2.2.8 Design Capacity of Irrigation Facilities

Based on the above table for the peak diversion requirement, the design capacity of irrigation facilities is determined as shown below.

Table 2.2.28 Design Capacity

Region	$\frac{\text{Area}}{(\text{ha})}$	Des.Cap. (m3/sec)	Unit (//sec/ha)
Karanganyar Sragen	10,100 9,500	12.90 11.40	1.28 1.20
Dengkeng	3,600	5.20	1.44

Amount of Intake Water at Peak

Upper Sala Main Canal (Right bank region) Dengkeng Main Canal (Left bank region) 24.30 m³/sec 5.20 m³/sec Table 2.2.29 Unit Irrigation Requirement/Paddy/Karanganyar Region

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ALT	-1							Jnit : mm/o	lay
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	[3	4	5	6)	7)	8)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			•					•		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Þ	Evapora-							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	다 다	0 D D D D D D D	tion	efficient		UTON .			Tarmarr	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	ਸੂ-ਸ ਸ਼:ਮ					2/+4/			roquir-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	E	00 EH PH		· .	1)X2)			01 0.09		5)+6)-7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.07.1	4.00		5 00	0 50	· 0]	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			A.C.			10				5.2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	A		4.0			T.0				33
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ъл		6 1			15				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11					1.1			_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$. т		59			1.5				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			J• J						_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	 								-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I,T		6.4			1.5				9.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ň		0.4						_	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									-	10.7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A		7.2			1.5			_ ·	10.3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									-	9.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1.54						-	10.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	S		8.0			1.5	9.02	0.45		9.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							8.46	0.42	0.7	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							6.74	0.34	0.8	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0	S	6.8	0.66	4.49	1.5				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		- 3		0.50	3.40	· · ·	4.90			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1		0.91	5.01					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	N		5.5	0.96		1.0				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3								1.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1		1.05						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	D		4.3			1.0				1.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	*					· ·				~
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	J		3.7			1.0				1.9
F 2 3.6 1.21 4.36 1.0 5.36 0.54 5.4 0.5 3 1.15 4.14 5.14 0.51 8.2 - 1 1.04 4.06 5.06 0.50 8.7 - M 2 3.9 1.00 3.90 1.0 4.90 0.49 6.4 - 3 0.94 3.67 4.67 0.47 12.4 -		3				 	5.55	0.55	6.7	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			· · · ·							
1 1.04 4.06 5.06 0.50 8.7 - M 2 3.9 1.00 3.90 1.0 4.90 0.49 6.4 - 3 0.94 3.67 4.67 0.47 12.4 -	F		3.6			1.0				
M 2 3.9 1.00 3.90 1.0 4.90 0.49 6.4 - 3 0.94 3.67 4.67 0.47 12.4 -										
3 0.94 3.67 4.67 0.47 12.4 -			·							
	M		3.9			0.1				· · · ·
	L	3	<u> </u>	0.94	3.67	<u>I</u>	4.6/	0.47	12.4	

Note: Farm waste (Dry season ... 5%, Rainy season ... 10%)

Table 2.2.30	Unit Irrigation Requirement/Second Cropping Paddy/
·	Karanganyar Region

ALT-1

Unit : mm/day

		1)	2)	3)	4)	5)	6)	7)	8)
	~	Evapora-	Crop co-	Evapo-	Percola-	Water re-	Farm	Effective	Unit ir-
	ງaງ ໄດ້	tion	efficient	transpi-	tion		waste	rainfall	rigation
12		01.011	OI I LOLONIO	ration		3)+4)	5)x0.10		require-
Month	Ten-Day Period			1)x2)		27147	or 0.05		ment
$ \Sigma $	EI FI			1/10/			01 0109		5)+6)-7)
	1		······································			· · · · · ·		9.1	
A	2	4.6	_		1.0	_		0.1	
A	3	4.0	-	_	1, O	_		1.1 💠	1. 1.
	1					<u> </u>			
М	2	5.1			1.5			1.0	· _
	3	J.1	_		1.7	•		-	
	1		······						
J	2	5.9	_		1.5	-	_	~	-
	3	<i></i>			1.1		· · ·		
	1					:			
J	2	6.4	_	100	1.5	· _	·	-	<u> </u>
. [Ŭ	3					:		_	· ·
	1								
A.	2	7.2	 ·		1.5		-		
	3						. :	· - ·	
	1			-		_		-	-
S	2	-8.0	0.91	7.28	1.5	8.78	0.44		9.2
	3		0.96	7.68		9.18	0.46	0.7	8.9
	1		1.00	6.80		8.30	0.42	0.8	7.9
0	2	6.8	1.05	7.14	1.5	8.64	0.43	j - 14	9.1
	3		1.08	7.34		8.84	0.44	0.9	8.4
	1		1.12	6.16		7.16	0.72	5.0	2.9
Ν	2	5.5	1.14	6.27	1.0	7.27	0.73	3.2	4.8
	3		1.20	6,60		7.60	0.76	5.7	2.6
	1		1,23	5.29		6.29	0.63	8.7	_ 2.1
D	2	4.3	1.24	5.33	1.0	6.33	0.63	4.9	2.1
	3		1.21	5.20		6.20	0.62	7.2	-
	1		1.15	4.26		5.26	0.53	11.7	·
J	2	3.7	1.04	3.85	1.0	4.85	0.49	4.1	1.2
	3		1.00	3.70		4.70	0.47	6.7	
	1		0.94	3,38		4.38	0.44	4.6	0.2
\mathbf{F}	2	3.6	0.87	3.13	1.0	4.13	0.41	5.4	. –
 	3		0.77	2,77			0.38	8.2	<u> </u>
	"·1		0.66	2.57		3.57	0.36	8.7	
М	2	3.9	0.50	1.95	1.0	2.95	0.30	6.4	-
1	3			_		<u> </u>		12.4	-

Note: Farm waste (Dry season ... 5%, Rainy season ... 10%)

Table 2.2.31 Unit Irrigation Requirement/Sugar Cane/Karanganyar Region AI.T-1 Unit : mm/day

						······································	
Month	10 Day Period	l) Evapora- tion	2) Crop co- efficient	3) Evapotrans- piration	4) Farm waste 3) x 0.10 or 0.05	5) Effective rain fall	$\begin{array}{c} 6 \\ \text{Unit irri-} \\ \text{gation re-} \\ \text{quirement} \\ \hline 3 \\ \hline +4 \\ \end{array}$
A	1 2 3	4.6	0.64 0.60 0.58	2.94 2.76 2.67	0.44 0.41 0.40	7.0 1.0 1.3	2.2 1.8
M	1 2 3	5.1	0.58 0.58 0.58	2.96 2.96 2.96	0.30 0.30 0.30	0.1 1.0 0.4	3.2 2.3 2.9
J	1 2 3	5.9	0.59 0.60 0.61	3.48 3.54 3.60	0.35 0.35 0.36		3.8 3.9 4.0
J	1 2 3	6.4	0.63 0.66 0.70	4.03 4.22 4.48	0.40 0.42 0.45		4.4 4.6 4.9
A	1 2 3	7.2	0.76 0.77 0.79	5.47 5.54 5.69	0.54 0.53 0.57		5.9 6.1 6.3
S	1 2 3	8.0	0.80 0.81 0.82	6.40 6.48 6.56	0.64 0.65 0.66		7.0 7.1 6.4
0	1 2 3	6.8	0.83 0.84 0.85	5.64 5.71 5.78	0.56 0.57 0.58	1.4 0.2 1.1	4.8 6.1 5.3
Ň	1 2 3	5.5	0.86 0.86 0.86	4.73 4.73 4.73	0.71 0.71 0.71	7.0 4.0 7.0	1.4 -
D	1 2 3	4.3	0.86 0.86 0.86	3.70 3.70 3.70	0.56 0.56 0.56	7.0 6.2 7.0	
J	1 2 3	3.7	0.85 0.84 0.83	3.15 3.11 3.07	0.47 0.47 0.45	7.0 5.3 7.0	
F	1 2 3	3.6	0.81 0.79 0.77	2.92 2.84 2.77	0.44 0.43 0.42	5.9 7.0 7.0	
М	1 2 3	3.9	0.73 0.70 0.66	2.85 2.73 2.57	0.43 0,41 0.39	7.0 7.0 7.0	

Note : Farm waste (Dry scason ... 10%, Rainy season ... 15%)

- 71 -

Table 2.2.32 Unit Irrigation Requirement/Paddy/Sragen Region

ALT-1

Unit: mm/day

	1	1)	2)	3)	4)	5)	6)	7)	8)
	4	Evapora-	Crop co-	Evapo-	Percola-	Water re-	Farm	Effective	Unit ir-
4	ay	tion	efficient	transpi-	tion		waste	rainfall	rigation
Month	Ten-Day Period	01 Q11	CITTCICH!	ration	01011	3)+4)	5)x0.10		require-
l g	ел			1)x2)			or 0.05		ment
	ÉP			1/12/			01 0.00		5)+6)-7)
	1		0.87	4.00	······	5.00	0.50	2.7	2.8
A		4.6	0.77	3.54	1.0	4.54	0.45	1.3	3.7
ſ	3:	4.0	0.74	3.40		4.40	0.44	2.0	2.8
)	1		0.80	4.08		5.58	0.28	0.3	5.6
M	1	5.1	1.00	5.10	1.5	6.60	0.33	1.6	5.3
	3	J . 1	1.05	5.35		6.85	0.34		7.2
-	1		1.08	6.37		7.87	0.39		8.3
J		5.9	1.22	6,61	1.5	8.11	0.41		8.5
Ĭ	3	,,,	1.14	6.73		8.23	0.41		8.6
	1		1.20	7.68		9.18	0.46	1	9.6
J		6.4	1.23	7.87	1.5	9.27	0.46		9.7
	3		1.24	7.94		9.44	0.47		9.9
	1		1.21	8.71		10.21	0.51	1	10.7
A	1	7.2	1.15	8.28	1.5	9.78	0,50	_	10.3
	3.		1.04	7.49		8,99	0.45	-	9.4
	1		1.00	8.00		.9.50	0.48	· -	10.0
S	2	8.0	0.94	7.52	1.5	9.02	0.45		9.5
	3		0.37	6.96		8.46	0.42	0.6	8.3
	· 1		0.77	5.24		6.74	0.34	1.8	5.3
Ó		6.8	0.66	4.49	1.5	5.99	0.30	0.4	5.9
L	3		0.50	3.40		4.90	0.25	0.2	5.0
	1	4	0.91	5.01		6.01	0.60	2.7	3.9
N		5.5	0,96	5,28	1.0	6.28	0.63	3.1	3.8
	3		1.00	5.50		6.50	0.65	6.6	0.6
	1		1.05	4.52		5.52	0.55	4.5	1.6
L		4.3	1.08	4.64	1.0	5.64	0.56	3.5	2.7
	3		1.12	4.82	· · · ·	5.82	0.58	6.9	
	· 1	·	1.14	4.22	· ·	5.22	0.52	3.7	2.0
Ĵ		3.7	1.20	4.44	1.0	5.44	0.54	11.4	
	3		1.23	4.55		5.55	0.56	9.9	
	. 1		1.24	4.46		5.46	0.55	10.4	-
F		3.6	1.21	4.36	1.0	5.36	0.54	9.3	°
-	3		1.15	4.14		5.14	0.51	5.8	
	1		1.04	4.06		5.06	0.50	7.9	
M		3.9	1.00	3.90	1.0	4.90	0.50	7.3	-
L.	3	<u> </u>	0.94	3.67	L	4.67	0.47	13.5	

Note: Farm waste (Dry season ... 5%, Rainy season ... 10%)

- 72 -

					· · · · · ·		n de la composición d Composición de la composición de la comp		
		1)	2)	3)	4)	5)	6)	7)	8)
	5	Evapora-	Crop co-	Eva po-	Percola-	Water re-	Farm	Effective	Unit ir-
무	Ten Day Feriod	tion	efficient	transpi-	tion	quirément	waste	rainfall	rigation
g	น ม			ration		3)+4)	5)x0.10		require-
M.	E E			1)x2)			or 0.05		ment
		i.							5)+6)7)
	1						· ·	2.7	
A	2	4.6		-	1.0			1.3	-
	3							2.0	
	1						•	0.3	
М	2	5.1			1.5			1.6	-
	3								· ·
	1	·						-	
J	2	5.9	-	-	1.5		-		-
-	3						<u></u>		
	1								
J	2	6.4		-	1.5	-	· -	-	· –
	3.	L							
	1							¹ — .	
A	2	7.2	-	-	1.5		-	-	· -
	3	l						-	
	1			-				-	-
S	2	8.0	0.91	7.28	1.5	8.78	0.44		9.2
	3		0.96	7.68	ļ	9.18	0.46	0.6	9.0
	1		1.00	6.80		8.30	0.83	1.8	7.3
0	2	6.8	1.05	7.14	1.5	8.64	0.86	0.4	9.1
	3	· · · · · · · · · · · · · · · · · · ·	1.08	7.34	<u> </u>	8.84	0.88	0.2	9.5
·	1		1.12	6.16		7.16	0.72	2.7	5.2
N	2	5.5	1.14	6.27	1.0	7.27	0.73	3.1	4.9
 	3		1.20	6,60	 	7.60	0.76	6.6 4.5	<u>1.8</u> 2.4
	1		1.23	5.29	1.0	6.29	0.63	4.5 3.5	2.4 3.5
D	2	4.3	1.24	5.33	1 1.0	6.20	0.63	6.9	5.5
	3 ¹		1.21	5.20	<u> </u>	5.26	0.53	3.7	2.1
J	$\frac{1}{2}$		1.15	4.26	1.0	4.85	0.53	11.9	2.1
10	2	3.7	1.04	3.85	1.0	4.85	0.49	9.9	-
	$\frac{3}{1}$	<u> </u>	1.00 0.94	3.70	<u> </u>	4.70	0.47	10.4	
F	2	3.6	0.94	3.38	1.0	4.13	0.44	9.3	-
r	3	0.0	0.87		1	3.77	0.41	9.5 5.8	
 	$\frac{3}{1}$		0.66	2.77		3.57	0.36	7.9	
M	2	3.9	0.50	1.95	1.0	2.95	0.30	7.3	
	$\frac{2}{3}$	J.7	0.50	T*A2	1.0	2.90	0.50	13.5	_
L	1_2	L	Į		1		L	<u></u>	

Table 2.2.33 Unit Irrigation Requirement/Second Paddy/Sragen Region

Unit : mm/day

ALT-1

Note: Farm waste (Dry season ... 5%, Rainy season ... 10%)

73

Table 2.2.34 Unit Irrigation Requirement/Sugar Cane/Sragen Region

ALT-1

Unit : mm/day

ALT.	~. ⊥				1.61	Unit : n	uny uay
Mcnth	10 Day Period	l) Evapora tion	2) Corp co- efficient	3) Evapotrans- piration 1) x 2)	4) Farm waste 3) x 0.10 or 0.05	5) Effective rainfall	6) Unit irri- gation re- quirement 3)+4)+5)
A	1 2 3	4.6	0.64 0.60 0.58	2.94 2.76 2.67	0.44 0.41 0.40	3.6 2.0 3.0	1.2 0.1
M	1 2 3	5.1	0.58 0.58 0.58	2.96 2.96 2.96	0.30 0.30 0.30	0.3 2.0 -	3.0 1.3 3.3
J	1 2 3	3.9	0.59 0.60 0.61	3.48 3.54 3.60	0.35 0.35 0.36		3.8 5.9 4.0
J	1 2 3	6.4	0.63 0.66 0.70	4.03 4.22 4.48	0.40 0.42 0.45		4.4 4.6 4.9
A	1 2 3	7.2	0.76 0.77 0.79	5.47 5.54 5.69	0.54 0.55 0.57	-	5.9 6.1 6.3
S	1 2 3	8.0	0.80 0.81 0.82	6.40 6.48 6.56	0.64 0.65 0.66	- 0.8	7.0 7.1 6.4
0	1 2 3	6.8	0.83 0.84 0.85	5.64 5.71 5.78	0.56 0.57 0.58	2.4 0.9 0.3	3.8 5.4 6.1
N	1 2 3	5.5	0.86 0.86 0.86	4.73 4.73 4.73	0.71 0.71 0.71	3.8 5.1 7.0	1.6 0.3 -
D	1 2 3	4.3	0.86 0.86 0.86	3.70 3.70 3.70	0.56 0.56 0.56	6.2 5.0 7.0	
J	1 2 3	3.7	0.85 0.84 0.83	3.15 3.11 3.07	0.47 0.47 0.45	5.1 7.0 7.0	-
F	1 2 3	3.6	0.81 0.79 0.77	2.92 2.84 2.77	0.45 0.43 0.42	7.0 7.0 7.0	
M	1 2 3	3.9	0.73 0.70 0.66	2.85 2.73 2.57	0.43 0.41 0.39	7.0 7.0 7.0	

Note : Farm waste (Dry season ... 10%, Rainy season ... 15%)

Table 2.2.35 Unit Irrigation Requirement/Paddy/Dengkeng Region

ALT-1

Unit : mm/day

(~						
		1)	2)	3)	4) Decent	5) Water re-	6)	7) Effective	8) Unit ir-
	က်ားပ	Evapora-	Crop co-	Evapo-	Percola-		Farm	rainfall	
Month	A O	Evapora- tion	efficient	transpi-	tion	quirement		rainiail	rigation
0 B	ч р е е		· ·	ration		3)+4)	5)x0.10		require-
M	eн ры			1)x2)			or 0.05	:	ment
			0.07	1 00		5.00	0.50	8.2	5)+6)-7)
	1		0.87	4.00	1.0			1	-
A	2	4.6	0.77	3.54	1.0	4.54	0.50 0.44	0.8 1.1	4.2 3.7
	3		0.74	3.40		4.40	0.44		
	1	F 3	0.80	4.08	э г	5.58 6.00	0.28	1.3	5.9 5.0
М	2	5.1	1.00	5.10	1.5		0.34	1.2	5.0 7.2
	3		1.05	5.36		6.86			
—	1	5.0	1.08	6.37	л E	7.87	0.39		8.3
J	2	5.9	1.12	6.61	1.5	8.11	0.41		8.5
	3		1.14	6.73		8.23	0.41		8.6
	1	<i>с</i> ,	1.20	7.68		9.18	0.46		9.6
J	2	6.4	1.23	7.87	1.5	9.37	0.47		9.8
	3.		1.24	7.94		9.44	0.47		9.9
	1 2	вA	1.21	8.71		10.21	0.51	-	10.7
A	2 3	7.2	1.15	8.28	.1.5	-9.78	0.49	_	10.2
			1.04	7.49 8.00		<u> </u>	0.45		<u>9.4</u> 10.0
s	1 2	8.0			3 5		0.48	_	
5	23	8.0	0.94	7.52	1.5	9,02	0.45	-	9.5 8.9
	 		0.87	6.96		8.46	0.42	- 1.6	5.5
0	1 2	6.8	0.77 0.66	5.24 4.49	1.5	6.74	0.34 0.30	T.0	5.5 6.3
	2 3	0.0	0.66	4.49 3.40	1.7	5.99	0.25	1.5	0.5 3.7
	<u>2</u> 1		0.90	<u> </u>		4.90 6.01	0.60	9.4	
N	2	5.5	0.91	5.28	1.0	6,28	0.63	9.4 1.9	5.0
1N	3	2.2	1.00	5.50	1.0	6.50	0.65	5.6	1.6
			1.05	4.52		5,52	0.55	11.2	
D	1.	4.3	1.05	4.52	1.0	5.64	0.55	5.8	0.4
	د ۲۰۲۶ -	4•)	1.08	4.82	Τ.Ο	5.82	0.58	12.0	
			1.14	4.02		5.22	0.52	13.7	
J	2	3.7	1.14	4.22	1.0	5.44	0.54	2.5	3.5
ľ	-3	J•1	1.23	4.44	T.O	5 55	0.56	8.1	-
	1	· · · ·	1.24	4.46		5.46	0.55	7.4	
F	. 2	3.6	1.24	4.40	1.0	5,36	0.54	1.5	4.4
	3		1.15	4.14		5.14	0.51	5.0	0.7
	1		1.04	4.06		5,06	0.50	10.8	
M	2	3.9	1.00	3.90	1.0	4.90	0.49	7.4	
	3	J• J	0.94	3.67		4.90	0.49	17.8	
	<u></u>		0.74			4.07	0.41	L T1.0	

Note: Farm waste (Dry season ... 5%, Rainy season ... 10%)

Table 2.2.36 Irrigation Requirement & Diversion Requirement/Paddy (8,900 ha)/Karanganyar Region

Diversion	Requirement m3/sec 10)	2.792	0.883 2.434 6.106	8.131 10.035 11.755	14.568 14.320 12,747	13.777 13.262 12.104	11.807 9.174 6.156	3, 382 - 2,028 0,460	0,113 0,164 1,710	3.384 3.948 1.710	3.277 5.295 1.541	1,803 0,644 -		canal to
Conveyance	losses m3/sec 9)	0.559 0.236	0.177 0.487 1.221	1.622 2.007 2.351	2.923 2.549 2.549	0. 755 0. 628 9. 421	2.361 1.835 1.231	0.676 0.406 0.092	0.022 0.033 0.342	0.677 0.790 0.342	0,655 1.059 0.308	0.361 0.129 -	1 3 1	mated from main c liversion etc. (7)
equirement	m3/sec 8)	2.233	0.706 1.947 4.885	6.509 8.028 9.404	11.645 11.455 10.198	11.022 10.610 9.683	9.446 7.339 4.925	2.706 1.622 0.368	0.091 0.131 1.368	2.707 3.158 1.368	2.622 4.236 1.233	1.442 0.515 -	111	Conveyance losses of 25% of irrigation requirement are estimated from main farm ditches leakage through holes and gates, and irrigal diversion etc. Culculating process $(-1) \times (4) + (2) \times (5) + (3) \times (6) + (10) = (7) + (7)/86,400 = (8), (8) + (9) = (10)$
Trrigation Requirement	m3/day 7)	- 192,972 81.716	61,716 168,205 422,036	562,017 693,645 812,496	1,006,928 989,798 881,100	952,300 916,700 836,600	816.100 634,125 425,498	233.793 140,175 31,777	7,832 11,359 118,175	233,900 272,887 233,900	226,500 366,017 106,500	124,600 44,500 	111	% of irrigation requirrough holes and gates + (2) x (5) + (3) x (8) +
ied water	On growing stage ha 6)	5,189 3,711 2,252	846 285 1,513	2,999 4,477 5,936	7,343 8,651 8,900	8,900 8,900 8,900	8,161 6,675 5,189	3,711 2,225 739	27 107 285	1,513 2,999 4,477	5,936 7,343 8,651	8,900 8,900 8,900	8,900 8,161 6,675	Conveyance losses of 25% of irrigation farm ditches leakage through holes and Culculating process $(1) \times (4) + (2) \times (5) + ((1) \times (4) + (2) \times (5))$
Hecterage to be supplied water	Transplant- ing puddling ha 5)	, , , ,	121	151 151	151 71	ELI	1 I Į	: 1 I I	1 1	151 151 151	151 71	111	 . I I I	
Hectera	Nursery puddling ha 4)	114	7-7-7- 7-4-4-7-	7.4 7.4	1 1 1		1 1 1		7 - 7 4 - 7 4 - 7	7.7.7. 7.4	1 1 1	111	і́іі	Note:
Unit	Irrigation Requirement (mm/day 3)	3 5 I	500	ແ ທີ່ ຈ	0 0 0 0 0 0 0 0	10.7 10.3 9.4	10.0 9.5 8.2	6,3 6,3 6,3	1.6 1.5	т÷г Т	1 6 1 1 6	4 0 7 7	. 1 1 1	· .
Puddling Requirement	For trans- planting (mm) 2)	ΤĹΪ	500 I 500 I	000 5000 500	1 0 0	I I I	1 1 1	1 1	150	150 150 150	150 150 150	I I I		
Puddling	For nursery (mm) 1)	01	150 150	150 150	111		1	t 1 I	001		1	1 1 1	1 1 1	
	Month	лđү	May	Jun	Jul	guk	Sep	000	Nov	Dec	ปัณ	Рер	Mer	

- 76 -

Table 2.2.37 Irrigation Requirement & Diversion Requirement/Second Cropping Faddy (600 hs)/Karanganyar Region, ALT-1

	u	ent		1	1		1	1	I	ı	1	I	1	ı	1	ì	ı	ı	۱	4	g	ço ir	. 9		с¥	6	μ Γ		<u>۲</u> -	ı	13	11	ı	ı	ł	ŗ	ion		
	Diversion	8	m3/sec									.*						•		0.014	0.020	0.178	0.546	0.351	0.404	0.109	0.183		0.104		0.013	. •				ad from m&i	igal divers		
	Conveyance		m3/sec 9)	ł	1	I	ı	ı	1	I		I	ı	Ι.	I	I	i	ì		0.003	0.004	0.036	0,109	0.070	0.081	0,022	0.037		0.021	I	0.003	E 1	I	ł	1	are estimate	tes, and irr) × 10 - (7)	(10)
	<u>о</u> 1					ć									•							. •							1		• .					rement	and ga		= (6)
	Irrigation Requirement		<u>m3/sec 8)</u>	1	I	1	I	I	L	I	1	•	I	1	I	1	ı	ı	1	110 0	0.016	0,142	0.437	0.281	0.323	0.087	0.146	۱.	0.083	I	010.0	Ļ	1	I	ł	Conversione losses of 25% of irrination requirement are estimated from main	the farm ditches leakage through holes and gates, and irrigal diversion	(2) + (3)	
	tion Re		2	ı	ı	I	1	1	ı	ı	ι	1	1	ı	1	ı	ı	1	1	934	1;373	12,251	37,718	24,258	34,200 27,870	7,500	600	l	7.200	ŀ	006	L 1	1	ı	ł	م 1 اسم	kage t	ss + (2) x	•.
	Irriga		<u>m3/day</u>																		т. Г	12,	37,	24,	27,	7,	12,		7.							Pre of JEd	ditches les	6) (4)	ğ
		wing.	()	ı	ł	I	ı	t	ı	1	ł	ł	T	1	ı	1	1	ı	1	7	-	19	202	302	400 495	583	600		000	550	450	350 250	150	50	ι	301 000	ute tv.	ulculat ((1)/
· .	ed wate	On growing stage	ha																				-114		~ ~	U.		, ,					•		• .	(ANDVIOV	î –	etc. O	
	Hocterage to be supplied water	Transplant- ing puddling	ha 5)	1	ı	1	۱	I	I	ł	ŀ	I	ġ	1	ı	ļ		ı	I	t	3	ις Γ	101	10	01	ŝ	iI	 E .	11	ł	ı	E I	ı	I	I	No to t		0	
	Hoctera	Nursery puddling	ha 4)	ľ	,	I	ł	ſ	1	1	3	t	1	ĩ	1	ı	ı	I	1	0.50	0.50	0.50	0.50	0*50	1 1	r	1 1	ι.	11	ı	i	11	,ı	ι					
	Unit	c Ho B B B B	mm/day 3).	1.	: I 	1	. 1	1	1	,		1	t	1	I	ı	1	I.	ı	9 2	8.9	6°2	4 • 8	2.9	4 () 0 0	i	1 1	•	1,2 . 1		0.2	1 1			ŧ.				
	Puddling Requirement	For trans- planting	(<u>an)</u> 2)				I	ı	1	3	3	I	1	I	ı	I	1	I	1	ł		200	200	150	150	150	1	1		ı	1	11	I	ĩ	1				-
	Puddling 1	For nursery	(<u>mm)</u>])	. '	ſ	I	ı	1	T	. 1	I	1	1	F	1	ı	:	1	I	150	150	150	150	100	1	^з І	1	1	E I	1	1	1 1	i	ı	3				
			Month		Apr			May	a	•	Jun			Jul			Aug			Sep			0ct		Nov		Dec		្មនុក			Тер		Mar					

- 77 -

Trrigation Requirement & Diversion Requirement/Sugar Cane (600 ha x 2)/Karanganyar Region, ALT-1 Table 2.2.38

Requirement m3/sec 6) Diversion 0.608 0.616 0.990 0.416 0.530 0.460 0.513 0.530 0.548 0.121 Note: Conveyance losses of 25% of irrigation requirement are estimated from main canal 0.286 0.419 0.495 0.445 0.423 0.425 0.478 0.470 0.444 0.333 to farm ditches through holes and gates, and irrigal diversion etc. (1) x (2) x lo = (3), (3)/86,400 = (4), (4) + (5) = (6) Conveyance losses 5 0.083 0.106 0.092 0.024 0.123 0.198 T 0.089 0.103 0.106 0.110 0.084 0.089 0.112 1 0.057 0,096 0,067 660*0 0.094 0.085 m3/sec 4 0.486 0.493 0.792 0.382 0.266 0.335 0.410 0.424.0.438 0.333 0.424 0.368 260.0 0.396 0.376 0.355 0.356 0.338 0.340 0.229 0.201 Irrigation Requirement m3/sec 3). 8,400 -42,000 42,600 68,400 30,800 29,164 29,400 28,800 36,600 31,800 23,000 28,971 34,200 32,487 30,680 35,400 36,600 37,800 19,800 32,968 1 ł m3/dav Hecterage to be supplied water On growing Stage 600 600 600 600 600 634 700 767 833 900 967 999 1,000 999 009 009 009 009 000 000 000 833 100 634 600 600 600 600 600 900 767 P 1 Unit Irrigation Requirement 6.3 0.7 6.4 4 00 ч. 6 9 г. 1.4 ഡ്. പ്ര പ്ര 3**.**2 2.9 4**.**0 4 4 0 0 5.9 e, ø **σ** 4.4 7.1 I 1 1 1 1 111 ı 1 1 \mathbf{c}_i mm/day Month Mar Jan Feb Apr Jun Jul Aug Sep Oct Nov Dec May

Table 2.2.39 Irrigation Requirement & Diversion Requirement/Faddy (6,500 ha)/Sragen Region, ALT-1

