APPENDICES

.

•

•

•

Appendix	1	List of rock samples
Appendix	2	Microscopic observation of thin section
Appendix	3	Microscopic observation of polished section
Appendix	4	Microphotographs of thin section
Appendix	5	Microphotographs of polished section
Appendix	6	Chemical composition of ore samples
Appendix	7	Results of X-ray diffraction test
Appendix	8	Chemical analysis of soil samples

•

,

Appendix 1: List of rock samples

(1) Tunceli area

Sample No.	Locality	Coordi		Thin Sec-	Po-	X-ray	Analy
		N	<u> </u>	<u>tion</u>			
TAR 009	Kört	43 49 100	5 31 850	 	0		0
TAR 035	Kamislik	43 33 400	5 28 600	0			
TAR 045	Sultanscyit Tepe	43 33 400	5 25 850	<u> </u>			
TAR 053	Sarısaltık	43 35 550	5 19 600	0	 	 	
TAR 118		43 43 300	5 24 200		[<u> </u>	0
TAR 119		43 43 300	5 24 200	<u> </u>	0	 	0
TAR 120	Mamlis	43 43 300	5 24 200	 	 	<u> </u>	0
TAR 224	Gözerek Tepe	43 56 400	5 30 950	0	<u> </u>	ļ	
TAR 231	Mamlis	43 43 550	5 24 50	 	0	┟────	0
TAR 232	Mamlis	43 43 450	5 23 925	 	0	<u> </u>	
TAR 241	Varsilliyayla	43 43 750	5 27 550	 	0	 	
TAR 242	Venk	43 47 500	5 33 100	0	<u> </u>	ļ	
TAR 351	Kurç Tepe	43 44 50	5 29 100	 		0	
TER 224	Mamlis	43 43 950	5 25 950	↓	<u> </u>	<u> </u>	0
TMR 058	Kopkömü	43 48 800	5 39 750	<u> </u>		_	ļ
TMR 314	Garipuşağı	43 45 250			<u> </u>	<u> </u>	0
TMR 317	Garipuşağı	43 44 650	5 27 200		0	<u> </u>	0
TMR 319	Karakaya	43 32 850	5 17 150	0	<u> </u>	ļ	ļ
TSR 016	Sorsivenk	43 54 900	5 30 100	1	0		
TSR 039	Türk Tepe	43 51 700	5 31 350	0	<u> </u>	<u> </u>	<u> </u>
TSR 040	Türk Tepe	43 51 150	5 31 500	0	<u> </u>		ļ
TSR 324	Sin	43 37 50	5 34 950	<u></u>	0	-	<u> </u>
TSR 347	Mamlis	43 42 750	5 23 350)	ļ		
TSR 356	Mamlis	43 43 250	5 20 800)	<u> </u>		<u> </u>
TSR 358	Mamlis	43 42 750	5 24 100	>	0		<u> </u>
TSR 462	Büyüktepeler	43 45 250	5 28 800			0	<u> </u>
TSR 483	Dikenli	43 42 100	5 29 300				0
TSR 485	Dikenli	43 42 300	5 29 950)		o	<u> </u>
TSR 489	Aynalipozvenk	43 47 750	5 29 650)		0	ļ
TSR 550	Garipuşağı	43 45 450	5 26 950	D		0	
TSR 552	Garipuşağı	43 45 200	5 26 790	0			0
TSR 583	Aşagı Mamlis	43 44 410	5 25 050	D			0
TSR 590		43 43 800	5 25 850	D			0
TSR 597		43 44 750	5 24 50	0		0	
TSR 599		43 45 250	5 26 65	0	1		0

.

Sample No.	Locality	Coordi		Thin Sec- tion	Po-	X-rav	Analy
		N	E	tion	lish	X-ray	sis -
TWR 239	Mamlis	43 44 450	5 22 700			ļ	0
TYR 003	Murir Tepe	43 52 750	5 23 250	0			
M-1	Mamlis	43 42 950	5 24 650				٥
M-2	Mamlis	43 42 900	5 24 500				0
M-4	Mamlis	43 42 850	5 24 100				٥
м-5	Mamlis	43 42 800	5 23 900				٥
м-9	Mamlis	43 42 750	5 23 400				0
M-11	Mamlis	43 43 300	5 23 550				o
M-21	Gözerek Tepe	43 42 700	5 22 850				0
M-33	Gözerek Tepe	43 42 800	5 23 100				٥
м-50	Mamlis	43 43 250	5 20 800				0
S-4	Sin Mah	43 37 000	5 35 000				٥
S5	Sin Mah	43 37 000	5 34 950				0
S-6	Sin Mah	43 37 100	5 34 950				D
s-7	Sin Mah	43 37 150	5 34 900				o
	Total			10	9	6	30
							•
	· · · · · · · ·						
						-	
			<u></u>				
	<u></u>						
	· · · · · · · · · · · · · · · · · · ·						
	· · · · · · · · · · · · · · · · · · ·						
	<u> </u>						
	· · · · · · · · · · · · · · · · · · ·						
					1		
	· <u>- · · · · · · ·</u> · · ·		,				<u> </u>
			<u></u>				
	<u></u>			<u> </u>			
	<u> </u>		<u> </u>		<u> </u>		

(1) Tunceli area (cont'd)

(2) Kopdağ area

Sample No.	Locality	Coordi	nates	Thin Sec-	Po-	v	Analy-
		N	E	tion	lish	X-ray	sis
KM-201	C Kafa, Ezan	26,998	7.437	0			
KM-202	B Kafa, Ezan	26.808	7.111			D	
км-203	31	26,865	7.076			0	
KM-204	Sulu Ocak, Ezan	26.718	7.744	o			
КМ-205	F1	27.085	8.006	0			
KM-206	Central Coşan	30.184	18.804			ο	
КМ-207		30.240	18.805	0			
KM-208	Southern Coşan	29.927	18.670	0		0	
КМ-209	Southern Coşan	30.052	18.722			0	
КМ-210	Northern Coşan	30.583	18.977			0	
KM-211	II .	30.573	18.975	0			
KG-201	Civelek, Ezan	26.160	6.370	0			
KC-202	11	26.160	6.370	0			
KC-203	Northern Coşan	30.650	18.935	o			
KC-204	Trench TJT-1, Sulu Ocak	27.082	7.856		o		0
KC-205	11	27.082	7.856				0
KC-206	Trench TJT-2, Sulu Ocak	27.050	7.848				0
кс-207	11	27.050	7.858		0		o
KC-208	11	27.050	7.860				o
кс-209	Trench TJT-3, Sulu Ocak	27.030	7.866		0		0
KC-210	11	27.028	7.876				0
KC-211	17	27.028	7.880				0
KC-212	11	27.028	7.880		0		0
KC-213	11	27.025	7.908				0

Sample No	Locality	Coordi	nates	Thin	Po- lish	X-rau	Analy
ampre no		N	E	Sec- tion	lish	X-ray	sis
кс-230	Ortra Ezan	26.582	7.420	0			
KC-231	R	26.580	7.420	0			
KC-232	Batı Ezan	26.790	6,710	0			
KC-233	Doğu Ezan	26.620	7.385	0			
кс-234	Southern Coşan	30.017	18.689	0			
KC-236	Southern Coşan	30.805	18.828	0			
KC-237	Northern Coşan	30.488	18.864	0			
KC-238	И	30.486	18.847	0			
КС-249	Sulu Ocak	27.12	8.08				0
кс-250	tt	27.14	8.08				о
KC-251	11	27.20	8.12				0
кс-259	Central Coşan	30.312	18.796		0		
	Drilling TJ-1, 69.5 m	26.356	6.846	0			
	" TJ-2, 64.0 m	26.422	6.630	0			
	" TJ-3, 26.0 m	26.905	6.810	0			
	" TJ-4, 12.5 m	27.216	7.660	0			
	" TJ-4, 20.30 m	27.216	7.660	0			
	" TJ-5, 60.00 m	26.888	7.000	0			
	" TJ-5, 70.00 m	26.888	7.000	0			
	" TJ-6, 34.0 m	26.926	7.245	0			
	" TJ-8, 61.0 m	26.600	7.035	0			
	" TJ-2, 23.20 m	26.422	6.630			0	
	" TJ-4, 45.0 m	27.216	7.660			o	
	" TJ-6, 35.0 m	26.926	7.245			0	
	" TJ-7, 16.20 m	27.125	7.655			0	
	Total			27	9	11	32

(2) Kopdağ area (cont'd)

•

• '

Appendix 2: Microscopic observation of thin section a) Tunceli area

Rock name	Sample No.	Locality	Microscopic features	Formation
Calacreous schist	TAR 242	Venk	The rock shows a microfold texture, and is mainly composed Munzur of muscovite, calcite and quartz.	ınzur F.
Limestone	TMR 058	Kopkömü	The rock shows a clastic texture, and is mainly composed Mun of calcite. size of calcite is < 1mm, fossils were found in it.	Munzur F.
Limestone	TSR 040	Türk tepe	The rock shows a clastic texture, and is mainly composed Ben of calcite and siliceous fragment. fossils were found in it.	Bentepe F.
Dacitic tuff-breccia	TAR 035	Kamışlık	The rock remains unaltered. A large amount of fragments Düzy consists of hornblende dacite, a little quartz and plagioclase occupy interspaces.	Düzpelit F.
Limestone	TAR 053	Sarısaltık Tepe	The rock contains organic debris, rounded fossils and Tiri fossil fragments are embedded in a fine-grained calcite matrix.	Tırnas F.
Clino- pyroxenite	TAR 224	Gözerek Tepe	The rock consists of a large amount of clinopyroxene, Oph a little carbonate, and talc, and shows porphyritic texture.	Ophiolite belt
Pyroxene Andesite	TYR 003	Murir Tepe	The rock remains unaltered. Plagioclase and augite Savy phenocrysts lie in a matrix of rich in plagioclase and pyroxene.	Savular F.
Dacite	TMR 319	Karakaya	The rock remains unaltered and shows a porphyritic texture. Plagioclase, biotite, hornblende and augite phencrysts lie in a matrix grass rich in plagioclase, quartz, hornblende and biotite.	

(cont'd)
area
Tunceli
a)

a) Tunceli	a) Tunceli area (cont'd)	(p,		
Rock name	Sample No.	Sample No. Locality	Microscopic features	Formation
Dacite	TSR 039	Türk Tepe	The rock remains unaltered and shows a porphyritic texture. Plagioclase and hypersthene phenocrysts lie in a matrix glass rich quartz, plagioclase and pyroxene.	
Diorite	TAR 045	Sultanseyit Tepe	The rock shows a hollocrystalline texture and consists of Daloren diorite plagioclase, augite, olivine, biotite and magnetite.	Daloren diorite

•

Rock name	Sample No.	Locality	Microscopic features	Original rock
	KC 201	Civelek Ocak	The rock consists of 75% clinopyroxene, 20% serpentine, 2% orthopyroxene, 2% chromite and 1% brucite. Euhedral chromite is present in clinopyroxene.	
Clino- pyroxene	KC 231	Orta Ezan	The rock consists of 90% clinopyroxene, 5% serpentine, 2% chromite, 1% calcite and 2-3% chromiangarnet. Euhedral chromite is present in clinopyroxene, calcite vein along a fracture in clinopyroxene was observed.	
	KM 204	Sulu Ocak	The rock consists of 90% clinopyroxene, 2-3% orthopyroxene, 2-3% chromiangarnet and 5% serpentine. Fracture structure is dominant, calcite vein was observed along it.	
Harzburgite	KC 232	Batı Ezan	The rock consists of 87% olivine, 5% serpentine, 5% orthopyroxene and 3% chromite. Olivine is 3 mm in size, and aggregation of olivine has a granular texture. Alteration indicates first stage of serpentinization.	
	KC 202	Civelek Ocak	The rock consists of 90% serpentine, 7% magnetite and 3% chromite. Serpentine replacing olivine or pyroxene has not a mesh texture, judging from the shape of serpentine, olivine, and also pyroxene was converted serpentine.	Dunite (?)
Serpentinite	KC 203	Coşan	The rock consists of 60% serpentine, 30% brucite, 6% magnetite, 2% pyrite and 1% chromite. Serpentine has Duni mosaic texture, brucite is fine-grained and clustered.	Dunite
	KC 230	Orta Ezan	The rock consists of 87% serpentine, 10% chromite and 3% carbonate. Serpentine with dominant mesh texture, Dun: bastite is not present.	Dunite

