
パラグアイ農業総合試験場アルト・パラナ分場

1) 小麦諸品種の地域適応性試験

バ農総試アルト・パラナ分場 担当者 青山千秋・関 節郎

'80年度

近隣諸外国において侵良品種とされている小麦並びに当国の試験場で選抜された品種(又目的) は系統)が当地域の土壌、気候にもよく適応し、高い生産力を揚げ得るか又、これらの品種はどの様な特性を現すのかの検定を前年度予備選抜した品種について行う。

供試品種 ①Protor ②Chile 39/75 ③ITAPUA-25 ④ISW-12/37 ⑤EL Pato (対照品種)

播種期 1980年5月28日

栽植密度 25cm 条播

試験方法

供試面積 1区当り5m×2.75m=13.75mの4反復乱塊法

播 種 量 1区当り 138g(100kg/ha)

施 肥 配肥 10-30-10を150K/ha を発芽後40日目に追肥

種子処理 HOMAIを種子量の 0.5 % 乾粉衣

その他 病害虫防除、除草等は、一般耕種法に準じて適時に行う

・収量について

今年度の供試品種は全品種、対照品種EL PATOより収量が低く全体としても統計的に有意差は認められなかった。収量に対して大きな悪影響をもたらした要因として品種の生産能力以外に早魃と宿害による被害があげられるが主因となったのは霜害である。

早魃による害としては、生育初期の頃約1ヶ月間の早魃に遭遇し、初期生育に甚大な 影響を与えた。

試験結果

その後適度の降雨があったが、全般的に降雨量が少く、麦作期間の平均降雨量484.0 mに対し、今年度は298.9 mに留まった。従って稈長も昨年と比し10~29.6 に ど低くかった。

箱書では、強・中・弱を含めて本麦作期間中(6月~9月)16回の降霜日を記録したが、収量に対して最も甚大な影響をもたらしたのは、9月17日の晩霜であり、これが出穂後、40日~45日目の未熟子実の発育を停止せしめた(約5時間半氷点下の気温が続き観測史上最低の−2.5℃を記録)

・生育日数について

Protor がEL pato より5日程熱期が遅く、他の品種は、EL pato と同程度

であった。

今年度各品種とも全生育日数が昨年と比し、6~9日遅延した。この遅延は霜害によって主茎穂が不稔化した為、その補償作用として、無効分ケツ穂が有効化しそれが熟期を遅れさせたものである。

・倒伏性について

前年度Protor に倒伏の傾向が見られたが、本年度は早魃によって全般的に茎長が低かった事と、稽害による穂重の軽量化によって倒伏現象は見られなかった。

・病虫害について

今年度斑点病 (Helminthosporium 5P) による病害が多発したのを始め、赤サビ病、クドンコ病、赤カビ病も発生した。

斑点病に対しては、全品種とも感受性を示し、特に ITAPUA-25 ISW12/37 が 顕著で chile39/75 Protor は中程度であった。本病に対して、抵抗性を示し た品種は皆無であった。

赤サピ病に対しては、EL Pato ITAPUA-25以外は感受性を示し、特に chile 39/75が顕著であった。又、クドンコ病に対しては、 chile 39/75 以外は抵抗性を示した。

客虫では、全生育期間を通じてアプラ虫の発生が認められたが、特に生育初期の被害 が顕著であった。

以上総合すると、今年度は、度量なる気象、災害のため、各品種が具有する特性を充分に 把握する事が出来なかった。

赤サビ病、クドンコ病に対して、感受性を示した、 chile39/75 オミットし、他の品種については、次年度更に、観察を試みる必要がある。

験結

果

試

				赤 白6割赤4割				,					-	_		
			# 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1.1 485 30 37.3			,		,	,	, ,	ų.		•	,	
一九八〇			# 6 6 E	╌┼╾┤		育日数	4	es e	m	3 6		型	0058	0 8 6	133	
0年~一十	主		超 (数全生			1			中	9 1,	6	2 2 8	
九八一年度	要成果	及 養 股	一			桔実日	6.2	6 8	9 9	9 9	- 4	100	4,01	3,91	4,53	
の試験条	の具体	挺	全 粒 数 全 粒 (20株) (20+)		•	出穂まで日数		6 9		7.0		4	846	864	7 5 9 9 5 7	
件かよび主	的データ	小麦通応		16.5 70 16.7 82	5.20播種)	成熟期	[7]	0 - 13	1	10-12	3.75 m²)	''	832	7.9.5	1,102	- - - - - - -
要成績具体	1	兴	有効差数 1.7 2.0 2.0	2.1	数 接 (80.	視期加	-15	(-	4 (1	別収量比較幾(1	<u> </u>	406	660	1,127	
的数字	_	開業	ラケッ数 1.1 2.2 1.7	1.3	育田数	田田田		2 8 2					+	+	+-	
7		茶	₩ <u> </u>	-	#	発		6 1 7			18, , ,	1	935	1,161		
	***	※	項目 品種 Protor Chile 39.75	1SW-12/37 EL Pato	水二表	面種 福	tor	Chile 39/75	1SW-12/37	il Pato	· 六	四回 祖田	101	hile 39/75	1 tapua - 25 1 SW-12/37 EL Pato	

2) 小麦の赤サビ病ウドンコ病に対する抵抗性品種探索試験

'8 0年度

パ農総試アルト・パラナ分場、 担当者 青山千秋・関 節郎

	_		小麦の病害中、主として赤サピ病、クドンコ病に対する抵抗性品種の探索を目的とし、併せ
	目	的	て、栽培上決定的な阻害要因となるその他の病害もあればこれをチェックする。
			試験方法 風場観察(自然発生による)
1			供試品種 カピタンミランダ(CRIA)より導入した54系統及び当場本年度の適応性
İ			試験、適応性予備試験に供試した9品種(又は、系統)計、63品種(又は系
.			統)
	試	鮽	区制面積 1区 2×50=1mtの1区制 畦間25cm×条播
l	-		播種期 1980年5月29日
Ī	方	法	罹病度及び判定方法
			葉身の罹病率によって、罹病度0~6(Brasil方式)にランク分けして標示し
			た ₀
		٠.	又、抵抗性、感受性の判定は、それぞれの品種のステージに於ける最高の罹病度×
			全体の罹病度率によって標示した。
۱.			(1) 赤サビ病 (Puccinia recondita)
			本年赤サビ病の発生は、7月中旬に初発が認められたがその後、蔓延はゆるやかで
٠		_	で8月下旬頃に並程度の発生となり、9月中旬頃急級に増加した。10月3日の
		٠	最終調査では、例年と比較して全般的に罹病度は高く本試験供試品種の中で(昨
1			年も同様品種を供試)昨年の罹病度を遙かに上廻った品種もいくつかあり、本年
١		-	の発生が異常であったのか、病原菌のレースが変ったのか、疑問が残ったが、何
1	試	験	れにしろ年々増加の傾向にある。
ļ	結	果	A -無病斑系統(全生育ステージを通じて全て標徴を現わさなかったもの)
l			437/78 582/78 619/78 175/78 239/78 22992/78
1	-		836/78 1021/78 148/78 252/78 261/78 24171/78
		- 4	27743/78 ITAPUA-25. IBWSN-213/76 CE-458 16系統
	, ,		Bー拡大抵抗性系統(侵入を許し、わずかに標徴を現わしたが殆んど伸展しなかった
١			60)
- 1		,	
	. *	ĺ	CP-782 ITAPUA-1 ISEP-73/76 C-7596 ISEP8/78

(2) クドンコ病 (Erysiphe graminis)

本年ウドンコ病は例年と比較して全般的に罹病度は低く最も高い罹病度を示した 品種でも2×100と軽徴であった。従って罹病度の高い年に於いても同様の抵 抗性を示すかどうかの疑問が残った。

A 無病斑系統 437/78 449/78 582/78 1038/78 175/78 239/78 259/78 23144/78 ISEP8/78 ISEP46/78 ISEP-161/78 TIATUA-1 C-7639 503/69-E IBWSN116/76 CP-781 CP-782 4421/78 552/78 836/78 1021/78 148/78 237/78 252/78 261/76 24171/78 27743/78 ISEP45/78 ISEP-133/78 123/78 TTARUA-25 C-7605 475/73-E ISW-12/57 ARG 8/78 CP 786 CP 777 37系統

B 拡大抵抗性系統

(3) 黒サビ病(Puccinia graminis)

耐病性系統 437/79 外 54系統(別表参照)

839/78 1系統

(4) 斑点病 (Helminthosporium sp)

本病に対して侵入抵抗性又は、耐病性を示した系統(又は品種)は、見あたらな かった。

その中でも 23144/78 C-7639 ARG8/76 の3品種が葉に発生する斑 点病と穂に発生する斑点病に対して若干、拡大抵抗性の傾向が見られたが満足の ゆくものではなかった。

(5) その他の病害

Gibberalla Zeae septoria N等の発生が散見されたが生育及び収 量に対して影響を及ぼすほどの事はなかった。

試

簌

果

結,

	• 1	_	=				_	_	=		_	_			=	_	=			_		_		=			_		_	=	Ξ,		
-		HELMIN-DE ESPIGA	2× 70	3× B0		3× 90	4×100	00125	2017			4× 90	3× 80	4× 90	4× 60	3×100	4× 80			4× 95	- 1			2× 30				2× 10				2× 50	
		HELMIN-DE	3×80	4×70	3×90	4×90	3×80	6 6	00 X	3×20	3×70	4×90	3×60	4×80	2×50	3×80	3×60	3×60	4×90	3×80	2×60	3×90	4×100	4×80	3×80	3×80	2× 5	2×10	3×10	2×20	3×30	3×50	
1980		01010	0	0		5 × 2	XI.	,	3 4	,		0	0	0	-	0	0	0	0	2×80	•	•	2×80	•	2×30	2×50	2×10	•	2×10	2×30	0	0	
年度の		ROYA DE	0	0	o		,			, -	_	0	0			0	0	0			0	0	0		•	0	0	0	0	0	0	0	
試験条	主要成	ROYA DE	2× 40	3× 80			06 ×c	2			2× 60	0	0	0	0	2× 90	06 ×5	4× 90	0	0	6×100			3× 80	•	6×100	001×9	001×9		6×100	6×100	2× 30 ·	
件からよ	果の具	#F	4421/78	552/78	618/78	620/78	705/78	030/10	040/10	148/78	237/78	252/78	261/78	24171/78	27743/78	1SEP45/78	1SEP133/78	123/78	ITAPUA-25	1SEP73/76	C-7605	475/73-E	CH1LE39/75	15H-12/37	IBWSN213/76	IBWSN 44/76	1BWSN 13/76	ARG 8/76	CE-458	CP-7716	CP-786	CP-777	
び主	体的デ	HELMIN-DE	3× 80	2× 80				n c		0 X			3× 60	3× 50	2× 30	1× 10	06 ×5	3× 90	3× 50		2× 10	5×100			4× 80		3× 80	4× 90	4× 90	3× 80		3× 30	4× 90
要成績	1 9	HELMIN-DE	3×90	3×80	3×60	4×80	4×90	200	200	DO XE	3×80	3×50	3×60	3×50	2×30	3×80	3×60	3×80	4×80	3×70	2×10	4×90	3×90	4×80	4×10	4×90	3×90	3×80	02×2	3×70	3×70	3×50	3×80
具体的	•	01010	0	0	0	2× 20		X 2	G 5			0	0	2× 30	0	0	0	0	0	2× 80	0	0	2× 60		2× 80	2×100	2× 50	0	2× 80		0	0	2×80
数字		ROYA DE	. 0	0	0	2×10	0	o	- c			0	0	0	0	0	0	0	2×30	٥	0	0	0	0	2×30	2×50	2×50	2×10	2×50	0	0	0	0
	~ -	ROYA DE	0	3× 80	0			20 00 00		2 X X 2 Z		0	2× 60	0	2× 40	0	5× 90	3× 80	0	6×100	4× 90	5×100		5× 90	0	2× 80	4× 80	3× 50	6×100	4× 90	3× 70	1× 50	4× 80
•:	-	18	437/78	449/78	582/78	61978	658/78	165/18	97/10	1029/10	175/78	239/78	259/78	22992/78	23144/78	15EP8/78	1SEP46/78	1SEP16/78	1TAPUA-1	09/182	C-7639	503/69-E	PROTOR	1155/75-E	C-7596	1BWSN31/76	E-126/77	1BWSN116/76	1BWSN23/76	1/17-E	CP-781	CP-782	1BR SW173/76

3) 各種殺菌剤による小麦のウドンコ病、赤サビ病に対する散布効果試験

パ農総試アルト・バラナ分場 担当者 青山千秋・関 節郎

1980年度

小麦の常発病害ウドンコ病(Elysiphe graminis) 、赤サビ病(Puccinia recondita)に対して市販のいかなる薬剤が最も防除効果を有し、どれほどの散布間隔が適当かを識る。

供試薬剤及び濃度

	殺菌剤名	化 学 名	ha当換算散布量
1	Bayleton	Triadimeton	0.5 kg
2	Benlate	Benomyl 50%	0.5 kg
3	Ceresan	Fenil Mercurio	0.5 kg
4	Dithane M45	Mancozeb	2.5 kg
5	INDAR	Triazole	0.5 ℓ
6	Tecto	Tiabendazol	0.5 ℓ
7	Tilt 25EC	CGA64250(Triazol)	0.5 ℓ
8	Topsin M	Thiophanato metil Thiophanato metil 20%	0, 5 kg
9	Mugiban N.P	Mancszeb 50%	0.5 kg

- |

試験方法

供試面積 10m×3m=30m 1 区制

供試散布器 MICROI

MICRON (電池式噴霧器)

供試小麦品種 281

Mental School

供試薬液量 400ℓ/ha 当り

1. ウドンコ病 (Elysiphe graminis).

A 発生消長

試験結果

本試験区の発病は、7月10日頃初発生を見た。そのため7月15日にオー回散布を実施したが、全般的に発病程度は低く最も高かった8月中旬でも指数3以上には至らなかった。しかも9月に入ってINDAR散布区を例外とすれば、若干旧菌糸は見られたものの伸展性は認められなかった。これは9月上、中旬の降雨の影響(例年の如く降雨によって菌糸が洗い流された)と強度の赤サビ罹病に基因すると思けれる。

即ち INDAR 散布区は赤サビ病を抑え、9月上旬迄茎葉の葉緑素を保っていたが 為に、ウドンコ病の継続寄生を受けたものであり、他の区は赤サビ強度罹病に伴 り黄化により寄生価値を喪失したものと判断される。

従って本年度、ウドンコ病に対する適正散布間隔の推定は不能に終った。

B 有効薬剤

Bayleton 過去3回の成績と同様25日間隔、35日間隔の両区共に完璧

にクドンコ病をコントロールした。

Tilt

始めて供試した新薬であるが35日間区でわずかに発病を見た

ものの25日間隔区では完壁であった。

Topsin

前二薬剤と比較するとかなり効力は劣るも初期の抑制効果は認

められる。

2. 赤サビ病 (Puccinia recondita)

A 発生消長

本試験区での赤サビ病は、ウドンコ病よりわずかに遅く7月14日頃初発生を見 たが、8月中旬頃に至って急激に密度を増し、9月上旬には、指数4以上となり、

INDAR散布区を除く全ての処理区でもはや抑制不能となり全葉黄化した。

B 有効薬剤

INDAR

25日、35日の両区共にほど完璧にコントロールし たが、本年の如くこれほど試験区内外の病原菌密度が 高く、しかも本種281の如く赤サビ感受性品種の場 合は、前期はともかく後期は、25日~30日が限界

と思せれる。

Bayleton, Tilt 両薬剤の効能を見ると非常に酷似した抑制作用と効力 を有している。共に9月中旬迄、即ち才3回散布後、 20日位迄は、最低の発病率に抑えたが、それ以降急 激に病原菌密度が高まり、抑制不能に終った。とのと とは1978年の試験でも同様であり、両薬剤とも予 防的効果は高いが治療的効果は無いといえる。本年の 例からすれば散布間隔の前期25日後期20日が適切 と思けれる。尚との三薬剤以外は全て無効であった。

結 果

試

験

	試験条件の	樂角	散布		5日間		沙三 0	a 9). 7. 1 -1	Ż	水二回 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9-	8 -26		
	の数字へ	判员	2.模示力	-	5日#	" "	オーロ	<u>9</u> 8	0. 7.	15 方	二回	8-:	1 9 	オ三回	9-
	*(実			ンコ病		化 病率		-+	1~5	6~25		50 5		┼─┈	\prod
	実施の方法		赤サ		L	能病率			1 1~5		16	3 - 30 3	4 1~50	5 51~	80 8
九八八	法)				指	指数に	数 (1 <u>-</u>	2		3	4	5	
0年			TE 7730	212,			=			- 7	-				
ì	-				2/50	- E		900	S &	2× 5		Ü	900		900
九八			bi: E£	Puccinia	14 / A go	10 (1×10)	20 (1×20)	20 (1×20)	(02×1) D2	o '	20 (1×20	* *?	5 (1×5)	40	40 40
一年		-	£ .	ď	14/14	0	0	٥	6	3 (1×3)	٥	3 (1×3)	5 (1×5)	o	٥
度の			3 5		22/5ep	ı	1	1 -	,	240	ı	,	,	,	1
試験	,		布	Elysiphe &	14/Ago	0	160	180 (2×90)	100		160		60 (2×30)	120 (2×60)	285 (3×95)
条 件				8134	14 / Jul	5 1×5)	0	5 (3×1	0	-	5 1×5) (\$ (1×5)	5 (1×5)	-	6
か よ					25/Sep 1	400 400 (5×80)	(00(×9)	009 (001 ×9)	570 (6× 95)	10 (1 × 10)	600 ×8)	320 (4×80)	(031×9)	600 (6×100)	600 (6×100)
び主	-	-		recordita	28./AR0 2	400 (5×80) (5	009	9009 ((6×3))		~	690 ((e × 100)		0D9	009 (ex 100)	600 (6 × 100)
要成績			- ₩.		4/Ago 22	5 1×5) (5		1 0 (1×1)	10 57 (1×10) (6×	0	3.0 (1×30) (6	1, 5 (4	20	20 (1×20) (6	30 (6
科 具 体	! !		E	Paccinia	14/3ul 4/	8	0	5	0	3 (1×3)	0	3 1×3) (6	5
的			47		e ş	r				4.0 8.0.)		7	.,		 · ,
数 字	-		£ 2	B 1 H 1	28/Agu 25/		180	270 3×90)	01	5 140 210 2· (1×5) (2×70) (3×70) (3×	160 2×80)		60 (2×30)	160	150
			*	Liyeibbe gramınıs		• .	<u> </u>	5 180 270 (175) (2×90) (3×90)	80 140 (2×10)	0 2 (0)	<u> </u>		40 (2×	180 160 (2×90) (2×80)	0 (3)
				411611	1 4/4 80	-	120	180 1 (2×90	8 (2×4	140) (2×70	160	-	<u> </u>	180	270
				-	14/33	-	-	S Č	.	S S	<i>a</i> ,	5 (1×5)	- -	5 (1x5)	5. (1x5)
_			THE COLUMN TWO IS NOT	* / * / * / * / * / * / * / * / * / * /	3 3	et on	27.6		Dithane M45	* Y	,		, e	pou	i go
					Œ *	Bayleton	Bealate	Ceresan	Di th	INDAR	Tecto	1111	Tapsin	Mugibon	Testino

4) 小麦の斑点病に対する各種殺菌剤効果試験

バ農総試アルト・バラナ分場

180年度

担当者 青山千秋・関 節郎

•			
	•		ウドンコ病、赤サビ病と共にバ国の主要病害となりつつある Helminthusporium
,	-		sp (当場ではDreschslera Sorokiniana sacc ではないかと推測するが
	Ħ	的	未同定) に対してあまり注意が払われておらず又防除薬剤も判然としていない。
1			そとで本試験では未同定病害なるも市販薬剤の中で防除効果のある殺菌剤があるか否かの
	·		調査を行う。
		-	1. 供試薬剤 (1) Benlate (2) Bayleton (3) Tecto (4) INDAR
١		, '	(5) Mugibon (6) Topsin (7) Ditane M45 (8) Tilt
			(9) Ceresan P.M
		-	2. 試験機度 (1)~(5)の薬剤は 800倍液 533倍液 の 2水準
٠ ا			(6) " 666 444 Ø "
			・予備試験 (7) " 266, 160 の "
			(8) " 1300 800 Ø "
			(9) # 800 ー の 1水準
	尪	験	・圃場散布試験Caresan 800倍液533倍液の2水準とした他は予備試験と同農
:			度
-	方	法	3. 試験方法
:			(1) 予備試験(ペトリ血内発芽試験)
			罹病薬を各薬液中に10秒間浸漬し、ペトリ皿内で脆子発芽の有無検定する
i		-	(2) 風場散布試験
1		-	予備試験で効果有りと思けれた薬剤のみ圃場にて散布試験を行う。
;	, ,		4. 圃場試験薬液量 400 <i>2/</i> ha (展着剤sticleer 0.05%加用)
			5. 供 試 噴 霧 器 Jacto 手押式噴霧器
٠ ا	,	Ì	6. 供試小麦品種 Alondra 80年6月3日播種 8月25日出穂期
^	,		10月21日成熟期
		· [7. 区制面積等
1		}	(1) 予 備 試 験 各要因、各水準共に一皿内に罹病薬 5枚を入れ検定
	,		(2) 圃場散布試験 1区1m×1mに散布 1区制
	-		(3) 散布時期及び回数 オ1回出穂揃期後、15日間隔の計3回
	•		

予備試験

Mugibon 533倍液 Tilt 800倍数 で胞子に発芽が見られず又、Benlate533 倍数 Dithane M45 160倍液 Tilt1,300倍数でわずがに発芽が見られた程度であった。

従って以上の薬剤は、一応効果が期待出来るものとして圃場散布を行った。 圃場散布試験

- 1. 葉の病徴 散布時期には既にわずかに発病(2×10)があったがTilt, Mugibon, Dithane M45 の3薬剤の両水準で伸展性は抑止された。
 Benlate Ceresan は殆んど無効に終った。
- 2. 穂でけ、葉に対するより効果け劣ったが、Tilt の両水準、Mugibon の 0.75/ha で抑制効果が見られた。

試験

総合考察

結果

Helminthosporium spでも葉の病害と穂の病害に対して薬剤の効果に相違があるところからレースが異なるのではないかと判断されるがこの点不明である。

いずれにしても現薬剤では、Tilt, Mugibonが完べきではないにしる最も効果のある薬剤といえよう。

中でもTiltは、ウドンコ病、赤サビ病にも効果のある多目的殺菌剤として農家レベル では好都合の薬剤である。

根本的には、種子処理法によらざるを得ないと思けれるので次年度の課題とする。

-119-

		₩	Ceresan P.M	800	0.5	1			,	Testigo	I	3×95	06×2	
-		(予奮試聚	111	800	0.5	1	-	-	-	P. W	7.5	3×80	2×70	3
,			Т	1,330	03	+	=		ι	san	0.7	en en	- 6	
一 九 八	, ,	皿內罹病漿発芽試験成銜裝	Mugibon	533	075	1	ε	,		Cere	0.5	3×80	2×80	
		茶	Mug	800	0.5	#								,
年 ~ 一	土	病 莱 尧	e M45	160	2.5	+				Benlate	0.75	3×60	2×80	*
九八一	要成	日子	Dithane	266	15	#		25%		Ber	0.5	3×90	2×80	
年度	果		in M	444	0.8	#	•	激試容圖)			×	.,	. (•
の試	の具	٠ ٢ ٢	Topsin	999	9.0	華		桜 ○		B M45	2.5	2×15	2×60	-
験 条 件	体的	没強力	INDAR	533	0.7 5	#	= 充芬大	┣01:1111の各種殺菌剤効果試験成績扱		Ditane	1.5 kg	2×20	2×70	
\$ 1	デ	~ 概	2 -	800	0.5	*	-	· 联			kg	2	- 101	
び主要成	7	6 題	cto	533	910	#	- 中海芬中	西南河		n o d	0.75	2×15	2×30	- L
成績具	1	- 0 - m	Tec	800	0.5	#	₹.	24 種		i a g i	kg	5	0	-
体		pori	uo	33	975	±	十兔芽少	9		×	0.5	2×15	2×80	,
的数字		inthosporium O各種殺菌剤設潢	Bayleton	800 5	3 50	#	1			1	0.5	2×10	2×40	•
	:	Helm	ate	533	075	+	3527	ntho		1 1 1	б	₩	₩.	3
		放码	Benlat	800億	0.5	#	一角芽兒られず	le lmi			0.3	2×15	2×40	ĭ
		小麦の病害 Helmi	名	度(皓液)	Ha 当機算液量	の形成	•	小麦のHelminthos			t / ha	斑	然	, ,
• "			*	楓	新 22 23	五			-		■	業の	類の	

5) 小麦のアプラ虫に対する各種殺虫剤の効果試験

パ農総試アルトバラナ分場

180年度

担当者 青山千秋·関 節郎

目的	/j\ž	とのアプラ虫に対する各種殺!	虫剤の効果と適正散布置	1を譲る
	2.3.	場 所 アルトパラナタ 耕種概要 品種EL PA 栽植密度 1 区制・面積 2.5 m×10	ATO 播種 1980 8cm×条播	9年6月8日
	4.	供試薬剤 ん 商 品 名 1 Pirimor	一般名	製造会社名
		3 Lorsban 4F	Permetrina 50 Clorpirifos Methamidofos	DOW Chevron chemical
試験		5 Tamaron 6 Belmark	" Pyretroide 10	BAYER SHELL
方法	-	8 Ripcord	Fenithrothion Cipermetrinz Dimetoato	IHARABRAS SHELL Montedison
-		11 Monofos	Monocrotofos "	SHELL Mbiya
	•	供 試濃度 各薬剤2水準	にて散布し、散布濃度に	C商低があった場合濃度を修正する Stickerを水の量に対して
	i .	0.5 % 加用使用散布器 Micron数 布 日 才1回 19		4時30分~16時30分)
	9.	才2回 (修		月15日(14時30分~15時)
	今	年度業アプラ虫、穂アプラ虫	1共に、例年より発生が3	多く、特に生育初期の小麦に甚大な

被害を与えたが、その後、発生は緩慢で生育後期の頃には、アプラ虫による被害は、懸念 された程の事はなかった。

剱 活

結 果

本試供試験薬剤の中には、アプラ虫に対して、特に無効という薬剤は認められず経済性を 考慮しなければ各薬剤共に濃度を適切にする事により、防除は容易であり、特に限定され る薬剤はなく、アプラ虫の防除薬剤としての有効性はあるものと思われる。

一方適正薬液量については、気象条件による効力の差を ha 当り散布水量(本試験では ha 当り、400ℓと充分な水量を散布したが、トラクターによる薬剤散布では、実際問題として400ℓもの水を散布する事は難しく、通常散布量は150ℓ~200ℓである)によって効力が若干劣ると思われるので一応殺虫率95%に達する濃度(推定濃度とした薬剤もあり)を農家レベルでの適正薬液量とし対1表に示した。

		数 :	具体的	主要成績	おして	試験条件	年度の計	九 八 一	年	九八〇	_	- }	
-		-	-	۶ ا	デ	具体的	果のロ	要成	#		-		
	-					}		 	 				
-	1			. 3	- <u>1</u> 2						*		
A I	ĸ	₩ K	型 元	- 1	- 1			Ī					
*		1				2				3			展表フムラ
*/		製業	数	¥		**	£	¥		#	2	*	てのha当り
基 田 郑	表 格 四	(ha当り)	15時間後	4 0時間後	₹ #a m	(ha ma)	1.5時間後	4 0時間後	表 田	(4≝ ≝4)	1.5時間後	4 0 時間後	出漢
Pirimor	80.8.12	100%	95 %	g 16	80 8.12	150 %	100 %	4001					1009
Ambush 50	z	200 ₀	100	100	n n	300 ∞	100	100	80 8 15	100	\$06	98	2001
Lorsban 4F	"	3000	06	06	=	200	100	100		-	,		400
Hamidop	*	3000	100	100	*	500	100	100	8.15	200	80	06	250
Tamaron	"	3000	100	100	"	200	100	100	8 15	200	90	100	200
Belmark	,	200œ	20	50	"	300	06	100					300
Sumithion		400cc	9.0	06	" "	.600	100	100				-	200
Ripcord	"	1000	7.0	0.6	"	150	80	06	8, 15	300	85	100	200
Rogor	=	400œ	100	100	" #	600	100			-			400
Azodrin	"	30000	100	100	и	500	100	100	8 15	200	9.0	1 00	200
Monofos	11	3000	100	100	п	500	100	100	8.15	200	8.0	9.8	200
Cymbush ULV	и	2,000°C	100	100		3,000	100	100	8, 15	1,000	7.0	86	1,000
	-										-		
4		, !			,	·		-		!			;

・6) 180年度小麦の早期栽培試験

バ農総試アルトパラナ分場 担当者 青山千秋・関 節郎

8 0年度

	慣行の小麦播種期(5月中旬~6月下旬)では開花期に霜害遭遇の危険性があり、又、生
	育初期寡雨、成熟期多雨と必ずしも気象条件が適切でない為収量に安定性を欠くきらいが
目的	త చెం
	更にアプラ虫、赤サビ病、タドンコ病等の病虫害が常襲多発してとの防除の為にかたりコ
	スト高になっている。これらの諸問題は慣行より早期に栽培が可能であればある程、回避
	出来る筈であるという前提のもとにその可能性と早期栽培に於ける問題点を調査する。 `
	供試品種 1. IAC-13 2. EL Pato 3. ISW-11-34 4. ISW-12-37(早生群) ₁₂
_	5. IAC-5 6. ISEP-79/76 7. Reina 8. NAICA (中生群)品
	9. CTN-7 10. Alondra 11. Tingalen 12. Naofen (映出)種
試験	播種期 第1回 2月25日 第2回 3月5日 第3回 3月15日
121 32	为4回 3月25日
方法	供試面積及栽植間隔 1区当1.5m×3m=3.75m (1区制)条間25cmの5条×3mの条播
	播 種 量 120kg/ha(45g/3.75m²)
	施 肥 整地時に配合肥料(16-48-12)を散播後ローターリー掛け
	種子の予措 殺菌剤Bayltan 0.2% 殺虫剤Aldrin 0.5%種子湿粉衣
	収量について
	全播種期ともに3月下旬から4月下旬にかけて高温と寡雨によって全品種、生育と収量
	に大きなダメージを受けた。特にオ一回、オ二回播き早生、中生系のオ三回播きの生育
,	不良は80%との高温寡雨によるものと判断される。
-	オ三回播きの晩生系とオ四回攝きの全熱性群については、更にその上、6月4日、6月
試験	27日の降霜による子実の発育停止が収量に大きな影響を及ぼした。
	出穂後の霜害危険期間は、これまで約15日と推定したが本年度の場合30日以上経過
結果	した子実もその後の発育肥大をさまたげている。
	これは、温度と低温持続期間によって異るものであり、一率に霜害危険期間を出穂後の
	経過日数で決定することは出来ないことを物語っているといえよう。
	登熟について
• ;	早生、中生系品種でけ本試験で登熱不揃いになり熟期に20~25日の相違が生じた。 これは遅発分ケツ穂が有効化した為であるが、主茎穂の不稔が補償作用としその二次生
L	これは発光カック橋が自然化した時であるが、土土橋の小橋が開資作用としての二人生

長をもたらしたと見られる。

病害について

クドンコ病は、本試験期間中全く発病がなかった。

赤サビ病は、5月中旬より一部の品種に発生、品種によってはかなり強度のものであったが標準播種期の発生から見ると軽微であった。

Helminthosporium sp による斑点病は、4月下旬より発生し、全品種ともに 生育上大きな障害となった。

総 括

今年度4月に例年と比較し、高温寡雨という気象条件であった為、早期栽培は完全に失 敗に終った。低温要求度の高い小麦にとっては、2月の播種は無理の感が強く、又、4 月に入ると6月の降霜が危険である。

従って早生、中生では3月中旬、晩生では3月上旬が霜害安全期間といえよう。 病害については、今年、高温の為、斑点病が多発したと思けれるが、それを除けば赤サ ビ病、ウドンコ病は殆んど問題にならないし、アプラ虫の発生も標準播種期間中の1/10

次年、再度試験を試みる。 -

以下でちった。

試験

絽

果

-125 -

ľ		- 1			_	_			=				_	$\overline{}$	_		_	$\overline{}$		==			=	_		=	_	_	
				1454	2	2×10	3×70	2×80	2×50	3×70	3×70	3×10	2×70	3×80	2×80	3×70	3×30	3×80	3×60	3×70	3×70	3×30	2×20	2×10	2×50	3.480	4×10	3×60	3×60
		,			一番ようごかり	5×95	4×95	3×80	4×90	5×5×	4×70	3×80	3×95	5×90	4×90	4×90	4×95	5×90	06×4	4×95	4×95	4×90	3×90	3×90	3×9.5	2×90	3×80	2×30	2×30
				8 0	赤かど	1×10	2×20	2×20	2×30		3×40	2×20	2×30	10	1	2×10	3×50	2× 5	ı	02×2	3×20	2×10	2×10	-	2× 5	,	3×30	3×10	3×10
	1980			在	来れた	2× 80		3×100	3×100	0	0	0	0	0	0	0	0	0	. 0	a	0	3× 50	4×100	3×100	3×100	0	0	0	0
	年			Attacke	THE ACTION	2.5	5	G	0	2.5	10	5	0	2.0	20	10	0	20	20	S	0	15	20	2	0	15	15	0	0
ĺ	度			_	(投票格)	0.1	0	7.0	50	9.0	0.6		70	0	9.0		0	0	80	-	0	0	0	0	0	0	0	0	_
	の試	主		被 上推步6年	合 (组	15 100	100	\sqcup		5 9		20	5 7	90	-	90	06	06 (100	0.6	20	30	30	40	100	06	80	30
	験	要成		## \	0	275	15.0	17.5	7.5	126	42.8	32.5	80.	17.5	57.5	325	37.5	450	005	12.	62.5	37.5	180	7.5	200	30.0	30.0	30.0	22.5
	条 件	果		± •		5.0 0	48	5.2	55	45	43	47	50	44	45	46	5.0	47	40	47	48	84	7.8	8.0	8.2	45	47	47	48
	tr tr	の具		0	松原の「	14 8	12	10	11	12		ھی	S.	15	15	0.6	1.0	1.5	15	12	11	14	1.4	15	15	12	11	12	12
	Ĭ 75	体] - 	22′	-	14 %	10	0	10	90	2 1 2 0	20	0	1	- 5	00	0	7	2	_	9	1	9	3	6		3	9	~
	び _. 主	的		新	Hi.								_	8	3			2	2		1	4	36	9	3	2	2	26	32
	要	デー		文	3,75	162	205	225	317	170	225	200	219	127	144	202	165	152	159	190	235	127	242	408	285	7.7	9.4	172	177
	成績	9.	· ·	<u>10</u>	の機の	5	筆	ā	럾	듄	モ	海	Œ	ф	£	不懂	Я	4	ŧ	類	æ	不	不	t	Ą	#	ф	獲	惩
	. 具.	- -	品質	大学 10年 元		2.0	0.9	06	80	7.0	80	80	9.5	50	9	80	60	2.0	7.0	80	06	7.0	70	6.5	7.0	40	40.	40	20
	体的		期裁	荽		(30g	(105)	(132)	(122)	(98)	(102)	(192)	(22)	(16)	(83)	(121)	(111)	(68)	(96)	(E88	(112)	(133)	(145)	(138)	(128)	(101)	(101)	(135)	(128)
	数		9	拉		□ 1	6-18 7-23	11	1-25	1	6-15	ì	ו ו	-28	6-19	-20	7-14	5-24		6-23	1 1	-31	-28	-31	-31	1	9-20	7-25 (-31
	字	-	小炭	凝	¥	(43 F 5	>	(46) 7	(49)	(40)		>	(20)	(41) 5	(46) ⁶	(44) 7	(47) 7	(43) 5	(47) 6	(47)	(46) 7	(29)	(59)	(38) 7	(61) 7	(48)	(20)	(54) 7	(21)
	i	٠.	年度	Ŧ	₽	4810B		4-30	5-13	4-7	4-20	5-1	5-14	4-8	4-20	4-28	8-11	4-10	4-31	5- 1	5-12	4-23	5-3	5-12	5-25	4-15	4-24	5-8	5-17
	ļ		8 0	五		2A25 B			3-25	2-25	- 5		_	2-25	3-5	3-15	3-25	2-25	- 5	3-15	3-25	-25	3	-15	3-25	-25	αι 1	-15	-25
				#			:1-:			0	180		- I	7		M.S		_		-AS	щ	2 01	-)¹		(7)	94	.6∠	EE	1
	,			B					. 1	+				#I	_								£	-	4	l _	12		_

	<u></u>	<u> </u>	<u> </u>					=	=	_	_	<u>=</u>	=	_		=		_		==			_	_	_		 1			7
	24 = 4 t	寥	5×60	3×80	3×70	3×80	4×80	2×70	3×70	3×80	3×80	3×80	2×80	2×20	3×70	3×80	3×80	3×80	3×70	3×50	3×50	2×70	3×80	3×80	3×60	3×30				
	رُ ا	# Tellar	4× 95	4× 60	4× 90	4× 80	4×100	4× 90	3x 80	3× 80	4× 95	4× 70	4× 70	3x 95	4× 90	\$ 8	4× 90	4× 80	4× 95	4× 88	<u>x</u>	3× 80	3x 35	3× 90	9\$ ×2	3× 70		,		
) 3 /4	歩った	3×20	3×20	2×30	2×20	2×20	3×20	2×20	2×10	3×40	3×30	0	2×30	3×20	3×40	2×30	2× 5	3×50	3×10	2×10	2× 5	3×20	•		o	6月12日			
	₩.	*	0	0	0	0	0	3×100	3×100	3×100	0	0	3× 50	3×100	0	0	-	0	0	0	6	0	0	0	0	0	対が被出			
主		後となる	15	18	S.	0	15		o	_	15	10		0	18	10		٥	02	. 01	0	0	τυ	8	0	0	3 N - 2 5			
要	L	(金)	50	- 09	70	60	99	06	30	40	50	40	40	20	100	06	06	70	90	80	90	40	40	 0£	- 2	· •	6.И.1.В			
成果	**	⊕	_			_	<u></u> -			_	2,	-	,					-				-					Į,			
D	 -	数	40.0	57.5	37.5	375	20	175	9	100	22	25,0	650	37.5	325	300	250	750	475	425	625	650	650	475	47,5	475	- 15日埼			
. 具	,	41	7.0	82	78	80	45	50	5.	51	76	76	7.8	7.9	52	. 46	47	20	26	67	99	68	62	.57	9	61	В 3.11			
- 体	0 0 5	益	11	==	14	12	. 5	26	2	9	12	14	14	15	10	=	10	8	<u></u>	10	10	7	12	0.7	13	15	5815	_		
的	# # # # # # # # # # # # # # # # # # #		9	0	18	22	16	20	20	o	12	2 1	0	46	0	0	0	0	0	13	11	15	2.2	18	63	76	5日播きげ	て数した。		
デ	₩ ₩	3.75 ##	196	264	246	292	280	205	349	355	240	382	140	525	134	143	145	112	219	234	265	360	128	3.45	405	428	3.11-5	医佐森烯)		
)	*	極	接	緩	援	養	-	在在	復	£-	後	英	超	£Κ	海	選片		æ	在	-	卷, 中	ex	極	八 茲	=	t.	5 H 1 B	ncon 糖剤質)×(猪肉体等)で投した。	_	
1	1 規設機	_	7.0	7.0	80	9.5	80	8.0	09	06	06	95	06	9.2	80	8.0	96	100	9.6	80	06	95	100	. 08	. 02	100	日本書台、	日間 第20年 17日(〇)6万の第2	-	
	 		(144)	(144)	(146)	(136)	(88)		(138)	(23)	(139)	(149)	(145)	(142)	(117)	(131)	(132)	(123)	(123)	(142)	(138)	(136)	(154)	(199)	(993)	(150)	2月25日播息		v ⁺	
	展	(生青日数)	7-20	7-27	8-8	8-8	5-25	30.1		7-28	7-31	8-1	8- 7	8-14	7-23	7-22	7-25	7-26	7-28			- 1		8-18	8-18	8-24	止集枯死率の調査は、	fr.		
	英	田	9 (42)	ж (50)	7 (53)	18 (54)				1		(89) 2	14 (60)	30 (66)		-		30 (99)				- 1			8 (85)	18 (85)	止集枯死 ³	なおおだれた。	_	
-	#)	-25 4-	5 4-24	5-	55 5-18				5 5-17	25 4-25	5 5-	5 5-14	25 5-30	25 4-25	5 -2	_	25 5-30			_	7		5 5-28	-9 91	55 6-18	쑀	~		
-	華		~	n i	g 3−15	3-25		မ္က ၁ 1 ၂		3-25			2-15 CN	3-25			81.8 3-15	3-25			1 n i .	=	2) to	Na 3-15	3-25	,	-		
			_		- -		! -	_ }		_	<u> </u>	_	_		g	_	_	_	#H	_		1	‡	_	_			-		. ل

