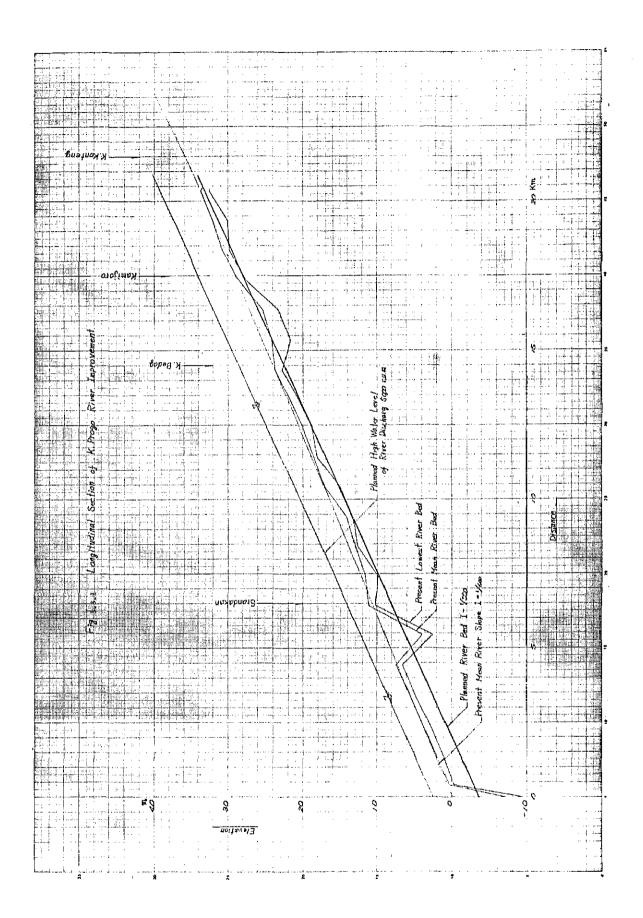
- c) The present longitudinal river-bed gradient of 1/600 should be made steeper (1/550). (Refer to Fig. 3.3.1)
- d) The standard design of the cross section of the channel based on the above conditions is shown in Fig. 3.3.2. The low water channel along the section between the Srandakan Bridge and the estuary is now about 500m wide. A new low water channel about 200m wide and 2 to 3m deep will be excavated in the entire existing low water channel. The result will be a composite channel with a major bed as shown in Fig. 3.3.2.
- e) The remaining portion of the existing 500m channel will be regarded as a reclaimed land for agriculture, etc. For the sake of safety, the utilization may have to be limited only during dry seasons.
- f) It is recommended that the flood be large enough to allow the discharge of 5,000 cu m/sec., the biggest flood in the past, through the present cross section of the channel.
- g) The volume of river-bed excavation from the estuary to a point about 20km upwards is estimated to be 15,000,000 cu m. It was been recommended to utilize the excavated soil for construction of embankments and reclamation.
- h) Some modification and repair of the existing irrigation intakes and bridges may also be advisable as the proposed improvement plan progresses.
- (5) Countermeasures Against Functional Impairment of Irrigation


The first means of coping with functional impairment of irrigation intake is implementation of the basic countermeasures 3.3.1 (1)-(3). In view of the large amount of sediment that is carried during flooding, it is necessary to provide a gate for the Mangir intake of K. Progo since the open cut excavation could cause it to be buried

during flooding. Although there is a gate for the side-type intake for K. Opak, the bottom of the gate is approximately 0.5m above the surface of the river-bed. Currently, gate is closed and intake suspended during the rainy season to prevent sedimentation. The following measures are therefore necessary for stable intake throughout the year.

- a) Control of sediment discharge and improvement of river course for stabilization of the river-bed.
- b) Switching from side-intake to diversion weir across the river.
- c) Provision of a multi-stage gate in the case of side-intake to be able to cope with unexpected river-bed flunctuations and to allow the intake to get overflow water throughout the year.
- d) Adequate maintenance and control.

(6) Other Trouble Spot Countermeasures

Inland water, river mouth closing, and lateral erosion can be coped with by implementing the basic countermeasures 3.3.1 (1)-(4), but it will also be necessary to see that sufficient maintenance is done.

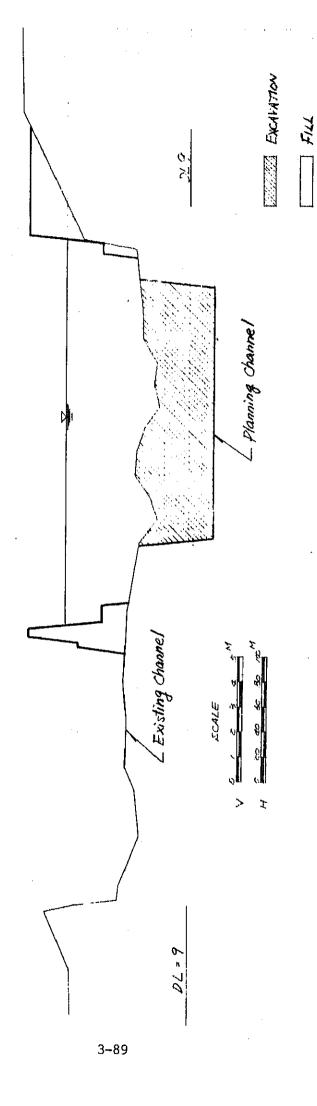


Fig. 3.3.2 CROSS SECTION OF KPROGO RIVER IMPROVEMENT

A BURANDAKAN BRIDGE

3.4 Evaluation

3.4.1 Cost-Benefit Analysis and Internal Rate of Return

(1) General

In this chapter the socio-economic effects of the present disaster prevention plan will be quantified and assessed on the basis of cost-benefit and internal rate of return. The area covered by the plan consists of 6,685 ha in the three model river basins and includes a population of 73,000 persons, 16,000 households, and 240 villages. It is hoped that with the implementation of the plan, life will be made safer for these inhabitants (see Table 3.4.1).

The benefits derived from the plan will include both reduction of loss or damage to livestock, crops, household effects, homes, roads, irrigation facilities, schools, hospitals, mosques, meeting places, and other social facilities, and also developmental effects, such as increase in farm income from stable production conditions, new employment opportunities, increase in income of workers employed in the project construction work, regional development, increase in harvest yield, and increase in economic and social benefit without disruption of road traffic or destruction of important economic facilities.

Survey polls taken in the project area reveal that about 65% of the residents have suffered damage or loss owing to flooding or sedimentation at some time in the past. An overwhelming majority of the respondents wanted to see construction and repair of embankments to prevent disasters as the first most effective way of improving their living conditions (see 12 and 15 of form C-2). The most frequent and extensive damage has been to farmland, roads and houses; loss of life has not been of disasterous proportions as one would have expected (see 14 of Form C-1 and 13 of Form C-2).

In the pages which follow, the benefits listed below are discussed quantatively for cost-benefit analysis and calculation of the internal rate of return.

- Reduction of damage to farmland and crops.
- Reduction of damage to yards.

- Reduction of damage to houses.
- Reduction of damage to roads.
- Increase in farm income through more stable production conditions.
- Other main socio-economic effects are mentioned for reference.

In addition, a sensitivity analysis has been included in order to evaluate the parameters chosen such as area of damage, project life, construction period, and construction cost.

(2) Benefits

a) Area of Damage

Based on a survey of the actual damage that occurred during the 8-year period 1969-1976, the size of the area that is subject to damage without implementation of the disaster prevention plan has been estimated.

In the case of Type-I, including the junction of K. Krasak and K. Bebeng, the area of rice paddles that suffered damage from the two rivers in that period was 576.1 ha, or an average 70 ha per year (see Table 3.4.2). On the basis of a questionaire survey, it was estimated that about 50% of the 70 ha, suffered damage from sedimentation (see Table 3.4, Lahar and Banjir Damage Conditions in Recent Years (2)). On the basis of the land use composition, the area subject to damage would be approximately 110 ha per year. Again assume that 50% of the land (or 55 ha) suffers from sedimentation.

Type-II data is based on K. Gendol, because it is similar to K. Woro and because of insufficient data on damage conditions in the K. Woro basin. In the same 8-year period, 139 ha of rice paddies suffered damage in the K. Gendol basin, an average of 15 ha per year. Judging from the geomorphic conditions, 8 of the 15 ha were covered by flood waters and sediment; i.e., approximately the same 50% that was found in K. Krasak area. If other land besides paddy field is considered, the area of damage increases to about 40 ha, of which 11 ha is estimated to have suffered damage from sedimentation.

In the case of K. Boyong, Type-III, only 57 ha suffered damage in 1969. No other conspicuous damage was reported after that, up to the time of the survey in 1978. Accordingly, for the purposes of this cost-benefit analysis, it is assumed that since there was one instance of damage to about 50 ha of paddy field in the 10-year period 1969-1978, the average for this area is calculated as 5 ha per year, 2.5 ha of which can be considered to have suffered damage from sedimentation.

Data on damage during the last eight years has been used to estimate the area of damage in view of the fact that there is no accurate way of determining the frequency of occurrence of damage. On the other hand, the stabilizing effect of the project will be studied in terms of sensitivity analysis.

b) Reduction of Damage to Farmland and Crops

Damage to farmland and crops from sedimentation includes the value of crops that were being grown at the time of the disaster and the net income lost to farmers from having fields that are uncultivable, pending a considerable investment for restoration. Since the damage to the crops is negligible in comparison to the subsequent net income loss to farmers, only the fact that the farmlands are rendered uncultivable will be taken into account in this cost-benefit analysis.