Rock name	Sample No.	Locality	Microscopic features	Original rock
Serpentinite (cont'd)	KC 233	Doğu Ezan	The rock consists of 85% serpentine, 10% brucite and 5% chromite. Seprentine with dominant mesh texture, Du Chromite is < 0.6 mm in size, its crystal is cubic.	Dunite
	KC 234	Coşan	The rock consists of 95% serpentine and 5% chromite. Serpentine has a mosaic texture, chromite is < 0.7 mm in Du size, its crystal is cubic.	Dunite
	KC 236	Coşan	The rock consists of 80% serpentine, 10% brucite, 7% chromite and 3% talc. Serpentine has mosaic texture, Du spotted brucite and veined talc < 0.1 mm in width are distributed in serpentine.	Dunite
	KC 205	Sulu Ocak	The rock consists of 92% serpentine, 3% brucite and 5% chromite. Serpentine has a dominant mesh texture, Du bastite is not present, brucite is lath-shaped and cuts the mesh texture.	Dunite
	KM 208	Coşan	The rock consists of 95% serpentine, 3% brucite and 2% chromite. Serpentine and brucite have mesh texture, bastite is not present.	
	KC 237	Coşan	The rock consists of 85% serpentine, 10% brucite and 5% chromite. Serpentine has a mosaic texture, prismatic Du brucite is < 0.2 mm, granular chromite is < 0.35 mm.	Dunite
	KC 238	Coşan	The rock consists of 92% serpentine, 5% chromite and 3% calcite. Serpentine is fibrous and has bastite texture, 0r almost all of serpentine is considered to be altered from orthopyroxene.	Orthopyroxinite
	T.J-1	69.50 m	The rock consists of 80% serpentine, 10% brucite and 10% chromite. Serpentine exhibits a mesh texture, granular chromite is < 0.5 mm, the olivine is completely altered to serpentine, and yet the original shape of each olivine crystal can be recognized.	Dunite

b) Kopdağ area (cont'd)

Kopdeğ area (cont'd) name Sample No.
64.00 m
26.00 m
12.50 m
20.30 m
60.00 m
70.00 =

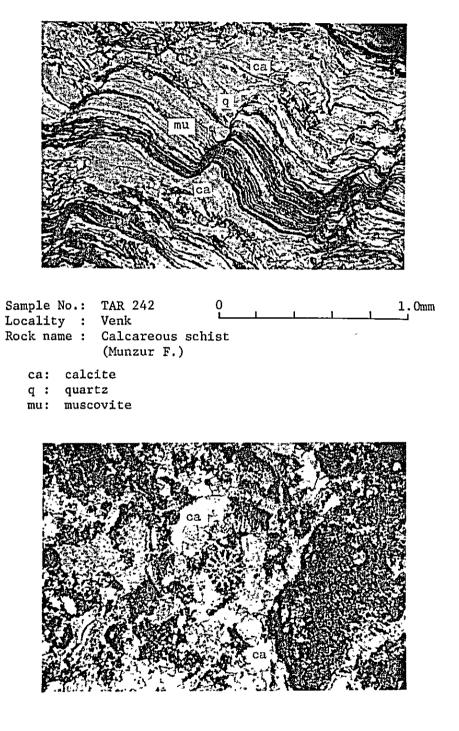
•

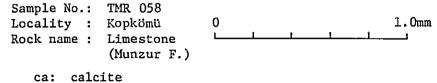
b) Kopdeğ	Kopdeğ area (cont'd)	d)		
Rock name	Sample No.	Locality	Microscopic features Ori	Original rock
Serpentinite (cont'd)	TJ-6	34 . 00 m	The rock consists of 60% serpentine, 30% brucite, 8% chromite and 2% talc. Serpentine exhibits a mesh texture, Duni prismatic brucite of < 0.7 mm is aggregated, cubic and granular chromite is < 0.9 mm.	Dunite
	TJ-6	61.00 m	The rock consists of 60% serpentine, 30% brucite, 5% chromite and 5% magnetite. Serpentine has a mesh texture, and exhibits a wood louni louse-like texture along fractures, granular chromite is < 0.35 mm.	Dunite
Disseminated ore	KM 201	C Kafa	The ore consists of 40% serpentine, 25% chromite, 17% kaemmererite, 3% uvarovite and 15% Fe-Ti oxide?. Granular and cubic chromite is fine grained (< 0.35 mm), Harz kaemmererite is considered to be converted from orthopyroxene. (Fine-grained disseminated ore).	Harzburgite
Massive ore	KM 207	Coşan	The ore consists of 50% serpentine and 50% chromite. Serpentine has a mesh texture, bastite is not present, Duni granular chromite is coarse grained (< 2 mm). (Massive chromitite)	Dunite
Massive ore	KM 211	Coşan	The ore consists of 60% chromite, 20% serpentine and 20% brucite. Granular chromite is coarse grained (< 3.5 mm), ferritchromite is present in the fracture and cleavage of chromite. (Massive chromitite)	
Massive ore	KC 259	Coşan	The ore consists of a large amount of chromite and a trace amount of pyrite. Massive and granular chromite is > 3 mm, pyrite in gangue minerals is < 0.01 mm, networked gangue minerals (mainly serpentine) is present in chromite. (Massive chromitite)	

\$

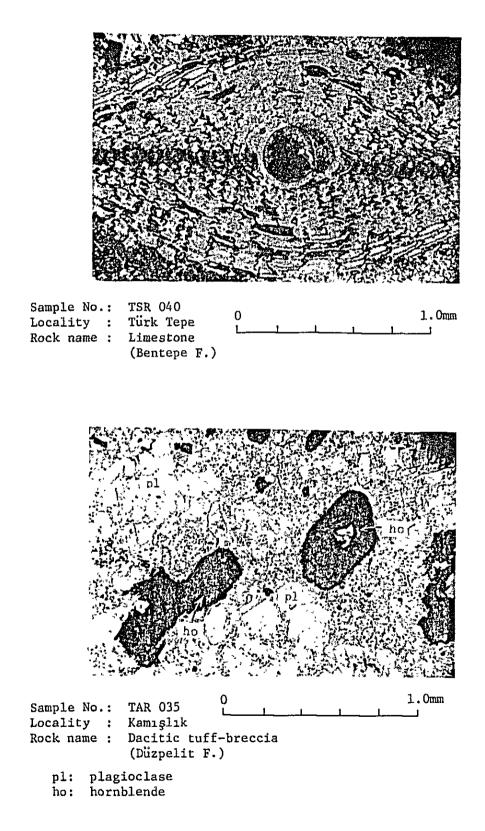
A-10

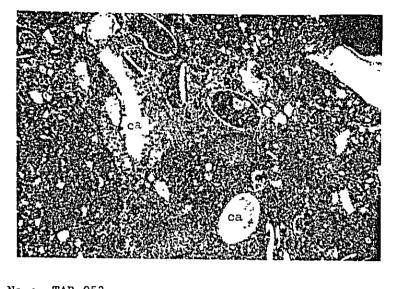
area
a) Tunceli

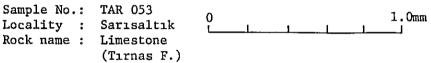

Name of ore deposits	Sample No.	Locality	Ore	Microscopic feature
Sorsivenk	TSR 016	Sorsivenk	Cu-barite	Pyrite, chalcopyrite > secondary copper mineral Chalcopyrite veinlet was found filling along crack of irregular pyrite.
Mamlis	TAR 231	Mamlis	Pb-Zn quartz vein	Galena (5 x 7 mm) ≫ chalcopyrite (0.2 x 0.2 mm) sphalerite (0.15 x 0.15 mm)
Kört mine	TAR 009	Kört	Cu-Pb-Zn ore	Sphalerite > bornite > chalcopyrite > chalcocite.Chalcopyrite shows dotted shape in sphalerite.
Varsilli yayla	TAR 241	Varsilli yayla	Cu-Pb-Zn ore	A large amount of hematite shows lath-shape (0.1 mm in length), a trace of chalcopyrite (0.035 x 0.035 mm) was observed in gangue minerals.
Garipuşağı	TMR 317	Garipuşagı	Gossan	A large amount of hematite shows lath-shape, sometimes irregular form. Goethite was oberved.
Sin	TSR 324	Sin	Zn-cu ore	Chalcopyrite, pyrite, chalcocite > sphalerite Chalcocite is present around chalcopyrite (< $0.15 \times 0.35 \text{ mm}$), cubic and granular pyrite is < $0.07 \times 0.1 \text{ mm}$, sometimes hematite and goethite were observed.
Mamilis	TAR 119	Mamlis	Gossan	A large amount of goethite shows irregular form, primary
Mamlis	TSR 358	Mamlis	Gossan	found in the gossan.
Mamlis	TAR 232	Mamlis	Gossan	

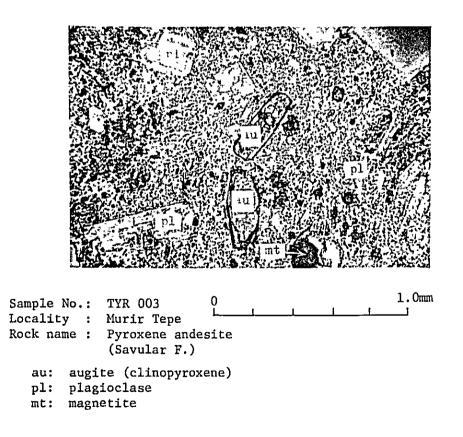

	r	·1	·····	1	·
	Microscopic feature	Chromite > magnetite > pyrite Magnetite veinlets < 0.001 mm filling cracks in chromite, pyrite of > 0.007 mm distributed in gangue minerals.	Chromite >> magnetite >> pyrite Magnetite veinlets < 0.007 mm filling in chromite, cubic pyrite of < 0.15 mm being distributed in gangue minerals.	Chromite > magnetite > pyrite Magnetite veinlets < 0.001 mm filling cracks in chromite, pyrite of > 0.007 mm distributed in gangue minerals	Chromite >> pyrite Magnetite not found, pyrite < 0.02 mm distributed in gangue minerals.
b) Kopdağ area (cont'd)	Ore	Massive ore	Massive ore	Massive ore	Massive ore
	Locality	Central portion	Sulu Ocak	Sulu Ocak (TJT-3) [.]	Sulu Ocak (TJT-3)
	Sample No.	KC 207	KC 204	KC 209	KC 212
a Sendov (a	Name of ore deposits	Coşan		Ezan	

