REPUBLIC OF INDONESIA

REPORT ON JAKARTA CITY TELEPHONE NETWORK PLANNING

VOLUME III

March 1976

JAPAN INTERNATIONAL COOPERATION AGENCY

REPUBLIC OF INDONESIA

REPORT ON JAKARTA CITY TELEPHONE NETWORK PLANNING

VOLUME III

March 1976

JAPAN INTERNATIONAL COOPERATION AGENCY

国際協力等	洋型
含 51, 9, 16	
登録No. 4123	6.5 J-3

108 64.7 SD 4445

国際協力事業団 (2015年) 108 (2016年) 108 (2016年) 64.7 (2016年) 5D

CONTENTS THE THE PROPERTY OF T

Production of the Control of the Con

VOLUME I

•

PREFACE		Of the Marketine Control of the Cont	
LETTER O	FT	RANSMITTAL	146. 5
		$(\mathbf{x}, \mathbf{x}, \mathbf{x}, \mathbf{x}, \mathbf{x}) = (\mathbf{x}, \mathbf{x}, $	
		PART I INTRODUCTION	
CHAPTER	1	OBJECTIVE OF SURVEY	3
CHAPTER	2	BACKGROUND	3
CHAPTER -	3	SURVEY TEAM COMPOSITION AND SURVEY PERIOD	5
		en en en de la companya de la compa	
		PART II SUMMARY	
CHAPTER	1	PRESENT SITUATION	9
CHAPTER	2	DEMAND FORECAST	17
CHAPTER	3	TELEPHONE TRAFFIC FORECAST	29
CHAPTER	4	TELEPHONE TRAFFIC FLOW FORECAST	35
CHAPTER	5	EXCHANGE OFFICE ESTABLISHMENT PLAN	41
CHAPTER	6	TECHNICAL STANDARD	45
CHAPTER	7	JUNCTION CIRCUIT AND CABLE	67
CHAPTER	8	CONSTRUCTION COST	83
CHAPTER	9	REVENUE AND EXPENDITURE	97
CHAPTER	10	PUBLIC TELEPHONE PLAN	105
CHAPTER	11	MAINTENANCE	119
CHAPTER	12	OTHER RECOMMENDATION	133
		PART III DETAILS	
CHAPTER	1	PRESENT SITUATION	143
	1.1	Existing Telephone Exchange Offices in 1974	145
	1.2	Telephone Traffic Distribution in a Day	145
	1.3	Call Completion Rate	150
	1.4	Existing Local Junction Cables	158
	1.5	Existing Subscriber Cable, etc.	168
	1:6	Existing Outside Plant (excluding cable)	176
	1.7	Engineering Standards of Main Facilities	181
	1.8		233
	1.9	Maintenance Level	240
	1.1	10 Charging System	240
*	1.1	11 Organization	252

	1.12	Revenue and Expenditure	255
	1.13	Periodic Report on Outside Plant	258
		VOLUME II	
CHAPTER	2 T	ELEPHONE DEMAND FORECAST	291
	2.1	Transition of Population in Indonesia and Jakarta	293
	2.2	Economic Index in Indonesia	306
	2.3	Telephone Utilization Situation and Demand Structure	
		in Jakarta	309
	2.4	Result of Interview Survey by Questionnaire on Telephones	325
	2.5	Telephone Demand Forecast (Macroscopic Demand Forecast)	374
	2.6	Microscopic Demand Forecast	408
		VOLUME III	
CHAPTER	3 T	ELEPHONE TRAFFIC FORECAST	773
	3.1	Result of Traffic Measurement	775
	3.2	Estimate of Calling Rate in 1976 by Exchange Office	787
	3.3	Future Calling Rate	787
	3.4	Subscriber Originating Calling Rate Estimate by Exchange Office	
		for 1979, 1983, 1988 and 1993	797
	3.5	Telephone Traffic Management	816
	3.6	Introduction of Computer	818
CHAPTER	4 T	ELEPHONE TRAFFIC FLOW FORECAST	819
	4.1	Composition of Originating Call	821
	4.2	Traffic Flow Measurement	832
	4.3	Traffic Flow Forecast Formula	837
	4.4	Inter-office Traffic Flow Forecasts in	
		1979, 1983, 1988 and 1993	838
CHAPTER	5 E	EXCHANGE OFFICE ESTABLISHMENT PLAN	851
	5.1	Exchange Office Service Area and Wire Centre	853
	5.2	New Terminal Installation Plan and New Exchange Office	
		Construction Plan by Year	858
CHAPTER	6 7	rechnical standard	897
	6.1	Numbering Plan	899
	6.2	Trunking Standard	929

	6.3	Signaling Standard	938
	6.4	Transmission Loss Assignment	939
* :	6.5	DC Resistance Limit	961
4 - 2	6.6	Kind of Cable	969
	6.7	Design Standard for Subscriber Cable Network	972
	6.8	Optimum Provision Period	976
·	6.9	Subscriber Line Structure	993
CHAPTER	7 .	JUNCTION CIRCUIT AND JUNCTION CABLE	1005
	7.1	General Description	1007
	7.2	Basic Plan	1009
	7.3	Trunking Diagram	1022
	7.4	Plan No. I	1030
	7.5	Plan No. 2	1083
	7.6	Comparison Between Plan No. 1 and Plan No. 2	1137
	7.7	Conclusion	1137
		VOLUME IV	
CHAPTER	8	CONSTRUCTION COST ESTIMATE BY YEAR	1143
	8.1	General Description	1145
	8.2	Exchange Office Building	1149
	8.3	Switching Equipment	1153
	8.4	Cable	1158
	8.5	Civil Engineering	1192
	8.6	Telephone Installation	1196
	8.7	Total Construction Cost	1200
CHAPTER	9	REVENUE AND EXPENDITURE	1229
	9.1	Status Quo of Revenue and Expenditure in Jakarta	1231
	9.2	Revenue and Expenditure Forecast	1237
	9.3	Study for Revenue-Expenditure Balance Improvement	1266
	9.4	Appendix	1277
CHAPTER	10	PUBLIC TELEPHONE	1311
	10.1	Existing Public Telephone in Jakarta	1313
	10.2	Finding by Enquire	1325
	10.3	Recommendations	1355
	10.4	Annandiv	1265

	1.12	Revenue and Expenditure	255
	1.13	Periodic Report on Outside Plant	258
		VOLUME II	
CHAPTER	2 7	TELEPHONE DEMAND FORECAST	291
	2.1	Transition of Population in Indonesia and Jakarta	293
	2.2	Economic Index in Indonesia	306
	2.3	Telephone Utilization Situation and Demand Structure	
		in Jakarta	309
	2.4	Result of Interview Survey by Questionnaire on Telephones	325
	2.5	Telephone Demand Forecast (Macroscopic Demand Forecast)	374
	2.6	Microscopic Demand Forecast	408
		VOLUME III	
CHAPTER	3 7	TELEPHONE TRAFFIC FORECAST	773
	3.1	Result of Traffic Measurement	775
	3.2	Estimate of Calling Rate in 1976 by Exchange Office	787
	3.3	Future Calling Rate	787
	3.4	Subscriber Originating Calling Rate Estimate by Exchange Office	
		for 1979, 1983, 1988 and 1993	797
	3.5	Telephone Traffic Management	816
	3.6	Introduction of Computer	818
CHAPTER	4	TELEPHONE TRAFFIC FLOW FORECAST	819
CIM ILK	4.1	Composition of Originating Call	821
	4.2	Traffic Flow Measurement	832
	4.3	Traffic Flow Forecast Formula	837
	4.4	Inter-office Traffic Flow Forecasts in	057
		1979, 1983, 1988 and 1993	838
CHAPTER		EXCHANGE OFFICE ESTABLISHMENT PLAN	851
	5.1	Exchange Office Service Area and Wire Centre	853
	5.2	New Terminal Installation Plan and New Exchange Office	
		Construction Plan by Year	858
CHAPTER	6	TECHNICAL STANDARD	897
	6.1	Numbering Plan	899
	6.2	Trunking Standard	929

	6.3	Signaling Standard	938
*	6.4	Transmission Loss Assignment	939
-	6.5	DC Resistance Limit	961
	6.6	Kind of Cable	969
*	6.7	Design Standard for Subscriber Cable Network	972
	6.8	Optimum Provision Period	976
	6.9	Subscriber Line Structure	993
CHAPTER	7 J	UNCTION CIRCUIT AND JUNCTION CABLE	1005
	7.1	General Description	1007
	7.2	Basic Plan	1009
	7.3	Trunking Diagram	1022
	7.4	Plan No. 1	1030
	7.5	Plan No. 2	1083
	7.6	Comparison Between Plan No. 1 and Plan No. 2	1137
	7.7	Conclusion	1137
		VOLUME IV	
CHAPTER	8 (CONSTRUCTION COST ESTIMATE BY YEAR	1143
	8.1	General Description	1145
	8.2	Exchange Office Building	1149
	8.3	Switching Equipment	1153
	8.4	Cable	1158
	8.5	Civil Engineering	1192
	8.6	Telephone Installation	1196
	8.7	Total Construction Cost	1200
CHAPTER	9 I	REVENUE AND EXPENDITURE	1229
	9.1	Status Quo of Revenue and Expenditure in Jakarta	1231
	9.2	Revenue and Expenditure Forecast	1237
	9.3	Study for Revenue-Expenditure Balance Improvement	1266
	9.4	Appendix	1277
CHAPTER	10 I	PUBLIC TELEPHONE	1311
	10.1	Existing Public Telephone in Jakarta	1313
	10.2	Finding by Enquire	1325
	10.3	Recommendations	1355
	104	Appendix	1365

CHAPTER	11	MAINTENANCE.	1429
	11.1	Improvement of Maintenance Level	1431
	11.2		1440
	11.3		1463
	11.4	Plant Record:	1483
CHAPTER	12	OTHER RECOMMENDATION	1503
	12.1	Improvement of Call Completion Rate	1505
	12.2	New Service Demand Management Control	1515
	12.3	Demand Management Control	1531
•	12.4		1535
	12.5	Time Charging System for Local Calls	1538
;1		PART IV FIVE-YEAR PLAN	
CHAPTER	. 1	INTRODUCTION	1545
CHAPTER	2	TELEPHONE DEMAND FORECAST IN 1979	1545
CHAPTER	. 3	TELEPHONE TRAFFIC FORECAST IN 1979	1545
CHAPTER	. 4	TELEPHONE TRAFFIC FLOW FORECAST IN 1979	1545
CHAPTER	5	NUMBER OF JUNCTION CIRCUITS AND CABLES IN 1979	1545
CHAPTER	6	DESIGNING OF SUBSCRIBER CABLE BASIC PLAN	. '.
		(Key Map)	1545
,	6.1	Demand Forecast for Each Distribution Block Area	1545
	6.2	Selection of Primary Cable Route (Conduit Route)	1546
,	6.3	Calculation of DC Resistance and Sending Reference	
		Equivalent (S.R.E.) for Each Subscriber Line Route	1546
	6.4	Object Exchange Offices in Designing the Key Map	1546
CHAPTER	7	SUBSCRIBER PRIMARY CABLE NETWORK BASIC DESIGNING	
		SCHEMES FOR URGENT AREAS (6 Exchange Offices)	1547
	7.1	Gambir Exchange Office Subscriber Primary Cable	
		Basic Designing Scheme	1547
•	7.2	Kebayoran Exchange Office Subscriber Primary Cable Network	
		Basic Designing Scheme	1551
	7.3		
		Basic Designing Scheme	1555
	7.4	Basic Designing Scheme	2 11
•	•	Basic Designing Scheme	1562
	7.5	Pasar Rebo Exchange Office Subscriber Primary Cable Network	
		Basic Designing Scheme.	1567
	7.6		
		Basic Designing Scheme	1570

CHAPTER 3 TELEPHONE TRAFFIC FORECAST

6 REPUBLIE

THE HOUSE DISTANCE TOOLINET

CHAPTER 3 TELEPHONE TRAFFIC FORECAST

Telephone traffic forecast is important for deciding accurately the future management policy of the telephone service organization. Investment in telephone facilities is so great that the number of facilities to construct must be determined exactly and for this purpose the traffic forecast must be carried out at high precision. Although time series data is essential for traffic forecast of high precision, we could not obtain the time series data of Jakarta this time. Therefore, to obtain basic data, we had to measure the present traffic volume in Jakarta and, based on the result of measurement, we carried out the traffic forecast.

3.1 Result of Traffic Measurement

The originating traffic of local exchange offices in Jakarta was measured by the operating-switch count method.

3.1.1 Theoretical Formula of Measurement

$$a = \frac{-rt + \cdots rn}{n} - \frac{1}{n} \sum_{i=1}^{n} ri$$

where

a : Total originating traffic of the exchange office concerned (Erlang)

 r_i : Number of operating switches in the unit measuring time

n: Number of measurement

Assuming that the total number of subscribers at the exchange office concerned is represented by s, the average originating calling rate per subscriber (CR) is obtained as follows:

The calling rate which is used in Chapter 3 and Chapter 4 means average originating calling rate of a subscriber.

3.1.2 Method of Measurement

(1) Prior to the traffic measurement the storage battery discharge in the power room of each exchange office during the past several months was investigated. This was to check traffic fluctuations by months, by days of the week and by hours. The findings were as follows:

Fluctuations by months: No major fluctuations were observed at all exchange offices.

Fluctuations by days of the week: From Monday to Thursday the traffic remained almost constant at all exchange offices and no major fluctuations

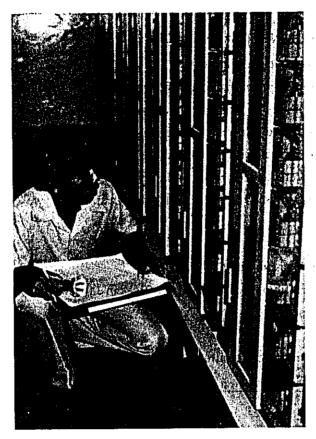


Fig. 3.1.1.(1) Operation Sw. Count (Kebayoran Office)

Fig. 3.1,1.(2) Operation Sw. Count (Kebayoran Office)

were observed. On Friday, Saturday and Sunday the traffic was smaller than on other weekdays.

Fluctuations by hours: The busy hour was around 10.00 a.m. at all exchange offices. This busy hour coincided with one testified by the responsible person at each exchange office.

The traffic measurement was carried out for one busy hour chosen for each exchange office, except for Sundays, Fridays and Saturdays, as well as holidays.

- (2) Since the total originating traffic was to be measured by 1st GS or AS the total number of circuits was first checked with the working trunking diagram. At the same time the locations, the lighting condition and the obstacles, if any, which might affect the measurement were investigated.
 - (3) For the purpose of high accuracy of measurement and the uniform quality of measurement the method of measurement was standardized. For the persons in charge of the measurement (five locally employed technical high school graduates) four-hour classroom training and two-hour field practice training were administered. Furthermore, instructions were issued to them so that they would be cleanly dressed when entering the machine room and would never touch equipments without necessity.
 - (4) The measurement was carried out for one busy hour on ordinary days (excluding Sundays, Fridays, Saturdays and holidays as mentioned in (1) above). The measurement was made 10 times at intervals of six minutes. At the end of each measurement a whistle signal was issued. The persons on duty counted the operating-switches at the designated places and recorded the counts in the designated report format each time.
 - (5) The average originating calling rate per subscriber at each local exchange office in Jakarta measured by the operating-switch count method is shown in Table 3.1.2.(1).

Table 3.1.2.(1) Measurement Result of Calling Rate

Date	Hour (am)	Calling rate
30 Jan '74 Wed	9.50~10.50	0.070 Erl
10 " " Thu	10,50~11.50	0.061 "
28,29 Jan '74 Mon, Tue	9.50~10.50	0.068 "
8 Jan '74 Tue	9.40~10.40	0.066 "
21 " " Mon	9.00~10.00	0.043 "
9 " " Wed	10.30~11.30	0.038 "
31 " " Thu	9.30~10.30	0.048 "
	30 Jan '74 Wed 10 " " Thu 28,29 Jan '74 Mon, Tue 8 Jan '74 Tue 21 " " Mon 9 " " Wed	30 Jan '74 Wed 9.50~10.50 10 " " Thu 10.50~11.50 28,29 Jan '74 Mon, Tue 9.50~10.50 8 Jan '74 Tue 9.40~10.40 21 " " Mon 9.00~10.00 9 " " Wed 10.30~11.30

3.1,3 Concentration Rate to Busy Hour

3.1.3.1 Method of Forecast

The traffic concentration rate to busy hour in Jakarta was estimated by the following conditions:

- (1) Total traffic in each time zone and the current discharge in the power room in the time zone are mutually in proportion.
- (2) The midnight minimum discharge is equal to the basic current only to keep switching equipment in operation when traffic is zero.

Therefore, the traffic concentration rate to busy hour at each exchange office was calculated by the following formula:

3.1.3.2 Result of Calculation

The discharge ampere hour measured every hour at each exchange office is shown in Table 3.1.3.2.(1) and the concentration rate to busy hour calculated for each exchange office in Table 3.1.3.2.(2).

The mean value of the concentration rate to busy hour obtained from the concentration rate to busy hour for each exchange office by the weighted average of subscriber number is:

$$16,800 + 6,690 + 3,870 + 1,190 = 28,550$$

 $11.39 \times 16,800 + 8.9 \times 6,690 + 10.42 \times 3,870 + 10.56 \times 1,190$
 $28,550$

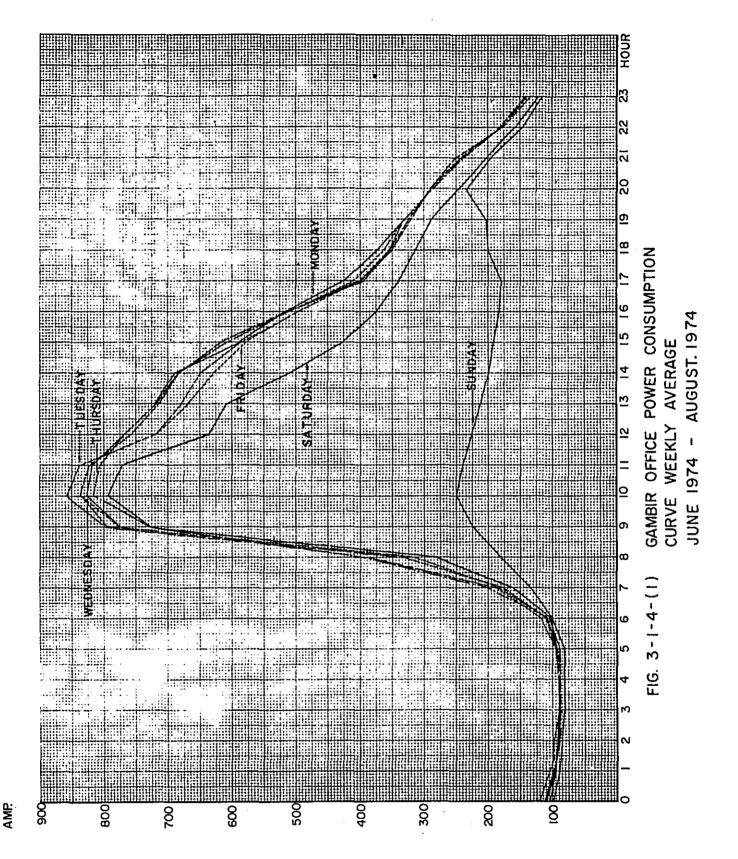
 $= 10.64\% \approx 11\%$

Hence the concentration rate to busy hour in Jakarta is set at 11%.

3.1.4 Fluctuations by Days of the Week

To investigate traffic fluctuations by days of the week the current discharge by days of the week was calculated. Traffic fluctuations by days of the week thus obtained for Gambir Exchange Office (the government office and business office area) and for Kebayoran Exchange Office (the residential and shopping area) are shown in Fig. 3.1.4.(1) and Fig. 3.1.4.(2). In these figures no special traffic variations by days of the week are observed except on Saturday and Sunday. On Sunday the busy hour comes twice, i.e., at midday and in the evening but, on the whole, traffic is light. On Saturday the traffic volume is

TABLE 3-1-3-2-(1)
HOURLY DISCHARGING AMPER HOUR(A.H.)


OFFICE	GAMBIR	KEBAYORAN	JATINEGARA	SLIPI
07	176.48	123.82	39.78	7.62
08	370.21	150.90	82.11	21.62
09	735.53 △802.72	187.18 193.18	122.62 △127.17	△ 31.52 31.28
1.1	793.30	△ 1 96.02	122.05	28.91
12	7 09.67	192.72	114.44	26.31
13	6 61.36	1 88. 15	106.83	23.87
14	6 19.40	167.16	97.15	21.84
15	5 38.34	150.84	82.29	19.24
16	456.49	137.21	68.59	I 6.85
17	374.77	1 26 .22	62.28	14.44
18	336.41	115.50	61.75	1 3.65
۱9	3 13.61	120.44	65.09	13.42
20	2 76. 95	115.06	63.04	1 2.63
21	2 29.33	102.07	51.28	1 1.16
22	170.41	87.24	37.55	8.96
23	1 28.37	76.39	28.71	6.69
24	104.27	65, 20	23.70	4.43
01	93.55	59.13	20.88	2.72
02	88.29	53.08	18.80	2.21
03	85.74	49.49	0 18.00	。 2.09
04	o 85.47	o 48.48	18.82	2.11
05	89.69	51,64	21.45	2.21
06	105.84	61 . 39	25.53	3.20
TOTAL	8,3 46.20	2,818.51	1,479.91	328.98

[.] MINIMUM DISCHARGE A.H.

A MAXIMUM DISCHARGE A.H.

RATIO TO BUSY HOUR TABLE 3-1-3-2-(2) CONCENTRATE

JM RGE CONCENTRATE RATIO TO BUSY HOUR. DUR	A.H. 802.72-85.47 x 100 = 11.39 % 8,346.2-85.47x24		196.02-48.48 x 100 = 8.9 % 2,818.51-48.48 x 24		00 1,479.91-18.00×24		31.52-2.09 328.98-2.09x24		
MINIMUM DISCHARGE AMP. HOUR	4	85.47		48.48			18.00	2.09	
MAXIMUM DISCHARGE AMP. HOUR	A.H.	802.72		196.02			127.17	31.52	
WHOLE DISCHARGE AMP. HOUR	A.H. 8,346.20		.2,818.51			1,479.91	328.98		
S'BUS		16,800		069'9			3,870	061,1	
DATE		JAN - AUG	1974	JAN - OCT	1974	AUG 1 973	JULY 1974	MARCH-JULY	1974
I TEM OFFICE		GAMPIR		KEBAYORAN		ATINEGABA		SLIPI	

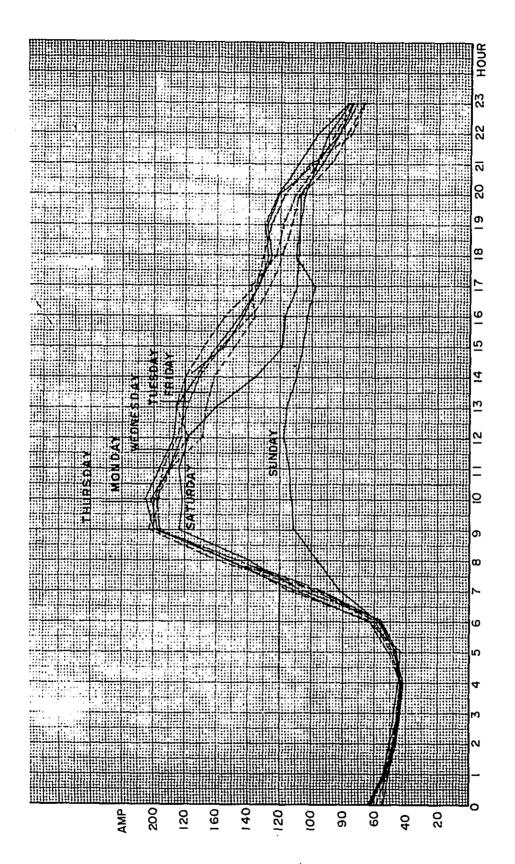


FIG. 3-1-4-(2) KEBAYORAN OFFICE POWER CONSUMPTION CURVE WEEKLY AVERAGE FEB. 1974 - APR. 1974

somewhat smaller than on other weekdays.

3.1.5 Telephone Call Holding Time

The telephone call holding time at each local exchange office in Jakarta was measured as stated hereunder.

3.1.5.1 Exchange Office Where Measurement Was Made and Date/Time of Measurement

The telephone call holding time measurement was made in parallel with the traffic measurement by operating-switch count. Exchange offices where the measurement was made and date/time of measurement are shown in Table 3.1.5.1.(1).

3.1.5.2 Method of Measurement

The telephone call holding time was measured by measuring with a stop-watch the operation holding time of C-relay of line finder chosen at radom. Hence the measured time stands for the holding time until the line is released after the dial tone is sent to the calling subscriber.

3.1.5.3 Result of Measurement

The result of telephone call holding time measurement at each exchange office is shown in Table 3.1.5.3.(1).

3.1.5.4 Mean Holding Time

The mean value of each measured time zone is listed in Table 3.1.5.4.(1). When the success call holding time is assumed to be more than 31 sec. it follows that

$$\frac{87,455-(5.175+7.920+2900)}{2227-(1.035+528+116)} = \frac{71.460}{548} = 130.4 \text{ sec.}$$

Hence the mean holding time of the success call becomes approximately 130 sec. When the failure call holding time is assumed to be less than 30 sec. it follows that

$$\frac{5.175+7.920+2.900}{1.035+528+116} = \frac{15.995}{1.679} = 9.53 \text{ sec.}$$

Hence the mean holding time of the failure call becomes approximately 10 sec.

TABLE 3-1-5-3-(1) 1/2
HOLDING TIME OF CALLS IN JAKARTA 1/2

	OFFICE I				1 1		
NO.	OFFICE	KOTA	GAMBIR	SEMA - -NGGI	KEBA - -YORAN	JATINE – – GARA	TOTAL
1	0'.00"~0'.10"	476	228	88	146	97	1,035
2	0'.11"~0'.20"	187	152	79	73	37	528
3	0'. 21"~ 0'.30"	46	29	18	13.	10	116
4	0:31"~0'.40"	40	24	7.	8	8	87
5	0'.41"~ 0'.50"	20	16	6	. 10	5	57
6	0'.51"~ 1'.00"	13	5	9	9	4	40
7	1'.01"~ 1'.10"	17	12	2	9		40
8	1'.11"~1'.20"	6	15	l	5	5	32
9	1'. 21" ~ 1'.30"	18	7	<u>-</u>	. 6	2	33
10	1'.31"~ 1'.40"	6	11	3	_	3	23
11	1 '. 41" ~ 1'. 50"	10	6	l	4	2	23
12	1 '.51" ~ 2'.00"	12	6	1	2		21
13	2.01"~ 2.10"	8	7	5	4	· 3	27
14	2. 11"~ 2.20"	2	7	1	ł	3	14
15	2'.21"~ 2'.30"	8	3	-	1	2	15
16	2'. 31"~ 2'.40"	6	1		t		. 8
17	2'.41"~ 2'.50"	6	_·	_	2	. 2	10
18	2.51"~3.00"	4	t l		ı		6
19	3'.01"~ 3'.10"	7	2		1	3	13
20	3'.11"~3'.20"		ļ				2
21	3'.21"~3'.30"	4		1	. I	2 4	9
22	3'. 3 ("~3'.40"	2	_	2			4
23	3'. 41"~ 3'.50"	t	2				4
24	3'.51"~ 4'.00"	l	2	1		1	5
25	4'.01"~ 4'.10"	2	ı		—	- '	4
26	4'.11"~ 4'.20'	l				l	3
27	4'. 21"~ 4'. 30"	1				ι	3
28	4'.31"~ 4'.40"		1 .]	—		1	2
29	4'.41"~4'.50"	1	2	ļ į			4
30	4'.51"~ 5'.00"	3	4				7

TABLE 3-1-5-3-(1)²/2 HOLDING TIME OF CALLS IN JAKARTA ²/2

	HOLDING	TIME OF	CALLS	IN JAK	ARTA -/	<u> </u>	<u> </u>
NO.	OFFICE	кота	GAMBIR	SEMA -	KEBA- -YORAN	JATINE- - GARA	TOTAL
31	5.'01% 5'.10		l		3	ı	5
32	5:11"~5:20"	L	_	17			2
33	5'.21"~5'.3d	l	2		· - 	[:	4
34	5' 31"~5!40"		l	, _	1		2
35	5'.41"~5'.50"			:		_	
36	5'. 51"~6'.00"	3	1	!— <u>.</u>	1		5
37	e; o; ~e; 10,	ī	1	; <u>—</u>			2
38	6'.11"~6'.20"			1	_	-	1.
39	6'.21"~6'.30"	1	1	_	1		3
40	ซี.31 ¹ %6′.40″	_	_		1		. 1
41	6'.41"~6'.50"	·	1 1 1	_	_		1
42	6'.51"~7'.00"	1	1				2
43	7.01"~7.10"		_	· —	 .		
44	7'.11"~7'.20"	·	· —				# Maryuma
45	7'.21"~7'.30"		-				
46	7'.31"~7'.40"			-			ŀ
47	7'.41"~7'.50"				-	_	
48	7.51"~8:00"	·		<u> </u>	_		 ·
49	g.01, 8, 10,	_ .		.—	-		
50	8'.11"~ 8'.20"	, <u> </u>	<u> </u>	_	· <u> </u>	, -	
51	8'.21"~8'.30"	→ `				1	1
52	8'.31"~8'.40"	. 1	. — .		<u> </u>	~	1
53	8'.41"~ 8'.50"	1	· —	·		-	, 1
54	8'.51 "~ 9'.00"				_	-	
55	9'.01"~9'.10"			—	_	-	-
56	9'. 11 "~ 9'.20"			_	l	l l	2, .
57	9'.21"~9'.30"	: <u>—</u>	<u> </u>	1	· —		1
58	9'.31"~9'.40"	. 1		<u> </u>			
59	9.41, 9.50		—		, 	-	.
60	9'.51 <u>%10</u> '.00"	66	5	2	3	. <u> </u>	17
	TOTAL	924	563	235	308	197	2,227

NO.59 - 581 ~ 590 SEC Ni 60 × 100 8 Ni 1 NO.1 = 1 ~ 10 SEC NO. 60 = 591~ ∞ NO. 2= 11~ 20 NO. 3=21~ 30 5/5 0<u>;</u> 1 525 565 87,455 0.05 0.05 0.05 0.05 100 07 * CALLS TIME H 525 535 545 555 575 505 565 585 595 TOTAL ş 55 56 58 59 53 2 2 52 765 550 1,140 2,065 630 1,300 670 1,775 795 1,525 455 730 1,155 4 05 375 395 830 HX N 0.18 0.09 0.3 0.23 0.18 0.23 60.0 0.05 800 0.09 0.05 60.0 0.05 0.05 CALLS N Ŋ S TIME H 445 455 475 485 2 65 335 3 45 3 55 375 385 395 405 425 435 465 495 275 325 365 285 295 305 9 30 33 34 35 36 50 6 49 56 27 53 <u>-</u> 32 37 38 39 7,920 2, 900 2,565 2,600 2,415 1,890 1,240 2,200 2,400 2,415 2, 175 2,405 960 3,045 2,805 1,650 390 1,845 1, 175 980 2, 185 3,375 1,050 900 23.71 46.48 3.91 2.56 .80 1.80 44. 5.21 1.03 0.94 1.48 .03 0.36 0.45 0.27 1.2 0.63 0.58 0.67 0.40 0.23 0. 18 60.0 × GALLS N 1,035 40 32 23 ~ m 57 33 23 27 4 5 **∞** ⊙ TIME H -15 125 195 3 25 50 185 205 235 35 175 2 15 55 55 ç N ю 9 ~ 8 20 0 2 ы 5 24 25 = 4 22 23 23

JAKARTA

Z

HOLDING TIME OF CALLS

TABLE 3-1-5-4-(1)

Table 3.1.5.1.(1) Measurement Data for Holding Time of Calls

C. 过海蓝 \$4.1 个类型的发展性和原理 图7.0PP 网络加加拉拉 一点的人对话记住。对他们主办的一点。他们立

Office	7.7 1 7.1 1.4 1	Date		Hour
Kota	30 J	an '74	Wed	10.00 ~ 11.00
Gambir	29	r #	Tue	10.00 ~ 11.00
Semanggi	8	, ,,	" .	10.00 ~ 11.00
Kebayoran	9	, ,,	Wed	10.30 ~ 11.30
Jatinegara	31	11	Thu	9.30 ~ 10.30

3.2 Estimate of Calling Rate in 1976 by Exchange Office

For the purpose of calling rate estimates for 1979, 1983, 1988 and 1993 the calling rate for 1976 at each exchange office in Jakarta was estimated. The following data was used for the estimate:

- a. PERUMTEL's estimate data for 1975 and 1976.
- b. Late Mr. Atkinson's measurement data (1973).
- c. JTP's measurement data (1974) for each exchange office.

These data were studied with emphasis on:

- 1) Comparison of the estimated calling rate based on the area pattern with the rate given in the above data.
- 2) Comparison of the estimated calling rate based on the area pattern of a service area with the rate of another service area.
- 3) Comparison of the calling rate of a service area with the rate of the adjacent service area.

The estimates were made at the unit value of 0.005 Erlang. The originating calling rate estimate per subscriber for 1976 for each exchange office and the data used for the estimate appear in Table 3.2.(1).

3.3 Future Calling Rate

3.3.1 General Tendency

The calling rate continues to vary, depending upon the type of subscriber and the social situation. The calling rate tendency in the future can be estimated, based on the following two factors:

TABLE 3-2-(1)
ORIGINATING AVERAGE CALLING RATE IN JAKARTA (IN ERL)

7,0	YEAR	PERUMTEL FORECAST	FORECAST	MR. ATKINSON AS OF	J.T.P SURVEY	J.T.P FORECAST
NO	OFFICE	(1975)	(1976)	(1973)	(1974)	(1976)
1	KOTA.A		0.116	0.074	0.0695	0.085
	KOTA.B,C	0. 075	0.079			0.085
2	ANCOL	0.050				0.055
3	PLUIT		0.074			0.055
4	CENGKARENG	0.065				0.045
_5	TEGAL ALUR					0.035
6	GAMBIR. A	0.075	0.093	0.077	0.0683	0.085
1	GAMBIR. B		0.073			0.085
7	SEMANGGI	0.065	0.076	0.042	0.0263	0.050
8	SLIPI	0.065	0.075	0.046	0.0427	0.050
9	PALMERAH	0.065				0.045
10	KEDOYA					0.040
11	MERUYA					0.040
12	CEMPAKA PUTIH	0.065				0.055
13	RAWAMANGUN					0.045
14	PULOGADUNG	0.065				0.045
15	PENGGILINGAN					0.045
16	TANJUNG PRIOK,A		0.112	0.050	0.0614	0.065
	TANJUNG PRIOK.B	0.065				0.065
17	CILINCING					0.055
18	KEBAYORAN.A		0.073	0.047	0.0382	0.050
	KEBAYORAN.B	0.065				0.050
19	CIPETE	0.065	0.058			0.045
20	KALIBATA	0.065				0.045
21	PASAR MINGGU	0.065				0.040
22	JAGA KARSA.					0.035
23	JATINEGARA.A		0.071	0.050	0.0484	0.055
	JATINEGARA.B	0.065	0.075			0.055
24	CAWANG	0.065	0.079			0.050
25	PASAR REBO	0.065	0.079			0.045
26	KLENDER	0.065				0.040
27	TEBET		0.079			0.050
28	GANDARIA		0.072		0.0531	Q. 05Q
	AVERAGE CD		7,145.2		2,384.09	8,828.7
	AVERAGE CR.		93,000x095		40, 238	134,920
			= 0.0809		= 0.0593	= 0.0654

3.3.1.1 Calling Rate from Existing Subscriber

The average calling rate from the existing subscriber increases annually and this calling rate is considered to approach a certain fixed value in the future. The reason is that, though the traffic between the existing subscribers will remain almost unchanged, the traffic between the existing and new subscribers will increase gradually in accordance with the increase of new subscribers but this calling rate will saturate in due course.

3.3.1.2 Originating Calling Rate from New Subscriber

The average originating calling rate from the new subscriber at the initial stage is smaller than the average calling rate from the existing subscriber. This is because the residential telephones occupy a great percentage. The originating calling rate from new subscribers will also increase annually and reach a certain value in the future though this saturation value in the future will not be as great as in the case of the originating calling rate from the existing subscribers.

3.3.1.3 Calling Rate Estimate Formula

The calling rate estimate formula based on the conditions given in the preceding paragraphs 3.3.1.1 and 3.3.1.2 is shown below.

Annotations on abbreviations used in the formula follow:

(A)	No	The existing number of subscribers
(B)	To	The existing average originating calling rate per subscriber
(C)	Nx	Number of new subscribers to be installed at x-th year
(D)	$Tx \ \dots \dots \dots$	Average originating calling rate from new subscribers
		installed at x-th year
(E)	(Tx)i	Average originating calling rate from Nx subscribers at
		(X + i)-th year

The values of Nx, Tx and (Tx)i are expressed as follows:

(F)
$$Nx = No e^{\frac{R}{10}x} - No e^{\frac{R}{10}(x-1)} = No \left(e^{\frac{R}{10}x} - e^{\frac{R}{10}(x-1)} \right)$$

g... onstant

(G)
$$T_{x} - T_{0}$$
 (a e $-\frac{m}{10}x + b$)

a, b, m constant

$$a + b - 1$$

(H)
$$(T_X)_i = T_X (c - de^{-\frac{f}{10}i})$$
 To $(ae^{-\frac{m}{10}X} + b) (c - de^{-\frac{f}{10}i})$

$$c, d, f \cdots consant$$

$$c + d = 1$$

Year

- 0 No To
- 1 No (To) 1 N1 T1
- 2 No (To) 2 N1 (T1) 1 N2 (T2)
- 3 No(To)3 N1(T1)2 N2(T2)1 N3(T3)
- 4 No (To) 4 N1 (T1) 3 N2 (T2) 2 N3 (T3) 1
- 5 No(To)5 N1(T1)4 N2(T2)3 N3(T3)2
- i No (To) i N1 (T1) i 1 N2 (T2) i 2 N3 (T3) i 3

Year

1 No To
$$(c - de^{-\frac{f}{10}})$$
 N1 T1

2 No To
$$(c - de^{-10})$$
 NI T1 $(c - de^{-10})$

2 No To (c - de
$$\frac{-2f}{10}$$
) N1 T1 (c - de $\frac{-f}{10}$) N2 T2
3 No To (c - de $\frac{3f}{10}$) N1 T1 (c - de $\frac{-2f}{10}$) N2 T2 (c - de $\frac{-f}{10}$)

On condition

$$N_{1} = N_{0} e^{\frac{g}{10}} - N_{0} e^{\frac{10}{10}(1-1)} = N_{0} (e^{\frac{g}{10}} - 1)$$

$$N_{2} = N_{0} (e^{\frac{2g}{10}} - e^{\frac{g}{10}})$$

$$\vdots$$

$$N_{i} = N_{0} \left\{ e^{\frac{g}{10}} - e^{\frac{g(i-1)}{10}} \right\}$$

$$T1 = To (ae^{-\frac{m}{10}} + b)$$

$$T2 = To (ae^{-\frac{2m}{10}} + b)$$

$$Ti = To (ae^{-\frac{mi}{10}} + b)$$

The total originating traffic, Si, "i" years later:

$$\begin{split} &S_{i} = \text{No To} \left(c - \text{de}^{-\frac{f_{i}}{10}} \right) + \text{N1 T1} \left\{ c - \text{de}^{-\frac{f_{i}(i-1)}{10}} \right\} + \text{N2 T2} \left\{ c - \text{de}^{-\frac{f_{i}(i-2)}{10}} \right\} \\ &+ \text{N3 T3} \left\{ c - \text{de}^{-\frac{f_{i}(i-3)}{10}} \right\} \\ &+ \text{Ni Ti} \left\{ c - \text{de}^{-\frac{f_{i}(i-3)}{10}} \right\} + \text{Ni Ti} \left\{ c - \text{de}^{-\frac{f_{i}(i-1)}{10}} \right\} + \text{Ni Ti} \left\{ c - \text{de}^{-\frac{f_{i}(i-2)}{10}} \right\} \\ &+ \text{No To} \left(c - \text{de}^{-\frac{f_{i}(i-1)}{10}} \right) + \text{Ni To} \left(\text{de}^{-\frac{f_{i}(i-2)}{10}} \right) + \text{Ni To} \left(\text{de}^{-\frac{f_{i}(i-1)}{10}} \right) + \text{Ni To} \left(\text{de}$$

$$= NoToe^{\frac{10}{10}} \left\{ ace^{-\frac{m0}{10}} - ade^{-\frac{m0}{10}} e^{-\frac{1}{10}} + bc - bde^{-\frac{1}{10}} - ace^{-\frac{m}{10}} + ade^{-\frac{m}{10}} e^{-\frac{(1-1)}{10}} \right\} \\ - bc + bde^{-\frac{(1-1)}{10}} + NoToe^{\frac{10}{10}} \left\{ ace^{-\frac{m}{10}} - ade^{-\frac{m}{10}} + c^{-\frac{(1-1)}{10}} + bc \right. \\ - bdc^{-\frac{(1-1)}{10}} - ace^{-\frac{2m}{10}} - ade^{-\frac{2m}{10}} - \frac{(1-2)}{10} - bc + bde^{-\frac{(1-2)}{10}} \right\} \\ + NoToe^{\frac{10}{10}} \left\{ ace^{-\frac{2m}{10}} - ade^{-\frac{(1-2)}{10}} - \frac{(1-2)}{10} + bc - bde^{-\frac{(1-2)}{10}} - ace^{-\frac{3m}{10}} \right. \\ + NoToe^{\frac{2\pi}{10}} \left\{ ace^{-\frac{(1-2)m}{10}} - ade^{-\frac{(1-2)m}{10}} - \frac{(1-2)m}{10} + bc - bde^{-\frac{(N-2)}{10}} - \frac{3m}{10} \right\} \\ + NoToe^{\frac{2(1-2)}{10}} \left\{ ace^{-\frac{(1-2)m}{10}} - ade^{-\frac{(1-1)m}{10}} - \frac{(1-1)m}{10} + bc - bde^{-\frac{(N-2)}{10}} - \frac{(N-2)}{10} \right\} \\ + NoToe^{\frac{2(1-2)}{10}} \left\{ ace^{-\frac{(1-1)m}{10}} - ade^{-\frac{(1-1)m}{10}} - \frac{(1-1)m}{10} - bc + bde^{-\frac{(N-2)}{10}} - \frac{(N-2)}{10} \right\} \\ + NoToe^{\frac{2\pi}{10}} \left\{ ace^{-\frac{1m}{10}} + bb \right\} \\ - ace^{-\frac{1m}{10}} + ade^{-\frac{1m}{10}} - e^{-\frac{(N-2)}{10}} - bc + bde^{-\frac{(N-2)}{10}} \right\} \\ + NoToe^{\frac{2\pi}{10}} \left\{ ac(e^{-\frac{1m}{10}} - e^{-\frac{m}{10}}) + bd(e^{-\frac{(1-1)m}{10}} - e^{-\frac{(1-1)m}{10}}) \right\} \\ + NoToe^{\frac{2\pi}{10}} \left\{ ac(e^{-\frac{m0}{10}} - e^{-\frac{m0}{10}}) + bd(e^{-\frac{(1-1)m}{10}} - e^{-\frac{(1-1)m}{10}}) \right\} \\ + NoToe^{\frac{2\pi}{10}} \left\{ ac(e^{-\frac{m0}{10}} - e^{-\frac{m0}{10}}) + bd(e^{-\frac{(1-1)m}{10}} - e^{-\frac{(1-1)m}{10}}) \right\} \\ + NoToe^{\frac{2\pi}{10}} \left\{ ac(e^{-\frac{m0}{10}} - e^{-\frac{m0}{10}}) + bd(e^{-\frac{(1-1)m}{10}} - e^{-\frac{(1-1)m}{10}}) \right\} \\ + Ad(e^{-\frac{3m}{10}} - e^{-\frac{(1-1)m}{10}}) + bd(e^{-\frac{(1-2)m}{10}} - e^{-\frac{(1-2)m}{10}}) \right\} \\ + Ad(e^{-\frac{3m}{10}} - e^{-\frac{(1-2)m}{10}}) + bd(e^{-\frac{(1-2)m}{10}} - e^{-\frac{(1-2)m}{10}}) \right\} \\ + Ad(e^{-\frac{3m}{10}} - e^{-\frac{(1-1)m}{10}}) + bd(e^{-\frac{(1-2)m}{10}} - e^{-\frac{(1-2)m}{10}}) \right\} \\ + Ad(e^{-\frac{3m}{10}} - e^{-\frac{(1-1)m}{10}}) + bd(e^{-\frac{(1-2)m}{10}} - e^{-\frac{(1-2)m}{10}}) \right\} \\ + ad(e^{-\frac{10}{10}} - e^{-\frac{(1-1)m}{10}}) + bd(e^{-\frac{10}{10}} - e^{-\frac{(1-1)m}{10}}) - e^{-\frac{(1-2)m}{10}}) \\ + ad(e^{-\frac{10}{10}} - e^{-\frac{(1-1)m}{10}}) + bd(e^{-\frac{(1-1)m}{10}} - e^{-\frac{(1-1)m}{10}}$$

$$\begin{split} &+ \text{NoToe}^{\frac{-g\,i}{10}} \left(\text{ae}^{-\frac{i\,m}{10}} + \text{b} \right) \\ &= \text{NoToe}^{\frac{0}{10}} \left\{ \text{ac} \left(\text{e}^{-\frac{0}{10}} - \text{e}^{-\frac{m}{10}} + \text{bde}^{-\frac{f\,i}{10}} \left(\text{e}^{\frac{f}{10}} - 1 \right) + \text{ade}^{-\frac{f\,i}{10}} \cdot \text{e}^{\frac{f-m}{10}} - 1 \right) \right\} \\ &+ \text{NoToe}^{\frac{10}{10}} \left\{ \text{ace}^{-\frac{m}{10}} \left(\text{e}^{-\frac{m}{10}} - \text{e}^{-\frac{m}{10}} \right) + \text{bde}^{-\frac{f\,i}{10}} \cdot \text{e}^{\frac{f}{10}} \left(\text{e}^{\frac{f}{10}} - 1 \right) \right. \\ &+ \text{ade}^{-\frac{f\,i}{10}} \cdot \text{e}^{\frac{f-m}{10}} \cdot \left(\text{e}^{\frac{f-m}{10}} - 1 \right) \right\} \\ &+ \text{NoToe}^{\frac{2g}{10}} \left\{ \text{ace}^{-\frac{2m}{10}} \left(\text{e}^{-\frac{m}{10}} - \frac{\text{e}^{-\frac{m}{10}}}{10} \right) + \text{bde}^{-\frac{f\,i}{10}} \cdot \text{e}^{\frac{2f\,i}{10}} \left(\text{e}^{\frac{f}{10}} - 1 \right) \right. \\ &+ \text{ade}^{-\frac{f\,i}{10}} \cdot \text{e}^{\frac{2\left(f-m\right)}{10}} \cdot \left(\text{e}^{\frac{f-m}{10}} - 1 \right) \right\} \end{split}$$

$$+ \text{NoToe}^{\frac{g(i-2)}{10}} \left\{ ace^{-\frac{(i-2)m}{10}} e^{-\frac{n}{10} - \frac{m}{10}} + bde^{-\frac{fi}{10}} e^{\frac{f(i-2)}{10}} (e^{\frac{f}{10}} - 1) + bde^{-\frac{fi}{10}} e^{\frac{f(i-2)}{10}} (e^{\frac{f}{10}} - 1) + bde^{-\frac{fi}{10}} e^{\frac{f(i-1)}{10}} (e^{\frac{f}{10}} - 1) + bde^{-\frac{fi}{10}} (e^{\frac{f}{10}} - 1) + bde^{-\frac{fi$$

$$+N_0T_0e^{\frac{gi}{10}}(ae^{-\frac{im}{10}}+b)$$

$$= \text{NoToac}(e^{\frac{-0}{10}} - e^{-\frac{im}{10}}) \left\{ \frac{g - m}{1 + e^{\frac{2g}{10}} + e^{\frac{2(g - m)}{10}} + \dots + e^{\frac{(i - 2)(g - m)}{10}} + e^{\frac{(i - 1)(g - m)}{10}} + e^{\frac{(i - 1)(g - m)}{10}} + e^{\frac{-fi}{10}} + e^{\frac{f}{10}} - e^{\frac{2g}{10}} + \dots + e^{\frac{g(i - 2)}{10}} + e^{\frac{f(i - 1)}{10}} + e^{\frac{g(i - 1)}{10}} + e^{\frac{g(i - 1)}{10}} \right\}$$

$$+NoToe^{\frac{gi}{10}}$$
 (ae $\frac{-im}{10}$ +b)

=NoToac(1-e⁻ⁱⁿ/₁₀)
$$\frac{\frac{(g-m)i}{10}}{\frac{g-m}{10}-1}$$

+NoTobde
$$-\frac{f i}{10} (e^{\frac{f}{10}} - 1) e^{\frac{(g+f)i}{10}} - 1$$

$$+N_{0}T_{0}ade^{-\frac{\int i}{10}}(e^{\frac{f-m}{10}}-1)\frac{e^{\frac{(g+f-m)i}{10}}-1}{e^{\frac{g+f-m}{10}}-1}$$

$$+N_{0}T_{0}e^{\frac{gi}{10}}(ae^{-\frac{im}{10}}+b)$$
(1)

The total number of subscribers after "i" years is

Hence the average originating calling rate per subscriber ti after "i" years is

$$ti = \frac{Si}{\frac{gi}{Noe^{10}}}$$

The ratio between ti and To (average originating calling rate per subscriber) is as follows:

$$P = \frac{\frac{S i}{10} - \frac{Noe^{\frac{10}{10}}}{To}}{To} = \frac{S i}{NoTo \cdot e^{\frac{gi}{10}}}$$

$$-ac(1-e^{-\frac{im}{10}}) \cdot \frac{e^{\frac{g-m}{10}} - 1}{e^{\frac{g-m}{10}} - 1} \cdot e^{-\frac{gi}{10}}$$

$$+bde^{-\frac{fi}{10}}(e^{\frac{f}{10}} - 1) \cdot \frac{e^{\frac{g+f}{10}} - 1}{e^{\frac{g+f}{10}} - 1} \cdot e^{\frac{gi}{10}}$$

$$+ade^{-\frac{fi}{10}}(e^{\frac{f}{10}} - 1) \cdot e^{\frac{(g+f)i}{10} - 1} \cdot e^{-\frac{gi}{10}}$$

$$+ade^{-\frac{fi}{10}}(e^{\frac{f}{10}} - 1) \cdot e^{\frac{(g+f-m)i}{10} - 1} \cdot e^{-\frac{gi}{10}}$$

$$+(ae^{-\frac{mi}{10}} + b)$$
(2)

3.3.2 Factors to Exert Influence on Originating Calling Rate

As stated in Paragraph 3.3.1.3 the originating calling rate continues to increase annually but this increase will reach the peak in due time and then turn to the downgrade. There are cases, however, where the originating calling rate estimate cannot be made from such general tendency only. Such cases are divided in two. One is the case where the change in the traffic is slow and continuous. The other is the case where the change is sharp and temporary. Factors involved are described in Paragraphs 3.3.2.1 and 3.3.2.2.

It is difficult to consider such factors for all exchange offices. However, as stated in Paragraph 3.4.2, all necessary factors are considered for six exchange offices where the change in traffic volume is especially conspicuous.

3.3.2.1 Slow and Continuous Traffic Change

(1) Change of Area Pattern

Generally, traffic increases or decreases according to the change of area pattern.

(2) Introduction of PBX and Centrex

When big enterprises and business offices introduce PBX and centrex systems, traffic increases. The reason is that in the case of PBX and centrex the number of extensions per office line is large so that the originating calling rate per office line is higher than that of ordinary subscriber telephones. Therefore, in case where PBX or centrex introduction is scheduled, the contents and scale of subscriber facilities in addition to the number of subscribers must be considered when the traffic estimate is carried out.

(3) Introduction of New Service

Introduction of such new services as mentioned below sometimes exerts an influence on traffic estimate:

- a) Weather forecast, market price information, etc.
- b) Change from manual switching system to automatic switching system.

(4) Telephone Charge

Telephone charge consists of basic charge and call charge (automatic call charge and manual call charge). The charge raise usually halts the traffic increase or even causes the traffic decrease. However, this trend is temporary in many cases. The traffic returns to the level before the charge raise in due course though this depends upon the social and/or economic situation in general.

The telephone charge discount, i.e., the call charge reduction during small traffic hours (nighttime and holidays) causes the traffic increase during those hours. Therefore, by the good use of this charge discount system can the idle facilities be utilized to the best advantage during small traffic hours and the invested fund recovery effect be improved. (Refer to Fig. 3.3.2.1.(1) dotted line A.)

Attention is necessary, however, because the daytime traffic may be shifted to nighttime in order to take advantage of the discounted call charge, resulting in the nighttime traffic exceeding the daytime busy hour traffic. (Refer to Fig. 3.3.2.1.(1) dotted line B.)

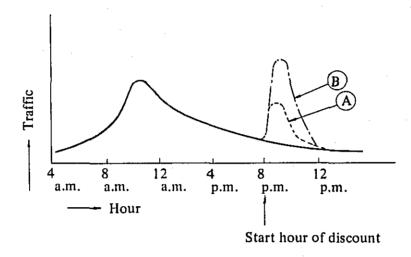


Fig. 3.3.2.1.(1)

(5) Change of Economic Situation

Telephones play a vital role in national economic activities. Therefore, when the economic activities are brisk the telephone traffic increases whereas the recession causes the telephone traffic to decrease. Especially during the times of recession the telephone charge economy may even be a major means of expenditure cutback.

3.3.2.2 Sharp and Temporary Traffic Charge

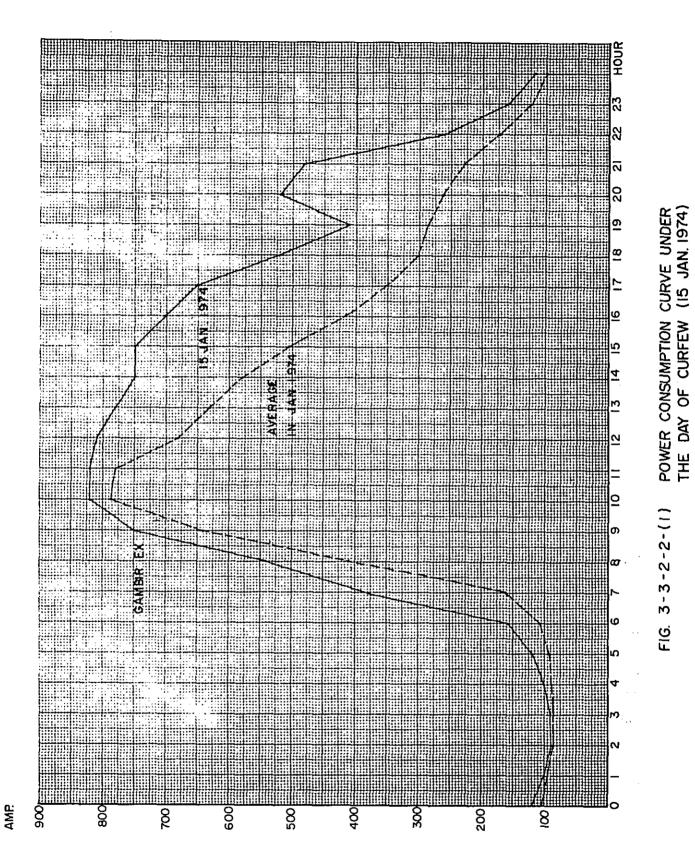
(1) Influence from Fire and Other Serious Accident

Fire and other serious accident may sometimes cause a sharp increase of telephone traffic. This kind of traffic is impossible to estimate because it takes place regardless of time and place. Traffic congestion will make special service telephones of fire and police stations unavailable. Inter-office junction lines will not operate as they ought due to traffic beyond their capacity and the resultant non-connection of telephones will generate confusion in part of the city. Such abnormal traffic occurrence may sometimes be limited to a specific area and sometimes cover the whole

city. Confusion and unrest due to non-connection of telephones may even lead to a kind of social panic. Fig. 3.3.2.2.(1) and 3.3.2.2.(2) are the current discharge records at the exchange office power rooms on the occasion of the state of emergency proclaimed for the whole city of Jakarta on January 15, 1974. These records show that the abnormal traffic occurred about the time the riot took place and as the normal situation was restored at midnight the traffic also returned to the normal level.

(2) Influence from Radio and TV

A sharp increase or decrease of telephone traffic sometimes occurs under the influence of radio and TV programs. For instance, when a quiz program is offered by radio or TV and answers are to be sent by telephone to the braodcasting station, the exchange office that accommodates telephone lines to that broadcasting station has to handle a deluge of answer calls.


On the other hand, during the time a popular radio or TV program is being broadcast the telephone traffic sometimes shows a sharp decrease. On October 30, 1974, the world heavyweight title match between Muhammad Ali and George Foreman was held in Zaire, Africa, and this fight was televised in Jakarta also (from 10.00 to 11.00 a.m., Jakarta time). JTP carried out the telephone traffic survey during this time zone at Kebayoran Exchange Office. Usually this time zone makes the busy hour and the calling rate per subscriber at Kebayoran Exchange Office is 0.040-0.043 Erlang. On that day, however, traffic began to decrease sometime before the start and finally fell to a minimum of 0.021 Erlang though it returned to normal shortly after the fight, as shown in Fig. 3.3.2.2.(3) and Table 3.3.2.2.(4).

3.4 Subscriber Originating Calling Rate Estimate by Exchange Office for 1979, 1983, 1988 and 1993

3.4.1 General Formula for Calling Rate Forecast

In the calling rate forecast in Jakarta the formula (2) of Paragraph 3.3.1.3 was used. The values of coefficients g, f, m, a, b, c and d of the formula (2) were determined in consideration of the situation in Jakarta described below. When these coefficient values are substituted in the formula (2), formula (4) is produced. This formula (4) was used as the general formula for calling rate forecast in Jakarta.