	9 1	TOT Das/cm	1.658 1.567 0.804	0.667 1.924 4.838	6.437 7.938 9.295	11.513 11.201 10.547	10.867 10.461 9.547	9.314 7.236 4.915	2.245 1.498 0.423	0.097 0.131 1.323	2.962 3.610 2.685	3.957 2.602 1.287	111	1 1 1	mated from main irrigal diversion (7)
	Convenyance losses	TE DARICH	0.430 0.406 0.208	0.173 0.499 1.254	1.669 2.058 2.410	2.985 2.905 3.099	2.826 2.712 2.475	2.415 1.876 1.274	0.582 0.388 0.110	0.025 0.034 0.343	0.768 0.936 0.695	1.026 0.675 0.384	111	1 1 1 .	ant are estimated gates, and irrig) x 10 - (7) = (10)
		10 Das/Cu	1.228 1.161 0.596	0.494 3.585 3.584	4. 768 5. 880 6. 885	8.528 8.296 7.448	8.050 7.749 7.072	6.899 5.360 3.641	1.663 1.110 0.313	0.072 0.097 0.980	2.194 2.674 1.990	2.931 1.927 0.903	1 1 1	1 E I ,	Conveyance losses of 35% of irrigation requirement are estimated from main canal to farm ditches leakage through holes and gates, and irrigal diversietc. ((1) x (4) + (2) x (5) + (3) x (6)) x 10 (7) (7)/86,400 = (8), (8) + (9) = (10)
	Irrigation Requirement	77 ABD/CII	106,120 100,307 51,460	42,708 123,124 309,660	411,953 508,050 594,896	736,848 716,846 643,500	695,500 669,500 611,000	596,100 463,125 314,570	143,683 95,875 27,000	6,180 8,364 84,648	189,580 231,057 171,900	253, 220 166, 500 78,000	111	1 1 L·	losses of 35% of irri arm ditches leakage th ((1) x (4) + (2) x (7)/86,400 = (8),
	1.4		3,790 2,711 1,648	618 208 1,105	2, 191 3, 270 4, 336	5,363 6,318 6,500	6, 500 6, 500 6, 500	5,961 4,875 3,790	2,711 1,625 540	20 2088 2088	1,105 2,191 3,270	4, 336 5, 363 6, 318	6, 500 6, 500 6, 500	6,500 5,961 4,875	Conveyance losse canal to farm di etc. (1 (7)/86
	Hecterage to be supplied water sery Transplant On grow dling ing puddling stage			- 52 111		111 52 -	111	1 F 1	111	11 (N) 11 11		111 111 22	111	111	Note:
	Hecters Nursery puddling	na +)	™ 1 4	νυν 444	ۍ ۲ 4 4 1	F F F	• • • • •	111	111	000 444	000 444	111	111		
	Unit Irrigation Requirement	(c And Jum	0.400 0.400	10 10 N	ແລະ ບຸບຸດ	9.9 9.9	10.7 10.3 9.4	10.0 8 8 9 0 8 9 9 0		0 9 9 0 9 9 0 9 9	91-1 10		• • • •	1 E I	
	ireme tran ating		1 8 1	500 500 	000 500 500	1 200 200	1 1 1	111	1 1 1	150 150	150 150	150 150 150		J I I .	
	Puddling H For nursery		100	150 150 150	150	111.	1°∦ 1		1 4 F	100 100	100 100	III	1 I İ	1 ľ J	
•	;	U2UOM	Apr	May	In	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Řeb	Mar	

- 79 -

Table 2.2.40 irrigation Requirement & Diversion Requirement/Second Cropping Paddy (1,500 ha)/Sragen Region, ALT-1

Ni wawei on	requirement	m3/sec 10)	I	ı	ı		I :	1	I	1	1	ł	1	: a	1	ı	ı	1	ł	0.035	0.054	0 458	1.203	1.592	1.242	1.376	0.957	0.828	0.821	1	0.493	- 1 -	ł	ı	I	1		F I	1	ош шели С
Γουναναμέα		m3/sec 9) H	ŀ	I	ı		1 1		1	ı	ŀ	I	ı	1	,	i	1		1	0.009	0.014	0110	0.312	0.413	0.322	0 357	0.248	0.215	0.213	1.	0.128		I	t	ı	I	I	I I 	ı	are estimated from main
in tresent.	A 1720119 - TTM 5	m3/sec 8)	ı	I	ı		1 1		I	ł	ı	•	ł	•	•	ı	,	3	ı	0.026	0.040	0.339	0.891	1.179	0.920	1.019	0 709	0.613	0.608		0.365	1	.1	ł		I	4	; t	1	Conveyance losses of 35% of irrigation requirement are estimated from main
Trrication Requirement	201 TIOTA D ST 4 44	m3/day 7)				I		ų		ł	r	I	1	ı	I	I	ł	ł	t	2.260	3,420	29.304	77.005	101,870	79,460	88,049	61,284	52,992	52,500	ł	31,500		I	ł	1	3	1	ı	ı	ance losses of 35% of irrigation requi
ed water	On growing stage	ha 6)	I	ŗ	I	ı	ı	ı		1	1	F	ı	1	ı		•	1	1	5	18	48	255	506	755	1,001	1,238	1,458	1,500	1,500	1,500	1,500	1,376	1,125	875	626	375	125		Conveyance losse
Hecterare to be supplied water	Transplant- ing puddling	ha 5)	I	ı	I		1	. 1		J.	t,	I	1	ı	I	I	1	t	ļ	1	ı	1.2	2.6	2.6	2.6	2.6	2.6	1.2	1	t	1	1	ŧ.	I	1	ı	1	I	1	Note: C
Hectera	Nursery	ha. 4)	1	ı	ł	I	1	1		I	1	1	1	ı	ı		ł		1	л. 1. 1.	1.2	1.2	1.2.	1.2	1.2	1	ı	ı	ı		ı	1	I	1	ı	I	1	ı	i	
Unit.	Irrigation Requirement	mm/day 3)		1	ł	ł	•			ı	ı	I		1	ı	ı	I	ı	ı	9.2	0.0	7.3	9.1	9.5	5.2	4.9	8°1	4.0	а . 5	ł	2.1	1	1.	1		I	ı	ı	ı	
equirement	For For trans- nursery planting	<u>(mm)</u> 2)	I	ı	I	ı	I	,		ı	I	1.	,	ı	ı	I	F	ı	ı	I	ı	200	200	200	150	150	150	150	ł	1	1	ł	I	1	1	J	1	ł	ı	
Puddling R	For nursery	(mm) 1)	ı	1	ł	I	Ţ	I		1	I	I	1	1	ı	ı	I	ł	į	150	150	150	150	150	100	ł	ı	1	I	1	I	ŀ	Ĩ	I	1	1 -	ı	i	1	
		Month		Apr			May	\$,	tu p			Jul			Aug			Sep			Oct			Nov			Dec		1	Jan			Чер			Маг		

((1) x (4) + (2) x (5) + (3) x (6)) x 10 = (7)(7)/86,400 = (8) (8) + (9) = (10)

- 80 --

Table 2.2.41 Irrigation Requirement & Diversion Requirement/Sugar Cane (1,500 ha x 2)/Sragen Region, ALT-1

						·						
Diversion Requirement m3/sec 6)	0.423 0.038	1.172 0.508 1.288	1.435 1.372 1.303	1.318 1.258 1.212	1.382 1.430 1.477	1.640 1.665 1.500	0.891 1.266 1.430	0.375 0.070 -	111	1 1 F	: . L I I	1 1 1
es 5)		•									·	
Conveyance losses m3/sec 5)	0.110 0.010	0,304 0,132 0,334	0.372 0.356 0.338	0.342 0.326 0.314	0.358 0.371 0.383	0.425 0.432 0.389	0.231 0.328 0.371	- 0.018 -	4 1 1	1 1 1	1 I I	. I I E
o e												•
equirement m3/sec 4)	0.313	0.868 0.376 0.954	1.063 1.016 0.965	0,976 0,932 0,898	1.024 1.059 1.094	1.215 1.233 1.111	0.660 0.938 1.059	0.278 0.052 -	. 1 E	111	111	11)
Irrigation Requirement m3/day 3) m3/sec	27,000 2,417	74,970 32,500 82,467	91,846 87,750 83,360	84,348 80,546 77,616	88,500 91,500 94,500	105,000 106,500 96,000	57,000 81,000 91,500	24,000 4,500	111	, 1 1 1	111	111
ater												
s to be supplied water Sugar Cane 2)	2,084 2,250 2,417	2,499 2,500 2,499	2, 417 2, 250 2,084	1,917 1,751 1,584	1,500 1,500 1,500	1,500 1,500 1,500	1,500 1,500 1,500	1,500 1,500 1,500	1,500 1,500 1,500	1,500 1,500 1,500	1,500 1,500	1,584 1,751 1,917
Hecterage to Su												
ь г ч					·							
Unit Irrigation Requirement mm/day 1)	1.2	0.0 0.1 0.3	0,0,4 8,0,0	444 400	5 9 6 1	7.0 7.1 6.4	ы 6 год 8 4 ч	9.0	4) 1 1	t i i	1 1 1	E É I
Month						•						

- 81 -

Table 2.2.42 Irrigation Requirement & Diversion Requirement/Faddy (3,600 ha)/Dengkeng Region, ALT-1

Diversion	Requirement	m3/sec 10)	1070	0.552	0.371	1.027 2.566	3.418	4.942	6.126	6.032 5.363	5.796	5, 525	4.967	3.859 2.811	1.242	0.853	0.166	0.045	0.727	1.422	1, 540	1.377	0.655	1 282	0.379		ł	I	from main	norstauro Legitrit ons		
Сопуелурсе	losses	m3/sec 9)	- 010 0	0.127	0.085	0.592	0.789	1.140	1.414	1.392 1.238	1.338	1.275 1.175	1.146	0.890 0.649	0.287	0.197	0.038	0.010	0.168	0.328	0.328	0.318	0.152		0.087	ı	I	I	nt are estimate		(10) = (7)	•
ecuirement.		m3/sec 8)		0.425	0.286	0.789 1.974	2.629	3.802	4.712	4.640 4.125	4.458	4.250 3.917	3.821	2.969 2.162	0.955.	0.656	0.128	0.035	0.559	1.094	1.094	1.059.	0, 503	1 833	0.292	i	ı	I	igation requireme	urougn notes and	$(5) + (3) \times (6)$ (8) + (9) =	
Turiastion Recuirement	** ** 0 * 0 * 0 * 1 * * *	<u>m3/day 7)</u>	- 042	36,707	24,678	68, 250 170, 564	227,179	328,486	407,120	400,902 356,400	385,200	367,200	330,100	256, 500 186, 811	82,555	56,700	11,063	3,000	48,340	94,500	94,500	91,500	43,500	158 A00	25,200	I	1	i	Conveyance losses of 30% of irrigation requirement are estimate from main	age age	2) X (8)	
roton her	on growing stare		2,099 1 =01	911	342	612	1,213	1,511 2,401	2,970	3,499 3,600	3,600	3, 600 3, 600	3,301	2,700 2.099	1.501	006	299	11 1	115	612	1,811	2,401	3,499	3,600	3,600	3,600	3,301	2, 100	Conveyance loss	canal to rarm d etc. culculatin	((1) X (4) + ((7)/86,400 =	:
roton latinum of the	Transplant- Transplant-	he 5)	1	11	Ŀ	29 61	61	61	61	53	ı			1 1	ı	1	ı	1	19	61	61 61	61	56	E	1	ı	ı	I	Note:			
	ವೆ	pudding ha 4)	н	3.0 I	3.0	3.0	3.0	3•0 1		i 1	1	11	ŀ	1 1	,	1	ı	3.0	00	3.0	0.0		11			I	ı	ı				
11. 11.	Unit Irrigation	kequirement mm/day 3)	1.0	3 4	5.9	5.0 7.2	ر م	ເ ເ ເ	9.6	9.9 9.9	10.7	10 2 9 4	10.0	9.9 2.9	5.5	6.3	3.7	1 C	1.6	1 ·	5 4 1	t n		14	0.7	1	I	I				
	Fuddling Kequirement For trans-	ртаптид (mm) 2)		11	: 	200	200	50 0 50 0	200	- 200	1 Z 1	1 I	L	í a	•	1	I,	1	150	150	150 150	150	150	 			ı	ł				
	Fuddling	nursery (mm) 1)	1	1 00 F	150	150 150	1.50	150	ı	11	ł	EI	I	Ë I	ŀ	1	ı	100	100	100	100	I		t 1	1	ł	ł	ł				
·		Month		ЧŲГ		May		Jun		Jul		guA		Sen	•	Oct		Now		ĥ	nec		TTR C	ليا م	1 1	;	Mar					

- 82 -

Table 2.2.43 Unit Irrigation Requirement/Paddy/Karanganyar Region

ALT-2

Unit : mm/day

.

						· · · · · · · · · · · · · · · · · · ·			
7		1)	2)	3)	4)	5)	6)	7)	8)
	<u>к</u>	Evapora-	Crop co-	Evapo	Percola-	Water re-	Farm	Effective	
्तु	Se O	tion	efficient	transpi-	tion	quirement		rainfall	rigation
Month	<u>ក្</u> រ អ្ន	1		ration		3)+4)	5)x0.10		require-
M	Ten-Day Period			1)x2)			or 0.05		ment
:	1-1 		1		·				5)+6)-7)
	1		_			· ·		9.1	
A	2	4.6	l		1.0	-		0.7	
	3		0.91	4.19		5.19	0.52	11	4.6
	1		0.96	4.90		6.40	0.32	-	6.7
Μ	2	5.1	1.00	5.10	1.5	6.60	0.33	1.0	5.9
	3		1.05	5:36		6.86	0.34	· -	7.2
	.]		1.08	6.37		7.87	0.39	-	8.3
J	2	5.9	1.12	6.61	1.5	8.11	0.41	-	8.5
	3		1.14	6.73		8.23	0.42		8.7
	.1		1.20	7.68		9.18	0.46	-	9.6
J	2	6.4	1.23	7.87	1.5	9.37	0.47	_ ·	9.8
	3		1.24	7.94		9.44	0.47	_	9.9
	1		1.21	8.71		10.21	0.51		10.7
A	2	7.2	1.15	8,28	1.5	9.78	0.49	<u> </u>	10.3
	- 3		1.04	7.49		8.99	0.45	<u> </u>	9.4
	1		0.99	7.92		9.42	0.47		9.9
S	2	8,0	0.93	7.44	1.5	8.94	0.45		9.4
	3.		0.90	7.20		8.70	0.44	0.7	8.4
	1		0.89	6.05		7.55	0.38	0.8	7.1
0	.2	6.8	0.91	6.19	1.5	7.69	0.38	-	8.1
	3		0.98	6.66		8.16	0.41	0.9	7.7
	1	: * *	1.09	6.00	a di second	7.00	0.70	5.0	2.7
N	·2·	5.5	1.14	6.27	1.0	7,.27	0.73	3.2	4.8
	-3		1.20	6.60		7.60	0.76	5.7	2.7
	1.		1.23	5.29		6.29	0,63	8.7	-
D.	2	4.3	1.24	5.33	1.0	6.33	0.63	4.9	2.1
	3	·	7.21	5.20		6.20	0,62	7.2	-
	1		1.15	4.26		5.26	0.53	11.7	
· J.	2	3.7	1.04	3.85	1.0	4.85	0.49	4.1	1.2
	3.		1.00	3.70	L	4.70	0.47	6.7	
	1		0.94	3.38		4.38	0.44	4.6	0.2
F	2	3.6	0.87	3.13	1.0	4.13	0.41	5.4	-
	3		0.77	2,77		3.77	0.38	8,2	
	1		0.66	2.57		3.57	0.36	8.7	
М	2	3.9	0.50	1.95	1.0	2.95	0.30	6.4	
	3		<u> </u>	<u> </u>	<u> </u>			12.2	

Note : Farm waste (Dry season ... 5%, Rainy season ... 10%)

Table 2.2.44 Unit Irrigation Requirement/Polowijo/Karanganyar Region

Unit : mm/day

	ΑĨ	T-2		· · · · · ·		· · · ·	
Month	10 Day Period	l) Evapora- tion	2) Crop co- efficient	3) Evapo- transpi- ration 1 x 2	4) Farm waste 3) x 0.10 or 0.05	5) Effective rain fall	6) Unit irri- gation re- quirement 3)+4)-5)
A	1 2 3	4.6	0.66 0.66 0.67	3.04 3.04 3.08	0.46 0.46 0.46	7.0 1.0 1.3	2.5 2.2
M	1 2 3	5.1	0.66 0.63 0.60	3.37 3.21 3.06	0.34 0.32 0.31	0.1 1.0 0.4	3.6 2.5 3.0
J	1 2 3	5.9	0.54 0.47 -	3.19 2.77 -	0.32 0.28 -		3.5 3.1 -
J	1 2 3	6.4			 		-
A	1 2 3	7.2		-	-		
S	1 2 3	8.0	-		-		
0	1 2 3	6.8			-	1.4 0.2 1.1	-
N	1 2 3	5.5		- - -		7.0 4.0 7.0	-
D	1 2 3	4.3				7.0 6.2 7.0	-
J	1 2 3	3.7	- 0.35	- - 1.30	0.20	7.0 5.3 7.0	
F	1 2 3	3.6	0.41 0.47 0.53	1.48 1.69 1.91	0.22 0.25 0.29	5.9 7.0 7.0	-
M	1 2 3	3.9	0.58 0.61 0.62	2.26 2.38 2.42	0.34 0.35 0.36	7.0 7.0 7.0	

Note: Farm Waste (Dry season ... 10%, Rainy season ... 15%)

Table 2.2.45 Unit Irrigation Requirement/Paddy/Sragen Region

ALT-2

Unit : mm/day

				1	· · · · · · · · · · · · · · · · · · ·				
		1)	2)	3)	4)	5)	6)	· · 7) ⊧	8)
	· ·	Evapora-	Crop co-	Evapo-	Percola-	Water re-	Farm	Effective	Unit ir-
2	ay od	Evapora- tion	efficient	transpi-	tion	quirement	waste	rainfall	rigation
р В	다리			ration	an a	3)+4)	5)x0.10	a an an tha the	require-
Mo	e G G G G G G			1)x2)			or 0.05		ment
	E	:							5)+6)-7)
;-	1		-	· - ·			; 	2.7	-
A	2	4.6		· · · · · · · · ·	1.0	i se sin di se se si	<u> </u>	1.3	e se si - i e se si
	3		0.91	4.19	· · · ·	5.19	0.52	7.0	3.7
]		0.96	4,90		6.40	0.32	0.3	6.4
M	2	5.1	1.00	5.10	1.5	6.60	0.33	1.6	5.3
1 1	3	e sere j	1.05	5.36		6.86	0.34		7.2
	1		1.08	6.37		7.87	0.39	- 1	8.3
J	2	5.9	1,12	6.61	1.5	8.11	0.41	-	8.5
	3		1.14	6.73		8.23	0.42		8.7
	J		1.20	7.68	1	9,18	0,46	· •	9.6
J	2	6.4	1.23	7.87	1.5	9.37	0.47	— .	9.8
	3		1.24	7.94		9.44	0.47	· <u> </u>	9.9
	1		1.21	8.71		10.21	0.51	<u> </u>	10.7
A	2	7.2	1.15	8.28	1.5	9,78	0.49	· · · ·	10.3
	3		1.04	7.49		8.99	0.45		9.4
	1		0,99	7.92		9.42	0.47		9.9
S	2	8,0	0.93	7.44	1.5	8.94	0.45	_	9.4
	3	анаранан алар 	0.90	7.20	an an an an Arrestan. An Anna an Anna	8.70	0.44	0.6	8.5
[1.		0.89	6.05		7.55	0.38	1.8	6.1
0	2	6.8	0.91	6.19	1.5	7.69	0.38	0.4	7.7
	3:		0.98	6,66		8.16	0.41	0.2	8.4
	1		1.09	6.00		7.00	0.70	2.7	5.0
Ν	2	5.5	1.14	6.27	1.0	7.27	0.73	3.1	4.9
	3		1.20	6.60		7.60	0.76	6.6	1.8
	1		1.23	5.29		6.29	0.63	4.5	2.4
D	2	4.3	1.24	5.33	1.0	6.33	0.63	3.5	3.5
	3		1.21	5.20		6.20	0.62	6.9	· • • •
	1		1.15	4.26		5.26	0.53	3.7	2.1
J	2	3.7	1.04	3.85	1.0	4.85	0.49	11.9	-
	3	· · · · ·	1.00	3.70	· · · · · · · · · · · · · · · · · · ·	4.70	0.47	9.9	· · · · · ·
-	1.		0.94	3.38		4.38	0.44	10.4	
F	2	3.6	0.87	3.13	1.0	4.13	0.41	9.3 5.8	—
	3		0.77	2.77		3.77	0.38		
	1	7 0	0.66	2.57		3.57	0.36	7.9	· · · ·
М	2	3.9	0.50	1,95	1.0	2.95	0.30	7.3	
	3	L		: 	<u></u>	ļ		13.5	-

Note: Farm waste (Dry season ... 5%, Rainy season ... 10%)

Table 2.2.46 Unit Irrigation Requirement/Polowijo/Sragen Region

		6 2.2.40 01	TTO TITEGOTO				mm/day
	ALT-2	1)	2)	3)	4)	5)	$\frac{1007}{6}$
Month	10 Day Period	I) Evapora- tion	Crop co- efficient	Evapo- transpi- ration 1) x 2)	Farm waste 5) x 0.10 or 0.05	Effective rain fall	Unit irriga- tion require- ment 3)+4)-5)
A	1 2 3	4.6	0.66 0.66 0.67	3.04 3.04 3.08	0.46 0.46 0.46	3.6 2.0 3.0	1.5 0.5
M	1 2 3	5.1	0.66 0.63 0.60	3.37 3.21 3.06	0.34 0.32 0.31	0.3 2.0 -	3.4 1.5 3.4
J	1 2 3	5.9	0.54 0.47 -	3.19 2.77 -	0.32 0.28 -		3.51 3.05 -
J	1 2 3	6.4					
A	1 2 3	7.2	-			-	
S	1 2 3	8.0	- - -		-	- 0.8	
0	1 2 3	5.8				2.4 0.9 0.3	- - -
N	1 2 3	5.5		1 <mark></mark> 		3.8 5.1 7.0	-
D	1 2 3	4.3		- - -		6.2 5.0 7.0	
J	1 2 3	3.7	- 0.35	- 1.30	- _ 0.20	5.1 7.0 7.0	
F	1 2 3	3.6	0.41 0.47 0.53	1.48 1.69 1.91	0.22 0.25 0.29	7.0 7.0 7.0	
M	1 2 3	3.9	0.58 0.61 0.62	2.26 2.38 2.42	0.34 0.35 0.36	7.0 7.0 7.0	

Note : Farm waste (Dry season ... 10%, Rainy season ... 15%)

Unit Irrigation Requirement/Paddy/Dengkeng Region Table 2.2.47

ALT-2

Unit : mm/day

	÷								
		1)	. 2)	3)	4)	5)	6)	7)	8)
	5	Evapora-	Crop co-	Evapo-	Percola-		Farm	Effective	
Month	Ten-Day Period	tion	efficient		tion	quirement		rainfall	rigation
R R	1 1			ration	·	3)+4)	5)x0.10		require-
Ц.	Le Le		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	1)x2)	te de proved		or 0.05		ment
						and the second			5)+6)-7)
	1			-	e de la composición d La composición de la c			8.2	
A	2	4.6	<u> </u>	. — .	1.0		0.52	. 0 . 8	<u> </u>
	3.		0.91	4.19	· · · · · · · · · · · ·	5.19		1.1	4.6
	1		0.96	4.90		6.40	0.32	·	6.7
М	2	5.1	1.00	5.10	1.5	6.60	0.33	1.3	5.6
	3		1.05	5.36		6.86	0.34		7.2
1	· .]		1.08	6.37	and a second	7.87	0.39		8.3
J	2	5.9	1.12	6.61	1.5	8.11	0.41	. - 1	8.5
	3		1.14	6.73	ļ	8.23	0.42		8.7
	11		1.20	7.68		9.18	0.46		9.6
J	2	. 6.4	1.23	7.87	1.5	9.37	0.47		9.8
	3	·	1.24	7.94		9.44	0.47		9.8
	1.		1.21	8,71		10.21	0.51		10.7
A	2	7.2	1.15	8.28	1.5	9.78	0.49		10.3
	3		1.04	7.49		8.99	0.45	<u> </u>	9.4
	11		0.99	7,92		9.42	0.47	-	9.9
S	2	8.0	0.93	7.44	1.5	8.94	0.45	• 	9.4
	3		0.90	7.20		8.70	0.44		9.1
	1		0.89	6.05		7.55	0.38	1.6	6.3
0	2	6.8	0.91	6.19	1.5	7.69	0.38	· _	8.1
.	3		0.98	6.66		8.16	0.41	1.5	7.1
	1		1.09	6.00		7.00	0.70	9.4	6.1
N	2	5.5	1.14	6.27	1.0	7.27	0.73	1.9	
	3		1.20	6.60	_	7.60	0.76	5.6	2.8
	1		1.23	5.29		6.29	0.63	11.2	_ 1.2
D	2	4.3	1.24	5.33	1.0	6.33	0.63	5.8 12.0	1.2
	3		1,21	5.20		6.20	0,62		
1 +	1	7 0	1.15	4,26		5.26	0.53	13.7 2.5	2.8
J	2	3.7	1.04	3.85	1.0	4.85	0.49 0.47	2.5 8.1	2.8 _ ·
	3	· · · · · ·	1.00	3.70		4.70 4.38		7.4	
म		76	0.94	3,38	1.0	4.13	0.44	7.4 1.5	3.0
Н. В.	2	3.6	0.87	3.13	1.0		0.41	1.9 5.0	
	3		0.77	2.77 2.57		<u>3.77</u> 3.57	0.36	10.8	
ъ	1	20			1.0	2.95	0,30	7.4	
M	3	3.9	0,50	1.95	1.0	2.95		17.8	
Ľ	12	<u> </u>	L		<u> </u>			11.0	

Note:

Farm Waste (Dry season ... 5%, Rainy season ... 10%)

 ALT2		2.2.40 UHLU		nequirementor	0.7		it : mm/day
Month	10 Day Period	1) Evapora- tion	2) Crop co- efficient 1) x 2)	3) Evapotrans- piration	4) Farm Waste 5) x 0.10 or 0.05	5) Effective rainfall	6) Unit irri- gation re- quirement 3)+4)-5)
A	1 2 3	4.6	0.66 0.66 0.67	3.04 3.04 3.08	0.46 0.46 0.46	7.0 1.0 1.4	2.5 2.1
М	- 1 2 3	5.1	0.66 0.63 0.60	3.27 3.21 3.06	0.34 0.32 0.31	1.7	3.7 1.8 3.4
J	1 2 3	5.9	0.54 0.47 -	3.19 2.77 -	0.32 0.28 -		3.5 3.1 -
J	1 2 3	6.4				-	
A	1 2 3	7.2	-	111		-	-
S	1 2 3	8.0			-		
0	1 2 : 3	6.8			- · · ·	2.0 - 1.9	
N	1 2 3	5.5			- -	7.0 2.4 7.0	
D	1 2 3	4.3				7.0 7.0 7.0	
J	1 2 3	3.7	- 0.35	- - 1.30	0.20	7.0 3.3 7.0	
F	1 2 3	3.6	0.41 0.47 0.53	1.48 1.69 1.91	0.22 0.25 0.29	7.0 2.7 6.7	
М	1 2 3	3.9	0.58 0.61 0.62	2.26 2.38 2.42	0.34 0.35 0.36	7.0 7.0 7.0	

Table 2.2.48 Unit Irrigation Requirement/Polowijo/Dengkeng Region

Note : Farm waste (Dry season ... 10%, Rainy season ... 15%)

.

Table 2.2.49 Irrigation Requirement & Diversion Requirement/Paddy (8,900 ha)/Karanganyar Region, ALT-2

Diversion Requirement m3/sec 10)	. 1	0.125	0.264 2.459 6.106	8.131 10.035 11.841	14.568 14.320 12.475	13.778 13.262 12.104	11.783 10.780 8.085	9.138 9.776 9.518	5.368 7.888 6.420	2.704	1,513 1	0.171	t i i .	el to
Conveyance Losses m3/sec 9)	I	0.025	0.053 0.492 1.221	1.626 2.007 2.368	2.914 2.864 2.279	2.756 2.421 2.421	2.357 2.156 1.617	1.828 1.955 1.904	1.074 1.578 1.284	0.541	0.303	0.034 -	1 1 I	ed from main can rsion etc.
quirement m3/sec 8)	ł	0,100	0.211 1.967 4.885	6.505 8.028 9.473	11.654 11.456 10.198	11.022 10.610 9.683	9.426 8.624 6.468	7.510 7.614 7.614	4.294 6.310 5.136	2,163 -	1,210	0.137	111	ment are estimated from mature and irrigal diversion etc. () $\times 10 = (7)$ () $= (10)$
Irrigation Requirement m3/day 7) m3/sec	1	8,642	18,269 169,915 422,036	562,017 693,645 818,432	1,006,928 989,798 881,100	952,300 916,700 836,600	814,380 745,124 558,804	631,606 675,737 657,829	371,005 545,172 443,742	186,900	104,556	11,872 -	1 1 1	Conveyance losses of 25% of irrigation requirement are estimated from main canal ferm ditches leakage through holes and gates, and irrigal diversion etc. Culculating process $(1) \times (4) + (2) \times (5) + (3) \times (6)) \times 10 = (7)$ (7) (86,400 = (8), (8) + (9) = (10)
 ing 6)	T	27	107 285 1,513	2,999 4,477 5,936	7,343 8,651 8,900	8,900 8,900 8,900	8,170 6,746 5,331	4,486 4,477 4,477	5,215 6,639 8,046	8,900 8,900 8,900	8,900 8,713 7,413	5,936 4,450 2,964	1,486 187 -	Conveyance losses of 25% of irrigation farm ditches leakage through holes and Culculating process (7)/86,400 = (8),
 ze to be supplied water Transplant- On grow ing puddling stage ha 5) ha	. 1 :.	11	71 151	151 151	151 71	1 1 F	I I Î	151 151 151	151 151	111	: • 1 1 1	111	i i i	
Hecterage Nursery Tr puddling ir ha 4) he	· ı	- 7.4	4 • 7 4 • 7 4 • 4	₹. 4.4.1	, , , , , , , , , , , , , , , , , , , 	1 I I	6.7 7.4	~~~ 4 4 4	Г і I С	T P I	111	1 1	. 1 1 1	Note:
Unit Irrigation Requirement mm/day 3)	. 1	. 4 1 ⁄0	5.7	0000 000 00 10 10	0 0 0 0 0 0	10.7 10.3 9.4	9.9.8 9.4.8	1.2	0 4 N	- T - T - I	1.2	0	1111	•
equirement For trans- planting (mm) 2)	I	11	500 I 500 I	200 200 200	1 00 500	111	111 1	500 500 500	150 150	a t t		, 1, 1, 1, 1,	111	:
Puddling Requirement For For trans- nursery planting (mm) 1) (mm) 2)	1	100	150 150 150	150 150	111	111	150 150	150 150	01	111	ř r T	3	111	
Month		Apr	May	Jun	Jul	Aug	g Se D	Oct	Nov	Dec	Jan	Рер	Mar	

- 89 -

Table 2.2.50 Irrigation Requirement & Diversion Requirement/Polowijo (8,900 ha)/Karanganyar Region, ALT-2

Diversion	Requirement m3/sec 6)	1010	2.598	3.477	1.611	1.127	0.331	ł	ı	I	1.	ι	1	t .	I	I.	ł	ı	ŕ	1	,	I	ı		T	- 1	·	1	1	1	1 1	1	I	t .
Conveyance losses	<u>m3/sec</u> 5)	1 T V C	0,520	0,696	0.322	0.226	0.066	ł	i		1	1	ı	I	1	I	ł	t	Ι.		I			I	t	ł	1	. P	t	. 1	Ļ		I	1
squirement	m3/sec 4)	ן ה ה ה ה	2.078	2.781	1.501 1.289	106-0	0.265	1	1	ι	1	ł	1	1	•	1	1	ı	ł	I	1		ı	I				I	ı	ŀ	F 1	ŀ	t	I
Irrigation Requirement	m3/day 3)	1 000	179,542	240,300	129,725	77.875	22,909	Ĵ	•	1	I	·	ļ	1	I		۱	1	1	•	t	l	1	t	İ	1	I 	1	I	: 1 :		1	1	t
Hecterage to be supplied water	On growing stage he 2)	8,500		6,675	5,189 3.711	2.225	739	-	t		t		1	.1		1		ł	. 1	1		•		,	·			130		2,225	5,189	6 . 675	8,161	8,900
Unit Irrigation	Requirement mm/day 1)	ע 1 ר	.0	3.6	3.0	3,5	3.1	ı		1	1	I	Ļ	I		1			а. I		: ·	. 1	Ľ	1	i	•	1	1			Ē			1
	Month				Мау		Jun			Jul			Aug			Sep			Oct			Nov			Dec			Jan		He H) } {		Mar	