An estimate of the anticipated net annual income per hectare and per crop in each area on the basis of the crop patterns in the various river basin has been calculated to determine this net loss in income (see Table 3.4.4).

Based on 1978 prices, the annual net income per hectare was as follows: Rp. 207,000 in Magelang, Rp. 875,000 in Klaten, and Rp. 668,000 in Sleman. In the case of each of the three model rivers which run through at least two of the kabupaten, the net annual loss of income per hectare to farmers calculated on the basis of their relative areas is the following: Rp. 460,000 for K. Krasak, Rp. 875,000 for K. Woro, and Rp. 668,000 for K. Boyong. Based on the amount of area in each case that is expected to suffer damage from sedimentation each year, the

total decrease in damage resulting from project implementation is as follows: Rp. 16,000,000 for K. Krasak (Type-I), Rp. 3,500,000 for K. Woro (Type-II), and Rp. 1,700,000 for K. Boyong (Type-III).

Crop damage due to flooding has been calculated on the assumption that the harvest of paddy, cultivated mostly in the rainy season, would be reduced by 25% because of 1-2 days of flooding to a depth of 0.5-0.99m. Since the anticipated net income per hectare from Paddy is Rp. 171,000 in the case of K. Krasak, Rp. 348,000 in the case of K. Woro, and Rp. 248,000 in the case of K. Boyong, elimination of flooding through implementation of the project will reduce annual losses by Rp. 1,500,000 Rp. 960,000, and Rp. 160,000, in the three river-basins respectively. Unlike the damage due to soil movement, this reduction in losses is not cumulative and is therefore far smaller than that realized with respect to sedimentation damage. This being the case, the overall evaluation will hardly be affected, even if the actual loss in income from the crop flooding is 20% or 30% instead of 25%.

c) Reduction of Damage to Yards

Since it has not been possible to estimate the frequency of damage to yards, such damage has been estimated in terms of damage to fields plus land-use structures. The following figures were then calculated for annual damage to "yards" by sedimentation and flooding in the following areas: K. Krasak, 14 ha and 14 ha; K. Woro, 6 ha and 17 ha; K. Boyong, 1 ha and 1 ha.

A detailed survey is needed to determine the actual amount of damage to yards in terms of crops, orchards for home consumption, bamboo and other construction materials. For this cost-benefit analysis, however, such damage has been estimated as 10% of that suffered by fields and other agricultural land. Damage due to flooding has not been considered, in order to be conservative and in view of the fact that it is, a one-time proposition.

The total figures for annual reduction of damage to yards

through implementation of the plan are as follows: K. Krasak, Rp. 650,000; K. Woro Rp. 530,000; and K. Boyong, Rp. 70,000.

d) Reduction of Damage to Houses

The records show that in the 8-year period 1969-1976, there was damage to 500 houses in the K. Krasak and K. Bebeng basins (Type-I), 150 houses in the K. Gendol basin (Type-II); but none at all in the K. Boyong basin (Type-III). For the first two cases, one house was damaged for every hectare of field damaged. Assuming that this rate remains constant, the annual number of houses subject to damage is 40 in the case of K. Krasak and 15 in K. Woro, with no damage in the case of K. Boyong.

The damage to each house, including household belongings, has been estimated on average to be Rp. 100,000 on the basis of past real estate values for houses. This gives the figures of Rp. 4,000,000 and Rp. 1,500,000 for annual damage to houses in the K. Krasak and K. Woro basins. Since such damage to houses is also a one-time proposition, the amount of damage will will decline each year as the disaster prevention construction works progress.

e) Reduction of Damage to Roads

The road densities in the project area are as follows: K. Krasak, 3km/km^2 ; K. Woro, 5km/km^2 , and K. Boyong, 4km/km^2 . The figures for the length of roads in the areas subject to damage from sedimentation are therefore as follows: K. Krasak, 1.7km; K. Woro, 0.6km; K. Boyong 0.2km.

On the basis of past records and cost of construction, the damage to such roads (almost all village roads have gravel surfaces) is estimated at about Rp. 2,000,000 per kilometer. With implementation of the project, damage to roads will be reduced by the following amounts: K. Krasak, Rp. 3,400,000; K. Woro, Rp. 1,200,000; and K. Boyong, Rp. 400,000. Such benefits will accrue for each year following the completion of the disaster prevention works.

Damage due to flooding has not been taken into account since it is considered to be negligible.

f) Increase in Farm Income

With implementation of the disaster prevention plan, water supply and production activity in the areas benefitting from it will be stabilized, and greater increases in production can be expected. On the basis of growth trends of rice harvests determined in the surveys, it was estimated that through such stabilization harvests will increase by 1-3% a year in areas with comparatively small harvests at the present time. Since the disaster prevention project covers a period of 15 years, the overall increase expected is 16-56%.

Therefore, an average of 7% of present harvests has been taken as the increment in income that will be realized from project implementation in the comparatively low harvest level areas of K. Krasak and K. Boyong. The annual net increases in farm income that can be expected after completion of the construction work are Rp. 46,000,000 in the case of K. Krasak and Rp. 35,000,000 in the case of K. Boyong.

In the K. Woro area, however, the annual increase in income due to stabilization of production has been estimated at only about half of this, or 3%, in view of the fact that harvest levels in it are already rather high.

(3) Construction Costs and Maintenance Costs

The necessary investment for implementation of the present disaster prevention project has already been mentioned in the section on construction cost estimates. The total investment for the three model rivers will be Rp. 13,300 million. The breakdown of resources is listed in item (1) of Table 3.4. The cost of the construction work listed in item (2) of the same table (exclusive of the transfer item "taxes") is Rp. 12,670 million.

Since the construction period for all rivers will be fifteen years and since the construction schedule has not yet been decided,

the construction cost for each year has been averaged, as 1/15 of the total.

Project life has been established as fifty years (actual average of 42-43 years) from the commencement of the construction works, taking into account the durability of the structures and a zero residual value for the structures after fifty years.

An annual maintenance cost during the construction period of 15% of the annual construction cost has been assigned for each year beginning from the year after completion of the construction works to the last year of the life of the project. The breakdown by resource is listed in Table 3.4.9.

(4) Internal Rate of Return Evaluation

a) Internal Rate of Return

Table 3.4.10 compares the cashflow of costs and benefits for each of the rivers. From it, the internal rates of return have been calculated as 3.5% for K. Krasak, 2.7% for K. Woro, and 4.1% for K. Boyong, with an internal rate of return of 3.1% for the project as a whole. Although this is quite a bit lower than that of development projects directly airmed at increasing production in the agricultural and industrial sectors, implementation of the project is fully justifiable in economic terms if one considers the fact that disaster prevention projects are absolutely necessary for stability of socio-economic life.

b) Sensitivity Analysis

As already mentioned, the damage if the project were not implemented was been estimated on the basis of records of such damage over the past 8 to 10 years for the purpose of the cost-benefit analysis. If the damages were to be estimated 10% lower, the internal rates of return would be brought down to 2.8% in the case of K. Krasak, 2.4% in the case of K. Woro, and 3.5% in the case of K. Boyong. If the estimates were 20% lower, the same figures would fall to 2.4%, 2.2%, and 3.2%, respectively. On the other hand, if the estimates were to be pushed up by 10%, the internal rates of return would climb to 3.7% for K. Krasak, 2.9% for K. Woro, and 4.4% for K. Boyong,

and for a 20% hike, the estimates would be 4.0%, 3.1%, and 4.7%, respectively. The large fluctuation in the internal rate of return for K. Krasak depending on the area of the damage is explained by the fact that reduction of damage represents a large portion of the total benefit that will be derived in that area from implementation of the project.

If the project life were to be lowered to 40 years and the average durability of the structures to 32-33 years, the internal rates of return would fall to 2.6% for K. Krasak, 2.3% for K. Woro, and 2.8% for K. Boyong. The decline in the last case is particularly substantial, and indicates the importance of maintenance.

If the construction period were to be lengthened to twenty years, the internal rates of return would come to 4.2%, 2.9%, and 4.5%, respectively. Such lengthening of the construction period would not be advantageous since in estimating the benefits it has been assumed that all of the anticipated damage will be reduced by the construction works.

Also, if construction costs were to surpass the estimates by 10%, the internal rates of return would fall to 2.8% in the case of K. Krasak, 2.3% in the case of K. Woro, and 3.4% in the case of K. Boyong.

The internal rates of return and the results of the sensitivity analysis are given in following Tables 3.4.10 and 3.4.11.

Table 3.4.10 Internal Rate of Return

			(1	Unit: %)
	K. Krasak	K. Woro	K. Boyong	Average
IRR	3.5	2.7	4.1	3.1

Table 3.4.11 Sensitivity Analysis

(Unit: 용) K. Krasak K. Woro K. Boyong · Damage area; 10% 2.8 Decrease 2.4 3.5 *1 20% 2.4 2,2 3.2 10% 3.7 2.9 4.4 Increase 20% 4.0 3.1 4.7 · Project life; 40 years 2.6 2.3 2.8 · Conetruction period; Extend to 20 years 4.2 2.9 4.5 · Conetruction cost;

3.4.2 Socio-economic Effects

Increase

10%

The socio-economic effects of implementation of the present disaster prevention project differ markedly from the types of benefits considered in the cost-benefit analysis.

