(AF)52-28

THE KINGDOM OF THAILAND

FEASIBILITY REPORT ON IRRIGATED AGRICULTURAL DEVELOPMENT PROJECT IN THE WEST BANK TRACT OF THE GREATER CHAO PHYA

(APPENDIX)

MAY 1977

JAPAN INTERNATIONAL COOPERATION AGENCY

(AF)52-28

THE KINGDOM OF THAILAND

FEASIBILITY REPORT ON IRRIGATED AGRICULTURAL DEVELOPMENT PROJECT IN THE WEST BANK TRACT OF THE GREATER CHAO PHYA

(APPENDIX)

MAY 1977

JAPAN INTERNATIONAL COOPERATION AGENCY

	anda 1990 - Status III, andara 1990 - Status III, andara Status III.	

国際協力事業団		
受入 月日 '84. 9.24 122 登録No. 09892 AET	н н н	
Land and the second sec		

		ST OF TABLES
		· 것 : 물법에 통해 가지 않는 것이 가지 않는 것이 하는 것이 있는 것이 가지 않는 것이다. - 이 가지 않는 것이 같은 것이 같은 것이 같은 것이 있는 것이 같은 것이 있는 것이 같이 있는 것이 같이 같이 같이 있는 것이 같이 있는 것이 같이 있다.
Appendix	Table	1999년 4월 20월 1일 - 11일 2019년 1997년 1997년 1997년 1997년 19 1997년 1997년 199
1.	A.1-1.	Personnel Concerned the Mission Contacted
	A.1- 2.	Data List Used for Feasibility Study
•		
3-1.	A.3- 1.	Temperature
3-2.	A.3- 2.	Relative Humidity, Pan Evaporation and Sunshine Hours Duration
• •	A.3- 3.	Wind
	Л.З- 4.	Solar Radiation
	Λ.3- 5.	Annual Rainfall
	A.3- 6.	Probable Annual Rainfall
3-3.	A.3- 7.	Monthly Mean Rainfall
	Λ.3- 8.	Monthly Rainfall Records in the Vicinity of Project Area
	Λ.3- 9.	Monthly Rainfall Record
	A.3-10.	Monthly Rainfall Record
	Λ.3-11.	Monthly Rainfall Record
	A.3-12.	Monthly Rainfall Record
	A.3-13.	Monthly Rainfall Record
3-4.	A.3-14.	Rainfall Records in Wet Season (May-October)
	A.3-15.	Probable Rainfall in Wet Season (May-October)
	Λ.3-16.	Rainfall Records in Dry Season (November-March & November-April)
	A.3-17.	Probable Maximum Rainfall in Dry Season
·	A.3-18.	Probable Maximum Rainfall in Dry Season
3-5,	Α.3-19.	Probable Maximum Consecutive Rainfall

Appendix	Table	
3-6.	A.3-20.	Monthly Mean Rainy Days
	A.3-21.	Monthly Rainy Days in the Vicinity of Project Area
	A.3-22.	Monthly Rainy Days in the Vicinity of Project Area
	A.3-23.	Monthly Rainy Days Record
	A,3-24.	Monthly Rainy Days Record
	A.3-25.	Monthly Rainy Days Record
	A.3-26.	Monthly Rainy Days Record
	A.3-27.	Maximum Drought Days in Wet Season
3-8.	A.3-28.	Monthly and Annual Mean Discharge of Chao Phya River at Nakorn Sawan
	A.3-29.	Monthly and Annual Mean Discharge of Chao Phya River at Chainat
	A.3-30.	Monthly and Annual Specific Runoff of Chao Phys River at Nakorn Sawan
	A.3-31.	Monthly and Annual Soecific Runoff of Chao Phya River at Chainat
3-9.	A.3-32.	Extreme Momentary Discharge Records of the Chac Phya River
3-10.	Probable [ischarge and Water Level of the Chao Phya River
	A.3-33.	Probable Maximum Momentary Discharges and Maximum Water Levels of the Chao Phya River
3-12.		on Lower Basin Caused by the Construction of and Sirikit Dams
3-15,	A.3-34.	Maximum Monthly Mean Discharge of the Chao Phys River (Wet Season)
3-18.	A.3-36.	Maximum and Minimum Probable Water Level
	A.3-37.	Extreme Water Level in the Vicinity of the Project Area
3-19.	A.3-38.	Free Surface Ground Water Tables in Upper West Bank Tract at Sena

