APPER N.D.I.C.E.S

Appendix 1 List of rock samples

Appendix: 22 Microscopic Observation of thin section Appendix: 33 Microscopic Observation of polished section Appendix: 4 Microphotographs of thin section

Appendix 4 Microphotographs of thin section Appendix 5 Microphotographs of polished section

Appendix 6. Chemical composition of ore samples

Appendix 17: Results of X-ray diffraction test

Appendix 28-12 Chemical analysis of soil samples

ž na 1997 – Ender Stander Van Berner († 1997) 1997 – Ender Stander († 1997) ~ _ . . - .

Appendix 1: List of rock samples

(1) Tunceli area

Sample No.		Coordi		Thin Sec-	Po-	X-ray	Analy
		N	E	tion	lish		sis
TAR 009	Kört .	43 49 100			0		0
TAR 035	Kamislik	43 33 400	5 28 600	0			
TAR 045	Sultanscyit Tepe	43 33 400		<u> </u>			
TAR 053	Sarısaltık	43 35 550	5 19 600	0			
TAR 118	Mamlis ,	43 43 300	5 24 200				· 0
TAR 119	Mamlis	43 43 300	5 24 200		0		0
TAR 120	Mamlis	43 43 300	5 24 200				٥
TAR 224	Gözerek Tepe	43 56 400	5 30 950	0			
TAR 231	Mamlis	43 43 550	5 24 50		٥		0
TAR 232	Mamlis	43 43 450	5 23 925		0		
TAR 241	Varsilliyayla	43 43 750	5 27 550		0		
TAR 242	Venk	43 47 500	5 33 100	0			
TAR 351	Kurç Tepe	43 44 50	5 29 100			0	
TER 224	Mamlis	43 43 950	5 25 950				0
TMR 058	Kopkömü	43 48 800	5 39 750	0			
TMR 314	Garipuşağı	43 45 250	5 26 850				0
TMR 317	Garipuşağı	43 44 650	5 27 200		0		0
TMR 319	Karakaya	43 32 850	5 17 150	0			
TSR 016	Sorsivenk	43 54 900	5 30 100		0		0
TSR 039	Türk Tepe	43 51 700	5 31 350	0			
TSR 040	Türk Tepe	43 51 150	5 31 500	0			
TSR 324	Sin	43 37 50	5 34 950		0		
TSR 347	Mamlis	43 42 750	5 23 350				0
TSR 356	Mamlis	43 43 250	5 20 800				0
TSR 358	Mamlis	43 42 750	5 24 100		0		
TSR 462	Büyüktepeler	43 45 250	5 28 800			o	
TSR 483	Dikenli	43 42 100	5 29 300			i	0
TSR 485	Dikenli 🖇	43 42 300	5 29 950			0	
TSR 489	Aynalipozvenk	43 47 750	5 29 650			0	
TSR 550	Garipuşağı	43 45 450	5 26 950			o	
TSR 552	Garipuşağı	43 45 200	5 26 790				0
TSR 583	Aşagı Mamlis	43 44 410	5 25 050				0
TSR 590	Doludibek	43 43 800					0
TSR 597	Kultepe	43 44 750				0	
					!	-	I

.

÷...* `

Sample No.	Locality		inates	Thin Sec-	Po-	X-rav	Anal
	· 	N	E	tion	11sh	X-ray	sis
TWR 239	Mamlis		5 22 700	<u> </u>			<u> </u>
TYR 003	Murir Tepe		5 23 250	0			
M-1	Mamlis	43 42 950	5 24 650				0
M-2	Mamlis	43 42 900	5 24 500		i		٥
M-4	Mamlis	43 42 850	5 24 100	-	<u>_</u>		0
M-5	Mamlis	43 42 800	5 23 900				0
м-9	Mamlis	43 42 750	5 23 400				0
M-11	Mamlis	43 43 300	5 23 550				0
м-21	Gözerek Tepe	43 42 700	5 22 850				0
м-33	Gözerek Tepe	43 42 800	5 23 100				0
M-50	Mamlis	43 43 250	5 20 800				o
S-4	Sin Mah	43 37 000	5 35 000				0
S-5	Sin Mah	43 37 000	5 34 950				0
S-6	Sin Mah	43 37 100	5 34 950				0
S-7	Sin Mah	43 37 150	5 34 900	1			0
	Total 🛠			10	9	6	30
							<u> </u>
			<u></u>	<u> </u>	<u> </u>	 	
					<u> </u>		
			<u> </u>	<u> </u>			
	<u> </u>				<u> </u>		
				1			
				 			
				<u> </u>			
							<u> </u>
					<u>}</u>		┣—
			<u> </u>				
				 	i		<u> </u>
			<u> </u>	<u> </u>	 		
					<u> </u>		

(1) Tunceli area (cont'd)

(2) Kopdağ area

Sample No.	Locality	Coord	inates	Thin	Po-		Analy
		N	Е	Sec-	1ish	X-ray	sis
KM-201	C Kafa, Ezan	26.998	7.437	0			
KM-202	B Kafa, Ezan	26.808	7.111		-	0	
КМ-203	н	26,865	7.076			0	
KM-204	Sulu Ocak, Ezan	26.718	7.744	0			
KM-205	11	27.085	8.006	0			
км-206	Central Coşan	30.184	18.804			0	
КМ-207	17	30.240	18.805	0			
КМ-208	Southern Coşan	29.927	18.670	0		0	
KM-209	Southern Coşan	30.052	18,722			0	
КМ-210	Northern Coşan	30.583	18.977			0	
KM-211	n .	30.573	18.975	0			
KG-201	Civelek, Ezan	26.160	6.370	0			
KC-202	11	26.160	6.370	0			
KC-203	Northern Coşan	30.650	18.935	0			
KC-204	Trench TJT-1, Sulu Ocak	27.082	7.856		o		o
кс-205	()	27.082	7.856				0
KC-206	Trench TJT-2, Sulu Ocak	27.050	7.848				ο
кс-207	и	27.050	7.858		ο		o
кс-208	11	27.050	7.860				ο
KC-209	Trench TJT-3, Sulu Ocak	27.030	7.866		0		0
КС-210	11	27.028	7.876				o
KC-211	17	27.028	7.880				0
KC-212	11	27.028	7.880	1	0		о
KC-213	t9	27.025	7.908				0

•

• • •

A-3

~

(2)	Kopdağ	area	(cont'	d)
-----	--------	------	--------	----

Sample No.	Locality	Coord:	inates	Thin	Po-	x	Analy-
pambre Mor	Locarity	N	E	tion	Po- lish	X-ray	sis
KC-230	Ortra Ezan	26.582	7.420	0			
KC-231		26.580	7.420	0			
KC-232	Batı Ezan	26.790	6.710	0			
KC-233	Doğu Ezan	26.620	7.385	0			
кс-234	Southern Coşan	30.017	18.689	0			
кс-236	Southern Coşan	30.805	18.828	0			
KC-237	Northern Coşan	30,488	18.864	0			
кс-238		30.486	18.847	0			
кс-249	Sulu Ocak	27.12	8.08				0
кс-250	11	27.14	8.08				0
KC-251	π,	27.20	8.12				0
кс-259	Central Coşan	30.312	18.796		0		
	Drilling TJ-1, 69.5 m	26.356	6.846	0			
	" TJ-2, 64.0 m	26.422	6.630	0			
	" TJ-3, 26.0 m	26.905	6.810	0			
	" TJ-4, 12.5 m	27.216	7.660	0			
	" TJ-4, 20.30 m	27.216	7.660	0	-		
	" TJ-5, 60.00 m	26.888	7.000	0			
	" TJ-5, 70.00 m	26.888	7.000	0			
	" TJ-6, 34.0 m	26.926	7.245	0			
	" TJ-8, 61.0 m	26.600	7.035	0			
	" TJ-2, 23.20 m	26.422	6.630			0	•.·· ·
	" TJ-4, 45.0 m	27.216	7.660			0	
	" TJ-6, 35.0 m	26.926	7.245			0	
	" TJ-7, 16.20 m	27.125	7.655			0	
	Total		,	27	9	11	32

•

. '

Appendix 2: Microscopic observation of thin section a) Tunceli area

Res Sample No. Locality Microscopic features s TAR 242 Venk The rock shows a microfold texture, and is mainly composed of muscovite, calcite and quartz. TR 058 Kopkömü The rock shows a clastic texture, and is mainly composed TSR 040 Türk tepe The rock shows a clastic texture, and is mainly composed of calcite. size of calcite is < lum, fossils were found TSR 040 Türk tepe The rock shows a clastic texture, and is mainly composed of calcite size of calcite is < lum, fossils were found TSR 040 Türk tepe The rock shows a clastic texture, and is mainly composed of calcite size of calcite is < lum, fossils were found TAR 035 Kamişlık The rock cancis and siliceous fragment. fossils were found in ti. TAR 035 Kamişlık The rock contains organic debris, rounded fossils and cial TAR 033 Sarısaltık The rock contains organic debris, rounded fossils and frepe TAR 033 Sarısaltık The rock contains organic debris, rounded fossils and cial Tepe Tagoclase and utile-canonate, and talc, and shows porphyritic e TAR 224 Gözerek Tepe The rock consists of a large amount of rinnopyrosene, r </th <th>Tunceli</th> <th>l area</th> <th></th> <th></th> <th></th>	Tunceli	l area			
sTAR 242VenkThe rock shows a microfold texture, and is mainly composed of muscovite, calcite and quartz.TMR 058KopkömüThe rock shows a clastic texture, and is mainly composed of calcite. size of calcite is < lmm, fossils were found in it.TSR 040Türk tepeThe rock shows a clastic texture, and is mainly composed of calcite. size of calcite is < lmm, fossils were found in it.TSR 040Türk tepeThe rock shows a clastic texture, and is mainly composed of calcite and siliceous fragment. fossils were found in it.TSR 040Türk tepeThe rock shows a clastic texture, and is mainly composed of calcite and siliceous fragment. fossils were found in it.TAR 035KamiglikThe rock remains unaltered. A large amount of fragments consists of hornblende dacite, a little quartz and plagioclase occupy interspaces.TAR 053SartsaltikThe rock consists of a large amount of clinopyroxene, a little carbonate, and talc, and shows porphyritic texture.TAR 224Gözerek TepeThe rock remains unaltered. Plagioclase and a little carbonate, and talc, and shows porphyritic texture.TYR 003Murir TepeThe rock remains unaltered. Plagioclase and augite phenocrysts lie in a matrix of rich in plagioclase and pyroxene.TMR 319KarakayaThe rock remains unaltered and shows a porphyritic texture.TMR 319KarakayaThe rock remains unaltered and shows a porphyritic texture.TMR 319KarakayaThe rock remains unaltered and shows a porphyritic texture.	Rock name				Formation
TMR 058KopkömüThe rock shows a clastic texture, and is mainly composed of calcite. size of calcite is < lmm, fossils were found in it.TSR 040Türk tepeThe rock shows a clastic texture, and is mainly composed of calcite and siliceous fragment. fossils were found in it.TAR 035KamışlıkThe rock shows a clastic texture, and is mainly composed of calcite and siliceous fragment. fossils were found in it.TAR 035KamışlıkThe rock shows a clastic texture, and is mainly composed of calcite and siliceous fragment. fossils were found in it.TAR 035KamışlıkThe rock remains unaltered. A large amount of fragments consists of hornblende dacite, a little quartz and plagioclase occupy interspaces.TAR 053SarısaltıkThe rock contains organic debris, rounded fossils and fossil fragments are embedded in a fine-grained calcite matrix.TAR 224Gözerek TepeThe rock consists of a large amount of clinopyroxene, a little carbonate, and talc, and shows porphyritic texture.TAR 214Gözerek TepeThe rock remains unaltered. Plagioclase and augite phenocrysts lie in a matrix of rich in plagioclase and pyroxene.TMR 319KarakayaThe rock remains unaltered and shows a porphyritic texture.TMR 319KarakayaThe rock remains unaltered and biotite.	Calacreous schist	TAR 242	Venk	e,	Munzur F.
TSR 040Türk tepeThe rock shows a clastic texture, and is mainly composed of calcite and siliceous fragment. fossils were found in it.rAR 035Kamışlıkrencok remains unaltered. A large amount of fragments consists of hornblende dacite, a little quartz and 	Limestone	TMR 058	Kopkömü	e rock shows a clastic texture, and is mainly composed calcite. size of calcite is < 1mm, fossils were found it.	Munzur F.
KamiglikThe rock remains unaltered. A large amount of fragments consists of hornblende dacite, a little quartz and plagioclase occupy interspaces.SarisaltikThe rock contains organic debris, rounded fossils and fossil fragments are embedded in a fine-grained calcite matrix.SarisaltikThe rock contains organic debris, rounded fossils and fossil fragments are embedded in a fine-grained calcite matrix.Gözerek TepeThe rock consists of a large amount of clinopyroxene, 	Limestone	TSR 040	Türk tepe	texture, and is mainly fragment. fossils were	Bentepe F.
TAR 053SarisaltikThe rock contains organic debris, rounded fossils and fossil fragments are embedded in a fine-grained calcite matrix.Papecalcite matrix.TAR 224Gözerek TepeTAR 224The rock consists of a large amount of clinopyroxene, a little carbonate, and talc, and shows porphyritic 	itic E-breccia	TAR 035	Kamışlık	A large amount of fragments te, a little quartz and ces.	Düzpelit F.
TAR 224Gözerek TepeThe rock consists of a large amount of clinopyroxene, a little carbonate, and talc, and shows porphyritic texture.TYR 003Murir TepeThe rock remains unaltered. Plagioclase and augite phenocrysts lie in a matrix of rich in plagioclase and pyroxene.TMR 319KarakayaThe rock remains unaltered and shows a porphyritic texture. Plagioclase, biotite, hornblende and augite phencrysts lie in a matrix grass rich in plagioclase, quartz, hornblende and biotite.	estone	TAR 053	Sarısaltık Tepe	rounded fossils and 1 fine-grained	Tırnas F.
TYR 003Murir TepeThe rock remains unaltered. Plagioclase and augite phenocrysts lie in a matrix of rich in plagioclase and pyroxene.TMR 319KarakayaThe rock remains unaltered and shows a porphyritic texture. Plagioclase, biotite, hornblende and augite phencrysts lie in a matrix grass rich in plagioclase, quartz, hornblende and biotite.	no- oxeníte	TAR 224	Gözerek Tepe	consists of a large carbonate, and talc,	Ophiolite belt
TMR 319 Karakaya The rock r texture. phencrysts quartz, ho	oxene esite		Murir Tepe	Plagioclase and augite of rich in plagioclase and	Savular F.
	ite		Karakaya	The rock remains unaltered and shows a porphyritic texture. Plagioclase, biotite, hornblende and augite phencrysts lie in a matrix grass rich in plagioclase, quartz, hornblende and biotite.	

a) Tunceli area (cont'd)

Rock name	Sample No.	Sample No. Locality	Microscopic features	Formation
Dacite	TSR 039	Türk Tepe	The rock remains unaltered and shows a porphyritic texture. Plagioclase and hypersthene phenocrysts lie in a matrix glass rich quartz, plagioclase and pyroxene.	
Diorite	TAR 045	Sultanseyit Tepe	The rock shows a hollocrystalline texture and consists of Daloren diorite plagioclase, augite, olivine, biotite and magnetite.	Daloren diorite

,

~

<u>}</u>.