Note: Conveyance losses of 25% of irrigation requirement are estimated from main canal to farm ditches leakage through holes and gates, and irrigal diversion etc. (1) x (2) x lo = (3), (3)/86,400 = (4), (4) + (5) = (6)

- 90 -

Table 2.2.51 Irrigation Requirement & Diversion Requirement/Paddy (6,500 ha)/Sragen Region, ALT-2

			• •	·													
Diversion	Requirement	<u>m3/sec 10)</u>	1	960*0	0.205	4.838	6.437 7.938 9.363	11.513 11.299 10.055	10.867 10.461 9.457	7.968 7.363 5.298	6.718 7.530 7.887	5.798 6.314 4.254	2.437 3.555 -	2.133	111	111	sanal to
Contestance	losses	m3/sec 9)	ı	0.025	0.053	l.254	1.669 2.058 2.427	2.985 2.929 2.607	2.827 2.712 2.385	1.084 1.929 1.373	1.742 1.953 2.045	1.505 1.637 1.103	0.631 0.922	0.553	1 1 1 1 1 1	i i i 	are estimated from main canal to irrigal diversion etc.) x 10 = (7) (10)
	a maina TT n ha	m3/sec 8)	I	0.071	0.152 1.425	3 584	4.768 5.880 6.936	8.528 8.370 7.448	8.040 7.749 7.072	6 . 884 5.434 3 . 925	4,976 5.577 5.842	4.677 4.677 3.151	1.806 2.633 -	1.580	1 t ł		irement are estim s, and irrigal di (6)) x IO = ((9) = (10)
turi anti an Baani ramant	11 HOTO BATIT	m3/day 7)	I	- 6,140	13,092 123,124	309,660	411,993 508,050 599,232	736,848 723,164 643,500	695,500 669,500 611,000	594,783 471,238 339,090	429,936 481,890 504,780	371,077 404,101 272,268	227,000	136,500 	i i i	E E E	35% of irrigation requirement through holes and gates, and i $(4) + (2) \times (5) + (3) \times (6) = (3)$ = (8),
	Dn growing	ha 6)	1	50 1	78 208	1,105	2,191 3,270 4,336	5,363 6,318 6,500	6,500 6,500 6,500	5,967 4,927 3,894	3,276 3,270 3,270	3,809 5,849 5,876	6,500 6,500 6,500	6,500 6,364 5,415	4,336 3,250 2,165	1,086 137 -	
- - - - - - - - - - - - - - - - - - -	Hecterage to be supplied waver sery Transplant- On grow	ha 5)	 1	1 I	52 .	111		111	. 1 i	1 1 1		TTT TTT	111	1 1 t	111	831	Conveyance farm ditch Culculatin
	Nursery	puccing ha 4)	1	5.4	ν. 44	5.4	ກທ 4 4 1	111	f t 1	0 v v 1-44	ω 10 m	1-11 CV	1 1 1	1111	1 Ì F	111	Note:
;	Unit Irrigation	Requirement mm/day 3)	ı	3.7	6 4 5 3	7.2	888 2.5 7.7	5 8 6 5 8 6	10.7 10.3 4.9	0.08 0.4.0	6.1 7.7 4.8	N 4 4 U Q Ø	0.0 4 0 1	2, 1 7, 1	 	й I I	
	Puddling Requirement For trans-	planting (mm) 2)	E .		200 -	200	0 0 0 7 0 0 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 00 500	. 1 1	111	500 500 500	150 150	111	111	1 1 1 [°]	E E I	
-	Puddling For	nursery	, I ,	100	150	150	150 150	1 F H	. 1 1 1	150 150	150 150	0 1 I H	[] }	I L I	111	F T F	
		Month		Apr	Mav	a	Jun	Jul	gug	Sep	, Oet	Nov	Dec	цал	лер	Мах	

Table 2.2.52 Irrigation Requirement & Diversion Requirement/Polowijo (6,000 hm)/Sragen Region, ALT-2

1.5 0			•	Requirement
	m3/day 3) m3	m3/sec 4)	m3/sec 5)	m3/sec 6)
		ł	1	ł
	97,500 20,805	1.128 0.345	0.395	1.523
	24,0UJ	C+C•O	1210	0.400
	165,750	1.918	0.672	2.590
	20,820 02 174	0.658 1.067	0.230	0,885
	56,375	0.050	0.231	0.889
	Te, 740	U.194	0,000	797°N
	1	I		
	1	ı	ł	1
	I	ı	ı	1
	1	I		
	i	•	. 1	•
	ŀ	I	ı	I
	ı	1	ı	ı
	1	,	I	-1
	ı	I	ı	1
	ŗ	ı		1
	1	t	I	
	I	I	1	
	1	1	I	1
	. 1	ı	1	1
	:	·	ŧ	1
	1	I	t	I
	ŀ	ı	1	ı
· .	I	I		ł
· .	1	ı	l	ı
:	I	I	ł	ŀ
	ı	ı		
- 1,625 - 3,711 - 3,790 - 4,875 - 4,875	ı	1	I	ŀ
2,711 - 3,790 - 4,875 5 4,875	1	I		
3,790 4,875 5,967	3	1		1
- 4,875 5 oct	. I	1	t	:
1 96.1	I	ı	t	ī
	I.	ı	I	I
- 6,500	ı	I	I	ł

- 92 -

to farm ditches leakage through holes and gates, and irrigal diversion etc. (1) x (2) x lo = (3), (3)/86,400 = (4), (4) + (5) = (6)

Irrigation Requirement & Diversion Requirement/Paddy (3,600 ha)/Dengkeng Region, ALT-2 Table 2.2.53

	Puddling For	<u>Puddling Requirement</u> For For trans-	Unit Irrigation	Hecter: Nursery	Hecterage to be supplied water sery Transplant- On grow	ied water On growing	Irrigation Requirement	Requirement	Conveyance	Diversion
Month	nursery (mm) 1)	plenting (mm) 2)	Requirement mm/day 3)	puddling he 4)	ing puddling ha 5)	stage ha 6)	m3/dav 7)	m3/sec 8)	n3/sec 9)	mequirement m3/sec 10)
	1	I	I	ł	ł	•	1	I	· ł	. I
лđү	1001	11	4	1 0 1 3 0 1	11	11	3,506	0.041	0.012	0.053
•	150	I,	6.7	3.0	1	43	7,381	0.085	0.026	0,111
Мау	150. 150	200	7.2	00	29 61	115 612	68,940 170,564	0 798	0.239 0.592	1.037 2.566
51 <u>6</u>	150 150	500	ແ ເງິຍ ເ	00	61 6	1,213	227,179	2.629 3.216	0.789	3.418 2.200
III		200	000		61 61	2,401	330,887	3.830	1.149	4.979
ľ nž.		200	0 ° 0	1 1	61	2,970 3 400	407,120	4.712	0.712	5.424 6.032
1			5	1 1	. 1 1	3,600.	356,400	4.125	1.238	5.363
guA	I F	11	10.7	F 1	1 I .	1,600 1,600	385,200	4 .458 4 .292	1.337	5+795 5+580
	ĩ	F	λ. 4	ſ	ł	3,600	338,400	176.5	c'/1.1.1	760*4
Sep	150 150	I I I	0 0 4 0 4	н <i>м е</i> г о о	1 E 1	2,305 2,729 2,156	329,445 261,026 200,696	3.813 3.021 2.323	1.144 0.906 0.697	4.957 3.927 3.020
Oct	150	200	6.3 8	00	61 61	1,814 1.811	240,782 273_191	2,787	0.836 0.949	3.623
	150	200	7.7	0 .	61	1,811	255,081	2.952	0.876	3.838
Nov	100	150	6.1	1.5°.	61 61	2,110 2,686	93,000 255.346	1.076 2.955	0.323 0.887	1.399 3.842
	1.	150	13°8	ı	61	3,254	182,612	2.114	0.634	2.748
f	1	ŗ	•	1	1	3,600	1	t i	 	
nec		11	1 I 1	1	F 1	3,600 3,600	43,200 -	0.500		0.650
	ı	_1	10	1	 I	3,600	1			•
0 611	1 1	. 1	o I N	I I	. 1	3,524 2,999	98,672	4.1.42 -	545°0	1.465
	I	ı	1	I	t	2,401	ŀ	- : - :	I	
Feb		1.1	0 i m	r i	11	1,800 1,199	54,000 -	0.625	0.188	0.813
	ł	ï	I		. 1	601	ı	1		I
Mar	I	1.	F			100	ŀ	1		1
	I I		I	1	I.,	1	1	1	* . 	1
				Note:		osses of 30% o		irement are estin	requirement are estimated from main canal	anal to
					Iarm clucnes leakage	·	through noise and gates, $4) + (2) \times (5) + (3) \times (6)$	ano ($\begin{array}{l} \text{irrigglue diversion eve.} \\ \text{) x 10 = (7) \end{array}$	·
			·		2.)	7)/86,400 = (8)		(9) = (10)		

- 93 -

Table 2.2.54 Irrigation Requirement & Diversion Requirement/Polowijo (3,600 hm)/Dengkeng Region, ALT-2

	mm/dav 1)	ha.	un growing stage	2	m3/day 3)	m3/sec 4)	m3/sec 5)	mequirement m3/sec 6)
		1						
			3,600				1	1
Apr	2.5	-	3,301		90,000 69,321	L.042 0.802	0.313 0.241	1.043
	3.7		2,700		66,900	1.156	0.347	1.503
Мау	8 7 6		2,099	·	37,782 51,034	0.437	0.131	0 568
	т. н С		2000		21 500			
Jun		•	900 200		9,269	0,107	0,052 C	0.139
					-	- 1 - - -	 	
	. 1		. 1		1	. ,		
Jul			. 1		1			. 1
			T.		i	1	t .	1
	<u>.</u>		1		,	ı	1	•
Aug	1		i	-	1	. •		1
	1		I		1	1	I	I
	I		i		1	1	•	t
Sep					ı	I	I	1
	1 -		1		١.	.1	1	
	. 1		1		ł	ı		ł
Oct	1		1		F			·
	ŧ		ł		1	I .	3	·
	I		1		ł	:	· · · · · · · · · · · · · · · · · · ·	•
Nov	ı		I		I	1	I	1
	1÷		1		ı	1]	ł
	T		I		ł	ı	1	
Dec	I		I		1	1		1
•	1		1		•		ł	
	.1		ı		1	1	1	I
Jan	L _e		1		1	1	1	I
	1		299		ł	ı	Ī	1
•	E .		006		ı	ı	ı	
Peb	Ì		1,501		•	•	i	3
	. 1		2,099		,1	<u>1</u>	.1	t
	1 N		2,700		1	1	I	ŀ
Mer	i		3,301		ı	ı		
	1		3,600		ı	1	1	I

- 94 -

 $(1) \times (2) \times 10^{-3}, (3), (3)/86,400 = (4), (4) + (5) = (6)$

ALT--3

Unit : mm/day

÷	ч., г.	and the second second	alitati i s		a thaile				
		1)	2)	3)	4)	5)	6)	7)	8)
·	Δ	Evapora-	Crop co-	Evapo-	Percola-	Water re-	Farm	Effective	Unit ir-
d	Ten-Day Period	tion	efficient	transpi-	tion	quirement	waste	rainfall	rigation
і;; Б	្រុំក្នុ	d a get a co		ration		3)+4)	5)x0.10		require-
Month	0 0 0 0			1)x2)			or 0.05	· · ·	ment
		it in the second							5)+6)-7)
	1		1.08	4.97		5.97	0.60	9.1	-
A	2	4.6	1.08	4.97	1.0	5.97	0.60	0.7	5.9
	3		1.08	4.97		5.97	0.60	1.1	5.5
	1		1.08	5.51		7.01	0.35		7.4
M	2	5.1	1.08	5.51	1.5	7.01	0.35	1.0	6.4
	3	20 12	1.08	5.51		7.01	0.35		7.4
	1		1.08	6.37		7.87	0.39	-	8.3
J	- 2	5.9	1.08	6.37	1.5	7.87	0.39		8.3
	3		1.08	6.37		7.87	0.39	. <u>.</u> .	8.3
	1		1.08	6.91		8.41	0.42	-	8.8
J	. 2	6.4	1.07	6.85	1.5	8.35	0.42		8.8
	3		1.06	6.78		8.28	0.41		8.7
	1		1.06	7.63		9 13	0.46	-	9.6
A	2	7.2	1.05	7.56	1.5	9.06	0.45		9.5
ŀ	3	· · · ·	1.05	7.56	·	9.06	0.45		9.5
1	1		1.05	8.40		9.90	0.50	-	10.4
S	:2	8.0	1.05	8.40	1.5	9.90	0.50		10.4
	- 3		1.05	8.40		9.90	0.50	0.7	9.7
	· 1		1.06	7.21		8.71	0.44	0.8	8.4
0	- 2	6.8	1.07	7.28	1.5	8.78	0.44	0.9	9.2
	3		1,08	7.34		8.84	0.44	0.9	8.3
	· 1		1.11	6.11	·	7.11	0.71	5.0	2.8
·N	-2	5.5	1.06	5.83	1.0	6.83	0.68	3.2	4.3
	3		1.08	5.94		6.94	0.69	5.7	1.9
	· 1		1.08	4.64		5.64	0.56	8.7	<u> </u>
D	2	4.3	1.08	4.64	1.0	5.64	0.56	4.9	1.3
	.3.		1.08	4.64	······	5.64	0.56	7.2	
	1		1.08	4.00		5.00	0.50	11.7	. – 1.
J	-2	3.7	1.08	4.00	1.00	5.00	0,50	4.1	1.4
	3		1.08	4.00		5.00	0.50	6.7	_
	1		1.08	3.89		4.89	0.49	4.6	
F	-2	3.6	1.08	. 3.89	1.0	4.89	0.49	5.4	— .
	3		1.08	3.89		4.89	0.49	8.2	
	1		1.08	4.21		5.21	0.52	8.7	-
M	2	3.9	1.08	4.21	1.0	5.21	0.52	6.4	
ŀ	3		1.08	4.21	1	5,21	0.52	12.4	

Note : Farm waste (Dry season ... 5%, Rainy season ... 10%)

Table 2.2.56 Unit Irrigation Requirement/Paddy/Sragen Region

ALT-3

Unit : mm/day

r			م <u>ن</u>						<u> </u>
		1)	2)	3)	(4)	5)	6)	7) Effective	8) Unit ir-
	Υ.	Evapora-	Crop co-	Evapo-	Percola-	Water re-	Farm		rigation
Month	Ten-Day Period	tion	efficient		tion	quirement		rainfall	
Lo Lo	ជំង			ration		3)+4)	5)x0.10		require-
M	е Н Н			1)x2)			or 0.05		ment 5)+6)-7)
							0.00	~ 7	
	1		1.08	4.97		5.97	0.60	2.7	3.9
A	2	4.6	1.08	4.97	1.0	5.97	0.60	1.3	5.3
	3		1.08	4.97		5.97	0.60	2.0	4.6
	1		1.08	5.51		7.01	0.35	0.3	7.1
М	2	5.1	1.08	5.51	1.5	7.01	0.35	1.6	5.8
<u> </u>	- 3:		1.08	5.51		7.01	0.35		7.4
	. 1		1.08	6.37	:	7.87	0.39		8.3
J	· 2	5.9	1.08	6.37	1.5	7.87	0.39	-	8.3
<u> </u>	3		1.08	6.37		7.87	0.39	<u> </u>	8.3
	1	_	1.08	6.91		8.41	0.42	-	8.8
J	2 1	6.4	1.07	6.85	1.5	8.35	0.42	-	8.8
		····	1.06	6.78		8.28	0.41		8.7
	1		1.06	7.63		9.13	0.46	· _ ·	9.6
A	2,	7.2	1.05	7.56	1.5	9.00	0.45		9.5
	3		1.05	7.56		9.06	0.45		9.5
	1		1.05	8,40		9.90	0,50	2 -	10.4
S	. 2	8.0	1.05	8.40	1.5	9.90	0.50		10.4
	3		1.05	8,40		9.90	0.50	0.6	9.8
	1	· · ·	1.06	7.21		8.71	0.44	1.8	7.4
0	2	6.8	1.07	7.28	1.5	8.78	0.44	0.4	8.8
	3		1.08	7.34		8.84	0.44	0.2	9.1
	1		1.11	6.11		7.11	0.71	2.7	5.1
N	2	5.5	1.06	5.83	1.0	6.83	0.68	3.1	4.4
			1.08	5.94		6.94	0.69	6.6	1.0
	-1		1.08	4.64		5.64	0.56	4.5	1.7
D	2	4.3	1.08	4.64	1.0	5.64	0.56	3.5	2.7
ļ	-3		1.08	4.74		5.64	0.56	6.9	
	1		1.08	4.00		5.00	0.50	3.7	1.8
J	2	3.7	1.08	4.00	1.0	5.00	0.50	11.9	-
	3	· · · · · · · · · · · · · · · · · · ·	1.08	4.00		5.00	0.50	9.9	
	1		1.08	3.89		4.89	0.49	10.5	-
F	<u></u> 2	3.6	1.08	3.89	1.0	4.89	0.49	9.3	- ·
	: 3	<u></u>	1.08	3.89		4.89	0.49	5.8	
	1		1.08	4.21		5.21	0,52	7.9	-
M	2	3.9	1.08	4.21	1,.0 .	5.21	0.52	7.3	
	3		1.08	4.21		5.21	0.52	13.5	

Note : Farm waste (Dry season ... 5%, Rainy season ... 10%)

Table 2.2.57 Unit Irrigation Requirement/Paddy/Dengkeng Region								· · · · ·	1. A.
Table 2.2.57 Unit Irrigation Requirement/Paddy/Dengkeng Region		~ ~				15	10.11	/ TN	Den un ana
	Ochlo.	- <u>ro</u> - jo:	67.	linit	່ານນາທິຊີໂໂດກ	Reginarrence T	VPadov.	uengreng	- кертоль
	Lade	6.6		ULLEU	TTTT222002011	TOGOTIONO	/ I U U U U X /	1011200112	100 2 2 2 2 2 2

A1	ጠ-	.3

Unit: mm/day

	· · · · · ·								
		1)	2)	3)	4)	5)	6)	7)	8)
	5	Evapora-	Crop co-	Evapo-	Percola-		Farm	Effective	Unit ir-
다.	0 D D D	tion	efficient	transpi-	tion		waste	rainfall	rigation
Month	Ten-Day Period	· ·		ration		3)+4)	5)x0.10		require-
Ĕ	e e			1)x2)	•		or 0.05		ment
		2	to the second						5)+6)-7)
I	1		1.08	4.97		5.97	0.60	8.2	÷
Δ	2	4.6	1.08	4.97	1.0	5.97	0.60	0.8	5.8
	3	F. C	1.08	4.97		5.97	0.60	1.1	55
	1		1.08	5.51		7.01	0.35		7.4
M	2	5.1	1.08	5.51	1.5	7.01	0.35	1.3	6.1
	3	2.1	1.08	5.51		7.01	0.35		7.4
	1		1.08	6.37		7.87	0.39		8.3
J	2	5.9	1.08	6.37	1.5	7.87	0.39	_	8.3
ľ	3	J•J ·	1.08	6.37		7.87	0.39	_	8.3
	$\frac{1}{1}$		1.08	6.91		8.41	0.42		8.8
J	2	6.4	1.07	6.85	1.5	8.35	0.42		8.8
	3	0.4	1.06	6.78		8.28	0.41		8.7
			1.00	7.63		9.13	0.46	-	9.6
A	2	7.2	1.00	7.56	1.5	9.06	0.45	_	95
A	3	1.6	1.05	7.56	1 1.7	9.06	0.45		9.5
$\left - \right $	1		1.05	8.40		9.90	0.50		10.4
s	2	8.0	1.05	8.40 8.40	1.5	9.90	0.50		10.4
L D	3	0.0	1.05	8.40		9.90	0.50		10.4
 	1		1.06	7,21		8.71	0.44	1.6	7.5
0	2	5.8	1.00	7.28	1.5	8.78	0.44		9.2
	-3	J.0	1.07	7.34	1 1.7	8.84	0.44	1.5	10.8
	1		1.11	6.11		7.11	0.71	9.4	
N	2	5.5	1.06	5.83	1.0	6.83	0.68	1.9	5.6
14	3	5.5	1.08	5.94	1.0	6.94	0.69	5.6	2.0
<u> </u>	1		1.08	4.64		5.64	0.05	11.2	
D	2	4.3	1.08	4.64	1.0	5.64	0.56	5.8	0.4
	3	4.)	1.08	4.64	1.0	5.64	0.56	12.0	0.4
			1.08	4.04		5.00	0.50	13.7	
] .т	1 2	3.7	1.08	4.00	1.0	5.00	0,50	2.5	3.0
J	2 3	2.1			Т.О	5.00	0.50	2.9 8.1	-
			1.08	4.00			0.49	7.4	
	1 2	7.6	1.08	3.89		4.89			4.9
F		3.6	1.08	3.89 7.00	1.0	4.89	0.49	1.5	
	3	·····	1.08	3.89		4.89	0.49		0.4
1,.	1	7 .	1.08	4.21		5.21	0.52	10.8	-
M	2	3.9	1.08	4.21	1.0	5.21	0.52	7.4	
]			1.08	4.21	l	5.21	0.52	17.8	<u> </u>
			1 (1) (1) (1) (1) (1)				and the second		

Note:

Farm waste (Dry season ... 5%, Rainy season ... 10%)

Table 2.2.58 Irrigation Requirement & Diversion Requirement/Paddy (4,450 ha x 2)/Karanganyar Region, ALT-3

,

· · · · ·						t a jutt	e La states	с. 6 г. г. ^{се}		÷.,				
Diversion Requirement m3/sec 10)	1.703 7.666 7.290	8.588 7.093 9.045	9.868 10.310 10.664	11.169 9.976 8.108	10.544 10.450 10.964	12,304 12,264 11,616	7.830 10.199 9.419	4.263 6.009 3.581	1.703 1.319 0.835	1.703 2.926 1.703	1.649 1.703 0.835	0.835 1.703 1.703	canal to	
Conveyance losses m3/sec 9)	0.341 1.533 1.458	1.718 1.419 1.809	1.974 2.062 2.133	2.234 1.995 1.622	2.109 2.090 2.193	2.461 2.453 2.323	1.566 2.040 1.884	0.853 1.202 0.716	0.341 0.264 0.167	0.341 0.585 0.341	0.330 0.341 0.167	0.167 0.341 0.341	ilmsted from main c diversion etc.	
quirement m3/sec 8)	1.362 6.133 5.832	6.870 5.674 7.236	7.894 8.248 8.531	8,935 7,981 6,486	8.435 8.360 8.771	9.843 9.811 9.293	6.264 8.159 7.535	3.410 4.807 2.865	1,362 1.055 0.668	1,362 2,341 1,362	1.319 1.362 0.668	0.668 1.362 1.362	requirement are estime gates, and irrigal div	10 = (7) = (10)
Irrigation Requirement m3/day 7) m3/sec	117,700 529,891 503,910	593,552 490,222 625,156	682,029 712,654 737,067	771,994 689,590 560,349	722,325 757,855	850,402 847,698 802,891	541,218 704,950 650,985	294,632 415,352 247,513	117,700 91,164 57,700	117,700 202,302 117,700	114,000 117,700 57,000	57,000 117,700 117,700	rrigetion holes and	$ \times (5) $ $ \times (5) $ $ \times (8) $ $ + (9) $
ed water On growing stage ha 6)	6,688 7,049 7,022	6,973 6,448 6,319	6,319 6,688 7,049	7,013 6,955 6,377	5,950 5,945 6,319	6,688 6,662 6,653	6,377 5,950 5,945	6,319 6,964 7,027	7,004 6,728 6,074	5,950 6,043 6,595	6,675 6,653 6,604	6,074 5,950 6,043	osses of 25% of leakage through process	$((1) \times (4) + (2)$ (7)/86,400 = (8),
Hecterage to be supplied water sery Transplant- On grow dding ing puddling stage 4) ha 5) ha	76 76 76	36 36 7	76 76 76	76 36	76 76 76	76 76 76	- 76 76	76 76	76 - 36	76 76 76	76 76 36	36 76	Conveyance losses of farm ditches leakage Culculating process	(7
Hectera Nursery puddling ha 4)	0 0 12	0 0 0 L L L	0 0 7 - 1 7 - 1	100	2.5.7 2.7.7	чг. 3 г.9	33.7	1.9	00.7	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	000	2.2.2	Note:	
Unit Irrigation Requirement mm/day 3)	1 o n v v	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ന്ന്ന് ന്ന്ന് ന്ന്ന്	-10000 	9999 9999	10.4 10.4 9.7	8008 400	0.4 H	101		1 1 1 :	111	· : 	
Puddling Requirement For For trans- nursery planting (am) 1) (am) 2)	150 150	500 500 500	500 500 500	- 00 500	500 500 500	500 500 500	500 - 500 -	150 150	150 150	150 150	150 150 150	150 150 150		
Fuddling R For nursery (mm) 1)	100	150 150 150	150 150	150 150	150 150	150 150	150 150	001	100	100	001	100	· . : · · ·	
Month	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	q е Ж	Mar		

- 98 -

				· · · · · · · · · · · · · · · · · · ·			99) ``	• .				
	Diversion Requirement m3/sec 10)	4.308 5.553 5.017	5.650 5.144 7.117	7.767 8.118 8.396	8.794 7.861 6.394	8.300 8.227 8.632	9.690 9.657 9.222	5 - 449 7 - 756 7 - 956	5.009 4.807 2.091	2.691 2.115 0.652	2.553 1.331 1.331	1.289 1.331 0.652	0.652 1.331 1.331
	Conveyance losses m3/sec 9)	1.117 1.440 1.301	1.3965 1.8965 1.845	2.014 2.105 2.117	2,280 2,038 1,658	2.152 2.133 2.238	2,512 2,504 2,391	1,413 2,011 2,063	1.299 1.246 0.542	0.598 0.548 0.169	0.662 0.345 0.345	0.334 0.345 0.169	0.345 0.345 0.345
A 4// טו שענוו זייקא	Requirement m3/sec 8)	3.191 4.113 3.716	4.185 3.810 5.272	5.753 6.013 6.219	6.514 5.823 4.736	6.148 6.094 494	7.178 7.153 6.831	4.036 5.745 5.893	3.710 3.561 1.549	1.993 1.567 0.483	1,891 0,986 0,986	0.955 0.986 0.483	0.483 0.986 0.986
irrigavion Nequiremento & Diversion Neguirement/Faduy (),400 na X 4)/0148611 Negron, ANI-)	Irrigation R m3/day 7)	275,715 355,344 321,134	361,603 329,172 455,560	497,095 519,505 537,284	562,836 503,090 409,209	531,170 526,540 552,475	620,140 618,060 590,232	348,668 496,410 509,172	320,565 307,684 133,820	172,172 135,378 41,700	163,410 85,200 85,200	82,500 85,200 41,700	41,700 85,200 85,200
anamalanhay not	led water On growing stage ha 6)	4,885 1,148 1,129	5,093 4,709 4,615	5, 4, 615 5, 148 148	5,122 5,080 4,657	4 4 3445 4 4 3445 6 115	4,885 4,865 4,855 4,855	4,657 4,045 442	4,615 5,086 5,132	5,116 4,914 4,436	4,345 4,414 4,817	4,875 4,859 4,823	4,436 4,345 414
STAVIUS NUSUE	Hecterage to be supplied water rsery Transplant- On grow Adling ing pudding stage Ad ha 5) ha		26 26	2 2 2 2 2 2 2 2	55 26	יז עו יז עו יז עו	10 IO 10 10 IO 10	ນ ທ ອັນ		55 16	0 0 0 0 0 0	10 A A	る ら ら ろ う ひ
trabou uoras	Hecters Nursery puddling ha 4)	2 2	227	00	466	2.7		5-5-5- 0 0 0	2.7	111	000	125	 0000
TEDIE C.C. 29 IIII	Unit Irrigation Requirement mm/day 3)	<i>ა</i> ო 4 ბ ო ბ	7.7 7.8 4			000 000	10.4 10.4 8.8	7 8 9 4 8 1	1041 140	トト I て 0	8, I I 8, I I	111	I I I .
C ST	Requirement For trans- planting (mm) 2)	150 150	500 500 500	500 500 500	1 0 0 500	500 500 500	500 500 500	500 - 500 - 500 -	150 150 150	150 150	150 150	150 150 150	150 150
	Puddling For nursery (mm) 1)	001	150 150 150	150 150	750 750 750	150 150 150	150 150 150	150 150	100	001	100 100 100	1001	100 1000
	Month	тdү	Мау	un	Jul	gua	S e D	Oct	Nov	Dec	ជាង	Яeр	Mer

farm ditches leakage through holes and gates, and irrigal diversion etc. Culculating process (1) x (4) + (2) x (5) + (3) x (6)) x 10 = (7) (7)/86,400 = (8), (8) + (9) = (10)

Table 2.2.60 Irrigation Requirement & Diversion Requirement/Paddy (1,800 ha x 2)/Dengkeng Region, ALT-3

Diversion	Requirement m3/sec 10)	0.723 3.188 3.072	3.596 2.848 3.813	4.159 4.345 493	4.707 4.180 3.545	4,443 4,404 4,620	5.141 5.141 5.178	2.945 4.299 4.875	0.723 3.085 1.555	0.723 0.186 0.338	0.723 1.825 0.723	0.699 2.707 0.499	0.338 0.723 0.723	al to
Сопуеувисе	losses m3/sec 9)	0.167 0.736 0.709	0.830 0.657 0.880	0,960 1,003 1,037	1.086 0.965 0.818	1,025 1,026 1,066	1.196 1.184 1.195	0.680 0.992 1.125	0.167 0.712 0.359	0.167 0.043 0.078	0,167 0.421 0,167	0,161 0,625 0,065	0.078 0.167 0.167	ted from main cenal srsion etc.
lequirement	m3/sec 8)	0.556 2.452 2.363	2.766 2.191 2.933	3.199 3.342 3.456	3.621 3.215 2.727	3.418 3.388 3.554	3.988 3.957 3.983	2.265 3.307 3.750	0.556 2.373 1.196	0.556 0.143 0.260	0.556 1.404 0.556	0.538 2.082 0.384	0.260 0.556 0.556	irrigation requirement are estimated from main 1 holes and gates, and irrigal diversion etc. 2) $x (5) + (3) x (6)) x 10 = (7)$ (8) + (9) = (10)
Irrization Requirement	т3/дау 7)	48,000 211,858 204,200	239,004 189,338 253,394	276,398 288,765 198,456	312,856 277,794 235,623	295,322 292,725 307,070	344,520 343,480 344,114	195,675 285,694 323,990	48,000 205,052 103,340	48,000 12,388 22,500	48,000 121,320 48,000	46,500 179,859 33,184	22,500 48,000 48,000	<pre>irrigation requir holes and gates,) x (5) + (3) x ((8) + (</pre>
ied water	On Growing stage hs 6)	2,705 2,851 2,840	2,821 2,608 2,556	2,556 2,705 2,851	2,837 2,813 2,579	2,407 2,405 2,556	2,691 2,691 2,691	2,579 2,407 2,405	2,556 2,817 2,842	2,833 2,722 2,457	2,407 2,444 2,668	2,700 2,691 2,671	2,457 2,407 2,444	f 30% of e through (4) + (2 0 = (8),
Hecterage to be supplied water	Transplant- ing puddling ha 5)	3133	144 144 144	318	31 14	31 31 31	31 31 15	31 31	31 31 31	31 - 14	31 31 31	31 31 14	16 16 16	
Kectera	Nursery puddling ha 4)	н н 1 2	555	1 2 2 1	1.5 8.01 2.1	5555 1111	00°0	000 111	1.5 .8	ហេសុស កកក	, , , , , , , , , , , ,		4 4 4 5 5 5 5	Note:
Unit	Irrigation Requirement mm/day 3)	5 5 5 7 8 7 8	7.0 4.4.4	ထက္က	α α α α α α	9.99.9 2.9	10.4 4 .01 4 .01	7.5 10.8	0 ° 1 7 ° 0	0	1 0 , 1 M	- 4°C	E 1 F	
Pudáling Requirement	For trans- planting (mm) 2)	150	500	200	200	500	500	500	150	150	150	150	150	
Puddling R	For nursery (mm) 1)	100	150	150	150	150	150	150	100	100	100	100	100	
	Month	Apr	Мау	un.	Jul	8n v	Sep	Oct	Nov	Dec	Jan	Feb	Mar	