 3-20. A.3-39. Water Quality of Canals in the West Bank Tract A.3-40. Water Quality of the Chao Phys River A.3-41. Results of Soil Mechanical Test 3-27. A.3-42. Proposed Land Consolidation Area and Completed Area in Thailand in 1976 A.3-43. Comparison of Major Features of Sappaya Project and Channasutra Project 3-29. Present Yield A.3-44. Statistical Data on Paddy Yield A.3-45. Data on Paddy Yield in the Area Concerned with Project Area 3-30. A.3-46. Number of Domestic Animals and Breeding House- holds in Each Tambon in the Project Area 3-33. A.3-47. Unit of Farm Machinery and Depreciation Cost per Household 4- 1. Proposed Cropping Pattern for Alternative Plan 4- 2. A.4- 2. Construction Cost of Alternative Plans A.4- 3. Net Incremental Benefit of Alternative Plans 4- 3. A.4- 4. Internal Rate of Return (Plan 1-1) A.4- 5. Internal Rate of Return (Plan 1-2) A.4- 6. Internal Rate of Return (Plan 1-3) A.4- 7. Internal Rate of Return (Plan 11-1) A.4- 8. Internal Rate of Return (Plan 11-2) A.4- 9. Internal Rate of Return (Plan 11-2) A.4- 9. Internal Rate of Return (Plan 11-1) A.4- 9. Internal Rate of Return (Plan 11-2) A.4- 9. Internal Rate of Return (Plan 11-1) A.4- 9. Internal Rate of Return (Plan 11-2) A.4- 9. Internal Rate of Return (Plan 11-1) A.4- 9. Internal Rate of Return (Plan 11-2) A.4- 9. Internal Rate of Return (Plan 11-1) A.4- 9. Internal Rate of Return (Plan 11-2) A.4- 9. Internal Rate of Return (Plan 11-1) A.4-10. Internal Rate of Return (Plan 11-1) 	 A.3-40. Mater Quality of the Chao Phya River A.3-40. Mater Quality of the Chao Phya River A.3-41. Results of Soil Mechanical Test 3-27. A.3-42. Proposed Land Consolidation Area and Completed Area in Thailand in 1976 A.3-43. Comparison of Major Features of Sappaya Project and Channasutra Project 3-29. Present Yield A.3-49. Statistical Data on Paddy Yield A.3-49. Data on Paddy Yield in the Area Concerned with Project Area 3-30. A.3-46. Number of Domestic Animals and Breeding Households in Each Tambon in the Project Area 3-33. A.3-47. Unit of Farm Machinery and Depreciation Cost per Household 4- 1. Proposed Cropping Pattern for Alternative Studies A.4- 2. Construction Cost of Alternative Plans 4- 3. A.4- 4. Internal Rate of Return (Plan I-1) A.4- 5. Internal Rate of Return (Plan I-2) A.4- 7. Internal Rate of Return (Plan II-2) A.4- 9. Internal Rate of Return (Plan II-2) A.4- 9. Internal Rate of Return (Plan II-3) 	 A.3-40. Water Quality of the Chao Phya River A.3-41. Results of Soil Mechanical Test 3-27. A.3-42. Proposed Land Consolidation Area and Completed Area in Thalland in 1976 A.3-43. Comparison of Major Features of Sappaya Project and Channasutra Project 3-29. Present Yield A.3-44. Statistical Data on Paddy Yield A.3-45. Data on Paddy Yield in the Area Concerned with Project Area 3-30. A.3-46. Number of Domestic Animals and Breeding House-holds in Each Tambon in the Project Area 3-33. A.3-47. Unit of Parm Machinery and Depreciation Cost per Household 4- 1. Proposed Cropping Pattern for Alternative Studies A.4- 1. Major Features of the Alternative Plans A.4- 3. Net Incremental Benefit of Alternative Plans 4- 3. A.4- 4. Internal Rate of Return (Plan 1-1) A.4- 5. Internal Rate of Return (Plan 1-2) A.4- 7. Internal Rate of Return (Plan 11-3) A.4- 9. Internal Rate of Return (Plan 11-3) A.4-10. Internal Rate of Return (Plan 11-1) 	<u>Ippendix</u>	Table	
 A.3-41. Results of Soil Mechanical Test 3-27. A.3-42. Proposed Land Consolidation Area and Completed Area in Thailand in 1976 A.3-43. Comparison of Major Features of Sappaya Project and Channasutra Project 3-29. Present Yield A.3-44. Statistical Data on Paddy Yield A.3-45. Data on Paddy Yield in the Area Concerned with Project Area 3-30. A.3-46. Number of Domestic Animals and Breeding House- holds in Each Tambon in the Project Area 3-33. A.3-47. Unit of Farm Machinery and Depreciation Cost per Household 4- 1. Proposed Cropping Pattern for Alternative Studies A.4- 1. Major Features of the Alternative Plans A.4- 3. Net Incremental Benefit of Alternative Plans A.4- 4. Internal Rate of Return (Plan 1-1) A.4- 5. Internal Rate of Return (Plan 1-3) A.4- 7. Internal Rate of Return (Plan 11-1) A.4- 8. Internal Rate of Return (Plan 11-2) A.4- 9. Internal Rate of Return (Plan 11-3) A.4-10. Internal Rate of Return (Plan 11-3) A.4-10. Internal Rate of Return (Plan 11-1) 	 A.3-41. Results of Soil Mechanical Test 3-27. A.3-42. Proposed Land Consolidation Area and Completed Area in Thailand in 1976 A.3-43. Comparison of Major Features of Sappaya Project and Channasutra Project 3-29. Present Yield A.3-44. Statistical Data on Paddy Yield A.3-45. Data on Paddy Yield in the Area Concerned with Project Area 3-30. A.3-46. Number of Domestic Animals and Breeding House- holds in Each Tambon in the Project Area 3-33. A.3-47. Unit of Farm Machinery and Depreciation Cost per Household 4- 1. Proposed Cropping Pattern for Alternative Studies A.4- 1. Major Features of the Alternative Plans 4- 3. A.4- 3. Net Incremental Benefit of Alternative Plans 4- 4. Internal Rate of Return (Plan I-1) A.4- 5. Internal Rate of Return (Plan I-2) A.4- 7. Internal Rate of Return (Plan II-1) A.4- 9. Internal Rate of Return (Plan II-1) A.4- 9. Internal Rate of Return (Plan II-2) A.4- 9. Internal Rate of Return (Plan II-1) 	 A.3-41. Results of Soil Mechanical Test 3-27. A.3-42. Proposed Land Consolidation Area and Completed Area in Thailand in 1976 A.3-43. Comparison of Major Features of Sappaya Project and Channasutra Project. 3-29. Present Yield A.3-44. Statistical Data on Paddy Yield A.3-45. Data on Paddy Yield in the Area Concerned with Project Area 3-30. A.3-46. Number of Domestic Animals and Breeding House- holds in Each Tambon in the Project Area 3-33. A.3-47. Unit of Farm Machinery and Depreclation Cost per Household 4-1. Proposed Cropping Pattern for Alternative Studies A.4-1. Major Features of the Alternative Plans 4.4-2. Construction Cost of Alternative Plans 4.4-3. Net Incremental Benefit of Alternative Plans 4.4-6. Internal Rate of Return (Plan I-1) A.4-7. Internal Rate of Return (Plan I-3) A.4-7. Internal Rate of Return (Plan II-1) A.4-8. Internal Rate of Return (Plan II-1) A.4-9. Internal Rate of Return (Plan II-1) A.4-10. Internal Rate of Return (Plan II-1) 	3-20.	A.3-39.	Water Quality of Canals in the West Bank Tract
 3-27. A.3-42. Proposed Land Consolidation Area and Completed Area in Thailand in 1976 A.3-43. Comparison of Major Features of Sappaya Project and Channasutra Project 3-29. Present Yield A.3-44. Statistical Data on Paddy Yield A.3-45. Data on Paddy Yield in the Area Concerned with Project Area 3-30. A.3-46. Number of Domestic Animals and Breeding House- holds in Each Tambon in the Project Area 3-30. A.3-47. Unit of Parm Machinery and Depreciation Cost per Household 4-1. Proposed Cropping Pattern for Alternative Studies A.4-1. Major Features of the Alternative Plan 4-2. A.4-2. Construction Cost of Alternative Plans A.4-3. Net Incremental Benefit of Alternative Plans 4-3. A.4-4. Internal Rate of Return (Plan 1-1) A.4-5. Internal Rate of Return (Plan 1-2) A.4-6. Internal Rate of Return (Plan 11-1) A.4-7. Internal Rate of Return (Plan 11-1) A.4-9. Internal Rate of Return (Plan 11-2) A.4-9. Internal Rate of Return (Plan 11-3) A.4-10. Internal Rate of Return (Plan 11-1) 	 3-27. A.3-42. Proposed Land Consolidation Area and Completed Area in Thailand in 1976 A.3-43. Comparison of Major Features of Sappaya Project and Channasutra Project 3-29. Present Yield A.3-40. Statistical Data on Paddy Yield A.3-65. Data on Paddy Yield in the Area Concerned with Project Area 3-30. A.3-46. Number of Domestic Animals and Breeding House- holds in Each Tambon in the Project Area 3-33. A.3-47. Unit of Farm Machinery and Depreciation Cost per Household 4- 1. Proposed Cropping Pattern for Alternative Studies A.4- 1. Major Features of the Alternative Plan 4- 2. A.4- 2. Construction Cost of Alternative Plans A.4- 3. Net Incremental Benefit of Alternative Plans 4.4- 5. Internal Rate of Return (Plan 1-1) A.4- 6. Internal Rate of Return (Plan 1-2) A.4- 7. Internal Rate of Return (Plan 1-1) A.4- 9. Internal Rate of Return (Plan 11-2) A.4- 9. Internal Rate of Return (Plan 11-2) A.4- 9. Internal Rate of Return (Plan 11-2) A.4- 9. Internal Rate of Return (Plan 11-1) A.4- 9. Internal Rate of Return (Plan 11-1) 	 3-27. A.3-42. Proposed Land Consolidation Area and Completed Area in Thailand in 1976 A.3-43. Comparison of Major Features of Sappaya Project and Channasutra Project. 3-29. Present Yield A.3-44. Statistical Data on Paddy Yield A.3-45. Data on Paddy Yield in the Area Concerned with Project Area 3-30. A.3-46. Number of Domestic Animals and Breeding Households in Each Tambon in the Project Area 3-33. A.3-47. Unit of Parm Machinery and Depreciation Cost per Household 4- 1. Proposed Cropping Pattern for Alternative Studies A.4- 1. Major Features of the Alternative Plan 4- 2. A.4- 2. Construction Cost of Alternative Plans A.4- 3. Net Incremental Benefit of Alternative Plans 4.4- 5. Internal Rate of Return (Plan I-1) A.4- 6. Internal Rate of Return (Plan I-2) A.4- 7. Internal Rate of Return (Plan I-1) A.4- 8. Internal Rate of Return (Plan I-1) A.4- 9. Internal Rate of Return (Plan II-2) A.4- 9. Internal Rate of Return (Plan II-2) A.4- 9. Internal Rate of Return (Plan II-1) 		A.3-40.	Water Quality of the Chao Phya River
 Area in Thailand in 1976 A.3-43. Comparison of Major Features of Sappaya Project and Channasutra Project. 3-29. Present Yield A.3-44. Statistical Data on Paddy Yield A.3-45. Data on Paddy Yield in the Area Concerned with Project Area 3-30. A.3-46. Number of Domestic Animals and Breeding House- holds in Each Tambon in the Project Area 3-33. A.3-47. Unit of Farm Machinery and Depreciation Cost per Household 4- 1. Proposed Cropping Pattern for Alternative Studies A.4- 1. Major Features of the Alternative Plan 4- 2. A.4- 2. Construction Cost of Alternative Plans A.4- 3. Net Incremental Benefit of Alternative Plans 4- 4. Internal Rate of Return (Plan I-1) A.4- 5. Internal Rate of Return (Plan I-2) A.4- 6. Internal Rate of Return (Plan II-1) A.4- 7. Internal Rate of Return (Plan II-1) A.4- 9. Internal Rate of Return (Plan II-2) A.4- 9. Internal Rate of Return (Plan II-2) A.4- 9. Internal Rate of Return (Plan II-1) A.4- 10. Internal Rate of Return (Plan II-1) 	 Area in Thailand in 1976 A. 3-43. Comparison of Major Features of Sappaya Project and Channasutra Project 3-29. Present Yield A. 3-44. Statistical Data on Paddy Yield A. 3-45. Data on Paddy Yield in the Area Concerned with Project Area 3-30. A. 3-46. Number of Domestic Animals and Breeding House- holds in Each Tambon in the Project Area 3-33. A. 3-47. Unit of Farm Machinery and Depreciation Cost per Household 4- 1. Proposed Cropping Pattern for Alternative Studies A. 4- 1. Major Features of the Alternative Plan 4- 2. A. 4- 2. Construction Cost of Alternative Plans A. 4- 3. Net Incremental Benefit of Alternative Plans 4- 4. Internal Rate of Return (Plan 1-1) A. 4- 5. Internal Rate of Return (Plan 1-2) A. 4- 7. Internal Rate of Return (Plan 1-2) A. 4- 9. Internal Rate of Return (Plan 11-2) A. 4- 9. Internal Rate of Return (Plan 11-2) A. 4- 9. Internal Rate of Return (Plan 11-3) A. 4-10. Internal Rate of Return (Plan 11-1) 	 Area in Thailand in 1976 A. 3-43. Comparison of Major Features of Sappaya Project and Channasutra Project. 3-29. Present Yield A. 3-46. Statistical Data on Paddy Yield A. 3-46. Number of Domestic Animals and Breeding House- holds in Each Tambon in the Project Area 3-30. A. 3-46. Number of Domestic Animals and Breeding House- holds in Each Tambon in the Project Area 3-33. A. 3-47. Unit of Farm Machinery and Depreciation Cost per Household 4- 1. Proposed Cropping Pattern for Alternative Studies A. 4- 1. Major Features of the Alternative Plan 4- 2. A. 4- 2. Construction Cost of Alternative Plans A. 4- 3. Net Incremental Benefit of Alternative Plans 4- 4. Internal Rate of Return (Plan 1-1) A. 4- 5. Internal Rate of Return (Plan 1-2) A. 4- 6. Internal Rate of Return (Plan 1-3) A. 4- 9. Internal Rate of Return (Plan 11-2) A. 4- 9. Internal Rate of Return (Plan 11-2) A. 4- 9. Internal Rate of Return (Plan 11-3) A. 4- 9. Internal Rate of Return (Plan 11-3) A. 4-10. Internal Rate of Return (Plan 11-1) 		A.3-41.	Results of Soil Mechanical Test
 and Channasutra Project 3-29. Present Yield A.3-44. Statistical Data on Paddy Yield A.3-45. Data on Paddy Yield in the Area Concerned with Project Area 3-30. A.3-46. Number of Domestic Animals and Breeding House-holds in Each Tambon in the Project Area 3-33. A.3-47. Unit of Farm Machinery and Depreciation Cost per Household 4- 1. Proposed Cropping Pattern for Alternative Studies A.4- 1. Major Features of the Alternative Plans A.4- 3. Net Incremental Benefit of Alternative Plans A.4- 5. Internal Rate of Return (Plan I-1) A.4- 6. Internal Rate of Return (Plan I-2) A.4- 7. Internal Rate of Return (Plan II-1) A.4- 8. Internal Rate of Return (Plan II-2) A.4- 9. Internal Rate of Return (Plan II-2) A.4- 9. Internal Rate of Return (Plan II-3) A.4-10. Internal Rate of Return (Plan II-1) 	 and Channasutra Project. 3-29. Present Yield A.3-44. Statistical Data on Paddy Yield A.3-45. Data on Paddy Yield in the Area Concerned with Project Area 3-30. A.3-46. Number of Domestic Animals and Breeding Households in Each Tambon in the Project Area 3-33. A.3-47. Unit of Farm Machinery and Depreciation Cost per Household 4- 1. Proposed Cropping Pattern for Alternative Studies A.4- 1. Major Features of the Alternative Plan 4- 2. A.4- 2. Construction Cost of Alternative Plans A.4- 3. Net Incremental Benefit of Alternative Plans 4- 4. Internal Rate of Return (Plan I-1) A.4- 5. Internal Rate of Return (Plan I-2) A.4- 6. Internal Rate of Return (Plan II-1) A.4- 8. Internal Rate of Return (Plan II-2) A.4- 9. Internal Rate of Return (Plan II-2) A.4- 10. Internal Rate of Return (Plan II-1) 	 and Channasutra Project. 3-29. Present Yield A.3-44. Statistical Data on Paddy Yield A.3-45. Data on Paddy Yield in the Area Concerned with Project Area 3-30. A.3-46. Number of Domestic Animals and Breeding Households in Each Tambon in the Project Area 3-33. A.3-47. Unit of Farm Machinery and Depreciation Cost per Household 4- 1. Proposed Cropping Pattern for Alternative Studies A.4- 1. Major Features of the Alternative Plan 4- 2. A.4- 2. Construction Cost of Alternative Plans A.4- 3. Net Incremental Benefit of Alternative Plans 4.4- 5. Internal Rate of Return (Plan I-1) A.4- 6. Internal Rate of Return (Plan I-2) A.4- 7. Internal Rate of Return (Plan II-1) A.4- 9. Internal Rate of Return (Plan II-2) A.4- 9. Internal Rate of Return (Plan II-3) A.4-10. Internal Rate of Return (Plan II-1) 	3-27.	A.3-42.	Proposed Land Consolidation Area and Completed Area in Thailand in 1976
 A.3-44. Statistical Data on Paddy Yield A.3-45. Data on Paddy Yield in the Area Concerned with Project Area 3-30. A.3-46. Number of Domestic Animals and Breeding House-holds in Each Tambon in the Project Area 3-33. A.3-47. Unit of Farm Machinery and Depreciation Cost per Household 4- 1. Proposed Cropping Pattern for Alternative Studies A.4- 1. Major Features of the Alternative Plan 4- 2. A.4- 2. Construction Cost of Alternative Plans A.4- 3. Net Incremental Benefit of Alternative Plans 4- 4. Internal Rate of Return (Plan 1-1) A.4- 5. Internal Rate of Return (Plan 1-2) A.4- 6. Internal Rate of Return (Plan 1-3) A.4- 7. Internal Rate of Return (Plan 11-1) A.4- 8. Internal Rate of Return (Plan 11-2) A.4- 9. Internal Rate of Return (Plan 11-3) A.4-10. Internal Rate of Return (Plan 11-1) 	 A.3-44. Statistical Data on Paddy Yield A.3-45. Data on Paddy Yield in the Area Concerned with Project Area 3-30. A.3-46. Number of Domestic Animals and Breeding House- holds in Each Tambon in the Project Area 3-33. A.3-47. Unit of Farm Machinery and Depreciation Cost per Household 4- 1. Proposed Cropping Pattern for Alternative Studies A.4- 1. Major Features of the Alternative Plan 4- 2. A.4- 2. Construction Cost of Alternative Plans A.4- 3. Net Incremental Benefit of Alternative Plans 4- 4. Internal Rate of Return (Plan I-1) A.4- 5. Internal Rate of Return (Plan I-2) A.4- 6. Internal Rate of Return (Plan II-1) A.4- 7. Internal Rate of Return (Plan II-1) A.4- 9. Internal Rate of Return (Plan II-2) A.4- 9. Internal Rate of Return (Plan II-3) A.4-10. Internal Rate of Return (Plan II-1) 	 A.3-44. Statistical Data on Paddy Yield A.3-45. Data on Paddy Yield in the Area Concerned with Project Area 3-30. A.3-46. Number of Domestic Animals and Breeding House-holds in Each Tambon in the Project Area 3-33. A.3-47. Unit of Farm Machinery and Depreciation Cost per Household 4- 1. Proposed Cropping Pattern for Alternative Studies A.4- 1. Major Features of the Alternative Plan 4- 2. A.4- 2. Construction Cost of Alternative Plans A.4- 3. Net Incremental Benefit of Alternative Plans 4- 4. Internal Rate of Return (Plan I-1) A.4- 5. Internal Rate of Return (Plan I-2) A.4- 6. Internal Rate of Return (Plan II-1) A.4- 7. Internal Rate of Return (Plan II-1) A.4- 9. Internal Rate of Return (Plan II-2) A.4- 9. Internal Rate of Return (Plan II-1) A.4- 9. Internal Rate of Return (Plan II-2) A.4- 9. Internal Rate of Return (Plan II-1) 		A.3-43.	Comparison of Major Features of Sappaya Project and Channasutra Project
 A.3-95. Data on Paddy Yield in the Area Concerned with Project Area 3-30. A.3-46. Number of Domestic Animals and Breeding House- holds in Each Tambon in the Project Area 3-33. A.3-47. Unit of Farm Machinery and Depreciation Cost per Household 4- 1. Proposed Cropping Pattern for Alternative Studies A.4- 1. Major Features of the Alternative Plan 4- 2. A.4- 2. Construction Cost of Alternative Plans A.4- 3. Net Incremental Benefit of Alternative Plans 4- 3. A.4- 4. Internal Rate of Return (Plan I-1) A.4- 5. Internal Rate of Return (Plan I-2) A.4- 6. Internal Rate of Return (Plan I-3) A.4- 7. Internal Rate of Return (Plan II-1) A.4- 8. Internal Rate of Return (Plan II-1) A.4- 9. Internal Rate of Return (Plan II-3) A.4-10. Internal Rate of Return (Plan II-1) 	 A.3-45. Data on Paddy Yield in the Area Concerned with Project Area 3-30. A.3-46. Number of Domestic Animals and Breeding House- holds in Each Tambon in the Project Area 3-33. A.3-47. Unit of Farm Machinery and Depreciation Cost per Household 4- 1. Proposed Cropping Pattern for Alternative Studies A.4- 1. Major Features of the Alternative Plan 4- 2. A.4- 2. Construction Cost of Alternative Plans A.4- 3. Net Incremental Benefit of Alternative Plans 4- 3. A.4- 4. Internal Rate of Return (Plan I-1) A.4- 5. Internal Rate of Return (Plan I-2) A.4- 6. Internal Rate of Return (Plan I-3) A.4- 7. Internal Rate of Return (Plan II-1) A.4- 8. Internal Rate of Return (Plan II-2) A.4- 9. Internal Rate of Return (Plan II-2) A.4- 9. Internal Rate of Return (Plan II-2) A.4- 9. Internal Rate of Return (Plan II-2) A.4-10. Internal Rate of Return (Plan II-1) 	 A.3-45. Data on Paddy Yield in the Area Concerned with Project Area 3-30. A.3-46. Number of Domestic Animals and Breeding House- holds in Each Tambon in the Project Area 3-33. A.3-47. Unit of Farm Machinery and Depreciation Cost per Household 4-1. Proposed Cropping Pattern for Alternative Studies A.4-1. Major Features of the Alternative Plan 4-2. A.4-2. Construction Cost of Alternative Plans A.4-3. Net Incremental Benefit of Alternative Plans 4-3. A.4-4. Internal Rate of Return (Plan I-1) A.4-5. Internal Rate of Return (Plan I-2) A.4-6. Internal Rate of Return (Plan I-2) A.4-7. Internal Rate of Return (Plan II-2) A.4-8. Internal Rate of Return (Plan II-2) A.4-9. Internal Rate of Return (Plan II-2) A.4-10. Internal Rate of Return (Plan II-3) A.4-10. Internal Rate of Return (Plan II-3) 	3-29.	Present Y	ield
 Project Area 3-30. A.3-46. Number of Domestic Animals and Breeding House-holds in Each Tambon in the Project Area 3-33. A.3-47. Unit of Farm Machinery and Depreciation Cost per Household 4- 1. Proposed Cropping Pattern for Alternative Studies A.4- 1. Major Features of the Alternative Plan 4- 2. A.4- 2. Construction Cost of Alternative Plans A.4- 3. Net Incremental Benefit of Alternative Plans 4.4- 5. Internal Rate of Return (Plan 1-1) A.4- 6. Internal Rate of Return (Plan 1-2) A.4- 7. Internal Rate of Return (Plan 11-1) A.4- 8. Internal Rate of Return (Plan 11-2) A.4- 9. Internal Rate of Return (Plan 11-2) A.4- 9. Internal Rate of Return (Plan 11-3) A.4-10. Internal Rate of Return (Plan 11-1) 	 Project Area 3-30. A.3-46. Number of Domestic Animals and Breeding House-holds in Each Tambon in the Project Area 3-33. A.3-47. Unit of Farm Machinery and Depreciation Cost per Household 4- 1. Proposed Cropping Pattern for Alternative Studies A.4- 1. Major Features of the Alternative Plan 4- 2. A.4- 2. Construction Cost of Alternative Plans A.4- 3. Net Incremental Benefit of Alternative Plans 4- 4. Internal Rate of Return (Plan I-1) A.4- 5. Internal Rate of Return (Plan I-2) A.4- 6. Internal Rate of Return (Plan I-2) A.4- 7. Internal Rate of Return (Plan II-2) A.4- 8. Internal Rate of Return (Plan II-2) A.4- 9. Internal Rate of Return (Plan II-2) A.4-10. Internal Rate of Return (Plan II-3) 	 Project Area 3-30. A.3-46. Number of Domestic Animals and Breeding House-holds in Each Tambon in the Project Area 3-33. A.3-47. Unit of Farm Machinery and Depreciation Cost per Household 4- 1. Proposed Cropping Pattern for Alternative Studies A.4- 1. Major Features of the Alternative Plan 4- 2. A.4- 2. Construction Cost of Alternative Plans A.4- 3. Net Incremental Benefit of Alternative Plans 4. 4. Internal Rate of Return (Plan I-1) A.4- 5. Internal Rate of Return (Plan I-2) A.4- 6. Internal Rate of Return (Plan II-1) A.4- 8. Internal Rate of Return (Plan II-1) A.4- 9. Internal Rate of Return (Plan II-2) A.4- 9. Internal Rate of Return (Plan II-3) A.4-10. Internal Rate of Return (Plan II-1) 		A.3-44.	Statistical Data on Paddy Yield
 holds in Each Tambon in the Project Area 3-33. A.3-47. Unit of Farm Machinery and Depreciation Cost per Household 4-1. Proposed Cropping Pattern for Alternative Studies A.4-1. Major Features of the Alternative Plan 4-2. A.4-2. Construction Cost of Alternative Plans A.4-3. Net Incremental Benefit of Alternative Plans 4-3. A.4-4. Internal Rate of Return (Plan I-1) A.4-5. Internal Rate of Return (Plan I-2) A.4-6. Internal Rate of Return (Plan I-3) A.4-7. Internal Rate of Return (Plan II-1) A.4-8. Internal Rate of Return (Plan II-1) A.4-9. Internal Rate of Return (Plan II-2) A.4-9. Internal Rate of Return (Plan II-2) A.4-10. Internal Rate of Return (Plan II-1) 	 holds in Each Tambon in the Project Area 3-33. A.3-47. Unit of Farm Machinery and Depreciation Cost per Household 4- 1. Proposed Cropping Pattern for Alternative Studies A.4- 1. Major Features of the Alternative Plan 4- 2. A.4- 2. Construction Cost of Alternative Plans A.4- 3. Net Incremental Benefit of Alternative Plans 4- 3. A.4- 4. Internal Rate of Return (Plan 1-1) A.4- 5. Internal Rate of Return (Plan 1-2) A.4- 6. Internal Rate of Return (Plan 1-3) A.4- 7. Internal Rate of Return (Plan 11-1) A.4- 8. Internal Rate of Return (Plan 11-2) A.4- 9. Internal Rate of Return (Plan 11-2) A.4- 10. Internal Rate of Return (Plan 11-3) A.4-10. Internal Rate of Return (Plan 11-1) 	 holds in Each Tambon in the Project Area 3-33. A.3-47. Unit of Parm Machinery and Depreciation Cost per Household 4-1. Proposed Cropping Pattern for Alternative Studies A.4-1. Major Features of the Alternative Plan 4-2. A.4-2. Construction Cost of Alternative Plans A.4-3. Net Incremental Benefit of Alternative Plans 4.4-3. Net Incremental Benefit of Alternative Plans 4-3. A.4-4. Internal Rate of Return (Plan I-1) A.4-5. Internal Rate of Return (Plan I-2) A.4-6. Internal Rate of Return (Plan I-3) A.4-7. Internal Rate of Return (Plan II-1) A.4-8. Internal Rate of Return (Plan II-2) A.4-9. Internal Rate of Return (Plan II-2) A.4-9. Internal Rate of Return (Plan II-2) A.4-10. Internal Rate of Return (Plan II-3) 		A.3-45.	-
 per Household 4-1. Proposed Cropping Pattern for Alternative Studies A.4-1. Major Features of the Alternative Plan 4-2. A.4-2. Construction Cost of Alternative Plans A.4-3. Net Incremental Benefit of Alternative Plans 4-3. A.4-4. Internal Rate of Return (Plan I-1) A.4-5. Internal Rate of Return (Plan I-2) A.4-6. Internal Rate of Return (Plan I-3) A.4-7. Internal Rate of Return (Plan II-1) A.4-8. Internal Rate of Return (Plan II-1) A.4-9. Internal Rate of Return (Plan II-2) A.4-9. Internal Rate of Return (Plan II-2) A.4-9. Internal Rate of Return (Plan II-2) A.4-10. Internal Rate of Return (Plan II-1) 	 per Household 4-1. Proposed Cropping Pattern for Alternative Studies A.4-1. Major Features of the Alternative Plan 4-2. A.4-2. Construction Cost of Alternative Plans A.4-3. Net Incremental Benefit of Alternative Plans 4-3. A.4-4. Internal Rate of Return (Plan 1-1) A.4-5. Internal Rate of Return (Plan I-2) A.4-6. Internal Rate of Return (Plan I-3) A.4-7. Internal Rate of Return (Plan II-1) A.4-8. Internal Rate of Return (Plan II-1) A.4-9. Internal Rate of Return (Plan II-2) A.4-9. Internal Rate of Return (Plan II-3) A.4-10. Internal Rate of Return (Plan III-1) 	 per Household 4-1. Proposed Cropping Pattern for Alternative Studies A.4-1. Major Features of the Alternative Plan 4-2. A.4-2. Construction Cost of Alternative Plans A.4-3. Net Incremental Benefit of Alternative Plans 4-3. A.4-4. Internal Rate of Return (Plan I-1) A.4-5. Internal Rate of Return (Plan I-2) A.4-6. Internal Rate of Return (Plan I-3) A.4-7. Internal Rate of Return (Plan II-1) A.4-8. Internal Rate of Return (Plan II-2) A.4-9. Internal Rate of Return (Plan II-2) A.4-9. Internal Rate of Return (Plan II-2) A.4-9. Internal Rate of Return (Plan II-3) A.4-10. Internal Rate of Return (Plan III-1) 	3-30.	A.3-46.	
 A.4-1. Major Features of the Alternative Plan 4-2. A.4-2. Construction Cost of Alternative Plans A.4-3. Net Incremental Benefit of Alternative Plans 4-3. A.4-4. Internal Rate of Return (Plan I-1) A.4-5. Internal Rate of Return (Plan I-2) A.4-6. Internal Rate of Return (Plan I-3) A.4-7. Internal Rate of Return (Plan II-1) A.4-8. Internal Rate of Return (Plan II-1) A.4-9. Internal Rate of Return (Plan II-3) A.4-9. Internal Rate of Return (Plan II-3) A.4-10. Internal Rate of Return (Plan II-1) 	 A.4-1. Major Features of the Alternative Plan 4-2. A.4-2. Construction Cost of Alternative Plans A.4-3. Net Incremental Benefit of Alternative Plans 4-3. A.4-4. Internal Rate of Return (Plan I-1) A.4-5. Internal Rate of Return (Plan I-2) A.4-6. Internal Rate of Return (Plan I-3) A.4-7. Internal Rate of Return (Plan II-1) A.4-8. Internal Rate of Return (Plan II-1) A.4-9. Internal Rate of Return (Plan II-3) A.4-9. Internal Rate of Return (Plan II-3) A.4-10. Internal Rate of Return (Plan II-1) 	 A.4-1. Major Features of the Alternative Plan 4-2. A.4-2. Construction Cost of Alternative Plans A.4-3. Net Incremental Benefit of Alternative Plans 4-3. A.4-4. Internal Rate of Return (Plan I-1) A.4-5. Internal Rate of Return (Plan I-2) A.4-6. Internal Rate of Return (Plan I-3) A.4-7. Internal Rate of Return (Plan II-1) A.4-8. Internal Rate of Return (Plan II-1) A.4-9. Internal Rate of Return (Plan II-3) A.4-9. Internal Rate of Return (Plan II-3) A.4-10. Internal Rate of Return (Plan III-1) 	3-33.	Λ.3-47.	
 A.4-1. Major Features of the Alternative Plan 4-2. A.4-2. Construction Cost of Alternative Plans A.4-3. Net Incremental Benefit of Alternative Plans 4-3. A.4-4. Internal Rate of Return (Plan I-1) A.4-5. Internal Rate of Return (Plan I-2) A.4-6. Internal Rate of Return (Plan I-3) A.4-7. Internal Rate of Return (Plan II-1) A.4-8. Internal Rate of Return (Plan II-1) A.4-9. Internal Rate of Return (Plan II-3) A.4-9. Internal Rate of Return (Plan II-3) A.4-10. Internal Rate of Return (Plan II-1) 	 A.4-1. Major Features of the Alternative Plan 4-2. A.4-2. Construction Cost of Alternative Plans A.4-3. Net Incremental Benefit of Alternative Plans 4-3. A.4-4. Internal Rate of Return (Plan I-1) A.4-5. Internal Rate of Return (Plan I-2) A.4-6. Internal Rate of Return (Plan I-3) A.4-7. Internal Rate of Return (Plan II-1) A.4-8. Internal Rate of Return (Plan II-1) A.4-9. Internal Rate of Return (Plan II-2) A.4-9. Internal Rate of Return (Plan II-3) A.4-10. Internal Rate of Return (Plan III-1) 	 A.4-1. Major Features of the Alternative Plan 4-2. A.4-2. Construction Cost of Alternative Plans A.4-3. Net Incremental Benefit of Alternative Plans 4-3. A.4-4. Internal Rate of Return (Plan 1-1) A.4-5. Internal Rate of Return (Plan 1-2) A.4-6. Internal Rate of Return (Plan 1-3) A.4-7. Internal Rate of Return (Plan 11-1) A.4-8. Internal Rate of Return (Plan 11-2) A.4-9. Internal Rate of Return (Plan 11-3) A.4-9. Internal Rate of Return (Plan 11-3) A.4-10. Internal Rate of Return (Plan 11-1) 			
 4-2. A.4-2. Construction Cost of Alternative Plans A.4-3. Net Incremental Benefit of Alternative Plans 4-3. A.4-4. Internal Rate of Return (Plan I-1) A.4-5. Internal Rate of Return (Plan I-2) A.4-6. Internal Rate of Return (Plan I-3) A.4-7. Internal Rate of Return (Plan II-1) A.4-8. Internal Rate of Return (Plan II-1) A.4-9. Internal Rate of Return (Plan II-2) A.4-9. Internal Rate of Return (Plan II-3) A.4-10. Internal Rate of Return (Plan II-1) 	 4-2. A.4-2. Construction Cost of Alternative Plans A.4-3. Net Incremental Benefit of Alternative Plans 4-3. A.4-4. Internal Rate of Return (Plan I-1) A.4-5. Internal Rate of Return (Plan I-2) A.4-6. Internal Rate of Return (Plan I-3) A.4-7. Internal Rate of Return (Plan II-1) A.4-8. Internal Rate of Return (Plan II-1) A.4-9. Internal Rate of Return (Plan II-3) A.4-10. Internal Rate of Return (Plan III-1) 	 4-2. A.4-2. Construction Cost of Alternative Plans A.4-3. Net Incremental Benefit of Alternative Plans 4-3. A.4-4. Internal Rate of Return (Plan I-1) A.4-5. Internal Rate of Return (Plan I-2) A.4-6. Internal Rate of Return (Plan I-3) A.4-7. Internal Rate of Return (Plan II-1) A.4-8. Internal Rate of Return (Plan II-1) A.4-9. Internal Rate of Return (Plan II-2) A.4-10. Internal Rate of Return (Plan III-1) 	4- <u>]</u> .	Proposed	Cropping Pattern for Alternative Studies
 A.4-3. Net Incremental Benefit of Alternative Plans 4-3. A.4-4. Internal Rate of Return (Plan 1-1) A.4-5. Internal Rate of Return (Plan 1-2) A.4-6. Internal Rate of Return (Plan 1-3) A.4-7. Internal Rate of Return (Plan 11-1) A.4-8. Internal Rate of Return (Plan 11-2) A.4-9. Internal Rate of Return (Plan 11-3) A.4-10. Internal Rate of Return (Plan 11-1) 	 A.4-3. Net Incremental Benefit of Alternative Plans 4-3. A.4-4. Internal Rate of Return (Plan I-1) A.4-5. Internal Rate of Return (Plan I-2) A.4-6. Internal Rate of Return (Plan I-3) A.4-7. Internal Rate of Return (Plan II-1) A.4-8. Internal Rate of Return (Plan II-1) A.4-9. Internal Rate of Return (Plan II-2) A.4-10. Internal Rate of Return (Plan II-1) 	 A. 4- 3. Net Incremental Benefit of Alternative Plans 4- 3. A. 4- 4. Internal Rate of Return (Plan I-1) A. 4- 5. Internal Rate of Return (Plan I-2) A. 4- 6. Internal Rate of Return (Plan I-3) A. 4- 7. Internal Rate of Return (Plan II-1) A. 4- 8. Internal Rate of Return (Plan II-1) A. 4- 9. Internal Rate of Return (Plan II-3) A. 4-10. Internal Rate of Return (Plan III-1) 	• .	A.4- 1.	Major Features of the Alternative Plan
 4-3. A.4-4. Internal Rate of Return (Plan 1-1) A.4-5. Internal Rate of Return (Plan 1-2) A.4-6. Internal Rate of Return (Plan 1-3) A.4-7. Internal Rate of Return (Plan II-1) A.4-8. Internal Rate of Return (Plan II-2) A.4-9. Internal Rate of Return (Plan II-3) A.4-10. Internal Rate of Return (Plan III-1) 	 4-3. A.4-4. Internal Rate of Return (Plan 1-1) A.4-5. Internal Rate of Return (Plan 1-2) A.4-6. Internal Rate of Return (Plan 1-3) A.4-7. Internal Rate of Return (Plan II-1) A.4-8. Internal Rate of Return (Plan II-2) A.4-9. Internal Rate of Return (Plan II-3) A.4-10. Internal Rate of Return (Plan III-1) 	 4-3. A.4-4. Internal Rate of Return (Plan I-1) A.4-5. Internal Rate of Return (Plan I-2) A.4-6. Internal Rate of Return (Plan I-3) A.4-7. Internal Rate of Return (Plan II-1) A.4-8. Internal Rate of Return (Plan II-2) A.4-9. Internal Rate of Return (Plan II-3) A.4-10. Internal Rate of Return (Plan III-1) 	4-2.	A.4- 2.	Construction Cost of Alternative Plans
 A.4-5. Internal Rate of Return (Plan I-2) A.4-6. Internal Rate of Return (Plan I-3) A.4-7. Internal Rate of Return (Plan II-1) A.4-8. Internal Rate of Return (Plan II-2) A.4-9. Internal Rate of Return (Plan II-3) A.4-10. Internal Rate of Return (Plan III-1) 	 A.4-5. Internal Rate of Return (Plan I-2) A.4-6. Internal Rate of Return (Plan I-3) A.4-7. Internal Rate of Return (Plan II-1) A.4-8. Internal Rate of Return (Plan II-2) A.4-9. Internal Rate of Return (Plan II-3) A.4-10. Internal Rate of Return (Plan III-1) 	 A.4-5. Internal Rate of Return (Plan I-2) A.4-6. Internal Rate of Return (Plan I-3) A.4-7. Internal Rate of Return (Plan II-1) A.4-8. Internal Rate of Return (Plan II-2) A.4-9. Internal Rate of Return (Plan II-3) A.4-10. Internal Rate of Return (Plan III-1) 		A.4- 3.	Net Incremental Benefit of Alternative Plans
 A.4-6. Internal Rate of Return (Plan I-3) A.4-7. Internal Rate of Return (Plan II-1) A.4-8. Internal Rate of Return (Plan II-2) A.4-9. Internal Rate of Return (Plan II-3) A.4-10. Internal Rate of Return (Plan III-1) 	 A.4-6. Internal Rate of Return (Plan I-3) A.4-7. Internal Rate of Return (Plan II-1) A.4-8. Internal Rate of Return (Plan II-2) A.4-9. Internal Rate of Return (Plan II-3) A.4-10. Internal Rate of Return (Plan III-1) 	 A.4-6. Internal Rate of Return (Plan I-3) A.4-7. Internal Rate of Return (Plan II-1) A.4-8. Internal Rate of Return (Plan II-2) A.4-9. Internal Rate of Return (Plan II-3) A.4-10. Internal Rate of Return (Plan III-1) 	4- 3,	A.4~ 4.	Internal Rate of Return (Plan 1-1)
 A.4-7. Internal Rate of Return (Plan II-1) A.4-8. Internal Rate of Return (Plan II-2) A.4-9. Internal Rate of Return (Plan II-3) A.4-10. Internal Rate of Return (Plan III-1) 	 A.4-7. Internal Rate of Return (Plan II-1) A.4-8. Internal Rate of Return (Plan II-2) A.4-9. Internal Rate of Return (Plan II-3) A.4-10. Internal Rate of Return (Plan III-1) 	 A.4-7. Internal Rate of Return (Plan II-1) A.4-8. Internal Rate of Return (Plan II-2) A.4-9. Internal Rate of Return (Plan II-3) A.4-10. Internal Rate of Return (Plan III-1) 		A.4- 5.	Internal Rate of Return (Plan I-2)
 A.4- 8. Internal Rate of Return (Plan II-2) A.4- 9. Internal Rate of Return (Plan II-3) A.4-10. Internal Rate of Return (Plan III-1) 	 A.4- 8. Internal Rate of Return (Plan II-2) A.4- 9. Internal Rate of Return (Plan II-3) A.4-10. Internal Rate of Return (Plan III-1) 	 A.4- 8. Internal Rate of Return (Plan II-2) A.4- 9. Internal Rate of Return (Plan II-3) A.4-10. Internal Rate of Return (Plan III-1) 		A.4- 6.	Internal Rate of Return (Plan I-3)
A.4-9.Internal Rate of Return (Plan II-3)A.4-10.Internal Rate of Return (Plan III-1)	A.4- 9. Internal Rate of Return (Plan II-3)A.4-10. Internal Rate of Return (Plan III-1)	A.4-9.Internal Rate of Return (Plan II-3)A.4-10.Internal Rate of Return (Plan III-1)		A.4- 7.	Internal Rate of Return (Plan II-1)
A.4-10. Internal Rate of Return (Plan III-1)	A.4-10. Internal Rate of Return (Plan III-1)	A.4-10. Internal Rate of Return (Plan III-1)		A.4- 8.	Internal Rate of Return (Plan II-2)
				A.4- 9.	Internal Rate of Return (Plan II-3)
	4-4. A.4-11. Consumptive Use of Crops	4-4. A.4-11. Consumptive Use of Crops		A.4-10.	Internal Rate of Return (Plan III-1)
4-4. A.4-11. Consumptive Use of Crops			\$\$~ \$\$.	A.4-11.	Consumptive Use of Crops

