REPUBLIC OF INDONESIA

MINISTRY OF PUBLIC WORKS AND ELECTRIC POWER

FEASIBILITY REPORT

ON

ULAR RIVER FLOOD CONTROL

AND IMPROVEMENT OF IRRIGATION PROJECT

VOLUME III

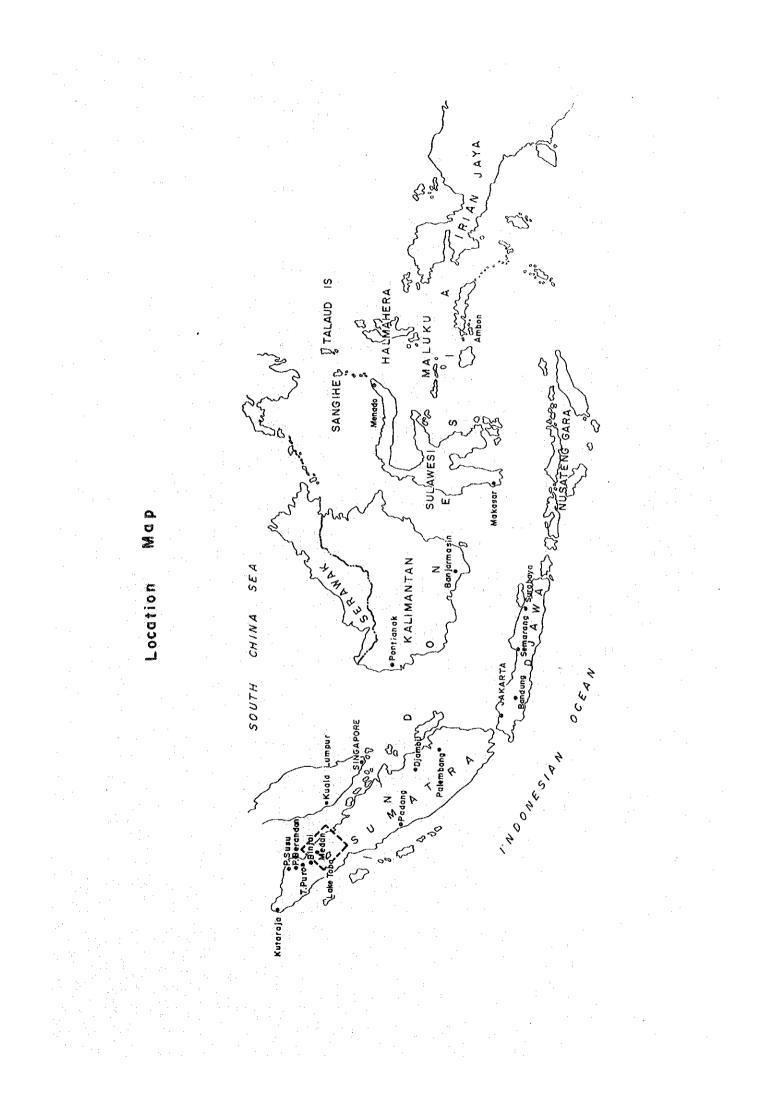
SUPPORTING REPORT

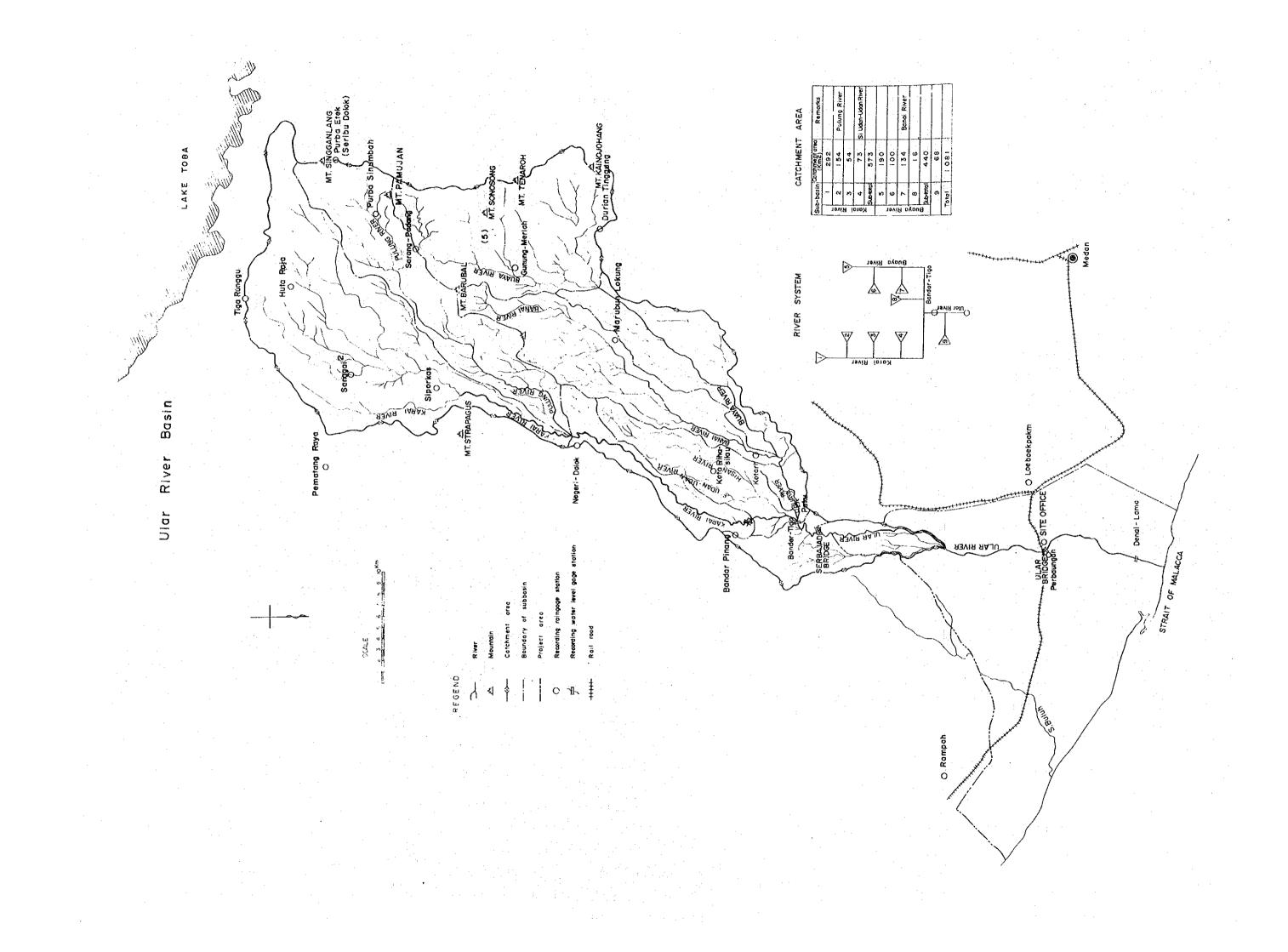
JULY 1978

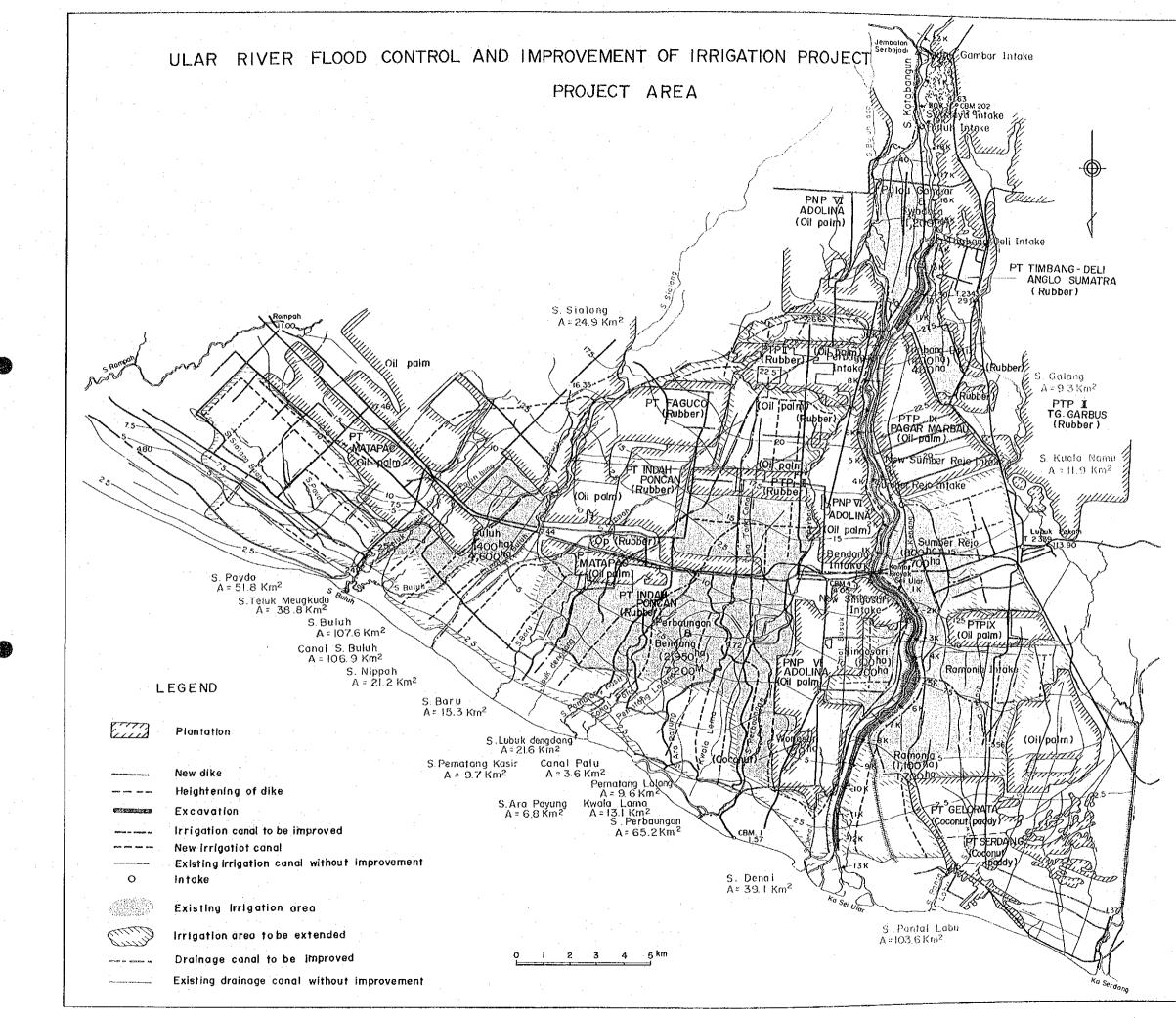
JAPAN INTERNATIONAL COOPERATION AGENCY

国際協力事	王業田
9115 4 84 051126	1/28
资金No. 04827	61.7 SDS

The Feasibility Report on Ular River Flood Control and Improvement of Irrigation Project is composed of three Volumes.


> Volume I: Main Report Volume II: Study Report Volume III: Supporting Report


54**8**4051126 TNo: 94827 登録No. マイクロ フィルム作成


国際協力事業団 108 61.7 505

The Feasibility Report on Ular River Flood Control and Improvement of Irrigation Project is composed of three Volumes.

> Volume I: Main Report Volume II: Study Report Volume III: Supporting Report

CONTENTS	
LOCATION MAP	
MAP OF ULAR RIVER BASIN	
MAP OF PROJECT AREA	1 - A
CONTENTS	i
LIST OF TABLES	iv
LIST OF FIGURES	v
I. TOPOGRAPHIC SURVEY	1
1. Outline of the works	1
2. Review of the existing bench marks in the project area	1
3. Surveying works for preparing the plan of river channel	
improvement	1
4. Surveying works for preparing the plan of irrigation	•
and drainage lines.	2
5. Topographic surveyings for planning intakes and sluices	2
6. Results of surveyings	2
	· .
II. SOIL SURVEY AND STUDY	14
1. General	14
2. Sites and kinds of tests	
3. Data obtained	14
4. Study of section of embankment	16
(1) Soil condition for study of section of embankment	16
(2) Stability of slope	19
(3) Consolidation	21
(4) Seepage	23
5. River-bed materials	25
6. Some comments on construction equipment and earth work	26

i

·			
ii			
	н.		
:	*.		
	III. NETWO	RK OF HYDROLOGICAL OBSERVATION STATIONS	
	1. Rec	ording rain-gage stations 28	
	2. Rec	ording water-level-gage stations 28	
	3. Three	ee VHF-radio fixed stations and three VHF-radio	
	mob	ile stations 29	•
	APPENDIX A	Terms of Reference for Feasibility Study of Ular	
		River Flood Control and Improvement of Irrigation	
	. * *	Project, July 1977.	
	APPENDIX B	Letter of Mr. K. Ichikawa, First Secretary of	·
		Embassy of Japan, dated October 6, 1977.	
	APPENDIX C	Scope of Work for Feasibility Study of Ular River	
		Flood Control and Improvement of Irrigation Pro-	
• •		ject, September 1977.	
· · · ·	APPNEDIX D	Note of Meeting on Draft Final Study Report for	
·		Overall Ular River Improvement Project and Incep-	·
		tion Report for Feasibility Study of Ular River	
		Flood Control and Improvement of Irrigation Pro-	
	APPENDIX E	ject, signed on November 14, 1977. Letter of Submission of Inception Report.	
	in i moin d	Inception Report on Feasibility Study of Ular	
	· . ·	River Flood Control and Improvement of Irrigation	
		Project, November 1977.	
	APPENDIX F	Record of Meeting in Medan for Feasibility Study	
		of Ular River Flood Control and Improvement of	
		Irrigation Project, signed on December 21, 1977.	
	APPENDIX G	Record of Meeting in Medan for Feasibility Study	
		of Ular River Flood Control and Improvement of	
	· ·	Irrigation Project, signed on January 18, 1978.	
	APPENDIX H	Note of Meeting on Feasibility Study of The Ular	· . . · ·
: . · · · · · · · · · · · · · · · · · ·		River Flood Control and Improvement of Irrigation	
		Project, signed on February 4, 1978.	
	APPENDIX I	Letter of Receipt of Equipment, dated January 30,	
	·	1978.	
			н. 1

APPENDIX J Letter of Sending Additional Data.
APPENDIX K Letter of Additional Comments.
APPENDIX L Letter of Question to Additional Comments.
APPENDIX M Bibiliography and Data.

LIST OF TABLES

Tables2-1-1 to 2-1-6Soil test data (for foundation)Tables2-2-1 to 2-2-3Result of shear stress vane test

· · · · ·	LIST OF FIGURES
:	
:	
Fig.1-1	Surveying route and elevation of bench marks
Fig.2-1-1	Location map $(-13.5 \text{ km to } -11.0 \text{ km})$
Fig.2-1-2	Location map (-11.0 km to - 8.5 km)
Fig.2-1-3	Location map (- 8.5 km to - 6.0 km)
Fig.2-1-4	Location map (- 6.0 km to - 4.0 km)
Fig. 2-1-5	Location map (- 4.0 km to - 2.0 km)
Fig.2-1-6	Location map (8.0 km to 23 km)
Fig.2-2-1	Location map for Intake
Fig.2-2-2	Romania intake
Fig.2-2-3	Singosari intake
Fig.2-2-4	Bending intake
Fig.2-2-5	Sumber Rejo intake
Fig.2-2-6	Perbaungan intake
Fig.2-2-7	Timbang Deli intake
Fig.2-2-8	Sei. Buluh intake
Fig.2-2-9	Swadaya intake
Fig.2-2-10	Pulau Gambar intake
Fig.2-2-11	Soil survey site at confluence of Pulau Gambar
and and a second s	Canal
Fig.2-3-1	Legend for soil profile
Fig.2-3-2	Soil profile (-13.5 km, left and right)
Fig.2-3-3	Soil profile (-13 km, left)
Fig.2-3-4	Soil profile (-13 km, right)
Fig.2-3-5	Soil profile (-12 km, left)
Fig.2-3-6	Soil profile (-12 km, right)
Fig.2-3-7	Soil profile (-12 km, left)
Fig.2-3-8	Soil profile (-11.25 km, right)
Fig.2-3-9	Soil profile (-11 km)
Fig.2-3-10	Soil profile (-10.75 km and -10.73 km, left)
Fig.2-3-11	Soil profile (-10 km, left)
Fig.2-3-12	Soil profile (-10 km, right)
Fig.2-3-13	Soil profile (-10 km, left)
Fig.2-3-14	Soil profile (- 9 km, right)

v

vi		
· .		
	Fig.2-3-15	Soil profile (-9 km, right)
	Fig.2-3-16	Soil profile (-8.25 km, left)
	Fig.2-3-17	Soil profile (-7 km, left)
	Fig.2-3-18	Soil profile (-7 km, right)
	Fog.2-3-19	Soil profile (-6 km, left)
	Fig.2-3-20	Soil profile (-6 km, right)
in a set	Fig.2-3-21	Soil profile (-4 km)
	Fig.2-3-22	Soil profile (-3 km, left)
	Fig.2-3-23	Soil profile (-3 km, right)
·	Fig.2-3-24	Soil profile (10.3 km to 11 km, right)
	Fig.2-3-25	Soil profile (13 km to 17 km, right)
	Fig.2-3-26	Soil profile (Romania Intake)
	Fig.2-3-27	Soil profile (Singosari Intake)
	Fig.2-3-28	Soil profile (Bendang Intake)
	Fig.2-3-29	Soil profile (Sumber Rejo Intake)
	Fig.2-3-30	Soil profile (Perbaungan Intake)
	Fig.2-3-31	Soil profile (Timbang Deli Intake)
	Fig.2-3-32	Soil profile (S. Buluh Intake)
	Fig.2-3-33	Soil profile (Swadaya Intake)
	Fig.2-3-34	Soil profile (Pulau Gambar Intake)
	Fig.2-3-35	Soil profile (10.4 km)
	Fig.2-3-36	Boring log
	Fig.2-4-1	Section at -12 km
	Fig.2-4-2	Stability analysis of slopes in cohesive soils
·	Fig.2-4-3	Influence value for vertical stress under embank-
		ment load of infinite length
	Fig.2-4-4	Settlement
	Fig.2-4-5	Time-settlement
	Fig.2-4-6	Relation between mean grain size and station
		number

I. TOPOGRAPHIC SURVEY

1. Outline of the Works.

Surveyings were conducted by nine Indonesian surveying parties with the assistance of three Japanese Surveying Engineers in the period of the middle of August to the beginning of November, 1977. The items of surveying works were as follows.

a. Review of the existing bench marks in the project area.

b. Surveying works for preparing the plan of river channel improvement.

c. Surveying works for preparing the plan of irrigation and drainage canal lines.

d. Topographic surveyings for intake structures.

2. Review of the Existing Bench Marks in the Project Area.

(1) Leveling nets were established for making bench-marks leveling.

(2) Intemediate points were set at intervals ranging from 1 km to 1.3 km on the leveling routes. The intermediate points were used as the known points in other surveyings such as profile leveling, cross leveling and plane-table surveying.

(3) Closing errors of the leveling nets were adjusted by means of the least squares method.

3. Surveying Works for Preparing the Plan of River Channel Improvement.

 Proflie levelings and cross levelings were made at intervals of 250 m over a stretch from the river mouth to Serbajadi Bridge except a stretch of about 10 km included therein.

(2) Cross levelings were made over a river stretch between the distance-marks No.10 km and No.13 km including a paddy field area located between these two distance-marks in the lower part of Pulau Gambar. The average width of the cross-levelings was about 450 m. The scales of drawings are as follows.

- V = 1/100, H = 1/1,000 for cross levelings. V = 1/100, H = 1/20,000 for profile levelings.
- (3) Profile and cross levelings on the Pulau Gambar canal were carried out at intervals of 200 m. The scales of drawings are as follows.

V = 1/200, H = 1/200	for cross levelings.
V = 1/100, H = 1/20,000	for profile levelings.

4. Surveying Works for Preparing the Plan of Irrigation and Drainage Lines.

Profile and cross levelings were carried out at intervals of 400 m. The scales of drawings are as follows.

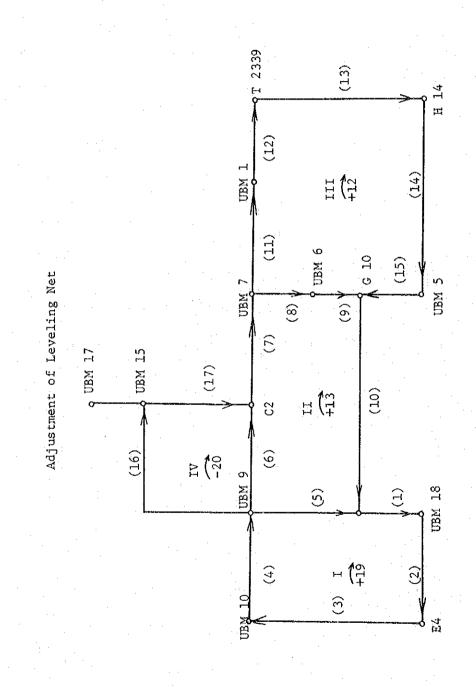
V =	1/200,	H =	1/200	for	cross_1	levelings.	ł
	· •		and the second second		1	and the second second	
	· · · · · · ·						

V = 1/100, H = 1/20,000 for profile levelings.

5. Topographic Surveyings for Planning Intakes and Sluices.

Topographic surveyings for planning intakes and drainage sluices were carried out by means of plane-table-survey method on a scale of 1/500.

6. Results of Surveyings.


The results of surveyings are as follows.

Bench mark leveling :	calculation sheets of leveling net and table of elevation of bench
	mark.
Ular river :	cross leveling 103 sections profile leveling
Pulau Gambar canal :	cross leveling 11 sections
	(PC: 3 sheets) profile leveling 1 sheet table of elevation of survey stake
Irrigation and drainage :	cross leveling 612 sectios
	MM 7 sheets 28 sections PS 5 " 22 " SB 15 " 57 " PG 20 " 79 " SN 33 " 128 " SJ 13 " 47 " KM 21 " 89 " ST 13 " 48 "

88 n SL 1 .3 Ħ BD .4 tt 15 Ħ tt 24 SS 6 6 7 11 n 23 BB 11 24 n SR 11 11 RI 25 24 sheets profile leveling 1 MM PS 1 2 3 5 2 2 2 1 SB PG SN SJKM ST \mathbf{SL} BD 1 SŚ 1 BB 1 1 SR 1 RL

table of elevation of survey stake

•	Plane table survey	: intake	9 places
		drainage sluice	1 place

(1) Observation Equations.

(2) Condition Equations.

F

....

$$L_{1} + L_{2} + L_{3} + L_{4} + L_{5} = 0 = \delta_{1} + \delta_{2} + \delta_{3} + \delta_{4} + \delta_{5} + (\ell_{1} + \ell_{2} + \ell_{3} + \ell_{4} + \ell_{5})$$
$$= \delta_{1} + \delta_{2} + \delta_{3} + \delta_{4} + \delta_{5} + \omega_{1}$$

 $\begin{aligned} -L_5 + L_6 + L_7 + L_8 + L_9 + L_{10} \\ &= 0 = -\delta_5 + \delta_6 + \delta_7 + \delta_8 + \delta_9 + \delta_{10} + \omega_2 \\ -L_8 - L_9 + L_{11} + L_{12} + L_{13} + L_{14} + L_{15} \\ &= -\delta_8 - \delta_9 + \delta_{11} + \delta_{12} + \delta_{13} + \delta_{14} + \delta_{15} + \omega_3 \\ -L_6 + L_{16} + L_{17} &= 0 = -\delta_6 + \delta_{16} + \delta_{17} + \omega_4 \end{aligned}$

where, wi : Clsoing error of each leveling mesh.

(3) Application of the Method of Lease Squares.

	$\int -2K_1 (\delta_1 + \delta_2 + \delta_3 + \delta_4 + \delta_5 + \omega_1)$	= 0
	$-2K_2 (-\delta_5 + \delta_6 + \delta_7 + \delta_8 + \delta_9 + \delta_{10} + \omega_2)$	= 0
F Ξ.	$-2K_{3}\left(-\delta_{8}-\delta_{9}+\delta_{10}+\delta_{11}+\delta_{12}+\delta_{13}+\delta_{14}+\delta_{15}\right)$	= 0
	$\left(-2K_{4}\left(-\delta_{6}+\delta_{16}+\delta_{17}+\omega_{4}\right)\right)$	= ' 0
÷		

 $p_1\delta_1^2 \pm p_2\delta_2^2 + \dots + p_{16}\delta_{16}^2 + p_{17}\delta_{17}^2 = minimum$

$$\frac{\partial F}{\partial \delta_1} = 0 , \quad \frac{\partial F}{\partial \delta_2} = 0, \quad \dots \quad \frac{\partial F}{\partial \delta_{16}} = 0, \quad \frac{\partial F}{\partial \delta_{17}} = 0$$

$$\delta_1 = \frac{1}{p_1} = S_1 K_1$$

$$\delta_2 = \frac{1}{p_2} = S_2 K_1$$

$$\delta_3 = \frac{1}{p_3} = S_3 K_1$$

$$\delta_4 = \frac{11}{p_4} = S_4 K_1$$

δ5	$= \frac{1}{p_5} (K_1 -$	K_2) = $S_5(K_1 - K_2)$
δ ₆	$=\frac{1}{p_6}(K_2 - K_2)$	K_{4}) = $S_6 (K_2 - K_4)$
δ ₇	$=\frac{1}{P7}K_3$	$= S_7 K_2$
δ8	$= \frac{1}{p_8} (K_2 - 1)$	$(K_3) = S_8(K_2 - K_3)$
δg	$=\frac{1}{p_9}(K_2 - 1)$	$(_3) = S_9(K_2 - K_3)$
δ ₁₀	$= \frac{1}{p_{10}} K_2$	= S ₁₀ K ₂
δ_{11}	$= \frac{1}{p_{11}} K_3$	$= S_{11}K_3$
δ12	$= \frac{1}{P_{12}} K_3$	$= S_{12}K_3$
δ ₁₃	$= \frac{1}{p_{13}} K_3$	$= S_{13}K_{3}$
δ_{14}	$=\frac{1}{P_{14}}K_3$	$= S_{14}K_{3}$
δ15	$= \frac{1}{P_{15}} K_3$	$= S_{15}K_3$
δ ₁₆	$= \frac{1}{P_{16}} K_4$	$= S_{16}K_4$
δ17	$= \frac{1}{p_{17}}K_4$	$= S_{17}K_{4}$

where, Si : Length of leveling route between conjunction points.

(4) Normal Equations.

6

Each Ki, was obtained by applying the method of the least squares, is substituted into the condition equations.

