Exp. 2

Effect of seedling take off for space-line on yield and its yield components for germinated direct broadcasting rice.

	(1983	
Mr.	Vichien	Sasiprapa
Mr.	Opart	Chantasuk
Dr.	Tetsujir	o Sugahara

From the last wet season trial showing that seedlings taken off for line making plots had vigorous rice plant and increased yield, this trial is needed to confirm of the lasted results.

Material and method

Variety RD 23 1.

2. Design L 16 factorial design

Plot size $8x4 \text{ m} = 32 \text{ m}^2$ total $32x16 = 512 \text{ m}^2$ 3.

	 Sowing P.I.S. Booting 	Apr 7, 1983 May 30, 1983 Jun 17, 1983	(4) Heading (5) Harvest	Jun 21, 1983 July 26, 1983
--	---	---	----------------------------	-------------------------------

5. Treatment (kg/rai)

Demont	Plot	Seed	Space	Basal	Тор	N
Repeat	No.	Rate	line	N		
	Nor	A	B	С	D ₁	^D 2
		16	0	6	4	
	· 1	16	0	8		4
	2	16	ť.	6		4
	3		Ľ.	8	4	
	4	16	0	6	-	4
1	. 5	24	0	. 8	4	-
	6	24	r r	6	4	-
•	7	24	L T	8	• 	4
	8	24	L			
	9	16	0	6	÷	4
	10	16	0	8	4	-
	11	16	L	6	4	-
	12	16	\mathbf{L}	8	-	4
`	13	24	0	6	4	-
2 .	14	24	0	8	-	··· 4
-	15	24	L	6	-	4
	16	24	L.	8	4	

(1) Space was 20 cm and seedling belt 40 cm, take off date 19 days after sowing.

(2) Basal 19 days after sowing.

(3) $D_1 = P.I.S.$: Panicle initiation stage was 53 days after sowing.

(4) D_2^1 = Booting stage was 71 days after sowing.

8 days after sowing Saturn G 5 kg/rai Management 6. Furadan 5 kg/rai 11 days after sowing P.I.S. Furadan 5 kg/rai

Result

1. Yield

The yield obtained from 8 square metres cutting are given in table 1 and table 2 which show the calculation and analysis by YATE method.

Among treatment of yield, they were not significant on seed rate (16:24) space line (non:line) and basal (6:8 kgN/rai) but top dressing time of nitrogen shows a difference at 5% significant, that is P.I.S. stage top dressing yielded (6,178.8 kg) more than booting stage top dressing (5,616.0 kg).

2. Yield components

Yield components shown in table 3.

Grand mean of each component were number panicles per m^2 468, number of spikelets per panicle 61.2, ripening percentage 73.3, 1,000 grain weight 28.4, ratio of yield:straw = 1:0.78 and calculation yield per square metre by multiple yield components was 575.9 gm/m², out of these components only number of panicle per square metre and number of spikelets per panicle shown significant difference at 5% level.

For the number of panicle per square metre seed rate and space line treatment that is 24 kg/rai seed rate plots, the number panicle was 513.1 compared with 16 kg/rai seed rate plots 423.3 and non space plots the number of panicle was 516.1 but the space line plots was 420.3 as shown in table 4.

For the number of spikelets per panicle only 16 kg/rai seed rate plots (70.2) was higher than 24 kg/rai seed rate plots (52.1) but not significant between space line and non space line plots.

No,	Treatment	kg/ha	kg/rai
1	160~640	6007	961
2	160-804	6312	1010
3	16L-604	5377	860
4	16L-840	6205	993
5	240-604	5608	897
6	240-840	6583	1053
7	24L-640	6126	980
8	24L-804	5880	941
9	160-604	4835	774
10	160-840	5967	955
11	16L-640	6091	975
12	16L-804	6067	971
เว	240-640	6022	964
4	240-804	5429	869
15	24L-604	5412	866
۱6	24L-840	6429	1029

5897

944

. .

. . .

Table 1 Y

Yield (Sampling = $8 m^2$)

Mean

and the second

.

No.	Data	Yate-4	Effect	V	Fact
1	6007	94350.0	5896.9	556370156	CT
2	6312	-3394.0	-212.1	719952	Ċ.
3	5377	-824.0	~51.5	42436	B
4	6205	-244.0	-15.3	3721	BC
5	5608	-628.0	-39.3	24649	- A
6 .	6583	-1088.0	-68.0	73984	AC
7	6126	-414.0	-25.9	10712	AB
8	5880	-1022.0	-63.9	65280	e
9	4835	1846.0	. 115.4	212982	Ř
.0	5967	-330.0	-20.6	6806	0
.1	6091	2668.0	166.8	444889	e
.2	6067	-1152.0	-72.0	82944	AD
.3	6022	36.0	2.3	81	e
4	5429	280.0	17.5	4900	BD
5	5412	1518.0	94.9	144020	CD
б -	6429	4510.0	281.9	1271256	D

Table 2 Yield per hectare

Analysis table of yield per hectare

Varia	DF	SS	MS	F
Total	15	3108613.75	می شده به وستان به دانو و سال _ا م و با انتخاب استان و شال و بین از این و سال و بین از این و با انتخاب	، <u>و با ماروند با ماروند الماروند الماروند الماروند الماروند الماروند الماروند الماروند الماروند الماروند الم</u>
BL	1	212982.25	212982.25	1.65 na
A	1	24649.00	24649.00	0.19 ns
В	1	42436.00	42436.00	0.33 ns
С	1	719952.25	719952.25	5.57 ns
D	1	1271256.25	1271256.25	9.83 *
AB	1	10712.25	10712.25	0.08 ns
AC	1	73984.00	73984.00	0.57 ns
AD	1	82944.00	82944.00	0.64 ns
BC	1	3721.00	3721.00	0.03 ns
BD	1	4900.00	4900.00	0.04 ns
CD	1	144020.25	144020.25	1.11 ns
Error	4	517056,50	129264.13	

F(1,4;.05) = 7.71 F(1,4;.01) = 21.2

	Level	Mean	Level	Mean
A	16	5857.6	24	5936.1
B .	0	5845.4	L	5948.4
C	6	5684.8	8	6109.0
D	1	6178.8	2	5615.0
	B	A 16 B 0 C 6	A 16 5857.6 B 0 5845.4 C 6 5684.8	A 16 5857.6 24 B 0 5845.4 L C 6 5684.8 B

Table 3 Yield components

Freatment				And the second s	A	
	РА	SP/PA	R¥	1000 g	Y/m ²	Y/ST
160-640	503	68.5	71.6	28.1	693.2	0.85
		72.3	77.1	28.7	646.3	0.73
				28.7	643.1	0.80
				31.2	543.3	0.80
				27.2	571.5	0.70
				28.0	557.2	0.81
1 A A				26.8	483.6	0.72
				and the second	503.0	0.70
	1.				539.1	0.74
					597.4	0.81
				28.1	590.6	0.78
				27.7	575.4	0.88
			-		544.8	0.69
the second se					552.4	0.80
	-,			29.2	606.0	0.81
			71.6	28.3	568.1	0.78
		1 		20.4	575 9	0.78
	160-640 160-804 16L-604 16L-840 240-604 240-840 24L-640 24L-804 160-840 16L-640 16L-804 240-840 240-840 240-804 24L-804	160-804 404 16L-604 416 16L-840 374 240-604 572 240-840 524 24L-640 488 24L-804 484 160-604 461 160-840 500 16L-640 396 16L-804 332 240-640 641 240-804 524	160-804 404 72.3 $16L-604$ 416 68.1 $16L-840$ 374 74.5 $240-604$ 572 46.5 $240-840$ 524 52.6 $24L-640$ 488 56.2 $24L-804$ 484 46.2 $160-604$ 461 52.4 $160-840$ 500 62.2 $16L-640$ 396 81.4 $16L-804$ 332 82.0 $240-640$ 641 45.6 $240-804$ 524 46.8 $24L-604$ 396 64.3 $24L-840$ 476 58.9	160-804 404 72.3 77.1 $160-804$ 406 68.1 79.1 $16L-604$ 416 68.1 79.1 $16L-840$ 374 74.5 62.5 $240-604$ 572 46.5 79.0 $240-840$ 524 52.6 72.2 $24L-640$ 488 56.2 65.8 $24L-804$ 484 46.2 78.1 $160-604$ 461 52.4 78.3 $160-840$ 500 62.2 68.6 $16L-640$ 396 81.4 65.2 $16L-804$ 332 82.0 76.3 $240-640$ 641 45.6 66.1 $240-804$ 524 46.8 79.6 $24L-604$ 396 64.3 81.5 $24L-840$ 476 58.9 71.6	160-804 404 72.3 77.1 28.7 $16L-604$ 416 68.1 79.1 28.7 $16L-804$ 374 74.5 62.5 31.2 $240-604$ 572 46.5 79.0 27.2 $240-840$ 524 52.6 72.2 28.0 $24L-640$ 488 56.2 65.8 26.8 $24L-804$ 484 46.2 78.1 28.8 $160-840$ 500 62.2 68.6 28.0 $16L-840$ 396 81.4 65.2 28.1 $16L-804$ 332 82.0 76.3 27.7 $240-640$ 641 45.6 66.1 28.2 $24L-604$ 396 64.3 81.5 29.2 $24L-840$ 476 58.9 71.6 28.3	160-840 303 00.3 77.1 28.7 646.3 $16L-604$ 416 68.1 79.1 28.7 643.1 $16L-840$ 374 74.5 62.5 31.2 543.3 $240-604$ 572 46.5 79.0 27.2 571.5 $240-840$ 524 52.6 72.2 28.0 557.2 $24L-640$ 488 56.2 65.8 26.8 483.6 $24L-804$ 484 46.2 78.1 28.8 503.0 $160-604$ 461 52.4 78.3 28.5 539.1 $160-840$ 500 62.2 68.6 28.0 597.4 $16L-640$ 396 81.4 65.2 28.1 590.6 $16L-640$ 396 81.4 65.2 28.1 590.6 $16L-640$ 396 81.4 65.2 28.3 552.4 $240-640$ 641 45.6 66.1 28.2 544.8 $240-804$ 524 46.8 79.6 28.3 552.4 $24L-604$ 396 64.3 81.5 29.2 606.0 $24L-840$ 476 58.9 71.6 28.3 568.1

n and a nor e

; · ·

÷.3.

and the second

.

PA = Panicle per square meter SP/PA = Number spikelets per panicle 1000 g = 1000 grains weight Y/m² = Yield per square meter Y/ST = Ratio of yield and straw R% = Number good grains divide all number grains

Varia	DF	SS	MS	F
Total	15	94534.44		
BL	. 1	95.06	95.06	0.03 ns
A	$1_{i} \in 1_{i}$ and	32310.06	32310.06	11.41 *
В	1	36768.06	36768.06	12.98 *
C.	1	4064.06	4064.06	1.43 ns
D	1	6123.06	6123.06	2.16 ns
AB	1	280.56	280.56	0.10 ns
AC	1	370.56	370.56	0.13 ns
AD	. 1 1	3.06	3.06	0.00 ns
BC	1	2376.56	2376.56	0.84 ns
BD	2. 21 1	637.56	637.56	0.23 ns
CD	1	175.56	175.56	0.06 ns
Error	4	11330.25	2832.56	

Table 4 Analysis table of number panicle per square meter

Factor	n de la construcción Na construcción Na construcción de la construcción Na construcción de la construcción d	Level	Mean	Level	Mean
Seed rate	A	16	423.3	24	513.1
Space line	В	0	516.1	L	420.3
Basal-N	С	6	484.1	8	452.3
Time top-N	D	1	487.8	2	448.6

Table 5 Analysis table of number spikelets per panicle

* * * * * * * * * * * * * * * * *	<u> </u>				-	
Varia	DF	SS	MS	F	· ·	
Total	15	2325.76				
BL	1	4.73	4.73	0.	05	ne
Α	1	1301.41	1301.41	13.		*
B	1	448.38	448.38	4.	64	ns
с	1	9.77	9.77	0.	10	ns
D	1 1	28.36	28.36	0.	29	ns
AB	1	17.02	17.02	0.	18	กอ
AC	• • 1 :	51,48	51.48	0.		กร
AD	1	0.33	0.33	0.		ns
BC	1	53,66	53.66	0.		ກອ
BD	1	0.02	0.02	0.		ns
CD	1	23.77	23.77	0.		ns
Error	4	386.86	96.71			
F(1,4;.05)	= 7.71	F(1,4;.0	1) = 21.2	and a state of the second s	يتم جميعة فيعينه متحديثاتهم	den :
Factor		Level	Mean	Level	Mean	
Seed rate	A	16	70.2	24	52.1	
Space line	* B	0	55.9	L	66.5	
Basal-N	с	6	60.4	8	61.9	
rime top-N	D	1	62.5	2	59.8	

1. Correlation among yield and yield components

Table 1 Correlation among yield and yield components from experiment 1 (Table 6).

	Spikelets R% per panicle	1000 grain weight	Spikelets per m ²	Yield
Panicles Spikelets per panicle R%	-0.26 -0.0		0.39 0.78 -0.41 -0.22	0.39 <u>0.62</u> 0.11 0.21
1000 grain weight Spikelets per m			-0.22	0.84

Table 2 Correlation among yield and yield components from experiment 2 (Table 3).

.

	Spikelet per pani		1000 grain weight	Spikelets per m ²	Yield
Panicle	-0.83	-0.09	-0.42	0.00	0.22
Spikelets per panicle	• • •	-0.25	0.27	0.53	0.50
R [*]		• • •	-0.10	-0.55	0.22
1000 grain weight			• • •	-0.13	0.08
Spikelets per m				• • •	0.64

The correlation among yield and its yield components from the experiment 1 and 2 as shown in table 1 and 2 can be expressed that yield are closely positive relation to the number of spikelets per unit area and number of spikelets per panicle than the other components.

2. Correlation among number of spikelets per panicle and others

	Panicles	Panicles/hill	Spikelets/panicle
Hill	0.66	-0.91	-0.62
Panicles	• • •	-0.50	-0.25
Panicles/hill		¥ • •	0.70

Table 3 Number of spikelets per panicle and others from experiment 1.

Table 4 Number of spikelets per panicle and others from experiment 2.

	Panicles	Panicles/hill	Spikelets/panicle
Hill	0.96	-0.93	-0.94
Panicles	• • •	-0.80	-0.81
Panicles/hill		• • •	0.98

The correlation among number of spikelets per panicle and other yield components in table 3 and 4. It was found that the number of spikelets per panicle have closely positive relation with number of panicle per hill. But have a negative relation with number of hill and number of panicles. It means that if the number of panicles per hill increase, the number of spikelets per panicle will be increased too. In opposite when the number of hill and number of panicle is increased, the number of spikelets per panicle will be decreased. In the case of these result, it is necessary to find out the optimum point which will obtained the highest yield of rice is very important counter measures.

3. Optimum number of hill and number of panicle for increasing spikelets per panicle

Table 5 show the data of number of hills per m^2 , panicle per m^2 and spikelet per panicle are picked up from experiment 1 and 2 which using regular top-dressing plot.

Tab	1	e	-5
-----	---	---	----

Expt.	Treatment	Plot No.	Number hill/m	Number panicle/m ²	Number spikelets per panicle
1	8~644	2	300	540	70.5
1	8-840	4	260	500	70.7
1	16-640	6	507	553	60.0
1	16-844	8	473	547	68.5
1	8-640	10	240	467	65.9
1	8-844	12	140	427	80.0
1	16-644	14	400	527	74.2
1	16-840	16	560	567	56.6
2	16-640	1	320	513	79.1
2	16L-840	4	240	384	76.1
2	240-840	6	600	640	45.6
2	24L-640	7	548	576	48.4
2	160-840	10	360	480	65.6
2	16L-640	11	204	392	85.7
2	240-640	13	693	733	46.7
2	24L-840	16	484	532	50.4

1. By computing with multiple regression analysis from the experiment 1 and 2 in accordance with the object of catching the optimum point of number of hill and number of panicle from the increasing of spikelets per panicle as shown by each steps of computing as follows.

2. Compute regression between number of hills and number of panicles.

Panicle = 330.279 + 0.489 (Hills) $R^2 = 0.809$ R = 0.899 Estimate number of panicle from number of hills

Table	6

seed rate kg/rai	Number hills/m ²	Estimate number panicle/m ²
4	100	379.2
8	200	428.0
12	300	476.9
16	400	525.8
20	500	574.7
24	600	623.6
28	700	672.4

3. Calculate multiple regression among number of hills per m_{τ}^2 panicle per m^2 and number of spikelets per panicle.

Number spikelets per panicle = 97.237-0.062(hills)

-0.015 (panicle)

$$R^2 = 0.762$$

 $R = 0.873$

Table 7

.

Seed rate Number hill kg/rai per m		Number panicle per m	Estimate (Y)spikelet per panicle	Estimate numbe spikelet/m ²	
4	100	379.2	.85.5	32437	
8	200	428.0	78.7	33670	
12	300	476.9	71.8	34239	
16	400	525.8	64.9	34135	
20	500	574.7	58.0	33359	
24	600	623.6	51.2	31911	
28	700	672.4	44.3	29787	

:

,

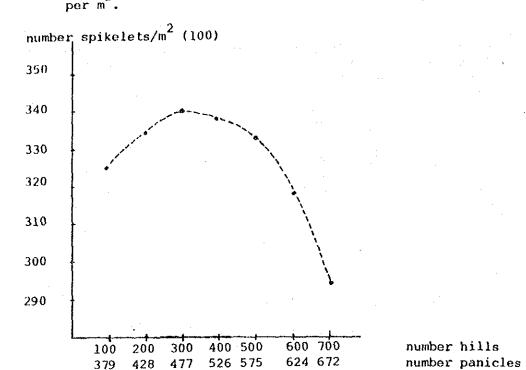


Figure 1. Multiple regression of number of hill, panicle and spikelets per m^2 .

4. Compute optimum number of hills, panicles and spikelets per panicle.

The first, compute regression between number of hills and panicle from data of table 5 and estimate number of panicle. If number of hills per m^2 are 100, number of panicles/ m^2 by estimate will be 379.2 (see table 6).

The second, compute multiple regression among number of hills, panicle and spikelets per panicle from data of table 5 and estimate number of spikelets per panicles. If number of hills are 100, panicles are 379.2, number of spikelets per panicle by estimate will be 85.5 (see table 7).

The last, number of spikelets per m^2 equals to number of spikelet per panicle multiplied by the number of panicle per m^2 (see table 7).

4. Conclusion

From Fig.1 this result shows clearly that if using 24 kg/rai of seed sowing, it may get about 600 hills, 600 panicles, 32000 spikelets per m^2 and about 50 grains of spikelet per panicle.

If using 4 kg/rai of seed sowing, it may get 100 hills, 400 panicles, 80 spikelets per panicle and 32000 spikelets per m^2 .

If using 12-16 kg/rai of seed sowing, it may get 300 hills, 500 panicles, 70 spikelets per panicle and 34000 spikelets per m^2 . This case gets more number of spikelets per unit on these experiments.

Of course, these result will be varied due to the change in many factors such as amount of fertilizer, soil fertility, management, cultivation techniques and weather conditions, but it is very beneficial to distinguish the result by emphasising the trials on finding out the optimum point to achieve the targeted yield. Expt. 3

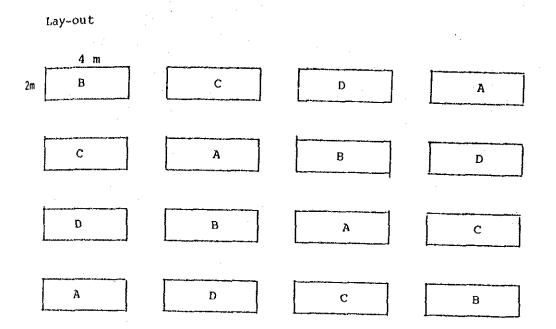
Different quantities of calper coating on rice seed for germinated direct broadcasting rice under submerged condition field.

(Dry season, 1983)

Mr. Vichien Sasiprapa Mr. Opart Chantasuk Dr. Tetsujiro Sugahara

This experiment was designed to study on the effect of Calper (Calcium per oxide) coated seeds with different quantities on the germinating ability, under submerged condition growth and yield of broadcasting rice method.

Materials and Method


- 1. Variety RD 23
- 2. Design Latin square
- 3. Plot size $4mx2m = 8m^2$, total $8m^2x16$ plots = 128 m²
- 4. Treatment

	Calper	Seed/plot(gm)	Calper/plot(gm)
A) B) C)	0% 60% 80% 100%	80 80 80 80	0 48 64 80
D)	100+		

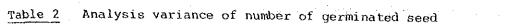
5.	(1) Sowing	Apr	7, 1983
۶.	(2) P.I.S. stage	May	30, 1983
:	(3) Heading	Jun	25, 1983
	(4) Harvesting	Jul	27, 1983

6. Management

This experiment was conducted at Suphan Buri Rice Experiment Station in dry season 1983. The seeds were soaked in fresh water for 12 hrs. and incubated for 24 hrs., after that the seeds was coated with Calper dust. The field was prepared by power tiller, 2 times of ploughing and puddling. The last puddling and leveling, the water was kept at 1-2 cm depth. Sowing of coated seed was done immediately after last puddling. Pre emergenced granular weedicide (Saturn-G) was applied at the rate 5 kg/rai at 8 days after seed sowing. Furadan 3% G 15 kg/rai was applied twice at 11 and 46 days after sowing. Basal application of fertilizer at the rate of 8 and 6 kg/rai of N and 6 kg/raiof $P_2^{0}_5$ were applied at 19 days. Top dressing of fertilizer was done at P.I.S. stage with 6 kg/rai of N.

Result

1. Germination ability of seed


Number of germinated seed was investigated at 12 days after sowing as shown in table 1 and 2, indicating that all treatments were non statistically significant that it is number of germinated seed of treatment C (coated with Calper dust 80% by seed weight) which gave higher than other treatments and treatment B (coated with Calper dust 60% by seed weight) gave the lowest. However, this experimental result was shown not-significant difference among treatments, it might be

due to the effect of water level which became dry up as general condition within 2 days after sowing.

2. Yield

On table 3 and 4 shown, for the yield which obtained from 8 square metres, it was found that, among treatments, yield of paddy have no significant different in statistical analysis. The average yield of treatment C. B, D and A were 7502.19, 7487.19, 7465.63 and 7410.63 kilogrames per hecta respectively.

Table 1	Number of germinated seed	(30x50 cm)	
Column	en e		a teografia es
Row	1 2		4
1	49.5 (B) 73.0 (C)	46.0(D)	62.5 (A)
2	53.5 (C) 65.5 (A)	40.5(B)	67.5 (D)
3		52.0(A)	53.5 (C)
4	48.5 (A) 53.0 (D)	52.0(C)	39.5 (B)
Mean	A = 57.1 $B = 45.2$	C = 58.0	D _ 55 1

• .
ns
ţ, ÷
(A)
(D)
(C)
(B)
5.63
······································

9
() ((()

Expt. 4

Different quantities of Calper coating on rice seed for germinated direct broadcasting rice under general condition field.

