

I Car I Contra

 REPUBLIC OF INDONESIA MINISTRY OF PUBLIC WORKS AND ELECTRIC POWER DIRECTORATE GENERAL OF WATER RESOURCES DEVELOPMENT

FEASIBILITY REPORT ON THE WONOGIRI IRRIGATION AND UPPER SALA RIVER IMPROVEMENT PROJECT

APPENDIX II RIVER IMPROVEMENT

国際協力事業団 108 84.9.26 9140 ₹No.

JAPAN INTERNATIONAL COOPERATION AGENCY

TOKYO 1976

-	
(
	CR 5
	76

102

61.1

SD 14.456

TABLE OF CONTENT

1.	OUTLINE OF THE BASIN	-	Page
	1.1 THE SUBJECT-ZONE AND OBJECT OF THE INVESTIGATIONS		1
	1.1.1The Subject-Zone1.1.2Object of the Investigations	• • • •	1. 1
	1.2 TOPOGRAPHY AND LAND-USE OF THE BASIN		3
	1.2.1Topography1.2.2Land Use	••••	2 3
	1.3 DIVISION OF THE BASIN		3
	<pre>1.3.1 Tributary Basin 1.3.2 Features of the Basins</pre>	••••	3 4
2.	HYDROLOGY	·	
	2.1 METEOROLOGICAL DATA	• • • •	10
	2.1.1Wind2.1.2Sunshine2.1.3Temperature2.1.4Humidity2.1.5Rainfall2.1.6Evaporation and Evapotranspiration		10 11 11 11 12 13
	2.2 RAINFALL		13
	 2.2.1 Rain-gauge Station 2.2.2 Point Rainfall 2.3 Areal Rainfall 2.2.4 Probable Rainfall 	· · · · ·	13 23 24 25
	2.3 DISCHARGE	• • • •	25
	 2.3.1 Water-gauge Station 2.3.2 Rating Curve 2.3.3 Daily Mean Discharge 2.3.4 Charactor of Discharge 	· · · · ·	25 25 37 37
	2.4 SEDIMENT	• • • •	38
	 2.4.1 River Bed Materials 2.4.2 Suspended Load 2.4.3 Bed load 	• • • • • • • •	38 65 66
	2.5 FLOOD	••••	74
	2.5.1 Noted Floods	••••	74 75

	- ii -		
, ,			
	2.6 BASIC DATA FOR RIVER IMPROVEMENT PLANNING	76	
	2.6.1 Probable Discharge in Existing Condition	76 76	· .
	 2.6.2 Probable Discharge in Several Construction cases 2.6.3 Discharge Distribution in the 1966 Flood 2.6.4 Discharge Distribution of 15-year, 2-year 	82	
	and 1.2-year Floods 2.6.5 Estimated Discharge of the Tributary after Improvement	83 84	
. 3.	3 1 EXISTING RIVER CONDITION	99	
	3.1.1 Profile. Width and Discharge Capacity of the River.	99	
	3.1.2 River Water Use	99 100	
	3.1.3 Existing Riparian Structures	101	
	3.1.5 Flood Damage	101	
	3.2 RIVER IMPROVEMENT WORK PLANNING	109	
· ·	3.2.1 General Conceptions of Planning 3.2.2 Design Flood	109	
	3.2.3 Design High Water Level	112	
	3.2.4 Alignment of River	112	
	3.2.6 Cross Section	114	
	3.2.7 Flood Control Facility	117 120	
	3.2.9 Riparian Structures 3.2.10 A Study on the Construction of a Levee at the Design Structure of Lyng Bridge	121	
	3 3 FLOOD DAMAGE	158	
	3 3] General	158	
	3.3.2 Inundation Area	159	
	3.3.3 House Damage	159 161	
	3.3.5 Total Damage	162	
	3.4 ANNUAL BENEFIT	164	
	3.4.1 Probable Discharge	164	
	3.4.2 Annual Damage	164	
	3.4.4 Effects of Improved River to Downstream Area	183	
	3.5 RIVER IMPROVEMENT DESIGN	196	
	3.5.1 Cross Section	196 197	
	3.5.3 Bank Protection	201	
	3.5.4 Landside Water Drainage Facilities	203	·
	3.5.6 Others	∠04 204	
	3.5.7 Measurement and Quantities of the Major Works	205	

				- iii -		
				:	· .	
		3,6	RIVER IMPROVEMENT WORK .			205
	1. s	3.6.1 3.6,2 3.6.3	Survey of Present Circ Construction Work Examination of the Hea Material	umstances	bhe	205 217 227
		3.7	LANDS AND HOUSES TO BE A	CQUIRED		229
		3.8	CONSTRUCTION COST ESTIMA	ТЕ	· • • • • • • • • • • •	230
	4.	ANNEX	II (RECONNAISSANCE OF TH	E KALI DENGKENG)		241 241
		4.2	SCOPE OF SURVEY			242
,		4.2.1 4.2.2	Purpose of Survey Territory of Survey	· · · · · · · · · · · · · · · · · · ·	· • • • • • • • • • • • • •	242 242 242
		4.3	EXISTING CONDITIONS		· • • • • • • • • • •	242
		4.3.1 4.3.2 4.3.3 4.3.4 4.3.5	Hydrology Sand Debris Characteristics of the River Structure and Ri Cause of Damage	Existing River Chaver Utilization	nnel	242 244 244 246 246
		4.4	COUNTERMEASURE FOR FLOOD	DAMAGE		246
	· . 	4.4.1 4.4.2	Overall River Improvem Tentative River Improv	ents ements		248 249
		4.5	RECOMMENDATION			251
	5.	ANNEX	III (FUNDAMENTAL CONSEPT DESIGN)	ION OF RIVER CHANNE	5L	267
		5.1	GENERAL			267
		5.2	FUNDAMENTALS OF RIVER IM	PROVEMENTS		267
		5.3	PROPOSED HIGH WATER LEVE	L		268
		5.4	CROSS SECTIONS			269

LIST OF FIGURE

Title

No.

Page

Fig.	1,1,1	General Map of River Basin	5
Fig.	1,2,1	Upper Sala Basin	6
Fig.	1.3.1	River System in Wonogiri-Jurug Area	7
Fig.	1.3.2	Regimen of Tributary in Wonogiri-Jurung Reach .	8
Fig.	2,1,1	Wind Data	14
Fig.	2,1,2	Average Monthly Sun-Shine Ratio	15
Fig.	2.1.3	Average Monthly Temperature (At 9 o'clock)	16
Fig.	2.1.4	Average Monthly Relative Humidity	17
Fig.	2.1.5	Average Monthly Evaporation	18
Fig.	2.2.1 (a)	Time-zone Distribution Which	
		Occur Over 10 mm in an Hour	26
Fig.	2.2.1 (b)	Correlation of Hourly Rainfall	
-		(based on 1975 record)	27
Fig.	2.2.2	Mass Curve of Rainfall	
		(Point Rainfall)	28
Fig.	2.2.3	Mean Distribution of Hyetograph	
-		Having Six-Hour Rainfall Duration	29
Fig.	2.2.4	Probable of Daily Rainfall (Point Rainfall)	30
Fig.	2.2.5	Estimated Mass Curve of Rainfall	
. –		and Hyetograph for T-Year Rainfall	31
Fig.	2.2.6	Annual Tendency of Rainfall	32
Fig.	2.2.7	Locality of Rainfall	-33
Fig.	2.2.8	Correlation of Rainfall	34
Fig.	2.2.9	Probable Rainfall in Upper-Wonogiri	
		Basin and in Wonogiri-Jurug Basin	35
Fig.	2.3.1	Location of Water-level Station	39
Fig.	2.3.2 (a)	Rating Curve at Juranggempal Gauge	40
Fig.	2.3.2 (b)	Rating Curve at Ngutur Bridge Site	41
Fig.	2.3.2 (c)	Rating Curve at Jarum Site in K. Dengkeng	42
Fig.	2.3.2 (d)	Rating Curve at Bacem Bridge Site	43
Fig.	2.3.2 (e)	Rating Curve in K. Samin	44
Fig.	2.3.2 (f)	Rating Curve at Jurug Gauge	45
Fig.	2.3.3	Annual Tendency of the Lowest Water Stage	. 46
Fig.	2,3.4	Daily Mean Discharge (Juranggempal)	47
Fig.	2.3.5	Daily Mean Discharge (Jurug)	53
Fig.	2.3.6	Daily Mean Discharge (Jarum)	57
Fig.	2.3.7	Comparison of New and Old Discharge Data	- 58
Fig.	2.3.8	Probability Distribution of Daily Mean	
		Discharge at Juranggempal	59
Fig.	2.3.9	Probability Distribution of Daily Mean	
÷.		Discharge at Jurug	60
Fig.	2.3.10	Monthly Mean Discharge at Juranggempal	
		and at Jurug	61
Fig.	2.3.11	Correlation of Daily Mean Discharge	
		in Flood Time Jurug .vs. Juranggempal	62
Fig.	2.3.12	Annual Rainfall .vs. Annual Rainfall Loss	63
_			-

	·				
			i v v v		
				Расе	
	e go te de			<u>1 age</u>	
	Fig.	2.4.1	Sampling Sites of River Bed Material	68	
	Fig.	2.4.2	Profile of Grain Size in Upper Jurug Reach	69	
	Fig.	2.4.3	Suspended Load Discharge	70	
	Fig.	2.4.4	Suspended Load Density	71	
	Fig.	2,4.5	Bed Load Discharge (Calculated)	72	
	Fig.	2.5.1	Isohyetal Map in 1966 Flood	77	
	Fig.	.2.5.2	Isohyetal Map in 1968 Flood	78	
	Fig.	2.5.3	Discharge Hydrograph under Existing Condition .	79	
	Fig	2.5.4	Imundation Area in Large Flood	80	
1.1	Fig	2.5.5	Flood Routing Model	81	
	8 • Fia	2.2.2	Probable Peak Bischarge at Juranggemnal		
	r tg•	2.0.1	(Evicting Condition)	85	
	TA	262	Brabable Deak Disabarge at Lung	0)	
	rig.	2.0.2	(Drinking Condition)	86	
	T 1 '		(Existing Condition)	00	
	rıg.	2.0.3	Peak-Discharge Probability in various		
			Construction Stage at Jurug	07	
			(Construction Case)	01	
	Fig.	2.6.4	Discharge Hydrograph at Jurug (Case-3)	88	
	Fig.	2.6.5	Estimated Discharge of Tributary	89	
	Fig.	2.6.6	Specific Discharge .vs. Area in Indonesia	90	
	Fig.	2.6.7	Estimated Maximum Discharge in the 1966 Flood .	91	
	Fig.	2.6.8	Discharge Distribution in Case of		
			1600 m ⁻ /s at Jurug	92	
	Fig.	2.6.9	Discharge Distribution for 2-Year Flood		
			at Jurug Site	93	
	Fig.	2.6.10	Low Water Discharge Distribution		
		т.,	in Case of 600 m ² /s at Jurug	94	
	Fig.	3.1.1	General Map of the Project Reach	102	
	Fig.	3.1.2	Profile of Existing River Course	103	
	Fig.	3.1.3	Existing Condition of River	104	
	Fig.	3.1.4 (a)	Location of Existing Riparian Structure	105	
	Fig.	3.1.4 (b)	Location of Existing Riparian Structure	106	
	Fig.	3.2.1	Design Discharge Distrubution		
	- 0 -		$(2,000 \text{ m}^3/\text{s} - \text{Case})$	126	
	Fig.	3.2.2	Design Discharge Distribution		
	~ 16.	J • H • H	$(1.600 \text{ m}^{3}/\text{s} - \text{Case})$	127	
	Fig	3 2 3	Short Cut Course Around K. Jlantah	128	
	Fig.	3 2 4	Short Cut Course Around K Brambang	129	
	Tig.	3 2 5	Short Cut Course Around K Samin	130	
	<u>к</u> т	3.2.6 (1)	Alignment of Proposed River Course	131	
	ъ:-	2,2,0 (a) 2,2,4 (L)	Alignment of Proposed Diver Course	122	
	rig.	2:2:0 (D)	Drafile of Dranaged Diver Course	133	
	rig.	2.4.1	Profile of Proposed River Course	. 1))	
	rig.	3.2.8	Relationship between Low warer channel	124	
-	× .		Width and Discharge	134	
	Fig.	3.2.9	Relationship Between High Water Channel		
			Width and Discharge	135	
	Fig.	3.2.10	Proposed Standard Cross Section of		
			Sala River (2,000 m /s - Case)	136	
	Fig.	3.2.11	Proposed Standard Cross Section of		
			Bengawan Sala (1,600 m ⁻ /s - Case)	140	
	Fig.	3.2.12	Location of Flood Control Facility	141	
	,			1	