.

.

Rock name	Sample No.	Locality	Microscopic features	Original rock
-48.0	KC 201	Civelek Ocak	The rock consists of 75% clinopyroxene, 20% serpentine, 2% orthopyroxene, 2% chromite and 1% brucite. Euhedral chromite is present in clinopyroxene.	,
Clino- pyroxene	KC 231	Orta Ezan	The rock consists of 90% clinopyroxene, 5% serpentine, 2% chromite, 1% calcite and 2-3% chromiangarnet. Euhedral chromite is present in clinopyroxene, calcite vein along a fracture in clinopyroxene was observed.	· ·
	KM 204	Sulu Ocak	The rock consists of 90% clinopyroxene, 2-3% orthopyroxene, 2-3% chromiangarnet and 5% serpentine. Fracture structure is dominant, calcite vein was observed along it.	
Harzburgite	KC 232	Batı Ezan	The rock consists of 87% olivine, 5% serpentine, 5% orthopyroxene and 3% chromite. Olivine is 3 mm in size, and aggregation of olivine has a granular texture. Alteration indicates first stage of serpentinization.	
	KC 202	Civelek Ocak	The rock consists of 90% serpentine, 7% magnetite and 3% chromite. Serpentine replacing olivine or pyroxene has not a mesh texture, judging from the shape of serpentine, olivine, and also pyroxene was converted serpentine.	Dunite (?)
Serpentinite	KC 203	Coşan	The rock consists of 60% serpentine, 30% brucite, 6% magnetite, 2% pyrite and 1% chromite. Serpentine has Du mosaic texture, brucite is fine-grained and clustered.	Dunite
	KC 230	Orta Ezan	The rock consists of 87% serpentine, 10% chromite and 3% carbonate. Serpentine with dominant mesh texture, Du bastite is not present.	Dunite

b) Kopdağ area

٠

A-7

	Original rock	Dunite	Dunite *	Dunite	Dunite		Dunite	Orthopyroxinite	e Dunite
	Microscopic features	The rock consists of 85% serpentine, 10% brucite and 5% chromite. Seprentine with dominant mesh texture, Chromite is < 0.6 mm in size, its crystal is cubic.	The rock consists of 95% serpentine and 5% chromite. Serpentine has a mosaic texture, chromite is < 0.7 mm in size, its crystal is cubic.	The rock consists of 80% serpentine, 10% brucite, 7% chromite and 3% talc. Serpentine has mosaic texture, spotted brucite and veined talc < 0.1 mm in width are distributed in serpentine.	The rock consists of 92% serpentine, 3% brucite and 5% chromite. Serpentine has a dominant mesh texture, bastite is not present, brucite is lath-shaped and cuts the mesh texture.	The rock consists of 95% serpentine, 3% brucite and 2% chromite. Serpentine and brucite have mesh texture, bastite is not present.	The rock consists of 85% serpentine, 10% brucite and 5% chromite. Serpentine has a mosaic texture, prismatic brucite is < 0.2 mm, granular chromite is < 0.35 mm.	The rock consists of 92% serpentine, 5% chromite and 3% calcite. Serpentine is fibrous and has bastite texture, almost all of serpentine is considered to be altered from orthopyroxene.	The rock consists of 80% serpentine, 10% brucite and 10% chromite. Serpentine exhibits a mesh texture, granular chromite is $< 0.5 \text{ mm}$, the olivine is completely altered to serpentine, and yet the original shape of each olivine crystal can be recognized.
(1)	Locality	Doğu Ezan	Coşan	Coşan	Sulu Ocak	Coşan	Coşan	Coşan	69.50 m
area (cont'd)	Sample No.	KC 233	KC 234	KC 236	KC 205	KM 208	КС 237	KC 238	Γ-Ω.
b) Kopdağ area	Rock name	Serpentinite (cont'd)				×			

(cont'd)
area
Kopdeğ
(q

•

Ţ						
Original rock	Dunite (?)	Dunite (?)	Dunite (?)	Harzburgite (?)	Dunite	Dunite
Microscopic feature	The rock consists of 85% serpentine, 10% chromite and 5% brucite. Serpentine exhibits a mosaic texture, cubic and granular chromite is < 0.5 mm, brucite is < 0.35 mm in length.	The rock consists of 70% serpentine, 20% brucite and 10% chromite. Serpentine exhibits a wood louse-like texture, brucite of veined aggregation is < 0.7 mm, granular and cubic chromite is < 1.2 mm.	The rock consists of 70% serpentine, 20% brucite, 4% kaemmererite, 4% chromite and 2% talc. Serpentine exhibits a wood louse-like texture, brucite of veined aggregation is < 0.2 mm, cubic and granular chromite is < 0.9 mm, veined talc is < 0.15 mm in width.	The rock consists of 70% serpentine, 7% uvarovite, 6% brucite, 5% chromite, 3% talc, 2% calcite and 7% Fe-Ti oxide. Serpentine exhibits a wood louse-like texture, size of uvarovite and chromite is < 0.5 mm and < 0.35 mm, a small amount of serpentine is considered to be altered from orthopyroxene.	The rock consists of 60% serpentine, 25% chromite and 15% brucite. Serpentine has a mesh texture, and exhibits a wood louse-like texture along fractures, granular and massive chromite is < 1.2 mm.	The rock consists of 60% serpentine, 35% brucite and 5% chromite. Serpentine exhibits a mesh texture, prismatic brucite of < 0.7 mm is aggregated, granular chromite is < 0.7 mm.
Locality	64 . 00 m	26 . 00 m	12.50 m	20.30 m	60.00 H	70,00 #
Sample No.	TJ2	1J-3	1J-4	TJ-4	TJ-5	TJ5
Rock name	Serpentinite (cont'd)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				

- A- 9

Sandow 1a		(1		
Rock name	Sample No.	Locality	Microscopic features 01	Original rock
Serpentinite (cont'd)	TJ-6		The rock consists of 60% serpentine, 30% brucite, 8% chromite and 2% talc. Serpentine exhibits a mesh texture, Dur prismatic brucite of < 0.7 mm is aggregated, cubic and granular chromite is < 0.9 mm .	Dunite
+	TJ-6	61.00 m	The rock consists of 60% serpentine, 30% brucite, 5% chromite and 5% magnetite. Serpentine has a mesh texture, and exhibits a wood bur louse-like texture along fractures, granular chromite is < 0.35 mm.	Dunite
Disseminated ore	KM 201	C Kafa	The ore consists of 40% serpentine, 25% chromite, 17% kaemmererite, 3% uvarovite and 15% Fe-Ti oxide?. Granular and cubic chromite is fine grained (< 0.35 mm), Harkaemmererite is considered to be converted from orthopyroxene. (Fine-grained disseminated ore).	Harzburgite
Massive ore	KM.207	Coşan -	The ore consists of 50% serpentine and 50% chromite. Serpentine has a mesh texture, bastite is not present, granular chromite is coarse grained (< 2 mm). (Massive chromitite)	Dunite
Massive ore	KM 211	Coşan	The ore consists of 60% chromite, 20% serpentine and 20% brucite. Granular chromite is coarse grained (< 3.5 mm), ferritchromite is present in the fracture and cleavage of chromite. (Massive chromitite)	;
Massive ore	KC 259	Coşan "	The ore consists of a large amount of chromite and a trace amount of pyrite. Massive and granular chromite is > 3 mm, pyrite in gangue minerals is < 0.01 mm, networked gangue minerals (mainly serpentine) is present in chromite. (Massive chromitite)	~
-				

į

ı

.

۲<u>ـ</u>

. . . .

r

b) Kopdeğ area (cont'd)

4

Appendix 3: Microscopic observation of polished section

A large amount of hematite shows lath-shape (0.1 mm in length), Sphalerite > bornite > chalcopyrite > chalcocite.Chalcopyrite shows dotted shape in sphalerite. Pyrite, chalcopyrite > secondary copper mineral Chalcopyrite Chalcopyrite, pyrite, chalcocite > sphalerite Chalcocite is veinlet was found filling along crack of irregular pyrite. a trace of chalcopyrite (0.035 x 0.035 mm) was observed in granular pyrite is < $0.07 \times 0.1 \text{ mm}$, sometimes hematite and sulphide mineral and secondary oxide mineral could not be present around chalcopyrite (< 0.15 x 0.35 mm), cubic and A large amount of goethite shows irregular form, primary A large amount of hematite shows lath-shape, sometimes Galena (5 x 7 mm) \gg chalcopyrite (0.2 x 0.2 mm) sphalerite (0.15 x 0.15 mm) Microscopic feature Goethite was oberved. goethite were observed. found in the gossan. gangue minerals. irregular form. Pb-Zn quartz vein Cu-Pb-Zn ore Cu-Pb-Zn ore Zn-cu ore Cu-barite Ore Garipuşağı Gossan Gossan Gossan Sorsivenk Locality Varsillí Mamlis Mamlis Mamlis yayla Kört Sin Sample No. **TAR 119 TSR 358 TAR 009** TSR 016 **TSR 324 TAR 231 TAR 241** TMR 317 a) Tunceli area ore deposits Garipuşağı Kört mine Sorsivenk Varsíllí Mamilis Mamlis Name of Mamlis yayla Sin

^{5 I} -Â-11

Gossan

Mamlis

TAR 232

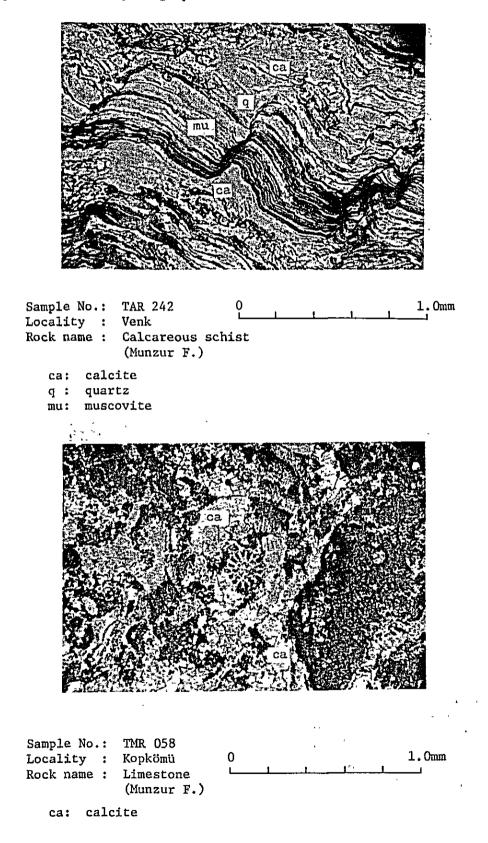
Mamlis

b) Kopdağ	area (cont'd)	(1			
Name of ore deposits	Sample No.	Locality	Ore	Microscopic feature	—
Coşan	KC 207	Central portion	Massive ore	Chromite > magnetite > pyrite Magnetite veinlets < 0.001 mm filling cracks in chromite, pyrite of > 0.007 mm distributed in gangue minerals.	<u> </u>
	KC 204	Sulu Ocak	Massive ore	Chromite >> magnetite >> pyrite Magnetite veinlets < 0.007 mm filling in chromite, cubic pyrite of < 0.15 mm being distributed in gangue minerals.	2
Ezan	KC 209	Sulu Ocak (TJT-3)	Massive ore	Chromite > magnetite > pyrite Magnetite veinlets < 0.001 mm filling cracks in chromite, pyrite of > 0.007 mm distributed in gangue minerals	· · · · · ·
	KC 212	Sulu Ocak (TJT-3)	Massive ore	Chromite >> pyrite Magnetite not found, pyrite < 0.02 mm distributed in gangue minerals.	* *
	-]
- - -		- - -	¢		
	· · · · · · · · · · · · · · · · · · ·				Bhul, van al
					-
	· · · ·				n
	• -			,	

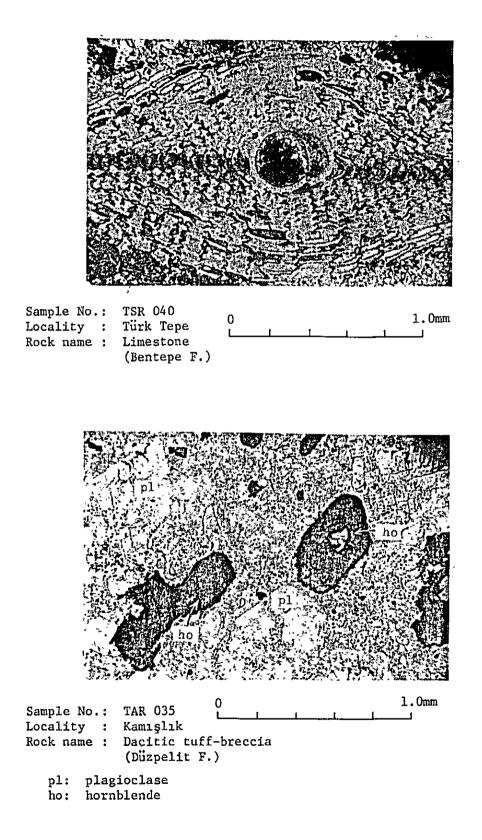
· · · · ·

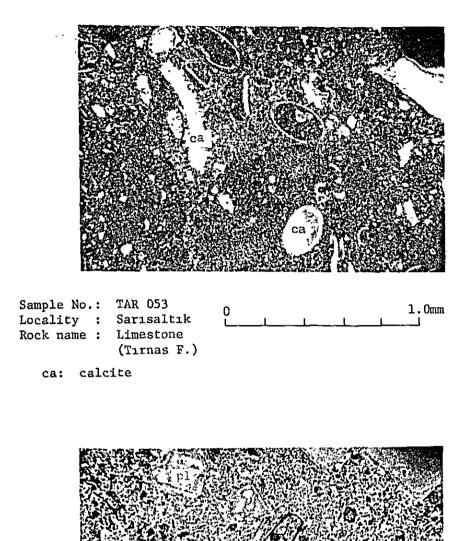
1

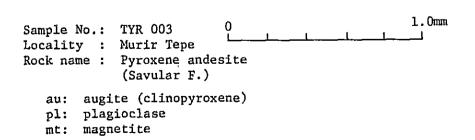
. . .