Į		3			0 ,	<u>.</u>	י מ	٦	~	_	0	<u>.</u>	<u>.</u>	2	9			4	E.S.	<u>ري</u>	ó					
-		+		#4	- 109	3	9 5		<u>ള</u>	42	137	231	<u> </u>	42	84.	21.	52	73	145	22	216	35				
.		* *		下旬	20.5	0.8%	9 6	139	486	26.9	521	161	303	2,9	293	12.5	43.9	149	54.4	450	112.1	140.4		1 В		\exists
`	:	۲	· HEE	4 40	464	1 8.0	200	183	28.1	156	37.5	0.09	359	338	301	4.9	46B	4.9	71.7	548	37.6	5.4		9月1	-2.5	5.30
		# # # # # # # # # # # # # # # # # # #	\$ 5x	F 40	421	284	37.1	7 8.4	33,1	9.0	449	2154	530	5.5	2.5.2	36	343	536	192	327	299	109		3月27日	-010	
九八		,	0	中西	202	8 3	20.4	5.0.5	13.4	1 7.1	11.2	1 4.3	103	94	112	7.4	9'0 1	10.9	124	8.5	14.3	146		18	,4°	430
O 年	主		題	40	196	1.8.1	17.4	2 0.9	125	187	11.0	145	66	6.8	1.2.8	7.5	1 0.9	83	137	8.0	158	165		Е	Z-	
一 九	要		南	40	206	C.8.1	186	202	13.7	137	11.5	17.5	10.6	10.4	0.01	9 1	8.6	140	182	8.8	18.2	14.4		7,831	-16°	5.5
— .	成 果		**	ा का	20.2	8.8	1 9.4	202	12.7	18.9	11.7	11.0	107	66	100	5.8	112	8.6	103	85	138	12.6		Я16В	-0.1	0.3
度試	の具		p	中西	31.4	31.6	300	31.8	264	30.0	23,4	24.2	21.6	21.1	224	21.4	22.7	2.3.7	255	234	2 7.1	263		В	. 8	0.5
条 件	体的	,	題	下他	315	31.5	583	326	25.3	31.6	225	2 5.8	220	193	23.9	22.5	233	213	25.7	242	280	2 6.0		1 Н	-	
r V	デ		年亚	ф ф	310	31.7	298	31.2	27.7	27.4	238	251	22.5	229	21.7	23.1	22.1	262	2.5.0	21.8	27.1	28.4		7 H	-16	630
要	· タ	- 12	*	中中	31.4	31.5	31.6	31.4	892	31.1	240	21.4	21.4	231	214	187	227	24.0	23,4	241	263	24.2		6月27日	-28°	8 00時間
續具	1	各件。	÷ 0	中亚	25.9	24.6	242	252	2 0.3	232	17.6	186	16.2	15.5	16.9	1 4.4	17.0	17.3	196	16.2	21.5	2 0.4		4B	-10	
的 数	-	15	(I _{se}	1	253	24.5	232	2 6.0	194	247	1 6.7	195	16.3	13.8	187	150	173	154	21.4	1 6,0	228	2 1.5	1 % 	9	_	聖教
子			_ III	#	2 6.0	24.4	24.0	24.9	21.0	20.4	19.0	212	165	155	163	163	16.1	201	19.7	153	20.9	213	14	Æ	K) 気温持続時間
-		4 4	χ \$ \$	中平	264	252	25.6	24.7	2 0.6	244	182	15.1	16.1	17.9	158	1 1.9	17.5	16.5	17.7	17.3	206	183	8 0 年の	进	最	0 で以下の気温
•		-	?		68~79年	,80年	68~19	, 80	62~89	08,	68~19	,80	68~79	, 80	68~79	.80	68~79	, 80	68~79	, 80	68~19	, 80	`		,	
• <u>:</u>				щ·'	2 H	<u> </u>	67			4 H H				6.Я						H 6		1,0月		,	1	
	八〇年~一九八一年度試験条件および主要成績具体的	八〇年~一九八一年度試験条件および主要成績具体的数主 要 成 果 の 具 体 的 デ ー タ ー	一九八〇年~一九八一年度試験条件および主要成績具体的数字主 要 成 果 の 具 体 的 デ ー タ ー ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	一九八〇年~一九八一年度試験条件および主要成績具体的数字 主 要 成 果 の 具 体 的 デ ー タ ー ※ 対象域区の世間質如祭祭小函財 0 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	日 1 日 1 日 1 日 1 日 1 日 1 日 1 日 1 日 1 日	- 1 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 2	10 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	8 0 年度小校技品間中の気線条件な	1 1 1 1 1 1 1 1 1 1	1	Ray Ra	8 0 年度 12 12 13 14 15 15 15 15 15 15 15	1 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	8 0 年限 19 2 24 24 24 24 24 24 24 24 24 24 24 24 2	1 日 1	8 0 年度小波波 用間中の 交換 子	1 日	1 日	1 日 1	19 19 19 19 19 19 19 19	19 19 19 19 19 19 19 19	日本 日	19 19 19 19 19 19 19 19	10 10 10 10 10 10 10 10	19 19 19 19 19 19 19 19	19 19 19 19 19 19 19 19

7) 大豆諸品種の地域適応性試験

バ農総試アルトバラナ分場 担当者 青山干秋・関 節郎

近隣諸外国において優良品種とされている大豆品種並びに当国の試験場で選抜された品種 目的 (又は系統)が当地域の土壌、気候にもよく適応し、高い生産能力を揚げ得るか、又、こ れ等の品種は、どの様な特性を現わすかの検定を前年度予備選抜した品種について行う 供試品種 ① IAC-78-1022 ② IAC-77-1016 3) IAC-7 4) IAC-6 5 TOXARIN-31 6 IAC-77-1047 D Bulk & IAC-77-589 9 IAC-78-1021 @ SRF-300/79 ① Hampton(paraguay) (①~②迄は79/80 年度に伯国 Campinas農試より導入した品種又は系統〉 播 種 期 1980年11月5日 供試面積区制 1区当り2.6m×6m=15.6㎡(収穫2.6m×5m=13.0㎡)乱塊法 3 反復 | 栽 植 間 隔 65cm×条播(間引後8cmの株間とした) 試験 肥 構種15日前に重過リン酸ha 当換算150kg全面散布後ディスクハロー 掛け。 方 法 そ の 他 病害虫防除除草等は、一般耕種法に準じて適期に行う。但し、今年度種子 処理は行わなかった。 調・査 概 要 o茎長等特性調査は、欠株の少ない1列1mの平均もしくは総計にて表し た。但し、百粒重は、3区の収量からクズ粒を除いた平均の粒重で示し o成分分析は、CAICISA に分析依頼、成分は、子実水分148の時の o関係生育日数は、開花迄日数に対する生育日数の割合を示す。 o収量は一定の算定規準により隣接株が補償し得ない欠株数を補填した 1. 収量について 今年度対照品種Hampton の収量を凌駕したのは、わずか3品種で前年度と比較す 試験 ると、全品種に収量ダウンが見られ、その低下率け、平均40あとすこぶる大であった。 結 界 又、との対照品種Hampton と指数では優ったIAC-78-1021Toxarin~

3 1 IAC-77-1047の3品種もHamptonとの収量には、統計的な有意差が見ら れず成果は低調に終った。但し、今年度の平均収量は、3 ton/ha をオーバーしてい るのでそれほど極端に低い収量ではなく前年度が高過ぎたきらいがある。本供試品種中 SRF-300/79 は、発芽不良(発芽率15%)により最低収量に終ったが比較的欠 株の少ない 1 ㎡当りの収量では、 IAC-77-1047 に次ぎ高い収量を示しており粒重 も供試品種中最大であった。

2. 熟性について

開花迄日数は、前年度より平均して2日遅延したのに反し、生育日数は平均7.6日短 縮して、前年度V群に属した品種も今年度は、全品種IV群の熱性を示した。この中で これまで数年間の試験でVーb群として既に熟性が確定している対照品種Hampton も今年度熟性に変異を来したところから熟性については、今年度が異常であると判断し、 今年度の熟性は、参考に留め、前年度のデーターを似って当面その熟性とする。

3. 茎長について

IAC-6 IAC-7 SRF-300/79 の3品種は前年度より、低準長に留まったが、 他の品種は、前年度より平均22%強伸びているHampton が現普及品種中では、高 い茎長に属するが、 IAC-77-1016 IAC-77-1047 を除き他は、全てHampton より高くやせ地向きの品種であり、とりわけ枝条伸育無限のToxarin は、昨年より 更に伸育し、約160㎝に建したが、IAC-7と共に当地区では伸び過ぎて倒伏の危 険性のある品種である。

試験

結果

4. 着莢状況について

一株当り着莢数では、前年度最低であった。IAC-77-1016 が今年度最高を示し たが、他の品種は全て100以下であり、前年度と比較して、平均78系と大巾を減少 を来し、不稔莢は、前年度より3.3倍増加した。

一英の粒数では、前年度と同様、Toxarin は、3粒莢の割合が50 あもあり、多収 の要素を有している。

5. 気象と生育

前年度と比較して、茎長が3品種を除き平均223伸びたに反し、収量の構成要素た る着夾数の183減、不栓莢の3倍増粒重の193減と全般的な収量減を来たした原因 は、全て降雨の時期的不均等分布にあると見られる。

即ち、生育初期より、開花最盛期迄、降雨は順調もしくは過多であった為、孝長は伸び開 花期の降雨が不稔をもたらした。

一方生育後期にけ降雨不足で枯熱れ現象を呈し、結実日数の短縮が、粒重の肥大をさま たげた。

6. 結

降雨の時期的不均等に基因して、各品種が具有する生産性を充分引きだせなかったと とと、適切な栽培条件でなくとも全般的に既普及品種より、収量は劣っていないことか

ら本試験の結果から適応性を否定することは、不適切な感があるので更に一年品種保存 園場で観察を続けることとする。

但し、IAC-77-1016 は花及び莢の色から未固定もしくけ、他品種の混ざりが見られたので、まず品種の純化を必要とする。

 7						_	_	_		_	_	_			-		_	-		-		_						—	-	
	. !	 		IK.	** ** **	5.85	84	159	62	\perp	_	_	240	4.5	41	7.9			77.44.57	13	13	ı	1.1	0.7	10	2.3	13	2.3	=	13
,				初华	3位录	24.94	12.4	4	4	_	_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{}}}}}}}}	-1		_	299	265		新虫类	原点者	;	1	1	٠	!	ī	,	03	1	1	7
九九		-		_	*	845	_	4	4	-	-	-1		Ц	_	15.2		F X O *	S, M, S	07	9.7	2.1	13	ı	2.0	ı	2.0	,	,	2
八〇				10	004#	8 1434	7 1534	_				_	_	_	_	0 1260		17.	教育统	0,	1	1	ì	ı	ı	ι	0.7	1	0.7	03
年し	± 1	,		8	다 및 게 기		1.2.1		_	_	_	_				27 100			19.89.E) - C	q4	V = C	7-4	K8	v – c	q-^	q-^	4-v	6-7	q 1
一 九	要		*>/		洲 年	1,68	2020 1.8767		3190 19200					47 13877	2175 15465	90 19727			9 M 6	V-C	1 v - c	1 v = c	1 V -C	1 v-b	1 v = c	1 vc	1 v - b		1v-b	1 × 1 C
۸ -	成		一高粉	L	E独立	1 1	_		- 1							220.0 219.0		\$2	(A) (A)	27	H	196	175 1	_	Н	-{	+	-+	4	2.00
年 度 0	果の			(3)	C162)	9 23	10 25	-	-+	-	-1	10 23	⊣		10 26	8 22			BR	152	⊦⊣	159	156	148 2	Н	152	┥	+	148 2	158
の試験	具		石在對緊皮徵	*	铁 数の维珠	4.6		59	56	3.6	-	_	4	36	-	6.0			班	90	\vdash	{	-	_	Н	Н	+	+	+	1.8
条件	体	•	酒店店	k1	神疾肥位	L	Ц	_	4	_	_	4	_	198	_	121		*	UNITEDATION REPORT	38	H	25	18	_	\vdash	\dashv	-	42	-	25
r I	的デ		種の逆	Ħ	# J	1259	861	107.1	1383	1590	927	1166	1062	1268	1005	943			MECLINE DI		+	-	89	-	Н	-	-	59	1	79 8
び 主	-1-	- 	超品	-	#	87	9.8	L			102	_	1	108	73	100		-	_		H	-	-	_	Н	4	4		Ц	4
要成	9	- , 	大田	(6) - # 2	5 m	2818	3090	3139	2925	3441	3292	2491	3062	3503	2357	3237		成分的數	素白質 原枯分	25 18745	 	-+	\neg	2 2061	╁╌╁	-	-	_	_	8 1818
維具	1		年度	担で	# #	3664	_			4473	4279	_				4208		*	_	36324	36.08	35.86			П					3688
体的		-	80/81	3 34	m	-	-	_								4427		#3	仲青性	展	¥ 4	"	N	其		4	1,	兼	軍	=
数字		-	æ	図	6						٠,					4842		(#	අෝ	#	4 - 1. b	東	u	震	Н	16-16	推		Æ	定
-			_			_		-		 i	_				_	3 3356		₩.	 8 ଶ	#	双篇	*	*		軍	Ŗ	跃		₩	*
					 型の守払 高 森 数	198	143	217	201	221	173	219	215	213	4.7	168		F.	, S 41	¥	印第	Œ	*	a	¥	Ē	Ð	Œ	Ę	¥
-	-				æ	-1022	-1016			31	-1047	_	-588	-1021	67/0	-			Æ	8-1022	-1016			-31	-1047	_	-589	-1021	97.79	
. 1	'			}	c§	AC-78-1022	IAC-77-1016	IAC-7	AC-6	Towarin-31	AC-77-104	Bulk-43	IAC-77-589	IAC-78-102	SRF-300/79	lamp ton		ļ,	15	AC-78-	-	1 AC-6	LAC-7	Toxarin-3	AC-17-104	Bulk-43	IAC-77-589	I AC-78-102	SRF-300/79	Натр t ол
·		- "		Ц			7.	_1	-1			-	لــ		٠,	ت		<u> </u>	_					Γ,		ت	ᆜ		<u>"</u>	لت

8) 大豆の熟性群別播種期試験

: パ農総試 アルト パラナ分場

80~81年度

担当者 青山千秋·関 節郎

		. ,					
-	11				_		~12月5日と定め
	的			もいかなる熱性群	の品種をい	つの時期に他们	付けるのが最も有利。
		の検討を行	<u> </u>	·		<u> </u>	
		供試品種					
		熟	性 品	種	熟性	. 45	種
		1 -	a SRF -300	Williams	IV — b	Bragg Davis	IAS-4 Br-3
		· I -	b Wood wort	:h	V a	yoban	=
		п —	a Colombus	Michell	v — ь	ViÇ,oja S	an Luiz
		и –	c Pampeiro	Parana	V — c	IAC-3 I	AC-4
試	験	ш —	b Perola	Horosoy-71	VI - b	UFV-1	
- 1		п	c Nise-Gal	axia P⊷78			-
方	法		熟性分類は、1	979/80年度の分	類による。		
		播種期	10月25日、11	月5日、11月1	5日、11	月25日、12月	月5日の5回
		栽植間隔	(1) 1群、11群の	品種迄は50㎝条	播 (2) Ⅲ 郡	羊、IV群の品種	は60㎝条播
			(3) V群、VI 群の	D品種は70 cmの第	播、株間の	間隔は、間引い	って 8 cm 2 本立とし1
		面積区制等	等、各品種、各回	共に5列×4 mと	し、収穫は	(4 m×3 m (有	逆って収量の1区当
,				$.2 m^2, 3 - 8.4 m^2$			•
		管理 適時	寺殺虫剤、殺菌剤	の散布を行う。		· ·	
		△気象条	牛と生育日数		-	* -	
-		今年度	12月4日から2	5日迄の約22日間	引 2.6 mm 3 月	15日から4月	13日迄の30日間
		1.4 mm E	:いり二度の長期	寡雨条件に遭遇、	後者の期間	が『群c類以	上の晩生系品種の結
	-	期であっ	った為、ことどと	く熟期が早まり、	生育日数が	短縮した。((旦レV群に属する品種
,		の11月	15日以降播き	は、この期間を中	間に仕さんだ	そのでそれほど	影響を受けていたい
		従って熟	熱性分類も50%	の品種が昨年と所	属を異にす	る結果となった	。(Parana種のみ
試	験	は、逆に	て生育日数は10	日遅延した)	^		
,		△茎 長				·	-
結	果		25日~12月-5	日迄の標準播種期	別内であった	に為かそれほど、	大差がなかった。
		△分枝数		mental militaria	m	India to A A D A	
				群を除いては 11	月5日播き	が劣り11月1	5 日播きが時に優っ
_		△分枝数~		مصند و دو را مقدما		د. داد وفار ومست	+10= 1 1 0 1 L L
						っているか、牛	芽収 11月 15日播き
٠;				が最も少なかった。 タイは、主要型の	=	A 1+44 m 244	## L m to ## 12 58*** -
							€数との相関は稀薄* ○で分枝数と養薬数。

の間にかたり高い相関が見られ全熟性群を総合した分枝数と着英数には r=0.71% といり相関係数が算出された。

△ 整重

芝重は栄養成長期間を長くする早播きが優る傾向にあるが、今年度 11月5日播きが 11月15日播きに劣った。

ム粒茎比

粒茎比は全熟性群について栄養成長期間の長い早播きが低く播種期が遅延するに従い増大 する。その増大する割合は熟性の早い群長と顕著であり、又、c類に属する開花迄期間の 遅い品種ほど増大する割合が少ない。

△百粉電

百粒重は例年の如く結実期間の長い10~25日播きが最大で播種期が遅延するに従い斬 次減少している。

△収 量

試験

絽 果

Ⅲ一c、IV一c、V一cとc類に属する品種は今年度揺種期が遅延すると花芽分化期の 寮雨による着莢数の不足と登熟期の降雨不足による粒重の減少というダブルダメージを蒙って収量は11月5日以前は、良好であったのが他の熱性群及び類では11月5日揺きが 相対的に不良であった。本年度11月5日揺きが劣った原因は花芽分化期の寡雨と判断される。Ⅱ一c群(5%)以外は各熟性群とも揺種期別の収量には、有意差がたくどの揺種 期が適切かということを指適することは不可能であるが今年度まだあまり多く普及されていたい。10日揺きが比較的好成績を得た。

△総 括

大豆の収量に最も大きな影響を及在す気象要因は栽培期間中の降雨量と降雨の均等分布である。当地区の年度別又地域的雨量分布が非常に不規則で予側がつけ難いが、この14年間に於ける大豆栽培期間中の半旬別降雨量を見ると(1)11月の8旬212月の5旬6旬3月1旬(3)4月の2旬3旬4旬5旬の3回寒雨期がある。(1)の寡雨期にこれまでしばしば発芽障害を受け、(2)の寡雨期に落莢し、(3)の寡雨期に粒重肥大障害を受ける。この統計的に頻度の高い寡雨期を最低の被害で切り抜ける方法は、まず第一に比較的降雨の多い10月上旬に播種して高温と土境過乾による発芽障害をさけること、第二に(3)の寡雨期の4月2旬迄に任度登熟させ(3)の寡雨期間を収穫期とすることであるがその為には1一IV群の早生中生、中晩生系品種が望ましくV、VI 群の品種は、今年もそうであった様に子実肥大期に早魃に遭遇する確立が高い。(但し、降雨が順調であった年にはV,IV群に属する品種が高い収量を掲げている)

-133-

9) P-78の早播き適応性確認試験

パ農総試アルトパラナ分場。

· '80~81年度

担当者 青山千秋·関 節郎

日 的 の品種Pirapo - 78が果して早播適応性を有するか否かの確認試 1. 供試品種 Pirapo - 78(略称P - 78、1978年当場でP よって得られた系統である。) 試 験 2. 播種期 9月5日~12月5日迄10日置きの10水準 3. 面 積 1区当り4m×3m=12m1区制 方 法 栽植密度 (1)5/9播き~25/10播き畦間50cm株間7cm (2)5/11播き~5/12播き畦間60cm株間8cm 5. 施 肥 量 播種前にSuperfosfato triple (0-46-0)を	
よって得られた系統である。) 試験 2. 播種期 9月5日~12月5日迄10日置きの10水準 3. 面積 1区当り4m×3m=12m ¹ 1区制 方法 4. 栽植密度 (1)5/9播き~25/10播き畦間50cm株間7cm (2)5/11播き~5/12播き畦間60cm株間8cm	
試験 2. 播種期 9月5日~12月5日迄10日置きの10水準 3. 面 積 1区当り4m×3m=12㎡1区制 5 法 4. 栽植密度 (1)5/9播き~25/10播き畦間50cm株間7cm (2)5/11播き~5/12播き畦間60cm株間8cm	· · · · · · · · · · · · · · · · · · ·
3. 面 積 1区当り4m×3m=12ml1区制 方 法 4. 栽植密度 (1)5/9播き~25/10播き畦間50cm株間7cm (2)5/11播き~5/12播き畦間60cm株間8cm	; · · · · · · · · · · · · · · · · · · ·
方 法 4. 栽植密度 (1)5/9播き~25/10播き畦間50cm株間7cm (2)5/11播き~5/12播き畦間60cm株間8cm	, ,
(2)5/11播き~5/12播き畦間 60 cm株間 8 cm	: ' :
	:
5. 施 肥 量・播種前にSuperfosfato triple (0-46-0)を	
l	150 kg/ha 全面散播
1. 開花迄日数と開花期間	•
9月5日~10月5日播き迄の間、開花迄日数は昨年と比較	して14日間も遅延し開花
期間は逆に 10 日間短縮して同一品種とは思えたい生態を示	した。
2. 生育日数	•
9月5日播きが166日と昨年度より16日間長くなっている	が、これは昨年度が異常に
短縮したもので今年度は回滯直線上にあって正常を日数と思	われる。
但し、播種期の移動による生育日数短縮率が昨年より 24%	高く、本品種の熟性(Ⅲ一c)
からすると本年度の 0.58 という短縮率は異常である。	-
3. 茎 長	•
昨年度との相違は茎長である。昨年度は9月5日揺きがわず	か30㎝と矮化したのに反
し、今年度は98㎝と昨年の11月標準播種期のそれと匹敵す	トる茎長を示したが9月5日
武 験 播き以降の早播き期間中も同様に高い茎長を示した。	-
4. 黄化落葉	- 1
結果 10月15日播き迄は成熟直前に貴化はしたものの播種期が早	早いほど落葉は不完全であり
黄化が正常で完全落葉したのは10月25日揺きからであった	c.
5. 収量	,
早播きでは昨年度より更に高収量を示し期待値を遙に上廻っ	た。今年度の収量は密植に
よる単位面積当りの株数の増加とこれに伴う茎長の伸びとに	深い関連性があるものと判
断される。	-
6. 早播きで高収量をもたらした要因	
予想外の茎長と収量をもたらした原因を次の如く分折する。	
気温が 20℃に達したのに反し、今年度は 10月中旬過ぎです	
10月17日迄の積算平均気温は昨年度より81℃も低くかっ	
週間遅らす原因となり栄養生長期間がそれだけ延長した。と	
間中の適当な降雨量の上に密植条件が加わって茎長は著しく を与えたこと更に前記した株数の増加と考察される。	伸びひいては収量に好影響

7. P-78の早播適応性が高い理由

9月播きで今年度のほどの高い収量を毎年揚げることは期待し得ないが、青立症状原因 究明試験供試3品種が9月15日播きで矮化し、殆んど青立ちとなったのに比し本品種 は昨年度に比し引き続き好結果を得たので早播き適応性があるものと見なされる。

その理由は感温性が敏であり、低温では花芽の分化が行われにくく開花迄日数が遅延して比較的長期間栄養生長を遂げ得る一方枝条伸育無限であるため終花期迄更に伸育する 特性を有していること。

他の品種より長い日長でも不完全ながら葉から子実への養分移行が行われ、比較的早期 に成熟期に達するためと解釈する。

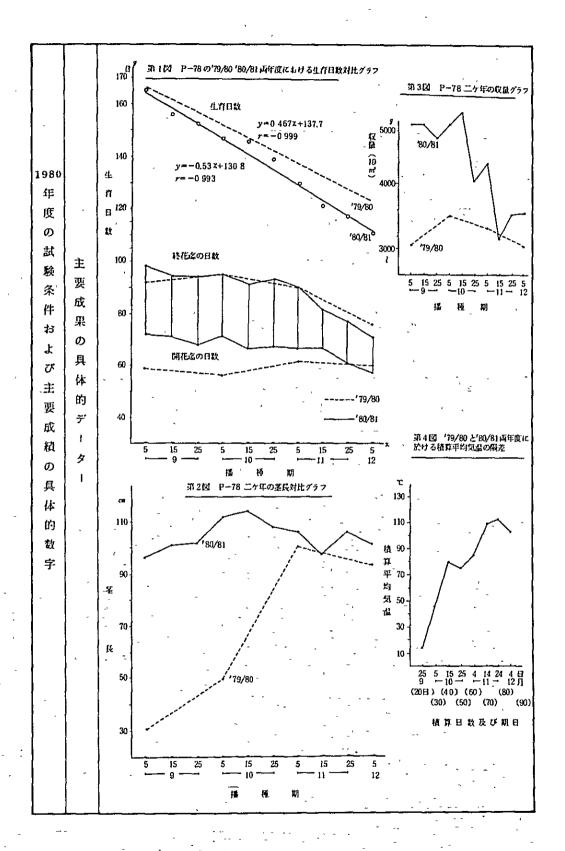
試験

8. 播種適期

結 果

低温下での早播適応品種という確認は出来ないが、9月播きではやはり結実期間が長く その間病害虫の被害を受ける確率がそれだけ高くなること。

- 9月播きでは葉が完全に落葉せずコンパイン収穫に多少支障が生すると思われるので、 10月に入っての播種が適当と思われる。
- 9. 早播き栽培での栽植密度


昨年度の茎葉の繁茂状況から見て今年度は畦間を50㎝収縮めた。

生育初期多雨であった為、茎葉のウッペイ率が高まり憂慮されたが、結果的には好成績 を得た。

9月播き50cm10月播き55cmが適当である。又株間は7cm程度が適当と思われる。

- 135 -

ſ			_				_							_				_			,				_								٦
					12-5	2.3.6	255	2.91	200	2 2 8	1,62	717	# T	960	660					9 2	0101	89.9	877	2112	136	192	511	92.B	9901	1059	90		
				北	11-25	1 82	2,06	265	218	2.26	1 60	281	£.	101	960				=	- 23	066	98.2	32.1	112	16.4	879	1.26	₹26	001	1033	-6		
l	,			¥	= 13	12.	088	199	181	2,66	184	1.89	1 2 4	1.0.1	0.88				ដ	-15	980	908	878	8.8.4	875	850	947	954	001	1033	70		
				잗	11-6	2-	191	191	1 2	791	121	1.62	1 38	0 5 0	180			1	2	۳ =	00.	8	100	100	100	1 00	001	00:	001	169	100		
					10-25	074	1 6 1	1,59	160	162	1 8	1,57	6.	093	0.75				Ì	10-25	108	1028	9 6	894	1048	9001	1137	1020	6101	001	102		
	1980 年			海野の	12-2	=	ı	176	80 67	107	105	501	9.4	115	8.5			ľ		12-5	125.6	153	95.3	1128	183	5.2.1	636	Y11.	1278	411	8.5		
١	度			00とした場合の指数	11-25	<u>-</u>	1	176	187	:	9.0	801	*	1.5	3 5				=	¥2 	170.5	613	622	544	8.8	802	5.83	864	123.8	125	80		
	0	主		7 7 00 1	11-15	1.8	-	189	5	124	5	801	53	136	7					- 15	2026	2280	1547	98₽	1872	609	546	916	372	643	F2 42		
	試	要		1.多る数日3	<u>ş-</u>	90.	-	100	001	001	100	200	001	100	100	2		Ì	,	91	001	001	001	100	001	100	001	001	100	166	100		
١	験	成		11.115	10-25	68 -	1	871	1 80	120	56	32	80	102	126	医花花日数, 全生青日数社各熟性群局の平均		١		10-25	521,8	16.5	6561	1968	1925	138.0	1901	1124	1183	1153	178		
	条件	果			12-6	2647	2643	4038	3845	8188	87.05	8989	8018	3183	2074	1各別位	W.	ŀ		2 <u>-</u> 2	1 587	74.6	1308	2070	1386	8 19	944	8 B 7	1200	181	118		
ı	tr to	Ø		均积量	1 - 22	2486	2557	4026	1882	3228	3888	1821	3020	3177	2249	主背 日本	粒茎比は1列1mでの調査	ļ	£	- XI	45.8	862	174	1038	8975	1114	161	7.8	1260	282	104	英間のご	-
	ŗ	具		表質平	11-15	2103	1928	4328	3126	3561	3212	37.33	3053	3778	2296 3	1 数 线	1.7	ł	۵	9 -	1856	169.6	164.3	1415	4808	848	11,9	8 6 6	1457	631	156	上表は1類1mでの間	
	U	体		おおり	9-1-	2407	ı	2287	2098	2941	85 3	3629	3205	2770	2449				*	9	00-	100	100	100	001	100	001	00-	001	100	001	基当	
	主	的		0.0	10-25	8862	ı	3383	8768	3531	3490	3888	3 2 9 2	2836 S	8073	×	*		*	10-25	2040	1004	1340	1443	2098	1172	1060	137	1221	1961	136	×	
١	要成	デ			1 26	00-	66	107	90-	9 :-	8 = 3	921	128	188	1 4 3			ŀ	-	12-5	1136	7.2.7	857	1676	9021	1 205	1118	\$238	2 8 3 3	1113	126		١
İ	績	1		## E3	1 22-11	8	66	Ξ	12	1 2 2	6 :	133	- 8	87	- S				25	11-25 1	04.5	1221	6.2.9	939	1206	1250	165	0 8 8	1778	1802	031		
	且	9	-	ų,	-15	106	106	125	611	13.8	126	77		187	79.		_		5	11-15	122.7	2045	1111	1278	1941	818	165	108.5	2593	1151	111		
	体	l		耛	<u>-</u>	5	106	1 26	80	139	188	221	16.5	167	-6.8				42	1 15	3 00	001	100	1 00	100	100	100	100	100	981	100		
	的			44	1 52-01	9 -	Ξ	182	. 33	77	68-	091	1 63	172	176			ļ	٠	10-25	1045	7 29	1.08.6	1901	1412	1601	1137	1255	1593	3 4.0	- 8 -		
	数字				12-6	32	22	8.5	5	~	25	81	89	88	2			ł		12-5	1092	100.4	928	0001	2101	9.8.6	920	82.0	9601	9 4 6	50 On	1	
	-			2	11-23	<u>_</u>	<u>.</u>	3.4	8 7	20	- J	6.7	29	7	ø0 1-				*	11-25	0101	108.8	5.88	862	845	1020	1012	9.5.3	-045	1868	8	1	-
				Ħ	1 15	35	9 8	9.8	-	7.0	6.9	29	6.5	12	=					11-15	1016	1054	970	906	906	= +	950	1041	1030	9.4.5	80		
				£)	11-5-11	2.5	9.6	28		5.5	- 19	3	89	12	88				₩E		1000	10001	1 0 0.0	1000	1 000	1000	1000	10001	1000	0001	8		Ì
				Œ	- Z- O	22	3.7	8.8	7.5	8 5	6.5	7.9	10	200	81				71	10-25	1072	893	1 206	10201	1034	1015	860	878	1054	916	076		
		!		無	品を表す	- -			84	~	63	s	67	 -	64	1		ŀ	異	の確認	-	-	93	P4	61	n#	s	14	-	o,	£		
				7	Ħ.	-		•		Δ	v	В	≥	٥	<u> </u>			ŀ	¥	5	9			J	<u></u>		۵	- -	-	u > ;	Bł-		
	• ;	,		<u>_</u>	*	Щ.		L	=	<u>'</u>	<u> </u>	<u></u> '	-		<u> </u>	J		L	- 4	`			<u></u>				<u> </u>	-		1		J	

10) 大豆6品種の遅播き適応性確認試験

パ農総試 アルトパラナ分場

'80~81年度

担当者 青山千秋・関 節郎

		_	
	8	的	前年度('79/80年度)標準播種期以降の遅播きでも比較的好収量を得た6品種について今年度も引き続き同様な成果が得られ遅播き適応性があるや否やの確認試験
ł			
		:	供試品種 Perola(III-b) Davis(IV-b) Yoban(V-a) SanLuiz(V-b)
-			UFV-1(VI-c) IAC-4(V-c)
.			播種期 第1回12月15日 第2回12月25日 第8回1月-5日
	試	験	但し本試験全品種共に熟性群別播種期試験供試品種であり、10月25日~12月
1			5 日迄の標準播種期間は別途同一 場で播種し、これを対照播種期とする。
١	方	法	栽植密度 全品種全播種期共に 60 cmの条播(間引きにより株間を7 cmとした)
			面積区制 1区当 b 9.6 m²(収穫は 7.2 m²) 1区制
			質 理 の除草、薬剤散布は適時実施
			○播種後、発芽揃期迄灌水し発芽を最短日数とした。
			12月15日以降の遅播き栽培で11月5日の標準播種期を100とした場合の収量比が80
		_	以上であり且つha 当りの換算収量が3 ton 以上の品種は、Perola の遅播き全播種期D avis
		-	の 1 2 月 1 5 日、 1 2 月 2 5 日播き他の 4 品種は、 1 2 月 1 5 日播さのみと前年度に比し、か
			なり遅揺きの収量が減少している。
		′	特に1月5日播きでは Perola が特にすぐれた収量を示した他は全く大巾な収量ダウンを来
1	5.A	×Λ	たした
	試	験	収量ダウンを引き起した要素は、Perola (中生)及びDavis (中晩生)では 100 粒重の減
	4+	æ	少であり他の晩生種は一株当りの英数の減少である。
	結	果	これは3月中旬~4月中旬にかけて寡雨の影響とみるべきであろう。
	-		統計上では例年4月2旬~5旬にかけて寡雨期とたるが、今年は3月の3旬より寡雨期とた
	,		った為、全熱性群について遅播をはこの影響を受けたものと思われる。
			従って遅揺き適応性があるといり試験成果も又、理論づけも本試験では不能に終ったが、こ
	-		の中でPerola のみは 12月 15 日以降の遅播き栽培で標準播種期以上の多収が得られたこと
	,-		は注目に値する。
	-		
	-		
	, ,	-	
ı			
_			
ı	•	•	

			ř	₩.	1.8	ο .	• -		96	7.7	65	1	_						_								-		
			Ş	計算り 北部	2885 8	3.485 190			╀─		_						10022	146	001	143	1.3.8			10012	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	120	-	102	
				(4 MEMODINA)	L				ļ_		2.261						松芙比	151	2.06	1.79	325			なる光	900	9 7	1.5 9	681	
1000		i	TAC-	立外数(次账)	(6) 601	124 (8)			l l	(9) (9)	189 (0)		-				1代数 b	269	154	7.7	64			185 B		201	1 0,7	19	
1980 年		i	1	比赛	1	000			6-1	8	16					Yoban	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	. I	106	541	55.1			14 15 15 15 15 15 15 15 15 15 15 15 15 15	_	5.83	78.2	425	
, 1 .			15	(4 年 401)	8.200	2785	7004	1.988	1	2239	2103					٨	= #	89.0	-		619		~	= 18	+	947 6			<u> </u>
1981	•				2	27 6	<i>i</i> -		62				女殊数				## ## &#</td><td>+</td><td></td><td></td><td>_</td><td></td><td></td><td>利</td><td>╀</td><td></td><td></td><td></td><td></td></tr><tr><td>年</td><td></td><td>~</td><td>UFV-1</td><td>工作的(久市)</td><td></td><td>(61)</td><td></td><td></td><td></td><td></td><td>3</td><td></td><td>College</td><td></td><td></td><td></td><td># 12</td><td>۳</td><td>122</td><td>=</td><td>101</td><td></td><td></td><td>## #</td><td>ļ۷</td><td>129</td><td>121</td><td>Ξ</td><td></td></tr><tr><td>度</td><td></td><td></td><td>Ľ</td><td></td><td>98 93</td><td>100</td><td></td><td></td><td>4_</td><td>80 118</td><td>78 164</td><td></td><td>こかはい</td><td></td><td></td><td></td><td>37花花 R</td><td>5</td><td>\$</td><td>4</td><td>7.0</td><td></td><td></td><td>五代的 6</td><td>15</td><td>. 9</td><td>9</td><td>4.9</td><td></td></tr><tr><td>Ø</td><td>主</td><td></td><td>(P)</td><td>ねむ 石岩</td><td>├</td><td></td><td></td><td>_</td><td>┞</td><td></td><td></td><td></td><td>依な報</td><td></td><td></td><td></td><td>100 to 1</td><td>23.2</td><td>14.6</td><td>16.2</td><td>142</td><td></td><td>!</td><td># 24001</td><td>-</td><td>106</td><td>60</td><td>001</td><td></td></tr><tr><td>試験</td><td>要</td><td>-</td><td></td><td>(a \$2 20 10 10 10 10 10 10 10 10 10 10 10 10 10</td><td>2.785</td><td>2990</td><td>9 6 9</td><td>2 8 2</td><td>3,200</td><td>2,386</td><td>2336</td><td></td><td>右翼被む</td><td></td><td></td><td></td><td>机塞比 1</td><td>1.43</td><td>203</td><td>227</td><td>251</td><td></td><td></td><td>拉莱比</td><td>28.0</td><td></td><td>1,09</td><td>1.28</td><td></td></tr><tr><td>条</td><td>成</td><td></td><td>S an Luiz</td><td>立张教(久集)</td><td>•</td><td>25</td><td></td><td></td><td></td><td></td><td>9</td><td> </td><td>又大林郡</td><td></td><td></td><td></td><td>4 温泉 は 4 日本 1 日本 1 日本 1 日本 1 日本 1 日本 1 日本 1 日本</td><td>1</td><td></td><td></td><td>4.8</td><td></td><td></td><td>1株当り</td><td>1</td><td></td><td></td><td>9.9</td><td></td></tr><tr><td>件</td><td>果</td><td>,</td><td>s</td><td>_</td><td><u>. </u></td><td>122</td><td></td><td></td><td>1</td><td>2</td><td>168</td><td> </td><td>5.在株</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>≵`</td><td>O B</td><td></td><td>(v-a)</td><td>の氏数</td><td>980</td><td>000</td><td>4 6</td><td>9 00</td><td>109</td><td>68</td><td>-</td><td></td><td>12 mtc</td><td></td><td></td><td>Davis</td><td>本の数</td><td>1742</td><td>6.1</td><td>505</td><td>387</td><td></td><td>UFV-I</td><td>1代出り 表の数</td><td></td><td></td><td></td><td>4 8</td><td></td></tr><tr><td>I</td><td>具体</td><td></td><td>ځ</td><td>(4年:401 編公</td><td>3,542</td><td>4 127</td><td>707</td><td>3,627</td><td>4.488</td><td>2819</td><td>2949</td><td></td><td>ポ12月15日藩以降は全品権72㎡での立株、又火株数位職張の株が補償し得ない空間の火株数</td><td></td><td></td><td></td><td>五</td><td>750</td><td>644</td><td>722</td><td>617</td><td></td><td></td><td>新素</td><td>103</td><td>. 62</td><td>8 2.7</td><td>776</td><td></td></tr><tr><td>び</td><td>的</td><td></td><td> 5</td><td>-</td><td>(23)</td><td><u> </u></td><td>i</td><td>6</td><td>83</td><td>3</td><td>(0)</td><td></td><td>地方第二</td><td></td><td>:</td><td></td><td>生 育 种</td><td>14</td><td>115</td><td>105</td><td>9.6</td><td></td><td></td><td>生物</td><td> ⊩</td><td>137</td><td>129</td><td>118</td><td></td></tr><tr><td>主要</td><td>デ</td><td></td><td>Y oban</td><td>立株都分株)</td><td></td><td>10 C</td><td></td><td></td><td>1</td><td></td><td>174</td><td></td><td>B158</td><td></td><td>ļ</td><td></td><td>関花式田</td><td>P 4</td><td>4 4</td><td>89</td><td>88</td><td>ļ</td><td></td><td>第72年</td><td>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \</td><td>4</td><td>0.9</td><td>29</td><td></td></tr><tr><td>成成</td><td>1</td><td>*^</td><td>G</td><td>北米</td><td>106</td><td>100</td><td></td><td>7 6</td><td>1.26</td><td>6</td><td>8.</td><td></td><td>3.4 m 12</td><td>-</td><td></td><td></td><td>10002</td><td>228</td><td>172</td><td>- 87P (</td><td>1 6</td><td></td><td></td><td>10042#</td><td>46</td><td></td><td></td><td>148</td><td></td></tr><tr><td>纉</td><td>Я</td><td></td><td>([V = b)</td><td>(な置く10元間か)</td><td>3.276</td><td>3,101</td><td>4186</td><td>4.538</td><td>3.904</td><td>3,033</td><td>2.696</td><td>,</td><td>の極口</td><td>-</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>\dashv</td><td></td><td></td><td></td><td>+</td><td></td><td></td><td>_</td><td></td></tr><tr><td>具</td><td>1</td><td>į</td><td></td><td><u> </u></td><td><u> </u></td><td></td><td></td><td></td><td>L</td><td>_</td><td></td><td>社分類記号を示す。</td><td>72 mt</td><td>各の比別</td><td></td><td></td><td>松茶氏</td><td>183</td><td></td><td></td><td>2.3</td><td></td><td></td><td>* * * * * * * * * * * * * * * * * * *</td><td>F</td><td>_</td><td></td><td>139</td><td>-</td></tr><tr><td>体</td><td>_</td><td></td><td>Davis</td><td>株成(次株</td><td></td><td>29 (41)</td><td></td><td></td><td>(0) 18</td><td></td><td>45 (2)</td><td>内容分類</td><td>Davis H</td><td>さした名</td><td></td><td></td><td>1数当日</td><td>=</td><td>6</td><td>9 4</td><td>4.3</td><td></td><td></td><td>1条形の</td><td>1 2 4</td><td>-</td><td>117</td><td>7.3</td><td></td></tr><tr><td>的</td><td></td><td>_</td><td> -</td><td>比略 立体</td><td>107</td><td>100</td><td>3 2</td><td>- 89</td><td>- 8 -</td><td></td><td>122</td><td>の重要</td><td>erola, 1</td><td>€ 100</td><td></td><td>P erol a</td><td>1年3日本 日本 td><td>464</td><td>738</td><td>553</td><td>30.8</td><td></td><td>San Luiz</td><td>表の数</td><td>8 1.1</td><td>687</td><td>782</td><td>398</td><td></td></tr><tr><td>数</td><td></td><td></td><td>9</td><td>┖</td><td>=</td><td></td><td></td><td></td><td>-</td><td>-</td><td>4.079</td><td>79/85</td><td>推自拉P</td><td>日の収集</td><td></td><td>ď</td><td>W.</td><td>628</td><td>529</td><td>544</td><td>4.9,1</td><td></td><td>S</td><td>#K</td><td>008</td><td>746</td><td>728</td><td>672</td><td></td></tr><tr><td>字</td><td></td><td></td><td></td><td>1 80個(10元当的</td><td>L</td><td></td><td></td><td></td><td>L</td><td></td><td></td><td>品種、核の配号は、79/80年度の利</td><td>立铁数は12月5日独自近Perola、Davis は72㎡七の街は8.4</td><td>収量比率は11月5日の収量を100とした場合の比率</td><td></td><td>ļ</td><td><u>H</u></td><td>143</td><td>211</td><td></td><td>86</td><td></td><td></td><td>声 右</td><td>12</td><td></td><td>_</td><td>107</td><td>ļ <u>-</u></td></tr><tr><td></td><td>·</td><td></td><td>Perola</td><td>立铁靴(火蛛)</td><td>121 (15)</td><td>115 (26)</td><td>(25)</td><td></td><td>123 (10)</td><td>(11)</td><td>155 (0)</td><td>M. M.</td><td>「花巻年」</td><td>(単化量に</td><td>ļ</td><td></td><td>がなる</td><td>╁</td><td>_</td><td></td><td>_</td><td></td><td>Ļ</td><td>## EE</td><td>+</td><td></td><td>89</td><td>_</td><td></td></tr><tr><td></td><td></td><td></td><td>,</td><td></td><td>_</td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td></td><td></td><td>├</td><td></td><td>5 11 11 11 11 11 11 11 11 11 11 11 11 11</td><td>Œ1. 48</td><td></td><td>eo R</td><td>į</td><td>_</td><td>E</td><td>5E 67</td><td>15.46</td><td>25 4</td><td>5 41</td><td></td><td></td><td>ž o</td><td>۳</td><td></td><td>25 4</td><td>5 43</td><td></td></tr><tr><td>-</td><td></td><td></td><td>•</td><td>#</td><td>٠.</td><td>2 K C C</td><td>1 12</td><td>12.35</td><td>12A 15B</td><td></td><td>, A</td><td></td><td></td><td></td><td>- </td><td>1</td><td></td><td>11-58</td><td>12-15</td><td>~</td><td>-</td><td></td><td>1</td><td>章 </td><td>1</td><td>12-15</td><td>24</td><td>-</td><td></td></tr><tr><td></td><td></td><td>l</td><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td>_</td><td></td><td>ل_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td>•</td></tr></tbody></table>												

11) 大豆の育立症状原因究明試験

バ農総試アルトハラナ分場

'80~81年度

担当者 青山千秋・関 節郎

		大豆の茎葉がいつまでも黄化、落葉せず謂る青立とたる症状がしばしば発生する。
自	的	本症状は、カメムシの吸害によって子実の大半が発育停止した場合に起ることは1976/77
E	נם	年度の試験で明らかにしたがカメムシの吸害を受けたくとも発生する場合もしばしば有り得
		るのでこの背立ちが何に基因するかの究明を行う。
		1. 想定要因と制御因子
ļ		(1)病 害 殺菌剤散布区と非散布区
		(2)日 長 電照による人為的長日条件の設定(電照区と非電照区)
		(3)気 温 播種期の移動による各種気温条件の設定
-		(4) カメムシ 全区に殺虫剤散布
		2. 供試品種 (1) B ragg (2) C obb (3) Yoban (4) UFV—1
試	ZΔ	3. 播種期 '80年9月15日 9月25日 10月5日 10月15日 10月25日 11月
矾	験	5日の6回
方	法	4. 区、面積、密度等 1区 4 m×3列、列間の畦巾 50 cm 殺菌剤散布区 (Ti)無散布区
,	<i>-</i>	(To)の2水準
		5. 電 照 9月15日播き区のみ2区設定し、1区に発芽揃期(9月26日)より10
	4	月25日迄3時間(日没後)10月26日より11月13日迄2時間30㎡
		の区内に 150 W 電球 6 個により照射
		6. 供試薬剂 (1)殺菌剤Benlate 12月7日 1月16日 1月30日 2月10日
		2月20日 3月5日 3月15日の計8回散布
	. <u>.</u>	(2) 殺虫剤 A zodri n 及び Tamaron を交互に計 8 回散布
		1. 病虫害
		・ 今期本試験区では黒点病 (Diapor the phaselorum)、紫斑病(Cercospora kikuchii)
-	-	炭疽病 (Colletotrichum dematium) の諸病害とカメムシ類の吸害が育立症状を呈し
		た区に多かった。
	-	薬剤処理が効を廃さなかった結果である。
		但し、それによって子実の発育停止を来したということなく育立症状を呈した区が全て
試	験	
1	_	であって、本試験にかぎっていえば病虫害が背立ちの主因ではないと判断される。
結	果	1 - · · · · · · · · · · · · · · · · · ·
l		9月15日播区を発芽揃後より11月13日迄夕暮に前期3時間後2時間電照し、人為的
}		に長日にした結果、無処理区と比較して開花迄日数は平均1ヶ月遅延し、結実日数は、
Ì		- 24.5 日短縮した。
	,	一方病害虫の被害率も無処理区と比較して1/3~1/4と低く11月5日播きと同程度 に軽減している。
		又、茎長は平均して 2倍強伸びほぼ 11月 5日播き並みの水準となった。
ι.		