 $(S_{1} + S_{2} + S_{3} + S_{4} + S_{5})K_{1} - S_{5}K_{2} + W_{1} = 0$ -S_{5}K_{1} + (S_{5} + S_{6} + S_{7} + S_{8} + S_{9} + S_{10})K_{2} - (S_{8} + S_{9})K_{3} - S_{6}K_{4} + W_{2} = 0 -(S_{8} + S_{9})K_{2} + (S_{8} + S_{9} + S_{11} + S_{12} + S_{13} + S_{14} + S_{15})K_{3} + W_{3} = 0 -S_{6}K_{2} + (S_{6} + S_{16} + S_{17})K_{4} + W_{4} = 0

			· · ·	Observ	ed "	
Rout	te No.	Len	gth(s)	Differ		
			000000			
	1	1	.04	-0.9	18	÷
	2		.54	-0.7		•
	3		.65	+4.2		
	4 .		.83	+1.4		
	.5		. 76	-4.0		
	6		.10	+5.8		
	7		.76	-0.0		
	8		.80	-3.4		
	9 .	7	.95	-7.3		
: 1	0 .		.70	+0.8		
	1		.22	+2.7		
	2		.70	-1.3		4 ¹
	3		.52	-12.7		
	<u>4</u> : •		.15	-0.0		
	.5		.28	+0.6		
	.6		45	+11.9		
	7		.28	-6.0		
	•				· · · ·	•
-3.7	'6К ₁ +		2 - 11.75			
	′6К ₁ + -	27.07K		2K ₃		$l_2 = 0$
	′6К ₁ + -	27.07K	2 - 11.75	2K ₃	4]	$l_2 = 0$
-3.7	′6К ₁ + -	27.07K	2 - 11.75	2K ₃	4]	$l_2 = 0$
-3.7 	² 6K ₁ + - -	27.07K 11.75K 5.10K ₂ K ₂	$\frac{2}{2} - 11.75}{2} + 52.62}{K_3}$	^{2K} 3 + 22 K ₄	+ 1 • 83K ₄ - 2	$\begin{array}{rcl} 12 &= & 0\\ 20 &= & 0\\ \end{array}$
-3.7	6K ₁ + - 1 82 -	27.07K 11.75K 5.10K ₂ K ₂ 3.76	$\frac{2}{2} - 11.75}{1}$ $\frac{2}{2} + 52.62}{1}$ $\frac{1}{1}$ $\frac{1}{2}$	$\frac{2K_3}{K_4} + 22$	+ 1 .83K ₄ - 2 ω 19.00	$\frac{12}{20} = 0$ α $\frac{36.06}{20}$
-3.7 	6K ₁ + - 1 82 -	27.07K 11.75K 5.10K ₂ K ₂	$\frac{2}{2} - 11.75}{2} + 52.62}{K_3}$	^{2K} 3 + 22 K ₄	+ 1 • 83K ₄ - 2	$\frac{12}{20} = 0$ α $\frac{36.06}{20}$
-3.7 K 20.	6K ₁ + - - 1 82 -	27.07K 11.75K 5.10K ₂ K ₂ 3.76 0.181	$\frac{2}{2} - 11.75}{K_3}$	$\frac{2K_3}{K_4}$ + 22	+ 1 .83K ₄ - 2 ω 19.00 -0.913	12 = 0 20 = 0 α 36.06 -1.732
-3.7 	6K ₁ + - - 1 82 - 913 2	27.07K 11.75K 5.10K ₂ K ₂ 3.76 0.181 7.07	$\frac{2}{2} - 11.75}{K_3}$	$\frac{2K_3}{K_4}$ + 22 $\frac{K_4}{0}$ -5.10	+ 1 .83K ₄ - 2 <u>ω</u> 19.00 -0.913 13	$ \begin{array}{r} 12 = 0 \\ 20 = 0 \end{array} \begin{array}{r} \hline \alpha \\ \hline 36.06 \\ -1.732 \\ 19.46 \end{array} $
-3.7 <u>K</u> 20. -0. 0	6K ₁ + - - 913 2	27.07K 11.75K 5.10K ₂ K ₂ 3.76 0.181 7.07 0.681	$\frac{2}{2} - 11.75}{\frac{11.75}{2} + 52.62}$	$\frac{2K_3}{K_4}$ + 22 $\frac{K_4}{0}$ -5.10 0	+ 1 $\cdot 83K_4 - 2$ ω 19.00 -0.913 13 3.439	$ \begin{array}{rcl} 12 &= 0 \\ 20 &= 0 \\ \end{array} $ $ \begin{array}{r} 36.06 \\ -1.732 \\ 19.46 \\ 6.527 \\ \end{array} $
-3.7 K 20. -0. 0 0	6 $^{-}$	27.07K 11.75K 5.10K ₂ K ₂ 3.76 0.181 7.07	$\frac{2}{2} - 11.75}{\frac{11.75}{2} + 52.62}$	$\frac{2K_3}{K_4}$ + 22 $\frac{K_4}{0}$ $\frac{0}{0}$ -5.10 $\frac{0}{-5.10}$	+ 1 $\cdot 83K_4 - 2$ ω 19.00 -0.913 13 3.439 16.439	$ \begin{array}{rcl} 12 &= 0 \\ 20 &= 0 \\ \end{array} $ $ \begin{array}{r} 36.06 \\ -1.732 \\ 19.46 \\ 6.527 \\ 25.987 \\ \end{array} $
-3.7 K 20. -0. 0 0	6K ₁ + - - 913 2	27.07K 11.75K 5.10K ₂ K ₂ 3.76 0.181 7.07 0.681	$\frac{2}{2} - 11.75}{\frac{11.75}{2} + 52.62}$	$\frac{2K_3}{K_4}$ + 22 $\frac{K_4}{0}$ $\frac{0}{0}$ -5.10 $\frac{0}{-5.10}$	+ 1 $\cdot 83K_4 - 2$ ω 19.00 -0.913 13 3.439	$ \begin{array}{rcl} 12 &= 0 \\ 20 &= 0 \\ \end{array} $ $ \begin{array}{r} 36.06 \\ -1.732 \\ 19.46 \\ 6.527 \\ \end{array} $
-3.7 K 20. -0. 0 -0.	6 K ₁ + - - - - - - - - - - - - - - - - - - -	27.07K 11.75K 5.10K ₂ K ₂ 3.76 0.181 7.07 0.681 6.389	$ \begin{array}{r} 2 & - & 11.75 \\ 2 & + & 52.62 \end{array} \end{array} \begin{array}{r} \kappa_3 \\ \hline 0 \\ 0 \\ -11.75 \\ 0 \\ -11.75 \\ 0.445 \end{array} $	$\frac{2K_3}{K_4}$ + 22 $\frac{K_4}{0}$ 0 -5.10 0.193	$+ 1$ $\cdot 83K_{4} - 2$ ω 19.00 -0.913 13 3.439 16.439 -0.623	$ \begin{array}{rcl} 12 &= 0 \\ 20 &= 0 \\ \end{array} $ $ \begin{array}{r} 36.06 \\ -1.732 \\ 19.46 \\ 6.527 \\ 25.987 \\ -0.985 \\ \end{array} $
-3.7 K 20. -0. 0 -0.	6 K ₁ + - - 1 82 - 913 2 117 030 -	27.07K 11.75K 5.10K ₂ K ₂ 3.76 0.181 7.07 0.681 6.389 0.623	$ \begin{array}{r} 2 & - & 11.75 \\ 2 & + & 52.62 \end{array} \\ $	$\frac{2K_3}{K_4}$ + 22 -5.10 0 -5.10 0.193 0	$+ 1$ $\cdot 83K_{4} - 2$ ω 19.00 -0.913 13 3.439 16.439 -0.623 12	$ \begin{array}{rcl} 12 &= 0 \\ 20 &= 0 \\ \end{array} $ $ \begin{array}{r} 36.06 \\ -1.732 \\ 19.46 \\ 6.527 \\ 25.987 \\ -0.985 \\ 52.87 \\ \end{array} $
-3.7 K 20. -0. 0 -0.	6 K ₁ + - - 1 82 - 913 2 117 030 -	27.07K 11.75K 5.10K ₂ K ₂ 3.76 0.181 7.07 0.681 6.389 0.623 0.141	$\begin{array}{r} 2 & - & 11.75 \\ 2 & + & 52.62 \end{array}$ $\begin{array}{r} \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\frac{2K_3}{K_4}$ + 22 -5.10 0 -5.10 0.193 0 0	$ \begin{array}{r} + 1 \\ \cdot 83K_{4} - 2 \\ \hline \omega \\ 19.00 \\ -0.913 \\ 13 \\ 3.439 \\ 16.439 \\ -0.623 \\ 12 \\ 0 \\ \end{array} $	$ \begin{array}{r} 12 = 0 \\ 20 = 0 \\ \end{array} $ $ \begin{array}{r} 36.06 \\ -1.732 \\ 19.46 \\ 6.527 \\ 25.987 \\ -0.985 \\ 52.87 \\ 0 \\ \end{array} $
-3.7 K 200. 0 -0. = -1.	6 K ₁ + - - 1 82 - 913 2 117 030 - -	27.07K 11.75K 5.10K ₂ K ₂ 3.76 0.181 7.07 0.681 6.389 0.623 0.141 0.166	$\begin{array}{r} 2 & - & 11.75 \\ 2 & + & 52.62 \end{array}$ $\begin{array}{r} K_3 \\ 0 \\ 0 \\ -11.75 \\ 0 \\ -11.75 \\ 0.445 \\ 52.62 \\ 0 \\ -5.229 \end{array}$	$ \frac{2K_{3}}{K_{4}} + 22 \\ \hline K_{4} \\ \hline 0 \\ -5.10 \\ 0 \\ -5.10 \\ 0.193 \\ 0 \\ 0 \\ -2.270 $	$ \begin{array}{r} + 1 \\ \cdot 83K_{4} - 2 \\ \hline \omega \\ 19.00 \\ -0.913 \\ 13 \\ 3.439 \\ 16.439 \\ -0.623 \\ 12 \\ 0 \\ 7.315 \\ \end{array} $	$ \begin{array}{r} 12 = 0 \\ 20 = 0 \\ \end{array} $ $ \begin{array}{r} 36.06 \\ -1.732 \\ 19.46 \\ 6.527 \\ 25.987 \\ -0.985 \\ 52.87 \\ 0 \\ 11.564 \\ \end{array} $
-3.7 K 200. 00. = -1.	6 K ₁ + - - 1 82 - 913 2 117 030 -	27.07K 11.75K 5.10K ₂ K ₂ 3.76 0.181 7.07 0.681 6.389 0.623 0.141 0.166	$\begin{array}{r} 2 & - & 11.75 \\ 2 & + & 52.62 \end{array}$ $\begin{array}{r} \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$ \frac{2K_3}{K_4} + 22 \\ \hline K_4 \\ \hline 0 \\ 0 \\ -5.10 \\ 0 \\ -5.10 \\ 0.193 \\ 0 \\ 0 \\ -2.270 \\ -2.270 $	$ \begin{array}{r} + 1 \\ \cdot 83K_{4} - 2 \\ \hline \omega \\ 19.00 \\ -0.913 \\ 13 \\ 3.439 \\ 16.439 \\ -0.623 \\ 12 \\ 0 \\ 7.315 \\ 19.315 \\ \end{array} $	$ \begin{array}{r} 12 = 0 \\ 20 = 0 \\ \end{array} $ $ \begin{array}{r} 36.06 \\ -1.732 \\ 19.46 \\ 6.527 \\ 25.987 \\ -0.985 \\ 52.87 \\ 0 \\ 11.564 \\ 64.434 \\ \end{array} $
-3.7 K 200. 0 -0. = -1.	6 K ₁ + - - 1 82 - 913 2 117 030 - -	27.07K 11.75K 5.10K ₂ K ₂ 3.76 0.181 7.07 0.681 6.389 0.623 0.141 0.166	$\begin{array}{r} 2 & - & 11.75 \\ 2 & + & 52.62 \end{array}$ $\begin{array}{r} K_3 \\ 0 \\ 0 \\ -11.75 \\ 0 \\ -11.75 \\ 0.445 \\ 52.62 \\ 0 \\ -5.229 \end{array}$	$ \frac{2K_3}{K_4} + 22 \\ \hline K_4 \\ \hline 0 \\ 0 \\ -5.10 \\ 0 \\ -5.10 \\ 0.193 \\ 0 \\ 0 \\ -2.270 \\ -2.270 $	$ \begin{array}{r} + 1 \\ \cdot 83K_{4} - 2 \\ \hline \omega \\ 19.00 \\ -0.913 \\ 13 \\ 3.439 \\ 16.439 \\ -0.623 \\ 12 \\ 0 \\ 7.315 \\ \end{array} $	$ \begin{array}{r} 12 = 0 \\ 20 = 0 \\ \end{array} $ $ \begin{array}{r} 36.06 \\ -1.732 \\ 19.46 \\ 6.527 \\ 25.987 \\ -0.985 \\ 52.87 \\ 0 \\ 11.564 \\ \end{array} $
-3.7 K 200. 0 -0. = -1.	6 K ₁ + - - 1 82 - 913 2 117 030 - -	27.07K 11.75K 5.10K ₂ K ₂ 3.76 0.181 7.07 0.681 6.389 0.623 0.141 0.166	$\begin{array}{r} 2 & - & 11.75 \\ 2 & + & 52.62 \end{array}$ $\begin{array}{r} \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \\ \hline \\ \\ \\ \\ \\ \\ \hline \\$	$ \frac{2K_3}{K_4} + 22 \\ \hline \hline \hline \hline \hline K_4 \\ \hline 0 \\ 0 \\ -5.10 \\ 0.193 \\ 0 \\ -2.270 \\ 0.048 \\ \hline $	$ \begin{array}{r} + 1 \\ \cdot 83K_{4} - 2 \\ \hline \omega \\ 19.00 \\ -0.913 \\ 13 \\ 3.439 \\ 16.439 \\ -0.623 \\ 12 \\ 0 \\ 7.315 \\ 19.315 \\ -0.408 \\ \end{array} $	$\begin{array}{r} 12 = 0\\ 20 = 0\\ \hline \\ \hline \\ 36.06\\ -1.732\\ \hline \\ 19.46\\ 6.527\\ 25.987\\ -0.985\\ 52.87\\ 0\\ 11.564\\ 64.434\\ -1.360\\ \end{array}$
-3.7 K 200. 0 -0. = -1.	6 K ₁ + - - 1 82 - 913 2 117 030 - -	27.07K 11.75K 5.10K ₂ K ₂ 3.76 0.181 7.07 0.681 6.389 0.623 0.141 0.166	$\begin{array}{r} 2 & - & 11.75 \\ 2 & + & 52.62 \end{array}$ $\begin{array}{r} \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$ \frac{2K_3}{K_4} + 22 \\ \hline K_4 \\ \hline 0 \\ 0 \\ -5.10 \\ 0 \\ -5.10 \\ 0.193 \\ 0 \\ 0 \\ -2.270 \\ 0.048 \\ 22.83 - $	+ 1 $\cdot 83K_4 - 2$ ω 19.00 -0.913 13 3.439 16.439 -0.623 12 0 7.315 19.315 -0.408 -20	$\begin{array}{r} 12 = 0\\ 20 = 0\\ \hline \\ 36.06\\ -1.732\\ 19.46\\ 6.527\\ 25.987\\ -0.985\\ 52.87\\ 0\\ 11.564\\ 64.434\\ -1.360\\ -2.27\\ \end{array}$
-3.7 K 200. 0 -0. = -1.	6 K ₁ + - - 1 82 - 913 2 117 030 - -	27.07K 11.75K 5.10K ₂ K ₂ 3.76 0.181 7.07 0.681 6.389 0.623 0.141 0.166 0.648	$\begin{array}{r} 2 & - & 11.75 \\ 2 & + & 52.62 \end{array}$ $\begin{array}{r} \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$2K_3$ + 22 K_4 0 0 -5.10 0 -5.10 0.193 0 0 -2.270 -2.270 0.048 22.83 0	+ 1 .83 K_4 - 2 .83 K_4 - 2 .0 .9.00 -0.913 13 .3.439 16.439 -0.623 12 .0 .7.315 19.315 -0.408 -20 .0	$ \begin{array}{r} 12 = 0 \\ 20 = 0 \\ \end{array} $ $ \begin{array}{r} 36.06 \\ -1.732 \\ 19.46 \\ 6.527 \\ 25.987 \\ -0.985 \\ 52.87 \\ 0 \\ 11.564 \\ 64.434 \\ -1.360 \\ -2.27 \\ 0 \\ \end{array} $
-3.7 K 200. 0 -0. = -1.	6 K ₁ + - - 1 82 - 913 2 117 030 - -	27.07K 11.75K 5.10K ₂ K ₂ 3.76 0.181 7.07 0.681 6.389 0.623 0.141 0.166	$\begin{array}{r} 2 & - & 11.75 \\ 2 & + & 52.62 \end{array}$ $\begin{array}{r} \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$2K_3$ + 22 K_4 0 0 -5.10 0.193 0 -2.270 -2.270 0.048 22.83 -0 -0.984	+ 1 $\cdot 83K_4 - 2$ ω 19.00 -0.913 13 3.439 16.439 -0.623 12 0 7.315 19.315 -0.408 -20 0 3.173	$ \begin{array}{r} 12 = 0 \\ 20 = 0 \\ \end{array} $ $ \begin{array}{r} 36.06 \\ -1.732 \\ 19.46 \\ 6.527 \\ 25.987 \\ -0.985 \\ 52.87 \\ 0 \\ 11.564 \\ 64.434 \\ -1.360 \\ -2.27 \\ 0 \\ 5.015 \\ \end{array} $
-3.7 K 200. 0 -0. = -1.	6 K ₁ + - - 1 82 - 913 2 117 030 - -	27.07K 11.75K 5.10K ₂ K ₂ 3.76 0.181 7.07 0.681 6.389 0.623 0.141 0.166 0.648	$\begin{array}{r} 2 & - & 11.75 \\ 2 & + & 52.62 \end{array}$ $\begin{array}{r} \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$2K_3$ + 22 K_4 0 0 -5.10 0.193 0 -2.270 0.048 22.83 -0.984 -0.109	+ 1 .83 K_4 - 2 .83 K_4 - 2 .0 .9.913 .13 .3.439 .16.439 -0.623 .12 .0 .7.315 .19.315 -0.408 -20 .0 .3.173 .927	$\begin{array}{r} 12 = 0\\ 20 = 0\\ \hline \\ 20 = 0\\ \hline \\ 36.06\\ -1.732\\ \hline \\ 19.46\\ 6.527\\ 25.987\\ -0.985\\ \hline \\ 52.87\\ 0\\ 11.564\\ 64.434\\ -1.360\\ \hline \\ -2.27\\ 0\\ \hline \\ 5.015\\ 3.093\\ \end{array}$
-3.7 K 200. 0 -0. = -1.	6 K ₁ + - - 1 82 - 913 2 117 030 - -	27.07K 11.75K 5.10K ₂ K ₂ 3.76 0.181 7.07 0.681 6.389 0.623 0.141 0.166 0.648	$\begin{array}{r} 2 & - & 11.75 \\ 2 & + & 52.62 \end{array}$ $\begin{array}{r} \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$ \frac{2K_{3}}{K_{4}} + 22 \\ $	+ 1 .83 K_4 - 2 .83 K_4 - 2 .0 .9.913 .13 .3.439 .16.439 -0.623 .12 .0 .7.315 .19.315 -0.408 -20 .0 .3.173 .927	$ \begin{array}{r} 12 = 0 \\ 20 = 0 \\ \end{array} $ $ \begin{array}{r} 36.06 \\ -1.732 \\ 19.46 \\ 6.527 \\ 25.987 \\ -0.985 \\ 52.87 \\ 0 \\ 11.564 \\ 64.434 \\ -1.360 \\ -2.27 \\ 0 \\ 5.015 \\ \end{array} $

⁽⁵⁾ Solution of Normal Equations.

δı	= -1.07	$\delta_7 = -1.79$	$\delta_{13} = -5.04$
	= -6.74	$\delta_8 = -1.04$	$\delta_{14} = -4.53$
δο	= -4.79	$\delta_{9} = -2.19$	$\delta_{15} = -0.85$
δη	= -4,97	$\delta_{10} = -2.40$	$\delta_{16} = 8.38$
δς	= -1.44	$\delta_{11} = -2.69$	$\delta_{17} = 4.60$
δ_6	= -7.04	$\delta_{12} = -2.13$	

Calculation of Height

Station	Observed	Observed			
No.	Difference	Height	Correction	Height	Remarks
г2339		13,900		13.900	
I 12	-0.384	13.516	0	13,516	
I 11	-0,646	12,870	-1	12.869	
I 10	+0.414	13.284	-1	13,283	
1 9	-2.652	10,632	-2	10,630	
I 8	-0.851	9,781	-2	9,799	
I 7	-0.902	8,879	-2	8,877	
I 6	-2.172	6.707	-3	6,704	
ī 5	-1.152	5.555	-3	5,552	
I 4	-1.085	4.470	-3	4,467	
I 3	-1.623	2,847	4	2.843	
I 2	-0.608	2,239	-4	2.235	·
I 1	-0.398	1.841	-5	1,836	
Н 14	-0.702	1,139	-5	1.134	
H 14	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.134		1.134	
H 13	+0.112	1.246	0	1,246	
H 12	+0.410	1,656	-1	1.655	
н 11	+0.034	1,690	-1	1,689	
н 10	+0.299	1.989	~1	1,988	
Н 9	-0.028	1,961	-1	1,960	
Н 8	+0.942	2,903	-2	2,901	
Н 7	+0.028	2,931	-2	2.929	
Н 6	-1.346	1,585	-2	1,583	
Н 5	-0.063	1.522	-3	1,519	
н 4	-0.473	1.049	3	1.046	
н 3	+1.191	2.240	-3	2.237	
Н 2	+0.514	2,754	-3	2.751	
н 1	-1.354	1,400	-4	1.396	· · ·
UBM 5	-0.281	1,119	4	1.115	
UBM 5		1,115		1.115	· · · · ·
G 12	+0.229	1.344	0	1.344	
G 11	-0.740	0,604	-1	0.603	
G 10	+1.124	1,728	-1	1,727	

			:				9
			· .	· .			
	•		•		· ·	۰. ۲۰۰۰ ۲۰۰۰	
S	tation	Observed Difference	Observed Height	Correction	Height	Remarks	
	No.	Difference	петвиг	Correction		Nethal K5	
	G 10	10,400	1.727	0	1.727 2.215		
	L 7 L 6	+0.488 +1.232	2.215 3.447	0	3.447		
	L 5	+0.914	4.361	+1	4,362		
	L 4	+0.106	4,467	+1	4.468		
	L 3	+1.366	5,833	+1	5,834	н на селото на селот На селото на	
	L 2	+0.126	5,959	+2	5,961		
	L 1	+2.380	8,339	+2	8.341	н. Тал	
ι	лвм б	+0.752	9.091	+2	9.093		
ι	JBM 6		9,091	a en el com	9,093	•	
	K 3	+0.954	10,047	0	10,047		
	K 2	+1.288	11.335	0	11,335		
	K 1	+0.940	12.275	+1	12.276	на на селото на селот На селото на	
l	JBM 7	+0.221	12,496	+1	12,497		
ť	JBM 7		12,497		12.497		:
	B 7	+0.146	12.643	0	12.643		
	B 6	-0.562	12.081	-1	12,080		
	B 5	+0,566	12,647	1	12.646	· ,	
	B 4 B 3	+1.506 -0.100	14,153 14,053	-2 -2	$14.151 \\ 14.051$		
	в 3 В 2	+1.398	15,451	-2	15.449		1
	B 1	+2.266	17,717	-3	17.714		
	/BM 1	-2.498	15.219	-3	15,216	· · · ·	
Ť	IBM 1		15,216		15.216		
	A 4	-0.048	15,168	0	15,168	н Алар	
	A 3	+0.018	15,186	-1	15,185	· .	
	A 1	+0.432	15.618	-2	15,616		
	2339	-1.116	13,902	-2	13,900	:,	
· ·	G 10		1,727		1,727	:	
	G 9	+1.070	2.797	0	2.727		
·	G 8	+0.622	3,419	0	3,419		
	.G 7 .	+1.746	5,165	0	5.615		
	G 6	+0.934	6,099	-1	6.098		
	G 5 G 4	-1.682	4,417	-1	4.416	·	
	G 4 G 3	+0.703 +0.164	5,120 5,284	-1 -1	5,119 5,283		
	G 2	-1.764	3.520	-1	3,519		
	G 1	-1.438	2.082	-1	2.081		
	GO	+0.370	2,452	-1	2.451		
	F 11	+0.292	2.744	-2	2.742		
	F 10	+0.637	3.381	-2	3.379		
	F 9	-1.492	1,889	-2	1,887		
	F 8	+0.724	2.613	-2	2,611		
	F 8		2.611		2,611		· · · ·
ι	лвм 8	-0.918	1.693	-1	1,692	·	
				· · · · ·			
1.1	and the second						
			and the second sec	and the second second	· · · ·		

Station	Observed	Observed			
No.	Difference	Height	Correction	Height	Remarks
UBM 8		1.692	and the second second	1.692	
F 5	-0.514	1.178	-1	1.177	
F 4	+0,316	1,494	-3	1.491	
F 3	-0.166	1,328	4	1.324	
F 2	0,588	0.740	-6	0.734	
Е 4	+0.250	0.990	-7	0.983	
F 8	· · ·	2.611		2.611	
г О Ј З	+1.667	4.278	0	4.278	
J 2	+2.502	6.780	• Õ	6.780	·
			+1	8.025	
J 1	+1.244	8,024	+1	6.675	
UBM 9	-1.350	6.674	• 1	ана 1. 1. 1.	
UBM 9		6.675		6.675	
C 7	+1.492	8.167	-1	8.167	
C 6	+1.354	9.521	3	9.518	
C 5	+0.666	10.187	-4	10.183	
C 3	+2.103	12,290	-6	12.284	
	+0.240	12.530	-7	12.523	
C 2	+0.240	12.330	• .	1010-0	
C 2		12.523		12.523	
C 1	-0.820	11.703	-1 '	11.702	
UBM 7	+0.796	12.499	-2	12.497	
D '/		0.000		0.983	
E 4	10 000	0,983	-1	1.962	· .
E 3	+0.980	1.963	-2	2.321	
E 2	+0.360	2.323	-2 -4	5.427	· .
E 1	+3.108	5.431		5.214	
UBM10	-0.212	5.219	-5	J.214	· ·
UBM10		5.214		5.214	
D 3	-1.106	4.108	1	4.107	
D 2	+0.670	4.778	-2	4.776	
D 1	+0.282	5.060	-4	5.056	1997 - Maria
UBM 9	+1.620	6,680	-5	6.675	
UBM 9		6.675		6.675	in a di
N 1	+2.195	8.870	+1	8.871	a star
N 2	+2.862	11.732	+2	11.734	
N 3	-2.514	9.218	+2	9,220	
	+2.242	and the second			
		11.460	+3	11.463	1. N.
N 5	-1.062	10.398	+4	10.402	and and a second se
N 6	+4.021	14.419	+5	14.424	a station of the state of the s
N 7	+0.334	14.753	+6	14.759	
N 8	+1.424	16.177	+6	16.183	
N 9	+0.368	16,545	+7	16.552	
UBM15	+2,052	18.597	+8	18.605	