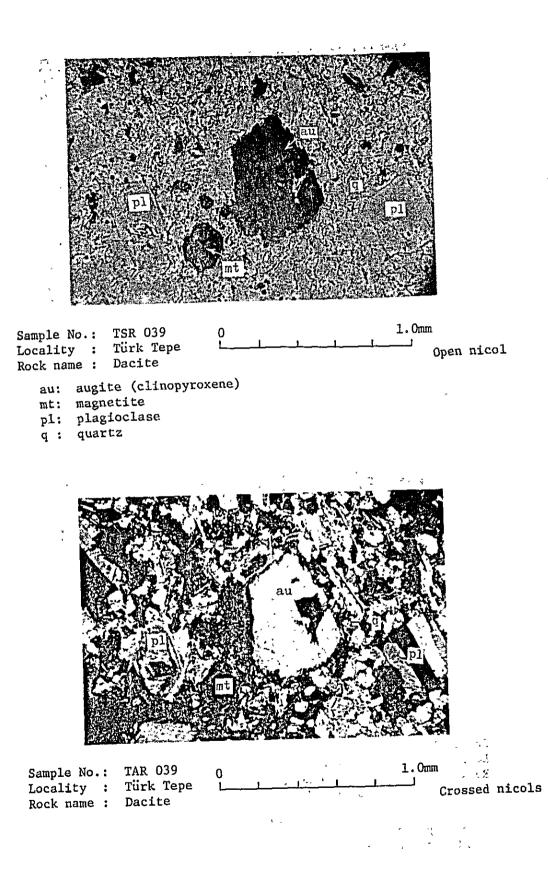

.

<u>;</u> (<u>A</u>-12

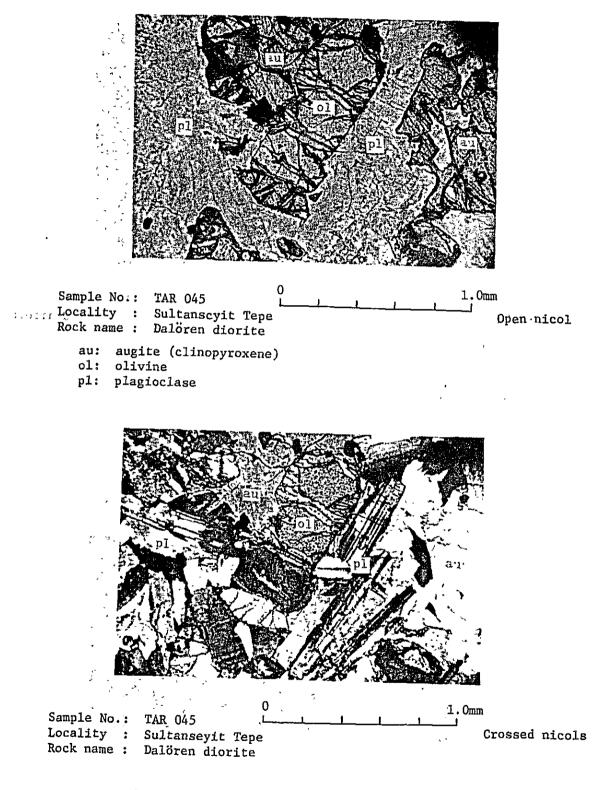

.

