 2.06 = 0.014 x 9.3 = 0.13	1 -	4.2	0 m ³
0.162x 9.3 x (9.0-1.0) 12.05 9.3x0.5x(0.162+0.96) x 2 = 2.06 = 0.014 x 9.3 = 0.13	l ·	4.2	
0.162x 9.3 x (9.0-1.0) 12.05 9.3x0.5x(0.162+0.96) x 2 = 2.06 = 0.014 x 9.3 = 0.13	1 •	4.2	
12.05 9.3×0.5×(0.162+0.06) × 2 = 2.06 = 0.014 × 9.3 = 0.13			
9.3x0.5x(0.162+0.06) x 2 = 2.06 = 0.014 x 9.3 = 0.13			
x 2 = 2,06 = 0,014 x 9.3 = 0.13			
•			
= 0.35x0.30x9.0=0.95	•	15. 1	19 m ³
20 m/m			
5×10.0×2×		2.3	30 m ²
∮75 x 700 N=4			
4 x 0,7 =		2.6	30 m
250 x 200 x 46 N-10			
3.2 kg x 10 =			32 kg
ABUTMENT)			
.87×1.00)+(3.87+1.10)×			
			.40 m ³
	3.2 kg x 10 = ABUTMENT) .87x1.00)+(3.87+1.10)x	3.2 kg x 10 = ABUTMENT) .87x1.00)+(3.87+1.10)x x 1.70 + (0.80x0.600))	3.2 kg x 10 = ABUTMENT) .87x1.00)+(3.87+1.10)x x 1.70 + (0.80x0.6001)

PADDY FIELD	EARTH WORK	AVERAGE DISTANCE
No. 1	2,650 ^m	83.00 m
No. 2, No. 3	3,970	96.00
No. 4	2,360	105.00
No. 5	1,590	97.00
TOTAL	10, 570	•

MA	•	PADDY	DIET IN
NU.		PADDY	FELLU

	Exist			Prop	E	ccavation	(-)	Em	bankmen	t (+)
No.	Area (A)	Elev. (B)	(A)x(B)	Elev.	Area	Height	Vol. (m ³)	Area	Helght	Vol.
	m ²	m	m ³	m	m ²	m	m3	m²		n m³
E	1,107.00	48.25	53,412.75	47.36	407.00	0.89	985.23			
D	4,257.00	47.75	203,771.75	47.36	4,257.00	0.39	1,660.23			
С	3,487.00	47.25	164, 760. 75	47, 36				3,487.00	0.11	383.57
В	3,210,00	46.77	150, 131.70	47, 36				3,210.00	0.59	1,893.90
A	273,00	46.00	12,558,00	47.36				273,00	1.36	371.28
	m²		m3				m ³ 2,645.46			m ³ 2,648,75

NO.2 PADDY FIELD

	Exist			Prop	Ex	cavation ((-)	Em	bankment	(+)
No.	Area (A)	Elev. (B)	(A)x(B)	Elev.	Area	Height	Vol. (m3)	Area	Height	Vol.
	m ²	m	m3	m	m²	m	m ³	m ²	m	m3
н	940.00	48.50	45, 590.00	48.17	940.00	0,33	310,20			
G	8,253.00	48.253	198,707.25	48.17	8,253.00	0.08	660.24			
F	1,483.00	48.00	71,384.00	48. 17				1,483.00	0.17	252, 11
1	1,283.00	47,75	61,263,25	48.17				1,283.00	0.42	538.86
Potal	m ² 11,959.00		m ³ 576, 244. 50				m ³ 970, 44			m 790.97

NO. 3 PADDY FIELD

	Exist			Prop	Ex	cavation	(-)	Em	bankment	(+)
No.	Area (A)		(A)x(B) m ³	Elev.				Area m ²		3
м	6, 195. 00		301,262.85	48.17	6, 195.00	0.46	2,849.70		· · · · · · · · · · · · · · · · · · ·	
L	1,870.00	48.25	90,227.50	48. 17	1,870.00	0.08	149.60			
ĸ	2,723.00	47.50	129, 342, 50	48.17				2,723.00	0.67	1,824.41
J	1, 160.00	47.00	54, 520. 00	48.17				1, 160.00	1. 17	1,357.20
l'otal	m ²	2 .	m³ 575, 352.85				m ²	3		m [.] 3, 181.61

	Exist			Prop	Ex	cavation ((-)	Emi	bankment	(+)
No.	Area (A)	Eiev. (B) m		Elev,	Area m ²	Height m		Area m ²	Height m	Vol. m ³
Q	100.00	49:00	4,900.00	48,41	100.00	0.59	59.00			-
P	6,737.00	48.75	328,428.75	48.41	6,737.00	0.34	2,290.58			
0	2,973.00	48.25	143,447.25	48.41				2,973.00	0.16	475.68
N	2,727.00	47,72	130, 132, 44	48,41				2,727.00	0.69	1,881.63
otal	m ²		m ³ 606, 908, 44				m ² 2,349.58	i		m ² , 357, 31

NO. 5 PADDY FIELD Exist Prop Excavation (-) Embankment (+)

No. Area (A) Elev. (B) (A)x(B) Elev. Area Height Vol. (m³) Area Height Vol. m² m m³ m m^2 m m³ m² m m³ T 3,706.00 49.33182,816.98 48.91 3,706.00 0.42 1,556.52 S 7,558.00 48.75368,452.50 48.91 7,558.00 0.16 1,209.28 713.00 48.38 34,494.94 713.00 0.53 377.89 m² Total 11,977.00 m3 585, 764. 42 m³ 1,556.52 m³ 1,587,17 EL. PROPOSAL = $\frac{585,764,42}{11,977,00} = 48,907^{\text{III}}$

			Excavation	i		Embenkmen	1	Ser	face Sail Rem	oring
Station	Distance	Section	Average Section	Volume	Section	Average	Volume	Section	Artrage Section	Volume
	(m)	(m²)	(m²)	(m²)	(m²)	(m ¹)	(m²)	(m²}	(m²)	(m ³)

1. MAIN ROAD-1 (B=10,00m)

No. 2 +17.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +41.65 24.20 - 14.48 12.24 296.21 +55.00 13.35 - 8.76 11.62 155.13 +81.00 26.00 - 7.50 8.13 211.38 No. 3 19.00 - 8.65 8.08 153.52 +50.00 50.00 - 11.78 10.22 511.00 No. 4 50,00 - 23.19 17.49 874.50 +25.00 25.00 - 20.97 22.08 552.00 +50.00 25.00 - 12.68 16.83 420.75 189.00 39.00 - 7.83 10.26 400.14 No. 5 11.00 - 5.81 6.82 75.02 - 2.98 4.40220.00 +50.00 50.00 No. 6 50.00 0.36 0.18 9.00 0.00 1.49 74.50 No. 7 +63.00 16300 0.36 0.36 58.68 0.00

Total 545.55

67.68

3,944.15

			Excevation	1		Em bankmen i		Sur	face Soil Rem	tring
Station	Distance	Section	Average Section	Volume	Section	Average . Section	Volume	Section	Arerage Section	Volume
	(m)	(m²)	(m²)	(m²)	(m²)	(m²)	(m²)	(m²)	(m²)	(m²)

2. FARM ROAD-7 (B=6.00^M)

Total

179.02

1, 114, 36

3. FARM ROAD-1 (B=6.00^m)

No.00 0.00 0.10 0.05 0.00 2.89 1.45 0.00 +34.00 34.00 0.10 0.10 3.40 2.64 2.79 94.86 +97.00 63.00 0.10 0.10 6.30 2.89 2.77 174.51 +16400 67.00 0.10 0.10 6.70 3.84 3.37 225.79 +20300 39.00 0.10 0.10 3.90 4.79 4.32 168.48

Total

20.30

663,64

			Exceration			Embankmen	ı	\$ur	face Soit Rem	oving
Station	Distance	Section	Average Section	Volume	Section	Average Section	Volume	Section	Average Section	Volume
	(m)	(m²)	(m²)	(m²)	(m ³)	(m²)	(m²)	(m²)	(m²)	(m²)

4. FARM ROAD-2 (B=6.00 L=203.00)

203.00

0.10 20.30 3.18 645.54

5. FARM ROAD-3 (B=6.00 L=203.00)

203.00

0.10 20.30 3.96 803.88

6. FARM ROAD-4 (B=6.00^m L=203.00^m)

203.00

0, 10 20.30 3,77 765.31

7. FARM ROAD-5 (B=6.00 th L=203.00 th)

203,00

0.10 20.30 2.53 513.59

8. FARM ROAD-6 (B=6.00^m)

No.0 0.00 0.18 0.09 0.00 1.89 0.95 0.00 +93.00 93.00 0.18 0.1816.74 1.27 1.58 146.94 +20300 11000 0.78 0.4852.80 0.05 0.66 72.60 Total 69.54 219.54