		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				
	: .					
		· ·				
			;			,
-						
	Station No.	Observed	Observed	Composition	Itadaha	Demonia
	NO .	Difference	Height	Correction	Height	Remark
	UBM15	ante e constante da la constant En la constante da la constante	18,605	н. Ал	18,605	
	P 5	-1.100	17.505	+1	17,506	
	P. 4	+0.268	17.773	+2	17.775	
	P 3	-2.003	15.770	+2	15.772	
	P 2	-1.372	14.398	+3	14.401	
	P 1	-1.046	13.352	+4	13,356	
	C 2	-0.834	12,518	+5	12.523	
	E 4		0,983		0.983	
	UBM11	-0.104	0.879		0,879	
	Н 14		1,134		1.134	
	UBM 4	-0.422	0.712			
	UDIA 4	-0.422	0.112		0.712	
	CBM401		48,427		48.427	
•	UBM17	+2.996	51,423		51.423	
			~~~	•	J. 174J	
	UBM15		18,605		18.605	
	Q 1	-0.107	18.498	-2	18.496	
	Q 2	+2,573	21.071	-4	21.067	ан. Алтан алтан алт
	Q 3	+0.553	21.624	~6	21.618	
	Q 4	+1.863	23.487	-7	23.480	
	Q 5	+0.510	23.997	-9	23.988	
	Q 6	+1.266	25,263	-11	25.252	
· .	Q 7	+0.190	25.453	-13	25.440	
	Q 8	2.833	28,286	-15	28.271	
	Q 9	+1.172	29,458	-17	29.441	
	Q 10	+2.616	32.074	-19	32,055	
	Q 11	+7.324	39.398	-21	39.377	
	Q 12	-1.812	37.586	-22	37.564	
	Q 13	+3,431	41.017	-24	40.993	÷ .
	Q 14	-4.562	36.455	-26	36.429	
	UBM16	+0,901	37.356	-28	37.328	
	R 1	+2,140	39,496	-30	9.466	•
	R 2	+0.824	40,320	-32	40.288	:
	Α	+1,161	41.481	-34	41,447	
	R 3	+1.316	42,797	- 35	42.762	
	R 4	+0.602	43.399	-37	43,362	
	R 5	+2.387	46,236	- 39	46,117	
	UBM17	+5.228	51,464	-41	51.423	

.

Station	Elevation	Remarks	Station	Elevation	Remarks
· .	m			m	
т2339	13.900		UBM 8	1.692	. *
A 1	15,616		F 8	2.611	
A 3	15.185		F 9	1.887	11
A 4	15.168		F 10	3,379	
UBM 1	15.216		F 11	2.742	
B 1	17.714		G 0	2.451	te j
B 2	15.449		G 1	2.081	a state a succession
B 3	14.051		G 2	3,519	
B 4	14,151		G 3	5.283	
в 5	12.646		G 4	5.119	
в 6	12.080	н. — — — — — — — — — — — — — — — — — — —	G 5	4.416	
B 7	12.643		G 6	6,098	
UBM 7	12.497		G 7	5.615	
С 1	11.702		G 8	3.419	
C 2	12.523		G 9	2,797	
C 3	12.284		G 10	1.727	- 
С 5	10.183		G 11	0.623	
C 6	9.518		G 12	1.344	
C 7	8.167		UBM 5	1.115	
UBM 9	6,675		H 1	1.396	
D 1	5.056	and the second	H 2	2.751	
D 2	4.776		Н З	2.237	
D 3	4.107		Н 4	1.046	· · ·
UBM10	5.214	н ^н н	Н 5	1.519	· · ·
E 1	5.427	÷ .	Н 6	1.583	1. Sec. 1.
E 2	2.321		Н 7	2.929	
Е З	1.962		H 8	2.901	
E 4	0.983		н 9	1,960	
UBM11	0.879		Н 10	1.988	:
F 2	0.734		H 11	1.689	
F 3	1,324	1	Н 12	1.655	
F 4	1.491		H 13	1.246	
F 5	1.177		Н 14	1.134	

Result of Beck Mark Leveling

<u> </u>			at territoria de la companya de la c	· · · ·	
Station	Elevation	Remarks	Station	Elevation	Remarks
			· · ·		
UBM 4	m 0.712		N 7	m 14.759	
I 1	1.836		N 8	16.183	
1 2	2.235		N 9	16.552	4 T
I 3	2.843	* . [*]	UBM15	18.605	
I 4	4.467		P 1	13.356	•
I 5	5.552	· · · ·	P 2	14.401	
I 6	6.704		P. 3	15.772	
1 0 I 7	8.877		P 4	17.775	
I 8	9.799		P 5	17.506	
ī 9	10,630	: -	Q 1	18.496	
I 10	13.283		Q 2	21.067	:
I 11	12.869		Q 3	21.618	1
I 12	13.516	the second second	Q 4	23.480	
J 1	8.025	:	Q 5	23.988	
J 2	6.780	4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	Q 6	25.252	
J 3	4.278		Q 7	25.440	
K 1	12.276	· · .	Q 8	28.271	•
K 2	11.335		Q 9	29.441	
К З	10.047		Q 10	32.055	an Taona an
UBM 6	9.093		Q 11	39.377	
L 1.	8.341		Q 12	37.564	
L 2	5.961		Q 13	40.993	
L 3	5.834		Q 14	36.429	
L 4	4.468		UBM16	37.328	
L 5	4.362		R 1	39.466	· .
L 6	3.447		R 2	40.288	· .
L 7	2.215		A	41.447	
N 1	8.871		R 3	42.762	р
N 2	11.734		R 4	43.362	
N 3	9.220		R 5	46.197	
N 4	11.463		UBM17	51.423	· · · ·
N 5	10.402				
N 6	14.424				
					· · · · ·

# II. SOIL SURVEY AND STUDY

#### 1. General.

Soil surveys were carried out for the purpose of:

study of foundation for embankment,

study of foundation for structure,

study of borrow pit,

study of river-bed materials,

study of construction equipment and

study of construction method.

For the purpose mentioned above, the following tests were conducted in the period from August 15, 1977 to November 2, 1977.

Cone penetration test.

Swedish sounding test.

Auger boring test.

Vane test (in-situ test).

N value test (machine boring).

Soil test such as measurement of natural moisture content, grain-size analysis, specific gravity test, liquid limit test, plastic limit test, wet density test and unconfined compression test.

#### 2. Sites and Kinds of Tests.

The sites and kinds of tests which were conducted during this study are shown in Fig.2-1-1 to Fig.2-2-11. The former group of the figures is mainly for the study of foundation of embankment and the latter group is mainly for the study of foundation of structures.

#### 3. Data Obtained.

Soil profiles were drawn based on the results of cone penetration tests, Swedish sounding tests, Auger boring tests and machine borings. These are shown in Fig.2-3-1 to Fig.2-3-35, of which Fig.2-3-1 shows legend for soil profiles, Figs.2-3-2 to 2-3-25 give soil profiles which were used mainly for study of embankment and Figs.2-3-26 to 2-3-35 give soil profiles which were used mainly for study of structures.

By use of the results of cone penetration tests and Swedish sounding tests,  $q_{\rm u}$  and  $\phi$  were obtained by the following relations.

N value -- in standard penetration test, driving number required for penetration sampler by 30 cm is called N value,

-- unconfined compressive strength, and

-- angle of internal friction.

$$q_u = 0.05 + \frac{q_c}{30} / 1$$

 $q_{u}$ 

ф

Ν

q. = 0.0045 Wsw + 0.0075 Nsw

/1

ы		0 i	0.00	7 31-				
14		. τ	0.00	/ NSW	 for	gravel, sand or sandy s	oil	<u>/</u> 2
N	. =	3 +	0.05	Nsw	 for	clay or cohesive soil		<u>/</u> 2
ф	H	$\sqrt{1}$	2 N +	20				<u>/</u> 3

where :

·
: Kg/cm ²
: Kg/cm ²
: Kg
: times/m(depth)
: degree

<u>1</u> Soil Survey Report for the Ular River Urgent Flood Control Project, August 1973.

<u>12</u> Inada's formula; from Soil Survey Method published by the Japan Society for Soil and Foundation Engineering.

<u>/</u>3 Dunham's formula, ditto.

/2

A machine boring was conducted near the confluence of Pulau Canal (S. Kotabangun) and the Ular river at Stake 10.3 km on the right side bank of the Ular. The site of the machine boring is shown in Fig.2-2-11. Fig.2-3-35 shows the boring log.

The results of soil tests are shown in Tables 2-1-1 to 2-1-6.

Vane tests in situ were conducted at the sites shown in Figs.2-1-1 to 2-1-6 and the results are shown in Tables 2-2-1 to 2-2-3.

#### 4. Study of Section of Embankment.

It was assumed from the soil profiles that the foundation on the stretch from 0.0 km to -13.5 km is composed of alternations of strata of cohesive soil and loosen sand and the surface is generally covered by cohesive soil. The foundation around -12 km is comparatively soft and the depth of soft layer is estimated to be about 10 m. Therefore, this site was chosen for the study of section of embankment to be constructed on a poor foundation. The study was made under the conception that internal friction is null. In other area, the soil condition is almost the same as those on the stretch from 0.0 km to 10.0 km where the emergent works for improvement have been executed. Therefore, the standard cross section in case of the Urgent Project can be applied to the other area.

(1) Soil condition for study of section of embankment.

The following soil conditions were assumed for the study of section of embankment.

(a)  $\gamma_{\rm FF}$ : Wet density of soil for embankment.

This value was assumed at 1.8  $t/m^3$  because sands from the river bed will be used as materials for embankment.

(b)  $\gamma_{t}$ : Wet density of soil in foundation.

Based on the results of soil tests shown in Tables 2-1-1 to 2-1-6, natural moisture content and specific gravity were assumed as follows.

 $W_n = 75 \%$  : natural moisture content.

 $G_{g} = 2.65$  : specific gravity.

In case the values of degree of saturation and unit weight of pore water are taken as follows,

 $S_r = 100$  : degree of saturation

# $\gamma_{\rm W} = 1$ t/m : unit weight of pore water,

wet density of soil,  $\gamma_{\rm t}^{},$  is calculated as follows.

$$t = 1 + \frac{\gamma_w(G_s - 1) + \frac{G_s W_n}{100} (\gamma_w - 1)}{\gamma_w + \frac{G_s W_n}{100}} = 1 + \frac{1.65}{1 + 0.0265 W_n} / 1$$

$$= 1.55 \text{ t/m}^3$$

(c)  $e_0$ : Initial void ratio.

The value of initial void ratio is calculated as follows by use of the values of W and C mentioned above.

$$e_{o} = \frac{W_{n} \times G_{s}}{100} = 1.99$$

(d) c : Cohesion of foundation.

The following values were obtained as the results of field tests.

$$W_{sw} = 25 \text{ kg}$$
 : Load in Swedish sounding test.  
 $q_c = 2 \text{ to } 3 \text{ kg/cm}^2$  : Cone index.

/1 The following equation holds theoretically.

$$\Upsilon_{t} = G_{s} \frac{1 + W_{n}/100}{1 + e_{n}}$$

If we apply saturated state to the above equation

$$\frac{e_n}{W_n} \times 100 = \frac{G_s}{W}$$

to the above equation, we get

$$Y_{t} = 1 + \frac{Y_{w}(G_{s} - 1) + \frac{G_{s}W_{n}}{100}(Y_{w} - 1)}{Y_{w} + \frac{G_{s}W_{n}}{100}}$$

where  $\gamma_t$  is wet density, G is specific gravity, e is natural void ratio,  $\gamma_w$  is density of pore water and  $W_n$  is natural moisture content.

Applying these values to the emperical formula shown in the previous paragraph 3, we get

$$q_u = 0.0045W_{SW} + 0.0075N_{SW} = 0.0045 \times 25 + 0 = 0.11 \text{ kg/cm}^2$$

and employing the following relation

$$c = \frac{q_u}{2}$$

we get,

$$c = \frac{0.11}{2} = 0.055 \text{ kg/cm}^2 = 0.55 \text{ t/m}^2.$$

Using the value  $q_c = 2 \text{ kg/cm}^2$ ,

$$q_u = 0.05 + \frac{q_c}{30} = 0.12 \text{ kg/cm}^2$$
  
 $c = \frac{q_u}{2} = 0.06 \text{ kg/cm}^2 = 0.6 \text{ g/m}^2$ 

If we use the value  $q_c = 3 \text{ kg/cm}^2$ ,

 $q_u = 0.15 \text{ kg/cm}^2$ c = 0.08 kg/cm² = 0.8 g/m².

