Table I-7 Chemical analysis of core samples

No.	53 - 1	Vueltas	del	Rio	Sector	
No.	53 - 2			11		
No.	53 - 3			IŦ		
No.	53 - 4			tī.		
No.	53 - 5			11		
No.	53 - 6	Minitas	Sec	tor		
No.	53 - 7		ı	tf .		
No.	53 - 8		,	11		

Example

 \triangle -----checked samples

No. 53 - 1

No. Au Ag Cu Pb Zn No. Au Ag Cu Pb	om)	alysed (s and an	Element		Sample		ed (ppm)	s analys	Element		Sample
10002	Zn	Pb	Cu	Ag	Au	•	Zn	Pb	Cu	Ag	Au	
1000d 0.002	58)				1	0.06	1000
1006 0.01 1 1 1 1 1 1 1 1 1	123				1							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	920											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	138			[1							
1010	116 51								3			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	81			1				1 1	•	1	1	4
1014	72				I	1		1 :	1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	69				1							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	66				ľ			:		1	1	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	78				1				1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	111	8	52	1	< 0.01	1220					1	i .
1026	72				< 0.01	1225	196	12	29	1	< 0.01	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	56		1		1				29	1	0.06	1024
Δ 1028 0.04 1 36 11 133 1245 < 0.01	92		l .		1			1				
1030 0.02 1 59 27 203 1250 < 0.01 0.4 18 7	69)	1	ł				,	•	
1032	53			1						1	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	69 68								1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	62				1					ľ		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	71.											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	70	1	1		•							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	74				1					l		1
1042	76											
1046	48	11	6	1	< 0.01						< 0.01	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	58		6		< 0.01	1285	120	15	41	1	< 0.01	1044
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	64								126	1	< 0.01	1046
1052	102	1		1		ı				l		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	97					,					1 7	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	74			I	I .	ı	1 1			ŧ		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	102 104	ι				1						i
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	77				1			1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	153									l	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	120				1							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	140			1								1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	131	14										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	53	8	19	0.4	< 0.01						1	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	118		19	1	< 0.01		185	13	43	2	< 0.01	1068
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	81								-	1		1070
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	96				-							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	67			1	4 -							
$ \begin{vmatrix} \Delta & 1078 & < 0.01 & 1 & 103 & 12 & 116 & 1370 & < 0.01 & 1 & 60 & 18 \\ 1080 & < 0.01 & 1 & 30 & 23 & 106 & 1375 & < 0.01 & 1 & 45 & 15 \\ 1082 & < 0.01 & 1 & 37 & 15 & 102 & 1380 & < 0.01 & 1 & 57 & 16 \\ 1084 & < 0.01 & 1 & 25 & 15 & 111 & 1385 & < 0.01 & 1 & 32 & 14 \\ 1086 & < 0.01 & 1 & 59 & 13 & 123 & 1390 & < 0.01 & 2 & 31 & 16 \\ 1088 & < 0.01 & 2 & 19 & 16 & 122 & 1395 & 0.04 & 1 & 22 & 12 \\ 1090 & < 0.01 & 1 & 29 & 23 & 121 & 1400 & < 0.01 & 1 & 70 & 15 \\ 1092 & < 0.01 & 1 & 46 & 19 & 142 & 135 & & & & & & & & & & & & & & & & & & &$	63 95									· .	ľ	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	125	1			1	•		1	1 1		•	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	80											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	92				-							
$ \begin{vmatrix} 1086 & < 0.01 & 1 & 59 & 13 & 123 & 1390 & < 0.01 & 2 & 31 & 16 \\ 1088 & < 0.01 & 2 & 19 & 16 & 122 & 1395 & 0.04 & 1 & 22 & 12 \\ 1090 & < 0.01 & 1 & 29 & 23 & 121 & 1400 & < 0.01 & 1 & 70 & 15 \\ 1092 & < 0.01 & 1 & 46 & 19 & 142 & & & & & & & & & & & & & & & & & & &$	106	1								,		
1088 < 0.01	112	16										
1090 < 0.01	120			1	0.04	1395						
1092 < 0.01 1 46 19 142	95	15	70	1	< 0.01		121					
								19	46	1	< 0.01	1092
1 1004 1 0 01 1 27 122 200 1 143 1 3 250 1 1 1 1 1				ı j	1							
			, ,	,		<u>'</u>	1,150	141	12,800	17	0.01	1096
1098 < 0.01 4 1,760 24 163		İ								I		
Δ 1098 < 0.01 4 1,760 24 153				İ		i						
1100 0.01 1 136 19 146 1102 < 0.01 1 269 32 101]	1	1								
1102 < 0.01 1 269 32 101 104 < 0.01 1 403 18 73												
1106 0.08 2 559 12 154		İ	1	İ								
1108 < 0.01 2 220 45 132				ļ								
1110 < 0.01 1 44 20 109		,	ļ	- (
1120 < 0.01 1 28 17 102		İ					11					
1130 0.08 1 455 12 99			į				99	12				
1140 0.48 1 61 23 78		1	•	1			78	23				1140
1150 0.22 1 35 15 102			1									
Δ 1150 0.22 1 32 15 99		·	1	}								
1160 < 0.01 2 68 12 91			ĺ				91	12	68	2	< 0.01	1160

No. 53 - 2

Samala.	ļ ———	Element	s analys	ed (ppm)		Comple	<u> </u>	Element	s and an	alysed (ppm)
Sample No.	Au	Ag	Cu	Pb	Zn	Sample No.	Au	Ag	Cu	Pb	Zn
2000	< 0.01	0.4	13	7	460	2190	< 0.01	1	79	25	217
2002	0.04	0.5	15	5	274	2200	< 0.01	1	40	14	108
2004	0.06	0.5	24	5	400	2205	< 0.01	1	34	16	123
2006	44	0.5	225	5	1,180	2210	< 0.01	1	151	13	227
2008	0.24	0.5	277	5	1,610	2215	< 0.01	1	28	12	109
2010	< 0.01	0.4	71	8	1,110	2220	< 0.01	1	44	18	170
△ 2010	< 0.01	0.4	72	8	1,110	2225	< 0.01	3	81	36	156
2012	0.04	0.3	58	7	1,130	2230	< 0.01	1	54	26	53
2014	< 0.01	0.4	45	9	970	△ 2230	< 0.01	1	55	25	50
2016	< 0.01	1	20	9	229	2235	< 0.01	1	26	12	81
2018	< 0.01	0.5	70	7	1,240	2240	< 0.01	1	74	16	46
2020	0.02	0.4	220	4	1,310	2245	< 0.01	1	71	33	750
2022	< 0.01	0.3	481	7	1,240	2250	< 0.01	1	75	18	87
2024	< 0.01	0.5	142	11	870	2255	< 0.01	1 1	89	12	87
2026	0.10	0.5	356	5	1,200	2260 2265	< 0.01	1	75	16 12	169 63
2028	0.04	1	237	5	1,530		< 0.01	1	69	1	
2030	0.02	1	237	5 5	1,170	2270	< 0.01	1 1	56	12	85 94
Δ 2030	0.02	0.3	237	8	1,170	2275	< 0.01	1 1	38	16	69
2032	0.04			24	271	2280 △ 2280	0.10		86	17	
2034 2036	0.14	1	48 18	11	242 201	2285	< 0.01	1 1	81 80	17 13	72 86
	i .	i	58	11	172	2290	< 0.01	1 1	77	12	120
2038 2040	0.04	i	178	11	159	2295	0.02	1 1	75	14	103
2040	0.01	i	39	ii l	177	2300	0.02	i	95	15	133
2042	< 0.01	ı	55	19	420	2,00	0.01		9,7	1,	1,,,
2044	0.04	1	40	7	232		1				
2048	0.60	2	246	12	272			1			
2050	0.04	i	45	12	241		1 1	1			
2052	< 0.01	1	133	15	201						
2054	0.06	2	674	15	1,720		[
2056	< 0.01	ī	212	9	176						
2058	< 0.01	1	207	16	117	l .					,
△ 2058	< 0.01	i	198	12	112						
2060	0.04	i	127	13	112						
2062	< 0.01	i	58	10	105		i				
2064	< 0.01	i	56	10	102						
2066	< 0.01	i	18	8	87		i [i i	ſ		
2068	0.04	î	68	11	99						
2070	< 0.01	î	46	10	94						
2072	< 0.01	1	37	9	77						
2074	< 0.01	1	26	. á	76		·	1	ł	ł	
2076	< 0.01	1	25	14	95	1					
2078	< 0.01	1	60	14	85						
△ 2078	< 0.01	1	63	14	93	1		i	1		
2080	< 0.01	1	36	7	72	Į	J	j	- 1	,	
2082	< 0.01	1	34	7	60			j		į	
2084	0.04	1	48	7	78			ł			
2086	< 0.01	2	18	7	78			ł		ŀ	
2088	< 0.01	6	63	17	56					į	
2090	< 0.01	1	60	8 [55	ſ	ſ	ſ	[- 1	ĺ
2092	< 0.01	1	143	9	80		l				
2094	< 0.01	1	81	11	77		l				
2096	< 0.01	1	50	10	100		!		-		ļ
2098	< 0.01	1	128	12	86	ł	1	ł	1	ł	}
△ 2098	< 0.01	1	125	10	85		1	+		i	
2100	< 0.01	1	795	9	99	Ī	l		1	i	ļ
2110	< 0.01	1	48	10	67			į	1		ĺ
2120	< 0.01	1	46	10	71	ļ	ļ	J	- 1	J	J
2130	< 0.01	1	59	11	94	į		ļ	- 1	l	
2140	< 0.01	4	293	18	360	Į			1		
2150	0.04	1	61	13	105	[1		1	ļ
2160	< 0.01	1	36	14	82	[1	
2170	0.04	1	55	16	114	ł	ł	ĺ	ł	ł	1
2172	0.06	1 20	343	22	1,540	l				ļ	1
2173	97	80	59,400	72	1,880	į			İ		
Δ 2173	97	80	59,400	67	1,880	ŀ					
2174	0.08	2	1,110	22	1,050	ł	Į	j	ļ	- 1	ļ
2180	< 0.01	2	184	17	117	<u>_</u>					

No. 53 - 3

Sample		Element	s analys	ed (ppm)		Sample		Elemen	ts and an	alysed (ppm)
No.	Au	Ag	Cu	Рb	2n	No.	Au	Ag	Cu	Pb	2n
3000	0.74	0.4	23	155	27	3124	0.14	3	2,470	42	470
3002	0.34	0.3	18	57	13	3126	0.12	1	194	36	460
3004	0.22	0.3	53	37	11	3128	< 0.01	1	90	21	420
3006	0.46	0.3	50	31	17	△ 3128	< 0.01	1	90	19	420
3008	l	1	91	126	18	3130	< 0.01	1	445	14	460
△ 3008	1	1	89	122	24	3132	0.02	2	223	20	360
3010	0.22	0.3	60	195	16	3134	0.18	1	86	61	330
3012	0.74	0.2	55	129	16	3136	1	6	3,060	141	910
3014	0.46	1	17	38	11	3138	< 0.01	1	51	34	420
3016	0.22	0.3	147	15	19	3140	0.18	1	32	29	430
3018	0.12	3	736	66	350	3142	< 0.01	1	430	41	460
3020	0.16	1	467	13	74	3144	< 0.01	2	693	40	450
3022	< 0.01	0.4	366	21	71	3146	0.64	7	572	174	16,500
3024	< 0.01	0.1	112	12	117	3148	2 2	16	761	1,910 1,930	19,000
3026	0.12	0.3	11	18	290	△ 3148	0.06	16	761	29	19,000
3028	0.02	0.5	184	12	380	3150	0.00	1	58 27		1,190
△ 3028	0.02	0.5	181	11	380	3152 3154	0.22	2	22	63 99	350 480
3030	< 0.01	1	134	11	161	3156	0.04	1	8	27	350
3032	0.46	0.4	220	18 21	150 350	3158	< 0.01	1	46	26	229
3034	< 0.01	1 1	380 270	25	550	3160	< 0.01	î	21	19	233
3036 3038	< 0.01 0.12	i	68	17	720	3170	< 0.01	2	81	<u>19</u>	186
3040	0.12	1	437	32	1,100	△ 3170	< 0.01	2	83	19	190
3042	< 0.01	ì	81	157	1,430	3178	0.06	2	325	101	500
3044	0.22	î	34	400	1,280	3180	0.26	1	94	16	237
3046	3.34	8	570	3,750	18,500	3190	< 0.01	1	35	10	172
3048	0.14	ì	89	71	765	3200	0.08	2	25	22	203
Δ 3048	0.14	1	94	75	765	3205	< 0.01	2	63	37	19
3050	0.16	1	141	22	520	3210	< 0.01	2	272	32	19
3052	0,34	1	28	39	560	3215	< 0.01	1	70	11	16
3054	0.16	1	20	92	600	3220	< 0.01	1	124	17	14
3056	0.18	1	93	375	1,260	3225	< 0.01	1	43	7	9
3058	0.24	2	34	100	1,140	Δ 3225	< 0.01	1	42	7	9
3060	0.06	1	19	642	2,300	3230	0.12	1	55	10	15
3062	0.28	1	31	625	4,900	3235	0.06	1	38	5	12
3064	0.46	1	231	483	1,750	3240	< 0.01	1	38	9	11
3066	0.38	1	228	550	1,380	3245	< 0.01	1	226 56	6 5	9 11
3068	3.72	3	253	1,479	4,750	3250 3255	0.04	1	74	27	21
△ 3068	3.72	3	253	1,479	4,750	3260	< 0.01	i	40	15	16
3070	< 0.01	1 2	72 148	171 117	580 370	3265	< 0.01	1	27	13	13
3072 3074	0.16	1	39	209	770	3270	< 0.01	1	33	10	13
3076	< 0.01	1	55	32	390	3275	< 0.01	1	32	10	10
3078	< 0.01	1	91	74	540	△ 3275	< 0.01	ī	31	11	10
3080	0.06	î	37	40	2,900	3280	< 0.01	1	40	7	9
3082	< 0.01	ī	283	21	1,050	3285	< 0.01	1	41	11	13
3084	0.12	1	27	62	520	3290	< 0.01	1	39	11	14
3086	< 0.01	1	28	22	156	3295	< 0.01	1	34	6	13
3088	< 0.01	1	161	17	159	3300	< 0.01	1	65	6	9
Δ 3088	< 0.01	1	172	17	160	3305	< 0.01	1	75	39	131
3090	< 0.01	1	641	16	165	3310	0,12	1	180	17	181
3092	< 0.01	1	128	72	350	3315	< 0.01	1	55	13	137
3094	0.68	1	169	71	450	3320	0.08	1	80	17	135
3096	0.06	1	287	40	178	3325	< 0.01	1	131	17	130
3098	< 0.01	1	36	14	165	Δ 3325	< 0.01	1	131	17	130
3100	0.14	2	379	14	286	3330	0.04	1	67	18	145
3102	0,12	1 1	11	11	217	3335	0.02	1	270	18	154
3104	0.18	2	1,190	36	380	3340	0.04	1	76	16	123 108
3106	0.20	14	2,220	49	480	3345	< 0.01	1	33 69	14 12	108
3108	0.10	1 1	896	15	390	3350 3355	< 0.01 < 0.01	1 2	200	13	110
△ 3108	0.10	1	896	15	410	3360	0.01	2	148	15	115
3110	< 0.01	1	830	8	410 256	3365	< 0.01	2	206	17	120
3112	0.34	1	1,070	9 7	207	3370	0.04	2	162	15	109
3114	0.14 0.08	1 1	210	6	253	3375	0.04	2	125	15	118
3116	0.08	2	814	30	550	Δ 3375	0.04	2	125	12	115
3118 3120	0.08	3	940	28	650	3380	0.04	1	213	15	163
3120	0.08	1	1,760	45	440	3385	< 0.01	1	241	13	127
2165	0.00		1,700		777		- / /				