Appendix	Table	
4- 5.		on of Consumptive Use of Rice
	A.4-12.	Observed Evapotranspiration (E Ta) of Rice
4-6.	A.4-13.	Field Water Requirement of Crops
4- 7.	Effective	e Rainfall
	A.4-14.	Effective Rainfall (Return Period: 2-Years)
	A.4-15.	Effective Rainfall (Return Period: 10-Years)
	A.4-16.	Average Monthly Effective Rainfall as Related to Mean Monthly Rainfall
4-8.	A.4-17.	Irrigation Water Requirements for Paddy fields (Return Period: 2-Years)
	A.4-18.	Irrigation Water Requirements for Upland Crops (Return Period: 2-Years)
	A.4-39.	Irrigation Water Requirements for Paddy Fields (Return Period: 10-Years)
	A.4-20.	Irrigation Water Requirements for Upland Crops (Return Period: 10-Years)
	A.4-21.	Average Operation Hours of the Proposed Pump (Return Period: 2-Years)
• .	A.4-22.	Average Operation Hours of the Proposed Pump (Return Period: 10-Years)
	A.4-23.	Drainage Discharge for Project Area
4-10.	A.4-24.	Drainage Conditions at Each Pumping Rate (Block A)
	Λ.4-25.	Drainage Conditions at Each Pumping Rate (Block B)
	A.4-26,	Drainage Conditions at Each Pumping Rate (Block C)
4-11.	A.4-27.	Average Operation Hours of the Proposed Pump
	A.4-28.	Irrigation Water Requirements for Paddy Fields (Return Period: 10-Years)
	A.4-29.	Irrigation Water Requirements for Upland Crops (Return Period: 10-Years)

Appendix	Table	
	A.4-30,	Effective Rainfall (Return Period: 10-Years)
	Λ,4-31.	Drainage Discharge for Project Area
4-12.	Necessity Drainage S	and Possibility for Separation of Irrigation and System
8-13,	A.4-32.	Comparison of Land Consolidation Cost for Each Length of Run
	A.4-33.	Comparison of Deduction Ratio of Land for Each Length of Run
4-15.	A.4-34.	Comparison of Land Consolidation Cost for Each Width of Plot
	A.4-35.	Comparison of Deduction Ratio of Land for Each Width of Plot
4-17.	Procedure	for Computation of Land Levelling
4-18.	А.Ч-36.	Summary of Estimation for Earth Moving Volume and Hauling Distance
	A.4-37.	Earth Moving Volume and Hauling Distance
4~20.	A.4~38,	Recommended Farm Practices for Paddy Rice
4-22.	A.4-39.	Capacity of Farm Machinery for Paddy Rice Cultivation
	A.4-40.	Farm Machinery Cost per Hectare for Paddy Rice Cultivation
4~23.	A.4-41.	Labor Requirement of Paddy Rice per Hectare (With Project)
	Λ.4-82.	Farm Labor Balance with Project
4-24.	A.4-43.	Introduction Plan of Animal Husbandry with Project
	Α.4-44.	Introduction Plan of Inland Pishery with Project
4-26.	A.4-45.	Required Capacity and Cost for Rice Processing Facilities
4-27.	A.4-46.	Seeds Demand in Planning Stage
4-29.	Λ.4-47.	Demand of Pertilizer and Agricultural Chemicals

<u>Appendix</u>	Table	
4~30.	A.4-48.	Number of Farm Machinery to be Introduced in Project Area
4-31.	A.4-49.	Cost of Farm Machineries
4-34.	A,4-50,	Organization and Operation Expenses of ALRC
4-35.	A.4-51.	Proposed Cropping Area in Accordance with Land Consolidation
	A.4-52.	Expected Yield in Accordance with Land Consolidation
	Δ.4-53.	Annual Input Material with Project - Seeds
4-35.	A.4-54.	Annual Input Material with Project - Agricultural Chemicals
	A.4-55.	Annual Input Material with Project - Fertilizer
4-36.	Λ.4-56.	Annual Expenses for Supporting Service
	A.4-57.	Cost of Supporting Services Facilities
4-42.	A.4-58.	Cost for Community Development
14-11H .	Roughness	Coefficient (N)
4-45.	A.4-59.	Design Discharge for Each Typical Section of Irrigation Canal
4-48.	Standard D	esign of Diversion Box
4-49.	Design of	Culverts in Irrigation Canal
4-50.	Λ.4-60.	Design Discharge of Canal at Each Typical Section
4-52,	Design of	Culverts in Drainage Canal
4-53.	Required U	nits of Pumps
	A.4-61.	Design Capacity for Irrigation and Drainage (Normal Year)
	A.4-62.	Irrigation Water Requirement and Drainage Discharge
4~54.	Selection	of Prime Mover
	A.4-63.	Cost of Pumping Facilities

