4-8 Technical Note on Consolidation Characteristics of the Land Reclaimed with Tampico Clay, (March, 1981)

4-8-1 Introduction

This paper describes the use of the CRS-test to clarify the consolidation characteristics of the reclaimed land at Tampico.

Land reclaimed with very soft dredged clayey soil has a high water content, ranging from 100% to 300%, and is a unconsolidated slurry immediately after the completion of reclamation, unlike natural ground. Reclaimed land is usually left undisturbed for long periods after reclamation, until capable of supporting traffic for construction work. During these long periods consolidation of the reclaimed land and surface drying occur, causing the water content to decrease slightly. However, the filled soil still holds a very high water content — even after drying and completion of consolidation by self-weight. For this reason, the reclaimed land cannot adequately support construction loads. If it is necessary to make good use of the reclaimed land as soon as possible, soil stabilization should be applied. In order to properly estimate and design profitable soil stabilization, clarification of the consolidation characteristics of the filled soil is essential.

Up to the present time, the test method to investigate consolidation characteristics of clay in the laboratory has been the conventional oedometer test based upon Terzaghi's consolidation theory. However, it is not applicable to very soft clayey soil with high water content, such as Tampico clay. When the soil is consolidated from a very soft state, the change of thickness of specimen becomes too significant to be neglected. Also, it is quite difficult to prevent the sample from squeezing out along the inner surface of a consolidation ring, especially at the instant of loading, and tends to cause significant scatters in consolidation constants.

In order to overcome these difficulties, as an alternative method, the constant rate of strain consolidation test (refered to the CRS-test) has been developed to obtain the consolidation constants of clay slurry, such as coefficient of consolidation and f - logp' curves.

Thus, the CRS-test was applied to Tampico clay to investigate the clay's consolidation constants in the laboratory.

The settlement and the consolidation period of the reclaimed land was analyzed by the computer program "CONSOLID" which takes account of the self-weight of soil and the change of layer thickness.

The following soil properties were determined in this investigation:

- 1) CRS-test
 - $f \log p'$ curve (f = 1 + e)
 - · Coefficient of consolidation, Cv
- 2) Consolidation analysis of the reclaimed land:
 - · Settlement, S
 - · Consolidation period, t
 - · Degree of consolidation, U
 - · Pore water pressure, uw
 - · Void ratio, e
- 3) Estimation of the strength of the ground
 - · Cohesion, c

Among above mentioned items, 2) and 3) are performed using some assumptions.

A land reclaimed with dredged clay has a very high water content and properties similar to slurry. The settlement of ground during the first stage is proceeded mainly by sedimentation of clay particles until the water content of the ground becomes about 200% to 300%. Near the completion of sedimentation, the settlement is caused mainly by consolidation due to the weight of the clay particles.

Fig. 4-8-1 and Fig. 4-8-2 show a sedimentation test on Honmoku clay. In these figures, the marks ↑ and ⊗ indicate the starting point of consolidation, when the settlement is conventionally divided into two factors — sedimentation and consolidation. Fig. 4-8-3 indicates the initial water content, Wo (%) vs. sedimentation/initial thickness of layer, S/Ho. As shown in Fig. 4-8-3, little sedimentation is observed when the initial water content is low. The critical initial water content at which the settlement due to sedimentation appears is approximately 200% to 300%. Thus, if the initial water content of the reclaimed land is less than 200% to 300%, the settlement is predicted by taking into account only the consolidation phenomenon. On the other hand, if the initial water content is greater than 200% to 300%, the settlement by both sedimentation and consolidation should be considered.

On the surface of the reclaimed land the water content decreases due to evaporation and drying. However, the reduction of the water content is reported to occur to a depth no greater than 50 to 60cm, for the dried surface interrupts the capillary drying of the deeper soil. If the water level in the ground is near the surface, the water content is said to remain about 140% to 160%, even 4 months after reclamation. As the effect of evaporation and drying to the settlement is a minor factor when estimating the settlement of the reclaimed land, only the settlement due to sedimentation and consolidation is considered in this paper.

Fig. 4-8-1 Sedimentation Test on Honmoku Clay Fig. 4-8-3 Sedimentation Test on Honmoku Clay

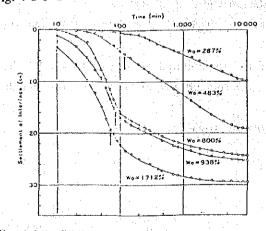
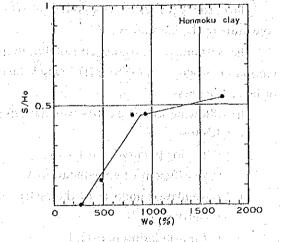
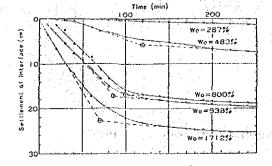




Fig. 4-8-2 Sedimentation Test on Honmoku CLay

4-8-3 Constant Rate of Strain Consolidation Test

(1) Theoretical Background

The conventional oedometer test is not applicable to very soft slurry. The main reasons are as follows:

- a) Terzaghis' theory does not take into account the change of the layer thickness due to the consolidation settlement.
- b) Terzaghis' theory neglects the effect of the self-weight of soils.
- c) The conventional oedometer test is not suitable for the test of slurry-like soils with high water content, because the leakage of soil sample from the gap of the ring significantly affects test results such as the e-log p'curves.
- d) The conventional oedometer test is difficult to apply to consolidation pressures less than 0.05 Kg/cm², and includes excessive errors at the low level of consolidation pressure which is necessary for the analysis of the consolidation of reclaimed land.

As an alternative, the CRS-test was proposed to determine the consolidation constants. The details are described in the paper "Constant rate of strain consolidation for very soft clayer soils", Soils and Foundations, Vol. 20, No. 2, June 1980 (References 4)).

(2) Test Equipment and Procedure

The sample was mixed with water to a slurry consistency with a water content greater than 300%. Photo 4-8-1 shows the Tampico clay after preparation for the CRS-test.

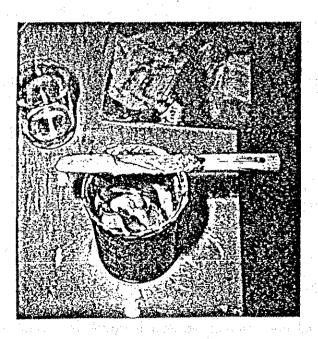
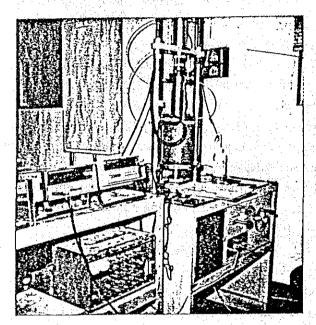



Photo 4-8-1 Tampico Clay for the CRS Test

Photo 4-8-2 shows the CRS-test equipment. The maximum capacities of the transducers for the vertical pressure and the pore water pressure are 2.0 Kg/cm²; the pressure was measured at the bottom of specimen. A pre-consolidation pressure of about 0.03 Kg/cm² was applied in advance, after pouring the sample into the ring, to complete the pre-consolidation. The constant strain was added to the sample after completion of pre-consolidation. The vertical pressure and the pore water pressure were measured at the bottom of the sample.

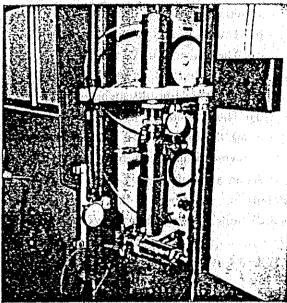
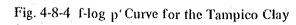


Photo 4-8-2 CRS-Test Equipment

(3) Consolidation Constants

Fig. 4-8-4 and Fig. 4-8-5 show the f-log p' curve and coefficient of consolidation Cv for the Tampico clay. The f-log p' curve is fitted by the following equation:


$$f = f_1 + Cc \log p'$$
where
$$f_1 = 2.885$$

$$Cc = 0.95$$
(3.1)

The coefficients of consolidation Cv for the appropriate range of consolidation pressures are:

$$Cv = 2.5 \times 10^{-2}$$
 cm²/min(3.2)

The above consolidation constants are adapted to the analysis of the reclaimed land in the section 4-8-5.

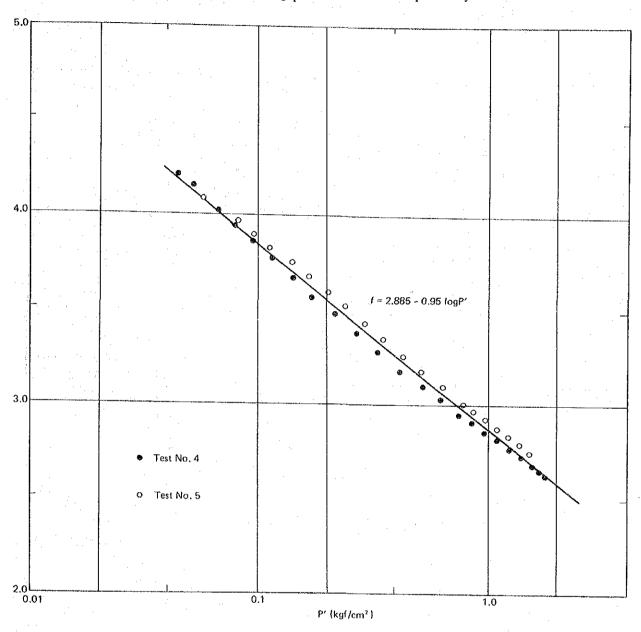
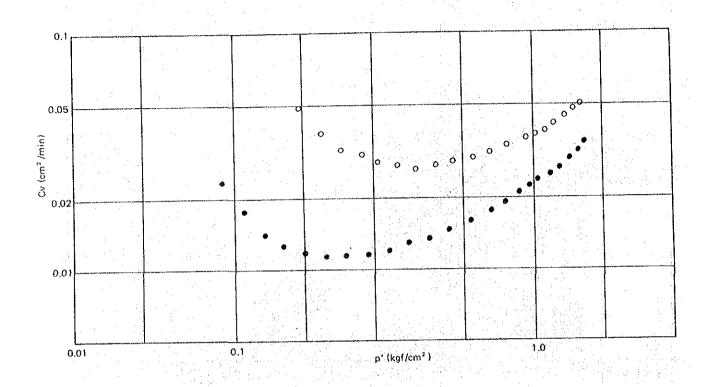



Fig. 4-8-5 Coefficient of Consolidation (Cv) for the Tampico Clay

4-8-4 Consolidation Analysis of Reclaimed Land

(1) Available Information for Analysis

There is little available data to analyze the consolidation phenomena of the reclaimed land at Tampico. The following information is given in the minutes of discussion;

- a) Soil at the planned channel area is silt, which varies in N-value from 0 to 5 from the surface of seabed to -12m in depth.
- b) The sift will be dumped to reclaim the land area being planned for use in the Phase II and Phase III Projects, because it takes much time to complete consolidation and to make good use of the reclaimed land.
- c) The soils dredged from the depth of -12m to -18m are to be used for raising the land embankment.
- d) The dredged sands are to be mixed with coastal sands for the land embankment.

(2) Some Analysis Assumptions

The following assumptions are applied to analyze the consolidation phenomena of the reclaimed land:

a) Initial Conditions

• Water content Wo = 100%, 200%

Void ratio $e_0 = 2.773, 5.546$

Volume ratio $f_0 = 1 + e_0 = 3.773, 6.546$

• Degree of saturation Sr = 100%

• Thickness of layer $H_0 = 5m$, 10m

b) Boundary Condition

The boundary is perminable at the surface and bottom of the clay layer.

c) Load Condition

Surcharge q = 0, 20 t/m²
 Instantaneously loaded

• Unit weight of embankment $\gamma = 1.8 \text{ t/m}^3$ Height of embankment h = 0m, 11m

(3) Consolidation Analysis

a) Basic Consolidation Theory

Mikasa proposed the consolidation theory in terms of compression strain, in which the change in the thickness of the layer and the self-weight of soil are taken into account. Assuming the coefficient of consolidation is constant, the following basic consolidation theory is obtained:

$$\frac{\delta \xi}{\delta t} = \xi^2 \cdot \text{Cv} \left\{ \frac{\delta^2 \xi}{\delta Z o^2} = \frac{d}{d\xi} (M v \gamma') \frac{\delta \xi}{\delta Z o} \right\} \qquad (4.1)$$

After the completion of consolidation, if the velocity of the pore water is zero, the following equations are given:

$$\frac{\delta \xi}{\delta Z_{\Omega}} = Mv \gamma' \qquad (4.2)$$

or

$$\frac{\delta p'}{\delta Z_0} = \gamma_0' \tag{4.3}$$

where,

t : Time

Zo: Depth

ζ : Consolidation ratio fo/f

fo : Initial volume ratio

f: Volume ratio f = 1+e

e : Void ratio

Cv: Coefficient of consolidation

Mv : Coefficient of volume change, Mv = $\frac{0.4343\text{Cc}}{\text{f}}$ $\cdot \frac{1}{p'}$ $\cdot \frac{d}{dS}$ (Mv γ') = $-(1 - \frac{0.8686\text{Cc}}{\text{fo}} \cdot \zeta) \frac{\gamma'_0}{p'} = \frac{-1}{L\zeta}$

 γ'_0 : Unit weight of soil

p' : Effective stress

Cc : Compression index

b) Differential Equation

Equation (4.1) is transferred into equation (4.4) shown below:

$$\frac{\xi_{Zo, t+\Delta t} - \xi_{Zo, t}}{\Delta t} = Cv \, \bar{\xi}^2 \, \left\{ \frac{\xi_{Zo+\Delta Zo, t} - 2\xi_{Zo, t} + \xi_{Zo-\Delta Zo, t}}{(Zo^2)^2} + \frac{1}{L\xi} \, \frac{\xi_{Zo+\Delta Zo, t} - \xi_{Zo-\Delta Zo, t}}{2 \, Zo} \right\} \dots (4.4)$$

Therefore,

$$\zeta_{Zo, t+\Delta t} = \zeta_{Zo, t} + \frac{Cv\Delta t^{\frac{2}{5}2}}{(\Delta Zo)^2} \left\{ (\zeta_{Zo+\Delta Zo, t}^{-2\zeta} Zo, t + \zeta_{Zo-Zo, t}) + \frac{\Delta Zo}{2L_{\xi}} (\zeta_{Zo+\Delta Zo, t}^{-\zeta} Zo-\Delta Zo, t) \right\}$$
(4.5)

where,

$$\bar{\xi} : \frac{1}{2} ({}^{\xi}Z_{0}, t + {}^{\xi}Z_{0}, t + \Delta t)
L_{\bar{\xi}} : \frac{1}{2} (L_{\xi Z_{0}, t} + L_{\xi Z_{0}, t + \Delta t})$$

Average value between time t and $t+\Delta t$.