9. MAIN ROAD (B=10.00 L=362.00 L)

362.00

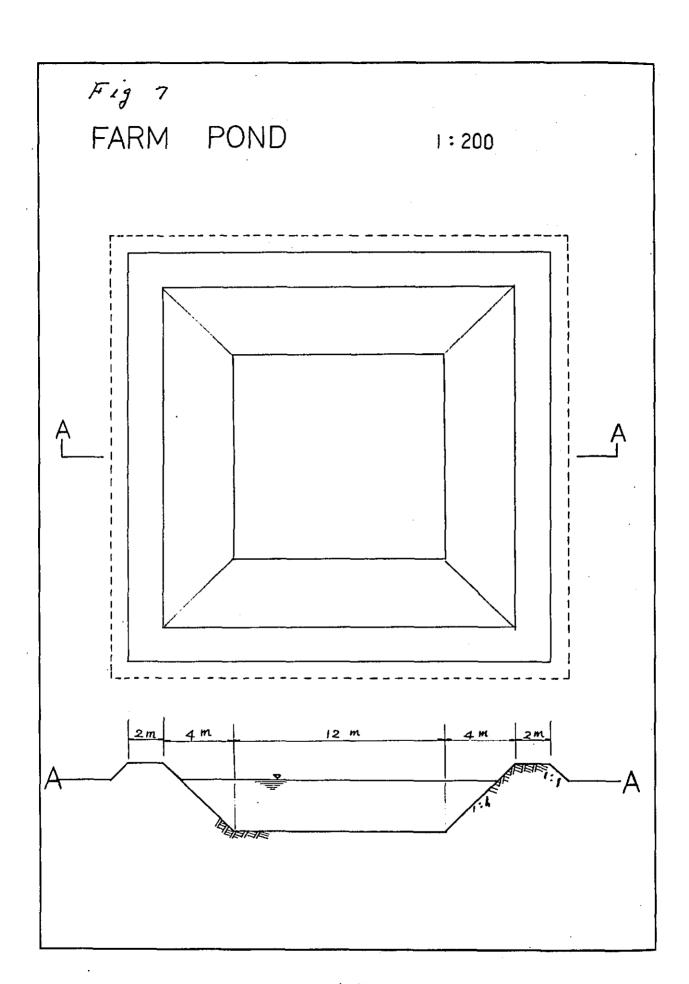
0.36130.32 0.00 0.00

10. MAIN ROAD-8 ~ 14 (B=6.00th L=1,428.00th)

142.80

0.36514.08

0.00 0.00


11. ACCESS ROAD (B=200 L=362.00)

362.00

0.36130.32

0.00 0.00

Kinds	Calculated Process	Unit Quantities	Total Remarks
1. SLUICE VAL	VE BOX (PER 10 PIECE)		
PASANGAN BATUKALI	0.2 x (0.8 + 0.4) x 0.95 x 2 + 0.2 x 0.8 x 0.8 = 0.56	:	
	$ \Theta 0.05 \times (0.5+0.4) \times 0.05 \times 2 \\ + (0.15^{2} \times 3.14 \times 1/4) \times 0.4 \\ = 0.01 $:	0.55 m ³
CONCRETE	0.5 x 0.5 x 0.05 =		0.0125m ³
FORM	0.5x0.5+0.05x0.5x4=		0.350 m ²
EXCAVATION	B=1.40 L=1.40 H=0.95		
	1.4 x p.4 x 0.95 =		1,862 m ³
BACK FILLING	(1.4 ^t ×0.95)-0.8×0.8×0.95=		1,254 m ³
2. HYDRANT (I	FOR PADDY FIELD)		
CONCRETE	0.4 x 0.4 x 0.1 =		0.016 m ³
FORM	10.4 × 0.4 × 4 =		0.160 m ²
ROLYVINYL CHORIDEPIPE	+300 ^{mm} ±=0.35 ^m		
3. HYDRANT (F	OR UPLAND FIELD)		
CONCRETE	0.1x(0.5+0.4)x0.3x2		
	+0.5x0.6x0.1=		0.084 m ³
FORM	0.3x(0.3+0.4)x2+0.4 x (0.5+0.6)x2=		1,300 m ²
EXCAVA- TION	B=0.8 L=0.9 H=0.4 0.8×0.9×0.4=		0.360 m ³
BACK FILLING	(0.8×0.9×0.4)-(0.5×6×0.4)=		0.240 m ³

Kinds	Calculated Process Unit	Quantities	Total Remarks
	FARM- POND	<u></u>	
EXCAVATION	12.0x12,0x3.0=432.00		
EXCAVATION	(3.0x3,0x0,5x15.0)x4=270.00		702,00 m ³
	(212.00)		
EMBANKMENT	(2.00 x 1.00 x 20) x4-1600		
	(1.00x1.00x0.5x21.0)x4=42.00		
	(1.00x1.00x0.50x25.0)x4x50.00		108.00 m ³
PASANGAN BATUKALI	(/piece x 4.00x16.0)x4=362.30		
	12.00x12.00=144.00		506.30 m ²
EXCAVATION			4
(DMq1q)		_	R V 3
	(AREA)		~ ×600
	(1.30+2.80)x1.5x1/2=3.075		1070
	0.70x1.20=0.84 3.9	15m ²	
	3.915x6,0=23.49		
	x.915x2,70x1/2=5.29		28.78 m ³
	X. /1522; (OX1/4-01-/		
BACK FILLING	28.78 ^{m3} -(0.6 ² ×3.14×1/4		
FILLING	8.7)=		26.32 m ³
EXCAVATION			
(SUMP WELL)	2.0x2.0x3.14x1/4x3.8=		119.30 m ³
PUMP STA	TION (FOR PADDY FIELD)		
CORRUGATE PI			
	\$ 3000 ^{m/m} L=6.40 ^m		
	t=3.2 ^{m/m}		
FILTER			
	$(5.00^2-3.00^2)\times1/4\times3.14\times3.0=$		37.68 m ³
CONCRETE			
(SUMP WELL)			
	3,70 ² x3, 14x1/4x0,8=8,60		3
(minen menel)	3.00 ² x3.14x1/4x0.20=- 1.41		7, 19 m ³
(PUMP BASE)	(0.30×0.65+0.50×0.85)×0.24		
	x 2 = 0.30		
	(0.60x0,30x0,70)x2 =0,25		0.55 m ³
FORM			
	3.70 x 3.14 x 0.8 = 9.29		
	$(1.5+1.5+0.5+0.5)\times0.24\times2 =$		
	1,92		_2
PASANGAN	(0.3+0.3+0.6)x0.70x2 =1.68		12.89 ^{m²}
BATUKALI			_
	√2 x 3.2 x 20.0 =		90, 50 m ²
STEEL(ANGLE)	50x50x6 mm L=500 N=8		
	50x50x6 mm L=470 N=8		
	50×50×4 mm L=3000 N=2		
BOLT AND UNIT			
	∮ 10mm x 32 N=50		
ANCHOR BOLT	ø 15 mm × 300 N=8		
PLATE (STEEL)	50x6mm x 358mm		
· ,	50x4mx716mm		

Kinds	Calculated Process	Unit Quantitle	s Total Remarks
	BOOSTER PUMP		
	*		
CORRUGATE PIP	E +600 ^{m/m} L=9.50 ^m	_{t=2.7} m/m	
	+2000 ^{m/m} L=4.80 ^m		
CONCRETE	2		
	2.50 ² x3,14x1/4x0.3	0=1,47	3
	0.90x2.0x0.2=0.36		1.83 _. m ²
STEEL (PLATE)			
D14-2 (14-1-)	50x6 ^{mm} L=440 ^{mm}		
	50×5 ^{mm} L=440 ^{mm}		
FORM			
	2,5x3,14x0,3=2,34		-
	(40+1.8)×0.2≈1.16		3.50 m ²
STEEL (ANGLE)			
	50x50x6 ^{m/m} N*4 L 50x50x6 ^{m/m} N*4 L		
	50x50x6"'' N=4 L 50x50x4"''' N=4 L		
	7073074 H-4 D	-,,,,	
ANCHOR BOLT	ø150 ^{mm} ×210	N=4	
BOLT AND NUT	∮ 10 ^{mm} × 32	N=36	
	CULVERT		
NO, 1			
PASANGAN BATUKALI		M	
		atraga arra	a
	{ 0,25×1,00+(0,15+0	251	
	×0.44 } × 6.0=2.56	,	
	(0.25+1.05)x0.25x0	. 90=0.29	
	{ 0.20x0,20x0,80+(0	.80x0.80x0.5	
	x0.2)} x2=0.19		3.04 m ³
CONCRETE	0.70x0.07x6.00=		
			0.29 m ³
MORTAL	((0.10x0,15-0,07x0), 1) } ×2	2
	x6.0=		0.10 m ³
FORM REINFORCE- MENT	ø6 L=656. [™]	0, 222 ^{mg/m}	2.00 m ² 14,54 kg
MENI			14.54 Kg
NO. 2			
PASANGAN TATUKALI	{ 0.25x1.0+(0.15+0	. 25)x0.43 }	
	x 6 = 2.53	0-0-40	
	(0.56+1,19)x0.25x0 (0.2x0.5x0.94+0.94		
	0.94x0.5x0.2)x2=0.		3, 18 m ³
CONCRETE	0.70x0.07x6.00=		0.29 m ³
MORTAR	[0 10=0 15 0 05 c	1)	
MORTAR	{ 0, 10x0, 15-0, 07x0	.1/x4x6.0=	0.10 m ³

Kinds	Calculated Process Un	it Quantities	Total Remarks
FORM			2.00 m ²
REINFORCE- MENT	66 L=65.5 ^m 0.222 ^{kg/m}		14.54 kg
No.3			
PASANGAN BATUKALI	(0.25x1.00+(0.15+0.25)x		
	0.63) ×6.0=3.10		
	0.25x0.9x0.53=0.12		
	((0.2x0,2x0.53)+0.53x0.53		3.32 m ³
	x0.5x0.2} x2==0.10		3.32 m
CONCRETE	0.70x0.07x6.00=		0,29m ³
MORTAL	(0, 10x0, 15x0, 07x0, 10}x2x6, 0	•	0, 10 m ³
FORM			2,00 m ²
REINFORCEM	ENT \$6mm L=65.5mm 0.2	22kg/m	14.54 kg
NO.4 PASANGAN BATUKALI	0.25x1.00+9(0.25+0.15)x0.5 x6.0= 2.92	69	
	0.25x0.90x0.53=0.12		
	(0.2x0,2x0,53+0,53x0,53x0,	5×0,2)	
	x2=0,10		3, 14 m ³
CONGRETE	0.70x0.07x6.00=		6.29 m ³
MORTAL	10, 10×0. 15+0. 07×0, 10)×2×6		0.10m ³
FORM			2,00 m ²
REINFORCEME	ONT \$6mm L=65.5m 0.2221	ιg/m	14.54 kg
NO, 5 PASSANGAN	{0,25x1,00+(0,15-0,25)x		
BATUKALI	0.29}x6.0=2.20		
	(0.25+0.84)x0.25x0.90=0.25		
	(0,2x0,2x0,59+0,59x0,59x		
	0.5x0,2)x2=0,12		2,57 m ³
CONCRETE	0.70×0.07×6.00=		0, 29m ³
MORTAL	{(0, 10×0, 15+0, 07×0, 10)}		
•	x2x6.0		0.10 m ³
FORM			2.00 m ²