Appendix	Table	
ليسي ميكرينية في من المريضية عن المريضية عن المريضية عن المريضية عن المريضية عن المريضية عن المريضية المريضية ع المريضية المريضية الم	alaman di sindin ngar sedirendi	
4-55.		Pumping Stations
4-57.	Study on	the Suction Performance of Pumps (Cavitation)
4-58.	Decision	of the Pumping Dimensions
4-59.	Typical	Design of Bridge
4-61.	Estimati	on of Deduction Ratio
	A.4-64.	Length and Area of Bed Width for Proposed Facilities (Block A)
	A.4-65.	Length and Area of Bed Width for Proposed Facilities (Block B)
	A.4-66.	Length and Area of Bed Width for Proposed Facilities (Block C)
4-62.	Δ.4-67.	Investment Cost of the Project
4-63.	A.4-68.	Construction Cost of Works
4-64.	A.4-69.	Unit Cost
4-65,	Decision	of Required Number of Construction Equipments
	Λ.4-70.	Estimation of Total Operation Hours of Scrape Dozer 6.4 m^3
4-66.	Residual	Values of Construction Equipments
,	A.4-71.	Residual Values of Construction Equipments and Provisional Facilities
4~67.	A.4-72.	Disbursement Schedule
5-1.	Construct	ion Method of the Works
5-2.	Operation	and Maintenance Cost
5- 3.	Terms of I	Reference for the Consultant's Services
6-1.	A.6- 1.	Structure of Paddy Price per MT
6- 2.	Α.6- 2.	Labor Force in Future

Appendix	Table .	
	Λ.6- 3.	Monthly Labor Requirement per Hectare by Crop at Present
	A.6- 4.	Monthly Labor Requirement per Hectare or Production Unit by Crop in Future With Project
	A.6- 5,	Monthly Labor Demand by Crop at Present
	A.6- 6.	Monthly Labor Demand by Month Without Project
	Λ.6- 7.	Monthly Eabor Demand by Month Without Project
	A.6- 8.	Total Labor Demand by Month With Project
	Λ.6- 9.	Monthly Farm Labor Demand as Percentage of Potential Full Employment Without Project
	A.6-10.	Monthly Farm Labor Demand as Percentage of Potential Full Employment With Project
	Λ.6-11.	Wage Rate by Month Without Project
	A.6-12.	Wage Rate by Month With Project
e	A.6-13.	Total Labor Costs by Month Without Project
	Λ.6-14.	Total Labor Costs by Month With Project
6-3.	A.6-15.	Incremental Net Value of Production at Full Development by Crop
	A.6-16.	Economic Cost and Benefit Stream
6-4.	A.6-17.	Crop Budgets per Hectare Without Project
	A.6-18.	Crop Budgets per Hectare of per Production Unit ith Project
	A.6-19.	Farm Budgets Without Project
	Λ.6-20.	Farm Budgets With Project
· .	A.6-21.	Farmers' Ability to Pay Water Charge and Investment Costs
6-5,	A,6-22.	Contribution to Rice Export by Project
•		

LIST OF FIGURES

	<u>Appendix</u>	figure	
	3- 2.	A.3- 1.	Annual Rainfall Distribution
	3- 5.	A.3- 2.	Hourly Hyetgraph of Observed Rainfalls
	3- 7.	A.3- 3.	Locations of Hydrologic Observation Stations
	3-8.	Λ.3- 4.	Monthly Mean Discharge of Chao Phya River
	3-11.	A.3- 5.	Correlation between Maximum Water Level at Sing Ha Nat and Maximum Discharge at Chainat (Chao Phya Dam)
	3-13,	A.3- 6,	Profile of the Chao Phya River in Lower Central Plain
	3-14.	A.3- 7.	Operation of Salt Control at Memorial Bridge (Observed in 1969)
	3-16.	A.38.	Monthly Mean Water Level at Sing Ha Nat
		A.3- 9.	Fluctuation of Monthly Mean Water Level at Sing Ha Nat
	3-17.	A.3-10.	Relationship between Maximum Water Levels of Inside of West Bank Tract and River Side in the Vicinity of Project Area
	3-19.	A.3-11.	Annual Fluctuation of Free Surface Groundwater Table in Upper West Bank Tract
	3-21.	Δ.3~12,	Geological Map of the Southern Central Plain
	3-22.	A.3-13.	Location of Boring and Sampling
		A.3-14.	Laboratory Boring Log
·	3-23.	Λ.3-15,	Soil Map of Project Area
	3-24,	Λ.3-16.	Present Irrigation and Drainage Systems
	3-25.	A.3-17.	Present Water Use Conditions (1973)
		A.3-18.	Present Water Use Conditions (1974)
		A:3-19.	Present Water Use Conditions (1975)
		A.3-20.	Present Water Use Conditions (1976)

	Appendix	Figure	· · · · · · · · ·
	3-26,	Λ.3-21.	Maximum and Minimum Water Level at Sing Ha Na Reg.
	327.	A.3-22.	Typical Layout of Land Consolidation Plan in Sappaya Project
		A.3-23.	Typical Layout of Land Consolidation Plan in Channasutra Project (Alternative 2)
		A.3-24.	Typical Layout of Land Consolidation Plan in Channasutra Project (Alternative 4 and Alternative 5)
	3-281	A.3-25.	Present Size and Shape of Farm Field
	3-29.	A.3-25-1.	Present Land Use Map
	3-31.	A.3-26.	Farm Labor Balance at Present
	3-32.	A.3-27.	Organization Chart of Ministry of Agriculture and Cooperatives
		¢	
	4 - 1.	A.4- 1.	Proposed Cropping Pattern
	4-6.	A.4- 2.	Cropping Pattern of Paddy Rice Without Dike
		A.4- 3.	Proposed Cropping Pattern
	4. 7. 	A.4- 4.	Relation Curve between Rainfall and Effective Rainfall for Upland Fields
	4- 8,	A.4- 5.	Average Pumping Discharge and Pump Operation Hours
	4- 9.	A.4- 6.	Area-Reduction Factor for Drainage Modulus
	4-10	A.4- 7.	Stage-Area and Storage Curve (Block A)
		A.4- 8.	Stage-Area and Storage Curve (Block B)
		Λ.4- 9.	Stage-Area and Storage Curve (Block C)
		A.4-10.	Drainage Conditions in Block "A"
		A.4-11.	Drainage Conditions in Block "B"
		A.4-12.	Drainage Conditions in Block "C"
·	4-11.	A.4-13.	Average Pumping Discharge and Operation Hours

Appendix	Figure	
₩~] ₩+	A.4-14.	Alternatives on Size of Plot and Reparcelling of Land
4~16.	A.4-15.	Typical Layout of Farm Land Development
4-17.	A.4-16.	Flow Chart of Estimation for Earth Moving Volume
4-18 .	A.4-17.	Proposed Elevation of Plot in Case of With and Without Land Adjustment in Elevation (Site I)
	A.4-18.	Proposed Elevation of Plot in Case of With and Without Land Adjustment in Elevation (Site II)
	A.4-19.	Longitudinal Section of Lateral Canal (Site I)
	Λ.4-20.	Longitudinal Section of Laternal Canal (Site II)
4-19.	A.4-2).	Layout of Village Water Supply Plant
4-2	A.4-22.	Paddy Yield Response to Nitrogen
4-22.	Δ.4-23.	Farm Mcchanization System With Project
4-23.	A.4-24.	Farm Labor Balance With Project
4-25.	A.4-25.	System of Farming Group
л-28 .	A.4~26.	Plan of Seed Center
4-32.	Δ.4-27.	Standard Plan of Repair Shop for Farm Machinery
4-33.	A.4-28.	Annual Training Schedule
4-37,	A.4-29.	Typical Plan of Village Rearrangement
4-38,	Δ.4-30.	Location of Public Facility and Road Network With Project
4-39.	A.4-31.	Navigation Systems in the Project Area
N-40.	A.4-32.	Typical Layout of Management Group
4-41.	Λ.4-33.	Typical Layout of Public Facilities
4-43,	A.4-34.	Typical Layout of Canals and Roads
4-46,	A.4-35.	Diagram of Proposed Irrigation System (Block A)

 A.4-37. Diagram of Proposed Irrigation System (Block C) 4-51. A.4-38. Diagram of Proposed Drainage Systems (Block A) A.4-39. Diagram of Proposed Drainage Systems (Block B) A.4-40. Diagram of Proposed Drainage Systems (Block B) 	
A.4-39. Diagram of Proposed Drainage Systems (Block B)	
A.4-40. Diagram of Proposed Drainage Systems (Block C)	
4-53. A.4-41. Operation Hours of Pumps in Normal Year (Block A)	
A.4-42. Operation Hours of Pumps in Normal Year (Block B)	
A.4-43. Operation Hours of Pumps in Normal Year (Block C)	
4-55. A.4-44, Dimension of Pumping House	
A.4-45. Dimension of Pump	
4-56. Hydraulic Calculation of Pumps	
A.4-46. Design Suction and Delivery Water Level	
5-1. A.5-1. Workable Period of the Project under Present Conditions	
A.5- 2. Construction Method of Dikes, Roads and Canals	
A.5- 3. Procedure of Project Construction	
5-3. A.S-4. Proposed Schedule for Construction Services	
6-2. A.6-1. Typical Opportunity Cost Curve for Farm Labor	
A.6-2. Opportunity Cost Curves for Farmer Labor	

Table A. 1-1 Personnel Concerns the Mission Contacted

Dr. Thalerng Thamlong Nawasawat	Deputy Undersecretary of MOAC
Dr. Chalyong Chuchart	Secretary General of ALRO
Mr. Xujati Pramoolpol	Director General of Department of Technical and Economic Cooperation
Mr. Chamlong Attanatho	Inspector General, MOAC
Mr. Charin Atthayodhin	Deputy Director General, RID
Mr. Chern Banrungwong	Deputy Director General, Department of Cooperative Promotion, MOAC
Mr. John Boonlu	Director of COLC
Mr. Kangwang Dhephasadin Na Ayutth	aya
	Deputy Secretary General, ALRO
Mr. Paitoon Palayasoot	Deputy Director of COLC
Dr. Suthiporn Chirapanda	Chief of Division of Research & Planning, ALRO
Mr. Leck Jindasangwan	Head of Water Operation Center, RID
Mr. Pitipong Pungbun Na Ayutthaya	Chief of Operation Division, ALRO
Sr. Suraphol Photlom	Chief of Extension Land Reform Office, Ayutthaya
Mr. Chutchawal Swatdirurk	Assistant Chief of Water Operation & Maintenance Section, RID
Mr. Chalerathep Ratanaprayooh	Project Coordinator, Secretary of Deputy D.G., RID
Mr. Prasart Milintrangul	Head of Research & Applied Hydrology Section, Hydrology Division, RID
Mr. Damrong Jaratwat	Chief of Division of Hydrology, RID
Mr. Danai Triyadhen	Chief of Land Classification Section, RID
Mr. Pradit Ritrungdej	Agronomist of Division of O/M, RID
Mr. Maitri Poolsup	Civil Engineer at Design Section, RID
Mr. Annokul Saravisuta	Project Manager of Sappaya Land Consolidation Project, RID

Mr. Laiad Sainamkeon

Mr. Sutin Mulphruk

Mr. Witchitr Warakitpanich

Mr. Phrnchai Arworn

Mr. Tirasakdi Paekdijitt

Mr. Anurat Ratanakwan

Mr. Pornsak Choloipock

Mr. Prakit Oon Vimol

Mr. Suporn Pornprapunth

Mr. Suphon Chirapuntu

Mr. Kamol Toleb

Mr. Surathep Kowangoon

Mr. Sunthorn Tanthavorn

Mr. Pracherd Sook Kaew

Mr. Y. Yamada

Mr. Damrongsak Tasanasanta

Mr. Peerasak Booranasophon

r. T. Hidaka

Mr. Sadao Hatta

Project Engineer of Chao Phya Irrigation Development Project, RID

Staff of Chanasut Land Consolidation Project, RLD

Engineer of Operation Division, ALRO

Project Manager of Bangbarn Pumping Irrigation Project, RID

Project Manager of Chao-Chet Bangyeehon Project, RID

Agricultural Officer in Chao-Chet Project, RID

Project Manager of Bhak Hai Irrigation Project, RID

Staff of Bhak Hai Irrigation Office, RID

Regional Engineer of Region 7, RID

Chief of O/M of Phraya Banlu Project, RID

Soil and Civil Engineer, Geotechnical Division, RID

Staff of Operation Division, ALRO

Staff of Operation Division, ALRO

Chief of Project and Planning Division, Provincial Electricity Authority (PEA)

Chief of Project Area No.3 Section, PEA

Electric Expert of PEA, under Colombo Plan, JICA

Staff of Agricultural Land Reform Office

Planning Division, Dep't of Cooperative Promotion, MOAC

Entomologist of Tropical Agriculture Research Center, Japan

Project Leader, Tropical Agriculture Research Center, Japan

Mr. Kohn Chuvanond	Chief of Marketing Section, Agricultural Cooperative Division, MOAC
Mr. Surin Chulpraser	Director General of Dep't of Cooperative Promotion, MOAC
Mr. Hiroshi Takagi	Technical Advisor of BAAC
Mr. Oosot Chanlej	Agronomist of Agricultural Division, RID
Mr. Prayong Prayunhong	Chief of Ayuthaya Provincial Agri- cultural Extension Office
Mr. Vibul Malison	Provincial Agricultural Extension Officer, Amphoe Lad Bao Laung
Mr. Pirot Vivasanan	Provincial Agricultural Extension Officer, Amphoe Lad Bao Laung
Mr. Srony Taso	Provincial Statistical Officer
Mr. Piroat Nivanont	Staff of Amphoe Lad Bao Laung Office, Cooperative
Mr. Sunthorn Naka	Staff of Experimental Station Hantra
Mr. Boonlert Klajprayong	Staff of Suphan Buri Rice Experi- mental Station
Mr. Vichien Sasiprapa	Staff of Suphan Buri Rice Experi- mental Station
Dr. Hitoshi Takahashi	Agronomist, Tropical Agriculture Research Centre, Japan
Mr. Thawal Polpuech	Chief of Projects, Colombo Plan Programme, DTEC
Mr. Sutin Sulita	Staff, Colombo Plan Programme, DTEC
Mr. Takanori Igarashi	Soil Scientist, Tropical Agriculture Research Center, Japan
Mr. Kunio Hamamura	Rice Breeder, Tropical Agriculture Research Center, Japan
Mr. Ektrika Kohkongha	Deputy Director General, National Statistical Office
Dr. Thiravira Subhanoi	Staff of Agricultural Land Reform Implementation Division, ALRO

Dr. Gisuke Takahashi

٠.

Mr. Fumio Kobayashi

Mr. Vichak Monsri

Mr. Tanom Kladkaew

Mr. Kitti Phanick

Mr. Kojchi Nonaka

Miss. Supha Sing Inn

Mr. Somphol Pithiyakul

Mr. Prom Totieng

Mr. Wera Übolelket

Mr. Tasanapong Ettakkapark

Mr. Hideo Kanamori

Mr. Isami Itoh

Mrs. Nongnuch Rochanavedya

Mr. Udom Kasetravetin

Mr. Krairirik Chaliengratchai

Mr. Arli Kuldilokchai

Mr. Amnuey Somsin

Mr. Songpol Suvannadabbe

Colombo Plan Expert on Soil Fertility, Dep't of Agriculture, MOAC

Irrigated Agriculture Specialist, Mekong Committee, ESPAP

Chief Geotechnical Engineer, Krungthep Engineering Consultants, Co., Ltd.

Managing Director, Krungthep Engineering Consultants, Co., Ltd.