2.8

2.3

3.4

The first and most important is that of protection of life. Recent records of G. Merapi disasters indicate that 26 persons have died in such disasters in recent years, mostly in the K. Krasak area at the time of the 1976 damage. Considering the fact that 73,000 people, or 16,000 families, live in the project area and the fact that another 2,200 families live along the banks of K. Code downstream of K. Boyong within the city limits of Yogyakarta, the great significance of the project in terms of making their lives safe can be appreciated.

Another important aim of the project is that of protecting the roads and social and cultural facilities on which the economic activities and social life of so many people depend. Local communities would suffer even more from the indirect consequences of dislocation of their road networks than the direct damage to roads by sediment that was considered

in the cost-benefit analysis. The disaster prevention works will protect 65km of roads in the K. Krasak area, 165km in the K. Woro area, and 45km in the K. Boyong area as an essential condition for the social and economic progress of those areas.

Furthermore, the increase in farm income due to stabilization of production activities can be expected to have a regional triggering effect for a new cycle of developmental benefits. There is also a good possibility of promotion of home industry through accumulation of capital.

Regional development can also be expected in terms of creation of new employment opportunities and stabilizing what employment opportunities already exist. This will in turn contribute to the transfer of technical skills by creating more jobs and thus fulfill, one of the aims of the project—fuller utilization of human resources. The construction works themselves will provide a total of 18 million man—days of work, or 60,000 man—months a year. As a forward connected effect, the project will stimulate employment and business in industries providing materials for it, and as a backward connected effect, it will secure employment opportunities in agriculture.

Furthermore, it will be possible to make use of the sediment and sand deposits as construction materials and for other uses. In the case of the K. Woro check dam, the space left after excavating the deposits can be used as a reservoir for 450,000 tons of water. This irrigation of about 30ha of paddy in the dry season means an annual increase in income of about Rp. 3,800,000. Effective use will also be made of the excavated sand and add even more to the benefits from the project.

Last but not least, the project will eliminate the risk of harvest losses for 15,000ha of paddy which rely on the Mataram irrigation channel for about 50% of their irrigation water supply. In view of the fact that a 20% reduction in such harvests due to incapacitation of that irrigation system would mean an annual loss of Rp. 2,000 million, the importance of this consideration is large.

Table 3.4.1 Disaster Area, Land Use and Population Summary

Туре		I	I	I	III	
Name of R	1ver	K. Krasak	к. т	loro	K. Boyong	Total
		Sediment	Sediment	Flood	Sediment	
Disaster Area	(ha)	2,200	1,732	1,617	1,136	6,685
Lahar area		1,169	481	-	16	1,666
Banjir area		1,031	1,251	1,617	1,120	5,019
Land Use	(%)	100	100	100	100	
Paddy field	•	65	44	29	66	
Yard		25	50	65	23	
Others		10	6	6	11	
Population		27,630	16,380	21,490	7,740	73,240
Village		59	58	87	35	239
Household		6,010	3,720	4,880	1,760	16,370
Mean No. of Fa	mily Membe	rs 4.6	4.4	4.4	4.4	
Road Length	(km/km ²)	3	5	5	5	

Table 3.4.2 Damage to the Paddy Field and Houses (Year $1969 \sim 1976$)

 $(x_1, \dots, x_n) = (x_1, \dots, x_n) = (x_1, \dots, x_n)$

(1) Type I

(2) Type II

K. Krasak				K. Gendol		
Year	Paddy field	Number of house	Year	Paddy field	Number of house	
1969	62.3		1969	110	150	
70	-	-	70	-	_	
71	-	-	71	***	-	
72	-	-	72	-		
73	-	-	73	29	-	
74	90.9	100	74		_	
75	1.26.4	6	75	-	-	
76	296.5	378	76	-	-	
Total	576.1	484	Total	139	150	

(3) Type III

Year	K. Bo Paddy field	yong Number of house
1969	57	-
70	240	
71	-	-
72	_	- -
73	-	-
74		_
75	_	-
. 76	<u></u>	_
Total	57	-

Table 3.4.3 - Cropping Pattern

(1) Kab. Mageland (1976)

Month	1 2 3 4 5 6 7	8 9 10	11 12 1	2 3 4 5	6 7 8 9 10	11 12
Rice field No. 1	:		Rice	Rice	Rice	. .
Rice field No. 2		Pa ◆	di gogo	Rica Ri	C6	
Rice field No. 3		Soya	abean P	adi gogo	Rice	
Upland No. 1		•	Rice	Soyabean	Orok-orok	
Upland No. 2	·	6	Malze	Second crop	Sweet potato	•
Upland No. 3		Padi go	ogo O	rok-orok P	edi gogo	

Note: orok-orok = green manure plant

padi gogo = dry rice field

Table 3.4.4 Net Earnings/ha/year (1978)

(Unit: Rupiah)

	Name of			
Name of Crop	Kab.	Kab. Magelang	Kab. Klaten	Kab, Sleman
Paddy		113,900	696,000	620,000
Dry Paddy	•	78,100		
Soyabean		14,500		47,500
Tobacco			179,000	
Total		206,500	875,000	667,500
				

Table 3.4.5 Production Cost per Hectare

(1) Kab. Mageland (1976)

(Unit: Rp.)

Items Crops	Seed	Pesti- cides	Ferti- lizer	Wages	Depreci- ation	Others	Total
Irrig. rice HYL	•••		-	_	_		_
Irrig. Local	2.000	1.800	18.900	103.000) -	55.000	180.700
Dry rice	-	_	-			_	-
Tobacco		_		-	-	-	Na.
Maize	3.000	900	7.000	32.200) –	16.500	59.600
Peanut	25.200	900	•••	34.000)	26.500	86.600
Soyabean	6.000	900	-	28.825	; -	21.500	57.225
Cassava	2.200	 .	40,000	27.200) ~	31.500	100.900
Sweet Potato	- '	-	-	27.900) –	31.500	59.400

(2) Kab-Klaten (1977)

(Unit: RP.)

Dry rice 2,500 - 37.500 49.350 - 5.650 95.000 Tobacco (Virgi-) 10.000 - 63.500 63.150 - 17.350 145.000 Peanut 35.000 2.250 25.600 38.900 - 8.250 110.000 Maize 1.200 - 30.500 28.500 - 4.800 65.000 Soyabean 18.000 - 40.500 - 8.000 66.500 Cassava 5.000 - 46.000 43.000 - 6.000 100.000	Crops	s Seed	Pesti- cides	Ferti- lizer	Wages	Depreci- ation	Others	Total
Dry rice 2,500 - 37.500 49.350 - 5.650 95.000 Tobacco (Virgi-) 10.000 - 63.500 63.150 - 17.350 145.000 Peanut 35.000 2.250 25.600 38.900 - 8.250 110.000 Maize 1.200 - 30.500 28.500 - 4.800 65.000 Soyabean 18.000 - 40.500 - 8.000 66.500 Cassava 5.000 - 46.000 43.000 - 6.000 100.000	Irrig. rice HYL	-		- Total			_	
Tobacco (Virgi-) 10.000 - 63.500 63.150 - 17.350 145.000 (Virgi-) 10.000 - 14.000 148.500 - 10.000 182.500 Maize 1.200 - 30.500 28.500 - 4.800 65.000 Soyabean 18.000 - 40.500 - 8.000 66.500 Cassava 5.000 - 46.000 43.000 - 6.000 100.000	Irrig. Local	4.500	1.500	28.000	63.400) –	40.900	138.300
Tobacco (Virgi-) nia 10.000 - 14.000 148.500 - 10.000 182.500 Peanut 35.000 2.250 25.600 38.900 - 8.250 110.000 Maize 1.200 - 30.500 28.500 - 4.800 65.000 Soyabean 18.000 - - 40.500 - 8.000 66.500 Cassava 5.000 - 46.000 43.000 - 6.000 100.000	Dry rice	2,500	-	37.500	49.350) -	5.650	95.000
Maize 1.200 - 30.500 28.500 - 4.800 65.000 Soyabean 18.000 40.500 - 8.000 66.500 Cassava 5.000 - 46.000 43.000 - 6.000 100.000	Tobacco (Virgi-	1	-					145.000 182.500
Soyabean 18.000 40.500 - 8.000 66.500 Cassava 5.000 - 46.000 43.000 - 6.000 100.000	Peanut	35.000	2,250	25.600	38.900) -	8.250	110.000
Cassava 5.000 - 46.000 43.000 - 6.000 100.000	Maize	1.200	-	30.500	28.500) -	4.800	65.000
	Soyabean	18.000		_	40.500) –	8.000	66.500
Street Potaton 4 000 24 000 22 000 5 000 CF 000	Cassava	5.000	-	46.000	43.000) -	6.000	100.000
Sweet Potatos 4.000 - 24.000 32.000 - 5.000 65.000	Sweet Potatos	4.000	_	24.000	32.000)	5.000	65.000

(3) Kab. Sleman (1976)

(Unit: Rp.)