G1-		Element	s analys	ed (ppm)		Samala		Element	s and a	nalysed (ppm)
Sample No.	Au	Åg	Cu	Pb	2n	Sample No.	Au	Ag	Cu	Pb	Zn
3390 3395 3400	< 0.01 0.04 0.04	2 1 1	573 189 133	12 16 9	93 130 185						
								2			

No. 53 - 4

No. Au Ag Cu Pb Zn No. Au Ag Cu Pb	Sample		Element	s analys	ed (ppm)		Sample					opm)
4004 0.04 0.3 75 8 20 4204 < 0.01 1 187 12 4006 0.04 0.3 78 9 19 4206 0.10 2 241 21 4006 0.04 0.3 61 10 20 4208 0.01 1 150 11 4008 0.04 0.3 61 10 20 4210 0.04 1 261 11 4008 0.04 0.3 60 8 20 Δ 4210 0.04 1 273 14 4010 < 0.01 0.2 48 7 127 4212 0.08 2 161 24 4012 < 0.01 0.2 48 7 127 4212 0.08 2 161 24 4012 < 0.01 0.2 82 8 38 4214 0.10 1 63 10 4016 < 0.01 0.5 68 11 38 4216 < 0.01 1 63 10 4016 < 0.01 0.5 68 11 38 4216 < 0.01 1 54 9 9 4008 < 0.01 0.3 56 88 19 4220 < 0.01 1 54 9 9 4002 < 0.01 1 54 9 4002 < 0.01 0.5 68 19 4220 < 0.01 1 150 11 4024 < 0.01 0.5 68 6 24 4226 < 0.01 1 77 11 4024 < 0.01 0.5 86 6 24 4226 < 0.01 1 77 11 4024 < 0.06 1 52 5 24 4220 < 0.01 1 77 11 4024 < 0.06 1 52 5 24 4220 < 0.01 1 77 11 4024 < 0.04 1 56 5 52 4228 < 0.03 2 11 47 47 4028 < 0.01 1 56 5 22 4228 < 0.01 1 50 50 4022 < 0.01 1 50 50 50 4022 6 < 0.01 1 50 50 50 4022 6 < 0.01 1 50 50 50 4023 6 < 0.01 1 50 50 50 4023 6 < 0.01 1 50 50 50 4023 6 < 0.01 1 50 50 50 4023 6 < 0.01 1 50 50 50 4023 6 < 0.01 1 50 50 50 4023 6 < 0.01 1 50 50 50 4023 6 < 0.01 1 50 50 50 4023 6 < 0.01 1 50 50 50 4023 6 < 0.01 1 50 50 4023 6 < 0.01 1 50 50 50 4023 6 < 0.01 1 50 50 60 60 60 60 60 60	- 1	Au	Ag	Cu	Pb	Zn		Au	Ag	Cu	Pb	Zn
4006 0.04 0.3 78 9 19 4206 0.10 2 241 21 4006 0.00 0.10 0.2 44 7 28 4208 0.01 1 150 11 4008 0.04 0.3 66 10 20 4210 0.04 1 261 11 1273 14 4010 0.04 1 261 11 1273 14 4010 0.04 1 273 14 4010 0.04 1 273 14 4010 0.04 1 273 14 4010 0.04 1 273 14 4010 0.06 0.5 68 8 7 127 4212 0.08 2 161 12 4014 0.06 0.5 68 11 38 4214 0.10 1 63 10 4016 0.01 0.5 61 8 16 4218 0.04 1 54 9 4018 0.04 1 54 9 4018 0.04 1 54 9 4020 0.04 1 54 9 4020 0.04 1 54 9 4020 0.04 1 54 9 4020 0.04 1 55 0 4222 0.01 1 150 10 4022 0.04 1 144 5 50 4222 0.01 1 150 10 4022 0.04 1 144 5 50 4222 0.01 1 73 11 4022 0.04 1 154 5 50 4222 0.01 1 73 11 4022 0.04 1 55 56 6 24 4226 0.01 3 45 226 4026 0.06 1 922 5 22 4228 0.01 1 91 12 4062 0.04 1 55 5 52 4222 0.08 1 203 28 4030 0.04 1 55 5 52 4234 0.06 1 257 54 4030 0.01 1 157 9 32 4236 0.01 1 59 27 4032 0.01 1 157 9 32 4236 0.01 1 59 27 4032 0.01 1 57 5 24 4238 0.00 1 1 59 27 4032 0.06 1 297 4034 0.01 1 177 21 560 4246 0.01 1 198 29 4040 0.06 1 77 21 560 4246 0.01 1 198 29 4040 0.06 1 77 21 560 4246 0.01 1 198 29 4040 0.01 1 141 16 290 4256 0.01 1 198 29 4040 0.01 1 141 16 290 4256 0.01 1 198 177 4066 0.01 1 47 47 4056 0.01 1 47 4056 0.01 1 47 4066 0.01 1 47 47 47 4056 0.01 1 47 4056 0.01 1 47 4056 0.01 1 47 4056 0.01 1 47 4056 0.01 1 47 4056 0.01 1 47 4056 0.01 1 47 4056 0.01 1 47 4056 0.01 1 47 4056 0.01 1	4000	0.10	3	68								94
4006										1		43
4008 0.04 0.3 61 10 20 Δ4210 0.04 1 261 11 263 24 4010 0.04 1 273 14 4012 0.00 0.2 48 7 127 4212 0.08 2 161 24 4012 0.00 0.2 88 38 4214 0.10 1 33 10 4018 0.00 1 68 11 38 4214 0.01 1 33 10 4018 0.00 1 5 50 4222 0.01 1 150 10 4020 0.04 1 56 8 19 4220 0.01 1 75 11 4022 0.01 1 75 9 4226 0.01 1 75 11 4224 0.01 1 75 11 4224 0.01 1 79 12 4218 0.01 1 79 12 4218 4001								L .				60
Δ 4008				t .								35
4010												94
40124 CO. 00 0.2 82 8 38 4214 0.10 1 63 10 4016 < O. 05				1								96
4014 0.06 0.5 668 11 38 4216 0.04 1 54 9 9 4020 0.01 1 55 50 4222 0.01 1 150 10 4020 0.04 1 114 5 55 4222 0.01 1 73 11 4022 0.04 0.5 86 66 24 4226 0.01 2 31 47 4026 0.06 1 52 5 22 4228 0.01 2 31 47 4028 0.04 1 55 50 4222 0.08 1 257 54 4028 0.04 1 55 5 22 4228 0.01 2 31 47 4028 0.04 1 56 5 52 24 4226 0.01 3 45 226 4030 0.06 1 55 5 52 4234 0.01 1 59 27 4032 0.06 1 257 54 4032 0.01 1 56 5 52 24 4230 0.06 1 257 54 4032 0.01 1 56 5 52 24 4230 0.06 1 59 27 4032 0.01 1 157 9 32 4236 0.01 1 59 27 4032 0.01 0.4 282 7 10 4238 0.06 1 39 25 4034 0.01 1 157 9 32 4236 0.01 1 51 32 4044 0.01 1 157 9 32 4244 0.01 1 69 20 4044 0.01 1 71 21 56 4244 0.01 1 72 20 4044 0.04 1 71 21 56 4244 0.01 1 72 20 4044 0.04 1 71 21 56 4244 0.08 1 48 23 4068 0.01 0.4 78 25 191 4248 0.08 1 48 23 4050 0.00 1 50 19 370 4248 0.08 1 48 23 4050 0.00 1 50 19 370 4248 0.08 1 48 23 4050 0.00 1 50 19 370 4248 0.08 1 48 23 4050 0.00 1 50 19 370 4248 0.08 1 48 23 4050 0.00 1 50 19 370 4248 0.08 1 48 23 4050 0.00 1 50 19 370 4248 0.08 1 48 23 4050 0.00 1 50 19 370 4248 0.08 1 48 23 4050 0.00 1 50 19 370 4248 0.08 1 48 23 4050 0.00 1 50 19 370 4248 0.08 1 48 23 4050 0.00 1 50 19 370 4248 0.08 1 48 23 4050 0.00 1 50 19 370 4248 0.08 1 48 23 4050 0.00 1 50 19 370 4248 0.00 1 50 10 38 39 4050 0.00 1 50 10 38 39 4050 0.00 1 50 10 39 4050 0.00 1												100
4016 < 0.01												29
4018 CO O O O O O O O O						1						28
40202 0.04 1 114 5 50 4222 < 0.01				1								46 55
4022 <0.01				, ,								34
4024 0.04 0.5 86 6 24 4228 0.01 2 31 47 4028 0.06 1 92 5 22 4228 0.01 2 31 47 4028 0.04 1 56 5 22 4232 0.08 1 203 28 4030 0.01 1 85 5 29 4234 <0.01												47
4026 0.06		-										480
4028 0.04 1 52 5 24 4230 0.06 1 257 54 4030 < 0.01												118
Δ 4028												155
4000 C C C C C C C C C	1											156
4032 < 0.01									1			138
4034 0.01 1 157 9 32 4236 < 0.01							d		t .			143
4036 0.01 0.4 2282 7 10 4238 0.06 1 39 25 4040 < 0.01												135
4038 0.04 0.4 224 8 31 4240 < 0.01				1					,			109
4040												93
4042 0.06 0.5 86 29 210 4244 < 0.01	1									, ,		65
4044												57
4046 < 0.01					21	560		0.18	1	43	27	91
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4046	:			19	370	4248	0.08	1	48	23	92
	4048			70	5	21	4250	< 0.01	1	84	52	86
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4050	< 0.01	1	53	40	340	4252	< 0.01	1	44	21 j	102
4052 0.01 0.4 78 25 191 Δ 4254 < 0.01 1 31 32 24 4056 < 0.01 0.5 220 13 207 4258 < 0.01 1 68 39 4058 < 0.01 1 119 18 41 4260 < 0.01 1 225 16 4060 0.04 1 54 46 390 4262 < 0.01 1 34 15 4062 0.04 1 65 11 64 4264 0.08 1 56 16 4064 0.04 1 72 15 84 4266 0.08 2 80 21 4066 0.06 1 262 8 43 4268 < 0.01 1 38 17 4270 < 0.01 1 47 23 4070 0.08 1 59 8 11 4274 < 0.01 1 40 18 4072 0.06 1 82 10 21 Δ 4274 < 0.01 1 40 18 4074 0.01 1 84 8 36 4276 0.01 1 37 17 4276 0.01 1 37 17 4076 < 0.01 1 84 8 36 4276 0.01 1 37 17 4076 < 0.01 1 84 8 36 4276 0.01 1 37 17 4276 0.01 1 37 17 4276 0.01 1 41 20 4074 0.01 1 84 8 36 4276 0.01 1 37 17 4276 0.01 1 27 64 4078 0.01 1 27 64 4078 0.01 1 27 64 4078 0.01 1 27 64 4078 0.01 1 27 64 4078 0.01 1 27 64 4078 0.01 1 27 64 4078 0.01 1 27 64 4078 0.01 1	△ 4050	< 0.01	1	47	33		4254		1	53	24	122
4056 < 0.01	4052		0.4	78	25	191	△ 4254	< 0.01	1			115
4058 < 0.01		0.01										93
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											1	103
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												92
4064 0.04 1 72 15 84 4266 0.08 2 80 21 4066 0.06 1 262 8 43 4268 < 0.01				-		L)					70
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										1 1		86
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										1 1		140
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												75 39
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						41						61
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	72
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					T I					1		78
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												67
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												44
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						U						131
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												62
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4082					П						122
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4084_	0.14				18						96
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4086	0.06		49	8 .	//			-	,		115
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1									370
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.76	4									84
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												174
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												169
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$: I				86
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												76
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												88
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												90
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												59 54
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				·	ſ	47				1		70 I
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						11						68
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1					- 1						149
												86
4160 < 0.01 1 74 12 165 4316 < 0.01 1 318 13 4170 < 0.01 1 123 8 73 4318 0.01 1 231 19												93
4170 < 0.01 1 123 8 73 4318 0.01 1 231 19												78
												68
4180 0.04 1 64 12 75 4320 0.01 1 63 16						75			î	63	16	43
4180 0.04 1 64 12 73 4320 0.01 1 0.04 15 4190 0.01 1 351 15												47
4200 0.04 2 294 18 64 4324 < 0.01 1 369 21												56