そして更に興味深いことは、無処理区はUFV-Iを除き三品種が完全な育立ちを呈したのに反し、処理区の育立率(茎葉の非黄化率)は10月25日並みで極く軽微に終ったととである。

3. 日 長 .

このことから日長が大豆の生理に大きな影響を与えるファクターであり青立も日長に関連性大であると考え茎葉の黄化に対してどの生育ステージにどの様に関与しているかにつき更に推論考察を進める。

- (I)開花後60日~70日(品種によりあるいは、その個体の根の活性により若干差異があるものと思われる)以内に13時間~12時間40分以下の短日に遭遇した区は正常に黄化、落葉し、それ以上の日数を経過した区は黄化していない。
- ②一日の日長が13時間とたる期日は当地区では2月22日頃である。

この2月22日を遡る60日前の開花期とは、丁毎日長のピークたる12月23日頃の 夏至に当る。この夏至前に開花した株の茎葉は黄化せず不完全落葉となっている。

- (3)但し開花期には巾(開花期間)があるため、夏至をはさんでその前後に開花した場合 夏至後の開花率が多ければ黄化率は増大し、夏至前の開花率が多ければ青立率は増加 する。
- (4)葉の黄化に対する日長感応度は品種によって若干異なることは別戸に行った播種期試験から伺い得るが多くの品種は13時間で感応しているやに見受けられる。

4. 気 温

試 験

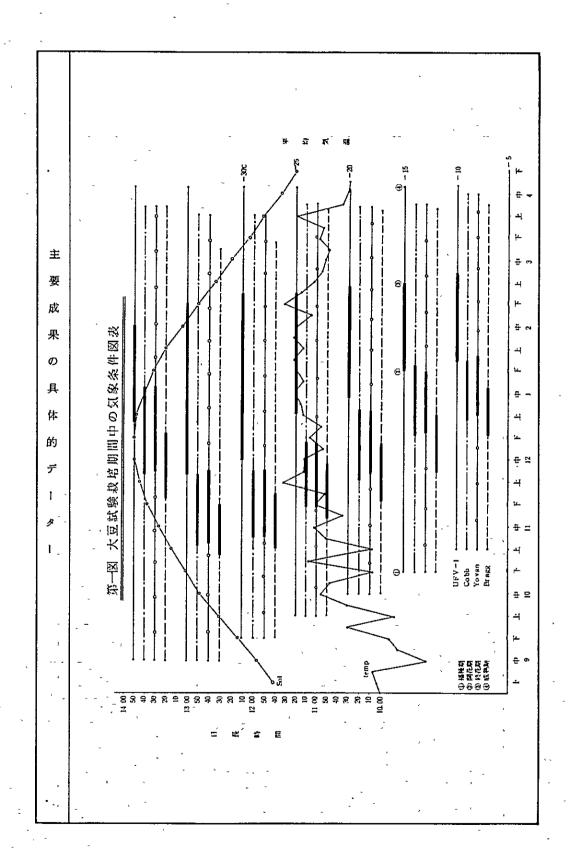
結 果

同一品種を同一時期に播種しても年によって開花期に遅速がある。開花期の変動は自然 日長下では気温に左右されるが、その変動の大小は主として品種の感温性の相違による ものであることは既に明らかにされている。気温の差による開花期への影響は、9月播 きUFV-1 にはっきりと生じ 79/80年度では9月25日播き迄の開花期は12月23日 以前に殆んど終了したのに反し、80/81年度の9月播きは全て10月11月の低温に よって開花期が12月23日近くまで遅延した。

79/80年度の9月播きUFV-1は、背立ちとなったがこれは夏至前に開花した為であり、80/81年度のUFV-1が育立ちとならなかったのは開花最盛期が夏至後であり、60日以内に13時間を割る短日に遭遇した為と解することが出来る。背立ちとなった9月播き10月上、中旬播きの他の3品種は今年度の低温をもってしても開花期はUFV-1ほど遅延せず夏至以前に開花した。しかし人為的長日となった9月15日播き電照区では長日が開花期を遅らせた為Bragg以外のCobb Yobanは、開花最盛期が夏至以降となり黄化したと見られる。

5. 総括

大豆は子実の熟期が進むにつれ葉の貯蔵養分が子実へ転流することは既に知られている。 養分の子実への転流が完了すると葉は黄化し、落葉する。


この同化奏分の受容器官が何かの原因によって損傷され、転流が不可能になるか、あるいは限界受容量以上に光合成産物が継続生成され、同化養分が過剰になった際、育立症状となると解する。

前者の場合は、子実の病虫害に基因して、不稔性背立ち症状を呈するが本試験の場合は 後者であって、稔実性背立症状となった。

即ち、本事例では子実の肥大完了期(養分の蓄積のほぼ完了期)を過ぎても長日条件に よって光合成が行われ、その同化産物は茎葉に留まるか、或いは一部、地下部に転流し

	τ,	衰退期の根に継続活性化をうながす。
	再行	舌性化をりたがされた根は、土壌養水分を地上部に送り続けるため葉や茎は、いつま
	7.	も葉緑素を保つ一方、莢や子実は脱水乾燥がなされず青立ちとなると推論される。
試 %	Ar I	の光合成機能を継続させる要因が一日 18時間以上の長日ではたいかというのが本試
		からの推論である。
結り	il ""	
		って子実の肥大盛期即ち、養分蓄積のほぼ終焉期は品種、播種期、その他の条件によ
	l.	て異るが平均 60 日頃であるところからこれ迄の期間の長日は、プラスに作用するも
	モュ	1以上の期間に亘る長日は、むしろマイナスの作用となって背立ちとなると解する。
	-	1. 早播きで開花崩期以降を13時間以下の短日処理で青立ちが防げるか否か。
400.	ħ	(進光処理)
1981 年	5	2. 適期揺ぎで開花期以降も13時間以上の長日にして育立ちとなるか否か。
度	所	(雅)
 ⊕	in in	
試験計		3 長日条件下で摘葉、断根処理で青立ちが防げるか否か。
計	研	
画	究計	上記ねらい所に沿い、研究計画を設計する。
	画	
	ļ	
[^
١,		
	1	
ĺ		
·		,
	-	
	,	· ·
	İ	•
\	ļ	
	-	
,		
)	
	"	
		-
	-	
- ,		-
	ļ	·
		, • •
	}	
-:		
l	I	

	,	-	斯斯(名) 苯 R (四)				1 106.6 104	ह 9.82 मा <u>ं 0</u> व ने	90 398 544 90 978 988	1 87.0 74	3000	8.0 45.2	80 438 5	0 720	991 09	60 560 51,	70 60 538 468	78 Y 0 Y	0 50 620 47.2	10 540	6 97.6 9	2 642 56	06 826 9		0 1136 108	0 846 72	2 904 88,6	2 230		•
1980 年 <u></u>			(%)	-	08	100	_	_	0 6		-			_	_		9 6	4			_	66	66	66	8	00 1	00 1	8	90 -	
の試	主要		★ 六 社	F	0 9 6 6	0.6	001	- -		001	-	90	30	100	20	20	0.0	200		10	001	66	86	86	1 00	001	60	- 66	100	
験条	成果	 -	(B) # B	Ę2	202	202	215	186	202	802	182	191	161	208	182	38	200		176	176	178	1 65	191	191	99-	156	<u>-</u>	<u>=</u>	164	
件お	の具		4	F	206		2	2	202		182	_		205	<u> </u>	∽	187	4			185	9	_			_	_	9	166	
ょし	体的		` \\\ ₽	12	9 17 6	1	80	3-5	2 4 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	Ţ	8 3-26	5 4- 5	5 4- 5	8 4-11	α 1 1	<u>,</u>	8 1	,	ļ .	Ţ	8 4-11	8 4 8	0 4-10		8 4-1-1	4-	<u></u>	ĵ	20 4-18	
主 要	デ !		智	F	1 1		_	~	1 1	_	3-26	ļ	1	<u>-</u>	ŀ	1	įį	. !		1	1	4	4-1	_	4-18	4-10	4-15	ļ,	-	
成生	タ [*] 1		B) \$3 E	P	-	_	_	<u> </u>	149		-	- 45	146		_	-	- 36	<u> </u>		1.2	_	_		105	4	1	66	~	_	
の具	* ,		(1) (1)	-		_	_	-	49	- -	=	- 45	_	_	<u> </u>	_	88.	1	123	_	- 95	L	_	1 105	-	-	66	_	_	
体的数	·	₩	花期間 (日	-	37 87	_	_	L	32		\vdash	32 32			-	_	29 29	+	52	_	_	25 2		_	_		26 26		_	
字		本 口	(田) (田)	-	86 3					98	Ļ	97		1 1	_		49	-	22			46	_		4	_	29			
:		数とす	黑花路田数	F	86		_	87	E 0	1 10	-	46	46	18	4.5		5.0	1	1 1/2			46	23	62	91,	15	29	- 09	88	
	- !	E AT	E.	g.	11-29	12-10	- 2 -	11-2	1		11-6	0 1	11-10	12-15	67	11-23	11-23	- 0-	12-1	12- 5	1 3	12-10	12-27	12-26	1-24	12-26	9	1	2- 1	i
		看別生	E P	- -	1 2-10		<u>1</u>	2	1 1 1	C7	1 = 5		- 0	12-15 1	١.		11-28	4				12-10	12-57		1-24	12-26	1	1	2- 1	İ
į		唱		₹	Bragg	Yoban	UFV-)	Bragg		Yoban	Bragg	Cobb	Yoban	UF V-I	Bragg	Cobb	Yohan	יולין.	2 t t t t		UFV-1	Bragg	Cobb	Yoban	UPV~1	Bragg	Cobb	Yobam	UFV~1	
, - <u>!</u>				R R	8	9 – IS	Ê		9-15				80 			4	Î	1		10-15			;	X9				î		,

12) 大豆紫斑病に対する殺菌剤の防除効果試験

バ農総試アルトバラナ分場 担当者 青山千秋・関 節郎

'80~81年度

B	的	大豆紫斑病に対する殺菌剤の効果的処理方法を識る。									
		場 所 Tルトパラナ分場 供試品種 Parana (罹病種子) 区制面積 1区 1.2 m×2 m = 2.4 ㎡ 試験区 L27 直交表									
	i	要 旧 水 準									
		播 種 期 11月3日 11月21日 12月9日 種子処理 A Benlate Homai 無処理									
試	験	茎葉散布 B Benlate Topsin Mugibon 散布回数 C 0回 2回 4回									
方	法	供試薬剤の処理方法 1. 種子処理 Benlate 種子量の03% Homai 種子量の03 無処理 2. 茎葉散布 Benlate 1000倍液を1区2.4 m当200 cc Tops in 1000倍液を1区2.4 m当り200 cc (各薬剤 ha 当り200 cc Mugibon 1000倍液 1区2.4 m当り200 cc (各薬剤 ha 当り833g) 3. 散布回数 2回散布区 第1回開花期 第2回 15日後4回散布区 第1回開花期 第2回、第3回、第4回は10日間隔に散布調査方法 1. 発芽調査は連観調査による。 2. 発生病害調査は1区1000粒をランダムに取り、罹病種子数にて効果を判定									
試		2. 発生病害調査は1区1000粒をランダムに取り、罹病種子数にて効果を判定 1. 播種期との関連性 本試験には罹病種子を用いたにも拘らず全般的に本病の罹病度は最高でも3%程度であ り、極軽像であった。 総括すると昨年と同様、播種期との関連性が大で(1%の有意差)11月上旬播きが最高であり11月中旬にはその。、12月上旬には約点の発病に留まった。									
結	-	総括すると昨年と同様、播種期との関連性が大で(1%の有意差)し1月上旬播きが最									

Benlate は無処理区より罹病率が高く全く無効であった。 いずれにしろ仮に種子処理を行っても成熟期間際の高湿度条件下での感染はさけられた いことを示す。

3. 茎葉散布剤と散布回数

試験

結 果

茎葉散布はいずれの供試薬剤でも開花が期を中心とした二回散布の効果はやや稀薄である。しかし本試薬剤のうちではBeniateの2回散布が完全にないにしるほぼ清足のいく成果が得られた。

Tops in Mで同程度の効果を揚げ得たのは4回散布である。

このことから茎葉散布とはいりものの実は菌が侵入すると見られる終花後の幼莢直接散布をねらったものであり 1~2回散布で開花期間の長い早播き大豆に対して、浸透効果があるものかどりか疑問が残った。

-146 -

	<u> </u>								
								•	2数;
								_	200 据種期
		:	A 1	表	要因	3別5	柴班 :	拉数 -	20 150 E21
	-		試	播種	種子処理	茎葉散布	散布回数	1000粒当り	主 100 数 100 集
			験	期	処理	散布	回数	紫斑粒数	50
1980		- 1	No	R	A	В	С		R ₁ R ₂ R ₃
	.	ı	1			1	1	3 4	,
年			2		1	2	2	20	拉数 種子処理
度	1	Ī	3		ĺ	3	3	17	1 '*^`}
n	} }	Γ	4			1	2	11	<u> </u>
試			5	1	2	2	3	14	1
]	主	Γ	6			3	ı	3 i	
験	製		7			1	3	0	
条		Γ	8		3	2	1	30	60 A ₁ A ₂ A ₃
1/4-	成	Γ	9		ł	3	2	27	
件	果		10			1	3	0	* ************************************
お	ெ	Γ	11		1	2	1	7	新
ı	1 1	- [12		j	3	2	15	£ - / •
v	廿		13			1	1	13	
٦	体	ſ	14	2	2	2	2	8	* 80
主	的		15			3	3	2	
要	1		16			1	2	2	60 B ₁ B ₂ B ₃
成	デ		17		3	2	3	1	
l	1 1		18			3	1	8	拉勒
續	9		19			1	2	0	160- 散布回数 第
具			20		1	2	3	0	31 25 23 120
体	1	[21			3	1	6	,
			22			1	3	0	主 数 so
的	1		23	3	2	2	1_	5	404 -
数			24	İ		3	2	3	
字	1		25			1	1	8	C ₁ C ₂ C ₃
7	}		26	Ì	3	2	2	5 -	1
ļ			27			3	3	1	拉数 茎葉散布及散布図表
	[.	_	-	-			-		TE TE TE TE TE TE TE TE TE TE TE TE TE T
1					-				
						-	-	i a	交互作品
1	-		٢				-	-	IF 201
						-	×	_	C ₁ C ₂ C ₃
	[_			_		-	C ₁ C ₂ C ₃
<u> </u>	1								· · · · · · · · · · · · · · · · · · ·

13) 大豆の背虫類に対する各種殺虫剤の効果試験(其の1)

パ農総試アルトバラナ分場。

'80~81年度

担当者 青山千秋·関 節郎

B	的	大豆の背虫類に対する各種殺	虫剤の効果と適正散布量の	なび経済性、弱性等を識る。
		1. 供試薬剤	~	
		商品名	一般名	会 社 名
		(1) Dipterex	Trichlorfon	BAYER
1		(2) Lannate	Metomil ⁻	DUPONT
		(3) Padan	Cartap	武田楽品
		(4) Ambush 50	Permetrina	ICI
	_	(5) Lorsbam 4E	Clorpirifos	DOW
-		(6) Nuvacron 40	Monocrotofos	CIBAGEIGY
		(7) Ripcord	Cipermetrina	SHELL
	-	(8) Belmark	Pyretroide	SHELL
武	験	(9) Tamaron	Metham idophos	BAYER
		(10) T1A-230-50EC	•	武田薬品
方	法	(11) Endrin	Endrin	SHELL
			$5.37 m \times 1.3 m = 20 m^2$	1 区制
			? (500 ℓ/ha)	- '
			して sticker 0.05 %加用	
		5. 供試濃度 低濃度、中	漫度、高濃度の 3水準に分	け散布し、散布濃度に高低があった
			にて修正濃度散布を行う。	
		6. 使用散布器 JACTO		, , , ,
			8日~2月5日の間5回に	
	- 1	8. 供試大豆 (1)品種:晚	•	寺の生育ステージ:開花前 15 日~
		4-4-4-4-4		1(播種期11月11日)
		(3) 栽植密度	:65 cin条播 (4) 個場	: 分場Eu圃
試		試験概要	_	-
験条	ļ	○散布後3時間目、17時間	引目、25時間目、60時間	目の4回地上部に落ちた死虫をもっ
件の	Ī	て死虫数とした。		,
数		o 最終回調査後 Lannate(l kg/ha)を散布して生存	虫を落し、これを生存数とした。
字		o 一令幼虫は回収が困難で	あった為数から除外した。	
実		・死虫率は、死虫数/死虫数		- · · · ·
数字(実施の方法	1	095%の殺虫率に達する。	農庻を適正濃度とし、4 プ	ロック目はその目的で修正濃度散布
カ		した。		
·法)		•		·

1. 背虫の種類と抵抗性

今期発生した青虫は、Anticarsid gemmatalis と P seudoplusia includens の二種で前者が応倒的に多く全体の 85%後者は 15%である。

その他 Geometrioleoも散見されたが全体の 0.1%にも満たたかった。

これ等、背虫間には、時に薬剤抵抗性は認められたかったので本試験のデーターでは、三種を併せた合計数量で示した。

2. 背虫の生育ステージと抵抗性

青虫では若令・老令とその抵抗性には大差がなく、令が進んでもそれほど防除に困難を 来すことはなかった。

しかし、終令に至り、体色が褐色に変化する頃になると高い抵抗性を示した。

3. 薬剤の種類と濃度

背虫類に対する薬剤は特に限定されることはなく、Padanがきわたって効果が劣ったのを例外とすれば他の薬剤は、濃度さえ適切にすることにより駆除は容易である。

この中で1月12日散布のLorsbon 4E、Nuvacron 40、Ripcard、Belmark 4種の 殺虫効果が低くかったがこれは散布後2時間目に2.1 mm(20分間)の降雨があった為 5%~10%効力低下を来たしたのではないかと推測される。

又、逆に2月5日の水準4の修正濃度散布では全般的に殺虫率が修正前より高まっているが、時間と労力の関係で同一日時に散布及び調査が出来なかった為の誤差である。.

速効性

背虫が発生する夏期には、しばしば低雨におそわれる。その際及透性を要求されることは勿論であるが、その外の条件として速効性が望まれるところである。速効性を示すデーターとして3時間以内の殺虫率を示した。Tamaron、Dipterex、TIA-230-50 EC Lannate はこの点満足出来る薬剤であった。

5. ha 当適性濃度と薬剤価格

本試験では手動噴霧器で ha 当換算 500 ℓと充分な薬液量を散布したが、実際には ha 当り100ℓ~200ℓ程度の低薬液トラックター散布は若干効力は劣ると見られること。前記した散布日時の気象条件による効力の差も考慮する必要もあって、若干推定水準としたが、おおよそ殺虫率95%に進する濃度を農家レベルでの適正濃度とし、その薬剤価格を算出したのが第二表である。

これによると Endrin、Tamaronが格安であり、Dipterex、Nuvacronがこれにつぐ

6. 適正過度と母性

経口毒性ではPermethrina を主成分とするAmbush 50 が最低で極低毒性農薬に属し、 Belmark、Dipterex が比較的安全農薬といえる。

特定報物たるEndrinは、パ国内ではまた安価に販売され、広く使用されている。

試験

結 果

14) 大豆の背虫類に対する各種殺虫剤の効果試験(其の2)

パ農総試アルトバラナ分場

'80~81年度

担当者 青山千秋·関 新郎

(1) Lors (2) TIA (3) Nuva (4) Bein (5) Tam (6) Lann (7) Pada (8) Dipt (9) Amb (9) Ximin (10) Ximi	寒 剤 名 ban 4E -230-50 EC cron nark aron ate n erex ord	第1回テスト濃度 1,000倍液 1,000″″ 1,000″″ 1,000″″ 670″″ 1,000″″ 670″″ 1,670″″	第2回テスト濃度 833 倍液 670 u u 670 u u 625 u u 670 u u
(1) Lors (2) TIA (3) Nuva (4) Bein (5) Tam (6) Lann (7) Pada (8) Dipt (9) Amb (9) Ximin (10) Ximi	ban 4E -230-50 EC cron nark aron ate n erex ord ash 50	1.000倍液 1.000″″ 1.000″″ 1.000″″ 670″″ 1.000″″ 670″″ 1.670″″	833 倍液 670 u u 670 u u 625 u u
(2) TIA (3) Nuva (4) Beir (5) Tam (6) Lann (7) Pada (8) Dipt (9) Ripco (10) Ambt 2. 供供試試試解析 4. 使散試試試解析 5. 供供試試試試解析 5. 供供試試試試 特続期間 ・81-13 ・81-13 ・82 ・7. を ののなか・	-230 -50 EC cron nark aron ate n erex ord	1.000"" 1.000"" 1.000"" 1.000"" 1.000"" 670"" 1.70""	670 "" 670 "" 625 ""
(3) Nuva (4) Belr (5) Tam (6) Lann (7) Pada (8) Dipt (9) Amba 2. 供算 (10) Xm	cron nark aron ate n erex ord	1.000"" 1.000"" 670"" 1.000"" 670"" 670"" 1.670""	670 " " 625 " "
(4) Belr (5) Tam (6) Lann (7) Pada (8) Dipt (9) Ripco (10) Amba 2. 供供配数 3. 供使用布 5. 散供試試試 6. 供供試試試試 7. 供供試試試試 9. 供供 9. 供明間 ○ 81-13 少元さなか。	nark aron ate n erex ord	1.000"" 670"" 1.000"" 670"" 1.670""	625 ""
(5) Tam (6) Lann (7) Pada (8) Dipt (9) Ripco (10) Ambt 2. 供数試試数 4. 使散試試散析 5. 快供試試試置 6. 供供試試試試 7. 供供試試試試 9. 供期間 ・81-13 ・81-13 ・81-100 ・25 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	aron ate n erex ord ash 50	670"" 1.000"" 670"" 1.670""	. — —
(6) Lann (7) Pada (8) Dipt (9) Ripco (10) Amba 2. 供便 (10) Amba 2. 供使散試試開用布大 5. 快供試試試試 7. 供供試試試試 9. 供供間 0 8 1 - 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ate n erex ord ush 50	1.000"" 670"" 670"" 1.670""	670 ""
(7) Pada (8) Dipt (9) Ripco (10) Amba 2. 供加額 3. 供財献 4. 使用 布 大 5. 軟 武武武武武武武武武武武武武武武武武武武武武武武武武武武武武武武武武武武	n erex ord ish 50	670"" 670"" 1,670""	-
武 験 (8) Dipt (9) Ripco (10) Ambu 2. 供版試 水面線 3. 供談試 水板 4. 使散 就 散 6. 供談試 計 6. 供談試 計 6. 供談試 計 6. 供談試 計 6. 供談試 計 6. 供談試 計 6. 供談試 計 6. 供	erex ord ish 50	670""	~
(9) Ripco (10) Amba 2. 供試水量 3. 供試水量 4. 使用散布 5. 散 供試計 6. 供試試可 7. 供試試容 9. 供試試容 持続期間 0 8 1 - 1 3 処理で つ示さなかっ	ord ish 50	1,670 " "	
方法 (10) Amba 2. 供試所 3. 供試水量 4. 使用 を 5. 散 就 6. 供試 7. 供試 7. 供試 9. 供試 9. 供試 9. 供試 9. 供 9. 供 1 - 1 3 2 の こ な か ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	ısh 50	-• - · ·	-
2. 供試面績 3. 供試計 4. 使用散布器 5. 散 形 5. 散 計 7. 供試計 7. 供試試 9. 供試 9. 供試 9. 供 1-13 20 20 20 20 20 20 20 20 20 20 20 20 20		1670///	_ *
3. 供試水量 4. 使用散布 5. 散 布 日 6. 供試育虫 8. 供試頭容 9. 供試可容 持続期間 081-1-13 処理区の2第 つ示さなかっ		4,010	
4. 使用散布器 5. 散 布 日 6. 供試育虫 7. 供試育虫 8. 供試頭数 9. 供試容器 持続期間 ○81-1-13 処理区の2第 つ示さなかっ	1区当り	1.1 $m \times 1.82 m = 2.0 m^2$	1
5. 散 布 日 6. 供試大豆 7. 供試育虫 8. 供試頭数 9. 供試容器 持続期間 081-1-13 処理区の2夏 つ示さなかっ	1区当り	100 cc (500 ℓ/ha)	
6. 供試大豆 7. 供試青虫 8. 供試頭数 9. 供試容器 持続期間 081-1-13 処理区の2度 つ示さなかっ	J ACTO	手動噴霧器	-
7. 供試育虫 8. 供試頭数 9. 供試容器 持続期間 081-1-13 処理区の2第 つ示さなかっ	第1回テ	スト 81年1月13日 第	2回テスト 181年1月28日
8. 供試頭数 9. 供試容器 持続期間 081-1-13 処理区の2度 つ示さなかっ	(1)品種	IYO (2)散布時の生育ステー	-ジ: 開花揃後 10~30日目
8. 供試頭数 9. 供試容器 持続期間 081-1-13 処理区の2度 つ示さなかっ	(3) 栽植密	度 55 cm条播	• • •
9. 供試容器 持続期間 o 8 1 -1 -1 3 処理区の 2 章 つ示さなかっ	An ticar	rsia genmatolis (3合~5	i 令幼虫)
持続期間 ・81-1-13 処理区の2夏 つ示さなかっ	1区当り	20頭	
o 8 i −1 −1 3 処理区の 2 ā つ示さたかっ	長さ120	cm×巾9.5 cm×髙さ 5 cmのポリネ	容器を使用
処理区の 2 克 つ示さなかっ			
つ示さをかっ	日第1回テス!	トでは散布後10日目を初日とし	て試験した結果単に Tomaro
	が死亡したの	みで他の薬剤処理区は、42時	間経過後に於いても中毒反応
知同加押 \$	た。このこと	から大豆の青虫に対する農薬の	毒性持続期間は予想外に短く
merce, s	た布後10日目。	という計画は完全に誤算である	ことを悟り、散布後3日目を
試 験 回とする計画	が変更しゃの	が第 2回テストである。	-
○第2回テスト	に久欠したり	限界持続期間を推定するとTI	A-230-50 EC, Tamaron
結 果 2薬剤は7日		日Belmark 5日Larsban 3日	ということになり、消化中毒
用は極めて知	から有効毒性	ている。	
致死時間	から有効毒性	-	
・	から有効毒性 Nuvacron 6	-	

TIA-230-50ECが2頭、Tamaron 7頭、Nuvacron 13頭、Belmark 14頭であっ たが散布後の日数が経過するに従い致死時間は長くたり、7日目には20時間以内に死亡 する個体はいずれの処理区に於いても皆無であった。 天侯との関係 o今回のスト期間中、第一表の如く第1回テストでは薬剤散布6日目に、第2回テストでは 散布翌日から殆んど連続的に降雨があり、これによって大部分の毒性が消失したものと推 測される。 仮に降雨がたかったとすれば毒性はこれほど短期間に消失したかったのか、或いは降雨よ りも直射日光と高温が下費作用を促進したのか明らかには出来なかった。 しかしいずれにしても夕立の頻度の高い盛夏に於ける大豆の育虫駆除は、農薬の消化中毒 作用よりも接触作用をより重視する必要がある。 従って消化中毒効果があまり長期間期待出来ないとすれば次々に乳卵化発生する幼虫に対 して何回もの薬剤散布をきける意味で適切な散布適期をみきわめる必要があろう。 o第1回テストは薬剤散布後10日目に各薬剤を散布処理した葉を該当日に圃場より採取し 供試育虫に給与 o第2回テストは薬剤散布後3日目より2日毎に薬剤のかかった大豆の葉を供試青虫に給与 し、死虫率を調査する。

試

結 果

試験条件の

数字

(実施の

方法

	1980		- -		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3.5	0,5		<u> </u>	12	4.8	4.6		7.2		· [数布後9日目の 死虫率	% 0	0	0		0			-	
	年 ~ 1981 年			٠ ×	最高平均気温 降	ပ္			•	-			2	-	29.4		4	散布後7日目 散布6の死 虫素 の死	-	80			08	-			
	変 の 試	主要		新 2 回 テ	平均気温 最	27.4 °C	25,5	24.4	27.3	2 8.5	26.2	25.2	21,8	239	22.9		マテンス	後5日目 元中 路		85	0.6	7.5	0.6		1	-	
	験条件な	成果の	象条件	**	月,日	<u> </u>	29 (2 //)	30 (3 ")	31 (4 //)	2-1 (2 //)	2 (6 ")	3 (1//)	4 (8 //)	2 (9 //)	("0) 9			散布後3日目の 死 虫 塞		9.5	0.6	9.2	95				
	よび主	具 体 的	期間中の気	۲ ۲	摩斯和	1.3 mm	1	1	1	1	1.3	1.3	681	1	ľ			ha 当り換算 塞 卻 皆		750	750	800	750				
-	要成	ਤੋਂ ! \$	試験テスト	0 F	最高平均知品	3.8.6	32.2	32.0	2.2.5	8.7.2	31.0	33.0	24.0	24.4	31.0	割 別死 虫率	11-	数布役の発			0	0	1 0	0	0	0	
	績 具 体 始	1	第一表 本	無	平均気温	2.5.5 °C	2.4.7	24.1	2 6.0	2 4.5	25.5	27.2	2 2.4	2	22.8	第二號	H	数部	500 cc	500 cc	500 cc	500 cc	750 cc	8 00g	750 9	8 052	The second second
′ 1	的数字				ВВ	1—12500後6日	14(28图	15 (3 ")	16 (4 ")	17 (5 //)	(#9)81	(4 2) 61	20 (8 //)	("6) 17	22 (10 //)			秦商名	Lorsban 4E		Nuvacron	Belmarie	Tamaron	Lannate	Padan	Diptoren	
	· •					ć		-						-	-				,							-	•

15) 各種耕転法別大豆、小麦の栽培試験

(2年4作継続試験中第1年1作目)

パ農総試アルトパラナ分場

'80~81年度

担当者 青山千秋·関 節郎

目的	5 1	耕起、 <u>整</u> 地法の相違によって大豆、小麦の生育と収量にどの様な影響を及ぼすかを調査する。
-	1	1. 試験図場 アルトバラナ分場A3風(毎年ブラウ耕、ハロ一整地による大豆、小麦一
		年二毛 10 年連作圃場)
-		2. 肼 転 法 (1)ディスクプラウ+心士破砕機+ディスクハロー
	1	(2) ディスクブラウ+ディスクハロー (3) 心土破砕機+ディスクハロー
		(4)ディスクハロー 5)無耕起、無整地いずれも施肥、無施肥の2区
		3. 区制面積 1区300㎡(10×30) 4ブロック
		4. 供試大豆品種 播種量、栽植距離 Rillito 70 kg/ha 55 cm条播
104, A	^	5. 使用播種機 プラジル製Egau (無耕起栽培用施肥播種機)
方包	ŧ l	6. 使用機械 トラックター: プラジル製MF80HP ディスクブラウ: 26×4連
ם מ	٦)	ディスクハロー: 18×24連 心土破砕機 (スプソラドール): 5 木爪
	1	(爪の長さ50 cm)
	- (7. 耕起及び整地時期(1)プラウ及びスプランドール'80年 11月 4日
		(2)ハロー 80年11月5日及び11月17日の2回
		8. 大豆摇種期 180年11月24日
		9. 施肥量及び施肥期 成分 3-43-10 の配合肥料(プラジルトレボル 社製)ha 当換算 150 Kg
		. (45-645-15)/ha を播種時に施用
	٦	管理概要
	-	1. 除 草 発芽後 50 日目に全区カルテベーターにより中耕1回 65日目に金秋に
	- }	より除草 1回
試	١	2. 薬剤散布 殺虫剤: 開花終了後28日目、51日目の2回カメムン防除の目的で容
験	1	最400 ℓTーム式噴霧機でSamithicn散布
条 件	1	調査要領
മ		1. 収量調査 欠株が目立ったので欠株のないしかも比較的株数の一定している部分を
数 字		各 1 m ず つ 5 ケ 所選び計 1 列 5 m (2.75 m) 収穫調査した。
\sim		2. 主根及び根重 開花期後30日目に各区1列15 mを降雨後に抜き取り調査
- <u>吳</u> 施		3 主根調査 収穫直後の降雨後に無作為に各区 100 本堀り取り調査
Ð]	4. 土壌硬度調査 各処理区の1区及び2区の10ケ所各層を谷口式硬度計により調査
方法		調査時の土壌水分 20~23%
$\tilde{\mathcal{L}}$		単位は谷口式硬度計の円錐体の)のを挿入するに要するパネの伸びが
		で示した。(硬度の低い土壌では2㎝挿入し、実験値に基づく指数
		100×100×10×10×10×10×10×10×10×10×10×10×10
	- !	帰式 $y=183 \times e~0.056 x$ に当てはめ $1 cm$ に換算して示した 1

. 1. 耕転法と収量

- (1)昨年度より供試園場は急激に地力の減退が目立ち当場では始めて施肥の効果が明瞭に 現れた。
- (2) プラウ耕起区は1%の有意 でその効果が伺い得るがこれは10 cm~20 cm層位、即ち 表土の完全膨軟化(少くとも処理後しばらくの期間)と反転による土壌有機物の富化 が原因と思われる。
- (3)心土破砕機の効果は肥料との交互作用として現れ、無施肥区では心土破砕が収量を高めるブラスの要因としているのに反し、施肥区では逆に拾むマイナスの要因として作用しているが如き結果となった。

但し、心土破砕区(Si)と施肥区(Fi)では交互作用に有意差は認められず、心土破砕区(Si)+施肥区(Fi)にマイナスの効果があったのではなく、むしろ差がなかったものと解釈出来る。

心土破砕無処理区(So)では、施肥区(Fi)と無施肥区(Fo)間に5%の有意差が有り(So)の場合の肥料の効果が伺い得る。

2. 耕転法と土壌硬度

(1)各層位の土壌硬度 10 cm 20 cm 30 cm 40 cm各層位の土壌硬度を収穫直後に調査した結果いかたる処理においても地表下10 cm層位の硬度が低く、続いて 4 0cm層位が低かった。最も硬度が高いのは予想では、30 cm層位であったが意外にも膨軟処理を行った筈の 20 cm層位であった。

験 (2)耕転処理と土壌硬度

○心土破砕機区(Ⅲ区)が20 cm層位で他のいかたる処理法よりも硬度が高くたって おり、30 cm層位では逆に最も低くたっている。

20 cm層位が硬化した理由は、心土破砕機が原因ではなく、大豆栽培管理中のトラックターや収穫時のコンパインの路圧によって処理直後に低くかった筈の硬度が、再び高まったものと判断せざるを得ない。

- oとれに反し、ブラウ処理区(I、II 区)の硬度が比較的低いのは、すき込まれた前 作の残渣が20 m以上の層位に於いてその後のトラックターによる踏圧を柔げる緩 衝剤として働いたものと判断される。
- 30 cm層位ではブラウ処理区の硬度が他の処理区と比較してわずかに高いがこれは 明らかにすき底の圧縮に原因すると思われる。
- ○とのすき底圧縮は 20 cm~35 cmの厚さ 15 cmに及ぶが、不耕起区の硬度とそれほど 大きな相違が見られないのは、本試験が前作まで全面ブラウ耕の圃場であった為、 既に不耕起区に於いても圧縮層は、形成済みであったものと解釈出来る。
- ○大型機械化によると土壌圧縮は 40 cm層位においても 30 cm層位ほどの影響を受けていたいが新山非機械化阿層位と比較してかなり硬化が進行していることは事実である。
- ○但し、今回の試験では 10 cm 20 cm 30 cm 40 cm の名層において処理法別土壌硬度に 有意差は見られたかった。

これは前記した通り重機械の踏圧による再硬化の現象と見られる。

(3)土壌硬度と収量

○ 20 cm層位において処理間の土壌硬度に統計的な有意差は見られなかったものの 20 cm層位に於ける土壌硬度と収量にはかなり高い相関々係が見られ本試験のデーター

試 験

結 果

で見る限り谷口式土壌硬度計の指標硬度が 30 mmに達すると大豆の生育(根重、茎重、収量)は明らかに低下の傾向を示している。

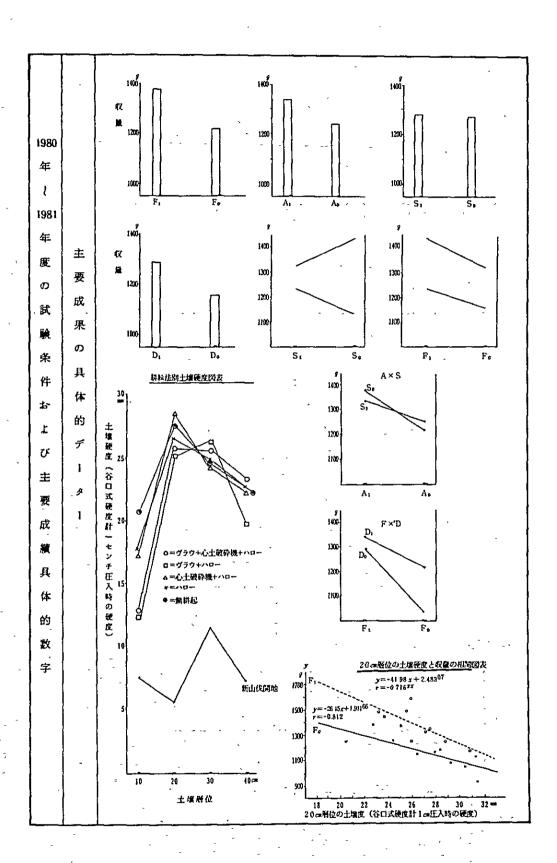
このことから硬度28㎜~30㎜当りが大豆の根の伸長を抑制し始める指標硬度と なるのではないかと推測される。