	- vi -	
х Т		Do go
		rage
Fig. 3.2.13	Effects of Retarding Basin and Open-Levee	142
Fig. 3.2.14	Probable Discharge in Proposed Channel	143
Fig. 3.2.15	Standard Cross Sections of Tributaries	112
	Future	144
Fig. 3.2.16	Longitudinal Section of K. Wingko	145
Fig. 3.2.17	Longitudinal Section of K. Samin	146
Fig. 3.2.18	Longitudinal Section of K. Kenbangan	147
Fig. 3.2.19	Longitudinal Section of K. Brambang	148
Fig. 3.2.20	Longitudinal Section of K. Buntungan	149
Fig. 3.2.21	Longitudinal Section of K. Pusur	150
Fig. 3.2.22	Longitudinal Section of K. Dengkeng	151
Fig. 3.2.23	Longitudinal Section of K. Gawe	152
Fig. 3.2.24	Longitudinal Section of K. Jlantah	153
Fig. 3.2.25	Specific Flow-Area for Drainage Channel	154
Fig. 3.2.26	Location of Proposed Bridge and Groundsill	155
Fig. 3.3.1	Total Damage in Surakarta Area	165
Fig. 3.3.2	Total Damage in Sragen Area	166
Fig. 3.3.3	Total Landside Water Damage in Surakarta Area	167
Fig. 3.4.1	Probable Discharge at Surakarta	185
Fig. 3.5.1	Relationship Fs and ø with Parameter C	206
Fig. 3.5.2	Safety Factor of Bank immediately	500
	After the Bank Construction	207
Fig. 3.5.3	Safety Factor of Bank in Case of the	
en e	H.W.L Stage Condition	208
Fig. 3.5.4	Safety Factor of Bank in Case of	
	Sudden Stage Down from H.W.L to L.W.L	209
Fig. 3.5.5	Construction Cost-Discharge Cabacity	209
· · · · · · · · · · · · · · · · · · ·	of a Stuiceway	210
Fig. 3.6.1	Work Section	231
Fig. 3.6.2	Proposed Construction Schedule	232
Fig. 4.3.1	General Map of the Dengkeng River Basin	253
Fig. 4.3.2	Annual Rainfall	254
Fig. 4.3.3	Mean Monthly Rainfall in the	
	Dengkeng River Basin	255
Fig. 4.3.4	Daily Mean Discharge	256
Fig. 4.3.5 (a)	Daily Mean Stage	257
Fig. 4.3.5 (b)	Daily Mean Stage	258
Fig. 4.3.6	Rating Curve at Jarum Site in K. Dengkeng	259
Fig. 4.3.7	Cross Section	260
Fig. 4.3.8	Location of River Bed Measurement Site	261
Fig. 4.3.9 (a)	Annual Variation of River Bed	
	(K. Kongklangan)	262
Fig. 4.3.9 (b)	Annual Variation of River Bed	· · ·
T .	(K. Lusah)	263
Fig. 4.3.9 (c)	Annual Variation of River Bed	
T 1. –	(Kali Ujung)	264
Fig. 4.3.9 (d)	Annual Variation of River Bed	
	(Kali Dengkeng)	265
Fig. 4.3.9 (e)	Annual Variation of River Bed	265
Fig. 4.3.10	Inundation Area Caused By 1975 Flood	266
		•
4. 1		

LIST OF TABLE

	LIST OF TABLE	
· · · · ·		
No.	Title	Page
Table 131	Characteristics of Main Tributary	· · 9
Table 2.1.1 (a)	Monthly Rainfall in Upper Wonogiri	
	Basin	19
Table 2.1.1 (b)	Monthly Rainfall in Upper Jurug Basin	20
Table 2.1.1 (c)	Monthly Rainfall in Upper Sala Basin	21
Table 2.1.2	Seasonal Rainfall	22
Table 2.2.1	Maximum Annual Rainfall	36
Table 2.3.1	Monthly Mean Discharge	64
Table 2.4.1	Results of Suspended-Load Observation	. 73
Table 2.6.1	Annual Maximum Discharge	95
Table 2.6.2	Maximum Discharge at Jurug Site in the Several	
	Construction Cases	96
Table 2.6.3	Probable Peak Discharge	97
Table 2.6.4	Discharge in Tributary	98
Table 3.1.1	Existing Riparian Structures	107
Table 3.2.1	Discharge Capacity at the Proposed Cross	156
Pable 2 2 2	Section of Construction Cost of the New	1,50
Table J.C.C	Bridge Maar Newtor	157
Teble 3 3 1 (a)	Thundation Area Under Various Flood Scale	168
Table 3.3.1 (h)	Imundation Area Under Various Flood Scale	169
Table 3.3.2	Value of Building and Household Effects	170
Table 3.3.3	Occupancy Ratio	170
Table 3.3.4 (a)	Average Value of Building and Household	
	Effects	171
Table 3.3.4 (b)	Average Value of Building and Household	4
	Effects	171
Table 3.3.5	Flood Damage Rate of Building and Household	
	Effects (An Instance in Surabaya Area)	172
Table 3.3.6	Flood Damage Rate of Building and Household	
	Effects (Used in this Study)	172
Table 3.3.7	Amount of House Damage per Household	173
Table 3.3.8	Value of Grop per Hectore	174
Table 3.3.9	Sharing Ratio of Each Field	174
Table 2.2.10	Completion of Preject	174
Teblo 3 3 11	Average Value of Crong per Ha	175
Table 3 3 12 \sim	Flood Damage Rate of Paddy in Surabaya	117
	River Basin	175
Table 3.3.13	Flood Damage Rate of Paddv in this Study	176
Table 3.3.14	Flood Damage Rate of Polowijo	176
Table 3,3,15	Amount of Crop Damage per Ha	177
Table 3.3.16 (a)	Potential House Damage in Surakarta Area	178
Table 3.3.16 (b)	Potential House Damage in Sragen Area	179
Table 3.3.17	Amount of Crop Damage for Every Flood Scale	180
Table 3.3.18	Total Flood Damage	181

- vii -

	а. Алар		
		- viii -	
	· .		
	No.	Title	Page
	Toble 3 4]	Average Annual Damage under Existing	
	TUNTO DATAT	Condition	186
	Table 3.4.2	Average Annual Damage under Stage 1	187
	Table $3.4.3$	Average Annual Damage under Stage 2	188
	Table $3.4.4$	Average Annual Damage under Stage 3	189
	Table 3 4 5	Average Annual Damage of Landside Water	107
		Area	190
	Table 3.4.6	Average Annual Damage under Existing	170
		Condition (Sragen Left Bank Side Area)	191
	Table 3.4.7	Average Annual Damage under Existing	1)1
	20020 2000	Condition (Sragen Right Bank Side Area)	192
	Table 3.4.8	Average Annual Damage after Completion	1 /2
		of the Project	193
	Table 3.4.9	Average Annual Damage under Existing	1))
		Condition (Sragen (Left + Right) Bank Area)	194
	Table 3.4.10	Average Annual Damage after the Completion	1)1
	10010 0, 1,10	of the Proposed River (Sragen (Left + Right	÷.,
		Bank Area)	195
	Table 3.5.1	Relationship Fs and ϕ in Parameter C	200
	Table 3.5.2	Amount of Bank Protection	211
	Table 3.5.3	Discharge of Sluiceway	214
· .	Table 3.5.4	Construction Cost of Each Sluiceway	215
	Table 3.6.1	Machineries and Equipment in Possession	205
	Table 3.6.2	Construction Machineries and Equipment	233
	Table 3.6.3	Work Section	234
	Table 3.6.4	Work Section (Construction Quantity)	235
	Table 3.8.1	Economic Construction Cost	236
	Table 3.8.2	Disbursement Schedule of the Economic	
	н 	Construction Cost	237
	Table 3.8.3	Fund Requirement (Contract Base)	238
	Table 3.8.4	Fund Requirement (Force Account Base)	239
	Table 3.8.5	Estimate of Operation and Maintenance Cost	240
			-
	i e e e e e e e e e e e e e e e e e e e		
	н. А.		

LIST OF DRAWING

No.		Title	Page
DWG NO. RM	V18 Cross	Section of Bengawan Sala -1	272
11	19	" -2	273
ч	20	" _3	274
11	21		275
	22	"-5	276
11	23		277
11	24	n –7	278
11	.25	n	279
11	26	¹¹ -9	280
11	27	······································	281
11	28	-11	282
U	29	-12	283
н	30 Cross	Section of K. Wingko	
11	31	" K. Samin	285
н	32	" K. Kembangan	286
	33	" K. Brambang	287
с (н	34	" K. Buntungan	288
11	35	K. Pusur	289
11	36	" K. Dengkeng -1	290
н	37	"-2	291
н .	38	¹¹ K. Gawe	292
11	39	" K. Jlantah	293
11	40 Locat	ion of Sluiceway and Drainage Channe	294
н	41 Sluid	eway ($Q=8.0 \text{ m}^3/\text{s}$)	296
· 11	42 "	$(Q=12.0 \text{ m}^{2}/\text{s})-1$	297
11	43	" -2	298
11	44 ¹¹	$(Q=16.0 \text{ m}^2/\text{s})-1$	
11	45 "	-2	300
н.	46 "	$(Q=20.0 \text{ m}^2/\text{s})-1$	301
11	47 "	¹¹ -2	302
21	48 "	$(Q=28.0 \text{ m}^3/\text{s})-1$	303
11	49	¹¹ -2 ,	304
£1	50 "	$(Q=40.0 \text{ m}^2/\text{s})-1$	305
n .	51	" -2	306
11	52 Groin	(H=6.00 m)	307
· · · · ·	53 "	(H=5.50 m)	308
в.,	54 "	(H=4.50 m)	309
11	55 Stone	Piching Revetment and Groundsill	310
11	56 Wire	Basket Revetment	311
н	59 Locat	ion of Existing Road	312
· • •	60 Cross	Section of Existing Road -1	313
н	61	" -2	314

1. OUTLINE OF THE BASIN

In this chapter, descriptions are made on the Jurug-Wonogiri basin of the Sala river, the topography, and conditions of rivers in its surrounding areas.

THE SUBJECT-ZONE AND OBJECT OF THE INVESTIGATIONS

1.1.1

1.1

The Subject-Zone

The Sala river basin is located along the eastern and central districts of Java covering an area of 16,100 km². The overall area of the Sala river is shown in Fig. 1.1.1. The Bengawan Sala is largely divided into 3 areas of which the Upper-Sala basin is subdivided into 3, namely, the Ngawi-Jurug, Jurug-Wonogiri and Upper Wonogiri basins.

The subject-area of the present investigations is the Jurug-Wonogiri section $(1,870 \text{ km}^2)$ of the Upper-Sala basin. By the way, Ngawi is the name of a town situated at the confluence of the Madium river and the Sala river. Jurug is the name of a road bridge, right below Surakarta (Sala) city with a population of 400,000 situated on the left bank of the Sala river. Wonogiri is also the name of another town, some 30 km south of Surakarta city.

1.1.2

Object of the Investigations

The Sala river investigation was initiated by the O.T.C.A. survey team of Japan in 1972 and the results were condensed into the Master Plan Report in 1974. The said Report suggested that in order to carry out the integrated development of the Sala river, the top priority was to be given to the work of constructing a dam at the Wonogiri Site for the supply of irrigation water and electricity, etc. to the lower-stream districts, along with the improvements of the Sala river between Jurug and Nguter for prevention of flood disasters.

Thereafter in 1975, the pre-studies to assess the feasibility of the abovementioned works were conducted by a J.I.C.A. survey team. This team was not able to obtain satisfactory results because the topographical maps made available were not correct. For the renewed feasibility study, and to carry out more accurate investigations, topographical maps of a scale of 1/5,000 published lately were used.

The present supporting report consists of the results of pre-feasibility investigations carried out for the sectors of hydrology and river improvement. The outline is as follows.

The hydrological investigation undertaken this time was based on newly obtained data in addition to the master plan and the results of the pre-feasibility study. Thus, sufficient information for the river improvement planning was made available.

The river improvement investigation was carried out to facilitate the planning, based on the findings of the said hydrological investigation, of the improvement works of the Sala river and its tributaries between Ngawi and Jurug from the view-points of water control and economic development of the area. The data obtained by this investigation have been used to calculate the volume and the cost of the proposed works, and the final execution plan will be formulated on the basis of the results of such calculation.

TOPOGRAPHY AND LAND-USE OF THE BASIN

Topography

1.2

1.2.1

The Jurug-Wonogiri basin $(1,870 \text{ km}^2)$ is shown in Fig. 1.2.1 The Jurug-Wonogiri basin is bordered by Mt. Lawu (3,265 m)on the east, by Mt. Merapi (2,911 m) and Mt. Merbabu on the west and by their lower ranges and hills on south and north. The basin is almost a rectangle, about 75 km longitudinally and 25 km latitudinally.

The Sala river collects the storm water of the Upper Wonogiri basin (1,350 km²) and, after traversing between the low mountain ranges and hills around Wonogiri, flows down into the Jurug-Wonogiri basin where it turns its course northward to pass through the hilly areas near Surakarta city; thence, it meanders on around the skirt of Mt. Lawu and flows down through the Jurug-Ngawi plain before it empties itself into the Java Sea. Although the Jurug-Wonogiri basin is bordered by mountain ranges and hills on all side as stated above, its central part is made up of a flat land, with the gradient pitch of about 1/2,000 latitudinally and about 1/1,500 longitudinally.

This flat area is the flood plane of the Sala river and of K. Dengkeng, the largest of the tributaries in the Jurug-Wonogiri basins. At the time of the large flood of 1966, a vast area of some 200 km² was inundated.

1.2.2 Land use

The flat land in the basin is mostly used for farming; about 80% of the cultivated land is occupied by paddy and 20% by Polowijo. The planted area spreads up to an elevation of about 800 m above the sea level, and the forestry land within the basin is extremely limited.

1.3 DIVISION OF THE BASIN

1.3.1 Tributary Basin

Division of the Jurug-Wonogiri basin by its tributaries is shown in Fig. 1.2.1, with the river system modelling in Fig.1.3.1. The outlines of the tributary basins are indicated in Table 1.3.1.

There are nine major tributaries with a total area of 1,563.1 $\rm km^2$ which corresponds to about 85% of the entire Jurug-Wonogiri basin (1,870 $\rm km^2$), as follows:

No.	Name	Area	Confluence
1	K. Walikan	56.6 km ²	right bank
2	K. Jlantah	75.0 km^2	right bank
3	K. Dengkeng	833.0 km ²	left bank
4	K. Pusur	42.5 ¹¹	11
5	K. Buntungar	20.0 "	U.
6	K. Brambang	125.4 "	11
7	K. Kembangan	38.4 "	11
8	K. Samin	304.7 "	right bank
9	K. Wingko	67.5 "	left "
	Total area	1,563.1 km ²	

Features of the Basins

The feature of the tributary is described by the index $A/\mathrm{L}^2,$ as shown in Fig. 1.3.2.

A stands for an area of the tributary and L, the length of the main tributary. Thus the A/L^2 represents the strip of the basin and the mean A/L^2 - ratio is about 10. The tributary basin can accordingly be classified as the so-called braided basin.