On the other hand, it is judged from the results of Vane Tests shown in Tables 2-2-1 to 2-2-3 that cohesion, c, can be estimated at 0.7 to 0.9  $t/m^2$ . In view of this fact, 0.8  $t/m^2$  was taken as the value of cohesion of foundation, and angle of internal friction was fixed to be zero.

(e)  $P_0$ : Precompression load.

Soil of foundation is assumed to be normally consolidated clay. Therefore, the following formula was employed for calculation of precompression load.

$$P_{0} = (\gamma_{+} - \gamma_{-})Z$$

where Z is a half of thickness of soft layer. If we use a value,

$$Z = \frac{10.5}{2} = 5.25 \text{ m}$$

based on the condition shown in Fig.2-4-1,

$$P = (1.55 - 1.0) \times 5.25 = 2.89 t/m^2.$$

(f) C_c : Compression index.

The Skempton formula

_____; _____;

$$C_{c} = 0.009(W_{L} - 10)$$

was adopted, where W is liquid limit. W is estimated at 60 % from the results of soil tests.

$$C_{2} = 0.009 (60 - 10) = 0.45.$$

(g) C : Coefficient of consolidation.

It is generally reported that the value of  $C_V$  is 5  $\times$  10⁻² to 5  $\times$  10⁻⁴ for alluvial clay. In this case,  $C_V$  was assumed at 1  $\times$  10⁻³ cm²/s.

(h) 
$$\frac{\Delta c}{\Delta p}$$
: Coefficient of increase in strength by consolidation of clay.

Ac : Increased cohesion due to consolidation of clay.

Δp : Increased compressive stress in foundation due to embankment.

The value of  $\frac{\Delta c}{\Delta p}$  is usually fixed by means of consolidatedundrained triaxial compression test. However, since the value of  $\Delta c/\Delta p$  is generally 1/4 to 1/3, 1/4 was taken in this study.

#### (2) Stability of slope.

Study was made on stability of slope by use of the Tayler method shown in Fig.2-4-2. First, a trapezoid section with a height of 3.5 m and slope of 1:2 was taken up for the study (see Fig.2-4-1).

$$F_s = No \frac{c}{\gamma_{tE}H_E}$$
 (see Fig.2-4-2)

where F is safety factor, No is stability number,  $\gamma_{\rm rE}$  is wet density of soil for embankment,  $\rm H_E$  is height of embankment and c is cohesion.

If we use the values

c = 0.8 t/m² (see 4.(1)(d))  

$$\gamma_{tE} = 1.8 t/m^2$$
 (see 4.(1)(a))  
 $H_E = 3.5 m$  (see Fig.2-4-1)  
 $H = 10.5 m$  (see Fig.2-4-1)  
 $d = H/H_E = 3$ 

and we assume that the slope is 1 : 2 or  $\beta = 26.6^{\circ}$ , the value of No is obtained by Fig.2-4-2.

# No = 5.6

Therefore, F is calculated as follows.

$$F_s = 5.6 \times \frac{0.8}{1.8 \times 3.5} = 0.71$$

This value means that the embankment is unstable. Therefore, continuous work of banking up to 3.5 m should not be allowed, but two-stages construction should be considered.

It was planned that a trapezoid section with a height less than 3.5 m and a slope of 1:2 is constructed at the first stage and then another trapezoid section with a slope of 1:2 is constructed at the second stage up to the design height 3.5 m on the first trapezoid section. For this purpose, banking height at the first stage was calculated assuming  $F_{\rm S}$  = 1.2. This value of  $H_{\rm F}$  was found as follows.

$$I_E = \frac{No \times c}{\gamma_{+F} \times F_e} = \frac{5.6 \times 0.8}{1.8 \times 1.2} = 2.1 \text{ m.}$$

Therefore, 2.0 m is recommendable as the first-stage banking height.

At the second stage, the embankment must be constructed up to the height of 3.5 m in accordance with the design of river. If we assume a double section with a bottom width of 40 m as shown by thick line in Fig.2-4-1 and assume that a single trapezoid section with a bottom width of 40 m and a height of 3.5 m can substitute for the double section for examining the stability, the value of  $\beta$  is estimated at 11°; accordingly No = 6.0 is obtained from Fig.2-4-2. Next, two cases must be considered; one is a case that no increase in cohesion is considered and the other is a case that increase in cohesion by the first-stage banking is considered.

(a) A case without consideration of increase in cohesion.

$$F_s = 6.0 \frac{0.8}{1.8 \times 3.5} = 0.76$$

This means that the embankment is unstable.

(b) A case with consideration of increase in cohesion by the first-stage banking.

$$\frac{\Delta c}{\Delta p} = 0.2$$

 $\Delta p = \gamma_{tE} H_{E} = 1.8 \times 2.0 = 3.6 \text{ t/m}^{2}$ 

Therefore  $\Delta c = 0.25 \times 3.6 = 0.9 \text{ t/m}^2$ 

This  $\Delta c = 0.9 \text{ t/m}^2$  is a value under the condition that the

degree of consolidation, U, is 100 % and should be decreased in accordance with the value of U.

Time required for consolidation is directly proportional to the square of drain path D in consolidating layer. Therefore, the presence of sand layer which will be a drain-layer for the consolidating strata must have an influence upon the consolidating time.

Fir.2-4-5 given in the next paragraph shows the relation between settlement and consolidation time with a parameter of D = 5.25, 2.50, 2.00 and 1.5 m. On the other hand, the foundation in this area is composed of alternations of cohesive-soil strata and loosen-sand strata as mentioned in the previous section 3. Therefore, considering the soil condition shown in soil profiles, we assumed D = 2.00 m. If the first-stage embankment is left as it is for 3 months (90 days), the degree of consolidation U will become about 50 % as read in Fig.2-4-5. Accordingly the value of cohesion c will be increased by  $\Delta c \times 50 \% = 0.9 \times 0.5 = 0.45$  $t/m^2$ . Namely the cohesion c will become,

$$c = 0.8 + 0.45 = 1.25 t/m^2$$

in 3 months after the completion of the first-stage embankment.

 $F_s$  is now calculated as follows by use of increased cohesion.

 $F_{s} = \frac{6.0 \times 1.25}{1.8 \times 3.5} = 1.19$ 

From this result, it may be said that the embankment with a height of 3.5 m is safe.

(3) Consolidation.

Settlement is estimated by the following formula,

$$S = \frac{C_{c}}{1 + e_{o}}$$
 H log  $\frac{P_{o} + \Delta P}{P_{o}}$ 

where S is settlement in m,  $C_c$  is compression index,  $e_o$  is initial void ratio, H is thickness of layer to be consolidated in m,  $P_o$  is precompression load in  $t/m^2$  and  $\Delta p$  is increased compressive stress in foundation due to embankment in  $t/m^2$ .

Consolidation time is estimated by the following formula.

 $t = \frac{D^2}{C_{\rm U}} T$ 

where t is time for consolidation, D is length of drain path,  $C_v$ 

<u>/1</u> Soil-mechanics Handbook published by Japan Society of Soilmechanics and Foundation Engineering.

/1

is coefficient of consolidation and T is time factor in consolidation. There is the following theoretical relation between T and U.

U 10 20 30 40 50 60 70 80 90 100 (%) T 0.008 0.031 0.071 0.126 0.196 0.287 0.403 0.567 0.848 ∞

(a) Settlement.

The following values were obtained in the previous paragraph 4(1).

$$C_{c} = 0.45$$
  
 $e_{o} = 1.99$   
 $H = 10.5 \text{ m}$   
 $P_{o} = 2.89 \text{ t/m}^{2}$ 

Therefore, settlement S can be calculated if  $\Delta p$  is known.  $\Delta p$  can be estimated by use of Osterberg's figure named "Influence Value for Vertical Stress Under Embankment Load of Infinite Length" which is shown as Fig.2-4-3. In using this figure, it must be noted that,

A, B, C, D : point A, point B, point C, point D at the depth of Z = H/2 as shown in Fig.2-4-1,

 $\Delta \textbf{p}_{A1}$  :  $\Delta \textbf{p}$  at point A at the first stage of embankment,

 $\Delta p_{A2}$ :  $\Delta p$  at point A at the second stage of embankment,

z : must be replaced by Z,

P : must be replaced by  $\gamma_{tF}H_{E}$ ,

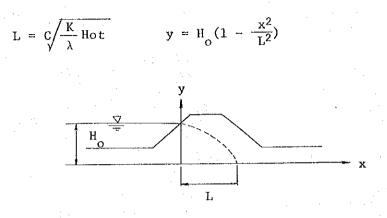
Settlement of the section A at the first-stage embankment,  $S_{A1}$ , can be calculated by the above settlement formula by use of the above-mentioned values. The calculated  $\Delta p$ 's and S's are listed as below.

$$\begin{split} &\Delta p_{C1} = 2.53 \text{ t/m}^2 & S_{C1} = 43.1 \text{ cm} \\ &\Delta p_{C2} = 0.02 \text{ "} & S_{C2} = 0.5 \text{ "} & \text{total } 43.6 \text{ cm} \\ &\Delta p_{D1} = 1.05 \text{ "} & S_{D1} = 21.3 \text{ "} \\ &\Delta p_{D2} = 0.01 \text{ "} & S_{D2} = 0.2 \text{ "} & \text{total } 21.5 \text{ cm} \end{split}$$

These results are shown in Fig.2-4-4.

#### (b) Consolidation time.

For the purpose of estimating the commencement time of the second-stage embankment, consolidation time t at section A was calculated by the above-mentioned formula giving the values of U ranging from 10 % to 100 % and the values of D ranging from 5.25 m to 1.50 m, where the value of C was assumed at  $1 \times 10^{-3}$  cm²/s as mentioned previously. The results are shown in the following table.


Consolidation Time in Days

				+	<u> </u>	
U	T	· · · · · · · · · · · · · · · · · · ·		L.	<u> </u>	Settlement
%	and the second	D=5.25m	D=2.50m	D=2.00m	D=1.50m	S _{A1 cm}
10	0.008	26	6	. 4	2	5.5
20	0.031	99	22	14	8	11.0
30	0.071	226	51	33	18	16.5
40	0.126	402	91	58	.3.3	22.0
50	0.196	625	142	91	51	27.6
60	0.287	916	208	133	75	33.1
70	0.403	1,286	292	187	105	38.6
80	0.567	1,809	410	262	148	44.1
90	0.848	2,705	613	393	221	49.6
100		œ	00	00	00	55.1

(4) Seepage.

On the occasion of the Urgent Flood Control Project, study was made of seepage line based on the condition that the coefficient of permeability of the body of levee, K, is  $1 \times 10^{-2}$ cm/s. In the present project, it was assumed that almost all the levees on the stretch from 0 km to about -12 km would be constructed with dredged soil. Therefore, it was assumed that the coefficient of permeability of the body of levee would be  $1 \times 10^{-1}$  cm/s considering grain size of river-bed materials. Accordingly it is necessary to coat the surface of embankment with cohesive soil.

