7.2.2 Traffic Control Devices

It is imperative that traffic control devices should be unified in type to insure correct interpretation by all road users. Unified type enables road users to judge always spontaneousiy under the similar situation in the same say. The use of uniform traffic control devices does not, in itself, constitute uniformity. Unified traffic devices when they are not appropriate the devices are objectable as non-unified devices.

Traffic control devices consist of road markings, traffic signs and traffic signals to regulate, warn or guide traffic.

(1) Pavecent Markings

Pavement tarkings are particularly iaportant to help the proper control of vehicular and pedestrian traffic. They are not only used to supplement other devices, but are used alone to induce effects that cannot be expected by the use of any other devices. Generally, there are two kinds of marking for roadway as follows:
(a) Continous centerlines for separating traffic travelling in opposite directions and pavement edge lines;
(b) Broken lane lines for separating lanes of traffice; and
(c) Pavenent edge lines.

It is also a kind of traffic cown sense that drivers are not allowed to cross yellow continuous lens lines. Narkings at sígnalized intersections consist of crosswalks, stop lines, no-passing zones, symbol arrok and channelization etc, and contribute to increase traffic capacity by regulating traffic flows and reduce pedestrian accidents.
(a) Crosswalk lines at signalized intersections and across intersectional approaches on which traffic stops, serve priearily to guide pedestrians in the proper paths. Crosswalk lines across roadways on which traffic is not controlled by traffic signals, wust also serve to warn the drivers of a pedestrians* crossing point.

In the following iters attention must be paid on installation of crosswalk lines at intersections;
i) To install crosssalk lines as near to the center of intersection as possible and across roadway at right angle;
ii) To install crosswalk lines at points where drivers can recognize easily;
iii) Crosswalk width should be deterained by pedestrian volume; hovever, the miniour width is 4 m on arterial streets and 2 a on minor streets.
(b) Stop lines (or linit lines) should be applied in the area where it is important to indicate the point, behind which vehicles are required to stop, in compliance with a STOP sign, traffic signal, or
other legal requirements. Stop lines, where used, should ordinarily be placed 1 - 2 m in advance of and parallel to the nearest crosswalk lines. In the absence of a crossualk line, a stop line should be applied at the desired stopping point where it has enough sight distance for drivers to recognize vehicles on the intersecting roadway.
(c) No-passing-zone markings and symbol arrow markings at typical intersections are shown in Fig. 7.2.5

Fig. 7.2.5 Typical Locations of Sypbol Arrous

No-passing zone markings behind stop line are usually continuous 30 m long and any traffic cannot be perwitted to change its lane within this zone. Sybolol arrous should be repeated in advance of entering eandatory turn off lanes, when necessary, to prevent entrapeent and to help drivers select the appropriate lane before reaching the end of waiting line of vehicles.
(d) Channelizing Lines

It is usually advisable to use channelizing lines for right-turn traffic at such intersections as follow:
i) Intersection with right-turn off lane by shifting centerline;

Fig. 7.2.6 Channelization Marking on Road Without Median
ii) Intersection where one of intersecting roads has a median;

Fig. 7.2.7 Channelization Marking on Road Hith Median
iii) Intersection without insufficient road space for a traffic island and with an island in zebra and channelizing lines.

Fig. 7.2.8 Channelization by Traffic Markings

(2) Traffic Signals

Traffic control signals properly located and operated, usually have one or more of following advantages:
(a) They can guide the orderly traffic flows;
(b) If proper physical layouts and control measures are used, they can increase the traffic-handing capacity of the intersection;
(c) They can reduce the frequency of certain type of traffic accidents, especially at right-angle type intersections;
(d) Under favorable conditions, they can be coordinated to allow continuous or nearly continuous movement of traffic at a definite speed along a given route;
(e) They can be used to interrupt heavy trafic at intervals to permit other traffic, vehicular or pedestrian, to cross.

Traffic control signal installations, even though warranted by traffic and roadway conditions, might be ill-designed, ineffectively placed, improperly operated, or poorly maintained.

The following situations can result from improper or unwarranted signal installations:
(a) Excessive delay may be caused;
(b) Disobediance of the signal indications is encouraged;
(c) The use of less adequate routes may be induced in an attespt to avold such signals;
(d) Traffic accident frequency, especially in the rear-end type collision may be significantly increased.

Standing on the viewpoint of traffic voluee, it is advisable that traffic signal installation can be warranted by using the folloning criteria shown in Fig. 7.2.9.

Traffic volute of main street, totaling both direction (veh/h) in Peak Hour.

Fig. 7.2.9 Criteria for Traffic Signal Installation by Traffic Voluce
The primary consideration in installing a signal at an intersection is the driver's visibility from his stopping position, which is affected by distance and the direction to signal face. Drivers approaching a signalized intersection or other signalized area, such as mid-block crosswalk, shall be given a clear and unnistakable indication of their route assigneent. The desirable location of signal faces is shown in Fig. 7.2.10.

Fig.7.2.10 Desirable Location of Signal Faces

When the nearest signal face is more than 36 beyond the stop line, a supplerental near side signal indication shall be provided. Near side signals should be located as near as practicable to the stop line.

Installing effective traffic signs on urban arterkal streets is of vital importance for safe operation and smooth traffic flow. Traffic signs must be designed primarily for the sake of drivers who are not famlier with local roads so that they will tend to react promptly, naturally and safely'to the traffic conditions encountered.

Important qualities of traffic signs are target value, priority value, legibility and recognition. This means high visibility, lettering or symbols of adequate size and color, and short legend for quick comprehension by drivers approaching signs.

Fig. 7. 2.11 shows the typical locations of guide sign installation.

Fig. 7.2.11 Typical Locations of Guide Sign Installation

An example showing location of regulatory signs in the area where oneway traffic control is in force is shown in Fig. 7.2.12.

Fig. 7.2.12 Locations of Regulatory signs in the area where One-vay Traffle Control is in Force

7.3 Proposed Improvement Plans

7.3.1 Railway Plan

(1) Itprovevent of Railway Crossings

The following icporvecents are proposed in order to reduce hindrance to the road traffic and to rake safety of train operation.

(a) Installation of Device to Inform Approaching of Trains

There exists presently not any device to inform approaching of trains to gate-men as sell as to road users. Such device is necessary to reduce the tice to close road trafflc at crossings, which system is shown in Fig. 7.3.1. The distance from main apparatus to outer relays are about one kiloweter in case that the eaximum speed of trains is $\$ 9 \mathrm{~kg} / \mathrm{h}$.

(b) IGproverent of Barriers

The existing barriers of crossings do not cover the whole width of roads, and only case installed at one side of raflway tracks on oneuay road. Such barriers can not stop road traffic effectively. Some of road vehicles and pedestrians come into crossings easily even when gates are closed. Therefore some of crossing barriers in the CBD are to be replaced will the type of barriers which cover the whole width of roads on both sides of tracks. Sèveral types of barriers are shown in Fig. 7.3.2. The number of lacation of those crossings to be improved is twelve. (Refer to Table 7-3-1).

(c) Installation of Cabins for Gate-ren

There are soze crossings without a cabin for gate-men. Cabins are to be installed at those crossings in order to install devices in thea to inform gate-men approaching of trains and to prepare rooiss for gate-men. Nubber of cabins to be constructed is five. (Refer to Table 7-3-1).
(d) Iuporvecent of Pavement at Crossings

Paverent at cany crossings in the CBD is deterforated which hinders seocth road traffic flows at with the materials of high durability. A kind of such pavesent is shown in Fig. 7.3.3. The reinforced concrete block pavement is adopted in this proposal. The number of crossings to be rehabilitated is seventeen. (Refer to rable 7-3-1).

6uissojs Romplod

\section*{| $\begin{array}{l}\text { Fig. 7. 3. } 1 \\ \text { Device to Inform Approaching Troin }\end{array}$ |
| :--- |
| Medon Aree Tronsportation Stucy |}

Up a Down Type

Stiding Type

Fig. 7.3.2
Types of Manuafly Operated Ctossing Barrier

Note: Reinforces concresto blocks are eosily removed whon it is noeestary to tomp bollast for the
Standard Cross, Soction of
Railway Crossing at Grade
Modan Area Tronsportation Study
Table 7-3-2 Summary of Ratiway Crossings to be Improved, Medan area

\cdots Section	Locasion	Name of Roads	Train Approach Imforming Device	Barrier	$\begin{aligned} & \text { Cabin } \\ & \text { for } \\ & \text { Gate-men } \end{aligned}$	Pavement
Mcdan-Bclawan	km .					
	$\begin{aligned} & 0.342 \\ & 0.699 \end{aligned}$	J1. Prof. H. M. Yamin	x	x		x
	2.138 2.159	J1. Karantina	\times	x		x
	3.492	Jn. Kazanesina				x
	3.688	J2. J1. Budi Pembanguman				\times
	3.987					\times
	4.368	J1. Comara	x	x		X
Medan -Lubuk Rakam	0.600	J1. Nusameara	x	x		x
	1.083	J2. Panca	x	x		X
	2.164	J1. Mahkamah	x	x	X	X
	1.324	J2. Singamangaraja	x	\times		\times
	1.675	J1. Sucomo	X	x		\mathbf{x}
	2.277	JI. Thamrin		X	x	X
	2.681	J1. Bakaran Batu		X	x	x
	4.525	J. Mancara			x	
Medan-BLinjed		91. Yossudarso Mdn.	x	${ }^{x}$		x
	1.800	JI. GaIugux By Rass	\times	\boldsymbol{x}	X	x
	2.695	JI. Skip				\times

Note: X marks in the cable show jmprovements necded at each location.

(a) Planning Policy

The volume of urban railway passenger traffic in Medan area is presently almost mil; however, its potential traffic in the longterm is evaluated high and its volume of the said ralluay section, which will be ranked as the highest of all railway trunk lines in Medan Area in 2000 A.D., is also forecasted to be as follor even in 1985 the target year of the shor term. (Refer to Table 7-3-2).

Service Section	Potential Vol. of bus passengers per day	Rate of diversion to Railway if Railway reopen passenger service	Estimated No. of Railway Passengers per day
Belawan-lfedan	10,048	0.24	2,400
Labuhan-Modan	8,869	0.14	1,200
Total	18,917	0.19	3,600

On the other hand, the distance of 21.6 kg between Belawan and Hedan is appropriate for the operation of urban railway passenger service as one of solutions of the Short-Tem urban traffic problems although it is a little premature to be econonically justified but is agreeable to regard it as a pioneering test of railway mass transit service in Medan Area for the Long-Terrs. In order to attain such an objective the State Railway has already decided, in the light of the basic policy that the State Railway should take the responsibility as the back bone of the urban passenger transport in Indonesia, to procure 3 sets of diesel railcar trains, each set consisting of 4 diesel rialcars, in the fiscal year 1980/81. In view of the esticated passenger transport dewands in 1985, at least, the foregoing nurber of diesel railcars seems to be a little oversticated. To make the effective use of those railcars in teres of pioncering and craining purposes a proposed plan of their use and upkeeping are mentioned hereunder for the current demands as vell as for the decands in the near future up to 1985. The watters relevant to the dewands in the Long-Tera are to be Eentioned in the Final Report on the Long-Tera Improvements which will appear in the later date.

