6.3. Sea and Geotechnical Conditions

(1) Wave

1) Estimation for short period

Tables 6.3.1. (1) and (2) show the data obtained by the visual observation at the Port of Sorong through June 3 to July 24, 1980. In these Tables, "high" would approximately correspond to the wave with the maximum wave height of less than 1.0 m or a significant wave height of less than 0.6 m. Fig. 6.3.1. shows the frequency of waves of each rank. "High" wave appeared 21 times during the total observation period. Since the observation was made 104 times in all, the ratio of "High" waves is about 20 percent.

The wave height at the Port of Sorong is not so large because the port area is surrounded by many islands which prevent the waves from coming into the port and also because the wind relocity is not high around the port. This will be easily understood from Fig. 6.3.2. and Table 6.2.1.

Table 6.3.2. is the hindcasting of wave at the Port of Sofong based upon the wind data obtained by the Team during June 23 to July 23, 1980. The estimation corresponds fairly well to the visual observation results in Fig. 6.3.1. The maximum significant wave height is 0.5 m assuming that the diffraction and shoaling coefficient are 1.0.

2) Estimation for medium period

Geographically, the Port of Sorong, has no major obstacle to winds blowing from the sea. This means that wind records at Yefman airport could be safely applied to the estimation of wind waves. Moreover, according to the meteorolotical observation around the port, great winds, such as Typhoon in Japan, have never arisen in the past. The Team has estimated wave height and period within the port based on the data shown in Table 6.2.1. and Fig. 6.3.2. The winds were classified into four groups according to the prevailing wind directions, namely the first group is the winds from January through March, the second, in April and December, the third, from June through October and the last, in November. As the prevailing wind direction in May is the western south-west this group is omitted from the estimation of waves.

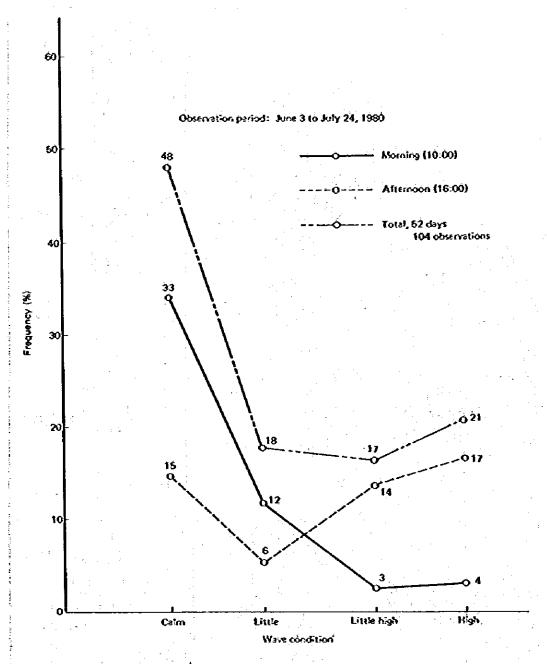
The Team tried to estimate waves with the maximum winds of the four groups, finding out that the most important group in terms of wave estimation in the port is the first group.

Table 6.3.1. Visual Wave Observation (June 3 to July 16, 1980)

	Date	Wave ob	oservation	Weat	her
NO.	Date	Morning	Afternoon	Morning	Afternoon
- 1	June 3	calm	calm	fine	fine
2	4	calm	little high	fine	rain/fine
3	Š	calm	calm	fine	fine
4	6	little	calm	cloudy	fine
5	7	little hight	high	fine	rain/fine
6	8	• calm	calm	sail :	cloudy/rain ·
7	9	little	little	cloudy/rain/fine	fine/rain
8	10	caim	caim	fine	fine
9	11	little	little	cloudy	cloudy
10	12	calm	calm	fine	fine
11	13	calm	cslnı	doudy	cloudy/rain
12	14	calm	calm	fine	line
13	15	little	little	fine	fine
14	16	calm	calm	rain/finé	fine
15	17	calm	calm	fine	fine/rain
16	18	calm	calm	fine	line∫rain
17	19	çalm	little	fine	fine
18	20	calm	little	fine	fine/rain
19	21	czim	little high	કર્તાી	fine
20	22	little high	little	cłoudy	cloudy
21	23	high	little high	fine	fine
22	24	little	high	fine	fine
23	25	calm	high	fine	fine
24	26	calm	little high	fine	fine
25	27	calm	high	line	fine
26	28	calm	high	કતાંગે	fine
27	29	calm	high	fine	fine
28	30	calm	high	cloudy	cloudy
29	July 1	calm	high	fine	fine
30	2	calm	little high	cloudy	cloudy
31	3	little	little high	cloudy	cloudy
32	4	caim	little high	fine	fine
33	5	calm	high	fine	fine
34	6	calm '	high	fine	fine
35	7	little high	high	fine	fine
36	8	cslm	high	fine	fine
37	9	calm	calm	fine	fine
38	10	calm	calm	કતાં	fine
39	11	little	little high	cloudy	_
40	12	high	high	line	-
41	13	little	little high	fine	
42	14	calm	little high	cloudy	~
43	15	little	little high	cloudy	
44	16	high	little high	cloudy	_

		Wave o	oservation	Weather				
No.	Date	Morning	Afternoon	Morning	Afternoon			
45	July 17	high	high	fine	-			
46	18	little	little high	cioudy/rain				
47	. 19	little	little high	cloudy	fine ·			
48	20	calm	calm	sníl	fine			
49	21	little	little high	fine	fine			
50	22	calm	high -	fine :	fine			
51	23	calm	high	fine	fine			
52	24	calm	calm	fine	fine			

Notes: 1. calm


: between calm and little high little : waves with occasional white caps little high : waves with frequent white caps high

2. observation : morning 10:00

afternoon 16:00

: the center point between Concrete Wharl and Doom Jetty position

Fig. 6.3.1. Frequency of Each Rank of Waves

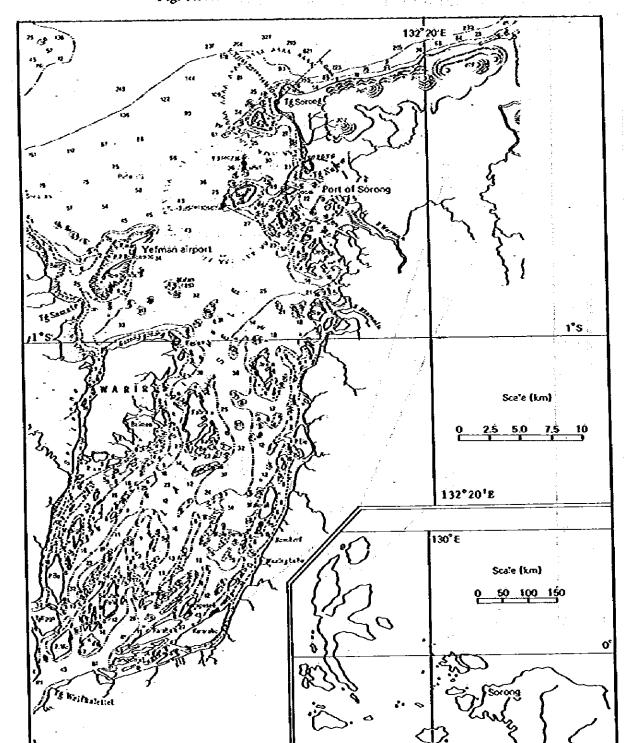


Fig. 6.3.2. Islands Surrounding the Port of Sorong

Table 6.3.2. Wave Estimation by S.M.B. Method

1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Tim	₩ ,		Speed	Duration	Fetch	Wave height Hy3 (m)		
Date was	Start	End	Direction	(m/sec)	(hr)	(km)	From duration	From fetch	
June 23, 1980	15.20	15.25	SSW	6	0.083	22	< 0.2	0.45	
	15.25	15.30	SSW	5.\$	0.083	22	< 0.2	0.41	
:	15.37	15.40	SSW	5.3	0.05	22	< 0.2	0.39	
	15.57	16.15	SSW	5,3	0.30	3 2	< 0.2	0.39	
	16.40	16.45	SSW	5.2	0.083	22	< 0.2	0.38	
June 26, 1980	16.20	16.50	S	5.4	0.50	6.3	< 0.2	0.26	
. Para la	18.00	18.27	S	5.2	0.45	6.3	< 0.2	0.24	
June 27, 1980	12.35	12.58	S-SSW	6.5	0.38	22	< 0.2	0.50	
	13.22	13.45	S-SSW	6.2	0.38	22	< 0.2	0.48	
	14.03	17.15	S-SSW	6	3.2	22	0.4	0.46	
July 1, 1980	13.20	- 15.30 -	SSW	5.5	2.17	22	0.3	0.41	
	16.10	17.10	SSW	5.5	1	22	0.2	0.41	
July 2,1980	12.18	12.32	S	5.2	0.3	6.3	< 0.2	0.24	
	14.03	14.14	SSW	5.2	0.08	22	< 0.2	0.38	
	14.28	15.00	₹S-SSW	5.4	0.53	22	< 0.2	0.40	
	15.12	15.38	SSW	6	0.43	22	< 0.2	0.46	
	16.32	16.43	W	5.2	0.35	5	< 0.2	0.23	
	17.42	18.26	WNW	6	0.73	25	0.2	0.48	
July 4,1980	17.12	17.45	S	5.2	0.55	6.3	< 0.2	0.24	
	18.42	20.30	s	5.5	1.80	6.3	0.27	0.27	
July 8,1980	12.30	15.30	SSW	6	3	22	0.40	0.46	
	15.30	16.0Ó	S-SSW	5.4	0.50	22	< 0.2	0.40	
	16.08	16.22	SSSW	5.2	0.23	22	< 0.2	0.38	
	16.40	16.46	SSSW	5.2	0.10	22	< 0.2	0.38	
, a 44,	16.55	17.60	S-SSW	5.2	0.083	22	< 0.2	0.38	
	18.00	18.05	S-SSW	5	0.083	22	< 0.2	0.36	
July 11, 1980	14.24	14.37	SSW-SW	5.5	0.22	25	< 0.2	0.43	
	14.50	15.30	SSW-SW	6	0.67	25	0.2	0.49	
	15.30	18.30	S-SSW	5.5	3	22	0.35	0.41	
July 12, 1980	14.27	14.54	S-SSW	5.5	0.45	22	< 0.2	0.41	
July 17, 1980	17.20	17.30	SSW-SW	5.5	0.17	25	< 0.2	0.43	
July 22, 1980	15.00	19.30	SSW	5.2	4.5	22	0.40	0.38	
July 23, 1980	13.00	19.30	SSW-SW		6.5	25	0.45	0.41	

Reference (Application of the Control of the Cont

表示。形容(A) Tage and A section (A) Tage and A

January through March:

The wind velocity is 17 m/sec, and the offshore wind direction is the west-north west. The fetch is 320 km from the Halmahera island to the port of Sorong. As the wind duration was not observed, it is assumed to be three hours. The wave height and period were estimated through the S.M.B. method as follows:

$$H_{1/3} = 180 \text{ cm}$$

 $T_{1/3} = 4.7 \text{ sec}$

where,

H_{1/3}: offshore significant wave height

Tita: wave period

By applying the diffraction theory to the simplified chart, the diffraction coefficient K_a for waves coming into the port area is obtained as follows:

$$K_4 = 0.75$$
 in front of the existing wharf

The shoaling coefficient is 1.0, because the water depth in the port is large enough to omit these effects.

Therefore, the wave height in front of the wharf is easily calculated:

$$H'_{1D} = 0.75 \text{ X } H_{1D} = 0.75 \text{ x } 180 = 135 \text{ cm}$$

The summary of estimation is as follows:

Wave height $H'_{1/3}$: 135 cm Wave period $T_{1/3}$ sec. : 4.7 sec. Wave direction : WNW

Occurence : January to March.

The wave frequency calculated from Table 6.2.1. is 0.08 percent in 11 years, corresponding to 0.29 day per year.

Accreding to another report, the wave height and period were estimated as follows:

Wave height : 114 cm
Wave period : 5.4 sec.
Wave direction : 300°
Occurring : March

Source: UN Report on Preliminary Design for Project FUNDWI-30, a Detailed Engineering Design for Port Facilities in Sorong in West Irian, Indonesia, Pacific Consultants International, March 1973.

This estimation is based upon the assumption. The estimation, however, may be considered reasonable because, at the existing Wooden Wharf and the Concrete Wharf which opened in 1978, no disadvantage due to high waves is reported, and houses at seashore in the bay are free from revetments to high waves.

(2) Tidal Current and Tide Range

The Tidal Stream Tables and the Tide Tables published by the Markas Besar Tni-Angkatan Laut, Jawatan Hidro-Oceanografi, Jakarta in 1980 show the characteristics of the tidal current

and the tide range at Sorong. The Team checked the tide at the Wooden Wharf confirming little difference between our survey and the published tide table. As for the tidal stream, since the current meter provided by the Indonesian hydraulic survey team did not operate well, the published tidal stream tables were used for reference. Table 6.3.3. and Table 6.3.4. are the results analyzed by the harmonic method. The constant current has not been included in the prediction of the tidal current.

Table 6.3.3. Tidal Current

Fidal constants	M ₂	S ₂	N ₂	K ₂	K ₁	O ₁	P ₁
Amplitude in sea-miles 36° – g°	0.74	0.21	0.16	0.06	0.51	0.33	0.17

Note: Standard time (GMT + 09.00).

Position:

Latitude	01°1 S
Longitude	131° 1 E

Constant stream in sea-miles:

	1.5		and the second	1.5%		, ,		A section of		Nov.	
+0.15	+0.15	+0.15	+0.15	30.15	+0.15	ŧ0.15	10.15	+0.15	±0.15	+0.15	+0.15

Source: "Tidal Stream Tables" Markas Besar Tni-Angkatan Laut, Jawatan Hidro-Oceanografi, Jakarta, 1980.

Table 6.3.4. Tidal Range

Tidal constants	. M ₂	Sz	N,	K ₂	K ₁	Oı	P ₁	M ₄	MS ₄	Zo
Amplitude in sea-miles	41	18	7	5	23	13	8	_	_	100
360° – g°	165	150	185	150	134	187	134			

Note: Standard time (G.M.T. + 09.00)

Position:

Latitude	00°.8	s	
Longitude	131°.2	Е	

Source: "Tide Tables" Markas Besar Tni-Angkatan Laut, Jawatan Hidro-Oceanografi, Jakarta 1980.

(3) Sea Depth

1) Outline of sounding

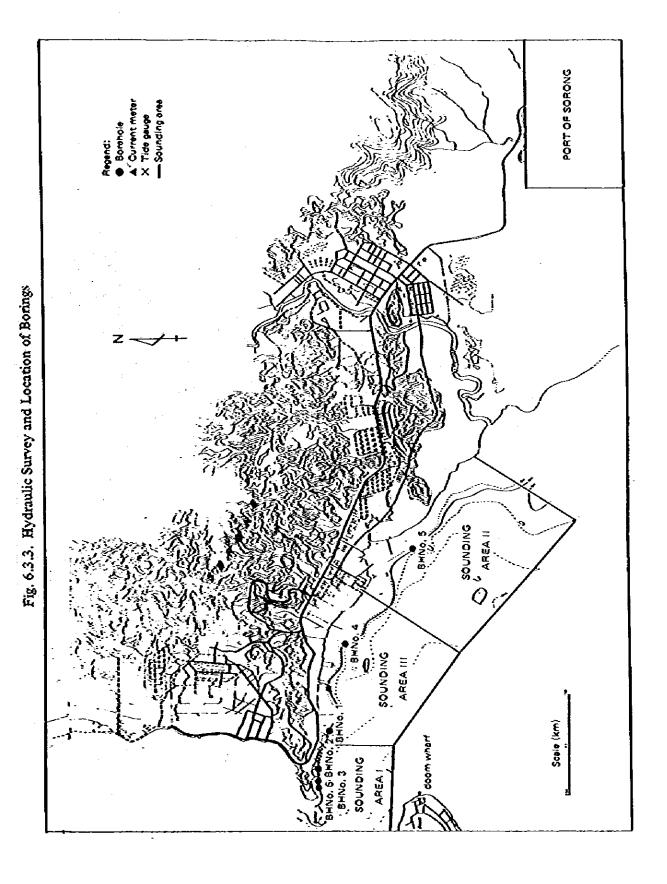
The sounding was carried out by DGSC, the Government of Indonesia, under the guidance of the engineer of the Team. The area of sounding is divided into three areas as shown in Fig. 6.3.3. The outline of the sounding is shown in Table 6.3.5.

The depth of the sea is revised to the Low Water Springs (LWS) based upon the bench mark installed by the Markas Besar Thi-Angkatan Laut, Jawatan Hidro-Oceanograft, in 1977 after confirming the time lag of the tide at the Wooden Wharf. The Low Water Spring is shown with

the Mean Sea Level (MSL) as follows:

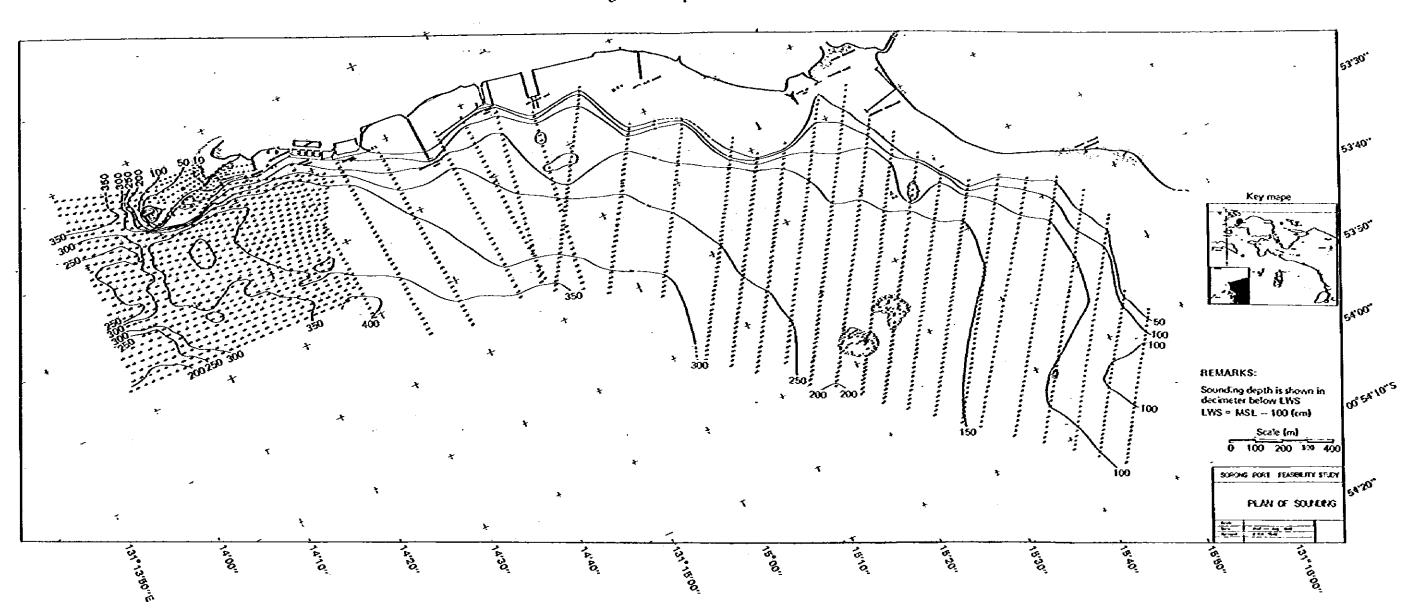
LWS = MSL-100 (cm)

Table 6.3.5. Outline of Sounding


Sounding area No.	Area (km²)	Interval of sounding (m)
I	0.7	25
33	1.6	100
111	1.0	200
Total	3.3	-

2) The result of the sounding

Fig. 6.3.4. show the depth of the seabed below the LWS in the areas I, II, and III. The typical topographical features are as follows:


- 1) The contour lines of the depth are very complicated because the sea went into the mountainous areas in ancient times.
- 2) The gradient of the seabed increases sharply as it goes offshore, especially over the depth of 5 m.
- 3) There are many reefs and shoals in the port area.

ing the control of th

- 161 --

Fig. 6.3.4. Depth of the Sea

(4) Soil

1) Outline of soil survey

The soil survey was conducted by DGSC, the Government of the Republic of Indonesia, in cooperation with the Team at 6 points. The field investigations were started from June 19, 1980 and completed July 21, 1980. The Standard Penetration Test (SPT) was carried out in conformity to Japan Industrial Standard at every 1.5 m interval. A pontoon was used for the boring. The location of each borehole was decided by the geotechnical engineer of the Team. The depth of the sea is revised to the LWS based upon the tide table published by the Jawalan Hidro-Oceanografi in 1980.

The outline of soil investigation on the site is shown in Table 6.3.6.

Table 6.3.6. Outline of Soil Investigation

Site	: The Port of Sorong, Irian Jaya, Indonesia
Period	: From June 19, 1980 to July 21, 1980

Equipment: Rotary boring machine (SANDER 3A, Kokenshisui)

Casing NW, Single coretube NX for rock

Test : SPT at every 1.5 m deep

Borehole No.	Sea depth below LWS (m)	Depth below seabed (m)	SPT (blows)	Period	Remarks
BH No. 1	-8.7	15.6	11	July 16 to July 19	
BH No. 2	-9.7	15.3	10	July 7 to July 9	Core sampling 2.6 m
BH No. 3	-7.1	7.0	2	July 2 to July 4	Core sampling 2.6 m
BH No. 4	-9.2	22.5	15	June 24 to June 27	
BH No. 5	-9.4	15.3	10	June 19 to June 22	
BH No. 6	-8.2	3.3	2	June 30 to July 1	<u> </u>
Total		79.0	50		:

Note: No laboratory tests were conducted.

2) Location

The location of boreholes is shown in Fig. 6.3.3.

It was decided with reference to the topographical conditions at the Port of Sorong and also the development plan of the port. Boreholes No. 1, 2, 3 and 6 correspond to the site for the medium term plan, and, boreholes No. 4 and 5 for the master plan.

The position of each borehole is shown in detail in Table 6.3.7.

Table 6.3.7. Detail Position of Each Borehole

1967 2 子手的

	gaoic c.s	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ting the first and the second state of the second s
Borehole No.	Longitude (East)	Latitude (South)	Remarks
1	131° 14′ 37.45″	00° 52' 50.6"	At the corner of the Wooden Wharf
, 2 , ±	131° 14' 25.4"	00° 52 47.3	Between the Ferry Jetty and the Pertamina Barge
3	131° 14' 22.4"	00° 52′ 47.6″	15 m to the west from the Ferry Jelly (1984)
4	131° 15′ 79″	00° 52′ 56.0″	Near the Alfa Kurnia Jetty
5	131° 15′ 33.5″	00° 53′ 22.0″	In front of the Fishery's Jetty
6	<u>-</u>		Near the Borehole No. 3, 15 m to the west from the the borehole No. 3

3) Result of soil investigation

. Figs. 6.3.5. (1), (2), (3), (4), (5) and (6) show the boring logs at each borehole. Among 6 boreholes, the bearing stratum appears at the depth not more than 20.2 m below the LWS except the borehole No.4. As expected, at the boreholes No. 3, and 6, the stratum composed of rock was found at the depth of about 3 m below the seabed.

en de la companya de la co

engalogical english periodicina di periodicina di Particologica di Partico

。 _{"我们我}有一个人,我们就是一个人,我们就是我们的我们,我们就是我们的我们的,我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的

The second of the

Borehole No. 1

The subsoil is composed of coral layer, silt, sand and weathered rock. The coral layer, which is found at the depth of 0.9 m to 7.7 m, contains gravelly sand. The average N-value of this layer is approximately 20. Below the coral layer, a silt layer with the thickness of 1.6 m exists and the N-value of this layer is less than 6. Below the silt layer, down to 14.2 m deep from the seabed, there exists fine to coarse sand with an average N-value of 15. The bearing stratum is found below 14.2 m in depth.

Borehole No. 2

The subsoil is divided into four kinds of layers.

- 1) Gravelly sand with the N-value of less than 15, which is composed of gravel, sand, coral lips, seashells and fine clayey particles.
- 2) Silty sand with the N-value of less than 15.
- 3) Silty sand with the N-value between 40 and more than 50, which seems to be a weathered tock.
- 4) Rock

Borehole No. 3 and Borehole No. 6

The bearing stratum is found at a very shallow place of, less than about 3 m below the seabed.

Borehole No. 4

The subsoil, different from other boreholes, involves clay and silty clay layer between sand layers. The clay and silty clay layer with the N-value of 3 to 6 is found at the depth from 21.2 m down to 27.2 m below the LWS.

Moreover, the bearing stratum was found for the first time at the depth of 31.7 m below the LWS. The soil condition of this area is not be so good for the construction of port facilities.

Borehole No. 5

The bearing stratum of gravelly sand begins from the depth of 20.2 m below the LWS. Between the bearing stratum and the seabed, there exists sand and gravelly sand layer with an N-value of 1 to 15.