No. 53 - 4

S1-		Element	s analys	ed (ppm)		61-	[Element	s and an	alysed (ppm)
Sample No.	Au	Ag	Cu	Pb	Zn	Sample No.	Au	Ag	Cu	Pb	Zn
4326	< 0.01	2	78	12	44	4450	0.06	1	667	10	138
4328	< 0.01	2	89	12	25	4452	< 0.01	1	202	16	1,890
4330	< 0.01	2	222	42	71	4454	0.06	1	257	16	4,000
4332	0.06	1	126	10	94	4456	0.06	1	293	15	4,000
4334	< 0.01	1	202	13	94	△ 4456	0.06	1	277	15	4,000
△ 4334	< 0.01	1	200	13	99	4458	0.06	1	513	18	3,600
4336	< 0.01	1	61	11	71	4460	< 0.01	1	58	14	320
4338	< 0.01	1	171	12	96	4462	0.04	1	76	20	330
4340	< 0.01	1	155	12	99	4464	0,04	1	159	19	1,070
4342	0.01	1	53	13	140	4466	0.04	1	82	20	860
4344	< 0.01	1	31	12	131	4468	0.06	1	267	24	340
4346	< 0.01	1	140	12	135	4470	< 0.01	1	182	22	430
4348	< 0.01	1	395	10	59 75	4472	1.06	1	169	11 12	300 4,200
4350	0.14	2	95	13	75	4474	0.08	1	364 129	26	290
4352	0.06	2	47	29	250	4476	0.08	1	124	26	290
4354	0.06	2	35	24	162 76	△ 4476 4478	0.01	1	54	15	20
4356	0.08	2	41	13			0.01	1	144	19	560
△ 4356	0.08	2 1	41 29	13 12	76 ! 78 :	4480 4482	0.04	1 1	245	49	970
4358	0.08	1	18	8	26	4484	0.04	1	324	24	740
4360	0.06		33	10	55	4486	0.04	1	140	15	350
4362 4364	0.06	2 2	26	10	68	4488	< 0.01	1	456	10	103
		2	23	12	72	4490	< 0.01	1	205	13	260
4366 4368	0.01	1	20	12	58	4492	0.06	1	72	13	145
4370	< 0.01	1	27	14	49	4494	0.04	1	52	14	105
4372	0.06	2	200	17	67	4496	< 0.01	1	47	12	74
4374	0.10	î	246	14	139	△ 4496	< 0.01	î	46	12	74
4376	< 0.01	2	20	13	82	4498	0.01	i	35	15	49
△ 4376	< 0.01	2	19	13	81	4500	< 0.01	î	43	13	32
4378	< 0.01	1	23	17	71	.,,,,	`				
4380	< 0.01	i	49	17	37		}		1 1		
4382	0.01	î	28	15	65					; 	
4384	< 0.01	î	19	12	81				ļ į		
4386	< 0.01	î	3 6	13	79		; j] }]	J
4388	< 0.01	1	24	18	85					i	
4390	0.06	ī	36	17	64	:	İ				- 1
4392	0.10	2	93	24	77	•	}				
4394	0.42	6	580	27	69		[ĺ	í	- (
4396	0.06	2	118	15	92					l	- }
△ 4396	0.06	2	118	15	94				l i	i	- 1
4398	< 0.01	1	41	12 [65		· •	1	•	ſ	- 1
4400	< 0.01	1	85	18	99			1			!
4402	< 0.01	1	43	12	50	1				1	1
4404	0.06	1	32	71	84	ļ				ł	ł
4406	0.06	1	139	14	66			İ			
4408	< 0.01	1	559	9	69	j		ļ		ŀ	1
4410	0.06	1	52	12	117	}	ŀ	1	· }	1	1
4412	< 0.01	1	184	15	94	ļ	İ	i			
4414	< 0.01	1	311	16	86						į
4416	< 0.01	5	275	17	139	ļ		,	ļ	į.	
△ 4416	< 0.01	4	272	16	138			j		j	
4418	0.06	2	223	17	137					j	
4420	0.08	1 1	147	17	133]				j	
4422	0.06	1	76	16	132		į		ľ	[-
4424	< 0.01	1	51	12	164	l				1	İ
4426	0.04	1	226	16	138						
4428	0.50	2	95	18	176	ĺ	ĺ	1	ſ	1	1
4430	< 0.01	1	35	21	370		İ	ļ		l	
4432	< 0.01	1	48	12	132	l	1	j		į	
4434	< 0.01	1	136	14	400	ł	ł	l	ł	l	I
4436	< 0.01	1	199	21	833	!	1				1
△ 4436	< 0.01	1	199	20	833	1					1
4438	0.06	1 1	402	11	790	ł	1	- 1	1	ļ	}
4440	0.04	2	538	18	930	[[ļ			
4442	0.06	1	526	19	830	•		I			
4444	< 0.01	2	423	18	73 98	,	j	- 1	Į		J
4446	0.08 0.01	1 1	356 300	17 16	660	ĺ		1		ļ	
4448	0.01		700	10	800						

No. 53 - 5

S1.]	Element	s analys	ed (ppm)	•			Element	s and an	alysed ()	ppm)
Sample No.	Au	Ag	Cu	Pb	Zn	Sample No.	Au	Ag	Cu	Pb	Zn
5000 °	0.06	1	33 52	9 11	51 177	5160 5170	< 0.01 0.08	0.3	14 23	2	13 21
5004	0.04	i	42	6	57	5180	0.04	0.1	11	i	23
5006	0.06	i i	43	6	61	5190	0.14	1 .	25	6	21
5008	0.20	1	36	6	41	5200	0.01	î	14	11	37
5010	0.08	i	63	6	17	△ 5200	0.01	i	13	9	35
1		1 1	45	8	15	5205	< 0.01	1	23	6	36
5012	0.14	ĺi	48	12	21	5210	< 0.01	i	32	4	15
5014	0.16			l	19	5215	0.01	0.3	11	6	33
△ 5014	0.16	1	49	11						2	11
5016	0.30	1	32	10	64	5220	0.06	0.1	11		1
5018	0.18	0.5	28	10	20	5225	< 0.01	0.3	13	2	15
5020	0.10	1	21	15	112	5230	< 0.01	1	16	7	49
5022	0.16	1	28	12	31	5235	0.04	0.3	17	1	46
5024	0.06	0.5	19	11	47	5240	0.06	0.3	22	6	27
5026	0,04	1	46	38	87	5245	0.06	0.5	25	5	28
5028	0.12	0.5	20	17	77	5250	0.06	1	18	4	38
5030	0.06	1 '	16	15	39	△ 5250	0.06	1	17	4	39
5032	0.18	1	29	31	24	5255	0.06	1	403	6	81
5034	0.08	1	21	12	15	5260	0.08	1	695	8	126
[∆ 5034	0.08	1	21	13	18	5265	0.08	1	868	7	87
5036	0.04	1	25	14	69	5270	0.06	1	45	8	40
5038	0.34	3	22	14	65	5275	0.04	0.3	22	5	-29
5040	0.38	1	21	24	15	5280	< 0.01	0.5	21	7	65
5042	0.24	2	21	14	19	5285	0.10	0.5	174	12	156
5044	0.12	2	30	14	39	5290	0.10	0.5	743	19	135
5046	0.26	2	18 .	21	24	5295	0.04	. 1	24	11	280
5048	0.18	2	21	6	24	5300	0.08	1	365	19	151
5050	0.30	2	35	6	10	△ 5300	0.08	1	355	19	155
5052	0.20	1	29	9	128	5305 5310	0.06	1	85 279	24 18	243 139
5054	0.36	1	21	14	20		0.08		279		
5056	0.12	1 1	26	5	17	5315 5320	< 0.01 0.08	1 1	402	17 10	163 115
5058	0.22	1	31	9	18	5320 5325	0.02	i	329 54	16	149
5060	0.10	1	27	6	13	5330	0.04	1 1	167	11	86
△ 5060	0.10	1	25	6	13	5335	< 0.01	1	67	10	64
5062	0.08	ī	87	3	15	5340	< 0.01	0.2	16	4	24
5064	0.06	î	155	i i	31	5345	< 0.01	0.1	16	3	18
5066	0.08	ī	91	il	16	5350	0.04	0.1	13	2	25
5068	< 0.01	i	221	4	17	5355	< 0.01	0.2	14	2	15
5070	0.06	î	215		14	△ 5355	₹ 0.01	0.2	14	2	16
5072	0.04	î	251	6	19	5360	₹0.01	0.2	16	1	17
5074	0.06	î	272	8	18	5365	< 0.01	0.4	15	4	24
5076	0.12	i	800	11	33	5370	0.04	0.4	50	il	92
5078	< 0.01	i	379	3	9	5375	< 0.01	0.1	20	2	22
5080	< 0.01	0.5	163	3	10	5380	0.01	0.5	92	2	131
△ 5080	< 0.01	0.5	170	3	14	5385	0.01	0.05	14	4	163
5082	< 0.01	1 1	168	3 [13	5390	< 0.01	0.05	15	1	16
5084	0.04	0.4	82	3	6	5395	< 0.01	0.5	25	4	71
5086	0.01	0.3	58	4	9	5400	< 0.01	0.2	22	4	110
5088	< 0.01	0.3	50	4	1Ó	,,,,,	` ",".			- 1	/
5090	0.01	0.3	46	4	20					1	I
5092	< 0.01	0.2	40	2	10			-	ļ	ŀ	ı
5094	0.12	0.1	205	5	11			ì	ļ	ı	j
5094	0.12	0.2	65	6	15]		1	ļ	1
				4	12			1	1	ļ	į
5098	0.04	0.3	35 36	2	34		ļ j	,	J	ļ	l
5100	0.14	0.3	36	2	34				ſ	[ſ
△ 5100	0.14	0.3	33					l	ł		I
5102	0.01	0.5	32	3	8		1	l		ľ	1
Δ 5102	10.0	0.4	33	2	10	ĺ	[1	1	ľ	1
5104	0.01	0.4	47	3	26			1	j		l
5106	< 0.01	0.4	67	3	13			Ī]		I
5108	0.14	0.2	53	2	6	1	¦		1	ł	ł
5110	0.06	0.3	43	2	14	1			}		
5112	< 0.01	0.1	12	1	8	ļ	 		1		1
5114	0.04	0.1	11	1	7	ļ		J	j		j
5120	0.08	0.2	59	4	13	1	1				ĺ
5130	0.06	0.3	212	2	32		1			1	I
5140	0.10	0.3	129	2	43	ļ					I
5150	0.01	0.3	17	2	23	1	[- 1	- 1	ſ	į
									L		

No. 53-6

S1-		Element	s analyse	ed (ppm)		Sample		Element	s and ar	alysed (ppm)
Sample No.	Λu	Ag	Cu	Ър	Zn	No.	Λu	Ag	Cu	Pb	Zn
6114 6116 6118 6120 6122 △6122 6124 6126 6128 6130 6132 6134 6136 6138 6140 6145 △6145 6150 6155 6160 6165 6170 6175 △6175 6180 6185 6190 6205 6210 6215 6220 6225 6230 6235 6240 6255 6260 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300	<0.01 <0.01 <0.01 <0.01 0.08 0.08 <0.01 <0.01 <0.01 0.04 <0.01 0.04 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.04 <0.01 <0.04 <0.01 <0.04 <0.01 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.0	4 3 3 2 2 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 11 26 7 45 47 288 31 22 53 44 19 17 21 28 26 20 24 24 19 20 28 20 23 40 39 29 53 32 58 43 50 150 42 46 25 21 20 30 27 23	34 39 49 26 23 22 24 19 10 13 41 32 12 8 10 17 20 19 23 445 39 400 20 21 32 25 29 37 113 66 48 20 21 21 21 21 21 21 21 21 21 21 21 21 21	88 93 520 410 185 179 7,600 225 202 268 470 480 257 194 201 330 237 470 178 107 3,100 330 250 197 120 135 135 140 155 140 156 135 140 156 133 131 123 131 132 131 149						

