1979

•

••

.

Bengkayang

Month	1,,,,				····-				····-			
Date	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	12			15	30							
2	3			6	9							
3	2											
4	24	13		6		39		·				
5	9	50 ·	22	25								
6	4		13		45	37				÷	·	
7	9			3		30						
8	2					5						
9		7		1							· ·	
10		7		6	5	8	· · · · · · · ·					
11				7	13							
12		28		3								
13				140		5						
14		41										
15		9				5						
16						51						
17		6										
18		48				24	-		··			
19		30				24						
20				2								
21	38			4								
22	15	13	49	40		14						
23			6	40					·			
24			3	67	3							
25	6	2	• 3	14			[
26	:			13		17.			 			
27	5		12	26							<u> </u> -	
28	6		28		33		[
29	9	· · · · · · · · ·	3		2			<u> </u>	[
30	9			22	25		 	1		 		}
31	17					····	,					
Total	170	254	139	440	165	259						

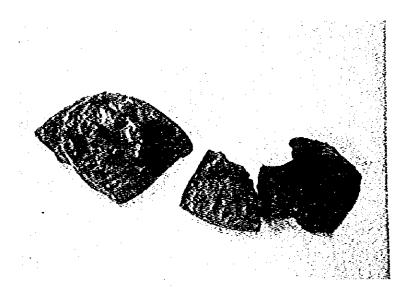
Sample No.	Thin Section	Polished Section	Chemical Analysis	X-Ray Analysis	K-Ar Dating	Rock Chemical Analysis	Fossile Identi- fication
ŘA – 4	0						
RA - 9	0						
RA - 21	0						
RA - 33	0						
RA - 42	0						
RA - 49	0						
RA - 63	0						
RA - 67	0						
RB - 1	0				:		
RB - 4	0					_	
RB - 7	0						
RB - 8	0						
RB - 10	0						
RB - 15	0						
RB - 16	0						
RB - 17	0						
RB - 18	0						
RB - 19	0						
RB - 23	0						
RB - 24	0				0	0	
RB - 26	0						
RB - 27			0				
RB - 28			0				
RB - 33	Ó	0					
RB - 39			o	0			
RB - 42	0						
RB - 44			0				
RB - 48	- 14	0	1				
RB - 52	0	 					1
RB - 54		1	0				
RB - 60	0						
RB - 61	0	.					

Appendix 2 List of Rock, Ore and Possil Tested

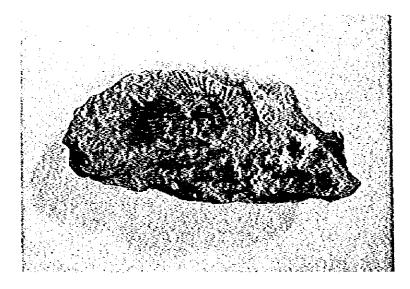
Sample No.	Thin Section	Polished Section	Chemical Analysis	X-Ray Analysis	K-Ar Dating	Rock Chemical Analysis	Fossile Identi- fication
RB - 62	0						
RB - 68			0				
RB - 70	0						<u> </u>
RB - 72	0					0	
RC - 27	0						
RD - 7	· · · · · ·		· · · · · · · · · · · · · · · · · · ·				0
RD - 10	0						0
RD - 11	Ó						
RÐ - 12	0						
RD - 14	0						
8D - 18	0						
RD - 23	0						
RD - 28	0					0	
RD - 29	0						
RD - 35	0						
RD - 37	0						
RD - 48	0						
RD - 52	· 0			-	0	о	
RD - 53			Ó				
RD - 54			. 0				
RD - 55			0				
RD - 56			0				
RD - 57			0				
RD - 58			0				
RD - 59			0				
RE - 2	0						
RE - 30	0 -					0	
RE - 40	0						
RE - 50	0			1	0	0	
RE - 71		0					
RE - 80	0						
RE -100	0		· .				

.

.

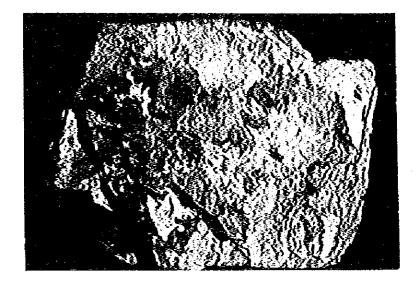

Sample No.	îhin Section	Polished Section	Chemical Analysis	X-Ray Analysis	K-Ar Dating	Rock Chemicál Analysis	Possile Identi- fication
RF - 8	o						
RF - 10	0						·
RF - 11	0		·				
RF - 15	0						··
RF - 20	0		·			ò	·
RF - 25	0						
RF - 30	0						
RF ~ 32	0					0	
RF - 35	0						
RF - 37	0						
RF - 43	0					· · · · · · · · · · · · · · · · · · ·	
RF - 45	0			_			
RF - 48	0						
RF - 51	O						
RF - 54	0						
RF - 55	0						
RF - 58	o						
RF - 64	0						
Rk - 29		0					
R1 - 2							0
R1 - 54							0
R1 - 61	0		0				
R1 - 62		0					
Ro - 1	0						
Rm - 12	0						
Rm - 19	0						
Rm - 23	0						
Rm - 25	0	0					
Rm - 63	0						
Rn - 4	0	0					
Rn - 23	Ó						
Rn - 32	0					0	

.

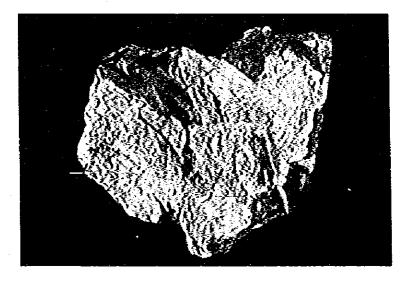

A-8

.

Sample No.	Thin Section	Polished Section	Chemical Analysis	X-Ray Analysis	K-Ar Dating	Rock Chemical Analysis	Fossile Identi- fication
Rn - 38	0						
Rn - 41	0						······································
Rn - 58	0					<u> </u>	
Rn - 61	0						
Rn - 66	0						
Ro – 5		0					
Ro - 21	0						
Ro - 43	0						
Rp - 19	Ó				0	0	
Rp - 25	0						
Rp - 32	0		·				
Rp - 41	Ó	1		· · · · · · · · · · · · · · · · · · ·			
Rp - 42	0						
Rp - 48	0				· · · · · · · · · · · · · · · · · · ·		
Rp - 53	0		· · · · · · · · · · · · · · · · · · ·			-	
Rp - 59	Ó					1	
Rp - 69	ò						
Rg ~ 59	o					0	
Batu Aji		0	0				
Senture Lover			0	· · ·			
Senture Upper			o				
Serantac (A)		0					
Serantac (B)		0					
						-	
		1				+	
	_ · · _ · _ ·						
					· · · · · · · · · · · · · · · · · · ·		
Total	93	11	17	1	4	11	4



Sample No.: R1-54 Location : Bengkayang Harpoceras (Harpoceras) sp Jurassic Lias. Toarcian


2 30 9

Sample No.: R1-2 Location : S. Jebane Dactylioceras (Orthodactylites) sp Jurassic Lias. Toarcian A-10

9 1 2 3 4 5₀₈

Sample No : RD-7 (A) Location : S. Jebane Doctylioceras (Orthodactylites) sp Jurassic Lias. Toarcian

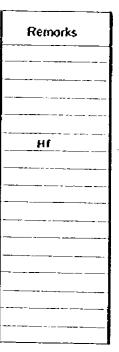
2 3(1) 0 3

Sample No : RD-7 (B) Location : S. Jebane Dactylioceras (Orthodactylites) sp Jurassic Lias, Toarcian

Appendix 4(1) Microscopic Observation of Thin Section

Somole No	Rock name	Texture		-	<u>ģrai</u>	in /	'Fr	Óġr	nèn	t						róc	ntrix	C					Г		Sé	còri	dor	Γ Υ	Mir	iera	<u>н</u>	-
			10	X f	PI	81	Hb	Au	Ну	01	Óp	Lilh	Q	Śī	r	[P]	8	нь	ice:	100	101	0	0	Śi	100	T _e	Chi	Í.	l ór			
Bengka	yong Group													T	1-	Í	\uparrow		1	Ť	1	1	†-	Ť.	1-	Ť	Ť	f		F		29
Bana	n Formation													1	İ	T -	1	İ-		1	†						1-	 	 			
<u>RB - 1</u>	lfss	\$5	0		0		0					doc	0	-		ō	<u> </u>	•	 	1	-	-		-	i .—	1-			 _			
4		~	0		0							and	ō	-		0	<u> </u>	•		<u> </u>		Į			-	<u> </u>	 	 !		.		
1 - 7	4		ō		0	-1					 -		ŏ		<u> </u>	P	<u> </u> _		┣			-			-	_					<u> </u>	
• • 8	lss		-10	1-1	0		0					·	ŏ	-	-	· –		0	 						 		 !				[_]	[
+ -15	doc lfss	*	Ō	i— i	0		ŏ			-		dae	<u>e</u> .		<u> </u>		 ●	•	[—		 		 	<u> </u>	İ	 	 !					
» - 16	ftfss		Ō	+ +	0	—ł	Ť			-1	_	036					<u> </u>		i	 	┨											
· -19	lfss		ō	1+	ŏ			-			-	<u> </u>	0	_		┣-	<u> </u>	 	 	 		-			 		•				•	_
<i>יי</i> -70	dac If			1 — í	ŏ		-1			-	_	dsc	0		_		i —		 _	l	-				 	 !	[_]				<u>o</u>	[
Kalung	Formation	· · · · · · · · · · · · · · · · · · ·	- ~	=	-†		-1				-		<u>0</u>		 	0		<u>o</u>	!	ļ	 		I		_						•	
RB -62	bish	\$5	0		\exists		-	-		-Ì				 	i —-	[_			_		<u> </u>	1										
	laya Formation		- 4		<u>0</u>					-						[ļ						•					
RB-61	SS				╡		_	 		_{	_		_				 				L_		_									
RA - 67		55	<u> </u>		<u>0</u>	į]		_1		065 dac	0			[I					•	•			-		_
			0		<u> </u>	_1		_[_	-l		0 0 0 0 0 0	0							[İ		—			0						-1

Ifss fss fIfss bIsh and dac	Abbreviction Rock I luf aceous sandstone fine sandstone fine luf aceous sandstone balck shate andèsite dacite	Minerol Q : quartz K-f : kali feldspa Bl : plagioclase Bl : biotite Hb : hornblende Au : augite Hy : hypersthene	Öpx Öpx Cc Ser Chl	: silica : clinopyroxene : orhlo pyroxene : colcité : sericite : chlorite : kaoliñe
\$. \$	Textura : sodstone	Ol : otivinė Op : opaquė mini Lith : lithic fragm		: actinolite : epidote


-

.

•

Hſ

: hornfels

•

-

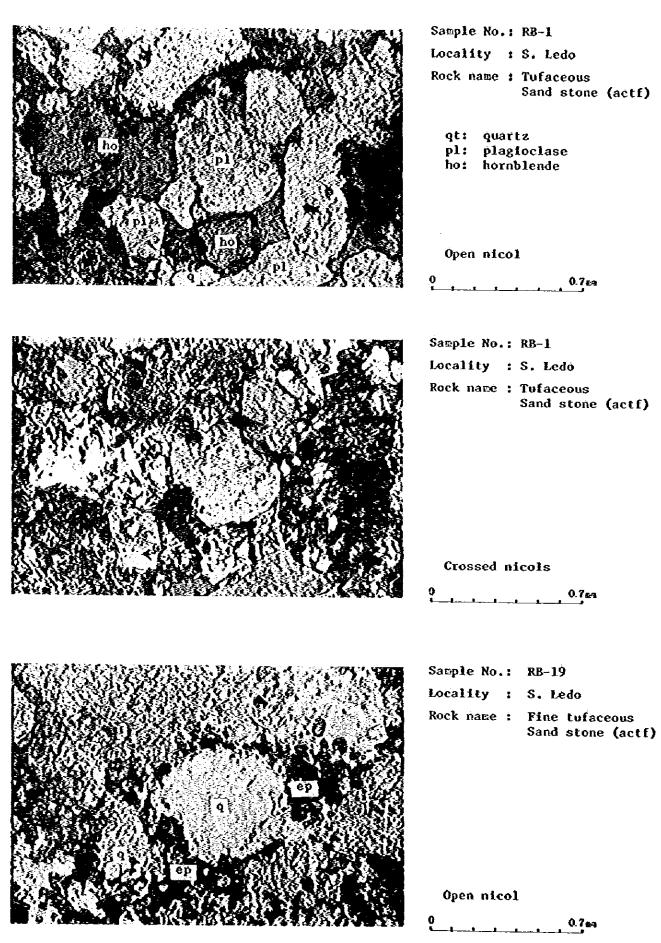
Appendix 4(2) Microscopic Observation of Thin Section

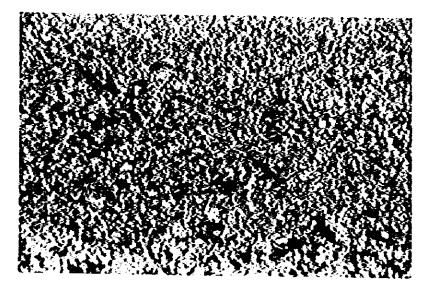
Somple No	Rock name	Texture		hen	ocry:	<u>51/</u>	Fro	និយាច ព	<u>nt</u>	τ.	-		1 <u>001</u>	dm	<u>ass</u>	/ ៣	potr	ix F	— 1			<u> </u>	<u>Se</u>	<u>;co</u>	nda	<u>17</u>	Mi	<u>nė</u>	rol							Remarks
	l /ssal_rock		197	<u>(11</u>	-18.	гнь	Au	ну (비의	<u>p[Lifi</u>	<u>h</u>	0	<u>s x</u>	f] <u>P</u> I	81	НЪ	Cri	<u>xx</u>	<u>01 </u>	<u>00'(0</u>	<u>61 </u>	0	si c	<u>c's</u>	<u>er }}.</u>	<u>niso</u>	<u>0'Ch</u>	<u>1</u> /2	<u>8 מ</u>	<u> </u>	<u>el El</u>	ыļс	270	o A	b P	
	gtz por		6		<u> </u>				- -			0		+	ø				_	-+					+		-	+		-	_ -	- -	-	-	_{	
✓ 23	oltered doc	porp	0 0	-1	0	0						0			P									- -	_		- -	+		+				[
RQ 59	giz-dio por				<u> </u>	ľ						ž-									-1	<u> </u>			2		-								_ [_	Hydlh
RC - 27	dol	dol	· -			-	ó	<u> </u>	2		-1	•		0		$\left - \right $	0		-	_							+ .			-					4-	·
RP- 25			-] ·		<u>o</u>	+	ō		╘┤─					ľ	+- -			<u> </u>				_			-	4.				4						
	ok Docite	*	┨──┨	-1	<u> </u>		Ĕ		- -	-				+								-	_ -					•	_ _	- -	_ _	_ +			_ _	
RA - 49		010Q	Ø		<u>a</u> 2													-				_ 			_			+				_		-]-	_	· · · · · · · · · · · · · · · · · · ·
17			0	-12	0 ? 0	+			- •		-1	0 0		_	•		-					-			•			- -	1	╉		_ [-			- -	
R8 - 72			ø	-	- 6	-			- -	_	{}	<u> </u>		0	·†·	•	┝─╏		-			-				-1-	+	-			-1-	•			_ -	
	Formation	•		- `	≝				{ -	· [-1	≚			· 	⊢		· _ }				_		╀		-1-			·- } -	_	-4	┛ -			- İ	
RD - 10	tf s.s		0	╍┠		+					_	-			-			-				-				- -	_	-	- -		_ -	+				
11	ond	pyro trachy	- <u> </u>	-12	<u>a</u> [-			-	- -	00		<u> </u>			╂─							-1		2				-						·		
12	ond if lop		┨╼┧╴	-12	<u></u>	· ··					, 	0						-	-					2		╀			- -			_				maf chł
• -14	ond	py10			0			-	- -	i cri	-+	0		+-										<u>-</u>	- -		0				_ -	- -				· [
 -23 	ond if br		╏─╏╴	-ľ	-	<u> </u> _		+				ž		•	-{·					-		-		2	_ -	- -	0	-				+	+	-	- -	-
RE - 40	and if lith	*	1.	-	പ				- -	<u>dr</u> i		-		0	+				-	-					- -	+	_	- -			-	<u>'</u> -	- -	-		
RF - 15		•	0	-12	0 0			-	- -		-1	ŏ	-	0	+	-					-l·					- -	+		-			<u>_</u> -	+	- -		1:11: mol = 1:3
Belang	······································		-	Ť	<u>۳</u>			-+		-		Ĭ		ľ	-						— I.			ļ-		- -			+	- -	<u> </u>	4	∔		- -	Cont meto
RF - 8	doc If crys	руго	0		9			-		- da an	ç			-	┢								-						-	+		-				
• 37	doc 1f lop		0		0			-			1	<u> </u>		0						-							+-	╀	_		-	+				
• - 43	rhy	<u> </u>	0						-	- *		õ		- -	┢					-	-					- -	•	-			_[_		+	-1-		Cont meta
+ - 48	and the lop		ŏ	-b	9 9	-		-+		-		9			-			-	_			-+		_[<u> </u>	+			_ -							Lith: mot = f = 3
• -51	doc 11	*	0	f	<u> </u>				- -	00		0	- -		-					-		-		-	_	-	•	-	+			•				Lith: mot=2:1
- 54	* *		0		<u>.</u>						-1	Ŭ,			┢							-		-ł	2	-1-		+			-1	•			_	Lith: mot = 1 = H
• - 58	doc if lith	*	1 0		9			-		00		0	+		1-								-	2		+		-	- -	-		_			_ _	Cor met
• -64	dac	fel crypto	┨┷╂╴	-f	0	-			+			ŏ	+	0					_					-	<u>-</u>	+-	0	+	_ -			0		+	_	Ser met
R0-21	doc if top	pyro	0	-1.	ă –	•				310				Ľ	-	•		-							<u> </u>	+	•			_	- -	•	-			epi met
RP - 42	dac ff		0	• (<u> </u>	-				310		-		┨─	1.	 •]				-		_		-	- -	_ -					-	-	-	+	╀	
• -48		•	ŏ	-);	0				- -	1	-		1	+-							— ·		-	-				<u>-</u>		_		≜ -				
53	doc If s.s	*	0		8 0							•	-					_			-			-	•			2			-	•				· · · · · · · · · · · · · · · · · · ·
59			ĬŤ		Ŭ -				+	60		<u> </u>		<u> </u>										+	_		•	4		-	-+-	•				Lith: mol = 5: 1
	lok Formation	*	1						- -		-1					⊢		-			_[<u></u>										의.				olunité
RA - 4	dac lf ss	pyro	9	-+					-				+	-											-			+		-	_		-	╧┨╌		
, - 9		PJ10	0		ă -			+	- -	do		•								-			-+	-			1	+	_ -			-				
, -21		*		-12	•]]			+	+					- •		 		-						- -	-		-	-+-	-	-	· [•			_	
-33	doc if by		<u> </u>	ľ	≝		╞╴┨		- -			•			i		-							_ -		_ -				-		╧┨╴			_ļ_	frog:met=4:0
42	doc II	*	6		<u>- † -</u>		 _			40.0				- •		┢		_						-					_ -	[-		_]-	-			
-63		*	0 0	-	- a	1	╞─┨			00	c (<u></u>		+-				_							•	-			_ -			•				
RB - 52	dac 11 lap		0	-	0)) 0							씱		┦╹		┨					— <u> </u> .		-		•	╞		-		-		₽	-	+		
10 - 32		·	1×1	ľ	- -	$\left - \right $		-	- -	60	ĸ	2		-		╞╌							-	_['	•	_ [_	-	- -		_	_	1		_	_ _	

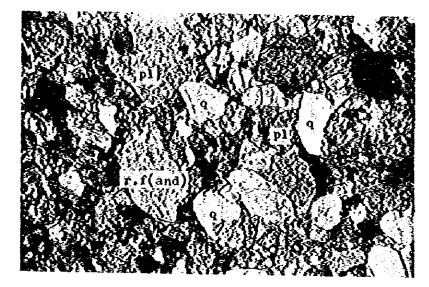
.