(b) Diesel Rail-Car Service Plan

The following is a brief description on the diesel rall-car service plan for the section Belawan-Medan:
i) Rap1-Car to be used Type : MCH 301 or equivalents Principal Digensions of a diesel rail-car

- Height 3.60 n
- Floor level from the top of rall 1.20 n
- Length 20.00 п
- Bidth 2.99 m
- Interval between bogies 14.00 n
- Rigid wheel base 2.20 n
Maximum speed and output of the diesel engine- Maximum speed (without load)
On flat grade $90 \mathrm{ka} / \mathrm{hr}$.
On 1.0% up grade 38 kn/hr.
- Diesel engine 180 H.P. 1500 r.p.m.
- Converter Hydraulic type
- Maxigum axle load 10 tons (limited)
- Maxicur nubber of passengersper diesel railcar 120 (seating \& standing)
ii) Train Coxpostion
A set of train consists of 4 diesel railcars. Three sets oftrain are to be assigned, two for actual operation and one asa spare set.
iii) Scheduled Speed \& Travelling SpeedScheduled speed .. 30 kr/hr.Travelling time to over a distanceof 21.6 ka ... Approx. 45 nin.
iv) Train Operating Diagran
Fig. 7.3 .4 shows a proposed operating diagran of diesel railcar
trains. This is an exatule of the maximua nutber of 11 trainsper direction per day utilizing only Titipapan Station as thepassing siding where trains in both directions cross one another.Such a nuober of dafly trains is, of course, a little excessivefor the estieated passenger eraffic demand in the Shot-Term andcan be deducted appropriately to cope with the actual denand.But it is strongly proposed to provide at least a train perdirection per peak hour, caryying about 480 passengers pertrain, in order to divert sore part of passengers originallyusing the existing bus service in the sare service section.In this diagrag it is intended that the daily inspection andre-fueling of two sets of diesel railcar trains can be perforcedat Medan Locosotive Depot in the tice band 9:00-16:00 every daywhen the passenger traffic is coaparatively slack, taking3 hours per train alternatively.All diesel railcar trains are expected to stop actually at everyexisting station on this line for the convenience of localcomauters as well as shoppers. The actual train operatingdiagran should be drawn, being vell adjusted in the relationwith all long-distance passenger trains leaving and arriving atHedan Station and also all freight trains which are proposed tobe arranged in the tice bands 21:00-06:00 and 10:00-15:00.
v) Inspection and light repairs of diesel railcar trains Biesel rail-cars to be assigned to this service can be tentativeIy assigned to Medan Locozotive Depot which should be responsible for routine inspections and light repair of those diesel railcars. After a new diesel rail-car depot is established in
future at Titipapan as a part of the long-term improvement plan, the new depot at Titipapan is responsible for all routine inspections (dafly, mothly, three-monthly and six-wonthly), and light repairs have to be perforeed at Pulu Berayan Horkshop. In the shot-term one out of two sets of traln under operation, is to rest and to be prepared fór the next day's operation at Medan Station, and the other at Belawan Station during the midnight in the regular operation schedule. The spare train is to be held either in the coach yard of the shed of depot.
(c) Necessary Ioprovement of Pacilities
i) Stations (Titipapan Station)
According to the proposed train operating diagran for the passenger service between Belawan and Medan for the shot-term as show in Fig. 7.3.4. all diesel railcar trains cross each other at Titipapan Station. Consequently, the following imporvecents rehabilitations are necessary:
- The construction of a passing siding (the effective length is 150 m) including affiliated signal system:
- The extension up to 150 m and rehabilitation of the existing platform:
- The rehabilitation of the existing station buildings and the installation of affiliated telephone system to conmunicate with all Stations on this line and the train despatcher office.

(Belawan Station)

Belawan Station can be used for this passenger service without carcying out any facility improverent. The freight stored at the existing platform has to be moved to some appropriate warehouses or sheds and should be cleaned for the passengers' use.
(Hedan Station)
Medan Station can be used for this passenger service without carrying out any facility ioprovement.
No. 3 Platform Track can be used for departure and arrival of diesel railcar trains of Medan-Belawan Line.

(Other Stations)

The installation of affiliated telephone facilities are necessary at Gelugur Station, Kaepung Besar Station and Labuhan Station in order to conmunicate with all other stations on this line as well as with the train despatcher office for the purpose of train control as well as handling conmuters.
ii) leconotive Depot

For the purpose to perform routine inspections and light repairs of diesel railcars at Hedan Locomotive Depot and additional inspection pit together with affiliated equipuent are to be provided to the existing shed facilities. Fig. 7.3.5. shows the rain dicensions and typical cross-sections of the new pit for
diesel rail-cars.
Some increase in the repairing capactiy of Pulu Berayan horkshop for the heavy repairs of those newly assigned diesel railcars is basfcally necessary, but it can be postponed to the long-tera improvement plan.
iii) Tracks and Bridges

The maximum axle load for diesel rail-cars is limited within 10 tons. (Refer to Sec. 7.3.1. (2) b)). The standard design load of existing tracks and bridges on this ine is presently 12 tons as shown in Fig. 3.4.6. and Table 3-4-6. Consequently, it is anticipated that there would be no problem in tracks and bridges of this line for the re-opening of passenger service on this line in the present stage. However, in view of the fact that the need of increasing the number of trains per day and somewhat speeding up of such computers' trains in future the strengthening of tracks and bridges at least in Medan Area has to be taken up in the long-tera improvements of this study.

(d) Number of Personne1 Newly Reguired

The number of personnel to be newly required for the reopening the passenger service on the section between Medan and Belawan by using 3 sets of diesel railcar train are estimated to be as follows:

```
- Engine drivers ................ 7
- Conductors .................... 6
- Train despatchers or
    assistants ................... 8
- Station clerks ............... 8
- Diesel railcar inspectors
    and rapaikEen ................ }1
```


(3) Opening of East-Side Gate of Medan Station

Half of railway passengers from/to Medan station are originated form and terminate in the east side area of Medan station. Consequently, when the railway urban passenger service is re-opened, the east-side gate of Medan station is proposed to be opened. It consists of a station building; a bus terminal. This new building and the existing main building are to be connected with an underground path which is constructed by extension of the existing underpath, or a tenporary footpath on the ground level. (Refer to Fig. 7.3.6.).
It should be noted as reference that after the railway is elevated in the long-ters improvement plan all station rooss and a concourse are to be included underneath the elevated structure.

Improverent of Over-Bridge at Medan Station

There is an over-bridge connecting the east and rest sides across the tracks at Medan station, which is only for the use by pedestrians bicycles and motorcycles. The bridge is important for road traffic In the CBD. The present deck of the bridge is of wood but is rotten and broken. Rehabilitation of the bridge deck is essencial for safety of pedestrians and others. It is proposed that wooden deck be covered with steel plate to protect wood fron abrasion and corrosion. Steel wembers of the bridge are to be examined before rehabilitation of deck is carried out.

Fig. 7.3.5	
Inspection Pit for Diesel Railcar	Legend
Mhe don Areo Tronsportotion Study	

7.3.2. Traffic Control System

The scope of traffic control systen to be taken up as a part of the shot-tem fmprovement plan covers the feprovement of one-way traffic system, intensifying signalization and ipproveent of intersections by channelization. Since the improvement of intersections are described in another section the rest items are herewith described.

Re-Examination of One-Way Traffic System

(a) Aine in Planning

Two plans are rorked out, the one is case 1, in which it is intended to ioprove partially the existing one-way traffic system in order to ieprove the accessibility, while the other is Case 2, fin which all wide roads wider than 8 m in carriageway are changed into twoway traffic systea. The aics in planning of each plan is as follows. (Refer to Fig. 7.3.7.1 2 7.3.7.3)

Case 1 : An igprovenent plan to eliminate such traffic passing through the CBD and iaprove the existing one-way traffic systea, keeping unchanged those parts of road network which are obviously effective enough with the present one-way traffic systen.
$\begin{aligned} \text { Case } 2: & \text { An improvement plan, in which all roads wider than } \\ & 8.0 \text { are changed into two-way traffic system. }\end{aligned}$
(b) Shanges in Traffic Flows

Fig. 7.3.8. illustrates the effect of igprovenent of one-way traffic syster by inter-block traffic flows in the CBD. Since Case 1 and Case 2 are sioilar in traffic flows the comparison was made here only between the present situation and Case 1. As shown clearly in Fig. 7.3.8. the traffic, which originate in the east side of the reilway and terminates in the same side, has to enter the west side of the railway and core back to the east side again crossing the railway and come back to the east side again crossing the rallyay twice and detouring over a large distance due to the present one-way traffic control syster. Such traffic thus saved is expected to becone approxieately 17,000 unfts per day less than the present traffic by the partial improvesent of the present one-way traffic system which is expected to result in relieving the traffic jams in the CBD and the noticeable reduction of railway crossing traffic.

(c) Vehicle-kin \& Vehicle-Hour

The total traffic volure occuring in A - D blocks shown in Fig. 7.3.8. arounts to 724,000 trip ends, accounting for some 63% of its total of 1, 156,000 trip ends in Medan City. Table 7.3.3. compares vehicle-ka \& vehicle-hour betreen the existing oneway systew and cases 1 and 2.

As tise results of iriprovenent of the existing one-way traffic system to Case 1 and Case 2, the vehicle-kn $\&$ vehicle-hour conspicuously decrease even when the stopping tife due to signal installition is
taken into account. The decrease in vehicle-km actually leads to a decrease in cross-sectional traffic volume due to decreased detours in the overall traffic volume within A-D blocks, giving a very favorable effect.

Table 7-3-3 Comparison of Vehicle-kms and Vehicle-Hours among Existing One-Kay and Partically Ioproved One-Hay Traffic Control Systems
(Unite: l,000)

Case	Vehicle-Km	Vehicle-Hours	
Existing	920.4	43.9	
Improverent	Case 1	849.5	39.5
	Case 2	787.4	37.7

(d) Congestion Rate

Congestion rate along arterial roads and at intersections are shown in Fig. 7.3.9, in which a high level of traffic congestion is generally seen at present in the CBD. In fmprovement Case 1 , however, the congestion is generally dispersed, giving an effective distribution of traffic over the entire road network in the CBD. In improvesent Case 2, since the two-way traffic road capacity is a little lower than in the case of one-way traffic systern, roads vith high congestion rate is slightly increased than in other cases.

(e) Accessibility

The travel time contour-1ines which indicate those points accessible in the same minutes from the center of the CBD are shown in Fig. 7.3.10. Since Case is intended to iaprove the present accessibility with the partially improved one-way traffic systea, a significant reduction in travel tice is seen particularly in the central CBD and also in the south-eastern areas. In mporvecent Case 2 travel time contour-lines show somewhat circular spread, indicating the relative difference in accessible distance in the a saae time have been significantly reduced, particulariy in the south-eastern direction.

.

Existing Traffic Flows
Improved Traflic Flows in Case - 1

Fig. 7.3.8 Anticipated Traffic Fiows in Central Area by Partialiy Improved One-way Traffic Control

Existing

Case 1

Case 2
 City Central Area

Medan Area Transportation Study
legend:

Fig. 7.3.10 Existing \& Anticipated Improvement in

(2)

In order safely and swoothly to deal with a large volume of automobile traffice, signal control is indispensable. At present in Hedan City signalization is beginning to be carried out. In order to realize one-way traffic improvement mentioned in the preceding section, signal installation is a prerequisite condition.

Together with the general measure for signal installation, we discuss here an enhanced traffic handifing systea by intensive control of signals themselves. Generally speaking, depending upon the level of city, two signal control systers are concelvable, namely, the route coordinated control systen and the area coordinated control system. In view of the present situation of Hedan city, it seems to be a little premature to introduce the area coordinated contcol syster.

Therefore, the route coordinated control systea is examined in connection with one-way traffic ieprovement.

(a) Outline

The road network of Medan city is formed by both arterial roads which extend out from the central Medan to Belawan, Tanjun Holawa, and Binjey and arterial roads network including one-way traffic streets which connect those roads laterally in urbanized areas. Installing independently operating traffic signals at the various intersections in such a road network not only drastically iopedes the flows of traffic on important arterial roads, but also repeated stops on red lights put psychological pressure on drivers, leading to increased traffic accidents. So that in this study it is intended in the future traffic signals at each intersection can fulfill their roles for which they were designed of guiding the flows of traffic and preventing traffic accidents, a plan is devised to systematize the function of those traffic signals. This plan will ensure a seooth fion of traffic by giving priority to the vehicles roving along principal arterial roads.

The followings are the merits of Route-Coordinated traffic signal systen:
i) Reduction in the number of stops, and travel time in total compared to a system of independently operating traffic signals.
ii) Yehicles would move at speeds close to the designed speed since traffic would flow in bunches of vehicles. Therefore, this system reduces rear-end type collisons and ensure safe travelling.
(b) Premises to Deterrine a Cycle Tiqe of Signals
i) Forms of Traffic Regulatory System:

- the simultaneous system, namely all traffic signals within the systematized area turn red or green at the same tice;
- the mutual signal system, nately traffic signals at adjacent intersections on the same route become green or red together;
- the progressive system, namely traffic signals tum green one after another as a group of vehicles driving at a predetermined speed approaches them. In this systen there are two kinds of "offsetting" - equal preferential offsetting where equal preference is given to traffic flowing in both directions, or one-way preferential offsetting where only traffic woving in one direction is given preference.

The proposed plan calls for the adoption of the progressive systera with the use of equal preferential offsetting on twoway streets and one-way preferential offsetting on one way streets.
ii) The Optimua Cycle Tive

This plan proposes to fix a cycle tice based on the needs of 11. Brigadejendral Katamso-11. Pemuda, J1. Jenderal, A: Yani, 11. Balai Kota and 11. Laksea Yos Sudarsu (major roads connecting Belawan and Tg. Morawa). It is on these roads where it is foreseen that there will be the worst traffic problems due to an estimated increase in the volure of traffic by 1985 and in oneway traffic. The ideal cycle time of 116 seconds is determined according to the relationship of the cycle tixe and the time for a round trip tice between various base intersections. The followings are set in determining the cycle time that the signal should be green for 50% of a cycle tige and that a cycle tige necessitated should be held within 120 seconds. Gycle lengths of route coordinated signal system thoroughfares, intersecting with those roads, are defermined also in accordance with this tice so that a cycle time of 116 seconds will be set for all route coordinated signal system roads.

iii) Controlling Methods

First, as shown in Fig. 7.3 .11 and Fig. 7.3 .12 an off setting signal cycle tire on intersections of route (which has been designated as the base route) is determined. In offsetting

Route (3)
Through band width $=43^{\text {sec }}$

Boute (4)
Through band width $=49^{\mathrm{sec}}$

Fig. 7.3.12 Inter-Refated Offsetting Through Band Diagram by Route
(Route 1 ~ Route 4)

Boule (7)
Through band wialh $=15^{\mathrm{sec}}$

Roule (8)
Through band width $=18^{\text {sec }}$

Bouta (9)

Fig. 7.3.13 Inter-Related Offsetting Through and Diagram by Route
(Route 5~Route 9)
ignal cycle time on intersecting roads is set up so that there is no tite lag between traffic light changes on intersecting routes. So that the length of time of the "through band" is as long as possible, other signals on the various roads are adjusted by shifting then one quarter of a cycle time unit, The interrelated offsetting through bands of the various routes are illustrated in Fig. 7.3.12 to Fig. 7.3.13.