TIME DIMENSION

JT

PERMEABLE BOUNDARY

3

\$ (Zo-\lambda Zo,T')

\$ (Zo-\lambda Zo,T')

\$ (Zo-\lambda Zo,T')

NH

IMPERMEABLE BOUNDARY

NH

IMPERMEABLE BOUNDARY

Fig. 4-8-6 Space Mesh

Fig. 4-8-6 shows the space mesh used for the finite difference method.

c) Results of Analysis

The settlement and consolidation period of the reclaimed land are examined with the computer program "CONSOLID" which takes account of the self-weight of the filled soil and the change of the layer thickness.

The computation was made under the conditions stated in section 4-8-3-(3) and 4-8-4-(2). The void ratio and volume ratio of the reclaimed land were assumed uniform after completion of reclamation. The conditions for analysis are tabulated in Table 4-8-1, together with the respective settlements and consolidation periods at a consolidation of 70%, 80%, 90% and 100%.

Fig. 4-8-7 shows the settlement vs. time curves for Case 1 to case 4.

The state of the reclaimed land, such as strain, volume ratio, effective stress and pore water pressure during consolidation, are shown in Table 4-8-2.

Table 4-8-1 Respective Settlement and Consolidation Periods of Tampico Clay

			Initial Conditions	Şt	ditting to the state of the sta		Degree of Consolidation (%)	ation (%)		
/						70*	*08	*06	. se	100
, , , , , , , , , , , , , , , , , , ,	Water content W ₀ (%)	Void ratio	Volume ratio fo	Thickness of layer H ₀ (m)	Pre-loading $q_0(t/m^2)$	Settle- Time ment (day)	Settlement Time (m)	Settle- ment (m)	Time (day)	Settle- ment (m)
-				5.00		1.28 72.0 (68.7)	1.46 123.2 (78.7)	1.68 (90.9)	276.8 9)	1.84
71	200	5.546	6.546	10.00	0	2.95 249.6 (71.3)	3.36 454.4 (81.3)	3.72 8 (90.2)	864.0 .2)	4.12
3					20**	1.09 403.2 (68.6)	1.25 556.8 (78.9)	1.42	812.8 (89.6)	1.59
4	100	2.773	3.773	2100	20***	1.10 435.1 (67.0)	1.26 588.7 (79.2)	1.42 (89.7)	3)	1.59
				, D	Dozana of amondidation					

Note: * Approximate degree of consolidation, (): Degree of consolidation

** Instantaneously loaded

*** Gradually loaded as below:

ukment

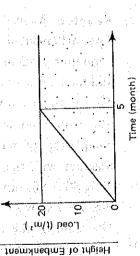


Fig. 4-8-7 (a) Time Curve of Settlement (Tampico Clay: Case 1) Time (day) ωÊ

-147---

Fig. 4-8-7 (b) Time Curve of Settlement (Tampico Clay: Case 2) Time (day) (CASE 2] Puento Tampico s E

Fig. 4-8-7 (c) Time Curve of Settlement (Tampico Clay: Case 3)

Puerto Tampico

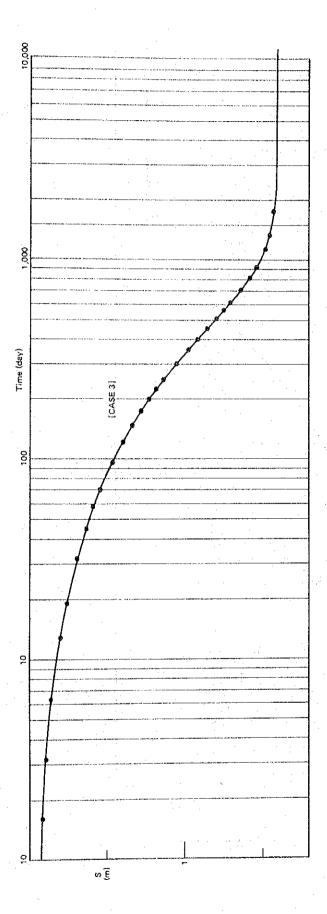


Fig. 4-8-7 (d) Time Curve of Settlement (Tampico Clay: Case 4) Time (day)

-- 150 --

**** OUTPUT OF CALCULATED VALUE ***

STEADY STATE

[CASE I]

SETTLEMENT AT FOLLOWING DEPTH

0:1000000E 03 0.1582364E 03 0.2000000E 03 0.1226199E 03 0.370523E 02 040000E 03 0.426488E 02

FINAL SETTLEMENT = 0.1844083E 03

207H0	ш u	u. u.	Œ.	TAF
.0		.6546000E 01	\circ	.1000000E
0-3	.2444453E	.4945861E 01	.6771311E-0	.1323531E
0	.2881329E	.4659882E U1	0.1354262E-0	.1404756E
0 300000	.3136884E	.4492596E 0	.2031393E-0	.1457064E
0.300000	.3318204E	.4373904E 0	.27085248-0	.1496604E
0.00000	.3458846E	.4281839E U	.3385655E-0	.1528782E
 DODUUODE. O.	.3573759E	.4206617E U	.4062786E-0	.1556120E
SOCOOCE	.3670917E	.4143018E U	.4739918E-0	.1580008E
.4000000E 0	.3755079E	.40879256 0	.54170498-0	.1601501E
4500000E 0	.3829315E	.4039330E U	.6094180E-0	.1620566E
. 500000E 0	.38957218	.3995861E U	.6771311E-0	.1638195E
500000E 0	.3955793E	.3956538E U	.7448442E-0	.1654477E
. 6000000E 0	.4010634E	.3920639E 0	.8125573E-0	.1669526E
. 6500000E 0	.4061034E	.3887615E 0	. 8802704E-0	.1043809E
0 00000E 0	.4107792E	0.385703585.	9479835E-0	.1097157E
۷.	0.4151277E 00	0.3828574E 01	0.1015697E 00	0.1709775E 0
00000E 0	.4191954E	.3801947E 0	.1083410E 0	. 1721749E
0.0000.0	.4230164E	.3776934E 0	-1151123E 0	.1733152E
0000000	.4266190E	.3753352E 0	.1218836E 0	.1744041E
й	.4300267E	.3731045E U	.1286549E 0	.1754468E
,:JJ	.4332596E	.3709882E 0	.1354262E 0	.1764476E

	·							00	Q.	99		9.0	0	$O \subset I$) () - -	0	0.0		00	101 201)
						3	:	84.57 89.57 89.08	2327	67.14	1226	8172 4568	6107	6136	2 C C C C C C C C C C C C C C C C C C C	3983	0641 6186	1075	5.54.9 7400	1138E)) / :
							•	. 45 	.179	200	.374	5.4.3.7	561	.620	.727	.7.70		790	57.7	343	•
V A Y				· ·			ومشبها	نين ب	-	-	,	: •		د د			, - _	٠ ٫- ,	٠ ٠	00	 • .
6E 021						j	000	4 1 8 2 3 5 3 5	768	53.5 78.4	121	754	182	87.3 70.7 8.0 8.0 8.0	265	221	ο α Ο α	3.0	46 <i>6</i>	6284E	•
6666							100		121	122	. 1 24	125	.128	130	134	.137	_ V	150	162	0.169	
0.71							:::! ::i	V N	0.2	~ ~ ~ 0 0	0.2	~ ~	0.2	2 C	0 0 0 1	()	_ (_ _ (_			00	 I .
) -			1 5				 	8 5 5 5 6 7 6 7 6 7 6 7 7 7 7 7 7 7 7 7 7	663E	101E 735E	3609	453E 809E	7.2.5E	744E	377E	721E	7 2 2 T	024E	680E 960E	4353E	! . !
04 HR.		01 M.	· •					. 225	. 239	. 289 289	.321	.361 .412	. 478	. 565	* * * * * * * * * * * * * * * * * * *	109	707	. 293	641	0.943	
985E	*.	002E					٠. ٠			·- ·	ξ- ·	·- ·-	, <u> </u>	. .		, , , , , , , , , , , , , , , , , , ,		e (v	· -	0.0	
1727		.1275				·	000	0 4 2 9 4 2	4.0.8	969	100	517 366	481	427	716	157	769	050	7 - C 4 2 3	9023E	
0		0					. 65	53	53	.53	55	52.	. 5.0	05.4	7.8	77.	, t 0 7	. 43	4.0	0.385	
z							ر در دارد	> O	0))	0;	J 0	0	O C) (О:	- 0	0.0	2 2	: 000	ed . St
1 M 9 O	-0.1	03CM	0.0	*		ய	* r	52 4 07 7 6	8256	7766	5039	9317 2040	5.0.5	0543	9802	9531	0626	8393	1254	4761E	
6797E	71638	.5002E	4673E	* V. 1			, ,	7 /	~ ;	, . S &	1,9	. 20 . 21	22	. 23	25	. 27	. v.	W .	38	0.433	
0.103	0.414	0.127	0.687		2 2 2 2 0 0 0 0		0 0	0	0.	20	\circ		0	00		<u></u> :	0	⊅,€	0 0		
u	11	Я	11	G DEP	EMENT 2649E 6624E 75984E	N	0000	7467 6280	0720	6207	6671	2575 7751	0.575	23.74	7336	0.4338	3432	5376	0828	50 00 00 00	
i			IDATIO	LOWIN	SETTL 0.111 0.914 0.680 0.385)	10	60	5.7	, , , , , , , , , , , , , , , , , , ,	S	0.567	ν, (Ο)	9,0	9.	.67	7.5	() () ()) (O	95	
			NSOL	IT FOL	2000 2000		C		0 0	D C	\supset \circ	10 May 1	0	$\supset \bigcirc$, O		0	0 -		U O.	
	ACTOR	RENT	0 F C 0	TENT A	EP TH 00000E 0000E	0 / HO		0000	0000	0000	0000	00000E	0.000		0000		0000	0000	0000	0000	-
m E	IME F/	ETTLE	EGRES	ETTLEM	0.100 0.200 0.300 0.400	20	v	0	<u>.</u> τ	2 2 5	0 1	0.490	7.1	v .v o .v	69.	65		Ο α		b, 6.	
}	-	S	<u> </u>	S			15														

			UW 2364567E-0	5302162E-0 9035959E-0 1319227E-0	1/49455E-U 2173893E-U 2576625E-U 2943906E-U	3562877E-0 3520676E-0 3704000E-0 3798998E-0	0.3791515E-01 0.3667665E-01 0.3414701E-01 0.3022158E-01 0.2483169E-01 0.1795813E-01 0.9643244E-02
767967E 030AY			ZETA 1000000E 01 1277745E 01	1345572E 01 1382360E 01 1407940E 01	1447397E 01 1445531E 01 1483878E 01	1522811E 01 1543765E 01 1565780E 01	1588815E 01 1612761E 01 1637468E 01 1662738E 01 1688338E 01 1714010E 01 1739482E 01
04HR. 0.2			0-37729087	8240459E-0 1127797E-0 1389297E-0	1636221E=0 1888894E=0 2163292E=0 2473142E=0	.2831303E-0 .3250635E-0 .374442E-0 .4326575E-0	0.5011189E-01 0.5812170E-01 0.6742265E-01 0.7811939E-01 0.1039255E 00 0.1190117E 00
0.6643122E			6546000E 5123088E	4864846E 4735380E 4649345E	4581850E 4522603E 4466641E 4411413E	.4355613E 0 .4298630E 0 .4240282E 0 .4180663E 0	0.4120056E 01 0.4058879E 01 0.3997634E 01 0.3877185E 01 0.3879114E 01 0.3763190E 01
85873E 06MIN. 94349E 00	91299E 00		e 0.2173712E 0	0.2568215E 0 0.2765994E 0 0.2897427E 0	0.3000534E 0 0.3091044E 0 0.3176534E 0 0.3260902E 0	0.3346146E 0.3433195E 0.3522331E 0.3613408E	0.3705994E 0 0.3799452E 0 0.3893012E 0 0.4077016E 0 0.4251161E 0
II	IDATION = U.9	SETTLEMENT 0.1448500E 03 0.139761E 03 0.7963062E 02 0.4163549E 02	UZO 0.1000000E 0.8892426E	0.8913303E 0 0.8817647E 0 0.8731913E 0	0.8674958E 0 0.8649278E 0 0.8653245E 0	0.8738236E 0 0.8812734E 0 0.8904234E 0	0.9125629E 00 0.9249378E 00 0.9377866E 00 0.9508274E 00 0.9764517E 00 0.9764517E 00
2 2 4 E E E E E E E E E E E E E E E E E	REE OF CONSO	DEPTH 0.1000000E 03 0.3000000E 03 0.4000000E 03	207.H0 0-500000E-0	1000000E U 1500000E O 2000000E 0	2500000E 0	7500000E 0 5000000E 0 5500000E 0	0.6500000E 00 0.7500000E 00 0.8000000E 00 0.850000E 00 0.900000E 00 0.950000E 00

STATE

STEADY

|---| |---|

[CASE

			e -		
		03	03	03	20
-	SETTLEMENT	0.3514229E	0.2714523E	0.1848855E	0,9403527E
		03	03		03
	DEPTH	0.200000E	0.4000000E	0.6000000	0.8000000E
		- 2			

0.4117759E N3

n

SETTLEMENT

FINAL

							٠.							1					٠			
	0	5	0	0	Ö	Ö	0.	0.1	Ö	5	Ö	0	5	0.1	01	0	0	0.1	0.1	5	\Box	
E H E	.1000000E	0.1404756E	.1496604E	.1556120E	.1601301E	.1638195E	.1669626E	.1697157E	1721749E	.1744041E	.1764476E	.1783379E	.1800994E	.1817507E	.1833069E	.1847798E	.1861794E	.1875131E	1887884€	.1900108E	.191,1853E	
ŭ. 0.		354262	-2708524E-	4062786E-	-5417049E-	.6771311E-	_8125573E-	.9479835E-	. 10834.10E	.1218836E	.1354262E	_1489688E	. 1625115E	.1760541E	. 1895967E	.20313938	.2166819E	.2302246E	2437672E	.2573098E	.2708524E	
LL	.6546000E 0	0.4659882E 01	0 34062257	.4206617E 0	.4087925E 0	.3995861E 0	39.20639E 0	.38570.39E 0	.3801947E 0	.3753352E 0	.3709882E 0	.3670559E 0	.3634660E 0	.3601636E 0	.3571061E 0	.3542596E 0	.3515968E 0	.34909.56E U	.3467373E .0	.3445066E 0	.3423904E 0	
Ш		2881329E 0	.3318204E 0	.3573759E 0	.3755079E	.3895721E 0	4010634E 0	4107792E"0	.4191954E 0	.4266190E 0	.4332596E 0	.4392668E 0	.4447510E 0	4497959E 0	.4547667E 0	.4588152E 0	.4628829E U	.4667040E 0	.4703065E 0	.4737143E 0	0.32256925°	
0н/02		30000C-0	1000000E 0	1500000E 0	2.0	.2500000E 0	3000000E 0	3500000E 0	.4000000E 0	4500000E 0	S000000E 0	5500000E 0	. 6000000E	. 650000E 0	7000000E 0	.7500000E.0	80000008	.8500000E.0	9000000E 0	.9500000E.0	1000000E 0	
					•																-	

