41 C 34

1

CON VI

N. N. N.

1

REPUBLIC OF INDONESIA MINISTRY OF PUBLIC WORKS AND ELECTRIC POWER DIRECTORATE GENERAL OF WATER RESOURCES DEVELOPMENT

FEASIBILITY REPORT ON THE WONOGIRI IRRIGATION AND UPPER SALA RIVER IMPROVEMENT PROJECT

APPENDIX I IRRIGATION

LIBRARY

国際協力事	「業団
受入 月日 ³ 84. 9.13	2108
登録No. 09526	61.7 SD

JAPAN INTERNATIONAL COOPERATION AGENCY

TOKYO 1976

108 61.7 SD 14456

$\mathbf{f} = \mathbf{f}$	
Table of Contents	
	page
1. ENGINEERING STUDIES AND INVESTIGATIONS	. 1
1.1 Existing Irrigation Systems 1.2 Assessment of Existing Water Use and Resources	• 1 • 4
1.2.1 Existing Water Distribution	. 4
1.2.2 Existing Water Use	• 2
2. PLANS AND STUDIES	
2. Identification of Irrigable Area & Canal Alignment	· · ·
2.2 Estimation of Irrigation Nater Requirements	. 19
 2.2.1 General	28 36 56 56 65 67
2.3 Consideration on Application of "Tegal Curve" 2.4 Main Irrigation Systems	. 113 . 114
2.4.1Colo Diversion Weir2.4.2Main Canals2.4.3Secondary Canals2.4.4Farm Network	. 129 . 129
2.5 Future Use of Mulur Reservoir Water	
3. HYDRAULIC & STRUCTURAL CALCULATIONS	
3.1Colo Weir3.2Irrigation Canals3.3Related Structures	. 161
4. CONSTRUCTION PLANS	
4.1Basic Considerations4.2Colo Diversion Weir4.3Canals4.4Farm Ditches, Drainage & Roads4.5Construction Schedule5.CONSTRUCTION COST ESTIMATES	. 186 . 187 . 188 . 191
5. CONSTRUCTION COST ESTIMATES 6. DRAWINGS	

LIST OF TABLE ___E .

ii

No.		Title	Page
Table	1.1.1	Formland Coming under the Project which	
lable	±.±.±	is irrigated by Different Water Sources	. 2
	1.1.2	Existing Land Classification in the	• 2
	1.1.6	Project-Area	. 1
1	1.2.1	Pasten and Rutio of Irrigation Water-Use	• -
	1.2.1	for Crops compared with Polowijo and	· · ·
		Terrain Coefficients	. 5
	1.2.2	Existing Monthly Average Intaken Water	•)
1.1	1.6.6	in Technical Area	. 6
	1.2.3	Existing Monthly Average Intaken Water	• •
	1.2.1	per Hectare in Technical Area	. 7
	124	Existing Monthly Irrigation Water Use	• 1
	1.2.4		0
	1 2 5	for Growing Paddy (in Technical Area)	
	1.2.5	K. Kenatan (Seksi Sragen)	
	1.2.6	Measurement Existing Water Balance	
	2.1.1	Summary of Land Use (Sawah & Tegal)	
	2.1.2	Land Use Pattern	. 17
	2.2.1	Maximum Diversion Requirement and Storage	
	1. A.	Capacity Required by Each Alternative	
	2.2.2	Diversion Discharge for Each Region	. 27
	2.2.3	Irrigation Area by Cropping Patterns in	
		Case of Cultivation Area of 1,000 ha	. 29
	2.2.4	Unit Irrigation Area by Crops per 1,000 ha	
		(ALT-1)	. 30
	2.2.5	11 IF H IF 11	
	an a	(ALT-2)	. 31
	2.2.6		
		(ALT-3)	
	2.2.7	Total Irrigation Area by Crops (ALT-1)	. 33
:	2.2.8	" " (ALT-2),	
	2.2.9	" (ALT-3)	. 35
	2.2.10	Comparison of Consumptive Use	. 37
	2.2.11	Computation Sheet for Penman Method of	
		Consumptive Use	. 39
	2.2.12	Values of OTa ⁴ for Various Temperatures when	
		Computing Evapotianspiration by the	
		Penman Method	. 40
	2.2.13	Computation Sheet for Blaney-Criddle Method	
		of Consumptive Use of Crop	. 42
	2.2.14	Computation Sheet for Hargreaves Method	
		of Consumptive Usc	43
	2.2.15	Monthly Day-time Coefficient, D	
	2.2.16	Meteorological Data for Computing	
	,	Evaporation by Hargreaves Method	. 45
	2.2.17	Calculation of Evaporation by Hargreaves	• • • • •
		Method	. 46
		110, VILOU - * * * * * * * * * * * * * * * * * *	. 40

No

No. Table 2.2.18 Summary of Crop Coefficients calculated 49 by Crops 2.2.19 Crop Coefficient of Paddy (ALT-1) 50 ··; 11 of Second Paddy 2.2.20 51 ... n of Sugar Cane 2.2.21 52 .. 0 2.2.22 of Paddy (ALT-2) 53 of Polowijo (ALT-2) 54 2.2.23 ĥ. of Paddy (ALT-3) 55 2.2.24 Effective Rainfall in the Design Year 2:2.25 (1967/1968) 58 Calculation Sheet of Conveyance Losses by 2.2.26 Peak Diversion Requirement (ALT-3) 67 2.2.27 2.2.28 Design Capacity 68 2.2.29 Unit Irrigation Requirement/Paddy/Karanganjar Unit Irrigation Requirement/Second Cropping 2.2.30 Paddy/Kalanganjar (ALT-1) 70 Unit Irrigation Requirement/Sugar Cane/ 2.2.31 Karanganjar (ALT-1) 71 Unit Irrigation Requirement/Paddy/Sragen R./ 2.2.32 Unit Irrigation Requirement/Second Paddy/ 2.2.33 Sragen R./ (ALT-1) 73 Unit Irrigation Requirement/Sugar Cane/Sragen R./ 2.2.34 Unit Irrigation Requirement/Paddy/Dengkeng R./ 2.2.35 Irrigation Requirement & Diversion Requirement/ 2.2.36 2.2.37 Second Paddy/Karanganjar (ALT-1) .. 77 11 2.2.38 Sugar Cane/Karanganjar (ALT-1) 78 11 2.2.39 Paddy/Sragen R. (ALT-1) 79 11 11 2.2.40 Second Paddy/Sragen R. (ALT-1) 80 11 11 11 1 2.2.41 Sugar Cane/Sragen R. (ALT-1) 81 2.2.42 Paddy/Dengkeng/ (ALT-1) 82 2.2.43 Unit Irrigation Requirement/Paddy/Karanganjar /Polowijo/Karanganjar 2.2.44 11 (ALT-2)11 11 11 /Paddy/Siangen R. 2.2.45 (ALT-2) ... 85 'n. 11 /Polowijo/Srangen R. 2.2.46 (ALT-2) 11 . 51 /Paddy/Dengkeng R. 2.2.47 (ALT-2)

Title

Page

iii -

			s e la compañía		
- - 					
		- VA	•		
•* • • • • •	· · · · · ·				
No.		Title		ан Алар	Page
Table	2.2.48	Unit Irrigation Re	auirement/Pola	wijo/Dengkeng R	
		(ALT-2)	 The second se Second second sec		. 88
	2.2.49	Irrigation Require Paddy/Karanganj			. 89
	2.2.50	II II		u /	a à
	2.2.51	Polowijo/Karang	anjar (ALT-2)		. 90
		Paddy/Sragen R.	/ (ALT-2)		. 91
	2.2.52	Polowijo/Sragen	ןן גער אד 2	н /	02
	2.2.53	10100110751&gen	11 (DAI-2)	и /	• 92
		Paddy/Dengkeng/	(ALT-2)		. 93
· · ·	2.2.54	Polowijo/Dengke	ng/ (ALT-2)	· · · · · · · · · · · · · · · · · · ·	94
	2.2.55	Unit Irrigation Re (ALT-3)	quirement/Padd	ly/Karanganjar R	. 95
	2.2.56	Unit Irrigation Re (ALT-3)			. 96
	2.2.57	н	•	y/Dengkeng R./	
· · · · · · · · · · · · · · · · · · ·	2.2.58	(ALT-3)	 ment & Diversi		. 97
		Paddy/Karanganj		·······························	. 98
	2.2.59	n n Poddy/Syogon R	(AT /P. 3.)	¹¹	. 99
	2.2.60	" "	(ABI-)/	11 /	
	2.2.61 2.2.62	Diversion Requirem	ent & Water Ba "	lance (ALT-1) " (ALT-2)	101
	2.2.63	и и		" $(ALT-2)$	
	2.2.64	Diversion Requirem		ternative	-
· · · · · · · · · · · · · · · · · · ·	2,2,65	1967/1968 Irrigation Require		on Roquinomont	.104
·	2.2.0)			·····	109
	2.2.66	Diversion Requirem 1961/1962			
	2.4.1	Comparison of Cons	truction Cost	of Colo Weir	•
:	2.4.2	Comparison of Bene	fit by Each Al		
	2.4.3	Comparison of Cost	by Each Alter		
	2.4.4	Annual Operation &	Maintenance C	ost of	
	2.4.5	Density of Canal a			
	3.2.1	Sectional Discharge	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
		of Main Canal .		*****	
· · ·	3.2.2	Type and Length of Hydraulic Calculat			167
				a cross Section	168
· · ·	، با	an a			
	<u>.</u>				
					·

				- v	-				·.	· · ·
		••								
•							• •		.*	
							-		1.1	
	No.	· · · ·		Title					Page	
					na trujta t Na stanova s					
:	Table	3.2.4	Hydraul	ic Calcul	ation of	Standar	d Cross	Section		•
			for	Dengkeng	Main Can	al			. 169	
	1999. 1999.	3.2.5	11 (1) (1) (1)	11		11		n ha la Maria. Na		10
			for	Secondary	Canal .				. 170	
		3.2.6	Hydraul	ic Calcul	ation of	Upper a	sala Mai	n Canal .	174	
		3.2.7						Canal		da si
		3.3.1	Number	of Propos	ed irrig	acton re	icilitie	s	. 180 . 181	51 1
		3.3.2 3.3.3	Type and	ic Calcul	of cruss	Aqueduc	nte Sin	hou and	. 101	
		کر و کر و کر						····	. 182	
			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				- 4		•	
		4.1		n of Work					100	
		4.2		n of work	on Seco	ndary Ca Faui pror	11181 •••	• • • • • • • • •	. 100	
		4.3	Constru	ction Pla	n Projec	ndurbmer +	10		. 189	1.1
							a salat da s		. 10,7	
		5.1		timate fo					100	
		- 0		nomic Cos	t)	• • • • • • • •	•••••		. 193	
•		5.2						* • • • • • • • • •		
		5.3 5.4		Cost Esti				* * * * * * * * *	• 174	
									. 195	
			& Ma	intenance					. 195 . 196	
		5.5	& Ma Stateme	intenance nt of Ite	 ms	• • • • • • • • •	• • • • • • • • • •		. 195 . 196 . 207	
		5.5 5.6	& Ma Stateme Unit Co	intenance	•••••••• MS •••••	• • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	. 196	
		5.5	& Ma Stateme Unit Co	intenance nt of Ite st	•••••••• MS •••••	• • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	. 196 . 207	
·	·	5.5 5.6	& Ma Stateme Unit Co	intenance nt of Ite st	•••••••• MS •••••	• • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	. 196 . 207	
·		5.5 5.6	& Ma Stateme Unit Co	intenance nt of Ite st	•••••••• MS •••••	• • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	. 196 . 207	
		5.5 5.6	& Ma Stateme Unit Co	intenance nt of Ite st	•••••••• MS •••••	• • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	. 196 . 207	- - - -
	-	5.5 5.6	& Ma Stateme Unit Co	intenance nt of Ite st	•••••••• MS •••••	• • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	. 196 . 207	• • •
		5.5 5.6	& Ma Stateme Unit Co	intenance nt of Ite st	•••••••• MS •••••	• • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	. 196 . 207	• • • •
		5.5 5.6	& Ma Stateme Unit Co	intenance nt of Ite st	•••••••• MS •••••	• • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	. 196 . 207	
		5.5 5.6	& Ma Stateme Unit Co	intenance nt of Ite st	•••••••• MS •••••	• • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	. 196 . 207	• • • •
		5.5 5.6	& Ma Stateme Unit Co	intenance nt of Ite st	•••••••• MS •••••	• • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	. 196 . 207	
		5.5 5.6	& Ma Stateme Unit Co	intenance nt of Ite st	•••••••• MS •••••	• • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	. 196 . 207	
		5.5 5.6	& Ma Stateme Unit Co	intenance nt of Ite st	•••••••• MS •••••	• • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	. 196 . 207	
		5.5 5.6	& Ma Stateme Unit Co	intenance nt of Ite st	•••••••• MS •••••	• • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	. 196 . 207	· · · ·
		5.5 5.6	& Ma Stateme Unit Co	intenance nt of Ite st	•••••••• MS •••••	• • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	. 196 . 207	
		5.5 5.6	& Ma Stateme Unit Co	intenance nt of Ite st	•••••••• MS •••••	• • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	. 196 . 207	
		5.5 5.6	& Ma Stateme Unit Co	intenance nt of Ite st	•••••••• MS •••••	• • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	. 196 . 207	
		5.5 5.6	& Ma Stateme Unit Co	intenance nt of Ite st	•••••••• MS •••••	• • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	. 196 . 207	
		5.5 5.6	& Ma Stateme Unit Co	intenance nt of Ite st	•••••••• MS •••••	• • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	. 196 . 207	
		5.5 5.6	& Ma Stateme Unit Co	intenance nt of Ite st	•••••••• MS •••••	• • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	. 196 . 207	
		5.5 5.6	& Ma Stateme Unit Co	intenance nt of Ite st	•••••••• MS •••••	• • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	. 196 . 207	
		5.5 5.6	& Ma Stateme Unit Co	intenance nt of Ite st	•••••••• MS •••••	• • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	. 196 . 207	
· ·		5.5 5.6	& Ma Stateme Unit Co	intenance nt of Ite st	•••••••• MS •••••	• • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	. 196 . 207	
		5.5 5.6	& Ma Stateme Unit Co	intenance nt of Ite st	•••••••• MS •••••	• • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	. 196 . 207	
		5.5 5.6	& Ma Stateme Unit Co	intenance nt of Ite st	•••••••• MS •••••	• • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	. 196 . 207	
· · ·		5.5 5.6	& Ma Stateme Unit Co	intenance nt of Ite st	•••••••• MS •••••	• • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	. 196 . 207	
		5.5 5.6	& Ma Stateme Unit Co	intenance nt of Ite st	•••••••• MS •••••	• • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	. 196 . 207	
		5.5 5.6	& Ma Stateme Unit Co	intenance nt of Ite st	•••••••• MS •••••	• • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	. 196 . 207	

		LIST OF FIGURES	
	1		
<u>No.</u>		Title	Page
Fig.	1.1.1 1.2.1	Location Map of the Project Area Existing Monthly Average Intaken Water	3
	1.2.2	per Hectare in Technical Area Existing Monthly Irrigation Water Use	8
	and the second sec	at field level for growing Paddy	- 11
ŗ	1.2.3	Location Map of Measurement Water Balance	14
	2.2.1	Future Cropping Pattern (Alternative 1)	-22
	2.2.2	¹¹ ¹¹ ¹¹ (¹¹ 2)	23
	2.2.3	, "под нарани, пира (по <u>3</u>)	24
	2.2.4	Calculation Flow Chart	25
	2.2.5	Temperature vs. $\Delta \frac{dea}{dt}$	40
	2.2.6	Temperature vs. Saturated Vapor Pressure	40
	2.2.7	Crop Coefficient Curve	48
	2.2.8	Location Map of Rainfall Station	57
	2.2.9	Effective Rainfall for Paddy in Every Ten-day	
		Period (Karanganjar Region)	59
	2.2.10	Effective Rainfall for Sugar Cane in Every	
		Ten-day Period (Karanganjar Region)	60
	2.2.11	Effective Rainfall for Paddy in Every Ten-day	
	0 0 10	Period (Sragen Region)	61
	2.2.12	Effective Hainfall for Sugar Cane in Every	62
	0 0 10	Ten-day Period (Sragen Region)	02
	2.2.13	Effective Rainfall for Paddy in every	(2
	0.0.14	Ten-day Period (Dengkeng Region)	63
	2.2.14	Effective Rainfall for Polowijo in every	
	. :	Ten-day Period (Dengkeng Region)	64
-	2.2.15	Diversion Requirement and Storage Capacity	105
	2 2 1 (by Each Alternative (1967/68)	105
	2.2.16	Seasonal Fluctuation of Each Requirement	106
	2 2 17	in K _a ranganjar	106
	2.2.17		107
	2.2.18	in Sragen Region	107 :
	2.2.10		108
	2.2.19	in Dengkeng Region	100
	2.2.19	Diversion Requirement and Storage Capacity by Alternative 4	110
	2 2 20		110
	2.2.20	by Each Alternative (1961/1962)	112
	2.4.1		112
	2.4.2	Location Map of Colo Weir	120
	2.4.3		140
	L•4•)	Relation between percentage of Sand Running into Reservoir and Ratio of Annual Inflow	
		to Storage Capacity	121
	2.4.4	Proposed Irrigation System	121
	~ # T # T	TTAPARATAT PARATAT PARATAT PARATATING TATATATATATATATATATATATATATATATATATATA	

vi – - ++ --

				на н. ¹		· · · ·			
i tu			· ·		vii				•
					:		· · ·	÷	
· .	· · ·								
	÷ .		· .			· · · ·			
	<u>No.</u>			Title	•			· · ·	Page
	Fig.	3.1.1 3.2.1 3.2.2 3.2.3 3.2.4	Section Canal Ne Standard Main C "	twork a C _r oss	nd Desi	of Uppe of Deng			
	2 - S	4.1	Location of Col			ruction	and the second	e • • • • • • • • •	190
		4.2	Proposed		uction	Schedule	•••••		191
						an a			
		•			· .				
	· ·								· ·
									• • •
							· ·		
	· ·								
		· · · ·				· · ·	e gati e		
									5
			• • •				. *		
	• .		:		· ·	· · · · ·	· .		

LIST OF DRAWINGS

No. of D.W.G.	<u>Title</u> Page
¥1-001	EXISTING IRRIGATION SYSTEM 210
W1-002	PROPOSED IRRIGATION SYSTEM 211
W1-003	GENERAL LAYOUT OF COLO WEIR
W1-004	COLO WEIR 213
W1-005	"
W1-006	PROFILE & CROSS-SECTION OF UPPER SALA 215
to	MAIN CANAL $(1 - 5)$
W1-010	
W1-011	PROFILE & CROSS-SECTION OF DENGKENG 220
to	MAIN CANAL (1 - 2)
W1-012	
W1-013	STANDARD CROSS SECTION OF SECONDARY CANAL 222
W1-014	SIPHON (TYPE 1) 223
W1-015	" (" 2) 224
₩1-016	" $($ " $3)$ 225
₩1-017	" (" 4)
W1018	AQUEDUCT (TYPE 1) 227
W1-019	" ("2) 228
W1→020	" (" 3, 4, 5) 229
W1-021	BRIDGE (TYPE 1) 230
₩1-022	" (" 2, 3) 231
₩1-023	" (" 4) 232
W1-024	CULVERT (TYPE 1, 2) 233
W1-025	" ("3) 234
W1-026	TURNOUT (TYPE 1, 4)
W1-027	(2, 3)
W1-028	CHECK GATE (TYPE 1, 2)
W1-029	$(J_{j} + J_$
₩1-030	WATER MEASUREMENT FACILITY (TYPE 1, 2, 3, 4) 239
₩1-031	CROSS SIPHON (TYPE 1, 2) 240

.

1. ENGINEERING SURVEYS AND INVESTIGATIONS

1.1 EXISTING IRRIGATION SYSTEMS

The right-bank irrigation area which consists of approximately 84 % of the entire irrigation area under the project is currently supplied with irrigation water from the following seven tributaries:

Kali Jlantah

" Samin

" Grompol (Kumpul)

- " Mungkung (Jlanprang)
- " Sragen
- " Kenatan
- " Sawur

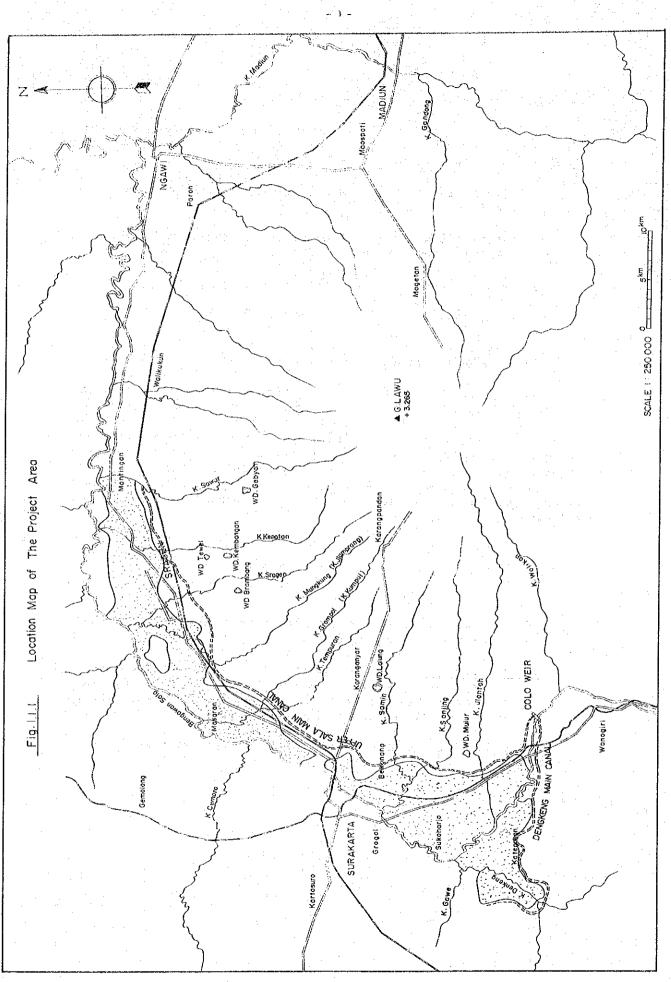
The existing irrigation systems in direct relationship with the Project-area, their respective water sources, and the total size of farmland and that coming under the project by category-wise classification of their irrigation facilities will be known from Table 1.1.1 which has been prepared on the basis of "Daftar Adanya Lapuran Pasten Air" and through assimilation of various related information. The farmland coming under the project has been divided into 3 Regions as per Table 1.1.2 below and Fig.1.1.1 (see Drawing OO1). The existing irrigation facilities inside the Project-area are given as per Data-3.

