5. Heat Flow Structure in the Investigation Area

Fig.5-1 Location map of alteration zones

Fig.5-2 Sketched areas of alteration zone and regional distributions of alteration minerals

×

Fig.5-4 Sketch of alteration zone and diagrams of alteration minerals (2) La Bramadora

-

Fig.5-5 Sketch of alteration zone and diagrams of alteration minerals (3) El Humazo - 1

N

. .

ſ

Fig. 5-12 (1) Typical charts of X-ray diffraction analysis

Fig.5-13 Alteration zoning map of Los Tachos - 3

Fig.5-14 Location map of test holes at 1 meter depth

Fig.5-15 Distribution map of ground temperature at 1 meter depth

Fig.5-16 Frequency distribution of ground temperature at 1 meter depth

ς.

Fig.5-18 Observational results of variation of atmospheric and ground temperatures during period of 1 meter depth survey

Fig.5-19 Distribution map of ground temperature at 1 meter depth by running average method

ŧ

Fig.5-20 Relation between altitude and ground temperature at 1 meter depth

Fig.5-21 Distribution map of residual ground temperature at 1 meter depth (calculated by linear equation)

Fig.5-22 Distribution map of residual ground temperature at 1 meter depth (calculated by quadratic equation)

Fig.5-23 Distribution map of Hg - concentration in soil

ŗ

Fig.5-24 Frequency distribution of Hg - concentration in soil

Fig.5-25 Distribution map of Hg - concentration in soil by running average method

Fig.5-26 Distribution map of CO_2 - concentration in soil-air

Fig.5-27 Frequency distribution of CO_2 - concentration in soil-air

Fig.5-28 Distribution map of CO_2 - concentration in soil-air by running average method

3

Fig.5-30 Correlations between residual ground temperature, and CO_2 - concentration(1) and Hg - concentration(2)

RINCON DE LAS PAPAS' ŢĴ Au DE LA PAPA EL HUMAZO 16 e AS OLLETAS <u>م</u> TIOM(₿'E BANOS DEL AGUA CALIENTE ÷ ". A to con via $\langle L_i$ L.L , Ľy MCEV* . 170 (~~) Escala + 50.000 30 Meters

Fig.5-31 Relation map of anomalous values at 1 meter depth survey

LEGEND : residual of ground temperature > 4 °C : Hg concentration > 26 ppb : CO2 concentration > 0.18 % : 0 $\leq k < 3$ 3 $\leq k < 6$: 6 $\leq k$

k : Sum of normalized values of ground temperature , CO2 concentration and Hg concentration

Fig.5-32 Composite map of anomalous areas of ground temperature and Hg - CO_2 geochemistry

LEGEND

(Residual ground)

> 5°C

> 0°C

trend of anomalous areas

(Hg-concentration)

> 20 ppb

> 40 ppb

trend of anomalous areas

(CO2-concentration)

trend of anomalous areas

> 2 %

6. Circulation Mechanism of Geothermal Fluid in the Investigation Area

Fig.6-1 Location map of measurements of water discharge and calculations of specific rate of flow

LEGEND (REFERECIAS)

No	rate of flow E/min E Caudales)
Temp (*C)	Contributory area { area } km²
	Specific rate of flow (councils especifico)

`

Fig.6-4 Location map of hot water, fumaloic gas and condensed water samplings

LEGEND

L0-1	Hot water
CL0-1	Condenced water
GL0-1	Fumaloic gas

~

Fig.6-12 Detailed sketch of geothermal manifestation (8) Banõs del Agua Caliente

•

Fig.6-16 Main chemical compositions of hot water

-:

L)

Fig.6-17(1) Hexadiagrams of main chemical compositions of hot water

¢ ,

Fig.6-17(2) Hexadiagrams of main chemical compositions of hot water

.

•

Fig.6-17(3) Hexadiagrams of main chemical compositions of hot water

• • • •

Fig.6-18 Diagram of C1 - HCO_3 - B contents of hot water

Ļ

Fig.6-19 Comparative diagrams of ion - concentration index between sea water and hot water

.

;

Temperature (°C)

Runcó	n de la	s Po	oas	Las	; 011e	tas	EI	Hun	10Z0	Aquo	as Calı	entes	Los	s Tachos	<u>.</u>	Lo	Bromadora
No	Somt	ble	No	No	Somp	le No	No	Samp	le No	No	Sompl	le No	No	Somple	VO	No	Sample No
<u> </u>	RP	_	1	4	LO	- 1	6	EH	- 1	8	AC	- 1	15	LT-1	1	18	LB
5			2	5		- 2	1	11	- 2	9	"	- 2	16	<i>"</i> - l	2		
3	- ,,		3				+			10	"	- 3	17	// -1	3		
<u> </u>	<u>↓</u>		-				†			11	"	- 4					l
							<u> </u>	1		12	"	- 5					
<u>├</u>							1	1		13	"	- 6					
	[t			1	1		14	"	- 7					

Fig.6-20 Silica - geochemical geothermometer

.