As the telephone demand uptrend in Jakarta can be shown by No e 10^{10} as in Fig. 3.4.1.(1), the assumption of g = 1 leads to the following expression:

- 798 -

POWER CONSUMPTION CURVE UNDER THE DAY OF CURFEW (15 JAN. 1974) 3-3-2-2-(2)

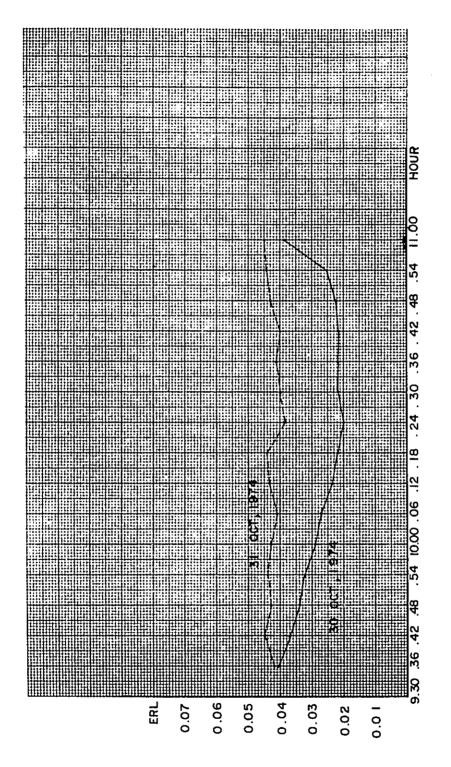


FIG.3-3-2-2-(3) KEBAYORAN OFFICE
AVERAGE ORIGINATING CALLING RATE
31. OCT. 1974

KEBAYORAN OFFICE BY BOXING TITLE MATCH ON 30TH OCTOBER, 1974. TRAFFIC FRACTUATION TABLE 3-3-2-2-(4)

0.0456

305

50

68

98

N

0.0421

282

47

90

74

BTOTAL

4

0.0436

292

20

74

_ თ

22

m

												_
A 6,696	0.0408	0.0375	0.0346	0.0324	0.0297	0.0273	0.0240	0.0230	0.0205	0.0217	0.0292	J
A TOTAL	273	251	232	212	661	183	191	154	137	1 45	1,952	ORIGINATING TRAFFIC
4	40	45	2£	32	44	34	37	88	27	29	3 5 3	SINATIR
3	52	54	42	52	47	43	37	4	37	37	465	1
2	16	82	58	92	63	9	51	50	46	5.4	658	R, 1974
_	29	70	89	57	45	46	36	35	22	25	476	30 OCTOBER, 1974
		2	٤	4	ίΩ	9	2	ھ	6	01		30 0

ĺ	ဟ		a	_	4	N	8
0.0442	0.0436	0.0411	0.0439	0.044	0.0394	0.0402	0.04278
0.0	0.0	Ö	0.0	0.0	0.0	0.0	0.0
9	2	ίż	4	5	4	6	4
296	292	275	294	295	264	269	2,864
53	49	54	50	59	42	47	501
72	74	89	73	75	63	99	704
96	83	92	94	84	85	80	877
0,	_ w;	,-			<u> </u>	, w	18
75	86	77	77	77	74	92	2
2	8	2	۷	2	2	2	782
4	5	6	7	8	ი	01	
		1	I	I	I		1 1

31 OCTOBER, 1974 ORIGINATING TRAFFIC

 $\frac{2864}{10} = 286.4$

286.4 = 0.0428 ERL 6,696

<u>| 95.2</u> 6,696 = 0.0292 ERL

1,952 = 195.2

$$P = (1 - e^{-\frac{m}{10}}) \cdot ac \cdot \frac{e^{\frac{(1 - m)i}{10}} - 1}{e^{\frac{1 - m}{10}} - 1} \cdot e^{-\frac{i}{10}}$$

$$+ bde^{-\frac{fi}{10}} (e^{\frac{f}{10}} - 1) \cdot \frac{e^{\frac{(1 + f)i}{10}} - 1}{e^{\frac{1 + f}{10}} - 1} \cdot e^{-\frac{i}{10}}$$

$$+ ade^{-\frac{fi}{10}} (e^{\frac{f - m}{10}} - 1) \cdot \frac{e^{\frac{(1 + f - m)i}{10}} - 1}{e^{\frac{1 + f - m}{10}} - 1} \cdot e^{-\frac{i}{10}}$$

$$+ (ae^{-\frac{mi}{10}} + b) \qquad (3)$$

From the measurement data in Tokyo shown in Figure 3.4.1.(2) the following expression is produced:

Variable 2
$$\begin{cases} 0.8 \text{ e}^{-\frac{2}{10}\frac{i}{1}} + 0.2 \\ -\frac{3}{10}i \\ 1.3 - 0.3 \text{ e}^{-\frac{3}{10}i} \end{cases}$$
Namely,
$$\begin{cases} f - 3 \\ m = 2 \\ b = 0.2 \end{cases}$$

$$\begin{cases} c = 1.3 \\ d = 0.3 \end{cases}$$

en groef production decreased the end opened with a color and end of activities to a social decision

In case of m = 1.

$$\frac{e^{\frac{(1-m)i}{10}}-1}{e^{\frac{1-m}{10}}-1} \qquad \text{in formula (3) becomes} \qquad \frac{0}{0}$$

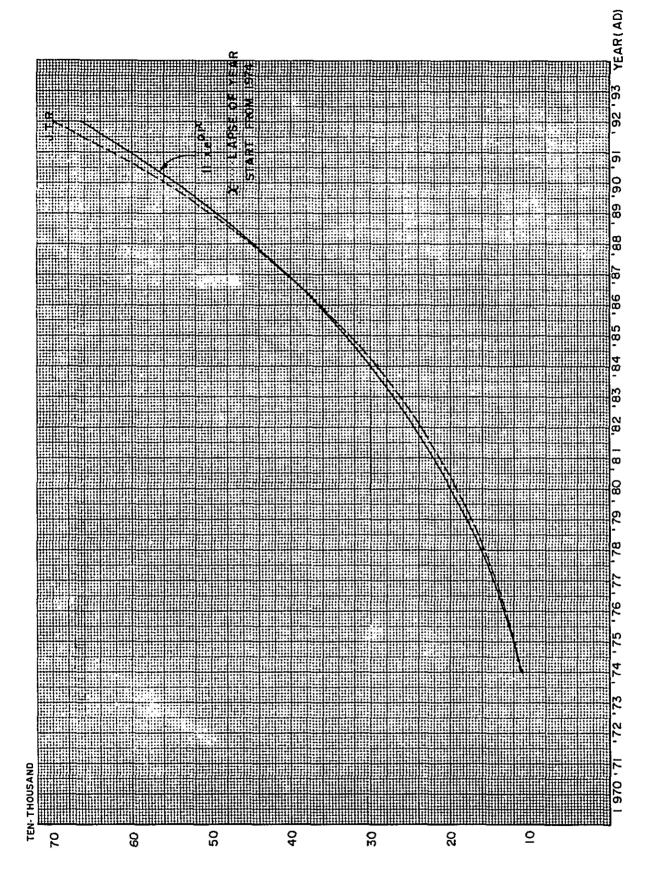
so that the calculation by $\frac{1-m}{10} = x$ produces:

$$\lim_{x \to 0} \frac{e^{x i} - 1}{e^{x} - 1} = \lim_{x \to 0} \frac{i e^{x i}}{e^{x}} = i$$

This further produces:

$$P = (1 - e^{-\frac{1}{10}}) \text{ ac } i e^{-\frac{i}{10}} + b d e^{-\frac{f}{10}i} (e^{\frac{f}{10}} - 1) e^{\frac{1+f}{10}} - e^{-\frac{i}{10}}$$

$$+ a d e^{-\frac{f}{10}} (e^{\frac{f-1}{10}} - 1) e^{\frac{f}{10}i} - 1 e^{-\frac{i}{10}} + (a e^{-\frac{i}{10}} + b)$$


When f = 2, a = 0.7, b = 0.3, c = 1.4 and d = 0.4 are substituted in the above formula, it follows:

$$P = (1 - e^{-\frac{1}{10}}) \times 0.7 \times 1.4 \text{ i } e^{-\frac{i}{10}} + 0.3 \times 0.4 \text{ e}^{-\frac{2}{10}i} \frac{2}{(e^{\frac{3}{10}} - 1)\frac{e^{\frac{3}{10}i} - 1}{e^{\frac{3}{10}} - 1}} \cdot e^{-\frac{i}{10}} + 0.7 \times 0.4 \text{ e}^{-\frac{2}{10}i} \frac{1}{(e^{\frac{1}{10}} - 1)\frac{e^{\frac{2}{10}i} - 1}{e^{\frac{2}{10}} - 1}} \cdot e^{-\frac{i}{10}} + 0.3)$$

Hence

$$P = (1 - 0.905) \times 0.98 i e^{-\frac{i}{10}} + 0.12 e^{-\frac{3}{10}i} (1.221 - 1) \frac{e^{\frac{3}{10}i} - 1}{1.35 - 1} + 0.28 e^{-\frac{3}{10}i} (1.105 - 1) \frac{e^{\frac{2}{10}i} - 1}{1.221 - 1} + 0.7 e^{-\frac{i}{10}} + 0.3 \dots (4)$$

Table 3.4.1.(4) shows the values of Pi in the year i = 0 through the year i = 20 in formula (4).

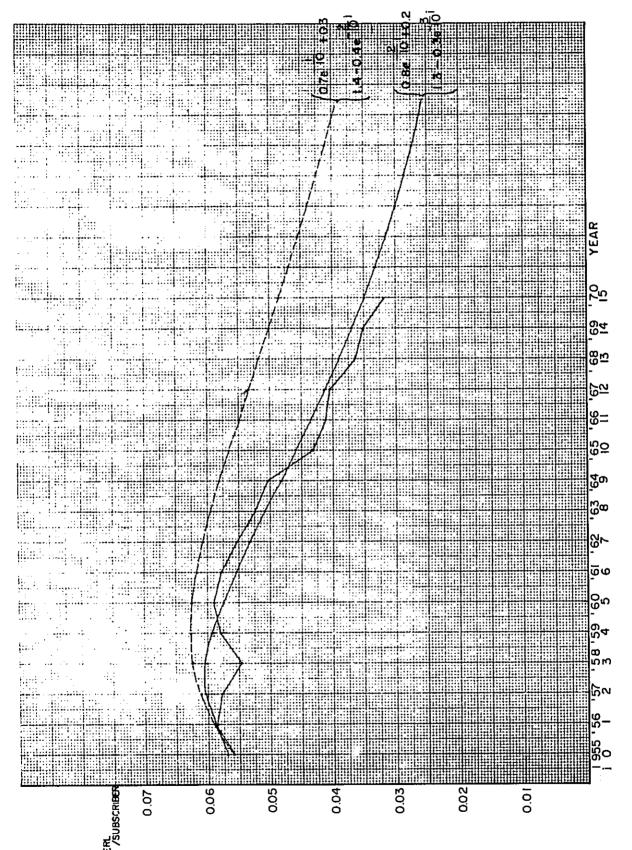


FIG.3-4-1-(2) TRANSITION OF ORIGINATING CALLING RATE PER

SUBSCRIBER IN EVERY YEAR IN TOKYO

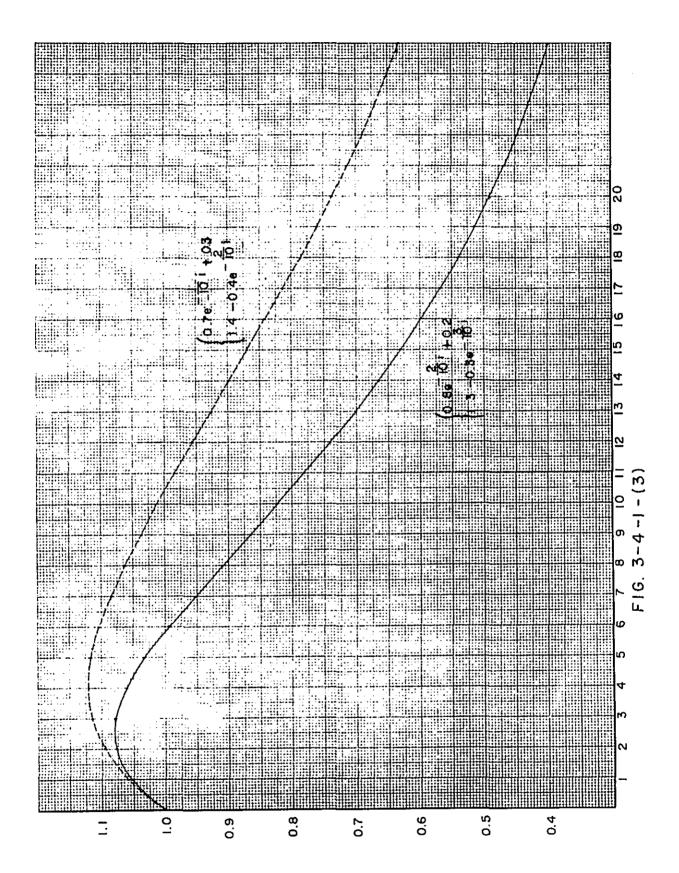


Table 3.4.1.(4) Value of Pi

i	1973	1974	1975	1976	1977	1978	1979
	0	1	2	3	4	5	6
Pi	*0.8968	0.9499	0.9828	1.0000	1.00497	1.0022	0.9913
	0.99997	1.05918	1.09587	1.115	1.12054	1.1174	1.10531
i	1980	1981	1982	1983	1984	1985	1986
	7	8	9	10	11	12	13
Pi	*0.9760	0.9554	0.9344	0.9099	0.8846	0.8584	0.8326
	1.08819	1.06527	1.0418	1.01451	0.9863	0.95708	0.9284
i	* 1987	1988	1989	1990	1991	1992	1993
	14	15	16	17	18	19	20
Pi	0.8067	0.7808	0.7561	0.7317	0.7073	0.6855	0.6629
	0.8995	0.87063	0.8431	0.8158	0.78863	0.7643	0.73908

* Upper: ratio to 1976

Under: value of Pi

Table 3.4.2.(1) Coefficient Table

Year	Coefficient
1976	1.0000
1979	0.9913
1983	0.9099
1988	0.7808
1993	0.6629

TABLE 3-4-2-(2)
AVERAGE ORIGINATING CALLING RATE IN JAKARTA

	YEAR	·. ····		ESTIMA	TION	
ΝО	OFFICE	1976	1979	1 983	1988	1993
ı	KOTA, A	0.085	0.084	0.077	0, 066	0.056
	KOTAB,C	0.085	0.084	0.077	0.066	0.056
2	ANCOI	0.055	0.055	0.050	0.043	0.036
3	PLUIT	0.055	∙ 0. 055	0.050	0.043	0.036
4	CENGKARENG	0.045	0.045	0.041	0.035	0.030
5	TEGAL - AINR	0.035	0.035	0.032	0. 027	0.023
6	GAMBIR. A	0.085	0.084	0.077	0.066	0.056
	GAMBIR.B	0.085	0.084	0.077	0. 066	0.056
7	SEMANGGI.A	0.050	0.050	0.045	0.039	0.033
	SEMANGGI. B	0.050	0.050	0.045	0.039	0.033
8	SLIPI	0.050	0.050	0.045	0.039	0.033
9	PALMERAH	0.045	0.045	0.041	0.035	0.030
10	KEDOYA	0.040	0.040	0.036	0.031	0.027
11	MERUYA	0.040	0.040	0.036	0.031	0.027
12	CEMPAKAPUTIH	0.055	0.055	0.050	0.043	0.036
13	RAWAMANGUN	0.045	0.045	0.041	0.035	0.030
14	PULOGADUNG	0.045	0.045	0. 041	0.035	0.030
15	PENGGILINGAN	0.045	0.045	0.041	0.035	0.030
16	TANJUNG PROK.A	0.065	0.064	0.059	0.051	0.043
1	TANJUNG PRIOK. B	0.065	0.064	0.059	0.051	0.043
17	CILINCING .	0.055	0.055_	0.050	0.042	0.036
18	KEBAYORAN. A	0.050	0. 050	0.045	0.039	0.033
ŀ	KEBAYORAN. B	0.050	0.050	0.045	0.039	0.033
19	CIPETE	0.045	0.045	0.041	0.035	0.030
20	KALIBATA	0.045	0.045	0.041	0.035	0.030
21	PASAR MINGGU	0. 040	0.040	0,036	0.031	0.027
22	JAGA KARSA.	0.035	0.035	0.032	0,027	0.023
23	JATINEGARA.A	0.055	0.055	0.050	0.043	0. 036
	JATINEGARA.B	0.055	0. 055	0.050	0.043	0.036
24	CAWANG	0.050	0.050	0.045	0.039	0.033
25	PASAR REBO	0.045	0.045	0.041	0.035	0.030
26	KLENBER	0.040	0.040	0.036	0.031	0.027
27	TEBET	0.050	0.050	0.045	0.039	0.033
28	GANDARIA	0.050	0.050	0.045	0.039	0.033
	AVERACE C	8. 828.7	11,602.1	15.245.18	21.606.75	31.708.4
	AVERAGE C.R.	134.920	180.590	265.480	450.450	808.000
		= 0.0654	= 0, 0642	= 0. 0574	= 0.0480	= 0.0392

3.4.2 Result of Calculation by General Formula

Using the magnification obtained from the value of pi as produced in Paragraph 3.4.1, the calling rate by year and by exchange office was calculated. The magnification for each year, based on the value for 1976, is as given in Table 3.4.2.(1). The value obtained by multiplying the 1976 calling rate of each exchange office by the above magnification appears in Table 3.4.2.(2). For the six exchange offices where the influence on traffic from the structural change of area pattern and the introduction of PBX is especially great the calculation was adjusted by another method.

3.4.3 Calling Rate in 1993 Estimated from Area Pattern

(1) Study of Area Pattern

For the six exchange offices shown in Table 3.4.3.(1) a great change is observed in the area pattern of 1993. For these six exchange offices the calling rate calculation was made by a special method taking the change of area pattern into consideration, without using the result of calculation by the general formula (Table 3.4.2.(2)).

(2) PBX Subscriber Ratio

The PBX subscriber ratio to total subscribers in the 0-1 area is set at approximately 50%. In the Tanjung Priok and Semanggi exchange office areas where very big business offices are not considered to exist the PBX subscriber ratio is set at 30% each.

(3) Calling Rate by Area Pattern

The calling rate in 1993 by each area pattern is determined as shown in Table 3.4.3.(2).

3.4.4 Adjustment of Result of Calculation by General Formula

(1) Calling Rate in 1993 by Area Pattern

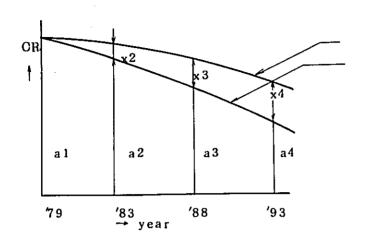
The originating calling rates at the six exchange offices in 1993 calculated by area patterns are shown in Table 3.4.4.(1).

(2) Adjustment for 1983 and 1988

Based on the calling rate estimate for 1979 calculated by the general formula as shown in Table 3.4.2.(2) and the calling rate estimate for 1993 by area pattern as shown in Table 3.4.4.(1) the adjusted calling rates for 1983 and 1988 were obtained by the following formula:

Table 3.4.3.(1) Comparison of Demand in Area Pattern

		Area	%	,
No.	Office	pattern	1976	1993
1	Gambir	0	31.0	68.6
2	Semanggi	0	12.0	36.5
3	Rawamangun	0 -	2.2	12.0
4	Penggilingan	S.I	49.7	75.8
5	Tg. Priok	0	6.5	29.0
6	Cawang	0	10.7	18.3


Table 3.4.3.(2) Calling Rate of Each Area Pattern

(in Erl)

Area pattern	Calling rate
O ₁ (PBX)	0.223
0 ₁ (except PBX)	0.06
I	0.06
S ₁	0.06
R	0.02
A	0.02
Others	0.05

Table 3.4.4.(1) Forecast of Calling Rate by Area Pattern in 1993

No.	No. Pattern		0 ₁ C.R. = 0.223		0 ₁ , I ₁ , S ₁ , C.R. = 0.06		R C.R. = 0.02		thers . = 0.05	TOTAL	
	Office	%	C.R.	%	C.R.	%	C.R.	%	C.R.	C.R.	
1	Gambir	19.7	0.044	23.1	0.014	23.3	0.005	33.9	0.017	0.080	
2	Semanggi	9.8	0.022	45.8	0.027	35.0	0.007	9.4	0.0047	0.060	
3	Rawamangun	5.9	0.013	8.0	0.005	69.6	0.014	16.5	800.0	0.040	
4	Penggilingan	<u>-</u>	-	49.0	0.029	24.2	0.005	36.8	0.018	0.052	
5	Tg. Priok	7.9	0.018	25.6	0.015	48.2	0.010	18.3	0.009	0.052	
6	Cawang	6.7	0.015	6.7	0.004	71.2	0.014	15.4	0.008	0.041	

Adjusted calling rate adjusted curve

Calculated calling rate by general formula

$$x^{3} = x^{4} \frac{a^{1} - a^{3}}{a^{1} - a^{4}} = \frac{x^{4}}{a^{1} - a^{4}} (a^{1} - a^{3})$$

$$x^{2} = x^{3} \frac{a^{1} - a^{2}}{a^{1} - a^{3}} = \frac{x^{4}(a^{1} - a^{3})}{a^{1} - a^{4}} \cdot \frac{a^{1} - a^{2}}{a^{1} - a^{3}} = \frac{x^{4}}{a^{1} - a^{4}} (a^{1} - a^{2})$$

 $a^3 + x^3 =$ Adjusted calling rate for 1988

 $a^2 + x^2 =$ Adjusted calling rate for 1983

(3) Result of Adjustment

The result of adjustment made by the method described in the foregoing is as follows:

Table 3.4.4.(2): The originating calling rates at the six exchange offices

calculated by the general formula.

Table 3.4.4.(3): The adjusted originating calling rates at the six exchange

offices.

Table 3.4.4.(4): The adjusted originating calling rates (final estimates) by

exchange offices and by years.

Fig. 3.4.4.(5): The mean value comparison curve for the originating calling

rate calculated by the general formula and the adjusted

originating calling rate.

Table 3.4.4.(2) Calculated Calling Rate by General Equation

Office	1st calculation								
	1976	1979	1983	1988	1993				
Gambir	0.085	0.084	0.077	0.066	0.056				
Semanggi	0.050	0.050	0.045	0.039	0.033				
Rawamangun	0.045	0.045	0.041	0.035	0.030				
Penggilingan	0.045	0.045	0.041	0.035	0.030				
Tanjung Priok	0.065	0.064	0.059	0.051	0.043				
Cawang	0.050	0.050	0.045	0.039	0.033				

Table 3.4.4.(3) Amended Originating Calling Rate by Area Pattern

Office	Amended value								
Office	1976	1979	1983	1988	1993				
Gambir	0.085	0.084	0.083	0.081	0.080				
Semanggi	0.050	0.050	0.053	0.056	0.060				
Rawamangun	0.045	0.045	0.044	0.042	0.040				
Penggilingan	0.045	0.045	0.047	0.050	0.052				
Tanjung Priok	0.065	0.064	0.061	0.056	0.052				
Cawang	0.050	0.050	0.048	0.044	0.041				

TABLE 3-4-4-(4) AMENDED FINAL CALCULATION ORIGINATING CALLING RATE IN JAKARTA

	YEAR			STIMATION	- 	
NO	OFFICE	1976	1979	1983	1988	1993
1.	KOTA.A	0.085	0.084	0.077	0.066	0.056
	KOTA. B,C	0.085	0.084	0.077	0,066	0.056
	ANCOL	0.055	0.055	0.050	0.043	0.036
3	PLUIT	0.055	0.055	0.050	0.043	0.036
4	CENGKARENG	0.045	0.045	0.041	0.035	0.030
5	TEGAL - ALUR	0.035	0.035	0.032	0.027	0.023
6	GAMBIR, A	0.085	0.084	0.083	0.081	0.080
	GAMBIR, B	0.085	0.084	0.083	180.0	0.080
7	SEMANGGI, A	0.050	0.050	0.053	0.056	0.060
	SEMANGGI. B	0.050	0.050	0.053	0.056	0.060
8	SLIPI	0.050	0.050	0.045	0.039	0.033
9	PALMERAH	0.045	0.045	0.041	0.035	0.030
10	KEDOYA	0.040	0.040	0. 036	0.031	0.027
11	MERUYA	0.040	0.040	0.036	0.031	0.027
12	CEMPAKAPUTIH	0.055	0.055	0.050	0.043	0.036
13	RAWAMANGUN	0.045	0.045	0.044	0.042	0.040
14	PULOGA DUNG	0.045	0.045	0.041	0 .03 5	0.030
15	PENGGILINGAN	0.045	0.045	0.047	0.050	0.052
16	TANJUNG PRIOK. A	0.065	0.064	0.061	0.056	0.052
	TANJUNG PRIOK. B	0.0 65	0.064	0.061	0.056	0.052
17	CILICING	0.055	0.055	0.050	0 .042	0.036
18	KEBAYORAN, A	0.050	0.050	0.045	0.039	0.033
	KEBAYORAN, B	0.050	0.05 0	0.045	0.039	0.033
19	CIPETE	0.045	0.045	0.041	0.035	0.030
20	KALIBATA	0.045	0.045	0.041	0.035	0.030
21	PASARMINGGU	0.040	0.040	0.036	0 .03 I	0.027
22	JAGAKARSA	0.035	0.035	0.032	0.027	0.023
23	JATINEGARA.A	0.055	0.055	0.050	0.043	0.036
	JATINEGARA.B	0.055	0.055	0.050	0.043	0.036
24	CAWANG	0.050	0.050	0.048	0.044	0.041
25	PASAR REBO	0.045	0.045	0.041	0.035	0.030
26	KLENDER	0.040	0.040	0.036	0.031	0.027
27	TEBET	0.050	0.050	0.045	0.039	0.033
28	GANDARIA	0.050	0.050	0.045	0.039	0.033
	AVERAGE CR.	8828.7	11,602.1	15,768.2	23494.4	<u>36,539, 1</u>
		134,920	180,590	265,480	450,450	808,000
Ĺ	<u> </u>	= 0.0654	= 0.0642	= 0.0594	≖ 0.0521	= 0.0452

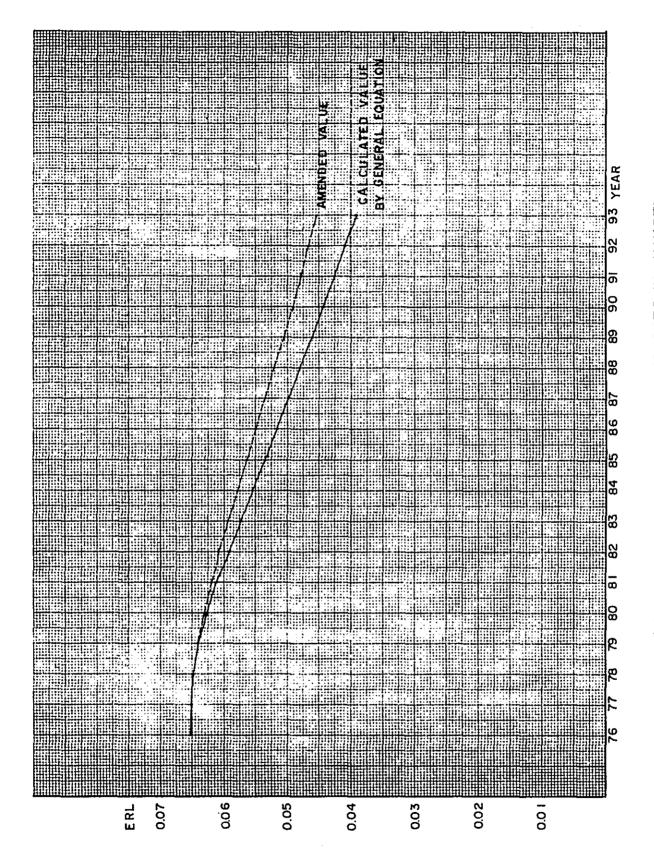


FIG. 3-4-4-(5) AVERAGE ORIGINATING CALLING RATE IN JAKARTA

3.5 Telephone Traffic Management

Traffic management is important for telephone business in establishing various plans. Telephone enterprise must carry out traffic management for the purpose of sound corporate management and provision of service.

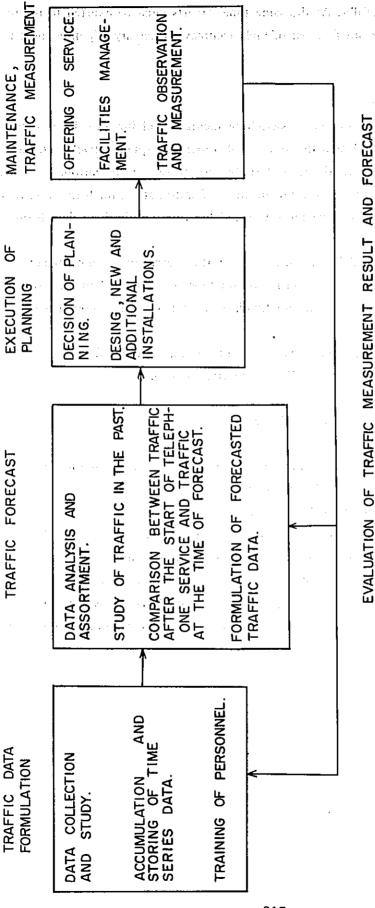
3.5.1 Traffic Management Work

The flow of work relevant to traffic management is shown in Fig. 3.5.1.(1).

3.5.2 Traffic Data Formulation

Traffic forecast at high accuracy is extremely difficult. To make reliable traffic forecast the utilization of time series data is necessary. For this purpose it is important to collect data produced at the same standard and keep them in store as time series data. Personnel in charge must be properly trained and educated and the responsible person must be designated. Measuring instruments and necessary papers must be kept in good order so that they can be used whenever necessity arises.

3.5.3 Telephone Traffic Forecast


As stated previously the telephone traffic varies with time, influenced by the social and economic conditions in General. To make reliable traffic forecast a constant study of past investigations and forecast results is essential. A comparative study of recent and past data is also important. When the change of traffic is considered to have occurred the cause of change must be thoroughly investigated so that the finding can be reflected in a new traffic forecast. Based on the traffic forecast thus produced the exchange office and junction line construction plans are made and the construction works are carried out.

3.5.4 Traffic Measurement

Even after the telephone service has started the traffic measurement must be continued and the data obtained must be kept in good custody as time series data. These data must be fully utilized to check whether the working switching facilities and junction lines are carrying traffic at the prescribed service grade or not. When the surplus or deficit condition of facilities against traffic has been detected the remedial action must be taken immediately so as to ensure the satisfactory telephone service.

3.5.5 Evaluation of Forecast

Traffic forecast is carried out to obtain basic data for a long term telephone service planning. The evaluation of data obtained is made generally in the form of comparison between the forecasted value and the real value. Since the forecast errors can be minimized by long-term investigations and accumulated technical experience, the result of traffic

TRAFFIC MANAGEMENT WORK

forecast must be studied carefully. At the same time, efforts must be exerted to improve traffic management and carry out forecast of high accuracy. Necessary expenses must not be spared either.

3.6 Introduction of Computer

With the increase in the number of switching facilities and junction lines installed the data collection, analysis and assortment work also increases quantitatively. To handle this large volume of work efficiently it is desirable to introduce the automatic traffic measuring equipment and computer for the purpose of automatic data formulation. By this means the work efficiency can be improved and the time required for data formulation can be reduced.

Measurement data produced by the automatic traffic measuring equipment are automatically processed into perforated information on the tape. The tape is then applied to the computer. The computer processed data are finalized as statistics. Main contents of such statistics are:

- a) Traffic volume by time handled by junction lines and switching facilities.
- b) Operating efficiency of junction lines and switching facilities.
- c) Call completion rate
- d) Traffic concentration rate to busy hour.
- e) Holding time of calls.

Computerization of traffic measurement work, which has the foregoing merits, nevertheless requires consideration in the following points:

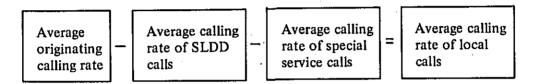
- a) A huge amount of fund must be invested.
- b) No small number of personnel in charge of traffic management will be idled.

Therefore, it is proposed that the traffic management by manual measurement be adopted and consolidated at the initial stage and the adoption of automatic traffic measuring equipment be considered at a later opportune occasion. It is further proposed that after the coming into full operation of the automatic traffic measuring equipment the introduction of computer be studied.

CHAPTER 4

TELEPHONE TRAFFIC FLOW FORECAST

A CONTRACT OF A STANDARD AND A STANDARD A STA


CHAPTER 4 TELEPHONE TRAFFIC FLOW FORECAST

4.1 Composition of Originating Call

Originating calls by year and by exchange office as forecasted in Chapter 3, Section 4, comprise the following three kinds of calls:

- a) Local call
- b) SLDD call
- c) Special service call

To obtain the calling rate of each of these three kinds of calls we firstly forecasted the average calling rate of SLDD calls and of special service calls and then calculated the average calling rate of local calls by subtracting the average calling rates of SLDD calls and special service calls from the average originating calling rate of each exchange office. That is to say,

4.1.1 Calling Rate of SLDD Calls

4.1.1.1 Basic Data

SLDD data as shown in Table 4.1.1.1.(1) and Table 4.1.1.1.(2) were obtained from PERUMTEL. From these data the traffic calculation was made, using coefficients mentioned in Paragraphs (1) and (2) below. The mean value of all calculated values was used as basic data. Table 4.1.1.1.(3) contains the basic data.

Year Item	1969	1970	1971	1972	1973	Note
No. of sub's	26,600	30,900	33,800	36,600	38,900	
No. of calls	602,756	953,574	1,278,992	1,624,716	1,979,621	
Calls/sub	22.66	30.86	37.84	44.39	50.89	
(sec) Holding time	200	203	210	219	223	
C.R. (Erl)	0.000503	0.000695	0.000881	0.001079	0.001259	*c/325x11%x HT/3600x1.18

Table 4.1.1.1.(2) No.2 Data of SLDD Call

ر
J
CALL
٠
SLDD
_
S
R
æ
DATA
⋖
_
2
_
_
=
(I)-I
ī
_
4 1
4
Щ
В
TABLE
\vdash

	Т									_		<u>"</u>		ő
NOTE		1. JUN 67 S	28.JUN*71 S	29. MAR' 72 S	11 . MAR' 73 S					•		PULSE x SEC/CALLS		.c/325x1የ⁄ኢየ/3600x 1.18
1 973	38,900	1,617,708	211,023	549,954	61,337 x · (12/9.6)=76,672 2,455,357	114,138,107 x3 =342,414,321	15, 652,274 x3 =46,956,822	68,820,697x2*137,641,394		7,745,919x2x' (12/9.6)	= 19,364,798 546,377,335	223	63.1	0.001561
1972	36,600	1,271,627	142,353	183,691 x (12/9)=244,922	1,658,902	90,346,276x3=271,038,828 114,138,107x3=342,414,321	10,209,932 x 3 x 30,629,796	22,569,153x2x(12/9)	= 60,184,408		361,853,032	219	45,3	0.001 101
1971	33,900	1,060,182	35,302 x (12/6) = 70,604		1,130,786	73,080,106×3 =219,240,318	2,980,532x3x(12/6)*	17,883,192			237,123,510	210	33,4	0.000778
0261	30,800	773,406			773,406	52,299,886x3=156,899,658 73,080,106x3=219,240,318					156, 899,658	203	25,1	0.000565
YEAR NO.OF SUB'S	ITEM	- A	٠	- SM (J0G)	, °	טאל ו	· - CBM	SM (JOG)	•	2 3 9 E	FUL:	HOLDING TIME (SEC)	CALLS / SUB	CR. (ERL)

NOTE.(): AMENDMENT COEFFICIENTTO YEARLY VALUE BECAUSE THIS OFFICE STARTS ON MIDWAY OF THE YEAR.

LAMENDMENT COEFFICIENT FROM EFFECTIVE TRAFFIC TO OFFERED TRAFFIC.(SEE PARA 4-1-1-1) CALLS/SUB THOLDING TIME C/325x11 % xHT/3600 x1.18

__AMENDMENT COEFFICIENT FROM YEARLY CALLS TO DAILY CALLS. (SEE PARA 4-1-1-)

Table 4.1.1.1.(3) Basic data for SLDD

(in Erl)

Table Year	1969	1970	1971	1972	1973
4.1.1.1.(1)	-	0.000565	0.000778	0.001101	0.001561
4.1.1.1.(2)	0.000503	0.000695	0.000881	0.001079	0.001259
Average	0.000503	0.00063	0.00083	0.00109	0.00141

(1) Adjustment Coefficient to Convert Annual Number of Calls into Daily Number of Calls

This adjustment coefficient was obtained, using Gambir and Kebayoran exchange offices as pilot cases. First the full day discharge volume for each day of the week minus basic discharge volume was calculated. Then the discharge volume for Saturday, Sunday and holiday, being smaller than that for any other weekday, was adjusted.

Gambir Exchange Office:

Day of Week	Full Day Discharge Volume AH)
Monday	9012.64
Tuesday	8791.56
Wednesday	8904.09
Thursday	8835.76
Friday	8782.49
Total	44326.54
Saturday	7653.16
Sunday	3929.79

Basic discharge volume

86.1 AH

Kebayoran Exchange Office:

Day of Week	Full Day Discharge Volume AH)
Monday	2822.16
Tuesday	2749.64
Wednesday	2830.16
Thursday	2877.61
Friday	2758.91
Total	14038.48
Saturday	2580.39
Sunday	2119.65

Basic discharge volume

44.2 AH

a) Gambir Exchange Office

Monday to Friday:

$$44326.5/5 - (86.1 \times 24) = 6798.9$$

Saturday:

$$7653.2 - (86.1 \times 24) = 5586.8$$

Sunday:

$$3929.8 - (86.1 \times 24) = 1863.4$$

Saturday versus ordinary day ratio:

$$\frac{5586.8}{6798.9} = 0.8$$

Sunday versus ordinary day ratio:

$$\frac{1863.4}{6798.9} = 0.3$$

$$1 \times 5 + 0.8 + 0.3 = 6.1$$

$$365 \times \frac{6.1}{7} = 318.1$$

When eight holidays per year are considered

$$318.1 - 8 \times (1 - 0.3) = 312.5 \dots 313$$
 days

b) Kebayoran Exchange Office

Monday to Friday:

$$14038.5/5 - (44.2 \times 24) = 1746.9$$

Saturday:

$$2580.4 - (44.2 \times 24) = 1519.6$$

Sunday:

$$2119.7 - (44.2 \times 24) = 1058.9$$

Saturday versus ordinary day ratio:

$$\frac{1519.6}{1746.9} = 0.9$$

Sunday versus ordinary day ratio:

$$\frac{1058.9}{1746.9} = 0.6$$

$$1 \times 5 + 0.9 + 0.6 = 6.5$$

$$365 \times \frac{6.5}{7} = 338.9$$

When eight holidays per year are considered

$$338.9 - 8 \times (1 - 0.6) = 335.7.....336$$
 days

Hence, 325 was used as a coefficient to obtain the daily number of calls from the annual number of calls.

(2) Coefficient to Convert Effective Traffic into offered Traffic (including failure calls)

This conversion coefficient was calculated from holding time measurement data. Shown below is the offered traffic versus effective traffic ratio on the assumption that the call with holding time of 31 sec. or more is the success call and the call with holding time of 30 sec. or less is the failure call.

	Average Holding Time	Number of Calls	Traffic
31 sec. or more	216.3 sec.	138	8.29 Erl.
30 sec or less	11.2 sec.	481	1.5 Erl.
Total		619	9.79 Erl.

$$\frac{9.79}{8.29} = 1.18$$

Hence 1.18 was used as a coefficient to convert effective traffic into offered traffic.

4.1.1.2 Forecast Method

(1) Long-term Forecast Method

The future SLDD traffic from the long-term angle can be expressed by the logistic curve. The forecast by the logistic curve proves to be successful in not a few cases in Japan and Europe so that the logistic curve is used in our forecast also.

Logistic curve:
$$y = \frac{K}{1 + me^{-ax}}$$

where

x : Year

y : Calling rate

k : 0.0063

The result of calculation using the 1970-73 SLDD basic data (Table 4.1.1.1.(3)) as input data is shown in Table 4.1.1.2.(1) and Figure 4.1.1.2.(3).

(2) Short-term Forecast Method

For the short-term SLDD traffic forecast it is more effective to use the regression curve than to use the logistic curve. Here, in the SLDD traffic forecast up to 1980, the regression curve is used.

Regression curve: $y = a x^b$ where

x: Year

Y : Calling rate

The result of calculation using the 1970-73 SLDD basic data (Table 4.1.1.1.(3)) as input data is shown in Table 4.1.1.2.(2) and Fig. 4.1.1.2.(3).

Hence, in the SLDD calling rate forecast, the short-term forecast method is used for the period up to 1980 and the long-term forecast method is used for the period from 1981. The result of forecast appears in Table 4.1.1.2.(4).

TABLE 4-1-1-2-(1)

INPUT

YEAR	1970	1971	1972	1973
X	0		2	3
Y	0,00063	0.00083	0.00109	0.00141

: K = 0.0063

M = 9.0836

A = 0.3178

OUT PUT

001 701						
YEAR	X	Y				
1970	0	0.00063				
'7 1	ı	0.00083				
'72	2	0.00109				
'73	3	0.00141				
'74	4	0.00178				
'75	5	0.00218				
'76	6	0.00261				
'77	7	0.00306				
'78	8	0.00351				
'79	9	0.00396				
'80	10	0.00437				
181	11	0.00474				
'82	12	0.00509				
'83	13	0.00538				
'84	14	0.00564				
'85	15	0.00584				
'86	16	0.00599				
'87	17	0.00610				
'88	18	0.00618				
'89	19	0.00622				
'90	20	0.00624				
191	21	0.00627				
'92	22	0. 00628				
'93	23	0.00629				
'94	24	0.00631				

GRAPHED OUTPUT DATA IS SHOWN ON FIG.4-1-1-2-(3)

TABLE 4-1-1-2-(2)Y=axb+C

IN PUT

YEAR	1970	1971	1972	1973
×	0	ţ	2	3
Y	0.00063	0.00083	0.00109	0.00141

a = 0.000125

b = 0.141405

C = 0.000503

OUT PUT

001 101					
YEAR	Х	Υ			
1970	0	0.000628			
۱۲۱	ı.	0.000837			
'72	2	0.001096			
'73	3	0.001393			
'74	4	0.001724			
'75	5	0.002083			
'76	6	0.002467			
'77	7	0.002875			
'78	8	0.003305			
'79	9	0.003754			
'80	10	0.004225			
'8 I	11	0.004712			
'82	12	0.005217			
'83	13	0.005737			
'84	14	0.006274			
'85	15	0.006825			
'86	16	0.007391			
'87	17	0.007971			
'88	18	0.008564			
'89	19	0.009171			

GRAPHED OUTPUT DATA IS SHOWN ON FIG. 4-1-1-2-(3)

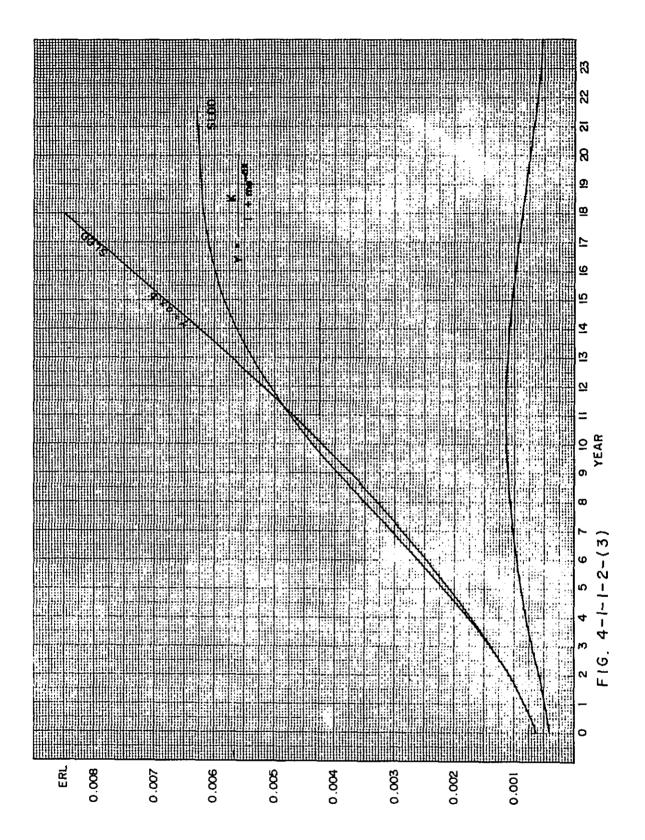


Table 4.1.1,2.(4) Forecast of SLDD Calling Rate

(in Erl)

Year	1979	1983	1988	1993
C R	0.00375	0.00538	0.00618	0.00629

4.1.2 Calling Rate of Special Service Calls

4.1.2.1 Basic Data

From special service call data obtained from PERUMTEL (Table 4.1.2.(1)) the basic data (Table 4.1.2.(2)) was prepared.

4.1.2.2 Forecast Method

The special service calling rate in Jakarta will continue a mild increase for the time being. However, with the expansion of SLDD service area the uptrend of special service traffic will halt and then the downtrend will begin. In our forecast it is presumed that the special service calls will reach the peak in 1979 through 1983 at the latest as the result of the SLDD service area expansion. The situation in Jakarta in that year will be similar to that in the government office and commercial districts of Tokyo in or around 1967. Therefore, it was decided that the special service calling rate of 0.0011 Erlang in those districts of Tokyo in 1967 would be applicable to Jakarta in 1979 through 1983. It is further presumed that the special service calling rate in Jakarta in and after 1984 will continue the downtrend to reach 0.0005 Erlang around 1995. This value is determined from the basic data and the calling rate trend in Tokyo. The result of forecast of the special service calling rate in Jakarta is given in Table 4.1.2.(3).

Table 4.1.2.(2) Basic Data of "10X" Calling Rate

Year	1970	1971	1972	1973
C.R.	0.000400	0.000491	0.000585	0.000699

Table 4.1.2.(3) Forecast of "10X" Calling Rate

(in Erl)

Year	1979	1983	1988	1993
C.R.	0.00111	0.00111	0.000865	0.000592

TABLE 4-1-2-(1

e Kork Gusta			213 46 (2132 (1 3	26 (1) (1) (2) (1) (2) (1) (2) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2			C2	3 k.x.		A SERVE SERVE Marchael Marchael Marchael	3600 × 1.	600 × 1.18	
		1973	643,020	38,900	16.53	3 ye 1	0.000409	252,052	6.48	404	0.000290	669000.0	/325 x 11 % x //	∠H× ×H2	
; .		1972	552,324	36,600	15.09	219	0.000367	178,685	4.88	404	0.000218	0.000585	ວົ *	Α.	
	IOX" CALL	1971	492,070	33,900	14.52	210	0.000339	115,409	3.40	404	0.000152	0.000491			
	4-1-2-(1) "10	0261	422,882	30,800	13.73	203 SEC	602000.0	63,515	2.06	404 SEC	0.000091	0.000400			
	TABLE 4-1	ITEM YEAR	CALLS/YEAR	SUB'S	CALLS / SUB	HOLDING TIME	C R.	CALLS / YEAR	CALLS/SUB	HOLDING TIME	С Я.	TOTAL	:		
		<u> </u>		INT	. L	O CAI		INT.	NATI	ONA	 L	1			

4.1.3 Calling Rate of Local Calls

The calling rate of local calls was obtained by the method specified in Section 4.1. That is to say, the SLDD calling rate and special service calling rate obtained as per the foregoing were subtracted from the average originating calling rate (Table 4.1.3.(1)). The forecast of local originating calling rate by year is given in Table 4.1.3.(2).

Table 4.1.3.(2) Local Calling Rate

(in Erl)

Year	1979	1983	1988	1993
C.R.	0.05934	0.05291	0.04506	0.038318

Table 4.1.4.(1) Formation of Calls

(in Erl)

	1979	1983	1988	1993
LOC	0.05934	0.05291	0.04506	0.038318
SLDD	0.00375	0.00538	0.00618	0.00629
"10X"	0.00111	0.0111	0.000865	0.000592
Total	0.0642	0.0594	0.0521	0.0452

Table 4.1.4.(2) Composition of Calling Rate

(in %)

	1979	1983	1988	1993
LOC	92.43	89.07	86.49	84.77
SLDD	5.84	9.06	11.85	13.92
"10X"	1.73	1.87	1.66	1.31
Total	100.00	100.00	100.00	100.00

4.1.4 Calling Rate Composite Ratio

The calling rate composition of each kind of call in each base year is given in Table 4.1.4.(1). From this calling rate composition the calling rate composite ratio was obtained. The composite ratio thus obtained is shown in Table 4.1.4.(2).

4.2 Traffic flow Measurement

For the inter-office traffic flow forecast it is desirable that the time series data on traffic flow of the existing exchange offices are available as basic data. This time, however, such time series data could not be obtained so that we had to measure the inter-office traffic flow

1,232.0 860.4 4. 469 543.2 375.2 1,232.0 974.4 158.4 205.2 39.0 640.0 ,200.0 880.0 776.0 760.0 776.0 1993 (J.T.P) E : EMD SYSTEM N : NEW SYSTEM 0.056 0.036 0.030 0.036 989 990.0 0.056 0.023 0.080 0.080 с<u>н.</u> 15,000 9,700 4,400 23,900 5,700 730 12,400 22,000 1,300 8,000 6,700 17,400 8,570 9,700 9,700 22,000 13,100 13,300 9,700 1,000 SUB'S ORIGINATING AVERAGE CALLING RATE AND TRAFFIC IN JAKARTA(INERL) 640.2 442.2 279.5 45.5 561.0 435.6 508.2 769.5 1,1 88.0 554.4 245.1 648.0 640.2 189.2 434.3 164.5 19.7 1,117.8 785.7 785.7 983 (J.T.P) 0.066 0.043 990.0 0.036 990.0 0.066 990.0 990.0 990.0 0.043 0.043 0.043 0.035 0.035 0.027 0.027 0.081 0.081 0.081 0.081 0.081 CR 8,400 10,100 9,700 6,700 7,700 1,2 47. 4 1 8,000 5,700 6,500 6,600 9,700 4,400 1,300 4,700 8,000 13, 800 9,700 9,500 8,500 730 3,070 9,700 SuB's 5005 138.6 220.0 285.0 24.6 805.1 354.2 115.0 115.5 53.3 51.3 664.0 654.5 200.2 500.5 155.0 23.4 398.4 788.5 805.1 TRAFFIC (J.T.P) 0.050 0.050 0.032 0.083 0.083 0.077 0.077 0.077 0.077 0.077 0.077 0.050 0.050 0.032 0.083 0.077 0.077 0 041 0.041 0.083 0.083 C. sue's 6,500 4,400 5,700 770 8,500 2,600 6,500 4,600 1,500 6,200 1, 800 2,300 730 9,700 9,500 3,100 300 1,250 8,000 9,700 4,800 TRAFFIC 714.0 814.8 814.8 562.8 242.0 313.5 58.5 25.6 814.8 814.8 672.0 (J.T.P) 1 ŧ 1 t .084 0.084 0.084 0.084 0.055 0.084 0.055 0.045 0.084 0.084 0.035 0.084 979 S. o 4,400 8,500 9,700 9,700 6,700 9,700 8,000 Su B'S 5,700 1,300 9,500 33 9,700 814.8 814.8 814.8 261.9 979 (PERUMTEL) 320. 1 814.8 8 14.8 426.8 814.8 TRAFFIC 34.0 814.8 0.084 0.084 0.084 0.084 0.084 0.084 0.045 0.035 0.055 0.084 0.055 0.084 C.F. SuB'S 9,700 9,700 9,700 9,700 7,760 970 9,700 9,700 TABLE 4-1-3-(1) 1/4 5,820 9,700 5,820 o ≻ o⊢ uz ш ш w| z ·ш ш ш z z z z z ш CENGKARENG I Ħ Ħ H Ħ Ξ Ħ ≳ = ALUR 1 2 OFFICE ⋖ GAMBIR GAMBIR ANCOL IS PLUIT KOTA TEGAL KO TA φ 2 6

* KEDOYA	# 2 MERUYA
	(IN ERL)
	JAKARTA
	RAFFIC IN
	AND T
	RATE
	CALLING
	AVERAGE
	4-1-3-(1) 2/4 ORIGINATING AVERAGE CALLING RATE AND TRAFFIC IN JAKARTA (IN ERL) *2 MERUYA
) 2/4
	E 4-1-3-(1)

	TABLE 4-1	4-1-3-(1) 2/4	1 2	4/	ORIG	ORIGINATING	AVERAGE		CALLING	RATE	AND	TRAFFIC	Z	JAKARTA (IN	IN ERL	* - NE *2 ME *3 PE	REDUTA MERUYA PENGGIL INGAN	AN NO.2
			w × w		1979 (P	979 (PERUMTEL)		1979 (J.T.P.)	I.T.P.}		1983 (,	983 (J.T.P)		1988 (4.T.P)	.T.P)		1993 ((J.T.P)
	OFFICE		⊢w≆	suB°s	C.B.	TRAFFIC	SUB'S	C.R.	TRAFFIC	s, ens	C.R.	TRAFFIC	s'aus	C.R.	TRAFFIC	sue's	CR.	TRAFFIC
92 2	GAMBIR B	Ħ	ш	7,760	0.084	651.8	ı	'	'	ı	ı	1	1	ı	_	_	1	_
27	•	≥	z	-	ı	-	,	-	1	6,300	0.083	522.9	15,000	0.08	1,215.0	15,000	0.080	1,200.0
28	•	>	z	1	1	-	ı	ı	ı	1	-	ı	1,800	0.081	145.B	15,000	0.080	1,200.0
29	•	5	z	<u> </u>	'	-	,		-	1	-	1	_	I	-	3,000	0.080	240.0
မ္က	SEMANGGI A		ш	9,700	0.050	485.0	9,700	0.050	485.0	9,700	0.053	514.1	9,700	0.056	543.2	9,700	090.0	582.0
<u>6</u>	*	Ħ	ш	9,700	0.050	485.0	5, 250	0.050	2 62.5	5,250	0.053	278.3	5,250	0.056	294.0	5,250	090 0	315.0
32	*	Ħ	ш	1,940	0.050	97.0	,	'	1	'	-	1	1	-	_	i	1	1
83	•	2	z	1	1	ı	1	1	ı	5,900	0.053	312.7	7,500	990.0	420.0	21,150	090'0	1,269.0
34	SEMANGGI B		z	1	ı	1	,	1	ı	1	١	ı	9,700	0.056	543.2	14,900	090.0	894.0
35	SLIPI		w	9,700	0.050	4 85.0	9,080	0.050	454.0	9,080	0.045	408.6	9,080	0.039	354.1	9,080	0.033	299.6
36	•	ㅂ	z		ı	1	1	ı	ı	3,920	0.045	176.4	12,220	0.039	476.6	26,020	0.033	858.7
37	•	E	z	ı	1	١	ı	ı	I	1	1	ı	1	1		1		1
38	PALMERAH		<u></u>	9,700	0.045	436.5	3,670	0.045	1 65.2	3,670	0.04	150.5	3,670	0.035	128.5	3,670	0.030	1 10, 1
39	•	1[z	ı	I	ı	1	ı	1	1,630	0.041	66.8	8,030	0.035	281. 1	22,330	0.030	669.9
6	KEDOYA	+	z	ı	1		,	0.040		1,080	0.036	38.9	3,200	0.031	99.2	10,100	0.027	272.7
4	MERUYA		z	-	-	1		0.040	1	1,600	0.036	57.6	4,300	0.031	133.3	1,800	0.027	318.6
45	СЕМРАКА РОТІНІ	_	ш	9,700	0.055	533.5	9,700	0.055	533.5	9,700	0.050	485.0	9,700	0.043	417.1	9,700	0.036	349.2
43		F	<u></u>	4,850	0.055	266.8	1,000	0.055	55.0	000'1	0.050	50.0	1,000	0.043	43.0	1,000	0.036	36.0
4 4	•	目	2	1	-	1	-	1	ı	4,500	0.080	.225.0	13,000	0.043	559.0	29,500	0.036	1,062.0
45	•	ì	z	1	1	ı	1	1	-	1	1	-	ı	ı	1	ı	-	1
46	RAWAMANGUN	-	ш	3,880	0.045	174.6	4,520	0.045	203.4	4,520	0.044	198.9	4,520	0.042	189.8	4,520	0.040	180.8
47	•	=	z	ı	١	ı			-	1,980	0.044	97.1	7,480	0.042	314.2	17,380	0.040	695.2
48	PULOGADUNG	-	ш	3,880	0.045	174.6	470	0.045	21.2	470	0.041	19.3	470	0.035	16.5	470	0.030	14.1
45		Ħ	z	ı	ı	1	'	1	1	530	0.041	21.7	2,130	0.035	74.6	6,430	0.030	192.9
5 0	PENGGIL INGAN		z	ı	1	1	1	0.045	1	1,150	0.047	54.1	3,100	0.050	155.0	8,300	0.052	431.6

Table 4-1-3-(1) 3/4 ORIGINATING AVERAGE CALLING BATE AND TRAFFIC N JAKARTA (IN ERL.) NO. AVERAGE N JAKARTA N JAKAR	ſ	_	Ú	Ψ	4	Ó	힏	31.3	o.	-	انه	딕	80	72.0	0	lù.	ñ	N	9	12.7	æ	او	77	φ	T	4	94,3	ы
TABLE 4-1-3-(1) 3/4		J. T.P	TRAFF	431	1,258	- 4	364	<u>~</u>		320	211	326	514					4	264		120	126	211		_		96	914.3
Note = 4-15-11 744 Originating average Calling Fair 1983 (J.T.P) Tarker 1983 (J.T.P) Tarker 1993 (J.T.P) Tarker Tarker 1993 (J.T.P) Tarker Tarker			CR.	0.052	0.052	0.052	0.052	0.036	0.036	0.033	0.033	0.033	0.033	0.030	0.030	0.030	0.030	0.027	0.027	0.023	0.023	0.036	0.036	0.036	ı	0.036	0.041	0.041
CF CF F F F F F F F			s.Bns	8,300	24,200	22,000	7,000	870	10,830	9,700	6,400	9,900	15,600	2,400	13,300	4,550	24,650	1,600	9 800	550	5,250	3,500	14,200	6,100	1	13,900	2,300	22,300
1992 1993 1979 PERNATE 1979 1,1,P		J.T.P.)	TRAFFIC	464.8	431.2	756.0	'	36.5	156.7	378.3	249.6	159.9	362.7	84.0	196.0	159.3		49.6	124.0	14.9	51.3	150.5	283.8	262.3	-	3.09.6	101.2	338.8
The Prince of Figure The Prince of Figure		1988 (0.056	0.056	0.056	1	0.042	0.042	0.039	0.039	0.039	0.039	0.035	0.035	0.035	0.035	0.031	0.031	0.027	0.027	0.043	0.043	0.043	ı	0.043	0.044	0.044
1979 1979 1979 1979 1979 1979 1979 1979 1971 1983 1979 1970 1979 1970			s, ens	8,300	7,700	13,500	-	970	3,730	9,700	6,400	4,100	9,300	2,400	5,600	4,550	10, 150	1,600	4 000	550	006'1	3,500	6,600	6,100	-	7,200	2,300	7,700
OFFICE		J.T.P)	TRAFFIC	481.9	-	96		43.5	46.5	346.5	225.0	121.5	234.0	98.4	69.7	186.6	121.0	57.6	41.4	17.6	16.0	175.0	120.0	305.0	-	135.0	110.4	91.2
S		1983 (,	CR.	0.061	,	0.061	١	0.050	0.050	0.045	0.045	0.045	0.045	0.041	0.041	0.041	0.041	0.036	0.036	0.032	0.032	0.050	0.050	0.050	.	0.050	0.048	0.048
S			s,ans	006'2	ı	6,500	1	870	930	7,700	5,000	2,700	5,200	2,400	1,700	4,550	2,950	1,600	1,150	550	200	3,500	2,400	6,100	-	2,700	2,300	006,1
OFFICE		J.T.P.)	TRAFFIC	531.2	1	-	l	~	ı		320.0	ı	ı	108.0	1	204.8	'	64.0	ı	• 1	ı		1			1	115.0	_
S		,) 6761	C.R.	0.064	1	1	1	0.055	_	0.050	0.050	1	1	0.045	_	0.045	_	0.040	1	0.035	ı	0.055	1	0.055	ı	ı	0.050	-
OFFICE S S S S S S S S S			s,ens	8,300	1	-	ı	870	i	9,700	6,400	-	ı	2,400	1	4,550	1	1,600	t	550	-	3,500	'	6, 100	ı	ı	2,300	
OFFICE S SUB'S CR CR CR CR CR CR CR C		ERUMTEL)	TRAFFIC		1	ı	'	53.4	-	485.0	485.0	•	1	305.6	1	2 18.3	1	232.8	1	34.0	ı	W	1		320.1	1	339.5	-
CEPTICE STATE ST		979 (P	S. B.	0.064	-	ı	ı	0.055	١		0.050	'	1	0.045	-	0.045	_'		ŀ		1		1		0.055	1	0.050	1
TG.PRIOK A I TG.PRIOK B I TG.PRIOK B I TG.PRIOK B I TI TG.PRIOK B I TI TI TI TI TI TI TI TI TI			SUB'S	5,820	•	ı	ı	970	- 1	9,700	9,700	ı	ı	6, 790	ı	4,850	1	5,820	1	970	1	3, 880	1	9,700		ı	6,790	
TG. PRIOK A TG. PRIOK B TO. II TO. II		or ≻ or	ı⊢w∑	ш	z	z	z	ш	z	ш	Ψ	z	z	_w	z	ш	z	ш	z	ш	z	ш	z	ш	ш	z	ш	z
▕▝▀▀▀▀▀▞▀▜▀▜▀▜▀▜▀▜▀▜▀▜▀▜▀▜▀▜▀▜▀▜▀▜▀▜▀▜▀▜				i i	11	li	11	н	Ħ	⋖:	ä	Ħ	æ	-	H	1	Ħ		Ħ		H	⋖	Ħ		E	111	•	Ħ
▕▐▀▀▀▀▀▀▗ ▞▀▀▐▀▀▐▀▀▐▀▀▐▀▀▐▀▀▐▀▀▊▀▀▊▀▀▊▀▀▊▀░▊▀▐▀░▐▀░▐▀░▐▀░▊▀▊▀▟▀▃▊▀▃▊▀░▊▃▊▀▐▀▃▊▃▊▃		1	OFFICE	TG. PRIOK		TG. PRIOK		CILINCING		KEBAYORA	•		KEBAYORA	CIPETE	•	KALIBATA		PASAR MINC		JAGAKARS	$\cdot $	JATINEGAR		JATINEGAR	•	•	CAWANG	-
	•			ŭ	52	\vdash	54	55	56	57	8	23	9	5	62	63	49	8	99	29	89	69	۶	-	72	73	74	75

27.3 6.8 529.2 163.4 750.8 TRAFFIC ORIGINATING AVERAGE CALLING RATE AND TRAFFIC IN JAKARTA (IN ERL) 0.0642 11,602 1 265,480 0.059415,768.2 450,450 0.0521 23,494.4 808,000 SUB'S 4,950 910 22,750 TRAFFIC 3.9 164.3 93.1 28.9 136.2 380.3 0.039 0.035 0.035 0.039 0.039 0.039 0.031 S. 0.031 4,950 9,750 016 3,890 5,300 902 SUB S 36.5 TRAFFIC 222.B 32.4 39.6 37.3 132.8 33.3 25.2 0.045 0.036 0.045 0.045 0.036 0.041 0.041 S, 016 7 90 1,100 4,950 2 950 740 SUB'S 8 4.0 37.0 28.0 247.5 TRAFFIC (979 (J.T.P) 0.050 0.040 ن 261,900 0.061 16,001.4 80,590 SUB'S 200 4,950 740 TRAFFIC 1979 (PERUMTEL) 485.0 1 45.5 97.0 174.6 155.2 0.045 0.050 0.050 0.040 0.050 CR. TABLE 4 - 1 - 3 - (1) 4/4 9,700 S'BUS w o ≻ o ⊢ m ₹ Ξ PASAR REBO I GANDARIA OFFICE KLENDER TOTAL TEBET 78

by ourselves. The result of measurement is given in Table 4.2.(1) through Table 4.2.(4). By the study of the measurement data it was found that the traffic flow forecast formula introduced in the following section could be used. Hence this formula was used in the forecast of inter-office traffic flow in Jakarta.