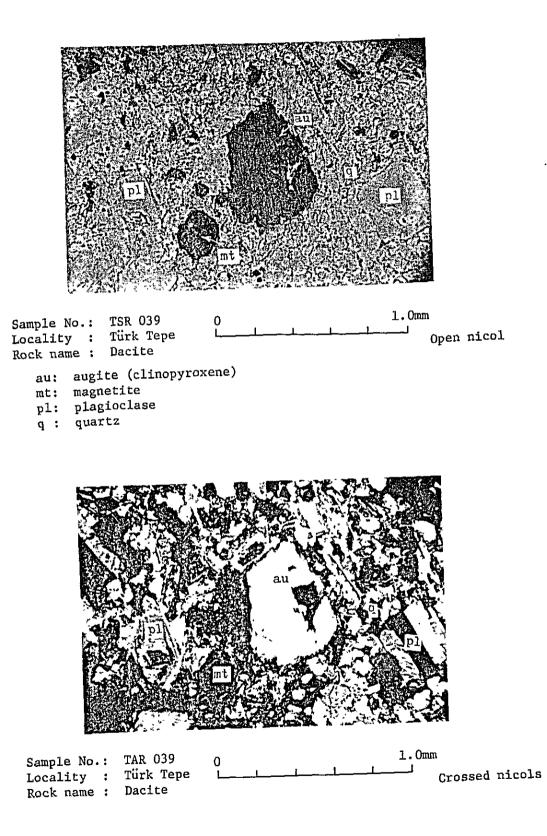
÷

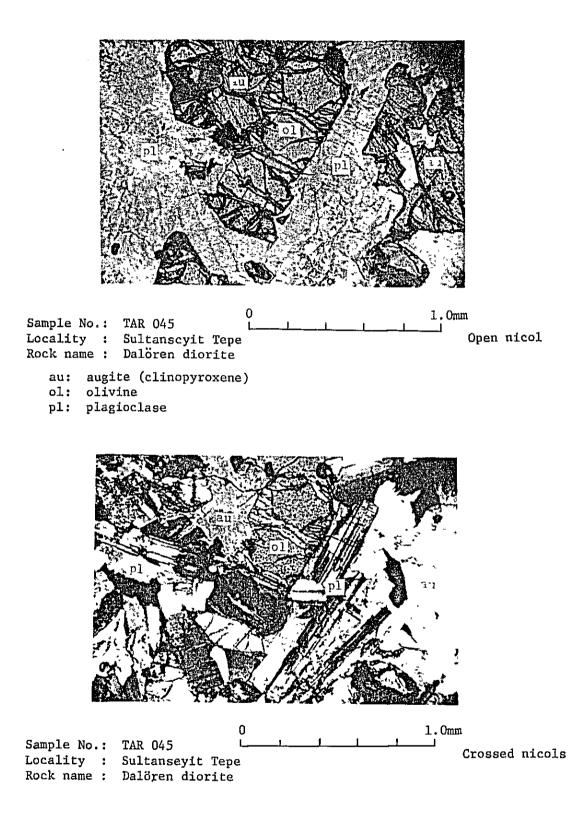

(cont'
area
Kopdağ
ф А

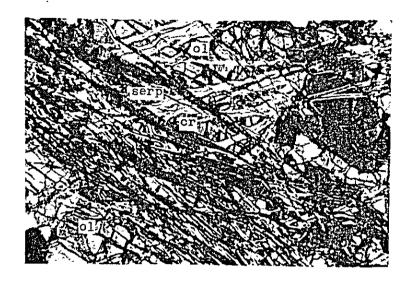

Appendix 4: Microphotographs of thin section

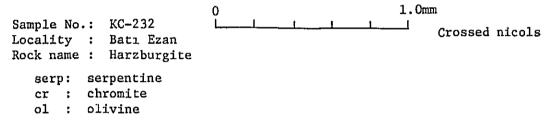


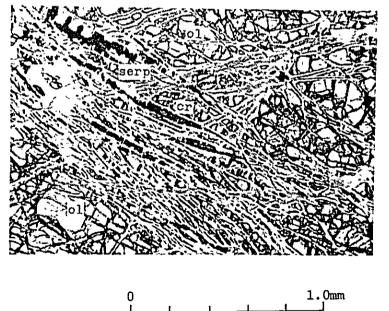

A-13

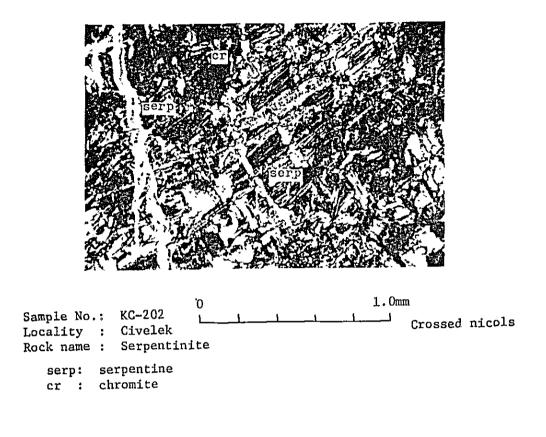


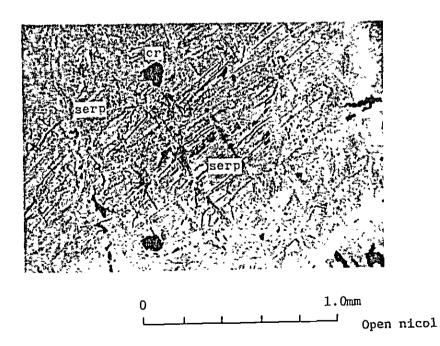


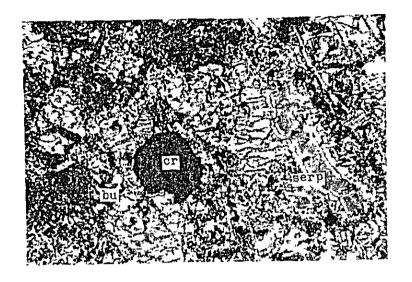


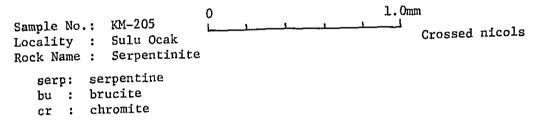

ca: calcite

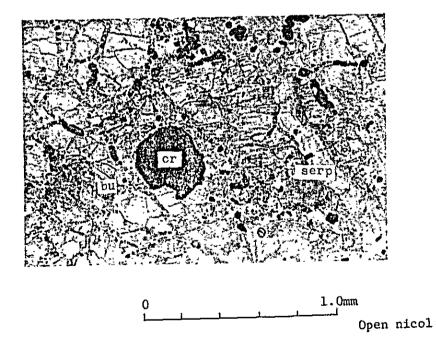


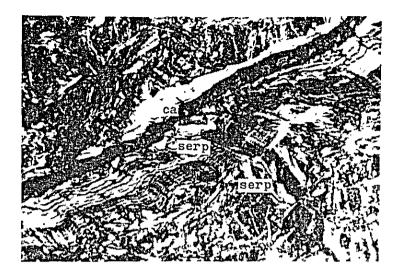


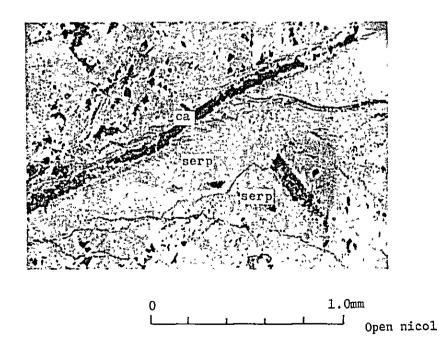


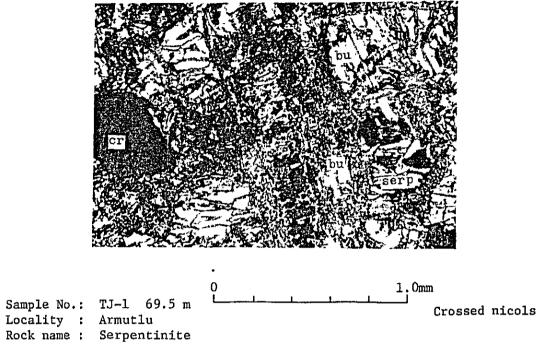




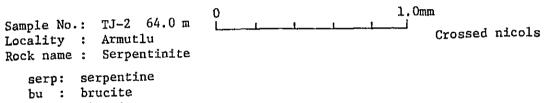

Open nicol



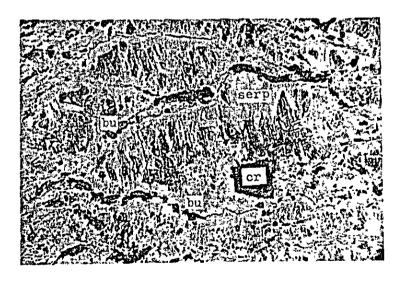




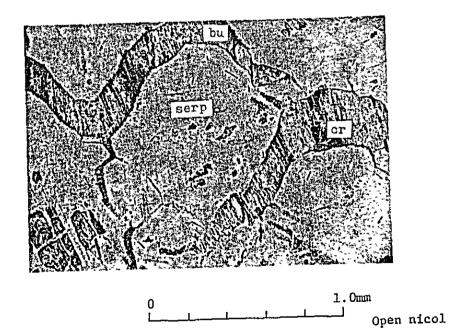

*	.: KC-230 : Orta Ezan : Serpentinite	0 \	I	 1.0m 1	m Crossed nicols
-	serpentine calcite				


	·
serp:	serpentine
bu :	brucite
	• • •

cr : chromite

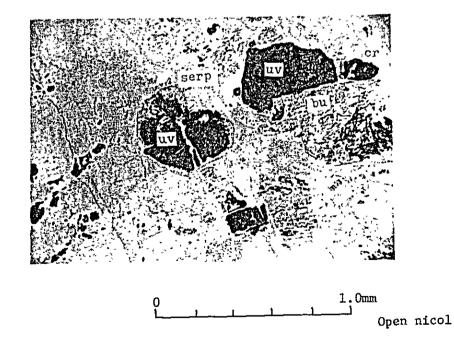


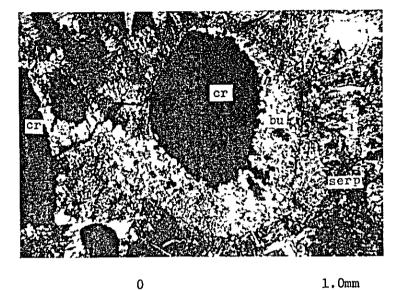

•

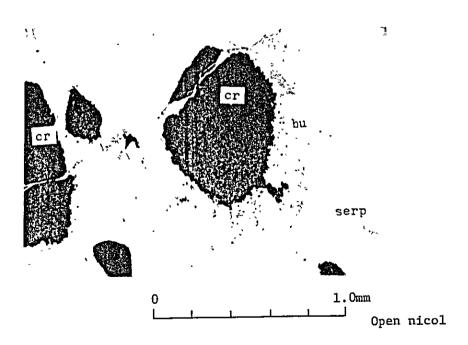

cr : chromite

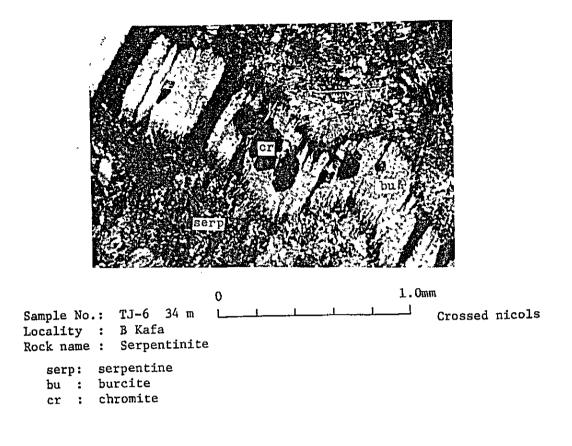


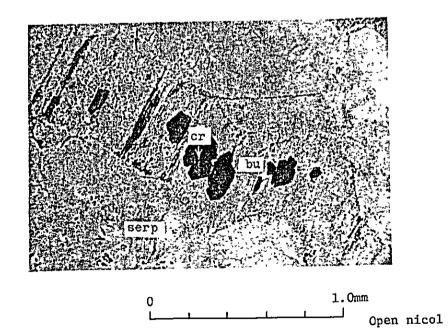
1.0mm 0 Open nicol

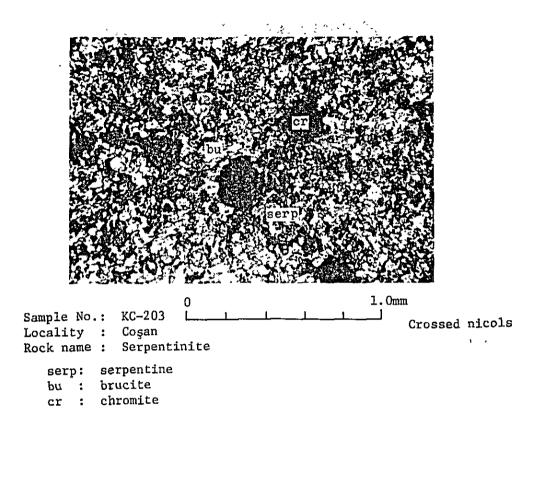


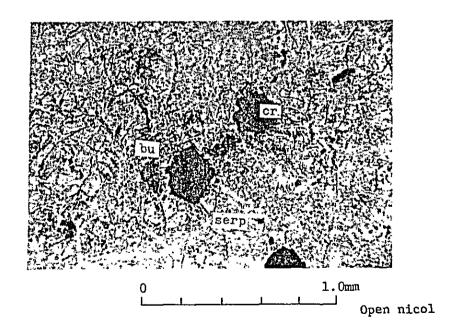

Sample No.: TJ-3 26.0 m	0 1.000	111
Locality : Batı Ezen Rock name : Serpentinite		Crossed nicols
serp: serpentine		
bu : brucite		
cr : chromite		

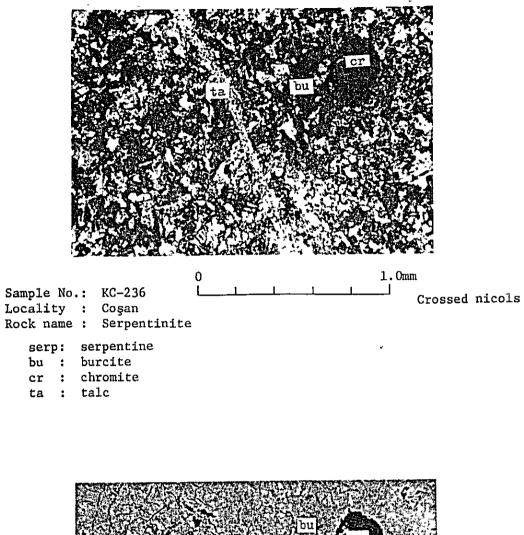


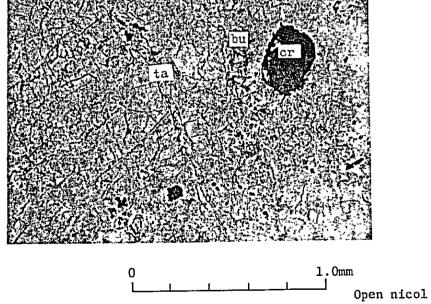

Sample No.: TJ-4 20.3 m 0 1.0mm Locality : Sulu Ocak Crossed nicols Rock name : Serpentinized harzburgite Crossed nicols serp: serpentine bu : brucite cr : chromite uv : uvarovite