(3) Parking

As for the parking systen in Medan City, it is substantialiy favorable to provide public parking spaces off roads in the CBD. However, some difficulties can be seen presently to find open spaces for this purpose and it is evident that a heavy financial burden seems to be expected on the cunicipal Government to provide those open spaces. Judging from those facts, followings are the proposed iteus of Short Tera Solution for parking system.
i) The counter-measure for parixing systea in case of Re-examination of One-Way Systea.
ii) The counter-reasure for parking systea on whole area in Hedan City.

Both items described above are closely related each other, and it is necessary to prohibit the roadside parking on those roads to increase the traffic capacity of roads on which a partial one-way system is re-examined.

Fig. 7.3. 14 shows the road sections where the road side parking is to be prohibitted. By the application of such parking regulation, soine counterceasure has to be considered for the parking derand of approximate 290 vehicles in capacity. Such a counter-measure as increasing the present parking charge is considered to be effective and it seens also to be applicable to the case of the CBD in Medan City. The parking charge proposed is variable according to pariking hours as follows:

Duration of Parking Tiqe	Parking Charge her Vehicle
hithin 1 hour	100° Rps.
$1-1.5$ hours	$200^{\prime \prime}$
$1.5-2$ hours	$400^{\prime \prime}$
$2-3$ hours	$600^{\prime \prime}$
$3-$	$1000^{\prime \prime}$

At present omer drivers, especially of sedans, are ranked as coöparatively high social status and it is not unreasonable to levy those owner drivers rather higher parking charge for the purpose to utilize the road spaces effectively. Such a reasure is expected to control the progress of cotorization in Medan City and to help a part of financing of providing public parking spaces of off-roads in future. However, such a regulation should be enforced not on trucks but mainly on sedans because if this regulation is applied to trucks, consercial prices of commodities rifht be affected by such an increase in parking charge.

7.3.3. Road Betterments and others

As for road betterments and new constructions the following items are summarized to be studied:
i) Review on road betterments and new constructions under fmplementation/ planning;
ii) Additional necessary road betterments/constructions;
iii) Road improvecents to cope with re-examination of craffic control system;
iv) Adjustment necessary to keep consistency with affiliated developrent plans.

Followings are the explanation on those items.
(a) Review on Betterments and Construction under Implementation/

Roadmaintenace is dominant in the first year of Third-year plan in Medan city. However, during the period of following four years, some road construction plans will be involved. The section listed in Table 7.3.4, are the wain categories, among which only Jl. Gang Harni is the new construction and the rest ones are betterent of the exicting roads.
(b) Additionally necessary Road Constructions and/or Road Bettereents

The objectives of this itea are the routes which indicate presently conspicuously high congestion ratio and sees to be effective by their isproverents. The congestion ratio of each road is shown in Fig. 7.3.8. Judging from this situation, the following road sections are proposed for inprovecent alternatives.
i) Jl. Sudarso, Stretching north to the direction of Belawan
ii) Jl..Prof. Yaain, Stretching to the east
iii) Jl. Singarangaraja, a section of a raod for Tg. Yorawa; and
iv) Roads Inside the CBD, near gasar Sabbu
(c) Road IEproverents to Cope with Re-exarination of Traffic Control Systea

Road widening and overlaying on the following road sections seet to be necessary to cope with the re-examination of one-way traffic systea.
i) Jl. Jenderal A. Yani
ii) J1. Sudarso
iii) 31. Gajahmada and J1. Zainul Arifin
iv) 31. Penuda
v) 11. Balai Kala
vi) Jl. Sudarso
(d) Adjustement Necessary to keep Consistency with other Affillated Developrent Plans

As Belawan-Medan-Tg. Norawa Tollway is expected to be opened for
traffic in 1983 A.D., it is necessary to provide the access roads between the central district in Medan and interchanges of this toll way prior to its opening. The following streets are proposed on this reason.
i) 31. Prof. Yamin
ii) Jl. Pembalagian

7.3.4. Improverent of Sambu Bus Terainal

(a) Outline

Pasar Sambu Bus Terminal, situated at the center of CBD, is the core of present public transportation where 70% of all the buses and 90% of Berios come in and out every day. Its area covers J1. Sambu and some city streets crossing it, and the usable area extends considerably. Yet its potential capacity is not fully at vork because of the unclarified flows of pedestrians and vehicles. In this short-tera period that expires in 1985/86 it is suggested that some points be considered instead of launching a large-scale re-nodelling along the following basic objectives, so that a large benefit shall result in from the least additional investment.
(b) Basie Objectives
i) To provide sufficient sidewalks, and separate pedestrians froa buses and Bemos.
ii) To separate bus lanes from beno lanes, and consequently simplify the traffic conflicting points.
iii) To assign sufficient number of bus berth \& drive routes to buses and BeEd separately and secure enough terainal space for each route according to its nuber of vehicles operating.
iv) To eliminate obstacles in traffic flows by regulating vehicles on the roadways and pedestrians on sidewalks.

Table 7.3.4 Proposed Betterments and New Construction of Roads in Medan City as Short-Term Solutions

Route No.	Name of Street	Length	Work Items
R-1	JL. Pembalagían Paved width $(h=6 \mathrm{D})$	4,000]	(i) Widening up to 4 lanes (ii) Ioprovement of 5 inter- sections
R-2	$\begin{aligned} & \text { Jl. Prof. Yamin } \\ & \text { SH } \quad(H=6 m) \end{aligned}$	3,900n	(i) Widening up to 4 lanes (1i) Construction of a nev bridge (span 12a, width 10 m) (iid) Ipprovement of 3 intersections
R-3	JL. Gajah Mada ($\mathrm{H}=8 \mathrm{~m}$) J. Zainul Aritin JL. Palang Merah ($\mathrm{H}=15$ 田)	600. 900 n	(i) Hidening up to 4 lanes (ii) Ioprovement of 2 intersections (i) Hidening up to 4 lanes, 500n long (ii) Overlaying 400 m long (iif) Construction of a new bridge (span 35is, width 10n) (iv) Improvement of 2 intersections (i) Overlaying (ii) Construction of a new bridge (span 46if, width 10m) (iii) Improvement of 2 intersections
R-4	JL. Pemada $(K=20 \mathrm{~m})$ 31. A. Yani $(K=12 m)$ JL. Balai Kota $(H=20 \mathrm{~m})$ JL. Sudarso $(K=11 a)$	4000 S20m 460 1 300ns	(i) Overlaying (ii) Improvement of an intersection (i) Hidening up to 4 lanes (ii) Improvement of an Intersection (i) Overlaying (ii) Igprovezent of 2 intersections (i) Hideaing up to 4 lanes (ii) Ioprovement of 2 intersections
R-S	New Street along Jl. Gang Harni	950 m	Construction of a 2-1aned including a bridge (span 40n, width 10 ms) and improvement of 2 intersections

(c) Number of Vehicles \& Size of Bus Berths
(i) Number of Buses

Table 7.3.5 Projected Number of Buses Entering Pasar Sambu Bus Terminal (1985)

Route No.	Vehicles/ Yehicles/ day	Peak hour		
1	537	47		
4	284	25		
6	202	18		
7	271	24		
8	188	17		
9	223	20		
10	112	10		
11	155	14		
12	195	17		
Total	2,167	192	\quad	Peak hour rate is 8.87\% over the average figure per hour:
:---				

(ii) Nunber of Bezs

Table 7.3.6 Projected Nuwber of Bemos by Route
Entering Pasar Sambu Bus Terginal (1985)

Route No.	Vehicles/ day	Vehicles/ Peak hour	Route No.	Vehicles/ day	Vehicles/ Peak hour
2	219	22	23	302	30
3	533	53	24	723	72
4	1,074	106	25	413	41
5	533	53	26	299	30
7	751	74	27	583	58
9	294	29	28	700	69
10	509	50	29	296	29
11	248	25	31	204	20
12	1,340	133	33	832	82
13	326	32	35	618	61
14	482	48	36	228	23
15	534	53	37	787	78
16	424	42	40	972	96
17	535	53	41	263	27
18	748	74	42	180	18
19	439	43	43	267	26
20	448	44	44	630	62
21	517	51	Total	18,256	1,807

Note: "Peak hour rate is 9.9% over the average figure per hour.
(iii) Major Dimensions of New Berths
a) Bus Berth:

b) Bemo Berth:

Fig. 7.3.16 Hajor Dieensions of Typical Bemo Berths
(iv) Capacity

Under the assumption that buses and bemo stop for S minutes at the terainal in peak hours, the hourly capacity to be handled is around 220 buses and 2,160 bemos respectively. Judging from these analyses, Pasar Sanbu Bus Terninal is expected to be able to handle the present bus and Beod fleets smoothly by such a improverent.

$$
7-45
$$

Table 7.3.7 Present Bemo Operating Routes

Route No.	Streets to be Served
\# 2	Proyek Air Minum Sunggal-Sei. Sikambing-Psr. Perínggan-Pusat Pasar Pasar P.P.
\# 3	Pekan Sunggal-XP. Lalong-Pusat Pasar P.P.
14	Sei. Sikambing-Pusat Pasar P.P.
\# 5	Kelambir Lima Batas Kota-Kp. Lalang-Pusat Pasar P.P.
47	Perumnas Helvetia-Pusat Pasar P.P.
\% 9	Jin. Ayahanda Ujung-Pusat Pasar P.P.
$\$ 10$	Sambu Baru-Pusat Pasar P.P.
811	Jln. Karya Ujung-Pusat Pasar P.P.
12	J1n. Pertempuran Pulau Berayan-Jin. K.L. Yos Sudarso-Pusat Pasar P.P.
\%13	Jln. Krakatau Ujung/Tanjung Mulio-P. Brayan-Pusat Pasar P.P.
\$14	Jln. Krakatau Ujung/Tanjung Mulia-Iln. Sutomo Ujung-Pusat Pasar Pasar P.P.
415	Jln. Cemara Dekat Jembatan Parit Busuk-Pusat Pasar P.P.
$\$ 16$	Jln. Suratman Glugur Derat-Pusat Pasar P.P.
817	Pasar III Ejung-Pusat Pasar P.P.
\#18	Jln. Perjuangan Ujung-Pusat Pasar P.P.
819	Saentis Jln. Ke Percut Batas Kota-Pusat Pasar P.P.
\$20	Jln. Gurilla Dekat Pajak Sentosa Baru-Pusat Pasar P.P.
F2l	Terbung Dekat Titi Sewa-Pusat Pasar P.P.
03	Perumas Medan II-Prof. I. M. Yamin SH-Pusat Pasar P.P.
624	Jln. Negara-Pusat Pasar P.P.
525	Jln. Mandala by Pass-Jln. Denaí-Pusat Pasar P.P.
$\$ 26$	Jln. Denai Ujung-Pusat Pasar P.P.
\$27	Sukaramai-Pusat Pasar P.P.
$\$ 28$	J1n. Aksara-Pusat Pasar P.P.
429	Jln. H. M. Joni Ujung/Kp. Binjai-Pusat Pasar P.P.
\%31	Kampung Martoba Batas Kota-Pusat Pasar P.P.
*33	Simpang Mariendal-Pusat Pasar P.P.
\%35	Pasar Senen-Pusat Pasar P.P.
436	Titikuning-Pusat Pasar P.P.
\$37	Jln. Mongonsidi Kp. Anggrung-Pusat Pasar P.P.
40	Padang Bulan/Gudang Mesiu-Pusat Pasar P.P.
欵1	Jln. Sembada Ujung/Kompleks Koserna-Pusat Pasar P.P.
42	Tuntungan Batas Kota-Pusat Pasar P.P.
643	Tanjung Rejo-Pusat Pasar P.P.
444	Belawan-Pusat Pasar P.P.