Thickness of cohesive soil which shall coat the levee was studied by use of the following formula proposed by Dr. Mononobe (see Nagaho Mononobe: Hydraulics)



In this formula,

L : creeping distance of seepage line in time t and on condition that H is constant.

C : Coefficient that is nearly equal to 2 m/hr.

K : Coefficient of permeability

 $1 \times 10^{-1}$  cm/s = 3.6 × 10° m/hr for sand  $1 \times 10^{-5}$  cm/s = 3.6 ×  $10^{-4}$  m/hr for cohesive soil.

 $\lambda$  : Porosity

0.4 for sand

0.6 for cohesive soil.

- H : Mean water depth during time t. This depth was assumed at 3 m considering allowance to 2.7 m that is the difference between the mean height of the landside ground and the design high water level.
  - t : Duration of the design high water level. This value was assumed at 24 hr. The past record shows that duration of flood stages nearly equal to this design high water level does not exceed 12 hr; but 24 hr was taken considering allowance.

Fig.12 shows the seepage line in case the levee was coated with cohesive soil of 50 cm in thickness. The process of calculations are given in the Data Book.

The seepage line given in Fig.12 indicates that state in saturation in the levee body. But it is presumed to take much time before reaching this state partly because quantity of seepage through the cohesive soil for coating will be little and partly because the porosity of levee body is comparatively large. Therefore, the seepage line after 24 hr should appear in a location lower than the above-mentioned, probably near ground water table.

Based on the quantity of seepage through the cohesive soil and the porosity of the levee body, the height of saturation in the levee body, h, was calculated as follows.

Following the Darcy Law, quantity of seepage is expressed by the following equation.

where q is quantity of seepage, i is hydraulic gradient (= difference between two water heads/thickness of cohesive soil = 3 m/0.5 m = 6.0) and A is area for seepage (=wetted perimeter per unit width =  $6.7 \text{ m} \times 1 \text{ m}$ ; see Fig.12).

$$\pi = KiA = 3.6 \times 10^{-4} \times 6.0 \times 6.7 = 1.45 \times 10^{-2} m^{3}/hr.$$

ĥ

Quantity of seepage for 24 hr is,

$$Q = 1.45 \times 10^{-2} \times 24 = 3.5 \times 10^{-1} m^3$$
.

On the other hand, void of levee body is expressed by

$$V_{a} = \lambda (1 - \frac{S_{r}}{100}) V = \lambda (1 - \frac{S_{r}}{100}) \times B \times$$

where  $\lambda$  is porosity (= 0.4 for sand), S_r is degree of saturation (80 % was taken assuming a wet state), V is volume of levee body saturated with water (= B × h), B is width of levee (= 16 m referring to Fig.12) and h is height of saturated sand of the levee body (see Fig.12).

$$V_a = 0.4 \times (1 - 0.8) \times 16 \times h$$
  
 $h = \frac{V_a}{0.4 \times 0.2 \times 16}$ 

h

$$Putting V = Q, we get,$$

$$=\frac{3.5\times10^{-1}}{1.28}=2.7\times10^{-1}=0.3 \text{ m}.$$

This result is shown in Fig.12 with broken line. This study shows that the thickness of cohesive soil is enough if about 50 cm is taken.

#### 5. River-bed Materials.

Sounding with a stick from on a boat and examination with walk in shoals proved that river-bed materials are sands on the stretch from 0 km to -13.5 km. Samplings were made at -13 km, -10 km, -6 km, and -4 km and grain-size analysis and measurement of specific gravity were conducted. The results are shown in Table 2-1-5 and Fig.2-4-6. The mean grain size is

### 6. Some Comments on Construction Equipment and Earth Work.

As shown in Figs.2-3-1 to 2-3-35, the area projected for embankment is covered with soft cohesive soil, loosen sand or sandy soil; therefore, construction equipment to be used for this area should be of small contact pressure.

Cone-index is generally used as a yardstick which gives the relation between contact pressure of equipment and strength of soil; therefore, this is shown in the following table.

Minimum Cone-Index for Construction Equipment

Equipment	Cone-index q _c
Swampy bulldozer	Workable under 4
Bulldozer (middle-size)	5 to 7
Bulldozer (large-size), scraper	7 to 10
Auto-scraper	10 to 13
Truck (6 to 7.5 ton)	15 or more

As this river has many shoals and frequent evacuations will be needed during the flood season.

Ground water table is so high that it is necessary to try to improve the traficability as much as possible by means of lowering the ground water table. For this purpose, it should be taken into consideration

a. to execute the construction during the dry season,

- b. to provide with drainage channels or to consider drainage with pumps if natural drainage is difficult, and
- c. to pay careful attention so as to drain excess water on the construction surface and the access roads.

The following two alternatives are recommendable as the order of construction of levees near the distance-mark -12 km.

1.15 mm.

#### Alternative 1.

Construction order is described below referring to the following figure.

more than 5 m(3) (3) (4) (2) (2) (2) (2)

- (a) Excavate drainage channel shown as (1) by man power and bank with excavated soil at (1)'.
- (b) Dredge soil at (2) and dump the dredged soil at (2)' as the first stage of embankment.
- (c) Bank at (3)' with the soil from the surface of (2)' in 3 months after the execution of (2)'.
- (d) Cover the surface of the dike with cohesive soil taken from high-water channel at (4).

It must be noted that, in banking, consideration must be made on a banking height which includes the height of settlement due to consolidation.

#### Alternative 2.

This alternative is a plan in case the execution of construction will extend over a period of two years.

- (a) Execute the first-stage banking at (2)' with the soil dredged at (2) and leave it for one year.
- (b) Employ (2)' as transportation passage for construction equipment and excavate drain at (1). In this case, excavation must be conducted from the river mouth if possible.
- (c) The following works will be done by the same way as Alternative 1.

## III. NETWORK OF HYDROLOGICAL OBSERVATION STATIONS

It was planned to additionally provide with the following stations for reinforcing the observation of hydrological quantities and the communication system for information of them.

- 2 recording rain-gage stations at Tiga Juhar and Serbajadi.
- 5 recording water-level-gage stations at Balapulung, Sipinggan, Mabar, Negeri Dolok and Esperance.
- 3 VHF-radio fixed stations at Bandar Tiga, Serbajadi and the Site Office at Perbaungan.
- 3 VHF-radio mobile stations (cars).

The costs of them are as follows.

1. Recording rain-gage stations.

Cost per station.

Construction work	Rp 7,000,000
Instrument	\$2,500
Recording paper	\$83 for 5 years
l spare timer	\$580
Miscellaneous	\$40 for 5 years
Others	Rp 140,000 & \$750
Total: local currency	Rp 840,000

foreign currency \$3,950

Cost for two stations Rp 1,680,000 & \$7,900

2. Recording water-level-gage stations.

Cost per station.

Construction work	Rp 1,900,000
Instrument	\$2,500
Recording paper	\$250 for 5 years

1 spare timer	\$580				
Miscellaneous	\$200				
Others	Rp 380,000 & \$700				
Total:	Rp 2,280,000 & \$4,230				
Cost for five stations	Rp 11,400,000 & \$21,160				

3. Three VHF-radio fixed stations and three VHF-radio mobile stations.

Construction work	Rp 2,000,000 x	3 = Rp 6,000,000
Instruments	\$4,980 x 3	= \$14,940
Spare parts Mobile stations with instruments	\$500 x 3 \$18,460 x 3	= \$1,500 = \$55,390
Supervision (2 engineers	s for 30 days each)	\$22,400
Others	Rp 2,000,000 &	\$5,350
Total	Rp 8,000,000 &	\$99,500
	and a second	

Grand total of the above Rp 21,080,000 & \$128,600

#### SOIL TEST DATA (FOR FOUNDATION) Table 2-1-1

LOCATION	- 12	Km
----------	------	----

### TESTED BY :

1.0	OCATIO	11: – 12 Km	·			TESTED BY		
	SAMPLI	E NO	RI	R ₁	R 6	R 7	R 7	R 7
	D	ЕРТН г	n 0.0 ~ 0.3	0.9~ 1.2	0.5~ 0.8	0.3~0.7	0.7 ~ 0.9	0.9,~ 1.2
	GRAVE L	(2000µ < )	% 0	0	0	0	0	6
	SAND	174-2000µ ; 3	6 67	46	41	69	75	76
2 100 N_	SILT	(5~74µ) 9	\$ 733	154	2 59	231	225 2	218
s s s	CLAY	(< 5µ)	6		)	J	J	J
GRAIN SIZ DISTRIBUTI	MAX.G	RAIN SIZE	8					
ago ago	UNIFOR	MITY Ue						
	CURVAT							
ç	1	LIMLT WL	6	62	60	1 <b>0</b> 0	58	60
CONSISTENCY		CLIMIT WP 3	6	<b>1</b>	45	48	43	
00Z	PLAST	CITY /P NUEX /P			15	52	15	
CLASS I FICATION			Sandy fine grainedsail	Fine grained soil	Fine grained soil	Sandy fine grained soil	Sandy fine grained_soil	Sandy fin grained sai
	IFIC GF	RAVITY G	2.64			2.58	2.58	
	MOISTURE 20 20			70.8	75.0	73.0	111.6	93.8
NA TURAL CONDITION	WET DENSITY7, 8 @							
ing	VOID RATIO e		1.1					
₹8	DEGREE OF S, %		\$					
	^{ao} ^N	ETTENCTURE kalo	7					
1	N FIN	DEFORMATION - Kg/a	4					
	UNCONFINED COMPLESSION TEST	DEFORMATION COEFF Ess kg/a SENSITIVITY RATIO			1			
so		* CONDITION						
CHARACTER S CICS	E STR	COHISION C kg/a	×		[			
1917	DI REC SHE	ANGLE OF NITER-						
ARA	TRIXIAL COMPRESSON TEST	* CONDITION						
	XIA PRES	COHESION C kg/a	4					
INICAL	19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ANGLE OF INTER- NALFRICTION	· · · · · · · · · · · · · · · · · · ·					
N		YIELD n ka/m	4					
MECHI	ST	COMPRESSION INDEX Ce			·····		*******	
<u>ح</u>	CONSOLIDTION TEST			· · · · · · · · · · · · · · · · · · ·				
	8							
		·						
					1	1	1	

UU Unconsolicated – undrained shear test CU Consolidated – undrained shear test CD Consolidated – drained shear test Vinculums (–) shall be marked above the signs like UU. CU and CD when pare pressure measured

SOIL TEST DATA (FOR FOUNDATION) Table 2-1-2

LOCATION: -11.25 Km

TESTED BY :

LOCATION: -11.25 Km				TESTED BY				
	SAMPL	E NO	R	R ₆	R ₆	R ₆	R ₆	
	D	EPTH m	0.0 ~ 0.3	0.0 ~0.3	0.9 ~ 1.2	1.2 ~ 1.5	27~3.0	~
	GRAVE L	(2000µ < ) %	0	8	0	0	8	