Fig. 6.3.5. (1) Boring Log (BH No. 1)

	100	_	_		1		BORING LOG		7									_
		 -		00°52	'50 6"	s									—			
	Locat	lion -	÷.——	131°1	4'37.4	5"É	Depth of s	eabed	-8	7m i	belo	1 Vyc	L¥ý.	S	٠.	٠.	٠. ٠	
	7.37	*-						1 7 7									:	
	Boret	we No	·		J		Date	July 16	to Ju	ly I	9, 1	984	<u>) :</u>		4 <u>1</u> 1			<u>ب</u> .
S T	EI	D	ŢĘ		FIE		SERVATION				1 5	SP 1				· •	-	==
	E N	D E P T	Ţŝ	CLAS	SIFIČ	န		Depth (m)	Blovis	8 x	AS CY	iń			i-va	ve		
A F (m)	Ť	H (m)	Ķ W	CLAS ATIÓ	N	20-02	DESCRIPTION	(m)	Penet 13 (cm)	100	0cr 20	n 30	1			-) 50	:
1.	-9.60	-0.90	ó. <u>90</u>		Silty Sand	Grey	Silty, line to medium send with cobbies			1								ŗ
•		\ '						-1.50	8	3	2	3	<u> </u>		ĺ		1	
2-	[[[]	in the second of	[-1.20]	30	10	10	10	Ĭ		- 1	1	ſ	į.
	i i	Ì			Corel	innite	Coral fayer			[[V		.	- 1	:
3-	}	ł	<u> </u>				• • •	-3.00 -3.30	22	2	7	8)	ļ	- [12
	12.50	-3.80	2.90	نسا						1						1	Į	
4-		1		000	, ",			-4.50	16		5	É		1	[]	1	1	i
5-				:	Grave	Light Grey	Gravel and fine to medium sand with	4.80	30	10	10	10		1		١	J	
9 -		<u></u> ا		000	Sand	az e 1	seashells	1 2 -			1 1,2		; ;		Λl	ļ		j.
6-	14,50	-5.80	2.00	سم		7.11		-6 20	27	, ,	à	÷			\setminus	, [
	[·	ĺ				1		-6.50	30	10	10	10			A	1		-
7-		!			Coral	White	Coral layer	1 1								- 1	`	
	16.40	-7,70	1.90	نسا			·	-7.50 -7.80	5 30	210	2	1	1		ł	ŀ	ł	
8						ا ا		7,500		'		''		40		- [ŀ	Ī
				T - I	Silt	Oark grey	Silt with seashelfs	000	6	إرا	إرا	3				. [Į	
3-	<u>18 00</u>	-9.30	1.60		 		<u> </u>	-9.00 -9.30	30	10	ίō	10	٩		j	J	j	;
10		'						j '	12]			١١			-	. 1	
				• • •	امندا	Light	Fine to coarse sand	10.50	13	4	à	5				1	•	
11-					Send	GreA Figur	with clayey material	-10.80	30	[10]	10	10		ľ				
			- 1	• • •				6 (1 % 1)	÷ .	·						- 1	3.	4
12	19.70	<u>-12.00</u>	2.70	•			<u> </u>	-12.00 -12.30	16	5	5	4		ķ		ı	ı	
				• • •				2.30	30	ן"י	۱"	"				ŀ	1	
13-				. Ø.	Sand	Light grey	Fine sand with seashalls		,,,		٠			١		,]		
ا ري								-13.50 -13.80	30	10	<u>5</u> 10	10		à				i
14	-22.90	-14.20	2.20	000				_{_ [1.17					ž	1	Ų.	-	
15				600	Grave Ny	Light grey	Gravelly sand with fine to coarse	-15.00	50	50			:	ij.		ì	V	
	24.30	15.60	1,40	000	San	2.1	particle	-15.04	4	4						ı	١	7
16				000	Grave			1								ł		
j	-25.27	-16.57	0.97	000	liy Sand			16.50 16.57	50	50 2	Ļļ					Į	Į	
17		10.07	-y.3/	\ \frac{1}{2}	 			10.5/	-	鬥	H	\vdash		\vdash		-		
												ŀÌ				•		
18				}														
19	,															ı		
		ĺ		I ']			1							1			

Fig. 6.3.5. (2) Boring Log (BH No. 2)

						BORING LÒG							
		_		00°52'47". 131°14'25'					m belo	 u	.c		
	Locati	on		131 14 23	<u> </u>	Depth of seab				7 51	<u>-</u>		
	Boreh	oM Ko		2	د سالند سا	Oate	July 7 to	July 9,	1980				
\$	έļ	D	TÉ		FIELD	OBSERVATION		- 1	\$1				
STAFFE	-02g	3x+amo	i š C (m)	CLASSIFI ATION	c o c	DESCRIPTION	Dépth (m)	Blows	ereiñ.		N	ชลใบย	7
(m)	Î.	(w)	Ñ	000	Ř			(cm)	10 20 3 20 20 3 20 20 3	<u> </u>	20	30 4	50
1.				000	1	Gravelly sand with coral tips, seashalls and fine particle	-1.50 -1.80	15	4 4	2			
2	,			6%	٠.		1.80	30	10 10 1	0			
3				S Gra	ve-Light gray d		-3.00 -3.30	6 30	3 2 10 10 1	0			
5				600			-4.50 -4.80	8 30	3 3 10 10	2			
6				000			-6.00 -6.30	10 30	4 2 10 10	4			
,				000		:	-7.5 <u>k</u>	11 30	3 5 10 10	3 10			
8	17.0	83	8.3	000	· ·	· · · · · · · · · · · · · · · · · · ·	-90	9	1 3	5			
10	1			Si Sa	lty nd Brown	Silty sand with gravel, coarse to fine sand and clayey material, well weathed rock	- <u>9.0</u> -9.3		1 3 10 10	to			
111	19.5	0-10.8	2.50				-10.5 -10.8	15 3 30	5 4 10 10	6 10			
17				• • •	ity Yeliov	Silty sand with gravel, v- coarse to fine sand	12.0 12.3	9 50 0 16	20 39 10 6	_			
13 14		-			ind ish brown	and clayey material,		O No p					
19	33.7	Q 15.0	4.2			Control	-14.5 -14.8	0 50 0 25	10 13 10 10	5			
		0-15,3	<u>v v.</u>		V.K (10)(8	Granite					11	1	
19													
1	:					· · · · · · · · · · · · · · ·							
1	8-						:						

Fig. 6.3.5. (3) Boring Log (BH No. 3)

	·— -						BORING LÒG									
		_		2'47".		-				54	- 1	م!م	w LV	e .		
1	Locatio	d	131	14.53	".4E		Dept of seab	ed	·		ni o	6:0	n Cy	<u> </u>		· -
ε	Soreho!	e No.	-	3_			DateJ	ily 2 to	July 4,	1980)					. _
\$	Εı	0	ΙΤΕ		f.	IEI D C	BSERVATION	T -	 -		PT.		 -	3		<u>TCS</u>
Ş T A	LO	Ë	нs	CLAS		8		Depti	Bions	Blo	/A\$	ń	- - - N	va'	.e	F₩
F E	V (m)	T H	C(m)	ATIO	N	မို	DEŚCRIPTION	(m)	Pecel		lÓo:				4.4	EΡ
(m)	Ŷ	(m)	Ñ			Ř	<u> </u>		(cm)	οň	om d	m	10 2	10 30 1 1	1	<u>50 €</u>
			:	• • •			Coarse sand with	1			!			li	ļ	2
1 -		1		:::	Sand	Light orown	gravelly coral and fine perticles	-1.50 -1.80	17 30	7 10	2	8	ا]		
2-	-9.20	-2.10	2.10				,	1.85	7 30 S	"	10	10	1	N		
	-9.70	-2.60	0.50		Corat	Oark	composed of coral sand and grave!	٠, ا	ر ا	11		1			\mathcal{A}	
3-				U _h	Bould	greenv	Sand exists between	-3.ŏ	50 No. 1	enel	ratio	99		Į Į		Ì
	-11.10	-4.0 0	1.40		er	acs.A scovu	boulders					١				
- 1			1				·	4.4	읙					,		3
5		.s		IIII	0	1,	Provably granite or	-5.4	o							30 10
		1			HOEK	White	base!t .		_					2		5 <u>.</u> 8
6								-6.2							ı	6.8
7.	14.10	-7.00	3.00	ЩЦ	<u> </u>		Note: 4 Core recovery	-7.0	<u> </u>	_						8
	•						Role: * Cole recovery									ì
8	i	1												1	1.1.	
9										5) 31			£ 1			
	٠.														Н	
10	1 :										ŀ			1		
				-		2		1	.					1		
11	1	ļ	ľ			1	:				7			1	$\ \ \ $	
12	ļ													1		2
	1					-									1	
13	ĺ											٠.				
14	1			1	1 1				1					7		
14	1								i			,				
15	1	1			1		•								3	- -
16									.							
'6	1	1				1			•			1		1		
17			1							. [1
		1.														;
18	1		;	.]				• .	3							Carried and Telephone
19	1-				1			:						1		5
		1	1	1 -						1						****

Fig. 6.3.5 (4) Boring Log (BH No. 4)

		·- ·-					BORING LOG		\Box						
				62.56 15.07	.0\$	_				 د هـ	m -	ما و	r LW:		
	Locati	ion		1501	-35-	,	Depth of	seabed		- J. L			0	٤	
-	Boreh	o'd No	·	4		 -	Date	June 24 to	June	27, 5	980			 -	<u></u>
S	ξį	Θ	T E H S						 2,	<u></u>		-			
A F (m)	έχ V(m) A	P T H (m)	H-CKZ	CLAS ATIO		00-08	DESCRIPTION	Օέρն (m)		eve	0 čn	. [N-Va	do 50
	-9.60	-0.40	0.40	00	Cobble	Dark -brown	<u> </u>				Ĭ	T	ĨÌ	Ī	ŤĬ
1-			- 4		\$and	Light brown	Fine sand with coral	-1.50 -1.80	j 30	1 30	1	_ _}			
2-	-11.20	-2.00	1.60	000					3.0			1		IJ	
3-			**************************************		"' ¥	Light brown	Gravelly sand with coral and seashells,	-3.00 -3.30	50 27	5 10	22 10	3			K
4		1	Ē.	000	Sand		composed of fine to gravelly sand		2.			$\prod_{i=1}^{n}$		ا ا	41
5	-14.50	-5,30	3.30	000				-4.50 -4.80	30	10	11 50 1			8	
6-		1			- 1 - 1 - 1	3		-6.00 -6.30	30	2 10	3 10 1	5	1		
7-		£.,(a)				ا ٍ ٰ ٍ , ا	Medium to gravelly		 				Ĭ	$ \ $	41
8-				Ð.		Light grey/ borwn	sand with seashells, composed of quartz and black colored	-7.50 -7.80		2 10	10	10			
9-	i dans		1	• • •			material	-9.00	7	2	3 10	<u>2</u>		11	
	- 1			a:		1.7		-930	30	ΙÓ	10	10	n		11
10-	10 70	-10.50	5.20					1,050		ا.[.1	/		
11-	13.70	10.50	J.20	• • •	5		·	-10.50 -10.80	30	10	10	10			11
				• • •	Sand	Light grey	Fine to medium sand								
12-	-21.20	12.00	1.50	• • •	3 : 3 %			-12.00 -12.30		10	1 10	<u>2</u>	ł		
13-			1 1 1 1	9				-13.50	3	[,]	1	<u>, </u>			
14		. i		Ø	Sify Cray	Dark grey	Sifty clay with a few of seastlells, coral tips and	13.80	30		10	١			
15				0			gravel, stiff	- <u>15.0</u> x -15.3	30	10	2 10	2 10			
16	25 7	-16.50	45]			16.54	5	,	₁ $ $	2			
17					Cray	Dark brown sh	20110 G. Q. S. P. Zuderria	16.8		10	1 10	ίŌ	V		
18	27.20	18.00	1.50		1	grey.	organic smell	-18.00 -18.30	11 30	3	4 10	4	k		
19		1.0											\		
20		: : :			Sand	Light brown ish		19.5 19.8	333	10	7 10	10		}	
21	1					ðce A •zu	brownish material	21.0 21.3	3 30	3 10	2 10	2 10	X		
22			١					200				2	/		
l	31.70	1-22.50	4.50	 ` ∿	1	1	l <u> </u>	-22.5 -22.9	0 4 q 30	10	10	10	٥Į		

Fig. 6.3.5 (5) Boring Log (BH No. 5)

		BORING LOG		<u>.l</u>	
	22".0 S				fow LWS
Location 131°1	5'33".5 E	Depth of se	abed	-9,411 04	MI CIIS
Borehole No	5	Date	June 19 t	o June 22, 1980	<u>) </u>
S E I D TE	LASSIFIC 8		la la	lons Blons in	N-value
F V(m) T K(m); ≱	TION L	DESCRIPTION	Decib	ener 10 cm	
F A H N		<u> </u>		(cm) <u>cry cry cry</u>	10 20 30 40 50
	O Cobbie/	Cobble and fine to			
1-5-101821+1.7UL 1.7UL	0 Sand	medium sand	150		
			1.50 1.80	30 30	
2		Fine to medium sand			$M \cap M \cap M$
3	Sand borner	composed of quarte	-3.00 -3.30	6 1 2 3	}
	/gréy	and a slight of black colored	-3.57	30 11010	
4		material	4.50	8 4 2 2	!
14.20 -4.80 3.60			-4.80	8 4 2 2 30 10 10 10	18
- 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Grave	Gravelly sand with tips			
	o o igy Light	of coral and fine	-6.00 -6.30	14 7 4 3 30 10 10 10	1 13
- L ' E I'	oosand borwn	particle	1-0.33		1 / 1 1 1 1
7 16.40 -7.00 2.20	000		-		
	Sand Light	Fine to medium	-7.50 -7.80	7 2 2 3 30 10 10 10	1 (
8 17.80 -8.40 1.40	1 . 10,011,4	sand			1 1 1 1 1 1
. 1. 1 1 1			-9.00 -9.30	13 4 3 6 30 10 10 10	4 18 1 1 4
	o o o Grave Light	Gravelly sand with clayey material,	9.30	30 10 10 10	1 11 1 1 1
	ooolSandi brojini	partly with yellowish colored strip	الما	ه ادا ای	1 111 1 1 1
20.20-10.80 2.40	000		10.50 -10.80	15 3 4 8 30 10 10 10	H Y
11-	0 0 0				111N1
	000		-12.00	50 22 23 5	$A \cup A \cup A$
12-	ooo ticht	Fine to gravelly sand with partly	-12.30	22 10 10 2	
13-	O O GLEAN GLEAN	whitish brown			. //
	o o o Sand -ish	fine material, probably weathered	-13.50 -13.80	33 10 10 1 30 10 10 1	히 ()
14- []	000	rock		1	1111X
	000		-15.00 -15.30	50 12142 23 1010	4
¹⁵ -24.70-15,30 4.50	°%'		-15.30	23 10 10	*i
16-					
17-					
18-					
19			1		
	1 1 1				

<u>1 + 1</u> - 1 *		<u> </u>	<u>1942.</u> 1449.	<u></u> 		:	BORING	LOG		<u>L-</u>		<u></u>			
	Locati	on	<u>15 m</u>	to the	west fr	om BH	No. 3	Depth of se					v LVIS		
	Boreho	⊳ No.			6			Oate	June 31 t	o July	1, 196	<u></u>			
S	ΕΙ LO	D E	T E H S				SERVATION			Belon	Bloz	SPT Is in			
A F (m)	EN V(m) A	P H (%)	IS C(m) K N	CLAS ATIO	SIFIC N	& LOR	DESCR	NOITG	Depti (m)	Penet (cm)	I (cm		20 30 N 43	
•		-0.50			Sand	Light	Fine to me	dium sand						П	
1	-10.00	-1.80	1.30		Coral	Mīhitis! grey	Composed sand and g	of coral, ravel	-1.5 -1.8	50 50 13	10 4 10	3		11	
2- 3-				1 (govid er	Light brówn	Probably of boulder, g and sand	composed of ravel		0 50 0 No.					
	-11.50	-3.30	2.80	 						U No.	pener	Lratio:	Î	11	İ
5							-								
6															
						1									
7												-			
9									ŀ						
10	}														
11	1														
12															
13	;-		:												
14	1						į]				
15	i	<u> </u>													
16	1					1									
17											İ				
11															
19	3														
-	- !		<u> </u>			-									

Fig. 6.3.6 shows the geological cross section around the Ferry Jetty estimated from the boring togs at BII No. 2, 3 and 6. The depth of the bed rock tends to decrease as it goes to the west. Judging from Fig. 6.3.6 and the topographical features around the Ferry Jetty, the bed rock, on the western side of the Ferry Jetty seems to exist at the depth of less than 3m below the seabed.

-175-

(5) Earthquake

Fig. 6.3.7. shows the major shallow-sea earthquakes which occurred around the Port of Sorong. Judging from the Fig. 6.3.7., the earthquakes around the Port of Sorong will have very important effects on the design of the port facilities. The design seismic coefficient should be accurately estimated. However, as no dependable seismic zones map of Indonesia is available, the regional seismic coefficient of the "2nd Region" in Japanese port and harbour area was applied to obtain the design seismic coefficient. The design seismic coefficient k₄ is estimated with the following equation:

$$k_d = k_r \times e_s \times e_i$$

where,

k. : regional seismic coefficient (0.1 is assumed)

e, : factor for subsoil condition (0.8 for rock)

e; : coefficient of importance (1.2 for class A)

therefore,

$$k_4 = 0.1 \times 0.8 \times 1.2 = 0.096 \div 0.1$$

The design seismic coefficient of 0.1 has been applied to the preliminary design of the Concrete What which was constructed in 1978 (UN Report on Preliminary Design for Project FUNDWI30, a Detailed Engineering Study for Port Facilities in Sorong in West Irian, Indonesia, March 1973).

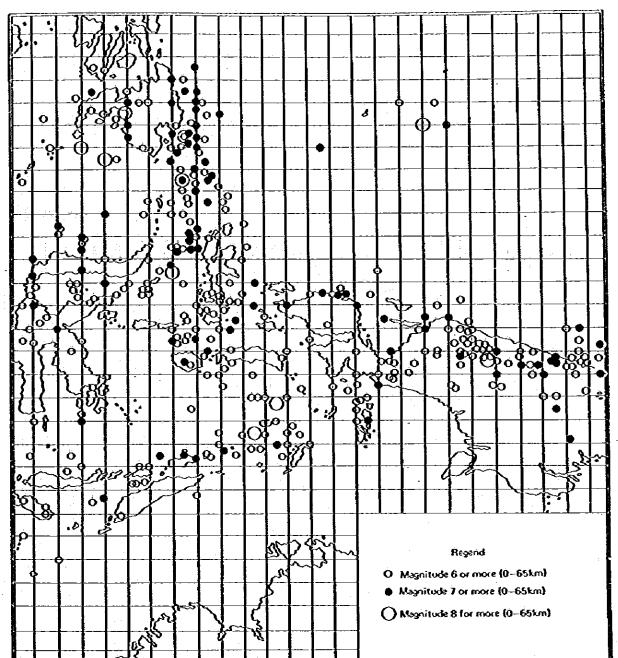


Fig. 6.3.7. Major Shallow Earthquakes Arround Sorong

Source: Posat Meteorologi dan Geofisika, Departemen Perhubungan,

Chapter 7. FUNDAMENTAL CONCEPT FOR DEVELOPMENT

CHAPTER 7. FUNDAMENTAL CONCEPT FOR DEVELOPMENT

7.1. Character of the Port

The master plan of port development should be drawn based on socio-economic requirements of the nation as well as of the region where the port is to be located. It should also conform to the natural conditions in possible expansion sites. Therefore, the character of the port should be studied in terms of its present functions and any possible changes in future.

7.1.1. Present Character and Activities of the Port

The study area and the Port of Sorong can be characterized as follows:

- 1) The study area covers two provinces, of which one is Irian Jaya with less developed inland traffic and the other is Maluku with many islands. Consequently most of their cargoes are carried by means of marine transportation.
- 2) There are nine RLS routes (Table 3.1.20.) and one Perintis route based at the Port of Sorong (Table 3.1.21.). Although they connect Maluku and Irian Jaya, there is little cargo flow by RLS between the two provinces as is seen in Tables 7.1.1. (1) (3).
- 3) The Port of Sorong is located in the Bay of Sorong where the coastline consists of coral. There are two small rivers running into the bay; siltation is not observed except at their estuaries.

The entire Bay of Sorong, of which the natural conditions are suitable for port development, has already been established as the harbour area of the Port of Sorong. The land area of the port is limited to its immediate hinterland and the vicinity of the existing public wharfs.

4) This port has three functions: (i) commercial port dealing mainly with consumer goods in the distribution service area, and with materials and equipment required for the development of natural resources, (ii) loading point for export of logs and crude oil, and (iii) fishing port.

		Table 7.1.1. In	1.1. Inter-regional Flow of Dry Cargo in the Study Area (by RLS)	w of Dry Carg	o in the Study	Area (by RL	જે	143	(such for a)
(1) 1975	!								(0,10)
g /	N. Maluku	C. Maluku	S. Maluku	Irian Jaya	S. Total	Other Region	Total	S/WW/S	G. Total
North Maluku South Maluku South Maluku Irian Jaya Sub Total Other Region Total Sub Maluku Yotal Sub Maluku Sub Malu	23.9 23.9 30.5	0.5 3.6 2.2 5.4 6.3 6.1.7	0.4.0 0.0 4.1.0 6.4.1	0.1 13.5 13.6 5.4.3 14.0	5.0 10.6 13.6 13.6 122.0 153.5	27.3 12.8 0.3 3.4 5.824.9 5.868.6 180.5	32.3 23.4 2.6 16.9 75.2 5.946.9 6,022.1 180.5	0.4 0.4 1,598.6 383.7 384.1	32.3 23.4 3.0 16.9 75.6 7,621.1 563.8
Stand Total	30.5	61.7	6.4	54.9	153.5	6,049.1	6,202.6	1,982.3	8,184.9

e: DGSC/Angkutan Antar Pulau Monurut Jenis Barang di Indonesia	S/W.W.S Singaporo/Wort Malaysta/Subang	
Source	Note:	

To N. Maluku C. Maluku Erian Jaya S. Total Other Total S/W.M./S G.	9761 (2)									(mm)
July 17.3 — 1.1 — — — — — — 18.4 51.6 70.0 5.2 July 1.8 3.1 6.4 0.2 11.5 11.1 22.6 1.6 July 1.8 3.1 6.4 0.2 0.2 10.2 July 1.8 3.1 6.4 0.2 1.0 July 1.8 6.5 6.5 6.5 1.0 July 1.9 6.4 0.2 1.0 July 1.9 6.4 0.2 1.0 July 1.0 July 1.0 1.0 July 1.0 1.0 July 1.0 1.0 July 1	1 /	N. Maluku	C. Maluku	S. Maluku	Lrian Jaya	S. Total	Other Region	Total	S/ww/s	G. Total
luken 1.8 3.1 6.4 0.2 11.5 11.1 22.0 alcu 0.6 0.2 0.2 0.2 10.2 10.2 10.3 alcu 19.1 4.8 6.6 6.6 0.2 0.2 10.2 10.2 con 42.2 4.8 6.6 6.5 0.2 6.29 93.6 8.5 con 42.2 66.3 10.2 10.2 10.5 10.6 381.4 2.026.3 col 0.1 10.2 77.2 219.8 7.151.6 7.371.4 2.026.8 col 5/W.M./S = Singapore/West Malayyia/Sabang 110.2 77.2 219.8 7.151.6 7.371.4 2.026.8	North Maluku	17.3	1.1			18.4	\$1.6	70.0	8-	75.2
19.1	Central Maluku	1.8	3.1	6.4 0.2	0 1	0.8	0.2	1.0	3 1 t	10.5
on — 42.2 — 66.2 — 3.6 — 66.7 178.5 6,707.3 6,885.8 2,018.3 2,018.3 6.71.0 10.2 66.7 209.2 6,770.2 6,979.4 2,026.8 6.7 0.1 — 10.5 10.5 10.6 381.4 392.0 — 2,026.8 1.4 71.0 10.2 77.2 219.8 7,151.6 7,371.4 2,026.8 2,718.5 5/W.M./S = Singapore/West Malaysia/Sabang di Indonesia	Irian Jaya	1 2	1 %	l 99	0.2	30.7	62.9	93.6	\$\$ \$\$	102.1
0.1 — 10.5 10.6 381.4 392.0 — 2.026.8 CSC/Angkutan Antar Pulau Monurut Jonis Barang di Indonesia S/W.M./S = Singapore/West Malaysia/Sabang	Other Region	1 42.2	 	3.6	66.5	178.5 209.2	6,707.3	6,885.8	2,018.3	9,006.2
61.4 71.0 10.2 77.2 219.8 7.151.6 7.371.4 2,026.8 DGSC/Angkuran. Antar Pulau Monurut Jonis Barang di Indonesia S/W.M./S = Singapore/West Malaysia/Sabang	S/WW/S	0.1	2 1	_	10.5	10.6	381.4	392.0		392.0
E .	Grand Total	61.4	71.0	10.2	77.2	219.8	7,151.6	7,371.4	2,026.8	9,398.2
	E .	C/Angkutan.Antar Pu M./S = Singapore/Wee	ılau Monurur Jonis B st Malaysia/Sabang	iarang di Indonesia						eri i North

Source: DGSC/Angkutan.Antar Pulau Monurut Jonis Barang di Indonesia Note: S/W.M./S = Singapore/West Malaysia/Sabang

(3) 1977							(x 10° tons)	,
To	N. Maluku	C. Maluku	S. Maluku	Irian Jaya	S. Total	Other* Region	Grand Total	
North Maluku Central Maluku South Maluku	22.7	1.9	35.	0 	23.4 12.1 0.1	41.4 7.0 7.0 7.6	23.8 8.6 8.6 8.6	
Sub Total Other Region	25.4	69.9	7,6	12:0 57:2	174.3	61.4	109.0	
Grand Total	67.2	72.5	13.0	69.2	221.9	7,222.3	7,444.2	

Source: DCSC/Anykutan Antar Pulau Menurut Jenis Barang di Indonesia Note: Other Region includes Singapore, West Malaysia and Sabang.

Table 7.1.2. Interregional Cargo Flow by Perintis (1978/79) (Kabupaten to Kabupaten)

\$ /	Jayapura	Pariai	Y, Waropon	T. Chon.	T. Chon. Manokwari	Sorong	Fak-Fak	Merauke	(Tual)	(Tornate)	(Bitung)	Total
Jayapura	194.3	114.9	69.2	308.9	\$0.8	65.1						804.2 57.6
Y. Waropen T. Chendemwasih	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	1.0	191.4		132.7	128.0	200.0	920.0				2,064.8
Manokwań Sorong Fak-Fak**	24.3	0.0	135.0	1,112.6	16.0	185.0 6.44	4,715.5 305.1	1,061.2 105.5	3.0	6.6	396.4	7,496.6 598.6
Merauke (Tual) (Ternate)	- 52		5	54.5	34.2	וֹ וֹג ג			. : .		6.0	6.0 334.0
Total	327.9	618.4	423.2	1,760.8	<u> </u>	689.1	5,241.1	3,350.9	- 4.0	6.6	403.4	13,062.4

Source: See Table 3.1.23.
Note: 1. Fak-Fak includes Port of Bintuni
2. () show the ports in Maluku province.

- 5) The Port of Sorong is one of the major ports in Irian Jaya which are called on by RLS vessels and is a base port of Perintis. Large amount of cargoes are distributed by Perintis, through Sorong Port to neighbouring ports (Table 7.1.2. and Fig. 7.1.1.).
- Fig. 7.1.1. shows the amount and origin of Perintis cargo arriving at various ports. As is seen in Fig. 7.1.1., Kabupatens Fak-Fak, T. Chenderawasih and Merauke are highly dependent on the Port of Sorong for their cargo transportation. Kabupaten T. Chenderawasih (its main port is Biak) seems to have a great influence on the cargs flow from Kabupaten Paniai, Manokwari and Yapen Waropen. Kabupaten Jayapura is more closely tied with outer Irian Jaya area in cargo flow than with Irian Jaya area.
- 6) For foreign trade, no liners call the ports presently; there are only tramp-carries of crude oil, logs and fishery products.

(1978/79)

Amount and Ratio of Cargo Origin Transported by Perintis

T. Chengera vesiti (I) Origin T. Chenderawasih (2) Amount of Cargo Figures show the ratio (%) fat fet

-- 182--

7.1.2. Selection of Terminal Ports in the Study Area

Prior to the determination of the future character of the Port of Sorong, proper functions or roles of each port should be decided taking the geographical condition of the port and socio-economic conditions of the hinterland into consideration. Most importantly, the terminal port which serves other ports as a distribution center of seaborne cargo must be selected.

(1) Candidates for Terminal Port

As is mentioned in Section 3.1.1, Maluku and Irian Jaya have 48 ports which have a harbour master. They are classified into several groups by function and character to facilitate the port management. For determinating terminal port, it is desirable to select some candidates with reference to their current functions.

1) Classification of port

These ports are classified by objects of development and by functions and are controlled and managed by DGSC. (The classification of ports in the study area is shown in Table 3.1.2. and 3.1.3.) The classification is based on location of port, level of port activity and situation of port facility. It can be said that highly-graded ports are located in important places, handle big amount of cargo and have sufficient port facilities.

2) Seaport and coastal port

Ports are divided into the two categories of seaport and coastal port. The seaport means a port which allows foreign vessels to enter without permission. In the study area, there are 7 seaports, that is Ternate, Ambon, Jayapura, Biak, Sorong, Fak-Fak and Merauke. They are shown in Fig. 7.1.2.

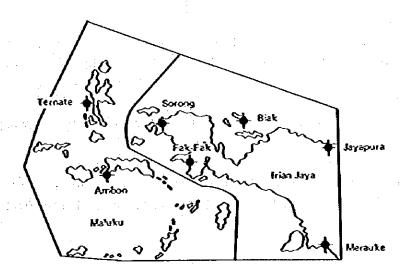


Fig. 7.1.2. Location of Seaport in the Study Area

3) Base ports of Perintis

There are 4 base ports of Perintis in the study area. They are Ambon, Jayapura, Sorong and Merauke. These ports play an important roles in the sea transportation network (Table 3.1.12, and Fig. 3.1.11, show the routes of Perintis from 1979/80 to 1983/84).

医二甲磺基苯二甲甲基二甲基甲基甲基甲基甲基甲基

(1) 超4 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1

Everything considered, 5 ports have been as the candidates for the terminal port. They are Port of Ternate, Ambon, Jayapura, Sorong and Merauke. The potentials of these ports as the future terminal port are studied and compared.

(2) Conditions Required for a Terminal Port

The conditions required for a terminal port are the following four items.

1) Location

In order for the terminal port to function effectively, it must be located in a good position both for the main shipping route and for the feeder service within the distribution service area.

The seaborne cargo traffic of the Republic of Indonesia is the heaviest between Sumatra or Jawa and other districts (Table 7.1.3). The cargoes loaded at Sumatra and Jawa amounted to 6.33 million tons (more than 67 percent of total cargoes) and about 1.3 million tons of these are unloaded in the eastern part of the country.

Therefore the shipping route from the western to the eastern part of the country forms the trunk line of the domestic shipping service. It is one of the essential conditions for the terminal port to be included in this route service.

Another essential condition is to be located in an economically advantageous position for the feeder service. In this case, the cost of transportation is the primary concern. The lesser the cost of transportation, the better the location. From this point of view, it is desirable to be located around the center of the service area. If the feeder service is to be performed by ships which require the same shipping cost, it is desirable to have the terminal port in a position where the summation ($\Sigma d \cdot V$) of the distance (d) and quantity of cargo (V) becomes minimum.