1.3.2

-7-

-8-

	·		ŀ										9-	~												
		Note			Location	R: Right side of	B. Sala L: Left side of	B. Sala				•						-	1							
Table 1.3.1 Characteristics of Main Tributary	ſ	A/L^{2}		19.1	28.2	32.3	4.3	4.2	5.9	5.8	7.2	2.9	3.3	6.9	6.4	7.4	23.3	12.8	12.2	11.5	6.5	7.2	8.5	6.2	13.3	8.J
		B = A/L	B km	1.72	1.63	1.42	1.50	14.11	4.77	1.73	4.02	4.53	4.61	2.90	4.56	4.62	1.35	1. 25	3.21	1.83	6.77	6.23	1.70	3, 31	0.87	1.32
	T	Lengtn of river	L km	33.0	46.0	46.0	6.5	59.0	28.0	10.0	29.0	13.0	15.0	20.0	29.0	34.0	31.5	16.0	39.0	21.0	45.0	45.0	14.5	20.5	11.5	11.0
		Location	(L.OT.R)	Ы	ц	рź	24 2	Ц	-	u	à t	-	5			2	T	н і	, ۲Ì	н	Ж	1	ana Ba	Ĩ	R	ዚ
le 1.3.1		Area	A km ^Z	56.63	74.99	65.2I	9.78	832.95	133.64	17.34	116.52	58.85	69.14	57.98	132.15	157.03	42.50	20.00	125.38	38.43	304.70	280.04	24.66	67.45	10.06	14.48
Tal		Second-order	tributary -			K.Jlantah	K.Sanggaroemgi		K. Gawe	K. Kupang	K. Bunggal	K. Tan bang	K. Ngluwur	K. Denkeng	K. Gendang	K Woro					·	K. Samin	K. Nglamsur		· · ·	
		First-order	tributary	K. Walikan	K. Jlantah			K. Dengkeng									K. Pusur	K. Bumtungan	K. Brambang	K. Kembamgar	K. Samin			K. Wingko	K. Cabak	K. Trijagan
		No.		r1	2			۰. ۳									4.	°.	6.	7.	°.			б	.0L	11.

--9--

HYDROLOGY 2.

In the sector of hydrology, investigations were made on the meteorological factors, run~off, sand rainfall discharge and flood. The flood probability and the discharge distribution have been identified through the examination of the data collected at the hydrological investigations.

METEOROLOGICAL DATA

The meteorological investigations covered wind, sunshine, humidity, temperature, rainfall and evaporation. Relevant data have been made available by the meteorological observatories in the Jurug-Wonogiri basin, as well as Panasan airport and P.B.S. office (Pabelan). With regard to the weather conditions and others, data obtained from the observatories along the Madiun river and in the Lower Sala basin have been used for estimation.

Wind

Generally speaking, the Sala river area; two seasons prevail in the one is dry and the other is rainy. The dry season lasts from May to October and the rainy season starts in November and ends in April of the following year. The wind directions in Southeast Asia are as shown in Fig. 2.1.1. During the rainy season, the general direction of the wind is from the mid-Pacific toward the equator, and vice-versa in the dry season, in the Bengawan Sala river area. For this reason, in the vicinity of the Java Island, the westerly wind is predominant during the rainy season and it turns easterly during the dry season; and yet, subject to the landform the blowing directions change locally.

Fig. 2.1.1 shows a comparison of the wind distribution between Panasan and Iswahydi (Madiun) basins. In the Upper Sala basin the easterly wind is predominant during the rainy season and the southernly wind in the dry season, whereas in the Madiun basin the southerly wind is predominant throughout the year. The average wind velocity in the Upper Sala basin is 1.5 m/s during the rainy season and 2.3 m/s in the dry season; although the latter shows larger velocity than the former, it seldom develops into a gale.

2.1

2.1.1

Sunshine

As to sunshine, there are the records for about 10 years at Panasan and only for 1 year at Pabelan. The sunshine observatory records are given in Fig. 2.1.2.

According to Fig. 2-2, the values recorded at Pabelan are quite similar to those in other basins but those at Panasan are abnormally lower than those in other areas. But considering from the fact that the meteorological factors, temperature, humidity and rainfall depth related to sunshine in the Upper Sala basin are quite identical with those of other areas, the Panasan values do not seem to represent those of the Upper Sala basin.

Accordingly, the 1-year record of Pabelan was adopted for the present investigations as the sunshine ratio for the Upper Sala basin. The sunshine ratio at Pabelan is 78% in the rainy season and 88% in the dry season.

Temperature

The temperature was measured both at Pabelan and Panasan, and the results are as shown in Fig. 2.1.3. The temperature remains almost even all the year round, marking 31.4°C for the highest and 23.9°C for the lowest, with the normal seasonal variations of less than 2°C. The local variations are extremely small.

2.1.4

<u>Humid</u>ity

Fig. 2.1.4 carries the observatory results of humidity at Panasan. As is evident from the figure, along with seasonal variations there are local variations also. Novertheless, the relative humidity reaches the highest in February and March during the rainy season and the lowest in September or October during the dry season.

In the Upper Sala basin, the mean records of humidity in the rainy and dry seasons are 74.2% and 61.6%, respectively. As compared with other basins, the humidity in the Upper Sala basin is higher than in Madiun by about 2% but lower than in the Lower Sala basin by 10%.

2.1.2

2.1.3

<u>Rainfall</u>

A detailed explanation on the rainfall given later in Chapter 2-2 in which are taker up the features of the annual precipitation in the Sala river basin as compared with other areas.

Generally speaking, not only in the Sala river basin, the rainfall in the tropics assumes the form of the so-called shower which mostly takes place from noon through the evening, and its rainfall intensity is remarkably high; the duration of continuous falling is extremely short, mostly less than 6 hours. Furthermore, as a feature of the tropical shower the rainfall area is very much limited; the rainfall expanse in Indonesia is said to be several to several tens of km², although the scale of the hyetal region in the Sala river basin is till unknown. The number of the observatories in the Sala river basin where the referential data being orderly arranged, and their distribution density are as follows:

The number of observatories in the entire basin whose data have been utilized for the analysis counts 40, and the area under one observatory is approximately 400 km² which is much larger than the size of the hyetal region. As to the areal rainfall, there is a good possibility that the actual rainfall differs considerably from the values observed.

Given in Table 2.1.1 is the mean monthly rainfall in the Upper Sala basin for a period from 1952 through 1973 which is based on the ordinary rainfall data from the 40 observatories. In Fig. 2.2.6 are shown the secular changes of the yearly total of rainfall; the rainfalls during the rainy and dry seasons are quoted in Table 2.1.2.

According to the result of calculations, the mean annual total of rainfalls during the past 22 years is about 2,100 mm/year throughout all basins as a whole. From the secular changes of mean annual total of rainfalls, it has become clear that the 6 years centering around 1955 and the latest 3 years (1972 - 74) were the wet years, and the drought years continued from 1960 to 1967. The wet years registered the rainfall of 3,000 mm/year whereas the drought years only 1,600 mm/year showing a big variation in the rainfall.

2,1.5

Evaporation and evapotranspiration

The evaporation in the Sala river basin was observed at 8 points, but only at a single place in Pabelan in the Upper Sala area. Moreover, the observation at Pabelan was started only in 1972 and besides, the data after 1974 are of poor reliability.

The mean monthly evaporation recorded at of the 8 observatories inclusive of Pabelan is indicated in Fig. 2.1.5. According to this figure, the annual evaporation at Pabelan is 876 mm/year which is equivalent to only 50% (1.752 mm/year) of the Madiun basin and 80% (1.095 mm/year) of the Lower Sala basin.

As to the evapotranspiration, no observation has been conducted within the Sala river basin. Normally, evapotranspiration is less than the volume measure with an evaporimeter. As trees and plants in the basin are apparently maintaining almost the same condition throughout the year, it may be taken for granted that the evapotranspiration corresponds to the mean monthly evaporation measured at a fixed value. In the master plan report, 0.8 was adopted for the fixed value.

RAINFALL

2.1.6

2:2

The explanation given under 2.1.5 was only about the annual volume of rainfall. Thereafter more detailed limited to the explanations are given on the rainfall characteristic, limiting the areas to the Upper Sala basin and the Jurug-Wonogiri basin.

2.2.1 Rain-gauge station

There are 208 ordinary rain-gauge stations and 10 automatic rain-gauge stations in the Upper Sala basin.

The number of the stations where the data have so far been put in order is 17 for the ordinary rain-gauge station and 10 for the automatic rain-gauge station, totalling to 27. As to the date in order, the oldest available are those for 1952, and accordingly, the data analysed covered only a comparatively short period.

Fig 2.1.2 Average Monthly Sun-Shine Ratio

Average Monthly Sun-Shine Ratio

Unit : %

												Un	H > X	2 E
Location	Station	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sep.	Oct.	Nov.	Dec.	Mean
UpperSak	Panasan	30.0	31.1	36.6	45.6	51.1	63.3	70.0	72.5	75.0	32.5	48.8	33.8	49:7
Basin	Pabelar	77.0	75.0	76.0	87.0	88.Q	84.0	87.0	87.0	88.0	82.0	80.0	70.0	82.0
MadiumBas	lswahyudi	73.7	73.7	80.1	86.2	89.4	92.4	95.4	96.9	95.3	96.6	93.3	82.5	88.0
Lower Solo	Kening	59.2	38.9	73.4	81.6	82.0	86.6	89.5	96.6	95.4	90.8	88.9	67.9	81.4
Basin	Perak	77.1	74.0	78.7	80.4	90.6	95.4	98.1	98.6	98.2	92.1	78.1	76.6	86.5

-15-

Fig 2.1.3 Average Monthly Temperature (At 9 O'clock)

Average Monthly Temproture (At 9 O'clock)

Unit °C

0

Locatio	Station	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug	Sep.	Oct	Nov:	Dec.	Mean
Upper Sal	Panasan	27.3	27.4	27.8	28.3	28.5	28.0	27.5	28.0	29.1	29.6	28.8	28.1	28.2
Basin	Pabelar	27.3	27.9	28.2	29.4	2.8.6	28.5	28.1	27.8	27.4	28.5	28.6	28.1	28.2
MadiumBa	slswahyudi	27.2	27.2	27.4	28.0	28.4	28.2	27.8	26.2	29.3	29.8	28.9	27.7	28.2
Lower Sal	Kening	26.4	26.6	26.6	27.3	26.7	26.5	26.5	27.4	26.9	28.6	27.9	27.1	27.0
Basin	Perak	26.8	26.5	27.0	26.9	26.7	26.9	26.2	26.5	27.3	28.3	28.6	26.9	27.0

Average Maximum Monthly Temperature

. . . .

	. · ·	1997 - 19			· · ·						1.1		ОПИ :	C
Location	Station	Jan.	Feb.	Mar	Apr	May.	June.	July.	Aug.	Sep.	Oct.	Nov.	Dec.	Mean
UpperSalc	Panasan	1 · · · · ·			· · ·					1		1.1		
Basin	Pabelar	30.4	31.2	31.4	32.8	32.2	32.4	31.6	32.6	31.9	32.3	30.9	30.5	31.7
Madium	lswahyudi	30.3	29.6	31.1	31.6	31.9	32.0	31.8	32.8	33.8	34.3	33.0	31.2	32.0
LowerSalc	Kening	31.2	29.7	30.9	29.1	29.3	38.5	28.4	29.8	30.5	31.7	31.2	29.9	30.0
Basin	Perak	30.6	30.4	31.3	30.5	29.7	30.2	30.1	31.1	30,9	32.5	31.8	30.6	30.7
		Λ.	ino -	Minir	ոստ	Mont	hlu	Tomo	o de a tui		. :			

Average	Minimum	Monthl	v Temperature

	: 	Avero	ige	Minir	num	Mont	hly	lemp	eratu	re			Unit	°C
Location	Station	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sep.	Oct.	Nov.	Dec.	Mean
UpperSala	Panasan							1 - 1						
Basin	Pabelar	23.5	23.7	23.7	24.3	24.7	23.5	23.6	23.2	22.8	23.5	23.9	23.0	23.6
Madium	lswahyudi	23.0	23.1	22.9	23.0	23.0	22.0	22.0	22.0	23.1	23.9	24.2	23.2	23.0
Lower Sala	Kening	23.0	23.8	23.6	23.8	23.9	22.3	23.5	25.0	25.0	23.6	23.7	23.7	23.7
Basin	Perak	24.2	22.9	23.9	24.3	2 3.3	23.2	22.0	22.0	23.1	23.0	24.5	25.8	23.5

Fig 2.1.4 Average Monthly Relative Humidity

Average Monthly Relative Humidity

Unit: %

									1		·			/0
Location	Station	Jan.	Feb.	Mar.	Apr.	May.	June.	July	Aug.	Sep.	Oct:	Nov.	Dec.	Mean
UpperSala Basin	Panasan Pabelun	75.8	76.9	76.4	72.0	60.4	66.6	62.7	59.4	59.5	60.8	70.5	74.0	68.7
Madium 👋	lswahyudi	75.8	78.5	77.8	74.4	70.2	65.2	59.8	56.0	53.0	54.1	65.2	65 7	66.5
LowerSala Basin	Kening Perak	84.2 82.7	85.8 82.4	87.6 83.1	85.0 84.0	85.4 81.1	79.2 80.0	74.2 78.3	69.2 73.3	64.8 72.6	69.6 69.1	77.3 74.4	82.8 80.8	78.7 78.4