->	SAND	(74~2000µ) %	65	73	63	63	64	
TION	SILT	(5~74µ) %	135	219	237	237	<b>≀</b> 28	
ມີ	CLAY	% (بر5 >)	1		<u></u>	† _ <b>j</b>		
2 <u>-</u>	MAX G	RAIN SIZE						
DISTRIBU	UNIFO			·				
	CURVAT				······································	• • • • • • • • • • • • • • • • • • •		
. ر		LIMLT WL %	64	62	68			· · · · · · · · · · · · · · · · · · ·
л ТХ С	PLAST	CLIMITW _P %	48		55	36	34-44	
02 00	PLAST	CITY IP NUEX IP	16		13			
	<b> </b>				····	<u>+</u>		
SS.			Sandy fine grained soil	Sandy fine grained soil	Sandy fine grained soil	Sandy fine grained soil	Sandy fine grained soil	
FCATION			gruineo sur	gruined som	di amedi son	gramea son	<u>grained son</u>	
· .	IFIC GI	RAVITY G.	- 0.				2.68	
	MOISTURE W %		99.4	56.9	111.7	39.4	70.1	
	WET DENSITYY, 8/0							• • • • • • • • • • • • • • • • • • •
CONDITION	VOID RATIO e							
8	DEGREE OF S. %			· · · · · · · · · · · · · · · · · · ·				
	BSF.	STRENGTH 9. kg/or						
:	2/00/1	DEFORMATION COEFF						
	28 SE	SENSITIVITY RATIO				·····		
S	5 S. A. A. A.	*CONDITION						
2	DI RECT SHEAR TEST	COHISION c kg/ar						
CHANAL I ERIS ! I CS	A PA	ANGLE OF INTER-						·····
		* CONDITION						
ž	IX (AL W <del>FRES</del> SON EST	COHESION C kg/or					·····	
	TRIX COMP	ANGLE OF INTER-		•				
2.1		NALFRICTION of YIELD p, kg/od			· · · · · · · · · · · · · · · · · · ·		•	:
MECHNICAL	STO STO	COMPRESSION INDEX Co	÷				•••••••••••••••••••••••••••••••••••••••	
5	Щ. Н	INDEX 👓						
	CONSOLIDTION TEST			******			•••••	
	<u> </u>	lan Maliferia Militarian da se						
		<u></u>	na transformation Theorem			*	· · · · · · · · · · · · · · · · · · ·	
				·				
1.1	eta pre						· .	- 94 -

UU Unconsolidated – undrained shear test CU Consolidated – unaralned shear test CD Consolidated – drained shear test Vinculums (–) shall be marked above the signs like UU. CU and CD when pore pressure measured

31

· •

# Table 2-1-3 SOIL TEST DATA (FOR FOUNDATION)

	0 A 14 CT			1 /			L4	L4	L4
	SAMPLI	E NO	·	L4	L4	L4	L4	- 4	a general
	D	ЕРТН	m	0.0 ~ 0.3	0.5 ~1.0	1.0 ~1.25	1.25 ~ 1.9	1.9 ~ 2.4	2.4~3.0
	ORAVE L	12000µ < }	%	0, -,	8	5	0	0	8
z	SAND	(74 ~ 2000 <i>µ</i> )	%	65	67	88	85	79	81
ш <u>О</u> NL	SILT	(5~74µ)	%	335	125	37	315	. 721	211
ູ້ພິ	CLAY	(< 5µ)	%		· · · · · · · · · · · · · · · · · · ·	J	,		
GRAIN SIZE DISTRIBUTION		RAIN SIZE	2021.						
0 <u>0</u> 0		MITY EFF. U.				9.1	26.4		
<u>.</u>	CURVAT	$URE U'_{c}$				1.3	2.2		
So S		LIMLT WL	20	51	77				73
Ω Ω Ω Ω Ω	DI ACT	CLIMIT Wp	%	30	34		31		34
CONSISTENCY	PLA316	NDEX IP	· · ·	21	43				39
				Canadu (ino	Candy fina	Fond trived (inc	Sand Hived fina	Sandy fine	Sandy fine
C ASSI FCATION				Sandy fine grained soil	grained soil	grained soil	Sand,Mixed fine grained soil	grained soli	orained soil
	L			2 50	Z. 61	2.77			
SPEC		RAVITY G.		2.50	2.68	2.65		10.0	20.4
SF SF	MOISTURE W %		66.5	46.8	22.0		49.6	28.1	
NATURAL CONDITION	WET DENSITYY, 8/08								
AN NAT NAT	VOID RATIO ° DEGREE OF S, %		%	4					
	SATUR								
	EQUI IDECODANTION								
	SHE SHE	SENSITIVITY	0						
S		RATIO 3.							
CHARACTERIS ILCS	TEST TEST	COHISIONC	kg/car						
E E E	SH S SH S SH S	ANGLE OF NT							
2		* CONDITIO							
8	STAL	COHESION C	kg/ca/		·			*****	
7	198	ANGLE OF INTE	R-				· · · · · · · · · · · · · · · · · · ·		
MECHNICAL	Fŏ Z	NALFRICTION MELD p							
	CONSOLIDTION TEST	STRESS COMPRESSION INDEX	Ce						
2	Ω H − S	mocz							
	8								
ł									
					······································			<b></b>	
		•••••••••••••••••••••••••••••••••••••••	·					1	
•••									
EMAR	KS	·····	ليتنب				<b>5</b>		<b></b>

CD consolidated - all be marked above the signs like UU CU and CD when pore pressive measured

				1				33
	Table 2-1	-4	SOIL T	EST DA	TA (FOR I	FOUNDATI	ON)	
LC	CATION: -10 K	m				TESTED BY	1	
	SAMPLE NO		L4	L4	L 4	R ₂	R ₂	R ₂
	DEPTH	m	0.3 ~0.6	1.2 ~ 1,5	1.8 ~ 2.4	0.3 ~ 0.6	0.6 ~ 0.9	1.2 ~ 1.5
	GRAVE L (2000 + < )	%	8	6	8	9	0	0
	SAND (74~2000#)	%	85	70	64	52	53	88
N SIZE IBUTION	SILT (5~74µ)	%	7	124	128	239	247	12
E N L	( بر5 <) CLAY	%			] ]	<u> </u>	)	
A Z Z Z	MAX GRAIN SIZE	<u>祖</u> 西						
GRAII	UNIFORMITY COEFF	<b>-</b> -		······································				
	CURVATURE U.							1,1 (1)
<u>ડ</u>	LIQUID LIMLT WL	%		43	60	62	50	79
BEENCY	PLASTICLIMIT wp	%		31	22	27	36	26 33

7		(A) A set of the second sec	L					
×۳ ۳-۱	PLAST	CLIMITWP %		31	22	27	36	26 - 33
CONSISTEN INDEX	PLAST	CITY IP		12	38	35	14	53 - 46
8						· · · · · · · · · · · · · · · · · · ·		
28			Sand Mixed fine grained soil	Sandy fine grained soil	Sandy fine grained soil	Sandy fine grained soil	Sandy tine grained soil	Sand, Mixed fine
d ASS I FICATION								
	IFIC G	RAVITY GS	2.56			2.68		2.63
	MOISTU	RE w %		57.3	712	48.0	73.2	34.1
NATURAL CONDITION		ENSITY7, g/œ						
D D D	VOID R							
_ <b>≥</b> 8	DEGRE	ATION S, %						
	FINED ESSION TEST	STRENGTH 1. kg/ar						
1997 (S. 1997) 1997 (S. 1997)		DEFORMATIONE COEFF						
		SENSITIVITY RATIO						:
ICS	4 A. 14 A.	*CONDITION						
ŝ	E STR	COHISION c kg/car						
CHARACTERIS FICS	SHE	ANGLE OF NTER-						
ARA	<u>الج</u>	* CONDITION				an an De tra contene		
Ч Ч	XIX STRATE	COHESION C kg/cm		· · · · ·				
AL	TRIXIAL COMPRES TEST	ANGLE OF INTER-		•				
MECHNICAL	Z .	YIELD STRESS						
VEC	4SOLIDTK TEST	COMPRESSION Ce			· · ·		· . ·	
4	S L S L							

· ·
-

		a a toto
		•

a data da A

. ..

REMARKS :

CONSOLIDTION TEST

UU Unconsolidated – undrained shear test CU Consolidated – unarained shear test CD Consolidated – drained shear test Vinculums (–) shall be marked above the signs like UU, CU and CD when pore pressure measured

33

# Table 2-1-5 SOIL TEST DATA (FOR FOUNDATION)

	SAMPL	E NO	-13 Km	-10 Km	- 6 Km	– 4 Km		
;	C	EPTH m	0 ~	0 ~	0.~	0 ~	~	~
- <b></b>	GRAVEL	(2000µ < ) %	4	9	15	14		
2	SAND	(74~2000µ) %	96	91	85	86		
ulΟ	SILT	(5~74µ) %						
ပ္လည္	CLAY	% (بر5 >)						
GRAIN SIZ	1. 1.1.	RAIN SIZE RA			[	[		
DIS	UNIFO	RMITY DEFF 4	2.3	2.2	2.3	2.5		
:	CURVAL	URE U: EFF.	1.0	1. 0	1.1	1.2		
ζ	LIQUID	LIMLT WL %					a la seconda de la seconda Seconda de la seconda de la	
μx Hu		CLIMITW, %						
	PLAST	CITY NUEX IP						
					•		1 I I	
NO ION			Sand	Sand	Sand	Sand		the second second
PICATION								
		RAVITY G	2.72	2.60	2.78	2.64		
1	MOISTU	RE w %						
έQ L	1 A A A A A A A A A A A A A A A A A A A	ENSITY7, B 🖙						
CONDITION	VOID R			Б				
<u>₹8</u>	DEGRE	ATION S, %						
	UNCONFINED COMPRESSION	STRENGTH 9+ kg/at						
		DEFORMATION COEFF E50 kg/car						
	58	SENSITIVITY S						
S: CS		*CONDITION						
S	I RECT SHEAR TEST	COHISION c kg/or						
	22	ANGLE OF NTER-						
CHARACTERIS I'LCS	-ig	* CONDITION						
<del>ნ</del>	XIA FRE	COHESION ¢ kg/œr						
	TRIXIAL COMPRESS TEST	ANGLE OF INTER- NALFRICTION						
MCHNICA	NO	YIELD p, kg/of STRESS p, kg/of						
	CONSOLIDTON TEST	COMPRESSION INDEX Co						
-	NSO 1							
	8							
an	gr ain	size dm mm	1.11	1.18	1.55	1.53		
					•			
MAR P= =Σ	KS 100 % d·A	When dn P E ⁼¹⁰⁰ % AP d	re, n:mean grair rmesh size	size	UU Unconsofic	dated – undrained ted – undrained ted – drained )shall be ma J and CD whe	shear test	

an in the States of the state States of the states States of the states

# Table 2-1-6 SOIL TEST DATA (FOR FOUNDATION)

LOCATION: 10.3 Km Right Boring Site NO.4 TESTED BY

	SAMPL	E NO	1	2	-			
• •	C	ЭЕРТН г	n 0.2 ~	0.2 ~	~	~	°	~
	GRAVE	_(2000μ < )	%	1				
	SAND	(74~2000µ) %	6					
и N N	SILT	(5~74µ) 9	6	-+				· · · · · · · · · · · · · · · · · · ·
GRAIN SIZ	CLAY	% (بر5 >)	ó .					
Z Z Z Z	MAX (	RAIN SIZE M	n		•			
S.S.	UNIFO	RMITY U.			+			
	CURVA					· · · · · · · · · · · · · · · · · · ·		•
2	[1] D. A. 199	LIMLT WL						· · · · · · · · · · · · · · · · · · ·
ž uX		CLIMIT Wp %						
	PLAST		· · · · · · · · · · · · · · · · · · ·	+				
	<u> </u>	NDEX **	+	······································				
				+				
FICATION				·				
				+	· · · ·			
-FC		RAVITY G.		. :				······
IZ.	MOISTL		+					
LU LU		DENSITΥΥ, 8/α	1.55	1.65				
CONDITION	VOID		+					
I	SATUR	E OF S. %		4		· ·	1 - N	
		STRENGTH 9. kg/cm	0.38	0.44				
		DEFORMATION COEFF SENSITIVITY BATLO	13.6	20.0				
	UNCONFINED COMPRESSION	RATIO		]			- * - * = = = = = = = = = = = = = = = =	
CHARACIERIS LICS		*CONDITION				·		
2	RECT EAR STR	COHISION c kg/ad						
<u>ה</u>	S HE T HE	ANGLE OF INTER- NAL FRICTION						
ž	٦ <u>گ</u>	* CONDITION						
5	TRIXIAL COMPRESS TEST	COHESION C kg/a	**************************************					
$\frac{1}{2}$	No Res	ANGLE OF INTER-						
	z	NALERICTION & YIELD p, kg/or						
	CONSOLIDTION TEST	YIELD p, kg/or STRESS COMPRESSION INDEX Cc						·
∑. [	йц	INDEX St						
	NA NA							
<u></u>	<u> </u>	L						
	<u> </u>		Old dike	Old dike				
,								
								tut
	<u>.</u>							
MAR	KS:		an an an Articla An Anna an Anna	and and a strength of the second s				
		and the state of the	atta an an		UU Unconsolid CU Consolidat	ated – undrained ed – unarained ed – drained e ) shali_be mar and CD whe	shear test shear test	
					CD Consolidat	ed - drained s	shear test	

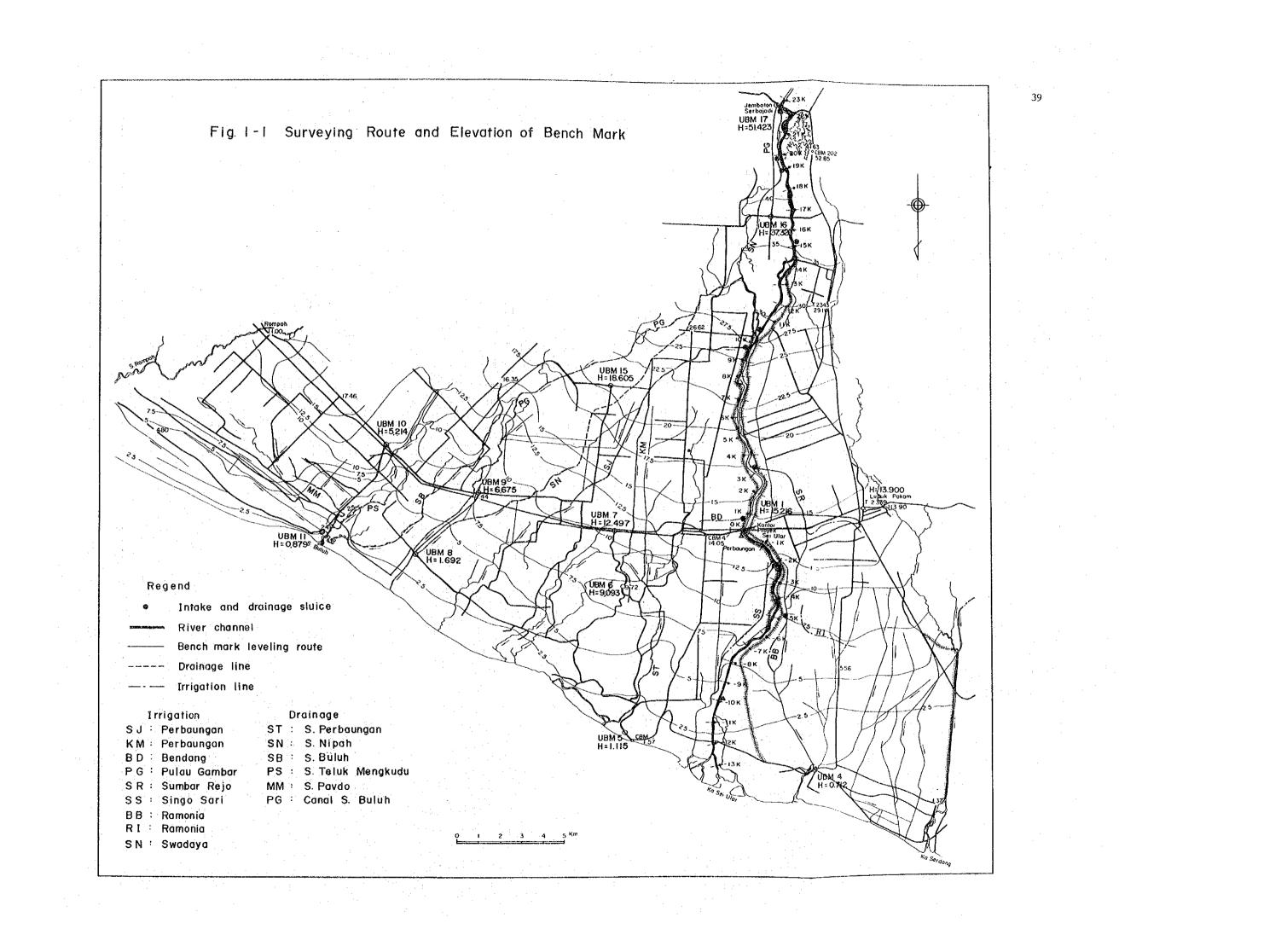
Table 2–2–1 Result of Shear Stress Vane Test ( 7 Kg/cm²)

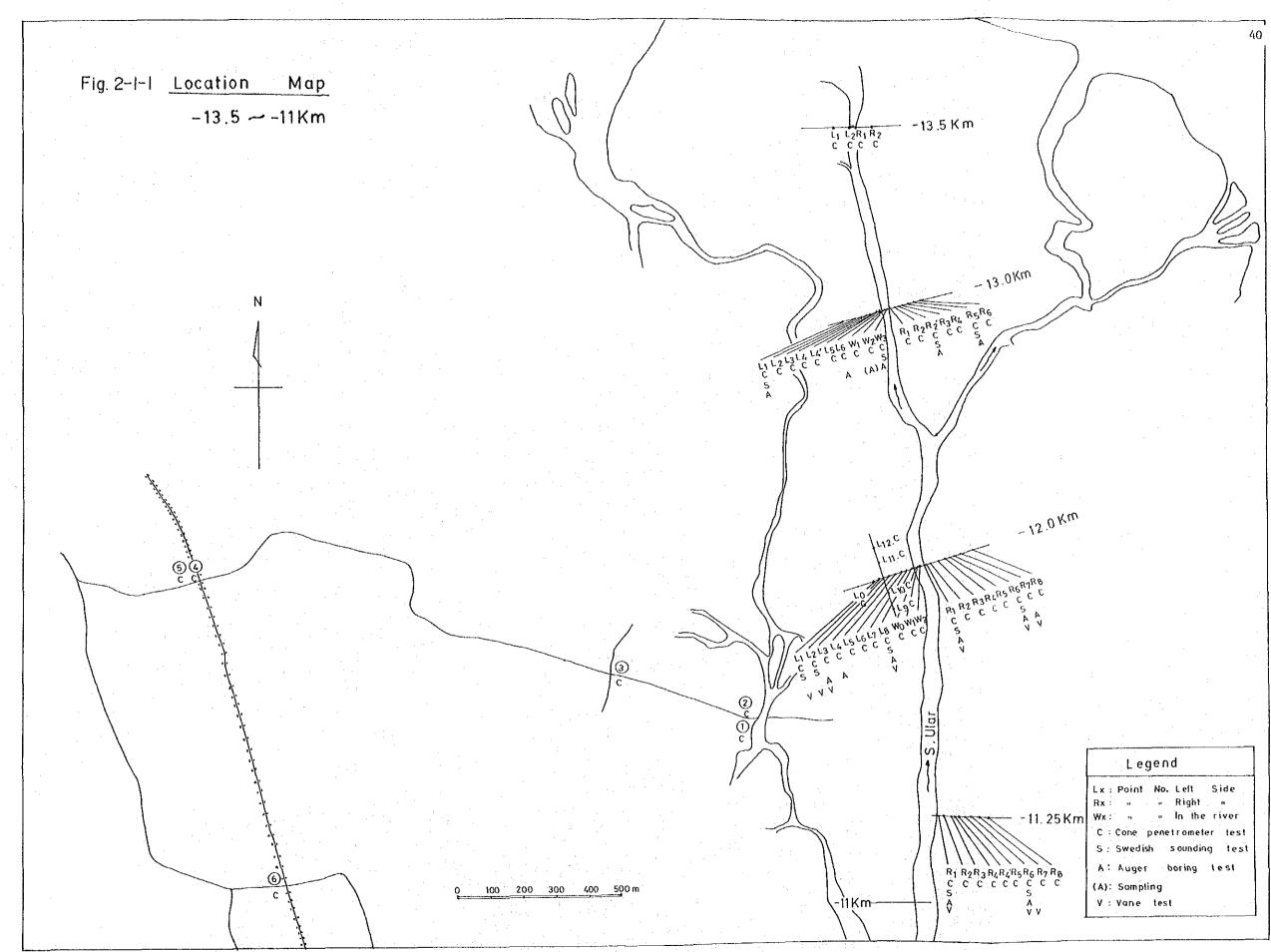
Large 7.5 X 15 0.10.(0.09) 0.13 0.12 (0.09) (<u>)</u> 0.23 (0.22) 0.12 4 0 10 (0.09) ÷ Ю К О 00 È –12 Km 0.25 (0.16) 0.081) 0.13 -0.13 -08) 08) 0.16 (0.05) 0.13 (0.09) 0.13 0.17 0.14 Small 5 X10 0.03 00 27 - 26) Large 5 X 15 0.23 0.12 23 0.19 œ o o 00 _ ¥ 8 5 37)-0.22 (0.14) 0.13 (0.02) 0.13 - 12 Small 5 X 10 06) 108 44 42) 0 15) <del>ر</del> 00 00 00 og Large 5 X 15 ø ¥ E r Small 5X10 2 5) 2 5) 2 dike ł 00 Large 7.5X15 0.14 (0.12) 0.12 (0.10) 3 13 7 ₹ ന 0.06 010) 0.12 ي. 00 -12Km 0.20 (0.14) Small 5 X 10 0.15 (0.11) 0.09 0.17 (0.12) 25 19) 50 0 14 24) 0 19 (0 15) အ ရို 00 o o 00 00 6 14) Large 7.5×15 2 13 13 £ [ 0 13 (0.11) 0.08 (0.07) ഹന 0 15) Ľ. 00 00 00 00 E X 26 20) Small 5 X 10 0.17 (0.12) 0.16 0.11) 14 08) 0.16(0.09) 9 13 13 0.16 (0.13) 0.17 03) 0.07 (0.05) -12 00 00 00 oo Large 7 5 X 15 016 (014) 0.16 (0.15) 15) 017(016) 0.11 0.16 0.14) 0 13 (0.11) 10 _____i 00 00 -12 Km 24 20 11) 26 0.16 Small 5X10 0.13 08) 30 13 20 14 06) 16 00 00 0 00 00 00 00 o 00 Depth Vane Location O ம் ហ Ω – Ω 0.0 ഹ 0 0 0 0 N 3 m ŝ 4 4 ហ Ó