Table 1.1.2 Existing Land Classification in the Project-area

Region	Technical <u>Area</u> (ha)	Semi-Tech- <u>nical Area</u> (ha)	$\frac{\text{Other (+)}}{(\text{ha})}$	Total <u>Area</u> (ha)
Karanganyar Region	7,290	450	2,360	10,100
Sragen "	6,740	260	2,500	9,500
Dengkeng "	410*	990	2,200	3,600
Total	<u>14,440*</u>	1,700	7,060	23,200

Notes:

(*)


including 300 ha. which is habitually inundated during rainy season and treated as "Non-rainfed Area;"

(+) Other Areas are made up of non-technical area and rainfed area.

Seksi	Ranting	Water Source	· · ·	<u>Irrigati</u> Whole Area	on Area Inside Project Area	Ratio
aranganyar	Sukoha r jo*		K.Jlantah	ha	ha	70
		(Vd. Mulur)	(T)	5,107	3,990	78
		B.Ambil ² /K.Jlantah, B.Jatimat	ang (1/2 T)	2,733	440	16
		(N,R)	(-))	_,	3,860	_
	Bekonang	B.Kaliduren/K.Buret	(ፕ)	631	70	11
	penonang	B.Dari/K.Umet	(T)	500	150	30
		B.Gemb.Truni/K.Samin	(T)	2,137	830	39
		(N,R)		,	350	-
	Karanganya	r B.Gemb.Truni/K.Samin	(T)	2,183	490	22
		(N,R)	(1)	2,105	100	-
	Marilunado		(m)	0.000	· · · · · · · · · · · · · · · · · · ·	25
	Tasikmadu	B.Kalougan/K.Siwaluh B.Jungkang/K.Siwaluh	(T) (T)	2,022 624	510	25 64
		B.Lencong/K.Jirak, Cobor	(T)	450	60	13
		B.Pengin/K.Jirak, Color	(T)	900	900	100
		B.Ledok/K.Kumpul	(1/2 T)	633	230	36
		(N,R)			250	_
	Sub-total		(T)	14,554	7,400	51
			(1/2 T)	3,366	670	20
			(N,R)		4,560	
Bragen		K.Jlamprang	(T)	4,336	2,080	43
		K.Sragen	(т)	3,755	510	14
		K.Sawar	(Т)	3,137	1,630	52
1	· ·	K.Kenatan	(T)	4,360	2,520	58
	•	K.Kenatan	(1/2 T)	1,848	260	14
		(N.R)			2,500	
	Sub-total		(T)	15,592	6,740	- 43
			(1/2 T)	1,848	260	14
			(N,R)	÷	2,500	
laten	Delasa		(m)		,	~ .
laten	Dalanggu	B.Kaligowe,B.Jetis,B.Tempel	(T) (1/2 T)	1,268	300*	24
ананананананананананананананананананан		B.Pogung,B.Grojagan, etc.	(1/2 1)	· .	770	-
'otal		Trabaiant institution	(m)			
JUGI		Technical irrigation area	(Т) (1/2 Т)	31,414	··· 14,440*	46
		Semi-technical irrigation area Non-interrened and Rainfed area	(1/2 T) (N,R)	1.4 1.4	1,700 7,060	
	· .		······	artini. Antonio	and the second sec	
· <u>·</u> ··································	· · · · · ·			and the second second	23,200	

Table 1.1.1 Farmland coming under the Project which is irrigated by Different Water Sources

- 2 -

1.2 ASSESSMENT OF EXISTING WATER USE AND RESOURCES

The existing water use and resources inside the Project-area have been assessed for the irrigation planning through the undermentioned four (4) investigations and surveys:

- a) Investigation of the existing water distribution by the conventional method;
- b) Assessment of the existing water use based on the data obtained from the Seksi offices;
- c) Water balance survey in the Project-area, and
- e) Water balance study in the Madiun Project.

1.2.1 Existing Water Distribution

Distribution of irrigation water has long been managed in the Sala River Basin, as it has generally been done in Java Island, on the basis of Pasten Method, a local estimation method of irrigation water requirement, which seems rather reasonable under the present irrigation conditions. <u>Pasten</u> is an average unit irrigation water requirement for different crops in comparison with that for polowijo during its growing stage. According to this method, the irrigation water requirement for each crop can be calculated as shown in the following equation:

Irrigation water requirement:

<u>R x Pasten x Terrain Coefficients</u>(litre/sec/ha)

- R: the ratio of water-use for crops in comparison with the water-use for polowijo during its growing stage;
- <u>Terrain Coefficients:</u> the values relating to topographical and hydro-geological conditions ruling in the area, taking into account the elevation of groundwater surface, the porosity of the soil, and the gradient of the land concerned.

Table 1.2.1 gives three kinds of ratio applicable in the Project-area.

	Pasten and Ratio of Irrigation Wa		е.
Man and a first statement of the second s	for Crops compared with Polowijo	and	e.,
	Terrain Coefficients.		

Seedling & Preparation Stage	R Pasten (1/sec/ha)	Water Requirement (1/sec/ha)	Terrain Co- <u>efficient</u>
Paddy - seedling - preparation	2.0 0.15 5.0	0.30 0.75	C = 1
Sugarcane -seedling - preparation	4.0 4.0	0.60 0.60	
Polowijo	2,0	0.30	
Growing Stage			· .
Rainy season paddy rice Dry season paddy rice Sugarcane Polowijo	3.0 3.0 2.0 1.0	0.45 0.45 0.30 0.15	

(Data source: Wilayah Surakarta Office)

The basic Pasten for polowijo is determined by the availability of irrigation water, as follows:

More than 0.25	lit/sec/ha	= Fairly good
0.25 - 0.20		= Good
0.19 - 0.07	11 T	= Sufficient
0.07 - 0.04	11	= Insufficient
Less than 0.04	n	= Quite insufficient

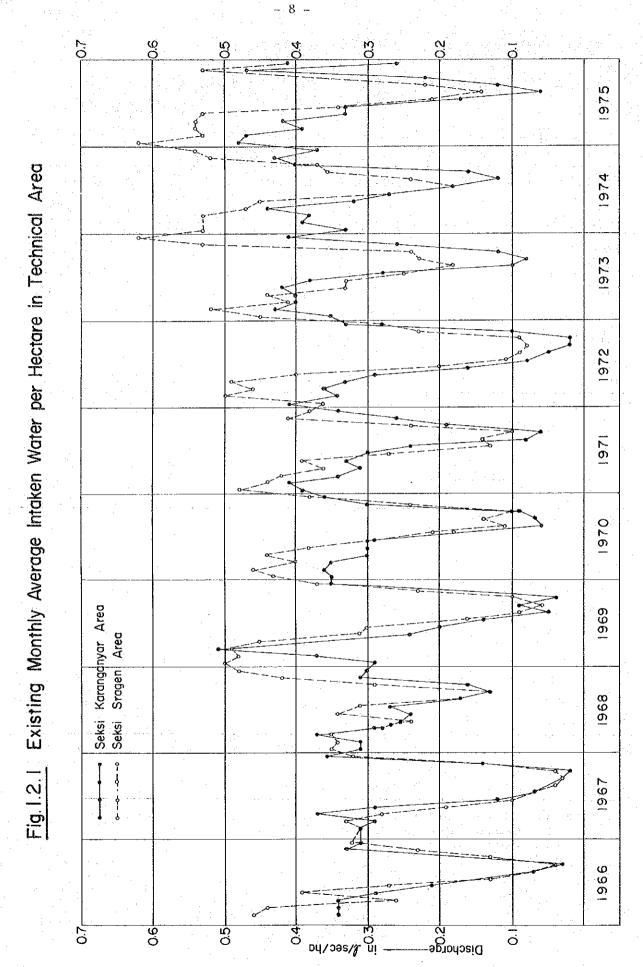
1.2.2 Existing Water Use

Data on the intake water from each water source for the past 10 years were made available for our study by D.P.U. office (see Data-2.1/ "Daftar Adanya Lapuran Pasten Air"). From these data, the total amount of intake water to the technical area under the jurisdiction of each Seksi has been tabulated as per Table 1.2.2. The monthly amount of intake water (per ha) to the total irrigable area are shown on Table 1.2.3 and Fig.1.2.1. They tell us that unit intake water during dry season is 0.17 lit/sec/ha in Karanganyar Area and 0.21 lit/sec/ha in Sragen Area. This means that only 60-70 % of the entire irrigable area (technical area) could have been irrigated in "good" conditions (0.6 litre/sec/ha. is being required) during rainy season, and its percentage during dry season would drop to the level of 30-35 % only.

On-the-farm water-use for paddy rice cultivation during the growing stage in the technical area has been estimated from the same data as per Tables 1.2.4 and 1.2.5 as well as Fig.1.2.2. Its average reads at 0.3-0.4 lit/sec/ha, or 67-90 % of the water requirement obtained by the Pasten Method (0.45 litre/sec/ha). <u>Table 1.2.2</u> Existing Monthly Average Intaken Water in Technical Area Unit: 1/sec <u>Seksi Karanganyar Area</u> (Irrigable area 14,552 ha)

Year	J	F	М	Α	M	J.	J	A	S	0	<u>N</u>	D
1966	*	$\frac{/1}{4,230}$	4,215	<u>/1</u> 4,233 /1	<u>/1</u> 3,620 /1	2,689	<u>/1</u> 1,935 <u>/2</u>	<u>/1</u> 873 <u>/1</u>	<u>/1</u> 360 /1	<u>/1</u> 1,704 /1	<u>/1</u> 4,123	<u>/1</u> 3,947 /3
1967	*	3,878	<u>7 -</u> 3,594	4,695	Carrowed .	1,496 /4			329 /4	<u>7</u> 226	1,891	4,458
1968	4,500	4,510	5,449	3,878	the second se			1,590	$1,\frac{772}{772}$	2,393	4,488 /4	4,301
1969	4,265 /4	5,360 /4	2,701 /4	5,217	3,436	2,917	1,966	797	1,263	561	the second s	4,725
1970	بط سبب ال	4,912	and the second sec	4,028	4,312	4,300	2,597	837	967	1,358	4,353	5,183
1971	5,684	5,899	4,887	4,508	4,758	4,428	3,460	1,221	809	2,693	3,729	4,911
1972	6,004	4,996	5,272	4,797	4,178 /6	2,371	1,132	699	264	280	1,473 /8	4,783
1973	5,106 /9	6,190	5,863 /9	5,857	2,234	5,593	4,102	1,426	1,201	1,677 /11	3,194	6,032
1974	4,109 /10	5,687 /10	4,746 /10	6,388 /4	1,691	3,950	2,647	1,735	2,369	2,942 /11	6,191 /12	5,390 /13
1975		4,394		5,775	4,806	4,871	2,433	942	1,747	1,622	2,422	
<u> </u>	Note	/1	12 58) ha	12.	12,080	ha	/3. 17	3.421 1	าล //	1: 13	654 ha

12**,**580 ha 12,080 ha 13,654 ha Note: $\underline{/1}$: <u>72</u>: 13,421 ha <u>/4</u>: 12: <u>/7</u>: <u>/8</u>: 12,369 ha <u>/5</u>: 9,333 ha <u>/6</u>: 5,286 ha 14,102 ha 9,445 ha <u>/11</u>: 7,308 ha <u>/12</u>: 5,125 ha /9: 12,415 ha <u>/10</u>: 6,677 ha /13:


Seksi Sragen Area (Irrigable area 15,592 ha)

Year	J	F	M	A	M	J	J	A	S	0	N	<u>D</u>
1966	*	7,116	6,839	4,119	6 , 046	4,278	2,030	1,074	686	2,034	3,548	4,956
1967	*	4,768	5,088	4,389	3,036	1,524	1,020	588	443	655	2,186	5,015
1968	5,490	5,284	5,526	4,503	3,721	5,233	4,840	2,651	1,981	4,500	6,574	7,444
1969	7,730	7,424	7,666	6,994	4,810	4,741	2,442	1,418	946	1,602	3,571	5,706
1970	6,758	7,219	6,199	6,906	6,000	4,550	3,277	1,711	2,191	1,631	3,791	5,984
1971	7,505	6,787	6,521	5,602	6,104	4,140	2,070	2,223	1,580	3,734	6,339	5,963
1972	5,662	7,801	7,197	7,705	6,184	3,066	1,754	1,349	1,321	1,448	3,548	4,396
1973	6,973	8,172	6,386	6,790	5,076	5,163	3,945	2,829	3,591	3,717	8,261	9,714
1974	8,338	*	8,233	7,325	7,034	4,191	2,856	3,690	5,563	5,720	8,050	8,380
1975			8,378			5,300	3,314	2,318	3,354	*	8,238	6,431
	Note: (Data So		mpiled D.P.U			each Se	to eksi		• •		: •*	

	<u>Tabl</u>	<u>91.2.</u>			Monthl cal Ar		age In	taken	water	per He	l/sec	/ha	
	:				200	1.12	· ·			UILE C	1/ 500,	, 1104	
e e La la	5	eksi K	aranga	<u>nyar A</u>	rea								
Year	J	F	M	A	M	J		A	S	0		D	Average
1966	¥	0.34	0.34	0.34	0.29	0.21	0.15	0.07	0.03	0.14	0.33	0.31	0.23
1967	*	0.31	0.29	0.37	0.29	0.12	0.07	0.05	0.03	0.02	0.13	0.33	0.18
1968	0.31	0.31	0.37	0.28	0.25	0.24	0,27	0.17	0.13	0.16	0.31	0.30	0.26
1969	0.29	0.37	0.51	0.36	0.24	0.20	0.14	0.05	0.09	0.04	0.15	0.35	0.23
1970	0.35	0.36	0.35	0.30	0.30	0.30	0.18	0.06	0.07	0.09	0.30	0.36	0.25
1971	0.39	0.41	0.34	0.31	0.33	0.30	0.24	0.08	0.06	0,19	0.26	0.34	0.26
1972	0.41	0.34	0.36	0.33	0.29	0.16	0.08	0.05	0,02	0.02	0.10	0.33	0.21
1973	0.35	0.43	0.40	0.40	0.42	0.38	0.28	0.10	0,08	0.12	0,26	0.41	0.30
1974	0.33	0.39	0.38	0.44	0.32	0.27	0.18	0.12	0.16	0.40	0.43	0.37	0.32
1975	0.48	0.47	0.39	0.42	0.33	0.33	0.17	0.06	0.12	0.22	0.47	0.26	0.31
Average	0.36	0.37	0.37	0.36	0.31	0.25	0.18	0.08	0.08	0.14	0,27	0.34	
1 .	Ra	-		M - O) N - A) <u>Area</u>	0.17 0.35								
Year	J	F	M	A	M	J	J	A	S	0	N	D	Average
1966	*	0.46	0.44	0.26	0,39	0.27	0.13	0.07	0.04	0.13	0.23	0.32	0.25
1967	*	0.31	0.33	0.28	0.19	0.10	0.07	0.04	0.03	0.04	0.14	0.32	0.17
1968	0.35	0.34	0.35	0,29	0.24	0.34	0.31	0.17	0,13	0.29	0.42	0,48	0.31
1969	0.50	0.48	0.49	0.45	0.31	0.30	0.16	0.09	0.06	0.10	0.23	0.37	0.30
1970	0.43	0.46	0.40	0.44	0.38	0.29	0.21	0.11	0.14	0.10	0.24	0.38	0.30
1971	0.48	0.44	0.42	0.36	0.39	0.27	0.13	0.14	0.10	0.24	0.41	0,38	0.31
1972	0.36	0.50	0.46	0.49	0.40	0.20	0.11	0.09	80.0	0.09	0.23	0.28	0.27
	0.45	0.52	0.41	0.44	0.33	0.33	0.25	0,18	0.23	0.24	0.53	0.62	0.38
1973		1.1.1	en a la factoria de la composición de la			0.27				6	0.52		0.41
	0.53	×	· · / /							×	0 57	0 41	0 40
1973		1.1		0.54	0,53	0.34	0,21	0,14			0.55	0.41	0.42
1973 1974	0.53 0.62	0.53	0.54									······	0.42

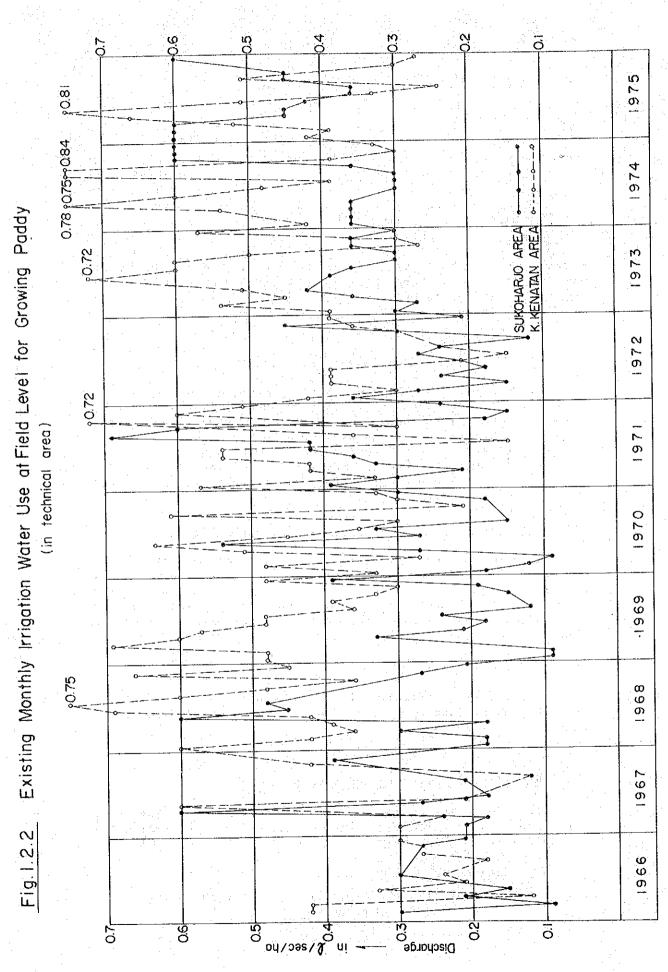
Note: Above figures are calculated by dividing the average discharge of the intaken water, which is given in Table 1.2.2, by the irrigable areas of each resource.