ITEM	MATERIAL	DIMENSION	מידץ	UNIT	
WATER-SUPPLY	?			-	
ASBESTOS CEMENT PIPE	A CLASS	∮125×4000	(95 24	m) Piece	
REGULATING VALVE WORK		¢125	1	Place	
HYDRANT (A)		MACHINO TYPE WITH ANGLE PIPE OF \$2 x4		••	A-TYPE
HYDRANT (B)		п	12	••	B-TYPE
REDNCER PIPE	A CLASS FC 20	∮125×100	1	Piece	12.6 kg/piece
SOLID VINYL CHLORIDE PIPE	γp	∮100×5000	(222 45	m) Piece	JISK 6742
SOCKET FOR GIVOLT JOINT	II	∮ 100 VP	1	"	
PLUG	FC 20	FOR PLAIN CHEESE \$100	1	"	
GIVOLT JOINT		∮ 100 G.J.	1	"	
WATER-SUPPL CANAL	Y				
SOLID VINYL CHLORDIDE PIPE	VΡ	\$100 x 5000		im) Piece	
REGULATING VALVE WORK		£100	1	Place	
HYDRANT (B)		MACHINO TYP ANGLE VALVI OF \$2"x45"	PE 6	"	
REDNCER PIPE	ACLASS FC 20	ø 125 x 100	1	Piece	
SOCKET FOR GIVOLT JOINT		∮ 100 VP	1	н	
GIVOLT JOINT		∮ 100 GJ	3	"	
PLUG	FC 20	FOR PLAIN CHEESE # 100	1	"	
TEN.	OHANTITY	INIT WEIGUT	WEI	CUT	
90° VENT PIPE		UNIT WEIGHT	IT E-1	9111	
FOR \$150	1	23, 1	. 23	. 1	
CROSS-PIPE	1	24.4	24	. 4	
REDNCER PIP	E 1	17.2	17	. 2	
IF CROSS-PIPE FOR \$125	1 ·	17.2	17	. 2	
CROSS-PIPE	1	17.0	17	.0	
SHORT PIPE (B)	4	12.5	50	, 0	

ITEM Q	UANTITY UN	IT WEIGHT W	EIGHT
CROSS-PIPE FOR GAS PIPE	6	(13.7)	82.2
REDNCER PIPE	2	12.6	25.2
SHORT PIPE FOR \$100(B)	6	10.1	60.6
TOTAL			kg 316.9
G.J. ø150	4 SET	9.93 ^{kg}	39.72 ^{kg}
" \$ 125	8	8.14	65.12
ıı ≰100	10	6.93	69.30
TOTAL			174. 14
PLUG	4		
SOCKET FOR G Jø100	4		

				*********		·
ITEM DELIVERY PIPE	MATERIAL	DIMENSION	Y T'Q	UNIT		
ASBESTOS CEMENT PIPE	CLASS A	∮150x4000	(125 32	M) Piece		
BEND PIPE	FC 20	£150	1	PC	23.1	KG/piece
CROSS-PIPE	"	∮150 x 100	1	P	24.4	KG/piece
GIVOLT JOINT	13	FOR \$150	4	SET		
SELIVERY PIP	E					
ASBESTOS CEMENT PIPE	A CLASS	á 125 x 4000	(180 45	M) Piece		
REELUCER PIPE	FC 20	∮ 150 x 125	ι	11	17.2	KG/placa
FLANZE CROSS-PIPE	•	ø 125 x 75	1	.,	17.2	
CROSS-PIPE	11	p 125 x 125	1	11	17.0	
REGULATING VALVE WORK		g 125	1	Place	VALVE WATER	ATION

		MATERIAL		Q'TY	UNIT	<u></u>
	XHAUST ALVE WORK		SINGLEAIR VALVE A TYPE	1	Piece	
	IVOLT OINT		∮ 125 G.J.	8	Piece	8.14 KG/piece JIS A5520
5	UPPLY PIPE					
	OLID VINYL HLORIDE PIPE	VP	∮100 x 5000		M) Piece	JISK 6742
	EGULATING ALVE WORK		\$ 100	1	Place	SHORT PIPE (B) \$100x2 piece x 10.1KG/piece REGULATING VALVE WATER
Ħ	IYDRANT		MACHINE TYP WITH ANGLE PIPE OF ∮2"x 45*	E 6	**	SUPPLY JIS B2062 \$100 x 1 plece
	OCKET FOR SVOLT JOINT		∮100 - VP	1	Piece	
F	PLUG	FC 20	FOR PLAIN CHEESE \$100	1		JIS B-2301
c	IVOLT JOINT		G. J∮100	3	11	JIS A-5520 693 KG/piece
5	SUPPLY PIPE					
	OLID VINYL CHLORIDE PIPI	E VP	∮ 100× 5000	(105 21	M) Piece	
	REGULATING /ALVE WORK		\$ 100	1	Place	
	WATER SUPPL' WORK	Y	MACHINO TYP ANGLE PIPE C \$ 2"x45"			
	OCKET FOR OVOLT JOINT		∮ 100-VP	1	Piece	
	PLUG	FC 20	FOR PLAIN CHEESE ∮100	1	,,	
•						

Kinds	Calculated Process	Unit	Quant	ities	Total	Remarks
A-TYPE	SPRINKLER-8STAND (LATE	RAL	LENC	TH 92	^m)	
PER SET		•				
SPRINKLER	*EQUIVALENT TO RAINBIRI	0* N	o.30B	2 ^{SETS}	5	
RISER	3/16"x3/32" 70 \$25 mm x 10m AND 2.0m	EΑ	CH Pieces			
RISER HOLDER	0.85 ^m TRIPOD 1.70 ^m TRIPOD		ch Pieces	2"		
RISER PLUG	\$ 3/4 "	23 15				
		Pi	eces	211		
ALUMINUM PORTABLE PIPE	∮50 ^{mm} × 4.0 ^m	23	Piece#	2"		
PIPE FOOT	FOR \$ 50 mm	23		2"		
1ET HOSE	FOR " (LENGTH 1.8)) i	Set	2"		
,	MACHINES TYPE, METAL FITTINGS		3 1			
end Plug	FOR \$ 50 mm	1	Piece	2"		
HYDRAULIC P	RESSURE GOUGE (FOR MEAS NOZZLE F					
	2 SETS PREPARED					
* [NOTE] S	PRINKLEREQUIVALENT TO R NOZZLE SIZE 3/16" × 3/3		BIRD 1 70	NO. 30	ac	
	WARKING PRESSURE 3.16k					
	SPRAY AMOUNT 32.4 L					
B-TYPE	SPRINKLER-6 STAND, (LAT	rera	L LE	NGTH	68m)	
PER SET						
SPRINKLER	Equivalent to rainbire		ces :	Sets 4		
RISER	∮25 ^{mm} × 1.0 ^m	6	.,	411		
******	∮25 ^{mm} × 2,0 ^m		15	411		
RISER HOLDE	R 0.85 ^m TRIPOD	6	,,	4"		
	1.70 ^m TRIPOD		**	4"		
RIZER PLUG	pf 3/4"	11	**	4"		
ALUMINUM PORTABLE PIPE	∮ 50 ^{mm} × 4.0 ^m	17	11	4 "		
PIPE FOOT	(FOR ∮ 50 ^{mm})	17 n S	" ET	4"		
jet ņose	(FOR \$50 ^{mm}) LENGTH 1.0 MACHINO-TYPE METAL FI	1		4"		

Kinds	Calculated Process	Unit Qu	ntitles	Total	Remarks
END PLUG	(FOR ∮ 50 ^{mm})	PIECE i	SET 4		
HYDRAULIC :	PRESSURE GOUGE REMENT OF				
NOZZLE PRE		1"	ΔII		

4 SET PREPARED

PEUVERY PIPE

SCOBEY'S FORMULA WILL BE USED FOR COMPUTATION OF FRICTION LOSS.

$$^{\circ}Q_1=22\,t/s$$
 $^{I}_1=125^{m}$ \$150-AP-1 ct Hf = $\frac{12}{1000}$, $V_1=1.25$ m/s, $\Sigma H_{f1}=125^{m}$ × $\frac{12}{1000}=1.5^{m}$

$$^{*}Q_{2} = 13 \, ^{t/s}$$
, $^{t}_{2} = 180^{m} \pm 125 - AP - 1 c$ $^{t}_{1} H_{12} = \frac{10}{1000}$, $V_{2} = 1.10 \, \text{m/s}$, $EH_{12} = 180^{m} \times \frac{10}{1000} = 1.8^{m}$

$$\Sigma H_f = 3.3^{m}$$

ZUFFLY PIPE

*
$$Q_3 = 9$$
 %, $t_3 = 95^{m}$, \$100-VP $H_{f3} = \frac{15}{1000}$, $V_3 = 1.10 \text{ m/s}$ $\Sigma H_{f3} = 95^{m} \times \frac{15}{1000}$
$$= 1.425 \div 1.5^{m}$$

•
$$Q_4 = 9$$
 %s, $L_4 = 105^{\text{m}} \neq 100 \text{-VP H}_{f4} = \frac{15}{1000}$, $V_4 = 1.10 \text{ m/s}$ $EH_{f4} = 105^{\text{m}} \times \frac{15}{1000}$
= 1,575 \div 1,6^m

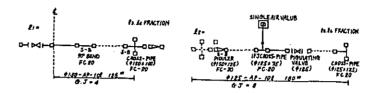
$$^{\circ}Q_{5} = 13 \text{ t/s}$$
 $\begin{cases} I_{5} = 95^{\text{m}} \text{ 6125-AP-1} & \Sigma H_{fe} = \frac{10}{1000}, \ V_{5} = 1.00 \text{ m/s} & \Sigma H_{fe} = 95^{\text{m}} \times \frac{10}{1000} = .0.95^{\text{m}} \\ I_{5} = 222^{\text{m}} \text{ $6/$} & 100\text{-VP} & H_{fe} = \frac{30}{1000}, \ V_{5}' = 1.60 \text{ m/s} & \Sigma H_{fe} = 222^{\text{m}} \times \frac{30}{1000} = 6.66^{\text{m}} \end{cases}$

$$^{\circ}Q_{6} = 13$$
 %s, $^{\circ}t_{6} = 105^{m}$, \$ 100-VP $H_{16} = \frac{30}{1000}$, $V_{6} = 1.60 \text{ m/s}$ $EH_{16} = 10.5^{m}$

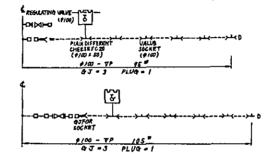
$$\times \frac{30}{1000} = 3.15^{m}$$

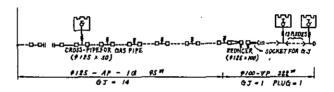
DESIGN CONDITION WILL BE THE END OF 5.