7.3.5 Intersections

(1) Evaluation of the Present Situation

Many complicated elements intertuine in inducing the present serious crowded road conditions of Hedan. The nain problems are the following:
(a) Drivers do not completely keep to their own lanes because traffic lanes are not marked. The congestion is worsened because of slow moving vehicles (bicycles, Becak, etc.) mixed with faster vehicles, especially because there is no channeling of vehkcles that are raking left or right turns at intersections, and then it is complicating conditions are caused by vehicles that are turning interfere with vehicles going straight, and vice versa.
(b) Pedestrians cross the road wherever they want since cross-walks are not warked and is another factor disturbing the swooth flows of traffic at intersections.
(c) Due to the lack of and or poor maintenance of drainage facilities, roads are frequently covered with water after a rain. This is also a cause of traffic stagnation and decrease the strength of paveEent.
(d) Since there are many restrictions on directions that a driver can take at a intersection in the CBD, due to the present one-way traffic control, the route one wust take to arrive at there aren't enough traffic signals nor traffic signs, it is difficult for the drivers unfagiliar with Medan to make a proper and instant decision.

A significant result cannot be achieved solely by concentrating upon engineering inproverents in an effort to solve these problems. It is also very foportant thoroughly to educate drivers on traffic regulations and how to punish traffic offenders.

(2) Congestion Ratios of Intersections

The congestion at an intersection is different fron that in the approach road section because it is a function of intersections that how large traffic volume of different approach road section can handled. The degree of congestion at intersection can be deterained by comparing its traffic volume with its traffic capacity at the approach road section. Thus,

The integrated congestion ratio of an intersection $=\Sigma \frac{\text { traffic volume of approach }}{\text { traffic capacity of approach }}$

Referring to actual survey data in Japan, the traffic capacity per lane of approach route at a signalized intersection expressed in PCU is as follows:

On a lane for through traffic	$2000 \mathrm{PCU} / \mathrm{GH}$
On a lane for left or right turn traffic	$1850 \mathrm{PCU} / \mathrm{GH}$

When the through traffic mixes with the left or the right turn traffic, the capacity of through traffic lane can be modified by following coefficients shown in Table 7-3-8.

Table 7-3-8 Coefficient to be Applied to Modify Through Lane Capacity According to Left or Right Turn Traffic Percentage

Percentage of left or right tura traffic (\%)	Hodification by left turn traffic		Hodification by right turn traffic	
	One lane	More than two lanes	One lane	Yore than two lanes
0	1.000	1.000	1.000	1.000
5	0.915	0.975	0.885	0.955
10	0.835	0.950	0.770	0.910
15	0.790	0.930	0.690	0.865
20	0.750	0.905	0.655	0.820
25	0.730	0.880	0.635	0.795
Over 30	O. 710	0.855	0.615	0.775

Source: Highway Capacity Hanual 1965, National Academy of Sciences, National Research Board, Special Report No, 87

Calculation results of the integrated congestion ratio of 47 ipportant intersections in Medan City (See Fig. 7.3.20) according to the traffic volume by direction under present situation and under one-way traffic system Case-1 or Case-2, are shown in Table 7-3-9.

The number as well as the average value of congestion ratio intersections where the values are over 0.9 (Namely where one cannot pass through an intersection within at least one signal cycle tice during peak hours.) are shown in Table 7-3-10.

Table 7-3-9 Number and Their Average Integrated Congestion Ratio of Intersections where the Ratios are more than 0.9

Alternatives		Integrated Congestion Ratio of wore than 0.9	
		Nugber	Average Ratio
Present situation		20	1.22
One-way system Case-1	Localized release from present one-way control system	21	1.35
One-way system Case-2	Advanced release from present one-way control system	26	1.36

Table 7.3.10 Integrated Comparison of Congestion Ratios, of Intersections Between Existing and Partially Improved One-hay Traffic Control Systems

No.	Node No.	Intersection Situation	Integrated Conezstion Ratio			
		Crossing Streat Name	Control Method	Existing Situation	Case-1	C3se-11
1	103	II. Helvelia Raya - II. Sudarso	Yield	0.815 :	0.817*	0.32:4
2	111	II. Gelugur Bypass - Jl. Sudarso	Rotary	1.128°	1.040^{*}	1.069°
3	116	II. Sudarso -- Hl. Gudang	Yield	0.627	0.780	0.657*
4	122	11. Gatot Subroto - Jl. Kapten Muslim	Sigral	0.797	0.797	0.797
5	123	31. Gatot Subsoto - II. Darsalam	Signal	0.999	1.08?	0.973
6	125	II. Gatot Subroto - II. Iskandar Muda	Signal	0.930	0.840	0.865
7	128	11. Gatot Subroto - J1. Gelugar Bypass	Signal\& Rotary	1.838	1.457	1.580
8	130	II. Sudarso - II. Guru Patimpus	Signal	1.734	1.67?	1.343
9	134	II. Jati - JI. Sutomo	Signal	0.884	0.713	3.564
10	136	11. Jati - Jl. Thamrin	Signal	0.676	0.445	0.72?
11	137	36. Taji- 11. Yamin	Yield	1.233*	1.239^{*}	8.277*
12	141	Il. Palai Kota - Jl. Yamin	Yield	0.716*	$3.072{ }^{\text {3 }}$	1.010^{*}
13	145	3. Sutomo - IB. Yamin	Signal	0.870	0.840	1.848°
14	147	JI. Thamrin - Jl. Yamin	Yield	0.583*	0.438*	$1.04{ }^{\text {\% }}$
15	148	JI. Gatot Subroto - JI. S. Paiman	Rotary	0.6?	0.644	0.710°
16	150	11. Raden Saleh - 3i. Iman Brijol	Yield	0.681	0.831*	0.893*
17	151	Jl. Raden Suleh - H. Balai Kota	Yield	1.330°	1.363*	1.21:*
18	160	JI. Sutomo - Jl. Veteran	Rotar	0.550	0.774*	1.048*
19	162	Jl. Thamrin - Jl. Vetefan	Yield	0.850^{*}	0.894*	1.286*
20	168	JI. Imam Bajol - 3. Sutojo S.	Rotary	0.744*	0.599*	0.6)3*
21	177	JI. Itkandar Muda - M_Gajah Mada	Sigral	0.788	0.939	1.003
23	180	Jl. Gajah Mada - Il. S. Parman	Sigral	0.934	1.48?	1.210
23	181	Jl. Zainul Arifin - 11. Diponegoro	Signal	0.68:	0.910	0.851
24	182	Il. Zainul Arifin - Jl. Imam Bonjol	Signal	0.885	1.007	0.912
25	183	II. A. Yani - H. Palang Merah	Yiels	1.0.3*	2.347	- 3136
26	184	11. Haygono - Jl. Kereta Agi	Yield	0.935*	$0.913 *$	1.501*
27	187	J. Hayjono - Jl. Pandan	Divergēng	1.149	1.563*	1.343*
28	158	Jl. Haryono - Jl. Sutomo	Sigral	1.116	1.391	1.73?
29	190	JI. Thamrin	Sigral	0.893	0.859	1.193
30	195	Jl. Sutomo - H1. Merbaru	Sigral	0.796	0.598	0.829
31	196	Jl. Thamrin - JI. Merbare	Yield	0.951*	0.461*	$0.36{ }^{*}$
32	210	Jl. ABD. Lubis - Jl. Iskandar Muda	Signal	0.616	0.748	$0.8 \geq 1$
33	212	JI. ABD. Lubis - Jl. Xapten Patimura	Yield	0.623*	$0.69{ }^{\text {2 }}$	0.635*
34	213	JI. S. Parman - Il. Suduman	Yield	0.717*	0.712*	0.670^{*}
35	214	JI. Diportegaro - Il. Sudiman	Sigral	0.953	0.928	0.897
36	215	JI. Imam Bonjol - II. Sudirman	Rotary	1.088*	0.982*	0.940^{*}
37	217	JI. Supiapto - II. Pamuda	Signal	1.771	2.385	2356
38	219	JI. Pandu - Jl. Singamangaraya	Yield	1.346*	2055*	$2.059 *$
39	220	JI. Pandu - Jl. Sutomo	Yield	1.171:	0.870°	1.19**
40	222	Il. Thamin - H. Asia	Yield	0.712*	0.587^{*}	$0.895 *$
41	224	Jl. Sutomo - Jl. Sutaisno	Yield	0.670	0.884*	0.728^{*}
42	226	JI. Thamrin - II. Sutristio	Yield	0.540	0.104^{*}	0.655*
43	232	JI. Natamso - JI. Mesjid Raya	Sipral	1.060	1.032	1.065
44	233	JI. Sifizamarizaraja - Hesjid Raya	Sigral	1.697	1.561	1.539
45	239	Jl. Patimuea - JI. Iskanda Muda	Rotary	0.878	0.844*	0.831*
46	250	JI. Patimura - II. Manser	Signal	0.863	0.867	0.869
47	276	Ji. Balai Kota - Il. Bukit Barisan	Rotary	0.776	0.881^{*}	$0.891 *$

Noit: Traffes simals are aditionally requites

One can generally divide the causes of the problem of the present traffic congestion in Hedan into two categories, namely: the insufficient road capacity and the insufficient intersection capacity. In the former category one cannot relieve the problea of traffic congestion merely by 10 proving intersections, but one wust wait for route faprovement. In the latter category, one cannot expect good results simply by faproving a certain intersection.

In order to make a progress in improving intersections, one must keep in mind the above-mentioned two facts.

(a) Separation of Slow Hoving Vehicles in Central Business Districts

Current, sloz coving vehicles (Becaks, bicycles etc.) occupy fully one fourth of total nueber of vehicles on central yedan streets. They interfere with the swooth flow of fast woving vehicles especially since there is no regulation of keeping lanes. In addition at intersections, since such slow moving vehicles have a low capacity for acceleration, they interfere with traffic when they begin to move forward fron a standing position and especfally affect other traffic on eaking right turns.

As one can see froa the existence of a great numbers of such vehicles, they play an important role in the urban transport systea for dally life of Yedan citizens. Therefore, in addition to the prevention of traffic accidents, they cust be preserved, but be separated from fast moving vehicles in order to raise the overall efficiency of the road traffic system.

Fig. 7.3.21 is a glan of model intersection planned keeping in tind all of the observations stated above. In this type of intersection, right turns directly at an intersection by slow noving vehicles are forbidden and only proceeding straightly or left turns are allowed. In order to prevent traffic accidents with fast moving vehicles which are going straight or turning left, slow moving vehicles should be separated by a traffic island. It is planned that their crossing be channelfzed to the place in the intersection by which fast woving vehicles of left turn can get good visibility.
This kind of ioprovezent is effective on streets in the CBD which can be attained by road widening and one can expect a reduction in traffic accidents and consequently an increase in efficiency. However, on streets which are not wide enough, one wust pay attention to the fact that this would result in increased friction with the flow of high speed traffic.

(b) Concrete Proposals for Intersection Improvezents

Intersections where one can expect the effects of their improvements are those where road capacity is wide enough and also a successive intersections in the area are not crowded. From this point of view an improvenent plan for the following two intersections are proposed. They seem to be urgent solutions by which favorable effects can be expected.

f) The Intersection at Jl. Gator Subroto and Jl. Gelugur Bypass

This intersection is of five legs, signalized and faces on the J1. Gatot Subroto which is presently the arterial road connecting Bingei with Medan and $J 1$. Gelugun Bypass which is one of the arterial road connecting Belawan with Medan.

In morning and evening-peak hours, there takes place such a serious traffic jams, and air pollution by exhaust gas, etc. Of five legged roads, both southern parts of Jl. Gelugur Bypass and of Jl. Raden Saleh are controlled by one-way traffic systen. The wain directions of traffic flow are from Jl. Gatot Subroto to J1. Raden Saleh and fron J1. Guru Patiopus to Jl. Gatot Subroto. Fig. 7.3.22 show traffic volure in each direction under present situation and also partially improved one-way traffic system in Case-1. Fig. 7.3 .23 is a comparison chart of improvement plans which have been studied for this intersection.

The improvecent plan of the alternative II is proposed as shown in Fig. 7.3.24. By adopting the alternative II, one can expect the iuproverent that the congestion rate at this intersection during peak hours decreases from 1.84 down to 0.87 under present situation and it is also estimated that the congestion rate by the traffic volume in 1985, when Bedawan-Medan - Tg. Horawa Highway is to be opened will be l.05. The dicect construction cost of this improvement plan is estimated 298 million Rupiah in the price level of January 1980. Breakdomis of construction cost are shown in Table 8.1 .14 of Chapter 8.
ii) The Intersection of Jl. Prof. Yamin SH and Jl. Jati

This intersection is of six legs, non-signalized and located at the crossing of $1 k$. Prof. Yaain SH which is the main road to Percut and J1. Jati which continues to Jl. Catot Subroto. Furthersore, after Belawan-Medan-Tg. Korawa Highway vill be opened in 1985, J1. Prof. Yamin SH will play an igportant role as an access road to that highnay. of six legged roads, both 31. Mabar and Jl. Tirto are narroy streets whose traffic voluge is at a level that may be negligible. Presently vestern portion of Jl. Prof. Yarin $S H$ is controlled by one-way traffic systea and Jl. Jati is proposed to becoze one-way traffic route case-1. Fig. 7.3 .25 shows traffic volume by direction under the gresent situation and the partially improved one-way traffic systen Case-1. The nain directions of traffic flow are from 31. Jati to 31. Prof. Yaain SH and toward Medan City through Jl. Prof. Yaョin SH.