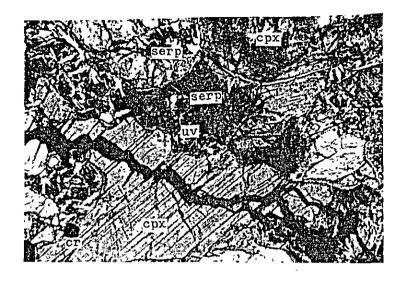


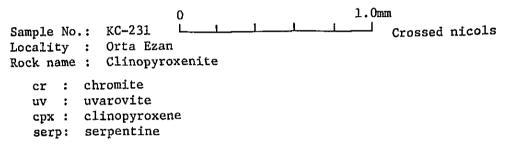


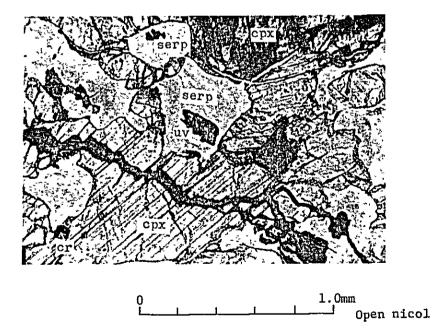

		V		
Locality	.: TJ-5 60 m : Batı Ezan : Serpentinite	<u> </u>	Cros	ssed nicols
	serpentine brucite chromite			

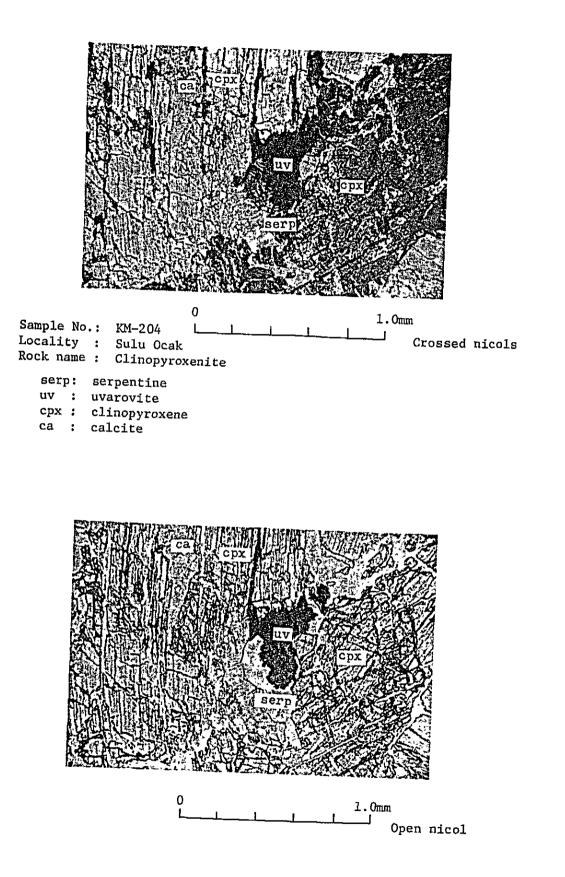


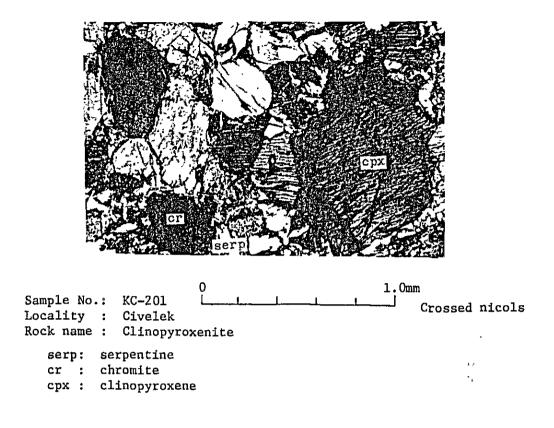


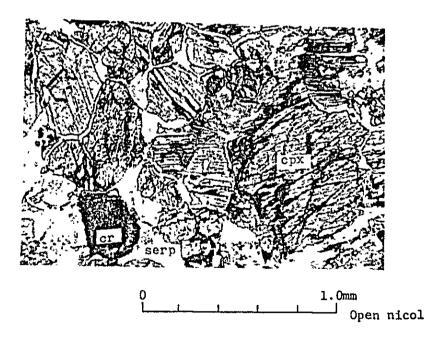


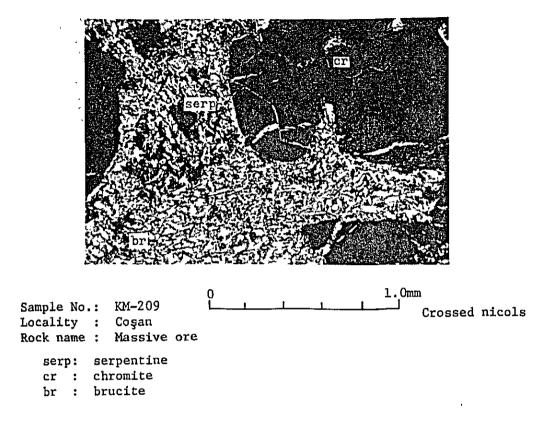


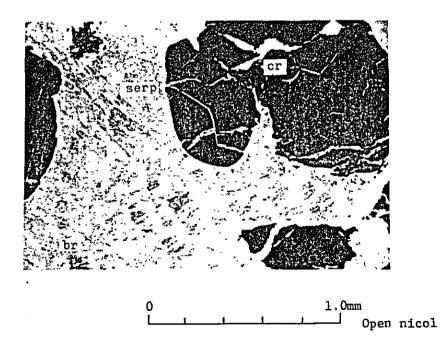




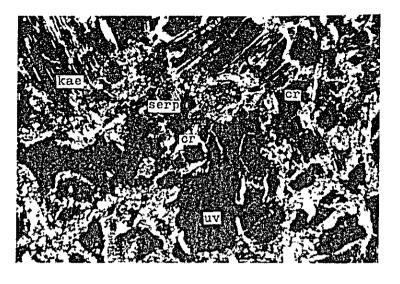


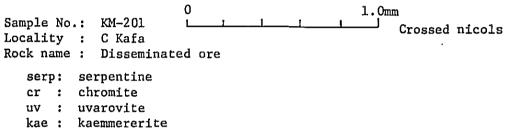

t

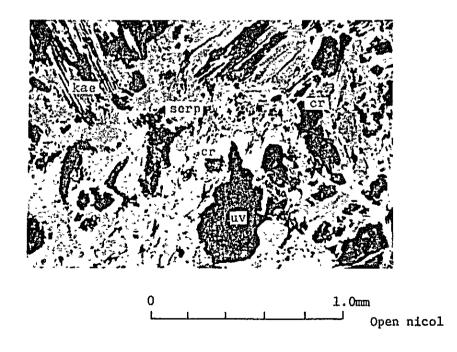


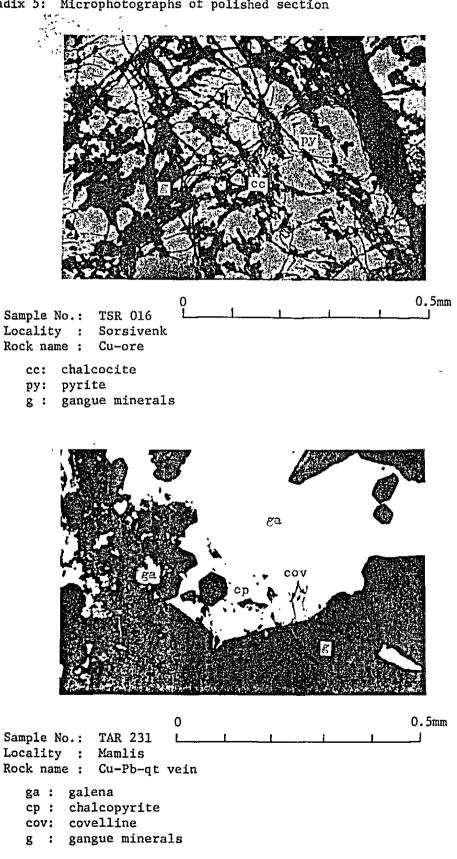


A~31

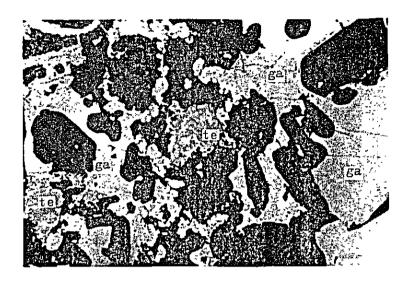


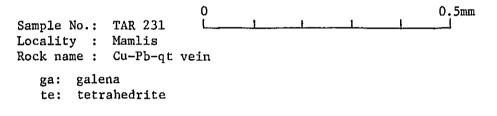


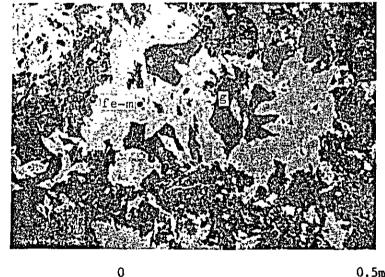




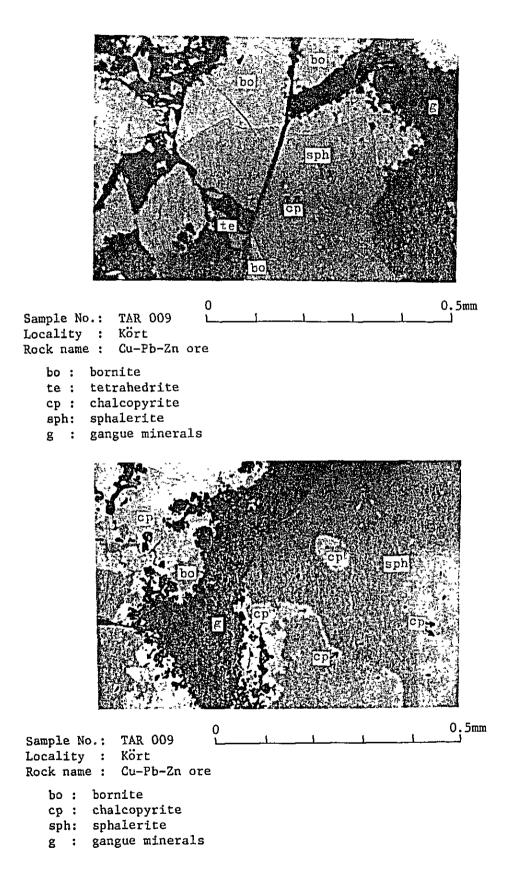
۰.

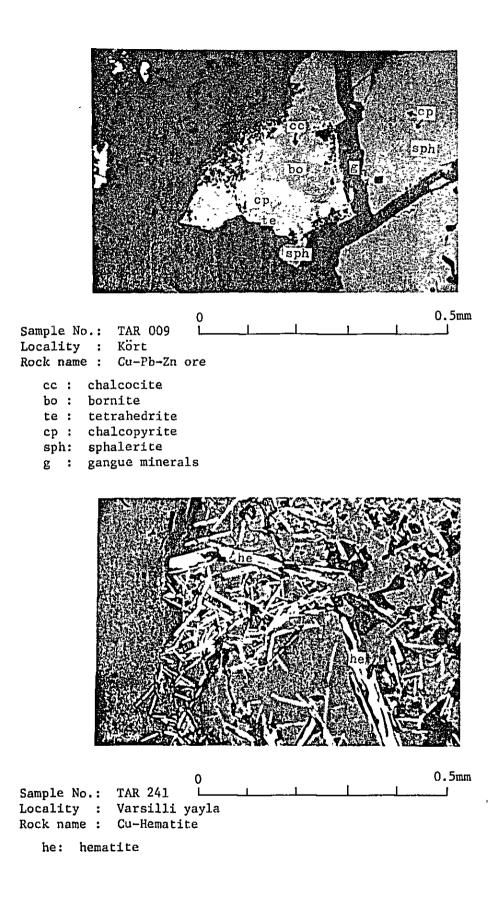


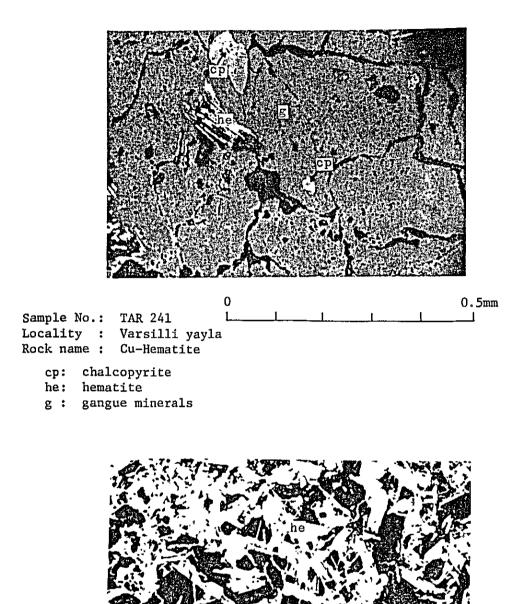




Appendix 5: Microphotographs of polished section



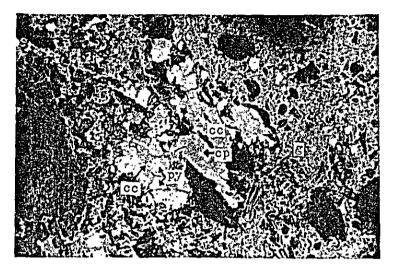




			0			0.5mm
Sample No.	:	TAR 119	L	 1	1	
Locality	:	Mamlis				
Rock name	а а	Gossan				
fe-m:	Fe-	-minerals				
g :	gat	ngue mineral	.s			