Deputy Manager, Pederation of Agricultural Cooperatives

Project Manager of Regional Development Studies Project, JICA

Chief of Statistic Section, Planning Division, RID

Chief of Farm Products Division, Agricultural Co-operatives Federation

Chief of Legal Division, ALRO

Legal Division, ALRO

Division of Research and Planning LARO

Secretary General, Japanese Chamber of Commerce, Bangkok

Unicoop Japan, Bangkok Branch

Chief of Analysis and Control Data Unit, Statistical Technique Division, National Statistics Office

Chief of Design Section, Village Water Supply Division, Department of Health

Acting Chief of Land Reform Coordination and Farm Development, Land Reform Division, ALRO

Operation Division, ALRO

Hydrologist, O/M Division, RID

Land Reform Division, ALRO

Table A. 1-2 Data List used for Feasibility Study

A. Hydrology

Water Level and Discharge

- Thailand Hydrological Year Book, Volume 5-9, Royal Irrigation Department (RID)
- 2. Daily Water Level in Chao Phya river at Sing Ha Nat Apr. 1967 -Oct. 1976, Chao-chet Bangyeehon Project Office, RID
- 3. Daily water level in Suphan river at Phraya Banlu, Apr. 1966 -Oct. 1976, Phraya Banlu Project Office, RID
- Daily water level in Pasak river, at A. Muang, Ayutthaya, Apr. 1950 - Mar. 1972
- 5. Daily Water level in Chao Phya river at Wat Chulamani A. Bangbar Ayutthaya, Jun. 1950 - Oct. 1976, Bangbar Project Office, RID
- 6. Daily Water level and discharge in Chao Phya river, RID

at Nakon Sawan	Apr. 1967 - Ma	r. 1976
at Chai Nat	Apr. 1967 - Ma	r. 1976
at Wat Chulamani	Apr. 1967 - Ma	r. 1976
at In Buri	Apr. 1967 - Ma	r. 1969

- Daily intake discharge of Water and Water level at Pakai Chaochet, Bang Puraman, Bangyeehon and Lat Chadoo, Oct. 1972 - Oct. 1976, RID
- 8. Daily water level at inland canal surrounding Project area

Phraya Banlu canal at Sing Ha Nat Regulator, Apr. 1967 - Oct. 1976

Nai Chat canal at Nai Chat Regulator, May 1975 - Oct. 1976 Chao-chet Bangyeehon Project Office, RID

Phraya Banlu canal at Phraya Banlu Regulator, Apr. 1966 - Oct. 1976

Phra Udom canal at Khlong Phra-Udom Regulator, Apr. 1971 - Oct. 1976, Phraya Banlu Project Office, RID

Tide

9. Tidal data of Chao Phya estuary

۰.

 Tide table, Vol. 1, Vol. 2, Thai Mater 1976, Hydrographic Department, RID

Salt Water Intrusion

 Salt water intrusion to Chao Phya river in the dry season (Jan. - May) at Samut Prakarn, Smrong, Pra-Kanhong, Krungtep Bridge and Memorial Bridge, 1964 - 1976, RID

Water Quality

- Enclosed data on water analysis, Greater Chao Phya Project, Jun. - Dec. 1961, RID
- Water quality test of Suphan Noi river at Sena, Jan. Oct. 1976, Sena Domestic Water Supply Office
- 14. Water quality of Bang Bua Thong canal at Bang Bua Thong, Sep. 1975 - Oct. 1976, Bang Bua Thong Domestic Water Supply Office.

Profile and Cross Section

- 15. Longitudinal profile of Chao Phya river, from Nakon Sawan to Pra Chu Fort, RID
- 16. Gross section to Phraya Banlu canal, Phraya Banlu Project Office, RID

Meteorology

17. List of rainfall station in Thailand, July 1975, RID

18. Daily and monthly rainfall records

Apr. 1995 - Dec. 1975 Apr. 1995 - Dec. 1975 Apr. 1995 - Dec. 1975 rological Apr. 1995 - Dec. 1975 or, Chao-chet
Apr. 1995 - Dec. 1975 rological Apr. 1995 - Dec. 1975
rological Apr. 1995 - Dec. 1975
Apr. 1995 - Dec. 1975
Apr. 1995 - Dec. 1975
or, Chao-chet
or j ondo onot
Office, RID
Apr. 1952 - Dec. 1976
tor, (except 1963)
Apr. 1962 - Oct. 1976
hraya Banlu
Apr. 1962 - Oct. 1976

- 19. Maximum rainfall of continuous 1 to 3 days in a year and its probability study, at Lop Buri, Suphan Buri, Bang Kapi, and Kanchana Buri, 1952 - 1975, RID
- 20, Hourly rainfall records at Bangkok, 1952 1975, RID
- Climatological data on temperature, humidity, evaporation, wind, dew point and others, 1951 - 1970 Meteorological Department
- 22. Monthly sunshine hour duration, Mekong Secretariat Report No. NKG/29, Mekong Committee

23. Monthly solar radiation, Meteorological Department

at	Bangkok	1965	-	1975
at	Bhumibol Dam	1973		1975
at	Chang Mai	1970	-	1973
at	Nakhon Phanom	1965	•••	1967
at	Sonkhla	1963	-	1967

24. Meteorological map to Thailand, Meteorological Department

- Mean annual and monthly rainfall over Thailand
- Mean annual and monthly temperature over Thailand
- Mean annual and monthly relative humidity over Thailand

B. Agriculture

Soil

- 25. Detailed reconnaissance soil map of Southern Central Plain Area, Department of Land Development, 1972
- 26. Detailed reconnaissance soil survey of Southern Central Plain Area, W. Van Der Kevie and Banchong Yenmanas, 1972
- 27. Some morphological physical and chemical aspects of acid sulphate soil in Thailand, 1971

Agronomy

- Brief history of RD series of rice variety developed in Thailand from 1769 to 1975, Rice Division Department of Agriculture, MOAC
- 29. Statistical data of rice planting for 5 years. (1971 1975) in the Project area, Agricultural Extension Office of Amphoe

- 30. On-farm agnicultural imput per rai in the Project area, 1971 -1975, Agricultural Extension Office of Amphoe
- 31. Price of agricultural imput in the Project area, 1971 1975, Agricultural Extension Office of Amphoe.
- 32. Farm Labour requirements for growing rice in the project area, Agricultural Extension Office of Amphoe
- 33. Method for Practice of growing rice, Agricultural Extension Office of Amphoe
- 34. Some important data of each village after surveying in village in Sep. 1975, Ayutthaya Provincial Statistical Office
- 35. Annual report in 1969, Rice Department, MOAC
- 36. Statistical data on crop and fruit yield in the Amphoe Lad Bao Laung (1973 ~ 1976)
- 37. Crop labour time and motion study of selected crops in Northeast Thailand, prepared by Mr. Angkorn Kamolpatana and Mr. Lewis D. Walker, 1969

C. Irrigation and Drainage

Maps

- 38. Map showing irrigation projects on the Central Plain of Thailand, 1/400,000, RID
- 39. Chao Phya Irrigated Agriculture Development Project, Northern Chao Phya area, 1/200,000, RID
- 40. Irrigation and drainage network on the Central Plain of Thailand, 1/200,000, RID
- 41. Present land use map of Chao-chet Bangyeehon Project 1/50,000, Chao-chet Bangyeehon Irrigation Office, RID
- 42. Present land use map of Phraya Banlu Project, 1/50,000 Phraya Banlu Irrigation Office, RID
- 43, Contour map of West Bank Tract, 1/100,000 Phraya Banlu Irrigation Office
- 14. Detailed contour map of Phraya Banlu Project, 1/50,000 Phraya Banlu Irrigation Office

- 45. Lad Bao Laung Project area in Ayutthaya, 1/50,000 Land Reform Operation Division, ALRO
- 46. Development plan of irrigation and drainage systems in West Bank Tract of Chao Phaya river, 1/200,000, RID
- 97. Second rice and dry season crop 1976 on the West Bank Tract of Chao Phys river, 1/200,000, RID
- 48. Administrative map of Amphoe Lad Bau Laung (1/50,000) and Changwat Ayutthaya (1/100,000), Ayutthaya Extension Agricultural Land Reform Office

Reports and Other Data

- 49. Northeast Thailand Irrigation Improvement Project, Lam Pao Subject Feasibility study, prepared by Tahal Engineering Consultants Inc. 1971.
- 50. Lam Pra Plerng Irrigation Project, prepared by Engineering Consultants Inc. 1971
- 51. Northern Chao Phya Study prepared by NEDECO, 1970, RID
- 52. Observed evapotranspiration of rice at Sam Chook Experimental Farm and Mae-Kuang Water Use Experimental Station, Central Land Consolidation Office.

D. Land Consolidation

Reports

- 53, Agriculture Land Reform Act, ALRO
- 54. Pamphlet No. 8, Training and Research Center for Agriculture Reform Division of Research & Planning, ALRO
- 55. Chao Phya Irrigated Agriculture Development Project, Stage I, Technical Note, No. 29, Operation and Maintenance at service unit level, Sep. 1976, prepared by ILACO
- 56. Land Reform Bulletin No. 3, proposal of land reform and development in Thailand, ALRO
- 57. An Empirical Evidence in Support of Land Reform, Division of Research and Planning, 1976, ALRO

Maps

- 1 i

- 58. E₃ Patial on-farm development alternative 2 of Channasutra Project area, 1/10,000, Central Land Consolidation Office
- 59. E₅ intensive on-farm development with schematic real location plan alternative 4, 5 of Channasutra Project area, 1/100,000, CLCO
- 60. Pilot area before tand consolidation of Channasutra Project area, 1/25,000, CLCO
- 6). Pilot area after land consolidation of Channasutra Project area, 1/25,000, CLCO
- 62. Detail layout and construction in pilot area of Sappaya Project area, 1/25,000, CLCO
- 63. Land consolidation plan of Right Bank (11, 1R) and Left Bank (1R 2L 1R) areas in Channasutra Project, CLCO
- 64. Cadastral map of Project area in Lad Bua Laung, 1/5,000, Ayutthaya Extension Land Reform Office
- 65. Land consolidation plan in Sappanya Project area, 1/4,000, Sappaya Land Consolidation Office
- 66. Land consolidation plan in Channasutra Project area, 1/4,000, Channasutra Land Consolidation Office

E. Design and Cost Estimate

- 67. Drawings of standard facilities, canal, road and pumping station, Design Division, RID
- 68. Brief description of Bangbar Pumping Irrigation Area, Bangbar Pumping Irrigation Office.
- 69. Unit cost of labour, materials, RID, ALRO
- 70. Unit cost of electric facilities and transmission networks in Thailand, Provincial Electric Authority (PEA)
- 71. Cost of construction equipments, ALRO
- 72. Geological log of bore hole at Bangbar Pumping Irrigation Project, Bangbar Pumping Irrigation Office

F. Agri-institution

- 73. Statistic data of rice planting for 1971 1975, ayutthaya Extension Land Reform Office
- 74. Number of land owner and farm size of area in three Tambons, Ayuthaya Extension Land Reform Office.
- 75. The cooperative societies act. B.E. 2511, Cooperative Promotion Department, MOAC
- 76. Bank for Agriculture and Agricultural Cooperative Act. B.C. 2509, Bank of Agriculture and Agricultural Cooperative (BAAC)
- 77. Bank for Agriculture and Agricultural Cooperative Regulation 25, prescribing polices for making agricultural long-tern loans to individual farmers, BAAC
- 78. The cooperative marketing and purchasing federation of Thailand, Cooperative Marketing and Puschasing Federation (CMPF)
- 79. The cooperative movement in Thailand, Cooperative Promotion Department
- 80. Operation and maintenance review and recommendations for irrigation project in Thailand

G. Economy

- 81. Statistical Report of Changwat, Phra Nakhon Si Ayutthaya, National Statistical Office, Office of Prime Minister, Thailand
- 82. Population and Housing Census 1970, Changwat Phra Nakhon Si Ayutthaya, N.S.O., O.P.M., Thailand
- 83. Economic and Social Situation of Farmers, Crop-Year 1974, Amphoe Lad Bao Luang, Division of Research and Planning, Land Reform Office, 1976
- 84. Foreign Trade Statistics of Thailand, Dec. 1975 Department of Customs, Bangkok
- 85. Thailand Year Book 1975 1976
- 86. Land Taxation in Thailand (Pamphlet No. 10, Division of Research and Planning, ALRO, MOAC

87. Agricultural Statistics of Thailand, crop-year 1974/75, Division of Agricultural Economics, MOAC

ł

 Report of Community Potable Water Project, Department of Health, Ministry of Health

Table A 3-1 Temperature

.

•	<u>Year</u> Mean	28.7 28.7 27.6 28.0	28.2	3	at ¢ Øş	יי סי ה סי	5.5	୯.୩ ୧.୩ ୧.୩	Nean	22.8	23.1	23.7		23. 0 23. 0	Mean	33.4	33,2	32.5 33.5	0 55	33.2	Hgh	41.8	42,6	30°8 10'0	6	4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
	Dec.	25.8 25.5 24.8	25.6 25.4		L.01	10-5 10-5	6.8	10.4 9.5		19.2	7.61	20.6		1-5T		31.4	30.4	32.2 30.5	< 7	30-9		34.6	35.0	35-2 35-5	0 0	35.1		
(Umit: °C)	Nov.	26.8 27.0 26.6 26.1	26.8 26.6		10.5	19 (1 1 1 1 1 1 1 1	11.6	13.1		21.4	22.ľ	22.9 20.8		21.7		31.4	30.6	31.1 30.8	c e	31.0		34.6	34.9	35.1 37.5		35.5		
~	0ct.	27.7 28.0 27.4 27.1	27.7	. •	9 9 9	19-8	18.0	18.6		23.5	24.2	24.3 73.0		24.0		31.6	31.2	32-5 01,5	21 15	31. t		34,44	34.5	34.5 37.3	ਸ ਵਿ	35-2		
	Sep.	72.9 28.4 27.5 27.9	27.9 27.5		20.S	21.2	20.8	20.9	·	24.0	24.5	04. t 09. 0		24-3		31.7	31.8	32.4	21.2	31.9		35.2	35.6	35.7 37.6	20 20	36.0		
	Aug.	28.9 28.9 28.6 28.6	28.3 28.3		21.0	21.2	21.5	22.0		24.1	24.5	24.6		24 3		32.3	32.9	32 J	40 H	32.5		36.0	37.1	35.3 37.5	1 25	36.5		L = 1975) L = 1975) L = 1975)
	241.	28.03 28.03	28.5		21-0	21.9	20.8	21.3	•	24.0	24.5	24.8		24.9 24.9		32.7	33.3	32.3 32.8	a 62	32.8		37.0	38.0	36.0 37,8	- C - C - C - C - C - C - C - C - C - C	37.2	ana Buri	years (1951 years (1951 years (1951
	Jun.	29.2 29.9 28.5 28.3	29.2 29.1		20.5	21.7	22.0	20.8 21.1		24.3	24.8	25.0		24.7	-	33.6	er , 49	32.5 33.6	32.6	33.6		38.5	39.8	36.8 38.4	1 0 2	30.5	except Kanchana Buri	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	Kay.	30.1 29.0 29.9	29.9 29.9		20.0	21.1	21.5	20.7 20.9		24.8	25.1	25.3		25.0		35.4	35.5	34.25 35.55	0 55 0	35.1		4J.5	42.6	39.4 43.6		107 14 14 14	5	perature ature
,	- Jak	355,5 1,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2	30.8 31.0	·	17.5	19.9	17-2	28-9 16-5		24.8	25.0	25.6 24.7	, , , , , , , , , , , , , , , , , , , ,	25.0		37.1	37.4	34.8	ц Ц	36.8		41.8	42.2	39.0 43.5		00- 	three four s	l Dupurtaent Mean Temperature Extreme Minimum Temperature Mean Minimum Temperature
	Mar.	30.2 30.5 30.2	29.8 29.9	91	16.1	16.5 16.5	21.2	15.8 14.7		23.8	23.2	24.5 27.8		23.6 23.6		36.2	36-2	33.8 37.0	16 L	35.8	2	40.6	0°T:	39-9 1-1		0,0 7 7 7	value of value of	al Department Mean Temperature Extreme Minimum
	seb.	28.5 28.5 28.1 28.1	28.0 28-1	Temperature	13.5	14.9	12.1	13.5 13.1	eracure	21.9	21.1	22.7		21.5	erature	34.6	34.2	32.7	a \$2	1.18	Temperature	38.5	39-8	36.6		2 00 2 00 2 00 2 00	Mean Mean	Meteorological Monthly M Monthly E Monthly E
	Jan. perature	26.4 26.1 25.5 25.5	26.0 25.9	ทักวัทเทร	म र क व	10, 0	5.5	6-5 6-5	imun Tenp	19.0	18.7	20.4		10.01 10.01	icun Temp	32.6.	31.9	31.8 32.2	20 J	32.1	Maximum T	38.4	36.7	36.0		37.2	Mean (1): Mean (2): Mean (2):	2.
	<u>Jan.</u> Monthly Mean Temperature	Lop Buri Suphan Buri Bangkok Kanchana Buri	Mean (1) Mean (2)	Monthly Extreme ?	Lop Buri	Pangkok Bangkok	Kanchana Buri	Mean (1) Mean (2)	Monthly Mean Minimum Temperatur	ion Buri	Suphan Buri	Bangkok Kanchana Rumi		Mean (1) Mean (2)	Monthly Mean Maximum Temperature	lop Buri	Suphan Buri	Bangkok Kanchana Buri	(1) nee%	Mean (2)	Monthly Extreme	Lop Buri	Suphan Buri	Bangkok Karchana Bini		Mean (2)	Note:	Source:

Appendix 3-1 Page 1

.