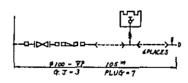
$$EH_f = EH_{f1} + EH_{f2} + EH_{f5} = 1.5^{m} + 1.8^{m} + 7.6^{m} = 10.9^{m} + DESIGN FRICTION LOSE$$
10.9m


Kinds Calculated Process Unit Quantities Total Remarks

 $\begin{array}{l} {\tt PUMP\ H_f = HYDRANT\ LOSS + LATERAL\ LOSS + PUMP\ SURROUNDINGS + } \\ {\tt OTHER\ VALVE\ VEND\ LOSS\ ETC.} \end{array}$


= 10.9 + 2.5 + 4.3 + 31.6 + 3.6


= 53^m


DELIVERY PIPE

ZUPPLY PIPE

FIELD NO.	У	LxV	L
1	2,910	80.014	27
2	3, 117	77.472	25
3	3,429	99, 253	29
	4,550	208,462	46
4 5 6 7	3,006	136, 158	45
6	4,685	131,045	28
7	3,409	125, 444	37
8	2,942	121,868	41
9	2,675	71,649	27
10	3,324	110, 134	33
11	3,724	108,602	29
12	2,584	104, 454	40
13	3,031	98, 507	32
14	2,798	104,663	37
15	3,202	79,983	25
16	2,802	47,414	17
· 17	2,665	59,950	22
18	1,746	28,472	16
19	3, 178	65,874	21
20	4, 244	96,894	23
131	4,737	65, 101	24
Σ	66,758	2,021,413	30 ^M
	Σ¥	EL x V	EL = EL x V

- V: VOLUME OF EARTH WORK L: AVERAGE DISTANCE OF EARTH WORK

Kinds	Calculated Process	Unit	Quantities	Total	Remarks
PROPOSAL PAD- DY FIELD NO.	(LENGTH OF BORDER)		m	
NO.1 _ NO.8	90+92.5+94+95.5+81.5			453.5	
NO.9 ~ NO.21	107+98, 5+92+84+74+69, 5				
	+63+54+47+40+29. 5+2	2		780.5	
NO.22 - NO.41	200x4+100x4+50x4				
	+160+161.5			1,721.5	
NO. 42~ NO.55	100×7+50×5+140			1,090.0	
NO.56 - NO.79	100x7+50x10+340			1,540	
NO. 80 _ NO. 102	100×6+50×11+340			1,490	
NO. 103 - NO. 110	100x4+80			480	
NO.111 ~ NO.114	80x4+80			400	
NO, 115 - NO, 144	200×14+303			3, 103	
NO. 145 ~ NO. 174	202×14+307			3,135	
NO. 175 ~ NO. 190	100x8+165			965	
NO. 191 ~ NO. 197	100×6+100			700	
NO.198 ~ NO.204	100x3+50+85			435	

Kinds	Calculated Process I	Unit Quantities	Total	Remark
PROPOSAL PAD-	(LENGTH OF BORDER)	· · · · · · · · · · · · · · · · · · ·	m	<u>. </u>
DY FIELD NO. NO. 205 ~ NO. 209			417.5	
NO,210 - NO,214	102,5×4		410	
NO.205 - NO.219	80x2+76+49+24+60.5+7+65		441.5	
NO,220 - NO,240	87+110.5+140+170.5+201 x7+220+108		2,243	
NO.241 ~ NO.246	100x3+60x3		480	
NO,247 ~ NO.263	34.5+59.5+80+107+130×5			
	+141	-	1,072	
NO. 264 - NO. 273	100x2+89+79+56+100 +30+22,5+16		592.5	
NO.274- NO.284	85+78+71.5+64.5+56+51.5		·	
	+42+37+31.5+23.5		540.5	
NO,285~ NO,304	100x13+97+94+97.5+103		2 021	
	+108+109+112.5		2,021	
NO. 305 - NO. 320	100x8+160		960	
NO. 321 ~ NO. 334	56+100x9+120		1,070	
NO, 335 ~ NO, 346	100×8+80		880	
NO, 347 - NO. 362	100×10+120		1,120	
NO, 363 - NO, 372	100x6+43.5+28+60		731.5	
NO, 373 ~ NO, 380	100×5+60		560	
NO.381 - NO.390	100x5+82+46.5+60		688.5	
NO.391 ~ NO.400	100×5+100		600	
NO. 401 ~ NO. 410	200x4+61+65+45+80		1,051	
NO.411 - NO.420	204x3+155+140+100+75		1,082	
NO.421 - NO.433	130x2+120+109+97			
	+77×2+140+20		900	
NO. (434)435 NO. 437			204.5	
NO.438 ~ NO.447	100+100×4+47+92		639	
NO.448 ~ NO.452	80+42+12+50×4		334	
NO. 453 - NO. 469	204x6+102x2+94+200+13		1,735	

Kinds	Calculated Process	Unit Quantities	Total Remarks
PROPOSAL PAD- DY FIELD NO.	(LENGTH OF BORDE	R)	m
NO.470 ~ NO.477	123+108+75, 5+60+45+3	2+155	598.5
NO.478 - NO.497	29+100x9+200		1, 129
NO.498 - NO.517	50+100x9+200		1, 150
NO.518 - NO.535	80.5+87+139+146+153.	5	
	+160+168+140+134	.5+80	1,288.5
NO. 536 ~ NO. 570	85+100×160+340		2,025
NO. 571 ~ NO. 578	3 100×4+80		480
NO. 579 ~ NO. 611	97×16+320		1,872
NO. 612 - NO. 618	3 92.5+85+77.5+70+62.5	i	
	+55+47.5+150		640
NO. 619 - NO, 632	2 100×4+96.5+87+79+140	7+53,5	856
NO. 633 - NO. 647	2 100×4+85+17.5+100		602.5
NO.643 - NO.658	8 100x7+66+40+160		966
NO. 659 ~ NO. 67	6 100×9+180		1,080
NO. 677 - NO. 68	4 100x8+160		960
		Σ	50,714.5 ¹¹³

Kinds	Calculated Process	Unit	Quantities	Total	Remark
CULVERT					
CAA				ı	
CAB				2	
CAC				1	
CBA				6	
CBB				2	
CBC				2	
CCA				6	
CCB				24	
ccc				8	
CCD				1	
CCE				1	
FLASH BOARD WEIR					(54
W.A				6	
ВW				7	
wc				28	
					(41
DRAINAGE GULVERT					
D-C-1				1	
D-C-2	v			1	
D-C-3				1	
					(3)

Kinds	Calculated Process	Unit C	vantities.	Total	Remarks
Pasangan Batukali	(0.20x0.60+0.10x0.10x1/2				
_, , ,	+0.20x0.40)x2x3.20+(0.60				
	x0.60x1/2x0.20x4)+(0.10				
	x0.10x1/2x0.60x4 + $(\frac{0.30+0.40}{2} \times 0.20x0.60$				
Reinforced concrete plate	x4)	t _m 3	1,510		
•	1.40x0,60x0,10x5				
	+1,40x0.20x0.10	_m 3	0.448		
Form	Passngan 2x(0.80+0.50+0.14+				
	0.20)x3,20+4x(0.20x0.60)				
	+(0,14x0,60x4)+ (0,60x0.60+0,50x0.50)x4				
	+0.30×0.20×4	m²	12.77		
	concrete				
	0.10x(0.60+1.40)x2x5+				
	0.10x(0.20+1.40)x2	m²	2.32		
		Sırr		15.09	
Reinforcement	\$6 L=0.74 0.74x(14x5))			
	x0.222 kg/m	kg	11.50		
	L=1.54 1.54x(5x5+				
	Z)x0,222 L=0.34, 0.34x14x	kg	9.231		
	0.222	**	1.057		
		kg m³	5.44	21.788	
Excavation Backfilling	2.DDx1.10x4.30 9.46-(1.60x0,60x4.30)	m³	9, 46 5, 33		
. •	7. 30-(1.0000,0003,50)	_{zn} 3	4, 13		
Residual soil		211-	4, 13		

Kinds	Calculated Process	Unit	Quantitles	Total	Remark
Pasangan Batukali	(0,20x0,60+0,10x0,10x1/2				
	+0.20x0.40)x2x2.10+(0.60x				
	0.60x1/2x0.20x4)+(0.10x 0.10x1/2x0.60x4)+($\frac{0.30+0.40}{2}$	<u>2</u>			
	x0,20x0.60x4)	m3	1.059		
Reinforced Concrete plate					
	1,40x0.60x0.10x3+	,			
	1.40×0.30×0.10	m³	0.28		
Form	Pasangan, 2x(0,80+0.50+0.14+				
	0.20)x2.10+4x(0.20x0.60)				
	$+(0.14\times0.60\times4)+(\frac{0.60\times0.60}{2}$				
	+ 0,50x0,50)x4+0,30x0,20				
	*4	m²	9.16		
	Concrete 0, 10x(0, 60+1, 40)x2				
	x3+0.10x(0.30+1.40)x2	m²	1.54		
		m²	1	10.70	
Reinforcement	ø6 L=0.74x(14x3)x0,222 ^{kg/n}	¹ kg	6.90		
	L=1.54x(5x3+3)x0.222	41	6, 15		
	L=0.44x14x0.222	"	1.368		
		kg		14.418	
	2.00x1,10x3,30	m	3 7.26		

Backfilling 7.26-(1.60x0.60x3.30) m³ 4.09

Residual soil 7.26-4.09 m³ 3.17

Kinds	Calculated Process	Unit	Quantities	Total	Remarks
Pasangan Batukali	(0.20x0.60+0.20x0.40)x				
	2x3. 10+(0, 60x0, 60x1/2 x0. 20x4)+(\frac{0.40+0.20}{2}x0. 20				
	x0.60x4)	m	1.528		
Concrete plate	1.00x0.90x0.07x2				
	+1, 10x0, 90x0, 07	m.	0, 195		
Form					
	(0.80+0.60+0.20)x2x3.10 +(0.20x0.60x4)+\frac{0.6x0.6}{2}				
	x4 Concrete	m	11, 12		
	0.07x(0.90+1.00)x2x2				
	+0.07x(0.90+1.10)x2	m	0.812		
		m	:	11.93	
Iron wire	\$4 0.097 kg/m(0.90×7×3				
	+0.80x7x3)	kg	3,46		
Excavation	1.50×1.10×4.30	m	3 7.10		
Backfilling	7.10-(0.80x1.10x4.30)	m	3 3,32		
Residual soil	7.10-3,32		3 3,78		