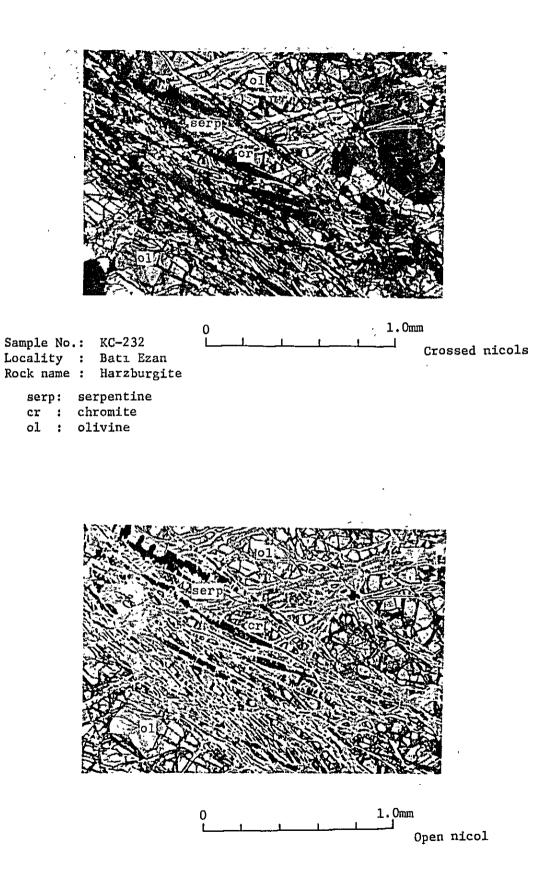

3

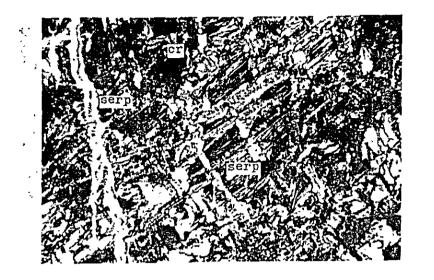

Appendix 4: Microphotographs of thin section



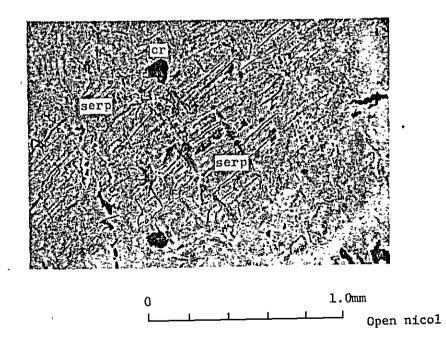
A-13

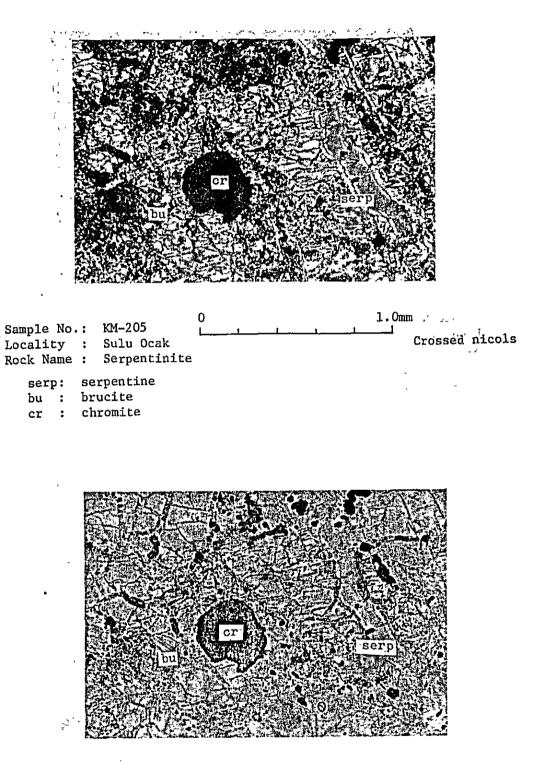


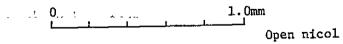


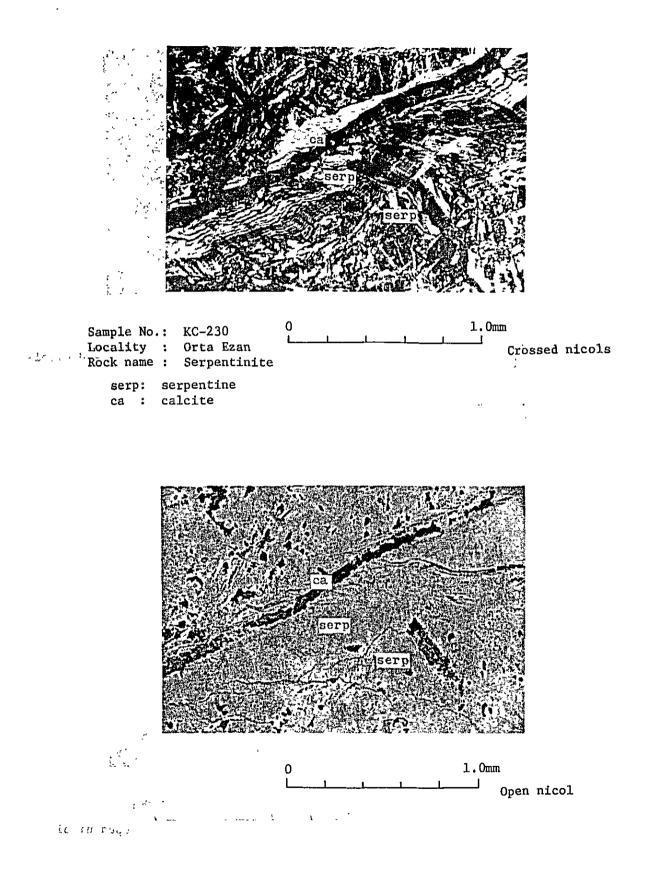


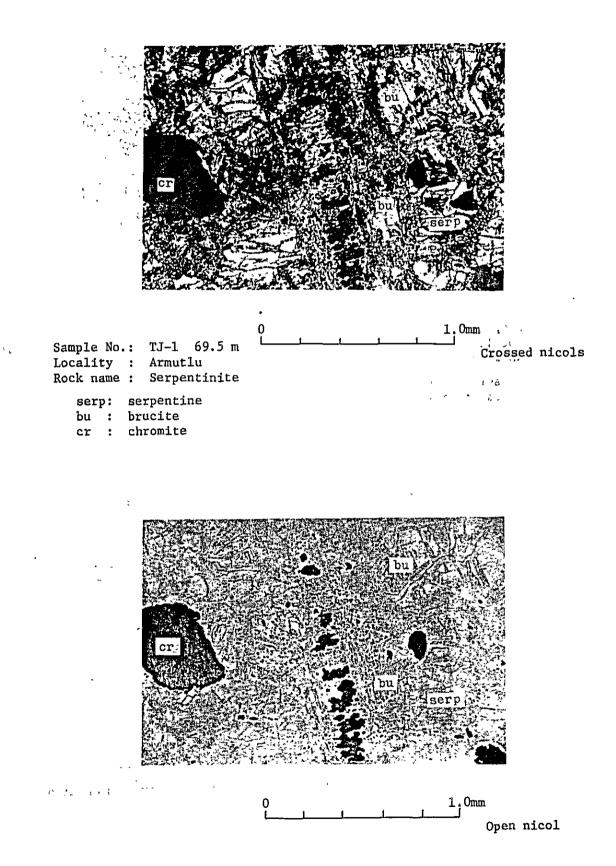
16 A-16

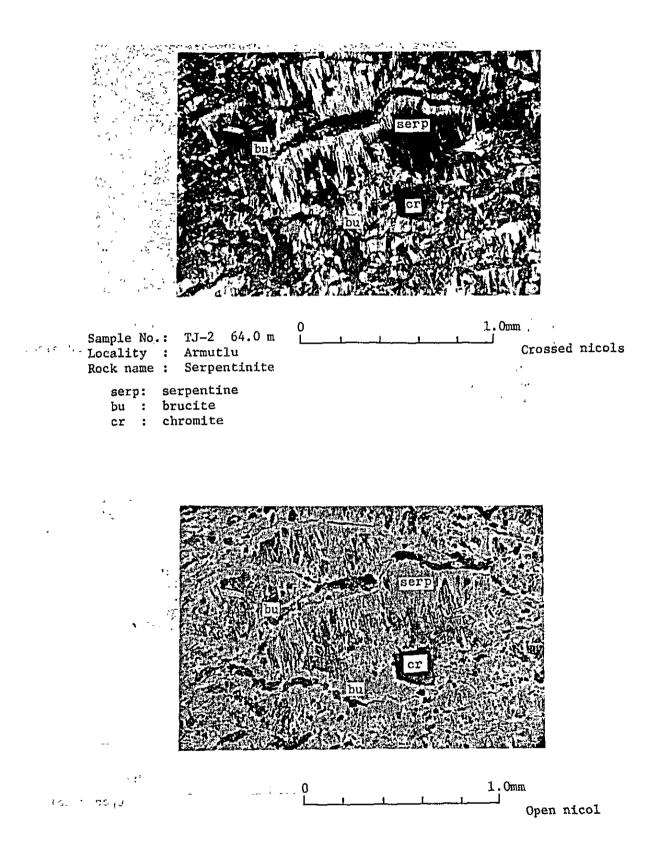


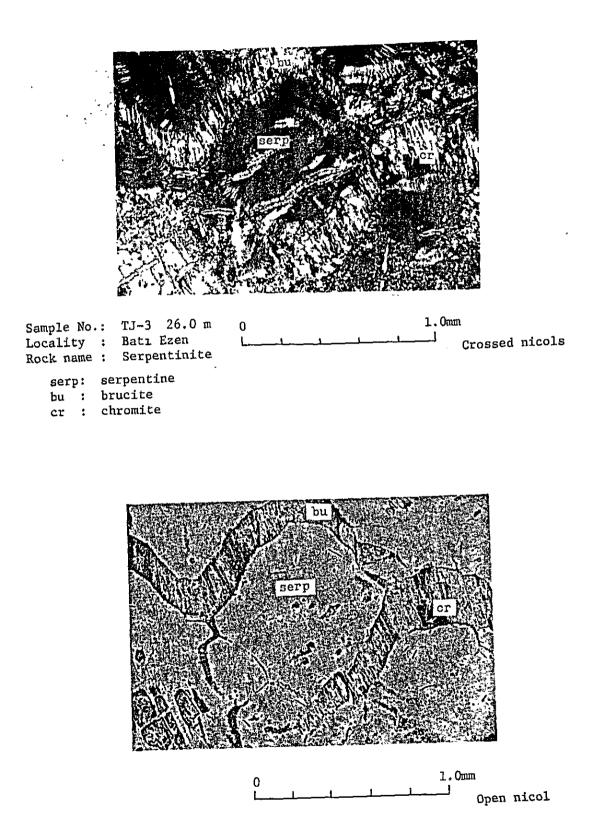

ن ^عد ب ال

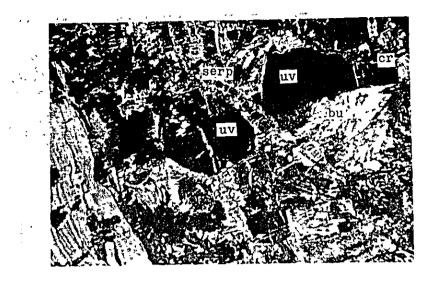


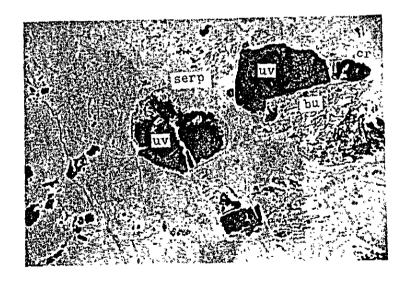


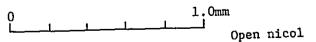


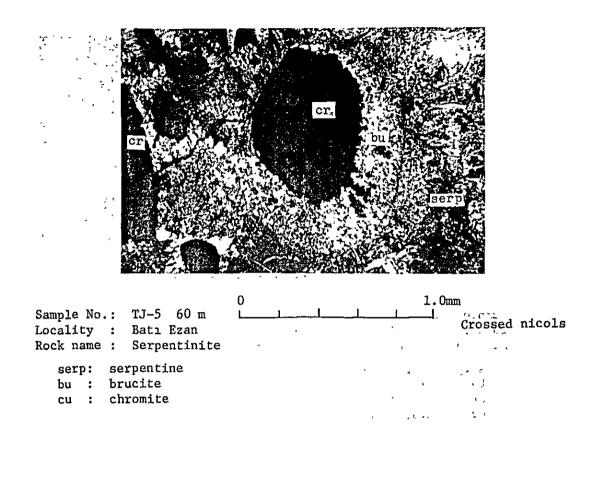




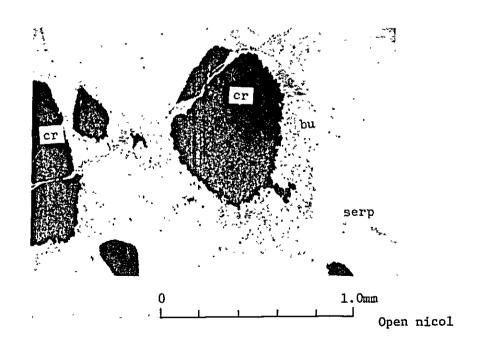


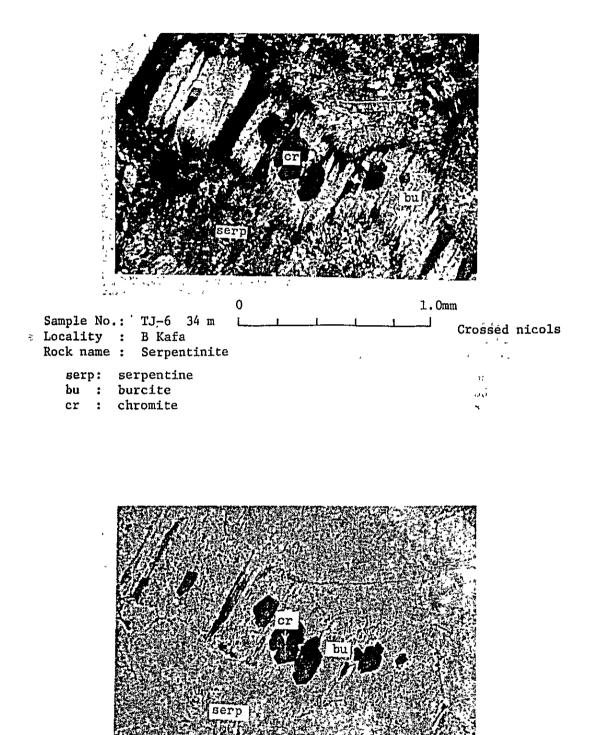


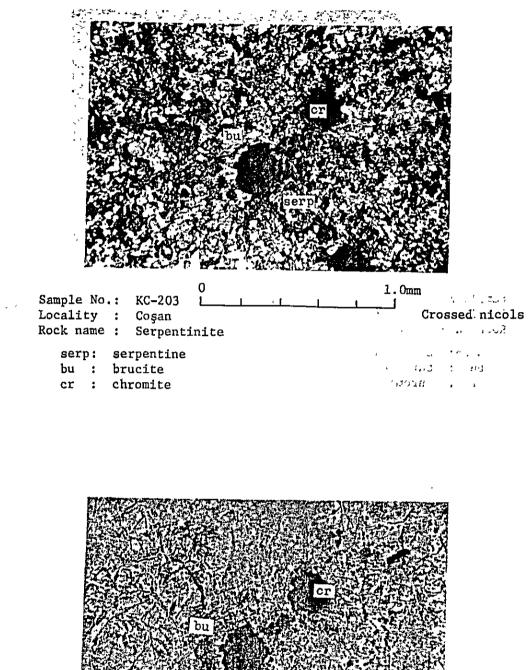


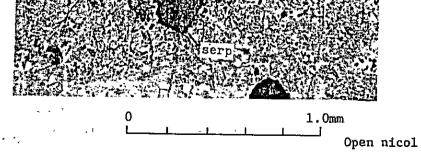


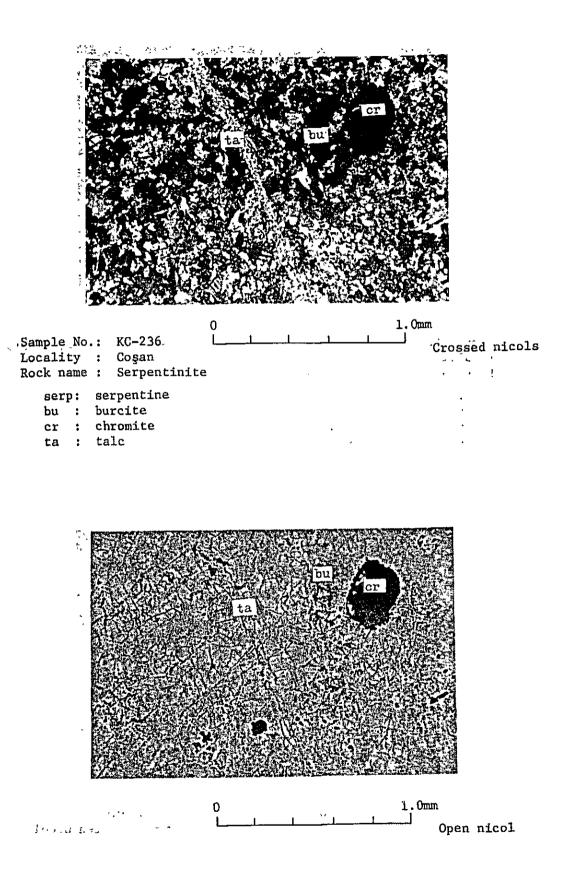
Locality :	TJ-4 20.3 m Sulu Ocak Serpentinized	0 LL harzburgite	1.0m اا	m Crossed nicols
	serpentine brucite			
CT : (-bromite			


uv : uvarovite

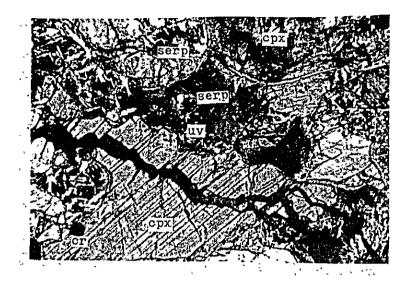


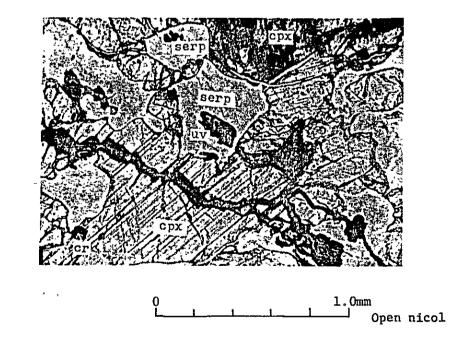


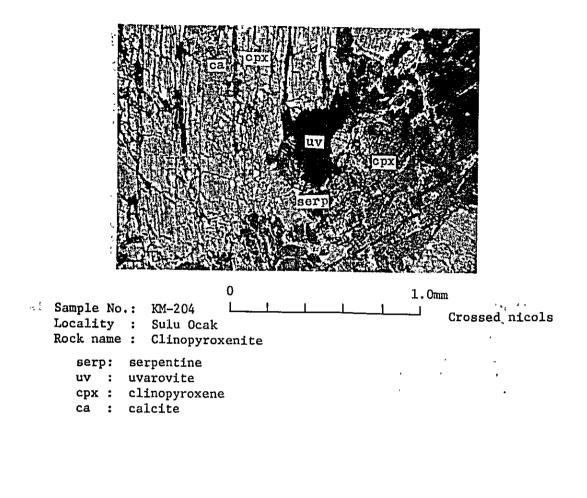

See.

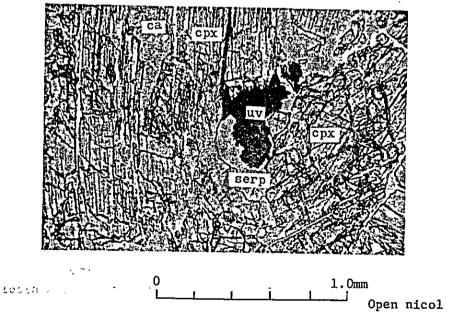


0 1.0mm

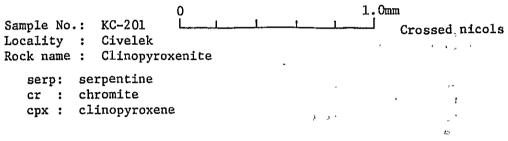


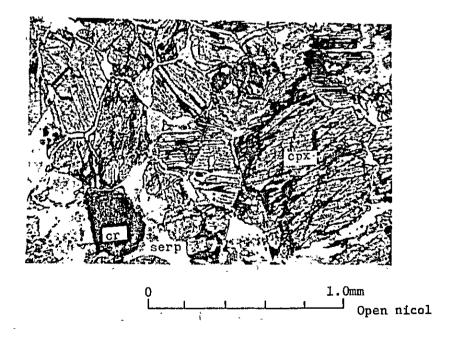

`S_∕ A-28

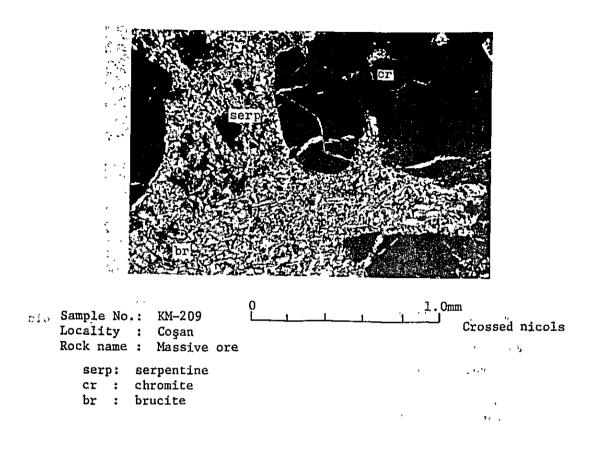


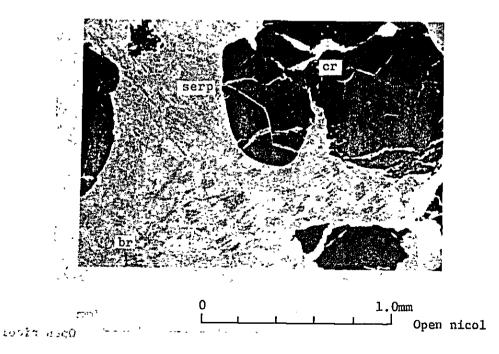

₽-**A-29**

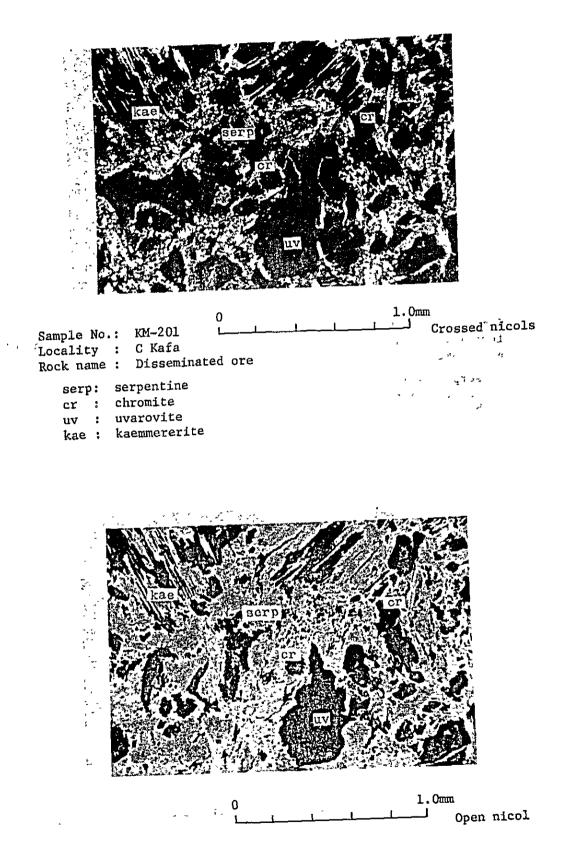

	<i>т</i> с О		1.0mm	
-	<pre>.: KC-231 LL : Orta Ezan : Clinopyroxenite</pre>		5 f	sed nicóls
cpx :	chromite uvarovite clinopyroxene serpentine	y	، ، ی ر ، ریر ،	1 - 222 2 7 - 1 7 - 1