	innual Mean 69.3 78.8	72.7	Annual Mean 1,805.1 1,744.4 1,774.8	Annual <u>Mean</u> 7.3	Annual Mean 411
	00 60.8 74.3 74.4		Dec. 126.5 121.3	B.S.	Dec.
	Nov. Nov. Nov. Nov. Nov. Nov. Nov. Nov.	น () () () () () () () () () () () () () (Nov. 121.2 121.2	<u>8.2</u>	<u>Nov.</u> 412
Duration	76.5 78.5 79.5 0		0ct. 120.8 122.5 121.7 121.7 0)	0ct. 6.8	0ct. 375
Sunshine Hours	8897 887 74.50 74.50 77 77 77 77	u u o	Sept. (135.9 12 129.8 12 132.9 12 (1961-1970) (1961-1970)	Sept. 5.3	Sept. 370
	Aug. 78.5 74.8 81.7 74.3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Aug. 146.2 137.4 141.8 years years	Aug. 5.4 72)	<u>Aug.</u> 385 75)
Evaporation and	Jul. 77.0 80.9 73.9		<u>Jul.</u> 154.0 142.9 148.5 Buri, 8	Jul. 5.4 (1951-1972	<u>Jul. A</u> 403 3 (1965-1975)
	Jun. 74.5 79.9 72.8	74.8 74.3 Aane Buri 22 years	<u>Jun.</u> 165.8 147.9 156.9 156.9 1 Suphan Bu Bangkok,	Jun. 5.3 20 years	Jun. 409 years
ity, Pan	May 71.0 79.9 70.2	0	May 191.7 165.0 178.4 artment	May 7.3 arrment, 2	. <u>May</u> #25 artment, 11
Relative Humidity,	<u>Apr.</u> 63.9 62.1 76.5 60.0	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	A0 90 06 06 06 06 06 06 06 06 06 06 06 06 00 00	8 5 9 9 8 5	470. 160
	Mar. 61.5 76.3 57.5	.9 66.4 .4 64.2 Mean (1): mea Meteorological	b. <u>Mar.</u> .0 185.1 2 .7 185.8 1 .4 185.5 1 Meteorological	urs/day) b. <u>Mar.</u> .8 8.6 Meteorological	<u>v.</u> Mar. <u>1</u> Meteorological
Table A 3-2 tv (%)	тер. 60.5 64.2 76.0 60.7	000	● 〒10 8 〒11 11 11 11		<u>Jeb.</u> 424 e: Meteo
Tab Humîdîtv		64.3 63.8 Note: Source: (mm/month	<u>Jan.</u> 131.6 19 135.1 19 Source: Source:	Duration (hour Jan. Teb. 8.9 8.8 Source: Me	Jan. 398 Source:
Mean Relative H	ation > Buri > Buri >han Buri gkok schana Bur	Mean (1) Mean (2) Pan Evaporation		Sunshine Hours (Station Bangkok Solar Radiation	Station Bangkok

Appendix 3-1 Page 2

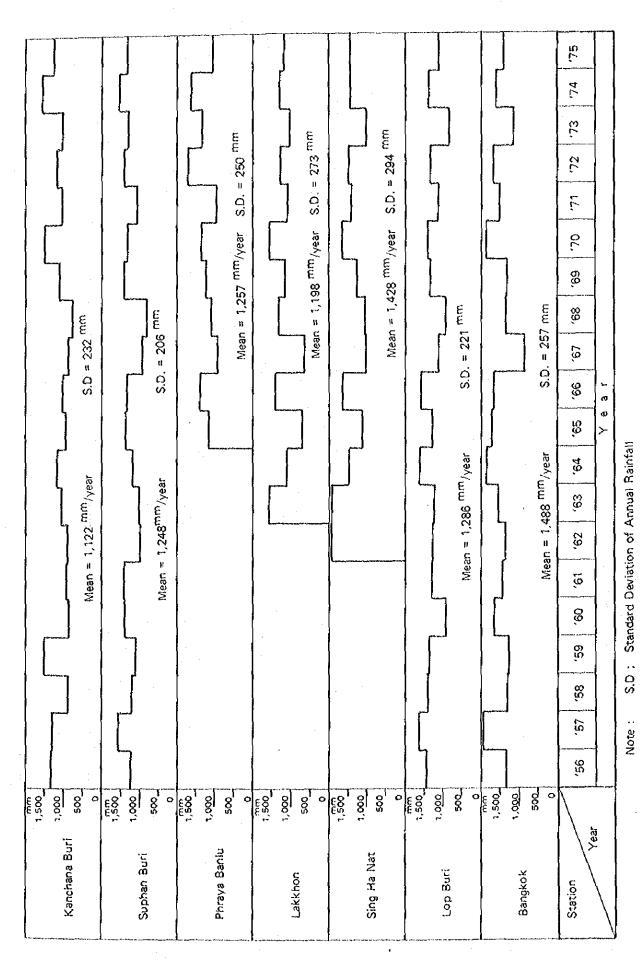
Table A 3-3 Wind

Annuel Mean 6.13 7.03 6.05 5.57 Max. 50 90° 12.3 မ ရ ရ 10 50 5 C NNN SE NNN SE NNN SE NNN SE 5.53 Dec. 000 M N N N N 6.00 5.38 Nov. ი. ი 0.5 0. 0 7.2 g g a g ວ. ອີອີ ອີອີ Oct. - ಸ ತ ಲ ი. ა ი 5.27 4.93 Sep. 50 10 10 6.0 S N N N N 5.90 5.68 Aug. 0 F + 70 S N S S S mean value except Kanchana Buri mean value of four stations 6.13 0.73 Jul. 3000 m 1000 m 2 2 2 2 0 0 2 2 0 6.47 6.00 Jun. 0 t 0 0 t 0 1 0 S S S S 6.07 5.65 Nay. N H S N N 6.37 6.38 Mar. . Apr. 0 0 0 1 4 5 10 0 10 10 0 10 10 0 a o a o a ວວວ ເຮ Maximum Wind Speed and Direction (knots) 7.07 6.35 45 N, NE 03 E oo E N t E ဗ္ဗ လ 6 4 6 7 s s S 🗄 mean (1): mean (2): re). 6.07 5.50 NE, SW 04 ស ស ភូ លលល់ដ 9.9 9.9 9.9 4.0 Prevailing Wind Direction Jan. 5.63 5.05 (Rmots) 0 4 0 0 0 4 0 28 8 NB 말말말말 Note: Mean Wind Speed Kanchane Buri Kanchana Buri Kenchene Buri Lop Burî Suphen Burî Mean (l) Mean (2) Suphan Buri Suphan Buri Lop Buri Lop Buri Bangkok Bengkok Bangkok

Appendix 3-1 Page 3

Meteorological Department, 20 years (1951-1970)

Source:


Table A. 3-4 Solar Radiation

(Unit: cal/cm²/day)

•					Da	Daily Solar	r Rediction	ìon					Annual
Year	Jan.	reb.	Mar.	Apr.	May	Jun.	Ju2 .	Aug.	Seo.	0ct.	Nov.	Dec.	Mean
1965 1	426.73	435.52	472.32	536.27	424.67	342.80	420.74	0	354,24	372.77	460.45	437 . 50	423-25
1966	427.12	420.26	516.64	ó	399.32	466.21	させ、さらの	395.15	418,28	406.79	424.71	378.51	427.86
1961	411.38	445.68	473.71		433.72	448.25	414.21	355.94	350.04	390.35	398.37	436.68	421.63
1968	386.83	378.88	466.91	437.16	408.66	403°74	380.42	406.15	40.356 256.04	324.61	344.72	337.48	386.80
1965	382.46	423.03.	1	477.33	406.40	415.29	335.23	355 93	359,26	391-91	426.03	429.06	ł
1970	424-27	407.71	368.99	ı	ł	1	419.45	.406.28	371.38	368.84	389.23	377.05	392.58
T67	403.60	364.80	431.86		425.12	392.70	494.72	402.57	367.57	393.24	447.96	380.94	411.27
1972	403 53	412.19	473.03	429.03	519.43	415.08	370.76	363.78	347.36	351.69	359.02	389.34	402.87
1973	402.27	452.82	421,99	488.01	428.1 2	417.39	357.03	347.09	312.47	410-12	417.75	448,20	84.904
CD .	366. 98	415.05	1.		411.16	418.88	437.19	407.48	432.48	347.49	404-46	334,00	412.80
1975	340.83	449,23	474.05	451.88	389.71	376.85	431-68	397.88	366.59	370.92	458.85	403.13	06-90#
Mean(<u>×</u>)	397.82	423.56	457.30	469.63	-24.63	409.32	403.26	384 . 84	369.61	375.35	411.95	60'ION	410.53
Standerd D	Deviation(S	(S)											
	25,52	30.00	38.20	ა ი	34.22	32.72	42.58	22.58	30.81	25.20	36.08	32-07	12.06
s/x	0.064	0.071	0.084	0.075	0.081	0.080	0.106	0.059	0.053	0.067	0.088	0.080	0.030

Source: Meteorological Department, Station Bangkok, 11 years (1965-1975)

FIGURE A. 3-1 ANNUAL RAINFALL DISTRIBUTION

					-		
		Ì		Stations	:		
	Sing Ha Nat	Lakkhon	Phraya Banlu			Bang Kapi	
Year	Regulator	Regulator	Regulator	Lop Buri	Suphan Buri	(Bangkok)	Kanchana Buri
1955	-		-	,465,	,267.	,352.	3357
ы С				1,639.6	2,584.9	940.	296.
С С				,391	217.	,307.	871.
ŝ				, 372.	,106.	,267.	י ה
90				920.	,388.	, 646.	367.
90	-			,289.	, ±32.	ೆ ಗುಗ್	ရိ
90	.142.			,234.	584.	,376.	đ
မ္မ	,931.	,568.		,222.	,400,	,540.	,055.
90	486	1,118.7		.652.	182	.856	79.
ဖို့	.130.	700.	1,179.5	,292.	357.	,689.	- 1 95
90	,636.	22.	38	598.	,332.	,568.	5
90	, 01-11	559.	926.	,123.	55	865	873.
မ္မ	,036.	,331.	,010.	930.	S.	,361.	80.
မ္မ	,263.	,181.	231.	,247.	410.	348.	124
â	,663.	,577.	,356.	,427.	,336.	. 855	,500.
1871 1971	1,438.4	1,117.2		е т	1,055.9	∞ ‡	1,067.5
5	501	, 304.	,714.	,353.	, 395	,652	,192.
6	,019.	,046.	, 343.	8 8	,300.	,103	,063
5	,450.	,332.	639.	,390.	,552.		,581
6	1	,212.	,073.	1,114-7	က က	,377.	, 288
Mean (⁻ x)	28.	6 8 8	57.	ເນ ເນ ເບ	-1 E	87.	21.
S	С N	2	250	22	205	256.7	231.9
s/ř	.20	:22	0 1	1.1	ເດ 	57.5	.20

Table A. 3-5 Annual Rainfall

.

Appendix 3-2 Page 2

Sing Ha Nat, Phraya Banlu and Lakkhon; RID Lop Buri, Suphan Buri, Bangkapi and Kanchana Buri;

S - Standard Deviation

Source:

Note:

Meteorological Department

	Average of Seven Stations	25	1,506	0.0	12	, ⁷ ⁹	8	ŝ	9	ő		Average of	Seven Stations	2	1,081	တ	631	710 1	887	873	852	837
(Unit:	Kanchana Buri	60	1,308	ື່ສ	ц С	5	ີ ພິ	. 60	ű,	ŝ		Kanchana	Buri	1,087	920	850	8:8	798	784	773	758	747
-H	Bangkok	0 1	1,718	85	то c	00,	,04	.0,	2		r		Bangkok	t: 0	1,247	4	01	,07	, 0	50.	00,	တ
Reinfal	Suphan Buri	23	1,433	55.	, G	, 65	00° 00	5	15	100	il Rainfal	ഗ്വ	Buri	~	1,055	974	635	010 0	80t 80t	881	861	848
Maximum Annual	- 69 -	26	1,480	,60	.57	, 7,	, 75	57,	.82	8	nimum Annual		Lop Buri	,26	1,083	\mathbf{O}	ഹ	Ć	1-1	\circ	-00	ω
Probable Ma	0	28	1,535	- 69	10,10	30°	. 80	92	9 9 9 9	,02	Probable Mi	44	Stati	,25	1,042	5	$^{\circ}$	~	S	1	11	\circ
	Phraya Benlu	53	1,468	, 6 0	.68	, 73	77,	, 80	,85	,88		2 L L L L L L L L L L L L L L L L L L L	Banlu	,22	1,035	LCL	c -	022	~	w.	-1	CO .
	Lakkhon	,16	1,458	t: v)	32.	, 80	,85	005	, 97	,02			Lakkhon	1,162	927	823	775.	746	725	709	686	999
	Sing Ha Nat	00 00 00	1,678		ი ი ი	00	10 0	°0,	ິ≓ີ.	<u>ي</u> 8		Sing Ha	Nat	ം ന	1,163	°,	0,	∞	962	0±6	922	905
	- 12 51 0		ហ	01	(ሰ) 7-1	20	25	000	o E	50		Seturn	Period (vears)	0	ហ					30		

Appendix 3-2 Page 3

Table A. 3-8 to Table A. 3-14.

Data Source:

Probable Annual Rainfall

Table A. 3-6

Rainfal
Mean
Monthly
3-7
Ч.
Table

-1

(祖二十三)

		;			Non	Monthly Mean Rainfall	an Rain	Tlall	:				
Station	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	0 0 0	Toral
(1) Sing Ha Nat	7.2	8. TT	26.9	63.3	152.0	153.0	165.9	213.4	347.2	245.5	36.2	16-8	1,439.3
(2) Lækkon	τ. 	6 0		42.8	108.0	144.7	131.7	191.5	289.9	205.4	37.0	ର - ଜମ	7,193.0
(3') Phraya Banlu	2.3	8.0	25.6	58.2	137.7	104-5	108.7	180.2	301.9	245.6	69.6	10.4 10.4	1,257.7
(4) Lop Buri	12.3	10.4	0.01	75.4	164.3	148.8	159.2	164 8	281.6	171.9	38.4	10.7	1,286.8
(5) Suphan Buri	ດ, ທີ່	5. 0	32.1	83.2	159.6	127.8	112.4	150.5	316.5	204.3	32.3	1:-2	1,248.2
(6) Bangkok	8.5	31.8	24.7	67.1	185.4	149.0	148 H	209.4	352.1	236.9	47.5	12.7	3,473.6
(7) Kanchana Buri	0.0 0	9.6 9	34 - 9	77.3	147.2	90.2	97.6	105.3	549.4	229.3	60.7	10.3	2,119.3
Mean (1)	t.7	0 0 0	•		132.6	134.1	135,2	195.0	313.0	232.2		•	,298.
Mean (2)	6.7	12.6	30.5	60.8	150.6	131.1	131.9	173.7	305.5	219.9	6, 0 1	8 9 9	2,289.0

mean (1): Average of Sing Ha Nat, Lakkhon and Phraya Banlu mean (2): Average of seven stations Note:

(1)-(3) Royal Irrigation Department Source:

-1	s (1963-19	
<u>–</u>	гЧ	r-1 r-1
Sing Ha Nat :	Lakkhon :	Phraya Banlu:

(4)-(7) Meteorological Department: 20 years (1956-1975)

Area
Project
44 0
s in the Vicinity of Project Area
the
요 •편
Records
fonthly Reinfall
Monthly
3-8
Table A.

(Unit: mm)

Station: Sing Ha Nat Regulator

	Total	3.142.5	1,931.2	1,486.7	1,130.3	1,636.2	0,440,5	1,036.1	1,253.8	1,663.5	1,438,4	1,501.8	1,019-7	1,450.4	1,449.5	1	1,436.3		
	0 Dec	Ô	ő	17.4	19.7	38.6	0	0	0	69.0	2.0	50.7	4. 2	0	0 .7	ſ	16.8	23.2	1-380
	Nov.	49.7	54.5	8. 8	1.91	32.9	39.6	13.5	61.6	20.0	0	97.9	オ・イオ	1-97 1-97	20-0	ı	36.1	24-6	0.682
	Set -	318.7	8-949	91.2	211.4	349-0	271.S	65.8	229.2	163.8	2.84.1	171 5	133.2	- T04	200.6	194.3	242.2	140.2	0.579
	Sep.	645.4	531.8	300.3	313.5	- 294.3	280.3	275.0	258.l	261.2	309.2	1,848	275.1	205.6	405.8	302.5	347.2	122.9	0.354
	Aug.	∞	123.3	142.2	170.5	209.2	62.9	210.8	278.6	404.8	294.1	82.5	182.2	183.1	252.8	312.5	213.4	85.1	0.399
Reinfall	[11]	277.6	61.	à	38.2	\circ	166.2	99.4	104.0	127.9	19.0	112.5	144°8	236.1	179.2	223.3	165.9	69.1	0.416
Monthly	-in-	161.1	213.8	156.4	68.1	128.5	171.6	137.2	121.6	544.4	167.8	158.8	56.5	96.3	182.5	219.9	153.0	50.2	0.328
	May.	216.4	78.4	298.9	1:8.2	339.5	54.8	132.7	106.1	5-421	175.5	88.5	66.0	131.7	129.5	258.9	152.0	78.0	0.513
i	Apr.	57.5	2.0	0738°0	ನ ೧೯	30.7		49.2	•		38 . 5	163.5	45.0	5.415	0.0 8	23.6	63.3	56.0	0.885
	Mar.	2-2	9.5 0.5	7.5	107.3	0			29-0		40.9	22.2	61.3	1.01	36.4	ດ, ດາ	27.3	27-2	0.997
	Feb.	30.8	с. О	0 :#	15.3	10.6	0	34.0	0	יין טי	23.3	0 10	0	0	0	48 . 5	6°17	ರ. ಸ.ಗ	1,25
	Jan.	0	o	0	Ö	2.5	43.4	0	7.3	0	o	0	0	24.42	30.7	0	(ž) 7.2	オ・ 10 ビ	1-86
	Veer	1962		1991	596T	1966	1967	1968	598T	1970	1671 ·	1972	1973	1974	1975	1976	Mean ()	S	s/x

Note: S - Standard Deviation Source: Chao-chet Bangyeehon and Phraya Banlu Project Offices, RID Table A. 3-9 Monthly Rainfall Record