(4)処理法と根の生育

- ○開花期後30日目の根を降雨後に各区一列15 m引き抜き調査した結果心土破砕区(1区及びII区)に於ける主根は他区に比較して平均1~2 m長かった。 このことからもスプソラドール区では処理後しばらくの期間心土の土壌硬度は、低くその結果はあったものと推測される。
- 施肥区と無施肥区の主根の状態を比較してみると主根は施肥区に於いて若干短めであるが、根茎は一般に太めで全根重は無施肥区よりまさった。
- ○更に収穫の根を各区 100 本堀り取り調査した結果、施肥区と無施肥区との間に支根の発生に差異があった。即ち、根型を主根から派生する直経1 m以上の支根の数によって多生(10 本以上)中生(5~9本)少生(4 本以下)の三つに分類した場合無施肥区は施肥区に比較して多生タイプの割合が多かった。

しかも無施肥区中でも何らかの耕転処理を行った区に支根多生型の率が多かったが 明らかに処理の効果と思われる。施肥区に支根発生率が少ないのは養分の吸収が支 根に依存する必要のない条件が満されていた為と解釈出来よりか。

試験


5) 総 括

結 果

- 本試験で見る限り大豆の根圏の大部分は、深さ10 cm~15 cmの範囲であり、今回の如く顧調を降雨条件下であればこの範囲の耕土層で大豆は充分生育することは、本試験の証明するところである。
- 但し、仮に早魃気象条件下での栽培であったたらば保水力の点で問題が生じたもの と推測される。
- o施肥区の場合土壌が一定の硬度以下(谷口式硬度計で28 mm)で適度な降雨があれ ば不耕起栽培でもそれほど収量に影響を与えないが、無施肥区の場合(当地区では 70%が未た無施肥)根圏を拡大して広く深く養分を吸収する必要性から土壌の膨 軟化は必須である。しかも無施肥では単なる土壌物理性の改善だけでなしに地力の 低下に伴い、作物の吸収する養分は前作の残サたるすき込み有機物が唯一の養分源 になるわけであるから土壌の耕起反転を行い、多少とも腐植を富化し、可給養分と する必要があるう。
- ・ 更に積極的に緑肥等の有機物素材のスキ込みが有効な手段となろう。
- ○耕土の膨軟を目的とした機械化耕転は、当地の如く粘質の可塑性と凝集力の強い土壌では、その後の管理作業のためのトラックター投入により一作で再び硬化するという事実から毎年耕起が必要という悪循環はさけられない。
- ○今後トラックターによる路圧を最低限に留める措置の研究と実行も必要とたろうが 不耕起栽培というものの有益性は既高硬度化圃場での実行には疑問が残るところで あるが、更に引き継き研究を試みる。

1				,														-									
(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)		:					1.06	* 00 K	70.4	16.93	9.29	≎	⊽	0	9 (-	≎		b-9	ور		,					
2 2 2 2 2 3 2 3 3 3				_	平均平方			61976					******						五田本托寺	<u> </u>					~	-	
2 2 2 2 2 3 2 3 3 3				位置	和	36	83	0.0	3	8 9	86	6	9	6	2 (.N	8		. / ÷2	ř							
本				所表(36,4	4 0.6		ρ φ γ	1 5,1	18,0	ಣ	6	7.	- (7,	4,4	8,9 97	1 7 4	7 7 9				,			
本	i			散分	_				-										光粧器	a La		-					
A					自由	3	<u> </u>		_									2	出して	7 7				•			
(本) (本) (本) (本) (本) (本) (本) (本) (本) (本)	စ	a ta		無2	動因		5	Ħ		Ĺ	⋖ .	S	X	, v	9 (()	x X	CAXS			•							
(2) (2) (2) (2) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4					ĬX.	⟨₩	Ņ	25	7				Ľ	<u> </u>	<u> </u>	<u>~</u>	£	#K	"	•							
#1表 処型別プロック別収配 第 第 第 章 章 章 章 章 章 章 章 章 章 章 章 章 章 章 章		成																								-	
#1表 処型別ブロック別収益—電表		果			۷ ۲	3.4	8.9	6.9	0.0	3.4				4.3	4.8	8.3	8,9	3.7									
#1段 処理別プロック別収益—振表						2	0	. <u>.</u>	_			80		- -	_	80	ಣ		\vdash	2	4						
#1表 処理別プロック別収量—電表 A S D 1区 2区 3区 4区 計 有 有 有 1,184 1,607 1,280 1,417 5488 有 有 1,234 1,346 1,352 1,188 5,120 群 無 有 1,270 1,484 1,405 1,187 5,346 群 無 1,270 1,484 1,405 1,187 5,346 計 6,647 7,162 6,945 6,408 27,162 中 均 1,329 1,432 1,389 1,282 本 有 1,375 1,274 1,278 1,374 4,826 青 有 1,135 1,250 1,257 1,184 4,827 新 新 1,174 915 885 1,092 4,066 計 5,922 5,732 5,640 6,138 23432 平 均 1,184 1,146 1,128 1,228 上 5・肥朴 A 1,146 1,128 1,228 日・ま・45%	ı				平光		1.5	1.28	1.3.3	1.29		1.35	ಣ	1.32	1.20	1.20	1.10	1.0.1		1.17	2						
第1表 処理別プロック別収配-電扱		的			1 8	œ	6.0 38	5.1 20	5,346	-	7.1			5.301	4.8 26	4.827	4.412	4.066	343				土破砕機				
無1表 処理別プロック別収益 - 電波	_	1 -	-				1503	1.188	1.1 87	_	6408	1282		t	œ	1.307	1.181	1.092	6.138	1.228			رن. S		-		
無1表 処理別プロ 本 右 右 1,184				显一览表	2 8	1.280	1.699	1.352	1.405	0	6,945	1.389		1,278	LC)	LCI	9	00	5.640	N			ıN			•	•
1 1 1 1 1 1 1 1 1 1				ック別収	图 7	1.6 07	1.3 90	1.346	1,484	1.3 35	7.162	1.432		1.274	1.250	1.193	1.100	_	5.732	4			120			-	
W A 在	-		-		图1		1.4 46	1,234	1.2.7.0	_	6,647	1.3 29		-⊴	1.135	1.073	1.165	-	5.922	1.184				1			
	•				D	梅	缸	神	乍	兼		柩	5%	捶	神	便	午	¥		松	5%	1%	स्रो	イメク		-	
	-			第13	S	梅	無	栎	¥	兼	市	F.3	s. d	極	兼	布	兼	Ħ	盐	2		· vo	••	1	ı		
				- 4*	A	#	£					 	<u>-</u>	+	<u> </u>				_	牌		<u>-</u>			-		
(24) 年 単					(Z.				-	Æ				_				# #					卅				

16) 大豆に対する土譲活性剤ヒバクロの効果試験

ぶ農総試アルトバラナ分場 担当者 青山千秋,関 節郎

80~81年度

		·	1 3				
	アメリカのAl	NILAG, INT	ERNAT	IONAL	社で開発さ	れた土譲活性剤	(本剤は凡
目的	P、Kの外3	3 の微量要素が含	れており	、土譲微生	物の増加、	有機物の早期分	解、施用肥
נא ם	料利用率の増	等触媒としての側	をすると	されている)が当地区	大豆栽培でも収	【量増に及ぼ
	ナ要因となり	得るか否かの試験	を他の因	子間による	相互関係と	もからめて調査	ける。
<u> </u>							
	1. 場所	アルトバラナ分	場	*	1		
	2. 耕種概要	品種 CTS-	115	播種	1980年	11月18日	-
, .		種子消毒は播種	直前に種	子量の 0.3	%乾粉衣(HOMAI)	
		その他病害虫防	除除草	等は一般材	種法に単し	て適時行う。	
	3. 区制面積	1区 2.4 m×	2m=4.	8㎡(畦間	60 <i>c</i> =×株	間20cm)の1	区制
	4. 供試要因	1. 土譲活性剤	(ヒバグ	¤)			
		2. 肥 料	三要素(N, P, K	•		
		3. 微量要素	(モリブ	デン剤)	-		
		4. 有機物素材	・(发ヮ	ラ)	_	,	
試験	5. 試験区	直交表 L 64	の1/2実	施	s	-	
方法	_	要	因	水	单.		i
	•	チッソ	A	Al	A2	-	
	•	ヒバグロ	В	В1	B2	-	4.
	, ^	リン酸	С	C1	C2		-
		· カリ	D	D1	D2		
,	ų	麦ワラ	Ē	E1	E2	i 1	
-		モリプデン・	F	F1	F2		
	- 6. 供試要因	の処理量方法		<u> </u>		_	,
	1. ピ	バグロ 1区当り	4.8 ml	のビバグロ	£200ml	D水に溶し、土i	変に重水。
	2. 肥	料 成分にて			ė	サン50Kg(ヨ:	
			4 -			- • • •	- <i>(</i> *

カリ20㎏(塩化カリ)。

- 3. 微量要素 モリブデン剤を播種直前に種子量の0.87%乾粉衣。
- 4. 有機物 麦ワラを深さ15~20 cm程度の穴を堀り乾燥麦ワラで ha 当り500 「好投入。 (前作小麦の残りのすき込みとほご同条件)

茎長について

発芽後30~40日目頃より表ワラ投入区が無投入区に比し、若干生育遅れを来した。これは、有機物分解時の障害と考察される。その後潤沢な降雨に恵まれ、生育後期には生育遅れの差は外観上刊別出来なくなった。

統計分析の結果をまず主効果から判断すると、ビバグロ施用区、チッソ施用区は、無 施用区に比して5%の水準で有意差が認められたが効果はマイナスであった。 その他の要因については有意差は認められなかった。

交互作用では、リン酸メカリ施用区に5%の水準で有意差が認められたが、効果はマイナスであった。

他の要因間の交互作用はすべて認められなかった。

総着美数について

試験

収量構成要素の一つである結着薬数について主効果から判断すると、ビバグロ施用 区は1%の水準で有意差が認められたが効果はマイナスであった。

供試要因の中では、カリ肥料施用区のみ1%の水準でブラスの効果が認められた。

その要因については、有意差は認められず効果はすべてマイナスに作用した。

交互作用では、ビバグロメチョン、ビバグロメリン酸、ビバグロメカリの区に1% チョンメリン酸、ビバグロメモリブデンの区に5%の水準で有意差が認められたが効果はマイナスであった。他の要因間の交互作用は認められなかった。

収量について

主効果から判断すると、ビバグロの施用効果は全く認められず、リン酸肥料施用区のみ5%の水準でプラスの効果が認められた。

チッツ配料施用区も統計的に1%の水準で有意差が認められたが効果はマイナスであった。総着実数で統計的に1%の効果が認められたカリ肥料施用区も、収量に対しては有意差は認められなかった。

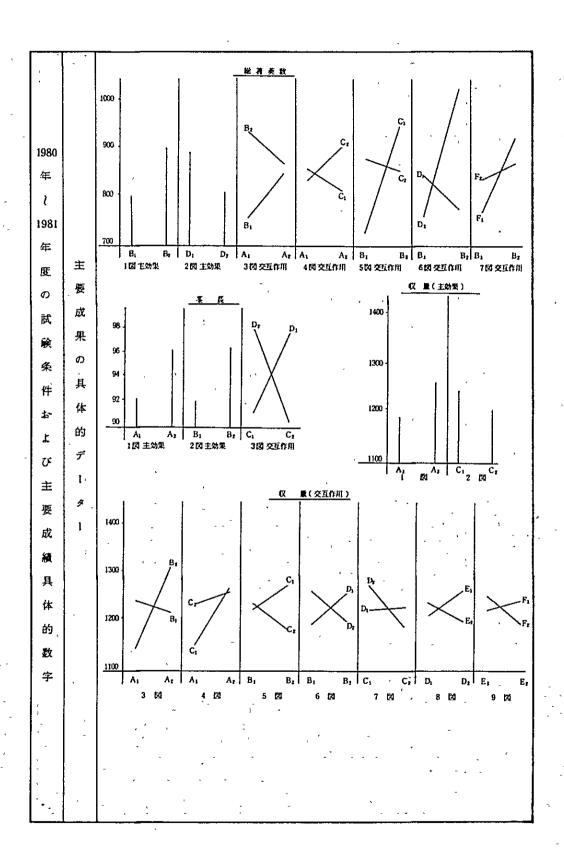
その他の要因の有意差もすべて認められなかった。

交互作用ではビバグロメチッソ ビバグロメリン酸 ビバグロメカリの区に1%

結果

チッソメリン酸 リン酸メカリ カリメ炭ワラ 麦ワラメモリプデンの区に5%の水 準で有意差が認められたが効果はすべてマイナスであった。

その他の要因間の交互作用は認められなかった。


以上要約すると、本年度は生育初期の頃潤沢な降雨に思まれ、茎長も例年と比して優ったが、生育後期(結実期間)に1ヶ月間0mmの早魃に遭遇した為、熟期が例年よりも約1週間短縮し各区とも枯れ熟れ現象を来した。

試 験 結 果

との為に収量は全般的に低く、収量に対する要因別の効果を充分に把握する事が出来なかった。しかし、本試験で収量に対してプラスの効果が認められたリン酸、有機物、モリブデン剤については、本供試土譲並びに類以の土譲で不足しているものと見られるが、目的要因たるビバグロについては本試験で坚長、総着奏数、収量に対して全く効果が認められず、むしろ本剤施用によるマイナスの効果が目立った。

従って、当地区土譲の大豆に対するビバグロの施用は当面無意味なものと結論づけられる。

1 1 1 1 1 1 1 1 1 1		2.4. E E E	1,187	1.212	1,267	1,213	1.275	1,139	1,212	1,250	1,169	1,183	1.124	1,099	1,028	1,101	1,151	1,232	1,238	1,212	1,227	1,285	1,363	1,411	1,284	1,429	1276	1.273	1,418	1,261	1,167
日	=	æ	81	77	2.4	7.9	79	0.8	81	7.8	76	77	1.3	78	18	7.9	7.2	7.3	7.7	2	1.1	76	3.5	79	7.7	7.4	52	7.4	7.7	7.7	1.9
1 1 1 1 1 1 1 1 1 1	主要	1G	182	253	267	255	285	275	370	437	270	305	587	182	222	237	228	263	285	255	319	332	327	327	307	281	339	364	361	25.2	962
1 1 1 1 1 1 1 1 1 1	果	≥ 1 4	207	242	227	253	265	279	370	390	239	253	358	259	208	2112	201	222	248	232	327	345	313	331	224	729	271	263	248	211	227
1 1 1 1 1 1 1 1 1 1	体	# A	320	369	354	383	424	103	546	615	375	389	228	415	341	344	300	347	381	. 369	505	539	497	513	429	383	117	425	474	330	372
1 1 2 6 6 7 6 7 7 7 7 7 7	1	23 H	7.6	6.9	800	82	100	8.1	115	132	124	106	E o	99	48	64	69	16	7.7	29	95	В7	. 99	97	110	107	143	141	107	83	137 ,
1 1 <td>1</td> <td>% × +t</td> <td>632</td> <td>738</td> <td>786</td> <td>192</td> <td>608</td> <td>892</td> <td>1,142</td> <td>1,284</td> <td>822</td> <td>785</td> <td>1,114</td> <td>838</td> <td>692</td> <td>684</td> <td>673</td> <td>111</td> <td>823</td> <td>782</td> <td>1,001</td> <td>1,090</td> <td>990</td> <td>1,021</td> <td>B16</td> <td>791</td> <td>843</td> <td>. 951</td> <td>988</td> <td>692</td> <td>770</td>	1	% × +t	632	738	786	192	608	892	1,142	1,284	822	785	1,114	838	692	684	673	111	823	782	1,001	1,090	990	1,021	B16	791	843	. 951	988	692	770
1 1 1 1 1 1 1 1 1 1	-	#	9 9	6 43	7.3	7.5	0.9	7.8	7.1	111	83	5,3	8.7	7.2	6.1	7.1	5.5	308	6.5	5.9	8.0	8.2	8.7	8 4	7.5	7.3	8 3	7.9	7.6	63	7,1
2 2 1 1 1 2 2 1 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2		故	24.4	912	30 1	25.8	282	304	314	27.5	283	35.2	291	292	312	281	285	317	318	336	280	245	27.8	27.8	299	312	730	239	216	318	223
2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1		*	Ľ	\Box						L		_		┸				L		-		Ц		_		L	L	L	L	1 945	92
	-	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A 8 C 1) E	1 3	2 1	7	2 , 2	- '			- 0	73		2	2		2	7	1 2		2	2 2 1	- 2		-	1 <u>.</u>	~			2	

17) 各種殺菌剤による大豆の種子処理試験

が長柿試アルトバラナ分場 担当者 青山千秋 関 節郎

80~81年度

B _.	的			大豆に対する私						宇率 と発芽勢	を高める効果
*	-	2.		概要 品種	第1						CTS-115 1981年1月10日
,			秦		- 名		1回テス			第2回テスト	knower and on
		ł				1 %	2 %	3 %	4 06	処理量	
,			1 2	TILT		0.2 %	0.3 % 0.3	0.4 %	0.5 [%]		量の%
	[ſ	3	BAYLETO:	V	0.1	0.2	0.3	0.4	0.3	
試	験		4	CERESAN		0.2	0.3	0.4	0.5	0.5	
方	法	ŀ	5	RHODIAU		0.2	0.3.	0.4	0.5	0.5	
	Ì	- 1	6	BAYTAN	(A.Di	0.2	0.3.	0.4	0.5	0.3	
	ļ		7	SEMETOL		0.2	0.3.	0.4	0.5	0.5	
•	.	1	8	BENLATE	!	0.2	0. 2	0.3	0.4	0.3	
	:	·	9	MUGIBON		0.2	0.3.	0.4	0.5	0.5	
	- {	_	10	DITHANE		0.2	0.3.	0.4	0.5	0.5	-
	-	- 1	11	TOPSIN		0.2	0. 3.	0.4	0.5	0.5	1
ĺ	Í	-	12	HOMAI	1	0.2	0.3.	0.4	0.5	0.5	
		. 1.	12	HOMA I	<u> </u>	U, Z	····		10.0	0.3	
,	- [4.	処理	方法 TIC	T, TE	CTO は、	規定液量	是処理 CI	ERESA	N 第1回テ	ストは湿粉衣
	.]			第2[回テス	トは乾粉を	と 他の₹	長剤はす.	べて乾も	分衣。	İ
	1	5.	栽植	間隔 第10	1 5 cm	X条播 炱	[2回3c	m×条播(の無反復	Į.	
	j	6.	供試	種子量 第1日	3700	粒	第2回10	0枚			
				方法				·	調査を1	ケ月後に実	施。
											_
弒	験	供	試薬剂	と発芽について	7			•		_	,
·結	果		第1	回テスト中の位	共武薬	剝の中で力	で豆の発芽	た対して	て対照区	こよりも良い	発芽率を示し

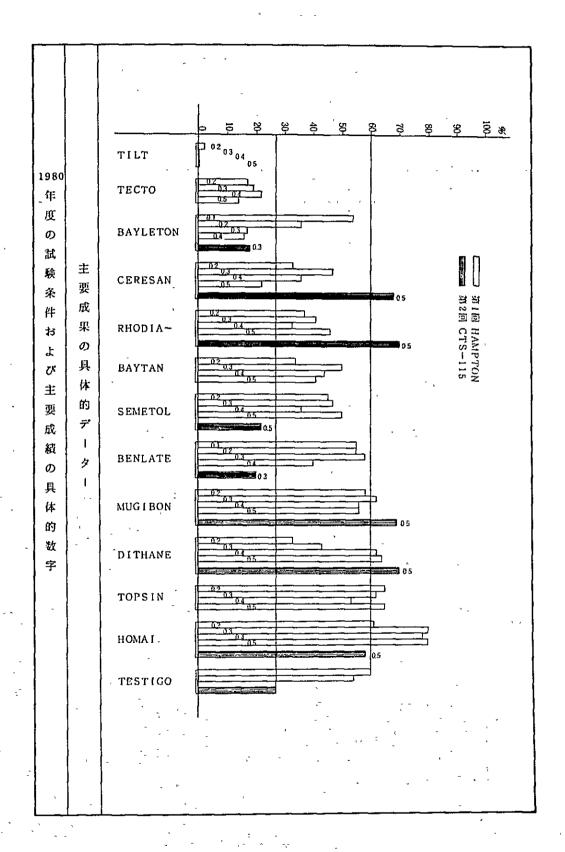
たのは、HOMAI TOPSIN DITHANE M45 MUGIBON の計4薬剤であった。 中でもHOMAI処理による効果が最も高く対照区よりも20%優った。

第2回テスト中の供試薬剤の中では、HOMAI処理区が対照区と比して約2倍。 CERESAN RHODIAURAM MUGIBON DTTHANE M45 処理区は2倍以上の発 芽率を示した。

本供試薬剤の中でCERESANとRHODIAURAM 処理区に第1回と第2回のデーターの間で大きな変動が見られたが、前者のCERESAN については湿粉衣を行った為に発芽障害を起した事が明確であるがRHODIAURAM については原因が判然としなかったので再度検討をする必要がある。

供試薬剤と薬害について

試験結果


本供試薬剤の中で大豆の発芽に対して明らかに薬害が生じたのは、TILT、TECTO BAYLETON CERESAN BENLATEの計5薬剤である。中でもTILT TECTO BAYLETON 処理区の薬害が激しく発芽も2-3日遅延した。従ってこれらの薬剤は不適当であろう。CERESAN については、乾粉衣することにより実用性はあるものと思われるが検討を要する。

以上要約すると、通常播種期でしかも種子に高い発芽勢を有する場合は、種子処理の必要性は低いが、種子の発芽勢が劣っている場合には種子処理を行うことにより好結果が得 ちれる。

第2回処理区がこれを物語っている。一般に早生、中性系品種の発芽勢は常に不良である のでこの必要性が高い。

一応本試験で対照区より良い効果の認められたHOMAI 0.2%~0.3% TOPSIN 0.2%~0.3% DITHANE 0.4~0.5% MUGIBON 0.5% RHODIAURAM 0.5% CERESAN 0.5%の計6薬剤については、大豆の種子処理剤として適当に判断されるがCERESANと RHODIAURAM については再度検討を要する。

-164-

18) 大豆の開花期における殺虫剤散布影響調査

バ農総試アルトバラナ分場 担当者 背山千秋,関節郎

80~81年度

目的	大豆の開花最盛期に殺虫剤を散布することにより収量に悪影響があるや否やを識る。
	供試殺虫剤 (1)Triclorfon(Dipterex) (2)Endrin (3)Methamidofos(Tamaron)
	(4)Menocrotofos (Nuvacron 40)
	供試面積 10 m×2 m = 20 m 1 区制
	供試濃度及び水量(1)333倍液(3∝/1ℓ/20㎡、1.5ℓ/500ℓ/ha)
試験	(2) 500 " (2 ∞ /1 ℓ /20 m^2 , 1.0 ℓ /500 ℓ /ha)
方 法	(3)1,000 " (1∝/1ℓ/20㎡、0.5ℓ/500ℓ/ha)の3水準
	供試噴霧器 JACTO手動噴霧器
	最布日時及び散布回数 第1回 81年1月17日 10.00時 第2回 1月19日14.20時
	第3回 1月21日 10.30時
	供試大豆品種 Missoes(播種期80年11、24 開花期81.1.16 開花揃期81.1 18)
	成熟後、2列×1πの株について英及び粒重を調査した結果、別表の通り薬剤の種類によ
75-	っても又濃度によっても莢数及び収量に、特に影響があったという結論は導き出せなかっ
	た。
	本件については次の如く推論する。
	開花時に薬剤を散布することにより薬害を生する危険性は充分に考えられるも、11月
試験	25日播きの Missoes の開花期間は 20日~25日におよび一株当りの総開花数は約 200
	を数える。
, m	但し総開花数がいかに多くとも一株当りの稔実英数は、その株の栄養状態、天候、品種、
-	栽植密度によってほゞ一定しているものであり、開花数が多ければ落花、落莢によってそ
	の数を減じ、開花数が少なければ総開花数に対する着莢数の割合は増加する。
	又、何かの原因で先きに咲いた花が過剰落花を来した場合は、後の花の歩留りが増加して
	一定の莢を確保する様な自己調節のメカニズムが働く。
	一般に大豆の総開花数に対する稔実莢数の割合は、別途の目的で行った落花、落莢調査で
	は20%~34%であった。
1 •:	•

本試験では、開花最盛期に殺虫剤を隔日3回散布したが、その結果として仮に散布該当日に開花中であった花が全花薬害を受けて落花したとしても、その数は総開花数の10%~15%にすぎず、上述の落花 着莢、生理のメカニズム中に吸収され得る程度の現象であり、収量に影響を及ぼすほどの害はなかったと見られる。

試験結果

大豆の開花期間中に殺虫剤を散布する必要性が生したとしても通常1回、多くて2回である。この期間の薬剤散布によって、仮に開花中の全ての花が落ちたり不稔となったとしても、既述の如くその前後に咲いた花がこれを充分補償するので、開花中の薬剤散布は結論的に収量に対しては影響無きものと判断される。

·							_			
		薬 剤 名	散布濃度		稳実	英の数	74%	莢の数	粒	重
1980 年		条 別 名		=2mの 立株数	2m	1株当り	2m	1株当り	2m	1株当b
度		•	333 往	37	1,711	37.0	17.0	0.5 ^f	50 3	13.69
Ø	主	Teiglandan	500	29	1,322	45.6	8.0	0.3	388	13.4
試	要	Triclorfon	1.000	26	1,875	72.I	8.0	- 3	554	21.3
験条	成		無散布	31	1,529	49.3	25.0	8.0	472	15.2
件	果の		333	35	1,319	37,7	20.0	0.6	381	10.9
ti l	の具		500	31	1,771	57.1	50.0	1.6	469	15.1
l l	体	Endrin	1.000	32	1,349	42,2	14.0	0.4	386	12.1
び	的		無散布	31	1,115	36.0	18.0	0.6	238	7.7
主要	ੜਾਂ		333	31	1,900	61.3	46.0	1.5	588	19.0
成	! 夕		500	28	1,610	57.5	85.0	3.0	466	16.6
頪) 	Methamidofos	1.000	27	1,767	65.4	45.	4.3	525	19.4
n			無散布	28	1,645	58.8	92	3.3	474	16.8
具			333	30	1,498	49.9	26	0.9	443	14.8
体的		•	500	28	1,447	51.7	27	1.0	431	15.4
数	!	Monocratofos	1.000	36	918	25.5	34	1.0	435	12.1
字	,	-	無散布	29	1,325	45.7	19	0.7	440	15.2
					<u> </u>					

19) 80/81 年度諸品種の熟性調査(継続)

バ農総試アルトバラナ分場 担当者 宵山千秋,関 節郎

80~81年度

目的	大豆諸品種(又は系統)の熟性別分類と品種の相同性、相違性を調査する。
試 方 法	供試品種 当場現有 80品種 播種期 1980年11月5日(毎年定期日) 栽植本数密度等 各品種10m×1列 品種間の畦巾 70cm 株間 10cm 施 肥 重カリン酸(0-46-0)をha当換算 150ky 播種前に散播 管 理 播種日から発芽期迄灌水し、発芽期を最短日数とした他は一般耕種法に準じて管理。 調査項目 発芽期、開花期、開花期間、成熟期、関係生育日数、病虫害、初生薬の型、花の色、枝条伸育 等。 熟性分類法 熟性の分類は当場の分類規準(全生育日数 I ~ VI と関係生育日数 abc による
試 結	79~80年度の熟性と比較してI群、II群の品種の一部に生育日数の遅延が見られ、IV群、V群、VI群に属する品種に短縮が見られた。とのうちI群、II群に属する品種の変動は常であるが、IV群以上の品種の変動は明らかに81年3月中旬から4月中旬にかけての早越が影響している。 従ってIV群以上の品種の熟性は、今年度のデーターを含めることに危険性があると思われるので参考データーに留める。又、これ迄II群に属していたDormanの生育日数が異常に遅延したが原因は不明である。 今年度ブラジルに於けるHampton種をカンピーナス農試より導入し播種したところ、バラグアイの在来Hamptonとは熟性、毛茸の色、莢の色、茎長共完全に異った。フラジルのHamptonが真性とするならば、在来Hamptonは偽性ということになる。これまで当場では在来HamptonはVigojaと同一種ではないかとの疑いを抱いて来たが、これでこの判断が真実性を帯びて来た。 因に在来Hamptonは既に十数年前からIAN CRIAによって普及されたものであり、芭園全土完全にこのHamptonの名称で広く普及されている。
•:	

	No	品種	開花迄	2 結実	4 育	80/	/O 1	7.5	,
		, ,	日数	日数	生 育日 数	分類	3/1	79/ 分類	3/1
	1	SRF-300	35	74	109	I—a	311	I-a	
	2	Williams	37	90	127	II-a	3.43	I-a	3.23 3.06
	- 3	Woodworth	36	85	121	IIa	3.36	I-b	3.15
	4	Shin-Shin	48	57	105	I-c	2.19	1 0	3.13
, ,	5	Colombus	37	89	126	II—a	3.4 1	II-a	3.53
•	6	Michell	38	87	125	II—a	3,29	n a ∏~a	3.40
	7	Anjui-410	38	92	130	IIa	3.42	II~b	2.98
	8	Dorman	54	96	150	IV—b	2.78	IIb	2.57
	9	INTA-58-181	46	72	118	IIb	2.57	IIb	2.81
Д	10	Mack	51	77	128	IIb	2.5 1	л-b П~ь	2.64
- 14-	11	Parana.	54	75	129	II—c	2.39	II-с	: 1
-1	12	F-76	54	83	137	п—с	2.54	п-с П-с	2.44
体	13	Pampeiro	54	83	137	<i>щ−ь</i> п −ь	2.54	п-с П-с	2.46
j	14	Essex	50	77	127	II—b	2.5 4	лс ∭а	
£z.	15	Cerrillos-W65	54	83	137	ш—в	2.5 4	ш~а Ш~ь	3.44
的	16	CTS-37	55	. 83	138	ш-b Ш-b	2.54	ш-о Ш-ь	2.5 5 2 6 8
ľ	17	Dare	51	78	129	Ш—b	2.5 1	шь	' '
デ	18	Forrest	49	82	131	ш—в	2.5 3	шр	2.68
- '	19	Galaxia	55	77	132	ш—о Ш—с		шр	2.81
!	20			78	ļ		2.40	1	2.57
1		Harosoy-71	55 58	76	133	Ш—с Ш—с	242	Ш—b Ш—b	2.60
	21	Hood			134	1	2.31		2.51
4	22	IAS-5	57	76	133	Ш—с П	2.33	Ш~-b	2.62
	23	Planal to	58	78	136	Шс	2.34	Ш-ь Ш-ь	2.51
:	24	Prata	55	73	128	П−с	2.33	<u>т</u> ~-о	2.78
1	25	IAS-2	. 57	73	130	II—c	2.28	1117- 1	070
,	26	Rillito	54	83	137	III—b	2.54	ШЬ	2.70
	27	Pelora	58	81	139	∭—с	2.40	∭—b	2.56
-	28	Nise-Galaxia	56	71	127	II–ε	2.27	Ш—с ш	2.4 4
'	29	P-78	66	64	130	II−c	1.97	Ш−с	2.17
	30	Lee-68	49	90	139	Ⅲ—b	2.84	IVa n∟	3.15
	31	Ranson	54	93	147	IV-b	2.72	IV—a	306
`	32	Toxarin .	58	88	146	IV—b	2.52	IV—a IV—b	3.10
,	33	Bragg	52	96	148	IV—b	285	I/P	2.98
-	34	CTS-78	57	91	148	IV-b	2.60	IV—b	2.9 1 2.9 6
1	35	CTS-2	53	98	151	IV—b	2.85	IV—b	2.62
İ	36	Br-3	62	92	154	lγ⊢c	2.48 2.83	IV—b	2.85
	37	CTS-92	53	97	150	Шb		IV—b	1
	38	Davis	53	91	144	∭−ь	2.72	IV—b	2.7 5 2.5 6
-	39	Florida	59	85	144	Ш−с	2.44		
	4 U	IAS-1	53	97	150	IV—b	2.83	IVb	2.92
	41	IAS-4	52	100	152	IV-b	2.92	IV—b	2.98
	42	IYO	55	94	149	M—p	2.71	IVb	2.96
-	43	Missoes	57	96	153	IV—b	2.68	IV—b	2.68
				<u>. </u>	·		<u> </u>		
_		•							
				- 169 —					_

	1								
	Na	品 種	1 開花迄	2 結 果	3 生 育	80/	/81	79/	80
ı			日数	日数	生 育日 数	分類	3/1	分類	3 / 1
	44	Centenial	53	90	143	ш-ь	2.70	IV—b	2.96
1	45	IAC-77-589	63	78 -	141	Ш−с	2.24	IV— Ь	2.53
٠	46	IAC-78-998	64	87 '	151	Ŋ−c	2.36	IV— b	2.59
1	47	IAC-78-1021	60	92	152	у−ь	2.53	IA— P	2.75
	48	D-77-7974	57	90	147	ΙΛ—Р	2.78	IV— b	2.80
1	49	Bossier	62	91	153	IA—c	2.47	IV─ c	2.49
	50	IAC-77-1023	68	81	149]V—c	2.19	IV—c.	2.41
	51	IAC-77-1047	70	80	150	Ŋ—c	2.14	IV c	2.43
	52	Bienville	59	97	156	јуь	2.64	γ— a	2.81
	53	Cobb .	59	99	158	Ţγ−b	2.68	V— a	2.83
具	54	Yoban	60	99	159	ју-ь	2.65	V-a .	2.75
	55	Andrews	82	79	161	V-c	1.96	V— p	2.06
体	56	Br-1	68	90	158	IV—c	2.32	V- p	2.47
m	57	CTS-115	77	83	160	V-6	2.08	v-ь	2.05
· ·	58	Hardee	73	88	161	Vb	2.21	v — ь	2.13
的	59	IAC-2	74	94	168	V-p	2.27	v -ь	2.28
	60	IAC-4	80	82	162	∵v−ь	2.03		
·	61	San Luiz	67	88	155	IV-c	2.31	у - ь	2.43
デ	62	IAC-77-1016	71	84	155	Ŋ—c	2.18	v − b	2.34
٠ -	63	IAC-78-1022	66	84	150]V-c	2.27	IV— c	2.44
1	64	Santa Rosa	81 -	80	161	V-c	1.99	v — ь	2.00
	65	Sulina	59	91	150	IΛ—P	2.54	V p	2.82
, ,	66	Bulk	66	88	154	Ŋ—c	2.33	v-ь	2.46
9	67	Minera	73	ļ				,	
	68	Hampton(Parag)	78	79	157	<u></u> ŢV − c	2.01	V-ь	2.27
1 1	69	Hampton(Brasil)	59	91	150	ју-ь	2.54	٠,	
	70	Vicoja	77	80	157	IV−c	2.04	ν-ь	2.23
,	71	Abura	'85					V-c	1.89
٠.	72	IAC-3	89	75	164	V-c	1.84	V-c	1.93
	73	IAC-6	90	74	164	V-c	1.82	V—c	1.75
1	74	IAC-7	80	-81	161	у-ь	2.01	V-c	1.98
] :	75	UFV-1	87	82	169	V-c	1.94	VI— b	2.12
-	76	Alazatuba	84	86	170	у-ь	2.02	VI— c	1.96
_	77	Shin-4	73	86	159	Ţγ−c	2.18	,	
	78	SRF-300/79	5.5	92	147	χ∽ь	2.67	ĮV— a	3.13
	79	Aoanda	41	56	97	r-ь	2.37	-	
	80	Soja verde	58	82	150	IA—p	2.59	-	
1			L	J	L	1	L	I. <u></u>	<u>. </u>
		•			-		-	•	-
1]	•		4				٠	
			ı		_		•		
	Ī .	-		,	,			1	
	_ ^	repair to the second	,	-					

				年 5 3 4	80.3 %	2	_[,	Τ,	N 00	1 ~	_		- -	<u> </u>		,			*					•					
				発 た3時間以 た3時間以 た3時間以	8.0	832	-	-	229	╀	731	910	8.96									,							
-	-	·	83	(48)	9.7	6.6	27	# F	1 2 8	21.6	006	001	6				~-	=				-				-			
i		,		会國体数 (異)	63	120	-	2	2 2	8	29	7.8	124		*,	-	~	[, 		آءِ.	۰	_	-	₩	2	9		ľ
1980 年				₩ E ₩ E	150	090	150	090	080	090	080	1.00	1.00		,			色の田存	-	긔	-	_	1,971	0 410	0 1,624		0 2400	0 350	
度の				死虫値なの の3時間以 む9光虫毛	2113	767	333	0.83	200	989	786	722	833		-		: 庭格一	**		4	1			3 2050		Щ	3,000	4 700	
試験	主			∰ €.	9.7	9.2	27	g :	7 6	-	82	8	86				は性及び	6¥0 B ft		E	ے	ı j	4	cc 293	_		c 427		
条件	要成		2	公司(四)	36	7.5	7 7	2 2	202	2 4 3	-	7.2	6.7				薬剤別毒性及び価格一覧	7 4 4 9	- H	78 TC 654	7509	2008	150cc	200cc	800cc	7 50cc	8000	9 0000	
क	果の					-	-	+	+	+	╀	-	-			•	K K		₩ %		rex	te	h 50	นอ	am 4B	ren 40	r.	u	
ょし	具体	, -		6.交货 株 (Pa ∰	Ш	045	100	045	0 60	╀	┝	075	075		,		鈱	L	*		Dipterex	Lannate	Ambush	Tamaron	Lorsbam	Nuvacron	Belmark	Endrin	
主要	的デ	, ,		光田飯谷の 公3 毎覧以 石の光田光	875 %	759	0	2	2 2	750	643	15,6	81.2			-	, E	<u> </u>	T :			7							\Box
成績	1			(%)	9.4	9.4	1.7	97	9,5	444	600	1,7.E	988				光曳曲体の	A 8 時間以 R 8 年 4 8 8	169	503	-	20.1	636	476	268	302	919	38.5	135
具 体	ター			全個体数 (質)	8.4	88	Ŧ	39	92	2 =	28	88	R 6				死虫虫	%	972	98,3		942	966	987	95,3	95.5	965	992	827
的数		-		# (% ef.)	07 5 Kg	030			0.40		040 /	0.50	050	-			全位任政	Ê	139	691	,	961	231	237	261	-	164	246	29
字		1 		超	29 C	53	292	2 2	238		237	25	2.5		٠.		*	(ha ha)	0.50	0,15	,	015	100	080	0.80	080	0.20	020	0 10
,	-	死虫溶		2 2 4 4	5.0 0	5.20	530	5,10	01.0	030	040	000	000	1	-		-		29.C	6.2	-	5.6	2.8	28.7	285	28.4	29	288	28
	- •	漁鹿別		布田田	1, 888.1	1-8	8-1	6-1	21-12	2 2 2	21-1	1-14	1-14					時及など	1530	1585	,	15.40	16.05	1610	1615	1620	1545	1600	16.30
-	-	ĺ	新长	# /	[-]	-	-	1	+	+		-	┝		-			被 电	2月5日 1	2-5	ļ						2-5	2-5	2-5
		版一版		E 64	Dipterex	Lannate	Padan	Ambush 50	Lorban 45	Rincord	Be Imark	Tamaron	T1 A-230-508C	Endrin	,	卷米	_	<u> </u>		2	-				2	2	2	П	2
	' -		/2		ā	-1	G.	₹ .	<u>: </u>		ě	Ė	F	En	1	[]	堰	/ ≅ #1	Dipterex	Lannate	Padan	Ambush 50	Lorabam 4E	Nuvacron 40	Ripcord	Belmark	Tamaron	T1A-230-50EC	Endrin
			-			_					_	_		_	-	V.	\$		<u>ة</u>	[د]		Y.	دا	ž	<u>=</u>	ĕ	Ē	F	ធ
				- ,							- 1	 m	-		•	-		,		-	-			,		,	-		-

2. 作物の輸作体系の確立

1) ベニバナの播種期試験

′80年度

バ農総試アルトパラナ分場 担当者 青山千秋・関 節郎

目的	子実収穫を目的としたベニバニの播種適期を識る
	供試品種 モガミベニバナ(1979年に山形県農試より送付のあった種子を当場で1年 増殖した種子)
試験	播種期 才1回 1980年8月20日 才2回 9月3日 第3回 9月18日 第4回 10月4日 第5回 10月18日
	栽植問篇 40 cm条播
方法	面積区等 オ1回、オ2回は5.2m(12列)×5=26㎡ オ3回、オ4回、オ5回は
/ / /	4.4 m²(10列)×5m=22m² 1区制
	(収穫は各回共区外を除外せず全面積刈り取り秤麗した)
	種子処理 才1回播種時に全回分の種子をBayitanにて種子重量の0.2%で湿粉衣
	施 肥配合肥料 10-35-10を200kg/ha当り整地前に散播し、表土(7cm)
	に促和させた。
	管 理 (1) 間引き 各回共に前後3回に分け間引きし、最終的に株間約8~10cm
	とした
	(2) 権 水 最短日数で発芽させる為、発芽時迄潅水した(但し、発芽後は
	無潅水)
	(3) 消 毒 発芽時にパッタの食害が見られたのでBHC粉剤散布
	(4) 除 草 各回共に発芽後、40日~50日目に1回クワにて除草
,	(5) 収穫脱穀 手刈りし、麻袋内でたゝいて脱穀した
	(6) 特性調査 各回とも10株ランダムに引き抜き調査
	栽 植 間 隔
試験	前年度50g送付のあったペニパナ種子を8月18日に畦間75㎝(内地の慣行畦巾)
	に条番したととろ収録は10 が当りわずか431gに終った。
 結果	茎葉を繁茂状況からして畦間が広過ぎるとの判断から今年度 4 0 cmに縮めたものであ
	So So
	気象条件
.	本試験期間中の気象条件は、オ二表の通り例年に比較して9月迄の気温が低く、9月

17日には、-2.5℃迄低下しかなり強度の晩霜があった。

但し、この降霜時にベニパナけ、着葡荊であった為か何んら被害け見られなかった。 12月に入って過乾気味であったため、粒重に少なからず影響したと思けれるが当地 区でけまずまず良好の気象条件下にあったといえる。

試

験

結

果

病 虫 害

初期に立枯病(病原菌未同定)が発生し、オ2回の9月3日播種区にかなりの被害が出た他は予期された炭疽病、サビ病には全く罹病せず健全そのものであった。 客虫では、やはり初期バッタに初生葉を食害され、これが株立数を減少させた。 又、成熟期近くに至り、ヒメコガネの食害を受けたがさして問題にする程の被害ではなかった。

插種適期

1区当りの収量では、才1回の8月20日播きが最高であったが、10株調査では、 オ2回の9月3日播きがオ1回播きと比較して分校数、有効分校率共に優り収量は、 23あも多かった。

オ2回播きがオ1回播きに一区当りの収量が劣ったのは、株立数が37%も少なかったことによる。

オ2回播きの株立数が少なかったため、他の株への補償作用で一株当りの粒重が増加 したと判断されるので株立数が正常であった場合、果して一区当りの収量がオ1回よ り優ったか否かは疑問である。

9月中旬以降の播種期では、100粒重は増す傾向にあるも収量は極端に劣ったところから限界播種期は、9月上旬と推定される。

低温に強く当地では小麦に替る冬作物として導入出来る可能性もあり、次年度は、更に播 種期を早めてテストを試みる。

-- 173 --

								r												\neg
- 1		·	1	1 0 0 42 1	380 %	391	420	3,98	419	-				,		-		•	i	
-	-	-	# 2 3 3 3 3 3	+ 55年数 (10株別在)	2893	3559	112.0	1482	1384	-				*	-			-		
1980 年				十 20名 展 (10 条置推)	118	139	47	5.9	5.8		_	·	1	₽	245	303	19.8	6.6		
度の試	主要	·		4. 20 元 4. 3. (1. 0. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	94 %	66	196	87.4	8.5				8 1 1 1	中日十	248	303	19.8	4 209 26		
験	成果	-		十四左次数 (10 株舗施)	140	20.1	5.0	11.7	11.7				H	下切上	230 233	301 292	182 193	172 52	·	
件お	の具	-	1										0 12	₽	242	302	182	92		
より	体的		一本当りの	中科美國姓 (10 林蘭茂)	593	67	54	5.1	6.5					₽ 4	24.1	300	17.6	15.6		-
主要	デ	, 	为光度	(10株開班) (938	91.7	34	7 4.3	728				11,4	有下旬	5 21.9	1 27.8	6 16.9	6 44.3		
成績	<i>y</i>		<u>#</u>	 -	6	6	- 1	7	1				08,	臣	20,7 225	262 281	152 15.6	36 336		
の具			本符	(収穫時)	4 4 5	281	605	368	232		,	-	0.Я	부	215 2	264 2	165 1	140.4 6		
体的			*	10年出9東東東東東東	\$6981	1.457	1,32,1	969	595	~	***		8 0 1	1 1 10	21.3	284	5 24,4	5.4	4	
数字		Ħ	₹	1 K K	48609 1	3789 1.	2.907	2,109	1,308		**	-	_	10年	61 183	242 242	81 126	4 5.0 1 0.9	*	-
	-		YX 室	生計日数	122 4	113 3	102 2.	94 2.	94 1.		間目中の対象条件数		0 9月	中旬下	15,4 16	21.9 24	8.8	54.8 4		
-	-		版 版	=	8	25	62	9	8	 			oc	ы D) Т	173	242	8.5	32.7	 	
	,	- 1	б	**	75 12 ^A	81 12	73 12	68 1	1 99		#	}	8 A	下旬	153	2 1.1	84	149		
		1	发	н	- E	8	88	=	8]	*	٤	08,	# #	5 202	262	8 146	6 4.9		
į			۱ –	<u>=</u>	В 11.	=	=	12	22		1	, 	_	+4	图 16.5	图 240	98	536	 	, ,
		 	×	#	81年 8月20日	9月3日	9,9188	10月4日	10月18日		_ Å	۶ ا		a	中西文	最和 平 拉 突 幽	最低平均気部	産生		-
•:				# 	<u> - </u>	<u></u>	<u>_</u>	<u> </u>	<u>i</u>]		_				_	<u></u>	1 -	<u> </u>	

アマゾニア熱帯農業総合試験場

-

. .