C B B TYPE

Kinds	Calculated Process	Unit	Quantities	Total	Remarks
Pasangan Batukali	(0.20x0.60+0.20x0.40)x2				
Datukali	x2.10+(0.60x0.60x1/2x0.20 x4)+(0.40+0.20 x0.20x0.60				
	x4)	m³	1,128		
Concrete plate	1.00×0.90×0.07 +				
	1,10x0.90x0.07	m ³	0.132		
Form	Pasangan.				
	(0.80+0.60+0.20)x2x2.10+				
	(0.20x0.60x4)+0.60x0.60				
	x4 concrete	m ²	7. 92		
	0.07x(0.90+1.00)x2+				
	0.07x(0.90+1,10)x2	m ³	0.546	8.47	
Iron wire	ø4 0.097 ^{kg/m} ×(0.90×7				
	x2+0.80x7x2)	kg	2.309		
Excavation	L50x1,10x3,30	m ³	5.45		
Backfilling	5.45-(0.80x1.10x3.30)	m³	2.55		
Residual soil	5.45-2.55	m³	2.90		

CBC TYPE					
Kinda	Calculated Process	Unit	Quantities	Total	Remarks
Pasangan Batukali	(0.20x0.60+0.20x0.40)x 2x1.60+(0.60x0.60x1/2x 0.20x4)+(0.40+0.20 2 x0.20				
	x0.60x4)	m3	0.928		
Concrete Plate	1,00x0.90x0.07+0.60x0.90				
	×0.07	m ³	0.101		
Form	Pasangan. (0.80+0.60+0.20)x2x1.60+ (0.20x0.60x4)+ 0.60x0.60 2	2			
	x4 concrete 0.07x(0.90+1,00)x2+	m ²	6.32		
	0.07x(0.90+0.60)x2	m² m²		6.80	
Iron wire	64 0.097 kg/m x (0.90				
	x7+0.80x7+0.80x4+				
	0.50x7)	kg	1.853		
Excavation	1,50x1,10x2,80	m ³	4.62		
Backfilling	4.62-(0.80x1,10x2,80)	m³	2.16		
Residual soil	4.62 - 2.16	m ³	2.46		
CCA TYPE					
Kinds	Calculated Process	Unit	Quantities	Total	Remarks
Pasangan		Unit	Quantities	Total	Remarks
	(0.20x0,40x2+0.20x	Unit	Quantities	Total	Remarks
Pasangan	(0.20x0.40x2+0.20x 6.90)x3.10+(0.20x	Unit	Quantities	Total	Remarks
Pasangan	(0.20x0.40x2+0.20x 0.90)x3.10+(0.20x 0.90x0.40)x2+	Unit	Quantities	Total	Remarks
Pasangan	(0.20x0.40x2+0.20x 0.90)x3.10+(0.20x 0.90x0.40)x2+ (0.40x0.40x1/2x0.20x		<u>.</u>	Total	Remarks
Pasangan	(0.20x0.40x2+0.20x 0.90)x3.10+(0.20x 0.90x0.40)x2+	Unit	<u>.</u>	Total	Remarks
Pasangan	(0.20x0.40x2+0.20x 0.90)x3.10+(0.20x 0.90x0.40)x2+ (0.40x0.40x1/2x0.20x		1.262	Total	Remarks
Pasangan Batukali	(0.20x0.40x2+0.20x 0.90)x3.10+(0.20x 0.90x0.40)x2+ (0.40x0.40x1/2x0.20x 4)	m	3 1.262 3 0.074	Total	Remarks
Pasangan Batukali	(0.20x0.40x2+0.20x 0.90)x3.10+(0.20x 0.90x0.40)x2+ (0.40x0.40x1/2x0.20x 4) 0.70x1.50x0.07	m³	3 1.262 3 0.074 0.078	Total	Remarks
Pasangan Batukali	(0.20x0.40x2+0.20x 0.90)x3.10+(0.20x 0.90x0.40)x2+ (0.40x0.40x1/2x0.20x 4) 0.70x1.50x0.07	m ³	3 1.262 3 0.074 0.078	Total	Remarks
Pasangan Batukali Concrete(Plate)	(0.20x0.40x2+0.20x 0.90)x3.10+(0.20x 0.90x0.40)x2+ (0.40x0.40x1/2x0.20x 4) 0.70x1.50x0.07 0.70x1.50x0.07 Pasanga. outside (0.60x3.10x2)+(0.40 x0.20+(0.20x0.90x2) inside	m ³	3 1.262 3 0.074 0.078 0.152	Total	Remarks
Pasangan Batukali Concrete(Plate)	(0.20x0.40x2+0.20x 0.90)x3.10+(0.20x 0.90x0.40)x2+ (0.40x0.40x1/2x0.20x 4) 0.70x1.50x0.07 0.70x1.60x0.07 Pasanga. outside (0.60x3.10x2)+(0.40 x0.20+\frac{0.40x0.40}{2})x4 +(0.20x0.90x2)	m ²	3 1.262 3 0.074 0.078 0.152	Total	Remarks
Pasangan Batukali Concrete(Plate)	(0.20x0.40x2+0.20x 0.90)x3.10+(0.20x 0.90x0.40)x2+ (0.40x0.40x1/2x0.20x 4) 0.70x1.50x0.07 0.70x1.60x0.07 Pasanga. outside (0.60x3.10x2)+(0.40 x0.20+0.40x0.40 1.00x0.90x2) inside (0.40x3.10x2)+(0.40x0.40 1.00x0.40x0.40 1.00x0.40x0.40	m ² m ²	3 1.262 3 0.074 0.078 0.152	Total	Remarks
Pasangan Batukali Concrete(Plate)	(0.20x0.40x2+0.20x 0.90x3.10+(0.20x 0.90x0.40)x2+ (0.40x0.40x1/2x0.20x 4) 0.70x1.50x0.07 0.70x1.50x0.07 Pasanga. outside (0.60x3.10x2)+(0.40 x0.20+\frac{0.40x0.40}{2}\)x4 +(0.20x0.90x2) inside (0.40x3.10x2)+(0.40x0.40 x1/2x4) concrete form	m ² m ² m ²	3 1.262 3 0.074 0.078 0.152 4.72	Total	Remarks
Pasangan Batukali Concrete(Plate)	(0.20x0.40x2+0.20x 0.90x3.10+(0.20x 0.90x0.40)x2+ (0.40x0.40x1/2x0.20x 4) 0.70x1.50x0.07 0.70x1.60x0.07 Pasanga. outside (0.60x3.10x2)+(0.40 x0.20+\frac{0.40x0.40}{2}\)x4 +(0.20x0.90x2) inside (0.40x3.10x2)+(0.40x0.40 x1/2x4)	m ² m ² m ² m ² m ²	3 1.262 3 0.074 0.078 0.152 2 4.72 2 2.80 2 0.308 0.322		Remarks
Pasangan Batukali Concrete(Plate)	(0.20x0.40x2+0.20x 0.90x3.10+(0.20x 0.90x0.40)x2+ (0.40x0.40x1/2x0.20x 4) 0.70x1.50x0.07 0.70x1.60x0.07 Pasanga. outside (0.60x3.10x2)+(0.40 x0.20+\frac{0.40x0.40}{2})x4 +(0.20x0.90x2) inside (0.40x3.10x2)+(0.40x0.40 x1/2x4) concrete form 0.07x(0.70+1.50)x2	m ² m ² m ² m ² m ²	3 1.262 3 0.074 0.078 0.152 2 4.72 2 2.80 2 0.308 0.322	Total	Remarks
Pasangan Batukali Concrete(Plate) Form	(0.20x0.40x2+0.20x 0.90x3.10+(0.20x 0.90x0.40)x2+ (0.40x0.40x1/2x0.20x 4) 0.70x1.50x0.07 0.70x1.50x0.07 Pasanga. outside (0.60x3.10x2)+(0.40 x0.20+\frac{0.40x0.40}{2}\rm x4 +(0.20x0.90x2) inside (0.40x3.10x2)+(0.40x0.40 x1/2x4) concrete form 0.07x(0.70+1.50)x2 0.07x(0.70+1.60)x2	m ² m ² m ² m ² m ²	3 1.262 3 0.074 0.078 0.152 2 4.72 2 2.80 2 0.308 0.322		Remarks
Pasangan Batukali Concrete(Plate) Form	(0.20x0.40x2+0.20x 0.90x3.10+(0.20x 0.90x0.40)x2+ (0.40x0.40x1/2x0.20x 4) 0.70x1.50x0.07 0.70x1.50x0.07 Pasanga. outside (0.60x3.10x2)+(0.40 x0.20+\frac{0.40x0.40}{2})x4 +(0.20x0.90x2) inside (0.40x3.10x2)+(0.40x0.40 x1/2x4) concrete form 0.07x(0.70+1.50)x2 0.07x(0.70+1.60)x2	m ² m ² m ² m ² m ²	3 1.262 3 0.074 0.078 0.152 2 4.72 2 2.80 2 0.308 0.322		Remarks
Pasangan Batukali Concrete(Plate) Form	(0.20x0.40x2+0.20x 0.90x3.10+{0.20x 0.90x0.40)x2+ (0.40x0.40x1/2x0.20x 4) 0.70x1.50x0.07 0.70x1.50x0.07 Pasanga. outside (0.60x3.10x2)+{0.40} x0.20+\frac{0.40x0.40}{2}\rm 2x 4+(0.20x0.90x2) inside (0.40x3.10x2)+{0.40x0.40} x1/2x4) concrete form 0.07x(0.70+1.50)x2 0.07x(0.70+1.60)x2 p4mm (0.097kg/m x1.40x5) (0.097x1.50x5)+{0.097x}	m ² m ² m ² m ²	3 1.262 3 0.074 0.078 0.152 2 4.72 2 2.80 2 0.308 0.322		Remarks
Pasangan Batukali Concrete(Plate) Form	(0.20x0.40x2+0.20x 0.90x3.10+(0.20x 0.90x0.40)x2+ (0.40x0.40x1/2x0.20x 4) 0.70x1.50x0.07 0.70x1.50x0.07 Pasanga. outside (0.60x3.10x2)+(0.40 x0.20+\frac{0.40x0.40}{2}\rmanler{0.40x3.10x2}+(0.40x0.40 x1/2x4) concrete form 0.07x(0.70+1.50)x2 0.07x(0.70+1.50)x2 64mm (0.097 kg/m x1.40x5) (0.097x1.50x5)+(0.097x 0.60x51)	m ² m ² m ² m ² kg	3 1.262 3 0.074 0.078 0.152 2 4.72 2 2.80 2 0.308 0.322		Remarks