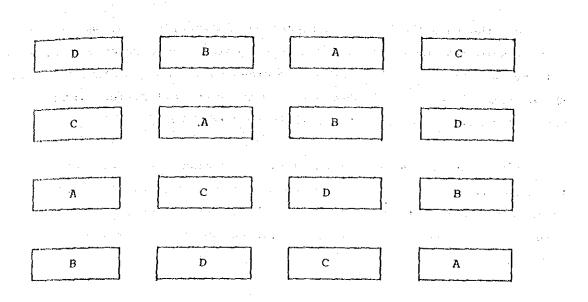
	Mr.	Vichien	Sasiprapa
an a	Mr.	Opart	Chantasuk
	Dr.	Tetsujiro	Sugahara

The purpose of this trial was as same as experiment 3, but the field condition, according to recommended practice for germinated direct broadcasting rice, was that all water is completely drained out of the field before seed sowing.

Material and Method

. .

1	. Variety RD 23		
	. Design Latin square	· · · · · · · · · · · · · · · · · · ·	
3	. Plot size $4m \times 2m = 8m^2$,	total 8m ² x 16 plots	$= 128 \text{ m}^2$
4	. (1) Sowing Apr 7,	1983	
	(2) P.I.S. stage May 30,	1983	
	(3) Heading Jun 23,	1983	
	(4) Harvesting Jul'27,	1983	
5	. Treatment Calper(%)	Seed/plot(gm)	Calper/plot(


A)	 0			80	* •	0	
B)	60	- 1		80		48	
C)	80	· · ·	÷	80		64	
D)	100			80	·. i	. 80	

gm)

6. Management

This experiment was managed as same as Expe.3 in every aspects such as land prepared, seed rate Calper Dust coating, fertilizer application, insecticide application, weedicide application, etc. but the difference was that field condition which drained out the water from soil surface and control plot (non-coated seed) was sown at 1 day after leveling.

7. Lay-out

Result

1. Germination ability of seeds.

At table 1 and 2 show that, the number of germinated seed of treatment B (60% Calper Dust coating) gave higher than other treatments, but among treatments were no significant differences. The number of germinated seed was investigated from 30x50 cm of sampling area at 12 days after sowing.

2. Yield

In table 3 and 4, it is seen that the analysis of yield gave the similar tendency as Expt.3. There were no significant differences among the treatments. But treatment A gave higher yield than other treatments. It was 7,270.13 kg/ha. By this experimental result, it was found that Calper Dust does not play any important role in the increasing of the seed germinating ability under general recommended practice for germinated direct broadcasting rice.

Discussion

From the result obtained in experiment 3 and 4, it shows no difference among treatments (coated or non coating of Calper dust) in seed germinating ability any yield. In the case of submerged condition, it might be due to the effects of natural draining out of water from soil surface within 2 days. The sowed seed still had ability to germinate.

Especially for general practice by Thai farmers in germinated direct broadcasting rice method as recommended by the department of Agriculture, it is not necessary to coat the seed with Calper dust because under that condition, Oxygen is available and sufficient enough in germinating of rice seed.

Table 1 Column Row	Number of s	eed germinated 2	(Sample 30x50 cr	4
1 2 3 4	58.5(D) 53.0(C) 53.0(A) 72.0(B)	71.5(A)	50.5(A) 72.0(B) 59.0(D) 53.0(C)	57.5(C) 41.5(D) 66.5(B) 71.0(A)
Mean	A=61.5	B=68.6	C=58.8	D=60.1
		an Anna An Anna An Anna Anna	an an an an Arrainn An Arrainn Arrainn An Arrainn	

Table 1 Number of seed germinated (Sample 30y

Table 2 Analysis Variance of Number of seed germinated

SOV	DF	SS	MS	F
Row Column Treatment Error	3 3 3 6	319.4 530.6 228.4 632.9	106.4 176.8 76.1 105.4	0.7 ns
Total	15	1711.4		الله جرارية ويتريك ويستريك ويكر الله .
CV = 16 %				

Column	n in the second s	•		
low	••••••••••••••••••••••••••••••••••••••	4	3	<u>.</u>
	6605.0(D)	7791.2(B)	7603.7(A)	7180.0(C)
{	7660.0(C)	7068.7(A)	7161.2(B)	7336.2(D)
	7926.2(A)	7841.2(C)	7170.0(D)	7081.2(B)
	7440.0(B)	8250.0(D)	8082.5(C)	8282.5(A)
ean -	A=7720.31	B=7368.44	C=7690.94	D=7340.31
		the second second		
		en e		
ble 4	Analysis vari	ance of yield		

Table 4	Analveie	variance	- F	
		varrance	01	viela –

Variat	DF	S.S	M.S	F
Row Column Freatment Grror	3 3 3 6	1359216.41 249489.84 496814.06 1332342.19	453072.14 83163.28 165604.69 222057.03	2.04 0.37 0.75
otal	15	3437862.50		

.

Exp. 5

rice.

۰.

11 g. e.

Effect of weed control and seedling take-off on the Calper dust seed coating and non coated seed for germinated direct broadcasting

Dry season 1983

Mr. Vichien Sasiprapa Mr. Opart Chantasuk Dr. Tetsujiro Sugahara

This trial was conducted for the purpose of reaffirmation of the past experimental results which show some tendencies in improving of cultivation technique for germinated direct broadcasting rice by means of seedling take off to make line and to control weed by weedicide for the success of stable high yield.

.

. .

Material and Method

÷

. . . .

.

1. Variety	RD 23	
2. Design	Split plot design	3 replications
3. Seed rate	l6 kg/rai	
4. Treatment		an a
- Main plot	general method and Calp method	
	- Line making	
	(40 cm.seedling belt	and 20 cm space)
	- Non-weeding (control)	
	- Weed control	
- Area	8000 square meters	
5. Fertilizer	······································	· .
	-K) 8-6-0 at Apr 26, 1983	
	ng at P.I.S. stage (4 kgN	/rai)

6. Line making

- Twice at Apr 26, 1983 and May 3, 1983

7, Weedicide

Saturn-G 5 kg /rai at 10 days after sowing
Hand weeding one time of line making treatment

8. (1) Sowing Apr 12, 1983

(2) P.I.S. stage Jun 2, 1983
(3) Heading Jun 30~Jul 2, 1983
(4) Harvesting Aug 3, 1983

9. Management

Land preparation was done by 85 Hp tractor, plowing twice and one time puddling and leveling. The seed was soaked in fresh water for 12 hrs. and incubated for 24 hrs., after that the seeds was coated with Calper dust with the rate of 1:1 of seed weight. But for the general method, seed was incubated for 48 hrs. The coated seed and non coated seed was sowing to the drained field condition. After seedling, well established pre-emergence weedicide (Saturn-G) was applied at 10 days after sowing on the shallow water level field. Basal fertilizer application was done at 2 weeks after sowing at the rate of 8-6-0 kg/rai. Furadan 3%G was applied 5 kg/rai, twice at 16 and 45 days after sowing. Top dressing of nitrogen fertilizer was done at P.I.S. stage at the rate of 4 kgN/rai.

Result

MALL MARKED AND AND AND

and the product of the second second

1. 5. 18 1.

The highest yield was obtained from the weed control and Calper dust coated seed plot (6012.9 kg/ha). The lowest yield was non weeding and non coated seed plot (4355.7 kg/ha) The methods mean yield were 5350.9 and 5661.5 kilograme per hectare of general germinated direct broadcasting and Calper dust coated seed method respectively.

For sub mean yield the results are as followed, line making plot 5878.5, weed control plot 5872.0 and non weedling plot 4768.2 kilograme per hectare.

a shaqiyta qabkir qab

. .

+ : ·

From the table of analysis of variance, it was found that the general method and coated seed method was not significant different in yield. But the yield were highly significant different at 1% level tetween line making and weed control with non weeding plot.

			-a .		· · · · ·	8	
			N			·	
Table 1 Da	ata of yiel	d (kg/ha)) \$2				
				- 1			
Treatment	Block	and the second			Treatment	• • • •	
Trea ulenc		ela j (konstere		3	Mean	Main Mean	
Main	Sub	A sa kata a sa sa sa sa	<u></u>	La serve est	, our	неал	
	Line	5650.37	6429 8	7 5817.75	5966.00		
	No weeding		4687.00		4355.66	5350.91	
	Weeding	5923.75	6223.00	5046.50	5731.08		inger Er
	Line	6060 00					·
	No weeding	6060.00	5737.12		5791.00 5180.70	FCC1 FO	
	Weeding	6552 12	5437.62		6012.87	5661.52	
					······································		
Sub mean	Line = 5878	3.50 No	weeding	= 4768.18	Weeding =	5871.97	
			ini, and a				
Table 2 An	alysis of y	vield	na na sana sa		·		
		an a			· · :	. *	
			ation in the second	a se da cara d			
Variation	D.F	S.S		M.S	F		
Block	2	1037334	14				
Main	· 1 · · · ·	434156.6		434156.68	0.65	ns	
Error (a)	2	1318872.		659436.38		-10	
Sub	2	4902384.8	32 2	451192.41	14.69	**	
1 x S	2	751931.2		375965.63	2.25	ns	•
Error (b)	8	1334735.5	59 (c) (c)	166841.94			
fotal	17	9779415.5	57				·
			······	~~			
							÷.
					÷		
Table 3 DMR	ЧТ				н. С		
						·	÷
			1.				. •
iub	Mean	 d	ifferent] ę	level	
					······		
ine Æeding	5878,50		-			a	
lo weeding	5871.97 4768.18	1 1	6.52 ns 10.31 **		· · · · · · .		
		лт 			··· /·	b	
						· · · · · ·	
						•	
•	х.						
	ан. 19						. ÷
			••				÷.,
		· · · · .	1 - Contract - Contrac		$(A_{i}, \dots, A_{i}) \in \{a_{i}\}$		
e provinsi Na series de la companya de la companya Na series de la companya	a she in the s	1	· · ·		and the second		

Exp. 1

Effect of different seed rate and nitrogen fertilizer to the growth and yield of germianted broadcasting rice

	(1983	wet)
Mr.	Vichien	Sasiprapa
Mr.	Opart	Chantasuk
Dr.	Tetsujiro	Sugahara

This experiment was carried out to clarify the effect on yield of paddy from different seed rates (4, 8 and 16 kg/rai) times and rates of nitrogen application at different stages such as puddling, 15 days after sowing for basal application and at Panicle Initiation Stage (P.I.S.), Young Panicle formation Stage (Y.P.S.) and Heading Stage.

Material and method

- 1. Variety R.D. 23
- 2. DesignL27 factorial design3. Plot $4x8 = 32 \text{ m}^2$ Total $32x27 = 864 \text{ m}^2$ 4. Sowing
P.I.S.6th September 1983
 - Heading 16th-19th November 1983
 - Harvest 21st-26th December 1983
- 5. Treatment

Plot	Seed rate	Bas					'op dressi	
No.	kg/rai	puddling	15 days	after	sowing	P.I.S.	Y.P.S.	Heading
1.	16	6		-		6	-	
2.	16	6		-			6	·
3.	16	6	÷.,	 ?	4	54 -	3	3
4.	.16	- .		6	1 - T	6	. 	
5.	16	-	:	6	.*	· - ·	6	
6.	16	· · · •	÷	6		= .	3	3
7.	16	3		3		. 6	-	-
8.	- 16 -	· · 3 · ·		3.		€) 	<i>.</i>	
9.	16	3		3		-	3	3
0.	8	6		-		6	_	-
11.	8	6		-		-	. 6	
2.	8	6		-		~	3	3
3.	. 8	-		6		6	-	-
4.	8	-		6		**	6	~
5	8	••		6	11 A.		. 3	. 3
6.	8	3	2.1	- 3		б		
7.	· · · 8 · · · · ·	3		3			6	. * e
8.	8	3		3			3	3
<u>9</u> .	4	6	t v	-		6		· _
0.	4	6		_ 121		_	6	-
1.	4	6	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	_ '	•	_	3	3
2.	4	-		6		6		
3.	4	-		6		-	6	-
4	4	-		6		-	3	3
5.	4	3 .		3		6	-	-
6.	4	3		3			6	
7.	4	3		3		-	3	3
	Phosphate su P.I.S.=Panicle . Managem		lling time tage Y. G 5 kj				sowing	(15mm)stag
	, managem	Furad	an 5k	g/rai 52	15 day	s after	sowing	

- 1. Effect of different seed rate and nitrogen fertilizer to the growth and yield of germinated broadcasting rice
- 2. Effect of seed rates, times and rates of nitrogen application, coated and uncoated seed with Calper (Calcium peroxide) on yield of germinated broadcasting rice
- 3. Effect of the rice yield of different methods in cultivation of germinated direct sowing
- 4. Comparison of different methods of cultivations on the yield of rice

Result

1. Growth

Number of tillers were investigated in 50×50 cm. sampling area on 25,35,45 days after sowing and that result was given in table 1 and figure 1.

It was found that Maximum tillering stage was at 25 days after sowing on 16 kg seed plots and other 8, 4 kg seed plots were at 35 days after sowing. Number of tillers decreased at 45 days after sowing in all plots.

Table 2 shown by F test of each stage for number of tiller; at 25 days there was significant on seed rates and basal treatments that it is compared with mean number of tillers. It shows that, seed rate 16 kg > 8 kg > 4 kg/rai and basal treatments 06>60>33 but at 35, 45 days, they were not significant different among treatments.

2. Yield

Table 3 and figure 2 shown of yield which sampling and calculated from 8 square metres per treatment.

From this experimental result showed that among seed rate treatments, it was 10% significant and seed rate of 4 kg/rai plot had more yield than the other seed rate, 5% level of significant was observed among times of nitrogen application basal dressing at 15 days. After sowing, there was better yield than the before sowing plot and for top dressing times, the best P.I.S. plot.

Although basal and top dressing of nitrogen fertilizer showed an interaction as in table 4 and figure 3, the best yield was obtained from basal dressing at 15 days after sowing with top dressing at P.I.S. (Panicle Initiation Stage). The worst results were B3C3 plots which are splitted 4 times 3 kg/rai each of nitrogen fertilizer application at puddling 15 DAS, Y.P.S. and Heading Stages.

3. Yield components

Yield components sample taken in 50x50 cm. area and results are given in table 5-6

1) Number panicles per square metre

Number panicles are significant at 5% by seed rate, 16 kg/rai are more number panicles than 8,4 kg/rai. Among nitrogen treatments, there are not significant different for number of panicles.

2) Number of spikletes per panicle

This item is more clearly different among treatments because the higher number of spikletes per panicle was 4 kg seed rate, next and 16 kg seed rate respectively. The effect of top dressing for number of spikletes was highest in P.I.S. plots than the others.

3) Ripening percentage (R%)

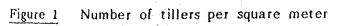
Top dressing nitrogen effected for R% namely P.I.S. application N plot are lower in R? than the other plots that, when it was higher in number of spikletes it will be caused in lower of R%

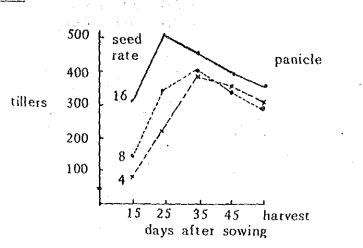
4) Weight of 1,000 grains

Weight of 1,000 grains was light on 4 kg seed rate plot because 4 kg seed rate plot had many number spikletes per panicles.

5) Calculation yield from yield-components

Calculation yield was significant on seed rate that is 4 kg seed rate has more yield than 8 and 16 kg seed rate.


4. Correlation among yield components


Correlation among yield components showed on table 7. Yield more close positive relation were number of spikletes per unit area, next were spikletes per panicle and number of panicles per unit area.

So, for increasing of ricr yield, the increasing of number of spikletes per unit area are necessary because the number of spikletes per unit area has close relation to the spikletes per panicle, and spikletes per panicle has close relation to the panicle per hill also.

Plot No.	Seedling	25 days A.S.	35 days A.S.	45 days A.S.	Panicles
1	320	352	372	344	296
2 2	320	360	420	364	324
3	320	476	468	404	332
4	320	728	536	432	368
5	320	760	540	452	388
6	320	536	416	412	340
7	320	408	364	324	284
8	320	460	436	416	328
9.	320	368	392	360	320
Sub mean	320	494	438	390	331
	160	284	292	260	208
10	160	264	308	304	292
11	160	240	324	276	224
12	160	388	540	416	332
13	160	352	404	340	268
14	160	392	440	388	284
15 16	160	500	500	436	336
10 4	160	280	340	316	280
17	160	312	380	324	304
Sub mean	160	334	392	340	280
19	80	156	304	280	240
20	80	320	512	464	352
21	80	204	388	368	304
22	80	276	424	408	312
23	80	232	352	344	284
24	80	200	388	380	308
25	80	88	320	316	288
26	80	232	240	236	180
27	80	232	500	484	328
Sub mean	80	216	381	364	288
Mean	187	348	404	365	300

Table 1 Number of tillers per square meter

Days after	sowing	25	35	45	F Value
Seed rate Basal N Top N	(A) (B) (C)	25.2 ** 7.1 * 0.4 ns	1.7 ns 2.8 ns 0.1 ns	1.2 ns 1.7 ns 0.2 ns	F(105)=4.46 F(.01)=8.61

Table 2 Analysis of number of tillers

F Test significant (25 days after sowing) mean of number tillers

level		1	2	3	
Seed rate Basal N	(A) (B)	494 a 295 b	335 a 433 a	 216 b 316 b	.(.05)=111 0.(.01)=162

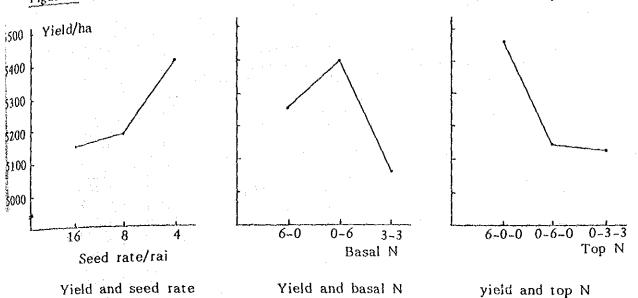
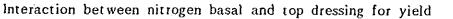
Table 3

Relation of seed rate, basal N, top dressing N and yield

Factor/level		1	2	3
Seed rate	(A)	16	8	4
Basal N	(B)	6-0	0-6	3-3
Top N	(C)	6-0-0	0-6-0	0-3-3

Analysis of yield (kg/ha)

		· • •	· · · · · · · · · · · · · · · · · · ·	·	
Variation	d.f.	S.S.	M.S.	F	
Α	2	295476.5	147738.3	4.25	* (10%
B .	2	511744.3	255872.1	7.37	*
C	2	519582.5	259791.3	7,48	*
AB	4	207225.7	51806.4	1.49	
AC	4	234678.8	58669.7	1.69	ns
BC	4	594433.7	148608.4	4.28	*
Error	8	277787.0	34723.4		
F(2,8;.05) = 4 F(4,8;.05) = 3		<u></u>	F(2,8;.01) = 8. F(4,8;.01) = 7.		
Mean of yield	:	·			
Factor/level			2	3	
Seed rate (A))	5132 b	5173 b	5372	a
Basal N (B)	۱. ۱	5252 ab	5380 a	5046	b
Top N (C)	ŀ,	5421 a	5147 b	5110	b

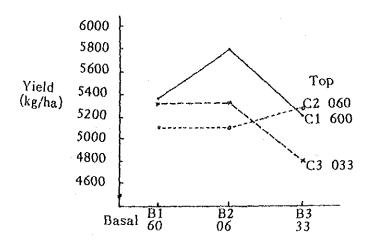

Figure 2 Relation of seed rate, nitrogen basal and top dressing for rice yield

Table 4 Interaction between nitrogen basal and top dressing for yield

a) (D)	Tran. (C)	S	eed rate	(A)		Mark
Basal (B)	Top (C)	16	8	4	Mean	Basal Top
1	1	4884	5358	5792	5345	60 - 600
1	2	4930	5064	5345	5113	60 - 060
1	3	5279	5244	5375	5299	60 - 033
2	1	5811	5455	6014	5760	06 - 600
2	2	5152	5008	5200	5120	06 - 060
2	3	5158	5214	5413	5262	06 - 033
3	1	4976	5207	5296	5160	33 - 600
3	2	5192	5003	5431	5209	33 - 060
3	3	4814	5012	4486	4771	33 - 033
Mean		5132	5173	5372	5226	

157

÷

					1	
Plot No.	Panicles/ m	Spikletes/ panicle	R%	Weight 1,000 grains	Yield/ m ²	Spikleres/ m
1	296	65.5	75.0	29.3	425.4	19376
2	324	57.1	86.6	29.0	464.5	18500
3	332	66.2	86.5	29.5	561.9	21984
4	368	74.5	71.1	30.8	600.4	27420
5	388	68.4	85.3	27.9	631.0	26540
6	340	67.3	87.0	29.2	581.8	22872
7	284	69.9	66.4	28.2	371.4	19840
8	328	56.5	83.8	29.4	456.2	18536
9	320	57.0	88.9	29.5	478.2	18240
10	208	90.3	78.9	29,2	431.9	18776
11	292	99.1	79.9	28.9	669.0	28994
12	224	81.7	80.6	31.3	461.8	18308
13	332	94.8	73.0	29.9	687.9	31472
14	268	76.0	80.6	30.3	496.8	20360
15	284	83.4	82.9	29.6	582.1	23692
16	336	85.7	82.0	31.2	736.5	28800
17	280	90.8	83.8	28.6	610.0	25436
18	304	74.5	84.6	29.7	570.2	22656
19	240	115.9	76.9	28.4	606.3	27804
20	352	110.7	84.4	28.4	932.8	38952
21	304	108.7	83.6	28.5	786.7	33040
22	312	112.8	77.9	29.0	795.6	35180
23	284	96.6	83.5	28.7	657.9	27444
24	308	85.9	81.2	28.6	614.7	26472
25	288	113.0	76.1	27.9	690.0	32544
26	180	109.6	81.4	27.9	448.5	19724
27	328	110.5	80.9	28.2	826.7	36236
ean	300	86.0	80.8	29.2	599.1	25524

Table 5 Yield components

Table 6 Analysis of yield components

6-1 Number of panicles

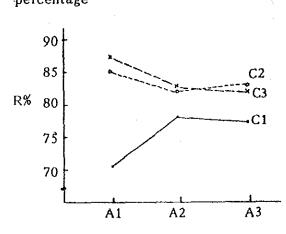
Variation	d.f.	S.S.		M.S.	F	
A	2	13199.5	65	99.8	5.2	*
В	2	5882.3	29	41.1	2.3	ns
С	2	360.5	1	80.3	0.1	ns
AB	4	9126.0	. 22	81.5	1.8	ns
AC	4	4621.3	11	55.3	0.9	ns
BC	4	14104.0	35	26.0	2.8	ns
Error	8	10163.3	12	70.4		
F(2,	8;.05)	= 4.46	F(2,8	; .01) = 8	3.65	
	8;.05)			; .01) = 7		
Mean			-	-		
Factor/level		1	2	3		
Seed rate	(A)	331.1 a	280.9 b	288.4 b	L.S.D.	(.05) = 4