1. 胡椒の生産安定技術の確立

1) コショウ樹の地上、地下部の生長周期に関する試験 (初年度の生産について)

アマゾニア熱帯農業総合試験場

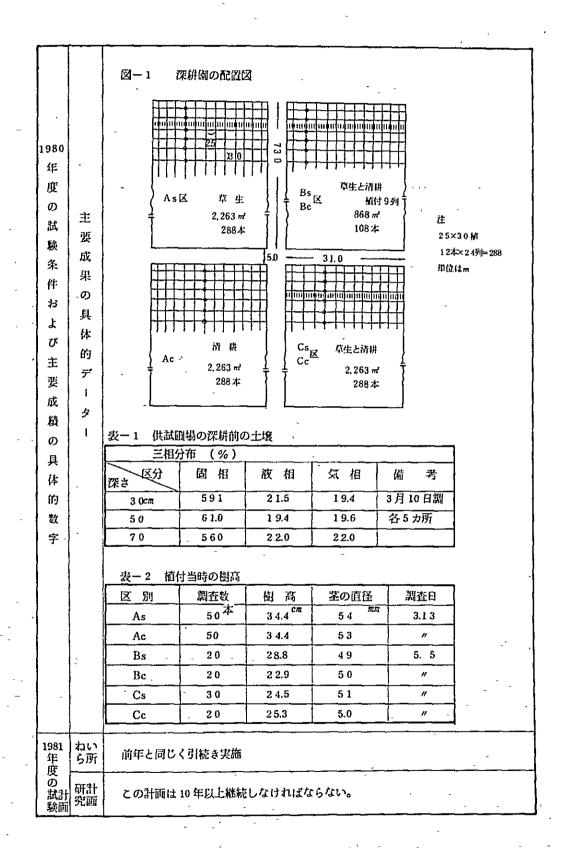
1980年度

担当者 岸 光夫・戌野良三・永井和夫

1. ルート・ボックスは1かとし、原始林を常法で開墾した圓場で、深さ1かに堀り上げボックスを設置し、その土壌を入れた。 2. コショウは、シンガプーラ種で場内母樹園より採った。 3. 植付は1980年3月を予定し、ビニールポットで育苗 4. 水成からなる 黄色ラトソル性土壌で極めて瘠薄である。しかし、施肥銀は一般慣行より減し、生長に応じて調節する。 1. ルート・ボックス設置位置の三相分布を深さ別に調査した結果は表ー1のとおり。水成による極めてち密で瘠薄である。2列(南、北側)並べ各6個設けた。用土は、堀り上げた土をそのままボックスに入れた。 2. 植付けは3月21日、ビニール・ポットで育苗した。植付け時の施肥は本当たりN,675 P2Os 11.8 K2O 102 とマモナ柏1000g、苦土石灰800gを土と混和、追肥10月10日 N 20g(尿素)施用、カン水は植付時と11月3日50&のみ、基肥は化学肥料で81年1月		<u></u>
ボックスを設置し、その土壌を入れた。 2. コショウは、シンガプーラ種で場内母樹園より採った。 3. 植付は1980年3月を予定し、ビニールボットで育苗 4. 水成からなる 黄色ラトソル性土壌で極めて瘠薄である。しかし、施肥量は一般慣行より減し、生長に応じて調節する。 1. ルート・ボックス設置位置の三相分布を深さ別に調査した結果は表ー1のとおり。水成による極めてち密で疳薄である。2列(南、北側)並べ各6個設けた。 用土は、短り上げた土をそのままボックスに入れた。 2. 植付けは3月21日、ビニール・ポットで育苗した。植付け時の施肥は本当たりN、675 P2C。11.8 K2C 102 とマモナ柏10008、苦土石灰8009を土と混和、追肥10月10日 N 209 (尿素)施用、カン水は植付時と11月3日50ルのみ、基肥は化学肥料で81年1月14日、N 309、P2O5 100. K2C 80、1コクズとP2C。総合して20mに、他は表面散布、消石灰25092月9日施用、支柱は地上2mとした。 3. 供試樹の植付けから10月までの伸びは表ー2のとおり4. 根の伸長をガラス面に表われた深き別本数は表ー3、表ー4である。1 m深まで約6ケ月で到着している。また南側の6本についてみると早期に現れないで10月以降深部に多い。(表ー5) 5. 根の1日当たり伸長量は、表ー6のとおり1.03~0.3 2mの範囲になっている。6. 81年2月の樹紅表面積は表ー7であり、ほぼ崩ったものと見られる。7. 水成からなるち密な、しがも折薄な土壌が耕すことにより根は自由に深く伸びることが証明された。 当地図場に深耕を実施する具体的方法の確立を要す	目的	コショウ樹の管理の技術的基礎となる地上、地下部の生長周期を調べるためルート・ボ ックスを用いて調査する。
成による極めてち密で搾満である。2列(南、北側)並べ各6個設けた。 用土は、掘り上げた土をそのままボックスに入れた。 2. 植付けは3月21日、ビニール・ポットで育苗した。植付け時の施肥は本当たり以675 P2Cs11.8 K2O 102 とマモナ柏10009、苦土石灰8009を土と混和、追肥10月10日 N 209 (尿素)施用、カン水は植付時と11月3日50ℓのみ、基肥は化学肥料で81年1月14日、N 309、P2Os 100・K2O 80、1コクズとP2Os混合して20mに、他は表面散布、消石灰25092月9日施用、 支柱は地上2mとした。 3. 供試協の植付けから10月までの伸びは表-2のとおり4. 根の伸長をガラス面に表われた深き別本数は表-3、表-4である。1 m深まで約6ケ月で到着している。また南側の6本についてみると早期に現れないで10月以降深部に多い。(表-5) 5. 根の1日当たり伸長量は、表-6のとおり1.03~0.32cmの範囲になっている。6.81年2月の樹紅表面積は表-7であり、ほぼ揃ったものと見られる。7. 水成からなるち密な、しかも狩渉な土壌が耕すことにより根は自由に深く伸びることが証明された。 当地図場に深耕を実施する具体的方法の確立を要す		2. コショウは、シンガプーラ種で場内母樹園より採った。 3. 植付は1980年3月を予定し、ビニールポットで育苗 4. 水成からなる 黄色ラトソル性土壌で極めて瘠಼薄である。しかし、施肥魚は一般慣行
今後の		用土は、堀り上げた土をそのままボックスに入れた。 2. 植付けは3月21日、ビニール・ポットで育苗した。植付け時の施肥は本当たりN、6759 P2Os 11.8 K2O 10 2 とマモナ柏 1000象 苦土石灰 8009 を土と混和、追肥10月10日 N 209 (尿素)施用、カン水は植付時と11月3日50&のみ、
1 1	1	当地図場に深耕を実施する具体的方法の確立を要す

ł									
		表-1	Root	box の設備	質前の三様	4分布(4	%)		
		深さ	固相	液木		礼相	· T	主%	備考
ļ		4 0cm	5 8.4	3 3.7		7.9	51	.4	各深4为所
	-	60	57.3	3 4.9		7.8	5 3.	.2	
980	-	80	5 5.4	3 6.7		7.9	5 4.	.7	1月12日
毎	,	100	57.6	3 5.9		6 5	5 5.	3	採土(而
度		平均	5 7.2	3 5.3		7.5	5 3.	7	
0							_		
尪	主								
験	要	表一 2	地上部の	月別伸長五	(cm)				
条	成果	区分一月日	321	4	5 6	7	. 8	9	10
件	がりの	主枝の長さ	518	602 7	62 99	3 130	0.0 14	64 16	53 187 <i>A</i>
お	具	月間伸長量	8.4	160	231	3 0.7	16.4	13.4	221
ょし	体								
びき	的	注、毎月末	測定、12:	本の平均	3月21	日植付			
要	デ						ų		
成	1	表一3	ガラス面に	こ現れた支	根の深さ	、時期別]本数((5本合計)
黄	9	(401)		,					
具	l	深され	5	6	7	8	9	10	計
体		0 ~ 20	0	3	3	0	0	0	6
的		20 ~ 40	1	10	14	2	2	0	29
数		40 ~ 60	0	4	10	5	0	0	19
字		60 ~ 80	0	0	3	4	11	2	20
		80 ~100	0	0	0	4	4	5	13
		計	1	17	30	15	17	7	87
1		注、1. 1:	1月6日現在	生で現した	o 2.	北側の	6本-		
	Ť		ę				•	1	
		表一4	樹別、深:	別支根数	(本)		,		
		深さcm一切が	1	2	3	4	5	6	計
ļ		0 ~ 20	1	1	1	1	1	1	6
İ		20 ~ 40	2	3	8	4	7	6	29
		40 ~ 60	2	2	4	6	3	3	19
		60 ~ 80	4	5	3	0	2	6	20
		80 ~ 100	1	3	2	4	3	0	13
		最深位cm	9 7.0	1000	925	940	940	905	_
- [時 期	9.24	9.1 2	1010	1 0.1	924	826	1
		147 360	3.24	J.1 2	1010	1 0.1	1 2-7	1 020	1 !

							·· -	
		表一5 ガラス面に到			別本数		*	
		月別 2 0	38T) (4	7 7	Ţ	$\overline{\Gamma}$	J	 1
		深さ cm 8	9 10	11 12	1	2	3	.計
		0 ~ 20		<u> </u>	4	3	5	12
1981		20 ~ 40	1	1 3	13	13	5	36
年	主	40 ~ 60 1 2	4 3	4 5	12	8	14	53
度	要	60 ~ 80	3 8	4 6	12	13	9	55
D	成	80 ~ 100	11	14 22	9	2	5	63
試	果	計 1 2	7 23	23 36	50	39	38	219
験	の	扱一 6 支根の 1 日≦	4.h/肉食料		,	-	-	
条		調査期間 深さ	cm cm	伸長量(1日	245 h)	細之	 在数	٦
` #	具	6.9~7.7 16~40	27 ~46	1.0 2		p ^a n.⊪	4	
 ≱i	体	7.8~8.6 13~38	37 ~ 60	0.86			4	
l d	的	87~96 30~47	57~77	0.7 2			4	1
ぴ	゛デ	9.7~ 27 68~79	78 ~ 97	0.83			4	7
	, I	10.1~ 27 60~70		066		1	2	┪ '
主	9	11 1 ~ 26 50 ~ 80		035			3 .	7
要	1	12 2~ 24 80~90		0.43	-		2	1
成		15~ 26 30~50		048			3	7
績	-	2.2~ 24 40~60		1.0 3		en -	2	7
具		3.7~ 30 15~25	40 ~ 70	032		-	8	
体				ν Υ		-		-
的		表一7 供試樹の樹気	1表面積(1	981. 2. 4期)		,		
数		樹別 1 2 3	4 5	6 7 8	9	10	11 1	2 平均
字		樹 冠 205		1.73 2.99	<u> </u>	242	1	52
1]	表面積 145 283	1.71	266	214	:	131	220
ļ			·		 `			
1981	ねら	- - -			•			
度	が所	樹の結実量を3区分して地」	上部、地下部	『の生育を見る』	•			
の試	"		-	•	-	_	-	
年度の試験計画								
」繭!	研究計	結実量を3処理に分け年3回	a 田の仲F	(骨を目で				
	計画	和夫瓜での処理に万り平のに	4、女の子び	(感で)心の -			-	
		<u> </u>	-		-			


2) 深耕による土壌改良がコショウの生育におよぼす影響(その1)

アマゾニア熱併農業総合試験場

1980年度

担当者 岸 光夫· 送野良三· 永井和夫

_							
目	的			浅いのが世界共通 定と増収が選せり			₿も例外でなく
試方	験法	 深耕は、 圧縮空気深 各処理共 	サブ・ソイラ 耕機(深さ 50 、草生と消耕	ラ種 約1 ha を 一区(突さ50~ ~55cm)の3種 区に分けた。 了するように努め	55cm) バック の機種を用いた	ク ▶ホー (深さ8	0c#以上)
1		1. 試験区は	下記の通り設	定した。(図− 1	l)	,	
		区別	深耕深	土壤表面管理	植付本数	植付月日	備 考
		A s	50	株間草生	288	2月2~3日	,
		Ас	50	荫 耕	288	"	*
		Bs	80	株間草生	4 8	3月24日	
		B c	80	清 耕	60	"	
1		C s	50	株岡草生	144	3月18日	草生は82本 2月の予定
-	~	Сс	50	清 耕	144	"	7, 5, 7,4
	験 果	B区はバッ C区は圧縮 3. 草生には 4. 施肥、FA 期の初めに 5. 供試価場	ク・ホー(機 空気深耕機を Capim sant BRAPA 基準 追肥の予定、i の土壌三相分	、A区はサブソイ 域の故障で好程が 用いた。吹起の記 のを用い株間 50 配の好としたが、 消石灰を株当りま 布(処理前)は想 その他は表一 20	EIC縮少し、残 計画は樹当り 10 cmに植付けた。 マモナ粕は 80 500g、表面散布 を-1 のとおり。) は引続き実施。 ケ所の予定 %を施し樹の生	- 1
-	l	ر ا	-				-
	'	,	-		-	-	
]	-	-				* 3
1		•	-				
			-		, .	-	;
{		,				=	ļ
·:			-		-		

3) 深耕による土壌改良とコショウ樹の T/R 率について (1)

アマゾニア熱帯農業総合試験場 担当者 岸 光夫・説野良三

	—- ₁	
E	的	北伯におけるコショウ樹のTA率は比較的大きいが、深耕により土壌環境の改善で根量の著しい増加が見られるのを調査する。
	験法	別掲の"コショウ樹の地上部、地下部の生長周期に関する試験"の中に供試3樹が含まれているので省略する。 満4年経過した後、堀上げ調査する計画であり、第2~4年月までは別掲の処理が実施される。
	ŕ	
試	験	1. Root box (1 m)で、1年育成したが、その生育(地上、地下部)は、別掲の"コショウ樹の地上部、地下部の生長周期に関する試験"の成果の中に含まれているので省略した。
結	果	
今後	の	計画に基づき続行する。
制超	点	

4) ベラ・ビスタ移住地(マナウス市)の胡椒樹の調査報告

アマゾニア熱帯農業総合試験場

1980年度

担当者 岸 光夫・浅野良三

目白	北伯で樹令が最も長く保たれているベラ・ビスタの矢野氏関について深耕の効果を調査 した。
調方	(支柱の基部に植付ける反対側) 4 変排級分け5場 於トカフロ〜80cm隔れて2カ亜、無変排級は3場 変排級と反対
調結	であった。 2. 調査頃の三相分布は根量調査部より 10~ 15 cm 隔れた位置で 35 50 cm 深より採土し

る。ルート・ボックスで示された通り耕せば根は伸びる。

18年生の2号風は1部ベト病の発生から落葉し枯死したものは散見されるが、枝枯、根 関と称する枯れは全くない。

軽い土であるが降前の土中侵透が早く、深部の根に水分欠乏させないことと収量が成木で1.5 t内外であることなどから深耕が長寿を保っているものと考察した。

表-1	深耕の有無と深さ別根量(生体重))
44	しんかい つけがたこしん なかりしんは しこしょとは、	,

1980 年 度 Ø 主 試 要 験 成 条 果 # の お 具 ょ び 体 主 的 要 デ 成 1. 街 具. タ 体 的

数字

國別	深耕の	樹	深さ別	根母 9		備考
園別	有 無	別	0~2 0cm	20~40cm	4 0∼6 0cm	備 考
	深耕	Α	1 7.5 💥	3 1.5	0 ※※	
	"	В	1 3.5	2 7.5	8.5 🔆	
1	."	С	2 0.0	125	5.0 🔆	2ヶ所平均
	"	D	1 4.0	1 5.0	3.0 🔆	
号	"	Е	1 4.5	36.0	1 7.0	i
	平均		1 5.9	2 7.3	6.7	
	無	В	2 7.0	2 0.0	0 ※	
氫	"	С	2 5.0	2 8.0	1 0.0	1 ケ所・
	` //	E	3 0.0	2 5.0	260	
	平均		2 7.3	2 4.3	1 2.0	;
	深耕	Н	3 2.5	3 3.0	0 ※※	2ケ所
2	"	1	1 3.5	250	1 9.5	20101
号	平均		230	2 9.0	9.8	
` M	無	F	1 7.5	7.5	2.0 🔆	2 ケ所
	"	G	0 ※※	1.5	0.5 🔆	- / //
	平均		88	4.5	1.3	-

注 ※印は調査ケ所で根量0のもの

	!		表-2 各区 (の深さ別相	見屋率 (。	%)	,		· · · ·	
			深耕	深	₹ 🗵	分	調			
i	-	別	有_無	0~20 ^{cm}	20~40	40~6	0	.13. 44		
1980		1	深耕	3 1.8	547	135		10	╝	ļ
年			無	4 2.9	3 8.2	1 8.9		3		
度			深耕	3 7.2	469	1 5.9		4	7	
の試	主	2	無	606	310	8.4		4		·
験	要			<u> </u>	<u></u> _	<u> </u>				
条	成							*	•	!
件	果				•					
およ	の具		我一 3 調查[団の探さ3 一	川三相分	行	_	•	-	
び	体	Ġ	深耕	樹	3	5 <i>с</i> т %		5	0 cm %	
主	的	50	有無	50	固相	液相	気相	固相	液相	気相
要	デュ			В	37.5	2 2.3	4 0.2	4 3.1	319	250
成績	1 タ	 -	深	С	3 7.9	2 0.5	4 1.6	386	286	328
の		1	,	E	3 9.1	180	4 2.9	3 3.1	2 5.0	4 1.9
具		号		平均	382	203	4 1.6	383	2 8.5	3 3 2
体				В	353	267	380			
的数			無	Е	351	2 6 2	387	ĺ		
字	_	-		平均	352	265	3 8.4			
	-	2		Н	3 7.3	2 4.0	38.7	,		
			深	I	394	226	3 7.9			
		号		平均	3 8.4	233	3 8.3			
1		133	無	F	4 1.3	2 0.1	386			
		注「	司地区の別の割	進より匿	相彩が個	Eいとの!	 旨摘があ	り再調査	の必要か	 ある。
-			&−4 Mana	usの年間	是而到	(30年) (mn)		-	٦,
 		月	1 2	3 4 5		7 8	<u> </u>	11 12	計	_
1981 年 度		降而血	ì	00 19 - 287		41 6	112	165 220	2.095	-
の試験計画	研究計画		広く調査する。	ことが必要	どである。					

5) BELEM近郊胡椒園の調査報告

アマゾニア熱帯農業総合試験場

1980年度

担当者 岸 光夫・永井和夫・浜田正博

目的	胡椒樹の比較的樹令の長い園を対象に主として土壌の物理性を調べた。
調 査	1 この地区は排水良好な砂壌土で再生林を人力開墾で造成し、やさい作から胡椒に切り換えた砌場が多い。 2. その中から樹令が長い園を採し所定の項目を調べる。 3. 調査園の概要は表1である。全体に樹勢は落付き収量は30~3.5 kgと多い。
	 調査7園の樹冠の大きさ、樹令、枯死率は表1の通り、支柱の高さが地上2.5mで揃っているので、園による樹冠容積にはほとんど差がない。枯死率は13年生では高いが、6~7年の5園は当地における平均的な数字である。枝枯れ、即ち枝の日焼に基因するものと考察した。 樹冠外周直下(株より約50cm)の5~10cmの土壌の化学成分は表-2である。P、Hは適当であるが、2園については05内外下げる方がよい。 5園に就いて株間より深さ別(表-4参照)に三相分布を調べた結果は表-3、4である。5園を除き気相が不足しており、固相が多い傾向であり根を深く導くためには、
調査	深耕を行うべきである。 4. 同時に採収した土壌、枝枯部より分離した菌は表 5 である。 センチュウ類はネコブ、オオガタリ 、 Hemiegeliophra が分離されたが軽症であ
M A	る。
	- ` - ` -
	-
-	
-	
-	

											
		- 表一	1 講	查圍	の概要と枯み	花 率					
		風	主 名		地区	名	樹令	樹商	樹巾	枯死率	
		1	大川達	ij	Nova Ti	mdoteva	1 13	285 ^{cm}	103 ^{cm}	35 %	
		2	諸富マサ	シ		"	13	276	114	25	
1980.	-	3	筒井加	1	Igarape .	Ας ú	7	268	104	20	
年		4	諸富マリ	ン	Peixe Bo	i	7	277.	100	10	
度		J } ∬-	土山岩		Igarape	Ας ú	7	267	96	5	
D	主	l	木村久		Nova Tim		7	250	88	8	
試	要	7	永野安:	幸	Igarape	Αçú	6	248	104	10	
験	成	- 表一	2 土壌	の化	学成分と PE	<u> </u>	表一等	調査園	の三相分	布	
条	果	園主	名 P	K	Ca+Mg	PH	園主	名 固相	目 液植	気相	
件	o o	1	40 PP	4	408 ^{me}	72	2	54.	5 226	203	
‡ ;	具	2	25	2	228	a a	3	572	238	183]
J	体	3	21	6	448	7.1	4	56.	272	162	
U		4		13	290	6.8	5	53.0	 -]
主	的	5		11	0.94 274	6.6. 6.5	7	549			-
1	デ	7		2	158	6.5	注		me—Ας ὑι		
要	(1			paris 10	114 G	->KKB4	
成	夕	表	一4 源	查園	5	表一:	5 採土	中の分離	病原菌		
額	ļ	-	Ø	三相	分布	区分) 國	主 名	1 2	3 4 5 6	7
具		<u></u>				根部。	th F	soloni F	0 1	0 0 0 1	1
体	-	汉	E さ □ 匝	相	液相 気相	分離的	i数 F	soloni	0 2	0 0 1 1	0
的	,	<u> </u>		36	200 264	-	1	hizoctam		0 0 1 0	- 1
数		 		2.3	20.5 27.2			の他 SFpiperi		$\frac{4 \ 0 \ 5 \ 4}{1 \ 2 \ 0 \ 4}$	
字				55 30	18.5 260 18.0 29.0	1 6/44		• -	i i	0 0 1 2	_ [
		[80	- 80 0		18.0 25.0	'))]	素菌	1	1220	1
					-	土壤中		SF piperi	1	0 0 0 0	0
		,	-			の分り		全性細菌 は		m ##:#!-	
							注	土壌は	↓ ⊁ 当りネ	地图数	
1981 年 度 の 試	ねらい 所	土壌の	三相分布。	と根』	よについて調	査したい	'o	н			
の試験計画	研 究計 画	引続き	実施し精原	度を高	海めたい。	4		* -		,	1

6) 敷草を拡幹としたコショウ栽培技術改善に関する試験(その1)

アマゾニア熱帯農業総合試験場 担当者 永井和夫・浅野良三

		担当有 水升机大。及野艮二
	的	数草の種類および施用量の違いと、駐立てがコショウの生育収量におよぼす効果を 明らかにする。
試方	験 法	 2974年に原始林伐採寄焼整地後、1976~1977年に野菜畑として使用されていた畑を、1977年耕うん整地し供試闘場とした。 分割試験区法により、次の2×6要因を設定し4反覆した。 (1) サッペ厚さ20 cm、サッペ5 cm、グァテマラ20 cm、グァテマラ5 cm 雑草草生、清耕(対照) (2) 駐立(高さ10 cm) する、しない 供試面積は324 m²で、植付間隔26×2.6mとし、その中央部1.6×1.6mに敷草、駐立て等の処理を行なう。支柱高は地上部1.2m(短支柱)とし、シンガプーラ挿木苗を1区1本植え付ける。 4. 調査項目 生育収量 樹体解体調査
盐		1. 収量調査結果 収量は前年(2年本)と同様に、厚さ20cmの敷草区>同5cm区>溶排区>雑草草生区の 順となったが、素材の違い(サッペ、グァテマラ)による差は明確でなかった。 房数、一房重は収量と同じ傾向になったが、製品歩留、100粒重については、雑草草生 区を別にして、ほぼ逆の傾向となっている。 唯立ての効果も前年と同様収量差となってあらわれたが、一房重、歩留り、100粒重に 関しては唯立て無しの区と差は無く、主に房数の増加が収量増となってあらわれた。 2. 樹体解体調査結果
結束	果	本調査は、1981年3月下旬、つまり開花終了後に行なわれており、1981年(4年末) 収量を予想できるものである。敷草区の樹冠表面積は大きく、従って葉数、総葉面積、房数と も大となっている。また、単位樹冠表面積当りの築面積も大きく、他の区より葉が密に
	-	茂っていることを示している。しかしながら、何枚の葉で1 房若いているか、また表面 街当りの房数を見ると逆になり、着房の効率は悪い傾向にあった。 畦立て区も敷草とほぼ同様な傾向にあったが、着房の効率は悪くなっていない。 また、畦立ての影響は、清耕、雑草草生区においてより明確に見られている。 3. 3ケ年のまとめ
		植付けから3年木までの生育収量調査結果から、敷草の有無及びその厚さの違いが、 初期生育(草丈)とその後の樹の大きさ(樹冠装面積)の違いにあらわれ、収量増につ ながった。2ケ年の累積収量では敷草厚さ20cm区>同5cm区>消排区>雑草草生区とな

っている。しかし、敷草することにより樹が大きく、また葉がより密に茂る割合には収 , 量が伸びず、又製品歩留り、製品 100 粒重とも劣る傾向になった。

サッペの方がグァテマラ区よりも増収の傾向にあったが必らずしも有意な差ではなかった。

駐立ても、樹冠表面積の増大、収量増となったが、敷草とは異なり、製品歩留、製品 100粒重は悪くなっていない。また、駐立ての効果は清耕雑草草生区で大きく、敷草 20cm区ではほとんど見られなかった。しかし、厚さ5cmと薄い敷草の区においては、 敷草と駐との併用が増収(1979年結果)につながっている。

試験条

件

- 1. 1978年2月定植。 敷草の影響を明確にするため、全区無施肥で植穴も苗定植のための必要最少限の大きさ(中10cm×深15cm)としてある。
- 2 前年度と同様1980年7月所定量の敷草を補充。又、消耕区の除草、雑草草生区 の刈込みも毎月1回実施した。
- 3. 収穫は6月27日から9月26日の間に20日毎、計5回実施された。 また、1981年3月15日~30日にかけ、8個体について房数、薬数、薬面積 を調査した。

表一1 1980年収量調査結果(3年本)

		調査		生	美					製		ᇤ		2ケ年累積
		処理	1本収		1 本当 房数	1房	1	1本収	当	些	a	100	堏	生実収量
1980		敷草厚さ	Kg	,	房	9	2	K	7	9	6_		g –	Kg
年		2 0cm (サッペ	9.9	ā	1970	5.Ó	а	2.8	а	28	bс	5.6	bc	128
度の	主	グァテ	9.4	а	1930	4.9	а	2.5	аb	26	c	5.3	c	123
試	要	マラ 5cm 针ッペ	5.7	b	1180	4,8	а	18	b	31	a b	59	ь	7.3
験条	成果	グァテ マラ	5.1	b	1060	4.8	a	15	bc -	29	bc	57	bc	6.1
件 お	の具	消耕	23	bd	540	42	b	8.0	ed	33	a	65	a	24
ኔ び	体的	維草草生	09	С	210	(42))	0.2	ď	26	c	(50))	0.9
主要	デー	e.s.d. 5%	6 3.7,			0.3	-	0.8		3		04		-
成績具	ター	畦立 {す る	7.5	а	1260	4.8	a	18	a	29	a	5.7	a	91
体		性がししない	59	ь	1030	4.7	a	1.4	b	29	a ·	5.9	a	7.1
的									•					1
数字		e-s-d-59	607		<u> </u>	<u> </u>		<u>L</u>				<u></u>		<u> </u>

注1. 步留り、100粒重はトウミ選後調査した。

			,						
験計画	1981 年度の試	,	積具体的数字	要成	び主	米件およ	の試験条	1980 年 度	
研究計画	ねらい所			データ	体的	果の具	主要成	-	•
終				解体調查	特聚 (1 9	樹体解体調查結果(1981年3月)		, ,	
7	-	-				_			
			莱数×1枚当=総萊面铅	历 数	也 表面積	菜粒/房数	Bb数 发面和	総集面和名面和	
-	-	サッペ(駐立する	12210× 312 = 38.1) 1600 (校	107	7.61 萬	150局	3.5 6 mm	
			13510× 268 = 362	1970	103	6.86	191	3.52	
_		, m2	平均 (372)	(1785)	(301)	(7.24)	(171)	(354)	
-	- -	グァテ 畦立する	12210X 348 = 425	1860	125	656	149	3,3 9	
		マラ ** しない 12380×	12380× 304 = 37.6	1.895	121	6.53	157	3.12	
			平均 (401)	(1,880)	(123)	(6.55)	(153)	(3.26)	
	, 1	[$7260 \times 30.4 = 22.1$	1350	6.4	5.37	211	3.42	,
-	-	第 華 しない	3790× 29.7 = 113	945	46	4.02	205	2,46	
			平均 (16.7)	(1150)	(55)	(4,70)	(208)	(2.94)	<u>, </u>
		雑 哲 駐立する	4340X 328 = 142	1,400	4.8	3.09	292	294	
· 		特 年 / しない	2060X 252 = 52	765	3.0	2.69	255	1.97	,
			(26) 西本	(1,080)	(68)	(2.89)	(274)	(2.34)	•
	-	無なオス(現地)) 9010X 202 = 292	1550	8.6	5,66	201	, ,3 53	
	-		7940X 28.0 =	1390	7.5	5.03	202	2.7.1	
·	, -	1. 型	1. 各処理区共1個体で計8本調査した。	3. 本題位し	1,2				
	-		2. 薬面税は、すべての成薬のうち1/50枚を無作為に抽出し、終薬面徴計により砌定した。	だのうち 1	/50 枚	を無存為に抽	出し、終焼面	位計により閲定し	
	-								1

7) 敷草と基幹としたコショウ栽培技術改善に関する試験(その2)

アマゾニア熱帯農業総合試験場 担当者 永井和夫・浅野良三

· 1980年度

目的	コショウの敷草栽培において問題となる雨期の土壌過湿および敷草材料確保問題改善のために(1)駐立て (2)桟植 (3)畦間草生の処理を加え、それらがコショウの生育収量に及ぼす、単独又は組み合せの効果をみる。
武 方 法	1. 1976年に原始林伐探寄焼後、トウモロコシ、マンジョカを各1作された畑をブルドーザーにて抜根整地(1979 10)、石灰散布(1.5 ton/ha)後、トラクターにより耕起均平(1979. 12)し、3000mを供試師場とした。 2. 植付間隔2m×3m、支柱は全長2.5 m地上部2.0 mとした。全区共支柱を中心とし、巾1.5 mを帯状に敷草(カッピン・グアテマラ厚さ10cm、生草換算17 kg/mv)する。 3. 元肥は成分量として1株当りN-40g、P2O5-80g、K2O-70gをマモナ粕、骨粉、塩化加里を用い全区に施用する。 4. コショウシンガプーラ種の一節苗1979年8月挿しをポット育苗し、定植した。(1980. 2月) 5. 主区に駐立て(高さ0.20.40 cm)、細区に草生(する、しない)、細々区に皮植(する、しない)を割当てる。主区の1区割は40本、細々区は10本で供試本数は(3×3×2)×10本×3反覆=360本となる。 6. 各プロットとも(2列×5本)=10本を供試するが調査対象は中央部の6本とし、初年度(1980年)は、樹高、基部径(最下節茎中間点の直径)および樹冠表面積を調査する。
試験	植付から1ケ年の生育調査で次のことがわかった。 1. 畦の高さ――植付後2ケ月目から樹高、3ケ月目からは基部径に差があらわれ、生育は畦の立さ40cm=20cm>0cmとなった。40cm及び20cm区は植付後1年でほぼ支柱頂に到達したため、樹高及び基部径の調査を樹冠表面積の調査に切換えた。樹冠表面積の調査でも同じ傾向が見られている。 2. 桟植――桟植するしないの違いは樹高に関しては差が見られなかったが、基部径、樹冠表面積では浅植えすると生育が劣る結果となった。 3. 畦間草生――草生区は年3回のかり取りを実施したが、乾燥期に入り養水分の競合のため生育が悪くなり、基部径は8月から、樹高では10月に有意差となってあらわれた。植付1年後の樹冠表面積調査でもその差は明確にあらわれた。 4. 交互作用――草生することにより、株元巾1.5mが敷草されていても、畦0cm、20cm 40cm区とも生育は悪くなる。しかしながら、畦の高さ40cmの区においてはその競合

が少なくなっている。樹高の80年10月、81年2月、基部径の81年2月、樹冠表面 積の81年2月、4月に有意な差となってあらわれた。 1. 各処理は、次の通り行われた。 (1) 駐立て一畦は巾 1.5 m列状に立てる。駐立高さ 20cm 区は、40×60×深さ 27.5cm の元肥穴を知り、元肥の半量を元肥穴に、残り半量を畦部分に全層施肥する。 駐立高さ40cm区は、40×60×深さ15cmの元肥穴を掘り、元肥の¼ 量を元肥 穴、¾量を畦部分に全層施肥した。畦立を行わない区(0㎝区)は似行に従い、 40×60×深さ40cmの元肥穴を掘り、全量を元肥穴に施こし、各区とも駐頂部 から元肥穴の底部までを40㎝とした。 (2) 駐間草生一草生区は駐間(巾15 m)にカッピン・サント(Cymbepogon citrat us STAPF)を2列(75cm×50cm)株分け定植した。(1980.2月) (3) 浅植 — 浅植区は育苗ポット(Ø10cm×高さ15cm)の下半分を地中に埋め、上半 分は地上部に露出させ覆土した。 2. 1980年8月、10月、1981年1月、4月の計4回草生されているカッピンサントを刈り

簌 条件

の 1980

> 字 年

> > の

弒

簌

条

件

お ቷ び 主 要 取り、敷草として補充した。

3 1981年1月、1株当り年間の半量N-30g、P2O5-50g、K2O-40gを、マモナ 粕、骨粉、塩化加里を用いて畦部分に表面施用した。

び		表 1. 生育調査結果				④ Tは対照区						
主		調査	_	樹	₹ 7 (c	m)	基 部 径 (cm) 樹冠表面和				面積 (112)	
要成		項		1								
凝	主	処理	8025	1	1	812.6	8025	5 29	10.8	81.2.6.		4.4
具	成	壁の 0cm 高さ 0cm	(T) 24	88	160 ***	180 **	0.4	06	1.2	1.8 ***	2 1 ***	- ^{2.7} ***
体	果	4		1%	** [*]	~***	" "	0.8 *** 0.8	***	~**	" **	"***
的	の	L 40		120	100	136	0.4		2.0		3.0	
数	具	L,S,u.	1%	19	18	13	 	0.1	0.2	0.3	0.6	0.6
字	体		5%	14	13	10	-	0.1	02	0.2	0.4	0.5
	的デ	建门力	l 承(T)23	109	180	195	0.4	0.8	1.5	2.2	28	3.3
	í	植しす	1	103	176	192	0.4	0.8 *≭ 0.7	1.5 *** 1.4	2.2 *** 2.0	2.8 *** 2.5	32
	タ		% -					0.0 4	800	012	0.19	
		Σ,S,α; 5	%				. '	0.03	900	0.09 -	014	
-		m #08 /		 			 					
,		-60 6	۲)26 (T)26	105	187 *≭			0.7	1.7 ***	2.5 ***	³⁵ **	4.1 ***
		1	る 25	106	169	188	04	0.7	1.2	1.7	1.7	20
		1 s d -	1%		12	7		•	030	051	1.2	1.1
		<u>-</u> -	5%	<u></u>	9	5			0.22	038	0.9	8.0

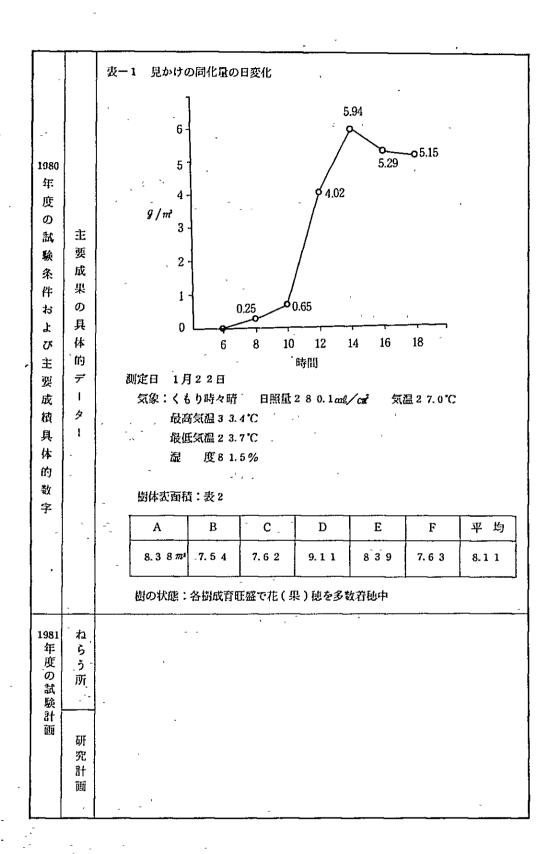
			<u> </u>
1981 たり 174 189 191 201 22 26 26 4.0 37 4.6 4.4 4.5 4.5 1.7 1.8 1.7 1.9 1.4 1.8 2.0 1.7 2.2 2.4 30 30 1.7 2.2 2.4 30 30 30 30 30 30 30 3			(交互作用)
中生する 145 184 170 196 14 1.8 20 1.7 2.2 24 3 0 1981 年度の		ļ	駐の高さ 0cm 40cm 0 40 0 20 40 20 40 20 4.0
する 145 184 170 196 14 1.8 20 1.7 2.2 2.4 30 1981 年度の試験計画 一般に対している。 一			75年 174 189 191 201 22 26 26 4.0 37 4.6 4.4
1981 おらい所 (畦の高さ)と(畦間草生)の交互作用 の			+ 3 145 184 170 196 1.4 1.8 2.0 1.7 2.2 2.4 30
年度の試験計画			
	1981年度の	5 10	(畦の高さ)と(畦間草生)の交互作用
	試験計画	研究計画	継続
			~
	•		
			,
	,	-	
	-		
	-		
	-	-	
	-		
	,		
	}		
		}	-