Section of the property of the section of the section

4.3 Traffic Flow Forecast Formula

Local traffic flow between each two local offices in the multioffice area is determined by the inter-office distance and the local economic and social relationship. Shown below is the general formula for traffic flow forecast.

Assume that:

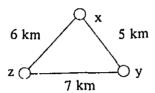
- o "Ti" signifies the local originating traffic from office i;
- o "Tj" signifies the local originating traffic from office j;
- o "Tij" signifies the traffic originating from office i and terminating at office j;
- o "lij" signifies the crow-flight distance (km) between office i and office j;
- o "a" signifies the constant for the city concerned;
- o "bij" signifies the coefficient determined by special relationship between office i and office j:
- o "e-alij" signifies the inter-office coefficient determined by the distance between office i and office j.

Then, Tij is obtained as follows:

$$Tij = Ti \times \frac{Tjbije^{-a\ell}ij}{T1bi1 \cdot e^{-a\ell}i1 + T2bi2 \cdot e^{-a\ell}i2 + \dots + Tibii + \dots + Tnbin \cdot e^{-a\ell}in}$$

$$= Ti \times \frac{Tjbij \cdot e^{-a\ell}ij}{\sum_{x=1}^{\infty} Txbix \cdot e^{-a\ell}ix}$$

However, since the inter-office special relationship in Jakarta could not be know exactly, the value of bij is set at 1 in the following forecast formula:


$$Tij = Ti \times \frac{Tj \cdot e^{-a\ell i j}}{T1 \cdot e^{-a\ell i 1} + T2 \cdot e^{-a\ell i 2} + \dots + Ti + \dots + Tn \cdot e^{-a\ell i n}}$$

$$= Ti \times \frac{Tj \cdot e^{-a\ell i j}}{\sum_{x=1}^{n} Tx \cdot e^{-a\ell i x}}$$

Here the value of a is set at 0.1. The reason is that the future municipal pattern of Jakarta is considered to be similar to that of a big city in Japan. Hence the decision of a, based on the mean value among big cities in Japan. The inter-office coefficient by distance in the case of a = 0.1 is shown in Table 4.3.(1) and Fig. 4.3.(2).

An example of calculation follows:

In the case illustrated below

where

originating traffic Tx = 400 Erl. Ty = 300 Erl. Tz = 200 Erl.furthermore a = 0.1bii = 1

the inter-office traffic flow calculated by the formula mentioned above is as shown in Fig. 4.3.(3).

4.4 Inter-office Traffic Flow Forecasts in 1979, 1983, 1988 and 1993

The inter-office traffic flow in each base year was calculated by computer.

4.4.1 Input Data to Computer

- 1) Number of subscribers and average originating calling rate of each exchange office. (Table 4.1.3.(1).)
- 2) Composite ratio of each calling rate. (Tabel 4.1.4.(2).)
- 3) Inter-office crow-flight distance (km). (Table 4.4.1.(1).)

The traffic flow forecast as of 1979 was made in two cases. One was based on the supply plan (completed in 1974) of PERUMTEL and the other on our own demand forecast.

The input data to computer was made according to the following conditions for each exchange office:

1) Traffic flow from new system and that from EMD system are classified as follows:

New system

New system

EMD system

EMD system

EMD system

EMD system

EMD system

2) Subscriber accommodation rate of each unit is:

New system

100%

EMD system

97%

3) Capacity limit of each unit is:

New system

1250 Erl. + 2%

EMD system

9700 LU., maximum

4.4.2 Output Data from Computer

Traffic flow data made by computer calculation are shown in Table 4.4.2.(1) through Table 4.4.2.(4).

TABLE 4-2-(1) JUNCTION TRAFFIC FLOW

The state of the state of the state of the state of

TERMINATING	ORIGINATING	NUMBER OF	TRAFFIC	195 285
OFFICE	OFFICE	JUNCTION	IN ERL	
	KOTA (INT)	-	364.5	
	TG. PRIOK	01	3.1	o of magnification
	TG.PRIOK(ORW)	142	44.6	and the property of the second
кота.	GAMBIR	480	263.4	_ 1 1
	KEBAYORAN	75	26.0	
	JATINEGARA	45	25.6	:
	TOTAL	752	727.2	
	КОТА	228	61.8	
TG. PRIOK	TG. PRIOK (INT)		26.1	
 	TOTAL	228	87.9	
	КОТА	227	152.3	
	TG. PRIOK	16	7.1	
	GAMBIR (INT)	_	491.0	
GAMBIR "4"	SEMANGGI	10	8.7	
	KEBAYORAN	99	72.9	
	JATINEGARA	51	45. 1	
<u></u>	TOTAL	4 0 3	777.1	
	KOTA	182	67. l	
	TG.PRIOK	5	o	
	GAMBIR (INT)		345.5	
GAMBIR "5"	SEMANGGI	01	6.7	
	KEBAYORAN	51	37.1	
ĺ	JATINEGARA	45	27.7	
	TOTAL	293	484.	

TABLE 4-2-(2) JUNCTION TRAFFIC FLOW

TERMINATING OFFICE OFFICE JUNCTION IN ERL. RAMBIR "35" KOTA 25 2.2 GAMBIR (INT) — 5.0 KEBAYORAN 12 1.4 JATINEGARA 6 0.9 TOTAL 43 9.5 KOTA 36 6.3 TG. PRIOK 8 1.5 GAMBIR (INT) — 12.0 SEMANGGI 10 0.9 SEMANGGI 10 0.9 JATINEGARA 6 2.6 TO TAL 80 26.8 TO TAL 80 26.8 KOTA 32 13.5 GAMBIR (INT) — 37.7 KEBAYORAN 1! 4.8 GAMBIR (INT) — 4.8 FOTAL 80 26.8 KOTA 32 13.5 GAMBIR (INT) — 4.8 GAMBIR (INT) — 37.7 KEBAYORAN 1! 4.8 GAMBIR 1 1 1 4.8 GAMBIR 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					100 marks of the state of the s
GAMBIR "35" KEBAYORAN 12 1.4 JATINEGARA 6 0.9 TOTAL 43 9.5 KOTA 36 6.3 TG. PRIOK 8 1.5 GAMBIR (INT) — 12.0 SEMANGGI 10 0.9 SLIPI 5 0.8 KEBAYORAN 15 2.7 JATINEGARA 6 2.6 TO TAL 80 26.8 TO TAL 80 26.8 KOTA 32 13.5 GAMBIR (INT) — 37.7 KEBAYORAN 21 8.6 GAMBIR (INT) — 37.7 KEBAYORAN 21 8.6 GAMBIR (INT) — 37.7 KEBAYORAN 21 8.6 GAMBIR (INT) — 4.8 TOTAL 64 64.6 SEMANGGI 90 49.8 GANDARIA 12 4.3 ISC 26 16.2 OUTSIDE JAKARTA 106 46.8 INCLUDING BANDUNG TOTAL 234 117.1 SLIPI 50 38.9 FA 130 54.0 GAMBIR ANK.GW BANDUNG (SLDD) 10 5.6	1				NOTE
GAMBIR "35" KEBAYORAN 12 1.4 JATINEGARA 6 0.9 TOTAL 43 9.5 KOTA 36 6.3 TG. PRIOK 8 1.5 GAMBIR (INT) — 12.0 SEMANGGI 10 0.9 SLIPI 5 0.8 KEBAYORAN 15 2.7 JATINEGARA 6 2.6 TOTAL 80 26.8 KOTA 32 13.5 GAMBIR (INT) — 37.7 KEBAYORAN 21 8.6 JATINEGARA 11 4.8 GAMBIR (INT) — 37.7 KEBAYORAN 21 8.6 GAMBIR (INT) — 4.8 GAMBIR 1 0 4.8 SEMANGGI 90 49.8 GAMBIR 1 SC 26 16.2 OUTSIDE JAKARTA 106 46.8 INCLUDING BANDUNG TOTAL 234 117.1 SLIPI 50 38.9 FA 130 54.0 GAMBIR BANDUNG (SLDD) 10 5.6		КОТА	25	2.2	: 1
JATINEGARA 6 0.9	:	GAMBIR (INT)		5.0	
TOTAL 43 9.5 KOTA 36 6.3 TG. PRIOK 8 1.5 GAMBIR (INT) — 12.0 SEMANGGI 10 0.9 SLIPI 5 0.8 KEBAYORAN 15 2.7 JATINEGARA 6 2.6 TO TAL 80 26.8 KOTA 32 13.5 GAMBIR (INT) — 37.7 KEBAYORAN 21 8.6 JATINEGARA 11 4.8 GAMBIR ANK.GW TOTAL 64 64.6 SEMANGGI 90 49.8 GANDARIA 12 4.3 ISC 26 16.2 OUTSIDE JAKAR 12 4.3 ISC 26 16.2 OUTSIDE JAKAR 106 46.8 INCLUDING BANDUNG TOTAL 234 117.1 SLIPI 50 38.9 FA 130 54.0 GAMBIR ANK.GW	GAMBIR "35"	KEBAYORAN	12	1.4	
TOTAL 43 9.5 KOTA 36 6.3 TG. PRIOK 8 1.5 GAMBIR (INT) — 12.0 SEMANGGI 10 0.9 SLIPI 5 0.8 KEBAYORAN 15 2.7 JATINEGARA 6 2.6 TOTAL 80 26.8 KOTA 32 13.5 GAMBIR (INT) — 37.7 KEBAYORAN 21 8.6 JATINEGARA 11 4.8 GAMBIR (INT) — 37.7 KEBAYORAN 21 8.6 JATINEGARA 11 4.8 SEMANGGI 90 49.8 GANDARIA 12 4.3 ISC 26 16.2 OUTSIDE JAKAR TA (SLDD) 106 46.8 INCLUDING BANDUNG TOTAL 234 117.1 SLIPI 50 38.9 FA 130 54.0 GAMBIR BANDUNG (SLDD) 10 5.6		JATINEGARA	. 6	0.9	
GAMBIR "IOX" GAMBIR (INT) SEMANGGI SLIPI SEMANGGI TO TAL GAMBIR (INT) SLDD GAMBIR (INT) SLDD GAMBIR (INT) TOTAL GAMBIR GAMBIR GAMBIR GAMBIR GAMBIR GAMBIR GAMBIR GAMBIR GAMBIR TOTAL GAMBIR GAMBIR GAMBIR ANK.GW GAMBIR TOTAL COUTSIDE JAKAR TA (SLDD) TOTAL COUTSIDE JAKAR TO TOTAL COUTSIDE J					·
GAMBIR "IOX" TG. PRIOK GAMBIR (INT) — 12.0 SEMANGGI IO 0.9 SLIPI 5 0.8 KEBAYORAN IS 2.7 JATINEGARA 6 2.6 TO TA L 80 26.8 KOTA 32 13.5 GAMBIR (INT) — 37.7 KEBAYORAN 21 8.6 JATINEGARA 11 4.8 SLDD TOTA L 64 64.6 SEMANGGI 90 49.8 GANDARIA 12 4.3 ISC 26 16.2 OUTSIDE JAKAR TA (SLDD) 106 46.8 INCLUDING BANDUNG TOTA L 234 117.1 SLIPI 50 38.9 FA 130 54.0 GAMBIR BANDUNG (SLDD) 10 5.6		TOTAL	43	9.5	:
GAMBIR "IOX" GAMBIR (INT) — 12.0 SEMANGGI 10 0.9 SLIPI 5 0.8 KEBAYORAN 15 2.7 JATINEGARA 6 2.6 TO TA L 80 26.8 KOTA 32 13.5 GAMBIR (INT) — 37.7 KEBAYORAN 21 8.6 JATINEGARA 11 4.8 SLDD TOTA L 64 64.6 SEMANGGI 90 49.8 GANDARIA 12 4.3 ISC 26 16.2 OUTSIDE JAKARTA 106 46.8 INCLUDING BANDUNG TOTAL 234 117.1 SLIPI 50 38.9 FA 130 54.0 GAMBIR BANDUNG (SLDD) 10 5.6		KOTA	36	6.3	V 111 (12)
SEMANGGI IO 0.9 SLIPI 5 0.8 KEBAYORAN IS 2.7 JATINEGARA 6 2.6 TOTAL 80 26.8 KOTA 32 I3.5 GAMBIR (INT) 37.7 KEBAYORAN 21 8.6 JATINEGARA 11 4.8 SLDD TOTAL 64 64.6 SEMANGGI 90 49.8 GANDARIA 12 4.3 ISC 26 16.2 ANK.GW GAMBIR (SLDD) TOTAL 234 IIT. I SLIPI 50 38.9 FA 130 54.0 GAMBIR BANDUNG (SLDD) 10 5.6		TG. PRIOK	. 8	1.5	
GAMBIR "IOX" SLIPI		GAMBIR (INT)	<u> </u>	12.0	
SLIPI 5 0.8 KEBAYORAN 15 2.7 JATINEGARA 6 2.6 TO TA L 80 26.8 KOTA 32 13.5 GAMBIR (INT) — 37.7 KEBAYORAN 21 8.6 JATINEGARA 11 4.8 SLDD TOTA L 64 64.6 SEMANGGI 90 49.8 GANDARIA 12 4.3 I SC 26 16.2 ANK.GW OUTSIDE JAKART TA (SLDD) TOTA L 234 117.1 SLIPI 50 38.9 FA 130 54.0 GAMBIR BANDUNG (SLDD) 10 5.6	B 11	SEMANGGI	ŀΟ	0.9	•
JATINEGARA 6 2.6 TO TA L 80 26.8 KOTA 32 13.5 GAMBIR (INT) 37.7 KEBAYORAN 2 8.6 JATINEGARA 1 4.8 SLDD TOTA L 64 64.6 GAMBIR SEMANGGI 90 49.8 GANDARIA 12 4.3 I S C 26 16.2 ANK.GW OUTSIDE JAKAR TA (SLDD) 106 46.8 INCLUDING BANDUNG TOTA L 234 117.1 SLIPI 50 38.9 FA 130 54.0 GAMBIR BANDUNG (SLDD) 10 5.6	GAMBIR "IOX"	SLIPI	5	0.8	·
TOTAL 80 26.8		KEBAYORAN	15	2.7	
GAMBIR "O" KOTA 32 13.5 37.7		JATINEGARA	6	2.6	
GAMBIR (INT) — 37.7 KEBAYORAN 2 I 8.6 JATINEGARA I I 4.8 SEMANGGI 90 49.8 GANDARIA 12 4.3 I S C 26 16.2 ANK.GW OUTSIDE JAKARTA 106 46.8 INCLUDING BANDUNG TOTAL 234 117.1 SLIP1 50 38.9 FA 130 54.0 GAMBIR BANDUNG (SLDD) 10 5.6		TOTAL	80	26.8	1 2 ·
GAMBIR "O" SLDD TOTAL 64 64.6 SEMANGGI 90 49.8 GANDARIA 12 4.3 ISC 26 16.2 ANK.GW OUTSIDE JAKAR TA (SLDD) 106 46.8 INCLUDING BANDUNG TOTAL 234 117.1 SLIP1 50 38.9 FA 130 54.0 GAMBIR BANDUNG (SLDD) 10 5.6 ANK.GW OUTSIDE JAKAR TA (SLDD) 10 5.6 GAMBIR BANDUNG (SLDD) 10 5.6 ANK.GW OUTSIDE JAKAR TA (SLDD) 10 5.6 GAMBIR BANDUNG (SLDD) 10 5.6 GAMBIR BANDUNG (SLDD) 10 5.6 ANK.GW OUTSIDE JAKAR TA (SLDD) 10 5.6 ANK.GW OUT		КОТА	32	13,5	
SLDD		GAMBIR (INT)		37.7	The Control of the second
SLDD TOTAL 64 64.6 SEMANGGI 90 49.8 GANDARIA 12 4.3 ISC 26 16.2 OUTSIDE JAKARTA 106 46.8 INCLUDING BANDUNG TOTAL 234 117.1 SLIP1 50 38.9 FA 130 54.0 GAMBIR ANK.GW BANDUNG (SLDD) 10 5.6		KEBAYORAN	21	8.6	,
TOTAL 64 64.6 SEMANGGI 90 49.8 GANDARIA 12 4.3 ISC 26 16.2 OUTSIDE JAKARTA 106 46.8 INCLUDING BANDUNG TOTAL 234 117.1 SLIPI 50 38.9 FA 130 54.0 GAMBIR ANK.GW BANDUNG (SLDD) 10 5.6	GAMBIR "O"	JATINEGARA	1.1	4.8	
SEMANGGI 90 49.8 GANDARIA 12 4.3 I S C 26 16.2 ANK.GW OUTSIDE JAKARTA 106 46.8 TOTAL 234 117.1 SLIP1 50 38.9 FA 130 54.0 GAMBIR BANDUNG (SLDD) 10 5.6 ANK.GW	SLDD	·			
GAMBIR SC 26 16.2		TOTAL	64	64.6	
GAMBIR ANK.GW OUTSIDE JAKAR- TA (SLDD) TOTAL SLIP1 FA 130 GAMBIR ANK.GW 1 SC 26 16.2 46.8 INCLUDING BANDUNG 1 17. 1 50 38.9 FA 130 54.0 GAMBIR ANK.GW	,	SEMANGGI	90	49 .8	, ¹
ANK.GW OUTSIDE JAKAR- TA (SLDD) 106 46.8 INCLUDING BANDUNG TOTAL 234 117.1 SLIP1 50 38.9 FA 130 54.0 GAMBIR BANDUNG (SLDD) 10 5.6 ANK.GW		GANDARIA	12	4.3	
TOTAL 234 117. 1 SLIP1 50 38.9 FA 130 54.0 GAMBIR ANK.GW BANDUNG (SLDD) 10 5.6		ısc	26	16.2	
SLIP1 50 38.9 FA 130 54.0 GAMBIR BANDUNG (SLDD) 10 5.6 ANK.GW	ANK . GW		106	46.8	
FA 130 54.0 GAMBIR BANDUNG (SLDD) 10 5.6 ANK.GW		TOTAL	234	117.1	
FA 130 54.0 GAMBIR BANDUNG (SLDD) 10 5.6 ANK.GW		SLIP1	50		
ANK .GW			1.30	54.0	the same of the control of the same of the
TOTAL 190 98.5		BANDUNG (SLDD)	0.1	5.6	·
		TOTAL	190	98.5	

TABLE 4-2-(3) JUNCTION TRAFFIC FLOW

TERMINATING OFFICE	ORIGINATING OFFICE	NUMBER OF JUNCTION	TRAFFIC IN ERL.	NOTE
	GAMBIR.	10	2.1	
GANDARIA	GANDARIA (INT)	_	0.7	
]				
	TOTAL	10	2.8	
	GAMBIR	106	32.4	
SEMANGGI	SEMANGGI(INT)	_	11.7	
	TOTAL	106	44.1	
	GAMBIR	48	31.4	
SLIPI	SLIPI (INT)	_	3.0	
	TO TAI	4.0	7.4.4	
	TOTAL	48	34.4	
	KOTA	36	22.1	
	GAMBIR	157	94.2	
KEBAYORAN	SEMANGGI	10	8.0	
	KEBAYORAN(INT)		95.9	
	JAT INEGA RA	28	16.5	
	TOTAL	23	236.7	
	KOTA	45	27.7	
	GAMBIR	102	69.7	
JATINEGARA				
	KEBAYORAN	30	14.4	
	JATINEGARA(INT)	_	40.2	
_	TOTAL	177	152.0	
G. TOTAL		2,859	2,892.9	

TABLE 4-2-(4) JUNCTION TRAFFIC FLOW AMONG OFFICES IN JAKARTA

			Ţ		,																		_		
. 1974		NOTE	INCLUDING	TANDEM TRAFFIC			INCLUDING TAN-	DEM TRAFFIC																	
FEB.		TOTAL	717.5	9	82.4	181	1414.5	903	16.2	92	52.4	9 =	54.0	130	5.0	12	85.8	174	42.7	22	259.0	303	163.4	192	2,892.9 2903
JAKAKIA	JATINE~	GARA	27.7	45	-	ı	69.7	102	1	ı	ľ	1	ı	1	-	1	1	1	t	I	14.4		40.2	١	152.0
IIN JAK	KEBAYO- JATINE~	RAN	22.1	36	-	1	94.2	157	l	ŀ	1	ı	ı	ı	ı	1	0.8	0		ı	95.9	t	16.5	28	236.7
AIMOING OFFICES IN		SLIPI	1	1	_	I	31.4	48	ı	1	1	1	ŀ	l	ı	1	ı	ı	3.0	ı	1	ı	-		34.4 48
ONG	SEMANG	5	ı	1	1	1	62.5	901	1	ı	1	ı	ı	ı	ı	1	11.7	ı		I	-	1	_	1	74.2 106
	GAN	DARIA	1	1	_	1	2.1	0	ı	1	1	1	1	1	0.7	ı	1	1	-	1	-	I	ı	ı	2.8 10
IC FLUW	IR	"xoı"	6.3	36	1.5	œ	12.0	1	ı	1	1	ı	ı	ı	ı	-	6.0	<u> </u>	8.0	သ	2.7	15	5.6	9	26.8 80
IKAFFIC	GAMBIR	SLDD	13.5	32	**	t	37.7	1	1	ł	1	ł	1	1	1	1	1	ŀ	ı	1	8.6	21	4.8	-	64.6 64
JUNC FOR	GAM-	BIR	221.6	434	1.7	7	841.5	ŀ	16.2	56	52.4	1 16	54.0	130	4.3	12	65 .2	154	38.9	50	111.4	162	73.7	102	(486.3 (207
	TG.	PRIOK	8.19	228	26.1	1	1	1	1		ı	-	1	ı	ļ	1		1	ı	1	ı	1	l	1	87.9 228
4 - 2-(4)	KOTA		364.5	I	47.7	152	263.4	480	1	•••	1	l	1	ı	1	ľ	1	1	1	'	26.0	75	25.6	45	727.2 752
IABLE 4-	۲ /	W	VO T.A	ξ-	TG. PRIOK		GAMBID	10 5	781) -	מני	ט ט	ΕĀ	·	CAN NOABIA	ייייייייייייייייייייייייייייייייייייייי	SEMANGGE			35171	KFRAYORAN		JATINEGARA		TOTAL
		FROM	Ş	2			9	5		GΑ	МΒ	IR			0	5	S.	1		36	¥		Ā		10

UPPER : TRAFFIC (IN ERL)
UNDER : NO. OF JUNCTIONS

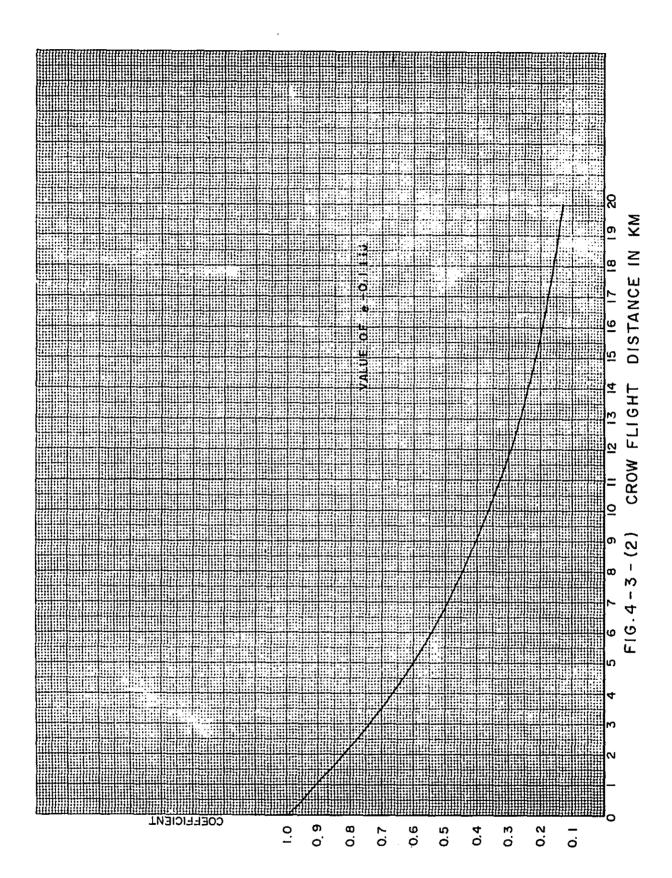


Table 4.3.(1) Value of Coefficient (a = 0.1)

km	e-alij e	km	e ^{-alij}	km	-alij e
0	1.0000	10	0.36788	20	0.13534
1	0.90484	11	0.33287		
2	0.81873	12	0.30119		
3	0.74082	13	0.27253		
4	0.67032	14	0.24660		
5	0.60653	15	0.22313		
6	0.54881	16	0.20190]	
7	0.49659	17	0.18268]	
8	0.44933	18	0.16530		
9	0.40657	19	0.14957		

Table 4.3.(3) Traffic Flow (in Erl)

To From	x	Y	Z	TOTAL
X Tx = 400	231.2	105.3	63.5	400
Y Ty = 300	113.3	140.0	46.7	300
Z Tz = 200	77.1	52.7	70.2	200
TOTAL	421.6	298.0	180.4	900

TABLE 4-4-1-(1) CLOW FLIGHT DISTANCE BETWEEN EVERY OFFICE IN JAKARTA (IN Km)

	110		-	- 2	_		-	7	8	9	10		12	13	14	15	16	17	18	19	20	21	22	27	24	25	26	27	20	20	70	31	72	33	34	75
<u> </u>	NO.	1	2	3	4	5	<u>6</u> ගු		 		4	В.			דו	13	-			19	20 4	8	(2	23	24 m	25	26		28 4	29 ◀	30 m	31	32		34	
NO.	OFFICE BUILDING	кота а	кота в	кота с	ANCOL	PLUIT	CENGKARENG	TEG. ALUR	GAMBIR A	GAMBIR E	SEMANGGI	SEMANGGI	SLIPI	PALMERAH	КЕВОУА	MERUYA	сем, РОТІН	RAWAMANGUN	PULOGAD	PENGGIL	TG. PRIOK	TG. PRIOK	CILINCING	KEBAYOR.	KEBAYOR. B	CIPETE	KELIBATA	PS.MINGGU	JAGAKARSA	JATINEG.	JATINEG.	CAWANG	PS.REBO	KLENDER	тевет	GANDARIA
	КОТА А		1.8	3.1	4.0	2.5	7.5	12.5	5.4	6,6	9.0	8.4	4.5	8.0	7.0	11.0	6.5	10.5	10.3	14.5	8.7	10.9	13.5	11.3	12.4	17.0	13.8	18.0	22.5	9,5	11.5	15.4	20.0	15.5	11.2	23.5
2	кота в			1.7	3.5	4.2	9.0	14.0	3.7	5.0	7.7	7.2	4.2	7.5	7.5	11.2	4.7	8.7	9.0	12.8	B.2	10.4	13.0	10.0	11.5	16.0	12.0	16,5	21.0	7.5	9.5	13.6	18.3	14.0	9.5	21.9
3	KOTA C				2.6	5.6	10.4	15.5	3.9	4.9	8.0	7.8	5,6	8.6	9.2	12.6	3.6	7.5	7.6	11.3	7.0	8.9	11.6	10.7	12.2	16.3	12.0	16,5	21.1	7.0	9.1	12.9	17.9	13.1	9.0	21.7
4	ANCOL					6.2	11.5	16.4	6.0	7.5	10.2	10.1	7.6	10.7	11.0	14.6	4.9	8.7	6.7	11.7	4.7	7.0	9,6	13.0	14.6	18.6	14.0	18,6	23, 2	8.6	10.4	15.0	19.5	13,5	11.0	23.5
5	PLUIT						5.0	10.1	7.3	8.5	10.7	10.0	5.4	8.8	6.5	10.8	9.0	13.0	12.6	17.0	10.5	12.9	15.5	12.5	13,1	18.0	15.3	19.7	23.7	11.7	14.0	17.4	22.0	18.1	13,2	25,5
6	CENGKARENG							5.2	1 1.0	11.8	13.0	12.1	7.6	9.7	5.5	9,0	13.5	17.3	17.6	21.6	15.5	17.8	20.8	13.8	13.3	18.7	17.7	21.4	24.8	15.5	17.6	20.2	24.7	22.3	16.3	27.5
7	TEGAL ALUR								16.0	16,6	17.7	16.5	12.5	13.9	9.5	11.6	18.5	22,5	22.0	26.8	20.5	22.8	25.7	17.8	16.6	22.0	22.2	25, 6	28.4	20.6	22.7	25. 0	29.0	27.5	21.2	31.8
8	GAMBIR A									1.2	4.0	3.9	3.7	5.4	7.6	10.0	3.4	6.6	8.6	11,1	10.0	11.9	11.1	6. 9	8.7	12.5	8.3	13.0	17.3	4.5	6.7	10.0	14.7	11.4	6.0	18.3
9	GAMBIR B										3.0	3.0	4.1	5.1	8.0	9.8	4.1	6.6	9.4	10.9	11.2	12.8	14.8	5.9	7.9	11.5	7.3	8.11	16.2	4.0	6.2	9.1	13.8	11.4	5.0	17.2
10	SEMANGGI A											1.3	5.5	4.2	8.3	8.9	6.4	7.7	11.2	11.9	13.8	15.5	17.1	3.1	5.4	8.5	4.7	9.0	13.3	4.6	6.0	7.4	11.7	11.0	3,8	14.9
11	SEMANGGI B												4.4	3.0	7.2	7.7	6.9	8.8	12.1	12.9	14.1	15.4	17.7	3.0	4.9	8.8	6.0	10.1	14.1	5.6	7.3	8.7	12.9	12.7	5.1	16.1
12	SLIPI													3.5	4.0	7.1	6.9	6.6	12.0	14.8	12.2	14.3	16.7	7.0	7.5	12.6	10.3	14.4	18.3	8.0	10.2	12.8	17. 2	11.4	8.7	20.3
13	PALMERAH														4.5	5.2	8.7	11.3	14.0	15.7	15.2	17.1	19.3	4.1	4.2	9.4	8.3	11.6	15.3	8.4	10.0	11.5	15.3	13.1	8.0	18.0
14	KEDOYA															4.2	10.7	14.3	16.0	18.8	15,5	18.0	20,4	8,5	7.9	13.2	12.7	16.0	19.4	11.8	1 3.8	15.7	19.8	8.81	12.0	225
15	MERUYA																13.5	16,2	19.0	20:7	19.2	21.4	23, 9	7.3	5.6	10.7	12.2	14,5	17.0	13.3	15.0	15.5	18.8	20.0	12.5	20.9
16	CEMPAKA PUTIH																	4.0	5.2	8.3	7.5	9.0	11.0	9.5	11.6	14.6	9.2	14.0	18.6	3.8	5.5	10.0	14.6	9.3	6.2	18.5
17	RAWAMANGUN																		4.5	4.5	9.1	9,6	10.5	10.7	13.2	14.7	8.5	12.7	17.4	3,3	3.0	7.7	12.0	5.3	5.4	16.1
18	PULOGADUNG																			5.5	5.3	5.5	6.1	14.4	16.1	20.0	12.8	17.2	31.8	7.3	7.5	12.2	16.2	8.2	9.7	20.5
19	PENGGILINGAN																				10.7	10.2	9.7	14.6	16.9	17.8	11.4	14.7	19.0	7.4	6.0	9.3	12.4	3.1	8.7	16.5
20	TG. PRIOK A																					2.3	5.1	16.8	19.2	22.3	16,7	21.2	26,0	11.0	12.0	16.7	21.2	13.4	13.5	25.3
21	TG. PRIOK B																						3.1	18.3	20.6	23.5	17.8	22.3	27.1	12.1	12.6	17.2	21.5	13.4	14.4	25.8
22	CILINCING																							20.2	22.5	25.0	19,0	23.2	27.8	13.3	13.5	18.0	21.8	13.0	15.6	26.0
23	KEBAYORAN A																																		5.8	
24	KEBAYORAN B																									5.4	6.8	9.0	11.7	9.8	11.0	10.4	13.4	16.0	8.3	15.3
25	CIPETE																										6.5	5,0	6.3	11.4	12.0	9.2	10.2	15.2	9.5	10.8
26	KALIBATA																											4.6	9.7	5.8	5.5	3.3	7.0	9,4	3.3	10.0
27	PASAR MINGGU								<u> </u>																				4.6	10.5	9.6	3.4	5.1	12.0	7.8	6.3
28	JAGAKARSA													-										1						15.2	14.3	10.0	7.8	16.2	12.5	6.0
29	JATINEGARA A							-																							2.2	6.2	10.9	7.0	2.6	14.9
30	JATINEGARA B																										<u> </u>		<u> </u>			4.5	9.0	5.0	2.6	13.2
31	CAWANG						<u> </u>																						-				4.7	6.7	4.2	8.7
32	PASAR REBO																			1	1													9.3	8.8	4.2
33	KLENDER												-																						7.5	16,5
34	TEBET										<u> </u>	 		 	-			 				1				<u> </u>			 		-				\	12.6
35	GANDARIA																												-		 		 			

TABLE 4-4-2(1) TRAFFIC FLOW BETWEEN EXCHANGES IN 1979

	TABLE 4	-4-2 (1)	TRAF	FIC FI	LOW	BETW	EEN	EXCHA	INGES	(N 18	379																						{ 13	N ERL)			
П	No		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	18	32	33	34	35	36	37	TOTAL
		∢	60	υ			RENG	ALUR.	∢	ra ra	4 B	8 5		3АН	4	et	4 7	INGIN	DUNG	MGAN	A A	χ m	S N	RAN	KEBAYORAN B	F	ITA :		IRSA	GARA	GARA	و	85 89	8		4		.	_
ΝО	OFFICE BUILDING	4 +	4 7	¥	0.0	=	GKA	3AL	# E	80	£A NG	AANG	14 1	PALME	00 Y.	MERUYA	CEMPAK! PUTIK	WAM	1 1 1 1 1		TG. PRIO	P.85	CILINCING	3AYO	ВАУС	CIPETE	KALIBATA	PASAR MINGGU	GAK.	JATINEG	JATINEGA B	CAWAN	SAR	EN EN	TEBE'	MOA	5	×	¥ L
	001207110	°×	Ď.	× 0	A A	7	Š	18.	8 8	Š	Š	\$	S,	₽A	KEDO	ME	CE	RAN	ਣੋ	ž.	75	ħ	5	KE	×	ชื	X d	Q N	4	4	5	3	a a	고	- =	8	N N		<u> </u>
1	KOTA A	71.179	182.557		16.171	24.340	2.755	0.730	86.374	83.099	30.296		28 859	7.398			30.627	3.096	0.753		22.186		1.237	25,924		1. 967	5.135	1.055	0.202	7.422	10.590	2.458	0.552	0.592	8.050	0.352	41,698	12.352	714.000
2	КОТА В	163.550	601.236		46.767	56489	6.522	1.728	281.636	268.262	94.913		B 1.804	21.394			100.867	23.369	2.357		64.160		3.576	81.213		5.979	16.911	3.371	0.648	24,927	35-582	8.094	1.602	1.894	26.250	1.136	12 8.035	37.928	2.192400
3	KOTA G																																					\longrightarrow	
4	ANCOL	17.830	51.557		9.016	6.283	0.690	0,185	30,399	28.382	10.041		7.910	2,110			13.431	3.175	0.403		12.369		0.683	8.173		0.626	1.881	0.371	0.070	3.035	4.4 18	0.956	0,217	0.270	3.069	0.131	14.133	4.137	242000
5	PLUIT	29.183	75 599		6.832	16.453	1.862	0.488	37,603	36.177	13.456		13.885	3595			12.557	2.909	0.315		9.756		0.533	12.104		0.937	2.327	0.468	0.094	3.136	4.342	1.059	0.238	0.240	3.470	0.152	18.308	5.424	313.500
6	CENGKARENG	4.820	12738		1.095	2.715	0.836	0.217	7.073	7. 082	2911		3.034	0895			2.181	0.515	0.052		1.611		0.085	2.895		0.238	0.498	0.108	0.023	0.584	0.825	0.218	0.050	0.043	0.693	0.034	3.416	1.012	58.500
7	TEGAL ALUR	2.064	5.456		0.474	1.152	0.351	0.258	3.029	3.094	1.285		1.313	0.415			0.933	0.216	0.024		0.690		0.037	1.370		0.121	0.224	0.050	0.011	0.248	0.350	0.095	0.023	0.018	0.300	0.016	1.492	0442	25550
8	GAMBIR A	72.814	265.012		23,242	26.439	3408	0.903	260.188	250.323	87.686		54.879	16842			73.302	18.397	1.566		34.198		2.759	70.661		5.414	15.624	3.053	0.597	21.480	30.044	7. 403	1.648	1567	23771	1,038	86.829	25722	1.486800
9	GAMBIR B	71.648	258.172		22.194	26.017	3.490	0.944	256020	313.126	107.512		68497	19254			75.626	20.411	1.604		33.650		2.114	86.636		6.639	9.157	3.818	0.740	25.053	35041	8.987	2.000	1.738	29.145	1,286	94.187	27.901	1.612800
10	SEMANGGI A	29.761	1 04 070		8.947	11.024	1.635	0,446	102.104	122.490	76.634		26.653	11.125			31.813	9.655	0.707		13.700		0.888	60.531		4.733	13,119	2.668	0.522	12.458	18.877	5.625	1.303	0.956	17.353	0.855	43.654	12.931	74 7.500
11	SEMANGGI B									<u> </u>																	<u> </u>												
12	SLIPI	28 162	29.108		7.001	11301	1.692	0.453	63.527	66.209	26677		26.084	7.199			18.259	6.503	0.394		9.701		0.557	24.728		1.895	4.522	0,938	0.191	5.350	7.484	1.978	0.454	0.554	6.414	0.301	26.514	7.854	4.54.000
13	PALMERAH	8.279	26.727	,	2.142	3.356	0.572	0, 164	22360	24.994	12.675		8.256	4.262			6.363	1.696	0.135		2.998		0.179	13.788		1.089	2.304	0.518	0.108	2.140	3.185	0.940	0.229	0. 160	2.870	0.158	9.645	2.857	165.150
14	KEDOYA																																						
15	MERUYA																											<u> </u>							L				
16	CEMPAKA PUTIH	29.705	109 200	,	11.815	10.157	1.209	0.320	84.334	85.247	31,412		18.147	5.514			46.899	10.865	1.002		19.997		1.270	24.811		1.999	6.503	1.258	0.238	10.491	15.426	3.371	0.758	0.880	10.611	0.463	34.368	10.181	588.500
17	RAWAMANGUN	8.577	31.530		3.480	2.93	0.356	0.092	26.379	28.614	11.861		8.055	1.831			13.542	6.982	0.463		7. 340		0.575	9,479		0.852	3.004	0.617	0.116	4.751	8.532	1.828	0.423	0.566	0.951	0.254	11.879	3.519	203.400
18	PULOGADUNG	1.090	3813	3	0.530	0.380	0.043	0.012	2.69	2.694	1.043		0.585	0.174			1.497	0.555	0090		1. 337		0.111	0.816		0.061	0.224	0.049	0.003	0.397	0.678	0.145	0.035	0.053	0.401	0.020	1, 235	0.366	21.150
19	PENGGILINGAN																																				<u> </u>		
20	TG. PRIOK A	33.528	108.229		16.953	12.29	1.39	2 0.369	61.306	58.982	21.078		15.023	4.049			31.156	9.177	1.095		59.540		3.221	16.817		1.302	4.320	0.861	0.160	7.182	11.326	2.426	0.551	0.822	7.192	0.330	3 1.022	9.190	531.199
21	TG.PRIOK B																																		L				
22	CILINCING	2.661	8.591		1.332	0.95	7 0.105	0.028	7.045	5.279	1.944		1.2 29	0.345			2.816	1. 023	0165		4.587		0.688	1. 535		0.127	0.440	0.090	0.017	0.732	1.251	0.273	0.067	0.110	.0.748	0.040	2.794	0.828	47.850
23	KEBAYORAN A	30.520	106.725		8.727	11.86	6 1.94	7 0.57	9868	118.300	72.549		29.833	14.503			30.117	9.232	0.663		13.101		0.840	106.520		8.002	16.598	3.682	0.623	12.153	18.975	6.702	1.698	0.980	18337	1. 207	47.012	13.926	805,000
24	KEBAYORAN B																																						
25	CIPETE	3.803	12.907	7	1.099	1.51	0.26	0.08	12.42	14.89	9.317		3.755	1.881			3.985	1.364	0.082		1.666		0.115	13.142		3.149	3.117	1.132	0.299	1.795	2.947	1.336	0,431	0.179	2.791	0.366	6.307	1,868	108.000
26	KALIBATA	6.867	25.244	,	2.281	2.59	5 0.38	0.106	24.78	29.713	67.860		6.196	2.753			8.966	3.324	0.225		3.823		0.274	18.853	5	2.155	7.827	1.545	0.279	4.120	7.400	3.161	0.777	0.418	6802	0.520	11.957	3.542	204.750
27	PASAR MINGGU	2.08	7.432	2	0.665	0.77	2 0.12	0.03	7.15	8.74	5364	İ	1.898	0914			2.56 (1,008	0.067		1.125		0.085	6.513		1.156	2.281	1. 130	0 214	1.189	2.267	1.445	0.434	0.149	2.002	0.348	3.738	1.107	6 4.000
28	JAGAKARSA	0.609	2.174	4	0.193	023	7 0.044	0.012	2.13	2.58	1.600		0.590	0.289			0.741	0.289	0.007		0.319		0.024	2.105		0.466	0.628	0.327	0.156	0.341	0.650	0.342	0152	0.045	0.574	0.164	1. 124	0.333	19.250
29	JATINEGARA A	7.723	28.963	3	2.864	2.72	0.34	7 0.09	26.51	30.235	13197		5.705	1.994			11.255	4.090	0.285		4.945		0.354	10.742		0.966	1.206	0626	0.118	5.384	7,530	1.730	0.365	0.389	5.337	0.233	11. 242	3.330	192.500
30	JATINEGARA B	12.698	47.623	3	4. 804	4 4.34	2 0.56	5 0.14	42.73	2 48.73	23.041		9.195	3412			19070	8 4 6 3	0561		8.986		0.697	1 9.325		1.927	6.635	1.376	0.259	8.677	18.844	4.119	0.935	0.954	10.719	1.365	1 9.593	5.804	335.500
31	CAWANG	3.83	8 14.110		1. 354	1.30	0 0.19	0.05	3 13.71	16.28	8.944		3.165	1.31 (5.429	2.362	0.157		2.508		0.198	8.89		1.079	3.691	1,142	0.178	2.597	5.365	2.894	0.642	0.359	4 078	0.389	6.716	1.989	115.000
32	PASAR REBO	1, 314	4.78		0.46	9 0.47	2 0.06	7 0.01	4 64	5.516	3.155		1.105	0.486			1. 658	0.833	0.057		0.867		0.074	3.431		0.529	1	1											40.950
33	KLENDER	1.08	3.870	5	0.44	9 036	7 0.04	5 0.01	3.40	5 3.69	1.782		1.039	0.261				1	0.067		0.996		0.093			0.169	· · · · · · · ·	1	1						0.837		1	0.484	
34	TEBET	9.08	33.069	9	3.14:	2 326	6 0.44	7 0.12	31.82	3 38 150	19.936		7.418	2.894			12.347	4.623	0.313		5.371		0.392	17.576		1.629	5.741	1, 144	0.215	5.789	10.089	2.947	0.662	0.516	9.652	0.405	14.454	4282	247.500
35	GANDARIA	1.09	3,920	6	0.36	9 039	2 0.06	0.01	7 0.81	7 4.62	2 2.696		0.954	0.437					0044		0.677		1	3.177	1	0.587	1.205	1			T	T			1.124		1	0.640	
36	SLDD	41.69	8 128.03	5	14.13	3 18.30	8 3.41	6 1.49	2 86.82	9 94.18	2 43654		26.514	9.645					1.235		31.022		2.794	47.012											14,454				677.539
37	" i o x "	12.35	37.926	8							1 12.931	1	7. 054		T				0.366		9.190		1	1 3.926	1		1		·						4.282	1			200.707
	TOTAL	70061	7 2.39638	ы															1	1									1									200 707	12470800
L		I t Ga'ol	12.390.35	<u> </u>	262.12	U[203.90	J 32.02	+ [10.53	- h.v.(#2)	1102165	2 767.461	1	+o i. 634	150.039	1	1	Jene:031	175.038	15.554	1	382416	1	25.338	714. 220	1	92868	164.576	57.649	6.054	1188.261	294,254	51.396	20.169	17.007	227672	15.342	101,1228]	200.707	12.4 7 9 502

TABLE 4-4-2(2) TRAFFIC FLOW BETWEEN EXCHANGES IN 1983

	TABLE 4	-4-2 (2)	TRAF	FIC FE	OW E	BETWE	EEN E	EXCHA	INGES	IN 18	83											_											(IN	ERL)				
	NO	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	1.0	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	TOTAL
		< 4	-	Ų		_	, E	877	∢		4	æ ::		Ξ.		_	4.2	GUR	\$	MGAN	4	B .	9	MAS	₹ 1		4 4		AS.	a Ra	ARA	. 7	89	~		₹		•	
NO	OFFICE	Į ¥	4	Ų. Į.	00	5	2	7.7	918	· 5	A A	ANG	ية	VER/	OYA	MERUYA	CEMPAKA PUTIK	SWAN	Ocad O	3	, or	Ž.	ž	A 40	B AYO	313	A81	AR 66U	A K	A A	B B	YA N	AR	Š	36.1	DAR	70	š	1 A
	BUILDING	8	5	KOT	4	1	N. W	75.0	GAM	B AM	35	SEM	SLIP	PAL	KED	Z H	CEM	RAW	쥝	PES.	8	٤	CILINCING	KEBAY	KEBAYOR!	CIPET	KALIB	PAS	אַל	ğ	זאנ	ਤੈ	PAS	Ã	16.	g g	S	-	٤١
	KOTA A	75.564	108.50.4	89.8/2	22224	27 541	4 366	1.216	96214	96.711	39.721		34 371	H G 45	1 (1) (1.695	35676	8.848	1,294	1.121	17849	11.786	——	13.792		2 715		1447	0.313	10.087	12.317	5.7.21	0.835	1.216	10.254	0.588	77.436 1	15.983	B54 700
	KOTA B	1		1	1	1	 	1		175.889	r			13.064																							133.244		
-	KOTA C	†		· · · · · · · · · · · · · · · · · · ·	 				1	1	1								7				-							$\neg \neg$,						
						<u> </u>	<u> </u>		<u> </u>	168.809				11.972							1										- 7						125.571 2		
<u> </u>	ANCOL	1		1	15.455	_	·		 	41,202			11.275	2.071	_																		0.407	0.692			33.975	1	
	PLUIT		-					-	 	4 4 806			6.88.6	4.465	1.005	0.969	·				6.352												0.383				36.240		
	CENGKARENG	7.544	11.174	9.155	2.220	4,533	1.953	0.533	11.617	12.153	5.628		5.112	1.539	0.418	0438	3.682	9.347	0.132	0117	1.311	1.249	0.210	3.258	1.157	0.483	0.979	0.2 18	0.053	1. 170	1,415	0.500	0.110	0 131	1.302	O. OB3	9.472	1.955	104.550
7	TEGAL ALUR	3.381	5.007	4.063	1.004	2.012	0.859	0.664	5.206	5 557	22.599		2.3 5	9.748	0.208	0.243	1.651	0.417	0.062	0.051	0.857	0.560	0.095	1.614	0.614	0.257	0.461	0.107	0.027	0.519	0.628	0.228	0.054	0.057	0.590	0.040	4348	0.698	48.000
8	GAMBIR A	79.711	162.577	150181	32.936	30.850	5.570	1.550	298876	300 421	118.546		4.669	20 267	2.911	3.391	86 572	23.656	3.776	2.851	28.372	19.304	4.746	55 630	15.689	7. 708	21.459	4,317	0.954	30.104	36.034	11.869	2.565	3.317	31.224	1. 79 1	169.195 3	34.9221.	867. 499
9	GAMBIR B	81.592	164,757	156.831	32.717	31.577	5.934	1.686	305945	3 3 0 320	15 1.2 04	1	1.707	24.100	3.226	3.993	33.158	27.303	2.957	3.356	29.041	20.362	3.784	70.952	19.615	9.832	27.370	5.620	l. 228	36.525	43.718	14.988	3.239	3.828	39.825	2.307	191.755	39 576 2.	.116.497
10	SEMANGGI A	38.139	74.737	68.353	14.842	15.058	3 127	0.896	137.394	172.090	121.285	:	37.044	14.508	1.782	3.125	43.985	14.534	1.468	1.805	13.306	9.236	1. 786	55.786	14.967	7.887	21.094	4.417	0.975	20,440	26.502	10.556	2.373	2,366	26.683	1. 825	100.117	20.664 1.	.1 05.500
11	SEMANGGI B	<u> </u>		<u> </u>						Ll																							1		_				
12	SLIPI	31.956	56.665	46.425	10.284	13.669	2.868	0.801	75.64 (82.364	37.386	!	14.304	8.980	1.528	1.661	22351	3.668	0.725	0.722	8.343	5.564	1.014	20.179	6.481	2.797	6.439	1.375	0.316	7.772	9.304	3.287	0.733	1.216	8.733	0. 537	53.001	10.940	585.000
13	PALMERAH	9.581	17.333	14.632	3.208	4.139	0.988	0.298	27.150	31.706	16.748	l.	0.284	5.421	_	0.854	I · · ·		0.253																		19.688		
14	KEDOYA	2.283	3.737	2.971	0.972	1. 123	0.324	0.100	4.697	5116	2.484		2.103	2.745	0.203	0.204	1.402	0.368	0.045	7.044	0.550	2353	0.063	1.593	0.571	0.241	0.465	0.108	0.026	0.487	0.596	0.226	0.052	0.054	0.576	0.040	3.523	0.727	38.880
15	MERUYA	2.727	4.599	3.769	0.835	1.302	0.408	0.144	6.586	7.615	5.236		2.757	1. 235	0.245	0.552	1.881	0.542	0.059	0.065	0.677	0.447	0.079	3.201	1.281	0.553	0.870	0.223	0.059	0.748	0.941	0.411	0,108	0.084	0.977	0.082	5.219	1.077	57.600
16	CEMPAKA PUTIH	32.783	67.535	71.046	16.879	11.948	1.992	0.555	97664	103.201	42.811		21 560	6.689	0.979	1.097	55841	14,085	1.790	1. 732	16.724	11.845	2.202	19.632	5390	2.867	9.003	1. 744	0.384	14.822	18.652	5,448	1. 189	1.879	14.049	0.807	68.856	14.2	760.000
17	RAWAMANGUN	1		1				1	 	37.291				2.393		-	17.367				6.612				+			0948	 j				 		}-		25.912		——
18	PULOGADUNG	1. 767		1	1.111			1		1	2.089			0.311					0.237				0.284		0.271		0.495		0.008		1.204		0.080		~ +				4 1.000
19	PENGGILINGAN	1			1.096		1		i	1	3 166					0.068	 	 			1.557												0.190				-	1.011	54.050
	TG. PRIOK A			1		1	 	-		49.381									 		34.459				\neg					7.021							4 3.660		
	TG.PRIOK B	1	i				1		1	40.190							1																1				35.923		
-	CILINCING	1	1	1	2.659	1 -			11.361	1			2.033				4.671							f			f	····· 1			· · · · · · · · · · · · · · · · · · ·								
	KEBAYORAN A	1	 	1	6.514		 	-		 	3.690							 	0.411		 -												0.146						90.000
	KEBAYORAN B	+				····		_		97.736							t — —	 			1		···		$\overline{}$												6 2.786		
	CIPETE	-	$\overline{}$		$\overline{}$	1			1	3 1.870																						$\neg \neg$					21200		
									1	21.712									1														0.814			- 1	-		188.100
	KALIBATA	1				1	 		· · · · · · · · · · · · · · · · · · ·	41.833	$\overline{}$		8.566	3.687	0.448	0.697	12.423	5.014	0.466	0.709	i							$\overline{}$				$\neg \neg$				t	27859	5,750	307.500
\Box	PASAR MINGGU	1		1	1	†	1	1		12.579	1 69.8								0.412		1.119	0.825	0.171	6.144	1.840	1.973	3.754	1.855	0.411	1.997	3.259	2.775	0.809	0.376	3152	0.718	8970	1.851	99.000
	JAGAKARSA			1	0.368		1	0.028	3.307	4.182	2.919		938	0.470	0.056	0.105	1, 182	0.502	0.017	0.080	0.357	0.263	0.056	2.236	0.725	0.894	1, 164	0.624	0.336	0.644	1.052	0.741	0.819	0.128	1.017	a 383	3045	0.628	33.600
-	JATINEGARA A	1.33.73.3	$\overline{}$	· ·	4.861	-	1		-	43.455	 		8.050	2.872	0.366	0.467	15.919	6.297	0.605	0.790	4.913	3.622	0.728	10.126	2.690	1.647	5.274	1.060	0.226	9.036	10.816	3.322	0.751	1. 241	8.396	0.480	26.727	5,516	295.000
	JATINEGARA B)	J	}]	1	j	, —					1.084	11.193	0.513	0.674	23.001	11.113	1.016	1,5 56	7.614	5.900	1. 224	15.537	4.086	2.655	9.307	1.988	0.422	12.419	23.081	6.742	1.617	2.062	14.379	1.449	39264	8. 227	440.000
31	CAWANG	5.674	11.687	11.814	2.591	2.174	0.425	0.122	21.271	26.378	16.324		5.036	2.130	0.250	0.379	8.657	4.100	0.376	0.660	2.809	2.198	0.461	9.450	2.541	2.075	6.845	2.181	0.383	4.914	8.686	6.248	1.545	1.026	7. 232	0.905	18265	3.769	201.600
32	PAGAR REBO	1	1	+	1 			-		8.561	 		1. 684	0.756	0.0 B7	0.141	2.838	1. 385	0.131	0.251	0.931	0.743	0. 164	3.493	0.985	0.975	2.454	0.956	0.248	1,666	3.128	2.318	1. 120	0.411	2.371	0.737	6.315	1.304	69.700
33	KLENDER									7.845			2.168	0.557	0.069	0.090	3.475	1.953	0. 209	0.460	1.463	1. 203	0. 286	2.124	0.548	0.426	1.392	0.345	0.077	1,698	3.093	1.196	0.319	0.750	1.946	0.156	5.871	1. 212	64.800
34	TEBET									51.316			9. 797	3.903	0.468	0.659	16.345	6.663	0.621	0.905	4.994	3.775	0.754	15.511	4.079	2.598	8.837	1.813	0.384	9.093	13.563	5.296	1.157	1.224	14.211	0.791	32.200	6.647	355.500
<u> </u>	GANDARIA	1. 799	3.632	3.493	0.789	0.690	0.146	0.044	6.613	8.365	5.496		1. 696	0.793	0.090	0.157	2.638	1.262	0.117	0.229	0.848	0.664	0.148	3.773	1.118	1. 259	2.497	1.163	0.407	1.467	3.820	1.865	1.010	0.274	2.225	1.540	6.319	1.305	69.750
36	SLDD	77,436	133.244	125.571	33.975	36.240	9.472	4.348	169.195	191.755	100.117		- 1			1																	1.315		\neg			$\overline{}$.428.560
37	"I O X "	15.983	27. 502	25.918	7.012	7.479	1.95	0.898	34.922	39.576	20.664					1			0,766				1										1.304				\mathcal{I}		294.652
	TOTAL	1	l		i '					2432.699		1			_																						1400		
		1000.000	1.001.30.	41.001.50	4 300 346	g34 3.¥20	4 00.817	121.335	E3 (8006	2632.699	1.137.765		UU. 358]	200.367	30.499	39.155	807.982	1258.497	33.594	36 134	369.970	272.694	53.708	024.024	104. 294	105.738	201.755	o 2. 254	10.345	¢96.316	+00.817	101. 657	38.678	42 734	38.949	31.084	IA28.560 ?	294.852	7.490.294