Variation	d.f.	S.S.	M.S.	F
A	2	8078.0	4039.0	87.4 **
B	2	77.4	38.7	0.8 ns
Č	2	437.0	218.5	4.7 *
AB	4	471.1	117.9	2.6 ns
AC	4	119.7	29.9	0.6 ns
BC	4	141.1	35.3	0.8 ns
Error	8	369.6	46.2	

6-2	Spikletes per panicle

Mean

Factor/leve	el	1	2	3	
Seed rate	(A)	64.7 c	86.3 b	107.1 a	L.S.D. $(.05) \approx 9.0$
Top N	(C)	91.4 a	85.0 b	81.7 b	L.S.D. $(.01) = 13.2$


6-3 Ripening percentage (R%)

Variation	d.f.	s.	s.	M.S.	F
A	2	, 1.	5	0.8	0.1 ns
B	2	5.4	4	2.7	0.5 ns
С	2	424.	3 .	212.1	37.6 **
AB	4	51.	1	12.8	2.3 ns
AC	4	164.	1	41.0	7.3 **
BC	4	11.	6	2.9	0.5 ns
Error	8	45.	1	5.6	
lean					
Factor/le	evel	11	2	3	
Top N	(C)	75.3 b	83.3 a	84.0 a	L.S.D. (.01)

Seed rate(A)	Top N(C)	Basal (B)			Moon	Mark	
		6-0	0-6	3-3	Mean	Seed	Тор
1	1	75.0	71.1	66.4	70.8	16	600
1	2	86.6	85.3	83.8	85.2	16	060
1	3	86.5	87.0	88.9	87.5	16	033
2	1	78.9	73.0	82.0	78.0	8	600
2	2	79.9	80.6	83.8	81,4	8	060
2	3	80.6	82.9	84.6	82.7	. 8	033
3	1	76.9	77.9	76.1	77.0	4	600
3	2	84.4	83.5	81.4	83,1	4	060
3	3	83.6	81.2	80.9	81.9	4	033

6-4 Interaction between seed rate and top N for ripening percentage

Figure 4 Interaction between seed rate and top N for ripening percentage

6-5 Weight of 1,000 grains

Variation	d.f.	S.S.	M.S.		F	
Α	2	9.6	4.8		4.6	*
В	2	0.6	0.3		0.3 n	S
C	2	1.8	0.9		0.9 n	S
AB	4	0.4	0.1		0.1 n	S
AC	4	0.7	0.2		0.2 n	S
BC	4	1.8	0.5		0.4 n	S
Error	8	8.3	1.0		والمراجع وال	
Mean Factor/level		1	2	3		
Seed rate	(A)	29.2 ab	29.9 a	28.4 b	L.S.C). (.(

Variation	d.f.	S.S.		M.S.	F
A	2	181234.0		90617.0	7.3 *
В	2	12228.5		6114.2	0.5 ns
C	2	890.9		445.4	0.0 ns
AB	4	77309.4		19327.4	1.6 ns
AC	4	24399.4		6099.8	0.5 ns
BC	4	104360.0		26089.9	2.1
Error	8	99289.6		12411.2	
Mean Factor/lev	vel	1	2	3	
Seed rate	(A)	507.8 b	582.9 b	706.6 a	L.S.D.(.05)=14

6-6 Calculation yield from yield components

Table 7 Correlation of yield components

.

Yield-	Spikletes/	R%	1,000 grains	Yield/	Spikletes/	Panicle/
components	panicle		weight	m ²	m ²	hill
Panicles/m ² Spikletes/panic R% 1,000 grains w Yield/m ²		0.168 -0.223	0.073 -0.389 -0.03	0.439 0.652 0.126 -0.183	0.379 0.738 -0.116 -0.288 0.962	-0.010 0.827 0.002 -0.410 0.789

Table 8 Exp. 1 Extra plots as reference data

	D	T	p.	Yield/ha	
Seed rate	Basal	P.1.S.	Heading	T ICTOY IIA	
16	08	8	0	5611 Lodgin	
16	08	4	4	5927	
16	00	0	.0	3678	
8	00	0	0	3939	
4	00	0	0	3600	

8-1	Treatment	and yi	eld	

8-2 Yield components

Plot	Panicle/m ²	Spikletes/ panicle	R%	1000 GW	Y/m ²	Spikletes/m ²
16-08-80	276	108.2	81.2	29.9	725.2	29864
16-08-44	312	89.4	81.3	28.7	651.6	27900
16-00-00	328	51.2	68.7	27.9	322.0	16804
8-00-00	228	99.4	71.6	28.4	459.8	22660
4-00-00	160	109.4	70.8	29.6	366.5	17508

Exp. 2

Effect of seed rates, times and rates of nitrogen application, coated and uncoated seed with Calper (Calcium peroxide) on yield of germinated broadcasting rice

(:1.983	wet)
Mr. Vichien	Sasiprapa
Mr. Opart	Chantasuk
Dr. Tetsujiro	Sugahara

This experiment was aimed at finding out the yield of rice obta obtained from different seed rates (6 and 8 kg/rai), Calper 50% coat to seed (0 and Calper), basal notrogen (4 and 8 kg/rai) and top dressing (4:4, 8:0 kg/rai) with factorial "L 16" design.

Material and method

1.	Variety	R.D. 23
2.	Design	L16 factorial design
3.	Plot	$10x4 = 40 \text{ m}^2$ Total $40x16 = 640 \text{ m}^2$
4.	Sowing	6th September 1983
	P.I.S.	2nd November 1983
	Heading	19th November 1983
	Harvest	26th December 1983

5. Treatment

Replication	No.	Plot	A	В	С	[)	
	<u></u>	name	seed	Calper	Basal N	P.I.S.	Heading	Total N
	1	60-444	б	0	4	4	4	12
	2	60-880	6	· 0	8	8	0	16
	3	6C-480	6	Ca	4	8	Ō	12
1	4	6C-844	6	Ca	8	4	4	16
	5	80-480	8	0	4	8	0	12
	6	80-844	8	0	8	4	4	16
	7	8C-444	8	Ca	4	4	4	12
	8	8C-880	8	Ca	8	8	0	16
	9	60-480	6	0	4	8	0	12
	10	60-844	6	0	8	4	4	16
	11	6C-444	6	Ca	4	4	4	12
2	12	6C-880	6	Ca	8	8	Ó	16
	13	80-444	. 8	0	4	4	4	12
	14	80-880	8	ò	8	8	0 0	16
	15	8C-480	8	Ca	4	8	Ō	12
	16	8C-844	8	Ca	8	4	4	16

Note: 1. Calper quantity is 50% of dry seed weight 2. Basal P, 6 kg P_2O_5 /rai

- 6. Management Saturn G 5kg/rai 12 days after sowing Furadan 5kg/rai 15 days after sowing

Result

Yield

Result of yield showed in table 1 and analysis of variance in table 2. Due to this experiment has small number of treatments and the effect among each treatment are not greater enough to get significant difference in yield of rice. But it showed the tendency of higher yield in the plot which have a basal dressing of nitrogen fertilizer at higher rate than the lower one and the effect of Calper coated to seed showed better rice yield than non-coated seed plots.

		В	C		D	Yield/ha
No. plot	Α	D	<u> </u>	1	2	i iciu/na
1	6	0	. 4	4	4	4853
2	6	. 0	8	8	0	5717
3	6	Ca	4	8	0	5243
å	6	Ca	8	4	4	5765
5	8	0	4	8	0	5476
6	Ř	0	8	4	4	5644
7	8	Ca	4	4	4	4944
8	8	Ca	8	8	0	5364
. 9	6	0	4	8	0	4746
10	6	0	8	4	. 4	4664
11	6	Ca	4	4	4	4951
12	ő	Ca	8	8	. 0	5273
13	8	0	4	4	4	4991
14	8	0	8	8	0	4334
15	8	Ca	4	8	0	4758
16	8	Ca	8	4	4	5350

Yield and analysis Table 1

Analysis of yield Table 2

(C) (D)

Basal N Top N

Variation	d.f	S.S.	M.S.	F
Total	15	2567375.94		
Block	1	969732.56	969732.56	6.75 ns
Seed (A)	· · 1	7700.06	7700.06	0.05 ns
Calper (B)	· 1	93483.06	93483.06	0.65 ns
Basal (C)	1	288637.56	288637.56	2.01 ns
Top N(D)	1	3937,56	3937.56	0.03 ns
AB	. 1	102560.06	102560.06	0.71 ns
AC	1	76038.06	76038.06	0.53 ns
AD	1	189878.06	189878.06	1.32 ns
BC	1	152685.56	152685.56	1.06 ns
BD	1	15190.56	15190.56	0.11 ns
CD	- 1	92872.56	92872.56	0.65 n
Error	4	574660.25	143665.06	
F(1,4 ; .05) = 7	.71 F(1	,4 ; .01) =21.2	
Mean of yield		an a		
Factor/level	میں	1	2	
Seed rate (A)	6kg		3kg 5108	
Calper (B)	0kg	5053	Ca 5206	
(0)	41	4005 0	2260	

8kg 8:0

5264 5114

4995 5145

4kg 4:4

Exp. 3 Effect of the rice yield of different methods in cultivation of germinated direct sowing

	(1983 w	et)
Mr.	Vichien	Sasiprapa
Mr.	Opart	Chantasuk
Dr.	Tetsujiro	Sugahara

This experiment was carried out to compare different methods of direct sowing, that is "General broadcasting", "Calper coating seed broadcasting" and "Calper coating seed drilling by row seeder".

Material and method

lenai	
1.	Variety R.D. 23
2.	Design RCB 3 replications
3.	Plot $30x10 = 300 \text{ m}^2$ Block = 900 m ² Total = 2700 m ²
4.	Sowing1stSeptember1983P.I.S.2ndNovember1983Heading21stNovember1983Harvest26thDecember1983
5.	Seed rate and fertilizer : Seed rate 8.0 kg/rai Seeder 5.7 kg/rai Calper quantity is 50% of dry seed
	Fertilizer : Water level high in field could not supply basal. Top dressing on P.I.S. gave N-8kg and P-6kg/rai and Heading N-4kg.
6.	Treatment G = Broadcasting general method R = Broadcasting Calper coating seed by roller S = Calper coating seed by row seeder machine
7.	Management Saturn G 5 kg/rai 12 days after sowing Furadan 5 kg/rai 15 days after sowing
ult	

Result

Yield and analysis of yield

This experiment yields were not significant. General menthod is as same as roller with Calper coating seed but seeder plot was less yield because of unskillfulness due to first used machine, so germination of seed are not good and inirrigular spacing of row.

	1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A				
Table 1	Yield and	analysis	of	yield per	hectare

Treatment/block	1	2	3	Mean
General	4888	5366	4843	5032
Seeder with Calper	4789	4320	4553	4554
Roller with Calper	4860	4713	4948	4840

Analysis of yield

.I.	S.S.	M.S.	F
2	6590.88	3295.44	
2	347653,55	173826.77	2.32 ns
4	299596.44	74899.11	
8	653840.88		
	2 2 2 4 8	2 6590.88 2 347653.55 4 299596.44	2 6590.88 3295.44 2 347653.55 173826.77 4 299596.44 74899.11

Exp. 4

Comparison of different methods of cultivations on the yield of rice.

· · ·	(1983	wet)
Mr.	Vichien	Sasiprapa
Mr.	Opart	Chantasuk
Dr.	Tetsujiro	Sugahara

This experiment was carried out for the purpose of comparing the effect of cultivation methods on the yield of rice, "Transplanter, Hand transplanting, Direct sowing by seeder machine with Calper seed, Broadcasting with Calper seed and general method direct sowing".

Material and method

- 1. Variety R.D. 23
- 2. Design RCB 3 replications
- 3. Treatment

Method	Sowing	Trans plant	Seed rate	Basal date	Top date	Heading	Harvest
Transplantor	18 Aug	7 Sep	160 gm/ box	23 Sep	10 Oct	17 Nov	19 Dec
Hand transplant	18 Aug	7 Sep	80 gm/ m² bed	23 Sep	10 Oct	7 Nov	19 Dec
Direct seeder with Calper	8 Sep		8 kg/rai	23 Sep	2 Nov	26 Nov	29 Dec
Direct roller with Calper	8 Sep		8 kg/rai	23 Sep	2 Nov	24 Nov	28 Dec
Direct general	9 Sep	ar va	16 kg/rai	23 Sep	2 Nov	24 Nov	28 Dec

Note : Basal = N-8 : P-6 Top (P.I.S.) = N-4 or 8 kg/rai

4. Management

Saturn G	5 kg/rai	16th September 1983
Furadan	5 kg/rai	supply last paddling

Result

Yield and analysis of yield

Its results showed that, in table 1 was yield, table 2 was analysis of yield and table 3 was dancan's multiple range test.

These experiments were significant at 1% among cultivation methods but top dressing of nitrogen was not significant between 4 and 8 kg level.

Highest yield was the transplantor plots, next is hand transplanting, this experiment in general speaking, less yield was obtained by direct sowing methods, and the effect of Calper coating is not clear.

Name	Top N/block	1	2	3	Mean	Method mean	
Transplantor	low	4993	5531	5044	5189		
	high	5000	5756	5189	5133	5161	
Hand transplant	low	4681	3231	5288	4400		
	high	5338	4238	4983	4838	4619	
Direct seeder	low	4401	3547	4841	4263		
	high	4728	4092	3706	4175	4219	
Direct Calper	low	3609	3758	3750	3706		
8 kg seed	high	4196	3968	3263	3809	3757	
Direct Calper	low	3665	3459	3763	3629		
16 kg seed	high	3196	3251	3786	3411	3520	
Direct general	low	4100	3773	3939	3937		
16 kg seed	high	2505	4040	2641	3062	3500	

Table 1 Yield (kg per hectare)

Top dressing N mean low = 4187 high = 4071

Table 2 Analysis of yield

Variation	d.f.	S.S.	M.S.	F
Block	2	130555.16	<u></u>	
Method	5	13314111.91	2662822.38	8.14 **
Top N	1	120988.02	120988.02	0.37 ns
Method * Top N	5	1419625.47	283925.09	0.86 ns
Error	22	7188556.16	32652.55	
Total	35	22173836.75		

Table 3 Dancan's multiple range test

Method	Mean Significant		DMRT(0.01)		
Transplantor	5161	a		······································	
Hand planting	4619	ab	2	931.1	
Seeder	4219	abc	3	973.1	
Direct Calper 8 kg	3757	bc	4	998.8	
Direct Calper 16 kg	3520	с	5	1017.4	
Direct general16 kg	3500	С	6	1031.4	

1984 DRY

- 1. Effect of different seed rates and nitrogen fertilization on the growth and yield of germinated broadcasting rice
- 2. Effect of seed rates and nitrogen fertilizer quantities for yield on germinated direct sowing rice
- 3. Effect of Calper coating quantities of rice seed to the amount of survival seedling in germinated broadcasting rice
- 4. Effect of different seed rates in germinated direct sowing

Exp. 1

Effect of different seed rates and nitrogen fertilization on the growth and yield of germinated broadcasting rice.

. 1		(1984 dry	season)
	Mr.	Vichien	Sasiprapa
	Mr.	Pairat	Duangpiboon
	Dr.	Tetsujiro	Sugahara
		•	

This experiment is carried out to clarify the effect of different seed rates (4, 8 and 16 kg/rai), basal nitrogen (0, 4 and 8 kg/rai) and top dressing nitrogen (4-0, 8-0, 4-4 kg/rai) on the growth and yield of germinated direct sowing rice by L_{27} design.

Material and method

- 1. Variety : RD 23
- 2. Design : L₂₇ (3 factors x 3 levels)
- 3. Plot size : $4m \times 8m = 32m^2$
- 4. Sowing : March 23rd, 1984. Harvest : July 10-16th, 1984.
- 5. Pre-seed treatment : seed selection by salt water (specific gravity 1.10)
- Adjust the number of seedling in 50cm x 50cm of frame area for yield components.

Seed rate	Adjust the number of seedling in 50cm x 50cm of frame area
4kg/rai	20
8kg/rai	40
16kg/rai	80

Plot	Seed rate kg/rai	#Basal N kg/rai	Top N P.I.S Heading
1	16	0	4-0
2	16	0	8-0
3	16	0	4-4
4	16	4	4-0
5	16	4	8-0
6	16	4	4-4
7	16	8	4-0
8	16	8	8-0
9	16	8	4-4
10	8	0	4-0
11	. 8	0	8-0
12	8	0	4-4
13	8	4	4-0
14	8	4	8-0
15	8	4	4-4
16	8	8	40
17	8	8	8-0
18	8	8	4-4
19	4	0	4-0
20	4	0	8-0
21	4	0	4-4
22	4	4	4-0
23	4	4	8-0
24	4	4	4-4
25	4	8	4-0
26	4	8	8-0
27	4	8	4-4

7.	Trea	tment
----	------	-------

#Basal P (6kg/rai) supply all plots , #Basal supply at 15 days after sowing.

8. Sampling : Yield by area cutting of 2m x 4m

Yield component by the frame area of 50cm x50cm

Result

1. Growth

The number of tillers is investigated in the sampling area of 50cm x50cm at one week interval after sowing, as the datas shown in table 1 and figure 1-1.

It is found that, the maximum number of tiller is at 6 weeks after sowing. By comparison with 1983 wet season (shown in figure 1-2), the number of tiller in 1984 dry season increases more than the wet season and the increasing rate of tillering is also slower.

and the country of a second terms of the second

Table 2-1 shows the number of tillers has been calculated and analysed by F-test table, in each stage.

The number of tillers of seed rate is significant during 2-6 weeks. Basal treatments is significant at 5% level and no any significance different on top dressing plots.

Table 2-2 shows the significant difference among the number of tiller of seed rates.

For the number of tillers, 16 kg/rai and 8 kg/rai seed rate plots are higher than 4 kg/rai one. The number of tiller is significant at the period of 2-6 weeks after sowing but not significant difference at the 7th week.

Table 2-3 shows the significant difference among the number of tiller of basal nitrogen.

The number of tiller of 8 kg/rai basal nitrogen plot is more than the 0 kg/rai. They are significant during 4-7 weeks after sowing.

2. Yield

Table 3-1 and figure 2 show the yield of different seed rate, basal and top dressing nitrogen.

The yield among basal treatments is significant at 5% level. There is not significant between 8 and 4 kg/rai of basal treatment plots and both of them are more productive than 0 kg/rai one.

From figure 2, the yield of seed rates and top dressing treatments is not significant. The yield of basal plots are 8>4>0kg/rai and 8-0 = 4-4>4-0 kg/rai for top dressing ones. They show that, the best rate for basal and top dressing nitrogen is 8 kg/rai.

3. Yield component

Yield component is investigated in the sampling area of 50 cm x 50 cm, as the data shown in table 4.

(1) The number of spikelets per panicle

Table 4-1 shows the yield component of the number of spikelets per panicle.

Among treatments, A seed rate only is significant at 5% level. The number of spikelets of 4 kg/rai seed rate plot is more than 8 and 16 kg/rai ones.

(2) Ripening percentage analysis

Table 4-2 shows the ripening percentage analysis among treatments.

Among treatments, the best rate for nitrogen fertilization is 8 kg/rai and 2 time-divided fertilization is better than one time. Top dressing nitrogen shows the different at 5% of significance.

4. Correlation among yield components

The correlation among yield components are shown in table 5. By these results, yield, the number of panicle per unit area, the number of spikelets per unit area and ripening percentage are closely positive relation.

By comparison, the number of spikelets per unit area is the most correlative in both of wet and dry season. Besides, the number of spikelets per panicle is the highest relation, the second is the number of panicle, in wet season. But in the dry season, the number of panicle and 1000 grains weight are close relation.

5. Extra plots as the reference data

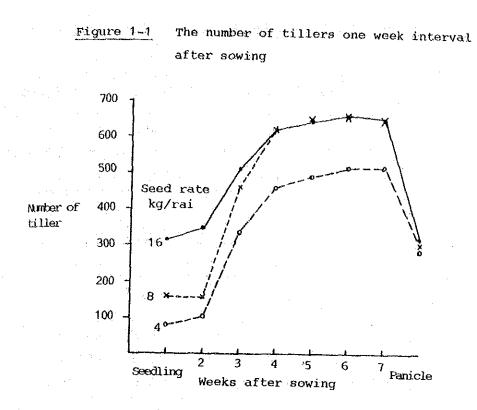

Â.

Table 6 and figure 3 show the data of the extra plots. There is not nitrogen fertilization for as the indicator of fertile soil.

In the dry season, the yield of 16 kg/rai seed rate plot is more than 8 and 4 kg/rai ones. That means, the less of soil fertility, the more of seed sowing.