8) 結果母枝苗利用による胡椒栽培の生産性調査

アマゾニア熱帯農業総合試験場 担当者 永井和夫・石塚幸寿

. 1980年度

目的	コショウの結果母枝を使って苗を仕立て、肥培管理、誘引、摘 房等の集約栽培により、そ の生産性を検討する。
試 験 法	1. 1976年に原始林伐採、寄焼後、トウモロコシを1作した畑を人力で耕起整地し、約35㎡の試験区を作成した。 2. 潅水、無潅水、元肥の種類A、Bにより4区2連とした。元肥Aは綿実粕、骨粉、塩化加里、石灰の有機質主体。 元肥Bは尿素、熔成燐肥、塩化加里、石灰の化学肥料とした。両区とも成分量は1本当り、N-200g、P2O5-333g、K2O-250gとした。 3. 各区とも3.6m×1.8 mの大きさで、畦の高さ20cmとし、シンガプーラ種苗を80×60cmの2条植えで12本定植した。また、各区は巾80cm及び70cmの通路をはさんで南北に2列、東西に4列に配置する。 4. 苗は2年木より得た穂木をビニールポットで育苗させ、穂木採取後70日経たものを用いた。 5. 収量調査、樹体解体調査を行ない、その生産生を検討する。
試 験	 黒コショウ換算で1本当り平均1.3kgの収量を得た。試験区の面積が小さいため、Ha換算するには注意を要するが、(元肥A、無潅水)の区で最高の83 ton/ha、(元肥B、潅水)区で最低の5.6 ton/haとなる。 個行法による成園の収穫量が64~8.4 ton/haであるのと比較しても決して低くないことがわかる。ただし、1房重については一般栽培のものより小さくなる傾向にある。 3年本の収穫後(1980年12月)に、12本について解体調査を実施した。 慣行法で栽培されたもののデーターが無いため、考察はできないが、結果枝栽培によるコショウの生育特性として揚げておく。 出1) Albugverque.F.C,Condru J.M.P.(1971) Cultura da Pimenta do Reino na Rejião Amazônia IPEN Nº3 Vol 2. Belém P140 (2) 昭和45年度試験成積書「敷草を基幹としたコショウ栽培技術改善に関する試験(その1)」参照


													·
1980 年度の試験条	試験条件の数字(実施の方法)	 1. 1980年に 2 1979年1 間伐された部 1009 K2C 3. 収穫は黒コ たって行った 4. 1980年1 解体調査した 	12月、半数 3分を巾20)ー80 <i>分</i> を ショウ生選 12月に、類	女の假 cm× ·A(7 をとし	体を間 50cm 有キ質 、9月	月 き ×深さ 主体 3日	,植作 : 20c) B(4 ~6E	# 掴り 化学服 I 、 9	起こし 四料主(月 2 6	、 N 本)ℝ 日~	ー60g に追肥 29日	7、P した。 の21	205
件お		表-1 収量調査結果(3年末) (1本当り											
よび		区	生実に	双爪	1房			数	製品	īfr	歩	韶	
主		_c 潅 水		6 Kg	36	-a -	1300		1.3	Kg		3 %	
要	主	元肥A(無海水	(12) 4.5	,	35	- 1	1420	,	1.5		3 ()	
成績	要	元肥 B((9) 3	5	3 6		990	'	1.0		2 8	3	
具	成	無海水	(12) 4.	4	3.5		1300)	13		3 ()	
体	果	平均 4.4 3.6 1250 1.3 29											
的	の	注 1. ()内は調査本数を示す。											
数字	具	2. (元	把B、 在	k) 区i	は調査	本数 9	本で	, 32	は当	地で記	言う根	肉病 t	犬を呈し
	体		したが原因					,.					
	的 - デ		を含んだ、								, 1. 4	_	
	-) 	4. 潅水[区の潅水は	197	9 4 72	17 C	19	8 U #	は夫肌	として	かった	-0	
	9	表一2	掛体解体調	查結果	是(19	9801	£12	月)			,		,,
	ı	調查項目	樹冠表面	ផីជី		E 1	Ĭ	棄	面		収		生央双弧
		区	高さ 半径	表面 的	葉	枝 ———		菜数	1枚当 菜面積			生実 収量	表面值
		元肥A無滯水(6'	66 ^{cm} 61 ^{cm}	25 ^{m²}	K9 167	Кд 295	Кд 4.62	故 1830	27.7	5.1	1260	4.4	18
		元肥B• // (6)	61 64	2.4	211				32.7	72	1270	4.6	1.9
	-	平均	64 63	2.5	1.89	300	4.89	2010	302	62	1265	4.5	18
	~	1. 樹冠表面科 2. 収量は19 3. ()内は調3								き計算	すした	0	
1981年	ね らい 所	刈込み剪定の気	実施可否と	その方	法の証	霍立						,	-
の試験計画	研究計 画	1980年に設	定した。 6	00 71	200	本につ	いて	の収割	計調查	に移行	うする	٥	

- 9) コショウの光合成能に関する試験(1980~)
- ⑴ 光合成能の日変化に関する試験

アマゾニア熱帯農業総合試験場 担当者 我野良三・岸 光夫

1980年

_	~		
	目	的	リーフパンチを用いて菜の見かけの同化量の日変化を測定し、今後の試験の基礎資料と する。
		験 法	 供試樹:場内で標準栽培されているシンガプーラ種 4 年生の中から、外観で健全であると見られた樹 6 樹を選んで供試する。 測定法:06:00 に主脈を中心として片側をリーフパンチで100cm相当打ち抜き、所定の時間に残った片側から同面積を打ち抜き、その葉片の乾物重を測定し、その時間の見かけの同化量とする。 測定時間:06:00から18:00まで2 H毎に測定する。
	.		表1は1月22日に行った測定結果である。 1回の測定では正確に把握出来ないので、繰り返して測定を継続中である。
	試結結		
	,	\	
	,	اً	

- 10) コショウの光合成能に関する試験 (1980~
- (2) 摘穂が光合成能に及ぼす影響

 -	_	
e e	Ó	コショウの適正結果量を求めるため、リーフパンチを用い葉の見かけの同代化量を測 定し、結果量調節の資料とする。
試勢方法		 供試樹:場内で標準栽培されているシンガプーラ種4年生の中から、外観で健全でああると見られた樹9本を選んで供試する。 処理区分:①花(果)穂を全摘除 ②着花(果)数の半分を摘除(葉4枚に100割) ③放任、とし各区1樹を用い3反覆とする。 摘除処理は1回とし、後は放任する。 測定法:06:00に主脈を中心として片側をリーフパンチで100㎡相当打ち抜き15:00に残った片側から同面積を打ち抜いて、その葉片の乾物重を測定し見かけの同化量とする。 側定した日の気象、樹体表面積、樹の状態を記入する。 利定期間:1月中旬から収穫(7月)まで2ヶ月毎に4回予定。
	-	現在測定を継続中である。
試験結果		
	•	

11) コショウ圏におけるイネ科植物の敷草及び対抗植物の草生によるネコブ線虫密度の抑制に関する試験

(継続第5年次)

アマゾニア熱帯農業総合試験場・ 担当者:浜田正博・大堂志郎

度を線虫及
がプーラ種
Z
<u>۲</u> ۵.
てコショウ る。 に不向きで
込みがない
を切った。
告したが、
誘因となっ
であった。
٠,
1 2

		, © 1	1)の試験:	条件及び主	要成績	にいれる。			
		表1. 1980年収量と	今までの収	Tit.			•		
,	- •		1980 生実収量	4 ケs 累 ま		197生実収量		78	1979 生実収量
	,	1. アメンドイン	4.2	121	61	2.0	1	.5	4.3
980		2. ブラッキャリア	1 1.6	2 5.3	128	0.6	8	.6	4.5
年		3. デリス	86	2 0.1	102	1.7	4	.3	5.5
贬		4 マルチ(チガヤ)	1 0.4	3 6.2	183	4.5	16	.8	4.5
の	主	5. マルチ (グァテマラ)	1 3.9	4 3.8	222	64	16	.3	7.1
試	要	6. 荷耕裸地	6.9	1 9.7	100	2.1	6	.1	4.6
験	成	7. エウパトリウム	56	158	80	0.7	3	.2	6.3
条	果	8. クロタラリヤ	9.5	2 3.3	118	0.6	8	.4	4.7
牛	の		<u>. </u>						
おし	具 #-	the heather that he	to the state of the						
よび	体的	表 2. 処理別 枯死欠权	* 举(%)						
む主	的 デ		1979	1979	1980	1980	198	3 1 1	981
更	7.	-	2月	8月	2月	8月	2)		6月
芘	9	1. アメンドイン	10	10	15	17	2 2		37
Į.	1	2. ブラッキャリヤ	7	7	10	17	25	,	50
Ę.		3. デ リ ス	12	15	22	25	40		65
体		4. マルチ(チガヤ)	2	12	22	27	8 0	1	00
的		5. マルチ(グァテマラ)	5	20	32	50	7.5	;	90
数		6. 清耕課地	7	7	15	20	27		45
字	İ	7. エウパトリウム	2	2	5	5	15	-	35
	-4,	8. クロタラリヤ	5	10	1 2	12	2.5		45
		試験区総平均	6	10	17	22	3 8		58
į		:	4 年生	-11	5 年生	"	1	6	年生
	*	表 6 欠株を加味しない 欠株を加味する		の株当りは付本数のは			<u>-</u>		- -
				3	4	5	6	7	8
į	- "	アッ 	ントキャリブ		新	マルチ グァテマラ	消耕	エウ・トリウ	
ı		欠株を加味しない(A)1:	2.1 253	2 0.1	362	4 3.8	1 9.7	1 5.8	233Kg
		欠株を加味する (B)1(1 6.6	3 2.5	3 4.5	1 7.5	1 5.3	21.1 "
		(B)/(A)×100 88		82	89	78	88	96	90
81	ā#	荷耕を100とけ北 61	1 128	94	185	197	100	87	120
試験計画	研究計画	本圃場での調査は終了し	.、1981年	以降は中	止する。		1		·

表3 3処理区の標準樹 地上部解体例

	菜 数	房数	葉重 9	房重9	茎重 8、
グァテマラ敷草	1 1.0 9 2	2,3 0 2	10940,5	1.651,5	27.112,0
チガヤ敷草	9317	3.6 0 7	9.847,1	8.6 9 7,7	16.707.0
商耕裸地	4.9 2 9	1.387	4.5 6 7,5	3.9 5 0,5	7.9 3 1,5

	地上部総計(9)	房を除く 地上部計(9)	樹冠 面積‴	樹冠面積 当り葉数	解体調查月
グァテマラ敷草	3 9 7 0 4,0	3 8.0 5 2,5	1 4.0 7	788枚/㎡	2月
チガヤ敷草	3 4.2 4 5,8	2 6.5 4 8,1	1 2.5 5	742	4月
清 耕 裸 地	1 6.4 4 9,5	1 2.4 9 9,0	7.2 1	683	6月

要 4 グァテマラ敷草区の地下部垂直分布調査例

深さ	全根瓜 %	細根<5㎜ %	樹冠外側の 全根重 %	ソイルオーガーでの調査 同左%
0 ~ 10ст	33	60	58	59~65
10 ~ 20 ⋅	4 5	20	00	. 33 - 03
20~ 40	13	13	38	31~35
40~ 60	6	6	4	3∼ 5

表 5. グァテマラ敷草区の土壌の物理化学性の垂直的調査例

深さ	PH (H2O)	PH (KCL)	AL#	CaMg me%	P	K ppm	硬度
0 ~ 2 cm	68	50	0.0 3	30	2	38	11
5 ~ 8	63	4.6	0.0 8	1.9	1	- 24	15
13~16	5.9	4 3	0.1 3	2.0	3	15	18
22~26	5 2	38	0.60	0.6	1	10	- 22
42~45	4.6	3.7	097	02	2	. 8	- 22
65~70	4.6	3.7	088	0.3 .	1	4	22
COVA	5.8	4.7	007	4.5	6	1 5	_

深さ	固相 %	液相 %	気相 %		粗孔隙 %	仮比亚	透水係数
2 ~ 8 cm	5 4.5	2 7.5	180	,	130		1.19×10^{-2}
10~15	4 7.5	280	2 4.5		1 8.5		642×10^{-3}
20~25	575	3 0.5	1 2.0		98	1.47	1.17×10^{-3}
40 ~ 45	586	330	84		7.5	1.49	2.65×10^{-4}
65 ~ 70	563	335	1 0.2		7.5	1.4 6	1.59×10^{-4}

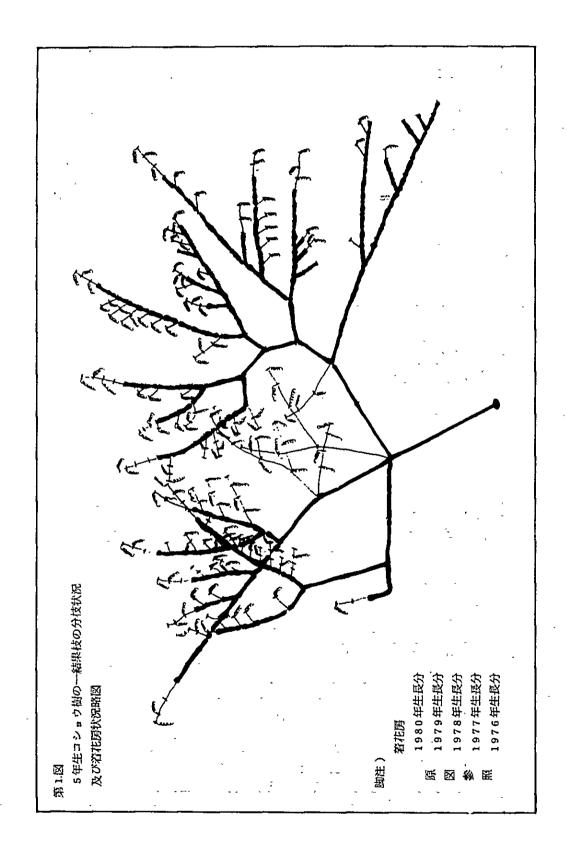
12) 敷草がコショウの生育に及ぼす効果に関する試験(その1)

敷草の施与量(厚さ)がコショウの生育、収量に及ぼす影響 (継続第4年次)

> アマゾニア熱帯農業総合試験場 担当者:大堂志郎・橋本明博

目的	コショウの生育、収量に及ぼす敷草施与量(厚さ)の影響を調べる。
試験方法	 農試内「畑地」試験間の1976年2月定植のコショウを供試し、1977年6月以降、 チガヤの敷草を20cm、10cm、5cm厚さで全面、および5cm量の株元のみとする区を 設定し、対照区として消耕無施与区を設けた。 1区4本×5処理×4反復(乱塊法)=80本、他に除外区コショウ120本、計200 本のコショウ、0.2 haを使用。 上記処理継続コショウ5年生樹の生育、収量を調査した。
試籍果	1. 1980年度の収量も3ケ年累計の収量も、厚さが厚い程多いが、その差は大きくない。(表1参照) 2. 敷草の最も大きな効果として、樹冠面積の拡大があったが年次を経るに従い、2つの制限因子により制約を受け、厚さにかかわらずほぼ似たような数値(10 m²台)になった。(表2、図1. 参照) 2つの制限因子とは、1. 支柱の高さと 2. 結果枝の下垂現象である。 3. 枯死欠株率は他の倒場と同様に1980年後半からの上昇が急激にみられ、1981年の収穫を待たずして、60%以上となった。 特に枝枯れによる枯死が目立った。(表2 参照) 4. 以上の1.2.3のことから、敷草のみでは、枯死欠株率を下げることは出来ないことがわかったし、収量においても、厚さよりも、施与するかしないかの方が重要であることがわかった。又、樹冠面積も、現行仕立法では一定の制限を受けることがわかった。つまり敷草を更に厚くすることはコショウの生育、収量にとって、それ程期待できるものではなく、施与して有機物の給源とすることや、地表面を裸にしないことの方がより重要と考える。
令後の問題点	深耕圃場での有機物の給顏や地表面を裸にしないことを目的とした敷草の検討。

			表 1. 1980	年の収量	と累積収	対数の	胡冠面積	当り収録	<u> </u>	<u> </u>	
- - :			処理	1978 生	1979 実収承	1980 Kg)	35年 累計	1	978 1 生収/	979 1 樹冠面積	980 比
	. ,		C(コントロール)	8.7	3.4	107	228(58)	1.7 1	046	1.2 1
			5B(株元)	1 1.1	56	1 4.1	308(79)	200	065	1.3 6
	1980		5A (全面)	1 3.3	48	150	33.1(85)	2.0 4	0.5 1	1.4 4
	年	,	10	123	62	162	347(89)	2.0 2	066	1.5 4
	度		20	123	90	1 7.5	38.8(100)	1.97	093	1.6 4
,	の試	主要	l·s·d(005)					_ -			
	験	成						· · · · ·			
,	条	果	表 2. 樹冠面	i 積と枯	死欠株	率					
	件お	の 具	処理	1978	1979 廷面積:	1980	(班)	1978		1980 率(%	
	J.	体	C(コントロール)	501	7.2 1	882	83	0	6	12	3 1
	び	的	5B (株元)	5.5 0		1033	97	0	0	6	56
	主要	デ	5A (全面)	649	931	1 0.4 0	98	6	12	31	62
	成	タ	10	605	9.4 5	1050	99	0	6	37	100
	績	1	20	6.1 8	9.7 6	1 0.6 1	100	0	6	2 5	75
	具	Ť		3 年樹	4 年樹	5 年樹	•	3 年梅	4 年格	5 年樹	6 年樹
	体			<u> </u>		<u></u>		·			
	的		図 1. 現在の仕:		ける樹冠	面積の					•
	数		拡大制限因		レッサー阿	ക്ഷിത്ര	**			. D₫	į
	字		1. 支柱(•		文柱の母さによる	
			2. 結果		現象によ	る干住			- /	開いた。	Ý
			の伸び	シン学出れ						#	1
	-		-					, >		\	,
	_		-					ž.	F	E	ļ
		-	-			_	=		0下香斑象	5	
			-	·	-		-	'.	;	Ť	
-				*	-	•		-			<u></u>
		ね				. ·	-				
		らい		f =	± -,	-	-	-	•		
	1981 年 度	所				-		,	-		
- #	度の試験計	研究計	本題場での調	査は終了	し、19	81年以	降は中止	する。- ・		•	· ~
	計画	画				-			=	-	

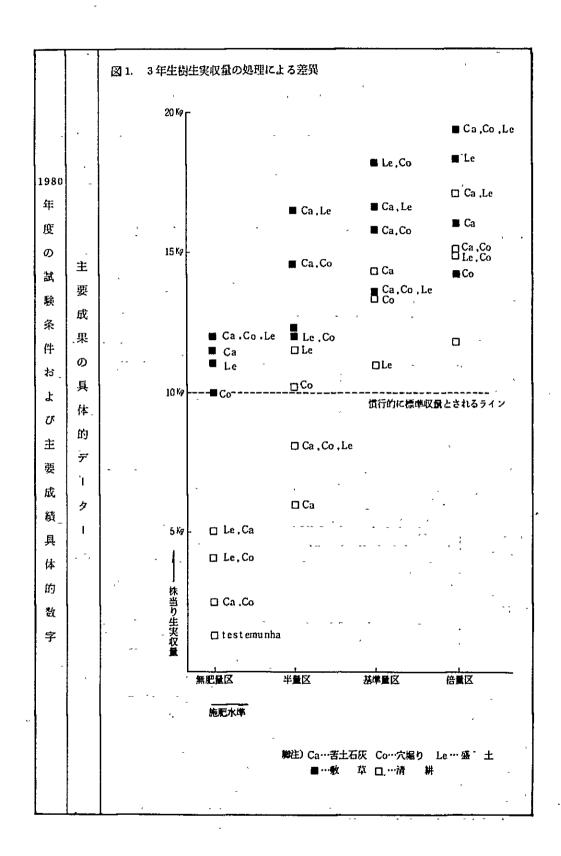

〔13〕 敷草がコショウの生育におよぼす効果に関する試験(その 2")

敷草と施肥がコショウの生育、収量におよぼす影響 (継続第4年次)

> アマゾニア熱帯農業総合試験場 担当者:大堂志郎・橋本明博

目的	. コショウの生育、収量におよぼす敷草と施肥の影響を調べる。
試 験 方, 法	農試内「畑地」試験頭の1976年2月に定植したコショウを供試し、1977年6月 以降、カッピン グァテマラの敷草と施肥の組合せ区を設定した。 C(コントロール)区…清耕無施肥対照区 NPK区…化学肥料区 M区…敷草区 MPK区…敷草と窒素を除く肥料区 NPK区…敷草と肥料区 1区20本×5処理×2反復乱規法、0.2haを使用 上記処理継続コショウ5年生樹の生育及び収量を調査した。
試 結 果	 1. 1980年の収量は、コントロール区を除いて、1978年と1979年の2ヶ年分に近い数値を示した。これは、コロニアの通常のやはり2倍近い生産量である。しかしながら、樹勢の維持という面から、適正収量を検討すると、結果過多である。(表1. 参照) 2. 1980年の乾燥期入りの頃より、枯死欠株となる樹数が除々に増し、1981年の収穫を待たずして、既にコントロール区を除いて50%以上となった。(表2 参照) 3. ソイルオーガーによる根群垂直分布調査から、定植後満5ヶ年を経過している成樹でも未攪拌土壌では極めて根が浅いことがわかった。(表3 参照) 4. 5年間敷草と施肥を継続した土壌の化学性の垂直的変化をみると、その成分の垂直浸透は浅く、特に燐酸、石灰成分はその傾向が強い。(表4 参照) 5. 生育旺勢な一結果枝の各年次別の伸長を図示してみたが、分枝状況が複雑化し、着花房可能節位の無理な増加を促していることと、無効薬の増大を促している。
今 後 の 問題点	 光合成能にみあった適正収量を維持するための施肥と敷草の検討 根群を特に垂直方向に立体化させるための深耕と、施肥の検討 無効徒長枝の発生を極力少なくする施肥管理の検討
<u> </u>	

		表 1. 各処理	別収超	と樹冠	面積当	負り収益	ł						
	ĺ			197	78 1	979	1980	3/	婶	19	78	1979	1980
1,					生実	収量	(Kg)	果	計		生収	/樹冠	面積比
-		C(コントロ	ール)	6.	7	2.0	49	1	3.6	1.5	50	0.3 8	060
		NPK		1 1.	6	7.8	2 0.2	3	9.6	2 (00	0.99	1.7 9
		М		10	8	56	145	3	09	1.6	68	064	1.20
		M · P K		1 1.	6	8.6	187	3	89	1.7	73	087	1.46
1980		M · N P K		12	3	105	1 9.5	4	2.3	1.8	81	1.11	150
年		表 2. 各処理	別結	死欠株	率 (%)							
度		, tu	月	198		1980	19		1.9	0 1	1		
g l	主	処理	<u>"</u>			10 月		月	6	月			-
	要	C(コントロ	-ル)	0		0	7	,	7	%			
祗		NPK		5	- -	13	2	5	57	7			
験	成	М		5		15	3	5	5 5	5			
条	果	M·PK		2		13	4	0	65	5			
件	の	M · N P K		7		17	3	0	5 ()			
お	具	表3. ソイル:	オーガー	(採土	<u>1.5</u>	7.6)利	用によ	る根	#分介	調査	例		
£	体			ツわ	レオーガ	- F		深	き別様	分介	5 %	6	
אט	m]			中の	根重(<i>9</i>) 比	率	0~20	20	~40	401	~60	
主	デ	C(コントロ	-ル)		845	10	0	25	7	7 0	ļ	5	
要		NPK		1	1.00	13	0	26	6	6		8	
_		<u>M</u>			8.00	9	5	83	1	4	_	3	
成	タ	M · PK		1	1.85	14	0	3 0	6	2	<u> </u>	7	
積	_1	M · N P K		2	7.0 5	3 2	0	90		6		4	
具		表 4. 各処理	別の土	壤化学(生の垂	直的変	化調査	6]	_				
体					(H2						Mg	me%	
的		深さ	С	NPK		M·PK	MNPK	C	NF	'K	M	M·PK	MNPK
数		0 ~ 20cm	4.9	61	57	6.7	6.6	06	5	7	32	63	4 5
字		20~40	4.6	50	5.4	58	51	01	1.		24	25	1.3
_	i	40~60	47	4.4	4.7	5.4	4.7	0.1	0.	9	06	12	08
				K	nnt			1 -		P		рп	
		深さ	С	NPK	M	MPK	M·NPK	С	Ni	K	М	M-PK	MNPK
	, ,	0 ~ 20cm	2	13	16	3 9	37	2	2	2	3	15	10
		20~40	1	3	6	18	9	1		3	2	3	3
	-	40~60	1	2	3	11	-7	1		1	2	3	2


- 。 14) コショウの耕種改善に関する試験
- a コショウの生育、収量におよぼす慣行技術の効果に関する試験(その1) (継続第3年次)

アマゾニア熱帯農業総合試験場 担当者:大堂志郎・橋本明博。

目	的	コショウの生育、収量におよぼす慣行技術の効果(盛土、敷草、施肥法、施肥量、土壌 改良剤)の5因子の効果を調べる。
試 方	験法	 農試内U個場に 0.5 ha の供試 個場を設定し、1978年1月にコショウを定植した。 処理因子と水準については次の通り。 盛土(2水準)…通路部分の表土をとり、区内に10cm盛る区と無処理の区。 1978年に処理済。 敷草(2水準)…通路部分に草生しているカッピングァテマラを毎年 6.8 月刈取りし、 処理区に敷く区と無処理の区。10月はその場の刈取りのみとする。 施肥法(2水準)…表面施肥とたこつぼ施肥(60×40×40cm) 施肥量(4水準)…をMBRAPA法を基準とし、無施与、半量、基準量、倍量の4区とする。 土壌改良剤(2水準)…苦土石灰とF・T・Eを施与する区と無処理区 2. 1区14本×32区 L32(2³¹)直交表利用による完全無作為化法 3. 上記処理継続コショウ3年生樹の生育、収量及び土壌の変化を調査した。
試結	験果	1. 本年は本格収穫の第1回目で、1.3 kg/株~19.3 kg/株と大きな差を示し、特に施肥と敷草の効果は著しい。(表1、参照) 2. 枯死欠株率は他の試験 関場と同程度の%で、平均6.4%となっている。核枯れにより枯死するのがめだっている。(表1. 参照) 3. 樹冠面積当りの生実収量は0.24~186 kg/mと大きく別れているが、施肥による数値の上昇がめだち、適正収量の検討の場合、施肥によるコントロールがかなり期待できそうである。(表1. 参照) 4. 敷草による効果は無肥料区で大きく、施肥量が増すに従い、効果はみられるものの、差は小さくなっている。このことは無機養分供給源としての効果が大きいと判断できる。(図1参照) 5. 表層(0~20cm)の土壌の化学性をみると、敷草は加里の給源としての力が大さく、カルシュウムやリンサンの給源としては微力と考えられる。(表2参照) 6. 薬中のカチオン含有量をみてみると、敷草は加里を富化しているが、カルシュウムや

	,	•
	,	マグネシュウムは逆に少なくなっている。(表 3.参照)
	今 後 の 問題点	 栽培上の焦点のとらえ方を変えて、根図域の立体的拡大のための、特に垂直的拡大を中心とした施肥及び土壌管理法を検討する必要がある。 具体的には深耕を基礎にした施肥及び土壌管理を考える。 地上部のとらえ方としては、光合成能を最良にするための葉面積の確保と施肥、水分管理、又無効徒枝の発生を、極力少なくするための施肥及び土壌管理を考える。
-	,	
	` '	
		· · · · · · · · · · · · · · · · · · ·
		•
	•	
:	-	
ŀ	,	
-		
-		
*		

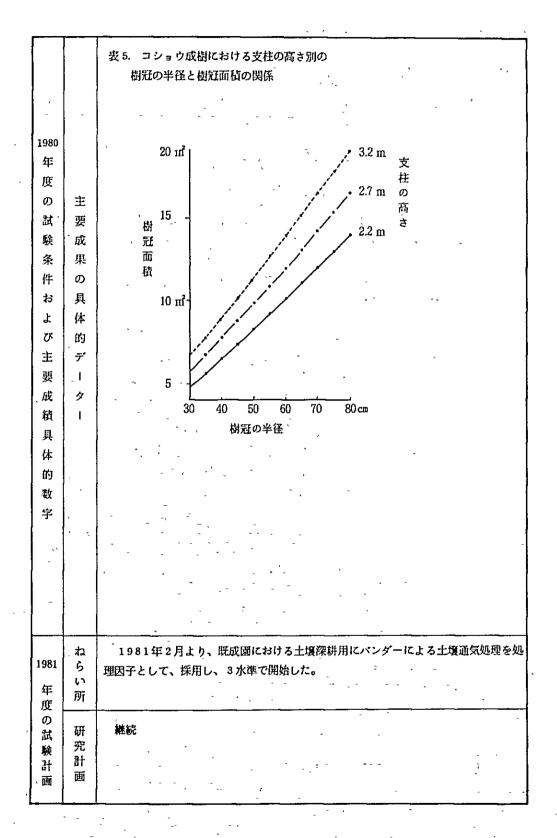
<i>'</i> ,	全体の 平均値 段高値	1 2.3	917	1.2 9	64
٠	最高值			1.2 9	64
	 	1 9.3	1079		
٠.	 			1.86	3 5.7
(最低值	13	530	0.24	0.0
i	変動係数	281%	9.3 %		881%
	施肥oD	-5.0	-041	-0.50	1.6
	1	-08₩	-002	-007**	-1.1
	2	2 3 💥	027	0.2 2米米	-20
	3	3.6%%	0.47	0.35米米	1.6
主	1 · s · d (0.05)	2.7	1.0 1	0.2 6	6 4
要	- 				
成	盛 土 A	0.8	0.23	0.0 7	0.2
果	敷草B	2 3***	084*	* 0.14**	1.5
の	穴堀り C	0 1	-010	003	1.5
具	苦土石灰 F	0.5 - ′ -	0.18	0.04	-1.0
- 1	$A \times D$	0.4	-023	0.0 4	2.8 米
· · · · · · · · · · · · · · · · · · ·	B × D	-0.9	-028	- 0.1 0 ×	−2.8 *
· 1	$C \times D$	-02	-011	0.0 2	-1.0
.	F × D	03	0.10	0.0 2	1.0
· 1	$A \times B$	0.2	-0.0 4	000	-10
Į	AXC	-04	010	-004	06
'	AXF	0.1	-0.0 2	-001	32*
}	B × C	-0.1	002	-0.01	10
]	B×F -	0.3	000	001	-1.5
-	C×F	-0.3	000	-003	0.2
~	1 · s · d (0.0 5)	0.9	035	0.0 9	2.2
. }	対照無処理区(;	32) 1.3	530	0.2 4	71
ļ			9.14	1.47	0.0
٠, ا		01) 19.3	1 0.5 7	1.82	1 4 2
	要成果	主要成果の具体的データー は、s・d(0.05) 日本 日本	主 2 23※※ 3 3.6※※ 1・s・d(0.05) 2.7 要 1・s・d(0.05) 2.7 政 至 A 0.8 果 数 草 B 2.3*** の 六 堀り C 0.1 基 五 D 0.4 B X D 0.9 E X D 0.9 A X B 0.2 A X B 0.2 A X F 0.1 B X C -0.1 B X F 0.3 C X F 0.3 C X F 0.3 C X F 0.3 C X F 0.3 C X F 0.3 C X F 0.9 対照無処理区(32) 1.3 慣行標準区(27) 135	主要 は	主

	* 1		(PH Kcl)	Ca Mg me%	Al# me%	P ppm	K ppm
		全体の						
		平均值	СТ	5,60	371	0.1 2	12	14
		最高值		7.60	9.2	036	37	4 1
		最 低 值		400	05	006	2	1
1980		変動係数	cv	1 3.8%	3 6.8 %	408%	5 7.6 %	7 1.4 %
年		施肥 0	D -	-0.2 4	~068	0.0 2	-52	- 2.5
度		1		0.19	-0.0 5	-0.0 2	-4.3	3.9
の ++	主	2		-0.07	0.1 6 ×	-001	-0.7	-39
試	要	3	1	0.1 2	0.5 6 ××	001	103**	24
験	成果	1 • s • d (0	.05)	0.80	079	0.0 8	76	124
件	o l	盛土	A	0.34×	0.5 3≭≭	-0.02	2 9×	-06
お	具	敷 草		-0.0 3	-0.03	0.0 2	0.6	8.2××
よ	体	穴堀り	c -	-034×	-076××	0.00	-0.9	-12
び	的	苦土石灰	F	020	0.4 3××	-0.02	1.4	-0.1
主	デ	A×D	•	-027	-058	0.0 1	0.6	-13
要(' 	B×D		0.1 1	0.3 3	002	2.9×	-1.5
成	9	C×D		0.1 5	063	-001	0.8	-1.0
街	1	F×D		0.3 0×	0.5 2	0.0 1	- 1.9	-1.2
具		A×B.		-0.25	-0.10	0.0 0	10	-09
体的	•	A×C	-	-0.12	0.0 5	0.0 0	2.0	-0.9
数		A×F		-0.15	-0.40	0.0 0	0.0	-1.3
字	j	B×C		0.27	0.4 8	000	-04	1.4
7		B×F		0.08	-0.1 △	0.00	0.7	1.6
	ļ	C×F		0.0 8	-0.4 3	-001	0.1	0.3
		. l•s•d(0	0.0 5)	0.28	0.2 7	0.0 3	2.6	4.4
		対照無処理	区(32)	4.5 0	1.8	0.14	. 5	2
İ		慣行標準区			1.6	0.19	1 0	3
Ì	!	多肥区			5 0	0.0 9	3 7	26
						n) = = -		

		表 3. 成築中の C	th Mg K+	含有量(1 9	81年1月7	日採甕)			
	-		葉生重 9/1葉	葉乾物率 %	Cath %	Mg ^{#†} %	K ⁺ %		
-		全体の	1240	3 2.5 6	172	0.2 8	0.2.0		
		平均値 CT最高値	1.3 4 8		1.7 2		028		
4 1		最低值	1.1 2 5	36.50	2.10	0.6 6	0.86		
		変動係数 CV	9.5%	2 7.8 0 5.1 %	1.1 4	0.09	0.0 3		
	ľ	Zanka CV	3.5 76	0.1 70	12070	440%	5 4.7 %		
1980	-	施肥oD	-0061	-0.11	000	0.0 4	0.0 1		
年		1	-0019	0.97	-0.01	005	-002		
度		2	-0022	0.4 5	-003	-0.0 6×	-0.03		
の	主	3	0.102	-131	005	-002	0.0 4		
試験	要成	1 • s • d (0.0 5) 0.251	2.2 2	0.29	0.09	0.0 9		
条	果	盛土A	0021	0.2 9	0.0 6	002	004		
件	の	敷 草 B	0.062	1.0 7*	-013×	-0.1 2××	0.1 8××		
お	具	穴掘り C	-0.026	0.1 2	-0.05×	001	002		
£	体	苦土石灰 F	0.006	-0.20	0.0 6	0.0 0	0.0 2		
び	的	A×D	0.0 5 2	0.1 1	-0.02	-0.01	001		
]	B×D	0.0 6 7	-0.46	0.0 2	0.0 5	0.0 1		
主	デ	CXD	0019	-0.40	004	-0.02	0.01		
要		F×D	0.0 3 8	-0.27	-0.02	0.00	0.0 2		
成	タ	A×B	0.005	-0.2 2	001	0.0 1	0.0 4 ×		
積	1	A×C	0.013	-020	0.0 3	0.00	0.0 3		
具		A×F	0049	-055	-0.00	0.0 2	002		
体		BXC .	0.001	007	0.02	000	004×		
的	-	B×F	-0016	-0.0 5	003	-001	002		
		C×F	0.008	-0.25	-0.0 3	-001	000		
数字	`	l·s·d(005) 0088	078	0.1 0	0.0 3	0.0 3		
1		· · · · · · · · · · · · · · · · · · ·							
		対照無処理区(3	2) 1.130	3 1.3 0	1.94	0.4 6	0.20		
	,	慣行標準区 (2	7) 1.309	3 5.1 0	1.90	0.3 3	006		
		多肥区(0	1) 1.978.	2 7.8 0	1.76	020	0.86		
		表 4. カッピングっ	テマラの無機	成分含有量	調査例				
	.			乾物当		-	刈取り6月		
		乾	物率 N	P2O5	K2O Ca	O MgO	→5日 草丈		
	-		% - %	- %	% - %		□納2m 無		
		1 1	7.5 2 1.2 1	1	1.0 8 0.1		肥料栽培 第2トメアス		
	-	Capim Guatemala, Tripsacum laxum							

(15) コショウの耕種改善に関する試験

b コショウの生育、収量におよぼす慣行技術の効果に関する試験(その2) (継続第2年次)


アマゾニア熱帯農業総合試験場。

1980年度

担当者:大堂志郎·橋本明博

;	目	的	コショウの生育、収量におよぼす慣行技術(栽植間隔、支柱の高さ)の 2 因子の効果を 調べる。
	武方		 農試内Uは個場に03haの供試価場を設定し、1979年1月にコショウを定植した。施肥は、EMBRAPAの基準量であり、地表面管理はグァラマラによる敷草栽培とする。処理因子と水準については次の通りである。 栽培間隔(3水準) 支柱の高さ(3水準) 1区8本×27区 L27(3¹³) 直交表利用による3ブロックの乱塊法。 上記2年生樹の生育、収量を調査した。
	-	.	1. 1980年の収量は、平均1.26 kg/株(生実)と標準収量で、処理間にも差はみられい。(表3参照) 2. 樹高が支柱の頂上に到達したのは、2.2 mで2月、2.7 mで5月、3.2 mで8月であ
	-	-	った。成樹としての樹冠の形成は、更にそれより 5 ~ 6 ケ月後で、それぞれ 8 月、 1 1月 2 月頃以降であった。
		-	3. 2年生樹の樹冠面積の拡大は急敵で10月は2月に比較して、3倍以上になった。
	試	験	そして10月の時点の面積約9.2 mというのは成樹の樹冠面積といえる。(妻3参照) 4. 樹冠面積は、現時点においては、植付間隔が広くなれば、わずかながら大きくなる傾
	結	果	向にあるし、又支柱の高さが高くなれば確実に大きくなっている。(表3参照) 5. 樹冠の半径をみると、植付間隔が広くなれば、大きくなっているし、又支柱の高さが
			高くなれば、半径は小さくなっている。(表 4 参照)
	•	į	

_												
		丧 1. 要因	表 1. 要因と水準									
				水			準`					J
1		要因	1		2			3]		-	}
		ブロック I	} -	-			<u> </u>]			-]
1		植付間隔 4	2.0×	2.0 m	2.0×2.5m		2.5×2.5m		}			1
		支柱の高さ 1	3 2.27	m	2.77		3.2 m]			- 1
		表 2. 経時的樹高の変化										
			1980年				1981年			7		·
1980		-	2月24日	5.1 2	828 10		25 1月6日		3.9	_		
年		支 1	218 2	237	250	25	5	250	2436			- 1
度		B柱高 2	237 2	273	288	29	4	292	282	_		i
စ	主	のさ 3	250 3	300	324	329	9	332	324	╛		}
試	要	表 3. 樹冠面積と生実収量										
験	成	1980年2月 1980年 1980年10月										
条	果		封冠面	冠 面 積		実収	量		32 \	樹	过 面	積
件	の		1 2	3(7)	平) 1		2	3 (水	四二	1	2	3(水準)
お	具	l -		 		1.2 5 1.2 2				.11	945	9.1 5m²
ょ	体	· · · · —-	272 284				27	1.3 5		.0 5	9.27	939
ぴ	的		2.64 287			—∤—	20	1.25		.51		9.9 9%%
主	デ	A×B	2.7 7 2.9 7	7 2.9 7 2.8 1		1.16 13		129		,38	9.3 6	8.9 7※
要		1 · s · d		0.4 5				0.37				
成	9	(005)										
積	'				·L							
具		表 4. 樹冠の4								ų		-
体的	-		1090	<u></u> 掛 5	∄の当 目	半年	(cm) 年3月				
数		2.1		— T			7					
字		(水準) R	46.0	2 462	3 4 6.3	48			8.2			£
*		A	450		4 6.9*	46	 -		01*			
1		В	4 7.2	4 6.2	4 5.1*	5 0	.1	493 4	5.2*	_		
	.	A×B	459	468	4 5.6	48	18.1 48.7 4		7.7		-	·
	` ;	l·s·d(0.05)		1.7			2.7					
1	-											.]
	.	-	,			-						
].		-	-		-	•		-	=	-	-	, [
		- 			-		ļ					
1 i		-		•			-			_	•	•

- 16) コショウの耕種改善に関する試験
- d 敷草栽培コショウにおける肥料三要素施用効果に関する試験 (継続第2年次)

1980年度。

アマゾニア熱帯農業総合試験場 担当者:大堂志郎・橋本明博

目的	カッピングァテマラの敷草施与コショウ園において、肥料の三要素としての、N、P2O5 K2Oの施与銀がコショウの生育、収量におよぼす効果について調べる。
試 験	 農試内「畑地」試験値場の1977年2月に定植したコショウを供試し、1978年11月以降処理した。処理因子と水準は次の通りである。 窒素…尿素を用い3水準
試験果	1. 闘場全体の収量は昨年(9.1 kg/株)よりも約5割増の135kg/株であった。 樹冠面積当りの収量も、昨年の1.32 kg/m/に対して1.49 kg/m/と伸びた。 処理による差は、窒素の場合に見られるが、樹冠面積にはほとんどなく、樹冠面積当り の単位収量の増加分が最終的収量増になっている。(表1.参照) 2. 樹冠面積も、昨年の68m/株に対し、9.1 m/株と3割強の増加を示したが処理間 の差はほとんどない。 3. 1980年の収穫以後の枯死欠株率の上昇が少しづつめだち始め、1981年6月時点 では全体平均で15.3%になった。パラツキが非常に大きく処理間の差はみられない。 この5年生樹での枯死欠株率は「畑地」試験個6年生樹の5年生時点の2月17%、 8月22%に比較してやや低いが傾向としては近似している。
今後	1 施肥のあり方が、収量の増のみでなく、適正収量の維持、樹勢の維持、無効徒長枝の 発生抑制、経営費の節約等の面からも検討を進める必要がある。
の問題点	