- 7 -

Sukoharjo (Seksi Karangenyar) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean 1965 0.21 0.15 - 0.15 0.16 0.15 0.16 0.16 1966 - 0.30 0.09 0.21 0.15 0.21 0.21 0.22 0.21 1967 - 0.21 0.18 0.60 0.21 0.18 0.21 0.21 0.22 1967 - 0.21 0.18 0.60 0.21 0.18 0.21 0.21 0.22 1968 0.18 0.18 0.60 0.21 0.18 0.20 0.21 0.21 0.21 0.21 0.22 1968 0.18 0.18 0.60 0.21 0.21 0.21 0.22 0.22 0.22 1969 0.09 0.21 0.21 0.21 0.24 0.21 0.21 0.25 0.24 0.25 1970 0.12 0.20 0.21 0.22 0.22 0.22 0.21 0.25 <th>Sukoharjo (Seksi Karanganyar) Jan Feb Mar Apr May Jun Jul Aug Sep Oct 5 0,21 0.18 0.15 - 0.15 0.15 0.15 0.15 0.15 5 0,21 0.18 0.15 - 0.15 0.21 0.12 0.06 0.15 7 - 0.21 0.15 0.21 0.15 0.21 0.21 - - - 8 0.18 0.60 0.27 0.18 0.24 0.21 -</th> <th></th> <th>•</th> <th></th>	Sukoharjo (Seksi Karanganyar) Jan Feb Mar Apr May Jun Jul Aug Sep Oct 5 0,21 0.18 0.15 - 0.15 0.15 0.15 0.15 0.15 5 0,21 0.18 0.15 - 0.15 0.21 0.12 0.06 0.15 7 - 0.21 0.15 0.21 0.15 0.21 0.21 - - - 8 0.18 0.60 0.27 0.18 0.24 0.21 -												•	
JanFebMarAprMayJunJulAugSepOctNovDec50.210.15-0.150.150.150.150.180.150.180.155-0.300.0180.210.150.210.150.210.210.150.217-0.210.150.210.150.210.150.210.210.217-0.210.180.600.270.180.210.210.210.2190.180.180.500.210.180.240.21-0.180.5090.180.120.090.210.540.270.530.150.1690.090.0210.540.270.530.150.160.2490.180.120.090.210.540.270.560.150.2490.190.120.240.210.150.160.160.2610.560.270.210.720.240.240.260.250.2510.560.560.420.210.270.260.600.600.600.6010.560.560.420.270.260.560.560.560.560.5610.560.560.450.450.420.420.660.600.60 <td< th=""><th>Jan Feb Mar Apr May Jun Jul Aug Sep Oct 5 - 0.18 0.15 - 0.15 <td< th=""><th></th><th>larjo</th><th>(Seks:</th><th></th><th>ıganyar</th><th>(</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<></th></td<>	Jan Feb Mar Apr May Jun Jul Aug Sep Oct 5 - 0.18 0.15 - 0.15 <td< th=""><th></th><th>larjo</th><th>(Seks:</th><th></th><th>ıganyar</th><th>(</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>		larjo	(Seks:		ıganyar	(
0.21 0.18 0.15 - 0.15 0.15 0.15 0.15 0.16 0.15 0.18 0.15 0.18 0.15 0.18 0.15 0.18 0.15 0.115 0.15 0.21 0.15 0.21 0.21 0.15 0.21 0.27 0.21 0.21 0.27 0.21 0.21 0.27 0.21 0.21 0.21 0.21 0.21 0.22 0.21 0.21 0.22 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.22 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0	0.21 0.18 0.15 - 0.15 -			Mar	Apr	May	Jun	Jul	Aug	Se p	Oct	Nov	c e A	Mean
 - 0.30 0.09 0.21 0.15 0.21 0.30 0.21 - 0.27 0.21 - 0.21 0.18 0.60 0.27 0.18 - 0.21 - 0.39 0.30 8 0.18 0.18 0.50 0.18 0.60 0.45 0.48 0.27 0.21 0.09 0.09 - 0.37 0.18 0.24 0.21 - 0.15 0.18 0.39 0.018 0.12 0.09 0.27 0.54 0.27 0.35 0.15 0.18 0.30 0.10 0.39 0.30 0.21 0.35 0.21 0.18 0.24 0.21 - 0.15 0.18 0.30 1 0.39 0.30 0.21 0.37 0.56 0.42 0.42 0.42 0.69 0.60 0.18 0.15 0.24 2 0.36 0.27 0.15 0.24 0.18 0.21 0.27 0.36 0.36 0.36 0.36 0.36 0.36 0.27 0.15 0.24 0.18 0.21 0.27 0.37 0.12 - 0.18 0.35 0.30 0.20 0.20 0.35 0.42 - 0.39 0.36 0.30 0.36 0.36 0.36 0.36 0.27 0.35 0.42 - 0.39 0.36 0.30 0.36 0.36 0.35 0.30 0.20 0.50 0.45 0.42 0.42 0.42 0.42 0.36 0.36 0.35 0.50 0.60 0.60 0.45 0.45 0.42 0.30 0.30 0.30 0.36 0.36 0.50 0.60 0.60 0.45 0.45 0.42 0.30 0.30 0.30 0.36 0.36 0.50 0.50 0.50 0.45 0.45 0.42 0.30 0.30 0.30 0.36 0.36 0.50 0.60 0.60 0.60 0.45 0.45 0.42 0.30 0.30 0.30 0.36 0.50 0.60 0.60 0.60 0.45 0.45 0.42 0.30 0.30 0.30 0.35 0.50 0.60 0.60 0.60 0.45 0.45 0.42 0.30 0.30 0.36 0.36 0.50 0.60 0.60 0.60 0.45 0.45 0.42 0.30 0.30 0.30 0.36 0.36 0.50 0.60 0.60 0.60 0.45 0.45 0.42 0.36 0.36 0.36 0.50 0.60 0.60 0.60 0.60 0.45 0.45 0.45 0.45 0.45 - 0.66 	 - 0.30 0.09 0.21 0.15 0.21 0.30 - 0.21 0.18 0.60 0.27 0.18 - 0.21 3 0.18 0.18 0.50 0.45 0.45 0.48 0.09 0.09 - 0.37 0.21 0.18 0.24 0.21 - 0.15 0.18 0.12 0.09 0.27 0.54 0.27 0.33 0.15 0.36 0.27 0.21 0.18 0.21 0.27 0.35 0.15 0.36 0.27 0.56 0.42 0.42 0.42 0.69 0.60 0.18 0.50 0.27 0.15 0.42 0.42 0.42 0.69 0.60 0.18 0.50 0.27 0.56 0.42 0.42 0.64 0.12 0.50 0.27 0.56 0.42 0.42 0.42 0.64 0.12 0.50 0.27 0.15 0.42 0.42 0.42 0.69 0.60 0.18 0.50 0.27 0.15 0.42 0.18 0.21 0.27 0.24 0.12 0.50 0.27 0.56 0.42 0.42 0.42 0.69 0.60 0.18 0.50 0.27 0.56 0.42 0.60 0.50 0.30 0.50 0.50 0.50 0.20 0.50 0.50 0.50 0.50 0.50 0.50 0.60 0.60 0.60 0.45 0.45 0.42 0.30 0.30 0.36 0.45 0.45 0.60 0.60 0.60 0.45 0.45 0.42 0.30 0.36 0.36 0.36 0.45 0.50 0.50 0.50 0.50 0.50 0.30 0.50 0.50	0,21		- T2	1	0, 15	0.15	0.30	0,12	0.06	0.15	0,18	0.15	0,16
7 - 0.21 0.18 0.60 0.27 0.18 - 0.21 - 0.79 0.70 8 0.18 0.18 0.50 0.18 0.60 0.45 0.48 - 0.21 - 0.15 0.18 0.27 0.21 9 0.09 0.09 - 0.37 0.21 0.18 0.24 0.21 - 0.15 0.18 0.39 9 0.09 0.09 0.27 0.54 0.27 0.53 0.15 - 0.18 0.30 1 0.39 0.30 0.21 0.37 0.56 0.42 0.42 0.69 0.60 0.18 0.15 0.24 9 0.56 0.27 0.15 0.24 0.18 0.21 0.27 0.57 0.50 0.60 0.18 0.15 0.24 9 0.56 0.27 0.15 0.24 0.18 0.21 0.27 0.57 0.50 0.60 0.18 0.15 0.24 9 0.56 0.27 0.15 0.24 0.18 0.21 0.27 0.57 0.50 0.60 0.18 0.15 0.24 9 0.56 0.27 0.15 0.24 0.18 0.21 0.27 0.24 0.12 - 0.45 0.21 9 0.56 0.27 0.15 0.24 0.18 0.21 0.27 0.24 0.12 - 0.45 0.21 9 0.50 0.27 0.15 0.24 0.18 0.21 0.27 0.24 0.12 - 0.45 0.56 9 0.50 0.27 0.15 0.24 0.18 0.21 0.27 0.24 0.12 - 0.45 0.56 9 0.50 0.27 0.15 0.28 0.20 0.50 0.50 0.56 0.56 0.56 9 0.50 0.20 0.20 0.56 0.42 0.72 0.57 0.57 0.56 0.56 9 0.50 0.20 0.20 0.50 0.45 0.42 0.60 0.50 0.50 0.50 9 0.50 0.20 0.50 0.45 0.42 0.72 0.30 0.56 0.56 0.56 9 0.50 0.60 0.60 0.60 0.60 0.60 0.60 0.60	7 - 0.21 0.18 0.60 0.27 0.18 - 0.21 0.21 0.18 0.30 0.18 0.50 0.45 0.48 0.33 0.24 0.21 0.15 0.15 0.29 0.50 0.21 0.18 0.24 0.21 - 0.15 0.59 0.50 0.42 0.42 0.42 0.42 0.60 0.18 0.28 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5		ł.,		0.21	0.15	0.21	0.30	•	1		0.27	0.21	0.22
8 0.18 0.18 0.30 0.18 0.60 0.45 0.48 $ -$ 0.27 0.21 0.21 9 0.09 $-$ 0.09 $-$ 0.53 0.21 0.18 0.24 0.21 $-$ 0.15 0.18 0.39 1 0.39 0.20 0.21 0.35 0.24 0.27 0.53 0.15 $-$ 0.18 0.30 1 0.39 0.20 0.21 0.35 0.42 0.42 0.69 0.60 0.18 0.15 0.24 2 0.36 0.27 0.15 0.42 0.18 0.21 0.27 0.24 0.12 $-$ 0.45 0.20 3 0.30 0.27 0.36 0.42 0.30 0.30 0.30 0.36 0.56 0.50 4 0.56 0.56 $-$ 0.30 0.30 0.36 0.56 0.60 0.60 5 0.60 0.60 0.45 0.45 0.42 0.30 0.36 0.56 0.50 6 0.50 0.60 0.60 0.60 0.60 0.60 0.60 7 0.50 0.50 0.50 0.30 0.36 0.56 0.50 7 0.50 0.60 0.60 0.45 0.45 0.42 0.30 0.36 0.56 0.50 0.50 7 0.50 0.60 0.60 0.45 0.45 0.42 0.30 0.36 0.36 0.56 0.50 7 0.50 1.60 0.60 0.60 0.45 0.45 0.42 0.36 0.36 0.56 0.60 0.60 7 0.50 1.60 0.60 0.60 0.45 0.45 0.42 0.50 0.36 0.56 0.50 0.50 0.50 7 0.50 1.60 1.60 0.60 0.60 0.60 0.60 0.60 1.60 1	8 0.18 0.18 0.30 0.18 0.60 0.45 0.48 0.33 0.21 0.18 0.24 0.21 - 0.15 0.18 0.12 0.09 0.27 0.54 0.27 0.33 0.15	ī			0.60	0.27	0.18		0.21	l.	I	0.39	0, 30	0, 29
0.09 0.09 - 0.33 0.21 0.18 0.24 0.21 - 0.15 0.18 0.15 0.18 0.50 0.24 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.24 0.50 0.50 0.24 0.15 0.24 0.12 - 0.45 0.24 0.21 0.27 0.24 0.12 - 0.45 0.24 0.21 0.27 0.26 0.26 0.25 0.25 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.56 0.50 <td>0.09 0.09 - 0.33 0.21 0.18 0.27 0.23 0.15 - 0.15 1 0.18 0.12 0.09 0.27 0.54 0.27 0.35 0.15 - - 1 0.39 0.30 0.21 0.35 0.36 0.42 0.42 0.69 0.60 0.18 2 0.36 0.21 0.35 0.36 0.42 0.42 0.42 0.18 2 0.36 0.21 0.27 0.36 0.42 0.36 0.36 0.36 2 0.36 0.42 - 0.39 0.36 0.36 0.36 3 0.36 0.45 0.45 0.45 0.45 0.45 0.45 4 0.36 0.45 0.42 0.36 0.36 0.36 0.45 0.45 5 0.60 0.60 0.60 0.45 0.45 0.45 0.45 6 0.56 0.56 0.45 0.42 0.36 0.36 0.36 0.45 1</td> <td>0, 18</td> <td>N.</td> <td></td> <td>0. 18</td> <td>0.60</td> <td>0.45</td> <td>0.48</td> <td>ľ</td> <td>1</td> <td>1</td> <td>0.27</td> <td>0.21</td> <td>0.32</td>	0.09 0.09 - 0.33 0.21 0.18 0.27 0.23 0.15 - 0.15 1 0.18 0.12 0.09 0.27 0.54 0.27 0.35 0.15 - - 1 0.39 0.30 0.21 0.35 0.36 0.42 0.42 0.69 0.60 0.18 2 0.36 0.21 0.35 0.36 0.42 0.42 0.42 0.18 2 0.36 0.21 0.27 0.36 0.42 0.36 0.36 0.36 2 0.36 0.42 - 0.39 0.36 0.36 0.36 3 0.36 0.45 0.45 0.45 0.45 0.45 0.45 4 0.36 0.45 0.42 0.36 0.36 0.36 0.45 0.45 5 0.60 0.60 0.60 0.45 0.45 0.45 0.45 6 0.56 0.56 0.45 0.42 0.36 0.36 0.36 0.45 1	0, 18	N.		0 . 18	0.60	0.45	0.48	ľ	1	1	0.27	0.21	0.32
0.18 0.12 0.09 0.27 0.54 0.27 0.35 0.15 - - 0.18 0.30 1 0.59 0.30 0.21 0.35 0.42 0.42 0.42 0.69 0.60 0.15 0.24 2 0.36 0.27 0.15 0.24 0.18 0.21 0.25 0.24 0.15 0.24 3 0.36 0.26 0.42 - 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.60 0.60 4 0.36 0.45 0.42 - 0.30 0.36 0.45 0.45 0.36 5 0.60 0.60 0.45 0.42 0.36 0.36 0.60 0.60 0.60 6 0.50 0.60 0.45 0.42 0.36 0.36 0.60 0.60 0.60 0.60 0.60 0.60 0.60 7 0.50 0.56 0.45 0.45 0.45 - 0.60 0.60 0.60 0.60 <t< td=""><td>0.18 0.12 0.09 0.27 0.54 0.27 0.33 0.15 - - 1 0.39 0.20 0.21 0.35 0.42 0.42 0.69 0.60 0.18 2 0.36 0.27 0.15 0.24 0.12 - - 2 0.36 0.27 0.15 0.24 0.18 0.12 - - 3 0.30 0.27 0.36 0.42 - 0.39 0.36 0.36 0.36 4 0.36 0.42 - 0.39 0.36 0.36 0.36 0.36 5 0.60 0.60 0.45 0.45 0.42 0.36 0.36 0.45 0.45 0 0.60 0.60 0.45 0.45 0.42 0.36 0.45 0.45 0 0.50 0.26 0.36 0.36 0.36 0.36 0.45 0.45 0 0.60 0.60 0.45 0.42 0.36 0.36 0.35 0.35 0 <td< td=""><td>60.0</td><td>60</td><td></td><td>0.33</td><td>0,21</td><td>0.18</td><td>0.24</td><td>0.21</td><td></td><td>0.15</td><td>0.18</td><td>0.39</td><td>0.20</td></td<></td></t<>	0.18 0.12 0.09 0.27 0.54 0.27 0.33 0.15 - - 1 0.39 0.20 0.21 0.35 0.42 0.42 0.69 0.60 0.18 2 0.36 0.27 0.15 0.24 0.12 - - 2 0.36 0.27 0.15 0.24 0.18 0.12 - - 3 0.30 0.27 0.36 0.42 - 0.39 0.36 0.36 0.36 4 0.36 0.42 - 0.39 0.36 0.36 0.36 0.36 5 0.60 0.60 0.45 0.45 0.42 0.36 0.36 0.45 0.45 0 0.60 0.60 0.45 0.45 0.42 0.36 0.45 0.45 0 0.50 0.26 0.36 0.36 0.36 0.36 0.45 0.45 0 0.60 0.60 0.45 0.42 0.36 0.36 0.35 0.35 0 <td< td=""><td>60.0</td><td>60</td><td></td><td>0.33</td><td>0,21</td><td>0.18</td><td>0.24</td><td>0.21</td><td></td><td>0.15</td><td>0.18</td><td>0.39</td><td>0.20</td></td<>	60.0	60		0.33	0,21	0.18	0.24	0.21		0.15	0.18	0.39	0.20
 1 0.39 0.30 0.21 0.35 0.36 0.42 0.42 0.42 0.69 0.60 0.18 0.15 0.24 2 0.36 0.27 0.15 0.24 0.18 0.21 0.27 0.24 0.12 - 0.45 0.21 3 0.30 0.27 0.36 0.42 - 0.39 0.36 0.30 0.30 0.36 0.36 0.36 0.60 4 0.36 0.36 0.45 0.45 0.42 0.30 0.30 0.30 0.36 0.60 0.60 5 0.60 0.60 0.60 0.45 0.42 0.36 0.36 0.36 0.60 0.60 6 0.30 0.26 0.35 0.34 0.32 0.34 0.35 0.35 0.35 0.30 0.50 9 0.30 0.26 0.25 0.34 0.32 0.34 0.28 0.35 0.32 0.30 0.50 9 0.30 0.26 0.25 0.34 0.32 0.39 0.34 0.28 0.35 0.32 0.30 0.55 9 0.50 1.60 0.60 0.60 0.45 0.45 0.44 0.28 0.35 0.32 0.30 0.50 1 0.30 1.60 1.60 0.25 0.34 0.32 0.29 0.34 0.28 0.32 0.30 0.50 1 0.30 1.50 0.26 0.25 0.34 0.52 0.29 0.54 0.28 0.35 0.30 0.50 	<pre>1 0.39 0.30 0.21 0.33 0.36 0.42 0.42 0.69 0.60 0.18 2 0.36 0.27 0.15 0.24 0.18 0.21 0.27 0.24 0.12 - 3 0.30 0.27 0.36 0.42 - 0.39 0.36 0.30 0.36 4 0.36 0.36 0.45 0.45 0.42 0.30 0.30 0.36 0.45 0.45 5 0.60 0.60 0.45 0.45 0.42 0.36 0.36 0.45 0.45 7 0.30 0.26 0.25 0.34 0.32 0.34 0.28 0.32 0.32 8 0.30 0.26 0.25 0.34 0.32 0.29 0.34 0.28 0.32 0.32 8 0.30 0.10 the D.P.U. Wilayah Surakarta office.</pre>	0.18			0.27	0,54	0.27	0.33	0.15	ΪĻ.	1	0,18	0.30	0.24
 0.36 0.27 0.15 0.24 0.18 0.21 0.27 0.24 0.12 - 0.45 0.21 0.30 0.27 0.36 0.42 - 0.39 0.36 0.30 0.36 0.36 0.30 0.36 0.36 0.36 0.45 0.45 0.42 0.30 0.30 0.36 0.60 0.60 0.60 0.60 0.60 0.45 0.45 0.42 0.36 0.36 0.45 0.45 - 0.60 0.30 0.26 0.25 0.34 0.32 0.34 0.28 0.32 0.32 0.30 0.35 Note: 1) Above figures are based on the data named "Daftar Adanya Lapuran Pasten I from the D.P.U. Wilayah Surakarta office. 	 0.36 0.27 0.15 0.24 0.18 0.21 0.27 0.24 0.12 - 0.30 0.27 0.36 0.42 - 0.39 0.36 0.30 0.30 0.36 0.36 0.36 0.36 0.45 0.45 0.42 0.30 0.36 0.45 0.45 0.60 0.60 0.60 0.45 0.45 0.42 0.36 0.36 0.45 0.45 0.30 0.26 0.25 0.34 0.32 0.29 0.34 0.28 0.32 0.32 Note: 1) Above figures are based on the data named "Daftar Adamya from the D.P.U. Willsych Surakarta office. 	1 0.39	:		0.33	0,36	0.42	0.42	0.69	0.60	0.18	0.15	0.24	M
5 0.30 0.36 0.42 - 0.39 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.30 5 0.60 0.60 0.60 0.45 0.42 0.36 0.36 0.45 0.60 0.60 6 0.60 0.60 0.45 0.42 0.36 0.36 0.45 - 0.60 7 0.30 0.26 0.45 0.42 0.36 0.36 0.45 - 0.60 7 0.30 0.26 0.45 0.45 0.42 0.36 0.32 0.32 0.50 7 0.30 0.26 0.27 0.34 0.32 0.32 0.30 0.55 8 0.26 0.27 0.34 0.28 0.32 0.30 0.55 8 0.26 0.26 0.32 0.32 0.30 0.35 0.55 9 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 9 0.2	5 0.30 0.27 0.36 0.42 - 0.39 0.36 0.30 0.30 0.36 0.36 0.36 0.36 0.36 0.36 0.45 0.45 5 0.60 0.60 0.45 0.45 0.42 0.36 0.36 0.45 0.45 6 0.50 0.60 0.60 0.45 0.45 0.42 0.36 0.45 0.45 0 0.0 0.60 0.60 0.60 0.45 0.45 0.45 0.45 0 0.0 0.60 0.60 0.45 0.45 0.42 0.45 0 0.0 0.60 0.60 0.45 0.45 0.45 0.45 1 0.30 0.26 0.27 0.32 0.32 0.32 0.32 1 0.30 0.26 0.27 0.32 0.32 0.32 0.32 1 0.30 0.26 0.27 0.32 0.32 0.32 0.32 1 1 1 1 1 1 1 1 1	2 0.36			0.24	0,18	0.21	0.27	0.24	5L.0	1	0.45	0.21	
0.36 0.36 0.36 0.36 - 0.30 0.30 0.30 0.36 0.60 0.60 0.60 0.60 0.60 0.45 0.45 0.42 0.36 0.36 0.45 0.45 - 0.60 0.30 0.26 0.25 0.34 0.32 0.34 0.28 0.32 0.32 0.30 0.35 Note: 1) Above figures are based on the data named "Daftar Adanya Lapuran Pasten F	0.36 0.36 0.36 0.36 - 0.30 0.30 0.30 0.36 0.60 0.60 0.60 0.60 0.45 0.45 0.42 0.36 0.36 0.45 0.45 0.30 0.26 0.25 0.34 0.32 0.29 0.34 0.28 0.32 0.32 Note: 1) Above figures are based on the data named "Daftar Adanya from the D.P.U. Wilayah Surakarta office.	3 0 30			0.42	I	0.39	0.36	0.30	0.30	0.36	0.36	0.30	0.34
0.60 0.60 0.60 0.45 0.45 0.42 0.36 0.36 0.45 0.45 - 0.60 0.30 0.26 0.25 0.34 0.32 0.29 0.34 0.28 0.32 0.32 0.30 0.35 Note: 1) Above figures are based on the data nameà "Daftar Adanya Lapuran Pasten A	0.60 0.60 0.60 0.45 0.45 0.45 0.42 0.36 0.36 0.45 0.45 0.30 0.26 0.25 0.34 0.32 0.29 0.34 0.28 0.32 0.32 Note: 1) Above figures are based on the data named "Daftar Adamya from the D.P.U. Wilayah Surakarta office.	0.36	÷.,		0.36	I	0• 30	0.30	0.30	0.36	0.60	0.60	0.60	4
0.30 0.26 0.25 0.34 0.32 0.39 0.34 0.28 0.32 0.32 0.30 0.35 Note: 1) Above figures are based on the data nameà "Daftar Adanya Lapuran Pasten A from the D.P.U. Wilayah Surakarta office.	0.30 0.26 0.25 0.34 0.32 0.29 0.34 0.28 0.32 0.32 Note: 1) Above figures are based on the data named "Daftar Adanya from the D.P.U. Wilayah Surakarta office.	0.60			0.45	0.45	0.42	0.36	0.36	0.45	0-45		0.60	0.49
 Above figures are based on the data named "Daftar Adanya Lapuran from the D.P.U. Wilayah Surakarta office. 	 Above figures are based on the data named "Daftar Adanya from the D.P.U. Wilayah Surakarta office. 	0.30 0.		- 14 - 1	0. 34	0.32	0.29	0.34	•	0.32	0.32	0.30	0.35	0.30
from the D.P.U. Wilayah Surakarta office.	from the D.P.U. Wilayah Surakarta office.) Abo	1.1			с С	le data	nameč	'Daftar	A danya			Air
			Гro Г	the	D d D			carta o:			· · ·			

Ratio for Sugar Cane is 2.0.

З) F


Table 1.2.4 Existing Monthly Irrigation Water Use for Growing Faddy

- 9 -

Sragen)	
(Seksi	
Kenatan	
М	
Table 1.2.5	

Unit : 1/sec/ha.

· . 		· · ·			•		10	-			· · · · · · · · · · · · · · · · · · ·		
:	· ·	÷.										•	ж 1
	Mean	0.25	0.27	0.27	0.52	0.47	0.40	0.46	0.31	0.59	0.53	0.45	0.41
	Dec.	· · · · · · · · · · · · · · · · · · ·	0*30	0.54	0.45	0.48	0.33	0.51	0.39	0.57	0.33	0.27	0.42
	Nov.	0.22	0.27	0.42	0.66	0.30	0.30	0.60	0.36	0.30	0-30	0, 30	0.37
	Oct.	0.18	0.27	0,06	0.36	0.33	0.21	0.72	0.30	0.27	0.39	1	0.31
	Sept.	0.21	0.18	0.12	0.48	0.39	0.61	0,30	0.18	0.50	0.84	0.51	0.48
	Aug.	0.09	0.21	0,15	0.60	0.36	0.30	0.36	0.24	0.60	0.75	0.24	0.34
	Jul.	0.12	0.24	0.15	0.75	0,48	0.36	0,15	0.15	0.60	0.39	0.33	0.39
	Jun.	0.12	12.0	0.18	0.69	0.48	0.45	0.54	0.21	0.72	0.48	0.51	0.42
	May	0.24	0.33	0.21	0,42	0.57	0.63	0.54	0.39	0.60	0.60	0.81	0.49
	Apr.	0.30	0,12	0,60	0.39	0.60	0.51	0,42	0.39	0.51	0.78	0.66	0.48 0.49
	War.	0.30	0.42	0.24	0.36	0.69	0.27	0,42	0.39	0.45	0.54	0.54	0.42
	Feb.	0.30	0.42	0.30	0.42	0.48	0,48	0.33	0.30	0.54	1	0.39	0,40
	Jan.	0.45	 . I	ļ	0.60	0.48	0.33	0.57	0.42	0.39	0.42	0.42	Mean 0.45
	Year	1965	1966	1967	1968	1969	1970	161 J	1972	1973	1974	1975	Mean

 $\Pi_{\overline{e}}$

~-

. . .