1						
SETTLEMENT DEGREE OF CONSO	= 0.33 LIDATION = 0.81	55164E 03CM 29873ET00T	0,3355164E	017.		
SETTLEMENT AT E	OLLOWING DEPTH					
O E P TH	ETTLEMENT 28823068 0					
0.4000000E 03 0.4000000E 03	0.2307477E 03 0.1654117E 03		•			
. 8000000E 0	.8917777E 0					
0H/0Z	020	w	L		ZETA	35
•	0.100000E 0	() () () () () () () () () ()	.6546000E 0		.1000000E	
* X O O O O O O E - O	0.8362793E 0	0.3545E.0	.4968679E 0	.6406987E-0	.1317453E	.7135634E-0
0.1500000	0.7474176E		404040 E	. 9701476E-0	. 1364459F	- 1851-50E-0
.200000E 0	0.72886108 0	.2736931E 0	.4754405E 0	.1076974E-D	.1376828E 0	4340075E-0
.250000E 0	0.7201355E 0	.2805447E 0	.4709554E 0	-1200651E-0	.1389940E D	.5570660E-0
3000000 0	0.7180474E 0	.2879826E 0	.4660866E 0	.1351037E-0	.1404460E	.6774536E+0
0 3000000	0.7278663E 0	.3051182E.0	4548696E D	- 13310031E-0	1440734E O	- / / 47 - / 54 E - O
0 3000067.	0.7384204E 0	3150242E 0	.4483852E 0	.2074904E-0	1459906E 0	.1011346E 0
. 5000000E 0	0.7523248E 0	.3259520F 0	.4412318E 0	.2467724E-0	.1483574E 0	.1107490E 0
. 5 50 000 0 E 0	0.7694116E 0	.3379770E 0	.4333603E 0	2986449E-0	.1510522E 0	1191043E 0
	0 7895082E U	0 27 27 27 27 27 27 27 27 27 27 27 27 27	.4646475E.U	. 5679745E-U	1241121E U	1257140E
.700000E 0	0.8375818E 0	3806530E 0	.4054245E 0	. 5877811E-D	. 1614604E	.1308186E.0
. 7500000E 0	0.8646081E 0	.3966954E U	.3949232E 0	.7581507E-0	.1657537E	.1273243E 0
.8000000E 0	0.8927256E 0	4132274E 0	3841013E 0	.9855309E-0	.1704238E	.1181289E 0
.850000E 0	0.9211171E 0	.4298890E 0	.3731947E 0	.1283740E 0	.1754044E	.1018505E 0
0 300000000	0.9489479E 0	14462964E	. 3624545 . U	. 1665455E U	-1806020E	.7722173E-0
0000000	0.100000000	769472E 0	.3423904E 0	270852	0.0	455590E-0

	ij	0.1244144E 0	OZMIN.	0.2073573E	05HR. 0.8	8639885E 030AY	
TIME FACTOR	n	0.1244143E 0	0.0				
SETTLEMENT	li di	0.37191188 0	ОЗСМ	0.3719118E	01M.		
DEGREE OF CONSO	LIDATION =	0.9015808E C	0.0				
SETTLEMENT AT F	OLLOWING DEP	Į					
0 E P TH . 2000000 E 0	SETTLEMEN 0.3189763						
0.4000000 03 0.600000E 03	5 0.2506182E 5 0.1751067E	n n c					
		Ļ				1	:
	0.7.0	2		457.4000E	a .	100000E	3 5
0.5000000E-0	0.8850730	00 0.2550	186E 0	.4876648E	.8008075E-0	.1342315E 0	.5534546E
.100000E 0	0.8836172	00 0.2932	022E 0	4626698E 0	1467686E-0	1414832E 0	1240838
. 200000E 0	0.8617288	00 0.3235	860E 0	.427806E 0	- 1962360E-U - 2376805E-0	.1478384E U	. 2 1 0 0 2 0 1 E . 3 0 4 0 2 4 4 E
.25000005	0.8553717	00 0.3332	290E 0	4364683E 0	. 2769739E-0	.149976SE 0	4001572E
0.3000000E 00	0.8526398F	00 0 3419	627E 00 830F 00	0.4307512E 01	0.3181402E-01	0.1519671E 01	0.4944171E-
. 400000E	0.8567050	00 0.3591	268E 0	4195156E U	.4177231E-0	.1560371E 0	.6656867E
0 3000057.	0.8627226	00 0.3680	539E 0	4136719E 0	.4812832E-0	.1582413E 0	7375528E
. 5500000E 0	0.8809014	00 0.3869	508E 0	-4070017E U	0-3696766.	. 1631190F O	. (700730c .8401420F
.600000e 0	0.8923850	00 0.3968	891E 0	3947964E 0	.7604845E-0	1658070E 0	8646301E
.650000E 0	0.9050261	00 0.4070	770E 0	.3881274E D	89390366-0	.1686560E 0	8666373E
. 700000E 0	26678160	00 0.4774	276E 0	.3813519E 0	.1053444E 0	.1716525E 0	100225250°
.800000E	0.9466717	00 0.4381	982E 0	367755E 0	_1464643E	1779987E 0	7021761
. 8500000E 0	0.9607667	00 0.4483	0 3986	.3610815E 0	.1721804E 0	. 1812887E 0	.5804416E
.9000000e	0.9745050	00 0,4583	151E 0	.3545869E.0	.2015339E D	.1846092E 0	.4223330E
0.30.000056.	0.9876464	00 0.4678	622E 0	0 3725375	2344944E 0	1879212E 0	. 2281539E
0.00000		KO . * * O O	2 11 11 12	こ はものんりょうき	こうしょうへつこうしゅ	コーピークラー・トー・	ロニスシことしてい

VALUE OF CALCULATED **** OUTPUT

i

STAT

STEADY

CASELLI

SETTLEMENT AT FOLLOWING DEPTH

. 2 0.3221410E 02 SETTLEMENT 0.12742636 C.9593252E 0.64195.53€ C C C C W W W W 0.2000000E 0.3000000E 0.4000000E us 0.1000000 DEPTH

J.1586090E ij FINAL SETTLEMENT

2000000 0 01 5 0.1459726E 0.1461046E 0.1462360E 0.1453051E 0.1454397E G.1455737E 0.1457072E 0.1458402E U-1464974E 0-1466274E 0.1467569E 0.1468859E 0.1470344E 0-1471424E 0.1472700E 473971E 0.1475238E .1451700 ZETAF 100 100 100 01 000 0.2152723E 0.2011748E .2023496E 0.2082236E 0.2129228E 0.2140975E 64471E 0.2176219E 0.2187967E 0.2117480E 0.2093984E 0.2199775E 0.2211463E 23211E 20000000 .2035244 0.2058740 0.2046992 0.2070488 0.2105732 0.210 2020222 0 0.00 20000 0.2594203E 0.2591814E 0.2589440E 0.2587079E 0.2582397E 0.2573189E 0.2570919E 0.2564182E 0.2561961E 0.2557554E 0.2596605E 568661E .2599021E 0.2575472E 0.2566416E 0.25597526 0.2 00000 000 00 00. 00 00 00 0.3173942E CO.3179992E CO.3186009E CO.3191993E CO.3197944E CO.3203863E CO.3203863E CO.3203863E CO.3203863E CO. 3130627E 3155588E 3161740E ш 0.3124297E 0.3215606E 3149401E 3209750E 0.3167858E 3221431E 3111525 0.3117930 31431791 3227224 o 0. 0.5000000E-01 0.2000000E 0.2500000E 0.3000000E 0.10000000 0.15000000 0.3500000E 0.4000000 0.4500030E 0.5000000 0.5500000E 0.600000E 0.6500000E 3.70000005 0.7500000€ 0.85000006 0.9500000€ 0.8000008.0 0..900000E Z 0.7 H'O

667925

36567E

.3232987

.1000000E

		3689422E 00 -36894194E 00 -9468699E 00 -1159144E 01 -1325818E 01 -1452571E 01 -1606601E 01 -16447E 01 -1655150E 01 -154647E 01 -1545648E 01 -152616E 01	.9379231E.0 .6750205E.0 .3622315E.0
032022E 030AY		ZETA 0.1451700E 01 0.1457734E 01 0.1353831E 01 0.1353831E 01 0.1252159E 01 0.1252159E 01 0.1178040E 01 0.117849E 01 0.117849E 01 0.11785206E 01 0.11785206E 01 0.11785206E 01 0.1177849E 01 0.1177849E 01 0.1177849E 01 0.1177849E 01	13932785E 01 1393377E 01 1435285E 01
04HR. 0.4H		0.2000000 01 0.1339077E 01 0.1339077E 01 0.8878482E 00 0.7329219E 00 0.6181171E 00 0.4629994E 00 0.4623299E 00 0.4623299E 00 0.4623299E 00 0.4623299E 00 0.4623299E 00 0.4853687E 00	.1536443E 0 .1536443E 0 .1860980E 0
0.96768546		0.2599021E 01 0.2680193E 01 0.2764535E 01 0.2934078E 01 0.3013195E 01 0.3140837E 01 0.3181524E 01 0.3183414E 01 0.3203296E 01 0.3164974E 01 0.3024784E 01	27890626 27078098 26287458 25531946
5806112E 06MIN. 2322445E 00 1088430E 03CM	\$\$834€_00	6.3171525E 00 0.267287E 00 0.223487E 00 0.223487E 00 0.223487E 00 0.1827504E 00 0.1827504E 00 0.1509951E 00 0.1509951E 00 0.1562646E 00 0.1562646E 00 0.1562646E 00 0.1562646E 00 0.23646E 00	.2607841E 0 .2823193E 0 .3032745E 0
= 0.23	LIDATION = 0.68 OLLOWING DEPTH SETTLEMENT 0.8213390E U2 0.6363175E 02 0.4817453E 02 0.2819439E 02	1000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.8109952E U .8763785E U .9397378E O
TIME FACTOR	SETTLEMENT AT FO 0.1000000 03 0.4000000 03 03 00000 03 03 00000 03 03 000000	20/H0 500000E-0 1000000E-0 1000000E-0 2000000E-0 3000000E-0 4000000E-0 4500000E-0 5500000E-0 6500000E-0 7500000E-0	.8500000 E 0 .9500000 E 0 .9500000 E 0

1136	08.0	18087E 06MIN.	0.1336348E	05HR; 0.5	5568116E 030AY	
TIME FACTOR	= 0.32	07235E 00				
SETTLEMENT	0.12	51602E 03CM	0.1251602E	01M.		
DEGREE OF CONSOL	IDATION = 3.78	87626E 00				
SETTLEMENT AT FOL	LOWING DEPTH			1		
0.1000000E 03 0.2000000E 03	SETTLEMENT 0.9704073E 02 0.7420620E 02					
.400000E 0	.2938881E U			100 c marie (m. 100 c m. 100 c		
7	020	ш		σ.	ETA	35
500000E-0	0.1000000E 01 0.9501707E 00	0.3111525E 00 0.2962565E 00	0.2599021E 01 0.2655224E 01	0.2000000E 01 0.1745297E 01	0.1451700E 01 0.1420972E 01	2664508E 0
0.100000E 0	.8997220E G	.2810999E 0	-2712410E 0	.1519405E 0	1391014E 0	.5040910E 0
0.1500000E 0	8499131E U	.2660761E D	0 38678686	*1324358E 0	1362539E 0	.7108859E 0
.250000E	7584224E U	.2383857E U	.2873571E 0	.1028089E 0	1313001E 0	.1030650E 0
.300000E 0	.7202370E 0	.2268315E 0	2917165E 0	.9250014E 0	.1293379E 0	.1145486E 0
* \$ > 0 0 0 0 0 0 E 0	.6875163E U	.21/3569E U	.2976703E 0	.8497420E U8007005E O	.72/8048E U	.1232454 E D . 1293283 E D
.450000E 0	.6555613E U	.2076725E 0	-2989452E U	.7763581E 0	1262104E 0	.1329393E 0
0.5000000000000000000000000000000000000	.8540747E_0	*2075995E 0	2989727E 0	.7758200E	1261988E 0	.134
.6000000E	.6813894E D	.2170913E 0	.2953915E: 0	.8461712E 0	.1277288E 0	. 1294804E 0
.650000E 0	.7082423E 0	.2260704E 0	.2920036E 0	.9185857E 0	.1292107E 0	.12341388 0
. 7000000E 0	.7419491E 0	.2372712E 0	.2877776E 0	.1017564E 0	.1311082E D	1146803E 0
. 8000000 E D	8232116E D	.2642304E 0	.2776059E 0	1302192E 0	.1359121E 0	.8857755E D
. 8500000E 0	04.05545E 0	.2789713E 0	.2720441E 0	.14901.15E 0	.1386907E 0	.7096002F 0
0 3000006 °	.9569560E D	3088313E 0	.2607779E 0	.1957993E 0	.1446825E. U	.265218DF D
. 1000000 0	.1000000E U	.3232987E 0	.2553194E, 0	. 2234959E 0	.1477757E D	. 5960464 8-0