Fig. 7.3.26 is a conparison of iaproveant plans which have been studied for this intersection.

The irprovement plan of the alternative II is proposed shosm in Fig. 7.3.27.

By adopting the alternative-il, one can expect that the congestion rate at this intersection will be decreased considerably because there exist merely a nerging and a diverging-areas.

Fig. 7.3.23 Traffic Ploy Comparison at Intersection by Improvements Intersection at JL. Gatot Subroto and at Jl. Gelugur Bypass

-

Exinting situotion of Truffic Flows

Fig. 7.3.26 Proposed Improvement of Traffic Plows of the Intersection at JL. Jati and JL. Prof. Yamin SH

Existing Flows

${ }^{*}$

Alternative-I

i

Alternative-11

i) The alignments of main traffic flows are good with good visibility but there are many crossings of traffic flows.
ii) The traffic handing capacity at intersection is low because of the cowplicated crossings of non-signalized traffic flous.
i) There is a reduction in the number of traffic flow crossings because JL. Jati is controlled by one-way traffic systea.
ii) The route on Ji. Yain going toward the city center becomes worse.
iii) It is necessary to bake the intersection more compact one and to control traffic flows by traffic signals and to widen approach portion of $\mathbf{J L}$. Yamin.
i) Right-turn traffic fron Jl. Jati to JL. Deli is forbidden at this intersection because it can make \mathbf{u}-turn at the next intersection.
i) Since there is no traffic flow crossing traffic flows consist only of warging and diverging traffic, and consequently there is no need to sfgnalize the intersection.

㿻

Until Belawan-Medan-Tg. Yorawa Highway will be opened in 1985, Jl. Prof. Yamin SH will be widened as an access road. This improvement plan canbe easily adjusted to the necessary widening plan.

The direct construction cost of this improvement is estimated to be 191 willion Rupiah in the price level of January, 1980 and its breakdows are tabulated in iable 8.1.15 of Chapter 8.

7.3.6 Public Transport

(1) The Aim of Planning

Bus routes are presently provided on almost all the roads which have such a width in which buses can be operated, as explained in Sec. 6.3.2. "Bus Service Network".

In or around zones Nos. $12,22,25$ and 36 , mainly due to the comparative narrow road vidths, all users are using Bemo. However, the transportation of many passengers by Bemo seems to be ineffective. So, it is basically desirable to substitute Beno with bus transportation. In view of these circurstances and the radial formation of the present bus routes, it is hoped the establishment of an intermediate loop route to be realized to serve such intermediate zones. Fig. 7.3 .28 shows a new bus loop route to be established. For reference, see Table 7.3 .11 which shows the rate of users of bus and Bego is those four zones.

Table 7.3.11 Estinated Numbers of Passengers of Bus \& Bemo (1979)

Zone No.	Bero	Nof Passengers	Ratio	Bus
12	74	0.85	13	0.15
22	6,665	1.00	0	0
25	634	0.72	249	0.28
36	6,417	0.92	542	0.08

(2) Forecast of Nuabers of Bus Users

When applying the codal split curve for bus transport prepared fron the results of the present $O-D$ survey, around 8,500 passengers are expected to be transported on this proposed loop bus route, in which 7 buses will be required. For reference, the bus user eodal split curve for bus transport is as shown in Fig. 7.3.29.

In Fig. 7.3.29 a codal split curve between bus and other codes except railway in Medan City is shown. This curve was obtained based on the $0-D$ survey results conducted in the city, the travel tice characteristics in the city euch affected by the existing road network and bus routes. The curve presents the relation between the ratio of minicua travel tiee by bus to that by other modes between said zones and the sharing rate by bus.

The rank of factor in the Fig. 7.3.29 is expressed in the following foreula:

$$
\text { Rank of factor }=\frac{\text { Travel tice by bus between said zones }}{\text { Travel tize by other rodes between said zones }}
$$

For instance, if the rank of factor between zones A and B is $1.0-1.2$ the curve shosis that the sharing percentage by bus is around 38% and consequently the rest is that by other modes, which is 62%.

In the Fig. the modal split curve of bus system of Medan city is shown, in thich the radius of each circle means the number of data calculated whose values are indicated by the coordinate values of center of circle. The regression curve of those data is dram so as to make the distance from the circle centexs to the curve inversely proportionate to their radif. This curve can be also applicable to the railway system. The detalled explanation on this curve will appear in the Draft Final Report on the Long-Term Master Plañ.

Rank of Factor

Fig. 7.3.29 Modal-Split Curve for Bus Transport

7.3.7 Heasures for Pedestrians

At present, facilities for pedestrians in Medan City are not favorable. Future measures for them may be enumerated as shown below:

(1) Separation of Pedestrians from Vehicle Traffic

This category relates to both ordinary road facilities and Pasar Sambu Bus Terainal, Conceming inside of the bus terminal it whil be improved according to the rethod proposed as is described in other section. As for road facilities, it is necessary to separate the side walks from the vehicle lane clearly especially in the CBD. By this faproverent securing the safety for pedestrians and an increase of road capacity will be expected. However, such a feprovement depends mainiy on road bettercents or ner constructions.

(2) Arrangezent of Pedestrian Crossings

In case of intersection itprovecents described in another section, installation of pedestrian crossings is proposed.

7.4 Administration and Others

Engincering procedure is not a sole way to solve the prevafling traffic probleas in Hedan City. In soee cases legislative and administrative steps seea to be effective for urban transportation planning especially for short tera improvements. The followings are the items to be considered in such point of view froa the evaluation on present condition of urban transportation systea in Yedan City and the experiences in the past studies carried out in other motorized countries.
i) To encourage to lag office hours of vorkers and schooling hours of students so as to reduce the peak ratio of the urban transport.
ii) To carry out social education or special training for drivers to observe the traffic regulation strictly.
iii) To enforce strict periodical inspection for velicles by authorized vehicle inspectors in order to reduce traffic accidents occuring by the reason of imperfect maintenance of vehicles.
iv) To construct necessary nuabers of additional pasars, by which pasars on road should be prohibited.
v) To establish a certain agreecent axong Ministry of Cotmunication, Hinistry of Public Korks and Kedan City should be eade on sharing the public investeent for main transportation facillites such as bus cerrinals, rallway crossings and others.

Chapter 8.
FCONOMIC ANAIMSIS OF SIIORT
TERII IMPROVENENT PIANS

Chapter 8. ECONOMIC ANAL.YSIS OF SHORT TERM IMPROVEMENT PLANS

8.1 Cost Estimates

3.1.1 Introduction

Cost estimates for all short-term improvement plans of Hedan Area consist of the following five iters:

- Construction cost;
- Cost of Rollifing Stock, vehicles and traffic signals;
- Land acquistion and corepensation cost;
- Operation cost; and
- Maintenance cost

Unit costs of those iters are established mostly based on prevaliling unit costs of labor, materfals, equipment and supplies which the study team obtained during the site investigation in Septeaber - November 1979, but those of several iters were estimated referring to actual cost data of sioilar construction In Japan.

Construction costs sere calculated in accordance with the following criteria.
(a) Calculation is based on the cost level in North Sumatra in January 1980, when the exchange rates are assured as follow:

$$
\text { Rp. } 625=\text { US\$1.00 }=\$ 240 .
$$

(b) The cost is classified into the foreign currency and the local currency components. Foreign currency component comprises follorIng itens:

- Cost of imported equipeent, materials and supplies;
- Hage of expatriate personnel;
- Overhead and profits of forelgn fires; and
- Taxes and import duty.

Local currency couponent consists of follouing itews:

- Cost of domestic equipeent, materials and supplies;
- Hage of local persornel;
- Overhead cost and profit of local firns; and
- Taxes.

However, in foreign currency components of diesel rail-cars and fmported devices such as traffic signals etc. Indonesian taxes and duty are excluded.
(c) Overhead cost and profit are assued to be 30% of direct unit cost.
(d) Physical contingency is assused to be 15% of the total of construction cost and land acquisition and compensation costs.
(e) The final engineering, supervision fees and adainistration cost are assumed to be 10% of direct construction cost.

8.1.2 Financial Cost

(i) Unit Costs of Major Materials and Labors

The unit costs of major waterial items are shown in Table 8-1-1.

Table 8-1-1 Unit Costs of Hajor Materials

Material	Unit	Domestic Supply Cost	Forelgn Supply Cost
Fuel (Diesel ofl)	Rp./Lit.	35	--
Reinforcing Bars	Rp./Ton	56,	275,000
Portland Cement	Rp./Ton	56,400	25,000
Asphalt .	Rp./Ton	-	104,500
Coarse Aggregates	Rp./n ${ }^{3}$	3,760	10,500
Fine Aggregates	Rg./E3	1,220	- -

Source: RBO-SU Tg. Korawa-T. Tinggi Road Betterment Project.

Unit costs of labors are shown in Table 8-1-2.

Table 8-1-2 Unit Costs of Labors

(2) Land Acquisition and Compensation costs

About land acquisition cost, whole area of Yedan city is classiffed into 6 classes based on the land price eap obtained from Medan Agrarla office and unit costs of land acquisition and compensation by class are assumed as follows:

$$
\begin{array}{cc}
\text { Class }-1 & 20,000 \mathrm{Rp} . / \mathrm{m}^{2} \\
" 1 & -2 \\
" & 12,000 \\
" & -3 \\
" 4 & 8,000 \\
" & -5 \\
\hline & -6
\end{array}
$$

Unit costs of compensation for bulldings with land acquisition are estimated as below according to the types of the building.

Class -1	Permanent	40,000	$\mathrm{Rp} . / \mathrm{m}^{2}$
$" 1$	-2	Semi-Permanent	27,500
$" 11$			
$"$	-3	Low Cost Construction	10,300
$"$	5,500	$"$	

Based on these unit costs, compensation costs are assumed to be 25% to 100% of land acquisition costs taking into account types and density of buildings where land acquisition is to be carried out.

(3) Operation Cost

Railway operation cost is divided into personnel costs and energy costs, personnel costs include the cost of operating staff; personnel costs of workshops and the signals and the telecommunication. Energy costs are the fuel cost of vehicles and the fuel and electricity cost of station and workshops. Reopening the comater service between Yedan and Belawan is assumed to need 21.2 gillion Rp./year for personnel costs and 14.5 gillion Rp./year for energy costs. Operation costs of eastside station building of Medan is also assumed to be 2.6 millifon Rp./year for personnel and energy costs, while road operation costs include the cost of electricity for lightings, traffic signals and other facilities. The annual cost of 1 ighting is assumed to be 2.5 million Rp./ka/year and that of one signalized intersection is assumed to be $\mathbf{1 . 8 3}$ gillion Rp./each/year.

(4) Maintenance Cost

The maintenance works are devided as follows:
i) Routine maintenance sork;
ii) Periodic maintenance work.

Items of routine maintenance work for railway and roadway are considered as follows:
i) Railuay

- Inspection, minor repairs and cleaning of diesel rail-cars;
- Inspection and minor repairs of tracks, signals and teleconEunication systea;
- Cleaning and minor repairs of railuay stations.
ii) Roadway
- Cleaning of road surface;
- Patching of cracked portions on bituainous surface;
- Vegetation control of green belts and traffic islands;
- Cleaning and reshaping ditches and other drainage facilities; and
- Minor repairs of structures.

Periodic maintenance works are performed at an interval of at least a year.

Following items are considered as the main periodic maintenance work for railway and roadway:
i) Raflway

- Change of parts of diesel rail-cars, signal and telecommunication system.
ii) Roadway
- Resurfacing sith bituminous concrete;
- Repainting marking on resurfaced road; and
- Inspection of structures and affiliated repairs.

The annual maintenance cost which include both routine and periodic maintenance costs are estimated tentatively as mach as 0.5 ~ 3.0% of the initial investment cost for railway facilities except for that of diesel railcars and that for roadway which is as much as $0.501 .0 \%$ of its initial investment. The annual maintenance cost of 12 diesel rail-cars is assumed to be 108 million Rp.

(5) Financial Costs of Improvement Plans

Financial project costs of improvement plans are calculated for 4 cases in railway concerned and 11 cases in roadway concerned and are shown in Table 8-1-3 through Table 8-l-16. The sumbary of improvement costs are shown in Table 8-1-18.