		 						 1				
-		水準	198	30年生9	E収侃 (Kg) 3	1980	年収量	/ 樹冠面積比一				
İ		ブロック(R)	1 4.2	1 4.4	1 2.0 Kg/株	:	151	1.6 2 Kg/m ³				
ļ		窒 素(A)	122	1 3.5	14.9*	1.3 5	1.5 5	1.49				
ĺ	1	燐 酸(B)	132	1 3.9	134	1.43	1.5 3	1.49				
		加 里(C)	1 3.3	1 3.9	1 3.4	1.46		* -				
980		_A×B	1 3.4	1 3.2	139							
华		Λ×C	1 3.4	1 3.4	136							
}		B×C	1 3.6	1 3.2	137							
Œ	۲											
ァ	れ	l·s·d(005)		2.1				٠.				
at	は	平均	1 3.5			1.49	(197	9年132)				
Ì	No.											
<u>ڳ</u>	16	表 2. 2ケ年累計生	実収量と	と 枯死欠	炸率							
₽	0		25	年累計华	実収貸 (Kg)	村死:	玄(19	81.619)				
#	湉	水準	1	2	3	I	2	3				
3	験	ブロック(R)	2 0.4	224	2 4.9 Kg/株	1 6.5	1 4.7	1 4.4 %				
	デ	窒 素(A)	2 2.6	229	2 2.8	138	1 8.6	1 3.6				
•		燐 酸(B)	2 2.8	228	2 2.2	138	1 4.1	1 8.0				
*	タ	加 里(C)				1 4.4	1 4.4	1 7.5				
:	1	A×B										
1		A×C										
E		B×C										
₹					,	-	-	-				
ı -		1 · s · d (0.0 5)				,	1 4.0					
ļ	[平均	2 2.6			1 5.3	(9	.2%)				
Į						-		-				
\$		表 3 施料の施与量						•				
,		区別 延頻	ĺ	4	F間株当り施	 与 	` \					
ž į			水準	1	2	3 ,		-				
۱,		窒 素 … 尿	素	165	9 3309	6609/4	年	,				
ž.]			燐	230		920		i.				
	-		燐	230	460	920	[
		加 里 … 塩化加		165	330	660		, ,				
81		bn mirra 2 1	13.8- 1	∧ LL-het	591 L 1> 4+	tten hir	(W-37*82)	し世刻の五階が				
臣	친	処理因子としてで										
度の	らい	布により、枯死率の			っ ことかでき	つかとりか	、	50円の出面域を				
の試験計画	所	検討して開始する。			<u> </u>	<u> </u>	-	-				
· }}	Mar.	in co					-	- +				
À	研計 究証	継続	•		-	•		•				

17) 窒素肥料とその施用時期がコショウの開花におよばす影響に関する試験 (その1)

アマゾニア熱帯農業総合試験場

1980年度

担当者:大堂志郎·橋本明何

B	的	針栽培の結果母枝苗を利用して窒素肥料の施用時期がコショウの開花におよぼす影響を
	~,	知る。
<u> </u>		
		1. 供試材料 網室定置の鉢栽培結果母枝苗コショウ128鉢、葉数平均約90葉、コショウ品種シンガプーラ種
		ョッパログランカノーノ種 2. 試験区分 L32(2 ³¹)直交表による乱塊法
1		因子水準
		Nの量(2水準)…尿素を使用し、1鉢当り1.5 g 2週間毎区と、1.5 g
		4週毎区
試	験	Nの施用時期(4水準)・・・ 無施肥 4ケ月制限施肥、2ケ月制限施肥、
		全期均等施肥の 4 区
方	法	潅水(2水準)…常時潅水と休眠期2ケ月制限潅水
		P. K. Ca. Mg. (2水準)…熔燐(1g×3回)、重燐(1g×3回)、
		苦土石灰(2g×3回)、塩化加里(0.5g×3回)
	-	を用い施与と無施与
l		有機質肥料 (2水準)マモナ粕 (4g×3回)、骨粉 (2g×3回) を
ŀ		用い施与と無施与
		3. 調 査 展開菜数、展開房数、植物体中の化学性等
		1. 制限した状態から、施肥と充分な権水を開始すると、約1週間で棄色を回復し、2~
	-	3週間で新芽がふくらみ、約1ケ月後から、出房しはじめ2~3ケ月後まで続く。その
		後も栄養生長は続くが、Nの不足か、水分の不足なれば止まる。
盘	験	2 葉数の増加に対するNの効果は大きい。P. K. Ca. Mgの効果はNが施与されてい
	İ	る場合のみに大きい。潅水の制限は、明らかに葉数の増加を抑制する。(表2参照)
結	果	3. 第1回目の房数をみると、休眠以後の潅水、施肥でNを与えない場合、出房数が極め
		て少ないことがはっきりした。又Nの量も多い方が出房数も多くなっている。(表4参照) 4. 第2回目の房数をみると、Nよりも更に大きな効果をもつのが、潅水制限であること
		4. おも凹口のの数でみると、Na りも至に入さる効果でもつのか、個小利限であること がわかる。(麦 4 参照)
-		5 温度変化も、日長変化も少ない熱帯のコショウの開花結実には、体内の CN率が主役
	- {	を果しており、それを外的因子としてコントロールしているのが、Nと土壌水分である
		と考えたが、ほぼその通りに考えても支障はないことがわかった。
		光合成能を高める施肥、水分管理とともに、貯蔵エネルギーの消耗ロスの一番大きい
		のが生長と結実過多であり、適正収量の維持と収穫後から而期入りまでのいわゆる休眠
۱.	Í	. 期に充分な貯蔵エネルギーを確保する栽培方法が必要。

今 後 の 問題点

1980 年 植物体内のCN率を高めることが、開花結実のために重要であることがわかった。 但し、体内での植物ホルモンが何らかの形で関与しているものと相定して56年度以降 は更に検討を加える。

表 1. 処理の時期と開花の時期

	. 6	7月	8	9	ιœ	11 .	12	1/3	2	3	4	
N	1							77	施 写	7/7/	7/	٦
Į.	2	/n	TZ	7/1				77,	独 与	7///	7/	٦
N 美与科斯	3	/, IS	77		/////	77/		7	独与	7///	7/	ヿ
**1	4	//×	$\mathbb{Z}Z$	7772	7////	////	7///		施与。	7///		٦
												_
*	1	(//	/, nu	$^{k'''}Z$		/////			Z/Z	////		77
水	2 -	_///	//11	('//	// <u>/</u>	推	147H	_///	// ni/	k'//	7///	\mathbb{Z}
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,			17.	,,,,					
開花	<i>Y/////</i>	[[[[]	<u>ZL</u>	第1回	湖花期		<u> </u>	77///	<u>//}_</u>	第2回	可花期	╝
	6	7/1	8	9	10	- 11	12	i	2 1	3	4	

表 2. 処理による棄数の変化

度		
の		主
試		要
簌		成
条		果
件		の
お		具
J		体
σ		的
Ξ	٠	デ
要		1
成		タ
緻		1
具		<u></u>
体		Na. 17
的		の試
数		験
字		デ
		B
		U

				
, ,		経 葉	数	
-	7月1日	10月30日	1月5日	5月20日
総平均(CT)	8 9.5	2 0 6.1	1827	2880
N施与時期1(D)	-30	-71.7 ★★	-61.8 ≯*	-610**
2	1.6	123	258**	253**
3	1.5	4 5.5*	,3 7.1 ≭ ≭	4 0.5**
. 4	-01	138	1.1 -	- 4.9
1. s. d(0.05)	1 5.8	2 8.9	1 6.9	13.3*
Nの量 (B)	2.0	134	8.5	1 3.4*
P.K. Ca. Mg (C)	2.2	2.8	36	1 9.0**
有機質肥料 (F)	0.2	7.5	1 1.0	8.0 -
箍 水 (A)	0.6	-4.7	-134米	- 40
A×D3	20	9.8	2.1	11.9*
A×D2	-02	-85	-12.9%	- 3.9
F×D1	2.8	1 0.1	1 0.1	1 4.7**
l. s. d(005)	1 1.1	2 0.4	120	9 4

表 3 薬数の変化における交互作用

5月2	0 E	N	の施与	時期(D)	5月	20日	Nの施与時期(D)			
薬	数	1	2	3	4	葉	数	1_	2	3	4
潅(A)) 1	-724	45.9	359	6.4	有	1	-52 <i>A</i>	302	172	-27.1
水	2	-49.6	4.7	4 5.2	-162	機(F) ₂	-69.6	20.4	639	173

	$\overline{}$								
}		表 4. 処理による房数の	D変化						
			第1回	第2回	_	5月葉	×		
1 1]	房数	房 数	-	郭	2回房	数比	
		総平均 (CT)	445	1456		2.4 0			
		N施与時期1(D)	-42.3 ★★	- 9.3		-0.7 3米			
	1	2	- 22	-2 6.9*	-	1.5	3 > >×		
		3 .	31.7**	2 9.8≭	*	-0.4			
}	1	4	128*	6.4		-039			
		l, s, d(0.05)	96	170		0.5	2		
1,000		Nの量 (B)	17.5**	1.8		026			
1980		P. K. Da. Mg (C)	6.8*	17.3*		-0.16			
年		有機質肥料 (F)	50	30		-0.1:			
度	ىد.	権 水 (A) A×D3	6.9米 5.6	3 6.9≯≎ _7 5	<u> </u>	0.5			
0	主	A×D2	3.3	1 3.1*		-052 ★			
試験	要成	F×D1	6.1	133*		0.1 4			
条	果	l. s. d(005)	68	120		037			
件お	の 具	表 5. 房数の変化にお	1. 本本方作用			;			
fo	体		75又五16元 与時期(D)	第2回	N	 Vの施与	R左###/	D)	
ر ا	的	房数 1 2		房数		1 2 3 4			
主	デ	395 1 - 00 -01		· · · · · · · · · · · · · · · · · · ·		-234	165	 -	
要	ı	H'-(A)	9.6 733 387	(株/で)	!	-304	430	260	
成	タ	表 6. 5月葉数 第2	回房数比における	5交互作用		^			
綾.	ı	5月藥数]	Nの施与時期(D))	1	-			
具		第2回房数 1	2 3		1				
体		流 1 -0.6			-				
的		流(A) 1 -0.6 水 2 -08		ļ					
数		八 2 1 - 00	0 - 0.63 - 0 8	19 -003	L				
字		Some about the territory	WA DEAT	r: //>					
		図1. 潅水による土壌	水分のp F 個の変	£16					
		251 a	約 300ml			,			
		3 T	1 1000	1		. 1	N AT.	水制限	
		2	4///	-/	1/				
		PF 1	V *		V		一海	水無制限	
							/ · · ·		
,		1 2	, 3 4	5 6	7 8	9	— 日数		
		- v4 -							
L	L	L							

18) 胡椒の胴枯病及び根窝病の過去における発生の実態に関する聞き取り調査結果

アマゾニア熱帯農業総合試験場、

1980年度

担当者:福富雅夫・ 平形 広・浜田正博 ′

	,	
目	的	トメアスー地域におけるこれらの病害発生の実態を調査し、本病研究上の手がかりとなる問題点を明らかにする。
		トノアスー地域の篤農家約50戸について、主として用いられている紡種法ならびに病害
調	Æ	発生状況について、聞き取り調査を行なった。その結果を整理し、比較的明らかな傾向が
方	法	見られた事項について取りまとめた。
		1. 定植苗の育苗方法
		(1) 挿融母樹の歯令ならびに枝令
		当地方の農家が使用している挿穂母樹の樹令は3~5年木のものが多かった。古く
		は老木よりとられた例が多いが現在では古い木はさけられるようになった。 (表-1)
		(2) 挿穂に1等枝、ポンク枝のいずれを用いるかは、両者ほぼ半ばしているが、ポンク
ł	, `	枝を用いる者がやや多い傾向にあった。(表-2)
		(3) 挿穂の節数 4~6節のものが最も多く使用されている。挿し方は地上1~2節
'		地下2~4節の場合が多い。(表-3)
調	査	(4) 育苗日数30~60日苗が最も多く使われている(裏-4)
		(5) 苗一 床一般に苗床は新耕地に作る例が多く、20~30cmの盛土をして作られ
結	果	ている。盛土の土壌には心土を用いる場合が多かった。
	,	(6) 苗床及び定植時の消毒
		一般に苗床、挿徳共に消毒した例は半数以下で無消毒の場合がやや多い。定植時
-		に消毒している人はいなかった。
		使用農薬は様々で種類をあげると以下のようなものであった。
	-	コプレサンドース、ベンジイミダゾール、フラダン、(殺線虫剤)、クプラピノ
		チベルジ、ピアグロ(アリの駆除剤)、石灰硫黄合剤、ダイホルタン、ウスプルン、
		アレタンフォルテ、ベンレート等(表一5) 、 こっ
		2. 品種および管理状況
	1	(I) 技培品種現在トメアス1地域の日系コロニアで栽培されているのはPiper ni-
-		grnm. L.C.Var. Singapura 種で、シンガポールより持ち込んだ3
	•	本の母歯の技を挿木繁殖したものである。
		(2)
	-	2.5 mでなされており、中でも 2.5 m 栽植の農家が 5 割以上であった。
i		

うね間は2.0~8.0 mで、普通2.0 または2.5 mの場合が最も多かった。 また、一般に10条おきに約4 mのトラクター用の通路がとられている。

(3) 植穴の大きさ……横40~80cm 縦30~60cm 深さ25~60cmに堀られているが、40~60×40~60×40~50cmの植穴を堀っている場合が殆んどであった。(72.4%)

3. 圃場概况

(1) 土性、排水、地形、通風

胡椒栽培がされているのは、多くの場合、砂質壌土であるが粘土質のところもあった。排水は一般に良好な所で通風も良い所が多かった。

(表一6)

(2) 栽培前の植物また作物

現在の栽培前の囮場状況としては原始林、再生林の場合が殆んどであった。

(3) 囮場での混作または間作

選作または間作をしていない場合が殆んどであったが、混、間作の作物としては、 表-8のようなものが植えられてきた。

(4) 敷草施用

約半数の農家で敷草施用が行なわれていた。材料はグァテマラグラスを用いている 場合が最も多く、その他イナワラ、インペリアル、熱帯クズ等も用いられていた。

一般に敷草施用すると病気の発生が早い年次で起こる傾向にあるが、一般に個体当りの胡椒の収量は多くなるという。

調査

结 果

4. 施肥

基肥を施用している例は半数弱で、半数強は表土及び雑草を植穴に入れて、定植を行なっている。(表-9)

基肥並びに追肥の施肥量は農家によってまちまちであったが、その平均量を表-10-11に示した。また、年間の追肥の回数は年1回が最も多く次には年3回が多かった。 農家によっては、まれに6~7回に分施している農家もあった。この場合、胴枯病の発生が少なくなる傾向がみられた。

- 5 胴枯病、根肉病の発生に関する調査
- (1) 本病初発生年の地域的推移

根腐病は胡椒栽培の当初より点発的に発生していたという。しかしこれが、1962 年頃多発した根腐病と同一のものであるかは明らかでない。

胴枯病は1962年にBreuで初発生を見たが、その後3年経って、1965年にBoa Vistaに蔓延し、1967年にはマリキータに発生していた。マリキータにおける発生は極めて激甚であったので、この地名をとって、マリキータ病と呼ばれていた。その後本病は年速3.6±2.9 Kmの早さで新しい移住地である 第2トメアスーー

-222-

帯に拡がって行った。Breuよりの距離と激発年との間には高い正の相関(r=+0817)が見られ、本病が伝染性の疾病であることはこれらからもうかがわれる。(図・1)

第1トメアスー地域では胡椒栽培開始後約20年を経て胴枯病の初発生を見ているが、第2トメアスーでは7~8年で初発生を見、Marpaunaでは1978年に3~5年 樹で起っている。これは現在、第1.第2トメアスー地域の本病激発地における発生状態と大きな相違がないといえる。

(2) 本病の発生の季節的推移

農家が気付いた毎年の初発、激発時期は、こと10数年間を通じて、3月頃より発生が見られており、5~7月における初発ならびに激発例が極めて多い。特に根関病は5、6月に激発している。マリキータ病(胴は病)の発生はやや広い範囲にわたり、主に4月~8月であるが、中でも5~7月における激発の例が多い。(図-2)

(3) 樹令と発病との関係では一定の傾向は見られなかったが、一般に2年樹において発生が見られるようになったのは1974年頃からで、それ以前では1~2年木では発病を見ていない。

現在でも1~2年木では発生例は比較的少なく、特に1年では発生を見ていない。 しかし、一般的観察では発病しないということはなく、原因を究明する必要がある。

(4) 育苗方法と病害発生

① 挿穂の樹令及び枝令との関係

母樹の樹令が古い場合は種々病害による枝の汚染が多くなり、苗床で病害発生する場合があるが、あまり若い枝も、病害に対する抵抗力がなく腐敗枯死する場合があるから、3~4年樹の上部約1 mの先端の軟弱な徒長枝の部分は切除して使用する方がよい。

② 挿穂の節数、育苗日数との関係

③ 苗床

床土に表土を用いた場合は苗床における種々の病害の発生が多くなる傾向が見られた。一般に心土や焼土を盛土して苗床を作る方が苗床における病害発生は少なくなる。また、盛土は高い方が好ましいようである。(30~40cm)

④ 苗床及び定植時における薬剤消毒

数種薬剤が用いられているが、効果のないものが多く、一定の傾向は認められなかった。また、間場における発生にも顕著な効果は認められなかった。これは、薬剤の種類、使用方法、時期などに問題があったように思われる。

(5) 管理状況と病害発生

栽植間隔、植穴の大きさなどと胴枯病、根腐病発生との間には、特に一定の関係は 見られなかった。

(6) 圃場概況と病害発生

調 査

結 果

① 土性、地形、通風などと胴枯病発生との間には特に顕著な関係は認められなかっ たが、排水の不良な所では根容病の発生が多い傾向にあった。

また、原始林等の陰になり通風が悪い所では白絹病(Corlecium sp)の発生 が特に多い傾向が見られた。

- ② 栽培前に生育していた植物または起、間作作物の種類と胴枯病、根質病の発生と の間には明瞭な関係が見られなかった。しかし、一般に草生栽培を行った場合には 個枯病の発生が多くなる傾向にあるという。
- ③ 敷草を多く施用すると胴枯病、根質病の発生が多くなるという農家が多かった。

(7) 施肥と病害発生

無肥料栽培では一般に胴枯の発生が顕著に少なく、また肥料を少量づつ分施して施 用(年6~7回)している農家でも、胴枯病の発生が少なかった。

P. K. 主体の施肥を行ない、Nをあまり施用していない農家では3要素とも多施し ている農家に比して、1~2年長く栽培されていた。

調 査

6. 試みられた防除対策

(1) 罹病樹の除却

结 果

罹病樹の焼却、土中に埋めて石灰窒素で消毒、罹病枝の除去、枝除却後、脳剤、 Tecto、ヒ素剤などで消毒するなどが行なわれ、1部に効果があったとする農家も あったが、いずれにしても枯れていったという。

いずれの場合も徹底した処理は行われていなかった。

(2) 薬剤散布

薬剤散布も行われたが、有効薬剤が用いられていないこと、また散布回数が1~3 回程度で連続散布がされていないこと、散布時期が適切でなかったことなどもあって 効果があったとする農家となかったとする農家とがあった。

いぜれにしても完完全な防除にならずに廃風化して行ったという。

- (3) 線虫を含む害虫駆除を行った例もあるが、病害発生に効果が見られなかったという。
- (4) 原始林内で隔離栽培を行ったがこれも数年は発生が遅れたが、その後は同様に病気 が出て、廃園化して行ったという。

現在では原始林でも再植でも同じ発生状態であるという。

以上の調査結果の実験的確認ならびその原因を究門することによって、本病防除への道 今 後 を確立する。

Ø

問題点

表-1. 挿砲の枝令および樹令

母樹の樹令	不明	多年樹(老木)	6年木	5 年木	4 年木	3年木	2年水	Т
例数	2	13	6	10	12	22	4	69
%	2.9	1 8.8	87	1 4.5	1 7.4	319	58	

表-2. 插 **憩**

1980

区	別	1 等苗	ポンタ苗	Т
例	数	31	39	7 0
9	6	4 4.3	5 5.7	

表-3 挿 穂 .

年度の試験条件及び主要成績具

体的数字

節数	t	啦-	نـ	Ŀ	例数		地		下		例数	
ED KX	0	1	2	3	計	1	2	3	4	. 5	計	%
8				1	1					1	1	0.8
7			5	3	8			3	5	4	12	9.6
6		1	10	4	15			8	11	2	21	168
5		12	19	3	34	****	6	19	11	1	37	29.6
4	1*	19	11		31	,	13	21	4		38	304
3 -		10	-		10		9	5			14	112
2		1		1	1	1	1				2	1.6
例 数												
計	1	43	45	11	100	1	29	56	31	8	125	100
%	1.0	43.0	450	110	100	1	230	450	25.0	6		

* 例数(実施一)

表一4 育苗日数

日数	計	直挿	30日	40日	50∄	60日	75日	90日	90日以上
例数	92	3	16	22	13	19	8	10.	1
%	-	3.3	17.4	239	141	207	87	10.9	1,1

表-5 苗床における消毒および定植時の消毒

消毒の有無	消費	無消費
苗床の土壌	15(31.3%)	33 (58.7%)
挿 穂	19(41.3")	27 (58.7")
定植時	0(0)	43(100")

表一6. 圓場概況

土 性	排水	地 形	亚, 風
砂 質(102%) 5	良 (74.0%)37	平 担(33.3%)18	良 (837%)41
砂 壌 質(49.0″)24	普通(10.0〃) 5	やゝ傾斜地(482″)26	普通(143″) 7
粘土質(36.7//)18	不良(160″) 8	傾斜地(18.5//)10	不良(2.0 //) 1
重粘土質(4.1") 2			
合計(100 //)49	(100#)50	(100 //)54	- (100%)49

表ー7. 胡椒栽培前の作物

種	類	件数	%
1 原始林		2 4	4 9.0
2 原始林→陸稲		3.	6.2
3. 再生林		1 4.	28.6
4. 再生林→陸稲		2	4.1
5. 原始林→陸稲→再	9生林	2.	4.1
6. 再生林一陸稲一再	生林	1.	2.0
7. コショウ (再植)) ~	1 -	- 20
8. 陸稲→マンジョカ		- 1.	2.0
9. コショウ→カッヒ	ピンコロニオン	1.	20
合	計	4 9.	100

1980 年 度 の 主 試 更 験 成 枀 果 件 Ø お 具 J 体 び 的 主 デ 要 成 タ 粧 具 体 的 数

字

表一8. 随場の混作、間作状況

初年度間作	中間混作又は間作			後期	混作	£ '
陸 稲3	クロタラリア (a) 1	カ	カ	オ	9
メロン1	マリーゴールド (a)	1	77	ラクジ	+	2
ダイズ 5	ラッカセイ野生種(a)	, 1	樹		木	· 1
アズキ	熱帯 クズ (b	1	そ	の	他	1
	ナタマメ (b)	3				
	キマメ (c)	3				

(a) ネコブセンチョウ防除のため、(b) 緑地、(c) カカオの庇陰樹

表-9. 定植時の植穴施肥

作業名	% .	件.,数
基肥施用	· 4 5.9	17
無施肥(表土、雑草施肥)	5 4.1	20
合 計	100	37

表-10. 基肥の種類と施用量

肥料名	件数	平均施用量(単位9)
綿 実 拍	1	2000
マモナ粕	2	1250
骨 粉	- 5	. 800
熔一煤	12	200
塩過カリ	2	. 10
石 灰	2	675
尿 素	2	_
重過リン酸石灰	2	_

条件および主要成績具体的数字

1980

年度

の

尪

験

主

要

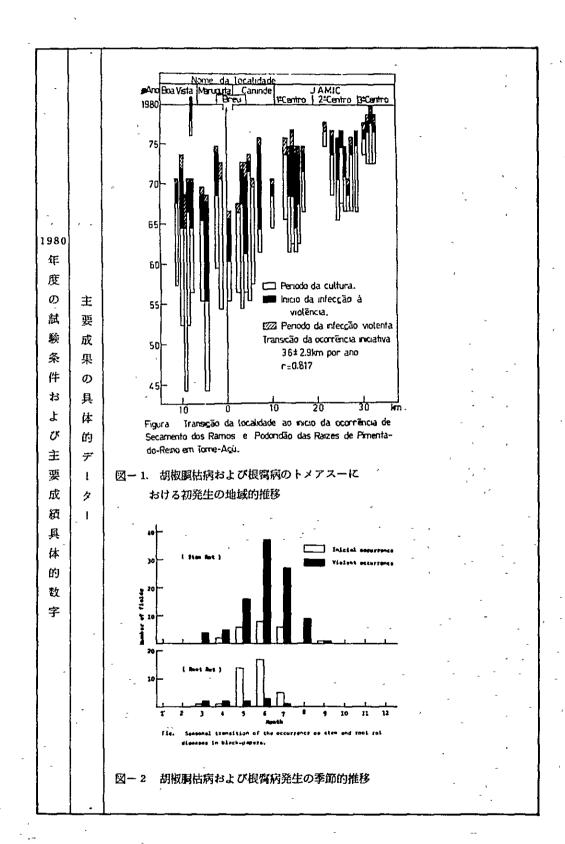
成

果

体

的

		表 1 1 追肥と施用方法
	'	項目 横穴施用 裘而施用
		肥料名 件数 平均施用量(単位9) 件数 平均施用量(単位9)
,		綿実粕 6 1.250 — —
		マモナ粕 15 1.900 5 1.000
		骨 粉 9 1.200 4 1.000
		熔 横 4 310 4 175
		塩化カリ 6 125 7 150
1980		
年		配合肥料 3 530 21 400
度の	-4-	米又力 1 2.000 — —
条	主	その他(ケイフン、油粕、苦土石灰、堆肥) (ケイフン、ノコクズ、硫酸、化成肥料、トンプ
件	要成	(備考)
햐	果	施用方法 1. 穴のみ施用 12件(26.7%)
l t	の	2. 穴及び表面施用 11件(24.4%)
び	具	3. 表面施用 22件(489%)
主	体	計 45件(100 %)
要	的	
成	デ	表-12 権病樹の除却
積	ı	作業內容(1+数)%
具	タ	罹病樹の焼却 16 61.5
体	1	" 土中埋め(1部石灰窒素消毒) 4 ~ 153 .
හා		″ 枝の除却のみ 3 11.6
数		〃枝(茎)除却後消毒(絹剤、Tecto.ヒ素剤) 3 11.6
字		計 26 100
	_	
	ĺ	
-	{	
.	-	


	※ 瀬 名	%	件数	備 考
. ,	ボルドー液 銅剂 (クピラビッチァズール、コプレサンドース)	5 4 5	18	菜枯病 防 除
	硫黄剤(セプトザン)	9.1	3	,
λ	水銀剤。	2 1.1	7	
	ダイホルタン	61	2	菜枯病防防
- ; [その他	91	3	
	計	100	33	

表一	1	4.	害虫駆除

対象害虫	名 前	件数
ネコブセンチュウ	殺線虫剤 フラダン	2
	対抗植物 マリーゴールド	3
	クロタラリア	
アプラムシ	ウイルス病防除	1

度の 主 試 要 験 成 条 果 件 の お 具 よ び 体 的 主 デ 要 ŀ 成 タ 纉 t 具 体 的 数

字

119) アマゾン流域における胡椒胴枯病及び根腐病発生の現状

アマゾニア熱帯農業総合試験場 担当者:福富雅夫・平形 広・浜田正博

1980年度

目	的	胴枯病、根腐病発生の現状を明らかにする。
閷	查	トメアスー、ペレン近郊(イガラッペーアスー、ノーボチンボテェウァ、ペイーシボイ、
ł		カスタニヤール)およびマウナス近郊における本病の発生状況を調査した。本報では胴枯
方	法	病及び根質病についての発病調査の結果をとりまとめた。
		1. Be lem 近郊における本病の発生状況ベレン近郊農家、Castanhal, Nova—Timbo—
		teua, Igarape-Asú, Peixeboi 等について発病調査を行なった。結果を要約する
		と以下の通りであった。(表-1. 図-1.)
-	- {	(1) 上記地域の10段家について調査した結果、胡椒畑における欠株ならびに枯死率は8
		~75%で、平均35.5%であった。
		(2) との地域に激発している胡椒の病害は枝より浸入感染が行われるところの胴枯病で
[あり、根容病の発生率は多い所でも4%で、平均06%という極めて低い発生率であった。従って本調査における欠株枯死株などの殆んどが嗣枯病によるものと考えてよ
		かろう。
		・ ペンジン。 (3) 従って、これら地域において、胡椒栽培を不能に至らしめつつある病害は胴枯病で
		あって、根拠病は問題になる発生を全く示していない。
	,	(4) 昨年より本年までの枯死株の増加率を算出してみると、平均213%であり、現在
調	査	発病中の個体は乾期に至って一斉に枯死するものと推察され、これを入れると 4.12
	,	倍以上の枯死率になると推定される。これからも本病害進展の激しさがうかがわれる。
結	果	(5) 病原菌の分離結果
		トメアス地域で分離されているFusarium菌および炭疽病菌と同じ菌 の菌が分
		離されており、類似の菌が病原菌であると考えられる。
	_	2. トメアスー地域における本病の発生状況
		トメアスー地域における発病調査の結果は表ー 2 ,図ー 2 に示す通りであった。本
-	.	調査は免期に入って行った結果で、所期発病中の個体の大部分は枯死していたので、
ļ		- 全体に枯死が高く発病率は低いが、表-2及び図-2中のNa1~3の農家ではベレン
		近郊同様胴枯病主体の発を示していて、根宮病の発生率は数%以下であった。この傾
		向はトメアスー地域での一般的傾向を示すものである。しかし、1部重粘土質の排水
		不良の場所ではまれに1割を越える根質病の発生を見る場合もあった。
]		また、Na 4~Na 7は同一農家の励場で、とこでは根質病の発生が異常に多いが、こ
	.	の農家は病株をすべて同一圃場の土中に埋めて処理していたためと考えられる。
<u> </u>		

又、No.8の農家では胴枯病の発生が殆んどなかったが、といでは肥料を年7回位に分施しており、葉の色を見て施用していた。

調査の結果、徒長枝の発生が少ない栽培になっていた。

とのように特殊なことをやっている面場を除けば、一般にベレン近郊と同様の発生状態を示していた。

3 Manaus 地域における本病の発生状況

EMBRAPA-UEPAE側場、Efigenio sales およびBela Vista 地区の胡椒栽培園について胴柏病および根質病の発病状況を調査した結果大要以下のことがいえるようである。(表-3. 図-3)

(1) 10~18年樹園が普通に残っているBela Vista地区では、トメアスー地域に激発している胴枯病(マリキータ病)の発生は全く見られなかった。

根腐病の発病程度はトメアスー地域の発病率と大差なく、11年樹でも10%以下の発病率であった(過去に発病枯死した欠株を含めて)。従ってこの地域における胡椒樹長樹の原因はネグロ河(Rio Negro)の西側では胴枯病の発生をみないことによると結論される。

- (2) 5~6年までで廃園化しているEfigenio Sales 地区の胡椒園では胴枯病の発生が顕著で、根質病の発生率は数%程度であるところから、この地域で、現在胡椒を絶滅状態に至らしめているのはベレン近郊およびトメアスー同様胴枯病の敵発によるものと結論される。
- (3) 両地区とも養鶏が盛んで、施肥に鶏糞が多量に用いられており、また植え穴は、エスタッカを倒れないように立てる都合もあって、50~60cmの深さに掘られており、この点トメアスーおよびベレン近郊との間に相違はなかった。

調査

結 果

ベレーン近郊における胡椒胴枯病・ 根腐病の発病調査結果

1980 狂 度 の 試

験

条

件

お

Ĵ

び

主

要

成

纉 具 体 的 数 字

主

要

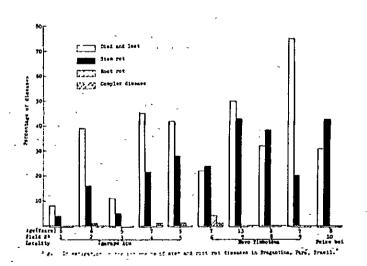
成

果

の

具

体


的

゙゙゙゙゙゙゙゙゙゙゙゙゙゙

Envestigation on the occurrence of atom and root rat diseassa im Bragentina, Pará, Brasil.*

Locality of	Age	Number	1	escantage.	of	
investigation		plants investige- ed	Bied end lost	Stem zpt	foot	Complex
l.lqerepë. Açû, faz. Negeno	4	100	5. 0	4,0	. 0	G
2. lgarapā- Açū, faz. Kalya	4	100	39.0	16.0	1 0	۵
3. lgerəpê- Açû, fer. Dehitiri	3	100	11 6	2. 0	s	۵
4. igarapá- Açu, fes. Desepi	1	155	45.D	_ 27.D	ū	1.0
5. Igurapën Açu, Tus. Tuuchiyama	\$	200	47.0	~ 2 0, 0	1.0	D
6. Nove Tim- belove, Tex. Eimus	, 7	100	22,0	24.0	4.0	1 0
7. Mave lim- baleus, fa Maratomi	e. 13	100	50,0	43.0	۵	a
E, hove Tim- botsus, Fa Sato	ı. I	100	32,0	2.80	0	¢
9. hove Tim- botsum, fo Obsess	e. T	100	15.0	20.0		a
10. Paine Soi Faz. Maroto		100	31.0	2,64	D	8

[•] Investigation date: Jenuery 27-29, 1981.

١

図-1、表-1に同じ

-233 **-**

表ー2 トメアスーにおける胡椒胴枯病・根腐病の発病調査結果

Table investigation on the occurrency of also and root rat diseases in Tomá-Acú, Papú, Brasil,

Locallty Aga - of (Teers) investigation		Number of Investigated	Purcentage of										
		plents	Died and lest	Stee sat	Acet rot	Complex disease							
), Deinj-Tomé- Açû, Fez. Hetauzeki	4	3,712	30,2	5,2	0.6	٥							
2.Peini-To-s- Açú, Faz. Mabusaus	3	5,360	20.5	1.2	0.1	G							
7. Beini-Tono. Açú, Fazç., Eyvohins	5	16,432	1,66	6.7	0.2	b							
4.Kesupeeya, Faz. Imusu- aaki	4	200	73,5	. 4.5	1.5	9.5							
5. Karupaysa, /as. Teurupaki	s	100	21,0	25.0	20.0	13.0 '							
6. Marupauva, Fet. Tausuaski	4	£DQ	59.0	17.0	4.0	15.0							
7, Marugauva, For. Tauruceki	4	100	11,0	1.5	2.0	ß							
S, Agrain, Pos. Dahikiri	•	200	27.0	D	1.0	•							

1980年度の試

験

条

件

お

ľ

U

主

要

成

具体的数字

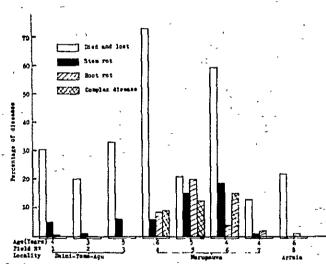
丰

要

成

果

ഗ


具

体

ÉJ

デ

ا چ

Tip. Milesturation on the occurrence of over and root not diseases in Tond-Agú, Park, Brasil.

図ー2 表ー2に同じ

[.] Investigation datase. June 13, on Jame 4, one June 4-18 and

表-3 マナウス地域における胡椒胸枯病・ 根腐病の発病調査結果

1980 年 度 の

ぉ

ŗ

U

主

要

具

的

主要成果の

具

体

的

デ

1 夕 1 ^

Table Investigation on the occurrence of atom and root rot disease.

Locality of (Age Tearal	Number of investigat-		Percenta	90 07	L
investigation		ed plants	Pied and lost	Stam set	Root	Complex
l. Bola Viete, Fez. Touji	17	TCG .	1.0	c	13,0	Q
2. Belo Visto. Faz. Tauji	4	100	4.0	D	1.5	ø
J. Belo Visto, For, Eanuto	11	100 " .	5.0	C	7.0	2,0
4. Belo Vieto, Faz, Fujito	10	106	47.0	0	29.0	p
5. Mela Vista, Fes. Teno	10	176	23.3	. 0	12.5	0
6. Bolo Vieto, Faz. Yeno	11	100	15,6	a	4,0	D
7, Efigenio Sales, fez, . Nosewa	•	100	78.0	2.0	0.0	2.0
9. Efigenie Salsa, fer. Sokol	5	100	17.0	29.0	0	1.0

[.] Towastication date: March 15-12, 1981.

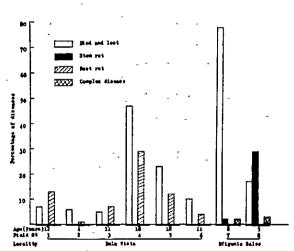


Fig. Investigation on the occurrence of ates and rout rot diseases in Manaus, amedones, Brasil.