2) Natural conditions

Natural conditions are also an important factor in evaluating the terminal port. The cost of construction, the efficiency of the port operation and the capacity of the port are greatly effected by natural conditions. The items which should be evaluated are as follows:

a. weather conditions

It should be calm enough not to disturb the port activities. The less the rainy days, the better for port operation.

b. geographical conditions

In addition to the regular conditions of port construction, sufficient extent of water surface is required to enable the expansion of the port facilities in the future. It will affect the capacity of the port.

Table 7.1.3. Inter-island Flow of Dry Cargo (1976)

			Table 7.1	3. Inter-isl	Table 7.1.3. Inter-island Flow of Dry Cargo (1976)) ಗ್ರಿ	1976)			(xYO' tons)
From	Sumatora	Jawa	Kalimantan	Sulawess	Hagh + Hann	Maluku	krian Jaya	Total	Singapore Wost Malaysia Sabang	Total
Sumatora	1.335.5	1.041.4	24.5	9.7	6.9	1.9	0.3	2,417.6	1,261.2	3,678.8
Jawa	899.1	274.6	8'509	275.9	300.7	50.3	33.9	2,440.3	214.7	2,655.0
Kalimantan.	19.6	480.9	205.1	25.2	15,0	1.3	5.9	753.0	422:0	1,175.0
Sufawou	71.1	415.8	102.3	276.0	40.4	58.3	25.4	286	117.9	1,107.1
Bali-NTB+NTT	9,5	215.3	×2	0.7	54.0	0.3	1.0	285.7	2.5	288.2
Maluku	0	60.7	1.1	1.1	0	30.5	70	93.6	8.6	100.4
Irian Jaya	•	0	· ·	•		í		0	1.7	1.7
Total	2,329.9	2,488.7	947.3	6'68\$	414.4	142.5	66.7	6,979.4	2,026.8	9,006.2
Singaporo/Wost Malaysia/Sabang	106.2	226.7	24.4	23.5	9.0	0.1	10.5	392.0		392.0
Total	2,436.1	2,715,4	7.1.7	613.4	415.0	142.6	77.2	7,371,4	2,026,8	9,398.2

Source: See Table 7.1.1;

3) Economic activities

In order to play the role of distribution center to other ports, the port have some quantity of cargoes which are related to its own hinterland. Namely, not only the port of distribution center should have its service area but also its hinterland should maintain certain amount of base loads. For example, the Port of Singapore is one of the big distribution centers of the neighbouring countries; at the same time the port has a big accumulation of productive functions, such as factories, in its hinterland which covers the whole country.

In other words, there must be or will have to be big economic activities in its hinterland, and they can be estimated by area, population, GRDP and so on (Table 7.1.4.).

	Present (1978)		Future (2000)		
	Maluku	Irian Jaya	Maluku	Irian Jaya	Remarks
Area (km²)	74,50S (1)	421,981 (5.66)	74,505 (1)	421,981 (5.66)	4 3
Population (x10 ³ people)	1,281 (1)	1,101	2,229 (1)	1,882 (0.84)	÷ ;
GRDP (×10 ⁵ US\$)	298,652 (1)	647,134 (2.17)	1,231,303 (1)	1,877,155 (1.52)	1975 constant price
Per Capita GRDP (US\$)	(1)	242 [582] (1.06) [2.55]	\$52 (1)	740 [981] (1.34) [1.78]	1975 constant price

Table 7.1.4. Socio-economic Indices in Maluku and Irian Jaya

Notes: 1. () shows a ratio of Maluku to Irian Jaya.
2. | I shows per capita GRDP excluding oil sector.

4) Accumulation of administrative functions

Various kinds of business routines exist where cargoes are collected and distributed. To conduct these businesses smoothly, accumulation of administrative functions are required in the city of the terminal port.

The accumulation of the functions can be estimated by accumulation of public organizations.

(3) Evaluation of Potential as the Terminal Port

The present and future situations of S candidate ports are compared in terms of these conditions. The evaluation is shown in Table 7.1.5.

(4) Conclusions

The conclusions can be summarized as follows:

- 1) There is scarecely any cargo flow between the two provinces of Maluku and Irian Jaya.
- 2) The two provinces are too big to be served by one terminal port that is the Port of Ambon.
- 3) It will be good to develop another terminal port in the eastern part of the study area.
- 4) The Port of Sorong is the most suitable candidate for a new terminal port.

Table 7.1.5. Evaluation of Potentials for Terminal Port

Nume of Port Condition	Ternato	Ambon	Jayapura	Sorong	Merauke
(1) Location					-
(Stratogical	Not Good	Good	Not Good	Çoq	Not Good
Condition)					
(2) Natural		. ·			·
Condition			1	1.3	1 5
Wave	E S	ES		Calm Exp.:«h	Not Worth
Dopta	No Silvation	No Siltation	No Siltation	No Silention	No Silution
Room for		Enough	Not Enough	Enough	
TOWN TO A					
(3) Economic	Sm.11	Existing activities	Small	Existing activities	Small
SOUTH TOOL	Citation Cit	are big but hinter-		are small but hinter-	
		land is small.		land is big.	
(4) Accumulation of					•
administrative	The capital of	The capital of	The capital of	The cupital of	The capital of Kahumaten
tunctions	Kabupaten	rrownce	rrovince	vacupaten	was ned noney
References					
(1) Existing			- 12		
Wharfs	£ 76	187 m	132m (9-12m)	132m (10-12m)	40m
		83 m	65m (3-9m)	120m (9-15m)	
•		1	33m (5-6m)	40m (5-7m)	490
Warehouse (m ²)	009	8,750	3,525	4 30	400
(2) Cargo Flows"	505,794	949,752	112,259	100,530	(1,000)
(tons)	(K? T. K/ 5)	(306.211)	(Ten)	(1117)	\.

Note: 1. " including logs, its amount shows in (). 2. "" Terrate and Ambon in 1979, 3, n.a. " not available,

7.1.3. Future Character of the Port

The future character and function of the port will be determined by the form and extent of development in its hinterland and will include the following factors:

1) Distribution center to the central and the western part of Irian Jaya

There is some cargo distributed through the port to other neighbouring ports. This transit cargo will increase because Perintis service assists it year by year under the control of RLS service by DGSC.

But the distribution function of the port will be limited to the central and the western part of Irian Jaya and will not extend to Maluku and the eastern part of Irian Jaya.

2) Log and timber loading point

At present, wood is exported in the form of logs to foreign countries and as sawn timber to other provinces in Indonesia. However, most of the export will change to sawn timber in the near future. In view of this prospect the port should provide necessary facilities such as the wharves for ocean-going vessels and the cargo handling equipment for the semi-finished products of sawn timber.

3) Oil loading port

The port has an oil jetty belonging to the state oil company Pertamina for export of crude oil and distribution of refinery products such as bunkering fuel to ships and other consumers in the service area. The company is now planning to construct a new refinery around the Sorong area. If the company does not use the present facilities when the operation of the new refinery is started, that space in sea and on land can be used for the expansion of the port. However, the details of the plans of the company are not informed.

4) Daily consumption goods

The local government is finding it very hard to promote the transmigration from other islands to develop agriculture with the Irian people. This program will change the pattern of food consumption and it will effect the composition and the amount of cargo flow through the ports concerned. There will be a big time lag between the program initiation and completion.

Therefore, if the effects of the foregoing factors, which involve too many uncertain elements, are excluded at the present stage, it may be said that there will be no basic change in the character of the Port of Sorong in the future. However, based on the development of the hinterland, quantitative increases in the respective cargo fields can be expected, and thus, a port development plan must be formulated in accordance with such growth.

7.2. Distribution Service Area

7.2.1. Premise

(1) Kinds of Distribution Service Area

With regard to the present situation of transportation in Irian Jaya, most of the cargo is transported by ships, because, as mentioned in Chapter 3, inland traffic network is under developed. Owing to the same reason, the present distribution service area of each port is limited

mostly to its vicinity. But the service area will extend inland as the inland traffic network develops.

It is to be desired that the distribution service area is determined by the kind of trade and by the type of service. As for the kind of trade, it consists of foreign trade and domestic trade. As for the type of service, it can be divided into direct hinterland or "hinterland" which means the area where the seaborne cargoes are distributed by land transportation (road), and secondary hinterland or "service area" which means the area where goods are distributed by feeder service vessels (coaster).

Distribution service area

| Service area | Service

Fig. 7.2.1. Type of the Distribution Service Area

Port A terminal port; port B, C and D feeder port linked by coaster

(2) Port Related Area

Because of underdevelopment of inland traffic network, not all regions in Irian Jaya have relations with port activities. A port related area, namely a region which affects port activities is limitted to the area which has ports or is connected with the ports by roads.

Port related areas in Irian Jaya are assumed as follows:

1978 (Present situation):

Kecamatans in which 6 major ports and 8 small ports are located and other Kecamatans which are connected with these ports by roads.

1985:

Kecametans which have ports or are connected with the ports by roads.

2000:

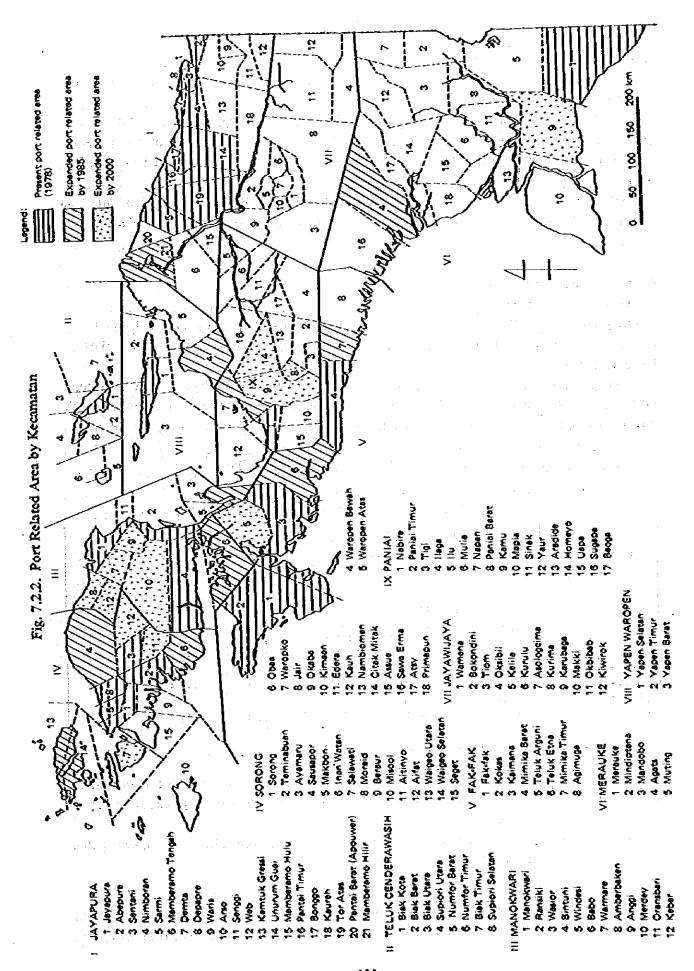

Kecamatans which have ports or which are and will be connected with the ports by roads. Port related areas by Kecamatan are shown in Fig. 7.2.2, and their populations are indicated in Table 7.2.1. In this figure, Kecamatans with no marks have no relations with the port activities in general cargo traffic.

Table 7.2.1. Population of Port Related Areas in Irian Jaya by Kabupaten Areas in Irian Jaya by Kabupaten

 $(x 10^3 people)$

Year	197	18	19	85	200	
Kabupaten	Whole Area	P.R.A.	Whole Area	P.R.A.	Whole Area	P.R.A.
Јауарига	131.1	112.2	162.6	140.2	263,3	227.1
T. Cendrawasih	72.2	57.3	86.0	68.3	112.8	89.6
Manokwan	78.6	45,6	104.1	76.4	184.5	184.5
Sorong	122.3	66.1	152.5	108.7	217.6	173.7
Fak-Fak	53.5	27.1	63.3	45.9	83,0	66.5
Merauke	152.8	25.3	185.7	41.3	259,6	67.7
Jayawijaya	222.3	0	264.3	0	346.9	0
Yapen Waropen	53.2	27.1	63.2	59.4	90.0	85.2
Paniai	177.9	12.0	218.2	18.0	323.4	111.3
Irian Jaya	1,064.1	392.7	1,300	558.2	1,882	1,005.6
Share (%)		36.9		42.9		53,4

Note: P.R.A. = Port Related Area.

7.2.2. Distribution Service Area for Domestic Trade

(1) Hinterland for Domestic Trade

The hinterland of the Port of Sorong is considered to be the city of Sorong and its vicinity. As mentioned above and shown in Fig. 7.2.2, the hinterland of the Port of Sorong is the Kecamatan in which the Port is located and other Kecamatans which are connected with the Port by roads.

The hinterland will extend as the road network is extended. But the range of the hinterland in the year 2000 will be limited to, and may be assumed almost equal to the area of Kabupaten Sorong.

(2) Service Area for Domestic Trade

1) Present service area

At present, three Perintis services are based at the Port of Sorong (see Table 3.1.21.), and they connect almost all of major ports in Irian Jaya, even the Port of Jayapura and Merauke (see Fig. 3.1.11. (2)).

Among these hinterlands the areas which are dominatly affected by the Port of Sorong [Kabupaten T. Chenderawasih (and the area dominated by it, that is Manokwari, Paniai and Y. Waropen), Fak-Fak and Merauke (Fig. 7.1.1.)] are assumed as the service area of Sorong Port.

2) Population and distance from Sorong Port

Table 7.2.2. shows the population and the distance from Sorong Port.

Distance Population (x 103 people) monl P.R.A. Whole Area Kabupaten Main Port Sorong Port 1985 2000 2000 1985 (Miles) 217.6 103.7 173.7 0 152.5 Sorong Sorong 227.1 600 · 162.6 263.3 140.2 Jayapura Jayapura 111.3 370 323.4 18.0 Nabire 248.2 Paniai 300 90.9 59.4 85.2 63.3 Y. Waropen Semi 68.3 89.6 340 86.0 112.8. T. Chenderawasih Biak 230 184.5 76.4 184.5 104.1 Manokwari Manokwari 170 45.9 66.5 83.0 Fak-Fak Fak-Fak 63.3 160 41.3 67.7 Merauke Merauke 185.7 259.6

Table 7.2.2. Population and Distance from Sorong Port

Note: P.R.A. = Port Related Area (see section 7.2.1) and Table 7.2.1.).

The populations of Kabupaten Jakapura, Paniai and Merauke will be more than that of Kabupaten Sorong in 1985 and 2000. The populations of these areas are large enough to form distribution service areas by themselves.

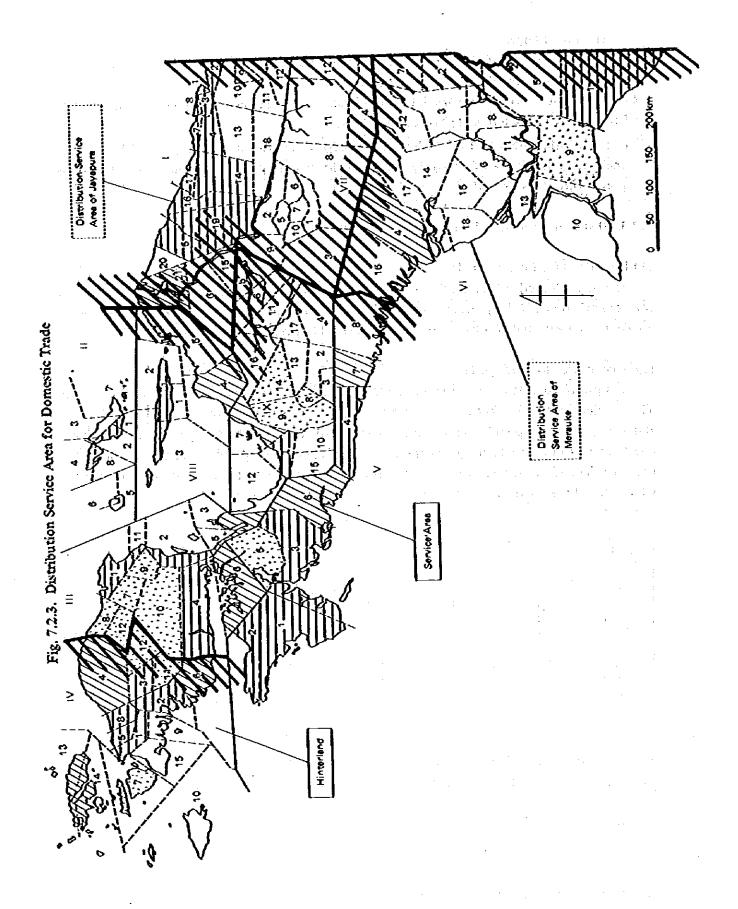
As for the distance between Sorong Port and the main port in each Kabupatens, Kabupaten Paniai is very close to the Port of Sorong.

Then,

(i) Jayapura Port will serve as one of the terminal port for Kabupaten Jayapura and Jayawijaya, because their population (of not only the whole area but also of the port related

area) is rather large.

- (ii) The population of the port related area of Merauke is very small because of its poor inland traffic network. But, taking the big amount of its population and possibility of development of road network into consideration, it is better for the Port of Merauke to become one of the terminal ports of Irian Jaya.
- (iii) For other areas that is Fak-Fak, T. Chenderawasih, Paniai, Y. Waropen and Manokwari, their domestic cargoes (mostly to and from the western part of the country) will be transported through Sorong Port.


7.2.3. Distribution Service Area for Foreign Trade

(1) Hinterland for Foreign Trade

The direct hinterland for foreign trade of general cargo is assumed the same as the hinterland for domestic trade. Namely, Kecamatan in which the Port is located and other Kecamatans which are connected with the Port by roads. This will extend as the road network is extended.

(2) Service Area for Foreign Trade

It is projected that the population of the province will increase to about 1,882,000 in 2000. The development and effective use of the natural resources in the province will be carried out. But taking the large population and the industrial structure of the province into consideration, one liner port (a port which foreign trade vessels or liners call regularly) will be enough for the province. Therefore, the service area of Sorong Port for foreign trade is assumed to cover the whole area of the province.

Chapter 8. DEMAND FORECAST

CHAPTER 8, DEMAND FORECAST

8.1. Population

(1) Results of Population Forecast

Tables 8.1.1. and 2. show the results of population forecast for Irian Jaya and Maluku Provinces up to the year 2000.

It was forecast that the population in Indonesia will be 210 million in the year 2000, 1.54 times as large as that in 1978. On the other hand, the populations in Irian Jaya and Maluku Provinces in 2000 were forecast to be 1,882,000 and 2,229,000 respectively: the annual growth rate of 2.5 and 2.6 percent, which are slightly higher than the average, are expected.

In Irian Jaya, Kabupaten Manokwari shows the highest growth rate of 3.8 percent due to the governmental transmigration program. Jayawijaya, the most populated mountaineous Kabupaten, shows a low growth rate and its share of 21 percent in 1978 will fall to 18 percent in the year 2000.

In Maluku, Kabupaten Halmahera Tengah and Maluku Tengah show higher growth rate of 3.4 and 3.1 percent. The population share of Maluku Tengah area (including Kotamadya Ambon) will rise from 44 percent in 1978 to 47 percent in 2000, which is approximately one half of the population in Maluku.

Table 8.1.1. Results of Population Forecast

	1985		2000		Annual G	rowth Rate
	Populatión	90	Population	%	'78–'8 5	78-2000
Indonesia	160,159	100.0	210,234	100.00	2.3	2.0
Irian Jaya	1,300	0.8	1,882	0.9	2.4	2.5
Јауарига	162.6	(13)	263.3	(14)	2.6	3.1
T. Cendrawasih	86.0	(7)	112.8	(6)	2.1	1.9
Manokwari	101.1	(8)	184.5	(10)	3.6	3.8
Sorong	152.5	(12)	217.6	(12)	2.6	2.5
Fak Fak	63.3	(5)	83.0	(4)	2,1	1.9
Merauke	185.7	(14)	259.6	(14)	2.3	2.3
Jayawijaya	264.3	(20)	346.9	(18)	2.0	1.9
Y. Waropen	63.3	(· s)	90.9	(5)	2.1	2.3
Paniai	218.2	(16)	323.4	(17)	2.5	2.6
Maluku	1,540	1.0	2,229	1.1	2.6	2.6
M. Utara	441.6	(29)	613.8	(28)	2.2	2.2
M. Tengah	606.7	(39)	935.7	(41)	3,5	3.1
K. Ambon	93.3	(6)	123.4	(6)	1,7	1.8
M. Tenggara	279.8	(18)	373.9	(17)	1.7	1.9
Halmahera T.	118.6	(8)	182.2	(8)	4.5	3.4

Note: () indicates share of population within a province.

Table 8.1.2. Population Forecast 1979-2000

										1.			*	(x 10° people)
		1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1990	1995	2000
	Indonesia ³⁾	131,304.3	131,304,3 133,940,2 136,630,7	136,630.7	139,376.3	142,178,8	145,038.8	147,939.7	150,900.8	153,923.7	160,159.4	176,400.9	139,240.1	210,233,7
	Irian Jaya ¹⁾	1,040	1,065	1,101	1,127	1.154	1,182	1,211	1,240	1,269*	1.300	1,475*	1.670	1,882*
				135.4	139.0	142.7	146.5	150.5	154,4	158.4	162.6	191.9	225.6	263.3
	II T. Condrawash			74.9	76.3	77.8	79.4	81.0	82.6	84.2	86.0	94.5	103.5	112.8
	TII Manolewan			81.5	\$4.5	87.8	90.9	**	4.76	100.7	18	127.0	153.9	184.5
				126.6	130.0	133.6	137.2	141:0	144.7	148.5	152.5	172.2	194.0	217.6
	V FakeFak			55.1	56.1	57.2	58.4	59.6	60.8	62.0	3.3	69.5	76.1	83.0
	V. Memuke			158,4	-	165.7	169.5	173.5	277.5	181.4	185.7	208.3	233.0	259.6
	VII Javardiava			230,1		239.1	243.8	248.8	253,9	258.9	264:3	290.4	318.2	346.9
	VIII Y Wandam		. * · ·	55.1		57.2	58.4	59.6	8.09	62:0	1 633	71.6	808	606
	IX Pania	: .		183.9	188.4	193.0	197.9	202.9	207.9	212.9	218.2	249.6	284.9	323,4
	Maluku ²⁾	1.222	1,251	1,281	1,313	1,347	1,382	1,419	1,458	1,498	1.540	1,747	1,978	2,229*
. :	T Y Trans	1 1 -	- ·	381.7	386.3	395.7	403.4	411.7	422.1	431.6	441.6	492.2	550.1	613.8
: :	T. M. Tenseh			479.1		518.5	540.1	557.4	567.3	586.6	606.7	707.8	817.9	935.7
	III K. Ambon			83.3		82.8	6.58	88.7	89.9	91.5	93.3	101.9	112,0	13,4
	ry M. Tenggara			249.8	,	257.3	260.7	264.5	269.7	274.6	279.8	306.8	338.4	373.9
				87.1	88.6	89.7	90.9	97.2	109.0	113.7	1186	138.3	159.6	182.2
											-			

Sources: 1. Idan Jaya Dalam Angka 1977 and Pelita III in Irian Jayu.
2. Proyeku Penduduk, Angkatan Keda dan Anak Sekelah. 1971-1986 Maluku.
3. Proyeku Penduduk, Indonesia 1976-2001, 1978 CBS.
Notes: - shows figures forceast by the survey team. All figures for Kabupaten were also forceast by the survey team.

(2) General Method for Population Forecast

Future populations can be forecast with the following formula:

$$P_{(t)} = P_{(t-1)} \pm \text{Natural increase}_{(t-1)} \pm \text{Population movement}_{(t-1)}$$

t: a certain year

Natural increase consists of the number of births and deaths in a period.

Using census data, natural increase can be forecast with a demographic method, such as in the Manual IV*).

Population movement consists of transmigrants and immigrants/migrants. This can be forecast with the functions proved by the regression method.

When these necessary are not available, the population growth rates in the past can be adopted for forecasting.

(3) Available Data

Population data sources are mainly 3 kinds: population census, registration of births and deaths, and inter-census survey.

The Census is the best source for population data covering all people in Indonesia. It was taken in 1930 (by Dutch Government), in 1961 (Irian Jaya was not included) and in 1971 (some items covered Irian Jaya). However, the census survey encountered problems such as the fact that many people do not know their ages exactly. Thus, estimation of approximate figures, such as the population by age group, using smoothing techniques is an important part of data interpretation.

The registration of births and deaths is said to be incomplete, because it greatly depends on person's will of registration. The registered population is usually smaller than that in the Census. For these reasons, fertility rates or mortality, which are otherwise calculated from the registration of births and deaths, are estimated from the Census data.

A inter-census survey, which covers only a small sample of the population, was conducted in 1976.

As for transmigration or inter-regional population movement, we can only get approximate data from the Census (Series D). Pieces of information on the transmigration program and on the number of passengers in ports and airports, or some data by adhoc surveys are available. However, no comprehensive and periodic data exist so far.

As a result, most of the available population figures are estimates or forecasts. Considering the progress in forecast techniques and the data collection method, recent data is regarded the most reliable among all population data. There are three recent forecasts usable in this study which are authorized in the Pelita III programs. However, none of them include figures of each Kabupaten.

1) Pelita III (1979 – 1983) Irian Jaya

tering de jarren er

In the Pelita III Isian Jaya, the population in the province during Pelita III was forecast using the annual population growth rate of 2.4 percent which was calculated on the basis of the Census in 1971

^{*)} Manual on methods of estimating population, Manual IV: Methods of Estimating Basic Demographic Measures from Incomplete Data, United Nations, 1967.

The forecast did not include distribution by Kabupaten. However, it was stated that the population in urbanized areas will start to grow during Pelita III.

The program described the demographic characteristics and population movement only qualitatively.

2) Pelita III (1979 – 1983) Maluku

The populatios used in Pelita III are the forecast figures in a study report made by the District Bureau of Statistics in Maluku (DBS)*).

The object of this study was to forecast the population of the province by five-year age group from 1961 to 1986, but excluded populations by Kabupatens. This study adopted the method of United Nation Manual IV, and used the Census in 1961 and 1971.

As for mortality, the expectation of life at birth is assumed to increase gradually. However, the total fertility rate is fixed at the level in 1971 (4.43 percent).

Population movement was verified by the data of the Census in 1971 (Serie D), and the rate of net inward transmigration was calculated as 0.0225 percent of the total population. The rate is small and was concluded to be negligible.

3) Proyeksi Penduduk Indonesia 1976 – 2001

This is the latest study made by CBS and its aim was to supply population base for Pelita III for the whole Indonesia.

The purpose of this study was to forecast the population in two areas (Jawa and Outer Jawa) of Indonesia from 1976 to 2001. This study also adopted the method of United Nations Manual IV and used the Census up to 1971 and the inter-census survey in 1976.

It was assumed that the expectation of life will increase gradually and the total fertility rate will decrease from 6.2 percent for Outer Jawa and 5.0, percent for Jawa in 1971 to 4.3 percent and 2.5 percent respectively in the year 2001.

In the study of transmagration during the 5 years (1966 – 1971) between Jawa and Outer Jawa areas, it was made clear that net transmigration toward the outer Jawa areas was 19,794 people annually. This is 0.026 percent of the population in Jawa, or 0.047 percent in Outer Jawa. This figure was concluded to be negligible.

 $(x^{\prime}+x^{\prime})^{\prime}=(x^{\prime}+x^{\prime}+x^{\prime})^{\prime}=(x^{$

(4) Method and Process of Forecast

The aim of population forecast in this study is to supply appropriate data for demand forecast of port activities. Required forecasts are the population of each Kabupaten in the study area (Irian Jaya and Maluku Provinces) in the year 1985 and 2000.

For this target, available data were examined, as mentioned above, then the following principles were adopted.

- i) The forecasts in Pelita III and data authorized by provincial governments, which do not contradict with data supplied by other sources, are to be used.
- ii) The forecast system comprise two steps in sequence: total population forecast for each province and population distribution by Kabupaten.
- iii) For the forecast of the total population in each province, population estimates in Pelita III and planning conditions pertinent to Pelita II are adopted.

^{*) &}quot;Proyeksi Penduduk, Angkatan Kerja dan Anak Sekolah, Propinsi Maluku 1971-1986", 1975 DBS in Maluku.

iv) For population distribution by Kabupaten, a simple projection method using the present proportion of each Kalupaten in the total population is adopted because of the lack of reliable data.