- 100 -

Table 2.2.61 Diversion Requirement & Water Balance

		•					-									:*						•							•	÷				
10)	Storage Capacity x 10 ⁶ m ³					1			-58.3		148.4	1		-234.1			-238.7			-322.7			6-676		-304.5			-230.9			>-++		1	
(6	Balance			-		C. 3		-	-22.5		155.4			-87.4			-111.4			-120.5		, c			-113.6			-86.2		0	C•/+		39-3	
8) .	Monthly _B Balance 7) - 6)					0.3		•	-22.8		4			-32.0			-24-0		•	-9.1			-4-5		11.2			27.4		с <u>с</u> с			85.2	
7)	Inflow					8.6			1.1		4.0-	5		-1.2			-1,5	:	 	- 1.6		•	0 7		19.4			35.2	•:		0.14		85.2	
(9)	Outfoow		3.5			8.	:		23.9	2	305			30.8			22.5		-	7.5	-				8°-7			7.8		ר ר ר	-	-	: 	
. 5)	Total (3)+4)	1.658	6.017	2.827	3.571	6.226	15.217	19.916	24.035	21.134	012.00	103-00 100-06	37,335	31.208	28.768	28.336	22.599	16.446	8.812	7.813	5.777	2-223	2.434 12121	8.705	10.102	1		10.941	3.483	1.816			ŀ	
4) 1974	Bank Region	-	0.949	0.552	0.371	1.027	2.566	3.418	4.220	4.942	07170 23170 23170	20.02 263	5.796	5,525	5.092	4.967	3.859	2.811					720.0			1.422	÷	2.940			02.02		ł	
(C) 1, 2, 4, 4	Bank Region	1.658	5 068	2.275	3 200	5.1.99	12.651	16.498	19.815	22 / 4/	27.303	202.12	26.5.26	25 683	23.676	:23.369	18 740	13.635	012.7	6.960	4.911	2.178	2.357	7 283	,	4.395	·	8 001	2.828	1.816	0.044	•]	
	2) Sub-total	1.658	1 990	0.842	628 I.	2.432	6 126	7.872	9 310	10.548	12.031	5012 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	12 204	108 11	11.024	10.954	8.936	6.469	3 594	3.967	3.445	1.714	1.577.	3.790	4.431	2.685	4 450	2.602	1.287	1	1	,	. F	
Sragen Region	Sugar Cane Si	1	0.423	0.038	1.172	0.508	1.288	l.435	1.372	L. 303	010 T	012-1	1 282	1.430	1.477	1.640	1.665 ·	1.500	0	- 1	1.1		0.070		1		1	1	I	1	1		1	
Sragen	Second Paddy			1		1	1	I			ı				-		0.035	0.054			1		I. 376			11				 1	1 1		ï	
	Paddy	1.658	1.567	0.804	0 667	1.924	4.838	6.437	7.938	9.295	576.11		10 867	10.46	9 547	9 314	7.236	4 915	. 2.245	1.498	0.423	260-0	0.131	2.962	3.610	2.685	3 957	2 602	1.287	۰ 	н н Г н Ц		1	
u c	1) Sub-total	-	3.078	1.433	1.361	2.767	6.525	8.626	10.505	12.199	10.013	14.740	11.000	11.100	12.652	12.415	9.804	7.166	3.976	2.993	1.466	0.464	0.780	3 493	4.131	1.710	3-277	5.399	I.541	1.816	0.044		1	
Karanganyar Region	Sugar Cane Si	•	C. 286	0.251	0.478	0.333	0.419	0.495	0.470	0.444	0.445	0 4425	2 4 V		0.548	0.608		0.990		0.530	1	-	0.121		1	- 1		•	, L	ļ	, , ,	•	1	
Karangan	Second Paddy					1	• •		1	r	ï	i i i		i I				0.020		0.435			0.495			. 1 . 	5.	0.104	1	0	• •		1	
-	Peddy		2.792	1.182	0.883	2.434	6.106	8.131	10.035	11.755	14,568		12 22	12.060	12.104	11.807	9.174	6.156	3.382	2.028	0.460	0.113	0.164	3.384	3.948	1.710	3.277	5.295	1-541	1.803	0.044	: -	1	
	Ten-Day Period		1 ()	I M	г	CI	ŕ	-	7	m;	H, C	Ve		ic	م ب ر		N	ŝ	1	C1	ę		: (1 (1		1 (1)	3	- - -	0	ņ	r-1`€	n V		- C I	
	Month		Ŷ	1		Ŵ	. ` 	. 	ъ			: د		, A	6		ŝ			0			N		A		-	J		۶	÷.		×	

Note: (4) is the Dengkeng region (6) is mean monthly diversion requirement

- 101 -

Diversion Requirement & Water Balance Table 2.2.62

Storage capacity xl0^{6m3} 11.2 247.5 415.2 305.6 175_6 72.6 161.8 382.2 392.1 12) 304 Balance -92.4 -60.4 -114.1 -72.6 12.6 4 5 -117.3 -160.2 -142.7 -146.4 11) 83 178 m³/sec Monthly Balance -32.4 -24.9 -32.0 -17.5 13.8 ~ 7 -23.8 -25.4 32.4 41.5 85.2 2 Unit: 9) In-flov dis-charge 4.0--1-5 35.2 85.2 -1.2 -1.6 -1,0 42.0 9**°**8 194 8) Out-flow dis-charge 24.9 32.0 30.8 23.4 23.8 16.5 12.8 5.6 2.9 0.5 5.7 1 27.930 33.268 29.532 29.532 228.678 226.956 226.956 226.956 221.422 21.422 21.422 21.422 21.423 14.733 14.783 Total 6.806 9.800 9.594 9.036 3.374 2.626 3.102 0.184 0.813 **22.4**06 24.767 1 1 6) Left Bank Rejion 4) + 5, 5.424 6.032 5.363 0.650 0.813 1.355 1.096 614 605 5.795 **4.957 3.927 3.020 4.111 3.823 3.823 3.842 3.842 3.842 3.842 3.842 3.842** 1.485 1 1 1 Polowi 1.355 1.043 1 503 0 568 0 768 0.139 Dengkeng A ŝ 1.1 Paddy 111 037 566 3.418 4.220 4.979 5,424 6,032 5,795 5,795 5,795 5,795 5,795 5,795 3,992 3,927 7,111 1,399 2,748 2,748 2,748 2,748 0.650 0.813 .485 4 1.1 5.451 3) Right Bank Region 1) + 2)8.186 7.989 <u>15.702</u> 18.514 20.408 3.374 7.263 27.844 27.304 24.167 26.540 26.540 25.683 25.683 23.586 21.999 20.473 15.947 17.799 20.740 21.433 13.134 15.264 2.626 1.617 2.035 0.184 22,951 ï 1 $\begin{array}{c} 1.946\\ 3.3267\\ 3.3267\\ 3.3267\\ 3.3267\\ 3.3267\\ 1.2587\\ 1.2587\\ 1.2587\\ 1.2587\\ 1.257\\ 1.257\\ 1.257\\ 1.257\\ 1.257\\ 1.257\\ 1.257\\ 1.257\\ 1.257\\ 1.257\\ 1.255\\$ Sub-Total 2.626 2 ī. Second padåy* 0.493 1 1 1 1 I. ł. . Sragen Region Sugar cane* $\begin{array}{c} 0.423\\ 0.0383\\ 0.0383\\ 0.0383\\ 0.0383\\ 0.0383\\ 0.0383\\ 0.0375\\ 0.0375\\ 0.070\\ 0.070\\ 0.075\\ 0.070\\ 0$ ι E Polowi-jo 1.523 2.590 0.888 0.889 0.262 0.262 Į, Paddy 11.299 10.055 10.867 --0.096 1.924 4.838 6.437 7.938 9.363 7.968 5.298 6.718 5.798 5.798 6.314 6.314 2.437 3.555 2,133 515 10.46] i Sub-Total 1) 12.652 12.391 11.410 9.095 9.732 15.013 14.743 12.900 14.291 13.792 0.524 5.719 8.504 6.824 0.109 2.887 1.617 0.184 10.741 í. ł Ξ. Second 0.014 0.014 0.178 0.435 0.435 0.435 0.495 0.404 0.109 0.183 0.104 0.013 Karanganyar Region L ı Sugar* cane 0.445 0.445 0.513 0.513 0.513 0.513 0.513 0.516 0.516 0.516 0.416 0.530 0.530 0.286 0.419 0.495 0.470 0.478 0.121 0.444 ī Polowi .219 .598 3.477 1.877 1.611 1.127 0.331 гù Ĩ 0.125
 M
 2
 2.459

 J
 1
 8.131

 J
 2
 10.035

 J
 2
 11.841

 J
 1
 13.11841

 J
 1
 13.1262

 J
 3
 12.475

 S
 2
 13.262

 J
 3
 12.475

 S
 2
 10.035

 S
 2
 13.262

 S
 1
 17.83

 N
 2
 10.783

 N
 1
 9.138

 N
 1
 9.138

 N
 1
 9.138

 N
 2
 13.262
 Paddy 1.513 2.704 6.420 0.171 I. ALT-2 ŧ. ī VnU-noT boriod 010 01.0 0.0 ~ CI (A, ÷ ŗ. Σ, utuoM

Note: * sec ALT-1

8) is the mean monthly diversion requirement

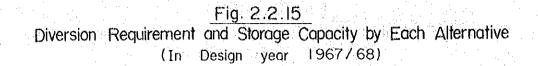
102 -

Table 2.2.63 Diversion Requirement & Water Balance

capacity x106m3 g Storage 87.6 374.4 396.6 369.1 288.5 27..9 154.O 168.1 225.5 297.6 ì 6 Balance -57.5 -84.2 -114.8 -137.8 -69-5 12.5 -33.8 -10.4 -139.8 -107.7 -153 unit: m³/sec $\widehat{\infty}$ Monthly Balance 7)-6) -15.2 -30.6 -13.2 38.2 -10.4 -26:7 -25.0 30.1 82.0 -23.4 -23.7 7 -1.0 19.4 In flow 8.6 4.0 -1.2 -1-5 -1.6 35.2 42.0 85.2 je je 6 Out flow 23.3 23.4 12.2 3.8 0. 61. 24.5 25.5 29.1 4.2 3.2 13.2 5.1 25.688 26.278 11.963 15.963 8.588 Total 6.734 17.116 15.668 15.926 21.682 23.724 24.615 25.300 26.433-23.698 25.182 25.041 29.426 29.392 28.580 4.624 1.825 5.741 986 5.186 .054 $(3)_{+4}$ 19.684 8.167 . 650 26.241 4 00 00 47 4 Region 0.723 3.085 1.555 0.723 3.188 3.072 3.596 2.848 3.813 4.159 4.345 4.707 4.180 3.545 4.443 5.184 5.184 5.178 141 2.945 4.299 4.875 0.186 0.338 0.723 1.825 0.723 0.699 2.707 0.499 4.493 0.723 0.723 Left Benk 0.338 ŝ 6.011 13.928 2.596 16.139 20.739 20.637 21.621 24.242 24.251 2.951 Region 1)+2) 15.888 17.869 19.565 20.270 20.807 21.726 19.518 23.402 15.222 21.389 21.403 11.240 12.878 033 4.438 4 7 49 4.361 3.034 Right Bank 487 .034 .487 .487 5.33 ัก 6.798 10.225 6.626 6.253 3.048 11.330 3.519 2.936 0.652 Total 4.308 5.976 5.822 5.652 8.405 9.202 9.699 10.112 9.119 7.606 9.682 9.657 10.109 331 331 331 1.289 1.331 0.652 .33 Sub Sugar* .318 .258 .382 .382 .430 .640 .665 .500 1.266 1.420 0.375 0.070 Sragen Region 0.423 1.172 0.508 1.288 1.435 303 8 cane Second* 0.035 0.458 1.203 1.592 1.242 1.376 0.957 0.828 0.493 0.054 paddy 4.308 5.553 5.449 7.756 5.009 4.807 2.091 2.691 2.691 2.691 0.652 Paddy .144 3.118 8.300 8.227 8.632 9.657 9.657 8.794 .861 6.394 1.331 1.331 . 650 . 289 652 5 Sub. 1) 11.057 10.980 11.512 12.912 12.912 12.912 12.912 12.626 12.626 12.625 1.6665 1.6665 1.605 1.703 1.703 1.703 1.703 1.662 1.703 0.835 .703 11.614 10.399 T.952 7.952 7.541 9.066 .426 9.464 10.363 10.780 8.533 1.108 70 Karanganyar Region Sugar* cane 0.286 0.478 0.333 0.419 0.495 0.444 0.445 0.423 0.425 0.513 0.533 0.548 0.608 0.616 0.616 0.416 0.416 0.121 Second* 0.109 0.104 0.014 0.020 0.178 0.435 0.351 0.013 paddy \mathbf{i} ιì 1 Paddy 1.703 7.666 7.290 11.169 9.976 8.108 8.108 8.108 10.544 10.544 10.564 12.304 7.830 10.199 1.703 1.319 0.835 1.703 2.926 1.703 8.588 9.045 9.868 10.310 9.419 4.263 6.009 .703 0.835 1.703 1.703 0.664 581 ALT - 3 Period c) N ßen−n∋ ì **կ**դաօ_Խ ۲ Σ ŗ ∢. Ø 0 Z А Ζ Þ ь Ę٤

Note: * ... see ALT - 1 (4)

is the Dengkeng Region


is the mean monthly diversion requirement

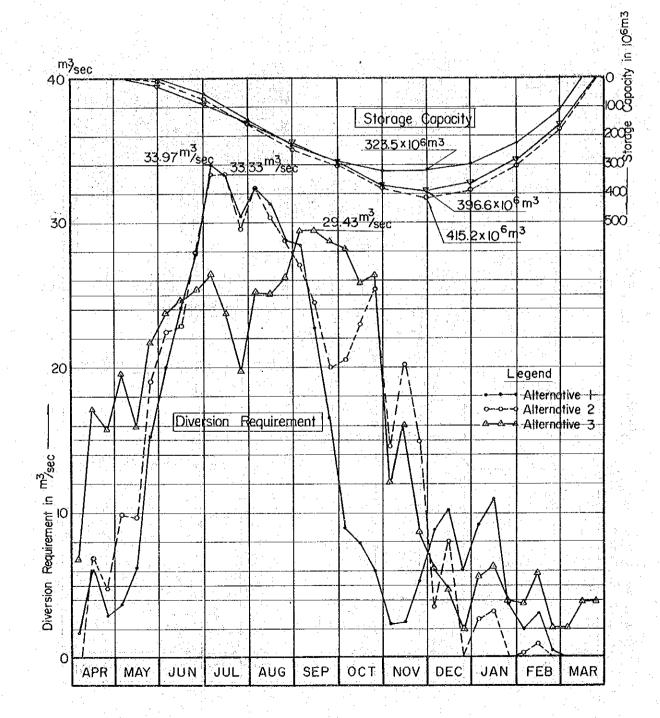
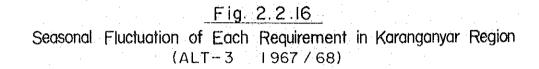
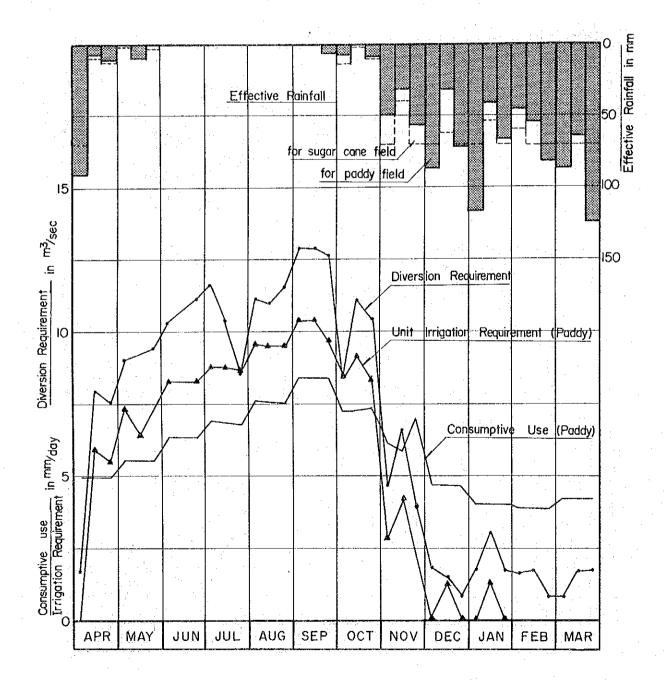
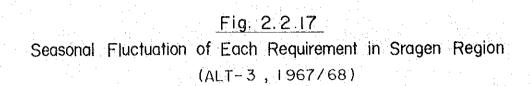

103

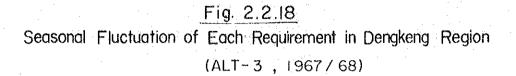
Table 2.2.64 Diversion Requirement by Each Alternative (1967/68)

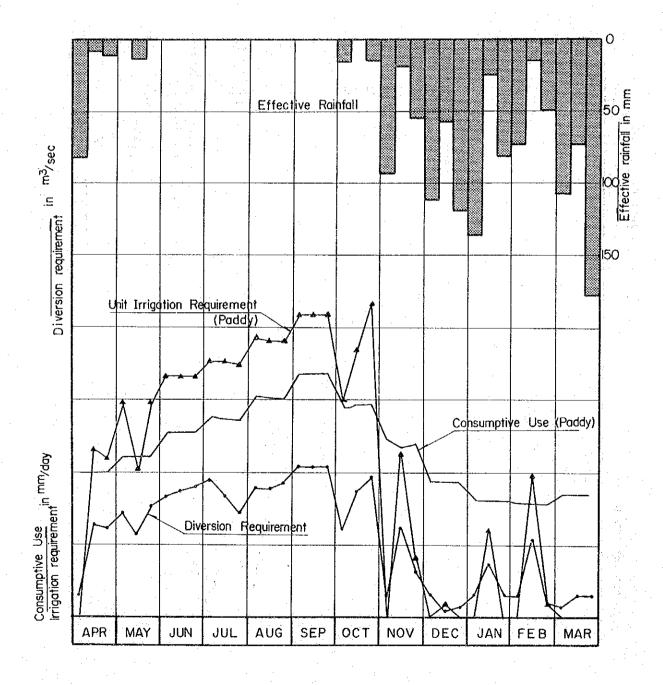

23.724 24.615 25.300 25.182 25.041 26.241 26.433 23.698 19.684 18.167 25.688 26.278 6.734 17.116 15.668 19.484 15.926 21.682 29.426 29.392 28.580 11.963 15.963 8.588 Total 6.054 4.624 1.825 5.472 6.186 3.757 3.650 5.74] 1.986 1.986 3.757 3.757 ALT - 3 Left Bank 4,443 4,404 4,620 Region 0.723 3.188 3.072 3.596 3.596 3.813 3.813 4 159 4 345 4 493 4.707 4.180 3.545 5.184 5.141 5.178 2 945 4 299 4 875 0.723 3.085 1.555 0.723 0.186 0.338 0.723 1.825 0.723 0.699 2.707 0.499 0.338 0.723 0.723 ĥ $483 \times 10^{6} \text{ m}^{3}$ 397 × 106 Right Bank Region 6.011 13.928 12.596 15.888 13.078 17.869 21.726 19.518 16.139 5.331 4.438 1.487 19.565 20.270 20.807 20.739 20.637 21.621 15.222 21.389 21.403 11.240 12.878 7.033 4.749 4.361 3.034 2.951 3.034 1.487 24.242 24.251 23.402 1.487 3.034 3.034 Total 6.806 4.670 9.594 9.594 19.036 22.406 24.767 27.930 33.268 33.332 29.530 32.335 31.263 28.678 26.956 24.400 18.967 21.422 24.851 25.271 0.184 14.533 20.106 14.783 3.374 7.913 2.626 3.102 ALT -2 Left Bank 3 892 4 359 4 979 5.424 6.032 5.363 3.623 4.111 3.838 0.813 1.355 1.096 1.614 1.605 3.334 5.795 5.580 5.092 4.957 3.927 3.020 1.399 3.842 2.748 0.650 Region 1.485 452 x 10^{6 m}3 415 x 10⁶ m³ Right Bank 17.799 20.740 21.433 Region 26.540 25.683 23.586 21.999 20.473 15.947 3.374 7.263 5.451 3.574 8.186 7.989 15.702 18.514 20.408 22.951 27.844 27.300 24.167 13.134 16.264 12.035 2.626 0.184 33.970 33.234 30.294 Total 1.658 6.017 2.827 19.916 24.035 27.739 32.335 31.208 28.768 28.336 22.599 16.446 8.812 7.813 5.777 8.705 10.102 5.817 9.104 10.941 3.483 1.816 3.027 0.379 3.571 6.226 15.217 2.223 2.434 5.121 ALT - 1 Left Bank Storage diversion requirement 0.949 0.552 6.126 6.032 5.363 3.418 4.220 4.942 5.796 5.525 5.092 4.967 3.859 2.811 1.242 0.853 0.166 0.045 0.077 0.727 Region 0.371 1.027 2.566 1.422 1.540 1.422 1.377 2.940 0.655 2.383 389 x 106 m³ Total diversion requirement 323 x 106 m³ Right Bank 3.200 5.199 12.651 1.658 5.068 2.275 Region 26.539 25.683 23.676 23.369 18.740 13.635 16.498 19.815 22,797 27,844 27,202 24,931 7.570 6.960 4.911 2.178 2.357 4.394 7.283 8.562 4.395 1.816 0.644 7.727 8.001 2.828 Ten-Day Period Month


- 104 -

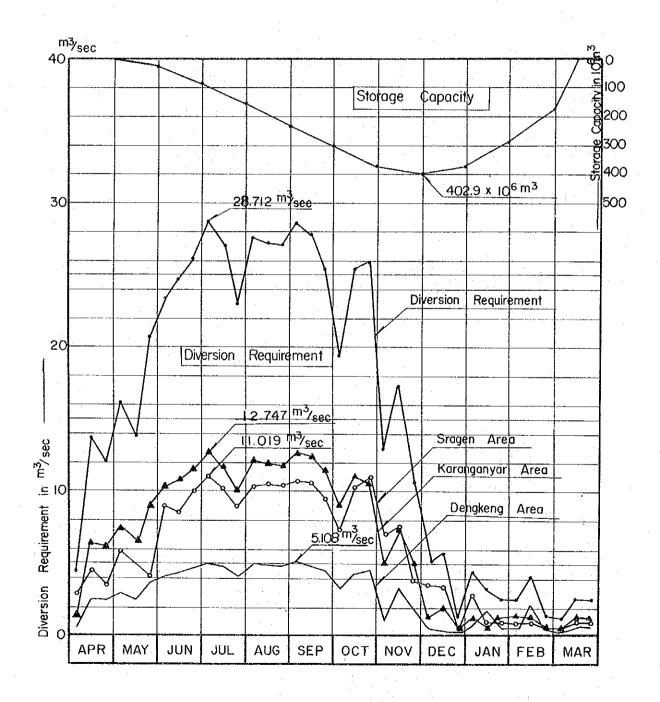



- 105 -




106 -

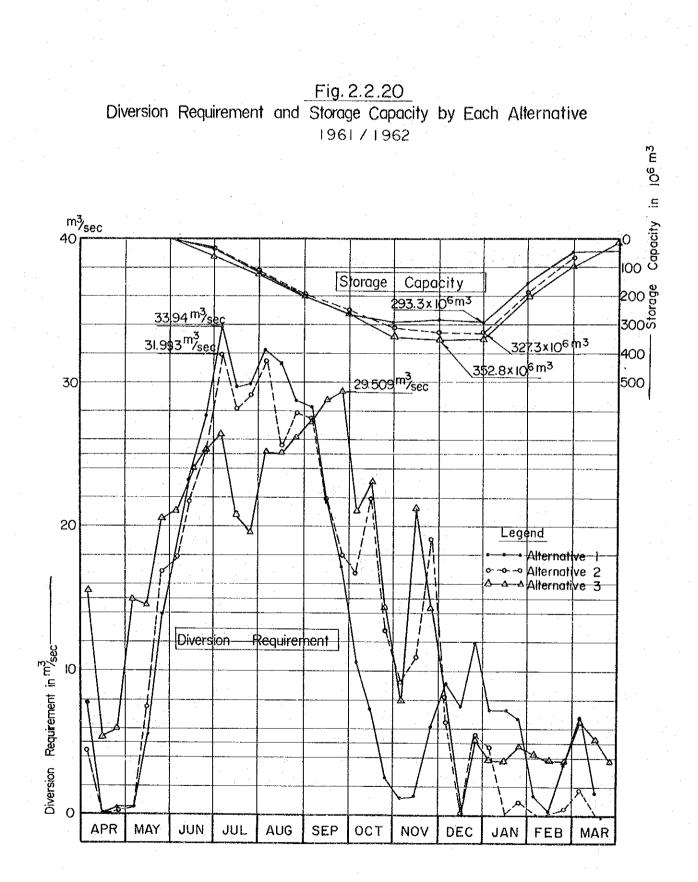
107 -



108 -

$ \frac{d^2 - 4}{d^2} = \frac{1}{d^2 - d^2} d^2 - d^2$																									-
$ \begin{array}{ $	ALT	Ĺ		·			Tat		. 65	Irrıgat	Яе	uiremen		version	Require	ment				Unit:	m ³ /sec		-		
	İ		Kara	nganyar						Sragen	Region			Deng	Re	-	Right	li je s	Total	Out-	Ln-	Monthly			Ľ.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	nth	Pedd			Sugar 5	le cond add v	Sub Total	Fadd				~~	Sub Total	Padć			reg. on			Dis-	Dis-			Capacit	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			é É	•	4	<u>م</u> ، ا	9	(ŕ		0	(01	N.,	rement	121	141			xlo ^v a	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4			7	1							~~+		5		101		1 - 1	2		167			1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ម		(2) (2) (2)	·	- 0.286 0.251						- 0.423 0.038	·	ويسمحه فاستبيدهم	0.482 2.125 2.048			4.007 11.103 9.589		4.489 13.680 12.033	·	ŀ	1	. 1	1 .	1941 - J
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1 S. S.	1		0.478 0.333 0.419						1.172 0.508 1.288	1		2.397 1.899 2.542	1		13.320 11.382 17.148	.935 .434 .653	16.255 13.816 20.801	1.1.1	8.6		8- 4.		1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ne				0.495 0.470 0.444						1.435 1.372 1.303	· ·	9.055 9.517 0.021	2.773 2.897 2.995	1.	- in	19.215 20.315 21.521	1.1.1.1.1.1.1	23 285 24.665 26.176	24.7	1.1	23.6		82.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ly.		4.856 4.773 4.158		0.445 0.423 0.425				3.838 3.766 3.352		1.318 1.258 1.212		L1.019 L0.265 8.827	3.138 2.787 2.363	1.808 2.011 1.788	°,	23.766 22.112 18.815		28.712 26.910 22.966	26.2		-26.6			1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	80	1.	4.593 4.421 4.035		0.513 0.530 0.548				3.622 3.487 3.152		1.382 1.430 1.477	1.11	1	2.962 2.936 3.080	1.932 1.860 1.697	111	22.672 22.320 22.276	1.1.1.1.1.1.1.1	27.566 27.116 27.053						1
$ \begin{cases} 5.29 &$	<u>д</u>	10 A 10 A	3.928 3.593 2.695						2.656 2.454 1.766		1			3.456 3.427 3.452	1.652 1.309 1.007		23:495 22.991 20.917	100 B	28.603 27.727 25.376		-1.5	-28.7	-125.7		1.11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4		3.046 3.259 3.173	E I -1	416 530 460	0.178 0.435 0.546 1		10	2.239 2.510 2.629		1.1			1.963 2.866 3.250	1.208 1.370 1.279		16.081 21.173 21.413		19 252 25 409 25 942		-16.0	-25-1	-140.8		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	⊳		1.789 2.629 2.140	1 1 1	121	0.351 0.495 0.404		1. A. A. A. A. A. A. A. A. A. A. A. A. A.	1.933 2.105 1.418					0.482 2.057 1.037	0.466 1.281 0.916		11.871 14.007 8.700	0.948 3.338 1.953	12.819 17.345 10.653	13.6	-1 -	-24.6			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			106-0	1 T 1	1.1	0.109			0.812 1.185 -	1.1.1				0.482 0.124 0.225	0.217	t i i	4.678 5.379 0.992	0.482 0.341 0.225	5.160 5.720 1.217				-140.0	ļ .·	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F.		0.504	1 1 1				1.702 0.887 0.887	0.711	111		493 1	2.906 0.887 0.887	0.482 1.217 0.482		1 1 1	4.041 1.495 2.022	0.482 1.712 0.482	4 523 3 207 2 504	3.4		31.8	-108.2		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	م		0.057	4 (1 - 1	F 1 1	013		0.859 0.887 0.435	1 1 1 1	a h-t	т. т. т.			0.466 1.805 0.333	- - -	t 1 1	2.028 2.022 0.992	0.466 2.076 0.333	2.494 4.098 1.325	7.8	42.0	34.2	-74-0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	н	0.557 1.135 1.135	1 4 4	I I al	111	111	. 13 . 13	0.435 0.887 0.887	111	111	1 1 1		(0.225 0.482 0.482		1 1 1	0.992 2.022 2.022	0.225 0.482 0.482	1 217 2 504 2 504	2.1	85.2	83.1	16		
$ALT = 2 \text{ Paddy } x \frac{1}{3}$ (6) = 1) + 2) + 3) + 4) + 5) 10) $\frac{k_6}{6}$ + $\frac{s}{6}$) 14) Same as other alternatives at the second		••		ີ່ຄໍ	×	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1.00					ALT -		vije x -		13)		nonthly	dîversî		rement			1
$ALT - 2 \cdot Polowijo \ge \frac{1}{3} 7) ALT - 3 \cdot Paddy \ge \frac{2}{3} 11) 7) + 8) + 9) 15) = 14) - 13).$ Sugar came $8) ALT - 2 \cdot Paddy \ge \frac{1}{3} 12) = 10) + 11) 16) Accumulation of (15)$ $17) 16) \ge 86,400 \times 30 \text{ or } 31$	·• .			∾ 1	×	i ni ji	6	1I	+ 3)+	3) +	+	(01	+				14)	Same	ss other		atives				
Suger came 8) ALY - 2 Faddy x 3 12) = 10) + 11) 17) 16) x 86,400 x 30 or 31				N	oCimoj	×	12	ALT	in i	× ·		(11	+	+	· · · . ·		15) 16)	10 J. 10	- 13) ilation	of					
	1	- - -		ar cane			o	ALT.	сı .	I X	•••	(21.		ł			17)	16) x	86,400	х 30	5				

Fig. 2.2.19 Diversion Requirement and Storage Capacity by Alternative 4 (In Design year 1967/68)



- 110 -

Table 2.2.66 Diversion Requirement by Each ALT (1961/1962)

unit: m3/sec

15.572 5.409 5.998 14.941 26.393 20.761 19.555 25.182 26.180 20.973 23.060 14.328 7.823 21.199 14.296 4.095 14.581 20.453 27.226 28.783 29.509 0.119 5.142 4.702 6.357 5.181 3.756 24.023 3.756 3.667 21,008 25.231 25.041 8.015 3.756 Totel Left benk 352.8 x 10⁶ m³ 3.604 4.299 2.378 4.159 4.345 4.493 4.707 2.825 3.410 4.444 4.404 4.620 2.299 1.517 2.025 ALT - 3 region 2.839 0.700 0.722 0.455 2.653 5.184 5.168 5.179 0.722 0.023 0.782 0.722 0.722 0.722 0.722 0.722 0.339 2.631 0.975 0.722 466.560.000 Right bank 22 042 23 615 24 330 16.849 19.678 20 738 20 637 21 560 17.333 18.761 11.950 5.524 19.682 12.271 7 293 0 096 4 360 3,034 3,034 3,980 3.395 3.034 3.328 12.733 4.709 5.276 14.486 21.686 17.936 16.145 3.726 4.206 3.034 11.928 16.640 region 1.774 27.583 21.719 17.978 9.150 10.895 19.041 4.469 7.401 16.880 17.830 21.731 31.993 28.108 29.035 31 516 25 627 27 877 16.658 21.920 12.854 6.231 5.454 0.883 0.415 Total 4.466 0.266 0 462 <u>ALT = 2</u> Left bank ĥ 2.266 2.737 3.143 5.147 4.072 3.157 1.399 1.212 1.909 5.796 5.579 5.092 2.389 2.480 1.150 0.045 0.758 0.069 4.290 3.475 region 0.151 0.714 l.684 I.571 327.1 × 10⁶ 399.945.600 Right bank 14.269 19.440 11.704 3.883 4.469 3.708 6.687 15.196 27.703 24.633 23.672 25,720 20,048 22,785 22,436 17 647 14 821 7.751 9.683 17.132 0.838 1.774 region 791.0 0.311 15.564 18.994 22.056 6.281 0.415 5 543 13 987 18.071 23.646 27.671 0.428 33.940 29.647 29.805 32.335 31.262 28.707 28.337 21.962 17.124 10.507 7.294 2.516 1.219 0.108 3.291 6.824 1.410 1.179 1.364 6.082 9 228 7 492 12 000 7 256 7 256 6 633 7.854 0.254 0.493 To tal Left bank Storage diversion requirement 284.6 x 10⁶ m³ 1.326 0.045 0.068 1.018 2.566 3.418 4.220 4.942 6.126 4.347 5.363 5.796 1.603 0.853 0.050 0.057 0.746 0.596 region 4.967 3.859 2.811 1.422 1.422 3.525 0.108 1.377 1.377 1.903 ALT - 1 Total diversion requirement 386.208.000 Right bank egion 6.528 0.254 0.448 0.360 14.653 19.426 22.729 27.814 25.300 25.683 23.615 18.103 14.313 1.129 1.307 5.336 7.806 6.070 8.475 5.879 5.879 4.730 1.219 3.291 6.228 1.211 4 525 11.421 24.442 23.370 8.904 6.441 2.516 26.539 Ten-day Period Month Σ

- 112 -

2.3 CONSIDERATION ON APPLICATION OF TEGAL CURVE

As the English version of the "Calculation and Construction of the Channels" translated from the original Indonesian text now being used at Gadjah Mada University was not very clear the following information was obtained from the counter part officers.