• - es

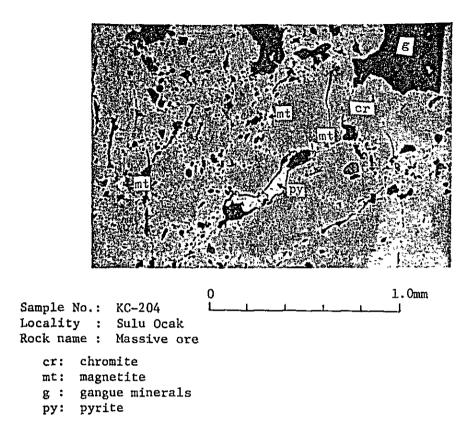
Sample No.:	TMR 317
Locality :	Garipuşağı
Rock name :	Gossan

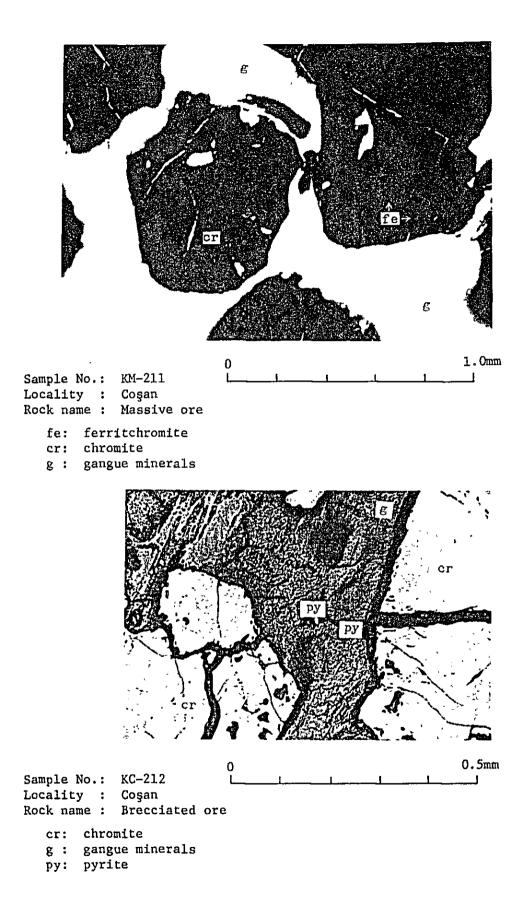

he: hematite

0

۱

0.5mm


Т



cc: chalcocite cp: chalcopyrite

py: pyrite
g : gangue minerals

Appendix 6: Chemical composition of ore and Gossan samples a) Tunuli area

a) Tunuli	i area						A A						ſ
Sample	Rock	I.Oralitv		- 	[1		40	1	cn Cn	R_SOA	Ϋ́
No.	name	HOCKET 1	ηγ	Ag	Cu	r.p	¹²	WS				Lauo4	
TAR 009	ore	Kört			4.73	0.14	5.55			•	%	1.45	mdd
TNR 314	Dacite	Garipuşağı			<0.01	<0.01	10.0					0.41	
TSR 016	ore	Sorsivenk			1.15	10.0	0.06					73.50	
TSR 356	ore	Mamlis			0.15	36.70	0.02					0.50	
M50	ore	Mamlis			1.17	25.47	0.70			0.01	0.01		10
TAR 118	sili-rock	Mamlis	ррш <0.2	ррш <2		ррш 623	ppm 114	۳dd ۲	ppm 7				
TAR 119	sili-rock	Mamlis	=	З		52	1,070	10	ñ				
TAR 120	sili-rock	Mamlis	=	<2		75	583	6	8				•
TAR 231	Dacitic tuff (diss.Pb,Zn)	Mamlis	=	3		8,659	191	56	62				
TMR 317	Dacitic tuff	Caripuşağı	*1	<2	 i	81	66	9	٢				
TSR 347	Gossan	Mamlis	n	4		526	1,608	13	Q				
TWR 239	sili-zone	Mamlis	ε	<2		224	868	8	2				
TER 224	Gossan	Mamlis		4	40	37	120					_	
TSR 483	Dacitic tuff (arg.)	Dikenli		2	10	25	0/						ndd
TSR 552	Dacite (Hematite?)	Garipuşağı			1	I	,						ŝ
TSR 583	Dacite (arg.)	Aşagı mamlis			1	1	ı						2
TSR 590	sili-zone	Mamlis		11	630	2,500	225						

	м М	ppm 5												
	BaSO4	r												
	Sn													
	М													
	Sb										<u> </u>			
Analysis	As													
Ana	Zn	udd I	535	3,300	375	45	490	60	620	062	150	610	180	535
	Pb	udd	87	56	68	787	187	37	25	25	56	56	37	87
	Cu	udd	60	50	70	300	20	55	20	30	400	2,250	7,850	60
	Ag	udd	m	2	Ś	26	9	2	9	9	m	2	٣	e
	Au	 												
10001 4 4 4 4	חטרמדדרא	Garipuşağı	Mamlis	Mamlis	Mamlis	Mamlis	Mamlis	Mamlis	Gözerek T.	Gözerek T.	Sin Mah	Sin Mah	Sin Mah	Sin Mah
Rock	name	Dacite (Hematite?)	Gossan	Gossan	Gossan	Gossan	Gossan	Dacitic tuff (sili,arg.)	Gossan	Gossan	Dacite (sili.)	Dacite (sili,Mal.)	Dacite (sili,Mal.)	Dacite (Sili.)
Sample	No.	TSR 599	L−M	M-2	M-4	M-5	м-9	M-11	M-21	M-33	S4	S-5	S-6	S-7
								Ā	-44					

* Abbreviations sili. = Silicification arg. = Argillization Diss. = Dissemination Mal. = Malachite

Sample No. Locality Cr ₂ O ₃ (%) FeO + Fe ₂ O ₃ (%) SiO ₂ (%) Ak ₂ O ₃ KC-204 Trench T.J.T-l Sulu Ocak 34.79 15.99 7.57 17. KC-205 " 27.65 15.29 9.91 13.4 KC-205 " 27.65 15.29 9.91 13.4 KC-206 Trench T.J.T-2 Sulu Ocak 27.23 15.90 14.45 7.5 KC-207 Trench T.J.T-2 Sulu Ocak 27.23 17.28 3.36 18.5 KC-208 " 42.08 17.28 3.36 18.5 KC-209 Trench T.J.T-3 Sulu Ocak 46.33 17.54 4.07 15.5 KC-209 Trench T.J.T-3 Sulu Ocak 44.97 17.51 5.27 13.1 KC-209 Trench T.J.T-3 Sulu Ocak 24.99 20.54 12.92 13.1	b) Kopdağ area	3				
Trench T.J.T-I Sulu Ocak 34.79 15.99 7.57 1 Trench T.J.T-I Sulu Ocak 27.65 15.29 9.91 1 Trench T.J.T-2 Sulu Ocak 27.23 15.90 14.45 1 Trench T.J.T-2 Sulu Ocak 27.23 17.28 3.36 1 Trench T.J.T-2 Sulu Ocak 42.08 17.28 3.36 1 Trench T.J.T-3 Sulu Ocak 46.33 17.54 4.07 1 Trench T.J.T-3 Sulu Ocak 44.97 17.51 5.27 1 Trench T.J.T-3 Sulu Ocak 24.99 20.54 12.92 1	Sample No.	Locality	Cr203 (%)	FeO + Fe ₂ O ₃ (%)	Si02 (%)	A£203
" 27.65 15.29 9.91 1 Trench T.J.T-2 Sulu Ocak 27.23 15.90 14.45 14.45 Trench T.J.T-2 Sulu Ocak 27.23 15.90 14.45 14.45 " 42.08 17.28 3.36 1 " 42.08 17.28 3.36 1 Trench T.J.T-3 Sulu Ocak 46.33 17.54 4.07 1 Trench T.J.T-3 Sulu Ocak 44.97 17.51 5.27 1 " " 24.99 20.54 12.92 1	KC-204	Trench T.J.T-1 Sulu Ocak	34.79	15.99	7.57	17.
Trench T.J.T-2 Sulu Ocak 27.23 15.90 14.45 1 " " 42.08 17.28 3.36 1 " * 46.33 17.28 3.36 1 Trench T.J.T-3 Sulu Ocak 44.97 17.51 5.27 1 " * 24.99 20.54 12.92 1	KC-205	-	27.65	15.29	16.91	13.8
" 42.08 17.28 3.36 " " 46.33 17.54 4.07 Trench T.J.T-3 Sulu Ocak 44.97 17.51 5.27 " 24.99 20.54 12.92	KC-206	Trench T.J.T-2 Sulu Ocak	27.23	15.90	14.45	7.2
" 46.33 17.54 4.07 Trench T.J.T-3 Sulu Ocak 44.97 17.51 5.27 " 24.99 20.54 12.92	KC-207	-	42.08	17.28	3.36	18.3
Trench T.J.T-3 Sulu Ocak 44.97 17.51 5.27 " 24.99 20.54 12.92	KC-208	-	46.33	17.54	4.07	15.9
" 24.99 20.54 12.92	KC-209	Trench T.J.T-3 Sulu Ocak	44.97	17.51	5.27	13.1
	KC-210	-	24.99	20.54	12.92	16.8

			11 T		
0	FeO + Fe ₂ O ₃ (%)	SiO2 (%)	Al203 (%)	(%) 0gM	Remarks
	15.99	7.57	17.75	19.90	
	15.29	16.91	13.88	23.41	
	15.90	14.45	7.23	25.48	
	17.28	3.36	18.35	16.30	
	17.54	4.07	15.97	16.07	
	17.51	5.27	13.10	17.14	
	20.54	12.92	16.80	19.46	
	15.80	6.58	17.39	19.52	
	14.62	10.32	20.00	21.36	
	18.16	7.90	17.13	16.50	

A-45

KC-212

KC-213

KC-211

37.85

=

32.86

36.49

=

ŧ

				Ser	pentine grou	D			Hydro-			
	Sample No.	Type of sample	Locality	Antigorite	Lizardite	Chrysotile	Brucite	Pyroaurite	magnesite	Chromite	Talc	Magnetite
ĺ	KM 206	Foliated serpentinite				+++						
-	KM 208	Massive serpentinite	Coggen	+ +	+	+		+				
	KM 209	Foliated serpentinite	> Coşan `	?	+	+ + +						+
-	KM 210	Foliated serpentinite)			+++						
	KM 202	Foliated serpentinite	Batı Ezan~B kafa	?	+	++		+ +	+		+	
	KM 203	Foliated serpentinite	Batı Ezan~B kafa	+		+		+	+			
Kopdağ area												
	TJ-2 23.2m		Armutlu	+ +	?	+ +						-
	TJ-4 45.0m		Batı Ezan	+		+ +	+					-
	TJ-6 35.0m		B kafa	+		+	+ +					
	TJ-7 16.2m		Sulu Ocak			++		+		+ +		
	KC 221	White clay						+	+++			
	Sample No.	Type of sample	Locality	Quartz	Feldspar	Orthoclase	Albite	Montmori- llonite	Sericite	Hydrous- sericite	Kaoline	Pyrite
-	TAR 315			+++		+++		+	-		+	-
	TSR 462			+++						+	+	
Tuncelí	TSR 485			+ + +			+ +			+		
area	TSR 489			+	+			-	+		++	
	TSR 550			+ + +						+	-	
	TSR 597			+ +			+++		+			

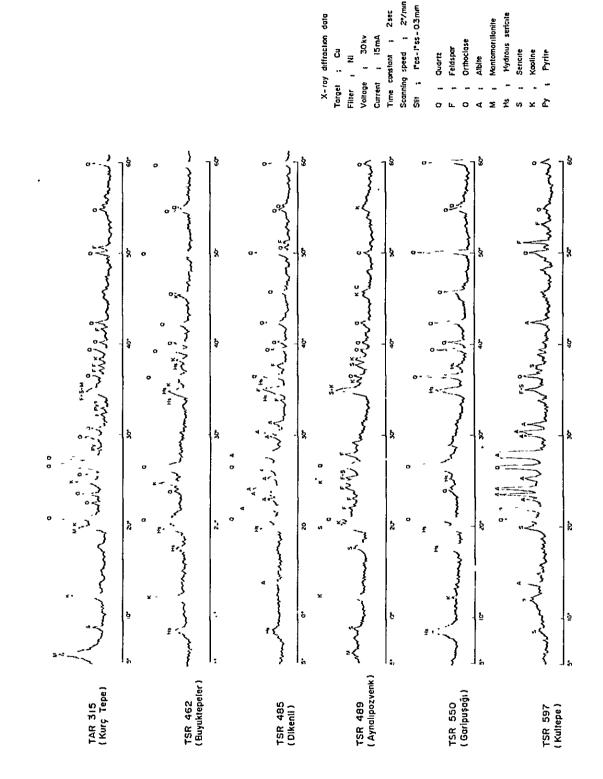
•

~*

Appendix 7: Result of X-ray diffraction test

-

Intensity of X-ray diffracted is shown: +++ very strong ++ strong + moderate - weak