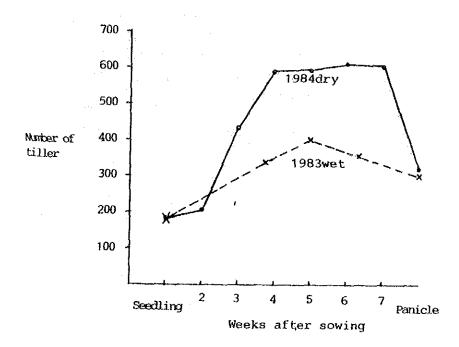

-1.	0-+							
Plot No.	Seedling/wee	2	3	4	5	6	7	Panicle
1	320	332	444	472	476	476	428	320
2	320	348	396	400	464	496	480	312
3	320	336	348	396	400	480	480	264
4	320	328	676	700	700	768	764	368
5	320	460	460	976	996	996	996	356
5 6	320	368		700	704	704	704	368
7	320	328	484	544	568	568	572	400
8	320	344	496	632	636	636	636	292
9	320	320	708	776	780	812	812	312
mean	320	352	509	622	636	660	652	332
10	160	168	272	632	668	668	656	232
10	160	176	480	684	724	744	724	404
12	160	180	380	436	472	472	480	364
13	160	172	512	520	544	544	508	244
14	160	160	412	476	556	592	596	272
15	160	160	504	548	592	592	616	304
16	160	180	472	724	752	752	752	332
17	160	1 ⁶ 0	652	884	884	884	884	360
18	1:60	160	500	676	676	676	676	352
mean	160	168	465	620	652	658	655	318
19		80	296	492	492	492	500	296
20	80	92	200	280	292	292	300	244
21	80	80	400	552	552	552	552	328
22	80	116	360	408	464	448	456	276
23	80	1.00	364	460	476	572	572	284
24	80	136	312	520	520	580	592	352
25	80	160	424	556	564	568	568	276
26	80	84	380	3 9 2	396	560	560	348
27	80	100	304	608	652	652	652	252
mean	80	1.05	338	474	490	524	528	295
MEAN	187	208	437	572	593	614	612	315

Table 1 The number of tiller per square meter

Compare the growth number of tiller between 1983 wet and 1984 dry season

We	eks							
Wer	after \sowi	ng 2	.3	4	5	6	7	F-table
Seed rate	(A)	251.7**	7.0*	5.5*	7.4*	5.0*	4.3	F(.05)=4.46
Basal N		2.3	4.4	5.2*		· · · · · · · · · · · · · · · · · · ·	•	F(.01)=8.61
Тор N	(C)	0.4	0.1	0.1	0.1	0.6	0.8	

Table 2-1. F-scale of the number of tillers

The significance of the number of tiller among seed rates Table 2-2

			·			
Weeks Seed rate after sowing	2**	3*	4*	5*	6*	7
16kg/rai	352 a	509 a	622 a	636 a	660 a	652
8kg/rai	168 b	465 ab	620 a	652 a	658 ab	655
4kg/rai	105 c	338 b	. 474 b	490 Б	524 b	528
L.S.D .05	32	135	144	131	139	139
L.S.D .01	47	196	209	191	202	203

Table 2-3 The significance among the number of tiller on basal N

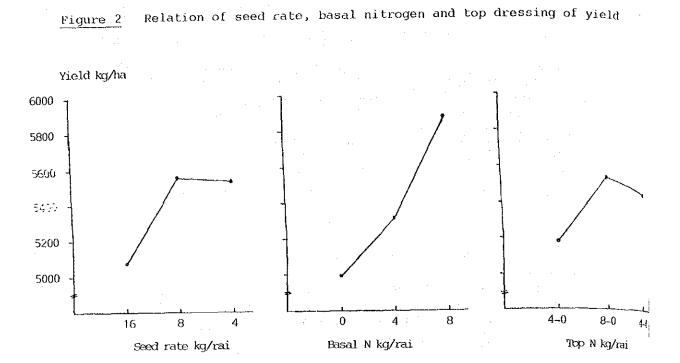
Weeks Basal N after sowi		···· 3 ⁽¹⁹⁸¹	4*	5*	6*	7*
0kg/rai	199	357	483 b	504 b.	519 b	511 b
4kg/rai	222	464	590 ab	617 ab	644 ab	645 ab
8kg/rai	204	491	644 a	656 a	679 a	679 a
L.S.D .05	32	135	144	131	139	1 39
L.S.D .01	47	196	209	191	202	203

Factor/level (kg/rai)	1	2	3
Seed rate (A)	16	8	4
Basal N (B)	0	4	8
Top N (C)	4-0	80	4-4

vable 3 The yield of seed rate, basal and top dressing nitrogen

Analysis of yield (kg/ha)

Variation	df	SS	MS	F
A	2	1256960	628480	2.5
B	2	3633220	1816610	7.2 *
с	2	610432	305216	1,2
AB	4	1030140	257536	1.0
AC	4	131904	32976	0.1
BC	4	1602750	400688	1.6
Error	8	2023420	252928	
F (2.8 ; .)	05) = 4.46		F (2.8 ; .01)	= 8.65
F (4.8 ; .)	05) = 3.84		F (4.8 ; .01)	= 7.01
F (4.8;.9	351 = 3.84		r (4,8 ; .01)	⇒ /.'


Mean of yield

Factor/level	: · 1 : ·	2	3
Seed rate (A)	5078	5549	5520
Basal N (B)	4968 b	5319 ab	.5860 a
Top N (C)	5176	5530	5441

L.S.D (.05) = 670

L.S.D(.01) = 974

٠,

Table	4-1	The	vield	component
lane	c 1 1	1110	YLCLU	componione

No.	Panicle	Spikelet	R%	1000GW	Yield/m ²	Spikelet/m ²	Yield/ha
	320	72.4	74.1	25.6	439.5	23168	4829
2	312	70.1	75.6	25.5	421.6	21871	4652
3	264	66.8	80.3	25.3	358.3	17635	5057
4	368	68.1	76.7	25.7	494.0	25061	5193
5	356	78.4	74.4	26.2	544.1	27910	5457
6	368	71.8	79.1	25.2	526.7	26422	4810
7	400	78.7	69.6	25.6	560.9	31480	4673
8	292	81.5	76.0	26.4	477.5	23798	5444
9	312	73.7	84.5	25.7	499.4	22994	5583
10	232	87,4	70.7	24.9	357.0	20227	4021
11	404	66.8	84.3	. 25.9	589.2	26987	5214
12	364	75.5	81.6	26.3	589.8	27482	5325
13	244	78.8	80.7	25.3	392.6	19227	5659
14	272	80.3	79.8	24:6	428.8	21842	5442
15	304	88.2	79.0	25.4	538.0	26813	5431
16	332	85.0	77.4	26.6	581.0	28220	6508
17	360	74.8	82.3	26.6	589.5	26928	6149
18	352	74.3	81.8	26.5	566.9	26154	6194
19	296	82.6	68.4	25.5	426.4	24450	5002
20	244	89.2	78.8	25.6	439.1	21765	5238
21	328	76.0	80.6	25.7	516.4	24928	5375
22	276	93.2	78.9	25.0	507.4	25723	5319
23	284	91.8	82.6	25.9	557.8	26071	6119
24	352	80.4	79.3	25.7	576.8	28301	4438
25	276	93.5	76.2	25.7	505.4	25806	5.378
26	348	71.2	74.6	25.2	465,8	24778	6051
27	252	110.8	74.8	26.2	547.2	27922	6759
Mean	315.3	80.8	77.9	25.7	499.9	24963	
S.D	48.7	10.0	42	0.5	71.4	3115	

Variation	df	SS	MS	\mathbf{F}
A	2	913.4	456.7	4.1 +(10%)
В	2	197.2	98.6	0.9
С	2 ·	71.9	35.9	0.3
AB	4	93.0	23.2	0.2
AC	4	182.8	45.7	0.4
BC	.4	259.5	64.9	0.6
Error	8	859,3	112.4	

Table 4-2 Analysis of the number of spikelet per panicle

F(2,8;.05) = 4.46

Mean			
Factor/level	1	2	3
Seed rate (A)	73.5 b	79.0 be	87.6 a
Basal N (B)	76.3	81.2	82.6
Top N (C)	82.2	78.2	79.7

L.S.D (.05) = 14.1

Table 4-3 Analysis of ripening percentage

Variation	df	SS	MS	F
A	2	48.4	24.2	2.2
В	2	16.4	8.2	0.7
с	2	139.5	69.7	6.4 *
AB	4	32.5	8.1	0.7
AC	4	49.1	12.3	1.1
BC	4	83.4	20.9	1.9
Error	8	87.6	11.0	
F(2,8 ;	.05) = 4.4	l6 F	(2,8;.01) =	= 8,65
lean				

Factor/leve	∋l , , , , , , ,	1	2	3
Seed rate	(A)	76.7	79.7	77.1
Basal N	(B)	77.2	78.9	77.5
Top N	(C)	74.7 b	78.7 ab	80.1 a

L.S.D(.05) = 4.4

+

Table 5-1	Correlation of	L YICIG CC				
Yield components	Spikelets/ panicle	R%	1000 grains weight	Yigld/ m	Spike)ets/ m ²	Panicle/ hill
Panicle/m ²	-0.580	0.113	0.382	0.670	0.669	-0.053
Spikelet/par	nicle	-0.226	0.042	0.104	0.210	0.396
R%			0.203	0.344	-0.079	0.042
1000 grains	weight			0.658	0.502	0.004
Yield/m ²	*				0.899	0,278
······································			· · · · · · · · · · · · · · · · · · ·		•	

Table 5-1 Correlation of yield components in 1984 dry season

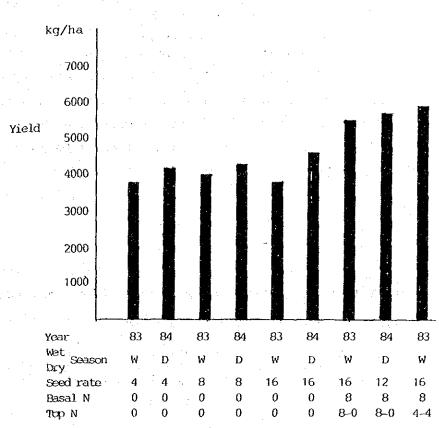

a di sana ang sana an

Table 5-2 Correlation of yield components in 1983 wet season

Yield components	Spikelets/ panicle	R۴	1000 grains weight	Yield/ m ²	Spikelets/ m ²	Panicle/ hill
Panicle/m ²	-0.335	0.168	0.073	0.439	0.379	-0.010
Spikelet/par	icle	-0.223	-0.389	0.652	0.738	0.827
R%			-0.030	0.126	-0.116	0.002
1000 grains	weight			-0.183	-0.288	-0.410
Yield/m ²	~				0.962	0.789

Table 6 Extra plots as reference data in 1984 dry and 1983 wet season

	<u> </u>	Nitro	ogen	Yield(kg/ha)
Year	Seed rate	Basal	Тор	
84-Dry	4	0	.0	4241
ti	8	0	0	4393
17	16	0	0	4685
	12	8	80	5755
\$7 .	20	8	8-0	4686
83-Wet	4	0	0	3600
t 1	8	0	0	3939
U U	16	0	0	3678
13	16	8	8-0	5611 Lodging
u	16	8	4-4	5927

and the second second

Exp. 2 Effect of seed rates and nitrogen fertilizer quantities for yield on germinated direct sowing rice.

(1984 dry season)

Mr.	Vichien	Sasiprapa
Mr.	Pairat	Duangpiboon
Dr.	Tetsujiro	Sugahara

This experiment is carried out the effect of extreme seed rates (4, 20 kg/rai) and nitrogen fertilizer quantities at basal (4, 8 kg/rai), P.I.S. (4, 8 kg/rai) and heading (0, 4 kg/rai) to yield on germinated direct sowing rice.

Material and method

- 1. Variety : RD 23
- 2. Design : L_{16} (4 factors x 2 levels x 2 replications)
- т <u>1</u>6
- 3. Plot size and field : 4m x 10m No. 2-5

4. Sowing date : March 23rd, 1984.

Harvest : Seed rate 20 kg/rai, July 10th, 1984. Seed rate 4 kg/rai, July 16th, 1984.

5. Pre-seed treatment : Seed selection by salt water

(specific gravity 1.10)

		Seed	Nitrogen (kg/rai)		
Plot No.	Plot No. Repeat	rate(A)	Easal(B)	P.I.S.(C)	Heading(D)
1	1	4	4	4	0
2	1	4	4	8	4
3	1	4	8	4	4
4	1	4	8	8	0
5	1	20	4	4	4
6	1	20	4	8	0
7	1	20	8	4	0
8	1	20	8	8	4
. 9	2	4	4	4	4
10	2	4	4	8	0
.11	2	4	8	4	0
12	2	4	8	8	4
13	2	20	4	4	0
14	2	20	4	8	4
15	2	20	8	4	4
16	2	20	8	8	0

6. Treatment

At basal, supply $P_2 O_5$ 6kg/rai all plots at 15 days after sowing

Result

Table 1 and table 2 show the yield and yield analysis.

From table 1 and table 2, yield is not significant among seed rates, basal and top dressing nitrogen in this experiment. But there are some interaction between C and D. This interaction shows that nitrogen application is significant at the level of 5%, at the panicle initiation stage (P.I.S.) and Heading stage. (See table 2)

Table 3 and figure 1 show the calculation and analysis of interaction between C and D.

In this experiment, there are 2 types of fertilizer application at P.I.S. that is 4 and 8 kg/rai. From figure 1, it shows the effect between fertilization at P.I.S. (C_1 and C_2) and nitrogen supply at Heading stage (D_1 and D_2). Heading stage at the rate of 4 kg/rai (D_2) gives more yield than 0 kg/rai. (D_1), of fertilizer application at the rate of 4 kg/rai (C_1) at P.I.S. But for the 8 kg/rai of fertilization at P.I.S. (C_2) gives highly yield at Heading stage of 0 kg/rai fertilization (D_1).

No.	Treatment	Yield(kg/ha)	Yate-4	Effect	Variance	Factor
1	4-440	4154	78503	4906.4	5374089.9	СТ
2	4-484	3565	141		1242.6	dala c
3	4-844	5864	-4139	-258.7	1070707.6	В
4	4-880	5821	-1169	-73.1	85410.1	BC
5	20-444	4788	-813	-50.8	41310.6	A
6	20-480	5564	-851	-53.2	45262.6	AC
7	20-840	5025	-4483	-280.2	1256080.6	AB
8	20-884	4472	2515	157.2	395326.6	$oldsymbol{e}$
9	4-444	4559	3	0.2	0.6	R
10	4-480	4989	677	42.3	28645.6	e
11	4-840	4668	-2083	-130.2	271180.6	e
12	4-884	5225	-397	-24.8	9850.6	AD
13	20-440	4833	-77	-4.8	370.6	е
14	20-484	4730	2561	160.1	409920.1	BD
15	20-844	5431	-5159	-322.4	1663455.1	CD
16	20880	4815	1235	77.2	95326.6	D
	·				,	
fable	2 Analysi	s table		• · · •		

Table 1 Computation of factorial effect total

·			
Fable 2	Analysis	table	

Variation	df	SS	MS	F
 Tatal	15	5374089.94		· · ·
BL	1	0.56	0.56	0.00
A	1	41310.56	41310.56	0.24
B	1	1070707.56	1070707.56	6.16
c	1	1242.56	1242.56	0.01
D	1	95326.56	95326.56	0.55
AB	1	1256080.56	1256080.56	7.22
AC	1	45262.56	45262.56	0.26
AD	1	9850.56	9850.56	0.06
BC	1	85410.06	85410.06	0,49
BD	1	409920.06	409920.06	2.36
CD	1	1663455.06	1663455.06	9.57*
Error	4	695523.25	173880.81	

F(1,4;.05) = 7.71 F(1,4;.01) = 21.2

Factor	Level 1	Mean	Level 2	Mean
A	1	4855.6	2	4957.3
в	1	4647.8	2	5165.1
c C	1	4915.3	2	4897.6
D	1	4983.6	2	4829.3

e de la composición d			· · ·
Table 3	Analysis	of interaction	factors

MARK			method	102 445	
Mark Yate-4	(1)	(2)	(2)/16	Combinatior	
Total	78503	78644	74720	4670	C ₁ D ₁
с	141	-3924	84756	5297	C ₂ D ₁
D	1235	78362	82568	5160	$c_1 D_2$
CD	-5159	6394	71968	4498	$C_2 D_2$

1. Inverse Yate algorithm

2. Two-way table

·			
: · · · · · · · · · · · · · · · · · · ·	^D 1	^D 2	Mean
c ₁	4670	5160	4915
с ₂	5297	4498	4898
Mean	4984	4829	(4907)

3. L.S.D

,

L.S.D =
$$t(4:0.05) \sqrt{2(\text{error MS})/4} = 2.776 \sqrt{(173880.8)/2} = 818.5$$

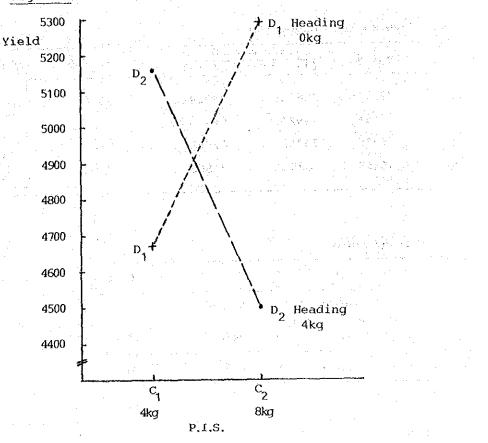


Figure 1 Interaction of top dressing and yield

Exp. 3 Effect of Calper coating quantities of rice seed to the amount of survival seedling in germinated broadcasting rice

উপাৰ-চাৰুৱ আনে-প্ৰিয়ি বান্দ

e e e e e e		e da en den det e de	Ċ,
	(1984 dry se	ason)	
Mr.	Vichien	Sasiprapa	. <u>,</u> ,
Mr.	Pairat	Duangpiboon	:
Dr.	Tetsuiro	Sugahara	ź
	그는 사람은 영화에 가지 않는 것이다.	이 분석으로 생각하는 것 같아? 몸을	2

Paddy fields in irrigated areas are good for irrigated control. Parmers prefergerminated broadcasting rice cultivation becasue they can reduce the process of planting such as nursery, uprooting and transplanting. Besides, it reduces labour problem because of wage competition by lacking of labour. However, patchs must be smoothened in order to no bogs on the plots. Boggy lands cause ungerminated seedlings because they are lack of Oxygen. Therefore, Calper utilization for adding Oxygen should be a good choice in germinated broadcasting rice.

Objective

 To study the appropriate quantity of Calper dust coated rice seed before broadcasting.

214.1 (1997)

2. To study the efficiency of Calper dust under the submerged condition.

Material

- 1. Variety : RD 23
- 2. Calper dust
- 3. Soil and sand
- 4. Chemical fertilizer : Ammophos (16-20-0)

Ammonium Sulphate (21-0-0)

Method we was reference to the end of the providence of the providence of the providence of the base of the term

- 1. Spilt-plot design, 2 replications Main-plot : 10, 20 cm of water level treatment Sub-plot : 8, 16 kg/rai of seed rate
 - The rate of Calper coating : Calper : dry seed : soil+sand = $\frac{1}{3}$:1:3+1
- Calper : dry seed : soil+sand = 1:1:3+1

2. Sub-plot size : $10m \times 6.5m = 65m^2$

3. Chemical fertilizer

Basal application 8-6-0 kg/rai, 15 days after sowing

1.1.200

Top application 8-0-0 kg/rai, at panicle initiation stage

4. Rice pest control by chemical

Broadcast Furadan with the rate of 5 kg/rai when the rice is 20 days oldand when it is necessary by spraying Azodrin with the rate of 15 cc/20 liters of water.

5. Water level control

<u>i i se esta de la Astro</u>

10 cm and 20 cm of water level control in the period of sowing date up to the rice is 30 days old.

Place

Suphan Buri Rice Experiment Station plot.

Duration Sowing : March 31st, 1984. Harvest : July 26th, 1984. Result

Table 1 shows the yield of RD 23 (kg/ha) From table 1, it is found that the yields are not any different on seed rates coated with Calper dust at the rate of dry seed : Calper dust = 1:1 or 1:1 by weight. Not only that, the average yield of every method are not significant too.

At the 10 cm and 20 cm of water level control, the yield is highly significance different at the level of 99% in the period of 30 days after sowing. 10 cm of water level control, gives the highest yield that is 6221.57 kg/ha and 6051.10 kg/ha for the 20 cm one.

Summary

1. In germinated broadcasting rice in irrigated area, the yield can be raised by water level control especially, in the period of 30 days after sowing. It is not good for damming up much of water on the plots because it reduces the yield. By the result, the yield of water level control at 10 cm is higher than the 20 cm one that is 170.47 kg/ha.

2. The quantity of Calper dust coated rice seed at 50 or 100% are not show the tendency of higher yield, in the seed rates of 8 or 16 kg/rai.

3. In the submerged condition, usually found the unsurvival seedling. There are many causes concern to this problem. One of the main causes have to be shortage of Oxygen during emerging from water level. From this phenomenon could say that Calper dust effected to seedling establishment under submerge condition. The Calper dust which are coated at the surface of sprouted seed will contact with water at the time of direct sowing. Result of this chemical reaction will release Oxygen to supply sprouted seed until growing through water level.

Table 1 Yield (kg/ha)

Main	Sub		Replie	ation	Average	Average
vater level (cm)	Seed rate and (kg/rai)	Calper quantity (seed:Calper)	1	11	(Sub)	(Main
1997 - 19		1. 1.	6501.25	6113,75	6307,50	-
10		1	6147.50	6315.00	6231.25	6221.5
		1.5	6045,00	6443.75	6244.38	
	16 –	1	6622.50	5583,75	6103.13	
	8 -	łz	6330.00	6152.50	6241.25	
20	8 -	1	6397,50	6013,75	6205.63	6051.10
1.1 × 111 × 11	16 -	1 ₂	6006.25	5886.25	5946,25	
	16 -	1	5767.50	5855.00	5811.25	

.

Table 2 Analysis of variance on yield

variation	df	SS	MS	F
Block	1	132086.816	· _	
Water level	1	116238.379	116238,379	26.24 **
Error (a)	1	4430.566	4430,566	· _
Seed rate and Calper quantity	3	238290.136	79430.045	0.71 ns
Water level x seed rate	[.] . 3	62876.856	20958,952	0.19 ns
Error (b)	6	672003.711	112000.619	
Total	15	1225926.465		

the processing of the

(a) A set of the s

189,

Exp. 4

	(1984 dry	season)	an an britan	; ;
	Mr. Vichien Mr. Pairat	Sasiprapa Duangpiboon		
1. S.		Sugahara	1	. :

Weed problems are reduced by soil smoothening in germinated direct sowing and the number of panicle per unit area can be increased easier than transplanting rice cultivation by increasing the rate of sowing. But, this method is limitted by the fertile of soil and variety because too much plant density causes the problem of absorbed mineral competition. It causes the small panicles, less amount of grains per panicles, lean seed and lodging. Therefore, seed rate utilization is considered for germinated direct sowing in each local.

Objective

 To compare the yields between low seed rates (4, 8 and 12 kg/rai) and 16 kg/rai which is recommeded by government official.

Material

1.	Variety : RD 23	
2.	Chemical fertilizer :	Ammophos 16-20-0
		Ammonium Sulphate 21-0-0
3,	Salt water : Specific	gravity 1.10
4.	Pest control chemical	: Furadan and Azodrin

5. Weed control chemical : Saturn G

Method

ALC: SALES

1. Randomized Complete Block Design, 3 replications

2. Sub-plot size : $5m \times 35m = 1.75m^2$

3. Seed rates : 4, 8, 12 and 16 kg/rai

4. Fertilizer application Basal : 8-6-0 kg/rai, when the rice is 15 days old

Top : Ammonium Sulphate 8-0-0 kg/rai,

at panicle initiation stage

and the rate of 15 cc/20 liters of water when it is necessary.

191

Place Suphan Bu

Suphan Buri Experiment Station plot

Duration Sowing : March 22nd, 1984. Harvest : July 10th, 1984.

1.1.1.1.1

Table 1 shows the average yield in each seed rate.

From table 1, the yield average of seed rate 16 kg/rai is the highest (6110.31 kg/ha), the second is 8 kg/rai(6062.81 kg/ha) and the others are 4 and 12 kg/rai (6040.63 and 5940.63 kg/ha) respectively.

However, 16 kg/rai of seed rate gives the highest yield but there is not significance different among the seed rates of 4-16 kg/rai.

Summary

Result

1. There is not significance different among seed rates. But the yield of RD 23 at the seed rate 16 kg/rai tends to be more than others.

2. Weed problem occurs when using the low seed rate because there is too much of vacant land on the plots. Therefore, the appropriate seed rate, for weed control and high yield, is considered. Not only that, the increasing of plant population per unit area is limitted. So, the rate of fertilizer application is also considered because it causes lodging.