- 113 -

Cross-section of the channel irrigating less than 200 ha (originally it was 200 bau/l ha = 0.7 bau, accordingly Pemali curve has been fixed at 142 ha setting the ratio at 1.0) will be determined by inflating the water requirement due to the following reasons:

- (a) As the rotation within the command area of the tertiary or quaternary channels is not systematically done and, moreover, as puddling and flooding of Sawah takes place on a same day, surplus water is required beyond the values based on simple calculation;
- (b) Surplus water must be supplied to prevent pests and diseases during a specific period of time;
- (c) Side by side with the ripening paddy, nursery beds are maintained, puddling and transplanting is done for the second crop in the same command area simultaneously; therefore, surplus water is required to serve such overlapping water requirements.

On the other hand, the cross-section of those channels supplying irrigation water to the paddy field larger than 200 ha (142 ha by Pemali curve) may be diminished for the following reasons:

- (a) Due to the sprawling phenomenon being witnessed among the village settlements within years after the completion of the project, that means, diminishing of the cropping area;
- (b) Due to the repeated use of the irrigation water inside a wider command area;
- (c) The command areas nearer to the intake are naturally more favorablly irrigated than the lower ones and, to assure equitable irrigation, the channels leading to such command areas need their cross-sections to be diminished;
- (d) The wider the command area is there will be more cases of mixed cropping with non-paddy crops whose water requirements are less. More land will be left uncultivated within the area, and the acreage for sugar-cane requiring no irrigation during rainy season will increase.

The above-mentioned points seem to comprise the background of the Tegal curve which assumes 200 ha as the dividing point for either augmented or diminished canal cross-sections. The Tegal curve has, thus, been endorsed by the conventional and yet rough unit water requirement calculation.

This Project is not intended for the introduction of the rotation system called "Gorongan system" because it is endowed with plentiful of water resources and, moreover, the effective rainfall, the irrigable areas and other data are carefully computed for irrigation practices. Under such circumstances, the adoption of the Tegal Curve may bring forth undesirable results. From the above-mentioned points-of-view, it has been decided not to use the Tegal Curve for the Project area.

2.4 MAIN IRRIGATION SYSTEM

2.4.1 Colo Diversion Weir

a) Location

It was once tentatively decided to adopt the Copure method for the construction of the weir. The site usually should be selected from the geological consideration for the stability as well as for the economy of the construction of the weir. When the after-bay function of the Colo weir, the sedimentation from its remaining catchment area upon completion of the Wonogiri dam, and the necessary regulating capacity of about 1.2 million m³ are taken into consideration, it would be advisable to shift the site of the weir toward further downstream from the location proposed in the "Wonogiri Dam Feasibility Study." The site cannot be shifted too much toward the downstream because it will require a high weir to be constructed at a high construction cost. Thus, the site immediate downstream of the proposed location is considered most favorable.

From the above consideration, specific field surveys have been undertaken in each aspect of geology, topography, and hydraulics, at four alternative sites, including the site proposed in the "Wonogiri Dam Feasibility Study." The comparative study on the construction cost among these four alternatives includes the disbursement required for compensation and land acquisition (see Fig. 2.4.1). Consequently, the Alternative B, C and D have been found to be economically more favorable than Alternative A (see Table 2.4.1).

As far as the bedrock conditions are concerned (even though none of them seems to have the soundness and hardness required for an ideal foundation), the Alternative D apparently has the highest technical soundness as endorsed in the Section dealing with Geology. Furthermore, Alternative D appears to be more desirable from the view point of river improvement, since the large winding portion of the river channel will be cut short under Alternative D. Consequently, Alternative D has been newly proposed as the location of the Colo Weir.

b) Layout

According to a sedimentation study at the Colo Weir watershed (200 km² in size), 100-year sedimentation at the Colo reservoir would amount to 6.4 million m². While, a sedimentary capacity allowable from river bed upto intake water level was estimated at about 8 million cubic meter, on the basis of the storage curve at the Colo Reservoir (see Fig. 2.4.2). The Colo Reservoir, therefore, has an adequate storage capacity for the total amount of sediments from its catchment-area for a period of 100 years, thus functioning effectively as an after-bay of power station, without reducing the desired re-regulating capacity for a period of the project life. From these points of view, it would not be necessary for the Colo Weir to be equipped with large-scale gates, on its full width, for sand flashing purpose.

In the Wonogiri Dam Feasibility Study of 1975, the two-intake system was given the priority. With this system, irrigation water would be diverted into the two main canals separately by two intakes installed on both sides of the weir. However, from hydraulic and river engineering view points, the two-intake system to be constructed along such a winding river as the Sala river is not supposed to maintain its function evenly and effectively through the year. In fact, there have been so many cases with the two-intake system where the intake on one side has been blocked by sandbar in a few years after construction because of concentrated sedimentation at that very intake. The one-intake system seems to be more feasible than the two-intake system from the viewpoint of operation and maintenance and, it is obviously more economical in terms of the total volume of iron works and concrete works.

In consideration of the above-mentioned facts and reasons, the one-intake system with one sluice for sand flashing purpose is recommended to be built on the right side of the Colo Weir. As for the influx of sediments into canals, particular technical attention has been paid in deciding the slope of sill and sill elevation of sand flash, and the velocity and sill elevation of intakes. Besides, a major part of sediments, such as bed load run-off from the catchment at Colo site can be securely trapped and silted at the Wonogiri Reservoir and the Colo Weir and only a suspended load may rush at the intake and smoothly conveyed down to paddy field by the canal flow, provided that the permissible velocity will be so designed along the canal. Consequently, no particular consideration has been given to the construction of a silting pond in the canal system of the project. The regulating capacity required for the Colo Weir is examined below.

- . Diversion requirement for irrigation purpose plus minimum release = q cms;
- . Maximum discharge from the Wonogiri Reservoir for hydropower generation = Q max = 60 cms.

In the case of q < 15 cms, Q max will be for 6 hours' operation by the power house or less, as irrigation will be given priority, or Q' (q' < Q) = 6-hour operation. Therefore, this case may be disregarded in examination of the required regulating capacity. Next, in the case of $q \ge 15$ cms, there will be considered two alternative ways of operating the power station:

(Case i) Continuous operation for longer than 6 hours at Q = 60 cms. In this case, the operating hours will be:

 $H = \frac{q \times 24}{6} hr$, and the regulating capacity will be

 $V = q(24-H) \times 3,600$

(Case ii) 6-hour operation at Q = 60 cms and 18-hour operation at Q'. In this case, the regulating capacity will be:

 $V = (60 - q) \times 6 \times 3,600.$

In Case (i), the larger q is the larger becomes the required regulating capacity and, therefore, case (ii) is adopted. Accordingly, the required regulating capacity is (q = 15 cms)and V = $(60 - 15) \times 6 \times 3,600 = 972,000 \text{ m}^3$. Under the Project, the required regulating capacity of the Colo Weir is 1,200,000 m³, with some allowance on the calculated value.

d) Investigation on Sedimentation

. Annual supply of sand from the catchment-area of the Wonogiri Dam is 1,170 $m^3/km^2/yr$, and that from the remaining catchment-area is estimated at 800 $m^3/km^2/yr$, judging from the differ-ences in gradient and vegetation;

. Catchment Areas: Wonogiri Dam = 1,350 km² Remaining = 198 " . Annual inflow of sands:

Wonogiri Dam catchment-area = $924,000,000 \text{ m}_3^3$ Remaining catchment-area = $\frac{924,000,000 \text{ m}_3^3}{1,350} \times 198 \text{ km}^2$ = 135,520,000 924,000,000 m^3 + 135,520,000 m^3 = 1,059,520,000 m^3/yr .

The relationship between sand and sedimentation:

According to Brune Chart (Fig. 2.4.3), the ratio between storage capacity and annual inflow of sand will be:

$$\frac{7,700,000}{1,059,520,000} = 0.007$$

Therefore, the sedimentation ratio will be 40 %.

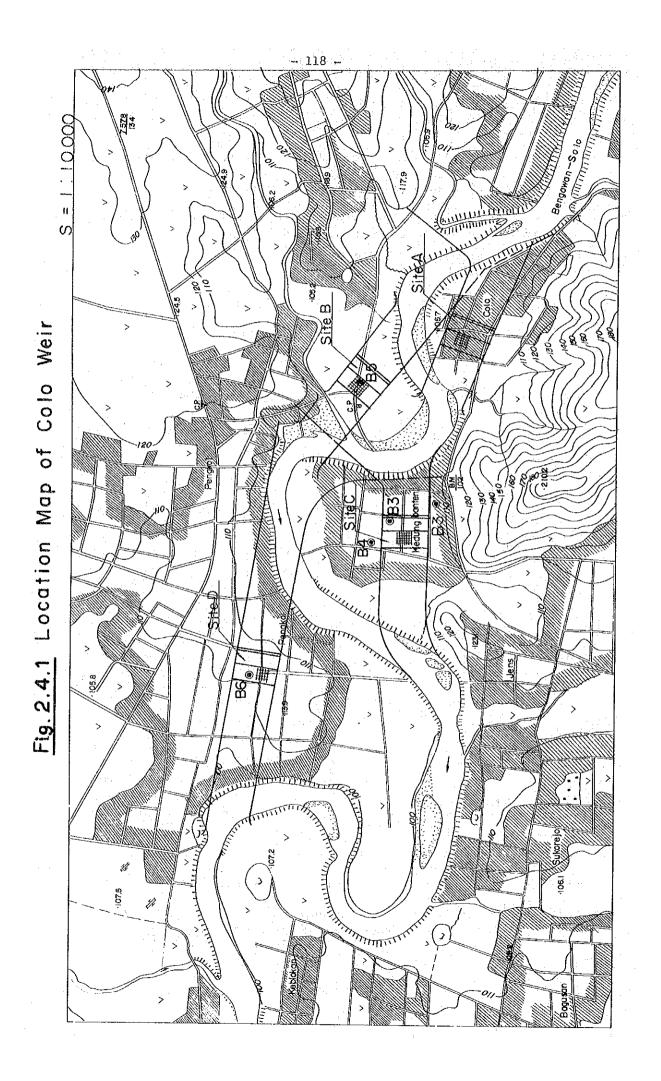
. Sedimentation in the Colo Weir (100 years' life):

 $800 \text{ m}^3/\text{km}^2/\text{yr} \times 198 \text{ km}^2 \times 100 \text{ yrs} = 15,840,000 \text{ m}^3$

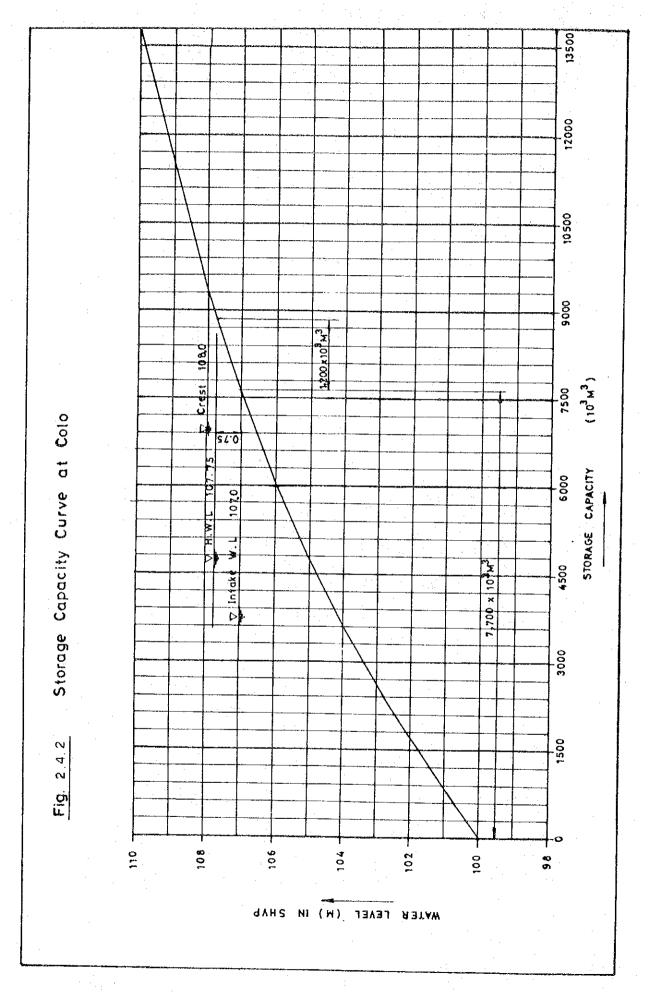
$$15.840,000 \text{ m}^3 \times 0.4 = 6,336,000 \text{ m}^3 < 7,700,000 \text{ m}^3$$

Accordingly, sedimentation will never exceed the storage capacity of the Weir and it will continue to function as an after-bay for the power station.

e) Colo Weir Crest Height


The benefit from the heightening of the dam is generally believed to more than compensate the cost-increase because a wider irrigable area is made possible through it. As the total water resource is prefixed under the Project, the crest-height has no immediate influence on the irrigable area but its heightening will make it possible to raise the level of the water canal and thereby cut short the lengthy earthen canal (main canal) at its tail-end. Two crest elevations of 108 m S.H.V.P. (Plan A) and 109 m S.H.V.P. (Plan B) have been compared to see the difference in the irrigable area. 1/20,000 topomap has been traced and it was discovered that approx. 870 ha will be additionally irrigable by raising the crest-height by 1 meter (1,670 ha if 2 meter). The houses and lands to be submerged by the constructing of the Colo Weir may be compared as follows:

	<u>Plan A</u>	<u>Plan B</u>
Houses (nos)	53	86
Yard (ha)	20	26
Sawah (")	9	12
Tegal (")	14	29


870 ha additional irrigable area helps shortening the main canal by 1.2 km. Cost comparison between crest heightening by 1 meter and main canal shortening by 1.2 km is made as follows:

Construction Cost:	Crest-heightening	450,000 US\$
· · ·	Main canal shortening	240,000 US\$
	Balance:	210,000 US\$

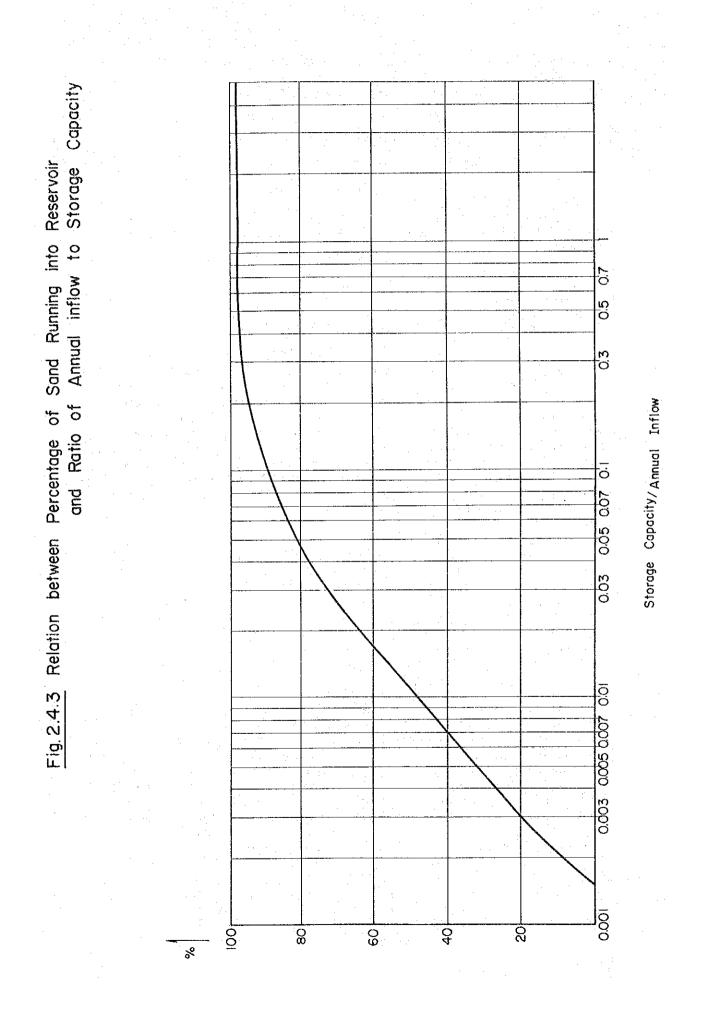

. 117 -

	Table 2.4.1	Сопрегі	son of Constri	uction Cost of	Table 2.4.1 Comparison of Construction Cost of Colo Weir by Bach Alternative	ch Alternative				•
	•	Plan	V			a	C		α	Ω
Item	Unit Price		Quant	Cost	Quant	Cost	Quant	Cost	<u>Quant</u>	Cost
 Construction 						• •				
Cost	US \$							• • •		
Excaration	1.6/m ³		280,000	448,000	180,000	288,000	170,000	272,000	110,000	176,000
#	2.1/m ³			ł	1		170,000	357,000	290.000	000*609
Revetment	100/m ³		1,250	125,000	1,350	135,000	1,500	150,000	2.400	240,000
Foundation	•									
Steel sheet pile	400/t		340	136,000	220	88,000	, ,	I D	E.	i
H pile	350/t		1,500	525,000	1,000	350,000	1		, It	• • • •
Concrete	42/m3		J	ŀ	1	T	5,000	210,000	1	4
Temporary work	:				 N					
Roads	8/m		6,500	52,000	8,000	64,000	5,000	40,000	6,000	48,000
Cofferdam	60/m3		650	39,000	650	39,000	1,000	60,000 -	1,100	66,000
Main Canal	200/m		0	0	1300	-60,000	-600	-120,000	-1,100	-220,000
Related structures		-				· · ·	· · · ·	•		- 1.
Siphon			, r	150,000	нн 	150,000			1	19 1
Culvert	460/m	•	400	184,000	ľ	1	1		l	- 1
Sub total				1.659.000		1.054.000		969,000		000.019
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							•			•
2. Compensation		÷ .			• • • •					
Houses	1300/mo		27	35,100	31	27,300	31	40,300	61	79,300
3. Land Aquisition			•					· ·	· · · · · · · · · · · · · · · · · · ·	
Sawah yerd	3,600/na		13.1	47,160	13.6		14.1	50,760	14.1	50,760
Tegal	1,000/ha		. 6-2	7,900	12.0		19.0	19,000	20.0	20,000
- Reclaimed land	2,000/ha	•	-2.8	-5,600	-3.5	-7,000	-5.6	-11,200	-14.0	-28,000
		•								
Sub total				49,460		53,960		58,560		42,760
Total				1,743,560		1.135,260		1.067.860		1.041,060
						-			- - 	
· · · · · · · · · · · · · · · · · · ·		•								
			·							

- 120 -

- 121 -

÷

Land Acquisition & Compensation Cost (by expanding irrigable area):

Houses 33 nos x 1,000 = 33,000 Yard 6 ha x 2,700 = 16,200 Sawah 3 ha x 2,100 = 6,100 Tegal 15 ha x 1,000 = 15,000 Sub-Total: 70,300 say 70,000 US\$

Heightening of the Colo Weir crest by 1 meter mans an additional cost of US\$280,000. Accordingly, the crest shall remain at the de-signed height of 108 m S.H.V.P.

2.4.2 Main Canals

a) <u>Comparative Studies on the Main Canals</u>

The Wonogiri Dam Feasibility Study of 1975 gives the result of the comparative study made for the for alternative canal systems for supplying irrigation water required in the project area, in order to identify the most optimal system from the viewpoints of economic justification, operation and maintenance. The long canal system by gravity as proposed in the Master Plan Report on Upper Sala River Development was eventually recommended as the best. With additional technological information and newly prepared topographical map on hand, the detailed review of the results of such comparative studies given in the Wonogiri Dam Feasibility Study Report of 1975 was made. The conclusion arrived at was that the long canal system is basically the best.

The remaining question, then, is how to deal with the difficulties in operation and maintenance which always accompany to a long canal system. The operation and maintenance difficulties would be solved by introducing a pumping system by which the long canal could in fact be made substantially shorter. The alternative studies made in this connection with the two main canals will be detailed in the below.

Upper Sala Main Canal

Alternative D in the Wonogiri Dam Feasibility Study Report of 1975 proposes to divide the irrigable area into some blocks and irrigate them by an upper-reach canal and a lower-reach canal, on the assumption that a pumping unit is indispensable in view of making a long canal drastically shorter. This Alternative D, when compared with a long canal system on newly prepared topo-map, has been found to be economically quite unfeasible. Even though the operation and maintenance difficulties may not be completely solved from the engineering point-of-view alone, the long canal system is proposed as the only alternative primarily from the economic point-of-view.

Dengkeng Main Canal

In working out an irrigation plan for the left bank area which is to be fed by the Dengkeng Main Canal, the following alternatives have been examined:

123 -

Alternative A:

To supply water to an elevated area of 790 ha in Selogiri district north of Wonogiri, extending along the main road to Dengkeng from the vicinity of Colo, with a pumping system, but abandon 1,070 ha on the left side of K. Dengkeng.

Alternative B: To convey water by a gravity canal until Klaten area, bringing the inundated area of approximately 300 ha into its beneficiary area. This is the same plan as proposed in the Wonogiri Dam Feasibility Study of 1975.

The comparison between Alternative A and Alternative B is presented in Tables 2.4.2 to 2.4.4. As will be seen from these Tables, Alternative A may help shortening the proposed Dengkeng Main Canal but, as argued in the basic study, this alternative has been found economically unjustifiable same as in the case of the Upper Sala Main Canal. Therefore, Alternative B has been selected as the proposed plan.

b) Layout of the Main Canals

As has been previously described in the "Irrigation Canal System," two main canals have been aligned to cover the entire project area: the Upper Sala Main Canal which commands the area on the right bank of the Sala river and the Dengkeng Main Canal which commands the left bank of the River. On-map-allocation of these two Main Canals on 1/5,000 scale on the assumption that there shall be no change to the dam-height of the Colo Weir has eventually resulted at shifting of the Upper Sala Main Canal route by about 500 m (on an average) towards the mountain side of the Gunung Lawu in comparison with the route suggested in 1975. Thus, its crossing with the railway has become necessary at one point only. As for the Dengkeng Main Canal, it is tracing almost the same route as proposed in 1975 in its upper-reach, but it has been shifted to higher elevation by about one kilometer in view of enlarging its command area, in the lower-reach. On-map-location of both main canals has been duly confirmed by field-check.

In the course of a grass-root reconnaissance along the canal trace, the newly prepared map was found not conforming to the real topography nor elevation (for details, see the section dealing with topographic survey) and, accordingly, leveling survey with a pitch of 250 m has to be undertaken along the entire length of the main canals. Needless to say, alignment of these canals has been made with a good care to satisfy the basic requirements from the canal designing point-of-view, that is, an assurance of safety at the minimum cost for its construction and maintenance. Some of the guidelines adopted for the canal alignment may be given below:

- To align the canals as straight as possible to make their total length the minimum;
- To layout the canal routes so that they may not pass through yard nor intersect the trunk transportation-lines as far as possible;
- To make excavation and embankment balanced; and
- To arrange a route so as to maintain water surface in the canal the highest possible to ensure efficient diversion of irrigation water into the secondary canals.

Their entire alignment and profile are as illustrated in the attached Drawing.

The Main Canals, the Upper Sala Main Canal in particular, run through many tributaries of the Sala river and cross a fair number of irrigation canals already existing there, thus necessitating construction of crossing structures such as sihpons, aqueducts, and culverts at their points of intersection with the existing irrigation canals and tributaries. In addition, at such places where intensive flooding discharge is anticipated with a high frequency, installation of inverted siphon under the river bed has been proposed from the river maintenance point-of-view. The existing irrigation canals which will function as the secondary canals in our project area will generally run under the proposed main canal through culverts.

Apart from the crossing structures such as inverted siphons, aqueducts and culverts, the undermentioned facilities are required along the entire length of the main canal:

For distribution --- Turnouts and water measurement devices; For protection ---- Spillways and drains, and For maintenance ---- Roads and bridges.

The proposed irrigation system is shown in Fig. 2.4.4 and Drawing 002.

Table 2.4.2 Comparison of Benefit by Each Alternative Plan of Dengken Canal System

	Irrigable	Withou	t project	With p	project
Season	area	unit	Amount	unit	Amount
	ha	US \$/ha	US\$	· · · · · · · · · · · · · · · · · · ·	
Rainy	790	335	264,650	505	398,950
	550	50	27,500	505	277,750
Dry	240	335	80,400	505	121,200
Annual			372,550		797,900

Benefit increased with project (Alternative A)

Annual benefit increased with project

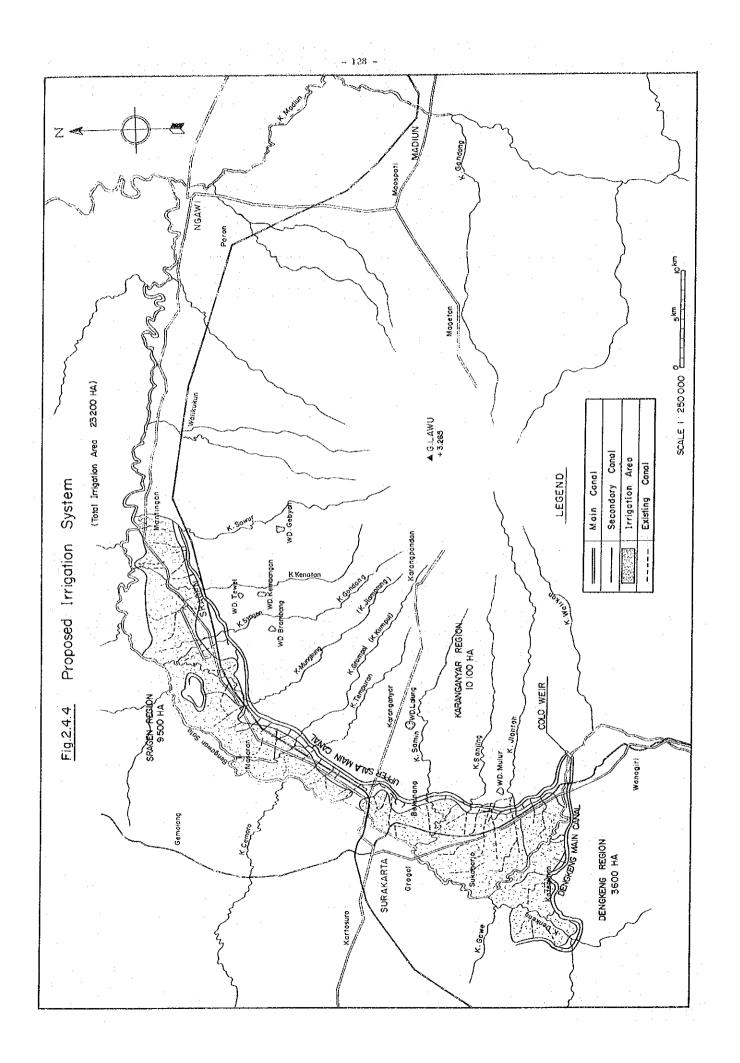
425,350 = 538 U.S.\$/ha

Benefit increased with project (Alternative B)

· · · ·

~	Irrigable	Withou	t project	With	project
Season	area	unit	Amount	unit	Amount
Rainy	770	335	257,950	505	388,850
Dry	770	335	257,950	505	388,850
Inundated area	300	230	69,000	400 505	120,000 151,500
Annual			584,900		1,049,200

US\$


Annual benefit increased with project 464,300 = 434 U.S.\$/ha

Alternative A	L ·	Alternative B	
Item	Cost	Item	Cost
	US \$		US \$
Pumping station	167.000	Irrigation canal (100 US\$/m x 7,500m)	750,000
Pumping Unit & appara- tuses (1 set)	550,000	Main Canal extended (120 US\$/m x 0.2 x 18,000)	432,000
Canal (100 US\$/m x 6700 ^m)	670,000		:
Inverted siphon (70,000 US\$/set x 2 set)	140,000	Inverted Siphon crossing Kali Dengkeng	140,000
Box Culvert (40,000 US\$/set x l set)	40,000	Inverted Siphon crossing Tributaries of Kali Dengkeng (70,000 U.S.\$/ set x 2 set)	140,000
Others	13,000	set x 2 set)	
Total cost	1,580,000	Others Total cost 1	18,000 480,000
Unit cost (per ha)	2,000 US \$/ha	Unit cost (per ha)	1,380 US \$/h
		Unit cost of Main canal ex-	
		tended from intake to Kali Dengkeng was	
		assumed 20% of the original cost in	· · ·
		Wonogiri Dam Report.	