1.2.3. Water Balance Survey

1.2.3.1 Field survey

An area with an extent of 3,400 ha, which is surrounded by the Bengawan Sala, Kali Jlantah and Sala-Wonogiri Highway, was selected for the measurement related with water balance. The location map of the selected area is shown in Fig. 1.2.3. All the inflows from the irrigation canals and the pumping units in operation were measured, side by side, with all the out-flows into riverlets and drainage channels on the boundary of the selected area, for six days by using currentmeters and other devices. Fortunately, no rainfall occurred in the area during this water measurement survey and the data as shown on Table 1.2.6 have been obtained. The unit requirement estimated on the measurement data has been assessed at 0.37 to 0.63 litre/sec/ha, similar to that based on Pasten Method.

1.2.3.2 Reference from the Madiun water balance study

Drought flow in dry season in the Upper Sala Basin has been estimated from the results of water balance study undertaken in connection with the Groundwater Development Project in Madiun and Upper Sala Watersheds. This study had been carried out in the area which is extending from Sragen to Madiun where much similarity is supposed to exist between the Upper Sala area including the Projectarea, so far as the geological formation, vegetation and groundwater movements are concerned.

a) Flow measurement in Sub-Area I of Madiun Project

This measurement was carried out along all the river canals crossing the road running from Ngrambo to Mageran, on the day which was supposed to be the driest time of a year. This road is running parallel to the counter-line +300 m which is supposed to be the upper-limit line for paddy cultivation. The measurement data and the related figures are given as Data-5.1 and Data-5.2.

b) Estimation of watershed

The watershed extending from the road to the summit of the Gunung Lawu has been measured by use of a planimeter on 1/50,000 scale map. The result was:

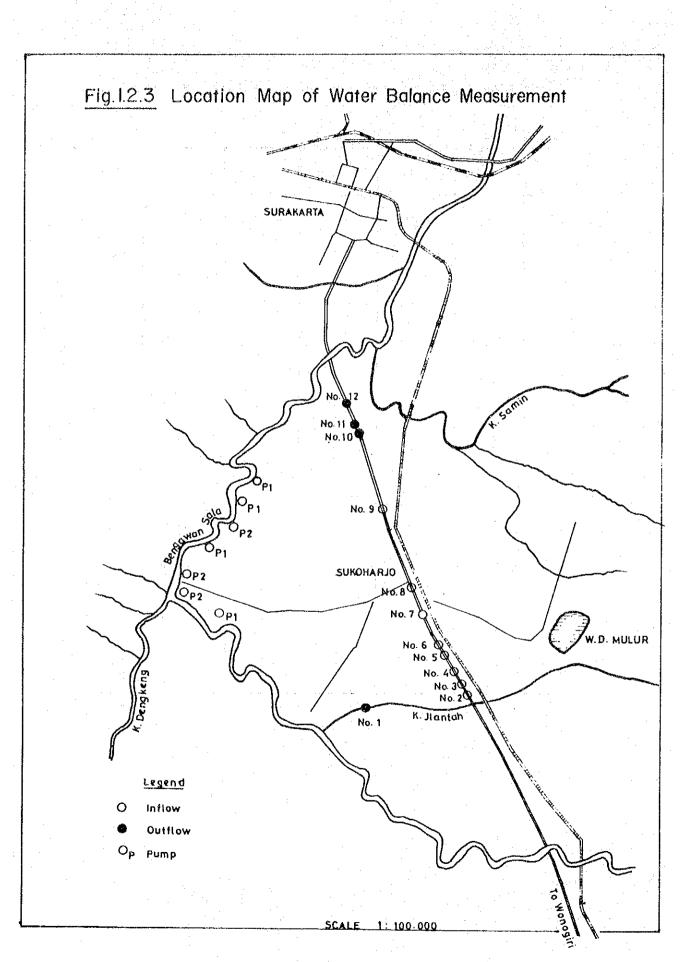
$$A = 160.75 \text{ km}^2$$

c) Specific discharge in Sub-Area I

From the water balance study data in Sub-Area I, the specific discharge of run-off from the watershed above the upper-limit line for paddy cultivation (counter-line + 300 m) has been estimated:

Total amount of Run-off: $Q = 4.954 \text{ m}^3/\text{sec}$ $q = 4.954/160.75 = 0.031 \text{ m}^3/\text{sec}/\text{km}^2 \neq 30 \text{ litre/sec/km}^2$

	22 Apr	23 Apr	24 Apr	26 Apr	27 Apr	30 Apr
No. l [*]	-0.019	-0.012	-0.013	-0.012	-0.004	0
No. 2	0.007	0	.0	0	0	0
No. 3	0.573	0.326	0.486	0.095	0.094	0.345
No. 4*	<u> </u>	- 0	- 0	- 0	-0.001	- 0
No. 5	0.029	0.014	0	0	0.001	0
No. 6	0.382	0.412	0.331	0.357	0.266	0,483
No. 7	0.158	0.047	0.075	0.165	0.064	, O,
No. 8	0.251	0.198	0.203	0.294	0.241	0.117
No. 9	0.294	0.287	0.247	0.180	0.160	0.210
No. 10 [*]	-0.019	-0.012	- 0	– Ò.	- 0	- 0
No. 11*	<u> </u>	- O	-0.007	-0.117	-0.040	- 0
No. 12*	-0.296	-0.173	-0.181	-0.065	-0.080	- 0
Pump	0.646	0.646	0.646	0.483	0.474	0.458
Total	2.006	1.733	1.787	1.380	1.174	1.613
Unit Water Use	0.63 \$/s/ha	0.54 &/s/ha	0.56 &/s/ha	0.43 <i>l/s/</i> ha	0.37 &/sec/ha	0.51 &/sec/ha
Note	1. The second	ion	. Sukohar		· · · ·	


Table 1.2.6 Measurement of the Existing Water Balance

Unit : m³/sec

Instrument Current meter

Area 3,400 Ha Water Source Wd. Mulur Irrigation Area.. 3,180 Ha (Cropping ratio 93%)

* ; outflow

- 14 -

d) Drought discharge in the Upper Sala Area

The watershed above the upper-limit line for paddy cultivation towards the summit of the Gunung Lawu has been measured from 1/50,000 scale map:

$$A = 307 \text{ km}^2$$

Drought discharge from the seven tributaries in the watershed above the upper-limit line for paddy cultivation has been estimated as follows:

$$0 = 0.03 \times 307 = 9.2 \text{ m}/\text{sec}$$

e) Conclusions

The paddy field spreading between the Main Canal and the upperlimit line for paddy cultivation is about 37,000 ha. On the assumption that 70 % of the drought discharge calculated in the above will consist of the available water resources for irrigation, the unit available water resources in this area during dry season is estimated at:

 $9.2 \times 1,000 \times 0.7/37,000 = 0.17$ litre/sec/ha

2. PLANS AND STUDIES

2.1 IDENTIFICATION OF IRRIGABLE AREA AND CANAL ALIGNMENT

Upon identifying the irrigable area which was to be stemmed within such boundaries as rivers, roads, and natural ridges and justifiable in its extent by the results of water balance studies between the available water resources and the diversion requirements for irrigation, the two main canals have been aligned by taking into consideration the patterns of land-use and topography there.

'Tegal' or Upland of 300 ha, which is scattering in small patches over the entire project area has been excluded from irrigation area, since it is not technically feasible to irrigate these elevated lands systematically without introduction of pumping irrigation system.

Therefore, only 'Sawah' or paddyfield having the total extent of 23,200 ha will be made irrigable, out of the gross project area of 24,600 ha; the irrigable area is commanded by two main canals, namely, the Upper Sala Main Canal and the Dengkeng Main Canal. (See Tables 2.1.1 and 2.1.2).

		Paddy			Uplan			(Unit: Ha) Total
Region		Public	Net Area	Gross Area	Public			Public Net Jse Area
Karanganyar & Sragen Region	20,420	820	19,600	242	10	232	20,662	830 19,832
Dengkeng Region	3,850	250	3,600	73	5	68	3,923	255 3,668
Total	24,270	1,070	23,200	315	15	300	24,585	1,085 23,500

Table	2.1.1	Summary	of	Land	Use	Sawah	&	Tegal	Ι.
10010	6	Nummer y	0.0	Dance	0.00	(Schart	u,	regar	/ ·

Note: Public Uses such as farm roads, farm ditches, etc., are estimated at about 4% of the gross area.

				1.1
· · ·	- 17			1.1
	- T •			· · ·
	· · · · · ·	•		
				· · ·
2,1,2	Land	Use	Patt	ern
				6 - F - F

Unit: ha

No. of Map	Land Paddy	Use Upland	Total	No. of Map	Land Paddy	Use Upland	Total
].		-		33	128		128
2.	-	·		34.	633	-	633
3	·		· –	35.	25		25
4.	_			36.		 11	-
5.	34		34	37.	_		
-5A.	22		22	38.	130		130
6.	22	. 3	25	39.	702		702
7.	60		60	40.	26	-	26
8.	106	2	108	41.	-	-	
9.	483	2	485	42	264	-	264
9A.	398	9	407	43.	582		582
10.	98		98	44		-	-
11.	119	11	130	45	-		-
12.	791	-	791	46	_		
13.	677	19	696	47	417		417
14.	564	14	578	48	77	-	77
14A.	260	<u> </u>	260	49.	-	-	-
15.	-	· –	1	50.	-	_	**
16.	474	-	474	51.		_ `	
17.	582	4	586	52	250	·	250
18.	589	6	595	53.	_	-	· · · · ·
19.	466		466	54.	-	- :	
20.	121	1	122	55	271	-	271
21.	129	—	129	56	290	· _	290
22.	664	-	664	57	_	-	-
23.	600	8	608	58	423	· ·	423
24.	40		40	59	128	-	128
25.		-		60.	119	-	119
26.	-	-		61.	597	-	597
27.	7	<u> </u>	7	62.	-	-	
28.	723	. 1	724	63.	— .		-
29.	508	-	508	64	-	-	
30.	239	-	239	*65.	510	-	510
31.				66.	505	10	515
32.	-		—	67.	26	-	26
	· · · · · · · · · · · · · · · · · · ·		Level in a set of the set	1	1	L	
						· · · ·	

<u>Table 2</u>. n 'n

· . . .

				·		Un	it: ha
	No. of Map	Lan Paddy	d Use Upland	Total	No. of Map	Land Use Paddy Upland	Total
	68.						
	69.	2		2			ana Ana ana ana
	*70.	759		759			
	71	742	3	745		:	
	72.	103	4	107			
	73.	· · · ·		-			
	74.	220	. - .	220			
	*75	763	_	763			
	76.	531	2	533			
	77.	-	-				
	78.	144		144	·		
	79.	339	7	339			
ł	80.	596	7	603			
	81.	494		494			
	82.	-	-	-			
	83.	441		441		· · · · · ·	
	84.	677	6	683			
	85.	418	35	453			
	86.	500	46	546		· 	
	87.	14	-	14		1. J.	
	88.	426		426			
	89.	634	46	680			
	90.	501		501			
	91.	390	73	463			
	92,	146		146			
	93.	-		-			
	94 05	180 26	. 	180			
	95. 06	35	° 	35			
	96 . ·	254	-	254			
	97. 98.	40 29	~	40			
	99.	29	3	32			
	100.	-	-	-			<u>-</u>
	101.						
	101.		_				
·		0.1.070				······································	
L	Total	24.270	315	24.585	• · · ·		

2.2 ESTIMATION OF IRRIGATION WATER REQUIREMENTS

2.2.1 General

a) Definition

Several terms used in this section are defined and denoted as follow;

Evapotranspiration (ET) = Evaporation (EV) + Transpiration (Consumptive use)

Water requirement (WR) = (ET) + Percolation

Irrigation requirement (IR) = (WR) + Farm waste - Effective rainfall

Diversion requirement (DR) = (IR) + Conveyance loss

Puddling requirement (PR) = Water to be required for field preparation

Note: Farm waste is the quantity of water losses on farm due to seepage, leakage through, over application of water and spillage.

b) Basic year for irrigation planning

According to the supporting report of Master-plan of Sala River Basin Development, the year 1967/1968 was chosen as the basic year, on the ground that the rainfall (1,623 mm, from May 1967 to April 1968) is equivalent to seven year probability rainfall. This seems to be the reasonable approach to identify the design rainfall.

While, in the Wonogiri Dam Feasibility Report Annex II, the yearly deficit of irrigation water or the yearly required storage capacity for Wonogiri reservoir was estimated on the basis of the water balance study between the diversion requirement and the inflow of the reservoir at the Wonogiri Dam Site for a period of 20 years. Based on these data, the excess probability analysis on the required storage was examined by Iwai Method.

Consequently, the year with 7 return period from the yearly required storage capacity point-of-view coincides with 1967/1968 which was chosen as the basic year in the Master Plan of Sala River Basin Development, as the result of the rainfall probability analysis. The year 1967/1968 was, thus, selected as the basic year for irrigation planning under the Project.

c) Water resources for the Project

The total irrigation water requirement in the project area is dependably supplied by Wonogiri reservoir, which is the stable water resources facility with an active storage capacity of 440 million m^3 , as has been justified by the Feasibility Study 1975. Wonogiri reservoir is now in the stage of detailed design.

The feasibility report specified that the reservoir's total storage capacity consists the following three: the storage for net diversion requirement amounting to 400 million m^3 , the pondage losses in Colo reservoir estimated at 10 million m^3 , and the storage for release to downstream in the volume of 30 million m^3 . The irrigation plan, therefore, has to be proposed on the basis of 400 million m^3 .

d) Regional cultivation pattern

Paddy-rice and sugarcane are the two main crops prevailing in the entire project area. The cultivation ratio seems to vary from region to region, judging from the data available on the existing land use.

Accordingly, the entire project area has been divided into three regions for the convenience of irrigation planning:

Dengkeng region

This region extending over the down reach of Kali Dengkeng is managed under Seksi Karanganyar and is commanded by Dengkeng main canal.

Proposed	irrigable	area	3,600 ha
Proposed	hectareage	of sugarcane cultivation	non culti-
			vation

Karanganyar region

This region sprawling over Sukohardjo is managed under Seksi Karanganyar and is commanded by the upper reach of the Upper Sala Main Canal.

Proposed	irrigable	area	10,100 ha
		of sugarcane cultivation	

Sragen region

This region spreading in and around Sragen, is managed under Seksi Sragen and is commanded by the lower reach of the Upper Sala Main Canal.

Proposed irrigable area ----- 9,500 ha Proposed hectoreage of sugarcane cultivation -- 1,500 ha

e) Alternative cropping patterns

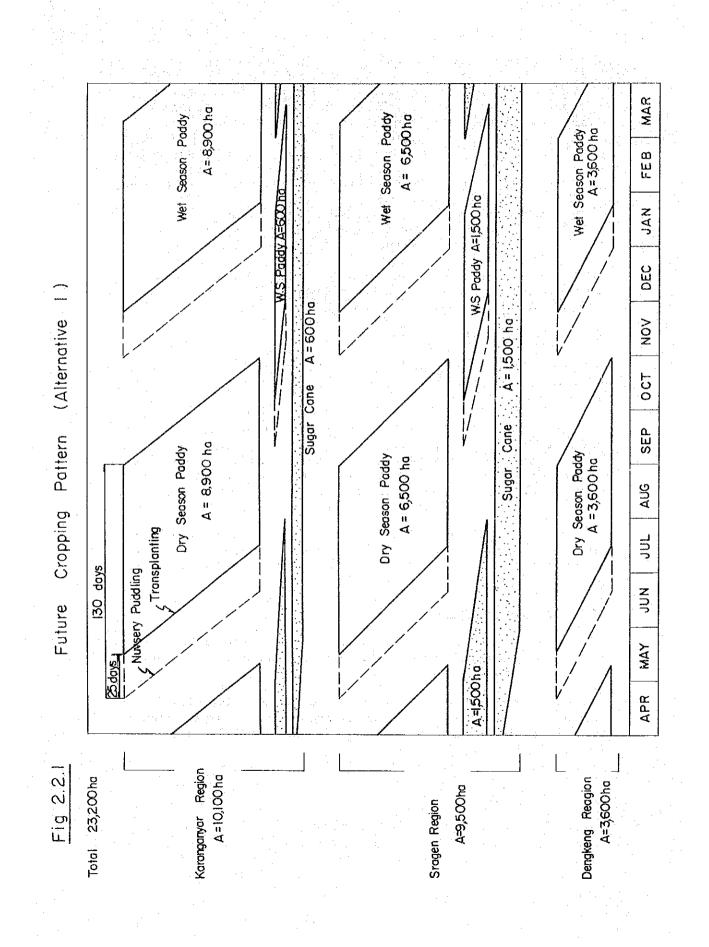
Three alternative cropping patterns have been studied for irrigation planning by taking into account the current cultivation practices and agro-economic factors in the area, namely:

Alternative - 1: Less intensive cultivation, paddy-paddy per year. Alternative - 2: Medium intensive cultivation, paddy-paddypolowijo per year. Alternative - 3: More intensive cultivation, five (5) paddys per two (2) years or paddy-paddy-half paddy per year.

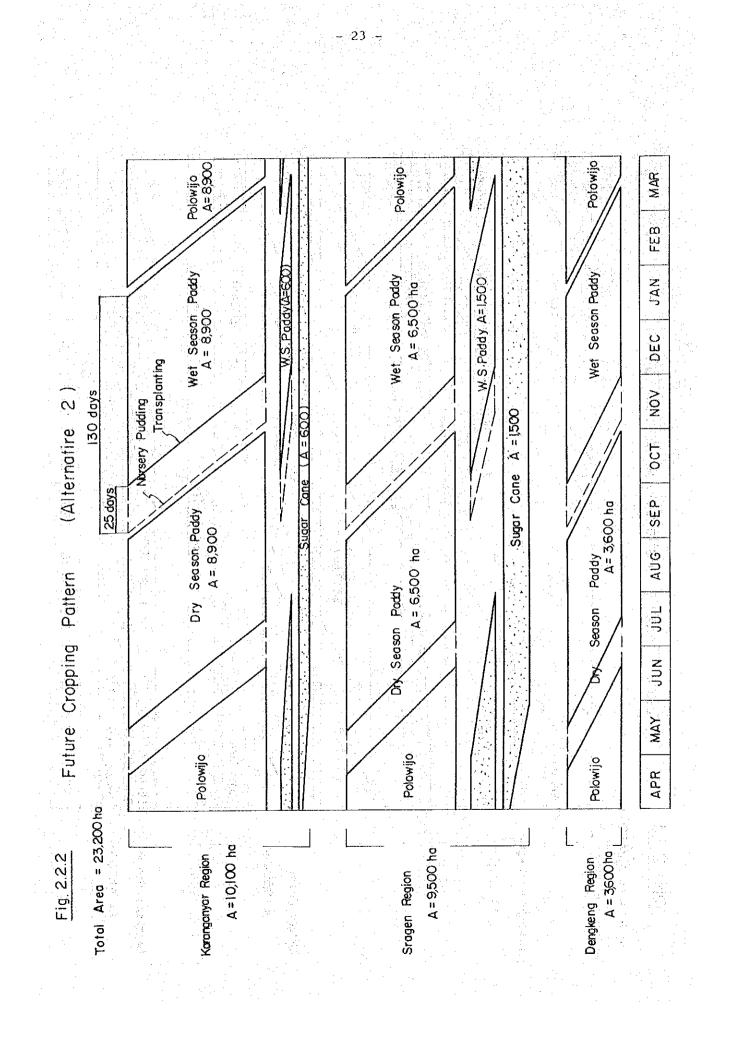
Each Alternative is illustrated in Fig. 2.2.1 to Fig. 2.2.3. The details of the above-mentioned cropping patterns are given in the relevant sections.

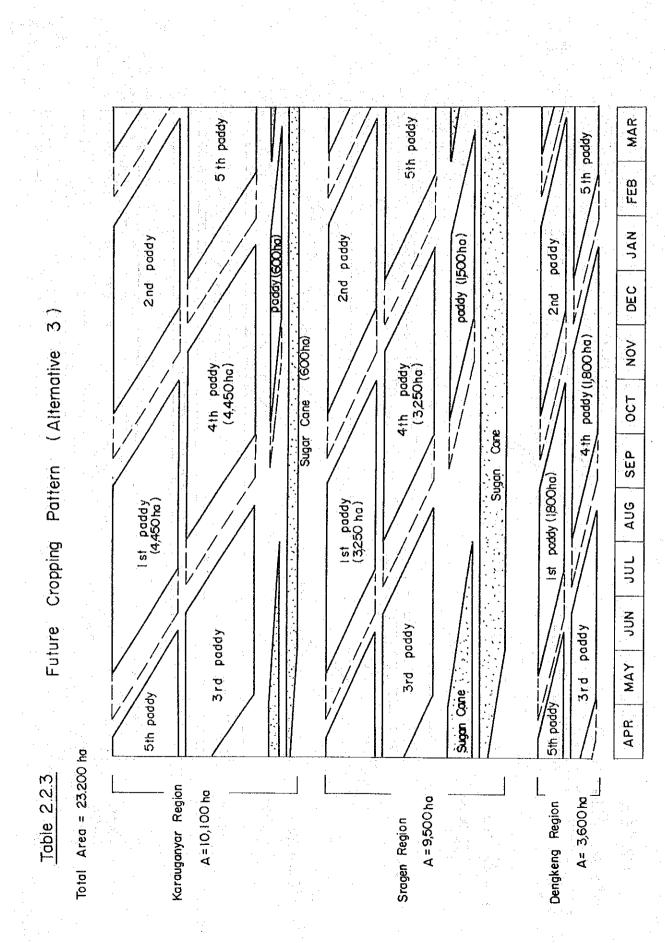
f) Calculation procedure

A series of water requirements for irrigation planning was calculated according to the chart of calculation procedure as shown in Fig. 2.2.4.


First of all, the irrigation area was tentatively assumed, consideration of topographical condition and the main canal alignment being undertaken simultaneously. Then, a series of calculation of water consumption in the field was carried out to get diversion requirement, which was balanced with the storage capacity of Wonogiri reservoir of 400 million m³.

In case they are not balanced, the calculation must be repeated until the water consumption of the assumed irrigation area keeps balance with the storage capacity of the Wonogiri reservoir of 400 million m^3 .


g) Summary of estimation


Several kinds of water requirements and water balance estimated for each alternative cropping pattern are summarized in Table 2.2.61 to Table 2.2.63.

The principal figures such as the maximum diversion discharge, total amount of diversion capacity and storage capacity required for the Wonogiri reservoir vary from alternative to alternative as shown in the following Table.

- 22 -

- 24 -

Fig.2.2.4 Calculation Flow Chart

Cropping Pattern	Alternative-1 2-Paddy	Alternative-2 2-Paddy & Polowijo	Alternative-3 2.5-Paddy
Maximum Diversion Discharge (m ³ /sec)	34.0	33.3	29.4
Total Amount of Diversion Capacity (Million m ³)	389	452	483
Storage Capacity Required (Million m ³)	323	415	397

Table 2.2.1Maximum Diversion Requirement and Storage
Capacity Required by Each Alternative

As for the maximum diversion discharge, Alternative-1 and Alternative-2 are larger than Alternative-3, even though the former two are less intensive than the latter, as shown in Table 2.2.64 and Fig. 2.2.15.