Seed rate		Replication			
(kg/rai)	T	II	III	IV	Average
4	6586,25	5732.50	6161.25	5682.50	6040.63
8	5918,75	6827,50	6440.00	5065,00	6062.81
12	6136,25	5852,50	6043,75	5730.00	5940,63
16	5503,75	6551_25	6816,25	5570.00	6110,31

Table 2 Analysis of variance on yield

	·····	df SS	~	~~`		Tabular F	
	variation		Cri	F	5%	1%	
· · · ·	Block	3	1700505.08	566835.03	2.51 ns	3.86	6.99
1913 - N	Treatment	. 3	61328,52	20442.84	0.09 ns	3,86	6.99
	Error	9	2032009.77	225778.86	1 - <u>-</u> - 11 - 1	uria P <u>⊥</u> tri antri a	
	Total	15	3793843,36		· · · · · · · · · · · · · · · · · · ·		

C.V. = 7.87 %

****** Result of the average treatment data

· ,

1. Development of Cantaloupe cultivation technique

Result of the average treatment data

····

Outline

The series of the experiments were continuously carried out between 1980 and 1984 at the fields of the Suphan Buri Experiment Station. The yearly and subject-wide experimental results together with the statistical analysis were reported every year.

The following results are compared among these means in evey subject through the year. The results from the transplanting were derived from the 60 treatments from 1980 to 1982 and these from direct-sowing were derived from the 110 ones from 1982 to 1984.

The analytical subjects were divided into transplanting directsowing, wet and dry season, plant densities, grain yields, nitrogen applications and etc.

The datas are as follow :

1) the paddy yield from the crop-cutting of 8 m^2

- 2) the yield components data sampling from 50 cm x 50 cm area
- 3) the number of panicles and spikelets per panicle
- the percentages of ripened grains defined by specific gravity 1.06
- 5) the 1,000 grain weights
- 6) the calculation yield and number of spikelets per m^2

Results

Table 1 shows the results of the transplanting experiments with the means and standard deviations and table 2 shows the these of the direct-sowing.

1. Comparison between transplanting and direct-sowing

In table 1 and 2, the crop-cutting yield from the direct-sowing method is 5,474 kg/ha and it from the transplanting is 5,333 kg/ha. The former one exceeds the latter by 140 kg. The opposite way is more common for ordinary farmers' fields.

2. Comparison between dry and wet seasons

Table 3 shows the comparison. As far as the crop-cutting survey result is concerned, the dry season crops show better results than the wet season ones in both of transplanting and direct-sowing. The transplanting and direct-sowing in the dry season are 845 kg and 285 kg respectively bigger than them in the wet season.

According to the yield component of the respective data, in terms of grain quantities, the dry season is bigger than the wet season. Consequently, the grain quantities per unit acreage, which significantly effects the yield, is considered as the most important factor.

The Suphan Buri Experiment Station, defines March to July as the dry season and August to December as the wet season.

3. Comparison between plant densities and sowing rates

Table 3 shows these comparisons.

In transplanting, the plant density of 25 hills per m^2 (20 cm x 20 cm) gained the most yield. The second most one is 32 hills per m^2

In direct-sowing, 8 kg of seed per rai $(1,600 \text{ m}^2)$ gained the most yield. The more amounts tend to get less yields.

These results were obtained from the well-managed field like the Station but it is required that the further research should be made at the farmers' fields.

4. Comparisons among nitrogen applications

In transplanting, 18 kg per rai of the nitrogen application gained the most yield, but 24 kg got less. The less amount of the applications than 18 kg tend to correspondly lose the yields.

In direct-sowing, 14 to 16 kg per rai gained the most yield.

The more applications tend to accerelate the lodging and to reduce the percentage of the ripened grains.

The less applications than 14 kg per rai significnatly reduce the yields. If the comparisons between the transplanting and direct-sowing at the same level of application are made, the efficiency of the fertilizer absorption is better for the direct-sowing. Namely, in the transplanting 12 kg gained 5,083 kg per ha of rice grains, 16 kg did 5,279, and 18 kg did 6,257 kg but in the direct-sowing, 10 to 12 kg did 5,545 kg and 14 to 16 kg did 6,256 kg.

Secondly the economical optimum level of the nitrogen application was shown in table 7. The control with 3 plots in both of the dry and wet seasons were allocated and the average yield was 4,089 kg per ha. The table shows the different levels of the application on the condition of the same cost other than the nitrogen fertilizer cost. If the control level is 100, the application of 6 kg, 11 kg and 21 kg per ha are 125, 128, 143 and 101 respectively. Therefore, 15 kg applcation gained the most yield.

5. Correlation between yields and yield components

Table 5 and 6 show the correlation matrixes concerning transplanting and direct-sowing respectively. The most correlated factor with the yield is the grain quantity per unit area, i.e. the correlation ratio in transplanting is 0.983 and it in direct-sowing 0.846

These datas analyzed by T value of multiple regressions with the factors related to the yield.

The most significant factors to increase the yield are the number of panicles per m^2 and next is the number of spikelets per panicle in transplanting but at direct-sowing the number of panicles and spikelets of per panicle, the both are equally important.

Conclusion

The above-mentioned analysis may conclude the following items as the instruction for the farming in the Central Zone around Suphan Buri.

In transplanting ;

- 1) The plant density is 25 hills per m^2 (20 cm x 20 cm)
- 2) The nitrogen application amount; 18 kg per rai is recommended. For basal and top dressing, half is applied respectively, and the top dressing should be applied the panicle initiation stage.

فرقين أتجرب المعاجر

In direct-sowing ;

- The seed rate is good, 8 kg per rai on experiment but usually 10 to 12 kg should be recommended for farmers.
- 2) Best quantities 14 to 16 kg per rai of nitrogen is applied. The half for basal is recommended to be applied 15 to 20 days after sowing and for top dressing at the panicle initiation stage. Wherever lodging is an ordinary problem, the application for top dressing is devided into twice, once at the panicle initiation stage and once at the booting stage.

Table			, *	1.					
NO. D or W	Year hills mark /m ²	kgN /rai	Panicle (1)	Spikelet (2)	R% (3)	1000GW (4)	Yield/m 1x2x3x4	Spikelet/m 1x2	Yield /ha
	80UC 25 0	18	272	110.0	75.0	27.4	614.9	29920	6436
1 W 2 W	80UD 25.0	18	270	109.0	76.0	27.4	612.9	29430	6609
2 W		18	277	104.0	78.9	27.4	622.8	28808	6576
4 W	80UC 16.0	/18	239	120.0	75.6	27.4	594.1	28680	6359
5 W	80UD 16.0	18	256	115.0	75.5	26.5	589.0	29440	6690
6 W	80UD 16.0	18	246	120.0	78.0	26.8	617.1	29520	6178
7 D	81VP 25.0	16	307	84.7	76.4	27.8	552.3	26003	5435
8 D	81VS 25.0	j6 .	. 243	102.7	75.5	27.2	512.5	24956	5144
9 D	81VR 25.0	16	249	100.2	75.4	27.4	515.5	24950	5039
10 D	81VC 25.0	16	273	96.4	76.6	27.7	558.4	26317	5675
11 D	81GP 25.0	16	336	74.1	75.9	27.8	525.3	24898	5208
12 D	81GS 25.0	16	258	100.5	72.9	27.6	521.7	25929	5368
13 D	81GR 25.0	16	274	88.1	76.5	27.4	506.0	24139	5184
14 D	81GC 25.0	16	263	80.0	76.3	27.4	439.9	21040	5378
15 D	81D2 16.0	16	233	110.4	77.2	27.6	548.1	25723	4842 5730
16 D	81D2 25.0	16	288	93.7 104.8	77.1 76.3	28.0 27.5	582,6	26986 25571	5187
17 D	81W2 16.0	16	244 283	97.6	76.5	27.6	5 <u>36</u> .5 583.9	27621	5274
18 D	81W2 25.0 81D1 16.0	16 16	223	102.3	75.0	27.4	464.6	22608	4786
19 D	81D1 16.0 81D2 25.0	16	247	103.0	77.4	27.5	541.5	25441	5212
20 D	81D2 23.0	16	259	94, 2	74.8	27.5	501.9	24398	5187
21 D	81D5 50.0	16	335	88.1		27.4	612.2	29514	5818
22 D 23 W	81T1 20.0	12	194	118.8	75.6	27.5	479.2	23047	5240
23 n 24 W	8172 20.0	12	204	117.9	75.8	27.9	508.6	24052	5298
24 N 25 W	81T3 20.0	12	196	120.5	77.7	28.0	513.8	23618	4674
26 W	81T1 20.0	18	210	126.1	74.7	27.6	546.0	26481	5229
27 W	81T2 20.0	18	230	117.7	70.9	28.0	537.4	27071	5688
28 W	81T3 20.0	1.8	216	123,9	74.9	27.8	557.3	26762	5478
29 W	81T1 20.0	24	224	114.2	72.5	27.8	515.6	25581	4250
30 W	81T2 20.0	24	232	120.0	68.9	28.4	544.8	27840	4806
31 W	8173 20.0	24	204	130.3	74.2	28.2	556.2	26581	5361
32 W	81C1 25.0	12	231	93.4	80.7	27.9	485.8	21575	4763
33 W	81C1 25.0	18	223	108.4	76.4	28.0	517.1	24173	4618
34 W	81RD 32.0	24	190	108.0	71.5	29.8	437.2	20520	4643
35 W	81RD 32.0	24	258	102.3	65.6	29.4	509.0	26393	5349
36 W	81R2 32.0	24	233	123.3	72.0	28.7	593.7	28729	4995
37 W	81R2 32.0	24	273	104.5	77.2	27.2	599.1	28529	5582
38 W	81RD 22.2	24	210	116.1	75.4	27.7	509.2	24381	4673
39 W	81RD 22.2	24	235	123.9	72.9		568.9	29117	5083
40 D	82DN 16.0	12	225	112.7	82.6		538,3	25358	6222
41 D 42 D	82DN 16.0 82DN 16.0	· 18 .24	242 261	126.1	83.1 81.5		672.0	30516	6757 6947
42 D 43 D	82DN 16.0 82DN 32.0	12	253	109.3	84.9		699.9 608.1	32651 27653	7085
43 D	82DN 32.0	18	261	116.7	84.0		683.1	30459	7959
45 D	82DN 32.0	24	293	114.2	80.0		730.8	33461	6859
46 D	82DN 50.0	12	316	108.4	82.6		730.8	34254	6277
47 D	82DN 50.0	18	319	109.1	82.0		770.5	34803	6760
48 D	82DN 50.0	24	348	113.8	80.6		855.4	39602	6309
49 W	82MG 16.0	6	158	107.7	80.9		357.9	17017	3810
50 W	82MG 32.0	6	194	108.8	80.3		450.8	21107	4364
51 W	82MG 16.0	12	178	113.9	82.5	14 C	446.6	20274	4339
52 W	82MG 32.0	12	208	93.8	81.2	26.8	424.6	19510	4271
53 W	82C0 16.0	6	161	102.8	78.8	25.2	328.7	16551	3388
54 W	82CO 32.0	6	189	100.1	81.0	25.4	389.2	18919	4151
55 W	82CO 16.0	12	159	122.0	82,0	26,2	416.7	19398	4331
56 W	8200 32.0	12	203	114.5	82.1	27.4	522.9	23244	5312
57 W .	82NO 16.0	6	169	106.9	77.2	25.4	354,3	18066	3631
58 W 59 M	82NO 32.0	6	201	95.5	78,3		377.3	19276	3888
59 W 60 W	82NO 16.0	12	170	108.2	81.3		387.3	18394	4147
~~ W	82NO 32.0	12	197	95.1	81.1	26.1	396.6	18735	4124
Mean	25.2	16.2	239.0	107.9	77.3	27.2	538.1	25593	5333
S.D.	8.9	, 5, 3	45.1	12.1	3.8		104.0	4667	960
		• =			-		-	· .	

Table 1	Yield	component	data	(tran	splan	ting)
					· · ·	

No. <u>D</u> or W 1 D 2 D 3 D 4 D 5 D 6 D 7 D 8 D 9 D 9 D 1 D 2 D 3 D 4 D 5 D 5 D 5 D 6 D 7 D 8 D 9 D 9 D 1 D 9 D 1 D 1 D 1 D 1 D 1 D 1 D 1 D 1	286 2166 2246 2326 2812 2161 2241 2321 2818 2161 2241 2321 2824 2162 2242 2322	Seed rate 8 16 24 32 8 16 24 32 8 16 24 32 8 16	kgN /rai 6 6 6 12 12 12 12 12 12 18 18 18 18 18 24	Panicle (1) 330 389 384 497 407 374 408 352 337 367 316	Spikelet (2) 86.0 74.6 72.4 55.4 80.5 86.2 71.7 69.5 94.7 75.6	 (3) 81.6 85.8 83.2 88.1 78.8 82:4 81.2 68.5 71.9 	1000GW (4) 26.3 26.8 26.6 27.1 28.2 27.1 27.4 26.8	Yield/m ⁻ 1x2x3x4 609.1 667.3 615.3 657.4 728.1 719.9 650.9 449.1	Spikelet/ 1x2 28380 29019 27802 27534 32764 32239 29254 24664	m ² Yie /ha 5806 5908 5721 6675 5805 5805 5555
2 D 3 D 4 D 5 D 6 D 7 D 9 D 9 D 0 D 1 D 2 D 3 D 4 D 5 D	2166 2246 2326 2812 2161 2241 2321 2818 2161 2241 2321 2824 2162 2242 2322	16 24 32 8 16 24 32 8 16 24 32 8	6 6 12 12 12 12 12 18 18 18 18	389 384 497 407 374 408 352 337 367 316	74.6 72.4 55.4 80.5 86.2 71.7 69.5 94.7 75.6	85.8 83.2 88.1 78.8 82:4 81.2 68.5	26.8 26.6 27.1 28.2 27.1 27.4	667.3 615.3 657.4 728.1 719.9 650.9	29019 27802 27534 32764 32239 29254	5806 5908 5721 6675 5805
3 D 4 D 5 D 6 D 7 D 3 D 9 D 0 D 1 D 2 D 3 D 4 D 5 D	2246 2326 2812 2161 2241 2321 2818 2161 2241 2321 2824 2162 2242 2322	24 32 8 16 24 32 8 16 24 32 32 8	6 12 12 12 12 12 18 18 18 18	384 497 407 374 408 352 337 367 316	72.4 55.4 80.5 86.2 71.7 69.5 94.7 75.6	83.2 88.1 78.8 82:4 81.2 68.5	26.6 27.1 28.2 27.1 27.4	615.3 657.4 728.1 719.9 650.9	27802 27534 32764 32239 29254	5806 5908 5721 6675 5805
4 D 5 D 6 D 7 D 3 D 9 D 0 D 1 D 2 D 3 D 4 D 5 D	2326 2812 2161 2241 2321 2818 2161 2241 2321 2824 2162 2242 2322	32 8 16 24 32 8 16 24 32 8 8	6 12 12 12 12 18 18 18 18 18	497 407 374 408 352 337 367 316	55.4 80.5 86.2 71.7 69.5 94.7 75.6	88.1 78.8 82:4 81.2 68.5	27.1 28.2 27.1 27.4	657.4 728.1 719.9 650.9	27534 32764 32239 29254	590(572) 667) 580)
5 D 6 D 7 D 3 D 9 D 0 D 1 D 2 D 3 D 4 D 5 D	2812 2161 2241 2321 2818 2161 2241 2321 2824 2162 2242 2322	8 16 24 32 8 16 24 32 8	12 12 12 12 18 18 18 18 18	407 374 408 352 337 367 316	80.5 86.2 71.7 69.5 94.7 75.6	78.8 82:4 81.2 68.5	28.2 27.1 27.4	728.1 719.9 650.9	32764 32239 29254	6675 5805
6 D 7 D 9 D 9 D 0 D 1 D 2 D 3 D 4 D 5 D	2161 2241 2321 2818 2161 2241 2321 2824 2162 2242 2322	16 24 32 8 16 24 32 8	12 12 18 18 18 18	374 408 352 337 367 316	86.2 71.7 69.5 94.7 75.6	82:4 81.2 68.5	27.1 27.4	719.9 650.9	32239 29254	580
7 D 3 D 9 D 1 D 1 D 2 D 3 D 4 D 5 D	2241 2321 2818 2161 2241 2321 2824 2162 2242 2322	24 32 8 16 24 32 8	12 12 18 18 18 18	408 352 337 367 316	71.7 69.5 94.7 75.6	81.2 68.5	27.4	650.9	29254	
3 D 9 D 0 D 1 D 2 D 3 D 4 D 5 D	2321 2818 2161 2241 2321 2824 2162 2242 2322	32 8 16 24 32 8	12 18 18 18 18	352 337 367 316	69.5 94.7 75.6	68.5				555
9 D 0 D 1 D 2 D 3 D 4 D 5 D	2818 2161 2241 2321 2824 2162 2242 2322	8 16 24 32 8	18 18 18 18	337 367 316	94.7 75.6		26.8	449.1		
0 D 1 D 2 D 3 D 4 D 5 D	2161 2241 2321 2824 2162 2242 2322	16 24 32 8	18 18 18	367 316	75.6	71.9			24464	561
1 D 2 D 3 D 4 D 5 D	2241 2321 2824 2162 2242 2322	24 32 8	18 18	316			27.2	624.1	31914	639
2 D 3 D 4 D 5 D	2321 2824 2162 2242 2322	32 8	18		04.4	67.9	27.6	520.0	27745	487
3 D 4 D 5 D	2824 2162 2242 2322	8			84.4	63.5	26.8	453.9	26670	389
4 D 5 D	2162 2242 2322			315	81.2	71.5	27.2	497.4	25578	452
5 D	2242 2322	16	24	259	100,4	65.0	27.2	459.7	26004	435
	2322	24	24	295	70.6	57.5 55.1	26.8	320.9	20827	341
עכ		24	24 24	251 228	72.0 71.7	59.0	27.3 26.1	251.7	18072	349
7 W	2122	32 16	12	228	91.9	82.9	25.5	569.2	16348 26927	329
3 W	212c 2121	16	12	248	115.2	83.0	23.5	571.5	28570	531:
9 W	212d	16	12	295	81.2	85.3	24.8	506.7	23954	544
) W	224d	16	12	302	86.8	85.0	25.6	570.4	26214	497 561
iw	218c	16	18	264	95.0	84.9	25.5	543.0	25080	528
2 W	2181	16	18	275	107.1	84.6	25.6	637.9	29453	637
3 W	218d	16	18	299	79.5	86.3	26.3	539,5	23771	535
1 W	224d	16	18	261	95.7	85.2	25.9	551.2	24978	533
5 D	386	8	6	415	68.4	66.5	26.3	496.5	28386	514
5 D	3814	8	14	476	79.9	66.9	26.3	669.2	38032	640
7 D	3812	8	12	444	66.1	71.0	28.0	583.4	29348	609
3 D -	3812	8	12	480	70.7	71.9	27.8	678.3	33936	679
Ð	3161	16	10	461	56.1	77.9	27.7	558.1	25862	577
) D	3161	16	10	541	59.2	67.4	26.9	580.7	32027	569
Ð	3168	16	8	385	61.5	68.4	27.3	442.1	23678	512
2 D	3161	16	14	456	69.6	70.5	28.0	626.5	31738	682
3 Ď	3810	8	10	434	61.5	77.9	27.7	575.9	26691	581
D	3810	8	10	410	68.7	70.2	27.2	537.8	28167	6198
5 D	388	8	8	469	60.3	76.7	27.6	598.7	28281	587
5 D	3816	8	16	406	80.5	71.3	28.4	661.8	32683	702
7 D	3166	16	6	441	57.6	77.8	27.8	549.4	25402	5261
3 D	3161	16	14	452	73.0	71.5	27.9	658.2	32996	6213
) D	3161	16	12	493	54.8	.72.8	28.4	558.6	27016	614
D	3161	16	12	456	60.5	67.2	27.9	517.2	27588	5804
D		16	10	503	68.5	71.6	28.1	693.2	34456	600
2 D		16	12	404	72.3	77.1	28.7	646.3	29209	631
3 D		16	10	416	68.1	79.1	28,7	643.1	28330	537 620
D	3161	16	12 10	374 572	74.5	62.5	31.2	543.3	27863	5608
D D	3241 3241	24 24	12	572 524		79.0 72.2	27.2 28.0	571.5	26598	658
מי מי			10	488	52.6	65,8	28.0 26.8	557.2 483.6	27562 27426	6120
D D		24	12	484	46.2	78.1	28.8	403.0 503.0	22361	5880
) D .		16	10	461	52.4	78.3	28.5	539.1	24156	483
D		16	12	500	62.2	68.6	28.0	597.4	31100	596
				396	81.4	65.2	28.1	590.6	32234	6091
	3161		12	332		76.3	27.7	575.4	27224	606
	3241			641	45.6	66.1	28.2	544.8	29230	6022
		24	12	524	46.8	79.6	28.3	552.4	24523	5429
-		24	10		64.3	81.5		606.0	25463	5412
		24	12	476	58,9	71.6	28.3	568.1	28036	6429
t and the second se	a di seria. Nga sanganganganganganganganganganganganganga	а	· · · ·							