<u>Table 2.4.3</u> Comparison of Cost by Each Alternative Plan of Dangken Canal System

Item	Cost	Cost
Personnel expenses	12 month x 300 \$/month	US\$ 3.600
Fuel charge	240.000 / × 0.1\$	24,000
Repair & others		22.400
Sub Total		50.000
Depreciation cost		27.500
Total		77.500

Table 2.4.4 Annual Operation & Maintenance Cost of Pumping Station

Secondary Canals

The irrigation water diverted from the proposed main canals will be led by the secondary canals to the minimum service area with an extent of 150 ha, the standard size in Indonesian projects.

The existing irrigation canals which are being used for conveyance of the irrigation water diverted at the upper-reach of the tributaries will be used, under the project, as the secondary canals in the technical and semi-technical areas by being connected with the main canals under the project. For this purpose, some modifications of their cross-sections and slopes or a minor rehabilitation will be necessary. The rainfed area as well as nontechnical area coming under the project have to be provided with new secondary canals.

Number and length of the secondary canals will be as follows:

	Right bank	Left bank	<u>Total</u>
Number of new canals	46	8	54
Total length of new canals (km)	31.6	9.6	41.2
Total length of existing canals to be rehabilitated		•	40

2.4.4

a). Laterals and farm ditches

Farm Net Work

The entire irrigation area withan extent of 23,200 ha will be divided into 48 service blocks: 36 in the Upper Sala area and 12 in the Dengkeng area. The turnouts which distribute irrigation water will be provided at the point where the secondary canal is branching off from the main canal and at the head of each irrigation service area. The water measurement devices such as Romain gates, Parshall flume, etc. will be installed as required on the main canal as well as on the laterals for an equitable water distribution.

The existing laterals and small channels will be utilized as the tertiary canals in the project area. The density of the existing tertiary canals, however, is not sufficient compared with the module commonly adopted in other Asian countries. Taking into consideration the size and general shape of the farm-blocks and, on the assumption that each farm-block will be equipped with a ditch, at least, on one side of it for equitable distribution of irrigation water, the optimal density of irrigation canals seems to be about 40 m/ha (this density also is within the criteria recommended by the Asian Development Bank).

			· .						
	Table 2.4	<u>5</u> D	ensity	of	Canal	and	Road		
	1		5 A.			. N			
- 1	· · ·	:	an an an an an				19 A.		
			· .	2.				1.1	

	Technic Semi Te	al chnical	Non Tech Rainfed	nnical	Total
Item	A = 15	5,840 ha	A = 7	360 ha	1 A=23,200ha
	Density	Length	Density	Length	Length
(Canal)	m/ha	m	m/ha	. m	m
Existing Canal	30	475,200	-	-	475,200
New "	10	158,400	40	294,400	452,800
· · · · ·	· · ·				928,000
(Drain)					
Existing Drain	20	316,800	-	-	316,800
New "	20	316,800	40	294,400	<u>611,200</u>
مراجع المراجع					928,000
(Road)					
Existing Road	: 30	475,200	10	73,600	548,800
New	-		20	147,200	147,200
					696,000

- 130 -

Hence, both the existing and the additional canals and farm ditches will have to be arranged to meet this canal density on the entire project area (see Table 2.4.5).

b) Drainage

Needless to say, suitable drainage facilities substantially help increase the productivity of the soil in the farm. As for the drainage network, each farm-block has to have a drainage ditch at least on one side of it. Then, the density of drainage channels required for proper water management would be at least 40 m/ha. The existing density of drainage in the project area as estimated from the topographical map of 1/5,000 scale is about 20 m/ha for technical and semi-technical areas and 0 m/ha for non-technical and rainfed areas.

Additional drainage ditches need to be made as soon as possible for releasing heavy rain-water. The drainage channels with a density of 20 m/ha for technical and semi-technical areas and 40 m/ha for non-technical and rainfed areas are strongly recommended in order to improve the drainage conditions in the entire project area. However, efforts should be made hereafter so that the target-density of 40 m/ha (see Table 2.4.5) for the entire project area can be realized in the near future.

c) Farm roads

Most of the existing farm roads in the project area are not only poorly maintained but not jeepable also and, besides, the density of the farm road including the maintenance road is estimated at around 30 m/ha for technical and semi-technical areas and 10 m/ha for nontechnical and rainfed areas. For proper water management and effective farming practices, one farm road accessibly by a jeep or any other small vehicle is necessary in each farm-block.

The necessary density of farm road seems to be nearly the same as that of the irrigation canal. Thus, the farm road with a density of 20 m/ha has been additionally proposed for non-technical and rainfed areas in the project area (see Table 2.4.5).

2.5 FUTURE USE OF MULUR RESERVOIR WATER

Mulur Reservoir was built in Karanganyar in the year 1921 for irrigation purpose. As the Upper Sala Main Canal proposed in the Wonogiri Irrigation Project runs close to it, a major part of its command area will come within the Project area. Hence, it is quite necessary to consider the ways and means to make effective use of the irrigation water stored in the same reservoir. Particulars about the Storage Capacity of Mulur Reservoir:

Effective storage capacity:	$3.4 \times 10^6 \text{ m}^3$
Catchment area:	50 km^2
Irrigation area = Rainy season:	4,028 ha
Dry season:	1,530 ha

Thus, Mulur Reservoir collects the excess run-off during rainy season for irrigation of paddy field during dry season.

Judging from the annual rainfall in the area (1,500 - 3,000 mm), the catchment area (50 km²), and the run-off coefficient (30 - 50 %). the water resources made available for irrigation purpose by Mulur Reservoir is estimated at about $20 - 75 \times 10^6 \text{ m}^3$. On the other hand, the current consumptive use during rainy season is estimated at about 18 x 10^6 m³, when the total acreage of the irrigable area (4,028 ha), the unit water requirement (0.35 litre/sec/ha), the total irrigating days (120 days) and other factors are taken into account. Therefore, Mulur Reservoir can atore the irrigation water to its fullest capacity by the beginning of each dry season, excepting in the severest drought years.

2) Future Use of Mulur Reservoir Water

1)

The paddy field in the beneficiary area of Mulur Reservoir which will be left outside of the Project area is approximately 380 ha; supposing that the same paddy field should be irrigated at the current unit water requirement (0.20 litre/sec/ha), its consumptive use would remain at $0.8 \times 10^6 \text{ m}^3$ and the Mulur Reservoir could have surplus water which is sufficient for irrigating an additional area of 1,300 ha. As regards the effective use of this much surplus water from Mulur Reservoir, there are three (3) ideas as follows:

i) Linking with other canal system in non-Project area

The surplus water originating at Mulur Reservoir may be sent to other non-Project area by constructing a canal along the contour-line which links with the canal system there. This idea, however, will turn to be quite uneconomical from the fact that a considerable number of crossing structures will come to be necessary and the fact that the elevation of Mulur Reservoir itself is comparative low.

Utilization of surplus water for irrigation of ii) lower reach area

Under the Project, a hilly area in Sragen along the proposed Main Canal is left unirrigable because it requires pump irrigation. Even if extra water is made available, irrigation of this hilly area still remains uneconomical as it is only feasible by use of pumps.

132 ~

iii) Inclusion of the left-over area under the Project

As 90 % of the beneficiary area of Mulur Reservoir will have been taken into the Project area, the remaining 10 %, or 380 ha, may also be put under the Project and the same intensive paddy cultivation will be carried on there also. The total water required for irrigating 380 ha at the W.I.P. (Wonogiri Irrigation Project) unit of 7 mm on an average, would sum up to $3.2 \times 106 \text{ m}^3$ and there will theoretically be no surplus water.

3) Conclusions

Although evaluation of the Wonogiri Irrigation Project has been made by excluding the irrigation area spreading close by Mulur Reservoir, the Project operation shall be extended over this area also in the future. The water storable in the Mulur Reservoir shall be used for irrigating 380 ha which has been kept outside the Project boundary, during the dry season at W.I.P. standard. The surplus water during rainy season will be effectively utilized in replenishing water losses due to operation and maintenance practices along the lengthy main canal, thus, Mulur Reservoir can be used as a regulating facility for proper functioning of the Upper Sala Main Canal.

3. HYDRAULIC & STRUCTURAL CALCULATIONS

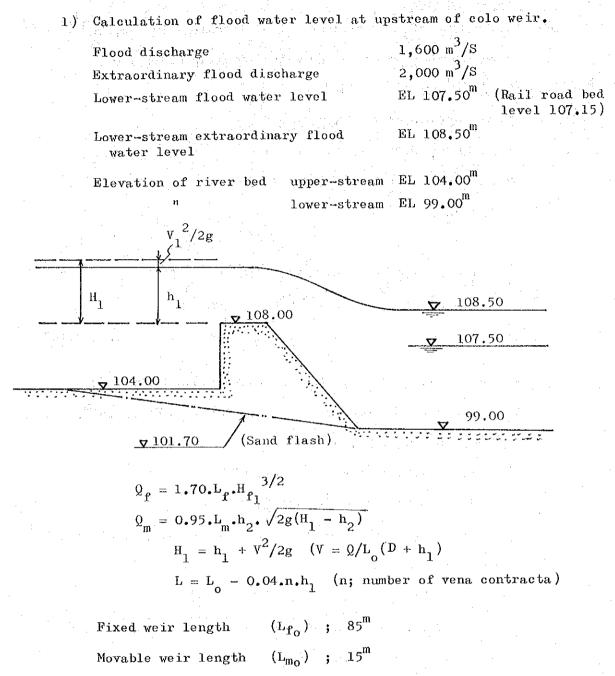
3.1 COLO WEIR

Principle features of the Colo weir will be as follows.

?		
Type of weir		Fixed weir
River bed elevation	on (rear)	104.00 m SHVP
n .	(downstream)	99.00 m SHVP
Intake water level		107.00 m SHVP
Max. intake discharge (right) & irrigation area		24.3 cms/19,600 ha
H	(left)	5.2 cms/3,600 ha
Re-regulating capacity		1.2 million m^3
Crest elevation of weir		108.00 m SHVP
Flood discharge		1,600 cms
Extraordinary flood discharge		2,000 cms
Flood water level	(downstream)	107.50 m SHVP
H a	(upstream)	111.50 m SHVP
Extraordinary flood water level (downstream)		108.50 m SHVP
u.	(upstream)	112.10 m SHVP
		and the second second second second second second second second second second second second second second second

Total length of weir Length of fixed weir Span of sand flash Height of weir

The proposed structure of the Colo weir is shown in DWG. WI-003 to DWG. WI-005.


107.0 m

89.0 m

7.5 m x

9.0 m

2 bays

Total length

(L₀) ; 107^m

a) At the time of extraordinary flood discharge $(Q = 2,000^{m^3/S})$ Assuming that upper-stream water level is EL 112.10^m;

$$(h_{f1} = 4.10^{m}, h_{m1} = 10.40^{m})$$

$$L_{f} = 85.0 - 0.04 \times 10 \times 4.10 = 83.36^{m}$$

$$L_{m} = 15.0 - 0.04 \times 4 \times 10.40 = 13.34^{m}$$

$$V = 2000/(107 (112.10 - 104) + (7.90 + 14.90) \times 3.50) = 2.1^{m/S}$$

$$V^{2}/2g = 0.23$$

$$Q_{f} = 1.70 \times 83.36 \times (4.10 + 0.23)^{3/2} = 1.277^{m^{3}/S}$$

$$Q_{m} = 0.95 \times 13.34 \times 6.80 \times \sqrt{19.6 (10.40 + 0.23 - 6.8)} = 747^{m^{3}/S}$$

$$\therefore Q = Q_{f} + Q_{m} = 2,024 \xrightarrow{m^{3}/S} = 2,000^{m^{3}/S}$$

Accordingly, the upper-stream water level will be EL 112.10^m.

b) At the time of ordinary flood discharge $(Q = 1,600^{m^3/S})$ Assuming that the upper-stream water level is EL 111.50^m; $(h_{f_1} = 3.50^m, h_{m_1} = 9.80^m)$ $L_f = 85.0 - 0.04 \times 10 \times 3.50 = 83.60^m$ $L_m = 15.0 - 0.04 \times 4 \times 9.80 = 13.43^m$ $V = 1600/(107 (111.50 - 104.0) + (7.90 + 13.70) \times 2.90) = 1.85^{m/S}$ $V^2/2g = 0.17$ $Q_f = 1.70 \times 83.60 \times (3.50 + 0.17)^{3/2} = 999^{m^3/S}$ $Q_m = 0.95 \times 13.43 \times 5.80 \times \sqrt{19.6 (9.80 + 0.17 - 5.80)} = 669^{m^3/S}$ $Q = Q_f + Q_m = 1,668^{m^3/S} = 1,600^{m^3/S}$

Therefore, the upper-stream water level will be EL 111.50^m.

- 136 -

2) Section determination of fixed weir

The study on the section form has been made on the assumption that the most critical water level is arrived at when the discharge in both the upper- and lower-streams of the weir will amount to about $500^{\text{m}}/\text{S}$ and, therefore, Q has been fixed as $500^{\text{m}}/\text{S}$.

- * Water level of upper- and lower-stream
 - o Upper-stream water level

Assuming that the water level of the upper-stream is EL 108.70^{m} , the discharge which flows down the fixed weir (Q1) will be;

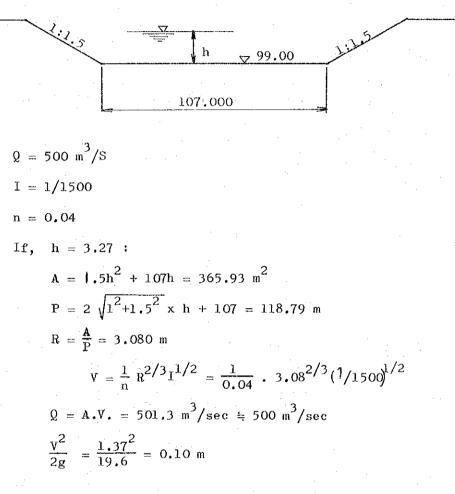
 $Q_1 = C.L_1.h_1^{3/2}$

where, C ; Coefficient of overflow , 1.7

Ll; Width of weir , 89^m

- h]; Overflow head , 0.7^m
- $Q_1 = 1.7 \times 89 \times 0.70^{3/2} = 88.6^{m^3/S}$

while, the discharge which flows down the sand flash (Q_2) will be;

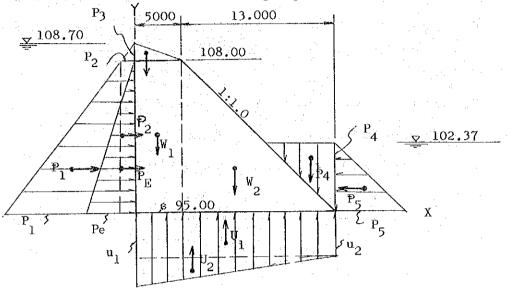

 $Q_2 = Ca \cdot L_2 \cdot hc \cdot Vc$

where, Ca; inflow coefficient 0,95

- L_2 ; width, 15 0.04 x 4 x 7.1 = 13.86^m
 - h_c ; critical depth 2/3(108.70 101.60) = 4.73^m
 - Vc; critical velocity $(2g(7.1 4.73))^{1/2} = 6.82^{m/S}$
- $Q_2 = 0.95 \times 13.86 \times 4.73 \times 6.82 = 424.7^{m^3/S}$
- $Q_1 + Q_2 = 88.6 + 424.7 = 513.3^{m^3/S} = 500^{m^3/S}$

Accordingly, the upper-stream water level is EL 108.70^m.

o Lower-stream water level



Accordingly, lower-stream water level will be:

EL 99.00 + 3.27 + 0.10 = EL 102.37

o Stability of fixed weir

The diagram of load for the standard section of the fixed weir is as shown in the following Fig.

Hydrostatic Pressure

$$p_{2} = p_{3} = w_{0}h = 1.0 \times 0.7 = 0.7 \text{ t/m}^{2}$$

$$p_{1} = 1.0(108.70 - 95.0) = 13.7 \text{ t/m}^{2}$$

$$p_{4} = p_{5} = 1.0(102.37 - 95.0) = 7.37 \text{ t/m}^{2}$$
Uplift pressure

 $u_1 = 1.0$ $u_2 + \frac{1}{3} (108.7 - 102.37) = 7.37 + 2.11 = 9.48 t/m^2$ $u_2 = P_4 = 7.37$

Earth pressure by sediment

$$p_e = 1/2 (w_1 - w_o) C_o H_e$$

= 1/2 (1.8 - 1.0) x 0.5 x 13.0 = 5.20 t/m²

· · ·	. **.		•	an de la composición de la composición de la composición de la composición de la composición de la composición La composición de la c	
	é	xternal force		arm length	Moment
	mark	calculation	mark	calculation	
√eight	Wl	2.3x5.00x13.00=149.50	Xw1	1/2x5.00=2.50	373.75
	¥2	$2.3 \times 1/2 \times 13.00^{2} = 194.35$	Xw ₂	5.00+1/3x13.00=9.33	1813.29
	P ₁	0.70x13.00=9.10	Yp1	1/2x13.00=6.50	59.15
hydrostatic pressure	P2	$1/2x13.00^2 = 84.50$	r_{p_2}	1/3x13.00=4.33	365.89
	P_3	1/2x0.70x5.00=1.75	Хр ₃	1/3x5.00=1.67	2.92
	P_4	$1/2x7.37^2 = 27.16$	Xp ₄	18.00-1/3x7.37=15.54	422,07
	. P 5	$-1/2x7.37^2 = -27.16$	Yp5	1/3x7.37=2.46	- 66.81
Jplift	Ul	- 7.37x1800= - 132.66	Xu ₁	1/2x18.00=9.00	- 1193.94
ressure	U ₂	-1/2x2.11x18.00 = -18.9	9 ^{.Xu} 2	1/3x18.00=6.00	- 113.94
earth Pressure	P _E	1/2x5.20x13.00=33.80	¥р _Е	1/3x13.00=4.33	146.35
earthquake	KWl	0.15x149.50=22.43	Yw ₁	1/2x13.00=6.50	145.80
ressure	KW ₂	0.15x194.35=29.15	Yw2	1/3x13.00=4.33	126.22
	ΣV =	$W_1 + W_2 + P_3 + P_4 + U_1 + U_2 = 240$.10 ^t	ΣM=208	0.75 ^t -M
• •		$P_1 + P_2 + P_5 + P_E + KW_1 + KW_2 = 1$		t	

Stability for falling

 $d = \frac{\Sigma M}{\Sigma V} = \frac{2080.75}{240.10} = 8.67^{m}$ $e = \frac{18.00}{2} - 8.67 = 0.33^{m} < \frac{18.00}{6} = 3.00^{m}$

Accordingly, the weir must be stabilized for falling.

Stability for Sliding

$$\mathbf{F} = \frac{\Sigma \mathbf{V} \cdot \mathbf{f}}{\Sigma \mathbf{H}}$$

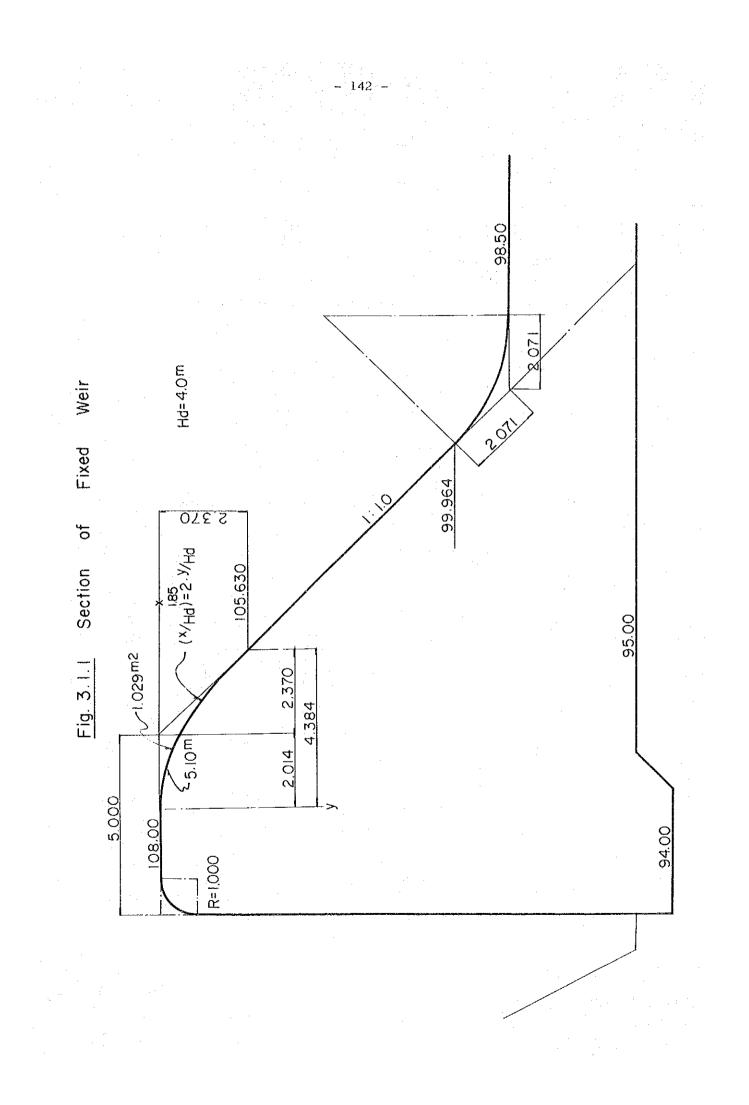
where, f; coefficient of friction with base ground, 0.75

- 141 -

$$\mathbf{F} = \frac{240.10 \times 0.75}{151.82} = 1.2$$

Therefore, the weir must be stabilized for Sliding.

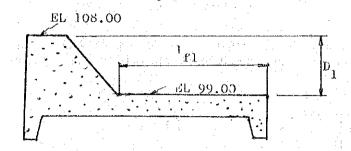
Ground reaction


$$q = \frac{\Sigma V}{L} (1 + \frac{6e}{L})$$

where, L; bottom width of the weir, 18.0 $^{\rm m}$

$$q = \frac{240.10}{18.00} (1 \pm \frac{6x0.33}{18.0}) = \frac{14.81}{11.87} t/m^2$$

Accordingly, the proposed standard section of the fixed weir must be stabilized. Then, the actual construction section of the fixed weir is hydraulically


as shown in the following Fig. 3.1.1.

3) Apron

(a) Length of apron

The apron must be provided to protect the weir from scouring the lower streams river bed by overflow.

The length of the fore apron may be calculated from the following folmula.

$$1_{fl} = 0.6C \sqrt{D_l}$$

where, l_{f_1} ; length of fore apron (m)

 D_1 ; height from fore apron to the crest of weir (m)

C ; coefficient of path of percolation in Bligh

C = 12 (coarse sand in river bed)

 $D_1 = EL 108.00 - EL 99.00 = 9.00^m$

 $1_{f_1} = 0.6 \times 12 \times \sqrt{9.00} = 21.6 = 25.0^m$

(b) Thickness of fore apron

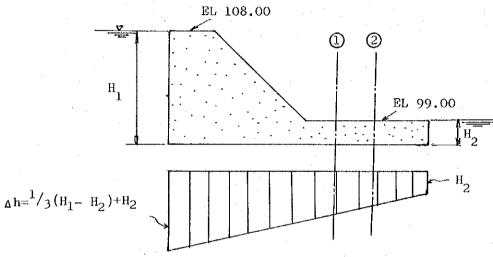
The fore apron must be completely stabilized for the uplift pressure. The thickness of the fore apron may be calculated from the following formula.

$$T \geq \frac{4}{3} \cdot \frac{Ah - hf}{r - 1}$$

where, T; thickness of fore apron (m)

r ; specific gravity of fore apron, 2.3

⊿h ; distance between upper- and lower-stream water level (m)

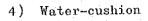

 h_{ρ} ; head loss at some point (m)

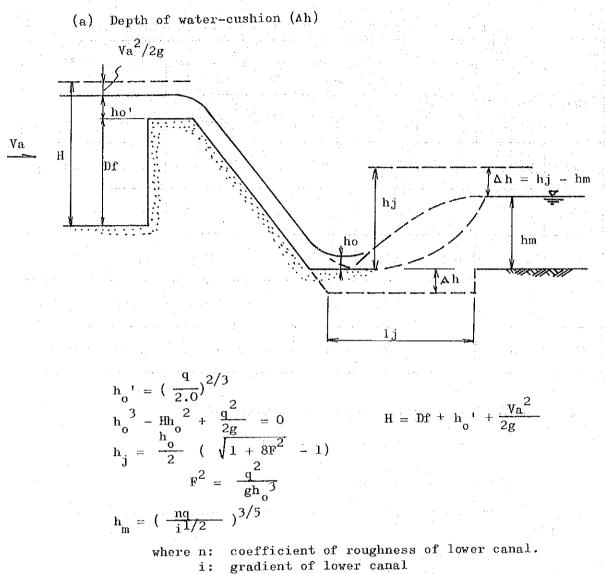
$$h_{f} = \frac{\Delta h}{1} \cdot 1'$$

where, 1'; creep length at some point

1 ; total creep length

The uplift pressure at the point of the fixed weir must be estimated at 1 \triangle h because of curtain grouting worked out at this point. 3


$$H_1 = 11.0^m$$
, $H_2 = 2.0^m$
 $ah = 1/3 (11.0 - 2.0) + 20 = 5.0^m$


The thickness of the fore apron at 1 point

$$h_{f} = \frac{\Delta h}{1} \cdot 1' = \frac{5.0}{39.5} \times 18.3 = 2.32^{m}$$
$$T \ge \frac{4}{3} \cdot \frac{5.0 - 2.32}{2.3 - 1} = 2.74 = 2.8^{m}$$

The thickness of the fore apron at 2 point.

$$h_{f} = \frac{Ah}{1} \quad .1' = \frac{5.00}{39.5} \quad x \ 28.3 = 3.59^{m}$$
$$T \stackrel{\geq}{=} \frac{4}{3} \cdot \frac{5.0 - 3.59}{2.3 - 1} = 1.44 = 1.5^{m}$$

 $\Delta \mathbf{h} = \mathbf{h}_{\mathbf{j}} - \mathbf{h}_{\mathbf{m}}$

m

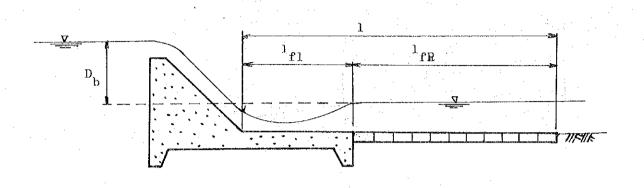
Table	of	calculation

3	n = 0.04	i = 1/	1,500	$\frac{va^2}{2g}$	= 0 D _f	$= 8.0^{\mathrm{m}}$	Width (of overflow	B = 107
` [**************************************	h j				⊿h
	Q	q	h _o '	H	h o	\mathbf{F}^2	h.	h m	≖ h -h
	m ³ /S 50	m ³ /S/m 0.47	m 0,38	m 8.38	m 0.036	481.2	m 1.099	m 0.823	m 0.276
	100	0.93	0.60	8.60	0.072	235.1	1.526	1.240	0.286
	200	1.87	0.96	8.96	0.142	124.7	2.173	1.885	0.288
	300	2.80	1.25	9.25	0.211	85.2	2.651	2.402	0.249
	400	3.74	1.52	9.52	0.278	66.4	3.068	2.857	0.211
	500	4.67	1.76	9.76	0.344	54.7	3.430	3.265	0.165

Accordingly, the depth of water-cushion will be;

 $\Delta h = 0.288 = 0.3$ ---- 0.5^{m}

(b) Length of water-cushion (1,)


The length of water-cushion may be computed from Smetana formula.

$$l_j = 6 (h_j - h_o)$$

From the table of calculation,

$$h_j max = 3.430^m$$
 $h_o max = 0.344^m$
... $l_j = 6 (3.430 - 0.344) = 18.5^m = 20.0^m$

5) Length of riprap

The length of riprap may be calculated by the Bligh formula.

$1 = 0.67C \sqrt{D_{b.q}}$

$$\mathbf{1}_{\mathbf{fR}} = \mathbf{1} - \mathbf{1}_{\mathbf{fI}}$$

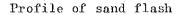
where, D_b; height from lower stream water level to crest of weir during droughty discharge. (m) Ordinarily, distance between crest of weir and fore apron.

q ; design flood discharge per meter (m³/s/m)
c ; coefficient of path of percolation in Bligh.

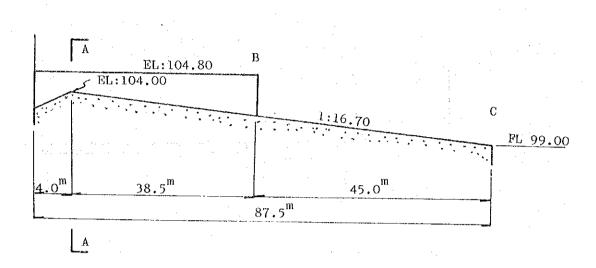
 $1 ; 1_{f1} + 1_{fR}$

1_{f1}; length of fore apron

lfR; length of riprap


Assuming that the maximum discharge being untouched by the rail road bed is 500 $\rm m^{3}/S$, q will be;

 $q = \frac{500}{85} = 5.88 \text{ m}^3/\text{S/m}$ $D_b = \text{EL } 108.00 - \text{EL } 99.00 = 9.00^{\text{m}}$ C = 12


Accordingly, the length of riprap will be;

$$1 = 0.67 \times 12 \times \sqrt{9.00 \times 5.88} = 58.5^{m}$$

$$1_{fR} = 1 - 1_{f1} = 58.5 - 21.6 = 36.9 = 40.0^{m}$$

6) Sand flash

- 148 -

A - AEL:104.80 EL:104.00 7.5^{m} 7.5^{m} 7.5^{m}

When the sand flash gate is completely opened the critical depth must be seen on the vicinity B point. Then, becoming lower the upper stream's water level, this critical depth must be closed to the A point.

