Table III-2-A3 Argentine Petrochemical Product Forecast (Case C)

35/25	6.01	· · · · · · · · · · · · · · · · · · ·				8 8 8 4 8	4.6.1.6.1.6.1.1.	N W W W
83/18	3.9	1.51 13.61 17.81 11.31	0.0 14.8 9.4	4.11 3.71 4.0	0.0	1.61 10.11 1.81	6,4-1-2,6,4-1-1- 4-0-22-22-22-22-22-22-22-22-22-22-22-22-2	18.8 12.7 4.2 1.2
8	123.31 37.51					32851 11.8611 1.2721 1.7751 1.5931	0.415 0.149 0.289 0.145 0.296 0.703 0.842 0.157	47.71 47.71 66.8 60.0
8	116.3 36.8					3161 11.449 1.225 1.698 1.543	0.417 9.147 9.143 9.143 0.284 0.705 0.840 0.159	45.8 52.5 56.9
83	109.7 36.0					3042 11.1051 1.179 1.621 1.498	0.418 0.145 0.233 0.241 0.241 0.232 0.232 0.161	388.71 54.51 54.01
23	103.51 35.31					2927 10.667 1.135 1.547 1.458	0.421 0.123 0.235 0.139 0.230 0.230 0.835 0.163	377.3 40.1 54.7 51.2
16	97.7					2817 10.286 1.692 1.477 1.403	0.423 0.237 0.237 0.238 0.711 0.165	357.01 37.91 48.61
96	32.11		:			27101 9.9381 1.0521 1.4101 1.3581	0.425 0.139 0.239 0.135 0.713 0.837 0.167	337.9 47.9 46.1
88	88.9					2608 9.592 1.012 1.345 1.345	0.427 0.301 0.301 0.733 0.715 0.830 0.169	319.71 33.71 44.81 43.81
8	32.6			1		2510 9.259 0.974 1.284 1.272	0.429 0.135 0.303 0.131 0.131 0.717 0.171	302.51 41.9
8	77.3					2415 8.937 0.938 1.226 1.231	0.431 0.1331 0.3351 0.1231 0.7391 0.7391 0.7391	286.3 36.0 39.2
98	73.0					2324 8.626 0.903 1.170 1.191	0.4331 0.131 0.127 0.127 0.721 0.721 0.125	270.91 28.33 35.71
8	30.71					2236 8.326 0.869 1.117 1.153	0.435 0.128 0.339 0.125 0.723 0.822	256.7 26.7 34.4
8	30.1					2,152 8.036 0.837 1.066 1.116	0.4371 0.127 0.123 0.123 0.725 0.820 0.820	25.21 33.21 33.21
Rate X	0.060						-0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002	
8	61.31 23.61	28.07 10.07 10.07 10.03 10.03	6.0 16.0 22.0	27.0 6.8 33.0	23.0	2070 7.362 0.783 0.960 1.031	0.4391 0.1251 0.1211 0.7272 0.8181	23.1 23.1 30.5
88	71.6	126.19 28.01 28.01 23.01	5.0 15.01 20.01	22.2	31.0	2521 7.923 0.708 0.963 1.080	0.545 0.112 0.138 0.103 0.250 0.750 0.857 0.142	225.0
88	86.2 21.7	28.29 28.29 19.69 19.60	3.0 10.0 13.0	24.0	31.0	2389 5.896 0.464 1.091 1.120	0.421 0.138 0.325 0.114 0.769 0.769 0.172	163.3 30.2 31.0
18	50.4	68.01 13.01 12.01 130.01	6.0 8.0 14.0	22.0 5.0 27.0	83.0	1909 4.916] 0.482 0.875 1.087	0.523 0.284 0.092 0.428 0.571 0.814	82.52.88 1.1.12.11.11.11.11.11.11.11.11.11.11.11.
NIT	BIL dollar RIL	thousand tho	thousand thousand thousand the	thousand thousand the	thousand t	t/ person if ton/MIL if ton/MIL if ton/MIL if ton/MIL if ton/MIL	Hon/Hon Hon/Hon Hon/Hon Hon/Hon Hon/Hon Hon/Hon Hon/Hon	ton ton ton
	1181 HIL	tho tho tho Itho	tho tho Total tho	tho Total tho	tho	****	**************************************	2222 2222
TENT	lar ion	Īo	To	To			0.00000000	
CON	GKP dollar Population	LDPE HOPE PVC IPN	EC AN S.F.	PS ABS M. P.	SBR	GNP/P0P G. P/P0P IS. P/P0P IX. P/P0P SBR/P0P	LDPE/G.P HDPE/G.P PVC /G.P PP /G.P EG /S.F RN /S.F PS /A.P ABS /A.P	G.P Total S.P Total M.P Total SBR
[D	901 +002 (*003	005 005 007 008		916	83	019 *030 *020 *021 *022	*023 *025 *025 *025 *025 *029	032

Table III-2-A3 (Continued)

\$5785	5.11 -109.01 -100.01 1.01	6.31 -180.81 10.31	5.1	6.7	5.4 19.8 -100.0	4.4 -130.3 7.4	5.33 28.93 1.00.01	3.5	
83.778	48.8	23.8 18.2 192.9	13.91 28.71	2.9	6.6	-16.7	25.52	9.5	34.7
38	185.01 0.01 185.01 185.01	12.27 12.51 10.0 10.0 12.57	128.0 128.0 10.0 117.0	14.11 14.11 10.0	48.01 12.23 12.23 48.01	11.01 12.51 0.01 12.51	50.21 50.21 50.21 50.21	.6.67 .6.63	307.01 328.11 21.11 9.91
8	285.91 175.93 187.91 187.91	69.3 9.11 6.61 6.61	117.01 123.01 5.01 0.01 117.01	0.01 13.21 13.21 6.01 6.01	84.83.99.98 19.12.19.19.19.19.19.19.19.19.19.19.19.19.19.	11.0 11.3 0.0 0.0 11.9	56.9 56.9 56.9 56.9	85.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 1	307.01 326.51 13.51 0.01 307.01
83	255.91 167.22 182.23 192.23	7.79 10.00 22 10.00 22	117.01 117.01 117.01	0.0 12.4 0.0 0.0	8,83.0.0.83 19.0.0.0.83	11.0 11.4 0.0 0.0 11.4	S. 6. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	65.01 70.11 5.11 0.01 65.01	307.01 326.71 19.71 0.01 307.01
23	255.9 156.0 196.0 196.0	86.9.98	11.0 11.0 10.0 10.0 10.0 10.0	0.0 11.6 0.0 0.0	48.01 1.71 1.71 48.01	11.01 10.91 6.01 0.01 10.91	51.2 51.2 50.0 50.0 50.0 50.0 50.0	65.81 4.91 0.01 65.01	307.01 323.81 16.81 0.01 307.0
16	225.01 151.21 0.01 200.21	88.83 1.0.0	117.0 106.31 0.0 0.0 106.31	0.0 10.9 10.9 0.01	48.9 16.0 16.0 16.7	11.0] 10.4 6.0 0.0]	50.01 1.01 47.51	65.01 67.71 2.71 0.01 65.01	307.01 321.61 14.61 0.01 307.01
30	225.81 1.03.71 51.01 193.71	53.21 53.11 1.01 52.11	5.01 5.01 86.31	0.01 10.2 10.2 0.0	43.8.9. 1.0.1.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.	11.01 10.01 1.01 0.01 9.01	50.01 46.11 1.01 2.01 47.11	65.0 64.1 0.0 64.1	304.4 304.4 0.0 304.4
88	225.0 136.51 187.6	6.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1	8.5.9 8.6.9 8.6.9 8.6.9	9.6	41.21 2.01 10.1 10.21	11.0 9.6 2.0 0.0 7.6	50.01 43.81 1.01 46.81	58.01 0.0 1.01 1.03	288.3
8	28.28.28 1.8.29.29 18.29.29	27.01 2.01 6.01 6.01	117.01 15.02 15.03 16.03 16.03	0.00.00.00	88.212.	11.9 9.2 8.9 0.0	50.01 1.01 6.01 45.51	85.9 6.9 88.9	307.01 272.4 0.01 272.4
87	225.01 123.51 1.0 54.01	80.4 3.91 41.21 10.01	2.18 2.18 19.19 19.19	8.8.0 8.0 8.0	8.8 8.0 4.0 4.0 4.0 4.0	2.0 0.0 6.8 6.8	50.01 39.41 8.01 46.41	65.0 6.0 3.01	239.01 0.01 257.33 0.01 257.33
88	225.0 117.4 1.0 55.0 171.4	83.6 6.0 85.0 10.0	59.0 2.4.4 59.0 50.0	9.07	84 44 58 0 8 5 5 5 5 5 5 5 -	1.8 2.0 4.0 4.0	50.01 37.41 1.01 10.01 46.4	52.0 0.0 56.0 56.0	22.0.22
83	225.01 111.61 1.01 56.01 166.61	88.3 12.0 12.0 12.0 12.0	28.0 20.4 59.0 59.0	0.0	\$ 66 4 4 1 E	11.0 8.1 0.0 6.1	83.91 1.01 12.01 46.51	2.8.0.2.2 = 2.0.2.2	227.0
84	225.01 102.41 1.01 57.81 138.51	23.88	S9.11 15.61 15.61 15.61	0.0 7.9 10.0 10.0	8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	11.0 7.7 0.0 17.7	32.9 32.9 13.7 45.0	\$2.0 1.0 5.0 5.0 5.0	211.01 211.01 0.01 46.01 257.01
Rate %									
8	225.01 118.01 1.31 66.81	25.8 29.8 17.0 17.0	57.57 18.9 18.3 52.8	6.00.00	25 5 5 8 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	29.81 1.11 18.81 17.51	54.91 48.31 0.01 54.7	283.11 283.11 248.11
83	285.01 122.71 19.02 18.71	6 8 8 9 9	88 88. 	0.0.0.0	2.422.4	2.9	30.01	%.0 9.0 188.11	25.0 SE. 17.0 SE. 17.
80	8.88 8.0 8.0 8.0 8.0	22.6.0	28.11 20.01 34.11	0.03.00	2.6.6.6.2	2.00.4	3.01	28.00 E3 &	28.00.08
28	35.01 37.01 30.01 30.01	0.0 12.9 12.9 0.0 10.0	36.91	0 N N 0 0 0	12.22 12.23 12.00 12.00 12.00 13.00 10.00	3.21	28.00 10.00 10.00 10.00	30.6	54.01 0.01 15.71 15.71
NIT		e e e e e	ton ton ton ton	g e g g	= = = = =		= = = = = = = = = = = = = = = = = = =	2556	
K. U	H ton H ton ton ton ton ton ton ton	H ton	SESSE	E E E E E E E E E E E E E E E E E E E	EXERE P 6 6 6 6	2 2 2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	M Kon	E E E E E E E E E E E E E E E E E E E	ton
TENT	capacity demand lmport export product	capacity demand import export prduct	capacity demand import export prduct	capacity demand import export product	capacity demand lemont export prduct	capacity demand import export prduct	capacity demand import export prduct	capacity demand import export product	capacity demand import export product
C 0 K	1008	норе	ο _λ .	80	8	ABS	SBR	SS	<u>m</u>
I D	85 85 85 85 85 85 85 85 85 85 85 85 85 8	033 041 041	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	047 047 648 649 050	852 852 854 854 854	055 055 057 058	059 059 061 061 062	065 065 065 065	073 073 074 075 075

21.61 17.51 -11.61 -2.31 95/85 5.61 5.61 15.4 14.7 0.5 0.7 16.61 16.8 16.7i 17.0i 3.9 3 193. 100. છે 83.51 6.62 1.51 1.51 1.51 1.51 76.21 76.21 76.21 76.21 76.21 76.21 76.21 76.21 22.61 22.025 15.21 15.21 15.21 15.31 0.5141 0.1301 0.0001 0.0551 9.394 23 153 20000 1282 8 33 20.21 33.00 383.71 13.71 15.81 12.81 12.81 0.073 0.073 0.230 20088 0.3041 0.0001 0.1761 0.524 0.190 0.000 0.000 0.000 28.2 56.21 14.01 113.71 15.81 129.61 0.753 0.070 0.236 9 8 9 9 35.50 35.50 35.50 8.88 g 8.88 8.99 g 9.99 0.638 0.212 0.150 0.000 0.050 9.304 0.008 0.176 0.287 g 8352.0 12.4 6.91.4 3.4.2.2 3.4.2.2 3.5.9.9 5 % % e's 25.02 10.03 0.3041 0.0001 0.1761 20088 0.651 0.199 0.181 0.000 0.059 230 ±88.8 88 200022 8 6 6 6 20000 144.01 113.71 15.81 128.61 0.665| 0.187| 0.173| 0.900| 0.659| 0.3041 0.28 0.38 1.38 1.38 1.38 22022 8 8 5.61 5.61 6.01 e 2 2 2 ee 80000 200000 144.01 113.11 30.01 143.11 0.259 3.372 0.6491 0.174 0.000 0.000 0.059 0.343 0.058 ŝ 386 6.02 6.03 6.09 6.09 65.81 65.91 10.61 10.61 144.91 111.0 35.0 145.0 0.883 0.173 0.150 0.889 0.888 0.000 0.340 0.254 0.464 676 050 83 38 28.09.09 26.09 26.09 26.09 22.22.00 38 0 0 0 0.6811 0.1681 0.1411 0.0001 0.0001 6.22 6.23 6.43 6.43 6.43 6.43 23,48 S 8 9 0 6 8 883 38 0 6 6 6 6 21.6 889 18 16.81 16.11 27.91 43.11 18.2 18.2 18.2 15.9 15.9 0.630 321.7 0.599 0.163 0.131 0.000 0.062 0.000 0.236 0.436 0.436 8 88.00.088 106.51 106.51 58.91 156.51 0.506] 0.046] 0.248] 35.0 17.3 10.0 30.3 0.233 2 2 2 0 0 0.150 2000 38 22.22.0 35.0 15.0 31.3 17.61 0.01 9.01 28.61 144.01 105.81 1.01 55.01 20.008.88 0.748 0.122 0.129 0.000 0.067 0.000 0.279 0.044 8 ₩ 8 17.6 0.0 17.6 17.6 144.81 183.91 59.61 59.51 0.022.50 0.0 13.5 13.5 10.0 10.0 22.0 E 999 52 83 88 88 88 88 2222 $\ddot{8}$ 74 9 2 9,50,00 15.8 85.0 48 8.0 9 9 1 62.0 16.0 0.0 16.0 16.0 83.20 83.20 83.21 0.752| 0.069| 0.106| 0.000| 0.061| 0.000 0.000 1.383 533 2888 888 144. 101. 165. 310. 64.01 91.21 88.01 58.21 0.02 0.03 0.00 0.00 0.00 0.00 35.01 15.01 15.01 32.01 23.00.03 0.774 0.000 0.000 0.074 0.004 0.248 6 882 딿 ž 128.61 128.61 1.01 1.01 38.3 9.7 97.9 156.7 20.00 220028 0.6171 0.0001 0.0001 0.2651 0.009 0.009 1.535 0.253 0.234 8 ß 0.6881 0.0011 0.3591 0.1871 80.71 80.71 59.91 0.014 0.016 1.783 22.0 20088 0.180 0.185 0.533 8228 57.1 (Continued 82 <u>ب</u> to to to to to to t to to 5 to 5 ខ្ពុំខ្ពុំ z: ⇒ 5 5 5 5 5 ton ton ton ton 0 0 0 0 0 0 0 0 0 0 0 ton ton ton ton 5 5 5 5 5 Ş 5 5 5 5 E ğ g g ខ្មុំខ្មុំ to 10 to III-2-A3 capacit demand import export prduct capacit demand import export product capacit demand import export product capacit demand import export prduct capacit demand import export prduct capacit demand import export product × 50 € × 3 2 2 other / F & F PS ABS SBR Table FF 6 6 8 . 홈 로 중 중절 සිසිපිසිසි 12525 S2525 12525 S2525 1225 115 17

2-A-3 Cost Comparison of Petrochemical Products (1986)

```
Table III-2-A4
                 Ethylene
Table III-2-A5
                 Linear Low Density Polyethylene (LDPE)
                 High Density Polyethylene (HDPE)
Table III-2-A6
Table III-2-A7
                 Polyvinyl Chloride (PVC)
Table III-2-A8
                 Stylene (SM)
Table III-2-A9
                 Polypropylene (PP)
Table III-2-A10
                 Acrylonitrile (AN)
Table III-2-All
                 Ethylhexanol
                 Polystyrene (PS)
Table 111-2-A12
Table III-2-A13
                 Caprolactam
Table III-2-A14
                 ABS
Table III-2-A15
                 MTBE
Table III-2-A16
                 Methanol
Table III-2-A17
                 Ammonia
Table III-2-A18
                 Urea
Table III-2-A19
                 DMT
```

Table III-2-A4 Cost Comparison of Ethylene

			l soc	395.6	2.8	65.71 11.91 79.681	168.8 71.1 81.5	88.83 17.65 17.65	464.11	स्तु स्तु स्तु स्तु	12.6 12.6 12.6 185.2 185.2 185.2 185.2	197.81 141.81 338.9]
स्ता	450000 80 36000	227 113.5	ce Unit cost \$/t \$/t	101.7	0.032	თ 11 - 12 - 13 - 13 - 13 - 13 - 13 - 13 -	301.5 101.7 209	114		22500		
Sn		(II)	<pre>10t'y/t Price 1 t/t \$/</pre>	Gas of I 3.89	53	7.3	··· •	0.73		49 (7)/(5)*6%	(0) (0) *10% (0) (0) *2% (0) (0) *2% (0) (0) *2% (0) (0) *4%	((7)+(8))/(5)*15%
	:		Unit cost \$/t	130.6	8.0	41.4 6.0 48.2	24.1	19.3	135.3	38.3	26.01 10.01 26.02 26.03 147.31	282.61 112.51 395.11
SA	450000 80 36000	180 90	Price Un \$/t	105.4	0.032	ರು	301.5	121.2		22500		*15%
, D		z	0t'y/t Pr t/t	Ethane 1.24	25	4.6	0.08	0.16		37 (7)/(5)*6%	(7) (5) *10% (7) (5) *2% (7) (5) *2% (7) (5) *5% (7) (5) *4%	((7)+(8))/(5)*15%
			Unit cost \$/t	130.6	8.8	41.4 6.0 48.2	24.1	19.3	43.5 135.3	28.3	23.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	274.61 106.2 380.8
SA	450000 80 36000	178 85	Price Uni \$/t \$	105.4	0.032	တ	301.5	121.2		22500)*15%
n		យ	0t'y/t Pr t/t	Ethane 1.24	25	4.6	0.08	0.16		31 (7) / (5) *6%	(7)/(5)*10% (7)/(5)*2% (7)/(5)*2% (7)/(5)*5% (7)/(5)*4%	((1)+(8))/(2)*15%
			Unit cost	489.0	2.5	74.7 10.6 87.9	166.91 95.01 72.61	16.81 78.01	429.3	34.1	56.9] 11.3] 11.3] 28.4] 22.7] 167.1]	314.61 128.11 442.81
Japan	450000 80 360000	205 102.5	rice \$/t	150	0.051	11.5	315 125 220	140		16000		(5)*15%
			Qt'y/t t/t	Naphtha 3.26	20	ა. დ	0.53 0.33	0.12		45 (7)/(5)*6%	(7)/(5)*10% (7)/(5)*2% (7)/(5)*5% (7)/(5)*5% (7)/(5)*4%	((7)+(8))/(5)*15%
I Nation/Region	3 Capacity t/y Load 2 Production t/y 2	7 B/L Ms Ms Ms Ms Ms Ms Ms Ms	11 12 12	y-met (T) V Pref	Power Kwh	18 Steam t 19 Fuel MMkcal 20 Others 21 Sub-total		26 Fuel oil 27 Fuel gas		32 Uperating costs 32 Labour 33 Maintenance	35) Depreciation 36) Tax/Insurance 37) Administration 38) Interest 39) Sales, R&D 40) Fixed cost	41 Net production cost 42 R O I 43 Transfer price

Table III-2-A4 (2)

H Europe H Europe H I C S Saudi Arabia Argantina Argan	[85.9 \$5.9	; -	14.1		8.01 15.71 85.21	39.0	13.01 13.01	214.3 146.2 420.6
# Europe	ıtina	450000 80 360000 234 117	Unit \$/ 70.1	0.04	>>	9.98	50.3	9009		5%
W Europe	Arger		Pri	52	4. 0	0.08	0.16	31 /(5)*6%		((1)+(8))/(5)*15%
# Europe			cost 42.9	<u> </u>	3. S. S. Z.	8.	5.2 11.0 45.2			279.81 181.2 (C) 461.1
# Europe	Arabia	450000 80 360000 290 145	Un Un	0.02		73.2	32.5	10000		.5%
W Europe N I C S 450000 80 80 80000 80000 80000 80000 810.9/t Price Unit cost 0t'y/t Price Unit cost t/t \$/t \$/t \$/t \$/t \$/t \$/t \$/t \$/t \$/t	Saudi	*	Pri	. 25	4. 6	0.08	0.16	37 7) / (5) *6%	////	((1)+(8))/(5)*15%
W Europe W Europe W Europe W I C S			cost 464.5	, m ;	70.8 9.8] 82.95]	158.61 98.21 68.91	75.2 409.0 138.4		-	315.11 137.4] (- 453.6]
M Europe 45000 80 80 80 80 80 80 80 80 80	ပ	450000 80 360000 220 110	Un 142.5	0.046	8. 10.	299.3 118.8 209 133	144.7	4000		*15%
W Europe 80 80 80 80 80 80 80 80 80 80 80 80 80	1		0t'y/t Pri t/t L/t Naphtha 3.26	3. 3.	o. o	0.53 0.33 0.17	0.52	45 (7) / (5) *6%	(7)/(5)*10% (7)/(5)*2% (7)/(5)*5% (7)/(5)*4%	(7)+(8)/(5)*15%
W Europe W Europe 450000 360000 205 102.5 102.5 102.5 113.6 0.53 0.12 0.53 0.12 134 0.52 145.7 (7)/(5)*10%					<i>0</i> 0	159.7[90.8] 69.4]	75.71 412.01 139.51			307.21 128.11 435.4
nut 0.12 0.13 0.13 0.13 0.13 0.13 0.15 0.15 	Europe	450000 80 360000 205 102.5	143.6	0.047	= .	301.5 119.6 210.5	145.7	20500)*15%
A A 12	3	ca	%	93.5 DS 1	e. 5	0.53	0.52	45 (7) / (5) *6%	(7)/(5)*10% (7)/(5)*2% (7)/(5)*2% (7)/(5)*5% (7)/(5)*4%	((1)+(8))/(2)*15%
1 Nation/Region 2 Plant 3 Capacity 1/4 Load 2/5 Production 1/5 Production 1/6 Capital cost 1/8 1	Nation/Region	Plant Capacity t/y Load % Production t/y Capital cost B/L B/L Offsite M\$	[6]		Fuel MMkcall Others Sub-total Byproduct credits	Propyrene Pyrol gasoline C4 fraction	Fuel gas Others Sub-total	Uperating costs Labour Maintenance		41 Net production cost 42 R O I 43 Transfer price

Table III-2-A5 Cost Comparison of Linear Low Density Polyethylene (LLDPE)