1) Total population forecast in each province

For 1979 - 1983:

Population estimates in Pelita III (1979 - 1983) by each province were adopted.

For 1984 and 1985:

Population estimates in Pelita III in Irian Jaya are based on the annual growth rate of 2.4 percent. This rate was adopted to forecast the population in 1984 and 1985.

Population estimates in Pelita III in Maluku were taken from a study report made by DBS in Maluku. Figures for 1984 and 1985 from the same source were adopted as populations in 1984 and 1985.

For 1986 - 2000:

There is no population study by either provincial government covering the period up to the year 2000. The only study is the "Proyeksi Penduduk, Indonesia 1976 - 2001" in 1978 by CBS.

Table 8.1.3. shows the average annual population growth rates up to 2001. These figures are considered the guideline of the Indonesian Government growth rates in Outer Jawa areas are used for both provinces. Although there is one year difference in period between our study and the CBS study, it is considered to be negligible.

Table 8.1.3. Population Growth Rates of Indonesia by Regions (1986-2001)

	1986-1991	19911996	1996-2001
Jawa	1.57	1.39	1.20
Outer Jawa	2.56	2.52	2.42
Indonesia	1.95	1.84	1.70

Source: Proyeksi Penduduk, Indonesia 1976-2001, Series K No. 2, CBS.

2) Population distribution by Kabupaten

Population distribution by Kabupaten is assumed to be stable in the future, as stated above. The latest registered population of 1978 is used for calculating the distribution, as shown in Table 8.1.4.

However, population movement greatly effects the population of Kabupatens. The important factor which affects the population movement is employment oportunities. The only reliable and available data concerned is the transmigration program sponsored by government, the number of transmigrants in the program is presumed to be the net transmigrants into a Kabupaten.

- i) The number of transmigrants planned in Pelita III (1974 1983) in both provinces is adopted, and the annual average during Pelita III (1,000 families in Irian Jaya and 3,000 families in Maliku) is adopted for 1984 and 1985.
- ii) On account of the size of the vast area and its development level, the number of annual transmigrants in Maluku are presumed to be constant up to the year 2000. It was assumed that

Table 8.1.4. Distribution of Population by Kabupaten in 1978

	Registered Po in 197	pulation 8
	Persons	19 1. 15 % 1. 1 1. 1. 1.
Irian Jaya ¹⁾	1,064,101	100.0
1 Јауарига	131,110	12.3
II Teluk Cenderawasih	72,204	6.8
III Manokwari	78,613	7.4
IV Scrong	122,316	11,5
V Fak-Fak	53,548	5.0
VI Merauke	152,802	14.4
VII Jayawijaya	222,331	20.9
VIII Yapen Waropen	53,249	5.0
IX Paniai	177,928	16.7 (A)
Maluku ²⁾	1,276,751	100.0
III Kotamadia Ambon	82,903	6.5
II Maluku Tengah	477,904	37.4
IV Maluku Tenggara	248,530	19.5
I Maluku Utara	380,060	29.8
Y Halmahera Tengah	** 1, 1, 87,354 (* 15 m)	6.8

Sources: 1. Persiapan Sensus Penduduk 1980, Propinsi Irian Jaya.

those in spacious Irian Jaya will increase gradually up to the same level as in Maluku (3,000 families) during the period from 1995 to 2000 (Table 8.1.5.).

- iii) The average number of transmigrant family is assumed to be 5 people, which is the real average, as shown in the Section 2.2.
- iv) Transmigrants up to the year 1983 will be assigned to the areas planned in Pelita III.
- v) Sites for transmigrants after 1984 are planned as follows (Table 8.1.6.): The Irian Jaya Government is planning to make a survey of potential farming areas in Petita III. Transmigrants are assumed to be proportionally distributed to these sites.

Similar information about Maluku is not available. The areas planned for transmigration and resettlement* in Pelita III are supposed to be the sites for transmigrants.

人名英英英克尔 医外线外线线

^{2.} Registrasi Penduduk Propinsi Maluku 1978.

^{*)} Maluku provincial Government promoted a resettlement program from small islands which are not large enough to support a standard level of community life, or from densely populated areas to spacious and high potential areas. The Government realized the resettlement of 1,800 families during Pelita 11.

Table 8.1.5. Estimated Governmental Transmigration Programs 1979–2000

(x 103 people)

	1979	1980	1981	1982	1983	1984	1985	1986- 90	1991- 95	1996- 2000
Irian Jaya (family) persons	(1.0) 5.0	(1.0) 5.0	(1.0) 5.0	(1.0) 5.0	(1.0) 5.0	(1.0) 5.0	(1.0) 5.0	(10.0) 50.0	(12.5) 62.5	(15.0) 75.0
Sorong Manokwari	1.0 1.5 1.0	1.0 1.5 1.0	1.0 1.5 1.0	1.0 1.5 1.0	1.0 1.5	1.0 1.5 1.0	1.0 1.5 1.0	5.3 13.6 10.5	6.6 17.1 13.1	7.9 20.5 15.27
Paniai Jayapura Merauke	1.0	1.0 0.5	1.0 1.0 0.5	1.0	1.0 0.5	1.0	1.0 0.5	13.9 4.6	17.4 5.7	20.9 6.8
Y. Waropên Maluku (family)	(2.0)	(3.5)	(3.5)	(3.5)	(2.5)	(3.0)	(3.0)	2.1 (15.0)	(15.0)	(15.0)
persons M. Utara M. Tengah	10.0	17.5 2.5 15.0	17.5 2.5 15.0	17.5 2.5 10.0	2.5	15.0 2.0 10.0	2.0 10.0	75.0 11.3 51.8	75.0 11.3 51.8	75.0 11.3 51.8
M. Tenggara Halmahera T.				5.0	10.0	3.0	3.0	1.2	1.2 10.7	1.2 10.7

Sources: 1. Pelita III in Irian Jaya (data 1979-83)

2. Pelita III in Maluku (data 1979-83)

Table 8.1.6. Distribution of Transmigration Sites after 1984

	1,000 ha	%
Total	143	100.0
Sorong	15	10.5
Manokwari	39	27.3
Paniai	30	21.0
Јауарига	40	27.9
Merauke	13	9.1
Y. Waropen	6	4.2
Areas planned for transmigrati in Pelita III in Maluku Provinc	ion and resettlement e	
	1,000 ha	%
Total	126	100.0
M. Utara	19	15.1
M. Tengah	87	69.0
M. Tenggara	· 2	11 Julius 1996 1.6 1.6
· · · · · · · · · · · · · · · · · ·	18	14.3

8.2. Regional Activities

8.2.1. Method of Forecast

(1) General

In principle, the forecast is made by authorized data collected in this study the future plans of the governments (National and/or Regional Pelita III) are incorporated into the estimation. After the calculation of the future product volume by main commodity, the gross regional domestic product (GRDP) is estimated based upon production volumes.

The basic assumptions for the forecast of Irian Jaya and Maluku are as follows:

(2) Production

As for food and estate crops, the production volume is presumed to be a function of the cultivated area developed by farmers, mainly transmigrants.

$$PV_Y = F(A_Y)$$

where.

PV_Y: the production volume in the year of Y

Ay : the cultivated area in the year of Y

As for food and estate crops, the production volume in the year of Y is represented by the following formula:

As for the production forecast of other commodities the average growth rate by Pelita III or of past records is applied after careful examination.

(3) Consumption

In this study, the consumption is estimated only for Irian Jaya and the Sorong area. Consumption is presumed to be a function of population increased in future.

$$CV_Y = F(P_Y)$$

where,

CV_Y: the consumption volume in the year of Y

Py : the population in the year of Y

Consumption volume in the year of Y is represented by the following formula:

$$CV_Y = P_Y \times C_Y^{capita}$$

where,

CY : the per capita consumption in the year of Y

In this study, per capita consumption is represented by that of the base year of 1976 or 1977 in Irian Jaya and 1977 in the Indonesian average. Since the calorie balance is expected to improve in future, the formula below is employed to forecast the consumption in 2000.

$$CV_{2000} = P_{2000} \times C_{2000}^{copits}$$

 $C_{2000}^{capita} = C_{1976}^{capita} \times \alpha$ (food balance in 1977 Indonesia average)

This means that the calorie balance (or food balance) in Irian Jaya remains to be the same as the 1976 base (estimated at 1,240 – 1,830 cal per day – source: Pelita III in Irian Jaya) until 1985, and the calorie balance in 2000 would be about the same as the Indonesian average of 1977 (2,314 cal per day – Source: Statistical Yearbook of Indonesia 1977 – 1978).

However, the consumption of sweet potato and pork were examined separately considering the fact that Irian Jaya is a major producer of these products.

Table 8.2.1. Main Indexes of Per Capita Consumption (Kg/Capita/Year)

	lrian l	laya	
	Jayawijaya	Other Areas	Indonesia (1977)
Rice	2.1	34.3	120.85
Maize	Ó.3	1.7	21.52
Sweet potato and cassava, etc.	854.8	419.0	92.36
Peanut and soybean	0.1	2.2	4.03
Cow meat		0.28	0.97
Pork	5.40	1 - 1	0.50
Poultry	_	0.71	1.07

Source: Statistical Yearbook of Indonesia 1977-78

Pelita III in Irian Jaya

(4) Forecast of GRDP

The product categories are determined by the past production records and products included in Pelita III in Irian Jaya and Maluku.

By multiplying the annual production of a given sector by its unit price of the base year of 1975, the representative value of the sector can be determined. The growth rate in relation to the base year (1978 or 1977) can be calculated if the representative value of the sector in 1985 or 2000 is divided by the representative value of the base year. Using this growth rate, the GRDP by sector is calculated and determined.

However, GRDP of the sectors other than agriculture and petroleum are estimated by the annual growth rate of the period from 1973 to 1978 and by the annual growth rate of agriculture sector during the period from 1985 to 2000. The average annual growth rate of 1973 – 1978 period is applied to the value of 1985 and the rate of 1985 – 2000 period is applied to the value of 2000. However, the growth rate of National Pelita III is used for the construction sector in Maluku. As for the petroleum sector, the following assumptions were made:

The production of crude oil would continue at the same level as in 1978 until 2000,

The composition of oil products from the refinery plant is assumed to be the same as that from Balikpapan Refinery. Assuming that 61 percent of the treated crude oil is supplied from

within the Irian Jaya area, the GRDP of the refinery in 2000 is determined as US \$ 107.4 million in 1975 constant prices.*)

Table 8.2.2. Main Indexes of Applicable Unit Price

The state of the

	ent disk in die en gebeure bestellt in der Der en der e n gebeure bestellt in der en (1975 Price base)	
Category	Unit Price	Source
Rice	97.01 Rp./100 Kg	Indicator Economy 1980
Sweet potato	20.03	· 我们的一个人 是 通过人的数数的。
Cassava	20.03 •	•
Maize	72.87	i di salah salah salah salah salah salah salah salah salah salah salah salah salah salah salah salah salah sal
Peanut	253,64 *	· · · · · · · · · · · · · · · · · · ·
Soybean	15.74 =	en en en en en en en en en en en en en e
Conconut	65.72 =	Pelita III in Irian Jaya
Nutmeg	\$5.83	•
Cocoa	142.11	•
Rubbes	213.38	•
Collee	331.85	
Pepper	1,410.00 *	Indicator Economy 1980
Clove	341.52	
Other potato	27.77	(decided by Study Team)
Fish (export)	3,374.4 \$fTon	Irian Jaya dalam Angka 1977
Fish (export)	2,869	Pelita III in Meluku
Fish (domestic)	1,691.6	Derived from the aboves
Cow/Buffalow	960 Rp./100 Kg	Derived from Indicator Economy and others
Goat/Sheep	820 -	Total Control of the
Poultry	770	n de la companya de la companya de la companya de la companya de la companya de la companya de la companya de La companya de la co
Pork	1,150 -	e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de La companya de la co

17.8 percent per m3 logs (Source: Study Report on the Expansion Project of the Port of Balikpapan, HCA)

8.2.2. Future Industrial Structure in Irian Jaya and Maluku

As shown in Table 8.2.3. the agriculture sector is the most important sector for both provinces in the future, with the large share of about 50 percent in Maluku and 60 percent (excluding the petroleum sector) in Irian Jaya.

Note that the petroleum sector in Irian Jaya has a great influence on future economic activities, taking account of the continuing crude oil production and the future construction of a refinery plant in the Sorong area.

^{*)} Source: Study Report on the Expansion Project of the Port of Balikpapan, JICA.

Table 8.2.3. Composition of GRDP by Sector

(%)

		T		(~)
in the state of th		1978	1985	2000
Agriculture	Irian Jaya	24.2 (58.3)	36.3 (62.0)	46.2 (62.3)
	Maluku	57.9	50.0	51.1
Mining	Irian Jaya	59.1 (2.3)	42.6 (2.2)	27.1 (1.7)
	Maluku	1.8	5.3	3.1
Manufacturing	Irian Jaya	0.6 (1.3)	0.5 (0.9)	0.7 (0.9)
	Maluku	1.1	1.1	1.1
Others	Irian Jaya	16.1 (38.1)	20.0 (34.9)	26.0 (35.1)
	Maluku	39.2	43.6	44.7
Total	Itian Jaya	001	100	100
	Maluku	001	100	100
GRDP Total	Irian Jaya	647.134	914.174	1,877.155
(Mill.\$)	Maluku	298.625	626.786	1,231.303

Note: The figure in parentheses shows the share excluding the petroleum sector.

With respect to the per capita GRDP, the value in Irian Jaya is bigger than that of Maluku. The growth rate in Irian Jaya is lower than that of Maluku up to 1985. However, Irian Jaya's value up to 2000 is bigger than that of Maluku.

Table 8.2.4. Per Capita GRDP

(U.S.S

	1978	1985	2000	A	AGR
		.,,,,	2000	1978-85	1978-2000
Irian Jaya	242 (582)	413 (703)	740 (997)	8.0% (2.7)	+ 5.2% (2.4)
Maluku	228	407	552	8.6%	4.1%

Note: The figure in parentheses shows the value and share including the petroleum sector.

8.2.3. Irian Jaya Province

(1) General Conclusion

As shown in Table 8.2.6, the agriculture sector excluding the petroleum sector shows the high share of 62 percent in 1985 and 62 percent in 2000.

Comparing with the average annual growth rate (AAGR) by National Pelita III (since the province of Irian Jaya has not made its projection), the future development of the province is as shown below.

(%)

化砂锅 网络鳞鱼产乳蛋白色

·	Indo	nesia	Irian Jaya	
	Pelita II	Pelita III	1978-85	1978-2000
Agriculture	3.8	3.5	11.3	8.1
Mining	4.8	4.0	2.0	1.3
Manufacturing & Industry	12.7	11.0	9,8	6.3
Construction	11.1	9.0	h.	
Transport & Communication	11.3	10.0	9,0	7.3
Others	8.4	8.1		
Total	6.9	6.5	5.1	5.0

It can be said that the growth rate of the regional income is low.

The main reason is the low projection figure in the mining sector, whose method of forecast is discussed in detail in the following paragraph.

Considering the natural resources in Irian Jaya with its vast area of 42.2 million ha, there certainly is a possibility of mineral deposits. However, it is questionable at present whether rapid development of the natural resource will take place since the present infrastructure is small, especially the road network is not adequate in the far and mountainous inland area. On the other hand, the systematic survey for natural resources has not been made for economical reasons, as far as the province of Irian Jaya is concerned.

The average annual growth rate of the agriculture sector does not seem very high.

Processed timber is included in the forestry sector. However, should it be included in the manufacturing sector, AAGR of manufacturing sector is 11.7 percent for 1978 – 1985 period and 12.1 percent for the period from 1978 to 2000.

Regarding the province of Irian Jaya, the area of irrigation identified during the period of Pelita I and II is confirmed as follows:

Јауарита	62,500 ha
Paniai	36,000 ha
Manokwari	49,600 ha
Sorong	27,300 ha
Yapen Waropen	8,000 ha
Merauke	47,400 ha
Total	230,800 ha

However, only about 6,500 ha of land is expected to be cultivated by the transmigrants in the program by 1985. According to the program, transmigrants will be assigned to the areas of Jayapura, Paniai, Manokwari, Sorong and Merauke (these areas are to be cultivated for the first time during Pelita III).

Table 8.2.6 Forecast GRDP of Irian Jaya.

(1975 Constant prices)

Year	1978	r	1985		2000		A/	AGR :
Sector		%		%		%	1978 1985	1978 2000
Food crops	11.534	17.2	247.271	27.0	621.021	33.1	12.0	8.2
Estate crops	2.119	9.3	10.575	1.2	36.255	1.0	25.8	14.0
Livestock	27.322	4.2	33.032	3.6	47.851	2.5	2.7	2.5
Forestry	3.054	0.5	9.345	1.0	87.405	4.6	17.0	16.5
Fishery	12.879	2.0	32.365	3.5	75.175	4.1	14.0	8.4
Agriculture Total	156.908	24.2	332.588	36.3	867.707	46.2	11.3	8.1
Petroleum	377.915	59.0	377.915	41.3	485.315	25.9	_	1.2
Others	6.135	0.1	11.580	1.3.	23,160	1.2	9.5	6.2
Mining Total	384.050	59.1	389.495	42.6	508,475	27.1	2.0	1.3
Manufacturing & Industry	3.418	0.6	5.024	0.5	13.103	0.7	9.8	6.3
Others	102.758	16.1	187.067	20.6	487.870	26.0	9.0	7.3
Grand Total	647.134	100	914,174	100	1,877.155	100	5.1	5.0

As for estate crops, the province plans to develop fields as follows:

Cocoa :

Jayapura, Manokwari, Yapen Waropen

Coconut:

Jayapura, Biak, Sorong, Manokwari

Nutmeg:

Fak-Fak

Coffee

Paniai, Jayawijaya

Clove

The above areas concerned

These areas must be developed by transmigrants and local inhabitants.

In conclusion, it can be said that the future industrial structure and growth in Irian Jaya will be sustained mainly by agriculture while the agricultural land will have developed by transmigrants and others.

(2) Food Crops

1) Paddy

The harvest area for wet land paddy (irrigated) is planned by Pelita III in Irian Jaya as follows:

The wet land paddy area is to be developed by transmigrants at the rate of 1 hectar per family, and the area are to be continuously developed by transmigrants until the year of 2000.

The number of transmigrants in the program is estimated below.

Table 8.2.7. Development of Harvest Area for Wet Land Paddy

(ha)

Ýear	New Developed Atea (A)	Existing Area (Previous Year) (B)	Total Accumulated Area (A + B)
1979	450	1,087	1,537
1980	300	1,537	1,837
1981	1,050	1,837	2.887
1982	1,050	2,887	3,937
1983	950	3,937	4,887
1984	1,050	4,887	5,987
1985	900	5,987	6,887

Source: Pelita III în Irian Jaya.

Table 8.2.8. Number of Program Transmigrants

Period	Number (family)	Required Area (ha)
1986 — 1990	10,000	10,000
1991 ~ 1995	12,500	12,500
1996 — 2000	15,000	15,000

Source: Table 8.1.5.

Dry paddy fields are to be developed and cultivated by transmigrants and inhabitants near the irrigation area.

Harvest area of dry land paddy is assumed to have the same composition rate of 36.3 percent as in 1978.

Table 8.2.9. Forecast Harvest Area of Paddy

grande and the second transfer of the second approximation is

to diversify the following property of the company
	1978	1985	2000
Wet land paddy	1,087	6,880	44,380
Dry land paddy	620	3,900	25,270

Table 8.2.10. Yield Rate of Paddy

(tons/ha)

	Average in Irian Jaya* 1973-1978	1985	2000
Wet land paddy	1.909	1.909	2.959
Dry land paddy	1.198	1.198	1.272

Source: Statistical Yearbook of Indonesia 1977-1978

Note: • 1985 applied by the average value 1973-78 in frian Jaya, 2000 applied by the average value 1973-78 in Indonesia.

Table 8.2.11. Forecast Production of Paddy

(tons)

	1978	1985	2000
Wet land paddy	1,785	13,130	131,320
Dry land paddy	633	4,670	32,140
Total	2,368	17,800	163,460

The regional consumption in the year 2000 is computed based on the 1978 average per capital value in Indonesia, 120.85 kg. Thus the consumption in 1985 has the following values:

Jayawijaya

: 2.1 kg/ha/Yr

Other areas of Irian Jaya

: 34.3 kg/ha/Yr

(Source: Pelita III in Irian Jaya)

Table 8.2.12. Rice Production and Consumption

(tons)

	1985	* -	:	2000	-
Production !	Consumption	Balance	Production	Consumption	Balance
11,570	36,080	▲ 24,510°	110,500	227,440	▲ 116,880

Note: Waste rate 24 percent and milling loss 11 percent are considered.

2) Other food crops

Considering the locality (especially the area of Jayawijaya) for the production and consumption of sweet potato group crops, the estimated cultivated area in 1985 is based on the AAGR of 11 percent (1973 – 1978).

Its value in 2000 is calculated by the consumption value in 2000 of 372 kg/ha/Y at the same base in 1985,

The farm for maize, cassava, peanut and soybean, are assumed to be developed by transmigrants (both government-sponsored families and volunteers) and local inhabitants in the area of irrigation proposed by Irian Jaya Province. In this case, the total developed area is assumed to be one hectar per family multiplied by the number of transmigrants in the program.

Crop composition rate of the cultivated area is to be the same as that in 1978, excluding the area for sweet potato.

Table 8.2.13. New Developed Area by Food Crop

	1978	1985	2000
Maize	2,616 (28%)	+ 1,910	+ 10,500
Cassava	3,593 (38%)	+ 2,600	+ 14,250
Peanut	1,786 (19%)	+ 1,300	+ 7,130
Sóybean	1,374 (15%)	+1,030	+ 5,620
Total	9,369 (100%)	+ 6,840	+37,500

Note: The number of introduced farmers (family) is 6,840 in 1985 and 37,500 in 2000.

1.0

Table 8.2.14. Forecast Harvest Area by Food Crop

(hà)

Crops	1978	1985	2000
Sweet polato	36,221	\$1,650	74,800
Maize	2,616	4,530	15,030
Cassava	3,593	6,190	19,440
Peanut	1,786	3,090	10,220
Soybean	1,374	2,400	8,020
Total	45,590	67,860	127,510

Table 8.2.15. Yield Rate by Food Crop

(tons/ha)

English Control

			
	1978	2000	
Sweet polato	9.36	9.36	
Maize	0.80	1.33	
Cassava	6.65	9.30	
Peanut	0.61	0.85	
Soybean	0.78	0.81	

Source: Statistical Yearbook of Indonesia 1977-1978 & Pelita III in Irian Jaya.

Note: The value in 2000 is based on the Indonesia average value 1973-1978 without sweet polatoes.

and the control of th

Table 8.2.16. Forecast Production of Food Crops

(tons)

Crops	1978	1985	2000
Sweet potato	223,850	483,440	700,130
Maize	2,888	3,620	19,990
Cassava	22,714	34,510	180,790
Soyoean	1,072	1,870	6,500
Total	251,487	525,320	916,100

Table 8.2.17. Per Capita Consumption of Food Crops

(kg/ha/Y)

		
	1985	2000
Sweet potato	372	372
Maire	1.7	21.52
Cassara	26.55	75.72
Peanut	2.2	2.40
Soybean	22	4.03

Sources: 1. Statistical Yearbook of Indonesia 1977-1978

2. Pelita III in Irian Jaya

Table 8.2.18. Food Crop Production and Consumption Balance

(tons)

	1985			2000		
	Production	Consumption	Balance	Production	Consumption	Balance
Sweet potato	483,440	483,440		700,130	700,130	
Maize	3,620	2,210	1,410	19,990	40,500	≜ 20,510
Cassava	34,510	34,510	~	180,790	142,510	38,280
Peanut	1,880	2,860	▲ 980	8,690	4,520	4,170
Soybean	1,870	2,860	▲990	6,500	7,580	A 1,080
Total	\$25,320	525,880	A 560	916,100	895,240	20,860

(3) Estate Crops

1) Forecast of production

According to Pelita III in Irian Jaya, the production of estate crops is planned as follows:

Table 8.2.19. Production & New Development Area of Estate Crops during Pelita III

	Production	New Development Area	Required Fertilizer	
	(tons)	(ha)	tón	ton/h
Conconut	70,583	10,200	14,484	1.45
Clove	431	5,000	50	0.10
Nutmeg	11,677	2,000	75	0.04
Cocoa	1,096	4,350	50	0.13
Rubber	4,147	1,100	450	0.45
Coffee	725	850	so	0.25
Others		500	20	0.04
Total	88,659	24,000	15,179	

Source: Pelita III in Irian Jaya

Table 8.2.20. shows the newly development area by estate crop.

With respect to the forecast of estate crops, it is assumed that the new development area for estate crops will continue to produce at the average value of Pelita III period until 2000, since the present situation including land, road condition and inhabitants in West Irian will be developed yearly at the same speed (the average annual value of the period of Pelita III).

4、大量1、1000年,1940年,1940年,1940年,1940年,1940年,1940年,1940年,1940年,1940年,1940年,1940年,1940年,1940年,1940年,1940年,1940年,19

Based on the foregoing assumptions, the harvest area in 1985 and 2000 is shown hereunder.

Table 8.2.20. Development of Harvest Area for Estate Crops

		<u>::.</u>	<u> </u>	<u></u>			(ha)
	Kinds	1978	1979	1980	1981	1982	1983
.	Coconut	40	1,800	2,100	2,100	2,100	2,100
1	Nutmeg	13	590	390	215	340	465
	Cocoa	9.	340	690	990	1,090	1,240
Newly develop- ment area	Rubber	89	100	200	250	250	200
(A)	Clové	~	910	1,110	1,010	860	1,110
	Coffee		115	140	165	190	240
* :	Others	63	100	100	100	100	100
	Total	290	3,955	4,730	4,930	4,930	5,555
	Conconut	16,464	16,504	18,304	20,404	22,504	24,604
	Nutmeg	4,918	4,931	5,521	5,911	6,126	6,466
e. De Apolij	Сосоз	1,407	1,416	1,756	2,446	3,436	4,526
Existing area	Rubber	1,245	1,334	1,434	1,634	1,884	2,134
(B)	Clove	1,378	1,378	2,288	3,398	4,408	5,268
j	Coffee	392	392	507	647	812	1,002
	Others	8,182	8,245	8,345	8,445	8,545	8,645
	Total	33,910	34,200	38,155	42,885	47,715	52,645
	Conconut	16,504	18,304	20,404	22,504	24,604	26,704
	Nutmeg	4,931	5,521	5,911	6,126	6,446	6,931
i _	Сосоз	1,416	1,756	2,446	3,436	4,526	5,766
Total accu- mulated area	Rubber	1,334	1,434	1,634	1,884	2,134	2,434
(A + B)	Clove	1,378	2,288	2,398	4,408	5,268	6,378
1	Coffee	392	507	647	812	1,002	1,242
	Others	8,245	8,345	8,445	8,545	8,645	8,745
	Total	34,200	38,155	42,885	47,715	52,645	58,200

Source: Pelita III in Irian Jaya

Table 8.2.21. Harvest Area by Estate Crops

(ha)

Conna	Total Har	vested Area	Annual	Total Estimated Harvest Area		
Crops	1978	1983	Extension of Area (ha/Yr)	1985	2000	
Coconut	16,504	26,704	2,040	30,784	61,384	
Nutmeg	4,931	6,931	400	7,731	13,731	
Сосоз	1,416	5,766	870	7,506	20,556	
Rubber	1,334	2,434	220	2,874	6,174	
Clove	1,378	6,378	1,000	8,378	23,378	
Coffee	392	1,242	170	1,582	4,132	
Others	8,245	8,745	100	8,945	10,445	
Total	34,200	58,200	4,800	67,800	139,800	

Considering the vast area of Irian Jaya and the comparison with Maluku, the production by crop is calculated on the basis of the yield rate per hectare as listed below.

Table 8.2.22. Yield Rate by Estate Crops

(tons/ha)

Crops	National Base (Average 1973 to 1977)	Maluku Base (Average 1976 to 1978)
Coconut	0.717	1.307
Nutmeg	<u>-</u>	0.216
Cocoa	0.249	0.133
Rubber	0.563	_
Clove	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	0.272
Coffee	0.391	0.169
Others	0.444	0.090

Source: 1. Statistics Yearbook in Indonesia 1977-1978.