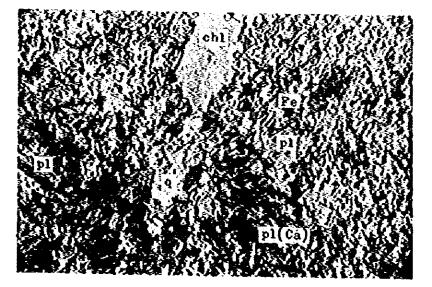
-

Hypobyssal, Votcanic and Pyroclastic rock


j.	Abbreviation
	Rock
tf	: tuff
ff	: tuff breccio
tf lop	± tapill) ff
ff lith	: lithic tuff
dác	: docitic
ond	r and
dəl	: dolerite
	_
	Texture
dol	: doleritic
porp	: porphyritic
hyolopi	: hyolopiritic
ργιο	: pyroclastic
crypto	
fel	: felsic
	Minerol
Q	: quártz
K-f	: kali-feldspor
81	: biotite
НЬ	: hornblende
Au	: oughe
Hy	: hypersthene
01	: olivine
0p	
Si	: opaque mineral : stlica
Срх	
Срх Ору	: ciino - pyroxene : ortho - pyroxene
Cc	: colcite
Ser	: sencile
Chi	: chlorite
Act	: oclinolite
Epi	: epidote
Lith	: lithic fragment
C1111	ennue nugaiear
Ser me	t : sericitization
	t : contact metamorphism
	et=lithic fragment=matrix
	: hydrothemal olteration
•	1 corbonatization
-	


Appendix 4(3) Hicroscopic Observation of Thin Section


	• • • • •					Å	₽₽	end	lix	: 4	4(3)	H	ler	05	cop	fc	QЪ	sei	ryal	tio	n	of	Th	ſn	Se	ctl	on								
r	Intrusion rol	: k	.																																	
Somple	Rock nome	Texture			5 6(Q	cry	<u>şı</u>			-		•	Gro	NIN H	ർന്നം	055				Τ			્ક	2004	าส์จ	ry	Min	era	1						T
No.	Raya Granodiorite		P	<u>X</u> 4	181	₿1	H	Au	[H)	101	00	0	Si	X.1	ମ	81	H	<u> </u>	<u>~</u> {9	N O	0 <	2 S	× lc	e Se	17.6	γ¦Sγ	<u>i</u> chi	кю	81/	Acij	Epi	Ô9	Zeo	Py	չթո	Remarks
80-37	hb bt graio			+	┨╤	· _		<u> </u> _	I		 	_			 				_			1		_ _		. _	.				_					
RE + 2		hot – crys	10	•	ē	0	 		I -		•	_	 				_		_				_ .	. [•		_	_		_	i		1_	
RF - 10	to biogiz-dio		P	ŀ	P	<u>•</u>	-	⊢	╞	<u> </u>		_	_			 			_		-	4-		_			•			_	٠		į]			
	M gradia	(porph) hol-crys	<u>e</u>	1º	10	0	-	┨╌	i _		•	_							_		4_			_ _		1_	•			_			i]	I		
. 20	No bi gradio		U A	19	0000	0		╂	┠─	- -	+											-		.	_	_	Į.	_					Ļ_ļ	L	L	
-25	*				10				ł-	┢	l.	_					_					- [-		4_		.l	! ≛.			_	٠	_	i_]	I _	. I	
- 45	bt hb ton		ľá	łŦ	15	•	ŀ	<u> </u> _	⊢		<u>•</u>		–				_					4-	_			- -	Ŀ			_	•			1_	.	_
-55	ton porch	porph	0000000	╏	ľĂ	┞	<u> </u>	-	┢		∔ ≞	-		_	-			_		+		- ļ -				+		i – I		_			į!	 _		
Rm-12	altored ton	hol-crys	ă	1,	ĬĂ	 		┝	┨		\vdash	<u> </u> °	⊢	P.	<u>•</u>				-		- -		- { -	- <u>-</u>			<u>0</u> .				<u>•</u>	-		 _	· -	mol+obi ep
• • 23	to be gradia	purph	ā	6	a	6	-			┢	•		 -	<u> </u>					-		- -	-	-[9		-		<u> </u>		_		õ			<u> </u>	<u> </u> 2	hd sh (lour - sea)
63		hol crys	1	1-	ħ	ľ		┞	┠─	1	•							-		-+-		+-			╋	·i	•	-		_	•	I	<u> </u>			
Rn -23	the gtz dia		ŏ	1.	ō	i.	io	┢─	┢	┢	-	-	1—	-1	-	\vdash	-		+			╉	- -	+		-	<u> </u>	\vdash			•	┝╴╽		 -	╞	
- 41	hb bt gradio	•	ŏ	0	ō		•		1-	1-1	.	┢─	 -			┟─┦				- -	- -		- -		+	+	• •	-	-		<u>•</u>			-		· ·
+ -61			0	0	0			ľ	ŀ	F	•		┢	1-		┟─┦	┠╌┨		-				-†-	┦╹	+-		! .			-	•		-	⊢	-	
Ro -43	·····	(porph)	ō	•	le	ō	0	1-	t	t	ŀ	1-	t	1—		†	1-1				-1-	╉	-1-		1-	+	÷				•	-	-		-	
Rp -19		hol-crys	ō	ţ.	0	•	ţ.	1-	1-	-	ţ.	1-	1-	1-		t-ł	-	-		-1-	-1-	+	-†-	╌┤┛	+	•	H	╏╌╏		-	•			} -	-	
32	•	•	0	[0	[0]	0	0	L	1-	1	•	1-	1-		-	1-1						╉		- -	-	1-				-	•	-1	·-	⊢		
41			0	0	0	0	0			İ	•	1-	t.	-								-†-				·†			~	┦	•	-		<u> </u> _	-	
- 69	¥.	porph	0	0	lo	0	ŧ		l	1-	•	1-	1-									╈	-[-	-	+-	· [-1		-	•	-1		\vdash		
Tiong q	uarte diorite				1		1	1	ſ	1		1-	Ē							1	-	╈	┢	╋	+-	+	1-	1-1		\neg	•	-		⊢	1-	
<u>RE -50</u>		hol-crys	0	•	0	0	0	•	•		•	1	T							╈	-1-	-†		-†	-		1.		+	-	٠		- 1		+	
	to be de do porte	porph	0		000			Γ	Γ	Ī	Γ	0		٠	0					-1-		1	1-	-1-	- †	1	1-				-	-i	-	╞	┢	tyd+ h (tour - rein)
-25			0		9	•	٠		Ι.	·	•	0	1		0	0	ō			•		-†-				1-	•	11		-1	•	- i		•	1.	
	nite I			L	L]_								-1-		T	-1-	1-	1-	1-	-			-1			[-]	1-	F	
<u> </u>		tol-crys	0	0	0	0	_	L	Ľ		•			İ_								1	-1-	•								-	[-1	t-	1-	
• -32		porsh	Ø	<u>°</u>	0	0					٠	L										ſ	1	-1-	1~		•				•			┢	1-	
	ti građa	hol-crys	0	0	ļõ	٠		Į_	L	.	•	I _	<u> </u>		_							Τ			T									<u> </u>	1	
-58	oit-gra	(oiterated)		Ļ	↓_				 _	L	L										g		•)				[]	0	 	٠			Γ	1.	ky5+h(?)
	nite 2			 	-	-	!	_	 _	L		 _							_			i												I		
	ti ho gradia	porph	<u> </u>		Ø	٥	0		_	Ľ	L	<u> </u>		0	0	0	0					ł					 _							Γ		
8n - 32	to be gradia	hol-crys	0	<u>e</u>	0	•	•	<u> </u>	Ľ	 _	•	┨	[_]								-	1	1											Γ		
	bt gra dia		0	P	10	<u> </u>	_	_	 _	┡	ŀ	_	<u> _</u>						_							1_	<u>I</u>				٠					
R0 18	quarte gattro qt au th gab					_		┡	┡	L		_							_			1		1_			L						1_]	İ_		
RD - 28	41 03 LO Q10	[perch]	-		0					┨	•								_	 -	_	ļ	Ļ		1_	1_	 			_						
• -29	·	eq-gro	•	~	0	•	0	<u> </u> _	•	 	•	 	 	_					4	-1-		_].	- -	4	-		Į_		_					L	1_	
- 48		(porch)			0		1	Ľ		-	-	-	┨						-	-1-		-		<u>_</u> !•	-	╞	!		•		۰		:]	▙	⊥	
Borgi to		15-45413	•		ľ	-	Ĕ	0	ľ	-	•					<u> </u> _	┨─┨			-			- -	4-	-	<u> </u> _	•	_	•					┡		
	No bi Ion	tal crys	6		ō		-	1-	1-	┝	+	-	-				┝─┤										<u> </u>		┝┈┨	_			┝╍┦	 	╞	
-52			5	-	6		-	┢─		┢	•	[-	$\left - \right $		-	$\left - \right $			-		╋	+		4-	+-	┢	•		├		-		_	₽_	+-	
RE - 100		forph	6	-	0	1	0		⊢	1	•	0		•	0	H	┢┤		+		+	ł			+	+-			↓		\square	-		[╞	
RF - 35				† –	ŏ	•		┢	1-	\vdash	ľ	ŏ			0			-		+	╢	+	-Į-	-	╀	┨─	[<u>•</u>				٠		_	–	-	
	bt ho ton	hol crys	le	•	00000	•		1-		1-		Ť			-	-			+		- -	1	+	- -	+	-	┞╸	-		-	-	-	_	Ļ	-	nol + 04 ep
Rm - 1	•	•	ō	•	0	•	0		 	1	•	1-		-		┢┤	┢╌┨	-1	╉	╉	- -	ł	- -	-[-	+		{		┝─╂		-			⊢	╞	
Rn - 66		•	0	•	00	٠	0	1-	1-	1-	•	1-	1-			H			-		-	t	-	1.	-	┢	•	┝─┦	┝╌╂				-1	<u> </u>	-	
Sirih k	noite			-			_	[1		1-				-	-		-1	-1-	-1-	-1-	- -	┨╴	1-	1-	Ē			-	-	-		-	-	
	hb bio ton	tol cys			0						•	ſ					-		1	+	-1-	╈	+	1	\uparrow	+-					•		\dashv	┢─	1-	
+ - 33			0	٠	0	0	٠				•							-1	T		-1-	1	1	•	1	1-	•			-	•			┢╴	1-	
										E									1	1	1-	T	-†-	1	1-	1-	t			-				<u> </u>	t	
	·		_																	- I		~ £	- I -		- I	•	4	•	Ĺ		L J	L		I	4	


-	
	Attreviation Rock
qtz porp	hiquoriz corphyry
	: Ionolite
gradio	: granodiorite
qtz- 5-0	equita diorite
ýra	: granite
dis-g-sip	ender since:
	Texture
hol- cor	= holocrystalline
porch	= porphyritic
	Mineral
Q	: quariz
K-1	: kali felospor
Pi	: ploglockase
BI	= biotite
НЪ	: hornblende
Aυ	: augite
Hy	: hypersthese
01	: olivise
Cp	: cpoque
Si	: silico
Срх	: dincorrerere
Орк	: orthopyrexene
CI	: g'ass
Cċ	: coicite
Se	: sericite
Chi	: chlorite
Act	: octinotite
Epi	: epidote
lour	: tourmatine
£Y	pyrite
mat	mofic mineral
budth	- hadrothcroal at

mat : matic minerat hydth : hydrothermat alteration Conrret : contact metamorphism

Sample No.: RB-62 Locality : S. Raya Rock name : Black shale (ms)

9 + Člay + Fe etc Fe: fron mineral

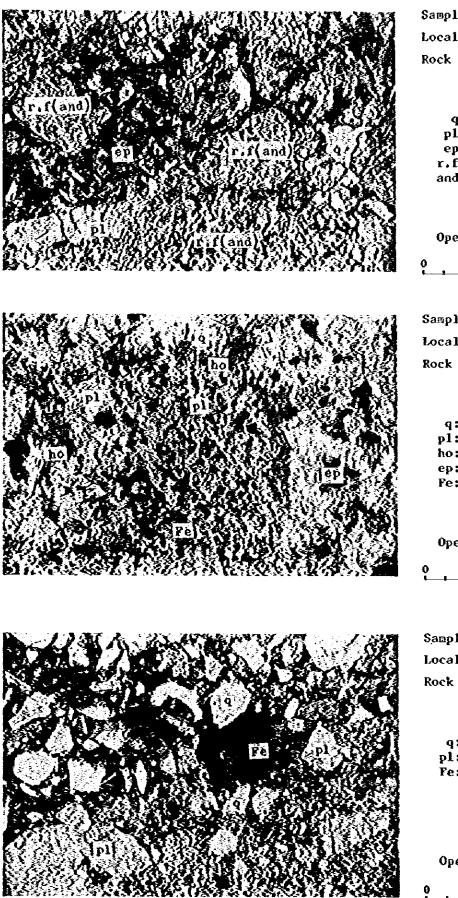
Open nicol

0 0.7m

Sample No.: RB-60 Locality : S. Raya Rock name : Sand stone (ss)

q: quartz
p1: plagioclase
r.f: rock fragmento
and: andesite

Open nicol


0.761

Sample No.: RD-11 Locality : S. Moroi Rock name : Andesite (and₁)

q: quartz
p1: plagioclase
ch1: chrorite
Fe: iron mineral
ca: calcite

Open nicol

0 0.7as

Sample No.: RD-23 Locality : S. Sebalau Rock name : Andesite (and1) tuff

d:	quartz
pl:	plagioclase
ep:	epidote
r.f:	rock fragment
and :	andesite

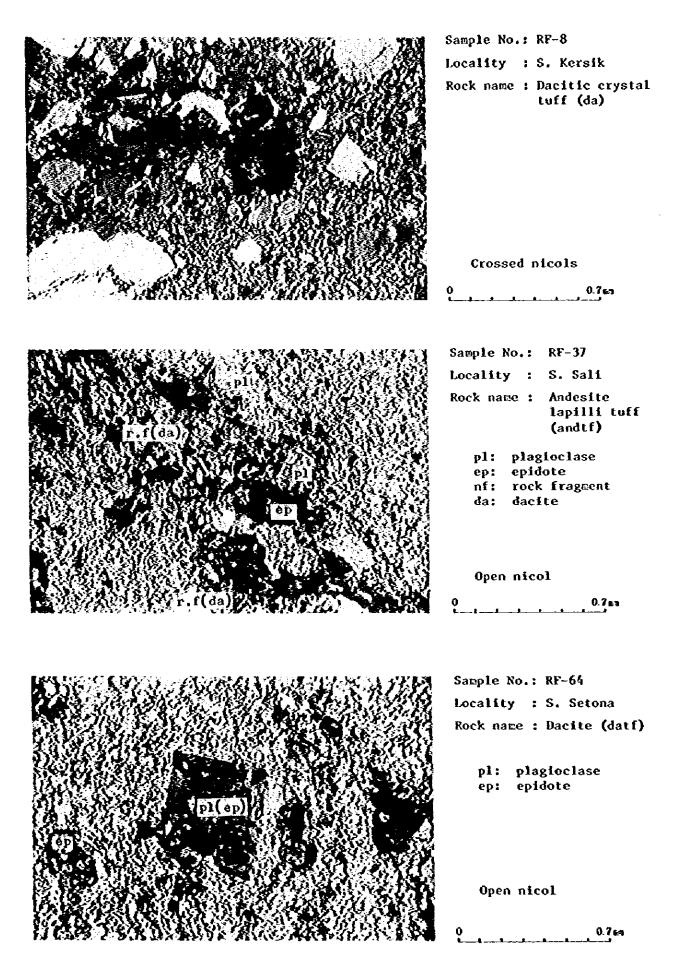
Open nicol

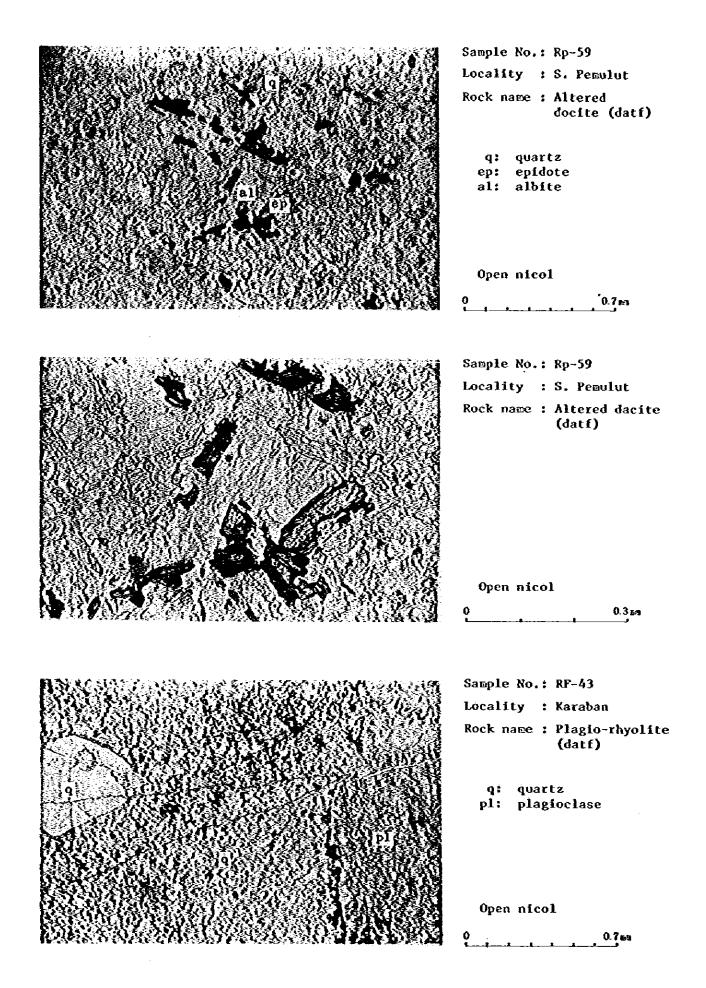
0 0.7E3

Sample No.: RF-15 Locality : S. Tahuban Rock name : Andesite tuff (and 1)

q:	quartz
p1:	plagioclase
ho:	hornblende
ep:	epidote
Fe:	iron mineral

Open nicol

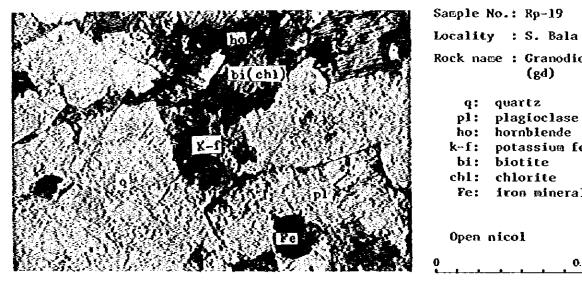

0 0.763


Sample No.: RF-8 Locality : S. Kersik Rock name : Dacitic crystal tuff (da)