No. 53-7

Sample	<u> </u>	Element	s analys	ed (ppm)		Sample		Element	s and an	alysed (ppm)
No.	Au	Ag	Сu	Pb	Zn	No.	Au	Ag	Cu	Pb	Zn
7000	<0.01	4	802	55	520	7122	0.01	2	57	19	153
7002	1.18	4	1,720	31	1,050	7124	0.06	2	78	34	148
7004	<0.01	2	116	48	270	7126	0.08	2	31	17	106
7006	<0.01	1	44	15	370	7128	0.04	1	45	9	75
7008	0.10	2	63	12	159	7130	0.02	1 1	58	33	130
△7008	0.10	2	62	12	152	7140	0.04	1	62 54	15	140 138
7010	<0.01	1	15 6	13 10	170 203	7150 7160	0.02	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$	50	15 14	185
7012 7014	<0.01 0.01	0.5	10	9	135	7170	0.04	l i	43	14	83
7014	0.01	1	19	15	320	7180	0.04	i	52	11	65
7018	0.08	0.5	22	8	93	7190	0.06	ī	132	11	127
7020	<0.01	1	8	28	186	7200	0.04	ī	68	12	94
7022	< 0.01	1	6	11	73	7210	0.04	2	332	11	165
7024	0.02	1	6	9	310	7220	0.08	2	37	9	115
7026	0.04	1	28	13	330	△ 7220	0.08	2	36	9	102
7028	0.02	1	24	12	149	7250	0.02	1	87	8	290
△7028	0.02	1	24	12	145	7260	<0.01	1	37	30	340
7030	0.02	1	70	18	188	7270	<0.01	1	50	15	172
7032	< 0.01	0.4	44	9	75	7280	0.04	1	56	12	260
7034	< 0.01	1	13	58	310	7290	0.04	2	40	43	140
7036	0.02	1	10	25	123	7300	<0.01	1	69	14	330
7038	0.02	1	4	11	280				1		1
7040	< 0.01	2	10	44	470			1			
7042	< 0.01	3	55	77	168		1				•
7044	< 0.01	4	519	161 570	660 950			•			
7046 7048	0.08	8 4	1,930 309		1,090				i		
△7048	0.02	4	307	79 77	1,090	ļ	İ				
7050	0.02	4	654	57	960			 		ŀ	
7052	<0.01	4	817	72	340						<u> </u>
7054	0.02	3	295	73	340						
7056	< 0.01	3	158	67	110		}				
7058	<0.01	3	675	49	196						
7060	0.04	3	477	40	730]
7062	0.04	3	568	62	430						
7064	< 0.01	4	43	70	128						1
7066	< 0.01	4	29	67	56					ĺ	!
7068	0.02	4	3,525	105	570		l .				
△7068	0.02	4	3,525	105	570						
7070	<0.01	3	67	40	330						
7072	0.02	2	76	33	186						
7074	0.06	1	10	17	182						
7076	<0.01	2	39	30	173						
7078	<0.01	4	1,440	36 30	1,250						
7080 7082	0.08 <0.01	3	928 1,360	39 30	6,800						
7084	<0.01	3	2,550	35	5,400 560						l
7086	<0.01	7	6,800	39	175				l		
7088	0.06	2	35	30	142						
△7088	0.06	3	35	32	140						
7090	0.06		12,100	32	115						
7092	0.06	2	16	27	176			İ			
7094	0.04	1	11	27	159						
7096	0.08	2	29	19	176	İ					
7098	0.06	1	53	10	106						
7100	0.02	2	41	16	99						
7102	0.08	2	45	57	139						
7104	0.04	3	19	74	169]	1		
7106	<0.01	2	16	68	360			1			
7108	0.12	6	76	27	136			ļ	j		
△7108	0.12	7	74	27	136	Į.					-
7110	0.12	5	34	44	430 1,060				ļ		
7112	0.08	20	252	181		İ			ŀ		
7114	0.10	5 2	190 24	80 22	1,220			İ			
7116	<0.01 0.04	1	19	14	370 260			İ	ļ		
7118	<0.01	1	51	17	310						
Δ7120	<0.01	1	53	17	310	į					
31120	70.01	•	,,	* '	710		1				

Sample		Element	s analys	ed (ppm)		Sample		Element	s and an	alysed (ppm)
No.	Au	Ag	Cu	Pb	Zn	No.	Au	Ag	Cu	Pb	Zn
Sample No. 8020 8030 8040 △8040 8050 8060 8070 8080 8100 8120 8150 8150 8150 8220 8230 8240 8250 8250 8260 8270 8280 8290 8300	Au 0.04 0.04 0.04 0.04 0.01 0.06 0.01 0.01 0.01 0.01 0.01 0.01				Zn 103 145 123 116 4,400 390 173 156 154 131 116 153 133 196 310 142 116 420 125 370 106 380 189 171 149 98 61 72 118	Sample No.	Au	<u> </u>		7	

Table I—8 Results and photomicrographs of X-ray Microanalysis

Sample No.: 3148

Location : Vueltas del Rio Sector

No. 53-3 Depth 148m

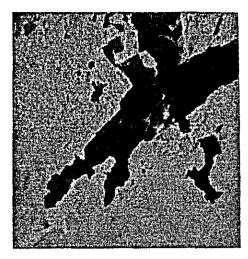
Formation : Vueltas del Rio

Ore minerals: electrum, chalcopyrite, galena and pyrite

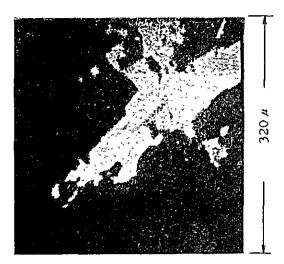
Mieroscopic observation:

In megascopically, pyrite and galena occur as wide band on the polished specimen.

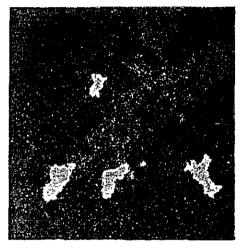
Under the microscope, it is mainly composed of pyrite, galena, sphalerite and chalcopyrite. Pyrite is most abundant on the polished surface and it is idiomorphic crystals, 400 to 100 microns in general size.

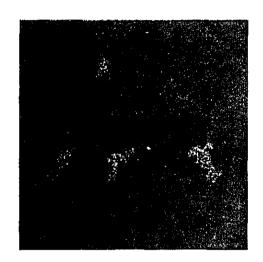

Galena is closely associated with aggregated masses of pyrite.

Sphalerite which mostly coexists with galena contains many small drops of chalcopyrite.

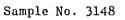

A small amount of birght yellow grains like native gold is observed, and it coexists with only galena in this specimen. It was determined by E.P.M.A. that these bright yellow grains were electrum, about Au 60%.

In reflecting color, electrum shows brighter yellowish tint than chalcopyrite and occurs as rounded and stretched shape crystals of 200 to 50 microns in size.

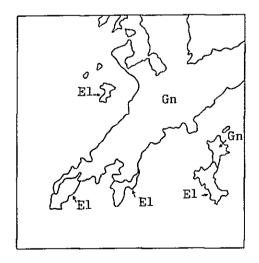



Absorbed electron image

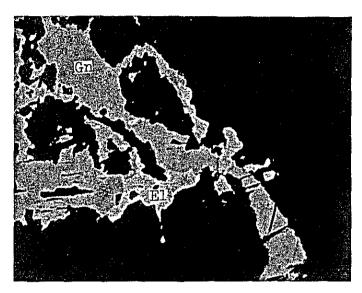
Pb X-ray image



Au X-ray image


Ag X-ray image

El: electrum Gn: galena



Accelerating voltage: 25KV
Absorbed electron current: 0.2 \(\mu \)

Magnification: X300

Sample No. 3148 Intergrowth of galena and electrum

El : electrum Gn : galena

0.25 mm

Sample No. 3148

Cp : chalcopyrite Gn : galena

Py : pyrite

0.25 mm

Table I-9 List of mineral indication in the surveyed area

	Surveyed		Loca	tion	Kind of		Related	Mode of	Scale of	Amount	U	nıt ore	body	0	C1-	-		
No.	sector .	Name	Е	N	ore	Host rock	igneous rock		mineralization	of unit ore body	Length	Width	Direction	Ore mineral	Grade of ore	Sample No.	Remarks	Abbreviation
1	Vueltas del Rio	Vueltas del Rio	333.5	1682.5	Au,Cu	Vol r.		diss & vlt	1200 ^m x300 ^m	5 ~ 10 ^m			E-W	Au,ccp,py	Au lg/t ± by UNDP		Ore reserves by UNDP,1972 Probable Possible Au 7.5x10 ⁶ t (1.3 g/t) 10x10 ⁶ t (0.95 g/t)	Host rock lslimestone pyro pyro- clastics
2	Vueltas del Rio	DDH No. 53-1	334.80	1682.65	Cu	pyro		vein		1	ore leng (2m)	IOcm		cep,py	Cu 1.28%	No. 1096	depth 96~98m	lip liparite
3	Vueltas del Rio	DDH No. 53-2	334.07	1681.98 "	Au Au,Ag,Cu	pyro "		vlt "		1	(2m) (1m)	5-10cm 5cm		Au Au,ccp,py	Au 44 g/t Au 97g/t,Ag 80g/t Cu 5.94%	No.2006 No.2173	depth 6~8m depth 173~174m	Related igneous rock
4	Vueltas del Rio	DDH No. 53-3	333.20	1681.90	Au,Zn	pyro		vlt		1	(2m)			Au, sp, py	Au 3.34g/t, Zn 1.85%	No.3046	depth 46~48m	
		11	"	II.	Cu	"		diss & vlt		1	(22m)			сср, ру	Cu 0.122%	No.3104~ No.3124	depth 104~ 126m	gpgranite- porphyry
		и	"	11	Au,Zn	"		vein		1	(4m)			Au,sp,gn	Au 1.3g/t, Zn 1.78%	No.3146~ No. 3148	depth 146~ 150m	
5	Vueltas del Rio	DDH No. 53-4	333.20	1682.53	Au,Cu,Zn	pyro		diss		1	(2m)			Au,ccp,sp	Au 0.76g/t,	No. 4090	depth 90~92m	
		11	11	н	Cu	pyro		vein		1	(2m)			сер	Cu 0.15%, Zn 1.84% Cu 1.59%	No. 4108 .	depth 108~ 110m	Mode of occurrence dissdissemi-nation
6	Minitas	Qda,Minitas	358.10	1687.10	Cu,Zn	ls	gp	vein	5m x 1.75m	1	5m	1.75m	N45W	az,mala,chry	Cu 4.28%, Zn 0.77%	MS22,MS23	Outcrop	vltveinlet
7	Mînitas	DDH No. 53-7	357.40 " "	1687.93 " "	Cu,Zn	ls u u	gp "	contact " "	500m x 90m	1	(120m)		N45W	ccp,mala,py	Cu 0.09%,Zn 0.68%	No. 7068 No. 7080 No. 7086 No. 7090	depth 68~70m depth 80~82m depth 86~88m depth 90~92m	Ore mineral Augold azazurite ccpchalco- pyrite chrychry- socolla
8	Minitas	Macutalo	358.00	1686.53	Cu, Fe	ls	gp	contact	120m × 30m	1	10~30m		E-W	ccp,py,mala mg,Au	Cu 0.99%	MS28~MS33	old pit	gngalena mgmagnetite
9	Minitas	Petoa I	358.95	1687.85	Fe	ls		vein	10m × 2m	2	5m	lm	N45¥	mg,mala	Cu 0.44%	MS 27	old pit	malamala- chite spsphale- rite
10	Pueblo Nuevo	Santa Ines	363.60	1688.82	Cu	ls		vein	150m × 2m	1	150m	2m	flat	ccp,mala,az	Cu 1.99%,Zn 0.5%	PN7~PN10	old pit	pypyrite
11	Pueblo Nuevo	Santo Domingo	364.30	1688.75	Cu, Pb, Zn	lip		vein	50ma x 6ma	1	50m	6т	N40E	az,mala,ccp gn,sp,py	Cu 0.31%,Pb 1.57% Zn 2.04%	PN 5	old pit	
12	Pueblo Nuevo	Esperanza	362.60	1688.53	Cu	ls		vein	5m x 1m	1	5m	1m	flat	mala,az			old pit	

.

APPENDICES PART II DIAMOND DRILLING

Fig. II-1 No. 53-1 Progress record of diamond drilling

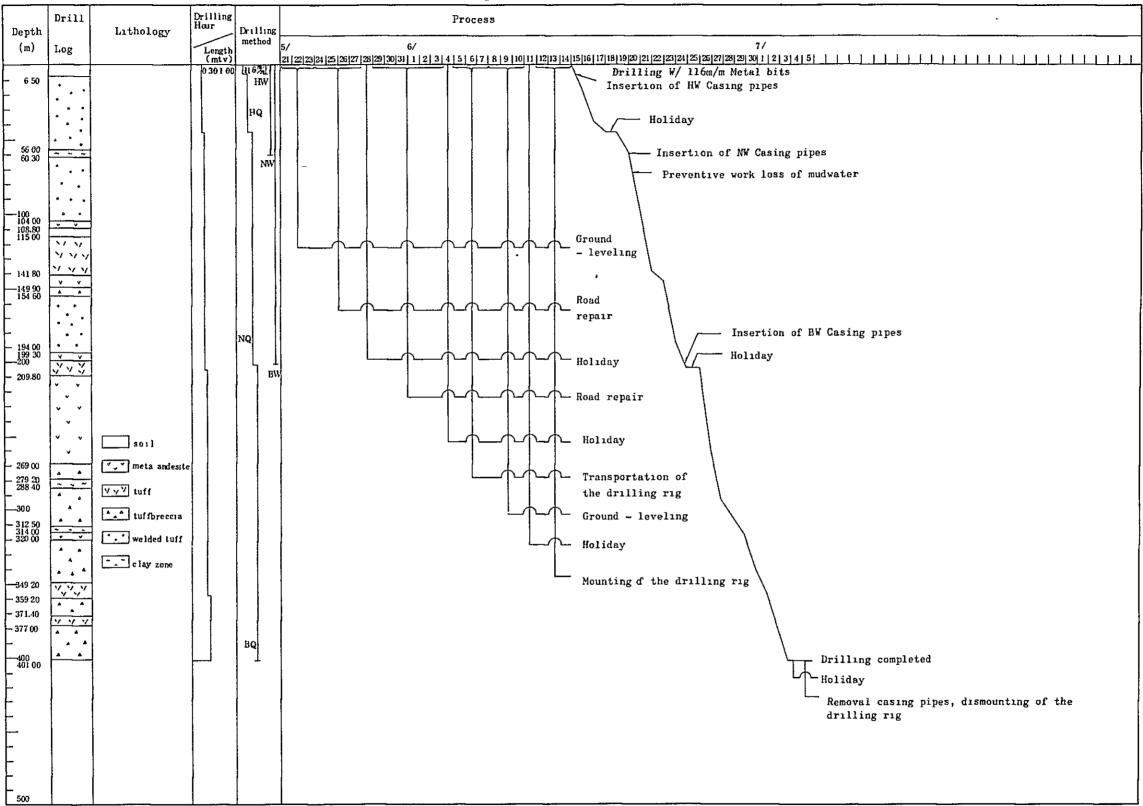


Fig. II-2 No. 53-2 Progress record of diamond drilling Drill Process Drilling Depth (m) Lithology Length (mtr) 116% 1 HW method 5/ Log Drilling W/ 116m/m Metal bit 6.25 Insertion of HW Casing pipes HQ Holiday Insertion of NW Casing pipes 93.00 Insertion of BW Casing pipe - 142.70 -- 151.00 160.10 Road Construction Preventive work loss of mudwater Ground -235.90 leveling 242.80 Road repair 255.00 ____263 00 __268.50 __274.00 801 BQ Holiday Holiday meta andesite Drilling completed V.,V tuff Road repair - Removal of casing pipes, dismounting of the drilling rig tuffbrecci - clay zone V∕\-∕\- Holiday Transportation of the drilling rig ☐ Election of the derrich -400 Transportation of the drilling rig - Holiday Mounting of the drilling rig