			Unit cost	396.61 40.01 435.68	3.3	82.25 58.32 58.33 58.33	2.2	75.81 15.81 37.51 30.81 219.71 688.51 857.31
tina		33 83	[500 4	0.04		9000	
Argentina	100000 80 80000	ditto	Price \$/t					(1) (5) *18% (1) (5) *2% (1) (5) *2% (1) (5) *4% (1) (5) *4% (1) +(8) (5) *15%
ļ			Qt'y/t t/t	0.94 0.08	500		30 (7)/(5)*62	0/0*18 0/0*2 0/0*3 0/0*3 0/0*4 0/0*4
N			Unit costiQt'y/t Price \$/t t/t \$/	235.0 20.0 255	10.01	3.8 14.8 269.8	3.7	75.0 15.0 15.0 37.5 30.0 491.1 168.7 659.8
Saudi Arabia	100000 80 80000	88		250 250	3.03		10000	*15%
Saud	<u>8</u>	ditto	t Price	0.94 0.08	500 (0.35		30 10	(1) (5) * 10% (1) (5) * 2% (1) (5) * 5% (1) (5) * 4% (1) + (8) / (5) * 15%
			t 8t'y/			- 		- 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6
		•	Unit cost Qt'y/t Price s/t t/t s/:	464.31 31.91 496.28	8. s.	12.31 40.71 537.01	1.51 36.01	22.01 (C. 175.51 (175.
SO	100000 80 80000	48 54 to	ایدا	494	15.5 15.5		4000	# 13%
X		ditto	Unit cost Qt'y/t Price s/t t/t s/:	0.94	500		30 (7) / (5) *6%	(7)/(5)*10% (7)/(5)*2% (7)/(5)*3% (7)/(5)*4% (7)/(8)/(5)*15%
			st[0t',		23.51 4.91 0	_ _ <u>ಫ್</u> ಪ್ ಪ್ _	7.6[36.0[(7)/	+ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
			Init co s/t	468.1 32.1 500.272	83 4	. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.	7	60.0 12.0 12.0 30.0 24.0 181.6 135.0 135.0 855.2
Europe	100008 80 80000	48 24 ditto	ا بر	498	0.047		20500 %	28 * 18% 0 %%%%
3		. ip	y/t Pr t/t	0.94	500		30 (7) / (5) *6%	(7) (5) *10; (7) (5) *2; (7) (5) *2; (7) (5) *4; (7) (5) *4; (7) (8) (5) *15;
<u></u>		- 	Unit cost Qt'y/t Price S/t t/t \$/	397.6 27.3 424.948	15.0 4.6	9.1] 29.7] 454.6]	8.4[36.0[<i>(</i> 7)	60.0 (7) 12.0 (7) 12.0 (7) 30.0 (7) 24.0 (7) 182.4 637.1
	5.25	00 -4	Unit c S/t			2 14		,
S A	100000 80 80000	48 24 itto	rice \$/t	423 341.6	0.032		22500 5%	19% 5% 5% 5% (5) *15%
n		Ą	y/t P t/t	0.94	500		38. 7.(5)*)/(5)*1()/(5)*2;)/(5)*2;)/(5)*4;)/(5)*4;)+(8)/(6)
		ction)	Unit cost Bt'y/t Pr \$/t \ t/t	488.81 33.51 522.41	6.3	15.1] 46.9] 569.3]	6.0 30 36.0 (7) / (5) *67	60.0 (77/5) *103 12.0 (77/5) *23 12.0 (77/5) *23 30.0 (77/5) *53 24.0 (77/5) *43 180.0 (77/5) *43 135.0 (77/6) *43
	08.00	48 24 Jase rea	Unit (•		กับ		
Japan	100000 80 80000	4 2 2 ous pha	rice \$/t	520	0.051		16000	10% 5% 5% 15%
		(Gased	<pre>Qt'y/t Price t/t \$/t</pre>	0.94	500		30 (7) / (5) * 6%	(7) (5) *10% (7) (5) *2% (7) (5) *3% (7) (5) *4% (7) +(8) /(5) *15%
	\$, \$	77 8/L			E			
legion	ty tion	cost in ting		Ethylene Butene-1 total		al cost	ig cost. ance	expension urance tration t t t t t t t t t t uction price
Nation/Region	2 Flant 3 Capacity 4 Load 5 Production	8/L Offsite		14/Raw material 15/ Ethylen 16/ Butene- 17/ Sub-total	Power Steam	22 Others 23 Sub-total 24 Variable cost	251Uperating costs 261 Labour 27 Maintenance	28 Uverhead expenses 29 Depreciation 30 Tax/Insurance 31 Administration 32 Interest 33 Sales,RRD 34 Fixed cost 35 Net production cost 35 R 0 I
1 2				151	1000	<u> </u>	2000 N	230 Dep. 1230 Jep. 1231 Adm. 1231 Adm. 1231 Adm. 1231 Sal. 124 Fixed 1351 Net. 1351 Ne

Unit cost 108.71(7)/(5)*10x 21.71(7)/(5)*2x 21.71(7)/(5)*2x 54.31(7)/(5)*8x 87.01(7)/(5)*8x 368.81 630.41 244.61(7)+(8)/(5)*15x 875.11 Argentina 87 80000 123 \$/1 Unit cost|@t'y/t Price 10.0| 80 (65.2|(7)/(5)±6% 1.01 \$ 252.5 \$\ \$ Saudi Arabia 86.2 (7) / (5) *10% 17.2 (7) / (5) *2% 17.2 (7) / (5) *2% 43.1 (7) / (5) *5% 69.0 (7) / (5) *8% 288.6 | 813.8 | 194.0 (7) + (8) / (5) *15% 1007.9 | 0.02 3 1000001 80 80000 87 43.5 22 (HOPE) Unit costill'y/t Price 4.01 80 11 51.71(7)/(5) **+63** 1.01 1.75 1.25 1.25 Density Polyethylene 498.9 % 20 € 20 € 14.41 26.31 525.21 80.0| (77/55)*10% 16.0| (77/55)*2% 16.0| (77/55)*2% 40.0| (77/55)*5% 54.0| (77/55)*8% 284.5| 812.6| 180.0| (77+(87/55)*15% 992.6| 0.045 34.5 5.5 80000 1000001 \$ NICS \$/t Unit cost|8t'y/t Price 20.5| 80 4 48.0|(7)/(5)*6% 0.25 23.55 1.01 ; ; 13.4 25.11 528.11 502.9 High 3/1 80.0 (77/5)×10% 15.0 (77/5)×2% 16.0 (77/5)×2% 40.0 (77/5)×5% 64.0 (77/5)×8% 286.5 1 735.2 1 180.0 (77+8)/(5)×15% 915.2 2 Cost Comparison of Burope 100000 80 80000 438 0.047 14 88 Unit cost|at'y/t Price 22.51 80 20 48.01(7)/(5) ±6% 1.01 427.2 21.5 80.0 (77/5)*102 16.0 (77/5)*22 15.0 (77/5)*22 40.0 (77/5)*52 64.0 (77/5)*82 280.0 (834.8 (197) (197) 180.0 (77) (197) 0.032 100000 80 80000 38 433 \$/t ¥ S 2 Unit cost[8t'y/t Price 16.0| 80 22 48.0|(7)/(5)*6% Table III-2-A6 175 1.25 1.25 [] ţ, 525.21 16.21 29.61 554.81 ~ ~ 0.051 16000 38 (T)+(8)/(S)*15% [@t'y/t Price [t/t \$/t (7)/(5)*10% (7)/(5)*2% (7)/(5)*2% (7)/(5)*5% (7)/(5)*8% 80 1 (7)/(5)*6% 175 9.25 1.01 New/Exisiting Plant 5,5 经经 26 Maintenance 27 Overhead expenses | 31 | Interest | 32 | Sales, R2D | 33 | Fixed cost | 34 | Net production c | 35 | R O I | 36 | Transfer price 24|Operating costs 25| Labour Administration Tax/Insurance Nation/Region Ethylene Depreciation 23 Variable cost Capital cost 4 Raw material Production Sub-total Offsite Capaci ty Utilities Others POWER Steam Load Plant. Fue

425.2]

21.71 21.71 21.71 24.31 87.91 87.91 811.91 244.61

5.31 65.21

III-155

Table III-2-A7 Cost Comparison of Polyvinyl Chloride (PVC)

ſ				-,	· · · -	#3	636.9	6.31	با زما	530.4	က က လူ	ក្នេក	פיי	·- 👄	<u>.</u>	oj on i	ត់
						Unit cost \$/t	88	9 II	S 5	3 E		22.5	3 23	₩ £	8	219.3	737
	tina	100000	000	8 33	3		88	0-34 13-			2300					15%	1
	Argentina	100	8		725 .	Price \$/t		5				716	25			(7)+(8)/(5)*15%	
			:			'y/t t/t	17.01				40 (7) / (5) =5%	(7)/(5)*10%	(1)/(5)=2%	00 22		(S) + (S)	
-			·			st Ot		6.6	- ∞ c	-10	5.01 58.51 (7	<u> </u>	19.5	<u> </u>	-		∞
	es.					Unit cost Ut'y/t Price s/t t/t s/	297.9	က်က	4,0	308.7	ည်း	55.01	1 2	78.7	326.7	219.5	\$
	Saudi Arabia	00000	000	29	क्ष -		532	0.02 3			13080					2%	
	Saudi	100000	8		z	Price \$/t				,	13	10%	3 85	់ ភ្នំ ស្ពឺ		(7)+(8)/(8)*15%	
	-/					'y/t t/t	1.01	150			40 (7)/(5)*6%	6	96	(3)/(5)*5% (3)/(6)*8%		. ⊗	
						18.		<u></u>	_ ∞ 2	<u> 7</u> 5		-55 55-	36 37	66 ==	<u></u>		-
	•					Unit cost @t'y/t \$/t t/t	584.7	6.9 15.5	E	40.73 624.9]	2.0	75. ñ	इं ह्व	88.0 91.0	253.61	878.5	1050.
	S	980000	96	19 8	0		579	0.046 15.5			4000					. S.	.
	 □	100000	8	č		rice \$/t		0.0				707	3 85	\$ 55		(5)	
					æ.	, y/t P t/t	1.01	150			40 /(5) *6%	<u>&</u>	9	(1)/(5)*5%		/(®)+	
-						tiat,				= ;;;	3=-	- 5 5	36	<u>8</u> 9	3	872.9 160.3 (7)+(8)/(5)*15%	~
			٠.			Unit cost Qt'y/t Price s/t t/t s/	589.81	7.0	3 55	57.5	10.21		1	8 2 2 2 3	245.3	872.91 160.31	1033.
	96	들品	8	57.	28.5		584	47 14			. 00:					. %	
	Europe	1000001	8	ç		Price \$/t	വ	0.047			20500		583	% %	٠	(7)+(8)/(5)*15%	
	35			•	ເນ	'y/t P t/t	1.01	150	*.:	:	40 (7) / (5) +6%		* 96	(1)/(5)*5% (1)/(5)*8%		/(8) /	
-					·	181.		- 28 2	. 	लं क	3,,	- 66 - 67	38	<u>8</u> 6	<u>~</u>	<u>3</u>	
						Unit cost 8t'y/t \$/t t/t	500.9	4,81	9	535.51	11.2	77	1 2	35.61 57.0	246.3	781.91 160.31	942
		28	8	57	o.	, ,	496	2 23			.00					è e	
	SA	100000 80	800	` 6		rice \$/t	4	0.032 13.2			22500	: 20 20 20	4 34	* *		(5)*15%	
	⇒				(II)	'y/t Pr t/t	1.01	150			84. 9*	(S)	(%) (%)	, (5) *\$% (5) *\$%	٠	(7)+(8)/(5)	
		· 	 -			101; 101;		·			8.0 40 42.7 (7)/(5)*6%	71.2 (7)/(5)*103 11.2 (7)/(5)*103	14.2 (7)/(5)*2%	èè	· ·	<u>. Ė</u>	
						<pre>8t'y/t Price Unit cost @t'y/t Price t/t \$/t \$/t \$/</pre>	616.1	7.6	<u>හ</u> ද	45. U	8.0	12.2 2.2	14.2	35.61 57.61	243.1	904.21	004.5
		a a	9	<u> -</u> 1	n	Unit c \$/t	-	. ,	•							.:	~
	Japan	100000 80	80000	52		ice \$/t	510	0.051	.*		40 15000 5)*6%	8 .	የ እ፡፡	50 S0		(7)+(8)/(5)*15%	
	5				뗘	/t Pr		150		٠	40 (7) / (5) *6%	(1) / (5) *10%	(1) (5) *5%	(1)/(2)*5% (1)/(3)*5% (1)/(3)*5%		3)/@	
		· ·				8t'y/t t/t		٠.	÷		<u> </u>	è	ŝŝ	èè		9	
		2, 16 ≥,	ζ,	£ 5	Plant	. 5	-	K⊌n t	Mikca1		<u>—</u>	S88 —			-	cost	-7
	gion		u to	3	ting]		lel			100 t	56 t	tion:	dax/insurance Administration			tion	rice
	n/Re	t scity	Production	.	Xisi		lateri VCM	i ties er	irs .	tota	Operating con Labour Maintenance	Werhead expen Depreciation	lax/insurance Administration	Interest Sales, R&D	cos	roduc	fer s
	Nation/Region	2 Flant 3 Capacity 4 Load	5] Production 5[Capital cost	15 Z Z	8) Unisite 9)New/Exisiting 0)		Кам п		Fuel Others	22 Sub-total 23 Variable cost	24 Operating costs 25 Labour 26 Maintenance	27 Overhead expenses 28 Depreciation	Admi	Inte	33 Fixed cost	34 Net production cost	36 Transfer price
	= 3	ন্দ্ৰ 	ري در	5 - - 6	2 6 2	3225			828	<u> </u>	<u>888</u>	<u>8</u> 87	38	88	ਲ	ងន	<u> </u>

Table III-2-A8 Cost Comparison of Stylene (SM)

			Unit cost	270.8 120.2 391.0	11.6	7.41	23.6	26.27.7.23.2 27.57.8.32.2	524.41 88.51 613.01
Argentina	200000 80 150000	31.5		345	0.04 11 2	311	6000	\$\$ \$4 \$4 \$4 \$4	5)*15%
4		*	lt'y/t Pr t/t	0.785	11 15 17 18	0.024	20 T)/(5)*6%	0/0*182 0/0*22 0/0*22 0/0%52 0/0%52	7)+(8)/(5)*15%
			Unit cost 81'y/t Price \$/t t/t \$/1	157.0 71.2 228.2	0.8 3.0 11.4 11.4	4.3	1.2 23.6 (39-31 7-81 19-61 15-71 15-4	
Saudi Arabia	200000 80 160000	31.5	Price Uni \$/t \$	200 250	0.02	180	10000	3¢)*15%
Š		52.	1t'y/t Pri t/t	0.785	1.55.1	0.024	20 1	(7)/(5)*10% (7)/(5)*2% (7)/(5)*5% (7)/(5)*4%	(7) + (8) / (5) *15%
	:		Unit cost Qt'y/t \$/t t/t	268.4 140.7 409.2	25.52 25.53 25.53 25.53 25.53	7.4	18.1](80.00 15.00 12.00 11.21 12.00 13.00 14.00 15.00	
I C S	200000 80 160000	48.5	Price Un \$/t	342	0.046 15.5 18.9	308	4000	54 54 54 54 54	5)*15%
*	· ·	×		0.785	40	0.024	20 (7) / (5)*6%	(7)/(5)*10% (7)/(5)*2% (7)/(5)*2% (7)/(5)*5% (7)/(5)*4%	(7) + (8) / (5) *15%
			Unit cost Ut'y/t \$/t t/t	270.8 141.9 412.7	1.81 14.01 20.01 52.91	7.4	2.5	25.71 14.53.71 15.51 10.51 10.51 10.51	544.11
Europe	280000 80 160000	23 46	ر ب	345 498	0.047 14 11	311	20500	ુ કૂર કૂર કર જ	5)*15%
3:		W	Gt'y/t Pr t/t	0.785	1.55	0.024	20 2 (T)/(5)*6%	(7)/(5) ±10% (7)/(5) ±2% (7)/(5) ±2% (7)/(5) ±5% (7)/(5) ±4%	(7) + (8) / (5) *15%
			Unit cost Gt'y/t Price \$/t t/t \$/	270.8 120.5 391.3	13.53 15.53	7.4	2.8	28.27.27.27.27.27.27.27.27.27.27.27.27.27.	
SA	200000 80 160000	46	ice \$/t	345 423	0,032 13.2 9	311	22500 %	્રેક કેઠ કેઠ કર કુઠ	5) *15%
a		យ	01'y/t Prj 1/t	0.785	55.1	0.024	2.0 20 17.2 (7) / (5) *6%	(1) / (5) *10) (7) / (5) *2; (7) / (5) *2; (7) / (5) *5; (7) / (5) *4;	(7) + (8) / (5)
	·····		Unit cost Qt'y/t \$/t t/t	282.61 148.2 430.8	2.0 17.3 23.8 61.7	7.8	2.0	28.27.17.17.17.17.17.17.17.17.17.17.17.17.17	
Japan	200000 80 160000	23 46		360	0,051 18:1 11:5	325	16000	ુ કેર કેર કર કર	5) *15%
, i		ω	0t'y/t Price t/t \$/	0.785 0.285	40	0.024	20 (7) / (5) *6%	(7)/(5)*10% (7)/(5)*2% (7)/(5)*2% (7)/(5)*5% (7)/(5)*4%	(7)+(8)/(5)*15%
6	£ % Ç	AS AS Plant		υ	Kwh t MMkcal	edit t	ξξ ξξ		
Nation/Region	Plant Capacity Load Production	7 8/L 8 Offsite 9 New/Existing		4 Raw material 5 Benzene 6 Ethylene 7 Sub-total	Power Power Steam Fuel Others	24 Byproduct credit 25 Toluene 26 Variable cost	26 Uperating costs 28 Labour 29 Maintenance	30 Uverhead expenses 31 Depreciation 32) Tax/Insurance 33 Administration 35 Sales, R&D 35 Sales, R&D 35 Sales, R&D	37]Net production cost 38]R 0 I
1 Wati	2 Plant 3 Capac 4 Load 5 Produc	7 8/L 7 8/L 8 Offs: 9 Nem/Ex	121	14 Raw 15 15 15 17 18 17 17 18 17 18 18	10 U1111 UES 119 Power 20 Steam 21 Fue! 22 Others 23 Sub-tota	24 Bypr 25 Tol 26 Varia	28 Labour 28 Labour 29 Mainte	30 Depreciat 31 Depreciat 32 Tax/Insur 33 Administr 34 Interest 35 Sales, R&D 36 Fixed cost	37 Net 38 R 0 39 Tran

Table III-2-A9 Cost Comparison of Polypropylene (PP)

[જ	cost	126.2	9 63	26.8 36.11 162.31	37.1	0 m m	80 m m	351.51 127.91 479.51
		proces	Unit cost \$/t	21		<i>.</i> 22 22 22 22 22 22 22 22 22 22 22 22 22		tr) रून रून	27 .a. ₩	827
Argentina	100000 80 80000	45.5 22.75 N (Improved process)		133	2 11		9000			*15%
Arge	H	(Impr	Pric	펄	150 0.3		23 (5)*63	0.0±10; 0.0±10; 0.0±10;	84 00 00	(5)/(2)
		- FEE	1t' y/ t/t	1.01	共급		2/6	666	96	(7) + (8) / (5) = 15%
		(§3	Unit cost Bt'y/t Price \$/t t/t \$/t	252.51	3.0	11.21 15.11 267.61	2.5	33.33. 33.33.33.	4.68	457.7 127.9 585.7
abia		45.5 22.75 (Improved process)				60				11 4 4
Saudi Arabia	100000 80 800008	45.5 22.75 roved),ce \$/t	250	0.02		18600	M >4 >4	X9	(7)+(8)/(5)*15%
Sar		(Imp)	A Pr	1.01	150		20 (T)/(5)*6%	(1)/(5)*16% (1)/(5)*2% (1)/(5)*2%	ରୁଷ୍ଟ	3)/(8)
			Qt'y/1 t/t	21.1			_	<u> </u>	<u>ê</u> ê_	Ė
		ess)	Unit cost Qt'y/t Price \$/t t/t \$/t	302.2	6.9	32.9 44.4 346.7	1.01	0,000 1,000	21.8 35.0 85.0	492.11 98.41 590.51
		35 17.5 (Improved process)	Unit s/t		യുശ					
ICS	100090 80 80000	35 17.5 proved	rice \$/t	299.3	0.046		4000	3 3 3 3	25.55	(7)+(8)/(5)*15%
2		N (Im	t y/t Pi t/t	1.01	150	-	20 (7) / (5) *6%	(1)/(5)*10; (1)/(5)*2; (1)/(5)*2;	99	(8)
			tiot:			-855-	- - 2 -	- <u>==</u> =	ÉÉ.	
	•	cess)	Unit cost Bt'y/t Price \$/t t/t \$/1	304.5	7.0	32.3] 43.5] 348.0]	5.11	8.77	23.83	497.51 88.41 596.01
edo	00008 80 800001	35 17.5 (Improved process)		301.5	0.047		200		ar y .	2%
W Europe	1001	I. mprove	Price \$/t				20500	(5) *10% (5) *2% (5) *2%	స్టోస్ట్	(7)+(8)/(5)*15%
		D ×	'y/t t/t	1.01	150		20 2)/(5)*6%	969 333	99	(8)
ļ			st 0.		2. S.	31.91 40.61 345.11	5.6 25.2 (7	43.7 CT 8.7 CT 8.7 CT		
		35 17.5 oved process)	Unit cost Qt'y/t Price \$/t t/t \$/t	304.5	400	345 345	133° CZ	လို ထ ထ	엄왕	88 88
l l	00000	35 17.5 wed p:	ce Ur \$/t	301.5	0.032		22500	1		*15%
S D	. 61 8	N (Impro	Pric.				0 2;)*6%	/(5)*10% /(5)*2% /(5)*2%	25. 25. 20. 20. 20.	
		. 2	t'y/t v/t	1.01	150		2 7)/G	3.7 (7)/(5)*10 8.7 (7)/(5)*2% 8.7 (7)/(5)*2%		(7)+(8)/(5
		(sg	<pre>8t'y/t Price Unit cost 0t'y/t Pri t/t s/t s/t t/t</pre>	318.1	5.4	35.2 48.2 386.4	4.0 20 26.2 (7)/(5)*6%	43.7 (7)/(5)*10 8.7 (7)/(5)*2% 8.7 (7)/(5)*2%		
	•	35 17.5 N (Improved process)	Unit c		٠.			• •	7	
ue ue	100000 80 80000	35 17.5 oved	1/s	315	0.051		16000	3 e		*15k
Japan	 1 .	(Impr	't Pri	13.1	150	+ .	20 (7)/(5)*6%	(7)/(5)*10% (7)/(5)*2% (7)/(5)*2%	(5) *5% (6) *8%	(7) + (8) / (5) *15%
			0t'y/1 t/t				3/6	666	36	ě
	3,43	71 B/L RS C RS RS OF SILE RS RS OF SILE RS Plant			Kwh	nnkca [··	88		cost
gion		ost ting:		aterial Propylene		l cost	1 800 BC	Overhead expens Depreciation Tax/Insurance Administration	6 +	ction
on/Re	Capacity Load Production	Udplidi B/L Offsite New/Exisitin		mater Prop	ities er am	ruel Others Sub-total Variable co	Uperating cos Labour Maintenance	Verhead expend Depreciation Tax/Insurance Administration	Interest Sales, R&D Fixed cost	produ I ster ;
Nation/Region	2 Capaci 3 Capaci 4 Load 5 Produc	71 B/L 71 B/L 31 Offs 91 New/E		14 Raw material 15 Propyle 15		20] ruel 21] Others 22] Sub-total 23]Variable cost	25 Labour 25 Maintenance	21) Overhead expenses 28] Depreciation 29] Tax/Insurance 30] Administration	31) Interest 32] Sales, R&D 33 Fixed cost	34 Net production cost 351R 0 1 36 Transfer price
L			3125	151		3222	4888	2888	322	888

Table III-2-A10 Cost Comparison of Acrylonitrile (AN)