? uncertain

e

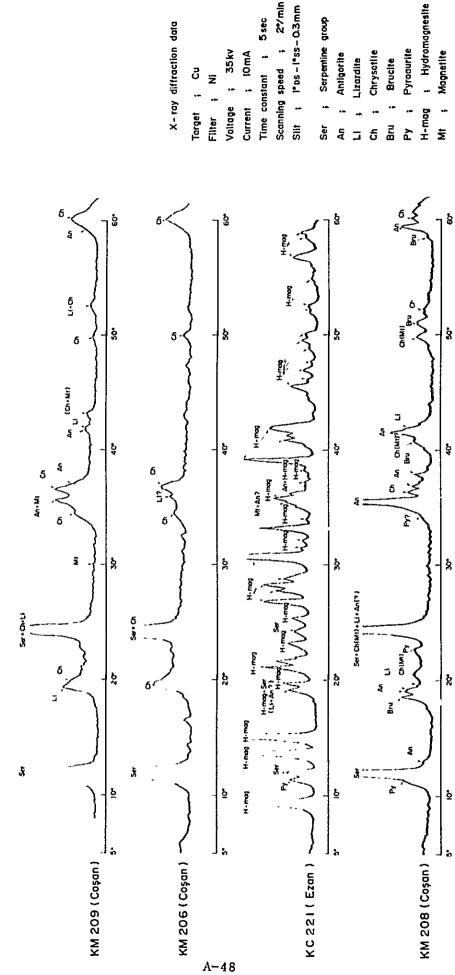
4

• -.

Hydrous sericite Mantomorillanite

Kooline Pyrite

Sericite


Orthoclase

Alble

Feldspor

Quart2

Appendix 7; Charts of X-ray diffraction test (B)

X-ray diffraction data ; 35kv Target ; Cu Filter ; Ni Voltage

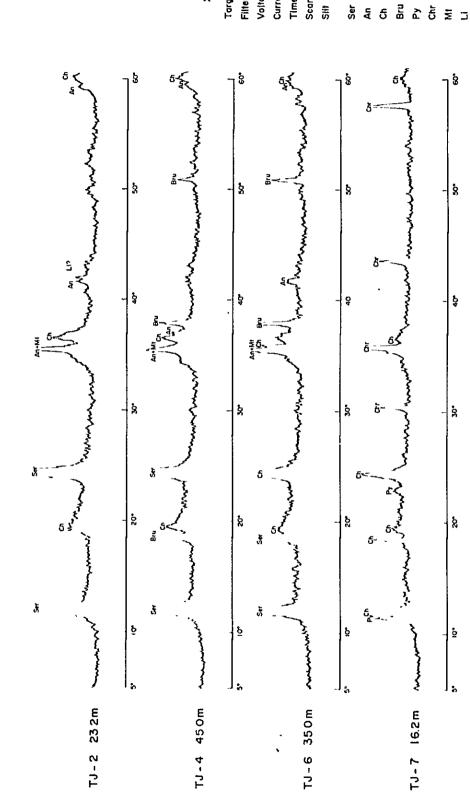
10mA

Slit i l*bs - l*ss - 0.3mm Serpentine group Antigorite ---Ser An Ξ

Lizardite

Chrysotlle

Brucite


Py ... Bru

Pyrodurite

Hydromognesite

Magnetite

Appendix 7; Charts of X-ray diffraction test (C)

Scanning speed ; 2%min Silt ; Pos-Pss-0.3mm X- ray diffraction data 2 sec Serpentine group : 30kv Antigorite Pyrodurite Chromite Magnetite i I5mA Chrysotile Brucite Time constant ; 5 .ī Filter ; Voltage Current Target e B g Ser An

Lizardite

A-49

Appendix 8

.

.

Geochemical analysis of soil samples

Geological index

Formation

Düzpelit F.	:	Dm
Kamışlık F.	:	Ke
Bentepe F.	:	Be
Atadoğdu F.	:	Ae

.

Igneous rocks

Andesite	:	Aq
Dacite	:	Dt
Granodiorite	:	Gt

						,
Sample No.	Locality	Geological Unit	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mo (ppm)
TAS-301	J42-C1	Be	40	50	70	2.5
TAS-302	IT	Be	60	50	50	5
TAS-303	11	Gt	80	38	60	5
TAS-304	11	Gt	100	50	50	5
TAS-305	tt	Gt	50	38	70	0
TAS-306	11	Gt	80	50	60	2.5
TAS-307	11	Gt	60	38	60	10
TAS-308	11	Gt	60	50	30	7.5
TAS-309	11	Gt_	80	25	60	5
TAS-310	11	Gt	60	38	100	5
TAS-311	n	Gt	50	38	50	7.5
TAS-312	11	Be	60	38	80	5
TAS-313	11	Be	40	25	50	7.5
TES-2	J42-b4	Gt	40	38	80	0
TES-3	88	Gt	30	38	60	8.5
TES-5	17	Gt	20	38	70	0
TES-7	11	Ke	50	75	130	2.5
TES-8	11	Gt	50	50	140	0
TES-10	11	Gt	40	63	130	2.5
TES-15	tt	Gt	20	38	50	0
TES-23	11	Gt	10	38	50	10
TES-25	tt.	Ke	10	63	90	10
TES-29	tr	Gt	10	163	310	10
TES-31	rt	Gt	20	38	80	12.5
TES-34	11	Dmđ	10	50	65	7.5
TES-39	11	Gt	30	38	90	2.5
TES-42	tł	Gt	45	50	40	2.5
TES-44	11	Gt	30	50	40	2.5
TES-50		Gt	80	38	100	5
TES-52	**	Gt	80	38	30	5
TES-54		Gt	30	38	50	5
TES-59	H1	Dm	30	25	30	2.5

Appendix 8: Geochemical contents of soil samples

Sample No.	Locality	Geological Unit	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mo (ppm)
TES-69	J42-Ъ4	Dm(Dt)	30	25	130	2.5
TES-70	11	Dm	20	50	80	2.5
TES-71	11	Dm	30	25	50	5
TES-74	I #	Dm	30	38	70	2.5
TES-79	11	Dm	20	25	90	2,5
TES-81	¥1	Dm	10	175	500	5
TES-82	11	Dm	20	38	90	7.5
TES-83	11	Dm	20	38	150	7,5
TES-84	11	Dm	20	38	90	5
TES-86	11	Gt	30	25	60	7,5
TES-88)1	Gt	65	38	80	2,5
TES-89	J42-C1	Gt	30	63	110	2.5
TES-90	11	Dm	80	88	100	2.5
TES-91	11	Dm	20	75	120	2,5
TES-92	11	Dm	20	38	60	2.5
TES-93	F1	Dm	10	25	60	2.5
TES-100	J42-Ъ4	Dm	35	38	90	2,5
TES-103	J42-C1	Dm	25	38	60	2,5
TES-104	91	Gt	50	63	70	5
TES-105	n	Dm	20	50	100	5
TES-106	tt	Gt	50	38	70	2.5
TES-108	11	Dm	10	43	50	2,5
TES-109	11	Dm	5	63	80	2.5
TES-110	J42-b4	• Dm	25	63	120	2.5
TES-111	1#	Dm	5	63	230	2.5
TES-112	11	Dm	15	56	120	2.5
TES-113	22	Dm	45	87	120	10
TES-114	n	Dm	55	75	300	2.5
TES-116	11	Dm	30	38	80	5
TES-117	11	Dm	65	537	540	2.5
TES-118	н	Dm	25	43	130	2.5
TES-119	11	Ве	10	50	90	2.5
TES-120	11	Ве	10	87	115	2.5
TES-121	 1t	Be	10	63	210	2,5
TES-122	tr	Ke	15	75	65	2.5

Sample No.	Locality	Geological Unit	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mo (ppm)
TES-123	J42-C1	Dm	140	218	510	2.5
TES-124	19	Ве	50	375	520	_5
TES-125	11	Ве	20	106	170	2.5
TES-126	11	Be	60	38	32	2.5
TES-127	11	Ве	50	50	250	2.5
TES-128	17	Ke	55	50	90	2.5
TES-129	17	Be	45	100	200	2.5
TES-130	11	Ве	45	63	250	2.5
TES-131	71	Ве	45	63	110	2.5
TES-132	И	Ве	75	150	2000	5
TES-133	J42-b4	Dm	40	75	105	5
TES-134	n	Dm	40	63	75	2.5
TES~135	11	Dm	30	250	50	2,5
TES-136	11	Dm	75	175	140	10
TES-137	t1	Ке	140	275	220	10
TES-138	n	Ке	35	219	240	5
TES-139	11	Ke	110	397	640	2.5
TES~140	n	Ke	50	81	120	2.5
TES-141	11	Ke	70	144	210	5
TES-142		Ke	120	138	200	5
TES-143	11	Ke	75	288	575	2.5
TES-144	11	Ke	6400	3875	53000	5
TES-145	11	Ве	1050	650	5000	5
TES-146	11	Dm	80	94	160	2,5
TES-147	21	Dm	80	113	160	2.5
TES-148		Dm	40	88	180	5
TES-149	11	Dm	35	100	175	2.5
TES-150	11	Dm	50	113	160	15
TES-151	71	Dm	45	250	150	5
TES-152	f1	Dm	40	113	75	5
TES-153	11	Dm	20	38	95	2.5
TES-154	11	Dm	55	38	15	2.5
TES-155	F1	Dm	30	175	13	2.5
TES-156	11	Dm	75	175	14	2.5
TES-157	н	Dm	50	213	16	2.5

Sample No.	Locality	Geological Unit	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mo (ppm)
TES-158	J42-b4	Dm	20	94	90	2.5
TES-159	11	Dm	20	107	60	2.5
TES-160	ta	Dm	20	88	80	2.5
TES-161	11	Dm	55	113	80	2.5
TES-162	11	Dm	40	300	170	2.5
TES-163	11	Dm	25	125	120	2,5
TES-164	11	Dm	30	150	150	2.5
TES-165	ft	Dm	65	413	580	5
TES-166	1r	Dm	25	238	100	2.5
TES-167	ti	Dm	60	225	215	2,5
TES-168	r ŧ	Dm	50	50	100	2.5
TES-169	J42-C1	Gt	60	63	160	2.5
TES-170	£1	Gt	160	88	110	2.5
TES-171	ti	Gt	80	69	110	2,5
TES-172	PT	Gt	65	88	110	2.5
TES-173	11	Gt	105	57	70	2.5
TES-174	11	Gt	105	63	80	2.5
TES-175	17	Gt	90	75	90	2.5
TES-176	11	Gt	365	100	70	2.5
TES-177	n	Gt	70	163	140	2.5
TES-178	11	Gt	140	100	80	5
TES-179	11	Gt	70	88	80	2.5
TES-180	19	Gt	90	50	100	2.5
TES-181	11	Gt	120	88	140	2.5
TES-182	13	Gt	60	88	95	2.5
TES-183	11	Gt	170	75	75	2.5
TES-184	17	Gt	165	125	60	2.5
TES-185	n	Gt	155	125	90	5
TES-186	J42-b4	Dm	545	675	320	2.5
TES-187	11	Dm	50	113	125	5
TES-188	83	Dm(Dt)	30	88	90	2.5
TES-189	J42-C1	Dm	75	138	105	5
TES-190	J42-b4	Dm	45	165	125	5
TES-191	J42-C1	Dm	1200	350	145	20
TES-192	J42-b4	Dm	80	188	75	20

Sample No.	Locality	Geological Unit	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mo (ppm)
TES-193	J42-C1	Gt	40	82	35	2.5
TES-194	J42-Ъ4	Dm	35	88	50	5
TES-195	J42-C1	Gt	65	82	110	5
TES-196	11	Gt	75	100	140	5
TES-197	J 42-Ъ4	Dm	30	88	90	5
TES-198	J42-C1	Gt	40	63	85	2.5
TES-199	J42-b4	Dm	25	50	80	2.5
TES-200	11	Dm	25	50	120	2.5
TES-201	11	Dm	30	107	75	2.5
TES-202	11	Dm	40	113	100	2.5
TES-203	11	Dm	30	100	125	2.5
TES-204	21	Dm	20	125	150	10
TES-205	J42-C1	Dm	70	75	100	5
TES-208	J42-b4	Dm	50	400	50	5
TES-210	J42-C1	Gt	60	100	90	5
TES-211	11	Gt	90	88	175	5
TES-212	11	Gt	75	63	120	7.5
TES-213	11	Gt	75	63	190	2.5
TES-214	11	Gt	40	38	140	2.5
TES-215	H	Gt	80	63	110	7.5
TES-216	14	Gt	70	63	100	5
TES-220	17	Gt	70	75	90	10
TES-221	#1	Gt	70	94	1,00	2.5
TES-222	r1	Gt	75	88	110	2.5
TES-223	11	Gt	50	100	190	2.5
TES-224	J42-b4	Dm	30	25	150	2.5
TES-225	11	Dm	30	50	100	2.5
TES-226		Dm	40	25	100	2.5
TES-227	11	Dm	35	50	110	2.5
TES-228	11	Dm	30	75	150	10
TES-229	11	Dm	30	88	155	2.5
TES-230	11	Dm	40	88	115	2.5
TES-231	11	Dm	20	57	150	5
TES-232	17	Dm	40	63	130	5
TES-233	11	Dm	30	50	120	5