TABLE 4-4-2 (3) TRAFFIC FLOW BETWEEN EXCHANGES IN 1988

STATE 1	TAB	LE 4-	4-2 (3	3) TI	RAFF	IC FL	ow B	ETWE	EN I	EXCHA	NGES	IN 15	88																						ſ	IN ER	L J			
1	N	0.	,	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	TOTAL
1 1 1 1 1 1 1 1 1 1	OFF	ICE	∢	60	υ	ر _	<u> </u>	RENG	TUR.	4	•	4 5	B .		АН		4	Α =	Sec.	9	₹ .	4	E .	2	RAN	RAN	ш	A T		IRSA	GAR/	GAR	ڻ ع	A	E .		RIA			J.
1 1 1 1 1 1 1 1 1 1	NO BUIL	DING	₹	4	4 F	ů V		GKA	7 7WS	A B W	MBIR	4AMG	AANG	Ē	LMER	6	RUY	MPA	VAMA	89	ŢĘ	O &	PRIO	INCI	BAYO	BAYC	PET	. E	NGG	GAKA	A A	3 E	*	SAR	옾	. B E	NDA	9	<u> </u>	710
			Š	\$	Ŷ.		ā.	ଥି	±E¢	g A	8	ŝ	₩ j	S.L	PAI	×	¥E	S. F.	A A	2	82	별	76	Cu	Ä	포	8	ž	Z Z	4	4	4	3	₹ .	<u>₹</u>	Ŧ	8	· ·	•	
	I KOTA	Α .	69391	29741	8.983	29.101	28.448	6.907	2.047	7 103.529	104.941	35.590	16.328	36881	12.812	3.430	3.089	37.044	12.281	2.262	2.532	26.137	17.699	3.487	17.720	7.308	3.561	9.014	1, 998	0.486	11.694	12.608	6.567	1.583	2.749	13.025	0999 1	18.097	16.544	996.600
	2 KOTA	В	16.505 3	312.217 2	05.735	61.493	48.241	11.948	3541	246.659	247.534	81.469	37.005	76.388	27.072	6.558	6.088	68.645	29.549	5, 17 8	6.032	55.230	37.399	7.369	40.563	16.074	7.911	21.690	4.666	1.132	28.710	30954	15.805	3.771	6.419	31.032	2,353 2	64.351	37.031 2	.230.600
Part 1.00	3 КОТА	С	80604	207.538 11	2.138	53.013	33 044	8.185	2.40	2 190.496	196993	62292	27.459	52.323	19.109	4.359	4.170	78.404	26252	4.692	5.522	49.064	34.235	6.678	29.798	11.808	6.048	17088	3.676	0.884	23.782	25.386	13.355	3.089	5.523	25.703	1.891 2	06.474	2 8.924	.742,400
	4 ANCOL		30526	71.836	51.391	28.492	12.896	3.039	0910	63.987	62.742	20.716	9.040	17.752	6.418	1.509	1.415	28.529	9649	2.128	2. 198	25.589	17.155	3.380	118.6	3.848	1.991	5.798	1.235	0.296	8398	9237	4.486	1.094	2.2 04	8.720	0.654	73885	10,355	623.500
Fig.	5 PLUIT		33.970	64.150 4	3.560	14.679	22.959	5.575	1.635	53.816	54.547	18.874	8.746	21.187	7.433	2.267	1.982	18.134	6011	1.129	1. 239	13.724	9.108	1795	9.878	4.283	2.026	4.876	1.059	0.270	5.899	6.(72	3 380	0.814	1.333	6.704	0.514	62.165	8.709	524.600
	6 CENGH	ARENG	11.761	22.659	5.387	4.931	7. 950	5.245	1.523	3 21.219	22386	8.560	4047	9,705	2.879	1.430	1.354	6.599	2.232	0.390	0.447	4.751	3.185	0.603	4.950	2.396	1.078	2.200	0.511	0.138	2.303	2.457	1.459	0.408	0.501	2.806	0.240	24.885	3.486	210.000
	7 TEGAL	ALUR	5.573	10.736	7.216	2.361	3.729	2.436	2.003	10.053	9 801	4.179	2.036	4.645	1.990	0.749	618.0	3.128	1.036	0.197	0.208	2.250	1.509	0.288	2,593	1. 346	0.605	1.091	0.26	0.075	1.080	1.153	0.704	0.118	0.232	1.343	0.122	12.158	1.703	102.600
STATES S	8 GAMB	IR A	85.324	226384	73.320	50.272	37.142	10.269	3.042	2 374.860	379.964	123.811	54.034	84.301	35.060	6.816	7.205	106.569	38271	5.637	7.505	48.428	33.790	9.354	58.053	22.325	11. 786	32.960	6.951	1.721	40.685	42.994	23.781	5.674	8.740	46225	3.538 3	02.352	42.355	2,551,500
STATES S	9 GAMB	IR B	87.952	231,033 11	32.266	50.289	38. 285	11.019	3.331	386.405	497.908	159.030	68712	94.131	41990	7,611	8.562	115.483	44.478	6071	8.899	49.918	35.892	7.510	74.566	28.106	15.137	42.336	9.108	2.234	4 9,708	52.531	30.242	7.216	10.158	59.375	4.591 3	45545	48.406	2.916.000
	10 SEMAN	IGGI A	33.778	86.106	55.265	18.743	15.001	4,770	1.457	7 42.578	180084	104.805	39.763	3 9.953	18.978	3.466	5.428	44.797	1 9454	2.476	3.931	18.790	13.377	2.913	48468	17.621	10.026	26.807	5.884	1.459	22.854	26.166	17,500	4.348	6162	35684	2822	40.978	20.869	1.257.200
	II SEMAI	YGGI B	15587	39.337	26.936	8.226	6.991	2.269	0.714	62.582	78.259	99.993	19679	19.381	10990	1. 749	2.236	18.517	7.574	0.983	1.546	7,925	5.871	1.192	21,143	8.050	4.207	10.229	2.290	0.585	8.987	9.984	6.678	1.676	1.893	12472	1.087	64.369	9.017	543.200
1 PALLINGAM 101 12 12 12 13 14 15 15 15 15 15 15 15	12 SLIP	,		 -		- 1						40362								1.526	1,963			2.024	21.768	9,533	4.420	10.221	2.269	0.591	10.859	11.475	6.806	1.673	3.3 1 0	13.365	0.839	98.438	13.789	830.700
1									0800	46.531											1.009	6.133	4,279	0.877	16362	7.458	3,423	7.021	1.703	0.448	5.868	6.585	4.360	1-138	1.286	8062	0.777	48.525	6.797	409500
Section Color Co			4.512	9.606	6.330	1.894	2.496	1.104		1	1																	1.318	0.319	0.086	1.217	1.312	0.835	0.2 11	0.259	1.574	0.145	1 1.755	1.647	99.200
	15 MERU	YA	4.882	10.711	7. 272	2.1 31	2.622	1.256														ĺ							0.599	0.178	1.690	1.877	1.374	0.378	0.380	2.417	0.274	15.796	2.213	133.300
17 RAWAMANOUN 13188 3600 5248 10314 5645 147 0427 5206 6300 52292 689 689 690 522 092 080	16 CEMPA	ка Ритін	34255	91,796	80.033	25.148	14.043	3.584	1.06	3 1 1 9.5 67	127,412	43.645	17,938							3562	4.450	27866	20.236	4.234	20.058	7.4 86	4.282	13499	2.819	0.676	19.554	21.723	10.656	2.569	4.832	20.303	. 2.069 i	20.762	16.917	1019-100
Pulcoadpuis 208 760 6.83 267 124 0.30 0.05	17 RAWAN	MANGUN	13168	3 6 900	3 2.4 96	10.314	5.645	1.471	0.42	7 52.066	69.506	22.982	8.896	16.951	5.222	0.937	1.041	26.971	19.899	2291	3.902	14.239	. 11.429	2.669	10.669	3.825	2.541	8.682	1.925	0.459	12327	16,728	8.044	1.998	4.332	13.190	1.186	59.724	8.366	504000
20 TG. PRION A 35927 84,542 74,653 33,5327 15,766 3,855 1,136 80,768 81,866 27,275 14,11 211,00 7706 1,812 1,881 14,42 17,457 4609 4,575 77,099 51,698 10,445 12,693 4,575 2,592 8,334 17,93 0,423 12,439 14,822 7,127 17,35 4,190 12,788 1,030 10,617 14,874 82,622 17,019 11,00 11	IB PULOG	ADUNG	2.984	7.606	6.033	2.676	1.248	0.303	0.09	5 9.054	9.550	3.440	1.359	2.099	0.747	0.168	0.167	5.081	2.695	0.763	0.750	4.423	3.657	0.880	1,565	0.608	0.316	1.200	0.261	0.023	1.755	2.266	1.089	0.279	0.687	1.623	0.163	10.783	1.511	91.000
21 TG. PRIOK B 27965 65765 59.717 25860 12.002 2955 0876 64.783 67665 22270 9719 16.501 6.181 1.369 1.309 34.960 16.05 4.362 4.665 59.414 3.005 11.827 10.046 3.688 2220 7.241 1.508 0.357 10.809 13.539 6.075	19 PENGG	IL INGAN	4.061	10.774	9. 777	3.361	1, 665	0.421	0 122	2 14.604	17.028	6.643	2.597	3.284	1,480	0.263	0.292	7.719	5.581	0.912	2.692	.5.338	4. 735	1.875	3.178	1.162	0.820	2.852	0.693	0.172	3.599	5,451	3.016	0.844	2.369	4.172	0.503	18.367	2.573	155.000
21 TG. PRIOK B 27965 65765 99.717 2840 12.052 295 0876 64783 67665 2227 97.8 18.50 16.81 1.569 1.309 34.00 18.00 1			35927	84.542	74.453									21.102	7.706	1,812	1.691	41.422	17.457	4.609	4.575	77.098	51.686	10845	12.635	4.575	2.592	8.334	1.793	0.423	12.439	14822	7.127	1.735	4.190	12.788	1.030 1	06,176	14.874	896,000
22 CILINCING 6480 13.233 6002 2.790 660 0.780 2.140 16887 5.715 2.326 3.031 1494 0.324 0.307 8.520 4.530 1.830 1.244 2.175 14.692 13.940 4.897 2.225 0.661 0.577 1.534 0.420 0.103 2.897 3.728 1.628 0.477 1.273 3.020 0.280 2.2594 3.208 1.232 1.242	21 TG. PR	HOK B	27.965	65.765	59.717	25840	12.052	2.955	0.87	6 64.783	67.665	22.270	9.719	16.591	6.181	1. 369	1.309	34.580	1 6.105	4.362	4.665	59.414	63.095	11.827	10.548	3.858	2229	7.241	1.558	0.367	10.809	13.539	6.575	1.634	4.064	11.336	0.950	89586	12.550	756.000
24 KEBAYORAN B 888 24023 17.004 4924 4.814 1889 0683 36335 45007 24.917 11318 13340 0.190 1.531 8.90 1.065 4579 0.619 0.73 4.467 3.277 0.693 20.666 [2.335 5.540 8.805 2401 0.698 5.543 6.474 5.289 1.496 1.277 0.052 1.106 42.980 0.213 2.200 1.200 2	22 CILIN	CING	6.485	15.283	13.733	6.002	2.799	0.660	0.19	8 21.140	16.687	5.715	2.326	3 93)	1.494	0.324	0.307	8.529	4.434	1.244	2.175	14.692	13.940	4.857	2.626	0.961	0.577	1.934	0.429	0.103	2.887	3.728	1.828	0.477	1.273	3.029	0.280	22894	3.208	193200
25 CIPETE 6.423 15.890 12.046 3425 3.060 1.141 0.401 25794 39.579 18.960 7.790 9.314 5.644 0.935 1.613 8.350 4.089 0.432 0.923 3.399 2.544 0.560 15.653 7.457 9.880 9.477 3.715 1.243 5.002 6.077 6.187 2.139 1.433 7.823 1.799 33.180 4.648 280 2.000	23 KEBA	YORAN A	20256	51.638	37.605	10.693	9.457	3.329	1.08	8 80.523	101.703	58.018	25.320	25956	17.100	2.667	4.042	24 799	18.877	1.353	2,266	10506	7. 631	1.612	49568	17.773	9.865	19.833	5.006	1.345	13037	15.380	12.195	3.315	3.094	20.197	2.330	93355	13.077	787.800
26 KALIBATA 4.268 30.19 23.585 6.910 6.105 1.607 0.500 50.000 63.152 35.313 1338 13.329 8.025 1.252 1.768 18.252 8.682 1.237 2.228 7.580 5.729 1.299 2.1891 8.250 6.569 23.123 4926 1.127 1.0928 14.829 14.216 3.744 3.266 18.524 2.483 80.988 8.541 3.142 2.728 1.728	24 KEBAY	ORAN B	9.808	24.023	17.494	4.924	4.814	1.889	0.66	3 36.355	45.007	24.917	11.318	13.345	9.150	1.531	8.590	10.865	4,579	0.619	0.973	4.467	3.277	0.693	20.866	12.335	5.549	8.965	2.401	0.698	5.543	6.474	5.289	1.496	1. 277	8,052	1.106	42.980	6.021	362.700
27 PASAR MINGGU 3.604 9.373 7.322 2.124 L601 0.540 0.174 15.214 19.604 11.183 4.329 4.306 2.809 4.380 0.684 5.498 3.097 0.356 0.780 2.354 1.778 0.415 7.901 3.227 3.715 7.106 3.798 0.914 3.325 4.792 6.852 2.208 1.255 5.750 1.750 20.572 2.881 173 2.804 1.805 2.406 1.386 0.837 1.201 1.731 2.049 9.73 0.455 2.078 1.042 7.839 1.099 6.805 1.201 1.731 2.049 9.73 0.455 2.078 1.042 7.839 1.099 6.805 1.201 1.731 2.049 9.73 0.455 2.078 1.042 7.839 1.099 6.805 1.201 1.731 2.049 9.73 0.455 2.078 1.042 7.839 1.099 6.805 1.054 2.0839 1.0	25 CIPE	TE	6.423	15 890	12.046	3 4 2 5	3.060	1, 141	0.40	1 25.79	39.579	18.960	7.950	9.314	5,644	0.936	1.613	8.350	4.089	0.432	0.923	3.399	2.544	0.560	1 5.563	7. 457	9.880	9.477	3.715	1.243	5.002	6,077	6.(87	2.139	1.435	7. 823	1.799	33.180	4.648	280,000
27 PASAR MINGGU 360 9373 7.32 2.124 1.60 0.540 0.174 15.214 19604 11.183 4329 4.306 2609 4.380 0.684 5.499 3.097 0.356 0.780 0	26 KALII	BATA	4.268	30.195	23.585	6.910	6.105	1.607	0.50	50.000	63.152	81888	13398	13.329	8.025	1.252	1.768	18.252	9.682	1.137	2.228	7.580	5.729	1.299	21.691	8.256	6.569	23.123	4.926	1.127	10928	14.829	14.216	3.744	3.266	18.524	2.483	60.968	8.541	51 4.500
29 JATINEGARA A 11.524 31.508 25.871 7.889 4.868 1.333 0.390 48.640 58445 25.730 9.277 11.161 5.286 0.912 1.054 20.839 10.883 1.311 2.211 8.917 6.740 1.527 11.239 4.071 2.678 8.613 1.817 0.432 12.986 13.723 7.078 1.732 2.762 10.216 1.013 51.464 7.209 434 1.000 1.0	27 PASAI	R MINGGU	3.604	9.373	7. 322	2.124	1.601	0.540	0.17	4 15.214	4 19.604	11.1.83	4.329	4.306	2.809	4.380	0.684	5.498	3.097	0.356	0.780	2.354	1.778	0.415	7.901	3.227	3.715	7.106	3.798	0.914	3.325	4.792	6.052	2.208	1.255	5,750	1.750	20,572	2.881	173 500
29 JATINEGARA A 11.524 31.508 25.871 7.889 4.868 1.333 0.390 48.640 58445 23.730 9.277 11.161 5.286 0.912 1.054 20.839 10.883 1.311 2.211 8.917 6.740 1.527 11.239 4.071 2.678 8.613 1.817 0.432 12.986 13.723 7.078 1.732 2.762 10.216 1.013 51.464 7.209 4.348 1.013 51.464 7.209 4.348 1.013 51.464 7.209 4.348 1.015	28 JAGAH	KARSA	1.328	3.457	2.672	0.775	0.620	0.222	0.07	6 5.723	7.300	4.206	1.678	1.685	1.122	0.180	0.308	2.007	1.120	0.048	0.293	0.842	0.637	0.151	3.220	1.424	1. 886	2.466	1.386	0.837	1.201	1.731	2048	973	0.465	2.078	1.042	7.839	1.099	66.150
31 CAWANG 9.338 25026 20.965 6.080 4.025 1.218 0.367 41.026 51.305 26.218 9.947 10.096 5.667 0.902 1.237 16.387 10.200 1.174 2.673 7.373 5917 1.398 15.166 5.603 4.877 16.167 5.400 1.084 10.212 15.939 19.232 4.991 4.161 16.464 2.750 52.140 7.304 44.000 1.000	29 JATIN	EGARA A	11.524	31.508	25. 871	7.889	4.868	1.333	0.39	0 48.64	58445	23.730	9.277	11.161	5.286	0.912	1.054	20.839	10.883	1,3)1	2.211	8.917	6.740	1.527	11.239	4.071	2.678	8.613	1.817	0.432	12986	13.723	7.078	1.732	2,762	10.216	1.013	5 1.4 64	7.209	434.300
31 CAWANG 9.338 25026 20.965 6.080 4.025 1.218 0.367 41.026 51.305 26.218 9.947 10.096 5.667 0.902 1.237 16.387 10.200 1.174 2.673 7.373 5917 1.398 15.166 5.603 4.877 16.167 5.400 1.084 10.212 15.939 19.232 4.991 4.161 16.464 2.750 52.140 7.304 44.000 1.000	30 JATIN	EGARA B	14,158	38.707	3 1.467	9.888	5.803	1.621	0.47	5 58.57	8 70.379	30.955	11.744	13.440	6.759	1.119	1.335	26.380	16.751	1.928	3.816	12.108	9.621	2.248	15.107	5.417	3.785	13.318	2.982	0.710	15.638	25.658	12.580	3 234	5.062	19.832	2.031	67.771	9.493	571.900
32 PASAR REBO 3346 8.876 7.216 2.201 1.442 0.442 0.140 14.552 18.196 9.679 3.709 3.690 2.200 0.340 0.505 5.870 3.765 0.447 1.113 2.667 2.184 0.542 6.125 2.356 2.504 6.336 2.586 0.752 3.713 6.077 7.402 3.167 1.820 5.899 2.448 19.908 2.789 16.6 3.33 KLENDER 4.535 11.794 10.079 3.466 1.840 0.484 0.140 17.495 19.996 8.972 3.271 5.695 1.939 0.325 0.387 8.629 6.360 0.859 2.437 5.029 4.244 1.130 4.467 1.571 1.313 4.309 1.120 0.280 4.623 7.437 4.828 1.420 3.987 5.806 0.618 22.041 3.087 18.600 1.000 1.		T																					T													1				
33 KLENDER 4.535 1.794 10.076 3.466 1.840 0.484 0.140 17.495 19.996 8.972 3.271 5.695 1.939 0.325 0.387 8.629 6.360 0.859 2.437 5.029 4.244 1.130 4.467 1.571 1.313 4.309 1.120 0.280 4.623 7.437 4828 1.420 3.987 5.806 0.618 22.041 3.087 18.675 3.487 1.818 1.420 3.987 3.686 3.718 3.687 3.718 3.888 3.688 3.718 3.888 3.688 3.718 3.888 3	32 PASAF	REBO	i				1				1			T -	Ι'	1		i							T '				i .	i i	1			1	l	1				
34 TEBET 13828 36687 30 126 8826 5.960 1.750 0.524 59.649 75.211 36.561 13871 14.800 7824 1.271 1.624 23312 12.490 1.467 2.762 9.878 7617 1.727 18.757 6.726 4.604 15.729 3.384 0.806 14.241 18.752 12.294 2.964 3.736 24.379 1.813 67.936 9.517 573	33 KLEN	DER	1				i		i				1					1				T			T												1 1			
	34 TEBE	т	1			l	1			í			1	ı	[1 '	1			_			1	1		1									•	1		1	1	
	35 CAND	ARIA						1			1		1	_		1	1						1						_	1 -					i	l				150.150_
36 SLDD 18097 264 351 206.474 73 885 62.165 24.885 12.158 302352 345545 148.978 64 389 98.438 48 525 11.755 15.796 120.762 59.724 10.783 18.382 106.776 89586 22.894 93355 42.880 33.180 60.568 20.572 7.839 51.464 67.771 52.140 18.908 22.041 67.936 17.993	36 SLD	T	118097	284.351	208.474	73.885	1	i i	1	ı	I .			1	I	I	1	1	I .				1								Ł	1			į.	1				2.784014
	37 "10	x *				i	i	1 -		-1		I — — — — — — — — — — — — — — — — — — —			1	1	T					7—		1							i			1			1			389997
TOTAL 1002155 2445468 1.901.243 608.677 457.599 139.484 48645 298172 3377.466 1334.535 571.794 866.056 384.615 87.137 93.943 1099898 472.380 75.310 111.072 727.755 556.603 124.989 727.372 294.806 185.641 449.289 116.838 33.066 449.289 338.559 350.066 100.193 131.439 562.610 73.100 2784.014 389.997 26.66	TOT	, T				l	1		i i	i i								ì	l			ſ	1	i			i .			1	1			l		1	1 1	228404	74000	26 667 011

TABLE 4-4-2-(4) TRAFFIC FLOW BETWEEN EXCHANGES IN 1993	TABLE	4-4-2-(4)	TRAFFIC	FLOW	BETWEEN	EXCHANGES	IN	1993
--	-------	-----------	---------	------	---------	-----------	----	------

ABLE 4-4	-2 (4)	, Li	RAFFIC	FLOW	A RF	IWEE	N EX	CHAN	GES	IN I	993																					(1 N	ERL)			
ND,	1		<u>. T 3</u>	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	26	29	30	31	32	33	34 35	36	37	TOTAL
		4	<u>س</u>	1		မ္န	<u> </u>	4	- 0	٧.	-						N.	ING	N.	4	-	ی	4					5	4 4	4		Og.					
OFFICE		_		ر إ	-	GRE	₹	<u> </u>	2	250	8	-	ERAH	4	Ϋ́A	TIK A	MAN	₩.	Ž	Ď.	ğ	ž,	ag	8	<u>u</u>	BAT.	æ 33	KAR	3	3	SNS.	8E)	5	<u>ا</u> ا	، ه	ا را	<u> </u>
NO BUILDING		COTA	5 5) Š	12	ENG	TEGA	CAMB	GAME	SEMA	SEWA	2	PALM	KEDI	WER(PU	RAWA	3	Ž.	9	وع	3	EB	KEBA	5	KAL	PAS.	JAGA	ATA!	£ .	* S	PASA	<u> </u>	168	3: bo	<u>۽</u>	₽
I KOTA A		*	2 2		20.505					- "						40.000	10.071	4000	8 407	70.410					4 6 9 7	05.6	2.761	0.763	13,369	12.368	11.731	3.593	6,311	16.182 1.6	73 162 919	15.333	1170.413
 		1.496 144		37,050		11.225		110.527		\neg	20.939		19,014	7.347			16.631	4.009			27.506		15,036	8.062												1	
2 KOTA B			.960 247.38	1					[I			-										l l			i					37.005					10 445.105	1	
3 KOTA C	79.	.173 248	.810 203.49	72.452	35.655	14.278	4.188	216.307	235.958	89.764	37.797	61.022	30.442	10 024	8.335	93.122	38.165	8.929	12.859	77.403	57.115	12.178	27.143	14.018	8,511	24.335	5.452	1.491	29.184	26.729	25.606	7,115	3.641	34276 3.4	26 307.130	28.904	2206.400
4 ANCOL	38	.215 109	762 82.869	49.627	17.734	6.756	2.022	93.460	96089	38 046	15.861	26.387	13.033	4.421	3.604	43.187	17.878	5.161	6.526	51.452	36.477	7. 856	11.391	5.823	3.571	10.523	2.335	0.638	13.134	12.396	10.962	3. 201	6.922	14.823 1.51	3 141.817	13.346	1018.800
5 PLUIT	34.	.040 78	.462 47.06	20.468	25.275	9.922	2.909	62.918	66.655	27.746	12.282	25.208	12.082	5317	4.041	21.975	8915	2.193	2.945	22.085	15.503	3.338	9. 18 1	981.5	2.908	7.084	1.603	0.466	7.386	6.630	118.8	1.911	3.350	9.120 0.9	3 94.211	8.866	676.800
6 CENGKARE	4G 18	.743 44	.068 26.436	10.935	13.917	14.848	4.311	39.451	43.501	20.011	9.038	18364	10.024	5.334	4.391	12.718	5265	1.207	1.687	12.160	8.621	1.784	7.317	4.616	2.461	5.058	1.227	0.379	4.586	4.200	4.536	1.325	1.996	6.072 0.7	60.970	5.738	438.000
7 TEGAL AL	UR 8	.808 20	.714 12.301	5.191	6.475	6.840	5.619	18.542	20857	9.693	4.510	8.717	5. 104	2.770	2.624	5.977	2.425	0.602	0777	5.716	4.052	0.947	3.801	2.572	1.3 70	2.500	0.625	0.206	2.133	1.954	2.175	0.667	0.920	2.882 0.3	29.775	2.802	2 13.900
B GAMBIR	Δ 90	.243 292	.230 197655	73.979	43.154	19.290	5.714	462.561	490.050	192.104	80.087	105.859	60.142	16.873	15.508	136.291	59905	11.590	18.819	82.260	60.699	18366	3 <u>6.</u> 941	28.536	7.855	50.540	11,100	3.130	53.759	48.747	49.093	14054 2	23,194	68 68	486.643	45,798	3496.000
9 GAMBIR	96	.914 310	.717 216.555	77.103	46.346	21.562	6.515	496.759	669.037	257.074	106.105	123.154	75.040	19.631	19.157	153.871	72.537	12.956	23 24 9	88341	67.172	15.361 7	6. 198	37.431	23.094	67.631	15.153	4.229	68.428	62.053	65 042	18.621 7	28.084	38.625 9.2	77 581.299	54.706	4176.000
IO SEMANGGI			.276 91 923																							_						13.296			58 301.507		
II SEMANGGI			.172 39.101							i	34.562		Î			28.062								1 2.193		1				13.414					99 124,445		694.000
			 	1		j		i								36.927					$\neg \neg$			12.370						13.208			8918			 	
12 SLIPI			879 64.115	1	ii	i					29.290																								65 108.576		
13 PALMERAH			349 36.061	1	1						25.585													13.067						10233			4678				780.000
14 KEDOYA	9	.464 24	.595 14.318	5.523	5.753	4 ,115	1.347	26.624	30.555	15.009	7.086	12.644	8.099	4.441	3.409	8.083	3.414	0.680	1.072	5.841		0.892				4.006	1.012	0.313	3.188	2.950	3.416			4483 0.5		 	272.700
15 MERUYA	8	.861 23	.729 14, 234	5.382	5.228	4.051	1.525	29.252	35 647	22.611	9.415	12.953	10.547	4.075	7.246	8.533	3.943	0.704	1.239	5.635	4.035	0.878	9.405	6. 688	3.675				3.833	3654			·	5.956 0.9			318.600
16 CEMPAKA	PUTIH 37	1.175 121	.594 93.65	37.975	16.742	6.908	2.047	151,399	168.618	69.489	27.283	35.347	19.882	5.691	5.026	88.051	35.725	7,488	11.451	48.572	37.304	8.529	881.05	9.818	6.654	21, 241	4.618	1, 263	26.512	25, 274	22.576	6.528	13.156 2	29.918 3.0	201.450	16.959	1447.200
17 RAWAMANG	UN 17	.868 58	444 45 469	18,622	8.047	3.387	0.983	78.832	94.165	43.753	16.178	26.119	10.992	2.847	2.751	42.322	38.218	5,759	12 006	29.678	25. 191	6.431	12.840	5.999	4.724	16.334	3.771	1.022	19.985	23271	20.374	6.071	14.075 7	23.240 2.8	20 121.939	11. 475	876.000
IB PULOGADUM	G 5	.023 15	628 12.40	6.266	2.308	0.905	0.286	17,783	19.608	8 494	3.204	4. 194	2.311	0.662	0.573	10.342	6713	2.489	2.993	11.957	10.457	2.751	2.444	1.237	0.764	2.927	0.663	0.066	3.691	4.089	3.580	1.099	2.902	4.166 0.5	28.815	2.712	207.000
19 PENGGILIN	GAN 8	.178 26	482 21.231	9.41 B	3.683	1.505	0.437	34.320	41.823	19.628	7.330	7. B54	4 833	1.239	1. 198	18.79B	16.638	3.557	12.856	17.267	16.198	7. 328	5.935	2.829	2.366	8.345	2.108	0.594	9.056	11.770	11.853	3.982	11.975	11. 408 1.81	60.079	5.654	431.600
20 TG-PRIOK	A 49	.887 143	279 111,472	64.782	24.096	9.457	2.801	130,846	138.624	55.441	22.206	34.791	17.355	5.889	4,753	69.551	35.874	12.395	15.062	171.937	121.888	29 655	16 268	7.678	5.153	16.777	3. 758	1.008	21.579	22.063	19.316	5.641	14.602	24.109 2.6	22 235.248	22.139	1690.000
21 TG PRIOK			.240 93.190	7							19.712		î	4.636	3.856	60.516	34.498	12.284	16.007	138 103	155.098	34.337	14.156	6.749	4.620	15.194	3.404	0.913	19.543	21.006	18.576	5.535	14.760	22,275 2.5	21 209.914	19.754	1508.000
22 CILINCING			.895 22.934	1							5.049		· -										$\neg \neg \uparrow$	1. 799			1.003	D274	5.588	6 189	5.528	1. 731	4.953	6.368 Q.7	97 58.631	5.517	421.200
23 KEBAYORA			.124 33,53	1					i						i"	24.802		2.173		13.956				17.766						13.638					55 119.434	 	
24 KEBAYORA		1		1							17.060		-		5.669		7.289	1,289		7.718	5.987								7.449		11.104			12,415 2.11	.		514.800
			.539 20.29	1	 			45.623								12.628				6828		1-		16.036			7.015	2.669			15.103			13. 284 4.12		6.170	471.000
25 CIPETE			257 16244	1	ļ ——			!					. i								5.404															1	
26 KALIBATA			512 32.09					1 1								27,854					12.283	3.043	25,386	12.596						20.063	35.020	11.081	10.341 3	31,739 5.7	16 121.939	11.475	876.000
27 PASAR M	NGGU 4	.643 14	.737 10.161	3,806	2.265	1.236	0.396	22.865	30794	21.134	7.814	6.586	5867	1.321	1.794	8.565	5.904	0.890	2.381	4.868	3.891	0.992	9.438	5.023	6.856	13.271	7.367	2.022	5,353	6.616	17. 229	6.657	3.961	10.056 4.1	3 42.845	4.032	307.800
28 JAGAKAR	5A	.943 6	168 4. 214	1.577	0.998	0.578	0.196	9,765	13.019	9.024	3.438	2.927	2.661	0.618	0.917	3.548	2.422	0.135	1,016	1, 978	1.580	0.412	4.366	2.517	3.951	5.231	3.062	2.101	2.195	2.715	5,845	3.336	1.708	4,125 2.7	18.569	1.748	1 33.400
29 JATINEG	RA A 12	.770 42	.616 30.912	12.163	5.926	2.622	0.769	62.892	78975	38.588	14.407	14,684	9.501	2.365	2.377	27.921	17.768	2.815	5.810	15.872	12.687	3.142	11.55.0	5.453	4.249	13.837	3.039	0.823	17.977	16.302	15.307	4.425	7. 678	19.886 2.0	57 88.698	8.348	637.200
30 JATINES	ARA B 13.	.296 44	371 31.86	12.920	5.988	2.703	0.793	64.183	80.600	42.649	14, 457	14.985	10.294	2.462	2.551	29.956	23.263	3.508	8 499	18.263	15.347	3. 917	13,158	6.148	5.090	18.133	4.227	1, 145	18.347	25.832	23.074	6.887	11.927	25,288 3, 2	05 100.224	9.432	720.000
31 CAWANG	15	5.583 50	971 37.72	1 14.119	7.378	3.609	1.091	79.875	104.396	64.181	23.261	20.001	15.339	3.524	4.200	33.065	25.190	3.795	10.575	19.758	16.770	4.323	23,469	11.300	11.657	3 9. 112	13.606	3.046	21.289	28.513	62.640	18.510	17.417	37.301 8.4	14 140.397	13.212	1008.600
32 PASAR R	£80 6	.582 21	.314 15.30	8 6.024	3.116	1.539	0.488	33.40	43.656	27.935	10.226	8.619	7.019	1.564	2.020	13.966	10.963	1.702	5.190	8.429	7.299	1.978	<u>II.</u> 177	5.602	7.058	17. 777	7.680	2,541	8.987	12.420	26.996	19.197	8.985	15,756 8.8	30 64.310	6053	462.000
33 KLENDER	9	.653 30	.642 23.135	10.264	4.304	1.630	0.531	43.450	51.902	28.019	9.756	14.396	6.697	1.617	1.676	22.190	20.037	5.543	12.301	17.196	15.354	4.460	8.818	4.039	4.003	13.298	3.602	1.026	12.297	6.971	20.057	7.083	21.299	16.779 2.4	13 76296	7.181	548.100
34 TEBET		- 1			7	7			7																										67 127.242	T	
35 GANDARI	- 1				1		I																			I .									92 45.017	T—	
36 SLDD				1																					- 1	- 1										9.23/	
37 "10X"																																	76.296 1	27,242 45.0	17		5086.211
37 10%		,	1.888 28.90	ł	, ,	, ,	,	, ,	, ,		, ,	,	3		, ,	, ,	, ,			, ,														11.975 4.2			478.660
TOTAL	118	1. 757 351	6277 2422.11	3 1013.669	596 649	301.367	107.178	4139.385	4687.535	2351.472	958081	1221.370	751.657	226.562	232.271	1591.514	855 647	180.383	333552	1451.516	1189.955	298670 8	10.727	430,318 3	27.992	801.102	222.181	72.144	677. 831	706.172	659.105	304.114	414.913	30,461 172.3	34 5086, 211	478.660	42,102, 891
																							1													1	

CHAPTER 5

EXCHANGE OFFICE ESTABLISHMENT PLAN

6 NATURALIO

RACIO TROPPARATIRATES ROSES DIFFARES

CHAPTER 5 EXCHANGE OFFICE ESTABLISHMENT PLAN

5.1 Exchange Office Service Area and Wire Centre

5.1.1 General Description

5.1.1.1 Exchange Office Service Area

The exchange office service area must be determined, not only based on the long term demand forecast but also in consideration of the economic conditions in the future.

The CCITT Recommendations do not specify the methodology of establishing the exchange office service area.

Main items to be studied in the exchange office establishment plan are as follows:

- a) Size of exchange office service area and number of subscriber terminals to be accommodated
- b) Exchange office location
- c) Service-in time

In the exchange office many kinds of equipments are installed to accommodate subscribers. Such equipment are classified into two groups. One group includes land and building as well as inside plants, such as switching and power equipment. The other group comprises subscriber lines and outside plants including underground facilities.

Investment required for outside plants is extremely large, compared with that for inside plants. An example in Japan showing annual expenses required for each kind of equipment is given in Fig. 5.1.(1).

According to data of the Municipal Authority of Jakarta (D.K.I.) the city of Jakarta embraces an area of 57,154 hectares. At the time when JTP commenced the long term telephone cable network study for the whole city of Jakarta the Second Five-Year Plan of PERUMTEL (dated March 1, 1973) was already complete.

In this plan the whole city of Jakarta is divided into 28 exchange office service areas. This service area distribution is optimal for the telephone network plan.

The exchange office establishment study is based, in principle, on the Second Five-Year Plan of PERUMTEL.

The size of service area of each exchange office, the telephone demand in 1993 estimated by JTP and the demand density per hectare are shown in Table 5.1.(2).

For the six exchange offices with an asterisk in Table 5.1.(2), i.e., Jakarta Kota, Gambir, Semanggi, Tanjung Priok, Kebayoran and Jatinegara, the estimated telephone demand is extremely large. Consultation was carried out between JTP and PERUMTEL concerning the subdivision of each of the six exchange offices. Decision was made to revise the service area of each exchange office as shown in Table 5.1.(3) and Fig. 5.2.(32).

Wire centre calculation, Key Map designing, junction circuit calculation and other related works were also carried out, based on that revised plan.

5.1.1.2 Local Service Area Classification

PERUMTEL divides the local service area into the ordinary local service area and the special local service area.

This division of local service area is made simply by the distance from the exchange office to the subscriber. The area within 4 km from the exchange office is the ordinary local service area. The area beyond 4 km from the exchange office is the special local service area. New telephone installation tariffs in Jakarta are shown in Table 5.1.(4) and Fig. 5.1.(5).

When deciding the local service area boundary the topographical features, such as road and river should be taken into consideration.

In Japan the Nippon Telegraph & Telephone Public Corporation (NTT) has the local service area regulation similar to the foregoing in force. That is to say, the ordinary local service area boundary is set at about 5 km from the exchange office in principle. Actually, the administrative area and the cluster of houses, as well as the expected city planning in the future and other factors related to the telephone demand, are carefully considered.

In Japan the applicant for new telephone installation who lives inside the ordinary local service area has only to pay the fixed tariff. However, when the applicant lives outside the ordinary local service area he has to pay \$9,000 per 100 m from the ordinary local service area boundary. A list of new telephone installation tariffs in Tokyo appears in Table 5.1.(6).

5.1.1.3 Wire Centre

Fig. 5.1.(1) shows that the investment in subscriber lines is much larger than that in other equipments. Construction cost economy requires selection of optimum exchange office location.

Wire centre is the point where the calculated annual cost is the minimum. Its location depends upon the pattern of demand distribution.

If the demand density is uniform in the whole service area or the demand is symmetrically distributed to the demand centre the wire centre lies at the same point as the demand centre.

Generally the wire centre can be known after repeated calculations. JTP calculated by computer the wire centre of each of the following 15 exchange offices:

- 1. Jakarta Kota (C)
- 2. Ancol
- 3. Cengkareng
- 4. Tegal Alur
- 5. Semanggi (B)
- 6. Pal Merah
- 7. Kedoya

- 8. Meruya
- 9. Pulo Gadung
- 10. Penggilingan
- 11. Tanjung Priok (B)
- 12. Cilincing
- 13. Kebayoran (B)
- 14. Jagakarsa
- 15. Klender

5.1.1.4 Methodology of Wire Centre Calculation

Cost of installing subscriber lines in the whole service area varies, depending upon the size of service area and the pattern of demand distribution.

When the exchange office is located at the base point of axes X and Y the total cost of subscriber line construction to the demand at points x and y can be obtained as follows:

$$P = \sum_{x} \ell(x, y), D(x, y), Cd$$

where

x: Distribution block area number

The distance from the exchange office to No. x distribution block area is expressed by

$$\ell(x, y) = |X_0 - X_i| + |Y_0 - Y_i|$$

D(x, y) signifies the demand in No. x distribution block area in 1983 and 1993.

In the case of Kebayoran (B) Exchange Office the demand is calculated for 1982 and 1992.

Meanwhile, D (x, y) is shown for each ℓ (x, y) as seen in the "In-put and Out-put Data for Wire Centre" diagram.

Cd is expressed by the function of ℓ (x, y) and signifies the cost per pair of subscriber lines. (Refer to Fig. 5.1.(7).)

In this case the annual expenses (A) are expressed by

$$A = P \left\{ \frac{i (1+i)^{N}}{(1+i)^{N_1}-1} + \mu \right\}$$

where

A : Annual expenses of subscriber lines

P: Total subscriber line construction cost inclusive of civil engineering cost

i : Annual interest rate

N: Service life of plant

 μ : Operation and maintenance cost rate

The reference values which JTP used when calculating the wire centres by computer are shown in Table 5.1.(8).

5.1.1.5 Input Data for Wire Centre Calculation

Input data for wire centre calculation are given in the attached drawings, W1 to W15.

5.1.1.6 Output Data for Wire Centre Calculation

Wire centres calculated by computer are shown in the attached drawings, W1 to W15. These calculated wire centres are shown in Fig. 5.2.(32).

5.1.2 Detailed Description of Each Exchange Office

According to the JTP forecast the demand at several exchange offices in 1993 was extremely large. Therefore, the study was made with regard to the subdivision of service areas of those exchange offices. More precisely, investigations were carried out on the following points for the six exchange offices, i.e., Jakarta Kota, Gambir, Semanggi, Tanjung Priok, Kebayoran and Jatinegara:

- 1) Existing switching room capacity.
- 2) Main distributing frame (MDF).

Findings in the investigations are as follows:

 Switching room capacity of each existing exchange office where large demand was forecasted:

	Maximum Subscriber Accommodation Capacity
Jakarta Kota	10,000 line units
Gambir	20,000 "
Semanggi	6,000 "
Tanjung Priok	6,000 "
Kebayoran	10,000 "
Jatinegara	4,000 "

2) The existing MDF comprises two types. One is the type with a protector. The other is without a protector. Capacity per frame varies according to the test room height of each exchange office. MDF with a protector holds an average capacity for 200 terminal pairs per frame. Each frame consists of eight blocks and each block consists of 25 terminal pairs.

In the case of MDF without a protector the average capacity per frame is for 600 terminal pairs. Each frame consists of 12 blocks and each block consists of 50 terminal pairs.

In both cases one frame is 18 cm wide.

In the PERUMTEL plan the latest type MDF is to be used for new installations in and after 1975. This latest type MDF is the protector type with capacity for 800 terminal pairs per frame. Each frame consists of eight blocks and each block consists of 100 terminal pairs.

5.1.2.1 Jakarta Kota

The estimated demand in 1993 in the future service area of this exchange office is 117,400. This number is too large to accommodate for one exchange office. PERUMTEL

had plan to construct another exchange office in this area.

JTP recommends that this service area be divided in three in the future. The result of construction cost comparison is given in Table 5.1.(9).

The calculated wire centre of Jakarta Kota (C) Exchange Office is shown in Figure 5.2.(32).

5.1.2.2 Gambir

The estimated demand in 1993 in the future service area of this exchange office is 95,900. As of June 1975, 17,000 subscriber line units are installed in this exchange office. The maximum capacity is for 20,000 subscriber line units.

This exchange office is equipped with toll and international switches, telex, telegraph and toll carrier terminal equipments. This exchange office is located almost at the centre of SLDD and IOX network in the city of Jakarta.

JTP recommends that the service area of this exchange office be divided in two as shown in Fig. 5.2.(32). It is also recommended that the existing exchange office be expanded or a new exchange office be constructed adjacent to the existing exchange office in order to accommodate the toll switches.

Table 5.1.(10) presents the toll office construction cost comparison prepared in February 1975 at the request of PERUMTEL.

Table 5.1.(11) is the subscriber line and switching equipment installation cost comparison.

5.1.2.3 Semanggi

The estimated demand in 1993 in the future service area of this exchange office is 51,000. This is quite a big figure.

A large road, J1 Raya Jenderal Sudirman, traverses north to south the central part of the service area of this exchange office. This road is a suitable service area boundary.

JTP recommends that this service area be divided in two in the future.

The result of construction cost comparison is given in Table 5.1.(12).

The calculated wire centre of Semanggi (B) Exchange Office is shown in Fig. 5.2.(32).

5.1.2.4 Tanjung Prick

The estimated demand in 1993 in the future service area of this exchange office is 61,500. At present, 2,000 subscriber line units are installed. The maximum capcity is for 6,000 subscriber line units.

The existing exchange office is located in the western part of its service area. The J1 Komodor Jos Sudarso expressway traverses north to south the central part of the service area. This expressway is a suitable service area boundary.

JTP recommends that this service area be divided in two in the future.

The result of construction cost comparison is given in Table 5.1.(13).

The calculated wire centre of Tanjung Priok (B) Exchange Office is shown in Fig. 5.2.(32).

5.1.2.5 Kebayoran

The estimated demand in 1993 in the future service area of this exchange office is 41,600.

There are two kecamatans in this service area. They are Kebayoran Baru and Kebayoran Lama. The boundary of these two kacamatans is the Kali Grogol river. This river is a suitable service area boundary.

JTP recommends that this service area be divided in two in the future.

The result of construction cost comparison appears in Table 5.1.(14).

The calculated wire centre of Kebayoran (B) Exchange Office is shown in Figure 5.2.(32).

5.1.2.6 Jatinegara

The estimated demand in 1993 in the future service area of this exchange office is 37,700.

This service area comprises two kecamatans, i.e., Matraman and Jatinegara. The boundary of these two kecamatans is the railway. PERUMTEL planned to establish another exchange office in this area and selected kecamatan Jatinegara for the new exchange office site.

The existing Jatinegara exchange office already has 4,000 subscriber line units installed. There is no surplus space for additional installations.

JTP recommends that this service area be divided in two.

The result of construction cost comparison appears in Table 5.1.(15).

5.2 New Terminal Installation Plan and New Exchange Office Construction Plan by Year

5.2.1 New Terminal Installation Plan

The new terminal installation plan up to 1977 decided by PERUMTEL on 20th January 1975 is shown in Table 5.2.(1).

JTP formulated the new terminal installation plan for and after 1978, based on PERUMTEL.s plan and in consideration of the trend of demand increase. In formulating the plan JTP used the following standards:

at a second

- a) Four years as an optimum provision period for switching equipment. (Refer to Part III, Chapter 6, Section 8.)
- b) 1,000 terminals as a unit of new installation.

Fig. 5.2.(4) through Fig. 5.2.(31) show the new subscriber terminal installation plans for all exchange offices.

5.2.2 New Exchange Office Construction Plan

Table 5.2.(2) and Fig. 5.2.(3) present summaries of new terminal installation plan and new exchange office construction plan for each base year.

The total number of line units given in Table 5.2.(2) exceeds the total demand. This is because the optimum provision period for new/additional subscriber switches is set at four years as aforementioned.

Up to 1978 the total number of line units somewhat exceeds the previously mentioned standard number of installation. This gap can be understood when the following facts are considered:

- a) The period mentioned is a transition period in which a large quantity of facilities are additionally installed for the first time in Jakarta.
- b) Generally, after the new/additional installation an unexpected demand arises.
- c) Since the new/additional installation is to be made by a unit of 1,000 line units the number of switches installed even at the initial stage where the demand increase is mild is moved up to 1,000.

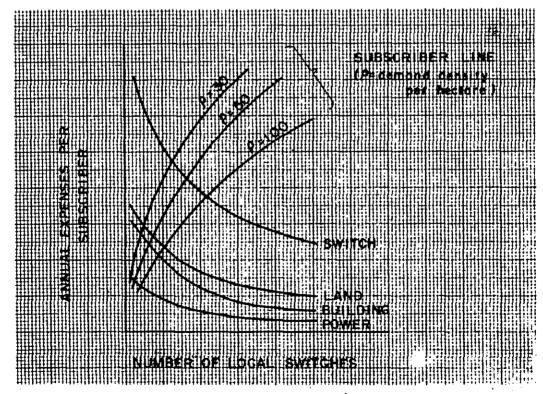


FIG.-5-1(1)

TABLE 5-1-(2) SERVICE AREA SIZE, DEMAND AND DEMAND DENSITY AS OF 1993 FOR EACH EXCHANGE OFFICE

No	Name of Exchange office	Service area size (ha)	Demand	Demand density / ha
ı	[*] Jakarta Kota	1,576	117,400	74.5
2	Ancol	2,140	28,300	13.2
3	Pluit	1,366	18,800	13.8
4	Cengkareng	3,267	14,600	4.5
5	Tegal Alur	3,108	9,300	3.0
6	*Gambir	2,137	95,900	44.9
7	*Semanggl	1,588	51,000	32.1
8	Slipi	1,481	35,100	23.7
9	Pal Merah	1,505	26,000	17.3
10	Kedoya	1,315	10,100	7.7
11	Meruyo	1,882	11,800	6. 3
12	Cempaka putih	1,424	40, 200	28.2
13	Rawamangun	1,468	21,900	14.9
14	Pulo Gadung	1,692	6,900	4.1
15	Penggilingan	1,529	8,300	5.4
16	*Tanjung Priok	2,441	61,500	25. 2
17	Cilincing	1,759	11,700	6.7
18	*Kebayoran	2,070	41,600	20.1
19	Cipete	2,450	15,700	6.4
20	Kalibata	2,289	29,200	12.8
21	Pasar Minggu	2,194	11,400	5.2
22	Jagakarsa	2,064	5,800	2.8
23	*Jatinegara	1,802	37,700	20.9
24	Cawang	2,660	24,600	9. 2
25	Pasar Rebo	3,630	15,400	4.2
26	Klender	1,892	20,300	10.7
27	Tebet	1,167	27,700	23.7
28	Gandarla	3,258	9,800	3.0

TABLE 5-1-(3) SERVICE AREA SIZE, DEMAND AND DEMAND DENSITY AS OF 1993 WHICH HAD BEEN DECIDED BY J.T.P. AND PERUMTEL.

No.	Name of Exchange office	Service area	Demand	Demad density / ha
-	Jakarta Kota A	562	20,900	37.2
1	• B	471	57,100	121.2
	, c	543	39,400	72.6
2	Ancol	2,140	28, 300	13.2
3	Piult	1,366	18,800	13.8
4	Cengkareng	3,267	14,600	4,5
5	Tegal Alur	3,108	9,300	3.0
6	Gambir A	1,139	43,700	38.4
Ů	• B	998	52,200	52.3
	Semanggi A	871	36,100	4.14
7	, 8	717	14,900	20,8
8	Silpi	1,481	35, 100	23.7
9	Pal Merah	1,505	26,000	17,3
10	Kedoya	1,315	10,100	7.7
11	Meruya	1,882	11,800	6,3
12	Cempaka Putih	1,424	40,200	28, 2
13	Rawamangun	1,468	21,900	14.9
14	Pulo Gadung	1,692	6,900	4.1
15	Penggilingan	1,529	9,300	5,4
16	Tanjung Priok A	1,214	32,500	26. 8
	, 8	1,227	29,000	23.6
17	Cilinaing	1,759	11,700	6.7
	Kebayoran A	1,107	26,000	23.5
18	, в	963	15,600	16.2
19	Cipete	2,450	15,700	6.4
20	Kalibata	2,289	29, 200	12.8
21	Pasar Minggu	2,194	11,400	5.2
22	Jagakarso	2,064	5,800	2.8
23	Jatinegara A	672	17,700	26.3
	, B	1,130	20,000	17.7
24	Cawang	2,660	24,600	9,2
25	Pasar Rebo	3,630	15,400	4.2
26	Klender	1,892	20,300	10,7
27	Tebet	1,167	27,700	23.7
28	Gandaria	3,258	9,800	3.0

TABLE 5-1-(4) INSTALLATION TARIFF IN JAKARTA

in Anti-resident District des Company (1994). The district design of the Company
(Unit; Rp.)