			Unit cost \$/t	140.0] 170.11 310.11	8.0	50.5	0.2	07.5	22.51 22.51 22.51 56.21	253.1 940.5
Argentina	109060 80 80000	8 24		378	0.04		14.4	9000	3-8)*15%
Hr.		2	t'y/t Pr t/t	0.45	200	٠	0.05	20 (7) / (5) *62	(1)/(0)*2; (1)/(0)*2; (1)/(0)*2; (1)/(0)*3;	(7)+(8)/(5)*15%
			Unit cost &t'y/t Price \$/t t/t \$/t	288.0 38.55 38.55	4.0	21.2	0.21	2.51	22.51 22.51 56.21 56.21 66.21	328.71 718.41 253.11 C 971.61
Saudī Arabia	100000 80 80000	45		190	0.02		14.4 9.6	10000	}	5) *15%
33		z	tt'y/t Pr t/t	1.12	200		0.05 0.025	20 (7)/(5)*6%	(7)/(5)*10% (7)/(5)*2% (7)/(5)*2% (7)/(5)*5%	(1)
	-	·	Unit cost Qt'y/t Price \$/t t/t \$/	335.21 168.71 503.91	9.2	51.0	3.9 5.2 5.2 9.9	1.01	87.51 17.51 43.71 63.71	254.71 813.61 196.81 1010.51
108		35	Price Un \$/t	299.3	0,046		52.3 3.3	4000	3-8 CD 3-8 3-8 3-8 3-8	5) *15%
×		z		1.12	500		0.05	20 (7) / (5) *6%	9 9 9 9 9 9 9 9 9	(7)+(8)/(5)*15%
			Unit cost Qt'y/t \$/t t/t	337.6 170.1 507.7	9.4	59.9	3.9 1.3 5.2 5.2	5.11	16.51 16.51 16.51	244.31 806.11 185.61 991.81
Europe	100008 80 80000	88	1 1	301.5	0.047		79.2	20500	26 26 26 C	7 5)*15%
33		ம	1t' y/t Pr t/t	1.12	200		0.05	20 2 (7) / (7) *6%	(7)/(5)*10% (7)/(5)*2% (7)/(5)*2% (7)/(5)*2% (7)/(5)*5%	(1)/ (3) *4% (7)+ (8) / (5) *15%
-	· 		Unit cost 0t'y/t Price s/t t/t s/t	337.5	6.4	48.8	3.2 1.0 4.3 533.0	5.6	82.51 16.51 41.21	244.81 777.81 185.61 963.51
8.8	100000 80 80000	33 88	s/t s/t	301.5	0.032		64.8	22500	SC 56 56 56 9	3) *15%
===		μ	1t'y/t Pr t/t	1.12	200		0.05	20 (7) / (5) *6%	(7) / (5) *10% (7) / (5) *2% (7) / (5) *2% (7) / (5) *5%	(7) + (8) / (5)
	- 41 -4 <u>- 41-4</u>		Unit cost 0t'y/t Pri \$/t t/t	352.81 177.71 530.51	10.2	53.4	588.53 58.53	43.5		243.21 831.81 185.61 1017.51
Japan	160000 80 80000	33 88	L L	315 395	0.051		82.8 55.2.8	16000		5)*[5%
J		ш	Qt'y/t Price t/t \$/	1.12	200		0.05	20 (7) / (5) * 6%	(7)/(5)*10% (7)/(5)*2% (7)/(5)*2% (7)/(5)*5%	(1)/(5)*4% (T)+(8)/(5)*15%
	2,2	As As As Plant		e	Kwb t	Mrkca1	eult e said	sts		cost
 Nation/Region	Plant Capacity Load Production	6 Capital cost 7 8/L 8 Offsite 9 New/Exisiting		14 Raw material [5] Propylene [6] Ammonia [7] Sub-total	18 Utilities 19 Power 20 Steam	Fuel Others Sub-total	24 layproduct greate 25 Acetonitrile 26 Hydrocyanic acid 27 Sub-total 28 Wariable cost	29 Operating costs 30 Labour 31 Maintenance	32] Overhead expenses 33] Depreciation 34] Tax/Insurance 35] Administration 36] Interest	34 Sales, K&U 38 Fixed cost 39 Wet production cost 40 R 0 I 41 Transfer price
11 Nat	2 Plant 3 Capac 4 Load 5 Produ	6 Capi		114 Raw 1151 1161 1171 Su	139 Por 120 St. 120 St	22 Fu	25 Ac 25 Ac 27 Sur 28 Var	33 CP 33 CP 33 CP 33 CP 34 CP	32 0ve 33 De 35 Ad 35 Ad	38 Sale 38 Fixed 39 Net p 40 R O I 41 Trans

Table III-2-A11 Cost Comparison of Ethylhexanol

			Unit cost	117.2	6.4 222.8 18.00 1	16.01	44.0	25.21 20.21 20.21	24.5	140.01 28.01	E 85	215.81 215.81 1828.31	
Argentina	50000 80 40000	88 83	اند	83 8	<u> </u>	0.04		79 5	9009)*[5%	
Arg		×	Unit cost 41' y/t Price \$/t t/t \$/	ດ. <u>938</u> ກິ ຄົງ	0.04 0.04	400		0.118	30 (T)/(S)*6%	(7) (5) *10% (7) (5) *2% (7) (5) *2%	(0) (0) (0) (0)	(7)+(8)/(5)*15%	
			cost Qt'	234.51 0		8.01 21.0]	12.71	54.51 0 2.51 57.01		28.91 28.91 29.91 29.91 29.91 39.91 39.91 39.91	999 889	413.51 739.21 315.81(7) 1054.21	; -
Saudi Arabia	888	28.		250 22				462 5	,				í
Saudi	50000 80 40000	*	Price \$/t			0.02			0 10000 >*6%	*10% *2%	*5%	(7)+(8)/(5)*15%	
	, 			0.938	4.	400	·	0.118	38 (7) / (5) #6%	(0/(0*10%)	3/6		
		. : .	Unit cost dt'y/t Price \$/t t/t \$/	280.7	12.4	18.4	45.7	25.55 13.55 13.51	3.0	21.51	£3.23	244.71 241.81 1105.71	
S S	50000 80 40000	43		299,3	312	0.046		750	4000	88		0*15%	
==		×	'y/t Pr t/t	1.938	0.04	400		0.118 1.25	30 (7) / (5) *6%	(5) (5) (5) (5) (5) (5) (5) (5) (5) (5)	(6) (6) (7) (6) (7)	(7)+(8)/(5)*15%	
			cost Bt		12.51 482.61	18.8 98.0	55.3	89.21 13.71 102.9		102.5F(7)/(5)*10% 20.5I(7)/(5)*2% 20.5I(7)/(5)*2%	41.9	312.61 864.41 230.61 (7	
82.	50000 80 40000	41.5		301.5		8.047 14		756 11	20500		· · · · · · · · · · · · · · · · · · ·		1
M Europe	501	ন জ	t Price. \$/t			400 0.0			30 20! (5) *6%	7)/(5)*10% 7)/(5)*2%	# # 200	(7) + (8) / (5) *15%	
- -			t 8t'y/ t/t	81 0.938			<u> </u>	0.118	Š	300 300 300	(S)		-
			Unit cost @t'y/t \$/t t/t	282.	10.2	12.8	37.9	89.2] 11.2[100.4]	16.8	20.5	12 E	314.11 808.51 230.51 1039.11	
SA	50000 80 40000	20.5	ce \$/t	301.5	21 21 21	0.032		756	22500	∰ 96 9 96	6 24 26.	5)*15%	
S A		ய	t'y/t Pr t/t	0.938	0.04	400		0.118 1.25	12.0 30 61.5 (7)/(5)*6%	102.5 (7)/(5)*103 20.5 (7)/(5)*2%	0/0 10/0 44 10/0 44 10/0	(7) + (8) / (5)	
			Unit cost 8t'y/t Pri \$/t t/t	295. & 105. 3	13.2	20.4	56.9] 204.0[93.21 14.31 107.51	12.0 12.0 61.5 G	20.51 C	4.00	389.21 909.61 230.61 (1	77.05
	50000 80 40000	41	ند	315		0.051		790 11.5					
Japan	50	в 2	01'y/t Price t/t \$/t			400 0. 7 1			30 15000 (7) / (5) *6%	(1)/(5)*10% (1)/(5)*2% (1)/(5)*2%	(5) *4%	(7) + (8) / (5) *15%	
	· · · · · · · · ·	- — — — — — — — — — — — — — — — — — — —	01'y/t 1/t	0.938				0.118) 	222 200	300		
ion	t 36 t/ 35	NS NS Ing Plant		ene Jene	gene	Kwb	MIkca I	oredit 1 MMkcal	Sosts See See	rpenses Ion Ince		39 Fixed cost 40 Net production cost 41 R D I	,
Nation/Region	Load Load Production	7) B/L 8 Offsite 9 New/Exisiting		14 Raw material 15 Propylene	Hydrogene Sub-total	Utilities Power Steam	ruel Others Sub-total	25 Byproduct credit 26 Isobutanol 27 Fuel gas MMk 28 Sub-total	30 Operating costs 31 Labour 32 Maintenance	33]Overhead expenses 34] Depreciation 35] Tax/Insurance	Interest Sales, R&D	39 Fixed_cost 40 Net_production 41 R:0 I	10.70
1 Mation	S Capacian C	8 0ffs	3225	114 Raw	112 118 118 118 118		22 Fu	25 3yp 26 1se 27 Fu 28 Su	30 Operatin 31 Labour 32 Mainten	33 Qua 34 Qua 35 Ta		39 Fixed 40 40 10 10 10 10 10 10	

82.51 16.51 16.51 66.01 66.01 849.01 185.61 Unit cost 533.7 9.91 15.61 58.31 5.4 Argentina 82.5| (7) (5) *10% 16.5| (7) (6) *2% 41.2| (7) (5) *5% 86.0| (7) (6) *8% 284.7| 663.5| 185.6| (7) + (8) /(5) *15% 849.1| 55.5 15.5 50030 80 40000 38 0.04 Unit cost|@t'y/t Price 50 (7) (5) *6% 98.0 認 <u>†</u> 6.01 9.33 378.71 12.51 49.51 359,4 2.7 5/4 Saudi Arabia 63.7(7)/(5)*10% 12.7(7)/(5)*2% 12.7(7)/(5)*2% 31.8(7)/(5)*5% 51.0(7)/(5)*8% 215.3 787.6 143.4(7)+(8)/(5)*15% 931.0 50000 80 40000 18.5 16.5 0.02 377 3/4 Unit cost|Qt'y/t Price 5.01 50 38.21 (7) / (5) ***6**% 0.38 135 548.8 8.2 23.41 572.21 7/s 61.2 (77) (53 × 10% 12.2 (77) (53 × 2% 12.2 (77) (53 × 2% 30.6 (77) (53 × 6% 49.0 (77) (53 × 8% 227.7 1 869.0 1 137.8 (77) + (87) (5) × 15% 946.9 1 25.5 12.75 40000 10.9 50000 0.046 NICS 560 Unit cost|At'y/t Price \$/t | t/t \$/t 25.6| 50 36.7|(7)/(5)*6% 0.98 133 553.7 3.31 18.01 27.61 581.31 61.2|(7)/(5)*10% 12.2|(7)/(5)*2% 12.2|(7)/(5)*2% 30.6|(7)/(5)*5% 49.0|(7)/(5)*8% 230.2| 808.2| 137.8|(7)+(8)/(5)*15% 946.0| 24.5 12.25 Europe 50000 80 40000 0.047 585 . \$/t Unit cost|Qt'y/t Price 50 2 (T) / (S) *6% 0.98 133 0.3 ţ; 38.1 553.71 24.3| 578.0| \$/t 61.2|(7)/(5)*10x 12.2|(7)/(5)*2x 12.2|(7)/(5)*2x 30.6|(7)/(5)*5x 49.0|(7)/(5)*8x 222.1| 830.4| 137.8|(7)+(8)/(5)*15x 968.2| 24.5 12.25 50000 80 40000 0.032565 USA Unit cost|At'y/t Price s/t t/t s/t 20.01 50 2 36.71(7)/(5)*6% 8 135 ი მ 30.11 508.31 578.2 œ ∞ 24.5 12.25 11.5 50000 80 16000 G. 651 (7)+(8)/(5)*15% 29 \$/t |Qt'y/t.Price | t/t \$/t Japan (7) (5) *10% (7) (5) *2% (7) (5) *5% (7) (5) *5% (7) (5) *8% % (G) / (L) 98 135 S [26] Maintenance [27] Overhead expenses [28] Depreciation [29] Tax/Insurance [30] Administration [31] Interest [32] Sales, R&D [33] Fixed cost [34] Net production cost [35] R 0 I [36] Transfer price [77] ţ 22 23 24 Operating costs 9|New/Exisiting |Nation/Region Variable cost 6|Capital cost 4 Raw material Production Capaci ty Sub-total 7|Utilities Offsite Others Labour 3 Steam Plant Load Power Fuel

(PS)

Cost Comparison of Polystyrene

Table III-2-A12

Table III-2-A13 Cost Comparison of Caprolactam

e			Unit cost \$/t	539.8	123.7	14.4	1050.1	19.4	148.5	. E	9 0 1	1654.91		24.5	207.5	14 £	103.7	83.0	609.2	466.8	2130.7
Argentina	50000 80 40000	41.5	دد	548	378 92 85	EE 88		0.04	Ħς			ន	6000	13	707	£ 2	26.7	25		(S) * 15%	
₹		×	t'y/t Pı t/t	1.06	1.365	0.03		485	13. S	}		1.8	S)/(2) *	(7)/(5)*10%	* (G) (C) (C)	7/60*	7/(5)*4		(7) + (8) / (5) × 15%	
			Unit cost Q1'y/t Price \$/t t/t \$/	580.8	152.91 123.71	14.4	83.9	9.7	20 C) i	ان ان	183.8 786.7	12.5		207.51(2.12	103.7) (83.010	614.2	466.81	1851.81
Saudi Arabia	50000 80 40000 83.	3 th	4.5	248	තු ස	160 220 160	Ì	0.02	m e	· · ·		ත්	10000		3-E		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			×15%	
)neg		×	y/t Pric	1.06	385 1.38	0.03	;	485	13.5			₩ 00		% (c) / (l)	(5)*10	22*(G)/(C)	(2) (2)	/(5)*4%		(7)+(8)/(5)*15%	
		-	Unit cost At'y/t Price \$/t t/t \$/			8.65 19.65 19.65		22.3	209.21 2.01	<u>.</u>	20-03 	162.01 1099.61	20-2		69.010	S = 3 8	(C) 18	64.01(7)	469.0		128.6
8 D	50000 80 40000	33				312 266	•		15.5			8	4000	ŽÍ.					7 1		27
Z.	ry 4	, x	Unit cost Qt'y/t Price s/t t/t s/	90.1	7.885 1.36	0.09		. ⇒	13.5			∞.	ੈ. ਲ	/(2) /	(7)/(5)*10%	(5)*27	/(5) 45%	1(5)*4%		(7)+(8)/(5)*15%	
	·		cost Qt'		7.7	8 8 8		22.71	189.0] 2.0]	— <u>-</u>	413.0	163.81 186.61	25.6		150.01(7)	36.5	75.0 (3)		480.51	· ~, : .	884.71
Europe	50000 80 40000	308				315		1.047	75 :-	!		. F	20500						* ** * * * * * * * * *	-	
ਜ਼ੌ 3±	0, 4	£	Ę.	1,06	1.36	0.09		485	13.5			∞ -		79*(S)/(E)	(7)/(5)*10%	(5) #2%	\(\frac{1}{2}\)	/(5)*4%		(7)+(8)/(5)*15%	
	• 		Unit cost Qt'y/t \$/t t/t		7	8 8 8 8		15.5	178.2		180.4	163.81 017.01	28.1		150.01(7)	3 5	75.0.0	60.01(7)	463.1	337.51	817.6
4	50000 80 40000 50	308	ce Unit \$/t \$/t	522	ន្ត្រឥ	88 88 83		. 032	13.2	 •		15	22500							*15%	÷
S n	ω 4	ξū	'y/t Pric t/t s	1.06	. 36 1. 36	0.09.			13.5			89.	50 2	(S) *6% /	/(5)*10%	(7) (5) *2%	(5) #2%	/(5)*4%		(1)+(8)/(2)	
	. 		cost 0 t	577.7		4	1082.5		244.3		6(1.2)	171.0 1182.8	20.01 50	80.0E		88		. –	455.0		1975.3
	50000 80 40000	38	اندا						18.1		7		16000		, →	11			<u> </u>	•	57
Japan	50	(x2)	<pre>@t'y/t Price t/t \$/t</pre>						13.5			₩.	50 16	, (2) * 6%	(1)/(5)*10%		(1) (1) (1) (1) (2) (1)	(5) *(%		(7)+(8)/(5)*15%	
		ت ب	10t'y/ 1/t		~; 		· - 					' 		È_		96	<u>`</u>	2		_, ,	
gion	t/y % on t/y ost.	Ms ting Plant		ia] ane	ic acid	socia		Kwh	t MMkca I		credit	sulfate	costs	ice Synances	tion	rance	101303	· · · · · · · · · · · · · · · · · · ·		201011	rice
1 Nation/Region	Capacity Load Production Capital cost	8 Offsite Ms 9 New/Existing Plant		4 Raw material	Ammonia F. Sulfulic acid	Hydrogene Caustic soda	Sub-tota]	Utilities Power	Steam	Others	20 Sub-folal 27 Byproduct credit	28 Ammonia sulfate 29 Variable cost	30 Operating costs 31 Labour	32) Maintenance 33]Overhead expenses	Depreciation	35 Tax/Insurance	Interest	Sales, RED	39 Fixed cost	41/R.O.I	42 Transfer price
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 4 2 0 E	- S S S			(16 A 171 F	1181 1191 C		121 122 124 125 126 127	22 S		22 3	1281 1291%	8 : :	32 3	34	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	375	88	39 71	40 Net p	42 1:

257.71 190.71 267.21 215.71 7.5 182.51 36.51 36.51 145.01 1513.31 1513.31 27.8 87.8 903.5 109.5 Unit cost 1/4 182.5[(7)/(5)*10% 36.5[(7)/(5)*2% 36.5[(7)/(5)*2% 91.2[(7)/(5)*5% 146.0[(7)/(5)*3% 614.7[1339.0] 410.6[(7)+(8)/(5)*15% 1749.6] Argentina 73 36.5 80 40000 588 58 0.04 11 \$/ Unit cost| @t'y/t Price (3)/(2)***6%** 0.256 0.319 0.473 S <u>t/t</u> 357.71 158.81 178.31 894.91 8.0] 12.51 109.51 28.3 724.2 3/1 Saudi Arabia 140.0 | (7) / (5) *10% 28.0 | (7) / (5) *2% 28.0 | (7) / (5) *2% 70.0 | (7) / (5) *8% 467.0 | 1336.4 | 315.0 | (7) + (8) / (5) *15% 1651.4 | 73 36.5 .80 40000 0.02 5/1 Unit cost | Qt'y/t Price 5.0| 50 II 84.0| (7)7(5)*62 0.265 0.319 0.473 328.51 157.51 264.81 750.91 38.11 118.5 869.4 없었 131.2|(7)/(5)*10% 26.2|(7)/(5)*2% 26.2|(7)/(5)*2% 65.6|(7)/(5)*5% 105.0|(7)/(5)*8% 458.7| 1325.5| 295.3|(7)+(8)/(5)*15% 1620.8| 50000 80 40000 ន្តន 15.5 4000 SICS 532 594 560 560 \$/1 Unit cost| Bt'y/t Price 25.61 50 78.71 (7) /(5) *6% 0.266 0.319 0.473 331.11 158.81 267.21 757.21 56.8 56.0 34.71 109.51 866.71 ‡/‡ 131.2| (7) / (5) *10%-26.2| (7) / (5) *2% 26.2| (7) / (5) *2% 65.6| (7) / (5) *5% 105.0| (7) / (5) *8% 461.2| 1317.1| 295.3| (7) + (8) / (5) *15% 1612.4| 52.5 26.25 50000 80.40004 W Europe 1245 498 565 0.047 \$/4 Unit cost at'y/t Price 28.1] 50 2(78.7] (7) / (5) *6% 0.266 0.319 0.473 400 نب چ 331.11 158.81 267.21 757.21 12.8 52.8 88.83 85.89 131.2 (7) / (5) ×10% 26.2 (7) / (5) ×2% 26.2 (7) / (5) ×2% 65.6 (7) / (5) ×5% 105.0 (7) / (5) ×8% 453.1 | 1377.7 | 295.3 (7) + (8) / (5) ×15% 1673.0 | 52.5 26.25 50000 80 40000 1245 438 565 565 0.032 13.2A S \$\\\ Unit cost|Qt'y/t Price 20.0| 50 2; 78.7|(7)/(5)*6% 0.266 0.319 0.473 345.81 165.81 279.01 790.71 20.4 41.1 133.9 924.6 \$/¢ 52.5 26.25 16000 50008 80 40000 58 58 58 58 58 0.051 (7) + (8) / (5) * 15% |At'y/t Price| | t/t \$/t \$\ \ Japan (1)/(5)*10% (1)/(5)*2% (1)/(5)*2% (1)/(5)*3% (1)/(5)*3% %9×(S)/(L) 0.266 0.319 0.473 36|Net production cost |28| Main tenance |29|Overhead expenses |30| Depreciation AN Butadiene SM 26|Operating costs Administration 8) Offsite 9|New/Exisiting F Tax/insurance 38|Transfer price 25|Variable cost Nation/Region 6|Capital cost 4 Rew material 5| Production |34| Sales, R&D |35|Fixed cost 18 Sub-total [19]Utilities [20] Power 24 | Sub-total Sales, R&D Capaci ty Interest Steam Others Labour 4| Load Fuel 2 Plant 37 R 0 I

ABS

Cost Comparison of

Table III-2-A14

Table III-2-A15 Cost Comparison of MTBE

I Nation/Region	Japan		U S A		# Europe	ed	×	ICS		Saudi Arabia	abia	Ari	Argentina	
Plant Capacity	t/y 100000		100000		100000	00 5		100000	· .	100000			000001	
	t/y 80000		80000		80008	00		80000		80000			80000	
Capital cost	₩	- · •			∞.	8.1				10.5			30.5	
8 Offsite MS 9 New/Exisiting Plant	N 4.0	, , -	N 4. US		N 4.	£	~	ວ ວ		.; .; .×		×	67.5	
111 121 121	9t'y/t Price Un t/t \$/t	it cost	Unit cost 81'y/t Price U s/t 't/t s/t	nit cost \$/t	Unit cost 8t'y/t Price \$/t t/t \$/t		Unit cost Qt'y/t Price \$/t t/t \$/!		Unit cost Qt'y/t Price \$/t t/t \$/!	/t Price s \$/t	Unit cost 41' y/t Price \$/: t/t \$/	21'y/t Pr t/t	44	Unit cost
14 Raw material 15 C4 i-butene50% 16 Methanol 17 Sub-total	0.645 220	141.9 92.5 234.4	0.645 210.5 0.37 203	135.71 75.11 210.8	0.645 210.5 0.37 239	5 135.7 39 88.4 224.2	0.645	209 237	134.8] 0. 87.6] 0	0.645 210.5 0.37 150	135.7 55.51 191.2	0.645	125	80.61 81.41 162.0
18 Utilities 19 Power Kwi 20 Steam t	Kwh 10 0.051 t 0.5 18.1	9.0	10 0.832 0.5 13.2	e 6	10 0.047 0.5 14	47 8.4 14 7.0	0.5	0.046	0.4	10 0.02 0.5 3	1.5	0.5	0.04	5.5
	.a.]	3.8		1.0		1.9			1.3	:			:	2
23 Sub-total 24 Variable cost		12.5l 246.9!		8.4 219.3		233.5		• • •	232.0		183.33			25.0 10.0 10.0
25 Operating costs 26 Labour	16000	- 1 6	5 22500	1.4	5 20500	1.2] 1.2]	5 (7) (6)	4000	0.2	5 10000	1 60	5 (5)	0009	<u>ज</u> 1 क
[28] Overhead expenses		5	40* (O) \(() \		40/0X //X	3		÷		**************************************	3			3
[29] Depreciation	(7) / (5) *10%	10.1	10.1 (7)/(5)*10% 2.0 (7)/(5)*2%		(7)/(5)*10%	10.1			10:11 (3) 2:11 (3)	(7/6)*19%	13.1	(3/(2)*18% (3/(2)*18%		13.1
	(7)/(5)*2%		(1)/(5) #2%		(7)/(5)*2%	2.0	E		2.01(7)/	(5) #2%	2.6	2*(G)/(C)		2.0
32 Interest 33 Sales, R&D	20 × (0) / (1)	ئ 10.4	(7) / (5) *5%		(7) / (5) *5%	10. 4. E E	0/60*5%		5.01(7)/	(7)/(5)*5%	75 AJ	0/00 0/00 0/00		(2) (2) (1) (2)
34 Fixed cost		30.3				30.6			29.6		38.61		· .,	38.4
35 Net production cost 36 R O I	st (7)+(8)/(5)*15%	277.3	(7)+(8)/(5)*15%	250.01	(7) + (8) / (5) *15%		 (7)+(8) / (5) *15%		22.71(7)+	(7) + (8) / (5) *15%	232.2	(7)+(8)/(5)*15%		- is 왕 강
37 Transfer price		300.1							- 1					237.9