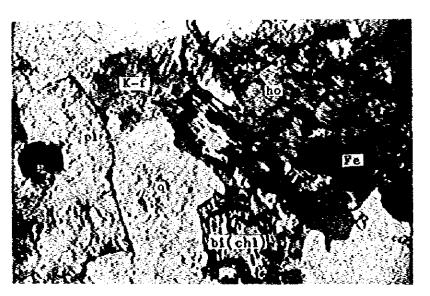
q: quartz pl: plagioclase Fe: iron øineral

Open nicol

0 0.7±3

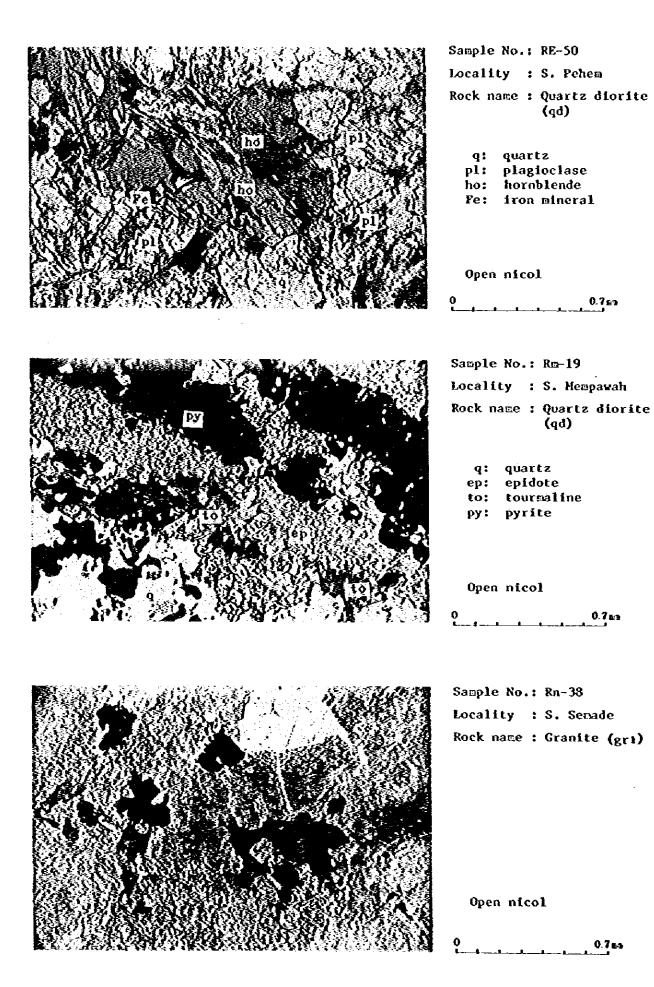

ť

Sample No.: RF-20 Locality : S. Sembuang Rock name : Granodiorite (gd)

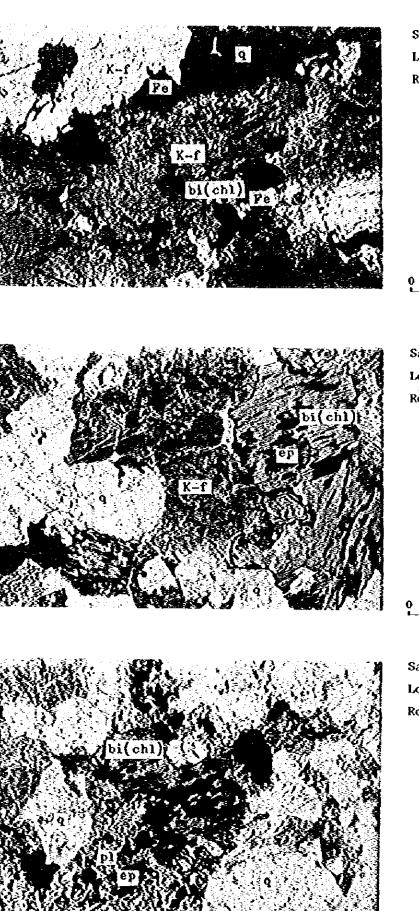

d:	quartz
ho :	hornblende
k−f:	potassium feldspar
bí:	biotite
ch1:	chlorite

Crossed nicol

Ó.710 ò



Sample No.: Rp-19
Locality : S. Bala
Rock name : Granodiorite (gd)
 q: quartz p1: plagioclase ho: hornblende k-f: potassium feldspar bi: biotite chl: chlorite Fe: iron mineral


Open nicol

0.764 . .

•

• 1

Sample No.: Rn-38 Locality : S. Semade Rock name : Gramite (grl)

٩÷	quartz
k-f:	pótassium feldspar
bi:	biotite
chl:	chlorite
Fe:	iron mineral

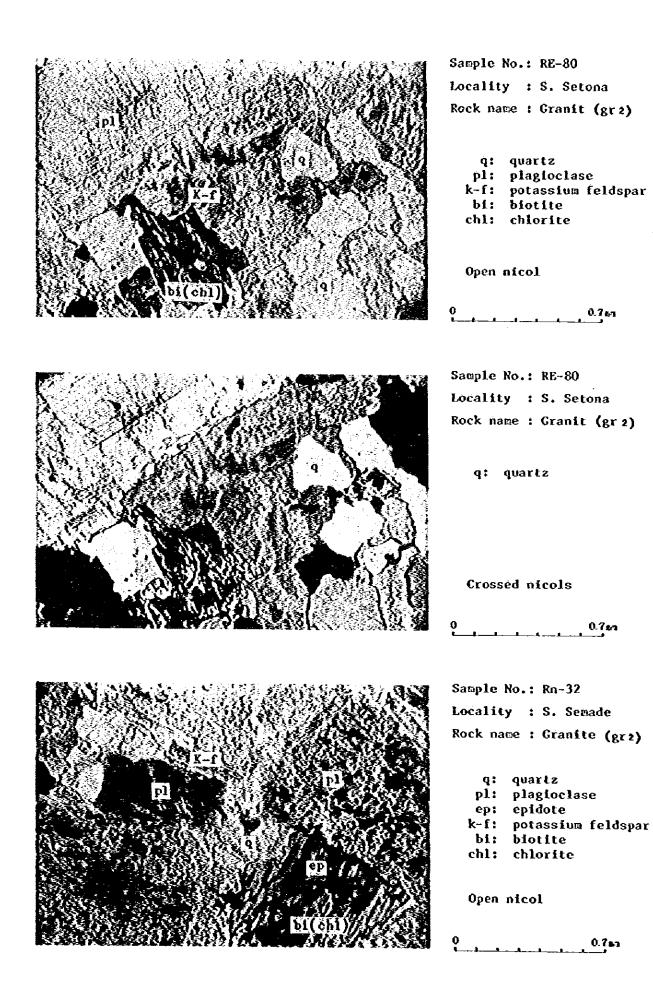
Crossed nicols

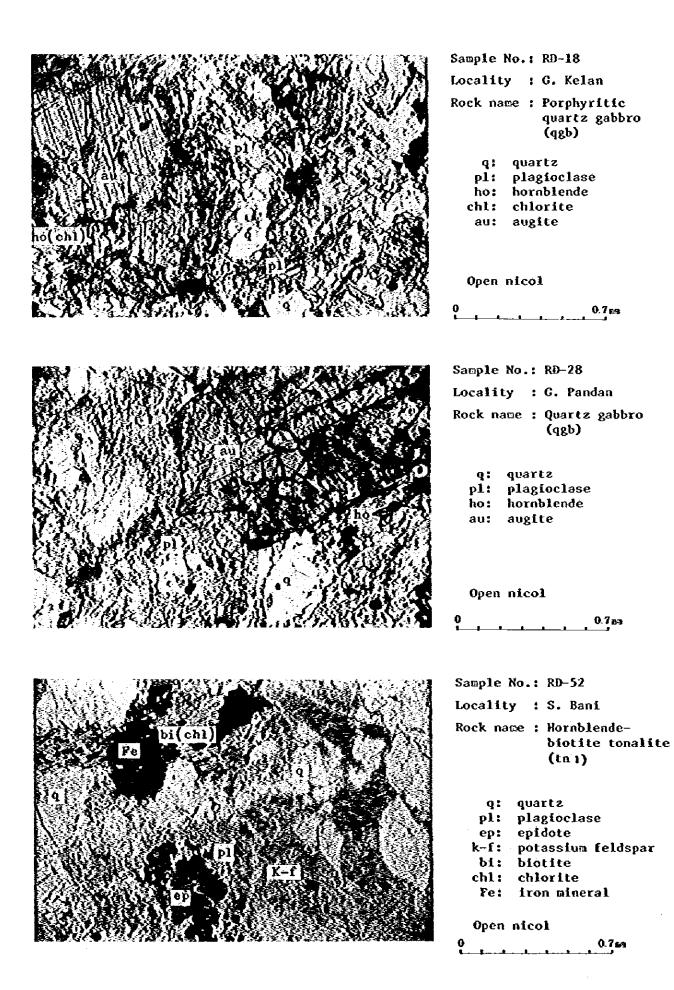
0 0.763

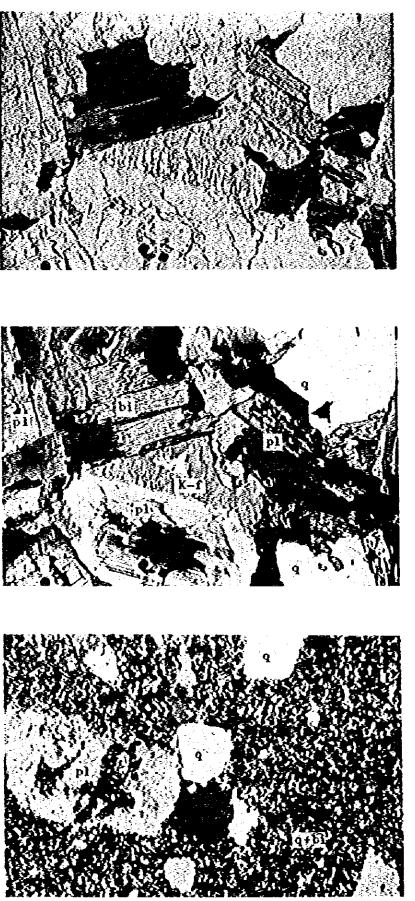
Sample No.: RF-32 Locality : S. Sembuang Rock name : Granit (gri)

g:	quartz
ep:	epidote
k-f:	potassium feldspar
bi:	biotite
chl:	chlorite

Open nicol


0.763


Sample No.:	RE-30
locality :	S. Sakung
Rock name :	Granit (gr2)
	•


е

Open nicol

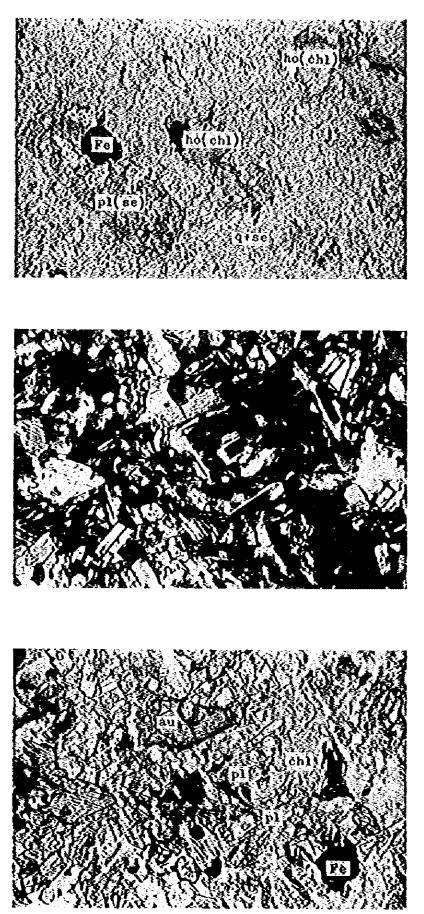
0 0.764

Sample No.: RB-24 Locality : S. Bamua Rock name : Hornblendebiotite tonalite (tn2)

Sample No.: RB-24 Locality : S. Bamua Rock name : Hornblend-biotite tonalite (tn2)

q:	quartz	
p1:	plagioclas	se
k−f:	potassium	feldspar
bi:	biotite	-

Crossed nicols


0 0.7₈₉

Sample No.: RB-10 Locality : S. Bamua Rock name : Quartz porphyry (qp)

q: quartz pl: plagioclase bi: biotite

Open nicol

0 0.7m

Ć

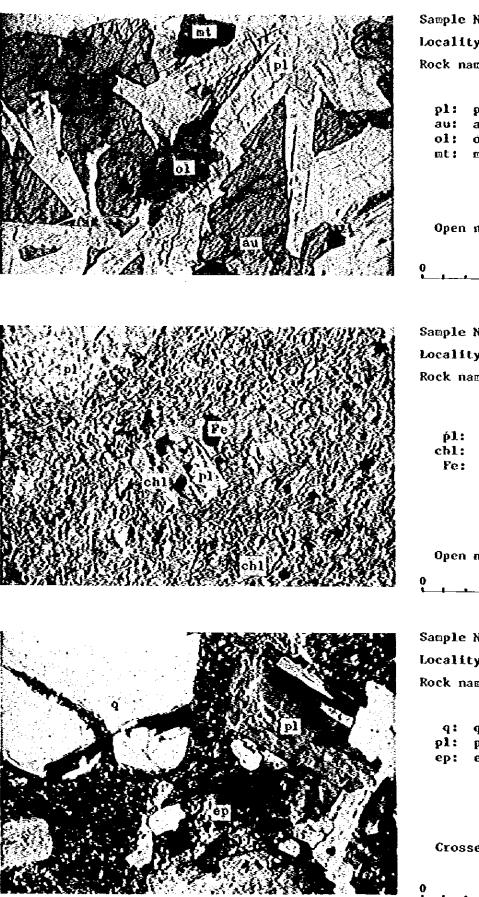
Sample No.: RB-23 Locality : S. Ledo Rock name : Altered dacite (alttn) q: quartz pl: plagiociase

pl: plagloclase ho: hornblende chl: chlorite se: sericite Fe: iron mineral

Open nicol 0 0.7m

Sample No.: RC-27 Locality : S. Cebol Rock name : Dolerite (dole)

pl: plagioclase chl: chlorite au: augite Fe: iron mineral


Open nicol

0 0.7 #3

Sample No.: RC-27 Locality : S. Cebol Rock name : Dolerite (dole)

Crossed nicols

0.723

Sample No.: Rp-25 Locality + S. Aja Rock name : Dolerite (dole)

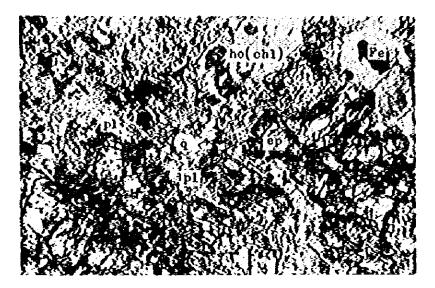
pl: plagioclase aut augite ol: olivine mt: magnetite

Open nicol

0.761

Sample No.: RB-26 Locality : S. Bamua Rock name : Altered andesite (and 2)

pl: plagioclase chl: chlorite Fe: iron mineral


Open nicol 0.783

Sample No.: RB-72 Locality : G. Serantak Rock name : Dacite (dap)

q: quartz pl: plagioclase ep: epidote

Crossed nicol

0.7

Sample No.: Rq-59 Locality : S. Setona Rock name : Dacite (dap)

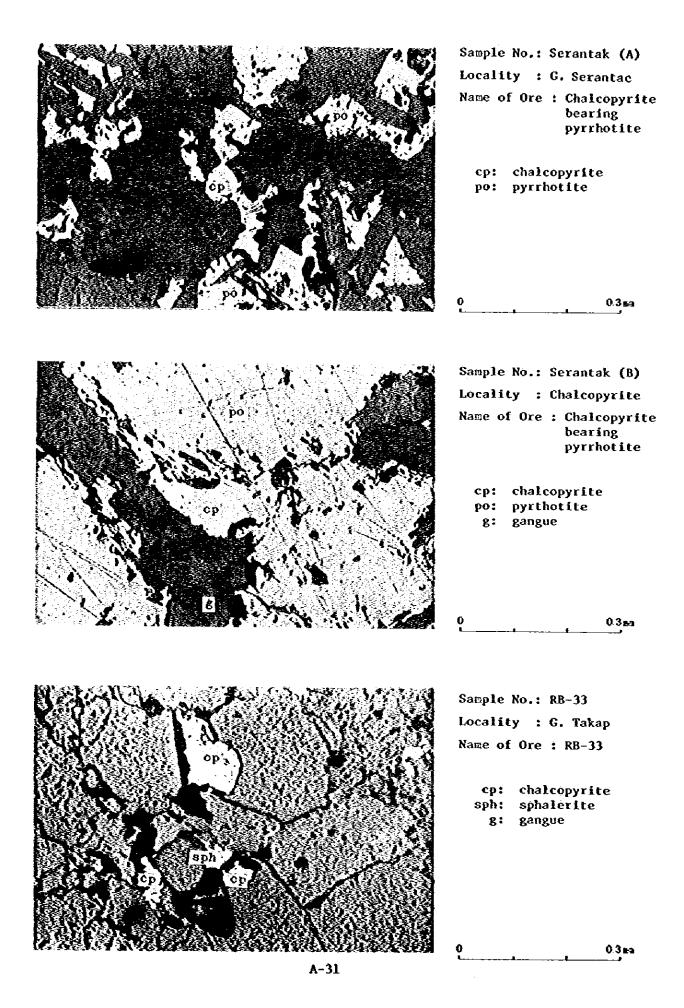
d:	quartz
pl:	plagioclase
ép:	epidote
ho:	hornblende
chl:	chlorite
Fe:	iron mineral