Kinds	Calculated Process	Unit	Quantities	Total	Remarks
Pasangan	(0.20.0.40.0.0.0.40.10.				
Batukali	(0.20x0.60+0.10x0.10x1/2+ 0.20x0.40)x2x1.60+				
	(0.60x0.60x1/2x0.20x4)				
	$+(0.10\times0.10\times1/2\times0.60\times4)$ +(0.30+0.40) $\times 0.20\times0.60\times4)$	3	0.854		
Reinforced Concrete Plate	•	411	0.034		
Concrete Plate	1.40x0.60x0.10x2+ 1.40x0.40x0.10	m³	0.224		
	Pasangan.	131	0.224		
	2x(0.80+0.50+0.14+0.20) x1.60+4x(0.20x0.60)+(0.14				
	×0.60×4)+(0.60×0.60 +				
	A CAA CA	m ²	12.77		
	2 /ATTO: SONO: EURY	ш	15. 77		
	0.10x(0,60+1.40)x2x2+				
	0.10x(0,40+1,40)x2	m²	1.20		
		m ²		13. 97	
Reinforcement	ø6 L=0.74 0.74x(14x2)				
	×0,222	kg	4.60		
	L=1.54 1.54×(5×2+4)	11			
	x0.222		4.786		
	L=0.54 0.54x14x0.222	"	1.678		
		kg		11.064	
		_			
Excavation	2,00x1,10x2,80	m³	6. 16		
Backfilling	6.16-(1.60×0.60×2.80)	m³	3,47		
Pasidual Call	6 16-3 47	3	2.40		
Residual Soil	6, 16-3, 47	_m3	2,69		<u> </u>
ссв түре					
CCB TYPE	6, 16-3, 47 Calculated Process		2,69 Quantities	Total	Remark
ссв түре				Total	Remark
CCB TYPE Kinds Pasangan				Total	Remark
CCB TYPE Kinds Pasangan	Calculated Process			Total	Remark
CCB TYPE Kinds Pasangan	Calculated Process (0.20x0.40x2+0.20x0.90)	Unit	Quantities	Total	Remark
CCB TYPE Kinds Pasangan Batukali	Calculated Process (0.20x0.40x2+0.20x0.90) x2.10+(0.20x0.90x0.40) x2+(0.40x0.40x1/2x0.20x4)	Unit m ³	Quantities 0.922	Total	Remark
CCB TYPE Kinds Pasangan	Calculated Process (0.20x0.40x2+0.20x0.90) x2.10+(0.20x0.90x0.40)	Unit m ³	Quantities	Total	Remark
CCB TYPE Kinds Pasangan Batukali	Calculated Process (0.20x0.40x2+0.20x0.90) x2.10+(0.20x0.90x0.40) x2+(0.40x0.40x1/2x0.20x4) 0.70x1.50x0.07	Unit m ³ m ³	Quantities 0.922 0.074	Total 0.103	Remark
CCB TYPE Kinds Pasangan Batukali	Calculated Process (0.20x0.40x2+0.20x0.90) x2.10+(0.20x0.90x0.40) x2+(0.40x0.40x1/2x0.20x4) 0.70x1.50x0.07	Unit m ³	Quantities 0.922 0.074		Remark
CCB TYPE Kinds Pasangan Batukali	Calculated Process (0.20x0.40x2+0.20x0.90) x2.10+(0.20x0.90x0.40) x2+(0.40x0.40x1/2x0.20x4) 0.70x1.50x0.07 0.70x0.60x0.07	Unit m ³	Quantities 0.922 0.074		Remark
CCB TYPE Kinds Pasangan Batukali Concrete plate	Calculated Process (0.20x0.40x2+0.20x0.90) x2.10+(0.20x0.90x0.40) x2+(0.40x0.40x1/2x0.20x4) 0.70x1.50x0.07 0.70x0.60x0.07	Unit m³ m³	Quantities 0.922 0.074		Remark
CCB TYPE Kinds Pasangan Batukali Concrete plate	Calculated Process (0.20x0.40x2+0.20x0.90) x2.10+(0.20x0.90x0.40) x2+(0.40x0.40x1/2x0.20x4) 0.70x1.50x0.07 0.70x0.60x0.07 Pagangan Aut side (0.60x2,10x2)+(0.40	Unit m³ m³	Quantities 0.922 0.074		Remark
CCB TYPE Kinds Pasangan Batukali Concrete plate	Calculated Process (0.20x0.40x2+0.20x0.90) x2.10+(0.20x0.90x0.40) x2+(0.40x0.40x1/2x0.20x4) 0.70x1.50x0.07 0.70x0.60x0.07 Pasangan Aut side (0.60x2.10x2)+(0.40 x0.20+(0.40x0.40)/2 x4+(0.20/x0.90x2)	Unit m³ m³	O. 922 0. 074 0. 029		Remark
CCB TYPE Kinds Pasangan Batukali Concrete plate	Calculated Process (0.20x0.40x2+0.20x0.90) x2.10+(0.20x0.90x0.40) x2+(0.40x0.40x1/2x0.20x4) 0.70x1.50x0.07 0.70x0.60x0.07 Pasangan Aut side	Unit m ³ m ³ "	O. 922 0. 074 0. 029		Remark
CCB TYPE Kinds Pasangan Batukali Concrete plate	Calculated Process (0.20x0.40x2+0.20x0.90) x2.10+(0.20x0.90x0.40) x2+(0.40x0.40x1/2x0.20x4) 0.70x1.50x0.07 0.70x0.60x0.07 Pasangan Aut side (0.60x2.10x2)+(0.40 x0.20+ 2 x4+(0.20 x0.90x2) Inside	Unit m ³ m ³ "	O. 922 0. 074 0. 029		Remark
CCB TYPE Kinds Pasangan Batukali Concrete plate	Calculated Process (0.20x0.40x2+0.20x0.90) x2.10+(0.20x0.90x0.40) x2+(0.40x0.40x1/2x0.20x4) 0.70x1.50x0.07 0.70x0.60x0.07 Pasangan Aut side (0.60x2.10x2)+(0.40 x0.20+0.40x0.40 2 x4+(0.20 x0.90x2) Inside (0.40x2.10x2)+(0.40x	m ³ m ³ " m ² m ²	Quantities 0.922 0.074 0.029		Remark
CCB TYPE Kinds Pasangan Batukali Concrete plate	Calculated Process (0.20x0.40x2+0.20x0.90) x2.10+(0.20x0.90x0.40) x2+(0.40x0.40x1/2x0.20x4) 0.70x1.50x0.07 0.70x0.60x0.07 Pasangan Aut side (0.60x2,10x2)+(0.40 x0.20+0.40x0.40 2 x4+(0.20 x0.90x2) Inside (0.40x2.10x2)+(0.40x 0.40x1/2x4)	m ³ m ³ " "	Quantities 0.922 0.074 0.029		Remark
CCB TYPE Kinds Pasangan Batukali Concrete plate	Calculated Process (0.20x0.40x2+0.20x0.90) x2.10+(0.20x0.90x0.40) x2+(0.40x0.40x1/2x0.20x4) 0.70x1.50x0.07 0.70x0.60x0.07 Pasangan Aut side (0.60x2.10x2)+(0.40 x0.20+0.40x0.40 2 x4+(0.20 x0.90x2) Inside (0.40x2.10x2)+(0.40x 0.40x1/2x4) Concrete	m ³ m ³ m ³ m ² m ² m ²	Quantities 0.922 0.074 0.029 3.52 2.00		Remark
CCB TYPE Kinds Pasangan Batukali Concrete plate Form	Calculated Process (0.20x0.40x2+0.20x0.90) x2.10+(0.20x0.90x0.40) x2+(0.40x0.40x1/2x0.20x4) 0.70x1.50x0.07 0.70x0.60x0.07 Pasangan Aut side (0.60x2.10x2)+(0.40 x0.20+	m ³ m ³ " m ² m ² m ²	0.922 0.074 0.029 3.52 2.00		Remark
CCB TYPE Kinds Pasangan Batukali Concrete plate Form	Calculated Process (0.20x0.40x2+0.20x0.90) x2.10+(0.20x0.90x0.40) x2+(0.40x0.40x1/2x0.20x4) 0.70x1.50x0.07 0.70x0.60x0.07 Pasangan Aut side (0.60x2.10x2)+(0.40 x0.20+0.40x0.40 2 x4+(0.20 x0.90x2) Inside (0.40x2.10x2)+(0.40x 0.40x1/2x4) Concrete 0.07x (0.70+1.50)x2 0.07x(0.70+0.60)x2	m ³ m ³ m ³ m ² m ² m ²	0.922 0.074 0.029 3.52 2.00	0, 103	Remark
CCB TYPE Kinds Pasangan Batukali Concrete plate	Calculated Process (0.20x0.40x2+0.20x0.90) x2.10+(0.20x0.90x0.40) x2+(0.40x0.40x1/2x0.20x4) 0.70x1.50x0.07 0.70x0.60x0.07 Pasangan Aut side (0.60x2.10x2)+(0.40 x0.20+	m ³ m ³ m ³ m ² m ² m ²	0.922 0.074 0.029 3.52 2.00	0, 103	Remark