The larger discharge figures for Alternative-1 and -2 are supposed to be affected by puddling requirement, while the water consumption for Alternative-3 seems to be quite even throughout the year.

However, total amount of diversion capacity for each Alternative seems to increase in proportion to an increase of the cultivation intensity.

Speaking from the irrigation planning aspect, Alternative-3 is the optimal pattern and, moreover, only Alternative-3 can be accommodated to the storage capacity of 400 million m^3 , guaranteed by Wonogiri reservoir.

As detailed in the agro-economy section, two-and-half crops a year paddy cropping pattern (Alternative-3) is being adopted on about 20,000 ha in Kabupaten Klaten even at present.

Consequently, Alternative-3 has been proposed as a future cropping pattern in the project area. The design discharge for each region, based on the requirement of Alternative-3, has been decided as follows:

Region	Command area (ha)	Design Discharge (m ³ /sec)	Unit Design Dis- charge (1/sec/ha)
Entire Irrigation area	23,200	29.5	1.27
Upper Sala Region			
Karanganyar	10,100	12.9	1.28
Sragen	9,500	11.4	1.20
Dengkeng Region	3,600	5.2	1.44

Table 2.2.2 Diversion Discharge for Each Region

27

2.2.2 Cropping Area Needs for Irrigation Water

Based on the three alternative cropping calendars adopted for this study, the cropping area by every ten-day period needs for irrigation water by crop are calculated as shown in Table 2.2.3 for an area of 1,000 ha of each crop.

The unit irrigation area and the total irrigation area by crops are calculated as shown in Tables 2.2.4 to 2.2.9.

The nursery area in the paddy field is presumed to be 5 % of the total cropping area of paddy.

Tth 8th 9th 10th 11th 12th 13th 15th 16th 17th 18th 20th ng	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.42 6.0 deys	$\frac{28}{12\cdot 5}$ 12.5 733.3 746 5	$0.05 = 50 \text{ ha})$ $\frac{22}{23} = 1,000 \times \frac{5}{60} - 16.7$ $\frac{24}{25} = 50 \times \frac{1}{60} \times \frac{1}{8}$ $\frac{24}{25} = 50 \times \frac{1}{60} \times \frac{1}{8}$ $\frac{25}{25} \times \frac{1}{8} - 0.42$ $\frac{25}{25} = 1,000 \times \frac{25}{60} - 16.7$ $\frac{25}{25} = 50 \times \frac{25}{60} \times \frac{25}{25} - 0.83$ $\frac{27}{25} = 1,000 \times \frac{50}{60}$ $\frac{27}{60} = 1,000 \times \frac{50}{60}$ $\frac{227}{25} = 50 \times \frac{25}{60} \times \frac{15}{25}$ $\frac{22}{20} = 1,000 \times \frac{50}{60}$ $\frac{23}{20} = 1,000 \times \frac{10}{60}$ $\frac{23}{20} = 1,000 \times \frac{10}{60}$ $\frac{23}{20} = 16.7$ $\frac{23}{20} = 1,000 \times \frac{50}{60} - 16.7$ $\frac{24}{60} = 1,000 \times \frac{20}{60} \times \frac{10}{60}$
ist 2nd 3rd 4th 5th 6th 1 1 1 1 1 1 1 1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.83 0.83	20.0 20.0 23.3 400.0 253 420	Nursery area is equivalent to 5 % of cultivation area. (1,000 ha x 0.05) $\frac{1}{\sqrt{1}} = 50 \times \frac{1}{60} \times \frac{1}{60} = 16.7$ $\frac{1}{\sqrt{2}} = 1,000 \times \frac{10}{60} = 16.7$ $\frac{1}{\sqrt{2}} = 1,000 \times \frac{10}{60} - 16.7$ $\frac{1}{\sqrt{2}} = 1,000 \times \frac{20}{60} - 16.7$ $\frac{1}{\sqrt{2}} = 1,000 \times \frac{20}{60} - 16.7$ $\frac{1}{\sqrt{2}} = 50 \times \frac{25}{60} \times \frac{5}{25} - 0.83$ $\frac{1}{\sqrt{1}} = 1,000 \times \frac{40}{60} - 16.7$ $\frac{1}{\sqrt{6}} = 50 \times \frac{25}{60} \times \frac{25}{25} - 0.83$ $\frac{1}{\sqrt{1}} = 1,000 \times \frac{50}{60} - 16.7$ $\frac{1}{\sqrt{6}} = 50 \times \frac{25}{60} \times \frac{25}{25} - 0.83$ $\frac{1}{\sqrt{1}} = 1,000 \times \frac{55}{60} - 16.7$ $\frac{1}{\sqrt{6}} = 50 \times \frac{25}{60} \times \frac{25}{25} \times 1$ $\frac{1}{\sqrt{2}} = 1,000 \times \frac{55}{60} + 1$ $\frac{1}{\sqrt{2}} = 1,000 \times \frac{55}{60}$

Unit Irrigation Area by Crops per 1,000 ha (ALT-1) Table 2.2.4

Unit: ha

		~									Ũni	t: ha	
Ì		Period		: : : :	Paddy	••••••••••••••••••••••••••••••••••••••			ond c padd	ropping y	Sı	ıgar Ca	ne <u>/1</u>
	Month		Nursery puddling	Puddling		Growii	ng	Nursery puddling	Puddling	Growing	lst	2nd	Total
	E .	loDay	nur pud	Puđ	lst	2nd	3rd	Nur Pud	Pudé	ਂ ਸੂਤਾਂ ਹ	year	year	
	A	1 2	-	-	1	583 417	583 417	-		-	1,000 1,000	389 500	1,389 1,500
		3	0.83		3	250	253				1,000 <u>/2</u>	611	1,611
		1	0.83	. ' - -	- 12	83	95	 .		·	944	722	1,666
	M	2	0.83	8 17	32 170		32 170		-		833 722	833 944	1,666 1,666
	J	1 2	0.83 0.83	17 17	337		337 503	-	-	-	611 500	1,000	1,611 1,500
		3	-	17	503 667	-	667		-		389	1,000	1,389
	J	1 2	-	17 8 -	825 972	-	825 972		-	-	$\frac{278}{167}$	1,000	1,278 1,167
•	n din N	3		<u></u>	1,000	· ·	1,000			_	<u>/3</u> 56	1,000	1,056
		1.	_ ·		1,000		1,000		-	-	- <u>-</u>	1,000	1,000
	A	23	-	-	1,000 1,000	- -	1,000 1,000		-	-		1,000 1,000	1,000 1,000
	s	1		-	917 750	-	917 750	0.83	-	- 3	-	1,000 1,000	1,000 1,000
	~	3			583		583	0.83		12	<u> </u>	1,000	1,000
	0	5	-	-	417 250	- -	417 250	0.83 0.83	. 8 17	32 170		1,000 1,000	1,000 1,000
		3	- 0.83	·	83	3	<u>83</u> 3	0.83	17 17	<u>337</u> 503	·	1,000	1,000 1,000
	N	2	0.83	- ·	11	12	.12	-	17	667	- -	1,000	1,000
	· · ·	3	0.83 0.83	$\frac{8}{17}$	1	<u> </u>	<u>32</u> 170		<u>17</u> 8	<u>825</u> 972	-	1,000 1,000	1,000 1,000
	D	23	0.83	$\frac{17}{17}$	1 T.	- 337 - 503	337 503	-		1,000 1,000	-	1,000 1,000	1,000 1,000
	т	1	-	17	-	667	667	_	-	1,000	-	1,000	1,000
	J 	2 3	-	17 8	-	825 <u>972</u>	825 972		_	1,000 <u>917</u>		1,000 1,000	1,000 1,000
	F	1 2				1,000 1,000	1,000 1,000	1 , 1	_	750 583		1,000 1,000	1,000 1,000
		3				1,000	1,000	-		417		1,000	1,000
• :	М	1 2	-	-	· -	1,000 917	1,000 917	- 	-	250 83	56 167	1,000 1,000	1,056 1,167
		3		<u> </u>		750	750	_		_	278	1,000	1,278

 $\frac{1}{2}$: in case of cultivation are of 1,000 ha x 2 $\frac{2}{2}$: 1,000 x $\frac{85}{90}$ $\frac{3}{2}$: 1,000 x $\frac{5}{90}$

30

<u>Table 2.2.5</u> Unit Irrigation Area by Crop per 1,000 ha (ALT-2) Unit: ha

Uni	t.	ha

			<u> </u>	Padd	у				Second		
	Month	10-Day Period	Nursery		G	rowing		Polowijo		Sugar cane	
	Mo	Ч Че Ч С Ц С Ц	puddling	Puddling	lst	2nd	Total		paduy		
	A	1 2			-	-		1,000 1,000			
		3	0.83	-	3		3	<u>/1</u> 917			
	М	1	0.83 0.83 0.83	8 8 17	12 32 170		12 32 170	750 583 417	ALT-1	ALT- 1	
		<u> </u>	0.83	17	337		337	250			
	J	2	0.83	17	503	-	503	7 <u>2</u> 83	0 0	ល ល	
		3		<u>17</u> 17	667 825	<u></u>	667 825	-			
	J	1 2 3		8	972 1,000		972 1,000		Same	Sane Sane	
				-	1,000		1,000	-			1
	A	2	-	-	1,000	_	1,000				
		3	0.42		1,000 917	- 1	<u>1,000</u> 918				1
	S	1 2	0.83	_	750	8	758				
	2	3	0.83	-	583	16	599				-
		1	0.83	17	417	87	504			i defini Generali de la composición de	
	. 0	· 2	0.83	17	250 83	253 420	503 503				
		3	0.83	<u>17</u> 17		<u> </u>	586		· · · · · · · · · · · · · · · · · · ·		
	N	2	U.42	17		746	746				
		- 3	_	17	·· * _	904	904				4
		- 1	-		-	1,000	1,000				
	., D	÷2	ur a 🖅 👘 a 🖓	-	-	1,000	1,000			an a taite	
	· · · · · · · · · · · · · · · · · · ·	3				1,000 1,000	1,000				1.
	J	1		-	_	979	979				1
		3			_	833	833	83			
	1	.1			- 1	667	667		est de la composition de la composition La composition de la c		
- 5	F	2	-			500	500				
		3				<u>333</u> 167	<u>333</u> 167				1
÷	M	12			-	21	21				:
		3			·	~=		1,000		L	

/2: 1,000 x
$$\frac{5}{60}$$

1,000 x 60

Table 2.2.6 Unit Irrigation Area by Crops Per 1,000 ha x 2 (ALT-3)

at a second	1. A. 1			Unit: ha
	and the second	the second s	and the second	
		1 A A A A A A A A A A A A A A A A A A A	1	1

	pod						Р	addy					
L.C.	Peri(Nur	sery p	uddling	r r	Pudàl	ing			Grow	ving		
Month	loDay	lst 2nd 3rd	3rd 4th 5th	Total	lst 2nd 3rd	3rd 4th 5th	Total	lst	2nd	3rd	4th	5th	Total
A	1	_	0.83	0.83		16.7 16.7	$\begin{array}{c} 17\\17\end{array}$			503 667	-	1,000 917	1,503
	3	0.83		0.83	_	16.7	17	- 3		825		750	1,578
	1	0.83		0.83		8.3	8	12		972		583	1,567
М	2	0.83	a se <u>s</u> a aj	0.83	8.3		8	32	_	1,000		417	1,449
	3	0.83		0.83	16.7		17	170		1,000	1444 <u></u>	250	1,420
	1	0.83		0.83	16.7		17	337		1,000		83	1,420
J	2	0.83	_	0.83	16.7	-	17	503		1,000	· · · ·		1,503
	3	-	·	_	16.7	_	17	667		917			1,584
	1	_	0.42	0.42	16.7	1	17	825	-	750	1	-	1,576
J	2		0.83	0.83	8.3	-	8	972	· ·	583	8		1,563
	3	_	0.83	0.83	· ·		_	1,000	· _ ·	417	16	_	1,433
- -	1	. 	0.83	0.83		16.7	17	1,000		250	87	_	1,337
A	2	- . ;	0,83	0.83		16.7	17	1,000		83	253	<u> </u>	1,336
	3		0.83	0.83	-	16.7	17	1,000		~-	420		1,420
	1		0.42	0.42	· _ ·	16.7	17	917	-		586	-	1,503
S	2	0.42	-	0.42	- ¹ .	16.7	.17	750	1	-	746	-	1,497
	3	0.83	`. .	0.83		16.7	17	583	8	·	904		1,495
	11	0.83	-	0.83			-	417	16	. –	1,000	18 1 - 1	1,433
0	2	0.83	-	0.83	16.7	-	17	250	-87		1,000	· - ·	1,337
	3	0.83	<u></u>	0.83	16.7	: <u> </u>	17	83	253	· _	1,000	· - ·	1,336
	1	0.83	-	0.83	16.7		17	·	420		1,000	- 1	1,420
N	2	0.42	-	0.42	16.7		17	· · · ·	586		979	- 1	1,565
	3			-	16.7		17		746		833	<u> </u>	1,579
	1	-	0.83	0.83	16.7	, -	17	· ·	904		667	. 3	1,574
D	2		0.83	0.83	-		-	· -	1,000	-	500	12	1,512
	3	_	0.83	0.83	· _	8.3	8		1,000	-	333	32	1,365
_	1		0.83	0.83	÷	16.7	17	-	1,000	-	167	170	1,337
J	2	-	0.83	0.83	- 1	16.7	17	-	1,000	-	21	- 337	1,358
· .	3		0.83	0.83		16.7	17		979			503	1,482
_	1		<u> </u>		-	16.7	17	-	833		-	667	1,500
F	2	0.83	-	0.83		16.7	17	–	667	3	-	825	1,495
	3	0.83	-	0.83		8.3	8	. –	500	12		972	1,484
15	1	0.83	-	0.83	8.3	-	8	· ·	333	32	-	1,000	1,365
M	2	0.83	-		16.7	-	17	· · · ·	167	170	. .	1,000	1,337
	121	0.83		0.83	16.7		17		21	337		1,000	1,358
	e e	Note:	Secon	d cropr	n nor n	addy and	ີ ຊາງຊາ	r oane s	170 99mo	99 Å T.	ም_ግ		an an taon tao

Note: Second cropping paddy and sugar cane are same as ALT-1.

					•											 13 :						4							
		щоț		Growing	2,099	116 102'T	342	612	1,213	2.401	2,970	3 600 .	3,600	3.600	3,301	2,700 2,099	1,501	006	<u>ж</u> т,	43	115	612	1.811	2.401	3.499	3,600	3,600	3,600	3,301
· · · ·	Unit : he	Dengkeng Region	Paddy (3,600	Fuddl- ing	T	2. 17 1	I C	-7 61	61 61	515	61	р Ч	•	1 1			1	1	E		29	19 19	61	19	20T		10	1	I
	Uni	Ă	Ã) Pudd1- ing	ľ	3.0	00	3.0	3.0	;	1	1 1 1 1	1	i 1	1	1 1	. 	•	10	20	3.0	00		.1	1 1		11	1	•
. ·			Sugar	Cane hax2)	2,084	2,417	2,499	2,499	2,417	2.084	1,917	-, (21 1.584	1,500	1 500	1,500	1,500	1.500	1,500		1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,584	1,751
	:		1 5.C La)	Growing	1	1	11 177 177 29	_		1	I · .	1	1	11	1	υ č	48	255	205 755	1,001	1,238	1,458	1,500	1,500	1,500	1,125	875	375	125
			P	r Puddl- ing	ĩ	1.1	1	``)	j.		1	1 1	I	1 1	•) ()_)	12	26	20	5 V 7 V	26	172	1	1	1 1	1			•
s (ALT-1)				ag Nursery Puddl- ing				1 I	ا	i i i	1	1 1 x C	-		1	5				78 T.		2	10	1	ו ו המ		і і о (1
ea by Crop		Region	6,500 ha)	il- Growing	3,790	2,741 1,645			2,191					6,500 6,500	5,961	4,875	2.711	1,625	540			1,105	ja t		L 5,363		6,500	6,50	5,961
Irrigation Area by Crops (ALT-1)	-	Sragen	Peddy (6,500	Nursery Puddl- Puddl- ing ing		- 4	5.4	.4 .4	5.4 111		- 11	6 I 							1		5.4 5.2	111 111 111			111			1 1	
Total	:	- 2- 				<u>ا</u> م			967		.67	90	8	000	00	000	00	009	000				21 <u></u>	000	000	000	600 7	534 534	100
Table 2.2.7			ŀπ	ng Cane (600 ^{ha} x2))"t								+			. :			-								*. *. •
٤٩			99 J	ll- Growing	1.	1,1		I 1				i i		1 1 		2 1	1	0 102		· . :	• •	5 58.	09	60(900 91	450	350	15(5
			Second paddy	Nursery Puddl- Puddl- ing ing				я н 	4		1					1 1 5 0 0	2	0.5		10	Ĭ	1	•		1 				
				Growing Nur Pud ing		3,711 2.252			999	936	343	651 900	900	8,900		6,675 0 5,189 0	-	:		101	285	1,513	477	936	343	900	8,900 8,900	900	161
		nyar Region	(8,900 ha)	Puddl- Gro ing		i 1 1.01	li	•	151 2,	÷.		i de S	ရ	х х 1 I	1	νο̈́υ II		ີ ເຈົ້ ເ				151 151	•		151 71			0 00 1 1	60 1
		Karanganyar	Peddy	Nursery I Puddl- ing		i 1-	7.4	- I -	7.4	+ +	1		Ĩ	1		1. 1. E. 1		1	1	+ + +	7.4	4.4	- 1 -	1	11		ľ	E	
						∩ 13		ร. 		<u>כ</u> שיי		ч «		~1 ~		50 F		0		ч ч И	-	- с Е	; j j		ני איס	-	C\ r Fe		0 . بر

					ŕ	· ,		,					Ŀ			34			1		I		I ·		1		1.		l	
	: ha			Polowijo (3,600 ha)	3,600	3,301	2,700	1.501	006		1	1 1 1			1	1.1	-	in the second	1			ı t	1	000	006	1,500	2,700	3,361	3.600	
•••	Unit	Dengkeng Region	r)	Growing		11	4 . U n	612	1,213	2.401	2,970	3,499.	3,600	3,600	3,305	2,729	1,814	1,811	2,110	2,000	3,600	3 600	3,600	3,524 2,000	2,401	1,800	1 122 601	76	3	·
·		Dengken	Paddy (3,600 ha	Puddling	1	k		61 61	61	19 9	61	59	ľ.		1	1	61.	 9 9	. 61	10	· · ·			1 I		Ι.	1	4) 	۱	
			Pac	Nursery Pudáling	1	3.0	3.0	00	3:0		1.	1 1		्र व् ।	1.5	00	3.0	000	1 2	13	1	E I	1	I		1	 	1	•	
 ALT-2)				Polowijo (6,500 ha)	6,500 6,500	5,961	4,875	2,713	1,625	040	1	บับ		1 1 1	1	1	1	11	. 1	1 I		11	ŀ		1,625	2,711	4,875.	5,961	6,500	
Total Irrigation Area by Crops (ALT-2)		Region	, ,	Growing	1	20-	78	1.105	2,191	4,036	5,363	6,318 6,500	6,500	6,500 6,500	5,967	4,927	3,276	3,270	3,809	4, 849 5, 849	6,500	6,500 6,500	6,500	6,364 8.4	4,336	3,250	1,086	137	E	
irrigation Ar		Sragen	² addy (6,500 ha	Puddling	1	.	1	111	ttt	7 T T T	111	- C1 - C1	1	11:	J F		111		111	111 ·	1 4 1	1	1	1	1 1	F		T	1	
2.2.8 Total]		-	Padó	Nursery Puddling	ļ	5 4	4 ·	ν. 4.4	5 4	4 I	I.	11	1	E.	2.7	10 u 4 4	5.4	0 4 4	2.7	un Elli Es	.1	1.1	1	ŧ		1.	1	I	1	
Table 2.				Polowijo (8,900 ha)	8,900	8,161	6,675	3.711	2,225	967	1	1	1	ì	1			11	1	1 1	t	1 1	1 1 1	17	2,225	3,711	6,675	8,161	8,900	
		Region		Growing]	127	107	285 1.513	2,999	5,936	7,343	8,651 8,000	8,900	8,900	8,170	6,746 5,331	4,486	4,477	5,215	6,639 8 046	8,900	8,900 8,900	8,900 -	8,713	5,936	4,450	1,486	187	1	
		Karanganyar Region	(8,900 ha)	Puddling		J 4		71	151	151 151	151	17	E 1	, T		1	151.	151 151	151	151				L		i	1 1	1	•	
			Paddy (Nursery Puddling	1.	7.4	7.4	4 4	1.4	7.4	:	E		•	3.7	4 4	7.4	44	3.7				E F	• • •		• • 1. • 1.	1	I		
				Ten J	-	N M		Ni m		NI m		 ۲۹.۲		Ω c		ณิต	14	01 F		N C	¥	ربا «	, - , -	01 e		010		ณ	<u>با</u> ۳	
			qə	поМ		۲.		Σ.		ר		م		¥		ŝ		o' ,		z		A		ь. Г		<u>94</u>		×		

• • •

Unit : Ha

		K	arangany	ar Region		Srager	n Region	Den	gkeng R	egion
	Period	Padd	y (4,450) ha x 2)	Paddy	(3,250) ha x 2)	Paddy	(1,800	ha x 2)
Month	Ten Day Fe	Nursery Puddling	Puddling	Growing	Nursery Puddling	Pudàling	Growing	Nursery Fuddling	Pudáling	Growing
A	1 2 3	3.7 - 3.7	76 76 76	6,688 7,049 7,022	2.7	55 55 55	4,885 5,148 5,129	1.5 _ 1.5	31 31 <u>31</u>	2,705 2,851 2,840
M	1 2 3	3.7 3.7 3.7	36 36 76	6,973 6,448 <u>7,022</u>	2.7 2.7 2.7	26 26 <u>55</u>	5,093 4,709 <u>4,615</u>	1.5 1.5 1.5	14 14 <u>31</u>	2,821 2,608 2,556
J	1 2 3	3.7 3.7	76 76 76	6,319 6,688 7,049	2.7 2.7	55 55 55	4,615 4,885 5,148	1.5 1.5 -	31 31 <u>31</u>	2,556 2,705 2,851
J	1 2 3	1.9 3.7 <u>3.7</u>	76 36 _	7,013 6,955 6,377	1.4 2.7 2.7	55 26 –	5,122 5,080 4,657	0.8 1.5 1.5	31 14 	2,837 2,813 2,579
A	1 2 3	3.7 3.7 <u>3.7</u>	76 76 76	5,950 5,945 6,319	2.7 2.7 2.7	55 55 55	4,345 4,342 4,615	1.5 1.5 1.5	31 31 <u>31</u>	2,407 2,405 2,556 2,705
S	1 2 3	1.9 1.9 3.7	76 76 76	6,688 6,662 6,653	1.4 1.4 2.7	55 55 55	4,885 4,865 4,859	0.8 0.8 1.5	31 31 31	2,695 2,691
0	1 2 3	3.7 3.7 <u>3.7</u>	- 76 76	6,377 5,950 5,945	2.7 2.7 2.7	- 55 55	4,657 4,345 <u>4,342</u>	1.5 1.5 1.5	- 31 31	2,579 2,407 2,405
N	1 2 3	3.7 1.9 _	76 76 76	6,319 6,964 7,027	2.7 1.4	55 55 55	4,615 5,086 5,132	1.5 0.8	31 31 <u>31</u>	2,556 2,817 2,842
D	1 2 3	3.7 3.7 <u>3.7</u>	76 	7,004 6,728 6,074	2.7 2.7 <u>2.7</u>	55 - 26	5,116 4,914 4,436	1.5 1.5 <u>1.5</u>	31 - 14 	2,833 2,722 2,457
J	1 2 3	3.7 3.7 <u>3.7</u>	76 76 76	5,950 6,043 6,595	2.7 2.7 2.7	55 55 55	4,345 4,414 4,817	1.5 1.5 <u>1.5</u>	31 31 <u>31</u>	2,407 2,444 2,668
F	1 2 3	3.7 3.7 <u>3.7</u>	76 76 36	6,675 6,653 6,604	2.7 2.7	55 55 26	4,875 4,859 4,823	1.5 1.5	31 31 14	2,700 1,691 2,671
М	1 2 3	3.7 3.7 3.7	36 76 76	6,074 5,950 <u>6,043</u>	2.7 2.7 2.7	26 55 55	4,436 4,345 4,414	1.5 1.5 1.5	14 31 31	2,457 2,407 2,444

Note: Second cropping paddy and Sugar Cane are same as ALT-1.