Table III-2-A16 Cost Comparison of Methanol

		<u> </u>	Unit cost \$/t	14.4	9.4		4.0	15.2	0,3	Z. E.	40.0	8 8	20.0	116.3	131.51 90.01 221.51
Argentina	500000 80 400000	150 80	13	2	0.04			:	9000						
Arge	50 50 50 50 50 50 50 50 50 50 50 50 50 5	. *.	t Price	7.2					23 6	¥6% (0	(1)/(5)*10% (1)/(5)*2%	*2% *2%	(5) *5%	8	(7) + (8) / (8) + (1)
			0t'y/ t/t					· - ·	i	È.		ÈÈ	€€	}	8) (1)
13			Unit cost Ut'y/t Price \$/t t/t \$/	14.4	0.2		9.2	14.8	0.6	22.0	80.0	8 &	29.4	116.5	90.0
Saudi Arabia	500000 80 400000	160		63	0.02				10000						*15%
Saud	50	≱ a.	't Pric	7.2					25	(C) #6%	(5)*10% (5)*2%	£ 23 £ 23 £ 23 £ 23	(7)/(5)*5%	4.4. (C)	(7)+(8)/(5)*15%
	·		t at'y/ t/t	L				· ·		Ĕ.	99	9	<u>e</u>	<u></u>	-
			Unit cost 01'y/t Price s/t t/t s/1												
SO											5.e	,			*15%
×			/t Pri							(7)/(5)*6%	(0)/(5)*10%	# (6)	(5) *5%	\$ (?)	(7) + (8) / (5) +15%
	<u> </u>		t Qt'y/	2]	1.4		8 4 -	=	1.2		29.21(D)/ 5.81(D)/	<u> </u>	(C) [9]		1 8 6 1 8 6
	•		Unit cost At'y/t Price \$/t t/t \$/	79.2	Ä		1.4	83.		17.	άκ	ະ ທ່	14.6		158.11 65.81
Europe	500000 80 400000	58.5	: ب	. #	0.047				20500		5·8			_)*15%
32	2) ,4	ம	Unit cost Qt'y/t Price \$/t t/t \$/	7.2	30				នេះ	/(5) * 6%	(7) / (5) * 10%	(5) *2%	(5)	¥ (3)	(7)+(8)/(5)*15%
		_ `	st Qt';	64.8	0.3		1.9	<u> </u>	1.4	/ <u>()</u> -	28.21 5.21 5.21 5.21) (C) (S)	14.6 (7),		<u>2</u> 8 5
			Jnit.co \$/t	1 64	. 0		~~ ~	3	~	7.7	윘ᄯ	o vo	14	18	153.2] 65.8] 219.0]
S A	500000 80 400000	117	ce \$/t	O	0.032				22500	ን-ፍ	65 %	e 24	>e >		5) * 15%
5		· (11)	'y/t Pr t/t	7.2	10				35	/(S) * 6	(7)/(5)*10	(1)/(2)*2%	7)/(5)*5%	\$ (O) /	(7) + (8) / (5
			35t Qt'	- 						€.	<u> </u>	<u> </u>	<u>e</u>	<u>}</u> _	_ <u>6</u> _
			Unit cost 0t'y/t Pri \$/t t/t												
Јарап										}- }-	50 3 50 3	6 9 G	54.9	·S	5)*15%
Ja			Qt'y/t Price t/t \$/t							(1) (5) *6% (1) (5) (1)	(7) / (5) * 16%	7. (S) (S)	(5) ×5	ž* (3) /	(7)+(8)/(5)*15%
	7 34 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	44 6 6 8	28		Kwh -	+ + + + + + + + + + + + + + + + + + +	<u>-</u>	·				<u> </u>	<u>e</u> e		
ion		O WEDITAL COST 1 B/L 18 Offsite 9 New/Existing Plant		al MMkcal	52	XXXXX		ost	costs	93	xpense. ion	ation			tion cr
Nation/Region	Fiant Capacity Load Production	Olwapidal cost 7 B/L 8 Offsite 9 New/Exisitin		13 14 Raw material 15 N G R	Itilities Power	Steam	rue: Others Sub-total	able c	Sperating Labour	Maintenance	Verhead expen Depreciation Tay/Instruments	Administration	Interest	id cost	produc I Isfer p
1 Nati	2 Capaci 3 Capaci 5 Produ	7 8/L 8 Offs 9 New/E	121	14 Raw m 14 Raw m 15 N G	16]Utilities 17 Power	18 Steam 19 Buel		22 Variable cost		<u>왕</u> 함	25jOverhead expenses 27j Depreciation 28j fow/Instance			32 Fixed cost	33 Net production cost 34 R O I 35 Transfer price

Table III-2-A17 Cost Comparison of Ammonia

Capacity Ly Suppose													
S00000 S000000 S00000 S000000 S000000 S000000 S000000 S000000 S000000 S0000000 S0000000 S00000000	· -	Japan	. -	Ø			ev ev	ည		Saudi Ar	abia	Argentina	
115 115		500000 80 400000	_ <u></u>	500000 80 400000		500001 81 400004	050	500000 80 400000		500000 80 409000		500000 80 400000	
E.9 14.2 126.3	· 						വവ						
8.9 14.2 126.3 6.6 9 59.4 6.6 11 72.6 8.9 13.4 119.2 6.6 2 13.2 6.6 2 24 0.051 1.2 20 0.032 0.6 20 0.047 0.9 24 0.046 1.1 20 0.02 0.4 20 0.04 7.4 4.1 4.8 6.2 1.1 20 0.02 0.4 20 0.047 1.5 7.1 1.2 1.2 20 0.032 0.6 1.6 20 0.047 0.9 24 0.046 1.1 20 0.02 0.4 20 0.04 7.4 4.1 4.8 6.2 1.2 2.2 1.2 2.2 1.2 1.2 1.2 1.2 1.2 1		ر ا	t cost Qt		it cost f	. E	Unit cost s/t	دد	it costi	r Pri	Unit cost	Price s/t	Unit cost \$/t
7.4 4.1 4.8 6.2 2.1 1.2 20 0.03 0.6 2.0 0.047 0.9 24 0.046 1.11 20 0.02 0.4 20 0.04 2.5 1.3 1.35.0 1.35.0 1.5 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	T:		126.3		59.4			<i>σ</i> ,	119.2				13.2
1.2			1.2		6.9			22	1.1				0.8
8.6	- Te		7.4	. •	4.7		4.8		6.2		2.1		4.3
30 16000 1.2 30 22500 1.6 30 20500 1.5 30 4000 0.3 30 10000 0.7 30 6000 1.7 (5)*6% 17.2 (7) (5)*6% 17.2 (7) (5)*6% 17.2 (7) (5)*6% 17.2 (7) (5)*6% 17.2 (7) (5)*6% 17.2 (7) (5)*6% 17.2 (7) (5)*6% 17.2 (7) (5)*6% 17.2 (7) (5)*6% 17.2 (7) (5)*6% 17.2 (7) (5)*6% 17.2 (7) (5)*6% 17.2 (7) (5)*6% 17.2 (7) (5)*6% 17.2 (7) (5)*6% 17.2 (7) (5)*6% 17.2 (7) (5)*6% 17.2 (7) (5)*6% 17.2 (7) (5)*2% 17.2 (7) (7)*2% 17.2 (7) (7			135.0	-	4.7	·	1.0 € 1.00		7.3		2.5		18.55 19.52
(7) (5) *10% 28.7 (7) (5) *10% 28.7 (7) (5) *10% 28.7 (7) (5) *10% 30.5 (7) (5) *10% 31.5 (7) (5) *2% 5.7 (7			17.2	30 22500)/(5)*6%		30 2050 (7) / (5) *6%		30 (1) / (5) *6%	_	30.	•		0.4
(7) (5) +2% 5.7 (7) (5) +2% 5.7 (7) (5) +2% 5.7 (7) (5) +2% 5.7 (7) (5) +2% 5.7 (7) (5) +2% 5.7 (7) (5) +2% 5.7 (7) (5) +2% 5.7 (7) (5) +2% 5.7 (7) (5) +2% 5.7 (7) (5) +2% 5.7 (7) (5) +2% 5.7 (7) (5) +5%		(7)/(5)×10%	28.7)/(5)*10%	28.7 (7) / (5) *10%	28.7	 (7)/(5)*10%	30.51(7) / (5) *10%	37.5	È	37.5
(1) (5) *24 5 .1 (1) (5) *24 1 .2 (7) (5) *54 1 .3 (7) (5) *54 1 .3 (7) (5) *54 1 .3 (7) (5) *54 1 .3 (7) (5) *54 1 .3 (7) (5) *54 1 .3 (7) (5) *54 1 .3 (7) (5) *42 1 .3 (7) (7) *42		\$\$*(0)/(E))/(5) *2%	N 1	(7) / (5) *2%	12) n	1(7)/(5)*2%	6-11	7/(5) #2%	7 7	EE	1 -1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(1)/(5)*24	14.31)/(5)*5%)/(5)*5%	14.31	(2) (S) *5% (7) / (S) *5%	14.3	(C) / (C) #5% (D) / (C) #5%	15.21	7/(5)*5%	18.7	1	18.
149.2 149.2 149.2 153.2 153.2 153.2 153.2 153.2 153.2 153.2 153.2 153.2 153.2 153.2 153.3 1		(7)/(5)*4%	11.51 12.51 13.51	7/(5)*4%	21.5	(7)/(5)*4%	11.53 0.19	્રે	12.21	(7) / (5) *4%	15.01	È	3 5 2 €
284.2 213.8 227.9 283.9	±;	(7) + (8) / (5) ×15%	219.51			(7) + (8) / (5) *15		(7)+(8)/(5)*15%	215.3	(7)+(8)/(5)*153		(7)+(8)/(5)*15%	82.9
			284.2						283.9		209.5		211.8

Table III-2-A18 Cost Comparison of Urea

	Japan		USA		3 15	Europe		×	SS		Sauc	Saudi Arabia		Arge	Argentina	
	200000	8	LC)	œ		200000			00000		čš	10000		, 13 13	0000	
	80 400000	980	80 40000	a 2		80 400000		4	80 400000		77	80 400000		40	80 400000	
	<i>D</i> (1)	30		જ દ્વ	· - 	90 30			65 32.5			.5.5 €1.5		*	8 s.s	
	£23	· -	ய		ப		-	26	:		×			24		
, CD	01'y/t Price t/t s/t	10.00	Unit cost 0t' y/t Price \$/t t/t \$/t	Unit cost \$/t	Unit cost Qt'y/t Price \$/t t/t \$/:		Unit cost At'y/t Price \$/t t/t \$/	:'y/t Při t/t		iit cost G S/t	Unit cost At'y/t Price S/t t/t S/		cost 8t	Unit cost 81'y/t Price \$/t t/t \$/1		Unit cost
	0.57 395 0.75 157.5	5 225.1 5 118.1 343.2	0.57 321 0.75 128.5	11 182.9 5 96.3 279.3	0.75	378 151	215.4 113.2 328.7	0.57	375 156	213.71 117.01 330.71	0.57	190 80	108.3 60.0 168.3	0.57	378 80	215.41 60.01 275.41
	50 0.051 0.7 18.1	2.5 1 12.6	50 0.032 0.7 13.2	2 9.2	50	0.047 14	<u>რ</u> დ ი თ	53	0.046 15.5	2.3	.7 0.7	0.02	2.1	50	0.04 11	2.0
		17.01		12.61 291.91			13.2			1.3 14.4 345.2			3.51 2.51 2.11.81			1.3 11.0 285.4
	20 16000 (7) / (5) *6%		0.8 20 22500 9.0 (7)/(5)*6%.	0 1.1 9.0	20 (7) / (5) *63	20500	1.01	20 (7)/(5)*6%	4000	9.21	20 1 (7)/(5)*6%	10000	0.5(12.4(7)	20 (7)/(5)±6%	9009	0.3
	(7) / (5) * 10%	15.0	15.0 (7)/(5)*10%	15.9	6	32	15.0107	0/(5)*103	4.5	16.21(7) / (5) *10%		20.71(7)	/(5)*10%		20.7]
\simeq	(7)/(5)*2%	3.0	3.01(7)/(5)*2%	က်ပ	8	>e :	3.01 (7)/(5)*2%		3.21(7)/(5)*2%		4.11	×2×(2)/(2)		4,
\simeq	(5/6)*25	% c 	(7) / (5) *2%	در در در	72*(©)/(Z) (2)/(Z)*5%	** **	3.6.7	(5) / (5) *2%		ν α 2.2.α	(5) (5) *Z* (5) (5) *Z* (5) (6) *Z*		4.1.6 11.3.63	(3) (5) *2;		7 5
	(7) / (5) *4%	8.0	7) / (5) *4%	6.0	0	- >-	6.0 (7)/(5)*4%		6.51	7) / (5) *4%		8.31	/(5)*4%		8
		44.3		44.6						47.3			60.6			60.4
35 Net production cost 35 R O I ((7)+(8)/(5)*15%	33.71	(7)+(8)/(5)*15%		 (7)+(8)/(5)*15%	5) *15%	386.4	(7) + (8) / (5) *15%	*15%	392.5] 36.5] ((7) + (8) / (5) *15%		~ ,	(7)+(8)/(5)*15%		346.91 46.51
_		438.3		370.3			420.2			429.0]			279.1		•	393.6]

Table III-2-A19 Cost Comparison of DMT

	Unit cost \$/t	73.2 73.2 24.7	23.21 2.33 23.31 23.31 23.31	3.0	22 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
100 100 100 100 100 100 100 100 100 100		207 200 619		8	
Argentina 100000 80 80000 61 30.5	rice \$/t	0.20	0.04	6003	38884 6
	Unit cost at'y/t Price \$/t t/t \$/	0.566 0.366 0.04	380 -1.08 1.17	40 77/55#62	0/0*18x 0/0*2x 0/0*3x 0/0*3x 0/0*4x 0/0*4x
	ost 0	113.2 54.9 12.4 180.5	2.5.2 2.8.2 18.3 18.3 18.3 18.3	5.01 45.71.01	76.21 15.21 38.11 38.11 38.11 226.11 72.51 17.51 59.51 17.51 17.51 17.51
abia	Unit o		(-1		
Saudi Arabia 100000 80 80000 61 30.5	ice \$/t	200 150 311	0.02	10000	0/(5)*18% (0/(5)*2% (0/(5)*5% (0/(5)*4% (0/(5)*4% (0/(5)*15%
S ×	'y/t Pr t/t	1,566 1,366 0,04	380 1.08 1.17	40 (7)/(5)±5%	(1) (10) + 10% (1) (10) + 2% (1) (10) + 5% (1) (10) + 6% (1) (10) + 6% (10) + + 6%
	Unit cost at'y/t Price s/t t/t s/			2.0 35.2 (7)	28.11.11.27.11.27.11.27.11.27.27.27.27.27.27.27.27.27.27.27.27.27.
	nit co \$/t	193.51 86.71 24.51 304.81	17.4 12.7 14.0 332.3	64 Kg	28.71 17.77 17.73 23.51 172.31 564.71 636.91
1 C S 100000 80 80000 47 23.5		342 237 614	15.00 10.55 10.55	4000	*15%
N 1	t Pric	365 366 04	380 (1.08 1.17.	40 (7) / (5) ±6%	(T) / (5) * 10% (T) / (5) * 2% (T) / (5) * 5% (T) / (5) * 4% (T) / (5) * (5) * 15%
	nt'y/ t/t	0.566 0.366 0.04	•	<u> </u>	
	Unit cost Ut'y/t Price \$/t t/t \$/	195.2 87.4 24.7 307.4	17.81 12.81 16.93 33.91	10.2	26.21 11.22 11.28 22.51 173.33 126.51 639.91
Europe 10000 8000 45 22.5		345 239 618	0.047 14 11	20500	15%
H Eur 100 8	Pri	ගිහි 4		0 20 3*6%	(7) (5) * 10% (7) (5) * 2% (7) (5) * 2% (7) (5) * 4% (7) + (8) / (5) * 15%
	9t'y/t t/t	0.566 0.366 0.04	380 1.08 1.17	40 2 (7)/(5)*6%	(7) / (5) × 10x (7) / (5) × 2x (7) / (5) × 2x (7) / (5) × 5x (7) / (5) × 4x (7) / (8) / (5) ×
	Unit cost Q1'y/t \$/t t/t	195.2 74.2 21.0 290.5	12.11 10.51 16.41 24.81 315.4	33.7	56.2 11.2 11.2 11.2 28.1 22.5 174.3 489.7 616.3 616.3
80 80 0000 45 45	i :	345 203 525	స్థార	00	
100000 100000 80 80 80 80 80 80 45 45	Price \$/t		0.032 13.2 9	22500 •6%	*10% *2% *5% *5% (5) *15%
	Unit cost at'y/t Pr \$/t t/t	0.566 0.366 0.04	380 -1.08 1.17	(7) / (5) *6%	56.2 (7) (5) *10% 11.2 (7) (5) *2% 11.2 (7) (5) *2% 28.1 (7) (5) *5% 22.5 (7) (5) *4% 171.1 521.3 171.1 521.3 521.3 647.8
	cost (0	203.7(91.5(25.8) 321.1)	19.31 13.4 15.8 25.0	8 0 33 7 (28.21 28.11 28.11 22.51 521.31 521.31 547.81
	Unit'c \$/t				
Japan 100000 80 80000 45 22.5	ا مد	360 250 646	0.051 18.1 11.5	15000	(7) (5) × 10% (7) (5) × 2% (7) (5) × 5% (7) + (8) / (5) × 15% (7) + (8) / (5) × 15%
(II)	01'y/t Price t/t \$/	0.566 0.365 0.04	380 1.08 1.17	40 J	(7) (8) *10% (7) (8) *2% (7) (8) *2% (7) (8) *4% (7) + (8) (5)
at & &	181		Keal -		
Nation/Region Plant Capacity Load Production Capital cost B/L KS Offsite New/Exisiting Plant		FF 70	Kwh t MMkcal St		on co
tation/Regic lant Capacity Load Production Papital cos B/L Offsite		Gaw material o-Xylene Methanol Acetic acid Sub-total	total	Labour Maintenance	Uvernead expens Depreciation Tax/insurance Administration Interest Sales.R&D Fixed cost Net production R 0 I Transfer price
11Nation/Region 2 Plant 3 Capacity 4 Losd 5 Production 6 Capital cost 7 8/1 8 Offsite 9 New/Exisiting		,, ,, ,, ,, ,, ,, ,,	20 Power 21 Steam 22 Fuel 23 Fuel 23 Others 24 Sub-total 25 Variable cost	27 Labour 28 Maintenance	O _ K Z C
	977	2412121	282888888	8288	83388888888

2-A-4 Producers in Petrochemical Industry in Argentina

Petrochemical Producers in Argentina	ncers in Argentina				(T/Y)
COMPANY	LOCATION	PRODUCIS	CAPACITY (T/Y)	rew materials	REMARKS and Shares in Capital
ATANOR S.A.M.	(1) Rio Tercero, Cordoba	1 Merhanol	14,000	Natural Gas) () () ()
(AIANOR)		2 Acetaldehyde	3,300		7.6.1.2
		3 Acetic Acid	4,300		Argentine private dapital ; out
	(2) Munro, Buenos Aires	l Acetaldehyde	2,600		
		2 Acetic Acid	3,300		
		3 Formaldehyde	000,84	Methanol	
	(3) Baradero, Buenos Aires	l Acetaldehyde	5,600		
		2 Acetic Acid	7,300		
		3 Acetic Anhydride	2,140		
CARBOCLOR INDUSTRIAS	(1) Campana, Buenos Aires	1 Acetone	12,000		f Astra-CAPSA ; 50%
Commercial States		2 Isopropanol	35,600	Refinery Cuts	Lehusen y Cia, Ltda ; 50%
CAKBOCLOR)		3 Solvents	38,000	(53, 64)	
COMPANIA CASCO	(1) Filar, Buenos Aires	l Formaldehyde	70,000	Mechanol	Borden Inc. ; 99%
0.8-1.C.		2 Methanol	20,000	Natural Gas	
(Casco)		3 Resins	٠٠	Formaldehyde	
COMPANIA QUIMICA S.A.	(1) Dock Sud, Buenos Aires	l Phthalic Anhydride	14,000		Argentine private
(compania quimica)		2 Pesticides	٥.		•
		3 Fertilizers			
		4 Household Products			
200 · 00 · 00 · 00					

Source ; 1986 Worldwide Petrochemical Directory Anuario Petroquimico Latino Americano 1985

Petrochemical Producers in Argentina

(X/X)

(1/1)	REMARKS and Shares in capital	Subsidaries and affiliates ATANOR.: 21% PETROQUIMICA BAHIA BLANKA; 17% P.G.M.: 50%	PETROQUIMICA RIG III ; 8.59% POLISUR ; 30%	Products and their capacity	are not shown.			E.I. Dupont de Nemours & Co.,;	Argentine private capital; 17.19%	Cellophane, Freon, Carpet Fibers and polypropylene film are produced.		Imperial Chemical Ind. ; 190%	\					
	RAW MATERIALS	Naphtha	Synthetic Gas	Ammonia				Kexamethylene -diamine) ; ;	Caprolactam	Naphtha	Natural Gas, Sulfur	0-Xylene	Ethylene		Naphtha	=	
	CAPACITY (T/Y)	27,000	12,000	43,000		-		21,000	٠.	1,400	15,000	14,000	14,000	20,000	18,000	6,000	13,000	
	PRODUCTS	l Aromatics		2 Nitric Acid				l Nylon 66	~	2 Nylon 6	l Ethylene	2 Carbon bisulfide	3 Phthalic Anhydride	4 Polyethylene (LDPE)	5 Plasticizers	6 Propylene/butadiene	7 Aromatics	
cers in Argentina	LOCATION	(1) Campana, Buenos Aires	(2) Rio Tercero, Cordoba	(3) Avellaneda. B.A.	La Plata, Pilar,	ncis	(10) Andalgala, Caramarca (11) San Martin, B.A.	(1) Berazategui, B.A.		(2) Mercedes, B.A.	(1) San Lorenzo, Santa Fe							
Petrochemical Producers in Argentina	COMPANY	5. DIRECCION GENERAL DE FABRICACIONES MILITARES MINISTERIO DE DEFENSE	(D.G.F.M.)					6. DUCILO S.A.	(DUCILO)		7. DUPERIAL S.A.I.C.	(DUPERIAL)						

Source ; 1986 Worldwide Petrochemical Directory Anuario Petroquimico Latino Americano 1985

Petrochemical Producers in Argentina	icers in Argentina			inu)	(Unit; I/Y) 3/9
COMPANY	LOCALION	PRODUCTS	CAPACITY (T/Y)	RAW MATERIALS	REMARKS and Shares in capital
8. ELECTROCLOR S.A.	(1) Cap. Bermudez, St. Fe	l Acetylene	30,000	Calcium Carbide	DUPERIAL ; 30%
(ELECTROCLOR)		2 Ammonia	3,000	Electrolysis H2,N2	Argentine private capital ; 40%
		3 Polyvinyl Chloride	29,000	V.C.M	
		4 Vinyl Chloride	30,500	Acetylene, Chlorine	
	(2) Bahia Blanca, B.A.	l Polyvinyl Chloride	41,500	Y.C.Y	Ruture project
9. HISISA ARGENTINA	(1) Baradero, B.A.	l Acrylic Fibers	16,500	AN.	Argentine private capital ; 100%
S.A.L.C.L.F. (HISISA)		2 Poly Acrylonitrile.	14,400	AN, Methyl Acrylate	
.O. INDOQUIM S.A.	(1) San Lorenzo, St. Fe	1 SBR Latex	5,000	SM, BD	DOW Chemical ; 100%
(WINDOGNI)		2 Agrochemicals	6		
		3 Polyolefins	۲.		Starting up in 1982
1. INDUFA S.A.	(1) Cinco Saltos, Rio Negro	l Acetylene	7,500	Calcium Carbide	Argentine private group ; 100%
(INDUPA)		2 Vinyl Chloride	38,000	Acetylene, Chlorine	
		3 Polyvinyl Chloride	30,000	V.C.M.	
	(2) Bahia Blanca, B.A.	l Vinyl Chloride	130,000	Ethylene, Chlorine	Under construction
		2 Polyvinyl Chloride	26,000	МОМ	
		,			<u> </u>

Source ; 1986 Worldwide Petrochemical Directory Anuario Petroquimico Latino Americano 1985

Petrochemical Producers in Argentina

													4	÷		
(Unit; T/Y)	REMARKS and Shares in capital	Group of Garavaglia & Zorraquin ; 65% Argentine private capital; 35% Subsidaries and affiliates	{ PETROQUIMICA BAHIA BLANCA; 21.2% POLISUR ; 70%	Argentine private capital; 100%	Monsanto Overseas S.A. ; 100%						Amocorp S.A. ; 25%	; 25%	Fish Inter America Inc. ; 11.5%			
In)	RAW MATERIALS	Refinery Products Ethylene	AS	Butane	AN, BD, SM	XS	×S	Propane	Naphths	n-Butane	Ethylene, Benzene	EB	SM, BD	AN, BD		
	CAPACITY (T/Y)	15,000	12,000	7,000	16,000		40,000	23,000	150,000	37,000	65,000	54,000	54,000	2,000	 	
	PRODUCIS	l Ethylene 2 Polyethylene	l Polystyrene	l Maleic Anhydride	1 ABS & SAN	2 Polystyrene	l Polystyrene	l Ethylene	2 Aromatics	3 Butadiene	4 Ethylbenzene	5 Styrene	6 SBR	7 NR		
Producers in Argentina	LOCATION	(1) Ensenada, B.A.	(2) Florencio Varela, B.A.	(1) Ensenada, B.A.	(1) Zarate, Buenos Aires		(2) Florencio Varela, B.A.	(1) San Lorenzo,	9							
Petrochemical Produc	COMPANY	12. INDUSTRIAL PETROQUIMICAS ARGENTINAS S.A. (IPAKO)		13. MALEIC S.A. (MALEIC)	14. MONSANTO ARGENTINA	(MONSANTO)		15. PETROQUIMICA	(PASA)							

Source ; 1986 Worldwide Petrochemical Directory Anuario Petroquimico Latino Americano 1985

Argentina
1
Producers
Petrochemical

5/9 REMARKS and Shares in capitel	7 4 1 6 %C		1.74 OCHEES , 21.2% , 21.2%	By the end of 1986 (1)	Future project (2)									2 YPF 50%						
RAW MATERIALS	Ethane & Propane	z	Σ	Ethane	E	±	=	=	=	2	=		= :	Straight-run Naphtha						
CAPACITY (I/Y)	200,000	20,000.	14,400	(1) 45,000	(2) 120,000	(1) 1,300	(1) 2,800	(1) 2,275	(2) 4,900	(1) 9,750	(2) 21,000	(1) 1,625	(2) 3,500	67,000	38,000	23,000	32,000	000'6	33,000	25,000
PRODUCTS	1 Ethylene	2 Propylene	3 C4's	4 Ethylene Expansion	5 Ethylene Expansion	6 Propylene Expansion	7 Propylene Expansion	8 C4's Expansion	9 C4's Expansion	10 H ₂ + Methane	11 R2 + Mechane	12 Pyrolisis Gasoline	13 Pyrolisis Gasoline	l Benzene	2 Toluene	3 o-Xylene	4 p-Xylene	5 mix-Xylene	6 Cyclohexane	7 Gasoline Hydrogenarion
LOCATION	(1) Bahia Blanca, B.A.													(l) Ensenada, B.A.						
COMPANY	16. PETROQUIMICA BANIA BLANCA	(P.B.B.)												17. PETROQUIMICA GENERAL	Muscont s.a.r.c.	(1, 6, 11)				

Source ; 1986 Worldwide Petrochemical Directory Anuario Petroquimico Latino Americano 1985

Argentina
Ę
Producers
etrochemical
ā.