2. Maluku Dalam Angka 1977 as for clove

Note: Others represent the value of fibre.

The lower yield value is to be used for the calculation of the production in 1985 and the higher value for the estimation of the production in 2000.

The results of the calculation are listed below.

Table 8.2.23. Forecast Production by Estate Crops

(tons)

Crops	1977	1985	2000
Coconut	7,121	22,100	80,200
Nutmeg	800	1,700	3,000
Cocoa	34	1,000	5,100
Rubber	171	1,600	3,500
Clove		2,300	6,400
Coffee	56	300	1,600
Others	_	800	4,600

2) Forecast of Consumption

Most of the produced cocoa, rubber, cloves and others (mainly fibre products) are assumed to be sent to other parts of the country, except for some regional consumption.

With respect to the consumption of coconut, nutmeg, and coffee, the values for 2000 are based on the national base in 1977. The values of 1985 are estimated as follows.

Assuming that the balance between production and export is consumed within the study area, per capita consumption of each crop is calculated from the balance of the respective crops.

Conconut: 27.7 Kg/ha/Y (Source: Pelita III in Irian Jaya) Nutmeg: 0.19 " (Source: — ditto—)

Coffee : 0.34 " (Source: Statistical Yearbook of Indonesia 1977–1978).

Using these consumption rates, the balance between production and consumption is estimated as in the following table.

Table 8.2.24. Forecast Balance between Production and Consumption for Estate Crops

(tons)

Canan	1985			2000			
Crops	Production	Consumption	Balance	Production	Consumption	Balance	
Coconut	22,100	4,524	17,576	80,200	6,700	73,500	
Clove	2,200		2,200	6,400	- 1	6,400	
Nulmeg	1,700	247	1,453	3,000	358	2,642	
Cocca	1,000		1,000	5,100	- [5,100	
Rubber	1,600	_	1,600	3,500		3,500	
Coffee	300	442	▲142	1,600	640	960	
Others	800	_	800	4,600		4,600	
Total	29,700	5,213	24,487	101,400	7,698	96,702	

(4) Livestock

According to National Pelita III, the annual growth rate of livestock is planned as follows:

Cattle : 2%

Poultry : 5.5%

Applying these rates, the number of livestock is estimated as in the following table.

Table 8.2.25. Forecast Number of Livestock

(heads)

Year	Pig	Cow	Goat	Sheep	Poultry
1977	196,620	9,290	10,160	1,090	417,670
1985	230,430	10,880	11,900	1,270	641,120
2000	310,000	14,650	16,020	1,710	1,430,900

Note: The number of Poultry is taken as the 1977 value in Pelita III for Irian Jaya.

Applying the national average ratio of slaughtered livestock (Source: Statistical Yearbook of Indonesia 1977 — 1978), the number of slaughtered livestock is estimated below:

Table 8.2.26. Forecast Livestock Slaughtered

(heads)

Year	Pig	Cow	Goat	Sheep	Poultry
1985 2000	181,800 244,500	1,400 1,880	5,430 7,320	110 960	1,154,000 2,575,000
Slaughter ratio	0.789	0.129	0.457	0.\$65 -100 4 4 0 0 0 0 1	1.0

From the above Table, the production of meat is estimated in the table below.

(tons),

Year	Pig	Cow	Goat	Sheep	Poultry
1978	5,998	316	96	1	772
1985	7,270	220	50	5	1,150
2000	9,780	290	70	10	2,580

Note: Yield rate of meat per animal is as follows:

Pig: 0.040 ton/head

Cow: 0.156 • Goat: 0.010 •

Sheep: 0.008 ...

Poultry: 0.001 *

Source: Pelita III in Irian Jaya

With respect to the consumption per capita in 1985, the value of Irian Jaya in 1978 is used as a base and the per capita consumption in 2000 is based on the national average in 1977.

Table 8.2.27. Per Capita Livestock Consumption Rate

(kg/capita/Y)

f					
Year	Pig	Cow	Goat	Sheep	Poultry
1985	5.40	0.97	0.09	0.09	0.710
2000	5.40	0.97	0.28	0.09	1.07

Source: 1. Statistical Yearbook of Indonesia

2. Pelita III in Irian Jaya

Table 8.2.28. Balance between Livestock Production and Consumption

(tons)

	11.34.	1985			2000		
	Production	Consumption	Balance	Production	Consumption	Batance	
Pig	7,270	7,020	250	9,780	10,160	▲ 380	
Cow	220 ·	1,260	▲1,040	290	1,830	▲1,540	
Goat	50	120	A 70	70	530	▲ 460	
Sheep	5	120	A 115, -	10	170	A 160	
Poultry	1,150	925	225	2,580	2,010	570	

(\$) Forestry

According to Pelita III in Irian Jaya, the production of logs is planned to increase by the same rate as the AAGR during Pelita I & II.

Table 8.2.29. Production of Logs and Sawn Timber

 (m^3)

Year	Logs	Export of logs	Regional use of logs	Sawn Timber
1970	28,214	24,379	4,890	. 1,534
1971	43,790	20,133	4,890	7,507
1972	28,372	7,100	5,730	6,217
1973	33,869		7,817	10,421
1974	59,935	7,227	13,948	15,334
1975	44,873	9,379	8,669	10,736
1976	\$4,853	15,377	11,561	11,166
1977	72,215	17,638	10,234	18,531
1978	89,816	30,578	8,044	20,478
AAGR	15%	29%	6.4%	38.25%

Source: Pelifa III in Irian Jaya.

Taking the policy of Pelita III into consideration, the log production in 1985 and 2000 is estimated on the basis of AAGR during Pelita I & II, which is 15 percent. However, AAGR of National Pelita III, 4.64 percent is used in the calculation of the export volume of logs.

The production of sawn timber is estimated by its share in the total production of togs in 1978. The remaining is used within the province.

Table 8.2.30. Production of Forestry Products

 (m^3)

	1978	AAGR (70-78)	1985	AAGR ('78-'85)	2000	AAGR (85–2000)
Logs	89,820	15	274,750	15	2,570,830	15
Export logs .	30,580	29	43,950	4.64	90,540 5	4.64
Regional use logs	8,040	6.4	74,190	37.4	1,014,920	19.1
Sawn timber	20,480	38.3	62,640	173	586,150	16.1

Note: Waste rate of log to timber is assumed at 60 percent of Pelita III in Isian Jaya.

(6) Fishery

According to Pelita III in Irian Jaya, fishery production is planned as follows:

Table 8.2.31. Production and Consumption of Fishery

reference and particular and particular (tops)

Year	Production	Export	Consumption
1978	23,916	5,467	18,859
1979	27,762	6,985	21,177
1980	32,457	8,894	23,923
1981	37,198	10,603	26,918
1982	42,917	12,913	30,294
1983	48,034	14,220	33,994
AAGR (78-'83)	15%	21%	12.5%

Source: Pelita III in Irian Jaya.

Assuming that the production will continue to increase at the same rate as that of Petita III up to 1985, the production in 1985 can be calculated from the average growth rate of 15 percent during the period of Pelita III. The production of marine fish in 2000 is based on the average growth rate of National Pelita III of 5 percent.

Until 1985, the consumption is assumed to stay at the same level as that of 1978, which is 16.9 kg/capita. This value is very high compared with the national average value of 8.66 kg/capita

in 1977 (ref. 34.85 kg/capita in Japan).

The balance between production and consumption is sent to other parts of the country. The export volume in 2000 can be calculated by applying the export ratio of 30 percent in 1983.

Table 8.2.32. Forecast Production and Consumption of Fishery

(tons) Year Production Export Outward Consumption 1978 23.916 5,467 18,859 1985 63,500 10,320 13.980 29,290 2000 131,950 39,600 49,950 42,400 **AAGR** 8.1 9.4 (from 1978) 8.9 3.8

Note: With respect to consumption, the waste rate of 25 percent is assumed. Source: Statistical Yearbook of Indonesia,

(7) Mining

1) Petroleum

As it is very difficult to forecast future crude oil production, it is assumed in this study that the production in 1978, when the maximum production was achieved, would remain unchanged in 1985 and 2000.

Table 8.2.33. Forecast Production of Crude Oil

		(x 10 ³ tons)
1978	1985	2000
5,089	5,100	5,100

2) Oil Refinery

At present, Pertamina is planning a refinery plant in the area of Sorong. Its production capacity has not been published.

In this study, supply of oil products by pertamina is assumed to commence after 1986 and until then, the regional demand is assumed to be covered by the Balikpapan Plant.

It is assumed that the composition of oil products in future will be the same as that of the Balikpapan Plant and that oil refining capacity at Sorong will continue to be 60,000 BPSD until the new plant reinforce and increase the capacity up to 100,000 BPSD in 2000.

Table 8.2.34. Production of Oil Products and Treated Crude Oil in 2000

Oil Products Treated Crude Oil

4,596 × 10³
4,668 × 10³
4,668 × 10³
(3,064 Ki × $\frac{10}{6}$ × 0.9 × 10³)

(3,112 Ki × $\frac{10}{6}$ × 0.9 × 10³)

Source: Study Report on the Expansion Project of the Port of Balikpapan, JICA.

8.2.4. Maluku Province

(1) General Conclusion

As shown in Table 8.2.35, the agriculture sector shows the high value with the share of 50 percent in 1985 and 51.1 percent in 2000.

The main reason is the rapid development of fields for food crops by transmigrants and resettlers.

Especially, Maluku Province plans to turn the paddy area into irrigated fields.

As for Maluku Province, the areas intended for transmigrants and resettlers in Perita III is confirmed as follows:

a) Areas for transmigrants

Pulau Buru	- (Maluku Tenggara	3)	20,000 ha
Makariki	(")	5,000 ha
Pasahari	(")	40,000 ha
Kao	(Maluku Utara)	15,000 ha
Weda	(Harmahera Teng	ah)	9,000 ha
Wasile	(")	9,000 ha

b) Areas for resettlements

Makariki	(Maluku Tengah)			4,000 ha
Masiwang	(**)	5,000 ha
Piru/Eti	(11)	4,000 ha
Pasahari :	(**)	4,000 ha
Pulan Buru	(••)	5,000 ha
Kao	(Maluku Utara)			4,000 ha
Pulau Wetar	(Ma	luku Ter	iggara)	2,000 ha
		i ya	Total	126 000 ha

The area of about \$1,000 ha is planned to be cultivated between 1979 and 1985 and about 139,000 ha during 1986 - 2000 period.

Jamas 🧬

21,375 ha out of the area developed by 1983 is planned to be paddy fields.

As for estate crops, Maluku Province plans to develop new areas as follows:

Tobelo	(Mal	uku Utar	a)	2,100 ha
Labuha	(11)	1,200 ha
Sanana	· (**	**)	1,100 ha
Ternate				3,200 ha
Ambon	e i je eje			1,300 ha
Namiea	(Hal	mahera T	Tengah)	1,300 ha
Amahai	(Mal	luku Ten	gah)	2,100 ha
Tual	(Mai	luku Ten	ggara)	1,300 ha
Dobo	()	200 ha
Saumlaki	(1)	**)	1,500 ha
Тера	(**)	100 ha
Wetar	(**)	1,100 ha
			Total	16,500 ha

These new areas (seeding area) is to be developed during Pelita III.

As for mining resources in Maluku, the nickel in Gebe island is incorporated into the forecast in this study. At present, only Associated Australian Resources N.L. is investigating her oil concession in Seram island. However, the future production of crude oil is not included in this study forecast.

Sectors other than agriculture and mining also shows the high share of 43.6 percent in 1985 and 44.7 percent in 2000. This is mainly due to the growth of trades sector (16.2 percent in 1978) and the public sector (9.7 percent in 1978).

In conclusion, it can be said that the future industrial structure in Maluku will be sustained by the agriculture sector, and that food crops, estate crops and fishery will promote the growth of the agriculture sector.

Table 8.2.35. Forecast GRDP of Maluku Province

(1975 Constant Prices) × 10⁶ US\$

1			;		_		AA	GR ·
Sector	1978	Æ	1985	%	2000	%	1978 1935	1978- 2000
Food crops	63.174	21.2	149.596	23.9	364.324	29.6	27.2	8.3
Éstate crops	54.494	18.2	64.630	10.3	86.972	7.1	2.5	2.2
Livestock	1.914	0.7	2.747	0.4	4.800	0.4	5.5	4.1
Forestry	22.434	7.5	34.324	- 5.5	30.936	2.5	6.3	1.5
Fishery	30.802	10.3	62.035	9.9	142-398	11.5	10.5	7.2
Agriculture Total	172.818	57.9	313.332	50.0	629.430	\$1.1	8.9	6.1
Mining	5.479	1.8	33,039	5.3	38.519	3.1	29.3	9.3
Manufacturing & Industry	3.211	1.1	6.624	1.1	13.308	1.1	10.9	6.7
Others	117.117	39.2	273.791	43.6	550.046	44.7	13.0	7.3
Grand Total	298.625	100	626.786	100	1,231.303	100	11.2	6.7

(2) Food Crops

1) Paddy

The harvest area for paddy in Maluku is planned by Pelita III as follows:

Table 8.2.36. Forecast Harvest Area for Paddy in 1983

A (1001)	- H.		1 Maritin	44.47
Area (1983)	ha	%	Yield Rate (ton/ha)	Total Production ((on)
Wet land paddy	21,375	52	1	1
Dry land paddy	10,470	48	1.97	62,739
Total	31,845	100	1.97	62,739

Source: Pelita III in Maluku

The composition of dry land and wet land paddy is obtained by the following formula:

$$(A \times Y_1) + (B \times Y_2) = 62,739$$
 tons
A + B = 31,845 ha

where,

A : areas for wet land paddy

B : areas for dry land paddy

Y₁: yield rate of wet land paddy

 $(Y_1 = 2.482 - Average value 1974 to 1978)$

Y₂: yield rate of dry land paddy

(Y₂ = 0.925 - Average value 1974 to 1978)

According to Pelita III in Maluku, these areas are scheduled to be developed and irrigated by transmigrants and resetting people.

The irrigation area is assumed to be developed continuously by transmigrants and resettles at the rate of one hectar per family until the year of 2000. The ratio of the dry land paddy and the wet land paddy, considering the double cropping, will be the same as that in 1983.

Table 8.2.37. Number of Transmigrants & Resetting Population

Period	Number of Families	Required Area (ha)
1984-1985	7,500	7,500
1986-2000	\$6,250	56,250

Source: derived from Table 8.1.5.

Table 8.2.38. Forecast Harrest Area of Paddy

(h3)

	1983	198	1985)O
	Harvest Area	Newly Area Developed	Harvest Area	Newly Area Developed	Harvest Area
Wet land paddy	21,375	7,590	28,875	56,250	85,125
Dry land paddy	10,470	3,390	13,860	27,000	40,860
Total	31,845	10,890	42,735	83,250	125,985

Table 8.2.39. Yield Rate of Paddy

(tons/ha)

	Average value in Majuku 1974 to 1978	1985	2000
Wet land paddy	2.482	2.482	2.959
Dry land paddy	0.925	0.925	1.272

Source: Pelita III in Maluku and Statistical Yearbook of Indonesia

Note: 1. 1985 using the average value in Maluku
2. 2000 using the average value in Indonesia

From Tables 8.2.38 and 8.2.39, the production of paddy is calculated below:

Table 8.2.40. Forecast Production of Paddy

(tons

				(tons)
	1978	1983	1985	2000
Wet land paddy	891	53,059	71,670	251,880
Dry land paddy	15,026	9,680	12,650	51,970
Total	15,917	62,739	84,320	303,850

2) Other food crops

With respect to other food crops, Maluku Province plans as follows:

Table 8.2.41. Planned Harvest Area by Food Crop in 1983

<u> </u>	Total Harve	est Area	Yield Rate	Total Production
Crops	ha	%	(tons/ha)	(tons)
Maize	19,200	30	1.91	36,713
Cassava	16,200	26	11.90	192,778
Sweet potato	10,720	17	7.70	82,528
Other potato	6,420	10	9.62	61,764
Peanut	4,800	8	0.63	3,024
Greenpea	3,149	5	0.57	1,809
Soybean	528	1	0.61	320
Other beans	1,850	3	0.42	777
Total	62,867	100		379,713

These harvest areas were calculated on the assumption that one hectar of land is cultivated by a family of transmigrants.

Each crops share in the total harvest area is calculated to be the same as in 1978.

Table 8.2.42. Forecast Harvest Area by Food Crop

	1983	1983		20	00
Crops	Total Area	Newly Area Developed	Total Area	Newly Area Developed	Total Area
Maize	19,200	2,240	21,440	16,870	38,310
Cassava	16,200	1,950	18,150	14,630	32,780
Sweet potato	10,720	1,280	12,000	9,560	21,560
Other potato	6,420	750	7,170	5,630	12,800
Peanut	4,800	600	5,400	4,500	9,900
Greenpea	3,149	370	3,520	2,810	6,330
Soybean	528	80	610	560	1,170
Other beans	1,850	230	2,080	1,690	3,770
Total	62,867	7,500	70,370	56,250	126,620

Table 8.2.43. Perecast Yield Rate by Food Crops

(tons/ha)

		(**************************************
Crops	1985	2000
Maize	1.91	1.91
Cassava Sweet notato	11.90	11.90
Sweet potato	7.70	9.36*
Other potato	9.62	9.62
Peanut	0.63	0.85*
Soybean	0.61	0.81
Greenpea	0.57	0.61**
Other bean	0.42	0.50**

Source: 1. Pelita III in Maluku

2. Statistical Yearbook of Indonesia 1977-1978.

Note: * Applied high value by National base

** Applied the highest value during Pelita II in Maluku

Table 8.2.44. Forecast Production of Food Crops

(tòns)

Crops	1978	1985	2000
Maize	19,060	40,950	73,170
Cassava	163,329	215,990	390,080
Sweet potato	60,214	92,400	201,800
Other potato	(42,922)	68,990	123,140
Peanut	1,339	3,400	8,420
Soybean	99	370	950
Greenpea	(1,220)	2,010	3,860
Other bean	(-723)	- 870	1,890
Total	288,906	424,970	803,310

(3) Estate Crops

According to Pelita III in Maluku, the area planned for estate crops is as follows:

Table 8.2.45. Planned Development of Estate Crop Area during Pelita III

Crops	Newly Developed Area during Pelita III (ha)	Annual Extension of Area (ha/Y)
Coconut	8,483	1,697
Clove	5,875	1,175
Nutneg	1,840	368
Cocca	12	2
Coffee	250	\$0
Pepper	21	5
Fibre (Kapok)	to the second se	egis services de la companya de la c
Total	16,481	3,297

Source: Pelita III in Maluku

It is assumed that the newly development area for estate crops will continue to increase at the average value of Pelita III until 2000 and after.

The newly developed area (seeding area) is considered to be the harvest area.

However, considering the time difference between seeding and harvesting, the areas developed in and after 1983 will begin to be regarded as part of the harvest area of the year 1978.

Based on the foregoing assumptions, the harvest area in 1985 and 2000 is shown hereunder.

Table 8.2.46. Forecast Harrest Area by Estate Crops

) (c.f.

1978		198	1985		2000	
Ctops Total A	Total Area	Newly Developed Area	Total Area	Newly Developed Area	Total Area	
Coconut	116,982	3,398	120,380	25,460	145,840	
Clove	18,031	2,349	20,380	17,630	38,010	
Nutmeg	15,018	732	15,750	5,520	21,270	
Cocca	4,801	9 1	4,810	40	4,850	
Coffee	2,040	100	2,140	750	2,890	
Pepper		40	40	80	120	
Fibre	1,357	3	1,360	_	1,360	
Total	158,229	6,631	164,860	49,480	214,340	

Table 8.2.47. Forecast Yield Rate for Estate Crops

(tons/ha) Crops 1985 2000 Coconut 1.307 1.307 Clove 0.272 0.272 Nutmeg 0.216 0.216 Cocoa 0.133 0.249* Coffee 0.169 0.391 Pepper 0.653* 0.653* Fibre 0.090 0.444*

Sources: 1. *; Statistical Yearbook of Indonesia 1977-1978

2. Maluku Dalam Angka 1977

From Tables 8.2.46. and 8.2.47, the production of estate crops is calculated below.

Table 8.2.48. Forecast Production by Estate Crops

(tons)

Crops	1978	1985	2000
Coconut	136,014	157,340	190,610
Clove	3,981	5,540	10,340
Nutmeg	3,277	3,400	4,590
Сосоз	548	640	1,210
Coffee	352	360	1,130
Pepper	-	30	80
Fibre (Kapok)	171	120	600
Total	144,343	167,430	208,560

(4) Livestock

Maluku Province plans the production of cattle as follows:

Table 8.2.49. Production Plan for Livestock

(heads)

Year	Fig	Cow	Buffalo	Goat	Horse	Poultry
1979	60,436	27,095	26,091	140,772	2,891	1,046,389
1980	64,131	28,607	27,761	153,605	3,076	1,159,096
1981	67,825	30,119	29,432	166,438	3,260	1,271,803
1982	71,519	31,630	31,102	179,271	3,445	1,384,510
1983	75,214	33,142	32,722	192,104	3,630	1,497,218
AAGR (1979– 1983)	4.5	4.1	4.6	6.4	4.6	7.5

Source: Pelita III in Maluku

The growth rates of livestock in Maluku are very high compared with the comparable values of National Pelita III, where cattle is 2.0 percent and poultry is 5.5 percent.

。 我是这样的,这些女孩大大大大人,有关大大大的人的人也是有什么。我们

Therefore, the growth rates of National Pelita III will be used in estimating the number of livestock in and after 1984.

Table 8.2.50. Forecast Number of Livestock

(héads

Year	Pig	Cow	Buffalo	Gost	Horse	Poultry
1978	59,601	26,605	24,807	133,294	2,654	896,000
1985	78,200	34,400	34,000	199,700	3,700	1,666,400
2000	105,200	46,300	45,800	268,900	5,000	3,720,500

Applying the average ratio of slaughtered livestock in Maluku (Source: Table 2.4.23.), the number of slaughtered livestock is calculated below:

Table 8.2.51. Forecast Number of Slaughtered Livestock

(heads)

Year	Pig	Cow	Buffalo	Goat	Horse	Poultry
1978	3,848	2,456	356	1,119	*37	896,000
1985	5,080	3,160	470	1,590	50	1,688,000
2000	6,830	4,200	640	2,150	70	3,768,800
Slaughter Ratio	0.065	0.092	0.014	0.008	*0.014	**1.013

Note: * Decided by Study Team

^{**} Derived from the average value 1976-77 of Pelita III in Maluku

Table 8.2.52. Yield Rate of Meat per Animal

				F	
Pig	Cow	Buffalo	Goat	Horse	Poultry ,
0.156	0.165	0.20*	0.05	0.20*	0.001**

Source: Pelita III in Maluku

Note:

- * Yield Rate of Buffalo and Horse were decided by Study Team
- ** Pelita III in Irian Jaya

From Tables 8.2.51. and 8.2.52, the production of meat is estimated in the following table:

Table 8.2.53. Forecast Production of Meat

(tons)

Year	Pig	Cow	Buffalo	Goat	Horse	Poultry
1978	612	404	62	56	*7	*910
1985	790	520	90	80	10	1,680
2000	1,070	690	120	110	10	3,760

Note: * derived from Table 8.2.51, and 8.2.52.

(5) Forestry

According to Pelita III in Maluku, the production of logs and sawn timber is planned as follows:

Table 8.2.54. Production of Logs and Sawn Timber

(m³)

		1978	1979/ 1980	1983/ 1984	AAGR 1979–84
	Logs	1,016,281	1,000,000	1,500,000	10.7
ł	Sawn timber	2,235	60,000	210,000	36.8

Source: Pelita III in Maluku

It is assumed that the production volume of logs in 1985 is the same as in 1983/1984. Maluku Province sets the ceiting to the future production of logs at 1,200,000 m³ from the standpoint of forest conservation. Therefore, this figure, 1,200,000 m³ is incorporated in Pelita III as the production volume in 2000.

With respect to the production of sawn timber, considering that the growth rate of sawn timber production is affected mainly by the growth rate of the construction sector, the production is estimated on the basis of the growth rate of 9 percent from National Pelita III.

Table 8.2.55. Forecast Production of Forestry Products

 (m^3)

	1978	1985	2000
Logs	1,016,000	1,500,000	1,200,000
Sawn timber	2,000	120,000	437,000

(6) Pishery

In Pelita III in Maluku, the production and consumption of fishery products is planned as follows:

Table 8.2.56. Planned Production and Consumption of Fishery Products

(tons)

4 3 3 4

Year	Production	Consumption	Export
1979	74,575	64,530	10,045
1980	79,524	68,915	10,609
1981	85,578	74,815	11,316
1982	91,889	80,811	12,078
1983	103,303	90,300	13,003
AAGR (1979–83)	8.5%	8.8%	6.7%

Source: Pelita III in Maluku

It is assumed that the production of fishery products up to 2000 continues at the same growth rate as in the period from 1979 to 1983 (i.e., 8.5 percent). With respect to per capita consumption, Maluku Province plans 36.8 Kg/Y in 1979 and 46.5 Kg/Y in 1983, taking the waste rate of 25 percent into account.

These values are very high compared with the national average of 8.7 Kg/Y in 1978. In this study, it is assumed that the consumption up to 2000 continues to remain at the same level as that of 1979, which is 36.8 Kg/Capita/Y.

Table 8.2.57. Forecast Production and Consumption of Fishery Products

(tons)

Year	1978	1985	2000
Production	72,224	121,610	252,830
Consumption	66,449	75,690	109,550
Export	5,775	45,920	143,280

(7) Mining

Maluku Province has planned a production of nickel ores in Gebe Island, which is incorporated in Pelita III as follows:

Table 8.2.58. Planned Production of Nickel Ore

Year	Production (tons)	Amount (x 10° U.S.\$)
1979	1,000,000	18.307
1980	1,200,000	21.979
1981	1,200,000	21.979
1982	1,300,000	23.837
1983	1,500,000	27.560

It is assumed in this study that the production volume of nickel ore in 1985 through 2000 will remain the same as in 1983.

The currency value is added to the GRDP of the mining sector in 1979.

8.3. Port Activities

8.3.1. Forecast of Cargo Traffic Through the Port

(1) Macro Forecast

1) General idea of macro forecast

In general, forecast of port activities, mainly cargo and passenger traffic through a port, is based on a relation between basic indices and port activities. The basic indices have already been forecast for population, GRDP and other regional activities as mentioned in sections 8.1 and 8.2. The series of these basic indices and the cargo traffic through the ports are shown in Table 8.3.1.

Table 8.3.1. Basic Data Series of Irian Jaya and the Port of Sorong

(1) Population and GRDP

		vilation people)	GRDP (1975 constant price, x104 US\$)					
Year	H7boke Area	Port Related Area	Total	Forestry	Mining & Quanting	Petroleum	Fishery	
1971	923,4							
1972	945.6			ļ	ļ j		-	
1973	968.3		232,60	1.13	57.73	\$7.63	22.29	
1974	995.1		358.48	1.59	168.54	168.23	18.50	
1975	1,015.3		496.13	1.60	292.45	291.91	13.21	
1976	1,039.9		575,89	2.49	350.63	345.16	10.55	
1977	3,064.7		612.30	2.75	375.56	368.89	12.65	
1978	1,090.3	392.7	647.13	3.05	384.05	377.92	12.88	
1985	1,300	\$58.2	914.17	9.35	389.50	377.92	32.37	
2000	1,882	1,005.6	1,877.16	87.41	503.48	485.32	75.18	

(2) Cargo Traffic

	Cargo Traffic through the Ports (tons)									
Yest			Irian Jaya		,]	Sorong				
·	Total	Log	Fish	Crude Oil	Copper	Total*				
1971		•	-							
1972]							
1973]	_								
1974	2,095,485	12.213		1,421,120	223,553	122,305				
1975	3,724,146	20,313	2,596	3,063,303	234,279	131,665				
1976	4,456,057	24,515	4.437	3,705,867	254,964	142,950				
1977	4,724,143	42,500	5717	4,017,435	188,125	145.568				
1978	6,224,112	82,236	11 566	5,418,613	201,430	165,338				

Note: * excluding crude oil

2) Relation between cargo flow and GRDP

A. Elasticity of eargo flow for GRDP

The elasticity of the growth of cargo flow's against GRDP's growth, in other words the ratio of the two growth rates is one of the basic relations between the two indices. Cargo volume of the target years can be estimated by using this relation.