Sample No.	Locality	Geological Unit	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mo (ppm)
TES-234	J42-Ъ4	Dm	20	57	90	5
TES-235		Dm	90	3500	700	5
TES-236	11	Dm	150	63	140	5
TKS-001	J42-b4	Ве	80	50	100	2.5
TKS-002	11	Ве	40	13	90	5
TKS-003	11	Ke	65	25	150	5
TKS-004	11	Ке	35	63	210	5
TKS-005		Ke	50	88	310	20
TKS-006	11	Ke	20	38	210	2.5
TKS-007	11	Dm	40	63	160	2.5
TKS-008	11	Dm	10	25	90	0
TKS-009	11	Ke	10	25	170	2.5
TKS-010	83	Ke	20	25	110	5
TKS-011	11	Dm	20	13	60	2,5
TKS-012	11	Dm	30	13	80	2.5
TKS-013	ra	Dm	20	13	60	2.5
TKS-014	71	Dm	20	13	70	5
TKS-015	11	Ke	10	25	40	0
TKS-016		Ke	25	38	80	0
TKS-017	77	Ke	35	63	60	2,5
TKS-018	11	Ke	10	38	35	0
TKS-019	н	Ke	25	38	80	2.5
TKS-020	87	Ke	35	150	130	2.5
TKS-021	11	Ke	55	25	80	0
TKS-022	11	Ke	30	25	50	5
TKS-023	11	Ke	45	50	70	10
TKS-024	11	Ke	25	38	60	2,5
TKS-025	tt	Ke	15	25	60	2.5
TKS-026	11	Ke	45	50	60	2.5
TKS-027	18	Ke	60	100	250	2.5
TKS-028	11	Ke	25	25	60	2.5
TKS-029	11	Ke	35	25	60	2.5

Sample No.	Locality	Geological Unit	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mo (ppm)
TKS-030	J42-b4	Ke	55	38	90	2.5
TKS-031	17	Ке	45	38	110	5
TKS-032		Ke	40	38	100	5
TKS-033	t:	Ke	40	38	60	0
TKS-034	ii	Ke	55	38	100	0
TKS-035	11	Ke	55	38	90	2.5
TKS-036	tt	Ke	40	25	80	2.5
TKS-037	ť1	Ke	20	25	50	10
TKS-038	f1	Ke	20	25	50	7.5
TKS-039		Ke	20	25	60	10
TKS-040	11	Ke	10	13	50	7.5
TKS-041	11	Ke	50	25	60	10
TKS-042	h	Ве	60	50	120	2,5
TKS-043	<u></u> †1	Ke	20	25	60	2.5
TKS-044		Ke	35	25	80	2,5
TKS-045	F1	Ke	20	25	70	2.5
TKS-046	Tt	Ke	50	50	90	5
TKS-047	n	Ke	60	100	150	7.5
TKS-048	11	Ke	50	163	220	7.5
TKS-049	IT	Ke	50	38	100	10
TKS-050	11	Ке	130	100	970	25
TKS-051	11	Dm	20	38	140	2.5
TKS-052	11	Dm	10	25	80	2.5
TKS-053	t1	Dm	20	38	130	2.5
TKS-054	11	Dm	10	38	80	5
TKS-055	11	Ке	10	13	50	7.5
TKS-056	17	Dm	20	25	20	7.5
TKS-057	11	Dm	15	25	80	10
TKS-058		Dm	20	25	60	5
TKS-059		Dm	20	38	60	5
TKS-060	11	Ke	10	38	90	2.5
TKS-061	n	Ке	15	38	90	2.5
TKS-062	11	Ke	10	25	80	8
TKS-063	11	Ke	10	25	70	7.5
TKS-064	11	Ke	10	13	70	10

Sample No.	Locality	Geological Unit	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mo (ppm)
TKS-065	J42-b4	Ke	15	13	70	10
TKS-066	11	Ke	20	13	80	5
TKS-067	11	Dm	30	13	80	2.5
TKS-068	11	Dm	15	13	60	10
TKS-069	11	Dm	10	25	40	2.5
TKS-070	11	Dm	20	13	30	5
TKS-071	tt	Dm	10	25	50	5
TKS-072	11	Dm	20	13	20	10
TKS-073	It	Dm	40	25	90	10
TKS-074	89	Gt	30	38	50	5
TKS-075	**	Dm	50	38	60	10
TKS-076	11	Dm	20	25	50	10
TKS-077	11	Dm	40	25	70	7.5
TKS-078	tr	Dm	40	13	70	5
TKS-079	11	Dm	35	13	70	5
TKS-080	11	Dm	40	25	110	5
TKS-081	п	Dm	25	13	110	5
TKS-082	11	Dm	30	25	80	5
TKS-083	11	Dm	50	13	100	5
TKS-084	J42-C2	Dm	30	13	60	5
TKS-085	89	Be	40	13	60	2.5
TKS-086	11	Be	15	13	70	7.5
TKS-087	17	Dm	15	25	90	5
TKS-088	11	Be	25	25	70	10
TKS-089	J42-C1	Dm	10	13	70	10
TKS-090	it	Ве	30	25	90	7.5
TKS-091	t I	Be	35	50	85	5
TKS-092	r:	Dm	50	50	100	5
TKS-093	11	Be	30	38	70	2.5
TKS-094	t1	Ве	55	50	85	7.5
TKS-095	J42-C2	Ве	25	25	25	7.5
TKS-096	H	Ве	255	25	65	7.5
TKS-097	19	Dm	35	50	100	7.5
TKS-098	J42-C1	Dm	20	38	150	7.5
TKS-099	tī.	Ве	20	75	230	7.5

Sample No.	Locality	Geological Unit	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mo (ppm)
TKS-100	J42-C1	Be	10	38	30	2.5
TKS-101	t1	Dm	40	50	100	0
TKS-102	11	Dm	20	31	40	15
TKS-103	11	Dm	20	13	50	0
TKS-104	11	Dm	20	63	40	2.5
TKS-105	11	Dm	20	63	40	2.5
TKS-106		Be	10	50	50	2.5
TKS-107	51	Be	20	43	70	5
TKS-108	11	Dm	5	38	90	0
TKS-109	17	Dm	10	13	20	5
TKS-110	11	Dm	10	25	60	2.5
TKS-111	11	Dm	15	38	50	5
TKS-112	11	Dm	25	2125	220	2.5
TKS-113	11	Dm	10	125	90	2.5
TKS-114	\$1	Dm	20	63	10	0
TKS-115	11	Dm	10	100	40	0
TKS-116	\$1 •	Dm	10	75	50	0
TKS-117	11	Dm	15	63	40	2.5
TKS-118	ti	Dm	5	31	110	2.5
TKS-119	11	Dm	10	56	20	2.5
TKS-120	11	Be	20	50	40	2.5
TKS-121	f1	Dm	30	38	50	2.5
TKS-122	11	Gt	40	68	30	2.5
TKS-123	11	Gt	80	56	20	2.5
TKS-124	"	Gt	80	56	30	2.5
TKS-125	31	Gt	160	31	20	5
TKS-126	J42-b4	Gt	65	56	30	5
TKS-127	J42-C1	Gt	90	38	30	5
TKS-128	11	Gt	90	31	20	5
TKS-129	11	Gt	80	38	30	0
TKS-131	J42-b4	Gt	50	87	40	2.5
TKS-132	J42-C1	Gt	70	63	40	2.5
TKS-133	 J42-b4	Gt	65	63	30	2.5
TKS-134	J42-C1	Gt	90	112	70	2.5
TKS-135	11	Gt	50	75	50	2.5

Sample No.	Locality	Geological Unit	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mo (ppm)
TKS-136	 J42-C1	Gt	85	100	40	5
TKS-137 ·	tt	Gt	80	81	30	7.5
TKS-138	11	Gt	75	81	30	5
TKS-139	11	Gt	70	87	30	5
TKS-140		Gt	60	63	20	2.5
TKS-141		Gt	50	150	30	2.5
TSS-361	J42-b4	Be	60	63	110	5
TSS-362	91	Be	280	25	50	2.5
TSS-363	11	Be	10	63	20	2.5
TSS-364	17	Be	25	75	30	0
TSS-365	tt	Ке	30	150	50	2.5
TSS-366	-	Ке	30	75	40	2.5
TSS-367	 11	Ke	140	4375	150	5
TSS-369	11	Be	70	93	170	5
TSS-370	н	Be	190	75	100	2.5
TSS-371		Ae	40	50	60	0
TSS-372		Ae	50	63	110	5
TSS-374	11	Be	15	63	50	5
TSS-375	11	Be	10	50	50	2.5
TSS-376	- 11	Be	5	38	40	0
TSS-377	11	Dm	10	43	50	5
TSS-378	n	Dm	10	31	40	2.5
TSS-279	21	Dm	10	43	50	2,5
TSS-380	11	Be	40	175	250	2.5
TSS-382	11	Be	70	113	350	5
TSS-384	11	Be	10	38	200	5
TSS-385	11	Be	70	50	200	2,5
TSS-387	¢1	Dm	30	38	30	2,5
TSS-388		Dm	180	31	50	2.5
TSS-389		Gt	50	43	40	2.5
TSS-391	lt	Gt	120	31.	100	5
TSS-392		Gt	5	38	40	0

Sample No.	Locality	Geological Unit	Cu (ppm)	Pb (ppm)	Zn (ppm)	Мо (ррт)
TSS-393	J42-b4	Dm	55	63	60	0
TSS-394	11	Dm	15	56	80	0
TSS-395	tt	Dm	20	175	90	0
TSS-396	n	Dm	10	100	60	2.5
TSS-397	11	Dm	20	725	200	2.5
TSS-399	11	Dm	0	75	90	0
TSS-400	11	Dm	5	63	70	5
TSS-401	11	Gt	15	75	90	7.5
TSS-402	ŧı	Gt	15	63	80	7.5
TSS-403	\$t	Gt	40	75	50	5
TSS-404	11	Gt	5	88	40	2.5
TSS-407	11	Dm	5	81	60	2.5
TSS-408	tı	Dm	20	56	110	7.5
TSS-409	11	Dm	10	38	80	2,5
TSS-410	11	Dm	10	56	50	0
TSS-411	F1	Dm	10	68	80	5
TSS-412	11	Dm	10	87.5	100	2.5
TSS-413	11	Dm	5	75	150	2,5
TSS-414	11	Dm	5	88	70	0
TSS-415	11	Dm	5	81	70	2.5
TSS-416	11	Dm	20	81	70	5
TSS-417	11	Dm	15	31	130	2.5
TSS-418	ŧt	Dm	10	25	50	2.5
TSS-419	11	Dm	20	25	160	2.5
TSS-420	11	Dm	10	38	200	2,5
TSS-421	11	Dm	10	18	90	2.5
TSS-422	11	Dm	15	31	100	2.5
TSS-423	11	Dm	60	162	270	5
TSS-424	\$1	Dm	15	38	100	2.5
TSS-425	n	Dm	10	38	60	2.5
TSS-429	11	Gt	15	43	40	2.5
TSS-430	11	Gt	20	50	130	2.5
TSS-431	11	Gt	10	31	30	2.5
TSS-432	ft	Gt	20	50	130	
TSS-433	н	Gt	90	50	110	5