						6/9
	COMPANY	LOCATION	PRODUCTS	CAPACITY (I/Y)	RAW MATERIALS	REMARKS and Shares in capital
18.	PETROQUIMICA RIO TERCERO S.A. (P.R. III)	(1) Rio Tercero, Cordoba	1 Toluene Disocyanate(TDI)	16,000	Toluene, Nitric Acid	Starting up in 1980 { ATANOR; 51% { YPF ; 38% DGFM; 11%
19.	PETROQUIMICA SUDAMERICANA S.A.	(1) La Plata, B.A.	l Dimethyl Terephthalate (D.M.T)	14,000	p-Kylene	
20.	PETROSUR S.A. (PETROSUR)	(1) Campana, B.A.	l Ammonia 2 Urea	72,600	Natural Gas Ammonia, CO ₂	Empresa Sudamericana Consolidada S.A. (Panama) ; 100%
21.	POLIBUTENOS ARGENTINAS S.A. (POLIBUTENOS)	(1) Ensenada, B.A.	1 Polybutene 2 Polyisobutene	. 000 '6	Bufene, Butylene	
22.	POLIMIDAS ARGENTINAS S.A.	(1) San Martin, B.A.	l Petrochemical Resins	٠.		
23.	POLISUR S.A. (POLISUR)	(1) Bahia Blanca, B.A.	l Polyethylenes (LLDPE & LDPE)	190,000		(IPAKO ; 70% DOPH ; 30%
24.	QUIMICA HOECHST S.A.	(1) Buenos Aires	l Specialities for the Petroleum Industry	¢.		
25.	SIPAK	(1) Buenos Aires	l Resins	ċ		
26.	SUDAMIEX S.A. TEXIIL SUDAMERICANA (SUDAMIEX)	(1) Azul, Buenos Aires	1 Polyester Chips & Fibers	6,500	D.M.T, EG	
	,		,			

Source ; 1986 Worldwide Petrochemical Directory Anuario Petroquimico Latino Americano 1985

Argentina
г; :
Producers
Petrochemical

6/1			,		\ \frac{1}{6}	ý														
(unit; 1/x)	REMARKS and Shares in capical				Argentine Government Agency, Established in 1907	Subsidaries and Affiliates	[P.B.B ; 17%	P.G.M ; 50%	(P.R. III ; 38%											
(0n)	RAW MATERIALS	Calcium Carbide	Acetylene, Chlorine	NOW.															F.C.C. Off Gas	
	CAPACITY (I/Y)	3,000	6,000	6,000	28,000 B.D.	5,000 B.D.	33,000 B.D.	4,000 B.D.	12,000 B.D.	A 000 A	•	2,000 B.D.	113,000 B.D.	9,000 B.D.	20,000 8.0.	20,000 B.D.	22,000 B.D.	10,000 B.D.	30,000 T/Y	: :
	PRODUCTS	l Acetylene	2 Vinyl Chloride	3 Polyvinyl Chloride	1 Topper	l Topper	l Topper	2 Thermal Cracking	3 Visbreaker		; ; ; ;	2 Thermal Cracking	l Topper	2 Reformer	3 F.C.C.	4 Hydrocracking	5 Coker	6 Visbreaker	7 Propylene	
cers in Argentina	LOCATION	(1) Chacaras de Coria, Mendoza			(1) Campo-Duran Salta	(2) Plaza Huincil, Neuquen	(3) San Lorenzo, St. Fe			4 % Pos 3000 (7)			(5) Lujan de Cuyo, Mendoza							
Petrochemical Producers in Argentina	COMPANY	27. VIPLASTIC S.A.	(VIPLASTIC)		28. YACIMENTOS PETROLIFEROS FISCALES S.A. (YPF)	. :														

Source ; 1986 Worldwide Petrochemical Directory Annario Petroquimico Latino Americano 1985

(Unit; T/Y) 8/9	REMARKS and Shares in capital			·								Governmental share; 14.3%									Including butene	
п Ω)	RAW MATERIALS						4 0 0 0	200 TAO		Propylene, Benzene	Oligomers, Benzene									FCC Off Gas	<u>=</u>	
	CAPACITY (T/Y)	230,000 B.D.	9,000 B.D.	41,000 g.D.	23,000 B.D.	3,000 B.D.	61,500 r/x	6,100 T/Y	19,000 T/Y	46,000 I/Y	40,000 r/Y	7,000 B.D.	3,000 B.D.	2,000 B.D.	2,000 B.D.	92,000 B.D.	8,000 B.D.	18,000 B.D.	14,000 B.D.	36,500 T/Y	70,100 T/Y	17,000 B.B.
	PRODUCTS	l Topper	2 Reformer	.G.G.	4 Coker	5 Alkylation	6 Propylene	7 Butylene	8 Oligomers	9 Cumene	10 Alkylbenzene	1 Topper	2 Visbreaker	3 Thermal Gracker	l Topper	1 Topper	2 Reformer	3 F.C.C.	4 Coker	5 Fropylene	6 Butylene	1 Topper
cers in Argentina	LOCATION	(6) Ensenada, B.A.		-				:				(1) Commodoro, Rivadavia			(1) Lomas de Zamora	(1) Campana, B.A			-			(2) Galvan
Petrochemical Producers in Argentina	COMPANY	28. YACIMENTOS PETROLIFEROS FISCATES S.A. (YPF)										29. ASTRASUR, REFINERAS	PETROLEO S.A.		30. DESTILERIA ARGENTINA DE PETROLEO S.A.	31. ESSO SAPA						

Source ; 1986 Worldwide Petrochemical Directory Anuario Petroquimico Latino Americano 1985

6/6	REMARKS and Shares in capital																
3 (40)	RAW MATERIALS								<u> </u>	FCC Off Gas	± 200						
	CAPACITY (T/Y)	24,000 B.D.	6,000 B.D.	4,000 B.D.	115,000 B.D.	9,000 B.D.	21,000 B.D.	25,000 B.D.	2,000 B.D.	24,000 I/Y	26,000 I/Y				-		
	PRODUCIS	l Topper	2 F.G.C.	3 Visbreaker	l Topper	2 Reformer	3 F.C.C.	4 Visbreaker	5 Alkylation	6 Propylene	7 Butylene						
cers in Argentina	LOCATION	(1) Bahia Blanca, B.A.			(1) Dock Sud, B.A.			-									
retrochemical Froducers in Argentina	COMPANY	32. REFINERIA DE PETROLEO	we panue oru:	:	33. SHELL CAMPANIA	S.A.											

Source ; 1986 Worldwide Petrochemical Directory Anuario Petroquimico Latino Americano 1985

3. ELECTRONICS (COMPUTER-RELATED INDUSTRY)

3-1 Computer Industry

3-1-1 Characteristics of Computer Industry

(1) Introduction

The Argentine government started to promote domestic computer production by recognizing its importance for the future development of Argentine economy. The computer industry comprises a greater variety of products and activities than other industrial sectors, and it has a major influence on both society and the economy. In designing promotional measures, therefore, it is important to understand the special characteristics of the computer industry. It is desirable in Argentina that the development policy for the information industry would be implemented in a flexible way through the collaborative efforts of the government and the private sector.

In this section following points will be discussed: 1) the major features of the computer industry; 2) the present status and problems of the industry in Argentina; 3) the major issues to be dealt with in the future and the direction of future policy and 4) some suggestions.

(2) Characteristics of computer industry

The followings are the special characteristics of the computer industry.

(a) Popularization of computer usage and wide range of associated industries

In every country, computers applications are becoming common in all industrial fields such as office automotion, factory automation and process control. Also there are a large number of associated industries which are expected to grow rapidly like the semi-conductor and IC (Integrated Circuit) industry. The information service industry is another important sector, and it will give large influence on all other industries.

(b) International aspect of computer industry

The computer industry has been developed on an international scale since its beginnings. Especially IBM has been taking a leading role keeping the share of more than 50% of world market. Also at present, US mainframers have share of about 80%. The development of information systems will not be confined to any one nation's framework but will inevitably spread on a global scale along with the expansion of international activities of those US

manufacturers. Therefore, the development of a computer industry and computerization in Argentina must be carried out with international perspective.

(c) Rapid advancement of technology and its diversified influence

The computer industry has a great impact on development of other industries due to its advanced nature of technology and the aforementioned links with other industrial sectors. Furthermore, as can be seen from the recent trends in VLSIs (Very Large Scale Integrated Circuit) and micro-processors, the speed of technological advancement is quite rapid and the life cycle of new products is quite short.

(d) Increase of demand in different areas

Along with the rapid progress in hardware, software and systems technology, computer technologies are applied to diversified areas being not only sophisticated scientific areas but also such common areas as education and hobbies. In particular, an increase in the use of micro-computers is noticeable in many fields such as office, automation, factory automation, research and development systems, systems for home use.

(e) Wide business range and diversified activities

Unlike most other industries, the computer business is not concerned with simply marketing products, but includes a major aspect of providing information, functions or services required by users. In addition it includes a wide variety of business activities as cited below:

- Research and development of new technology and new products in response to rapid technological advancements and market fluctuations, as well as maintaining consistency of product lines
- Production of hardware and software to create optimum systems
- Training service and system support staff for users
- Installation and operation of hardware at users' establishments
- Regular maintenance of hardware and software
- Complicated forms of marketing and services for users

(f) Large investment over long period

An enormous amount of funds and manpower are required in various phases of the business for the following purposes:

 Long-term continuous investments in research and development to cope with the rapid technological progress, requiring a large number of skilled workers for software development

- Procurement and replacement of high-precision instruments and cost-saving production equipment to cope with the short product cycle
- Marketing funds for renting and leasing products
- Set up of marketing system and support and maintenance services for users

(g) Linkage between computers and communications

The progress in the development of information systems and a higher demand for computer networks will further promote the link between computers and communications.

(h) Importance of software and emerge as an industry

The development and improvement of software (OS language) for the efficient operation of computer systems as well as for efficient job processing and data processing by users require more capital than the development of hardware. Thus, software has come to be considered even more important than hardware, its value and price structure having been accepted by the market. Accordingly the software business, which includes information services, is now becoming an independent industry.

In light of all these features, the government's role is quite important for nurturing and strengthening the computer industry, especially in the initial stage. In consideration of today's world market trends, were it not for the government's promotional policies and assistance, it would be extremely difficult for a computer industry to grow from a primitive level to being capable of contributing to a nation's economic and social development. Moreover, the diversity of this industry requires a well-balanced approach. Otherwise, even if some promotional measures were successful, they would not lead to the smooth development of the industry as a whole, and the net result of such efforts would amount to very little.

It is therefore essential for the Argentine government, based on a long-range perspective and taking into account the current conditions of the nation such as technological level, market conditions, financial capacity, economic trends and potential, to work out a long-term consistent policy to determine in what areas and under what timetable domestic production should be accomplished and how foreign technology should be used to achieve that goal. It must also continue its persistent efforts in overcoming all difficulties that may arise. This policy should be broken down into concrete execution programs so that the concerned government agencies and private enterprises can follow them easily. The programs should also be assessed and reviewed continuously so as to be flexible enough to adjust to changes in surrounding conditions.

3-1-2 Present Situation of Argentina's Computer Industry

(1) Computer market

In Argentina, computerization started recently. Total number of computer introduced per year was less than 100 until 1975. After 1976, because of the liberalization trade policy in Argentina and the diffusion of micro-computer in worldwide, number of introduction jumped to 1,000. Nowadays, although the number of introduction has been increasing, large share has been occupied by home computer and micro-computer and not by general purpose computer (Table III-3-1).

Regarding general purpose computer (class 1 to 5) the largest share is occupied by IBM (22.1%) and then Burroughs (14.6%). Other companies share are quite small less than 10%. In the sector of home computer and micro-computer, Texas Instruments is enjoying quite large share (65%). This is due to their large sales of home computer (Table III-3-2). According to the table, it can be said that tempo of computerlization has been quite slow. If home computer and micro-computer is excluded, the number of introduction per year has leveled off at about 1,500 for these four years.

Computers are used primarily for accounting in financial, manufacturing, and merchandising and service businesses. Especially in the merchandising and service industry the number of micro-computer has increased remarkably. At present, the Argentine economy is still in a state of stagnation, and the country suffers from a shortage of funds. Accordingly, as mentioned above, the demand for computers except for micro-computers has not increased. On the other hand, the demand for micro-computers has increased due to substantial price reductions and rapid improvement of performance. As a result, they have been successfully introduced for home use chiefly for education and games due to their low price, and for business use due to high performance.

Given these market conditions, major domestic companies and other firms which have been engaged in the import and sale of computers, development of software and systems support services have examined expanding into domestic production of micro-computers for the past several years. Many of them are looking at joint venture businesses with foreign manufacturers and other existing project models in line with the Government's domestic production policy under Resolution 44.

(2) Production, marketing and research

The computer market in Argentina had been occupied primarily by imported American products along with some Japanese, European and Brazilian ones. However, some movement toward domestic production has been appeared recently.

In 1976, Microsistema, for the first time, put a domestically-developed model of micro-computer, the MS101, on the market. Since then, new models have been developed continuously by the company, which is now selling the MS61 at a rate of 60 units per month. This quantity is expected to jump to 100 units per month with release of the new MS Axis.

Table III-3-1 Trend of Computer Market

Year	Home	Micros	Word Processor	Class 1	Class 2 to 4	Class 5	Total
1965					1		1
1966					4		4
1967					3		. 3
1968					. 12		12
1969			1		12		. 12
1970				19	16		35
1971				9	12		. 21
1972				86	23	2	111
1973	•			57	30		87
1974	*			59	29	1	89
1975				53	43		96
1976				98	42	2	142
1977				133	94	2	229
1978			*	237	188	2	427
1979		61	7	619	497	22	1,206
1980	11	291	56	1,067	1,016	13	2,454
1981	413	765	156	973	1,013	6	3,326
1982	1,202	712	92	401	518	10	2,935
1983	7,346	2,902	181	676	863	8	11.976
1984	12,351	5,768	73	105	1,376	25	19,698
Total	21,323	10,499	565	4,592	5,792	93	42,864

Secretaria de Ciencia y Tecnica, Estadisticas sobre Source:

Informatica.

For reference example of each category is shown below. Note

Home ; T1 - 99/4A

; Apple II, IBM 5150, 5160

Word Processor; IBM 6580

Class 1; IBM 5110, 5322

Class 2; IBM 1131, 1620, 2020, 4952, 4953, 4954, 4955, 5320, 5324, 5340, 5360, 5362, 5406, 5408, 8130

Class 3; IBM 2025, 3115, 4331, 5381, 5410, 5412 Class 4; IBM 2030, 2040, 2044, 2050, 3125, 3135, 3138, 3145, 3148

Class 5; IBM 3031, 3032, 3033, 3081, 3083, 3158, 4381

In the early 1980s, several domestic companies started domestic production of micro-computers which had imported foreign micro-computers and had sold them in combination with their own software. Their production method has been to use imported assembly kits or to import ICs and other high quality sophisticated parts, and fit them with frames and electronic parts manufactured in Argentina. Manufacturers avoided large capital investments by this assembly type of production. Some of those companies applied Resolution 44.

As the largest foreign company in the market, IBM produces peripheral computer equipments (chiefly various printers and, since 1985, magnetic tapes) and exports most of them reaching export amount to US\$125 million in 1985. The company has invested more than US\$10 million per year in plant and equipment for the past two to three years. Texas Instruments, the largest supplier of micro-computers in the country, started importing and selling around 1980 and is now producing domestically 60 to 80 high performance professional micro-computers a month in Argentina.

Subconstractors of the above-mentioned foreign companies have a relatively high level of technological capacity under the technical guidance of foreign companies. For instance, IBM usually provides technical training for the employees of subcontractors in IBM factory for a couple of months. This indicates that even among Argentine companies, there are many manufacturers that can produce high quality products at low cost if only given clear specifications and proper training.

These foreign companies such as IBM and Texas Instruments have no desire to establish minority-owned overseas production facilities, so they have not applied for participation under Resolution 44.

Although there are several research institutes related to electronics, so far the National Institute for Industrial Technology (INTI) is the largest. INTI has 1,544 members but its yearly budget is limited. With a small budget, it will be difficult not only to increase the number of staff, but also to upgrade research equipment and even to maintain the present machines. According to INTI officials, the number of research staff in charge of electronics was limited in past but is now increasing to about 60. These 60 staffs are allocated as follows:

- application development of micro-computers: about 30 persons
- the Computer Center: about 20 persons
- NC robots: about 10 persons

Despite the relatively small staff, they play important roles such as a) participation in industrial promotion programs as advisers and b) assistance in R&D (research and development) in the industrial sector.

For the Resolution 44, domestic production program, and other various projects relating to technology development and its application INTI will undoubtedly be given the central role in the

Table III-3-2 Computer Market (December 1984)

vice vice vice vice vice vice vice vice		computer/ nal Computer	General Purpose		
	Unit	Share (%)	Unit	Share (%)	
Apple	546	1.69	0	0,00	
Burroughs	. 4	0.01	1,528	14.58	
Bull	54	0.17	596	5,69	
СВМ	124	0.38	0	0.00	
Compucorp	6	0.02	118	1.13	
Compusyst	. 0	0.00	274	2.62	
CRT	175	0.54	0	0.00	
Casio	219	0.68	. 0	0.00	
Digital	22	0.07	311	2.97	
Data General	0	0.00	146	1.39	
Durango	0	0.00	203	1.94	
Hewlett-Packerd	1,136	3.51	370	3.53	
IBM	1,493	4.61	2,317	22.12	
Latindata	894	2.76	233	2.22	
MS	991	3.06	0	0.00	
NCR	886	2.74	1,237	11.81	
NEC	104	0.32	251	2.40	
North Telcom	25	0,08	143	1.36	
Osborne	144	0.44	0	0.00	
Olivetti	178	0.55	320	3.05	
Pertec	108	0.33	. 0	0.00	
Qantel	0	0.00	135	1.29	
Radio Shack	766	2.37	0	0.00	
Sharp	1,842	5,69	0	0.00	
Telvideo	9	0.03	219	2.09	
TK	150	0.46	. 0	0.00	
Texas	21,282	65,71	413	3.94	
Wang	824	2.54	794	7.58	
Others	405	1.25	869	8.29	
 Total	32,387	100.00	10,477	100.00	

Sorce: Secretaria de Ciencia y Tecnica, Estadisticas sobre Informatica.

technology phases. For this reason, the reinforcement of INTI as an organization will be quite important in the near future.

(3) Domestic production plan for micro-computers

The liberalization trade policy of the late 1970s drove most of Argentina's industries to a disastrous state. Production activities and research and development were brought to a standstill, and the scars remain evident even today after a lapse of more than ten years. The last decade, having brought a period of the fastest technological growth in history has also caused Argentina's industry to lag far behind the rest of the world. This gap cannot be made up in the short term with world technological innovation in electronics progressing so rapidly. It can be achieved only by continuous efforts over a long period of time.

The series of measures for promoting the information industry, which started with the creation of the National Commission for Information (Comision Nacional de Informatica; CNI) in 1984, are considered quite reasonable since they are based on the widely accepted understanding that an information industry is most essential to the modernization of society, being the nucleus for development of the national economy. The domestic production program for computers in particular, announced in January 1985, although opinion is divided about its contents, appears to be valued highly in general since the government, has published its policy clearly and invited private firms to participate in the program under Resolution 44. However, there is now apprehension about the realization of the program because of the subsequent more-than-one-year postponement of the schedule, replacement of government officials responsible for the program and the partial modification of the program. The firms authorized by the government for each segment have also been compelled to not only make major revisions of their plans but also to consider countermeasures in the event of possible failure of the entire program.

Since the domestic production program is the first and foremost of the promotional measures for the information industry, its success or failure will no doubt have a great impact on the future success of other industrial promotion measures. Although opinion is divided about the domestic production of hardware, the contents of Resolution 44 are considered basically sound, provided the program is adequately detailed and implemented properly.

To begin with, a study will be made of the contents of the domestic production program as outlined under Resolution 44. Under Resolution 44, micro-computer business is divided into eight segments (A - H) and were opened for bidding. In segment A and B, super micro-computer mounted the UNIX (one of the operating system developed by the Bell Laboratories of the USA) are to be produced. In segment C and D, home computers and peripherals are to be produced respectively (Table III-3-3).

Segment E and F are intended to keep the niche for computer business for the small and medium sized companies. Segment G is for the production of banking terminals and segment H is its application.

The number of domestic companies which have applied for participation and have been approved by the government is 10, and they are classified into two types. One type consists of leading domestic business groups which have achieved recognition in other industrial fields and plan to enter and invest in the electronics industry as a new venture. The business groups CAM (BRIDAS) is example. They have established new companies jointly with foreign firms which have superior technology. Their strong financial and managerial power, high credit worthiness and history as computer users will be powerful tools in the progress of the new business. The other type consists of companies which have been engaged in the computer business already and are aiming at further development. That is, they have long experience in import and sales, domestic production, development of software or systems support of micro-computers, and they aim to tackle full-scale domestic production on this basis. Micro Sistemas, Sisteco, Autorede, and Czerweny are examples.

As for foreign companies, IBM, which has the largest market share in Argentina and large scale peripheral equipment factories there, will not consider production by a minority-owned company due to corporate policy. Texas Instruments, which is producing micro-computers in Argentina, also has not applied for participation in Resolution 44 for the same reason. Burroughs has applied for participation through IDAT, which has been established jointly with the BRIDAS group, a leading Argentine company. In addition, Bull (France) and Digirede (Brazil) have applied for participation through new companies which they each have established jointly with leading domestic firms. The reason other foreign companies have not responded is thought to be because of the small size of the Argentine market.

Major issues in Resolution 44 are cited as follows:

- Production is divided into eight segments (A to H).
- Importance of enhancement of competition in a segment.
- Incentives are given mainly by preferential tax treatment alone, and little emphasis is placed on financial assitance which is of the greatest necessity.
- No backup measures are specified for arousing demand for computers.
- Importance of flexible policy to domestic value added ratio.
- Avoidance of excessive government intervention in the implementation of the program.

The above issues are reviewed in order as follows:

1) Production is divided into eight segments

Since the products covered under the Resolution 44 domestic production program are closely connected with each other, being technologically associated products or systems, and can interchange common parts and components, the placing of limits on these products

Table III-3-3 Segments of Computer Business under Resolution 44

त्त	Systems integrators for banking networks Software Development communication network, integration,	Bardware from G	Companies	CNL-BULL IDAT
U	anking erminals ommunication quipment	Applications - E of specific terminals (game playing terminals) for distri- buted	2 Companies 2 (Micro-CN sistemas ID Digirede
£u.	- Small hard B ware com- panies wholly owned c by local companies up to US\$1 mill. gross sales	Modems - Zan's etc.	8 Companies 2	25 offers Miss
[t]	- Small soft- ware houses		4 Companies	
Δ	- Peripherals or super- nicros & Personal computers & Home computers		2 Companies	Fimpar (1 vacant)
O	- Home computers	- Personal computers - Peripher- als	2 Companies	Czerweny (l vacant)
ω	- Personal computers - Peripherals	- Supermicros - Peripherals	2 Companies	Micro- sistemas Sisteco
Æ	(Supermicros) - Micro pro- cessors based computers multi uses, multi task (typically UNIX based mediums up to 16 users) - Peripherals for super- micros	- Personal computers - Peripherals for Personal computers	3 Companies	ITRON CNL-BUIL IDAT
Segment	каонъмонемо	ОФЕНОХЧН	Number of seats opened	Applied & approved companies

Source: Study Team

could possibly have adverse effects on scale of economy and hinder the extension of technology and the relationship between products. On the other hand, Resolution 44 stipulates certain groups of associated products which can be manufactured in addition to the mandatory items, thus decreasing the possibility of adverse effects. However, in order to realize the economy of scale, flexible operation of the program is required according to the lapse of time and changes in circumstances.