図-3 表-3に同じ

20) 胡椒の胴枯病、根窝病発病樹の病徴と根、茎組織の感染、病変との関係

1980年度 "

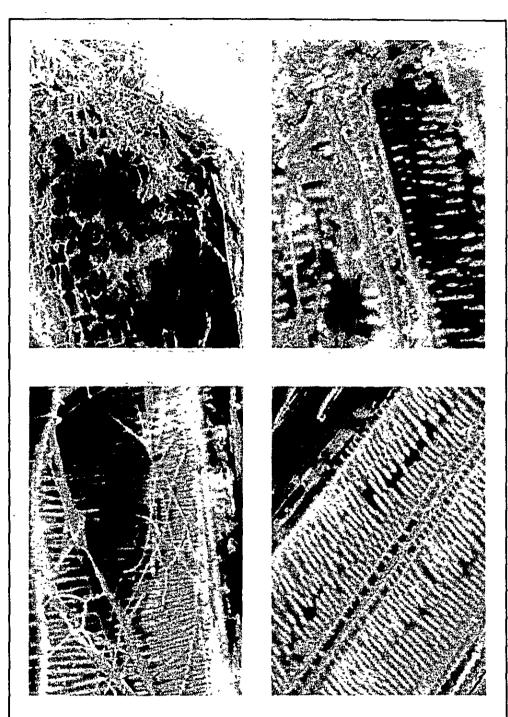
アマゾニア熱帯農業総合試験場 担当者:福富雅夫・平形 広・浜田正博

月	的	胴枯病、根腐病の病徴を類別し、病変組織との関係を究明する。
試方	験法	各種病状の発病個体を根部と共に知り取り、個体全体の各部位を電気1コおよび切り出 しナイフを用いて解剖して病変組織の発達状態を観察、図示し、病徴と根、茎組織の病変 との関係の解析を行なった。
試 結		胴括病および根隔病の病徴と組織の病変部との関係を調査した結果、以下の4つの型に分類された。 A. 根質病型 (1) 黄化萎凋型大根や側根の先端部の根質。 (2) 黄化萎凋、褐変、落葉、落枝型主茎地下部の中途または尻が全体的に腐敗し、健全な根は殆んど残っていない状態になっている。この症状は根の腎散部の進行または尻部よりの直接感染による。 B. 胴枯、枝枯病型徒長枝または主茎の中途より感染して、それより上部を背枯れ、黒褐色に枯死させる。徒長枝では感染部より下方向に病状が進行して、主茎基部に移行し、主茎基部を完全に枯死させるので、それより上部全体が一斉に背枯症状または、黒褐色になって怙死する。この場合、葉の黄化は起らない。また、このような個体の根は健全である。 C. 複合型A. Bの両症状を示す場合であり、黄化萎凋、茎の胴枯により、黄褐色に枯死させ、主茎に進行して主茎を胴枯状に枯死させ、それより地上部を一斉に萎凋、枯死させ、主茎に進行して主茎を胴枯状に枯死させ、それより地上部を一斉に萎凋、枯死させる。 根部は主根、支根、地下茎部などの腐敗が起っている。しかし、地下部の病変色組織と地上部の胴枯、枝枯部との間には健全部が存在しており、上部は上部、地下部は地下部と別途に感染が起ったものであると考えられ、A. B両者を併発したものと考えられる。
今	·後の	これらの病徴の分類に従って、病変組織中に存在する病原菌の分離同定を行い、病状の 相違による変化はないかを究明する。
E E	題点	

21) 胡椒の胴枯病および根腐病の感染菌の組織内蔓延、道管閉塞などに関する 解剖学的観察

> アマゾニア熱帯農業総合試験場 担当者:福富雅夫・平形 広・浜田正博 /

1980年度


目的	胡椒の胴枯病、根窝病感染ならびに植物体枯死の機構を解明する。
	本病の自然感染根、茎ならびに胡椒より分離したF. salan:菌(No.1.)を人工接種した根、茎組織をKarnovsky氏固定液で固定、OsO。で後固定し、常法により走査電顕試料を作成し、またEpon包埋して、透過型電顕試料切片を作製し、各種の光顕ならびに電顕を用いて観察した。
試 結 果	観察の結果を要約すると以下の通りである。 1. 本病菌は、維管束系特に道管内によく蔓延しているが(図ー3.5.6) その周辺の柔和織細胞内にも多数蔓延していた。(図ー1) 2. 罹病境界組織中に太さの著しく異なる2種の菌糸が共存しており、同一道管細胞、柔組織細胞内に普通に共存しているのが観察された。(図ー3)。このことは選択分離培地による菌の分離実験において、2種の菌が同じ場所から分離されたことと符合する。 3. 組織内菌系の隔壁(Septum)は単孔構造であり、Woronin体を有することから、子養菌類(Ascomycotina)に属する菌であることが明らかになった。 4. 上記23.のことから、細い菌糸はFusarium solani菌であり、太い菌糸は炭疽病菌 (Colletotrichum sp.) であると推察される。 5 地下茎部中では、導管内に侵入した菌糸の周囲は普通高斑子密度の物質によってとり囲まれていた。このような現象は一般に抵抗反応として他病害で観察されている現象と類似しており、胴怙病の病状進行が極めて早いのに比較して、地下部における腐敗の進行は極めて緩慢であることと関係があると思われるが、この点とついては更に検討を加えたい。 6. 導管内によく蔓延すること、柔和織細胞内に侵入して蔓延することならびに菌糸の一般形態は、胴怙病感染茎、根腐病感染地下茎部および根部ともに類似していた。この点これら組織よりの菌の分離実験において、全べて類似菌が分離されていることと符合する。 7. 胴怙病感染器変部組織の殆んどの道管は充填物によって完全に詰まっていた。(図ー7.8)このことは、病状進行に伴なって生成された物質による道管閉塞により、それより上部組織への養、水分の上昇を阻害し、上部組織を急速に生理的に枯死せしめることにより背枯現象を起こす原因と考えられる。 8. 病原菌(F. solani)を人工接種した場合も自然感染の場合同様道管内を良く蔓延することが観察された。(図ー5.6)

今後の問題点

胴枯病は枝の先の方には感染せず、また、1,2年の若年木での感染が極めて少ないの に、皮目のコルク化がはじまる前後の枝ではよく感染した。

その原因は、病原菌の侵入門戸と考えられる節の部分の構造変化に起因するものと考えられる。との点に関し、Agingによるこの部分の構造変化と菌の侵入方法などを明らかにする必要がある。

これは、この侵入門戸に対する感染予防処理を考える上に重要である。

図−1~3 胴枯病菌の茎の柔組織への侵入(1), 道管への侵入(2)および道管内を2 種の菌の菌糸が蔓延している状態(3), (4)----・健全茎の道管。

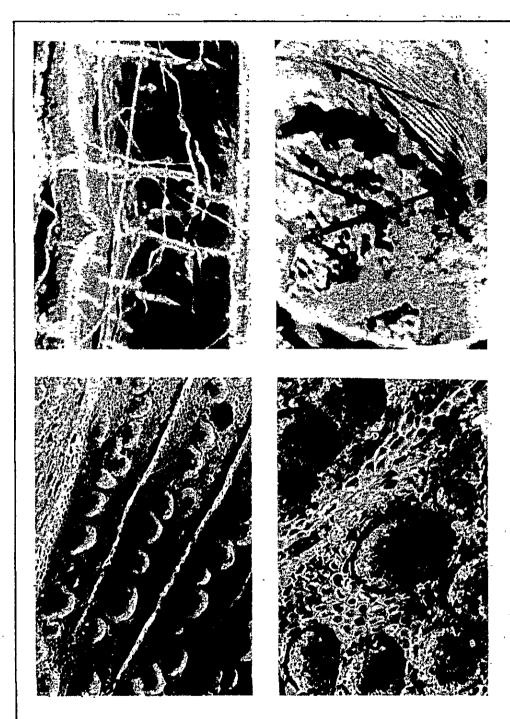


図-5,6 胡椒胴枯病菌を接種した根の道管(6)および茎の道管(6)内における F. solani , No.1 菌の蔓延状態 図-7,8 自然感染茎組織における道管閉塞の状態。

22) 胡椒の胴枯病、根腐病自然組織よりの選択分離培地による病原菌の 分離ならびに同定

> アマゾニア熱帯農業総合試験場 担当者:福富雅夫・平形 広・浜田正博

. 1980年度

		<u> </u>
目	的	脚枯病、根偽病感染組織中に常に存在する病原菌を分離し、病原性を確認して主因を明 らかにする。
試	験	安-1に示す各種菌の選択分離培地を用いて各地域の自然感染組織中に常に存在する病 原菌を分離し、病原性の確認ならびに同定を行なった。
方	法	
試結結	験果	主として症状進行中の健・病境界部組織中より病原菌の分離を行なった結果、Fusari- um函菌と炭疽病菌が胴枯病、根腐病感染組織共にしばしば分離された。 従って、これらの菌が本病発生に重要な関与をしているものと考られた。根腐病では、 重枯土質土壌のやや湿潤な土地で、Phytophthora 図域、Pythium 図菌なでが上記菌と 共に分離される場合があった。 このような藻菌類が分離される所の根腐病は病状の進行がかなり早い傾向があるようで あった。 関怙、枝怙部よりこのような菌が分離されることはなかった。 苗床で苗を根質、 茎質ならびに薬などを枯死させる病気で Phytophthora sp., Phythium sp. が単独 で分離される場合もあり、日陰にして湿潤な条件下では、これらの菌による苗質れが起き るものと思われる。このように場所によって関係する病原菌に若干の相違があった。 2 種の菌が殆んど常に健病境界部より分離されることは、本病が複合感染によるもので あると考えざるを得ない。 分離菌のうち、殆んど常に病変部と健全組織との境界部より分離される 2 属菌のうち、 濃い赤色の色素を分配する Fusarium 菌は、徒長枝ならびに根に対して極めて強い病原性を行し、病徴も類似していた。

先端のPhialideから擬頭状に形成される。

大型分生子は1~4隔膜で3隔膜が最も多く、大きさは平均35.8×0.0 μmであった。 厚膜包子は円形またはだ円形、無色、黄色または淡褐色、膜は厚く、炎面は滑らかかまたは小突起を有し、頂生または間生、単一またはじゅず状、一般に菌糸上に豊富に形成される。直径6~12 μm、大型分生子上にも形成される。

以上の形態的特徴に基づいて本菌を同定すると Fusarium solani であることは明らかで、F-Type と考えられる。

同定菌糸の一覧表は表-2に示した。 なお、菌糸の発育適温は26℃であった。(図-1)

表-1 供試した各種菌に対する選択分離培地

Selective isolation media

- 1. Modified Komada's Fugarium-selective-isolation-medium
- 2. Masago's Phytophthora-selective-isolation-medium
- 3. Peptone-glucose-rosebengal-agar-medium for general fungi (Martin., 1950)
- 4. Sodium-albuminate-agar-medium for bacteria (wakeman & fred, 1922)
- 5. Actinomyces- selective-isolation-medium (james, 1958)

試

験

結

果

表ー2 Fusarium Solani, β-type と固定された分離菌の一覧表

fable. List of isolates of function second butpe named the sten and root set diseases in black-prooffspor angust [function, N., C. Eisteland & E. Rounds, 1981]

	2 2 3- elec ret	dissense;	112-	201 71	diame
--	-----------------	-----------	------	--------	-------

1980 年 度 の

試

験

条

件

なよ

 σ

主要成

具体的

主

要

成

果

၈

体

的

Inelate Di	Sample of Indiction	locality(hos.1)	fate of lockation
,	\$ 6 A Boot Stumper	ining-following, fure for firemen	Soys 19,1961
10	N 2 Line seatral part of the lateral vice		Pov.23, 1961
20	R R Diffe undergrant part of the man aton.	* Pag., Manuschil	Jan 10, 1981
3.7	S S Line Interni wine	• • •	•
26	I I Libe uniorgramé-tele-étes	tirate, free-tie, feré	Jan.14, 1981
31	1 1 5 the undergrand-main-state	Pala Pendon Pala Liber	Jan. 71 , 1981
10 `	1 3 h The contralpart of the main stem	Petri bei beri.	Jan.29,2981
46	3 % % the barder line between healthy and dispused tisome	Past Historiani Rosso-fitthe Ionas, Parks Past, Oktober	
47	I I have second part of the main sees	•	/ma.29,1981
15	2 E 2, the berger line between healthy and discount linears browning bissues of vacular bundles	Int. Bilipm	Jan.27,2902
, 61	S S Dytke lateral etem, hreenig-thurses of vascular bundles	Immpi-199, have	7ms.28,1982
64	3 2 Little antisy-granul min step	fas Buthress	• 、
טל	5 k 3, the whierground man ates		
65	2 E D, the lateral vine	Daini-Tolm-Açus Porus Paus de brancos	187,4,1981
79	3 S O, the lateral wine.	Arrata, tymo-Agu, turi. Tak, Mandon,	Jan.24,2901
167	3 3 D, Boot	Driet-Town-174-Paris.	₩v 23,1981
416	2 2 D, the underground-relatery	Pas. Tiremy	

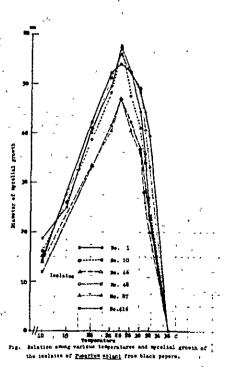


図-1 Fusarium solani,β-type ,菌の菌糸の発育適温

23) 胡椒根腐の発生誘因としてのネコブセンチュウと FUSAR IUM 菌との関連性に関する試験

1980年度

アマゾニア熱帯農業総合試験場 担当者:浜田正博・平形 広

目 的 Fusarium 菌による胡椒根腐の発生誘因としてのネコブセンチュウの役割について明らかにする。

〔材料および方法〕

供試材料には、コショウ (Piper nigrum L, 品種. Singapura) サツマイモネコブセンチュウ (Meloidogyne incoguita),およびFusarium solani, (保存菌NaFー21),を用いた。

計画は、センチュウの幼虫及び卵の数を、0, 1000, 10000,の3段階に接種し、それぞれにFusarium菌の接種、無接種を組合せて計6処理設けた。供試苗は1区4本、3反覆各処理12本、計72本を用いた。

供試苗 コショウの若い茎-節をバーミュキュライトに挿木し(1979年11月12日) 14日後に、発根した苗のみを殺菌土壌を入れたビニールポット(直径10×高さ10cm) に仮植して約5ヶ月間育成した。この苗をポリパケツ(直径21×高さ24cm,6 ℓ 容、以 下ポリポットという。)の底に排水のために12個の穴をあけ、殺菌土壌5 ℓ入れ、烙燐 16 g を施肥したポリポットに1本植えとした。その際苗は3~4 節、葉数3枚に第1次 根を長さ5cmに切りそろえた。(1980年4月17日)

試 験

方法

線虫の接種 ポット植付20日後(5月7日)にコショウの株元周辺を少し堀って、センチュウの幼虫及び卵の懸独液 100 $m \ell$ を接種した。センチュウの飛散防止のため、処理後直ちに円形の網目状のビニールシートで土壌表面をおおい支柱を立てた。

Fusarium菌の接種 保存菌NaF-21菌を250 m少容三角コンベルンにカカオ殺粉末40ml、フスマ(小麦)80ml、蒸留水40mlをよく混合し、加圧殺菌(120℃,15分間)して作製した培地に移植し、室温下(23~30℃)で20日間培養した。2個のコルベンの培養菌を4ℓの殺菌土壌とよく混合して接種源とした。なお対照区も同一の無菌培地を用いて同様な処理をした。

土壌表面は殺菌土壌500m&で被服後、水道水(500m&)を流水した。

接種菌の再分離 菌の再分離はFusarium菌選択分離培地 [Poteto-Dextrose-Agar (Nissan)39 g、寒天 5g、蒸溜水 1L, PCNB 75%水和剂 1g, Na 2B4O7 10H20 1g, 硫酸ストレプトマイシン 03g, pH $4.0 \sim 3.8 g$] をシャーレに約 15mL分注して使用した。根圏土壌は 1ポット 1 点、各処理12点採取して混合し、希釈平板法 [100 倍希釈の土壌懸独液 (0.1%寒天)を各シャーレ 0.5mL分注)、 5 日間室温で培養後コロニー数を調査した。

根部よりの弦の分離は、各株の根関境界部組織(枯死株は主発地下部)を1%の次亜塩

素酸ソーダで表面殺菌後大きさ2~4㎞の小片を作り、それを培地上に静置し、室温で5日間培養した。分離菌は試験管に移植し、接種菌との比較同定を行なった。

栽培管理 遮光舎の下で高さ1mのコンクリート台の板に並べ、その上にポリポット を置き、適時水道水を灌水して育成した。

[結 果]

 Fusarium solan: F-21 菌接種による根質の発病率は菌接種区で47.2%、対 照区は0%であった。(第1表)

センチュウ接種数と菌との組合せではF21接種区16.7%、F-21+センチュウ(1000)接種区41.7%、およびF-21+センチュウ(10000)接種区83.3% の発病率であった。すなわち F. solani 単独接種でも発病するが、センチュウと共に接種すると発病が苦しく多くなった。しかし、センチュウ単独では発病は起こらなかった。

- 2 接種菌は、菌接種区の関敗した根組織で再分離され根圏土壌中よりは再分離されなかった(第2,3表)
- 3 初期の発病は菌接種2カ月後に現われ、発病の推移は第1図の通りであった。 病徴は、はじめ葉脈が黄化し、葉が下垂してやや下方にまき込む状態となった。 その後土際の主茎部が黒褐色に変色し、以後地上部全体が急激に黒褐色に枯死していった。

試 験

結 果

- 4. 根系の腐敗数とネコブ指数との間には高い正の相関(r=0.857**)があった。 菌+センチュウ接種区における根の腐敗部はセンチュウが高密度に寄生して指状に肥大 した組織に多く、その他の部分での腐敗の増加は見られなかった。
- 5. コショウの生育は、センチュウ接種によって地上、地下部とも悪くなった。また、センチュウ接種区では葉全体が黄白色になり、葉脈のみが緑色をした異常葉の発生がみられた。(第4表)
- 6. 以上の結果から考察すると本病の発生には F. solan i 菌の存在が必要で、センチュウ単独接種では発病が認められなかった。

本菌の侵入は、ネコブセンチュウの高密度寄生による根組織の崩壊部より行なわれ、そして発病が助長されるものと考えられる。

- 245 -

第1表 コショウの根窝病発生におよぼす Fusarium solani と センチュウとの関係 反 複 処理区別 計 発病率 1 2 3 F. solani ネコブセンチュウ F - 21接種数 0(a) 0 167 41.7** 472 接 種 1000 1 2 2 5 8 3.3** 10.000 3 3(1) 1 0 1980 年 0 } (夕照坟)0 度 無 接 種 1.0000 0 0 0 1 0.0 0 0 Ø 主 注 (a) 数字は枯死株数 ()は発病初期の個体数。 1981年4月1日調査結果。 ※ 1·s·d(0.05)27.1 ※※ 1·s·d(0.01)38.6 第2表 実験区(第1表)の根圏土壌中よりのFusarium菌の分離 試 要 験 成 条 果 コ ロ ニ ー 数 (a) 件 の ₺ 理 処 区 別 F.solaniF-21 その他のFusarium属菌 貝 ţ センチュウ 接 種 数 F. solani 体 平 均 1 (a) 2(c) 1 (b) 2(c) F-21 び 的 主 0 1.320 800 1.060 デ 0 0 1.580 5.100 3.3 4 0 接 隀 要 1.000 0 0 4.9 0 0 4.5 4 0 4.720 $1\ 0.0\ 0\ 0$ 0 成 9 街 0 800 400 0 (対照区) 0 ł 具 無 接 種 0 2.740 1.060 1.900 1000 0 580 2.300 1.440 10.000 0 体 的 注(a) 乾土19当りの菌数(シャーレ3枚の平均) 数 (b) 1981年3月19日および(c), 1981年4月1日分離 字

0

第3表	実験区(第1	表) の根質 	利和	献よ	ე <i>თ I</i>	usa	rium E	<u>の</u>	分離	ŧ
		根	組	織	(a)		地	下	主	**

			L	規組織	(a)	地	下主茎	部 (b)
	処理		供試 数	F _. sa.Lanı	その他 Fusariu	供試	F, solanı	その他の
F.	sofanı F – 21	・センチュウ 接種数	·^ (切片)	<i>F</i> 21	属菌	(切片)	F-21	Fusarium 属菌
		0	10(c)	4 (d)	4 (d)	2(c)	0 (d)	2 (d)
接	種	1.000	7	2	4	5	2	2
		1 0.0 0 0	2	1	0	10	1	9
	····	(対照区) 0	12	0	5	_	_	-
		1.000	12	0	8	– .	–	_
無	接種	10.000	12	0	5			-

注(4)、根の腐敗組織境界部(腐敗組織のない株はやや褐色のある株はやや褐変のある根組織

- (4) 枯死または発病株の地下主茎部
- (c) 1株より1切片
- . (d) コロニー数

1980 年 度 の

試

験

条

件

お

ょ

主

要

成

頟

具

体

的

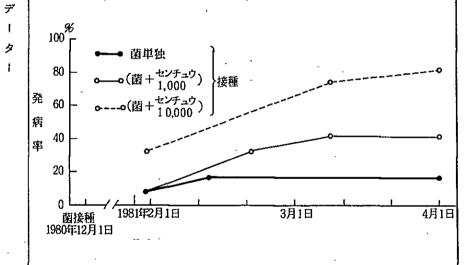
数字

主

耍

成

果


Ø

具

体

的

室温で5日間培養、1981年4月6日調査

第1図 Fusarium solani接種とセンチュウ接種数の組合せによるコショウ根質 発病の推移。 センチュウ単独接種区は接種センチュウの数に関係なく、対照区共に 発病は認められなかった。発病は地際主茎部が黒変色した時点とした。

1 !											-						•	
	Ì		異策発	% %	0	57.1 66.7	0		4 1.7				٠,-			ś		
			25	(%) (₩)	2.51	2.21	3.14	2,52	2.7.7			,	v.			·		
	-		祖郎	¢ ⊞	1207	640	1328	869	796						-			,
		,	故印	年)多	5 1.5	3 2.9		35.6	3 0.6	した。	,							
1980	_		第一次	(大) (大)	2 6.8 ^(d)	1 3.7	2 4.8	204	1 8.0	一番に分類	×10012よった。							
年度			政数		1.2 (4.	9.0	0,5	0.2	0.7	の5段	1001 X	,	· ·		-'	-		
の試験	主要成		根の路セチュウ	西密成路 住による (c)	⑤	ы ы Ф Ф	0	83.8	3.9	¥د،0 0 ° − 4	\sim !	ノた板		**	, -	•	- ,	
条件お	果の具		おのよった。中国の日本の日本の日本の日本の日本日本日本日本日本日本日本日本日本日本日本日本日本	(a) \$\$	(p) 0	4.6	0	7.4	4.7	おめてひと	Σ(略級値×同階級値の株数 総調査個株数	秋に肥大(•	,	•		
よび	体的		7	指% 数回	0	8 9.3 8 3 3	0	9 3.8	9.5.8	社がき	(階級	こより指	6			ŕ		
主要	デ	数果	超	茶数	10	۰ ۳	1.2	12	12	無っつ器	る=出	度寄生)	したもの	平均值	翼	*		
女成 續 具	ター	ョウ生体調査結果	調查項目	ネコグセンチュウ接回数	0	1.000	(対照区) 0	1.000	1 0.0 0 0	指数は寄生	ネコブ指数 (%) は式=	(4):センチュウの高密度寄生により指状に肥大した极	(e):(4)の根組織が腐敗したもの	(4):数字は調査件数の平均値	1981年4月1日調査	,	*	
体的数		第4桜 コツェ	処理区別	F. so lani F-21		被 直		無板配		注(4):ネコブ指数は寄生無し~寄生がきわめてひどいの0~4の5段階に分類した。	ネレフ	(9):センチ	(c):(9)の排	(4):数字目	198			
字	-	£25	<u>.</u> .		` ,	- - -	٠	-	•	-		~		,				
-		,		;- -	•		-		· 	``_ :_ :_	-	.,.			-			-
			-	: -		-			-	-	E	- [']	-	•			<u>:</u>	
	,	-	,	ų 3 –	_	-	•	-					•		*		,	
		ĝ	第 2 図	ネコ	ブ指導	。 数と根	系のf	腐敗	数	上の関	係		, •	-	• -	-		

	`													_					_			
	,		ų.					IR CROVA	*	Ж.	র	Я	8	ม	я	8	8	S	. 6	ន	Ħ	E
-	-		DO PARÁ.	zgaty.		EVAPORAÇÃO	TOTAL	1	74.0	0.8	67.7	ž	84.98	85,8	å	38.5	, 101	ry E	3,511	30%	Long	24/2MT 1.072,5
1980	,	·	8, 55.	Par Mar	į		K ₂	DACEA	8	Ц	8	Ħ	ม	Я	3	8	62	8	я	8	24/151.	74/2m.
年度の			ne rode	. ACR. THO	40 Lange	A Law Park	MAXTHA EM 24 HORAS	ALTURA	73,8	103,3	55,7	0,63	20,8	35,8	r R	7	200	84	200.5	80,5	103,3	165,0
試験条	主要成	,	LOCAL: MÓCINO CELCHETE DAINE TOMÓ-ACE, EST., DO PANÁ,	Incine — Incie kip. Air. Thop.da maidhta. Jago — Yombaan e chiantach itha.	PRCTP, BUTTUNETED (S. (TB.)		ALTIMA	TOTAL	5.657	330,6	8,173	245,9	द्धा	त्री	79,9	39,3	74.2	£93	173.1	0,591	2,489,3	2.567,5
件およ	果の	(1980)	cate motano	INCLASIO .		Demokra	MELACTVA	(×)	82,3	148	7,20	ri B	79,8	39,66	38.6	35,2	Z.	귰	74.6	76,7	78,8	64,2
び主要	具体的デ	HETROROLÓGICAS (3				KUTA	COMPERSADA	26,3	25,5	ž	S. X	71/2	X.	× ×	Ŕ	26.9	21,2	86.9	8,0	36,6	27,0
成績具) 1 タ							DATA	श्च	ន	я	я	ន	Ŋ	R	8	6	8	R	8	20/376.	94,000 7.7
体的	1 .	OTENTIVAÇÕES	,	_	(0)		HÉMENA AMOLUEA	CPLATES	o tz	22.2	9 ' t	น์	R H	8	113,0	102	7	9	o g	o ส	9 tst	7*81
数字		8			~	1		1 1	3,17,26	ষ	ᆏ	R	ង	8	ra H	Ж	R	R	ส	ъ	on/tex.	7
		. , !			PROFESTORY TO AR		HATTORY	CREADS	34.6	7.7	8 m	ž	30°0	34.9	34,8	35,6	36,0	25,7	9	37,00	37,0	37,0
-	Ξ				Į.		PRÉDUTAS DAS	MACHINE ANS	7,22	ğ	ğ	าร	ğ	77	ง ส์	ri ti	2,2	7	2,22	Z,	77	772
-					-		HÉDICAS DAS	MÁXINAS	72,5	o H	7,47	33,2	33,8	6*2	33,0	33,3	3,0	24,3	7	33,9	33,2	ब्रे
	`.		-	٠ *	ELEMENTOS		/	N. S. S. S. S. S. S. S. S. S. S. S. S. S.	JAMEZRO	PSVEREDRO	PRAROD	TDET	MATO	OL BERT	STORENO	Accierco	SETTEMENO	CONTINUO	MONDORNO	IKE	JAN / DEE.	1964/1980
	,								-	_			-	_						-		`
-		-	-		-	-	, .	-	_:	249	<u> </u>		· .		· -				-	-	-	
₹				1			-		•	- • •		-	-			-		-	_			- "

2. 熱帯果樹等の導入と栽培技術の確立

1) ガラナの挿木繁殖試験

1980年度

アマゾニア熱帯農業総合試験場 担当者 永井和夫・浅野良三

目的	密閉挿しによるガラナの挿木方法を確立する。
武繁	2. 生存率、発根率、発根量を増やすための要因を解明する。
試験	2 穂長 5.10.15.20 cm別に、その発根状況を見た。発根量では穂長 20 cmの区が最も良

1980 年 腪 の 試 験 条 件 お ょ び 主 要 成 緍 貝 体 的 数

字

主

燛

成

果

Ø

具

体

的

デ

1.

9

〔試験 1〕 密閉期間と活剤(その1)

活着に必要な密閉期間を調べる。

(1) 処理区分

3ヶ月密閉区、4ヶ月密閉区、5ヶ月密閉区、6ヶ月密閉区

(2) 試験条件

母木 - 試験場4年木から6本の母木を供試した。

床土 - 蒸気消毒済心土

穂木 - 長さ10cmの緑枝を用い、半分を埋め込む。

慣らしの方法-ビニールトンネルの側面を1部開放する。(1週間) 側面を全部開放する(1週間)

(3) 湖查項目

- o 側面1部開放時までを密閉期間として、密閉1部開放時の生存率及び萌芽 率を見る。
- o 密閉を全面開放してから約2週間後、つまり密閉1部開放時から1ケ月過ぎた時点での活着率、萌芽率を見る。

(結果)

表-1 活着と萌芽率

(1980年5月20日挿)

				_		_	_		
生	存率と	3ケ)	自密閉	4 ケ月	密閉	5 ケ月	密閉	6ケ月	密閉
7	活着率	開放時 生存率	15月後 活着率	開放時 生存率	1ヶ月後 活岩率	開放時 活着率	1ヶ月後 活着率	開放時 生存率	1ヶ月後 活着率
Α	• В	978	9 7%	95%	95%	100%	100%	95%	93%
C•	DEF	77	71	38	37	61	40	18	18
平	均	84	79	57	56	71	60	44	43
盡		萌芽率		萌芽	率	萌多	丰串	萌芽率	
萌	芽率	開放時	1ケ月後	開放時	1ヶ月後	開放時	1ヶ月後	開放時	1ヶ月後
A	• B	5 9 ⁹⁶	81%	97%	97%	87%	92%	95%	99%
С	• D	30	54	31	38	79	100	64	64
平	均	44	67	64	67	83	96	79	82

(注1. 各処理区とも6母木×13穂=78本供試した。

- 2 A~Eは母木の個体番号で、活着、萌芽状態からそれぞれ2グループに分けた。
 - 3. 個体E・Fは活着率が低いため、萌芽率の表には加えなかった。
- 1、活着率ーグループ(A・B)は3ケ月~6ケ月密閉の間平均して活着が良く、また、開放後の枯死もほとんどない。グループ(C・D・E・F)は3ケ月密閉区が最も活着良く、長くなるにつれ、活着が悪くなる傾向にあった。

全体平均としては、3ケ月密閉区の活着が最も良く次第に悪くなる傾向にあっ

2、萌芽率 --- 萌芽率の平均して高いクループと活着率の高いクループに含まれる個 体は同じであった。

平均すると、密閉期間が長い程萌芽率は高くなる傾向にあった。

〔試験 2〕 密閉期間と活着(その2)

[試験1]では、3ヶ月間秘界区の活が最も良かったが、本試験では2ヶ月密界区を加え 再試験する。

(1) 処理区分

2ヶ月密閉区、3ヶ月密閉区、4ヶ月密閉区、5ヶ月密閉区

(2) 試験条件

[試験1]と同じ。ただし、供試母木は5本で、挿穂(10cm)の首まで斜めに 挿し込んだ。また、全供試穂とも芽かきを行なった。

(3) 調査項目

[試験1]と同様に、開放時の活着率、開放1ヶ月目の活着率及び萌芽率を調べる。なお、4ヶ月及び5ヶ月密閉区については、堀り上げて、発根率、基部枯込率を調査する。

(結果)

表 2. 活着と萌芽率

(1980年8月19日孫)

生存率と	2ヶ月密閉		3 ケ月密閉		455	密閉	5 ケ月密閉	
活着率	開放時 生存率	1ヶ月後 活着率	開放時 生存率	1ケ月後 活着率	開放時 生存率	1ケ月後 活着率	開放時 生存率	1ケ月後 活着率
G•H•I	100%	83%	9 7 ⁹⁶	9 5%	100%	9 7%	85%	77%
J • K	82	44	74	70	68	61	85	76
平均	93	67	8.8	85	87	83	85	. 77-
萌芽率	開放時	1ケ月後	開放時	1ケ月後	開放時	1ヶ月後	開放時	1ヶ月後
平均	2 %	5 %	1 %	11%	1 %	3 %	2 %	11%

(注)1. 各処理とも5母木×12本=60本供試した。

- 2. G~Kは母木の番号で、活着の状態から2グループに分けた。
- 3. 萌芽率については、非常に低い率であったため、グループ分けを行った。
- 1. 活着率- グループ(G・H・I)は2ヶ月~5ヶ月密閉の間平均して活着が良かった。しかし、2ヶ月区において開放後1ヶ月の間に枯死するものが目立った。グループ(J・K)は2ヶ月密閉区の活着が極端に悪く、3~5ヶ月密閉にはあまり差は無かった。

全体平均としては3~4ヶ月密閉区の活着が最も良かった。

2. 萌芽率 - 芽かきを行ったためであるかは不明だが、〔試験1〕に比べ、萌芽率は極端に低かった。

年 度 Ø 主 試 更 發 成 条 果 件 の ts 具 ょ 体 7,5 的 主 デ 顨 成 I 稳 ı 具 体 的

数

字

1980

発根率と基部の枯込み (1981年8月19日挿)

主

要

放

果

Ø

具

{本

m

1

年 ΠĒ 0)

1980

試 験 条 件

お

£ び 主 要 成

纉

苴

体 的

数 字

処理項目	生存率 _	発根率	発根個体の基部枯込率
4 ケ月密閉区	8 3	9 3	2 6
5 ケ月密閉区	77	9 2	2 8
平。均	8 0	93	2 7
,			

注1. 4ケ月、5ケ月密閉区とも、1981年4月15日堀上げ調査した。

- 1. 4ケ月区は1980年12月24日、5ケ月区は1981年1月22日にそれぞれ密 閉から開放したが、4月15日の堀上げ時点の生存率は、表2の活着率と同じで、 開放後1ヶ月から以後枯死木のなかったことを示している。
- 2 発根率は生存率より高く、また、発根個体の基部枯込み率も高いことから、開放 後、発根不足ではなく、枯込みにより枯死するものがあることが想像できる。

[試験3] 挿穂長と発根

前年度は穂木の基部 4㎝埋込みとしたが、今回は各穂長とも斜めに穂首まで埋 め込み、穂長と発根との関係を見る。

(1) 処理区分

穂長 5,10,15,20cm

(2) 試験条件

[試験1]と同じ。ただし、穂は先端の芽だけを地上部、それ以下の部分は 斜め挿しに地下部に埋め込む。

- 1981年1月16日~4月16日(90日間)

結 果)

表一 4.

調査	供	供試穂	試穂	生	発	生存かつ	発芽してい	る個体の	生存個体の	
項目 機長	試本数	節数	生重	存 率	根率	≥1 <i>cm</i> 発根数	平均最 長根長	生根重	新梢 萌芽率	基部 枯込率
5 cm	35	1.1	îi 78	95	950	36本	19 cm	_{1.1} g	3.2 %	27%
10	35	1.6	11.8	92	92	30	18	1.1	88	20
15	35	20	16.5	97	97	2.2	17	1.1	0.0	₂ 1 2
20	30	2.6	205	91	91	3.2	22	1.3	1 1.3	61

注 1. 各処理区とも供試母木2本の平均値で示してある。

,	,	1. 生存率、発根率とも穂の長さに違いは無かった。 根重、根長は越長 20cm区が若干良く、他の区においては差が見られなかった。 2. 基部からの枯込率は発根量とは逆に、穂長 20cmの区が他の 5, 10, 15cmの区に 比較して高かった。 3 新梢の密閉中における萌芽はどの区とも低かった。
1980年度の試験条件および主要成績具体的数字、	主要成果の具体的データー	
1981年度の試験計画	ねらい所 研究計画	鉢上げ以後、定植までの育苗期間の決定 穂木基部からの枯込防止法の確立

.

2) ガラナの優良系統選抜試験

アマゾニア熱帯農業総合試験場 担当者 永井和夫・浅野良三・

1980年度

且	的	結実が確実で、かつ挿木繁殖の可能なガラナ樹を選抜するとともに、選抜された樹の生態 的特性等を記録し、挿木繁殖苗によるガラナ栽培確立のための優良母樹の第1次選抜を行 う。
試方	験法	1. 選抜は当場1976年定植のガラナ圏(100×52m=5200m 栽植間隔4×4m)で栽植中の325本から行い、挿木雑易度の判定は密閉挿し下で実施する。 2. 多収母樹を収量調査により選抜する(3ケ年)。選抜されたもののうち挿木繁殖の容易な個体を再選抜する。 3. 選抜対象となるガラナ圏の管理は、施肥、除草および若干の剪定のみとし、摘穂、薬剤散布等は行わない。 4. 調査項目 (1) 収量調査ー生実収量、1房重、収穫の推移 (2) 生態的調査ー樹勢、樹形、病虫害の発生等
		1 優良系統選抜のため場内のガラナ関5年木の収量調査を実施した。
		0.5 Ha
試	験	0.5 Ha 岡場の中で収穫可能な大きさの樹 170本の平均収量は生実で5.1 Kg (製品 換算 0.8 Kg)、最も高収量のものは生実 250 Kg (製品換算 3.8 Kg)であった。 2. 個体別収量調査した 3 1本の平均1果房重は868、平均最高で1408、平均収穫
試結結	験 果.	0.5 Ha 岡場の中で収穫可能な大きさの樹 170本の平均収量は生実で 5.1 kg (製品 換算 0.8 kg)、最も高収量のものは生実 250 kg (製品換算 3.8 kg)であった。 2. 個体別収量調査した 3 1本の平均1果房重は8 68、平均最高で 1 4 0 8、平均収穫

1. 植付本数325本のうち、欠木及び生育不良で収穫するまでに至っていない樹を 除き、170本について1980年8月10~20日の開花勢期に生育調査を実施し 試験条件の数字 た。 調査項目 ο 樹勢 ο 樹形 ο 開花状況(花穂の多少、開花期の早晩) o その他葉の大小、巻ひげの多少等 2. 以上の結果に基き、着穂数が普通以上、又は開花期揃いの良い樹 3 1 本を選抜し (実施の 収量調査を実施することにした。 1980 3. 1980年9月17日~1981年1月2日までの間、上記31本について収量調 方法 年 ・ 査を実施した。なお、収穫は1980年9月17日~10月17日及び1980年12 度 月26日~1981年1月2日の間は週1回、1980年10月14日~12月19日 Ø の間は週2回実施した。 試 験 表-1 第1年次の生育収量調査結果 条 件 生実収量 樹姿 햐 順位 計 1 果房重 疎 宏 大きさ 形状 主 ょ 110 円 10月22日±18日 17 大 直 1果房6009のものもあった 要 2 23.5 円 やや下塗 兼色がうすい やや密 10. 26 #22 び 3 229 成 70 B 4 円 11. 7 ±14 ヤヤ下重 駅皮の色がややうすい 強 主 4 194 110 OF FE やや値 ctr **F**4 10 27 ±21 強 頂 5 173 60 23 4 円 11. 9 ±21 強 やや下重 樹型が良い 要 6 17.2 80 23 卵型 11 19 ±14 ヤヤ下手 葉が小さい の 成 171 **₽₽**₽₽ 卵型 12 5 ±14 強 具 8 171 120 PPF rf1 PT. 10 29 ±19 独 纉 体 9 1148 80 Ħ 円 11 11 ±21 袖 POTE 具 10 146 140 Ė 四~卵型 10. 18 ±13 ヤヤ下重 果房が長い 的 11 137 7.0 円 10 25 ±18 4 12 13.7 デ 60 R 75-卵型 11 8±16 PPFE 4 的 四~卵型 11 10 ±19 やや下重 樹型が良い 13 | 13.7 Ħ 小 I 円 11 2 ±14 数 14 13.5 110 やや密 中 下 重 3 49 80 直 集性系統(7) かや疎 4. 11 15 ±13 群、 字 i 126 86 H 11. 6 ±19 C 51 注 L A一樹麻 1.3 m、樹冠経 20 と特に小型であったため参考として揚げた。 Bー個体別収量調査を実施した31本の平均 C一個場全体で収穫可能な個体 170 本の平均 らい 1981 年 所 度 の 試 研究計 験 計 酣 画

3) タイワンマモンの特性調査 (1980~

アマゾニア熱帯農業総合試験場 担 当者 | 浅野 良三

1980年度

目	的	台湾よりブラジリア大学を経て導入された台湾マモンを栽培し品種特性を調査する。
١.,	験 法	1. 供試品種:Brix11-120・Brix13-140・Brix130・Brix11-520 黄肉種・紅肉種 2. 耕種法:1979年10月10日直径9cm高さ20cmのビニールポットに5粒づつ播種。 適光舎内で66日間育苗後、12月12日草丈10cm3本以上成育しているポットを選び、ビニールを破ってそのまま面場に定植。開花してから堆性樹を摘除し、両性あるいは雌性樹を残し1本に仕立てた。 植付け間隔:3×2.5 m 植付け本数:Brix11-120 15本・Brix 13-140 13本・Brix130 20本・Brix11-520 黄肉種 12本・紅肉種17本 施肥:基肥はN85分、P2O5155分、K2O60分/1樹とし追肥はほぼ2ケ月毎にN22分、P2O53分、K2O3分/1樹,植え付け6ケ月後である6月にN50分 P2O555分、K2O10分/1樹を施用した。 収穫:果実全体のほぼ1/3着色した時を原則とした。 農薬散布:適時行った。 3. 調査項目:果実調査、収量調査 調査本数:両性樹のみとした。 Brix11-120 9本,Brix13-140 7本,Brix130 10本,Brix11-520黄色種6本・紅肉種9本
	-	 3 表 1 に当地産ハワイマモン(Solo種Sunrise)を含めた果実調査結果を示した。 各品種の特性の概要 Brix11-120:Solo種と比較して果重は1/2、形はやや偏平で小型であるが特性は酷似している。味はSolo種同様糖度が高く良好である。
試	験	Brix13-140:大型でややいびつな長卵型、果肉は黄燈色で味は淡白、不快臭はない。 追然がきかず樹上で熱れさせなければならない。
結	果	Brix130:大型でややいびつな長卵型、果肉は紅燈色で味は淡白、不快臭はない。 果梗が長い。
	·	Brix11-520 黄肉種:中型で形のいい長卵型、果皮色は燈色で果肉色はあざやかな黄燈色である。
		果汁はべたつく。不快臭はない。

Brix11-520 紅肉種: 大型でいびつな卵型 試 果皮色はさえない黄色で果肉色は紅燈色である。味は良好である。 験 2. 表2に1樹当りの収量調査結果を示した。 各品種とも定植後200日前後から収穫が始まった。 結 収穫開始位置はBrix130が最も低く69.9cmで総収量も多い。 奇形果はBrix13-140が多く、Brix11-520黄肉種が少なかった。 果 表 1 果実調査結果 河底日 7月9日~7月15日 項目 果便の 捉さな 集内の いち切 果 形 果皮色 果肉色 品链名 疑複 主 110 Brix11-120 2575 83 2.4 卵 型 蛮 KT 15 2.0 137 148 要 Br1 x 13-140 10598 233 95 3.3 長卵型 淡黄 黄堰 25 5.8 115 235 105 11018 5.0 女 紅燈 2.6 6.5 111 Br:x 130 成 BTIX 11-520 黄肉種 152 114 9 2 2.3 3.2 世 截切 2.6 72 117 5 果 11642 19.7 11.0 卵 型 紅燈 2.8 9.1 13.0 2 紅肉腫 5214 a8 ecr 紅翅 2.1 140 14.4 Solo 👪 Ø 表 2 1 樹当り収量調査結果 具 選查日6月20日~12月18日 品種名 Bris11-520 体 Briz11-120 Brix13-140 Brix130 項目 黄肉 紅肉 的 权模開始日 6月20日 7月3日 6月26日 6月17日 6月28日 93.40 904 699 966 最下結実位 デ 245 442 442 539 5.8.3 総収益 Kg 810 337 525 540 507 **総果数** i 246 164 210 200 奇形架牢% 9 10 Þ 調査本数 1 ねらい所 年度の試験計 研究計画 さし木繁殖による母樹保存

- 4) マモンのさし木に関する試験 (1980~1981)
- (1) 側芽の萌芽促進試験

1980年度

アマゾニア熱併農業総合試験場 担当者 浅野良三

目	的	さし木に供する側芽の萌芽促進効果を調査し、さし木試験の基礎資料とする。
		1. 供試樹:場内のタイワンマモン(Brix130 Brix11-520 紅肉)の雌性樹1年 生を供試する。 2. 処理区分:各区1樹を用いる。
		試験 1.
		(1) 切り倒し:主幹を地上 1.5 mで切断
		(2) 芽 傷:節の上部5㎜をナイフで深さ1㎝、巾2㎝に傷をつける。
試	験	(3) 摘 果:幼果を含む全部を摘除
		(4) 対 照
方	法	試験 2.
		(1) 植物成長調整剤B・A液200PPM
	,	(2) / / 400 P P M パンドスプレーで主幹全面にまん
-	v	(3) 薬面散布剤メリット(複合7-5-3)50倍 べんなく1回散布
Ι.		(4) " 200倍
ļ		(6) 対 照
_		3. 調査法:処理前の萌芽数を調査して摘芽する。
	-	処理後、適時、萌芽数を調査する。
	_	SERIES MAN WEIGHT AND
試	験	1. 第1表に示す通りB・A液 2区の側芽の平均萌芽率は52.3%で、対照区の38倍であったが、その後の伸長は緩慢でさし穂に適する大きさ(10~15cm)には至らなかった。メリット、対照区においても側芽の伸長は緩慢で、さし穂には出来なかった。
結	果	2. 第2表に示す通り切り倒し区の側芽の萌芽率は383%で、対照区の11.6倍を示し、
		その後の伸長も速く、順次さし穂を採っていくことにより、次々と萌芽し伸長していっ
		た。芽傷、摘果、対照区は萌芽率も低く、さし徳になる側芽は発生しなかった。
		can of 1804 (Mobile) continuents con

試験 1 第1表 調査 1月8日 1月29日 萌芽率 項目 1980 処理 総節数 萌芽数 萌 芽 数 % 年 B•A 65 7 30 4 6.2 度 200PPM の 主 B·A 65, 34 14 523 試 400PPM 要 験 成 メリット 50倍 10 11 169 65 栥 果 メリット 200倍 件 の 65 8 123 お 具 ょ 体 対 照 9 9 65 13.8 び 的 主 ※ 処理日:1月8日 供試樹:Brix11-520 紅肉 デ 要 1 試験 2. 第2表 妏 Þ 街 項目 調査 10月22日 12月10日 萌芽率 具 総節数 処理 萌芽数 萌 芽 数 % 体 切り倒し 的 47 18 3 8.3 数 芽 傷 0 2 16 1 2.5 字 絃 果 60 対 照 60 3.3 ※ 処理日:10月22日 供試樹:Brix130

. 今

後の問題点

切り倒し処理したものにB・A液を散布する試験の必要性

- 5) マモンのさし木に関する試験 (1980~1981)
 - (2) 密閉ざしに関する試験

アマゾニア熱併農業総合試験場 担当者 浅野良三

1980年度。

ш	的	優良な採種用母樹を保存、普及するため、密閉ざしの効果を試験する。										
	,	切 2 直往 ト:	 供試樹:場内のタイワンマモン(Brix11-120)雌性樹1年生を、地上1.5 mで切り倒して側芽の発生を促がし、さし穂に供試する。 さし木方法:遮光舎(晴天日正午の相対照度約20%)内に設けられた密閉さし床に、直径9cm、高さ20cmのピニールポットを並べ各々1本づつさし、透明塩化ビニールでトンネル状(高さ60cm)に密閉する。 用 土:パーミキュライト、焼土とし、蒸熱殺菌する。 									
試	験	る。		~1 5 <i>cmの</i> 側芽を	用い、ベン	レート 2000 倍液に 2 分間	1侵債殺菌す					
方	法	3 🖥	试験区 	パーミキュライト	20本	IBA1.0 昭 タルク処理	2 0					
					成薬を残す	焼土	204	1BA1.0 197707 XXX				
	-	r	残さない	バーミキュライト 焼 土	2 0	IBA1.0 マタルク処理	2 0					
-	4. 調査方法:新葉が大きく展開した時期(3ヶ月後)に堀り上げ、発根率、生存率を 査する。											
	_	-	981年4月にさ	し木を行い、現在	E試験を継続	中である。						
試	験		w.	-	-	•						
結	果											