Enthalpy (Cal/g)

Rincó	n de las Popas	La	s Olletas	EI	Humazo	Aquo	is Colientes	Lo:	s Tachos	La	Bramadora
No	Sample No	No	Sample No	No	Sample No	No	Sample No	No	Sample No	No	Somple No
	RP - I	4	LO - 1	6	E <u>H - I</u>	8	AC - 1	15	LT - 11	18	LB
2	″ - 2	5	" - 2		<i>"</i> - 2	9	// - 2	16	// =12		
3	<u> </u>					10	<i>יי</i> - 3	17	" - 13		
						11	<i>יי</i> - 4				
						12	" - 5				
						13	<i>"</i> - 6				
						14	<i>" -</i> 7				

Fig.6-21 Silica - geochemical geothermometer (mixing model 1-1)

;

Enthalpy (Cai/g)

Rinco	a de las Papas	La	s Olletas	El	Humazo	Aquo	as Calientes	Los	Tachos	La	Bramadora
No	Sample No	No	Sample No.	No	Sample No	No	Sample No	No	Somple No	No	Sample No
	RP-1	4	LO - 1	6	EH - 1	8	AC-I	15	LT - 11	18	LB
2	" - 2	5	" - 2		" - 2	9	// - 2	16	// - !2		1
3	// - 3					10	<i>"</i> - 3	17	// -13		
			[]	1		11	// - 4				1
						12	1/ - 5				1
		ľ.		i i		13	// - 6]
	17		1			14	// - 7				

Fig.6-22 Silica - geochemical geothermometer (mixing model 1 - 2)

-

\$

Rincó	n de las Papas	La	s Olletas	EI	Humazo	Aquo	is Calientes	Los	s Tachos	La	Bramadora
No	Sample No	Na	Sample No	No	Sample No	No	Sample No	No	Sample No	No	Sample No
T	RP-I	4	LO - I	6	EH - 1	8	AC - 1	15	LT - 11	18	LB
2	" - 2	5	// - 2	Ĩ	/ / - 2	9	// - Z	16	// -12	1	
3	// - 3					10	<i>יי</i> - 3	17	<i>"</i> -13		
				_		11	// - 4				
			f			12	<i>" -</i> 5				
			·			13	<i>"</i> - 6				
		·				14	<i>n</i> - 7				

Fig.6-23 Silica - geochemical geothermometer (mixing model 2)

Fig.6-24 Composite map of zoning of hot spring - fumarole and geochemical geothermo-temperature

LEGEND

	Туре	hot water	(geochemical geothermo-) temperature	fumaloic gas	(detected) gas
I	vapor – dominated type sulfate spring	1	(unknown)	(H2, CH4 H2S, SO2)
I	water - vapor – mixed common salt spring (type a)	(> 200°C)	Δ (SO2)
Ш	water-dominated typ common salt spring(b) ()	(< 200°C)		
	simple spring	-	(< 200 ºC)		
V	water – dominated typ Ca – Mg bicarbonate spring	• @	(< 200 ℃)		

0

boundary of classification of hot spring by chemical composition

boundary of existence of furnarole

-.

7. Model of Geothermal System

Fig.7-1 Synthetic interpretation map of geologic structure

Fig.7-2 Synthetic interpretation map of heat flow structure

₩ ←

Fig.7-3 Model of circulation mechanism of geothermal fluid and geothermal reservoir structure (1)

---→ E

LEGEND

V-2	Pleistocene
<u>v</u> -j	Pleistocene-Pliocene
а. Т.	Tertiory
M	Mesozoic
+64+	Basement
××××	Domuyo complex
ļ	roin water
د جر	circulation of ground water
-	circulation of geothermal fluid
Ŷ	supply of heet
Ø	shallow hot wøter reservoir
Ø	deep geothermal fluid reservoir
r	

NW←

Fig.7-4 Model of circulation mechanism of geothermal fluid and geothermal reservoir structure (2)

—>SE

ĵ

LEGEND

Pleistocene V-2 -v-ii Pleistocene-Pliocene Tertiory --M---Mesozoic Basement +Gd+ ×××× Domuyo complex roin water circulation of ground water circulation of geothermal flutd Ŷ supply of heet ø shallow hot water reservoir deep geothermal fluid reservoir ø fracture

8. Summary and Conclusion

Fig.8-1 Proposed working plan of the third phase survey

. . . .

> - . .

1

.

, , , ,

> . -

、

.