Fig 2.1.5 Average Monthly Evaporation

Average Monthly Evaporation

Unit ^{. mm}/day

Location	Station	Jan.	Feb.	Mar	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov:	Dec.	Mean
UpperSalı Basin	n Pabelan	1.5	1.4	1.5	1.7	1.5	2.3	3. 2	3.4	4.3	2.9	2.4	2.0	2.4
	Medium	4.1	4.2	4.5	4.6	4.9	5.0	4.7	5.6	6.7	6.6	4.8	4.8	5.0
Madium	Dowhan	5.8	5.6	6.2	4. 0	5.0	5.6	6.2	7.1	7.6	8.0	7.2	5.2	6.1
Diner	Dung benda	3.1	2.7	3.3	3.4	4.3	3.0	3.7	4.3	5.8	4.4	4.7	5.6	4.0
Basin	Saradan Notopuro Ngebe I	4.6 4.2 2.6	4.5 4.3 3.3	4.4 4.2 3.0	4.3 4.7 2.8	4.5 4.4 2.6	4.6 5.2 3.2	5.2 5.8 3.1	6.2 7.1 4.0	6.9 7.6 4.3	7.4 6.9 3.9	4.7 4.9 2.8	5.3 4.6 2.4	5.3 5.3 3.2
LowerSala Basin	Kening	2.1	2.4	2.0	2.5	2.4	3. 6	4.5	5.2	5.2	2.6	2.5	2.2	3.0

	otal	36	80	72	42	80	6	32	60	†6	21	26	5	74	56	24	59	97	60	63	64	34	78	
圓	Ĕ	6	79°T	2,67	2,41	1,78	1,78	2,33	2,0(2,27	1,42	2,0	- 12 - 1 - 1	.9°.	Т ' 2	2,0	ିର ଜୁନ୍ମ ଜୁନ୍ମ	т т	н [.] 8	2,5	2,8	2,1	о ° е	
(Unit:	Dec.	186	302	250	264	198	373	473	352	205	278	366	213	224	244	269	214	503	183	435	342	426	196	
	Nov.	328	108	439	345	143	144	154	206	330	110	133	43	139	127	152	164	66T	115	437	306	183	261	
	Oct.	170	0	105	143	77	12	148	11	15	23	63	Ś	184	Ъщ	174	9	137	96	128	290	14	104	X C
	Sep.	55	0	48	59	53	0	58	31	0	ო	9	0	17	0	6	0	29	0	48	ĥ	0	131	
Ť	Aug.	61	64	53	73	65	127	24	0	0	0	18	0	13	0	0	0	58	0	0	17	Ъ	29	L (
	July	4	29	52	200	136	153	82	49	21	0	19	0	4	7	0	0	202	0	∞	17	0	33	
	June	9	23	61	181	189	15	121	51	16	0	18	26	29	10	86	0	209	34	49	69	0	207	
	May	66	168	269	165	136	43	124	143	314	69	105	2	152	30	25	38	268	17	267	219	95	389	
	Apr.	81	192	297	207	146	68	222	154	246	133	345	TOT	249	90	244	253	166	282	262	107	185	302	
	Mar.	257	315	261	321	109	296	387	349	257	251	333	331	242	254	496	224	506	255-	247	564	433	475	
	Feb.	307	344	473	241	224	318	281	336	411	257	279	345	184	393	296	322	415	478	360	505	362	447	
	Jan.	380	145	364	243	312	219	258	387	431	297	346	777	237	415	275	638	505	400	322	432	431	504	
	Year	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	

1151541731873731696523412255156993751561337537515613375273244301212732443012127324430121273254176100233035478785933116523173733302541761737330625017373174512114441214531573062032432041880243175306203243175306203243231277433102312774349013418966432175139043426434817843821115864	306 115 154 173 187 349 373 169 65 23 327 412 255 156 99 339 375 156 133 75 339 375 156 133 75 429 273 244 301 21 293 374 176 100 2 293 254 176 100 2 293 351 165 133 75 293 351 176 100 2 293 351 165 73 73 368 381 165 23 18 21 306 203 173 73 362 268 106 47 17 374 271 48 41 21 295 310 231 277 43 201 491 490 1
223 306 23 341 253 15 373 169 6 373 169 6 373 169 6 375 156 13 375 176 10 373 169 6 375 156 13 373 156 13 373 264 30 273 244 30 381 165 13 381 165 13 381 165 27 381 165 27 381 211 4 451 211 4 243 204 18 487 157 30 271 344 4 490 134 18 432 175 13 434 264 34 434 264 34 338 211 15 338 211 15 344 264 34 434 264 34 435 211 15	500 223 506 23 240 341 253 15 306 115 154 17 349 373 169 6 327 412 255 13 339 375 156 13 327 412 255 15 339 375 176 10 293 273 244 30 293 273 244 30 293 254 176 10 293 254 176 10 293 254 176 10 293 381 165 2 368 381 165 2 368 381 165 2 368 381 165 2 374 271 306 273 374 271 344 4 204 134 26 34 205 137 271 27 205 310 264
303 364 364 225 341 373 373 412 373 412 373 373 412 373 373 412 373 373 412 373 373 373 373 373 412 373 373 373 373 373 373 373 373 373 37	317 303 329 364 386 225 386 225 386 240 306 341 306 341 306 341 307 341 308 341 306 373 327 412 329 373 329 373 329 373 293 373 293 373 310 243 326 451 330 243 374 271 295 310 205 310 401 490 205 310 206 417 417 434 334 338 334 338
	. Feb. 317 317 317 329 386 326 329 327 329 329 327 229 339 229 332 221 221 221 221 221 221 225 264 264 264 233 233 233 264 261 261 261 233 266 266 276 276 276 276 276 276 276 276

·										2]	L													
	Total	2,189	1,863	2,547	2,717	2,185	2,074	2,871	2,190	2,255	I,625	2,341	1,718	2,054	1,607	2,060	1,689	2,872	I,740	2,364	2,449	1,843	2,840	2,187
	Dec.	254	282	213	255	225	340	492	323	201	254	406	257	223	270	226	245	362	259	322	310	355	230	286
	Nov.	340	191	428	317	167	193	189	218	372	166	190	16	138	160	209	160	279	143	342	263	193	235	227
	Oct.	193	4	166	204	95	36	187	42	56	41	84	27	297	81	164	38	119	16	85	299	20	125	109
	Sep.	56	-1	43	57	56	ິຕ	121	40	10	0	4	0	29.	ы	18	r-H F-H	37	r-i	64	24	9	153	34
	Aug.	93	0	67	93	127	62	71	7	۲.	o	55	0	21	0	H	0	78	0	, FT	9	19	61	34
-	July	7	29	68	243	128	156	158	73	33	9T	52	0	17	17	ы	0	210	2	33	30	0	55	61.
. • 	June	11	15	06	145	194	27	71	75	31	2	111	26	06	17	76	Ö	186	11	55	113	0	139	67
	May	66	203	223	177	178	80	T6T	165	254	137	59	19	195	50	80	30	296	40	263	187	161	348	157
	Apr.	115	274	275	229	183	206	283	181	255	158	387	185	276	138	217	173	221	303	213	104	217	265	221
	Mar.	306	327	215	342	164	418	488	387	267	263	339	387	310	284	426	221	440	267	335	400	453	417	337
	Feb.	342	334	364	249	313	294	388	339	434	257	265	371	223	312	324	320	345	290	314	387	238	399	323
	Jan.	37.3	203	395	406	355	259	272	340	335	331	389	355	235	340	318	501	1 299.	333	307	326	181	413	331
	Year	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1966 🐇	1970	1971	1972	1973	Mean

۰.	Rainfall	
•	Seasonal	
	Table 2.1.2	

Year	Upp∈ (A =	er Sala B = 6,072 k	asín m2)	Madi (A	un Rive: = 3,755	: Basin km2)	Lowe (A =	r Sala 6,273 1	Basin km2)	Who1 (A =	le Sala 1 - 16.100	Basin km2)
	Rainy	Dry	Annual	Rainy	Dry	Annual	Rainy	Dry	Annual	Rainy	Dry	Annual
1952	1730	459	2189	1687	285	1972	1522	463	1985	1639	420	2059
1953	1611	252	1863	1645	356	2001	1478	315	1793	1567	301	1868
1954	1890	657	2547	1799	602	2401	1693	682	2375	1792	654	2446
1955	1798	616	2717	3065	1089	4154	1692	701	2393	2052	874	2926
1956	1407	778	2185	2058	1045	3103	1148	525	1673	1458	742	2200
1957	1710	364	2074	1451	292	1743	1516	296	1812	1574	321	1895
1958	2072	799	2871	1883	455	2338	1520	558	2078	1813	625	2438
1959	1788	402	2190	1352	325	1677	1554	188	1742	1595	301	1896
1960	1864	391	2255	1413	267	1680	1482	290	1772	1610	323	1933
1961	1429	146	1625	1237	184	1421	1216	169	1385	1301	183	1484
1962	1976	365	2341	1776	271	2047	1449	287	1736	1724	313	2037
1963	1646	72	1718	1372	66	1438	1161	103	1264	1393	83	1476
1964	1405	649	2054	1367	545	1912	1160	588	1748	1301	60I	1902
1965	1504	103	1607	1390	97	1487	1931	78	2009	1644	92	1736
1966	1720	340	2060	1917	293	2210	1502	275	1777 -	1681	304	1985
1967	1610	56	1689	1274	29	1303	3613	85	3698	2312	. 70	2382
1968	1946	926	2872	1807	849	2656	1634	1423	3057	1792	1102	2894
1969	1595	145	1.740	1577	187	1764	1455	232	1687	1536	189	1725
1970	1833	531	2364	2060	517	2577	1551	380	1931	1776	469	2245
1971	1790	629	2449	1777	624	2401	2005	636	2641	1871	642	2513
1972	1637	206	1843	1408	153	1561	1224	186	1410	1458	186	1644
1973	1959	881	2840	1659	626	2285	1806	789	2595	1829	786	2615
Mean	1725	762	2187	1681	416	2097	1605	420	2025	1669	436	2105

-22-
Point rainfall

As regards the point rainfall in the Sala river basin, its characteristics are known only qualitatively, but not quantitatively. On that account, with the automatic stations located in and around the Jurug-Wonogili basin as the base rainfall characteristics were examined on the stations. basis of the relevant records of 1975.

The locations of the base stations are shown in Fig. 2.2.1. A brief mention of the results is as follows:

- The period of time, in which occurs rainfall of over 1) 10 mm an hour, lasts from noon to 6.00 p.m and the rainfall during these 6 hours consists of about 70% of the daily total; heavy rainfall takes place in the afternoon. (See Fig. 2.2.1).
- 2) The correlation of the hourly rainfall among the stations was notably weak when the distance between the 2 stations was short - the shortest of which was about 15 km - meaning that the hystal region may be very much limited. (See Fig. 2.2.1).
- rainfall 3) The correlation between the and its duration was very weak, especially in the plane. The mass curve shows that the rainfall stops in less than 6 hours. (See Fig. 2.2.2 and 2.2.3).
- Therefore, the daily rainfall of the N-years retun period 4) might correspond to the total rainfall in the 6-hour of the N-years at duration, but the daily rainfall each station did not show much difference. As estimated, 187 mm/day for 100-year and 104 mm/day for 2-year were the respective mean values for the 4 stations. (See Fig. 2.2.4).
- The point rainfall was estimated from the hyetograph 5) according to the mass curve and probability of precipitation. (See Fig. 2.2.5). The hyetograph exhibited a more rainfall in the first one hour which shared about 60% of the total rainfall The character of hyetograph for point rainfall however, shows that the specific discharge in a small basin might be very large: to quote for reference, a basin with a 1-hour concentiation must have 15.0 of the specific discharge for the 100-year rainfall in rational formula if the coefficient of runoff is taken as 0.5. But this big discharge might not be transferred to the main rivel in its present condition because of the reasons connected with the regimen.

2.2.2

- 24 -

6) As the density of the network of stations for measuring the hourly rainfall is very low, it is difficult to make a through study on areal hourly rainfall.

2.2.3 Areal rainfall

With regard to the areal rainfall in the Upper Sala basin, the monthly, seasonal and annual rainfall studied by use of the records at 27 rainfall station mentioned earlier. As to the daily rainfall the study was made with reference to the flood which has the maximum discharge every year.

- 1) Rainfall monthly, seasonal and annual. The results of calculations on the monthly, seasonal and annual rainfall are shown in Tables 2.3 and 2.4; The rainfall characteristics being as follows.
 - a) Periodic variations have been observed with the annual rainfall during the 4/6 of the said period: a number of years centering around 1955 and 1960 were the wet years and, from 1960 through 1968, the rainfalls during the dry seasons were particularly less and, thus, drought years continued. (See Fig. 2.2.6).
 - b) Judging from the rainfall ratio in the 3 areas of Upper Sala on the yearly and monthly basis, the rainfall in the said 3 areas remained almost identical and was seldom maldistributed. (See Fig. 2.2.7).
 - c) When the rainfall variations are observed on the monthly basis during the rainy season extending from November through April, it occupies about 65% of the annual rainfall on an average, and 35% during the dry season. But in the dry season of a drought year, it happend that rainlessdays continued for 2 or 3 months, in 1967 completely rainless days continued for 3 months in the Upper Sala basin. (See Fig. 2.2.8).
- 2) Daily rainfall

The results of the study on the maximum daily rainfall in a year are indicated in Table 2.2.1. This rainfall is mostly observed in the rainy season of March. In the basin of the Upper Jurug, the heaviest of the rainfalls was registered at the time of the 1966 flood, the largest on the record, when it rained 172 mm/3-days and 62 mm/day. At the time of the same flood, the rainfall in the Upper Wonogiri basin was even heavier, marking 215 mm in 3 days and 158 mm a day. Of other floods, the particularly large one was that of 1968.

Probable rainfall

The study about the probability of rainfall was made on the 3-day and one-day rainfall.

The results of the calculations are given in Fig. 2.2.9.

According to the figures, the 3-day rainfall in the 1966 flood corresponds to the 50-year return period in the Upper-Wonogiri basin and to the 40-year return period in Upper Jurug, but in the Jurug-Wonogiri it turned to be the 15-year return period only.

2.3 DISCHARGE

Dealt with herein are the characteristics of the monthly and annual discharges in the Jurug-Wonogiri basin. As to the flood, expanations will be presented later under Item 2.5.

2.3.1

2.2.4

Water-gauge station

Along the Sala river in the Jurug-Wonogiri basin, the automatic water-gauges are established at Jurug and Juranggempal, and at Jurum along K. Dengkeng. In the proximities of the Nguter and Bacem Bridges and of Mojo, the staff gauges are set up but it is only at Mojo where the stage records are kept. Also the dis₂ charge observation was conducted a number of times at the Terum site on K. Samin without the staff gauge.

The location of the water-gauge stations and their relevant informations are given in Fig. 2.3.1.

2.3.2

Rating curve

The rating curves for Juranggempal, Nguter, Bacem, Jurug, Jarum and the Terum Site are shown in Fig. 2.3.2.

The stage-records over a long period are kept at the stations at Juranggempal (11 years) and Jurug (8 years); the reasonability of the stage records was examined in relation to the lowest water stage initiated in the dry season. (See Fig. 2.3.3.)