500

A - 90

Fig. II - 3 No. 53-3 Progress record of diamond drilling Drill Drilling Hour Process Drilling Lithology Depth method 5/ Length (vtr) 030100 (m) Log 3.50 Holiday Insertion of HW Casing pipes HQ - Insertion of HW Casing pipes NW _ 149.20 Insertion of BW Casing pipes Holiday BW 228.10 - Preventive work loss of mudwater Road v Construction - Holiday _____ so i l me ta ande si te _ Ground - leveling VyV tuff Holiday tuffbreccia welded tuff └/- Road repair chert & muddy tuff Transportation of the drilling rig BQ Drilling completed Mounting of the 400.80 drilling rig Removal casing pipes - Holiday Removal casing pipes, dismounting drilling rig

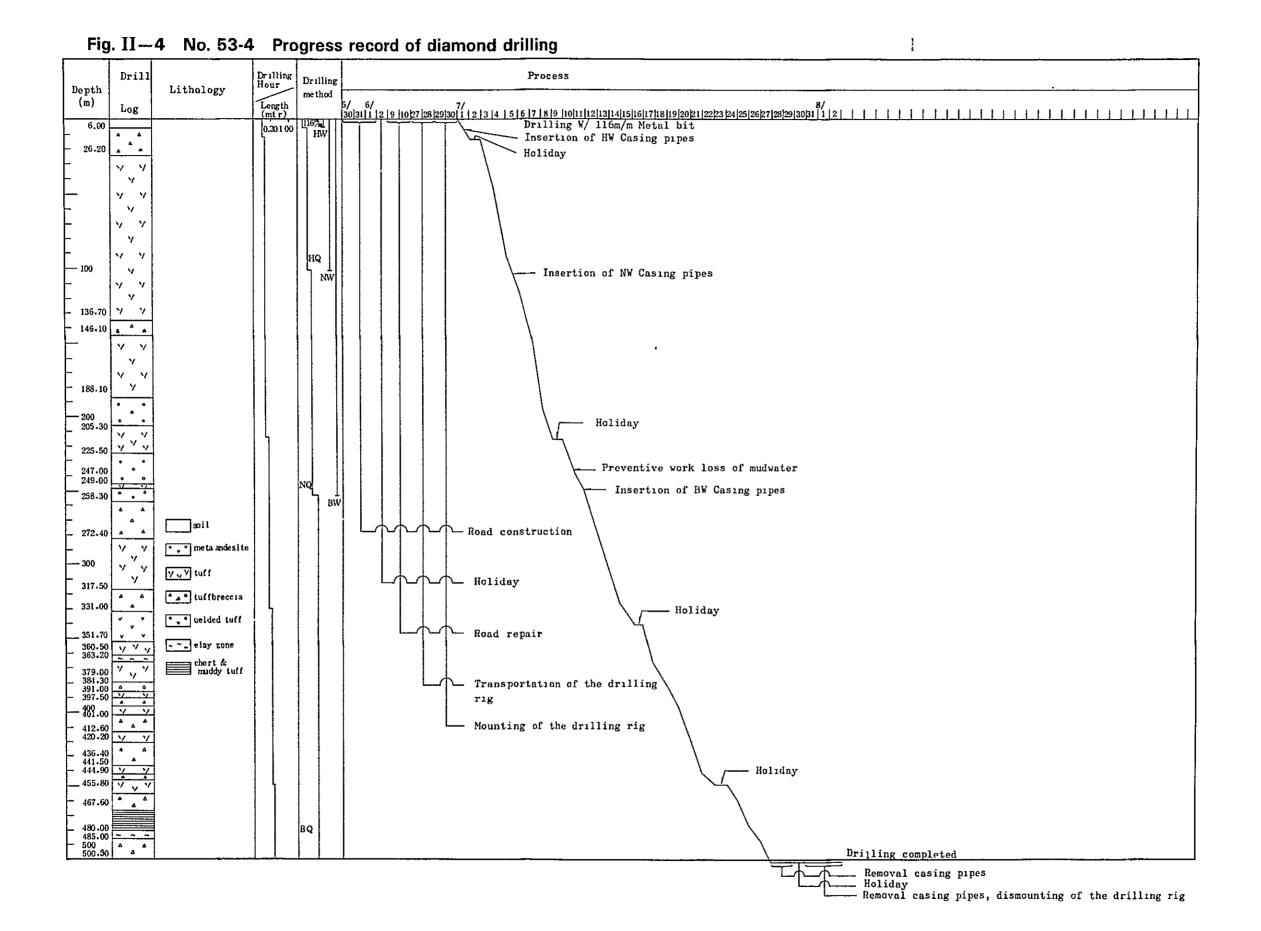


Fig. II-5 No. 53-5 Progress record of diamond drilling

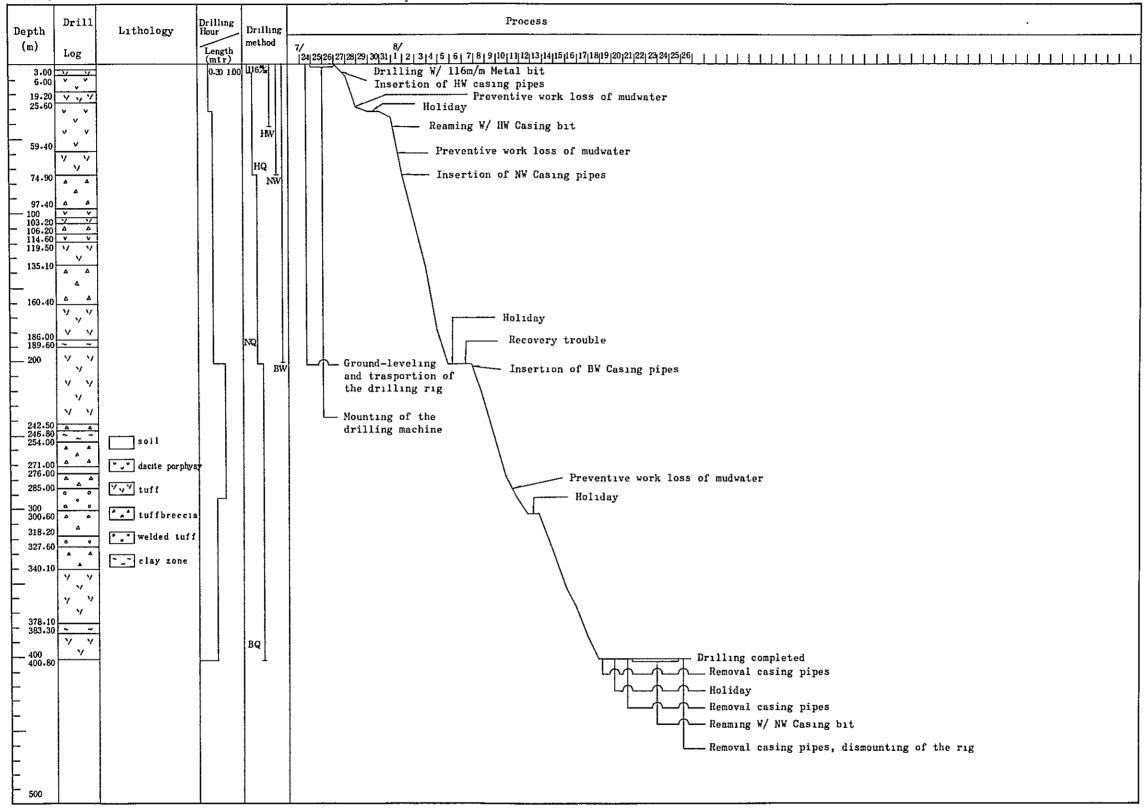
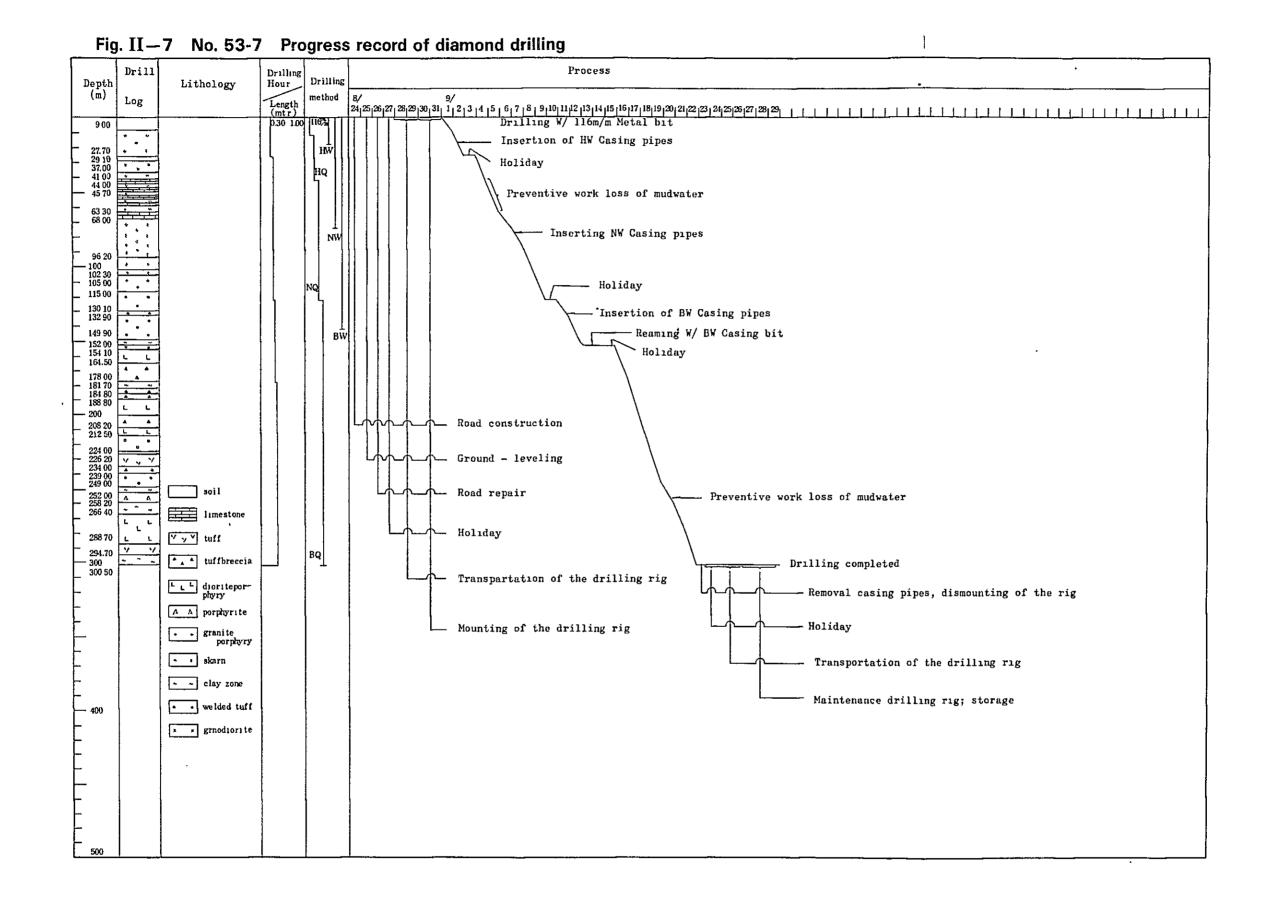
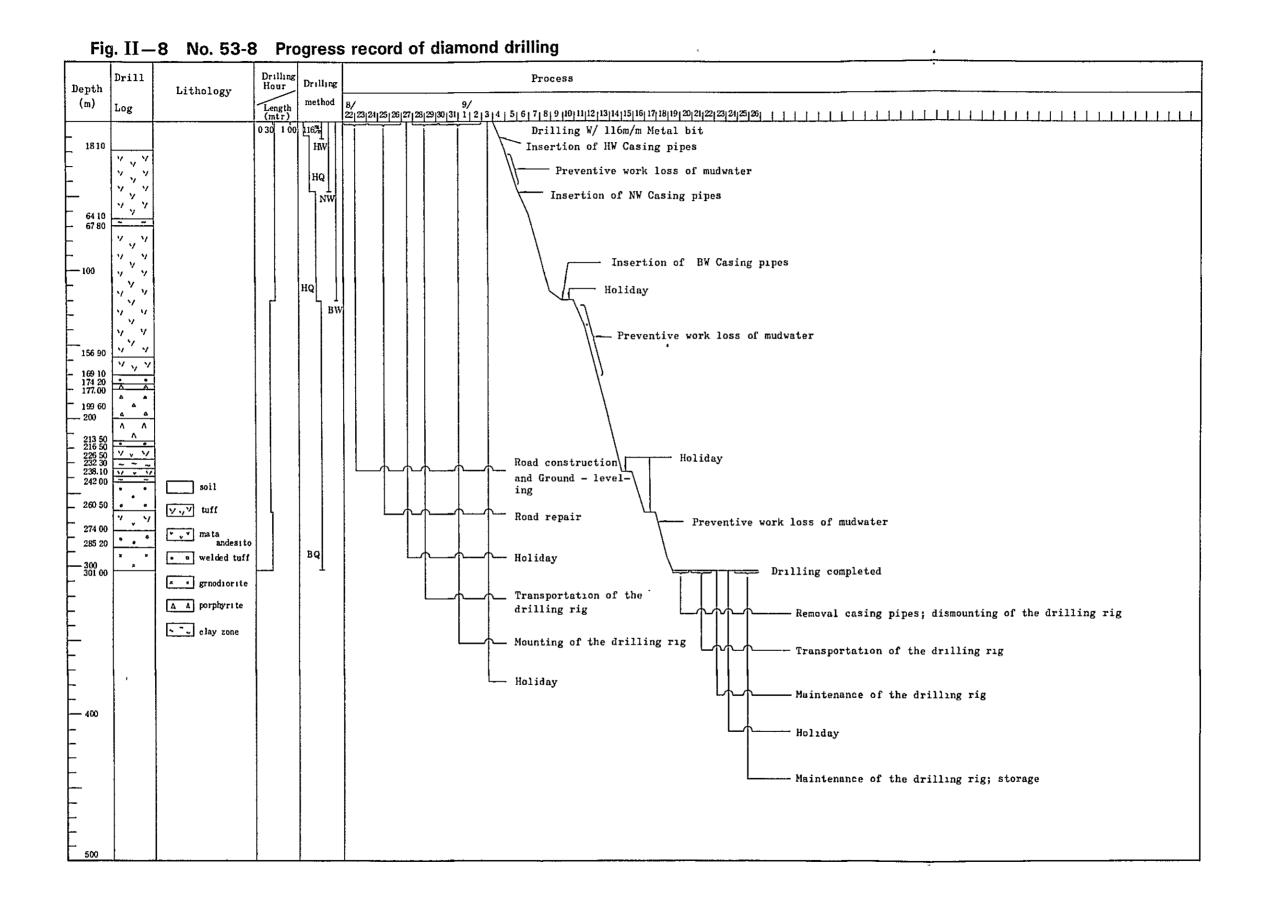