												. ~	٠.		· .						,,	,,,,,	· .			
			٠.			:				0	0 0)))	Ö	000	э С э С	.0	0	0 0	Ö	0.	0	σ	ر خ د	50	-07	٠,
						:		-		00	ON N	⊸ in	20	4.1	7. E	~	\sim	K <	· M	\bigcirc	M		$^{\wedge}$ C	`	7	
				٠		i		. 3		M	クト	- M	-	CC 1	ς - ς 22.1	· •		$\infty \wedge$	ŀΝ		Y	t 1	V. K	\sim	• • •	,
						;			s. 1	\sim	S, K) M	Ú,	M) .	4 ~ 7 ~	~ \$	-1	Ø "	ုးဝ	∞	\sim	ر د	~ 0	1	0	
	•					٠,				₹ (N		S	01	· ^-	ac *	χQ .	ω r	~	•	\$	٠ <u>,</u>	5 ^	ب	.5	
						•			(2)	(D)		2,0	C	Φ:	2.0	(O)	0	O C	C	0	: ت) C) O	O.	
> -						i.			0,	01	55	50	Ö	5.6	50			5.5								
0.00															ມີເມ											
O W	٠	-	+ 1						Ο.	Ψ,	0 0	1,0	v .	M .	- e 5 265	vo	 ;	~ ~	O.	Ó	0	$\infty \cdot c$	>	M	'n	
 								w	, L	9 1	22	ر ان را	8	23	0.40	.,∞, W	8	6 0 0 0	. ₩	86	တ် r က v	- r	, v V J	9	~	
∞					÷										- (~ . (v)						 ,	~1 : ~ : •	, t	- 57	14	
312	•					÷.			Ö	ာ		5	Ó	c c	5 0	0	0	50	0	. ၁	o d	ည်းင) C	C	က	
0					, . s	÷.																				
									្ន	ui (u u	ı.w	ш	யட	ນ ພູພ	w		ינו נב י	w	w	ا لِندِ ا	بريد	UЦ	ı w	ענו	
;			1						O.	~ (> <	Š	\sim i	O . 5	63	9	9	4 N	,vo	S	0.0	Ą, O	ج ر	0	S	
					•			α_	O.	O (xo.cc), MÎ	Ņ	SO C	160 160 160	•	M I	9.0	1.	'n,	M ¢	οα) (J	100	-1	
Ξ		.					1.		20	∞ , — ,	_ <	, <u>C</u>	1,4	M N	~ (_ U WJ	M	() ()	- M	7.1	7	ر ا د دم	0 0	- C	20	22	*
50		0	•												50											
ω	. :	М М	. <u>!</u> 						-	<u> </u>					_ _ <u>_</u>		E.		1	 :		 			<u>.</u>	
0.7.6		9.21			er e	1				i '			7.1	. 1	и Ф						450	12.0		•	•; •	:
9 5 (,2,		1				e de la companya de l	: ۲ 1	5.7	у г. Д (X)	7 (7.6	m.c	8 0	70	90	⊃ r. 4 .v.	7.2	0.5	9 0) M) (C	9	4	
•									O	S	J ←	୍ଦ	∞	~ ⊦	716	9	W, C	ゝ∞	N	4	~ ₹	C	NW	, W	M	
0		O		19 1 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					'n	0	o c	· [-	~	トト	7 6	P	N- 1	~ r~	~	<u>~</u>	9	O V) (O	L/	'n	
		:		j .							3 1			•	00		*			•		•	• •	•		
					in Normal										, o o											÷.
z				ing in the second secon				* .	- 1	100		51.	1 1	100	0 0		1.1	17.2	i		' to					÷
_O7MIN	0	Σ Ω		i kanala Ngjar				100	L/N	0. 1	∩ •	· N	Φ.	·Ø	7 90 80 8	τ-	4.5	0 M	O.	M	∞ ¢	0 ~	i x	0	^	
0	0	0	ē					(JJ)	έ. Σ	~ .	γ ¢ γ τ	3 2	88	ტ. წ	- ∞ ભ c	√3 :	M (70	2	63	Q (۰ ۱ ۲	, tU 1. ¢0	80	29	
В П	3.2 E	67 E	3 8 7	4					•	\bigcirc	外、CC	œ.	~	N N	265	S.	< ○ △	0.0	1	\sim	တ္င	<u>ب</u> (· ⊙	· •	N.	;
7.0	α	Ň	22										3.0	4	. 0			# e	. €		P	★ [3]	• •	i i a	- C #	
1170458€	89	7.5	895			27		•		~ ~			·		n ⇒	_;; 	∵ • `	.	:		en:Ye	,			٠	
() ()	7	O	0	∓ ⊢		o c		orton en en	0	0.1)	0	٠,) :	j ()	0)	<u>ح</u> د	0	Ö) c	⊃ C	0		\sim	
		÷		m o	Z 4	~ ^	1,00		0	01	V M		\sim	∽ ∩	ń. Ŭ n 'n	O	J	o in	N	N.	ء بہ	1 ~	ľ	1	\circ	
	11		" Z	ි ර	EME 464	$- \wedge$	J O	0	\circ	χO ι	Λ - 0	· 20	\sim	~)	370	M.	MI	Q 4	, vn	`	70 N	0. X) O		\circ	
			1.0	2 ∺	7 Z	ν α Α	0.0	\supset	0	7 .	ν, τ ν, τ	0.1	လ ()	, o	1. (A)	M.	io V	7 0	\$	7	ο (ο (トゥ コ.ド	1 2	77	00	:
			A	3	(日) (日)	• :	• •	3.00			∂ 1	- 4	•	ં •્રં `.	 	4				•			•		•	
;			L 1 0	0 1 1	် လ ဝ	<u>ر</u> ا	. ب				ب ر		ω,,		ر د	<u>۔</u>	<u>, , , , , , , , , , , , , , , , , , , </u>	ب د		ِ ، حــ ــــــــــــــــــــــــــــــــــ					_	
!			SO	U.		0 0 0									0.0											
į	~		NOJ	A		ເມ ແ (C) C		1 - 1							յ ա 0											
:	C J~	z	u.	2	1.00	000		0				0	0		00	00			00	00			SO	00	00	
	FAC	m E	П	Σ E	0 E P	\circ		707		\sim $^{\circ}$	<u> </u>		(000	<u>——"</u>	\cap \circ	-/ '~		(C)	~ ~	\sim	ໍ່ຕາ	\sim	$\overline{}$	
w	ú	 ⊢	α; m	-J	_	W W)	8	•	N. F	• •	· •	ر ب	•		7	ر. ا	. 0		~ '	•	o a	• •	· ·		
Σ L	N I	S E	DEG	SET	C)	0 0	00.				ر د	0	ω (io c	0	0	C) c) Q	0	O. (<u>ح</u> د) C	; <u> </u>	C	0	
									. 1	CO																

- STEADY STATE

[CASEIV]

SETTLEMENT AT FOLLOWING DEPTH.

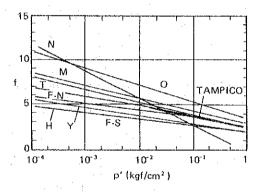
•	'n	κ	0.20	n.
	03	\subset		
	w	ш	T)	u.
<u>ئے</u> ۔ ل	·0.	Ş	M.1	}
Σ. ω.	4263E	8	Μ. Ο	7
_	~	Э·		2
-	-	2	ç	~
SETTLEMEN	0.12742638	0	0.64193338	ਂ
	03	03	03	0.3
			•	
	<u>Э</u>	9	<u>я</u>	Ü
≖ α.	00	Ö	00	00
۵.	õ	õ	0	2
لل) ت	1000000	Ö	Ē	
	· -	(\)	~	7
ت	0	\bigcirc	0.300000	0

FINAL SETTLEMENT = 0.1586690E 03

		<u>.</u>	<u></u>	0	Ö	5	0	Ö	Ö	0.7			5		<u>_</u>		0		<u>.</u>	O	0
	ы С	₩ W	7	7 E	ώ လ	₩	ć E	ω O	С Л	0	ш 7	4 E	Э. М	39E	4 E	Ш S	OE	u.	w X	э Ш	7 E
بر ا	~	\sim	₩.	Λ.	نب	J	~	·	.M.	O	Эr	\sim	Ś	ΔC	*-	√ ₹		O.	r.	√ 7	~
7	J	1	J	√t	.√\$	- 7	J	\	√t	√ 3	J	マ	- #	468	√t	J.		\ T	マナ	√ †	*
		•	•			•	•		•	•		ŧ	. •	0.1		*			•		•
													•								
	\circ	.ന		\Box	C		Ο.	\Box	\Box	C	\Box	0	<u>ر</u>	0.	\Box	0	\Box	C	\Box	0	\Box
	\Box	∞	·C	√1	\sim	\bigcirc	∞	0	à	\sim	\bigcirc	50	Ś	2 3 E		⇒	^	S	M	•	ው ,
и. Э	0.0	17	3.4	2	5.5	83	70	25	÷	2.5	17	ζ. (1)	∂ : ⊃	27	77	29	5	25	7 (32	6.5
	20	\bigcirc .	2.0	2	2.0	2.0	20	2	0	ر ۔ ن	> 1	₹-	5.1	715	~~	•	~		\sim	V^{1}	\sim
	Ö	0	Ö	0	0	O	0	Ċ	0	0	·	:	o,	Ċ	• •	្នំ	• •	0	ċ	0	Ċ
														·							
	:										100	181 L		о ш							
	2	SO.	0.3	7.	0.4	52	₩.	97	7	29	22	φ.	9	61	16	\propto	6.1	52	2,4	89	76
<u> Ա</u> Ա	066	996	256	S	768	870	847	823	800	777	757	731	407	686	999	641	619	502	5 7 5	553	5.31
										\sim	\sim	Αį	\sim	. 25	\sim	\sim	N	\sim	\sim	\sim	NJ.
	0	0	Ċ	0	ာ	်	ာ	0	Ö	Ċ	0	0	0	\circ	0	\Box	0	0	\circ	်	0
	00	00	0.0	C	0.0	00	0.0	00	00	0	00	00	00	00	S	00	00	00	00	0.0	00
	LL.)			tü	ш	ш	ш Ш	ш	u	ш	w	w	ω.	3 E	u.	เม	 :	: !!J	ъJ	w	u.
u. U.	2	3	ý.	2.	2	~	0	30	t V	50	46	\$ \$\	0	9	4	(0)	7	5.0	₹	2	φ. 30
	۲	*	\sim	M	M	Ţ	ţ	U.	9	V	\sim	~ ~	30	101	Ú.	\circ	0	+	\sim	\sim	M
										ø			•	. 31				. •			
														\subset	,						
	:	-04	00	0.0	00	00	0	0		00		00	00	00	0		0.0	Ċ	00	0	<u> </u>
٠.		OE.	<u> 3</u>	OE	ш О	3 0			00E) ()	00E	i) ii	000	OE	00E	30 E	300	3	Č H	J.C
0 H / 0 Z		0000	0000	0000	0.00	000	000	0,000	\sim	9	0.000		0.00	000	0000	000	0000	0000	000	0.0000	0000
0.7		5000	1000	1.500	\bigcirc	5.0	00	\subset	7007	0.5 7	00	5	009	_C	7000	7500	8000 R	950	000	. S.D.	001
	C.			0	0		0	C	7		·		0	_ _	; =		_ _	 ©	0		C
									·. ·		. :										
			٠								,										

				30 20	37345205 0	.6916912E D	.1166727E 0	0.14553408 04	.1544084E 0	.1635437E 0 .1644035F 0	.1629177E 0	. 1 523 532E 0	1426356E 0	. 1125746E	.9132565E 0	.3507909E 0	.5960464E-0
4351068E 030AY				ZETA	1401700E	.13656/8E .1322379E	.1284374E	1222828	.1187089E	.1180446E	.1189869E	. 1226531E	1253255E	.1319187E	.1356670E	.143,6667	. 1477757E
OSHR. O.	01M.			ط م م	0.16382968 01	.1080145E 0	. 8802649E U	.6151478E 0	.4911313E 0	.47112945E 0 .473445E 0	. 5000506E 0	. 6291913E. U	.7376157E 0	.106227E D	.1286459E 0	.1872420E U	. 2234959E 0
0.1044256	0.10950076			7 7 7 7 7 7 7 7	0.2681327E 01	.2853192E 0	.2937617E 0.3016415E 0	.3085470E	.3178362E U	.3193495E	-3170937E	.3076156E	-3010561E -2937486E	8600968	781074E 702570E	626217E	5531946
5537E 0.	95007E 03cM 99904E 00			五 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.2893381E 00	. 2437859E 0	.2214107E 0	.1822238E 0	.157.6034E 0	.1535928E 0	.1595715E O	1846922E U	.2020/76E 0	2419571E 0	. 283.7030E 0	.3039447E 0	. 52529.87E ()
\$ \$ \$	= 0.10 IDATION = 0.68	LOWING DEPTH	SETTLEMENT 0.8284702E 02 0.6438059E 02 0.4867443E 02 0.2833379E 02	UZO 1000000F	0.9279815E 00	.7787160E U	./U>8218E N .6379726E O	.5785983E 0	.4984.705E 0	. 4839180E O	.5017985E 0 .5342520E 0	.5786109E U	. 02 F 0 9 8 4 E U	7538192E 0	.8806896E 0	19418145E 0	
I ME FAC	SETTLEMENT DEGREE OF CONSOLI	SETTLEMENT AT FOU	0.1000000E U3 0.2000000E U3 0.3000000E U3		5000000E-0	0.150000E 0	.2500000 5.	.35000 .35000	. 4000000E .	. 50000005.	.>>100000e .6000000e	.650000E 0	.7500000€ 0	. 8000000E U	0 30000006°	1000000 0	

		0.2653577E 00 0.2653577E 00 0.5019923E 00 0.707737E 00 0.1025298E 01 0.1138688E 01 0.1284010E 01 0.1318740E 01 0.1318740E 01 0.1318740E 01 0.1318888E 01 0.1318888E 01 0.1318887E 01 0.1318807E 01 0.1318807E 01 0.1318807E 01
.5887161E 030AY		ZETA 0.1451700E 01 0.1391506E 01 0.1336992E 01 0.1279706E 01 0.1279706E 01 0.1279706E 01 0.127970E 01 0.1280309E 01 0.1280309E 01 0.1280309E 01 0.1280309E 01 0.1284653E 01 0.1313957E 01 0.1388663E 01 0.1477557E 01
05HR.		0.2000000E 01 0.1746390E 01 0.1527470E 01 0.1327470E 01 0.1033442E 01 0.9316002E 00 0.857695E 00 0.857695E 00 0.860974E 00 0.8609015E 00 0.8609015E 00 0.1033316E 01 0.1160481E 01 0.1718443E 01 0.1718443E 01
0.1412919E		0.2599021E 01 0.2654966E 01 0.2711841E 01 0.2822006E 01 0.2871428E 01 0.2974232E 01 0.29742E 01
77512E 06MIN. 91005E 00 56424E 03CM 17933E 00		0.3111525E 00 0.284250E 00 0.284250E 00 0.2520524E 00 0.2789536E 00 0.2789E 00 0.2789E 00 0.2789E 00 0.2789E 00 0.2789E 00 0.2785704E 00 0.2785704E 00 0.2785704E 00 0.2785706E 00 0.278516E 00 0.289331E 00 0.289402E 00 0.28931E 00 0.28945609E 00
1000000000000000000000000000000000000	SETTLEMENT 0.9750628E 02 0.7459230E 02 0.5345129E 02 0.5944908E 02	0.9503902E 01 0.9503902E 00 0.9503902E 00 0.8035027E 00 0.760290E 00 0.6714989E 00 0.687187E 00 0.687187E 00 0.7471682E 00 0.7471682E 00 0.7471682E 00 0.7471682E 00 0.7459668E 00 0.9143792E 00 0.9143792E 00
TIME FACTOR SETTLEMENT DEGREE OF COMSOL	DEPTH 0.1000000 03 0.20000000 03 0.4000000 03 03 03 03 03 03 03 03 03 03 03	70/H0 0.500000E-01 0.1500000E-01 0.2500000E-00 0.2500000E-00 0.3500000E-00 0.4500000E-00 0.5500000E-00 0.7500000E-00 0.7500000E-00


	28
	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
>	556666666666666666666666666666666666666
80 3 3 3 3 3 3 3 3 3 3	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
7250	1425 1425 1425 1425 1425 1425 1425 1425
775	
	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1	0.000 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 u	
2382	
0.200	28 4 5 5 0 3 4 5 6 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	00000000000000000000000000000000000000
Z H E S	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	7
5616 5816 33826 3373	
1	00000000000000000000000000000000000000
10 N 11 N G 12 N G 13 N G 14 N G 15 N G 16 N G 17 N	10000000000000000000000000000000000000
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
03 03 03 03 03 03 03 03 03 03 03 03 03 0	
110 R NT NT 14 CO	
4.3.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	0 000000000000000000000000000000000000
SET T	-166-
	A CONTRACTOR OF THE CONTRACTOR

4-8-5 Discussions

(1) Consolidation Constants

The consolidation constants for the Tampico clay are expressed by the equation (3.1) and (3.2). They are drawn in Fig. 4-8-8 together with the consolidation constants for several clays sampled at the harbour areas in Japan. The compression index and the coefficient of consolidation for the Tampico clay are likely to be somewhat smaller than those for some other clays. The Tampico clay sample tested in the laboratory was taken from a limited area of the reclaimed land, so it may not indicate the typical properties of the whole reclaimed area. However, the water content of the filled soil is so high that the reclaimed land should be very uniform, assuming that the land fill has been completed within a short period compared with the total consolidation period. Thus, the consolidation constants expressed by equation (3.1) and (3.2) are considered to be the typical ones for the Tampico clay.