The conclusion arrived at after such examination was that, at the Juranggempal site, the water level during

-27-

Fig.2.2.3 Mean distribution of Hyetograph Haveing six-hour rainfall duration

Fig. 2.2.4 Probable Daily Rainfall (Point R#infall)

(2)-0-	Tawangma	ng u	(4)-	- Kd	Uling	
	Return		Statio	on No.	· · · ·	
	period		(2)	(.3)	(4)	Mean
	100	198	155	195	201	187
	50	181	150	180	183	174
	10	143	130	143	145	140
	5	125	121	128	128	126
	2	100	104	103	103	104

-30-

Estimated mass curve of Rainfall and Fig. 2.2.5

Fig. 226 Annual tendency of Rainfall

-32-

-34-

	ŝ	successive three days rainfal	11
0	:	one day rainfall	

	UPPER-W BASIN	ÓNOGIR I	WONOGIRI- JURU BASIN			
return period	3 days	l day	3 days	l day		
100	230	150	215	135		
50 -	210	130	195	120		
20	170	110	160	100		
10	145	90	130	85 -		
5	120	. 75	115	70		
2	85	.50	80	50		

Table 2.2.1

Maximum Annual Rainfall

No.	Year	Upper Wonogiri basin	Wonogiri- Jurug basin	Upper Jurug basin	
1	1956	55.0	72.2	65.0	
2	1958	139.0	89.1	110.0	
3	1960	84.0	84.0	84.0	
4	1961	89.0	118.3	106.0	
5	1962	88.0	70.8	78.0	
6	1963	53.0	49.6	51.0	
7	1966	215.0	140.6	172.0	
8	1967	101.0	70.0	83.0	
9	1968	90.0	150.3	125.0	
10	1970	64.0	53.7	58.0	
11	1971	64.0	93.3	81.0	
12	1972	64.0	65.7	65.0	
13	1973	69.0	53.5	60.0	

(1) Successive three days.

(2)	One day			** *
<u>No</u> .	Year	basin	Wonogiri- Jurug basin	Upper Jurug basin
1	1966	158.0	83.0	62.0
:2	1967	43.0	39.4	41.0
3	1968	68.0	81.0	75.5
4	1971	35.6	37.4	35.0
5	1972	29.1	34.6	28.2
6	1973	33.3	33.2	32.4

of January 1965 through July, 1968 was measured from a point 0.5 m above the gauge zero and, after September of 1972, 1.0 m above the zero. As to Jurug, it was assumed that the water level for the duration of January to July, 1969 was measured from a point 0.5 m below the gauge zero.

At Jarum on K. Dengkeng, the stage equipment is set in such a way as to make it unserviceable when the water depth falls to the level 1 m above the gauge zero and, therefore, the Jarum records are not reliable save for the rainy season.

2.3.3

Daily mean discharge

The daily mean discharges calculated from the rating curve are exhibited in Figs. 2.3.4 to 2.3.6.

The discharge, in the master plan and prefeasibility study reports, is assumed on the monthly unit basis at the Karangnomgko further down steam from the confluence of the Madium river and the Sala river.

The comparison of the newly assumed discharge with the previous one is indicated in Fig. 2.3.7 and, judging from the said figure, both of them are in conformity with each other in comparatively good accuracy. Accordingly, the previous results may well be usable as the monthly mean discharge prior to the commencement of the observation.

2.3.4

Character of discharge

Based on the daily mean discharge, the characteristics of discharge were examined with the findings as follows:

- 1) The daily discharge is to accord with the \sqrt{Q} -distribution. (See Fig. 2.3.8 and Fig. 2.3.9).
- 2) The monthly mean discharge is larger in the rainy season and smaller in the dry season. In the wet year the discharge is considerably large even in the dry season but it becomes practically nil in the drought year, presenting a rather notable fluctuation inbetween. (See Fig. 2.3.10).

- 3) A comparison of the monthly mean discharge between Juranggempal and Jurug indicates that the discharge is increased at about the same ratio of the areal increase. This is quite convincing even from the investigation result that the annual rainfall shows not much areal difference as already mentioned before. (See Fig.2.3.11)
- 4) However, when the daily mean discharges at these two points are compared it seems that:
 - When the discharge is smaller than 250 m³/s at the Juranggempal site, the ratios of discharges at the two points are almost equal to the areal ratios. When the discharge is larger, the discharge at Juranggempal is considerably larger than at Jurug point. This suggests that a flood may occur at the river reach between Jurug and Juranggempal. (See Fig. 2.3.11).
- 5) The annual rainfall loss showed about the identical value at both Jurug and Juraggempal, the mean value being approximately 1,600 mm/year. (See Fig. 2.3.12).

2-4 SEDIMENT

The reddish laterite extensively distributed over its basin. flows along with the storm sewage into the Sala river and, therefore, the river water is constantly in a reddish color. For this reason, it has hitherto been considered that the river bed of the Sala river was formed of the silt of extremely fine grain size.

In the present investigations, the bed materials have been collected from the main channel and tributaries for the field surveys conducted with regard to the sediment.

2.4.1

River bed materials

The positions of the 15 sampling points wherefrom the bed materials have been collected to data are shown in Fig. 2.4.1 with the sample of the grain size distribution in Table 2.4.1 and the profile of the mean grain size in Fig. 2.4.2. It is indicated in figures that the grain size of the main river bed is in good conformity with that of the tributary.

In the Jurug-Colo reach, the mean grain size (d50) is generally uniform at 0.5 m, but the material of the Wonogiri vicinity is quite coarse under the influence of the coarse sediment entering into the main stream. On its upper stream,

NO	Name	start of record	observer	niver	Cetchment erea	Instrume- nt	geuge zero +S.H.V P	(n.)
1	Jurrng- gemoal	1965	P.B.S D.P.M.A	Mein-Sela "	1350km	Ord i. Auto.	106.473	
2	Nguter		P.B.S	ti -	1571		-	
3	Jarum	1974	P.B.S	K.Dengkeng	475	Auto.	93.668	
4	Bacem		Irrigati on office	Main-Sala	2778	Ordi.	83.516	
5	Terun?		P.B.S	K.Samin	305	-	-	
. 6	Moj o		Irriga- tion office	Mein-Sala	3617	Ordi.	83.516	
7	Jurug	1968	P.B.S	Main Sala	3220	Auto.	78.309	

1-----

-42-

-4<u>3</u>-

Fig.232(e)

-44

-45-

***** ->*** / *··· f		ie lowe:	st-wate	stage	in Jun.	, in A	ug. an	d in S	sep. (raw d	lata)
	Son	nohulun	, ,	Juragge	mpal	1	Jurug	5		Jàrum	· · · · · · · · · · · · · · · · · · ·
Year	Jul. /	Aug. Se	ep. Jul	Aug.	Sep.	Jul.	Aug.	Sep.	Jul.	Aug.	Sep.
1965	0.35 (.20 0	.07 0.	3 0.23	0.11					- ee eta eta 84	-
1966	0.18	0.12 0.	.11 0.0	0.01	0.01				-		ang titi sak-ada
1967	0,20 0	0.14 0.	.07 0.2	0.14	0.07			78 -p 66 ¹⁴			194 mil 196 242
1968	0.07 0	0.00	.00 ' 0.	7 -0.36	-0.35	0.70	0.20	0.02			
1969	-0.72 -0	.76 -0.	.77 -0.6	60 -0,65	; 0. 68	0.21	0.29	-0.04			
1970	-0.76 -0). <u>39</u> 0.	.40 -0.3	6 -0.45	-0.43	0.15	0.10	0.10			
1971	-0.38 -0	. 45 [°] -0.	.47 -0.1	.8 -0.32	-0.43	0.14	0.18	0.13	127 get ng 108	کانه ویده زیمر که	
1972		.39 -0.	.50 -0.1	9 -0.56	0.44	0,18	0,12	0.02	-		
1973	0.37 0	0.33.0.	.35 0.9	0.65	0.55	0.48	0.35	0.22	au == 40 ==		
1974			0,6	58 0.69	0.70	0.42	0.54	0.40	0.47	0.47	0.54
1000			0.E	0.66	-	0.50	0.40	0.40			
1915	9+0 HAL 100 CLD			1 0000							
1912	T	ne lowes	at wate	stage	in Jun.	, in A	ug. an	d in S	Sep. (corre	cted)
1912	Th Son	ie lowes nohulun	at water	r stage Jurangg	in Jun. empal	, in A	ug. an Jurug	id in S	Sep. (corre Jarum	cted)
<u>1975</u>	Tr Son Jul. 1	ne lowes nohulun Aug. Se	et water	stage Jurangg	in Jun. empal Sep.	, in A Jul.	ug. an Jurug Aug.	id in Sep.	Sep. (Jul.	corre Jarum Aug.	Sep.
<u>1972</u> Year	Tr Son Jul. 4	ne lowes nohulun Aug. Se 0.30 -0	at water ep. Jul	stage Jurangg Aug.	in Jun. empal Sep. -0.39	, in A Jul.	ug. an Jurug Aug.	d in S	Sep. (Jul.	corre Jarum Aug.	Sep.
1975 Year 1965 1966	Tr Son Jul. / -0.15 -0 -0.32 -0	ne lowes nohulun Aug. Se 0.30 -0.	et water ep. Jul .43 -0.1	stage Jurangg Aug. 17 -0.27	in Jun. empal Sep. -0.39 -0.49	, in A Jul.	ug. an Jurug Aug.	d in Sep.	Sep. (Jul.	corre Jarum Aug.	Sep.
<u>1975</u> Year 1965 1966 1967	Tr Son Jul. 4 -0.15 -0 -0.32 -0 -0.30 -0	ne lowes nohulun Aug. Se 0.30 -0. 0.38 -0 0.36 -0	et water ep. Jul .43 -0.1 .39 -0.4	stage Jurangg Aug. 17 -0.27 15 -0.49 30 -0.36	in Jun. empal Sep. -0.39 -0.49 -0.43	, in A Jul.	ug. an Jurug Aug.	id in S	Sep. (corre Jarum Aug.	Sep.
Year 1965 1966 1967 1968	Tr Son Jul. / -0.15 -0 -0.32 -0 -0.30 -0 -0.43 -0	ne lowez mohulun lug. Se 0.30 -0. 0.38 -0. 0.36 -0. 0.36 -0.	ep. Jul .43 -0.1 .39 -0.4 .43 -0.1	stage Jurangg Aug. 17 -0.27 15 -0.49 30 -0.36 37 -0.36	in Jun. empal Sep. -0.39 -0.49 -0.43 -0.35	, in A Jul.	Jurug Jurug Aug.	id in S Sep.	Sep. (corre Jarum Aug.	Sep.
Year 1965 1966 1967 1968 1969	Tr Son Jul. 4 -0.15 -0 -0.32 -0 -0.30 -0 -0.43 -0 -0.72 -0	ne lowes mohulun Aug. Se 0.30 -0. 0.38 -0 0.38 -0 0.36 -0 0.50 -0 0.76 -0	et water ep. Jul .43 -0.1 .43 -0.2 .50 -0.2 .77 -0.6	stage Jurangg Aug. 17 -0.27 15 -0.49 30 -0.36 37 -0.36 50 -0.65	in Jun. empal Sep. -0.39 -0.49 -0.43 -0.35 -0.68	, in A Jul. 0.70 0.21	Aug. an Jurug Aug. 0.20 0.29	d in S Sep.	Sep. (corre Jarum Aug.	Sep.
Year 1965 1966 1967 1968 1969 1970	TY Son Jul. 4 -0.15 -0 -0.32 -0 -0.30 -0 -0.43 -0 -0.43 -0 -0.72 -0 -0.76 -0	ne lowes nohulun Aug. Se 0.30 -0. 0.38 -0 0.38 -0 0.36 -0 0.50 -0 0.76 -0. 0.39 -0	et water ep. Jul .43 -0.1 .43 -0.2 .43 -0.2 .50 0. .77 -0.6 .40 -0.	stage Jurangg Aug. 17 -0.27 15 -0.49 30 -0.36 37 -0.36 50 -0.65 36 -0.45	in Jun. empal Sep. -0.39 -0.49 -0.43 -0.35 -0.68 -0.43	, in A Jul. 0.70 0.21 0.15	Aug. an Jurug Aug. 0.20 0.29 0.10	d in S Sep. 0.02 -0.04 0.10	Sep. (corre Jarum Aug.	Sep.
Year 1965 1966 1967 1968 1969 1970 1971	TY Son Jul. A -0.15 -C -0.32 -C -0.30 -C -0.43 -C -0.72 -C -0.76 -C -0.38 -C	ne lowes nohulun Aug. Se 0.30 -0. 0.38 -0. 0.38 -0. 0.36 -0. 0.39 -0. 0.39 -0. 0.39 -0. 0.45 -0	et water ep. Jul 43 -0.1 .39 -0.4 .43 -0.1 .50 0.1 .77 -0.6 .40 -0.1	stage Jurangg Aug. 7 -0.27 15 -0.49 30 -0.36 50 -0.36 50 -0.65 36 -0.45 18 -0.32	in Jun. empal Sep. -0.39 -0.49 -0.43 -0.35 -0.68 -0.43 -0.43	, in A Jul. 0.70 0.21 0.15 0.14	Aug. an Jurug Aug. 0.20 0.29 0.10 0.18	d in S Sep. 0.02 -0.04 0.10 0.13	Sep. (corre Jarum Aug.	Sep.
Year 1965 1966 1967 1968 1969 1970 1971 1972	TY Son Jul. 1 -0.15 -C -0.32 -C -0.30 -C -0.43 -C -0.72 -C -0.76 -C -0.38 -C	ne lowes mohulun Aug. Se 0.30 -0 0.38 -0 0.38 -0 0.36 -0 0.39 -0 0.45 -0 0.39 -0	et water ep. Jul 43 -0.1 .39 -0.4 .43 -0.1 .50 0.1 .77 -0.6 .40 -0.1 .47 -0.1 .50 -0.4	stage Jurangg Aug. 17 -0.27 15 -0.49 30 -0.36 50 -0.65 36 -0.45 18 -0.32 19 -0.56	in Jun. empal Sep. -0.39 -0.43 -0.43 -0.68 -0.43 -0.43 -0.43 -0.56	, in A Jul. 0.70 0.21 0.15 0.14 0.18	Aug. an Jurug Aug. 0.20 0.29 0.10 0.18 0.12	d in S Sep. 0.02 -0.04 0.10 0.13 0.02	Sep. (corre Jarum Aug.	Sep.
Year 1965 1966 1967 1968 1969 1970 1971 1972 1973	TY Son Jul. 1 -0.15 -0 -0.32 -0 -0.32 -0 -0.30 -0 -0.43 -0 -0.72 -0 -0.76 -0 -0.76 -0 -0.38 -0 -0.63 -0	ne lowes mohulun Aug. Se 0.30 -0. 0.38 -0. 0.38 -0. 0.36 -0. 0.39 -0. 0.39 -0. 0.45 -0. 0.39 -0. 0.39 -0. 0.45 -0. 0.39 -0.	et water ep. Jul 43 -0.1 39 -0.4 43 -0.1 50 -0.2 40 -0.1 40 -0.1 50 -0.4 65 -0.0	stage Jurangg Aug. 17 -0.27 15 -0.49 30 -0.36 50 -0.36 50 -0.65 36 -0.45 18 -0.32 19 -0.56 05 -0.35	in Jun. empal Sep. -0.39 -0.49 -0.43 -0.68 -0.43 -0.68 -0.43 -0.56 -0.45	, in A Jul. Jul. 0.70 0.21 0.15 0.14 0.18 0.48	Aug. an Jurug Aug. 0.20 0.29 0.10 0.18 0.12 0.35	d in \$ Sep. 0.02 -0.04 0.10 0.13 0.02 0.22	Sep. (corre Jarum Aug.	Sep.
Year 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974	The second state s	ne lowes nohulun Aug. Se 0.30 -0. 0.38 -0 0.38 -0 0.36 -0 0.50 -0 0.76 -0 0.39 -0 0.45 -0 0.39 -0 0.45 -0	at water at water 43 -0.1 .39 -0.4 .43 -0.1 .50 -0.2 .40 -0.1 .50 -0.4 .50 -0.4 .50 -0.4 .50 -0.4	stage Jurangg Aug. 17 -0.27 15 -0.49 30 -0.36 50 -0.36 50 -0.65 36 -0.45 18 -0.32 19 -0.56 05 -0.35 31 -0.31	in Jun. empal Sep. -0.39 -0.49 -0.43 -0.35 -0.68 -0.43 -0.43 -0.56 -0.45 -0.30	, in A Jul. Jul. 0.70 0.21 0.15 0.14 0.18 0.48 0.48 0.42	Aug. an Jurug Aug. 0.20 0.29 0.10 0.18 0.12 0.35 0.54	id in \$ Sep. 0.02 -0.04 0.10 0.13 0.02 0.22 0.22 0.40	Sep. (corre Jarum Aug.	Sep.