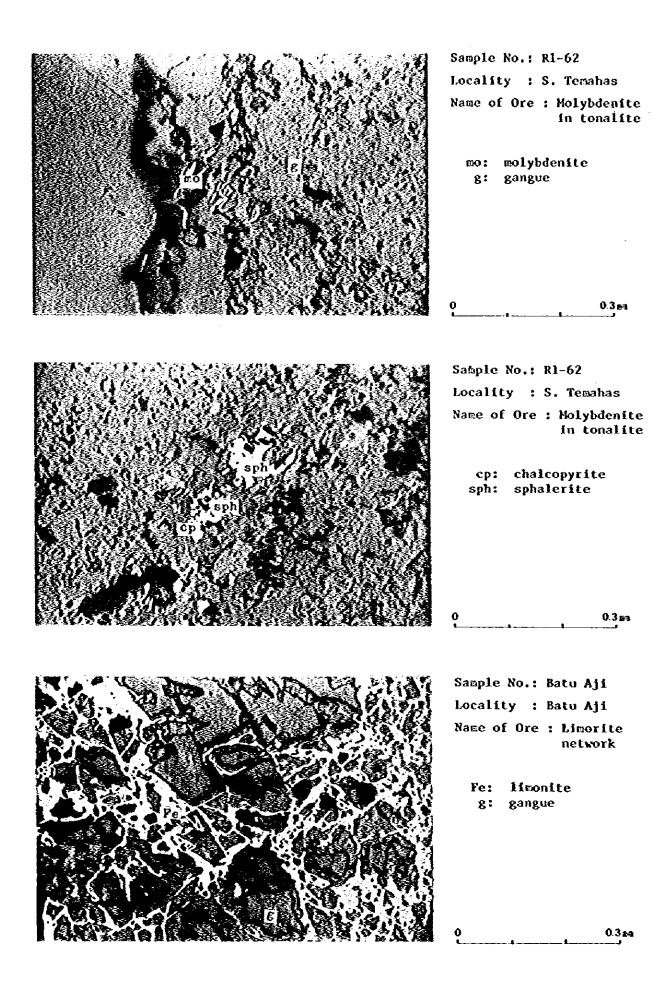
Open nicol

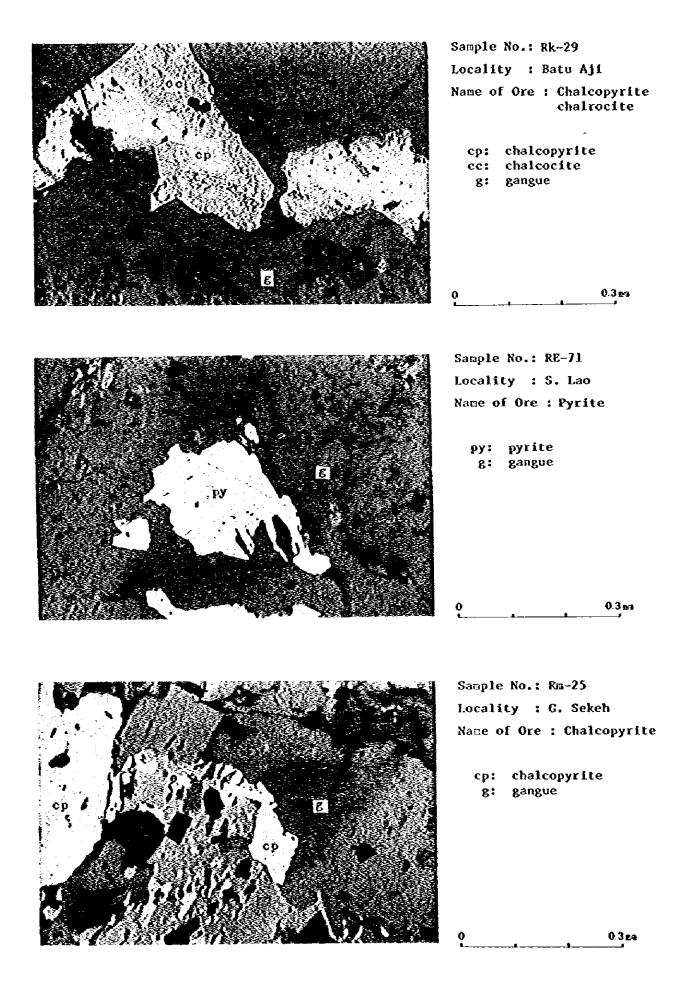
0 0.7e3

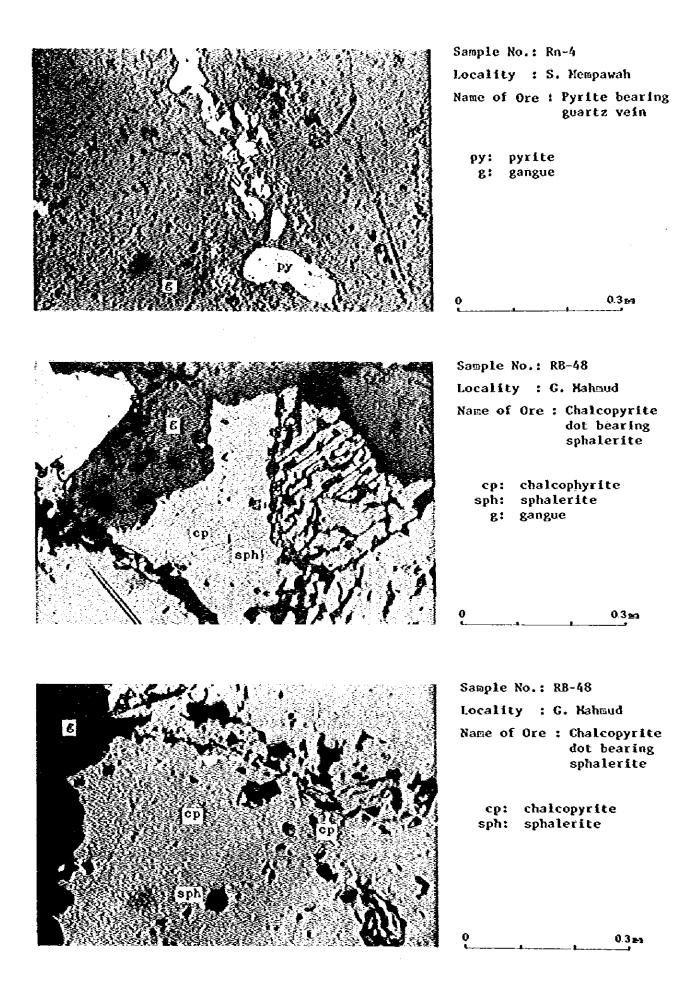
Section
Polished
ч 0
Observation
Microscopic
Q
Appendix

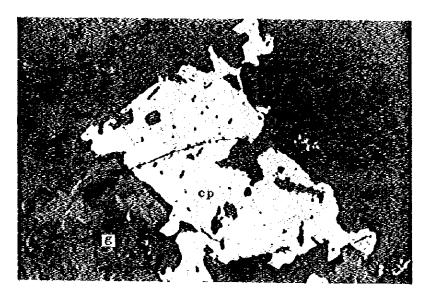
•


Area	Sanple No	Location	Occurrance	ဗီ	റ്റ	Ś	Sph Mol	Ň	م م	ጅ	3	Remarks
Sirih	RB - 33	s. Sirih	Vein	0			4					Moi by megascopic observation
Tonalite	R 48	S. Ledo	Dissemination	0			0					
	Botu Aji	S. Bani	Network				· ··· - · ·			•	٢	Au 10 g/t
Banyl Tonolite	К К 29	S , Bani	Vein	©	٩		~					green Cu stain
·	R62	S. Bani	Veinlet					0				
	R - 7	S. Lao	Vein	4				· •	0			
Southern	Rm - 25	S. Mempawah	Dissemination	0	4			· · • · · · · · · · · · · · · · · · · ·				
Granitoid rocks	R	S.Mempswah	Disservination						0			
	υ • •	S.Bumbung	Dissemination	0	· · • – –							
Serantac	Serantak (A)	G. Serentak	Massive	4						0		03 e/.
Dacite	Serontok (B)	S. Serantak	Massive	4			··		·	0		- - - - - - - - - - - - - - - - - - -


.


Pyn i Pyrrhotlte Gor i Goornite .


enite Got :


Cp i Chalcopyrita Sph i Sphalerita Cc i Chalcocite Mol i Molybdanite Cov i Covellina Py i Pyrita

Sample No.: Ro-5 Locality : S. Bumbung Name of Ore : Chalcopyrite

cp: chalcopyrite g: gangue

0.3 es

	Serial	Sample	Lo	cation			lts (P	P.M)	
Block	No.	No.	Grid on map	River or Creek	C T-Cu	u Cx-Cu	Zn	Ко	PH
A	1	1 - 1	15 - 95	S. Rerong	369		34	1	5.6
A	2	1 - 2	\$1	21	44		46	<1	5.8
A	3	1-3	\$1	ţı	44		106	<1	5.8
A	4	I - 4	10 - 95	S. Mengkaman	23		69	1	6.0
A	5	1 - 6	10	ţa .	19		75	1	5.8
A	6	1 - 7	15 - 95	10	29		109	1	5.8
A	7	I - 8	EI	S. Kuan Ama	21		59	1	5.8
A	8	I-9	12	S. Kelabu	38		86	<1	5.6
A	9	I – 11	18	£3	19		130	1	6.0
A	10	I - 12	1+	11	26		86	2	6.(
A	11	1 - 14	87	11	26		126	1	6.(
A	12	I - 17	ţ.	S. Sansak	36		95	2	6.2
A	13	I - 18	EP		56		75	1	6.0
A	14	I - 19	1)		77	1	81	1	6.0
A	15	I - 20	ia		42		69	1	6.1
A	16	I - 21	11	11	19		74	<1	6.
A	17	I - 22	11	S. Semoa Karuh	13		57	1	5.0
A	18	I - 23	EJ	11	15		84	<1	6.0
A	19	1 - 24	11	۹۱	27		93	<1	5.
A	20	1 - 25		31	56	1	285	1	5.
A	21	1 - 26	20 - 95	ii	21		89	<1	5.
A	22	1 - 27	15 - 95	S.Secoa Tapang	18		81	<1	5.
A	23	1 - 29	21	11	10		139	<1	5.
A	24	1 - 30	31	13	19	1	159	<1	5.
A.	25	1 - 32	20 - 95		23	.	144	<1	5.
A	26	I - 33	18	11	19	1	104	<1	5.
A	27	I - 34	15 - 90	S. Reis	22	1	86	<1	5.
A	28	I - 35	10 - 90	S. Raya	11	1	54	1	5.
A	29	I ~ 38	15 - 90	S. Mandor	17	1	80	<1	5.
Å	30	I - 39	10 - 90		35	1	99	<1	5.
Å	31	I - 40	13	L1	17	1	119	<1	5.
A	32	I - 42			6	-1	21	<1	5.

Appendix 8 Assay Results of Geochemical Samples

	Serial No.	Sample No.	Location		Assay Resul		tts (P.P.M)		
Block			Grid on map	River or Creek	Cu T-Cu Cx	(Cu	Zn	Mo	PH
Å	33	1 - 43	15 - 95	S. Raya	7		21	1	5.4
A	34	I - 44	15 - 90	S. Semoa Karuh	11		58	1	5.4
A	35	I - 45		S. Buluh	17		97	1	5.4
A	36	I - 46	41	S. Raya	15		65	<1	5.6
A	37	I - 47	ät	S. Sepai	11		59	<1	5.6
A	38	I - 48	FI	S. Raya	11		78_	<1	6.0
A	39	I - 49	13	11	11		106	<1	6.2
A	40	1 - 50	19	FI	9		72	<1	6.2
A	41	I - 51	65	11	18		71	4	6.0
A	42	I - 53	13	SI .	18		55	<1	5.8
A	43	1 - 54	20 - 90	S. Sepai	23		93	<1	5.6
A	44	1 - 55	15 - 90	El	21		74	<1	5.8
A	45	I - 57	20 - 90	12	63		127	<1	5.4
A	46	1 - 58	18	17	405		341	2	5.6
A	47	I - 60	01	11	22		122	1	5.2
A	48	I - 61	50	11	14		71	<1	5.4
A	49	I - 62	10	pt	33		120	<1	5.6
A	50	I - 63	20 - 95	11	17		89	<1	5.4
A	51	I - 64	20 - 90	£1	12		75	<1	5.2
A	52	I - 65	20 - 95	71	19		82	4	5.4
A	53	I - 66	17	ji	14		92	<1	5.4
A	54	1 - 67	20 - 90	S. Side	22		87	<1	5.8
A	55	1 - 68	£1	S. Sebowak	28		142	2	6.2
A	56	1 - 70	11	S. Sepai	17		50	<1	5.8
A	57	1 - 71		u;	19		91	<1	6.0
A	58	1 - 73	11	S. Sebowak	9		17	· <1	5.8
A	59	1 - 74	¥ī	11	8		30	<1	5.8
A	60	1 - 76	- +1 +1	11	8		13	<1	6.0
٨	61	1 - 77	15 - 90	S. Nau	27		95	<1	5.6
A	62	I - 78	11	11	21		62	<1	5.4
٨	63	I - 79	10	31	9		38	<1	5.4
A	64	I - 80		11	16		136	<1	5.4

· (

	Cantal	Sample	Loc	cation	Assay	y Resul	ts (P.	P.M)	
Block	Serial No.	No.	Grid on map	River or Creek	C T-Cu	u Cx-Cu	Zn	Ко	PH
A	65	1 - 81	15 - 90	S. Mau	27		136	<1	5.6
A	66	1 - 82	18	11	22		44	<1	5.6
Α	67	I - 83	•1	S. Semidang	13		40	<1	6.0
A	68	I ~ 84	11	S. Mau	10		77	<1	5.8
A	69	I 85	. 50	11	13		101	<1	5.8
A	70	I - 86	11		29		46	<1	6.0
A	71	I - 87	11		11		46	<1	6.0
A	72	I - 88	20 - 90	S. Nasan	10		48	<1	6.0
A	73	II - 1	25 -100	S. Ledo	64	17	51	<1	6.2
A	74	II - 2	••	S. Baœua	69	17	55	<1	5.8
A	- 75	II - 3	20 -100	12	28	7	73	<1	6.0
A	76	11 - 4	11	E¢.	100	20	54	2	5.4
A	77	11 - 5	1	12	54	10	53	<1	5.8
A	78	II - 6	25 -100	S. Banan	45.	15	65	<1	5.8
A	79	11 - 7	20 -100	UI II	22	7	106	ব	6.2
A	80	11 - 9	10	10	21	7	121	<1	6.0
A	81	II - 11	25 - 95	S. Ledo	31	10	106	<1	6.2
A	82	II - 12	14	El	35	10	88	<1	6.0
A	83	II - 13	1*	88	42		58	<1	6.2
A	84	11 - 14	£\$	\$1	23		89	<1	6.0
A	85	11 - 16	20 - 95	S. Sirih	155	40	74	2	6.2
A	86	11 - 17	11	S. Ledo	91	37	66	<1	6.2
A	87	11 - 18	25 - 95	E0	48		77	<1	6.2
A	88	11 - 21	20 -100	S. Bamua	278	- 55	70	3	6.2
A	89	11 - 22	+1	10	19	7	67	4	6.4
Ą	90	11 - 24	51	14	92	17	55	1	6.0
A	91	11 - 25	31	31	151	24	52	2	6.2
A	92	11 - 26	11	31	118	20	47	2	6.2
Å	93	II – 28	20 - 95	\$1	79	17	52	3	6.2
A	94	11 - 29		t1	76	17	68	4	6.0
٨	95	11 - 30	25 -100	S. Ledo	71		65	1	5.8
A	96	11 - 31			44		47	1	6.0

Block Serial No.	Serial	Sample No.	Location		Assay Results (P.P.M)				·
			Grid on map	River or Creek	C T-Cu	u Cx-Cu	Zn	Мо	PH
A	97	11 - 32	25 -100	S. Lumar	25		83	1	6.2
A	98	II - 35	20 - 95	S. Sírih	178	52	87	4	6.2
A	99	11 - 36	18	10	187	40	68	3	6.2
A	100	11 - 40	£8	£0	203	43	92	4	6.0
A	101	11 - 43	18	£2	75	17	70	1	5.8
A ·	102	11 - 44	13	83	96	27	92	4	5.8
A	103	11 - 46	10	şt	224	65	70	12	5.6
A	104	11 - 47	10	S. Ledo	61	20	30	12	6.0
A	105	11 - 48	11	85	157	35	86	10	6.0
A	106	11 - 52	25 - 95	J1	70		96	2	5.6
A	107	II - 54	10	 53	77	~	85	<1	5.6
A	108	11 - 55	20 - 95	£3	36		115	<1	5.6
A	109	11 - 56	25 - 95		58		191	<1	5.8
A	110	II - 57	20 - 95	10	70		135	<1	5.8
A	111	11 - 58	11	11	110	33	104	1	6.2
A	112	11 - 59	11	I)	27		99	<1	6.0
A	113	11 - 60	18	16	27		115	<1	6.0
A	114	11 - 62	10	ta	79		76	1	5.6
A	115	11 - 63	B1	16	28		109	<1	5.6
A	116	11 - 64	25 -100	S. Lumar	12	9	60	<1	6.2
٨	117	11 - 66	ut	18	45	20	60	<1	6.2
A	118	11 - 67	E9	11	23	10	126	<1	6.2
A	119	11 - 68	11		12		127	<1	5.6
٨	120	11 - 69	15	iT	16		72	<1	5.6
A	121	11 - 70	""		- 34		71	<1	5.6
A	122	11 - 72	20 -100	S. Banua	64	15	34	<1	5.8
A	123	11 - 74	11	It	197	31	27	<1	5.6
A	124	11 - 75		11	71	14	27	<1	5.8
A	125	11 - 76	1)	S. Banan	27	12	74	<1	6.8
A	126	11 - 78	11	11	28	9	71	<1	6.2
A	127	11 - 79	11	10	29	9	72	<1	6.2
A	128	11 - 80	11	11	94	23	58	<1	6.2