Fig. 4-8-8 Consolidation Constants and Coefficient of Consolidation

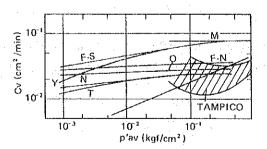


Table 4-8-3 is a list of mechanical properties of the Tampico clay and Fig. 4-8-9 shows the grain size accumulation curve. A plasticity chart and trianguler diagram are included in the Appendex. From these results, the consolidation constants of the Tampico clay are plotted onto Fig. 4-8-10 and Fig. 4-8-11 together with those of clayer soils sampled at harbour areas in Japan. The consolidation constants of the Tampico clay are at the lower boundary in Fig. 4-8-10 and 4-8-11.

Table 4-8-3 Result of Soil Testing

<u>_S</u>	ite Port of TAMPICO No. 3002-C		Date 4/80
Sam	ple number		
Unit	t weight.	γ_t (t/m ³)	
Wat	er content	w (%)	
Voi	d ratio	e	
Deg	ree of saturation	S _r (%)	
Spec	cific gravity	G_s	2.774
	Liquid limit	WL (%)	95.2
tenc	Plastic limit	w _p (%)	27.7
Consistency	Plasticity index	l _p	67.5
Ŏ	Classification	Plasticity Chart	*CH
	Gravel	Gravel (%)	8.9 (Seashell)
11	Sand	Sand (%)	12.9
extur	Silt	Silt (%)	20.4
₩.	Clay	Clay (%)	57.8
	Classification		*F (Fine grain size)** Clay

Note: * Classification by Japanese Unified Soil Classification system

** Classification by Mississippi River Commission

				Fig.	4-8-9 (Grain S	Size					
		·	MECI	HANICA	L ANAI	YSIS	OF SOI	LS			^*************************************	راي در در وي د در وي در
Name of Surve	L. ey 1	Port of 1	AMPIC	0		·····			Date 198		25 day	-
									Tested		,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
			·					· ·		~		·····
Re	lation	betwee	n grain	size a	nd perce	ntage	finer b	y wei	ght .			
Sample No. D	epth: i	No. 300	2-C		(m ~	m)	Speci	fic Grav	ity 2.7	74	
	50.8	38.1	25.4	19.1	9.52	4.76	2.00	0.84		0.25	0.105	0.074
Size mm % finer						95.2	91.1	87.7	86.1	84.3	79.5	78.2
Size mm	0.0443	0.0316	0.0203	0.0119	0.0085	0.0060	0.0031					
EE % finer	78,8	76.3	70.9	66.4	63.0	58.2	53.4					L.,
Sample No. D	epth:	No.			. (m -	m)	Speci	fic Gray	ity		
Size mm % finer	50.8	38.1	25.4	19.1	9.52	4.76	2.00	0.84	0.42	0.25	0.105	0.074
க் % finer											ļ	
Size mm												
금일% finer		<u> </u>	L	L., .				<u>.</u>			L	ļ
•			c		105 μ	420	μ	2000	μ 9	.52mm 2	5.4mm	50.8mm
			. 5	ieve [74	1 25	50μ	840 µ		4760 /	μ 19.	1 mm 38	3:1 mm
100	·····											
90 Grain s	ize accun	rulation cu	rve							•		
80				مـــــــــــــــــــــــــــــــــــــ		-0	S	hell				
€ 70				·								. 1
						,			1	•		
Percentage		~ 0										
Person			÷								•	
40					•							
30				•								
20												
10												
0		0.01	···		0.1		10			10.0		50.0
		0.01			Gr					10.0	·	30.0
0001 colloid→						ain size (r	nm)					
colloid clay	<u> </u>	silt			sand	ain size (r	nm) 10			avel		
$\operatorname{colloid}_{\mathcal{Z}}$	0.0	·	······································	0.0		ain size (r	nm) 10	2.0		avel		
colloid clay		·	2-C	0.0 No		San	nm)		No	avel	No.	
colloid clay 0.001 Sample No Depth	, N	005 No3002 m	m	No	74 m m	. San Dar	nm) nple No).		m	Non	
colloid clay 0.001 Sample No Depth Grain > 4.76	6 mm	005 lo3002 m 4.8	m %	No	74 m m %	San Dar Maxi	nple No).	No	m mm		mr
colloid clay 0.001 Sample No Depth Grain > 4.76 4.76-2 mm	6 mm	005 No. 3003 m 4.8 4.1	m %	No	74 m m %	San Dar Maxi	aple No $^{ m oth}$).	No	m mm mm		mr nir
colloid clay 0.001 Sample No Depth Grain > 4.76 4.76-2 mm 2-0.42 mm). N	005 No. 3002 m 4.8 4.1 5.0	m Shell % %	No	74 m m % %	San Dar Maxi	nple No $_{ m oth}$ mum gr $_{ m D_{60}}$).	No	m mm mm		mr mr mr
0.001 Sample No Depth Grain > 4.76-2 mm 2-0.42 mm 0,42-0.074	o. N	005 No. 3003 m 4.8 4.1 5.0 7.9	m % Shell % % %	No	74 m m % % %	San Dar Maxi	nple No oth mum gu D_{60} D_{30}	rain	No	m mm mm		mr mr mr
Colloid clay 0.001 Sample No Depth Grain > 4.76 4.76-2 mm 2-0.42 mm 0,42-0.074 0.074-0.005	o. No mm	005 No. 3003 m 4.8 4.1 5.0 7.9 20.4	m/% Shell /% // % // % // %	No	74 m m % % % %	San Dar Maxi	nple No $_{ m th}$ mum g $_{ m D_{60}}$ $_{ m D_{30}}$ $_{ m D_{10}}$	rain	No	m mm mm		mr mr mr
Colloid Clay 0.001 Sample No Depth Grain > 4.76 4.76-2 mm 2-0.42 mm 0.42-0.074 0.074-0.005 Clay < 0.005	mm 5 mm	005 No. 3003 m 4.8 4.1 5.0 7.9	m Shell % % % % %	No	74 m m' % % % % % % % % % % % % % % % % % % %	San Dap Maxi	nple No oth mum gu D_{60} D_{30}	rain	No	m mm mm		mr mr mr
Colloid Clay 0.001 Sample No Depth Grain > 4.76 4.76-2 mm 2-0.42 mm 0.42-0.074 0.074-0.005 Clay < 0.005 Colloid < 0.001	o mm mm mm mm mm	005 No. 3000 m 4.8 4.1 5.0 7.9 20.4 57.8	m Shell % % % % % % %	No	74 m n % % % % % % % % % % % % % % % % % % %	San Dap Maxi	nple No $_{ m th}$ mum g $_{ m D_{60}}$ $_{ m D_{30}}$ $_{ m D_{10}}$	rain	No	m mm mm		mr mr mr
Colloid Clay 0.001 Sample No Depth Grain > 4.76 4.76-2 mm 2-0.42 mm 0.42-0.074 0.074-0.005 Clay < 0.005 Colloid < 0.001 Passing 2000	S mm S mm S mm mm mm mm	005 Mo. 3000 m 4.8 4.1 5.0 7.9 20.4 57.8	m % % % % % % % % % % %	No	74 m m/8 %6 %6 %6 %8 %6 %8 %6 %6 %6 %6 %6 %6 %6 %6 %6 %6 %6 %7 %6 %6 %6 %6 %6 %6 %6 %6 %6 %6 %6 %6 %6	San Dap Maxi	nple No $_{ m th}$ mum g $_{ m D_{60}}$ $_{ m D_{30}}$ $_{ m D_{10}}$	rain	No	m mm mm		n im mar mar
Colloid Clay 0.001 Sample No Depth Grain > 4.76 4.76-2 mm 2-0.42 mm 0.42-0.074 0.074-0.005 Clay < 0.005 Colloid < 0.001	o. A mm mm mm mm mm	005 No. 3000 m 4.8 4.1 5.0 7.9 20.4 57.8	m Shell % % % % % % % % % % % % % % % % % % %	No	74 m n % % % % % % % % % % % % % % % % % % %	San Dar Maxi	nple No $_{ m th}$ mum g $_{ m D_{60}}$ $_{ m D_{30}}$ $_{ m D_{10}}$	rain	No	m mm mm		mr mr mr

Fig. 4-8-10 Compression Index C_C vs. Liquid Limit W_L and Plastisity Index I_P

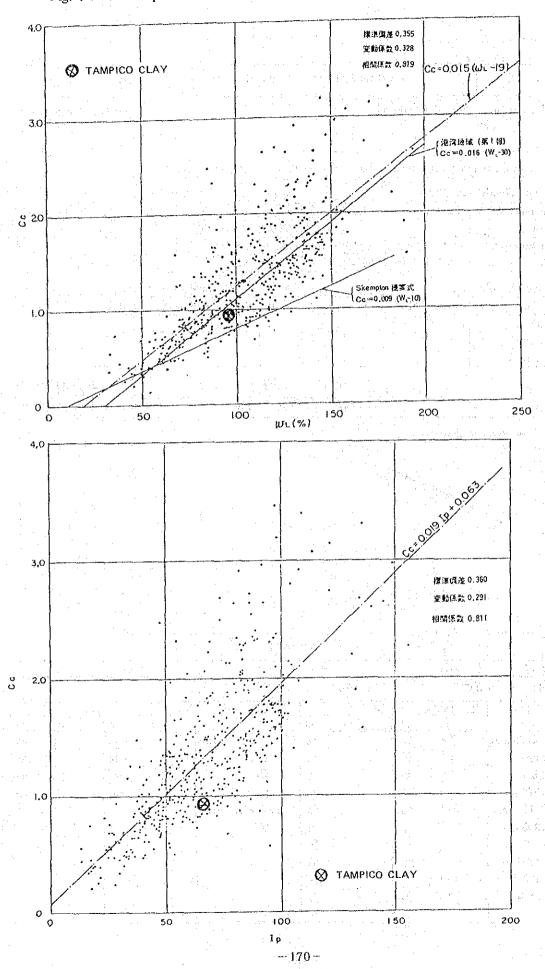


Fig. 4-8-11 (a) Coefficient of Consolidation C_{V} vs. Liquid Limit W_{L}

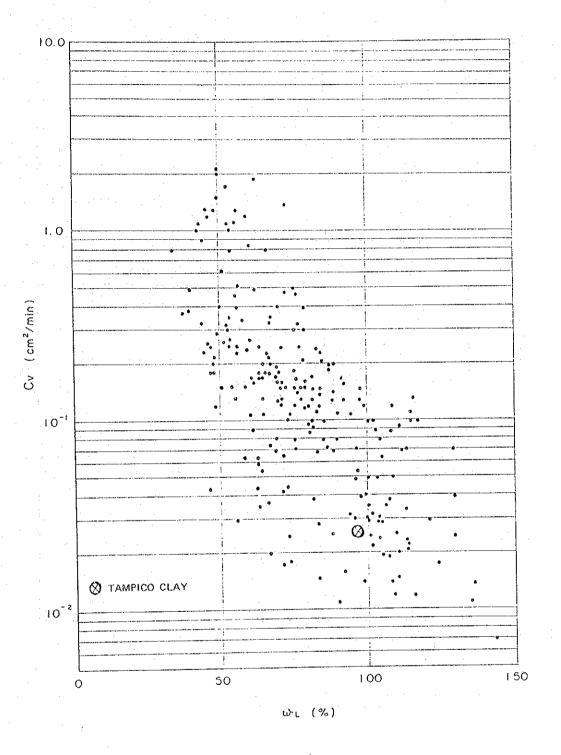
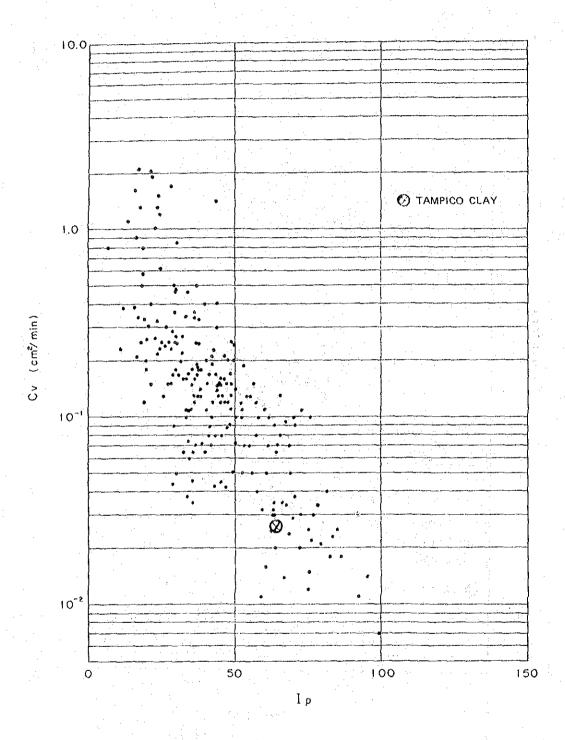



Fig. 4-8-11 (b) Coefficient of Consolidation Cv vs. Plastisity Index Ip

(2) Consolidation Period, Settlement and Strength

From the results of four case studies described in Section 4-8-4-(3)-a), consolidation periods, settlements and the strength of the reclaimed land at a consolidation of 80% are discussed.