Table 8.1.3 Costs of Improvement of Rallway Crossing Pacilities

Xtem		Unit	Q'ty	Unit Cost	Foreign Currency		(Unit: Rp $\times 10^{3}$)		
		Local					Total		
1)	Automatic Marning devices of train approaching		set	10	24,700	210,100	0	36,900	247,000
2)	Crossing gate improverent	10- cation	12	3,380	34,188	0	6,372	40,560	
3)	Construction of gateman's cabins	10- cation	5	1,300	0	55	6,445	6,500	
4)	Improveant of crossing pavement	10cation	17	2,956	0	23,881	26,368	50,249	
	Total				244,288	23,936	76,085	344,364	

Table 8.1.4 Costs of Reopening Railway Passenger Service between Belawan and Yiedan
(Unit: Rp $\times 10^{3}$)

Item	$Q^{\prime} t y$	Unit Cost	Foreign currency	Local Currency	Total
1) Rehabilitation of Titipapan Station		Lump sum	-	50,082	50,082
2) Installation of a additional telephone systea	$\begin{gathered} 4 \\ \text { locs. } \end{gathered}$	110	440	440	440
3) Construction of an inspection pit at Medan Loco, Depot	$\stackrel{1}{\operatorname{loc} .}$	28,261	-	28,261	28,261
4) Procurement of diesel railcars	12 units	260,672	3,007,685	120,379	3,128,064
Total			3,007,685	199,162	3,206,847

Table 8.1.5 Cost of Reconstruction of Deck and Resurfacing of Pedestrian Bridge in Yedan Station
(Unft: Rp $\times 10^{3}$)

Itea	Unit	Quantity	Unit cost	Foreign currency	Local currency	Total
1) Reconstruction of Deck and Resurfacing	Sq. ${ }_{\text {a }}$	240	45.6	2,608	8,333	10,941
Total				2,608	8,333	10,941

Table 8.1.6 Costs of Opening Eastaide Station Building of Medan Station

Iters				(Unit: Rox 103)		
	Unit	Quantity	Unft cost	Foreign curxency	local currency	Total
1) Relocation of PJKA lodgings	house unit	3	64,725	6,721	187,455	194,176
2) Extension of underpass in Medan Station	lumpSun			170,575	49,752	220,327
3) Construction of Station Building	Sq.m	770	281	21,896	194,453	216,349
4) Construction of Station plaza	Sq.in	1,689	34	14,134	43,277	57,411
Total				213,326	474,937	688,263

Table 8.1.7 Cost of Partial Irprovesent of One-Hay Traffic Control Systés

Itea	Vnit	Quan-city	$\begin{aligned} & \text { Unit } \\ & \text { Cost } \end{aligned}$	(Unit: Rg $\times 10^{3}$)		
				Foreign currency	Local currency	Total
1) Ner Signal						
Installation at						
4-legged intersect.	location	11	16,790	176,748	7,942	184,690
3-legged	11	6	13,830	79,412	3,568	82,980
2) Additional Signal Installation at						
Signalized Intersections	1	9	2,410	20,757	933	21,690
3) New Traffic Signs	$1{ }^{1}$	11	336	3,463	227	3,690
Total				280,380	12,670	293,050

Note: Quantities are based on Fig. 8.1.1. Location Hap of Traffic signals and Signs Required according to One-Way Traffic Control Systen Improvement.

Table 8.1.8 Costs of Installation of Route-Coordinated Traffic Signal System

Intersection Number	Name of Streets	(Unit: $8 p \times 10^{3}$)			
		Type	Foreign Currency	Local Currency	Total
4	31. Gudang - J1. Jati	4-1egged	und	plannin	
7	11. Sudarso - J1. Yamin	4-legged	16,067	723	16,790
8	J1. Gaharu - Jl. Yamin	4-1egged	13,762	618	14,380
11	31. Balaikota - J1. Raden	3-1egged	und	Plannin	
12	J1. Sutoro - Jl. Veteran	4-1egged	13,762	618	14,380
13	11. Thamrin - J1. Veteran	4-1egged	14,872	668	15,540
17	$\begin{gathered} \text { J1. A.Yani - J1. Palang } \\ \text { Merah } \end{gathered}$	4-1egged	und	r plannin	
18	11. Palang Merah - Jl. Kereta Api	4-legged	15,762	708	16,470
19	J1. Haryone - J1. Irian	4-1egged	unde	r plannin	
20	Jl. Haryono - 31. Surabaya	4-1egged	12,939	581	13,520
23	J1. Cirebon - 31. Bandung	4-1egged	13,762	618	14,380
25	J1. Thamrin - Jl. Merbaru	4-legged	14,872	668	15,540
26	J1. Cirebon - Jl. Bogor	4-legged	13,762	618	14,380
27	J1. Sutomo - J1. Bogor	3-legged	12,489	561	13,050
29	J1. Cirebon - J1. Pandu	4-1egged	und	r plannin	
30	J1. Pande - J1. Sutomo	4-1egged	under	r plannin	
31	J1. Thamein - J1. Asia	4-legged	14,872	668	15,540
32	31. Sutoeo - Jl. Sutriso	3-1egged	13,219	611	13,830
33	$\begin{aligned} & \text { 31. Sunyatsen }- \text { J1. } \\ & \text { Sutriso } \end{aligned}$	4-legged	15,762	708	16,470
34	J1. Thamrin - J1. Sutriso	3-legged	13,219	611	13,830
35	$\text { 31. S.M.Raja - } \begin{aligned} & \text { Rakhwadsyah } \end{aligned}$	3-legged	13,219	611	13,830
Total			212,340	9,590	221,930

Note: i) Intersection Nuber corresponds to that of Fig. 8.1.1. Coordinated Route Map.
ii) "Under Planning" means the intersection where Medan City has a separate plan of traffic signal installation.
ifi) Traffic signals which have been already installed at intexsections are not mentloned in the table.

Table 8.1.9 Costs of Improvement of J1. Pembalagian
(Unit: $\mathrm{RP}_{\mathrm{X}} 10^{6}$)

Work Item	Unit Q^{\prime} ty	Unit cost (Rp)	Foreign Currency		Local currency	Total
			devices without taxes and duty.	0thers		
1) Road section	m 3,750	298,200	341.1	342.2	435.0	1,118.3
2) Intersections			167.6	49.1	44.7	261.4
- J1. Cemara	1ump-sum		41.1	12.1	11.0	64.2
$\begin{aligned} & \text { - J1. Takari } \\ & \text { - J1. } \end{aligned}$	luga-sur		19.5	5.7	5.2	30.4
$\begin{aligned} & \text { Karantina } \\ & -\mathbf{J 1 .} \end{aligned}$	1ump-sura		19.5	5.7	5.2	30.4
Persatasan	1upp-sum		41.1	12.1	11.0	64.2
- Jl. Jati	lump-sum		46.4	13.5	12.3	72.2
Total of Construc tfon Cost			508.7	. 391.3	479.7	1,379.7
3) Land acquisition and coapensation	Sq.M 23,400	18,000	0	0	421.2	421.2

Note: Each cost includes the cost of mobilization and others wich is assumed 15% of direct construction cost.

Table 8.1.10 Costs of Improvement of J1. Prof. Yasin SH

Kork item		Unit	Q'ty	Unit cost (Rp)	(Unit:		$\mathrm{R}_{\times} 10^{6}$)		
		Foreign Curre			ency				
		devices without taxes and duty			Others	currency	Total		
1)	Road section		m	3,738	298,200	340.0	341.1	433.61	1,114.7
2)	Intersections					52.4	15.4	14.0	81.8
	$\begin{aligned} & \text { - J1. Jati } \\ & \text { - J1. Sei } \end{aligned}$	1ueg			13.4	4.0	3.6	21.0	
	Pengas - J1. Adlin	146-	Sum		19.5	5.7	5.2	30.4	
	Prawira	14Es-	Sum		19.5	5.7	5.2	30.4	
3)	Bridge	Sq.a	120	437,000	0	36.6	15.8	52.4	
Total of Construction cost					392.4	393.1	463.4	1,248.9	
4)	land acguisit and compensat cost	ion ion Sq.H	62,400	14,985	0	0	935.0	935.0	

Note: Each cost includes the cost of mobilization and others which is assured 15% of the direct construction cost.

Table 8.1.11 Costs of Improvements of J1. Gajah Mada, J1. Zalnul Arifin and J1. Palang Merah

(Unit: Rpx10 ${ }^{6}$)

Table 8.1.12 Costs of Improvement of Jl. Pemuda, Jl. A. Yani, Jl. Balal Kota and J1. Sudarso

Hork iter	Unit	$Q^{\prime} \mathrm{ty}$	$\begin{aligned} & \text { Unit } \\ & \operatorname{cost} \\ & \text { (Rg) } \\ & \hline \end{aligned}$	(Unit:x RP 106)			
				. Yoreign Curre	ency	oc	
				devices without taxes and duty	Others	currency	Total
1) Road sections				76.4	76.7	97.4	250.5
- J1. Pemuda	a	350	80,945				28.3
- 31. A, Yani	ca	410	323,070				132.5
- J1. Balai Kota	$\underline{\square}$	310	80,745				25.1
- 31. Sudarso	a	200	323,070				64.6
2) Intersections				267.2	78.4	71.3	416.9
- J1. Pemuda		-sum		31.1	9.1	8.3	48.5
- J1. Palang Merah	1 u	-sum		58.6	17.2	15.7	91.5
- 11. Yani yii	1um	-sum		19.5	5.7	5.2	30.4
- J1. Raden Saleh	lum	-sua		34.5	10.1	9.3	53.9
- J1. Bukit Barison	14	-sun		18.5	5.5	5.0	29.0
- J1. Yagin	14 E	-sum		58.6	17.2	15.7	91.5
- J1. Jati	1 um	p-sus		46.4	13.6	12.1	72.1
Total of Construction Cost				343.6	155.1	168.7	667.4
3) Land acquisiti and compensati costs	ion ion Sq. -	4160	40,000	0	0	166.4	166.4

Note: Each cost includes the cost of robliization and others which is assumed 15\% of the direct construction cost.

Table 8.1.13 Costs of Improvement of Sambu Bus Terminal
(Unit: Rp×103)

	Hork iten	Unit	Q'ty	Unit cost (Rp)	Poreign Currency		Local currency	Total
					devices wit taxes and d	Others		
1) Direct construction cost					211,521	280,088	329,601	821,210
- Pavezent (overlay)		Sq. ${ }^{\text {a }} 2$	24,980	4,289	0	68,890	38,249	107,139
- Traffic Earking		Sq. ${ }^{\text {a }}$	1,000	3,061	0	2,997	64	3,061
- Side valk		Sq. $\mathrm{m}^{\text {a }}$	7,190	4,198	0	6,640	23,544	30,184
- Concrete curb		l.tir.	4,970	10,494	0	23,351	23,764	52,115
- Drainage		1.t.	4,110	68,361	0	63,217	217,747	280,964
- Lighting location			110	2,061,000	211,521	0	15,190	226,711
- Guardrail		1.m.	770	37,914	0	27,238	1,956	29,194
- Berth		Sq.m	770	119,275		82,755	9,087	91,842
2)	Kobilization and others	lugp-	-sum		31,728	42,013	49,440	123,181
Total					243,249	322,101	379,041	944,391

Table 8.1.14 Costs of Improvement of Intersection on J1. Gatot Subroto and J1. Gelugur Bypass

Table 8.1.15 Costs of Improvement of the Intersection on J1. Jati and Jl. Prof. Yamin SH