Ę

	Seríal	Sample	Location		Assay	P.M)			
Block	No.	No:	Grid on map	River or Creek	C		Zn	Хо	PH
A	129	11 - 81	20 -100	S. Banan	30	8	46	<1	6.4
Α.,	130	11 - 82		n	33	8	73	<1	6.2
A	131	II - 83	18		101	24	62	<1	6.4
A	132	II - 84	25 -100	S. Cebol	9		30	<1	5.8
A	133	II - 85	- 11	B1 .	14		80	<1	5.8
A	134	11 - 86	E II	ŧĮ	12		54	<1	5.8
A	135	11 - 87	63		7		32	<1	5.6
A	136	II - 88	¥T		24		94	<1	5.6
A	137	11 - 89	30 -100	S. Doyot	12		39	<1	6.4
A	138	II - 90	25 - 95	S. Sedate	6	[19	<1	5.8
A	139	II - 91	11	÷r	12		39	ব	5.6
A	140	11 - 92	30 - 95	61	9		54	<1	6.0
A	141	11 - 93	13	50	10		42	<1	5,8
A	142	11 - 97	25 - 90	S. Raya	16		50	<1	6.0
A	143	11 - 98		18	128	[112	<1	5.4
Α	144	II - 99	10	15	27		110	<1	5.6
A	145	11 -102	17	19	22		101	<1	5.6
A	146	11 -103	25 - 95	17	28		102	2	5.6
A	147	11 -104	20 - 90	S. Nasan	17	1	91	<1	5.6
A	148	11 -105	61	13	20		64	<1	5.6
A	149	11 -106	11	10	19		68	<1	5.6
A	150	11 -108	25 - 90	S. Sebulu	15		95	<1	5.6
A	151	11 -110	30 - 90	11	22		100	<1	5.6
A	152	11 -111	11	11	19		78	<1	5.6
A	153	11 -112	25 - 90	S. Sekong	14		31	<1	5.6
A	154	11 -113	91		20		94	<1	5.2
A	155	11 -114	11	S: Sebulu	12		54	<1	5.4
Å	156	II -115	+1	S. Sekong	17		75	<1	5.8
A	157	11 -118	30 - 95	S. Tuzek	27		97	<1	5.6
A	158	11 -119	64		25	1	122	<1	5.6
A	159	II -120	30 - 90	S. Selayu	16		46	<1	5.6
A	160	II -121	19	15	22		90	<1	5.2

	Serial	Sample	Loc	cation	Assay	Resul	ts (P.	P.M)	
Block	No.	No.	Grid on map	River or Creek	Cu T-Cu		Zn	Мо	PH
A	161	11 -122	25 - 90	S. Selayu	17		89	<1	5.6
B	162	III- 3	15 - 85	S. Liu	32		72	<1	6.0
В	163	111- 4	1))1	33		74	<1	6.0
В	164	III- 5	11	\$8	28		48	1	6.0
A	165	111- 6	10	S. Pesune	33		76	<1	5.0
A	166	111- 7	11	15	37		90	1	6.0
A	167	111- 8		19	42		86	<1	6.0
В	168	111- 9	20 - 80	S. Koroi	64		89	1	5.8
B	169	111- 10		10	56		98	<1	6.0
В	170	111- 11	B1		76		108	<1	6.0
В	171	111-12	in	£3	59	· 	106	1	6.0
В	172	III- 13	20 - 85	S. Ketapang	39		98	<1	5.8
В	173	111-14			57		120	<1	6.0
A	174	111-15	01	S. Pesune	32		72	<1	6.0
A	175	111- 16	•1	E1	48		87	<1	6.0
A	176	111-17	• E	11	33		96	<1	6.0
A	177	111-18	ð1	11	23		63	<1	5.6
B	178	11 1- 1 9	4 1	S. Rasau	45		86	<1	5.6
B	179	111- 20	11	S. Semahu	41		113	<1	6.0
A	180	111-21	F1	S. Kelau	29		95	<1	6.0
B	181	111-22	20 - 80	S. Liu	64		91	1	6.0
A	182	1II- 24	20 - 85	S. Raya	28		85	<1	5.8
A	183	111- 25	10	11	9		33	<1	6.0
A	184	11 1 - 26	н	şı	21		64	<1	6.0
A	185	111- 27	20 - 90	ŁS	23		68	<1	5.8
٨	186	11I- 28	20 - 85	81	19		67	<1	5.8
A	187	III- 29	20 - 90	ti	16		68	<1	5.6
A	188	111- 30	11	12	25		87	<1	5.8
A	189	111- 31	25 - 90	S. Sekong	18		101	<1	6.0
A	190	111- 32	14	17	24		116	<1	6.0
A	191	III- 33		10	23		59	<1	5.8
B	192	111- 34	25 - 85	S. Sebalau	107	54	112	1	5.8

n 4 I-	Serial	Sample				y Resul	ts (P.	P.H)	
Block	No.	No.	Crid on map	River or Creek		u Cx-Cu	2n 	Хо	PH
В	193	III- 36	25 - 85	S. Sebalau	292	120	80	1	5.8
В	194	111-37	10	£1	134	48	47	1	5.8
В	195	III- 39	11	S. Tel Nam	22		71	<1	5.8
В	196	111-40	19	st	52		81	<1	5.8
В	197	III- 41	14	S. Sebalau	40	13	71	1	5.6
В	198	111- 42	14	B1	37	10	51	<1	5.8
В	199	III- 43	11	11	41	13	109	1	5.8
В	200	111- 45	11	19	46	14	58	<1	5.6
B	201	III- 47	EI	S. Tel Nam	100		79	<1	5.6
В	202	III- 48	.,	L9	56		64	<1	5.8
В	203	111-49	1)	ţi	312		40	1	5.8
В	204	111- 50	11	51	105		68	<1	5.6
В	205	111- 51	11	S. Bani	46	16	54	<1	5.8
В	206	111- 52	10	11	83	14	24	<1	5.6
B	207	111-53	•1	18	109	35	30	<1	5.8
В	208	111- 54	25 - 80	T.F.	339	48	38	<1	5.6
B	209	111- 55	61	11	87	15	80	<1	5.4
8	210	111- 56	25 - 85	S. Tel Nam	95	24	42	<1	5.8
8	211	111- 57	11	S. Kelunu	13	5	40	<1	5.8
B	212	111- 58	38	\$1	28	9	76	<1	5.8
B	213	111- 59	r=	S. Boni	135	84	183	1	6.0
B	214	111- 60	19	Lt	129	46	59	<1	5.6
B	215	111- 61		11	223	78	84	<1	5.8
В	216	III- 62		10	161	- 46	43	<1	5.8
B	217	111- 65	19	. 11	76	28	76	<1	5.6
В	218	111- 66	30 - 85	S. Benavan	46	1	70	<1	5.6
В	219	111- 67	LI LI	11	25	1	102	<1	5.1
В	220	III- 68	11	t1	20	··· · ·	89	<1	6.0
В	221	111- 69	11	EI	17	1	81	2	5.8
В	222	111- 70		El	16		110	<1	5.
B	223	III- 72	31	11	18		122	<1	5.0
	224	111-73	11	*1	19		88	<u></u>	5.

-

erial No. 225 226 227 228 229 230 231 232 233 234	Sample No. 111- 74 111- 76 111- 77 111- 80 111- 81 111- 82 111- 83 111- 86		River or Creek S. Benawan " " S. Semuun S. Benuang	Ct T-Cu 25 18 28 20 34		2n 90 79 75 61	Ko <1 <1 <1	PH 5.8 5.6 5.8
226 227 228 229 230 231 232 233 234	III- 76 III- 77 III- 80 III- 81 III- 82 III- 83 III- 86	18 17 17 11 11	17 17 17 18 5. Semuun	18 28 20		79 75	<1 <1	5.6
227 228 229 230 231 232 233 233 234	111- 77 111- 80 111- 81 111- 82 111- 83 111- 86	18 17 11 11	" S. Semuun	28 20		75	<1	
228 229 230 231 232 233 233 234	111- 80 111- 81 111- 82 111- 83 111- 86	07 14 01	" S. Semuun	20				5.8
229 230 231 232 233 233 234	111- 81 111- 82 111- 83 111- 86	11	S. Semuun			61		
230 231 232 233 234	111- 82 111- 83 111- 86			34		,	<1	5.8
231 232 233 234	111- 83 111- 86		S. Benuang			54	<1	5.6
232 233 234	111-86	11	1 ~	71		63	<1	5.8
233 234			88	63		82	<1	5.6
234		11	#1	19		107	<1	5.8
	111-87	\$T	\$1	20		101	<1	5.8
1	111- 88	¢1	S. Berangkai	24	i	50	<1	5.8
235	111- 91	e1		40		96	<1	5.8
236	11 1- 92	11	S. Benavan	49		45	<1	5.8
237	111-94	51	51 -	17		27	1	5.6
238	111- 95	25 - 85	S. Durian	79		64	<1	5.6
239	111-96	12	18	30		56	<1	5.6
240	111- 98	30 - 85	S. Benuang	52		99	<1	5.8
241	111- 99	30	11	24		147	<1	5.8
242	111-100	£1	10	36		118	1	5.8
243	111-101		i i	28		146	<1	5.8
244	111-103		11	32		131	1	5.8
245	111-104	11	S. Berangkai	39		59	<1	5.8
246	111-108		e1	37		217	1	5.8
247	111-111	35 - 85	S. Sebintik	42		75	2	5.6
248	111-112	15 - 85	S. Semidang	23		95	<1	5.0
249	111-113	H	*	15		70	<1	5.8
250	111-114	1	10	22	 	51	1	5.0
251	111-115	н	10	52	<u> </u>	102	1	5.8
252	1V - 1	20 - 75	S. Keppawah	41	8	79	<1	6.0
253	1V - 2	18	85	29	8	90	<1	6.4
254	1V - 3	17	80	30	10	90	1	6.
255	18 - 4	12	S. Pehen	139		199	1	5.
	14 - 15	10 00		33	l	65	ł	6.
	241 242 243 244 245 246 247 248 249 250 251 252 253 254	241 $111 - 99$ 242 $111 - 100$ 243 $111 - 101$ 244 $111 - 103$ 245 $111 - 103$ 245 $111 - 103$ 246 $111 - 108$ 247 $111 - 111$ 248 $111 - 113$ 249 $111 - 113$ 250 $111 - 114$ 251 $111 - 115$ 252 $1V - 1$ 253 $1V - 2$ 254 $1V - 3$ 255 $1V - 4$	241 111-99 " 242 111-100 " 243 111-101 " 244 111-103 " 245 111-104 " 246 111-108 " 247 111-111 35 - 85 248 111-112 15 - 85 249 111-113 " 250 111-114 " 251 111-115 " 252 1V - 1 20 - 75 253 1V - 2 " 254 1V - 3 "	241 111-99 """"""""""""""""""""""""""""""""""""	241 111-99 """" 24 242 111-100 """" 36 243 111-101 """" 28 244 111-103 """" 32 245 111-104 """" 32 246 111-108 """" 37 247 111-111 35 - 85 S. Sebintik 42 248 111-112 15 - 85 S. Sebintik 42 248 111-113 """"" 15 250 111-113 """" 22 251 111-115 """ 52 252 1V - 1 20 - 75 S. Kempawah 41 253 1V - 2 """" 30 255 1V - 4 """ S. Pehen 139	241 111-99 """24 242 111-100 """36 243 111-101 """28 244 111-103 """32 245 111-103 """37 246 111-108 """37 247 111-108 """37 248 111-111 35 - 85 S. Sebintik 42 248 111-112 15 - 85 S. Semidang 23 249 111-113 """122 15 250 111-114 ""122 22 251 111-115 ""120 52 252 1V - 1 20 - 75 S. Kempawah 41 8 253 1V - 2 ""130 10 255 1V - 3 ""139 30 10	241 111-99 """" 24 147 242 111-100 """" 36 118 243 111-101 """" 28 146 244 111-103 """" 32 131 245 111-104 """ 32 131 245 111-104 """ 32 131 246 111-108 """" 37 217 247 111-111 35 - 85 S. Sebintik 42 75 248 111-112 15 - 85 S. Sepidang 23 95 249 111-113 """""" 15 70 250 111-114 """"" 22 51 251 111-115 """" 52 102 252 1V - 1 20 - 75 S. Kempawah 41 8 79 253 1V - 2 """"" 30 10 90 254 1V - 3 """""" 30 10 90 255 1V - 4 """" S. Pehen 139 199 </td <td>241 111-99 " " 24 147 <1</td> 242 111-100 " " 36 118 1 243 111-100 " " 36 118 1 243 111-101 " " 28 146 <1	241 111-99 " " 24 147 <1

ł

ť

•

	Serial	Sample	Lo	cation	Assa	y Resul	lts (P	P.M)	
Block	No.	No.	Grid on map	River or Creek	C	U Cx-Cu	Zn	Ko	PH
В	257	17 - 16	15 - 80	S. Bumbung	66		127	1	6.2
В	258	IV ~ 17	20 - 80	11	78		130	2	6.2
В	259	1V - 21	11	P1	60		83	1	6.2
В	260	1V - 22	10	••	29		72	<1	7.2
В	261	1V - 26	E	81	84		78	<1	7.2
В	262	1V - 28		11	94		104	<1	6.8
В	263	1V - 29	11 II	11	29		61	<1	6.0
В	264	IV - 30	15	Jł	73		68	<1	6.8
В	265	IV - 34	, "	11	73		117	<1	7.2
В	266	17 - 35	LT		72		96	<1	7.2
В	267	IV - 36	25 - 75	S. Pehen	22		94	<1	
B	268	IV - 37	10		16		91	<1	-
В	269	IV - 38	10		14		106	<1	
B	270	1V - 39	11	\$ \$	32		102	<1	
В	271	1V - 42	30 - 80	S. Alam	21	8	71	<1	5.8
B	272	IV - 46	25 - 80	S. Jelayan	58	16	108	<1	6.2
В	273	18 - 47	30 - 80	S. Senade	50	18	91	<1	6.2
В	274	1V - 52	17		37	12	104	<1	6.2
В	275	1V - 53			20	8	90	<1	6.4
B	276	1V - 54			14	4	58	<1	6.2
B	277	1V - 55	1F	£8	23	8	113	<1	6.6
B	278	IV - 56			22	8	127	<1	6.4
В	279	IV - 59	11	11	39	12	79	<1	6.2
B	280	IV - 60		S. Xaha	33	12	90	<1	6.2
В	281	1V - 65	25 - 80		22	10	65	<1	6.6
В	282	1V - 66	30 - 80	S. Kala	47	18	104	<1	6.2
В	283	14 - 67	11	10	12	6	52	<1	6.4
В	284	IV - 68		S. Laba	38		88	<1	6.4
В	285	1V - 69	17	S. Santung	25		25	<1	6.2
В	286	1V - 70	35 - 80	S. Lolang	41		43	<1	5.8
B	287	17 - 73	11		41		54	<1	6.4
B	288	1V ~ 76	30 - 80		339		60	<1	6.2
	!	·	I	I	J	1		1	1

[0	Lo	cation	Assay	7 Resul	ts (P.	P.M)	
Block	Serial No.	Sample No.	Grid on map	River or Creek	C T-Cu	u Cx-Cu	Zn	Мо	РН
в	289	IV - 78	35 - 80	S. Sebintik	54		46	<1	6.2
В	290	IV - 80	11	ţ B	93		61	<1	6.4
B	291	IV - 81	11	10	65		121	<1	6.2
В	292	IV - 82		41	74		101	<1	6.4
B	293	IV - 83	30 - 80	11	90		98	<1	5.8
B	294	IV - 84		13	142		91	<1	6.2
В	295	1Y - 87	11	S. Teriak	75		64	<1	6.2
B	296	1V - 90	13	S. Benteng	32		61	<1	6.2
В	297	1V - 92		11	36		80	<1	6.2
В	: 298	IV - 98	11	S. Teriak	47		79	<1	6.4
В	299	1V -100	<u>}</u>		79		125	<1	6.4
В	300	IV -102	E 1	0	104	1	102	<1	6.2
В	301	IV -104		i 11	64	1	81	<1	-
B	302	1V -107	35 - 80	S. Sebintik	38		77	<1	6.2
В	303	IV -108	35 - 85	S. Setanga	44	Í	94	<1	6.2
В	304	LV -109	11	E1	25		50	<1	6.2
В	305	IY -111	30 - 85	10	23		49	<1	6.4
В	306	IV -112	11	EØ	13		66	<1	6.4
B	307	IV -113	35 - 80	S. Teriak	37		185	<1	6.2
B	308	IV -114	30 - 80	11	50		52	<1	6.2
В	309	17 -117	••	11	28		57	<1	6.2
B	310	17 -119	11	11	12		55	<1	5.8
B	311	17 -120		11	27	-	47	<1	6.0
В	312	10 -121	11	2 21	26	1	48	<1	6.0
B	313	18 -122	91	11	32	1	63	<1	6.0
В	314	LV -123		S. Yempawah	33	14	41	<1	5.8
B	315	IV -125	25 - 75		30	10	65	<1	6.2
В	316	1V -126	25 - 80		44	15	74	<1	6.2
B	317	17 -128			56	22	104	<1	6.2
B	318	IV -129			45	18	128	<1	6.4
B	319	17 -130		10	36		83	<1	6.2
B	320	1V -131		10	44		70	<1	6.2

÷

•

• •

	Serial	Sample	Loc	ation		Resul	ts (P	P.N)	
Block	No.	No.	Grid on map	River or Creek	C T-Cu	u Cx-Cu	Zn	Жо	РН
B	321	IV -133	25 - 80	S. Mempawah	57	13	99	<1	6.2
B	322	IV -134		11	114	26	56	<1	6.4
В	323	IV -136	20 - 80		42	12	78	<1	6.2
B	324	IV -137	25 - 80	11	126	19	52	<1	6.2
В	325	IV -139	20 - 80	S. Sakung	39	14	61	<1	6.2
В	326	17 -141	\$1	11	74	20	142	<1	6.4
В	327	IV -143	ti	54	52	13	90	<1	6.2
В	328	IV -144	FI	23	98	37	93	<1	5.8
В	329	17 -146	20 - 75	S. Mempawah	63	18	94	<1	6.2
В	330	IV -148	11	S. Pehen	24		102	<1	5,8
В	331	IV -150	11	il	41	-	48	<1	6.(
В	332	1V -151	25 - 75	. 14	56		78	<1	6.6
B	333	IV -153	11	ut	83		86	<1	6.2
B	334	1V -154	17	(1	66		80	<1	6.2
8	335	IV -155	"	10	50		76	<1	6.:
8	336	IV -157	11	E1	28		73	<1	6.
8	337	IV -158	11	1)	62	1	90	<1	6.
B	338	IV -161	25 - 80	S. Kenyuke	44	10	87	<1	6.
В	339	IV -164	U	11	16	4	32	<1	6.
В	340	IV -165	t II	11	16	2	48	<1	6.
В	341	IV -166	£1	\$1	31	6	49	<1	6.
В	342	IV -168	ŧ.	S. Selimut	30	4	24	<1	6.
B	343	1V -169	25 - 75	S. Pabuak	17	2	36	<1	6.
В	344	IV -171	E d	S. Selimut	23		54	<1	6.
B	345	1V -172	25 - 80	S. Kenyuke	49	12	72	<1	5.
8	346	V - 1	25 - 65	S. Sailo	23		47	<1	6.
В	347	V - 2	25 - 70	S. Tahuban	19		39	<1	6.
В	348	V - 3	E\$	17	24		50	<1	6.
В	349	V - 4	11	t)	83	1	119	<1	6.
В	350	V - 7	13	•••	56	1	109	<1	6.
В	351	V - 9	25 - 65	S. Kerasik	30	1	63	<1	6.
B	352	V - 10	11	LT	52	1	79	<1	6.