Station: Lakkhon Regulator

	jota) (sta)		, 20, 20,	8 	. 00.			-185,	181.	,577.	,117.	,304.	046	.332.	2		0.881.1	72.	4		4	0	,179.	82.	926.	.010.	231	.366.	961.	724	5 H C	639	1.073.3	() 11 12 12	> C ວິນ	20	!
: mm)	, <u>р</u>	(C				•	•				0				•	ι	5 C 7 C 7 C	o	ω,		C	3	Ļ	•	•	•			0	•	0		0.0	U.	+ > C	- 30 - 30 - 1	
(Unit	Nov.		-) С С	•	: c	. o			$\dot{\mathbf{x}}$.			თ	•	£			9		NON		്	٠	ŵ	ហ	134.2	+0.		_ •	0	~	5	o	• ≻⊐1	0-78	
	000.			0.00 9.10 9.10	. r . r	- u - u	• 5 0 5 1/		• 800	22		000	78.	73.	15.	ដ C	+ : 0 0 0 0 0 0	· · ·	٩		001		22-	21.	36.	39.	189.7	56.	58.	71.	03.	63.	- T +	ជ រា	1	0.50	l
	Seo.	6		1 - 208 208 - 2		• ተሆ			• • • • •		. 25.	.00	27.	77.	00.	a			က္ပါ		Seo.		20	ເມີດ	• 97-	<u>60.</u>	345.7	t2.	י ה	. 10	01	β	21.	Г С	i A	0.50	
	Aug.	80		103-7) ແ) ()	- e 0 0		• • • • •	• • •	2 0 20	• • »	86.	-	25.	ſ) ((((, : ,	±		Aug				74	ທີ	205.2	58.	15.	ТС С	- 00	50. 20.	م	0	000	0.50	
	Jul.	78.			39	30	i G		, , , , ,	• • •	• • •		62	.0	01.	-		; :	1		Jul.	c	• ກ່ວ	თ.	ŵ	÷	135.0	02.	ŕ	ມ ເມີຍ ເ	; ;;	ვფ.			57	0.53	
	Jun.	5	~	88.3		62.	90	09) u) 0		, o c	• 5 (4 (22 25	0		t	1.18	יי ו	0		Jun.	=			27.	• თე	120.3	133	-1	74.	თ	. 60	-1	t	-1 9 7	-⊅	I
	May	ۍ د	00	ი ი		ດິນ	თ	61		• > _	† (*) (*	ż	• •		-	00	76.1				May	5	- 			n.		ത്.	- 5 7	- t	74.	89.		۲.	79.2	ŝ	
	Apr.	•	6.IOI	ed.	•	3	3	13. 13.	c,				; ,	9.05 10.05	+	42.8	-#	-	?	ator	Apr.	α	•	ń.		•	ດ ເ	• 9 0 	0	80.	0		0.0	ŵ	70.1	2	
	Mar.			25.6	•		~						•			0	26.0	2	1	lu Regula	Mar.		•	•	•	, o		" "	5.						6 - 1 I	\cap	
	nep.	•	•	27.4	ं		•	•								F.	17.1	:t •		aya Ban]	Feb.	74.4	C	•	•	•		۰.	•	•	•	•		∞	•	မ	
	Jan.	•	•	0.0	•	•	•	٠	•	•			•	•	t V	t: t:	9.58	Ч		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	dan.	•		•	•	•	N 0 N 0		•	÷	•	; ;	•	\sim	5.82	ın]	
	.ear	÷ CO	60	1965	မီ	90	с С	98	40	5	5	5			с П	Mean(X)	ر م	s/x		Station	Vear	98	90) (C		0 0 0 0 0 0 0 0 0 0	- C n 0			~ t ~ t	> 1 0 0	0 ~ H	х Э	ກ່	S/X	

Appendix 3-3 Page 3

Table A. 3-10 Monthly Rainfall Record

Station: Loo Buni

	(1 1 1	5	, tos.	30.	39.	• • • • •	.7105	920.	,289.	,284	.222.	.652.	ŝ	, α α α	• • • • •	*123.	30.	.247.	101	000	- 00-4-4 0	. 303.	ភូភ.	,390.	1,124.7		ເກ ເກ	20.	0.172	
mm)	DeC.)	•				•	•		•		3	10-7	o	; c	•		•	•	:1	i e			•	ः 00	(ŝ	l.77	
Unit: m	Nov.			$\dot{\phi}$,	C	• •		N N				75.7	(σ)	, , ,	ંદ	-	.,		r		.,	-i	.t	•	c	1 0 0 0 0 0	'n	0.92	
>	Oct.	1			ω.	033 033					97.	ر ي.	127.0	თვ	ά	•			58.	o	10	, i , i	0	2	39.	¢.)) (י רכ	ŝ	
	Sep.		ິງ ສາ	0	5	2	c c		ι αΖ	: ::::::::::::::::::::::::::::::::::::	50.	0 1	295.0	50.	ά	• • •	• 0 0	80.	000. 0000.	70.	к Г	• • •	»	- 50	5	ά		• •	:1:	
	445		α α		51	<u>,</u>	a			; ; 2	ю 	76.	285.1	81. 1	~			5		28.	0	, , 0		, 2010	227.7	.:J	5	•	-1: •	
	Jul.	и 0			000	00	ດ ເວ	i i i i i i i	• • • • •	• ~ ~	20	ຕິ	1-011	83.	88.	5	• 4 0 4 7	7	000		<i></i>	~	• •	 t		0	ן ע רי יי	;	r) I	
	Jun.	8	, 1 1 2	5.	। जन्म	70.	ς β	0	• • (* • C		1 (1 (・ の・ ー・	133.8	0 0 0	, 74 7	007	• > < > r	ν 1 α		50.	o C				.	148.8	00 	. (iation epartment
	May		, c	Ś			မ်	65.	σ	• • : • :	, F C D L				25	82.	0	2.6	· .	:+ :::::::::::::::::::::::::::::::::::	ວ 1	26.	i n i a	1 0 1 0 1 0	. × 0	.†	65.8	. u	n +	dard Devi ogical De
	Apr.	ഗ	1 e		$\frac{1}{2}$	Ň		ത	5	· · ư	; c	, 0 0 0		5	o`	ц сі		ic		'n	+		α	,) (4	75.4	5	ú	?	S - Stand Meteorold
	Mar.		\mathbf{c}	, <u>ר</u>		о 1 к	n.	\sim				່ເ	7 0 7 0 7 0	v v			c	; o	• • • • =			ເ	~		•	0.04	ت	¢,		Note: Source:
!		्रम त्न	4	С		5 ¢ 4 :		러	0	0	r C	, , , , ,		• • •	5	20.	0	1	י ר ר ר	י ה א		0	о	α	•	다. 이 년		r'-		хй
ŀ	dan.												וו מ י ר י ר			\circ		С							• • •	(X) 12.3	2 2	G.		
1	ŵ [o).	ത	O)	$\overline{\alpha}$	ič	ň i	ŏĭ.	m.	3	- 60	L QL	200	, a	21	\mathcal{O}	$\frac{1}{2}$	5		- Ľ			5			Kean (\mathcal{O}	s/x		

Appendix 3-3 Page 4

.

Monthly Reinfall Record Table A. 3-11

											(1:~:+.	(
			:								こうたけつく	(unut	
40 41 41	- C&D	feb.	Mar.	AUF.	May	-unp	Jul.	Aug	Sep.	Oct.	Nov.	Dec.	Total
မ္မာ	•		ŝ	-	e-	5	1.1.1	ſ	i i				
с о			ł.				· ·	• • • • •		23-	ŝ		,267.
) u) (4	•	ο.	, 	ċ	Эд	02.	2	1:1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	87.	,		584
n i D i	. •	0	•	92.8	ŝ	ທີ	3	76.	92.	.60	0		
n D	٠		•	-1	02.	÷	33.	0	020	30	c		• 00 - 00 - 00 - 00 - 00
90 00	់	ċ			ന്	°.	00	52	201	י י ש ל	•		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
မ မ	÷.	•	<u>т</u>	±	23.	თ	84 84	000	o t:	o c		•	
90	•	٠	•	2.	3	თ		o	ά	- 17 > 17	•	×	+ 70 t *
96		•	•	3	ອີວິ.	7.	ഗ	с ор	0 4		• • •	•	
1964	0.0	39.9	0.1	75.3	326.0	56	176.1	1.02	2000 2000 2000			ט י י י י	
90	٠	.		•	50. -	m	60.	 		• 2 C		4	, 107. 107.
မ္မာ		•		e	57	C	, r	1 C	, 4 С - Ц	((, , ,	•	
0 0				5 -		- 			20	10	• .		,332.
) () (•	5 d	•	・ ナ(つ(00.	- 0 0	3t-	37.	27.	- 80			금
D C N C	•	•	י. הכ	- 20	ГЭ	36.	75.	30.	73.	.	م		00.
		j,	37.8	ы. С	74.	0	ŗ.	6.	87.	م			0 1 1 0
$\hat{\mathbf{n}}$		•		с со	പ്	თე	23.	20.	- - - -	83. •	t.		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
5			÷	ω.	ő			85.	ា ភូមិ ភូមិ	5	c	•	• • • • • •
5	÷		16.1	÷	ω	0#	e d	90	88	ייי	•	•	
5	÷	•	ം ഗ		ن	0	51	C C		- ゴム ンゴム	; a		
5	0.2	. •	5		6	60	c	י אנו ל) с		, o c		· · · ·
0			r		4 C		• •				5	+	, 552.
	•	•	•	5	.	23.		3	д <mark>8</mark> .	633	•	•	Ċ,
Mean(x)	ഗ	٠	0	с т	ന	•	3	0	90	ដ	0	<i></i>]	1.40
ഗ	5 17	1 1	35.2	58.9	89.6	-1- 00	41.2	54 . 1 5	1:0-7	្លំ		4 C 1 4 1 4 1 4	9 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
s/x	4	in I	-1	5	Ľ	1	C.	-	, ((•	• (

Appendix 3-3 Page 5

S - Standard Deviation Meteorological Department

Note: Source:

Table A. 3-12 Monthly Rainfall Record

Station: Bang Kapi, Phra Na Khon (Bangkok)

. a	5	,362.	04:50 04:50	- <u>-</u>	· · · · · ·	.702.	್ <u></u> 645.	101	375		• • • • • • •	,000.	589.	. 558.	865.	550	• • • • • •	· 010 •	,855.	, 183.	.652.		•	· (/) •	n n		~ 1	- 00-	0.173
1) Der (•	•		•	5	•		•	() () ()		• • •	٠	တ်				: (2.501	٠	.,		i c	•		c	• • • •	'n	<u>о</u>
[Unit: mm] Nov.		•	ŵ	\sim	c	÷.	3	-i	-1	56.0		י אני	. .		ė		$\langle c \rangle$; ; ;	5		ώ		134.8	u c	2	1		0	ω,
00t.		188.0	00.	28.	5		, ウ オ	30- 20-	64: 0	4-555	00.	5	•	-1 20	90. 1	198. t	တို့ပို		- I - I - I		37.	113.8	470.2	(- 	+	36.	5	• • • •	:t
Sep.		υ.	ω tr	00 10	Ö			0	: ;; [0]	386.3	ģ	ကိ	5		م	3	8	ۍ د			S	00	219.7	~	1	52.	126.0	\cdot	?
- Aug	e C		, k C	ģ	80	0		s.	÷.	318.0	ຕູ່	ي	Ē			<u>сі</u>		:1 :1	, u		: 	. *	160.9	23.				C	?
Tul	С С)) u		ò	o ar	27.	C	ni −F¢	n N	132.4	0	~	1				<u>~</u>	~.	0 1			x	130.5	74.		148.4	с, С	-1	
- μη.	62.	1 -1	ים דו	0	8	$\overline{\mathbf{o}}$	a C	3 C			0	ဖွ်	-+		, c 0 v 0 v	÷.,	$\hat{\mathbf{x}}$	07.	~	, , , ,	•	• 	87.3	0	•	0.014	ം		
May	્ને	35	С	$\frac{1}{2}$	i T	4	1 0			ງ : ວິຍ	י ה	ປີ ເດ	င္တ် က	ۍ ۲	÷ .	• • <	Ω	~	38,	្រះ) [) [•	80.	L C		21.	6	
Apr.	ო	150.7	5	4.0	0100		ശ	S.C.	, v			ċ.	<u>.</u>	5		1 ~				0 - 0 - 1 - 1 - 1	ſ		j.	יי יי	ſ	H • / 0	5	5	
Yar.	0-0	47.5	3.2) c	Ś.	÷	ਂ	ന	C) (1	с У с	0 · 0	ຊີ	5. 1	1.0 0	а С	; ;	.	-1	ŝ	0		4 0 7 0 7 1	1		- (- 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	'n	9	
	0.4		o		\dot{b} c	5	∞	0	0	07.	u	 	0			c	0		0	တ်					į.	1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I			
י פט כי	2.2	0 	35.5	0.0			ee. c	0.0	0.0	ແດ ເມ	्म C		3 - 2 -	0.0 0	ດ. າ ເ	38. 5 38. 5	•	-; (• 1 (0.0	0.0	0.0	C . C	α C	•	8.8	↓ C	• { -		
্য্য ∈	ם היות היות	on –	O)	O	ō	5 0	5	ă.	25		- 25			42	<u>w</u>	42	17	· •	2	<u> </u>	I	$(\)$	5	•	Nego (X	C.	12	× /o	

Appendix 3-3 Page 6

Meteorological Department

Source: Note:

S - Standard Deviation

Table A. 3-13 Monthly Rainfall Record

.

.

.

Station: Kanchana Buri

STATEON:	Aznonana	rung pub								(Un ž	ות (mm)		
vear	úал.	Feb.	Mar.	Apr.	May	ີ ແມ	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
50	0-0	0.0	•	പ്		ഫ്		86.		.t.	т. т		,357.
С С	0.0	0.0	٠	ŵ	-			-	37.	တ္	ភ		6.
က်	0.0	с. 8 4	6		~		m.	99.	163-1	2.2			871.
က်	3.0	0.0	•	ς.	g	<u>.</u>			78.	5.	6.		က်
6	10.6	0.2		ဗ်	33.	d	in in	4	26.	35.	•		867.
1961	다 - 다	0.0	10-9	716-2	221.4	オージサー	82.7	121.5	ታ ፡ ዓ ዓ	オークサイ	17.5	0-0	9-9-9
တ်	0.0	0.0	5.	ŵ	-H	50	1		56.				d
မ စ	0.0	0.0			80.	<u>.</u>	m	5	86		02.		,055,
0	0.0	て ここで		റ്	76.	<u>.</u>	N	o,	_	82.	<u> </u>		02
မာ တ	17.2	٦.5 ٢		ം ഗ	ហ្នំ			51-	- ц 9 г	박		N.	961.
- CD CD	0.0	3.2		ω.	89.	പ		5	ເດ ເກ	ص	ൎ		ц Ц
0 O	0.0	0.0		33.	ອີອ	<u>.</u>	r-1	2	പ	4.492			873.
ő	0-0	2.7		o H	10	<u>~</u>	с С		ю t	-1	ó		о Ю
0	Э. J	2.0	പ	25.	0.	72.	N	25.	5	1. T	91.		121
5	0.0	o	o.	<u>.</u> Ю	32.		ò	5.	32.	50	ത		,500.
^o	0.0	24.3		5	89	ഗ	တ်		ഹ	8.			5
5	0.0	0-0		ന	α.	0		60	က္ခံ	്ത	ல்		192
5	10 	•		•	.0 00	က်	· †	ഹ		80	5		,063.
5	ທ 	0.0	φ.	ဖ်	ο.	-1		ω	9 9	ι¢.		N.	,581
o.	77.9	•	26.1	•	- 1 0	104.2	ŵ	.t.	22.	95.	_1		,288
Mean (r)	<u>.</u> 00	÷.	34 9	7.	•	0	1.	.0	0 1 1	თ	ö	်	22.
ა	27-2	21.4	œ		\circ	39.2	41.2	54.7	0.011	98.6	52.7	19-1	23
s/r	<u>о</u> ,	. 2	1.39	ເ <u>ດ</u>	10	т.	0.42	ιņ.	3	4	φ.	5	0.206

Appendix 3-3 Page 7

Meteorological Department S - Standrad Deviation

Source: Note:

(Unit: mm)	Phraya Banlu				0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	870 D	0.000 L	- 010 m	4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1 010 F		t 0000 000 000 000 0000 0000 0000 0000	1,500.0		5 · 0 0 / 1	1.092.9		0.175
 Reinfall in Wet Season	Lakkhon	8 505 F	•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	650.6	1.242.8		1.122.2	1.017.3	1.458.6	<u>1</u> ,008,2	0000 - U	1 030 5	1 1 7 7 F				1,082.3	276.3	0.255
	Sing Ha Nat	1.801.2	1,865.2	1,281.0	6-546	1,520.9	907.7	6716	1,147.9	1,356.8	1,309.7	1,162.3	867.8	1.254.9	1,350,4	1-4-1-5		1,273.7	292.2	0.229
	Vear	1962	1963	1954	1965	1966	1967	1058 1058	1969	1970	7267	1972	1973	1974 1	1975	1976	ŗ	Mean (x)	s.D. (s)	Variation (S/x)

Table A. 3-14 Rainfall Records in Wet Season (May - October)

Note: S.D. - Standard Deviation

(Unit: mm)	Average	3116	1,365	1,521	1,506	1,564	1,709	1,745	1,802	1,845		Average	1,205	818	833	151	775	734	718	695	678
	Phraya Banlu	1,076	1,259	1,367	1,424	1,463	1,492	1,516	1,552	1,579	1 1 1 1 1 1	Phraya Banlu	1,083	922	843	805	781	761	レサレ	726	717
רובידריים שוותיאפא פוליפלסאר שוותיאפא אנירביד	Lakkhon	1,045	1,324	7,498	L,593	1,658	1,709	1,740	1,812	1,850	Probable Minimum Rainfall	Lakknon	1,071	836	720	409 664	628	601 ·	581	550	527
ις Σ	Sing He Net	1,227	7,512	1,697	1,800	1,871	1,927	7,971	2,042	2,096		Sing Ha Nat	1,227	1,013	923	883	859	2#3	828	808	795
Ra†111	Period (veans)	2	י י נט י	10	15	20	25	30	- - -	50	Return	Period (veans)	2	ر م	0 년	5	20	25	30	0	00

Appendix 3-4 Page 2

•

.