Excavation 1.40x0.90x2.50 m³ 3.15

Backfilling 3.15-(0.90x0.60x2.50) m³ 1.35

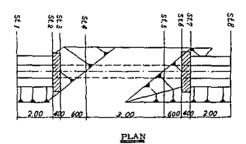
Residual soil m³ 1.80

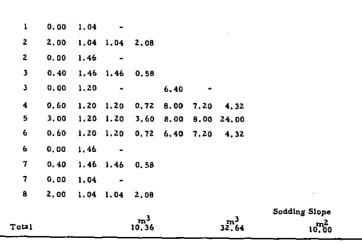
CCC TYPE					
Kinds	Calculated Process	Unit	Quantities	Total	Remarks
Pasangan Batukali	(0.20x0.40x2+0.20x0.90) x1.60+(0.20x0.90x0.40)				
	x2+0,40x0,40x1/2x0,20x4)	m3	3 0.752		
Concrete plate	0.70x1.60x0.07	m	0.078		
Form	Passangan Aut side (0.60x1.60x2)+(0.40x0.20 +0.40x0.40)x4 +(0.20x0.9	0			
	x2) Inside (0,40x1,60x2)+(0.40x0.40	m	2 2.92		
	x1/2x4)	•	1.60		
	Concrete				
	0.07x(0.70+1.60)x2	1	0.322		
		m	2	4.84	
Iron wire	\$4mm 0.097 kg/m x1.50x5	kį	3 '		
	+(0.097x0.60x11)		1.37		
Excavation	1,40x0.90x2.00	m	3 2.52		
Backfilling	2.52-(0,90×0.60×2.00)		1.44		
Residual soil			1,08		

CCD TYPE

Kinds	Calculated Process	Unit	Quantities	Total	Remarks
	m N L=0.84 x (13x4+15) x 0,222 ^{kg/m}	kg	12,494		
•	L=1,34x(5x4)x0,222	11	5.950		
	L=1.54 x 5 x 0.222			1,709	
		kg		20, 153	
Excavation	1.50×1.00×7.00	m ³	10.50		
Backfilling	10.50-(0.90x0.70x7.00)	m³	6.09		
Residual soil		m³	4.49		
Pasangan Batuks li	(0.20x0.40x2+0.30x0.90) x6.20+(0.30x0.90x0.40x2)			•	
	+(0.40x0.40x1/2x0.20x4)	m ²	2.946		

Reinforced concrete (plate) (0.70x1.20x0.10x4) +(0.70x1.40x0.10) m³ 0,434 Pasangan, Aut side Form (0.70x6.20x2)+(0.40x 0.30+0.40x0.40x1/2)x4 +(0.30x0.90x2) Inside (0.40x6.20x2)+ m³ 10.98 (0.40x0.40x1/2x4) m² 5,28 Concrete 0.10x(0.70+1.20)x2x4 m² 1.94 +0.10x(0.70+1.40)x2 m² 18.20 Reinforcement 5)120 \$ 6 m = 840 0.222 m/m 1300 L = 1.540

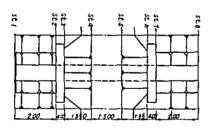

WA TYPE


Kinds	Calculated Process	Unit	Quantities	Total	Remarks
Cobble stone concrete	{(2.40 x 1.05)-(1.10x0.55)				
	+(0.05x0.05x1/2x2) }				
	x 0.30-(0.06x0.06x0.55)x2	m ³	0.571		
Form	(2,40×1.05-1.10×0.55				
	+0,55×0.05×1/2×2) ×2+(1.05×0,30×2)				
	+ (0.30x0.55+(0.06+				
	0,06)x0.55 } x2	m²	4.928		
	0.00,00.55 / x2	m	4.748		
Rip rap *	$ \begin{array}{l} {1,00+1,20 \atop 2} & \times 0.20 + \\ {0,30+0,35 \atop 2} & \times 0.20 \times 2) \times 0.80 \end{array} $	m³	0.28		
Shuttering board	W H t 1200 x 500 x 50		1		
Excavation	$\frac{3,10+2.60}{2}$ x 0,50 x 0.75	۸Ľ			
	+ *0.28	m³	1.35		
Backfilling	1.35-(0.50x2.40x0.30)	11	0.99		
Residual soil	1.35 = 0.99	11	0.36		

C C E TYPE					
Kinde '	Calculated Process	Unit	Quantities	Total	Remarks
Pasangan Batukali	(0.20x0.40x2+0.30x0.90)				
Datama.	x920+(0, 30x0, 90x0, 40				
	x2)+(0.40x0.40x1/2x0.20				
	x4)	m ³	4,236		
	,				
Reinforced					
concrete plate	/n 70-1 70-0 10-7\4				
	(0.70x1.20x0.10x7)+	1			
	(0.70×0.80×0.10)	m ³	0,644		
	Pasangan.				
Form	Autside				
	(0.70x9.20x2)+(0.40x				
	0.30+0.40×0.40×1/2)×4				
	+(0.30x0,90x2) Inside	m²	15, 18		
	(0,40x9,20x2)+				
	(0.40x0.40x1/2x4)	m_{S}	7.68		
	Concrete				
	0.10x(0.70+1.20)x2x7+				
	0.10x(0.70+0.80)x2	m²	2,96		
	, ,	tn2		25.82	
Reinforcement	L=0.84 ^m 0.84x(13x7+9)	m-		23.04	
Kannorcement	x0.222 kg/m	L	18,648		
	•	kg			
	L=1.34 ^m 1.34x(5x7)x0.222 L=0.94 ^m 0.94x5x0.222	117 69	10,412		
	L=0.94 0.94x5x0.222		1.043		
		kg		30, 103	
Excavation	1.50x1,00x10.00	m ³			
Backfilling	15.00-(0,90x0.70x10,00)	m ³	8.70		
Residual soil		m³	6.30		
W C TYPE					
Kinds	Calculated Process	Unit	Quantitie	Total	Remarks
Cobble stone					
concrete	((1.30×0.65)-(0.40×0.35)				
	+(0.05x0.05x1/2x2)) x0.30				
	-(0.06x0.06x0.35x2)	m³	0,210		
	-{0.000,00x0,00x0,	m	0,210		
Form	(1.30x0,65-0,40x0,35+				
•	0.05x0.05x1/2x2)2+				
	(0.65x0.30x2)+{(0.30				
	x0.35+(0.06+0.06)x0.35	_			
) x2	m ²	2,10		
RIP rap *	$(\frac{0.30+0.50}{2} \times 0.20+$				
	$\frac{(0.30+0.50 \times 0.20+}{2 \times 0.20 \times 2} \times 0.20 \times 2)$				
	×0.50	m ³	0.085		
Shuttering board	W H t 500x300x50		1		
Evenueten	1.50+1.80 x0.30x				
Excavation	Mean Wt				
	0.65+0.085	m³	0,41		
		_			
Backfilling	0.41-(0.30x1.30x0.30)	m ³	0.29		
		m ³	0.12		
Residual Soil					

WB TYPE					
Kinds	Calculated Process	Unit	Quantities	Total	Remarks
Cobble stone					
	((1.90x1.05)-(0.60x0.55)				
	+(0,05x0,05x1/2x2))				
	x0.30-(0.06x0.06x0.55				
	x2)	m ³	0.496		
Form	(1.90x1.05-0.60x0.55+				
	0.05x0.05x1/2x2)x2				
	+(1,05x0,30x2)+((0,30				
	x0.55+(0.06+0.06)x0.55}	_			
	x2	m²	4.427		
Rip rap	* (0.50+0.70 x0.20+				
	$\frac{0.30+0.35}{2}$ x0.20x2)x0.80	m ³	0,20		
Shuttering boar					
	W 700 A H500 x 50		1		
Excavation	$\frac{2.80+2.10}{2} \times 0.50 \times 0.75$				
	+ *0.20	m ³	1.14		
Backfilling	1.14-(0.50×1.90×0.30)	11	0.86		
Residual soil	1.14 - 0.86		0.28		

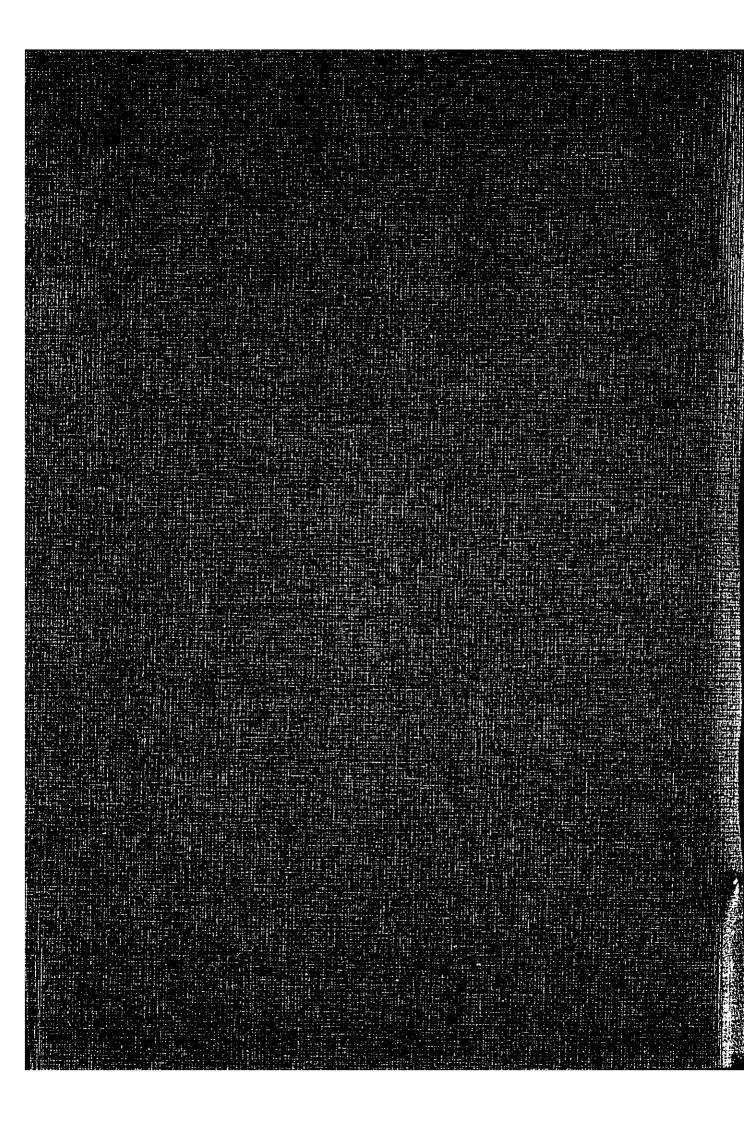
D-C-1



n	- 0	٠.	