Items	Seed	Pesti- cides	Ferti- lizer	Wages	Depreci- ation	Others	Total
Irrig. rice HYL	_	_	<u></u>			-	_
Irrig. local	3.000	4.500	23.100	78.910) -	3.750	113.260
Dry rice	****	-	-	-	-	-	. –
Tobacco	vires.	~	-	•••	-		árah
Maize	2.700	1.000	7.000	38.450) –	1.000	50.150
Peanut	22.000		-	41.335		_	63.335
Soyabean	11.000	4.500	10.500	26.625	; <u> </u>	-	52.625
Cassava	12.000		-	40.295	; -	2.000	54.295
Sweet Potato	18,000	-	***	39.750) –	2.000	59.750

Table 3.4.6 Gross Revenue per Hectare

(1) Kab. Magelang (1976)

Crops	Yield Kg	Price Rp/Kg	Value Rp
Irrig. rice HYV	_		•••
Irrig. local	3.800	65	247.000
Dry rice	-	-	
Tobacco	-	-	-
Maize	1.200	65	78.000
Peanut		-	150.000
Soyabean	472	175	82.600
Cassava	9.000	15	135.000
Sweet Potato	6.000	15	90.000

(2) Kab. Klaten (1977)

Items Crops	Yield Kg	Price Rp/Kg	Value Rp
Irrig. rice HYV	-	-	-
Irrig. local	6.400	72,50	464.000
Dry rice	2.800	60	168,000
Tobacco (^{Java}) Virginia	8.000 7.000	60 50	480.000 350.000
Maize	1.200	70	84.000
Peanut	700	325	227.500
Soyabean	550	200	110.000
Cassava	9.000	25	225.000
Sweet Potatos	6.000	25	150.000

(3) Kab. Sleman (1976)

Items Crops	Yield Kg	Price Rp/Kg	Value Rp
Irrig. rice HYL	_	_	_
Irrig. local	4.715	70,-	330.050,-
Dry rice		Seed	
Tobacco	New	-	· ••••
Maize	745	80,-	59.600,-
Peanut	681	270,-	183.870,-
Soyabean	677	200,-	135.400,-
Cassava	9.896	30,-	296.880,-
Sweet Potato	6.549	30,-	196.470,-

Table 3.4.7 Cost of Construction Work

(1) Financial Cost of Construction Work (Price of 1978)

(Unit: Rp. Million)

	K. Krasak	K. Woro	K. Boyong
Materials	1,240	770	260
Salaries & Wages	4,960	3,060	1,020
Other Expenses	1,100	670	220
Total	7,300	4,500	1,500

(2) Economic Cost of Construction Work (Price of 1978)

(Unit: Rp. million)

	K. Krasak	K. Woro	K. Boyong
Materials	1,180	730	240
Salaries & Wages	4,730	2,920	970
Other Expenses	1,040	640	220
Total	6,950	4,290	1,430

Table 3.4.8 Cost of Maintenance Work

(1) Financial Cost of Maintenance Work (price of 1978)

(Unit: Rp. million)

	K. Krasak	K. Woro	K. Boyong
Materials	12	8	3
Salaries & Wages	50	30	10
Other Expenses	11	7	2
Total	73	45	15

(2) Economic Cost of Maintenance Work (Price of 1978)

(Unit: Rp. million)

·	K. Krasak	K. Woro	K. Boyong
Materials	12	7	2
Salaries & Wages	47	29	10
Other Expenses	11	6	2
Total	70	43	14

Table 3.4.9 Flow of Benefit and Cost

(1) K. Krasak

(Unit: Rp. million)

(1)	Ν.	rrasa	r 1.V*					,,	nurc: 1	ф. штт	.3.1011)
Year	Con- struction Cost	Mainte- nance Cost	Paddy & Dry Field	Yard, House & Road	Increase of Yield	Year	Con- struction Cost	Mainte- nance Cost	Paddy & Dry Field	Yard, House & Road	Increase of Yield
0	463										
1	463		17.5	8.1	3.1						
2	463		33.5	8.8	6.1						
3	463		49.5	9.5	9.2						
4	463		65.5	10.2	12.3						
5	463		81.5	10.9	15.3						
6	463		97.5	11.6	18.4						
7	463		113.5	12.3	21.5						
8	463		129.5	13.0	24.5						
9	463		145.5	13.7	27.6						
10	463		161.5	14.4	30.7]					
11	463		177.5	15.1	33.7						
12	463		193.5	15.8	36.8						
1.3	463		209.5	16.5	39.9						
1.4	468		225.5	17.2	42.9						
15		70	241.5	17.9	46.0						
16		70	257.5	18.6	46.0	}					
17		7 0	273.5	19.3	46.0						
18		70	289.5	20.0	46.0						
19		70	305.5	20.7	46.0						
20		70	321,5	21.4	46.0						

(2)	K.	Woro						(Unit:	Rp.	million)
Year	Con- struction Cost	Mainte- nance Cost	Paddy & Dry Field	Yard, House & Road	Increase of Yield	Year	Con- Mainte- struction nance Cost Cost	Paddy & Dry Field	Yard, House & Road	Increase of Yield
0	286					34	43	120.0	19.9	87.7
1	286		4.5	3.4	5.8	35	43	123.5	20.4	87.7
2	286		8.0	3.9	11.7	36	43	127.0	20.9	87.7
3	286		11.5	4.4	17.5	37	43	130.5	21.4	87.7
4	286		15.0	4.9	23.4	38	43	134.0	21.9	87.7
5	286		18.5	5.4	29.2	39	43	137.5	22.4	87.7
6	286		22.0	5.9	35.1	40	43	141.0	22.9	87.7
7	286		25.5	6.4	40.9	41	43	144.5	23.4	87.7
8	286		29.0	6.9	46.8	42	43	148.0	23.9	87.7
9	286		32.5	7.4	52.6	43	43	151.5	24.4	87 .7
10	286		36.0	7.9	58.5	44	43	155.0	24.9	87.7
11	286		39.5	8.4	64.3	45	43	158.5	25.4	87.7
12	286		43.0	8.9	70.2	46	43	162.0	25.9	87.7
1.3	286		46.5	9.4	76.0	47	43	165.5	26.4	87.7
14	286		50.0	9.9	81.9	48	43	169.0	26.9	87.7
15		43	53.5	10.4	87.7	49	43	172.5	27.4	87.7
16		43	57.0	10.9	87.7		•			
17		43	60.5	11.4	87.7					
18		43	64.0	1 1.9	87.7					
19		43	67.5	12.4	87.7					
20		43	71.0	12.9	87.7					
21		43	74.5	13.4	87.7					
22		43	78.0	13.9	87.7					
23		43	81.5	14.4	87.7					
24		43	85.0	14.9	87.7					
25		43	88.5	15.4	87.7					
26		43	92.0	15.9	87.7					
27		43	95.5	16.4	87.7					
2 8		43	99.0	16.9	87.7					
29		43	102.5	17.4	87.7					
30		43	106.0	17.9	87.7					
31		43	109.5	18.4	87.7					
3 2		43	113.0	18.9	87.7					
33		43	116.5	19.4	87.7					

(3) K. Boyong

(Unit: Rp. million)

Year	Con- struction Cost	Mainte- nance Cost	Paddy & Dry Field	Yard, House & Road	Increase of Yield	Year	Con- struction Cost	Mainte- nance Cost	Paddy & Dry Field	Yard, House & Road	Increase of Yield
0	95					34		14	61.2	0.4	35.0
1	95		1.8	0.4	2.3	35		14	63.0	0.4	35.0
2	95		3.6	0.4	4.7	36		14	64.8	0.4	35.0
3	95		5.4	0.4	7.0	37		14	66.6	0.4	35.0
4	95		7.2	0.4	9.3	38		14	68.4	0.4	35.0
5	95		9.0	0.4	11.7	39		14	70.2	0.4	35.0
6	95		10.8	0.4	14.0	40		14	72.0	0.4	35.0
7	95		12.6	0.4	16.3	41		14	73.8	0.4	35.0
8	95		14.4	0.4	18.7	42		14	75.6	0.4	35.0
9	95		16.2	0.4	21.0	43		14	77.4	0.4	35.0
10	95		. 18.0	0.4	23.3	44		14	79.2	0.4	35.0
11	95		19.8	0.4	25.7	45		14	81.0	0.4	35.0
12	95		21.6	0.4	28.0	46		14	82.8	0.4	35.0
13	95		23.4	0.4	30.3	47		14	84.6	0.4	35.0
14	100		25.2	0.4	32.7	48		14	86.4	0.4	35.0
15		14	27.0	0.4	35.0	49		14	88.2	0.4	35.0
16		14	28.8	0.4	35.0						
17		14	30.6	0.4	35.0						
18		14	32.4	0.4	35.0						
19		1.4	34.2	0.4	35.0						
20		14	36.0	0.4	35.0						
21		14	37.8	0.4	35.0						
22		14	39.6	0.4	35.0						
23		14	41.4	0.4	35.0						
24		14	43.2	0.4	35.0						
25		14	45.0	0.4	35.0						
26		14	46.8	0.4	35.0						
27		14	48.6	0.4	35.0						
28		14	50.4	0.4	35.0						
29		14	52.2	0.4	35.0						
30		14	54.0	0.4	35.0						
31		14	55.8	0.4	35.0						
32		14	57.6	0.4	35.0						
33		14	59.4	0.4	35.0						

APPENDIX

APPENDIX 1. STUDY ACTIVITY SCHEDULE

Study Activity Schedule

The Study Team members carried out the study at the site according to the following schedule:

Period		1978	3		1979
Members	Jun.	Jul.	Aug.	Sep.	Mar.
Team Leader (I. Tani)			21	<u>1</u> 4	
Deputy Leader/Disaster Prevention Planner (H. Suzuki)	12	······································		14	9 18
Disaster Prevention Planner (H. Tanaka)	12			14	9 18
Sabo-facilities Planner (S. Tsuchiya)		16		9	
Sabo-facilities Planner (O. Kurokawa)		2	- 	9	
River Engineer (K. Nobe)	18	22			
Hydrologist (Y. Matsumoto)	18		1.1		
Geomorphologist (Y. Maruyama)	ļ	2 31			
Geomorphologist (M. Higurashi)		2 31			
Geologist (M. Nakayama)			11	9	9 18
Geologist (A. Nakasuzi)	18		······	9	
Economist (K. Ishimitsu)	!	30	18		
Socio-economist/Coordinator (Y. Komuro)	12			14	
Socio-economist (K. Denda)		30		1.4	
Agro-economist (Prof. Dr. Muto)		30	28		
Aerial-Surveyor (T. Watanabe)	12 21	30	8		

APPENDIX 2. LIST OF PARTICIPATING PERSONNEL

List of Participating Personnel

1. The Japanese Government Supervisory Committee

Chair Man

Prof. Dr. Aritsune Takei

Disaster Prevention

Sabo Works Plan

Usho Daikubara

Volcanic Debris

Dr. Masayoshi Matsubayashi

Geology

Masasuke Watari

Economics and

Disaster Analysis

Koichi Hirao

Hydrology and

River Engineering

Fujio Chikamori

2. The Indonesian Government Steering Committee

Management

Ir. Sarbini

Regional Planning

Ir. K.P.H. Probokusumo

Social Economic

Survey

Dr. Sulistyo MBA

Rural Sociology

Prof. Dr. Sartono Kartodirdjo

Sabo Engineering

Ir. Djoko Legowo

3. JICA Study Team and Indonesian Counterparts

Assignment	Japanese Members	Indonesian Counterparts
Team Leader	I. Tani	Ir. Bambang Sumantri.
Deputy Leader/General Planning for Disaster Prevention Planning	H. Suzuki	Ir. Agus Sumaryono Wardhono Mujoko
Disaster Prevention Planning	H. Tanaka	
Sabo-Facilities Planning	S. Tsuchiya O. Kurokawa	Adaningkung Subarkah Yaskur
River-Engineering	K. Nobe	Sumitro BRE Diro Supangkat Susilo Djarot Suharyadi
Hydraulic and Hydrology	Y. Matsumoto	Djarot Suharyadi Drs. Sutikno
Study of Possible Lahar Inundation Area	Y. Maruyama M. Higurashi	Wardhono Nugroho Haryanto
Lahar Deposits Analysis	M. Nakayama A. Nakasuji	Ir. Sumartono Suwartoyo BE Jimmy Sinaga
Socio-economic	K. Ishimitsu Y. Komuro K. Denda	Djatiyo Djatmiko Bsc. Ir. Agus Sumaryono Bambang Sumitro
Agro-economic	K. Muto	
Aerial Survey	T. Watanabe	

APPENDIX 3. COST ESTIMATION AND UNIT COST OF CONSTRUCTION WORKS

Table-1	Summary	of	Sabo	Facilities	s of	к.	Krasak	(Plan-I)	A3-1
Table-2		11				11		(Plan-II)	A3-4
Table-3		17				**		(Plan-III)	A3-5
Table-4		11			σ£	к.	Woro	(Plan-I)	A3-6
Table-5		п				H		(Plan-II)	A3-8
Table-6		ti				11		(Plan-III)	A3-9
Table-7		11			of	к.	Boyong		A3-10
Table-8	Unit Co	st o	f Co	nstruction	Worl	ζS			A3-12

Summary of Sabo Facilities of K. Krasak (Plan I)

Table I

Sand Pocket Remarks 2,999 3,154 Volume of Sediment Discharge Control (1,000m³) Volume of Sediment Discharge Reduction (1,000m³) (144)(101)(33)23) 49) 8 (86) 62) 38) Volume of Sediment Production Suppression (1,000m³) 252 155 298 175 138 138 212 350 47 79,520 51,800 15,400 84,000 175,000 14,080 57,400 44,800 33,600 Construction Cost (Rp. x 1,000) 103,040 43,400 57,400 186,200 27,000 147,000 179,200 117,600 187,600 260,400 109,200 9,200 4,100 3,200 3,700 4,100 2,400 1,100 6,000 13,400 18,600 10,500 7,800 12,800 12,500 10,500 3,100 13,300 Volume (m³) 140.0 750.0 425.0 108.0 118.0 80.0 88.0 630.0 550.0 111.0 85.0 134.0 140.0 104.0 100.0 220.0 Length (m) Element 4.0 3.0 3.5 4.0 11.0 10.0 10.0 4.5 6.5 11.0 12.5 Height (m) Ξ (D-5) Consolidation Dam Check Dam Revetment (D - 3) Type = C.6 C.8 D.1 D.2 D.3 D.4 D.5 D.6 D.8 D.9 R.1 R.2 C.1 Facility 1 ı 1 BE BE $\overline{\mathrm{BE}}$ ŝ 16 4 9 ∞ 10 14 12 17

		Kemarks				•																		
e of								*					·		<u></u>	_			<u> </u>					
Volume of	Sediment	Uscharge Control (1,000m ³)			··		**		·			······											.,	
Volume of	Sediment	Discharge Reduction (1,000m ³)										(178)	(31)	(12)	(19)	(25)								ļ
Volume of	Sediment	Suppression (1,000m ³)								3,123		264	210	48	159	48				******				
!	Construction	(Rp. x 1,000)	21,420	37,620	39,600	41,800	54,120	142,500	160,500	94,500	150,000	672,600	657,400	166,600	240,800	175,000	7,200	7,200	15,480	20,880	8,280	12,600	42,180	12,210
		Volume (m ³)										35,400	34,600	11,900	17,200	12,500								
- - -	nt	Length (m)	420	570	009	950	1,230	950	1,070	630	1,000	189	178	143	155	128	200	p 	430	580	230	350	1,140	330
	Element	Height (m)	3.0	=		3.0	Ε	0.9	:	=		14.0	14.5	8.0	=	10.0	3.0	E	=	Me Me	3.0	Ε	=	11
		Type	Revetment (D - 4)	(D-4)	(,,)	(B-2)	(")	Training	3457	<u>.</u>		Check Dam	=	=	=	=	Revetment (B-5)	(B-5)	(")	()	(;;)	(",)	(D-2)	()
	Do wiliter	raciniy	BE - R.3	R.4	R.5	R.6	R.7	BE - T.1	T.2	T.3	T.4	KR - D.1	D.2	D.3	D.4	D.5	KR - R.1	R.2	R.3	R.4	R.5	R.6	R.7	R.8
	Z	NO.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	77	42

Remarks				-1-7						(including K. Bebeng)							Protection Work to Syphone	* in case of passing through K.Bebeng		
Volume of Sediment Discharge	Control (1,000m ³)																ļ	2,999 * 3,154		2,999 * 3,154
Volume of Sediment Discharge	Reduction (1,000m ³)															-		(698)		(869)
Volume of Sediment Production	Suppression (1,000m ³)					,	-											5,810		5,810
Construction	(Rp. x 1,000)	16,650	136,800	136,800	91,200	170,150	91,300	102,500	97,500	148,500	67,500	187,500	126,000	82,500	000,09	37,560	13,380	6,319,970	980,030	7,300,000
	Volume (m ³)									4,500 ^m	_				,	2,100	13,380			
11	Length (m)	450	2,400	:	1,600	2,050	1,100	2,050	1,950		450	1,250	840	550	400	69	o aboutments)			
Element	Height (m)	3.0	=	=	=	=	2	E	=		0.9	=	=	=	F	4.1	 Vork (Protection 1			
	Type	Revetment (D - 2)	(B-1)	(;;)	(,,)	(A.F)	(")	(D-1)	(")	Groin	Trining Levee	Ξ	-	=	=	Consolidation Dam	Chipping of Head Work (Protection to aboutments)			
1 12 2	racuity	KR - R.9	R.10	R.11	R.12	R.13	R.14	R.15	R.16	KR - G	KR - T.1	T.2	T.3	T.4	7.5	KR - C.1		Sub Total	Supplemental Works and Contingency	Total
ž		43	777	45	94	47	48	49	50	51	52	53	54	55	56	57	58			

Table 2

Summary of Sabo Facilities of K. Krasak (Plan II)

		<u> </u>	1							
	Kemarks	* in case of passing through K. Bebeng								
Volume of Sediment	Discharge Control (1,000m ³)	2,750* 3,154*						2,750* 3,154		2,750* 3,154
Volume of Sediment	Discharge Reduction (1,000m ³)	(697)	(70)	(245)	(222)	(203)	(225)	(1662)		(1662)
Volume of Sediment	Suppression (1,000m ³)	4,939			1,120			6,059		6,059
Construction	(Rp. x 1,000)	5,670,370	179,200	207,200	176,400	218,400	275,800	6,727,370	972,630	7,700,000
	Volume (m ³)		12,800	14,800	12,600	15,600	19,700			
nt	Length (m)		97.0	107.0	95.0	135.0	183.0			
Elemen	Height (m)		12.0	0.6	8.5	.	#			
	Type			=	=	Ξ	# 	. ,		
	racinty	Sub total from No. 1 to No. 58 in Plan I; from No.15 to No.18 exclusive	BE - D.6.A	D.6:B	D.6.C	D.6.D	D.6.E	Sub Total	Supplemental Works and Contingency	Total
	ė Ž									

Figures in () are excluded out of the Sediment Disposal Plan

in case of passing through K. Bebeng Remarks 2,625* 3,154 2,625* 3,154 1,625* 3,154 1,000* Volume of Sediment Discharge Control (1,000m³) Volume of Sediment Discharge Reduction (1,000m³) (2904)(269)(328)(1174)(110)(595)(2904)1,245 4,939 6,184 6,184 Volume of Sediment Production Suppression (1,000m³) 225,400 5,670,370 365,400 7,142,270 1,057,730 8,200,000 235,200 82,500 93,000 105,000 365,400 Construction Cost (Rp. x 1,000) 16,100 16,800 26,100 26,100 Volume (m³) 1 103.0 125.0 155.0 240.0 550.0 620.0 700.0 Length (m) Element 12.0 10.0 Height (m) = Check Dam Guide Wall Type : Ξ Ξ = Sub total from No. 1 to No.58 in Plan I; from No. 15 to No.18 exclusive D.6.A D.6.B D.6.c D.6.D Supplemental Works and Contingency W.2 W.3 ۲. ۲. Facility Sub total Total l 1 BE 찚 No.