That is:

$$C_t = C_n (1 + k_{tfn})^{t-n}$$
$$k_{tfn} = r_{tfn} \times \frac{k_{nfo}}{\epsilon_{nfo}}$$

where,

C1 : cargo volume in target year

C_n: cargo volume in base year

k : average annual growth rate (AAGR) of cargo

t/n : from base year (n) to target year (1)

n/o: from the first year (o) to base year (n)

r : AAGR of GRDP

 $\frac{k_{nlo}}{r_{nlo}}$: elasticity (e)

A-1. Elasticity of whole Irian Jaya's cargo flow

As is seen in Table 8.3.2., the elasticity of the growth rate between GRDP (excluding Mining sector) and whole Irian Jaya's cargo flow (excluding Crude Oil and Refined Copper) is,

$$e = \frac{7.59\%}{8.48\%} = 0.895$$

$$k_{85} r_{18} = 10.36\% \times 0.895 = 9.27\%$$

$$k_{2000} r_{28} = 7.78\% \times 0.895 = 6.96\%$$

consequently

$$C_{1.285} = 604.07 \times (1 + 0.0927)^{.7} \stackrel{?}{=} 1,120 \times 10^{3} \text{ tons}$$

$$C_{1.2000} = 604.07 \times (1 + 0.0696)^{.2.2} \stackrel{?}{=} 2,650 \times 10^{3} \text{ tons}$$

If the ratio of Sorong Port to whole Irian Jaya's cargo flow is assumed (Table 8.3.3.) as 26.5 percent in 1985 and 23.2 percent in 2000, the cargo flow in Sorong Port is-

$$C_{s}|_{85} = 1,120 \times 0.265 = 300 \times 10^3 \text{ tons}$$

 $S_{s}|_{2000} = 2,650 \times 0.232 = 610 \times 10^3 \text{ tons}$

A-2. Elasticity of Sorong Port's cargo flow

The elasticity between the AAGR of whole Irian Jaya's GRDP and Sorong Port's cargo flows may be used as follows:

$$e' = \frac{7.83\%}{8.48\%} = 0.923$$

therefore

$$k'_{*85f18} = 10.36\% \times 0.923 = 9.56\%$$

 $k'_{2000f78} = 7.78\% \times 0.923 = 7.18\%$

consequently

 $C_{5.85} = 165.34 \times (1 + 0.0956)^{7} = 310 \times 10^{3} \text{ tons}$ $C_{5,2000} = 165.34 \times (1 + 0.0718)^{22} = 760 \times 10^3 \text{ tons}$

Table 8.3.2. Forecast by Elasticity of Average Annual Growth Ratio

	A	AGŘ (%)		Elasticit	y (e)
Period	GRDP*	Cargo F	low** (k)		6:
	(1)	Irian Jaya	Sorong	Irian Jaya	Sorong
·78 j ·74	8.48	7.59	7.83	0.895	0.923
'85 / '78 '00 / '78	10.36 7.78	9.27 6.96	9.56 7.18		

B. Corelation between cargo flow and GRDP

Using corelation between some indices is the most popular method of forecast. According to the graph of the two indices of cargo flow and GRDP, the following functional relationship is assumed.

C = aV + b

where,

C : cargo volume

V : GRDP

a, b: coefficient

To determine the coefficients of a and b, the least square method is most convenient.

The results are

 $C_1 = 2.287 V_1 - 12.640 (R = 0.948)$

 $C_s = 0.563 V_1 + 15.515 (R = 0.992)$ and

C₁: Irian Jaya's cargo traffice (x 10³ tons) where, (excluding crude oil and refined copper)

C_s: Sorong's cargo traffic (x 10³ tons)

V₁: GRDP in whole Irian Jaya

(x 106 US\$ in 1975 constant price)

(excluding Mining sector)

The forecast results are shown in Table 8.3.3.

Table 8.3.3. Forecast by Corelation between GRDP and Cargo Flow

.	GRDP	Cargo Flow	:	
Year	(×10, fiz2)	Irian Jaya (C _I)	Sorong (C _S)	cs/c _I
1974	189.94	450,81	122.31	0.271
1975	203.68	426.56	131.67	0.309
1976	225.26	495,23	142.95	0.289
1977	236.74	518.58	145.57	0.281
1978	263.08	604.07	165,34	0.274
1985	524.67	1,190	310 = 1	0.265
2000	1,368.68	3,120	790	0.232

Note: 1. GRDP excluding mining sector.

2. Cargo Flow excluding crude oil and refined copper.

3. Cargo Flows the results of forecasting

4. Cargo is assumed by

$$\frac{C_S}{C_I} \approx -0.0022T \pm 0.2914$$
 (T: $T_{1974} = 1$, $T_{1985} = 12$, $T_{2000} = 27$)

3) Relation between cargo flow and population

Population is the most basic index of regional activities; However, it is difficult to relate the fluctuation of cargo flow directly to population movement. Improvement of the standard of living and other activities affect cargo flow more directly than the increase of the population.

Nonetheless, cargo flow may be estimated by the following equation.

$$C = a \frac{V}{P} + b$$

where, P: population

The results are

$$C_I = 3.303 \frac{V_I}{P_I} - 209.671 \text{ (R = 0.944)}$$

$$C_s = 0.823 \frac{V_1}{P} - 34.929 \quad (R - 0.995)$$

where, VI : standard of living in Irian Jaya (USS/person) (per capita GRDP in which mining sector excluding)

The forecast results are shown in Table 8.3.4.

Table 8.3.4. Forecast by Standard of Living

	Standard of	Cargo Flow	(x10³ tons)
Year	Living (VI) (US\$/person)	Irian Jaya (C _I)	Sorong (CS)
1974	190,88	450,81	122,31
1975	200.61	426.56	131.67
1976	216.62	495,23	142,95
1977	222.35	518.58	145,57
1978	241.29	604.07	165.34
1985	403.59	1,120	300 1
2000	727.25	2,190	560 I

Note: 1. GROP excluding mining sector.
2. Cargo Flow excluding crude oil and refined copper.
3. Cargo Flows the results of forecasting.

4) Results of macro forecast

The results of all forecast techniques are summarised in Table 8.3.5.

As is seen in this table, cargo flow through Sorong Port is estimated about 300 - 320 thousand tons in the year of 1985, and 510 - 790 thousand tons in the year of 2000. But these estimations do not take possible functional changes of Sorong Port into consideration.

Table 8.3.5. Results of Cargo Flow Forecast

 $(x10^3 tons)$

Children Stories - I

Technique	Irian	Jaya	Sor	ong
rectuaque	1985	2000	1985	2000
Elasticity		Í		1. 312 1.11
A-I	1,120	2,650	300	610
A-2	_		310	760
Corelation		}		
B-1	1,190	3,120	320	720
B-2			310	790
Standard of Living	1,120	2,190	300	· 510
	_	-	300	560

(2) Micro estimation

1) General idea of micro estimation

Micro estimation for cargo traffic through Sorong Port is based on the difference between the production and the consumption of commodities in each region. If the production of a region is bigger than its consumption, the difference or a surplus is assumed to be shipped to other countries (export) or other provinces of Indonesia (outbound). If the production is smaller than the consumption, the deficit is assumed to be supplied by other countries (imports) or other parts of Indonesia (inbound).

Regional Activities in All of Irian Jaya

Area and Population of Service Area

Regional Activities of Service Area

Regional Production and Consumption

Cargo Traffic through the Ports in Distribution Service Area
[Cargo Traffic = Production Consumption]

Fig. 8.3.1. Basic Concept of Micro Estimation

Table 8.3.6. Basic Indicies of Port Distribution Service Area

Port Distribution		Area		Population ()	Population (x 103 persons)		Transr (x 10 ³	Transmigration (x 10° families)	Potential Area
Service Area	Kaoupaten	(Sm ²)	1985	3.5	2000	Q.	/6461	1979/	of Irngation
			Whole Area	P.R.A.	Whole Area	P.R.A.	1985	2000	(put of w)
Hinterland	Sorong	40,549 (9,9)	152.5 (11.7)	108.7 (19.5)	217.6 (11.6)	173.7 (17.3)	1.4 (20.0)	5.36 (12.0)	27.3 (11.8)
Service Area	Paniai	46,400 (11.3)	218.2 (16.8)	18.0	323.4 (17.2)	(11.13	1.4	9.26 (20.8)	36.0 (15.6)
	Y. Waropen	18,994 (4,6)	63.3 (4.9)	59.4 (10.6)	90.09 0.6.8)	\$5.2 (8.5)	+ 227	1.58	0.8.0 0.4.5.
	T. Chenderawasih	4,010	86.0 (6.6)	683 (12:2)	112.8	89.6 (8.9)		· · · · · · · · · · · · · · · · · · ·	•
	Manokwari	36,773 (8,9)	2.8 1.69	76.4	184.8 8.89	184.5	(30.0)	12.34	8.65 8.65 8.65
	Fak-Fak	44.566 (10.9)	ි දි.දි.දි	8.5.9 6.23	83.0	66.5 (6.6)			'
	Sub Total	150,743 (36.7)	\$34.9 (41.2)	268.0 (48.0)	794.6 (42.2)	537.1	3.5 (50.0)	23.18	93.6 (40.5)
Other Area	Jayapura	48,188	162.6 (12.5)	140.2 (25.1)	263.3	227.1	(20.0)	11.84	62.5
	Jayawijaya	47.960	284.3 (20.3)	•	346.9 (18.4)	•			
	Merauke	123,220 (30.0)	185.7	5.13	259.6 (13.8)	(6.7)	\$.001)	4.12	47.4 (20.6)
	Sub Total	219,368 (53.4)	612.6 (47.1)	(32.5)	869.8 (46.2)	294.8 (29.3)	(30.0)	15.96	10.39
Total Irian Jaya		410,660 (100.0)	1,300.0 (100.0)	\$58.2 (100.0)	1,882.0 (100.0)	1,005.6 (100.0)	7.0	(100.0)	230:4 (100:0)
Original Table or Section	ttion	Table 2,2,2	Table 8.1.1. and 7.2.1	and 7.2.1.			Table 8.1.5		Section 8.2.3.41)

Note: 1. P.R.A. - Port Related Area (see section 7.2-2)
2. () shows share of Total Irian Jaya (%)

2) Methods of calculation in estimation

The methods of calculation for micro estimation are as follows.

(a) Foodstuffs

(a) 1 Rice

With regard to rice, the balance between production and consumption of each are is shown in Table 8.3.7. (1).

As is seen in this table, shortage of rice is estimated at 2,910 tons for the hinterland and 12,570 tons for the service area in 1985. These cargoes will be brought to the Port of Sorong by sea and then transported by land to the hinterland and by ship to the service area (Table 8.3.7. (1)).

Table 8.3.7. Rice

(1) Production Consumption Balance

	<u> </u>	1985		2000		
	Production (A)	Consumption (B)	А-В	Production (A)	Consumption (B)	A-B
Hinterland Service Area	2,320 5,780	5,230 18,350	▲2,910 ▲12,570	13,270 57,600	26,300 96,030	▲13,030 ▲38,430
Jayapara Merauke	2,320 1,150	6,130 6,370	43,810 45,220	29,410 10,280	73,740 31,370	A44,330 A21,090
Total Irian Jaya	11,570	36,080	≜ 24,510	110,560	227,440	▲116,88 Ó

Note: 1. The amount of production in each area is calculated by using the ratio of transmigrants.

2. Per capita consumption in 1985 is 2.1 kg/H/Y for layawijaya, 34.3 kg/H/Y for other Kabupatens, and it is 120.85 kg/H/Y for all Kabupatens in 2000.

(2) Cargo Traffic Thro	ugh the Ports	<u> </u>		(tons)
	19	85	20	00
	UL	L	UL	L
Hinterland Service Area	2,910 12,570	12,570	13,030 38,430	38,430
Scrong Total	15,480	12,570	51,460	38,430
Jayapara Merauke	3,810 5,220		44,330 21,090	:
Total Irian Jaya	24,510	12,570	65,420	38,430

(a)-2 Wheat and sugar

With regard to wheat and sugar, it is assumed that they will not be produced in Irian Jaya either in 1985 or 2000, and the amount required in the service area will be brought in from other areas of the country.

According to the Statistical Yearbook of Indonesia 1977 – 1978, the highest per capita consumption in the last few years was 5.05 kg/H/Y for wheat flour and 12.71 kg/H/Y for sugar (Table 8.3.8.).

The per capita consumption in Irian Jaya will be the same as the highest Indonesian average in the last few years.

Table 8.3.8. Wheat flour and Sugar

 $(x,\frac{\pi}{2}) = \chi_{1} \cdot (x^{2} + x^{2})$

(1) Per capita Con	sumption	(kg/H/Y)
Year	Wheat Nour	Sugar
1974	4.90	12.71
1975	3.95	10.14
1976	5.05	10.87
1977	3.96	11.10

Source: CBS/Statistical Yearbook of Indonesia, 1977-1978.

(2) Production Consumption Balance

1 Wheat flour					a Albaria	(tons)
		1985			2000	
: : : : : : : : : : : : : : : : : : :	Production (A)	Consumption (B)	А-В	Production (A)	Consumption (B)	A - B
Hinterland Service Area	nil	770 2,700	▲770 ▲2,700	กปี	1,100 4,010	A1,100 A4,010
Jayapara Merauke		2,160 940	≜2,160 ≜940	nu -	3,080 1,310	A3,080 A1,310
Total Irian Jaya		6,570	46,570		9,500	49,500

		1985			2000	3 3 1 t · \$
	Production (A)	Consumption (B)	A-B	Production (A)	Consumption (B)	A-B
Hinterland		1,940	▲1,940	}	2,770	▲2,77 0
Service Area	ni)	6,800	46,800	nil	10,100	410,100
Jayapara		5,430	≜ \$,430	1	7,760	A7,760
Merauke		2,360	42,360		3,300	▲3,300
Total Irian Jaya		16,530	A16,530		23,930	≜ 23,930

The first of the control of the first and the con-

Company States

(3) Cargo Traffic through the Port

	19	85	20	(tons) 00
	UL	Ĺ	UL	L
Hinterland Service Area	770 2,700	2,700	1,100 4,010	4,010
Sorong Total	3,470	2,700	5,110	4,010
Jayapára Merauke	2,160 940		3,080 1,310	
Total Irian Jaya	6,570	2,700	9,500	4,010

② Sugar				(tons)
	19	85	20	00
<u> </u>	UL	L	UL.	L
Hinterland Service Area	1,940 6,800	6,800	2,770 10,100	10,100
Sorong Total	8,740	6,800	12,870	10,100
Jayapara Merauke	5,430 2,360		7,760 3,300	
Toral Irian Jaya	16,530	6,800	23,930	10,100

(a)-3 Marine products

With respect to marine products, it is assumed that the export amount will be 10,320 tons in 1985 and 39,600 tons in 2000, and that the shipping to other provinces will be 13,980 tons in 1985 and 49,950 tons in 2000.

All marine products for export and for other provinces from Irian Jaya are loaded at Sorong Port. One half of all the shipment will be handled at the public wharves.

Table 8.3.9. Cargo Traffic through the Port (Marine Products)

		(tons)
	1985	2000
Export	5,160 (10,320)	19,800 (39,600)
Overatio	6,990 (13,980)	24,975 (49,950)

(a)-4 Livestock

With regard to livestock, the shortage in Irian Jaya will amount to 750 tons in 1985 and 1970 tons in 2000. The shortage in each area is calculated by using the population ratio.

Table 8.3.10. Livestock

(1) Production Consumption Balance

(tons)

	I	1985			2000		
· ·	Production (A)	Consumption (B)	A ~ B	Production (A)	Consumption (B)	A – B	
Hinterland Service Area			▲90 ▲310		2 (1) 2 (2) 2 (3)	≜230 ≜830	
Jayapura Merauke			▲240 ▲110				
Total Irian Jaya	8,695	9,445	▲750	12,730	14,700	41,970	

(2) Cargo Traffic through the Port

(tons)

	1985		2000		
<u> </u>	UL	L	UL	L	
Hinterland	90		230		
Service Area	310	310	830	830	
Socong Total	400	310	1,060	830	
Јауарита	240		640		
Merauke	110		270		
liian Jaya Total	75Ô	310	1,970	m 830	

(a)-5 Other crops

With regard to other food crops, i.e. sweet potatoes, maize, cassava, peanuts and soybeans, the production is calculated from the ratio of transmigrants and the consumption is calculated from the ratio of inhabitants.

The distribution service area of Sorong Port is divided into the north and the south to supplement the shortages in the Jayapura and Merauke areas with the surpluses in the service area.

Service Area — S comprises the whole of Fak-Fak, and Bintuni and Babo of Manokwari. The service area was divided according to the inhabitant ratio, the transmigrant ratio and the area ratio.

Ratio (%)	·
35.2	32.8
(36.4)	(32.4)
6.0	14.3
(5.8)	(13.8)
	(36.4)

Transmigrants	Ratio (%)	
20.0	45.7 (48.2)	20.0 (26.6)
(12.0)	4.3 (3.9)	10.0 (9.3)

1. Figures in () are for the year 2000.
2. Transmigrants in Manokwari are apportioned by inhabitant ratio.

Area Ratio (re	eference) (%)	
9.9	23.1	23.4
	13.6	30.0

Note: N 70% and S 30% for manokwari

The flow of cargo in 1985 and in 2000 is assumed to be as follows:

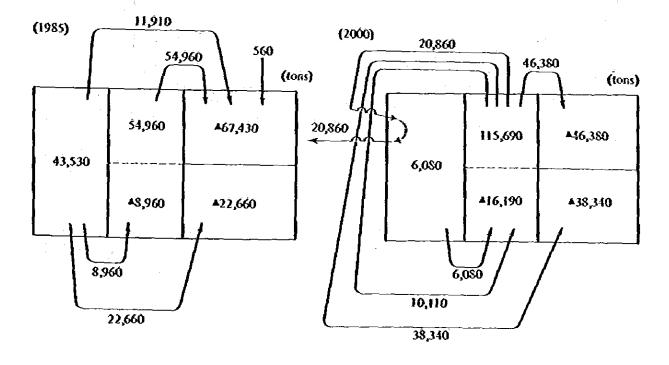


Table 8.3.11. Other Crops

(1)	Produc	tion	Consum	otion	Balance
			~ VIII JUSTI	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Deloniu

		1985				
·	Production (A)	Consumption (B)	A – B	Production (A)	Consumption (B)	A – B
Hinterland	105,060	61,530	43,530	109,930	103,850	6,080
Service Area-N	240,070	185,110	54,960	441,560	325,870	115,690
Service Area - S	22,590	31,550	48,960	35,730	51,920	▲16,190
Јауарита	105,060	172,490	▲67,430	243,680	290,060	▲ 46,380
Merauke	52,540	75,200	≜ 22,660	85,200	123,540	▲ 38,340
Total Irian Jaya	525,320	525,880	4 560	916,100	895,240	20,860

(2) Cargo traffic through the ports

ay cargo transc (ii			<u></u>	(tons)	
	1985		200) 0	
. <u> </u>	UL.	UL. L		L	
Hinterland Service Area		43,530	20,860	6,080 20,860	
Sorong Total		43,530	20,860	26,940	
Jayaputa Metauke	67,430 22,660		46,380 38,340	- (* (* -) (* (*)	
Irian Jaya Total	90,090	43,530	84,720	26,940	

Note:

In 1985, a surplus crop of \$4,960 tons in Service Area—N will be shipped directly to Jayapura.
 In 2000, the shortage of 46,380 tons in Jayapura and 38,340 tons in Merauke will be shipped from Service Area—N. The net surplus in the Hinterland of 6,080 tons will be shipped to Service Area—S.

(b) Estate crops

The production and consumption of estate crops are estimated as in Table 8.2.24. The production and consumption are allocated to each Kabupaten as follows:

Refer to 8.2.3. (1) and Table 8.3.12. for the production area and the potential area of irrigation. Each Kabupaten's production is determined in proportion to the ratio of the potential area of irrigation. As to T. Chenderawasih, Fak-Fak and Jayawijaya where production is planned but the potential irrigation area is not specified, the potential area is estimated from the ratio of the potential area to the total area in the district where the potential area is located.

Table 8.3.12. Estate Crops

(1) Area Planned for Estate Crops

Kabupaten	Coconut	Clove	Nutmeg	Cocoa	Coffee	Rubber and others	Potential Area of Irrigation (x 10 ³ ha)
Sorong	O	0				0	27.3
Paniai		O			0	0	36.0
Y. Waropen		0	ļ	0	j	О	8.0
T. Chenderawasih	0	0	·		<u> </u>	O	– : '
Manokwari	0	0	}	0] .	0	49.6
Fak-Fak		0	0			0	. — .
Ј ауарита	0	0	<u> </u>	0	ļ	Ó	62.5
Jayawijaya		O			0	0	
Merauke]	}]		j	0	47.4

(2) Estimated Potential Area of Irrigation

1	Total area (km²)	Potential Area of Irrig. (x10 ³ ha)	Estimated Potential Area of Irrigation (x10³ ha)	Remarks
Sorong	40,549	27.3	27.3	
Paniai	46,400	36.0	36.0	-
Y. Waropen	18,994	8.0	8.0	
T. Chenderawashi	4,010	_	3.0	
Marokwari (1)	26 212	49.6	34.7	Area ratio (1)
Manokwari (2)	36,773	49.0	14.9	70%, (2) 30%
Fak Fak	44,566		32.7	
Јауарита	48,188	62.5	62.5	
Juyawijaya	47,960	· -	35.2	
Morauke	123,230	47.4	47.4	
All Irian Jaya	410,660	230.8	301.7	

Note: Potential area in total area

 $\frac{230.8 \times 10^3 \text{ ha}}{314,134 \text{ km}^2} = 0.73 \text{ ha/km}^2$

	•	13 3	1985			2000	111 114
		Produc- tion (A)	Consumption (B)	А-В	Produc- tion (A)	Consump- tion (B)	A~B
Coconut	Hinterland Service Area-N Service Area-S	4,240 5,850 2,310	530 1,590 270	3,800 4,260 2,640	15,380 21,230 8,390	780 2,440 390	14,940 18,790 8,000
ļ	Jayapura Merauke	9,700	1,480 650	8,220 4650	35,200 -	2,170 920	33,030 4920
	Total	22,100	4,520	17,580	80,200	6,700	73,500
Clove	Hinterland Service Area-N Service-Area-S	250 740 430	— . ! — . !	250 740 430	690 2,050 1,200		690 2,050 1,200
	Jayapura Merauke	880		880	2,460	-	2,460
16	Total	2,300		2,300	6 400		6,400
Nutneg	Hinterland Service Area-N Area-S	1,700	30 90 20	▲30 ▲90 1,680	3,000	40 130 20	▲40 ▲130 2,980
;	Jayapura Merauke		80 30	480 430		120 - 50	41 20 45 0
	Total	1,700	250	1,450	3,000	360	2,640
Сосоз	Hinterland Service Area-N Service Area-S Jayapura Merauke	360 120 520		360 120 \$20	1,810 630 2,660	10 0 T T T	1,810 630 2,660
i •	Total	1,000		1,000	5,100	· 	\$ 100
Coffee	Hinterland Service Area-N Service Area-S	150	50 150 30	450 0 430	810	70 230 40	\$,100 470 580 440
	Jayapura Merauke	150	140 70	10 470	790	210 90	580 - A 90
	Total	300	440	▲140	1,600	640	960
Rubber & Others	Hinterland Service Area-N Service Area-S	220 650 380	. - - , =	220 650 380	730 2,200 1,280	 	730 2,200 1,280
	Jayaputa Metauke	770 380		770 380	2,620 1.270	 	2,620 1,270
	Total	2,400		2,400	8,100	rain e ar 🗕 jar	8,100
Grand Tot	al	29,800	5,210	24,590	104,400	7,700	96,700

Production: Estimated by using the ratio of potential area of unigation Consumption: Estimated by using the ratio of inhabitants

1	. * *	19	085	20	(ton
d Alaman		UL	l	UL	<u>~</u>
Coconut	Hinterland Service Area-N Service Area-S	4,260 1,390	*3,800 *4,260 *1,390	18,790 7,080	*14,9 *18,79 *7,08
	Jayapura Merauke	650	*8,220	920	*33,03
	Total	6,300	*17,670	26,790	*73,84
Clove	Hinterland Service Area N Service Area S	740 430	*250 *740 *430	2,050 1,200	*69 *2,09 *1,20
	Jayapura Merauke		*880		*2,40
1 <u>1 - 41 </u>	Total	1,170	*2,300	3,250	*6,40
Nutmeg	Hinterland Service Area-N	30		40	
:	Service Area-S	1,450	*1,450	2,640	*2,6
	Jayapura Merauke	80 30		120 50	
	Total	1,590	*1,450	2,850	*2,64
Cocoa	Hinterland Service Area-N Service Area-S	360 120	*360 *120	1,810 630	*1,81 *63
:	Jayapura Merauke		*520		*2,60
	Total	480	*1,000	2,440	*5,10
Coffee	Hinterland Service Area-N Service Area-S	50 30	30	70 380 40	*3.
	Jayapura Merauke	70	*10	90	*5
	Total	150	30 #10	580	+9
Rubber & Others	Hinterland Service Area-N Service Area-S	650 380	*220 *650 *380	2,200 1,280	*7 *2,2 *1,2
	Jayapura Merauke		*770 *380	<u> </u>	*2,6 *1,2
	Total	1,030	*2,400	3,480	*8,1

		19	985	200	0
		UI.	L	UL	L
Total	Hinterland Service Area-N Service Area-S	80 6,010 3,800	*4,270 *6,010 *3,770 30	110 25,230 12,870	*16,360 *25,230 *12,830 40
÷	Jayapura Merauke	80 750	*10,400 *380	120 1,060	*41,350 *1,270
	Total	10,720	24,860	39,390	97,080
Sorong Total	Hinterland Service Area-N Service Area-S	80 6,010 3,800	*4,270 *6,010 *3,770 30	110 25,230 12,870	*16,360 *25,230 *12,830
·	Jayapura Merauke	10,490 380	*10,400 *380	41,350 1,270	*41,350 *1,270
	Total	20,670	*24,830 30	80,830	*97,040 40

Note: * foreign trade

(c) Sawn timber

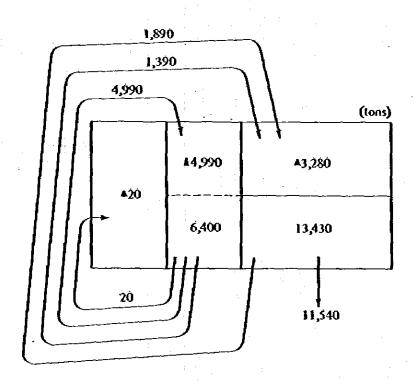
As for sawn timber, the production is calculated in Section 8.2 (Table 8.2.30.).

The demand is assumed on the basis of the estimated per capita consumption in Sorong area in 1979. The 1979 consumption in Sorong area is estimated from the difference between cargo loading and unloading at Sorong Port and the production in the area.

Table 8.3.13. Sawn Timber

(1) Consumption

	<u>F.</u>	اماره	81
Remarks	Table 4,2.7.	4.79 × (V/P) :85- 97-(9/V)	4.79 × (V/P) 2000 (V/P) 79
Merauke		185,700 48.82 9,070	259,600 85.09 22,090
Jayapura		426,900 48.82 20,840	610,200 85,09 51,920
Service Area	; ;	534,900 48.82 26,120	794.600 85.09 67.610
Hinterland (Sorong)	419 634 4,182 3,967 126,200 31,45 kg/H/Y	152,500 48.82 7.450	217,600 85.09 18,520
	Unloading (A) Loading (B) Production (C) Estimated Demand (D - A - B+C) Population (P) d'79=P	Population d'85 D'85	Population d2000 D2000
	1979	1985	2000


		1985			2000	***
	Production (A)	Consumption (B)	A-B	Production (A)	Consumption (B)	A-B
Hinterland Service Area-N Service Area-S	7,430 27,530 (17,330 10,200	7,450 26,120 { 22,320 3,800	4.990 6.400	69,500 162,150 95,470	18,520 58,320 67,610 { 9,290	50,980 103,830 86,130
Jayapura Merauke 22,500	17.560 22.500	20,840 9,070	43.280 13.430	164,260 210,600	\$1,920 22,090	112,340 188,510
Total	75,020	63,480	11.540	701.980	160,140	

Note: 1. The production is divided up according to area ratio.
2. The consumption in Service Area N and S is divided up according to inhabitant ratio...