Fig. II-6 No. 53-6 Progress record of diamond drilling Drilling Hour Process Drill Lithology Depth Length method (m) Log 0 301 00 11672 HW Drilling W/ 116m/m Metal bit Insertion of HW Casing pipe HQ _ Insertion of NV Casing pipe 4 Holiday Insertion of BW Casing pipe BW Preventive work loss of mudwater limestone welded tuff - Holiday - Road repair a tuffbreccia day zone - Holiday - Preventive work loss of mudwater - Road construction BQ Drilling completed - Ground - leveling Removal casing pipes - Dismounting of the rig - Holiday - Transportation of the drilling rig 400 - Mounting of the drilling rig -- Holiday Mounting of the drilling rig

A - 95

A - 96

Table II—1 Drilling machines used and materials consumed drilling machines: TGM-5A

Item	Model	Quantity	Capacity, Type, and Specification
Drilling Machine	TGM-5A	2	Capacity NQ510m BQ660m Inner Diameter of Spindle 93m/m Weight (excl. engine) 1,600kg
Engine for Drill	F3L-912	2	Diesel Engine 1,800rpm/40PS ~ 1,500rpm/33.5PS
Pump	NAS-3C NAS-3B	2 2	Piston ϕ 75m/m Capacity 130, 72, 39, 22 ℓ /min Pressure 26 \sim 40 kg/cm ²
Engine for Pump	TS-155C	4	Diesel Engine 2,200rpm/12PS
Generator	YSG-3S	1	3KVA 100∿110V
Engine for Generator	TS-60C	1	Diesel Engine 2,200rpm/5.5PS
Derrick	DCP9-9	2	Steel structural derrick (Vertical, inclination) Weight 12 ton lifting 6m height
Mud Mixer	MCE-200A	2	Volume 2001 800v1,000rpm/min
Rod Holder	CH-60A	2	Hydraulic type
Drill Rods	HQ NQ BQ	115 220 330	3.00 m/pc 3.00 m/pc 3.00 m/pc
Casing Pipes	HW NW BW	25 110 300	3.00 m/pc 3.00 m/pc 3.00 m/pc

Consumables used

Light oil		- 454					Quant	ity			
Mobil oil % 72 72 48 72 48 48 48 48 48 48 48 48 48 48 48 48 48 40 30 40 30 40 Grease kg 20 18 15 30 20 15 35 35 Bentonite kg 435 215 185 298 410 55 250 150 Libonite kg 435 215 185 298 410 55 250 150 Mud seal kg 2 5 5 10 50 30 5 65 30 55 50 30 5 65 10 50 50 30 5 65 10 50 50 30 5 65 10 50 50 30 5 65 10 50 40 10 10 10 10 10	Description	Specification	Unit	53-1	53-2	53-3	53–4	53-5	53-6	53-7	53-8
Hydraulic oil	Light oil		Ł	900	800	900	1400	1100	800	900	800
Grease Bentonite Bag 88 40 70 103 171 67 145 93 Libonite kg 435 215 185 298 410 55 250 150 Mud seal kg 2 5 5 5 10 50 50 30 5 Tel-stop kg 3 15 8 10 45 85 65 10 Emale 20C kg 3 15 15 16 20 10 13 10 Mud seal kg 3 15 8 10 45 85 65 10 Emale 20C kg 3 15 8 10 45 85 65 10 Emale 20C kg 43 35 10 43 20 33 20 15 Metal crown 116mm Pcs 2 2 1 1 1 2 2 1 1 2 Single core tube 114mm x 0.5m Set 1 1 1 Double core tube 114mm x 1.5m " 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Mobil oil		l	72	72	48	72	48	48	48	48
Bentonite Libonite Libonite Libonite Libonite Rg 435 215 185 298 410 55 250 150 Tel-cellose Rg 435 215 185 298 410 55 250 150 Mud seal Rg 2 5 5 5 10 50 50 30 5 Tel-stop Reale 2OC Retal crown Retal crown Retal crown Retal crown Retal crown Roy 3.00m Roy	Hydraulic oil		L	90	90	5	10	15	40	30	40
Libonite Rg 435 215 185 298 410 55 250 1	Grease		kg	20	18	15	30	20	15	35	35
Tel-cellose Mud seal	Bentonite		Bag	88	40	70	103	171	67	145	93
Mud seal kg 2 5 5 10 50 30 5 Tel-stop kg 3 15 8 10 45 85 65 10 Emale 20C £ 43 35 10 43 20 33 20 15 Metal crown 116mm Pcs 2 2 1 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 1 2 2 1 1 2 1 1 1 1	Libonite		kg	435	215	185	298	410	55	250	150
Tel-stop Emale 20C Metal crown Single core tube 114mm x 0.5m Set	Tel-cellose		kg			15	16	20	10	13	10
Emale 20C Metal crown 116mm Pcs 2 2 2 1 1 2 2 1 2 Single core tube 114mm x 0.5m Set 1 1 1 Double core tube 114mm x 1.5m Wire line core barrel """ """ """ """ """ """ """	Mud seal		kg	2	5	5	10	50	50	30	5
Metal crown 116mm Pcs 2 2 2 1 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 1	Tel-stop		kg	3	15	8	10	45	85	65	10
Single core tube	Emale 20C		l	43	35	10	43	20	33	20	15
Double core tube HQ x 3.00m 1 1 1	Metal crown	116mm	Pes	2	2	1	1	2	2	1	2
Wire line core barrel HQ x 3.00m " 1 <	Single core tube	114mm x 0.5m	Set	1	1						
	Double core tube	114mm x 1.5m	n	1	1			:	'		
Inner tube assembly	ti ti	NQ x 3.00m	н	1	1						
Outer tube	0 11	HQ x 3.00m NQ x 3.00m	11	1	1 1						
NQ x 3.00m	rr .	HQ x 3.00m NQ x 3.00m	11	1	1	1	1	_	_	1	1
NW NW NW NW NW NW NW NW	11	NQ x 3.00m	11		- 1	1	1	1	1	1	ī
Core box Wire 10# 12# Reg Reg Reg Reg Reg Reg Reg Reg Reg Re	41	NW	"	1	1	1	1	1	1	1	1
Wire 10# kg 8 8 10 12 8 7 10 10 Nail " 3 3 2 4 3 3 3 4 Wire rope 6mm x 550m Roll 1	Rag		kg	10	10	8	15	10	8	20	20
Nail	Core box		Pcs	67	52	68	84	62	50	47	47
Wire rope 6mm x 550m Roll 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									- 1	1	
" 12mm x 40m " 1 1 1 1 1 Manila rope 18mmxx 30m Pcs 2 2 1 1 1 Vinyl rope 8mm x 100m " 1 1 1 1 1 Pump packing " 4 4 4 4 4	Nail		11	3	3	2	4	3	3	3	4
Vinyl rope 8mm x 100m " 1 1 1 1 Pump packing " 4 4 4 4 4 4 4 4									,	;	
Pump packing " 4 4 4 4 4 4	· ·	18mmxx 30m	Pcs	2	2			1	1		
rump packing	Vinyl rope	8mm x 100m	11	1	1	Ì	1	1			
Valve steel ball 38.1¢ " 8 8 8 8 8	Pump packing		11	4	4		4	4		4	4
	Valve steel ball	38.1¢	ti			İ	8	8		8	8

Consumables used

D	G	17 1				Quant	ity			
Description	Specification	Unit	53-1	53-2	53-3	53-4	53–5	53-6	53-7	53-8
Piston rod		Pcs			2	2		2		2
Guide pipe	HQ	H ti			1	1			1	1
n	NQ BQ	n			1 1 1	1 1	1	1	1 1	1 1
Guide coupling	HQ	11 11			1	1			1	1
11	NQ BQ	n			1 1	1 1	1	1	1	1 1
Suction hose	50mm x 4.5m	11 -	1	1				1		1
Water swivel packing		**	3	3	3	3	3	3	3	3
Water swivel spindle		11			1	1	1	1	1	1
V-belt	TGM-5xF3L912	Sets Pcs			1	1 1		1	1	1 1
Core lifter	HQ NQ	11 11	1 3	1 2	3	2	2 3	2	2 3 5	2 2 3
Core lifter case	BQ	"	4	3 2	4	6 2	4		1	
ti .	HQ NQ	11	3 2	2	2 2	4	2 2	2	2 2	2 2
"	BQ	11	2	2	2	4	2	2	2	2
	;									
										-
			Ì	i						
										ŀ
			İ							
									}	
				ĺ	İ					
				ŀ						

Table II-2 Preparation and removal

	178	78	1 80	α	·	<u>, </u>	T	Τ	 	Т	T	1	1	Т	$\neg \neg$	\top	<u> </u>	Т.
1	٥		Sep. '78	Sen 178	Man-	10	50	69	13		142	23	12	39	;	2	2 2	316
53-R	d Aug.	d Se			L.		-	 	<u> </u>	 			1.5			\perp	-	
	22r		19th	26th	Days	2	2.5	2.5			11	++	0.5	2		, ~	, 4	17.5
	. 178	. 178	178	Sep. 178	Man-	9	2	8								97.5		288.5
53-7	24th Aug.	Aug.					45	56			104	37		50		0	184	288
	24ch	31st	23th	29 th	Days	۳	2	2			7			2		6	9	13
	178	178	Aug. 178	178	1 4	26	24	55	20		٥	30	14				44	6
53-6	17th Jul.,78	7th Aug. 178	Aug	Aug. 178	Man-		.,		~		125	3	~				4	169
",	17ch	7th	24 th	26th	Days	13	1.5	2.0	0.5		17	2	0.5				2.5	19.5
	178	178			1 4	6.5				_	15.	5.						
53-5	Jul.	Jul. '78	Aug. '78	Aug. 178	Man-	9	15	54			75	100.5				09	160.	236
5	23rc	Jun. '78 26th	Jul. '78 18th	Aug. 778 26th	Days	0.5	Ţ	1.5				7				3.5	7.5	10.5
	178	178	178	178	1			7.			9		~			1		1
53-4	May	Jun			Man- shifts	30.5	1.9	46.	10		106	97	12				109	215
5	30th May	30th	28th	2nd	Days	9	1.5	2.0	0.5		10	4	н				2	15
	178	Jul., 78	Jul., 78	Jul. 178		36	11.5	40.5	_		80	6.5					26.5	114.5
53-3	May				Man- shifts		1	4			88	26					5	11
~	25th May	7th	22nd	24 th	Days	8	1.5	1.5			11	1.5					1.5	12.5
	178	178	178			4	2	108.5	3		267.5	16.5	3	_			5.	
53-2	May	Jun.	Jun.	Jun. '78	Man- shifts	144	12	ដ			26	J.	`,				19	287
5	21st	14th Jun.	26th	27ch	Days	13	2	5.5	0.5		21	1.2	0.3				1.5	22.5
	178	178			n- Frs	7	12		4			~	2					28.5
53-1	1	Jun.	4th Jul.'78	5th Jul.'78	Man- shifts	137	7	118			271	12					14	5
5	21st May	14th Jun.'78	4th	2ch	Days	13	2	5.5	0.5		21	8.0	0.2					22
No.			100		/	1				ជំ		<u> </u>						
Hole No.						oad		Installation	pe	, etc.	-	fng	oval		<u>:</u>			tal
7/		ton	val		/	Access road	age	alla	r pipe	Test run,	Total	Dismounting	Pipe removal	age	rei emen	rs	Total	d To
		Preparacion	and removal		/	Acce	Haulage	Inst	Water	Test		Dism	Pipe	Haulage	Road rein∽ statement	Others	-	Grand Total
Ite		Preț	and	ľ		l	noi:	91.0	L breb				. <u>.</u> I.	T				
										<u> </u>								