Figures in () are excluded out of the Sediment Disposal Plan

Table 4 Summary of Sabo Facilities in K. Woro (Plan I)

	Remarks		Sand	pocket							 				***					
Volume of Sediment	Discharge Control (1,000m ³)		1,986				_						•			•		•		
Volume of Sediment	Discharge Reduction (1,000m ³)		•				(07)	(21)	(594)	(142)		(97)	(35)	(111)	(18)	(.87)	(173)	(25)		
Volume of Sediment	Production Suppression (1,000m ³)				28	19	88	19	138	115		} 377	153	188	137	····	335	98		· · · · · · · · · · · · · · · · · · ·
Construction	Cost (Rp. x 1,000)	67,200	60,480	59,360	70,000	113,400	184,800	172,200	245,000	247,800	214,200	275,800	158,200	254,800	105,000	228,200	267,400	133,000	186,390	68,400
	Volume (m ³)	6,000	5,400	5,300	2,000	8,100	13,200	12,300	17,500	17,700	15,300	19,700	11,300	18,200	7,500	16,300	19,100	9,500		
ent	Length (m)	360	320	318	130	125	135	120	125	=	97	162	55	158	70	141	148	72	3,270	1,900
Element	Height (m)	5.0	<u>=</u>		E E	7.0	10.0	E	13.5	12.0	13.0	7.0	13.0	12.0	8.0	14.5	10.0	1	3.0	11
	Type	Consolidation Dam	=	Ξ	=		Check Dam		=	gy- pan	=	-	=	b p-	=	=	E	=	Revetment (B-I)	(B - 5)
	Facility	WO - C.1	C.2	C.3	C.4	C.5	WO - D.1	D.2	D.3	D.4	D.5	D.5'	D.6	D.7	D.8	D.9.A	D.9.B	D.10	WO - R.1	R.2
;	No.	r-f	2	n	4	5	9		8	σ,	10	II	12	13	14	15	16	17	18	19

	į		Element	ınt		Constructio:	Volume of Sediment	Volume of Sediment Discharge	Volume of Sediment Discharge	Stromag
	racinty	Туре	Height (m)	Length (m)	Volume (m3)	(Rp. x 1,000)	Suppression (1,000m ³)	Reduction (1,000m ³)	Control (1,000m ³)	remains
	WO - R.3	Revetment (B - 5)	3.0	1,070		38,520				
	R.4	(B-5)	E	650		23,400				
	R.5	(")	z z	1,570		56,520				
	R.6	(")	E	1,050		46,200				
	R.7	(B-2)	=	580		25,520				
	R.8	(")	=	009		26,400				
	R.9	(;;)	=	230		10,120				
	R.10	(")	=	350		15,400				
	R.11	(D-C)	=	250		9,250				
\simeq	WO - G	Groin			3,000 ^m	000,66				Ē
× .	Excavation				1,500,000	413,875		1,500		20
1 2	Sum above					3,875,835	1,737	1,500	1,986	
I 54.	Supplemental works and Contingency					624,165				
!	Total					4,500,000	1,737	1,500		

Table 5 Summary of Sabo Facilities of K. Woro (Plan II)

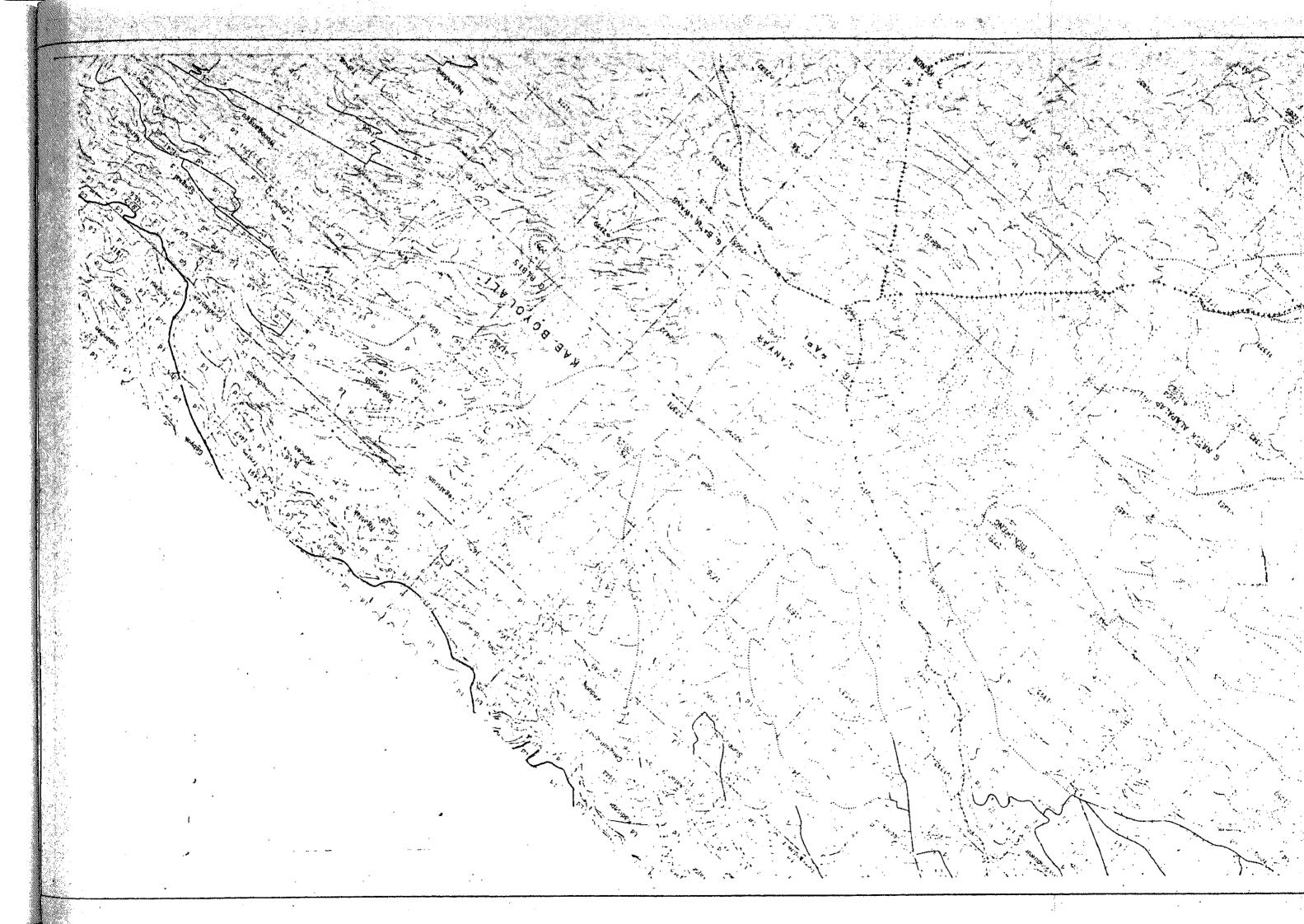
1,200m Remarks Volume of Sediment Discharge Control (1,000m³) 1,986 1,986 1,986 1,500 (2,522) 1,500 (2,522) (1,022)(1,500)Volume of Sediment Discharge Reduction (1,000m³) Volume of Sediment Production Suppression (1,000m³) 1,737 1,737 4,800,000 3,461,960 706,950 4,168,910 631,090 Construction Cost (Rp. x 1,000) Volume (m³) Length (m) Element Height (m) Type Sum from No. 1 to No. 29 in Case I Supplemental Works and Contingency Facility Sub Total Rising of Bank Total Š

