# BASIC DESIGN STUDY ON

# THE ESTABLISHMENT PROJECT OF THE THREE SINUAND FISHERIES CENTERS

THE KINGDOM OF THAILAND

JULY 1982

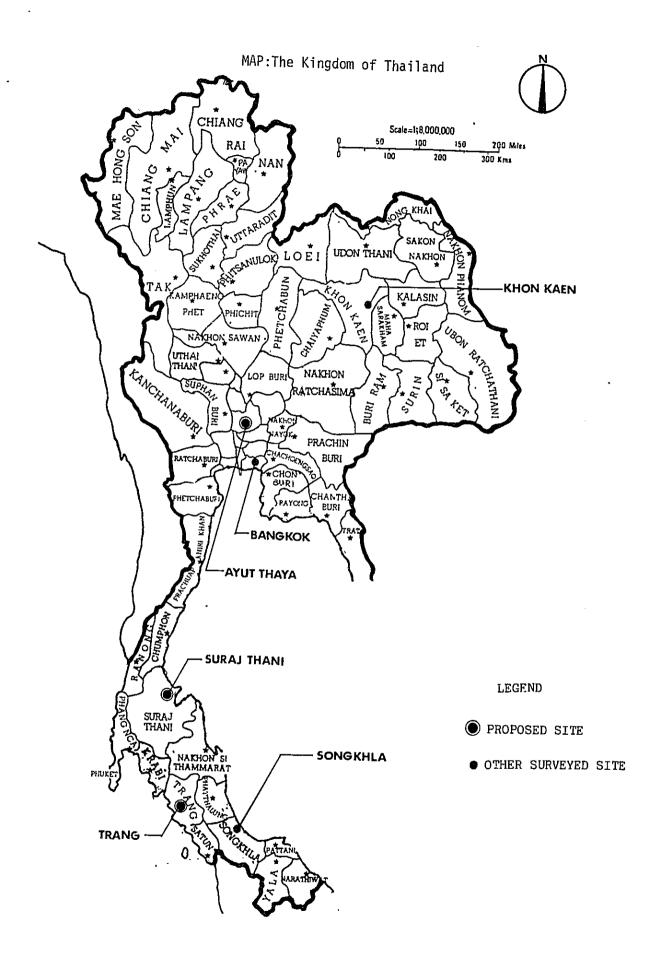
JAPAN INTERNATIONAL COOPERATION AGENCY

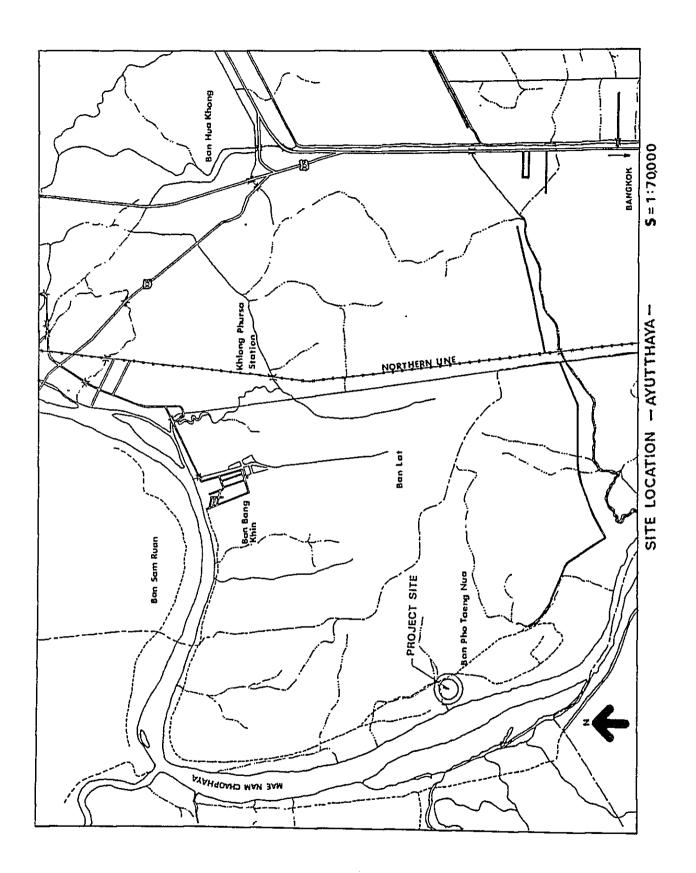




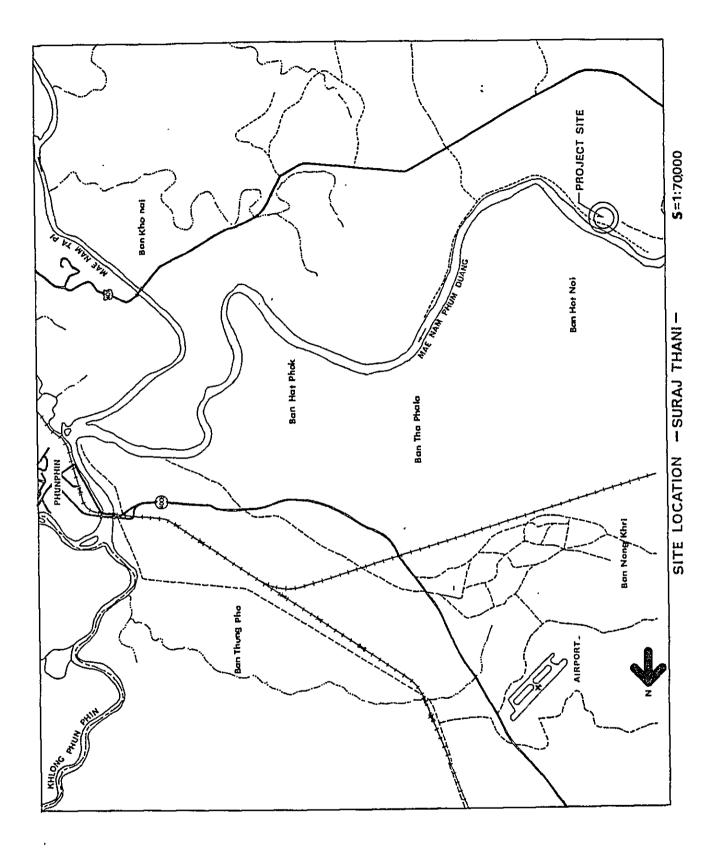
# BASIC DESIGN STUDY ON THE ESTABLISHMENT PROJECT OF THE THREE INLAND FISHERIES CENTERS IN THE KINGDOM OF THAILAND

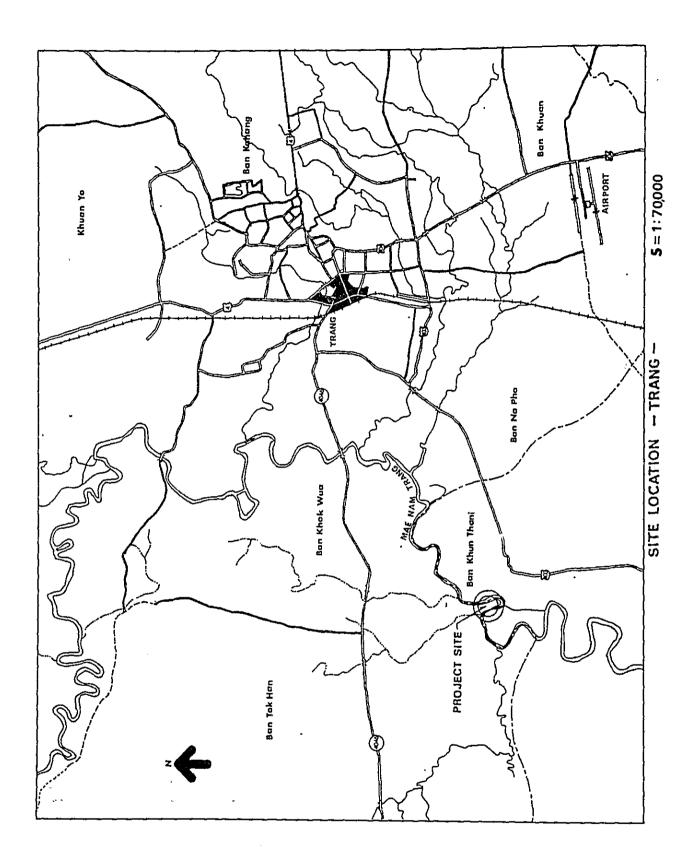



JULY 1982


JAPAN INTERNATIONAL COOPERATION AGENCY

| G  | R | В   |
|----|---|-----|
| Ç  | R | (2) |
| 82 | _ | 47  |


122 NO.13742 BP


| 国際協力事            | 事業団 |
|------------------|-----|
| 受入 明日 584. 9. 25 | 122 |
| Je. 23           | 89  |
| 登録No. 59.0.07    | GRB |





-ii-





#### PREFACE

In response to the request of the Government of the Kingdom of Thailand, the Government of Japan decided to conduct a study on the Establishment project of Inland Fisheries Centers and entrusted the study to the Japan International Cooperation Agency (JICA). The JICA sent to Thailand a survey team headed by Mr. Tamezo Maruyama, First Laboratory, the Environment Control Devision, National Research Institute Aquaculture, Fisheries Agency from April 10 to April 30, 1982.

The team had discussions with the officials concerned of the Government of The Kingdom of Thailand and conducted a field survey (in Ayutthaya, Surajthni, and Tnang). After the team returned to Japan, further studies were made and the present report has been prepared.

I hope that this report will serve for the development of the Project and contribute to the promotion of friendly relations between our two countries.

 $\,$  I wish to express my deep appreciation to the officials concerned of the Government of the Kingdom of Thailand for their close cooperation extended to the team.

July, 1982

Keisuke Arita

President

Japan International Cooperation Agency.

runk Asite

#### SUMMARY

The Fifth National Economic and Social Development Plan (the 5th NESDP) aims at stabilizing the national economy of Thailand. The Government of Thailand regards the reduction of unemployment and poverty as major policy goals of the 5th NESDP. The development of the forestry and fishery industries, in line with these goals, will play an important role in stabilizing the economic progress in Thailand.

As regards the aspect of the fishery, the amount of fish hauled by trawling declined steadily, after the peak in 1977, due to the dwindling fish resources in the Gulf of Thailand, the rise in fuel prices, and the reduction of fishery area by the imposition of the 200 mile exclusive economic zone. Under the condition of increasing population, the declining haul has had an especially serious effect on the food supply to the Thai people, since fish is consumed as their main source of animal protein.

Consequently, the Government of Thailand intends to develop urgently the inland fishery in order to provide animal protein to regional population at a reasonable price, and in order to provide work opportunities; thus, it aids in reducing the unemployment rate.

The Government of Thailand is planning to establish four inland fisheries centers and fifty stations as its inland fisheries development program under the 5th NESDP, in order to produce and distribute seed fish and to conduct research, technical training, as well as to provide extension service for farmers and fishermen.

This project will be implemented in three high priority regions: Ayutthaya, Surajthani, and Trang. The specific objectives of the three inland fisheries centers aim at the stable production and distribution of the seed fish in the three areas. The objectives of this plan also include carrying out a program for training farmers and fishermen in cultivation techniques and also a seed fish distribution program to increase the stock of fish in the waters of the three areas involved. Hence, the cultivation industry can be developed rapidly.

The objectives of the three fisheries centers and the number of staff are shown as follows.

Ayuttaya Fishery Center:

Production of seed fish.

- 2) Aquaculture research and genetic study on fresh water fish. 3) Training of the fishery officers and farmers, in the Central Region of Thailand. 4) Total number of staff ...... 45 . Lab. staff ...... 13 . Officers 12 • Support staff ..... 20 Suraithani Fishery Center: 1) Production of seed fish 2) Applied aquaculture research on fresh water fish. Training of the fishery officers and farmers, and developing of fishery resources in the Southern Region of Thailand. 4) Total number of staff ...... 60 · Lab. staff ...... 16 • Officers ...... 19 • Support staff ..... 25 Trang Fishery Center: 1) Production of seed fish. 2) Teaching farmers techniques for effective cultivation and management of fresh water fish. 3) Total number of staff ......
  - Lab. staff ..... 5
  - Officers ..... 8
  - Support staff ...... 15

The accomplishment of the centers' objectives can only be reached through the cooperation of the Governments of the Kingdom of Thailand and Japan. The portion of the project to be completed by each country is shown below.

Japanese portion of the project cost is estimated 1,185,000,000yen. The duration of construction will be approximately 20 months, including the detailed design stage.

#### JAPAN:

| CENTER FACILITIES          | AFC   | SFC     | TFC   | TOTAL      |
|----------------------------|-------|---------|-------|------------|
| 1. CEMENT POND<br>50m²     | 20    | 20      | 10    | 50         |
| 2. EARTHEN POND<br>400m²   | 60    | -       | -     | 60         |
| 3. EARTHEN POND<br>1,600m² | 26    | 48      | 14    | <b>8</b> 8 |
| 4. EARTHEN POND<br>3,200m² | 14    | 18      | 6     | 38         |
| 5. RESERVOIR               | 2.9ha | 2.0ha   | 2.0ha | 6.9ha      |
| 6. CENTER BLDG.            | 500m² | 830m² · | 150m² | 1,480m²    |
| 7. HATCHERY                | 420m² | 500m²   | 250m² | 1,170m²    |
| 8. DORMITORY               | 530m² | 530m²   | _     | 1,060m²    |
| 9. EQUIPMENT               | 1 SET | 1 SET   | 1 SET | 3 SETS     |

#### THAILAND:

Access Roads

Main Roads

Dikes

Wells

Ground Leveling

The Infrastructure Exterior to the

Project Sites

Residences

As for the project organization, the central governmental office of the Inland Fishery Development and Operation Center is in direct charge of the project. The principal officers in charge have already been assigned and temporary managers of the centers have already been nominated.

The budget for this project has also already been appropriated for the years to come to insure the operation. The amount of the seed fish production will be in accord with the water area in a fit condition for release. The species of the seed fish that have been selected are suitable to the project because these fish species are all those whose cultivation technology has been developed in Thailand.

The project target production of seed fish in the initial stage will not be large enough to supply the large population in Thailand, but through

training and promotion of seed fish culture in these sites, it is expected the cultivation fishery in the future.

At the initial stage, training and promotion programs will be limited mainly to the governmental officers. In the later stage, they will be opened to the farmers and fishermen. Thus, the fisheries project may contribute to the Thai economy.

The species of fish in the Ayutthaya Fishery Center program were selected for a high reproductive potential and a strong constitution.

As a result of economic evaluation, the EIRR (Economic Internal Rate of Return) was calculated at 9.4% overall, and this value is by no means poor for a project including planning, research, training and popularization, that can not be directly expressed in figures. But it is definitely valuable for the development of the inland fishery industry.

It can be concluded that the project will contribute in the three provinces to the improvement of food supply to the farmers and fishermen. As a result of increased production of fresh water fish there will be an accompanying rise in the income of the local population, as well as more employment chances and the ability to aquire foreign currency. This leads us to believe that this project is well suited for the subject of Japanese grant aid.

In order to manage the project more effectively, new aquaculture engineers must be trained and techniques for the prevention of fish disease must be mastered. As for the cultivation of seed fish strict staff supervision of the cultivation process, training programs and extension services should be important to operate the centers efficiently.

# CONTENTS

| * [ | 1ap: T | he King | gdom of Thailand                                             | Ī  |
|-----|--------|---------|--------------------------------------------------------------|----|
| * [ | .ocati | on Maps | (Site Location - Ayutthaya, Surajthani, and Trang)           | ij |
|     |        |         | ***************************************                      | ٧  |
|     |        |         | ***************************************                      | ٧i |
|     |        |         |                                                              | х  |
| 1.  | Intr   | oductio | מו                                                           | 1  |
|     | ]-]    | Projec  | t Background ·····                                           | 7  |
|     | 1-2    |         | Design Study and Discussed Items                             | 1  |
|     | 1-3    |         | esults of the Basic Design Study                             | 2  |
| 2.  | Proj   | ect Nec | essity and Role                                              | 3  |
|     | 2-1    | The Ne  | ecessity for Developing Inland Fisheries                     | 3  |
|     | 2-2    | The Ro  | le of the project                                            | 3  |
|     | 2-3    | Fisher  | ry Projects Constructed by Foreign Organizations             | 4  |
| 3.  | Site   | Condit  | ions                                                         | 6  |
|     | 3-1    | Propos  | ed Sites ·····                                               | 6  |
|     |        | 3-1-1   | Ayutthaya                                                    | 6  |
|     |        | 3-1-2   | Surajthani                                                   | 6  |
|     |        | 3-1-3   | Trang                                                        | 7  |
|     | 3-2    | Infras  | tructure ·····                                               | 7  |
|     |        | 3-2-1   | Electric Power Supply                                        | 7  |
|     |        | 3-2-2   | Telegram and Telephone · · · · · · · · · · · · · · · · · · · | 7  |
|     |        | 3-2-3   | Water Supply                                                 | 7  |
|     |        | 3-2-4   | Drainage                                                     | 8  |
|     |        | 3-2-5   | Fuel                                                         | 8  |
|     |        | 3-2-6   | Infrastructure Construction by the Government of Thailand    | 8  |
| 4.  | Conte  | ents of | the Porject                                                  | 9  |
|     | 4-1    | Purpos  | e and Contents                                               | 9  |
|     |        | 4-1-1   | Purpose                                                      | 9  |
|     |        | 4-1-2   | Roles of the Three Fisheries Centers                         | 9  |
|     |        | 4-1-3   | Programs ·····                                               | 10 |
|     |        | -       | Production Plan for Seed Fish                                | 12 |
| •.  |        | 4-1-5   | Distribution of Produced Seed Fish                           | 13 |

|    |      | 4-1-6 Proj                                                         | ect Demand and Appropriate Technical Methods                                                                                        | 14                                     |
|----|------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|    | 4-2  | Pond and Re                                                        | servoir Area                                                                                                                        | 15                                     |
|    |      |                                                                    | Type and Area                                                                                                                       | 15<br>20                               |
|    | 4-3  | Basic Desig                                                        | ın                                                                                                                                  | 21                                     |
|    |      | 4-3-2 Mast<br>4-3-3 Arch<br>4-3-4 Stru<br>4-3-5 Mech<br>4-3-6 Civi | ection of Basic Design  er Planning  nitectural Planning  ectural Planning  nanical and Electrical Planning  I Engineering Planning | 21<br>23<br>28<br>36<br>38<br>50<br>57 |
|    | 4-4  | Basic Desig                                                        | n Drawings ·····                                                                                                                    | 60                                     |
|    | 4-5  | Project Co                                                         | st                                                                                                                                  | 60                                     |
| 5. | Impl | ementation S                                                       | Schedule                                                                                                                            | 101                                    |
|    | 5-1  | Construction                                                       | on Schedule ·····                                                                                                                   | 101                                    |
|    |      | •                                                                  | anization System of Construction Management                                                                                         |                                        |
|    | 5-2  | Range of Co                                                        | onstruction Work                                                                                                                    | 102                                    |
|    |      | 5-2-1 Out                                                          | line of Work Division                                                                                                               | 102                                    |
|    | 5-3  | Implementat                                                        | cion Schedule                                                                                                                       | 104                                    |
|    | 5-4  | Maintenance                                                        | and Operation Planning                                                                                                              | 105                                    |
|    |      |                                                                    | agement Plan ·····                                                                                                                  |                                        |
| 6. | Proj | ect Evaluat                                                        | ion                                                                                                                                 | 110                                    |
|    | 6-1  | Social and                                                         | Economic Effects                                                                                                                    | 110                                    |
|    |      | 6-1-2 Ana                                                          | luation of Training Program         lysis of Employment Situation         luation of Extension Service                              | 111                                    |
|    | 6-2  | Evaluation                                                         | of the Seed Fish Production ······                                                                                                  | 113                                    |
|    |      |                                                                    | tribution System ·······luation of Fish Culture System ······                                                                       |                                        |

|    |      | 6-2-3               | Analysis of Available Water Areas for Fish Production           | 116  |
|----|------|---------------------|-----------------------------------------------------------------|------|
|    | 6-3  | Demand              | and Supply                                                      | 116  |
|    |      | 6-3-1               | Analysis of Demand                                              |      |
|    |      | 6-3-2               | Fish Production Statistics ······                               | 122  |
|    |      | 6-3-3               | Production Amount Per Person                                    |      |
|    |      | 6-3-4               | Comparison between Production and Demand $\ldots \ldots \ldots$ |      |
|    |      | 6-3-5               | Fish Production Capacity for Farmers and Fishermen              | 124  |
|    | 6-4  | Moneta              | ry Value of the Fish Production Program                         | 125  |
|    | 6-5  | Econom <sup>-</sup> | ic Evaluation                                                   | 128  |
|    |      | 6-5-1               | Project Outline                                                 | 128  |
|    |      | 6-5-2               | Estimated Expenses                                              | 128  |
|    |      | 6-5-3               | Economic Evaluation Based on EIRR                               | 130  |
| 7. | Conc | lution a            | and Recommendations                                             | 137  |
|    | 7-1  | Project             | t Demand                                                        | 137  |
| •  | 7-2  | Techni              | cal Aspect                                                      | 137  |
|    | 7-3  | Operat              | ion and Maintenance Procedures                                  | 138  |
|    | 7-4  | Project             | t Recommendations                                               | 139  |
|    |      |                     |                                                                 |      |
| 8. | Appe | ndix                |                                                                 | 141  |
|    | 8-1  | Minutes             | s of Discussion                                                 | 141  |
|    | 8-2  | Member              | List of Basic Design Study Team                                 | 151  |
|    | 8-3  | Climati             | c Conditions                                                    | 151  |
|    |      | 8-3-1               | Temperature, Humidities                                         | 151  |
|    |      | 0 2 2               | Dunginitation                                                   | 1.50 |

#### 1. Introduction

#### 1-1 Project Background

Based on the request by the Kingdom of Thailand for assistance in the implementation of their project to establish Inland Fisheries Centers, the Government of Japan despatched an advance investigation team from February 9 to February 18, 1982 so that the fundamental roles of the centers, contents of the project, organization for management and control, etc., could be fully discussed with the Thai Government officers in charge of the project.

Based on the results of the advance investigation, the Government of Japan despatched a basic design survey team from April 10 to April 30, 1982 to discuss the matter with the officers in the Government of Thailand and to collect data necessary for the basic design.

#### 1-2 Basic Design Study and Discussed Items

The items of investigation and discussion by the basic design study team are as follows.

- (1) Confirmation of the project was given by the Ministry of Agriculture and Cooperatives Fishery Department and by the provincial governments of the sites concerned.
- (2) Confirmation of the project scale and project organization was given by officials in both the fishery Department and Fresh Water Fishery Development and Control Centers.
- (3) Investigation of the project sites and of the organization and arrangement of the infrastructure was completed.
- (4) Investigation of the circumstances concerning construction work within Thailand, including laws, regulations and engineering standards was carried out. The construction standards for engineering projects were found to be high. Based on the material prices in Bangkok, data was collected on the costs of materials in the provinces concerned.
- (5) Plans for the execution and management of the project construction, as well as plans for the running and maintenance of the centers after construction were confirmed.
- (6) The contents of the request made by the Government of Thailand including the reasons for developing the fisheries centers and the level of priority for the project were evaluated.

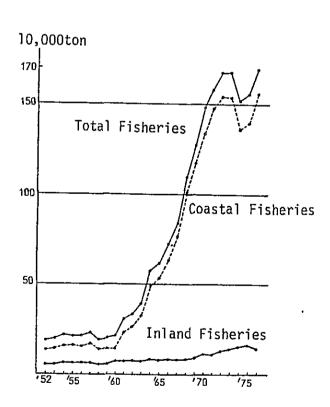
- (7) The scale, site plan, architectural design and the types and amounts of equipment needed were decided on.
- (8) The contents and system of the grant to be given by the Government of Japan was explained and the scope of work to be completed by each country was clarified.

#### 1-3 The Results of The Basic Design Study

The results of the basic design study were prepared and, in the meeting of April 27, 1982 the contents of the proposal were discussed, including sites of construction, activities of each of the centers, the scope of construction work to be taken charge of by each government, and the basic design plan of the centers.

Consequently, on the bases of the "Minutes of Discussion," the report on the basic design study was generated with an analysis and development of the data. More specifically, this report, after analyzing and evaluating the feasibility and the priority level of Thailand's request, proposes what the basic design of the project will be. The basic design, responding to the requests of the Government of Thailand, also is designed to meet the climatic and geographical conditions of Thailand. In addition, the report proposes the time and labor schedule for the maintenance and operation of the centers. The total project cost in EIRR is also included in the report.

#### 2. Project Necessity and Role


#### 2-1 The Necessity for Developing Inland Fisheries

As regards the fishery industry, the amount of fish hauled by trawling increased rapidly in the 1960's and reached a peak in 1977. After this time, the average yearly catch has declined steadily owing to the dwindling fish resources in the Gulf of Thailand, the rise in fuel prices, and the reduction of fishing ground by the imposition of the 200 mile exclusive economic zone.

The declining haul has had an especially negative effect on the diet of the Thai people since their main source of protein is in the form of relatively inexpensive fish. Consequently, the Government of Thailand considers that the development of inland fisheries is an improvement plan that will provide animal protein to regional populations at a reasonable price and will also aid in reducing the unemployment rate.

Under the circumstances, the development of inland fisheries is a matter of necessity for the Thai people.

Fig. 2-1 Changes in Fishery
Production



QUOTED: "Fishery in Thailand in 1979" Toshibumi Sakurai, published by Japan Fishing Resources Association

#### 2-2 The Role of the Project

The project is carried out with the objective to increase the supply

of fishery resources in accordance with the 5th NSEDP.

This program is being implemented in the hope of developing inland water fishing along with improving common cultivation ponds and establishing fishery Department facilities in necessary areas. The project will play an important role in the realization of the 5th NSEP's goal to develop inland fisheries.

#### 2-3 Fishery Projects Constructed by Foreign Organizations

The Canada International Development Agency (CIDA) and the United States Agency for International Development (USAID) provid the projects which are quite similar to the project.

The CIDA assisted the Thai Fishery Department from 1975 to 1980 and also helped to establish the National Inland Fisheries Institute (NIFI). The principal activities of the NIFI are to research various aspects of fresh water fish and to provide a training program for fishery studies at the national level.

The USAID provided training programs and scientific instruments to the fishery department from 1968 to 1972, and sponsored many biological researchers from the department to study abroad. These foreign trained researchers are expected to be able to help execute a project similar to the program directed by the CIDA.

The USAID sponsored the Village Fish Pond Program (1980-1981) which is located in the Northeastern district of Thailand. In Bangkok, the International Development Research Center (IDRS) had been assisting in the breeding of fish with NIFI equipment since 1981. This program will continue until 1983 and strongly resembles the proposed fish breeding project in Ayutthaya now under consideration.

Table 2-1 Inland Fisheries of Thailand:
Foreign Aid For Fresh Water Fish Culture Programs

| I tem       | Nation     | Budget<br>Unit:\$Mil. | Project                                                                 |
|-------------|------------|-----------------------|-------------------------------------------------------------------------|
| 1973 - 1978 | Canada     | 3                     | Establishment of the National<br>Inland Fisheries Institute,<br>Bangkok |
| 1980 - 1981 | The U.S.A. | 0.5                   | Village Fish Pond Project<br>Northeast Region                           |
| 19811983    | Canada     | 0.5                   | Fish Genetic Improvement<br>Project, Bangkok                            |

In addition, a Pilot Freshwater Fish Farm Project in Lan Pao, located in northeastern Thailand, is under construction through aid received from Holland. A production capacity of 80 tons of fresh water fish, research and training programs are planned at this center, while in Thaland the investigations team had a opportunity to inspect this site. This program aims at developing fish cultivation which is adapted to the environmental conditions present in northeastern Tahiland. In an effort to demonstrate the usefulness of this project, the most recent fish cultivation technology is being employed.

- Site Conditions
- 3-1 Proposed Sites

#### 3-1-1 Ayutthaya

- (1) Location: About 50 km north of Bangkok along the River Chaophaya.
- (2) Total area: 32 ha, utilized area: 25.5 ha, unutilized area: 6.5 ha
- (3) Present State:
  - o Most of the land is paddy fields, with low relief.
  - o Embankments are necessary against floods in the rainy season.
  - o This construction work is now proceeding.
- (4) The Access Road is almost completed except for paving. The dike under construction around the site is 6 m in width and can be used as a road.
- (5) Access River: The River Chaophaya used to be abundant in fish resources, and fresh water fishing is still being continued at present, although the resources are dwindling. This river can be utilized as a water source for the site.

#### 3-1-2 Surajthani

- (1) Location: Along the river side, 20 km upstream from the rivermouth of the River Tapee, about 500 km to the south of Bangkok and 12 km from Punpin.
- (2) Total area: 89 ha,

utilized area: 89 ha unutilized area: 0 ha

- (3) Present State:
  - o The land is grassland, withlow relief.
  - o A large scale dike is necessary around the site.

    The Government of Thailand has appropriated a budget for the construction of the dike for the period lasting from October, 1981 to September, 1982.
- (4) Access Road: A 4 m wide farming road extends for 2 km from National Highway 401 to the site. It is sufficient for the construction work, but it must be widened during the rainy season, so that it may be used.
- (5) Access River: The River Tapee. A multi-purpose dam is being planned about 50 km upstream from the site, and a stable supply of water can

be expected in the future.

#### 3-1-3 Trang

- (1) Location: About 200 km to the south of Surajthani along the River Gunttang, located about 7 km from Trang and 15 km from the mouth of the River Trang.
- (2) Total Area: 88 ha,

utilized area 21 ha.

unutilized area 67 ha.

- (3) Present State: The land is undulating grassland and forest.
- (4) Access Road: An access road 2 km in length has been built from the National Highway 4046 to the site, but the road is narrow, only 2 m wide; thus, the road should be widened and elevated before the construction work starts.
- (5) Access River: The River Gunttang. Of all the sites, the center at trang has the smallest supply of water, but it is of good quality and will be sufficient for the project.

#### 3-2 Infrastructure

The infrasturcutre for the sites is sufficient as far as the roads and power supply are concerned, but other matters must be improved for the project.

#### 3-2-1 Electric Power Supply

No trouble is anticipated as far as the installation of the electrical power supply is concerned, although there are some apprehensions about the cost of the electricity due to rising fuel prices. The installation of an independent power plant is advisable in case of an emergency.

#### 3-2-2 Telegram and Telephone

Telephone wire can only be led into the Ayutthaya Fishery Center. Wireless facilities are needed in other centers.

#### 3-2-3 Water Supply

Water supply and drainage are not available in any of the sites, and wells must be excavated. The construction work will be taken care of by Thai workers. For the amount and quality of water, see 3-2-4.

#### 3-2-4 Drainage

Drainage from ponds is especially large and this problem must be examined in detail. During heavy rains the water must be discharged into an adjacent canal or river by pumps.

#### 3-2-5 Fuel

As for the fuel for research and training facilities, along with that for dormitories, propane gas should be used, as no city gas is available.

# 3-2-6 Infrastructure Construction by the Government of Thailand

In addition to some necessary earthwork on the sites, the following work is to be completed by the Government of Thailand:

Table 3-1 Infrastructure Construction by the Government of Thailand at the Present Stage

| Center                  | AFC                                                 | SFC                                             | TFC                                                     |
|-------------------------|-----------------------------------------------------|-------------------------------------------------|---------------------------------------------------------|
| Construction<br>Item    | ,                                                   | 370                                             |                                                         |
| 1. Dike                 | Proceeding                                          | Start Construction<br>After Exchange<br>of note | Start Construction                                      |
| 2. Access Road          | Almost Completed                                    | Improvement<br>After Exchange<br>of Note        | Proceeding<br>Construction<br>After Exchange<br>of Note |
| 3. Main Road            | Start Construction<br>After Exchange<br>of Note     | Start Construction                              | Start Construction                                      |
| 4. Electricity<br>Inlet | Start Construction<br>Existing Close<br>to the Site | Start Construction                              | Start Construction                                      |
| 5. Well                 | Start Construction<br>After Exchange<br>of Note     | Start Construction                              | Start Construction                                      |
| 6. Drainage             | Start Construction<br>After Exchange<br>of Note     |                                                 |                                                         |
| 7. Telegram             | Start Construction<br>Existing Close<br>to the Site |                                                 |                                                         |

Note: Drinage systems and Telegraph service within the Infrastructure are not planned at this stage in Surajthani and Trang.

#### 4. Contents of the Project

#### 4-1 Purpose and Contents

#### 4-1-1 Purpose

About half of the fishing boats in Thailand are suspending their operations due to the reduction in fishing ground due to the imposition of the 200-mile exclusive economic zone and also due to the rise in fuel prices. Because the haul of marine fish is steadily decreasing, the Government of Thailand is putting emphasis on the increased haul of fresh water fish.

The project, as its main purpose, will aid in the supply of animal protein to poor farmers, and secondly, will increase the income of people living in the areas involved. In the subject districts, a further objective is to stock all inland waters capable of utilization with seed fish.

The seed fish will be distributed, possibly free of charge, to farmers in the said districts who have land capable of irrigation. At the same time, the fish cultivation industry in inland waters will be promoted through the project's training program.

#### 4-1-2 Roles of the three Fisheries Centers

- (1) Ayutthaya Fishery Center
  - 1) Production of seed fish.
  - 2) Aquaculture research and genetic study of fresh water fish.
  - 3) Training of the fishery officers and farmers, in the Central Region of Thailand.
- (2) Surajthani Fishery Center:
  - 1) Production of seed fish
  - 2) Applied aquaculture research on fresh water fish.
  - 3) Training of the fishery officers and farmers, and developing of fishery resources in the Southern Region of Thailand.
- (3) Trang Fishery Center:
  - 1) Production of seed fish.
  - 2) Teaching farmers techniques for effective cultivation and management of fresh water fish.

## 4-1-3 Programs

- (1) Target Areas of the three Centers
  - Target Areas of Seed Fish Supply and Extension Service
     The Center's range of seed fish supply and extension service are shown in the Table 4-1.

Table 4-1 Seedfish Supply and Extension Service

| Center<br>Terget Region | AFC | SFC  | TFC    |
|-------------------------|-----|------|--------|
| Central Plain           | Yes | No   | No     |
| Gulf West Coast         | No  | Yes  | Little |
| Undaman Coast           | No  | Some | Yes    |

2) Target Area of Research and Training

Research and training programs are conducted in the respective centers for the target which are shown in the Table 4-2.

Table 4-2 Research and Training

| Center<br>Target Region | AFC                 | SFC         | TFC  |
|-------------------------|---------------------|-------------|------|
| Center Plain            | Yes                 | Very Little | No   |
| Gulf West Coast         | Little<br>(Genetic) | Yes         | No   |
| Undaman Coast           | Little<br>(Genetic) | Yes         | Some |

(2) Contents of Research and Study

Table 4-3 shows the contents of the research and study programs in the respective centers.

Table 4-3 Research and Study Programs

| Center<br>Programs     | AFC   | SFC | TFC  |
|------------------------|-------|-----|------|
| Extensive Fish Culture | Yes   | Yes | Some |
| Intensive Fish Culture | Yes . | Yes | No   |
| Fish Propagation       | Yes   | Yes | No   |
| Fish Feed              | Yes   | Yes | No   |
| Fish Diseases          | Yes   | Yes | No   |
| Fish Genetics          | Yes   | No  | No   |
| Integrated Farming     | Yes   | No  | No   |
| Cage Culture           | Yes   | No  | No   |
| River Fishery          | Yes   | Yes | Some |
| Resevoir Fishery       | No    | Yes | Some |
| Ecology                | Yes   | Yes | No   |
| Hydrobiology           | Yes   | Yes | No   |
| Pollution              | Yes   | No  | No   |
| Taxonomy               | Yes   | Yes | Yes  |

# (3) Contents of Training Program

The contents of the training activities are shown in Table 4-4 and 4-5.

# 1) Training Program

\*Approxmately 25 persons are trained for 3 to 15 days at a time.

Table 4-4 Training Program

| Center<br>Training Subject               | AFC   | SFC   | The Number of<br>Courses per year |
|------------------------------------------|-------|-------|-----------------------------------|
| General Fish Culture                     | Yes   | Yes   | 3                                 |
| Intensive Fish Culture                   | Yes   | Yes   | 2                                 |
| Fish Propagation in<br>Different Species | Yes . | · Yes | 2                                 |
| Fish Feed And Feeding                    | Yes   | Yes   | 1                                 |
| Fish Disease                             | Yes   | Yes   | ì                                 |
| Fish Genetics                            | Yes   | No    | 1                                 |
| Integrated Farming                       | Yes   | No    | 2                                 |
| Fishing Management                       | Yes   | Yes   | 3                                 |

# 2) Target Training Group

Table 4-5 shows the target training groups and courses per year.

Table 4-5 Target Training Groups

| Center<br>Target Groups        | AFC | SFC | The Number of<br>Courses Per Year |
|--------------------------------|-----|-----|-----------------------------------|
| National (Fishery Staff)       | Yes | No  | 1                                 |
| Regional (Fishery Staff)       | Yes | Yes | 2                                 |
| Related Government<br>Officer  | Yes | Yes | 2                                 |
| Local Farmers and<br>Fishermen | Yes | Yes | 10                                |

## (4) Extension Service

Table 4-6 Extension Service

| Staff              |           | ice Days In          | Month      | Officers |
|--------------------|-----------|----------------------|------------|----------|
| Activities         | Directors | Senior<br>Biologists | Biologists | UTTICETS |
| Fish Culture       | 2         | 4                    | 5          | 7        |
| Stoking Program    | 2         | 4                    | 5          | 8        |
| Fishery Management | 2         | 4                    | 5          | 5        |

The staff have the responsibility to promote the fishery activities as shown in Table 4-6.

#### 4-1-4 Production Plan for Seed Fish

The Production output of different fish species are shown in Table 4-7.

Table 4-7 Production Plan For Seed Fish

(Units: Mil.)

| Fish Name               | Common Name     | Product | ion Out | out | (in mil.) |
|-------------------------|-----------------|---------|---------|-----|-----------|
| 1 1511 Haine            | Common Hame     | AFC     | SFC     | TFC | Total     |
| Trichogaster pectoralis | Sepat siam      | _       | 20      | 4   | 24        |
| Puntius gonionotus      | Thai carp       | 10      | 50      | 10  | 70        |
| Tilapia nilotica        | Nile tilapia    | 10      | 8       | 4.  | 22        |
| Cyprinus carpio         | Common carp     | 10      | 2       | 2   | 14        |
| Pangasius sutchi        | Catfish         | 18      | 20      | 5   | 43        |
| Oxyleotris marmoratus   | Sand goby .     | 1       | -       | - · | 1         |
| Ophicephalus striatus   | Snake head      | 0.5     | -       | -   | 0.5       |
| Clarias batrachus       | Walking catfish | 0.5     | _       | -   | 0.5       |
| Labeo rohita .          | Rohu            | 10      | 20      | 5   | 35        |
|                         | Total           | 60      | 120     | 30  | 210       |

# 4-1-5 Distribution of Produced Seed Fish

The seed fish produced in the three fisheries centers are to be distributed in the respective areas as shown in Table 4-8.

Table 4-8 Distribution of Seed Fish

| Center      | Target provinces  | Number of seed fish (mil.) |
|-------------|-------------------|----------------------------|
| AFC         | Ayutthaya         | 15                         |
|             | Bangkok           | 15                         |
|             | Thonburi          | 10                         |
|             | Samutprakarn      | 10                         |
|             | Pratumthani       | 10                         |
| Total       |                   | 60                         |
| SFC         | Surajthani        | 40                         |
|             | Choompon          | 30                         |
|             | Ranong            | 10                         |
|             | Nakhonsrithamarat | 30                         |
|             | Pang-nga          | 10                         |
| Total       |                   | 120                        |
| TFS         | Trang             | 10                         |
|             | Krabi             | 4                          |
|             | Phuget            | 3                          |
|             | Pathalung         | 10                         |
|             | Satul             | 3                          |
| Total       |                   | 30                         |
| Grand Total |                   | 210                        |

#### 4-1-6 Project Demand and Appropriate Technical Methods

#### (1) Project Demand

Promotion of inland fisheries is a sound measure to take in response to the threat posed by the continuing decline in the catch of marine fish.

It is important that the seed fish should be supplied constantly and in large amounts in order that fish production be increased in fresh water. The three regtons in question should have the opportunity to extend production if waranted by increases in future fish consumption rates and by the availability of suitable water resources. The demand for the fish is large enough, and the level of technology in the Fishery Department of Thailand is high enough for the project to be rated suitable for the establishment of the centers.

#### (2) Fish species included in the production plan

The target amount of seed fish production is not too large, in any of the three centers. Six kinds of herbivorous and omnivorous fish (see table 4-7) have been selected in Surajthani and in Trang, five of the six species being native to the waters in areas surrounding these two provinces, Rohu is the only fish being utilized which is not native to these regions, but the culturing technique for breeding Rohu are sufficiently advanced as to not pose a problem. The use of native species in the southern regions is an ecologically sound more as the collective culturing techniques are not yet fully developed in these sites: thus, the introduction of new species could pose breeding problems. In Ayutthaya, three kinds of carnivorous fish, Channa striatus, Clarias batrachus, and Oxyeleotris marmoratus are being used in addition to the 5 kinds of herbivorous and omnivorous fish mentioned previously. These species are suitable for extensive and intensive culturing with already developed culturing techniques. Therefore, these species are considered appropriate for distribution from Ayutthaya to other regions where a stable supply of seed fish is required.

#### (3) Training and Promotion Activities

In addition to the production of seed fish, training and promotion activities, geared towards local farmers and fishermen rather than government officers, is deemed to be an essential component for the

successful operation of all the centers. Consequently, the project will begin under government direction, but emphasis is being laid on the promotion of private peoples participation in the program.

#### (4) Research Activities

Research and study will be carried out in many phases of freshwater fishery reserch (See Table 4-3). The breeding included in the activities at Ayutthaya aims at the increased production of fish through propagation and culturing.

As a short term program, the productivity of each species will be recorded carefully and this contribute to the selection of better fish streams to be used in production. Reduction in production as a result of breeding within the same variety will be avoided by cross breeding between different species and strains. As a long term program, it is intended that species with high productivity and strong resistance will be singled out by means of selected breeding and crossing. These programs are in the initial stages, and substantial results cannot expected in such a short period; but in the longrun they will prove to be the fisheries program.

#### 4-2 Pond and Reservoir Area

#### 4-2-1 Pond Type and Area

The following table was compiled which shows the number of ponds and their areas, as calculated according to the system of seed fish breeding developed for the 9 kinds of fish after discussion with officers of the Government of Thailand.

Table 4-9 Statistics Supplied by the Government of Thailand

|                                                  | <del>,</del>                  |                          |                        |                       |                        |                              |                       | T                       |                    |
|--------------------------------------------------|-------------------------------|--------------------------|------------------------|-----------------------|------------------------|------------------------------|-----------------------|-------------------------|--------------------|
| Density of seed Fish<br>per Unit Square          | 1,000                         | 2,000                    | 1,000                  | 1,000                 | 1,500                  | * 008                        | 200                   | 200                     | 1,000              |
| Survival Rate<br>from Hatching<br>Till Seed Size | 40 (7,200)                    | (45,000)                 | 80 . (640)             | 50 (12,000)           | (120,000)              | 15 (1,800)                   | 60 (4,500)            | (3,600)                 | (30,000)           |
| Seed Size<br>(cm)                                | n                             | က                        | ૯                      | м                     | ω                      | 10                           | က                     | 5                       | 5                  |
| Hatching<br>Rate %                               | 60<br>(18,000)                | 75<br>(150,000)          | (008)<br>08            | 60<br>(24,000)        | 75<br>(300,000)        | 60<br>(12,000)               | 75<br>(7,500)         | 75<br>(6,000)           | 60°(09)            |
| No. of<br>Fecundity                              | 30,000                        | 200,000                  | 000,٢                  | 40,000                | 400,000                | 20,000                       | 10,000                | 8,000                   | 100,000            |
| Size of Adult<br>Fish (cm)                       | 15                            | 20                       | 15                     | 25                    | 50                     | 20                           | 45                    | 25                      | 35                 |
| Item<br>Fish Name                                | l. Trichogaster<br>Pectoralis | 2. Puntius<br>Gonionotus | 3. Tilapia<br>Nilotica | 4. Cyprinus<br>Carpio | 5. Pangasius<br>Sutchi | 6. Oxyeleotris<br>Marmoratus | 7. Channa<br>Striatus | 8. Clarias<br>Batrachus | 9. Labeo<br>Rohita |

\* The big seed size of this species is related to a successful rearing method, "cage culture".

Table 4-10 Ayutthaya Fishery Center: Required Numbers of Ponds and Water Area

|                                       |                                  |                               |                         | r                      |                       |                        |                              |                       |                         |                 |                 |
|---------------------------------------|----------------------------------|-------------------------------|-------------------------|------------------------|-----------------------|------------------------|------------------------------|-----------------------|-------------------------|-----------------|-----------------|
| as related to                         | Hatching                         | Natural                       | Induced                 | Natural                | Natural               | Induced                | Induced                      | Natural               | Induced                 | Induced         |                 |
| nd Site as ru<br>thod                 | Nursing<br>(1,600 m²)            |                               | 2.6                     | 6.25                   | 2.25                  | 6.25                   | 3.57                         | 0.82                  | 0.25                    | 3.13            | 25.12           |
| Required Pond Site<br>hatching method | Adult Fish $(3,200 \text{ m}^2)$ |                               | 0.33                    | 6.25                   | 2.5                   | 1.81                   | 0.5                          | 0.5                   | 0.25                    | 1.66            | 13.8            |
| Irea                                  | Haching                          |                               | Indoor                  | Outdoor                | Outdoor               | Indoor                 | Indoor                       | Outdoor               | Indoor                  | Indoor          |                 |
| Required Water Area                   | Nursing                          |                               | 0.42 (2.604)            | 1 (6.25)               | 0.36 (2.25)           | 1.00<br>(6.246)        | 0.57                         | 0.13 (0.82)           | 0.04 (0.25)             | 0.5             | 4.02<br>(25.12) |
| Requi                                 | Adult Fish                       |                               | 0.11<br>(0.66)          | 2<br>(12.50)           | 0.8<br>(5.00)         | 0.58                   | 0.16<br>(1.0)                | 0.16<br>(1.0)         | 0.08 (0.50)             | 0.53<br>(3.34)  | 4.42<br>(27.6)  |
| Fish Seed No./                        | Unit: Million                    |                               | 01                      | 10                     | 10                    | 18                     | L                            | 0.5                   | 0.5                     | 10              | 9               |
| Item                                  | Fish Name                        | l. Trichogaster<br>Pectoralis | 2. Pntius<br>Gonionatus | 3. Tilapia<br>Nilotica | 4. Cyprinus<br>Carpio | 5. Pangasius<br>Sutchi | 6. Oxyeleotris<br>Marmoratus | 7. Channa<br>Striatus | 8. Clarias<br>Batrachus | 9. Labeo Rohita | Total           |

Table 4-11 Surajthani Fishery Center: Required Number of Ponds and Water Area

| 1+0m       | N COO 40 %     | 500             | 20 401 40           |          | Required Po              | ize as                                      | Related to |
|------------|----------------|-----------------|---------------------|----------|--------------------------|---------------------------------------------|------------|
| <u>-</u> > | rish seed No./ | Inhau           | Required water Area | ed .     | Hatching Method          | ethod                                       |            |
|            | Unit: Million  | Adult Fish      | Nursing             | Hatching | Adult Fish<br>(3,200 m²) | Adult Fish Nursing<br>(3,200 m²) (1,600 m²) | Hatching   |
|            | 20             | 1.44 (9.0)      | 2.50 (15.6)         | Outdoor  | 4.5                      | 15.6                                        | Natural    |
|            | 50             | 0.53 (3.3)      | 2.08                | Indoor   | 1.65                     | 13                                          | Induced    |
|            | 8              | 1.6 (10.0)      | 0.8 (5.0)           | Outdoor  | 5                        | 5                                           | Natural    |
| i          | . 5            | 0.16            | 0.2 (1.25)          | Outdoor  | 0.5                      | 1.25                                        | Natural    |
|            | 20             | 0.54 (4.0)      | 1.14 (6.94)         | Indoor   | 2                        | 2                                           | Induced    |
|            |                |                 |                     |          | .                        | 1                                           |            |
|            |                |                 |                     |          |                          |                                             |            |
|            |                |                 |                     |          |                          |                                             |            |
|            | 20             | 1.07 (6.67)     | 1 (6.25)            | Indoor   | 3,335                    | 6.25                                        | Induced    |
| İ          | 120            | 5.44<br>(33.97) | 7.69<br>(48.04)     |          | 16.985                   | 48.1                                        |            |
| l          |                |                 |                     |          |                          |                                             |            |

Table 4-12 Trang Fishery Center: Required Number of Ponds and Water Area

| Item                          | Fish Seed No./        | Require        | Required Water Area | sa       | Required Pond Area<br>hatching method | as                   | Related to |
|-------------------------------|-----------------------|----------------|---------------------|----------|---------------------------------------|----------------------|------------|
| Fish Name                     | rear<br>Unit: Million | Adult Fish     | Nursing             | Haching  | Adult Fish<br>(3,200 m )              | Nursing<br>(1,600 m) | Hatching   |
| l. Trichogaster<br>Pectoralis | 4                     | 0.29           | 0.5                 | Outdoor  | 1.8                                   | 3.13                 | Natural    |
| 2. Puntius<br>Gonionotus      | 10                    | 0.11 (0.66)    | 0.42 (2.604)        | Indoor . | 99.0                                  | 2.604                | Induced    |
| 3. Tilapia<br>Nilotica        | 4                     | 0.8<br>(5.00)  | 0.4 (2.50)          | Outdoor  | 5.00                                  | 2.50                 | Natural    |
| 4. Cyprinus Carpio            | 2 .                   | 0.16<br>(1.00) | 0.2 (1.25)          | Outdoor  | 1.00                                  | 1.25                 | Natural    |
| 5. Pangasius Sutchi           | 5                     | 0.16<br>(1.00) | 0.28 (1.74)         | Indoor   | 1.00                                  | 1.74                 | Induced    |
| 6. Oxyeleotris<br>Marmoratus  |                       |                |                     |          |                                       |                      | Induced    |
| 7. Channa Striatus            |                       |                |                     |          |                                       |                      | Natural    |
| 8. Clarias<br>Batrachus       |                       |                |                     |          |                                       |                      | Induced    |
| 9. Labeo Rohita               | 5                     | 0.27 (1.64)    | 0.25<br>(1.56).     | Indoor   | 3.34<br>(1.67)                        | 1.56<br>(1.56)       | Natural    |
| Total                         | 30                    | (11.13)        | 2.05 (12.784)       |          | 5,565                                 | 12.784               |            |

#### 4-2-2 Reservoir Area

In order to estimate the evaporation rates of the reservoirs in Surajthani and Trang, evaporation rates were measured in Chumphon, Chumphon Province, located to the north of these sites. This was the nearest data source available. In Chumphon, 5.2 mm/day\*, was highest value in the last 13 years, while in Chainat, Chainat Province, 7.8 mm/day was the highest ev. rate in the last a years, (located directly to the north of Ayutthaya)

\* from "The Asian Institute of Technology, 1980, Rainfall and Evaporation Analysis of Thailand"

Table 4-13

| Location<br>Item                                | AFC     | SFC     | TFC    |
|-------------------------------------------------|---------|---------|--------|
| Total Water<br>Surface Area (m²)                | 111,900 | 135,900 | 42,300 |
| Maximum Evaporation (mm/day)                    | 7.8     | 5.2     | 5.2    |
| Total Maximum Evaporation/Day<br>(m³/day)       | 872.8   | 706.7   | 220.0  |
| Required Minutes By 3m/min.<br>Power Pump (min) | 290.9   | 235.6   | 73.3   |
| Required Minutes By 3m/min.<br>Power Pump (hr.) | 4.85    | 3.93    | 1.22   |
| Electricity Power of the Pump/Day (kwH/day)     | 26.68   | 21.62   | 6.71   |

The size of reservoir is calculated based on the two factors. One is that the reservoir sedimentation ponds which keep the water for one week. The other is that it needs pump operation at least once every few days for the maintenance.

Ayutthaya (29 ha) (Durable filtering system shall be employed because the river water becomes somewhat poor in quality during dry season.) Surajthani 2 ha

Trang 2 ha (Future expansion anticipated.)

Table 4-14

| Item                                                                      | Center                           | AFC    | SFC    | TFC    |
|---------------------------------------------------------------------------|----------------------------------|--------|--------|--------|
| Reservoir                                                                 | Effective<br>Water Level (m)     | 1.8    | 2.0    | 2.0    |
|                                                                           | Water<br>Surface Area (m)        | 29,000 | 20,000 | 20,000 |
|                                                                           | Stored Volume of Water (m)       | 51,630 | 40,000 | 40,000 |
| Total Maxi                                                                | mum Evaporation/Day<br>B (m∛day) | 226.2  | 104.0  | 104.0  |
| A                                                                         | + (B) (m³/day)                   | 1,099  | 810.7  | 324.0  |
| Required hours for Supplying Water (hr.)                                  |                                  | 6.11   | 4.51   | 1.80   |
| Days when the Water can be<br>Supplied by One Stock of<br>Reservoir (day) |                                  | 47.0   | 49.3   | 123.5  |

#### 4-3 Basic Design

#### 4-3-1 Direction of Basic Design

#### (1) Basic design policies

The following items are considered important as basic design policy in the project as disscussed with the Government of Thailand.

- 1) Each center must be designed for each center's respective role to be fulfilled within the districts concerned.
- 2) Civil engineering work, especially for the ponds, which occupies a major part in construction; hence, it operational method, fine allotment, and cost shall be fully analyzed. The road situation and river conditions in the vicinity must be considered, and other arrangements are decided.
- 3) The structure of buildings are designed in consideration of the climate, natural features, and life-style, in Thailand.
- 4) The part of engineering and skill in the districts, and the local construction system shall be adopted as far as possible so that the construction cost be lowered.
- 5) Since the sites are separated by wide distances, it is important

- to arrange in order to promote efficient working coodination.
- 6) The facilities should be designed for easy maintenance after being completed, so that the running costs be saved. At all the centers the electric power consumption rate must be examined most carefully.
- (2) Japanese Construction of Respective Facilities

The area of the respective facilities are determined based on the results between Thailand Government and Japanese Government.

Table 4-15

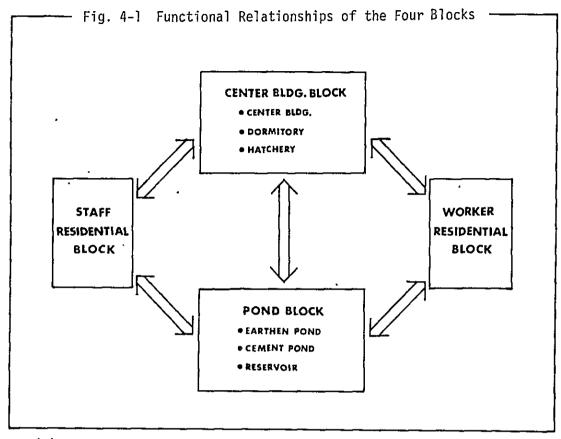
| Table 4-15                              |                              |                              |                              |         |
|-----------------------------------------|------------------------------|------------------------------|------------------------------|---------|
| Center<br>Facility                      | AFC                          | SFC                          | TFC                          | Remarks |
| Pond                                    |                              | *                            |                              |         |
| 1. Cement Pond 50 m <sup>2</sup>        | x20<br>1,000 m <sup>2</sup>  | x20<br>1,000 m <sup>2</sup>  | x10<br>500 m <sup>2</sup>    |         |
| 2. Earthen Pond<br>400 m <sup>2</sup>   | x60<br>2,400 m <sup>2</sup>  |                              |                              |         |
| 3. Earthen Pond<br>1,600 m <sup>2</sup> | x26<br>41,600 m <sup>2</sup> | x48<br>76,800 m <sup>2</sup> | x14<br>22,400 m <sup>2</sup> |         |
| 4. Earthen Pond<br>3,200 m <sup>2</sup> | x14<br>44,800 m <sup>2</sup> | x18<br>57,680 m <sup>2</sup> | x6<br>19,200 m <sup>2</sup>  |         |
| 5. Reservoir                            | 29,000 m <sup>2</sup>        | 20,200 m <sup>2</sup>        | 20,000 m <sup>2</sup>        |         |
| Total Pond Area                         | 11.9ha                       | 15.5ha                       | • 6.2ha                      |         |
| Building                                |                              |                              |                              |         |
| 6. Center Bldg.                         | 500 m <sup>2</sup>           | 830 m <sup>2</sup>           | 150 m <sup>2</sup>           | i       |
| 7. Dormitory                            | 530 m <sup>2</sup>           | 530 m <sup>2</sup>           |                              |         |
| 8. Hatchery                             | 420 m <sup>2</sup>           | 500 m <sup>2</sup>           | 250 m <sup>2</sup>           |         |
| Total Floor Area                        | 1,450 m <sup>2</sup>         | 1,860m <sup>2</sup>          | 400 m <sup>2</sup>           |         |
| Others                                  |                              |                              |                              |         |
| 9. Road                                 |                              |                              |                              |         |
| 10. Pump Station                        | Follo                        | us the meet                  | ting                         |         |
| Ill Equipments for<br>Training and      |                              |                              |                              |         |

# (3) Design Standards and Codes

In the case of a Cooperative project of grant aid by the Japanese Government, application to the government office of Thailand is not necessary if the design drawings are approved by the bureau in charge of the project (Fishery Department). Actually, however, there are laws and regulations in Thailand concerning construction, many of which have been enacted with reference to those in Japan and the U.S.A. Therefore, the following design standards, and codes in Japan, Thailand, and the U.S.A. have been partially adopted for the present project. Among them, city regulation termed, Control of Construction of Buildings, is well arranged and is a good reference.

#### Design Standards and Codes

- 1) JASS (Japan Architectural Standard Specification)
- 2) AIJ (Architectural Institute of Japan)
- 3) ACI (American Concrete Institute)
- 4) AISC (American Iron And Steel Institute)
- 5) ASTM (American Society of Testing Materials)
- 6) TIS (Thai Industrial Standard)
- 7) JIS (Japanese Industrial Standard)
- 8) HASS (Heating, Air-Conditioning and Sanitary Standard)
- 9) JSWAS (Japan Sewage Works Association Standard)
- 10) JEM (The Standard of Japan Electrical Manufacturers' Association)
- 11) JEAC (Japan Electric Association Code)
- 12) CCB (Control of Construction of Buildings)

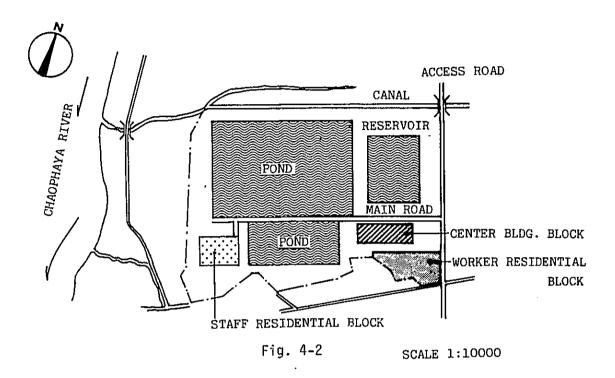

#### 4-3-2 Master Planning

- (1) Functional Relationship Diagrams for the Four Main Blocks

  Each Fishery Center consists of following four blocks.
  - 1) Center Bldg. Block (Center Bldg. Dormitory, Hatchery)
  - 2) Pond Block (Pond, Reservoir)
  - 3) Staff Residential Block
  - 4) Worker Residential Block

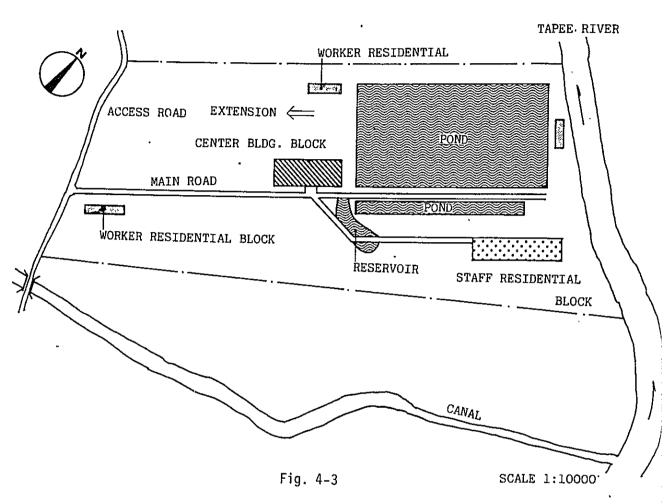
The main function of the center consists of the center building block and pond block, which are supported by the staff residential block and the worker residential block.

The functional relationship between the blocks is shown in Figure 4-1.

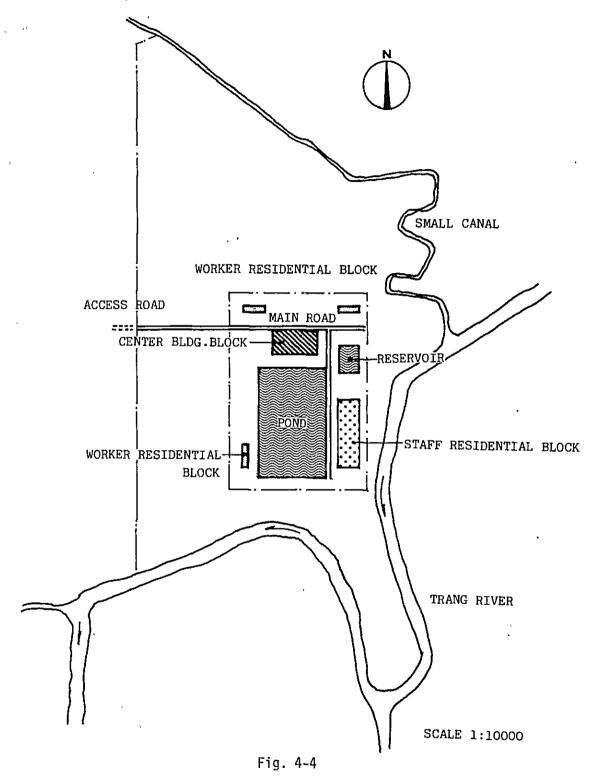



(2) Master Planning Principles

The main policy for the arrangement plan is as follows:


- The center building block shall be arranged in a position that
  has the easiest access from the road and is highly visible, for it
  is the most frequently visited part of the center.
- 2) The ponds and related facilities shall be arranged so that differences in height levels within the site may be fully utilized in order to save the running costs of the water systems for feeding and draining.
- 3) The residential blocks for the staff and workers shall be separated from the central block in order to provide a change of environment from the work area duty.
- 4) The residential block for the staff shall be set back from the access road for the safety.
- 5) The residential block for the workers shall be separated into several sections if the configuration of the land permits so that the security of the facilities may be enhanced.

- 6) If the expansion area is reserved, the master plan of the facilities should be designed to meet the future expansion.
- (3) Master Plan: Ayutthaya




- 1) Due to the large area needed for the ponds, the portion of required area to effective area is large; and arrangement of the blocks is needed so that an efficient utilization of the land is achieved.
- 2) Ponds and reservoirs were arranged on the side of a canal, so that the efficiency of the water systems for feeding and drainage is high.
- 3) The residential blocks were arranged on the southern side where the shape of land is complicated so that the land can be utilized efficiently.
- 4) The center building block was arranged in the center of the lot along the main road so that it is easily approached from the access road.
- 5) The residential blocks were separated into those for the staff and those for the workers, the two being divided by one of the ponds.

## (4) Master Plan: Surejthari



- The area of the site is large, and there is plenty of room for future expansion. Therefore, arrangement was decided with consideration of possible expansion in mind.
- 2) The level of the land is low, during the flood season, the level of the water service is higher than the land. Thus the embankment must be of large scale and the water intake and drainage systems must be carefully planned.
- 3) Ponds shall be arranged next to the access river and the water system be constructed to assure an efficient supply of water.
- 4) The worker's residential blocks should be separated to keep the security of the large site.



1) The area of the site is large, and there is plenty of room for expansion; the land is low in relief with differences in the height in some areas, this each of the blocks shall be arranged for

the most efficient use of land.

- 2) The access road runs through the central part of the site, and arrangements made based on this road as the center.
- 3) The area surrounded by dike should be minimized to reduce the drained water during rainy season.

#### 4-3-3 Architectural Planning

# (1) Concept of the plan

The basic design will be based on a functional relationship between the rooms and with the climate, natural features, living styles, and etc, present in Thailand.

1) Functional correlation between rooms.

The principal buildings of each of the centers include center buildings, dormitory, and hatchery but here explanation is given for the center buildings, which have a complex functional correlation, and for the dormitories.

a) Center Bidg.

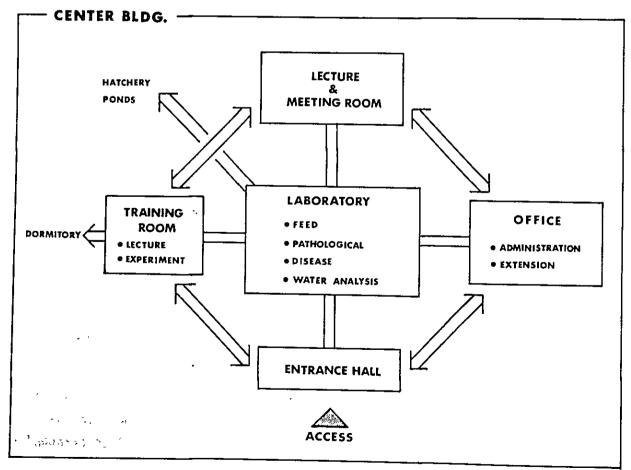



Fig. 4-5

The main functions of the Centers are to be carried out in the laboratories with secondary activities to be conducted in the office, training room, and meeting room. By arranging the laboratory at the center, efficient utilization of the training room can be accomplished; consequently, more efficient research work by the staff is facilitated. A part of the office shall be located near the entrance hall on the ground floor for the convenience of application by new trainees and promotions work. The lecture room can be used, as required lectures, or other large group gathering. As for Trang Fishery Center, the facilities consist of a simple laboratory and office.

#### b) Dormitory

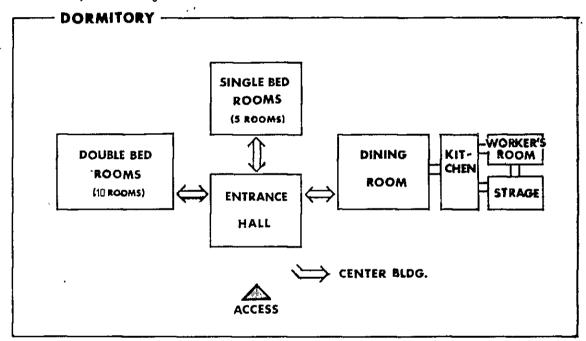



Fig. 4-6

Practical promotion activities are to be developed in the center with the goal of educating nearby farmers and fishermen and as a part of the activities, leading people in the villages shall be called together in units of 25 people or so that short training on propagation and culture of fish and their management can be given. The dormitory is used for the purpose. The entrance of the dormitory should be connected with the Center Bldg.

#### c) Hatchery

The hatchery will consist of a hatchery, pellet plant, and

storage. In the hatchery, studies on seed fish of various species and their production are to be carried out by a flexible use of two different sized FRP tanks, which can be differentially utilized to suit, seed fish species under investigation.

The pellet plant will produce fish feed to be given in the hatchery and ponds.

The storage is used for the storing of materials used in training, and equipments used in the ponds, weighing machines, fishing net, and etc.

- 2) Floor system and ventilation analysis in view of climate and natural features
  - a) High-floor system: The high-floor system shall be adopted so that ventilation under the floor can be secured. The floor level shall be higher than the ground level of the buildings (level of nearby road) by 60 cm (min.), so that inundation by floods and that excessive humidity under floor be avoided.
  - b) Ventilation: All rooms shall be constructed for a sufficient natural ventilation.
    - c) Ceiling Height: The ceiling height should be placed in a relatively high position in order to prevent excessive heat from collecting in the room.

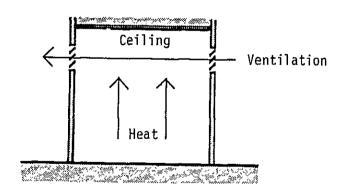
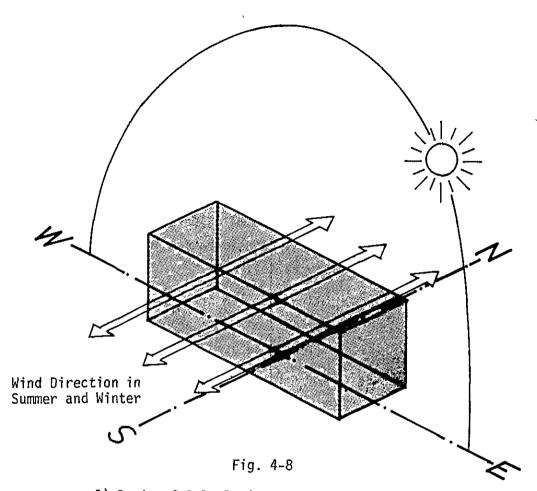




Fig. 4-7

d) Sunshade: To prevent direct sun from entering the rooms an overhang will be built to shield the sun.

e) The direction of the each facilities: Buildings shall be arranged with east-west axis line, with lighting and gallery faces on the south and north.



1) Basic of Calculation

The following dimensions were presented by the department of Fisheries.

| Table 4-16 | (Unit: m <sup>2</sup> ) |
|------------|-------------------------|
| 10016 4-10 | (Unit: iii-)            |

| 1able 4-10                 | (Unit: III-)                  |
|----------------------------|-------------------------------|
| Room                       | Area                          |
| 1. Director's Room         | 25 m2 /Person                 |
| 2. Senior Officer's Room   | 16 m <sup>2</sup> /Person     |
| 3. Officer's Room          | 9 m <sup>2</sup> /Person      |
| 4. Staff Room              | 6 m <sup>2</sup> /Person      |
| 5. Lecture Room            | 44 m <sup>2</sup> /25 Persons |
| 6. Laboratory              | 3.5 m <sup>2</sup> /Person    |
| 7. Biology Study Room      | 10 m <sup>2</sup> /Person     |
| 8. Dormitory (Single Room) | 22 m <sup>2</sup> /Person     |
| 9. Dormitory (Double Room) | 30 m <sup>2</sup> /2 Persons  |
| 10. Dining Room            | 2.5 m <sup>2</sup> /Person    |

Based on these dimensions, the following rooms are examined in order to determine areas suitable for the actual working and living conditions.

- a) Office: In view of the fact that the present project is emphasizing experimental and training programs, the area of office management rooms are designed smaller than the given dimensions, and departments for research and training are enlarged.
- b) Laboratory: The necessary laboratory area must be determined according to the layout of equipment for research work.
- c) Training Room: Training is to be carried out with 25 trainees per class, and 65  $\rm{m}^2/25$  persons was adopted for training room area with consideration for the space occupied by laboratory tables, etc.
- d) Lecuture and Meeting Room: An area somewhat larger than originally planned was appropriated for the lecture room which will also be used as a meeting room.
- 2) Estimated Area of the center building
  - a) Ayutthaya

Ayutthaya Fishery Center also plays the role of a liaison center with the NIFI in addition to its main function of carrying out research activity. Because the laboratories will be used frequently, their area was designed larger and the office area designed correspondingly smaller than the standards.

Table 4-17

| Room                                                          | Area per Person<br>(m²)<br>x the Number | Necessary<br>Area (m²) | Remarks                                                                                              |
|---------------------------------------------------------------|-----------------------------------------|------------------------|------------------------------------------------------------------------------------------------------|
| 1. Director Room                                              | 20 x 1                                  | 20                     | · Director also is a scientist who works in the laboratory                                           |
| 2. Extension Officer<br>Room                                  | 9 x 8                                   | 72                     | <ul> <li>Scientists and<br/>Biologists usually<br/>study in the<br/>laboratory.</li> </ul>           |
| 3. Technician<br>(Staff Room)                                 | 6 x 4                                   | 24                     |                                                                                                      |
| Total Office Area                                             |                                         | 116                    |                                                                                                      |
| 4. Biological<br>Laboratory                                   |                                         | 30                     |                                                                                                      |
| 5. Pathological<br>Laboratory                                 |                                         | 15                     | Laboratory areas<br>which are based on                                                               |
| 6. Feed Laboratory                                            |                                         | 15                     | the layout of the experiment table, but they will be                                                 |
| 7. Water Analysis<br>Laboratory                               |                                         | 25                     | fixed.                                                                                               |
| 8. Genetic Room                                               |                                         | 15                     |                                                                                                      |
| 9. Dark Room                                                  |                                         | 6                      |                                                                                                      |
| 10. Lecture & Meeting<br>Room                                 |                                         | 50                     | 44 m <sup>2</sup> /25 persons                                                                        |
| 11. Training Room                                             |                                         | 6.5                    | Including experiment table 44 m <sup>2</sup> x 1.5 = 66 m <sup>2</sup> 66 m <sup>2</sup> /25 persons |
| 12. Others Including<br>Corridors, Halls,<br>Toilets and etc. |                                         | 130                    | 27.8%                                                                                                |
| Total Area                                                    |                                         | 467                    |                                                                                                      |

# b) Surajthani

In the Surajthani Fishery Center, production of seed fish and extension service programs will be the major activities; thus, the center will be the headquarters for the three centers in those fields of activity.

A larger office area was appropriated to accomodate the several

scientists to be stationed there as the senior officers.

Table 4-18

| iαDic 4-10                            |                                         |                        |                                                                               |
|---------------------------------------|-----------------------------------------|------------------------|-------------------------------------------------------------------------------|
| Room                                  | Area per Person<br>(m²)<br>x the Number | Necessary<br>Area (m²) | Remarks                                                                       |
| 1. Director Room                      | 20 x 1                                  | 20                     | Five Senior Officers are selected from                                        |
| 2. Senior Officer Room                | 16 x 5                                  | 80                     | the five scientists                                                           |
| 3. Extension Officer Room             | 9 x 5                                   | 135                    | and ten biologists.                                                           |
| 4. Technician (Staff<br>Room)         | 6 x 3                                   | 18                     |                                                                               |
| Office Area                           |                                         | 253                    |                                                                               |
| 5. Biological<br>Laboratory           |                                         | 50                     |                                                                               |
| 6. Pathological<br>Laboratory         |                                         | 50                     | Laboratory areas<br>which are based on                                        |
| 7. Feed Laboratory                    |                                         | 50                     | the layout of the experiment table,                                           |
| 8. Water Analysis<br>Laboratory       |                                         | 50                     | but they will be.                                                             |
| 9. Disease Laboratory                 |                                         | 25                     |                                                                               |
| 10. Dark Room                         |                                         | 35                     |                                                                               |
| 11. Lecture & Meeting<br>Room         |                                         | 50                     | 44 m²/25 persons                                                              |
| 12. Training Room                     |                                         | 65                     | Including experiment table.                                                   |
| 13. Others Including                  |                                         |                        | 44 m <sup>2</sup> x 1.5 = 66 m <sup>2</sup><br>66 m <sup>2</sup> x 25 persons |
| Corridors, Halls,<br>Toilets and etc. |                                         | 200                    | 24.2%                                                                         |
| Total Area                            |                                         | 828                    |                                                                               |

# c) Trang

In the Trang Fishery Center, production of seed fish and their release are the main activities and no room for training is necessary.

Table 4-19

| Item<br>Room                                                 | Area per Person<br>(m²)<br>x the Number | Necessary<br>Area (m²) | Remarks                                                   |
|--------------------------------------------------------------|-----------------------------------------|------------------------|-----------------------------------------------------------|
| 1. Senior Officer Room                                       | 16 x 1                                  | 16                     |                                                           |
| 2. Extension Officer                                         | 9 x 4                                   | 36                     |                                                           |
| 3. Technician                                                | 6 x 4                                   | 24                     |                                                           |
| Office Area                                                  |                                         | 76                     |                                                           |
| 4. Biological<br>Laboratory                                  |                                         | 30                     | Simple experiment can be operated with a exteriment table |
| 5. Others Including<br>Corridors, Halls,<br>Toilets and etc. |                                         | 40                     | 27.4%                                                     |
| Total Area                                                   |                                         | 146                    |                                                           |

# 3) Dormitory Area REquirements

Dormitories are to be built in Ayutthaya and Surajthani Fishery Centers for the lodging of trainees. The trainees will be comprised groups of 25 people and single and twin bed rooms will be constructed to accommodate them during their residence at the center.

Table 4-20

| Item<br>Room                                               | Area (m²) | Remarks                                                        |
|------------------------------------------------------------|-----------|----------------------------------------------------------------|
| 1. Single Bed Room                                         | 75        |                                                                |
| 2. Double Bed Room                                         | 216       | The Layout of the Room is<br>to be based on a Later<br>Meeting |
| 3. Dining Room                                             | 35        |                                                                |
| 4. Kitchen                                                 | 15        |                                                                |
| 5. Worker's Room                                           | 10        |                                                                |
| 6. Storage                                                 | 10        |                                                                |
| 7. Others<br>Including Corridors,<br>Toilet, Hall and Etc. | 160       | 30.7%                                                          |
| Total                                                      | 521       |                                                                |

#### 4) Estimated Area of the Hatchery

The hatchery area is calculated based on the number of tanks. The hatchery in Surajthani will be increased according to the large pond area available to it. The hatchery in Trang has additional space to the calculated area and the possibility of extending the pond area is expected in the future.

Table 4-21

(Unit: m<sup>2</sup>)

| Center<br>Room          | AFC | SFC | TFC | Remarks                         |
|-------------------------|-----|-----|-----|---------------------------------|
| 1. Hatchery             | 250 | 335 | 160 | Equipment for ponds             |
| 2. Storage              | 100 | 100 | 80  | and Training Programs.          |
| 3. Pellet Plant<br>Room | 30  | 30  |     | Mainly for Research             |
| 4. Material<br>Room     | 15  | 115 |     |                                 |
| 5. Feed Room            | 15  | 15  |     | Ayutthaya for future<br>Purpose |
| Total                   | 410 | 495 | 240 |                                 |

#### 4-3-4 Structural Planning

#### (1) Foundation Subsystem

Each site is located in, flat, paddy field, or woody field. Judging by the reports on soil boring data at or near the site, the surface soil cannot adequately support a building without improving the ground.

The soil, being composed of soft clay, is too weak for the project requirements.

By transfering the weight load, (by use of piles), to the strata lying below that of the surface level, it will be possible to support the buildings safely.

The adoption of an adequate supporting system is one of the more important elements in terms of the project cost and construction time required; therefore, geological surveys and new boring tests are required before a final decision on the support system is made.

## (2) Structural System

These buildings will be built by common strucutral methods employed in Thailand. In this way, procurement for the labor and materials can be made easily. Moreover, reducing the cost of material and shortening the period of construction, will be facilitated.

#### Structure;

Items : Contents

Main Frame : Rigid joint frame made of reinforced concrete

Slab : Reinforced concrete

Exterior Wall : Concrete blocks or bricks

Roof : Steel beams and light gage steel purlins

# (3) Materials

Materials shall meet the requirements of the following Japan Industrial Standards (JIS)

1) Piles : Precast Concrete piles

JIS A 5310, JIS A 5335

2) Reinforcing Bars : JIS G 3112, Plain Bar (SR24)

Deformed Bar (SD30)

3) Concrete : JIS A 5308

4) Steel : JIS G 3101, SS41, JIS G 3350 SSC 41

5) High Strength Bolt:JIS B 1186 F 10T

6) Bolt : JIS B1180

7) Weldings : JIS Z 3210, JIS Z 3211, JIS Z 3212, JIS Z 3311

(Submerged Arc Welding)

#### (4) Loads

#### Table 4-22

| Dead Loads             |                         |
|------------------------|-------------------------|
| Reinforced concrete    | 2,400 kg/m <sup>3</sup> |
| Concrete               | 2,300 kg/m³             |
| Steel                  | 7,850 kg/m³             |
| Live Loads             |                         |
| Offices                | 300 kg/m²               |
| Training Room          | 400 kg/m²               |
| Lecture & Meeting Room | 400 kg/m²               |

| Dormitory   | 200 kg/m²             |
|-------------|-----------------------|
| Dining Room | 400 kg/m <sup>2</sup> |
| Storage     | 500 kg/m <sup>2</sup> |
| Hatchery    | 1,000 kg/m²           |

# (5) Wind Load

The wind load for buildings shall be as follows:

Table 4- 23

|              | <del></del>       |
|--------------|-------------------|
| Height Zones | Velocity Pressure |
| (in meter)   | (kg/m²)           |
| less than 15 | 50                |
| 15 and over  | 100               |

Depending on the slope of the roof to the horizontal, the recommended allowable wind force shall be calculated in accordance with the coefficient table of AIJ.

Note: The respective loads shall be determined in the detailed design stage.

# 4-3-5 Mechanical and Electrical Planning

## (1) Mechanical Planning

#### 1) Water-supply planning

a) Calculation of necessary water supply

Assuming that water is used for 8 hours a day in the center building and dormitory, the amount of water required per hour was determined by utilizing the following parameters:

Qd = N x qe Qd: Amount of water feed per day

N : Number of persons

Qe: Amount of water per day per person For the office and dormitory a qe of 120 l/

day.person was calculated.

 $Q = Qd \div T$  Q : Supply water per hour

T : Hours of supplying water

Larger values for the amount of supply water per hour are adopted and this value is decided at Qu (liter/hour). The peak amount is determined by assuming a peak load factor of 2.0.

The results of the calculations for each site is shown in Table 4-24.

Table 4-24 Water Supply

| Center         | AFC   | SFC   | TFC   |
|----------------|-------|-------|-------|
| Center Bldg.   |       |       |       |
| N (Berson)     | 45    | 60    | 28    |
| Qd(Liter/day)  | 5,400 | 7,200 | 3,360 |
| Q (Liter/hour) | 675   | 900   | 420   |
| Dormitory      |       |       |       |
| N (Person)     | · 25  | 25    | -     |
| Qd(Liter/day)  | 3,000 | 3,000 | -     |
| Q (Liter/hour) | 375   | 375   | _     |
| Qu(Liter/hour) | 675   | 900   | 420   |
| Qp(Liter/hour) | 1,350 | 1,800 | 840   |

#### b) Reservoir Tank

The well water supplied by the Government of Thailand is received in the tanks, hoisted to the head tank, and distributed to the taps.

The capacity of the receiving tank is only adequate for one day's consumption or less, but owing to the unstable supply of well water, a one day amount was adopted.

Assuming at 8 hours use per day,  $V=Qu \times 8$  (V: Capacity of receiving tank)

This equation gives 5.4 liters, 7.2 liters, and 3.3 liters respectively for Ayutthaya, Surajthani, and Trang; and the capacities of reservoir tanks were decided at 6 tons, 8 tons and 4 tons respectively.

#### c) Elevated Water

Considering the stability of power source, the capacity of the elevated tank was decided at twice as much as that of the demand of peak consumption.

The capacity of the elevated tank is given by the equation  $V_{\rm H}$  = Qp x 2

If calculated, the equation gives 2.7 liters, 3.6 liters, and 1.68 liters respectively for Ayutthaya, Surajthani, and Trang, and the capacities of elevated tanks were decided at 3 tons, 4 tons and 2 tons respectively.

Two lifting pumps shall be installed so that lifting can be continued even if one is out of order.

# 2) Hot Water Supply

In each of the centers, hot water for drinking and washing will be supplied in the center buildings and dormitories by means of a storage type gas boiler. For cooking a larger boilder will be installed. Hot water for showers will be supplied at only three taps max. due to the limited capacity of boiler.

#### 3) Gas Supply

The gas (LPG) for hot water, cooking, and laboratory experiments will be supplied central pressure bottles where it is gasified by the generator and distributed to various outlets through pipes.

Calculation of the amount of gas required (assuming the lowest) ambient temperature at  $20 - 25^{\circ}C$ )

The number of pressure tanks shall be adequate for at least five days worth of consumption, and the pressure tanks shall be equipped with switching devices in order to conserve gas and insure a stable supply of gas.

Table 4-25 Gas Consumption Amount (Unit: kg/h)

| Item Center          | AFC  | SFC  | TFC  |
|----------------------|------|------|------|
| Center Bldg.         |      |      |      |
| Experiment Table     | 0.16 | 0.16 | 0.04 |
| Potable Water Boiler | 0.12 | 0.12 | 0.12 |
| Dormitory            |      |      |      |
| Kitchen              | 1.8  | 1.8  | _    |
| Potable Water Boiler | 0.36 | 0.36 | -    |
| Shower Water Boiler  | 1.25 | 1.25 | _    |
| Total                | 3.69 | 3.69 | 0.16 |

## 4) Drainage

Waste water shall be discharged separately. The human waste will be introduced into the purifying tank (independent treatment, 90 ppm BOD) and then mixed with other waste water after treatment, to be discharged.

Table 4-26 Calculation of Septic Tank size Based on Number of Persons Coeficiency rate = 0.5 (JIS A 3302)

| Item<br>Center | Building                  | Format           |                              |                             |
|----------------|---------------------------|------------------|------------------------------|-----------------------------|
| AFC            | Center Bldg.              | 45 persons x 1/2 | = 22.5 persons<br>25 persons | ,,50<br>persons<br>capacity |
| SFC            | Center Bldg.<br>Dormitory | 60 persons x 1/2 | = 30 persons<br>25 persons   | 60<br>persons<br>capacity   |
| TFC            | Center Bldg.              | 28 persons x 1/2 |                              | 15<br>persons<br>capacity   |

# 5) Ventilation

Kitchens and loboratories shall be prepared mechanical ventilations and general rooms shall utilize natural ventilation.

# RESERVOIR TANK CENTER BLDG. DORMITORY HATCHERY WATER PUMP FOR LIFT WELL WELL PUMP

Fig. 4-9 Water Supply System

#### ◎ ガス設備フローシート

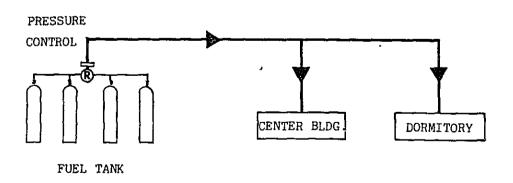



Fig. 4-10 Gas Distribution System

#### (2) Electrical system

- 1) Principals of the Electrical System
  - a) Required Electricity

Receiving Electric Power 3ø4 W 380/220 V Distributing Electric Power 3ø4 W 380/220 V

b) Light Levels

Table 4-27 Light Levels

(Unit: Lx)

| Room                   | Light Level |
|------------------------|-------------|
| Office Room            | 300         |
| Training Room          | 300         |
| Laboratory .           | 400         |
| Lecture & Meeting Room | 300         |
| Dining Room            | 300         |
| Hall,                  | 150         |
| Bed Room               | 100         |
| Storage                | 50          |
| Hatchery               | 50          |

c) Voltage drop in the main electric line

The maximum permissible voltage drop in the main line shall be as follows:

less than 5% in the less than 200 m of length less than 6% in the more than 200 m of length

d) Maximum permissible current of cable

The maximum permissible current of through the cable shall be determined based on the ambient temperature at  $35^{\circ}\text{C}$  and maximum permissible temperature of the cable at  $60^{\circ}\text{C}$ .

e) Generator Capacity

The capacity of the power generator shall be determined based on an ambient temperature of 35°C, a cooling water temperature of 30°C, and a short time overloading rate of 120%.

f) Capacity of transformer

The capacity of transformer shall be determined based on an ambient temperature of  $35^{\circ}$ C, an interior temperature of  $+60^{\circ}$ C, and a load rate of 80% max.

#### g) Pipe size

The diameters of conduits for wiring shall be determined, so that the total of the wires' cross section inside the conduit shall be a maximum of 40% of the pipe's diameter.

#### h) Lightning Conductor

A lightning conductor shall be installed on each of the main buildings so that the structure of the buildings is used at the conductor. The grounding resistance shall be 1 ohm max.

#### 2) Electrical Loud Requirements

# a) Load Capacity

The load capacity for the equipments is estimated as follows.

Table 4-28 Calculation conditions

| Item Equipment Item                    | Calculation Conditions                |                                             |
|----------------------------------------|---------------------------------------|---------------------------------------------|
| Light & Socket Outlet                  | Center Bldg. & Dormitory<br>Hatchery  | 30 W/ m <sup>2</sup><br>5 W/ m <sup>2</sup> |
| Experimental Equipment & Socket Outlet | Center Bldg.                          | 15 W/ m <sup>2</sup>                        |
| Pumps for Water Supply and Drainage    | Estimated as In Equipment<br>Planning |                                             |
| Air-Conditioning Equipment             | For Future Use                        | _                                           |
| Pumps for Pond Water                   | Estimated as In Civil<br>Planning     |                                             |

#### Format:

Load Capacity = Equipment Capacity x 1/Factor x 1/Efficiency Rate x Demand Rate

on the basic of Table 4-28 the load capacity of the respective center are calculated as follows:

Table 4-29 Load Capacity - Ayutthaya

| I tem<br>Equipment                           | Capacity<br>(Unit: kw) | Factor         | Efficiency<br>Rate | Demend<br>Rate | Load Capacity<br>(Unit: kVA) |
|----------------------------------------------|------------------------|----------------|--------------------|----------------|------------------------------|
| Light & Socket<br>Outlet                     | 33 kw                  | 0.9            | 1                  | 0.8            | 29                           |
| Experimental<br>Equipment &<br>Socket Outlet | 7.5                    | ٦.             | 1                  | 0.2            | 1.5                          |
| Pumps For Water<br>Supply and<br>Drainage    | 2.6                    | 0.8            | 0.8                | 0.4            | 1.6                          |
| Air-Conditioning<br>Equipment                | 13.5                   | 0.8            | 0.8                | 0.8            | 17                           |
| Pumps for Pond<br>Water                      | 11                     | 6.0            | 0.8                | 0.5            | 8.6                          |
| Total                                        |                        | 33333 <u>-</u> |                    |                | 57.7 KVA                     |

Table 4-30 Load Capacity - Surajthani

| Item<br>Equipment                            | Capacity<br>(Unit: kw) | Factor | Efficiency<br>Rate | Demend<br>Rate | Load Capacity<br>(Unit: kVA) |
|----------------------------------------------|------------------------|--------|--------------------|----------------|------------------------------|
| Light & Socket<br>Outlet                     | 42.5                   | 0.9    | ĵ                  | 0.8            | 37.8                         |
| Experimental<br>Equipment &<br>Socket Outlet | 12.5                   | 1      | 1                  | 0.2            | 2.5                          |
| Pumps for Water<br>Supply and<br>Drainage    | 2.6                    | 0.8    | 0.8                | 0.4            | 1.6                          |
| Air-Conditioning<br>Equipment                | 13.5                   | 0.8    | 0.8                | 0.8            | 17                           |
| Pumps for Pond<br>Water                      | 15                     | 0.8    | 0.8                | 0.5            | 11.7                         |
| Total                                        |                        |        |                    | _              | 70.6 KVA                     |

Table 4-31 Load Capacity - Trang

| Item<br>Equipment                         | Capacity<br>(Unit: kw) | Factor | Efficiency<br>Rate | Demend<br>Rate | Load Capacity<br>(Unit: kVA) |
|-------------------------------------------|------------------------|--------|--------------------|----------------|------------------------------|
| Light & Socket<br>Outlet                  | 5.7                    | 0.9    | 1                  | 0.8            | 5                            |
| Experimental Equipment & Socket OUtlet    | 2.2                    | 1      | 1                  | 0.2            | 0.4                          |
| Pumps for Water<br>Supply and<br>Drainage | 2.1                    | 0.8    | 0.8                | 0.4            | 2.6                          |
| Air-Conditioning<br>Equipment             | 3.0                    | 0.8    | 0.8                | 0.8            | 3.7                          |
| Pumps for Pond<br>Water                   | 11.0                   | 0.8    | 0.8                | 0.5            | 8.6                          |
| Total                                     |                        |        |                    |                | 20.3 KVA                     |

#### b) Power Intake and Distribution Plan

The power shall be received at  $3\phi4W$ , 220 V, and the power for a part of the experimental instruments shall be transformed to 100V. On the main line for distribution, 600 V PVC wireshall be used with 20% min. margin for future extensions.

#### c) Electric Lamps

Light fixtures shall be installed mostly with 40 W fluorescent lamps according to Table 4-27. The current of a circuit shall be 12 A max., and the lamps shall be placed with switches in each of the rooms.

#### d) Receptacle

All rooms shall be equipped with a receptacle for cleaning, etc. with additional ones in laboratories for experiments and instruments.

#### e) Power Wiring

Fugmas a second

Pumps for water supply and drainage and ventilation machines shall be operated automatically and controlled at one place as far as possible.

Pumps for intake and discharge of water for the ponds are to be

located far from the center building. Therefore, the controlling panel shall be equipped with an alarm panel for automatic operation within the center building.

#### f) Electric Generator

Electric power generation shall be carried out by 3¢ 4W 380/220 V generators, the capacity of which is to be decided based on an ambient temperature of 35°C. It is to be driven by a light oil diesel engine for not more than a maximum of 9 hours, continuously.

The fuel tank shall have a running capacity of 3 days, and its use will be limited by the following conditions.

- o The generator will be of the load controlling type, where air conditioner's and pumps for water intake and drainage for the ponds shall be stopped automatically under event of a power failure.
- o In case the pumps for ponds must be operated, they shall be closed manually after limiting other loads.

Capacities of the generators in the centers are shown in the following talbe.

 $Q_G = Q_T - (Q_P + Q_A)$   $Q_G : load capacity of generator$ 

QT: total load capacity

 $\ensuremath{\mathsf{Qp}}$  : load capacity of pumps for ponds

 $Q_A$ : load capacity of air conditioners

 $Q = Q_G \div 0.8$  (Capacity correction at 35°C)

0 : load capacity of generator

Table 4-30 Generator Capacity

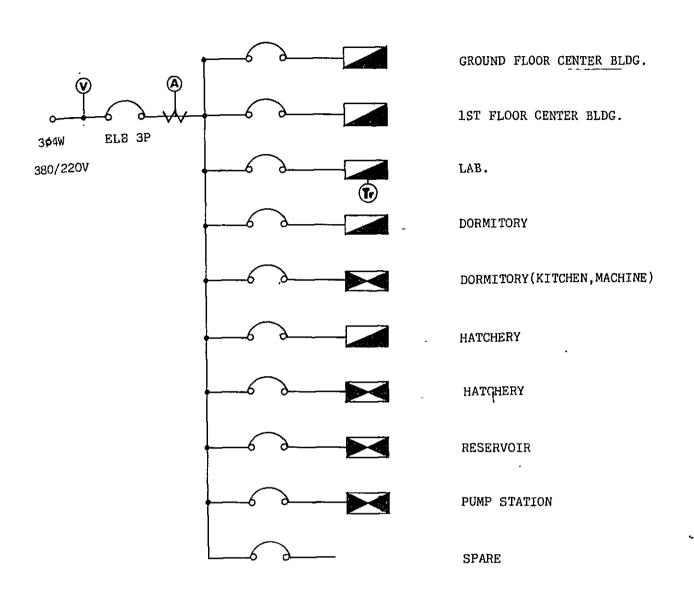
(Unit: kVA)

| Center<br>Item                                                | AFC            | SFC            | TFC                       |
|---------------------------------------------------------------|----------------|----------------|---------------------------|
| Required Load<br>Capacity for<br>Generator<br>Qg = Qt-(Qp+Qa) | 57.7-25.6=32.1 | 70.6-28.7=41.9 | 20.3-12.3=8               |
| Maximum Load<br>Capacity of<br>Generator<br>Q = Qg ÷ 0.8      | 32.1÷0.8 =40   | 41.9÷0.8 =52   | 8 ÷ 0.8=10(1)<br>25.8*(2) |

<sup>\*</sup> Trang

Generator capacity by the equation above =  $10 \text{ kVA} \dots$  (1) Required capacity for starting the generator by independent maximum load, starting 5.5 kw pump =  $25.8 \text{ kVA} \dots$  (2)

Capacity for the larger value among (1) and (2)


# g) Lightning Conductors

Lightning conductors shall be fitted on each of the main buildings, reinforcing bars to be used while in center buildings and dormitories and tailing copper wire will be used in the hatcheries.

Grounding shall be separate for each of the buildings.

# h) Antenna for Wireless Communication

Antenna (UHF/FM) shall be fitted in Surajthani and Trang for the wireless telephone.



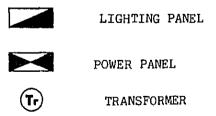



Fig. 4-10 Electricity Distribution Diagram

## 4-3-6 Civil Engineering Planning

#### (1) Earthwork

- 1) The ground plan will be determined by consideration of the water feed and drainage plan, the height of dike around the site, cross sectional plan of the ponds and locations of the ponds.
- In order to reduce the amount of rain water in the site, the area to be surrounded by the embankment is limited to the minimum required.
- 3) Discharge of water from the site shall be drained to flow naturelly as far as possible in order to save running costs; and for this reason, the inclination of drainage in the site was decided at  $2.5\%_{o}$ .
- 4) The height of the ground for the buildings such as the center building, dormitory, and residential houses shall be large enough to cope with a flood caused by the heavy rain.

The planned cross sections of the ground in the sites were determined as shown in the following figures. (Figs. 4-11, 4-12, 4-13)

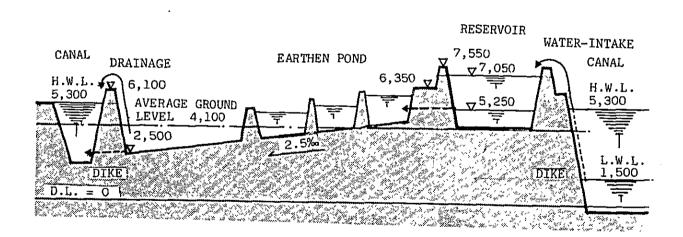



Fig. 4-11 Cross Section: Ayutthava

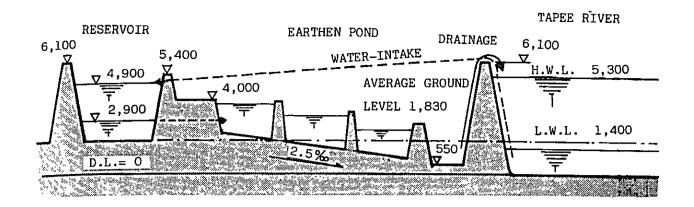



Fig. 4-12 Cross Section: Surajthani

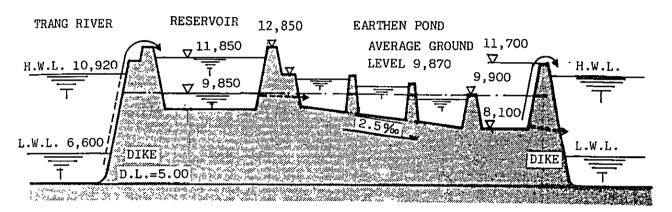



Fig. 4-13 Cross Section: Trang

The amount of earth fill required shall be reduced to a minimum, but it is somewhat large in Surajthani, compared with that in other sites. Also in Surajthani, because a stratum of sandy loam is present at the site, the depth of excavation must be made deeper than the geological cross section to insave watertightness.

#### (2) Water intake, Water supply, and Drainage System

The system of water circulation in the sites is shown as follows:

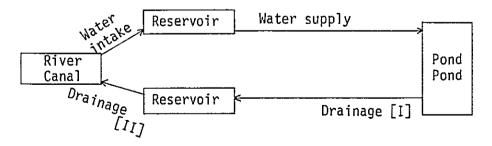



Fig 4-14

# 1) Water Intake (Rivers ---> Reservoirs)

River water of comparatively good quality shall be selected and taken into the reservoir by means of pump, and a transistor controller is installed on the power board in order to save the power consumption. The capacity of the pump is determined by the amount of water intake, in consideration of rain water in the rainy season, and the difference in water levels between the reservoir surface and low level of river surface, as the maximum .lift.

Table 4-33 Capacity Circulation of Water intake Pumps in the Respective Centers

| Area<br>Item                                                      | Ayutthata              | Surajthani             | Trang                  |
|-------------------------------------------------------------------|------------------------|------------------------|------------------------|
| Rainy Season                                                      | May-Oct.<br>(180 days) | May-Dec.<br>(240 days) | May-Dec.<br>(240 days) |
| Total Precipitation During Rainy Season (mm)                      | 927.2                  | 1,487.0                | 1,863.8                |
| Daily Average<br>Precipitation<br>During Rainy Season<br>(mm/day) | 6.1                    | 6.2                    | 7.8                    |
| Daily Average<br>Evaporation<br>During A Year<br>(mm/day)         | 7.8                    | 5.2                    | 5.2                    |

Table 4-33 shows that water intake is necessary in the case of Ayutthaya for 6 months of dry season. The maximu lift of pump is given by the low river level at 1.50 m and the maximum height in the reservoir at 7.55 m, and two pumps of 7.0 m maximum lift and a capacity of 3  $m^3$ /min.will be installed.

In the case of Surajthani, water intake is necessary for 4 months in the dry season. From the low level of river water at 1.40 m and the top of dike at 6.10 m, the maximum lift will be 6.0 m for the two pumps with a capacity of 3  $\rm m^3/min$ .

In the case of Trang, water intake is necessary also for 4 months in the dry season. From the low level of river water at 6.6 m and

the top of reservoir at 12.85 m, two pumps with a lift of 7.5 m maximum and  $3 \text{ m}^3/\text{min.capacity}$  will be installed.

#### 2) Water Supply (Reservoir → Ponds)

Water will be supplied from the reservoir to each of the ponds through piping, and contamination of the pipes shall be avoided by due construction for the maintenance of the system. In order to facilitate operation, valves shall be installed at the discharge end of piping to the pond.

Pipes of 150 mm diameter are used in view of the amount of water.

# 3) Drainage (I) (Ponds → Regulating Reservoir)

Drainage from a pond to regulating Reservoir shall be constructed of concrete pipes for natural flow down. The inclination of the piping shall be 2.5%, and pressure pipes of 600 mm diameter are used for crossing under the main road with a manhole every 70 m. Monk shall be arranged so that the flowrate of water can be regulated with a wooden board.

# 4) Drainage (II) (Regulating Reservoir → Pond)

Drainage from the regulation pond to the river shall be made by pump as a mechanical Drainage, but in the dry season at Ayutthaya the water level of River Trang is low enough to allow natural discharge.

The capacity of pumps is determined by the difference between the levels of the regulating pond and the top of dike.

Table 4-34 Calculated Capacity of Drainage Pumps for the Respective Centers.

| I tem Area                                                    | Ayutthaya           | Surajthani          | Trang               |
|---------------------------------------------------------------|---------------------|---------------------|---------------------|
| Maximum Monthly<br>Precipitation from<br>1952 (mm/day)<br>[A] | 526.4<br>(Sep.1963) | 488.0<br>(Nov.1975) | 496.2<br>(Aug.1961) |
| Daily Precipitation<br>[B=A/30] (mm/day)                      | 17.5                | 16.3                | 16.5                |
| Total Recipitation Per Day (m³/day) [C=B x Site Area/1000]    | 5,390               | 8,232               | 3,465               |
| Precipitation Per<br>Minute (m³/minute)<br>[D=C/1440]         | 3.74                | 5.72                | 2.41                |

As shown in Table 4-34' at least 3.74  $m^3$ /min.of water must be drained in Ayutthaya, and two pumps with a capacity of 3  $m^3$ /min and 5 m lift will be installed.

In Surajthani 5.72  $m^3$ /min.or more amount of water must be discharged with a lift of 7 m, and two pumps of capacity 4.5  $m^3$ /min are installed.

In Trang 2.41  $m^3$ /min.or more at 4 m lift is required, and two pumps with 3  $m^3$ /min.are installed.

In all of the sites the remainder of the area can be used as a regulating pond for the rainfall exceeding the capacity of pumps, the capacities for holding water being 68,000 m³ in Ayutthaya, 140,500 m³ in Surajthani, and 41,000 m³ in Trang. This will correspond to the amount of rainfall for 12.6 days, 17.1 days, and 11.8 days in the month of largest rainfall respectively; and the regulating capacities are evaluated as sufficient.

The number of pumps and their capacity are shown in Table 4-25.

Table 4-35 Proposed Types of Pumps for Water intake and Water supply

| I tem  | Wa                 | ter-Intake                |                    | Water-Supply Pump  |                           |                    |
|--------|--------------------|---------------------------|--------------------|--------------------|---------------------------|--------------------|
| Center | Amount<br>(m³/min) | Max.Lift<br>Height<br>(m) | Number<br>of Pumps | Amount<br>(m³/min) | Max.Lift<br>Height<br>(m) | Number<br>of Pumps |
| AFC    | 3.0                | 7.0                       | 2                  | 3.0                | 5.0                       | 2                  |
| SFC    | 3.0                | 6.0                       | 2                  | 4.5                | 7.0                       | 2                  |
| TFC    | 3.0                | 7.5                       | 2                  | 3.0                | 4.0                       | 2                  |

(4) Size and Design Principals of the Ponds

The required area of ponds are determined based on the results of the discussion the number of ponds.

Table 4-36 The number of Required Ponds

| Pond Category | Cement Pond       | Earth Pond         |                      |                      |  |
|---------------|-------------------|--------------------|----------------------|----------------------|--|
| Center        | 50 m <sup>2</sup> | 400 m <sup>2</sup> | 1,600 m <sup>2</sup> | 3,200 m <sup>2</sup> |  |
| AFC           | 20                | . 60               | 26                   | 14                   |  |
| SFC           | 20                | 0                  | 48                   | 18                   |  |
| TFC           | 10                | 0                  | 14                   | 6                    |  |

#### o Design principles

- 1) Large frontage-to-depth ratio increases the length of circumference with due increase in the amount of work and cost, and the ratio is kept near 1 as far as possible.
- 2) The length of shorter side shall be 30 m max. for the efficiency in collecting operation of fish with net.
- 3) Arrangement of ponds, their shape and others must be fully considered in Ayutthaya where the area of site is small, although this is not very important in other two centers.

The pond's dimensions are determined based on the area requirement and shown in table 4-37

| ~     |        | - 1  | n .       | •        |
|-------|--------|------|-----------|----------|
| 13610 | A ') / | Dana | 117777    | ONC TANC |
| laule | 4-01   | runa | 17 5 1610 | ensions  |
| . ~   |        |      |           |          |

| Type of Pond        |      | Width (m) | Length ( <sup>m</sup> ) | Area (m <sup>2</sup> ) | Ratio of Width<br>to Length |
|---------------------|------|-----------|-------------------------|------------------------|-----------------------------|
| 50m <sup>2</sup>    | POND | 5.0       | 10.0                    | 50.0                   | 1:2.0                       |
| 400m2               | POND | 10.0      | 40.0                    | 400.0                  | 1:4.0                       |
| 1,600m <sup>2</sup> | POND | 16.0      | 100.0                   | 1,600.0                | 1:6.3                       |
| 3,200m <sup>2</sup> | POND | 30.0      | 107.0                   | 3,210.0                | 1:3.6                       |

# (5) Section of Ponds

#### 1) Bottom level of pond

Bottom level of ponds shall be designed in view of drainage plan and earth moving plan, but it is set at 150 cm as water depth of 120 cm min. is necessary for culture of fish. Considering the function for regulation in heavy rainfall, 30 cm is added and the height from the bottom to the top of dike shall be 180 cm. For the ease of drainage, 1.0 to 2.0% of inclination shall be given to the bottom.

#### 2) Dike for pond

The earth from excavation of pond is used for the dike, and the slope of dike shall be 1:1.5 as the earth is clay.

#### 3) Others

Fish collecting box shall be arranged in each of the ponds by simple excavation for the case of total drainage of pond once a

year. The discharge pump for the box shall be a light weight engine pump in view of avoiding electric shock, saving cost, and others.

# (6) Water Intake System

# 1) Selective Water intake

The water from the muddy river should be refined to a certain degree; thus, the water intake is from the surface which is relatively clearer than the other portion of the water level. The methods which is used for the Hitotsuse dam in Japan is applied to this project.

Responding to the elevation changes of the water, removable intake boards are used at the intake point. The structure is simple enough to ease the maintenance.

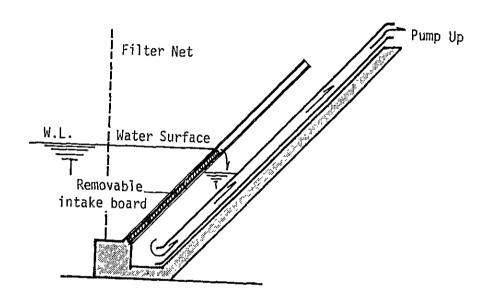



Fig. 4-14

# 2) Water Quality in Ayutthaya

In the case of Ayutthaya, the water quality is relatively low, since an alcohol refinary factory exhausts wasted water in the upstream. Therefore, the filtering structure should be facilitated.

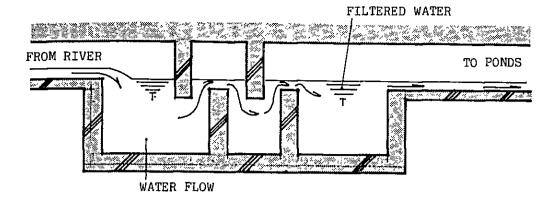


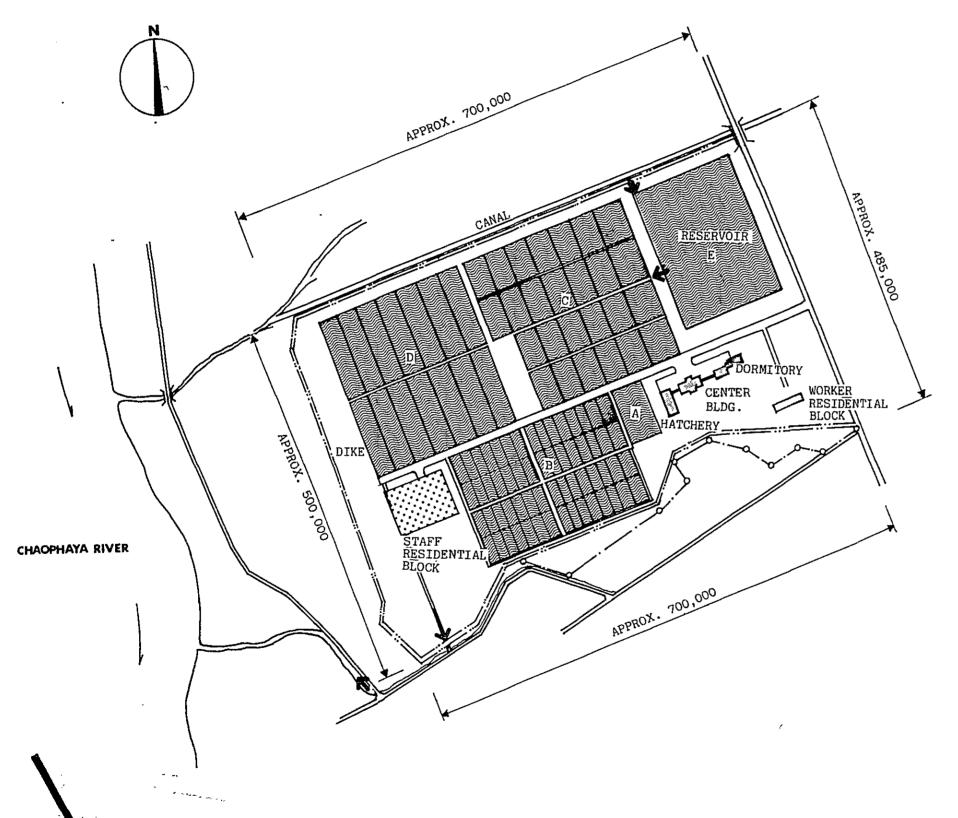

Fig. 4-15

#### 4-3-7 Equipment

- (1) General Equipment: Roneo machine and photo Copy machine are necessary for training and promotion activities. Also a telecommunication radio is used for the exchanging information among centers.
- (2) Transportation: As vehicles for transportation, trucks for carrying seed fish produced, microbus for the connection with other center and carrying trainees, and cars for promotion activity are necessary.
  - Boats are used in the ponds and access river for collection and observation of fish and plankton.
- (3) Pellet plant: Pellet plants used for production of feed are constructed in Surajthani and Trang. In Ayutthaya the feed is carried from NIFI in Bangkok; hence, the pellet plant would be not equiped. A plant of small scale is sufficient, for processed raw materials are used.
- (4) Hatchery: Hatchery is used for study of hatching and production, FRP tanks are utilized for this purpose. In addition, nets for use in the ponds, portable pumps, and measuring devices are stored in the storage.
- (5) Experimental Equipment: Those equipment suitable for Japanese grant aid shall be selected, while supplies and those available from the existing centers are utilized as far as possible.
- (6) Equipments for Extension Service: Slide set and movie set are equiped, so that films for promotion shall be arranged; hence, they can be shown in nearby schools and elsewhere.

Table 4-38 List of Equipment

| Center                           | T          |      |                                                  |                                  |
|----------------------------------|------------|------|--------------------------------------------------|----------------------------------|
| Item                             | AFC        | SFC  | TFC                                              | Remarks                          |
| General                          | ļ <u>.</u> |      |                                                  |                                  |
| 1. Telecommunication Radio       | -ea.       | lea. | lea.                                             | UHF/FM                           |
| 2. Roneo Machine                 | 1          | 1    | 3                                                | W/Elec. Scanner                  |
| 3. Photo Copy Machine            | 1          | 1    | ]                                                |                                  |
| Transportation                   | <u> </u>   |      |                                                  |                                  |
| 4. 4WD Car                       | 1          | 1    | 1                                                |                                  |
| 5. Truck 4.5                     | 1          | 11   | J                                                | Fish Transportation              |
| 6. Micro Bus                     | 1          | 1    |                                                  |                                  |
| 7. Speed Boat                    | 1          | 2    | 1                                                | Out Board Engine                 |
| 8. Research Boat                 | 1          | 1    |                                                  |                                  |
| Pellet Plant                     |            |      |                                                  |                                  |
| 9. Mixer                         |            | 1    | 1                                                |                                  |
| 10. Pelleting Machine            | -          | 1    | -                                                |                                  |
| 11. Extruder                     | -          | 1    | 1                                                | W/Dryer                          |
| Hatchery                         |            |      |                                                  |                                  |
| 12. Airation System              | 2          | 2    | 2                                                | Small for Hatchery & Cement Pond |
| 13. Aquarium                     | 50         | 50   | 30                                               | 900 mm x 450 mm x 450 mm         |
| 14. Water Pump 100 mmø           | 3          | 3    | 2                                                | Portable                         |
| 15. Water Pump 200 mmp           | 3          | 3    | 2                                                | Portable                         |
| 16. Suction Pump 50 mmø          | 3          | 3    | 2                                                | Under Water Portable             |
| 17. Trawl Net 50 m               | 4          | 4    | 2                                                | 20 mm Mesh                       |
| 18. Trawl Net 25 m               | 4          | 4    | 2                                                | 5 mm Mesh                        |
| 19. FRP Tank 7 m <sup>3</sup>    | 10         | 10   | 5                                                |                                  |
| 20. FRP Tank 0.85 m <sup>3</sup> | 10         | 10   | 5                                                |                                  |
| 21. Grag Cart                    | 5          | 5    | 2                                                |                                  |
| 22. Weighting Scale Set          | 2          | 2    | 1                                                | Set (30 kg, 70 kg, 100 kg)       |
| Laboratory                       |            |      |                                                  |                                  |
| 23. Microscope                   | 2          | 2    | 1                                                |                                  |
| 24. Stereo Microscope            | 2          | 2    | <del>-                                    </del> |                                  |
| 25. Electronic Balance           | 1          | 1    | <u> </u>                                         |                                  |
| 26. Portable Water Analyses Kit  | 1          | 1    | <del>;</del>                                     |                                  |
| 27. Portable PH Meter            | 7          | 1    | $\frac{1}{1}$                                    |                                  |
| 28. Portable Do Meter            | 7          | 1    |                                                  |                                  |
| 29. Refrigerator                 | 2          | 2    | <del></del>                                      | Stocker Type -25°C               |
| 30. Incubator                    | 1          | 1    | <del></del> +                                    | otocker Type -25°C               |
|                                  |            |      |                                                  |                                  |


| Location<br>Item               | AFC                    | SFC                    | TFC                    | Remarks                          |
|--------------------------------|------------------------|------------------------|------------------------|----------------------------------|
| 31. Electrophoresis            | 1                      | -                      | -                      |                                  |
| 32. Distiller                  | 1                      | 1                      | 1                      |                                  |
| 33. Plankton Net               | 2                      | 2                      | 2                      |                                  |
| 34. Centrifugal Machine 300 mm | 1                      | 1                      | 1                      |                                  |
| 35. Test Stand                 |                        |                        |                        |                                  |
| Training                       |                        |                        |                        |                                  |
| 36. Slide Set                  | ]                      | 7                      | 1                      | Projector & Camera               |
| 37. Amplifier Set 200 Watt     | AMP1,MIC6<br>Spea yr 4 | AMP1,MIC6<br>Speaker 4 | AMP1,MIC3<br>Speaker 2 | Amp Microphone &<br>Loud Speaker |
| 38. Portable Speaker           | 2                      | 2                      | 1                      |                                  |
| 39. Overhead Projector         | 1                      | 1                      | 1                      |                                  |
| 40. Movie Set 8 mm             | 1                      | 1                      | 1                      | Projector & Camera               |
| 41. Opaque Projector           | 1                      | 1                      | 1                      |                                  |
| 42. Daylight Screen (Big)      | 1                      | 1                      | 1                      |                                  |
| 43. Daylight Screen (Small)    | 1                      | 1                      | 1                      |                                  |
| 44. Training Stand             | Depen                  | d on La                | yout                   |                                  |

## 4-4 Basic Design Drawings

| List of Drawings               | nrawi n                             | g Number |
|--------------------------------|-------------------------------------|----------|
| 1. Site Plan                   | Ayutthaya                           | ]        |
|                                | Surajthani                          | 2        |
|                                | Trang                               | 3        |
| 2. Finish Schedu               | le                                  | 4        |
| <ol><li>Center Bldg.</li></ol> | Ayutthaya Plan                      | 5,6      |
|                                | Elevation, Section                  | 7        |
| •                              | Surajthani Plan                     | 8,9      |
|                                | Elevation, Section                  | 10       |
|                                | Trang Plan, Elevation, Section      | 11       |
| 4. Dormitory                   | Ayutthaya andSurajthani Plan        | 12       |
|                                | Elevation, Section                  | 13       |
| 5. Hatchery                    | Ayutthaya Plan, Elevation, Section  | 14       |
|                                | Surajthani Plan, Elevation, Section | 15       |
| _                              | Trang Plan, Elevation, Section      | 16       |
| 6. Civil                       | Water Intake System Section         | 17       |
| Engineering                    | Earthen Pond Plan, Section          | 18       |
|                                | Cement Pond Plan, Section           | 19       |
|                                | Dike and Main Road Section          | 20       |

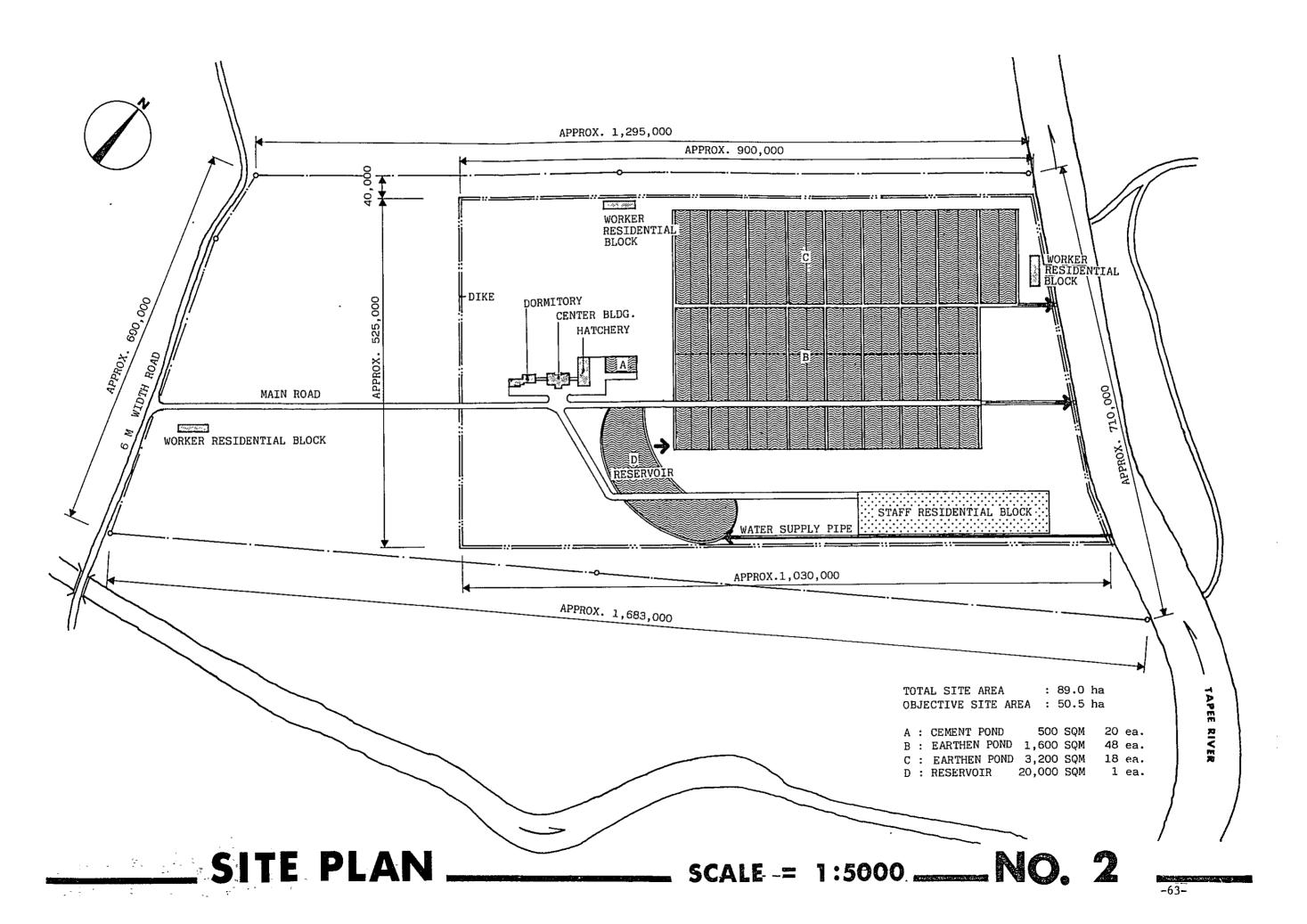
# `4-5 Project Cost

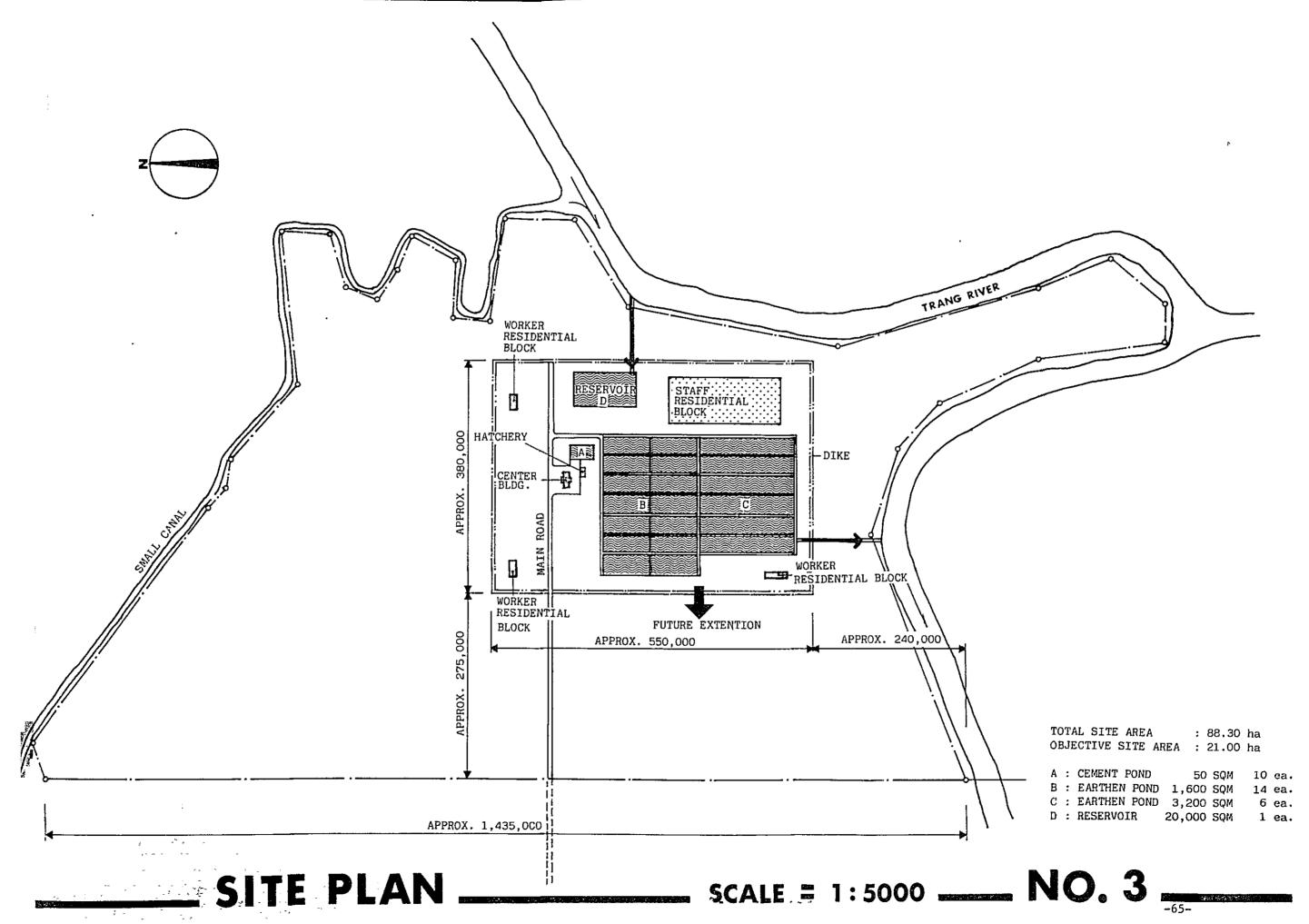
The Japanese Portion of the project cost is estimated 1,185,000,000 yen.



TOTAL SITE AREA : 32.0 ha
OBJECTIVE SITE AREA : 30.8 ha

A : CEMENT POND 50 SQM 20 ea.


B : EARTHEN POND 400 SQM 60.ea.

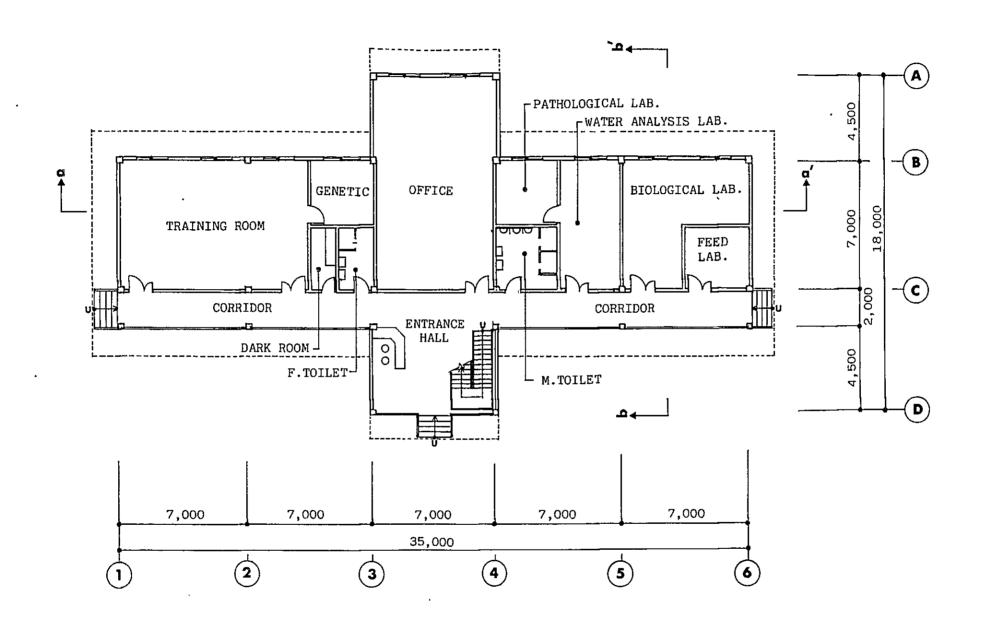

C : EARTHEN POND 1,600 SQM 26 ea.

D : EARTHEN POND 3,200 SQM. 14 ea.

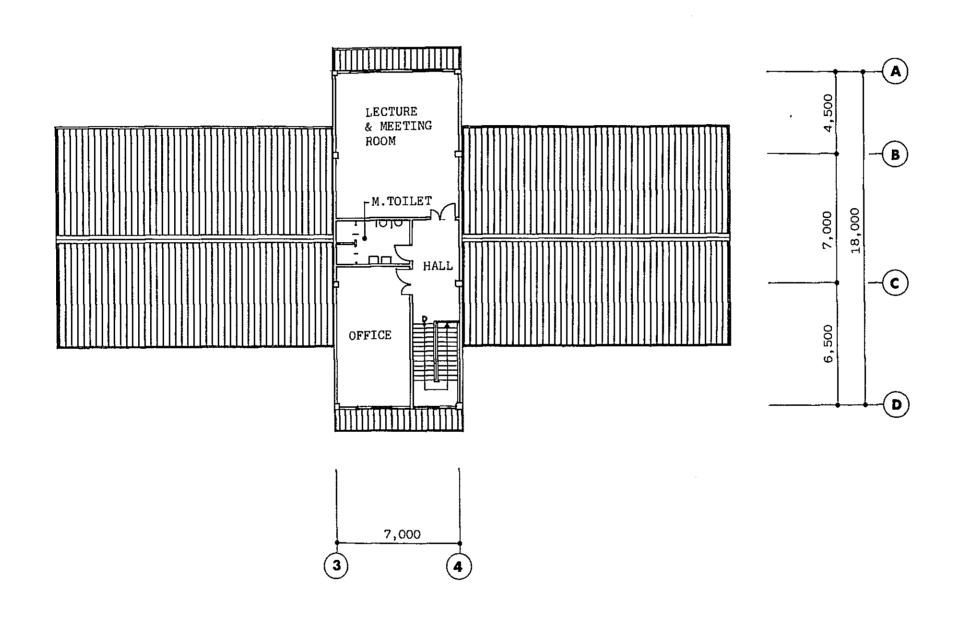
E: RESERVOIR 29,000 SQM 1 ea.

SITE PLAN \_\_\_\_ SCALE = 1:5000 \_\_\_ NO. 1



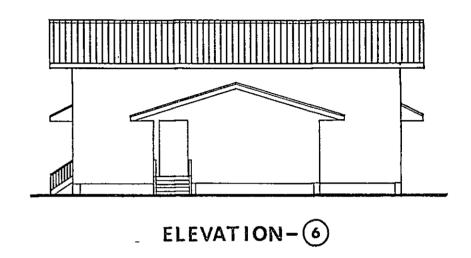


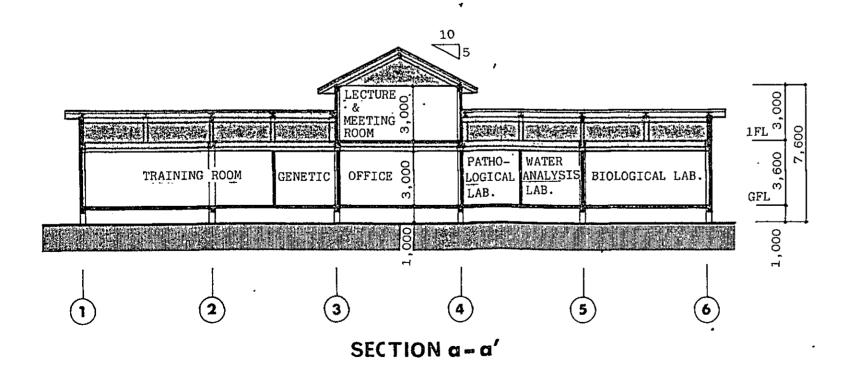

### EXTERIOR FINISH SCHEDULE

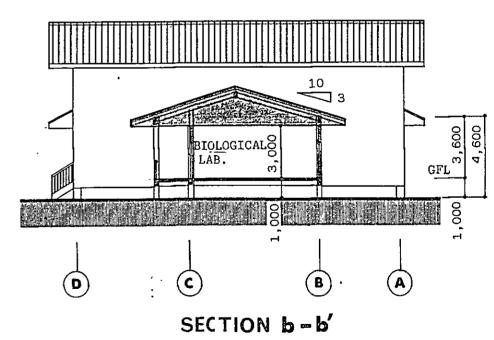

|              | EX                                        | TERIOR WALL | ROOF       |                                     |  |           | METAL (HANDRAIL) | REMARKS |  |  |  |  |  |
|--------------|-------------------------------------------|-------------|------------|-------------------------------------|--|-----------|------------------|---------|--|--|--|--|--|
| FINISH       | SPRAYED ACRYLIC RESIN<br>ON CEMENT MORTAR |             | CPAC MONIA | CORRUGATED ASBESTOS<br>CEMENT SHEET |  | STEEL O.P | •                |         |  |  |  |  |  |
| CENTER BLDG. | 0                                         | -           | 0          |                                     |  | 0         |                  | ,       |  |  |  |  |  |
| DORMITORY    | 0                                         |             | 0          |                                     |  | 0         |                  |         |  |  |  |  |  |
| HATCHERY     | 0                                         | •           |            | 0                                   |  | 0         |                  |         |  |  |  |  |  |
|              |                                           |             |            |                                     |  |           |                  |         |  |  |  |  |  |

### INTERIOR FINISH SCHEDULE

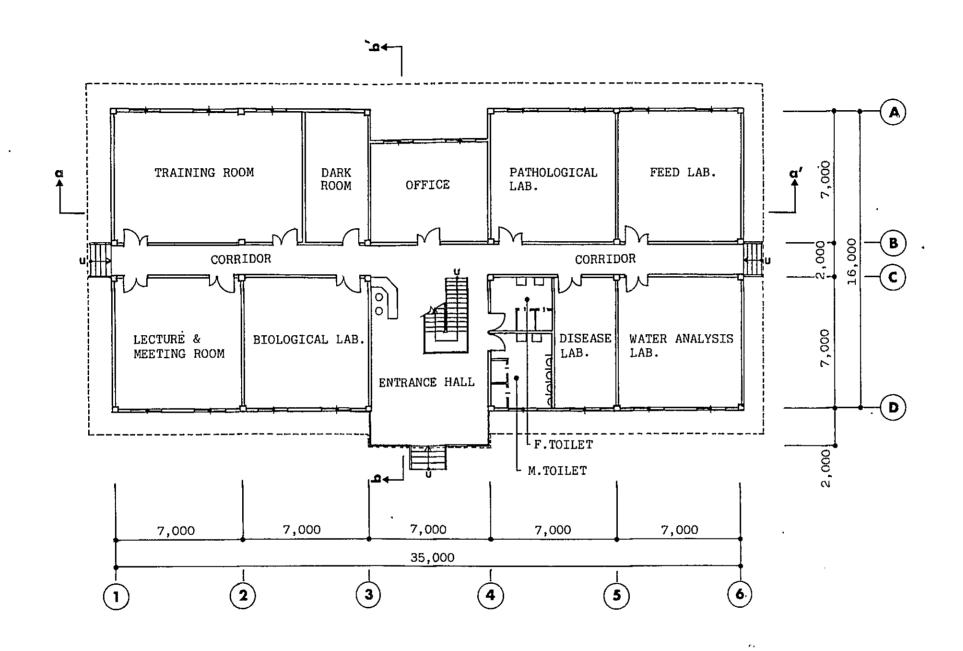
|                             |            | FLOOR                                |              | BASE          |  |                    | WALL       |                    |   |            | CEILING            |                |  |                      | REMARKS                      |  |  |  |
|-----------------------------|------------|--------------------------------------|--------------|---------------|--|--------------------|------------|--------------------|---|------------|--------------------|----------------|--|----------------------|------------------------------|--|--|--|
| FINISH                      | VINYL TILE | CEMENT MORTAR<br>STEEL TROWEL FINISH | CLINKER TILE | TERRAZZO TILE |  | HARDWOOD H=100 O.P | MORTAR V.P | SEMI-VITREOUS TILE |   | MORTAR V.P | SEMI-VITREOUS TILE | CONCRETE BLOCK |  | GYPSUM PLASTER BOARD | ASBESTOS CEMENT BOARD<br>V.P |  |  |  |
| OFFICE                      | 0          |                                      |              |               |  | 0                  |            |                    |   | 0          |                    |                |  | 0                    |                              |  |  |  |
| LABORATORY<br>TRAINING ROOM |            | 0                                    |              |               |  |                    | 0          |                    |   | 0          |                    |                |  | 0                    |                              |  |  |  |
| DINING ROOM                 | 0          | -                                    |              |               |  | 0                  |            |                    |   | 0          |                    |                |  |                      |                              |  |  |  |
| KITCHEN                     |            |                                      | 0            |               |  |                    | -          | 0                  |   | 0          | 0                  |                |  |                      | 0                            |  |  |  |
| BED ROOM                    | 0          |                                      |              |               |  | 0                  |            |                    |   | 0          |                    |                |  | 0                    |                              |  |  |  |
| TOILET                      |            |                                      |              | 0             |  |                    |            | 0                  |   |            | 0                  |                |  |                      | 0                            |  |  |  |
| HATCHERY                    |            | 0                                    |              |               |  |                    | 0          |                    | • | 0          |                    |                |  |                      |                              |  |  |  |



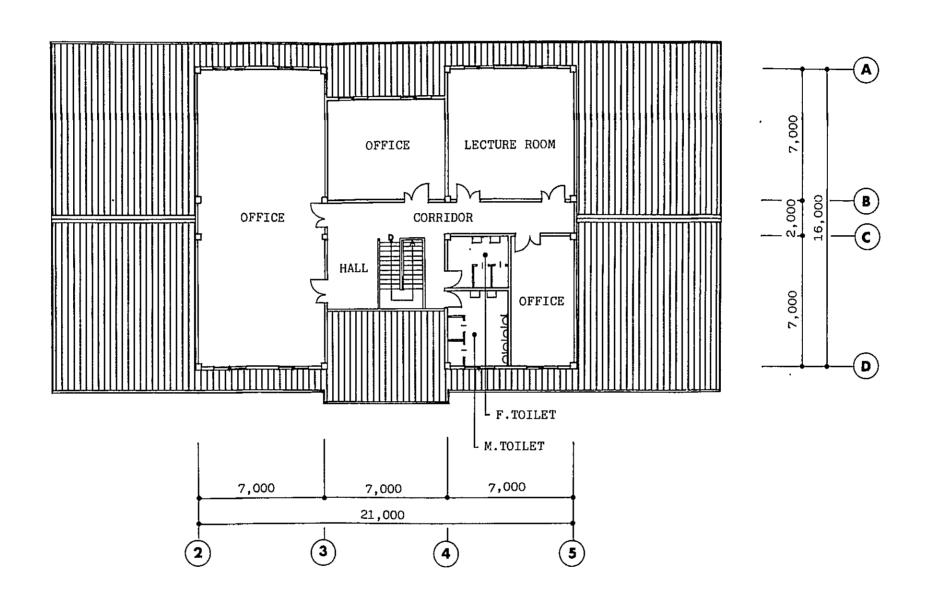


GF PLAN




1F PLAN





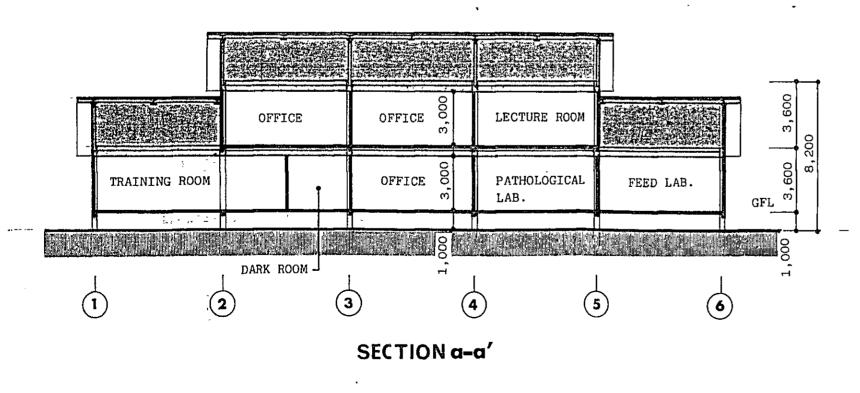



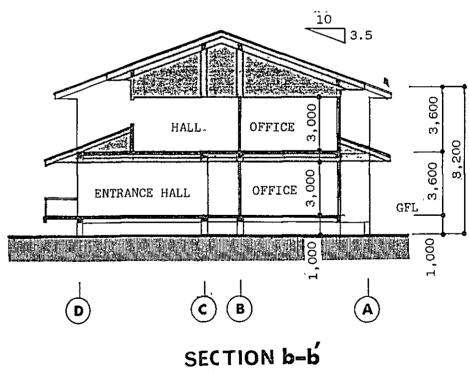



CENTER BLDG.

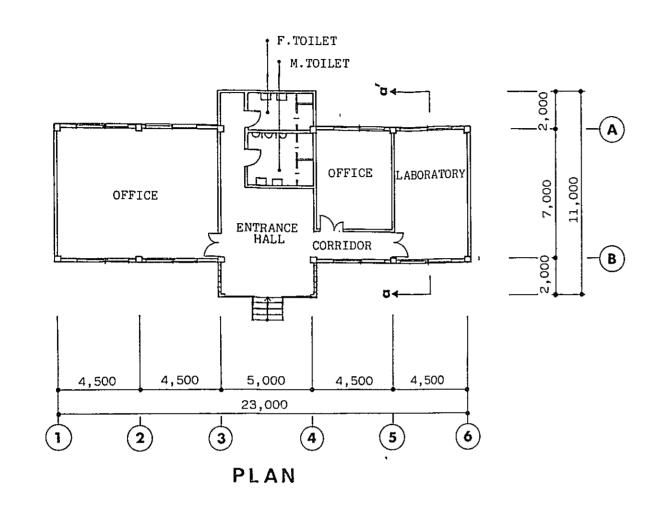


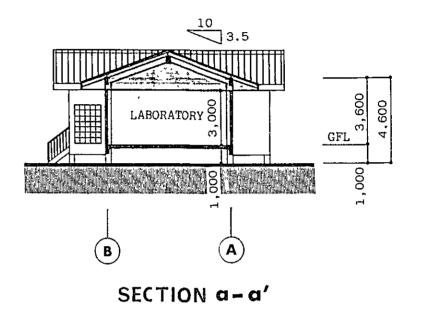
GrPLAN





1FPLAN

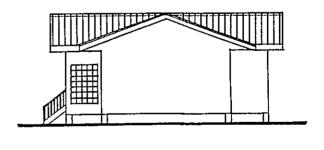



ELEVATION-6

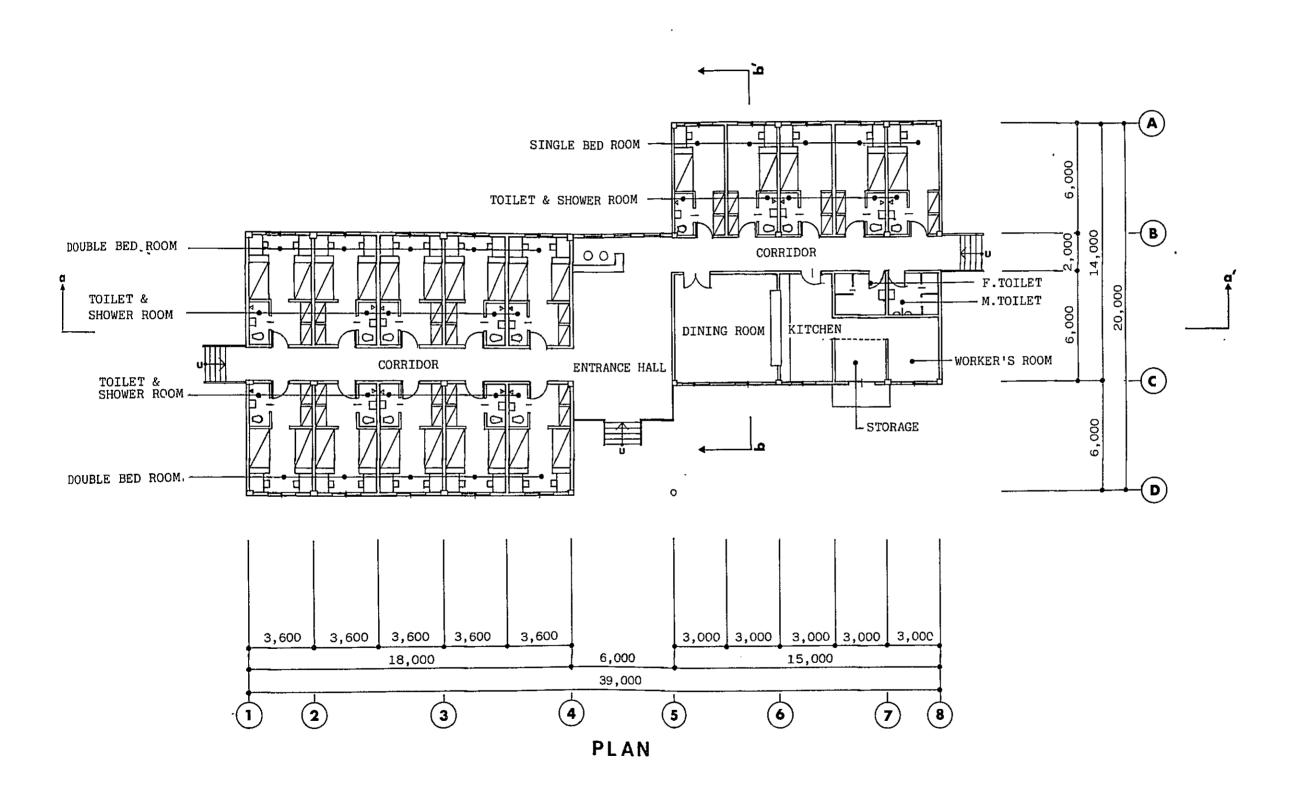

ELEVATION-D





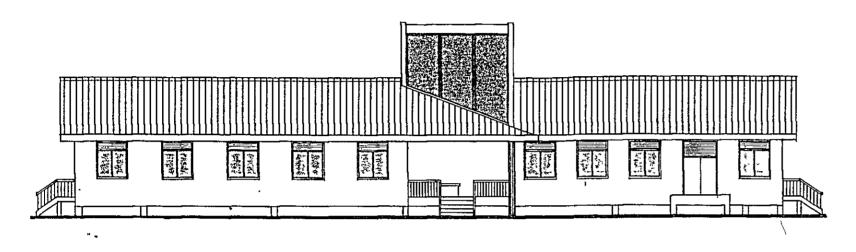

CENTER BLDG.





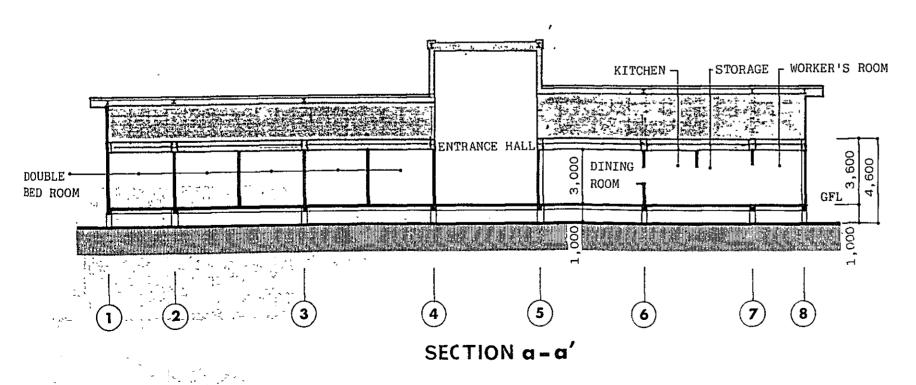


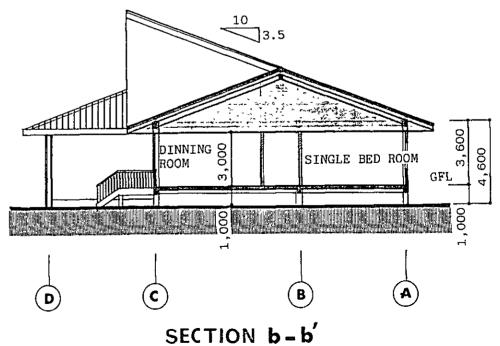


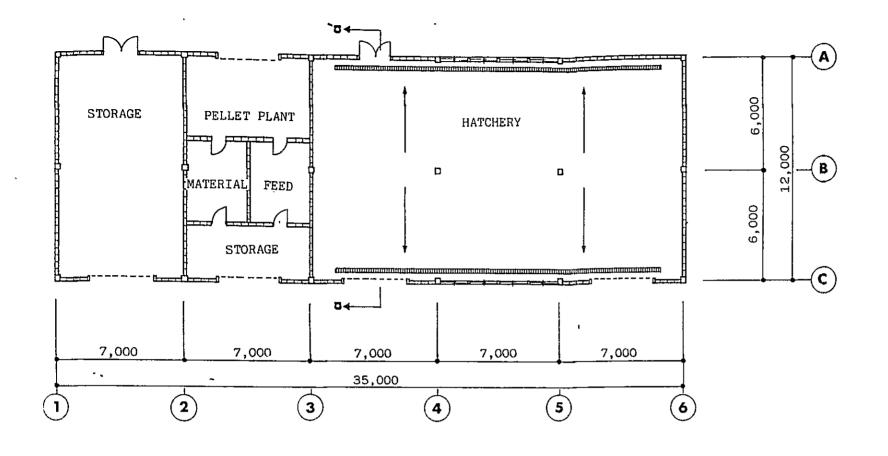

ELEVATION-6

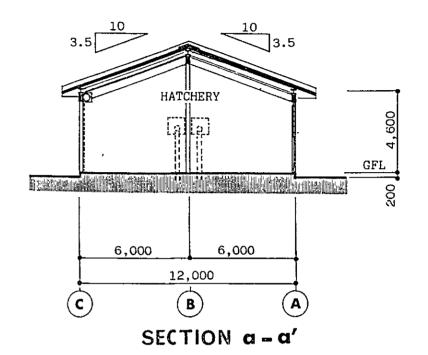


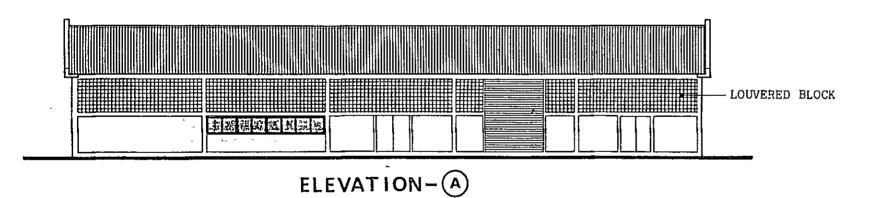

DORMITORY

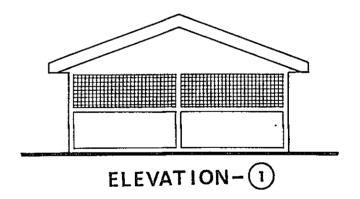

\_\_\_ SCALE = 1:200 \_\_\_ NO.12

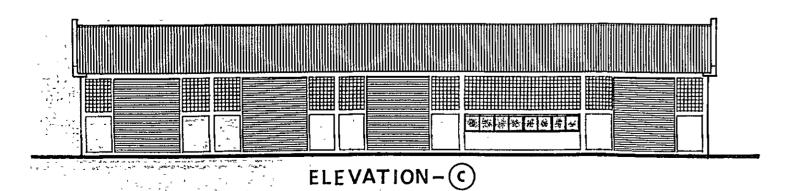


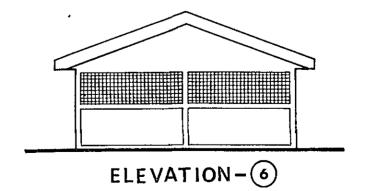

ELEVATION-C

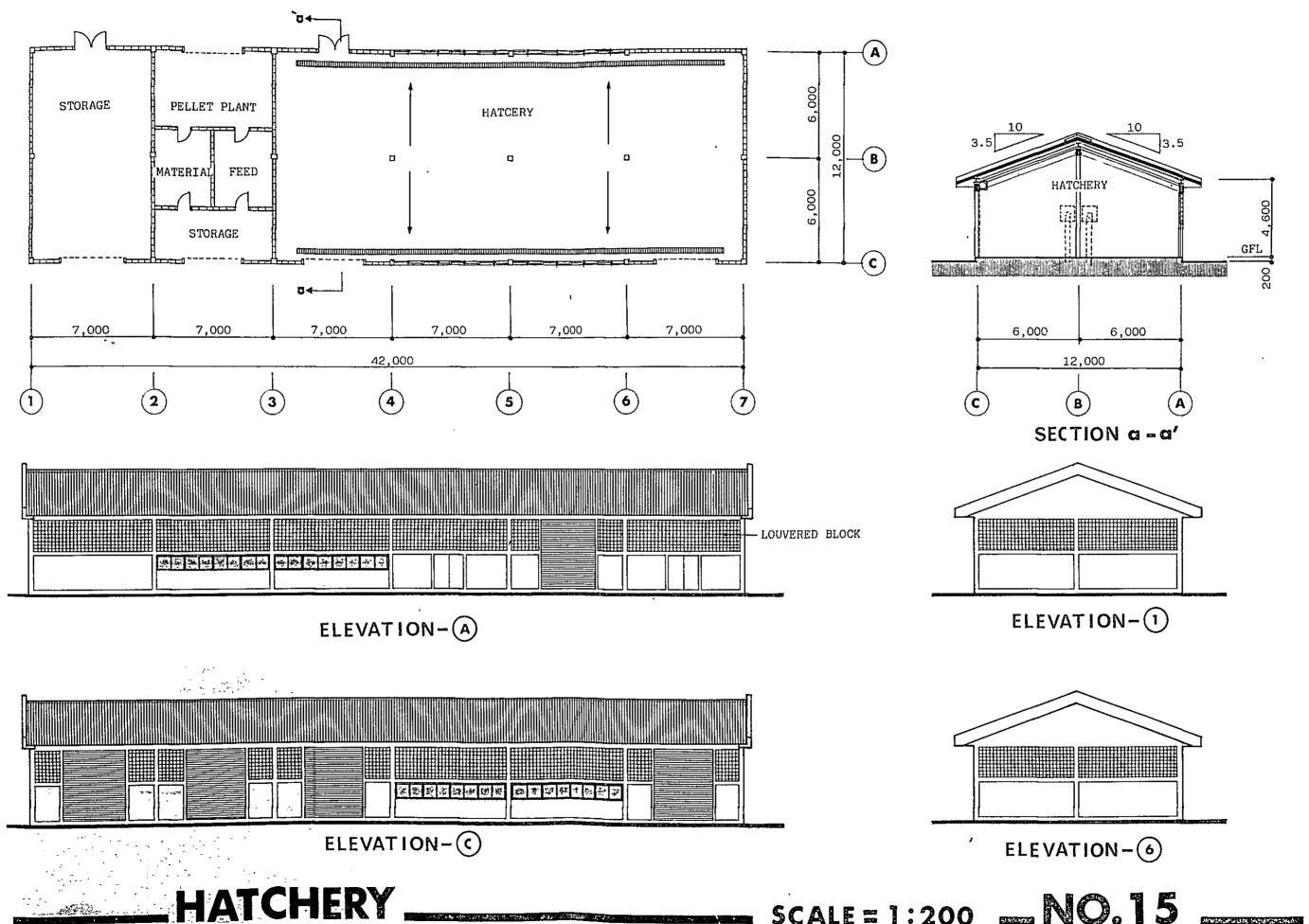

ELEVATION-8

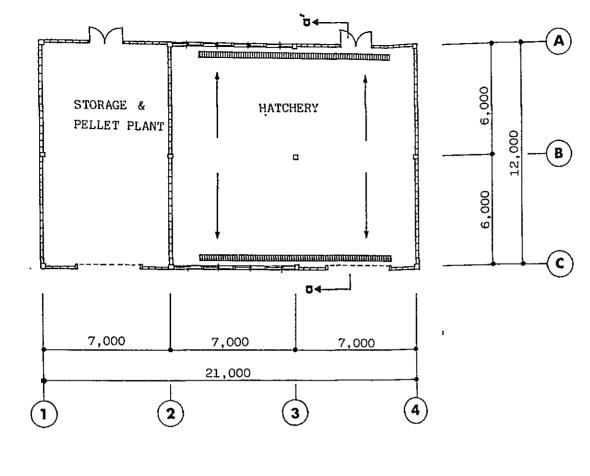


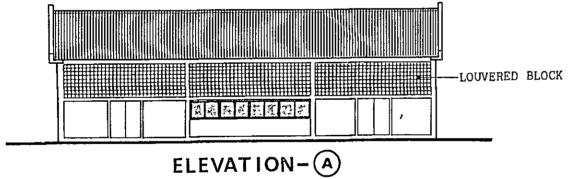



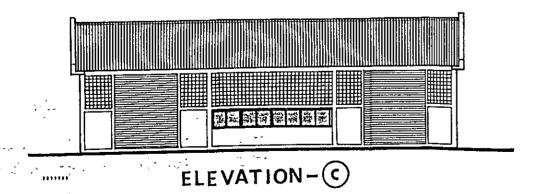


DORMITORY

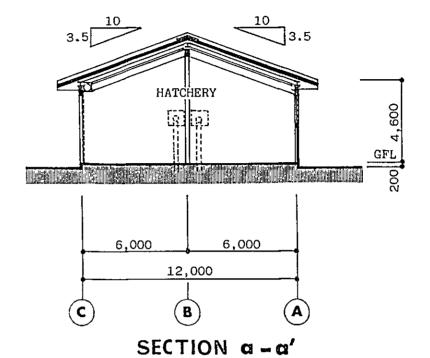


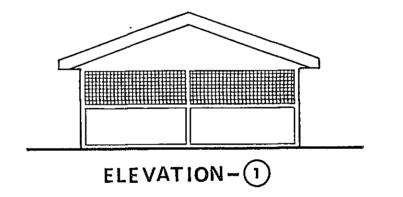



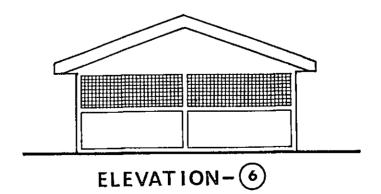



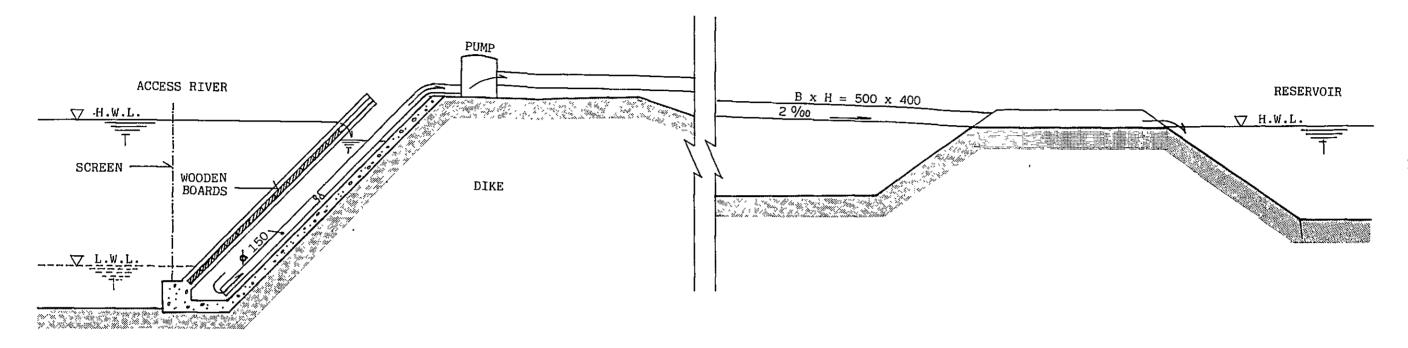



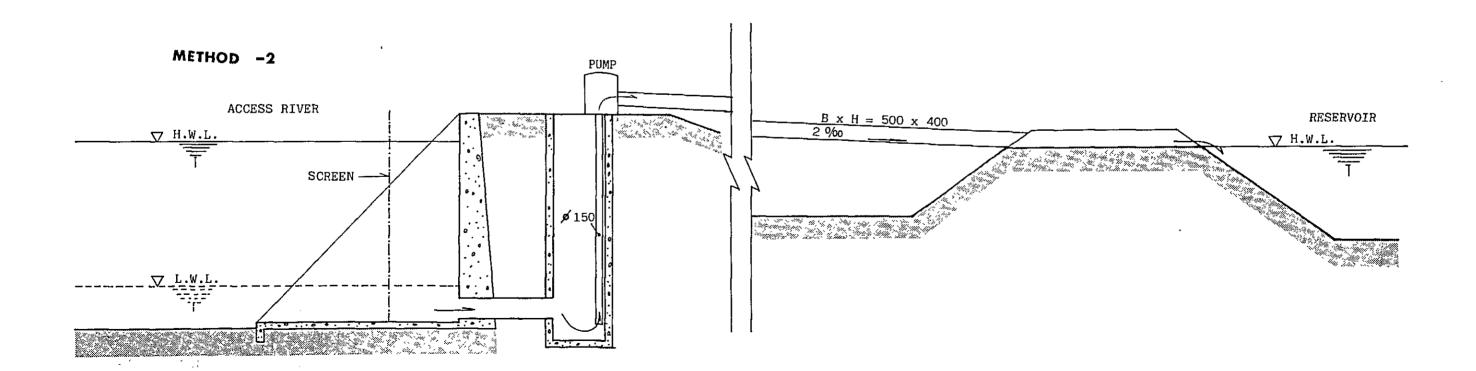



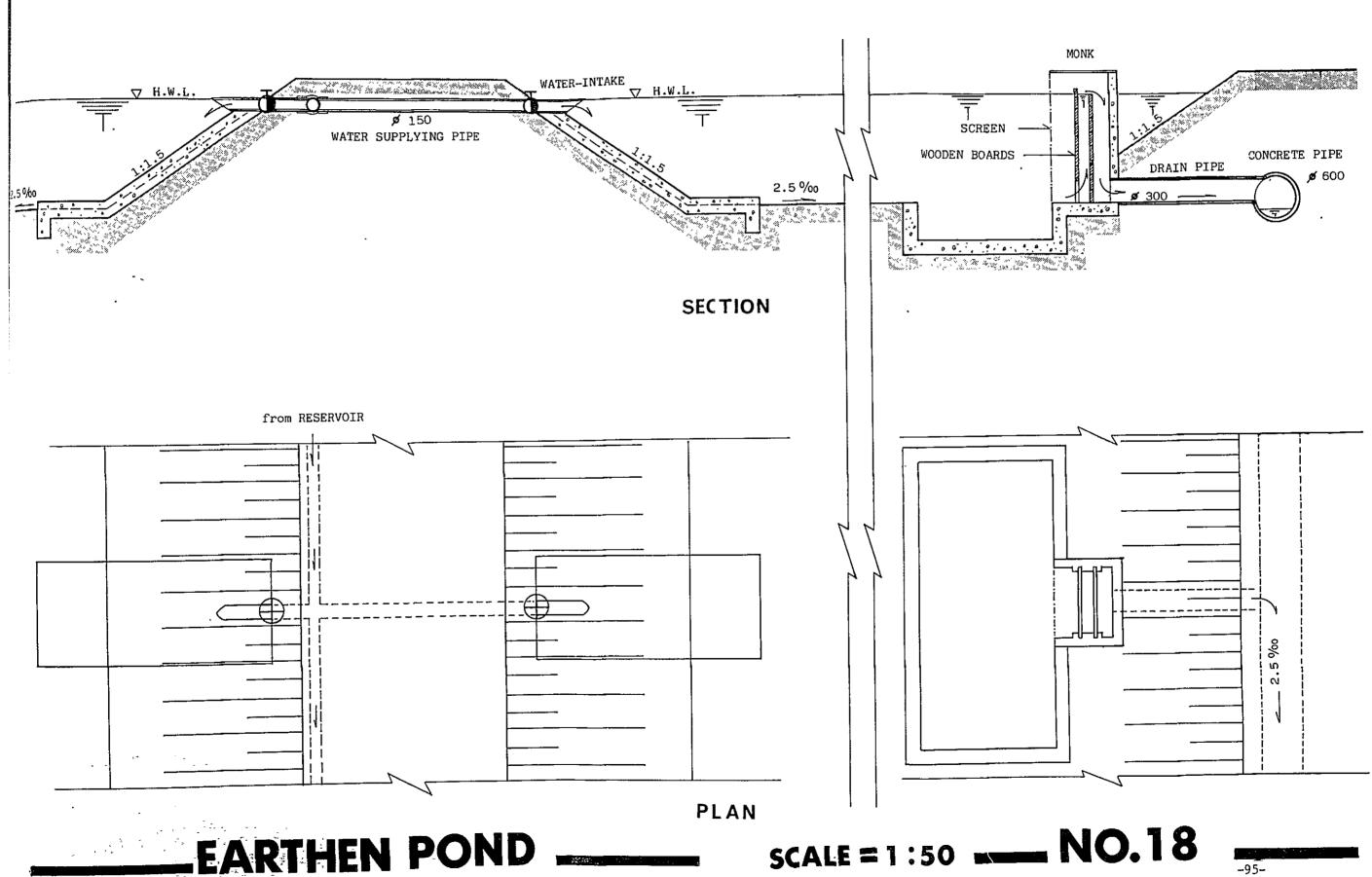


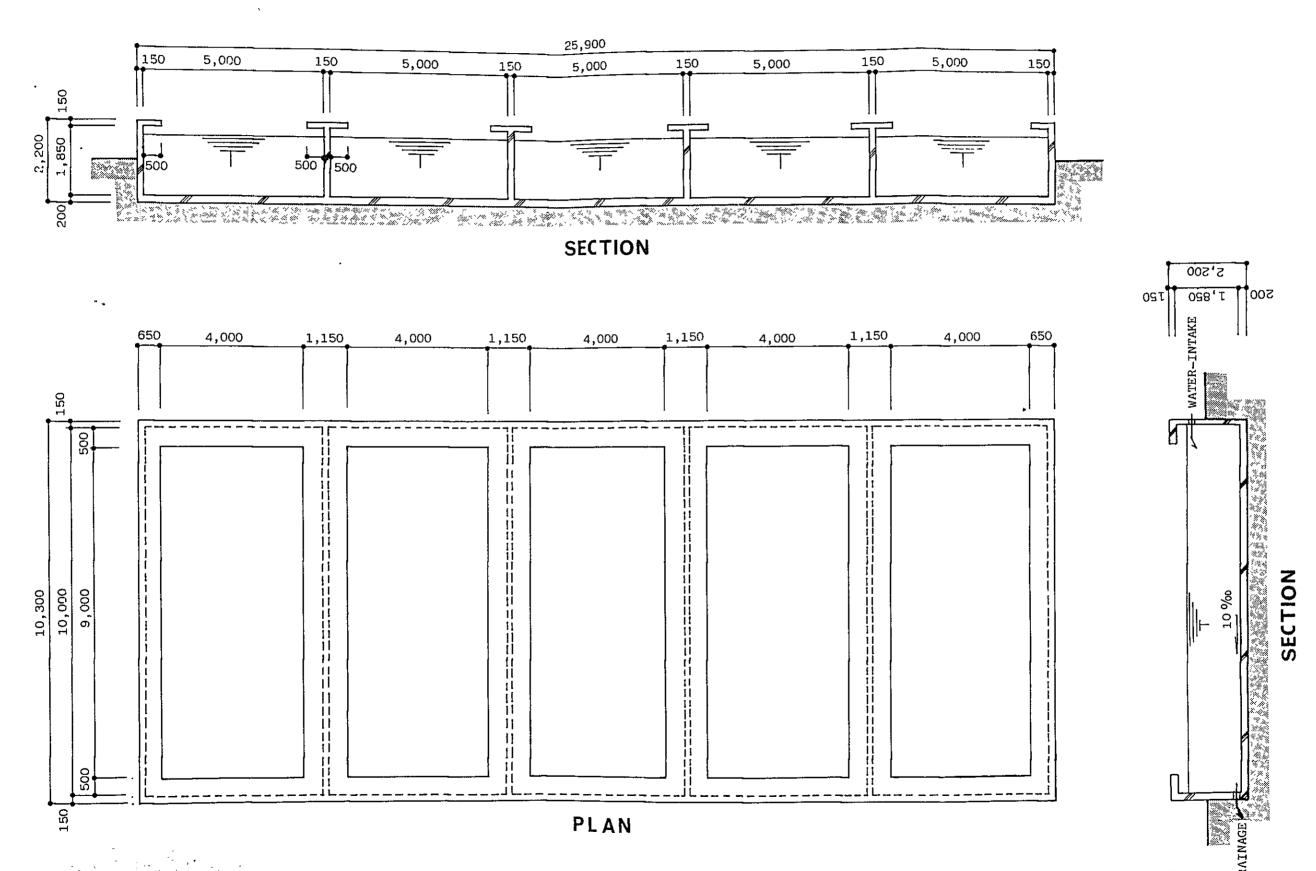





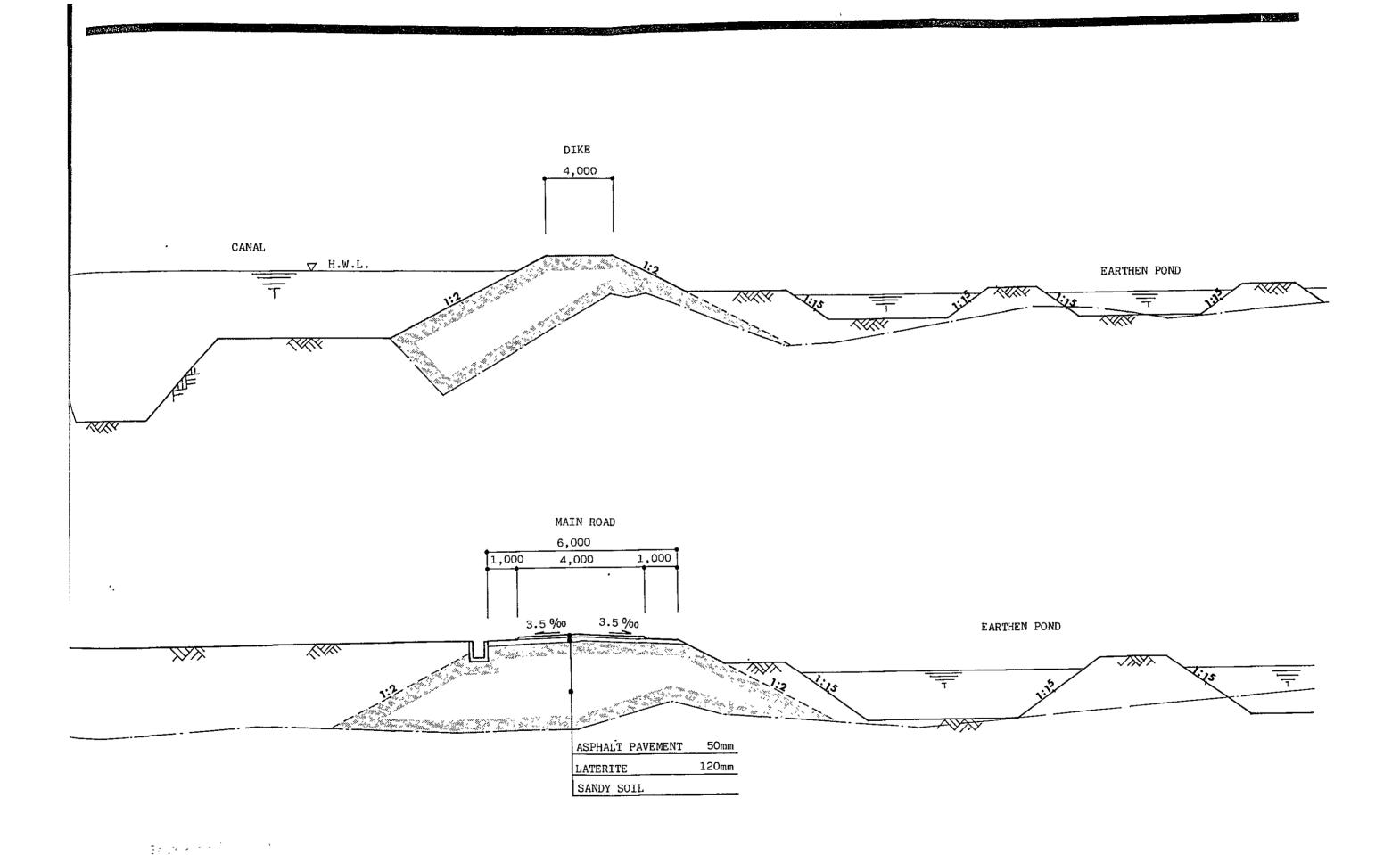




METHOD -1






WATER-INTAKE SYSTEM


NO. 17





CEMENT POND \_\_\_\_\_ SCALE = 1:100 \_ NO.19

-97-



DIKE & MAIN ROAD \_\_\_\_ SCALE = 1:100

\_\_\_No. 20

99-