	Year	Seed	kgN	Panicle	Spikel	et R%	1000GW	Yield/m ²	Spikelet/m	2 Yield
NO. D OT W 57 W 58 W 59 W 60 W 61 W 62 W 63 W		rate	/rai	(1)	(2)	(3)	(4)	$1 \times 2 \times 3 \times 4$	1x2	/ha
<u> </u>	3111	16	12	296	65.5	75.0	29,3	426.1	19388	4884
57 W	3211	8	12	324	57.1		29.0	464.6	18500	5358
58 W 59 W	3311	4	12	332	66.2	86.5	29.5	560.8	21978	5792
60 W	3112	16	12	368	74.5	71,1	30.8	600.4	27416	4930
61 W	3212	8	12	388	68.4	85.3	27.9	631.6	26539	5064
62 W	3312	4	12	340	67.3	87.0	29.2	581.3	22882	5345
63 W	3113	16	12	284	69.9	66.4	28.2	371.7	19852	5279
64 W	3213	8	12	328	56.5	83.8	29.4	456.6	18532	5244
65 W	3313	4	12	320	57.0	88.9	29.5	478.4	18240	5375
66 W	3121	16	12 -	208	90.3	78,9	29.2	432.7	18782	5811
67 W	3221	. 8	12	292	99.1	79.9	28.9	668.2	28937	5455
68 W	3321	4	12	224	81.7	80.6	31.3	461.7	18301	6014
69 W	3122	16	12	332	94.8	73.0	29.9	687.0	31474	5152
70 W	3222	8	12	268	76.0	80.6	30.3	497.4	20368	5008
71 W	3322	4	12	284	83.4	82.9	29.6	581.2	23686	5200
72 W	3123	16	12	336	85.7	82.0	31.2	736.7	28795	5158
73 W	3223	8	12	280	90.8	83.8	28.6	609.3	25424	5214
74 W	3323	4	12	304	74.5	84.6	29.7	569.1	22648	5413
75 W	3131	16	12	240	115.9	76.9	28.4	607.5	27816	4976
76 W	3231	8	12	352	110.7	84.4	28.4	934.0	38966	5207
77 W	3331	4	12	304	108.7	83.6	28.5	787.3	33045	5296
78 W	3132	16	12	312	112.8	77.9	29.0	795.1	35194	5192
79 W	3232	8	12	284	96.6	83.5	28.7	657.5	27434	5003
80 W	3332	4	12	308	85,9	81.2	28.6	614.4	26457	5431
81 W	3133	16	12	288	113.0	76.1	27.9	691.0	32544	4814
82 W	3233	8	12	180	109.6		27.9	448.0	19728	5012
83 W	3333	4	12	328	110.5	80.9	28.2	826.9	36244	4486
84 D	401	16	4	320	72.4	74.1	25.6	439.5	23168	4829
85 D	402	16	8	312	70_1	75.6	25.5	421.6	21871	4652
86 D 87 D	403	16	8	264	66.8	80.3	25,3	358.3	17635	5057
87 D 88 D	404 405	16 16	8 12	368	68.1	76.7	25.7	494.0	25061	5193
88 D 89 D	405	16	12 .	356 368	78.4 71.8	74.4	26.2	544.1	27910	5457
90 D	407	16	12	300 400		79.1 69.6	25.2	526.7	26422	4810
	408	16	16	400 292	78.7		25.6	560.9	31480	4673
91 D 92 D	409	16	16	312	81.5 73.7	76.0	26.4	477.5	23798	5444
	410	8	4	232		84.5	25.7	499.4	22994	5583
94 D	411	8	4	232 404	87.4 66.8	70.7 84.3	24.9	357.0	20277	4021
95 D	412	8	8	404 364	55.5		25.9	589.2	26987	5214
96 D	413	8	8	244	78.8	.81.6	26.3	589.8	27482	5325
97 D	414	8	12	244 272	78.8 80.3	80.7 79.8	25.3	392.6	19227	5659
98 D	415	8	12	304	88.2	79.8 79.0	24.6 25.4	428.8	21842	5442 5421
99 D	416	8	12	332	85.0	79.0	25.4	538.0	26813 28220	5431
	417	8	16	360	74.8	82.3	26.6	581.0 589.5		6508
01 D	418	8	16	352	74.8	81,8	26.5	566.9		6149
02 D	419	4	4	296	82.6	68.4	20.5	426.4		6194 5002
03 D	420	4	8	244	89.2	78.8	25.6	426.4		5238
04 D	421	4	8	328	76.0	80.6	25.0	439.1 516.4		5238 5375
05 D	422	4	.8	276	93.2	78.9	25.0	507.4		5319
06 D	423	4	12	284	91.8	82.6	25.9	557.8		6119 6119
07 D	424	4	12	352	80.4	79.3	25.7	576.8		4438
08 D	425	4	12	276	93.5	76.2	25.7	505.4		4438 5378
09 D	426	4	16	348	71.2	74.6	25.2	465.8		6051
10 D	427	4	16	252	110.8	74.8	26.2	547.2		6759
66 D 67 D 68 D 69 D 10 D ean D.		13.3	12.0	257 0			·			
D.		7.1	12.0 3.9	355.2 87.4	77.4 16.4	76.7 7.2	27.4 1.6	556.1 107.8	26494 4503	5474 695

Item	Sample	Panicle	Spikelet	R%	1000GW	Spikelet/m	Yield/m ²	Yield/ha
	No.	(1)	(2)	·· (3) ·	(4)	1x2	1x2x3x4	(area cut
A11	60	239	107.9	77.3	27.2	25593	538.1	5333
Dry	25	273	102.2	78.3	27.2	27794	592.2	5826
Wet	35	214	111.9	76.6	27.2	24021	499.5	4981
 16hills	15	210	113.2	79.2	26.5	23985	503.4	5147
20-22	11	214	120.9	74.0	27.8	25866	530.6	5071
25	16	268	96.6	76.5	27.6	25762	543.3	5478
32	14	229	105.8	78.1	27.1	24352	516.0	5269
50	4	329	104.9	80.2	26.9	34543	745.6	6291
6kgN	6	179	103.7	79.4	25.6	18489	376.4	3872
12	13	210	109.9	80.8	26.8	23009	497.9	5083
16	16	270	95.1	76.0	27.6	25381	531.4	5279
18	13	251	115.8	77.3	27.3	28928	610.3	6257
24	12	247	116.3	74.4	27.9	28615	593.3	5405

·			
Table 3	Yield components	(transplanting)	and yield

Yield components (direct sowing) and yield

Item	Sample	Panicle	Spikelet	R%	1000GW	Spikelet/m	Yield/m	Yield/ha
	No.	(1)	(2)	(3)	(4)	1x2	1x2x3x4	(area cu
A11	110	355	77.4	76.7	27.4	26494	556.1	5474
Dry	75	383	72.5	74.4	27.0	26883	540 0	5565
Wet	35	296	87.9	81.7	28.3	25660	590.4	5280
4kg	. 18	300	84.7	80.6	27.5	25179	555.7	5446
8seed	30	348	79.8	77.9	27.3	27098	574.1	5649
16rate	46	356	78.2	75.9	27.3	26984	558.8	5417
24	12	455	59.8	73.1	27.7	26083	531.5	5529
32	4	348	69.5	71.8	26.8	23481	463.9	4790
4-8kqN	20	348	73.2	77.9	26.1	24853	508.3	5296
10-12	68	367	76.9	77.6	28.0	26953	581.9	5545
14-16	10	371	78,9	75.4	26.7	28802	576.2	6265
18-24	12	289	85,7	71.0	26.6	24703	472.6	4716

Table 4 Standard deviation

Item	 Panicle	Spikelet	R%	1000GW	Spikelet/m ²	Yield/m ²	Yield/ha
Transplanting	36.0 33.7	13.1	3.4 4.0	0.6	4357 4276	104.2 86.1	837 893
Direct sowing	 89.0 43.0	13.0 18.1	6.9 4.9	1.2 1.8	3968 5445	96.4 123.7	794 350

Table 5 Correlation table (transplanting)

Name	Panicle/ m ²	Spikelet/ panicle	R%	1000gw	Yield/ m ²	Spikelet/ m ²
panicle spikelet/panic Ripening perce 1000 grains we Yield/m	intage(R%)	-0.360 1.000	-0.057 -0.001 1.000	0.248 0.013 -0.700 1.000	0.772 0.277 0.113 0.194 1.000	0,779 0,294 -0.035 0.226 0.983

Multiple regression

Wiltiple regression

Correlation(r) Constant X(1) Panicle	0,993 1477,98 2,27	0.990	0.975
X(1) Panicle		-974.37	~604.52
	2.27		
V(2) Continuint		2,34	2.31
X(2) Spikelet	5.40	5.50	5.47
X(3) R%	6,87	4.65	_
X(4) 1000GW	13.21		-
X(1)	56.0	50.3	31.9
X(2)	37.6	31.9	20.3
X(3)	11.5	9.1	-
X(4)	5.2		~
	X(4) 1000GW X(1) X(2) X(3)	X(4) 1000GW13.21X(1)56.0X(2)37.6X(3)11.5	X(4) 1000GW 13.21 X(1) 56.0 50.3 X(2) 37.6 31.9 X(3) 11.5 9.1

Table 6 Correlation table (direct-sowing)

Name	Paniçle/ m	Spikelet/ panicle	R%	1000GW	Yield/ m ²	Spikelet/
Panicle Spikelet/pan Ripening pero 1000 grains v Yield/m	centage(R%)	-0.694 1.000	-0.222 0.180 1.000	0.173 -0.154 0.002 1.000	0.325 0.307 0.368 0.311 1.000	0.464 0.274 -0.089 0.048 0.846

		4factors	3factors	2factors
	Correlation(r)	0.953	0.912	0.808
Coefficient	Constant	-1456.35	-949.80	-421.07
regression	X(1)	1.33	1.38	1.28
- ogression	X(2)	6.73	6.61	6.75
	X(3)	6.38	6.57	
	X(4)	19.29	-	
^T value	X(1)	26.0	20.0	13.1
- var@e	X(2)	24.9	18.2	13.0
	X(3)	13.9	10.7	-
	X(4)	9.3	-	_

Nitrogen kg/rai	Ammonium Sulphate as 20%N kg/rai	Price ø	Yield rai (ha		Net income	Incom ratio
0	0	0	654 (408	39) 1831	1831	100
6(4-8kg ave	rage) 30	78	847 (529	96) 2372	2294	125
11(10-12kg a	verage) 55	143	887 (55	45) 2484	2341	128
15(14-16kg a	verage) 75	195	1002 (620	55) 2806	2611	143
21(18-24kg a	verage) 105	273	755 (47	16) - 2114	1841	101

Table 7 Economical degree of nitrogen fertilizer application on direct-sowing

in Agentini - Shendara an Antonia n

The price of Ammonium Sulphate = 2.6 B/kg

The price of Paddy = $2.8 \ \text{M/kg}$

Development of Cantaloupe Cultivation Technique

at

Suphan Buri Experiment and Training Center

October 1984 - January 1985

This experiment is carried out for establishment of Melon cultivation techniques, economical methods and fertilizer application in Thailand.

Method and material

1. Variety

Fukamidori F1 and Homerunstar

2. Sowing date and method

Oct. 15th, 1984. by direct sowing

- 3. Cultivation type
 - 1) Stand type (one stem) 40x80 cm between hill and width
 - 2) Ground type (two stems) 80x200 cm between hill and width
- 4. Fertilization
 - (N=16 P=24 K=16 kg/rai)
 - $(N=10 P=15 K=10 g/m^2)$

Organic manure or chemical fertilizer

- 1) Organic manure plot
 - Bottom fertilization

Lay the bottom of the hole with organic manure and compound fertilizer (15-15-15) at the rate of 2 hands : 3 g/hole. Place a can on the bottom and fill with sand and compost at the rate of 1:1. Take the can out, then watering and sowing by using 1 seed/hole.

Basal dressing

Use chicken dung and rice bran dust with the rate of 1:2 mixed with water and cover it with vinyl film. Leave it for a period of one month. Supply this organic manure before sowing and after ploughing at the rate of 500 g/m².

Top dressing

Supply organic manure (the same as basal) at the rate of $^{250}\ \mbox{g/m}^2.$

Top 1 one week before flowering (25 days after sowing) Top 2 after fruit setting (tennis ball size or

40 days after sowing)

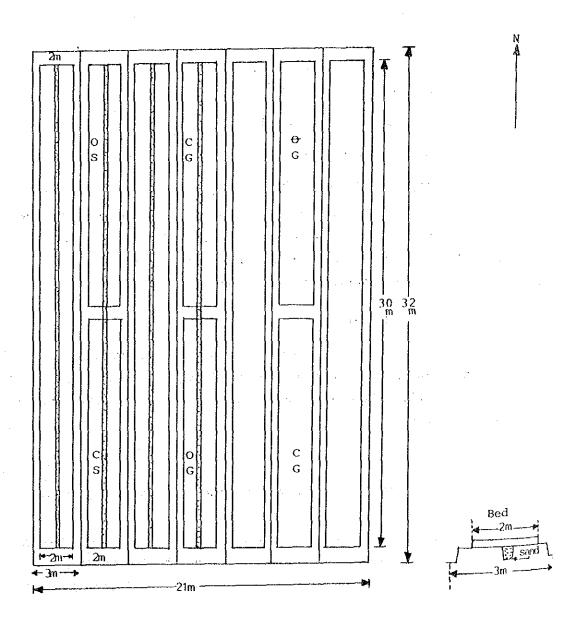
2) Chemical fertilizer plot

Compost 2 kg/m²

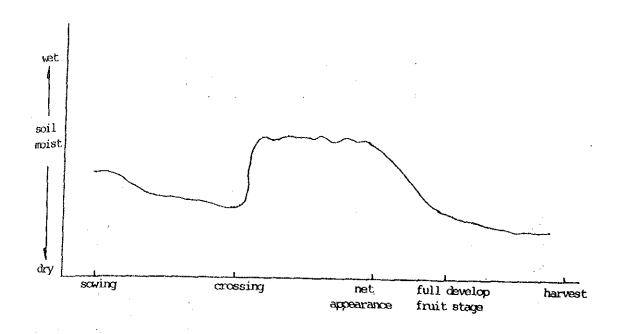
one month before sowing

Basal : Compound (15=15=15) 33 g/m^2 before sowing.

Top :


Top 1 Compound (15=15=15) 33 g/m² + Phostphate (0=40=0) 12.5 g/m²

one week before flowering


Top 2 Compound $(15=15=15) 10 \text{ g/m}^2$

after fruit setting (tenis ball)

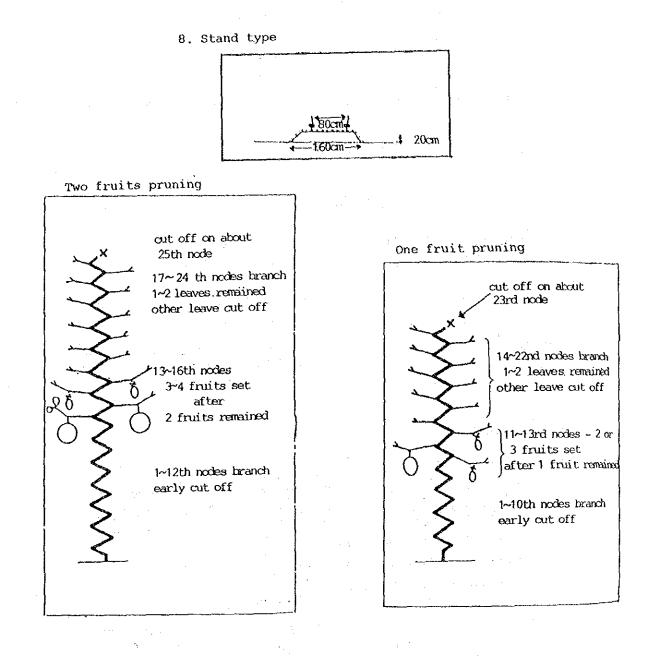
5. Lay out $\Theta \approx$ Organic manure plot S = Stand type C = Chemical plot G = Ground type

6. Irrigation

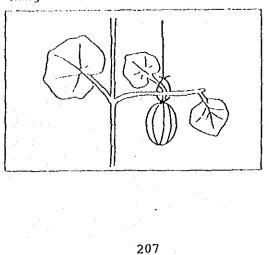
7. Harvest and maturity

Just by flower crossing date on the label.

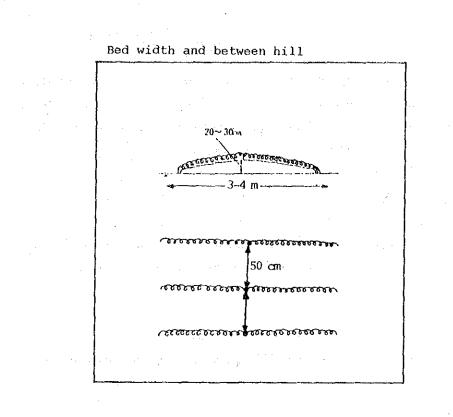
Fukamidori is about 50-55 days after crossing in November.

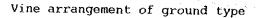

Homerunstar is about 45-50 days after crossing in November.

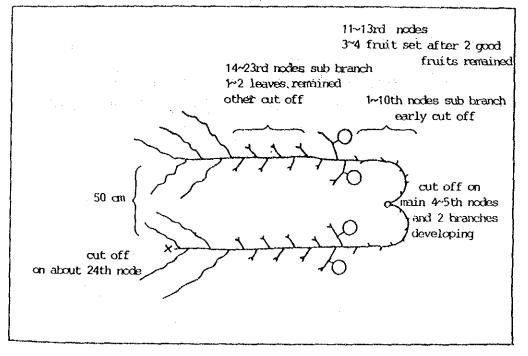
Just by fruits' color and smell


Fukamidori a little turns to yellowish.

Homerunstar a little turns to cream color.


Good taste for eating by storing melons at the room temperature for a period of $5\sim10$ days after harvest.





9, Ground type pruning

10. Insect control

1 Melon thrips

This insect causes distorted of leaves and the top of the vine by sucking the plant's juice. This is an important problem. The controlling method is using insecticide such as Zolone, Posse or Lannate to spray.

2 Mite

This mite causes the damage symptom like Melon thrips. Use Kelthane or Dicofole C.P. for controlling of this mite.

3 Aphid

It can eliminate easily by spraying Sevin 85, Lannate or etc.

4 White fly

It carries the Tobacco mosiac virus to cantaloupe. Use Posse or Lannate for elimination this insect.

...

5 Oriental fruit fly

This insect can damage the fruit only when planting without net. Spraying Nasiman plus Malathion on the plant nearby the plot is also one of the control measure.

11. Diseases control

1 Tobacco mosiac virus

This disease makes the top of plant wrinkled, the leaves turn yellow spotted and the plant can't produce the fruit.

.2 Damping off, Fusarium wilt

Use Antigro for soil treatment one week seeding and one more time at 7 weeks after germination. Only by this counter measure the disease can be controlled all the period of planting.

.3 Downy mildew

Spray Saprol plus Kerzet M after germination and every time when the disease is founded or every 1-2 weeks. All these case depend on rain-fall and moisture condition.

4 Gummy stem blight

.

Spray Benlate and Topsin M or coat by condensed Topsin M solution on the wounded area.

12.	DAILY ACTIVITY WORK	
	Sep. 1984 - Jan. 1985	

Sep.	15th	Organic manure preparation "(chicken dung 1 : dust of rice bran 2)
Sep.	16th	Organic plot : sumply organic manure and plough, then cover with vinyl sheet
Oct.	12nd	Basal application
Oct.	15th	Bottom fertilization, sowing 1 seed/hole
Oct.	19th -	Full germinated
Oct.	24th	Quamber beetle control by spraying Sevin 85
Oct.	31st	Spraying Kerzeth M plus Saprol and Zolone Ground type : main vine top cutting Stand type ; branch vine thinning
Nov.	4th (W)	Making supporter Irrigation Giving Ammonium Sulphate for the delayed growth plant
Nov.	5th	Spraying Karzeth M, Saprol and Zolone
Nov.	8th (W)	Top dressing I Irrigation Ground type : Supply Padan - Mipsin and cover by vinyl sheet
Nov.	10th	There are nine leaves per plant Plant height 50-70 cm.
Nov.	11st (W)	Stand type : watering at bed side
Nov.	13rd (W)	Stand type : supplying Padan-Mipsin 4g/m ² Ground type.: watering at bed side
Nov.	14th	Spraying Posse and Kerzeth M
Nov,	17-18th (1	W) Flower crossing by bee Plant height 1 m 60 cm

Nov, 20th Ground type : thinning Gummy stem blight control by spraying and Nov, 21st coating Topsin M Nov. 22nd (W) Stand type : Hanging the fruit and fixing label Irrigation 40 days after sowing fruit becomes egg size Nov. 24th Thinning Top dressing II Nov. 26th (W) Irrigation Nov. 28th Ground type : spraying Lannate, Benlate and Derosal60 Irrigation Nov, 30th (W) Taking the net off 3rd (W) Dec. Irrigation[.] Some fruits appearance net Spraying Topsin M plus Dipterex and Fruit fly 4th Dec. control by spraying Nasiman plus Malathion around the field Dec. 7th (W) Irrigation Dec. 11st (W) Irrigation Spraying Lannate and Derosal 60 Dec. 13rd Fruit is completely net Dec. 14th (W) Ground type : Powdery and Downy mildew damage the lower leaves Irrigation and watering at bed side Dec. 20th (W) Ground type : irrigation then stop watering Dec. 25th (W) Upper leaves die Stand type : irrigation Dec. 28th Taking the die leaves off Downy mildew control by spraying Antracol and Captan Ground type : Homerunstar harvest Dec. 29th (W) Stand type : a little irrigation ********** Jan. 4th Ground type : Homerunstar harvest Jan. 4-8th Ground type : Fukamidori harvest Jan. 14th Stand type : Fukamidori harvest **** (W) = Watering.

Result

The experiment results for all 5 years are given in table 1.

At the first 3 years, some experiments succeeded but some failed because grafting method was used in these experiments. This method delays the growth and the plants are seriously attacked by diseases and insects.

The good month for sowing is October. It is better than September and November because there is mild weather and suitable moisture in the soil, in these months. For the last 2 years, the cultivation changed to direct sowing and net covering method. After this, every experiment succeeded.

Experiment results in 1984-1985 are shown in table 2.

There are two varieties of experiment that is Homerunstar and Fukamidore. The cultivation method were divided into 2 types those are ground type and stand type. There are 38 plants per 60 m² (one row per bed) for ground type and 152 plants per 60 m² (two row per bed)

For Homerunstar, the flower crossing date is November 10-20th, harvest date is December 21st - January 14th, the total yield is 65 fruits, the total weight is 70 kg and the average weight is 1.08 kg.

Otherwise Fukamidori the flower crossing date is November 10-24th, harvest date is December 23rd - January 14th, the total yield is 254 in the area of 112 m², the total weight is 327 kg and the average weight is 1.29 kg.

Fertilizer matter comparison, the fruits planted by organic fertilizer are 1% sweeter than the ones from chemical fertilizer.

Ground type and stand type comparison, Melons in ground type grow more rapidly and need less seed than the stand type. Melons get 4 fruits per plant by ground type and at the same time they get 2 fruits per plant by stand type.

Table 1RESULT OF MELON CULTIVATION 1980-1984Suphan Buri Experiment and Training Center

. هه چه ی در مه سه سه سه در ا	یں اور				· · · · · · · · · · · · · · · · · · ·			
Year	1980	1981	1982		1983 2nd		1984	
				lst	2nd	3rd	Īst	2nd
Sowing	Oct19	Oct17	Oct3	Sep12	Oct30	Dec19	May22	Oct15
Grafting	Nov3	Oct31	Oct21	Sep24	يون منه مع	N.C.S.		
Planting	Nov7	Nov8	Oct30	Oct7	Nov23			
Flowering	Nov30-	Dec9-	Nov20-	Nov10-	Jan27- 84	Feb7- 84	Jul1- 84	Nov16- 84
Harvest	Jan8 immature	Jan20-	Jan10-i	mmature	Feb24- 84	Mar25- 84	Aug17- 84	Jan11- 85

•

Table 2 The result of melon cultivation in 1984.

Sowing date : October 15th, 1984.

Variety	3.	Area m	Number plant	Flowering					
	ground	60	38						
				Nov 15-20				0.83	-
Total		64	48	· · · · · · · · · · · · · · · · · · ·		65	70	1.08	
Fuka- midori		60	38						-
				Nov 16-24	Jan 11-14				0=12.3%
Total		112	170			254			11.7

Training Activities

.