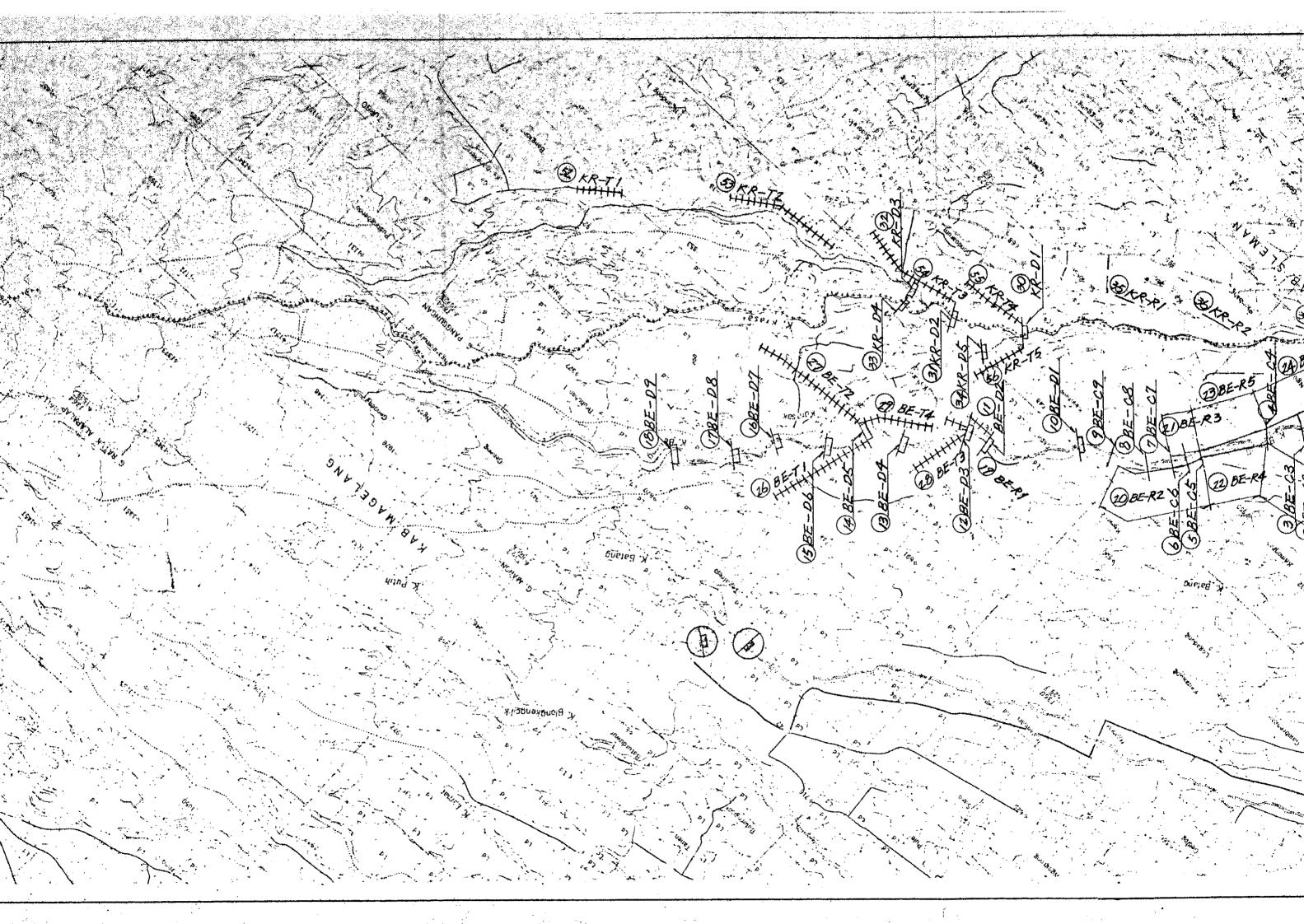
A3-8

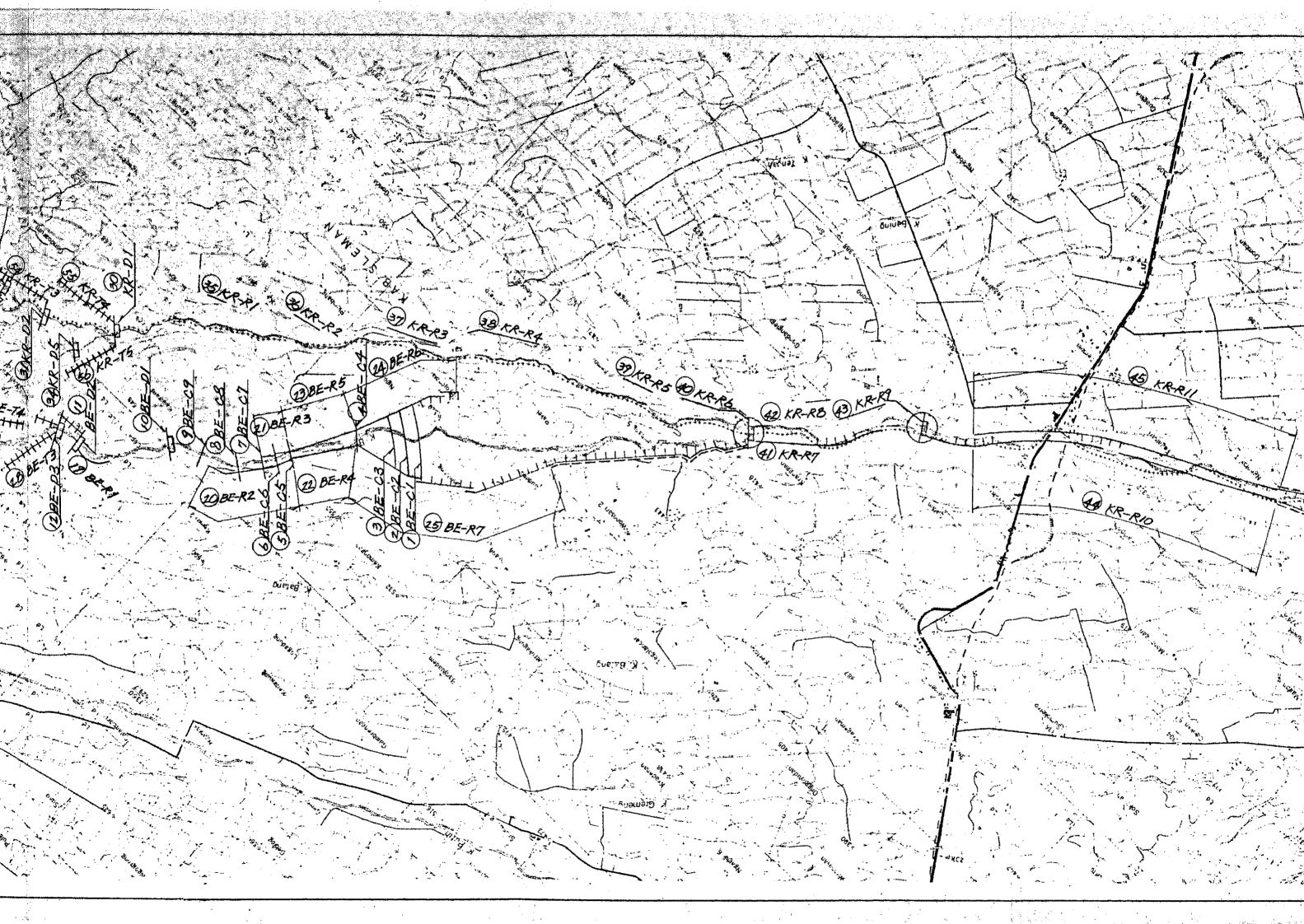
Summary of Sabo Facilities of K. Woro (Plan III)

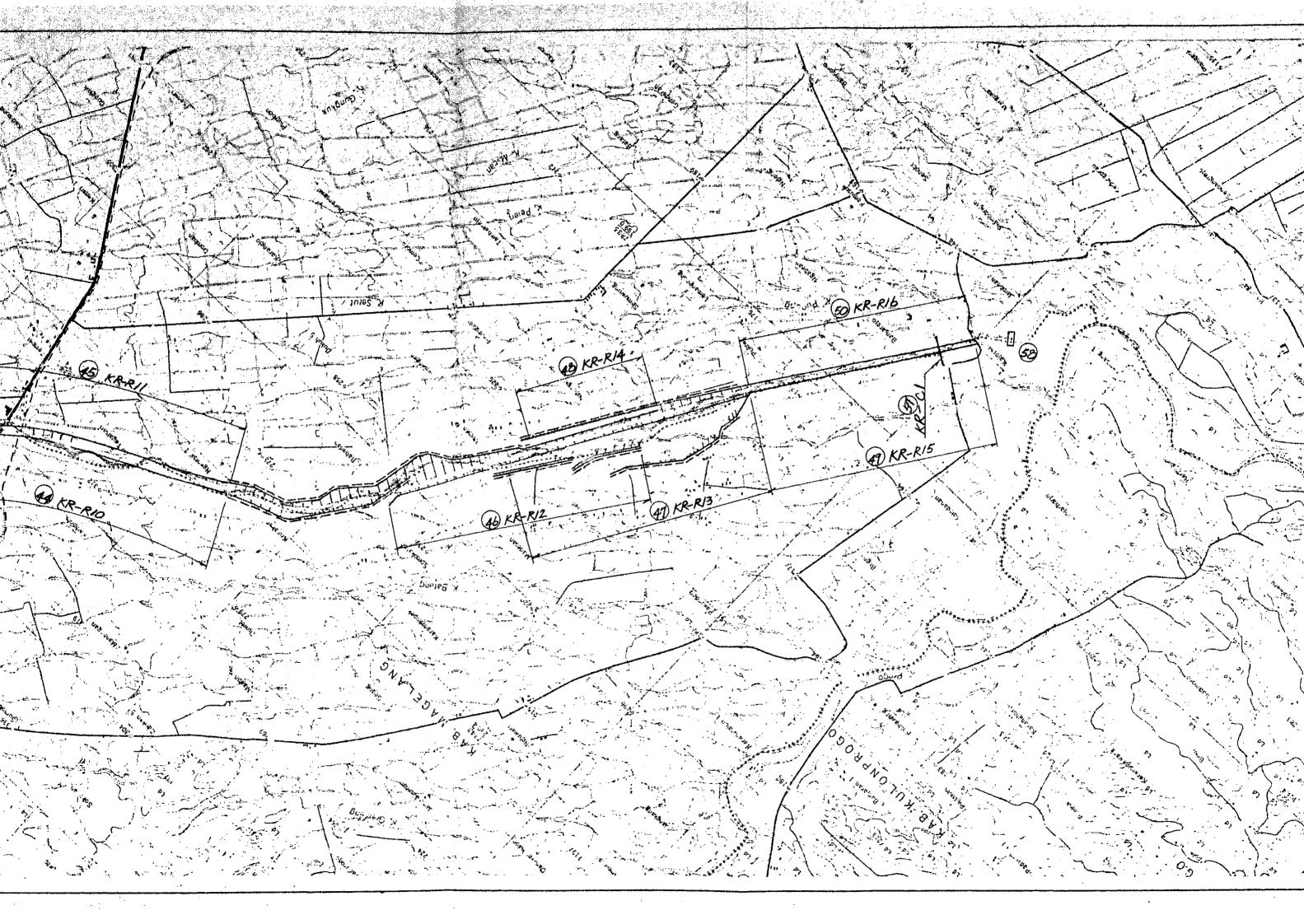
-	Kemarks					
Volume of Sediment	Control (1,000m ³)	1,986		1,986		1,986
Volume of Sediment	Discharge Reduction (1,000m ³)	(1,022)	(1,500)	1,500 (2,522)		1,500 (2,522)
Volume of Sediment	Suppression (1,000m ³)	1,737				1,737
Construction	(Rp. x 1,000)	3,461,960	524,000	3,985,960	614,040	4,600,000
	Volume (m3)	r	1,500,000			
Element	Length (m)					
	Height (m)					
	Type		(50 ha)			
Ĺ	racinty	Sum from No. 1 to No.29 in Case I	Sand Pocket	Sum above	Supplemental Works and Contingency	Total
ļ	No.					