2) Importance of enhancement of competition in a segment

In light of the size of Argentina's computer market, the number of computer producers, 25, would appear to be too large at a first glance. However, through competition among producers, some of them would drop out and competition will strengthen the remained producers' capabilities. The government should not take the policy which will prevent the free competition among applicants.

3) Limited incentives

Unless they make a profit, producers cannot enjoy the benefit of preferential tax treatment, except for import taxes. This is not so attractive to producers in consideration of the growth of computer demand in Argentina and of the necessary scale of initial production. In the present unfavorable economic environment in which funds are scarce and interest rates are high, low-interest financial assistance on a long-term basis including a grace period will be much more effective in creating incentive. In view of the characteristics of the computer industry, long-term financing at low interest rates is very important.

4) Stimulation of demand

Business cannot exist where there is no demand, and business cannot grow if demand does not expand. In Argentina, both the public and private sectors suffers from a serious shortage of funds for investment and modernization. In that sense, measures to promote continued expansion of demand are thought to be very important.

5) Importance of flexible policy to domestic value added ratio

It is necessary to clearly specify targeted domestic value added ratio in a promotion program. However, since the economic climate and business situation are changeable very much, rigid target figures irrespective of changes in the environment may lead to the failure of the program. It is suggested, therefore, that as the situation changes, the best course of action be decided from both the long-term and short-term points of view, and flexible measures including the revision of target figures should be considered.

6) Government intervention in program implementation

Generally speaking, there are many cases in which excessive intervention or mishandled intervention of the government will

adversely affect the activities of the private sector or hinder smooth implementation of the policy. In addition, excessive intervention tends to lead to industrial protectionism, hampering the sound development of industry.

Although there are several problems involved in this domestic production policy of micro-computer, and there are many opinions which oppose promotion of the domestic production of computers under the present conditions in Argentina. We, however, wish to note the following points regarding domestic production in support of the realization of the policy:

- a) The electronics industry is the most promising field, especially, because computer technology exerts a great influence over the technological progress of other fields, and its products permeate the entire society, help to modernize it and encourage overall industrial development. For these reasons alone, it is extremely valuable to support computer technology and its development on a national basis.
- b) It will become possible to maintain, foster and develop technology only if related industries exist. The computer field especially affords many avenues for accumulating and developing technological processes throughout the entire business community, such as design, development, manufacturing and systems applications for both hardware and software.

3-1-3 Suggestions

It is the consensus of the Argentine government and private sector that development of the computer industry and computerization are an inevitable worldwide trend and that Argentina also should promote the industry and the computerization. Most people are also aware of the fact that there are many problems to be solved to reach that goal. Because of the relatively small domestic market and the high speed of technological progresses in this industry in the world, the government will have to bear a considerable burden in order to implement the proposed computer nationalization program. For the development of the computer industry in Argentina, the following points are suggested.

(1) Long-term promotion program for the computer industry

It is essential to formulate a well-thought-out long-term program through close coordination and exchange of opinions with the private sector. A long-term program, facing many unknown factors, will work well only if it is carried out adequately. Hence, stress tends to be placed on the formulation and execution of short-term action programs lasting for not more than three years together with long-term plan. This holds true especially in Argentina today where the economic climate is highly unstable. A long-term program has many advantages as mentioned below, and it is suggested that a long-term program be designed and carried out with the short-term action programs.

1) Since the formulation of a long-term program requires a wider-ranging and long-term analytical study of the project

environment than a short-term program, the entire picture of the project can be depicted including expected changes and various countermeasures that may be considered.

- 2) The formulation of a long-term program requires the clarification of project objectives and relevant activities and necessitates the consideration of timing and methods for attaining the objectives.
- 3) The existence of a long-term program is helpful in keeping the short-term programs on track and avoiding unnecessary confusion caused by sudden temporary changes in the environment. The long-term strategy provides an effective consistent guideline for the activities of the government officials concerned.

It is useless if the program is not put into practice. In this respect, a concrete action program specifying actual activities must be detailed, carried out and followed up continuously. To lead this effort, a powerful system for program promotion must be established. As the program progresses, various related conditions and unforeseen problems will become clear and sufficient course alterations will be possible.

In Japan, although the names of relevant laws have been altered slightly with the times since 1957, the policies for the promotion of the electronics industry and the information processing industry have been continued on a consistent basis for thirty years. During this period, adjusting to the times and changes in the industrial climate, proper subjects were chosen for supportive measures focusing on specific areas and successful execution with a flexible implementation of policies (see appendix of this section, 3-1-A). To put into practice the promotion policy for the industry, the Japanese government set up programs to accelerate the activity, such as creating the Machinery-Information Industry Bureau, formulating various regulations and executing promotional measures.

(2) Computer nationalization program

The proposed program for nationalizing computer production is to manufacture 32-bit supermicro-computers with the UNIX operating system. The targetting this product, of which production costs are not so high compared with large sized computers, is justifiable as the starting of domestic production of computers. As discussed already in 3-1-2(3), the following points will be necessary to take into account for the promotion of this program.

- 1) The proposed computer nationalization program divides the related components into eight segments. However, in order to benefit from possible economies of scale, it is not advisable to stick to the eight segments. It will be important to readjust the segmentation flexibly and to promote competition. This will in the end serve to improve international competitiveness of the industry.
- 2) The participating companies in the program are provided with fiscal incentives like tax exemptions or reductions. But it is

also desirable to offer financial incentives of low-interest loans.

(3) Promotion of demand expansion

Growth of demand makes it possible for the industry to exist, expand and make a profit. In this sense, expansion of demand can be said to be one of the requisites of industrial development. Especially for computers, the growth of demand encourages the improvement of technological capability, not only on the part of producers of hardware and software, but also on the part of users. It is necessary to stimulate the potential domestic demand.

In this connection, a computer lease system was introduced in In 1961, as a result of an arrangement between the government Japan. and the industry, a computer rental company, called Japan Electronic Computer Company, Ltd. (JECC), was established with joint financing by seven computer producers (one of which withdrew after several years). Its purpose was to start a system of renting the computers purchased from the manufacturers to the users. Funding from member companies and Japan Development Bank, JECC purchases computers worth 230 billion yen annually and rents to users. Their total amount of asset is 500 billion yen at book value. Their total amount of purchase since the establishment reached to 2.6 trillion yen. This system, which was highly effective in financially supporting the producers, was also well-received by users and greatly contributed to the expansion of demand by encouraging active use of computers especially at the early stage. Under the rental system, users are able to acquire a computer by paying a monthly rental fee equivalent to about one-fortieth of the computer's price. They, thus, avoid making a large investment, and they are able to cancel the contract after the 15-month initial period or replace their old model with a new one. This system is still being used extensively today. Meanwhile, the introduction of computers is encouraged as part of the measures for modernizing other industries and for developing medium- and small-scale businesses.

(4) Coordination of research and development activities

Without the technology development, it is impossible to promote the industry. Particularly in the electronics industry and above all in computer industry, this aspect is decisive. At present, although, the profound importance of research and development has been recognized in Argentina, the national R&D budget is small. In order to utilize the limited funds more efficiently, it is desirable to integrate the computer-related research projects which are now separately carried out by different institutions.

Having grasped the present actual state of research organizations (including research departments of universities) throughout the country, it is desirable for the government to set up an organization which oversees and coordinates important basic research in line with the industrial promotion policy. Especially, the integration of relevant organizations should be considered for the establishment of new organization in order to prevent overlooking important research subjects and to avoid biased research and wasteful duplication of research and thus effectively utilize limited resources.

In order to promote the organization, the following points are desirable to be considered:

- 1) Management of the organization based on the national consensus,
- 2) Independence of each laboratory and appreciation of its speciality,
- 3) When necessary, integration or abolition of facilities, as well as exchange of staff,
- 4) Equal distribution and application of all research results.
- (5) Utilization of foreign technology

The development of computer technology has been remarkable in recent years, and its rapid progress will continue in the future. Great efforts have been made not only in LSIs and hardware, but also recently in the development of software-related technology. Hence, introduction and efficient application of advanced foreign technologies can be effective to improve the technological level of domestic industry. However, advanced technology must not be adopted recklessly, ignoring the current level of domestic technology. adoption must be planned properly, with an understanding of the changing trends of the technology. It is important that the introduction of technology must be efficiently utilized by private sector so that the reactivation of industry can be realized. Moreover, it will be necessary to make efforts toward the acquisition of software and application systems and to understand their trends as well.

3-1-A Appendix: Japan's Measures for Promotion of Computer-related Industry

Policy measures for the promotion of the computer-related industry are listed chronologically below.

- Temporary Measures Law for the Promotion of Electronics Industry (June 1957 March 1964: 7 years)
- Extension of the Law (April 1964 March 1971: 7 years)
- Temporary Measures Law for the Promotion of Specified Electronics Industries and Machinery Industries (April 1971 March 1978: 7 years)
- Temporary Measures Law for the Promotion of Specified Machinery Information Industries (July 1978 March 1985: 7 years)
- Law Pertaining to Information Processing Industry Promotional Association (IPA Law) (May 1970 March 1986)
- Law Pertaining to Promotion of Information Processing (partial revision of IPA Law) (April 1986)

The contents and background of these policy measures are summarized as follows.

(1) Temporary Measures Law for the Promotion of Electronics Industry

With the end of postwar rehabilitation and the advent of a time for renewed economic growth, this Law was enacted to promote the electronics industry as an industry that would lead industrial growth and to play the key role in the development of technology. The law, covering principal electronics materials, parts, components, equipment and systems, had the following contents:

- 1) Subsidization of technological development for projects requiring large amount of funds.
- 2) Long-term financing at special low-interest rates under the fiscal investment and loan program for projects requiring acceleration of production start-up or increased production (financed by the Japan Development Bank).
- 3) Application of a special amortization system.

The Law had the expected results during the effective period of seven years, but was extended for another seven years in view of the mounting requirements for the liberalization of trade and capital and also due to the rise of the computer industry itself, whose importance was beginning to be recognized at that time.

(2) Temporary Measures Law for the Promotion of Specified Electronics Industries and Machinery Industries

Although promotional measures were taken separately for electronics and machinery, combined measures were introduced for the two industries under this Law in consideration of the close relations of two industries. The Law covered, in effect, the same points as the former law.

(3) Temporary Measures Law for the Promotion Specified Machinery-Information Industries

In the 1970s, along with significant progress in electronics technology including computers, the relationship between the electronics and machinery industries became even closer, and the importance of software in the computer industry became greater. This Law, therefore, considering these industries as an integrated machinery-information industry, aimed at promoting it as a frontrunner to take the lead in Japan's industrial development. A distinctive feature of this Law was the inclusion of promotional measures for the software industry. The computer industry's output in Japan, which was valued at 700 billion yen for 1977, grew sharply by an average annual rate of nearly 20% to over two trillion yen in 1984.

(4) Law Pertaining to Promotion of Information Processing

While promotional measures were taken mainly for computer hardware under the aforementioned laws, the importance of software - its role in the more efficient use of computers and in research/development costs for technology and products - had grown greater than that of hardware, thus requiring strong promotional measures. In 1970, the Information Technology Promotion Agency (IPA) was created as an organization to work toward: a) the promotion of computer utilization, b) the promotion of the development and distribution of software and c) the growth of information processing services and software businesses.

To enforce this fundamental legislation, the Japanese government set up programs to accelerate the activity, such as creating the Machinery-Information Industry Bureau, formulating various regulations and executing promotional measures. At the same time, to keep pace with the rapid progress in private sector computerization, computer use in government agencies and local administrative organizations was actively accelerated. Furthermore, complete capital and import liberalization regarding computers was effected in 1976, and at present no import duty is charged on such equipment.

3-2 Information Service Industry

The Argentine government has planned the domestic production of computers under Resolution 44, which will be practically implemented soon. In the history of computerization in Argentina, which has relied on imported computers for a long time, this is an epoch-making event. When Resolution 44 has been fully implemented and the expected goals achieved, the computerization of Argentina will have greatly advanced, and it is expected to contribute greatly to development and consolidation in various areas such as the economy, society, welfare.

Needless to say, however, the computerization of Argentina cannot be accomplished only by means of super micro-computers, micro-computers, and home computers produced under Resolution 44. The effective application of various types of computers presently in the country and to be imported in the future is necessary. Computers prove their capability only if utilized effectively. Unless applied suitably for the purpose, computers could in fact hinder smooth business operations. Although the number of units installed is often referred to as an index of the degree of computerization of a nation, such figures do not necessarily reflect accurately the degree of effective contribution to the social and economic development of the nation.

What is in question here is the effective application of computers. It has been generally accepted that in normal practice, purchasers of computers would write programs and operate them for themselves. However, with the expansion of the application of computers, it has become clear that such practices do not bring good enough results, so professionals specializing in support for effective application of computers have come onto the scene. This is called the information service industry. Thanks to the information service industry, the inexperienced person, after simple introductory training, can use the micro-computer effectively for his or her work with the use of application software.

Argentina, in spite of its capable population, rich natural resources and high level of culture, is suffering from economic stagnation and enormous foreign debt. What Argentina needs now is the revitalization of its economy and society, and increases in its export capability. Progress in computerization can provide the one of the keys to solving these problems rapidly and effectively.

3-2-1 Characteristics of Information Service Industry

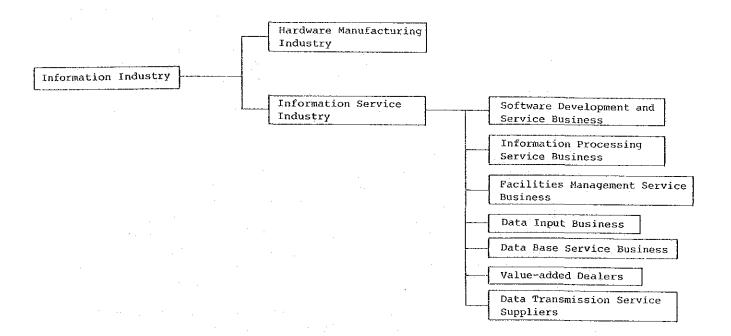
(1) Classification of information service industry

The software development industry is an industry or service which supports effective application of the hardware installed. In fact, the industry or service which supports effective application of hardware is not limited to the software business, but also includes information processing services, data base services and many other types of service, among which communications (data transmission) services play an important role. Without the support of the

information service industry, the computerization of a nation cannot complete its development, and in the USA or Japan, businesses in this field maintain a 20 - 25% annual growth rate.

This type of industry is still undeveloped in Argentina in comparison of other industrialized countries. It is essential, however, for the future development of computerization in this country.

(a) Classification of information service industry


Figure III-3-1 shows the classification of the information service industry. Business of each information service industry is described as follows.

1) Software development and service business

Software developed by the software industry includes the following three categories.

- a. Fundamental software: OS (Operating System), i.e., fundamental programs indispensable for computer applications such as programming languages.
- b. General-purpose utility software: Software for effective use of computers such as data base, data communications, sort, merge, etc.

Figure III-3-1 Information Industry

- c. Application programs: Programs which serve specific applications of computer users. This category can be further sub-divided into the following three categories:
 - Tailor-made programs specially developed to the individual specifications of users.
 - Ready-made package programs for applications such as sales management or wage calculation which are commonly used by an indefinite number of computer owners.
 - General-purpose package programs suitable for various applications (such as Multiplan, Lotus 1-2-3, Symphony)

2) Information processing service business

This can be roughly divided into the following three categories:

- Services for clients who have not introduced computers. Service for those who cannot afford the introduction of their own computers.
- Processing of on-line network for customers.
- Processing as an on-line network center for a number of different companies.

3) Facilities management service business

This can be roughly divided into the following two categories:

- Facilities management in its original sense of the term, in which operation of the customers' computer installations is undertaken.
- Facilities management in wider sense in which program development is undertaken for the customer by visiting his facilities.

4) Data input business

In this type of business, the original documents are input into media which are readable for machine, so that they can be input into the customers' computer systems.

5) Data base service business

This business is not related, directly or indirectly, to information processing for the type of clients as described above, but is a service centered around an independent computer center. In this computer center information related to the economy, technology, etc., which is expected to be required by the clients, is stored in data form, and maintained and supplied on an on-line or off-line basis, in response to requests from the clients.

6) Value-added dealers

Dealers of small-sized computers or micro-computers who supply their merchandise in combination with appropriate application systems in the form of turn-key systems (that is, users do not have to prepare programs, etc., but can start operation upon delivery merely by turning the key).

7) Data transmission service suppliers

This term refers to the suppliers of tele-communication lines generally known as common carriers. Common carriers are usually classified within other categories outside the information industry, but since the service provided by them cannot be separated from the development of technology for computer applications, they will be considered as a part of the information service industry in this report.

(b) Progress in computer applications and development of information service industry

Progress in computer applications accompanies the development of the information service industry, while, development of the information service industry results in the progress of computer applications. The followings will illustrate this statement in relation to the various business areas of the information service industry.

1) Software development and service business

If computer users had to develop their own application programs, they would need a long period of learning and preliminary experiences before they were able to write programs suitable for actual work. This might be possible for government offices or large enterprises, but it is extremely difficult for small businesses who introduce micro-computers for the first time. Even government offices and large enterprises, do not always work at full capacity and therefore would have to carry excess personnel. Therefore, development of businesses of program development makes it easier for small businesses to introduce computers and for government offices and large businesses to plan effective program development. Especially, the supply of application programs for micro-computers will greatly benefit the inexperienced medium— or small-sized business.

2) Information processing service business

This type of business contributed greatly when computers were very expensive, undertaking data processing for businesses who had not yet introduced computers. However, with the recent spread of micro-computers, medium- and small-sized businesses have begun to process the data by themselves, so the demand in this area is decreasing. On the other hand, the role of a network center for enterprises is gaining importance - that is to say, the role as the center of a network connecting a number of banks, or a network of multiple dealers or multiple retailers.

3) Facilities management service business

Users introduce computers as effective tools for accomplishing tasks in the management of their business. Therefore it is reasonable to conclude that company staff should concentrate on the main business of the company, and operation of tools in the form of computers can be more effectively carried out by specialists from outside the company. This is how the facilities management service industry came into existence. Of course since accumulation of know-how within the business is also important, a complete switch-over to outside management is not often found. However, a change towards expanding of this type of business is taking place in the developed countries. The development of a facilities management service industry will make the introduction and management of computers easy and greatly contribute to the expansion of computer applications.

4) Data input business

Computer systems used to employ paper punched cards, which developed a data input business. However recently computers have changed to systems where users directly input data by means of a keyboard, so the number of businesses specializing in data input has decreased. However, in the information processing service business, the data input business still exists as a side business, although there are no longer companies specializing in this business.

5) Data base service business

Since the purpose of computer applications has been upgraded from processing of everyday routine work to supporting high-level decision-making, it has become necessary to develop functions which is necessary accumulate various data information decision-making. Functions which retrieve deliver it promptly become also important. The data base service business emerged, in response to a market requirement, and it has recently made remarkable progress in the developed nations. Furthermore, the birth of this industry has greatly contributed to the sophistication of information processing in this country.

6) Value-added dealers

This type of business emerged after micro-computers became inexpensive and were popularized, particularly for business use. Inexperienced users of computers often hold the mistaken belief that if they merely buy computer hardware they can use it for their work immediately. Furthermore, to acquire a full command of computer usage, a great amount of technical knowledge and development of applications programs are required. The role of filling this gap is taken by the value-added dealers.

7) Data transmission service suppliers

Computer applications have developed from batch processing, to on-line processing within companies and on-line processing for other

companies within a certain business sector, and finally to on-line communication between different businesses or across all kinds of social units, including family households. Such an expansion of data processing business would have been impossible without data transmission channels. Moreover, if the development of data transmission lines lags behind, even if there is a good opportunity to expand computer applications, it will be missed, and in turn, economic development might suffer.

In Japan, this connection has attracted much attention since the early days of computerization, and great efforts have been made for the arrangement and consolidation of data transmission lines and computers called "Computers and Communications".

(2) Characteristics of information service industry

As the information service industry is one of the business categories under the information industry in the wider sense of the term, it shares some common characteristics with the hardware manufacturing industry, while at the same time retaining some special characteristics of its own.

(a) Complementability of information service industry with computer users

Since the hardware manufacturing industry produces hardware items and supplies them to the users, it plays an important role. However, as regards the information service industry, there are many areas where this industry complements users' own software developing capabilities. Major users are capable of developing applications programs by themselves. Equally, small enterprises and individuals who are users of micro-computers are quite often able to develop programs.

In data processing also, many users own computers and have the ability to operate them. From this viewpoint, information service industry is usually regarded as an auxiliary or complementary type of industry. However, business enterprises who own data base services or transmission lines are very rare. The information service industry plays a very important role of complementing the computer usage ability of organizations which lack such capabilities. In this regard, computer processing capability and the ability to make effective applications in one country must be considered as the total sum of users' ability and the information service industry's ability.

(b) Growing industry

The information service industry was born and developed as a sector of the industry to complement the lack of processing ability of users, or to supply services within this field which users cannot provide. Therefore, as the needs of computer applications increase, the information service industry develops and sometimes even becomes the leading force accelerating the pace of computer applications in that nation. As mentioned previously, the information service industry has shown a high growth of 20 - 25% annually over a long period in Japan and the USA.

(c) Labor-intensive intellectual industry

As represented by the software development business the major characteristics of this industry are labor-intensiveness and intellectuality. Development of programs consists of various activities including planning, analysis, design, coding, testing and documentation, most of which involve brain-power. Data base services, while they do use large-scale machines, rely largely on human abilities for planning, investigation, data input and data maintenance, etc. Thus, the information service industry is said to be a representative of the most suitable type of industry to employ highly intelligent staff.

(d) Necessity of equipment investment

While it is a labor-intensive business, it is also a capital intensive business in some aspect. A large amount of equipment investment is necessary for the laying of data transmission lines and for the establishment of related equipment and devices. A large-scale information processing service business requires a large-sized computer. In addition, even in software development, which is considered to be a typical labor-intensive area a system of program development which makes use of computers on a time-sharing basis is developing in order to raise productivity.

(e) Rapid progress of technology

The pace of progress in computers is fast. This means not only progress in hardware, but also the progress of the field of software and applications.

(f) Necessity of practical business knowledge

The majority of its business consists of responding to specific requests from clients based on their needs. The development of application programs is a typical example for which practical knowledge of the clients' business is essential. This type of business requires not only computer specialists but also business specialists and those who have practical experience of business in various fields.

(g) Importance of education

As characteristics of the information service industry, three items have been enumerated, namely, intellectual labor, technical progress, and knowledge of the business world. These characteristics illustrate the importance of education for workers engaged in the information service industry.

It was previously stated that the information service industry complement with the users' processing capabilities. This highlights the necessity of widely available computer-related education covering all those who are concerned with computer applications.

It is not sufficient to provide high-level specialized education in theoretical knowledge areas such as computer theory, operating

systems, computer languages, data base/data communications, local area networks. For the realization of effective applications of computers, in addition to the above, practical professional training regarding the actual use of computers is necessary. It is also important to provide education for executives and managers who do not directly come into contact with computers. This is important because decisions related to computer introduction are made by those people.

Education on computers for people in this category is not technical education such as programming, but should cover such subjects as the necessity and usefulness of computer applications in today's society, or measures for realizing the effective applications of computers.

- 3-2-2 Present Situation of Computer Applications and Information Service Industry in Argentina
 - (1) Present situation and problems of computer applications
 - (a) General review

The status of computer applications in Argentina is described in detail in "Estadisticas sobre Informatica" prepared by the Secretariat of Science and Technology.

The number of computers installed as of December 31, 1984 was 42,864 units (Table III-3-4). However, when 21,323 home computers of insufficient capacity for business use and 565 word processors with insufficient data processing functions are excluded, the number is reduced to 20,976 units. Of this figure, 10,499 units or one half are micro-computers. The peak periods of introduction of those micro-computers have centered around the last year or two (see Table III-3-1).

Table III-3-4 Computer Application by Sector

Class	Private	Public	Unknown	Total
Home Computer	7,465	1,511	12,347	21,323
Micro Computer	6,855	357	3,287	10,499
Word Processor	370	75	120	565
Class 1	3,609	402	581	4,592
Class 2 to 4	3,696	416	1,680	5,792
Class 5	25	12	56	93
Total	22,020	2,773	18,071	42,864

Source: Subsecretaria de Informatica y Desarrollo,

Estadisticas sobre Informatica.