D-U-1					
Kinda	Calculated Process	Unit	Quantitles	Total	Remarks
Pasangan Batukali	$(\frac{0.90 + 2.00}{2} \times 1.20$ $-\frac{0.60 + 1.60}{2} \times 100) \times 2.00$ $\times 2$	m ³	2,660		
	$\left\{ \left(\frac{0.20+0.40}{2} \times 1.40 + 0.40 \times 0.60 \right) \times 2.00 - \left(0.30^2 \right) \right\}$	m³	2.442		0
	x 3, 14 x 0.35)) x 2	m	2,444		
		m³		5.002	
Form	(1.118 + 1.342) x 2 x 2.00 x 2 + 0.64 ^{m2} x 2	m _S	20.96		A- 014 "
	$\{2.00 \times 2.00 - (0.64^{\text{m}^2} + 0.30^2 \text{m}\} + (2.00 \times 2.00 - 0.30^2 \text{m}\} + (\frac{0.20+0.40}{2})$				
	x 1,40 + 0.40 x 0.60) x 2 } x 2	m²	16,228		
		m ²		37.188	
Sand bed	(1,20+1,80) x 1/2 x 0,30 x 4,20	m³		1.890	
Corrugated metal pipe	ø 600 ^{tn/m} t 2 ^{mm}	m		5.000	

D-C-2



PLAN

1	0.00	1.88	-		-			
2	2.00	1.88	1.88	3.76	-			
2	0.00	3.75	-		-			
3	0.40	3.75	3,75	1.50	-			
3	0.00	1.00	-		6.00			
4	1,35	1.00	1,00	1.35	10.00	8,00	10.80	w=4,000
5	1,50	1.00	1.00	1,50	10.00	10.00	15.00	"
6	1.35	1.00	1,00	1.35	6.00	8.00	10.80	ш
6	0,00	3,75	-		-			
7	0.40	3.75	3,75	1.50	-			
7	0.00	1.88	-		-			
8	2.00	1.88	1.88	3.76	-			
				m ³			m ³	Sodding Slope $m m m^2$ $3.6 \times 4.0 \approx 14.40$
Total				14.72			36.60	3.6 x 4.0 ≈ 14.40

D-C-							
Kin		Calcu	lated Process	Unit (Quantities	Total	Remarks
Pasang Batuka	-		-				
2701420	••	2,50 4	1.15 x 1.55 -				
		2.10 + 6	2.00 × 1.30) × 2.0	10			
		_					
		x 2		m ³	3.776		
		{ (0, 20 +	+ 0.40 × 1.60 + 0.	40			السيا
			х 3,00 - 0.40 ² я				
		x 0.35}	3	m ³	3.968		
		X 0.33,	~ 4	***	3. 700		
				,			
				m3		7.744	100
Form							TAI.
		(1	.456 + 1.733) x 2				
		x 2.00 x	(2 + (0.944 x 2)	m ²	27.40		1 = 0 944
		{ 3. nn →	m ² 2.20 = 10 944				
		2	2.20 - (0.944				150
		+ 0.40π) + 3.00 × 2.20				TROA!
		- (0,404	$(\pi) + (\frac{0.20+0.40}{2})$				\vee
		× 1.60 +	+ 0,40 × 0,60) × 2	<u> }</u>			
		x Z		m^2	25.382		
				m²		52,782	
				141		32,102	
_	_						
Sand be	ed	(1.60 ×	$2.20) \times 1/2 \times 0.3$	0 x			
		4.20		m³		2,394	
						2,394	
Corrus			/m _{t 2} mm	m³			
Corrus metal 1	pipa	ø 750 ^m ,	/m _{t 2} mm			2,394 5.000	
		ø 750 ^m ,	/m _{t Z} mm	m³			
	pipa	ø 750 ^m ,		m ³	to 10		
	pipa	ø 750 ^m ,		m³	ST 8		 -
	pipa	ø 750 ^m ,		m ³	ST 7		
	pipa	ø 750 ^m ,		m ³	\$1.7 \$1.7		
	pipa	ø 750 ^m ,		m ³	\$18		
	pipa	ø 750 ^m ,		m ³	57.7		
	pipa	ø 750 ^m ,		m ³	\$7.6		
	pipa	ø 750 ^m ,		m sst	\$1.7 \$1.6		
	pipa	\$ 750 ^m	57.4	m sst	\$17 \\ \$5.76		
	pipa	\$ 750 ^m	57.4	m sst	\$17 \\ \$76 \\ 85 48		
	pipa	\$ 750 ^m	2.85 150	m sst	S78 S78 48		
	pipa	\$ 750 ^m	2.85 150	m sst	S76 S76 48		
metal 1	D-C-3	2.00 400	2.85 1.50 PLAN 0.29	m strain and a str	1 1		
metal 1	D-C-3	2.00 100	2.85 150 PLAN 0.29 0.56 0.29 0.	m ³ m 57.51	1 1		
1 2 2	D-C-3	0.28 - 0.28 0.28 1.32 -	2.85 /50 PLAN 0.29 0.56 0.29 0 6.75	m ³ m 57.51	8		
1 2 2 3	D-C-3	0.28 - 0.28 1.32 1.32 1.32	2.85 /50 PLAN 0.29 0.56 0.29 0 6.75 0.53 6.75 6.	m sq sq sq sq sq sq sq sq sq sq sq sq sq	8 - 0		
1 2 2 3 4	D-C-3	0.28 - 0.28 0.28 1.32 1.32 1.16	2.85 /50 PLAN 0.29 0.56 0.29 0 6.75 0.53 6.75 6, 3.31 16.50 11	m sq sq sq sq sq sq sq sq sq sq sq sq sq	8 - 0 5		w=5,00
1 2 2 3	D-C-3	0.28 - 0.28 1.32 1.32 1.32	2.85 /50 PLAN 0.29 0.56 0.29 0 6.75 0.53 6.75 6. 3.31 16.50 11	m sq sq sq sq sq sq sq sq sq sq sq sq sq	8 - 0 5		
1 2 2 3 4	D-C-3	0.28 - 0.28 0.28 1.32 - 1.32 1.32 1.00 1.16 1.00 1.00	2.85 /50 PLAN 0.29 0.56 0.29 0 6.75 0.53 6.75 6. 3.31 16.50 11. 1.50 16.50 16.	m ³ m 29 29 3,5 - 75 2.7 63 33.1 50 24,7	8 - 0 5 5		w=5,000 w=5,000
1 2 2 3 4 5	0.00 2.00 0.40 2.85	0.28 - 0.28 0.28 1.32 - 1.32 1.32 1.00 1.16 1.00 1.00 1.32 1.16	2.85 /50 PLAN 0.29 0.56 0.29 0. - 6.75 0.53 6.75 6. 3.31 16.50 11. 1.50 16.50 16. 3.31 6.75 11.	m ³ m 29 29 3,5 - 75 2,7 63 33,1 50 24,7 63 33,1	8 - 0 5 5		w=5,00
1 2 2 3 4 5 6 7	0.00 2.00 0.40 2.85 0.40	0.28 - 0.28 0.28 1.32 - 1.32 1.32 1.00 1.16 1.00 1.32 1.16 1.32 1.32	2,85 /50 PLAN 0,29 0,56 0,29 0, - 6,75 0,53 6,75 6, 3,31 16,50 16, 1,50 16,50 16, 3,31 6,75 11, 0,53 6,75 6,	75 2.7 63 33.1 50 24.7 63 3.1 75 2.7	8 - 0 5 5 5		w=5,00
1 2 2 3 4 5 6 7 7	0.00 2.00 0.40 2.85 0.40	0.28 - 0.28 0.28 1.32 - 1.32 1.32 1.00 1.16 1.00 1.32 1.16 1.32 1.32 0.28 -	2.85 /50 PLAN 0.29 0.56 0.29 0 6.75 0.53 6.75 6. 3.31 16.50 16. 3.31 6.75 11. 0.53 6.75 6 0.29	m 57 57 57 57 57 57 57 57 57 57 57 57 57	8 - 0 5 5 5		w=5,00
1 2 2 3 4 5 6 7	0.00 2.00 0.40 2.85 0.40	0.28 - 0.28 0.28 1.32 - 1.32 1.32 1.00 1.16 1.00 1.32 1.16 1.32 1.32 0.28 -	2,85 /50 PLAN 0,29 0,56 0,29 0, - 6,75 0,53 6,75 6, 3,31 16,50 16, 1,50 16,50 16, 3,31 6,75 11, 0,53 6,75 6,	m 57 57 57 57 57 57 57 57 57 57 57 57 57	8 - 0 5 5 5 0 - 8	5.000	w=5,00
1 2 2 3 4 5 6 7 7	0.00 2.00 0.40 2.85 0.40	0.28 - 0.28 0.28 1.32 - 1.32 1.32 1.00 1.16 1.00 1.32 1.16 1.32 1.32 0.28 -	2.85 /50 PLAN 0.29 0.56 0.29 0 6.75 0.53 6.75 6. 3.31 16.50 16. 3.31 6.75 11. 0.53 6.75 6 0.29	m 57 57 57 57 57 57 57 57 57 57 57 57 57	8 - 0 5 5 5 6 - 8	5.000	w=5,00

D-C-3					
Kinds	Calculated Process	Unit	Quantities	Total	Remarks
Pasangan Batukali	$(\frac{1.90+1.40}{2} \times 1.20 - \frac{150+1.0}{2} \times 1.00) \times 2.00 \times 2$		2.92		00
	$\begin{cases} \left(\frac{0.20+0.40}{2} \times 1.40 + 0.60 \right. \\ \times 0.40 \right) \times 2.20 - 0.30^{2} \pi \times \\ 0.35 \right) \times 2 \end{cases}$	m³	2.706		0
		m³		5.626	
Form	$ (1.118 + 1.342) \times 2 $ $ \times 2.00 \times 2 + 0.73^{m^2} \times 2 $ $ \times 2.00 \times 2.00 - (0.73 + 0.30^{m}) + (2.20 \times 2.00 - 0.30^{2}) + (\frac{0.20 + 0.40}{2} \times 1.40 + 0.40 \times 0.60) \times 2 $		21.14		A-073='
	x 2	m-	17.65		
		m²	1	38.79	
Sand bed	(1.20 + 1.80) × 1/2 × 0.30 × 7.20	m ³	ı	3,24	
Corrugated metal pipe	\$ 600 min t 2 mm	m		8.000	