Distance from ex subscribe	change to	L ≤4 km	4 < £ ≤ 7 km	7 < L ≤ 10km	10 < <i>L</i> ≤20km	20 < L km
Basic o	cost:	280	280	280	280	280
ion	Basic	500,000	500,000	500,000	500,000	500,000
installation tariff	Special addition	- . ,	А	В	С	D
[🖰	Totai	E00.000	500,000	500,000	500,000	500,000
Line	10141	500,000	+ A	+ B	+ C	+ D
Telepho	ne set	2,000	2,000	2,000	2,000	2,000
Technica	il checking	10,000	10,000	10,000	10,000	10,000
Duty st	amp	10	10	10	10	10
Total		5/2,290	512,290	512,290	512,290	512,290
10101		0161290	+ A	+B	+ C	+ D

Note: $4 < \ell \le 7 \text{ km}$ A = 12,500/km

 $7 < \ell \le 10 \text{ km}$ B = A + 12,500 / 100 m 10 < $\ell \le 20 \text{ km}$ C = B + 14,000 / 100 m

20 < L km D = C + 16,500 / 100 m

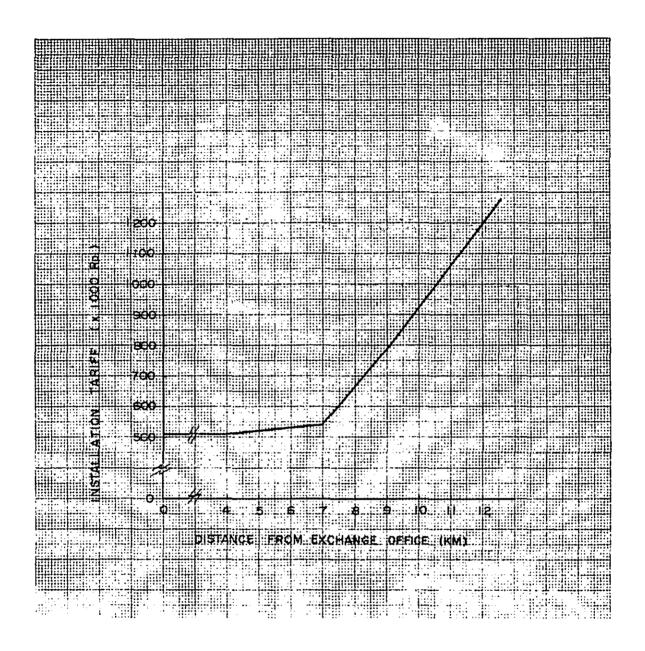


FIG. 5-1-(5)
INSTALLATION TARIFF IN JAKARTA

TABLE 5-1-(6) INSTALLATION TARIFF IN TOKYO

(Unit: Yen)

	(Other tell)
	Telephone
Basic cost	300
Installation tariff	50,000
Total	50,300
Telephone Bond	150,000

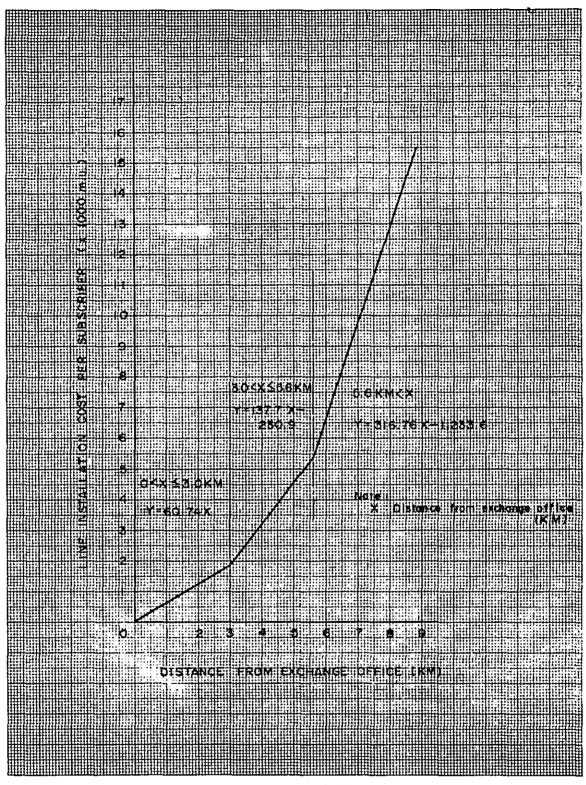


FIG. 5-1-(7)
LINE INSTALLATION COST USED FOR
CALCULATION OF WIRE CENTRE

TABLE 5-1-(8) EACH FIGURE USED FOR CALCULATION OF WIRE CENTRE

Annual Interest rate	i	0.12
Service life of plant	N .	25 Years
Annuitý from a present amount	$\frac{1(1+1)^{N}}{(1+1)^{N}-1}$	0.1275
Operation and maintenance cost rate	μ	0.01
Line installation cost	Cd	See FIG.5-1-(7)

TABLE 5-1-(9) COST COMPARISON BETWEEN PLANS FOR JAKARTA KOTA

1 tem	Plan I (Two Kota service areas)	Plan 2 (Three Kota service areas)
Distance between Kota B to future Kota C	J	I.7 km
Number of subscribers as of 1993 beyond future Kota C	0.4 mm ····· 12,101 0.6 mm ····· 8,828	l
· Number of necessary junction circuits as of 1993	1	0.4 mm ····· 4,495
Installation cost for primary cable including civil work	(million Rp.) 661	. 1
Installation cost for Junction cable including civil work (Cost difference only)	1	(million Rp.) 249
Installation cost for switch (Cost difference only)	40,875 T.	40,875T (million Rp.) 94
Total	(million Rp.) 661	(million Rp.) 343
Cost difference		(million Rp.) — 318

TABLE 5-1-(10) COST COMPERSON BETWEEN PLANS FOR TOLL EXCHANGE OFFICE

Îtem		Plan No. I Existing Gambir)	Pian No. 2 (Gambir B.)	Pian No. 3 (Semanggi)
Distance between existing Gambir and new toll exchange office	weu pu	O ka	w K B	7 km
Number of circuits as of 1993	SLLD	13,631	13,467	15,053
	IOX	1,837	1,837	2,006
Relation between wire centre and toll exchange office tocation		The same location with wire centre (good)	Distance difference; 3 km { not so good }	Distance difference; 7 km (very bad)
Effects to circuits between EO and Toll by shifting from wire centre (increasing rate to Plan No. 1)	d Toll	Nothing (100%)	SLDD, IOX — EO Large Difference cost to Plan I I,138 million Rp. (116%)	SLDD, 10X — E0 Very large Difference cost to Plan 1 5,233 millon Rp (172 %)
Effect to increasing loss by using the existing carrier equipment at existing Gambir exchange office { Additional installation cost }	the ing	Nothing	Circuit cost X3X3km 0.6 mm cable (4,097 million Rp.)	Circuit cost X 3 X 7 km O.6 mm cable (9,559 million Rp.)
Necessary required periods of building construction	Du .	Arrangement of office building, etc. (I Year)	New integrated building of locat and toll drauits (2 Years)	New toll exchange building

TABLE 5-I-(II) COST COMPARISON BETWEEN PLANS FOR GAMBIR

Item	Plan I (One Gambir service area)	Plan 2 (Two Gambir service areas)
Distance between existing Gambir A to future Gambir B	l	I.8 Km
Number of subscribers as of 1993 beyond future Gambir B	0.4 mm 10,164 0.6mm 14,879 0.8mm 1,764	1
Number of necessary junction circuits as of 1993	-	0,4 mm ······ 7,990 0,6 mm ····· 3,373 0,8 mm ····· 59
Installation cost for primary cable including civil work (Cost difference only)	(million Rp.) 1,004	
Installation cost for junction cable including civil work (Cost difference only)	l	(million Rp.) 451
Installation cost for switch (Cast difference only)	45,830T —	45,830 T 85
Total	(million Rp.) 1,004	(million Rp.) 536
Cost Difference		(million Rp.) - 468

TABLE 5-1-(12) COST COMPARISON BETWEEN PLANS FOR SEMANGGI

] tem	Plan I (One Semanggi service area)	Plan 2 (Two Semanggi service areas)
Distance between Semanggi A to future Semanggi B	1	2.0 km
Number of subscribers as of 1993 beyond future Semanggi B	0.4 mm 600 0.6 mm 5,880 0.8 mm 200	I
Number of necessary junction circuits as of 1993	J	0.4 mm 851 0.6 mm 1,798 0.8 mm 69
Installation cost for primary cable including civil work (Cost difference only)	(million Rp.) 316	l
Instaliation cost for junction cable including civil work (Cost difference only)		(million Rp.) 158
Installation cost for switch (Cost_difference only)	15,480T	15,480 T (million Rp.) 122
Τοταί	(million Rp.) 316	(million Rp.) 280
Cost difference		(millon Rp.) - 36

TABLE 5-1-(13) COST COMPARISON BETWEEN PLANS FOR TANJUNG PRIOK

Item	Plan I (One TG. Priok service area)	Plan 2 (Two TG. Priok service areas)
Distance between TG. Priok A to future TG. Priok B		3.0 km
Number of subscribers as of 1993 beyond future TG, Priok B	0.6 mm 10,885 0.8 mm 6,480	I
Number of necessary junction circuits as of 1993		0,4 mm 687 0,6 mm 800 0,8 mm 1,966
Installation cost for primary cable including civil work (Cost difference only)	(million Rp.) 1,405	
Installation cost for junction cable including civil work (Cost difference only)	l	(million Rp.) 340
Installation cost switch (Cost difference only)	29,830 T	29,830 T (million Rp.) 107
Total	(million Rp.) 1,405	(million Rp.) 447
Cost difference		(million Rp.) — 958

TABLE 5-1-(14) COST COMPARISON BETWEEN PLANS FOR KEBAYORAN

l tem	Plan I (One Kebayoran service area)	Plan 2 (Two Kebayoran service areas)
Distance between Kebayoran A to future Kebayoran B		2.8 km
Number of subscribers as of 1993 beyond future Kebayoran B	0.6 mm ······ 10,655	I
Number of necessary junction circuits as of 1993		0.4 mm 943 0.6mm 174 0.8mm 366
Installation cost for primary cable including civil work (Cost difference only)	(million Rp.) 947	Ĭ
Installation cost for junction cable including civil work { Cost difference only }		(million Rp.) 134
Installation cost for switch (Cost difference only)	15,374 T	15,374 T (million Rp.) 124
Total	(million Rp.) 947	(million Rp.) 258
Cost difference		(million Rp.) — 689

TABLE 5-1-(15) COST COMPARISON BETWEEN PLANS FOR JATINEGARA

E e ±	Plan (One Jatinedara service area)	Plan 2 (Two Jatinegara service gregs)
Distance between Jatinegara A to Jatinegara B	1	2.8 km
Number of subscriber as of 1993 beyond Jatinegara B	0.6 mm ······ 5,909 0.8 mm ····· 6,299	
Number of necessary junction circuits as of 1993	ł	0.4 mm · · · · · · · 928 0.6 mm · · · · · · · 284 0.8 mm · · · · · · · 63
installation cost for primary cable including civil work (Cost difference only)	(million Rp.) 978	1
Installation cost for junction cable including civil work (Cost difference only)	l	(million Rp.) 101
Installation cost for switch (Cost difference only)	20,823 T	20,823 T (million Rp.)
Total	(million Rp.) 978	(million Rp.) 224
Cost difference		(million Rp.) 754

TABLE 5-2-(1) INSTALLATION PROGRAM OF TELEPHONE EXCHANGE IN JAKARTA CITY 1975 - 1977

		. = .							Issu	ued Jan.19	75 by PLANTEL
	Name of			1975			197	6		1977	
No.	Project Exchange	Existing	KFW project	Pertamina project	PRX project	KFW project	Pertamina project	Mobile exchange project	PRX project	Pertamina project	Total ·
-	5	3	4	5	6	7	8	9	10	11	12
_!	Kota (A)	10,000								-	10,000
2	Kota (B)		6,000		20,000		4,000				30,000
_ 3	Ancol						_		3,500	-	3,500
_4	Pluit		2,000	1,000	<u>-</u>					-	3,000
_5	Cengkareng								5,000		5,000
6	Tegal Alur										
7	Gambir (A)	17,000	_		(T)	3,000	<u> </u>				20,000
В	Gambir (B)	-	-	_					20,000	5,000	25,000
9	Semanggi (A)	2,000	4,000				_		10,000	-	1 6,000
10	Silpi	1,500	2,000					<u> </u>			3,500
11	Pal Merch						<u> </u>		5,000		5,000
12	Kedaya		-			_			-	_	
13	Meruya		-				_			-	
14	Cempaka Putih						8,000		16,000		24,000
15	Rawamangun			-		-			6,000]	6,000
16	Pulo Gadung			-	_	_			6,000		6,000
17	Penggilingan			1	-	-			<u> </u>	_~	_
18	Tanjung Priok	2,000			4,000	-	_				6,000
19	Cilinaing							<u> </u>			
50	Kebayoran	8,000				2,000			12,000	~	22,000
21	Cipate	600(+)							8,000		8,600
22	Kalibata			-					8,000		8,000
53	Pasar Minggu			_			5,000				5,000
24	Jagakarsa	-	_	_		<u> </u>				-	
25	Jatinegara (A)	4,000		-						~	4,000
56	, (B)			-	-			2,000	10,000	-	12,000
27	Cawang			_				2,000	8,000		10,000
28	Pasar Rebo							1,000	5,000		6,000
29	Klender	_	-						4,000	-	4,000
30	Tabet	-				_		2,000	8,000		10,000
31	Gandaria	200	-					1,000		-	1,200
	Total	45,300	14,000	1,000	24,000	5,000	17,000	8,000	134,500	5,000	253,800
		45,300		39,000			- 1	64,500		5,000	

PRX. Project	_	_		24,000	_	-		134,500		158,500
KFW. Project	ı	14,000	-	_	5,000	-		_	_	19,000
Pertamina Project	-	- 1	1,000	-	-	17,000	-	_	5,000	23,000
Mobile exchange Project	_	_		_			8,000	-		8,000
Existing	45,300	-	-	-		_	-	_		45,300
Total	45,300	1	39,000			164	1,500		5,000	253,800

^{* :} Mobil Exchange

TABLE 5-2-(2) NEW SWITCH AND NEW LOCAL TELEPHONE OFFICE
CONSTRUCTION PLAN

(Unit: thousand) No Name of Exchange Existing '75 '76 '77 '78 '79 '80 '81 '82 '83 '84 '85 '86 '87 '88 '89 '90 '91 '92 '93 Total 7 28.0 3 3 Jakarta Kota A 10 **26** 4 64.0 • в (20) 51.0 С 3 31.5 3 5 2 Ancol (3) 5 4 23.0 3 Pluit (3) 20,0 5 10 4 Cengkareng ③ 3 9 15,0 5 Tegal Alur 15 60.0 6 8 11 6 Gambir 17 15 55.0 8 7 8 В 49,0 7 9 17 7 Semanggi 4 10 _2__ Α (0) 4 5 19.0 8 43.5 8 Slipi 10 6 9 1.5 2 (3) 12 15 41.0 3 6 8 Pal Merch 3 4 14,0 10 Kedoya **(4)** II Meruya 16.0 24) 12 54,0 12 Cempaka Putih **(**6) 25.0 9 13 Rawamangun **(6)** 11,0 14 Pulogadung (2) 15 Penggilingan 2 6 15.0 4 6 13 16 45.0 16 Tanjung Prick A 4 2 **(B**) ,, 6 16 41.0 (2) 4 8 16.0 17 Cilinaing 2 14 6 32.0 18 Kebayoran Α В 9 8 4 6 19.0 21.6 19 Cipete 6 0.6 8 **(B)** 37.0 15 20 Kalibata 5 9 (5) 21 Pasar Minggu 4 6 15.0 (2) 4 8.0 22 Jagakorsa 24.0 23 Jatinegara Α 4 12 7 24.0 5 24 Cawang 10 37.0 11 6 25 Pasar Rabo 10 12 28.0 26 Klender (4) 15 25.0 6 27 Tebet (((11 16 44.0 28 Gandaria 3 9 19.2 0.2 1 No. of New exchange offices 2 14 Total no. of exchange offices 11 No. of New line units 38 9 46 39 21 32 68 89 52 (1000) Total no. of lins units (1000) 3246.6253.6275.6263.6321.6330.6339.6385. Total no. of demand 112.722.6134.9148.6163.9180.6198.5217.5240.5265.5237.0332.0367.0406.04520504.0558.0526.0707.8808.0

Note : Mark shows new exchange office service opening time.

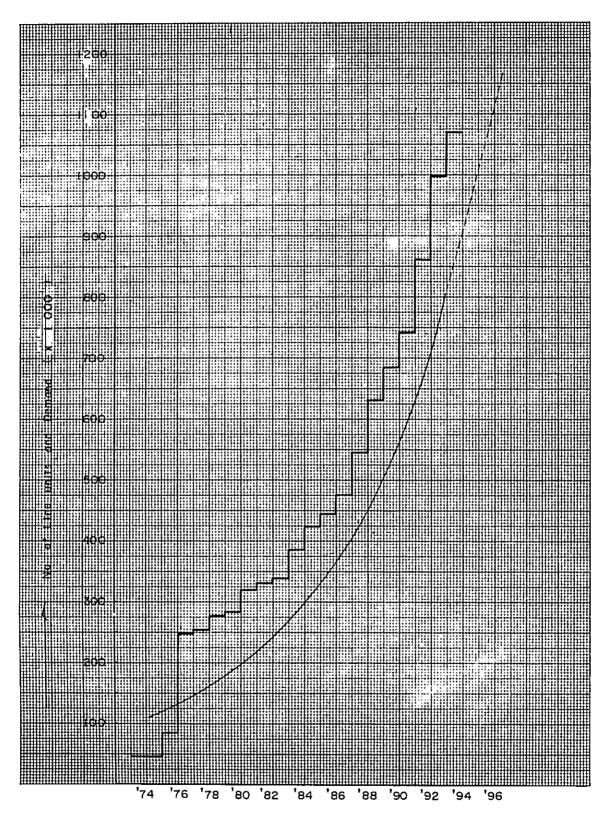


FIG.5-2-(3) NO.OF LINE UNITS AND DEMAND IN JAKARTA

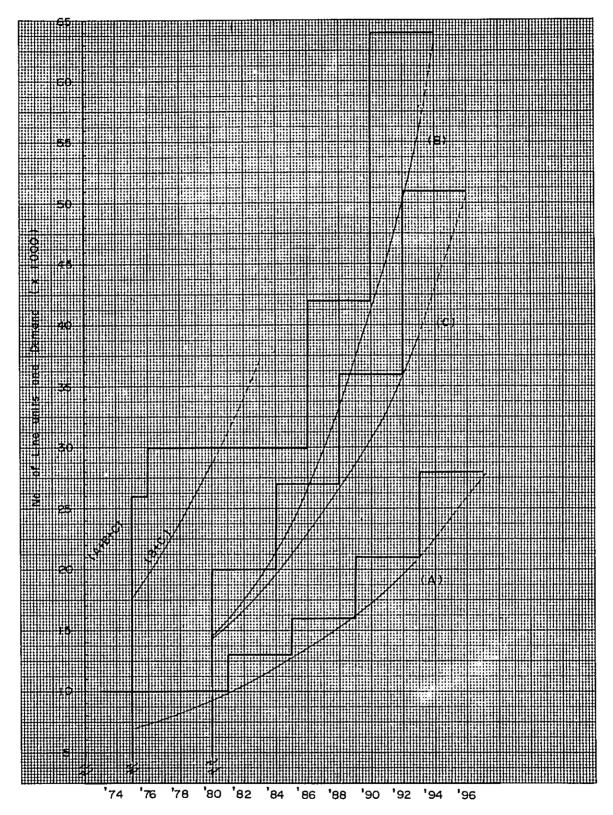


FIG. 5-2-(4) JAKARTA KOTA

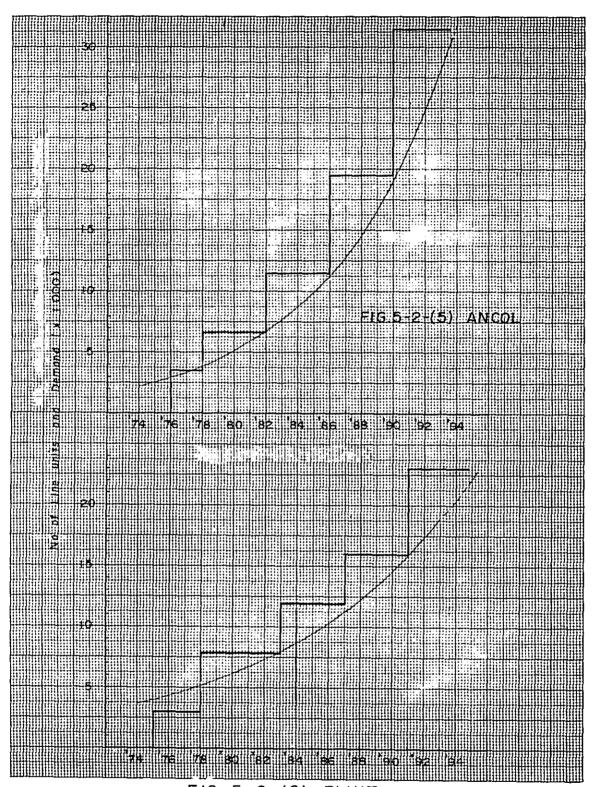


FIG. 5-2-(6) PLUIT

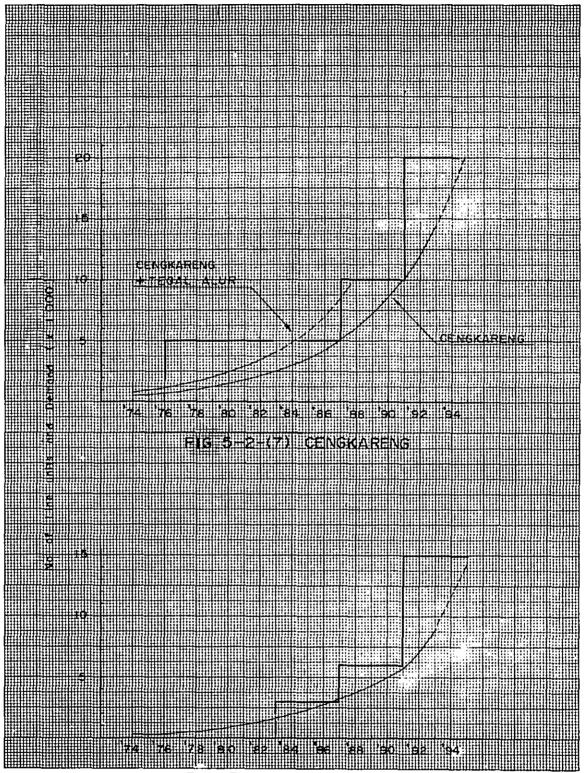


FIG. 5-2-(8) TEGAL ALUR

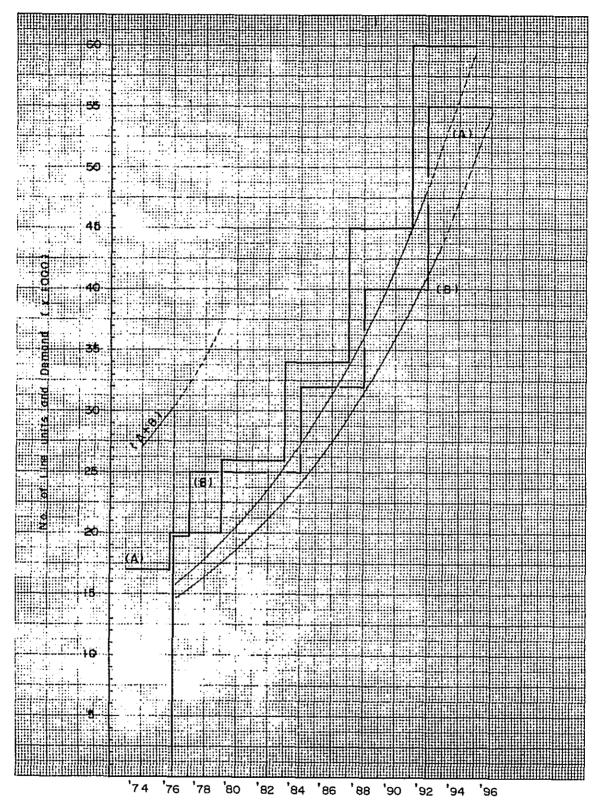


FIG. 5-2-(9) GAMBIR

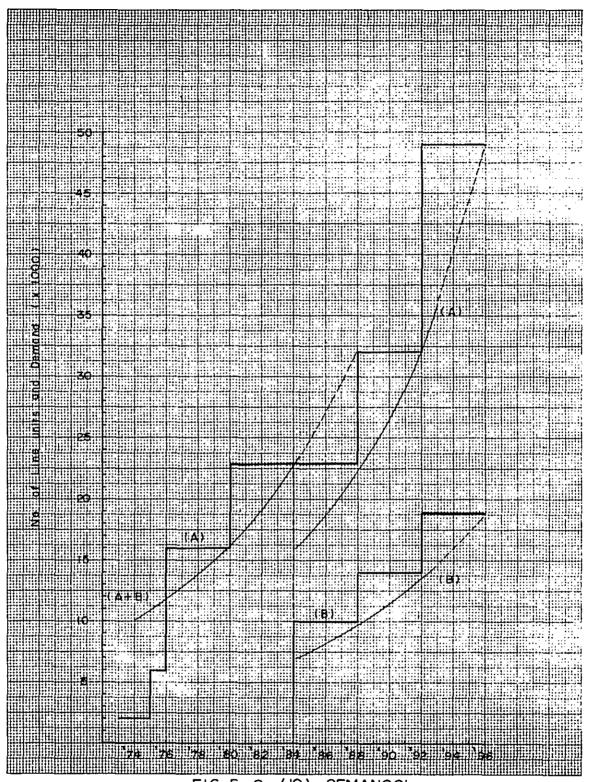


FIG. 5-2-(IO) SEMANGGI

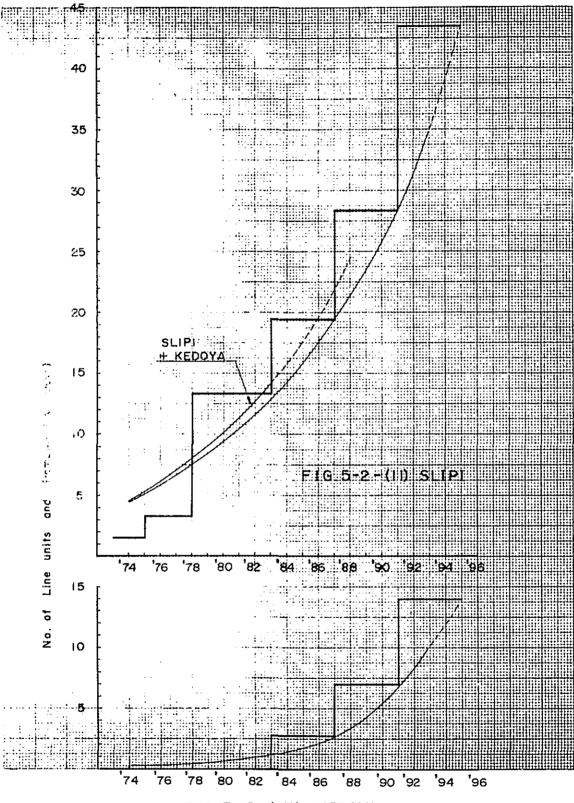


FIG. 5-2-(13) KEDOYA

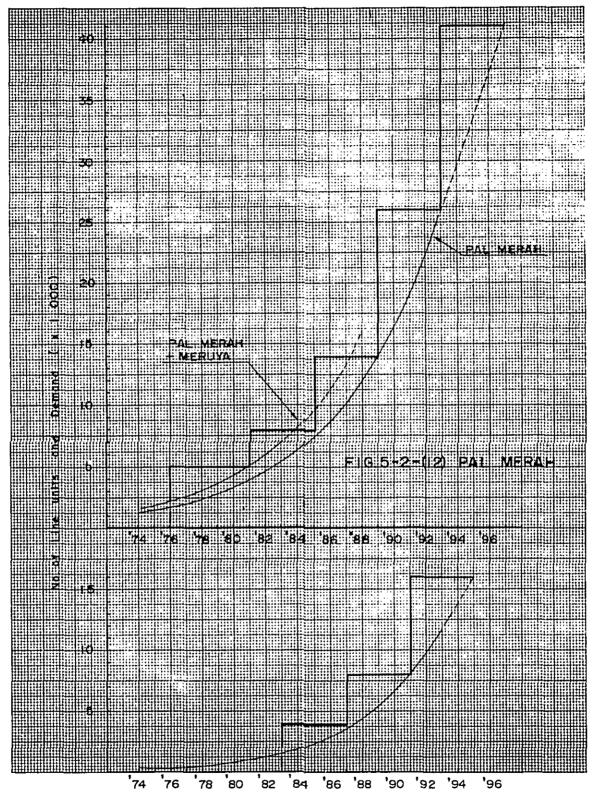


FIG. 5-2-(14) MERUYA

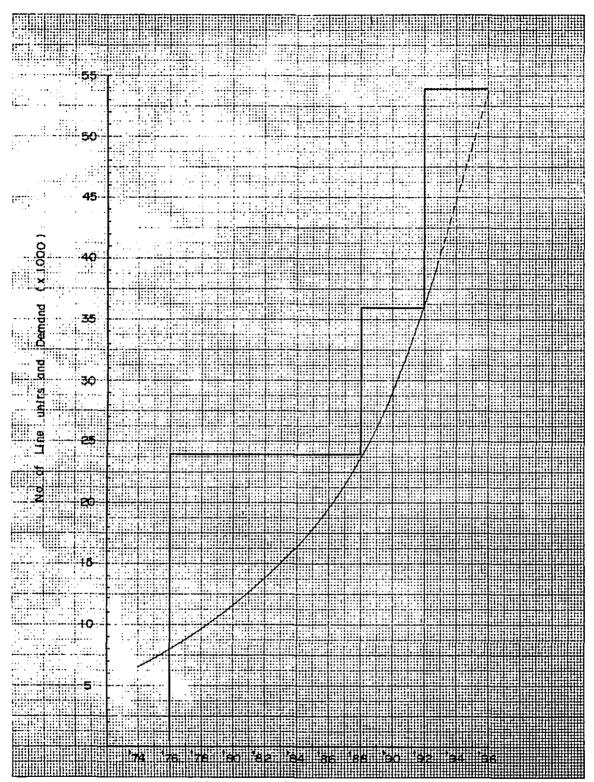


FIG. 5-2-(15) CEMPAKA PUTIH

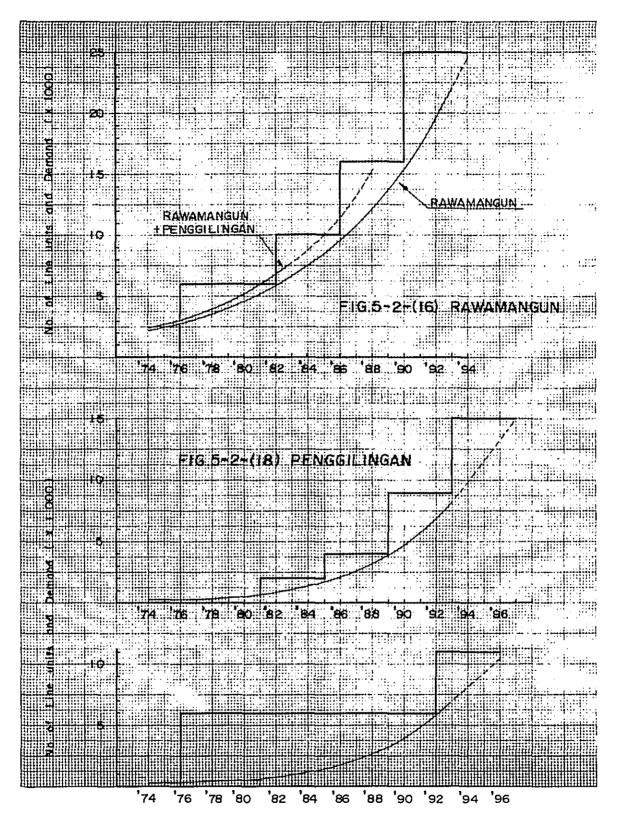


FIG. 5-2-(17) PULO GADUNG

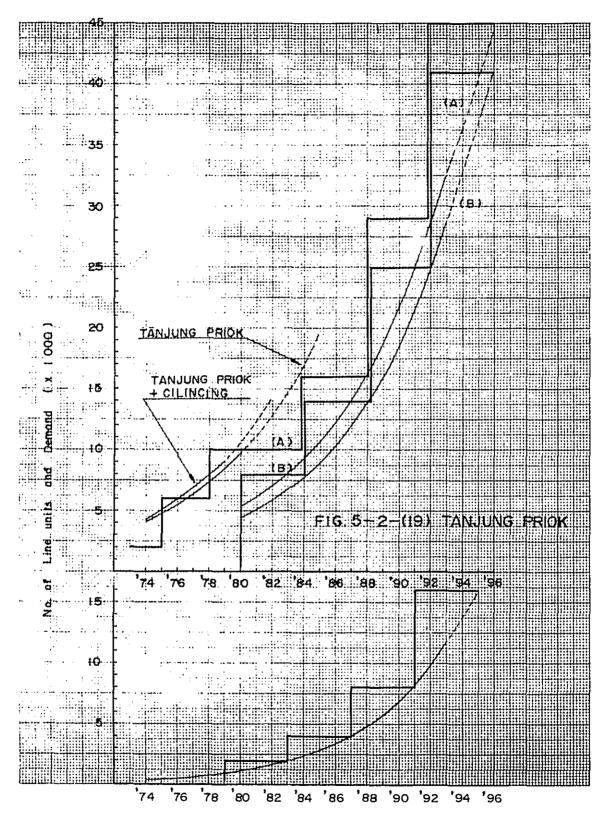


FIG. 5-2-(20) CILINCING

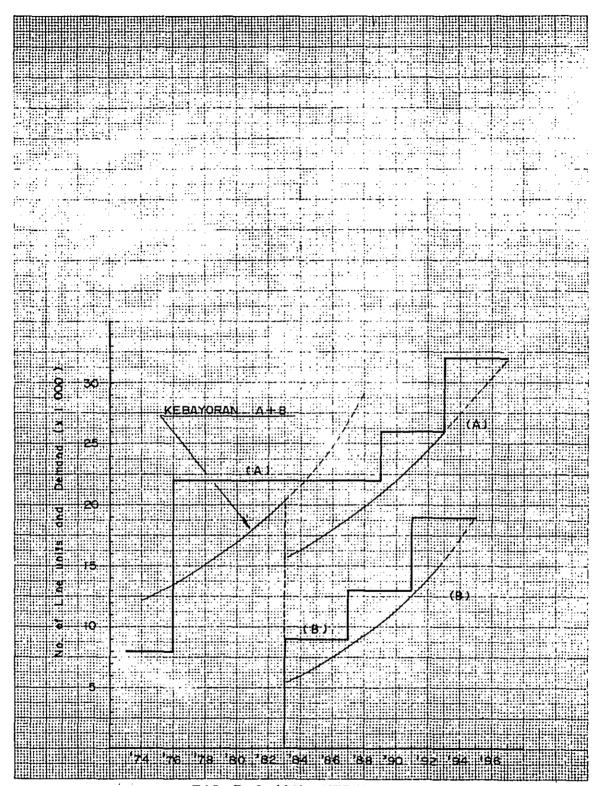


FIG.5-2-(21) KEBAYORAN

FIG. 5 - 2 - (23) KALIBATA

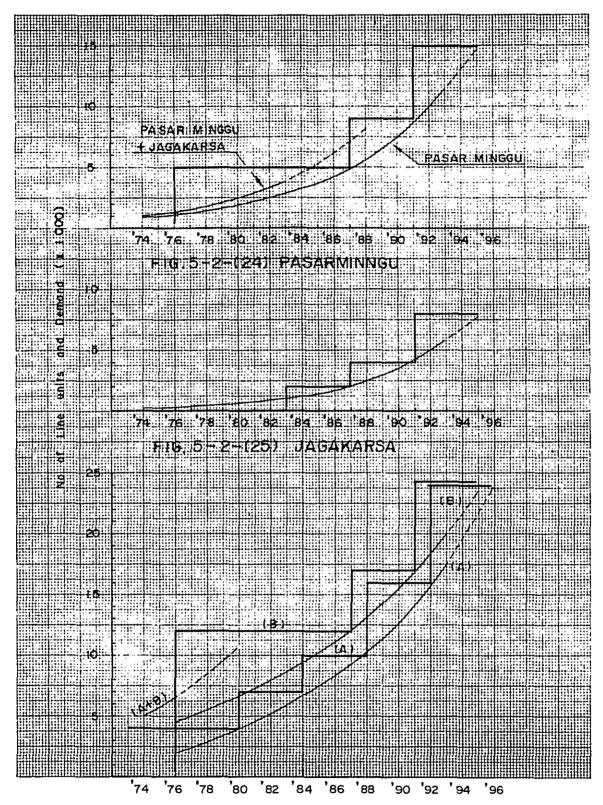


FIG. 5-2-(26) JATINEGARA

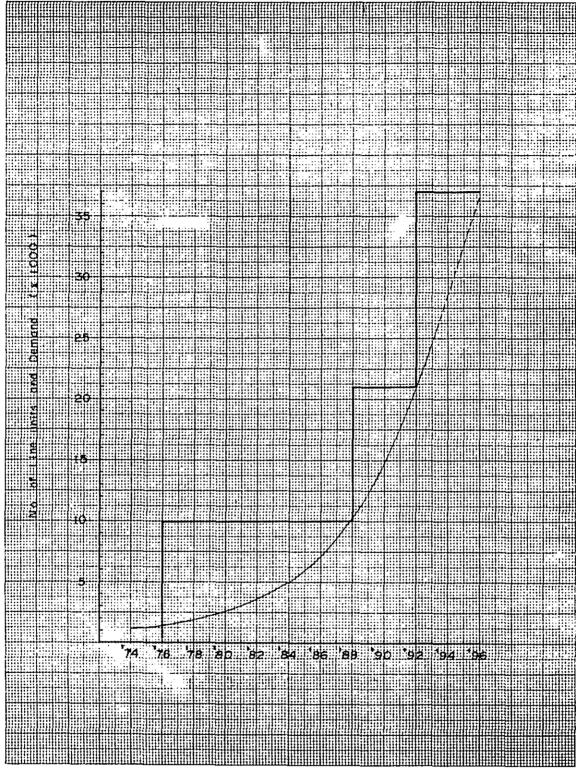


FIG. 5-2-(27) CAWANG

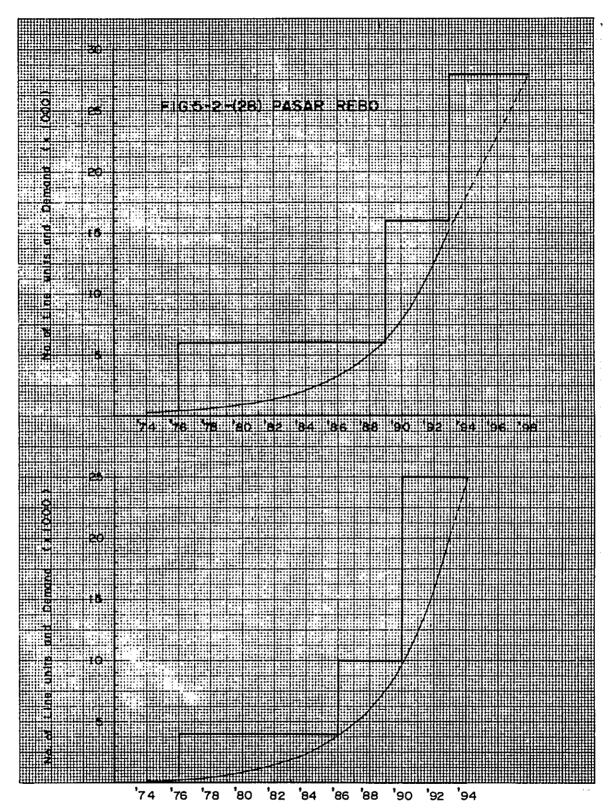


FIG. 5-2-(29) KLENDER

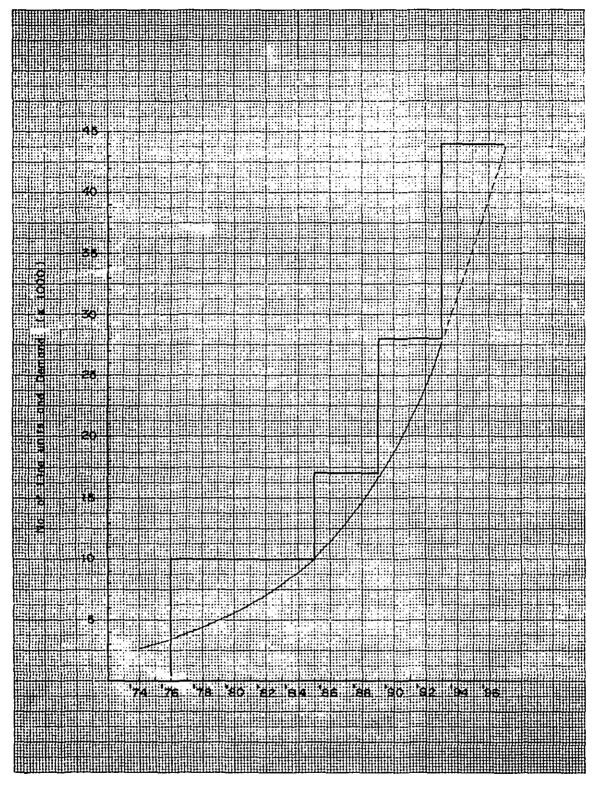


FIG. 5-2-(30) TEBET

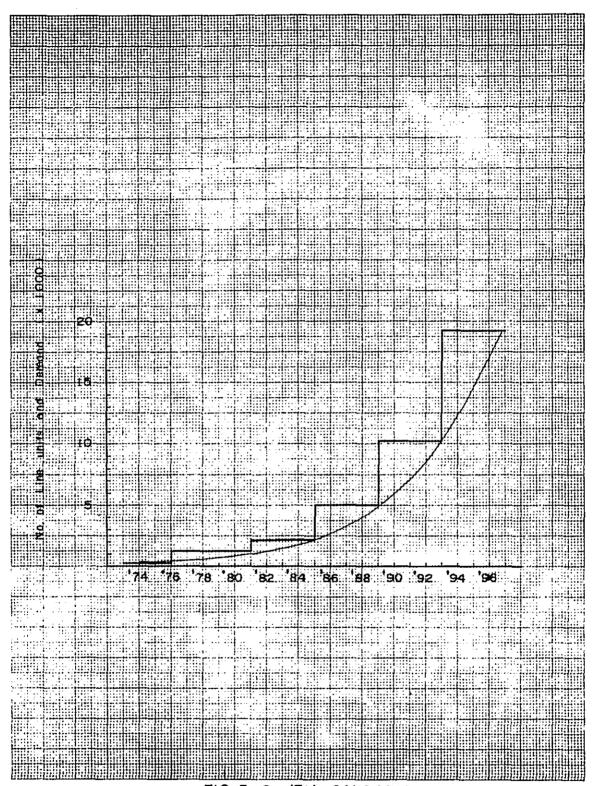
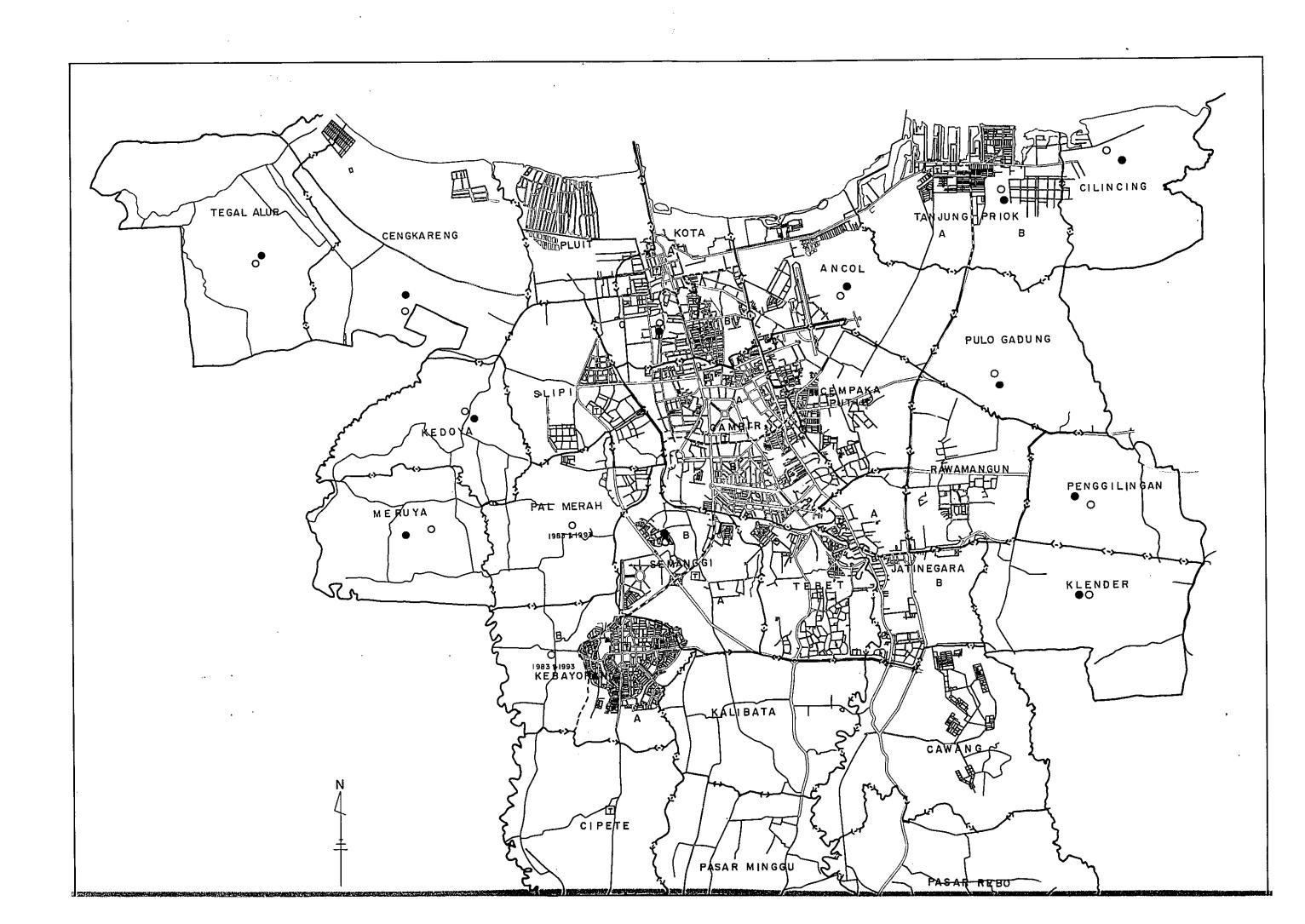
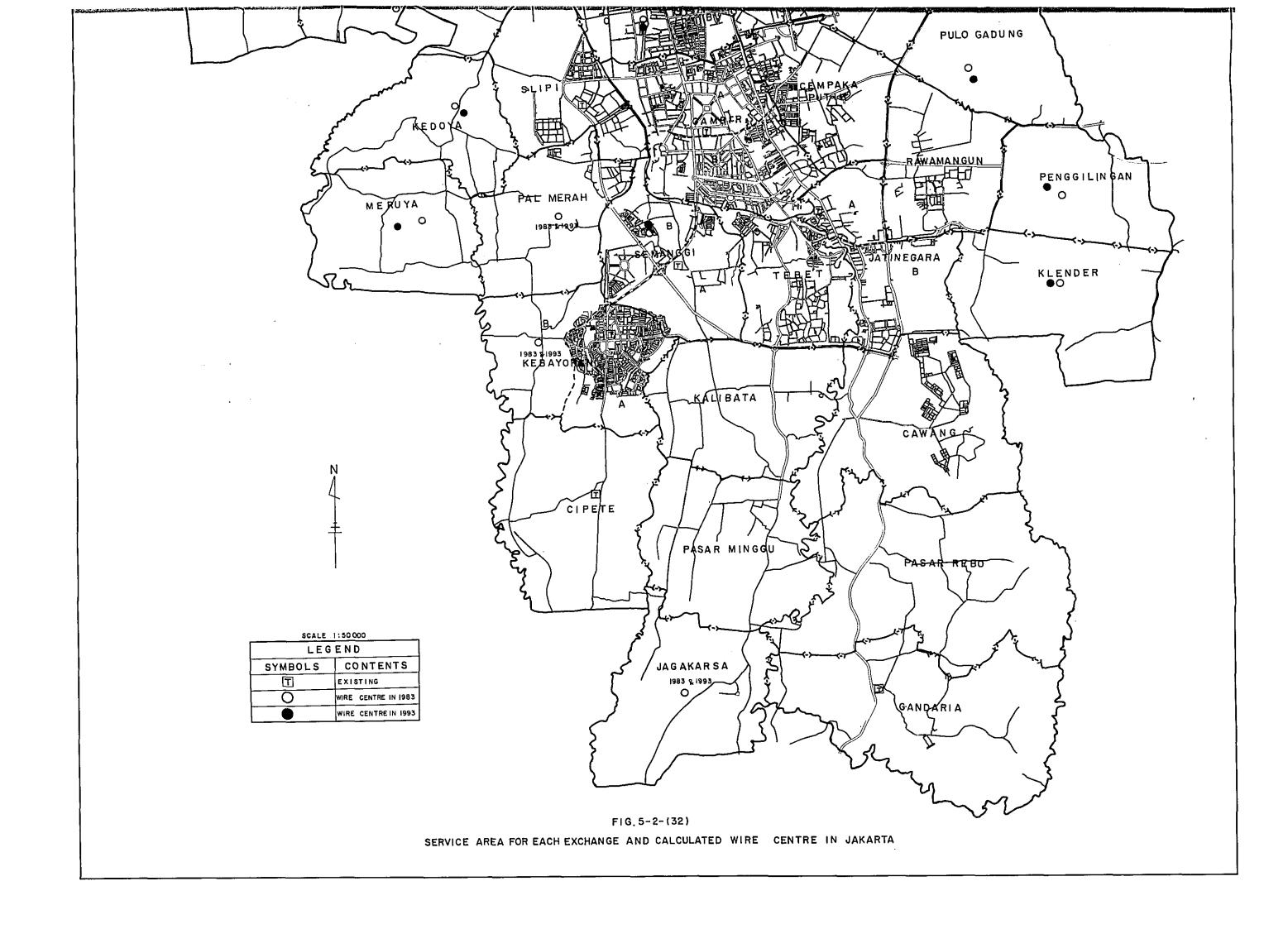




FIG. 5-2-(31) GANDARIA

CHAPTER 6 TECHNICAL STANDARD

i muisano

TECHNICAL STANKERSHIP

6.1 Numbering Plan

According to PERUMTEL's numbering plan the local office code in Jakarta in and after 1975 are to be composed of 2-digits in the case of exchange offices equipped with the EMD system and 3-digits in the case of those equipped with the new switching system. JTP, on the other hand, proposed a different numbering plan. These two numbering plans differ in the method of arranging the exchange office codes. However, judging from the traffic volume, the difference is a mere 0.2% or less. And, from the viewpoint of traffic forecast, this 0.2% difference can be ignored. Thus, in the calculation of junction circuits and the selection of junction cable type, there is no difference between the two numbering plans.

The office code digits for each base year as determined by the two numbering plans are shown in Table 6.1.(1).

Plan	Year Syst	1975	1976	1980	1981
PERUMTEL	EMD	1D,2D	2D	2D	.2D ,
PEROMIEL	PRX	3D	3D	3D	3D
JTP	EMD	1D,2D	1D,2D	2D	3D
Jir	PRX	2D	2D	2D	3D :

Table 6.1.(1) Office Code Comparison for The Both Plans

6.1.1 Outline

In the local exchange offices in Jakarta approximately 45,000 LU subscriber circuits are installed as of April 1975. The switching system is the EMD step-by-step system except for Cipete Exchange Office where the crossbar system (NEC - C23MCX) of 600 LU is adopted.

Additional subscriber installations totaling 211,500 LU are planned for and after 1975. This total includes 158,500 LU by the new system, 45,000 LU by the EMD system and 8,000 LU by the MCX system. New subscriber installations by the EMD system, however, are scheduled to be suspended after 1977.

The telephone demand in Jakarta in 1993 is presumed to reach 808,000.

At present, for the numbering system, the terminating tandem system is adopted. Both

1-digit and 2-digit office codes are used. Some of exchange offices which now use the 1-digit office code must change it to the 2-digit code as soon as possible in order that additional subscriber installations may not be obstructed.

In view of the foregoing we studied the local office numbering plan in Jakarta, dividing it in two as follows:

- a) The immediate numbering plan for 1975 through 1977.
- b) The long-term numbering plan for and after 1978.

6.I.2 Basic Policy of Local Numbering Plan

The basic requirements in connection with the formulation of local numbering plan were as follows:

(1) To take into consideration the future international automatic dialing plan

By the CCITT proposal on the international automatic dialing plan Indonesia is given the country code of "62." CCITT determines the number of digits for international automatic dialing to be 11 digits. On the other hand, Indonesia's national toll numbering plan gives Jakarta and other big cities the 2-digit toll area code ("21" for Jakarta) and the 3-digit toll area code to other cities. Therefore, the maximum digits of local numbers must be 7 or 8.

- (2) To adopt pertinent office codes in consideration of future telephone demand The local office codes must be determined, based on the long-term plan. The alteration of office codes must be avoided unless absolutely necessary. The longer than necessary office codes must also be avoided.
- (3) To take switching system performance into full account

The numbering plan is intimately related to the switching system, circuit network formation and tandem system. Therefore, these elements must be taken into full account functionally from the economic viewpoint.

6.1.3 Existing Numbering Plan

The existing numbering plan and number of LU accommodated in Jakarta are shown in Table 6.1.3.(1).

Table 6.1.3.(1) Present Numbering and LU (as of 1974)

Office	Office code	No. of LUs.	System
Kota	2 XXXX 27 XXXX	7,000 3,000	EMD
Tg. Priok	29 XXXX	2,000	"
Gambir	4 XXXX 5 XXXX 35 XXXX 55 XXXX	10,000 6,000 1,000	" " PABX
Semanggi	58 XXXX 580 XXXX	2,000	EMD PABX
Slipi	59 XXXX 59 XXX	900 600	EMD
Gandaria	57 XXX	200	"
Kebayoran	7 XXXX 77 XXXX 78 XXXX	6,000 2,000	" PABX
Cipete	76 XXXX	600	MCX
Jatinegara	8 XXXX	4,000	EMD
TOTAL		45,300	

"1D" 33,000 "2D" 12,300

6.1.4 Immediate Numbering Plan

At present, in Jakarta, both 1-digit and 2-digit office codes are used. Part of exchange offices that use the 1-digit office code will be unable to fulfill additional subscriber installations in and after 1975 due to the lack of office codes. Therefore, the exchange offices with 1-digit office codes will have to adopt 2-digit office codes sooner or later. What is most important at this time is to accomplish according to schedule the massive installation expansion work now in progress.

Therefore, by so arranging that the work to change the 1-digit office codes to 2-digit codes be kept to the necessary minimum, the numbering plan for the immediate future was formulated. This numbering plan was based on these facts:

- (1) The common use of 1-digit and 2-digit office codes is technically possible for the time being.
- (2) In the Gambir and Jatinegara areas the work to change the 1-digit office codes to 2-digit codes takes much time to complete because of the deficiency of building space and facilities; it is extremely difficult to effectuate a large-scale installation expansion work in a short period.

(3) Gambir Exchange Office still leaves the accommodation capacity for 2,000 LU.

6.1.4.1. Study of Numbering Plans in Gambir and Jatinegara Areas

The numbering plans for the Gambir and Jatinegara areas are shown in Table 6.1.4.1.(1).

(1) Gambir Area

The merit and demerit comparison table (Table 6.1.4.1.(2)) was made for each of plans 1, 1', 1", 2, 3 - 7 in Table 6.1.4.1.(1). As the result of study based on this comparison table the decision was made that plan 1 would be best fitted for the Gambir area.

Reasons for the above decision are as follows:

- (i) Additional building space for installation of switching equipment to realize 2-digit office codes is not necessary.
- (ii) Financial investment for installation of switching equipment to realize 2-digit office codes is not necessary.
- (iii) The Semanggi office code "58" and Slipi office code "59" had better be used without change.

(2) Jatinegara Area

The undermentioned five plans were drafted and studied. As the result it was decided that Plan 1 or Plan 3 be the first choice provided it was compatible with the PERUMTEL policy and, if not, Plan 2 or Plan 4 would be the substitute.

- Plan 1: In the Jatinegara-II area the number of terminals is 12,000 LU.

 However, the subscriber numbering that can be allocated are only 10,000, i.e., smaller than necessary.
- Plan 2: Office code "87" is shared by Jatinegara-II and Gandaria. Therefore, the office code for either one of these two areas has to be changed in the future.
- Plan 3: In Jatinegara-II the PRX terminals number 10,000 LU but the subscriber numbering available for allocation are only 8,000.
- Plan 4: Office code "87" is shared by Pasarrebo and Gandaria. Therefore, the office code for either one of these two areas has to be changed in the future.
- Plan 5: The existing Jatinegara-I Exchange Office requires building expansion for installation of switching equipment to realize the 2-digit office code. The building expansion and additional switching equipment installation take time. Thus the service-in of other exchange offices will also be delayed.

TABLE 6-1-4-1-(1) NUMBERING PLAN IN GAMBIR AND JATINEGARAAREA

	NAME OF	Ш	EXPANSION PLAN	NOIS	§	•		(/ CN/	NUM .	NUMBERING	PLAN	(A CA)	(NO 5)	(N)	(7 ON)	
	μį	- 4	15	7,	1.	CODE	RESERVE 4-"	4 "	4		"4" 2" 5"		5		. S	
			+			4-000X~900X				4 -NOCHANCE		34-000X-900X		3 4 -XXXX		
	GAMBIR (I)		PRX	PRX KFW		5-0xxx.6xx	NOCHANGE	•	•	35-000K-6000	*	5 -NOCHANCE	`	3 5-XXXX	`	
			Ξ	ю		35-7XXX	31-xxxx			35-NOCHNŒ		35-NO CHANGE	,	*	•	
				, 8	-		32-XXX				,	· ·				
. BII	GAMBIR(II)			ž S	<u>X</u> ; io		33-XXXX 36-XXXX	• :		*	*	•	•	*		
BMA	SEMANGGI(1)	N	₹ ₹	<u> </u>		58-XXXX	NO CHANGE	38-XXX			NO CHANGE	38-xxxx	@7-xxx	NO CHANGE (38-XXX	38-xxx	
9	SEMANGGI (II)			PRX O			37-XXX	•	*	÷ 41 √ •	DR ₅₆ -xxxx	37-X XXX	46-XXXX	46-XXXX 086 -XXXX	37-XXX	
	SLIPI	_ .c.	¥ γ γ			29-XXXX	NO CHANGE	•	39-XXXX	•	NO CHANGE	®9−xxxx	⊕9-xxxx	NO CHANGE 39 -XXXX	39 -xxx	
	PALMERAH	•		ນ			38-xxx	DR 57 DR 58-XXXX	0857 0858-xxxx	251-XXXX		48-XXXX	48-XXX	51-XXXX	48-XXX	
	KEDOYA											,.			44.4	
	MERUYA									-		,		1		
	NAME OF EX. OFFICE	4	175	92,	1,	EXISTINGCODE	(NO I.)	(NO.2)	(NO.3)	(NO4)	(NO.5)					
	JATINEGARA (1)	. 4		*; -		8-DOX-4 XX NO CHANGE	NOCHANGE	•		٠.	85-1XXX~4XXX					
	JATINEGARA(II)			PRX IO(⊤)			9006-9000-08	XXXE-XXXD-08XXXE-XXXD-08XXXE-XXXD-08	80-0x0x-7xxx	80-0xxx-9xx	80-0000-900x	-				
1				M: 2				B7-BXXX-9XXXB0-BXXX-3XXX-1XXX BI-UXXX-XXX	90-80009000	35-000K-100X	XXXHXXXI-IB					_
AAA:	CAWANG		-	HX.8	m.		86-2000-9000 86-0000-1000	*			W					
INEC	PASAR REBO			PRX5			85-100x-9000 85-0000			87-1000-5000 B4-1000-5000 87-0000 B4-0000	94-1xxx-5xx 84-0xx		٠			
TAL	KLENDER			Ж. 4			XX 5-XXXX - 68	6	•		83-0000-3000					
+	TEBET	_		HXB M.2			88-0xxx-7xxx 88-8xxx9xxx	•		c .	88-0xx/-7xx					
	GANDARIA	0	,	M.		57-1XXX	87-0000-1000			87-8xxx-9xx	87-8xxx-9xx87-xxx-1xxx				1	
	:			M:MOB!L	180			; ;-	To be to be the second		A SRA BARRAD IN BALR	ţ:a				

TABLE 6-1-4-1-(2) MERIT GRADE OF NUMBERING PLAN IN GAMBIR AREA.

-[-1			_
PLAN	NO.OFCHANGEDOFFICE	TALKIE-SERVICE	TANDEM SW	OFFICE CODE SW	5 - 35	4 34	NOTE	
			EXTENSION OF"3"		н	i	SERVICE-IN DATE OF KEDOYA AND	
	0	0	TANDEM SW.	0	BY1985	8Y 1989		
	0	0		0				
I	.3€.~.36°.~.36°36°36°	"58"—"38" "58" O	EXTENSION OF "3" TANDEM SW EXTENSION OF "5" TANDEM SW.	©	X BY 1985	BY 1989		
*_	SEM 2000—6000T SL1 1500~3500T 3500~9500T O	"59""38" "59" "59""39" "59" O	DO. PLAN 1	0	# BY 1985	BY 1989		
	SEM 2000 - 6000T SEN 2000 - 6000T SEL 1 1500 - 3500T 10500 - 16500 T	'5'35" '50"'56" '58'38" '58" '59'39" '59"	EXTENSION OF "3" TANDEM SW.	GAM 2ND 900 SW'S 0	FINISH	BY1989		
1	GAM 7.000T	5-35 50-56						
	(DO. PLAN Î	DO. PLANZ	FINISH	BY 1989		
	o '	0)		,		
	SEM 10000T SEM 2000-6000T SL 1 1500-3500T 13500-9500T	"4"—"34" 4xxx "58"—"38" "58" "59"—"39" "59" 1.0001IMPOSSIBLE △	EXTENSION OF "3" TANDEM SW. NEWINSTALLATION OF "4" TANDEM SW.	GAM 2ND 1200 SW	BY1989	FINISH		
1	DO. PLAN4	'4'34' 4XXX '58'47' 58' '59'49' 59' 4000TIMPOSSIBLEX	EXTENSION OF '3' TANDEM NEW INSTALLATIONOF "4" TANDEM	GAM 2ND 1200 SW	BY1989	FINISH		
	GAM 17.000T	'4" -34" -4" EXTENSIG '5"-35" '50"-56" TANDEM EXTENSIG	ON OF 'S	GAM 2ND 2,100 SW	FINISH	FINISH		
1	GAM 17,000 T	4'34' 4XXX	EXTENSION OF '3'	GAM 2ND				
	SEM 2000~3500T SUPI1500~3500T 20500~26500T X	5 35' 56' 56 TANDEM 58' - 38' 58' NEW INST 58' - 39' 59' 4'TANDER	TANDEM NEW INSTALLATIONOF 2100 SW "4"TANDEM	2100 SW X	FINISH	FINISH		
1								

Δ: NO GOOD X: BAD (0): BEST (0): GOOD

6.1.4.2 Numbering Plan as of End of 1977

The numbering plan in Jakarta as of the end of 1977 resulting from the foregoing study is presented in Table 6.1.4.2.(1).

TABLE 6 - I - 4 - 2 - (I) I/2 an addition of the confidence of the

0.00-	Numb	ering (Jan 1914) sage 19.
Office	Present	in 1977
КОТА.А	2-0XXX - 2XXX 2-3XXX - 6XXX 27-0XXX - 2XXX	27-7XXX - 9XXX 27-3XXX - 6XXX no change
кота, в		22 - XXXX 23 - XXXX 24 - XXXX
ANCOL		25 - XXXX
PLUIT		28 - XXXX
CENGKARENG		21 - XXXX
GAMBIR , A	35-7XXX 4-0XXX - 9XXX 5-0XXX - 4XXX 5-6XXX	no change
GAMBIR.B		32 - XXXX 33 - XXXX 36 - XXXX
SEMANGGI.A	58- IXXX - 2XXX	no change
SEMANGGI.B		37 – XXXX
SLIPI	59-0XXX 59-1XX -999	59 - XXXX
PALMERAH		38 - XXXX
CEMPAKA PUTIH		61 - XXXX 62 - XXXX (64 - XXXX)
R AWAMANGUN		68 - XXXX
PULOGADUNG		63 - XXXX

^() for PERUMTEL installation plan.

Table 6.1.4.2.(1) 2/2

0.50	Numb	ering
Office 💀 🔻	Present	in 1977
Tg. Priok	29 – 0XXX – 1XXX	69 – XXXX
Kebayoran I	7 - 0XXX - 5XXX 77 - 6XXX - 7XXX	77 0XXX 5XXX no change
Kebayoran II		78 – XXXX (71 – XXXX)
Cipete	76 – 0XXX	76 – XXXX
Kalibata		73 – XXXX
Pasar Minggu		79 – XXXX
Jatinegara I	8 - 1XXX - 4XXX	no change
Jatinegara II		80 – XXXX
Cawang	!	86 – XXXX
Pasar Rebo		85 – XXXX
Klender		89 – XXXX
Tebet		88 – XXXX
Gandaria	57 – 1XX	87 – XXXX

() for PERUMTEL installation plan.

6.1.5 Long-term Numbering Plan

The long-term numbering plan for Jakarta which we formulated is introduced below.

6.1.5.1 Area Code

Area Code	Item	Tandem Office
2	Kota area A code	Kota-B
3	Gambir area A code	Gambir-A
4	Spare code	•
5	Gambir area A code	Gambir-A
6	Cempaka Putih area A code	Cempaka Putih
7	Kebayoran area A code	Kebayoran-A
8	Jatinegara area A code	Jitenegara-B
9	Outskirts area A code	_

"O" is the SLDD prefix code. "1" is used for the special service code.

We studied the advisability of using the spare code "4" in the above numbering plan as the local area code.

In the Kota area the 2-digit office code will reach the limit in 1981. And, to do without the alteration to the 3-digit office code the use of "4," together with "2," can be considered. By this arrangement the Kota area office code leaves a margin until 1991. In the Cempaka Putih area and Jatinegara area also the 2-digit office code will reach the limit, the former in 1985 and the latter in 1986. In this case, however, there is no spare area code that can be utilized to save the situation. Therefore, in the two areas mentioned the office code has to be altered to 3 digits in 1985. In this connection, it requires reconsideration to use the spare area code "4" for the Kota area only to delay the introduction of the 3-digit office code for this area for four years until 1985. Even though spare code "4" is used for the Kota area only, the construction work for alteration to the 3-digit code can be postponed only four years, and profits from the saved construction work cost during the postponed period will be as follows, on condition that the absorbing relay group is used to introduce the 3-digit office code and the work cost amounts to US\$510,000.

$$US$510,000 \times 12\% \times 3 \text{ years} = US$183,600$$

The disadvantage, however, is that during the four years the subscribers to have their numbers changed will increase by 90,000, i.e., from 200,000 to 290,000.