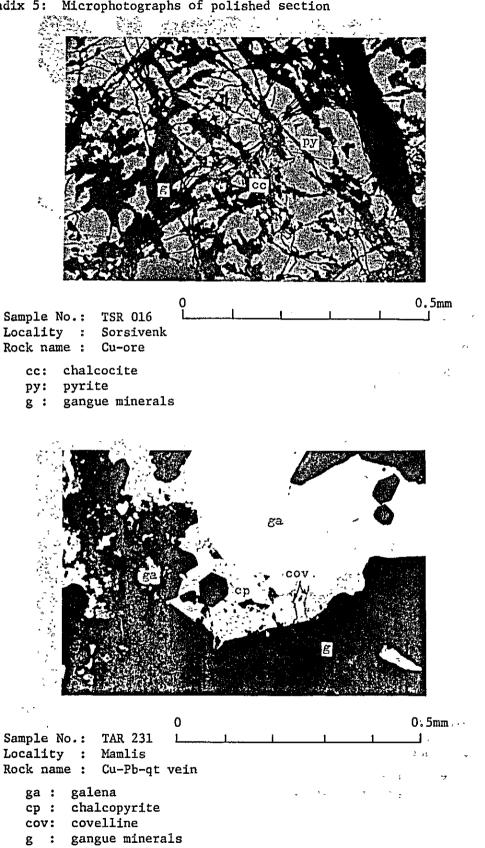


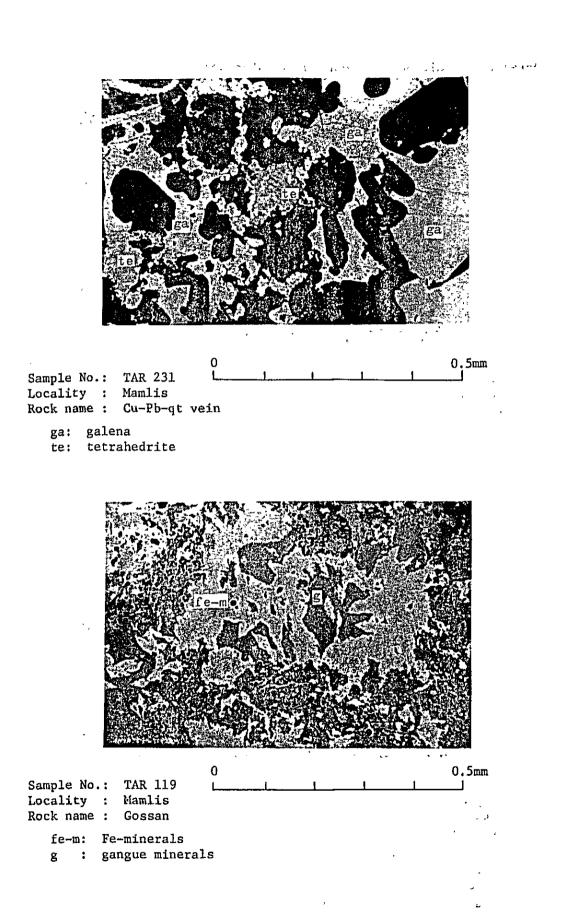


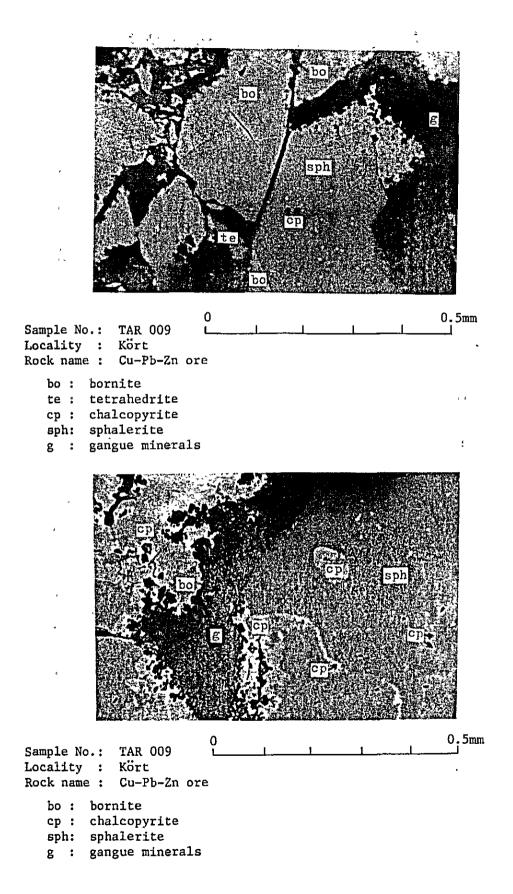

A-31

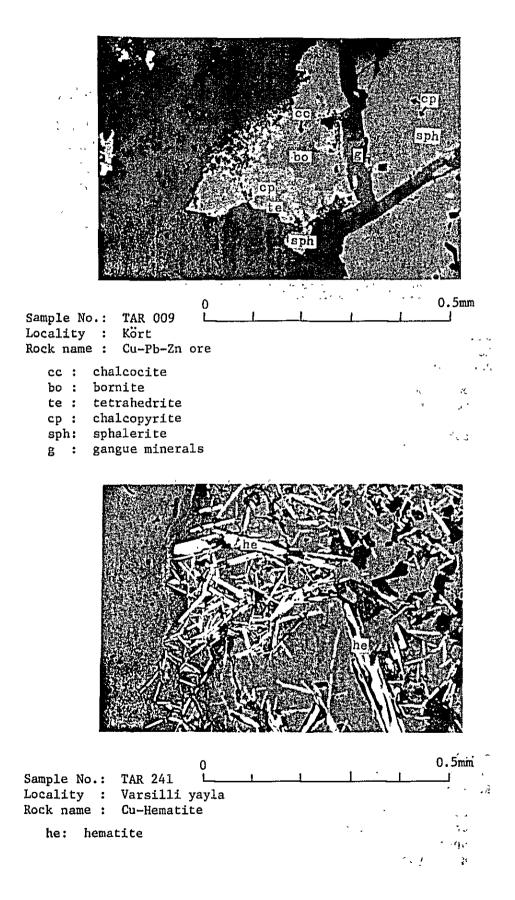


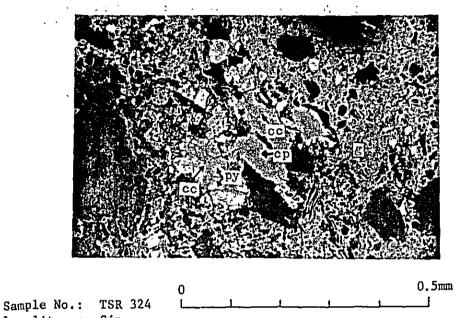


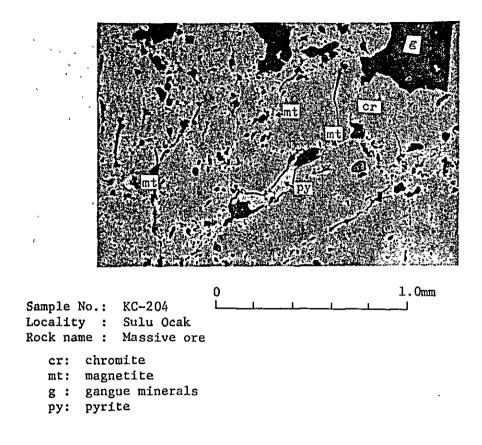

•

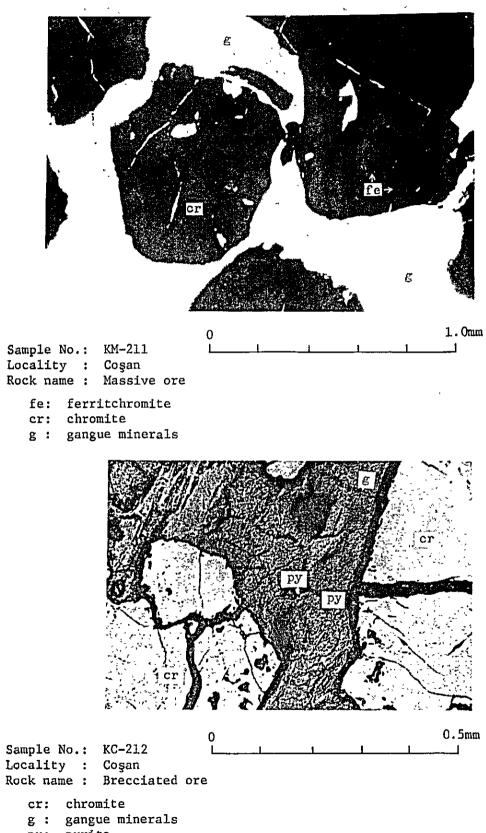

, -






Appendix 5: Microphotographs of polished section




Locality : Sin Rock name : Zn-Cu ore

cc: chalcocite
cp: chalcopyrite
py: pyrite
g : gangue minerals

.

**

py: pyrite

Appendix 6: Chemical composition of ore and Gossan samples

area
Tunuli
а) Э

a) Iunuur	l area												
Sample	Rock	I.ocality			,	1		STSATBIN	10		6 2	Boch.	, M
No.	name	1	Au	Ag	Gu	Pb	ų,	AS	2	3	211	paso 4	011
TAR 009	ore	Kört			4.73	0.14	5.55			%	%	1.45	- mdd
TMR 314	Dacite	Garipuşağı			<0.01	<0.01	0.01					0.41	
TSR 016	ore	Sorsivenk			1.15	0.01	0.06					73.50	
TSR 356	ore	Mamlis			0.15	36.70	0.02					0.50	
M-50	ore	Mamlis			1.17	25.47	0.70			0.01	0.01		Ę
TAR 118	sili-rock	Mamlis	ррт <0.2	ррш <2		ррт 623	р114 тада	ррт 7	ppm 7				
TAR 119	sili-rock	Mamlis	=	Э		52	1,070	10	e				
TAR 120	sili-rock	Mamlis	=	<2		75	583	6	8				Ī
TAR 231	Dacitic tuff (diss.Pb,Zn)	Mamlis	=	e		8,659	191	56	62				
TMR 317	Dacitic tuff	Garipuşağı	=	<2	ĺ	81	66	9	7				Ţ
TSR 347	Gossan	Mamlis	Ħ	4		526	1,608	13	9				
TWR 239	sili-zone	Mamlis	H	<2		224	868	8	2				
TER 224	Gossan	Mamlis		4	40	37	120						
TSR 483	Dacitic tuff (arg.)	Dikenli		2	TO	25	70						uidd
TSR 552	Dacite (Hematite?)	Garipuşağı	—		t	۱	I						<u>ى</u>
TSR 583	Dacite (arg.)	Aşagı mamlis			E	1	1						2
TSR 590	sili-zone	Mamlis		Ħ	630	2,500	225						

	Mo	ppm 5						<u> </u>						
	BaS04													
-	Sn					-								
	В													
	Sb													
Analysis	As					<u> </u>					-			
Ana]	uZ	udd -	535	3,300	375	45	490	60	620	062	150	610	180	535
	Ρb	udd -	87	56	68	787	187	37	25	25	56	56	37	87
	Сu	udd 1	60	50	70	300	20	55	20	30	400	2,250	7,850	60
	Ag	mdd	ε	7	νĵ	26	9	2	9	9	с	5	ę	3
	Au													
Locality	LUCATIC	Garipuşağı	Mamlis	Mamlis	Mamlis	Mamlis	Mamlis	Mamlis	Gözerek T.	Gözerek T.	Sin Mah	Sin Mah	Sin Mah	Sin Mah
Rock	name	Dacite (Hematite?)	Gossan	Gossan	Gossan	Gossan	Gossan	Dacitic tuff (sili,arg.)	Gossan	Gossan	Dacite (sili.)	Dacite (sili,Mal.)	Dacite (sili,Mal.)	Dacite (Sili.)
Samp1e	No.	TSR 599	M-1	M-2	M-4	M-5	6-М	M-11	12-W 4	M-33	S-4	S-5	S⊷6	s-7

* Abbreviations
sili. = Silicification
arg. = Argillization
Diss. = Dissemination
Mal. = Malachite

area	
Kopdağ	
(q	

Sample No.	Locality	Cr ₂ 0 ₃ (%)	FeO + Fe2O3 (%)	SiO2 (%)	A2203 (%)	Mg0 (%)	Remarks
KC-204	Trench T.J.T-l Sulu Ocak	34.79	15.99	7.57	17.75	19.90	
KC-205	Ŧ	27.65	15.29	16.9	13.88	23.4I	
KC-206	Trench T.J.T-2 Sulu Ocak	27.23	15.90	14.45	7.23	25.48	
KC-207	I	42.08	17.28	3.36	18.35	16.30	
KC-208	11	46.33	17.54	4.07	15.97	16.07	
KC-209	Trench T.J.T-3 Sulu Ocak	44.97	17.51	5.27	13.10	17.14	
KC-210	11	24.99	20.54	12.92	16.80	19.46	
KC-211	F	37.85	15.80	6.58	17.39	19.52	
KC-212	41	32.86	14.62	10.32	20.00	21.36	
KC-213	F	36.49	18.16	7.90	17.13	16.50	