- 35

2.2.3 Evapotranspiration (Consumptive Use)

The most desirable way to determine the consumptive use is that based on the actual measurement of water requirement in the field over a long period.

36

Since no data are available in this area at present, several methods of estimating the evapotranspiration have been compared to select the most suitable.

a) Comparison of consumptive use estimation method

Three popular methods in Indonesia, namely, Penman, Modified Blaney-Criddle, and Hargreaves, have been compared under the same climatic condition for one cropping season (April to August: dry season paddy-rice). The results are in Table 2.2.10.

Penman method would bring excessively lower values, while Modified Blaney-Criddle method tends to bring too high values, judging from actual evaporation data obtained at Madiun (unfortunately, the data on evaporation during dry season at Panasan Airport were not available).

Consequently, the Hargreaves method is supposed to be most adequate for estimating the evapotranspiration in the project area.

The calculations made by using the three methods are presented in Tables 2.2.11, 2.2.13 and 2.2.14.

Penman method

I

Penman method has made the most complete theoretical approach, showing that the consumptive use is inseparably connected with the incoming solar energy. The formula representing the potential evapotranspiration (consumptive use) is as follows:

$$E_{\rm T} = \frac{\mathbf{A} H + 0.27 Ea}{\mathbf{A} + 0.27}$$

with values of H and Ea given by

$$I = R_{\Lambda}(1 - r)(0.18 + 0.55 n/N)$$

$$- \delta Ta^{4}(0.56 - 0.092 \sqrt{ed})(0.10 + 0.90 n/N)$$

Ea= 0.35 ($ea - ed$)(1 + 0.0098 U₂)

where H = daily heat budget at surface in mm H₂O/day

- $R_A = mean monthly extra terrestrial radiation in mm H_OO/day$
 - r = reflection coefficient of sunshine
 - N = maximum possible duration of bright sunshine
 - δ = Boltzmann constant
- $\delta Ta^4 = mm H_{20}/day$ (see Table 2.2.12)

Penman	Blaney-Criddle	Hargreaves
3.9	6.7	4.9
116.1	202.1	145.4
4.4	7.7	6.1
135.2	238.1	188.5
5.0	8.0	7.8
151.2	239.6	234.7
4.5	6.7	7.0
140.4	206.4	216.7
2.4	3.1	3.6
75.0	97.5	112.1
617.9	983.7	897.4
	3.9 116.1 4.4 135.2 5.0 151.2 4.5 140.4 2.4 75.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

	. v		a Dia status				* .
Table	2.2.	<u>10</u> Co	omparison	of (Consump	tive	Use
							•

	Reference:	<u>Mean Mon</u>	thly Evaporation a	t Madiun
	en Secondaria 1910 - Maria Decondaria	Apr.	120.0 mm/month	4.0 mm/day
• · ·		May	136.4	4.4
		June.	150.0	5.0
		Jul.	148.8	4.8
		Aug.	176.7	5.7
		Total	731.9 mm/month	

- 37 -

- ^ed == saturation vapor pressure at mean dew point (i.e., actual vapor pressure in the air) mmHg
- $Ea = evaporation in (mm) H_2O/day$
- ^ea = saturation vapor pressure at mean air temperature in mmHg
- $U_2 = mean wind velocity at 2 meters above the ground (miles/day)$
- $E_{\Gamma} = potential evapotranspiration in mm H_2O/day$
- U₁ = measured wind velocity in miles per day at height h in feet
- Δ = slope of saturated vapor pressure curve of air at absolute temperature Ta in °F (mmHg/°F) (see Fig 2.2.5)

Blaney-Criddle method

Blaney and Criddle developed a simplified formula using temperature and day-time hours for the arid western portion of the United States.

Modification of basic formula in the metrik unity is as follows:

$$U = K \times P \times (\frac{45.7 t + 813}{100})$$

- t = mean monthly temperature in °C
- P = percentage of day-time hours of the year
- f = monthly consumptive use factor

$$=\frac{P(45.7 t + 813)}{100}$$

Hargreaves method

Hargreaves proposed the use of Class A pan evaporation data as the climatic index. Because pan evaporation data are not always available, and due to the variation in measured evaporation with pan exposure, an attempt was made to find an equation for computing a climatic factor equal to Class A pan evaporation from a pan located in standardized exposure or in a large irrigated area.

The equation is expressed as follow:

$$Ev = 17.4 \cdot D \cdot Tc \cdot (1 - Hn)$$
 (1)

	atitude: rop :	· · · · ·)' sou 7 Rice	thern	hemispl	here
Data		Apr	May	Jun	Jul	Aug
1. Air Temp. (°C)	an a	28.3	28.5	28.0	27.5	28.0
2. Relative humidity (%)					62.7	
3. Sunshine n/N (%)	an a				70.0	
4. Wind speed, U2 (Mi/day)		74.6	85.0	101.4	98.4	125.3
5. Radiation rate, R_A (mmH ₂ O/day) 6. Reflection coefficient, r (%)					12.3	
$R_{A} (1-r)(0.18+0.55 n/N)$						
7. (l-r)		0.75				
8. $(0.18+0.55 \text{ n/N})$		0.43	0.46	0.53	0.57	0.58
9. Item 5 x item 7 x item 8		4.52	4.42	4.81	5.26	5.7
$Ta^4 (0.56-0.092\sqrt{ed})(0.10+0.90 n/N)$: `
10. Vapor pressure	- 2					
(a) Saturated, ea (see Fig. 2.2	.6)				28.0	
(b) Actual ed = (R.H. x ea)					17.6	
$(c) \sqrt{ed}$		4.6			4.2	4.1 16.6
11. δTa^4 (see Table 2.2.12) 12. (0.56-0.092 \sqrt{ed})					0.17	
12. $(0.96-0.092 \text{ year})$ 13. $(0.10+0.90 \text{ n/N})$					0.73	
14. Item 11 x item 12 x item 13					2.05	
I the second						
15. Item 9 - item 14		3.33	3.02	3.03	3.21	3.5
$Sa = 0.35(ea - ed)(1 + 0.0098U_2)$						
16. 0.35 (ea - ed)		2.87	3.15	3.40	3.64	4.1
17. $(1 + 0.00980_2)$		1.73	1.83	1.99	1.96	2.2
18. Item 16 x item 17		4.97	5,76	6.77	7.13	9.2
$ST = \frac{\Delta H + 0.27 Ea}{\Delta + 0.27}$		a an Ar Ar an Aragona				
19. Δ (see Fig. 2.2.5)		0.94	0,95	0.92	0.90	0.9
20, ΔH	e e		2,87			3.2
21. 0.27Ea		1.34				2.4
22. Δ H + 0.27Ea				4.62		5.7
23. Δ + 0.27 the second sec	· .·			1.19		
24. Item 22/item 23		3.69	5.65	3.88	4.12	4.84
Consumptive use		· .	1. A.A.	•		· · · ·
25. Crop coefficient	· · ·				1.10	
26. Item 24 x item 25 (mm/day)					4.53	2.4
(mm/month)	a da ser esta en el	116.1	35.2	151.2	140.4	75.0

Table 2.2.11 Computation Sheet for Penman Method of Consumptive Use

- 39 --

Note: Data of item 1, 2, 3 and 4 at Panasan

an a san a san

and the second second and a second second

Temperature	σT_{a}^{4}	Temperature	σT .4
°Abs	mm H ₂ O/day	°F	mm H ₂ O/day
270	10.73	35	11.48
275	11.51	40	11.96
280	12.40	45	12.45
285	13.20	50	12.94
290	14.26	55	13.45
295	15.30	60	13.96
300	16.34	65	14.52
305	17.46	70	15.10
310	18.60	75	15.65
315	19.85	80	16.25
320	21.15	85	16.85
325	22.50	90	17.46
		95	18.10
	1.1	100	18.80

Values of σT_0^4 for Various Temperatures when Computing Evapo-Transpiration by the Penman Method (after Criddle)

2:12

Note: Heat of vaporization was assumed to be constant at 590 gal/gm of H_2O .

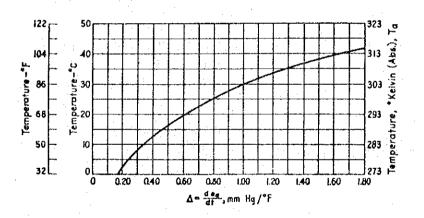
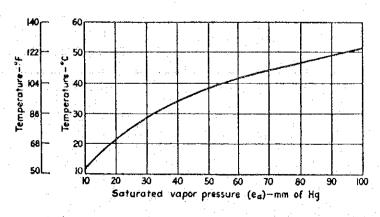
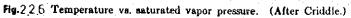




Fig. 2.2.5 Temperature vs. Δ

 $\left(\frac{d \text{ Saturation Vapor Pressure, mm Hg.}}{d \text{ Temperature, *F}}\right) (After Criddle.)$

TABLE

where: Ev = class A pan evaporation in mm D = monthly day time coefficient (see Table 2.2.15)

Tc = mean monthly temperature in °C

Hn = mean monthly relative humidity at noon

Above equation can be modified factor (1.0-Hn) in the wind factor, sunshine and elevation as follow:

 $Ev = 17.4 \cdot D \cdot Tc \cdot (Fh \cdot Fw \cdot Fs \cdot Fe)$

 $Fh = 0.59 - 0.55 \text{ Hn}^2 \\ Fw = 0.75 + 0.0255 \text{/W kd} \\ Fs = 0.478 + 0.58 \text{ S} \\ Fe = 0.950 + 0.0001 \text{ E}$

where: Hn = mean noon humidity in decimally (%) 0.40 Hm + 0.60 Hm²

Wkd = mean wind velocity (km/day) in the level 2 m
S = mean monthly sunshine hour (%)
Hm = mean daily relative humidity (%)

E = Elevation above the sea level

Above equation is for calculation of evapotranspiration

 $Et = k \cdot Ev$

where: Et = evapotranspiration in mmK = Crop coefficient

b) Evaporation

The Hargreaves method is applied in the project area. In this study, climatic data, (Tc), (Hm), (Wkd) and (S) are taken from the average monthly records at the Panasan gauges as shown in Table 2.2.16.

The calculation process and the results are presented in Table 2.2.17.

Evapotranspiration or consumptive use of water by crops is computed as follow:

 $Et = K \cdot Ev$

where: Et = evapotranspiration in mmK = crop coefficient

c) Crop coefficient

Various kinds of crop coefficient curves are being utilized for calculating water requirement in connection with the irrigation projects in Indonesia, but none of them seems quite suitable for the intended purposes as they fail to give any decisive clue. An evapotranspiration - pan evaporation ratio on paddy field measured in Japan

* . 				°-30' So addy Ric		nisphere
Data		Apr.	May	Jun.	Jul.	Aug.
1.	Mean monthly temp. (°C)	28.3	28.5	28.0	27.5	28.0
2.	Day-time hours at 7°-30'S.1. (%)	8.12	8.26	7.96	8.24	8.33
3.	Crop coefficient, Kc	1.05	1.20	1.30	1.10	0.50
K = K	c ^{x K} t					
4.	$K_t = 0.0311t + 0.24$	1.12	1.13	1.11	1.10	1.11
5.	Item 3 x item 4	1.18	1.36	1.44	1.21	0.56
$f = \frac{P}{P}$	<u>(45.7t + 813)</u> 100	· ·			 	
6.	(45.7t + 813)/100	21.1	21.2	20.9	20.7	20,9
7.	ltem 2 x item 6	171.3	175.1	166.4	170.6	174.1
U = K	 A second sec second second sec	· · · · · · · · · · · · · · · · · · ·				· ·
8.	Item 5 x item 7 (mm/month)	202 1	238.1	239.6	206.4	97.5
	(mm/day)	6.7	7.7	8.0	6.7	3.1

Table 2.2.13 Computation Sheet for Blaney-Criddle Method of Consumptive Use of Crop

- 42 -

Data		Apr.	May	Jun.	Jul.	Aug.
1.	monthly day-time coefficient, D (see Table 2.2.15)	0.97	0.99	0.95	0.98	1.00
2.	mean monthly temperature, Tc (°C)	28.3	28.5	28.0	27.5	28.0
3.	mean daily relative humidity, Hm(%)	72.0	69.4	66.6	62.7	59.4
4.	mean wind velocity, Wkd (km/day)	120	137	163	158	202
5.	mean monthly sunshine hour, S (%)	45.6	51.1	63.3	70.0	72.5
6.	crop coefficient	1.05	1.20	1.30	1.10	0.50
7	elevation above the sea level (m)	90				•
(F _h .	$\mathbf{F}_{\mathbf{w}} \cdot \mathbf{F}_{\mathbf{s}} \cdot \mathbf{F}_{\mathbf{e}}$		i di s	· · ·		
8,	mean noon humidity, H _n (%)	1				ana Sura Art
	$= 0.40 \text{ H}_{\text{m}} + 0.6 \text{ H}_{\text{m}}^2$	0.59	0.57	0.53	0.49	0.45
9	$F_h = 0.59 - 0.55 H_n^2$	0.40	0.41	0.44	0.46	0.48
10.	$F_{W} = 0.75 + 0.0255 \sqrt{W_{kd}}$	1.03	1.05	1.08	1.07	1.11
11.	$F_{s} = 0.478 + 0.58S$	0.74	0.77	0.85	0.88	0,90
12,	$F_e = 0.950 + 0.0001E$	0.96	0.96	0.96	0.96	0.96
13.	Item 9 x item 10 x item 11 x item 12	0.29	0.32	0.39	0.42	0.46
E _v =	$17.4.D.T_{c}(F_{h}.F_{w}.F_{s}.F_{e})$	· . 	a ng natao a		1	· · ·
14,	17.4 x item 1 x item 2 x item 13	138.5	157.1	180.5	197.0	224.1
E _t = 1	K. E _v	. '	· · ·		. · · ·	
15.	Item 6 x item 14 (mm/month)	145.4	188.5	234.7	216.7	112.1
	(mm/day)	4,85	6.08	7.82	6.99	3.61

Table 2.2.15 Monthly Day-time Coefficient, D (for use with Hargreaves equations)

Latitude degree	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
North			•									- - -
10	0.97	0.89	1.01	1.01	1.06	1.03	1.06	1.05	0.99	0.99	0.95	0.97
8	0.98	0.89	1.01	1.01	1.05	1.02	1.05	1.04	0.99	0.99	0.95	0.97
6	0.98	0.90	1.01	1.01	1.05	1.02	1.05	1.04	0.99	1.01	0.95	0.98
4	0.98	0.91	1.02	1.00	1.04	1.01	1.04	1.04	0.99	1.01	0.95	0.98
2	1,01	0.91	1.02	0.99	1.02	0.99	1.02	1.02	0.98	1.02	0.98	1.01
0	1.02	0.92	1.02	1.00	1.02	0.99	1.02	1.02	0.98	1.02	0.99	1.02
South				•								
2	1.02	0.93	1.02	0.98	1.01	0.98	1.01	1,01	0.98	1.02	0.99	1.03
4	1.04	0.93	1,02	0.98	1.01	Ó.97	0.98	1.01	Ó.98	1.03	1.00	1.04
6	1.05	0.94	1.02	0.97	1.00	0.96	0.98	1.00	0.98	1.03	1.01	1.05
8	1.05	0.94	1.02	0.97	0.99	0.95	0.98	1.00	0.98	i.02	1.02	1.06
. 10	1.06	0.94	1.02	0.97	0.98	0.94	0.97	0.99	0.98	1.04	1,02	1.07

Table 2.2.16 Meteorological Data for Computing Evaporation by Hargreaves Method

1 é 1040

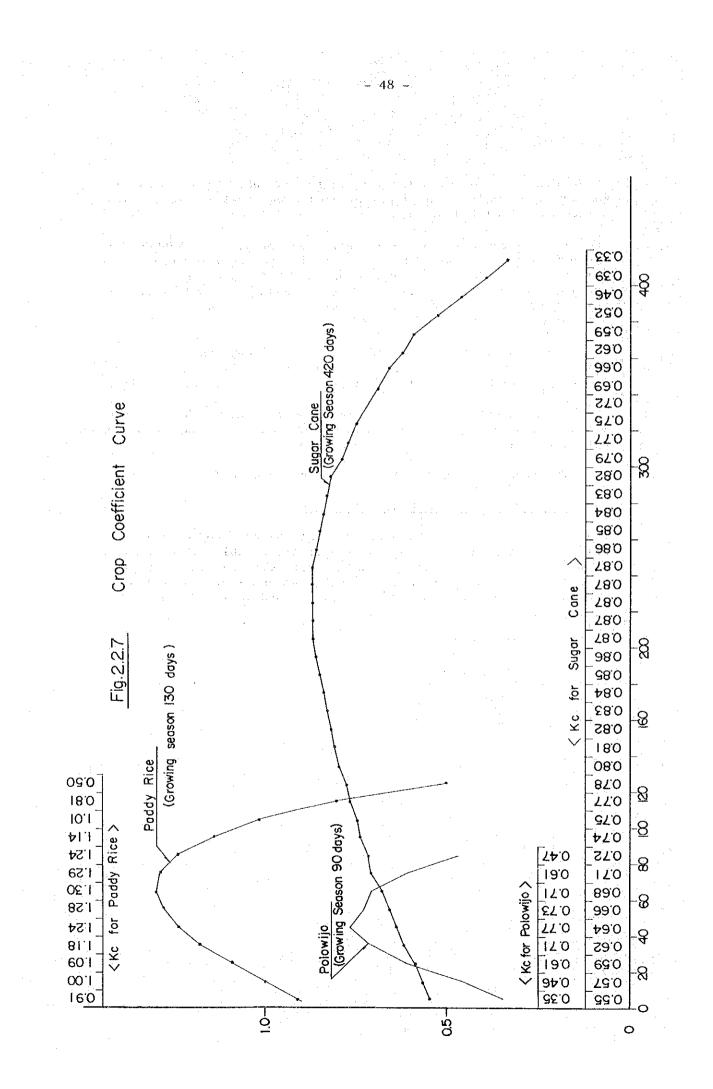
			- 45 -				
Dec.	28.1	74.0	6.4 154	00 10 10 10 10 10 10 10 10 10 10 10 10 1			
Nov	8 79 79	5°02	8.1 194	04 00 00			
Oct.	59.6	60.8	8.5 204	25 25			
Sep.	29.1	59 - 5	10.3 247	75.0	N.		i e
Aug.	28.0	59.4	8.4 202	72.5			
Jul.	27.5	62.7	158 158	70.0			
Jun.	28 O	66.6	163 8 163	63.3			
May	28.5	69 - 4	137.1 137	51.1		· · :	:
Apr.	28.3	72.0	120.0 120	45.6		· .	
Mar.	27.8	76.4	130.0 8 8	36.6			
Feb.	27.4	6.97	4.7 113	31.1			
Jan.	27.3	75.8	5 5 1 5 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30.4	3		
Item	Mean monthly temperature Tc(°C) 27.3	Mean monthly relative humidity, Hm(%)	Mean monthly wind velocity (km/nour) Wkd (km/day)	Mean monthly sunshinehour, s(%)			

	, , , , , , , , , , , , , , , , , , ,		. •			•			• .				- 4	16	•	:					· .	
-	н н таралан.	mm/day	4 .6	5.1	6°*1	6. 4	7.2	8.0	6. * 8	5.5	4.3	3.7	3.6	3.9				-		•		
	:	Ev mm/month	137.6	158.0 0	175.8	7.791	223.3	239.3	210.1	166.2	134.4	115.7	101.7	121.0					·			
	titude	ப் ப ப	0.959	ŧ.	- 	=	÷	¥.	. =	=	= _ 	-: 1 = 	ž.	E		ŝ	·		:.			
	south latitude	s হ	0.742	0.774	0.845	0.884	0 899	0.913	0.783	0.761	0.674	0.654	0.658	0.690		= 0.478 + 0.58 S						•
	70 - 301	×,H	1.03	1.05	1.08	1.07	1.11	1.15	1.12	1.10	1.07	1.03	1.02	1.05		Fs = 0.				-		• •
		цЯ	0.393	0.413	0.434	0.460	0.479	0.479	0,471	0.405	0.375	0.359	0.349	0,353		Wkd		••				• .
		Tc Mean Temp oCo	28.3	28.5	28.0	27.5	28.0	29.1	29.6	28.8	28.1	27.3	27.4	27.8		₽w = 0.75 + 0.0255				•		-
	aves Method	D Day time coef	0.97	0.99	0.95	0.98	1,00	0.98	1.03	1,02	1,06	1.05	0.94	1.02								
	n by Hargree	Constant	1.7.4	-	÷	7	=	÷	=	=	÷		2	÷).55 Hn ² rc. (Fh.Fw.Fs.Fe)						
	Calculation of Evaporation by Hargreaves Method	E Elevation	е 06	÷	=	2 .	=	Ĕ	=	=`	-	÷.	-	*		Fh = 0.59 - 0. Ev = 17.4 D To				-		
	Calculation	S Sunshine hour	45.6	51.1	63.3	70.0	72.5	75.0	52.5	48.8	33.8	30.4	31.1	36.6								
	Table 2.2.17	Wkđ Wind speed km/dav	120	137	163	158	202	247	204	194	1.54	125	113	139		Hn = 0.4 Hm + 0.60 Hm ² Fe = $0.950 + 0.000$ LE					· .	
	Table	Hn Humid at noon g	59.9	56.7	53.3	48.7	44.9	45.0	46.5	58.0	62.5	64.8	66.2	65.6		Hn = 0.4 Fe = 0.94				-		
		Hm Relative humid %	72.0	69.4	66.6	62.7	59.4	59,5	60.8	70.5	74.0	75.8	76.9	76.4			·				· · ·	
		Month	Apr	May	Jun	Jul	Aug	Şep	Oct	Nov	Dec	Jen	Feb	Mar	·	:	· ·	. :				

shows the values between 1.2 and 1.3 in maximum. Accordingly, the maximum crop coefficient in the project area might as well be identified at around 1.3 or so.