The critical depth at the A point may be calculated from the following formula.

hc =
$$\sqrt[3]{\frac{Q^2}{gb^2}}$$

Q = $\sqrt{g \cdot b^2 \cdot h_c^3}$

where, Q; discharge of one sand flash (m^3/s)

- g ; gravity acceleration $9.8 \text{ m}^3/\text{S}$
- b ; width of one sand flash 7.5^m
- h_c ; critical depth (m)

Assuming that the upper stream's water level is EL 104.80;

$$h_{c} = \frac{2}{3} (EL \ 104.80 - EL \ 104.00) = 0.53^{m}$$

$$Q = (9.8 \ x \ 7.5^{2} \ x \ 0.53^{3})^{1/2} = 9.06 \ m^{3}/S$$

$$V_{c} = \frac{Q}{b.h_{c}} = \frac{9.06}{7.5 \ x \ 0.53} = 2.28 \ m/S$$

The critical gradient of the sand flash may be computed by the Manning formula.

$$I_{c} = \frac{n^{2} \cdot v^{2}}{R^{4/3}} = \frac{0.03^{2} \times 2.28^{2}}{(0.53 \times 7.5)/(2 \times 0.53 + 7.5)^{4/3}}$$

= 0.013 \equiv 1/76.9 < 1/16.7

Then, the velocity of flashing may be calculated by the following formula.

$$V_c = 1.5 \cdot C \cdot \sqrt{d}$$

where, V_c ; velocity of flashing, 2.28 m/S

C ; coefficient of gravel shape, 3.5

$$\frac{V_c}{d=(\frac{V_c}{1.5C})^2} = (\frac{2.28}{1.5c})^2 = 0.19^m$$

Height of Pier 7)

The height of pier is shown as follows

Elevation of top of pier = flood water level + freeboard 1 + height of gate + freeboard 2

flood water level ; design flood water level on the upper stream where,

> ; distance between flood water level and bottom of gate generally, major river $> 2.0^{m}$

medium river $> 1.5^{m}$

; distance between top of gate and bottom freeboard 2

Elevation of top of pier (Sand flash)

= EL 111.50 + 2.0 + 6.55 + 0.5 + 0.75 (thickness of slab)

= EL 120.8 = EL 121.5^m

freeboard 1

Elevation of top of pier (fixed weir)

= EL 111.50 + 2.0 = EL 113.50^m

- 8) Intake
 - a) Elevation of intake sill

The elevation of intake sill must be got 1.5^m higher than the sand flash bed to protect from flowing silt into the canal.

Accordingly, the elevation of intake sill will be;

EL 103.21 + 1.5 = EL 104.71 = EL 104.80^m

b) Width of Intake

The width of intake may be calculated from the following formula.

$$B = \frac{Q}{H.V.}$$

where, B; width of intake (m)

Q; intake discharge (m^3/S)

V; intake velocity (m/S)

H; intake depth (m)

intake discharge;

Upper Sala main Canal (right side) $Q_R = 24.3^{m^3/S}$ Dengkeng Main Canal (left side) $Q_L = 5.2 + 2.0 = 7.2^{m^3/S}$ * release discharge for lower sala river.

intake velocity; V = 0.6 - 1.0 m/S

intake depth; H = intake water level - elevation of intake sill

$$=$$
 EL 107.50 - EL 104.80 = 2.70^m

Accordingly, the width of intake will be;

Upper Sala Main Canal	$B_{\rm R} = \frac{24.3}{2.70 \times 0.6} = 15.0^{\rm m}$
Dengkeng Main Canal	$B_{L} = \frac{7.2}{2.70 \times 0.6} = 4.5^{m}$

o Span of intake

One span of intake must be 5^m giving thought to operate mechanically the intake gate.

Accordingly, the span of intake will be;

Upper Sala Main Canal	$5.0^{\rm m} \ge 3^{\rm span}$
Dengkeng Main Canal	$4.5^{\text{m}} \times 1^{\text{span}}$

- Hydraulic calculation of diversion works 9)
 - a) Upper sala main canal side

Intake water level ; EL 107.00 Intake discharge ; $Q = 24.3 \text{ m}^3/\text{sec}$; Width - 5.0 $^{\rm m}$ Intake shape elevation of sill-EL 104.80^m number of bay - 3

151

- Drop of water surface at the inlet of intake (i) $h_{i} = f_{i} \frac{v_{2}^{2}}{2g} + \frac{v_{2}^{2} - v_{1}^{2}}{2g}$
 - where, f_i ; coefficient of inlet loss 0.2
 - V_1 ; approaching velocity (m/sec) 0
 - V_2 ; entrance velocity (m/sec)

$$V_2 = \frac{8.1}{(107.0 - 104.8) \times 5.0} = 0.74 \text{ m/sec}$$

$$h_i = 0.2 \times \frac{0.74^2}{2x9.8} + \frac{0.74^2}{2x9.8} = 0.034^m$$

Drop of water surface by abrupt rise of bottom (ii) $h_r = f_r \cdot \frac{v_2^2}{2g} + \frac{v_2^2 - v_1^2}{2g}$

where, f,; coefficient of abrupt rise loss

 V_1 ; approaching velocity (m/sec)

 V_2 ; entrance velocity (m/sec)

 $A_1 = (107.0 - 102.68) \times 5.0 = 21.6^m^2$ upper stream flow area $A_2 = (107.0 - 104.80) \times 5.0 = 11.0^{m^2}$ lower stream flow area

$$A_2/A_1 = 0.51$$
 ----- $f_r = 0.235$
 $V_1 = 0$ $V_2 = 0.74^{m/sec}$

$$h_r = 0.235 \times \frac{0.74^2}{2x9.8} + \frac{0.74^2}{2x9.8} = 0.035^m$$

(iii) Drop of water surface by the trash rack $\frac{4}{3}$ 2

$$h_s = \beta \sin \beta \left(\frac{t}{b}\right)^{1/2} \cdot \frac{V_1}{2g}$$

where, β ; coefficient by screen shape

 ∂ ; inclined angle of rack

- t ; thickness of screen flat bar (mm)
- b ; space of screen flat bar (mm)
- V_1 ; upper stream velocity of screen (m/s)

The value h_s computed by above formula is assumed to be no trashes on the rack. However, trashes must be actually caught on the screen.

Therefore, the value h will be;

$$h = 0.1 - 0.3^{m} = 0.20^{m}$$

Then, the lower stream water depth of screen will be;

$$H = (EL 107.0 - EL 104.8) - (h_i + h_r + h_s)$$
$$= 2.20 - 0.269 = 1.931^{m}$$

(iv) Drop of water surface by friction

$$h_{f_1} = \frac{2g \cdot n^2}{n^{1/3}} \cdot \frac{L}{R} \cdot \frac{V^2}{2g} = \frac{n^2 V^2}{R^{4/3}} \cdot L$$

where,

n ; coefficient of roughness - 0.015 V ; mean velocity - 0.71^{m/sec}

L; length of culvert -43.0^{m}

R ; hydraulic radius (m)

flow area

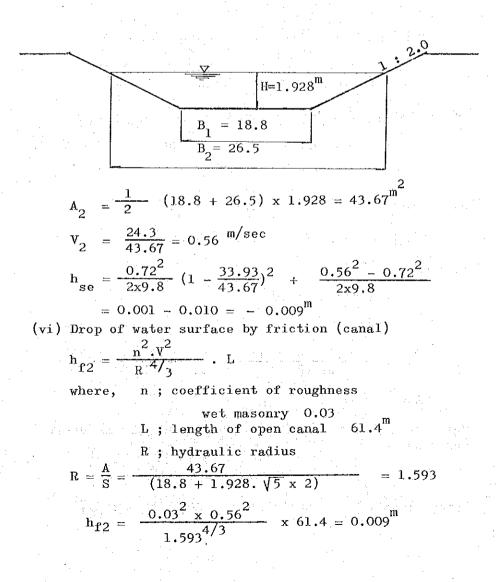
$$A = 5.9 \times 1.931 = 11.39^{m^2}$$

wetted perimeter $S = 1.931 \times 2 + 5.9 = 9.76^{m}$

hydraulic radius
$$R = \frac{\dot{A}}{S} = \frac{11.39}{9.76} = 1.167$$

$$h_{f_1} = \frac{0.015^2 \times 0.71^2}{1.167^{4/3}} \times 43.0 = 0.004^m$$

(v) Drop of water surface by abrupt enlargement of section

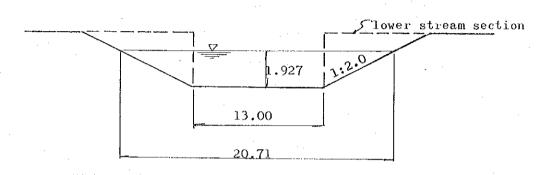

$$h_{se} = \frac{V_1^2}{2g} (1 - \frac{A_1}{A_2})^2 + \frac{V_2 - V_1}{2g}$$

water depth in the outlet of the culvert H = $1.931 - 0.003 = 1.928^{\text{m}}$

$$A_1 = (5.85 \times 2 + 5.90) \times 1.928 = 33.93^{m}$$

$$V_1 = \frac{Q}{A_1} = \frac{24.3}{33.93} = 0.72 \text{ m/sec}$$

Section of open canal



(vii) Drop of water surface by gradual contraction of section (open canal -- measuring weir)₂ 2

$$h_{gc} = f_{gc} \frac{V_2^2 - V_1^2}{2g} + \frac{V_2^2 - V_1}{2g}$$

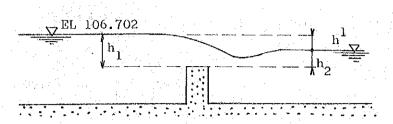
$$f_{gc} ; \text{ coefficient of gradual contraction} \\ \log - 0.3$$

Section of canal

Total drop of water surface of above mentioned

calculation;
$$\Delta h = h_i + h_r + h_s + h_{f1} + h_{se} + h_{f2}$$

= 0.034 + 0.035 + 0.200 + 0.004 - 0.009
+ 0.009 = 0.273^m


water depth
$$H = 2.2 - 0.273 = 1.927^{m}$$

 $A_1 = 1/2 (13.0 + 20.71) \times 1.927 = 32.48^{m^2}$
 $V_1 = 0.75^{m/sec}$
 $A_2 = 13.0 \times 1.927 = 25.05^{m^2}$
 $V_2 = 0.97^{m/sec}$
 $h_{gc} = 0.3 \times \frac{0.97^2 - 0.75^2}{2x9.8} + \frac{0.97^2 - 0.75^2}{2x9.8}$

Total drop of water surface at the point just before the measuring weir

$$\Sigma h = \Delta h + h_{gc} = 0.273 + 0.025 = 0.298^{m}$$

water level $W.L = EL 107.00 - 0.298 = EL 106.702^{m}$

(viii) Drop of water surface by measuring weir

The Condition of complete overflow is given as follows

$$h_2/h_1 \leq 2/3$$

The overflow discharge on the wide crest weir must be computed from the following formula.

$$Q = 1.8.B.h_1^{3/2}$$

where, $Q = 24.3^{m^3/S}$
 $B = 13.0^{m}$

$$h_1^{3/2} = \frac{24.3}{1.8 \times 13.0} = 1.038$$

 $h_1 = 1.025^m$

 h_2 under the condition of complete overflow

$$h_2 \leq 2/3 \times h_1 = 0.713^m$$

 $h_2 = 0.71^m$

Accordingly, drop of water surface by measuring weir under the condition of complete overflow will be;

$$h' = 1.025 - 0.71 = 0.315 = 0.32^{m}$$

(ix) Water level at the start point of upper sala main canal

lower stream water level of weir

EL
$$106.702 - 0.32 = EL 106.38$$

design water depth of canal

$$h = 1.92^{m}$$

Accordingly, the elevation of the canal bed will be;

EL 106.38 -
$$1.92 = EL 104.46^{tr}$$

- b) Dengkeng main canal side
 - Intake water level ; EL 107.00 Intake discharge ; $Q = 5.2 + \frac{2.0}{(\text{release discharge for lower sala river})}$ Intake shape ; width - 4.5^m elevation of sill - EL 104.80^m number of bay - 1

i) Drop of water surface at the inlet of intake

$$h_{i} = f_{i} \cdot \frac{\frac{V_{2}^{2}}{2g} + \frac{\frac{V_{2}^{2} - V_{1}^{2}}{2g}}{2g}}{(107.0 - 104.8) \times 4.5} = 0.73^{\text{m/s}}$$

$$h_{i} = 0.2 \times \frac{0.73^{2}}{2x9.8} + \frac{0.73^{2} - 0^{2}}{2x9.8} = 0.032^{\text{m}}$$

$$h_{r} = f_{r} \cdot \frac{V_{2}^{2}}{2g} + \frac{V_{2}^{2} - V_{1}^{2}}{2g}$$

upper stream flow area

(

$$A_1 = (107.0 - 101.92) \times 4.5 = 22.86^{m^2}$$

lower stream for area

$$A_2 = (107.0 - 104.80) \times 4.5 = 9.90^{m^2}$$

$$A_2/A_1 = 0.43 - f_r = 0.27$$

$$h_r = 0.27 \times \frac{0.73^2}{2x9.8} + \frac{0.73^2}{2x9.8} = 0.034^m$$

(iii) Drop of water surface by the trash rack

$$h_{s} = \beta \sin \theta \left(\frac{t}{b}\right)^{4/3} \cdot \frac{v^2}{2g}$$

The value h computed by above formula is assumed to be no trashes on the rack. However, trashes must be actually caught on the rack. Therefore, the value h will be;

$$h_s = 0.1 - 0.3^m = 0.200^m$$

Then, the lower stream water depth of screen will be;

$$H = (EL 107.00 - EL 104.80) - (h_i + h_r + h_s)$$
$$= 2.20 - 0.266 = 1.934^{m}$$

156 -

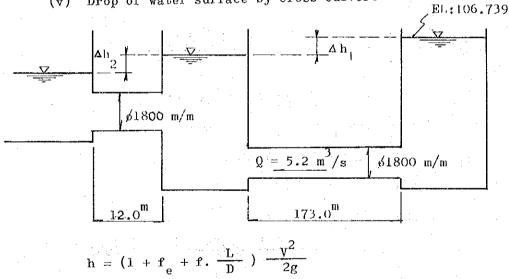
(iv) Drop of water surface by abrupt enlargement of section

$$h_{se} = \frac{V_1^2}{2g} (1 - \frac{A_1}{A_2})^2 + \frac{V_2^2 - V_1}{2g}$$

$$A_1 = 5.4 \times 1.934 = 10.44^{m^2}$$

$$V_1 = 0.69^{m/sec}$$

$$A_2 = \{1.934 + (EL \ 104.80 - EL \ 98.10)\} \times 5.4 = 46.62^{m^2}$$


$$V_2 = 2/A_2 = 7.2/46.62 = 0.15^{m/sec}$$

$$h_{se} = \frac{0.69^2}{2x9.8} (1 - \frac{10.44}{46.62})^2 + \frac{0.15^2 - 0.69^2}{2x9.8}$$

$$= 0.015 = 0.023 = -0.008^{m}$$

Accordingly, the water level in the right side blow-off will be; $\Delta h = h_i + h_r + h_s + h_{fl} + h_{se}$ $= 0.032 + 0.034 + 0.200 + 0.003 - 0.008 = 0.261^m$ $\therefore W.L = EL 107.00 - 0.261 = EL 106.739^m$

(v) Drop of water surface by cross culvert

where, f_e; coefficient of inlet loss, 0.5 f; coefficient of friction loss

$$f = \frac{12.7 \text{gn}^2}{\text{p}^{1/3}}$$

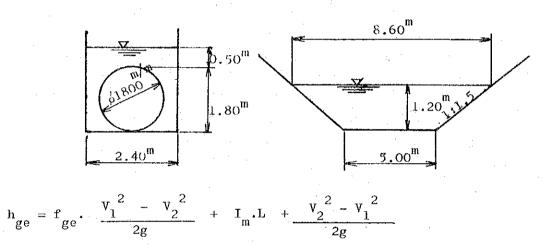
n; coefficient of roughness, 0.013 D; diameter of pipe, 1.8^m

$$f = 0.017$$

length of pipe, 173.0^m

V ; velocity in pipe

$$V = \frac{0}{A} = \frac{5.2}{1/4 \text{ x} \text{ fr x } 1.82} = 2.04^{\text{m/se}}$$


157 ----

$$\Delta h_1 = (1 + 0.5 + 0.017 \times \frac{173.0}{1.8}) \times \frac{2.04^2}{2x9.8} = 0.658^m$$

$$\Delta h_2 = (1 + 0.5 + 0.017 \times \frac{12.0}{1.8}) \times \frac{2.04^2}{2x9.8} = 0.340^m$$

$$\therefore \Sigma h = \Delta h_1 + \Delta h_2 = 0.658 + 0.340 = 0.998^m = 1.0^m$$

Accordingly, the water level of outlet will be;
EL 106.739 - 1.00 = EL 105.739

(vi) Drop of water surface by gradual enlargement of section.

section of upper stream

section of lower stream

where, f_{ge} ; coefficient of gradual enlargement

improvement straight type - 0.4

$$A_{1} = (1.8 + 0.5) \times 2.4 = 5.52^{m}$$

$$V_{1} = Q/A = 0.94^{m/sec}$$

$$R_{1} = 0.789 \qquad R_{1}^{2/3} = 0.854$$

$$I_{1} = (\frac{n.V_{1}}{R_{1}^{2/3}})^{2} = (\frac{0.015 \times 0.94}{0.854})^{2} = 0.00027$$

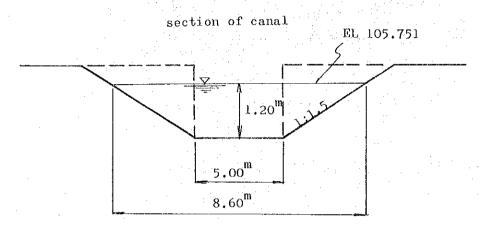
$$A_{2} = 1/2 (5.0 + 8.6) \times 1.2 = 8.16^{m}$$

$$V_{2} = 0.64^{m/sec}$$

$$R_{2} = 0.876 \qquad R_{2}^{2/3} = 0.915$$

$$I_{2} = (\frac{0.015 \times 0.64}{11 + 12})^{2} = 0.00011$$

$$I_{m} = \frac{-2}{2} = 0.00012 = 0.00011 \times 8 + \frac{0.64^{2} - 0.94^{2}}{2x9.8}$$


$$= 0.010 + 0.002 - 0.024 = -0.012^{m}$$

- 158 -

(vii) Drop of water surface by gradual contraction of section $V_2^2 - V_1^2$ $V_2^2 - V_1^2$

$$h_{gc} = f_{gc} \cdot \frac{2}{2g} + \frac{2}{2g}$$

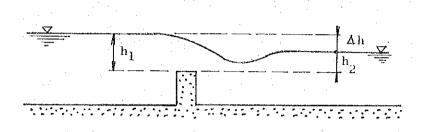
where, f_{gc} ; coefficient of gradual contraction - 0.3

$$A_{1} = 1/2 (5.0 + 8.6) \times 1.2 = 8.16^{m^{2}}$$

$$V_{1} = Q/A_{1} = 5.2/8.16 = 0.64^{m/sec}$$

$$A_{2} = 5.0 \times 1.2 = 6.00^{m}$$

$$V_{2} = 5.2/6.00 = 0.87^{m/sec}$$


$$h_{gc} = 0.3 \times \frac{0.87^{2} - 0.64^{2}}{2x9.8} + \frac{0.87^{2} - 0.64^{2}}{2x9.8}$$

$$= 0.005 \pm 0.018 = 0.023^{m}$$

Accordingly, the water level at the point just before the measuring weir will be;

EL $105.751 - 0.023 = EL 105.728^{m}$

(viii) Drop of water surface by measuring weir

The condition of complete overflow is given as follows;

 $h_2/h_1 \leq 2/3$

The overflow discharge on the wide crest weir must be computed from the following formula.

$$Q = 1.8.B.h_1^{3/2}$$

where, $Q = 5.2^{m^3/S}$

$$B = 5.0^{m}$$

$$h_1^{3/2} = \frac{5.2}{1.8 \times 5.0} = 0.578$$

$$h_1 = 0.693 = 0.69^{m}$$

h₂ under the condition of complete overflow

$$h_2 \stackrel{\leq}{=} 2/3 \times h_1 = 0.46^n$$
$$\therefore h_2 = 0.41^m$$

Accordingly, drop of water surface by measuring weir under the condition of complete overflow will be;

$$\Delta h = 0.69 - 0.41 = 0.28^{\text{III}}$$

(ix) Water level at the start point of Dengkeng main canal

lower stream water level of weir

EL 105.728 - 0.28 = EL 105.45^{m}

design water depth of canal

 $h = 1.20^{m}$

Accordingly, the elevation at the canal bed will be; EL 105.45 - $1.20 = EL 104.25^{m}$

3.2 IRRIGATION CANALS

3.2.1

Criteria

a) Type of canal ...

All canals are designed as un-lined earth canals.

b) Standard cross section:

Hydraulic depth:

The Haringhuizen Formula $(d = 0.775 \text{ Q}^{0.284})$ is widely used for estimating hydraulic depth among Indonesian projects. This formula generally tends to bring forward the lower values than by the criteria used in Japan as well as the Modified Kennedy Formula. However, the formula can be applied on conservative side so as to estimate the optimum hydraulic depth by taking into account the local soil mechanical conditions.

161

Freeboard:

Freeboard will be governed by many factors, particularly, in such case a canal is located along the contour-lines as with the main canals in our project area. The inflow of the rain water due to the violent storms and the operational water surface fluctuations should be considered in deciding the Freeboard. Out of a several kinds of formula and criteria for estimating freeboard for unlined earth canal, the following formula is believed to be reasonably applicable:

F = (30 + d/4) cm where, F: freeboard d: hydraulic depth

Inside slope:

Inside-slope of a canal depends on the stability of canal materials. Considering the mechanical conditions of soil along the canal route, the slopes (vertical to horizontal) have been prescribed as follows according to the amount of discharge:

$$Q < 3 \text{ m}^3/\text{sec}$$
 1 : 1.0
 $3 \text{ m}^3/\text{sec} \leq Q < 13 \text{ m}^3/\text{sec}$ 1 : 1.5
 $Q \ge 13 \text{ m}^3/\text{sec}$ 1 : 2.0

Bank width:

Width of the left bank of the Main Canal has been designed to be 5 m so as to make it accessible to motor vehicle meant for operation and maintenance purposes, while that of its opposite bank, 2.5 m. The bank width of the secondary canal will be 3.5 m for the operation and maintenance side, and 1 m for its opposite.

c) Flow formula

The Manning formula is generally used for open-channel flow in calculating its discharge:

$$Q : A \cdot V V : A \frac{1}{n} R^{\frac{2}{3}} I$$

where, Q:

- design discharge in cms,
 - A: cross sectional area in m^2 ,
 - V: velocity of water in MPS,
 - n: roughness coefficient,
 - R: hydraulic radius (cross sectional area divided by wetted perimeter), and
 - I: slope of the water surface and channel bottom.

A roughness coefficient "n" of 0.0225 is generally used for canals with capacities greater than 10 cms and 0.025 for small channels.

d) Velocity for non-silt and non-scour

The Haringhuizen Formula for the velocity which is commonly applied in Indonesia was compared with the criteria used in Japan as well as the Kennedy formula, under the similar conditions. The velocity used for canal designing in the past projects in Indonesia approximately corresponds to the value estimated by the Haringhuizen Formula. Consequently, the Haringhizen Formula (V: 0.42 $Q^{0.182}$) has been applied for deciding the canal section.

3:2.2 Design

a) Design discharge and canal net-work

The design discharge assigned with a command area, the standardized canal types classified by the said discharge, and the diverting discharge of turnouts are summarized in Fig. 3.1 and Table 3.2.1 for the main canals, and in Table 3.2.2 for the secondary canals.

b) Standard cross section

14 types of cross section have been designed for the entire main canals: 5 for the Dengkeng Main Canal and 9 for the Upper Sala Main Canal, according to the sectional discharges and the distances between the turnouts. For the secondary canals, a total of 7 types of the standardized cross section have been designed. The hydraulic calculations for determining the standardized cross sections are presented in Tables 3.2.3 and 3.2.4. The standard sections of these are illustrated in Figs. 3.2.2 to 3.2.4.

3.2.3 Hydraulic Calculation on The Main Canal

The hydraulic calculations from one end to the other end of the main canal have been made as per Table 3.2.6 for the Upper Sala Main Canal and Table 3.2.7 for the Dengkeng Main Canal. In these calculations, the loss of head at the related structures has been taken into account.

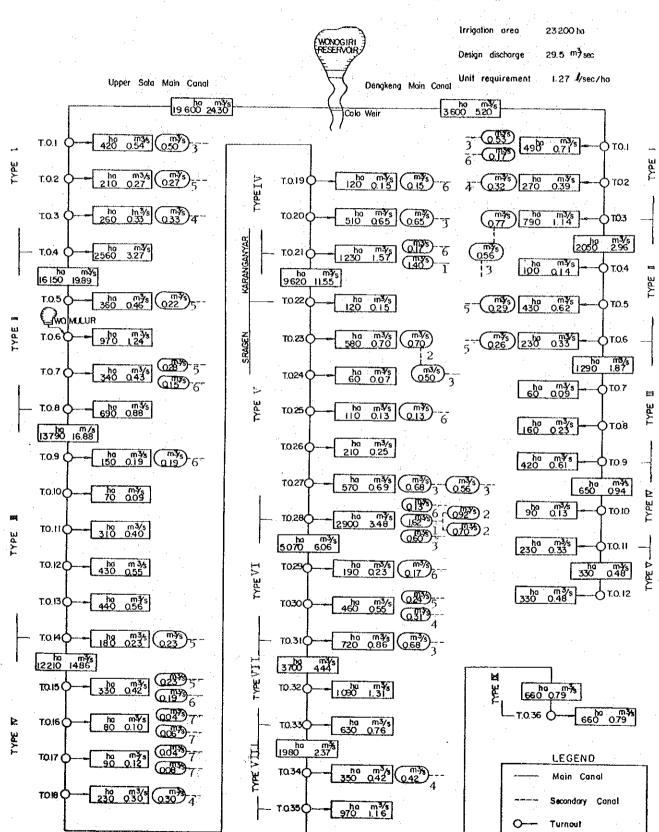


Fig. 3.2.1

Canal Network and Discharge Assignment

	<u></u>	zenten en an en en en en en en en en en en en en en	Main Cana	al		Turn	out
	Turnout	Irrigation Area	Discharge	Canal Type	Length	Irrigation Area	Discharge
	Upper Sa Intake	la main canal 19,600 ^{ha}	m ³ /s 24.30		m	ha	m ³ /s
	1	19,180	23.76	u	:	420	0.54
	2	18,970	23.49	n	7,600	210	0.27
	3	18,710	23.16	11		260	0.33
	4	16,150	19.89	ti		2,560	3.27
	.5	15,790	19.43	II		360	0.46
	6	14,820	18.19	R.	4,500	970	1.24
	7	14,480	17.76	tt		340	0.43
	8	13,790	16.88	. tt	_	690	0.88
	9	13,640	16.69	III		150	0.19
	10	13,570	16.60	11		70	0.09
· · · ·	11	13,260	16.20	n	9,250	310	0.40
	12	12,830	15.65	tt		430	0.55
	13	12,390	15.09	н		440	0,56
	14	12,210	14.86		-	180	0.23
	15	11,880	14.44	IV		330	0,42
/ar	16	11,800	14.34	n		80	0,10
Karanganyar	17	11,710	14.22	U .		90	0,12
sus:	18	11,480	13.92	u	10,000	230	0.30
Kaj	19	11,360	13.77	u		120	0.15
	20	10,850	13.12			510	0.65
	21	9,620	11.55		-	1,230	1.57
	22	9,500	11.40	V		120	0.15
	23	8,920	10.70	ŧ		580	0.70
	24	8,860	10.63	u		60	0.07
	25	8,750	10.50	u	10,000	110	0.13
Sragen	26	8,540	10.25	*1		210	0.25
я S	27	7,970	9.56	u		570	0.69
	28	5,070	6.08	u		2,900	3.48
-			· · · · ·				

Table 3.2.1 Sectional Discharge and Type and Length of Main Canals

- 165 -

19 - A.		Main Ca	Turn	out		
Turnout	Irrigation Area	Discharge	Canal Type	Length	Irrigation Area	Discharge
29	4,880 ^{ha}	m ³ /s 5.85	VI	10,750 ^m	190 ^{ha}	$0.23^{m^3/s}$
30	4,420	5.30	ŧ		460	0.55
31	3,700	4.44	11		720	0.86
32	2,610	3.13	VII	3,000	1,090	1,31
33	1,980	2.37	¥1 .		630	0.76
34	1,630	1.95	VIII	5,000	350	0.42
35	660	0.79	11		970	1,16
36			IX	2,300	660	0.79
Sub total				62,400		
Dengkeng Intake	main canal 3,600	5.2	I			
1 l	3,110	4.49	11	12,900	490	0.71
2	2,840	4.10	18	12,900	270	0.39
- 3	2,050	2.96	U		790	1,14
4	1,950	2.82	II		100	0,14
5.	1,520	2.20	19	5,750	430	0.62
6	1,290	1.87	, n	5,150	230	0.33
7	1,230	1.78	III		60	0.09
8	1,070	1,55	11	5,750	160	0.23
9	650	0.94	u ·		420	0.61
10	560	0.81	IV	4,750	90	0.13
11	330	0.48	υ '		230	0.33
12			V	2,250	330	0.48
Sub total			÷	31,400	: •	
1				93,800	· ·	. ·

- 166 -

÷	Table 3.2	2.2 Type a	nd Length	of Seconda	ary Canal	ls .	
Irrig. Area (ha)	Dis Charge (m ³ /sec)	Length (m)	Canal Type		Irrig. Area (ha)	Dis Charge (m ³ /sec	Length) (m)
la		:					
390	0,50	1,200	3	29	140	0.17	700
210	0.27	900	5	30 a	200	0.24	250
260	0.33	400	4	b	260	0.31	700
170	0.22	1,100	. 5	31	570	0.68	600
220	0.28	300	5	34	350	0.42	400
120	0.15	1,000	6	1. J. 1997			
			,	0 1 10 1			27 (00

Upper Sala

to l

2

3

5

0 4 7 a 2 1 b Sub Total 31,600 9 300 6 150 0.19 500 5 14 180 0.23 0.23 200 5 Dengkeng 15 a 180 1,900 3 370 0.53 150 0.19 700 6 To 1 a b 0.17 800 6 7 b 120 16 a 30 0.04 200 7 2 220 0.32 500 4 0.06 400 b 50 1,300 2 7 0.77 200 3 a 530 17 a 30 0.04 0.56 3,000 3 200 7 b 390 b 60 0.08 5 200 0.29 800 5 230 0.30 650 4 18 5 1,300 6 . . . 180 0.26 19 120 0.15 500 6 9,600 20 510 0.65 600 3 Sub total 6 130 0.17 400 21 a 4,600 1,100 1.40 600 1 Total Туре 1 b n 2 9,900 2 580 0.70 800 23 а 11 3 11,000 0.50 1,000 3 b 420 700 6 н 4 2,650 25 110 0.13 n 5 5,350 0.68 1,200 3 27 a 570 3 11 6 6,600 b 470 0.56 1,100 n 7 1,000 110 1,500 6 28 a 0.13 41,200 1,350 1.62 4,000 1 b 2 770 0.92 3,800 с 2 580 0.70 4,000 d 500 3 0.60 500 е

.