Also conceivable is a plan to use the spare code "4" not for a specific area only but for any area in Jakarta (as in the new system). In this case, when considered from the EMD system, the tandem system cannot be used, and this proves to be disadvantageous in the cable network formation.

6.1.5.2 Preconditions of Long-term Numbering Plan

The long-term numbering plan was formulated according to the following preconditions:

- (1) The construction work in 1975 through 1977 would be carried out as scheduled.
- (2) Each office code would conform to the demand forecast by JTP.
- (3) As far as possible the tandem area could be discriminated by A code and the exchange building and switching system by B code. (Plan A-II and Plan B-II for Jakarta Kota are excepted.)
- (4) The sub-tandem system would not be adopted.
- (5) The existing EMD tandem system would remain unchanged and the earlier formulated numbering plan for the immediate future would be succeeded though the necessary consideration would be made of the new switching system.
- (6) The 3-digit office code would be introduced in 1981, the year the 2-digit office code in the Kota area would reach the limit.

6.1.5.3 Office Code Allocation by Long-term Numbering Plan

Four long-term numbering plans based on the abovementioned preconditions, i.e., Plan A-I, Plan A-II, Plan B-I and Plan B-II, were formulated as shown in Table 6.1.5.3.(1) through Table 6.1.5.3.(5) and a comparative study was made for these four plans. Their features:

- (1) Plan A comprises 2-digit and 3-digit office codes. Plan B uses 3-digit office code only.
- (2) For introducing the 3-digit office code Plan B envisages the installation of absorbing relay group or 3rd GS stage as the switching facility. Plan A does not involve such consideration.
- (3) Plan A and Plan B are respectively divided into I and II. The former adopts the insertion method and the suffix method for the office code alteration to 3 digits. The latter uses the suffix method only.

6.1.5.4 Methods of Office Code Alteration to 3 Digits

Three methods are available for office code alteration from 2 digits to 3 digits.

Method		Offi	ice Code
Wethod	0	ld	New
(1) Prefix Method	A	В	(X) A B
(2) Insertion Method	A	В	A (X) B
(3) Suffix Method	A	В	A B &

(x): Additional figure

o Prefix Method

This method necessitates the tandem change so that it is impossible to practice.

o Insertion Method

- a. The newly added office code can be allocated to each exchange building so that the relationship between the new office code and the exchange building is clear.
- b. In the case of EMD system the new office code switching stage must be additionally installed.
- c. The inserted figure differs from office to office so that the new office code is difficult to remember. Moreover, the office code change cannot be easily made known to the public.

o Suffix Method

a. The figure to be suffixed ("1," for instance) can be unified for the whole of Jakarta so that the rule to realize the 3-digit office code is simple. The office code change can be easily made known to the public.

TABLE 6-1-5-3-(1) 1/2 NUMBERING IN JAKARTA

	. :								,	
NO	OFFICE	S Y S	PLAI	N A I	. PLA	N AIL.	PLA	v Bi.	PLA	NBIL
IVO	OFFICE	E M	1980	1993	1980	1993	1980	1993	1980	1993
		E	27	27	27	27	27	271	27	271
١	KOTA A	N	1	249.248	_	249. 248		249.248	-	249. 248
		Ε	22	22	22	22	22	221	22	221
2	кота в	N	23. 24	233 - 237	23. 24	231~234.241	23.24	233 ~237	23. 24	231~234.241
3	кота с	N	_	291 ~ 294		291~294		291~294	_	291~294
4	ANCOL	N	25	251 ~ 253	25	251~253	25	251~253	25	251 ~ 253
		E	28	28	28	28	28	281	28	281
5	PLUIT	N	20	201. 201	20	201 . 202	20	201 . 202	20	201 . 202
6	CENGKARENG	N	2‡	211. 212	21	.211.212	. 21	211.212	.2.!	211: 212
7	TEGAL ALUR	N	·-	261		261	,	261	-	261
		E	4, 5, 35,31	34. 35. 31	4, 5 , 35,31	34 . 35 . 31	4.5.35.31	341.351.311	4.5.35.31	341.351. 311
8	GAMBIR A	N	ļ <u></u>	331 ~ 333	·	531∼533	· - ·	331 ~333		531 ∼ 533
		Е	36	36	36	36	36	361	36	361
9	GAMBIR B	N	32.33	321 ~ 325	32.33	321~324, 331	32. 33	321 ~ 325	32.33	321~324.331
		E	58	58	56	58	58	581	58	581
10	SEMANGGI A	N	37.39	376 ~379	37.39	371~373.391	37. 39	376 ~379	37. 39	371~373. 391
11	SEMANGGI B	N	-	571. 572		571, 572	<u> </u>	571,572		571 . 572
12	SLIPI	E	59	59	59	59	59	591	59	591
12	36171	N	52	521 ~ 524	52	521~524	52	5210 524	52	521~524
13	PALMERAH	2	38	381 ~ 383	- 38	381 ~ 383	38	381~393	36	381~383
14	KEDOYA	N	_	511. 512	-	511. 512	_	511.512		511.512
15	MARUYA	N	_	561, 562	_	561. 562	-	561.562		561.562
16	CEMPAKA	Ę	61	61	61	61	61	611	61	611
	PUTIH	N	62(64)	622~625	62(64)	621-623.641	62(64)	622~625	62 (64)	621~623.641
17	RAWAMANGUN	N	68	681~683	68	681 ~ 683	68	681~683	68	681~683
18	PULOGA DUNG	N	63	631	63	631	63	631	63	631
19	PENGGI⊔NGAN	N		651	<u> </u>	651	. –	651		651
20	TG. PRIOK A	Ε	æ	69	69	69	69	691	69	691
	IG, PRIOR A	N	60	601 ~ 604	60	601 2 604	60	601 ~604	60	601~60,
21	TG.PRIOK B	N	66	661 ~663	66	661~663	66	661~663	66	661~€ 33
22	CILINCING	N	_	671 , 672	_	671, 672	<u> </u>	671 . 672		671 . 67.

E : END SYSTEM N : NEW SYSTEM

...

TABLE 6-1-5-3-(1)2/2 NUMBERING IN JAKARTA

	:	s								
		Y	A 1		Α	11	8	t '	В	11
ИО	OFFICE	s	1980	1993	1980	(993	1980	1993	1980	(993
23	KEBAYORAN A	E	77	77	77	77	77	771	77	771
24		N	78 (71)	788. 781	78 (71)	781. 711	78(71)	788. 781	78. (71)	751. 711
25	KEBAYORAN B	N	•	751 , 752	1	751, 752	_	751 . 752	-	751 . 752
26	CIPETE	N	76	761 . 762	76	761.762	76	761. 762	76	761, 762
27	KALIBATA	N	73	731~733	73	731~733	73	731~733	73	731~733
		E	79	79	79	79	79	791	79	791
28	PASAR MINGGU	N		711		701		711		701
29	JAGAKARSA	N	1	721	-	721	-	721		721
30	CIPUTAT	E	-	74	•	74		741		741
		E	91	81	81	81	81	811	8)	811
31	JATINEGARA A	N	62	822.823	82	821 . 822	82	822 . 823	82	821, 822
32	JATINEGARA B	N	80	801 . 802	80	601.802	80	801.802	80	801, 802
33	CAWANG	N	86	861~863	86	861~863	86	861~863	86	861~863
34	PASAR REBO	N	85	851. 852	85	851. 852	85	851.851	85	851, 852
35	KLENDER	N	89	891~893	89	891~893	89	891~893	89	891~893
36	TEBET	N	88	881~883	88	881~883	88	881~883	88	881~883
		E	87	_	87	_	87	~	87	_
37	CANDARIA	N	87	871	87	871	87	871	87	871

E : EMD SYSTEM
N : NEW SYSTEM

TABLE 6-1-5-3-(2)1/3 NUMBERING PLAN AI l_3

							818					818								888				85.5	858		
(ع) ا	CODE	27	249.248	22	233~237		₹294 4	251~253	28	201. 202	211. 212	261		34, 35, 31	331~333	36	321~325	58	376~379	571 . 572	59	521~524	381~383	511. 512	561. 562		
1993	SUB	9 800	11. 100 2	9.800	7.300 2:	<u> </u>	~293 39. 400 291	252 28.300 2	2.940	5.860 2	14. 600 2	9.300 2	88.400	19,600 3	24.100 3	900	47.300 3	5.880	30.220 3	14.900 5	3.430	31. 670 5	26.000 3	10,100 5	11.800 5	229.900	
1 () 8	CODE	27	249	22	53 ~235 47, 300			[28			31	18	34, 35, 31	331. 332 2	36	~ 324	58	377. 379 3		S	521 . 522 3	. 382			-8	
) 8861	SUB	9.800	5.300 24	9.800	24.000 233		26.400 291	14.500 251	2.940 2	9.260 201	6.000 21	3.800 261	11.800	19,600 3	11. 900 3.	4. 900	31.100 321	5. 880	16. 570 3	9 700 571	3, 430	17.870 5	11. 700 38	3 200 511	4.300 561	140. 150	
3(,)	CODE	27	49	22	233 . 234		. 292	51	28	201	211	261	-	34. 35.31	331	36	321 ~ 323	58	377. 379		59	521	381				
1983 (SUB	9.800	1.300 249	000'9	13100 2		18.00029	7.500 25	2,940	5.060 2	2,550 2	1.500 2	67.750	19.600 3	2.900 3	4.900	20.600 3	5.880	14.970 3		3, 430	9.570 5	5.300 3			87.150	
(PUT IN TO'30" PLAN) 1981 (,)	CODE	27		22	233. 234		291. 292	:51	28	201	211	197		34, 35, 31		36	322 . 323	58	377. 379		29	521	381				
PUT IN TO	SUB	9.500		5.000	10.500 233		15. 200 291	5.50025	2.940	3.860201	1.750211	1. 000 261	55.250	19.500		4. 500	17. 500	5.880	11, 420		3. 430	7. 070	4.00			73.300	
980(•)	CODE	27		22	23.24			25	28	20	21			4.5.35.31.		36	32, 33	58	37. 39		59	52	38				ATION)
61	SUB	9.100		9.400	19.000			5.000	2.940	3.260	1.500		50.200	18.800		4.200	16.400	5.880	10.320		3. 430	6.070	3.400			68.500	ACCOMMODATION)
979 (DEMAND)	CODE	27.		22.	23. 24			25.	28.	20.	21			4, 5, 35,31		36.	32.33	58	37		59	52	38		:		%00I) %86)
L	S	8.500		9.000	17. 100			4. 400	2. 940	2.760	1.300		46.000	17. 700		4.000	15.200	5.880	9. 070		3.430	5. 170	2.950	_		63.400	SYSTEM
1977(INSTALLATION	CODE	27.		22.	23. 24.			25	28		21			4.5.35.31.		36.	32. 33.	58	37	:	59		38		į		EMD SYS
	<u></u>	10.000		000.01	20.000			3,000	3.000		5.000		51.000	_		5.000	20.000	6.00	10.000		3.500		5.000		- 1	69.500	ш Z
_	¥-u5	ш	z	ш	z		<u> </u>	_Z	ш	z	Z	2		Ш	z	m	z	ш	z	2	Щ	z	<u>z</u>	z	z	_	
⊢	OFFICE	кота а		кота в		KOTA C		ANCOL	PLUIT		CENGKARENG	TEGALALUR	TOTAL	GAMBIR A		α.		SEMAN A	199	8	SLIP1		PALMERAH	KEDA	MERUYA	TOTAL	
	운	_	•	_ ʻ	7	ю		4	ц	ר	9	2		۰	٥	σ	•	2	!	=	5	į	5	4	5		

TABLE 6-1-5-3-(2) 2/3 NUMBERING PLAN AI 33

						83.5			80 S	81 S					83.5							
	ш О		83	·686		•		8		672				781	12	762	133		$\neg \neg$			
1993 (.	00	9	622~625	681~68	631	651	69	601 ~ 604	661~663	671	_	#		7.88.	751.	761.	731~733	P	711	122	47	
36	SU B	7.840	32.360	21.900	6.90	8.30	096 .1	30, 540	29.000	2	150.500	9.800		16. 200	5.60	15. 700	29.200	4.900	6.500	5.800		103.700
-	3.5		624	682				601. 602	999					781			732				_	
988(COD	9	622	681.	631	159	8	- 1	661.	671		11		788	751	761	731.	79	71.1	721		
5	SUB	7.840	15.860	12.000	2.600	3, 100	1.960	14.040	13.500	4. 600	75.500	9.500		10.700	9.300	B 000	14. 700	4 900	700	2.450		60, 250
<u>^</u>	DE	<u>-</u>	624											788 (781)							Ü	
1983 (COD	<u> </u>	622	189	63	651	69	<u>60</u>	661	671		77	_		75	192	731	62		122	_	
361	SUB	5.000	622 (624) 10. 200	6.500	- 000	1.150	1.960	5.940	6.500	- 800 - 1	400 50	7.000		8.400	5.200	4. 100	7. 500	2. 750		1. 050		36.000
PLAN	DE	-	(624)											788 (781)				_				
E-1	00	9	(681	63		69	601	99	671		1				761	731	£				
(PUT INTO "30 PLAN)	SUB	4.500	8.300	5.100	700		1.500	4.500	5.000	1.300 67	30.900	9.000		9.000		3. 700	6.000	2. 100				29.200
1980(+)	CODE	5	62(64)	68	63		69	9	99			7.7		(17) 87		76	73	79				
<u>6</u>	SUB	4.000	7. 800	4.500	570		1.300	4 000	4.400		26.570	9,000		B. 000		2.700	5.100	.80			-	26.600
1979 (DEMAND)	CODE	19	62 (64)	68	63		69	9				7.7		78 (71)		92	73	79				
1979 (sua	3.500	7. 200	4.000	470		1.960	6.340		,	23.470	000 ·6		2. 100		2.400	4. 550	9.1				24.650
1977 (INSTALL ATION	CODE	9	62.64	68	68		69	60				1		78.71		76	73	79			74	
N) 4461	SUB	8.000	16.000	6.000	6.000		2.000	4.000			42.000	0.00		12.000		8.600	8.000	5.000			3.000	46. 600
25-C\$	⊢w∑	3	z	z	z		ш	z	z	z		ш		z	z	z	z	ш	z	z	u Z	
	OFFICE	CEMPAKA	РОПН	RAWAMAG	I B PULDGOONG N	FENGGILING	TG.PKIOK	*	, 8	CLINCING	TOTAL	KEBAYO A	RAN	۸,	KEBAYO B	CIPETE	27 KALIBATA	PASAR	MINGGU	JAGAKARSA N	CLPUTAT	TOTAL
	<u> </u>	9		17	18	61	Ę	₹	2	22 (23 ×		24	ار ح	56 (27	_	207	29 J	30 6	

E: EMD SYSTEM (98% ACCOMMODATION)
N: NEW SYSTEM (100% ,)

-913 -

TABLE 6-1-5-3-(2)3/3 NUMBERING PLAN AI 3/3

			낁	<u> </u>	ß	862	8	\$		П		
3(~)	CODE	88	822.823	801.802	861~863	851. 8	891~893	881~B8		128		
1993 (SUB	3.920	13.780	20.000	24.600	15.400	20.300	27.700		9 800	135.500	808.000
(•) 8	CODE	81	822	801. 802	198	851	891	881.882		871		
1983	SUB	3,920	6.180	13.300	10.000	4.800	6.000	14.700		3.850	62.750	450. 450
(1) 2861	CODE	81	822	80I. 802	198	851	168	188		128		
1961	sua	3.920	1.980	8.800	4. 200	J. 700	1.800	2.900		1,550	31.850	262.800
INTO 30 PLAN)	COCE	18	822	801. 802	861	851	891	981		871		
PUT INTO	SUB	3.920	380	7. 400	3. 70	l. 200	1. 200	6.400		1.050	24.650	213,300
1980 (*)	CODE	18	82	80	98	8	68	88	87	87		
1961	SUB	3.920	180	6.700	2.700	050	880	5.600	200	700	21. 930	193.800
E MAND)	CODE	8		80	86	8	89	88	28	87		
1979(D.	SUB	3.500		6.100	2.300	016	700	4, 950	200	540	002.61	176. 720
977 (INSTALLATION 1979 (D.E MAND)	CODE	8		80	986	85	69	88	87	87		
NI) 2261	SUB	4.000		12.000	10.000	9 000	4.000	10.000	200	000	47. 200	256.300
	⊢ωΣ	ш	z	z	z	z	z	z	w	N		A L
	OFFICE	JATINE	GARA A	8	CAWANG	PASAR REBO	KLENDER	T 8 B T	37 GANDARIA E		TOTAL	GRAND TOTAL
	0 2	F	5	32	33	34	35	36	37			89

E: EMD SYSTEM (98% ACCOMMODATION)
N: NEW SYSTEM (100%)

TABLE 6-1-5-3-(3)1/3 NUMBERING PLAN AIL

							.918					818					_			988				, 85 S	185.5		
3(1)	CODE	27	249.248	22	231~234 241		291~294	251+253	28	201. 202	211, 212	261		34, 35, 31	531~533	36	331~364	58	391	571.572	53	521~524	381~383	511, 512	561.562		
1993 (SUB	9.800	11. 100	9.800	47.300		39 400	28.300	2.940	15.860	14. 600	9.300	188.400	19.600	24.100	4.900	47.300	5.880	30.220	14.900	3.430	31.670	26.000	10. 100	11.800	229.900	
(+)886)	CODE	27	249	22	241, 252		291~293	251. 252	28	201	211	261		34, 35,31	531, 532	36	32 ~325 33	88	371. 391	571	89	521. 522	381.382	511	561		
196	SUB	9.800	5.300	9.800	24.000		292 26.400	14.500	2.940	9.260	6.000	3.800	111.800	19. 600	- 300	4.900	31.100	5.880	16. 570	9. 700	3.430	17.870	-1.78	3.200	4, 300	140.150	
983 (•)	CODE	27	249	22	231. 241		291, 292	251	28	201	211	261		34,35,31	531		321. 322 331.	58	371. 391		59	25	381				
_	SUB	9.800	1.300	6.000	13.100		18.000	7.500	2.940	5.060	2.550	1.500	67.750	009.61	2.900	4.900	20.600	5.880	14.970		3.430	9.570	5.300			87.150	
(PUT INTO 3D' PLAN)	CODE	27		22	231. 241		291. 292	251	- 58	201	211	261		34, 35, 31		36	321. 331	58	371. 391		59	521	381				
PUT INTO	ans	9.500		5.000	10.500		15.200	5.500	2.940	3.860	1. 750	1.000	55.250	1 9.500		4.500	17. 500	5.880	11. 420		3.430	7.070	4.000			73.300	
980(•)	CODE	27		22	23. 24			25	28	20	21			4.5.35.31		36	32.33	58	37. 39.		59	52	38				DATION)
61	SUB	9.100		9.400	19.000			5.000	2.940	3, 260	1.500		50.200	18.800		4.200	16.400	5.880	10, 320		3.430	6.070	3,400			68.500	ACCOMMODATION)
79 (DEMAND)	CODE	27		22	23.24	i		25	28	20	21			4, 5, 35, 31		36	32.33	58	37		59	25	38				%001)
1979(0)	BNS	8.500		9.000	17.100			4.400	2.940	2,760	1.300		46.000	_		4,000	15.200	5.880	9.070		3.430	5,170	2.950			63.400	SYSTEM SYSTEM
1977 (INSTALL ATION)	CODE	27		22	23. 24			25	28		21			4.5.35.31		36	32, 33	58	37		59		38				EMD SYS NEW SYS
	BUS	10.000		10.000	20.000			3.000	3.000		5.000		51.000	20.000		5.000	20.000	6.000	1 0.000		3.500		5.000			69.500	ш Z
262	ı⊢w≥	ш	z	ш	z		z	z	ш	z	z			ш	z	ш	z	ш	z	N	п	z	Z	z	2	L.,	
	OFFICE	KOTA A		кота В		KOTA C		ANCOL	PLUIT		CENGKARENG	TEGAL-ALUR	TOTAL	GAMBIR A				SEMANGGI		8 %	SLIPI		PALMERAH	KEDOYA	MERUYA	TOTAL	
1	0			-	<u> </u>		~ ~	-	ı,		_o	~		٦			h	0	,			C)	13	14	15	l	l

TABLE 6-1-5-3-(3)2/3 NUMBERING PLAM AI 23

			V3-V 3	3NI) 2261	1977 (INSTALLATION)		1979 (DEMAND)	361	(•) 0861	(PUT INT)	(PUT INTO'3D'PLAN)	51	1983 (,)	361	1988 (•)	61	1993 (,)	
8 000 61 3.500 61 4.500 61 6.000 61 6.000 61 6.000 61 6.000 61 6.000 61 6.000 621 641 10.200 621 641 15.860 621 641 15.860 621 641 15.860 621 641 15.800 621 641 15.860 621 641 15.860 621 641 15.860 621 620 621 620 621 15.900 621	NO OFFICE		l-w∑	SUB	CODE	SUB	CODE	SUB	CODE	SUB	CODE	SUB	CODE	SUB	CODE	SuB	CODE	
6.000 62. 64 7.200 62. (64) 7.300 62. (64) 7.300 62. (64) 7.300 62. (64) 7.300 62. (64) 7.200 62. (64) 8.200 62. (64) 8.200 62. (64) 8.200 62. (64) 8.200	CEMPA	X	ш		19	3.500	19	4.000		4.500		2.00	19	7.840	9		9 6	
6.000 68 4.000 68 5.00 681 6.500 681 12.00	PUTIH	I	z		62. 64	7.200		7. 800		8.300	62	10.200	621.	15.860	• [32.360	641 641	
6.000 63 700 631 1.00 631 2.600 631 6.900 631 6.900 631 6.900 631 6.900 6.310 6.300 6.310 6.100 6.310 6.100 6.310 6.100	PAWAMANGUN	KGLIN			68	4.000	89			5. 8	681	6.500	681	12.000	681. 682		681 683	
R 2.000 69 1.960 69 1.300 69 1.500 69 1.960 1.960 1	RULDGRO	UNG	z		63	470	63	570	63	82	631	8	631	2.600	631	6.900	63!	
N 4 500 69 1,960 69 1,500 60 1,500 60 1,960 69 1,960 1,9	19 PENCEILINGAN	3										1. 150	651	3. 100		8.300	651	.83 S
N 4 000 60 6 6 3 4 500 60 6 6 6 6 6 6 6 6	7G FB	Α¥	ш	2.000	69	1.960	69	1.300	69	1.500	69	96	88	1 960		096.1	8	
N N N N N N N N N N			z		60	6.340	9	4.000	90	4.500	109	5.940	601	14.040	601. 602		601~604	
N 12 000 77 9.000 78 78 9.000 78 78 9.000 78 78 9.000 78 78 9.000 78 78 9.000 78 78 9.000	*	8						4.400		5.000	199	6.500	199	13.500	661.662	29.000	661~663	.80s
42.000 77 9.000 78 71 9.000 78 71 9.000 78 71 9.000 78 71 9.000 78 71 9.000 78 </td <td>22 CILINCI NG</td> <td>S</td> <td>z</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.300</td> <td>129</td> <td>- 80 0</td> <td></td> <td>4.600</td> <td></td> <td>11.700</td> <td>671.672</td> <td>8 S</td>	22 CILINCI NG	S	z							1.300	129	- 80 0		4.600		11.700	671.672	8 S
N 12,000 77 9,000 77 9,000 77 9,000 77 9,000 77 9,000 77 9,000 77 9,000 77 9,000 77 9,000 78 71 9,000 78 71 9,000 78 71 9,000 78 71 9,000 78 71 9,000 78 71 9,000 78 71 9,000 78 78 71 9,000 78 78 78 78 78 78 78	TOTAL	۱.		42.000		23.470		26.570		30.900		40.050		75.500		150.500		
N 12,000 78,71 7,100 78 (71) 8,000 78 (71) 9,000 78 (71) 8,400 78 (71) 10,700 78 1,711 16,200 78 1,711 10,700 78 1,711 16,200 78 1,711 10,700 78 1,711 16,200 78 1,711 10,700 78 1,711 16,200 78 1,711 10,700 78 1,711 16,200 78 1,711 10,700 78 1,711 16,200 78 1,711 16,200 78 1,711 16,200 78 1,711 10,700 78 1,711 16,200 78 1,711 10,700 78 1,711 16,200 78	KEBAYO			10.000	l .	9.000	77	9.000		9.000		000'2	77	9.500	4	9.800	#	
N 12,000 78,71 7,100 78 (71) 8,000 78 (71) 9,000 78 (71) 8,400 78 (71) 10,700 78 1,711 16,200 78 1,711 10,700 78 1,711 16,200 78 1,711 10,700 78 1,711 10,700 78 1,711 16,200 78 1,711 10,700 78 1,712 15,600 78 1,712 15,600 78 1,712 15,600 78 1,600 78 1,710 78 1,712 78 1	RAN																	
N 8 600 76 3.100 761 4.100 761 9.300 751 15.600 N 8.600 73 4.600 73 6.000 731 7.500 761 16.700 761 15.700 E 5.000 79 1.600 79 2.100 79 2.750 79 4.900 79 4.900 N 4.500 74 1.800 79 2.100 79 1.050 79 4.900 79 4.900 N 4.500 74 1.800 79 1.000 79 2.450 721 5.800 N 4.6.600 74 1.050 721 2.450 721 5.800 A6.600 74 2.6600 29.200 36.000 761 60.250 103.700	•	4		- 1	78.71	2.100	78 (71)	8.000	ŀ	9.000	- 1	8.400	781 (711)		781. 711	16.200	111.711	
N 8. 600 76 2. 700 76 3. 100 761 4. 100 761 8. 000 761 15. 700 761 15. 700 761 15. 700 761 760 761 761 761 761 761 761 761 761 762 </td <td>KEBAYOB RAN</td> <td>YO B</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5.200</td> <td></td> <td>9.300</td> <td>751</td> <td>15.600</td> <td>751. 752</td> <td>83.5</td>	KEBAYOB RAN	YO B										5.200		9.300	751	15.600	751. 752	83.5
R 8.000 73 4.550 73 5.100 73 6.000 731 7500 731 732 29.200 R 5.000 79 1.600 79 2.100 79 2.750 79 4.900 79 4.900 N 4.000 74 1.000 70 1.050 721 2.450 701 6.500 N 46.600 24.650 26.600 29.200 36.000 36.020 103.700	CIPETE	TE	z	8. 600	76	2.400	76	2.700	ľ	3.100	192	4 100	761	B. 000		15. 700	761. 762	
E 5.000 79 1.600 79 2.100 79 2.750 79 4.900 79 4.900 79 4.900 70<	KALIBATA	ATA	z	8.000	73	4.550	23	5		9	731	2 500	731	14 700		29. 200	731~733	
N N TOO TOI 6.500 TO E 3.000 74 1.050 721 2.450 721 5.800 7 N A6.600 24.650 26.600 29.200 36.000 60.250 103.700	PASAR	α	ш	5.000	79	1.600	79	L. 800	ę.	2. 18	æ	2. 750	6	4.900	6	4.900	ę.	
N E 3.000 74 1.050 721 2.450 721 5.800 7 N N 25.600 25.200 36.000 60.250 103.700	W	GGU	z											8	701.	6.500	701	
E 3.000 74	29 JAGAKARSA	ars A										1.050	721	2.450	121	5.800	721	
46.600 24.650 26.600 29.200 36.000 60.250	CIPUTAT		w z		74												42	
	TOTAL	L.		46.600		24.650		26.600		29.200		36.000		60, 250		103.700		

(98% ACCOMMODATION) E : EMD SYSTEM N : NEW SYSTEM

TABLE 6-1-5-3-(3)3/3 NUMBERING PLAN AII 3/3

			1977 (INSTALLAT		ON) 1979 (DEMAND	EMAND)	198	(+) 0	PINI TURI	1980 (+) 1981 (+)		1983 (,)	61	1988 (+)	61	1993 (,)
2	OFFICE	⊢ωΣ	SUB	CODE	SUB	CODE	SUB	CODE	SUB	CODE	SUB	CODE	SUB	CODE	SUB	CODE
¥	JATINE	_	4.000	æ	3.500	8	3,920	81	3.920	ī.	3.920	8	3.920	<u>18</u>	3.920	60
5	GARA	z d					1 80	23	380	821	1.980	821	6.180	821	13.780	821.822
R	•	Z 00	12.000	8	6. 100	80	6. 700	80	7.400	BOI. 802	8.800	801. 802	13.300	801. 802 20.000	20.000	801.802
R	CAWANG	z	10.000	98	2.30	986	2. 700	86	3.100	861	4. 200	861	000 .01	861	24. 600	861~863
i	PASAR	z	6.000	85	016	85	1.050	85	1.200	851	. 700	851	4.800	821	15.400	851. 852
5	REBO															
돲	KLENDER	Z C	4.000	68	78	89	880	89	1. 200	168	1.800	168	6.000	168	20.300	891~893
36	TEBET	z	10.000	88	4.950	88	5. 600	88	6.400	නි භ	7.900	188	14.700	881.882	27. 700	27. 700 881 ~ 883
;	GANDAVIA	Ш	200	87	200	87	200	87				:				
č		z	1.000	87	540	87	700	87	1.050	871	1.550	871	3.850	178	9.800	128
	TOTAL		47. 200		19.200		21.930		24.650		31.850		62.750		35.500	
	G. TOTAL	بِ	256.300		176. 720		193.800		213.300		262.800		450.450		808.000	
				EMD SYS	SYSTEM	A %86)	(98% ACCOMMODATION)	ATION)	i							
			Z	•	E	•	•	•								

TABLE 6-1-5-3-(4)1/3 NUMBERING PLAN BI 1/3

<u> </u>	ш		248		237		294 815	553		202	212	818		51.3(1)	~ 333		325		379	572 '88S		524	383	512 '85 5	562 '85 S	_	
1993 (CODE	27	249.	22 00	00 233~237		400 291 ~294	300 251~253	940 281	860 201. 202	600 211.	300 26	2	19. 600 341.351311	33	361	321~325	90 58I	20 376~379	900 571.	25	70 5211524	20 381~383	51	561.	8	
	SUB	9.800	11.100	9.800	47.300		39.	28.	ري 9	5.8	4. Ø	9.3	188, 400	- ==	24.100	4.900	47.300	5.880	30.220	14.90	3.430	31, 670	26.000	10.100	11.800	229.900	
1988(1)	CODE	172	249	221	233~235		291~293	251, 252	281	201	211	261		19, 600 341,351, 31	331. 332	361	321 ~ 324	88	377. 379	129	169	521. 522	381, 382	211	561		
61	SUB	9.800	5.300	9.800	24. 000		26.400 29	14, 500	2.940	9.260	6.000	3.800	111.800	19. 600	11. 900 331	4.900	31.100	5. 880	16.570	9. 700	3.430	17.870	11.73	3.200	4.300	140.150	
83(,)	CODE	172	249	221	233. 234		291. 292	251	281	201	211	261		341.351.311	33!	361	321~323	581	377. 379		29	521	381				
198	SUB	9.800	1, 300	6.000	13.100		18.000	7.500	2.940	5.060	2.550	1. 500	67.750	19.600	2 900	4, 900	20.600	5.880	14, 970		3.430	9.570	5.300			37.150	
(PUT INTO 30 PLAN)	CODE	172		221	233. 234		291. 292	251	281	201	211	261		19.50p 341,351,311.		361	322. 323	581	377. 379		169	521	381				
(PUT INT(SUB	9.500		5.000	10.500		15.200	5.500	2.940	3.860	1.750	I. 000	55.250			4,500	17.500	5.880	11,420		3.430	7 070	4.000			73.300	
80(+)	CODE	27		22	23.24			25	28	20	21			4.5.35.31		36	32.33	58	37.39		626	22	38				ACCOMMODATION)
61	SUB	001.6		9.400	000.61			5.000	2.940	3.260	1.500		50.200	1 8 800		4.200	16.400	5.880	10.320		3.430	6.070	3.400			68.500	COMMO
(DEMAND)	CODE	27		22	23.24			25	28	20	21			4.5.35.31		36	32.33	58	37		65	52	38				(98% AC
1979	SUB	8.500		9.000	17.100			4.400	2.940	2.760	1. 300		46.000	17.700		4.000	15.200	5.880	9.070		3.430	5.170	2.950			63,400	TEM TEM
1977 (INSTALLATION)	CODE	27		22	23.24			25	28		21			20.000 4.5.35.31		36	32.33	58	37		59		38				EMD SYS NEW SYS
SNI) 2261	SUB	10.000		10.000	20.000			3.000	3.000		2.000		21.000	L		5.000	20.000	6.000	1 0.000		3,500		5.000			69.500	ш Z
VD-V	⊢w≥	ш	z	ш	Z		Z	2,	ш	z	N	z		W	z	u	Z	111	z	2 0	E	N	Z	Z	Z		
	OFFI CE	KOTA A		кота в		KOTA C		ANCOL	PLUIT		CENGKARENG	TEGAL-ALIR	TOTAL	GAMBIR A		8 ,		SEMANGGI A E		٠	SLIPI		PALMERAH N	KEDOYA	MERUYA	TOTA L	
1	2	-	_	(V	100)	4	5	,	6	7		(D	0	D	0	:	=	2	4	13	4	ਨ		

-918 -

TABLE 6-1-5-3-(4)2/3 NUMBERING PLAN BI 33

SUB CODE CODE SUB CO	741	36.000 60.250 103.700
Fut into 3df Path 1983 (,) 1988 (,) 1986 (,)		60.250
60 (•) FUT INTO30PLAN) 1983 (•) 1983 (•) 1988 (•) 61 \$ 1981 (•) 1983 (•) 1988 (•) 1988 (•) 61 \$ 200 611 \$ 340 611 \$ 340 611 62 (64) 8 300 622 (624) 10.200 622 624 15.860 622 624 63 700 631 1.000 631 2.600 631 63 700 631 1.000 631 2.600 631 60 4.500 631 1.960 631 1.960 631 60 4.500 601 5.940 601 14.040 601.602 60 4.500 601 5.940 601 14.040 601.602 60 5.000 661 1.300 671 4.000 771 76 5.000 771 7.500 771 7.500 771 76 3.100 781 7.500 771 7.700 711		60.250
60 (•) [PUT INTO*30*PLAN] CODE SUB SUB CODE SUB SUB CODE SUB SUB SUB SUB SUB SUB SUB SU		
60 (•) [PUT INIO3GPPLAN] 1983 (.) CODE SUB CODE SUB COI 61 4.500 611 5.000 611 62 (644) 8.300 622 (624) 10.200 621 63 700 631 1.000 631 69 1.500 691 1.960 691 60 4.500 601 5.940 601 66 5.000 661 6.500 661 77 9.000 771 7.000 771 76 3.100 761 4.100 761 77 3.100 761 4.100 761 78 79 2.100 791 2.750 721		36.000
60 (•) [PUT INTO*30*PLAN] CODE SUB CODE SUB 61 4.500 611 5.0 62 (64) 8.300 621 6.5 63 700 631 1.0 69 1.500 691 1.9 60 4.500 601 5.9 66 5.000 601 6.5 77 9.000 771 7.0 76 3.100 751 4.10 77 5.000 731 7.5 78 7.100 731 7.5		36.000
60 (•) PUT INTO 198 19		
60 (•) (•		
60 (•) (•		29.200
8 U B 7 800 7 800 7 800 4 500 6 7 00 6 7 00 8 000 9 000 9 000 1 800 1 800		
		26.600
SUB CODE 3.500 61 7.200 62 (64) 4.000 68 470 63 1.960 69 6.340 60 9.000 77 7.100 78 (71) 7.100 78 (71) 7.100 76 7.100 77 7.100 76 7.100 77		
1-1		24.650
S.UB CODE 8.000 61 16.000 62.64 6.000 68 6.000 69 4.000 69 4.000 77 12.000 78.71 8.000 73 5.000 79	左	
	3.00	46.600
	ш Z	
16 CEMPAKE E E E E PUTIH N I I RAWMANGAN N I I S PRICEADUNG N N I S PRICEADUNG N N I S PRICEADUNG N N E E E E E E E E E E E E E E E E E	CIPUTAT	TOTAL
NO NO 12 22 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25	8	

E : EMD SYSTEM (98% ACCOMMODATION)
N : NEW SYSTEM (100% ,)

TABLE 64-5-3-(4) 3/3 NUMBERING PLAN BI 3/3

		rs.	TA MT2M1 / 7791	I NOITA I IAT	ı	(0.0 F M 4 ND)	<u>6</u>	1980 () (PUT INTO 30 PLAN	INI INU	N v 76, 25, 18		(') 2861) 8861	8 (•)	199	(/) 2661
9	O FFICE	η⊢ω≊	SUB	CODE		C O DE	SUB	CODE	SUB	CODE	SUE	CODE	SUB	CODE	SUB	CODE
	JATINE A	ш	4.000	8	3.500	80	3.920	18	3.920	118	3.920	118	3.920	BII B	3.920	<u>8</u>
<u> </u>	GARA	z					180	82	380	822	1.980	822	6.180	822	13. 780	822.823
25	<u>.</u>	z	12.000	80	6.100	08	6 700	80	7.400	801.802	8.800	801.802 13.300	13.300	801.802 20.000	20.000	801. 802
33	CAWANG	z	10.000	86	2.300	98	2.700	86	3.100	96!	4.200	961	10.000	861	24.600	861~863
꿇	PA SAR REBO	z	6.000	85	016	8 2	1 050	85	1.200	951	1.700.	851	4.800	851	15. 400	851.852
35	KLENDER	z	4.000	68	700	89	880	68	1, 200	168	1.800	168	6.000	168	20.300	891~893
36	+ = 8 = +	z	10.000	88	4.950	88	5.600	88	6.400	881	7. 900	881	14, 700	881. 882 27. 700	27.700	881~883
;	GANDARIA	ы	200	87	200	87	200	187								
ò		z	1. 000	87	540	87	700	87	1.050	871	1.550	128	3.850	178	9.800	178
	TOTAL		47.200		19.200		21.930		24.650		31.850		62.750		135.500	
GR	GRAND - TOTAL 256.300	٦	256.300		176.720		193.800		213 300		262.800		450.450		808.000	
I																

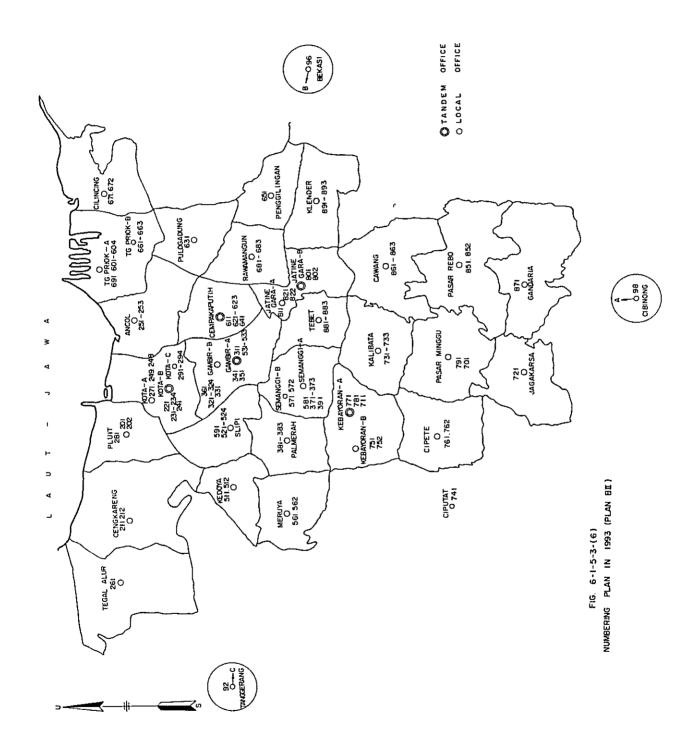
E: EMD SYSTEM (98% ACCOMMODATION)
N: NEW SYSTEM (100%)

TABLE 6-1-5-3-(5)1/3 NUMBERING PLAN BIL 1/3

		Sè		MOLTA LINSTALL ATION) 6261	DEMAND)	61	80(•)	PUT INTO	PUT INTO 30" PLAN)	6-	83(%)	198	88(•)	661	3(,)	
ç	OFFICE	nj-W∑		CODE	SUB	CODE	SUB	CODE	SUB	CODE	SUB	CODE	SUB	CODE	SUB	CODE	
-	KOTA A	ω	10.000	27	8.500	27	9.100	27	9.500	271	9.800	172	9.800	271	9.800	172	
_		z									1. 300	249	5.300	249	11.100	249. 248	
Ι,	KOTA B	ш	10.000	22	9.000	22	9.400	22	5.000	221	6.000	122	9.800	122	9.800	221	
2		z	20.000	23. 24	17. 100	23.24	19.000	23.24	10.500	231. 241	13.100	231. 241	24.000	231 . 232 241	47. 300	231~234	S IS
3	KOTA C	z							15.200	291. 292	18.000	291. 292	26.400	291~293	39.400	291~294	
4	ANCOL	z	3.000	25	4.400	25	5.000	25	5.500	251	7.500	251	14. 500	251. 252	28. 300	251~253	
14	PLUIT	ш	3.000	28	2.940	28	2.940	28	2.940	281	2.940	281	2.940	281	2.940	281	
,		z			2.760	20	3.26d	20	3.860	201	5.060	201	9.260	201	15.860	201. 202	
9	CENGKARENG N	Z	5.000	21	1.300	21	1.500	12	1.750	211	2.550	211	6.000	211	14. 600	211. 212	
1	TEGAL-ALUR N	z							8	261	- 50	192	3. 800	261	9.300	261	818
	TOTAL		51.000		46,000		50.200		55.250		67.750		III. 80d		188.400		
-	GAMBIR A	Ш	20.000	4.5.35.31	17. 700	4.5.35.31	18.800	4, 5, 35,31	19.500	341.351.311	19.600	341.351.311	19.600	600 341, 351, 311	19.600	600 341.351.31	
X		z		-							2.900	531	11.900	531. 532	24.100	531~53	
_		Ш	5.000	36	4.000	36	4.200	36	4.500	361	4, 900	361	4.900	361	4.900	361	
6	œ •	z	20.000	32, 33	15. 200	32,33	16. 400	32.33	17, 500	321. 331	20.600	321. 322 331	31.100	321~323	47.300	321~324 331	
_	SEMANGGI A	ш	6.000	58	5.880	58	5. 8Bd	58	5.880	581	5.880	581	5.880	581	5.880	581	
10		z	10.000	37	9. 070	37	10. 320	37. 39	11. 420	37. 391	14. 970	371. 391	16. 570	371. 391	30.220	371~373 391	
=	£ 4	z											9. 700	571	14,900	571. 572	
2	SLIPI	ш	3.500	59	3. 430	59	3.430	59	3. 430	591	3.430	591	3. 430	591	3.430	591	888
<u>.</u>		z			5.170	52	6.070	52	7. 070	521	9.570	521	17. 870	521.522	31.670	521 524	
13	PALMERAH	Z	5.000	38	2.950	38	3.400	38	4.000	38!	5.300	381	11. 700	381.382	26 000	381~383	
14	KEDOYA	Z											3.200	511	10. 100	511.512	85.5
15	MERUYA	z											4.300	561	. 800	561. 562	955
	TOTAL		69.500		63.400		68.500		73.300		87.150		140. 150		229.90d		
			E : E				ACCOMMODATION)	ATION)									
			z	NEW SYSTEM		%001)	•	~									

TABLE 6-1-5-3-(5)2/3 NUMBERING PLAN BIL 2/3

OFFICE			<u> </u>	7 (INST	1977 (INSTALLATION)	0) 676I	979 (DEMAND)	1980	:	(PUT INTO 1981	30 PLAN	19	83(,)	6-1	88 (•)	1993	3(>)	
CEMIPRIAKA E 6 0.000 G1 3 5.00 G1 4 0.00 G1 G1 G1 G1 G1 G1 G1	2	OFFICE			CODE	SUB	CODE	SUB	CODE	SUB	CODE	SUB	CODE	SUB	CODE	SUB	CODE	
PUCTIH N 16 COO 62. 64 7 7 200 62 (64) 7 7800 62 (64) 8 3 30 62 (1 64) 10 200 62 1 15.860		Т	<u> </u>	80	19	3.500	19	4.000	19	4 500	119	5.000	119	7.840	119		119	
Color Colo	9		9 	8	62. 64	7. 200	62.(64)	7.800	62 (64)	8.300		10.200	621. 641	15.860	621. 641		621~623 641	
Color Colo	1			8	68	4.000	89		89		681	6.500	681	12.000	681.682	21.900	681~683	
Total Tota	₩.	PLOGADUNG		000	63	470	63	570	63	700	631	80.	631	2.600	631	6.900	631	
Total Tota	6-	PENGGILINGAN										1.150	651	3.100	651		Ī	838
N 4.000 60 6.340 60 4.500 60 61.500 601 6.500 661 13.500 661.662 29.000 61.6630 61.6	5	TG. PRIOKA		80	69	096.1	69	1.300	69	1.500	169	96	169	1.960	169	1. 960	169	
CLILNGTINA N N N N N N N N N	3			000	60	6.340	09	4 000	9	4.500	601	5.940	109	14.040	601, 602		601~604	
CLINCINA N 42.000 T 26.570 30.900 677 1.800 677 4.600 671 11.700 671.070 671.070 671.070 671.070 671.070 671.070 671.070 671.070 771 9.000 771	2	*						4. 400	99	5.000	199		199	13.500	661.662	29.000		808
TOTAL 42.000 77 9.000 77 9.000 77 9.000 77 9.000 77 9.000 77 9.000 77 9.000 77 9.000 77 9.000 77 9.000 77 9.000 77 9.000 77 9.000 77 9.000 77 9.000 77 9.000 77 9.000 77 9.000 78 77 9.000 78 77 9.000 78 77 9.000 78 77 9.000 78 77 9.000 78 77 9.000 78 77 9.000 78 77 9.000 78 77 9.000 78 77 9.000 78 77 9.000 78 77 9.000 78 77 9.000 78 78 77 9.000 78 78 78 78 78 78 78	22	CILINCINA	z							1. 300	671	1.800	671		671	11.700	672	818
KEBAYO RAN R	L	TOTAL	45.	000		23.470		26.570		30.900		40.050		75. 500		150, 500		
FAN 12.000 78.71 7.100 78 (71) 8.000 78 (71) 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9	23	KEBAYO A	E 10.	000		9.000	2.2	9.000	77	9.000	122	2.000	122	9.500	122	9.800	177	
F AN ILLOWO 78.71 7.100 78 (71) 8.000 78 (711) 8.400 78 (711) 10.700 78 (711) 16.200 1	}	RAN																
KEBAYO N S. 200 75. 9.300 75. 15. 600 75. 1.762 CIPETE N 8.600 76 2.400 76 2.700 761 4.100 761 8.000 761 78. </td <td>24</td> <td>4</td> <td></td> <td>000</td> <td></td> <td>7. 100</td> <td>(12) 82</td> <td>8.00</td> <td>78(71)</td> <td>9.000</td> <td>781 (711)</td> <td></td> <td>781 (711)</td> <td>10.700</td> <td>781.711</td> <td></td> <td>781.711</td> <td></td>	24	4		000		7. 100	(12) 82	8.00	78(71)	9.000	781 (711)		781 (711)	10.700	781.711		781.711	
CIPETE N B.600 76 2.700 76 3.100 761 4.100 761 8.000 761 15.700 KALIBATA N 8.000 73 4.550 73 5.100 73 7.500 731 1.4700 731 73.732 29.200 PASAR E 5.000 79 1.800 79 2.100 791 2.750 791 4.900 791 4.900 MINGGU N AGAGAKARSA A 3.000 74 A 4.900 791 4.900 701 6.500 CIPUTAT E 3.000 74 A A A A A A A A A A A A A A A A B	52	KEBAYO B	Z									5.200		9.300	751		751.752	835
KALIBATA N 8.000 73 4.550 73 5.100 73 6.000 731 7.500 731 14.700 731 732 29.200 PASAR E 5.000 79 1.600 79 1.800 791 2.100 791 4.900 791 4.900 MINGGU N 1.000 74 1.000 721 2.450 701 6.500 CIPUTAT E 3.000 74 1.000 26.600 26.600 36.000 36.000 60.250 103.700	26	CIPETE		909	76	2.400	76	2.700	76	3.100	761	4.100	761	8.000	761	15. 700	761. 762	
PA SAR E 5.000 79 1.600 79 2.100 791 2.750 791 4.900 791 4.900 MINGGU N 1.050 721 2.450 721 2.450 721 5.800 JAGAKARSA N 3.000 74 1.050 721 2.450 721 5.800 TOTAL 46.600 24.650 26.600 29.200 36.000 60.250 103.700	27			000	73	4.550	73	5.100	7.3	6.000	731	7.500	731	14.700	731.732	29.200	731~733	
MINGGU N TOD TOD TOD TOD TOD 6.500 JAGAKARSAN 23.000 74 1.050 721 2.450 721 5.800 CIPUTAT E 3.000 74 29.200 36.000 60.250 103.700		PASAR		000	62	1.600	62	1.800	62	2.100	162	2. 750	162	4.900	162	4. 900	161	
JAGAKARSAN A. S. OLO 74 A. S. OLO 74 A. S. OLO 74 A. S. OLO 72 2.450 721 5.800 CIPUTAT E 3.000 74 50 50 50 50 103.700 TOTAL 46.600 24.650 26.600 29.200 36.000 60.250 103.700	28	MINGGU	z	_										20	701		701	
CIPUTAT E 3.000 74 103.700 TOTAL 46.600 24.650 26.600 29.200 36.000 60.250 103.700	59		z				•					1.050	721	2.450	721		721	
46.600 24.650 26.600 29.200 36.000 60.250	유	CIPUTAT		000	74												741	
	$oxed{oxed}$			8		24.650		26. 600		29. 200		36.000		60.250		103.700		


E : EMD SYSTEM (98% ACCOMMODATION)
N: NEW SYSTEM (100%)

-922 -

TABLE 6-1-5-3-(5) 3/3 NUMBERING PLAN BI 3/3

3		SP-SI	1977(INSTALLATI	TALLATION)	1979 (DEMAND)	EMAND)	61	1980(,)	(PUT INTC	(PUT INTO "30" PLAN		1983 (,)	198	(•) 8861	961	1993 (•)
₹	OFFICE	-ωΣ	8ns	CODE	BUS	CODE	SUB	CODE	SUB	CODE	SuB	CODE	SUB	CODE	SUB	CODE
7	JATINE	ш	4.000	8	3.500	8	3.920	.	3.920	118	3.920	18	3.920	811	3.920	811
5	GARA	z					180	82	380	128	1.980	821	6. 180	821	13.780	821.822
32	. ·	z	12.000	80	6.100	80	6. 700	90	7.400	801 . 802	8.800	801.802	13.300	801. 802 20.000	20.000	801. 802
33	COWANG	z	10.000	96	2.300	96	2.700	96	3. 100	861	4. 200	198	10.000	861	24.600	861~863
¥	PASAR	z	6.000	85	016	85	1.050	85	1. 200	851	J. 700	158	4.800	851	15, 400	851.852
35	KLENDER	z	4.000	68	8,	68	880	68	1.200	168	1.800	168	6.000	891	20.300	891~893
36	TEBET	z	10.000	88	4. 950	88	5. 600	88	6.400	188	7.900	1881	14, 700	881. 882	27.700	881~883
1	GANDARIA	w	200	87	200	87	200	87								
·]		z	00. -	87	540	87	700	87	1.050	871	1.550	128	3.850	871	9.800	128
	TOTAL		47.200		19.200		21,930		24.650		31.850		62.750		135, 500	
٥	GRAND TOTAL 256.300	ار ا	56.300		176. 720		193.800		213.300		262.800		450.450		808.000	

(98% ACCOMMODATION)

- b The introduction of abosrbing relay group eliminates the need for additional installation of 3rd GS stage. This means economy in installation cost.
- c. In case the absorbing relay group is introduced C code to be suffixed is one code for each old code.

6.1.5.5 Comparative Study of Long-Term Numbering Plan

Based on the comparison table (Table 6.1.5.5.(1)) we studied the four long-term numbering plans in order to determine the optimum plan for Jakarta. Main points of study were:

- (1) In terms of cost to realize the 3-digit office codes Plan A surpasses Plan B. However, when the absorbing relay group is used, Plan B can realize the 3-digit office codes for all exchange offices with a small additional cost.
- (2) It seems that the B code unification by means of the insertion method will improve the junction line efficiency per exchange building. Actually, however, such does not hold true. As far as the junction line efficiency is concerned, there is practically nothing to choose between Plan A and Plan B.
- (3) For both Plan A and Plan B, Plan I leaves a greater B code surplus than Plan II. However, in the future the common use of B code for exchange buildings will become unavoidable though at that time the new system offices will increase and hence the common use of B code will pose no serious problem. Therefore, in terms of B code surplus no distinction can be recognized between Plan A and Plan B.
- (4) The number of subscribers to be affected by the office code change is smaller in Plan A than in Plan B. It depends upon cases whether the inequality of part of subscribers being affected and others not affected by the office code change (Plan A) presents the real question or the equality of all subscribers being affected by the office code change (Plan B) constitutes the vital concern.
- (5) In the comparison between the common use of 2-digit and 3-digit office codes and the adoption of 3-digit office codes only Plan B which belongs to the latter is preferable because the new codes can be easily remembered.
- (6) As for the method of office code alteration, Plan I method is not only complicated but inconsistent also so that a new office code list must be prepared and distributed among subscribers to familiarize them with new codes. In this case, if the notice to subscribers is incomplete, a serious traffic confusion takes place. And, to minimize such traffic confusion the office code changes, may be made on several occasions according to the item of code change. This series of office code changes, however, involves much trouble to subscribers.

Plan II provides a simple method: the prescribed one figure ("1," for instance) has only to be suffixed after the existing office code. Thus the new office code is easy to remember. The new office code list is necessary only for part of exchange offices in Plan A-II. Hence the traffic confusion will not take place. Moreover, the office code change work can be carried out at a time for the whole of Jakarta.

From the foregoing it can be said that for both Plan A-II and Plan B-II, is preferable.

- (7) From the standpoint of subscribers Plan A is inconvenient because of the promiscuity of changed and unchanged numbers. Subscribers must check the office code every time they make a call. Plan B wherein all subscribers have their office code changed relieves them of such inconvenience.
- (8) In Plan B the information talkie service for wrong number calls cannot be realized for some of subscribers. This disadvantage can be eliminated by special assignment of personnel for that service for the time being (possibly one month).

Conclusion:

- I. As the result of the foregoing study we arrived at a conclusion that if PERUMTEL could develop the absorbing relay group by 1981 and introduce it at each EMD exchange office Plan B-II (which uses the absorbing relay group) would be the optimum plan for Jakarta. Fig. 6.1.5.3.(6) illustrates the B-II numbering plan as of 1993.
- 2. If the absorbing relay group development is difficult Plan A-II would be the second best.

6.1.5.6 Absorbing Relay Group

(1) Trunking Diagram

The trunking diagram using the absorbing relay group is shown in Fig. 6.1.5.6.(1).

(2) Purpose of Use

When the 2-digit office code of the existing EMD exchange office code is to be changed to 3 digits, the absorbing relay group is used to absorb the 3rd digit impulse instead of installing the new 3rd GS stage for the purpose of cost saving.

(3) Place of Installation

The absorbing relay group is installed preceding the 3rd GS in the EMD exchange office to receive the intra-office call and the terminating calls from the EMD tandem office and the EMD office in its own area. The absorbing relay group is not used on the circuit from the PRX office.

(4) Performance and Composition

The absorbing relay group absorbs the first received 3rd digit impulse but lets the succeeding impulses transit. Because of such simple performance one circuit can be composed of some four ordinary type relays.

TABLE 6-1-5-5-(1)1/2 CHANGE OF OFFICE CODE IN JAKARTA.

		_			1	T			
ITEM		PI	LAN	I A	A II	B 1		BI	t
OFFICE CODE	DIO	GIT	's	EMD. 2 D NEW. 3 D MIXED CODE	н	EMD. 3 NEW. ALL 30		,	
AB CODE FO	DR.	E	EMD	CNE (EXCLUDING GAMBIR)	"	н		1	
EACH BUILD	NG		1EW	ONE	ONE OR TWO	ONE		ONE OF	TWO
	E	SI	NGLE	NO CHANGE	NO CHANGE	AB ①		AB (1)	
"2D" "3D"	0	Μι	JLT1					~~ ()	
AB	1 1	SI	NGLE	AB ①	ав ①	AB ①		AB ①	
	E W	М	ULTI	A⊗ B	AB ①	A⊗ B		AB(1)	
EXTENSION	ABS	OF	B.R/G	NO NEED	81	510.00	xo \$	"	
OF EMD SWITCH	(3		R GW)	(NO NEED)	(")	(2360.	000\$)	("	}
RATIO FOR		ON	1 OWN	100.0	100.1	100.0		100.1	
JUNCTION LINES (EMD)	ł	NO	- 1	100.0	100.1	100.0		100.1	
		_	кота	ZERO IN 1983	11	ч		"	
B CODE	SPAF	₹E	GAM- BIR	6 IN 1993	4 IN 1993	6 IN I	993	4 1 N	1 993
			CEMP	£661N1 1	ZERO IN 1983	LIN	1 993	ZERO I	N 1983
			KEBA- YO	1 N 1993	ZERO IN 1 988	LIN	1993	ZERO 1	N 1988
			JATI- NE	2 IN 1993	"	,,		,,	
OVER WE		WRAP	NO	ONE IN KOTA	NO		ONE I	N KOTA	
1 ⋅ ∟		1981	"20" 15 CODES	10 *		CODES	, ,		
UNDER SERVICE		1991	"2p" 15 CODES "3D" 89 CODES		EMD 15	CODES	"	·	
NUMBER OF SPARE COD		DE	361 CODE	11	ABSORB R/G IS USED	3RD GW IS USED	ABSORB R/G (S USED	3RD GW	
						361	496	361	496
ULTIMATE			кота	AD. 2000	11	u	AD.2010	AD.2000	AD.2010
YEAR OF COL	Œ		GAM- BLR	AD. 2040	ч	н	AD. 2060	AD.2040	AD,206
CAPACITY			СЕМР	AD. 2005	11	"	AD.2015	AD.2005	A D.201
			KEBA- YO	AD. 2010	и	"	AD.2035	AD 2010	AD.203
<u>-</u>			JATI	AD. 2004	11	11	AD. 2006	AD.2004	AD.200
NO. OF SUBSC OF CHANGED C CODE.				123 .900	•	198	. 500	,	·

TABLE 6-1-5-5-(1) 2/2 CHANGE OF OFFICE CODE IN JAKARTA.