(3) Cargo Traffic through the Ports

	19	85	20	00
	UL	L	UL	L
Kinterland	20			50,980
Service Area	<u> </u>		95,010 (190,010)	95,010 (190,010)
Sorong Total	20		95,010	145,990
Jayapura Merauke	3,280	13,430		112,340 188,510
Total Irian Jaya	3,300	13,430	95,010	446,840

Note: The flow of cargo in 1985 is estimated as follows:

(d) Machinery

As for machinery, 1,279 tons of cargoes are unloaded and 100 tons are loaded at Sorong Port. By using this data and the population of the hinterland, per capita demand is estimated.

Demand for machinery in each area is calculated by the indexes shown in Table 8.3.14.

(e) Vehicles

As for vehicles, the demand for new cars is estimated by the number of newly registered cars and replacements (Table 8.3.15.).

Table 8.3.14. Machinery

(1) Estimated Demand in Port Distribution Service Area

		Hinterland (Sorong)	Service Area	Јауарита	Mérauke	Remarks
1979	Unloading (A) Loading (B) Estimated Demand (D = A-B) Population (P) d 79 = D P	1,279 tons 100 tons 1,179 tons 126,200 9,34 kg/HJY				122.3 x 1.032
1985	Population d'85 D'85	152,500 14.50 2,210	534,900 14,50 7,760	426,900 14.50 6,190	185,700 14.50 2,690	d'79 x (V/P) '85 (V/P) '79
2000	Population d2000 D2000	217,600 25.27 5,500	794,600 25,27 20,100	610,200 25.27 15,420	259,600 25.27 6,560	d'79 x (V/P) 2000 (V/P) '79

(2) Cargo Traffic through the Ports

<u></u>		<u> </u>		(tons)	
	21	85	2000		
	UL	L	UL	L	
Hinterland	2,210		5,500	<u> </u>	
Service Area	7,760	7,760	20,100	20,100	
Sorong Total	9,970	7,760	25,600	20,100	
Јауарига	6,190	-	15,420	<u> </u>	
Merauke	2,690		6,560	,	
Total Irian Jaya	8,880		21,980		

Table 8,3,15. Vehicles

4
ž
Š
Š
Σ̈́
76
ž
ž
ö
ğ
Ē
Z

	Standard of		Re	Registered Motor Vehicle	ricle			Increased number per year	iber per year	
	(USS/person)	Irian Jaya	Hinterland	Service Area	Jayapura	Moranko	Hinterland	Service Area	Jayapura	Merauke
1975	200,61	11,496								
36	216,62	12,635			_					
1	222,35	14,289	•							
78	241,29	15,399	(1980 2,260)							
1985 2000	403,59	3.1.690 63.860	\$718 \$718	13,060	10,390	4,530 8,817	370	1,410	1,130	8 c

Note:

R.M.V. = 99,12 V = 8,438 (R = 0.965)
 Allocated by ratio of inhabitants
 Resimpted by AAGR of registered motor volidles. ('78 = '85 : 10.86%, '85 = 2000 : 4,78%)

(2) Cargo Traffic through the Port

(suos) 26,950 40,450 3,700 13,500 26,950 51,560 9,890 4,210 8,810 43,600 ន 14,100 20,610 1985 11,280 5,200 2,200 2,270 4,000 1,860 14,100 6,510 26,470 23,650 Not Increasing Replacement Not Increasing Not Increasing Net Increasing Replacement Replacement Replacement Service Area **Finterland** Jayapura Morauke Total Total

 1, 1 car = 10 tons
 Ratio of replacement is estimated 5% in 1985, 10% in 2000. Note:

(f) Chemical products

(f)-1 Cement

The demand for cement is calculated by the same method as with the machinery demand (Table 8.3.16.).

(f)-2 Fertilizer

5 } .

The volume of fertilizers brought in through the Port is calculated by using the indexes of fertilizer required per estate crop's production (Table 8.3.17.).

Table 8.3.16. Cement

(1) Estimated Demand in Port Distribution Service Area

		Hinterland	Service Area	Jayapura	Merauke	Remarks
1979	Unloading (A) Loading (B) Estimated Demand (D = A - B)	2,192 tons 486 tons 1,706 tons				
	Population (P) d¹79 ≈ <u>P</u>	126,200 13.52 kg/H/Y				122.3 × 1.032
1985	Population d'85 D'85	152,500 20.98 3,200	534,900 20.98 11,200	426,900 20.98 8,960	185,700 20.98 3,900	d'79 x (V/P) '85 (V/P) '79
2000	Population d2000 D2000	217,600 37.82 8,200	794,600 37.82 30,100	610,200 37,82 23,080	259,600 37.82 9,820	d'79 x (V/P) 2000 (V/P) '79

(2) Cargo Traffic through the Port

	19	35	2000 (tons)		
	UL.	L	UL	L	
Hinterland Service Area	3,200 11,200	11,200	8,200 30,100	30,100	
Sorong Total	14,400	11,200	38,300	30,100	
Jayapura Merauke	8,960 3,900		23,080 9,820		
lrian Jaya Total	12,860		32,900		

Table 8.3.17. Fertilizer

1.4

(1) Required Fertilizer per Estate Crop's Production

	Yield Rate (lon/ha)		Required Pertilizer	Festilizer Rate (RF/Prod.)	
	1985	2000	(ton/ha)	1985	2000
Coconut	0.717	1.307	1.45	2.02	1.11
Clove	0.272	0.272	0.10	0.37	0.37
Nutmég	0.216	0.216	0.04	0.19	0.19
Сосоз	0.133	0.249	0.13	0.98	0.52
Rubber	0.563	0.563	0.45	0.80	0.80
Coffee	0.169	0.391	0.25	1,48	0.64
Others	0.090	0.444	0.04	0.45	0.09

(2) Required Fertilizer

· ·			(lons)
		1985	2000
Coconut	Hinterland Service Area	8,570 16,480	17,070 32,880
	Jayapura Merauke	19,590 -	39,070
	Total	44,640	89,020
Clove	Hinterland Service Area	90 430	260 1,200
	Jayapura Merauke	330 -	910 -
	Total	850	2,370
Nutmeg	Hinterland Service Area	320	570
	Jayapura Merauke		
	Total	320	570
Cocca	Hinterland Service Area	470	1,270
	Jayapura Merauke	100	1,380
	Total	570	2,650

			<u> </u>
		1985	2000
Coffee	Hinterland Service Area	220	520
	Jayapura Merauke	220	510
	Total	440	1,030
Rubber & Others	Hinterland Service Area	180 820	580 2,780
	Jayapura Merauke	620 300	2,100 1,020
100	Total	1,920	6,480
Total	Hinterland Service Area	8,840 18,740	17,910 39,220
7 g part 1 of belo	Jayapura Merauke	20,860 300	43,970 1,920
	Total	48,740	58,150

(3) Production Consumption Balance

(tons)

egyt i styri	1985			2000		
	Production (A)	Consumption (B)	A-B	Production (A)	Consumption (8)	A-B
Hinterland Service Area		8,840 18,740	▲8,840 ▲18,740		17,910 39,220	▲17,910 ▲39,220
Jayapura Merauke	12	20,860 = 300	≜20,860 ≜300		43,970 1,020	▲43,970 ▲1,020
Total Irian Jaya	1 - 1 - 1 - 1	48,740	▲48,740		102,120	▲102,120

(4) Cargo Traffic through the Ports

(tons)

_	. 19	85	2000		
	UL	L	UL	L	
Hinterland Service Area	8,840 18,740	18,740	17,910 39,226	39,220	
Sorong Total	27,580	18,740	57,130	39,220	
Jayapura Merauke	20,860 300	(+	43,970 1,020		
Total Irian Jaya	48,740	18,740	102,120	39,220	

(g) Other cargo

Other cargoes accounted for about 52 percent of the total volume of cargo handled in 1979. This is probably because they include:

- 1. Items not specified in the statistics of 1979, such as other crops, estate crops and fertilizer.
- 2. The cargoes whose contents can not be specified because of faulty reports.

Although it is difficult to estimate statistical errors for 1985 and 2000, they could be assumed to be about 5 percent in 1985 and about 20 percent in 2000.

(3) Estimation of Cargo Handled at Private Wharves

The volume of cargo handled at private wharves, such as logs, crude oil and fuel oil, is determined in order to estimate the total number of calling ships, which, in turn is related to the port revenues.

(a) Logs

In view of the government policy of holding down the export of logs, the export of logs for 1985 and 2000 is estimated to be the same level as in 1979, i.e., 50,000 m³.

As to logs bound for other provinces, the total volume is shown in Table 8.2.30, and the allotment to Sorong Port is calculated from ratio of the hinterland area.

1985: $52,210 \text{ m}^3 \times 0.099 = 5,170 \text{ m}^3 = 6,200 \text{ tons}$

2000: $488,450 \text{ m}^3 \times 0.099 \approx 48,360 \text{ m}^3 = 57,900 \text{ tons}$

Table 8.3.18. Production and Consumption of Logs and Sawn Timber in Irian Jaya

 (m_3) 1978 1985 2000 Remarks Production 89,820 274,750 2,570,830 Export 30,580 43,950 90,540 Regional Consumption 8,040 74,190 1,014,920 Sawn Timber 20,480 62,640 586,150 waste rate 0.60 (Log base) (34,140) (104,400) (976,920) Outward Logs 17,060 52,210 488,450

Note: Source Table 8.2.30.

(b) Crude oil and oil products

Until 1985, all crude oil produced will be shipped elsewhere outside, presumably to foreign countries.

From 1986, the oil refinery in the Sorong area is expected to be in operation and its treating capacity is likely to reach 100,000 BPSD in 2000. Thus, about 4,670,000 tons will be locally treated in 2000, as indicated in Table 8.2.34.

Table 8.3.19. Crude Oil Production and Treatment

(x 103 tons)

	1985	2000	Remarks
Crude oil production	5,100	5,100	
Crude oil treating capacity (BPSD)	0	100,000	
Treated crude oil	0	4,668	Table 8.2.34.
Oil products	O .	4,596	·

The volume of crude oil and oil products to be handled by Sorong Port, depends on 1) location of the oil refinery and 2) system of producing and distributing crude oil. So, the handling in 2000 is not specified in the table.

The demand for oil products (fuel oil) is estimated in Table 8.3.20. from the apparent consumption in the Sorong area in 1979. Oil products needed in the hinterland seem likely to be handled at the private pier of Pertamina.

Table 8.3.20. Fuel Oil

Estimated Demans		

		Hinterland	Service Area	Remarks
1979	Unloading (A)	7,992 tons		
	Loading (B)	938 tons		
	Estimated Demand (D = A-B)	7,054 tons		AAGR '85/'80
	Registered Car	2,050 No.		10.42%
	$\mathbf{d} \cdot 79 = \frac{\mathbf{D}}{\mathbf{No.}}$	3,440 kg/No.	: ئىرىد	No. '80 = 2,260
1985	Registered Car	3,710 No.	13,020	
	d'85	5,340	5,340	d'79 x (V/P) '85
	D'85	19,810	69,530	(111)
2000	Registered Car	7,410	26,950	
	d2000	9,620	9,620	
	D2000	71,300	259,300	

(c) Marine products

Marine products are landed at the private facilities of fishery companies, but it is assumed that public wharves will handle 50 percent of their shipment.

(4) Results of Estimation

1) General conclusion

The results of estimation are summarized in Table 8.3.21.

According to the macro forecast, the cargo traffic through Sorong Port will amount to 300,000 - 320,000 tons in 1985 and 510,000 - 790,000 tons in 2000. The total amount in 1985 by micro estimation is equal to the minimum value of macro forecasting, but in 2000 the

Table 8.3.21. Projection of Cargo Traffic through the Port of Sorong

Foreign Trade Domestic Trade Domes	Procedentifs Proceign Trade Domestic Trade Domest				3	0 LC - 7	_			3	,				*	`		
Proodenuffs	Procedentifs			Foreign	Trade	Domesti	c Trade	1 2 4 8	Forcig	Tra	Domestic	Trade	Total	Forei	m Trade	!	ic Trade	Total
Prodetutifs Rice Floodstuffs Rice	Prodeturifs Rice Number Sign			5	1	5	بر	TELOT	5	7	ភ	ч	1	្ឋ	1	ដ	, ,	
Floodstuffs 11,695 7225 4,122 16,543 15 12 27 5 5 4 5 5 4 5 5 4 5 5	Ruce 11,695 725 4,123 16,455 15 12 27 51 35 Wheat 356 69 425 3 6 7 16 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 4 5 4 4 5 4 1																	
Ruce 11,695 725 4,123 16,543 15 12 27 51 5 4 Suge 11,695 5 425 3 6 3 6 5 1 1 25 1 1 25 1 1 25 1 1 1 25 1 1 1 25 1	Rice 11,636 725 4,122 16,543 15 12 27 51 35 4 5 4 5 4 5 4 5 4 5 4 5 1 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 1 <td></td> <td>Foodstuffs</td> <td></td> <td></td> <td></td> <td>٠</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>· ·</td> <td></td>		Foodstuffs				٠								_		· ·	
Wheat 356 69 425 3 6 5 4 Sugar 1,510 10 1,520 9 7 16 20 13 10 Marrine Prod. 6,138 5,131 200 11,459 5 7 7 16 22 21 1	Wheat 356 69 425 3 6 5 4 Sugar Marine Prod. 6.138 5,131 200 11,469 5 7 12 20 1 2 Livessock 70 235 1,1469 5 21 43 43 97 11 1 2 1 <td></td> <td>Rice</td> <td>11.695</td> <td></td> <td>725</td> <td>4,123</td> <td>16,543</td> <td></td> <td></td> <td>13</td> <td>12</td> <td>74</td> <td></td> <td></td> <td>Š</td> <td>3</td> <td>8</td>		Rice	11.695		725	4,123	16,543			13	12	74			Š	3	8
Sugart Sugart 1,520 9 7 16 13 10 Marine Prod. 6,138 5,131 200 11,469 5 7 12 20 12 1 Livestock 70 235 305 11 43 43 43 43 45 97 81 1 Other crops 8 419 634 1,053 1,063 1 44 46 97 81 26 20	Sugar Name 1,510 10 1,520 S 7 16 13 10 13 10 13 10 13 10 11 1 2 20 13 11 1 <th< td=""><td></td><td>Mhen</td><td></td><td></td><td>356</td><td>69</td><td>425</td><td></td><td></td><td>m</td><td>m</td><td>9</td><td></td><td></td><td>S</td><td>4</td><td>···</td></th<>		Mhen			356	69	425			m	m	9			S	4	···
Sugar Martine Prod. Lyano Copes Sugar Lyano Copes Lyano Copes Sugar Lyano Copes Sum Timber Machinery Verticles Chemical Prod. Logs (Ath.) Sum Timber Sum Timber Machinery Chemical Prod. Logs (Ath.) Sum Timber Sum Timber Machinery Chemical Prod. Logs (Ath.) Sum Timber Sum Timber Machinery Chemical Prod. Chemical Prod. Total Logs (Ath.) Sum Timber	Sugar Martine Prod. Livezone Conder Crops Estate Crops Saw Timber Machinery Machi		# TIGHT				\$ \$				c	•	¥			27	9	8
Martine Prod. 6,138 5,131 200 11,469 5 1 1 2 20 1 1 1 1 2 20 1 1 1 1 2 20 1 1 1 2 20 21 27 25 21 246 25 21 246 25 20 20 20 20 20 20 20	Marine Prod. 6,138 5,131 200 11,469 5 1 1 2 20 1 1 2 20 1 1 2 20 1 20 20		Sugar		<u>·</u>	1,510	⊋.	O7.0.↑		-	•	~	2	1		•	: ;	
Livestock 70 235 305 1 1 2 1 1 1 1 1 1 1	Livestock To 233 305 1 1 2 1 1 1 1 1 1 1	i	Marine Prod.		6.138	5,131	8	11,469		S		<u>-</u>	72		2		3	}
Estate Crops Sawn Timber Machinery Vehicles Chemical Frod. Chemica	Estate Crops	•	Tivestock	-	2	235		305					Cł		٠	è	-	
0d. 2,192 486 2,678 144 11 25 38 30 15,862 977 1,182 486 2,678 1,005 130 130 140 300 140 510 450 1,000 1,000 tons. mixed to 1,000 tons. mixed to 1,000 tons.	25 21 46 97 81 146 1279 100 1,379 100 1,379 10 8 18 26 20 20 20 21 47 95 146 20 20 20 20 2192 486 2,678 11 25 27 19 46 27 39 30 27,557 7,182 41,840 16,139 92,718 30 130 140 300 140 510 450 20 33,199 62 891 5,100 20 20 20 20 20 20 20 20 20 20 20 20 2	į		•	*	*	±	*				43	3		١.	ä	27	4
od. 2,192 486 2.678 10 130 140 25 21 47 51 26 20 20 26 20 20 26 20 20 26 20 20 26 20 20 26 20 20 26 20 20 26 20 20 26 20 20 20 20 20 20 20 20 20 20 20 20 20	1419 634 1.053				1		•			Ý			46		76			37.
od. 2,192 486 2,678 14 11 25 38 30 15,862 974 21,381 9,579 47,796 30 130 140 300 140 510 488 11,000 tons, raised to 1,000 tons, raised tons,	od. 2,192 486 2,678 114 11 25 38 30 15,862 974 21,381 9,579 47,796 3 130 140 300 140 510 450 27,557 7,182 41,840 16,139 92,718 30 130 140 300 140 510 450 27,557 7,182 41,840 16,139 92,718 30 130 140 300 140 510 450 3,199 is based on STP of Sorong. - we included in others.		Estate Crops		ŀ	F	;			}	ì		•		1		145	74
od. 2,192 486 2.678 14 11 25 38 30 15,862 974 21,381 9.579 47,796 30 130 140 300 140 510 480 1,1 27,557 7,182 41,840 16,139 92,718 30 130 140 300 140 510 488 1,1 1979 is based on STP of Sorons. 200 48 1,840 16,139 92,718 30 130 140 300 140 510 488 1,1 201 201 201 201 201 201 201 201 201 201	od. 2,192 486 2,678 144 11 25 38 30 15,862 974 21,381 9,579 47,796 3 8 11 25 50 27,557 7,182 41,840 16,139 92,718 30 130 140 300 140 510 450 27,557 7,182 41,840 16,139 92,718 50 5 5 50 48 1979 is based on STP of Sorong. **Expires for 1985 and 2000 have been rounded off to the nearest 1,000 tons, mixed to 1,000 tons, spice of the spice	٠.	Sawn Timber			419	634	1,053			- e	•	-		:	3 6	•	
0d. 2.192 486 2.678 14 11 25 38 30 30 30 30 30 30 30 30 30 30 30 30 30	0d. 2,192 486 2,678 14 11 25 38 30 30 30 30 30 30 30 30 30 30 30 30 30		Machinery			1,279	9	1,379	, 		റ്റ	99				ġ N	2	¥
od. 2,192 486 2.678 14 11 25 38 30 15.862 974 21,381 9,579 47,796 3 8 11 25 71 70 1 27,557 7,182 41,840 16,139 92,718 30 130 140 300 140 510 450 1,1 50,830 168 691 50,000 5,000 5 5 50 48 1979 is based on STP of Sorong. # are included in others. # are included in others.	0d. 2,192 486 2,678 14 11 25 38 30 30 30 30 30 30 450 30 450 30 450 30 30 30 30 30 450 30 30 30 30 30 30 30 30 30 30 30 30 30		Vehicles			620	•	620			56	당	4			21	 숙	δ.
15.862 974 21,381 9,579 47,796 30 130 140 300 140 510 48 131 25 39 13 15,862 974 21,381 9,579 47,796 30 130 140 300 140 510 450 1,3 199 50,830 168 691 5,100 5,100 20 5 5 5 50 80 80 130 1979 is based on STP of Sorong.	15.862 974 21.381 9.579 47.796 27 19 46 57 39 71 70 27.557 7.182 41,840 16.139 92.718 50.830 16.139 92.718 50.830 16.139 92.718 50.830 16.139 92.718 50.830 16.139 92.718 50.830 16.139 92.718 50.830 16.139 92.718 50.830 16.139 92.718 50.830 16.139 92.718 50.830 16.139 92.718 50.830 16.139 92.718 50.830 16.139 92.718 50.830 16.139 92.718 50.830 16.139 92.718 50.830 16.139 92.718		Chemical Prod.					,	-		,		:				-	,
15.862 974 21.381 9.579 47.796 36 130 140 300 140 510 450 1.3 27,557 7,182 41,840 16.139 92.718 30 130 140 300 140 510 450 1.3 50,830 168 691 50 5 5 50 6 5 5 50 6 130 140 510 61,000 tons, mixed to 1,000 tons, mixed to 1,000 tons, mixed to 1,000 tons.	15,862 974 21,381 9,579 47,796 3 8 11 23 71 70 70 77,557 7,182 41,840 16,139 92,718 30 130 140 300 140 510 450 48 8 11 20,3199 62 5,100 5,100 20 3,199 62 8 8,100 tons, raised to 1,000 tons, raised tons, raised tons, raised tons, raised tons, raised tons, raised to		Cement			2,192	486	2.678			4	≓	23			<u>ጳ</u>	રે 	8
15,862 974 21,381 9,579 47,796 3 8 11 23 71 70 1	15.862 974 21.381 9.579 47.796 3 8 111 23 71 70 27,557 7,182 41,840 16.139 92.718 30 130 140 300 140 510 450		Fuel Oil		•	7,992	938	8,930					• •					•
15.862 974 21.381 9.579 47.796 3 8 11 23 71 70 70 27.557 7.182 41.840 16.139 92.718 30 130 140 300 140 510 450 50.830 168 691 50.850 5 5 50.830 168 691 51.100 tons, or if less than 1,000 tons, raised to 1,000 tons, are included in others.	15.862 974 21,381 9.579 47,796 3 8 11 23 71 70 27,557 7,182 41,840 16.139 92,718 30 140 300 140 510 48 50,830 168 691 50 5 5 50 48 1979 is baxed on STP of Sorong. 5100 5100 50 5 71 71 * are included in others. ** are included in others. * Figures for 1985 and 2000 have been rounded off to the nearest 1,000 tons, or if less than 1,000 tons, raised to 1,000 tons.		Destilions	*	-	*	*	=	:		27	5	4			57	83	ŏ
27,557 7,182 41,840 16,139 92,718 30 140 300 140 510 48 50,830 168 691 50 5 50 48 48 1979 is: based on STP of Sorong. 3,199 5 5,100 20 71 71	27,557 7,182 41,840 16,139 92,718 30 130 140 300 48 50,830 168 691 50 50 5 50 48 3,199 62 5100 5100 tons, or if less than 1,000 tons, raised to 1,000 tons.		Orbers	15 862	974	21.381	9.579	47.796			es	00	=		23		2	.∺ \$
1979 is: based on STP of Serong. **are included in others.**	1979 is based on STP of Sorong. * are included in others. Figures for 1985 and 2000 have been rounded off to the nearest 1,000 tons, or if less than 1,000 tons, raised to 1,000 tons.		e receive				3	0.60		6	66.	046	300		140		450	1.10
3,199 G2 5,100 20 71 71 3 as included in other rounded off rounded	S0,830 168 691 50 5 50 71 1979 is based on STP of Serong.		Total	27,557	7,182	41,840	remor	72./10		3	2	}	3					
Perforeums (x 10 ³ XL) Crude Oil Others Others Note: 1, 1979 is based on STP of Sorong. 20, # are included in offlow. hear pounded off for the nearest 1,000 tons, or if less than 1,000 tons, raised to 1,000 tons.	Perforenms (x. 10° XL). Crude Oil Others Note: 1. 1979 is based on STP of Sorong. Note: 2. * are included in others. 3. Figures for 1985 and 2000 have been rounded off to the nearest 1,000 tons, or if less than 1,000 tons, raised to 1,000 tons.		Logs (M ³)	;	50,830	168	169			\$0		ψ	: .	,	S 		\$	
Crude Oil Crude Oil Others Note: 1, 1979 is based on STP of Sorong. Note: 2, # are included in others. 2, # are included in others.	Crude Oil Crude Oil Others Note: 1. 1979 is based on STP of Sorong. Note: 2. * are included in others. Figures for 1985 and 2000 have been rounded off to the nearest 1,000 tons, or if less than 1,000 tons, raised to 1,000 tons.	: •	Petloreums	- 2		٠.		# .*			:		<i>}</i>	· :				
<u>.</u>	<u>.</u>	·	(x 10' XL)	1 ,	•		:			Ç				: ·				:
r I	r I	1	Crude Oil	*****	3,199	£	:	·	1	3					*	71		
157 57	287 300	ř.	Orners			3												
3.1	3.0		- "	based on	STP of S	orong.		د.		-			11 - 3 ₄					
	Series of the total and the to		3.1	cluded in	others.	Pace hee	n Tound	of to	the nea	rest 1.000) tons, or	if loss th	an 1,000	tons, ra	ised to 1	,000 tons	4	

1. 1979 is based on STP of Serong. 2. * are included in others. 3. Figures for 1985 and 2000 have been rounded off to the nearest 1,000 tons, or if less than 1,000 tons, raised to 1,000 tons.

volume by micro estimation is larger by about 290,000 tons than that by the macro forecast. This is because the macro forecast is based on the actual trend of cargo traffic of the last few years, and does not reflect the change in functions at the Port of Sorong.

2) Comparison of forecasts with UNDP's Report and Pelita III traffic assumptions.

The results of the above mentioned forecast is compared with the forecasts of UNDP's Report (1976) and Pelita III in Table 8.3.22.

Table 8.3.22. Comparison of Forecast Traffic

 $(x 10^3 tons)$

				\$ 7 Yes		
	1970	1975	1978	1980	1983	1985
New Forecast		131.7	165.3			300.0
UNDP's Report 1)	26.7	102.9		160.0		235.0
Pelita III2)		138.8		174.2	215.0	

Source: 1. EIU/Economic Study for Sea Transportation in Irian Jaya, 1976.
2. Kanwil IX/Forecast Cargo Flow 1978 sfd 1983.

3) Volume of cargo to be handled in the province of Irian Jaya

The volume of cargo to be handled by the six major ports in Irian Jaya in 1985 is forecasted as in Table 8.3.24. The sum total is expected to reach 700,000 tons in that year.

It represents only the inter-regional flow at the major ports and does not include secondary transportation from these ports to the service areas by local ships and others.

By macro estimate, the volume of cargo to be handled by all ports in Irian Jaya in 1985 will be 1,020,000 to 1,090,000 tons. The share of the six major ports in the past five years averaged 86 percent. At this ratio, the volume of cargo to be handled by these ports in 1985 will be about 880,000 to 940,000 tons. From the difference of 180,000 to 240,000 tons between the two totals, the average volume of secondary transportation from each port to its hinterland is estimated at 30,000 to 40,000 tons.