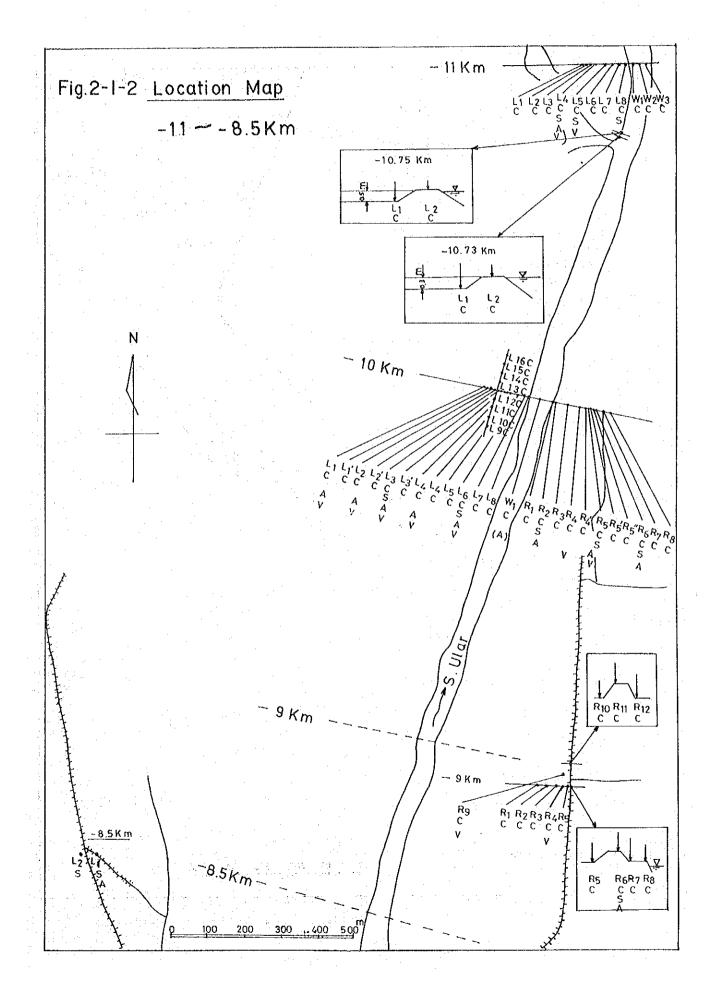
Rods

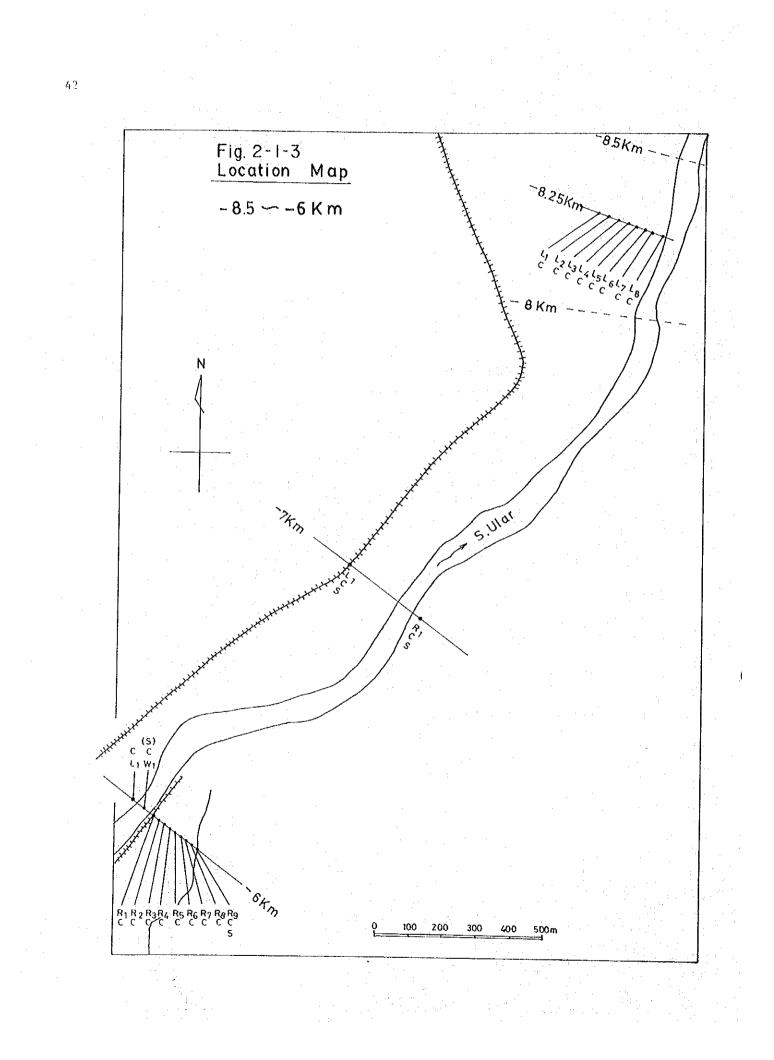
٥ ر

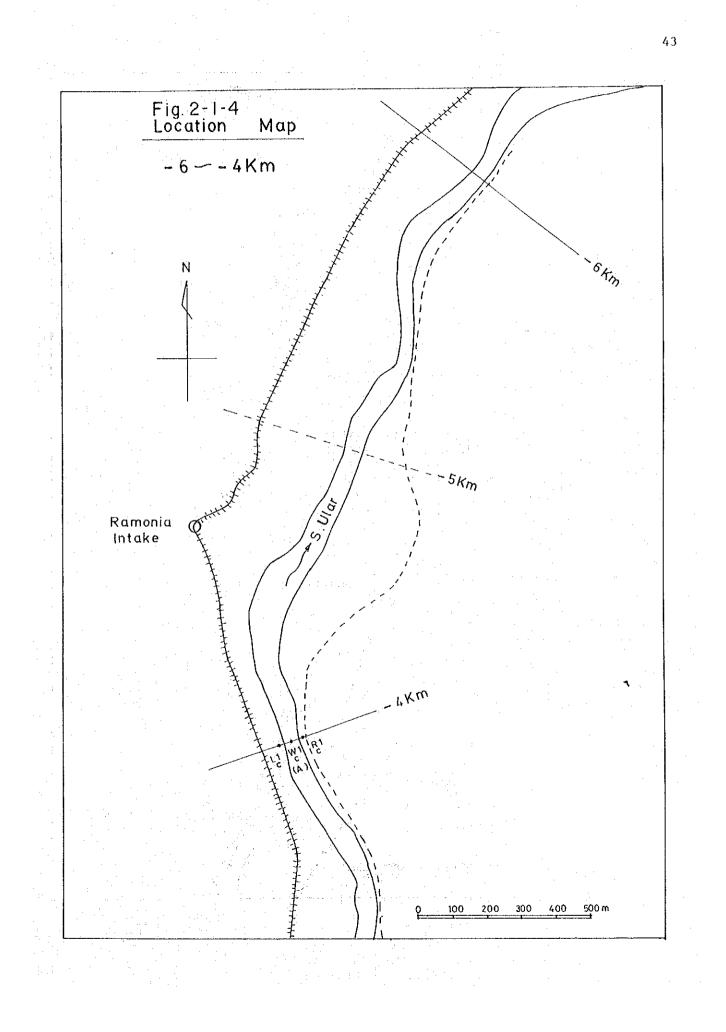
Friction

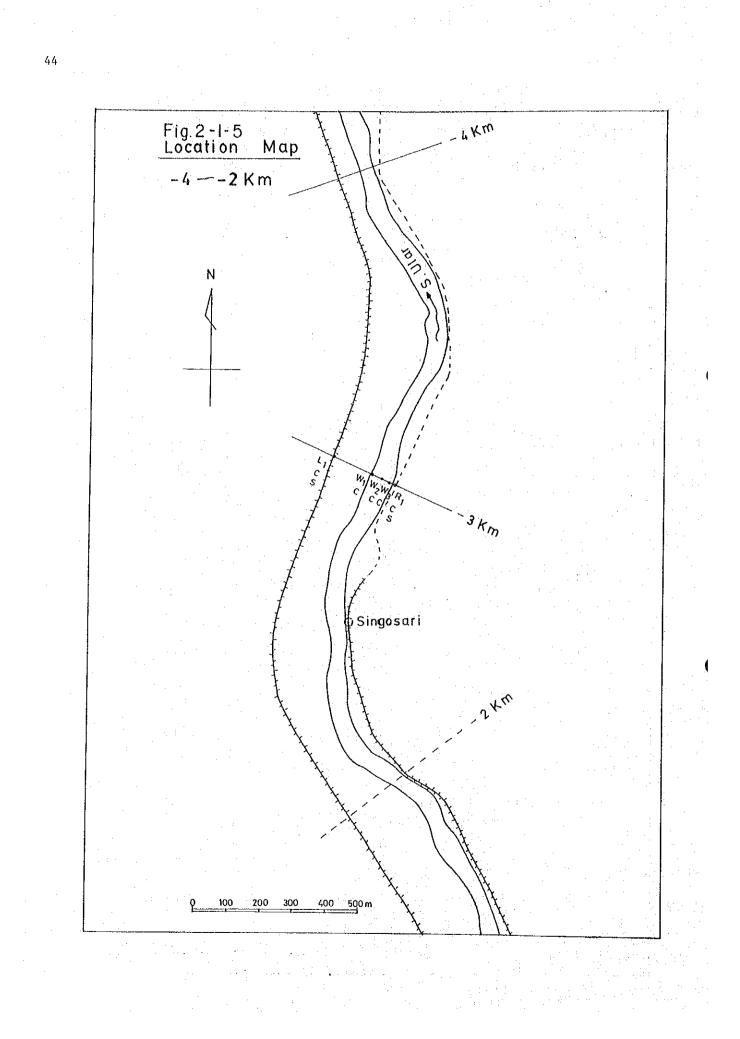

l

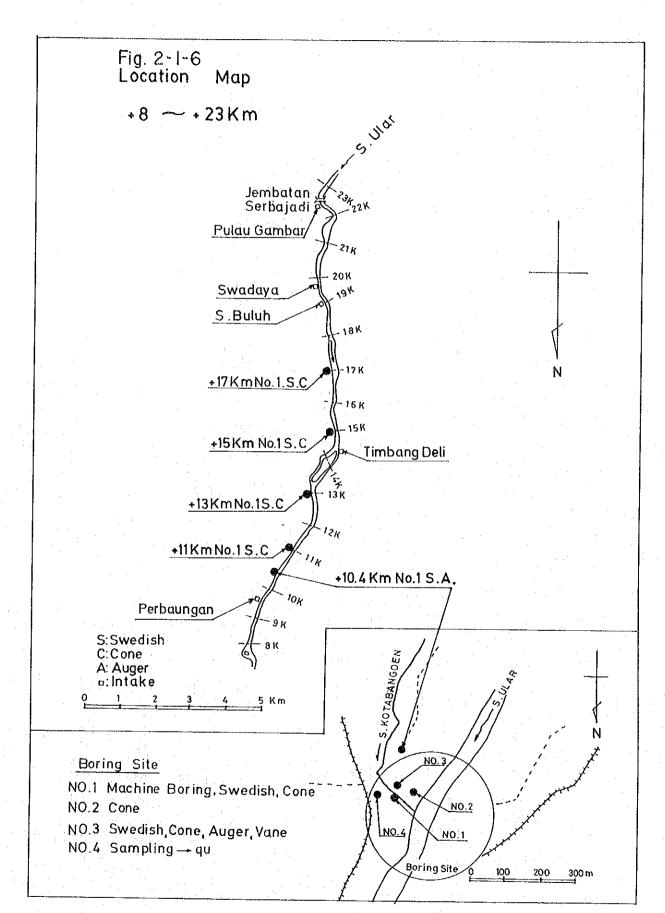

 $\left( \right)$ 

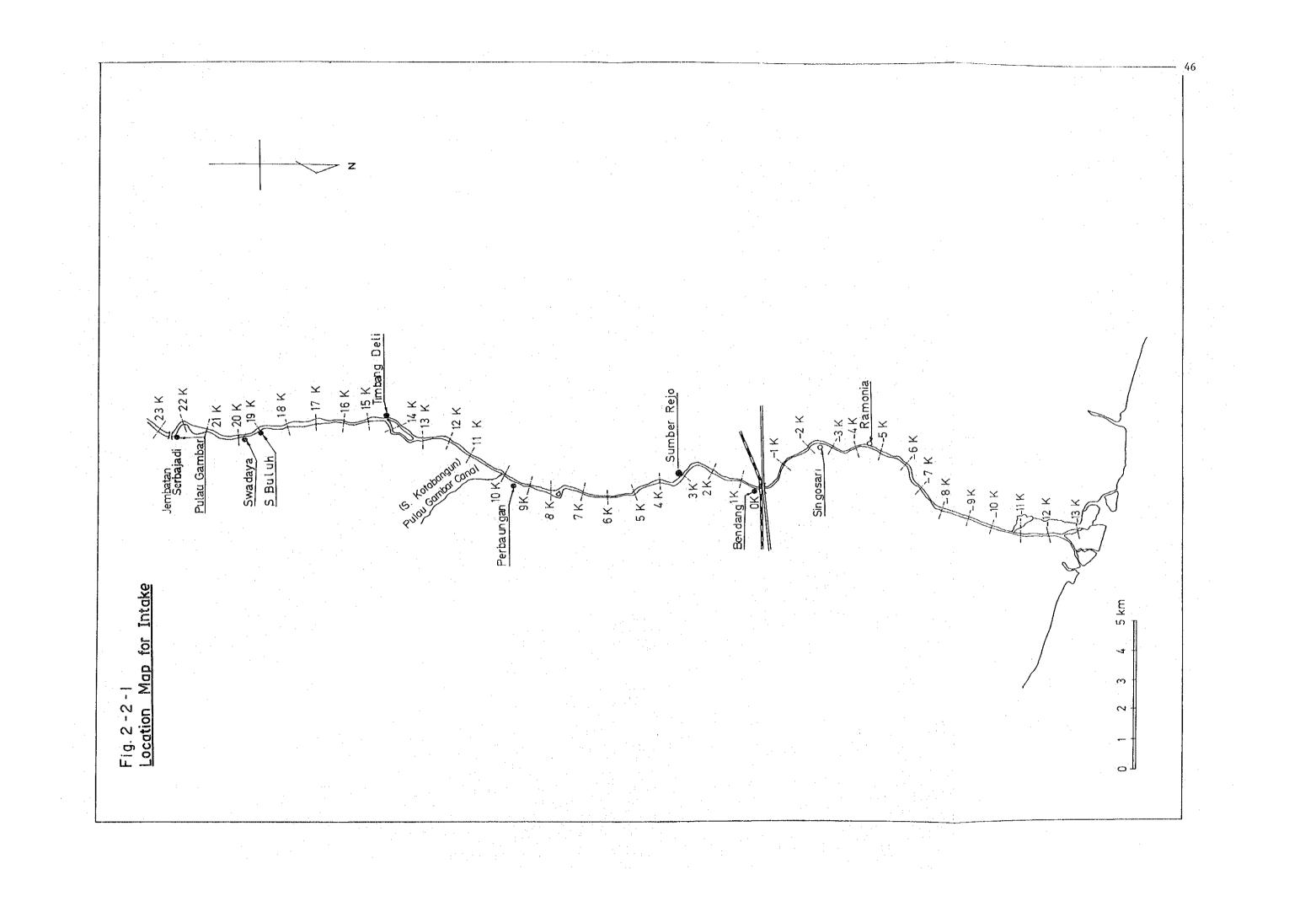

				· ·								
-10Km L 2 - 1	Smal 5 X 10	ľ	0.11	0.14	<b>1</b>				1	<b>T</b>	T	
-10Km L1-1	Small 5 X 10	<b> </b>	0.02	0.27		····· <b>I</b> ····· ·		<b>[</b>	<b>+</b>			
11 Km L5	7.5		80.0	C	4	0.29				1		
-11	Small 5 X 10		- 0.18	0.20	- 60 0 -	0.19	- 0.29	- 0.28 -	0.31-		•	
Km L4	Large 7.5 X 15	. <b>Г</b>	0.05			0.16		₹ } }	s		۱ 	۲
- 	Small 5 X 10	<b>F</b>	- 0.12	0.05	- 0.14	0.13	- 0.36	- 0.24	1	· · · ·		•
Km R ₆	Large 7.5×15	<b>p</b>	0 08	0 13		0.29					•	T
-11.25 Km	Small 5 X 10	- 1	0.13	0 15	0 34 -	0.44	0.34	0.32	. 0. 23 -	0.21	0.26	0.54 +
Km R4.	Large 7.5 X 15	- 1		0.10		0.29<					1	I
-11 25	Small 5 X 10		0.13	0 13	0.36	0.44	- 19	0 21	0.19		0.22 +	
n R7	Large 7.5 X15	1	0 10 (0.10)	0.13	0.23+(0.21)	- 0.13 -	0.13 - (0.10)	0, 10 ( 0, 06)	0.10	0.13 - (0.09)	0.16 (0.13)	- 0 16
– 12 Km	Small 5 X 10		0.10		0.28 - (0.21)	0.10+(0.02)	0.16 - (0.06)	- 0.17 - (0.07)	0.14	0.17 (0.05)	0.19-(0.06)	0 13
Location	Depth Vane	1	ی 0	0		5.0	7.5	0. 6	3. C	4-0	1 1 7	۰ ۲ ۵
		· · ·							· · · ·			

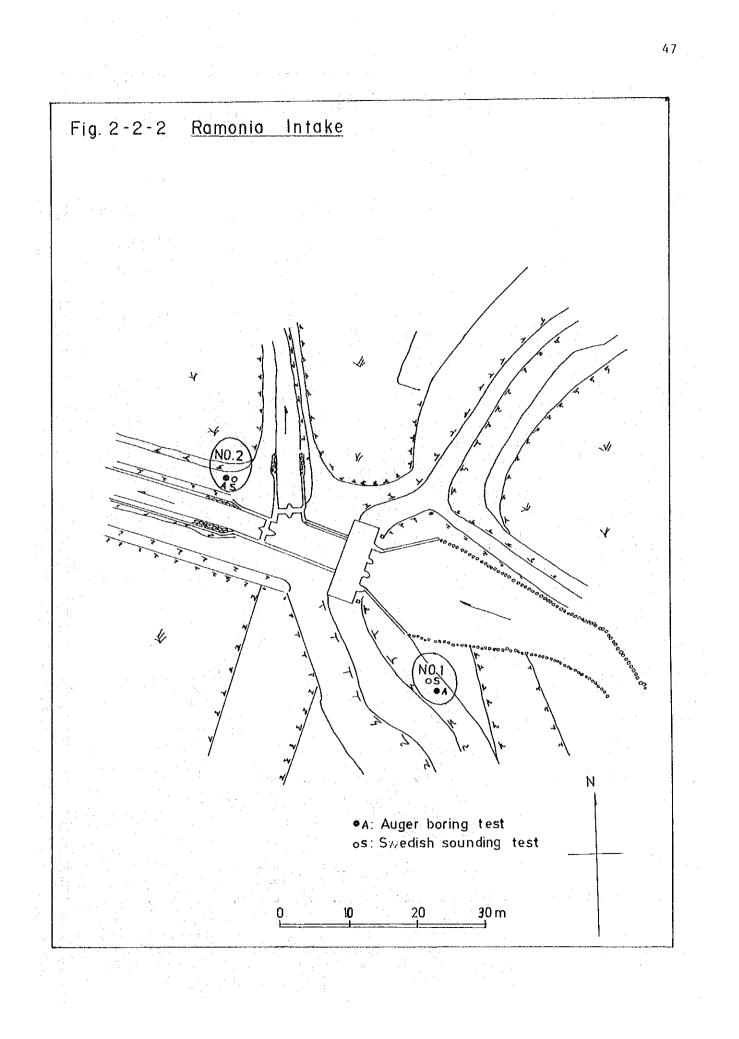

/ cm2
х о
4
Test
Vane
Stress
Shear
0
Result
2-2-3
Table

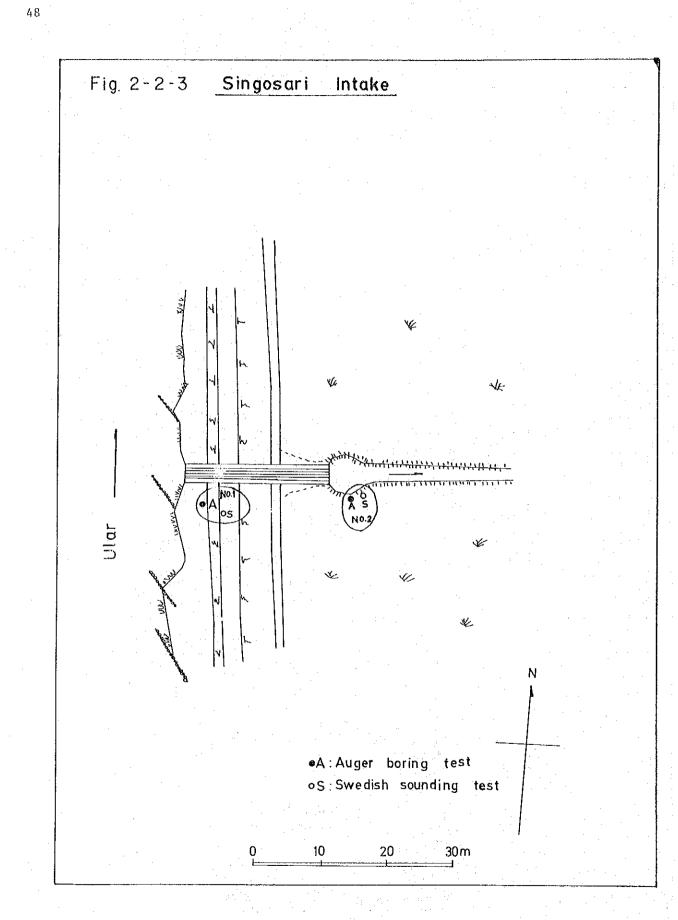

ო öz Boring site 0.28 Small 5 X 10 0.24 t Large 7.5 X15 2.2.2 0.17 თ С 0 3 X 0.35 0.28 Small 5 X 10 . 78:0 0.16 0.19 ഗ i + +Large 7.5 X15 0.29 < 0.25 0.23 -1 9 Km R t Small 5 X10 26 20. 70 0.15 0.19 G.26 T o. 0 ł + 4 Small 5 X 10 20 0.21 0.13 60.0 0 ++ 4 Large 7.5×15 60.0 01.0 0.08 0 08 1 ł 0.12 0.12 60 Small 5 X10 60.0 0.16 0 ł Small 5 X 10 0.12 0.13 + 0.08 0.09 Small 5 X10 ł 0.34 60 size of Small oth Vare 5 X10 0 ł 2.5 4.5 0 ம ---2.0 0 ŋ Ö ທ O 0 0.0 Depth , m ហ m 4

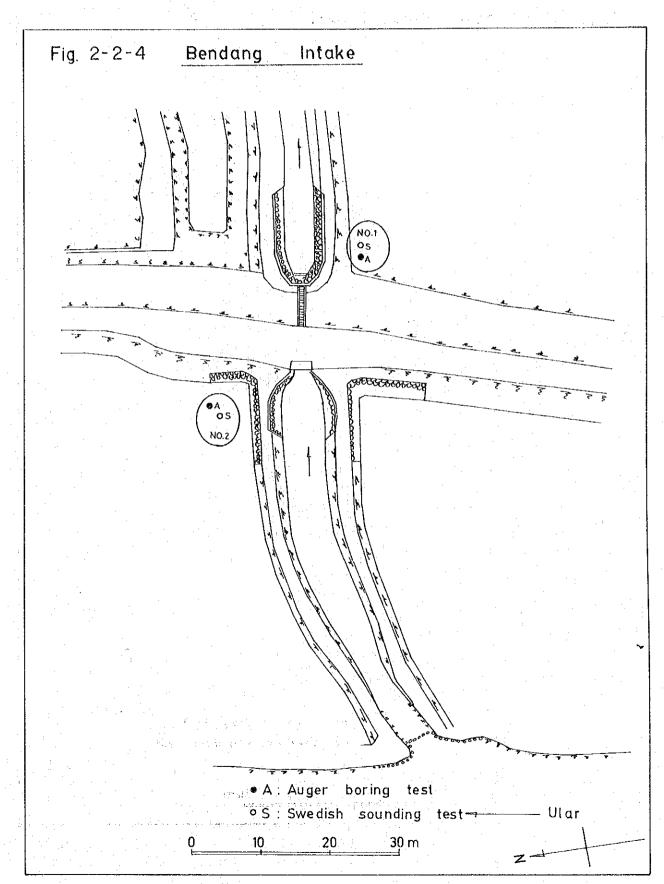


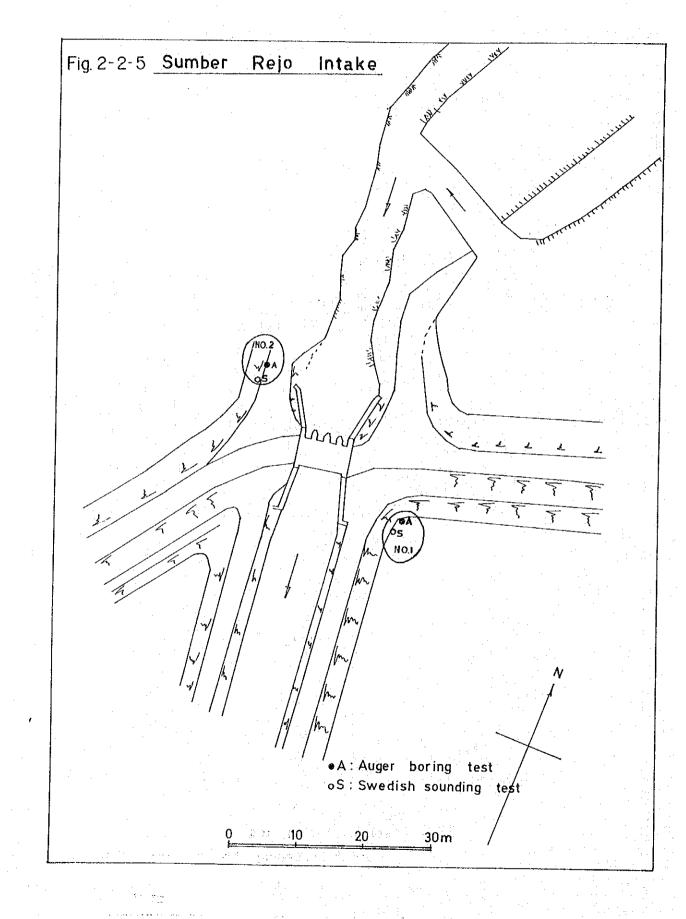



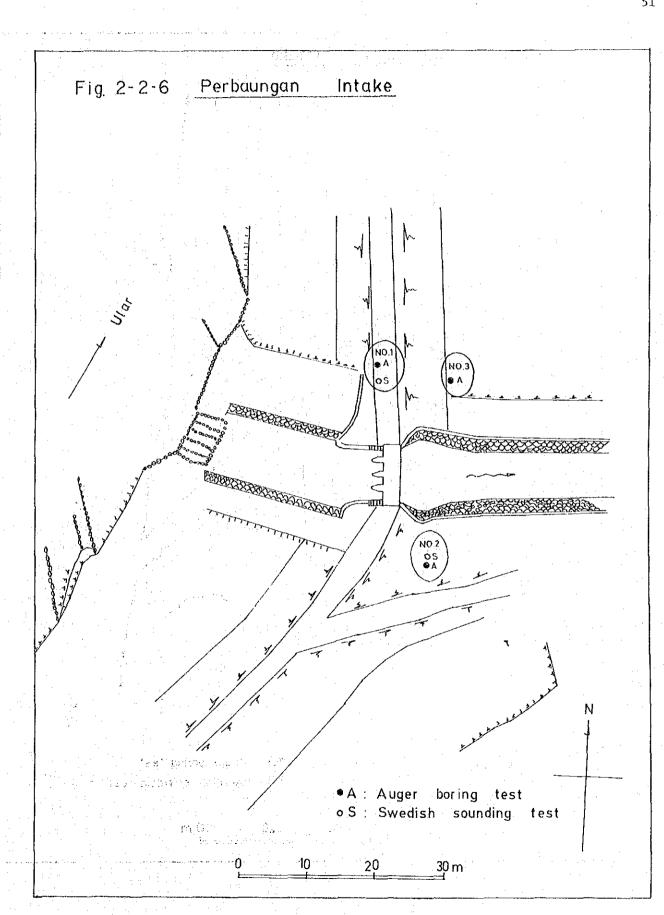



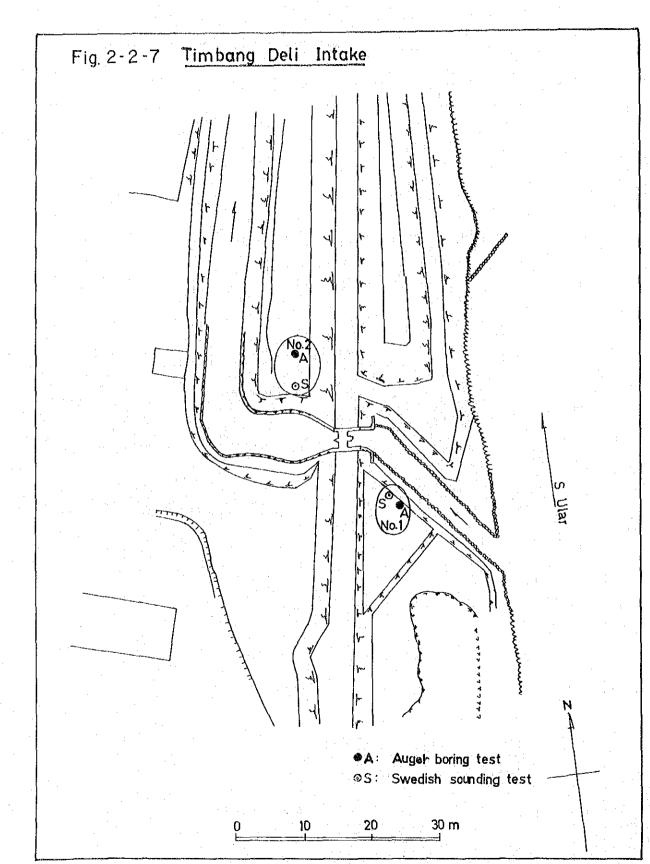



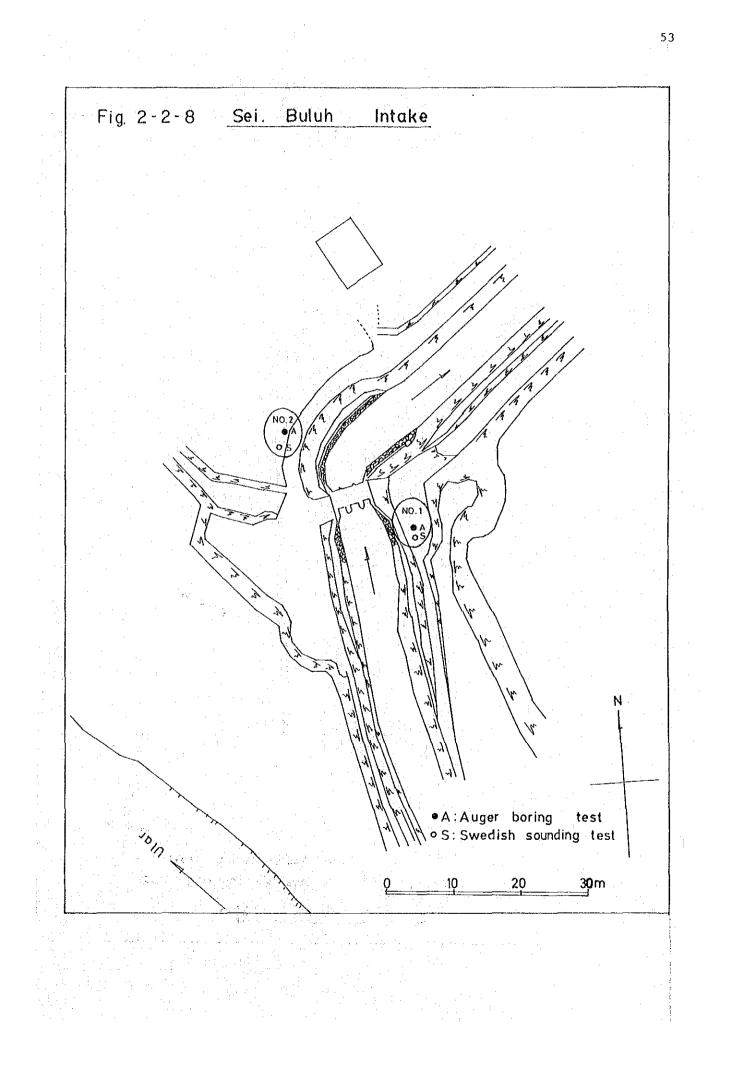



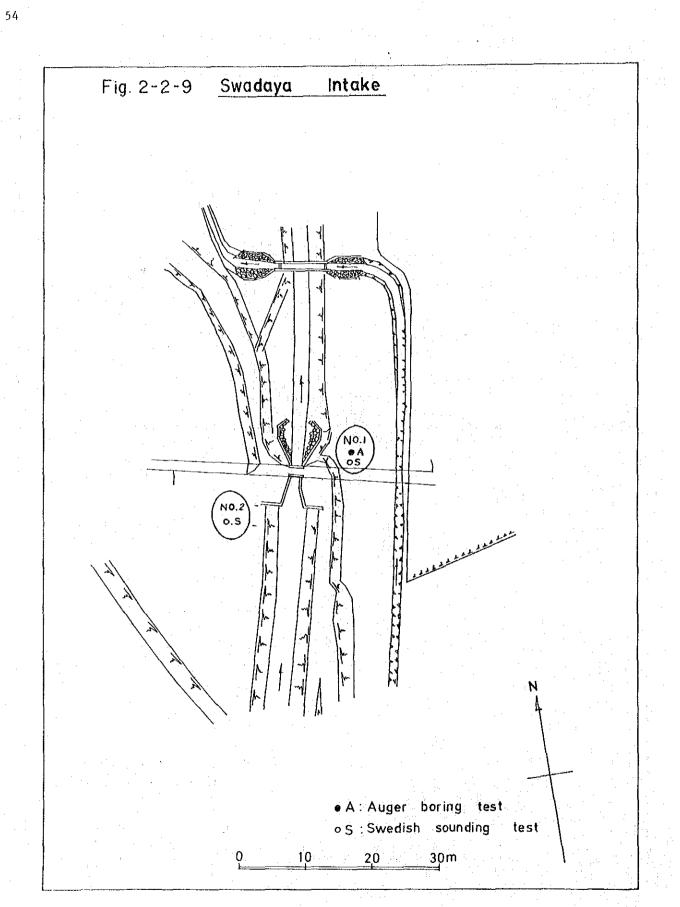



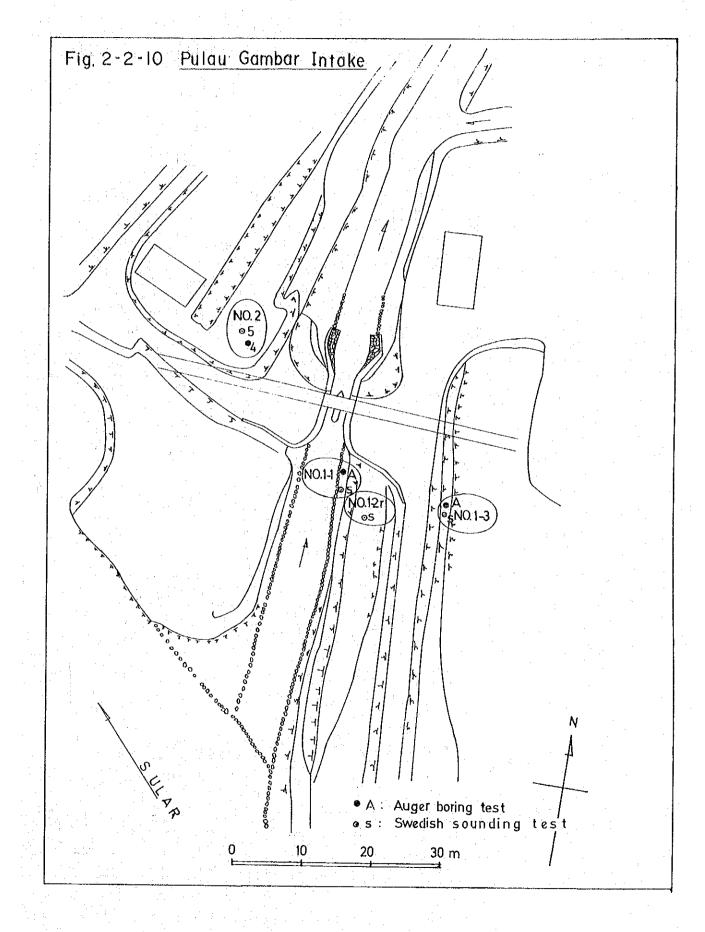



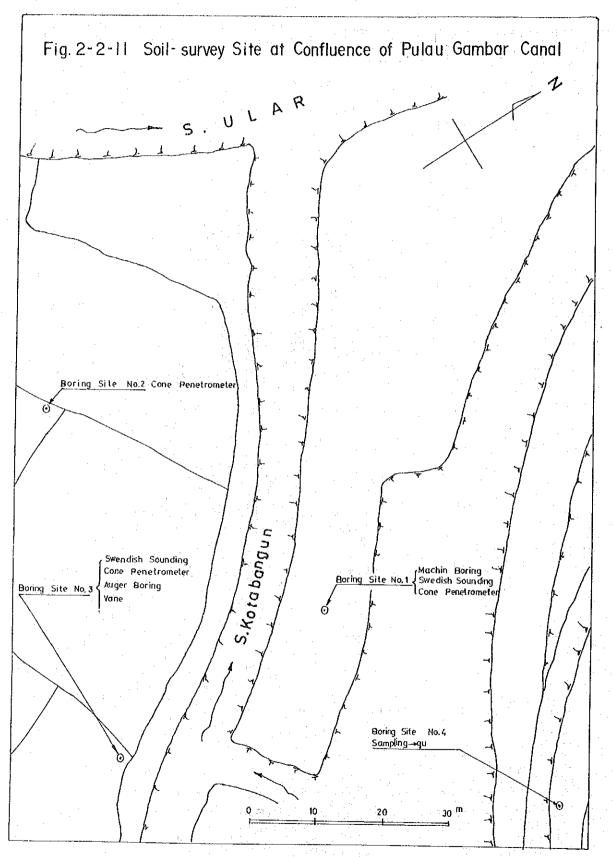



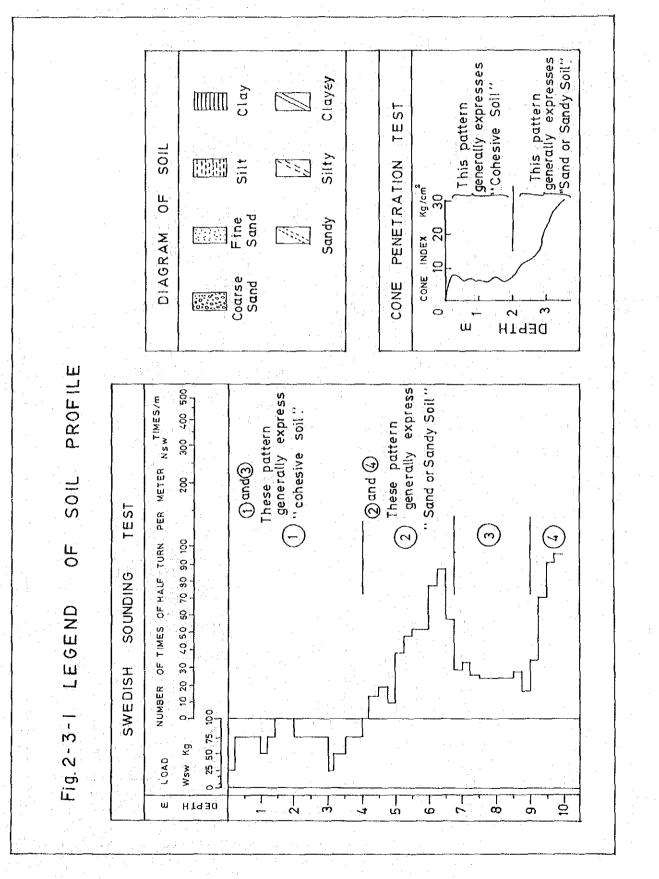



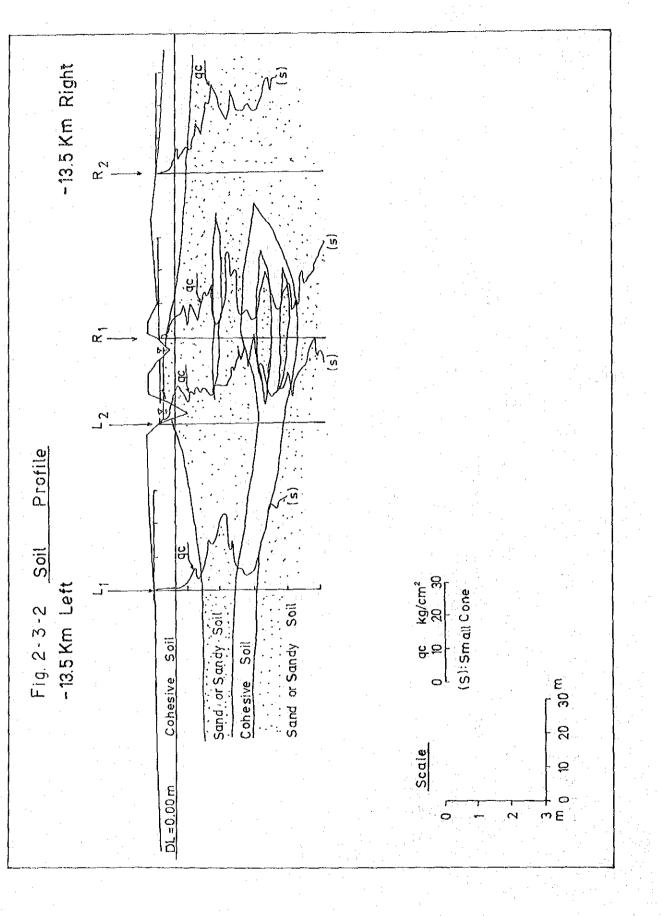



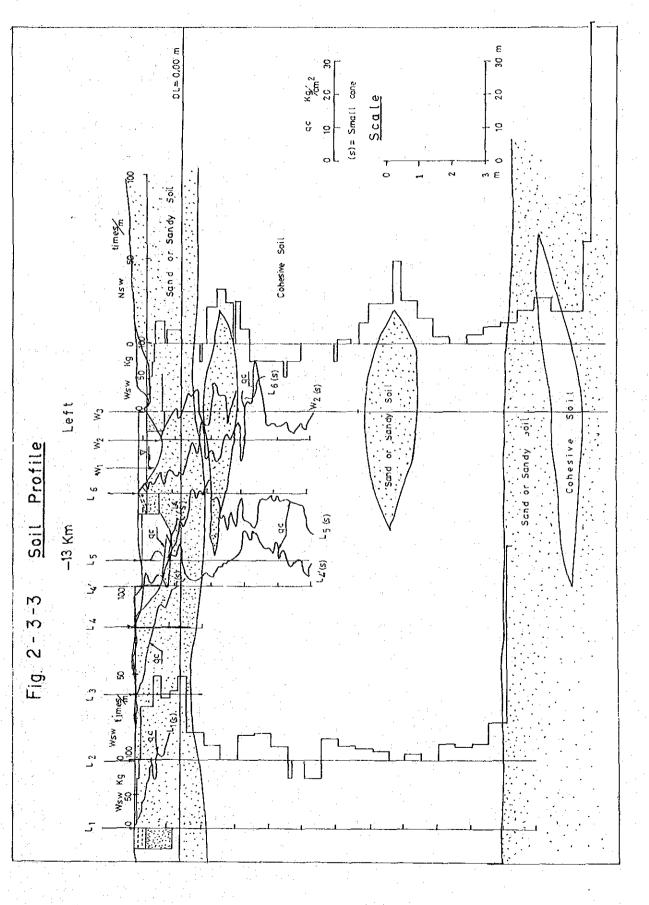



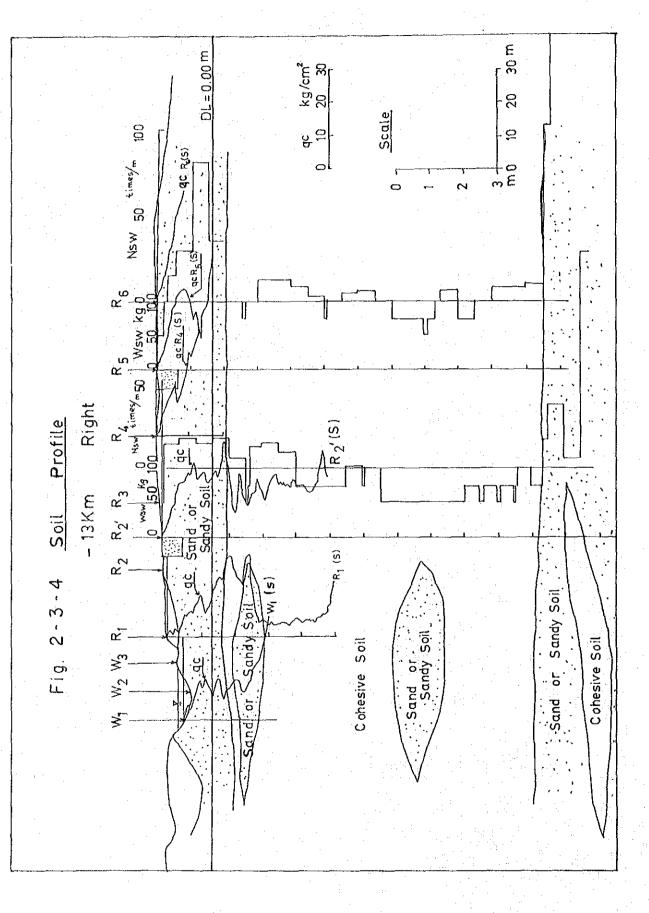



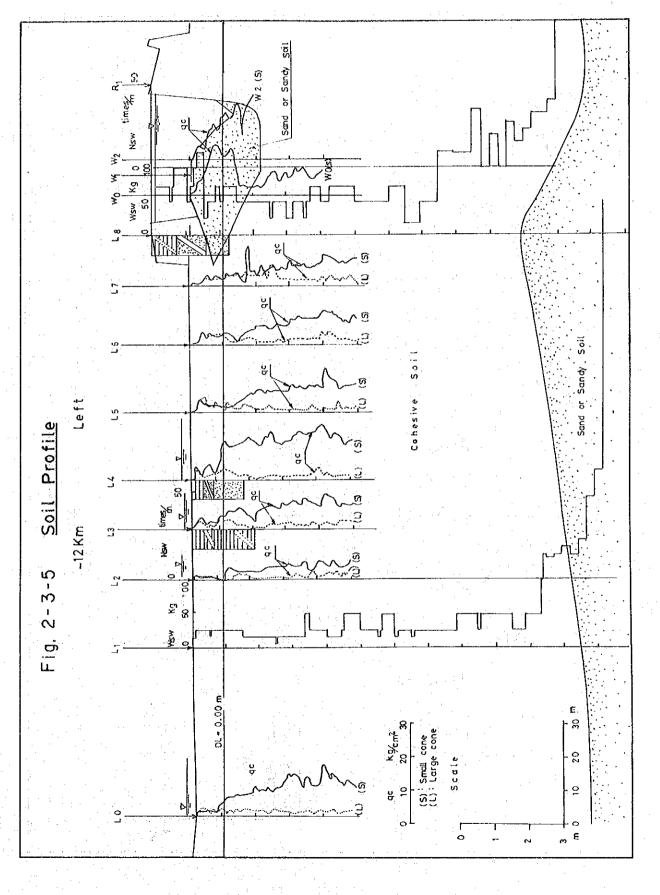



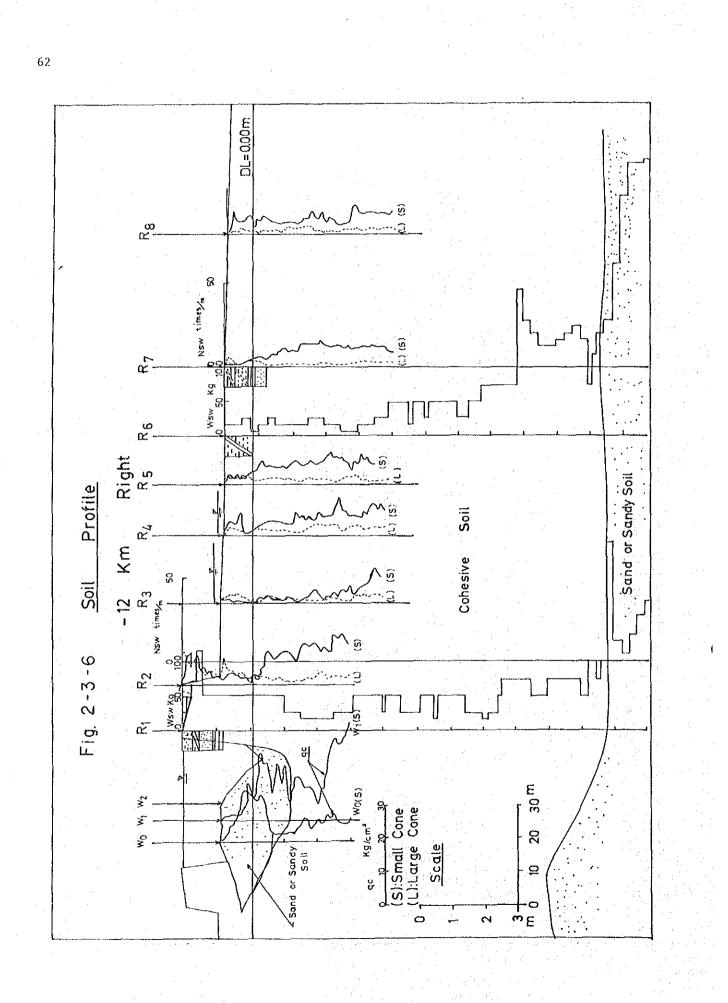


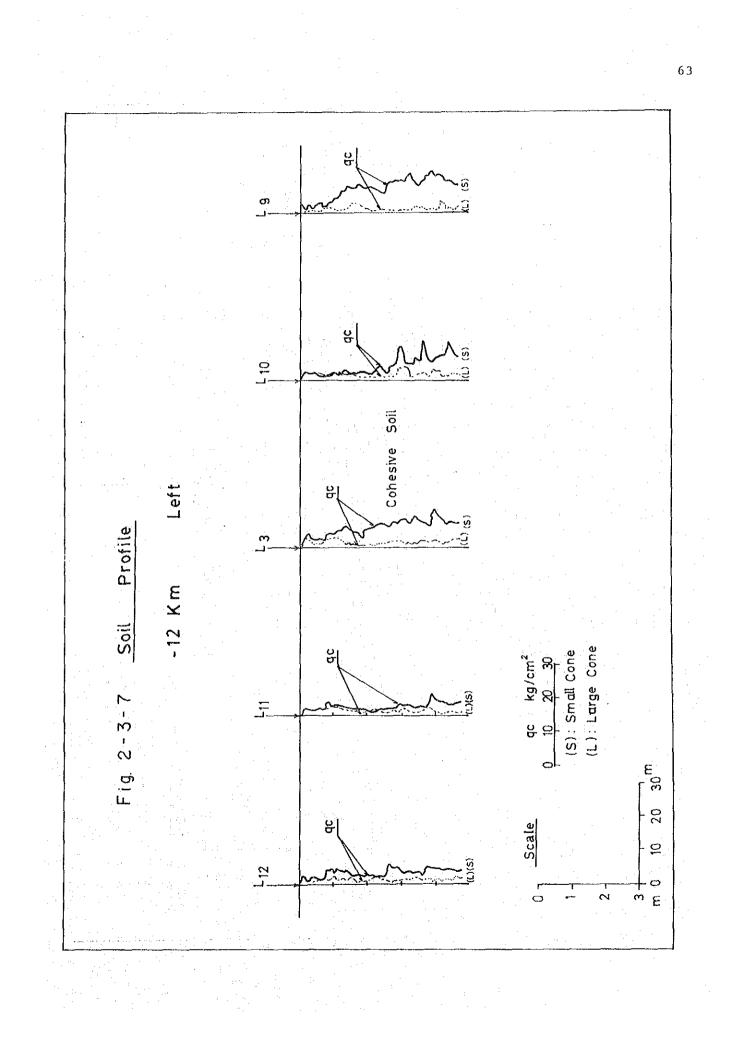



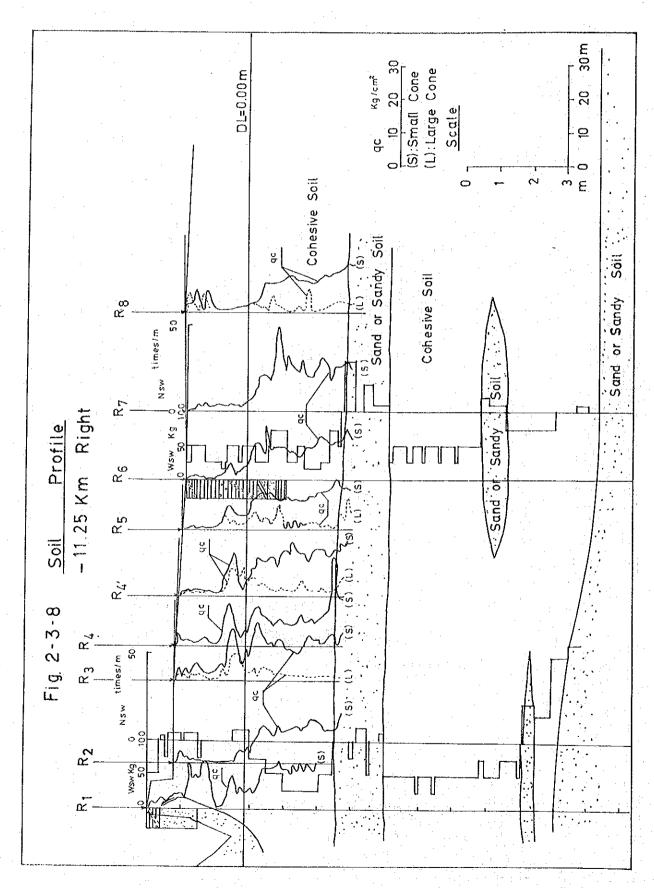



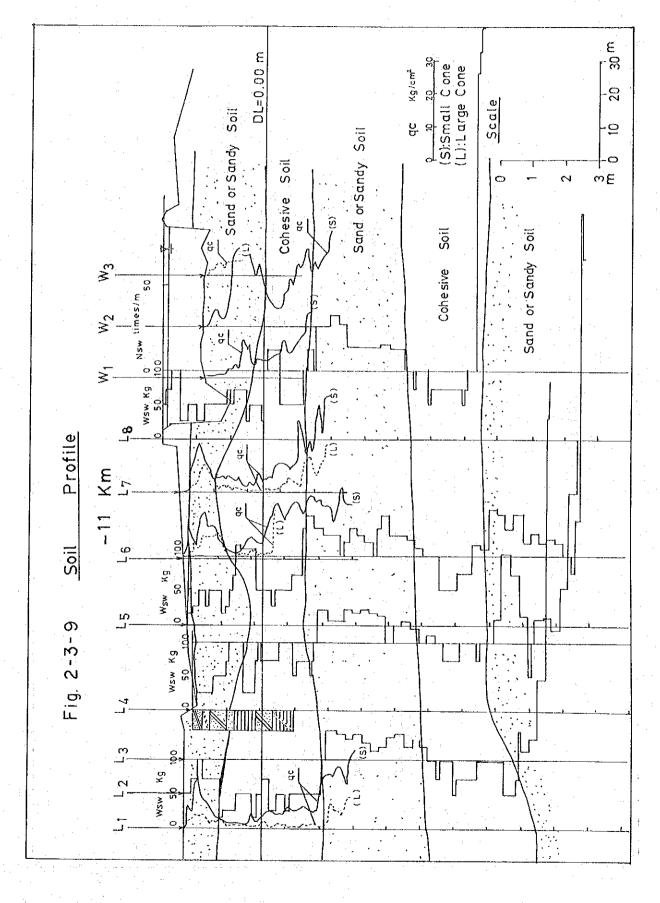



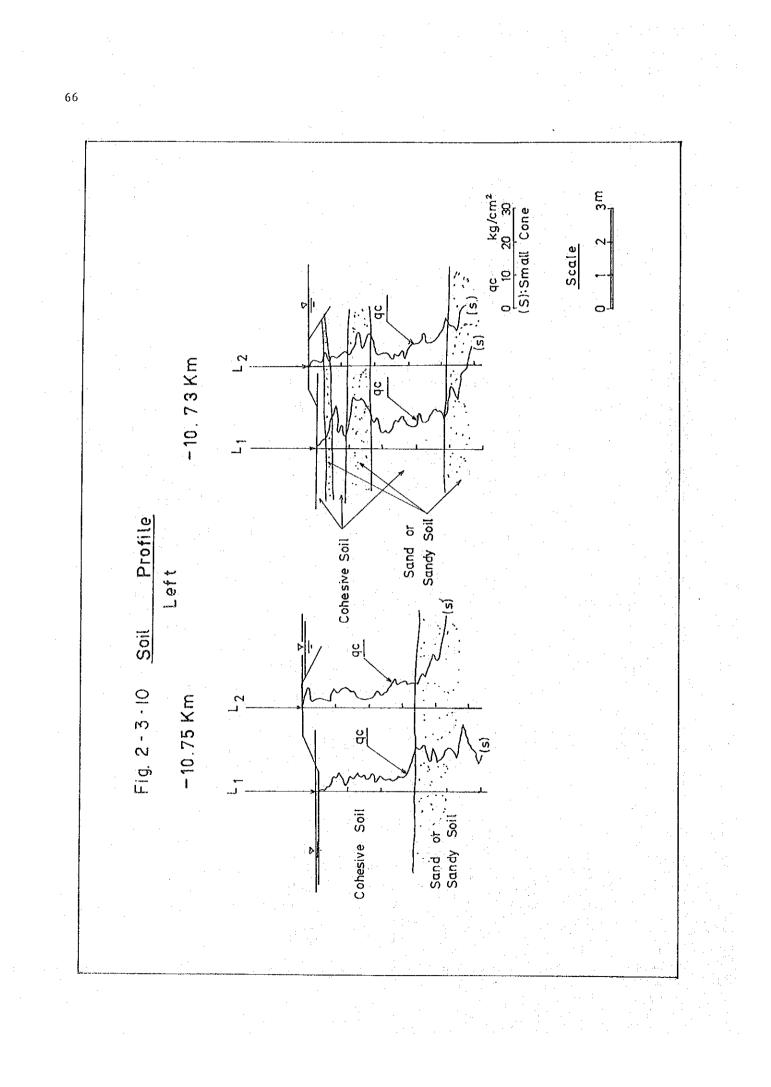



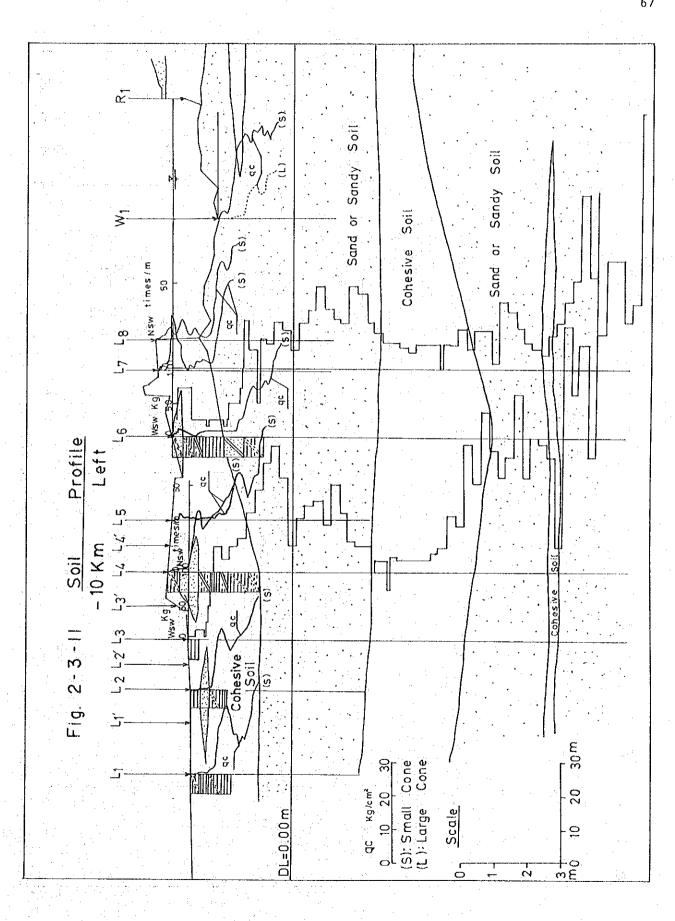


. .

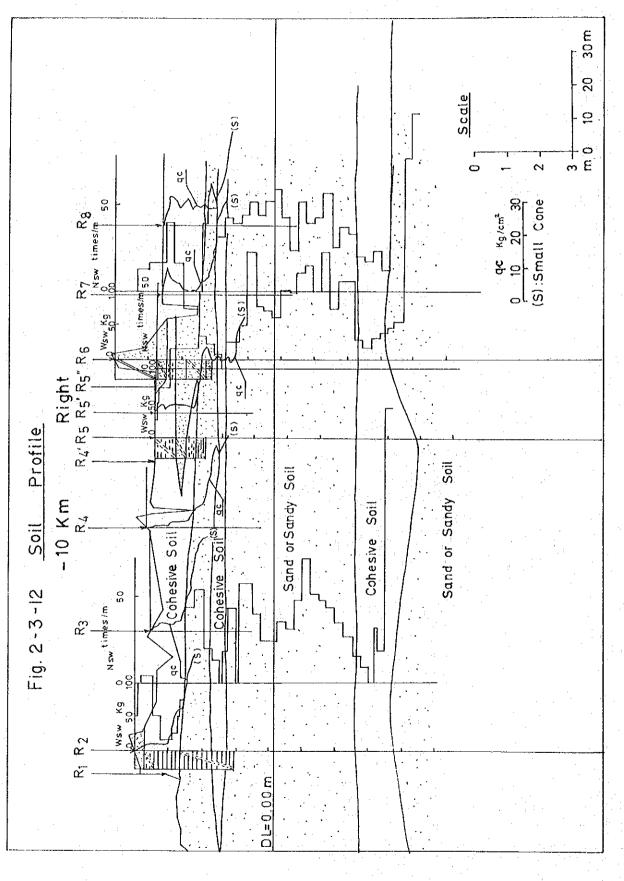


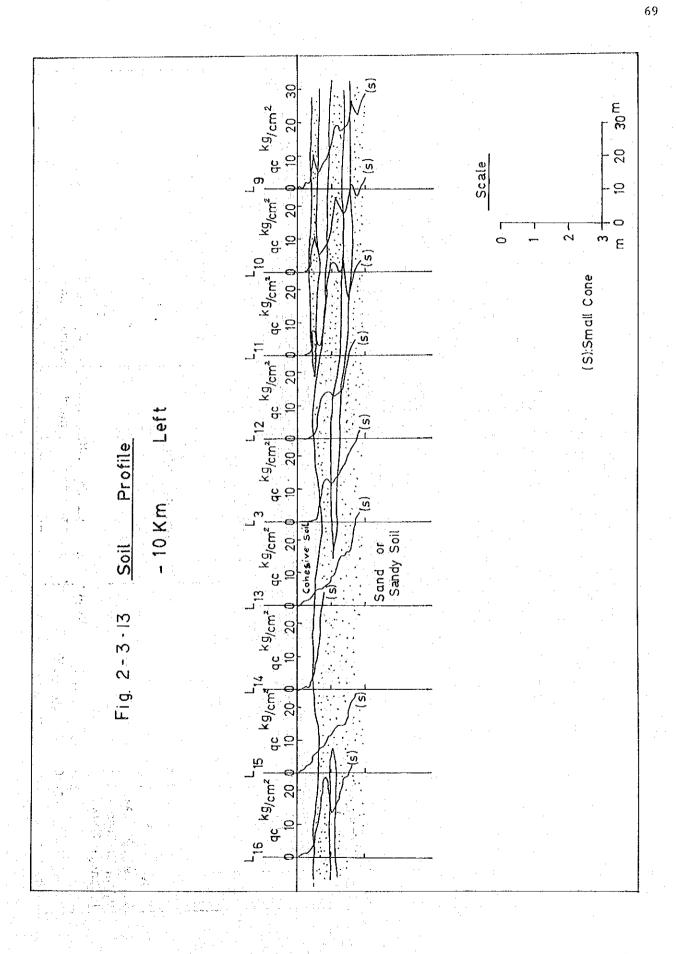



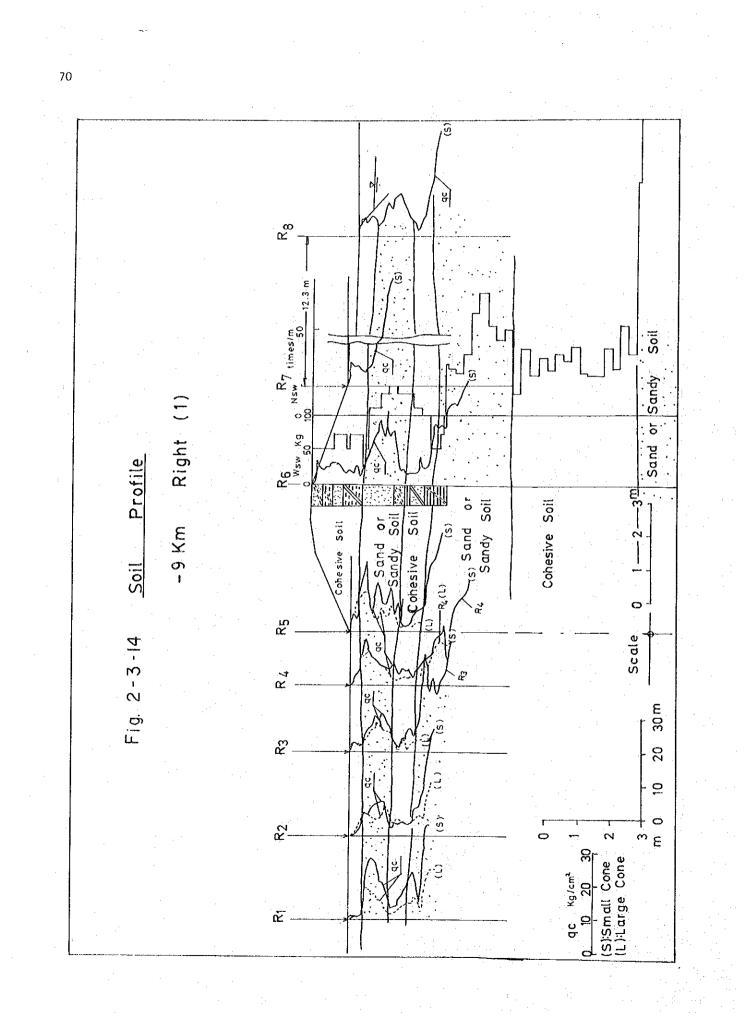



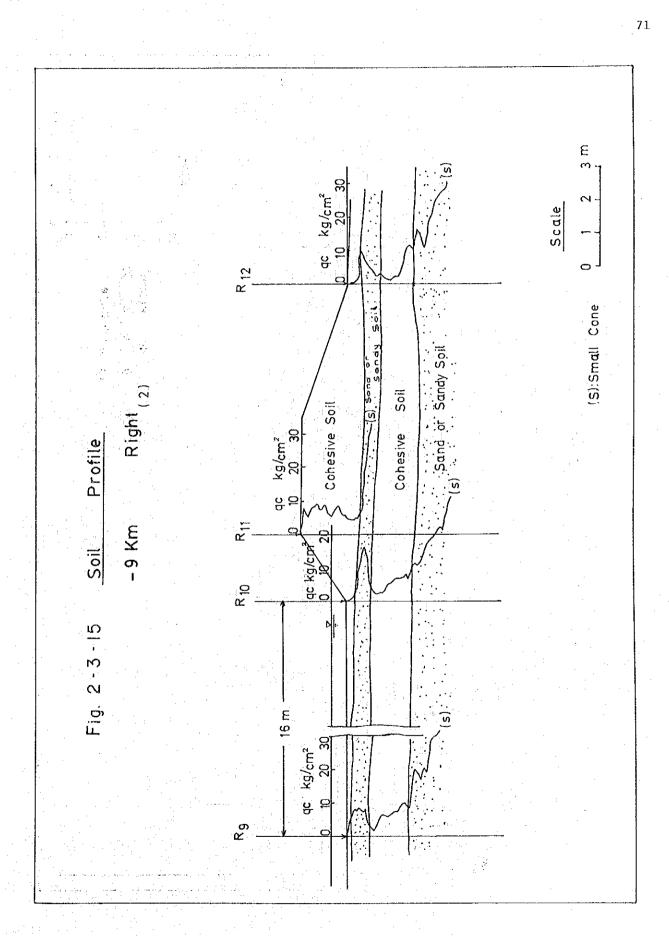



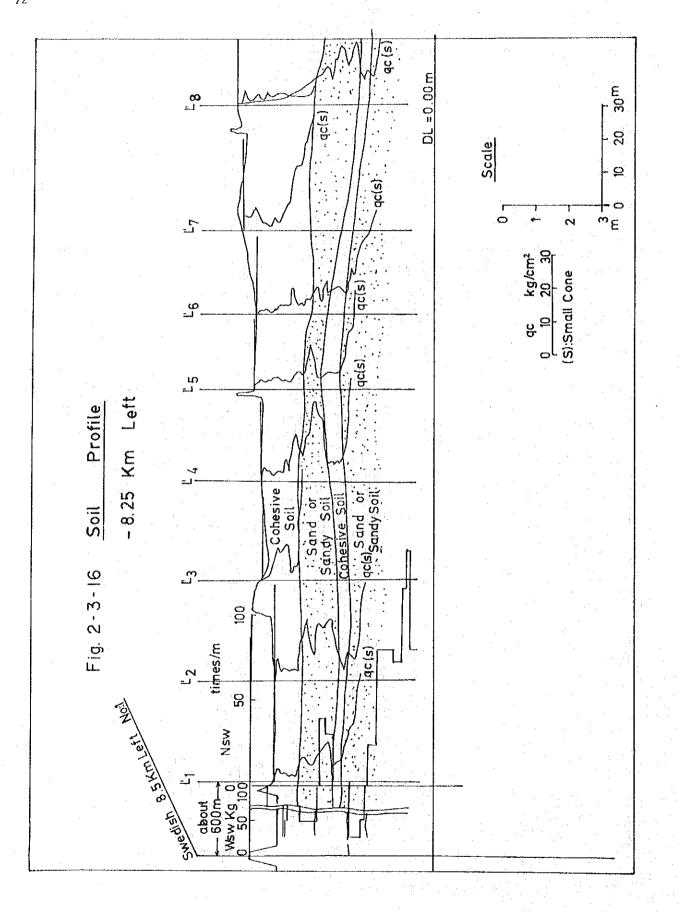



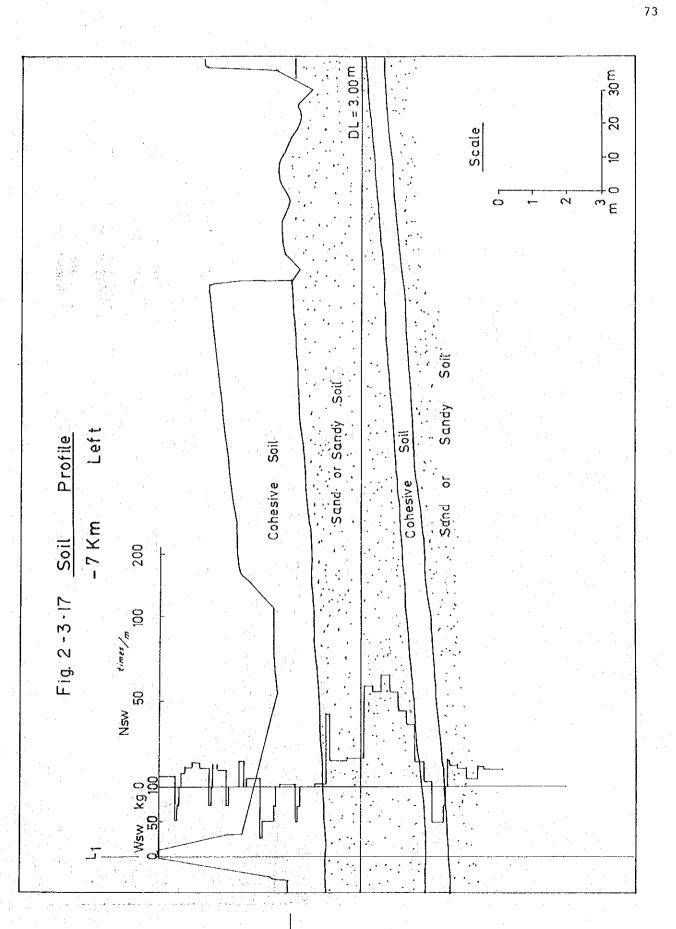



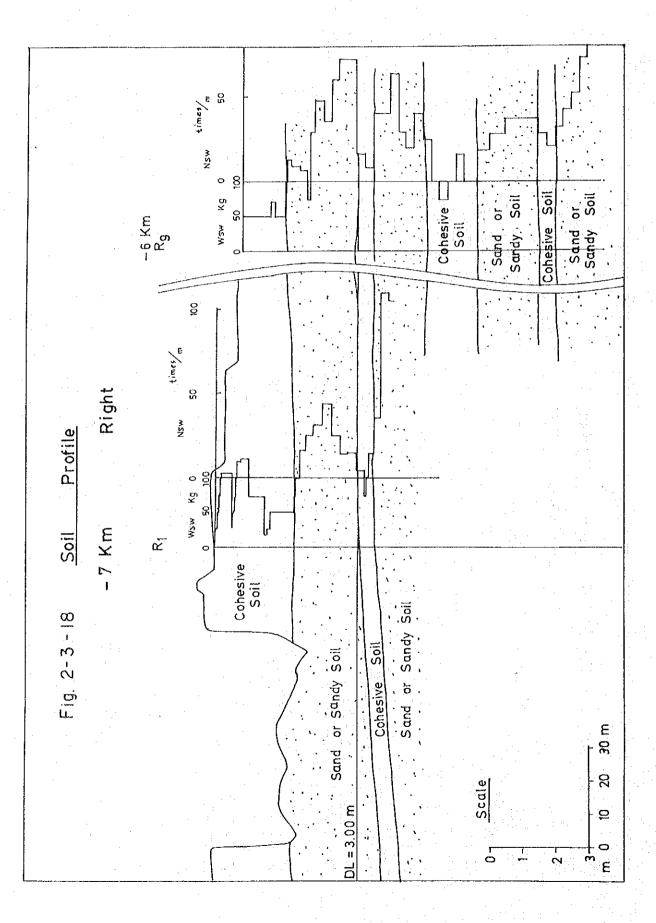



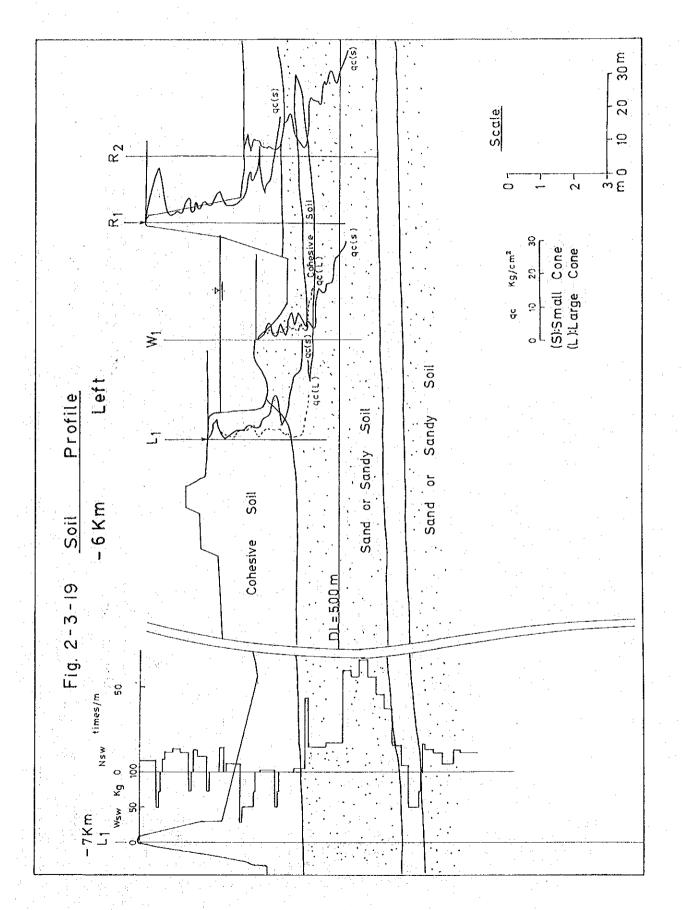



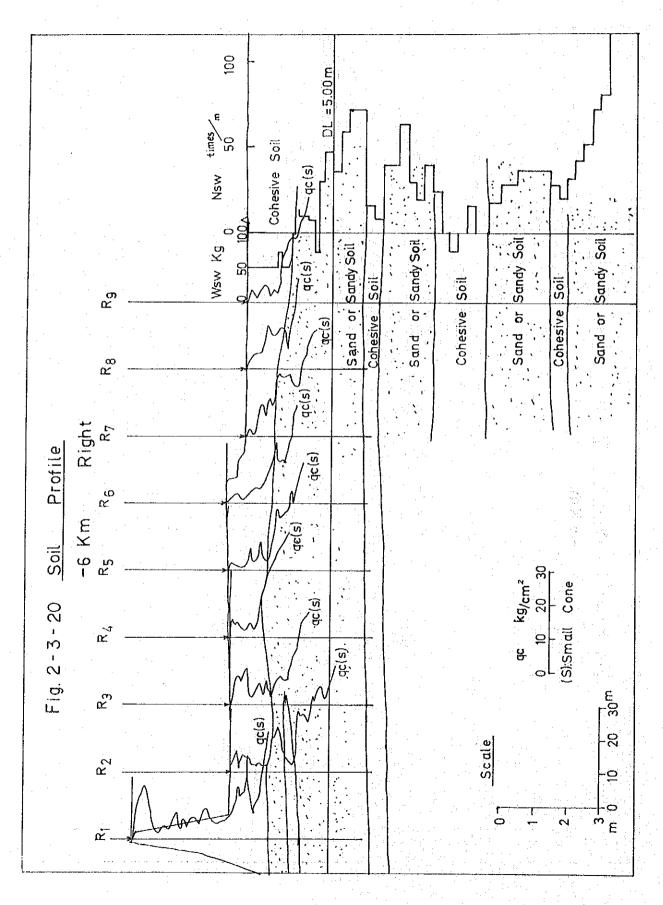



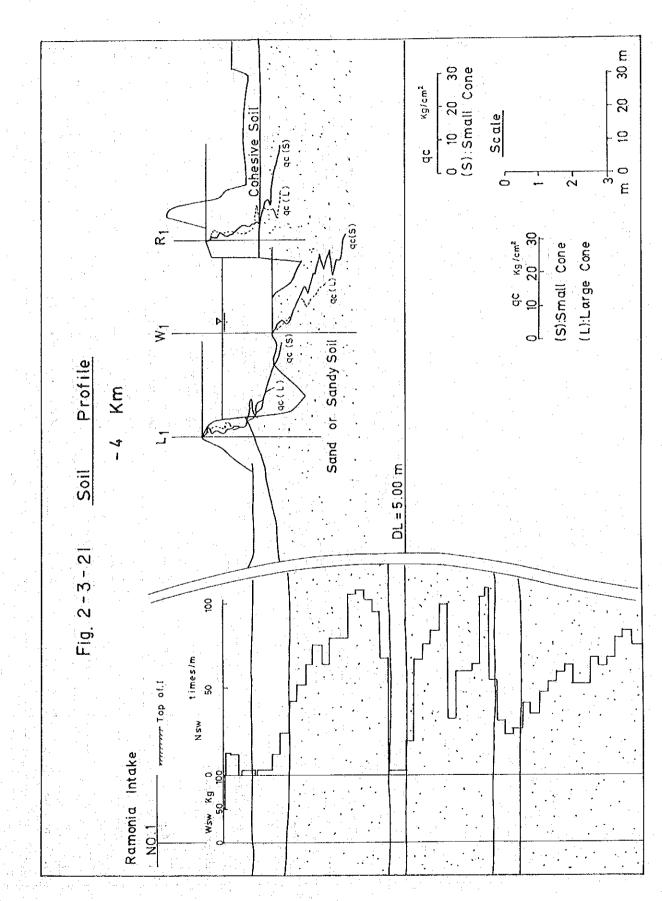


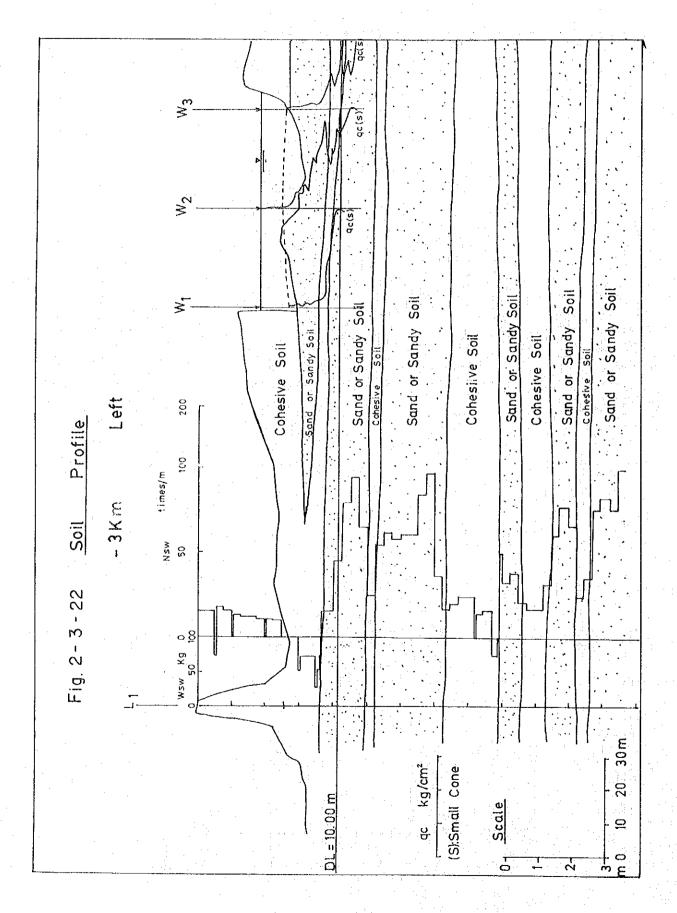



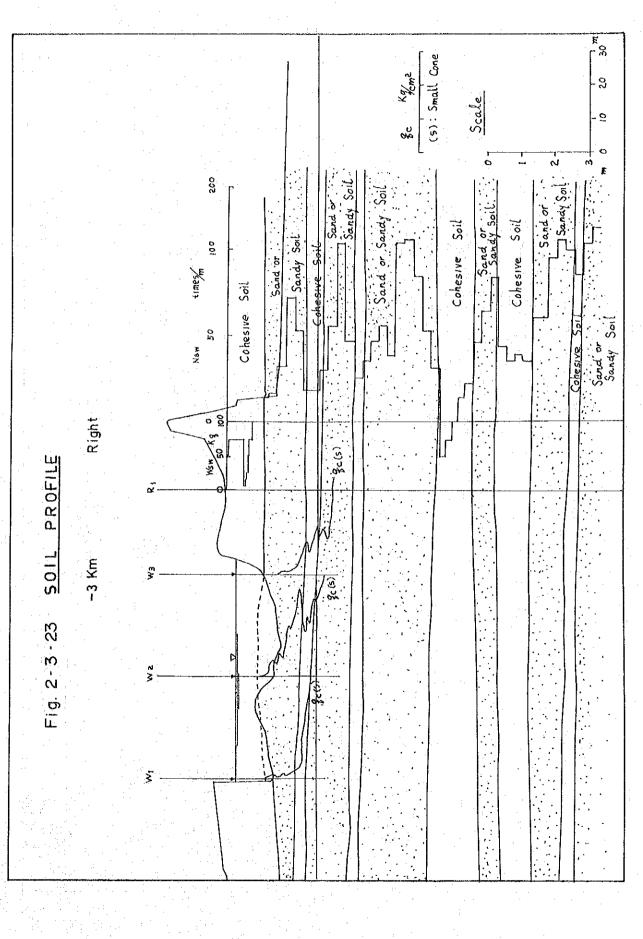



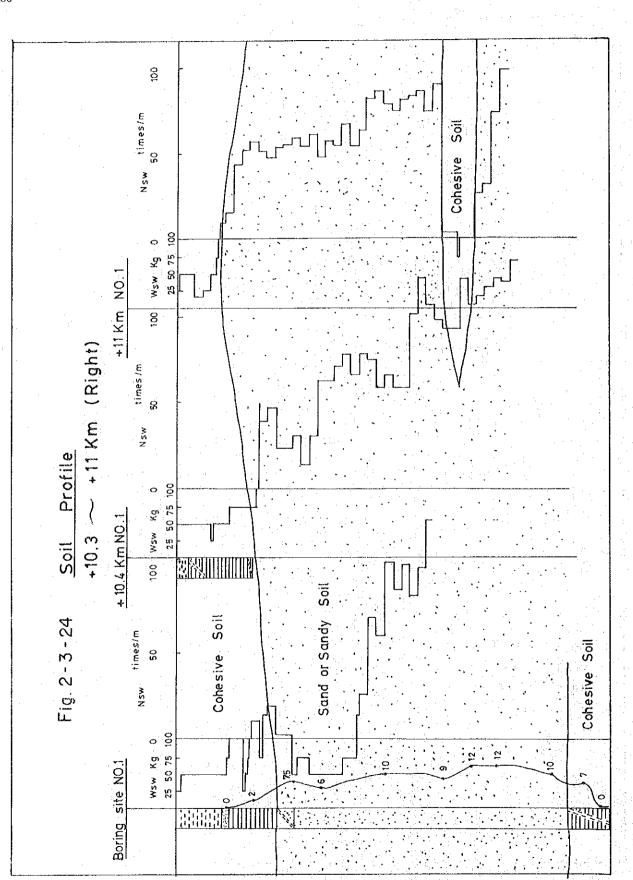


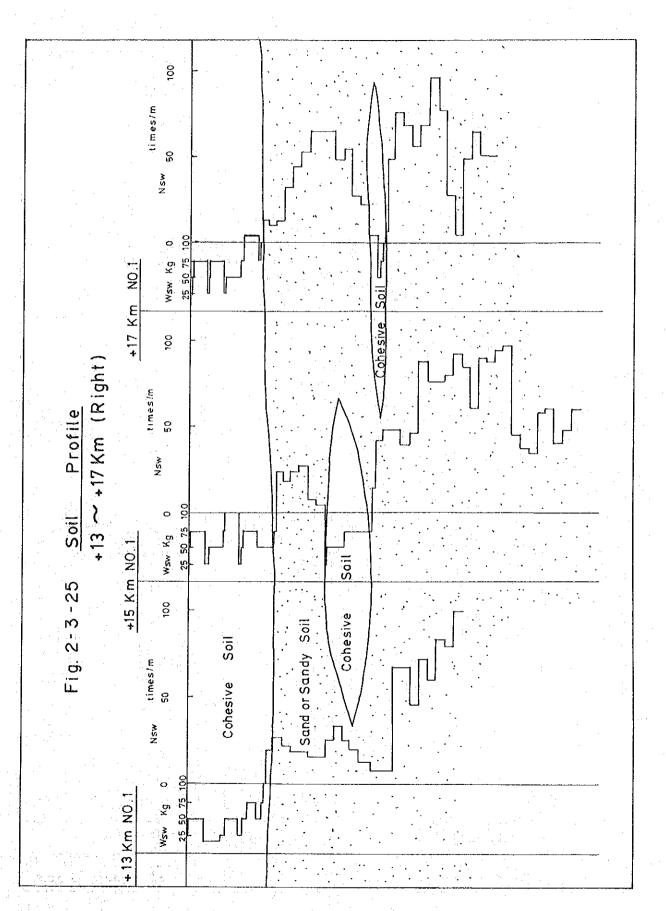



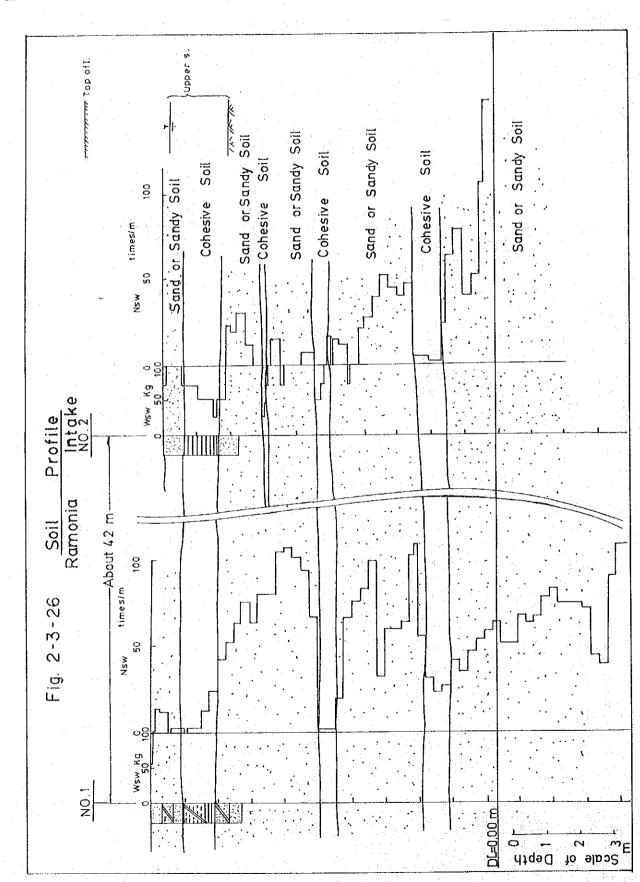



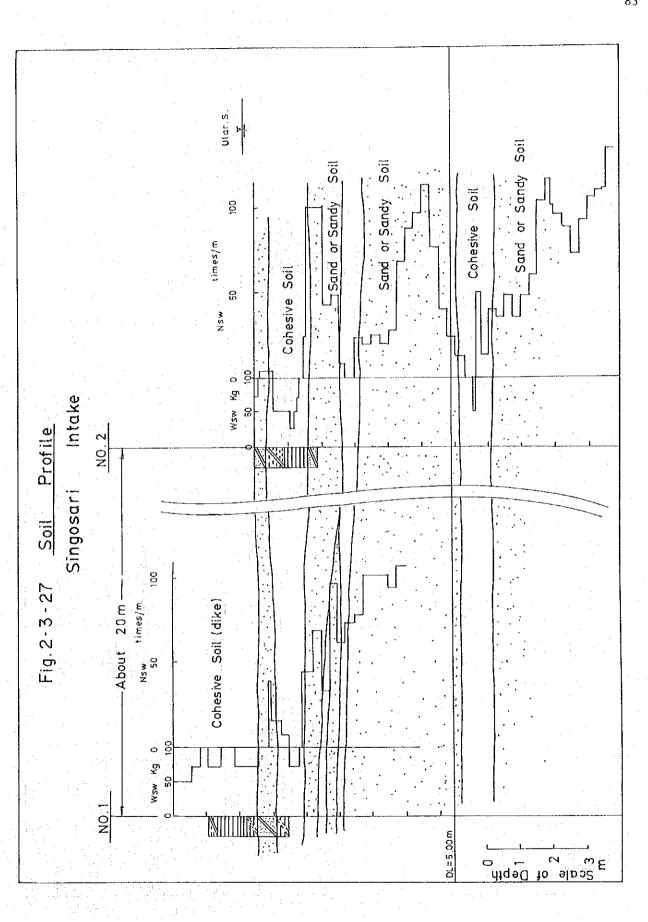



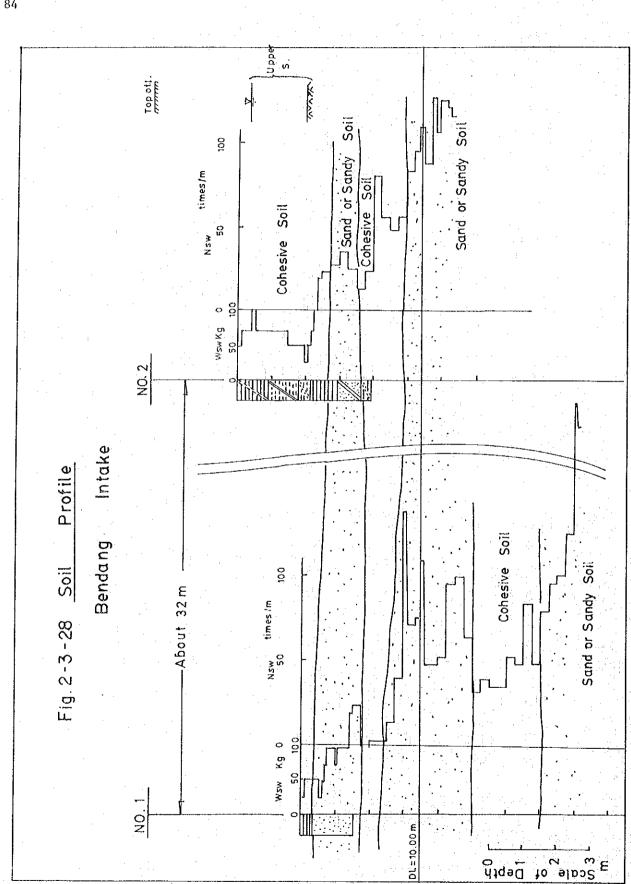



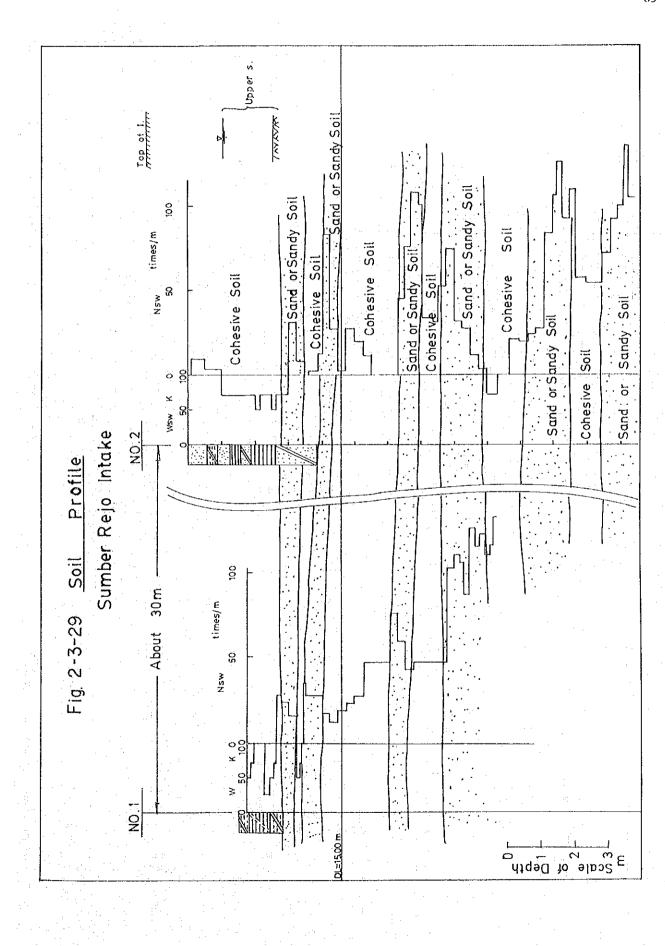


. .

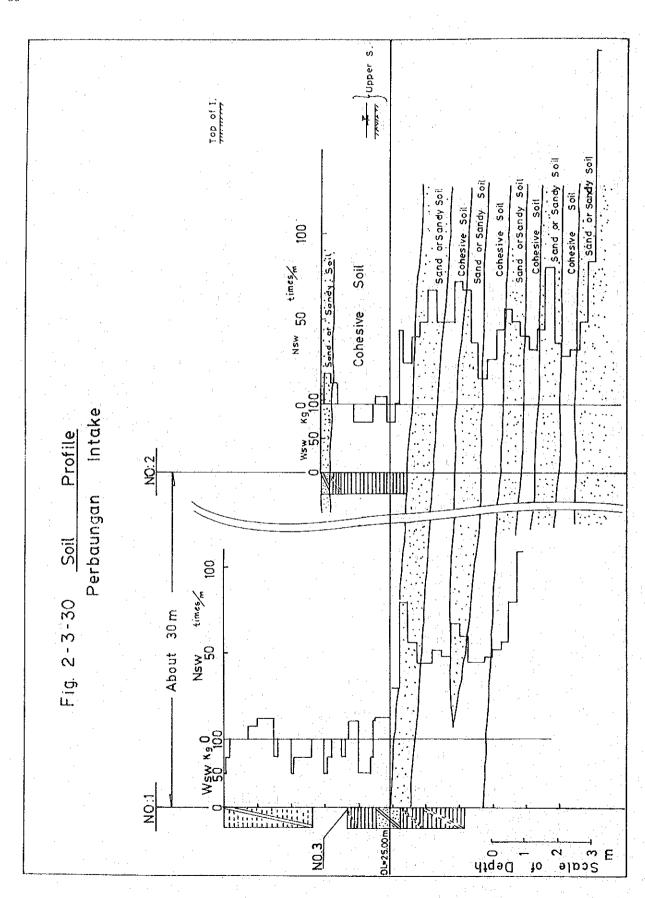


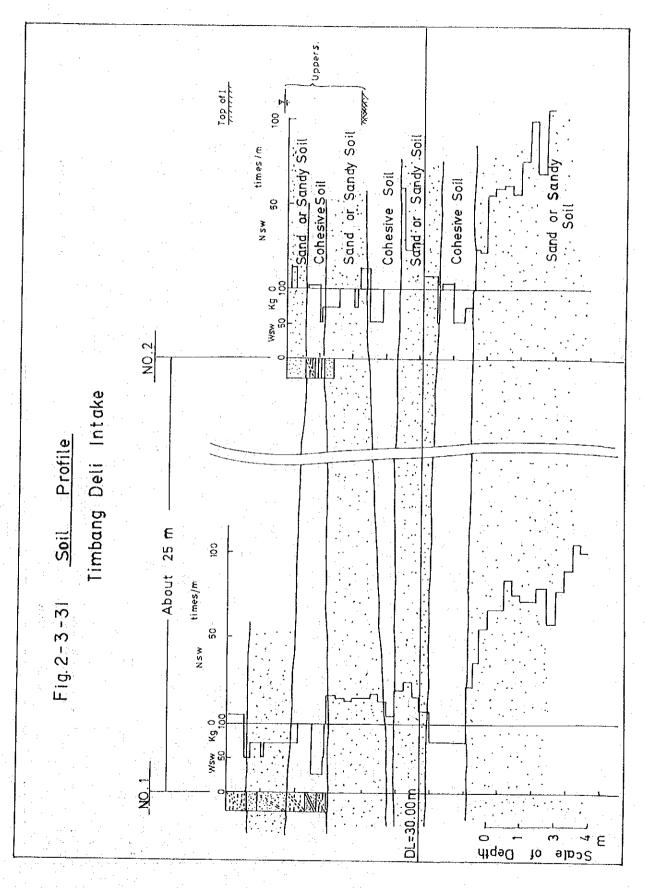



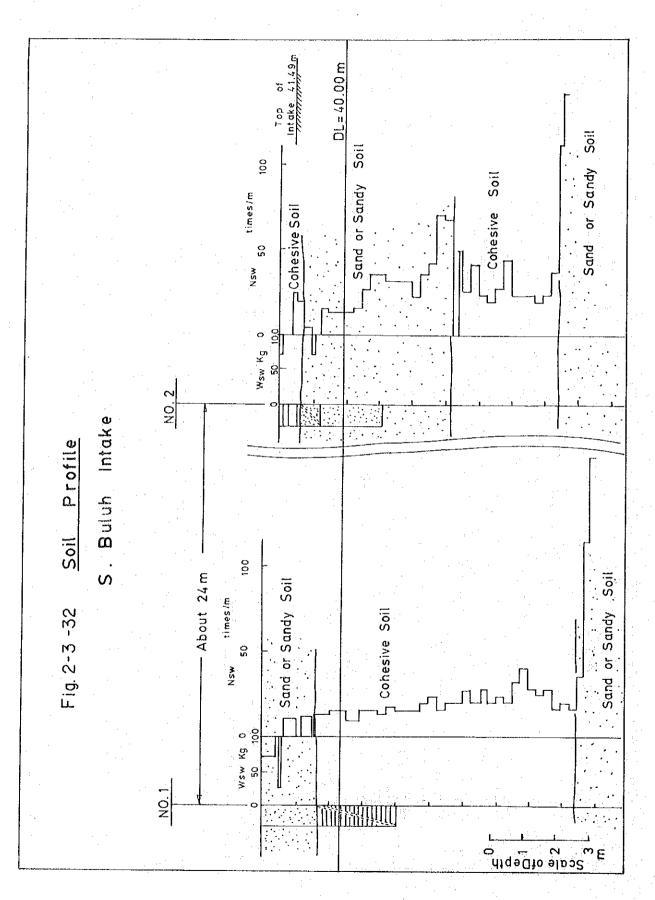



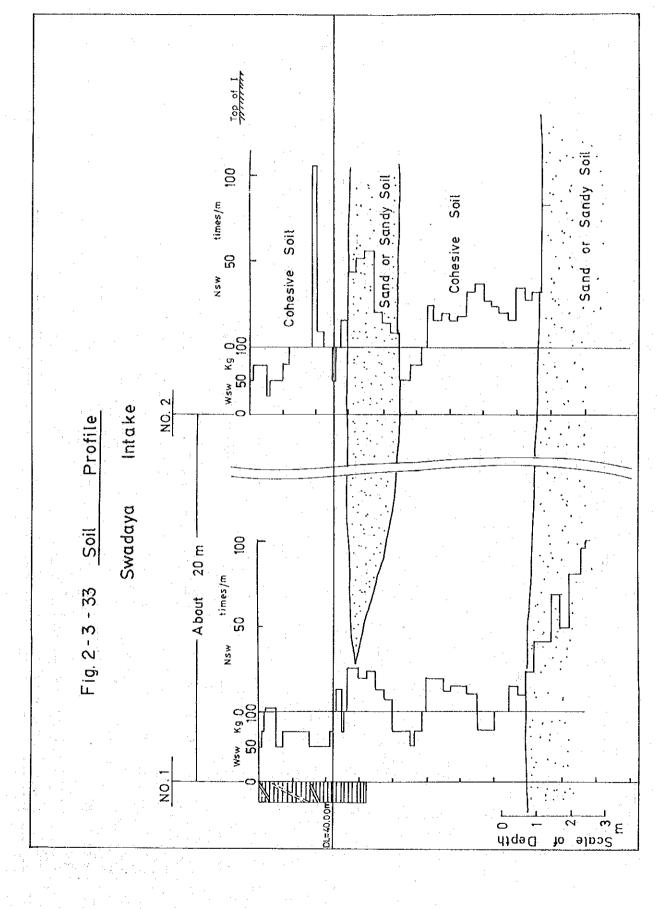



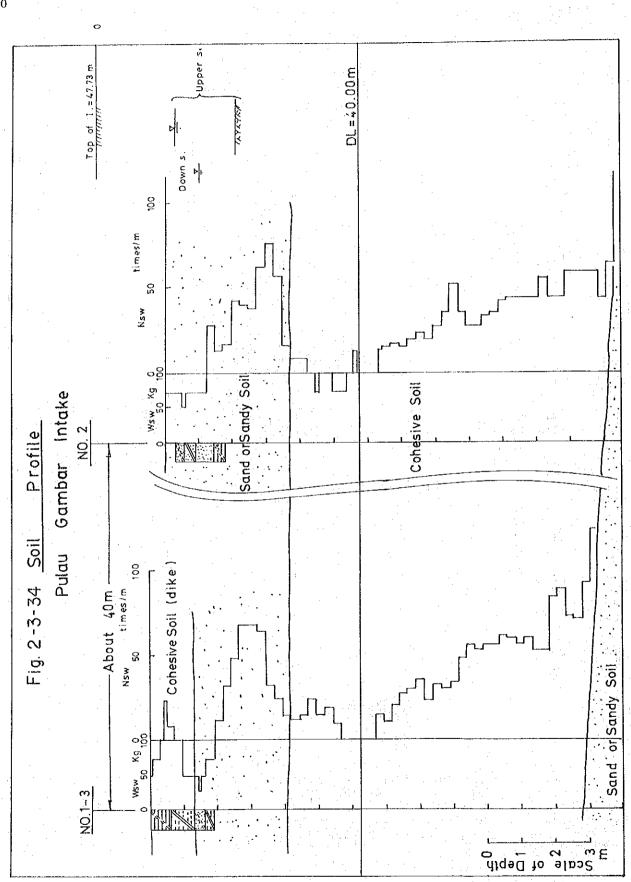



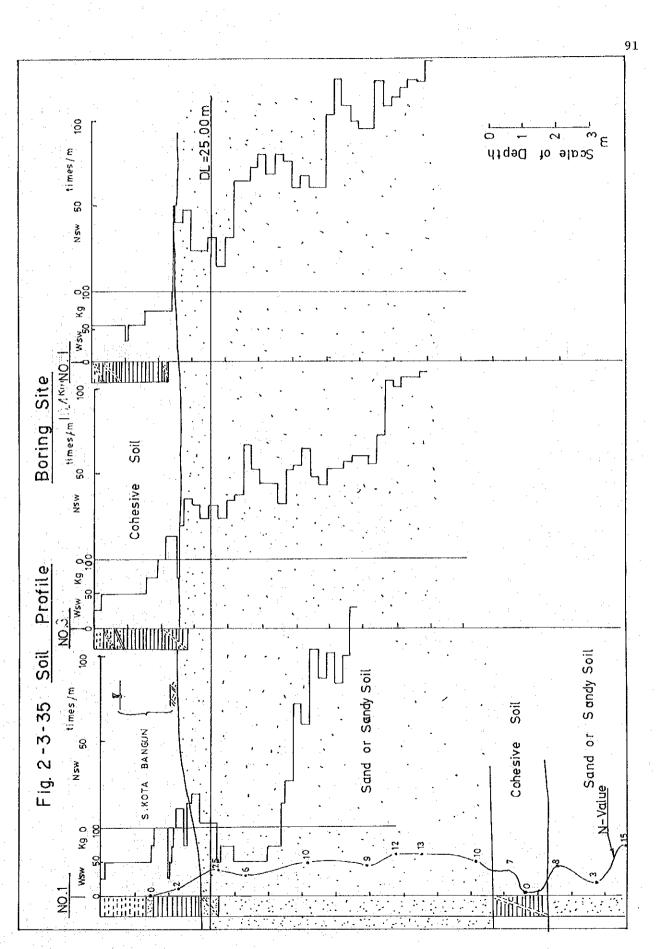



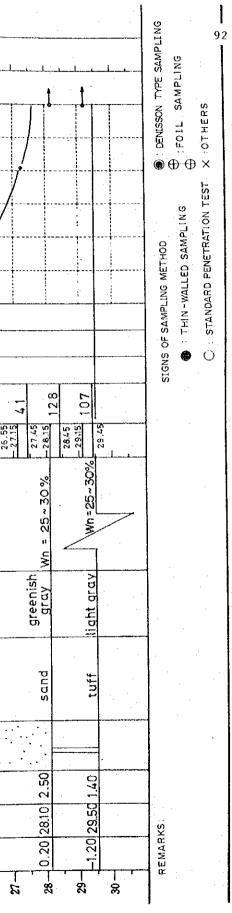


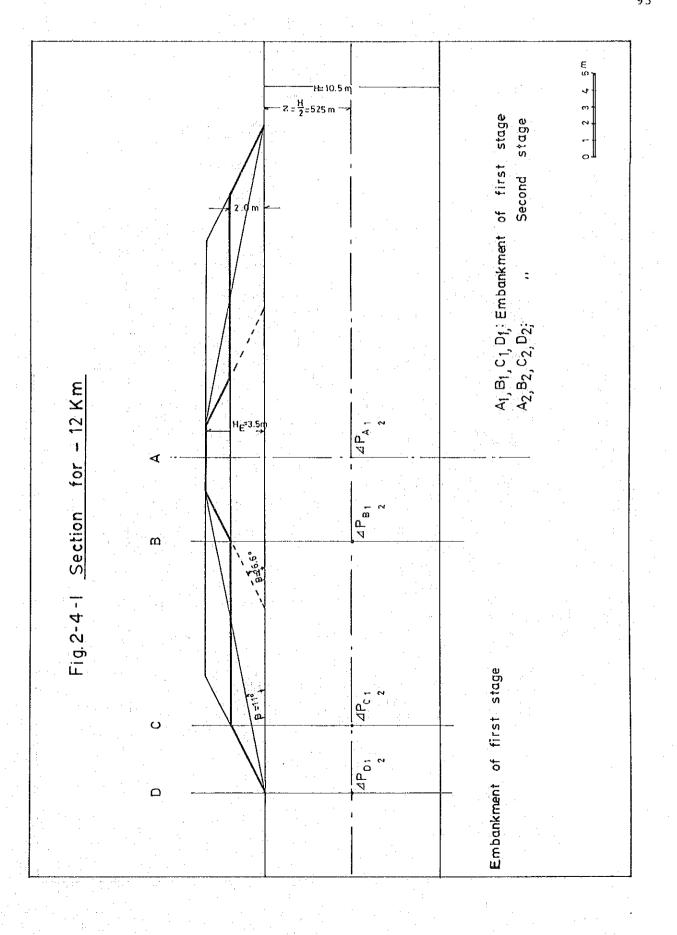


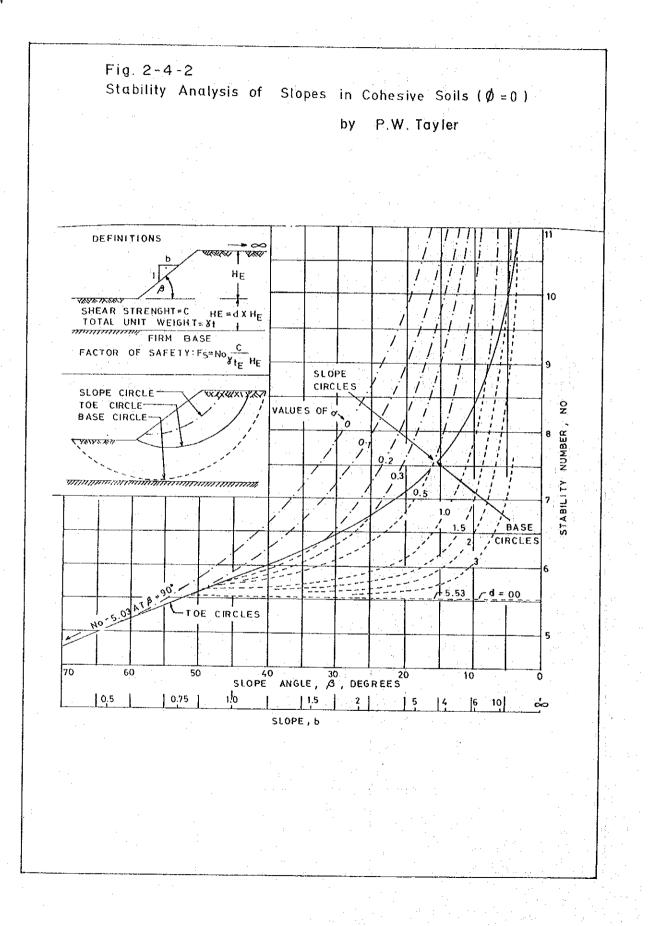



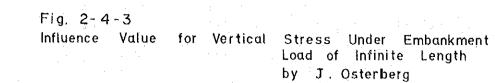




. . .


. .







110.3 Km       Right       ELEVATION       2.8.130       TERMINGS X       Display (X)		6-1	1 0 1 N	36	BURING	rog r							
No.         Image: State of the state	LOCATION: +	м Ж	Right		ELEVATION	8 8			Σ α ω	19 Sept. 197	710310	ct.19	- mi
RE         5 old.         Fold.         Fold.         Fold.         Control of the second of the secon		<b>•••</b>			GROUND-WATER LEVEL	0.6					ABORATO	H الح الح	- 696
And the first product of the	NC		I-L -	Ω.		STAI	F	ETRATION	TEST		SAM	PLING	1 (3)
2830	DEPTH M DEPTH		CLASSIFICATION		DESCRIPTION OF MATERIALS & MOISTURE CONTENT	BLOWS BY DEPTH T/D	BY BY DEPTH 20	0		40 50			SMPIGMAS
25:00         3:00         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10         1:10 </td <td>1.39</td> <td>3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3</td> <td>silt</td> <td></td>	1.39	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	silt										
24.00         3.00         5.7         2.43         5.70           24.00         3.50         5.7         2.40         5.70           24.00         3.50         5.7         2.40         5.70           24.00         3.50         5.7         2.40         5.70           25.7         1.40         5.7         2.40         5.70           25.7         1.15         5.7         2.40         5.7           25.7         1.15         5.7         2.40         10           25.7         1.13         1.56         5.7         1.33         1.58           25.7         1.33         1.56         5.7         1.33         1.56         1.15           25.17         1313         1.56         5.7         1.33         1.58         1.33         1.33           25.17         1313         1.56         5.70         1.22         1.33         1.35           25.17         1313         1.56         5.70         1.32         1.33         1.35           25.17         1313         1.56         5.70         1.32         1.33         1.55           25.17         1.32         1.45         1.32 <t< td=""><td></td><td></td><td>tine send</td><td>91 44</td><td></td><td><u> </u></td><td>. · ·</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			tine send	91 44		<u> </u>	. · ·						
15.17     13.13     1.56     1.0       15.17     13.13     1.56     1.0       15.17     13.13     1.56     1.1       15.17     13.13     1.56     1.1       15.17     13.13     1.56     1.1       15.17     13.13     1.56     1.1       15.17     13.13     1.56     1.1       15.17     13.13     1.56     1.1       15.17     13.13     1.56     1.1       15.17     13.13     1.56     1.1       15.17     13.13     1.56     1.1       15.17     13.13     1.56     1.1       15.17     13.13     1.56     1.1       15.17     13.13     1.56     1.1       15.17     13.13     1.56     1.1       15.17     13.13     1.56     1.1       15.17     13.13     1.56     1.1       15.17     13.13     1.13     1.13       15.17     13.13     1.13     1.13       15.17     13.13     1.13     1.13       15.17     13.13     1.13     1.13       15.17     13.13     1.13     1.13       15.17     13.13     1.13     1.13 <td< td=""><td>24.80 3.50 0.</td><td>4.7 50 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td><td><u>- 1</u></td><td>brown brown</td><td>= 55% = 55%</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	24.80 3.50 0.	4.7 50 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<u>- 1</u>	brown brown	= 55% = 55%								
15:17     3:13     1:58     1:0     1:0       15:17     3:13     1:58     2:00     1:0       15:17     3:13     1:58     2:00     1:0       15:17     3:13     1:58     2:00     1:2     2:0       15:17     3:13     1:58     2:00     1:2.20     2:12     2:12       15:17     3:13     1:58     2:1     2:00     2:20     2:12       15:17     3:13     1:58     2:1     2:20     2:20     2:12       15:17     3:13     1:58     2:1     2:20     2:20     2:12       15:17     3:13     1:58     2:1     2:20     2:20     2:20       15:17     3:13     1:58     2:1     2:20     2:20     2:20       15:17     3:13     1:58     2:1     2:20     2:20     2:20       15:17     3:13     1:58     2:1     2:20     2:20     2:20       16:17     2:00     2:00     2:20     2:20     2:20     2:20       16:17     2:00     2:00     2:20     2:20     2:20     2:20       17<10								<b>\</b>					
15.17     13.13     1.5.6     5.00     10       15.17     13.13     1.5.6     5.00     10       15.17     13.13     1.5.6     5.00     10       15.17     13.13     1.5.6     5.00     10       15.17     13.13     1.5.6     5.00     10       15.17     13.13     1.5.6     5.00     10.5       15.17     13.13     1.5.6     5.00     10.5       15.17     13.13     1.5.6     5.00     10.5       15.17     13.13     1.5.6     5.00     10.5       15.17     13.13     1.5.6     5.00     5.00       15.17     13.13     1.5.6     5.00     5.00       15.17     13.13     1.5.6     5.00     5.00       15.17     13.13     1.5.6     5.00     5.00       15.17     13.13     1.5.6     5.00     5.00       15.17     13.15     5.00     5.00     5.00       15.17     1.5.20     5.00     5.00     5.00       15.20     1.5.20     5.00     5.00     5.00       15.20     5.00     5.00     5.00     5.00       15.20     5.00     5.00     5.00     5.00    1	 				- <b>A</b> - <b>I</b> - <b>I</b>								