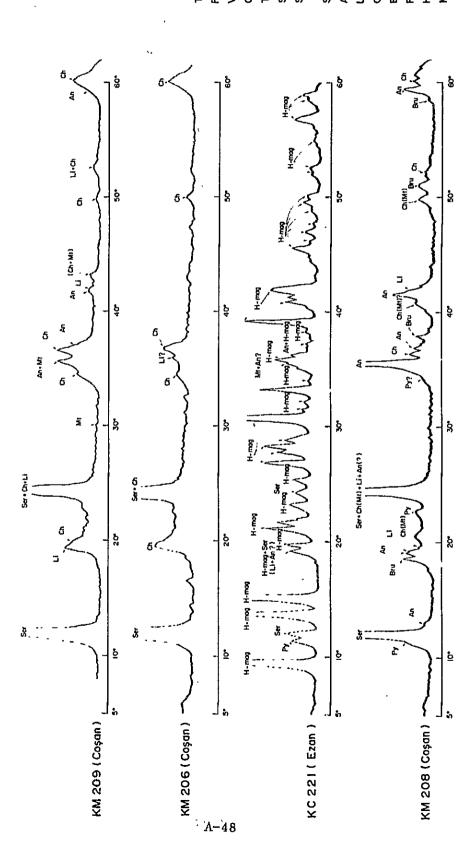
	Sample No.	Type of sample	Locality	Ser	pentine grou	p	Brucite	Pyroaurite	Hydro-	Chromite	Talc	Magnetite
-				Antigorite	Lizardite	Chrysotile	brucite		magnesite			Magnetite
	KM 206	Foliated serpentinite	[]			+++						
	KM 208	Massive serpentinite	Cogan	++	+	+		+				
	км 209	Foliated serpentinite	> Coşan	?	+	+++						÷
	KM 210	Foliated serpentinite .)			+ + +						
-	КМ 202	Foliated serpentinite	Batı Ezan~B kafa	?	+	+ +		+ +	+		+	
	КМ 203	Foliated serpentinite	Batı Ezan~B kafa	+		+		-1-	+			
Kopdağ area												
	TJ-2 23.2m		Armutlu	+ +	?	++						-
	TJ-4 45.0m		Batı Ezan	+		+ +	+					-
	TJ-6 35.0m	-	B kafa	+		+	+ +					
	TJ-7 16.2m		Sulu Ocak			+ +		+		++	 	
	KC 221	White clay			+			+	+++			
	Sample No.	Type of sample	Locality	Quartz	Feldspar	Orthoclase	Albite	Montmori- llonite	Sericite	Hydrous- sericite	Kaoline	Pyrite
	TAR 315			+++		+++		+	-		+	-
	TSR 462			+ + +						+	+	
Tunceli	TSR 485			+++			+ +			+		
area	TSR 489			÷	+			•	+		+ +	
	TSR 550			+++						+	-	
	TSR 597			+ +			+ + +		+			<u> </u>
										<u> </u>	 	<u> </u>

Appendix 7: Result of X-ray diffraction test

Intensity of X-ray diffracted is shown: + + + very strong

+ + strong + moderate

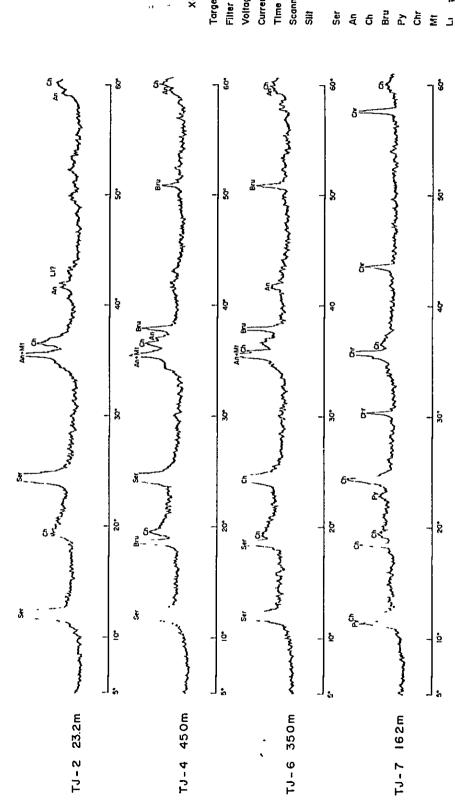
- weak ? uncertain .


;

× --, 5.0 2111 ÷ • • , ,, , 7.1.1.1 × . 1917 19 4 Scanning speed ; 2°/min Slif ; 1'ps-1'ss-0.3mm Time constant 🕴 2sec X-ray diffraction data Hydrous sericite Montomorylonite Ξ. , ¹ ۰. , Voltage ₁ 30kv Current I ISmA Orthoclase Target ; Cu Filter , Nî Feldspor Sericite Kooline Pyrite 0 i Quartz Albite _ ... £ 0 ٩ 5 5 ы w ک ł 3 J \$ -, \$ 3 \$ 3 **α~** o a \$ 5 8 o \$ σ. Ż \$ in the second 55 A.C. 0 0 ģ \$, ģ ş 1 \$ 2 ×» د× ş þ 2 þ ģ 0 0 4 0 £ک مز ç o c ż 2 8 አ ģ ģ man was and \$ } Ŧ £٠ } 4 ē ç Ê ۰Ľ £ £٩ ٦ٟ ۲ ź **}**{ l <u>1</u> ١. TSR 489 (Aynalipazvenk) TSR 462 (Büyüktepeler) TAR 315 (Kurç Tepe) TSR 550 (Garipuşağı) ************ • TSR 485 (Dikenii) TSR 597 (Kultepe) : : -, A Ξ, , , . . u

A~47

Appendix 7; Charts of X-ray diffraction test (A)


Appendix 7; Charts of X-ray diffraction test (B)

2°/min i Hydromognesite Silt ; 1°0s-1°ss-0.3mm 5560 Serpentine group X-ray diffraction data Valtage ; 35 kv Pyrodurite : IOmA Chrysotlle Magnetite Antigorite Lizardite Bruche Target ; Cu Filter ; Ni Scanning speed Time constant Current ... H-mag Mt ; Py . Ser Bru ភ Ą J

> . . . Tel and the *,*

Appendix 7; Charts of X-ray diffraction test (C)

X-ray diffraction data Target ; Cu Filter ; Ni Voltage ; 30kv Current ; 15mA Time constant ; 2sec Scanning speed ; 2%min Siti ; 1°ps-1°ss- 0.3mm Sit ; Serpentine group An ; Antigarite

ch ; Chrysotile Bru ; Brucite

y ; Pyroaurite hr ; Chromite

; Magnetlte ; Llzardite

A-49

Appendix 8

-54

•

5-

3 5

۰.

Geochemical analysis of soil samples

Geological index

Formation

Düzpelit F.	:	Dm
Kamışlık F.	:	Ke
Bentepe F.	:	Be
Atadoğdu F.	:	Ae

Igneous rocks

Andesite	;	Aq	
Dacite	:	Dt	
Granodiorite	:	Gt	

.

1. m

r ç

A-50

**

1

Sample No.	Locality	Geological Unit	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mo (ppm)
TAS-301		Be	40	50	70	2,5
TAS-302		Be	60	50	50	5
TAS-303	11	Gt	80	38	60	5
TAS-304	11	Gt	100	50	50	5
TAS-305	11	Gt	50	38	70	0
TAS-306	н	Gt	80	50	60	2.5
TAS-307	11	Gt	60	38	60	10
TAS-308	11	Gt	60	50	30	7.5
TAS-309	11	Gt	80	25	60	5
TAS-310	11	Gt	60	38	100	5
TAS-311	И	Gt	50	38	50	7.5
TAS-312	IJ	Be	60	38	80	5
TAS-313	TT .	Be	40	25	50	7.5
			1			
						5
						,
TES-2	J42-b4	Gt	40	38	80	0
TES-3	17	Gt	30	38	60	8.
TES-5	11	Gt	20	38	70	0
TES-7	11	Ke	50	75	130	2.
TES-8	11	Gt	50	50	140	0
TES-10	11	Gt	40	63	130	2.
TES-15	ti	Gt	20	38	50	0
TES-23	11	Gt	10	38	50	10
TES-25	11	Ke	10	63	90	10
TES-29	- 11	Gt	10	163	310	10
TES-31	11	Gt	20	38	80	12.
TES-34	11	Dmd	10	50	65	7.
TES-39	11	Gt	30	38	90	2.
TES-42	t#	Gt	45	50	40	2.
TES-44	11	Gt	30	50	40	2.
TES-50	11	Gt	80	38	100	5
TES-52	FU	Gt	80	38	30	5
TES-54	11	Gt	30	38	50	5
TES-59	11	Dm	30	25	30	2.

ì

Appendix 8: Geochemical contents of soil samples

Sample No.	Locality	Geological Unit	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mo (ppm)
TES-69	J42-b4	Dm(Dt)	30	25	130	2.5
TES-70	11	Dm	20	50	80	2.5
TES-71	It	Dm	30	25	50	5
TES-74	11	Dm	30	38	70	2.5
TES-79	11	Dm	20	25	90	2.5
TES-81	11	Dm	10	175	500	5
TES-82	11	Dm	20	38	90	7.5
TES-83	II.	Dm	20	38	150	7.5
TES-84	17	Dm	20	38	90	5
TES-86	11	Gt	30	25	60	7.5
TES-88	11	Gt	65	38	80	2,5
TES-89	J42-C1	Gt	30	63	110	2.5
TES-90	11	Dm	80	88	100	2.5
TES-91	14	Dm	20	75	120	2,5
TES-92	11	Dm	20	38	60	2.5
TES-93	81	Dm	10	25	60	2.5
TES-100	J42-b4	Dm	35	38	90	2.5
TES-103	J42-C1	Dm	25	38	60	2.5
TES-104	н	Gt	50	63	70	5
TES-105	11	Dm	20	50	100	5
TES-106	tr	Gt	50	38	70	2.5
TES-108	Ħ	Dm	10	43	50	2,5
TES-109	18	Dm	5	63	80	2.5
TES-110	J42-b4	• Dm	25	63	120	2,5
TES-111	11	Dm	5	63	230	2.5
TES-112	М	Dm	15	56	120	2,5
TES-113	19	Dm	45	87	120	10
TES-114	11	Dm	55	75	300	2.5
TES-116	11	Dm	30	38	80	5
TES-117	11	Dm	65	537	540	2.5
TES-118	F1	Dm	25	43	130	2.5
TES-119	н	Be	10	50	90	2.5
TES-120	11	Be	10	87	115	2.5
TES-121	11	Ве	10	63	210	2.5
TES-122	tt	Ke	15	75	65	2.5

٠

Sample No.	Locality	Geological Unit	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mo (ppm)
TES-123	J42-C1	Dm	140	218	510	2.5
TES-124	14	Be	50	375	520	5
TES-125	¥1	Be	20	106	170	2.5
TES-126	11	Be	60	38	32	2.5
TES-127	11	Be	50	50	250	2,5
TES-128	11	Ke	55	50	90	2.5
TES-129	11	Be	45	100	200	2.5
TES-130	11	Be	45	63	250	2.5
TES-131	\$1	Be	45	63	110	2.5
TES-132	41	Be	75	150	2000	5
TES-133	J42 - Ъ4	Dm	40	75	105	5
TES-134	11	Dm	40	63	75	2.5
TES-135	11	Dm	30	250	50	2.5
TES-136	\$1	Dm	75	175	140	10
TES-137	\$1	Ke	140	275	220	10
TES-138	11	Ке	35	219	240	5
TES-139	11	Ke	110	397	640	2.5
TES-140	n	Ke	50	81	120	2.5
TES-141	11	Ke	70	144	210	5
TES-142	51	Ke	120	138	200	5
TES-143	tı	Ke	75	288	575	2.5
TES-144	31	Ke	6400	3875	53000	5
TES-145	F #	Ве	1050	650	5000	5
TES-146	11	Dm	80	94	160	2.5
TES-147	11	Dm	80	113	160	2.5
TES-148	ii .	Dm	40	88	180	5
TES-149	11	Dm	35	100	175	2.5
TES-150	11	Dm	50	113	160	15
TES-151	11	Dm	45	250	150	5
TES-152	11	Dm	40	113	75	5
TES-153	17	Dm	20	38	95	2.5
TES-154	4	Dm	55	38	15	2.5
TES-155	11	Dm	30	175	13	2.5
TES-156	91	Dm	75	175	14	2.5
TES-157	11	Dm	50	213	16	2.5

Sample No.	Locality	Geological Unit	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mo (ppm)
TES-158	J42-b4	Dm	20	94	90	2.5
TES-159	TT	Dm	20	107	60	2.5
TES-160	88	Dm	20	88	80	2.5
TES-161	n n	Dm	55	113	80	2.5
TES-162	11	Dm	40	300	170	2.5
TES-163	\$1	Dm	25	125	120	2.5
TES-164	31	Dm	30	150	150	2.5
TES-165	11	Dm	65	413	580	5
TES-166	TP	Dm	25	238	100	2.5
TES-167	11	Dm	60	225	21.5	2,5
TES-168		Dm	50	50	100	2.5
TES-169		Gt	60	63	160	2.5
TES-170	81	Gt	160	88	110	2.5
TES-171	11	Gt	80	69	110	2.5
TES-172		Gt	65	88	110	2.5
TES-173	11	Gt	105	57	70	2.5
TES-174	*1	Gt	105	63	80	2.5
TES-175	11	Gt	90	75	90	2.5
TES-176	11	Gt	365	100	70	2.5
TES-177		Gt	70	163	140	2.5
TES-178	13	Gt	140	100	80	5
TES-179	b1	Gt	70	88	80	2.5
TES-180	17	Gt	90	50	100	2.5
TES-181	41	Gt	120	88	140	2.5
TES-182	84	Gt	60	88	95	2.5
TES-183	Tt	Gt	170	75	75	2.5
TES-184	01	Gt	165	125	60	2.5
TES-185	11	Gt	155	125	90	5
TES-186	J42-b4	Dm	545	675	320	2.5
TES-187	11	Dm	50	113	125	5
TES-188	11	Dm(Dt)	30	88	90	2.5
TES-189	J42-C1	Dm	75	138	105	5
TES-190	J42-b4	Dm	45	165	125	5
TES-191	J42-C1	Dm	1200	350	145	20
TES-192		Dm	80	188	75	20

Sample No.	Locality	Geological Unit	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mo (ppm)
TES-193	J42-C1	Gt	40	82	35	2.5
TES-194	J42-b4	Dm	35	88	50	5
TES-195	J42-C1	Gt	65	82	110	5
TES-196	11	Gt	75	100	140	5
TES-197	J 42-b4	Dm	30	88	90	5
TES-198	J42-C1	Gt	40	63	85	2.5
TES-199	J42-b4	Dm	25	50	80	2.5
TES-200	11	Dm	25	50	120	2.5
TES-201	ri	Dm	30	107	75	2.5
TES-202	11	Dm	40	113	100	2,5
TES-203		Dm	30	100	125	2.5
TES-204	91	Dm	20	125	150	10
TES-205	J42-C1	Dm	70	75	100	5
TES-208	J42-b4	Dm	50	400	50	5
TES-210	J42-C1	Gt	60	100	90	5
TES-211	tt	Gt	90	88	175	5
TES-212	11	Gt	75	63	120	7.5
TES-213	11	Gt	75	63	190	2.5
TES-214	"	Gt	40	38	140	2.5
TES-215	29	Gt	80	63	110	7.5
TES-216	11	Gt	70	63	100	5
TES-220	11	Gt	70	75	90	10
TES-221	11	Gt	70	94	100	2.5
TES-222		Gt	75	88	110	2.5
TES-223	11	Gt	50	100	190	2.5
TES-224	J42b4	Dm	30	25	150	2.5
TES-225	11	Dm	30	50	100	2.5
TES-226	11	Dm	40	25	100	2.5
TES-227	11	Dm	35	50	110	2.5
TES-228	11	Dm	30	75	150	10
TES-229	11	Dm	30	88	155	2.5
TES-230	11	Dm	40	88	115	2.5
TES-231	11	Dm	20	57	150	5
TES-232	11	Dm	40	63	130	5
TES-233	£1	Dm	30	50	120	5