Table 8.3.23. Ratio of Six Major Ports

Year	All Ports (A)	Six Ports (B)	B/A
1974	450,812	338,801	0.75
1975	426,561	380,415	0.89
1976	495,226	456,770	0.92
1977	518,583	457,138	0.88
1978	604,069	540,068	0.89
Average			0.86

Table 8.3.24. Volume of Cargo Handled at Six Major Ports (1985)

			Sorong			Sen	Service Area	ਜ਼ੁ	ř	Jayapura		Σ	Merauke			1 [Total	(x to come)	
	F	Foreign	Domestic	ostic		Domestic	1		Domestic		1000	Domestic	Stic		Foreign	ត្ន	Domestic	Т	Total
	ន	1	ន	1.7	Total	ij	П	Total	ij	r	TEXO 7	ដ	긔	3	5	ړ	B	٦,	
Foodstuffs					-	<u> </u>	,					· -		•				9	9
Rice			15	23	27	12		12	4		4	'n		'n	<u></u>		Š	¥ (? !
Wheat			ris	n	φ	6 5	:	m	C4		(1	r-4		-1			c,	ra (<u>u</u> :
Stream			Ø	•	16	~		1	Ś		Ŋ	(1		C3			8	 L~	ဗ္ဗ
Marian Band		v		•	2		•		:		•					s,	:	1	12
The Great) 	-		į c	نىو		_	Н	-	~	(4		۱'n
Carrie Stock			•	. 4	. 64	. 0	Ś	3	67		6	8	-	23	_ -		8	8	197
Other Crops.		30	÷	}	7 4	`	; <u>c</u>	9		. 0	10			(1		25	23	7	8
storo oreisa		3	1 -		} -	v	· V	: =	۲.		κń		2	13	- : .		o,	61	8
DOERT END			٠,	0	4 0	a ó)	: Of	, ve		v	m		ę'n			37	တ	33
Machinery			2 6	° ;	jţ	· [, ;	, Y		- <u>'</u>	,		7			, 8	5	9
Vehicles			Ç	17	ì	- -	-	1	₹				•		, -	•	7.7		
Chemical Prod.			7.	-	25	11	<u></u>		٥	•	Φ.	4	::	4		7	38	7	49
Coment	-				4	0		9	7	ı.	Ħ			н	÷.	-	8	61	87
Others	:		į (r)	ွဲ့တ	: :::::::::::::::::::::::::::::::::::	4	δ	<u>ج</u>	9		٠	C3	¢	တ		ż	15	23	88
Total		စ္က	130	140	300	100	e	180	3.	2	150	20	20	20		30-	420	250.	8
						** :	1. N 2. 1.											•	
						• • •			1 -		÷.	• •				٠.	,		
	:					1 1	÷, + - 1	: -	·	٠			: .	-		i'		٠,	
		. •						· .			: :	1	•					- :	
	:					i.		• • * • • •				[4]	• • •			3		-	
The contract of the contract o					3 . 15	 • !	•	. 1 3	1. 1. :		-		1 211)			F	. 1	-	٠.
						na h Nesi	. i. . :				,	f							
					F :	. W		.:			•	!		1		3		.*	;

8.3.2. Forecast of Passenger Traffic Through the Port

As the economic activities expand, the passenger flow will also increase and the number of passengers in future can be forecast by the following indicies.

(1) Index of Economic Activities

The most representative index of economic activities is GRDP, and the passenger flow through the port can be estimated by following function.

$$PF = aV + b$$

where,

PF : passenger flow

: GRDP

a and b: coefficient

$$PF_1 = 92.08 V_1 - 6,295.10$$

(R = 0.867)

$$PF_S = 14.28 V_1 + 3,540.03$$

(R = 0.635)

PF₁: passenger flow through all the ports in Irian Jaya (people)

PF_s: passenger flow through Sorong Port (people)

V_I : GRDP in whole Irian Jaya

(x 106 USS in 1975 constant price)

(2) Index of Standard of Living

The standard of living also affects the passenger flow, and the passenger flow through the port can be estimated by following function.

$$PF = q \frac{V_1}{P_1} + \gamma$$

 P_I : population in whole Irian Jaya q and γ : coefficient

$$PF_1 = 110.43 \frac{V}{P} - 1,354.04 \quad (R = 0.857)$$

$$PF_S = 18.51 \frac{V}{P} + 1,704.31 \quad (R = 0.678)$$

(3) Results of Forecast

The results from each technique mentioned above are summarized in Table 8.3.26. As is seen in this table, passenger flow through Sorong Port is estimated about 14,700 - 16,600 people in 1985 and about 20,200 - 30,400 people in 2000.

Table 8.3.25. Basis Data Series of Passenger Flow

	GRDP	Population			Passenger Fl	ow (people)	ing salah salah salah salah salah salah salah salah salah salah salah salah salah salah salah salah salah salah	
Year	(Y ₁) (x10° US\$)			Irian Jaya			Sorong	:
	(x10° US\$)	(x103 people)	Total	Dis.	Em.	Total	Dis.	Em.
1974	358.48	995.1	24,865	14,727	10,138	7,046	4,210	2,836
1975	496.13	1,015.3	47,056	25,827	21,229	14,023	7,239	6,784
1976	575.89	1,039.9	39,758	21,725	18,033	11,724	5,734	5,990
1977	612.30	1,064.7	46,403	24,503	21,905	11,013	5,531	5,482
1978	647.13	1,090.3	58,117	32,700	25,417	12,311	6,640	5,671
1985	914.17	1,300				2		J. 2
2000	1,877.16	1,882				,		

Table 8.3.26. Results of Passenger Flow Forecast

V	Irian Ja	aya	So	rong
Year	Ý	V/P	Y	V/P
1978	\$8,11	17	12	,311
1985	78,000	64,000	16,600	14,700
2000	167,000	97,000	30,400	20,200

8.3.3. Estimation of the Number of Ships Calling at the Port

(1) Number of Ships using Public Wharves

The number of ships using public wharves is estimated from the volume of public cargo.

The movement of cargo by routes is shown in Fig. 8.3.2.

- 1) Movement between the areas of Sorong, Jayapura and Merauke is carried out by large ships represented by RLS.
- 2) Secondary transportation between Sorong Port and its service area is carried out by medium ships represented by Perintis.

Fig. 8.3.2. Flow of Cargo

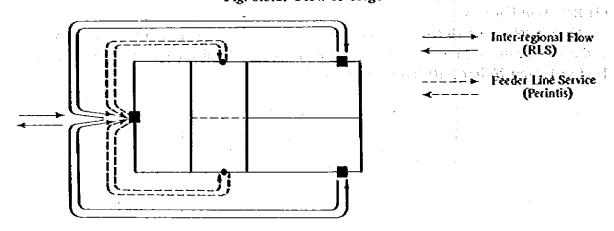


Table 8.3.27. Cargo Flow by Kinds of Ship

Year		13			1985	35									2000	0)	
Kind of Ship	RI	RLS (ourward)	(p.r.	RLS	RLS-(inward)	ণ্ড	Perintis	itis	Fore	Foreign	RLS (outward)	(outwar	(RLS	RLS (inward)	ক	Perintis	Ltds.	For	Foreign
	Other Pro-	Other S. vince -Jay.	S. Mer.	S.+ Other Yro- vince	Jay.	Mor.	ogi.	'n	Ä	ġ	Other Pro- vince +S.	S. t	Mer 1	S.+ Other Pro-	St.	Mer.	i i igo	j.	益	ij
Foodstuffs												-					7			
Rice	2	·			. <u>. i</u> :		<u>:</u>	. :	-	:	53				-	, .	65			
Whoat	ró.	<u> </u>					ന	<u></u>	=		40		·			. * *	4			:
Sugar	٥		,	_ <u> </u>	<u> </u>		~		7		13		 -			1	2			
Marine Prod.	: -		7.		<u>-</u>		 -		Ŋ		 _			25	•				ឧ	
Live Stock	+4				<u></u>		-	,	· ·		-									
Other Crops		12	23		<u>- 20</u>		o,					· ·		21.	•		ø	21		
Estate Crops			·		2		<u>:</u>	2	53		-		•		4	C3		23	8	
Sawn Timber											: .	:	-	3				જ		
Machinery	2						00			- -	56				· •	<u> </u>	ຊ		4	
Vehicles	%	7	-	<u></u>			2	-			51		<u> </u>		<u> </u>		\$			
Chemical Prod.			- ; -				<u> </u>													
Cement	7						1:1				380	<u></u>					8			
Fertlizer	23						19			-	57		_=				39		-	
Others	1		~	1	-		S	-		-	36			38	Φ.		32	26	23	- 1
Sub Total	106	13	24	8	11	•	95	12	8		278			230	20	71	220	180	140	
Total			Ž	163		-	107		l c	စ္တ			\$60			* :	\$ \$	0	4	140
								1												

Notes: 1. S. * Sorong, Jay. * Jayapura, M. * Merauko, 2. Out. * Outward, In. * Inward 3. Ex. * Export, Im. * Import

However, it is not realistic to assume that the differentiation of ship functions according to the character of cargoes (RLS for inter-regional flow and Perintis for feeder line service) will be completed by 1985. Therefore, the number of ships calling for purposes other than foreign trade is estimated on the assumption that the functional differentiation will be 90 percent complete for inter-regional flow and 45 percent complete for feeder line service.

Moreover, there will not be full containerization either in 1985 or 2000. Only some cargoes will be carried in containers; no full container ship are expected to call the port in 2000.

Table 8.3.28. Forecast of Calling Vessels (Public Wharves)

	Cargo (x 10) ³ (ons)	Loading	Estimated D	WT (x 16³)
Route	1985	2000	Factor	1985	2000
Foreign Trade	30 (30)	140	0.388	75	465
Inter-region	163 (147)	560	0.172	855	4,590
Feeder Service	107 (65)	400	0.345	189	1,925
	300 (242)	1,100		1,119	6,980

	Average 1	Type (DWT)	Ship Ca	lls (No.)
Route	1985	2000	1985	2000
Foreign Trade	8,500	10,000	10	50
Inter-region	2,400	5,000	355	920 -
Feeder Service	760	1,000	245	1,930
: :		-	610	2,900

Notes: 1. The figures in brackets for 1985 in the cargo space indicates that part of the volume of cargo on each route handled by the average ship type. This rate is 90 percent for inter-regional flow, the remaining 10 percent being by ships intended for feeder line service.

A rate of 45 percent is used for feeder line service from the ratio of the volume of domestic trade cargo on each route in the total volume of cargo during 1974-1979 (9 percent for Perintis and 20 percent for Local + Rakyat).

Inter regional flow $163 \times 0.9 = 147$

 $107 \times \frac{9}{20} + 163 \times (1 - 0.9) = 65$. Feeder line service

2. The loading factors and the average types are represented as follows:

Foreign trade Ocean shipping (including S'pore shipping)

Inter-regional flow RLS and non-RLS

Feeder line service Perintis

3. The maximum value during 1974-1979 is used for future loading factors by routes. As for average types, the following is used:

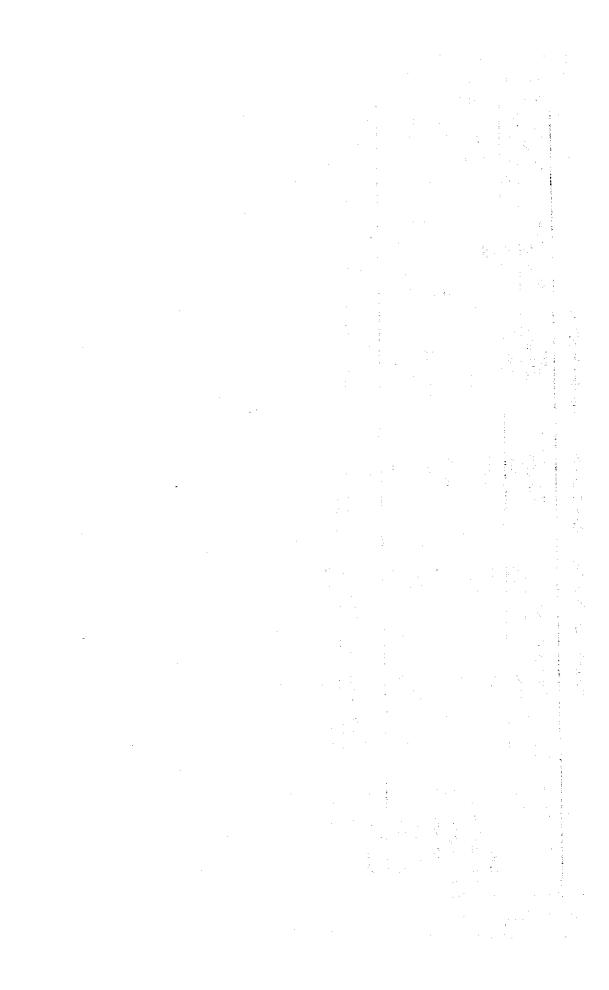
1985 the maximum type in the past (1974-1979)

2000 the most popular type of vessels

From the above, 610 large ships of 760 DWT or more on average (10 for foreign trade, 355 for inter-regional flow and 245 for feeder line service) will use public wharves in 1985. This is about 2.7 times the total of 226 in 1978.

(2) Number of Ships using Private Mooring Facilities

The number of ships using private mooring facilities or loading points can be estimated from the volume of cargoes that are privately handled. However, it is not estimated for 2000 because the volume of privately handled cargoes then will, as stated in 8.3.1.3), greatly vary, depending on where the oil refinery will be located.


Table 8.3.29. Number of Ships Using Private Mooring Facilities

	Cargo (x 103 tons)	03 tons)	Loading Factor (tons/DWT)	DWT (x10° DWT)	Average Type (DWT)	Ship Call
	1979	1985	1985	1985	1985	1985
జిల్న	61	61	1.000	61	\$,000	13
Marine Products				•		
Export	1	9	0.325	19	880	23
Outward			0.328	- 53	880	25
Crude Oil	3,199	5,100	1.000	5,100	000'09	88
Pet Products	. 65	182	0.546	333	000'9	\$6

Notes: 1. Logs 1m³ = 0.835 tons.

2. The maximum value during 1974-1979 is used for future loading factors. Loading factor of shrimp carrier for Japan as the export of marine products, and 1.000 for Logs and Crude Oil.

3. As for average types, the maximum type during 1974-1979 is used.

Chapter 9. HANDLING CAPACITY AND PORT CONGESTION

CHAPTER 9. HANDLING CAPACITY AND PORT CONGESTION

9.1. Past Record of Cargo Handling Capacity

1 1 1 1 1 1 1

The past record of cargo handling capacity (throughput of wharf) are shown in the following table.

Table 9.1.1. Cargo Throughput 1974 to 1979

Year	Throughput (Ton/Meter)	Length of Wharf (Meter)	Cargo Volume Handled at Public Wharf (Min.)
1974	670	132	88,660
1975	740	132	98,270
1976	650	132	85,620
1977	710	132	95,650
Average 1974–1977	700	132	92,050
1978	330	#222	72,260
(1979 A. diens		1 Januar 1 252 0 (1440)	83,800

Source: Table 3.1.16.

Note:

1) The cargo volume handled at the public wharf is estimated as the minimum values.

2) The concrete wharf with its length of 120 m was introduced from March, 1978.

Therefore, such introduction and commencement are considered in the length of wharf in 1978.

9.2. Future Cargo Handling Capacity

For the future handling capacity of wharf, the following factors are thought to have the greatest influence:

- 1) Cargo handling capacity of dock workers
- 2) Future vessel type & number of calls
- 3) Future packing style and loading & unloading cargo by vessel.

However, since the above 3 factors are mutually related and difficult to foresee at present, the following method of estimation is employed. Regarding the future vessel type, drastic change is not foreseeable in the near future. Even containerization at the port is not supposed to have much effect until the year of 2000, judging from the study in Singapore.

Table 9.2.1. Average DWT Singapore to West Irian

		1978		1979			
Destination	Averag	e DWT	Cargo Volume (tons)	Average	Cargo		
	Indonesian	Singapore		Indonesian	Singapore	Volume (tons)	
Јауарига	1,700	5,600	3,440	7,000	3,900	4,660	
Sorong	5,800	5,600	12,260	11,600	3,600	11,380	
Biak	1,100	1,400	1,210	7,100	2,500	3,060	
Fak-Fak	· / -	1,400	600		2,500	140	
Manokwari	1,300	2,710	1,040	4,800	· –	500	
Merauke		1,400	340		_	+ + }	
		1			1 <u> </u>		

Source: Indonésian Embassy in Singapore.

Note: Indonesian and Singapore in Average DWT mean the respective national flag ships.

Accordingly, the existing vessel type and cargo style will continue until 2000.

The improvement of the cargo handling capacity, on the other hand, is possible in future. Such improvement will be incorporated in estimating the future handling capacity. Accordingly, the target values of Pelita III are applied in the Master Plan as follows:

Table 9.2.2. Port Handling Target Values of Throughput of Wharf

(tons/m)

1.00

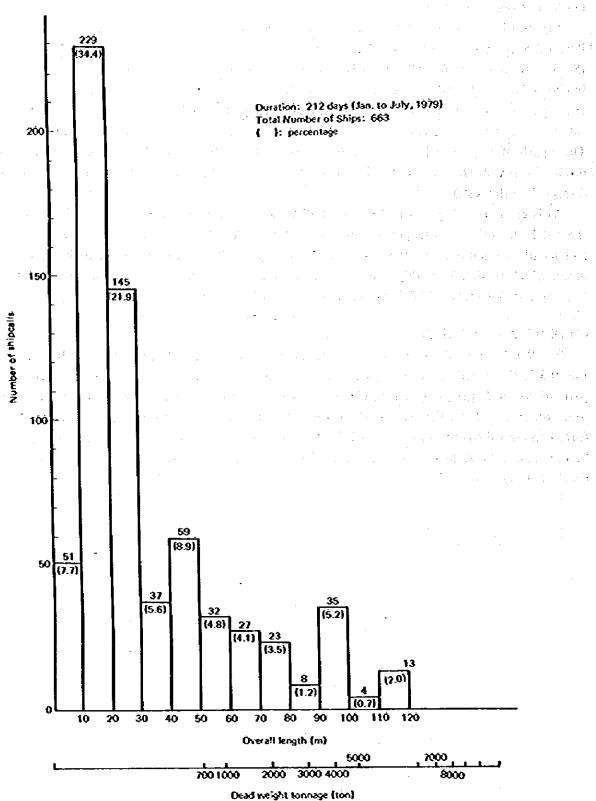
Class	Target Value
over 1,000 thousand tons of cargo/year	900
500 to 1,000 thousand tons of cargo/year	800 <u>1</u> 800
250 to 500 thousand tons of cargo/year	700
less than 250 thousand tons of cargo/year	450
<u> </u>	<u> </u>

Source: National Pelita III

9.3. Analysis of Present Conditions

(1) Ships Covered by Analysis

Fig. 9.3.1. shows the relation between the number and lengths of the ships which used the Port of Sorong from the original data of the 212-day period from January to July in 1979 (Source; Sorong Port & STP). A fairly large number of ships calling at this port are not berthed but merely call for the purpose of oil bunkering, water supply or repair. Since sufficient anchorage can be secured in the port area of Sorong due to its topographical features, ships calling at the port without using its public berths were excluded from the scope of the analysis. The length of 56 ships were unknown because of incomplete statistical data. So, these ships were proportionally distributed to the length of each ship. (Counting fractions over 1/2 as one and disregarding the rest.)


计工作程序 经现金帐户

As is clear from Fig. 9.3.1, 462 out of all the ships arrived at Sorong Port, or 69.6 percent of the total 663 ships, had lengths of less than 40 m while 201 others, representing 30.4 percent, had lengths of more than 40 m. This analysis only handled ships with the lengths of 41 m or more, which require large shipping costs. Moreover, 54 ships, whose staying time was unknown, were excluded; so it was 147 ships that were covered by this analysis.

(2) Distribution of Arrivals

Fig. 9.3.2 shows the cumulative frequency of ships calling at Sorong Port. As is clear from Fig. 9.3.2, the distribution of ships calling at the port shows considerable seasonal fluctuations, particularly in January to March. However, as it can be seen from past examples in Japan and some other countries, the arriving ships are distributed in Poisson's distribution pattern. Therefore, Poisson's distribution is assumed for Sorong Port and seasonal fluctuations are disregarded. In Fig. 9.3.2, 39 ships (monthly average of slightly less than 6) are ignored since their arriving times are unknown.

Fig. 9.3.1. Overall Length and Number of Shipcalls

Source; Port of Sorong & STP

-271-

(3) Records on Staying Time of Vessels

Table 9.3.1. shows the distribution of staying time of the 147 ships covered by this analysis. The average staying time was 59.4 hours. It includes ships with records only on staying dates and lacking records on their exact staying time. Therefore, this figure represents a maximum value. An average staying time differs considerably, depending on whether a ship arrives at or leaves the port in the early morning or in the evening.

Table 9.3.1. Number of Ships and Staying Time

			<u> </u>				<u>-</u>	
Month Staying time (hr)	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Total
1-10	4	1	1	0	1	5	3	15
11 – 20	2	0	0	0	/ O	0	0	2 .
21 – 30	5	5	2	7	1	3	4	33
31 – 40	2	3	3	1 4	2	1	2	14
41 – 50	3	2	2	2 💆	4	3	8	24
51 - 60	0	1	1	2	0	1	1	6
61 – 70	1	1	0	źδ	Û	0	0	2
71 – 80	1	0	1	3	3	3	2	13
81 – 9Ó	0	Ó	0	- 0	0	0	0	0
91 – 100	2	4	2 . j	2	Ż	3	3	18 🐇
101 – 110	Ò	i	0 /	0	0	0	0	1
111 – 120	2	1	0	0	ı	1	0	5
121 – 130	0	0	0	0	0	0	0	0
131 – 140	0	0	0	0	0	0	1	1
141 – 150	0	1 -	2	2	1	0	2	8 -
151 – 160	1	0 📝	0	0	0	0	0	1 :
161 – 170	0	0 🗇	. O	0	0	0	0	0
171 - 180	0	0	1	0	Ò	0	0	1
191 – 200	1	0	0	0	1	0	0	Ż
200<	0 -	0	0	0	0	1	0	3
Total	24	20	15	79	22	21	26	147

Note: 1. From Jan. to July, 1979.

2. Ship length is more than 40m.

(4) Estimation of Berthing Time

Since the staying time of ships calling at Sorong Port is inaccurate as stated in (3) and the berthing time of vessels is not available, the average berthing time was estimated by the following method:

1) Equivalent number of berths

Table 9.3.2. shows the equivalent number of berths. First of all, the average length of ships berthed in Sorong Port was calculated from the data of 1975 - 1976.

Table 9.3.2. Equivalent Number of Berths

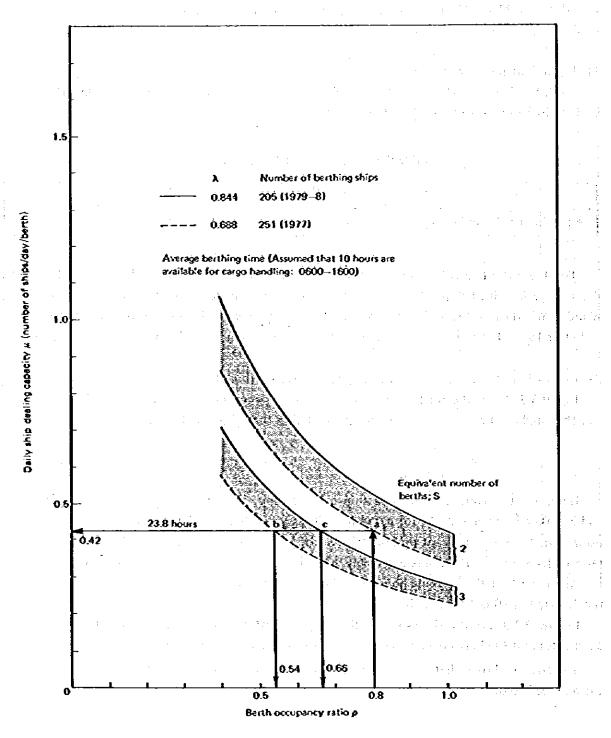
	1975	1976	1977	1978	1979 (1-8)
Equivalent number of berths	1.6	1.5	1.5	2.8	2.9

To obtain the equivalent number of berths, the length of the existing berths was divided by the average length of ships plus marginal length of 20 m. The length of the existing berths (of the Wooden Wharf) was 132 m in 1977, and that of the Wooden and Concrete Wharves was 252 m in and after 1978. The number of ships in each year is shown in Table 3.1.16. of the Chapter 3.

2) Estimation of berth occupancy ratio and average berthing time

Fig. 9.3.3 shows the relation between berth occupancy ratio ρ , daily ship dealing capacity μ and the number of equivalent berths S represented in the following formula:

$$\dot{\rho} = \frac{\lambda}{\mu S}$$


Here, λ is the average number of ship calls per day. The broken lines indicate ships in 1977 and $\lambda = 0.688$ and S = 2. As for ρ , $\rho = 0.8$ was assumed because the Concrete Wharf began to be utilized in 1978 and it meant that in 1977, Sorong Port was greatly congested and the occupancy ratio of its Wooden Wharf was extremely high. In this case, $\mu = 0.42$ is obtained from Fig. 9.3.3.

Assuming that the working hours is 10 hours a day (6:00 - 16:00), the average berthing time is calculated as 10/0.42 = 23.8 hr.

In Fig. 9.3.3, point b shows the berth occupancy ratio of 0.54 when S=3 in 1977, and point c indicates that the berth occupancy ratio in 1979 was 0.66 when S=3.

Experience shows that a port begins to be somewhat congested when its berth occupancy ratio exceeds 0.6.

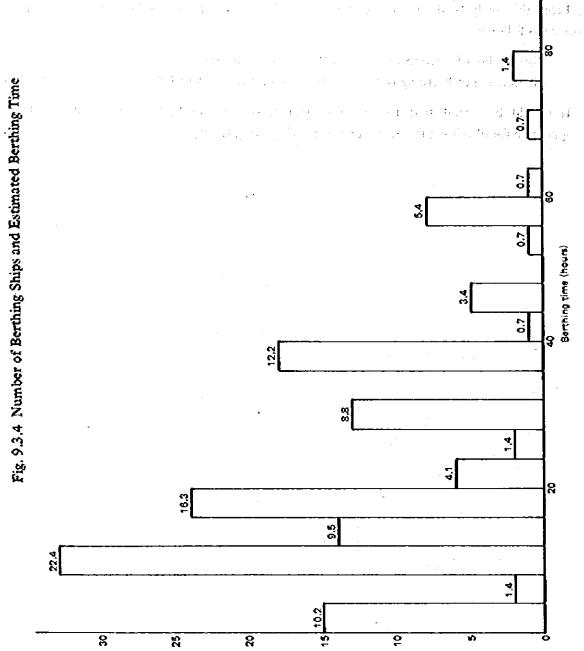
Fig. 9.3.3. Ship Dealing Capacity and Berth Occupancy Ratio in 1979

(5) Distribution of Berthing Time

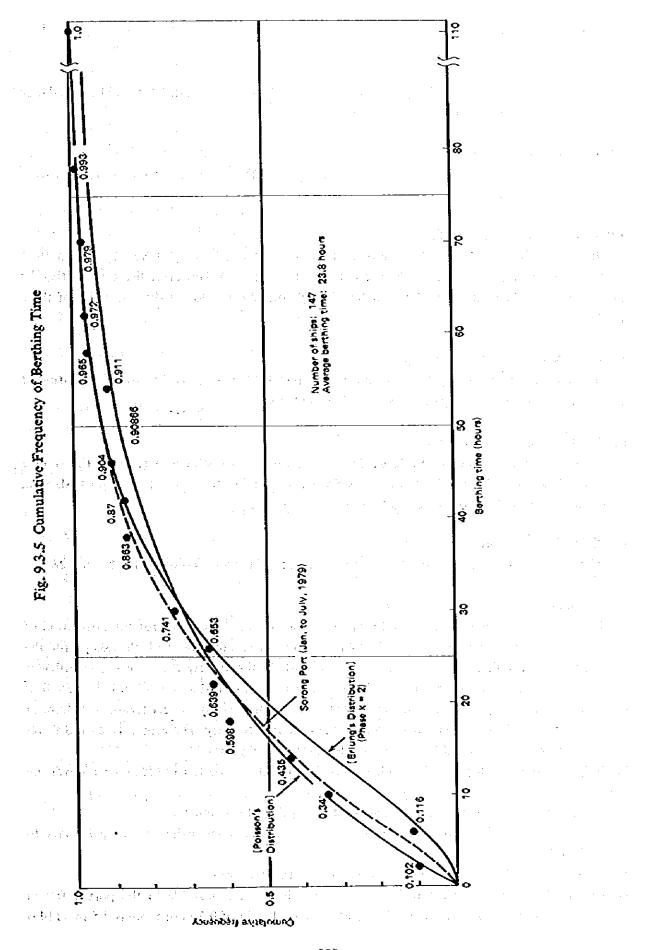
In Fig. 9.3.4, the average berthing time is 23.8 hours (about 1/2.5 of 59.4 hours) and the berthing time in Table 9.3.1. is shortened by the ratio of 1/2.5 in accordance with the description of (4).

Fig. 9.3.5. shows the cumulative distribution of berthing time. It also shows theoretical curves of Poisson's distribution and Erlang's distribution (phase k = 2). It indicates that the distribution of the average berthing time is close to the Poisson's distribution when the berthing time is less than 30 hours and close to the Erlang's distribution when it is more than 30 hours.

From this analysis, the present conditions of ships arriving and berthing at Sorong Port are assumed as follows:


Distribution of arriving time

: Poisson's distribution


Distribution of berthing time

: Poisson's distribution or Erlang's distribution (k = 2)

It should be noted that the accurate statistical data on berthing time of vessels are indispensable for obtaining the accurate output of queuing theory.

Rumber of berthing ships