-46-

-47-

Fig. 2.3.4 Daily mean discharge

-50--

-51-

-53-

-54-

-55-

-56-

Fig. 2.3 6 Daily mean discharge

-58-

Fig.238 Probability distribution of daily mean discharge at Juraggemoal

Fig. 239 Probability distribution of daily mean discharge at Jurug

e just to she she she s

--60--

Fig. 23.10 Monthly mean discharge at Juranggempal and at Jurug

-62-

	Oct. Nov	
ωĮ	Sep.	ς α
Discharg	Aug.	0 7
y means	July	ָר ע
Tunum	Jun.	σ
2.3.1	May	12.1
Tablé	ъ Т	6

· .		·														-64-								•	·		·				
		ļ					• .							1	1		1	l								1	1 .		I	. '	
ŝ		Meam	(20.1)	39.6	62.8	31.4	00	10 20 10	4.00	1.00 1.00	(14 5)	10. FA	(62.8)	62.8			Meam	10 007		70.00	6.36	(66.6)	125.4	111.9	155.6	101.8		Meam	(0, 0)	(39.8).	65.4
nit: ⊒3/		Dec.	30.2	24.6	27.7	139.5	10.0	70.6	6°.27	י ע י ד ד) • • •	000		44.3			Dec.		F (%	705 2	123.0	72 1	110.7	103.6	168.2	120.8		Dec.	20.2	40.8	30.6
Ę		Nov.	ł	15.9	19.0	37.3	6.1	39.85	40-4	י ע הי ר	32.7	107		27.1		•	Nov .				0.19		70.6	135.9	86.7	70.5		Nov.	30 1	17.1	24.1
		Oct.	T	22.8	1.2	32.6	1.9	19.2			2 7 E	10-1-		14.2			Oct.	0	• • •	4	49.0	0.3	23.8	66.9	194.5	50.4		Oct.	8 U7		40.8
œ۱		Sep.	2.8	1.0	1.8	7.7	0.2	7.9	2.3		4.7	11.9	1	4.2			Sep.		1 • •	0	. e	1	60.6	42.8	63.8	30.1		Sep.	67.2	 	67.2
Discharg		Aug	4.9	0.9	2.6	11.11	0.1	1.5	0 0 0	0.6	11.2	11.4	4.3	.4.8			Aug	-2 07	, u , c	, (2.7	1.4	6.3	23.4	6.8	10.6		Aug.	52.5	1	52.5
V Means 1	-	July	6.3	2.1	8.1	9.0	0.4	н С	0.0	60	22.4	99	5.6	6.4		4 [.]	Jul.	79.9	1 1 1 1		ι α	1.6	20.7	12.3	11.8	16.4		Jul.	1	.1	I
Monthly		Jun.	9.8	12.0	14.9	18.6	2.4	24.3	16.1	2.0	40.3	50	6.8	13.8		· ·	Jun.	07. R	9.11	29.6	30.4	3.4	76.2	10.3	13.4	33.5		Jun.	16.3	9.5	12.9
e 2.3.1		Мау	13.1	15.1	23.6	6.1	6.1	59.3	27.7	24.1	47.6	42.0	43.6	28.03			May	106.4	6 01	149.0	55.4	49.1	174.3	97.1	139.6	97.7		May	27.9	24.3	26.1
Tab1		Apr.	20.9	40.6	69.5		33.2	41.4	34.6	28.2	55.6	45.0	80.2	41.4			Apr.	7.7	251.2	84.2	80.5	83.4	143.9	174.9	296.6	148.4		Apr.	42.0	83.9	63.0
		Mar.	73.2	211.3	63.7	37.I	44.5	54.2	113.7	87.8	106.9	124.5	206.5	102.1			Mar.	268.0	216.6	128.0	290.0	214.2	293.9	245.6	397.1	256.6		Mar.	64.0	I	64.0
· · · ·	<u>pal site</u>	Feb	1	75.9	67.5	28.2	86.0	79.4	102.3	33.9	53.9	142.3	93.3	76.3		aı	Feb.	126.7	252.0	141.1	274.3	116.8	244.3	294.4	284.4	216.8	a 1	Feb.	84.6	63.1	73.9
	uranggem	Jan	ł	52.8	453.8	43.7	26.1	30.2	50.1	73.2	55.6	49.7	62.3	89.8	1	ırug sit(Jan.	108.8	•	88.5	149.3	178.9	279.7	135.4	204.0	163.5	ırum sit€	Jan.	4.1	1	4.1
1	(a)	Year	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	Meam		(p) Jr	Year	1968	1969	1970	1971	1972	1973	1974	1975	Meam	(c) J _é	Year	1974	1975	Meam

the grain size is fine again and yet more or less coarser than that of the Jurug-Colo reach.

In the site investigations, it has been found that sand collection is going on by manual excavation in the vicinities of the Jurug Railway Bridge, Bacem Bridge and Nguter Bridge over the main river; it was also noted that along the tributar is, the K. Brambang in particular, quite a volume of sand is being dug out manually. The sands from the Nguter Bridge and K. Brambang are of less silt content and is said to be selling at a high price as construction material.

2.4.2 Suspended load

The suspended load was checked at 8 points once or thrice respectively. The examination sites are as shown in Fig. 2.4.1 with the results of the examination in Table 2.4.1.

The relation between discharge and suspended load discharge is as shown in Fig. 2.4.1, but when judged as a whole, the suspended load discharge is in proportion to the aquare of the discharge. This relation is obtainable from the following formula.

 $Qs = 0.0198 Q^{2.0}$

Q : discharge (m^3/s)

Qs: suspended discharge (kg/s).

When the annual total of the suspended load discharge calculated by this relation is multiplied by the daily discharge distribution in Fig. 2.3.9, it gives 2.61 x 10° m for the drought year, 5.48 x 10° m³ for the normal, and 7.60 x 10⁶ m³ for the wet year. When each of these is converted into the annual land loss height, it corresponds to 810, 1,700 and 2,360 m³/year,' km² respectively.

It is supposed that the influence of the suspended load on the river-bed formation is very small. Namely, the rolation between the discharge and suspended load density equals to the primary proportion as indicated in Fig. 2.4.4. Furthermore, the discharge and area are again in a relation equal to the primary proportion. Consequently, the suspended load from the tributary into the main river is carried away to the lower stream, and never scours the river bed or is deposited on it. For this reason, it may well be considered that the suspended discharge is of the same character as the wash load.

Bed-load

2.4.3

From the results of the field survey and suspended load observation, it can be judged that the bed load plays an important role in the formation of river bed of the Sala river.

The measuring of the bed load was not feasible because of the faulty conditions of the required instruments. After conducting the trial measuring several times, the sand, which was confirmed to have formed the bed-load, was obtained.

Therefore, the bed-load discharge was studied by using the value calculated from the bed-load discharge formula. For bedload discharge calculations, there are a number of different formulas such as Du Boys formula, Einstein formula, Sato-Kikkawa-Asida formula, etc. The Sato-Kikkawa-Asida's handy formula was used this time.

$$Q_{B} = q_{B}$$
. B
 $q_{B} = Wg^{0.5} R^{1.5} I^{1.5}$

where

 Q_{B} : Bed-load discharge (kg/s) q_{B} : Unit bed-load discharge (kg/m.s) B: River width (m) W: Unit weight of water (kg/m³) g: 9.8 (m/s²)

R: Hydraulic mean depth (m)

I: Energy slope or river bed slope.

It can be obtained from the Sato-Kikkawa-Asida formula of $q_B = \mathcal{S} \cdot (\delta/\delta - f) - To - U_* f(Tc/Td)$, To = WRI/U_{*}= \sqrt{gRI} and with the natural river as $\mathcal{S} (\delta/\delta - f) = 1 f(Tc/Td) = 1$.

As to the bed-load discharge (Q_B) , a comparatively large discharge has been observed lately. The calculations were made for the Nguter bri. site and Bacem bri. site of the main Sala river, the results of which are shown in Fig. 2.4.5. From the results we find that Q_B at the two sites is approximately the same, and the bed-load discharge has a linear relation with discharge. According to the calculations, the anannual load discharge obtained is 21 m /year/ km² which, as compared with the suspended load discharge (1,700 m /year, km²), stands for a conspicuously small value. Quoted above is the result of the calculations, but according to the past examples there are many occasions in which the difference between the calculated value and the actual value is as large as several-ten times. As to the bed-load, therefore, the measuring will have to be progressed continuously hereafter.

-69-

Fig. 2.4.3 Suspended load discharge.

-70-

discharge(m3/s)

-72-

Table 2.4.1 Results of Suspended-load Observation

ģ	Site	U	rain Si	1Ze	Specific		+	Ubserve	STINSAL DE	or suspen	deg Toag		c	
	2170	25	(mm) 20	75	gravity of sand (g/cm ³)	Q (m3/S)	<u>V (m/S)</u>	Qs (kg/S)	Q (m ³ /S)	<u>v (m/S)</u>	Qs (kg/S)	0 (m3/S)	V (m/S)	Qs (kg/S)
н	Clesurg Bri.	19-0	2.00	3.20	1	1	J		ľ	. * 1	1	1 		ì
7	Kulurejo	0.52	2.00	12.00	1	1	i	ŀ		I	I	1		1
ŝ	Sembuwan	0.70	12.00	40.00	: i	: I	1	ľ]	1	I	I	I	ł
4	Dam site	1.20	10.00	24.00	i	I	1	1	I	ł	i i	ł	i	н 1 н н
ŝ	Kedoengsaru	0,25	0,42	2.60	(3.49)	1.10	0.16	0.82	3.00	0.33	0.93	2.30	0.29	0.30
9	Weir site	0.17	0.26	0.47	2.88	1	1	ı	1	ı	I	1	1	ł
7	Nguter Bri.	0.25	0.41	0.83	2.65	140.00	0.87	374.90	72.60	0.86	22.13	31.70	0.76	63-00
ω	Kepoeh	0.22	4.00	7.30	(3.57)	3.40	0.43	0.43		. 1	1	··	ł	ł
φ.	Djasan	0.18	0.22	0.29	3.02	15.30	0.50	3.88	7.80	0.41	1.81	13.70	0.53	1.40
0	Madijasto	0.23	0.30	0.44	2.69	I 	1	ł	I	i	1 .	1	1.	I
ч	Pandiang	0.14	0.19	0.23	3.02	1	t	ŀ	ì	I	1	ł	1	ł
2	Tembalan	0.30	0.57	I.10	2.77	2.10	0.62	0.22	2.30	0.67	0.13	3.50	0.80	2.20
ŝ	Bacem Bri.	T4.0	0.77	1.20	2.87	70.60	1.13	23.38	103.40	0.74	97.14	ı	· . 1	1
শ	Guntur	1.30	3.10	7.90	2.91	3.20	0.55	0.43	7.40	0.60	1.42	11.70	0.49	2.00
ŝ	Mojo	0.28	0.46	0.88	2.88	302.60	1.12	889.10	-1	I	ŀ	l	1	1

V = mean velocity (m/S)

 $Q = discharge (m^3/S)$

••

Note

Qs = suspended load (kg/S)

-73-

FLOOD

2.5

2.5.1 Noted floods

In the upper Sala basin, big floods occur late in the rainy season of March but in other seasons, too, middle class floods take place quite often.

Particularly, large floods took place during the latter periods in 1966, 1968 and 1975 about which the records are available. By the scales of precipitation and discharge, the 1966 flood was the largest experienced when the peak discharge at the Jurug site recorded 2,160 m /s and the inundated area in the Jurug-Wonogiri area marked about 200 km².