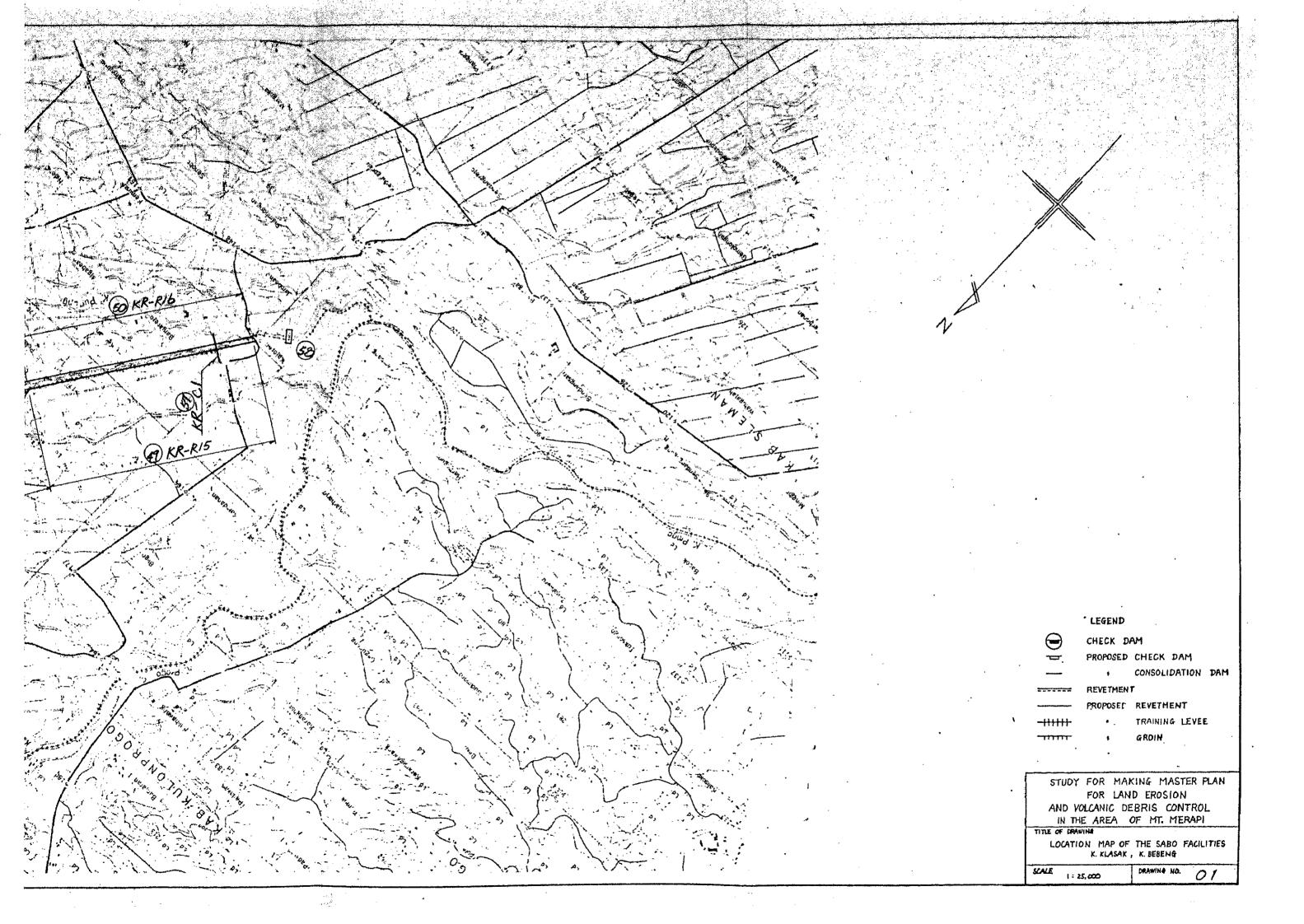
Table 7 Summary of Sabo Facilities of K. Boyong


Remarks Volume of Sediment Discharge Control (1,000m³) 30 35 29 82 54 43) 35) 39) 22) 58) Volume of Sediment Discharge Reduction (1,000m³) Volume of Sediment Production Suppression (1,000m³) 156 140 68 83 42,550 49,580 7,400 7,030 7,030 Construction Cost 85,400 85,400 158,200 144,200 48,100 36,260 11,100 12,950 5,920 $(Rp. \times 1,000)$ 16,650 12,950 110,600 116,200 200,200 6,100 7,900 8,300 14,300 11,300 10,300 Volume (m³) 1,340 1,150 980 120 75 80 1,300 200 190 450 300 350 160 Length (m) Element 5.0 7.0 11.0 3.0 = Height (m) (D-2) ") • : ; ç : Consolidation Dam Revetment (D - 2) Check Dam Type = R.10 R.12 R.11 R.8 R.9 D.4 R.6 D.5 Ř.4 R.5 C.1 D.1 R.1 Facility 1 1 1 B0 BO B0 Š 9 ∞ 10 11 12 14 15 16 17


;			Element	nt		Construction	Volume of Sediment	Volume of Sediment	Volume of Sediment	
No.	Facility	Type	Height (m)	Length (m)	Volume (m ³)	Cost (Rp. x 1,000)	Suppression (1,000m ³)	Discharge Reduction (1,000m ³)	Discharge Control (1,000m ³)	Kemarks
20	BO - B.1	Bridge				50,000				
21	B.2	=				20,000				
	Sub Total					1,257,720	515	(197)	269	
	Supplemental Works and Contingency					242,280	_			
	Total					1,500,000	515	(197)	269	


Table 8 Unit Cost of Construction Works


T	able 8 Unit Co	st of Co	nsti	ruction Works
Work	Туре	Unit Co (1,000R	p.)	Remarks
Check Dam	Concrete + cobble	14	/m ³	Contain of cobble : much
	Concrete	19	11	" : less
Consolidation dam	Crib works	11	.2 1	†
Levetment	A	59	/m	
	B-1	57	11	
	B-2	44	11	
	B-3	79	11	
	B-4	66	†1	
	B-5	36	H	
	C	63	11	
	D-1	50	11	
	D-2	37	11	·
	D-3	64	ET .	
	D-4	51	11	
	E	43	IT	
	F	24	11	
Training Levee		150	/m	
Groin		33	/m	
<u>Plan I</u> of K. Wo	oro (Excavation)			
1. Excavation		225,000		750,000m ³ x 300Rp/m ³
2. Bedding clay of Reservoir	on the Bottom	45,000		90,000m ² x 500Rp/m ³
3. Side Wall of	Reservoir	66,300		1,300m x 51,000Rp/m
4. Compensation	n for Spoil Bank	56,175		21.4ha x 875,000Rp/ha x 3 Year
5. Land Reclama	ation	21,400		21.4ha x 1,000,000Rp/ha (Dry Field)
Sub tot	al	413,875		
6. Maintenance	(Excavation)	225,000		750,000m ³ x 300Rp/m ³
Total		638,875		
<u>Plan II</u> of K. V	Voro (Sand Pocke	t)		
1. Enclosing Le	evee	37,400		850m x 44,000Rp/m (B-2)
2. River Improv	vement (Embankment)	52,800		300m x 2 x 2 x 44,000Rp/m (B-2)
3. Temporary Di	ke	29,250		375m/Block x 52m ³ /m x 300Rp/m ³ x 5Block
4. Compensation	ı	437,500		50ha x 875,000Rp/ha x 10 Year
5. Recovery of	farm land	150,000		50ha x 3,000,000Rp/ha (Paddy Field)
Total		706,950		
Plan III of K.	Woro (Rising of	Bank)		
1. Embankment		524,000		1,200m x 44,000Rp/m (B-2)


APPENDIX 4. DRAWINGS OF SABO FACILITIES