15.17     15.17     15.17     13.13     1.56     1.2     1.12     1.12     1.13     1.2       15.17     13.13     1.56     8.05     said     12     13.5     10       15.17     13.13     1.56     8.05     saity     ciay     12     13.5       15.17     13.13     1.56     8.05     saity     ciay     12     13.5       15.17     13.13     1.56     8.40     9.40     9.65     10       15.17     13.13     1.56     8.40     9.45     12     12       15.17     13.13     1.56     8.40     9.45     12     14.55       15.17     13.13     1.56     8.40     9.45     12     15       15.10     15.70     15.70     12.20     15.70     15     15       15.10     15.70     11.20     15.70     15     15     15       15.10     15.70     11.20     12     15     15     15       15.17     13.25     15     15     15     15     15       15     15.70     12.20     12.20     15     15     15     15       15     15     16     16     16     15		 		- -	<b>.</b>								
IS 115         8.05         sand         white to brown         white to brown         white to white to white to         12.20         13.3         1.58         7/33         12.20         13.3         1.58         7/33         21.82         7/33         21.82         7/33         21.82         7/33         21.82         7/33         21.82         7/33         21.82         7/33         21.82         7/33         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         21.82         <					<b>L</b> . *							·	
B.40     15.17     13.13     1.56     12     12     12     13.13     1.23     13.13       B.40     15.17     13.13     1.56     112     12.20     13.13     1.33     12       B.40     15.17     13.13     1.56     112     13.25     13.25       B.40     15.17     13.13     1.56     12.20     13.25     14.70       B.40     1590     6.77     13.25     14.70     11       B.40     1590     6.77     15.70     14.70     11       B.40     1590     6.77     18.20     11     14.70       B.40     1590     6.77     18.20     18.20     11       B.40     1590     6.77     18.20     18.20     11       B.40     1590     6.77     5.70     20.05     15.70     20.05       B.40     1590     6.77     18.20     18.20     19.20     19.20       B.40     1590     18.20     18.20     18.20     19.20     19.20       B.40     1590     18.20     18.20     19.20     19.20     19.20       B.40     19.20     18.20     18.20     19.20     19.20     19.20       B.40     19.20 </td <td></td> <td>• •</td> <td>-</td> <td></td> <td>-<b></b></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>1</td> <td></td> <td></td>		• •	-		- <b></b>			-			1		
15.17     13.13     1.56     12     10       15.17     13.13     1.56     112     10       15.17     13.13     1.56     112     113.1       15.17     13.13     1.56     112     113.1       15.17     13.13     1.56     112     113.1       15.17     13.13     1.56     112     113.1       15.17     13.13     1.56     112     113.1       15.17     13.13     1.56     112     113.1       15.17     13.13     1.56     112     12.20       15.17     13.13     1.56     112     12.20       15.17     15.17     13.12     15.17     15.21       15.17     15.20     15.20     15.20     15.20       15.17     5.00     113.20     15.20     15.20       15.20     13.26     15.20     15.20     15.20       15.20     13.20     15.20     15.20     15.20       15.20     13.26     15.20     15.20     15.20       15.20     13.26     15.20     15.20     15.20       15.20     13.26     15.20     15.20     15.20       15.20     13.20     10.25     15.20     15.20					- <b>48</b> -								
16.75     11.56     8.05     sand     white to brown,     white to frat     white to frat     white to frat     n.220     11.25     1/33       15.17     13.13     1.56     11.21     12.20     12.35     1/33       15.17     13.13     1.56     12.30     12.35     1/33       15.17     13.13     1.56     12.30     12.35     1/33       15.17     13.13     1.56     12.30     12.35     1       15.17     13.13     1.56     13.15     1     1       15.17     13.13     1.56     1     1     1       15.17     13.13     1.56     1     1     1       15.17     13.13     1.56     1     1     1       15.17     13.13     1.56     1     1     1       15.17     13.13     1.56     1     1     1       15.17     13.13     1.56     1     1     1       15.17     13.13     1.56     1     1     1       15.10     1     1     1     1     1       15.17     1     1     1     1     1       15.17     1     1     1     1     1		· ·	•		<b>1 4 1</b>	•••							
16.75         11.55         8.05         sand         brown, wn=20~30%         11.25         7.135         7.133           15.17         13.13         1.56         x         silty clay         gray         wn=50%         11.25         7.133         7.33           15.17         13.13         1.56         x         silty clay         gray         wn=50%         13.33         2.1           15.17         13.13         1.56         x         silty clay         gray         wn=50%         7.33         2.1           15.17         13.13         1.56         x         12.50         1.2.50         2.1         1.1         2.1         1.1         2.1         2.1         1.1         2.1         2.1         2.1         1.5         2.1         1.5         2.1         1.5         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1				white to									
15.17     13.13     1.58     51(ty clay     50,4     13.20     13.21     13.5     13.25       15.17     13.13     1.58     13.15     13.57     13.57     13.57     13.57     13.57     13.57     13.57     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     10.76     15.70     10.76     15.70     10.76     15.70     10.76     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70     15.70 <td< td=""><td>16.75 11.55</td><td>05</td><td>e e e</td><td>brown. mixed black</td><td>Wn=20~</td><td></td><td>· · · ·</td><td></td><td></td><td></td><td><del></del></td><td><u>-</u></td><td></td></td<>	16.75 11.55	05	e e e	brown. mixed black	Wn=20~		· · · ·				<del></del>	<u>-</u>	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 1 1 1 1 1 1 1			2010		i aficini and	 					<u>.</u>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	5	3			$\square$				· · · · ·	
B.40       1930 $6.77$ $5.70$ $\frac{15.32}{15.65}$ $15$ B.40       1930 $6.77$ $5.70$ $\frac{15.32}{15.50}$ $21$ B.40       1930 $6.77$ $5.70$ $\frac{17.80}{15.50}$ $15$ B.40       1930 $6.77$ $5.70$ $\frac{17.80}{15.50}$ $22$ B.40       1930 $6.77$ $5.23$ $10$ $22.30$ $21.50$ B.40       1930 $6.77$ $5.24$ $10$ $22.30$ $21.50$ $22.30$ B.40       1930 $6.77$ $5.70$ $8.40$ $10$ $22.30$ $21.50$ $22.20$ P.5.70 $70\%$ $70\%$ $51.70$ $22.50$ $22.50$ $22.50$ $22.50$ $22.50$ $22.50$ $22.50$ $22.50$ $22.50$ $22.50$ $22.50$ $22.50$ $22.50$ $22.50$ $22.50$ $22.50$ $22.50$ $22.50$ $22.50$ $22.50$ $22.50$ $22.50$ $22.50$ $22.50$ $22.50$ $22.50$ $22.50$ $22.50$ $22.50$ $22.50$ $22.50$ $22.50$	<u>r</u>				<b>.</b>	1					• • • • • • • • • • • • • • • • • • •		
8.40       1990 $6.77$ sand       white to       18.20 $15$ 15       2.1         8.40       1990 $6.77$ sand       brown       wn = 15-30% $19.70$ $3/20$ 8.40       1990 $6.77$ sand       brown       wn = 15-30% $19.70$ $3/20$ 9.40       1990 $6.77$ sand       gray $10$ $27.20$ $3/20$ 9.40       1990 $6.77$ wn = 15-30% $10$ $27.20$ $3/20$ 9.40       1990 $6.77$ wn = 15-30% $10$ $21.50$ $3/20$ 9.40 $190\%$ wn = 15-30% $10$ $21.50$ $21.20$ $21.20$ 9.40 $100\%$ $100\%$ $100\%$ $21.50$ $22.20\%$ $10$ 9.40 $100\%$ $100\%$ $100\%$ $21.50$ $22.50\%$ $22.50\%$ 9.40 $100\%$ $100\%$ $100\%$ $100\%$ $100\%$ $100\%$ $100\%$ 9.40 $100\%$ $100\%$ $100\%$ $100\%$ $12.50\%$ $12.50\%$ $12.50\%$						1 A 1		/			1	<u> </u>	
8.40       1930 $6.77$ sand       white to       18.20 $\frac{17.80}{16.50}$ 15         8.40       1930 $6.77$ sand       brown       wn = 15-30% $\frac{19.70}{16.50}$ $3/20$ 8.40       1930 $6.77$ sand       brown       wn = 15-30% $\frac{19.70}{16.50}$ $3/20$ 8.40       1930 $6.77$ sand $prown$ wn = 15-30% $\frac{19.70}{20.30}$ $3/20$ 9.40       1930 $6.77$ wn = 15-30% $\frac{19.70}{20.30}$ $\frac{15}{20}$ $\frac{118.70}{20.30}$ $\frac{15}{20.50}$ $\frac{118.70}{20.30}$ $\frac{15}{20.50}$ $\frac{118.70}{20.30}$ $\frac{15}{20.50}$ $\frac{12.50}{20}$ $\frac{23.70}{20}$	1				.4				f~				
8.40       1990       6.77       sand       white to       18.20 $\frac{18.20}{18.50}$ $\frac{19.70}{24}$ $\frac{3}{20}$ $\frac{19.70}{25.00}$ $\frac{3}{20}$ $\frac{19.70}{25.00}$ $\frac{3}{20}$ $\frac{10}{20.80}$ $\frac$		• •		-			· · · · · · · · · · · · · · · · · · ·						
8.40       19.30 $6.77$ sand       brown       wn = 15.30% $\frac{19.70}{19.50}$ $3/20$ 8.40       19.30 $6.77$ sand       gray $wn = 15.30\%$ $\frac{19.70}{10.50}$ $3/20$ 8.40       19.30 $6.77$ sand       gray $wn = 15.30\%$ $\frac{19.70}{10.503}$ $\frac{3/20}{10}$ $\frac{20.50}{10}$ $\frac{20.50}{10}$ $\frac{20.50}{20}$ $\frac{20.50}{2120}$ $\frac{22.50}{22}$ $22.5$		· · · ·		white to	1820			· • • • • • • • • • • • • • • • • • • •	,°		·		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.40 19.90	77	sand	dark brown	н 15 - 30 н	(m	→ 4.5/30	<b>\</b>			[]		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		SI P	mixed fine Sand	5				~/					
Vn = 70% Silt <u>22.80</u> Vn = 100% Peat <u>22.90</u> 2.70 2560 5.70 v Peat to black to black <u>22.45</u>				X D					,•	:			
27.0 25.60 5.70 v peat to black 22.45	[ ,	د. ۳ د			Wn = 70%Silt Wn = 100% Peat	2	<u> </u>				:		
27.00 25.60 5.70 v peat to black fitrous peat 27.05 25.05 5.70 v beat to black to black 22.45		ر ح		•					/	,			
2.70 25.60 5.70 v peat to black 24.75				dark		I I					•		
	2.70 25.60	70 ~ ~	peat	to black		- I.							
	2	·.				20.00			/-	7		·	