In this respect, the crop coefficient proposed by NEDECO for whole Indonesia in its "Computation of Irrigation Water Requirement for Wet Sawah Paddy" seems applicable to the Project and the specific monthly crop coefficient prescribed by Hargreaves for the estimation of evapotranspiration nearly meets the curve recommened by NEDECO.

Accordingly, the crop coefficient curve shown in Fig. 2.2.7 was adopted to figure out the evapotranspiration for three crops grown in the project area, namely, paddy rice, sugarcane, and polowijo.


The seasonal values of the crops coefficient which have been assumed on the above are calculated according to the cropping patterns, as shown in Table 2.2.19 to Table 2.2.24.

The results of calculation are summarized in Table 2.2.18.

Evapotranspiration (Consumptive Use)

d)

On the basis of the above, evaporations and crop coefficients have been calculated, and estimation of the monthly evapotranspiration by each crop by each alternative has been made in the process of calculating unit irrigation requirement, as shown in Tables 2.2.29 to 2.2.35, Tables 2.2.43 to 2.2.48 and Tables 2.2.55 to 2.2.57, respectively.

Month	Ten-day Period	<u>ALT-1</u>	Paddy Rice ALT-2	<u>ALT-3</u>	Second Cropping <u>Paddy</u>	<u>Sugar Cane</u>	Polowijo
Apr	1 2 3	0.87 0.77 0.74	0.91	1.08 1.08 1.08	ente a ser a casa a El casa A casa a A casa	0.64 0.60 0.58	0.66 0.66 0.67
May	1 2 3	0.80 1.00 1.05	0.96 1,00 1.05	1.08 1.08 1.08		0.58 0.58 0.58	0.66 0.63 0.60
Jun	1 2 3	1.08 1.12 1.14	1.08 1.12 1.14	1.08 1.08 1.08		0.59 0.60 0.61	0.54 0.47
Jul	1 2 3	1.20 1.23 1.24	1.20 1.23 1.24	1.08 1.07 1.06		0.63 0.66 0.70	
Aug	1 2 3	1.21 1.15 1.04	1.21 1.15 1.04	1.06 1.05 1.05		0.76 0.77 0.79	
Sep	1 2 3	1.00 0.94 0.87	0.99 0.93 0.90	1.05 1.05 1.05	- 0,91 0,96	0.80 0.81 0.82	
0ct	1 2 3	0.77 0.66 0.50	0.89 0.91 0.98	1.06 1.07 1.08	1.00 1.05 1.08	0.83 0.84 0.85	
Nov	2 3	0.91 0.96 1.00	1:09 1.14 1.20	1.11 1.06 1.08	1.12 1.14 1.20	0.86 0.86 0.86	
Dec	1 2 3	1.05 1.08 1.12	1.23 1.24 1.21	1.08 1.08 1.08	1.23 1.24 1.21	0.86 0.86 0.86	
Jan	1 2 3	1.14 1.20 1.23	1.15 1.04 1.00	1.08 1.08 1.08	1.15 1.04 1.00	0.85 0.84 0.83	- 0.35
Feb	1 2 3 1	1.24 1.21 1.15	0.94 0.87 0.77	1.08 1.08 1.08	0.94 0.87 0.77	0.81 0.79 0.77	0.41 0.47 0.53
Mar	1 2 3	1.04 1.00 0.94	0.66 0.50 -	1.08 1.08 1.08	0.66 0.50	0.73 0.70 0.66	0.53 0.61 0.62

Table 2.2.18 Summary of Crop Coefficients Calculated by Crops

- 49 --

	1		Table 2	.2.19	Crop Co	eiiicie	nt or r	addy (F	(TT)T)		
	ه ور د ا				· · ·	· · · · · · · · · · · · · · · · · · ·			2.1.2		
	n a san Christia Na		a Anna an		an a			la tribula. Maria		1 (1997) 1997 - 1997 1997 - 1997	
	वंत्र od										
Month			1	· 2	3	4	5	6	7		Average
TOL 1	Бен Рен	· · ·	· · ·	<u> </u>	1	4			1.		
F1		P7		_		0.50	0.07			<u> </u>	0.07
.	1			-		0.50	0.81 0.50	1.01	1.14 1.01	•	0.87
A	2 3		0.91	_	-	****	0.50	0.50	0.81	. •	0.74
		V	1.00	0.91					0.50		0.80
M	2		1.09	1.00	0.91		· · · ·		-	· · · ·	1.00
•	3	11	1,18	1.09	1.00	0.91			_		1.05
	1	i/	1.24	1.18	1.09	1.00	0.91				1.08
J	2	$\left\{ \right\}$	1.28	1.24	1.18	1.09	1.00	0.91	. -		1.12
	3		1.30	1,28	1.24	1.18	1.09	1.00	0.91		1.14
	1	./- I	1.29	1.30	1.28	1.24	1.18	1.09	1.00		1.20
Ĵ	2		1.24	1.29	1.30	1.28	1.24 1.28	1.18 1.24	1.09 1.18	1. A.	1.23
	<u> </u>		1.14 1.01	1.24	1.29 1.24	1.30 1.29	1.20	1.24	1.10 1.24		1.24
A	2		0.81	1.01	1.14	1.24	1.29	1.30	1.28		1.15
n	3		0.50	0.81	1.01	1.14	1,24	1.29	1.30		1.04
	1	/		0.50	0.81	1.01	1.14	1.24	1.29		1.00
 ธ	2	. / .			0.50	0.81	1.01	1.14	1.24		0.94
	3 .				-	0.50	.0.81	1.01	1.14		0.87
	1		-	<u> </u>	- ``	-	0.50	0.81	1.01	ъ. –	0.77
0	2			-		- '	-	0.50	0.81		0.66
· .	3	V					-		0.50		0.50
N	1 2		0.91	0.91	· ·	-		-			0.91
NL .	3		1.00	1.00	0.91		-	- 			0.96
	1	i A	1.18	1.09	1.00	0.91			-	<u> </u>	1.05
D	2	1/	1.24	1,18	1.09	1.00	0.91	. . .	·· _ ·	•	1.08
	- 3	//	1,28	1.24	1,18	1.09	1.00	0.91			1.12
	1		1.30	1.28	1.24	1.18	1.09	1.00	0,91		1.14
J	2	1/	1.29	1.30	1.28	1.24	1.18	1.09	1.00		1.20
	.3	ĺ .	1.24	1.29	1.30	1.28	1.24	1.18	1.09		1.23
	1		1.14	1.24	1.29	1.30	1.28	1.24	1,18		1.24
્ષિ	2		1.01	1.14	1.24	1.29	1.30	1,28	1.24		1.21
			0.81	1.01 0.81	<u>1.14</u> 1.01	<u>1.24</u> 1.14	<u>1.29</u> 1.24	1.30 1.29	1.28 1.30		1.15
М	2	/		0.50	0.81	1.14 1.01	1.14	1.29	1.29	· · ·	1.04
	3	1 /-		_	0.50	0.81	1.01	1.14	1.24		0.94
}	• •••••••••				<u> </u>	<u>~ ~ ~ _ </u>	<u> </u>	<u> </u>	<u> - • • - T</u>	&. <u></u>	<u></u>

Table 2.2.19 Crop Coefficient of Paddy (ATL-1)

D_	Day od								n an		
Month	Ten I Peric		1	2	3	4	5	6	.≓ 7 ± ;		Average
M	ее Н Н					to en a					
	1		-	***		~~		-			· · ·
A	2			. P4	-	- 1	-		-		-
	3										
	1					-	-	1 -	-	· .	
M	2		424.	-	· · · ••• · · ·	-	10	4 -1	_		1
	<u>3</u> 1				-						
J	2		-	-	_	· _	_	_	_		_
, v	3				_	· _		-	-		_
	1		-	-	-		-	-	-		-
J	2		-	·		***	-		-		-
	3										
	1			-	-	-	-		-		
A	2		-	_					.		
	3								-		_
S	2	Λ	0.91		-	-			-		0.91
	3		1.00	0.91	-			: :	-		0.96
	1		1.09	1.00	0.91		_		1		1.00
0	2		1,18	1.09	1.00	0.91	-				1.05
	3		1.24	1.18	1.09	1.00	0.91		-		1.08
	1		1.28	1.24	1.18	1.09	1.00	0.91			1.12
N.	2		1.30	1,28	1.24	1.18	1.09	1.00	0.91		1.14 1.20
	3	17 1	1.29	1.30	1.28 1.30	1.24 1.28	1.18 1.24	1.09 1.18	1.00		1.23
D	1 2		1.24 1.14	1.29	1.29	1.30	1.24	1.10	1.18	ъ.,	1.24
	3		1.14	1.14	1.24	1.29	1.30	1.28	1.24		1.21
			0.81	1.01	1.14	1.24	1.29	1.30	1.28		1.15
J	2		0.50	0.81	1.01	1.14	1.24	1.29	1.30		1.04
	3		-	0.50	0.81	1.01	1.14	1.24	1.29		1.00
	1] / /	-	-	0.50	0.81	1.01	1.14	1.24		0.94
F	2		-	·	-	0.50	0.81	1.01	1.14		0.87
	3						0.50	0.81	1.01		0.77
	1		-		-	-		0.50	0.81		0.66
М	2	V	-		-	—	-	-	0.50		0.50
ļ	1.2	.				L	ļ		L		

Table 2.2.20 Crop Coefficient of Second Paddy

51 --

0.60 0.58 0.59 0.52 0.52 0.39 0.33 10' 0.77 0.75 0.72 0.69 0.66 0.62 0.66 0.69 0 0.59 0.62 0.66 0 0.52 0.59 0.62 0 0.59 0.52 0.46 0.39 0.77 0.75 0.72 -6 1 1 1 1 0.69 0.72 0.75 0 0.66 0.69 0.72 0 0.62 0.66 0.69 0 0.52 0.39 0.39 1 1 33 ۰ 8 111 1,11 0.39 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.59 0.39 (**و** Т 111 111 1 | | 111 0.66 0.62 0.52 0.39 0.39 0:33 ŝ • E = E = T 1 1 1 1 1 0.59 0.62 0 0.52 0.59 0 0.46 0.52 0 0,46 0,39 0,33 1 1 1 0.39 с. 1 0,55 , ñ THE ATL ALL STATES AND THE TEST 0.33 0.33 0.57 5 0.55 0.46 0.39 0.33 TERLITE TELLET TEE EFT ETT ETT TET 1 1 1 + 0.83 0.82 • 0.84 0.83 • 0.85 0.84 0.86 0.85 0.87 0.86 0.87 0.86 0.86 0.87 1 0.85 0.86 0.84 0.85 0.83 0.84 0 0.82 0.83 0 0.79 0.82 0 0.87 0.87 0.87 0.87 0.87 0.87 0.85 0.84 0.83 0.82 0.81 0.80 0.78 0.77 0.75 0.74 0.86 0.85 0.84 0.83 0.82 0.81 0.80 0.78 0.77 0.75 0.87 0.86 0.85 0.84 0.83 0.82 0.81 0.80 0.78 0.77 0.87 0.87 0.86 0.85 0.84 0.83 0.82 0.81 0.80 0.78 0.87 0.87 0.86 0.85 0.84 0.83 0.82 0.81 0.80 0.78 0.87 0.87 0.87 0.86 0.85 0.84 0.83 0.82 0.81 0.80 0.55 0.57 0.59 0.81 0.80 0.78 0.77 0.75 0.74 0.72 0.71 0.68 0.82 0.81 0.80 0.78 0.77 0.75 0.74 0.72 0.71 0.83 0.82 0.81 0.80 0.78 0.77 0.77 0.75 0.74 0.72 0.77 0.75 0.74 0.72 0.71 0.68 0.66 0.64 0.62 0.78 0.77 0.75 0.74 0.72 0.71 0.68 0.66 0.64 0.80 0.78 0.77 0.75 0.74 0.72 0.71 0.68 0.66 ្អ 111 1 1 1 0.57 (0.59 (0.62 (0.55 111 σ 0.55 0.72 0.71 0.68 0.66 0.64 0.62 0.59 0.74 0.72 0.71 0.68 0.66 0.64 0.62 0.75 0.74 0.72 0.71 0.68 0.66 0.64 0.87 0.87 0.86 0.85 0.84 0.87 0.87 0.87 0.86 0.85 0.87 0.87 0.87 0.86 0.85 0.87 0.87 0.87 0.87 0.87 0.86 0.79 0.82 0.83 0.84 0.85 0.77 0.79 0.82 0.83 0.84 0.75 0.77 0.79 0.82 0.83 0.82 0.79 0.77 1 I I I 2 0.59 0.57 0.55 4 0.62 0.59 0.57 0 5 0.64 0.62 0.59 0 0.79 0.82 0.83 0.84 0.85 0.86 0.87 (0.77 0.79 0.82 0.83 0.84 0.85 0.86 (0.75 0.77 0.79 0.82 0.82 0.83 0.84 0.85 (0.75 0.77 0.77 0.77 0 0.72 0.75 0.77 0 ~ 111 0.55 . 9 0.55 5 I. 2 0.59 0.57 0.55 5 4 0.62 0.59 0.57 5 5 0.64 0.62 0.59 5 0.62 0.64 66 0.72 0.69 0.66 4 0.87 0.87 0.87 0 0.86 0.87 0.87 0 0.85 0.86 0.87 0 0.72 0.75 0.77 0 0.69 0.72 0.75 0 0.66 0.69 0.72 0 0.66 0.64 0 0.68 0.66 0 0.71 0.68 0 0.69 0.66 0.62 Μ 0.66 0.59 2 0.62 0.64 0.66 0.68 0.74 0.78 0.80 0.81 0.820.83 0.59

Table 2.2.21 Crop Coefficient of Sugar Cane

- 52 -

and the second	and the second	
T_{e} = $h_{1e} = 2 - 2 - 22$	Crop Coefficient of Pa	ddv.
TUDIO CICICO	orob ocorrections or an	
	(ALT-2)	
	(***** ** /	

н., с.		na La stationalista La stationalista	n Latin La La La				· .	· .		
			a igir di	· · ·	53 -					
· ·						i station.				
					:	· · · ·			1	
		•								
		(h))]		0 0	de offet	wiont of	Doddar			
	•	Table	2.2.2	Z Crop	(ALT-2	eient of	rauuy		. *	· · ·
					(-	÷	
			T]						
Month Ten Day Feriod		1	2	3	4	5	6	7		Average
Mon er	А.		-				· ·			
Contraction of the second seco	• • • • • •									
A 1		_	-	-		-	_	-		-
3		0.91		-	· · · · · · · · · · · · · · · · · · ·					0.91
	[/i]	1.00	0.91	0.91	-	-	-			0.96
M 2 3	<u>i</u> /	1.09	1.00	1.00	0.91			_		1.05
1	11	1.24	1.18	1.09	1.00	0.91	· - ·	<u>.</u> .		1.08
J 2	// I	1.28	1.24	1.18	1.09	1.00	0.91	-		1.12 1.14
3		1.30	1.28	1.24 1.28	<u>1.18</u> 1.24	1.09	1.00	0.91		1.14
J 2	$\left\{ \begin{array}{c} \\ \end{array} \right\}$	1.29	1.29	1.30	1.28	1.24	1.18	1.09		1.23
3		1.14	1.24	1.29	1.30	1.28	1.24	1.18		1.24
1		1.01	1.14	1.24	1.29	1.30	1.28	1.24 1.28		1.21 1.15
A 2 3		0.81	1.01 0.81	1.14	1.14	1.29	1.29	1.30		1.04
		0.91	0.50	0.81	1.01	1.14	1.24	1.29		0.99
S 2	1.	0.91	0.91	0.50	0.81	1.01	1.14	1.24		0.93
3		1.00 1.09	0.91	$\begin{array}{c} 0.91 \\ 0.91 \end{array}$	0.50	0.81	1.01 0.81	<u>1.14</u> 1.01	· · · ·	0.90
0 2	[1.18	1.00	1.00	0.91	0.91	0.50	0.81	-	0.91
	V /	1.24	1.18	1.09	1.00	0.91	0.91	0.50	ļ	0.98
	[/	1.28	1.24	1.18	1.09	1.00	0.91	0.91		1.09
N 2 3	γ	1.30 1.29	1.30	1.24	1.10	1.18	1.00	1.00		1.20
1	ľ l	1.24	1.29	1.30	1.28	1.24	1.18	1.09		1.23
D 2		1.14	1.24	1.29	1.30	1.28	1.24	1.18		1.24
3		1.01	1.14	1.24	1.29	1.30	1.28 1.30	1.24 1.28		1.21
] Ј2	1 /	0.50	0.81	1.01	1.14	1.24	1.29	1.30		1.04
-3			0.50	0.81	1.01	1.14	1.24	1.29	ļ	1.00
F 2		-	-	0.50	0.81	1.01 0.81	1.14	1.24		0.94 0.87
r 2.	//		-			0.50	0.81	1.01		0.77
1	¥	-	-		- 1	-	0.50	0.81		0.66
M 2 3						1 · · · ·	-	0.50		0.50
			<u></u>		4		- -			.
						•				
			-							
				- -						
						÷				
				-	-					
								· · ·	. • • • •	
				-						

			······					p	r		
Month	Ten Day Period		1	2	3	4	5	6	7		Average
A	1 2 3		0.61 0.47 -	0.71 0.61 0.47	0.73 0.71 0.61	0.77 0.73 0.71	0.71 0.77 0.73	0.61 0.71 0.77	0.46 0.61 0.71		0.66 0.66 0.67
М	1 2 3			-	0.47 	0.61 0.47	0.71 0.61 0.47	0.73 0.71 0.61	0.77 0.73 0.71	· ·	0.66 0.63 0.60
J	1 2 3		1	-	1 1	1 1 1	1 1	0.47	0.61 0.47 -		0.54 0.47
J	1 2 3		-		[]]	- + -			-		-
 A	1 2 3			-	-	1 1		-			
S	1 2 3		=== ===				-		 -		-
0	1 2 3	:				1 1	-	 	-		2 12 - 2 - -
N	1 2 3			-		+	1	-	-		
D	1 2 3		1 - 1 - 1 		-		- :	1 1 .1	-		
J	1 2. 3	Л	- _ 0.35	-		-		1	- - -		- - 0.35
F	1 2 3		0.46 0.61 0.71	0.35 0.46 0.61	- 0.35 0.46	- - 0.35		1 1			0.41 0.47 0.53
M	1 2 3		0.77 0.73 0.71	0.71 0.77 0.73	0.61 0.71 0.77	0.46 0.61 0.71	0.35 0.46 0.61	- 0.35 0.46	- 0.35		0.58 0.61 0.62

Table 2.2.23 Crop Coefficient of Polowijo (ALT-2)

.2.24 Crop Coefficient of Paddy (ALT-3)

	Ten Day												· . ·	. :			
Month	Period		1	2	<u> </u>	4	5	. 6	7	1'	21	31	4	5'	61	71	Average
A	1 2 3		4	0.50	1.01 0.81 0.50	1.01	1,14	1,24	1.29	1.30	1,28	1.24	1,18	1,09	1,00	0.91 1.00	1.08 1.08 1.08
М	1 2 3	1.1	1,09	1.00		: <u>-</u> -	0,50	0.81	1.01	1.14	1.24	1.29	1:30	1.28	1.24	1.09 1.18 1.24	1.08 1.08 1.08
J	1 2 3		1.28	1,24	1.09 1.18 1.24	1.09	1.00	0.91	- .	0.50	0.81	1.01	1.14	1.24	1,29		1.08 1.08 1.08
J	1 2 3		1.24	1,29	1.28 1.30 1.29	1.28	1.24	1.18	1,09	0.91	0.91	: -	0.50	0.81	1.01	1,14	1.08 1.07 1.06
A	1 2 3		0.81	1.01	1.24 1.14 1.01	1.24	1.29	1.30	1.28	1,18	1.09	1.00	0.91	0.91		0,50	1.06 1.05 1.05
s	1 2 3			-	0.81 0.50 -	0.81	1.01	1.14	1.24	1.30	1.28	1.24	1.18	1.09	1.00	0,91	1.05 1.05 1.05
0	1 2 3		1,09	1,00	0.91 0.91 1.00	0.91	-	0.50	0.81	1.14	1.24	1.29	1.30	1.28	1.24	1,18	1.06 1.07 1.08
N	1 2 3		1,28	1,24	1.09 1.18 1.24	1.09	1,00	0.91	0.91	0.50	0.81	1.01	1.14	1,24	1,29		1.11 1.06 1.08
D	1 2 3		1.24	1,29	1.28 1.30 1.29	1,28	1.24	1.18	1.09	1.00	0,91	·	0.50	0.81	1.01	1.14	1.08 1.08 1.08
J	1 2 3		0.81	1.01	1.24 1.14 1.01	1.24	1.29	1.30	1.28	1,24	1.18	1.09	1.00	0.91	-	0.50	1.08 1.08 1.08
F	1 2 3			. —	0.81 0.50 -	0.81	1.01	1.14	1.24	1,29	1.30	1,28	1.24	1.18	1.09	1.00	1.08 1.08 1.08
м	1 2 3		1.18	1,09	0.91 1.00 1.09	0,91	-	0,50	0.81	1.01	1.14	1.24	1.29	1,30	1.28	1.24	1,08 1,08 1,08

55 -

Table 2.2.24

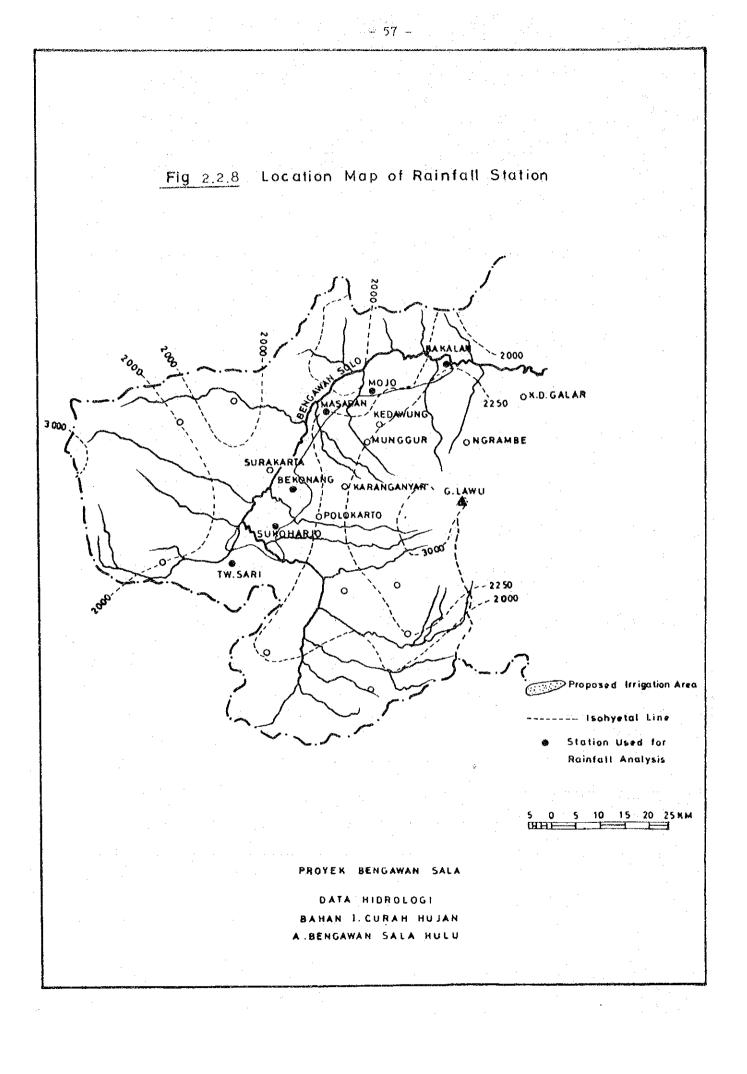
2.2.4 Percolation

As has been clarified by the soil survey, the soil with fine texture and massive structure is scattered almost over the entire project area, and in addition, the ground water table there is relatively higher than was anticipated. Accordingly, subsurface layer in the paddyfield is supposed to be rather impervious. Soil details are given in the relevant section.