Sample No.	Locality	Geological Unit	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mo (ppm)
TSS-434	J42-b4	Gt	20	63	40	5
TSS-435	T I	Gt	60	50	80	5
TSS-436	11	Gt	20	56	50	2.5
TSS-437	11	Gt	10	31	40	2.5
TSS-438	<u>91</u>	Ве	50	50	40	2.5
TSS-439	J42-C1	Gt	30	31	40	2.5
TSS-440	11	Gt	55	13	30	2.5
TSS-441	11	Gt	30	13	30	2.5
TSS-442	11	Gt	55	31	60	2.5
TSS-444	11	Gt	65	50	60	7.5
TSS-445	11	Gt	5	31	40	2.5
TSS-446	11	Gt	40	50	70	2,5
TSS-447	11	Gt	45	63	30	5
TSS-448	Ħ	Dm	5	31	60	2.5
TSS-449	11	Dm	5	50	300	2.5
TSS-450	J42b4	Dm	10	50	180	2.5
TSS-451	J42-C1	Dm	110	75	260	2,5
TSS-453	J42-b4	Dm	15	125	430	0
TSS-454	11	Dm	20	18	350	0
TSS-455	11	Dm	20	100	310	2.5
TSS-456	J42-C1	Dm	5	38	220	5
TSS-458	J42-b4	Dm	8	525	750	5
TSS-459	11	Dm	30	75	100	5
TSS-461	t I	Dm	25	262	110	2.5
TSS-463	11	Dm	15	150	20	2.5
TSS-464	U.	Dm	5	63	60	0
TSS-465	H	Dm	30	70	70	2.5
TSS-466	11	Dm	25	63	110	2.5
TSS-467	11	Dm	20	50	70	2.5
TSS-468	11	Dm	10	44	40	2.5
TSS-469	J42-C1	Dm	55	68	20	5
TSS-470	11	Dm	10	75	10	2,5
TSS-471	11	Dm	5	31	40	2.5
TSS-473	11	Be	25	56	80	2.5
TSS-474	ti	Be	15	475	220	2.5

Sample No.	Locality	Geological Unit	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mo (ppm)
TSS-475	J42-C1	Be	65	38	60	5
TSS-476	11	Gt	90	1.00	50	5
TSS-477	TI	Gt	40	81	90	2,5
TSS-478	91	Dm	10	63	30	10
TSS-479	11	Be	140	31	60	2.5
TSS-480	Þt	Dm	15	50	10	5
TSS-481	11	Dm	15	13	20	5
TSS-486	и	Dm	10	25	50	2.5
TSS-493	J42-b4	Dm	15	75	160	10
TSS-494	11	Dm	5	75	120	5
TSS-495	11	Dm	15	75	70	10
TSS-496	<i>†</i> 1	Dm	50	75	80	5
TSS-497	t t	Dm	40	63	70	10
TSS-498	11	Dm	15	63	85	10
TSS-499	£1	Dm	30	94	115	5
TSS-500	11	Dm	130	63	300	5
TSS-501	11	Dm	25	13	120	2.5
TSS-503	63	Dm	15	25	125	2.5
TSS-504	11	Dm	45	50	125	2.5
TSS-505	۱۱ ۱۱	Dm	10	38	100	2.5
TSS-506	11	Dm	20	75	90	5
TSS-507	ti .	Dm	4	44	75	2.5
TSS-508	f1	Dm	30	63	100	10
TSS-509	11	Dm	30	57	90	5
TSS-510	ri	Dm	35	75	60	10
TSS-514	J42-C1	Gt	80	88	180	10
TSS-515	11	Gt	85	63	90	5
TSS-516	11	Gt	60	63	75	2.5
TSS-517	11	Gt	70	38	80	2.5
TSS-518	t1	Gt	140	75	90	2.5
TSS-519	11	Gt	180	50	110	2.5
TSS-520	<u>ر</u> ز	Gt	65	50	120	5
TSS-521	\$\$	Gt	60	57	100	5
TSS-522	11	Gt	65	63	70	2.5
TSS-523	1 <i>t</i>	Gt	45	57	45	5

Sample No.	Locality	Geological Unit	Cu (ppm)	Pb (ppm)	Zn (ppm)	Мо (ррт)
TSS-524	J42-C1	Gt	90	50	55	5
TSS-525	11	Gt	10	69	65	5
TSS-526	п	Gt	70	63	70	5
TSS-527	11	Gt	50	50	80	2.5
TSS-528	17	Gt	10	50	80	2.5
TSS-529	J42-b4	Dm	15	50	65	2,5
TSS-530	£1	Dm	15	63	100	2.5
TSS-531	11	Dm(Dt)	15	50	80	2,5
TSS-532	н	Dm	20	82	100	2.5
TSS-533	11	Dm	15	113	145	2.5
TSS-534	t1	Dm	5	50	95	7.5
TSS-536	11	Dm(Dt)	20	44	100	5
TSS-537	11	Dm(Dt)	20	50	90	5
TSS-538	11	Dm(Dt)	45	63	125	10
TSS-539	ti	Dm	50	75	100	10
TSS-540	11	Dm	10	50	75	7.5
TSS-541	It	Dm	35	38	135	5
TSS-542	H	Dm	20	69	130	5
TSS-543	11	Dm	20	63	75	2.5
TSS-544	17	Dm	20	75	65	5
TSS-545		Dm	5	75	60	5
TSS-553	tt	Dm	35	63	65	5
TSS-554	11 11	Dm	30	63	115	5
TSS-555	11	Dm	5	63	60	5
TSS-557	J42-C1	Dm	25	63	40	5
TSS-558	tr	Dm	20	63	45	10
TSS-559	16	Dm	40	88	45	5
TSS-560	N	Dm	30	82	55	10
TSS-561	11	Dm	30	57	75	10
TSS-562	11	Dm	70	75	85	7.5
TSS-563	11	Dm	30	75	45	5
TSS564	11	Dm	25	50	20	5
TSS-565	11	Dm	40	75	60	5
TSS-566	11	Dm	30	107	55	5
TSS-567	H	Dm	30	125	60	7.5

Sample No.	Locality	Geological Unit	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mo (ppm)
TSS-568	J42-b4	Dm	30	94	60	7.5
TSS-569	11	Dm	25	63	65	7,5
TSS-570	91	Dm	20	75	90	7.5
TSS-571	17	Dm	40	50	100	7.5
TSS-572	11	Dm	40	75	85	7.5
TSS-573	11	Dm(Dt)	15	50	50	7.5
TSS-574	J42-C1	Dm	30	119	145	10
TSS-575	tt.	Dm	35	94	13	12,5
TSS-576	tr	Dm	30	75	100	10
TSS-579	11	Dm(Dt)	15	19	50	7.5
TSS-580)1	Dm	50	31	150	5
TSS-581	91	Dm	35	31	60	5
TSS-582	11	Dm	45	25	140	5
TSS-585	J42/b4	Dm	35	44	85	5
TSS-586	17	Dm	70	275	140	5
TSS-587	11	Dm	70	325	210	2,5
TSS-589	J42-C1	Gt(G0)	520	4500	430	25
TYS-249	J42-b4	Ке	70	50	90	2.5
TYS-250	11	Ке	170	38	40	5
TYS-251	11	Ke	55	25	50	0
TYS-252	ti -	Ke	10	13	40	2.5
TYS-254	91	Ke	310	25	50	2.5
TYS-255	11	Ке	110	25	20	37,5
TYS-257	11	Gt	50	25	60	2.5
TYS-259	n	. Ke	200	400	690	7.5
TYS-261	11	Dm(Dt)	90	563	400	2.5
TYS-262	11	Dm(Dt)	40	75	80	2.5
TYS-265	11	Gt	80	50	30	10
TYS-266	11	Dm	50	75	70	7.5
TYS-267	11	Dm	40	50	30	15
TYS-268	"	Dm	10	38	30	2.5
TYS-269	J42-C1	Be	10	38	40	2,5

Sample No.	Locality	Geological Unit	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mo (ppm)
TYS-270	J42-C1	Be	20	75	70	5
TYS-271	TT TT	Gt	110	50	90	5
TYS-272	11	Gt	60	32	100	5
TYS-275	t!	Dm	10	13	60	5
TYS-276	ft	Dm	10	13	60	5
TYS-277	J42-C2	Dm	50	25	80	5
TYS-278	J42-C1	Dm	50	38	60	5
TYS-279	£1	Dm	20	25	60	5
TYS-280	ti	Dm	10	38	40	0
TYS-283	11	Dm	30	50	60	5
TYS-285	ri	Ве	20	125	80	7.5
TYS-287	11	Be	80	93	250	2.5
TYS-289	11	Ke	30	31	260	0
TYS-290	Ir	Dm	15	38	140	0
TYS-292	FI FI	Dm	15	38	130	2.5
TYS-293	11	Dm	40	25	170	0
TYS-294	La	Dm	5	13	90	2,5
TYS-295	n	Dm	35	25	90	2,5
TYS-297	11	Ke	30	31	220	2.5
TYS-298	11	Dm	50	38	310	2.5
TYS-299	31	Dm	20	31	140	2.5
TYS-300	11	Dm	20	25	170	2,5
TYS-301	11	Dm	10	31	90	0
TYS-302	11	Dm	20	38	80	0
TYS-303	11	Dm	20	187	540	2.5
TYS-304	J42-b4	Dm	15	50	90	7.5
TYS-305	н	Dm	10	38	120	7.5
TYS-306	J42-C1	Ke	40	50	110	7.5
TYS-307	21	Ke	30	50	200	2.5
TYS-308	17	Ke	60	63	170	2.5
TYS-309	J42-b4	Ke	50	50	180	2.5
TYS-310	17	Dm	10	38	130	2.5
TYS-311	11	Ke	60	68	110	0
TYS-312	18	Dm	20	50	140	2.5
TYS-313	11	Dm	5	50	50	2,5

Sample No.	Locality	Geological Unit	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mo (ppm)
TYS-314	J42-b4	Ke	65	63	130	5
TYS-315	11	Be	40	50	80	5
TYS-316	11	Be	25	63	90	2.5
TYS-318	11	Dm	30	44	95	5
TYS-319	11	Dm	75	163	360	2.5
TYS-320	17	Dm	30	63	120	2.5
TYS-321	11	Dm	35	57	145	5
TYS-323	TP	Dm	35	50	95	5
TYS-324	11	Dm	35	38	95	5
TYS-325	11	Dm	45	38	100	5
TYS-326	11	Dm	25	38	120	5
TYS-328	11	Dm	50	38	65	5
TYS-329	ţţ.	Dm	35	25	95	2.5
TYS-330	r1	Dm	50	44	125	5
TYS-331	n	Dm	20	118	135	2.5
TYS-332	11	Dm	5	31	90	2.5
TYS-333	11	Dm	5	38	150	2.5
TYS-334	17	Dm	10	25	60	5
TYS-335	11	Dm	5	38	110	5
TYS-336	91	Dm	40	63	140	5
TYS-337		Dm	45	63	125	7.5
TYS-338	11	Dm	75	38	90	5
TYS-339	11	Dm	75	69	100	7.5
TYS-340	11	Dm	55	1750	110	5
TYS-341	11	Dm	10.5	50	130	5
TYS-342	17	Dm	5	25	125	7.5
TYS-343	п	Dm	15	38	120	2.5
TYS-344	J42-C1	Gt	60	75	140	5
TYS-345	17	Gt	60	75	100	2.5
TYS-346	17	GĽ	70	63	145	2.5
TYS-347	13	Gt	85	512	365	10
TYS-349	11	Gt	60	69	75	7.5
TYS-350	11	Gt	65	63	95	7.5
TYS-351	11	Gt	80	125	250	5
TYS-352	13	Gt	35	63	95	5

•

Sample No.	Locality	Geological Unit	Cu (ppm)	Pb (ppm)	Zn (ppm)	Мо (ррш)
TYS-353	J42-C1	Gt	65	100	100	5
TYS-354	11	Gt	85	107	75	7.5
TYS-355	Tt	Gt	80	175	160	5
TYS-356		Gt	35	88	110	5
TYS-357	1t	Gt	200	125	100	2.5
TYS-358	11	Gt	120	82	85	2.5
TYS359	11	Gt	75	56	45	5
TYS-360	11	Gt	70	56	60	2.5
TYS-361	F1	Gt	90	112	120	5
TYS-363	Là	Gt	320	225	80	5
TYS-365	J 42—b4	Dm(Dt)	40	88	85	5
TYS-366	11	Dm	5	69	45	5
TYS-367	F1	Dm	3	81	75	2.5
TYS-368	18	Dm	10	13	85	5
TYS-369	11	Dm(Dt)	5	25	85	5
TYS-370	11	Dm(Dt)	50	38	140	10
TYS-371	t9	Dm(Dt)	5	25	100	7.5
TYS-375	17	Dm	35	38	100	7.5
TYS-376	11	Dm	10	38	85	7.5
TYS-377	11	Dm	20	38	95	2.5
TYS-378	11	Dm(Dt)	40	38	85	5
TYS-380	11	Dm	30	50	120	2.5
TYS-381	11	Dm	45	38	75	5
TYS-382	11	Dm(Dt)	30	50	85	5
TYS-383	! 1	Dm(Dt)	50	75	85	5
TYS-388	J42-C1	Dm	20	119	85	2.5
TYS-389	£1	Dm	25	57	85	5
TYS-390	11	Dnı	5	50	60	2.5
TYS-391	11	Dm	30	75	75	2.5
TYS-392	J42-b4	Dm	1,5	57	125	2.5
TYS-393	11	Dm	40	88	160	5
TYS-394	11	Dm	60	50	180	2.5
TYS-395	11	Dm	30	63	100	2.5
TYS-396	11	Dm	20	50	115	2.5
TYS-397	J42-C1	Dm	30	150	120	2.5

· · ·

.

1 7 1