hork iter	Unit	Q'ty	Unit Cost (Rp)	Forelgn Currency		Local currency	Total
				devices without taxes and duty	Others		
```1) Direct Con- struction cost 21,542 52,407 92,442 166,391```							
- Pavement (ney construction)	Sq.m	380	8,747	0	1,998	1,326	3,324
(overlay)	Sq. ${ }^{\text {m }}$	7,046	4,289	0	19,431	10,789	30,220
- Traffic marking	Sq.im	483	3,061	0	1,447	31	1,478
- Side walk	Sq. m $^{\text {a }}$	4,283	4,198	0	3,956	14,024	17,980
- Concrete curb	1.17.	1,570	10,494	0	8,963	7,513	16,476
- Drainage	1.m.	1,080	68,361	0	16,612	57,218	73,830
- Lighting	kration	6	061,000	11,537	0	829	12,366
- Guide sign	kocation	S	891,890	8,826	0	633	9,459
$\begin{aligned} & \text { - Traffic } \\ & \text { sign } \end{aligned}$	boction	15	33,890	1,179	0	79	1,258
2) Mobilization and others	lump-sue		3,231		7,861	13,866	24,958
Total	24,773				60,268	106,308	191,349

Table 8.1.16 Cost of Opening a Bus loop Route Operation

Kork item		Unit	Q'ty	Unit cost	(Unit: Rpxl0 ${ }^{\text {\% }}$ )			
		Forefgn currency			Local currency	Total		
1)	Procurement of Buses		unit	7	20.0	0	140.0	140.0
	Total				0	140.0	140.0	

Table 8.1.17 Costs of Ieprovement of J1. Gang Harni

hork iters	Unit $Q^{\prime \prime}$ ty	(Unit:			$R \mathrm{R} \times 10^{6}$ )	
		Unit	Foreign Curr	rency	Local	
		Rp	device without taxes and duty	Others	currency	Total
1) Road section	B 850	405,830	105.2	105.6	134.2	345.0
2) $\begin{aligned} & \text { Interesection } \\ &- \text { Jl. } \\ & \text { Katamuso } \\ &- \text { JL. Imani } \\ & \text { Bonjol }\end{aligned}$			86.8	25.4	23.2	135.4
	1umprsum		43.4	12.7	11.6	67.7
	luap-sum		43.4	12.7	11.6	67.7
3) Bridge	Sq.a $\quad 400$	499,100	0	139.5	60.1	199.6
Total Construction Cost			192.0	270.5	217.5	680.0
4) Land acquisition 8 Coapensation	Sq. ${ }_{\text {\% }} \mathbf{7 4 0}$	7,050	0	0	61.6	61.6

Note: Each cost includes the cost of woblifation and others which is assured $15 \%$ of direct construction cost.

## 8. 1. 3 Economic Cost

The economic cost for economic evaluation derives from the financial cost which in described in paragraph 8.1 .2 minus taxes and duty. Taxes included in the local currency portion consist of business tax, municipal tax and income tax. The tax rate of the local currency portion is estimated to be 7.8\% in this project, referring to the report on Jakarta Intra Urban Tollway project in 1979. Concerning the foreign currency portion, it can be considered that there is an additional import duty to taxes mentioned above. Import duties to materfals or equipment which are to be used for the construction of public investments are assumed to be $5 \%$ to $20 \%$ respectively. Thus, duty rate to foreign currency portion is estimated to be 15\% in this project. However, the foreign currency portion of diesel rallway cars and imported devices such as traffe signal, lighting etc. do not include these taxes and duty.

Economic costs of each improvenent plans are tabulated in Table 8-1-18.

Staratere		crackea										ars	$\operatorname{lix}_{x \rightarrow \infty}=\operatorname{lix}_{x \rightarrow z}$	
					Miry 057	$\begin{aligned} & x_{s}+0 \\ & x-x-2 \end{aligned}$		P＝0	Exici	$\cos _{\substack{\text { cxi }}}$	－			
$\begin{aligned} & 5=y x+x+x+1 \\ & =2 x=4 \end{aligned}$	$\begin{aligned} & \bar{f}=A e^{2} \\ & \text { coe } \end{aligned}$	0	23，935	32，813	0	6．512	5.615	20.535	243，2es	43.212	287．853	353，155	0	12．159
      － $\mathrm{X} \boldsymbol{1}$	$\begin{aligned} & \text { covest } \\ & x=1 \end{aligned}$	01	18.473	33．23：	0	1.310	6.43	63.915	214．1ES	33．833	2＊6．155	345.151	$0$	11．108
	Fenve C．	9	0	78，34	0	11．751	7，83	37．923	3，037，435	123，＊13	3，115，594	3．2：4．63	37．60） 1	10.33
	Ex-x+1 Cos	0	0	72，232	0	10．835	7．213	90.872	3，507．653	111．3\％5	3，119．C5	9．203．31）	34.118	E5．293
	Fray $\mathrm{cos}$	0	2.803	8.333	0	1，651	3．655	13．6is	3．3．	0	3，110．cso	13．4：6	0	235
	Coxticiz   Cre	0	2,073	J．E33	0	1．453	971	17．142	0	－	0	12.243	0	131
crice brotel －	$\begin{aligned} & \operatorname{sen} 2 \pi \\ & c=1 \end{aligned}$		213，326 4	4．7．337	－	293．233	65．8：6	859．3：5	0	0	0	¢5，24：	2.537	3．595
	$\cos$		164， 68	437．832	－	93．35	6.258	753．225	0	0	0	133．215	2．305	3.591
Prist mose Exat axecis E－TM	Scanise Cre	0	$\boldsymbol{\sigma}$	3	0	0	0	0	23．3．350	12．6：3	293．653	273，650	31.119	1，533
	$\begin{aligned} & E=x=k \\ & k=x \end{aligned}$	0	0	0	0	0	0	0	28．3．353	11，683	272．563	231.60	23．633	2，205
	Fanien coc	0	©	0	0	0	0	0	217．34．3	\＄．550	211．90	211．133	21.450	2.220
	$\begin{aligned} & \text { ICosex } \\ & \text { Cost } \end{aligned}$	0	0	3	0	0	0		212，35－3	1843	123．180	221．180	25．$\times 2$	2.88
 		569.7003	131．360	＊is．ras	631，200	273，100	135.0072	3.359 .904	0	－	0	2.205 .000	18．803	9.730
	$\mathrm{E}-\infty=\mathrm{z}$	$5 \mathrm{Cl}_{2}=2003$	332.103	817．300 3	3E3， 30		125．3ce	2．617，903	0	$0$	$\bigcirc$	3.613 .50	17.957	8.533
	frain Cse	39？．400 3	363.100	453．420	935，069	327，603	134，963	2．636．403	c	－	＊	2，6处，5：3	14．503	8.760
	$\begin{aligned} & \mathrm{F}=\mathrm{rax}=\mathrm{z} \\ & \mathrm{Cxs} \end{aligned}$	332，400 3	303.500	427．30	852，103	237． 10	113.300	7.335 .430	0	＊	0	2．353．650	13．645	3.031
  目 Cejons．an         ＜－3	Franis C＝ Cownz	312.4804	456． 200	335.800	83，700	182．509	113.30	．5112503	0	$\cdots$	－	1．531．820	15，200	7，4．0
	Cos	312，430	3：4，300	309.800	31220	141，000	53，600 1	1．336．103	0	0	E	．338．100	13.092	7.358
tryonexat of R trank Yning S .30	$\begin{aligned} & \text { fienvit } \\ & \text { Cre } \\ & \text { Entes } \end{aligned}$	343.6021	155．100	148．259	156． 200	125．107	56，200	1．025．60	0	0	0	1．aざ，※（a）	15，	6.720
	cer	34.650	113， 200	155，500	153．450	115．820	E1，500	549．90	0	0	3	1：9．500	13.692	6.333
Sxisic the	$\operatorname{sen} x$	243，263	3212101	379，41	0	141．659	53，43\％	1．150．153	0	0	－	1．159．33\％	31.250	\＄，\＄10
	Esanel Cus	263．459	245.642	359．4：8		126，246	85.153	1.652 .035	－	0 \％	0	1，453．035	23．613	6.681
－t －RLEA Cxy	$\begin{aligned} & \text { finine } \\ & \text { fice } \end{aligned}$	$65,850$	87.916	149.835	0	15，426	29，350	311．483		0 －	©	373．359	6．803	1.725
		$69,450$	67．831	129， 207	6	（29．93）	24．633	313．160		00	©	313．159	4.651	1．530
Arntanctict （ all TEx．	FFark K－	24,733	6， 268	306，30s	0	－2t．re2	15．135	237．325		0	$\checkmark$	235．156	1．30	1，333
	ExClit trat	24．733	45，522	5＊＊：3	¢	－ 25.398	15.932	211．es5		$\%$	－	211．tis	1．158	1.235
Conze $+3 \times 5$    40	$\begin{aligned} & \text { Finctivy } \\ & t=0 \end{aligned}$	0	0	0		－${ }^{\text {c }}$	＊	0		－［5．（2）	183.000	243．000		030
	  Coe	0	$0$	$0$	0	$0$	$0$	0		0.120 .000	13．0 0	119．030		
  Bantivisu  	$\begin{aligned} & \text { tonint } \\ & \text { Cre } \end{aligned}$	151，000	230．590	217．500	63，690	102．（0）	23．000	\＄11，420		－ 0	－	911．430	5．800	\＄．131
	E- $\mathrm{c}-\frac{1}{2}$	$131,090$	$2(8,892$	200，500	55．40	3 38.259	（0，103	116，200		0	－	\＄14．$\$ 00$	5．343	4275

[^0]
### 8.2 Benefit Analysis

### 8.2.1 Methodology

The benefit analysis is carried out under the following conditions.

- It is assumed that the direct benefits consist of savings in vehicle operating costs, and travel time costs.
- Indirect benefits are observed in some cases however, it is not included in benefit calculations in this study.
- Direct benefits are calculated by comparing them between the existing road network with and without the short-tern Improvements which are described more in detail in Sec. 8.2.3.
- Direct benefits are calculated by using economic benefft cost.
- Benefits are calculated from the first year to be opened to the year 1990 A.D.
- Sensitivity analysis is not performed in the short-tera ingrovement.


### 8.2.2 Unit Costs

## (1) Time Value

According to 'INTERIM STRATEGIC PLAN AND FEASIBILITY REPORT', Medan Urban Development, Housing, Hater Suppiy and Sanitation Project, 1979, the average monthly household expenditure in 1978 is approximately $\mathrm{Rp} .37,300$. Applying the average number of household meabers, 6.2 persons/household, the average yearly expenditure per one person is figured out, 72,194 Rp./yr.
Assuming that the average working hours for an edployed person is 2,000 hours/yr. and that the economic participation rate (employed person/residential population) is 28\%*) in 1978, the average hourly wage is figured out as $128.9 \mathrm{Rp} . / \mathrm{hr}$.

$$
\begin{aligned}
& \text { Notes: *) From 'LAPORAN PEMBANGUNAN, DAERAH TK. II, KOTAMADYA } \\
& \text { MEDAN, SELAMA PELITA II', Hal Ikota Daerah Tk. II Yedan, } \\
& 1979 .
\end{aligned}
$$

Here, an assumption is made that the tige yalue during non-working hours is $25 \%$ of during working hours. Also, another assumption is made that the tiae value of car owners and non car owners are $150 \%$ and $25 \%$ respectively, of average hourly wage obtained above.

- Car Omer:

Horking Hours : $128.9 \times 1.5 \times 1.0=193.4(\mathrm{Rg} . / \mathrm{hr})$
Non-working Hours: $128.9 \times 1.5 \times 0.25=98.3(\mathrm{Rp} / \mathrm{hr})$
Non-working Hours: $128.9 \times 1.5 \times 0.25=98.3(\mathrm{Rp} . / \mathrm{hr})$

- Non-Car Owner:

Working Hours : $128.9 \times 0.75 \times 1.0=96.7$ (Rp./hr)
Non-working Hours: $128.9 \times 0.75 \times 0.25=24.2$ (Rp./hr)

Based on the result of the $0-D$ survey by Bina Marga in 1978, the percentage of the number of trips made during working hours is estimated to be approximately $40 \%$. The average daily time value for a car ownex and a non-car owner are estimated as shown in the following table.

Table 8-2-1 Average Titre Value

	Tice	lue (Rp./hr.)	Percenta	of Trips (\%)	
	horking Hours	Non-Working Hours	Korking Hours	Non-Horking Hours	Average Time Value (Rp./hr.)
Car Owner	193.4	48.3	40	60	106.3
Non-Car Orner	96.7	24.2	40	60	53.2

Here, it should be remembered that about $85 \%$ of car owners are those of motorcycles. Then, the average the value of a car owner in the above table is rather close to that of motorcycle. 'SURABAYA AREA TRANSPORTATION STUDY', Halcrow Fox and Associates, 1977, estinates the time value of a sedan owner 2.7 tices of that of a wotorcycle owner. Taking these conditions into account, the tine values of a passenger by vehicle type in 1978 are estimated as follows:

$$
\begin{array}{lrr}
\text { - Sedan } & : & 287 \mathrm{Rp} . / \text { passenger.hr. } \\
\text { - Motorcyele, Becak Mesin } & \text { : } & 106 \mathrm{Rg} . / \text { passenger. } \mathrm{hr} . \\
\text { - Bus, Bewo } & \text { S3 Rg./passenger. } \\
\text { - Bicycle } & & 42 \mathrm{Rp} . / \text { passenger. } \mathrm{hr} .
\end{array}
$$

Applying the average number of passengers per motor vehicle confirmed in Bina Harga"s 0-D survey to the above time value, the tiee value per vehicle-hr. can be obtained. The time value per vehicle-hr. for truck is estimated based on that by 'reasibility Study of Jakarta ring road PROJECT', Japan International Cooperation Agency, 1978. Then, the tiae values by vehicle type are escalated with the future growth rate of per capita regional incose.

Table 8-2-2 Tiee Value by Yehicle Type

	(Unit: Rg./vehicle-hr.)			
	Average No. of Passengers per vehicle excluding Drivex	Tiee Value by Vehicle Type		
		1978	1985	2000
- Sedan	1.8	545	737	1,160
- Motorcycle, Becak Machine	1.6	170	231	362
- Bus	32.8	1,749	2,376	3,762
- Bemo	5.6	297	403	638
- Truck	-	2,125	2,878	4,527
- Becak	1.6	67	90	89
- Bicycle	1.2	50	67	107

For the reference purpose the tme value estimated in other projects are as presented below:

- 'SURABAYA AREA TRANSPORTATION STUDY', Halcrow Fox and Associates, 1977:
- Sedan : 518 Rp ./vehicle.hr.
- Hotorcycle : 192 Rp./vehicle.hr.
- 'PEASIBILITY STUDY OF JAKARTA OUTER RING ROAD PROJRCT', Japan International Cooperation Agency, 1978:
- Sedan 832 Rp./vèhele.hr.
- Bus : 2,797.7 Rp./vehiclé.hr.
- Truck : 3,231.7 Rp./vehicle.br.
- 'THE CONSULTING ENGINEERING SERVICES FOR JAKARTA INTRA URBAN TOLlYAY', Pacific Consultants International, 1979:
- Sedan (1,200 cc) : 787 Rp./vehicle.hr.
- Sedan (2,000 cc) : 1,050 Rp./vehicie/hr.
- Sedan ( $2,600 \mathrm{cc}$ ) : 1,692 Rp./vehfelé.hr.
- Bus : 3,594 Rp./vehicle.hr.
- Truck : 2,886 Rp./vehicle.hr.
(2) Vehicle Operating Costs
(a) Road Vehicle Operating Cost

Road vehicle operating costs in this study are adopted from the results analized in Padang-Hedan Highway Study modifying them by the characteristics of Yedan City and annual price escalation.

However, those of some transport modes such as motorcycles and Bemo are calculated by the results of Surabaya Area Transport Study due to insufficient data in the Padang-Medan Highway Study; but some modifications are made by same reasons mentioned above.

With regards to the operating cost of bicycle, the calculation eethod used in Japan is applied although depreciation of tire and tube costs are its main ftess. Table 8-2-3 shous the results of calculation of road vehicle operating cost to be applied in this study and 1980 A. B. value is utilized for the analysis using annual escalation rate of $10 \%$. In this case, devaluation held in 1979 is take into consideration.

Table 8-2-3 Operating Cost by Speed and by Type of Vehicle

					(untt:	$\mathrm{Rp} / \mathrm{km})$
Speed   (km/h)	Bicycle*	Motor Cycle	Bemo	Passenger Car	Bus	Truck
5	8.5			60	150	155
10	8.5	14.8	46.61	58	138	139
15	8.5	14.17	45.41	56	127	126
20	8.5	13.53	44.2	55	117	114
25	8.5	13.03	42.3	53	108	104
30		12.55	41.0	S1	108	96
35		12.11		50	95	89
40		11.66	39.4	49	90	83
45		11.17		48	87	79
50		10.67	38.3	47	84	76
55		10.34		46	83	75
60		10.01	36.1	45	83	74
65		10.0		44	84	75
70		10.0	35.9	44	87	77
75		9.75		44	90	81
80		9.5	34.2	44	95	85
85		9.3		44	100	91
90		9.1	33.6	44	107	97
95		9.1		44	115	105
100		9.0	33.4	45	124	114

Notes: It is assumed that the operating cost of bicycle does not change year by year.

### 8.2.3 Benefits of Improvement Plans

Calculating method of the benefits of short tere inprovement plans is different in each alternative. Detailed procedures by each itaprovement category are as follows:

## (1) Improvesent of Railuay Crossings

Concerning tiis category, benefits as tige travel savings for road vehicles are taken into consideration. 57 binutes per day of reduction in the closed tite are expected by the improveaent plan in which automatic warning devices of train approaching are to be installed. Such devices are to be installed at 10 railuay crossings, and the expected benefits are calculated in total of vehicle tive saving eventually.

## (2) Rallvay Passenger Service between Belawan and Medan

The benefits of this project are considered as follous:

- Travel tife savings by rallway passengers who are expected to divert frow bus and Bexo to rallway after reopening BelawanMedan passenger trains.
- Cost savings by comparing the bus operating cost with that of diesel rail-car train.


## (3) Opening Eastside Gate of Medan Railuay Station

As far as this project is concerned, travel time savings are considered as benefit. Personal time saving is estimated as 4 minutes per passenger from the eastside.
(4) Localized Change of One-Hay System

Benefits in this category depend mainly on the saving in vebicle-time. Vehicle-kilometers and vehicle-hours were counted in the central district of Yedan City.

Table 8-2-4 shows the present figures and this estimated figures after the fmprovement. Total reductions of both items are estimated as 71 thousand vehicle-kgs per day and 2.7 thousand vehicle-hours per day respectively.

Table 8-2-4 Total Vehicle-Xis, Vehicle-Hours

	Vehtele-ka/day	Vehfeles.Time (Vehicle-hour/day)
1 Present Network	920,447	42,241.7
2 Partially improved One-Hay Systea   (Alternative Case I)	849,468	39,505.5
Savings by Inproverent	70,979	2,736.2

## (5) Benefits of Route-Coordinated Signal Control

In order to fully comprehend the benefits due to this category of improvewent let us look at the case when the systematically controlled traffe system is used in comparison with a case when the systematic control system is not used, welghing the benefits of each case.

## <Uninterrupted Travel Benefits>

A reduction in fuel expenses because of a lessening of the number of times vehicles to stop and start up again at traffic lights. This reduction of fuel expenses it is named as the benefit of uninterrupted travel. The amount of fuel cost expended to start is calculated as follows.

- the case without Route-Coordinated Signal Control:

$$
\mathrm{Hr}_{1}=Q \times \frac{R}{C} \times N \times \mathrm{K}_{1}
$$

$M_{1}$ : fuel expenses used in starting a car from an engine-iding position along a certain length of road (Rp/day)
$Q$ : Average dally volure of traffic on a certain length of road (number of vehicles per day)
C: the length of the cycle time $=116$ seconds
$R$ : the length of tine while a traffic light is red in a cycle time of 58 seconds
$N$ : the number of signalized intersections in a given section
$K_{1}$ : the weighted average amount of fuel cost expended to start a car from a engine-iding position (Rg/car per stop)

- the case with Route-Coordinated Signal Control System:

$$
\begin{aligned}
& \mathrm{Hr}_{2}=0 \times 1 \times \mathrm{K}_{1} \\
& \mathrm{Hr}_{3}=0.75 / 1.75 \times \mathrm{Mr}_{1}+1 / 1.75 \times \mathrm{Kr}_{2}
\end{aligned}
$$

The cost of fuel $K_{1}$ expended in starting a car from a engineiding position, differs depending on the rodel of car and the crifsing speed of the road. Using a chart of the composition of vehicular traffic in Hedan and assuaing that cars will travel at 30 kilometers per hour, we can establish the difference in fuel costs Mr between the two cases.

According to this method $K_{1}=6.0$ ce per car $\times 0.1 \mathrm{Rp} / \mathrm{cc}=0.6$ Rp. per car.

Thus the uninterrupted travel benefits in teras of fuel cost saving and for the Route-Coordinated Signal system is as follows:
(Unit: Rp/day 1,000)


Therefore, benefits is calculated as a tota: of Rp. $245 \times 10^{3} /$ day per car.
<Time Benefits>
Due to the Route-Coordinated Signal systen, the amount of time spent waiting on red light are drastically reduced, it is sumaned up such tiae benefits under the assumption that an average time spent waiting on red light is half of the red light tice ( 29 seconds) of a cycle.

- the case with Route Coordinated Signal Systea:

$$
\begin{aligned}
& \mathrm{Kt}_{1}=Q \times \frac{\mathrm{R}}{\mathrm{C}} \times \mathrm{N} \times \frac{\mathrm{R}}{2} \times \frac{\mathrm{K} 2}{3,600} \\
& \mathrm{Kt}_{2} \\
& =Q \times \frac{\mathrm{R}}{2} \times \frac{\mathrm{K} 2}{3,600} \\
& \mathrm{Ht}_{3}=0.75 / 1.75 \times \mathrm{Mt} 1+1 / 1.75 \mathrm{Mtz}
\end{aligned}
$$

Thus, we obtain: $X_{2}=548 \mathrm{Rp} / \mathrm{vehicle}$ hour
The following in the comparison of vehicle fuel costs at intersections.

$$
\begin{aligned}
& \text { - Comparison of Yuel Costs at Intersections } \\
& \text { (Unit: 1,000Rps/day) }
\end{aligned}
$$

Therefore, the benefit due to savings in vehicle fuel cost calculated as a total of Rp, $1,800 \times 10^{3} /$ day.

Thus, the benefits of the Route-Coordinated signal system is calculated as follows:

$$
(245+1,800) \times 10^{3} \times 365=746^{\text {mil1ion Rp./year }}
$$

(6) Improvement of Raod Facilities

Reductions in vehicle-kn and vehicle-hour of the traffic volume passing through of the roads ace calculated as benefits.

## (7) Iqprovesent of Pasar Sabbu Bus Terminal

The benefits of this category is estimated as the reduction of operating cost of buses and Bero in this bus terminal. The traffic volume is calculated by the results of traffic counts conducted by the JICA Study Teait.

## (8) IEproverent of Intersections

The benefit is estimated as the reduction in delay of vehicles passing through those intersections. The results of calculation are shown in Table 8-2-5.

$$
\text { Table 8-2-5 } \frac{\text { Intersection of } 11 \text {. Tati }}{\text { and } 11 \text {. Yatin }}
$$

Approach	Existing		Ioprovement Plan		Difference in Delay (Veh. hr.)	Beneffet   (Rp./day)
	```Traffic] day```	Delay   Time   (Veh. hr.)	$\begin{aligned} & \text { Traffiel } \\ & \text { day } \end{aligned}$	Delay   Tiae   (Veh. hr.)		
A	28,790	168	20,633	$\frac{(\mathrm{Veh.}}{0}$		
B	577	3	2,438	28	168 -25	$\begin{array}{r} 92,064 \\ -13,700 \end{array}$
C	33,877	169	31,233	26	-25	$\begin{array}{r} -13,700 \\ 78,364 \end{array}$
Total	63,244	340	62,304	54	286	156,728