ITEM	PLAN	ΑI	A II	вї	B II
INFORMA-	OFFICE CODE CHANGE RULE	COMPLICATED	EASY	COMPLICATED	EASY
SUBSCRIB- ERS	OBJECT SUBSCRIBERS	1/3 NO CHANGE 2/3 CHANGED	41	ALL SUBSCRIBER'S ARE CHANGED	H
TIMES OF	CHANGE	AS OFFICE CODE CHANGE RULE IS DIFFICULT SO IT IS BETTER THAT TIMES ARE SEPARATED ACCORDING TO CODE CHANGE PATTERN	CAN BE DONE	DO. A I	DO. A II
TALKIE SERVICE	EMD	NO PROBLEMOF B 1.	п	IMMEDIATE ANNOUNCEMENT. AFTER EMD OFFICE CODE CHANGE THE IXXX LEVEL IS OUT OF TALKIE SERVICE	
	NEW	IMMEDIATE AND TIMED ANNOUNCEMENT	11	и	11
SUBSCRI OPINIO	=	UNFAIR OPPOSED	14	FAIR APPROVAL	11

(5) Number Required

The number of absorbing relay groups required will be approximately 120 per 1,000 terminals in each EMD exchange office. The exact number depends upon the terminating traffic volume.

(6) Floor Space Required for Installation

The absorbing relay group required will be one-third to one-fourth the size of the ordinary type GS. Therefore the necessary floor space for installation can be small.

(7) Power Consumption

The absorbing relay group holds no speech current supply circuit or other mechanical portion so that the power consumption is extremely small. Work to increase power plant capacity is not necessary.

(8) Unit Cost of Installation

Price per component relay will be US\$10 and four relays will be used to make one absorbing relay group. The cost of construction work will be 40% of the material cost. Therefore, the installation cost per absorbing relay group will be

$$4 \times US$10 \times 140\% = US$56$$

6.2 Trunking Standard

6.2.1 Basic Network Formula

Following are the general basic items of the local telephone network:

- 1) Network Type
 - o Mesh type
 - o Star type
 - o Combined type
- 2) Tandem System
 - a. By type of exchange office formation
 - Centralized tandem system
 - Decentralized system
 - b. By type of circuit formation
 - o Originating tandem system
 - o Terminating tandem system
- 3) Junction Formula
 - a. By call connection type
 - Direct junction
 - Tandem junction
 - b. By alternative routing type
 - o Final junction
 - o High usage junction

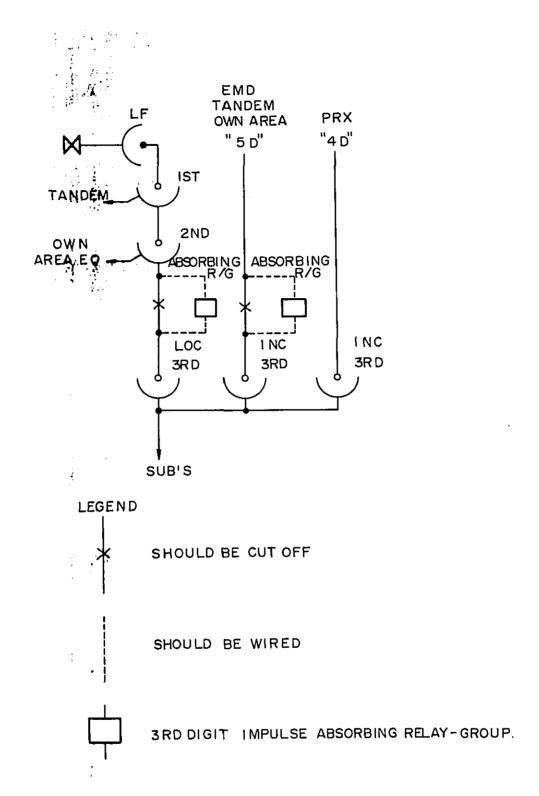


FIG. 6-1-5-6-(I) TRUNKING DIAGRAM.

6.2.2 Existing Local Network in Jakarta

The existing local telephone network in Jakarta is composed of the dispersed terminating tandem system by star type network using the EMD switching equipment. The star type network can improve the network efficiency but it requires the tandem office. If the step by step system is adopted with the EMD switching equipment, establishment of the direct circuit independent of the tandem circuit is impossible, however advantageous it may be. [Tanjung Priok and Semanggi exchange offices have such direct junction established, using ORW (a repeater with alternative routing function).] The existing tandem areas are shown in Table 6.2.2.(1).

LU **EMD Office** A code Tandem area Kota, Tg. Priok 12,000 Kota Gambir, Semanggi Gandaria, Slipi 20,700 3,4,5 Gambir 7 8,600 Kebayoran, Cipete Kebayoran 8 4,000 Jatinegara Jatinegara 45,300 4 TOTAL

Table 6.2.2.(1) Existing Tandem Area

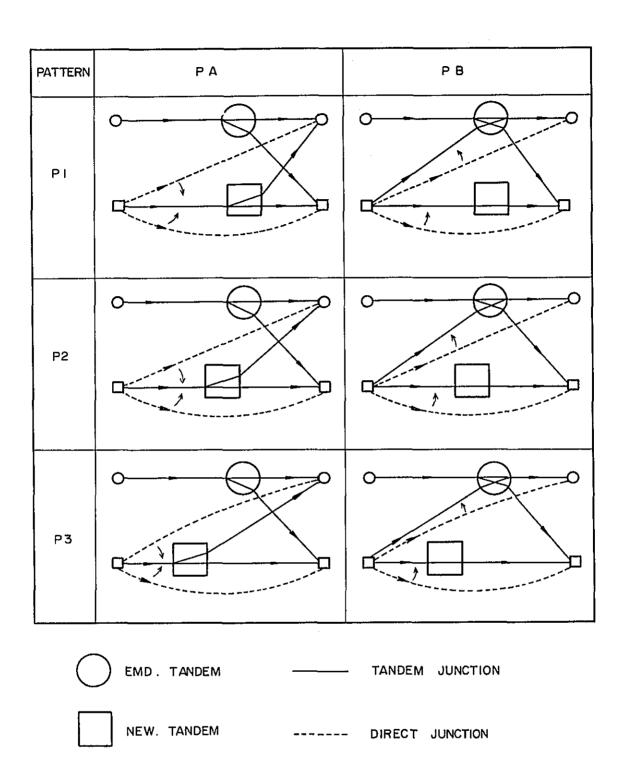
6.2.3 Network Formation by New Type Switching Equipment

The new type switching equipment to be introduced in and the future is the type which can store the dialled figures. It can be used in whichever tandem system, originating or terminating. The junction circuit can either be the star type or the mesh type; it can even use the star-and-mesh combined type junction. In other words, when traffic exceeds a certain volume and the direct junction is an effective means to carry such traffic, the direct junction is established, whereas the small volume traffic and overflowed traffic from the direct junction are routed via the tandem junction, and by this means the circuit efficiency can be improved. Therefore, the study was made to determine the optimum network formula in Jakarta not only for the present but also for the future after the introduction of the new type switching equipment and its combined operation with the existing EMD equipment.

6.2.4 Local Tandem System in Jakarta

6.2.4.1 Basic Conditions

Following are the basic conditions to determine the local tandem system in Jakarta based on the combined network using both the existing EMD and new type switching equipment:


- 1) To satisfy at moderate cost the determined transmission loss assignment plan.
- 2) To adopt one tandem stage.
- 3) Not to use the sub-tandem system.
- 4) To take the existing EMD network, as well as its facilities and functions, into full account.
- 5) To establish a network in which the new type switching equipment can perform to the best advantage, with the adoption of final and high usage junctions where necessary.
- 6) To ensure that the network by the new type switching equipment can be easily introduced and expanded in the existing EMD network.

6.2.4.2 Local Tandem Plan

Based on the foregoing basic conditions we drafted several plans for local tandem system in Jakarta and carried out a comparative study of those draft plans. Five plans prepared, i.e., P1 through P3 plus PA and PB, are shown in Table 6.2.4.2.(1) and Fig. 6.2.4.2.(2)

Table 6.2.4.2.(1) Tandem Plan

Plan	Contents
P1	5 EMD terminating tandem offices and 5 new system terminating tandem offices will be established.
P2	5 EMD terminating tandem offices and 1 new system concentrated tandem office will be established.
Р3	5 EMD terminating tandem offices and 5 new system originating tandem offices will be established.
PA	All overflow calls out of high usage junction from new system offices to EMD offices will be routed via the new system tandem offices.
PB	All overflow calls out of high usage junction from new system offices to EMD offices will be routed via the EMD tandem offices.

O EMD. LO

NEW LO

FIG. 6-2-4-2-(2) TANDEM PATTERN

6.2.4.3 Findings in Comparative Study

Study was made on merits and demerits of the foregoing 5 draft plans (refer to Table 6.2.4.3.(1)). Conclusion drawn was that P1-PA would be the fittest for Jakarta. Reasons are:

- 1) The new system network can be easily introduced in the existing EMD network.
- 2) The quantity of DP equipment to be used in the new system exchange offices can be limited from the long-range viewpoint.
- 3) The additional installation of new system switching equipment is easy.
- 4) The EMD switching equipment will continue to be used at high efficiency.
- 5) The additional installation of EMD switching equipment can be limited to the necessary minimum.
- 6) The function of new system switching equipment, i.e., the establishment of final and high usage junctions, is fully considered.

6.2.5 Tandem System Transition

The pattern of tandem system transition from the initial period to the future is shown in Table 6.2.5.(1). This transition pattern is considered to be the best for the telephone network in Jakarta. In this transition pattern:

The 1st stage represents the tandem formula fully based on the EMD system.

The 2nd stage consists of a small number of new system exchange offices introduced in the 1st stage network while the tandem system itself remains unchanged.

In the 3rd stage, due to the increase of new system exchange offices, the establishment of new system tandem offices apart from the EMD system tandem offices is advantageous in the network formation. Thus the tandem offices adopting the new system switching equipment are newly established.

In the 4th stage the overaged EMD switching equipment are withdrawn and the EMD exchange offices decrease. Thus the EMD tandem offices are abolished and the remaining EMD office junctions are routed to the new system tandem offices. Tandem switching are all carried out by the new system tandem office.

In the 5th stage the EMD exchange offices are completely withdrawn with only the new system switching equipment in operation.

6.2.6 Calculation of Junction Lines

6.2.6.1 Calculation Method

The calculation of junction lines required is based on CCITT Local Telephone Networks, 1968, Chapter IV, provision and the modified Palm-Jacobaens formula using lost call ratio B=0.01.

TABLE 6-2-4-3(1) COMPARISON TABLE OF TANDEM PATTERN.

ITEMS	 SUITABLE PATTERN FOR EMD TO INTRODUCE THE NEW SYSTEM. WHEN REFORMING THE EMD OFFICE INTO NEW SYSTEM, JUNCTION WORK IS NOT INCREASED. IDLE SWITCHES NOT OCCURRED IN EMD OFFICE 	I. ACCORDING TO INCREASE OF NEW SYSTEM LOCAL OFFICES, EMD TANDEM OFFICE MUST INCREASE SMICHES MORE THAN THE PA. PI PATTERN.	I. SAME AS I OF PA. PI. PATTERN 2. SAME AS 2 OF PA. PI. PATTERN 3. SAME AS 3 OF PA. PI. PATTERN	I. TRAFFIC LOAD TO EXISTING EMD TANDEM IS LARGER THAN PB. PI. PATTERN	I. SAME AS 2 OF PA. PI. PATTERN 2. SAME AS 3 OF PA. PI. PATTERN	1. TRAFFIC LOAD TO EXISTING EMD.TANDEM IS LARGER THAN PC. PI.PATTERN
NEW LO. DP. SENDER	SMALL	LARGE	SMALL	LARGE	SMALL	LARGE
NEW TANDEM DP. SENDER	NEED	NO NEED	NEED	NO NEED	NEED	NO NEED
EMD. LO. SWITCHING WORK	LARGE	SMALL	LARGE	SMALL	LARGE	SMALL
EMD. TAMDEM SWITCHING WORK	SMALL	LARGE	SMALL	LARGE	SMALL	LARGE
MAX. POST DIALLING DELAY	SEC 7.5	7.2	7.5	7.2	7.5	7.2
PATTERN	P A I	PA P II	86 16	9 B 11 d	PC P 1	PC PII

TABLE 6-2-5-(1) CHANGING-PATTERN OF TANDEM

NO	TANDEM PATTERN	NOTE
1	o— — o	PAST ALL LOCAL OFFICES ADOPT EMD TERMINATING TANDEM SYSTEM ONLY
2		EXISTING ONE NEW SYSTEM END OFFICE ARE INTRODUCED IN EMD TERMINATING TANDEM SYSTEM, (CIPETE OFFICE)
3		AFTER 1976 NUMBER OF NEW SYSTEM OFFICE IS INCREASED, SO TERMINATING TANDEMS BY NEW SYSTEM SWITCH ARE NEWLY INSTALLED.
4		IN FUTURE NUMBER OF EMD SYSTEM OFFICES ARE DECREASED, SO TERMINATING TANDEMS BY EMD SWITCH ARE TAKEN OFF.
5		IN FUTURE ALL LOCAL OFFICES ADOPT NEW TERMINATING TANDEM SYSTEM ONLY.

\bigcirc	EMD	SYSTEM	TANDEN	٨
	NEW	SYSTEM	TANDEN	1
0	EMD	SYSTEM	LOCAL	OFFICE
	NEW	SYSTEM	LŒAL	OFFICE
	TAND	EM JUNC	TION	
	DIRE	CT JUNC	TION	

6.2.6.2 Decision on Final Junction or High Usage Junction

The following criteria are used to decide which, final junction or high usage junction, to adopt in the circuit formation by the new system switching equipment:

- 1) In case the traffic volume between i and j exchange offices is smaller than 5 Erlang such traffic is to be routed via the tandem office.
- 2) In case the traffic volume between i and j exchange offices exceeds 5 Erlang the choice between final junction and high usage junction to carry such traffic is made by the formula specified below.

nij: Number of high usage junctions between i and j exchange offices, calculated by the equivalent random theory.

ndij: Number of final junctions between i and j exchange offices, calculated by the Erlang B formula.

pij : Traffic rejected from nij, the high usage junctions between i and j exchange offices.

Eij: Annual cost ratio of tandem circuits to that of final junctions between i and j exchange offices. This ratio is expressed by

 $Eij = \frac{Annual cost of final junctions}{Annual cost of tandem circuits}$

Now, in the case of nij +
$$\frac{\text{Pij}}{\text{Eij}\{1-0.3(1-\text{Eij}^2)\}} > \text{ndij}$$

the final junctions will be established.

In the case of nij +
$$\frac{\text{Pij}}{\text{Eij} \{1-0.3(1-\text{Eij}^2)\}} \le \text{ndij}$$

the high usage junctions will be established.

In the above formula

Here,

$$1 - 0.3 (1 - \text{Ei} j^2)$$

is the approximate formula to indicate the traffic volume (Erl) which is carried by each tandem route. In this case, Eij is usually 0.1 to 0.9 so that the formula A produces 0.70 to 0.94. Therefore, when Eij is near 1 the traffic volume to be carried by a tandem route becomes large. Hence the establishment of high usage junctions proves to be advantageous. On the other hand, when the Eij value is small the traffic volume to be carried by a tandem route becomes small so that the high usage junctions do not necessarily prove advantageous. In this case the final junctions will prove to be more advantageous.

Also

gives the number of tandem junctions to carry overflow traffic from high usage junctions, expressed in terms of the number of final junctions.

Further

$$nij + \frac{Pij}{Eij \{1-0.3 (1-Eij^2)\}}$$

presents the total number of circuits required to carry a certain traffic volume by alternative routing, expressed in terms of the number of final junctions.

6.2.6.3 Outlet Utilization in EMD System

1st GS contains outgoing junctions to other tandem area so that 220-pt of high outlet usage is employed for it. For 2nd GS the common 110-pt is used.

The outlet utilization is:

1st GS (220-pt) out	 K = 20
2nd GS (110-pt) out	 K = 10

6.3 Signaling Standard

Decision of signaling system to be used between telephone set and exchange office equipment and between exchange office equipments assumes vital importance. If the signal transmission can be carried out without trouble under (1) and (2) conditions mentioned below, the local telephone network plan for Jakarta which we worked out this time is safe from trouble whichever signaling system is introduced.

(1) Junction Line Design Conditions

Transmission loss and d.c. resistance distributions on junction lines in Jakarta are shown in Table 6.3.(1).

(2) Maximum and Minimum Transmission Frequencies

Maximum and minimum transmission frequencies are 3,400 Hz and 300 Hz, respectively, as shown in Fig. 6.3.(2). Both these values comply with CCITT Recommendation G132.

i) Junction cable loading is carried out by the following standard:

Loading inductance 80 mH

Coil spacing 1,500 m (maximu, 106 spans)

Measuring frequency 800 Hz

ii) Junction cable constants are as follows:

Primary constant Refer to Table 7.2.4.(1)
Secondary constant Refer to Table 7.2.4.(1)

Junction cable transmission frequency range is shown in Fig. 6.3.(2).

Table 6.3.(1) Junction Cable Condition (at 800 Hz)

Item Office	Maximum Loss	Maximum DC-resistance
EO → T	9.5 db	1.900 Ω
T → EO	5.5 db	1.100 Ω
EO → EO	15.0 db	3.000 Ω

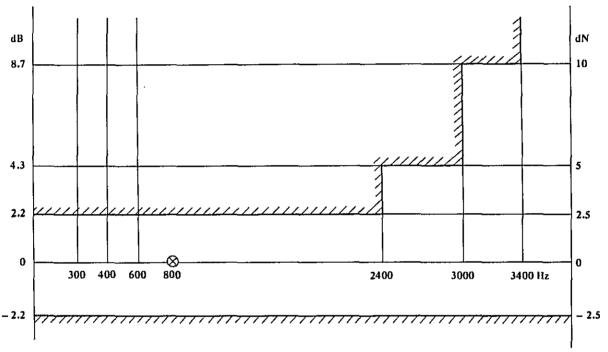


Fig. 6.3.(2)

6.4 Transmission Loss Assignment

6.4.1 Future Desirable Transmission Loss

6.4.1.1 Junction Cable

The reference equivalent in Indonesia is 33 dB, based on the CCITT limit value. The transmission loss on local junction circuits is 19 dB as shown in the PERUMTEL transmission program (Fundamental Plan 1972). In the future, however, the demand for transmission quality improvement will increase gradually in accordance with the progress of the national economy and the elevation of the standard of living among the general public.

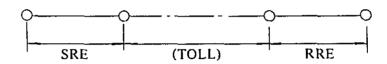
PERUMTEL Transmission Program (1)

- (a) For 97% of international telephone connections the reference equivalent should be 36 dB or less.
- (b) National sending reference equivalent, i.e., sending reference equivalent (S.R.E.) from the telephone set to the virtual switching points, should not exceed 20.8 dB.
- (c) National receiving reference equivalent, i.e., receiving reference equivalent (R.R.E.) from the telephone set to the virtual switching points should not exceed 12.2 dB.

At the initial stage of telephone diffusion the maximum limit prescribed by CCITT can safely apply. For the future, however, we recommend to PERUMTEL to improve the transmission loss assignment. For determination of transmission quality standards in a country, the result of opinion evaluation in the country is usually one of the basic factors.

To our regret we could not obtain data relating to opinion evaluation in Indonesia. However, according to the result of opinion evaluation concerning transmission performance, which was carried out by the Nippon Telegraph & Telephone Public Corporation (NTT), telephone connections at over 33 dB full reference equivalent invite complaints from approximately 80% of subscribers as shown in Fig. 6.4.(2).

As seen in Fig. 6.4.(2) the average evaluation (average score) is generally influenced by line loss, indoor noise, and line noise, etc. These noises will be reduced considerably by the application of new technology including the telephone set improvement. In parallel with such noise reduction the transmission loss by the outside plant must also be reduced.


Following are the methods available for transmission loss improvement:

- a) To introduce 4-wire switching system in toll centers.
- b) To improve return loss at the 2-wire exchange point.
- c) To use the new telephone set with better transmission characteristics.
- d) To load long distance subscriber lines.
- e) To use two-way repeater, etc.

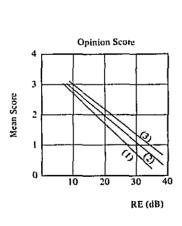
Final decision of transmission loss value is not easy to make as it depends upon the economy, as well as the national policy, of the country concerned. However, considering the aforementioned NTT opinion evaluation, (transmission loss assignment in other countries in Table 6.4.(1)), and the coordination between transmission loss assignment and DC resistance on junction circuit, it is desirable that the local junction circuit transmission performance be improved by 4 dB.

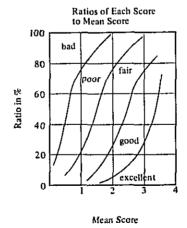
Table 6.4.(1) Transmission Loss Assignment in Other Countries

Country	SRE	RRE	TOLL	Total	Local junction EO - EO	Remarks
Indonesia	10.3	1.7	21	33	19	
Australia	14	6	15	35	15	
France	11	2	16	29		
Holland	17	4	13	34	6	
West Germany	10.3	1.7	19	31	12	
Sweden	13	5	9	27	15	· · · · · · · · · · · · · · · · · · ·
Japan	7	0.2	10	17.2	13	

Measurement condition:

Office noise:


0.6 mV


Room noise:

60 phones

Line noise:

- (1) 3.5 mV
- (2) 1.1 mV
- (3) 0.35 mV

0 bad

l poor

2 fair

Fig. 6.4,(2)

3 good

4 excellent

6.4.1.2 Subscriber Cables

According to the transmission standards [59/2a/1-(5)] of PERUMTEL, the allowable maximum sending reference quivalent (S.R.E.) the subscriber cable including telephone set is 1.2 Np(10.42dB).

In accordance with this PERUMTEL's standard and the CCITT Handbook "Local Telephone Network", the S.R.E. for only the subscriber lines was calculated as follows:

1) Allowable maximum sending reference equivalent including telephone set = 10.42 dB(1.2 Np)

2) S.R.E. =
$$\alpha + \beta \cdot L$$

 $\alpha = 0.87 \text{ dB (0.1 Np)}$
 $L = \text{Line length (km)}$
 $\beta = K \cdot X + Y$
 $K = \text{Fixed number}$

Table 6.4.(3)

Cable conductor (mm)	0.4	0.6	0.8		
К	1.10	1,00	0.93		

$$X = \sqrt{WRoCo}$$

$$2$$

$$W = 2f (f = 800 \text{ Hz})$$

$$Ro = \text{Loop resistance } (\Omega/\text{km}) \text{ of line}$$

$$Co = \text{Static capacity } (F/\text{km}) \text{ of line}$$

$$Y = \frac{0.5}{1000} \times 8.686 \times \text{Ro}$$

3) Maximum line length (km) =
$$\frac{10.42 - 0.87}{\beta}$$
 = $\frac{9.55}{\text{K} \cdot \text{X} + \text{Y}}$

4) Line resistance (Ro) and mutual capacitance (Co)

Table 6.4.(4)

	I	PE Cable	JF Cable			
	Resistance (Ω/loop km)	Mutual Capacitance Co(nf/km)	Resistance (Ω/loop km)	Mutual Capacitance Co(nf/km)		
0,4	300	50	300	55		
0.6	130	50	130	55		
0.8	72	50	72	55		

PE cable: Polyethylene insulated cable

JF cable: Jelly filled cable

5) DC resistance and S.R.E. for only Subscriber Line & Maximum Allowable Line Length

Table 6.4.(5)

Kind o	of Cable	DC Resistance (Ω/loop km)	S.R.E. for only (dB/km)	Maximum Allowable Line Length (km)			
0.4	PE	300	3.16	3,0			
0.4	JF	300	3.25	2.9			
0.6	PE	130	1.68	5.6			
0.6	JF	130	1.73	5.5			
0.8	JF	72	1.08	8.8			

6.4.2 Loss Assignment Comparison

When the junction circuit transmission loss assignment is improved from 19 dB to 15 dB, and the basic conditions (circuit cost, number of tandem circuits, and location of tandem exchange office) are as follows, the optimum transmission loss assignments of EO-T(tandem) and T(tandem) - EO sections of the Plan No.1 are as shown below.

(a) Basic Condition

(a-1) Circuit cost

Table 6.4.(6)

		Index of circuit cost									
Conductor diameter 0.4 mm		mm 0.6	0.8	mm 0.9	1.0 mm						
Index	100	196	350	415	465						

(a-2) Distribution of tandem circuit by distance

Table 6.4.(7)

in 1993

km	4	6	8	10	12	14	16	18	20	22	24	26	28	30	35
EO → T	1.0	15.7	32.6	41.1	56.4	69.5	76.3	80.0	88.1	91.5	94.4	96.5	98.7	99.5	100
T → EO	30.3	46.3	76.4	78.1	78.1	89.7	92.1	96.4	100	-	-	_	_		1

(b) Total Cost [(1) + (2)]

EO \rightarrow T: Number of circuits x cost/circuits (1)

 $T \rightarrow EO$: Number of circuits x cost/circuits (2)

Table 6.4.(8) Optimum Transmission Loss Assignment

		Loss			C	ulsla C		tor Di	amete	<u> </u>			
Plan No.	System			4 ^{mm}		6 mm		8 mm		9 mm	1	0 mm	Cost
					%	km	<u> </u>		U.	,	١.	·	
1	EO → T	12.5dB	47.5	6.38	43.5			28.1	 C/.	- km	- %	km	3,468.7
	T → EO	2.5	14.0	0.7	17.0	2.3	19.5	4.3	8.5	6.0	41.0	13.3	,
2	EO → T	11.5	42.5	6.0	45.0	14.0	12.5	27.2	_	+			3,294.6
<u>-</u>	T → EO	3.5	22.5	1.1	24.0	3.6	24.5	6.7	8.5	9.4	20.5	15.2	3,294.0
3	EO → T	10.5	36.5	5,6	46.5	12.7	16.5	23.9	0.5	32.6	-		3,177.2
3	T → EO	4.5	30.5	1.5	29.5	4.9	25.0	9.2	6.5	12.8	8.5	17.0	3,177,2
	ЕО → Т	10.0	34.5	5.4	46.0	12.1	18.5	22.7	1.0	31.9	_	_	3,155.1
4	T → EO	5.0	34.0	1.7	31.5	5.6	20.0	10.4	5.5	14.6	5.0	18.0	3,133,1
5	EO → T	9.5	31.0	5.2	46.5	11.4	21.0	21.4	1.5	31.1	_		2 151 7
3	T → EO	5.5	37.5	1.4	33.5	6.2	22.0	11.6	5.0	16.3	2.0	18.9	3,151.7
6	EO - T	9.0	28.0	5.0	46.0	10.8	23.5	20.2	2.5	30.3	_		3,170.5
0	T → EO	6.0	41.5	2.1	34.0	6.9	20.5	12.9	4.0	18.2		_	3,170.3
7	EO → T	8.5	25.0	4.8	45.5	10.1	25.5	19.0	3.5	26.6	1.0	32.0	3,217.2
7	T → EO	6.5	45.0	2.3	34.5	7.5	18.5	14.1	2.0	18.9			3,217.2
8	EO → T	7.5	19.0	4.4	43.0	8.8	28.5	16.5	7.0	23.1	2.5	30.1	3,326.5
0	T → EO	7.5	51.0	2.8	30.5	8.8	13.5	16.0		_			3,3_0,3
9	EO → T	6.5	12.5	3.9	39,5	7.5	32.0	14.1	7.5	19.7	8.5	28.3	3,578.0
	T → EO	8.5	57.0	3.2	34.0	10.1	9.0	17.0		_			3,370,0

When the transmission loss assignment on tandem circuits is set at 9.5 dB for EO \rightarrow T and 5.5 dB for T \rightarrow EO as seen in the above table, the minimum cost can be attained. (Refer to Fig. 6.4.(9)).

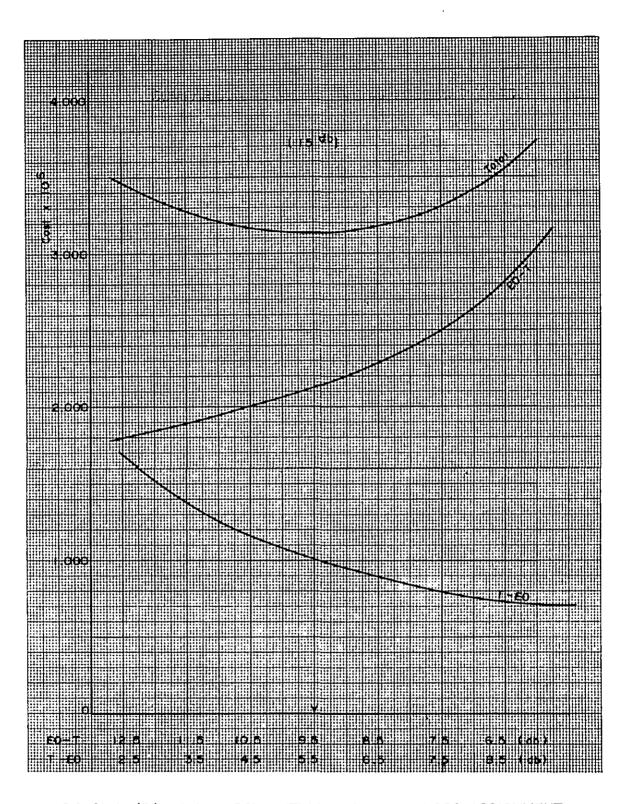


FIG. 6-4-(9) COMPARISON BETWEEN SEVERAL LOSS ASSIGNMENT

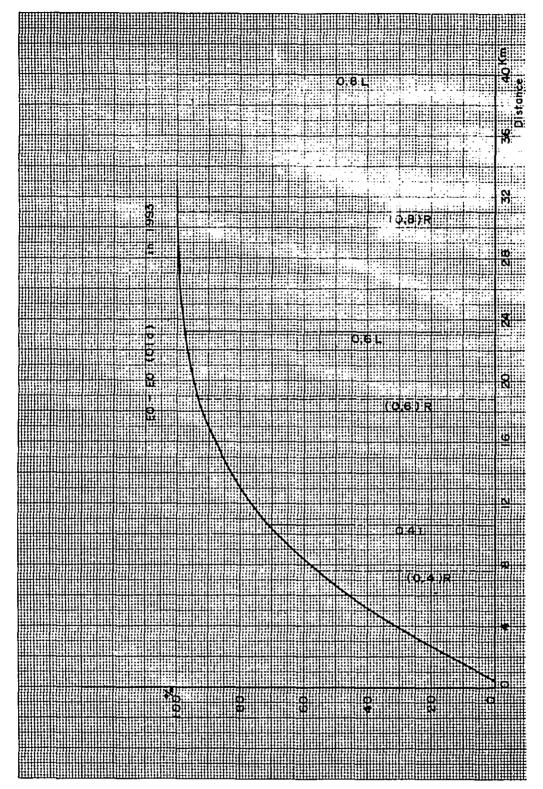


FIG. 6-4-(10) % DISTRIBUTION OF CIRCUITS BY DISTANCE

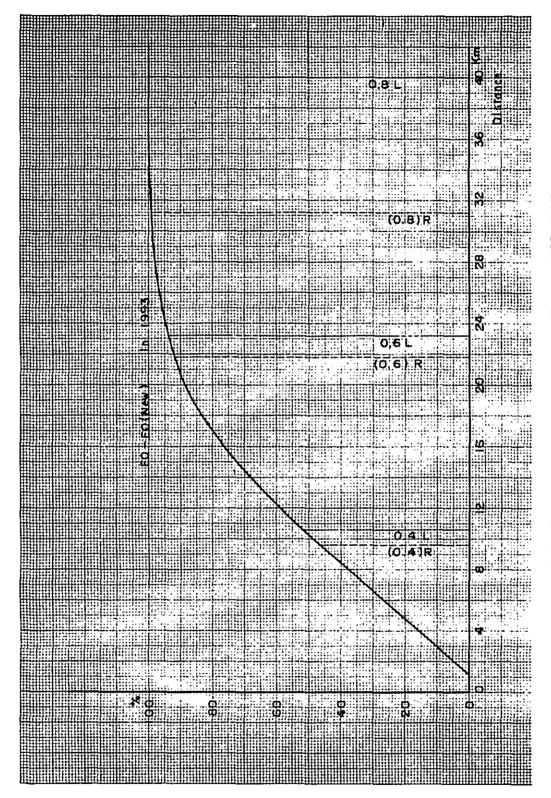


FIG. 6 - 4 - (11) % DISTRIBUTION OF CIRCUITS BY DISTANCE

FIG. 6-4-(12) % DISTRIBUTION OF CIRCUIT BY DISTANCE

FIG. 6 - 4 - (13) % DISTRIBUTION OF CIRCUIT BY DISTANCE

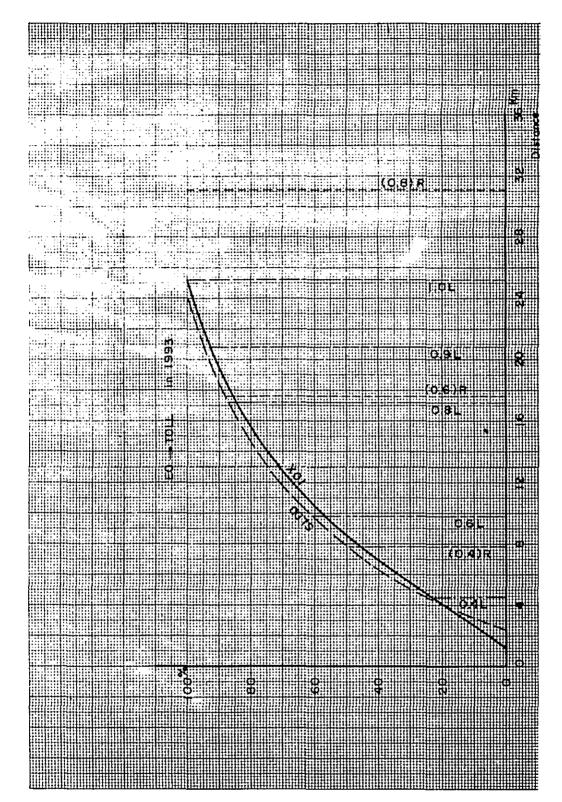


FIG. 6 - 4 - (14) % DISTRIBUTION OF DIRCUITS BY DISTANCE

Table 6.4.(15)

Plan - No. 1

C		% E	Distributi	on of Ci	rcuit by	Circuit D	istance a	and Syste	em	
System	4 km	8	12	16	20	24	28	30	35	40
EO EO (O)	2,209	6,132	8,019	9,621	10,428	10,835	10,970	10,971	10,985	10,985
EO – EO (N)	1,649	6,026	9,818	13,351	15,719	17,195	17,791	17,977	18,125	18,147
EO – T	129	4,357	7,540	10,198	11,776	12,624	13,197	13,302	13,373	13,373
T – EO	3,013	7,596	7,762	9,152	9,941	9,941	9,941	9,941	9,941	9,941
SLDD	1,048	7,641	8,903	10,915	12,330	13,484	13,629	13,629	13,629	13,629
10 X	204	969	1,157	1,437	1,638	1,811	1,837	1,837	1,837	1,837
TOTAL	8,252	32,721	43,199	54,674	61,832	65,980	67,365	67,657	67,890	67,912
TOTAL (%)	12.2	48.2	63.6	80.5	91.0	97.0	99.2	99.6	99.9	100%

6.4.3 Loading Standard

The existing loading method in the junction cable network in Jakarta is H-type loading. Its inductance is 88 mH and spacing is 1,830 m. In the PERTAMINA Project to be carried out in the near future the 80 mH 1,500 m type loading is to be used.

To shift up the cut-off frequency is as important as the transmission loss improvement. In spite of the loading method improvement from the 88 mH, 1,830 m type to the 80 mH, 1,500 m type the cut-off frequency should nevertheless be shifted up. This is true when the growth of economy and the standard of living elevation in the future with the concomitant upgrading of desires among the people in general are considered. However, the heavy loading cost is greater than the light loading cost.

We recommend that PERUMTEL use the 80 mH, 1,500 m type loading for the time being. As the telecommunication network expansion progresses in the form of quantitative to qualitative improvement, the 80 mH, 1,500 m type loading should be further improved gradually in consideration of optimum investment in telecommunication services.

Table 6.4.(16) Comparison between the Loading Space 1,830 m and 1,500 m

	S	= 1.83 km		S	s = 1.50 km)
Lo	0	.7 mH/km		C).7 mH/km	
Со	4	50 nF/km			50 nF/km	
So	1	1.83 km		1	1.50 km	
Ro	0.4 mm	0.6 mm	0.8 mm	0.4 mm	0.6 mm	0.8 mm
(Ω/km)	300	130	72	300	130	72
Lp		88 mH			80 mH	
Rp		7			7	
Go		1 ℧/km	_		I ʊ/km	
Cut-off Frequency	:	3,524 Hz			4,083 Hz	
Attenuation	0.4 mm	0.6 mm	0.8 mm	0.4 mm	0.6 mm	0.8 mm
(dB/km)	1.33	0.588	0.33	1.229	0.557	0.322

6.4.4 Two-way Repeater, PCM, etc.

When the conductor diameter is to be determined, not only the transmission loss but the prescribed inter-office DC resistance must also be taken into consideration.

Even in the same cable section the different conductor diameters must be used, depending upon the circuit distance to the destination and in view of the difference in transmission loss assignment according to the type of circuit (EO \rightarrow T, T \rightarrow EO, EO \leftrightarrow EO).

However, the number of circuits is too small for cable installation by conductor diameter according to the number of circuits for each object year. As the result the number of conduit lines, not to mention the number of cable lines, becomes large and in some cases the conductor utilization efficiency also deteriorates, causing the whole design to be extremely uneconomical. In such cases, the cable conductor diameter must be unified. The most simple way is to install the cable of the maximum diameter conductor among those to be unified. If, however, the number of circuits which require the maximum diameter conductor is very few and the increase of such circuits is not likely to take place in the future, unification of the conductor diameter into the maximum one means extremely uneconomical cable installation.

Therefore, the best realistic design is to use the second largest conductor diameter cable which will be useful in the future also and to insert the two-way repeater in the circuit where the larger conductor diameter is required. By this means the economical design for additional junction cable installation can be realized. Meanwhile, at present, the DC resistance satisfies the prescribed value in many cases so that the method mentioned above poses no problem insofar as the DC resistance is concerned. The circuits where the DC resistance exceeds the prescribed value are listed in the Table 6.4.(17) through Table 6.4.(23).

It is important to realize gradual improvement of transmission loss within the limits of the given budget. Although the PCM system is not adopted in the present junction cable network plan, this system will have to be introduced in the junction cable network of Jakarta in the future. For, the road occupation for civil engineering work will become difficult and hence the additional installation of junction cables will also become difficult.

Furthermore, the number of circuits of exchange offices in the peripheries of Jakarta will increase remarkably in accordance with the greater development of the municipality. In this connection the introduction of PCM system in Jakarta is preferred from the viewpoint of economy as from the angle of remedying the increasing difficulty of civil engineering work.

As the first step the PCM system should be adopted in the toll circuit (between EO and toll exchange office) which is seriously influenced by transmission loss assignment. In case the distance between EO and toll exchange office exceeds 17 km the application of PCM is economically advantageous so as to satisfy the prescribed transmission loss (7 dB).

As seen in Fig. 6.4.(14) the toll circuits, each with a more than 17 km distance between EO and toll exchange office, in 1993 occupy approximately 10% of the total. However, in the initial stage the number of circuits at each exchange office where to introduce PCM is not so large. Thus the introduction of PCM will begin in or after 1983.

Meanwhile, in Tokyo, a big city, the PCM system is already adopted for the reason mentioned in the foregoing.

TABLE 6-4-(17) NUMBER OF EXCESS TRANSMISSION LOSS CIRCUIT

Sustam	19	79	19	83	19	88	199	93	Domenica
System	Perumtel	JTP	Pian i	Plan 2	Plan I	Pian 2	Pian i	Plan 2	Remarks
EO - EO									
EO T	14	7	24		34	_	56	_	
T - E0	388	465	93	56	150	72	236	141	
SLDD	101	58	34	34	68	68	145	145	
IOX	50	32	16	16	22	22	26	26	
MS	_	_	_	1192	_	1921	_	2592	
Total	553	562	166	1298	274	2083	463	2904	

TABLE 6-4-(18) DISTRIBUTION OF CIRCUIT BY EXCESS LOSS

	System				Exce	ess	10:	ss						
	System	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1.0	1.1	1.2	1.3
	EO – T	56			_		(14)							
No. I	T -EO		(45) 161	(15) 75		(308)	(20)							
Plan N	SLDD	(46)					(16)				(85) I 45			
 P	ıox	(20)					(10)				(12) 26			(8)
	Total	(66) 56	(45) 161	(15) 75		(308)	(6.0)				(97) 171			(8)
	EO – T													
	T -EO		64	77										
2	SLDD										145		-	
No.	юх										26			
Plan	ED-MS					195								
	MS-EO					82								
:	Tota I		64	77		277					171			

(): 1979. Perumtel.

TABLE 6 - 4 - (19) CIRCUIT SECTION TABLE (EXCESSED THE SPECIFIED LIMIT)

Remorks		0.42db	over		db	0.94-		db4c		 5	db⊿e ∩	1970	5	db260	over		o oadb	over		,	
40.2	1993			195			64		-	<u></u>			88			5					
Plan - No.2	1988			8			32			=			36			11					
0.	1983			38		,	41			8			11			8					
1.0	1993						64			13			18			13			56		
Pian – No.1	1988						32			=			36			=			34		
Pic	1983						17			89			17			8			24		
aì	Loss	1	1	6.42 ^{dB}	1	_	6.44 ^{dB}		_	6.44dB			6.44dB	1	-	6.44 ^{dB}		1	8.04dB		
Total	۵ <u>۳</u>	-	27.4 ^K	1473	1	24. I ^K	1494		24.1 ^K	1494	_	24.1 ^K	1494		24.1K	1494		28.7 ^K	1877		
2		15	8.6	6.0				!									24	11.7	6:0		
ection	ŗ	33	4.3	1.0 c						_							18	7.0	0.9		
ble s	Uls tance Conductor	岁	9.0	1.0	15	98	60	15	8.6	60	9	15.5	6.0	9	15.5	0.9	6	2.0	0.9		
8	5 පි	35	5.5	0.1	09	15.5	6.0	8	15.5	6.0	5	9.8	6.0	15	8.6	6.0	52	3.0	6.0		
-	Liem	c.s	Distance	Size	c.s	Distance	Size	c.s	Distance	Size	c.s	Dis tance	Size	c.s	Distance	Size	C.S	Distance	Size		
From	70	e i v a pa co		MSI	Gandaria	3	SLDD	1	פתווממו	× 01	ö	SEOD	Gandoria	<u>></u>	< 2	Gandaria	10 m	(8) (8)	Kebayoran T4		

TABLE 6-4-(20) CIRCUIT SECTION TABLE (EXCESSED THE SPECIFIED LIMIT)

3	Remarks	ŧ	0.41 ^{cs}		=	O.21ab		-	O. 16 ^{ub} over								
No.2	1993			82			7.2			64							
Plan - N	1988			37			21			51	_						
Ь	1983	,		12			17			39							
No.1	1993						75			161							
Plan -	1988						46			104							
	1983						29			63							
	Loss			6,41 ^{dB}		1	4.21 dB			4.16dB							
Total	Oα	J	27.4 ^K	1473		14.2K	096		19.0K	920							
0 2 0	size	36	5.5	0.1		_	 										<u>-</u>
section		34	9.0 5	1.0				20	5.0	0.					 		
p) e	Distance	33	4.3	0.1	5	5.0	0.	61	2.0	0.		 			 		
34	ച് :	15	9.8	6.0	47	14.2	0.	-8	7.0	0:		 	-				
	Irem	c.s	Distance	Size	c.s	Distance	Size	C.S	Distance	Size							
From	То	S		Gandaria	Kota (B)		Tegal Alur	Cempaka – P	T3	Cilincing							

TABLE 6-4-(21) CIRCUIT SECTION TABLE (EXCESSED THE SPECIFIED LIMIT)

From	# # # # # # # # # # # # # # # # # # #		Cable	sect	section No	To	Total	ď	Perumtei		J T P	-	
To			Condu	Conductor size	ize	ഫ	Loss	1979		1979	g		
Cilincing	c.s	02	61	81	91							<u> </u>	bec i fled
	Distance	5.0	7.0	7.0	4.6	23.6K						_ <u>"</u>	liait set
SLDD	Size	1.0	6.0	6.0	6.0	1403B	6.07dB	8		80		9	3. 3ub (0. 57over)
Cilincing	c.s	20	61	18	91	1	1						
	Distance	5.0	7.0	7.0	4.6	23.6 ^K							4
X 01	Size	0.1	0.9	6.0	6.0	1403 ^{f2}	6.07 ^{dB}	5		4		<u>မ</u>	(0.57 ^{dD}
Pasar - M	c.s	40	29	17					_			_	
	Distance	5.7	7.0	12.4		20.7 ^K							:
SLDD	Size	6.0	0.9	0.9		1283 ^Ω	5.53 ^{dB}	8		6		<u>e</u> 	(0.03 ^{db}
Pasar – M	c.s	40	59	21		J	1					 	
	Distance	5.7	7.0	12.4		20.7 ^K	J						
× o	Size	0.9	6.0	0.9		1283 ^Ω	5.53 ^{dB}	<u>o</u>		က		<u>e</u> 	(0,03 ^{dD} over)
Jagakarsa	c.s	28	40	29	48	1	İ						
	Distance	5.5	5.7	7.0	.0 12.4	30.6K							:
Jarinegara	Size	1.0	0.9	6.0	0.8	1852 ^Ω	8.58 ^{dB}	4		7		<u>ၔ</u> 	(0.58 ^{db} over)
Jagakarsa	c.s	28	40	29	21	1	ı					<u> </u>	Repeater
	Distance	5.5	5.7	7.0	8.0	26.2K]						•
SLDD	Size	0.1	6.0	6.0	6.0	1558រ	6.73dB	2		လ		<u>=</u>	(1.23 ^{db} over)
Jagakarsa	c.s	28	40	59	17	1	_						
	Distance	5.5	5.7	7.0	8.0	26.2 ^K							. 4
10 ×	Size	1.0	6.0	6.0	6.0	1558 ^Ω	6.73 ^{dB}	4		ю		=	(1.23 ^{ub} over)

TABLE 6-4-(22) CIRCUIT SECTION TABLE (EXCESSED THE SPECIFIED LIMIT)

	Remarks	Specified	Limit Aga	(0.94db)			(0.94 ^{db}		;	(0.21 ^{db}		÷	(0,5 ab over)		=	(0.59 ^{ub}		÷	(0. 14 ^{ub} over)		, i	(0.57 ^{dD} over)
		i																				
٦ ۲																						
	1979			_			4			Ξ			424			=			61			8
<u>-</u>			 									į.										
Perumtel																						
	1979			12			9			15			308			20			45			8
۵۱	Loss	J		6.44 ^{dB}	1		6.44 ^{dB}		1	4.21 dB	1	ļ	4.5 dB			4.59 dB		J	4.14 B		1	6.07 ^{dB}
Total	R	I	24. IK	1494 ^Ω	1	24. I ^K	1494B	44.6	19.2K	უ096	-	14.0K	10640		18.2K	10620	1	15.5K	₀ 196	1	23.6 ^K	140312
No No	size				_															20	5.0	1.0
section No											~			28	5.5	0.				61	7.0 5	1 6.0
Sable	Conductor	15	8.6	6.0	- 5	9.8	6.0	2	5.0	0	6	7.0	8.0	40	5.7	6.0		,		18	2.0	6.0
		9	15.5	6.0	9	15.5	0.9	47	14.2	1.0	18	7.0	0.8	59	0.7	6.0	09	15.5	6.0	91	4.6	6.0
-		c.s	Distance	Size	s.s	Distance	Size	c.s	Distance	Size	c.s	Distance	Size	c.s	Distance	Size	c.s	Distance	Size	S' O	Distance	Size
From	То	Gandaria		SLDD	Gandaria		× 01	Kota T.I		Tegal Alur	Cempaka – P	<u>5</u>	Tj. Priok A	Kebayoran	<u>참</u>	Jagakarsa	Jatinegara	T5	Gandaria	SLDD		Cilincing

TABLE 6-4-(23) CIRCUIT SECTION TABLE (EXCESSED THE SPECIFIED LIMIT)

	Remarks		0.57db	over	4	- 0.03de	over	qp×00	3	over	Repeater	1.23db	over	Repeater	1.23 ^{db}	over	0 94 db	· · · · · · · · · · · · · · · · · · ·	over	{	4.5	over
															ļ							
9 T U																						
	1979			4			6			ຜ			5			ю			7			4
_																						
Perumte																						
	6261			2			56			01			7			4			5			9
al lo	Loss	1	1	6.07	1	1	5.53dB	1	1	5.53 ^{dB}	. 1		6.73 ^{dB}	1	1	6.73 ^{dB}	1	1	6.44 ^{dB}	1	1	6 44dB
Total	OĽ		23.6 ^K	14030	1	20.7 ^K	1283 ^Ω	1	20.7K	1283 ^Ω	1	26.2 ^K	_ບ ອວຣາ	-	26.2k	1558B	1	24.IK	1494 ¹³	ı	24.1 ^k	14940
2	size	20	2.0	0.							28	5.5	0.1	28	5.5	0.1						
section	Ulsignice Conductor siz	61	0.7	6.0	40	5.7	6.0	40	5.7	0.9	40	5.7	0.9	40 2	5.7	0.9						
able	onduc.	- 8	7.0	6.0	29	7.0	6.0	59	7.0	6.0	59	2.0	60	59	7.0	6.0	9	15.5	6.0	9	15.6	6 0
		16	4.6	0.9	17	8.0	0.9	17	8.0	6.0	17	8.0	99	17	8.0	6.0	15	9.6	6.0	15	8.6	6.0
	ltem	c.s	Distance	Size	C. S	Distance	Size	c.s	Distance	Size	c.s	Distance	Size	C.S	Distance	Size	c.s	Distanco	Size	C.S	Distance	Size
From	To	×01		Cilincing	SLDD		Pasar M	× 0		Pasar – M	SLDD		Jagakarsa	× 0		Jagakarsa	SLDD		Gandaria	x 01	·	Gandaria

6.5 DC Resistance Limit

6.5.1 Mutual Relation between Transmission Loss Assignment and DC Resistance Limit

A large majority of the junction circuits in Jakarta at present are non-loading circuits using large diamter conductors. However, positive use of loading circuits should be planned in the expansion program for the future Jakarta junction cable network, since the number of junction cables and exchange offices will further increase in line with the development of Jakarta City.

In the case of non-loading circuits, the determination of conductor diameter will be more largely influenced by the transmission loss limit than by the DC resistance limit. On the contrary, in the case of loading circuits the DC resistance limit will have a larger influence.

For example, when using the 0.6 mm conductor loading cable, the distance limits on account of transmission loss (19 dB) and DC resistance (3,000 ohms) are 30.5 Km and 21.9 Km, respectively. This means that the conductor diameter is more largely influenced by the DC resistance limit than by the transmission loss assignment.

The transmission loss to be assigned can be improved automatically to the small value when the cable conductor diameter is determined based on the DC resistance limit which can satisfy the switching equipment operational conditions. Further, the transmission loss can be improved through the use of two-way repeaters, and introduction of new technologies, etc.

First of all, limit of the allowable transmission loss must be studied in order to determine the quality of transmission service in the metropolitan area of Jakarta.

However, in order to make the transmission loss smaller, due consideration must be given to the DC resistance limit of the existing switching equipment. Therefore, it is recommended that, as the first stage, a full study be made of the mutual relation between transmission loss assignement and DC resistance limit by using loading cables, so that a network with more desirable service quality can be set up.

6.5.2 Improvement of DC Resistance Limit for Future Junction Circuits

If there were no DC resistance limit, the transmission loss of the junction circuit in the Jakarta metropolitan area can be kept in the specified value (15 dB) by the application of two-way repeaters without the use of 0.9 mm and 1.0 mm conductor cables. As shown in Fig. 6.5.(3), it is assumed that the 100-pair cable conversion of large conductor cables, such as 0.9 mm and 1.0 mm conductor cables, will increase year by year.

The cable cost is in proportion to the amount of copper used and since there will be a shortage in world copper resources in the future, plans for using small conductor cables are very important for reducing the amount of copper required. This will lower not only the

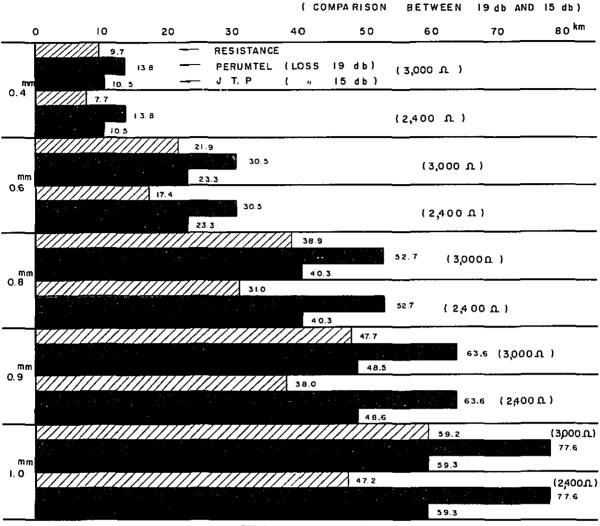


FIG. 6-5-(1) DISTANCE LIMIT

TABLE 6-5-(2)
DISTANCE LIMIT BY CABLE CONDUCTOR DIAMETER

						ILUAL	11907
RES	ISTANCE	LINE		DISTANCE	LIMIT	(km)	
8.	LOSS	RESISTANCE LOSS	0.4 ^{mm}	0.6 m	O. 8 mm	0.9 mm	1.0 ^{mm}
RESIS -	3000 ^Ω	2960 ^Ω	9.7	21.9	8.8	4 7. 7	59.2
TANCE	2400 ^N	23601	7. 7	17.4	3 1.0	3 8.0	4 7.2
LOSS	19 db	17 db	13.8	3 6.5	5 2.7	6 3. 6	7 7.6
	I 5 d b	13 db	10.5	23.3	4 0.3	4 8.6	5 9.3
RESIS	TANCE /km		3 0.5	13.5	7 6	6 2	50
LOSS	∕k m	<u> </u>	1, 229	0.557	0. 3 22	0. 267	0.219

cable cost but also the conduit cost. In addition, such troubles as road occupancy and road re-excavation on the occasion of conduit installation can be avoided.

As mentioned previously, the 0.9 mm and 1.0 mm conductor cable lengths account for 17% of the total length. On the other hand, in terms of the cost, these cables comprise 26% of the total cable cost.

Therefore, it is desirable that enlargement of the DC resistance limit be made and the transmission service quality be improved by an economical method.

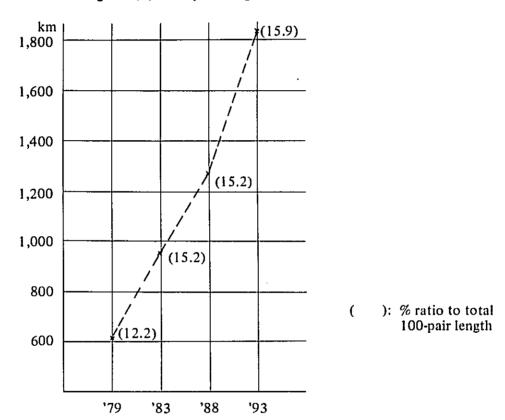


Fig. 6.5.(3) 100-pair Length 0.9 and 1.0 mm Conductor

6.5.3 Comparison of Various DC Resistance Limit Plans

The DC resistance limit value is important in the design of junction cables, as is the case with the transmission loss assignment. Although 40,000 subscriber lines are served by the present EMD switching system, full studies should be made on how the existing switching equipment or new equipment can be expanded in the future.

Based on the conditions of the DC resistance limit shown in Table 6.5.(4) and Fig. 6.5.(5), and also on the location of the tandem exchange office, number of tandem circuits, and the circuit cost, the optimum DC resistance assignment is calculated. As shown in Table 6.5.(6), DC resistance limit is 1,900 ohms in EO \rightarrow T, and 1,100 ohms in T \rightarrow EO section.

Table 6.5.(4) D.C. Resistance Limit (1)

	EMD	(EO)	NEW	(EO)
EMD	Direct:	2,400Ω	Direct:	2,400Ω
(EO)	Tandem:	3,000Ω	Tandem:	3,000Ω
NEW	Direct:	2,400Ω	Direct:	3,000Ω
(EO)	Tandem:	3,000Ω	Tandem:	2,000Ω

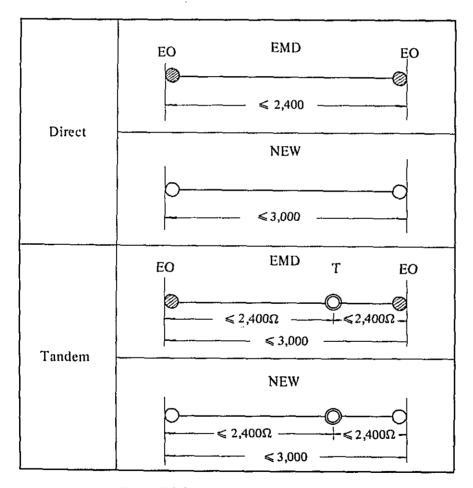


Fig. 6.5.(5) D.C. Resistance Limit (2)

Table 6.5.(6) Optimum D.C. Resistance Combination

Pian	System	Resis- tance	-	. "	(Cable	condu	ctor d	iamete	r			Cost
No.	System	alloca- _tion		4 ^{mm}	0.	6 mm		8 ^{mm}	0.9) mm	_1.	0 ^{mm}	(m.u.)
1	EO → T	2,500 Ω	% 38.0	km 5.7	47.0	km 13.2	15.0	km 26.7		_		_	3,617.9
	T→EO	500	15.0	0.8	20.0	2.51	21.0	4.8	9.5	km 6.9	% 34.5	km 13.8	5,017,5
2	EO → T	2,300	33.0	5.3	48.0	12.1	18.0	23.3	1.0	32.4			2 442 0
	T → EO	700	22.0	1.1	25.0	3.6	26.0	6.9	8.5	9.8	18.5	15.4	3,443.0
3	EO → T	2,100	28.5	5.0	47.5	11.1	22.0	21.3	2.0	31.1	ĺ	-	2 270 0
	T → EO	900	28.5	1.4	29.5	4.7	26.5	9.0	7.0	12.7	8.5	17.0	3,379.9
4	EO → T	2,000	27,0	4.8	46.0	10.5	24.0	20.3	3.0	30.5	_	-	2.276.0
	T → EO	1,000	32,0	1.6	31.0	5.2	25.5	10.0	6.5	14.2	5.0	17.8	3,376.8
5	EO → T	1,900	24.0	4.7	46.0	10.0	26.0	19.2	3.5	27.4	0.5	32.6	*3,375.2
	T → EO	1,100	35.5	1.8	32.0	5.7	24.5	11.0	5.0	15.7	3.0	18.6	*3,373.2
6	EO → T	1,800	22.0	4.5	45.0	9.5	27.0	18.2	5.0	25.9	1.0	31.8	2 401 7
	T → EO	1,200	38.0	1.9	34.0	6.3	22.0	12.0	5.0	17.1	1.0	19.4	3,401.7
7	EO → T	1,700	19.0	4.3	44.5	8.9	28.5	17.2	6.0	24.5	2.0	31.0	2 40 4 0
,	T → EO	1,300	40.5	2.1	35.5	6.8	20.5	13.1	3.5	18.6	_		3,404.0
8	EO → T	1,500	13.5	4.0	42.0	7.9	32.0	15.1	8.0	21.5	4.5	29.4	25592
	T → EO	1,500	46.0	2.4	36.0	7.9	18.0	15.5	_		_		3,558.3
9	EO → T	1,300	8.0	3.7	38.5	6.8	34,5	13.1	9.0	18.6	10.0	27.7	2 770 8
	T → EO	1,700	53.5	2.9	35.5	9.5	11.0	16.6			-		3,730.8

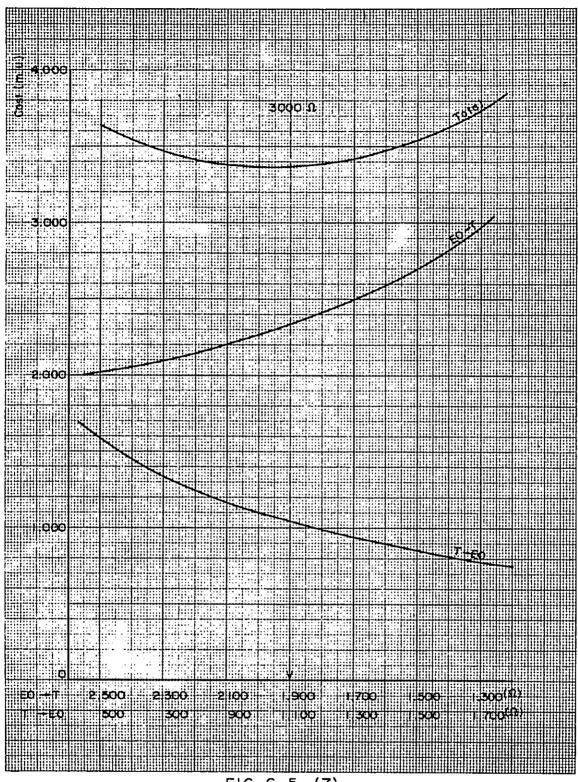


FIG. 6-5-(7)
COMPARISON BETWEEN SEVERAL RESISTANCE ASSIGNMENT

6.6 Kind of Cable

The policy of PERUMTEL hereafter is not to adopt paper insulated cables for both junction and subscriber cables; consequently, in determining the kinds of cables, the object of the study was only for PE insulated cable.