ł

	Serial	Sample	Loe	cation	Assay	Resul	ts (P.	P.H)	
Block	No.	No.	Grid on map	River or Creek	Cu T-Cu		Zn	Yo	PH
В	353	Y - 11	25 - 65	S. Kerasik	28		74	<1	6.2
В	354	V - 12	25 - 70	8 1	45		83	<1	6.0
B	355	V - 13	£1	30	25		94	1	6.0
В	356	V - 14	11	8	44		55	<1	6.4
В	357	V - 16	19	S. Sailo	41		90	<1	6.8
В	358	V - 17	"	10	108		100	<1	6.8
В	359	V - 18		S. Tangga	46		92	<1	6.2
В	360	V - 19	11	55	33		85	<1	6.6
B	361	V - 20	11	S. Tahuban	41		91	<1	7.3
B	362	V - 21	11	11	29		76	<1	6.2
B	363	Y - 22	30 - 65	S. Saur	6		11	<1	6.0
В	364	V - 23	1	£1	44		97	<1	6.8
B	365	V - 24	25 - 65	T.	4		9	<1	6.4
В	366	V - 25		31	Ś		9	<1	6.0
В	367	V - 26	30 - 65	S. Sembuang	15		50	<1	6.4
В	368	V - 29	25 - 65	10	19		51	<1	6.2
В	369	V - 31	30 - 65		2		8	<1	6.0
В	370	V - 32) II	•	13		50	<1	6.0
в	371	V - 33		S. Beguru	27		67	<1	6.2
В	372	V - 35	1		36		72	<1	6.2
В	373	V - 39	30 - 60	S. Sembuang	23		50	<1	6.0
8	374	V - 41	30 - 65	\$8 	19		41	<1	6.0
	375	V - 42	35 - 65	11	17		36	1	6.2
B	376	V - 43	30 - 70	t1	18		31	<1	6.0
B	377	V - 44	11	11	6		27	<1	6.0
B	378	V - 45			n	· · ·	25	<1	6.4
В	379	V - 46	_ 	S. Sari	5		12	<1	6.0
B	380	V - 47		11	- 7	1	10	<1	6.4
В	381	V - 48		 I1	6	1	40	<1	6.4
B	382	V - 49	11		4		27	4	6.0
8	383	V - 50		81	4		46	<1	6.4
B	384	V - 51		¥1	8		31	<1	6.4

٠

		C	Loc	ation	Assay	Resul	ts (P.	P.H)	
Block	Serial No.	Sample No.	Grid on map	River or Creek	Cı T-Cu		Zn	Ко	РН
в	385	V - 52	30 - 70	S. Sembuang	19		38	<1	6.2
В	386	Y - 53	șt.	S. Karaban	17		45	<1	6.4
В	387	V - 56	R4	k9	15		33	<1	6.4
B	388	V - 58		S. Kinang	18		51	<1	6.4
B	389	V - 59	25 - 75	S. Setona	29		72	<1	6.4
B	390	V - 60	±1 ·	11	19		21	<1	6.2
B	391	V - 61	11	*1	33		90	1	6.4
B	392	Y - 62	30 - 75	\$T.	25		41	1	6.4
В	393	Y - 65	51	D1	63		94	2	6.2
В	394	V - 66		12	34		82	1	6.4
В	395	V - 67	11	51	36		68	<1	6.4
В	396	V - 69	25 - 70	S. Sailo	14		45	<1	6.8
B	397	V - 71	1U	••	31		78	1	7.0
В	398	V - 72	1	61	36	· · · ·	85	1	7.2
B	399	V - 73	61	11	37		87	1	7.2
В	400	V - 75	25 - 65	S. Anau	12	1	37	1	6.8
В	401	V - 76	1.	11	24	1	57	<1	6.8
B	402	V - 79	12	S. Bala	10		27	2	6.4
В	403	V - 81	87		41		46	<1	7.0
В	404	V - 82	11	S. Sailo	22		48	<1	6.2
B	405	V - 83		41	9		37	<1	5.8
B	406	V - 86	30 - 65	S. Aja	5	1	20	2	6.2
В	407	V - 90	\$1	13	15	1	34	<1	5.8
В	408	¥ - 91	н	1*	20		49	2	6.9
В	409	V - 92			13	1	45	<1	5.8
8	410	V - 93	11		18	-	48	<1	6.0
В	411	V - 95		11	10		34	<1	6.2
B	412	V - 97	30 - 60	11	31	-1	48	3	6.2
B	413	V - 98		11	66		118	2	6.0
В	414	V -102	30 - 65	S. Padup	4		19	1	6.0
B	415	V -103			10	1	19	<1	5.8
В	416	V -104	35 - 70	S. Hinang	12	-	56	<1	6.0

	Serial	Sample	Ło	cation		y Resul	ts (P	P.K)	
Block	No.	No.	Grid on map	River or Creek		u CxCu	Zn	Ко	PH
в	417	V ~106	30 ~ 75	S. Henyuke	2		8	<1	5.8
B	418	V -107	+1	t 1	8		11	1	5.6
В	419	V -108	t1	S. Setona	10		42	1	5.8
В	420	V -109	30 - 70	S. Janing	14		31	<1	5.8
В	421	V -113	•1	63	23		54	<1	5.8
В	422	V -114	11	et .	33		58	<1	5.8
В	423	V -115	\$T	\$1	26		47	<1	6.0
B	424	V -116	ŧr	S. Karaban	24		56	<1	5.8
В	425	V -119	÷1	10	34		91	<1	5.8
В	426	V -120	11	S. Hinang	16		47	<1	6.0
В	427	V -121	51	10	20		56	<1	6.0
B	428	V -122	25 - 75	S. Kunyit	24		33	<1	6.0
В	429	¥ -123	11	81	33		59	1	6.0
В	430	V -124	11	51	15		38	<1	6.2
В	431	V -125	tı .	83	47		87	<1	5.4
B	432	V -126	11	S. Selimut	47	4	67	<1	6.0
В	433	V -127	k0	88	47	4	73	<1	6.0
В	434	V -128	30 - 75	S. Xenyuke	18		69	<1	6.0
В	435	V -130	Ę1	S. Setona	11		69	<1	6.0

X-49

. .

Appendix 9 Number of Gold Grain	s by Megascopic Observation
---------------------------------	-----------------------------

Serial	Sample	Loc	cation		Num	oer of	gold	grain	
No.	No.	Grid on map	River or Creek	V.F.C	F.C	M.C	c.c	v.c.c	Total
1	I - 1	15 - 95	S. Rerong				1		1
2	I - 2	11	17			7	6		13
3	I - 3	*1	11						<u> </u>
4	I - 4	10 - 95	S. Mengkaman			10	9	1	20
5	I - 5	št .	11						-
6	I ~ 6	- \$1	63		5				5
7	I - 7	15 - 95	11		1				1
8	I - 8	*8	S. Huan Ama		1				1
9	I - 9	97	S. Kelabu						· _
10	I - 10	\$1	03						-
11	1 - 11	11	23						-
12	I - 12	83	\$U						-
13	I - 13	87	10						1
14	1 - 14	I¢	10						_
15	1 - 15	10	S. Sansak						-
16	1 - 16	14	61					_	-
17	1 - 17	18	ÎT.						-
18	I – 18		17						
19	I - 19	81	18						-
20	I - 20	18	<u>j</u> t						-
21	1 - 21	••	17						-
22	1 - 22	11	S. Semoa Karuh		1	1			2
23	1 - 23	11	1)						
24	1 - 24	u 	15						-
25	1 - 25	11	17	1					-
26	1 - 26	20 - 95	u						-
27	I - 27	15 - 95	S.Semoa Tapang						-
28	I - 28	11	11						-
29	I - 29		0						-
30	1 - 30		38						-
31	1 - 31	20 - 95	91				1	1	-
32	I - 32	4T	11			1			
JE	1 - 52								

Serial	Sample	Loc	ation	·····	Numb	er of	gold	grain	
No.	No.	Grið on map	River or Creek	V.F.C	F.C	M.C	c.c	v.c.c	Total
33	I - 33	20 - 95	S.Semoa Tapang				2		-
34	1 - 34	15 - 90	S. Reis						-
35	I - 35	10 ~ 90	S. Raya						-
36	1 - 36	15 - 90	S. Mandor						-
37	1 - 37	23	11						-
38	1 - 38		11					<u></u>	_
39	1 - 39	10 - 90	12						_
40	I - 40	60	¢1			3			3
41	1 - 41	1 1	¥U						
42	I - 42	11	÷1						-
43	I - 43	15 - 95	S. Raya			1			1
44	I - 44	15 - 90	S. Semoakaruh						-
45	I - 45	11	S. Buluh		2				2
46	I - 46	<u>k</u> 1	S. Raya			2			2
47	I - 47	15	S. Sepai	1					-
48	1 - 48	81	S. Raya						-
49	1 - 49		t T				 		-
50	1 - 50		\$1						-
51	1 - 51	10	ŧ1						-
52	I - 52	TI	ti						-
53	I - 53	U	11						-
54	I - 54	20 - 90	S. Sepai						-
55	I - 55	15 - 90	10					1	1
56	I - 56	20 - 90	11		10				10
57	I - 57	+1							-
58	I - 58		11						-
59	I - 59	13	L)			1		-	1
60	1 - 60	11	E4						-
61	I - 61	12	11						-
62	1 - 62	11	51	1	1	1	1	1	1
63	1 - 63	20 - 95	41	1		- 	-		-
64	1 - 64	20 - 90	51		8	3			11

•

Serial	Sample	Lo	cation		Numb	er of	gold	grain	
No.	No.	Grid on map	River or Creek	V.F.C	F.C	н.с	c.c	v.c.c	Total
65	1 - 65	20 - 95	S. Sepai			1			1
66	1 - 66	94	18						_ ·
67	1 - 67	20 - 90	S. Side						-
68	I - 68	\$2	S. Sebowak						-
69	1 ~ 69	83	Eŧ				1		1
70	1 - 70	1 7	S. Sepai						
71	1 - 71	11							-
72	1 - 72	11	11				1		1
73	I - 73	11	S. Sebowak		8	2	1		11
74	I - 74	L1	11	1	12	5	1		18
75	I - 75	91	U		7		1		7
76	I - 76	\$1	14				1		1
77	I - 77	15 - 90	S. Mau		6	1	1	1	9
78	1 - 78	**	01			<u> </u>		1	-
79	I - 79	11	41					1	-
80	I - 80	18	30	1					
81	1 - 81	15	1\$						
82	I - 82	10	10			1			_
83	1 - 83	1.	S. Semidang		9	1			10
84	I - 84	11	S. Xau					1	-
85	I - 85		£3		6	1			6
86	1 - 86	FO	11	-					-
87	1 - 87	El	11	1			1	-	-
88	I - 88	20 - 90	S. Nasan						_
89	II - 1	25 -100	S. Ledo				-		-
90	11 - 2	u u	S. Bamua	1		1		1	-
91	11 - 3	20 -100	41			[1	-
92	11 - 4	61	14		1	1			1
93	11 - 5	30	τq	1		1	1		-
94	II - 6	25 -100	S. Banan	1	8	1	1	-[8
95	11 - 7	20 -100	15		1	1	-1	-	1
96	11 - 8	12	11		1	1	1		-
L	I	<u>I</u>	J	1			1		I

Serial	Sample	ો	cation		Num	ber of	gold	grain	
No.	No.	Grid on map	River or Creek	V.F.C	F.C	H.C	c.c	v.c.c	Tota
97	II - 9	20 -100	S. Banan		3				3
98	II - 10	i I	E\$						-
99	II - 11	25 - 95	S. Ledo						-
100	II - 12	11	11		9				9
101	II - 13	11	58		6				6
102	II - 14	н	11		1				1
103	11 - 15	н	81						
104	11 - 16	20 - 95	S. Sirih		1				1
105	II - 17	11	S. Ledo		5				5
106	II - 18	25 - 95	11						
107	II - 19	19	91						
108	11 - 20	EQ.	91						-
109	11 - 21	20 -100	S. Bagua						-
110	11 - 22	11	11		1				J
111	11 - 23	"	12		1				1
112	11 ~ 24	11	te						-
113	11 - 25	u	62	1					-
114	11 - 26	11	II.		3				
115	11 - 27	20 - 95	81						-
116	II - 28		10	1			1		-
117	II - 29		τυ			1	1		-
118	11 - 30	25 -100	S. Ledo	1	7				
119	11 - 31	81	10		28		1		2
120	11 - 32	50	S. Lumar		9				
121	11 - 33	20 - 95	S. Sirih						
122	II - 34	51	ŧı						1.
123	II - 35	10	¢1	1		1		1	
124	II - 36	11	11						
125	11 - 37	0	50						
126	11 - 38	11	14	1			1		
127	11 - 39	14	IT		1	1			1
128	11 - 40	11	15	1	1	1	1		

i,

Serial	Sample	· Lo	cation		Numb	er of	gold	grain	
No.	No.	Grid on map	River or Creek	V.F.C	¥.C	N.C	c.c	¥.C.C	Total
129	II - 41	20 ~ 95	S. Sirih						-
130	11 - 42	pa	18						_
131	II - 43		82						
132	II - 44	UŽ	11				[
133	11 - 45	11	11						
134	11 - 46	B4 .	18						-
135	11 - 47	11	S. Ledo						-
136	11 - 48	\$1	11						
137	II - 49	£1	41						-
138	11 - 50	+1	P1						-
139	II - 51	19	53						-
140	II - 52	25 - 95	11		2				2
141	II - 53	20 - 95	D1				1		-
142	11 - 54	25 - 95	83		1				1
143	11 - 55	20 - 95	şı		4				4
144	11 - 56	25 - 95	\$1					1	-
145	11 - 57	20 - 95	ţı		4				4
146	11 - 58	FI	F3			1			-
147	11 - 59	EI	11						-
148	11 - 60	11	15				-		-
149	11 - 61	14	15	· [-
150	11 - 62	11	(I	-	1		1		
151	II - 63	11	1)		1	1			-
152	11 - 64	25 -100	S. Lusar		15	2			17
153	11 - 65	u u	£1		24	2			26
154	11 - 66	5 U	F1		30		1		30
155	11 - 67	11	31		10	4			14
156	11 - 68	3 11	10	1		-			-
157	11 - 69) "	11		81	1			82
158	11 - 70) "	11		68	1	-		68
159	II - 7	20 -100	S. Basua	-1		-1	1	-	
160	11 - 7	2 11		-1	-1	1			

•

Seríal	Sample	Loc	ation		Numb	er of	gold	grain	
No.	No.	Grid on map	River or Creek	V.F.C	F.C	H.C	c.c	v.c.c	Total
161	II - 73	20 -100	S. Banua						-
162	11 - 74	4	₽₹						-
163	11 - 75	61	±#						
164	11 - 76	11	S. Banan		26	2	<u> </u>		28
165	II - 77	18	1 1		1		-		1
166	11 - 78	19					<u> </u>	<u> </u>	÷
167	II - 79	1 E	10						-
168	11 - 80	EI	10				ļ	<u> </u>	-
169	II - 81	11			40	2	<u> </u>		42
170	11 - 82	11	01		26				26
171	11 - 83	10	• t						
172	11 - 84	25 -100	S. Cebol		9	l	1	<u> </u>	9
173	1I - 85		91		15	16	<u> </u>		31
174	11 - 86	10	12		11	6			17
175	11 - 87	Į T	11		10	2			12
176	II - 88	10			7	1	<u> </u>		8
177	II - 89	30 -100	S. Doyot						-
178	11 - 90	25 - 95	S. Sedate		1	3			4
179	1I - 91	10	••		5			_	5
180	II - 92	30 - 95	ţ1						
181	11 - 93	3 10	18		1				1
182	II - 94	13	14						-
183	II - 95	5 14	S. Dayak		1				1
184	II - 96	5 25 - 90	S. Raya						-
185	11 - 97	7 "			3	1	1		5
186	11 - 98	B "	٥ï						-
187	11 - 99	9 11	¢1						-
188	11 ~100) "	11						-
189	II -10	1 "	10					1	-
190	11 -10	2 **	11		-				-
191	11 -10	3 25 - 95	11						-
192	II -10	4 20 - 90	S. Nasan		1				1

Serial	Sample	Loc	ation		Numb	oer of	gold	grain	
No.	No.	Grid on map	River or Creek	V.P.C	F.C	H.C	c.c	v.c.c	Total
193	11 -105	20 - 90	S. Nasan						-
194	11 -106	£1	10						
195	11 -107	31	k1						
196	II -108	25 - 90	S. Sebulu		6	1			7
197	II -109	14	ts		2				2
198	11 -110	30 - 90	11						
199	11 -111	10	13						
200	II -112	25 - 90	S. Sekong		1				_ 1
201	11 -113	¢1	•1						-
202	1I -114	98	S. Sebulu						
203	11 -115	#1	S. Sekong						-
204	II -116	30 - 90	11				l		-
205	11 -117	30 - 95	S. Tumek						-
206	11 -118	E1	ų						-
207	11 -119	11	•1						-
208	11 -120	30 - 90	S. Selayu		12				12
209	II -121	br -	13		4	2			6
210	11 -122	25 - 90	"		2				2
211	II -123	25 -100	S. LUBAr		16				16
212	11 -124	11	11		56	6			62
213	111- 1	15 - 85	S. Semidang	4					4
214	111- 2	2 11	S. Liu						-
215	111- 3	3 "	I¢.				_		-
216	111- 4	1 ET	34	-		1			-
217	111-	5 11		-			1		- 1
218	111- (6 "	S. Pesune		12	8	3		21
219	111-	7 "	¥1			2	1		2
220	111-	B "	11						-
221	111-	9 20 - 80	S. Koroi	-	14				14
222	111- 1	0 "	17	1	. 4			_	4
223	111- 1	1 "						-	-
224	111-1	2 "			8	-			8