The strength of the reclaimed land increases due to the progress of consolidation. The increase of the strength is represented by the $(\Delta c/\Delta p')$ ratio. If the ratio is known, the increase of the strength τ is obtained as follow:

$$\tau = c_0 + (\Delta c/\Delta p') \Delta p' \qquad (5.1)$$

where,

co : the initial cohesion

 $\Delta p'$: the increase of effective stress

As the $(\Delta c/\Delta p')$ ratio is generally given by the values of 0.367 to 0.410 as shown in Table 4-8-4, and c_0 is nearly zero for the reclaimed land, equation (5.1) will be as follow:

$$\tau = (0.367 - 0.410) \Delta p' \cdots (5.2)$$

On the other hand, Skempton proposed the following equation on the $(\Delta c/\Delta p')$ ratio:

$$\Delta c/\Delta p' = 0.11 + 0.0037 Ip$$
(5.3)

Where,

Ip : Plastic Index (%)

67.5% for the Tampico clay

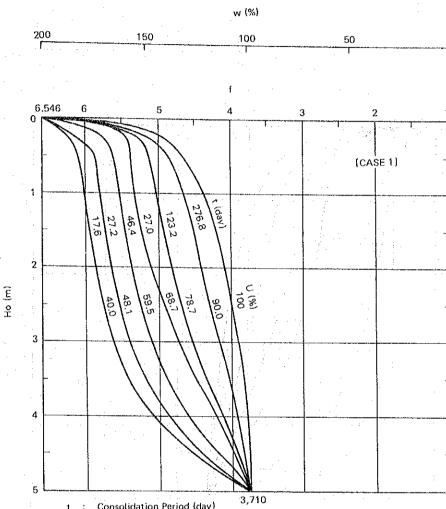
Therefore,

$$\tau = 0.36 \,\mathrm{p'} \qquad (5.4)$$

In this paper, equation, (5.4) is applied to the Tampico clay

Table 4-8-4 △C/△P' Ratio

Sample	NAGOYA	СНІВА	AMAGASAKI	YOKOSUKA
CIU	0.456	0.412	0.403	0.450
CKoU	0.394	0.368	0.367	0.410


Case 1 and Case 2 in Table 4-8-1 correspond to the state of reclaimed land having a water content of 200% and left without any loading after completion of reclamation. In these cases, the land is consolidated only by its self-weight. The settlements are estimated to be 1:46m for Case 1 and 3.36m for Case 2 at the respective consolidation periods of 123 and 454 days. The settlement and consolidation period for Case 2 is larger by 1.9m and longer by 331 days than that for Case 1. The variations of volume ratio and water content during consolidation is shown in Fig. 4-8-12. The strength is calculated from the effective stresses at the inner part of the layer by the equation (5.4) and it is shown in Fig. 4-8-13. At these strengths, the land seems too weak to support the construction equipment. Even if the effect of surface drying is considered, the strength of the lower part of the land is still very weak.

Case 3 corresponds the state that the embankment with the height of 11m is loaded instantaneously to the land having a water content of 100% and layer thickness of 5m. This embankment may be regarded as pre-loading to the land. The settlement is 1.25m for a consolidation period of 557 days. The variations of volume ratio and water content are shown in Fig. 4-8-14. The strength of the land is shown in Fig. 4-8-15.

In Case 3, the embankment is assumed to be instantaneously loaded. However, this is not practical because the embankment is gradually mounded in construction works. Thus, in Case 4, the loading of 2.0 kg/cm² is done with the same conditions as Case 3. The linear increase of loading are assumed as shown in the drawing of Table 4-8-1. When the embankment work is completed within 5 months, the effect of gradual loading to the settlement is very slight at the degree of consolidation of 80%. However, the variations of volume ratio, water content and the strength shown in Fig. 4-8-16 and Fig. 4-8-17 are little different from those of Case 3 at a consolidation period of less than 5 months. Anyway, in the both cases, the strengths of the center part of the layer are approximately 1.3 kgf/cm² to a consolidation of 90%. Confirmation on whether the land could support the embankment shall be made based on the distribution of strength, as shown in Fig. 4-8-17. Bearing capacity and circular failure are not discussed in this paper.

Detailed analysis shall be performed, based on an engineering survey of the reclaimed land, and taking into account future land utilization.

Fig. 4-8-12 (a) Variations of Volume Ratio and Water Content during Consolidation (Case I)

t : Consolidation Period (day)

Degree of Consolidation (%)

Water Content (%), f : Volume Ratio, $H_{\rm o}$: Depth (m)

Fig. 4-8-12 (b) Variations of Volume Ratio and Water Content during Consolidation (Case 2)

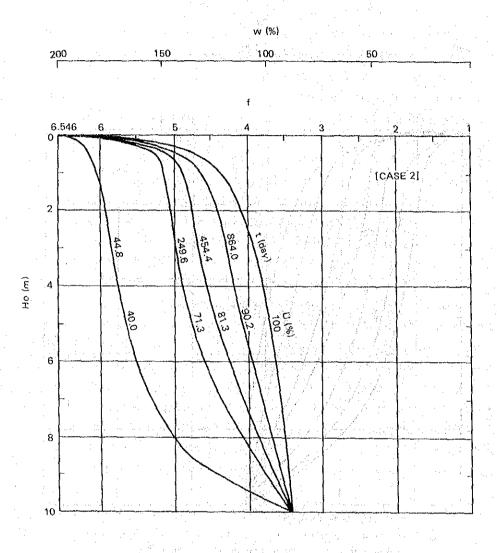
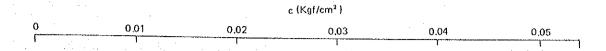
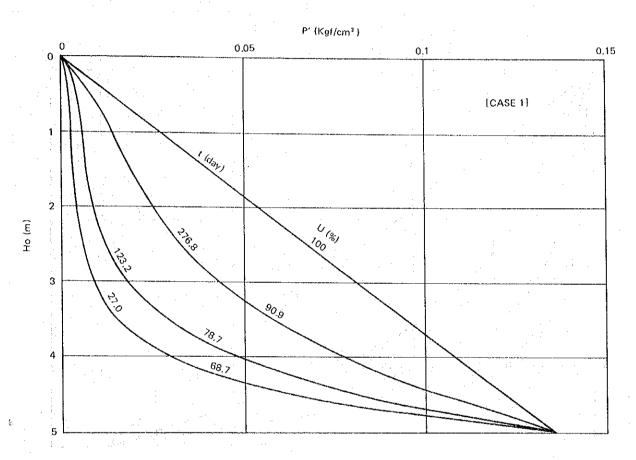
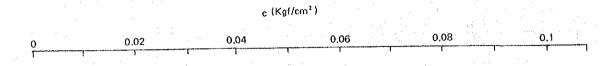




Fig. 4-8-13 (a) The Strength of the Land (Case 1)



t : Consolidation Period (day)

U : Degree of Consolidation (%)

P': Effective Stress (Kgf/cm²), Ho: Depth (m)

Fig. 4-8-13 (b) The Strength of the Land (Case 2)

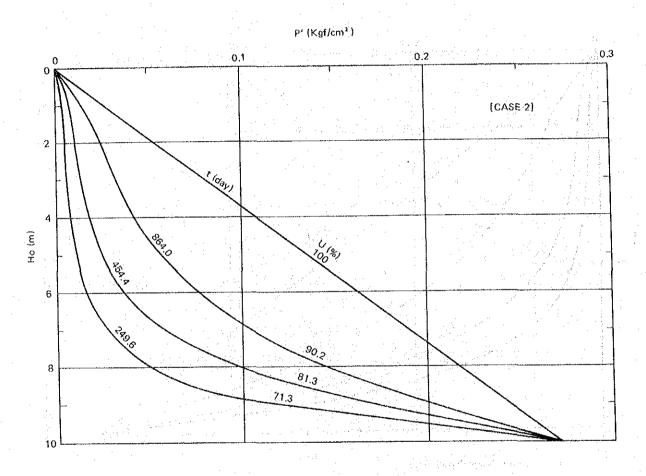
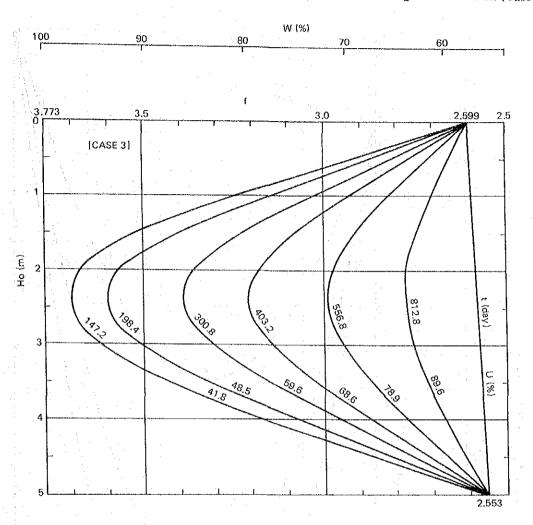



Fig. 4-8-14 Variations of Volume Ratio and Water Content during Consolidation (Case 3)

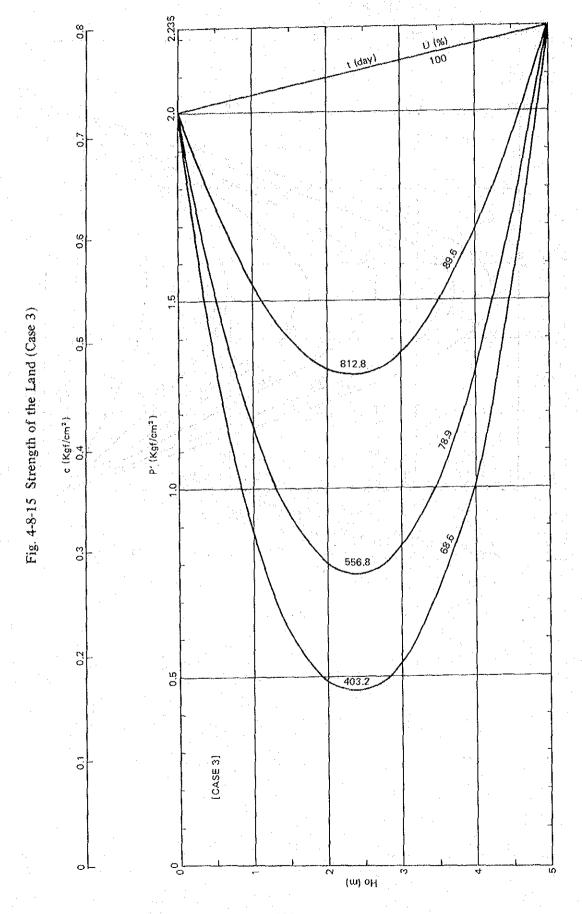
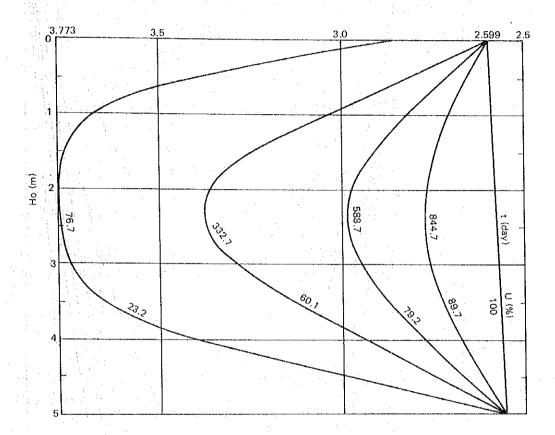
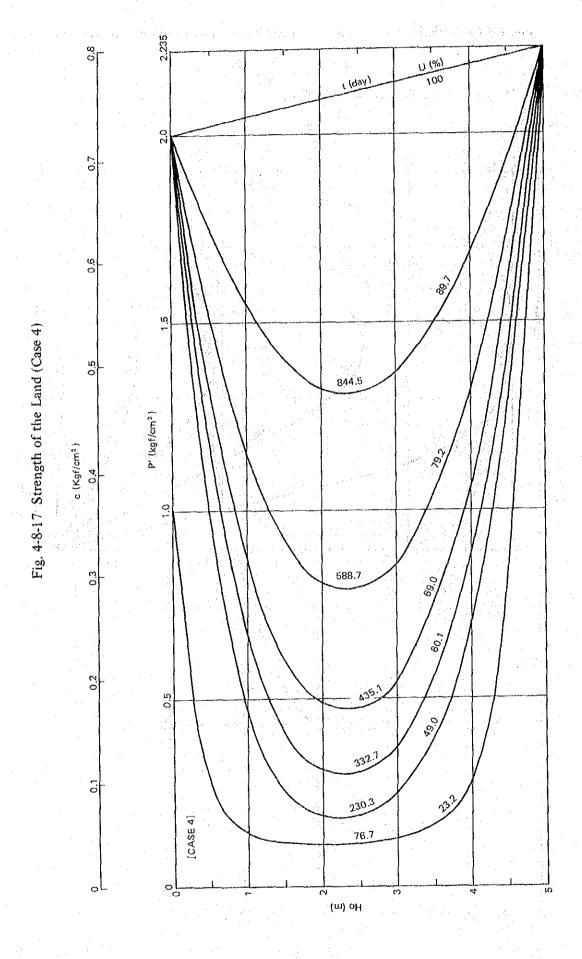




Fig. 4-8-16 Variations of Volume Ratio and Water Content during Consolidation (Case 4)

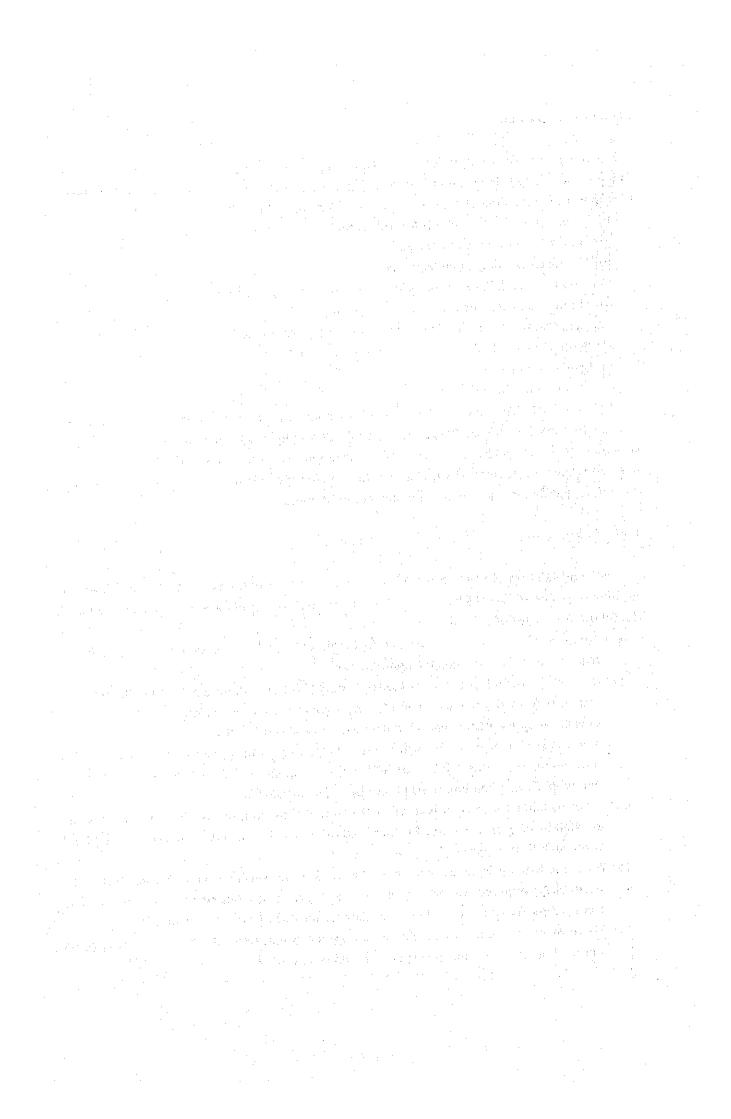
(3) Soil Stabilization

In order to make good use of the reclaimed land, some soil stabilizations will be necessary. The purposes of soil stabilizations are two, (1) ensuring trafficability for construction equipment, (2) support of embankment and structures to be constructed on the reclaimed land.