Table II - 3 Operational results by drill hole, No. 53-1

$\overline{}$	7		<u> </u>		<u></u>			1	, , , , , , , , , , , , , , , , , , ,
Working Period				Period		Number of Days	Actual Working Days	1	Total Number of Workers
P.	Pr	eparation	21st May	'78 ∿ 14th	Jun. '78	25	21	21	250
cing	Dr	illing	15th Jun.	'78 ∿ 3rd	Jul.'78	19	17	60	269
lori	Re	moving	4th Jul.	'78 ∿ 5th	Ju1.'78	2	1	3.5	14
	To	tal	21st May	'78 ∿ 5th	Ju1.178	46	39	84.5	533
ngth		anned ngth	m 400.00	Over- burden	m 6.00	Core	Recover	y for each 10	0 m section
Drilling Length	Dec	crease or crease in ngth	1.00	Core Length	m 384.25	Dept of Hole		Section	Total
Dr.f.		ngth illed	401.00	Core Recovery	95.8		96.10m 204.20m	95.4 % 98.6 %	95.4 % 97.1 %
	Dri	illing	160°00'	25.6 %	22.2 %	204.20%	306.40m	94.2 %	96.1 %
		sting &			 	306.40~4	01.00m	94.8 %	95.8 %
		vering Rod			<u> </u>				
		ering I.T.							
Time	Mis	cellaneous	187°00'	30.0 %	25.8 %		Effic	iency of Dril	ling
1 8	Rep	airing	9°00'	1.4 %	1.2 %	401.00	m/Workin	ng Period	8.72 m/day
Working	Oth	ers	268°00¹	43.0 %	37.0 %	401.00	m/Workin	ng Days	10.28 m/day
Wor	Tot	al	624°00'	100 %	86.2 %	 		ing Period	21.11 m/day
	ving	Preparati	on 80°00'		11.1 %	401.00	m/Net Dr	illing Days	23.59 m/day
	Removing	Moving	20°00'		2.7 %	Total	workers/	′401.00 m	1.54 Man/m
		C. Total	724°001		100 %	<u> </u>			
Inserted		ipe Size & eterage	Inserted Length (Drilling Length	%) Recov	ery of g Pipe	Total Drilli	ng Worke	ers/ 401.00 m	0.82 Man/m
je i	HW	6.5 m	1.6	% 10	0 %	Remark	.s		
Pipe	NW 60.0 m 15.0 %				00 %		_		
fng	BW	201.0 m	50.1	7 10	00 %	G :	Grand	•	
Casing						I.T.:	Inner T	ube	
									

Table II-4 Operational results by drill hole, No. 53-2

Working Period				Period	77 M	Number of Days	Actual Working Days	Day Off	Total Number of Workers
Pe.	Pr	eparation	21st May	78 ∿ 14th .	Jun. '78	25	21	19,5	248
ing	Dr	illing	15th Jun.	78 ∿ 26th .	Jun. '78	11.5	9,5	33	262
ork	Ret	noving	26th Jun.	78 ∿ 27th .	Jun. '78	1.5	-	5.5	14
3.5	To	al	21st May '	78 ∿ 27th .	Jun. 178	38	30.5	58	524
ոցեի	•	inned igth	300.00	Over- burden	m 4.00	Core	Recovery	for each 100	m section
Drilling Length	Dec	erease or erease in egth	1.00	Core Length	m 292.90	Dept of Hol		Section	Total
H	Ler	ıgth	m,	Core	%	0~:	L07.20m	97.7 %	97.7 %
	Dri	llled	301.00	Recovery	97.3	107.20	217.80m	97.6 %	97.7 %
	Dri	lling	86°30'	20,2 %	17.0 %	217.80	301.00m	96.4 %	97.3 %
	Hoisting & Lowering Rod							-	
	Lowering Rod Hoisting &			<u> </u>					
]	Hoisting & Lowering I.T.				<u> </u>				
Working Time	Mis	cellaneous	101°30'	23.8 %	20.0 %		Efficie	ncy of Drill	ing
1.49	Rep	airing		7.	%	301.00	m/Working	Period	7.92 m/day
kin	Oth	ers	239°00'	56.0 %	47.0 %	301.00	m/Working	Days	9.87 m/day
Wor	Tot	al	427°00'	100 %	84.0 %	301.00	m/Drillin	g Period	26.17 m/day
	/ing	Preparati	on 60°00'		12.0 %	301.00	m/Net Dri	lling Days	31.68 m/day
	Removing	Moving	21°00'		4.0 %	Total	workers/	301.00 m	1.93 Man/m
		G. Total	508°00'		100 %				
Casing Pipe Inserted	1	ipe Size & leterage	Inserted Length (Drilling Length	%) Recove	ery of g Pipe	Total Drilli	ing Worker	s/301.00 m	0.98 Man/m
e Ii	HW	6.00 m	2.0	% 100) %	Power!			
Pip	NW 51.00 m 16		16.9	% 100) 7	Remark	.5		
ទីប				G : Grand					
asi	73.0 % 100 %				I.T.:	Inner Tu	be		
ยั									Į

Table II-5 Operational results by drill hole, No. 53-3

Working Period					Period		Number of Days	Actua Workin Days	- 1	Total Number of Workers
Pe	Pro	eparation	2	Sth May	78 ∿ 7th 3	Jul.'78	44	11	9	80
ing.	Dr:	illing		8th Jul.	78 ∿ 22nd J	Jul.'78	14.5	12.5	43.5	213
lork	Rei	noving	2	2nd Jul.	78 ∿ 24th 3	Ju1.'78	2.5	1.5	4.5	22
, E	Tot	al	2	5th May '	78 ∿ 24th 3	Tul.'78	61	25	57	31.5
ıgth		nned igth		m 400.00	Over- burden	m 3.00	Core	Recover	ry for each i	100 m section
Drilling Length	Dec	crease or crease in ngth		0.80 m	Core Length	385.90 m	Depti of Holo		Section	Total
r11	Ler	ngth		п	Core	7,	0v1	25.20m	91.5 %	91.5 %
ı	Dri	lled		400.80	Recovery	96.3	125.20~2	05.50m	96.4 %	93.4 %
	Dri	lling		137°00'	30.7 %	27.9 %	205.50~3	313.90m	98.7 %	95.3 %
	ľ	sting &					313.90~4	00.80m	100.0 %	96.3 %
		vering Rod					<u> </u>			
	Lov	vering I.T.								
Time		cellaneous	_	134°00'	30.0 %	27.3 %		Effic	iency of Dri	
85	<u> </u>	airing			%	<u> </u>	400.80 m/Working Period			6.57 m/day
Working	-	ners		175°00'	39.3 %	35.6 %	1		ng Days	16.03 m/day
Wor	Tot	al		446°001	100 %	90.8 %			ing Period	27.64 m/day
	H.	Preparati	on	22°00'		4.5 %	400.80	m/Net D	rilling Days	32.06 m/day
	Removing	Moving		23°00'		4.7 %	Total	workers	/ 400.80	m 0.93 Man/m
		G. Total		491°00'		100 %				
Casing Pipe Inserted		Inse Pipe Size & Leng			1	4	Total Drilli	ing Work	ers/ 400.80	m 0.64 Man/m
nse	Meterage Drilling Casing I Length				,					
P	H	27.00 ¤	ı	6.7	10	0 %	Remark	s		}
Pf	N/v	52.40 ¤	ı	13.1	7 10	0 %	G :			Į
Ing	BW	7 201.00 m		50.1 2	10	0 %	I.T.:	Grand Inner	Tuba	ĺ
Cas	_					<u> </u>	1.1.:	inner	TORE	
L	<u> </u>						<u> </u>		<u>-</u>	

Table II-6 Operational results by drill hole, No. 53-4

Working Period		,		Period	/3	Number of Days	Actual Working Days	1	Total Number of Workers
, p	Pre	paration	30th May	78 ∿ 30th J	un. 178	32	10	16	90
ing.	Dri	lling	31st Jun.	78 ∿ 27th J	ul.'78	28	23	70.6	381
or A	Ren	oving	28th Jul.	78 ∿ 2nd A	ug. 178	6	5	18	91
24	Tot	al	30th May	78 ∿ 2nd A	ug. 178	66	38	104.5	562
Length		inned igth	m 500.00	Over- burden	m -	Core	Recovery	for each 10	O m section
Drilling Le	Dec	rease or rease in gth	m 0.50	Core Length	472.90	Depti of Hole		Section	Total
<u> </u>	Len	gth	m	Core	Z.	0~	90.60m	89.0 %	89.0 %
	Drí	11ed	500.50	Recovery	94.5	90.60v1	L92.00m	91.8 %	90.5 %
	Dri	lling	189°30'	23.3 %	22.0 %	192.00	302,30	98.9 %	93.4 %
		sting &				302.30~3	393.70≖	96.9 %	94.3 %
ļ		ering Rod	 -			393.70~5	500.50m	95.1 %	94.5 %
	Hoisting & Lowering I.T.								
Time	Mis	cellaneous	332°301	41.0 %	38.6 %		Effici	ency of Dril	ling
£- 80	Rep	airing		7,	z	500.50	m/Workin	g Period	7.58 m/day
Working	Oth	ers	290°00'	35.7 %	33.6 %	500.50	m/Workin	g Days	13.17 m/day
Wor	Tot	a1	812°00'	100 %	94.2 %	500.50	m/Drilli	ng Period	17.88 m/day
	ving	Preparati	on 31°00'		3.6 %	500.50	m/Net Dr	illing Days	21.76 m/day
	Кето	Moving	19°00'		2.2 %	Total	workers/	500,50 m	1.33 Man/m
		G. Total	862°001		100 %	ļ			
Inserted	t .	ipe Size & eterage	Inserted Length (Drilling Length	%) Recove	•	Total Drilli	ing Worke	rs/ 500.50 m	0.90 Man/m
] ac	HW 6.00 m		1.2	7 10	0 %	Remark	s		
Pipe			20.7	7 10	0 %		_		
	BW 245.95 m 49.1 % 100 %			0 %	G :	Grand 			
Casing						I.T.:	Inner T	ube	

Table II - 7 Operational results by drill hole, No. 53-5

Working Period			Period		Number of Days	Actual Working Days	Day Off	Total Number of Workers
Pe	Preparation	23rd Jul.'7	78 ∿ 26th J	Ju1. 178	3	3	9.5	66
jug	Drilling	27th Jul. '7	78 ∿ 18th A	lug. 178	22.5	19.5	66	351
l v	Removing	18th Aug.'7	78 ∿ 26th A	lug. 178	8.5	7.5	25.5	135
	Total	23rd Jul.'7	78 ∿ 26th A	lug.'78	34	30	101	552
Length	Planned Length	m 400.00	Over- burden	3.00	Core	Recovery	for each 10	0 m section
Drilling Le	Increase or Decrease in Length	m 0.80	Core Length	341.90	Depti of Hole		Section	Total
Drift	Length	m	Core	%	0∿1	06.00m	81.0 %	81.0 %
	Drilled	400.80	Recovery	85.3	106.00~2	01.00m	95.2 %	87.7 %
	Drilling	117°00'	17.4 %	16.3 %	201.00~3	02.60m	81.2 %	85.5 %
	Hoisting & Lowering Rod				302.60~4	00.80m	84.6 %	85.3 %
]	Hoisting &				<u> </u>			
ه	Lowering I.T. Miscellaneous	308°00'	45.7 %	42.8 %		5601		
] 🛱	Repairing	17°00'	2.5 %	2.4 %	400.00	m/Workin	ency of Dril	1
gu	Others	232°00¹	34.4 %	32,2 %	-	m/Workin		11.79 m/day
Working	Total	674°00'	100 %	93.7 %	1,		ng Period	13.36 m/day 17.81 m/day
Ϋ́			100 "	3.3 %	 		illing Days	20.55 m/day
	Preparation Moving	22°00'		3.0 %	Total	workers/	400.80 m	1.63 Man/m
	G. Total	720°001		100 %			400,00	1000
Inserced	Pipe Size & Meterage	Inserted Length (% Drilling Length) Recove Casing		Total Drilli	ng Worke	rs/ 400.80 m	1.04 Man/m
e I	HW 42.00 m	10.5 %	100	7.	Remark	۹	. •	
Pipe	NW 74.90 m	18.7 %	100	7,				ľ
នួក	BW 201.00 m 5		100	%	G :	Grand		
Casing					I.T.:	Inner Tu	196	

Table II—8 Operational results by drill hole, No. 53-6

Working Period		-	Period		Number of Days	Actual Working Days		Total Number of Workers
Pe	Preparation	17th Jul.'7	/8 ∿ 7th A	ug.'78	22	17	15	110
ing.	Drilling	8th Aug, '	78 ∿ 24th A	ug. '78	16.5	14.5	50.5	320
ork	Removing	24th Aug. 17	78 ∿ 26th A	ug. '78	2.5	2.5	9	35
	Total	17th Jul.'	78 ∿ 26th A	ug.'78	41	34	74.5	465
ıgch	Planned Length	300.00	Over- burden	m 2.00	Core	Recover	y for each 10	O m section
Drilling Length	Increase or Decrease in Length	0.30	Core Length	m 284.30	Dept of Hole		Section	Total
 	Length	m	Core	%		114.20m	96.6 %	96.6 %
	Drilled	300.30	Recovery	94.7	114.20 ₂ 197.70 _m		89.3 %	93.5 %
}	Drilling	83°301	13.7 %	12.6 %	197.70~3	300.30m	96.9 %	94.7 %
ļ	Hoisting &							
	Lowering Rod Hoisting &				 			
_,	Lowering I.T.		2.0.	07 0 7				
Time	Miscellaneous	212°30'	34.9 %	31.9 %			lency of Dril	
82	Repairing	312°00'	51.4 %	46.9 %	<u> </u>		ng Period	7.32 m/day
Working	Total	608°00'	100 %	91.4 %	1	m/Workin	ig Days ing Period	8.83 m/day 18.20 m/day
⅔			100 %	4.8 %	-		illing Days	20.71 m/day
1	Preparati	.on 32 00		4.0 %	300.30			20.71 27427
	Moving	25°00'		3.8 %	Total	workers	/ 300.30 m	1.80 Man/m
	G. Total	665°00'		100 %	ļ —			
Inserted	Pipe Size & Meterage	Inserted Length (7 Drilling	() Recove	•	Total Drill:	ing Worke	ers/ 300.30 m	1.23 Man/m
กรษ		Length	Casing	, 11pe				
e I	HW 9.00 m	3.0 2	10	0 %	Remari	cs		
Pipe	NW 45.50 ₪	15.2 %	10	0 %				į
128	BW 119.80 m	39.9	10	0 %	G :	Grand	·.·•	
Casing					1.T.:	Inner T	une	