A-56

Serial	Sample	Loc	cation	[Numł	er of	gold	grain	
No.	No.	Grid on map	River or Creek	V.F.C	F.C	н.с	c.c	v.c.c	Total
225	111- 13	20 - 85	S. Ketapang						-
226	III- 14	14	\$1		4		_		4
227	111- 15	\$1	S. Pesune		3				3
228	III- 16	¢1	÷2						-
229	III- 17	91	51		>20	8			>28
230	III- 18	£0	80		8	2			10
231	III- 19	83	S. Rasau	12					12
232	111- 20	87	S. Semahu						-
233	111- 21	12	S. Kelau						-
234	III- 22	20 - 80	S. Liu						-
235	III- 23	20 - 85	S. Pesune		8	1			9
236	111- 24	F4	S. Raya						-
237	111- 25	11	11						+
238	III- 26	11	11		6				6
239	111- 27	20 - 90	E1		3				3
240	111- 28	20 - 85	11						-
241	111- 29	20 - 90	10						_
242	111- 30	Ç1	ęı		2		 		2
243	111- 31	25 - 90	S. Sekong						-
244	111- 32	11	¥T			[-
245	111- 33	81	\$I				· · · ·		-
246	111- 34	25 - 85	S. Sebalau	4			· · · ·	1	4
247	111-35	16	34	20		1	1	ŀ	20
248	111- 36	ti ti	B1		4				4
249	111- 37	61	ET.		15	2			17
250	111- 38	+t	10		8				8
251	111- 39	41	S. Tel Nam						-
252	111- 40	ji .	12		2		I		2
253	111- 41	н	S. Sebalau	1	25		1	1	25
254	111- 42	17	D.t.		6	- 6	1	1	13
255	111- 43	H	••		3	1	1	1	3
256	1II- 44	1+	10	1	5	2	1		7
L	L	I	L	I	<u> </u>	<u> </u>	I	1	

Serial	Sample	Loc	ation		Numl	er of	gold	grain	
No.	No.	Grid on map	River or Creek	V.F.C	F.C	H.C	c.c	v.c.c	Total
257	III- 45	25 - 85	S. Sebalau		9				9
258	111- 46	71	10		16	3			19
259	111-47	19	S. Tel Nam						-
260	111- 48	Bi	<u>P</u> d		3				3
261	111- 49	10	15		1				1
262	111- 50	11	11		5				5
263	III- 51	11	S. Boni		3	1			4
264	111- 52	\$ 1	v		2	1			• 3
265	111- 53	17			7				7
266	111- 54	25 - 80	68		10				10
267	111- 55	1+	i l		4				4
268	111- 56	25 - 85	S. Tel Nam	18	3				21
269	111- 57	11	S. Kelunu						-
270	111- 58	BU	£ ?		13				13
271	111- 59	11	S. Boni		8				8
272	111- 60	63	15		6				6
273	111- 61	61	11		. 2				2
274	111- 62	18	11		1				1
275	111- 63	17	Ed .		3				3
276	111- 64	11	17		1				1
277	111- 65	1 7	11						-
278	111- 66	30 - 85	S. Benavan						-
279	111- 67		F3		1				-
280	111- 68	3 ''	11						-
281	111- 69	21	31						-
282	111- 70) "	88						-
283	111- 7	L N	11		1				-
284	111- 72	2 11	59						-
285	111- 73	3 "	87	-	2				2
286	111- 74	1 ¹¹		1					-
287	111- 7	5 "	11		2	-	·		2
288	111- 70	5 "	11	-	2				2

Serial	Sample	Loe	cation		Nucl	er of	gold	grain	
No.	No.	Grid on ⊫ap	River or Creek	V.F.C	F.C	M.C	C.C	v.c.c	Total
289	III- 77	30 - 85	\$, Benavan		6		1		7
290	111- 78	11	Ş D						
291	111- 79	1)	† 9		2				2
292	III- 80	91							~
293	III- 81	•1	S. Seguun						-
294	III- 82	¢1	S. Benuang						
295	111- 83	58	12						
296	111- 84	10	IT		4	2			6
297	III- 85	48	19		3	1			4
298	111- 86	**	19		2				2
299	111- 87	••	10		6				6
300	III- 88	E1	S. Berangkai		15				15
301	111- 89	43	11		3				3
302	III- 90	10	13		2				2
303	111- 91	ET	17		1				1
304	111- 92	11	S. Benawan		3				3
305	111- 93	19	11		1			-	1
306	111- 94	10	11		1				1
307	111- 95	25 - 85	S. Durian						-
308	111- 96	Eà	17		2				2
309	111- 97	30 - 85	S. Benuang		9	1			10
310	111- 98	11	13	11	1				12
311	111- 99	**	23						-
312	111-100	17	18		2				2
313	111-101	11	Ţ¢		1	1		1	1
314	111-102	11	•1		2				2
315	111-103	17	••						
316	111-104	11	S. Berangkai		1				1
317	111-105	11	51				1		-
318	111-106	11	41		1				1
319	111-107		31	1	· · · ·	1	1		
320	111-108	IT.	11		1	1		1	1

Serial	Sample	Lo	cation	Nus	ber of	f gold	grain		
No.	No.	Grid on map	River or Creek	¥.F.C	F.C	н. с	c.c	v.c.c	Total
321	111-109	30 - 85	S. Berangkai		6				6
322	111~110	35 - 85	S. Sebintik						~
323	111-111	61	01						-
324	111-112	15 - 85	S. Semidang		4				- 4
325	111-113	÷E	at .	6					6
326	111-114	\$1	\$1		2				2
327	111-115	ŧIJ	11						-
328	1V - 1	20 - 75	S. Neopavah		5				5
329	17 - 2	18	El		2				2
330	1V - 3	88	11		3				3
331	1V - 4	10	S. Pehen						-
332	IV - 5	15 ~ 80	S. Buebung						
333	1V - 6	13	13						_
334	1V - 7	19	1#						
335	IV - 8	11	17						-
336	1V - 9	10	10	[
337	IV - 10	دا	LT						-
338	1V - 11	88	1 4						-
339	IV - 12	13	11						_
340	IV - 13	88	11						_
341	IV - 14	11	11						
342	IV - 15	11	11		2				2
343	IV - 16	1)	11						-
344	IV - 17	20 - 80	11					1	
345	IV - 18	15 - 80	31			[~
346	1V - 19	IL	E1		1	[1
347	IV - 20	20 - 80	11		1			1	-
348	IV - 21	11					[-
349	IV - 22	H	11			1		1	
350	IV - 23	11	*1	·		1		1	-
351	1V - 24	11	78	•		 	1	-	-
352	IV - 25	11	e 0	1				1	-
L	l	L	L	I	I	İ.	1		1

•

-

Serial	Sample	Loc	ation		Numb	oer of	gold g	grain	
No.	No.	Grid on map	River or Creek	Y.F.C	F.C	н.с	C.C	¥.C.C	Total
353	IV ~ 26	20 - 80	S. Bumbung						
354	IV - 27	B4	11						
355	IV - 28		11						
356	IV - 29	B B	\$F						
357	IV - 30	11	ę,			· ·			_
358	IV - 31	(1	11						←
359	IV - 32	¢3	fl						_
360	1V - 33	81	ÊN Î				· · · ·		_
361	IV - 34	81	E1						
362	IV - 35	£0	\$J						
363	IV - 36	25 - 75	S. Pehen		·				
364	1V - 37	EI	19						_
365	IV - 38	•1	11						
366	IV - 39		10				<u> </u>		-
367	IV - 40	30 - 80	S. Alam	<u> </u>					
368	17 - 41	\$1							-
369	IV - 42	10	11						-
370	IV - 43		S. Seæade	 	2	1	7		10
371	IV - 44	Ť1	S. Jelayan		4	1			5
372	1V - 45	25 - 80	11		2	<u> </u>			2
373	1V - 46	j1	11						
374	1V - 47	30 - 80	S. Semade		5				5
375	1V - 48	17			1	3		-	4
376	IV - 49	18	D1		7				7
377	17 - 50	11	S. Maha		[1	-
378	1V - 51	11	S. Semade	1	1	1		1	-
379	18 - 52	19			2			1	2
380	1V - 53	10	11				 		-
381	1V - 54	b	• • • 1		9	4	1	1	13
382	17 - 55	IJ	11	1	30	2	1	1	33
383	1V - 56	14	ti		1	1		1	2
384	1V - 57	11	τι		40	3	1		44

Serial	Sample	Lo	cation		Numł	er of	gold	grain	
No.	No.	Grid on map	River or Creek	V.F.C	F.C	N.C	C.C	v.c.c	Total
385	IV ~ 58	30 - 80	S. Semade		4				4
386	IV - 59	EA	1\$		1				1
387	1V - 60	L t	S. Kaha		4				4
388	IV - 61	11	11		3				3
389	1V - 62	10	R I		3	2			5
390	1V - 63	25 - 80	U II		13	1			14
391	IV - 64	11	11		65				65
392	1V - 65	11	11		2				. 2
393	IV - 66	30 - 80	S. Hala		4	1			5
394	IV - 67	i T	ţ1		4				4
395	IV - 68	IR	S. Laba		1		1		1
396	IV - 69		S. Santung		11				11
397	1V - 70	35 - 80	S. Lolang						-
398	IV - 71	81	18						-
399	1V - 72	\$ T	FA						_
400	IV - 73	₹£	F1						-
401	1V - 74	31	11						
402	18 - 75	30 - 80							-
403	IV - 76	11					1	1	
404	1V - 77	12					1		_
405	1V - 78	35 - 80	S. Sebintik		1		1		1
406	1V - 79	18	18			1	1		
407	1V - 80						1		-
408	IV - 81		(1						-
409	IV - 82		31	1				-	-
410	1V - 83	30 - 80	† 1	1			1	1	-
411	1V - 84	H	τı	1	2	1	1		2
412	LV - 85		t1		1		1	1	1
413	IV - 86		S. Teriak	T	1		1	-	~
414	IV - 87	13	13		1	1		· [· ·	-
415	IV - 88	51 <u></u>	18	1	1		-f		-
416	IV - 89	91	S. Benteng				-	1	-

Seríal	Sample	Loc	ation		Num	er of	gold	grain	
No.	No.	Grid on map	River or Creek	¥.F.C	¥.C	м.с	c.c	v.c.c	Total
417	IV - 90	30 - 80	S. Benteng						-
418	IV - 91	11	18						-
419	1V - 92	11	15						
420	1V - 93	11	F.C.						
421	1V - 94	\$8							
422	1V - 95	Ę4	17				ļ	.	-
423	IV - 96	E4	69						-
424	IV - 98	j)	S. Teriak			<u> </u>	<u> </u>	_]	_
425	IV - 99	۵r	11			<u> </u>			-
426	IV -100	11	*1						-
427	IV -101	23	13	<u> </u>				<u> </u>	-
428	IV -102	t?	17		İ	<u> </u>			
429	IV -103	15	11					_	-
430	IV -104	11	E1					<u> </u>	-
431	IV -105	35 - 80	S. Sebintik		3			_ _	3
432	IV -106		51					_	-
433	IV -107	11	it				1		1
434	IV -108	35 - 85	S. Setanga				1	<u> </u>	1
435	17 -109	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11		<u> </u>	1		_	1
436	10 -110) "			L		2	_ _	2
437	IV -111	30 - 85	0				<u> </u>		-
438	IV -112	2 "	•1				1		1
439	LV -113	3 35 - 80	S. Teriak						-
440	17 -114	4 30 - 80	It			1		· · ·	1
441	IV -115	5 11	11						-
442	17 -116	5 "	11	_		1			1
443	IV -117	7 "	11			_			-
444	10 -11	8 "	11	_	2				2
445	IV -119	9 "	¢1		4				4
446	IV -12	0 "	41						-
447	14 -12	1 "	It						-
448	17 -12	2 "	L)						

Serial	Sample	Ló	ation		Num	oer of	gold ;	grain	
No.	No.	Grid on map	River or Creek	V.F.C	F.C	M.C	c.c	v.c.c	Total
449	1V -123	20 - 75	S. Kempawah						20
450	IV -124	•1	91						10
451	1V -125	25 - 75							4
452	1V -126	25 - 80					[1
453	1V -127	FI							4
454	IV -128	UT T	11						1
455	1V -129	11	41			Í			-
456	IV -130	11	11						- 6
457	1V -131	lit .	10						3
458	1Y132	17	11						2
459	17 -133		11						70
460	IV -134	11	at at			•			-
461	17 -135	20 - 80	12				1		-
462	IV -136	21	18				1		
463	17 -137	25 - 80	17		1		1		
464	1V -138	20 - 75	S. Sakung				1	-	1
465	IV -139	20 - 80	11	1		[····			
466	1V -140	11	51				Ì		
467	1V -141	11	10						
468	17 -142	10	i î						
469	1V -143	li li							
470	IV -144	ti	11						
471	1V -145	20 - 75	S. Mempawah						
472	IV -146	· • •	11						
473	10 -147	. 11	S. Pehen						1
474	17 -148	3 11	11			1	1		
475	10 -149	н	R¥ (1	1		1	1	1
476	10 -150) 11	1 11	1		1			
477	IV -151	25 - 75	l1	-					
478	IV -152	2 11	u		1	1	1		
479	IV -153	3 11	*1						1
480	IV -154	L 11	t:		1		· [···	~	

Serial	Sample	Loc	ation		Nueb	er of	gold	grain	
No.	No.	Grid on map	River or Creek	V.F.C	¥.C	H.C	c.c	v.c.c	Total
481	1V ~155	25 - 75	S. Pehen						1
482	17 -156	81	ţ1						-
483	IV -157	11	63						
484	1V -158		\$1						-
485	1V -159	11	\$1						
486	IV -160	30 - 80	S. Menyuke		··				-
487	IV -161	25 - 80	•1						1
488	IV -162	61	ěI.						-
489	IV -163	ar .	51						-
490	IV -164	3 1	ŧ1			· · ·			-
491	IV -165	11	13						
492	IV -166	78	Jł.				1		-
493	IV -167	70							
494	IV -168	88	S. Selimut						-
495	IV -169	25 - 75	"						
496	IV -170	11	11						1
497	1V -171	11	11					1	-
498	IV -172	25 - 80	S. Menyuke			1	Ì		-
499	V - 1	25 - 65	S. Sailo						
500	V - 2	25 - 70	S. Tahuban		7				?7
501	V - 3				· ·				_
502	V - 4	tu -	ét .	i ·					_
503	V - 5	n	48		1.		1	-	-
504	V - 6	11	\$1				1	-	-
505	V - 7	••	F3				1		-
506	V - 8	11	14				1		-
507	V - 9	25 - 65	S. Kerasik			1			- 1
508	V - 10	21	11				1		_
509	V - 11	25 - 70	E9	1		1	1		-
510	V - 12	98	10	1			1		
511	V - 13	1	87	1		1	1		-
512	V - 14	EN	11	1	1	1			-
l	<u> </u>	<u> </u>		<u> </u>	I	<u> </u>			

-

Serial	Sample	Loc	cation		Num	ber of	gold	grain	
No.	No.	Grid on map	River or Creek	V.F.C	F.C	Н. С	C.C	¥.C.C	Total
513	V - 15	25 - 70	S. Sallo						-
514	V - 16	•1	18						-
<u>\$15</u>	V - 17	ra	13			f			-
516	V - 18	11	0						-
517	V - 19	11	11						
518	V - 20	L1	S. Tahuban						-
519	Y - 21								
520	V - 22	30 - 65	S. Saur						· -
521	V - 23		41 						-
522	V - 24	25 - 65							
523	V - 25	\$1	11			1			-
524	V - 26	30 - 65	S. Senbuang	1			1	1	-
525	V - 27	18	11						-
526	V - 28	11	£1				1		-
527	V - 29	25 - 65			·			1	
528	V - 30	30 - 65	48					-	-
529	V - 31		21					· .	-
530	V - 32	H	17			-			
531	V - 33		S. Beguru						
532	V - 34	•1	10	- 	· · · · ·			-	
533	V - 35	t1	10	- <u> </u>		1	1		<u> </u>
534	V - 36	30 - 60	E0			-	•		-
535	V - 37	11	11	-					-
336	V - 38	30 - 65	S. Sembuang	-		-			-
337	V - 39		21	1		1		1	-
338	V - 40		t)		1	1	-		
339	V - 41	N N	28		1	1	1		
540	V - 42			1	1	- <u> </u> .			1 .
541	V - 43		10	1	1		1		· ·
542	V - 44				1		1		·
543	V - 4		11			-†	-[<u> </u>
J	V - 40		S. Sari	[-1				-{

Serial	Sample	Lo	cation		Number of gold grain				
No.	No.	Crid on map	River or Creek	V.F.C	F.C	H.C	c.c	v.c.c	Total
545	V - 47	30 - 70	S. Sari		1				1
546	V - 48	30 - 65	11	*** •••• •					
547	V - 49	11	ED.		4				4
548	V - 50	11	SE		2				2
549	V - 51	63	64			-			-
550	V - 52	30 - 70	S. Sembuang		·				
551	V - 53	11	S. Karaban						
552	V - 54	11	19						
553	V - 55	11	3¢						
554	V - 56		UT						-
555	V - 57	11	S. Minang						
556	V - 58	23	11		2		1		3
557	V - 59	25 - 75	S. Setona		6	3	1		10
558	V - 60	11	50		4				4
559	V - 61	11	81		2				2
560	V - 62	30 - 75	10		1				1
561	V - 63	11	B4		1				1
562	V - 64	11	E					{	
563	V - 65	E3	£8						
564	V - 66	£4	20						
565	V - 67	10	¢F						
566	V - 68	25 - 70	S. Sailo		1	1			2
567	V - 69	14	01		1	-			1
568	V - 70	1t	ŧ٢						
569	V - 71	8 1	£3	·					
570	V - 72	11	\$1						_
571	V - 73	ti	78						
572	V - 74	25 - 65	S. Anau		1			[]	1
573	V - 75	11	\$1						
574	V - 76	+1	11			1			1
575	V - 77	11	13		8			[]	8
576	V - 78	ðt	S. Sailo		1				1

Serial	Sample	Lo	cation		Num	ber of	gold	grain	
No.	No.	Grid on map	River or Creek	V.F.C	F.C	H.C	c.c	v.c.c	Total
577	V ~ 79	25 ~ 65	S. Bala					1	_
578	V - 80	11	28	3		····			3
579	V - 81	84	\$0						
580	V - 82	U	S. Sailo		3				3
581	V - 83		¢á						-
582	V - 84	11	61						-
583	V ~ 85	30 - 65	S. Aja						
584	V - 86	11	11						· _
585	V - 87	11	ti .						-
586	V - 88	0	\$U						-
587	V - 89	11	e1						
588	V - 90	11	11						
589	V - 91	u	18						
590	V - 92	••	\$1						
591	V - 93								-
592	V - 94	31	1		· · · · · · · · · · · ·				-
593	V - 95	16	11						-
594	V - 96	11	11	3					3
595	V - 97	30 - 60	48						-
596	V - 98	LU	êž						-
597	V - 99	u	Ţ0						
598	V -100	11	**						-
599	V -101	11	ţU						-
600	V ~102		S. Padup	1		[1		1
601	V -103		11	-		1			-
602	V -104	40 - 70	S. Hinang	9			[9
603	V ~105	40 - 75	S. Menyuke						-
604	V -106	30 - 75	11			1			1
605	V -107		11	3					3
606	V -108	11	S. Setona						
607	V -109	30 - 70	S. Janing					1	
608	V -110	11	U2				1		