For item (1), the following surface soil stabilization are usually applied:

- a) Natural evaporation and drying
- b) Gradual mounding of embankment
- c) Laying polyethylene net or cloth on the surface of the reclaimed land
- d) Mixing chemicals such as cement milk or lime

For item (2), the following three methods are effective for clayey soil:


- a) Pre-loading method
- b) Sand drain method
- c) Chemical mixing method

The most efficient and cost effective soil stabilization method is decided by taking into account the opening date of the reclaimed land, construction schedule and period, the types of structures to be constructed and cost of stabilization. From the viewpoint of engineering, the pre-loading method is suitable when a long time period is available. On the other hand, if only a short time is available, the chemical mixing method is useful.

4-8-6 Conclusions

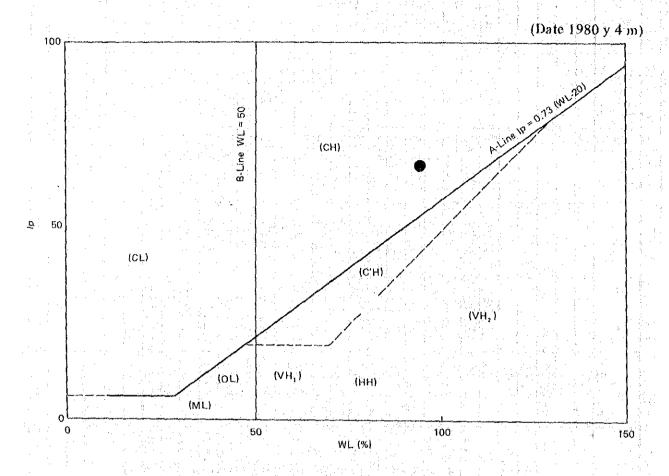
The consolidation characteristics of the Tampico clay was investigated by the CRS-test in the laboratory and the results were applied to analysis on the consolidation of the reclaimed land. The following conclusions are obtained:

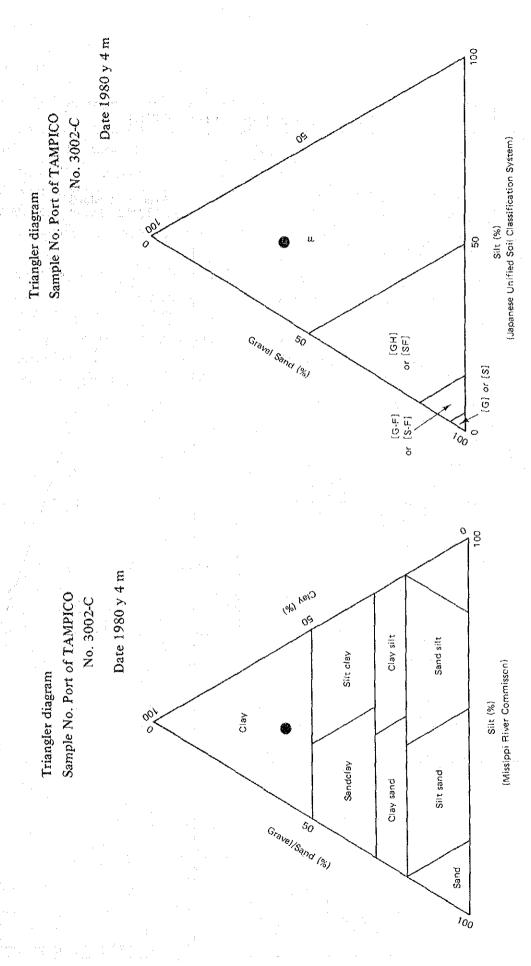
- (1) Tampico clay is not a good fill material, because it induces large settlement and requires long time to complete consolidation.
- (2) If a reclaimed land with a water content of 200% is left without any loading, the land will remain very weak even after completion of consolidation by self-weight. It is impossible to make good use of the reclaimed land without soil stabilization.
- (3) A large settlement of 1.26m will occur for a consolidation period of 588.7 days, which corresponds to a consolidation of 80%, when a loading of 2.0 kgf/cm² is applied to the land with a water content of 100% and layer thickness of 5m.
- (4) If the reclaimed land is to be used as the ground for structures within a short time, some soil stabilization is necessary. Further study shall be carried out to determine what kind of soil stabilization is best.
- (5) When pre-loading is to be applied to the land, some surface soil stabilization shall be inevitablely required for supporting embankment and construction equipment. The bearing capacity and circular failure of the reclaimed land should be determined.
- (6) Above mentioned conclusions are based on some assumptions, if a more detailed analysis is needed, an detail engineering survey should be executed.

Appendix

CRS PORT AND HARBOUR RESEARCH INSTITUTE													
SAM	PLE ;Pu	ERTO TAM	P1C0	Test	No. 4		DATE 4/	19/1980					
Hi		3.067 (m)	Gs	2.773	К10	ad	0.87322					
ΔH1		1.428 (m)	Hs	0.3815 (c	m) Kp.	w.p.	0.48738					
Ho		<u> </u>		f ₀	4.296	R		0.00160 (cm/min)					
Wa				o,	0.031								
Wa		29.90 (g	(f)		(kgf/cn			(kgf/cm ²)					
		DISP	ACE		OAD	PORE V	VATER PR						
No.	TIME (min)	D.G. (1/100mm)	∆H (cm)	(V)	$\binom{\mathcal{O}_{\mathrm{B}}}{(\mathrm{kgf/cm}^2)}$	(V)	u (kgf/cm²	u - u _s) (kgf/cm ²)					
Q	0.0	1579.2	0.0	0.035	<u> </u>	0.000	0.000						
1	2.0	1582.7	0.0035	0.063	0.055	0.035	0.017						
2	5.0	1587.2	0.0080	0.073	0.064	0.055	0.027						
3	10.0	1595.0	0.0158	0.084	0.073	0.072	0.035						
4	20.0	1611.2	0.0320	0,104	0.091	0.102	0.050						
5	30.0	1627.1	0.0479	0.119	0.104	0.128	0.062						
6	40.0	1642.5	0.0633	0.135	0.118	0.150	0.073						
7	60.0	1674.7	0.0955	0.169	0.148	0.197							
8	80.0	1706.7	0.1275	0.199	0.174	0.237	0.116						
9	100.0	1738.4	0.1592	0.229	0.200	0.273	0.133						
10	120.0	1770.7	0.1915	0.260		0.338	0.148						
11	140.0	1802.9	0.2237	0.298		0.368	0.179						
12 13	160.0 180.0	1835.1 1867.7	0.2559	0.382	0.334	0.305	0.193						
1	200.0	1899.8	0.3206	0.382		0.419	0.204						
14 15	220.0	1932.7	0.3535	0.495		0.442	0.215						
16	240.0	1965.2	0.3860	0.573		0.471	0.230						
17	260.0		0.4184	0.664		0.495	0.241						
18	280.0	2029.9	0.4507	0.774		0.519	0.253						
19	300.0	2061.7	0.4825	0.907		0.540	0.263						
20	315.0	2085.5	0.5063	1.036		0.559	0.272						
21	330.0	2109.2	0.5300	1.183		0.575	0.280						
22	340.0	2125.0	0.5458	1.309	1.143	0.588	0.287						
23	350.0	2140.3	0.5611	1.436	1.254	0.595	0.290						
24	360.0	2156.0	0.5768	1.585	1.384	0.608	0.296						
25	370.0	2171.8	0.5926	1.757		0.617	0.301						
26	380.0	2187.2	0.6080	1.928	1.684	0.624	0.304						
27	390.0	2202.8	0.6236	2.151	1.878	0.636	0.310						
28	395.0		0.6315	2.262		0.639	0.311						
29	400.0	2218.6	0.6394	2.381	2.079	0.642	0.313						
30			<u> </u>	<u> </u>		<u> </u>							
31													
32			<u> </u>	1	- 		<u> </u>						
33													
34		<u> </u>				1							

	p	,	()	1					ī	ιΩ	ထ	7	N	4	اسر	8	4			ارما						<u> </u>								
	cm/min	σ¹ ave	(kgf/c:						0.04	0.05	90	0.08.	0.10	0.12	0.15	0.188	0.234	0.284	0.353	0.428	0.532	0.646	0.748	0.865	0.953	1.050	1.185	1.306	.43	1.585	Ġ	1.746		
4.296	9	± a ∨ e							4.13	4.05	0	3.88	3.79	3.71	3,63	ī,	·	ω,	3.28	3.20		3.03	2.97	2.91		2.83	2.78	2.74	2.70	2.66	9	2.62		
m2 7 fo=	R=0.001	<u>и</u>							3.99	3.85	3.74	3.63	3.54	3.45	3.37	3.30	3.24	3.18	3.12	3.05	2.98	2.92	2.86	2.83	2.79	2.75	2.72	2.68	2.64	2.61	2.60	2.57	1 2 2	
kgf/cm ²	cm ;	±0/€							1.077	1.117	1.150	1.182	1.213	1.245	1.274	1.300	1.324	. •	1.378	7.407	1.442		1.500	1.520	1.540	1.560	1.580	1.604	1.625	1.645	1.655	1.670		
0:031	1.639	,a ¥							4-21	4.15	4.09	4.02	3.94	3.86	3.77	3.67	3.57	3.48	3.38	3,28	7	! •	3.03	9	2.91	2.86	2.82	2.77	2.73	2.68	2.65	2.64		
= 0 0	田 田	£0/£b							1.021	1.035	1.050	1.068	1.091	1.113	1.141	1.170	1.202	.23	1.272	1,309	·M	∞	1.420	1.454	1.478	1.500	1.523	1.550	1.575	1.605	1.620	1.630		
1.0	-	< ,	(cm ² /min)					×10 ⁻²	2.36	1.78	1.41	1.26	1.18	1.13	1.13	1.13	1.21	1.28	1.34	1,47	1.60	1.76		리	7	رن	2.49	2.62	2.88	3.11	3.41	3.41		
	LEST NO	C _V /RH0							0 6	6,8	5.4	4.8	4.5	4.3	4,3	4.3	4.6	•	5.1	- 4	•	6.7	• 1	•	8.5	0.6	9.5	10.0	11.0	12.0	13.0	13.0		
	I AMP I CO	Ē.		0.355	0.244	0.238	0.260	0.251	0.279	0.331	0.363	0.413	0.470	0.527	0.586	0.637	0.687	0.739	0.778	0.817	0.848	0.875	0.894	.41	0.920	0.929	0.937	0.944	0.950	0.956	0.959	0.961		
	PUERTO	šn – o	(kgf/cm ²)	0.055	0.064	0.073	60.	0.104	0.118	0.148	• !	0.200	0.227	0.260	0.295	0.334	0.376	0.432	0.500	0.580	. •1	0.792	• ;	1.033	•1	•	1.384	1.534	1.684	•1	1.975	2.079		
	SAMPLES		(kgf/em2)	0.038	0.037	0.038	0	•	0.4	* 1	0.058	•	0.079	• 1	0.116	0.141	0.172	•	0.270		• •	.52	0.633	0.753	0.856	0.964	1.088	1.233	•	1.568	1.664	1.766		
CRS-TEST) 1	0H/HΩ		0.002	0.005	0.0.0	0.020	0.029	0.039	0.058	0.078	0.097	0.117	0.136	0.156	0.176	0.196	0.216	0.236	0.255	0.275	•	0.309	0.323	0.333	0.342	0.352	0.362	0.371	0.380	0.385	0.390		
, A	3	No.		7-1		က		Ŋ	Q	7	8	6	10	77	12	13	14		16	17	18	79	20	21	.22	23	24	. 25	26	27	28	29	30	31


C	RS			PORT A	ND_	HARBOUR	RESEARC	H INST	17	ÜŢЕ	
SAM	IPLE ; P(jerto Tam	1PICO	TEST	No), 5		DATE			
Hi		3.110 (0	(m	${\sf G}_{\sf S}$	2	.773	Klo	ad	0.	87322	1 i.
				H_{S}		.4100 (cr				48738	
ΔH ₁								· · · · · · · · · · · · · · · · · · ·			
Ho		1.687 (c	m)	E o		.115	R		-	00319/n	iin)
Wa		32.13 (g	(f)	76	U	.031 (kgf/cm	2) u _s	المنسنة المستند	سيني	(kgf/c	m ²)
		Dispi	_ACE		Lor	/D	PORE W	ATER P	RE	SSURE	
No.	TIME	D.G.	ΔН			O_B^{\prime}		u		u - u _s	
	(min)	(1/100mm)	(cm)	(V)		(kgf/cm ²)	(V)	(kgf/cm	(²)	(kgf/cm	²)
0		1499.7	0.0000	0.036		0.031	0.000	0.000		<u> sama (m. 1811). Sama</u>	
1		1505.9	0.0062	0.110		0.096	0.109	0.05		ومستحيب	
2		1515.6	0.0159	0.14		0.123	0.156	0.076			\$2.5 U
3		1531.7	0.0320	0,182		_0.159_	0.215	0.10			4-44
4		1547.9	0.0482	0.22		0.196	0.278	0.139		مبحودة أودا	
5		1564.9	0.0652	0.26		0.231	0.336	0.164			
6		1597.3	0.0972	0.338		0.295	0.439	0.214			
7		1631.4	0.1317	0.40		0.355	0.533	0.260			
8		1664.0	0.1643	0.47		0.411	0,612	0.298		<u> </u>	
9		1696.3	0.1966	0.54	-7	0.474	0.690	0.33			45
10		1728.6	0.2289	0.61		0.534	0.758	0.369			
<u> </u>		1760.3	0.2606	0.680		0.594	0.809	0.39			
12		1791.8	0.2921	0.740		0.646	0.836	0.40			
13		1823.5	0.3238	0.828	V	0.723	0.886	0.43	- 1		
14		1854.1 1885.2	0.3544	1.03		0.809	0.965	0.47			;;;;;;;;
15		·					0.984	0.480			
16 17		1914.3	0.4146			0,997				1 No. 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
}		1944.7	0.4450	1.300	11 5 1/4	1,135 1,295	1.011	0.49			
18		1976.1	0.4764			2.0 - 2.0 - 3.4 - 12.0	1.043				
19 20		1992.9	0.4932	1		1.379	1.049	0.51		 	
21		2009.7	0.5100	1		1.486	1.063	0.51	1.0		الوسيدية الراب
22		2025.6	0.5259	1.83	1 1 1 1 1	1.606 1.739	1.062	0.51			Joe
23		2057.5	0.5578	2.17		1.895	1.078	0.52	i		
24		2073.0	0.5733	2.32		2.032	1.072	0.52		<u> </u>	
25	250.0	20,000	1,	1		<u> يا د د د د .</u>		1			
26	-							1	77		
27					,			1			
28											
29											
30											, 1
31											1
32	janka a						11.1				
33											
34									-		