Table II-9 Operational results by drill hole, No. 53-7

	i							T 4		 	
Working Period				P	eriod			Number of Days	Actual Working Days	-	Total Number of Workers
A	Pre	eparation	24th Aug	.178	∿ 31st A	lug.'78		8	7	14	90
f.	Dr:	illing	lst Sep	.'78	∿ 22nd S	ep.'78		22	19	67	400
for	Ret	moving	23rd Sep	.178	∿ 29th S	ep.'78		7	6	38.5	146
	Tot	tal	24th Aug	. 178	∿ 29th S	Sep. 178		37	32	119.5	636
ngth		anned agth	300.00		Over- burden	12.0	m 0	Core	Recover	y for each 1	00 m section
Drilling Length	Dec	crease or crease in agth	0.50	1 '	Core Length	241.90	m D	Depti of Hole		Section	Total
[]	Len	ngth		m (Core		%	0v1	12.60m	84.4 %	84.4 %
	Dri	lled	300.50	1	Recovery	80.5		112.60~2	00.80m	80.6 %	82.7 %
	Dri	lling	125°00	7	19.0 %	17.0	%	200.80~3	00.50m	76.0 %	80.5 %
		sting &									
1 1		ering Rod sting &					-				
	Low	ering I.T.									
년		cellaneous	292°00	<u>'</u>	44.5 %	39.6	%	ļ		iency of Dri	lling
80		airing	 				%	300.50 m/Working Period			8.12 m/day
支		ers	240°00	— i —	36.5 %	32.6				ng Days	9.39 m/day
[6	Tot	al	657°00	<u>' </u>	100 %	89.2	2			ing Period	13.66 m/day
	nīv	Preparati	on 32°00	'	·—•.	4.3	%	300.50	m/Net D	rilling Days	15.82 m/day
	Removing	Moving	48°00	•		6.5	%	Total	workers	/ 300.50 ¤	2.51 Man/m
-		G. Total	737°00	•		100	76				
Pipe Inserted	G. Total Pipe Size & Meterage		Insert Length Drilli Length	(%) ng	Recove Casing	-		Total Drilli	ng Work	ers/ 300.50 m	1.55 Man/m
ا ۾ ا	HW 18.00 m 6			%	10	0 %		Remark	s		
	NW	74.00 m	24.6	%	10	0 %			_		
lng l	BW	152.00 m	50.6	%	10	0 %		G :	Grand		
Casing								1.T.:	Inner :	Tube	
					<u> </u>						

Table II-10 Operational results by drill hole, No. 53-8

Working Period				<u> </u>	Period	-	Number of Days	Actua Workin Days		Day Off	Total Number of Workers
Pe	Pre	paration	2	2nd Aug. '	78 ∿ 3rd S	ep.'78	13	11		21	121
ing	Dri	lling		4th Sep.	78 ∿ 19th S	ep. 78	15.5	12.	5	42.5	248
lork	Ren	noving	1	9th Sep. '	78 ∿ 26th S	Sep.'78	7.5	6.	5	24	150
	Tot	al	2	2nd Aug. 17	78 ∿ 26th S	Sep. 178	36	30		87.5	519
ıgth	ı	inned igth		m 300.00	Over- burden	19.00	- !!	Recove	ry for	each 10	0 m section
Drilling Length	Dec	rease or rease in gth		m 1.00	Core Length	273.10	Dept of Hol		Sec	ction	Total
12.1	Len	gth		m	Core	,	01	0∿114.60ш		2.1 %	92.1 %
	Dri	lled		301.00	Recovery	90.7	114.601	201.30m		37.8 %	90.1 %
	Dri	lling		132°00'	25.1 %	22.1 %	201.30√	301.00≖	. 9	1.8 %	90.7 %
	ŧ	sting &			<u></u>			<u></u>			
		ering Rod sting &	\dashv				1				
	Low	ering I.T.	_		-			<u>.</u>			
Working Time		cellaneous	_	160°00'	30.4 %	26.8 2	- }			of Dril	<u> </u>
20	<u></u>	airing	_		<u> </u>			m/Work			8.36 m/day
,k	-	ers		234°00'	44.5 %			m/Work			10.03 m/day
Woı	Tot	al		526°001	100 %	88.1 %		m/Dril			19.42 m/day
	vin	Preparati	on	29°001	-14	4.9 %	301.00	m/Net	Drilli	ng Days	24.08 m/day
	Removing	Moving		42°00'		7.0'%	Total	worker	s/	301.00 m	2.01 Man/m
		G. Total		597°00'		100 %	_				
Pipe Inserted	1	ipe Size & eterage		Inserted Length (7 Drilling Length	() Recove	•	Total Drill		kers/	301.00 m	0.97 Man/m
a I	HW	10.50 m		3.5	10	0 %	Remar	ks			
면	NW	46.70 m		15.5	10	0 %		_			
	BW	119.70 m		39.8 %	10	0 %] G :				
Casing] I.T.:	Inner	Tube		
L	<u> </u>			-			-				

Table II-11 Summary operational data by drill holes

	Remarks									
speed	** m/shift	9.11	12.54	10,55	6.95	5.89	7.51	5.56	7.92	7.69
rilling	* m/shift m/shift	9.55	13.68	12.15	7.70	8.35	85.8	6.39	8.36	98*8
shift	Total	44	24	38	72	89	04	54	38	378
of drilling	Casing etc.	2	2	ľΔ	7	20	5	7	2	50
No. of	Drilling	42	22	33	65	48	35	47	36	328
	Recovery Drilling	95.8	97.3	96.3	94.5	85.3	94.7	80.5	90.7	92.1
Core	Length	m 384.25	292.90	385.90	472.90	341.90	284.30	241.90	273.10	2,677.15
04411400	length	m 401,00	301.00	400.80	500.50	400.80	300.30	300.50	301,00	2,905.90 2,677.15
	Drilling period	15th Jun. '78 ~ 3rd Jul. '78	15th Jun. '78 ~26th Jun. '78	8th Jul. '78 ~22nd Jul. '78	31st Jun. '78 ~27th Jul. '78	27th Jul. '78 ~18th Aug. '78	8th Aug. '78 ~24th Aug. '78	1st Sep. '78 ~22nd Sep. '78	4th Sep. 178 ~19th Sep. 178	
Trees of	nachine	TGM-5A		E	E	z	п	E	Ξ	Total
Dr411 holo	No.	53-1	53-2	53~3	53-4	53–5	53~6	53-7	53-8	

* Drilled per one shift covering net drilling operations.** Drilled per one shift covering total works conducted.

Table II-12 Working time by drill hole

		Hoisting	& lowering	Mi	Miscellaneous				Moving	•
Drillhole No.	Drilling	rod &		Casing	Hole	Others	Repairs	Others	operation	Total
53-1	160°00'			21°00°		166°00'	100.6	268°00'	100,001	724°00'
53-2	86°30'			100.91		85,301		239°00¹	81,00,	508°00'
53-3	137°00'			39°00'		95°00'		175°00'	42°00'	491°00'
53-4	189°30'			45°00'		287°30'		290°001	50°00'	862°00'
53-5	117°00'			62°00'	76°00'	170°00'	17°00'	232°00'	46°001	720°00'
53-6	83°301			30°001		182°30		312°00'	57°00'	665°00'
53-7	125°00'			24°00'	45°00'	223°00'		240°00'	80,00	737°001
53-8	132°00'			25°00'		135°00		234°00¹	71°00'	597°00¹
				262°00'	121,001	1,344°30'	000	,00000		1000000
Total	1,030°30'				1,727°30'		26-00.	1,990-00	230_00	2,304 00

Table II—13 Drilling meterage of diamond bits

Item	Size	Туре	Bit No.	Dr	illing	metera	ge by d	rill h	ole. U	nite me	ter	Total
7.CC.	DIEC	2,700	ו מבל ווסיו	53-1	53-2	53-3	53~4	53-5	53-6	53-7	53-8	
Bit	нх	но́мг.	502 E2516 501 E7465 F1010 F1011 503 E2515 505 F1020 F1021 504 506 E8057 E8058 507 508	38.40	21.05 23.80	32.15 16.75	31.50 28.60 36.00	18.40 23.70 26.30		13.20 18.00	20.30 17.50	38.40 21.05 23.80 32.15 16.75 31.50 28.60 36.00 18.40 23.70 26.30 25.10 10.60 13.20 18.00 20.30 17.50
]			Total	38.40	44.85	48.90	96.10	68.40	35.70	31.20	37.80	401.35
	NX	NQWL	05 06 14 E2519 07 F1017 E2518 E2520 08 10 04 F1016 F1018 11 E2521 E2522 12 13 F1015 F1019 03 02 01 F1020 E2523	41.30 39.80 45.60 29.20	37.40 43.60	31.40 40.10 29.50 47.60	33.60 42.70 39.10 28.45	30.40 40.20 25.80 29.70	31.40 43.70	28.50 30.00 21.90	29.60 43.40	41.30 39.80 45.60 29.20 37.40 43.60 31.40 40.10 29.50 47.60 33.60 42.70 39.10 28.45 30.40 40.20 25.80 29.70 31.40 43.70 28.50 30.00 21.90 29.60 43.40
			Total	155.90	81.00	148.60	143.85	126.10	75.10	80.40	73.00	883.95

Drilling meterage of diamond bits

760-			24. 15	D	rilling	meter	age by	drill 1	hole.	Unite		
Item	Size	Type	Bit No.	53-1	53-2	53-3	53-4		53-6	1		Total
Bit	BX		F1030 511 512 E2526 E2527 513 514 F1031 F1032 711 712 515 516 716 714 715 E2530 E2528 E2531 F1041 F1040 F1033 713 717 F1034 F1039 F1035 718 520 518 E2529 E2540 720 719 721 524 E2541 F1036 F1037 F1038 E2532	33.60 45.10 38.40 27.30 30.20 25.40	39.50 42.80 51.10 35.50	42.80 37.40 40.90 41.20 37.50	31.66 34.80 39.20 28.30 25.70 30.10 24.50 40.35	34.40 30.70 32.60 40.20 27.40 34.50	45.60 37.90 51.10 45.90	31.10 25.50 28.20 33.40 26.80 32.60	52.10 43.60 50.70 34.90	43.60 50.70

Table II—14 Specifications of diamond bits

Size	Туре	Carats per bit	Matrix	Stones per carat	Water way	Number	Remark
	HQ-WL	40	Y	1/35	6	E-2515	Reset
		11	î,	-,,,,,	17	E-2516	11
	11	11	ti	11	ři .	E-7465	
	li li	11	11	"	11	E-8057	11
	111	11	11	11	11	E-8058	ti
		11		"	11	F-1010	11
	11		Z 11	п [11		li li
	11	11	11	1 11	H	F-1011	11
	11	,,	11	"	11	F-1020	11
HX				1 11	11	F-1021	11
	11	35	Tl	"		501	"
	It	"	11	1 1	**	502	1
	11	n l	n	It .	H	503	71
!	17	"	13	n l	11	504	"
i	11	11	H	"	11	505	"
	11	"	Ħ	l n	11	506	l u
	11	11	H	11	ŧr	507	l If
	**	17	11	##	11	508	50
	NQ-WL	30	Y	1/40	6	E-2518	H
	11	"	n	1 7	īi .	E-2519	"
İ	10	17	11	1 11	11	E-2520	1 11
	11	11	91	n	rı	E-2521	l n
	11	17	11	11	11	E-2522	11
	11	12	tt	1 11	11	E-2523	1 11
	11	11	7		15	F-1015	ı ı
	11	n	Z	n	11		111
	11	**	11	n	11	F-1016	l n
[11	11	"	"	11	F-1017	11
ļ	11		11		11	F-1018	tı
į	11	17	11	111	11	F-1019	11
	11	11		1 1	11	F-1020	11
NX	11	"	T1	1/35	" H	01	11
į				"		02	<u>}</u>
İ	11	11	tt 	1 1	11	03	ti
l	H	11	H	11	11	04	11
ļ	11	r1	**	"	**	05	; "
1	11	11	H	"	11	06	''
	17	17	n	"	11	07	n
'	11	11	11	"	11	08	i n
	17	n	11	"	11	10	11
	11	11	11	"	11	11	n n
	11	17	11	11	11	12	n
	11	11	11	"	11	13	11
	н	17	11	11	11	14	II II
	BQ-WL	20	Y	1/40	4	E-2525	11
	лу п п	11	ů	11770	ii	E-2526	ıı .
i	11	17	n	1 11	11	E-2527	11
İ	11	11	11	1 "	11	E-2528	11
	11	71	18	"	11	E-2529	n
BX	lt .	**	11	11	11	E-2529 E-2530	11
1	11	11	11	111	11		n
1	11	" "	10	1 1	11	E-2531	"
]	" "	" "	"		11	E-2532	.,
, !			11	"		E-2540	1 3
	11	11	"	"	11	E-2541	"

Specifications of diamond bits

	•		

661 MPN LIBRARY