Sample No.	Locality	Geological Unit	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mo (ppm)
TES-234	J 42-b4	Dm	20	57	90	5
TES-235	11	Dm	90	3500	700	5
TES-236	ti	Dm	150	63	140	5
				<u> </u>		
TKS-001	J42-b4	Ве	80	50	100	2,5
TKS-002	h	Be	40	13	90	5
ТКS-003	ti	Ke	65	25	150	5
TKS-004	¥1	Ke	35	63	210	5
TKS005	11	Ke	50	88	310	20
TKS-006	11	Ke	20	38	210	2.5
TKS-007	17	Dm	40	63	160	2.5
TKS-008	17	Dm	10	25	90	0
TKS-009	E)	Ke	10	25	170	25
TKS-010	11	Ke	20	25	110	5
TKS-011	n	Dm	20	13	60	2,5
TKS-012	11	Dm	30	13	80	2.5
TKS-013	(1	Dm	20	13	60	2.5
TKS-014	11	Dm	20	13	70	5
TKS-015	tı	Ke	10	25	40	0
TKS-016	TE	Ke	25	38	80	0
TKS-017	n	Ke	35	63	60	2.5
TKS-018	11	Ke	10	38	35	0
TKS-019	tt.	Ke	25	38	80	2,5
TKS-020	11	Ke	35	150	130	2.5
TKS-021	11	Ke	55	25	80	0
TKS-022	11	Ke	30	25	50	5
TKS-023	11	Ke	45	50	70	10
TKS-024	1)	Ke	25	38	60	2.5
TKS-025	11	Ke	15	25	60	2.5
TKS-026	11	Ke	45	50	60	2.5
TKS-027	17	Ke	60	100	250	2.5
TKS-028	11	Ke	25	25	60	2.5
TKS-029	11	Ke	35	25	60	2.5

Sample No.	Locality	Geological Unit	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mo (ppm)
TKS-030	J42-b4	Ke	55	38	90	2,5
TKS-031	11	Ke	45	38	110	5
TKS-032	11	Ke	40	38	100	5
TKS-033	11	Ke	40	38	60	0
TKS-034	81	Ke	55	38	100	0
TKS-035	r#	Ke	55	38	90	2.5
TKS-036	11	Ke	40	25	80	2.5
TKS-037	11	Ke	20	25	50	10
TKS-038	tr	Ke	20	25	50	7.5
TKS-039	11	Ke	20	25	60	10
TKS-040	11	Ke	10	13	_50	7.5
TKS-041	11	Ke	50	25	60	10
TKS-042	11	Be	60	50	120	2,5
TKS-043	11	Ke	20	25	60	2.5
TKS-044	H	Ke	35	25	80	2.5
TKS-045	TI	Ke	20	25	70	2.5
TKS-046	11	Ke	50	50	90	5
TKS-047	11	Ke	60	100	150	7.5
TKS-048	11	Ke	50	163	220	7.5
TKS-049		Ke	50	38	100	10
TKS-050	11	Ke	130	100	970	25
TKS-051	11	Dm	20	38	140	2.5
TKS-052		Dm	10	25	80	2.5
TKS-053	11	Dm	20	38	130	2.5
TKS-054	н	Dm	10	38	80	5
TKS-055		Ke	10	13	50	7.5
TKS-056	31	Dm	20	25	20	7.5
TKS-057	ir .	Dm	15	25	80	10
TKS-058	11	Dm	20	25	60	5
TKS-059	91	Dm	20	38	60	5
TKS-060	11	Ke	10	38	90	2.5
TKS-061	11	Ke	15	38	90	2.5
TKS-062	11	Ке	10	25	80	8
TKS-063	11	Ke	10	25	70	7.5
TKS-064	ti	Ke	10	13	70	10

Sample No.	Locality	Geological Unit	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mo (ppm)
TKS-065	J42-b4	Ke	15	13	70	10
TKS-066	31	Ke	20	13	80	5
TKS-067	P1	Dm	30	13	80	2.5
TKS-068	11	Dm	15	13	60	10
TKS-069	11	Dm	10	25	40	2.5
TKS-070	11	Dm	20	-13	30	5
TKS-071	11	Dm	10	25	50	5
TKS-072	11	Dm	20	13	20	10
TKS-073	11	Dm	40	25	90	10
TKS-074	11	Gt	30	38	50	5
TKS-075	11	Dm	50	38	60	10
TKS-076	ti	Dm	20	25	50	10
TKS-077	11	Dm	40	25	70	7.5
TKS-078	t1	Dm	40	13	70	5
TKS-079	11	Dm	35	13	70	5
TKS-080	11	Dm	40	25	110	5
TKS-081	11	Dm	25	13	110	5
TKS-082	91	Dm	30	25	80	5
TKS-083	17	Dm	50	13	100	5
TKS-084	J42-C2	Dm	30	13	60	5
TKS-085	11	Ве	40	13	60	2.5
TKS-086	11	Be	15	13	70	7.5
TKS-087	ti	Dm	15	25	90	5
TKS-088	¢1	Be	25	25	70	10
TKS-089	J42-C1	Dm	10	13	70	10
TKS-090	11	Be	30	25	90	7.5
TKS-091	tt	Ве	35	50	85	5
TKS-092	11	Dm	50	50	100	5
TKS-093	11	Be	30	38	70	2.5
TKS-094	11	Ве	55	50	85	7.5
TKS-095	J42-C2	Be	25	25	25	7.5
TKS-096	tt.	Ве	255	25	65	7.5
TKS-097	11	Dm	35	50	100	7.5
TKS-098	J42-C1	Dm	20	38	150	7.5
TKS-099	17	Be	20	75	230	7.5

Sample No.	Locality	Geological Unit	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mo (ppm)
TKS-100	J42-C1	Be	10	38	30	2,5
TKS-101	11	Dm	40	50	100	0
TKS-102	13	Dm	20	31	40	15
TKS-103	11	Dm	20	13	50	0
TKS-104	11	Dm	20	63	40	2.5
TKS-105	11	Dm	20	63	40	2,5
TKS-106		Ве	10	50	50	2.5
TKS-107		Be	20	43	70	5
TKS-108	11	Dm	5	38	90	0
TKS-109	11	Dm	10	13	20	5
TKS-110	11	Dm	10	25	60	2.5
TKS-111	11	Dm	15	38	50	5
TKS-112	11	Dm	25	2125	220	2.5
TKS-113	11	Dm	10	125	90	2.5
TKS-114	11	Dm	20	63	10	0
TKS-115	11	Dm	10	100	40	0
TKS-116	11	Dm	10	75	50	0
TKS-117	tr	Dm	15	63	40	2.5
TKS-118	n	Dm	5	31	110	2.5
TKS-119	11	Dm	10	56	20	2.5
TKS-120	11	Ве	20	50	40	2.5
TKS-121	11	Dm	30	38	50	2.5
TKS-122	11	Gt	40	68	30	2.5
TKS-123	11	Gt	80	56	20	2.5
TKS-124		Gt	80	56	30	2.5
TKS-125	11	Gt	160	31	20	5
TKS-126	J42-b4	Gt	65	56	30	5
TKS-127	J42-C1	Gt	90	38	30	5
TKS-128	11	Gt	90	31	20	5
TKS-129	"	Gt	80	38	30	0
TKS-131	J42-b4	Gt	50	87	40	2.5
TKS-132	J42-C1	Gt	70	63	40	2.5
TKS-133	J42-b4	Gt	65	63	30	2.5
TKS-134	J42-C1	Gt	90	112	70	2.5
TKS-135	11	Gt	50	75	50	2,5

Sample No.	Locality	Geological Unit	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mo (ppm)
TKS-136	J42-C1	Gt	85	1.00	40	5
TKS-137	11	Gt	80	81	30	7.5
TKS-138	tr	Gt	75	81	30	5
TKS-139	11	Gt	70	87	30	5
TKS-140	11	Gt	60	63	20	2.5
TKS-141	r1	Gt	50	150	30	2.5
				·		
TSS-361	J42-b4	Ве	60	63	110	5
TSS-362	н	Be	280	25	50	2.5
TSS-363	te	Be	10	63	20	2.5
TSS-364	ł1	Be	25	75	30	0
TSS-365	11	Ke	30	150	50	2.5
TSS-366	n	Ke	30	75	40	2,5
TSS-367	11	Ке	140	4375	150	5
TSS-369	11	Be	70	93	170	5
TSS-370	17	Be	190	75	100	2.5
TSS-371	 11	Ae	40	50	60	0
TSS-372	TI	Ae	50	63	110	5
TSS-374	11	Be	15	63	50	5
TSS-375	\$1	Be	10	50	50	2.5
TSS-376	rs	Be	5	38	40	0
TSS-377	16	Dm	10	43	50	5
TSS-378	н	Dm	10	31	40	2.5
TSS-279	11	Dm	10	43	50	2.5
TSS-380	11	Be	40	175	250	2.5
TSS-382	11	Be	70	113	350	5
TSS-384	п	Be	10	38	200	5
TSS-385	11	Be	70	50	200	2.5
TSS-387	11	Dm	30	38	30	2,5
TSS-388	11	Dm	180	31	50	2.5
TSS-389	t!	Gt	50	43	40	2.5
TSS-391	IT	Gt	120	31	100	5
TSS-392	11	Gt	5	38	40	0

:

,

A-60

Sample No.	Locality	Geological Unit	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mo (ppm)
TSS-393	J42-b4	Dm	55	63	60	0
TSS-394	51	Dm	15	56	80	0
TSS-395	11	Dm	20	175	90	0
TSS-396	91	Dm	10	100	60	2.5
TSS-397	11	Dm	20	725	200	2,5
TSS-399	13	Dm	0	75	90	0
TSS-400	11	Dm	5	63	70	5
TSS-401	£1	Gt	15	75	90	7.5
TSS-402	11	Gt	15	63	80	7.5
TSS-403	J)	Gt	40	75	50	5
TSS-404	11	Gt	5	88	40	2,5
TSS-407	31	Dm	5	81	60	2.5
TSS-408	51	Dm	20	56	110	7.5
TSS-409	11	Dm	10	38	80	2.5
TSS-410	13	Dm	10	56	50	0
TSS-411	rt	Dm	10	68	80	5
TSS-412	11	Dm	10	87.5	100	2.5
TSS-413	11	Dm	5	75	150	2.5
TSS-414	rt	Dm	5	88	70	0
TSS-415	11	Dm	5	81	70	2.5
TSS-416	31	Dm	20	81	70	5
TSS-417	Tt	Dm	15	31	130	2.5
TSS-418	11	Dm	10	25	50	2,5
TSS-419		Dm	20	25	160	2,5
TSS-420	11	Dm	10	38	200	2.5
TSS-421	11	Dm	10	18	90	2.5
TSS-422	31	Dm	15	31	100	2,5
TSS-423	п	Dm	60	162	270	5
TSS-424	11	Dm	15	38	100	2.5
TSS-425	11	Dm	10	38	60	2.5
TSS-429	tt	Gt	15	43	40	2.5
TSS-430	1)	Gt	20	50	130	2.5
TSS-431	Tł	Gt	10	31	30	2.5
TSS-432	11	Gt	20	50	130	5
TSS-433	11	Gt	90	50	110	5

Sample No.	Locality	Geological Unit	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mo (ppm)
TSS-434	J42-Ъ4	Gt	20	63	40	5
TSS-435	11	Gt	60	50	80	5
TSS-436	11	Gt	20	56	50	2.5
TSS-437	11	Gt .	10	31	40	2.5
TSS-438	11	Be	50	50	40	2.5
TSS-439	J42-C1	Gt	30	31	40	2,5
TSS-440	tŧ	Gt	55	13	30	2.5
TSS-441	ti	Gt	30	13	30	2.5
TSS-442	13	Gt	55	31	60	2.5
TSS-444	11	Gt	65	50	60	7.5
TSS-445	11	Gt	5	31	40	2.5
TSS-446	tī	Gt	40	50	70	2.5
TSS-447	11	Gt	45	63	30	5
TSS-448	11	Dm	5	31	60	2.5
TSS-449	19	Dm	5	50	300	2.5
TSS-450	J42-b4	Dm	10	50	180	2.5
TSS-451	J42-C1	Dm	110	75	260	2.5
TSS-453	J42-b4	Dm	15	125	430	0
TSS-454	17	Dm	20	18	350	0
TSS-455	11	Dm	20	100	310	2.5
TSS-456	J42-C1	Dm	5	38	220	5
TSS-458	J42-b4	Dm	8	525	750	5
TSS-459	ŧŦ	Dm	30	75	100	5
TSS-461	11	Dm	25	262	110	2,5
TSS-463	11	Dm	15	150	20	2.5
TSS-464	11	Dm	5	63	60	0
TSS-465	11	Dm	30	70	70	2.5
TSS-466	11	Dm	25	63	110	2.5
TSS-467	11	Dm	20	50	70	2,5
TSS-468	11	Dm	10	44	40	2.5
TSS-469	J42-C1	Dm	55	68	20	5
TSS-470	11	Dm	10	75	10	2.5
TSS-471	<u>}1</u>	Dm	5	31	40	2.5
TSS-473	tł	Be	25	56	80	2.5
TSS-474	11	Be	15	475	220	2.5