Note: Classification of computers is shown in the note of

Table III-3-1.

Considering the potentiality of Argentina and the relatively high level of industrialization, the degree of computer diffusion is considered to be still relatively low in Argentina.

(b) Ownership classified by type of owner

The status of computer introduction is as follows: private 22,020 units; public 2,773 units; unknown 18,071 units. It is assumed that the majority of computers classified as unknown are being used in the private sector.

Government offices and large companies have introduced computers in the past, and their needs are generally regarded as satisfied. Among the medium-sized enterprises which had not been able to afford to introduce computers and instead relied on placing outside orders for computation, a large number of businesses have introduced small-sized computers, which have become less expensive recently, and ceased to place outside orders. Small-sized business enterprises which had felt little need for computers due to the small amount of processing required, has been interested in the introduction of computers.

In spite of the general economic trend of stagnation, and a lack of funds especially for long-term loans for investment, the promotion of computerization is making progress. Thus, if proper measures are taken allowing suitable access to loans, the possibility of rapid popularization of computers is high.

(c) Status of computer ownership classified by application field

Computer ownership as classified by industrial sector is shown in Table III-3-5. As shown, the greater number of computers for business use is employed in the commerce and service sectors, and most of them are being used for management such as sales and inventory control, and for daily routine processing such as accounting, or salary calculation. Sophisticated applications of computers for the use of administrative decisions have not yet been achieved.

In the industrial sector, oil refining, steel manufacturing are major users of computers for various areas. Medium- and small-size enterprises so far utilize computers only for limited area.

(d) Status of application classified by form of application

There are two major characteristics in computer application of Argentina. The first is centralized processing using large-sized computers.

Since there is a centralization of population and economic activities in Capital Federal and Buenos Aires Province in Argentina, it is inevitable that centralization is also seen in the field of computers (Table III-3-6). As a result of excessive centralized processing using a small number of large-sized computers, there is a tendency that data could easily be processed in local regions is now processed centrally.

Table III-3-5 Computer Application by Sector

	4 4						1.
	Home	Micro	Word	Class	Class	Class	Total
			Processor	1	2 to 4	5	· · ·
Agriculture	59	106	1	65	43	-	274
Mining &	- 5	26	9	.23	39	1.	103
Exploration	And the second				•		•
Manufacturing	336	788	49	567	1,000	27	2,762
Utilities	6	58	8	64	57	⊷	193
(Electricity,							
Gas, etc.)							
Construction	18	270	13	130	108	2	541
Commerce,	1,173	2,101	25	1,316	923	1	5,539
Restaurant,							
Hotel							
Transportation,	12	118	20	. 90	116	4	360
Telecommuni-							
cation		*					
Finance,	113	1,931	285	1,052	1,764	17	5,162
Insurance							
Services	6,153	803	82	523	952	19	8,532
Unknown	13,448	4,298	73	767	790	22	19,398
Total	21,323	10,499	565	4,592	5,797	93	42,864

Source: Subsecretaria de Informatica y Desarrollo, <u>Estadisticas sobre</u>

Informatica.

Note : Classification of computers is shown in the note of Table

III-3-1.

The second major characteristic is that volume of on-line processing remained a low level. The reason for this is not that the demand for on-line processing is low, but that data transmission lines are not well prepared. Users have attempted to cope with the situation by laying private transmission lines, but there is a limit to such efforts. There is no doubt that if transmission lines were properly consolidated in Argentina, information processing would make rapid progress in terms of both quality and quantity.

(2) Present situation and problems of information service industry

(a) General view

The history of the information service industry in Argentina extends back more than ten years. Financial service businesses such as banks and insurance companies have been major clients of the information service industry. Also, along with the upsurge in micro-computer introduction in recent years, a large number of software house which develop application programs has appeared. In general, however, Argentina's information service industry is in the course of development.

Table III-3-6 Computer Installment by Province

				4			
	Home	Micro	Word	Class	Class	Class	Total
•			Processor	r 1	2 to 4	5	
Buenos Aires	1,799	2,912	47	1,048	1,188	16	7,010
Capital Federal	4,600	3,446	427	2,322	3,113	72	13,980
Catamarca	71	8	 .	1	7		.87
Chaco	166	44	1	28	45		284
Chubut	24	84	_	28	26		162
Cordoba	313	804	43	244	371	1	1,776
Corrientes	70	31	1	23	18	-	143
Entre Rios	123	33	1	67	75		299
Formosa	86	6		9	12	** '	113
Jujuy	56	16	_	10	43	-	125
La Pampa	132	39	1	12	8	-	192
La Rioja	20	6	•	. 2	4	-	32
Mendoza	374	210	11	159	193	3	950
Misiones	148	77	2	43	32	-	302
Neuquen	70	71.	1	24	. 35		201
Rio Negro	23	55	· · · . <u>-</u> ·	28	35		141
Salta	290	67	· _·	22	45	٠	424
San Juan	152	50	6	28	37	-	273
San Luis	57	6		6	12		81
Santa Cruz	57	14	_	9	13	-	93
Santa Cruz Santa Fe	538	634	9	401	370	1	1,953
Santiago del Estero	43	14	<u> </u>	4	11	_	72
Tierra del Fuego	76	13	1	4	8		. 102
Tucuman	242	155	5	68	87		557
Unknown	11,793	1,704	9	2	4	·.	13,512
Total	21,323	10,499	565	4,597	5,792	93	42,864

Source: Subsecretaria de Informatica y Desarrollo, Estadisticas sobre Informatica.

Note: Classification of computer is shown in the note of Table III-3-1.

(b) Software development and service business

In Argentina fundamental software such as OS, utility software for general use and package programs for general use have been developed and are supplied by overseas computer manufacturers and overseas outstanding software businesses. Generally Argentine software companies' business is limited to the application programs.

Since the major users such as government offices and large business have a strong tendency to develop the programs for themselves, small orders from medium and small businesses or development of application program have become their main business. Most of the businesses of this category are small businesses and their technical capacity in most cases is also low.

In fact the member companies of Software Companies Association (Camera de Empresas de Software) is 80, but among them only five have more than 80 employees. Major users of computer software point out the lack of experience and low technical ability of the small sized software houses in Argentina. They are inclined to develop the software by themselves.

Also, there are other problems for software houses such as 1) inability to get loans for software development because of a lack of collateral, 2) sales of software will not increase because the programs are easily copied under no legal protection of original program.

(c) Information processing service business

This field of business is roughly divided into the following two categories. The first category consists of large sized companies which works as a data processing centers for financial institutions. This type of companies performs a large amount of batch processing work, but has not made satisfactory progress in on-line processing due to inadequate communications lines.

The other category comprises medium and small companies which carry out computation under contract with medium— or small-sized companies. However, since the number of small companies introducing micro-computers has increased, the amount of available work has declined and some companies engaged in information processing could no longer remain in this business.

With the lowering of the prices of computers, users who process the data by themselves is increasing and volume of contracted computation has been decreasing. However, if data transmission lines were properly prepared, as in developed countries, on-line processing work would increase. Particularly on-line network center services for different businesses would certainly expand. Therefore, the future of this business field in Argentina may be said to depend solely on the consolidation of the data transmission lines.

(d) Facilities management service industry

In developed nations, the facilities management business shows a tendency of expansion. Outside specialists who have greater knowledge and experience about computers can make great savings in cost and time for computer owners.

In Argentina as a result of this study, it becomes clear that a facilities management service industry does not exist as such in industrialized countries. This is due to the fact that the major users are strongly inclined to undertake everything related to computer management by themselves.

(e) Data base service industry

It seems that the data base service industry is not existing in Argentina. The only companies providing anything like a data base service are businesses which accumulate information on stocks, and respond to inquiries by telephone. The reasons why the data base service industry is undeveloped in Argentina are as follows. Computer applications have concentrated on everyday routine processing, and have not yet reached high-level functions such as aids to business management decision-making. Also data transmission lines are not prepared yet.

However, in Argentina, sophistication of business management and increase of exports are urgent tasks, the rapid consolidation of businesses which organize and supply data base is required. Actually, certain large companies which use overseas data bases to obtain various economic data are emphasizing the necessity of domestic service of data base in Argentina.

(f) Value added dealers

The value added dealer in Argentina is a new concept and its numbers are still small. However, the business has a large potentiality in Argentina.

This business has been developing in industrialized nations. It grew out of the fact that small business attempting to introduce micro-computers lacked knowledge in computers, while conventional micro-computer dealers only sold machines and did not support inexperienced users. Therefore, there have been many cases in which micro-computers were introduced but were not effectively utilized.

The future expansion of computer applications in Argentina depends on the use of domestic computers, on Resolution 44, to some extent. The activities of value added dealers will become very important under the domestic production policy which provide the machines adding application programs appropriate to the present level of development in Argentina. Strengthening support for value added dealers will be an important issue in near future.

(g) Data transmission service suppliers

The greatest problem concerning computer applications in Argentina is undeveloped data transmission lines. This has been referred to previously, so no futher explanation is necessary.

At present, computer applications in the world are progressing from batch operations to on-line and to networking. What forms the basis for this progress is the data transmission line. The most suitable line for computer data transmission is a digitalized transmission line. Analog telephone lines may also be used, but they present problems in transmission speed and quality and do not match the requirements for high-speed high-quality transmission.

In Argentina, the plan to expand one million circuit telephone lines is now being implemented. However, the plan is centered around the acquisition of the additional telephone equipment, and it is said that the complete replacement of the old circuits with high-speed high-quality transmission lines is not being fully considered. As a result, in areas where old circuits and old switchboards are used, transmission lines will remain unsatisfactory for coping with new computer networks.

(3) Present situation and problems in computer-related education

(a) General view

In Argentina computer-related education was started in the 1960s in universities, and graduates are now actively engaged computer-related businesses mostly in overseas. considering the educational system as a whole, diffusion of education is computer-related generally low reflecting underdeveloped level of computer usage compared to industrialized nations.

In this age, called "the second industrial revolution" or "computer revolution", when the application of computers greatly influences the progress and development of a nation's economy, computer-related education should not be limited to theoretical studies and high-level technical discussion. Actual application of computers to real business situations and management need to be taught.

Especially in Argentina today, where the revitalization of industry and the promotion of exports are urgent tasks, not to slight high-level theoretical education, actual business-related education which applies the results of the computer revolution to business situations and thus contributes to the further development of society and the economy should be considered a higher priority.

(b) Universities

Computer education in Argentine universities has a long history and many graduates are now working overseas. Thus, in appearance, the program is well prepared. However, it is said that the number of computers in universities is small, and students have few chances to actually use computers, therefore much of the study is done on the blackboard and in notebooks.

This is a reflection of the slow pace of computer diffusion influenced by economic stagnation. Tendency of graduates' of computer science to obtain job in overseas also indicates they cannot get jobs domestically. Needless to say, computer education in universities forms the core of the nation's computer-related education. Therefore, further expansion of computer-related education at universities is desirable.

(c) Latin American Superior School of Informatics (ESLAI)

In April 1986, the Latin American Superior School of Informatics (Escuela Superior Latinoamericana de Informatica: ESLAI) was opened under the Cooperation of Intergovernmental Bureau of Information in Rome and UNESCO. This school aims at the education of professional researchers and not for practical training.

There is a possibility that ESLAI graduates will not be able to find a job in Argentina and finally will go out of Argentina to work. If that is a case, the education can not be utilized for the reactivation of Argentine industry. Measures to avoid this situation are highly recommended.

(d) Technical schools under CONET (ENET)

Under the Nacional Council for Technical Education (Consejo Nacional de Education Tecnica: CONET), there are 362 technical schools (Escuela Nacional de Educacion Tecnica: ENET) all over the nation which offer to elementary school graduates specialized technical education in such subjects as architecture, chemistry, electricity, mechanics and electronics. Only ten ENET currently have computer course. ENET has very important role to offer specialized vocational education for young people, so its further expansion of computer education is awaited.

(e) Education by manufacturers and dealers

In addition to the computer education offered by public education facilities, there is private computer education. Typically, this is offered by computer companies and dealers.

Foreign computer companies and dealers have well-organized education courses and offer them to users. With the recent popularization of micro-computers, these courses become quite popular and they are playing an important role in computer education in Argentina.

(f) Privately established computer schools

In addition to the computer courses provided by manufacturers and dealers, private computer education facilities have been increasing recently. Some of them give one to three years of computer education, but most of them give only a few days or up to two weeks of classes. These have received much criticism as not being effective for actual business.

3-2-3 Suggestions

Balanced development of hardware and software technologies is indispensable to the steady growth of the computer industry. The computer nationalization plan must be accompanied by measures which will stimulate the development of computer application technology and increase computer users. Development of user-oriented computer application technology helps the economy run more efficiently, expands

the demand for related products, and leads to the growth of new logistic industries such as data base service, network data processing. Therefore, government policies to foster the computer software business are just as important as those aimed at computer manufaturers.

The Resolution 44 announced by the Government aims to produce small-size, low-priced and sophisticated computers. In terms of the size of the potential demand in Argentina, the choice of micro-computers for domestic production is justifiable. For the implemention of this computer nationalization plan, it is necessary to consider the following issues from the viewpoint of increasing the domestic demand for computers.

Firstly, care should be taken to avoid the excessive protection of domestic computer manufacturers, because lack of competition tends to raise the price of micro-computers and thus discourage prospective users from buying them. Lack of competition also tends to stagnate technology development efforts and to deliver obsolete machines to users.

Secondly, it is not advisable to restrict imports of medium— and large-size computers. Larger computers are different from micro-computers in their functional characteristics and they cannot be replaced by micro-computers in many situations. Thus, the imposition of heavy duties on their imports in order to protect the domestic micro-computer industry is not advisable. Rather, the encouragement of the introduction of medium— and large-size computers will serve to increase the computer use in the society, which is beneficial to the computer-related industry as a whole in the long run.

Thirdly, it is not advisable to impose high import tariffs on software programs developed in other countries. The availability of computer application technology is essential for increased use of computers, and competition is necessary for the development of better software programs.

The promotion of the domestic computer software business (or software houses), requires governmental supports and actions in addition to the private sector's own efforts. Important measures are as follows.

1) Financing of software program development

Software companies need operating capital when they develop application programs, especially packaged programs for which there are no specific clients. But they usually find it difficult to obtain loans from commercial banks for such knowledge-intensive development efforts. There is thus a need to establish a system to improve their access to external financing.

In Japan, the Information-technology Promotion Agency, which was established in 1970 jointly by the government and the related industries, guarantees bank loans to software companies. The agency also provides funds for the development of promising general-purpose system programs or application programs proposed by software companies and assists the promotion of these programs among potential users. These activities significantly contributed to the growth of the domestic software business.

2) Promotion of software development technologies

There is a need to facilitate the technological innovations which improve the productivity of software development. In Japan, in order to solve the shortage of software suppliers relative to the sharp increase of demand for application programs, the above-mentioned Agency has organized software companies to implement the joint project called Operation Sigma which aims to automate the process of program development.

3) Promotion of custom-order program development

The growth of the computer software industry naturally depends on the increase of demand for software programs. The demand for software programs can be classified into two types. One is the demand for packaged programs which users purchase from the software market, and the other is the custom-order demand. The government has a role to play in increasing the latter type of demand directly and indirectly.

In Argentina, software companies are yet underdeveloped, and because of their inadequate experiences and knowhows, custom-order program development of some complexity involves risks to the clients. On the other hand, software companies cannot improve their knowhows because they receive few orders. In order to break this vicious cycle, the government can take two steps.

One is for the government itself to place orders for software program development. The other step is to provide tax incentives like shortened depreciation periods for the private sector users which place custom orders to software companies. In the beginning, it may be necessary to form an association of software companies which receives orders, organize project teams and takes the responsibility of program development.

4) Development of the software distribution market

Because the growth of the software market is a recent phenomenon, copyrights of software programs are not well established in many countries. In Japan, the Copyright Act was revised only in 1985 to include computer software programs. In order to facilitate the orderly development of the software market, especially with respect to packaged programs which are sold in larger quantity, it is necessary to provide legal protections for software companies.

With respect to custom-order programs which software companies developed for particular clients, it is advisable to establish a system of the central registry and referral so that other potential users can have access to them with the consent of the original clients.

5) Strengthening of computer education

It is said that university graduates who obtained computer-related education in Argentina often find it difficult to get proper employment due to the generally low level of computerization of the Argentine society. Moreover, their education is lecture-oriented

mainly because the number of computers available for their training is very limited.

As mentioned already, only ten ENETs have special computer courses for the training of middle-level technicians. Despite the economic stagnation, there is an annual demand for 10,000 units of micro-computers in Argentina, and it will be necessary to train an adequate number of computer operators.

Needless to say, the availability of competent software engineers and computer operators is essential for the development of the software industry. And in Argentina, it is especially important to upgrade their practical training both at the university and the ENET levels.

The qualification test for software engineers is about to be instituted in Argentina in order to improve the technical level of software development and to assess the level of competency among existing engineers. This is a very timely initiative. In Japan, the Information Processing Engineers Test began in 1969, and the number of the applicants who passed the test exceeded 100,000 persons.

6) Promotional campaigns and market research

On the part of computer manufacturers, dealers, software houses and other information service companies, it will be necessary to organize joint public relations campaigns for the popularization of computer use. They can also combine their forces to cultivate new users through market research on the possibilities of computerization in various businesses.

Public promotional campaigns can be organized jointly by the public and the private sectors. In Japan, October is designated as "Information Month", and various promotional activities are sponsored jointly by local governments, chambers of commerce and industry, and computer-related industries.

7) Promotion of the related information service industry

When it is linked with the development of communication technology, computerization opens up new business opportunities such as network information processing and data base service. Although it will be difficult to accomplish in a short space of time, it is nonetheless necessary to start investing in the development of data transmission lines to prepare for the age of computerized communications.

3-3 Numerical Control (NC) Machine Tool Industry

3-3-1 Characteristics of NC Machine Tool Industry

(1) Introduction

More than thirty years have passed since the prototype of a numerical control (NC) machine tool was first developed. During this period, the machine tool has attained remarkable progress in terms of function, so that it is now considered to be the most important component of all production machines. In major industrial countries the machine tool industry has taken a leading part.

The machine tool was developed as a result of the combination of electronics and mechanical technology, both of which have attained great progress after World War II. This combination is now called "Integrated Technology". NC machine tool is the good example of this Integrated Technology.

A machine tool forms an indispensable part of the production system, so that it is called the machine to manufacture a machine, or the "mother machine". Accordingly, the technical level for a machine tool represents that of the whole industry in a country.

In addition, the NC machine tool, which has been in full scale use since the 1960s, exerts wide influence on the industry because of its innovational features and great applicability. The influence of NC machine tool is highly evaluated not only by manufacturers but also by users and workers. Therefore, it is now said that the technology relating to NC machine tool, indicates the potentiality of technological development in a country.

The NC machine tool industry is a key industry in the major industrial countries to improve the standard of the existing machine industry.

In this section firstly we refer to the characteristics of the NC machine industry. In order to understand this industry, we will briefly describe 1) technology, 2) market and 3) future trend, based on the experience of the industry in Japan and other major countries. Secondly we refer to the present conditions, problems and tasks of the NC machine tool industry in Argentina, based on the results of the current study. Thirdly we present policy suggestions for promotion of the NC machine tool industry in Argentina. We will especially detail concrete implementation measures for encouraging the industry, by focusing on ways to increase demand and to improve technology, based on the understanding of the current conditions in the Argentine industrial environment.

- (2) Characteristics of NC machine tool industry
- (a) Necessity of developing and accumulating innovational technology
- (i) From development to accumulation of new technology

The technology of the NC machine tool has been developed after World War II. Development of the NC machine tool originated in the basic research conducted by Mr. J.C. Parsons in 1974 in the USA. His research aimed at the development of high-accuracy machine tool technology through the combination of the electronic technology with the high-level machine tool technology for machining airplane parts attained in the USA during the war. The prototype of the NC machine tool was the NC milling machine, released by the Massachusetts Institute of Technology (MIT) in the USA in 1952. Later, the machining center was developed in 1958, which is said to be a core machine among the current NC machine tools.

The progress in the development of the controlling system in the NC machine tool can be classified into several steps. The controlling system at the time the prototype was released was called "the first generation" system and contained vacuum tubes. In 1958, it had been developed to "the second generation" system with transistors. In 1964, "the third generation" system had built-in ICs (integrated circuits), and in 1970 "the fourth generation" system appeared. It made use of a minicomputer which had been an outcome of the development of the microprocessor by INTEL. In 1975, "the fifth generation" NC machine tool, with a built-in CPU, the result of development of the one chip microcomputer and its application, was put on the market. Since then, the CNC (computerized numerical control) machine tool has shown rapid progress.

The NC machine tool is operated by the instructions by a perforated tape in accordance with the numerical information representing a machining process. For this numerical control, the following processes are necessary: 1) preparation of the instruction tape, 2) a controlling system to perform information processing through the instruction tape, and 3) a servo-mechanism to operate the machine efficiently in accordance with signals from the controlling system.

The first process is called the program preparation stage. Here, the automatic programming system accompanying a computer is used when the program is to be prepared for complicated three dimensional work. For this purpose, the subroutine called ART-1 for PERT program was developed between 1952 and 1954. This APT (Automatically Programmed Tools) had been upgraded to APT-IV (developed in 1971) and supported the foundation of the NC language. It is the development of the ART that can be said to be the pioneer of NC software.

The new technology has been developed through the combination of new machine tool technologies such as mechanics, electronics and information technology (software technology), all of which were developed in the USA. Let us consider how this new technology has spread to other countries by studying the case of Japan which took up the new technology from the very beginning.

Around 1950, Japan lagged very much in electronic and information technology, being far behind Western countries. However, the effort to bridge the gap in NC machine tool technology was started very early. Table III-3-7 shows time lags between development in the USA and introduction of the developed technology to Japan.

In the USA, the fundamental research on the NC machine tool began in 1947. In Japan, in contrast, such research was commenced seven years later by the University of Tokyo and Tokyo Institute of Technology in 1954.

Regarding the development of a prototype, MIT's research information about the NC machine reached Japan one year after the development in the USA (1953), but Japan started the development as late as 1958.

However, with the completion of the industrial production and of commercialized machines, these time lags were shortened to three years. And in trial manufacture of a machining center, the time lag was shortened to two years.

The delay in beginning the fundamental research can be explained by looking at the history of the NC machine tool development. Japan had no necessity at that time to perform such sophisticated machining because of the lack of the aircraft industry. However, the shortening of the time lag is accomplished in the process of the development of the technology for commercialization and the capacity to adapt imported technologies. Meanwhile the development of software was actively carried out by the associated industries in line with the domestic production policy for computers in the mid-1960s. This suggests that the Japanese technical potentiality had reached a considerably high level. Accordingly, the time lag with the USA in the controlling technology, which is peripheral to the NC machine tool, had been shortened to one or two years by around 1965.

However, it could not be said that the Japanese NC machine tool had caught up with the world standard in 1965. Even if the differential became smaller in the middle of 1960s, Japan had to make effort to maintain high technological levels in related fields as well as accumulated technology. This is because the more sophisticated the technology was, the greater the effort had to be to develop it. Moreover, if creditability in the international market was taken into account, the differential between Japan and the USA became even clearer at that time.

In this connection, the Japanese output of NC machine tools was 39 units in 1965, while that of the USA was 2,100 units (54 times greater). In 1966, the US output was 2,926 units in contrast with the Japanese output of 90 units. In that year, the ratio between the output of the USA and Japan was lowered to 33 times. When these figures are indicated by the percentage of the NC machines among all machine tools, or the NC ratio, the percentage in terms of amount is 15.8% for the USA while 1.0% for Japan and in terms of number of units, it was 1.2% for the USA while 0.1% for Japan.

Table III-3-7 USA-Japan Technological Differentials in Development of NC Machine Tools

Stages of Developing NC Machine Tools

Technological Progress		The USA		Japan	Time Lag
Start of fundamental research	1947	J.C. Parsons	1954	Tokyo Institute of Technology, Ikegai Iron Works, Itd. Fundamental research on NC machine tools	7
Prototype machine	1952	M.I.T. NC Milling Machine	1958	Makino Milling Machine, NC Milling Machine	6
Completion of industrial production	1955	Gidding & Lewis, NC Profile Milling Machine	1958	Makino Milling Machine	m
Machine on Sales	9 9	Burg, NC Turret Drilling Machine	1959	Hitachi Seiki Co., Ltd. Fujitsu, Ltd., Mitsubishi NC High-Speed Milling Machine	m
Machining Center	1958	Keaney & Trecker	1960	Hitachi	2

NC Machine Tool Controlling Technology

Positioning control	1955	APT-1	1956	Fujitsu, Ltd., Punchpress	ref
Use of IC in NC circuit	1965	Bendix	1966	Fujitsu, Ltd., Mitsubishi Electric Corporation	r-1
Group automatic control	1966	Banker Ram Simultaneous control for 10 milling machines	1968	Ikegai Iron Works, Ltd. Simultaneous control for six NC lathes	0

Japan Society for the Promotion of Machine Industry Economic Research Institute, Research on Differentials in Technological Level, 1968. Source:

(ii) Characteristics of integrated technology

NC machine tool technology has been brought about by the integration of mechanical and electronic technology. In Japan, such a technology is commonly called "mechatronics," a new technological innovation.