Based on the local soil survey results relating to the texture and structure as well as the estimated data on percolation in other project area in and around Central Java, we have decided upon 1.0 mm/day in dry season and 0.5 mm/day in rainy season as the percolation in the project area.

2.2.5 Effective Rainfall

Daily rainfall data collected for the period of 20 years at six gauging stations in the project area have been used for estimating an effective rainfall. (See Fig.2.2.8) The effectiveness of rainfall depends on several factors such as the amount and intensity of rainfall, the characteristic of the soil, the rate of consumptive use and the irrigation practice. Accordingly, empirical and practical judgement is necessary in estimating the effective rainfall.

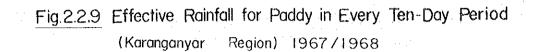

Two estimation procedures have been used in conformity with the prevailing irrigation practices adopted in the project area, namely, flooding irrigation in the paddy field and furrow irrigation in the sugarcane field.

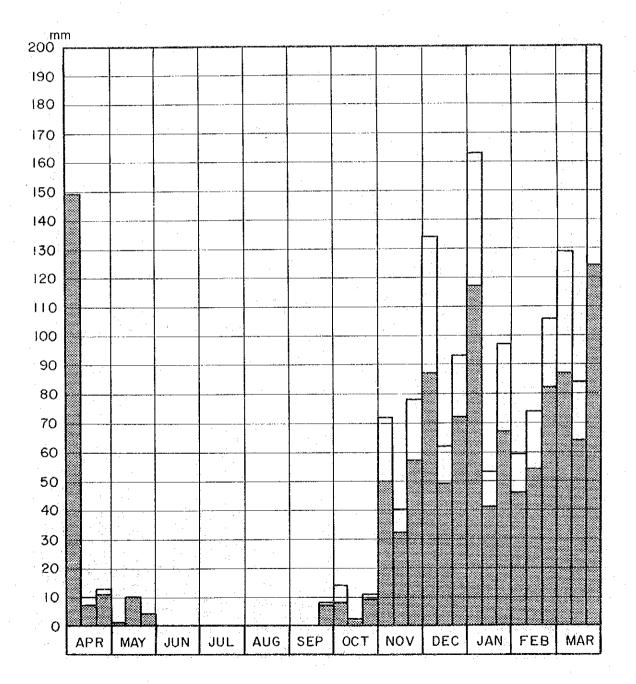
a) Effective rainfall in the paddyfield

The daily rainfall beyond 50 mm was disregarded as far as the precipitation in excess of 50 mm is concerned, as such water is doomed to flow into the drainage ditches without being detained in the paddyfield. The rainfall less than 5 mm was also eliminated, because it would not replace the daily evaporation. That means, the daily rainfall less than 50 mm but more than 5 mm minus 20 % was assumed as an effective rainfall. Thus, 69 % to 71 % of total yearly rainfall in the basic year was estimated as the effective rainfall in the paddyfield.

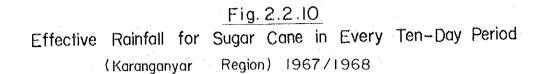
b) Effective rainfall in the sugarcane field

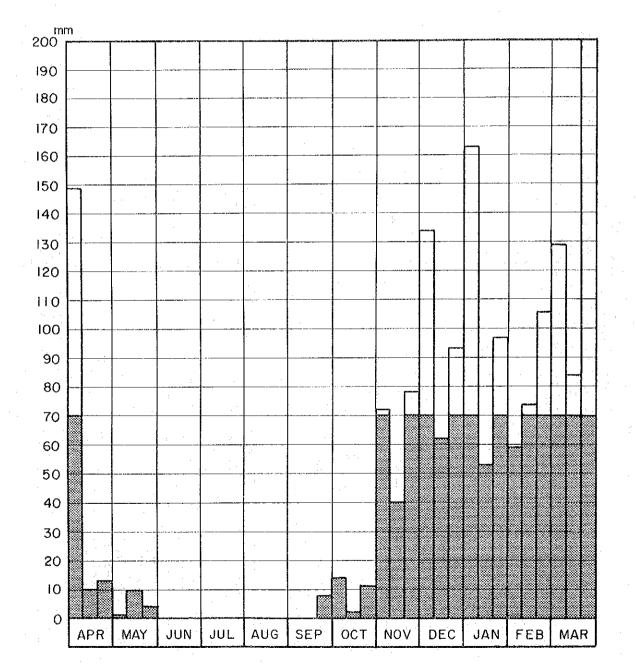
The consumptive use of 9 mm per day in dry season and 7 mm per day in rainy season was assumed empirically to estimate the effective rainfall in the sugarcane field. The rainfall more than the crop's daily consumptive requirement was treated as an excess rainfall, that means, rainfall above 9 mm per day in dry season and 7 mm per day in rainy season, was deleted as ineffective rainfall. The outcomes based on such procedure show around 55 % to 68 % of the total yearly rainfall in the basic year as an effective rainfall.

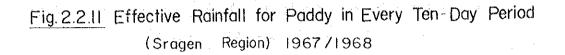


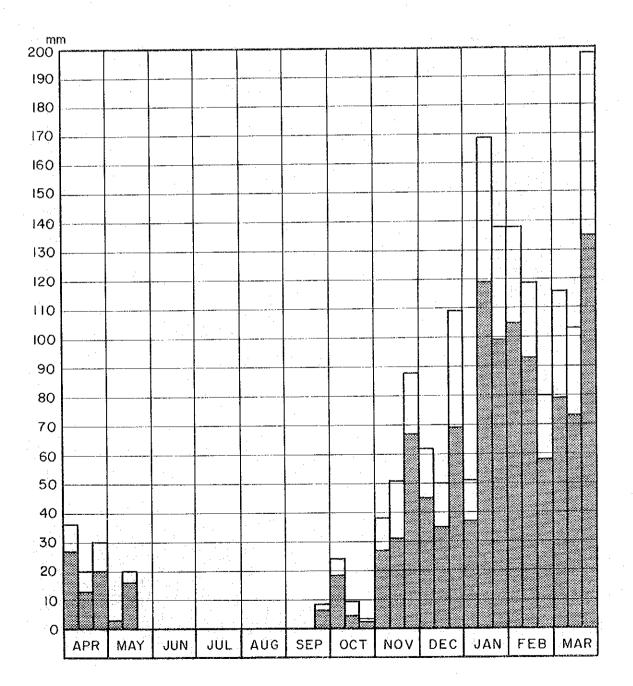

		.			an to star the statement of the star ways a strong star star star star star star star star	Unit	: mm/day	
-		Karanga	anyar Region	Srage	en Region	Dengken	g Region	
Month	lo-Day Feriod	For Paddy	For Sugar Cane & Polowijo	For Paddy	For Sugar Cane & Polowijo	For Paddy	For Polowij	
A	.1 2	9.1 0.7	7.0 1.0	2.7 1.3	3.6 2.0	8.2 0.8	7.0 1.0	
	3	1.1	1.3	2.0	3.0	1.1	1.4	
М	1 2 7	1.0	0.1	0.3 1.6	0.3 2.0	1.3	1.7	
	$\frac{3}{1}$		0.4					
J	23	-						
J	1		-		-		- 	
	3	-				-	<u> </u>	
A	1 2 3	-				-	-	
	$\frac{2}{1}$							
ន	. 2 3	0.7	0.8	0.6	0.8	-		
0	1 2	0.8	1.4 0.2	1.8 0.4	2.4 0.9	1.6	2.0	
	3	0.9	1.1	0.2	0.3	1.5	1.9	
N	1 2 3	5.0 3.2 5.7	7.0 4.0 7.0	2.7 3.1 6.6	3.8 5.1 7.0	9.4 1.9 5.6	7.0 2.4 7.0	
D	1 2	8.7 4.9	7.0	4.5 3.5	6.2 5.0	11.2 5.8	7.0 7.0 7.0	
		<u>7.2</u> 11.7	7.0 7.0	<u>6.9</u> 3.7	7.0 5.1	12.0 13.7	7.0	
J	2 3	4.1 6.7	5.3 7.0	$\begin{array}{c} 11.9 \\ 9.9 \end{array}$	7.0 7.0	2.5 8.1	3.3 7.0	
F	1 2	4.6 5.4	5.9 7.0	10.5 9.3	7.0 7.0	7.4 1.5	7.0 2.7	
	3	8.2	7.0	<u>5.8</u> 7.9	7.0	5.0 10.8	6.7	
М	2	6.4 12.4	7.0 7.0 7.0	7.3 13.5	7.0 7.0 7.0	10.8 7.4 17.8	7.0 7.0 7.0	
Annu		1,172mm	+ 1		1,105mm	1,346mm	1,071mm	
Actu Rain	al fall	1,64	Omm	1,67	'3mm	1,956mm		
Perc	entag	e 71%	69%	71%	66%	69%	55%	

10 - 18 -

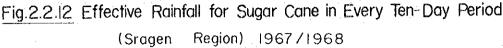

Table 2.2.25 Effective Rainfall in The Design Year (1967/1968)


- 58 -

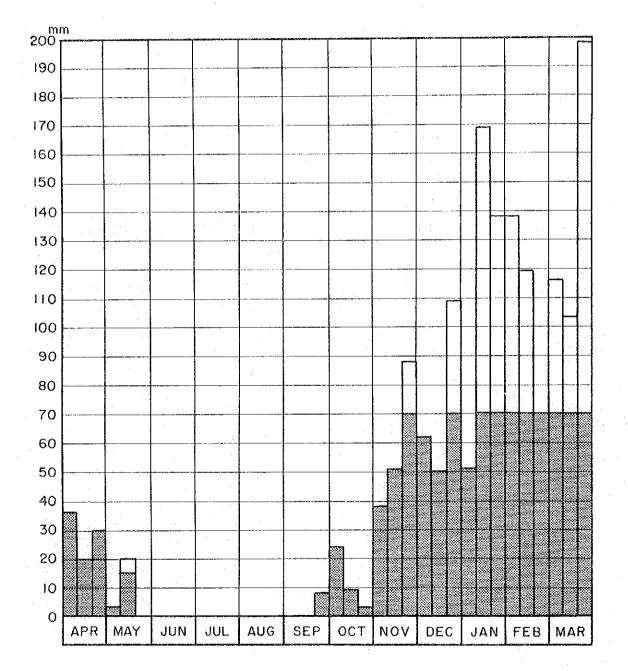
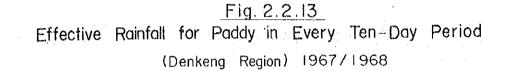
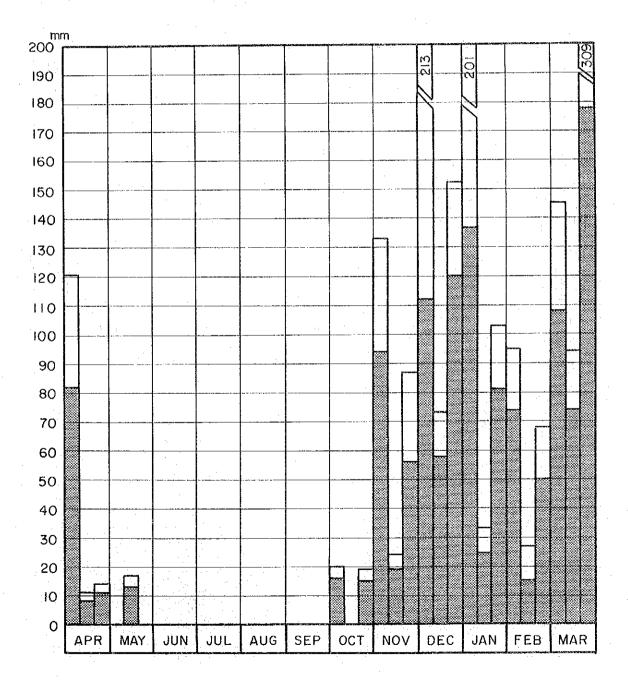
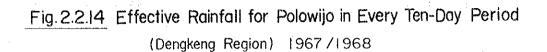


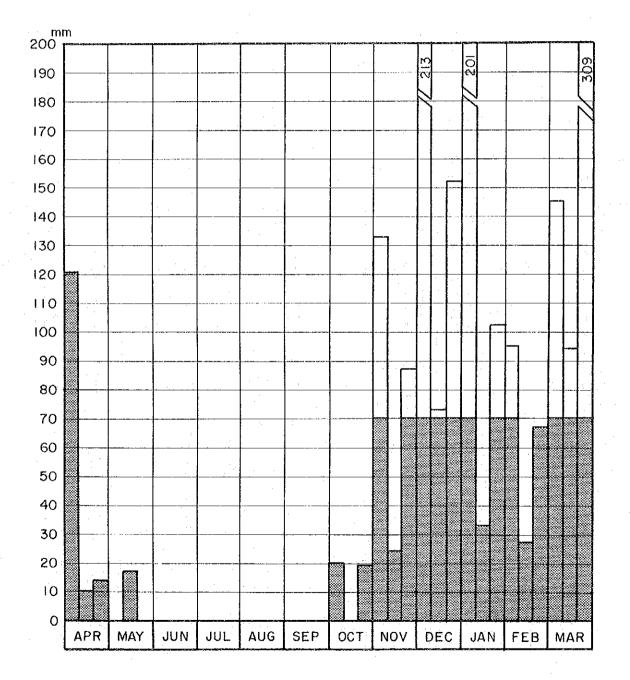


- 59 --



- 61 --


Fig.2.2.12 Effective Rainfall for Sugar Cane in Every Ten-Day Period

- 62 -

- 64 -

Calculations to obtain 10-day effective rainfall for both paddyfield and sugarcane field have been made for three Regions covered by the Project:

Karanganyar region:	Stations at Bekonang, Sukoharjo and Tawansari;
Sragen region:	Stations at Bakalan, Mojo and Masaran;
Dengkeng region:	Station at Tawansari

Effective rainfall for the design year is as shown in Table 2.2.25 and Figs. 2.2.9 through 2.2.14.

2.2.6

Water Losses

a) Farmwaste

The magnitude of the allowance to be made for the farm waste depends on a number of physical as well as water management factors.

As paddy field dikes and spill-ways are expected to be better maintained, water distribution will be made more equitable.

Farm waste on paddy field and sugarcane field in the project area is assumed at 10 % and 15 % in dry season and 5 % and 10 % in rainy season, respectively, of the water requirement.

b) Conveyance losses $\frac{/2}{}$

Ponding Method recommended by ADB has been adopted for the estimation of the seepage losses along the channels.

Total seepage losses caused on the way from the intake to the farm have been computed at 11 % of the irrigation requirement for Karanganyar Region, 15 % for Sragen Region, and 13 % for Dengkeng Region.

Evapotranspiration of the weeds growing along the channels and the operational and accidental wastes will be largely controllable by efficient management and maintenance in the future and, therefore, approximately 100 % of the seepage losses has been attributed to such loss as categonized by ADB.

 $\underline{/1}$ Farm waste is the quantity of water losses on farm due to seepage, leakage, over-application of water and spillage.

 $\underline{/2}$ Conveyance losses include farm ditch losses.

Table 2.2.26 Calculation Sheet of Conveyance Losses by Ponding Method 1. Seepage rate (silty clay loam) = $0.080m^3/m^2/day$ Intake - T.O.22 in Upper Solo Main Canal (canal ... Type III, L=32 km) 2. Wetted perimeter = 18.6m $= 18.6 \text{m} \times 32,000 \text{m} = 595,200 \text{m}^2$ Wetted area 3. $= 595,200 \times 0.080 = 47,616m^3/day$ = 0.551m³/sec Seepage loss 4. Karanganyar region = 0.551 x $\frac{10,100ha}{10,100ha + 9,500ha} = 0.284m^3/sec$ $= 0.551 - 0.284 = 0.267 \text{m}^{2}/\text{sec}$ Sragen region T.O. 22 - T.O. 36 in Upper Solo Main Canal (Canal ... Type VI, L=30 km) Wetted perimeter = 10.5m5. $= 10.5 \text{m} \times 30,000 = 315,000 \text{m}_2^2$ Wetted area 6. $= 315,000 \times 0.080 = 25,200 \text{ // day}$ Seepage loss 7 $= 0.292 m^{3}/sec$ Dengken Main Canal (Canal ... Type II, L=31 km) Wetted perimeter = 7.1m 8. $= 7.1 \times 31,000 = 220,100m^{2}$ = 220,100 x 0.080 = 17,608m³/day 9. Wetted area 10. Seepage loss $= 0.204 \text{m}^3/\text{sec}$ Secondary Canal (Canal ... Type III, L=8m/ha) Wetted perimeter = 3.8m11. $= 3.8 \times 1,000 = 3,800 \text{m}_2^2/\text{km}$ = 3,800 x 0.080 = 304 m/day/km Wetted area 12, 13, Seepage loss $= 3.52 \times 10^{-3} \text{ m}^3/\text{sec/km}$ Karanganyar region = $3.52 \times 10^{-3} \times 80$ km = 0.282m³/sec $= 3.52 \times 10^{-3} \times 77 \text{km} = 0.271 \text{m}^3/\text{sec}$ Sragen region $= 3.52 \times 10^{-3} \times 29 \text{km} = 0.102 \text{m}^3/\text{sec}$ Dengkeng region Tertiary and Farmditch (L = 40m/ha) 14. Wetted perimeter = 2.0m $= 2.0 \times 1,000 = 2,000 \text{m}^2/\text{km}$ = 2,000 x 0.08 = 160m³/day/km 15. Wetted area Scepage loss 16. $= 1.85 \times 10^{-3} \text{ m}^3/\text{sec/km}^3$ Karanganyar region = $1.85 \times 10^{-3} \times 400$ km = 0.740m³/sec $= 1.85 \times 10^{-3} \times 380$ km = 0.703m³/sec Sragen region $= 1.85 \times 10^{-3} \times 144 \text{km} = 0.266 \text{m}^3/\text{sec}$ Dengkeng region Total seepage losses Karanganyar region = $0.284 \pm 0.282 \pm 0.740 = 1.306 \text{m}^2/\text{sec}$ 17. $= 0.267 + 0.292 + 0.271 + 0.703 = 1.533 m^{2}/sec$ Sragen region 18. $= 0.204 + 0.102 + 0.266 = 0.572 \text{m}^3/\text{sec}$ Dengkeng region 19. Rate of seepage loss 20. Karanganyar region = 1.31/(13.0-1.31) = 11%Sragen region = 1.53/(11.5-1.53) = 15%Dengkeng region = 0.57/(5.0-0.57) = 13%21. 22. Rate (%) Total conveyance losses 2.62/(13.0-2.62) = 25% Karanganyar region $1.31 \ge 2 = 2.62 \text{m}^3/\text{sec}$ Sragen region $1.53 \ge 2 = 3.06 \text{m}^3/\text{sec}$ $3.06/(11.5-3.06) = 36\% \div 35\%$ $0.57 \ge 2 = 1.14 \text{m}^3/\text{sec}$ 1.14/(5.0-1.14) = 30%Dengkeng region

- 66 --

Consequently, in calculating the total diversion requirement, 25 % of the irrigation requirement for Karanganyar Region, 30 % for Dengkeng Region, and 35 % for Sragen Region have been added as an aggregate amount of the conveyance losses.

Calculation of conveyance losses is presented in the following Table.

2.2.7 Diversion Requirement and Storage Capacity

The diversion requirement is the total of the irrigation requirement and the water losses in the irrigation system.

The calculations of the unit irrigation requirements, the irrigation requirement and the diversion requirements by the three alternatives in the design year (1967/1968) are shown in Table 2.2.29 to 2.2.60. The results are shown in Table 2.2.64.

The storage capacity required for the Wonogiri reservoir is calculated based on the water balance between the diversion requirement and inflow at the Wonogiri dam site, as shown in Tables 2.2.61 to 2.2.63.

The above results are presented in Fig.2.2.15 to 2.2.18.

Besides the alternative $4\frac{1}{1}$ in the design year and the three alternatives in 1961/1962 are calculated for reference, the results are shown in Table 2.2.65, Fig.2.2.19, Table 2.2.66 and Fig.2.2.20.

Region	$\frac{\text{Area}}{(\text{ha})}$	Div.Req. (m ³ /sec)	(<u>Unit</u> (1/sec/ha)) Month
Karanganyar	10,100	12,912	1.28	Early Sep.
Sragen	9,500	11.357	1.20	Middle Sep.
Dengkeng	3,600	5.184	1.44	Early Sep.
Whole area	23,200	29.426	1.27	Early Sep.

Table 2.2.27 Peak Diversion Requirement (ALT-3)

<u>/1</u>:

The alternative 4 is a middle course of ALT-3 and ALT-2. (2/3 area ... ALT-3, 1/3 area ... ALT-2)