Note: Cost per vehicle-hour is assumed as Rg. 548.
(9) Loop Bus Service

It is very difficult to estinate the benefits of this category; therefore, only the financial analysis is performed in the following chapter.

The results of those benefits described above by improvement plan are sursarized in Table 8-2-6.

Table 8-2-6 Sumary of Economic Benefits of Improvement Plans (in value of January 1980)

(Vnit: Rg. $\times 10^{3}$)	
Improvement Plans	Total Benefits in the period from 1982 to 1990
Irprovement of Rallway Crossings	1,622.50
Re-opening Commuter Service between Belawan and Hedan	37.47
Opening Backside Station Building of Medan	5.77
Localized Change of One-Hay Trafflc Control	2,423,86
Installation of Coordinated Signal System	1,141.70
Improverent of Route 1	1,597.36
$\checkmark 2$	1,457.00
113	1,967.72
10	1,443.74
Ieprovenent of Sambu Bus Teroinal	171.94
Improvement of Intersection of Jl . J1. Gotot Subrato and J1. Gelgur By-pass	58.21
Improvement of Intersection of 31. Tuti and J1. Yagin	85.86

8.3 Cost-Benefit Analysis

From the total economic costs which are calculated in Section 8.1.2, comprising the construction costs, the maintenance costs and the operation costs, and the total benefits, coping with the project ife-span of each faprovesent the benefit-cost ratio and the internal rate of return of each feprovement plan are calculated.

8.3.1 Calculation of Cost-Benefit Ratio and Internal Rate of Return

For each fmprovenent plan, benefit-cost ratio and internal rate of return are calculated by using three discount rates such as $10 \%, 12 \%$ and 15%.

According to the results, the following four plans seea to be unfeasible, which indicate the B/C ratio below 1.0 in the case of 15% in the discount rate:

1. Re-openning the railway passenger service in the section between Belawan and Medan;
2. Opening east side gate of Medan Station.
3. Improvement of Sambu Bus Terminal.
4. Itprovement of the intersection of 31. Gotat Subroto and 31. Gelgur By-pass.

Table 8-3-1 shows the whole results of economic analyses.

Table 8-3-1 Economic Benefit/Cost Ratios and Internal Rates of Return of Improvement Plans

	Benefit/Cost			$\begin{aligned} & \text { I.R.R. } \\ & \text { (\%) } \end{aligned}$
	10\%	12\%	15\%	
Improvement of Rallway Crossings	18.3	17.0	15.4	259.7
Re-opening Commuter Service between Belawan and Medan	0.061	0.057	0.052	(A)
Opening east side gate of Medan Station	0.034	0.032	0.028	(A)
Localized change of One-Hay Traffic Control	30.4	29.2	27.4	17,477.5
Installation of RouteCoordinated Signal System	14.6	13.9	12.9	312.6
Improvement of Route 1	3.9	3.6	3.2	59.4
" 2	2.8	2.7	2.4	42.0
$\because 3$	7.1	6.5	5.8	83.5
" 4	7.2	6.7	6.0	107.3
15	3.2	3.0	2.7	50.8
Improvement of Pasar Sambu Bus Terninal	0.68	0.63	0.58	1.1
Improvement of the Intersection between J1. Gotat Subrato and 11. Gelgur By-pass	0.75	0.70	0.63	3.4
Improvement of Intersection of J1. Tubi and Jl. Jamin	1.8	1.6	1.5	25.8
Note: (A) shous that evaluated be evaluated financial tot	it tot cost.	is le	ss than	e value

[^0]:

