SUMMARY OF THE AGRONOMIC TRIALS CONDUCTED AT THE TRIAL FARM

in

WET SEASON 1984

DRY SEASON 1983-84

WET SEASON 1983

CHAO PHYA PILOT PROJECT

LAD BUA LUANG DISTRICT (A.)

AYUDHYA PROVINCE


THAILAND

THAI IRRIGATED AGRICULTURE DEVELOPMENT PROJECT

ALRO MOAC

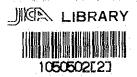
MARCH 1985

Toshio Shibata Krisdawut Wongpiboonwatana

SUMMARY OF THE AGRONOMIC TRIALS CONDUCTED AT THE TRIAL FARM

in

WET SEASON 1984 DRY SEASON 1983-84 WET SEASON 1983


CHAO PHYA PILOT PROJECT

LAD BUA LUANG DISTRICT
AYUDHYA PROVINCE
THAILAND

THAI IRRIGATED AGRICULTURE DEVELOPMENT PROJECT

ALRO MOAC

MARCH 1985

Toshio Shibata Krisdawut Wongpiboonwatana

国際協力事業団 (5) (85.12.12 | 12.2 | 83.3 | ADT | 84.12.198 | ADT | 12.198 | ADT | 1

PREFACE

It is obvious that the objective of an agronomic trial is to develop or to improve an appropriate technology suitable and adaptable for the actual farmer's socio-economic and agro-climatic conditions.

This is a seasonally summarized report of applied agronomic trials on rice cultivation conducted at Trial Farm of the Chao Phya Pilot Project in three cropping seasons of 1983 Wet, 1983-84' Dry and 1984 Wet Season.

Basic concept of agronomic trial is not to find out the highest production technology but to formulate appropriate technology in order to maximize the benefit of farmers in consideration of production cost, product price, cost of capital, risk probability, marketability of the product and other related factors.

In accordance with the basic concept mentioned above, the trial site was selected in the Trial Farm considered to be similar to the averaged condition of farmer's field in the pilot project area so as to accumulate practical and useful datas in order to make the best use of trial results applicable to the area.

It is hoped that this information would be of some reference to those who are engaged in the field of practical agronomic research and agriculture extension.

Toshio Shibata
Krisdawud Wangpiboonwatana
Agronomy Section
Chao Phya Pilot Project
IADP, ALRO, MOAC

CONTENTS

Wet Season 1984 Abstracts of the Trial Results in Wet Season 1984 General Introduction and Experimental Conditions3-6 II. III. IV. ٧. VI. VII. Dry Season 1983 - 84 Abstracts of The Trial Results in Dry Season 1983-84!55 III. Planting Method Comparative Study81-84 IV. ٧. VT. VII. Wet Season 1983 Planting Method Comparative study114-116 1. II. Seedrate x Variety Trial124-127 III. IV. ٧. VI. APPENDIX 1. Abstracted Findings and General Recommendations141 4. Seasonal Transition of Rice production at 6. Life History of Rice Plant and Recommended practices 7. Standard Recommended Practices on Rice Cultivation149 8. Major Insects, Diseases & Rats Observed in the Project152 - 10. Varietal Resistance of RD-Varieties Against Disease and Insect ... 154

ABSTRACTS OF THE TRIAL RESULTS CONDUCTED IN WET SEASON 1984

Trial I. Varietal Comparative Study (Transplanting)

Among RD-Varieties, mean grain yield of RD-23 (872 kg/rai), RD-21 (870 kg/rai) and RD-7 (840 kg/rai) were significantly superior to RD-25 (629 kg/rai).

Some of the SPR-Entries were found to be promising. Varieties of RD-23 and RD-21 were observed to be still recommendable in this locality.

Trial II. Nitrogen x Phosphorus Fertilizer Trial (Transplanting)

Clear response of nitrogen on the grain yield was observed. The grain yield was significantly increased along with the increment of nitrogen levels. Whereas no significant effect of phosphorus was found in this trial. Total nitrogen of 18 kg N/rai (basal application of 12 kg N/rai plus 6 kg N/rai top dressed at panicle initiation stage) without phosphorus appeared to be the most profitable with extremely high marginal rate of return.

Trial III. Planting Method Comparative Study

Transplanting method either mechanical and manual produced higher mean grain yield than the that of direct sowing method though difference was not significant at 5% level. Transplanting method was found to be profitable even additional variable cost is required.

Judging from the trial results including previous study, transplanting method is adapted in wet season and direct sowing is superior in dry season in general conditions.

Trial IV. Green manure Application Trial (Transplanting)

The effect of green manure (sesbania) and nitrogen fertilizer on the grain yield was statistically observed. Effect of nitrogen was more distinctly recognized than the effect of green manure.

The economic response of green manure and nitrogen was also observed based on the given variable cost assumed in this report.

Futher study on green manure cultivation is absolutely needed especially for the areas where double cropping of rice is repeated under complete flocontrol condition.

Trial V. Seedrate x Nitrogen Fertilizer Trial (Direct sowing)

Seedrate of 16 kg and 8 kg/rai produced significantly higher grain yield than the that of 4 kg/rai.

Grain yield was significantly increased along with the increment of basal nitrogen levels.

Yield differences among different basal nitrogen levels were significant. 8 kg N/rai top dressed at panicle initiation stage produced significantly better grain yield than the 4 kg N/rai applied at the same time.

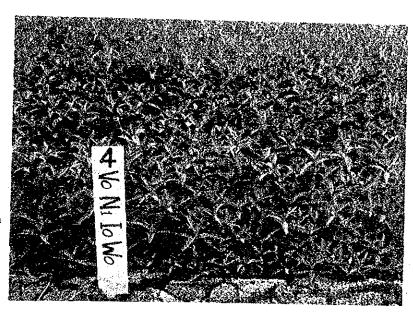
Seedrate of 8 kg/rai with basal nitrogen of 8 kg N/rai plus 8 kg N/rai top dressed at panicle initiation stage appeared to be profitable combinations with acceptable level of marginal rate of return.

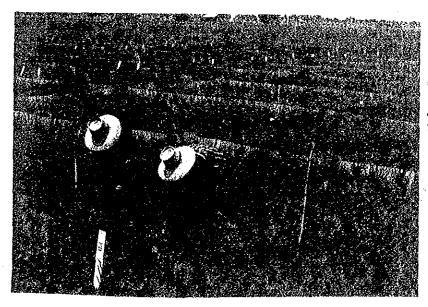
Trial VI. <u>Nitrogen Source x Dose Comparative Trial (Direct Sowing)</u>

The quantity of nitrogen was highly associated with grain yield whereas different sources of nitrogen did not influence to grain yield statistical Split application of basal and top dressing at panicle initiation stage appeared to be better for yield and economy when the same quantity of nitrogen is applied.

Trial VII. Variety x Production Inputs Trial (Direct Sowing)

All of the production inputs (Variety, Nitrogen, Insect control, Weed control) were closely correlated to grain production since significant effects of all production inputs were clearly observed at 1% level of significance.


Variety of RD-23 planted with nitrogen (12 kg N/rai) and Weed control (Saturn G 5 kg/rai + Manual weeding) without insecticide appeared to be profitable combination economically since high cost of insecticide (10 kg of Furadan) was not compensable with the yield increment.


Trial No. VII Violent growth of Weeds appeared at trial plot.

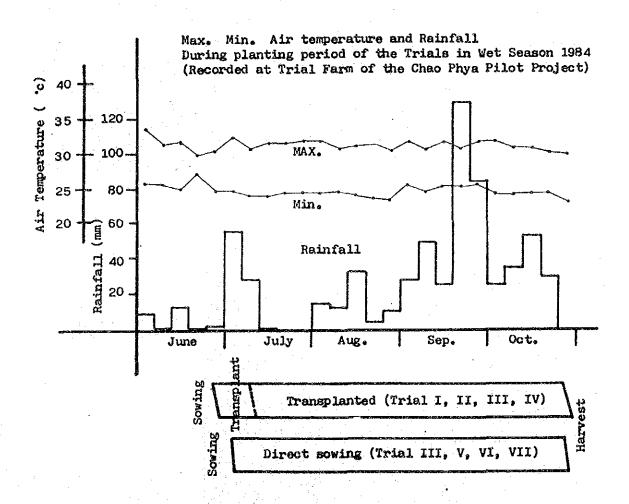
V : Apple Thong
N : With nitrogen
I : No insecticide
W : No weed control

Weeds are mainly :

Sphenoclea Zeylanica Gaertn and Cyperus difformis Linn.

Growth observation (Tillers & Height) at Varietal Comparative Study.

General Introduction and Experimental Conditions


The double cropping of rice cultivation with considerably high level of grain production has been come true and to ensure the better benefit for rice growers in the Chao Phya Project area since 1982-83' Dry Season.

Introduction of RD-23 and RD-21 having good resistance against brown plant hopper contributed to minimize the problem of Rice Ragged Stunt Virus (RRSV) with satisfactory level of yield potentiality.

Especially RD-23 has been accepted and planted by the most of farmers in this area. The superiority of this variety has also been proven in consequence of variety comparative study conducted at the Trial Farm.

For the agronomic trials, <u>variety of RD-23 was mainly used</u> because of above reason.

Germinated direct sowing method has been widely practiced by farmers. In this wet season, transplanting method was applied for the trial No. I.II, and IV and direct sowing method was adapted for V.VI and VII.

The agronomic trials were organized and managed by Agronomy Section in collabration with other related sections in the project.

All of the inputs used for the trials such as seed, fertilizer, chemicals were locally available and actually used by the farmers.

Grain yield of each experimental unit were measured within the central part of $3.75~\text{m}^2$ (60 hills) in case of transplanting. Grain yield of $4.0~\text{m}^2$ were observed for direct sowing trials. In the bigger plot of $40~\text{m}^2$ (Trial No. III & V), central part of $8~\text{m}^2$ were investigated.

Number of tillers and plant height of trial No. I & V were observed every week until heading stage.

Yield components & related figures were investigated in every trials at harvest time.

10% of harvest and storage loss was assumed and deducted from the grain yield when result was economically examined.

The following assumptions on the variable inputs and output were assumed for economic study of the trial results.

Inputs	:	Rice seed (dry	grain)	:	3.3 B/kg

Fertilizer

Ammonium sulphate (21-0-0) : 2.3 B/kg

Triple super phosphate (0-46-0) : 6.0 B/kg

Ammo-phos (16-20-0) : 4.2 B/kg

GML (Glutamic Mother Liquor) : 0.44 B/litre

Chemicals

Furadan Granule : 21.0 B/kg
Saturn G : 18.0 B/kg

Opportunity cost of labour : 55.0 B/day/person

Output : (price of dry grain : 14% H₂0) : 2.85 B/kg

Chao Phya Pilot Project

Alocation and Plot Layout of The Trials (Transplanting)

A110	ocation an	d Plot I Wet Se	ayout o	of The T 1984	rials (.*	auting)	150	ale a second less to Objects
I. Varietal Comparati	7e 9 41	6,40	3 31	8 30	9	15,,	13	8 10	1 1
RCBD 15 Entries x 3 Rep (45 plots)	15	11 39	14 32	1 29	11	7	4	3	6
	13.	1 38	4 33	2	14 23	3 10	10	11	7
	5 44	2	10	6	10	12	1/1	12,	15
	12	7 36	8 35	13 26	5 25	4	5 15	2	9).
IV. Green Manure x Ni Trial	rogen	G ₂ N ₃ 32	G N D 25	G ₁ N ₁ 24	G ₂ N ₁ 17	G _O 11 ₁ 15	с _{о 1} 0	C ₂ H ₀ 8	^1 ¹⁴ 0
RCRD Factorial 4 levels x 4 leve x 2 Reps.	ls	G ₃ № ₂ 31	G _O N ₁	G ₁ N ₃	G ₂ N ₀	G ₃ N ₂	G ₂ H ₃	G ₃ N ₀	G ₀ N ₂ 2
(32 plots).		G ₃ N ₁ 30	G _U N ₂ 27	G ₂ H ₂ 72	G ₃ N ₃ 19	G, N ₃	ե _{լ ի} շ 11	G ₂ N ₂ 6	. G ₂ . Н ₃ З
. ;		G ₀ N ₀	^G 1 ^H 2 28	G ₃ N ₀ 21	G _U N ₃ 20	G ₃ N. 13	G ₁ N ₃	G _U N _⊃ S	G ₃ н ₁
	I. Nitrogen x Phosphorus Fertilizer Trial RCBD Factorial						N _U P ₂	и _{о Р} 1	N _O P _G
4 levels N. x 3 l (24 plots)	evels P, x	2 Reps.		N ₀ P ₂	พ _ร ร _{ัฐ} 18	11 ₂ 12 15	N ₁ P ₂	н ₁ г 7	н ₁ г З
				N ₁ P ₁ 22	11 P 1 2	н _{о Р} 1 14	^N 2 ^P 2	^N 2 ^Р 1	^N 2 ^Р с
				N ₃ F ₂ 21	⁸ 3 ⁹ 3 20	11 F ₀	N ₃ Р. 1	ห _ล P ร	н _з Р _С
III. Planting Method RCBD	_	a Study		Mechan	ical T.	Manual	T, Ե	Direct	Sowing 1
3 Treatments x 3 (9 plots)	Reps.			Direct	Sowing B	Hechani		Manual	т.
				Manual	Τ.	Direct	sowing	Mechan	ical T

Chao Phya Polot Project
Allocation and Plot Layout of The Trials (Direct Sowing)
Wet Season, 1984.

N·

	African (Microbial Providence						liel	d No. 1	60
VI.	N ₁	H ₃ 8	11 ₂	и ₄ 16	N ₃	11 ₄ 24	¹ 1 25	11 ₂	114 31
Nitrogen Source x Dose Comparative Trial. Split Plot	N _L	N ₁	N ₁	N ₃	H ₂	H ₁	n"	и _п	ii,
3 x 4 x 3 Reps. (36 plots)	N ₃	ວ _{ຽວ} 7 N ₁	× ₄	11.5	N ₁	n ⁵	113	# ₁	13 30 14 1
·	N ₂	ห _ว	N ₃	1 ¹ 1	19 H _G	N ₃	11 ₁₁	30 H	112
	1000	0010	12 0101	0000	20 1010	21 1001	28 0001	29 1110	30
VII. Variety x Production	1		9	16	17	24	25	32	
Inputs Trial RCBD 2 ⁴ (V x N x I x W)	1011	0111	1001	0011 15	1111 18	00u0 23	1101 26	0100 31	
(32 plots)	0001	1110	10 0110	1100	0101	1100	V111	1000	
	3	É	11	14	19	22	27	3v	
	0100	1101	1010	1111	0011 20	U11U 2)	1011	0010	
	8	16	. 16	ц	8	16	12	20	
	0 8~0	4 4-0	8 4-4	0 0-0	0 0-0	0 0-0	8-0	8 8-0	
V. Seedrate x Nitrogen fertilizer L ₂₄	11	i ii	9	E 28	E21	E30	£31	E32	
(3 factors x 3 levels + 5 Extra plots (27+ 5 = 32 plots)	4 B 4-4	16 0 8-0	8-0 8 ti	n-0 in	16 կ . ԱԱ	8-0 8	16 0 4-0	#-# #	
·	2/	2	26	22	<u></u> .	17	i	24	
	16 8	0	ų U	8 4	. ti	8 4	1 ե 0	ц В	•
	4-0 7	4-4 21	4-0 . 19	4-0 13	ย-0 23	8-0. ili	4-4 3	4-0 25	
	8	16	8	8	tı .	8	8	16	
	0 4-0	8 0-8	ų_4	8 4-4	¥ 8-0	0 4-4	8 4-0	4 8-0	
	10	8	15	18	20)?	16	5	ļ

Chao Phya Pilot Project Wet Season, 1984

I. Varietal Comparative Study

Objectives

To study the performance and productivity of different varieties/entries for future selection of promising lines under Chao Phya area conditions.

Materials and Method :

Experimental Design :

RCBD with 3 replications.

Treatments :

No. Varieties/Entries 1. RD-7 2. RD-21 3. RD-23 4. RD-25 5. SPR77205-3-2-1-1 6. SPR75007-16-3-1 7. SPR76102-26-1-1 8. SPR75001-68-2-2 9. SPR75005-352-2-1 10. SPR78002-80-1-1 11. IR-44 12. IR-46 13. Apple Thong 14. O-por 15. Sabitri		
2. RD-21 3. RD-23 4. RD-25 5. SPR77205-3-2-1-1 6. SPR75007-16-3-1 7. SPR76102-26-1-1 8. SPR75001-68-2-2 9. SPR75005-352-2-1 10. SPR78002-80-1-1 11. IR-44 12. IR-46 13. Apple Thong 14. O-por	No.	Varieties/Entries
3. RD-23 4. RD-25 5. SPR77205-3-2-1-1 6. SPR75007-16-3-1 7. SPR76102-26-1-1 8. SPR75001-68-2-2 9. SPR75005-352-2-1 10. SPR78002-80-1-1 11. IR-44 12. IR-46 13. Apple Thong 14. O-por	1.	RD-7
#. RD-25 5. SPR77205-3-2-1-1 6. SPR75007-16-3-1 7. SPR76102-26-1-1 8. SPR75001-68-2-2 9. SPR75005-352-2-1 10. SPR78002-80-1-1 11. IR-44 12. IR-46 13. Apple Thong 14. O-por	2.	RD-21
5. SPR77205-3-2-1-1 6. SPR75007-16-3-1 7. SPR76102-26-1-1 8. SPR75001-68-2-2 9. SPR75005-352-2-1 10. SPR78002-80-1-1 11. IR-44 12. IR-46 13. Apple Thong 14. O-por	3.	RD-23
6. SPR75007-16-3-1 7. SPR76102-26-1-1 8. SPR75001-68-2-2 9. SPR75005-352-2-1 10. SPR78002-80-1-1 11. IR-44 12. IR-46 13. Apple Thong 14. O-por	ц	RD-25
7. SPR76102-26-1-1 8. SPR75001-68-2-2 9. SPR75005-352-2-1 10. SPR78002-80-1-1 11. IR-44 12. IR-46 13. Apple Thong 14. O-por	5.	SPR77205-3-2-1-1
8. SPR75001-68-2-2 9. SPR75005-352-2-1 10. SPR78002-80-1-1 11. IR-44 12. IR-46 13. Apple Thong 14. O-por	6.	SPR75007~16-3-1
9. SPR75005-352-2-1 10. SPR78002-80-1-1 11. IR-44 12. IR-46 13. Apple Thong 14. O-por	- •	SPR76102-26-1-1
9. SPR75005-352-2-1 10. SPR78002-80-1-1 11. IR-44 12. IR-46 13. Apple Thong 14. O-por	, •	SPR75001-68-2-2
10. SPR78002-80-1-1 11. IR-44 12. IR-46 13. Apple Thong 14. O-por	•	SPR75005-352-2-1
11. IR-44 12. IR-46 13. Apple Thong 14. O-por	••	
12. IR-46 13. Apple Thong 14. O-por	·	0
13. Apple Thong 14. O-por		
14. 0-por		T-7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
*		
15. Sabitri	14.	*.
	15.	Sabitri

Plot Size : 5 m. x 4 m. = 20 m^2

Cultural Practices :

1. Seed rate

: 4.0 kg/rai (dry seed)

Planting density
 Weed Control

: $25 \times 25 \text{ cm}$. (16 hills/m²)

. : Manual Weeding

4. Fertilizer Application :

: 7 kg of Nitrogen and 8.75 kg of Phosphorus/rai

as a form of 16-20-0 fertilizer

Top dressing

6 kg of N/rai as ear manuaring as a form of

Ammonium sulphate. (panicle initiation stage)

5. Plant Protection :

(1) Furadan G : 15 days after transplanting (5 kg/rai) (2) Padan Mipcin G : 35 days after transplanting (5 kg/rai)

Duration

: June 27, 1984

Transplanting

: July 17, 1984

Harvest

: October 5 - November 3, 1984

Trial No. I

Grain Yield (kg/rai)

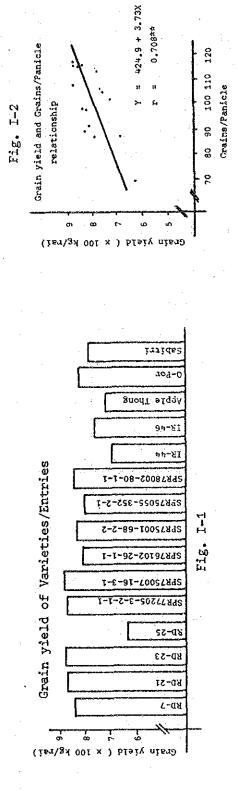
	Champeann wong a corporate Self-Ingeled Columnia Caster Caster Caster Caster Self-Caster Caster Cast	Re	plications	<u>.</u>	Mean
Trea	tments Treatments	1	II	III	(\forall \)
1.	RD-7	710	941	868	839.7
2.	RD-21	847	843	922	870.7
3.	RD-23	864	909	843	872.0
4.	RD-25	734	5,33	621	629.3
5.	SPR77205-3-2-1-1	849	794	969	870.7
6,	SPR75007-16-3-1	.804	909	924	879.0
7.	SPR76102-26-1-1	779	815	826	806.7
8.	SPR75001-68-2-2	828	830	834	830.7
9.	SPR75055-352-2-1	723	892	772	795.7
10.	SPR78002-80-1-1	792	826	915	844.3
11.	IR-44	657	730	678	688.3
12.	IR-46	811	804	672	762.3
13.	Apple Thong	740	691	736	722.3
14.	0-Por	862	800	811	824.3
15.	Sabitri	783	751	815	783.0
	Mean (X)	785.5	804.5	813.7	801.3

Table I-1

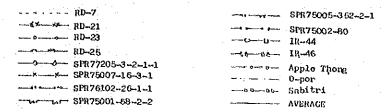
ANOVA	*		Te r-r			
SV	DF	SS	MS	F	Requi	
					5%	1%
Total	цц	351793		_	}	
Treatments	14	227579	16255	3.857**	2.06	2.80
Blocks	2	6204	3102	0.736	3.34	5,45
Error	28	118010	4214	•]	

LSD for Treatment : 5% = 108.56 (kg/rai) 1% = 146.46 (kg/rai)

CV = 8.10 (%)


Duncan's Multiple Range Test

Varieties/Entries	Norm West & Overhead	D	MRT
varieties/runies	Mean Yield (kg√rai)	5%	1%
SPR75007-16-3-1	879.0	a	a
RD-23	872.0	a	а
RD-21	870.7	a	a
SPR77205-3-2-1-1	870.7	a	a
SPR78002-80-1-1	844.3	ab	ab
RD-7	839.7	ab	ab
SPR75001-68-2-2	830.7	ab	ab
0-Por	824.3	ab	ab
SPR761-2-26-1-1	806.7	abc	ab
SPR75055-352-2-1	795.7	abc	ab
Sabitri	783.0	abc	abc
IR-46	762.3	abc	abc
Apple Thong	722.3	bcd	abc
IR-44	688.3	cd	bc
RD-25	629.3	d	С


Yield Components and related figures on different variaties/entries

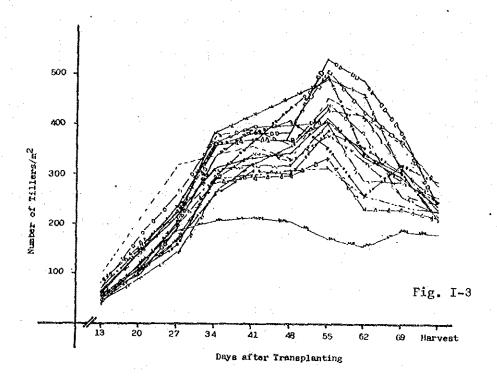

- Anna	\$ 05				Yie	Yield Components	ats .		Estimated	Panicle	Stem	Grain/	\$ 0£	Plant
Varieties	Heading	ng	Maturi	nity in	Panicles/	Grains/	Ripened	1000	yield	length	length		productive	height
Entries	Date	DAT	. Date	DAT	m2	panicle	grain (%)	grains weight(g)	(g/a+)	(cm)	(H)	• • •	tillers(%)	9
1. 30-7	Sep. 29	73	Oct. 27	101	230.0	115.3	67.9	27.3	491.6	22.8	76.6	74.2	50.3	134.0
2, RD-21	0ct. 2	76	Oct. 29	103	243.2	115,7	69.2	27.8	541.5	24.2	78.3	74.2	17.119	114
3. RD-23	Sep. 25	. 69	Oct. 24	86	225.6	117.8	72.0	27.7	530.0	24°6	81.1	73.9	50.2	116.
4. RD-25	Sep. 8	53	Oct. 5	00	182.4	69.5	# °88	27.7	310,3	22,3	70,3	107,3	4.48	100
5. SPR77205-3	Sep. 29	73	Oct, 27	101	218.0	114.9	81.5	26.7	545.7	21,5	80.7	74.6	70.0	116.
6. SPR75007-16	Sep. 29	73	Oct, 27	101	248.0	108,2	77.2	26.1	540 8	26.4	96.0	72.2	50.1	138
		71	Oct. 24	98	221.7	91.9	76.5	28.7	9 444	24.6	75.8	81.0	57.5	108
8. SPR75001-68	Sep. 20	# 10	0ct, 20	# 6	267.2	988	75.8	27.1	486.5	22.5	0.00 0.00	77.5	66.5	100
		63	Oct. 24	86	236.8	87.1	77.0	29.2	463.6	25.0	77.8	63.0	55.4	111
10. SPR78002-80	Sep. 20	69		. 97	289.6	98.7	75.2	24.3	522,3	22,1	74.0	0.98	65.8	1114
	Sep. 28	7.5	0ct, 27	101	278,4	87.5	85. 8	75°4	407.2	22.7	70.9	62.8	54.55	118,
12. IR-46	Sep. 24	89	Oct, 23	97	249.6	105.0	73.4	23.0	442.3	21.4	74.6	72.7	62,2	115,0
13. Apple Thong	0ct. 1	75	Oct. 28	102	215.2	102.2	68.1	27.6	413.3	20.3	83.8	70.2	43.5	116,3
Por	Sep. 25	6 9	Oct. 23	97	238,4	0.86	77.6	27.0	489.3	22.5	56.3	76.7	75.2	104.
15. Sabitri	Oct. S	08	Nov. 3	108	238.4	113.6	76.4	20-3	419.B	22.1	77.1	4.69	0) 11 11	113.6
Mean (X)		75.8		n 86	238.8	100.9	74.8	26.4	1.074	23.0	76.9	75.3	59.7	113.6
SD		8		6-1	25.6	14.0	80	6,0	4 28	1.6	1 +	10.9	4. A	đ

Table I-3

THE RESULTS OF GROWTH OBSERVATION IN MIMBER OF TILLERS/M²

Observation	٥f	Mimber	nf	Tillane	12	

Treatments (Varieties/				Days at	ter Trans	planting				}
Entries)	13	20	27	34	41	48	55	62	69	 Harvest time
1. RD-7	104.0	208.0	321.6	347.2	356.8	331.2	457.6	420.8	369.6	230.0
2. RD-21	48.0	105.6	174.4	296.0	331.2	329.6	377.6	328.0	267.2	243.2
3. RD-23	75.2	179,2	264.0	379.2	392.0	364.8	449.6	385.6	265.6	225.6
4. RD-25	64.0	121.6	179.2	206,4	216.0	214.4	174.4	166.4	188.8	182.4
5. SPR77205-3-2-1-1	52.8	115.2	190.4	272.0	291.2	297.6	312.0	232.0	228.8	218.0
6. SPR75007-16-3-1	52.8	107.2	209.6	379.2	419,2	369.6	494.4	468.8	316.8	248.0
7. SFR76102-25-1-1	54.4	97.6	166.4	257.6	307.2	299.2	385.6	353.6	310.4	221.7
8. SPE75001-68-2-2	70.4	145.6	225.6	305.6	321.6	320.0	401.6	284.8	278.8	267.2
9. SPR75055-352-2-1	51,2	84.8	142.4	264.0	323.2	353.6	427.2	422.4	324 B	236.8
10. SFR78002-80	8,88	148.8	235.2	360,0	376.0	411.2	440.0	264.0	321.6	289.6
11, IR-14	60.8	140.8	235.2	363.2	396.8	400.0	510.4	427.2	366.4	276.4
12. IX-46	78.4	150,4	225.6	356.8	371.2	337.6	401.6	329.6	292.8	249.6
13. Apple Thong	49,6	113.6	169.6	294.4	356.8	432.0	494.4	347.2	315.8	215.2
14. 0-Por	64.0	123,2	211.2	289.6	297.6	307.2	316.8	261.6	240.0	238.4
15. Sabitri	54.4	99,2	190.4	331.2	385.6	380.8	531.2	481.6	364.0	238.4
Kean (X)	€3.3	129.4	209.4	313.5	336.8	343.3	411.6	344.9	295.9	238.8
ç .	14.9	33.2	44.9	51.2	59.5	54.3	92.4	91.2	56.8	26,6

Table I-4

Treatments				Days af	ter Trans	planting			والمرافظة معرب فينسان والمرافظة الكريزي	}
(Varieties Entries)	13	20	27	34	41	48	55	62	69	Harvest time
1. 8D-7 2. 8C-21 3. ED-23 4. 8E-23 4. 8E-25 5. 21877205-3-2-1-1 6. SFR75307-16-3-1 7. CFR76102-26-1-1 8. SFR78901-68-2-2 9. 2FR75055-352-2-1 10. SFR78002-80-1-1 11. FR-44 12. IR-46 13. Apple Thong 14. O-Per 15. Sabitri	25.7 22.6 26.1 29.7 24.6 26.8 27.4 25.7 25.4 25.5 25.1 31.0 27.3 23.4	34.1 30.6 33.8 39.6 31.8 32.0 34.4 36.5 30.7 34.7 32.2 32.4 37.8 35.4	42.8 38.0 44.5 48.8 41.9 41.5 43.2 45.2 38.3 45.8 42.3 45.0 43.1	49.7 46.1 53.4 57.9 53.4 40.9 52.6 53.9 48.1 53.4 51.9 55.2 45.8	56.2 55.7 63.9 67.8 65.3 62.3 62.8 57.5 60.6 55.6 64.9 61.0 65.5	62.7 61.8 73.7 83.0 74.5 72.3 67.9 70.5 66.8 69.4 63.6 72.9 65.5 73.7	72.9 75.6 84.5 97.0 83.0 87.2 79.6 80.7 77.0 78.4 75.4 80.7 76.6 83.8 73.3	84.3 85.4 96.8 99.3 87.2 84.8 89.5 90.0 90.4 79.7 94.7 86.1 86.8 84.4	100.6 34.8 114.0 99.8 105.1 114.8 104.4 99.6 104.3 109.3 101.5 109.4 93.7 192.3 91.5	114.0 114.2 116.7 100.3 116.6 128.9 108.6 100.6 111.2 114.5 118.6 115.6 116.9 104.0
Mean (X)	26.2	33.8	43.1	50.7	61.1	69.3	80.4	89.3	103.0	113.6
s.a.	2.1	2.7	2.8	4.4	4.2	6.0	6.2	5.9	6,9	9.1

Table I-5

Results and Discussion :

1. Grain vield

Among 15 varieties/entries, SPR75007-16-3-1 produced the highest mean yield (879 kg/rai) though statistically no differences found among upper yielding of 12 varieties/entries at 5% level of significance. RD-23, the most popular variety in this locality recorded second highest grain yield (872 kg/rai) followed by RD-21 (870 kg/rai).

Among RD-varieties, mean grain yield of RD-23, 21 and 7 were significantly superior to RD-25 (629 kg/rai) even at 1% level.

Five SPR-entries produced satisfactory level of grain yield also.

(Table I-1,2, Fig. I-1)

2. Observation, yield components & related figures

The incidence of RRSV (Rice Ragged Stunt Virus) was much less than last Wet Season. Even RD-7, RRSV susceptible variety was not suffered from infection.

Rice gall midge appeared at around maximum tillering stage to panicle formation stage. Infected tiller percentage was observed to be 2-9% at panicle formation stage. Short maturity variety such as RD-25 was less infection and longer one was more. Abnormal shape of curves in tillering shown in Fig. I-3 was due to rice gall midge infection.

Yield components & related figures are shown in Table I-3.

 $Panicles/m^2$ and grains/panicle of RD-25 was the lowest among 15 varieties/entries, thus yield was the lowest.

The grain yield and grains/panicle was closely correlated as shown in Fig. I-2 (n = 15, r = 0.708^{44}).

Plant height of the higest yielding entry (SPR75007-16-3-1) seemed to be too high (138.9 cm) in general conditions. Plant height observation results is shown in Table I-5.

Conclusion :

Varieties of RD-23 and RD-21 were still recomme dable in terms of grain production in this locality.

Some of the SPR-entries were found to be quite promising in this season. In order to select suitable promising lines in addition to RD-23- 21 for this area, continuous study is obsolutely needed.

Nitrogen x Phosphorus Fertilizer TrailObjectives :

- 1. To study the effect of Nitrogen and Phosphorus fertilizer on the growth and yield of transplanted rice.
- 2. To determine an optimum economic fertilizer rate under Chao Phya Pilot area conditions.

Materials and Method

Experimental Design :

RCBD factorial with 2 replications.

In the first block (replication) only, the treatments were arranged for demonstration purposes with Nitrogen increasing along one direction and Phosphorus along the other direction. (see plot layout)

Treatments :

Bearing the second			
Nitrogen	NO	:	No N. applied
(as A.S.)	N ₄	:	6 kg N/rai
	N _T	:	12 kg N/rai
	N_3^2	:	18 kg N/rai
Phosphorus	Po	:	No P. applied
(as T.S.P.)	P_1^0	:	5 kg P/rai
	P_2^1	:	10 kg P/rai
**************************************	<u> </u>		

Application method : (n kg/rai)

N, level	Basal	Top dressing (P.I.S.)	Total N.
ИО	0	0	0
N_{1}	3	3	6
N ₂	6	6	12
N ₃	12	6	18

Phosphorus applied as a basal before transplanting

Plot Size : $5 \text{ m} \times 4 \text{ m}$. (20 m²)

<u>Variety used</u>: RD-23

Cultural Practices :

1. Seed rate : 4 kg/rai(dry seed)

2. Seedling age : 20 days

3. Planting density : 25×25 cm. (16 hills/m^2)

4. Weed Control : Saturn G applied at 15 days after transplanting

(5 kg/rai)

Plant Protection

- (1) At a rate of 5 kg/rai of Furadan Granule applied at 15 days after transplanting.
- (2) Padan Mipcin applied at 35 days after transplanting at a rate of 5 kg/rai.

Duration :

Sowing : June 27, 1984 Transplanting : July 17, 1984 Harvest : October 24, 1984

. October 24, 150

RESULTS :

Trial No. II

Grain Yield (kg/rai)

Treatments	Replic	cations	Mean
No. Trentment	I	1I	(∑)
1. N _O P _O	422	531	467.5
$N_0 P_1$	681	715	698.0
$N_0 P_2$	672	565	618.5
$N_1 P_0$	657	853	755.0
$5. N_1 P_1$, 858	719	788.5
6. N ₁ F ₂	681	774	727.5
7. $N_2 P_0$	804	830	817.0
8. N ₂ P ₁	945	924	934.5
9. N ₂ P ₂	883	900	891.5
10. $N_3 P_0$	932	1033	982.5
11. N ₃ P ₁	962	928	945.0
12 N ₃ P ₂	943	1018	980.5
Mean (X)	786,7	815,8	801.3

ANOVA

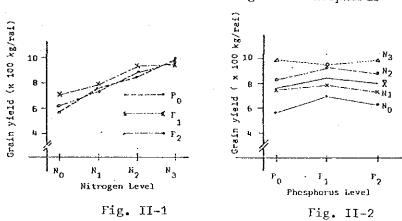
Table II-1

SV	DF	SS	MS	F	Requi	red F
and the second s		30	(10	1	5%	1%
Total	23	592743				
Blocks	1	5104	5104	1.134	4,84	9.63
Treatments	11	538113	48919	10.866**	2.82	4 4
N	(3)	468098	156032	34.65888	3.59	6.2
P	(2)	28183	14091	3.130 ^{NS}	3.98	7.20
$N \times P$	(6)	41832	6972	34.658** 3.130 ^{NS} 1.548 ^{NS}	3.09	5.01
Error	11	49526	4502		·	

5% = 85.26 (kg/rai) 1% = 120.32 (kg/rai) LSD for N : 5% =

73.84 (kg/rai) 104.20 (kg/rai) 18 =

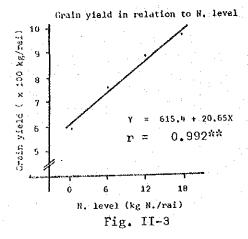
NxP: 5% 147.68 (kg/rai)


208.40 (kg/rai) 18

CV: 8,37 (%)

trogen levels	Phosp	horus leve	in yield :		The state of the s
(kg N./rai)	P _Q (0)	P ₁ (5)	P ₂ (10)	Ni trogen mean	Test for significance(5%)
и ₀ (о)	476.5	698.8	618.5	597.7	g
N ₁ (6)	755.0	788.5	727.5	.757.0	c
N ₂ (12) N ₃ (18)	817.0	934.5	891.5	881.0	ь
N ₃ (18)	982.5	945.0	980,5	969.3	a
Mean (X) NS	757.8	841.5	804.5	801.3	

Table II-2


Effects of Nitrogen and Phosphorus

Duncan' Hultiple Rang Test

Treatments	Eian Yield (kg/rai)	DMR)
	TALL TACIS (NETTEL)	59	13
N ₃ P ₀	982.5	a	a
N ₃ P ₂	980.5	a	а
N ₃ F ₁	945,0	ab	ab
11 ₂ P ₁	934.5	ab	ab
¹¹ 2 P2	891.5	abc	ahc
¹¹ 2 Po	817.0	bed	boda
F ₁ P ₁	788,5	bed	abed
N P 0	755.0	cde	abcd
и р ₂	727.5	de	bed
H _O P ₁	698.0	de	cd
n ₀ p ₂	618.5	ef	de
No Po	467.5	f	. е

Table II-3

Grain yield and amount of nitrogen is closely correlated.

Number of panicles per unit area is an important yield component.

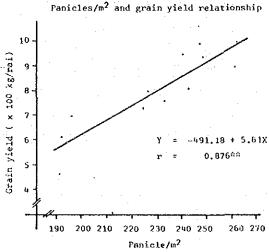
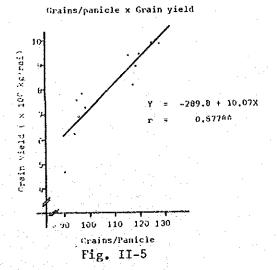
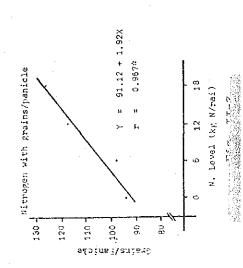
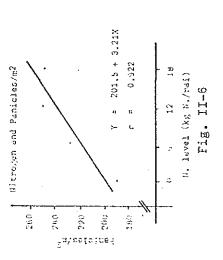



Fig. II-4

Greater number of grains/panicle contributed for higher grain yield.

Treatments S.D. Mean 8 Panicle/m2 230.4 247.1 262.4 240.0 260.8 248.0 243.2 223.6 227.2 233.2 192.4 196.0 191,3 25.3 108.3 Grain/ panicle 126.4 118.7 117.7 115.7 99.3 97.4 89.7 0.16 97.1 Yield Components Ripened grain (%) 66.7 69.2 66.5 8 69 70,3 Table II-4 grains weight(g) 1000 26.8 27.6 26.6 0.6 yield (g/m²) Estimated 102.7 451.3 547.4 569.3 613.2 530.1 336.9 507.5 513.0 362.2 414.0 339.7 390.5 292.0 length (cm) Fanicle 22.4 23.7 22.2 23.2 23.0 21.4 22.9 22,3 21.8 22.4 22.1 22.4 21.2 Stem length (cm) 72,3. 80.5 83.1 78.3 69.9 66.7 78.8 79.1 71.7 62.5 66.4 72.6 58.2 7.8 straw Grein/ · 84 . 5 92.6 78.5 81.3 74.4 78.1 95.3 4,69 ÷ €3 85.4 92,5 86.9 ထ တ Plant height (cm) 111.1 122.7 117.5 120.9 124.9 117.6 107.4 111.1 104.1 102,5 101.3 117.3 11.3


Yield Component and related figures


on different treatments

-16-

Yield Components and Related Figures

	app a cons	Mield Co	ield Components	,					
Fortilizer levels	Panioles/ m2	Grains/ Ranicle	Nipened grain (%)	1000 grain weight (g)	Estimated grain yield	Panicle length (cm)	Stem length (cm)	Grain/ straw	Plant height (cm)
	193.2	93.6	e. 88	2.92	322.9	21.9	88 8	91,0	96.6
	228.0	97,2	65.9	26.6	388.9	21,9	70.3	79,4	110.8
ort	250.7	117.4	65,7	26.8	516.9.	22,8	75.8	88.7	1153
in N	249•8	125,2	6,99	27.6	576.6	22,8	80.8	78.2	121.7
ς Sn.	232,5	107.5	66.7	26.6	452.2	21.8	68.4	84.9	103
٠	227.8	107.9	69.1	27.0	463.3	22,8	75.1	88.1	115,3
i phosi	231.0	109.6	64 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	26.8	438.5	22.5	73.4	80.6	114.3
Hean (\bar{X})	230.4	108,3	66.7	26.8	451.3	22,4	72.3	84.5	111,1
				STATE OF THE SE	\(\frac{1}{2} \)				

Partial Budget Analysis

(1) Dominance analysis

Trea	tments	Grain	Gross	Var	iable Cost (B/ra	()	Net
	Treatment	yield (kg/rai)	benefit (B/rai)	Fertilizer	Oppostunity cost	Total	benefit (B/rai)
1,	No Po	428.0	1199		-	-	1199.0
2.	No Pi	628.8	1790	65.2	16	81.2	1708.8
з.	No P2	556.6	1586	130.4	15	149.4	1439.65
4.	N ₁ P ₀	679.5	1973	65.7	32	97.7	1839,3
5.	N P 1	709.7	2023	130.9	32	162,9	1860.1
6.	N ₁ P ₂	654,8	1866	196.1	32	228.1	1637.9
7.	N ₂ P ₀	735.3	2096	131.4	32	163.4	1932,6
8.	N ₂ P ₁	941.1	2397	196.6	32	228.6	2168,4
9.	N2 P2	802,4	2287	261,8	32	293.8	1993,2
10.	N ₃ P ₀	884.3	2520	197.1	32	229.1	2290.9
11.	N 3 P 1	850,5	2424	262.3	32	294.3	2129,7
12,	N ₃ P ₂	982.5	2515	327.5	32	359.5	2155.5
	Hean (∏)	721.2	2055	-	_	~	-

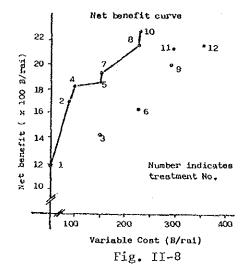

Note : * = Dominated treatments

Table II-6

(2) Marginal analysis among undonminated treatments'

Undominated	Net	Variable	Marginal rate	e of return
treatments	benefit (B/rai)	cost (B/rai)	V.S. next highest benefit 24500.0 (%) 361.7 14500.0 31.9 709.9	V.S. next N _O P _O (check)
10. N P	2290.9	229,1	24500.0 (%)	476.6 (%)
8. N P	2168.4	228.6	361.7	424.1
7. N ₂ P ₀	1932,6	163,4	14500.0	448,9
5, N ₁ P ₁	1860.1	162,9	31.9	407,3
4. N ₁ P ₀	1839.3	97.7	709.9	655.4
2. HOP1	1708.8	81.2	627.8	627.8
1. N P 0	1199.0	-		

Table II-7

Treatment No. 10 (18 kg N/rai without phosphorus) recorded the highest net benefit with high marginal rate of return.

Results and Discussion :

۴,

1. Grain yield

The effect of nitrogen was remarkable since the mean grain yield was increased along with the increment of nitrogen levels.

Grain yield were significantly different between every nitrogen levels.

(Table II-2, Fig. II-1)

Estimated linear regression indicates clear relationship between grain yield and nitrogen level (n = 4, r = 0.992*). The effect of every 1 kg of additional nitrogen (4.76 kg of ammonium sulphate) contributed to produce 20.7 kg of grain within the nitrogen level of 0-18 kg N/rai.

(Fig. II-3)

On the contrary, no significant effect of phosphorus fertilizer was observed for grain yield.

(Fig. II-2, Table II-2)

2. Observation of yield components and related figures

The effect of nitrogen on grain yield was especially clear in increasing number of panicles per unit area and number of grains per panicle.

1000 grain weight was slightly increased along with the nitrogen level, but ripened grain % was not influenced.

The application of phosphorus did not act on the any of the yield component factors.

(Table II-5)

Relationship between nitrogen level and panicle/m² (Fig. II-6) and nitrogen with grains/panicle (Fig. II-7) shows correlation of 2 factors.

It is quite clear that if $panicle/m^2$ was increased then yield was increased.

(Fig II-4, n =12, $r = 0.876 \frac{1}{2}$)

Similarly in case of grains/panicle and yield (Fig. II-5, n =12, r = 0.877**)

3. Economy of Nitrogen and Phosphorus application

Economic effect of nitrogen application was remarkable. Treatment No. 10 (N_3P_0 : 18 kg N/rai without phosphorus) gave the highest net benefit with extremely high marginal rate of return. N_2P_0 (12 kg N/rai, no P.) was also found to be profitable when amount of nitrogen is limited.

(Table II-6,7 Fig. II-8)

Conclusion:

The effect of nitrogen on the grain yield was remarkable, whereas no significant effect of phosphorus was observed.

Investment for nitrogen fertilizer was quite profitable. Total nitrogen of 18 kg N/rai (12 kg for basal and 6 kg top dressed) found to be the most profitable level among the treatments compared in this trial. 12 kg N/rai (6 kg for basal and 6 kg top dressed) gave good economic response also.

III. Planting Method Comparative Study

Objectives :

- 1. To compare the performance of different planting methods i.e. Mechanical transplanting, Manual transplanting and Direct sowing on the grain yield and economy of rice production.
- 2. To study the suitability/adaptability of planting methods under Chao Phya Pilot area conditions.

Materials and Method

Experimental Design :

RCBD with 3 replications.

Treatments :

No. 1 : Mechanical Transplanting
No. 2 : Manual Transplanting
No. 3 : Direct Sowing (Broadcast)

Plot Size

Each experimental unit consists of 5 m. x 8 m. = 40 m^2

Cultural Practices :

1. Seed rate : Selected dry seed of 4.0 kg/rai for Mechanical & Manual Transplanting and 12.0 kg/rai for Direct

Sowing.

Витмос

2. Variety : RD-233. Weed Control : Apply Saturn G at 15 days afte

: Apply Saturn G at 15 days after transplanting

and broadcasting at a rate of 5 kg/rai.

4. Fertilizer Application :

(1) Mechanical & Manual Transplanting

Basal : 7 kg of N and 8.75 kg of P/rai with 16-20-0

Top dressing: 6 kg of M/rai at panicle initiation stage as

a form of Ammonium Sulphate.

(2) Direct Sowing

No fertilizer applied before sowing.

Basal : 7 kg of N and 8.75 kg of P/rai at 15 days

after sowing with 16-20-0

Top dressing : 6 kg of N/rai at panicle initiation stage

as a form of Ammonium Sulphate.

5. Plant Protection :

(1) Furadan G : 15 days after transplanting/broadcasting at

a rate of 5 kg/rai

(2) Padan Mipcin : 35 days after transplanting/broadcasting at

a rate of 5 kg/rai

Date of planting and harvesting.

Sowing seed (box): June 27, 1984
Transplanting: July 18, 1984
Broadcasting (Direct): July 20, 1984
Harvest: Transplanted: October 24, 1998
: Direct Sowing: October 26, 1984

Grain Yield (kg/rai)

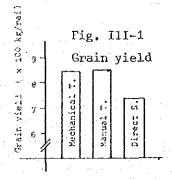
Trial No. III

Trea	tments	Rep	Mean		
No.	Treatment	I	II	III	(X)
1.	Mechanical Transplanting	817	810	894	.840.3
2.	Manual Transplanting	815	913	809	845.7
3.	Direct Sowing	697	753	764	738.0
	Mean (\overline{X})	776.3	825.3	822.3	808.0

Table III-1

٨	N	\cap	17	Į
- 21	.11	U	v	ŧ

SV	DF	SS	MS	F	Required F			
	<i>D</i> . 33			5%	1%	10%		
Total	8	35838						
Treatments	, 2	22092	11046	4.792 ^{NS}	6.94	18.00	1.32	
Blocks	2	4526	2263	0.982 ^{NS}	6.94	18.00	1.32	
Error	4.	9220	2305					


LSD for Treatment

10% = 83.57 (kg/rai)

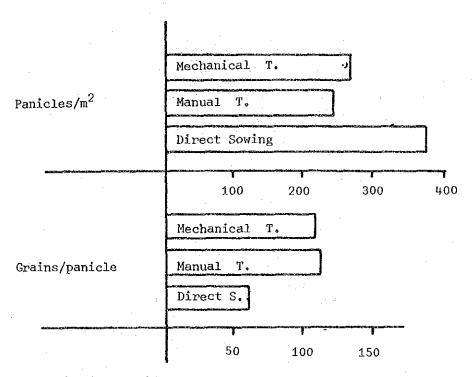
5% = 108.82 (kg/rai)

1% = 180.47

CV : 5.94 (%)

Results and Discussion

1. Grain yield


When mean grain yield was compared at 5% level of significance, no difference was found among planting methods. However, transplanting method either mechanical or manual produced higher mean yield than the direct sowing method, and this difference was significant at 10% level. (Table III-1, Fig. III-1)

In general conditions, direct sowing method is highly adapted in dry season and transplanting method is good in wet season. This tendencey was also recognized from the result of previous trials.

Yield Component and related figures on different treatments

		Yield Components				Panicle	Stem	Grain/	Plant
Treatments	Panicle/m ²	Grain/ panicle	Ripened grain (%)	1000 grains weight(g)	yield (g/m ²)	length (cm)	length (cm)	straw ratio	height (cm)
1. Mechanical Transplanting	268.0	103.1	70.8	27.1	530,2	22.4	70.6	89.0	109,7
2. Manual Transplanting	244.8	108,3	71.9	27.6	526.1	23,6	76,7	82.7	118,2
3. Direct Sowing	376.0	60.5	68,2	28.0	433,1	19,9	61.7	65.7	95.5
Mean (X)	296.3	90.6	70.3	27.6	496.5	22.0	69.7	79.1	107.8
S.D.	70.0	26.2	1.9	0.5	54.9	1.9	7.5	12,1	11.4

Table III-2

2. Observation of yield components and related figures

Among the yield components, number of panicle/ m^2 and number of grains/panicle were very much influenced by the planting method (Transplanting VS Direct Sowing).

Direct sowing produced more number of panicles/ m^2 than that of transplanting. On the contrary, panicle size (number of grains/panicle) is much smaller than that of transplanting.

Ripened grain % and 1000 grains weight were not affected by planting method. Plant height tend to be higher when rice is transplanted. (Table III-2, Figure)

Partial Budget Analysis

(1) Dominance

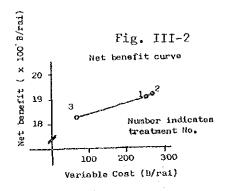

***************************************	ente de Carlos Communicates (en publica de la prime de la capa de proposition de la capacidade de la capaci	Grain	Gross	V	Net		
	eatments .Treatment	yield (kg/rai)	benefit (B/rai)	Seeds & Nursery	Transplanting Sowing etc.	Total	benefit (B/rai)
1.	Mechanical Transplanting	756.3	2155	101	142	243	1912
2.	Manual Transplanting	761.1	2169	101	175	251	1918
3.	Direct Sowing	664.2	1893	43	34	77	1816
· · · · · · · · · · · · · · · · · · ·	Mean (X)	727.2	2072				1882

Table III-3

(2) Marginal

Treatment	Net benefit (B/rai)	Variable cost (B/rai)	Marginal rate of return V.S. Direct Sowing
Manual Transplanting	1918	251	58.6 (%)
Mechanical Transplanting	1912	243	57.8
Direct Sowing	1816	77	

Table III-4

3. Economical comparison

Even though higher variable cost required for nursery and transplanting, transplanting method either manual or mechanical found to be still profitable than the direct sowing method in this trial.

In the case that labour is short or high cost for transplanting, direct sowing can be accepted with more caution on field levelling, water management and weed control.

Conclusion

Mean grain yield of transplanting method was higher than the that of direct sowing method.

No difference was observed on the grain yield of mechanical and manual transplanting.

In consequence of the trial results including previous one, transplanting found to be better in wet season and direct sowing was appropriate in dry season in general circumstances.

IV. Green Manure Application Trial

Objectives

- 1. To study the effect of green manure (Sesbania) on the growth & yield of rice in relation to nitric chemical fertilizer.
- 2. To study the economy of green manure application for profitable double cropping of rice cultivation and its effect to soil fertility under the Chao Phya Pilot Project circumstances.

Materials and Method

Experimental Design

RCBD Factorial with 2 replications.

<u>Treatments</u>

Green Manure (Sesbania)	Go: No green manure applied Go: 1.0 t/rai of green manure applied Go: 2.0 t/rai of green manure applied Go: 3.0 t/rai of green manure applied
Nitrogen (Ammonium Sulphate)	N ₀ : No Nitrogen applied N ₁ : 5.0 kg. Nitrogen/rai N ₂ : 10.0 kg Nitrogen/rai N ₃ : 15.0 kg Nitrogen/rai

Application Method

Fresh/raw green manure applied and incorporated with soil 10 days prior to transplanting.

 $\frac{1}{2}$ of Nitrogen applied as a basal dose and rest of $\frac{1}{2}$ top dressed at panicle initiation stage.

5 kg of Phosphorus/rai applied as a form of T.S.P. over entire plots at a time of basal Nitrogen application.

Plot Size :

5 m x 4 m (20 m²)

Variety Used : RD-23

Other Cultural Practices

1. Age of seedlings : 20 days

2. Planting density : $25 \times 25 \text{ cm}$. (16 hills/m²)

3. Weed Control : 5 kg of Saturn'G applied at 15 days after

transplanting.

4. Plant Protection :

(1) Furadan Granule : 5 kg/rai (15 days after transplanting)
(2) Padan Mipcin G : 5 kg/rai (35 days after transplanting)

Duration

Sowing : June 27, 1984
Transplanting : July 17, 1984
Harvesting : October 26, 1984

Trial No. IV

Treat	tments	Replic	cations	Mean
No.	Treatment	I	II	(X)
1.	G _O N _O	540	685	612.5
2.	G ₀ N ₁	757	762	759.5
3.	G ₀ N ₂	715	834	774.5
4.	$G_0 N_3$	990	917	953.5
5.	$G_1 N_0$	608	845	726.5
6.	$G_1 N_1$	913	907	910.0
7.	$G_1 N_2$	858	954	906.0
8.	$G_1 N_3$	1077	915	996.0
9.	G ² и ⁰	717	772	744.5
10.	G_2 N_1	734	862	798.0
11.	G_2 N_2	913	841	877.0
12.	G_2 N_3	939	1011	975.0
13.	G ₃ N ₀	792	830	811.0
14.	G_3 N_1	1009	888	948.5
15.	G_3 N_2	911	954	932.5
16.	G_3 N_3	934	958	946.0
	Mean (X)	837.9	870.9	854.4

Table I7-1

AVOVA

SV	DF	SS	MS	F	Requi: 5%	red F 1%
Total	31	453110				
Blocks	1	8712	8712	1.603	4.54	8,68
Treatments	15	362864	24190	4.450**	2,43	3.56
G	(3)	82298	27432	5.047*	3.29	5.42
N	(3)	241998	80666	14.840**	3.29	5.42
GxN	(9)	38568	4285	0.788	2,59	3.89
Error	1 5.	81534	5435			

LSD for G:5% = 78.55 (kg/rai)

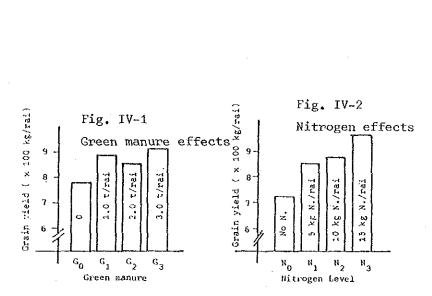
: 1% = 108.64 (kg/rai)

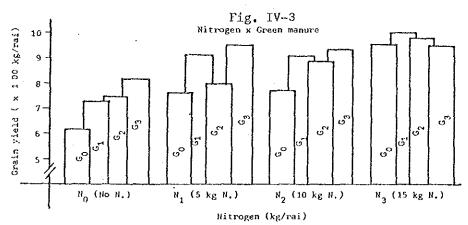
N : 5% = 78.55 (kg/rai)

-: 1% = 108.64 (kg/rai)

GxN : 5% = 157.11 (kg/rai)

: 1% = 217.27 (kg/rai)

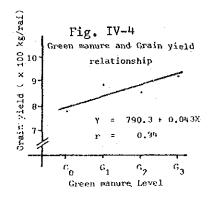

CV : 8.62 (%)


Treatment	means

Grain yield : kg/rai

Nitrogen levels	Green 1	manure l	evels (T	Nitrogen	Test for	
(kg N./rai)	e ⁰ (0)	G ₁ (1)	G ₂ (2)	G ₃ (3)	means	significance(5%)
N _O (0)	612.5	726.5	744.5	811.0	723.6	C
N ₁ (5)	759.5	910.0	798.0	948.5	854.0	b
ห ₂ (10)	774.5	906.0	877.0	932.5	872.5	b
N ₃ (15)	953.5	996.0	975.0	946.0	967.6	a
Mean (X)	775.0	884.6	84,8,6	909.5	854.4	
Teat for		a	a	a		ott berichte bie beide zur Ja, die zum der der gegene gegene gegen der
significance (5%)	Ь	7455 - Land	Ъ			

Table IV-2



Duncan's Multiple Range Test

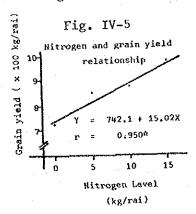
Treatments	Grain Yield (kg/rai)	DMRT 5%	18
G ₁ N ₃	996.0	а	a
G ₂ N ₃	975.0	`ab	đb
60 N 3	953,5	abc	abc
о "з _{Сз. Нз}	946.0	ahe	abc
	948.5	abe	abc
G ₃ N ₁	932,5	abcd	abc
G ₃ N ₂ G ₁ N ₁	910.0	abcde	ahc
	906.0	ahede	ahc
G ₁ N ₂	877.0	abcdef	аъс
G ₂ N ₂ G ₃ N ₀	811.0	bcdef	abcd
- · · · · ·	798.0	bedef	abod
G ₂ N ₁	774.5	cdefg	abod
G N 2	759.5	defg	ahed
GON1	744.5	efg	bed
^G 2 ^N 0 G N	726.5	ſg	cd
G ₁ N ₀ G ₀ N ₀	612,5	· g	d

Table IV-3

Results and Discussion

1. Grain yield

4 levels of green manure (Sesbania: 0, 1,2, and 3 t/rai) and 4 levels of nitrogen (0,5,10 and 15 kg N/rai) were tested in RCBD factorial arrangement.


The results indicated that the grain yield of no green manure treatment was significantly lower than the that of G_1 (1 t/rai) and G_3 (3 t/rai).

No significant differences were observed among the grain yield of green manure applied

treatments $(G_1, G_2, and G_3)$. (Table IV-2, Fig. IV-1)

The effect of nitrogen on the grain yield was more distinctly observed than the that of green manure. Obviously, the grain yield was influenced by the amount of nitrogen. (Table IV-2 Fig. IV-2,3,4,5)

Though significant interaction of green manure and nitrogen was not observed, green manure seemed to be effective when nitrogen is absent or lower level. Effect of green manure was not recognized when nitrogen level was 15 kg N/rai. (Table IV-2, Fig. IV-3).

Yield Compenent and related figures on different treatments

		Vield (omponents	n land in	Estimated	Fanicle	Sten	Grain/	Flant
rearments	Fanicle/m ²	Grain/ Fanicle	Ripened grain (%)	1000 grains weight(g)	yield (g/m²)	length (cm)	length (cm)	straw ratio	height (cm)
C N	193.2	89.3	69.6	24.6	317.7	21.5	67.4	77.0	97.7
G N 1	229,2	93.7	61.5	27.7	365,9	24,1	80.5	88.9	109.3
G 3	225.6	99.1	66.4	27.6	409.7	22,3	72.2	83.1	109.8
-0 2 G N 3	233 .6	116,3	66.9	27.8	505.4	23.4	80.9	78.4	123.0
G ₁ N ₀	206.4	110.5	66,8	27.2	414.4	21.5	72.6	75.0	108.9
G ₁ N ₁	228.8	105.0	69,6	27.7	463.2	22.6	78.1	68.9	115.6
G ₁ N ₂	244.8	110.5	66.2	27.6	494.2	23.1	77.9	80.9	117.5
G R3	248.0	123.1	64.6	28.0	552,2	23.4	81,3	84.8	124.5
G2 NO	195.2	106.3	64.5	27.1	362.7	21.0	71.7	62.3	107.7
G ₂ N ₁	219.2	111.3	65,4	27.6	440.4	22.6	74.1	78.5	111.9
S N 2	217.6	122.9	64.7	27.7	479.3	23.2	80.5	66,6	121.5
2 Z G 1 ¹ 3	298.0	118.5	67.8	27.5	636.3	23.2	78.0	89.0	120.2
2 3 G N 3 0	243.2	98.9	66.9	27.8	447.3	21.9	76.2	82.3	113.5
วันี้ 3. ก	230.8	116.5	71.1	28.4	542.9	22.7	79.9	71.1	118,1
3 1 3 N 3 2	239.0	120.4	69.0	26.8	532.1	22.2	71.2	83.7	124,3
3 2 3 N 3 3	276.8	128.6	66.0	26.8	629.6	22,9	83,0	70.9	128.7
(ean (X)	232.5	110.7	66.7	27.5	474.6	22.6	76,6	78.8	115.8
5.D.	25.4	11,3	2.4	0.5	91.0	0.8	4.5	7.9	8.0

Mean effects of green manure and nitrogen on the yield component and related figures

		Vield Co	mponents						
Ircarment levels	Pamioles/	Grains/ panicle	Ripened Grain (%)	1000 grain weight (g)	Estimated grain gielo	panicle length (cm)	Stem length (cm)	Grain/ straw	Flent height (cm)
ognume G-G-I	220,5	99.6	66.1	27.4	399.7	22.8	75.2	81.9	110.0
	232.0	112,3	66 _. 8	27.6	481.0	22.7	77.5	82.4	116,6
G G G G G G	230.0	114.8	65.6	27.5	479.7	22.5	76.1	73.9	115.3
	247,5	116.1	68,3	27.5	538.0	22,4	77.6	77.0	121.2
ievela So	209.6	101,3	67.0	27.1	395.5	21.5	72.0	74.2	107.0
''1	227.0	106.6	66.9	27.9	453.1	23.0	78.1	81.9	113.7
# ₂	231.8	113.2	66.6	27.4	478.8	22.7	75.5	78.6	118.3
Nitrogen	261.6	121.6	66.3	27.5	580.9	23.2	80.8	80.5	124,1
Hean (\widehat{X})	232,5	110.7	66.7	27.5	474.6	22.6	76.6	78.8	115.8

Table IV-5

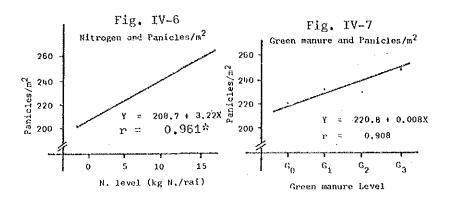


Fig. IV-8

Panicles/m² and Grain yield

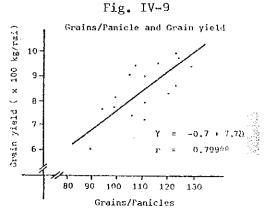
Y = 96.7 + 3.26X

r = 0.757 and

190 200 210 220 230 240 250 260 270 280 290

Panicles/m²

2. Yield components and related factors


Significant relationship between green manure and yield components was not observed in this trial. However, there was a tendency that panicles/m² and grains/panicle were increased along with the green manure levels.

Significant correlation between nitrogen level and panicle/m² was observed at 5% level. (Fig. IV-6)

The grain yield with panicles/m² and grain yield with grains/pancile were highly correlated. (Table IV-4,5, Fig. IV-8,9)

The effects of nitrogen and green manure or the grain yield was mainly carried by increasing in number of panicles/unit area and number of grains/panicle.

Clear influence of nitrogen and green manure on the ripened grain % and 1000 grains weight was not recognized. (Table IV-4,5)

(1) Dominance analysis

Treatments	Grain	Gross	Vari	able bost (R	/rai)		llet
No. Treatm		benefit (B/rai)	Green manure	Fertilizer	Opportunity cost	Total	henefit (B/rai)
1. Go N	551	1517	-	-		-	1571,0
2. G ₀ N	684	1948	-	54 . 81	32	86.8	1861.70
3. G N	697	1987		109.5	32	141.5	1805.50
4, G ₀ N	858	2446	- .	164,3	32	196.3	2269,76
5, G N	654	1863	30	-	39	th.0	1777.0
6. G N	819	2334	30	54.8	34 + 32	150.6	2183,2
7, G N	815	2324	30	109.5	34 + 32	205.5	21 18 , 54
8, G N	896	2555	30	164.3	34 + 32	260.3	2294.7
9. G ₂ N	670	1910	40	-	34	74.0	1836.0
10. G2 N	718	2047	40	54.8	34 + 32	160,8	1886.24
11. G ₂ N ₂	789	2250	हा <u>न</u>	109.5	34 + 32	215.5	2034.5
12. G2 N3	878	2501	40	164.3	34 + 32	270.3	2230.7
13. G ₃ N ₀	730	2080	50	• .~	34	84.0	1996.0
14. G N 1	854	2433	50	54.8	34 + 32	170.8	2262.2
15. G N 2	839	2392	50	109.5	34 + 32	225,5	2166.58
16. G ₃ N ₃	851	2426	50	164.3	34 + 32	280.3	2195,78
Неэп	(₹) 769	2129					

Note : * = Dominated treatments

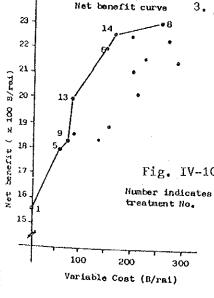
Table IV-6

Seeds cost of green manure were assumed as : $G_0 = 0$, $G_1 = 30$, $G_2 \neq 40$, $G_3 = 50$ R/rai)

And seeds broadcast cost was 34 B/rai for G_1 , G_2 and G_3 .

(2) Marginal analysis

Undominated	Net	Variable	Barginal rate	of return *
treatments	benefit (B/rai)	cost (B/rai)	V.S. next highest benefit	V.S. check (G _O H _O)
8, C ₁ N ₃	2294.7	260,3	36,3 (%)	278,0 (%)
14, G ₃ N ₁	2262,2	170.8	395.0	404.7
6, 5 ₁ H ₁	2183.2	150.8	280,2	405.9
13. 3 N ₀	1996.0	84.0	1600.0	506.0
9. 62 110	1836.0	74.0	370.0	358.1
5. G NO	1799.0	64.0	356.3	356.3
1. 60 Kg	1571,0		_	_


Table IV-7

3. Economy of green manure and nitrogen application

It is considered to be profitable when green manure crop ("Sesbania" in this trial) is planted in between rice crops with low cost as it is assumed (seed broadcast without fertilizer for green manure crop).

1.0 t of green manure plus 15 kg N/rai (G_1 N_3) provided the highest net benefit among combinations.

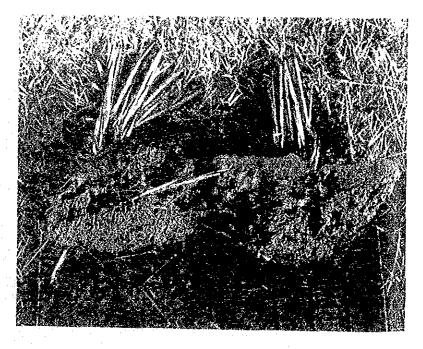
3.0 t or 1.0 t of green manure together with Fig. IV-10 5 kgN/rai recorded good economic responses. 3.0 t of green manure without nitrogen showed high profitable rather No. fitability due to low variable cost assumed in this trial (Table IV-6,7. Fig. IV-10)

Conclusion

The effect of green manure application and obvious effect of nitrogen was statistically observed. The economic response of green manure as well as nitrogen was also recognized. And if green manure crop is composed in the rice crop rotation in cheaper and easier way, fertilizer cost may be reduced from standard level.

However, there are several limitations in green manure cultivation such as picking and collection seed, enough vegetation within the crop rotation without fertilizer, plowing down and incorporated with soil with ordinary way of field preparation done by farmers. Obviously, those limitations and conditions should be fixed up in practical way.

Futher study on green manure cultivation is absolutely needed especially for the areas where double cropping of rice is repeated within polder under complete flood control condition.


One of the cheapest & easiest way of sesbania cultivation.

The seed of sesbania broadcasted at 12 days prior to rice harvest, (no tillage, no fertilzer)

Effect of green manure (sesbania) on the paddy soil structure and root system of rice plant.

Left: green manure applied treatment.

Right: no green manure applied.

Chao Phya Pilot Project Wet Season, 1984

V. Seedrate x Nitrogen Fertilizer Trial (Direct Sowing : Cooperative Trial of IADP) Objectives :

To clarify the effects of different seedrate levels and quantities and split application of Nitrogen fertilizer on the growth and yield of germinated broadcast rice cultivation at Chao Phya, Mae Klong Pilot Project and Suphan Buri Training Center experiment field.

Materials and Method

Experimental Design :

 L_{22} (3 x 3 x 3) : 3 Factors x 3 Levels

Treatments:

(1) Seedrate

: Dry seed of 4,8 and 16 kg/rai.

(2) Basal Nitrogen

: 0,4 and 8 kg N/rai at 15 days after sowing with

Ammonium Sulphate.

(3) Top dressing N.

At panicle initiation stage and heading stage as 4-0, 8-0 and 4-4 kg N/rai with Ammonium Sulphate.

Plot Size :

4 m x 8 m (32 m²)

Variety Used : RD-23

Cultural Practices

- (1) Fertilizer application
 - Apply Phosphorus to entire plots at puddling time at a rate of 6 kg P/rai as a form of T.S.P.
 - Nitrogen fertilizer was applied according to the treatments.
- (2) Plant Protection :
 - 5 kg of Furadan G/rai applied at the last puddling and 35 days after sowing seeds.
- (3) Weed Control

Saturn G applied at 14 days after sowing at a rate of 5 kg/rai.

Observations and Investigations

- Number of tillers and plant height were observed every week until heading stage.
- Datas on yield components and culm, panicle length and grain/straw ratio were investigated.

<u>Duration</u>:

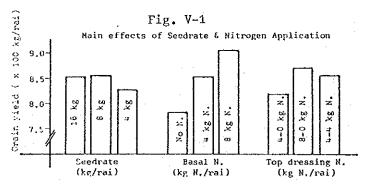
Sowing : July 5, 1984 Harvest : October 26, 1984

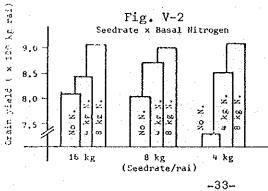
RESULTS :

Grain Yield (kg/rai)

Treatment Mea	ans	no programme and a second instruction with the little and the litt	The control of the second seco	(Grain Yield	(kg/rai)	THE RESERVE OF THE PERSON NAMED IN
Seed rate	Ва	sal N (kg/	rai)	Top di	ressing N ()	g/rai)	Seed rat
(kg/rai)	0	4	8	4-0	8-0	4-4	Mean (རྡ)
16 8 4	809.7 805.7 723.3	837.7 868.0 851.3	909.3 898.0 911.0	829.7 818.7 805.3	864.0 883.0 850.0	863.0 870.0 830.3	852.2 857.2 828.5
Mean (X)	779.6 c	852.3 b	906.1 a	817.9 b	865 .7 a	854.4 a	846.0

Table V-1


Α	N	O	V	Α


SV	DF	SS	MS	F	Requir 5%	red F 1%
Seed rate	2	4220	2110	8.08*	4.46	8.65
Basal N	2	72614	36307	139.11**	•	
Top dress N	2	11234	5617	21.52**	1	
Seed rate x	}			,	İ	
Basal N	4	11713	-2928	11.22**	3.84	7.01
Seed rate x		•			Į	
Top dress N	4	1008	252	0.97	Ì	•
Basal N x	<u> </u>	•			1	٠
Top dress N	4	1534	383	1.47	1	
Error	8	2089	261	•	İ	
Total	26	104412				

LSD 5% 21.52 (kg/rai)

1% 31.30 (kg/rai)

1,91 (%) CV

The lowest seedrate without basal nitrogen showed the lowest grain yield.

When seedrate is low, basal nitrogen should be heavier.

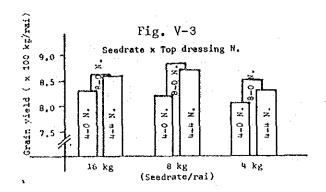
Yield Components

154,222-		Treatment	s .		Yie	and componen	ts		Estimate grain
Plot No.	Seed rate (kg/rai)	Basal N (kg/rai)	Top drass H (kg/rai)	Grain yield (kg/rai)	Panicles/ m ²	Spikelets/ panicle	grain	1000 grains weight (g)	yield
	·								
1	16	0	4-0	781.0	0.000	61.9	52,3	29.7	422.8
2	16	0	8~0	813.0	408.0	62.3	57.2	28.9	422.3
3	16	0	4-4	835.0	408.0	61.6	58.6	29.5	430.7
ų	16	ŧ	4-0	830,0	404.0	60.1	58.9	29.7	~424.7
5	16	tj	8-0	841.0	592.0	69.7	511.8	28.6	637,5
6	16	t ₄	4-4	842.0	472.0	52.2	63.1	30,4	472.5
ž	16	8 00	, 4~0	978.0	396,0	58.7	67.5	29,5	462,8
8	. 16	8 '''	8-0	938.0	524.0	53.0	0.03	30.3	564.4
9	16	8	14-14	912.0	500.0	59.7	51.7	30.3	467,2
Mean (₹)			852.2	460.4	59.8	58.2	29.7	470,2
10	8	0	4-0	763.0	300.0	66.1	64,0	29.0	367,9
11	8	0	8-0	832.0	304.0	59,3	66.8	29.1	350,1
12	B	0	4-4	822.0	332.0	72.0	62.5	28 կ	424.1
13	8	ų	4 ~0	829.0	396.0	62.3	61.4	29,4	445.2
14	8	. 4	8-0	889,0	344.0	72 3	58.0	31.3	451.5
15	8	4	4.4	886.0	352.0	71.7	56.1	29,4	416.0
16	8	8	4-0	864.0	388.0	67.0	61.7	29.5	473.4
17	8	8	8-0	928.0	376.0	71.1	62.5	29.7	496,4
18	8	8	4-4	902.0	382.0	64.4	73.4	30,8	533.5
Mean ((₹)			857.2	352,4	67.4	62.9	29.6	439.8
19	4	0	4-0	685.0	296.0	76.7	58.0	28.9	380.5
20	4	0	8-0	764.0	200.0	76.7	76.2	28,5	331,1
21	ц	0 -	4.4	721.0	196,0	75.3	73.3	28.7	310,3
22	ų	4	4-0	857.0	244.0	66.1	75,3	31.7	395.9
23	ч	4	0-8	856.0	272.0	68.5	66.1	29.2	340.0
24	ŧ,	ц	44	841.0	296.0	80.6	50.0	23.0	431.1
25	ħ	8	¥0	874.0	0.036	77.9	55.8	23.5	વક્છ.ફ
26	t ₄	8	8-0	930.0	280.0	83.9	71.8	:0.1	507,8
27	4	8	4-4	929.0	312.0	75.2	70.4	29,3	486.(
Mean	(X)			828.5	272.9	75.6	67.4.	29,4	403.5
Total				22842.0	9772.0	1825.0	1697.0	798.0	11839.0
Over	a11	•		1	,		60.6	20.5	438.5
Mean			1	846,0	361.9	67.6	62.9	29.6	
S.B.				63.4	83.7	8.2	7.0	6.8	68.7

Table V-5

Mean effect of factors on the yield compnonents and ralated figures

e de la companya de l	1	Yield Co	sponents							
reatment levels	Famicles/	Grains/ panicle	Ripened grain (%)	1000 grain weight (g)	Estimated grain yield	Fanicle length (cm)	Stem length (cm)	Grain/ straw	Flant height (cm)	% of productive tillers
មុំ 15	460.4	59.8	58.2	29.7	472.1	21.0	67.2	77.2	104.2	45.2
5 8	362.4	67.4	62.9	29.5	439,8	21.8	67.5	86.3	102.5	44.1
60 4 20	272.9	75.6	67.4	29.4	403.6	22.0	67.6	87.0	98.7	49.4
<u>.</u> 0	320,4	æ.o	63.2	29.0	382.6	21.3	64.0	90.3	95.7	45.7
4	374.7	66.9	61.5	30.0	445.2	21.6	63.0	80.1	103.3	46.0
કે ક	390.7	67.8	64.0	30.0	487.6	21,7	70,3	80.1	106.5	46.0
4-0	350.2	<i>cc</i> 2		20. 11	40.4.6	~	67:0	05.4	302.0	
8-0	358.2	66,3	61.7	29.7	424.6	21.4	67.0	95.4	102.0	48.6
\$0 0-0 \$4 4-4	366.7	Ø.4	63.7	29.5	451.2 439.7	21.8	€6,9 68,4	90.5 84.6	104 . 1 99.3	41.1
c (2 (ean (X)	361.0	67.0	63.2	29.5	159.7	21.5	ю <u>.</u> 4	94.0	29.3	45.8
ean (X)	361.9	67.6	62.9	29.6	438.5	21.€	67.4	83.5	101.8	46 . 2


Table V-6

Correlation Coefficient

element in the	Panicles/ m ² (1)	Spikelets/ panicle (2)	Ripened grain % (3)	1000 grains weight (4)	Estimated grain yield (5)	Spikelets/ m ² (6)	Actual yield (7)
-	1.000	-0.613	-0.669	0.512	0.738	0.876	0.356
(1) (2) (3)	-0.613 -0.670	1.000	0.233 1.000	-0.290 0.092	-0.134 -0.265	-0.017 -0.711	-0.122 -0.012
(4)	0.152	-0.290	0.092	1,000 0,267	0.267 1.000	0.011 0.841	0.523 0.620
(5) (6)	0.738 0.876	-0.134 -0.170	-0.265 -0.711	0.267	0.841	1.000	0.369
(7)	0,356	-0.122	-0.012	0.533	0.620	0.369	1.000

Table V-2

Panicles/ m^2 and spikelets/panicle having reverse correlation. The more panicles tend to have less number of spikelets/panicle. Obviously, when spikelets/ m^2 (panicles/ m^2 x spikelets/panicle) is more, then grain yield increased even ripened grain % is lower.

Top dressing of 8 kg N/rai at panicle initiation stage produced higher grain yield in any seedrate levels.

Observation Resurs of Plant Height (cm)

			1.		Day	vs after So	gniwo				
		26	33	40	47	54	61	68	75	82	Harve
	16	24.9	35.8	43,4	53.7	59.9	54.4	73.6	89.6	104.2	104. 102.
Seedrate	8	25,7	36.0	42.6	51.3	58.0	63.3	75.3	86.5	102,5	102
(kg/rai)	4	25.7	38.2	45.0	51.6	58.4	62.7	73.6	84.3	98.7	93. 95 163
		au 3	34.3	41.1	47,0	52.2	58.8	70.6	83.0	95.7	35
Basal N.	0 3	24.3 25.5	37.2	44.6	53,1	60.2	65.2	74,8	87.7	103.3	163
(kg N/rai)	8	26.4	38.5	46.2	56.5	63.9	66.9	77.1	90,3	106.5	10£
	u_0	25.2	36.3	43.9	52,1	59.0	62.5	73.0	85.7	102.0	102
Top dress N.	8-0	25.2	36.3	43.5	51,2	58.2	63.8	75.4	89.1	104.1	104
(kr N/rai)	4-4	25.8	37.3	44.5	53.3	59.1	64.0	71.4	85.5	98.3	104 98
Means (X)		25.4	36.7	43.9	52.2	58.8	63,5	73.9	86.3	101,7	101
5.D.		0.6	1.3	1.5	2.5	3.0	2.3	2.0	2.5	3.4	j

Table V-3

The results of growth observation in marber of tillers ${\rm M}^2$

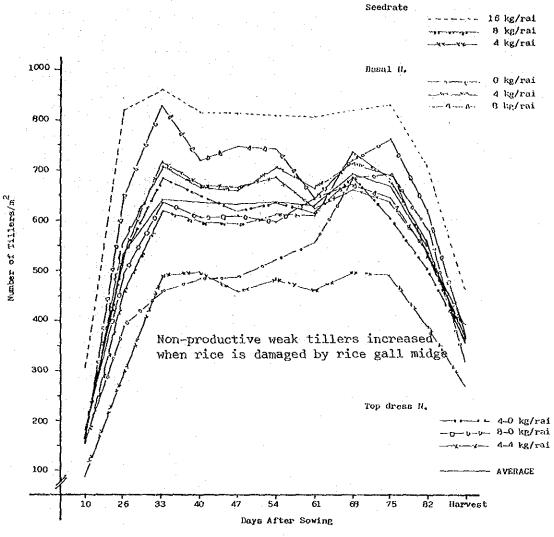


Fig. V-4

Observation of Number of Tillers (m^2)

			Days after Sowing									
		. 10	26	33	40	47	54	61	68	75	82	Harvest
Sanda a	16	304.0	944,4	918.8	832.0	832.8	823.2	914,8	841,6	852.8	702.7	460,4
Seedrate	a [152.0	454.4	618.8	598.8	595,2	614.4	603,2	732,0	678.8	556.4	352,4
(kg/rai)	4	76.0	291.2	483,6	491.2	458.4	476.0	459,6	493,2	485.2	387.6	272.9
	0	152.0	362.8	466.8	478.8	480.0	477.6	568.0	680.8	688.4	\$78,7	320.4
Basal N.	4	152.0	559.2	703.2	663.2	657.2	701.6	668,4	715.2	688.8	532,0	374,7
(kg N/rai)	8	152.0	648.0	851.2	720.4	749.6	733.2	640,8	670.8	640,0	536.0	390.7
	4~0	177.2	532,0	676.4	649.6	618.8	635,2	611.6	677.6	609,6	501.0	358.2
lop drss N.	8-0	197.2	492.0	628.0	601.6	607.6	599.2	640.8	721.2	767.6	620.4	366.7
(kg N/rai)	4-4	177.2	532.0	716.4	670.4	660.8	678,8	624.8	668.0	639,6	525.3	361.0
Yean (X)		168.8	526.2	673.7	634.0	628.9	637.7	625.8	688,9	672,3	548.9	351,9
£.D.	ļ	59.4	157.8	149,3	109.5	117.7	113,5	93,3	90,9	102,0	85,9	50.6

Table V-4

(1) Dominance analysis

-		Freatmont	.9	Grain	Gross		Variabl	e cost (B/ra	i)	Net
Plot No.	Seed rate (kg/rai)		Top dress N (kg/rai)	yield (kg/rai)	benefit (B/rai)	Seed	Pertilizer	Opportunity cost	Total	benefit (B/rai)
1.	16	0	4-0	703	2003	52.8	43.8	16	112.6	1890.4
2.	16	0	8-0	732	2085	52.8	87.6	16	156.4	1928.6* 1969.5*
3.	16	0	4-4	752	2142	52.8	87.6	32	172.4	
4	16	4	4-0	747	2129	52.B	87.ь	32	172.4	1965 Jul
5	16	- 4	8-0	757	2157	52.8	131.4	32	216.2	1 111th 131
6.	16	ц	կակ	758	2160	52.8	131.4	48	232.2	1657.88
7	16	8	4-0	790	2252	52.8	131.4	32 .	216.2	5635 160
8	16	8	8-0	844	2406	52.B	175.2	32	260.0	21 te .0%
9	16	8	ti-ti	821	2339	52.8	175.2	чĸ	276.0	2063.04
10.	. 8	0	4-0	678	1957	25.4	43.8	16	86.2	1970:8
11.	8	ŏ	8-0	749	2134	26.4	97.5	16	130.0	2004.0
12.	8	ō	կկ	740	2108	26.4	87.6	32	146.0	1962.0
13.	8	ř,	4-0	748	2126	26.4	87.6	32	146.0	1980.0%
14	8	4	8-0	800	2280	26.4	131.4	32	189.8	2036.2
15	8	4	4-0	797	2273	26.4	1.31.4	48	205.8	2067.20
16.	8	8	4-0	778	2216	26.4	131.4	32	189.8	2025.2
17.	В	8	8-0	835	2380	26.4	175.2	32	233,6	2146.4
18.	8	8	դ_ կ	812	2314	264	175.2	48	249.6	2064.40
19.	l ş	0	u-0	617	1757	13.2	43.8	16	73,0	1684.0
20.	1,	o	8-0	688	1960	13.2	87.6	16	116,8	1843,20
21	ц.	ő	4-4	649	1849	13.2	37.6	32	132.8	1716.2*
22.	4	4	4-0	771	2198	13.2	87.6	32	132.8	2065,2
23.	tı	4	8-0	770	2196	13.2	131.4	32	175.6	2019.48
24.	4	4	4-4	757	2157	13.2	131.4	118	192.6	1966,60
25.	4	8	4-0	787	2242	13.2	131.4	32	176.6	2065,40
25. 26.	4	8	8-0	837	2385	13.2	175.2	32	220.4	2164.5
27.	Ą	8	4-4	836	2383	13.2	175.2	48	236.4	ֆ ֆեն _Մ եր
	Неаn (X)	l	761.4	2170	-				-

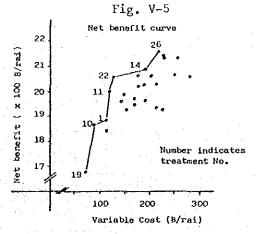

Note : * = Dominated treatments

Table V-7

(2) Marginal analysis

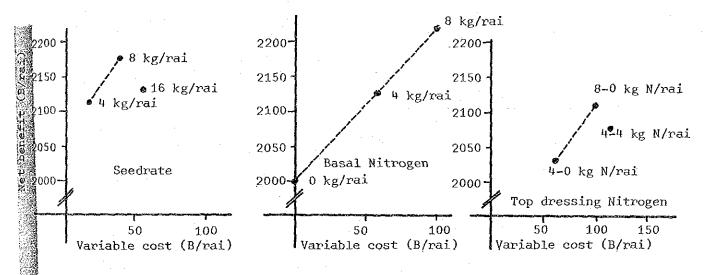
Undominated	Net	Variable	Marginal rate of return			
treatments	benefit (B/rai)	cost (B/ral)	V.S. next highest benefit	V.S. lowest variable cost		
26. 4-8-8-0	2164.5	220.4	243.1 (%)	326.1 (%)		
19. 8-4-8-0	2090.2	189,8	43.8	347.8		
22. 4-4-4-0	2065.2	132,8	2185.7	637.5		
11. 8-0-8-0	2004.0	130.0	652.9	561.4		
1. 16-0-4-0	1890.4	112.6	74.2	521,2		
10. 8-0-4-0	1870,8	86.2	1415,2	1415.2		
19. 4-0-4-0	1684.0	73.0	1			

Table V-8

The treatments connected with line are undominated treatments.

Treatment No. 26 shows the highest net benefit.

Partial Budget Analysis (Average of 9 Treatments)


(1) Dominance Analysis

AND AND PARTY OF THE PARTY OF T		Grain yield	Gross benefit	Variabl	le cost (B/rai)	Net benefit
		(kg/rai)	(B/rai)	Input	Oppor- tunity	Total	(B/rai)
Seedrate	16 8 4	767:0 771.5 745.6	2186 2199 2125	52.8 26.4 13.2		52.8 26.4 13.2	2133* 2173 2112
Basal N.	0 4 8	701.6 767.1 815.5	2000 2186 2324	- 43.8 87.6	- 16 16	59,8 103,6	2000 2126 2220
Top dress N	4-0 1. 8-0 4-4	779.1	2098 2220 2192	43.8 87.6 87.6	16 16 32	59,8 103.6 119.6	2038 2116 2072*

Table V-9

Note : Treatments with * mark are dominated.

Fig. V-6

(2) Marginal Analysis among Undominated Treatments

Undominated T	reatments	Net benefit (B/rai)	Variabel cost (B/rai)	Marginal rate of return (%)
Seedrate	8 kg 4 kg	2173 2112	26,4 13.3	458 . 6
Sasal N.	8 kg 4 kg 0 kg	2220 2126 2000	103.6 59.8 -	214.6 210.7
op dress N.	8-0 kg 1-0 kg	2116 2038	103.6 59.8	178.1

Table V-10

Results and Discussion :

1. Grain yield (Table V-1, ANOVA, Fig. V-1,2,3)

(1). Seedrate

The mean grain yield of 16 kg seeds/rai (852 kg/rai) and 8 kg seeds/rai (857 kg/rai) were significantly higher than the yield of 4 kg seeds/rai (825 kg/rai).

Seedrate of 16 kg/rai and 8 kg/rai produced the same level of grain yield.

Judging from the practical view point, the higher seedrate seedmed to be better when growth competition of rice and weed is taken into consideration.

(2). Basal application of Nitrogen

The higher amount of nitrogen produced significantly higher grain yield.

The grain yield of different levels of basal nitrogen were: 780 kg (no N.), 852 kg (4 kg N/rai), 906 kg (8 kg N/rai) respectively. And those differences were statistically significant each other.

(3). Top dressing of Nitrogen

Amount of nitrogen clearly influenced To grain yield. 8 kg N/rai top dressed either single (8-0) or split application (4-4) produced significantly higher grain yield than the 4 kg N/rai (4-0).

Top dressing at panicle initiation stage (55 days after sowing in this case) found to be appropriate time for application.

Split application of top dressing (panicle initiation ϵ heading stage) is not necessarily needed from this trial results.

2. Yield components and related figures

The higher seedrate obviously produced the more number of panicles/m². On the contrary, the lower seedrate produced the more number of grains/panicle.

Lower seedrate levels tended to obtain the higher ripenened grain % since the higher seedrate produced the more number of grains(spikelets) per unit area

1000 grains weight was not influenced by the different seedrate levels.

Amount of basal nitrogen especially facilitated to increase number of panicles/unit area. The heavier nitrogen produced the more number of panicles.

Nitrogen effect to other yield component factors was not clearly seen. (Table V-5.6)

Plant height (Table V-3) and number of tillers (Fig V-4, Table V-4) were observed every week until heading stage.

Due to the rice gall midge incidence, the number of tillers increased and decreased in abnormal shape shown in Fig. V-4. Thus number of panicles observed at harvest time was much less in comparison with greater number of tillers observed. As a results, % of productive tillers resulted very poor (46.2% in average, Table V-6).

3. Economy of seedrate & nitrogen fertilizer

When every treatment combinations were economically compared, the 20 treatments were dominated since they are higher variable cost with lower net benefit than the undominated treatments.

The results of marginal analysis shows that the treatment of 4-8-8-0 (4 kg seed/rai, 8 kg N/rai for basal, 8 kg N/rai top dressed at panicle initiation stage) provided the highest net benefit with acceptable level of marginal rate of return. (Table V-7, 8, Fig. V-5)

The Table V-9,10 and Fig. V-6 shows the results of economic comparison besed on the mean grain yield of every factors, (average of 9 treatments of 3 factors) and main factors are compared independently regardless other two factors.

The results indicate that the most profitable seedrate level was 8 kg/rai. And the best level of basal nitrogen was 8 kg N/rai. For top dressing, 8 kg N/rai at panicle initiation found to be the most profitable amount and time for application.

Conclusion :

Seedrate of 16 kg and 8 kg/rai produced significantly higher mean grain yield than the that of 4 kg seed/rai.

Basal nitrogen applied at 15 days after sowing at a rate of 8 kg N/rai recorded significantly better grain yield than no N. and 4 kg N/rai.

8 kg N/rai top dressed at panicle initiation stage or 4 kg at panicle initiation plus 4 kg at heading stage recorded significantly higher mean grain yield than the 4 kg N/rai top dressed at panicle initiation stage.

The more seeds broadcasted the more number of panicles per unit area obtained though panicle size became smaller. The heavier basal nitrogen produced the more number of panicles per unit area too.

When the main factors were economically compared independently, seedrate of 8 kg/rai, basal nitrogen of 8 kg N/rai and 8 kg N/rai top dressed at panicle initiation stage found to be the most profitable level among three levels tested in this trial.

VI. Nitrogen Source x Dose Comparative Trial

Objectives

- 1. To determine the effect of GML*, OSC** and Ammonium Sulphate on the growth and yield of germinated direct sowing rice under the Chao Phya Pilot Project conditions.
- To study the best fertilizing method for profitable and economical rice production.

Materials and Method

Experimental Design

Split Plot Design with 3 replications. Main plots were Nitrogen Sources and Sub-plots were Nitrogen levels.

Treatments :

Main plot (Nitrogen Sources)

GML* (Glutamic Mother Liquor : 4.6% N)

OSC** (Organic Soil Conditioner : 2.9% N) NS,

A.S. (Ammonium Sulphate : 21% N)

Sub plot (Nitrogen Levels : N. kg/rai)

		. 3,	
	Basal	Top dressing	Total N,
И;	6	0	6
N ₂	12	ο	12
N ₃	6	6	12
N _u	12	6	18

Application Method

GMS and OSC were applied prior to sowing.

Ammonium Sulphate was applied at 15 days after sowing.

Top dressing of nitrogen at panicle initiation stage as a form of Ammounium sulphate.

Plot Size: $5 \text{ m} \times 4 \text{ m} = 20 \text{ m}^2$

Variety Used : RD-23

Cultural Practices

Seed rate : 12 kg, of dry seed/rai
 Weed Control : 5 kg of Saturn G/rai (15 days after sowing)

3. Plant Protection :

(1) \$ kg of Furadam G/rai (15 days after sowing)

(2) 5 kg of Padan Mipoin G/rai (35 days after sowing)

Duration

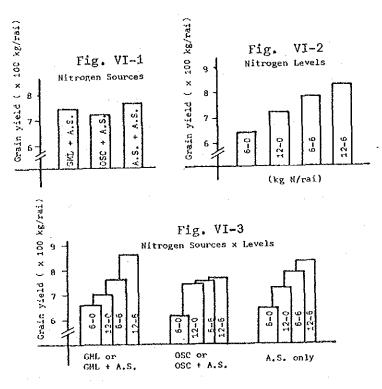
RESULTS

Trial No. VI

Grain Yield (kg/rai)

Trea	tments		Re	plication	s	Nean
No.	Treat	ment	I	II	IIJ	(X)
1.	GML	Ň ₁	688	646	664	666.0
2.	GML	N ₂	812	652	622	695.0
3,	GML	N ₃	754	852	688	764.7
ц,	GML	N ₄	838	896	840	858.0
5,	OSC	N ₁	524	702	616	514.0
6.	OSC	N ₂	726	630	872	742.7
7.	osc	N ₃	756	734	768	752.7
8.	osc	N _L	752	812	726	763,3
9.	A.S.	N ₁	598	612	702	637.3
10.	A.S.	ห้	742	604	838	728.0
11.	A.S.	N ₃	798	838	862	832.7
12.	A.S.	й	756	914	908	859.3
	Mean	(፻)	728.7	741.0	758.8	742.8

. Table VI-1


SV	. DF	SS	MS	Ľ.	Requi	red F
71.4	. D.		110	<u>.</u>	5%	1%
N. Sourece x						
<pre>!! level (Sub- </pre>						
Plot)	35	355763				
N. Source						
(Main)	8	54978				
Bl o cks	2	5520	2760	0.032	6.94	18.0
N. Source	2	12968	6484	0.711	5.94	13.0
Error (a)	ţţ	36490	9122.5	•		
N. level					[
treatment	3	179081	59693	16.994**	3.1ô	-5.09
N. Source x						
N. level	6	23972	3955	0.376	2.66	4.01
Error (b)	18	97732	5429.5		[

LSD for N. level treatment : $5\% \approx 72.98$ (kg.rai) : 1% = 99.97 (kg/rai)

CV)a) = 12.86 (%) CV (b) = 9.92 (%)

man, beg alter trade of a selection of the conflict of the con	N	. Sources		Nitrogen	Test for
Nitrogen levels	GMI	osc	Λ.S.	mean	significance (5%)
N ₁ (6-0)	666.0	614.0	637.7	639.1	c
N ₂ (12-0)	695.3	742.7	728,0	722.0	þ
$N_3 (6-6)$	764.7	752.7	832.7	783.4	ab
N ₃ (12-6)	858.0	763,3	859.3	826.9	a
Mean (X) NS	746.0	718.2	764.3	742.8	

Table VI-2

Results and discussion :

1. Grain yield

The grain yield was not affected by the different sources of nitrogen statistically. Whereas the amount of nitrogen was closely associated with the grain yield.

The grain yield increased along with the increment of nitrogen level. The highest dose produced the highest yield.

When the same amount of nitrogen was used, (12 kg N/rai in this trial) grain yield was higher when nitrogen is applied as split dose of basal and top dressing at panicle initiation stage even difference is not significant.

(Table VI-1, ANOVA, VI-2, Fig. VI-1,2,3)

Yield Component and related figures on different treatments

		Yield (Components		Estimated	fanicle	Sten.	Grain/	Flant
reattents	Paniele/m ²	Grain/ panicle	Ripened grain (%)	1000 grains weight(g)	yield (g/m²)	length (cm)	length (cm)	straw ratio	height (cm)
GML (S1)	464.0	46.9	76.9	28.3	473.6	17.2	56.3	72,7	Ç4, 2
CMI (N2)	332.0	69.0	77.1	29.2	515.7	20,9	69.2	91.0	98.0
GELHARS. (Ng)	504.0	54.7	69.1	29.3	558.2	19.6	68.3	97.5	107.6
GEL+A.S. (Rg)	448.0	56, 7	70.1	29,4	523.5	20.0	65.7	102.8	114.2
osc (x ₁)	460.0	51.4	70.6	26.4	474.2	17.2	60,9	76.5	98.2
os: (K ₂)	408.0	70.4	65.2	28.7	537.5	20.9	71,4	93,4	105.1
05C+A.S. (R ₃)	436.0	56.3	66.3	28.3	460.1	18.9	57.c	76.4	110.7
OSCIA.S. (Na)	496.0	64.1	61.9	29.0	570.7	21.1	69.3	90.7	115.4
(x ₁)	328.0	58.6	68.5	29,4	387.1	17.4	59.1	89.1	100.6
$A.\hat{s}$, (N_2)	366.0	51.0	73.2	30.0	410.5	19.7	68.4	75.5	108.2
A.S.+A.S.(N ₃)	436.0	59.2	65.9	27.8	472.8	18.5	60,4	83.5	112.7
Λ.S.+A.S.(N _μ)	460.0	61.5	61.9	29.2	511.3	21.3	72.8	77.0	118.8
Hean (X) S.D	428.2 58.6	58.3 7.1	69.0 5,1	29.0 0.6	491.3 55.8	19.4	64.9 5.8	85.5 10.0	106.7

Table VI-3

Mean effect of N. source and levels on the yield components and related figures

		Yield Co	sponents						
Treatment levels	Fanicles/	Grains/ panicle	Ripened Grain (%)	1000 grain weight (g)	Estimated grain yield	Famicle length (cm)	Stem length (cm)	Grain/ strav	Plant heigh (cm)
g Gil.	437.0	56.B	73.3	29.1	517.8	19.4	64.8	91.0	103,5
050.	450.0	60.0	66.0	23,6	510.€	19.5	64.7	84,3	107.1
ა A.S.	397.5	57.6	67.4	29.1	445.4	19.2	65.2	81,3	109,6
κ ₁	417.3	52.3	72.0	25.7	444,9	17,3	58.7	79.4	97.0
ε 1. ⁵	365.7	€.5	71.8	29.3	487.9	20.5	69.7	86.6	103.4
Hitmohen E X N I	458,7	55.7 ,	67.1	28.5	497.0	19.0	61.9	85.8	110.3
ii li ₄	468.0	60.8	64.6	29,2	535,2	20.8	69.2	90.2	116.1
Nean(X)	428.2	58.3	69.0	29.0	491.3	19.4	64.9	85.5	106.7

Table VI-4

(1) Dominance analysis

- Sales	AND RESERVE TO THE PROPERTY OF THE PERSON NAMED IN	Grain	Gross	Vari	able cost (B/	rai)	Net
	tments Treatment	yield (kg/rai)	benefit (B/rai)	Fertilizer	Opportunity cost	Total	benefit (B/rai)
1,	CHL N	599	1708	57.4	16	73,4	1634,6
2.	GHL No	626	1783	114.8	16	130,8	1652.2
з.	GML N.	688	1916	123.1	16 + 16	155,1	1805.9
ų,	GML N	772	2201	180.5	16 + 16	212,5	1988.5
5.	osc N	. 553	1575	-		-	
6.	osc n	668	1905	-	-		-
7.	osc N	677	1931	-		-	ļ · -
	osc N _L	687	1958	-	-	~	_
	A.S. N	574	1635	65.7	16	81,7	1553,35
10.	A.S. N.	655	1867	131.4	. 16	197.4	1717,6
11.	A.S. N.	749	2136	131,4	32	163,4	1972.6
	A.S. N ₄	773	2204	197.1	32	229.1	1974.98
	Mean (X)	668.5	1905	-	_	-	-

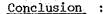
Note: * = Dominated treatments

Table VI-5

OSC is excluded since it is not commercialized yet.

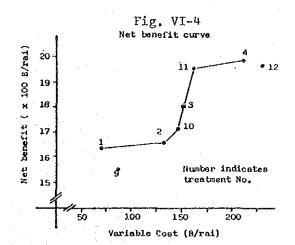
(2) Marginal analysis

Undominated	Net	Variable	Marginal rate of return			
treatments	benefit (B/rai)	cost (B/rai)	V.S. next highest henefit	V.S. lowest variable cost		
Կ. GML N _u	1988.5	212.5	32,4 (%)	254.4 (%)		
11. A.S. N ₃	1972.6	163.4	2008.4	375.5		
3. GML N ₃	1805.9	155.1	1120.8	209.7		
10. A.S. N ₂	1719.6	147,4	406.0	114,9		
2. GML N ₂	1652.2	130,8	30.7	30.7		
1. GML N,	1634.6	73.4	[- [<u>.</u>		


Table VI-6

2. Economy

Due to the lower cost of GML, treatment (GML $N_{\rm H}$: 12 kg N/rai for basal as a for GML plus 6 kg N/rai top dressed at panic initiation stage as a form of ammonium phate) provided the highest net benefit among treatments.


But the marginal rate of retun of 32.4% seem to be not high enough to ensure the reliable profit when the cost of capital (interest) and risk premium are consider

Because of said reason, A.S. N3 (6 kg N for basal plus 6 kg N/rai top dressed) termined to be safety alternative with tremely high marginal rate of return (Table VI-5,6 Fig. VI-4)

The grain yield was not influenced by the nitrogen sources statistically, but a ferent amount of nitrogen was significantly associated with the grain yield.

The heavier nitrogen produced the higher grain yield. Split application of nit (basal and top dressing at panicle initiation stage) found to be advantageous.

Chao Phya Pilot Project Wet Season, 1984

VII. Variety x Production Inputs Trial

Objectives

- 1. To test for yield responses for various production inputs and interactions between these inputs.
- 2. To identify critical production factors or combinations of practices for germinated direct sowing rice under the Chao Phya Pilot Project conditions.

Materials and Method

Experimental Design :

RCBD arranged as a 2^{4} factorial with 2 replications.

Treatments :

V: Varieties V_0 : Apple Thong

V₁ : RD-23

N : Nitrogen No Nitrogen applied

N₁: 6 kg N/rai (Basal) + 6 kg N/rai (Top dressing)

I : Insect Control I_{Ω} : No insecticide applied

 I_4 : 5 kg of Furadan G/rai applied at 15 & 40

days after sowing.

W : Weed Control W_0 : No weed control

W. : 5 kg of Saturn G/rai applied at 15 days

after sowing plus manual weeding.

Plot Size: $5 m \times 4 m = 20 m^2$

Cultural Practices :

1. Seed rate : 12 kg of dry seed/rai

2. Weed Control : 5 kg of Saturn G/rai (15 days after sowing)

W₁ only

3. Plant Protection

(1) 5 kg of Furadan G/rai (15 days after sowing) I_1 only

4. Fertilizer Application :

Nitrogen (N) : Ammonium Sulphate was used.

Basal N (15 days after sowing) >N, only

Top dressing N (panicle initiation stage

Phosphorus : 6 kg phosphorus/rai applied as basal (T.S.P.)

over entire plots.

Duration :

Sowing : July 5, 1984 Harvest : October 26, 1984

RESULTS :
Trial No. VII

Grain Yield (kg/rai)

	Replica	ations	Mean
Treatments	I	ΙΙ	(X)
V N I W	126	180	153
A NO IO MO	134	246	190
V1 N0 10 W0 V1 N1 10 W0 V0 N1 11 W0 V0 N0 10 W1 V1 N1 10 W0 V1 N0 11 W0 V1 N0 11 W0 V1 N0 11 W0 V1 N0 11 W0 V0 N1 11 W0 V0 N1 11 W0 V0 N1 11 W1 V0 N0 11 W1 V1 N1 11 W0 V1 N1 11 W0 V1 N1 11 W0 V1 N1 11 W0 V1 N1 11 W0	258	398	328
V_0^0 N_0^1 I_0^0 V_0^0	292	226	259
VO NO II WO	518	274	396
NO IO WI	ե դդ	324	384
1 NO 11 WO	354	362	358
' NO I WO	498	400	449
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	516	478	497
$0 N_1 I_1 N_0$	651	7.54	704
0 NO 11 W1	536	494	515
$N_4 N_4 I_4 N_5 N_6	366	590	478
'I NA IO W	894	848	871
No I W	634	668	651
N I W	680	690	685
0 N1 T1 W1 1 N1 T1 W1	974	824	899
Mean (X)	492.4	484.8	488.56

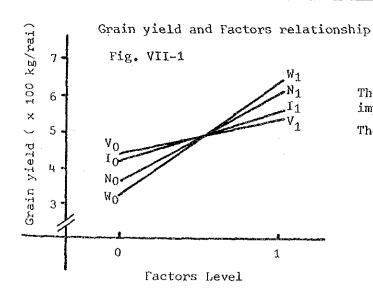
Table VII-1

٨	N	0	٧	A

SV	DF	SS	MS	F .	Requir 5%	red F 1%
Replications	1	465.1		0.065	4.60	8.86
Blocks in Rep.	2	7603.2	3801.6	0.535	3,74	6,51
V (Variety)	1	69006.1		9.724**	4,60	8,86
N (Nitrogen)	1	439453.1		61.929**		
I (Insect)	1	93961.1		13.241**		
W (Weed)	1	795691,1		112.131**		
אא	1	1081.1		0.152		
· VI	1	1711.1		0.241		
VW	1	19701.1		2,776		
NT	1	13041.1		1.838		
. NW	. 1	22155.1		3,122		
IW	1	5356.1		0,755		
VNI	1	3741.1		0.527		
VNW	1	10585.1		1,492		
AIM .	1	2556,1		0.360		
NIK	1	11325.1		1,596		
Error	14	99345.2	7096.1			
Total	31	1596777.9				

pifferential responses : (kg/rai)

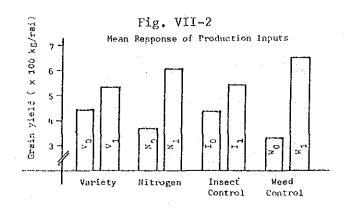
	<u>alamanian (neuroleonian) (neuroleonian) (ilakulua</u>			Response with								
Tactors	Mean response	Variet	y (V)	Nitro	gen (N)	Insect Contro		Weed Control (W)				
		v _o	v ₁	NO	N ₁	I ₀ .	I ₁	Wo	W ₁			
yariety (V)	92,87	-		81.25	104.50	78.25	107.50	43.25	142.5			
Nitrogen (ท)	234.37	222.75	246.0	 .	-	247.75	194.0	181.75	287.0			
insect C. (I)	108.37	93.75	123.0	148,75	68.5	~~		134.25	82.5			
Weed C. (W)	315,37	265.75	365.0	262.75	368.0	341.25	289.5					


Table VII-2

Summary of the Results : Table VII-3

			Total Control of the	<u> </u>
ì	actors		Treatments	Grain Yield (kg/rai)
13.50	ariety	v ₀ v ₁	Apple Thong RD-23	442.12 ** 535.00
N	trogen	^N о ^N 1	No N. applied 12 kg N/rai (6+6)	371.37 ** 605.75
I	hsect Control	I ₀	No Insecticide applied 5 kg Furadan/rai x 2 times	434.37 ** 542.75
W	eed Control	W ₀ W ₁	No Weed Control 5 kg Saturn G/rai + Manual Weeding	330.87 ** 646.25
0	ver all Mean			488.56

Significant interaction : None


(%) : 17.24

The all of four factors are important production factors.

The priority is in order of :

Weed control
Nitrogen
Insect control
Variety

The relationship between grain yield and production factors can be formularized as mentioned below.

$$Y = 113.063 + 92.875X_1 + 234.375X_2 + 108.375X_3 + 315.375X_4$$

Where

Y = Grain yield

X₁ = Variety

X, = Nitrogen

X_o = Insect control

X₀ = Weed control

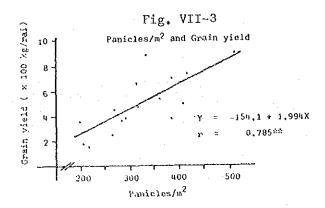
Results and Discussion :

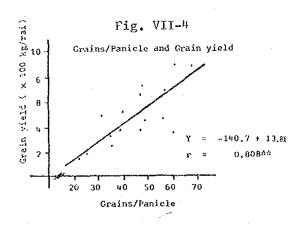
1. Grain yield

- (1). Factor 1 : Variety (V)
 Grain yield of RD-23 (535 kg/rai) was significantly superior to Apple
 Thong (442 kg/rai)
- (2). Factor 2 ; Nitrogen (N) 12 kg N/rai (6 kg for basal + 6 kg top dressed) produced significantly higher grain yield (606 kg/rai) than the that of no nitrogen (371 kg/rai). The difference was 234 kg/rai. Average effect of every 1 kg of nitrogen was equivalent to produce 19.5 kg of grains.
- (3). Factor 3: Insect control (I)
 Grain yield of no insect control treatment (434 kg/rai) was significantly lower than the treatment with 10 kg Furadan/rai (5 kg x 2 times application: yield 543 kg/rai). The major insects observed in the trial plot were: Rice thrips, Yellow rice borer, Rice leaf roller and Rice gall midge.
- (4). Factor 4: Weed control (W)
 Weed control is especially important in direct sowing method. The grain
 yield of weed control treatment (5 kg Saturn G/rai plus manual weeding)
 was 646 kg/rai, and no weed control treatment produced nearly ½ (330 kg/
 rai).

(Table VII-1, ANOVA, Table VII-2,3, Fig. VII-1,2)

Yield Component and related figures on different treatments


		Yield (Components		Lutimated	Panicle	Stem	Orain	Flant	
ethents	:anicle/m²	Grain/ panicle	Ripened grain (%)	1000 grains weight(g)	yield (g/m²)	length (cm)	length (cm)	ratic	heigh (cm)	
Valle To No.	224.0	23.3 /	86.5	25,4	91.5	13.4	46.5	\$7.3	55.,9.	
v. 5, 35 kg	208.0	26,3	71.1	27,7	107.7	13,1	36.≘	100.7	56.3	
le Ki Te Wo	276.0	35.0	75.3	27,6	200.8	15.7	57.0	40,2	a6.1	
ie No Iz Ho	244.0	36.0	69,2	27,2	165,3	14.6	57.4	52.2	75.7	
″a ^E o ^F o № 1	280.0	39.6	77.8	27.7	239.0	16.2	57.8	51.6	91.8	
1 2 1 2 KD	376.0	47.6	51,4	27,3	251.1	19.7	64.5	9310	100.0	
No In Wo	200.0	60.6	62.8	28.7	216.4	20.7	61.2	63.0	90.0	
No To Wi	258.0	49,0	65.9	27,7	239.7	18.2	55.6	93.5	93.1	
1 C C 1 6 N 1 1 N 0	408.0	32.2	75,7	28.5	284,4	14.7	59.3	57,2	3.38	
o 1 1 0 o 1 1 0 M 1	444.0	48.7	75.6	28.8	470.8	18,6	67.1	65.5	95.0	
6	360.0	40.5	63,8	27.8	321.8	16.0	55.9	66.7	81.6	
1 5 1 W ₀	320.0	56.1	64.1	28.8	331.4	20.4	64.6	80.7	101.2	
1 1 1 0 W 1	340.0	68.5	71.1	28,5	471.9	19.7	59.7	105.1	86.5	
1 N ₀ I 1 N 1	312.0	47,6	74.8	27,5	305.5	17,0	48.2	98.5	75.9	
0 1 1 1 1	392.0	57.2	60.0	24,9	399,5	17.1	66.1	52.3	93.3	
N 1 1 W 1	504.0	61.0	65.3	29.1	584.2	19.1	68.8	74.0	103.5	
ean (χ̄)	322.3	45.6	68.2	28.1	292.7	17.1	58.0	73.0	85.4	
.D.	87.7	13,1	7.0	0.8	135.4	2.5	8.4	20,3	12,4	


Table VII-4

Mean effect of production factors on the yield components and related figures

	}	Tield .e	nçonents						}
Treatment Levels			Estimated Frain Field	Panicle length (cm)	Sten length (cm)	Grain/ straw	Filent Leight (cr)		
γ _ο	328,5	39,1	70.6	27.9	271.7	15.8	58.5	56.8	83.8
γ ₁	316,0	52,1	65.8	28.2	313.7	19.5	57.5	88.9	87.0
"o	262.0	40.4	69.0	27.6	211.1	16.1	52.5	74.6	76.8
N ₁	382.5	50.8	67.4	28.5	374.3	19.1	63.4	71.3	94.0
· fo	302.0	42,3	.67.7	27.7	259.1	16,9	55.6	76.4	82 . 3
I	342.5	48.9	68.6	28.4	326.3	17,4	60.3	69.3	88 . 5
¥0	282.0	39.6	67.0	27.8	206.3	16.5	55.9	69.3	83,1
¥1	362.5	51.5	69.4	28.3	379.1	17.7	60.0	76.4	87,7
Rean (\overline{X})	322,3	45.6	6B.2	23.1	292.7	17.1	58.0	73.0	85.4

Table VII-5

2. Yield components and related figures

Grains/panicle of Apple Thong variety was much less than RD-23 though panicles/ 2 was higher.

Panicles/m² and grains/panicle were greatly influenced by the application of nitrogen, insecticide and herbicide. The effects of those inputs on the ripened grain % was not clearly observed. 1000 grains weight was slightly increased by the application of those inputs.

It is determined that the effects of production inputs were mainly appeared in increasing number of panicles and number of grains/panicle. And these yield components were closely correlated with grain yield.

(Table VII-4,5, Fig. VII-3,4)

(1) Dominance analysis

Treatments	Grain	Gross			Vari	able	ost (B/rai)		llet
i Lagellatifa	yield (kg/rai)	benefit (B/rai)		N	Ĭ	₩.	Opportunity cost	lotal	benefit (B/rai)
1. V ₀ N ₀ I ₀ N ₀	138	392	39.6	-	_	-	_	39,6	352*
2, V ₁ N ₀ T ₀ W ₀	171	487	39.6	-	-	-		39,6	1615 7
$3. V_0 N_1 I_0 N_0$	295	841	39.6	131.4	-		32	203.0	6384
" VONOI1 NO	233	664	39.6	-	210.0		32	281,6	382*
5. V ₀ N ₀ I ₀ N ₁	356	1016	39,6	-	-	90,0	71	200.6	8150
6, V ₁ N ₁ I ₀ N ₀	346	985	39.6	131,4	-	-	32	203.0	7824
7 , $^{V}_{1}$ $^{N}_{0}$ $^{I}_{1}$ $^{W}_{0}$	322	918	39,6		210.0	-	32	281,6	636≎
8. V ₁ N ₀ I ₀ N ₁	404	1152	39.6	-	-	90.0	71	200.6	951
9, V ₀ N ₁ I ₁ W ₀	447	1275	39.6	131.4	210.0	-	64	445.0	830#
10. V ₀ N ₁ 1 ₀ N ₁	,634	1806	39.6	131.4	-	90.0	103	364.0	14424
11. V ₀ N ₀ I ₁ N ₁	464	1321	39.6	-	210,0	40.0	103	442.6	87H4
12. $V_1 N_1 I_1 N_0$	430	1226	39.6	131.4	210.0		64	445.0	781*
13. V ₁ N ₁ I ₀ N ₁	784	2234	39.6	131.1	-	90.0	103	364.0	1870
14. V1 N0 I1 N1	586	1670	39,6	~	210.0	90.0	103	012.6	1
15. V ₀ N ₁ I ₁ W ₁	617	1758	39.6	131.4	210,0	30.0	135	696.0	1152*
16. V ₁ N ₁ I ₁ W ₁	809	2306	39.6	131,4	210.0	90.0	135	606.0	17900
Mean (Ⅺ)	439.7	1253				-	-		

Note : " = Dominated treatments

Table VII-6

(2) Marginal analysis

Undominated	Net	Variable	Marginal rate of return					
treatments	henefit (B/rai)	cost (B/rai)	V.S. next highest benefit	V.S. lowest (V ₀ N ₀ I ₀ N ₀)				
13. V ₁ K ₁ I ₀ W ₁	1870	364.0	562,4 (%)	467,9 (1)				
8. V ₁ N ₀ 1 ₀ W ₁	951	200.6	313.0	372.0				
2. V ₁ H ₀ I ₀ H ₀	447	39.6						
1. V ₀ N ₀ I ₀ N ₀	352	39.6		-				

Table VII-7

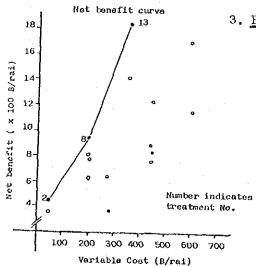


Fig. VII-5

3. Economical comparison of production inputs

All of the four factors studied in this trial were determined to be important critical factors for production. Among 16 combinations of inputs, V₁ N₁ I₀ W₁ treatment(Variety: RD-23, Nitrogen: 12 kg N/rai, No Insecticide, Weed control) was found to be the most profitable combinations. Though significant effect of insecticide application was clearly observed, the cost of insecticide (Furadan G. 10 kg) is relatively higher than the that of other inputs. (Table VII-6,7, Fig. VII-5)

Partial Budget Analysis (Based on the mean grain yield of 16 plots)

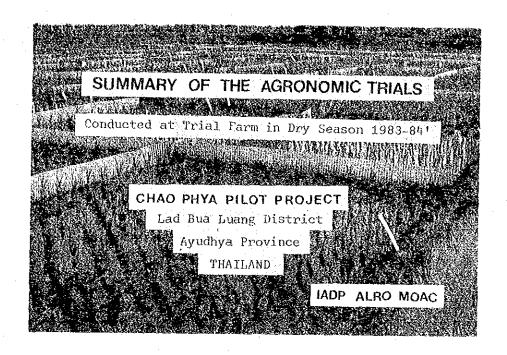
Of the state and the consequence to the descent of the latter		Grain	Gross	Variab.	le cost (I	3/rai)	Net	Marginal
		yield (kg/rai)	benefit (B/rai)	Inputs	Oppor- tunity	Total	benefit (B/rai)	rate of return (%)
Variety	v ₁ v ₀	482 398	1372 1134	-		_	1372 1134	
Nitrogen	^и 1 ^и 0	545 334	1553 952	131 -	32 -	163 -	1390 952	268,1
Insect control	^I 1 ^I 0	488 391	1392 1114	210 -	32	242 -	1150 1114	14,9
Weed control	₩ ₁ ₩ ₀	582 298	1658 849	90 	71 -	161 -	1497 849	402.5

Table VII-8

When mean grain yield of inputs(mean of 16 plots) was independently compared, marginal rate of return of nitrogen application was 268.1% and weed control provided as high as 402.5%. But in case of insecticide, marginal rate was only 14.9% due to high variable cost. This low return was not acceptable when cost of capital and risk premium are taken into consideration.

In connection with insect control, there is a probability that cost of insecticide may be reduced to ½ (5 kg Furadan) if application is done in right time in order to obtain higher marginal rate of return. (Table VII-8)

Conclusion :


All of the production inputs tested in this trial were found to be very important and critical factors for production of germinated direct sowing rice cultivation.

Significant effects of all production inputs on the grain yield were clearly observed at 1% level of significance.

The importance of those imputs were in order of Weed control, Nitrogen, Insect control, variety and mean response of those inputs were 315, 234, 108 and 93 kg of grain yield/rai respectively.

The effects of nitrogen, insect control and weed control on the grain yield were mainly appeared in increasing number of panicles per unit area and number of grains/panicle,

From the economic points, variety of RD-23 planted with nitrogen and weed control without insecticide was found to be profitable combination. However the way to minimize the cost of insecticide should be found out since all of the production inputs involved in this trial were found to be very important,

IRRIGATED AGRICULTURE DEVELOPMENT PROJECT September 1984

Krisdawut Wongpiboonwatana Toshio Shibata

ABSTRACTS OF THE TRIAL RESULTS CONDUCTED IN DRY SEASON 1983-84'

Varietal Comparative Study Trial I.

The grain yield of RD-21 was significantly higher than the that of other RD-varieties. (5% level) RD-21 and RD-23 produced significantly better grain yield than RD-9-7, RD-19, RD-25 at 5% level of significance.

Nitrogen Source Comparative Trial Trial II.

The amount of nitrogen was significantly associated to the grain yield. However nitrogen source (types of nitrogen) did not influence statistically to the yield. Split application of nitrogen found to be better than the basal only for yield and economic responses.

Nitrogen X Phosphorus Fertilizer Trial Trial III.

The nitrogen response to grain yield was remarkable whereas no phosphorus effect was observed. Significant differences were observed between mean grain yield of every nitrogen levels. Total nitrogen of 18 kg/rai applied as split dose without phosphorus appeared to be the most profitable among treatments.

Planting Method Comparative Study Trial IV.

The grain yield of direct sowing method was significantly superior to transplanting method both mechanical and manual. Judging from the study results, direct sowing was found to be much more profitable than transplanting method with distinct advantage of cost saving. However, more cost factors needed to be considered regarding planting methods.

Seedrate X Nitrogen Trial (Direct Sowing) Trial V.

The grain yield was significantly increased along with the increment of nitrogen levels, whereas no significant differences observed between grain yield of different seedrate levels. 8 kg of dry seed with 15 kg N/rai appeared to be the most economical level.

Fertilizer (Nitrogen) rate and Time of Application Trial (Direct Sowing) Trial VI.

The higher dose of nitrogen tended to produce higher grain yield. Top dressing of nitrogen at panicle initiation stage seemed to have good effect to grain yield since number of grains/panicle was greatly increased by top dressing in this stage. Basically, basal application of nitrogen at 15 days after sowing plus top dressing at panicle initiation stage appeared to be good combination.

Seedrate X Nitrogen Fertilizer Trial (Direct Sowing) Trial VII. = Cooperative Trial of I.A.D.P.

Statistically no significant differences were observed between/among the grain yield of different seedrate levels, different time and proportion of the nitrogen application for basal and top dressing , (the same amount of nitrogen applied).

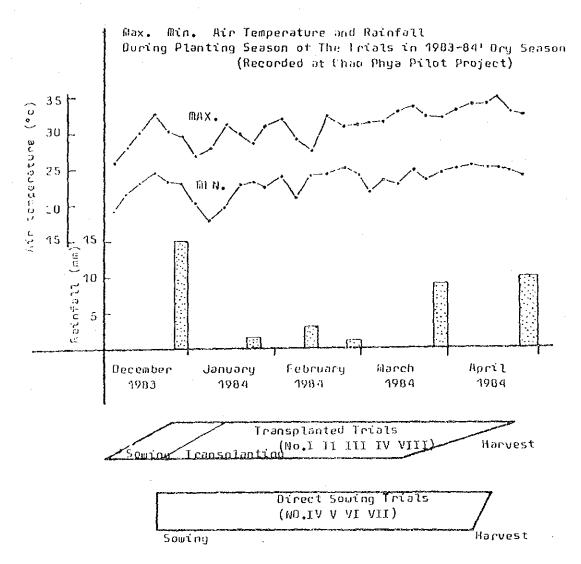
However, seedrate of 16 kg/rai with 6 kg N/rai applied at 15 days after sowing plus another 6 kg N/rai applied at panicle initiation stage appeared to produce the higher grain yield and it was found to be the most profitable among the treatments compared.

GENERAL INTRODUCTION AND EXPERIMENTAL CONDITIONS

The Chao Phya Pilot Project is situated at Lad Bua Luang District in Ayudhya Frovince in the middle of Greater Chao Phya Basin.

The topographical gradient of the project area is extremely gentle ranging from 1/5,000 to 1/10,000 and the average plot elevation is \pm 2.0 meters above sea level.

The soil had been formed by the alluvial action of the Chao Phya River, is the clayey acid sulphate soil PH of 4.5-5.0.


Much contents of the clay allow the soil hardness to vary to the large extent in dry and moist condition.

The rainfall has a big seasonal and annual fluctuation but average annual rainfall is about 1,300 mm. of which 88 percent falls in the wet season (May-October) and remaining 12 percent in the dry season (November-April).

(14 years average at Sing Ha Nat)

During the rice growing period of the agronomic trials in dry season 1983-84' only 39.5 mm. of rainfall was recorded at Chao Phya Pilot Project. (December- April)

The figure below shows the max, min, temperature and rainfall during planting period of the trials.

The agronomic trials were organized and managed by Agronomy Section in collaboration with other related sections in the project.

All of the trials stated in this report were planted in the month of December 1983 and harvested in March to April 1984. The variety of RD-23 was used for the trials except Varietal Comparative Study since this variety has been successfully accepted by an overwhelming majority in the project area.

Regarding planting method, trials No. I, II and III were transplanted and IV was both transplanting and direct sowing.

Since direct sowing method has been wide-spread among the farmers in the area, Trial No. V.VI and VII were directly seeded.

Number of tillers and plant height were investigated every 10 days interval for trial No. I and VII.

Yield Components and related figures were observed in every trials in order to study the effects and the influences of the treatments to yield component factors in relation to production and to find out relationship among factors.

Grain yield of each experimental unit (20 m²/plot) were measured from central part of 3.75 m² (60 hills) in case of transplanting and grain yield of 4.0 m² were observed for direct sowing trials. For the bigger plot of 40 m² (Trial No. 1V, VII), central part of 8 m² were harvested for yield datas.

For data analysis, F test and Duncan's Multiple Range Test were applied to examine statistical significance among/between treatments. Simple linear regression was also shown in same cases to find out the relationships between two factors.

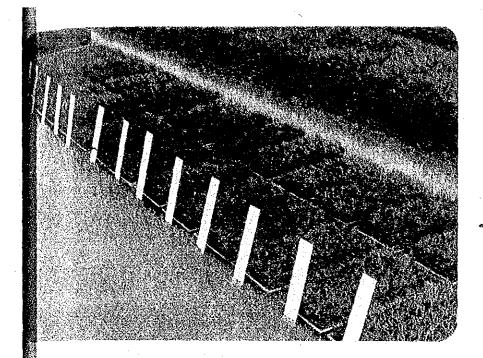
The treatments were economically compared through partial budget analysis (deminance & marginal analysis) considering only the variable cost factors vary from one treatment to another. Because the cost factors which are not affected by the choice of treatment are known as fixed cost, since these costs are incurred regardless of which treatment, they can not affect the choice of treatment and can be ignored for the purpose of decision.

The following assumptions on the variable inputs and output were assumed for economic study of the trials.

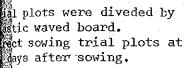
lnputs	;	Rice seed (dry grain)	:	3.3	B/kg
		Fertilizer Ammonium Sulphate (21-0-0) GML (Glutamic Mother Liquor) Triple Super Phosphate (0-45-0) Ammo-Phos (16-20-0)	:	2.3 0.44 6.0 4.175	B/1 B/kg
		Opportunity cost of labour	:	56.00	B/day/person
		Pertilizer application cost	:	16.00	B/time/rai
Cutput	:	Price of dry grain (14% H ₂ O)	:	2,915	B/kg

10% of harvest and storage loss was assumed and deducted from the grain yield harvested from the trial plot when yield was examined economically.

THE ALLOCATION AND PLOT LAYOUT OF THE TRIALS (I, II, III, IV) Dry Season 1983-84': Field No. 120

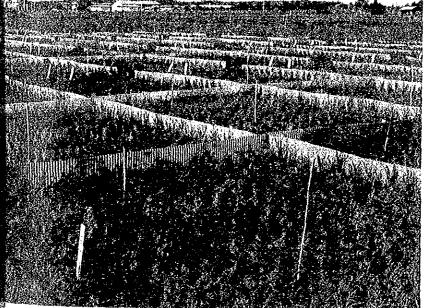

	China			-		Timber Styles		-	-	-	
I.	Varietal Comparative Study RCBD,		वा 9	40 6	31 3	30 8	اد 9	15	13	8 8	1
	15 Varieties/Entries x 3 Replications		42		92 4.4		1	19	2	9	2
	2 vehitcations		15 43	11	14	28	11	7	4	3	6
			13	1	4	2	14	3	10	11	7
			44 5	37	> 4	1	2 4		环	7	4
			ے 45	2 36	10 35	6 26	10	12	14	12	15 5
			12	7	8	13	5	4	5	2	9
II.	Nitrogen Source		36	35	27		18	17	io.)
3	Comparative Trial.		2	7 34	8	9	3	8	7.	4	11
	RCBD, 13 Treatments x		12	10	4	7	12	11	13	8	2
	3 Replications]]	38	33	29	A	.20	16]2	7	5
			13 m	1 52	3	5	10 श	1 4	9	10	5
	1		5	9	ń	2	13	4	3	6	1
				∋i 11			22	THE PERSON NAMED IN COLUMN		5	
		i I	Ĺ			<u></u>	6	161		12	
III.	Nitrogen x Phosphorus Trial.								ΝŖ	NP.	ИБ
	RCBD, Factorial,	·				-23	18	i\$	10	7	2
	4 Nitrogen Levels x 3 Phosphorus Levels x					N.P.	:`₃F₁ 19	¥₽ 22	112	V.F.	10
	2 Replications						- 1			N.E.	N.F.
						ALC:	30	13	12	2	4
						ΝΫ	N ₃ F ₆	N _i ,		N,P, I	/31.º
ΙV,	Planting Methods	·			•	. 1	1	3	2.	2	3
	Comparative Study.						-6	kapana Maraha.	5		4
	RCBD, 3 Treatments x					3		_2		1	er er
	4 Replications	·				3	7	1	8	2	า
							12		11	Name of Additional	iō
					L	1		2		3	Page 17 18 18 18 18 18 18 18 18 18 18 18 18 18
	11										# !

THE ALLOCATION AND PLOT LAYOUT OF THE TRIALS (V, VI, VII) Dry Season 1983-84': Field No. 140


- V. Seedrate x Nitrogen Level.
 (Direct Sowing)
 Split Plot Design,
 3 Seedrate Levels x
 4 Nitrogen Levels x

 - 3 Replications
- VI. Fertilizer rate (Nitrogen) and Time of Application Trial.(Direct Sowing) RCBD,
 - 8 Treatments x
 - 4 Replications
- VII. Seedrate x Nitrogen Fertilizer Trial (Direct Sowing) L_{27} (3 x 3 x 3)


وتبدودون		-		_	ACCORDED	-				
N4	Nο	N	4	N ₄	Νı		Nı	NL.	NL:	Ma I
Na	ŅΣ	N	36 9	N,	ıNı	2.	114	N ₄	N,	N1.
S=-			27		52 시	19)3•— ∳	O211	-, 6	∪ ₃
				Νз	N	ŀ	N₂	Nз	Nз	N2.
		ŧ.	~		_				5	4
	31	-	36	**		13	5	16	7	
	590		27				<u> </u>	11	6	Э
	4			1			7	4	7	1
	3				-	1	2	3	2	6
Į.,		٦			4	Γ		26)		23
			é		_ .	Ľ	4		4	
					5		16	2	4	20
					4		8	12	16	9
			<u> </u>	5	2	r		27		8
			_		0	r		13		13
						-	8	-=	8	
			1	<u>6</u>			16		16	
			5		7		6	3	4	2
			8		5		. 8	11	4	. 19
					E	r		25	16	7
	N4 N8 S1- S3 Na	N4 N5 91 N2 N2 S3-S2-S2 N2 N1 N4 N4 N5 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2	N4 N5 N N8 N2 N S3 S2 S N2 N1 N N1 N4 N S3 S8 S N2 N1 N N1 N4 N	No. No. No. No. No. No. No. No. No. No.	N4 N5 N4 N4 N4 N5 N5 N5 N5 N5 N5 N5 N5 N5 N5 N5 N5 N5	N4 N5 N4 N4 N1 N5 N5 S2 N5 N5 N5 N5 N5 N5 N5 N5 N5 N5 N5 N5 N5	N4 N5 N4 N4 N1 N2 N2 N3 N2 N5 N2 N5 N2 N3 N2 N3 N4 N5 N1 N2 N3 N4 N5 N1 N3 N4 N5 N1 N3 N4 N5 N5 N5 N5 N5 N5 N5 N5 N5 N5 N5 N5 N5	N ₈ N ₂ N ₃ N ₄ N ₄ N ₄ N ₅ N ₅ S ₂ S ₃ N4	N4	



Seedling prepared for Varietal Comparative Study

Trial plots at early stage (Transplanted)

Chao Phya Pilot Project

Dry Season, 1983-841

Varietal Comparative Study r.

Objectives :

To study the performance and productivity of different varieties/entries under Chao Phya Area conditions.

Experimental Design :

RCBD with 3 replications.

Treatments :

Contribution Section 2015 Section 2.004	
No.	Varieties/entries
1	SP. 75001-68
2.	SP. 78002-80
3.	SP. 75004-5
<u>u</u> .	SP. 75004-37
5.	SP. 77097-62
6.	RD-7
7.	RD-9-7
8	BKNBR 1141-2-4-2-2-2-1
9.	RD-9-14
10	RD-21-3
11.	RD-23
12.	IR-44
13.	IR-46
14	RD-25
15	RD-19

Plot Size : 5 m. X 4 m. = 20 m^2

Cultural Practices :

- 1. Seed rate: 4.0 kg./rai (dry seed)
- 2. Planting density: 25 X 25 cm. (16 hills/m²)
- 3. Weed control : Manual weeding
- 4. Fertilizer application :

: NPK 10 kg./rai as a form of complete fertilizer

(15 - 15 - 15)

Top dressing : 3kg. of N/rai as ear manuaring as a form of Ammonium Sulphate. (panicle initiation stage)

5. Plant protection

: 15 days after transplanting (5 kg./rai) Furadan G (5 kg./rai) Padan Mipcin G : 35 "

6. Duration

December 1, 1983 Sowing December 22, 1983 Transplanting

Harvest March 14-27, 1984

Trial No. I

Trea	rtments	Re	Mean		
No.	Treatment	I	II	111	(∑)
1.	SP75001-68	677	657	605	646.3
2.	SP78002-80	630	780	782	730.6
3.	SP:75004-5	773	85 2	707	777.3
ц.	SP75004-37	756	750	766	757.3
5.	SP77097-62	825	776	768	789.7
6.	RD-7	637	786	701	708.0
7.	RD-9-7	576	713	709	666.0
8.	BKNBR1141-2-4-2-2-2-1	710	693	778	727.0
9.	RD-9-14	702	720	649	690.3
10.	RD-21-3	882	922	877	893.7
11.	RD-23	825	763	774	787.3
12.	IR-44	887	788	787	820.7
13.	IR-46	866	874	764	834,7
14.	RD-25	590	622	558	590.0
15.	RD-19	713	585	565	621.0
NO.	Mean (\overline{X})	736.6	752.1	719.3	736.0

Table I-1

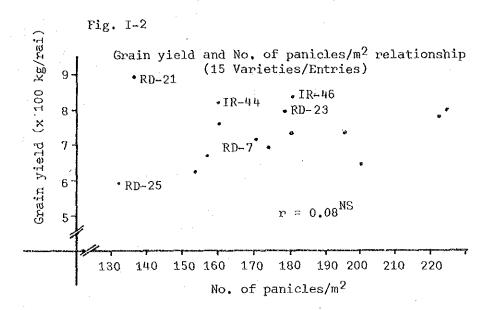
ANOVA

SV	DF	SS	MS	F	Required F			
and the same of th		-			36	16		
Total	44	392820			[
Treatments	14	299703	21407	7.05**	2.06	2.80		
Block	2	8044	4022	1.32	3,34	5,45		
Error	28	85073	3038					

LSD for treatment : 5% = 92.2 (kg/rai) 1% = 124.3 (kg/rai)

CV = 7.49 (%)

Duncan's Multiple Range Test


Varieties/Entries	Mean Yield (kg/rai)	DMRT					
		5%	1				
10, RD-21-3	893.7	ā	а				
13. IR-46	834.7	ab	ab				
12. IR-44	820.7	abc	abc				
5. SP77097-62	789.7	bed	abcd				
11. RD-23	787.3	bcd	abcde				
3. SP75004-5	777.3	bcd	abcde				
4. SP75004-37	757.3	bcde	bcdef				
2. SP78002-80	730.6	bcdef	bcdef				
8. BKNBR1141-2-4-2-2-1	727.0	cdef	bcdefg				
6, RD-7	708.0	defg	bcdefg				
9. RD-9-14	690.3	defgh	cdefg				
7. RD-9-7	666.0	efgh	defg				
1. SP75001-68	646.3	fgh	efg				
15. RD-19	621.0	gh	fg				
14. RD-25	590,0	h	9				

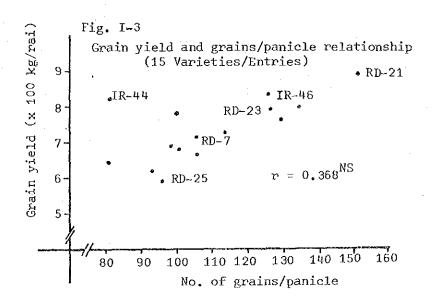

Table I-2

Table I-3

RD-25	•
61-09	
89-1005645	
7-9-08	
PL-6-08	·
n 7-08	
けい	
08-2008/d5	Ę.
£	g, I-1
S-6008792	r r r g
80-23 E	
\$25.000	
1B-44	
96-91	
80-2-1-3	
N P & G O	
(ren\g# 001 X) bisiy misnd 5 % % 4 %	

	Plant	Heaght	(E)		37.5	ნ• #6	107:1	101.9	119.9	103.2	3 6 6	124.0	98.6	110.6	108.2	89.1	101.5	95.3	93,0		102.3	10.
Ì		T	Tillers(8)		-		69.1								-	-					72.08	70.01
	Grain/				213	'n	83.	145	11:7	31	102	115	100	86	356	116.	129	159	122.		112.1	21,1
	Stem	length	(cm)		57.9	65.6	75.2	69.2	85.1	71.3	67.6	88.7	65.6	76.7	71.7	58:2	69.8	62.4	55.1		20.07	6.7
3/entries	Panicle	longth			21.7.	25.9	24-3	24.2	24.6	24.0	23.9	27.3	22.6	6.42	24.8	22.0	22.1	23.0	20.9	_	23.7	1.7
field Components and related figures on different variaties/entries	Estimated	yleid	(zm/3)		362,2	422.1	470.8	1 446.1	1 0.035	363.8	336.5	473.1	322,7	1 +34.2	1 448.0	1 4,205	454.3	340.3	307.5		403.4	9.47
s on differ.		1000	grains	Weight(g)	27.4	24.0	28.5	29.6	26.5	27.0	28,6	29.2	28.0	1 28,0	27.6	26.8	24.0	29.3	32.2	-	27.8	2.1
d figure	ints	Ripened	grain	(%)	81.7	88.0	74.5	72.8	70.3	74.47	9.69	79.1	67.1	74,1	71.2	88.1	83.1	8.68	5.99		7.97	7.
nd relate	Yield Components	Crains/	panicle		80.9	102.4	95.7	123.4	134.2	106.8	107.8	113.3	98.5	152.1	127.2	81.9	126.0	97.4	93.5	-	110.1	20.1
saponents a	Yfel	Panicies/	E 2		200,0	195,2	222.4	160.0	224.0	169.6	156.8	100.0	174.4	137.6	179.2	160.0	180.8	132.8	153.6	,	175.1	27.0
Teld Ct		£ty.	DAT		98	- 25	90		- G		- 06	- 32	. 6	- 66	55		-			<u> </u>	92.0	-
>-		Mat w 1t)	Dota	-	Mar. 17	Mar. 23	H&r. 21	MAT. 21	Har. 26	Mar. 27	Mar. 21	Mar. 23	Mar. 23	Mar. 24	H45. 26	Hay. 26	Kar 26	X47. 14	7			_
			DAT		9	6.7	83				67	. 5		9 9				. 6	3 5	;	8 8	
	203	Reading	Date	-	reb. 20	rab. 23	rab. 26	7eb. 2dl	rab. 201	Kar. 2	G.	ą.	ę		Mar	1.4				Ś		
		Variation	Untrias		1. SP75001-68	2. SP78002-NO	3, 5775004-5	4. SP75004-37	3. SP77697-62	5 . 20 . 7	7 80-9-7	0 BXNRR-1141	#D. 6.	10.80.01.3	11. 20.23	73 C.	20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20,00	25. 50. 10	*****	Mean (X)	

The different varieties or entries are having different characteristics and different manners to grow.

Fig. I-2 and I-3 shows relationship between grain yield and number of panicles/ m^2 and number of grains/panicles.

Some varieties having higher tillering capacity or produced more panicles/m² than others or Viceversa. Similarly in panicle size or number of grains/panicle.

Low computed r-value (correlation coefficients) indicate that there is no significant relationship between mean grain yield and panicles/ m^2 or grain/panicle of different varieties/entries since they have their own characteristics.

(Table I-3)

(15 Varieters/Entries)

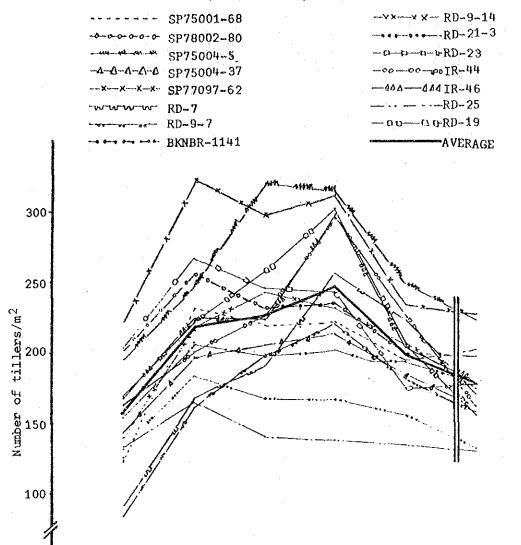


Fig. I-4

Days After Transplanting

45

55

Growth observation of Varietal Comparative Study

35

25

Dry	Season	1983-8

harvest

65

					Days A	fter Tra	nsplantin	B			l
Treatments	25 DAT '		3	S DAT	4	5 DAT	55 D	AT	65	Harvest	
(Entries)	Tillers/	Plant Height	fillers/	Plant Height	Tillers/ m2	Plant Height	Tillers/	Plant height	Tillers/	Plant Height	Panicle,
1. SP75001-68	123.2	37.1	230.4	48.8	222.4	61,4	228.8	76.2	211.0	£7.5	200,0
2. SP78002-80	201.6	38.3	257.6	50.5	232.0	67.7	238.4	68.7	198.4	94.9	195.2
3. SP75004-5	193.6	37.4	248.0	59.9	321.6	68.8	313.6	83,7	248.0	107.1	222.4
4. SP75004-37	142.4	30.9	196.8	50.7	204.8	61.0	212.8	79.7	185.6	101.6	160.0
5. SP77097-62	225.6	38,2	323.2	52.7	294.4	54.3	310.4	80.4	230.0	115.6	224.0
5. RD-7	91.2	36.1	168.0	43.8	216.0	52.6	252.8	65.9	208.0	88,8	169.6
7. RD-9-7	84.8	40.8	160.0	50.7	196.8	61.8	217.6	73.4	182.8	99.3	156.8
8. BKNBR-1141	152.0	43,3	206.4	55.6	195.8	75,4	200.0	92.1	184.0	124.0	160.8
9, RD-9-14	140.8	42.4	216.0	52,3	241.6	63.6	236.8	69.2	203.2	38.6	174.4
10. RD-21-3	137.6	43.9	179,2	54.5	166,4	70.8	164,8	84,4	152.0	109.6	137.6
11. RD-23	203.2	40.0	265.6	55.4	244.8	73.1	243.2	85,2	197.0	108.2	179.2
12, IR-44	161,6	32.4	200.0	44.2	225.6	58.1	292.8	67.9	222 4	89.1	
13. IR-46	168.0	38,2	232.0	51.1	224.0	66.4	297.6	79.1	201.6		160.0
14. 20-25	131.7	42.7	164.8	57.5	133,2	72.1	136.0	93.6		101,5	180.0
15, RC-19	160.6	36.3	204.8	47.9	256.0	52.8	300.8		136.6	67.5	132.5
					, 230.0	32,6	300.8	63,4	203.2	93.1	150.7
Kean(X)	155.1	39.1	716,8	51.4	225.5	64,7	243.1	77.5	197.4	111.56	175.1
S.D.	40.2	3,2	44.3	4,0	¥5,3	7.0	53.2	9.3	28.3	10.9	27.0

Resutls and Discussion :

1. Grain yield

Productivity of 15 varieties/entries were compared in terms of mean grain yield at 14% moisture.

Among 15 varieties, RD-23 is the most popular variety in the Chao Phya Pilot Project area covering nearly all of the farmer's field within the project. RD-21 is occasionally planted by few farmers.

The results of comparative study shows that <u>RD-21-3 produced highest</u> mean grain yield in this season. It is significantly higher grain yield over RD-23 at 5% level of significance. This is converse result from last Wet season.

IR-46 and IR-44 were belong to high yielding group.

Among RD- varities, the yield of RD-25, 19, 9 and 7 were significantly lower than the yield of RD-21-3 even at 1% level of significance.

(refer to Table I-1, 2 Fig. I-1)

2. Observation of yield components & related figures

The incidence of RRSV (Rice Ragged Stunt Virus) was much less than last Wet season crop. It is judged that RRSV infection did not influence much to the grain yield in this Dry season.

Yield components and related figures are shown in Table I-3. RD-21-3 with greater number of grains/panicle is evident cause for high yield even number of panicles/m² is low. RD-23 was observed to be moderate level of tillering capacity with relatively bigger panicles among varieties tested.

Conclusion :

In consequence of the trial results, varieties of RD-21 and RD-23 were found to be superior to other RD-varieties in this locality.

It is concluded that these two varieties can be kept as a recommended varieties in this area at present.

So far recommendation of rice varieties of RD-23 and RD-21 have been quite successful and production level of farmer's field has been increased up to satisfactory level especially after introduction of RD-23.

However, there is no perfect varieties against every factors related to production. Continuous study is absolutely needed to assess and to select promising varieties suited in the locality in addition to RD-23 and RD-21.

AT least 3-4 promising varieties should be selected and multiplied at Trial Farm ready to supply for the farmers.

Chao Phya Pilot Project

Dry Season, 1983-84'

II. Nitrogen Source Comparative Trail

Objectives:
1. To determine the effect of GME, HSC and Ammonium Sulphate on the growth and yield of rice under Chao Phya Pilot Project conditions.

2. To Study the best fertilizing method for profitable and economical rice production.

Experimental Design : RCBD with 3 Replications.

Treatments : (kg. N/rai)

And the Party of t		Contract of the Contract of th	
Treatments :	Basal	Topdress	Total
1 2 3 4 5 6 7 8 9	0 6 (GML) 6 (HSC) 6 (A.S.) 6 (GML) 6 (HSC) 6 (A.S.) 12 (GML) 12 (HSC) 12 (A.S.) 12 (GML)	0 0 0 6 (A.S.) 6 (A.S.) 6 (A.S.) 0 (0 0	0 6 6 6 12 12 12 12 12 12 12
12 13	12 (HSC) 12 (A.S.)	6 (A.S.) 6 (A.S.)	18 18

Top dress of Nitrogen applied at panicle initiation stage.

Variety used : RD-23

 $: 5 \text{ m. } X \text{ 4 m.} = 20 \text{ m}^2$ Plot Size

Cultural Practices :

- 1. Seed rate : 4.0 kg. of dry seed/rai
- 2. Seedling age : 20 days
- 3. Planting density and number of seedlings/hill 25 X 25 cm. (16 hills/m²) 3 seedlings/hill
- 4. Weed control: Saturn G applied at 5 days before transplanting at a rate of 5 kg./rai
- '5. Plant Protection :
 - (1) Furadan G : 2 weeks after transplanting at a rate of 5 kg./m
 (2) Padan Mipcin : 5 weeks after transplanting " " " "

6. Duration

December 1, 1983 Sowing December 22, 1983 Transplanting 28, 1984 Harvesting March

Note: * GML: Glutamic Mother Liquor (4.6% N. in Volume) ** HSC : Humus Soil Conditioner (4.0% N. in weight)

Trial No. II

Treatments		Rei	olicatio	Mean	
No.	Treatment	1	II	III	(X)
, , , , , , , , , , , , , , , , , , ,	Control (0-0)	418	504	480	467.3
2.	6 (GML)-0	639	589	617	615,0
3.	6 (OSC)-0	560	544	496	533,3
Ł,	6 (A.S.)-0	581	623	558	587.3
5.	6 (GML)-6 (A.S.)	726	833	810	789.7
6.	6 (OSC)-6 (A.S.)	811	828	718	785.7
7.	6 (A.S.)-6 (A.S.)	653	821	826	766.7
8.	12 (GNL)-0	671	702	592	655.0
9.	12 (OSC)-0	698	709	645	684.2
10.	12 (A.S.)-0	792	831	681	768.0
11.	12 (GML)-6 (A,S.)	707	958	825	830.0
12	12 (OSC)-6 (A.S.)	858	958	924	913.3
13.	12 (A.S.)-6 (A.S.)	790	910	859	853.0
	Mean (\overline{X})	684,9	754.6	694.7	711.4

Table II-1

ANOVA			Table II-1			_
SV	DF	SS	MS	ľ,	Required f 5% 1%	
Total Treatments Block Error	38 12 2 24	745248 638059 37021 70168	53171 18510 2923	18.19** 6.33	2.18 3.03 3.40 5.61	62-23

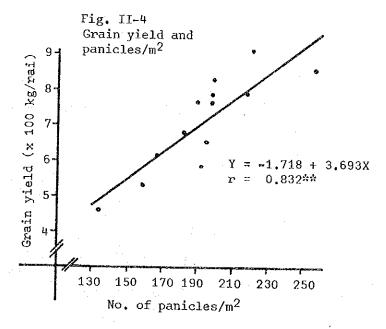
LSD for treatment : 5% = 91.1 (kg/rai)1% = 123.4 (kg/rai)

CV = 7.60 (%)

Duncan's Multiple Range Test

Treatments		Mean Yield	DM	DMRT		
	<u> </u>	(kg/rai)	5%	1%		
12.	12(OSC)-6(A.S.)	913,3	a	a		
13.	12(A.S.)-6(A.S.)	853.0	ab	ah		
11.	12(GML)-6(A.S.)	830.0	ab	ab		
5.	6(GML)-6(A.S.)	789.7	b	abc		
6.	6(OSC)-6(A.S.)	785.7	ь	ab c		
10.	12(A,S.)-0	768.0	bc	bc		
7.	6(A,S.)-6(A.S.)	766.7	bc	bc		
9.	12(OSC)-0	684.2	cd	cd		
8,	12(GML)-0	655.0	d	cde		
2.	6(CML)-0	615.0	de	de		
4.	6(A,S.)-0	587.3	de	de		
3.	6(OSC)-0	533.3	ef	е		
1.	Control (0~0)	467.3	f (

Table II-2


Yield Components and related figures on different treatments

		1	Yield Co	mponents		Estimated	Panicle	Sten	Grain
Treatments	Panicle/m ²	Grain/ panicla	Ripened grain (%)	1000 grains weight (g)	Yield (g/m ²)	length (cm)	length (cm)	straw ratio	
1,	Control (0-0)	132.8	85.9	75,7	26.0	224.5	22,0	60.0	107
2.	6(GNL)~0	168.0	101.4	80,1	27.0	358.4	24.3	67,7	101
à,	6(OSC)-0	164.8	122,4	74.8	26.1	393.7	24,6	67.8	116
ų,	6(A,S,)-0	192.0	109.3	69.4	27.7	403,4	24.2	70.6	102
5.	6(GML)-6(A,S,)	217.6	109.3	75.8	27.6	497.6	24.6	66.8	114
6.	6(OSC)-6(A,S,)	193.6	139.5	74.3	27.6	554.2	26,7	73,4	130
7.	6(A.S.)-6(A.S.)	198,4	124.1	77.2	27.7	526.5	26.2	71.7	109
8.	12(CHL)-0	195.2	100.5	78.7	27.3	421.3	24,2	69.0	109
9	12(OSC)-0	182.4	112.7	77.8	26.8	429.0	24.4	67.5	109
10.	12(A.S.)-0	188.8	113.2	73.7	28.0	441.3	24.4	72.7	: 114
11.	12(GML)-6(A.S.)	198.4	102.6	72.0	27.3	400.3	23,3	66.0	102
12.	12(OSC)-6(A,S.)	220.8	132.2	73.2	27.6	592.9	25.7	73.4	120
13.	12(A.S.)-6(A.S.)	257,6	140.8	72.2	27.B	728.0	26,8	79.4	150
	Wean (X)	193,1	115.0	75.0	27.3	460.1	24.8	69.7	1:3.4
	S.D.	30.0	16.3	3.0	0.6	123,1	1,4	4.7	13,3

Table II-5

	ĺ	Vield Component			Estimated	Panicle	Stem	Grain/
Nitrogen (kg N./rai) Basal Top Dressing	Panicle/m ²	Grains/ panicle	Ripened grain (%)	1000 grains veight	Уіеїd (g/m²)	length (cm)	(cm)	Straw ratio
12 - 6 6 - 6 12 - 0 6 - 0 Control	225.6 203.2 188.8 174.6 132.8	125.4 124.3 108.8 111.0 85.9	72.5 75.8 76.7 74.8 75.7	27.6 27.6 27.4 27.0 26.0	573,7 526,1 430,5 388,5 224,5	25.6 25.8 24.3 24.4 22.0	72.9 70.6 69.7 68.7 60.0	122,0 117,1 110,1 106,3 107,0
flean (X)	185.0	111.1	75.1	27.1	428.7	24.4	68.4	112.7

Table II-6

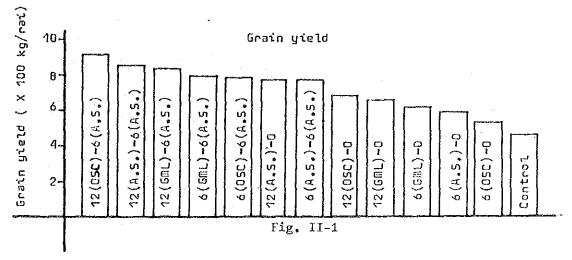
Comparison among mean yield of Nitrogen levels regardless N. source

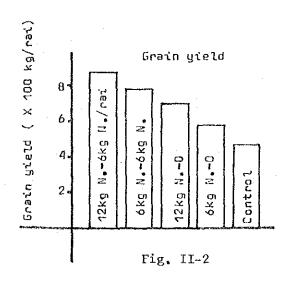
Nitrogen levels	Mean yield	DART		
(kg N./rai)	(kg/rať)	5%	1%	
12 - 6	865	а	a a	
6 - 6	781	៦៦	ab	
12 - 0	702	tı	рс	
6 0	578	С	C	

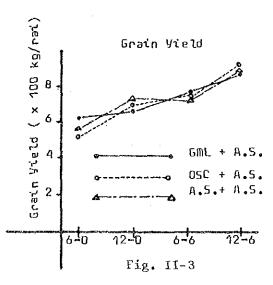
Table II-3

LSD (5%) : 101.'
(1%) : 136.9

101.7 (kg/rai) 136.9 (kg/rai)


CA


8.33 (%)


Comparison among mean yield of Nitrogen Sources & Levels (kg/rai)

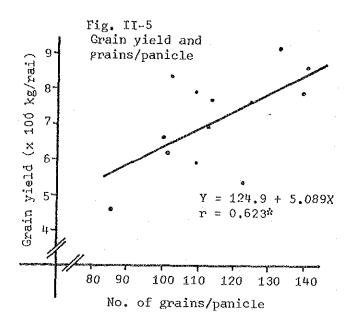

Nitrogen	Ni	Nitrogen levels (kg/rai)				
Sources	*6 - C	6 - 6	12 - 0	12 - 6	(∑)	
GML + A.S.	615	789	655	830	722.2	
05C + A.S. A.S.+ A.S.	533 587	785 766	684 768	913 853	728.7 743.5	
Mean (X)	578	781	702	865	731.5	

Table II-4

Results and Discussion

1. Grain yield

The mean grain yield were not influenced by the Nitrogen source itself, since no significant difference were observed among the grain yield of different sources of Nitrogen.

However, amount of Nitrogen is significantly related to the mean grain yield regardless N. sources; i.e., the yield of highest dose of N. (12-6kgN./rai) was significantly higher than the yield of (12-0kgN./rai), (6-0kgN./rai) and control(0-0).

When the same amount of N. applied, split application was observed to be better grain yield than the basal application only though difference is not significant (6-6kgN./rai VS. 12-0kgN./rai). 6kg of additional N. top dressed at panicle initiation stage significantly increased the mean grain yield even 1% level of significance.

(Table II-2-4, Fig. II-1-3)

2. Yield components and related figures

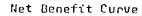
Panicles/m² and grains/panicle are closely related to Nitrogen level; i.e. both of two factors increased in parallel with Nitrogen levels. Thus grain yield increased.

Top dressing of N, at panicle intiation stage seemed to promote particularly in increasing number of grains/panicle.

% of ripened grain and 1000 grains weight were not very influenced by the Nitrogen application in this case.

(Table II-5-6, Fig. II-4-5)

Treatments	Grain Gross yield benefit		Var	Net benefit		
Thed fluction	(kg/rai)	1 1	Fertilizer	Opportunity cost	Total	(B/rai)
1. Control (0-0)	421	1226				1226
2. 6(GML)-0 3. 6(OSC)-0	554 480	1613 1399	57.4	5.0	62,4	1551
4. 6(A.S.)-0	529	1541	65.7	16.0	81.7	1459*
5, 6(GML)-6(A.S.)	711	2072	123.1	21.0	144.1	1926
6. 6(OSC)-6(A.S.)	707	2061				Ì
7. 6(A.S.)-6(A.S.)	690	2011	131,4	32.0	163.4	1848*
8. 12(GML)-0	590	1718	114.8	5.0	119 $_{\mathfrak{g}}8$	1598
9, 12(OSC)-0	616	1794				
10. 12(A.S.)-0	691	2015	131,4	24.0	155.4	1859*
11. 12(GML)-6(A.S.)	747	2178	180.5	21.0	201.5	1977
12. 12(OSC)-6(A.S.)	822	2396		}		
13, 12(A.S.)-6(A.S.)	768	2238	197.1	40.0	237.1	2001
Mean (X)	640	1866			****	-
			able II 7		CONTRACTOR OF THE PARTY OF THE	


Table II-7

The Treatments with " mark were dominated.

(2) Marginal analysis Marginal rate of return of undominated treatments

Undominated Treatments	Net benefit	Variable cost	Marginal vs. next	rate of return
	(B/rai)	(B/rai)	highest benefit	check (control)
13. 12(A.S.)-6(A.S.) 11. 12(GML)-6(A.S.) 5. 6(GML)-6(A.S.) 8. 12(GML)-0 2. 6(GML)-0 1. Control(0-0)	2001 1977 1928 1598 1551 1226	237.1 201.5 144.1 119.8 62.4	67.4(%) 85.4 1358.0 81.9 520.8	326.9(%) 372.7 487.2 310.5 520.8

OSC is excluded in economic analysis since it is not commercialized yet. Table II-8

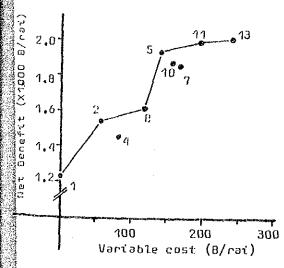


Fig. II-6

From the econmic point, in consequence of partial budget analysis indicate that the highest marginal rate of return among undominated treatments was obtained from the treatment of 6(GML)-6(A.S.).

Heavier application 12(GML)-6(A.S.) and 12(A.S.)-6(A.S.) further increased net benefit over 6(GML)-6(A.S.). However marginal rate is not very high.

It is safe to judge that 6kg of Nitrogen/ rai as a form of GML applied as basal plus 6kg of N/rai top dressed at panicle initiation stage as a form of Ammonium Sulphate was found to be very profitable and secure application way of Nitrogen fertilizer.

(Table II-7-8, Fig. II-6)

Conclusion :

Nitrogen source did not influence to the grain yield. Quantity of Nitrogen was significantly associated to the grain yield. Split application (basal & top dressing at panicle initiation stage) of Nitrogen seemed to be more profitable than the application of basal only.

Right amount of Nitrogen fertilizer applied at right time greatly contribute in increasing grain yield as well as net benefit.

Basal application of 6kgN./rai plus top dressing of the same amount of Nitrogen at panicle intiation stage was found to be safety and highly profitable. More Nitrogen applied as basal dose provided little more net benefit increment.

Chao Phya Pilot Project

Dry Season, 1983-84

III. Nitrogen X Phosphorus Fertilizer Trial

Objectives:
1. To study the effect of Nitrogen and Phosphorus fertilizer on the

growth and yield of rice.
2. To determine an optimum economic fertilizer rate under Chao Phya Pilot area conditions.

Experimental Design :

RCBD Factorial with 2 Replications.

In the first block (Replication) only, the treatments were arranged for demonstration purposes with Nitrogen increasing along one direction and Phosphorus along the other direction.

Treatments:

Nitrogen	No : No N.applied
(as A.S.)	N ₁ : 6 kg. N/rai
	N ₂ : 12 kg. N/rai
	N ₃ : 18 kg. N/rai
Phosphorus	Po : No P. applied
(as TSP)	P ₁ : 5 kg. P/rai
	P ₂ : 10 kg. P/rai

Application method N. Level	: (N Basal	. kg./rai) 1st T.D. (15 D.A.T.)		Total N
N	0	0	Q	0
N ₁	6	0	0	6
N	6	3	3	12
N ₃	10	ft	4	18

Phosphorus applied as a basal before transplanting

Plot Size : 5 m. X 4 m. (20 m²)

Variety used : RD-23 Cultural Practices :

1. Seed rate : 4 kg./rai (dry seed)

2. Seedling age : 20 days

3. Planting density: 25 X 25 cm. (16 hills/m²)

4. Weed control : Manual Weeding

5. Plan Protection :

(1) At a rate of 5 kg./rai of Furadan Granule applied at 15 days after transplanting.

(2) Padan Mipcin applied at 35 days after transplanting at a rate of 5 kg./rai.

6. Duration

Sowing : December 1, 1983
Transplanting : December 22-23, 1983

Harvesting : March 28, 1984

Trial No. III

Grain Yield (kg/rai)

Trea	itments	A CONTRACTOR OF THE PROPERTY O	Replic	ations	Mean
No.	Treatment		I	II	(₹)
1.	No Po	(0-0)	472	482	477.0
2.	N _O P ₁	(0-5)	454	494	474.0
3,	N _O P ₂	(0-10)	491	396	443,5
ц.		(6-0)	485	707	596.0
5.		(6-5)	597	599	598.0
6.	N P 2	(6-10)	585	639	612.0
7.	$N_2 P_0$	(12-0)	881	911	896.0
8.	N ₂ P ₁	(12-5)	1044	858	951.0
9.	N ₂ r ₂	(12-10)	903	1110	1006.5
10.	$N_3 P_0$	(18-0)	1066	1165	1115.5
	•	(18-5)	1043	1149	1096.0
12.	N ₃ P ₂	(18-10)	1152	1131	1141.5
	Mean (\overline{X})		764.4	803,4	783.9

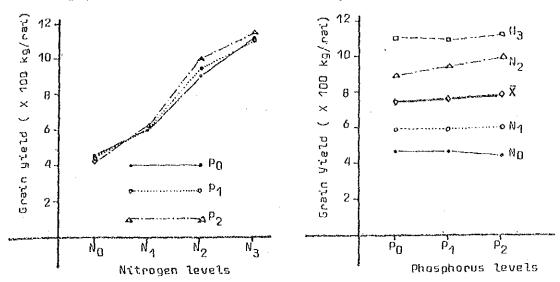
Table III-1

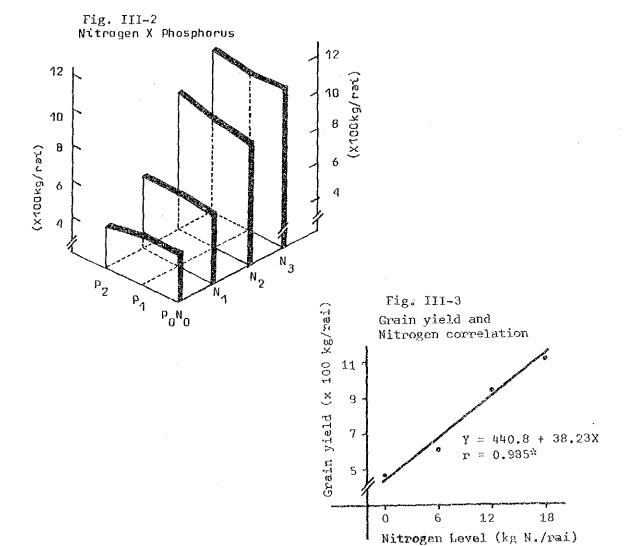
ANOVA

SV	DF	SS	MS		Requir 5%	red f
Total	23	1742966		**		
Treatment	11	1661590	151053	23.0	2.82	4.46
Block	1	9126	9126	1.39	4.48	9.65
Nitrogen	(3)	1645617	548539	83.5	3,59	6.22
Phosphorus	(2)	3748	1874	0.28	3.98	7.20
NXP	(6)	12225	2037	0.31	3,09	5.07
Error	11	72250	6568			

LSD : Between Nitrogen Means 5% = 103.00 (kg/rai) 1% = 145.33 (kg/rai)

Between Phosphorus Means 5% = 89.19 (kg/rai) 1% = 125.86 (kg/rai)


14.62 (%) CV


Treatment means : (Grain Yield : kg/rai)

Nitrogen	Ph	Phosphorus		Nimmann ann	DMDT (50)	
nttrogen	Po	0		Nitrogen mean	DMRT (5%)	
No	477.0	474.0	443.5	468.8	а	
N ₁	596.0	598.0	612.0	602.0	Ъ	
N 2		951.0	1006.5	951.1	С	
N ₂	1115.5	1096.0	1141.5	1117.6	d	
Mean (X)	771.12	779.75	800.87	783.75	##Francy-texas	

Table III-2

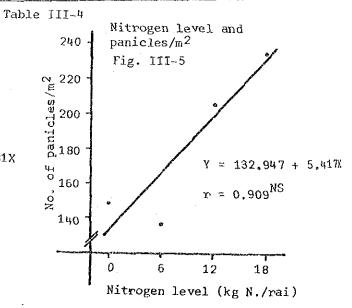
Fig. III-1 Mean Grain Yield in relation to Nitrogen and Phosphorus

Yield Component and related figures on different treatments

		Yield Co	mponents		Estimated	Panicle	Stem	Grain/	
l reatments	Panicla/m ²	Grain/ pahicle	Ripened' grain (%)	1000 grains weight (g)	Yield (g/m ²)	length (cm)	length (cm)	strau ratio	
1. N ₀ P ₀	150.4	86, 8	79,8	26.1	272.0	22.0	63.8	91	
2. No P1 .	155.2	88,4	78,0	25.0	267.5	23.7	8,03	113	
3. R ₀ P ₂	140.8	96.6	81,2	25.0	276.1	22.6	60.1	215	
4. N PD	142.4	113.2	76.1	25.0	306.7	23.6	65 կ	98	
5. N P	140.8	101.1	74.3	26.8	281.3	22.4	63.2	99	
6, K, P,	129.6	102.3	80.0	27.0	286.4	23,4	62,0	111	
7. N ₂ P ₀	190.4	120.3	73.4	25.1	472.4	24.6	75.2	107	
8, N, P,	208.0	124.8	70.9	29.1	517.2	25.2	79.2	114	
9. H ₂ P ₂	220.8	109.4	69.2	28.0	465.0	20,5	7€.7	90	
10. N ₃ P ₀	232.0	133,2	74.9	58.0	549.1	26.0	24.2	230	
11, N ₃ P ₁	230.4	164.7	72.8	28,1	776.3	26.4	83.8	126	
12. N ₃ r ₂	240.0	145,9	80,5	28.5	803.3	26.3	85,1	129	
ðean (茲)	181.7	115.5	76.0	27.0	448.0	24.2	71.6	108,6	
3,0,	42.5	23.6	4.0	1.4	201.5	1.6	10.0	12.4	

Table III-3

	· ·	Vield Component					Stem	Grain/
Fertilizer levels	Panicles/m ²	Grains/ panicle	Ripened grain (%)	1000 grains geight	grain gield (g/m²)	tength (cm)	length (cm)	Straw ratio
N	148.8	90.6	79.7	25.4	272.0	22.8	61.6	106.3
N.	137.6	105.5	76.8	26.2	291,5	23,1	2.63	102.7
y_1	206.4	118.2	71,2	28.1	486.0	24,8	77.0	104.0
ม _{ี2} ผ _{่3}	234.1	146.D	76.1	20.2	742.6	26.2	84.4	121,7
	178.7	113.4	76.0	29.8	424.8	24.0	72.2	101.5
Р _О	183.6	117.7	74.0	27.0	461.3	24.4	71.7	113.0
P ₂	182.8	113.5	77,7	27.1	458 • 4	24.2	71.0	111.2
flean (X)	181.7	115.5	76.0	27.0	446.0	24.2	71.6	100.6


Fig. III-4

Nitrogen level and grains/panicle

Y = 87.7 + 3.081X

r = 0.974*

Nitrogen level
(kg N./rai)

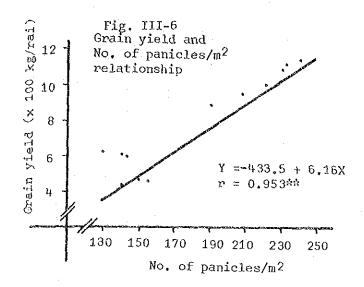


Fig. III-7

Grain yield and grains/panicle

Y = -383.7 + 10.127X

r = 0.868**

80 90 100 110 120 130 140 150

Grains/panicle

Results and Discussion :

1. Grain yield

The mean grain yield was very much related with Nitrogen quantity. The effect of Nitrogen was great since the grain yield was increased along with the increment of Nitrogen levels.

Between every Nitrogen levels, significant differences were observed on the grain yield. Whereas no significant effect of Phosphorus obtained for yield.

Grain yield was especially increased when Nitrogen level increased from N₁(6kgN./rai) to N₂ (12kgN./rai). Between N₁ and N₂ 58kg of grain increased in every 1kg of additional Nitrogen.

(Table III-2, Fig. III-1-2)

Estimated linear regression based on the actual grain yield indicates clear relationship between grain yield and Nitrogen level. From this equation effect of every 1kg of additional Nitrogen produced 36kg of dry grain within the N. level of 0-18kgN./rai

(Fig, III-3) - Cont.-

Partial Budget Analysis
(1) Dominance Analysis

使业 为中心中间	Construction	Gross	Varia	Variable cost (B/rai)					
Treatments	Grain yield (kg/rai)	benefit	Fertilizer	Opportunity	Total	Net Benefit			
11 Carimotres	(167141)	(B/rai)		cost		(B/rai)			
!. NoPo	429	1251	and	Annual Control of the Annual Control of the	444	1251			
2. N _O P ₁	427	1244	65.2	16	81,2	11634			
3, N ₀ P ₂	399	1163	130.4	[.] 16	146.4	10174			
4. N ₁ P ₀	536	1564	65.7	16	81.7	1482			
5. N ₁ P ₁	538	1569	130.9	16	146.9	1422%			
6. N ₁ P ₂	551	1696	196.1	16	212.1	13944			
7. N ₂ P ₀	806	2351	131.4	. 48	179.4	2172			
8. N ₂ P ₁	856	2495	196.6	48	244,6	2250			
9. N ₂ P ₂	. 906	2641	261.8	48	309.8	2331#			
10. N ₃ P ₀	1004	292 7	197.1	118	245.1	2682			
11. N ₃ P ₁	986	2875	262.3	48	310.3	2565#			
12. N ₃ P ₂	1027	2995	327.5	48	375.5	2620*			

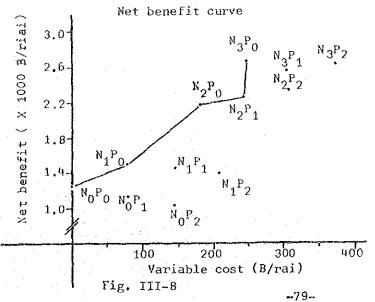

Note : * : dominated treatments

Table III-5

(2) Marginal analysis

Undominated	Net	Variable	rate of return	
Treatments	benefit (B/rai)	cost	VS. next highest benefit	VS. check (control)
¹⁰ . N ₃ P ₀	2682	245,1	86400.0 (%)	538.8 (%)
8. N ₂ P ₁	2250	244.6	119.6	408.4
7. N ₂ P ₀	2172	179.4	706.2	513,4
4. N ₁ P ₀	1482	81.7	282,7	282.7
1, N _O P _O	1251	-	-	-

Table III-6

2. Observation of Yield components and related figures

The effect of Nitrogen to grain yield was mainly in incresasing number of panicles per unit area and number of grains per panicle.

Whereas ripened grain% was not affected by the Nitrogen application and 1000 grains weight was slightly increased while Nitrogen level increased.

Simple linear regression shows the clear evidence of close relationship between grain yield and panicles/m² and grains/panicle due to the Nitrogen application.

On the contrary, Phosphorus application did not influence to any of the yield component factors at all.

(Table III-3-4, Fig. III-4-7)

3. Economy of Nitrogen and Phosphorus application

Great effect of <u>Nitrogen application appeared</u> to be very profitable from this trial results.

N₃P₀ (Total N. of 18kg/rai) without Phosphorus) treatment gave the highest net benfit with extremely high marginal rate of return.

In this trial the application of Phosphorus fertilizer was not profitable.

(Table III-5-6, Fig. III-8)

Conclusion :

Nitrogen response to grain yield was remarkable, whereas no Phosphorus effect was recognized.

The most profitable treatment was found to be 18kgN./rai (10kgN. for basal, 4kgN. at 15 days after transplanting and another 4kgN. top dressed at panicle initiation stage) without Phosphorus fertilizer. 12kgN./rai provided satisfactory production level also.

In general circumstances, Nitrogen level of around 12kg/rai seemed to be suitable and profitable when risk factor and production stability are taken into consideration.

Chao Phya Pilot Project

Dry Season, 1983-841

IV Planting Method Comparative Study

Objectives

- 1. To compare the performance of different planting methods i.e. Mechanical transplanting, manual transplanting and direct sowing on the grain yield and economy of rice production.
- 2. To study the suitability/adaptability of planting methods under Chao Phya Pilot area condition.

Experimental Design

RCBD with 4 replications

Treatments

No. 1: Mechanical Transplanting

No. 2: Manual Transplanting

No. 3: Direct Sowing (Broadcast)

Plot Size :

Each experimental unit consists of 5 m. \times 8m. = 40 m.

Cultural Practices :

- 1. Seed rate : Selected dry seed of 4.0 kg./rai for Mechanical & Manual Transplanting and 12.0 kg./rai for direct sowing.
- 2. Variety : RD-23
- 3. Weed Control: Apply Saturn G at 15 days after transplanting and broadcasting at a rate of 5 kg./rai.
- 4. Fertilizer Application :
 - (1) Mechanical & Manual Transplanting
 Basal: 6 kg. of N and 7.5 kg. of P/rai with 16-20-0
 1st topdress: 5 kg. of N/rai at 15 days after transplanting (A.S.)
 2nd topdress: 4 kg. of N/rai at panicle initiation stage (A.S.).
 - (2) Direct Soving

No fertilizer applied before sowing. 1st application: 6 kg. of N and 7.5 kg. of P/rai at 15 days after sowing with 16-20-0.

2nd application : 5 kg. of N/rai at 20 days after 1st application (A.S.)

3rd application : 4kg. of N/rai at panicle initiation stage (A.S.)

- 5. Plant Protection :
 - (1) Turadam G : 15 days after transplanting/broadcasting at a rate of 5 kg./rai
 - (2) Padan Mipcin: 35 days after transplanting/broadcasting at a rate of 5 kg./rai
- 6. Date of planting and harvesting.

Sowing seed (box) : December 1, 1983
Transplanting : December 23, 1983
Broadcasting (Direct) : December 23, 1983
Harvest : Transplanted : March 28, 1984

Direct Sowing : April 7, 1984

Grain Yield (kg/rai)

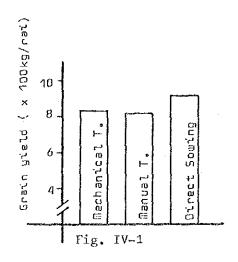

Treatments		Replica	tions		Mean
No. Treatment	Ι	II	III	IV	(X)
1. Mechanical Transplanting	807	821	- 806	838	818.0
2. Manual Transplanting	802	830	733	854 6	804.7
3. Direct Sowing	1014	914	943	972	960,7
Nean (X)	874.3	855.0	827.3	898.0	861.2

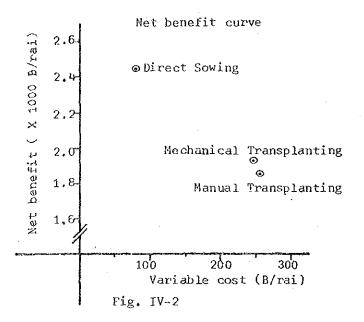
Table IV-1

SV	DI	SS	MS	I,	Required F 5% 1%
Total Treatment	11 2	74208 59852	29926	22.08	5,14 10,92
Block Error	3 6	6228 8128	2076 1355	1,53	4.76 9.78

LSD for treatment : 5% = 63.7 (kg/rai)1% = 96.45 (kg/rai)

CV = 4.27 (%)

vield Component and related figures on different treatments


		Yield Co	Yield Components				Sten	Grain/
Treatments	Fanicle/m ²	Grain/ panicle	Ripened grain (%)	1000 grains weight (g)	Yield (g/m²)	length (cm)	length (cm)	straw ratio
1. Mechanical Transplanting	214.0	121.3	81,5	26.3	556.4	25.2	71.4	101
2. Manual Transplanting	171.2	120.7	78,5	26,4	428,2	24.7	70,7	110
3. Direct Sowing	365.0	92.9	70.2	28.1	670.7	24.3	69.0	96
Mean(X)	250,4	111.6	76.7	27.0	551.8	24.7	70,4	:02.3

Partial Budget Analysis
(1) Dominance analysis

(x) Dominion of Mark	•			Name and Particular Street Str	_	Distriction of the last of the
The state of the s	Grain	Gross	V	ariable cost (B/1	rai)	Net
Treatments	Yield (kg/rai)	benefit (B/rai)	Seed & nursery	Transplanting Broadcasting	Total	benefit (B/rai)
1. Mechanical T. 2. Manual T. 3. Direct Sowing	736 724 865	2146 2111 2520	101 101 43	142 150 34	243 251 77	1903* 1860* 2443

Note: *: dominated treatments

Table IV-3

Results and Discussion

1. Grain yield

The mean grain yield of direct sowing method was significantly higher than the yield of transplanting method both mechanicl and manual.

In last year 1983 Wet season, transplanting method produced significantly higher grain yield than direct sowing method. On the contrary results of this Dry season became vice versa.

(Table IV-1, ANOVA, Fig. IV-1)

2. Yield components

Direct sowing method obviously produced more number of panicles/unit area than transplanting method.

Transplanting method tend to produce bigger panicle(number of grains/panicle) than direct sowing.

However, as a total number of grains/unit area, because of much greater panicles/m², direct sowing method recorded significantly better yield even panicle size and ripened grain % was lower than transplanting method.

(Table IV-2)

3. Econmical comparison among planting method

Judging from the results of this particular trial, <u>direct sowing method</u> appeared to be much more profitable than transplanting method.

The higher production with lower cost of direct sowing was obviously superior to transplanting method in this results.

Though more seed required for direct sowing method. Variable cost is estimated approximately 1/3 of the transplanting method.

Though it is not counted in this trial probably some more variable cost factors related to planting method should be considered such as field leveling, irrigation water management or weed control, because more caution is generally required for direct sowing.

Conclusion :

The results indicate that the grain yield and net benefit obtained from direct sowing method was much superior to transplanting method in this Dry season 1983-84'

Cost saving of direct sowing method is distinct advantage if production level is not inferior to transplanting method.