In determining the number of pairs and conductor of the cable, the following items were considered.

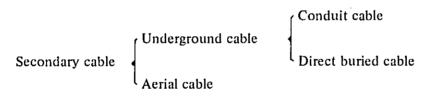
- (1) Since it is believed that there will be a big increase in future telephone demand, a large number of pair cables were added.
- (2) Besides the presently used conductors, cables of 0.9 mm and 1.0 mm conductors were added.

6.6.1 Junction Cable

Junction cables will be conduit cables.

The number of pairs and conductors of the cables are shown in Table 6.6.(1).

6.6.2 Subscriber Cable


6.6.2.1 Primary Cable

Primary cables will be conduit cables.

The number of pairs and conductors of the cables are indicated in Table 6.6.(2). However, small size cables (200 pairs or less) which are branched from the main cable, in the direct service area will be JF cables (See Table 6.6.(3)).

6.6.2.2 Secondary Cable

Secondary cables, when classified, are as follows:

(1) Underground Cable (Conduit and Direct Buried Cable)

Underground cables shall be JF cables for both the conduit and direct buried cables.

The kinds of cable size and conductors are as shown in Table 6.6.(3).

(2) Aerial Cable

For aerial cables, the 8-shape self-supporting cable will be used. The number of pairs of the presently used cables is sufficient. The kinds of cable size and conductors of such cables are shown in Table 6.6.(4).

Table 6.6.(1) Junction Cal	ble	Cal	iction	Jun	(1)	6.6	6.	ble	Ta
----------------------------	-----	-----	--------	-----	-----	-----	----	-----	----

No. of Pairs Diameter (mm)	100	200	300	400	600	800	1200	1600	1800	2400
0.4	~	_	_	Δ	Δ	Δ	Δ	Δ	Δ	Δ
0.6	~	_		0	0	0	0			_
0.8		0		0	0	_	_		_	
0.9	0	0	0	0						
1.0	0	0			_				_	_

Note ©: Existing

— : No use

Table 6.6.(2) Primary Cable

Diameter (mm)	200	300	400	600	800	1000	1200	1600	1800	2400
0.4	0	0	0	0	0	0	0	Δ	Δ	Δ
0.6	0	0	0	0	0	0	0		_	_
0.8	0	0	0	0	_		_			_

Table 6.6.(3) Secondary Cable

(Conduit, Direct buried) & small pair number branch primary cable in direct service area

No. of pairs Diameter (mm)	10	20	30	40	50	80	100	150	200
0.4	0	0	0	0	0	0	0	0	0
0.6	0	0	0	0	0	0	0	0	0

Note: This cable is jelly filled cable.

Direct buried cables have steel tape armoring.

Table 6.6.(4) Secondary Cable (Aerial)

No. of pairs Diameter (mm)	10	20	30	40	50	80	100	150	200
0.4	0	0	0	0	0	0	0	0	0
0.6	0		0	0	0	0	0	_	_
0.8	0	0	0	0	0				_

Note: This cable is figure eight shaped self-supporting cable.

6.7 Design Standards for Subscriber Cable Network

6.7.1 Design and Calculation Standards for Key Map

The key map is designed based on the following standards:

- (1) The service area of each exchange office is partitioned into the cross connection areas or the direct service areas.
- (2) Each cross connection area or direct service area is divided by suitable boundaries, such as rivers, roads, railroads, etc. For the undeveloped areas, provisional boundaries are applied.
- (3) Cross Connection Areas
 - 1) The telephone demand as of 1993 in the cross connection area will be 600 as the standard, and 700 at the maximum.
 - 2) In principle, the number of pairs of primary cables in each cross connection area is equivalent to the demand of each area in rounded figures of 100 units.
 - 3) The number of pairs of secondary cables in the cross connection area is the same, in principle, as the number of pairs of primary cables as of 1993. However, when necessary, it is allowable to have the number of secondary cable pairs being up to 1.3 times the number of primary cable pairs.
 - 4) The following two types of cross connection cabinets will be used.
 - a) 1,600 pairs -- When the telephone demand is 301 to 700 in 1993.
 - b) 800 pairs When the telephone demand is 300 or less in 1993.
- (4) Direct Service Area
 - 1) The direct service area will be established in the building area and the area located within as short as 600 m or so from the exchange office.
 - 2) The telephone demand as of 1993 in the direct service area will be 600 as the standard, and 1,800 at the maximum.
 - 3) The number of primary cable pairs is such that can cover 1.3 times the demand in the area. Both demand and pair number are calculated in 100 units, raising to unit factions less than 100.
- (5) The sending reference equivalent (S.R.E.) for subscriber line and the DC resistance are calculated for each route, with a view to keeping the values within the limits.

The basic conditions in the calculation are as follows:

1) S.R.E. limit for subscriber line - 10.42 dB (1.2 Np)

Calculation formula of S.R.E. $\alpha + \beta \ell$

where α : 0.87 dB (0.1 Np)

 β : According to type of cable and conductor

diameter (Refer to Table 6.7.(1).)

l : Distance (km)

- That is, the S.R.E. limit for the subscriber line only, excluding the telephone instrument, is 9.55 dB (1.1 Np).
- 2) DC resistance limit for subscriber line -1,200 Ohm (excluding telephone set)
- 3) In the primary cable section, cable of uni-conductor is used, in principle.

 That is, the combined use of different diameter conductors is not made in the primary cable section.
 - In the secondary cable section, the same rule as mentioned above is applied. (Cable conductor diameter of the primary cable section is not always the same as that of the secondary cable section.)
- 4) The standard values used in calculations for the various kinds of subscriber lines are shown in Table 6.7.(1).

Туре	of cable	D.C. resistance (Ω / km)	S.R.E. (subscriber line only) (dB/km at 800 Hz)
0.4	PE	300	3.16
0.4	JF	300	3.25
0.6	PE	130	1.68
0.6	JF	130	1.73
0.8	PE	72	1.08

Table 6.7.(1)

- 5) PE insulated cables is used for primary cables.
- 6) JF cable is used for secondary underground cable in the developed areas.
- 7) PE-SS cable is applied for secondary aerial cable in the undeveloped areas.
- (6) The primary cable route is determined by consideration of the following conditions:
 - 1) Condition of the existing roads in view of maintenance and economy.
 - 2) In the undeveloped areas, roads proposed in city planning or provisionally assumed roads.
 - 3) Junction cable route and toll cable route.
- (7) Location of cross-connection cabinets and feeding point for direct service areas are determined in consideration of the following conditions.
 - Location of cross connection cabinets in developed areas and the feeding point of direct service areas in developed areas are at places where the number of secondary cables in one route is less than three.
 - Location of cross connection cabinets in undeveloped areas is merely selected at places near the exchange office in the cross connection areas.

(8) Others

As the maximum number of pairs for secondary cables, the following numbers of pairs are considered for the future.

a) JF Cable

0.4 mm Maximum 200 pairs 0.6 mm Maximum 200 pairs

b) PF-SS Cable

 0.4 mm

 Maximum 200 pairs

 0.6 mm

 Maximum 100 pairs

 0.8 mm

 Maximum 50 pairs

6.7.2 Design Standards for Subscriber Cable Network in Urgent Areas

As the design standards for the subscriber cable network in urgent areas, the following design standards will be applied in addition to the design standards described in the preceding paragraph 6.7.1. Furthermore, this design was prepared in June to July 1974 based on the request of PERUMTEL.

(1) Provision Period

(2)

a)	Subscriber primary cables 5 years	
b)	Underground facilities	
c)	Subscriber secondary cables	
DC	Resistance Limit of Subscriber Line	
a)	Object area of mobile exchange construction1,500 Ohm (excluding telephone set)	j
b)	Other areas)

(3) Kind of Conduit Cable

The polyethylene insulated cable shown in Table 6.7.(2) will be used.

Table 6.7.(2)

Conductor diameter	200	300	400	600	800	1,000	1,200	1,600	1,800	2,400
0.4 mm	0	0	0	0	0	0	0	×	X	X
0.6 mm	0	0	0	0	0	0	0			
0.8 mm	0	0	0	0						

(4) Determination of Number of Ductways

1) Calculation of Number of Ductways

The calculation of the number of ductways will be in accordance with the following.

- a) Number of cables required 15 years henceN
- b) Safe coefficient for demand fluctuation1.3
- c) Calculation formula for number of ductways

$$N \times 1.3 \dots$$
 Formula 6.7.(1)

2) Spare Ducts

A certain number of spare ducts must be prepared for use in case where the cable is replaced or the duct is damaged through the affect of other works.

The number of spare ducts is as given in Table 6.7.(3).

 Number of basic cable ducts
 Number of spare ducts

 1 - 15
 1

 16 - 30
 2

 More than 31
 3

Table 6.7.(3)

3) Decision on Number of Ductways

The number of ductways is determined according to the formula 6.7.(1) and adding the number of spare ducts shown in Table 6.7.(3) to the number of ductways calculated; furthermore, the standard type shown in Fig. 6.7.(4) is applied.

2	4	6	9	12	16	
00	00	000	000	0000	0000	
	00	000	000 000	0000	0000 0000	
20	25	30	36	42	48	56
00000 00000 00000	00000 00000 00000 00000 00000	000000	000000 000000 000000 000000 000000	000000 0000000 0000000 0000000 0000000	0000000 0000000 0000000 0000000 0000000	0000000 0000000 0000000 0000000 0000000

Fig. 6.7.(4)

- (5) The following two types of cross connection cabinets are applied.
 - a) 1,600 pairs When the demand is 301 to 700, 15 years after the service-in of the exchange office.
 - b) 800 pairs When the demand is 300 or less, 15 years after the service-in of the exchange office.

6.8 Optimum Provision Period

The optimum provision period varies according to the affect of the various social and economic conditions at the time of the provisions. When there is a rapid increase in telephone demand, the optimum provision period will be short and if the trend in increase is gradual, the optimum provision period will be long.

The provision period for outside plant facilities when expanding the facilities in other countries is shown in Table 6.8.(1). This table was copied from the CCITT "Local Telephone Network" but there is large difference among the countries.

In this section, a study was made of an economic provision period when planning the expansion of facilities.

When there is repeated expansion in facilities, the construction cost can be divided into two parts: the fixed part and the fluctuating part in proportion to the capacity of the facilities.

That is, the construction/installation cost generally can be expressed by the following formula.

$$Y = A + BX$$
 Formula 6.8.(1)

where Y: Total construction cost

A: Fixed portion of construction cost

BX: Fluctuating portion of construction cost

B: Fluctuation coefficient

X: Capacity of facilities

When the capacity necessary to satisfy the present demand including the existing subscriber lines is "to" and the required increase in capacity for each year is "t", and if the trend in increase is a straight line, the required facility capacity in N year will be:

Therefore, the necessary construction cost in the initial period will be:

Where "Ao" is the basic construction cost required only at the time of the initial construction.

The cost of the first expansion work to be carried out after N years, Y₁, is:

$$Y_1 = A + BtN Formula 6.8.(3)$$

Similarly, the cost of the second construction work to be carried out after 2N years, Y2, is:

$$Y_2 = A + BtN = Y_1$$

In the same way in the following:

$$Y_1 = Y_2 = Y_3 = \dots$$
 Formula 6.8.(4)

Present worth coefficient of an annuity $=\frac{(1+i)^n-1}{i(1+i)^n}$

(when
$$n \to \infty$$
) = $\frac{1}{i}$

From the foregoing, when the coefficient of annual expense is "a", the annual expense of Yo will be a Yo and its present worth of an annuity will be $\frac{a}{1}$ Yo. (when $n \to \infty$).

In the same way, in regard also to Y_1 , the present worth of an annual expense after N years is $\frac{a}{1}$ Y_1 . This is the amount after N years. The present worth of a future amount for Y_1 is:

$$\frac{1}{(1+i)^{N}} \cdot \frac{a}{i} \cdot Y_{i}$$

It is the same in regard to Y₂ after 2N years.

$$\frac{1}{(1+i)^{2N}} \cdot \frac{a}{i} \cdot Y_2$$

The total Z of the present worth in the future of these series of repeated construction works is expressed in the following formula.

$$Z = \frac{a}{i} \cdot Y_0 + \frac{1}{(1+i)^N} \cdot \frac{a}{i} \cdot Y_1 + \frac{1}{(1+i)^{2N}} \cdot \frac{a}{i} \cdot Y_2 + \frac{1}{(1+i)^{3N}} \cdot \frac{a}{i} \cdot Y_3 + \cdots$$

$$= \frac{a}{i} \cdot Y_0 + \frac{a}{i} \cdot Y_1 \left\{ \frac{1}{(1+i)^N} + \frac{1}{(1+i)^{2N}} + \frac{1}{(1+i)^{3N}} + \cdots \right\}$$

where if $\frac{1}{(1+i)^N} = \alpha$

$$Z = \frac{a}{i} \left\{ Y_0 + Y_1 \left(\alpha + \alpha^2 + \alpha^3 + \dots \right) \right\}$$

$$= \frac{a}{i} \left(Y_0 + Y_1 \cdot \frac{\alpha}{1 - \alpha} \right)$$

$$= \frac{a}{i} \left\{ A_0 + Bt_0 + (A + Bt_N) \cdot \frac{1}{1 - \alpha} \right\} \dots Formula 6.8.(5)$$

where since a, i, Ao, Bto are fixed numbers:

$$z = A (1 + \frac{Bt}{A} N) \cdot \frac{1}{1-\alpha}$$
 Formula 6.8.(6)

From formula 6.8.(6), N which makes $(1 + \frac{Bt}{A} \cdot N) \cdot \frac{1}{1-\alpha}$ the minimum will express the optimum provision period.

Bt A Fig. 6.8.(2), shows the optimum porivision period based on the relation between and N. However, this figure is a calculation example when the interest rate is 12% per year.

6.8.1 Exchange Office Building

According to PERUMTEL's Construction Program of Exchange Offices in Jakarta (dated January 20, 1975), 18 exchange offices will be constructed from 1975 to 1977. In accordance with this program, several offices are presently under construction.

The new office buildings in Jakarta already decided by PERUMTEL as of June 1975 are as shown in Table 6.8.1.(1).

Name of exchange	Year of	F1	Buildir	ig size in m ²		Reference
office	completion	Floors	Switch and equipment room	Office room	Total	Accommodatable line unit
Pasar Minggu	1975	1	1,194	141	1,335	10.000
Rawamangun	"	"	1,050	197	1,247	"
Cipete	"	"	1,200	112	1,312	"
Cengkareng	"	"	1,200	169	1,369	11
Kalibata	"	n	1,200	152	1,352	11
Pasar Rebo	"	"	750	149	899	"
Pluit	"	**	744	85	829	"
Kebayoran Baru	"	2	1,800	298	2,098	20.000
Jatinegara (B)	"	4	2,602	400	3,002	40.000
Cempaka Putih	"	n	2,826	450	3,276	п
Kota (B)	"	"	3,066	1434	4,500	"
Gambir (B)	"	6	3,409	500	3,909	"

Table 6.8.1.(1) The Fixed Plan for New Exchange Offices in Jakarta

As can be seen in Table 6.8.1.(1), the building sizes are not the same though the number of line units accommodated is the same. It is presumed that this difference is due to the shape of the building site and/or the amount of work handled there.

TABLE 6-8-(1) PROVISION PERIOD IN YEARS FOR EXTENSION PIANNING

	<u> </u>	<u> </u>					_			
Country		(4)	,		p. of)		blic Iny (5)			
	Argentine	Australia	elgium	Colombia	Congo (Dem. Rep.	Denmark	Fed. Republic of Germany	France	Creace	ndia
Type of line	Ą	Au	B B	ပိ	ō S	De	Fe	Fr	້ວ	ے
Ducts	>20	(1) 20-50	(1)	X		20-30	20-30	20	15	-
Conduit cables: Main cables	> 5	8 - 20	5-10	3-5	-	1,7	5-10	5-8	3-5	-
Distribution cables	>10	20	-	1	1	(3)	10-30		_	
Buried cables: Main cables Distribution	-	_	7-15] 15		10-20	15	7.	6-12
cables		10-20	20-25	long	J	20-30	30	J	10-15	15-20
Aerial cables: Main cables Distribution	_	_	1		x	(2)	-	-	_	
cables	01<	10-20	10	3-5		J	20	5	3-5	-
Country				1s	and		•		pu	Kingdom
Type of line	Japan	Kuwait	Malaysia	Netherlands	New Zealand	N or way	Poland	Sweden	Switzerland	United K
Ducts	≥ 15	25	20	_	25	≩30	×	<u>≥</u> 10	30-50	ab.20
Conduit cables: Main cables	5	10	5-10	_	8-12	4-5	1	4-5	7-10	5 -20
Distribution cables	15	_	20	_	_	-	5-15	(1)	15-20	ab.20
Buried cables: Main cables	15	5-10	_	5-10	10-20	5-10 (1)	×	4-6	20-40	_
Distribution cables	ال	_	20	(1)	10-20	15-20	^	(1)		20
Aerial cables: Main cables	5	_	_	_	10-20	-	×	-	-	-
Distribution cables	15	5-10	5 (2)	(2)]	10-15		5-6	15-20	20

- = More than ··· years. ≠ Equal to or more than ··· years.
- = Not in use.
- Х = No data available.
- = About

- (1) = Up to ultimate capacity
 (2) = As a temporary relief only.
- (3) = According to maximum size of cable.
- (4) = For junction cables: 4 10 years. (5) = For junction cables: economic provision period.

copied from CCITT

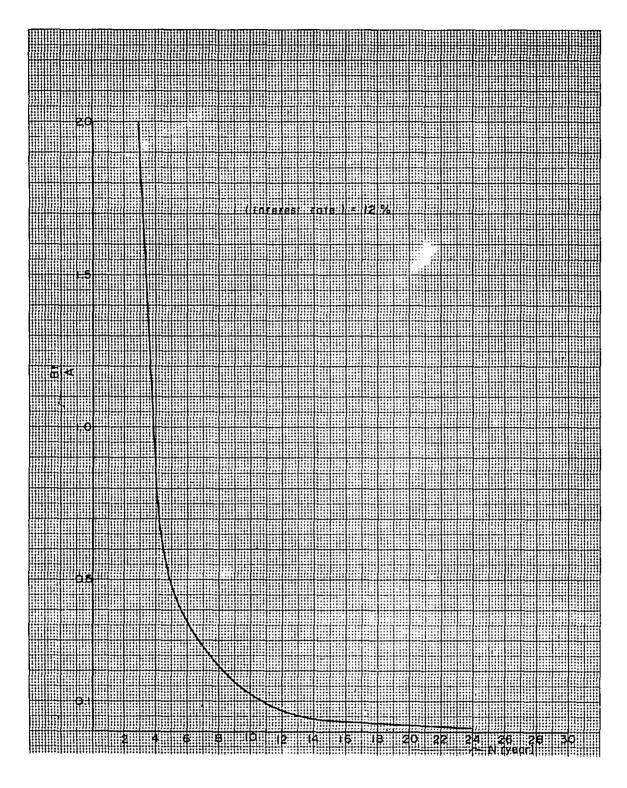


FIG. 6 - 8 - (2)
OPTIMUM PROVISION PERIOD

A study is made here in regard to the relation between the number of line units of the switching equipment and the size of the switching room. If the size of the switching room for accommodating switching equipment of 10,000 line units is 1,200 m² and the switching room size for switching equipment of 20,000 line units is 1,800 m², the size of the switching room for accommodating switching equipment of the respective number of line units will be as shown in Fig. 6.8.1.(2), and the size of the switching room for accommodating switching equipment of 40,000 line units will be 3,000 m².

According to the data for building construction cost as calculated by PERUMTEL the construction cost per 1 m² differs with the size of the total construction area. The building construction cost Y is expressed by the following formula.

$$Y = 65 + 115X (m \cdot u)$$

where Y: Total construction cost

X: Number of line units of switching equipment (however, the unit is

10,000 line units)

That is, the fixed portion of the construction cost is A = 65 ($m \cdot u$) and the fluctuating coefficient of the construction cost according to scope of facilities is: B = 115 ($m \cdot u$).

On the other hand, from Table 5.2.(2) (New Switching and New Local Exchange Office Construction Plan) in Chapter 5 Section 2, exchange offices in Jakarta can be divided into two kinds based on the number of line units to be accommodated in the future. That is, exchange offices are divided into the two groups of medium and/or small class exchange offices and large class exchange offices. The medium and/or small class exchange offices mean the offices where less than 2,500 line units are installed additionally in one year, and the large class exchange offices mean the offices where more than 2,500 line units are installed additionally.

In the study of the optimum provision period for office buildings based on the number of line units which were already determined by PERUMTEL as shown in Table 5.2.(2), 1976 was chosen as the base year since it is the year when almost all the exchange offices commence the service.

(1) In case of 17 exchange offices in the medium and/or small class.

Total number of line units already determined for 1976..... 48,800

Total number of line units required in 1986 126,800

Total number of line units required in 1991 261,800

According to the above numbers, the average number of line units to be installed additionally in one year for one exchange office is:

For 10 years 459 line units; that is, the number of new installations required in one year is: t = 0.0459.

Therefore,

$$\frac{Bt}{A} = \frac{115}{65} \times 0.0459 = 0.081$$

$$\frac{Bt}{A} = \frac{115}{65} \times 0.083 = 0.147$$

The result calculated according to the following condition is shown in Fig. 6.8.1.(3).

That is, $\frac{Bt}{A} = 0.08$ and 0.15

(However, the interest rate shall be 12% per year.)

From Fig. 6.8.1.(3), the optimum provision period will be 9 - 12 years.

(2) In case the 18 exchange offices are in the large class.

Total number of line units determined for 1976 ----- 200,000

Total number of line units required in 1986 ----- 351,000

Total number of line units required in 1991 ----- 600,000

According to the above numbers, the average number of line units to be installed additionally in one year for one exchange office is:

Therefore,

$$\frac{Bt}{A} = \frac{115}{65} \times 0.0839 = 0.148$$

$$\frac{Bt}{A} = \frac{115}{65} \times 0.1481 = 0.262$$

The calculated result according to the following condition is shown in Fig. 6.8.1.(3).

That is, $\frac{Bt}{A} = 0.15 \text{ and } 0.25$

(However, the interest rate shall be 12% per year.)

Fig. 6.8.1.(3) shows that the optimum provisons period is 7 - 9 years.

As the result of the foregoing study, JTP recommends the optimum provision period for office buildings as follows:

- b) In case of an exchange office where the demand 15 years hence will exceed 20,000 8 years

6.8.2 Switching Equipment

There are presently switching equipment of 45,000 line units for subscribers in Jakarta. 44,700 line units are in the EMD switching equipment, while the balance of 600 line units are in the crossbar switching equipment.

According to PERUMTEL's Construction Program of Exchange Offices in Jakarta (dated January 20, 1975), the new installation program for the period from 1975 to 1977 has already been determined as shown in Table 6.8.2.(1).

Kind of switch New installation Existing TOTAL E.M.D. 42,000 44,700 86,700 X.B 8,000 600 8,600 P.R.X. 158,500 158,500 TOTAL 208,500 45,300 253,800

Table 6.8.2.(1)

Through the study of the construction costs of the above expansion program, the cost per line unit can be assumed as follows, though there is some difference according to the type of switching equipment.

In case of new installation =

= 0.0020 - 0.0025

In case of expansion

= 0.0025 - 0.0033

where

A :

Fixed portion of construction cost

В

Fluctuating coefficient of construction cost

The results of the calculation for the optimum provision period according to the following condition and using the above numerical values are shown in Fig. 6.8.2.(2) to Fig. 6.8.2.(4). That is, t = 1,000, 3,000 and 5,000 on condition that the interest rate per year is 12%.

It can be known from Fig. 2.8.2.(2) to Fig. 2.8.2.(4) that in case that the number of line units to be expanded in one year "t" is 5,000 line units or more, the optimum provision period will be 1 to 2 years.

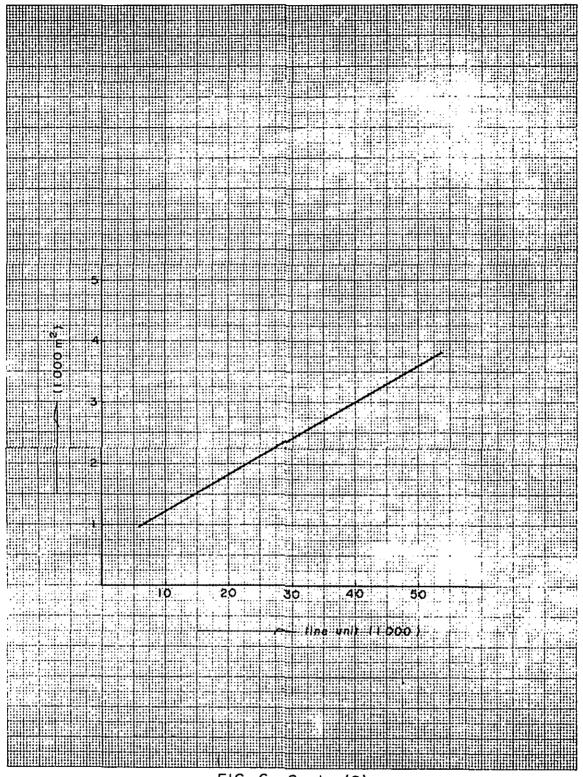


FIG. 6 - 8 - 1 - (2)
BUILDING SIZE FOR SWITCHING ROOM ONLY

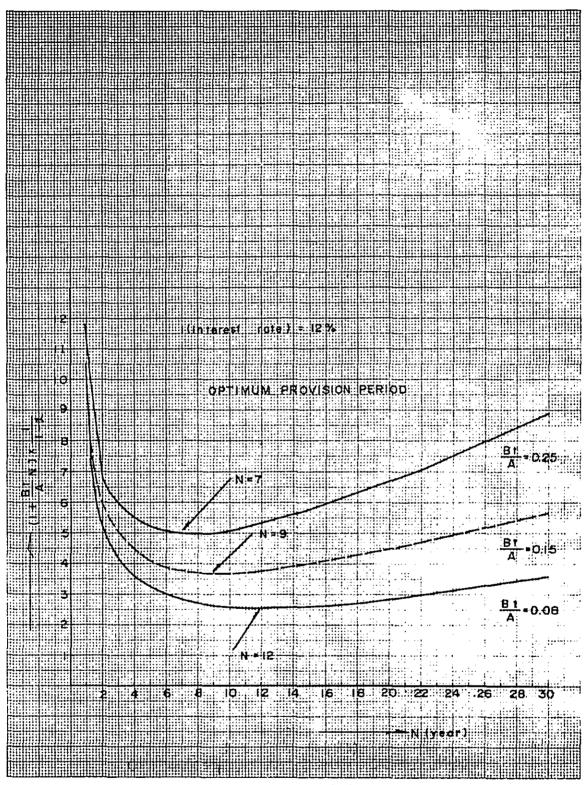


FIG. 6-8-1-(3)
OPTIMUM PROVISION PERIOD FOR BUILDING

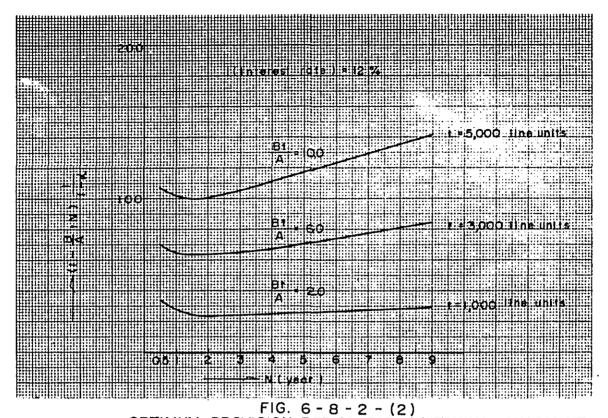
When the number of line units to be expanded in one year "t" is 3,000 line units or less, the optimum provision period will be 2 to 3 years.

In the CCITT Recommendation "National Telephone Network for the Automatic Service", the provision period for switching equipment is 3 to 5 years.

In regard to the new expansion of switching equipment for the time being in Jakarta, the following points must be considered:

- a) Since the construction funds must be procured by borrowing, it would be better to keep the repeat cycle to every 3 or 4 years, to minimize the troublesome fund procurement procedures.
- b) Since the switching equipment must be imported from abroad, it would be inconvenient to repeat the expansion work every two years or so.
- c) Since the work will be implemented by international tender, it is believed that a period of about four years would be required from the planning of the expansion project until completion as shown in the following.

Planning	About 4 months	
Discussion	About 1 month	
Tender announcement and tendering	About 4 months	
Evaluation of proposals	About 2 months	
Appointment of successful tenderer	About 2 months	
Negotiation and discussion	About 3 months	
Contract conclusion	About 1 month	
L/C opening	About 1 month	
Detail design	About 4 months	
Detail negotiation	About 3 months)	Overlapping
Manufacture and transport	About 9 months	period:
Construction and handing-over	About 12 months	3 months
Total	About 43 months	


In consideration of the foregoing conditions, JTP recommends the expansion period for switching equipment be 4 years.

However, it is desirable that efforts be made to shorten the expansion period to 2 to 3 years in th future.

6.8.3 Outside Plant Facilities

6.8.3.1 Underground Facilities

According to the "Fundamental Plan 1972 for the Telephone Network in Indonesia" prepared by PERUMTEL, the provision period for underground facilities is 20 years.

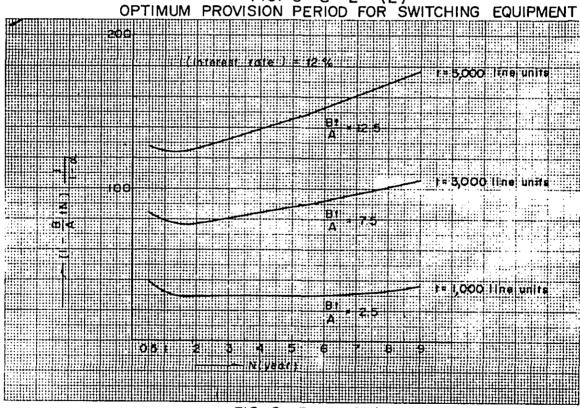


FIG. 6 - 8 - 2 - (3)
OPTIMUM PROVISION PERIOD FOR SWITCHING EQUIPMENT

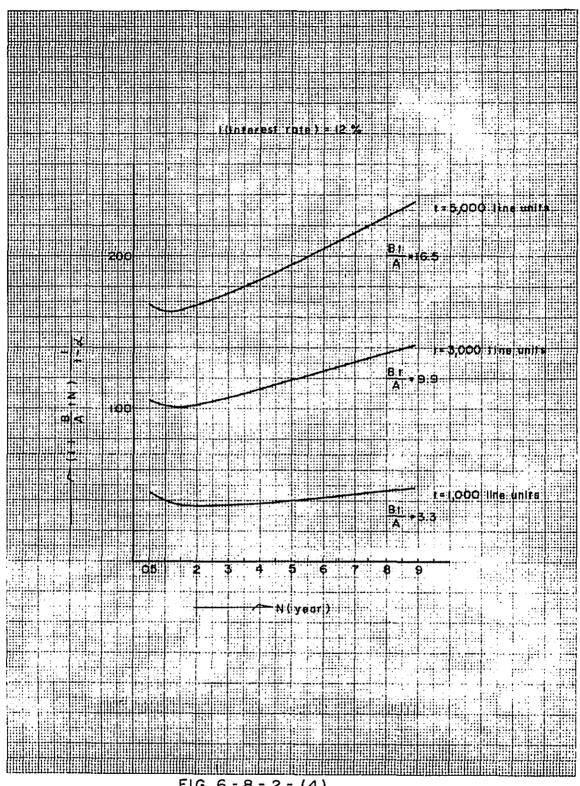


FIG. 6 - 8 - 2 - (4)
OPTIMUM PROVISION PERIOD FOR SWITCHING EQUIPMENT

However, as shown in Table 6.8.(1), there is a large difference in the provision period for underground facilities among countries. In one country, it is about 10 years, while in another country it is set at 30 to 50 years.

The difference in the provision period seen here is due to the variation in the social and ecnomic conditions of different countries, especially in the road conditions.

PERUMTEL has a fixed telephone expansion work program for the period from 1975 to 1977. As the result of the study on the construction cost for underground facilities of this expansion program, the relation between fixed protion "A" of the construction with the fluctuatin portion is as follows:

In case of 9-ductway section
$$----\frac{Bt}{A} = 0.1$$

In case of 6-ductway section $----\frac{Bt}{A} = 0.09$

These numerical values were obtained on the assumption that 10% expansion is necessary every year fro each of the above ductway sections.

Fig. 6.8.3.(2) is the result of the calculation of Formula 6.8.(6), with as 0.05 and 0.1.

From Fig. 6.8.3.(2), the optimum provision period is 11 to 13 years. However, JTP recommends that the provision period for underground facilities be 15 years, since the transportation means in Jakarta is limited to bus and motorcar and, therefore, the traffic congestion on the occasion of the underground facilities construction work must be avoided as far as possible. Even at present, the actual situation is that the construction work on the main roads of Jakarta is limited to night work.

6.8.3.2 Junction Cables

According to the "Fundamental Plan 1972" prepared by PERUMTEL, the provision period for junction cables is 3 to 7 years. According to CCITT Recommendation "Local Telephone Network", the provision period applied in different countries is not the same because of the different social and economic policies.

In Japan, the provision period for junction cables differs according to the type of cables, that is, conduit cables, direct buried cables, etc. but the standard is 10 to 15 years.

In general, it can be said that the economic provision period in the case of large cities is shorter than that of the medium and/or small cities. Moreover, in case of a rapid increase in telephone traffic among the exchange offices, the provision period is short and when the increase is gradual, the provision period is long.

JTP used the computer in calculating the number of junction circuits in Jakarta. The calculation results are shown in Table 6.8.3.(1).

On the other hand, a study of the construction cost of the installation program of PERUMTEL for the period from 1975 to 1977, the costs of 0.4 mm and 0.6 mm conductor junction cables are as follows:

Table 6.8.3.(1) Number of Junction Circuits and Circuit Sections in Jakarta

	1979	1983	1988	1993
No. of circuits	22,289	34,205	47,769	67,912
No. of circuits sections	40	53	55	55

In case of 0.4 mm conductor cable $Y = 3,590 + 14X (m \cdot u)$

In case of 0.6 mm conductor cable $Y = 3,630 + 22X (m \cdot u)$

where Y: Total

: Total construction cost

X: Number of pairs of cable

When calculation is made based on the theory described in detail in the preceding 6-8, the relation between $\frac{Bt}{A}$ and optimum provision period can be determined from Fig. 6.8.(2). Here, "t" is the required number of pairs to be expanded per year, and the average number of junction cables to be expanded per year in the entire city of Jakarta is 45 circuits. Therefore,

In the case of 0.4 mm conductor cable

$$\frac{Bt}{A} = \frac{14}{3,590} \times 45 = 0.175 = 0.2$$

In the case of 0.6 mm conductor cable

$$\frac{\text{Bt}}{\text{A}} = \frac{22}{3.630} \times 45 = 0.273 = 0.3$$

Fig. 6.8.3.(3) presents the calculation results when = 0.2 and 0.3, and the interest rate is 12% per year.

As seen in Fig. 6.8.3.(3), in case the provision period is less than 5 years, the loss in construction cost will become very large and when the provision period is more than 5 years, the loss in construction cost is not so large.

Therefore, as the provision period for junction cables, the following is recommended.

- a) The number of cable pairs shall meet the required number of circuits for a period at least longer than 5 years. Furthermore, taking into account that Jakarta is a large city, the maximum number of pairs should be laid as a general rule.
- b) When the number of cable pairs calculated for 15 years hence is smaller than the maximum number of pairs of the cable, the nearest higher ranking cable should be laid.

6.8.3.3 Subscriber Primary Cable

According to the "Fundamental Plan 1972" prepared by PERUMTEL, the provision period for subscriber primary cables is decided to be 3 to 7 years.

As seen in Table 6.8.(1), the provision period for subscriber primary cables in various foreign countries is about 5 years, excluding Australia and the United Kingdom. It is 8 to 20 years in Australia and 5 to 20 years in the United Kingdom.

On the other hand, as the result of a study of the construction costs of the PERUMTEL's 1975 - 1977 construction program, the construction cost for subscriber primary cables can be calculated as follows:

In the case of 0.4 mm conductor cable

$$Y = 740 + 13X (m \cdot u)$$

In the case of 0.6 mm conductor cable

$$Y = 910 + 20X (m \cdot u)$$

where Y: Total construction cost

X: Number of cable pairs

According to the demand forecast made by JTP, the telephone demand for the whole city of Jakarta 15 years hence will be equivalent to about 5 times the present demand.

Under these conditions, the following formula can be realized:

$$X = Xo + \frac{4}{15} \cdot Xo \cdot N$$

where Xo: Number of cable pairs equivalent to the telephone demand in the construction period

1) In the case of 0.4 mm conductor diameter

$$A = 740$$

$$R = 13$$

$$t = \frac{4}{15} Xo$$

When the demand in the service area 15 years hence is assumed to be 600 under the foregoing conditions, the demand at the time of construction work is 120 because the demand after 15 years will be 5 times as much.

That is,
$$Xo = 120$$

$$t = \frac{4}{15} \cdot X_0 = \frac{4}{15} \times 120$$

from the above

$$\frac{Bt}{A} = \frac{13}{740} \times \frac{4}{15} \times 120 = 0.56 = 0.6$$

2) In the case of 0.6 mm conductor cable

$$A = 910$$

$$B = 20$$

$$t = \frac{4}{15} \cdot Xo$$

That is, Xo = 120

$$\frac{\text{Bt}}{\text{A}} = \frac{20}{910} \times \frac{4}{15} \times 120 = 0.71 = 0.7$$

Fig. 6.8.3.(4) presents the result of calculation of the optimum provision period when = 0.5 - 0.7, and the interest rate is 12% per year.

Figure 6.8.3.(4) shows that the optimum provision period is 5 years.

In consideration of the examples in the different foreign countries, JTP recommends that the optimum provision period for subscriber primary cables in Jakarta be 5 years.

6.8.3.4 Subscriber Secondary Cable

According to the "Fundamental Plan 1972" prepared by PERUMTEL, the provision period for subscriber secondary cables is 10 to 20 years.

As can be seen in the foregoing Table 6.8.(1), there are different types of cable systems for subscriber secondary cables, for example, conduit cable, direct buried cable, aerial cable, etc., but in nearly all the foreign countries, the provision period for subscriber secondary cables is 10 to 20 years.

The construction cost of the direct buried subscriber secondary cables related to the PERUMTEL's 1975 – 1977 construction program is studied as follows:

In the case of 0.4 mm conductor cable

$$Y = 3,650 + 15X (m \cdot u)$$

In the case of 0.6 mm conductor cable

$$Y = 3.880 + 24X (m \cdot u)$$

where Y: Total construction cost

X: Number of cable pairs

According to the demand forecast made by JTP, the telephone demand 15 years hence will be nearly 5 times the present demand. Therefore, the following formula can be ralized:

$$X = X_0 + \frac{4}{15} \cdot X_0 \cdot N$$

where Xo: Number of cable pairs equivalent to the telephone demand at the time of the construction work.

1) In the case of 0.4 mm conductor cable

$$A = 3,650$$

$$B = 15$$

$$t = \frac{4}{15} \cdot Xo$$

where, if Xo = 20

$$\frac{Bt}{A} = \frac{15}{3.650} \times \frac{4}{15} \times 20 = 0.022 = 0.02$$

if
$$Xo = 30$$

$$\frac{Bt}{A} = \frac{15}{3,650} \times \frac{4}{15} \times 30 = 0.033 = 0.03$$

2) In the case of 0.6 mm conductor cable

$$A = 3,880$$

$$B = 24$$

$$t = \frac{4}{15} \cdot Xo$$

where, if Xo = 20

$$\frac{Bt}{A} = \frac{24}{3,880} \times \frac{4}{15} \times 20 = 0.033 = 0.03$$
if Xo = 30

$$\frac{Bt}{A} = \frac{24}{3,880} \times \frac{4}{15} \times 30 = 0.049 = 0.05$$

Fig. 6.8.3.(5) presents the result of calculation of the optimum provision period when = 0.03 and 0.05 and the interest rate is 12% per year.

Fig. 6.8.3.(5) shows that the optimum provision period is 13 to 17 years.

In consideration of the examples in foreign countries, JTP recommends that the optimum provision period for subscriber secondary cables in Jakarta City be 15 years.

6.9 Subscriber Line Structure

6.9.1 Outline

The subscriber line network is composed of aerial cable, conduit cable, direct buried cable, etc. The telephone-tunnel and conduits are constructed to accommodate the conduit cables.

Therefore, these various types of line systems must be applied to correspond with the conditions in the object areas, such as the road situation and developed condition of the cities.

Table 6.9.(2) shows the application examples in the foreign countries as copied from the CCITT Recommendation.

6.9.2 Aerial Cable

The self-supporting type of cable is used as aerial cables which are mainly used as secondary cables in the not too well developed areas. For example, even in the city areas,

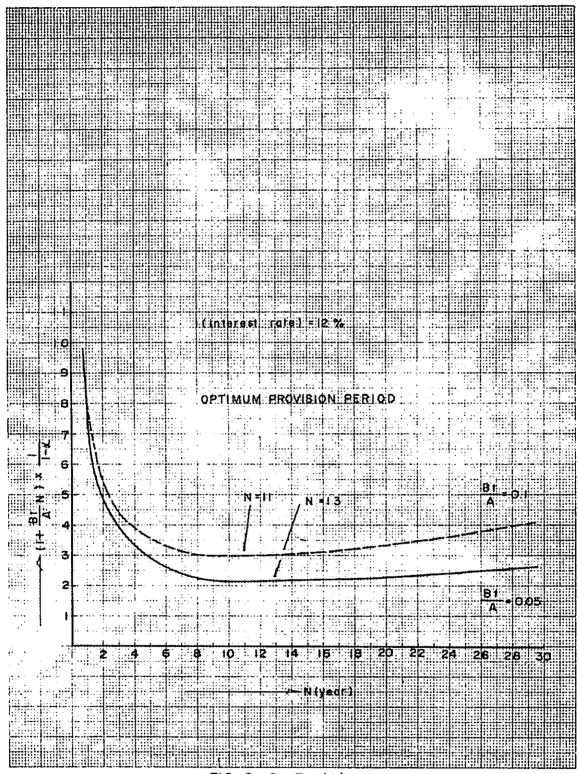


FIG. 6 - 8 - 3 - (2)
OPTIMUM PROVISION PERIOD FOR UNDERGROUND FACILITY

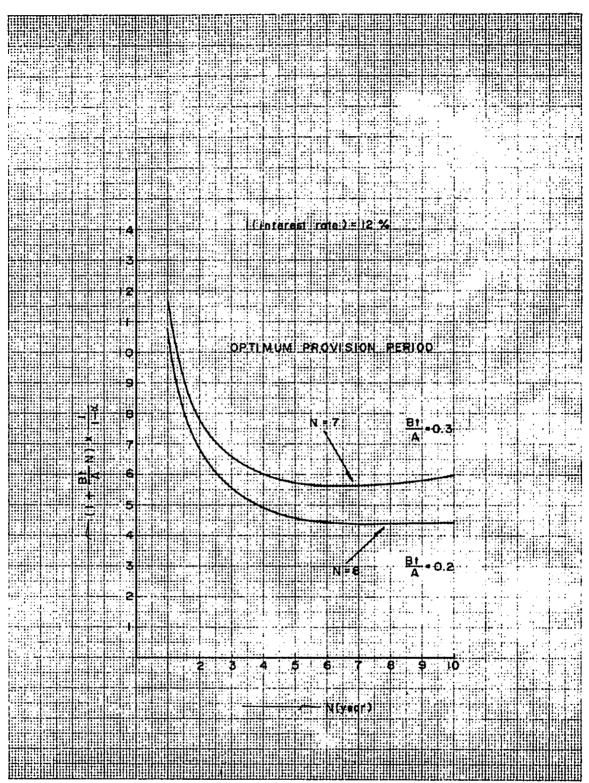


FIG. 6-8-3-(3)
OPTIMUM PROVISION PERIOD FOR JUNCTION CABLE

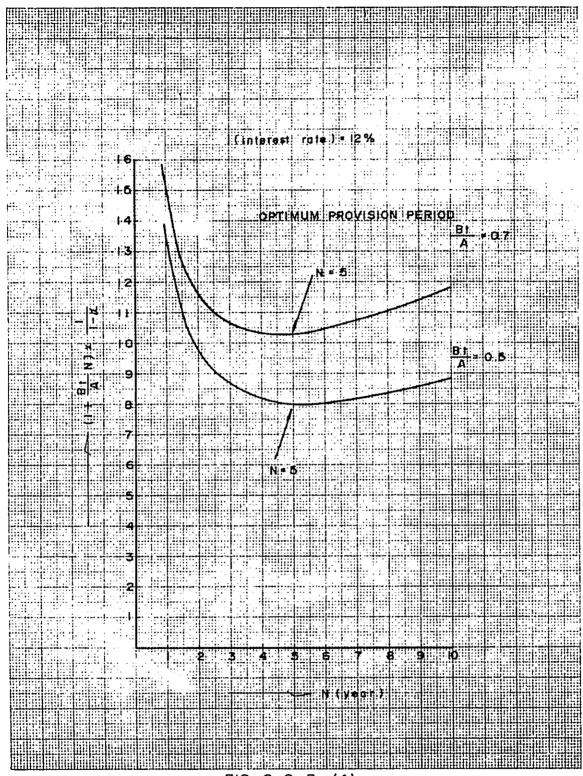


FIG. 6-8-3-(4)
OPTIMUM PROVISION PERIOD FOR SUBSCBER PRIMARY CABLE

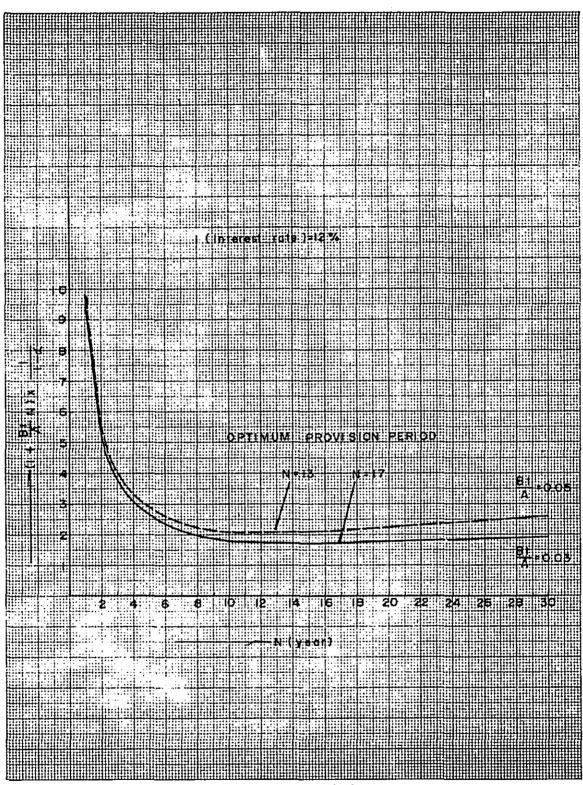


FIG. 6 - 8 - 3 - (5)
OPTIMUM PROVISION PERIOD FOR SUBSCRIBER SECONDARY CABLE

in case the roads are wide and subject to changes according to the city planning or the roads are not suitable for construction of underground facilities, the installation of aerial cables should be considered.

The cable size and conductor diameter of aerial cables are shown in Table 6.9.(1).

Table 6.9.(1) Cable Size and Conductor Diameter of Aerial Cable

	10	20	30	40	50	80	100	150	200
0.4 mm	0	0	0	0	0	×	Х	×	×
0.6 mm	0_	0	0	0	0	×	X		_
0.8 mm	×	Х	Х	X	×				

X: for the future

The number of aerial cables in one route shall be, in principle, up to two cables. Even in unavoidable cases, it shall be three cables or less. In Japan, in view of the work, the number of aerial cables is limited to three cables or less.

For reference purposes, the necessary height for aerial cables applied in Japan is shown in Table 6.9.(3).

The spacing between the telephone poles when constructing aerial cables shall be 40 m as the standard.

Table 6.9.(3) Necessary Height for Aerial Cable above the Ground in Japan

Condition	Necessary height	above the ground			
1. Above the road	minimum	5.0 m			
In case of no trouble for traffic					
a) on pedestrian road	minimum	2.5 m			
b) on ordinary road	minimum	4.5 m			
2. Across the rail road	minimum	6.0 m			
3. Across the river	It shall be decided to avoid trouble for ship traffic.				
4. Other area	minimum	3.5 m			

6.9.3 Conduit Cable

The conduits for the use of conduit cables shall be as follows:

- a) For conduit cable, cable without steel tape amouring is used.
- b) Conduit cables are used as primary and secondary cables in already developed city areas or roads developed in accordance with city planning.

TABLE 6-9-(2) USUAL TYPES OF SUBSCRIDER LINE

Country Type of lines	Australia	Belgium	Central African Republic	Chile	Colombia	Congo (Dem. Rep. of)	Denmark	Federal Republic of Germany	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Greece
Main cables	С	СФВ	С	С	С	8	C & B	C & B	C &	В	C & B
Distribution cables	С, В & Д	В	ВЬД	C&A	В	В	С, В & Д(I)	С,В	C,		В& Д (I)
Subscriber service lead	K, D &0(2)	K& 0	K&0	K, D & O	K&O	K&O	K& D(1)	K&0	К, & С		K,D &O
Country Type of lines	Japan	Kuwalt	Malaysia	Netherlands	New Zealand	Norway	Capax		United Kingdom	United states	1
Main cables	C & B	С	C &	В	×	C & B	C & 1	B C,		C	& B
Distribution cables	C & A	С, В & Д	В & Д (1)	В	В&А	B& A	C , I			В8	ŁΔ
Subscriber service lead	K& D	x	0	K & O(I)	K&0	K, [1 6	L D	K &	& D

X = No data available

(1) = Only occasionally

(2) = In order to meet transmission requirements

A = Aerial cable

B = Buried cable

C = Cable in duct

D = Dropwire cable

K = Cable (in general)

O = Open-wire line

Copied from CCITT

Even in the foregoing cases, the secondary cables are direct buried cables if there is sufficient space alongside the road in residential areas and re-excavation is possible.

The cable size and cable conductor of conduit cables are shown in Table 6.9.(4) and Table 6.9.(5).

The standard cable length per 1 drum is shown in Table 6.9.(6).

Table 6.9.(4) Cable Size and Conductor Diameter of Conduit Cable (Primary Cable)

	200	300	400	600	800	1,000	1,200	1,600	1,800	2,400
0.4 mm	0	0	0	0	0	0	0	х	×	х
0.6 mm	0	0	0	0_	0	0	0			
0.8 mm	0	0	0	0						

X: for the future

Table 6.9.(5) Cable Size and Conductor Diameter of Conduit Cable (Secondary Cable: Jelly-Filled Cable)

	10	20	30	40	50	80	100	150	200
0.4 mm	0	0	0	0	0	0	0	Х	Х
0.6 mm	0	0	0	0	0	0	0	X	X

X: for the future

Table 6.9.(6) Standard Length of Cable per Cable Drum

Conductor diameter (mm)	Cable size (pair)	Standard cable length (meter)			
0.4	up to 600	500			
0.4	800 up to 2400	250			
0.6	up to 600	500			
0.6	800 up to 1200	250			
0.8	up to 400	500			
0.8	600	250			

6.9.4 Direct Buried Cable

The conditions of use for direct buried cables are as follows:

- a) As direct buried cable, steel tape armoured cable is used.
- b) As a primary cable route, when the available roads are expected to be improved and there is space for cable laying then, direct buried cable is laid. As secondary cable, direct buried cable is to be used in the developed residential are where re-excavation is possible as described in the preceding paragraph.

The buried depth of direct buried cables, in principle, shall be as in the following. That is, in case of subscriber primary cable, the depth shall be 0.8 m or more and for subscriber secondary cable, 0.6 meter or more.

The cable size and cable conductor of direct buried cable for subscriber primary cable are shown in Table 6.9.(7). The cable size and cable conductor for subscriber secondary cable shall be the same as in Table 6.9.(5).

The standard cable length per one cable drum shall be the same as in Table 6.9.(6).

Table 6.9.(7) Cable Size and Conductor Diameter of Direct Buried Cable (Primary Cable)

	200	300	400	600	800	1,000	1,200	1,600	1,800	2,400
0.4 mm	0	0	0	0	0	0	0	X	X	×
0.6 mm	0	0	0	0	0	0	0			
0.8 mm	Х	×	X	×						

X: for the future

6.9.5 Underground Distirbution Method

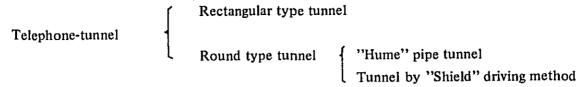
The following two kinds of systems are applied as underground distribution systems. That is, the system using conduit cables and the system using direct bruied cables.

The applicable standards are as follows:

- a) The underground distribution by conduit cables is applied in shopping areas or building areas. Riser cables are installed on the walls of the buildings or inside the buildings.
- b) Underground distribution by direct buried cables is applied to the residential areas. The riser cables are installed on the terminal poles.

6.9.6 Telephone-Tunnel

In order to prevent congestion in cable jointing or the laying of cables inside the manholes and to avoid having an extremely large number of ductways, the conduit route is divided into 2 or 3 routes. However, there is limitation in such arrangements.


Therefore, telephone-tunnels are constructed in sections where the number of ductways exceed 60 in order to facilitate cable jointing and cable laying.

However, the construction costs for telephone-tunnels are very much higher than for conduit. Moreover, their re-construction is not easy. Consequently, when constructing telephone-tunnels, the capacity must be determined upon a full study of the telephone demand in the far future.

For referential purpose, the application standards for telephone-tunnels applied by the Nippon Telegraph & TElephone Public Corporation in Japan are shown as follows:

Road Condition	Required Number of Ductways
Ordinary road	Section exceeding 60 ductways
Main road	Section exceeding 40 ductways

Following are the types of the telephone-tunnels adopted:

6.9.7 Conduit

(1) Selection of Conduit Route

When preparing plans for the subscriber cable network and the junction cable network, the selection of the conduit routes must be made upon a full study of the following conditions:

- a) The road shall allow the shortest cable length.
- b) The road shall be advantageous for subscriber secondary cable distribution.
- c) The road shall have as little hindrances in conduit construction, such as bridges, railroad tracks, etc.
- d) The road shall be of sufficient width without hindering traffic in conduit construction and maintenance.
- e) The road shall be of good soil without any danger of depression, collapse and washing away due to flood. Moreover, the road shall be one which will have no danger of harm to the cables due to vibrations of vehicular traffic.
- f) The road shall facilitate conduit construction with little buried objects of other services, such as water work facilities or sewage facilities.
- g) The road shall be one with little danger of being abandoned or improved according to city planning.
- h) The road shall be one with no possibility of inductive disturbance or chemical corrosion.

(2) Applicable Kind of Pipe

The result of the comparison of the various kinds of pipes is shown in Table 6.9.(8). This table was copied from the CCITT "Local Telephone Network."

In consideration of the capacity for domestic production, JTP recommends the use of PVC pipe. Moreover, PVC pipes are already used in advanced countries.

For subscriber primary cables and junction cables, PVC pipes with a standard inner diameter of 100 mm are used. PVC pipe with a standard inner diameter of 60 mm is used for subscriber secondary cable.

(3) Calculation of Number of Ductways Refer to Section 7 of Chapter 6.

(4) Manhole Spacing

When constructing 100 mm PVC pipes in straight sections, the maximum spacing between manholes must be 250 m.

(5) Buried Depth

In regard to ducts for subscriber primary cable and junction cable, the buried depth of 0.8 m from the top of the duct to the ground surface must be maintained even after the duct expansion work. In case of subscriber secondary cable, the depth must be 0.6 m.

When the standard buried depth cannot be made because of the nearby bridged or other buried facilities, concrete protection must be made for the PVC pipes.

(6) Required Distance from Buried Facilities of Other Services

The required distance between the conduit and the buried facilities of other services should be determined through discussion with the various competent authorities.

For referential purpose, the allowable distance applied by the Nippon Telegraph & Telephone Public Corporation is shown in Table 6.9.(9).

Table 6.9.(9) Required Distance from Buried Facilities of Other Services

Relation with other facilities	Underground power line*	City gas, waterwork, sewage	Railroad
Cross	up to 7 kV AC 30 cm	15 cm	1.5 m
Parallel	more than 7 kV AC	30 cm	1.0 m

^{*:} In case of power line with direct earth system, the required distance depends on the condition of power line.

TABLE 6-9-(8) CONSIDERATIONS FOR USING DIFFERENT TYPES OF DUCT SYSTEM

		Availability	Есопоту	Strength	Permeability (gas and water)	Smoothness of inner surface	Protection against cable corrosion	Flexibility	Protection against induction
Pre-	Concrete	+	+	+	-	0	-	0	-
fabricated duct units	Earthen- ware	_	0	0	_	+	+	0	-
Concrete m	onliths	+	_	+	+	0	0	~	-
Asbestos- ce	ment ducts	_	-	_	+	+	0	0	_
Fibre ducts	3	-	_	-	_	+	+	+	_
Plastic ducts Cast-iron pipes		-	_		+	+	+	+	-
		_	_	+	+	+		0	_
Steel pipes	3	_	_	+	+	+	-	0	

Copied from CCITT