The flood in 1968 marked the peak discharge of 1,540 m^3/s at the Jurug site which suggests that the inundation in the Madiun river basin was of a larger scale than in the upper Sala basin.

The 1975-flood caused a big inundation to the K. Dengkeng basin of the Jurug-Wonggiri basin, but the peak discharge at the Jurug site was 1,020 m/s which was rather small as compared to the aforementioned 2 cases of the 1966 and 1968 floods.

Explanations on the floods will be given mainly on the inundations of 1966 and 1968.

1) Isohyetal map

3)

The isohyetal map of the 1966 and 1968 floods in the Upper Jurug basin is shown in Figs. 2.5.1 and 2.5.2.

- 2) Discharge hydrograph The discharge hydrograph of the 1966, 1968 and 1975 floods at Jurug and Juranggempal, along with the hyerograph for the Upper Jurug basir, is shown in Fig. 2.5.3.
 - Rainfall The rainfall in the noted floods, and in other maximum annual floods for reference, are shown in Table 2.2.1.

4) Inundation area The inundated areas of the noted floods in the Jurug-Wonogiri area are indicated in Fig. 2.5.4.

Flood	Peak Discharge at Jurug (m /s)	Inundated area (kr ²)
1958		93.1
1966	2,160	198.0
1968	1,540	· <u>-</u>
1975	1,020	86.3

2,5.2

Flood routing

The flood routing has been conducted for the 1966 and 1968 floods according to the storage-function method.

In the storage-function method, the Upper Jurug basin is represented by the 2 basins of Upper Wonogiri and Jurug-Wonogiri and by the Jurug-Wonogiri channel.

The calculation formula of the storage-function method was as follows:

Basin:	$Q = \frac{1}{3.6} q \cdot (T - T_L) \cdot L$	A Q:	discharge (m^3/s)
·	$S = K \cdot q^{P}$	r;	Input rainfall
•	$\frac{\mathrm{d}s}{\mathrm{d}t} = r - q$	q :	Output rainfall
· .		т _г :	Time lag
		A:	Area
	K	& P:	Constants

As the result of the analysis, the constants (K and P) contained in the calculation formula were given as indicated in Fig. 2.5.5. The result of the calculations for the 1966 flood was very accurate as shown in the table below.

		Peak Discharge	(m^3/s)
Item	Juranggem pal (1,350 km ²)	Jurug (3,220 km ²)	Ngawi (6,072 km ²)
Observed	3,800-4,000	2,300	1,850
Calculated	3,950	2,160	1,890

2.6

BASIC DATA FOR RIVER IMPROVEMENT PLANNING

In this chapter, explanations will be given on the basic data for river improvement planning: the probable discharge, the discharge distribution in the maximum experienced flood, and the flood control effect of the Wonogiri dam.

Probable discharge in the existing condition

Probable discharges under the existing conditions at Juranggempal and Jurug were obtained from the observed annual maximum discharge data in Table 2.6.1.

These data were plotted by the Thomas method into the log-normal distribution paper of Fig. 2.6.1 and of Fig. 2.6.2.

The result of the probable discharge calculations is shown in Table 2.6.3. As is known from the table that of the maximum experienced floods the 1966-flood at Jurug corresponds to the 40-year flood and the 1968-flood to the 10-year flood.

2.6.2

Probable discharge in several construction cases

1) Construction cases

In the construction plan of the Wonogiri dam, the coffer dam of the Wonogiri Dam is to be completed in 1978, and the Wonogiri Dam as a whole in 1980. As to the river improvement works, the first stage of the plan is to be started in 1978 and completed in 1983, i.e., 3 years after the dam construction.

To cope with this program, the probable discharge in Jurug at each construction stage is examined:

Case 0 ... Existing condition.

Case 1 ... Main coffer damming + existing river.

Case 2 ... Wonogiri dam + existing river. $(400 \text{ m}^3/\text{s})$

constant outflow).

2.6.1

Fig. 2.5.3 Lischarge Hydrograph under Existing Condition

н. 12

-79-

Fig 2.5.5 Flood Routing Model

-81-

Table I-21 Constants of Storage Function.

W= tershed	Area	ĸ	р	TL	f	Qb	Rsa
Sub-basiml	1350 km	27.0	0.6	6hr.	1.0	86 m ³ /s	0.0
2	1870	49.3	0.6	7	1.0	120	0.0
3	2852	73.7	0.6	9.	1.0	188	0.0

		· · · · ·		
121	Banatonta	for channel	in Evicting	condition
())	CONSTANTS	roi onamer	THE HETOLETHE	001107.01011

N = 7				and the second	
Channel	Length	K	Р	TL	Range of Q
Channel-A	64 ^{km}	0.075	1.772	2 hr.	$Q \leq 540 \text{ m}^3/\text{s}$
		82.0	0.65	2	> 540
- B	143 ^{km}	1.6	1.46?	3	$Q \leq 500 \text{ m}^3/\text{s}$
- - <u></u>		340.0	0.60	3	> 500

(c) After completion	on of	river	improvement	facilitie
----------------------	-------	-------	-------------	-----------

Channel	Length	K	P	TL	Range of Q
Channel-A	64 km	82	0.66	2	$Q \geq 0 m^3/s$
	143	340	0,60	3	≥ 0

Case 3 ... Wonogiri dam + improved river. $(400 \text{ m}^3/\text{s})$

constant outflow).

Case 4 ... Improved river without flood control by

Wonogiri dam.

2) Estimate of Peak Discharge at Jurug Site

- The peak discharge for each stage was determined as follows:
- a) Under the existing conditions, the 1966- and 1968-floods at the Jurug site correspond to the 40-year and 10-year flood, respectively.
- b) The hydrograph, in which the inflow discharge hydrograph of each flood was multiplied by 1.5 and 0.5, was given to the flood routing model to calculate the discharge. In this case, as compared to the discharge probability under the existing condition, the 1966-flood type corresponded to the 500-year flood (1.5 times as large) and 5-year flood (0.5 times as large), and the 1968-flood type to the 50-year (1.5 times as large) and 2-year flood (0.5 times as large).
- c) By using the storage-function model constants to correspond to each construction case , the flood routing was performed to work out the discharge at the Jurug site. The result of the calculations thereof is given in Table 2.6.2.
- d) The peak discharge obtained in (c) above corresponded to the return period determined for each case by (b) above. From the 6 plotting positions, i.e., three 1966-flood type and three 1968-flood types, the probability line and probable discharge for each construction case can be surmised on the log-normal probability paper. The probable discharge at each construction case surmized as shown in Fig. 2.6.3 and Table 2.6.3.

Discharge distribution in the 1966-flood

On the assumption that the Wonogiri dam functions to control the flood with $400 \text{ m}^3/\text{s}$ of the constant outflow and there is no inundation in the Wonogiri-Jurug reach, i.e., Case 3, the discharge hydrograph of the 1966, 1968 and 1975 floods at the Jurug site is given in Fig. 2.6.4.

Even after functioning of the flood control, the peak discharge at the Jurug site in the 1966 flood could have been approximately $2,000 \text{ m}^3/\text{s}$, the largest as compared with the other two floods.

For this reason, the surmising in advance of the confluent discharge from the tributary of the Jurug-Wonogiri reach as of the 1966-flood is deemed to offer the useful data for determinings later on the design discharge distribution in the river-improvement planing. The surmise has been carried out as follows:

2.6.3

-83-

In addition to the smallness of the discharge capacity of the tributary, it has a vast inundation area in its upstream, and therefore, the discharged flow is pooled. On that account, the tributary discharge hydrograph becomes gentle which eventually makes the time lag between the main river peak discharge and tributary peak discharge negligible. Furthermore, it could surmised that the peak discharge falls under the control of the minimum discharge capacity of the tributary. However, as the K. Walikan (198 km²) which joins the main river immediately on the upstream of the Colo weir has no inundation area and, its discharge flows directly into the main river. Besides, discharge from the K. Wingko is ponded in the vast inundation area around Sala city and does not directly increase the discharge of the main stream.

- 3) The minimum discharge capacity of the tributary was judged from its cross section immediate upsteam of the main river inundation area by the uniform flow formula or the rating curve in relation to the bank-full stage. And for the K. Walikan the peak discharge was calculated from the flood-mark of the 1966-flood and the uniform-flow formula. The result thereof is given in Table 2.6.4 and Fig. 2.6.5.
 - Excluding the discharge from the K. Wingko, the total confluent discharge of the tributary is estimated at 1,490 m³/s which leaves a difference of 110 m³/s from the estimated confluence discharge of 1,600 m³/s. Accordingly, this difference of 110 m³/s was distributed to the tributaries, other than the K. Walikan and K. Wingko, for adjustment of the total confluence discharge thereof to 1,600 m³/s. The result is shown in Table 2.6.4. The discharge distribution thus estimated for the 1966-flood is given in Fig. 2.6.6.

2.6.4

Discharge distributions of the 15-year, 2-year and 1.2year floods

The 1966-flood corresponds to the 40-year flood, and the surmised discharge distributions, corresponding to the 15-year, 2-year and 1.2-year floods, are shown in Figs. 2.6.7, 2.6.8 and 2.6.9.

The peak discharges corresponding to these probable floods at the Jurug site are 1,600, 900 and 600 m^3/s , respectively.

.0.4

2)

4)

Estimated discharge of the tributary after improvement

The tributary discharge under the existing condition is dealt with in Item 2.6.3. This corresponds to the 1-year return period according to the Jurum station records.

Upon completion of the improvement works of the tributary, the area-discharge line under the present condition, as shown in Fig. 2.6.5, is estimated to move in parallel with and pass the plotting position of the K.Walikan which is under the noninundation condition even at present.

The estimated discharge is given in Table 2.6.4. And to judge from the area-specific discharge relation now being examined in Indonesia, it is likely that this discharge approximately corresponds to the 100-year flood.

Fig. 2.6.1 <u>Probable Peak Discharge at Juranggempal</u> (Existing Condition)

Fig. 2.6.2 Probable Peak Discharge at Jurug (Existing Condition)

Fij. 2.6.3 <u>Peak-Discharge Probability in Various Construction stage at Jurug</u> (Construction cdse)

Fig 2.6.4 Discharge hydrograph at Jurug (case 3)

-88-

Fjg.2.6.5 Estimated Discharge of Tributary

--89--

-94--
Table 2.6.1 Annual Maximum Discharge

No.	Year	Daily Mean (m ³ /S)	Peak (m ³ /S)	Estimated Peak (m ³ /S)
1	1965	406		700*
2	1966	3,876	3,950	3,950
3	1969	1,019	_	1,650*
4	1968	796	1,280	1,280
5	1969	419	-	700*
6	1970	528		900*
7	1971	468		800*
8	1972	482	820	820
9	1973	651	1,140	1,140
10	1974	669		1,120*
11	1975	1,098		1,710*

(a) Juranggempal Site

(b) Jurug Site

	20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -			
No.	Year	Daily Mean (m ³ /S)	Peak (m ³ /S)	Estimated Peak (m ³ /S)
1	1966		2,160	2,160
2	1968	938	1,540	1,540
3	1969	597	<u> </u>	620*
4	1970	544		580*
5	1971	720		760*
6	1972	803	660	660*
7	1973	929	1,020	1,020
8	1974	822	950	950
9	1975	899	1,020	1,020
	······································			

Note: * Values are estimated by the relationship between daily mean and peak discharge.

onstruction Cases	
Several C	
n the	
Site i	
Jurug	
at a	
Discharge	
Maximum	
2.6.2	
Table	

Stage 4 (m ³ /S)	7,628 5,240	2,363		4,061	2,440	1,290			• .	
Stage 3 (m3/S)	3,305 1,996	1,165		2,158	1,568	976				
Stage 2 (m ³ /S)	2,013 1,316	1,874	а 1 це	1,734	1,297	854	. <u>.</u>			
Stage I (m ³ /S)	2,390 1,650	886		2,110	1,310	865				
Estimated Return Period (1/T)	1/500 1/40	1/5		1/50	1/10	1/2	+ Existing river	+ Existing river	+ Improved river	+ Improved river
Existing Condition 1 (m ³ /S)	2,830 2,156	1,281	Case	2,048	1,540	894	Main Coffer Dam	· Wonogiri Dam	Wonogiri Dam	Non-Wonogiri Dam
Multiplied Ratio	1.50 1.00	0.50	(b) 1968 - Flood	1.50	1.00	0.50	 Note: Case 1 =	Case 2 =	Case 3 =	Case 4

--96--

N-YearPeak Discharge
 (m^3/S) Note1004,300504,000203,050102,45051,87021,030

(a) Juranggempal Site

Table 2.6.3 Probable Peak Discharge

(b) Jurug Site

		Peak J	Discharge (m ^{3/S)}		
N-Year	Existing Condition	Case 1	Case 2	Case 3	Case 4	· .
200	2,500	2,400	2,000	2,750	6,600	
100	2,300	2,200	1,800	2,400	5,500	
50	2,030			2,150	4,700	
40	2,000	1,800	1,550	2,050	4,600	
20	1,750	1,360	1,350	1,750	3,600	
10	1,500	1,170	1,170	1,500	2,900	
5	1,250	1,000	1,000	1,250	2,200	
2	900	800	800	900	1,300	

Note:	Case 1	= '	Main Coffer Dam	٠ţ٠	Existing river
	Case 2	- =	Wonogiri Dam	+	Existing river
:	Case 3		Wonogiri Dam	<u>.</u> ++	Improved river
	Case 4	=	Non-Wonogiri Dam	+	(without retaining basin) Improved river (without retarding basin)

Table 2.6.4 Discharge in Tributary

m +1 .	Area	Estimated Minimum
Tributary	(km ²)	Discharge Capacity (m ³ /S)
K. Walikan	198	500
K. Jlantah	75	100
K. Dengkeng	833	270
K. Pusur	43	100
K. Bentungan	20	80
K. Brambang	125	150
K. Kembangan	38	90
K. Samin	305	200
(K. Wingko)	(57)	(120)
Total	1,637	1,490
	· · · · · · · · · · · · · · · · · · ·	

(a) Minimum Discharge Capacity in Tributary

(b) Proposed Discharge and Estimated Discharge in Future

Tributary	Area (km ²)	Proposed Disch- arge of Tributary (m ³ /S)	Estimated Disch- arge in Future (m ³ /S)
K. Walikan	198	500	500
K. Jlantah	75	130	350
K. Dengkeng	833	285	830
K. Pusur	43	110	290
K. Bentungan	20	90	220
K. Brambang	125	165	410
K. Kembangan	38	100	280
K. Samin	305	220	580
K. Wingko	(57)	120	320
Total	1,637	1,600	3,655

Note: The cross sections of the tributaries are designed according to the proposed discharge considering the estimated discharge in future.