Serial	Sample	Lo	cation		Num	ber of	gold	grain	
No.	No.	Crid on map	River or Creek	V.F.C	F.C	M.C	c.c	v.c.c	Total
609	V -111	30 - 70	S. Janing						
610	V -112	51	E I		1	1			2
611	V -113	<u>F</u> I	ġ B						_
612	V -114	11	tı						-
613	V -115	11	••			1			
614	V -116	es .	S. Karaban		2	· · ·			2
615	V -117	11	81			1	· · ·		
616	V -118	\$r	61						-
617	V -119	81	\$1						÷
618	V -120	11	S. Hinang					2	2
619	V -121	"	11			1			-
620	V -122	25 - 75	S. Kunyit		4	1			5.
621	V -123	11	н						-
622	V -124								_
623	V -125	n	15		1	1	<u> </u>		2
624	V -126	13	S. Selimut		· · · ·	8			8
625	V -127	11	18		11			-	11
626	V -128	30 - 75	S. Menyuke	9		1			9
627	V -129	10	S. Setona						_
628	V -130	54							-
629	П-120/2	30 - 90	S. Selayu			101	11		112
		· · · · · ·				[1	1	
						1			
									<u> </u>
		· · · · · · · · · · · · · · · · · · ·				 		-	<u> </u>
		 				<u> </u>	 	 	
•	ļ					 	<u> </u>	<u> </u>	
							<u> </u>	_	[
	ļ								
	<u> </u>	L	I						

Serial	Sample	Loc	atión	Measurement	Background	Remarks
No.	No.	Grid on map	River or Creek		Value(µR/h)	Nerviers
1	I - 1	15 - 95	S. Melabu	3	1	
2	I - 2	14	81	5	4	
3	I - 3	15 -100	84	7	6	
4	I - 4		11	6	5	
5	I - 5	15 - 95	S. Sansak	6	5	
6	I - 6	17	11	6	5	
7	I - 7	81	S. Semoa Karuh	8	5	
8	I-8	88	S. Semoa Tapang	2	1	-
9	I-9	14	S. Šansak	3	2	
10	1 - 10	11	S. Semoa Karuh	1	1	
11	I - 11	20 - 95	ě1	1	1	
12	I - 12	15 - 95	S. Sezoa Tapang	4	3	
13	I - 13	ţ1	50	4	3	
14	I - 14	15 - 90	Ś. Buluh	3	3	
15	I - 15	FI	S. Sepai	3	3	
16	1 - 16	11	48	5	3	
17	I - 17	20 - 90	91	- 4	3	
18	I - 18	20 - 95	¥U.	6	4	
19	I – 19		31	4	4	
20	I - 20	20 - 90	S. Side	4	3	
21	I – 21	11	\$ 1	. 6	4	
22	I - 22	11	87	6	5	
23	1 - 23	15 - 90	S. Mau	5	3	
24	I - 24	f 8	89	6	5	
25	1 - 25		84 .	6	5	
26	1 - 26	10	. 10	7	6	
27	11 – 1	25 -100	S. Ledo	6	5	
28	11 - 2	11 .	S. Baeua	6	5	
29	11 - 3	±1	1*	6	5	
30	II - 4	20 -100	11	8	6	
31	11 - 5	•1	11	6	5	
32	1I – 6	•1	u	6	5	

Appendix 10 Radioactive Readings

Serial	Sample	Loc	ation	Measurement	Background	Řemarké
No.	No.	Grid on map	River or Creek		Value(µR/h)	
33	II - 7	20 -100	S. Banua	5	4	
34	11 ~ 8	. 10		7	5	
35	II - 9	11	18	7	5	
36	II - 10	ޱ	82	10	5	
37	II - 11	25 -100	S. Banan	6	4	
38	II - 12	64	89	5	4	
39	II - 13	20 -100	d R	6	4	
40	II - 14		11	4	4	
41	II - 15	10	11	4	3	
42	II - 16	80	\$1	2	2	
43	II – 17	ED	21	4	2	
44	II - 18	25 - 95	S. Ledo	15	5	
45	II - 19	84	91	7	6	
46	II - 20		6 1	7	Ś	
47	II - 21	91	38	7	5	ĺ
48	11 - 22	11	18	10	7	
49	11 - 23		1#	10	7	
50	11 - 24	20 -100	S. Bamua	12	5	
51	11 - 25	91	11	10	5	Ì
52	11 - 26	••	19	6	6	i i
53	11 - 27	•1	14	10	5	
54	11 - 28	11	£5	12	7	
55	11 - 29	31	11	12	7	
56	11 - 30	11		9	5	
57	11 ~ 31		u	10	7	
58	11 - 32	20 - 95	11	7	6	
59	11 - 33		11	11	5	
60	II - 34			12	7	
61	11 - 35	20 -100	97	11	7	
62	11 - 36	t+	83	39	11	
63	11 - 37	20 - 95	ė1	8	7	
64	11 - 38	15	t I	13	9	

e

Serial	Sample	Loc	ation	Measurement	Background	Penark
No.	No.	Grid on map	River or Creek	Value(µR/h)		NUBBLE
65	11 - 39	20 - 95	S. Bamua	12	9	
66	11 - 40			14	9	
67	11 - 41	25 -100	S. Ledo	6	5	
68	11 - 42		98	10	4	
69	11 - 43		S. Lumar	5	5	
70	II - 44	30 - 90	S. Sebalau	12	7	
71	11 - 45	20 - 95	S. Sirih	10	5	
72	11 - 46	*1	11	12	5	-
73	11 - 47	+1	19	10	6	
74	II - 48	#1	19	11	5	
75	11 - 49	î ê î	10	11	5	
76	11 - 50	58	85	7	5	
77	11 - 51	11	18	14	6	
78	11 - 52	11	13	12	5	
79	11 - 53	0 T	11	10	6	
80	II - 54	1.	11	12	5	
81	II - 55	te .	- 11	12	6	
82	II - 56	17	n	10	7	
83	II - 57	в	••	6	s	
84	11 - 58	20 - 95	S. Ledo	5	2	
85	11 - 59		11	6	5	
86	HI - 60	25 -100	S. Lumar	5	2	
87	11 - 61	20 -100	S. Banan	4	4	
88	11 - 62	11	**	4	2	
89	11 - 63		87	4	2	
90	11 ~ 64		31	4	2	
91	11 - 65	ŧI	14	5	2	
92	11 - 66	25 -100	S. Cebol	7	2	
93	11 - 67	Ħ		1	2	1
94	11 - 68	25 - 95	S. Sedate	5	3	
95	11 - 69	*1	55	7	5	
96	11 - 70	•		7	5	1

Serial	Sample	Loc	ation	Measurement	Background	Rémarks
No.	No.	Grid on map	River or Creek	Value(µR/h)		
97	III- 1	15 - 85	S. Mau	20	10	
98	111- 2	41	S. Liu	10	- 10	
99	111- 3	34	S. Pesune	10	10	
100	111- 4	-1	S. Liu	5	5	
101	III- 5	20 - 85	S. Rasau	1	1	
102	111- 6	10	S. Moroi	2	2	
103	111-7	**	S. Ketapang	20	20	
104	111- 8	87	S. Kelau	5	5	Í
105	III- 9	25 - 90	Seburuk	10	10	
106	111- 10	1 4	S. Sekong	5	5	
107	111- 11	30 - 90	S. Sebalau	9	6	
108	111- 12	25 - 85	¢1	3	2	
109	111-13	30 - 85	41	4	4	
110	111- 14	25 - 85	5 E	6	6	
111	111- 15		t 1	6	6	
112	111- 16	*1	54	6	6	
113	111-17	**	S. Tel Nam	5	3	
114	111- 18	11	14	3	3	
115	111-19	11	10 .	3	3	ĺ
116	111- 20	,,	19	4	. 3	
117	111-21	11	S. Boni	8	5.	
118	111- 22	12	11	8	6	
119	111-23	1+	a	8	6	
120	111-24	FI	11	8	5]
121	111- 25	25 - 80	11	8	6	
122	111- 26	25 - 85	\$1	10	8	
123	111- 27	11	S. Melunu	8	6	
124	111- 28	30 - 85	S. Benawan	10	6	
125	111- 29	0	41	6	5	1
126	111- 30	30 - 80	u	9	5	
127	111- 31	30 - 85	11	10	8	
128	111- 32	31	11	9	7	

Serial	Sample	Loc	ation	Heasurement	Background	Remarks
No.	No.	Grid on map	River or Creek		Value(µR/h)	ICUSATA
129	111-33	35 - 85	Pelahi	10	8	·
130	111-34	25 - 90	S. Sekong	11	10	
131	111- 35	25 - 85	S. Durian	5	4	
132	111~ 36	91	S. Boni	7	6	
133	1V - 1	20 - 75	S. ⊁e⊡pawah	3	1	
134	IV - 2	IT	B5	8	4	
135	IV - 3	FI	F4	5	3	
136	1V - 4	15 - 80	S. Bumbung	5	3	-
137	IV - 5		HE .	2	3	
138	IV - 6	11	12	4	3	
139	1V - 7	11	88	2	1	
140	IV - 8	14	E1	5	3	
141	1V - 9	30 - 80	S. Semade	5	4	
142	IV - 10	25 - 80	FL	4	2	
143	1V - 11	30 - 80	61	7	5	
144	1V - 12		11	4	2	
145	IV - 13	14	63	. 5	4	
146	1V - 14	14	0	4	3	
147	1V - 15	14	te	6	4	
148	IV - 16	13	S. Benténg	5	4	
149	IV - 17	11	S. Semade	4	3	
150	IV - 18	12	83	5	4	
151	IV - 19	81	84	5	3	
152	1V - 20		S. Haha	7	5	
153	IV - 21	34	1 8	5	4	
154	IV - 22	u	u	4	3]
155	IV - 23	25 - 80	U	4	3	1
156	1V - 24	41	11	3	2	
157	IV - 25	35 - 80	S. Lolang	5	3	
158	IV - 26	30 - 80	37	6	s	
159	1V - 27		29	6	4	
160	IV - 28		S. Sebintik	4	3	ļ

•

Serial	Sample	Loc	ation	Measurement	Background	Remarks
No.		Grid on map	River or Creek	Value(µR/h)		
161	IV - 29	30 - 80	S. Sebintik	5	4	
162	IV - 30	35 - 80	S. Teriak	2	2	
163	1V ~ 31	30 - 80	11	1	1	
164	IV - 39		11	3	3	
165	IV - 40	11	\$ 0	4	3	
166	1V - 41	11	S. Benteng	4	3	:
167	17 - 42	**	21	4	4	
168	17 - 43	==	\$1	3	2	
169	14 - 44	er	89	3	2	
170	17 - 45	11	93	3	2	
171	IV ~ 46	11	Eİ	6	5	
172	1V - 47		BI	5	4	
173	1V - 48	н	15	4	3	
174	1V - 49	12	S. Teriak	3	2	
175	IV - 50	12	10	4	3	
176	IV - 51	11	U	. 3	3	
177	IV - 52	17	17	4	3	
178	IV - 53	11	t i	4	3	
179	IV - 54	11	u	4	4	
180	1V - 55	11	0	3	2	
181	IV - 56	11	17	3	- 2	
182	IV - 57	11	11	3	2	
183	1V - 58	+T	ŧI	3	2	
184	1V - 59	35 - 80	S. Sebinitik	2	1	
185	1V - 60	35 - 85	**	2	1	
186	1V - 61	+1	S. Setanga	2	1	
187	1V - 62	31	14	2	2	
188	17 ~ 63	н	14	2	2	1
189	IV - 64	EN .	83	2	2	
190	IV - 65	30 - 85	It .	2	2	
191	1V ~ 66	35 - 85	1 1 .	3	2	
192	10 - 67		11	3	2	

Serial No.	Sample No.	Location		Rescurement	Background	Remarks
		Grid on map	River or Creek		Value(µR/h)	
193	IV - 68	35 - 85	S. Setanga	3	2	
194	1V - 69			3	2	ļ
195	1V - 70	E1	81	2	2	
196	IV 71	20 - 75	S. Menpawah	4	2	
197	17 - 72		11	3	2	
198	18 - 73	<i>i</i> 1	11	7	5	
199	IV - 74	25 - 75		5	3	
200	IV - 75	11	u	4	4	
201	IV - 76	EØ.	\$1	8	6	
202	IV - 77	11	K1	8	5	
203	IV - 78	16	87	6	5	
204	1V - 79	25 - 80	87	5	4	
205	IV - 80	87	12	7	5	
206	17 - 81		11	7	7	
207	IV - 82	11	FO	6	5	
208	17 - 83			6	5	
209	IV - 84	•1	••	8	5	
210	1V - 85	51	48	8	6	
211	IV - 86	11	LU LU	7	5	
212	IV - 87	11	t i	6	5	
213	IV - 88	11	11	6	5	1
214	IV - 89		1*	4	3	
215	IV - 90		n	6	5	
216	IV - 91	51	n –	4	2	
217	1V - 92		Ħ	4	3	
218	1V - 93	u	u	5	4	
219	1V - 94	ž1	11	4	3	
220	IV - 95	11	31	5	4	
221	IV - 96	11	17	2	2	1
222	IV - 97	11	B ¥	3	3	
223	IV - 98	20 - 80	10	3	2	
224	IV - 99	20 - 75	S. Sakung	7	4	

A-76

Ł

Serial Sa No.	Sample	Loc	ation	Keasurement	Background	Reparks
	No.	Grid on map	River or Creek	Value(µR/h)		
225	IV -100	20 - 75	S. Sakung	7	5	
226	iv -101	20 - 80	10	6	5	
227	1V -102	\$1	10	4	3	
228	1V -103	¥1	E#	5	4	
229	1V -104	\$1	11	6	5	
230	1V -105	78	· 11	6	5	
231	1V -106	20 - 75	S. Pehen	9	6	
232	IV -107	31	ti -	2	2	
233	1V -108	91	61	9	7	
234	IV -109	51	11	3	2	
235	17 -110	25 - 75	11	2	2	
236	IV -111	84		2	1	
237	LV -112	19	М	2	2	
238	IV -113	11	11	4 .	3	
239	1V -114	10	4 8	3	2	
240	IV -115	14	51 _	4	3	
241	1V -116	14	11	4	4	
242	1V -117	20 - 75	11	2	2	
243	V - 1	25 - 65	S. Sailo	5	4	
244	V - 2	84	*8	3	3.	
245	V ~ 3	19	S. Tahuban	7	5	
246	V ~ 4	25 - 70	98	4	3	
247	V - 5		69	8	7	
248	V - 6	u	¥8	1	5	
249	V - 7	25 - 65	S. Kerasik	8	6	
250	V - 8			1	1	ł
251	V - 9	11	12	1	1	
252	V - 10	11	58	1	1	1
253	V - 11	25 - 70	S. Sailo	5	3	
254	V - 12	- 11	30	6	5	
255	V - 13	u u	89	8	6	
256	V ~ 14	f1	11	8	5	

A-77

Serfal No.	Sample No.	Location		Measurement	Background	Remarks
		Grid on map	River or Creek		Value(µR/h)	
257	V - 15	25 - 70	S. Sailo	1	5	
258	V - 16	11	S. Tahuban	7	11	
259	V - 17	12	14	9	8	
260	V - 18	18	58	8	7	
261	V – 19	11	£3.	9	5	
262	V - 20	(1	18	6	5	
263	V - 21	30 - 65	S. Saur	5	3	
264	V - 22	61	0	4	3	
265	V - 23	51	S. Sembuang	3	3	
266	V - 24	#1	¥1	7	5	
267	V - 25	11	11	9	5	
268	V - 26	25 - 65	11	9	5	
269	V 27	30 - 65	11	5	4	
270	V - 28	10	10	6	5	
271	V - 29	E6	14	8	5	
272	V - 30	13	1 ₹	3	3	
273	V - 31	15	S. Beguru	9	5	
274	V - 32	30 - 60	11	8	5	
275	V - 33	30 - 65	S. Sembuang	8	5	
276	V - 34		87	5	4.	
277	V - 35		11	8	5.	
278	V - 36	30 - 60	61	7	7	
279	V - 37	30 - 65	••	5	3	
280	V - 38	30 - 70	11	6	4	
281	V - 39	n	12	4	3	
28Ż	V - 40	51	. I X	5	4	
283	V - 41	35 - 70	87	7	4	
284	V - 42	11	S. Sari	3	3	
285	V - 43	30 - 65		3	3	
286	V - 44	- n	11	. 6	. 3	
287	V - 45	11		6	4	1
288	V - 46	30 - 70	S. Karaban	3	2	1

Serial	Sample	Location		Measurement	Background	Remarks
	Grid on map	River or Creek	Value(µR/h)	Value(µR/h)	IN EXT NO	
289	V ~ 47	30 - 70	S. Karaban	3	2	
290	V - 48	91	¥8	5	3	
291	V - 49	•1	¥1	6	4	
292	V - 50	71	82	5	3	
293	V - 51	Ef	S. Minang	6	3	
294	V - 52		13	5	3	
295	V - 53		81	3	3	
296	V - 54	50	1 F	3	3	
297	V - 55	25 - 75	S. Setona	3	3	1
298	V - 56	11		5	4	
299	V - 57	- 11	11	4	3	
300	V - 58	- 11		8	5	
301	V - 59	30 - 75	91	5	4	
302	V - 60	11	S. Selimut	3	2	
303	V - 61	25 - 75	L.I	5	3	
304	V ~ 62	× •1	24	7	5	
305	V - 63	51	E9	4	3	
306	V 64	EI .	18	5	3	
307	V - 65	81	11	10	5	
308	V - 66	E1	81	8	Ś	
309	V - 67	14	11	8	5	
310	V - 68	30 - 75	S. Henyuke	5	4	
311	V - 69		S. Setona	3	3	
312	V - 70	11	61	_8	5	
313	V - 71	11		3	3	
314	V - 72		и	6	3	1
315	V - 73	11	11	6	3	ļ
316	V - 74	34	FI	4	3	1
317	V - 75	¥8	14	3	3	
318	V - 76	91	1)	6	2	1
319	V - 77	u	17	5	2	
						1
L	L	_ L	<u> </u>			<u> </u>

-