•

CONTENTS

Training Activities Report of 1980	1-28
Iraining Activities Report of 1981	29-62
Practical report of trainees (Aug.3, 1981 - Nov.27, 1981)	63-97
Training Activities Report of 1982	98-125
Training Activities Report of 1983	126-161
Training Activities Report of 1984	162-195
Practical Report of Trainees (Mar.19 - Apr.12, 1984)	196-246
Training Activities Report of 1985 (abbreviation)	
Final Report of Suphan Buri Experiment Station and Training Center	247-260

•

** This report is translated from Thai language written by the Director of Training Center.

.

TRAINING ACTIVITIES OF 1980

. Ņ

•

.

ANNUAL REPORT 1980

CONTENT

1.

1.

2.

3.

26.

Introduction

Policy and aim

Training result in 1980

Conclusion of training in 1980 Epilogue

APPENDIX TABLE OF CONTENT

. .

Table	of training curriculum year 1980	·. ·
1.	Cropping system in irrigated area	6.
2.	Integrated farming in irrigated area	6.
3.	Rice oultivation techniques in irrigated area	7.
4.	Modern agriculture	8.
5.	Experimental designs and computer result analysis	8.
6.	Computer Programing and utilizing	9.
7.	Advance of computer programing and utilizing	9.
Tabl e	of trainces! agency and farmer institution in 1980	10.
Table	of trainees' education and position in 1980	11.
	a de la companya de La companya de la comp La companya de la comp	

APPENDIX CONTENT

Other activities of Center in 1980	4.
Copy of Agriculture Department order about Appointment of Suphan Buri Training Center working group	12,
Copy of Agriculture and Cooperative Ministry order about Appointment of Suphan Buri Experiment Station and coordinate sub-committee	13.
Copy of Agriculture and Cooperative Ministry order about Adjustment of Irrigated Agriculture Development Project direction staff	14.
Durable articles and construction donated from Japanese government (Suphan Buri Experiment Station and Training Center, Technical Div Department of Agriculture)	ision
List of fiscal year 1978	15.
1979 198 ₀	16. 19.
Durable articles which bought in Thailand, Year 1978 - 1980	21.
List of various curricula trainees, course year 1979	
l st class : Rice cultivation technique in irrigated area	22.
2 nd class : Cropping system in irrigated area	22.
3 rd class : Integrated farming in irrigated area	23.
4 th class : Experimental designs and computer result analysis	24.
5 th class : Modern agriculture in irrigated area	24.
6 th class : Rice cultivation technique in irrigated area	25.
7 th class : Rice cultivation technique in irrigated area	26.
8 th class : Computer programing and utilizing	27. 27.
9 th class : Advance of computer programing and utilizing	21+

Training work of Suphan Buri Experiment Station and Training Center Project for Agriculture Development in Irrigated area

Selation Selation

1980

Introduction

Experiment Station and Training Center Project for agriculture development in Suphan Buri irrigated area under Technical Division of. Department of Agriculture is situated in Suphan Buri Rice Experiment Station, Tambol Rua-yai, Amphur Muang, Changvat Suphan Buri. This project is established by cooperation between Thai and Japanese governments to support Agriculture Development Project in Thailand irrigated area. The purpose of this Center is to support techniques and to train the officials who work in Irrigated Agriculture Development Project area especial in irrigated area of Chao Phya and Mae Klong river.

There are 3 sub-projects in Irrigated Agriculture Development Project which were the cooperation between Thai and Japanese governments, those were signed on 8 th April, 1977 as follows

- 1. Chao Phya Pilot Project of Agricultural Land Reform Office starts to do in area 3,000 rai, donated value 38,831,000 baht.
- 2. Mae Klong Pilot Project of Royal Irrigation Department starts to do in area 2,400 rai for No. 1 and 3,000 rai for No. 2, donated value 21,599,000 baht.
- 3. Experiment Station and Training Center for Agriculture Development in Suphan Buri irrigated area was established for training and technical supporting to officials and technicians who concerned with irrigated agriculture development, donated value 2,500,000 baht and 8,000,000 baht for building construction so the total was 10,500,000 baht.

Policy and aim

- To train technicians and officials who concerned with Irrigated Agriculture Development Project about modern agriculture for practicing in their works.
- To develop cropping system in project area to the aims those are high efficiency of resources resorting, agriculture yield increasing, farmer income increasing, resources distributing and consistent income of farmer.

- 3. To develop productive system to be cooperative form by uniting in production, sale and consumer goods buying. So, we can eradicate the problems about middlemen and bargain power.
- 4. To disseminate modern technology to farmer in irrigated area expeditiously and efficiently by direct and indirect ways. The direct way is distributing trial farms or technical demonstration in project area so the farmer can dicide by themselves about varieties, nourishment or cropping system. The indirect way is by training technicians and officials who work in these projects.
- 5. To solve the problems in projects. If the problem is complicated, we can solve by multidiscipline method.

Training result in 1980

In 1980, Suphan Buri Training Center doesn't have dormitory and cafeteria so trainees must stay in hotel. By this reason, long term training course can't be done so there are 3 ourricula of 2 weeks course and 4 curricula of special course (about 2-3 days) as follows

2 weeks course

	name	đu	ration		number
1.	Cropping system in irrigated area	17-28	December	79	39
2.	Integrated farming in irrigated area	1425	January	80	32
	Rice cultivation techniques in	14-25	April	80	40
	irrigated area				
4.	11 11	12-23	May	80	33
			Tota	1	144
	Special course	dı	uration		number
1.	Experimental designs and result	5-6	February	80	15
	analysis by computer				
2.	Modern agriculture in irrigated area	18-20	March	80	46
3.	Introduction to computer programing	16-17	June	80	12
	and utilization	÷ :.			
4.	Advance of computer programing and	2324	July	80	9
-	utilization		· · · ·		
		•	Total		82
			Grand to	tal	226

Conclusion of training in 1980

Subjects selection in these curricula of training courses emphasizes in knowledge revision and new technology interpolation in order that trainees, who come from many offices, will have broad knowledge that concerning so they can improve their works.

From the evaluation test of all trainees, there are some suggestions as follows

- 1. Should have more practices
- 2. Should have more observation
- 3. Should stay in the same place so trainee will be closelier to each other

These needs can be solved in next year when the dormitory is finish. Except these needs, we can say that the training is acheiving.

The lecturers are the experts in those fields of knowledge who come from government offices, university, organizations and private busy such as Royal Irrigation Department, Land Consolidation Office, Agricultural Inspection and Coordination, etc..

1. Construction

In fiscal year 1980, Training Center received construction budget as follows

1.	Dormitory (40 persons)	Amount	1,800,000	baht
2.	2 expert houses	Amount	400,000	baht
	· · · · · · · · · · · · · · · · · · ·	Total	2,200,000	baht

The construction began since 10 May 1980 and finished in September 1980. This amount of money didn't include durable articles in dormitory.

and the second second

والجريف فالمتركب والمتركب والمتركب والمتركب

2. Experiment

2.1 Study of co-factors in yield increasing

2.2 Study of influence of water ventilation to rice growth and yield in clay soil

3. Cooperation with other offices

- 3.1 Technical cooperation with Cooperative assembly of Thailand about seedling for transplanter and transplanter test
- 3.2 Supporting in technology, rice and crop seed to Mae Klong and Chao Phya Pilot Projects.
- 3.3 Supporting by training the farmer in Land reform project area

4. Seminar

In 1980, there were meeting and seminar as follows

- Procedure result seminar of Research Coordination and Promotion of water in Agriculture utilization Sub-committee (45 members), the duration was 25-26 October 1979
- Neeting for sensitive rice varieties selection among Experiment Station in Central region (35 members), the duration was 26-27
 May 1980
- 3. Meeting of Agriculture officials of Modern germinated broadcasting rice cultivation project in Suphan Buri, Kanjanaburi, Nakornpathe and Samuthsakorn area (45 members), Director-general of Department of Agriculture and Department of Agricultural Extension were presidents. The meeting was on 4 June 1980.

4. On 9 June 1980, there was training of Modern germinated seed demonstration pilot to 50 agriculture officials, Suphan Buri technicians and farmer.

5. Visitation

In fiscal year 1980, there were 990 visitors (41 groups) those were foreign experts, students and farmer. This number didn't include the farmer who came for seed buying and technology service.

.

.

And the second second

. .

.

•

Subjects schedules of training courses in fiscal year 1980

1. Curriculum "Cropping system in irrigated area"

(2 weeks)

No.	Subject name	Hour
1.	Open ceremony and orientation	2
2.	Special lecture "Role of Market Organization for agri- culturist to Agriculture Development in Thailand"	$l^1_{\tilde{z}}$
3.	Principle in Cropping system and Multi-cropping	3
4.	Soil and nourishment	3
5.	Chemistry and soil fertility	3
6.	Agro-climatology	3
7.	Irrigation system in paddy field	3
8.	Water and utilization in agriculture	3
9.	Weeds and its control	3
10.	Vegetables in cropping system	3
11.	Rice cultivation techniques	3
12.	Cultivation of soybean, mung bean and ground nut	3
13.	Cultivation of corn and sorghum	3
14.	Seed technology, utilization of Rhyzobium in bean family plant	3
15.	Agricultural statistic	3
16.	Principle in experimental designs for study of cropping system in paddy field	3
17.	Insects, pests and its control	3
18.	Diseases and its control	+ 3
19.	Farm management and economic analysis	3
20.	Agricultural machinery	4
21.	Visual education and observation	12
22.	Certificates distribution and close ceremony	<u> </u>
	Total	<u>72</u>

2. Curriculum "Integrated farming in irrigated area" (2 weeks)

	Open ceremony and orientation Special lecture "Land consolidation for agriculture	2 1½
2.	development in irrigated area"	
3.	Integrated farming	3

· Subject name	Hour
Rice cultivation techniques and maintenance	3
Cultivation of soy bean, mung bean and groun irrigated area	d nut in 3
Vegetable cultivation	1.
Orchard cultivation	11
Observation	6
Diseases and its control (No harm for pets a	nd fish) 3
Insects and its control (No harm for pets an	d fish) 3
Pests and its control (No harm for pets and	fish) 3
Fish raising in Integrated farming	3
Pig raising and nourishment	3
Poultry raising and nourishment	3
Mushroom cultivation and demonstration	6
Preservation and food science	3
Observation	6
Economic stove for agriculture	1 1 1 1
Bio-gas well making	1출
Agricultural equipment	3
Farm management and economic analysis	3
Training evaluation	1날
Visual education and observation	11
Certificates distribution and close ceremon	14
	Total 68

3. <u>Curriculum "Rice cultivation techniques in irrigated area"</u> (2 weeks)

1.	Open ceremony and orientation	1
2.	Land consolidation for agriculture	2
3.	Climatology and Agro-ecology	3
4.	Rice cultivation techniques in irrigated area	3
5.	Biology of yield and yield components	11
6.	Fortilizer	1늪
7.	Agricultural irrigation and water management	3
8.	Study and observation at Sri-pra-jan agricultural cooperative and farmer farm	6
9.	Chemistry and soil fertility	3
10.	Weeds in paddy field and its control	3

•

No.	Subject name	Hour
11.	Diseases and its control	3
12.	Practice in rice diseases, insects and pests control and study of weeds in paddy field	3
13.	Rice pests and its control in paddy field and storage	3.
14.	Rice insects and its control in paddy field and storage	3
15.	Cropping system in paddy field	17
16.	Straw mushroom cultivation and demonstration	4 1 2
17.	Integrated farming	3
18.	Agricultural machinery and wind wheel utilizing	3
19.	Evaluation and analysis of rice yield	3
20.	Rice knowledge	3
21.	Training evaluation	1
22.	Special lecture "Psychology in farmer approach"	4
23.	Visual education and observation	12
24.	Certificates distribution and close ceremony	_1
	Total	75

4. Curriculum "Modern agriculture"

(3 days)

1.	Open ceremony and orientation	1
2.	Roles of farmer group to agricultural development	2
3.	Cultivation methods and rice varieties	3
4.	Rice cultivation techniques for high yield and problems discussion	3
5.	Mushroom cultivation	3
6.	Integrated farming	3
7.	Visual education and observation	3
8.	Certificates distribution and close ceremony	$\left \frac{1}{1} \right $
	Total	22
1		

5. Curriculum "Experimental designs and computer result analysis"

(2 days) 1. Experimental designs 2. Computer utilization training Total <u>12</u>

6. Curriculum "Computer programing and utilizing"

· •

.

.

ι.

•	Subject name	**************************************	Hour
	Computer knowledge		3
	Computer working		3
,	Introduction to computer programing		3
	Computer programing and utilizing training		3
	7. Curriculum "Advance of computer programing	Total and utili	2 <u>12</u> zing"
	7. Curriculum "Advance of computer programing (2 days)		
		and utili	
ļ	(2 days)	and utili	zing"

Suphan Buri Training Center

Fiscal year 1980

Trainees agency and organization

					• •					
	1	2 W	eeks	cou	rse	Spe	oial	cour	rse	
No.	Agenoy	1	2	3	4	1	2	3	4	Total
1.	Royal Irrigation Department	10	4	.5	4	2		1	-	26
2.	Agricultural Land Reform Office	6	4		3	5	-	2		50
3.	Department of Agriculture	4	11	6	9	8		9	9	56
4.	Department of Agricultural Extension	15	-	11	5	T .	-	-	-	31
5.	Department of Agricultural Cooperative Promotion	-	3	4	4	-	-	-	-	11
6.	Department of Community Development	-	2	2	-	-		-	-	4
7.	Department of Public Welfare	*) ~~	2	2	2	-	-	-	-	6
8.	National Security Command	-	2	1	2	-	-	-	~	5.
9•	Office of Accelerated Rural Development	-	2	2	1	-	-	-	-	5
10.	Office of Agricultural Economics	2	1	2	2	-		-		7
11.	Petchburi Demonstration Farm Pilot Project	-	-	2	1	•••`\$	-		-	3
12.	Thai-IRRI Joint Research Project		-	3	-	1 0		-		3
13.	Department of Fisheries	-ano	1	-	-	-	-	-	-	1
14.	Chiengmai University	2	-	-	-	-	-	-	-	2
15.	Farmer Organization	-	-		-		46	-		46
	Total	39	32	40	33	15	46	12	9	226

Suphan Buri Training Center

Fiscal 1980

······································		<u> </u>							
	2 W	eeks	cou	rse	Spec	al	cour	เธอ	m
Education degree	1	2	3	4	1	2	3	4	Total
Expert	6 -1	-	·	-	5	-	-	-	
Doctor degree		-		-	-	-	1	 .	
Master degree	2	1	-	1			2	2	
Bachelor degree	25	24	9	29	10	<u> </u>	9	7	
Agricultural Vocational School Certificate (5 years)	8	4	27	-	-		-	-	
Agricultural Vocational School Certificate (3 years)	4	3	4	3	-	-	-	-	
Farmer leader	-	-	-	-	- -	46		-	
Total	39	32	40	33	15	46	12	9	226
Position									
Expert	-	-	-	-	5	-	~	-	
PC 6	-	2	-	-	1	-	2	1	
PC 5	6	6	2	3	4	-	4	5	
PC 4	10	10	.5	11	5	-	3	2	
PC 3	20	10	19	17		-	3	1	
PC 2	2	3	13	2		-	-	-	
PC 1	1	1	1	-	-	-	-	-	
Farmer leader	-	-	-	-	-	46	-	-	
Total	39	32	40	33	15	46	12	9	226

Schedule of education degree and position of trainees

(Copy)

Department of Agriculture order

At 543/1979

Item Appointment of Suphan Buri Training Center Project working group

By Japanese government aiding, Department of Agriculture has established Suphan Buri Irrigated Agriculture Development Training Center for training technicians and Promotion officers who concern in economic crops and technology to disseminate to farmer. For good effect from training center establishment, working group of Suphan Buri Training Center Project that is under Department of Agriculture are appointed as follows

- 1. Dr. Vinit Jaengsri
 - 2. Mr. Kluenn Thongsaeng
 - 3. Mr. Sansern Piriyathamrong
 - 4. Mr. Rapeepan Pasabutt
 - 5. Mr. Paisarn Supanksen
 - 6. Mr. Boonlert Graiprayong
 - 7. Mr. Prakong Jitasombat
 - 8. Mr. Somkid Disthaporn
- 9. Miss Sagha Duangratt 10. Mr. Vijit Kajornmalee
- 11. Mr. Vichien Sasiprapa

The Director of the Technical Division as chairman Technician 7, Technical Division Technician 6, Horticulture Division Agricultural Engineer 6, Agricultural Engineering Division Entomologist 6, Entopology and Zoology Division Chief of Suphan Buri Rice Experiment Station, Rice Division Scientist 7, Chemistry Division Pestologist 6, Plant Pathology and Microbiology Division Statistician 7, Planning Division Chief of U-thong Field Crops Experiment Station, Field Crops Division Agricultural technician 6, Technical Division, the secretary

Duty of working group

- 1. Arranging curricula in training
- 2. Procuring lecturers
- 3. Planning research and training direction follow to the policy and direction those are set by the Ministry of Agriculture and Cooperative.

These persons are in duty since now.

This order is on 30 March 1979

(sign) Phaderm Titatharn

(Mr. Phaderm Titatharn)

Vice-director-general acting for Director-general of Department of Agriculture

Right copy

- (sign) Vichien Sasiprapa
 - (Mr. Vichien Sasiprapa)
 - Agricultural technician 6 Technical Division Department of Agriculture

(Copy)

Ministry of Agriculture and Cooperative order

Λt.

251/1980

Item Appointment of Suphan Buri Experiment Station and Training Center Project coordinate sub committee

Suphan Buri Experiment Station and Training Center is a subproject of Irrigated Agriculture Development Project.

molecular and necessary to cooperate with government officers and concerned offices for considering training curricula and other coordinating.

So, for the efficiency works of Suphan Buri Experiment Station and Training Center Project, appointing Experiment Station and Training Center Project coordinate sub committee as follows

1.	Dr. Vinit Jaengsri	Suphan Buri Experiment Station and Training Center Project Manager	as	President of sub committee
2.	Mr. Gasem Jarintho	Chief of Training Office, Department of Agricultural Extension	as	Sub committee member
3.	Dr. Thiraves Supanich	Land Reform Officer 6, Agricultural Land Reform Office	ab	Sub committee member
4.	Mr. Udom Rakjanya	Irrigation Management and Maintenance Direc- tor, Royal Irrigation Department	a 9	Sub committee member
5.	Mrs. Vannee Rattanavaraha	Cooperative technician 6, Department of Agri- cultural Cooperative Promotion	as	Sub committee member
6.	Mr. Kluenn Thongsaeng	Agricultural technician 7, Department of Agriculture	88	Sub committee member
7.	Mr. Sommai Suragul	Agricultural Inspection and Coordination Director	as	Sub committee member
8.	Mr. Prasort Gaewnum	Director of Office of Community Development area 7, Department of Community Development	as	Sub committee member
9.	Mr. Pongpiya Piyasiranon	Agricultural technician 5, Land Development Department	as	Sub committee member
10.	Mr. Vichien Sasiprapa	Agricultural technician 6, Project Manager assistant of Suphan Buri Experiment Station and Training Center	88	Sub committee member and secretary

The sub committee have duties in considering training curricula; duration of training and selecting trainees for the efficiency and accomplishment of works of Suphan Buri Experiment Station and Training Center Project

Right copy			This order is on 10 June 1980
(sign)	Vichien	Sasiprapa	Thalerng Thamrongnavasavad
(Mr.	Vichien	Sasiprapa)	(Mr. Thalerng Thamrongnavasavad)
Te	chnical	technician 6 Division f Agriculture	The permanent undersecretary of The Ministry of Agriculture and Cooperative

(Copy)

Ministry of Agriculture and Cooperative order At 167/1980

Item Adjust of Irrigated Agriculture Development Project direction staff

Follow to the Ministry of Agriculture and Cooperative order at 284/1978 on 24 th August 1978 that was about the adjustment of Irrigated Agriculture Development Project direction staff.

Now, some of the staff have been changed their positions. So, for the appropriateness, adjusting the direction staff of Irrigated Agriculture Development Project as follows

0-				The second s
1.	Ml. Pilan Malagul	Inspector of the Minis- try of Agriculture and Cooperative	as	Project Director
2.	Mr. Roongrueng Julchart	Engineer 7, Royal Irri- gation Department	88	Mae Klong Pilot Project Manager
3.	Mr. Chalermtep Rattana-	Agricultural technician	88	Project Mana-
		6, Royal Irrigation		ger assistant
		Department		of Mae Klong
4.	Dr. Vinit Jaengsri	Technical Division Di-	as	Pilot Project Project Mana-
4•	DI . ATHIO DOCHEDIA	rector, Department of		ger of Suphan
		Agriculture		Buri Experi-
				ment Station
				and Training Conter
5۰	Mr. Vichien Sasiprapa	Agricultural technician	3.8	Project Mana-
		6, Department of		ger assistant
		Agriculture		of Suphan Buri
				Experiment Station and
				Training Center
6.	Mr. Sutin Mulpruk	Civil Engineer 6, Land	a 8	Chao Phya Pilot
		Reform Management Divi-		Project Manager
		sion, Agricultural Land Reform Office	+ 12 	
7.	Mr. Surapol Petchlom	Land Reform Officer 6,	88	Project Manager
1 •		Ayudthya Land Reform		assistant of
		Office, Agricultural		Chao Phya Pilot
		Land Reform Office		Project
8.	Deputy of Department of Ag	ricultural Extension	a 5	Agricultural Extension
				officer
9•	Deputy of Office of Agricu	ltural Economics	as	Agricultural
		the Manager and		Economics
10	No. Dodtoo Polovogut	Chief of Central Land	as	officer Project Coor-
10.	Mr. Paitoon Palayasut	Consolidation Office		dinator
11.	Mr. Pornnarong Siriyotin	Civil Engineer 4,	as	Project Coor-
		Central Land Consoli-		
	m. The second second second	dation Office responsible on these proj		tant
WOT	king staffs as fitting	responsible on mase prof		GILL DO
mo r	Right copy	This order is on 23	th .	April 1980
(si	gn) Vichien Sasiprapa	Thalerng Thamro		
	(Mr. Vichien Sasiprapa)			navasavad)
	Agricultural technician 6 Technical Division Department of Agriculture	The permanent unde The Ministry of Agricult	rsec ure	and Cooperative
1		14		

jist of durable articles and construction donated from Japanese Government Suphan Buri Experiment Station and Training Center Project

struction	Number	Price (¥)
The main building is reingorced concre	ate 1	120,000,000
The size of downstair is 13 metre wide	and	
45 metre long. Upstair is 13 metre wi	.de	
and 30 metre long with water , electri	.C ;	
gas and waste water control system inc	luding	
decoration and some furniture		
sist of	:	
Laboratory	14 sets	·
Office desk with armchair	27 sets	
Typewriter table with armchair	1 set	
Teak cabinet	27	
Desk	24	
Armchais	48	·
Air condition (split type)	3	
Book shelf	10	
Small conference table with 12 armchai	rs 1 set	

List of durable articles and construction donated from Japanese Government

Suphan Buri Experiment Station and Training Center Project

....