3. RIVER IMPROVEMENT WORK

3.1 EXISTING RIVER CONDITION

3.1.1

Profile, width, and discharge capacity of the river

The profile of the existing main river is 1/2,000 in the downstream of the objective reach and 1/1,450 in the upstream reach as shown in Fig. 3-1-2.

The river width and the discharge capacity are shown in Fig. 3-1-3; it shows that its mean width is 100 m and a mean discharge capacity is $500 \text{ m}^3/\text{s}$ in the proposed reach.

The existing river meanders severely especially at the confluences with K.Jlantah, K.Dengkeng and K.Samin. Due to such meandering, the river length along the existing river in the proposed reach is about 55 km, while the existing axis line of meander has a length of only 33 km.

3.1.2 River water use

The use of the river and its water has been confined to the conveniences of the people living along the river, mainly in:

reach	mean width (m)	mean slope	mean discharge capacity (m ³ /s)
Lower Jurug	-	1/2,800	
Jurug - K.Samin	100	1/3,300	700
K.Samin - K.Dengkeng	90	1/2,600	500
K.Dengkeng - K.Jlantah	80	1/2,600	300
K.Jlantah - Nguter	110	1/2,600	450
Upper Nguter		1/1,200	-

Note: Discharge capacity is calculated for the bank-full stage

- 1) Irrigation: Some water is used for pumping irrigation; 21 small pump stations, with the capacities ranging from $0.2 \text{ m}^3/\text{s}$ to $0.5 \text{ m}^3/\text{s}$, are installed along the river.
- 2) Fishing: Some people catch fish in the river. But due to the fluctuation of its discharge and the water with much suspended-load, the kinds and the quantities of the living fish are very limited.
- 3) Sand collection: Though the river-water contains much suspended-load, the river bed is formed by sand. Therefore, good qualified sand is being collected at some places along the river, particularly at around Nguter bridge, Bacem bridge, Jurug railway bridge and K.Brambang, for sale as construction.

3.1.3 Existing riparian structures

Existing riparian structures along the reach for the proposed river improvement work are shown in Table 3.1.1 and their locations are shown in DRG. No.RW 57 and in Fig. 3.1.4.

All of the road bridges and railway bridges in the reach are old. The discharge capacity at each bridge site is shown in Table below; it is rather small especially at the upstream reach bridge.

and the second					· .	
Location	A (m ²)	I	n	B(m)	V(m/s)	$Q(m^3/s)$
Jurug Road Bridge	1,230	1/3,300	0,035	175.0	1.82	2,200
Jurug Rail Road Bridge	1,350	ท	11	180.0	1,90	2,500
Mojo Rail Road Bridge	1,220	1 U	**	150.0	1.79	2,180
Bacem Road Bridge	580	1/2,600	11	120.0	1,60	900
Nguter Road Bridge	500	n	11	110.0	1,54	750
Nguter Rail Road Bridge	530	1/1,200	11	110,0	2.33	1,235
				· · ·		·

Note:	A: area of cross-section
,	I: slope of river bed
	n: Manning's n
·	B: Bridge length
	V: velocity of flow
	Q: discharge

-100-

There are 21 small pump stations for pumping up irrigation water from the Sala river. The pump capacity is ranging from 0.2 m²/s to $0.5 \text{ m}^3/\text{s}$.

Among other riparian structures, there are ferries, groines and improved levees along the reach but their scale is small.

Along the tributaries of K.Dengkeng and K.Jlantah, improved continuous levees, sluiceways, intake weirs, and boat stations do exist.

3.1.4 Sediment

The sediment load is estimated at 1,700 $m^3/year/km^2$ in terms of the suspended load and at 21 $m^3/year/km^2$ in terms of the bed load.

The suspended load is functioning as wash load and it has very little influence on the river bed formation.

Therefore, attention should be paid to the bed load rather than to the suspended load.

3.1.5 Flood damage

The annual mean flood damages in the Surakarta area which forms a part of the project area, and in the Sragen area located on its downstream are as given below (see Item 3.3. and 3.4):

(Flood damage)

Surakarta area	6.56 x US\$10 ⁶ /year
Sragen area	3.56 x US\$10 ⁶ /year

-104-

name of river	kind of stucture	place	note	
Sala	bridge-1		Nguter railroad bridge	1≕120.Om
	bridge-2		Nguter road bridge	1=110.0m
	bridge-3		Bacem road bridge	1=120.Om
	bridge-4		Mojo rail road bridge	1=150.0m
	bridge-5		Jurug rail road bridge	1=180.Om
	bridge-6		Jurug road bridge	1=170.0m
	groin	2	Made of coconut tree	
	levee	1	L = 7,000m (Surakarta c	ircle levee)
	pump station	21	q - 0.2m ³ /s - 0.5m ³ /s admin: strated by each	village
	boat station natural revetment	26	Made of bamboo or cutti river bank Outcrop of soft rock near Surakarta city	ng of
K.Jlantah	levee	<u> </u>	Continuous levee	1 = 4.0 km $h = 1 m - 2 m$
	bridge	2	Made of bamboo	· · ·
	levee		Continuous levee	1 = 8.0 km $h = 2m - 3m$
	gate	1	(h) 2.50m x (b) 2.25m x	4
	bridge	2	Made of bamboo	
	groin	1	Made of coconut tree	
K. Kupang	intake weir	1	b = 40m	

Table 3.1.1 (a) Existing Riparian Structure

Table 3.1.1 (b) Existing Riparian Structures

K. Gawe	intake weir	1	$b = 20^{m}$
K. Pusur	intake weir	1	$b = 10^{m}$
K.Kenbangan	intake weir	1	$b = 8^m$
K.Samin	boat station	2	made of bamboo on the cutting of river bank
K.Wingko	gate	1	(h) 4.0^{m} x (b) 2.0^{m} x 2
K.Pepe	gate	<u>1</u> 1	(h) $3.0^{m} \times (b) 2.0^{m} \times 10$ for drainage, under
1			construction

-108--

3.2 RIVER IMPROVEMENT WORK PLANNING

The river improvement project proposed for the 33-km Nguter-Jurug reach is planned for the 1966-flood, the worst-ever flood in the Upper Jurug area, with an estimated peak discharge of 2,000 m⁻/s or the 40vear flood discharge under the Wonogiri dam flood control.

First of all, 2 cases as detailed below were investigated.

- River channel having a discharge capacity of 2,000 m³/s at Surakarta (hereinafter called 2,000 m³/s-case)
- 2) River channel having a discharge capacity of 1,600m³/s at Surakarta (hereinafter called 1,600 m³/s-case). The low water discharge was determined upon consideration of the progressive contruction.

As the result of such studies, the 2,000 m^3/s -case has been adopted for the proposed river improvement plan, since the project area should be protected from the ever-worst flood and the construction cost does not differ much.

In the proposed plan, 2 retarding basins are suggested so that the improved channel will not exert bad influences on the downstream reach, also, 3 emergency inundation areas will be provided against the floods over 2,000 m⁻/s.

3.2.1 General Conceptions of Planning

The river improvement work has been planned in full consideration of the technical, social and economic aspects as mentioned below:

- 1) Technical aspect
 - a. As the existing river is meandering disorderly and heavily in many parts of its stream, it is impossible to work out the river improvement plan while keeping the river flowing down along the existing channel. Short-cutting should be planned at the parts where the river meanders too heavily.
 - b. On the other hand, it is difficult for a straight river channel to maintain and preserve its banks from erosion. The reason is that it is quite difficult to find out flow attacking points and construct protective revetment in straight channels. The proposed channel, therefore, should be aligned so that the river water would flow with a gentle mandering.
 - c. Taking the slope of compensation into consideration, the longitudinal profile of the proposed river channel has been planned as low as possible to keep the water-level low. As a result of this, the landside water will be easily drained out to the main-stream thus reducing the actual damage due to landside water as well as the potential damage due to the flowing water confined in the levees.

- d. As the seasonel fluctuation of the river flow are extremely big, a composite cross section has been proposed to stabilize. The low-water channel in medium and small flood taking frequency of occurrence of flood into consideration.
- e. At the time of flood, a large scale bank erosion may take place, scale of which reaches, sometimes, to several tens meters. Therefore, the river width should be made as large as possible within the economically justifiable limits.
- f. The proposed river channel should be designed so that its semiment load can be maintained dynamically.
- g. In the river improvement planning, careful attention should be paid to avoid the negative influences, due especially to medium and small floods, on the Sragen area in the downstream of Surakarta.
- h. After construction of the proposed river channel, a system for its efficient maintenance and smooth administration will be required. From this view-point, an appropriate road system will be required for the maintenance and administration of the river channel, and such road system will also be useful for flood prevention activities in case of emergency.

2) Socio-economic aspect

- a. There are many towns and villages along the course of the existing river although they are subject to flood damages caused by the flooding of the Sala river every year. Naturally the river improvement work will protect them from such disasters, but for such purpose the people living in the district will have to be moved. Therefore, the resettlement of the population must be minimized in the alignment planning of the river.
- b. The livelihood of the people living along the river depends much on the river, for example, they use the water for bathing, washing, fishing, and for agricultural purposes. The river, after completion of the river improvement work, may fail to provide them with the same advantages as before; it is, however, necessary to avoid giving and direct disadvantages to them.

c. The river improvement plan studied this time includes a considerable short-cut. In this case, even in areas where the total move of the people is not required, the villages, administrative districts, and farm lands may be separated by the new channel. Therefore, special care must be taken to avoid social disorder due to the river improvement.

3.2.2 Design Flood

The design flood for the river improvement plan has been fixed at 2,000 m³/s-case based on the 1966-flood, and that of the alternative plan has been scaled down to 1,600 m³/s-case.

The discharge distribution of the 1966 flood is shown in Fig. 2.6.7. For the design discharge distribution used in the river improvement plan of the 2,000 m³/s-case, the modified figures shown in Fig. 3-2-1 have been used. The modified discharge distribution is larger in value than that of the actual flood of 1966.

This is because the possibility of larger discharge than the design scale from the mountain river like K. Walikan has been taken into consideration. For the purpose of river bed stabilization, a flow discharge of high frequency is used, generally probable frequency of once or twice a year, in the proposed design low-water discharge.

The discharge of the low water channel for the 2,000 m³/s-case has been decided at 900 m³/s which corresponds to 2-year flood at Jurug site. The discharge distribution for low water channel is shown in Fig. 3-2-1.

900 m³/s discharge may seem rather large for the design discharge of 2,000 m³/s, but in considration of the fact that the major bed is planned to be used as the farmland and that the average ponding frequency of the farmland and the major bed is made once in two years, the low water channel of 900 m³/s discharge is rather small.

The discharge of low water channel for the 1,600 m^3/s -case has been at employed 600 m^3/s . 600 m^3/s corresponds to 1.2-year flood at Jurug site. The discharge distribution in that case is shown in Fig. 3-2-2. Design discharge of the tributaries is also shown in Fig. 3-2-2. The design discharge of the tributaries is based on specific discharge of rivers in Indonesia as practically no hydraulic and hydrological data are available.

3.2.3 Design High Water Level

While it is advisable that the design high water level of the river channel is planned as low as possible to reduce potential damages, the river improvement work would require much excavation which is rather costly, if the design high water level should be set at relatively low elevation. Although the design high water level is generally set at the highest flood level recorded in the past, it would be too high (4.5m above the landside height, on an average) since it hampers the drainage of landside water and endangers the safety of the levees.

Therefore, the design high water level proposed in the plan may better be set at lower elevation, from the economic view-point also.

For the safety of the levees, the design high-water level has been set at less than 2 meters above the landside height at all sections along the river channel except in the reaches coming under the influence of the backwater which is caused by the downstream narrow channel sections and the existing bridges, such as the Jurug Road and Railway Bridges and the Mojo Bridge which are being left untouched owing to the tremendous re-construction costs of the existing bridges.

3.2.4 Alignment of River

The existing river meanders heavily at several locations. To secure the stability of the proposed river channel, it is strongly recommended that the low water channel meanders as gentle as practically possible in the proposed design river channel alignment.

For the subject channel section, three alternative plans were formulated, considering channel alignment, amount of excavation, convenience of construction and removal of houses, the alignment of the river as shown in Fig. 3-2-6 was selected as most suitable for the proposed river channel, based on technical, economical and social viewpoints.

The pitch of the existing meandering ranges from 500 to 1,000 meters. The most suitable river channel alignment usually can be obtained empirically.

Anderson gave a formula which has a relationship between the pitch of meandering and Froude number as follows.

=::

113

where:

L: meandering pitch of river (m) A: Cross sectional area of river (m²) Fr: Froude number

The suitable pitch of meandering for the subject river will be 500 to 1,000 meters according to the formula mentioned above.

Although it was originally intended to work out the river improvement plan in accordance with the existing river elements, it was found out that short-cutting intended to moderate the excessive meandering of the river was indispendable at many locations. The total short-cutting length is 13km out of the entire river course of 33km. As this area is densely populated, short-cutting at the heavily meandering sections would cause the removal of the inhabitants or splitting of the existing villages.

For reference, given below are the comparative test results at the confluence of the K. Jlantah, K. Brambang and K. Samin where meandering is most prominent.

Three alternative alignment plans are considered in each reach as shown in Figs. 3-2-3, 3-2-4 and 3-2-5.

Naturally, the earth works occupy the main part of construction works and much part of the construction cost of this improvement work, taking alignment of river channel, convenience of construction and removal of houses into consideration.

Therefore, a plan which needs the minimum amount of excavation in the three plans is adopted in the proposed plan in each reach considering also the suitable alignment of the river course. Consequently, the Plan-A is adopted for the three reaches.