The NC machine tool is a typical example of this innovation. In Japan the innovation in the NC machine tool technology has been made possible by the cooperation of Fanuc Ltd., which has developed small controllers (NC unit), Nippon Seiko K.K., which has developed ball screws, and material manufactures which have developed the Teflon technology. That is to say, the technological innovation of this type has been realized through the integration of many related businesses.

When we consider technological innovation, two types of innovation can be cited. One is the conventional "Technological Breakthrough" innovation. This type is typically represented by the "transistor revolution", and is the field at which Western countries are highly skilled. The other is the "Technological Fusion" innovation, typically represented by "mechatronics", and is the field at which Japan excels.

Table III-3-8 shows the characteristics of this type as cited by Prof. Kodama of Saitama University. As shown in the table, this Technological Fusion can be realized by integration of related businesses at the development stage. The effects of the development of this type of innovation extends to all related industries and promotes their growth.

"Technological Fusion" type of innovation begins when a company becomes interested in other fields than its major business. Different companies of different industries will, then, begin to invest in mutual research and development. In Japan, these activities were prevalent in the 1970s according to the analysis for 13 years from For mechatronics technology, the fusion of machinery 1970 to 1982. and electronics occurred in 1971, while that of the machinery, electronics communication and precision electronics machinery, machinery has taken place since 1975. When the fusion of technology among these four industries matures, the establishment of the "mechatronic technology" is said to have occurred. This coincides with the period of the Japanese NC machine tool industry's rapid In 1982, the technological fusion relationship between growth. ceramic, electrical and machine industries was formed, signalling the appearance of the "new ceramics technology". Moreover, in the new fusion has been appearing between the machining and assembling sector with the nucleus machinery-electricity relationship and the basic industrial sector with chemistry as a core. This has heralded the commencement of the "new materials innovation".

Table III-3-8 Comparison of Characteristics of Two Types of Technological Innovation

Types Characteristics	Technological Fusion	Technological Breakthrough
1	Can be realized by integrated R&D between related business.	Can be realized by leadership of a promi- nent company in a spe- cific industry.
2	Contributes to the gradual growth of associated industries.	Contributes to rapid growth of a specific business.
	The Japanese machine tool industry has grown by "mechatronics innovation", based on existing businesses.	Under the "transistor revolution", many vacuum tube manufacturers lost the business, while new enterprise such as Texas Instruments,
		Inc. have grown rapidly.
3	Conducted by the industrial policy. In Japan, the "Machinery and Electricity Act" was enacted in 1971 by combining the existing "Machine Industry Promotion Law" and "Electronic Industry Promotion Law". Under this new act, the "machinery-electronic industrial fusion" was realized.	Realized through the intensive research related defense.

Source: Fumio Kodama, Advocation of the Technological Fusion and its Analysis, Vol. 86, No. 806 Japan Machinery Society's Publication, January, 1986.

(iii) Necessity of improving the machine tool technology

At present, there are two basic movements in NC machine tool technology. One is toward the application of the micro-electronics technology to all production systems and the other is toward the application of the technology of super-precision machine. However, these two goals are not separate but can be achieved through mutual development.

The first trend can be seen in machine tool-based production This trend had been reinforced since 1970, with FMS (Flexible Manufacturing System) being introduced in the 1980s. In FMS, multiple NC machine tools are linked on unmanned carriages and controlled by developed with FA (Factory being This system is computer. Automation), in which production controlling softwares such as CAD/CAM (Computer-Aided Design/Computer-Aided Manufacturing System) and robots The integration of production process aided by are integrated. are called CIM (Computer Integrated Manufacturing). computers Completion of this highly sophisticated system is supposed to appear early next century.

In Japan, the research and development for the prototype of this production systems was conducted by the Ministry of International Trade and Industry from 1976 to 1983. The ministry specified the system to "Super-High Performance Laser Application Multiple Production System" and spent 13 billion yen.

Regarding the application of the technology of super-precision machining, users of machine tool prefers higher precision machine tools. From the beginning, improvement of the degree of precision in precision machine tools has been an important issue. At present, the precision required for general machinery is the 10-micron mark. However the sub-micron mark is required in the advanced industry. For this purpose, the more advanced machining method utilizing such as electrons, ion and electromagnetic waves is being tackled as a future development task.

Also in the NC unit, the one micron scale has become a matter of course, while the scale of 0.1 micron has recently been released. For many machine tools, the revolving speed of the main spindle has changed from the conventional level of 3,000 - 5,000 r.p.m. (revolutions per minute) to 10,000 r.p.m. Furthermore, in order to secure simple and easy use of the NC machine tool, the development of the automatic programming device, interactive CNC system and graphic display is under way.

- (b) Market expansion and business dynamism
- (i) Rapid switchover to NC machine tools

The full-scale production of NC machine tools started when Gidding and Lewis (USA) manufactured the NC profile milling machine. The market rapidly expanded, especially with orders from the aircraft and missile industries. From 1960 to the beginning of the 1970s, the market continued to expand, chiefly in the USA.

As a result, output of NC machine tools rapidly increased and the share in total output of machine tools rose sharply. In 1966, the so-called "NC ratio" was 15.8% in terms of amount in the USA, 1.0% in Japan and slightly above 1.0% in European countries other than Britain and France (both having a 2% ratio). In 1970, the ratio was 20.6% in the USA, exceeding the 20% for the first time. Meanwhile, the ratio in Japan rose to 17.3% in the same year, and reached 22.4% in 1976, similar to the ratio of the USA in that year.

Since then, the NC ratio in the USA has remained between 20% and 30%, recording 29.2% in 1980. The ratio in Japan reached 29.4% in 1978, 49.8% in 1980, and was as high as 70.9% in 1985. About 70% of the total output of machine tools in Japan is represented by NC machine tools.

The number of production of NC machine in 1977 amounted to 5,197 in Japan, exceeding the output of the USA. Furthermore, the number reached a record high of 45,524 units in 1985. This figure is about nine times the output, 5,124 units of the USA, and about 4.5 times the output, 9,966 units of West Germany, for the same year.

Table III-3-9 shows the trends of production of NC machine tools and its custom tariff in Japan. There was a drastic increase of production for the 20 years from 1965 to 1985.

Among NC machine tools, the NC turning machine and machining center are typical types. Each type occupies about 30% of the total output of NC machine tools in major industrial countries.

The conventional turning machines have been rapidly replaced with the NC turning machine with the increasing replacement rate in Japan. For example, the NC ratio of the turning machine in 1980 was about 35% in terms of units and 69% in terms of value amount. The ratio was raised to 53% and 80% respectively in 1985. This shows that the switchover from the conventional turning machine has progressed remarkably over the past five years.

As shown above, switchover to the NC turning machine from conventional type has progressed rapidly. Under such circumstances, the existence of a country's machine tool industry in addition to continuation of its domestic turning machine businesses, depends on whether the country can acquire the NC technology or not.

(ii) Trends in the diffusion of NC machine tools

The demand for NC machine tools is maintaining a remarkably rapid growth in all countries. The output of the NC machine tools in major countries was about 60,000 units in total around 1985. Further, the potential demand seems to be unlimited. Output of NC machine tools in 1984 was 38,036 units in Japan, 9,960 in West Germany, 5,150 in the USA, 2,630 in Britain, 1,294 in France, and 57,036 in total.

With regard to the demand, two trends are evident. One trend is in the demand for high precision machinery in the aircraft, missile and atomic energy industries. The other trend is in the demand for high quality and low cost machinery in machine tool, agricultural machine, construction machine and automobile industries.

Table III-3-9 Production of NC Machine Tools and its Custom Tariff in Japan

		
Presen≐	**0	1985: 45,524 units NC ratio Unit base: 26.0% Value amount Dase: 5,124 units in 1984
Revised on April 1, 1978	Effective custom tariff 7.2% 8.0%	NC ratio NC ratio unit base: 5.4% Value amount 33.6% U.S.A.: 21.5% in value amount base
Revised on April 1, 1973	Effective custom tariff 7.2%	1973: 2,583 units NC ratio in terms of value amount: 15.6% U.S.A. 18.1%
Revi April	Provisional custom tariff	1973: 2,583 NC ratio in t value amount: Japan U.S.A.
After Jan. 1, 1972	1. Multi-spindle automatic turning machine 2. Profile milling machine 3. Surface grinding machine 4. Thread grinding machine 5. Gear showing machine on the above: 10% on the above: 15%	1972: 1,387 units NC ratio in terms of value amount: Japan 12.0% U.S.A. 16.7%
Until 1971	10%, 15%, 25% on different type July 1, 1968 to Dec. 31, 1969 10%, 15%, 19%	1965: 39 units 1966: 90 units Total number of production of machine tools: 108,000 units NC ratio: 0.08%
Year	Custom Tariff on NC Machinery	Production of MC Machine

ource: Study Tea

However, since the oil crises in the 1970s, the demand has been directed to energy saving and cost reducing type machines in line with attempts at completion of rationalized production. This demand has resulted in medium and small sized NC machine tools with high reliability. Since Japan was a pioneer in the development and introduction of such machines, the demand for Japanese producers has rapidly expanded in not only domestic market but also in export market.

Most of the demand for the NC machine tools nowadays comes from the machine industry. In this connection, Japanese shipments of NC machine tools in 1985 were chiefly for the general machine industry (about 26%), automobile industry (12%) electric machine industry (6%), and exports (37%). Moreover, the demand from medium and small sized businesses amounted to about 60% of the total demand, of which small companies with 30 employees or less represented as much as 42% of demand. This reflects the spread of NC machine tools to small businesses.

In the comparison of Japan and the USA, the number of NC machine tools equipped is about 26,000 units of a total of 720,000 units of machine tools, the NC ratio being 3.6% in Japan. On the other hand, in the USA, the number of NC machine tools equipped is about 94,000 units out of 1,700,000 units of machine tools, or a ratio of 5.5%. Until the previous survey (1976 to 1978), the ratio was as low as 0.2% in the USA. Therefore, the USA made efforts to overcome the delay in introduction of the NC machine tool.

(iii) Business activities and dynamism

The comparison of business conditions between Japan and the USA, in 1977, which is the year of the census in the latter country is shown in Table III-3-10. The size of a company in machine tool industry is generally small in both countries. Small business with 20 employees or less accounts for 80% and 67% in Japan and the USA respectively. Of those with 100 employees or less, the percentage is 95% in Japan and 90% in the USA. Regarding the companies of more than 1,000 employees the number of companies is only three in Japan and eight in the USA. This shows that the machine tool businesses in both countries remain small.

Table III-3-10 Machine Tool Industry in Japan and the USA (1977)

	Japan	USA
 Number of Establishment	1,814	917
Number of Employees	47,700	59,400
Shipments	US\$1,890 million	US\$2,813 million

Source: Ministry of International Trade and Industry of Japan and US Department of Commerce

In the USA, the size of the company remained small since they could not accumulate the capital and preferred being specialized company. In contrast, Japanese machine tool businesses can accumulate capital and have reinforced the manufacturing and product developing technologies, despite their small scale. This is because they are subsidiaries or affiliated companies of large enterprises. However, since their market is very competitive, the Japanese machine tool manufacturers' net profit ratio against sales is 4%, being half of the counterparts in the USA. Since even in the USA the profit of the machine tool is said to be low also, improvement of the profit ratio is a future task for the Japanese manufacturers.

The factors which determine the competitiveness in international market are price and quality. Price competitiveness is achieved by lowering the price of product by efficient use of production process. For this purpose, the trend of labor productivity should be examined. For example, in 1981, the wage per hour of the US employees in the machine tool industries was about US\$9.2. In Japan, it was US\$6.2, including welfare charges. The output per hour is calculated at US\$231 in Japan and US\$130 in the USA, based on the performance in 1979. In 1981, the average price per one unit of NC machine tool in Japan was about half the price of that in the USA. Although Japan has attained superiority over Western countries in price competition, it will not always be able to maintain the superiority in the future, considering the present rate of wage rises and exchange rate.

In the area of non-price competition, there are many factors influencing the competitiveness of the machine tool, such as quality, fulfillment of ordered delivery date, after-sales service, maintenance and easiness of operation. The "quality" and "fulfillment of ordered delivery date" are the most important factors. The request for "after-sales service" has been increasing as automatization of the machine tools progresses. The "fulfillment of ordered delivery date" is defined as the speed of the response to market demand. As for the "quality control", maintaining high quality is deemed as the most important task in production strategy. In Japan, the "QC circle" system, in which the quality control is performed in production process, is well established. The Japanese quality control has clearly taken the lead, although Western countries have begun to introduce such systems.

3-3-2 Present Situation of Argentina's NC Machine Tool Industry

(1) Present situation of NC machine tool industry

The production activities of machine tool industry are shown in Table III-3-11, which indicates a peak in 1977, followed by a sharp decline down to 2,516 in 1982. In contrast, imports drastically increased from about 15,000 in 1980 to some 18,000 in the following year. Imports have notably decreased due to the strict limitation on imports that was enacted just after the establishment of new government, and such decreases have not yet been made up by corresponding increases in domestic production.

Table III-3-11 Number of Machine Tools in Argentina

(Units)

	Production	Exports	Imports	Domestic demand	Domestic procurement ratio (%)
	TROGUCTON	Lingor co	TMPOT CS	demand	14010 (0)
1970	14,254	2,599	2,861	14,516	80.3
1971	13,809	1,353	2,157	14,608	85.2
1972	17,000	1,661	982	17,221	94.3
1973	22,500	2,132	957	21,325	95.5
1974	20,251	5,138	7,763	22,876	66.0
1975	15,064	2,081	1,445	14,423	89.9
1976	16,243	3,402	1,620	14,461	88.7
1977	18,000	2,757	2,136	17,379	87.7
1978	12,640	1,890	3,117	13,867	77.5
1979	10,608	2,059	6,882	15,432	55.4
1980	9,094	2,362	15,068	21,800	. 30.8
1981	4,417	1,412	17,978	20,983	14.3
1982	2,516	318	1,394	3,592	61.1
1983	3,081	82	2,797	5,796	53,2

Source: D. Chudnovsky, The Diffusion of Electronics Technology in the Capital Goods Sector: the Argentine case, UNCTAD, 1985.

NC machine tools were first imported around 1970. 6 NC lathes, 1 NC milling machine and 2 MCs (machining centers), 9 in total were imported in 1970. They are regarded as small to medium size because of the averaged unit price of some US\$36,000 per NC lathe and of around US\$77,000 per MC. Since then, imports continued to increase, sharply increasing after 1976 when the import restrictions were abolished. The peak of 46 units was recorded in 1981. Imports, however, suddenly dropped in 1982 because of alterations in the trade policy enacted in the preceding year, with an increase in the imports of MCs.

Regarding the domestic production of NC machine tools, the first output was in 1979 as seen in Table III-3-12, followed by continuous production activities, reaching 10 units in 1983. It is expected that around 20 units were to be manufactured in 1985. For 1986, the top NC lathe manufacturer is reportedly going to produce 30 to 36 units, so that the total domestic production including those from other manufacturers can be expected to reach around 40 units. As to the number of existing units of NC machine tools, no accurate statistical data was found. The previous record on domestic sales suggests the figure is around 350 units, while some experts and industrial associations believe it to be over 500 units. Judging from this figure, the country's present production level corresponds to that of Japan in 1966.

Table III-3-12 NC Machine Tool in Argentina: Imports and Local Sales

(Units)

	NC	lathes		NC milling and NC drilling machines	Machining centres	Total	
	Imported	Local	Sub- total		Imported	Im- ported	Total
1970	6	, see	- 6	1	2	9	9
1971	2	_	2	٠ - سم	1	3	3
1972	· -	-			1	1	. 1
1973	2	_	2	, 1	3	5	5
1974	1	. . .	1	2	2 .	- 5	5
1975	2	· <u></u> ,	2 .	2	4	8	8
1976	5		5	1	1	7	7
1977	9	_	9	· <u> </u>	. <u></u>	.9	9
1978	20	_	20	1	3 5 ¹)	24	24
1979	23	1	24	2	51)	30	31
1980	29	. 2	31	4	6	39	41
1981	37	8	45	5	4	46	54
1982.	2	7	9.	4	5	11	18
1983 ²⁾	1	10	11	2	5	8	18
Total	139	28	167	24	42	205	233

Source: D. Chudnovsky, The Diffusion of Electronics Technology in the Capital Goods Sector: the Argentine Case, UNCTAD, 1985.

Notes : 1) Estimated

2) Eleven months

It has been reported that new and powerful NC lathes and MCs were exhibited in the Argentine International Fair of Machine Tools (EMAQH '86). These machines are of international standard, with components made mainly in West Germany.

Table III-3-13 lists the total existing number of machine tools in Argentina: 388,306 units in 1980, of which some 44% includes vintage of 10-years or less, and 56% between 10 and 20 years. There are a very few NC machine tools that have been introduced after 1976. Meanwhile there are many old machine tools - used for 20 years or longer - installed in the 1960s. Replacing old machines is essential for the promotion of Argentine industry, and such replacement will lead to a potential market for NC machine tools.

Table III-3-13 Number of Machine Tool Equipped in Argentina

Year	Units
1963	201,700
1964	208,237
1965	217,953
1966	223,748
1967	227,930
1968	235,807
1969	245,537
1970	257,598
1971	269,630
1972	284,155
1973	302,638
1974	322,237
1975	333,379
1976	342,840
1977	355,077
1978	363,618
1979	373,059
1980	388,306

Source: CIMHEA, Evolucion Reciente del Control Numerico en la Argentina, Perspectiva y Efectos de su Difusion 1983.

(2) NC machine tool manufacturers

In Argentina, there are six manufacturers of NC machine tools at present: the three leading companies - Turri, PROMECOR and CORACERO - and DARJE, and two press-related enterprises, DIAMINT and DAISA. In this study, the leading three and DARJE, a NC milling machine manufacturer, were surveyed (see $3-3-\Lambda(1)$).

In 1985, about 20 NC machine tools were produced in Argentina, 70% by Turri. The company made 14 units, including 3 for export to the USA. PROMECOR, the second largest, began production in 1984 and manufactured 4 units in 1985, while CORACERO began production as recently as May 1986. DARJE displayed its Series 7 module type NC milling machine in the Machine Tool Show held in May, 1986. These moves represent the emerge of the NC machine tool industry in Argentina.

(a) Development activities

Turri, PROMECOR and CORACERO began to develop their own NC lathes in 1979, while DARJE started development of the NC milling machine under technological license from a foreign company in 1980.

According to the officers of a NC machine tools company, there are two reasons why they developed NC machine tools through their own technology, which are regarded reasonable. First, license-based production though promoting production, will delay the licensees' developments of basic technology due to restrictions imposed by the licensers to use specified components. Second, it is important to establish systems which provide complete services to customers, especially after-sales services of products through their own technology.

On the other hand, the DARJE which concentrated on milling machine manufacturing, through experience from its license contract, has recently succeeded in developing its own machines capable of satisfying international standards. Also, one of the three leading lathe manufacturers started development using its own technology, together with the production under a license agreement with a foreign company, and has recently commercialized sophisticated high-speed and high-precision machines under license and also using its own technology.

The introduction of overseas technology quite often enhances the domestic technology. In such cases, efficient learning to use this imported technology in the short term as well as improving their own technology will be a very important point.

For instance, in Japan, 58 different technologies were introduced relating to machine tools such as large NC lathes between 1970 and 1973 which is the first peak of technological introduction. In the same period, a special committee for NC machine tools was organized in the Japanese Association for Machine Tool Industry to strengthen technology for the performance and quality of NC lathes and MCs.

(b) Production systems

There are two types of production systems found among the four companies. One is a mass production type, as seen in one NC lathe producer and one NC milling machine producer, both of them are producing small- and medium-size machines. The other is the so-called order production method seen in the other two companies who manufacture machines for use in automobile production. One of them is producing small-, medium- and large-size NC lathes and horizontal and vertical MCs, and is developing models of FMS that combine an MC and an unmanned flatcar.

These four major companies have the production facilities and processes which are similar to those in advanced countries. The plant of Turri, the largest producer of NC machine in Argentina has an annual production capacity of 1,000 units, equipped with 90 machines in total. Those are 13 lathes, 8 boring machines, 11 milling machine, 12 drilling machines, 9 planers, 13 grinders, 5 gear planers, and 13 miscellaneous devices including saws and broaching machines. Of these devices, there are two NC lathes, one NC milling machine and one MC. The other three companies also have their own NC machines and ultra-precision jig borers. The equipment of the top four makers can be regarded as relatively sophisticated.

It is observed that few NC machines have been installed in the four companies. Usually NC machines are manufactured by NC machines. The production of high-quality NC machine tools requires parts of high quality. Also technique on programming of machining data accumulated in the process of manufacturing NC machine tools is important. This accumulation of data cannot be obtained by the production of conventional machine tools. Japanese manufacturers of machine tools have actively introduced NC machines into their manufacturing processes, upgrading production technologies.

At present, in Argentina the main components such as NC units, spindle motors, servomotors and ball screws are imported, while saddles and heads are produced locally in Argentina. It is said that over 90% of the components are imported from abroad. Some of surveyed companies believe that in the government's plan for domestic production of NC machine tools, it will be necessary to start license-based production of sophysticated components.

(c) Marketing activities

The demand in the Argentine machine industry is now extremely stagnant, representing the inactive investment activities of industry as a whole. The demand for machine tools, which fell in the latter half of 1985, recovered slightly in the first half of 1986.

Turri is scheduled to produce 30 to 36 units in 1986, roughly double its production from 1985. DARJE and PROMECOR are preparing for the export of NC machine tools, with the latter company planning to produce NC machine tools in Brazil with increased efforts in after-sales service.

As mentioned above, the four companies put emphasis on capturing domestic demand and preparing for export market. However, measures to increase domestic demand does not appear to be enough. According to users of NC machine tools in Argentina, there are several reasons to introduce NC machine tools: Those are 1) to modernize and rationalize plants and to improve product quality by renewing facilities, 2) to cope with fluctuations in demand and 3) to complement the low quality of labor by NC machine.

Since there is a potential demand for NC machine tools in Argentina, practical measures to enlarge the market should be promoted. There are several possible measures for this purpose such as loans from the National Development Bank (BANADE) and introduction of a subsidizing system. If no demand-prompting measures are executed in parallel with loans from BANADE, the growth of the Argentine NC machine tool industry will not be easy.

Also scrap-and-build policy to promote the replacement of vast numbers of existing machine tools in Argentina can be considered worthwhile. A similar measure was implemented in Japan in the 1960s during the era of facilities modernization.

On the other hand, all four companies regard Argentina's foreign trade policy as the key to the development of future markets. The development of markets in Latin American countries is very important to have enough room to absorb the products from Argentina.

It is a question of whether Latin American countries, which were once great markets for Argentina's traditional lathes, will buy NC machine tools from Argentina to replace their existing tools. Such strong demand will not come back to Argentina without the implemention of a appropriate supporting trade policy that promotes the export of NC machine tools.

(3) NC machine tool market

This section will provide an overview of the present situation of the NC machine tool market in Argentina, on the basis of opinions of users obtained in this study.

A major purchaser of NC machine tools is the machining industry. Three machining companies were surveyed in this field study (Profiles of these three companies are shown in 3-3-A (2)).

- 1) RESORTES ARGENTINA S.A.I.C., though not directly using NC machine tools, is a leading maker of coil springs for automobiles and it uses a number of automated machines.
- 2) METALURGICA ROMA S.C.C. is a high-precision parts processing company producing line printer parts, gear column parts for NC machines, and transmission box parts for automobiles. It employs four machine center.
- 3) VENTURI HNOS. S.A. manufactures machine and assembly parts for farming tractors, diesel engines and hydraulic transmissions; and industrial and construction machines such as forklifts and steamrollers.

Users of NC machine say that domestically produced machines will be considered for the next installation if quality is acceptable. Most companies are taking a policy that imported machines will be used to produce sophisticated products for export, and domestic machines are used for the production of lower quality. This is because of short history of the domestic NC machine tool industry in Argentina. It is judged that the reliability of NC lathes are high although that of MCs is lower in Argentina. The only way to overcome this problem is to accumulate the experience obtained through the actual use of MCs to improve the reliability.

(4) Present industrial policy

In Argentina, at present, no integrated policy exists for the promotion of the NC machine tool industry. It is reported, however, that new policy for the promotion of the NC machine industry is expected to be enacted late 1986.