•

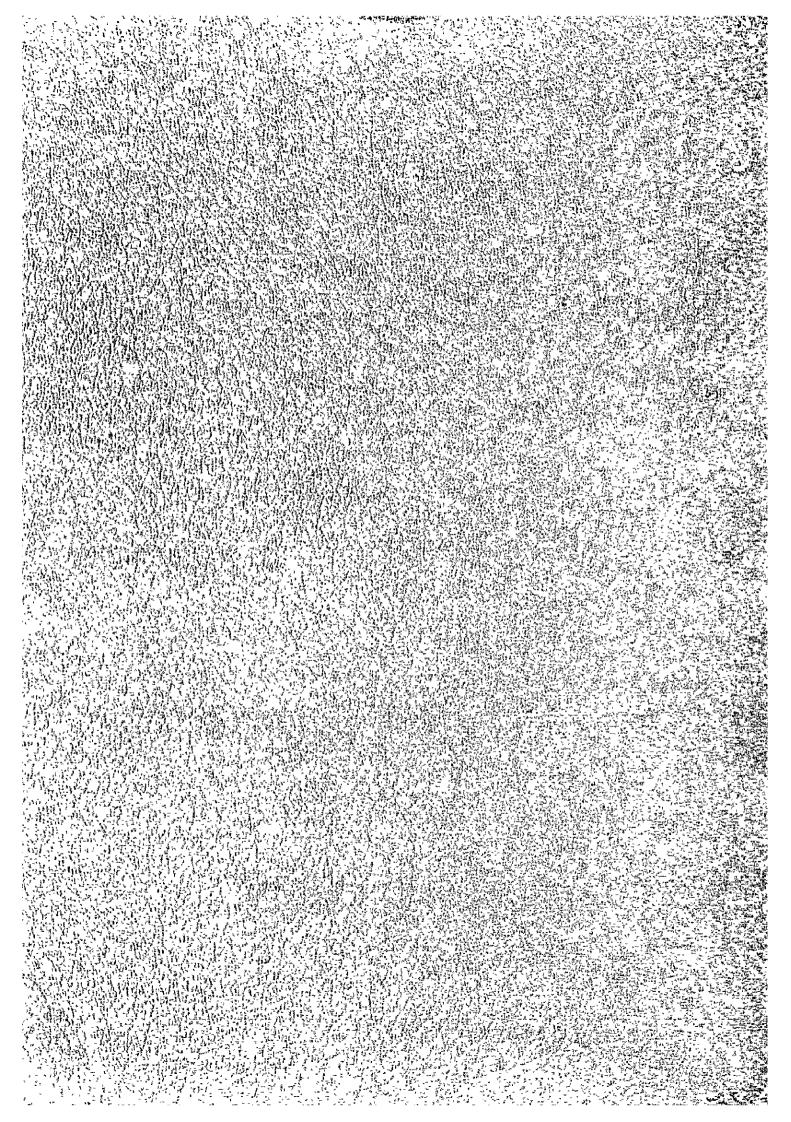
Sample No.	Locality	Geological Unit	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mo (ppm)
TSS-475	J42-C1	Be	65	38	60	5
TSS-476		Gt	90	100	50	5
TSS-477	11	Gt	40	81	90	2.5
TSS-478	11	Dm	10	63	30	10
TSS-479	- 11	Be	140	31	60	2.5
TSS-480		Dm	15	50	10	5
TSS-481	11	Dm	15	13	20	5
TSS-486	11	Dm	10	25	50	2.5
TSS-493	J42b4	Dm	15	75	160	10
TSS-494	(3	Dm	5	75	120	5
TSS-495	e1	Dm	15	75	70	10
TSS-496	+1	Dm	50	75	80	5
TSS-497	F1	Dm	40	63	70	10
TSS-498	11	Dm	15	63	85	10
TSS-499	11	Dm	30	94	115	5
TSS-500	11	Dm	130	63	300	5
TSS-501	11	Dm	25	13	120	2,5
TSS-503	11	Dm	1.5	25	125	2.5
TSS-504	11	Dm	45	50	125	2,5
TSS-505	t:	Dm	10	38	100	2.5
TSS-506	[1	Dm	20	75	90	5
TSS-507	rt	Dm	4	44	75	2.5
TSS-508	n	Dm	30	63	100	10
TSS-509	11	Dm	30	57	90	5
TSS-510	ti	Dm	35	75	60	10
TSS-514	J42-C1	Gt	80	88	180	10
TSS-515	ŧţ.	Gt	85	63	90	5
TSS-516	JÌ	Gt	60	63	75	2.5
TSS-517	L9	Gt	70	38	80	2.5
TSS-518	. 11	Gt	140	75	90	2.5
TSS-519	n	Gt	180	50	110	2.5
TSS-520	N	Gt	65	50	120	5
TSS-521	11	Gt	60	57	100	5
TSS-522	11	Gt	65	63	70	2.5
TSS-523	11	. Gt	45	57	45	5

Sample No.	Locality	Geological Unit	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mo (ppm)
TSS-524	J42-CL	Gt	90	50	55	5
TSS-525	"	Gt	10	69	65	5
TSS-526	t f	Gt	70	63	70	5
TSS-527	11	Gt	50	50	80	2.5
TSS-528	11	Gt	10	50	80	2,5
TSS-529	J42-b4	Dm	15	50	65	2.5
TSS-530	11	Dm	15	63	100	2.5
TSS-531	n –	Dm(Dt)	15	50	80	2.5
TSS-532	11	Dm	20	82	100	2.5
TSS-533	11	Dm	15	113	145	2.5
TSS-534	17	Dm	5	50	95	7.5
TSS-536	11	Dm(Dt)	20	44	100	5
TSS-537	11	Dm(Dt)	20	50	90	5
TSS-538	II	Dm(Dt)	45	63	125	10
TSS-539	11	Dm	50	75	100	10
TSS-540	11	Dm	10	50	75	7.5
TSS-541	ta ta	Dm	35	38	135	5
TSS-542		Dm	20	69	130	5
TSS-543	"	Dm	20	63	75	2,5
TSS-544		Dm	20	75	65	5
TSS-545	tt	Dm	5	75	60	5
TSS-553	tt	Dm	35-	63	65	5
TSS-554	83 81	Dm	30	63	115	5
TSS-555	11	Dm	5	63	60	5
TSS-557	J42-C1	Dm	25	63	40	5
TSS-558	11	Dm	20	63	45	10
TSS-559	11	Dm	40	88	45	5
TSS-560	F1	Dm	30	82	55	10
TSS-561	11	Dm	30	57	75	10
TSS-562	11	Dm	70	75	85	7.5
TSS-563	17	Dm	30	75	45	5
TSS-564	11	Dm	25	50	20	5
TSS-565	11	Dm	40	75	60	5
TSS-566	11	Dm	30	107	55	5
TSS-567		Dm	30	125	60	7.5

Sample No.	Locality	Geological Unit	Cu (ppm)	РЬ (ppm)	Zn (ppm)	Mo (ppm)
TSS-568	J42-b4	Dm	30	94	60	7.5
TSS-569	11	Dm	25	63	65	7.5
TSS-570	TE	Dm	20	75	90	7.5
TSS-571	Į Į	Dm	40	50	100	7.5
TSS-572	11	Dm	40	75	85	7.5
TSS-573	17	Dm(Dt)	15	50	50	7.5
TSS-574	J42-C1	Dm	30	119	145	10
TSS-575	IT	Dm	35	94	13	12.5
TSS-576	11	Dm	30	75	100	10
TSS-579	11	Dm(Dt)	15	19	50	7.5
TSS-580	tu	Dm	50	31	150	5
TSS-581	11	Dm	35	31	60	5
TSS-582	31	Dm	45	25	140	5
TSS-585	J42/b4	Dm	35	44	85	5
TSS-586	52	Dm	70	275	140	5
TSS-587	29	Dm	70	325	210	2.5
TSS-589	J42-C1	Gt(G0)	520	4500	430	25
i						
TYS-249	J42-b4	Ke	70	50	90	2.5
TYS-250		Ke	170	38	40	5
TYS-251	n	Ke	55	25	50	0
TYS-252	31	Ke	10	13	40	2,5
TYS-254	11	Ке	310	25	50	2.5
TYS-255	11	Ke	110	25	20	37.5
TYS-257	TR	Gt	50	25	60	2.5
TYS-259	11	Ke	200	400	690	7.5
TYS-261	11	Dm(Dt)	90	563	400	2.5
TYS-262	91	Dm(Dt)	40	75	80	2.5
TYS-265	11	Gt	80	50	30	10
TYS-266		Dm	50	75	70	7.5
TYS-267	19	Dm	40	50	30	15
TYS-268	1)	Dm	10	38	30	2.5
TYS-269	J42-C1	Ве	10	38	40	2.5

Sample No.	Locality	Geological Unit	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mo (ppm)
TYS-270	J42-C1	Ве	20	75	70	5
TYS-271	ţţ	Gt	110	50	90	5
TYS-272	11	Gt	60	32	100	5
TYS-275	11	Dm	10	13	60	5
TYS-276	11	Dm	10	13	60	5
TYS-277	J42-C2	Dm	50	25	80	5
TYS-278	J42-C1	Dm	50	38	60	5
TYS-279	11	Dm	20	25	60	5
TYS-280	11	Dm	10	38	40	0
TYS-283	tt	Dm	30	50	60	5
TYS-285	tt	Be	20	125	80	7.5
TYS-287	11	Ве	80	93	250	2.5
TYS-289	11	Ke	30	31	260	0
TYS-290	81	Dm	15	38	140	0
TYS-292	11	Dm	15	38	130	2,5
TYS-293	1t	Dm	40	25	170	0
TYS-294	11	Dm	5	13	90	2,5
TYS-295	11	Dm	35	25	90	2.5
TYS-297	11	Ke	30	31	220	2.5
TYS-298	11	Dm	50	38	310	2.5
TYS-299	11	Dm	20	31	140	2.5
TYS-300	ti	Dm	20	25	170	2.5
TYS-301	11	Dm	10	31	90	0
TYS-302	11	Dm	20	38	80	0
TYS-303	11	Dm	20	187	540	2.5
TYS-304	J42-b4	Dm	15	50	90	7.5
TYS-305	11	Dm	10	38	120	7.5
TYS-306	J42-C1	Ke	40	50	110	7.5
TYS-307	11	Ke	30	50	200	2.5
TYS-308	11	Ke	60	63	170	2.5
TYS-309	J42-b4	Ke	50	50	180	2,5
TYS-310	71	Dm	10	38	130	2.5
TYS-311	81	Ke	60	68	110	0
TYS-312	11	Dm	20	50	140	2.5
TYS-313	17	Dm	5	50	50	2,5

Sample No.	Locality	Geological Unit	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mo (ppm)
TYS-314	J42-b4	Ke	65	63	130	5
TYS-315	31	Be	40	50	80	5
TYS-316	11	Be	25	63	90	2,5
TYS-318	f #	Dm	30	44	95	5
TYS-319	11	Dm	、75	163	360	2.5
TYS-320	33	Dm	30	63	120	2.5
TYS-321	11	Dm	35	57	145	5
TYS-323	F\$	Dm	35	50	95	5
TYS-324	11	Dm	35	38	95	5
TYS-325	11	Dm	45	38	100	5
TYS-326	ft.	Dm	25	38	120	5
TYS-328	tt	 Dm	50	38	65	5
TYS-329	11	Dm	35	25	95	2.5
TYS-330	\$1	Dm	50	44	125	5
TYS-331	TI	Dm	20	118	135	2.5
TYS-332	TE	Dm	5	31	90	2.5
TYS-333	н	Dm	5	38	150	2.5
TYS-334	17	Dm	10	25	60	5
TYS-335	t T	Dm	5	38	110	5
TYS-336	rt	Dm	40	63	140	5
TYS-337	11	Dm	45	63	125	7.5
TYS-338	11	Dm	75	38	90	5
TYS-339	11	Dm	75	69	100	7.5
TYS-340	IT	Dm	55	1750	, 110	5
TYS-341	11	Dm	10.5	50	130	5
TYS-342	TT	Dra	5	25	125	7,5
TYS-343	π	Dm	15	38	120	2.5
TYS-344	J42-C1	Gt	60	75	140	5
TYS-345	ŤI	Gt	60	75	100	2.5
TYS-346	ti	Gt	70	63	145	2.5
TYS-347	11	Gt	85	512	365	10
TYS-349	11	Gt	60	69	75	7.5
TYS-350	11	Gt	65	63	95	7.5
TYS-351	11	Gt	80	125	250	5
TYS-352	"	Gt	35	63	95	5


Sample No.	Locality	Geological Unit	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mo (ppm)
TYS-353	J42-C1	Gt	65	100	100	5
TYS-354	11	Gt	85	107	75	7.5
TYS-355	†1	Gt	80	175	160	5
TYS-356	\$T	Gt	35	88	110	5
TYS-357	17	Gt	200	125	100	2.5
TYS-358	11	Gt	1.20	82	85	2.5
TYS-359	ti	Gt	75	56	45	5
TYS-360	11	Gt	70	56	60	2.5
TYS-361	11	Gt	90	112	120	5
TYS-363	11	Gt	320	225	80	5
TYS-365	J42-b4	Dm(Dt)	40	88	85	5
TYS-366	11	Dm	5	69	45	5
TYS-367	11	Dm	3	81	75	2.5
'TYS-368	11	Dm	10	13	85	5
TYS-369	F#	Dm(Dt)	5	25	85	5
TYS-370	11	Dm(Dt)	50	38	140	10
TYS-371	1 1	Dm(Dt)	5	25	100	7.5
TYS-375	11	Dm	35	38	100	7.5
TYS-376	ti	Dm	10	38	85	7.5
TYS-377	N	Dm	20	38	95	2.5
TYS-378	t1	Dm(Dt)	40	38	85	5
TYS-380	11	Dm	30	50	120	2.5
TYS-381	F1	Dm	45	38	75	5
TYS-382	11	Dm(Dt)	30	50	85	5
TYS-383	11	Dm(Dt)	50	75	85	5
TYS-388	J42-C1	Dm	20	119	85	2.5
TYS-389	89	Dm	25	57	85	5
TYS-390	t!	Dm	5	50	60	2.5
TYS-391	11	Dm	30	75	75	2.5
TYS-392	J42-b4	Dm	15	57	125	2.5
TYS-393	11	Dm	40	88	160	5
TYS-394	11	Dm	60	50	180	2,5
TYS-395	11	Dm	30	63	100	2.5
TYS-396	n	Dm	20	50	115	2.5
TYS-397	J42-C1	Dm	30	150	1.20	2.5

,

-

2 2 2 3 4 3

و