Agri	culture Machinery	Number	Price ()
	Power tiller with spare part	(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	659,600
2.	2 rows transplanter	$= \int_{\Omega} \left[\left(\frac{1}{2} + \frac{1}{2} \right) \right]^2 \mathbf{I}_{1} \mathbf{h}^{2} $	253,000
8.	4 rows transplanter	1 1 1	495,300
ł	Mist blower sprayer	1	51,700
5.	Seed thresher	· 1 · · · ·	240,000
		(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	
Labo	ratory Equipment		
1.	Moisture Meter	1	80,000
2.	Granometer	7	84,000
3.	Hydrometer	1	500
4.	Reaping area determinator	1 1 1	30,000
5.	Germinator	2	20,000
5.	Drying oven	2	880,000
7.	Balance	5	160,000
8.	Microscope	1 set	247,000
Stat	tionery		
1.	Computer	1	465,500
2.	Copy machine	1	508,250
3.	English typewriter	. 1	114,000
4.	Duplicator	1	235,000
5.	Air condition	2	237,400
6.	Steel cabinet	1	34,200
Aud	io visual aids		
1.	Amplifier with attachment	1	124,10
2.	Amplifier (carried type)	1	23,50
			232,75

1. Air conditioned bus (45 seats)	1	6,765,000
	Total	11,940,800
	CIF	13,225,800

List of durable articles and construction donated from Japanese Government Suphan Buri Experiment Station and Training center Project

1979		
icultural Machinery	Number	Price (¥
straw twisting machine	1	130,350
viny1sheet (2.7 × 50.0 m)	1	25,000
Cheese cloth	1	18,000
oratory Equipment		
Tension meter	2	24,000
Fine autonomic balance	1	350,000
Semi autonomic balance	1	51,000
Hydrometer	1	21,000
pH meter	1	56,000
Eh meter	1	40,000
E.C. meter	1	27,000
shaker	1	95,000
Centrifygal machine	1	100,000
Distilled & pure water making machine	1	390,000
Leaf area measurement	1	400,000
Binocular microscrope with attachment	2	360,000
Pressure sterilizer	1	270,000
ionery		
Electric fan (12 inches)	10	124,000
Air condition (split type)	1	174,000
Refrigerator (10.5 cu)	2	340,000
Calculator	. 1	18,000
Pocket calculator	20	132,400
Copy machine (wet type)	1	142,500
io visual aids		
Color video camera	1	195,000
Color video record	1	190,000
Color video accessory	1set	190,000
Color television set (20 inches)	1	130,000
16mm projector	1	240,000
Over-head projector	1	70,000
17		
17		

	le								Number			Price (
1.	Station	Wagon	•			, ³¹¹			4			1,610,0
2.	Station	Wagon	Attac	hment		•		· · ·	1 set			161,0
			÷.,		 -		•		Total		==	6,074,2
· .	and Salat Salat Salat	. · ·	•						CIF	n an	. 	6,721,8
					•					۲۰۰۰		.e., e
•												t
										n Nava se		
	a traces										à chiến t	
		· .				•						
				ч. 1						r.	•	
	.· .							¹ *				
								1 a.e.		5 - 9		
						·					1. 11.11	
• .	•											
÷												· .
									•	· ·	·	

List of durable articles and construction donated from Japanese Government Suphan Buri Experiment Station and Training Center Project

:		N1	mbos	•	Dut no /VI
Mric	ultural Machinery	Nu	mber		Price(¥)
1.	8 rows transplanter (riding type)	1	an in the second se		1,468,600
2.	Mist blower sprayer	2			111,300
۲. ۱.	Binder	1			343,500
	Paddy interculture	1		· · · .	68,700
abor	atory equipment				
	Grain moisture meter	1			90,200
	Tube shaker	1			30,750
} .	Soil crusher	1	1	na ser an	166,600
}.	Semi micro Kjedhl	2	sets		98,400
1.	Auto burette set		sets		114,800
5.	Experimental winnower	. 1		1. 1	272,200
5.	Rice huller	1			262,200
. '	Rice mill	1		n a feir an	413,000
}.).	Hand rice mill	. 1	÷.,	t de la terra d	4,100
	Grain rigidity tester	ា			90,200
•	Straw fracture tester	1			15,400
. 2.	Rice shattering habit tester	•			225,500
	Grain sample divider	•			118,300
.	Grain micrometer	. · · · ·			4,400
	Hand level				4,400
).).	Sugar refraction	. 1			14,350
	Soil sterilization injector	1		n na shekara Mi	17,400
/• .)	· · · · · · · · · · · · · · · · · · ·			an the straight	273,700
),)	Soil seive shaker	· 1			205,000
' a	Furnance				71,750
/• 	Vacum pump	. 1			
)	Media Pipetting		set		200,000
7. 3. 9. 0. 1 2. 3. 4. 5. 5. 5. 3. 3.	Magnetic stirrer		set		74,800
	Hot plate	2		· . · · · .	162,000
•	Insect net	2			24,600
•	Water bath	2			265,500
•	Stalk balance (200 gm)	. 1			24,600
•	Paddy leaf color charts		set		3,100
· ·	Standard leaf color charts	1	book		14,900
1	Leaf punch	1			36,900

			Nun	ber	Price
31. S	oil tester		1 s	set	32,30
32. C	rossing net		1 s	set	45,10
33. I	ce box		2		48,20
34. н	andy cart		1		64,60
35. I	ncubator		1	an Dar tha gaile an t	1,010,00
36• C	olony counter	4	1 6	set	102,00
37. Е	lectric sterilizer		1 8	set	89,25
38. F	rame photometer		1 ε	set	995,50
39. I	nsect iron net		1 8	set	252,00
40. E	lectro-auto pump		2		75,60
Statione	ry				
1. Po	rcelain board		2		131,90
	aper trimmer		1		195,00
	ff set printer with binder and pa	rts	1 1	set	2,544,79
	icoh printer E 120 spare parts		1	set	30,40
	ir condition (split type)		1		294,00
J. A					
Publici	ty equipment				
			6		24,00
	licrophone		4		122,00
	ransceiver		1		16,20
	assette recorder		3		27,00
	lini cassette recorder		1	· .	43,00
	licrophone terminal			set	121,3
	amera's attachment		3		461,50
	olor film		1		174,3
8. 5	creen		1		
Uahi] -					
Vehicle	-				840,0
	tini truck (600 cc)		1		262,5
2. 1	Notorcycle (90 cc)		2		20217
	•			<u> </u>	13,325,9
			FC	×	14,053,4
			CI	(F	14 10 3314

List of durable articles bought in Thailand Suphan Buri Experiment Station and Training Center Project Technical Division : Department of Agriculture

1978	دىيە	1980

			Number	Price
				(Baht)
1.	Bicycle		1	1,105
2.	Elsctric fan (16 inches)		1	1,400
3.	Air condition (split type)		1	27,000
4.	Hover electric polisher		1	5,500
5.	Sofa set		l set	3,100
6.	Tank (400 gallon) with stand		2	3,700
	Electric type-writer (both English	and Thai	1	30,200
	languages)	•		
8.	Megaphone - apex		l set	1,600
9.	Electric water pump (2 inches)	· •	1	3,000
			Total	76,605

List of Trainces

At Suphan Buri Training Center

Fiscal year 1979

1 st class

Curriculum "Rice cultivation techniques in irrigated area"

Duration : 16-27 July 1979

1. Royal Irrigation Department	
1. Mr. Direg Thong-ararm 6. Mr. Samuane Grataitho	lg .
2. Mr. Sawai Vongvuthsaroch 7. Mr. Manoch Nylniyom	
3. Mr. Theorapong Pongsawang 8. Mr. Vichan Janpen	
4. Mr. Prayong Varin 9. Mr. Suravuth Kampaeng	8et
5. Mr. Pragob Thamvongchai 10. Mr. Pongsak Lavanaman	1
2. Department of Agricultural Extension	
11. Mrs. Suganya Jongjaipag 19. Mr. Thongchai Suthina	ragom
12. Mr. Narongrit Onchoi 20. Mr. Gamon Gasemsook	4
	ichien
	uhaganog
14. Mr. Samrej Prukpr song 22. Miss Rushgsson torn kin 15. Mr. Viratt Peanvittaya 23. Mr. Gamolsag Gessavay	uth
16. Mr. Paiboon Choo-aied 24. Mr. Gittisag Poo-pras	ert
17. Mr. Chamnarn Chanpradub 25. Mr. Chartchai Chumsai	na ayut-
18. Mr. Ahree Sripijit taya	-
TA: MIS WIGO	
3. Agricultural Land Reform Office	
26. Miss Gannigar Kamboonratt 29. Mr. Booncherd Rod-aie	m
	1
27. Miss Alisa Hommall 50. Mr. Under Paralettic 28. Miss Pannes Poo-ritatt 31. Mr. Manit Thongsripon	ge
4. Department of Agriculture	
32. Miss Sasithorn Sovan 37. Mr. Pornsag Jiemvijit	
32. Mr. Ohnas Jantasook 38. Miss Nittaya Harnsag	
34. Mrs. Angkana Luangsiroratt 39. Mr. Boonyang Saengput	ta
35. Mrs. Rattanaporn Sooktep 40. Mr. Apiohai Gusumand	

2 nd class

Currioulum "Cropping system in paddy field of irrigated area"

Duration : 17-28 December 1979

1. Chiengmai University

1. Mr. Jaturonge Puangmanee 2. Mr. Jamlong Pothajarern

2. Office of Agricultural Economics

3. Mr. Peerasag Potcharanan 4. Mr. Somsag Yo-thee

4 Innd Potonm Office .

1. Agricultural Land Reform	Office		
. mbana Tha-normsag	yudth 8.	Mr. Vichai Lickananon	
to revei Rammana	9.	Mr. Vitthaya Chaisuvan	
V Vananacad Sri D9001	m 10.	Mr. Prasit Bangohuad	
	이 가지 않는 것 같아요.		
4. Department of Agriculture	al Cooperativ	e Promotion	
www. Jagchai Sagsri	19.		
Mr. Surachart Somvatth	nanasag 20.	Mr. Pairatt Wangdee	
Mr. Sayan Putthasri	51.	Mr. Ruangsag Saenpen	
Mr. Sommai Tuladechara	ag 22.	Miss Vilai Tarerngijpan	
Mn. Jamnonge Chaichote	9 23.	Mr. Thongechai Soothi-narag	zom
Mr. Cherdsook Pavanavi	ichien 24.		
Miss Tuane jai Boon puar	1e 25.	Mr. Pisin Padungchevit	
18. Mr. Prateep Jandamrong	ze		•
5. Royal Irrigation Departme	ent		
anatt Chennetch	31.	Mr. Prasonge Indontree	
26. Mr. Dramote Detohyapir 27. Mr. Pramote Detohyapir	rom 32.	Mr. Sopon Luangemaneevetch	
28. Mr. Manas Ruangechai	33.	Mr. Pin Sri-ampai	
29. Mr. Samran Poo-hoi	34.		
30. Mr. Thavee Thongkharw	35•	Mr. Sutep Aimratt	
6. Department of Agriculture	9		
36. Mr. Ohpas Jantasook		Mr. Damronge Ponge-manavuth	ı
	iana		-
37. Mr. Porniert 100-Vatti	· · · · ·		
and a start of the start of th			
	3 rd class		
a strate was the second	and formed and	in impirated excell	

Curriculum "Integrated farming in irrigated area"

Duration : 14-25 January 1980

1. Royal Irrigation Department		
1. Mr. Soodjai Khanthichote 2. Mr. Apichai Vatthanayomnaporn	· · · · ·	Mr. Siroj Prakoonhangsit Mr. Boontham Vongesalai
2. Agricultural Land Reform Office		
5. Miss Pannee Poo-ritatt 6. Mr. Veerapan Sriboonleu	7. 8.	Mr. Supachai Visetsin Mr. Suthee Boonkonge
3. National Security Command		
9. Col. U-grit Janthavarin	10.	Lt.Col. Gatha Rodsuthi
4. Office of Accelerated Rural Deve	lopme	nt
11. Mr. Anthit Boontho	12.	Mr. Chotechai Roongrojchaiporn
5. Department of Agricultural Coope	rativ	ve Promotion
13. Mr. Gampolsag Moon-a-mart	15.	Mr. Citti Chotogiet
14. Mr. Sayarmchai Phagthed		
14. Mr. Sayarmchai Phagthed 6. Department of Fisheries		

7. Department of Public Nelfare 17. Mr. Chatchavaln Setthabutr	18.	Mr. Prasote Pho-thivatthutham
8. Department of Community Developm	ient	
19. Mr. Yudthapoom Sookpinij	20.	Mr. Sura Thongphoo-noi
9. Office of Agricultural Economics	-	
21. Mr. Peerasag Potcharanan		n an tha an t
10. Department of Agriculture		
 Mr. Prasit Boonchoo-duang Miss Lavan Aiemsupan Mr. Sirichai Somboonponge Mr. Monthon Punyarit Mr. Banlu Ruangesook Mr. Samak Yingyong 	28. 29. 30. 31. 32.	Mr. Ohpas Jantasook Mr. Direg Gl mprathoom Miss Gannigar Na-glang Mrs. Supanee Jonge-dee Mr. Apiratt Kharwsavee
4 th clas	ទ	

Curriculum "Experimental designs	and	comp	uter result analysis"
Duration : 5-6	Febr	uary	1980
1. Agricultural Land Reform Office			ана страна с Страна страна с
1. Mr. Suppachai Visetsin 2. Miss Gannigar Kamboonratt 3. Miss Pannee Poo-rithatt	4. 5.		Ichiro Numba Isamu Yamazaki
2. Royal Irrigation Department 6. Mr. Siroj Prakoonhangsit	-		Kazuto Misawa
3. Suphan Buri Experiment Station a	ind Tr		
8. Miss Jamnonge Nardsomboon 9. Miss Sasithorn Sovan 10. Mrs. Achana Siripatt 11. Mr. Vanchai Tonsaipetch		Mr. Mr.	Ohpas Jantasook Vichien Sasiprapa Susumu Inoue Yasushi Watanabe

5 th class

Special curriculum "Modern agriculture in irrigated area"

Duration : 18-20 March 1980

· · .	Name	Name
1	Mr. Thavil Srisank	9. Mr. Sawang Limthong
	Mrs. Pinthong Srisank	10. Mr. Chalerm Gerdniam
	Mr. Samrit In-glam	11. Miss Buysri Gate-mance
4.	Mr. Riab Yangyeune	12. Mr. Bai In-sagul
	Mr. Savonge Srisank	13. Mr. Vijin Srisank
	Miss Samarn Nagfon	14. Mr. Savang Soonpra-cha
	Mr. Samrarn Srajomethong	15. Mr. Od U-thaichai
8.	Mr. Samrarn Sripo	16. Mr. Vichien Khunmaignerm

Name

Name	Name
17. Mr. Zuan Roonnaronge	32. Miss Banthom Palagavonge
18. Mr. Pean Triparp	33. Miss Thurian Khunmaignarm
19. Mr. Somneuk Onpragnarm	34. Mr. Thongyib Vareeratt
20. Mr. Boonsonge Ruanegaew	35. Mr. Mee Yimprasert
21. Mr. Boontham Malinyln	36. Mr. Jampee Khunmaignarm
22. Mr. U-thai Roonnaronge	37. Mr. Foy Triparp
23. Mr. Prayudth Varceratt	38. Mr. Gnern Mingmora
24. Mr. Manee Galavai	39. Mr. Jampa Khunmalgnarm
25. Mr. Suthin Khunmaignarm	40. Mr. Jamnonge Vijitbanjonge
26. Mr. Sanan Viengkham	41. Mr. Banthom Srimeu-dee
27. Mr. Prathuange Chaowku-vieng	42. Mr. Thavil Dokmaithed
28. Mr. Boonsonge Sooksamrarn	43. Mr. Samruay Go-patta
29. Mr. Rien Galavai	44. Mr. Samarn Aiemjai-dee
30. Mr. Pua Po-paijit	45. Mr. Ya Singto
31. Mr. Prasit Triparp	46. Mr. Grienggrai Siripatt

6 th class

Curriculum "Rice cultivation techniques in irrigated area"

Duration : 14-25 April 1980

1. Department of Agricultural Extension

 Mr. Gasetchatt Rattanasri Mr. Thanee Thongchame Mr. Yeuneyonge Peudmongekol Mr. Sagsri Lomthaisonge Mr. Semarn Vichiensan 	8.	Mr. Anan Panyagads Mr. Sutham Cheepsamuth
6. Mr. Suvat Poonthavee		
2. Department of Agricultural Coop	erativ	re Promotion
12. Mr. Paichayon Gor-detch 13. Mr. Pravit Kiengpol	14.	Mr. Vatchara Siri-u-dom Mr. Sorasag Sapsiri
3. Royal Irrigation Department		.
16. Mr. Yots Sa-gnuanboon 17. Mr. Amorn Sooksomsri 18. Mr. Prasit Pichairuerg		Miss Suvanna Patthayavan Mr. Jaroon Gaewfuynorg
4. Department of Community Develop	ment	
21. Mr. Banjonge Masaeng	22.	Mr. Sura Thongpoo-noi
5. Department of Public Welfare		
23. Mr. Boonsonge Jarerntep	24.	Mr. Damronge Butt-rerm
6. Office of Accelerated Rural Dev	elopme	nt
25. Mr. Kanchit Konge-somkhong	26.	Mr. La-aicd Jitbampen
7. Petchburi Demonstration Farm Pi	lot Pr	oject
27. Mr. Panom Vonge-gommalasai	28.	Mr. Vichien Gaewsoma

8. National Security Command 29. Sergt. Vanchai Thammagij 9. Thai-INRI Joint Research Project 32. Mr. Thongbai Pipatthitigorn 30. Mr. Pathom Suppasiriratt 31. Mr. Jirapol Janrieng 10. Department of Agriculture Mr. Eggachai Srinimit 33. 36. Mr. Veerasag Sri-on 34. Mr. Ponge-sag Rattanavaraha 37. Mr. Udsavin No-thaya 35. Mr. Vinyoo Vong-u-bon 38. Mr. Sanit Impithag 11. Office of Agricultural Economics 39. Mr. Surin Gerdmali 40. Mr. Pichit Pradubthong 7 th class Curriculum "Rice cultivation technique in irrigated area" Duration : 12-23 May 1980

Ł

1. Royal Irrigation Department 1. Miss Chaveevan Boonsai 3. Mr. Prayoonsak Duangboots 2. Mr. Pailin Nudthavorn 4. Mr. Jaruthat Pollavat 2. Department of Agricultural Cooperative Promotion 5. Mrs. Lersiri Laemvilai 7. Mr. Cherdchai Mathuros 6. Mr. Yonge-yuth Laopoonsook 8. Mr. Burapa Burapasing 3. Office of Agricultural Economics 9. Mr. Paithoon Choo-muang 10. Mr. Prapassorn Canteevonge 4. Agricultural Land Reform Office 11. Miss Gaysinee Rattanapessala 13. Mr. Suvit Chaow-u-thai 12. Mr. Gamol Bandaipetch 5. Office of Accelerated Rural Development 14. Mr. Jaggrapan Pamaranon 6. Office of Development Military 15. Second Lt. Vatchara Sitthigul 16. Second Lt. Adisak Kongekajan 7. Department of Public Welfare 17. Mr. Sayan Thatsanasonevijarn 18. Second Lt. Theera Santimaythee 8. Petchburi Demonstration Farm Pilot Project 19. Mr. Songe-grarn Chai-ya-pan

9. Department of Agriculture

- 20. Mr. Thiraponge Piyasiranon
- 21. Mr. Sombat Chinavongo
- 22. Miss Nantharatt Supgamnerd
- 23. Mr. Greepol Lymsomvonge
- 24. Mr. Chutivatt Vannasai

10. Department of Agricultural Extension

- 29. Mr. Pitcha Tewsroy 30. Mr. Thammanoon Boongrisorn
- 31. Mr. Chanyuth Maneeponge

- 25. Mr. Suniyom Ta-prab
- Miss Putthana Gmolrattanagul 26.
- 27 Miss Vijittra Jittathai
- 28. Miss Nida Sainanthip
- - 32. Mr. Vorapan Poopa
 - 33-Mr. Soothichai Yudthagasemsan
 - 8 th class

Curriculum "Computer programing and utilizing"

Duration : 16-17 June 1980

1, Department of Agriculture

- 1. Mr. Pisit Sepsavatt
- 2. Mr. Thavatchai Na nakorn
- 3. Mr. Suppachai Banglieng
- 4. Miss Chaniga Patthamadiloge
- 5. Mrs. Vanna Gaewmongekol
- 2. Royal Irrigation Department
- 10. Mr. Siroj Prakoonhangsit
- 3. Agricultural Land Reform Office
- ll. Mr. Theeravatt Vitthayasil

- 6. Mr. Manus Paithoon jarernlarp
- 7. Mrs. Vatthana Panmanee
- 8. Miss Jamnonge Nardsomboon
- 9. Mr. Pairatt Duangpiboon

12. Miss Bancheune Thanyasirigul

9 th class

Curriculum "Advance of Computer programing and utilizing"

Duration : 23-24 July 1980

1. Department of Agriculture

- 1. Mr. Pisit Sepsavatt
- 2. Mr. Montien Jinda
- 3. Mr. Suppachai Banglieng
- 4. Kiss Chaniga Patthamadiloge
- 5. Mrs. Vanna Gaewmongekol
- 6. Mr. Manus Paithoon jarernlarp

7. Mrs. Vatthana Panmanee

- 8. Miss Jamnonge Nardsomboon
- 9. Mr. Pairatt Duangpiboon

Epilogue

Training works of Suphan Buri Training Center in fiscal year 1980 has been accomplished by woking group and Project coordination subcommittee of Suphan Duri Experiment Station and Training Center Project in curriculum planning, lecturers and trainees selection. Project manager, Chief of Suphan Buri Rice Experiment Station and Chief of Agronimic Management Branch control the works, budget and manpower by assigning project manager assistant as the chief of training manager staff. The staffs are as follows

l. Mr. Vichien Sasiprapa	Acricultural Agronomic Management technician 6 Branch, Technical Division
2. Mrs. Achana Siripatt	Economist 5 "
3. Miss Jamnonge Nardsomboon	Agricultural """ technician 5
4. Mr. Detchaown Graisoragul (Center coordinator)	Agricultural " technician 5
5. Mr. Pairatt Duangpiboon	Agricultural " technician 4
6. Miss Sasithorn Sovan	Scientist 5 Suphan Buri analysis laboratorial work
7. Suphan Buri Rice Experiment	Station officers
8, Dr. T. Sugahara	Japanese expert (JICA) of Suphan Buri Training Center
9. Mr. Y. Takashima	Japanese expert (JICA) of Suphan Buri

The aim of this report is for spreading the progression of this project to the ones who concerning with agriculture development technology relaying.

Training Center

Vichien Sasiprapa Making report of 1980 September 1981