Canal

6

5

4

3

Type

- 167 -

	l
	ł
	l
5	ĺ
sus	
0	1
la i I	
24 R	ŀ
ga l	
н	
bbe	
р ц	
f o]	
цo	
5 t i	
Se	1
SS	
25	
ą.	1
daı	
tan	i
Ś	
5	1
ion	i
Lat	
cu]	
Cal	
3	
í ľ n	
dra	l
Ϋ́H	
Table 3.2.3 Hydraulic Calculation of Standard Cross Section for Upper Sala Main Canal	
2	
e S	
abl	ļ
£⊣	

·.		· · ·			- 168	-			
	19 Fb	0.75	0.76	0.72	0*0	0.68 (0.68)	0.64	0.59	0.48
	18	3550 1500 1500 1500	1250 775 675 1800	2450 1300 1250 1250 1250	1025 1475 1500 1500 1300 2000	1000 1250 1250 1750 1250 1250	5450 1775 3525	1250 1750 2000	3000 2300
	17 W	23.80	22.10	20,80	20,00	16.00 (16.00)	11.55	10.20 6.70	4,20
	পুশ	2.70	2.60	64. 64	2.30	2.20 (2.20)	1.95	1.55	1.20
	15 (V ² /2g)	0.029 0.028 0.028 0.028	0.026 0.026 0.025 0.026	0.024 0.024 0.024 0.023 0.023	0.023 0.022 0.022 0.022 0.021	0.023 0.023 0.021 0.021 0.021	0.019	0.014	0.013
	14 9 x 13	24.30 23.84 23.61 23.17	19.92 19.53 18.19 17.82	16.69 16.69 16.69 15.33 15.33	14.89 14.56 14.56 14.20 14.22 13.92 13.92	11.56 11.42 10.76 10.63 10.50 9.62 9.62	6.02 5.87 5.30	4 49 3 17 2 40	1.99
in Canal	13 4 x 12	0.751 0.747 0.745 0.745 0.740	0.718 0.714 0.698 0.694	0.687 0.687 0.687 0.682 0.682 0.666	0.665 0.665 0.658 0.658 0.653 0.653 0.653	0.667 0.664 0.652 0.649 0.646 0.646 0.646	0.613 0.605 0.587	0.573 0.516 0.535	0.506
of Standard Cross Section for Upper Sala Main Canal	12 R ² /3	1.309 1.302 1.298 1.290	1.252 1.244 1.217 1.209	1.201 1.197 1.197 1.189 1.173 1.161	1.159 1.159 1.147 1.143 1.139 1.135	1.113 1.088 1.088 1.088 1.075 1.075 1.075	0.970 0.957 0.929	0.906 0.816 0.792	0.748
for Uppe	$\frac{11}{R(=\frac{A}{P})}$	1,497 1,485 1,485 1,478 1,465	1.401 1.388 1.343 1.330	1.316 1.310 1.310 1.297 1.271 1.271	1.248 1.235 1.223 1.223 1.223 1.208	1.174 1.167 1.134 1.128 1.128 1.121 1.121	0.955 0.937 0.895	0.862 0.737 0.705	0.647
s Section	0 A	21.59 21.50 21.45 21.36	19.79 19.71 19.39 19.30	18.60 18.56 18.56 18.25 18.29 18.29	17.96 17.87 17.87 17.82 17.78 17.73 17.69	44444444444444444444444444444444444444	10.45 10.34 10.09	9.09 8.33 6.37	3.81
dard Cros	6 K	32.33 31.92 31.71 31.71	27.73 27.35 26.04 25.67	24.48 24.30 23.39 22.72 22.72	22.40 21.89 21.55 21.55 21.55 21.38	17.34 17.20 16.51 16.37 16.24 16.10 15.30	9.98 9.69 9.03	7.84 6.14 4.49	3.94
	8 b/d	6.8	6.5	و ب	8 9	6.3) (6.3)	4.5	4 0	5.2
Hydraulic Calculation	4 9	1.92 1.90 1.89 1.87	1.81 1.79 1.72	1.70 1.69 1.69 1.63	станца 87.75 87.65 7.65 7.65 7.65 7.65 7.65 7.65 7.65	спанны 444444 8666104	1.29 1.26 1.19	1.19 0.98 0.98	0.88
lic Cal	98	0 N = = =	5 7 2 F			с. 	- = =		- 0 - 1
Hydrau	പ്പ	13:00	11.70 	- II 00	0 8 7 7 7			4 80 - 80 - 60	1.80
Table 3.2.3	4 1 a 1 v	0.574	: . * = = =			0.599	0.632 #		0.730
Tab	Сч	0.0225 "		 5 2 5 5 5			0.025	5 7 5	= =
	이 H -	1/6000	. = = = =			1/5500	1/4000 "	" " 1/3500	1/3000
	r 5q	24.3 23.76 23.49 23.16	19.89 19.43 18.19 17.76	16.88 16.69 16.60 16.20 15.65 15.09	14.86 14.34 14.22 13.92 13.92 13.12	11.55 10.70 10.50 10.55 10.55 9.55	6.08 5.85 30	4.44 3.13 2.37	1.95 0.79
		1904			1111111	7994995	195 117		
	Type	H	ĬI	H . H I	. AI	>	IA	IIA	XI XI

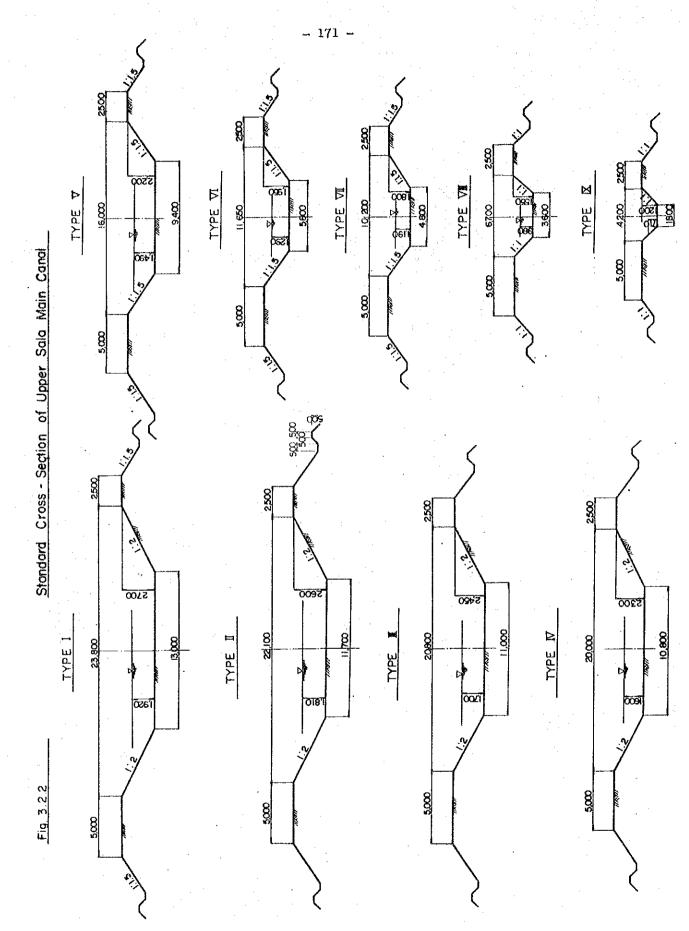
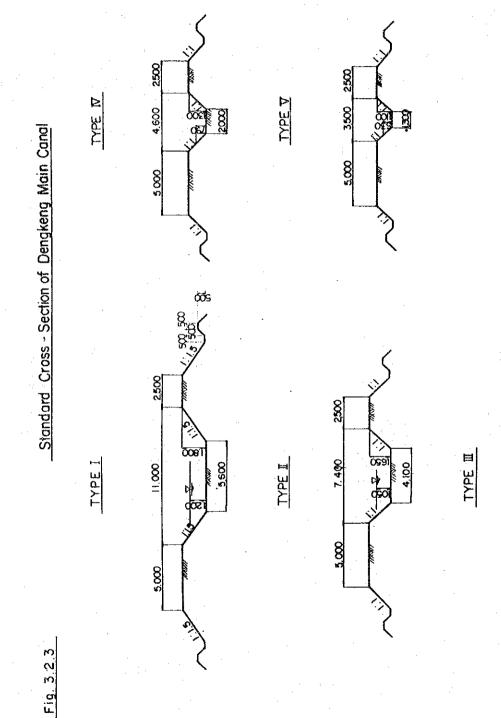
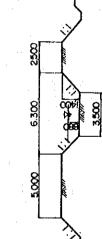
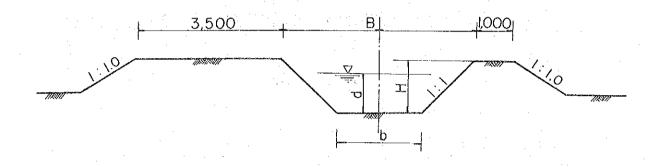

	19 19	0.58			0.58			0.50			0.50	· · ·	0.46		
	6 0 - 4	0						i			i o				
	а н 8	8550	2600	1750	1875	1325	2550	2250	1000	2500	2500	2250	2250		
	LL W	11.00		. *	7.40			6.30		· ·	4.60		3-50		· · ·
	16 Н	1.80			т.65	•	: · · · ·	1.40			1.30	· .	1.10		
in Canal	15 hV (v ² /2g)	0, 018	0.016	0.015	0.015	0.015	0-013	0.012	0.012	0.011	0.010	0.009	0.008		
agkeng Ma	14 Sc 9x13 (5.21	4.54	4.11	2.97	2.83	2.20	1.89	1.78	1.57	0.96	0.82	0.48		. *
Calculation of Standard Cross Section for Dengkeng Main Canal	13 V 4x12	0.587	0.563	0.546	0.550	0.541	0.501	0.490	C.481	0.463	0.437	0.417	0-392	- A. 	
ss Sectio	12 R ^{2/3}	0.928	0.890	0.863	0.836	0.824	0.762	0.745	0.732	0.704	0.647	0.617	0.538		
तेक्षमते Сम्ह	$11 R = \left(\frac{A}{P}\right)$	0.895	0.840	0.802	0.765	0.748	0.665	0.644	0.626	0.591	0.521	0.485	0.395		
of Stan	0.4	9.93	9.60	9.39	7.07	6.98	6.59	5.99	5.90	5.73	4.23	4.04	3.08		·
lculation	6 V	8.88	8.06	7-53	5.41	5.22	4.38	3.85	3.70	3.39	2.20	1.96	1.22	2	
	8 b/đ	4.7			3.9			4.0			2.5	·	L.2		
Hydraul i c	4 - 4	1.20	1.11	1.05	. <u>-</u>	1.02	0* 88 0		Ó.85	62.0	Ξ	0.72	0.63		
3.2.4	50	2 	÷	Ξ.	1.0	= .	Ē.	· _ =	E	=	=	Ŧ.	E		·
<u>Table 3.2.4</u>	ς	5.6	2	≠ .	4.1	.	=	3.5	=	=	2.0	=	1.3'		
	1 4 1 1 4	0.632	5	=	0.658	÷	5	-	E	=	0.676	=	0.730		
	Μġ	0-025	÷	÷	# 	= .	щ di	£	. =	=	#	=	 E		-
	ИИ	1/4000	÷		1/3700	. =	= ,	÷	r.		1/3500	2 5 - 10	1/3000		
	٦ Qå	5.20	4.49	4.10	2-96	2.82	2.20	1.87	1.78	1.55	0.94	0.81	0.48		
:		,1	сі Г	ŝ		10 1	. ñ	r T	ณ 1	ĥ	г. Т	2 1	ri T		
	Type		ы	· ·.		II			III			ΛI	A		

Table 3.2.5 Hydraulic Calculation of Standard Cross Section for Secondary Canal


				•			
				•		-	
17 Н & В	1.35 5.70	1.15 4.40	1.10 4.00	0.95 3.20	0.90 2.70	0.85 2.40	0.70
16 Pb	0.43	0+39	0.38	0.35	0.34	0.33	0.30
15 h.v (V2/2g)	110.0	600.0	0.008	200.0	0.007	0 006	0.004
1. 2. 13 x 9	1.64	0.92	0.71	0.44	0-30 0-007	0.21 0.006	0.11 0.004
12 13 R ^{2/3 V} 4x12	0.63 0.737 0.466	2.138 4.221 0.506 0.635 0.429	1.75 3.78 0.463 0.598 0.405	0.525 0.383	0.325 0.473 0.378	2.11 0.284 0.432 0.345	0.36 1.63 0.221 0.365 0.292
$_{ m R}^{ m 11}$	0.63	0.506	0.463		0.325	0.284	0.221
년 년 년	5.55	4.221	3.78	1.14 3.00 0.38	0.80 2.46		1.63
6 K	3.51 5.55	2.138	1 75	l.14	0.80	0.60	0.36
8 b/đ	0.9 3.3	2.8	1	5.	0.55 1.6	l.4	0.40 1.3
י קי א	6.0		0.70 2.6	0.60	0.55	0.50	0.40
2	1.0	=	=	±	ŧ	Ŧ	÷
م کی	3.0	2 1	1.8	1.3	0.9	0.7	0.5
n n	0.632	0.676	=	0.73	0.83	=	=
сч	0.025	÷	=	- - -	=	с. С	=
ЧИ	1/4000 0.025 0.632	1/3500	1/3500	1/3000	1/2500	=	-
г Q	1.62 1.40	0.92	0.68 0.50 °	0.42 0.30	0.29 0.20	0.19	0.10
Type	r T	5	۲	4	LA	ę	7


.

- 170 -



•

TYPE	(^{m3} / _S)	b (m)	B (m)	d (m)	H (m)	CANAL LENGTH
I	1.62 1.40	3.0	5.70	0.9	1.35	4,600
2	0.92 0.70	21	4.40	0.75	1.15	9,900
-3	0.68 0.50	, 1.8	4.00	0.70	1.10	11,100
4	0.42	1.3	3.20	0.60	0.95	2,650
5	0.29	0.9	2.70	0.55	0.90	5,350
6	0,19 0,10	0.7	2.40	0.50	0.85	6,600
7	0.70	0.5	1.90	0.40	0.70	1,000

Upper solo 31,600 m Dengkeng 9,600 m Total 41,200 m

- 173 -

Table 3.2.6 Hydraulic Calculation of Upper Sala Main Canal

100000 10000 10000 10000 10000 Т.=15h Ч.М.Р. 1.0 13 T.0 10 T.0 11 T.O.14 Remark 1.02 T.0 9 7.0 4 T 0 T 7.03 98.93 98.69 106.32 103.18 102.06 97.85 101.86 102.92 water Sur-face 104.40 Bottom of Canal 101.31 96.25 100.16 97.26 97.06 101,11 100.36 6 Total Head Logs(m) 0.208 0.125 0.125 0.292 0.950 0.409 0.250 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.142 3.094 9 b-tota. Sub-tota Other Loss 0.50 81113 0.0 E 11 Loss (m) (14) 0.38 0.38 0.37 0.37 0.37 1.32 1 1 (m/a) 1.877 1.969 1.969 1.925 1.925 1.773 1.773 1.773 1.773 1.753 1.744 Aqueduct & Culvert --2.5x2.5x2 2.2X2.2X2 2.5x2.5x2 -2.5x2.5x2 -2.5x2.5x2 2.2x2.2x2 2.2x2.2x2 --2.2x2.2x2 2.5x2.5x2 Cross Section . 1 1 ł , 1 (<u>n)</u> ы 1212 េះក្នុ 1512121 1 + 55 + 1. 65 1 1 29 Struc-ture & Type (10) 0.208 0.125 0.125 0.292 0.039 0.031 0.125 0.127 0.031 0.031 0.031 0.031 0.032 0.042 0.042 0.042 0.042 0.042 0.042 0.247 0.167 0.029 0.042 0.1667 0.1667 (8) . . н 0.026 0.025 0.028 0.029 0.023 0.024 E å 0.747 " 0.745 0.740 0.682 0.718 0.714 0.698 0.694 0.689 0.673 0.666 св D 0.751 (m/s) (6) 0,687 ----Þ 1.79 1.67 (<u>2)</u> 1.89 50 -1.70 . . 69 1.63 1.60 1.92 1,235 750 1,750 1,485 1,000 175 250 تم Type E Design Dis-charge (m3/sec) (2) 23.76 " 23.49 23.16 19.89 19.43 18.19 17.76 16.88 16.69 16.69 16.60 16.20 15.65 24.30 Distance (<u>)</u> 1,250 750 1,750 1,500 250 250 22 22 22.8 22222 250 750 750 8888 888 Station No. 7+ No. 8 No. 8+ No. 10+ No.134 No.134 No.154 No.154 No.154 No.154 No.104 No.114 No.12 No.12 No.18+ No.19+ No.19+ No.19+ Number N 80.

· ·	(16)	7.0 15 Lel5m	7.016		T. 0 17		T.0 18	T.0 19	т. О. 20		T.O 21		L=15m		T.0 22	5 - L - -	T.0 23 T.0 24	ц С С	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	T-0 27	T_0 28		L=15a W.M.F.					•			T.0 29	•	
	(18)	97.68 97.46										93.92	93.72	•								90.31	90°09			· · ·							
	(11)	96.08 95.88	• •			- 					· · ·	92.43	92.23	•* ;								58°97	88.77	·	-				•	· ·			•
	(16)	0.167	0.206 0.402	0.125	0.119	0.042	0.125	0.167	0.415	0.159	0.377	3.821		0.063		0.287 0.361	0.136	0.306	0.227	0.136	0.045	1 3.458	0.459	0.125	0.187	0.389	0.0c3 0.187	0.125	= (0.178	0.125	0.063	
	(12)	10,0	1 1	ł	1	1 1	t	4 I	<u>,†</u> 1	: 1	1 1	Sub-tota.	0°0	2	r ji	1 L	t i	i.	1 1	F T	1	Sub-tota	0,40 0,40	1912 1911 1917 1917	1	E-Ì	i i	11	I	н I .:	1 1	, I	
	(14)	1	- 0.37		0.04	- 0.37	1		0.39	0.04	0.04			0.02	۲ ۰ ۰	0.19	1 1	0.18		0.02											0.02		
	(21)	1 .	-1.826		1.228	- 1.798	1	11	1.741	1.187	1,187			1.045	1. Y04	1 952 1 952	1: 1	1.898		0.963	I	÷	1 1	1.702	1.702	1.705	1.702	1.702			0.954		
	(12)	1	2.0x2.0x2	10	2.5x2.3x3	- 2.0x2.0x2	1	E 4	2.0x2.0x2		2.0x2.0x2 2.5x2.3x3		•	2.5x2.2x3	7X7 7X0 7	2 0x2 2x2	1 1	2.0x2.2x2		2.5x2.2x3	ı		- 1	2.8x1.95	2.8x1.95	1.9x1.9	- 2.8x1.95	- 2.8x1.95	=	2.8x1.95	2.5x1.95x2	1	•
	(11)	t	ן ר ס	1	្តខ្ម	1 50	, 1 ,	1 1	85 20		16 17			Ц <u>М</u> .	* I	74 64	11	9 t 4 t	<u>t</u>	15 15	•	·.	, t	8 4 1	64	53	1 ð	1 4	4	л 14	15		
•	(01)	I,	0	(ທ ບ	1 03	· F E	1 1	ω c	, v	ທຸບ			10-	4 ا	4 4	1 1	¥.	41	10	1		1	۲ ۲	٩.	i va	ιĄ		Ą	1`≪	10	1	
	(6)	0.167	0.206	0.125	0.080	0.042	0.125	0.107 0.125	0.027	0.122	0.029		670 0	0.040	0.045	0.077	0.136	0.126	0.227	0.136	0.045		0:059	0.041	0.047	640.0	0.043	0.125	=	0.048	0.125	0.063	
	(8)	0.1667	= =	÷		= 1	5	: :	2 5	-				0101-0		; I			ŗ.				0,2500	= =		:. z		= =	= ;	. 2	5 5	Ŧ	
	(1)	0.023	0.022	= :	= =	= =	=	0.021		=	= = '		600 0	C40.0	: =	= f	" "	0.021	. = :	0, 020	=		0.019	= =		= = .	• =	= =	= :	. .	2 =	£.	
	(9)	0.665	0.660	0.658	= =	0.656 "	= -	0.653 0.651	= 1	0.639	é e				; =	0.664	= C	0.649	0.646	0.644	=		0.613	; 2	= , =	- 5	. .	= =	•	=	= =,	0.605	
	(2)	J. 60	1.58	1.57	= = [.]	1. 56	¥.	1.55 1.54		1.49	≝ ≄		(==	1,48	- F	4 4 7	1.41	1.340	-		1.29		= =	= =	ب ع ر	= :=	= =	. ≠,	· . • • .	1.20	
	(4)	1,000	1,235 185	750	175 481	250	150	1,000	165 721	101	175 981	•	L C	535	430 250	426 936	750	989	1,250	750 1,235	250		235	166 500	1366 1360	1,450	250 186	500 19e		067 196	500 235	250	
	(E)	λī	7 2	=		= =	÷			-	= =		;	> = ;			= =				-		IA	= =	÷ =	. =	= =		E 2		= <u>-</u>	a .	
	(2)	14.86	14.44 "	14.34	= =	14.22	=	13.92 13.77	. .	13.12	= =			CC•71	- =	11.40	- 0	10.63	10.50	10.25	- -	-	5.08	= =	= =	: =		= =				5.85	
• ,	(1)	1,000	1,250	750	250 500	250	750	11,000 750	250	00	250 1,000			250	200	500 1,000	750	120	1,250	1,250	520		250	200	250	250	250	500 250	250	250	250	250	••
		750	360		250			750		1	750		1	250			· . ·		- 1 A - 1 A	200	· .			250	÷.,	200		500	· · ·	200	250	12	
		No. 20+	0.22	0 23	0.23+ 0.23+	0.24	0.25	10.26 0.264	0.27	0.28+	No.28+ No.29+	Е	ت (0.30+	0.30+	0.31+	0 33+	0.35+	1004 10.37+	No 384 No 394	lo 39+	=	10.40	6 4 4 4 4 4 4 4	To 41	10 - 424	No. 42+ No. 43	To .43+	To 44	0 +++ +++	No.45	No. 45+	

					-							- 1	76 –							Б			•		• .	•		
	(16)	7.0 30 1.135			T.O.3]	 		T.0 32	L=J5m	T.0 33		* . . * *	t C E	2	ir C E			· · · .	a<1=1	K. SAWR	•							
	(18)	86,33 86,06				84.88	•••				83.33					81.36		80.78	80,08	80.40					. ** •			
	(17)	85.07 84.87				83.69					82.35					80.65		80.07	18.61	79.09		•	·	•			÷	
	(91)	0.369 0.168 0.250 0.250	0.059	0.250	600 60 60 60 60 60 60 60 60 60 60 60 60	5.281	0.160	0.068 0.063	0.200	0.313	1 342	0.143 0.165	0.157	0.500	0.214	1.698	0.167 0.082	0.250	0.083	0.964		5 e		÷				
	(12)	IIIc	; ; ; ;	I		Sub-total	1	1	υ υ υ	i i	b-total	с т	11		16	Sub-total	1 1	11	9 . 0	- Sub-total					· .	· .		
	(14)	0.32	- ⁶		0.29	Su	۰. ₁₁	10.0	ı	0.30	Sub	0.11 	0.10		60-0 0-0		0.004	0.004	ı		1							
	(13)	1.641 1.677	- 00 - 00		1.487		1.513 -	0.756		1,420	:		1.361	: : :	1.240 - 0.003		- 0.466	 0,466		ŧ						ŗ		
	(12)	1.9x1.9 2.8x1.95			1.9×1.9×4.1			2.5x1.8x2 (1.5x1.5		- 22	1.8x1.55		1		 2.5x1.2		I	9								
	(11)	5 2 6 4 1	1 u		4 £ 1		52	18	I,	1 1		1 65	49	1 1 9	ין א ג'ן ה		1 10	ι Ψ.	. 1	I	. *							
	(10)	Ω 4 I	ic) I (> 02 I		۲ ا	01	T	ומ		۲۹	 	11.	á i c	».	ιo	10	1	1								
	(6)	0.049 0.048 0.250	0.059	0.250	0.049	-	0.050	0.058	0,063	0.050	· · .	0.143 0.055 212	0.057	0.500	0.214	200	0.167 0.078	0.250	0,083	001.0							· ·	
	(8)	0,2500	0.2500	= =	. = =		0.2500	= =	÷	£ =		0.2857 "	: =	£ :	= =		0.3333	= =	= =	•								
	(1)	0.019 "	0.019	≓ ±	- = =		0,017	: :	0.014	. = =		0.0 5 10	= =	0.013			0.010											
	(9)	0.605 "	0.587	z ' 1	. = =		0.573	= =	0.516	2 E		0.535 "	1 5	0.506			0.440	n =										
	(2)	1,26 "	1.19		= =		1.19	5 Z	0.98			0.98	F .	0.88	÷, =		0.71		. = =						•			
	(4)	197 196 1,000	235	1,000	197		198 500	232	250.	199 250		500 191 750	201	1,750	750		500 235	235	250				•					
	(2)			= =			IIA		=	= =		" LIIA	= F	= :	1 E		X:	= =	= ;									
	(2)		5.30	= :	: = =		4,44	= :	3,31	= =		2.37	, = = ,	1,95	e =		6.79	= =	= `=								:	
	(1)	250 250 1,000	250	200	220 220 220	· ·	250 500	250 250	250	250 1,250		2 2 0 7 2 0 7 2 0	250	1,750	750		500 250	750 250	250	200							·	
		1	250	28	002	· . ·	750	500 750		250 500	:	250	250	520	220 220	- 	250	250	500	200		1:1 -	-12 -	· ·		•		
		No.45+ No.45 No.47	10 47+	- 48+	No. 49		Vo. 50+	No.51+	No. 52	No. 52+ Vo. 53+	ujin u ₽	No. 54 No. 54+	No. 55+	Vo. 57+	Vo 58+		No. 59 No. 59+	No. 60 10. 604	No. 604				•	•				

ů	
Dengkeng. Mai n	
°.	
Hvdraulic./Calculation	
Table 3.2.7	
• .	

	÷ .	- - 												177			•							:		- - -		i	•
		3 ¹⁷	Repark		•			1.0 H	T.0.3		Lelsa W.M.F.	7.0 4 7.0 5		L=15m 1.0 7	Т.О 8				1.0 9		T.0 10		•	I. O. I.	7.0.12 Lel5n				
		Water	Sur- Hace	105.45	* 1	:		·		101.26	101.26		98.94	98.74						95.88	94.84			93.66	93.07 92.87		92.63		
		Bottom	of Cenal	104.25		: . : 		n N N N		100.21	100.01 99.55		98.06	97,86						95.09	94.05 03 85	10.14		92.94	92.44 92.24		62.00		
		Total	Head Loss (E)		0.400 0.078	0.339	0.750	0.188 0.625	0.375	4.042	0.200 0.464		0.676	0.200	0.203 0.406	0.203 0.356	0.068	0.068	0,135	1 2.973	004	0 200	120.0		0.500	2.0	1 0.945		
		;	Loss (1 1 9	۱ ۵	1_1		Sub-total	0.400	11	- Sub-total	မ ပ	19 - 19 1	і 1 0	11	۱ ۱ 2	.) .	Sub-total	4 1 1 0		2	Sub-tota.	0 1 0		Sub-total		÷
			Loss (m)		3 0.020	9 0.290	÷		2 0.280		l	1 1 1 1 1	• .	1	. 0						7 0.340		007.0		н.	. 1 .		.	
1	•		V (з∕п)	10. 1	0.878	- 1.459	- 1.459		1.342		. 1	11	1		1.528	1.330	1.330	1 330			1.337		767 (T		•	1.			
Hvdraulic./Calculation , of . Dengkeng.Main Canal		i & Aqueduct	Cross Section		2.5x1.8x2	- 1.9×1.9	1.9x1.9	11	1.5x1.5		. 1	1 1	1	1		1.1x1.1	- 1.1x1.1		* * * *		0.85×0.85		(0°0)			 I			
uengken		Siphou	Г (ш)		1 89	- 23	1 80	aaa JUJ	47		5 I	11	•	- 1. 	- 42	1 64	۰ ۲	Ţ	F	•	, 14 11	н. К. К.	2 2 1		1	1			
. To, 'OL'		-	Struc- ture & Type		 1 0	I OD	ιώ.	11	1 03	-	•	i I	ı	1	1.00	ıю	N ا		21		1 03	10	ומ		1	ţ			
/Салси дал			Loss (m)		0.400	0.625	0.750	0.188	0.375		0.064	0.473 0.338	0.676	404 0	0.203	0.203	0.068	0.068	0.135		0.060	0.500	140°0	:	0.500	0.245			
dvdraullc.			I 1×10-3		0.250	= =	= =		 = ' = '	· ·	0.2703	- 	=	-	= =	= =	, F C	= =	; ;			= ,=	2 2 =		0.3333	t T			
			hv		018	ਾ. ਵਾਵੀ		0.016	0.015		=) = = . 	0.013	210 O	= =	0.011	 = =	= 1	=		01010	600.0	: :	•	0.008				
Table 3.2.7		a n'a l	V (m/s)	·	0.587	= =:	r =	" 0.563	0.546		0.550	- 0.541	0.501	0.490	0.481	0.463	= =	.∵ ;: ∎_≊	E			0.417	=		0.392				
		U	. ຢູ່ (ສຸ		1.20	z z		. IT. T	1.05		1,05	1.02	0.88	68 C	0.85	0.79	- = =	: = =	ŧ.	I	2	0.72	: =		0.63	≠`.			
	·		а) (в :		1,600	2,500 197	3,000	750	1,500		235	1,750	2,500	225	750	750 208	250	520	000		209	1,750	250	•	1,500	735			
			Type	- -	H I	5 5	= =		= =		11	= =	=			= =	= =	= =	Ŧ		- -	5 3			٨	- 			:
		Design	Dis- charge (m3/sec)		5.20	e =	= =	* 4 0	4,10	-1.	2.96	" 2,82	2.20	1 87	1.78	1.55		= =			0. v4	0.81	=		0.48	· .			
			Distance (m)	1. T.	, 600 250	,,500 250	,000	750 2.500	1,500	 	250	1,750 1,250	2,500	250	750	750	250 250	250	200	i	250	1,750	0 0 0 0 0		1,500	750			
			H	No. 0-1,600	250 1	750 2	n o	500 2	250		200	250	.', .'	050	250	250	200	2	150		250		20.00			750	1 T		
	••	 	Station Number	0-1	。 ; ;		0.0 5+25	No. 7 No. 7		=	" No.11+	No.134 No.144	21.0		No. 20	21+	0.21+ +12.0	0.22	0.22+	=	No.25+	0.27	No.27+ No.27+		No.29	No.29+			•