= 0.031 kgf/cm ² ; f ₀ = 4.115 = 1.687 cm; R= 0.00319 cm/min	t fr Gave	(Kgr/cm)					.96 1:106 3.72 3.88 0.09	.89 1.142 3.60 3.79	.82 1.173 3.51 3.72	.75 1.197 3.44 3.63 0.	.67 1:223 3.34 3.56 0.21	9 1.252 3.29 3.48 0.	.52 1.283 3.21 3.40 0.3	.43 1.308 3.15 3.32 0.37	.35 1.335 3.08 3.25 0.	.26 1.362 3.02 3.17 0.54	.18 1.387 2.97 3.10 0.64	.10 1.420 2.90 3.03 0.7	.01 1.452 2.83 2.95 0.93	.97 1.470 2.80 2.91 1.02	3 1.488 2.77 2.8	.88 1.503 2.74 2.83 1.24	.84 1.514 2.72 2.79 1.37	.542 2.67 2.75 1.51	54 2.65						
319	ave						ω,	۲.	.72	.63	.56	.4	.40	.32	.25	.17	-10	.03	95	.91	.87	.83	.79	.75	.72						
# O								9.	r.	7	ω.	2	2	러	0	0	0	0	ω	ω.	7	. 7		9	9						
kgf/	0./£						10	14	17	13	.22	.25	.28	.30	.33	.36	38	.42	.45	.47	.48	.50	.51	. 54	.555						
0.0							0	∞	8		0	٠.	Ŋ,	731	3	2	,-1		0	о.	0.	∞	ω,	∞	[.					4.3	_
ο Ε Ε	£0/Eb						.04	의	1.078	0	1.121	г-I	177		1.230	ŧ	7	.32	1.365	,38	40	1,428	4	1.471	1.474						
No. 5	C 2, 4	(Cm / m1n)		×1012	8.61	7.00	ω	-	3.23	9	2.83	2.74	9	. 7	•	9	•	3	•		7	4.09	4.41	4.68	4.95		,				
TEST N					16.0	•	0.6	7.05	6.00	9	. • [Τ,	•	٠	5.28	•	• [•	•1	٠	0	7.60	8.20	8.70	9.20						
TAMPICO	Ĺτι	0.157	0.302	' '	.36	• 1	0.426	0.459	0.500	0.548	0.587	0.631		0.711	0.748	0.781	0.811	.84	• 1	•	0.889	0.901	0.912	.92	0.929						
PUERTO TAMPICO	$\sigma - u_s$	0.096	0.123	0.159	19	.23	•	0.355	0.411	0.474			0.646	0.723	608.0	, ,		, ,	1.295		1.486		1.739		.03						
SAMPLE	0 - u	0.037	0.047	., .	0.061	0.067	0.081	• • • • • • • • • • • • • • • • • • • •	0.113	0.138	0.165	٠,	0.239	•	0.356	0.430	٠	•	•		•	1.087	1.221		•						****
CRS-TEST	Δh/Hο	0.004		0,	0.0	۱ • ا	•	0.078	0.097	0.117	0.136	1	•		0.210	0.229	•	*	•		. •	0.312	0.321	33							_
땅 -	o N	-	7	m	4,4	ານ	G	7	ω	0	10	11	12	13	1.4	15	91	17	18	19	20	21	22	23	24	25	26	27	28	29	_

Prasticity Chart (Japanese Unified Soil Classification System)

Sample No. Part of TAMPICO

No. 3002 C

PLASTIC LIMIT AND LIQUID LIMIT TESTS 4 m Name of Survey Port of Tampico Date 1980 y day Tested by Number of Blows 7 8 9 10 15 20 Sample No. Depth m – LL-test PL-test W/C (%) No. No. of blows No. W/C (%) 91.18 i 44 27,740 90.73 2 27,447 44 95.10 27,543 3 25 100 22 96,40 4 5 19 97.56 97.87 6 18 Mean 27,694 w_L (%) 100 (%) I_p 98 96 Sample No. Depth No. m m) LL-test PL-test No. No. of blows W/C (%) No. W/C (%) 94 1 1 2 2 3 3 92 4 5 6 Mean w_L (%) wp (%) I_{P} 90 Sample No. Depth No. m m) LL-test PL-test No. No. of blows W/C (%) W/C (%) No. 1 1 2 2 3 3 4 5 6 Mean WL (%) wp (%) I_{P} 6 7 8 9 10 20 25 30 15

References

- 1) Mikasa, M. (1963), "The consolidation of soft clay-A new consolidation theory and its application", Kajima Institution Publishing Co., Ltd. (in Japanese)
- 2) Umehara, Y. and Zen, K. (1976), "Determination of consolidation constants for very soft clays", Report of the Port and Harbour Research Institute, Ministry of Transport, Vol. 14, No. 4 (in Japanese)
- 3) Umehara, Y. and Zen, K. (1979), "Consolidation test method of very soft clays and its application", Report of the Port and Harbour Research Institute, Ministry of Transport, Vol. 18, No. 1 (in Japanese)
- 4) Umehara, Y. and Zen, K. (1980), "Constant rate of strain consolidation for very soft clayey soils", Soils and Foundations, the Japanese Society of soil mechanics and Foundation engineering
- 5) Ogawa, F. and Matsumoto, K. (1978), "Correlation of the mechanical and index properties of soils in harbour districts", Report of the Port and Harbour Research institute, Ministry of Transport, Vol. 17, No. 3 (in Japanese)

4-9 Offered References

1). LAWS AND REGULATIONS ON PORTS AND HARBOURS OF JAPAN PORTS AND HARBOURS BUREAU, MINISTRY OFTRANSPORT

PAR	T I:	POR	T AND HARBOUR LAW	i
	Chapter	1.	General Provisions	3
	Chapter	1-1	Port and Harbour Plan	7
	Chapter :	2,	Port Authority	10
	Sect	ion	1. Establishment of Port Authority	10
	Sect	ion	2. Functions of Port Authority	16
Ú.	Sect	ion	3. Organization of Port Authority	20
	Sect	ion	4. Finance of Port Authority	26
	Chapter	3.	Local Public Entity as a Port Management Body	28
	Chapter	4.	Port Area and Waterfront Area	30
	Chapter	5.	Cost of Port and Harbour Work	42
	Chapter	6.	Waterways to be Developed and Preserved	46
	Chapter	7.	Miscellaneous Provisions	47
PAR	т п:	ENI	ORCEMENT REGULATIONS FOR PORT AND HARBOUR LAW-	75
	Chapter	1.	Major Ports and Ports of Refuge	77
	Chapter	2.	Port Facilities for Excusive Use	77
	Chapter	3.	Miscellaneous Provisions	86
PAR	T IV:	LAV	V FOR PROMOTION OF PORT IMPROVEMENT	97
PAR	T V:	F1S	HING PORT LAW	103
	Chapter	i.	General Provisions	105
	Chapter	2.	Designation of Fishing Ports	107
	Chapter	3.	Fishing Port Council	108
	Chapter	4.	Fishing Port Construction and Remodeling Works	112
	Chapter	5.	Maintenance and Administration of Fishing Port	122
	Chapter	6.	Miscellaneous Provisions	130
	Chapter	7	Penal Provisions	132
PA!	RT X:	РО	RT TRANSPORTATION BUSINESS LAW	135
	Chapter	١.	General Rules	137
	Chapter	2.	Port Transportation Business	140
	Chapter	3.	Port Transportation Business Foundation	152
	Chapter	4	Miscellaneous Rules	154
PA	RT XI:	WA	REHOUSING BUSINESS LAW	161
PΑ	RT XII:	Jaj	oan Port Regulations Law	175
	Chapter	1.	General Provisions	177
	Chapter	2:	Entrance, Departure and In-Port Procedures	177
	Chapter	3.	Prescribed Channel and Rules of Sailing	180
	Chapter	4.	Dagerous Objects	182
	Chapter	5.	Maintenance of Channel	
	Chapter	6.	Ship's Lights and Signals	184
	Chantar	7	Miscallangous Randations	185

Chapter 8. Penal Provisions					
Chapter 2. Control of Discharge of Oil from A ship Chapter 3. Control of Discharge of Wastes from A ship Chapter 4. Control of Discharge of Oil and Wastes from An Offshore Facility Chapter 5. Waste Oil Disposal Commercial Enterprises and Others Chapter 6. Measires for Prevention of Marine Pollution Chapter 7. Miscellaneous Provisions		Chapter	8	Penal Provisions	188
Chapter 2. Control of Discharge of Oil from A ship Chapter 3. Control of Discharge of Wastes from A ship Chapter 4. Control of Discharge of Oil and Wastes from An Offshore Facility Chapter 5. Waste Oil Disposal Commercial Enterprises and Others Chapter 6. Measires for Prevention of Marine Pollution Chapter 7. Miscellaneous Provisions	ΑĪ	er xiii: 🗆	Mari	ne Pollution Prevention Law	199
Chapter 3. Control of Discharge of Wastes from A ship Chapter 4. Control of Discharge of Oil and Wastes from An Offshore Facility		Chapter	11.15	General Provisions	201
Chapter 4. Control of Discharge of Oil and Wastes from An Offshore Facility 2 Chapter 5. Waste Oil Disposal Commercial Enterprises and Others 2 Chapter 6. Measires for Prevention of Marine Pollution 2 Chapter 7. Miscellaneous Provisions 2		Chapter	2.	Control of Discharge of Oil from A ship	202
Chapter 5. Waste Oil Disposal Commercial Enterprises and Others Chapter 6. Measires for Prevention of Marine Pollution Chapter 7. Miscellaneous Provisions		Chapter	3.	Control of Discharge of Wastes from A ship	206
Others Chapter 6. Measires for Prevention of Marine Pollution		Chapter	4	*:	211
Chapter 7. Miscellaneous Provisions		Chapter :	5.	•	212
		Chapter	6.	Measires for Prevention of Marine Pollution	221
Chapter 8. Penal Provisions		Chapter	7.	Miscellaneous Provisions	225
		Chapter	8	Penal Provisions	230

2). Regional Development and Ports Preface – TEXTBOOK FORUM 80 Special Lecture

- 1. Present Situation of Ports in Japan.
- 2. History of Port Development.
- 3. Direction of Port Development in Future.
- 4. Factors Having Influenced the Promotion of Port-Based Regional Development.

Appendix Development of Kashima Industrial Area

- 1. Background and Concept.
- 2. Agriculture-Industry Joint Development Plan and 60-40 Land Policy.
- 3. City Plan for a Population of 300,000.
- 4. Unpoluted Industrial Complex.
- 5. Social Changes with Project Development.
- 6. Kashima Port Project.

Takashi HAZAMA

Executive Director
The Overseas Coastal Area Development Institute

of

Japan

3). Port Structure upon Soft Ground - TEXTBOOK FORUM 80

FOR SOFT SUB-SOIL AND ADEQUATE PORT STRUCTURE

ŀ.	Introduction	١
2.	Selection of Construction Method	2
3,	Adequate Port Structure for Soft Ground	3
4.	Design of Quay Wall	5
5.	Soil Stabilization	7
-	5-1. Purpose of soil stabilization	7
	5-2. Classification of Soil Stabilization Method	8

Kazuhiro KOSHIRO

Registered Consulting Engineer (Construction)
General Manager, Oversea: Division
Toa Harber Works Co. Ltd.

OF STEEL STRUCTURES SUITED FOR SOFT GROUND

Intr		tion
ŧ.	Stee	el Sheet Pile Structures
	1-1	Steel Sheet Piles 2
	1-2	Mechanical Properties of Steel Sheet Piles · · · · · · · 1 - 3
	1-3	Types of Steel Sheet Pile Structures
		1-3-1 Cantilever Type Sheet Pite Wall
		1-3-2 Tie-rod Type Sheet Pile Wall · · · · · · · · · · · · · · · · · ·
		1-3-3 Batter-pife Anchor Type Sheet Pife Wall 7 7
		1-3-4 Relieving Platform Type Sheet Pile Wall
		1-3-5 Cellular Type Sheet Pite Wall
		1-3-6 Double Sheet Pile Wall Type
	1-4	Design of Steel Sheet Pile Structures
		1-4-1 Anchored Type Sheet Pile Wall \$\equiv = 1 0
		1-4-2 Cellular Type Sheet Pile Wall
2.	Stee	l Pipe Pile Structures
	2-1	Steel Pipe Pites
		Mechanical Properties of Steel Pipe Piles · · · · · · · · · · · · · · · · · · ·
	2-3	Steel Pipe Pile Structures
	2-4	Design of Pile Type Pier 1 - 2 3
3.	Driv	ring Works for Steel Sheet Piles and Steel Pipe Piles
	3-1	Preparatory Works for Steel Sheet Piles # - 2 9
		Selection of Hammer I - 3 3
4.	Pref	abricated Sheet Pile Cell Method · · · · · · · · · · · · · · · · · · ·
	4-1	Outline of the Method I - 3 9
	4-2	Floating Crane Procedure
	4.3	Barge Procedure

Motoo SHIRAISHI

Manager

Waterfront Engineering Technical Service Section Structurals Sales Dept, Nippon Steel Corporation

LECTURE-III

SOIL MECHANICS

AND

SOIL STABILIZATION METHOD

FUNDAMENTAL UNDERSTANDINGS	1
1-1. Stress distribution in the soil	1
1-2. Deformation analysis of soil	8
SOIL STABILIZATION METHODS	16
2-1. Replacement Method	16
2-2. Preloading Method	18
2-3. Sand Drain Method	19
	1-1. Stress distribution in the soil

Dr. Shoichi KITAJIMA

Director Chil Engineer

Mitsur Consultants Co., Ltd.

PORT ENGINEERING AND SOFT GROUND TECHNOLOGY

Introduction - The characteristics of port and harbour engineering Some Examples of Port Engineering Aspects 1-1. Stope failure 1-2. Subsidence, consolidation of the ground 2-5. New impact of soil engineering N=16 4-1. Studies and tests in-situ N= 20 4-3. Some financial problems N-22 Conclusion N-23

Akio OGO

Director Engineering Division

Overseas Coastal Area Development Institute of Japan

	-
	. ,
	:
	• •
*	
•	