ł

Table A. 3-14

Data Source:

Note:

<pre>& Movember-April)</pre>
~
(November-March
Season
Dry
Ó
되
Records
Rainfell
3-16 3-16
4
ente

203.2 201.3 0.499 Kanchana Buri Nov-Mar Nov-Apr 123.9 86.9 0.701 Nov-Mar Nov-Apr 2233.2 256.4 252.5 192.5 84.9 0.441 Bang Kapi (Bangkok) 125.4 37.7 0.587 Suphan Buri Nov-Mar Nov-Apr 172.9 84.8 0.491 89.8 51.2 0.570 Nov-Mar Nov-Apr 195.4 98.0 0.502 Lop Buri Stations 137.0 382.4 382.4 138.8 138.8 128.8 128.8 236.6 128.4 236.6 128.4 128.6 120.2 83.3 0.694 Nov-Apr 172.0 61.2 0.356 157.2 855.2 855.5 Phraya Banlu Regulator Nov-Mar 17-9 82-9 82-9 Nov-Mar Nov-Apr 125.1 49.6 0.397 Regulator Lakkhon 82.2 52.0 0.764 VOV-Mer Nov-Apr 155.2 71.7 0.462 년 1 (1) 139.0 186.5 201-3 32 - 1 2 Sing Sa Nat Regulator 91.7 57.0 0.622 0.000 0.00 4.00 4.4 201.1 Mean(X) S.D.(S) S/X

		· .	10は 97せ							Seven Stat	na Average o	4€ 0	2 32	00	39	324 273	25	22				Seven Stati	Kanchana Average of	(Unit: mm)		•
	\sim		392	5	(O)	1	1	n	5	Bangkok		398	3/3	0 1 0 0	323	TOE	273	0 C 7 C	0 00	1 U 1 C	102	Bengkok		rr - March)	ц	
	() t t	120	101	386	368	948 9	ಗಗಣ	251	160	Buri	Suphan	ιΩ	st -	CN :	-1	208	ກ	~ C	7 C) (*	68	Buri	1	(November	Dry Season	
	#75	0 0 1	1 10 1 10	412	392	367	0000	267	176 1	Lop Buri		385	00	1 C C C C C C C C C C C C C C C C C C C	022	275	2 Q X	2 C 2 C 2 C	ע י ע פע רוי פר רוי	0 C	80	Lop Buri		mum Rainfall	Rainfall in	·
e; Teble A. 3-16	363	0/1	357	けけの	328	307	278	227	152	a t	មិស្តិ ភូមិ ភូមិ	ω	n +	\$ 1C	n :	077 077	> 0) (- α	・コ	е в	Three Stations	verage of	Probeble Maxim	Probable Maximum F	
Data Source; * . Dres di-	100	9 0 0 -	/ 05 0	1 I 0 0	199	ດ ແ 	0 0 0 7 0 7 0 7	233	159	Banlu	rnraya	×	~	: -::	1	: -;:		•;;	**	*	*	Banlu	Phraya		. 3-17	
Note: I			Ċ		< •>	: ب	¢ -3	< •	-44 ·	Lakknon	• • •	<	-;	*			-::	*	44	*	4	Lakkhon			Table A	
	380		0 H 1 U 1 U	0 0 0 0	0 (0	0 0 7 r 7 r		2 C 7 V 7 V	い。 () ()	201	եթ լ	20 N		258		230 230	220	205	182	143	83	い S の C	Sing Ha			·
	20) (1)() 川	5 C	с С) ((טנ יור	n c	01	reriod (veers)	Xerunn Dorvol	20	C tr	0 (F. () (C	25	0	លក	07	ហ	2	reriod (vears)	Return			

.

Appendix 3-4 Page 4

·	Wiminim @ Marinim	(ເຊິ່ນເຊັ່ນ ແມ	(Novemher)	r – Karch)		
Phraya	10		1	1.	Kanchana	Average of
Banlu	Three Stations	Lop Buri	Buri	Bangkok	Buri	
တ်		6.99	79.1	102.4	97.3	់ភ
34.9		5°.8	<i>.</i>	9-1-0-0-	် က	-
2.	6	29.9	ω.	±8.5	Q	ം
~1		22.2	N	•	ŝ	
1-1- 1-1- 1-1-		17.7	38-9		•	
6-4	50. tr	34.5	•	38.2	17.5	15.1
ተ . ሮ		12.2		36.7	ະທ	13.4
0.5	•	ິດ 8	11.5	34.6	က်	0
0	3.3	ତ ୍ ତ	ດ		~	Ö.
	Probable Minimum	mum Rainfall	(November	r - Abril)		
Phraya	0		- ·		Kanchana	Average of
Benlu	Three Stations	Lop Buri	Buri	Bengkok	•ដ អូបារ អូ	Seven Stations
67.	0	75		178.2	85.	50
≓.9೯೯	86.7	112.7	98.9	318.6	210.8	1001
N	-	87.8	;; ;;	93.9	<u>_</u>	ŝ
6	-+	77.1	N	83.6		-
т.	\sim	70.6	0	76.3	~	5
ŵ	0	56.C		71.5	•	d
÷	m	62.6	~	68.0	~	പ്
$\dot{\omega}$	- 11 -	57.7	N.	62.7	6	
-	- r1	54.2	ŝ	59.0	ഹ	0

Appendix 3-4 Page 5

RAINFALLS
OBSERVED
1 OF C
ноиягу нуетсядри
ноиягү
A. 3-2
FIGURE

(Unit: mm)

•

Appendix 3-5 Page 1

					(unit: m	m)
				ura Peri	od		
· · ·	2	5	10	15	20	30	50
Station	years	years	years	years	years	years	years
Maximum 1 day ra	infall						
Lop Buri	(85)	(1)1)			(]44)		
(K)}7 - D1D1.,T	84	111	128	138	145	155	167
Suphan Buri	(92)	(115)			(141)		
ing non a	89	109	121	1.27	1.32	138	146
Kanchana Buri	(90)	(121)			(159)		
	89	120	141	153	161	173	1.88
Bang Kapi	(92)	(115)			(141)		
(Bangkok)	92	1.1.5	J29	136	141	148	156
Sing Ha Nat	92	123	146	160	169	183	20.]
Phraya Banlu	90	1.19	143	159	172	191	216
Lakkhon	88	113	1.28	1.36	142	150	.160
Average	89	1.1.6	134	344	152	163	176
Maximum 2 day rai	nfall.						
	(98)	(127)			(172)		
Lop Buri	98	126	147	159	1.69	182	199
Caracteria David	(114)	(135)			(156)		1.3.7
Suphan Buri	111	1.35	150	158	163	171	180
Kanahana nast	(113)	(152)			(202)		
Kanchana B uri	112	151	177	192	202	217	236
Bang Kapi	(117)	(153)			(199)		
(Bangkok)	1.1.5	151	177	192	203	219	239
Sing Ha Nat	124	1.64	189	203	213	227	224
Phraya Banlu	126	167	196	213	225	212	264
Lakkhon	116	155	181	195	204	23.8	235
Average	115	150	174	187	197	231	228
Maximum 3 day rai	nfall					*	
	(113)	(147)			(196)		
bop Buri	112	146	171	185	196	23.1	230
Christian D	(129)	(165)			(209)	2.1.1	2.50
Suphan Buri	127	164	189	203	213	228	245
Kanchana Buri	(134)	(181)		2.00	(236)	220	240
Kanchana hupi	132	179	209	226	238	254	274
Bang Kapi	(140)	(186)		· · · ·	(248)	e o t	2.1.1
(Bangkok)	340	1.85	215	232	244	261	273
Sing Ha Nat	141	192	225	244	257	275	298
Phraya Banlu	147	196	228	246	259	277	299
Lakkhon	1.34	181	210	225	236	251	235
Average	133	178	207	223			
					235	<u>251</u>	270

Table A. 3-19 Probable Maximum Consecutive Rainfall

Note: 1. Observation Period

.

1952-1975 at four stations

Lop Buri, Suphan Buri, Kanchana Buri and Bang Kapi

1962-1976 at Sing Ha Nat and Lakkhon

1962-1976 (except 1963) at Phraya Banlu

 Numbers indicated in () are estimated by Harzen Method in Royal Irrigation Department.

Days
Rainy
Mean
Monthly
3-20
4
Table

(Unit: day)

•

,

						Month	Monthly Mean	n Rainy	Days					Annual
• •	Station	Jan.	Feb.	Mar.	Apr.	May	-un-	Jul.	Aug.	Sep.	00t.	Nov.	Dec.	Total
(T)	Sing Ha Nat	0.7	ч. Ч	ហ 	0. t	10.5	11.1	1.01	14.7	16.3	3.15	з-6 С	н. П	90°I
(2)	Lakkhon	0.2	1: 0	0.9	2.2	0 0	ი. ი	ი. ა	10.0	13.2	а. С	2.3	0.0	52.7
(e)	Phraya Banlu	0 °	0.5	년 1 년	з. 0	.≓ ∞	:t ∞	۲. ۵	10.3	0.4T	10.9	ະ ຕ	л. о Т	70.5
(†)	Lop Buri	0°0	1.7	3.0	0.0 0	13.0	14 - 2 1	16.4	17.0	18.7	13.3	:1 ()	ຜ • •†	110.7
(2)	Suphan Buri	0.7	1.2	2.2	5.7	12.4	5 	14.2	16.0	19.2	13.6	9°8	ಣ . ಗ	102.3
(9)	Bangkok	<u></u> .5	2.9	3.S	с. 8. 9	16.4	16.2	18.5 1	20.9	21.6	17.4	ດ.ບ	н. В.	133.0
(2)	Kanchana Buri	0.9	1.2	2.7	6.5	13.5	12.9	15.5	17.3	17.9	15.2	5.2	2.0	110.8
	Mean (1)	0.5	0.7	1.2	ი. ი	8.7	6°3	с. С	11.7	34.8	10.6	с. С	л. о	74.7
	Mean (2)	0.8	е. Т	сі • Х	5.7	37.6	0 77 0	13.4	73.2	17.4	13.0	0. ≓t	라 - 	97.2
				:										

Mean (1): Average of Sing Ha Nat, Lakkhon and Phraya Banlu Mean (2): Average of Seven Stations Note:

(1)-(3) Royal Irrigation Department Sing Ha Nat : 14 years (1962 - 1975) Source:

			1975)
~) . }	3 - 1975)	5 - 1975)	rs (1956 -
	(1963	(1965	20 years
	13 years	ll years	rtment:
	Lekkhon :	Phraya Banlu:	Meteorological Depa
			(た)-(た)

.

	[otel	87	00 00	00	5 8	107	60	78	83	FOT	77S	79	05	0 0	67		90.3 7.85 0.087	
ďays)	Dec.	0	0	r-1	-	: 1	0	0	0	ъ	r-1	ო		0	0		000 000 000 00 00 00 00 00 00 00 00 00	
(Unit:	Nov.	7	ო	ŝ	ю	긔	Ś	ო	±r	r-1	o	01	ភេ	9 Q	ഗ		3.50 2.35 0.552	
	Oct.	н Н	97 19	۲.	22	75 7	20	S	72	다 다	너너	თ	· /	6T	୧୮	22	11.5 3.30 0.287	
	Sep.		20		22	라 르	17	t t	井	8 	과 네	17	18	57 72	00 r-1	ନ ଅ	16.3 3.20 0.196	
	Aug.	ഗ	ទ ក	ო 1		റെ	20	೮ಗ	∞ ~1		20	ω	е г	را ان	い パ	19	14.7 3.24 0.220	
Reiny Davs	Jul.	말 년	07		ထ	1,8	ω ≓	ਹੁ	ന നി	ന പ	ω	ω	со 17	바		87	13.1 3.45 0.264	
Monthly Re	Jun-	су	T e	다 러	립	13 13	თ	5	古 근	파	೮ಗ	0 11	at e-l	~	რ -1	თ	22.2 2.75 0.248	
0;;	May	r t	÷	8	12	17	ω	0	ო	ິ ←†	0 1	ო	01	r-1 r-1			20.5 4.47 0.426	
	Apr.	ഹ	гđ	Q	t,	.t.	0)	N	2	лı.	.t	φ	еЧ	7	r-1	ო	4.60 2.98 0.549	
Regularor	Mar.	r-4	1	r-\$	ი	0	,- 1	r-t	r-1	3	М	01	ო	r1	2	2	1.47 0.806 0.548	
۵ Na C	тер.	r-1	0	7 -1	0	r-1	0	<u>-1</u> -	0	3	СЧ	≠-∤	0	0	Ò	ы	년 년 년 1923년 - 1923 1929년 - 1923 1929년 - 1929년 - 1929년 1929년 - 1929년 - 1929년 1929년 - 1929년 - 1929년 1929년 - 1929년 - 1929년 1929년 - 1929년 - 1929년 - 1929년 1929년 - 1929년 - 1929년 - 1929년 - 1929년 1939년 - 1929년 - 1929년 - 1929년 - 1929년 - 1929년 1939년 - 1929년 - 1929년 - 1929년 - 1929년 - 1929년 - 1929년 1939년 - 1929년 - 192 1929년 - 1929년 -	
Stra Stra	čan.	0	0	0	ō	r~1	et	0	2	Ó	o	0	0	r-i	ഗ	0	0.557 2.30 2.948	
Station:	Year	0	0	60	မ္မ	60	0 0	က ဂ	90	1970 1	67	5	α 10	\mathbf{O}	5	61	Keen (x) S S/X	

Monthly Rainy Days in the Vicinity of Project Area

Table A. 3-21

Appendix 3-6 Page 2

Note: S - Standard Devlation Source: Sing Ha Nat and Phraya Banlu Project Offices, RID

Table A. 3-22 Wonthly Rainy Days in the Vicinity of Project Area

Regula	
Lekkhon	
Station:	

																																		ug	~	0			
		Total		00	0	51	72	56	63	0 U	6) r 7 r	ન (-)		ນ . ດີເ	1 0 1 0	00	0	62.5	਼	4				77	11 1	С С) (J) (J		¢ (0 (20 (20	.∦ 00 ∣	71	თ	72	2 CL) {		**************************************
: davs)		Dec.		، כ	-1 1	0	ო	0	0	С	، ر	V, C	э с	4) () C	 >	0.615	1.00	1.63		ເມືອງ ເ		ო	(4	0	, c) (> :	t t	ЭК	N I	0	0	0	00	> r- > _] • r-	ni en E age H - H H - H	
(Unit:		Nov.	r	4 0) (-4	- †	0	ო	1	· ~	i (ЭU	0 r	~ł u	0, Ø	>	2.31	0	0)		Nov.		~	ო	2	er,	ን ኖ) -	- , (5 (. f) (5	01	ო	C,	i er		
í		Set.	េ) स न	זו	0		თ	თ	ω	- -	4 U 1		3 C	- -	~ [^ 	•	0 0 0	±:	ကို		Oct.		თ	0 1	4	ŝ		10) r 1 r	-1 -	t t 1	- (00 1	11	0		0.35	
1 1 3		Sep.	a			0 (+	თ	ю Н	73	-4 -1	80) (C		⊧ (* - /-) Q 1 (-	ი დ ქოქ) I (N . N . H .	0	\sim		Sep.		97	() ()	9 T	12	() ()	iu t+≕) : 1 -	t o t -	ה ני יל ד	נים קירי	0 -1	в Н	≓t	- 74 	411	a sa
>		Aug.	() (-		> 0 1	0,	-44	S	01	с Т		5	5 (r 4	o	nœ		; ; (0 0 0 0 0 0 1 0	32	<u>е</u>		Aug.		0	[~]	ഗ	ω	с г С		1 .:: } /	1 6) (1 e	り.	1D	6	3.47	(n) •	
	,	Cul.	σ	• C) r- 	1 (70	ზ -1	7	(~	r-I T	2	- _1	4	·	1 01	0	1 () () (4	റ്				20 ·	œ	07	ഹ	œ	c c) (C	o a) (- /-	4 C) ((ŵ	0	1.08		
	,	nn.	œ	E F	о ц () (οι	0 1	ŋ	o	е Т	S	σ	۰ ۲	-	σι	¢		1	CN •		Jun.			1	-1	1	ω	- D	لد	- C	2 (* † *)) 0 1	0 0	U)	•	0.4F	٠	
		May	~	е П	Ø	r r	р с т		0	ო	o)	ഗ	-	ι φ	ന	0)	0	יי ע יי יי	<u>р</u> і	Ω •		May		N 0 -1 7	۳ ۲.	0	œ	ŝ	თ	5	: 4	C e) (- 1		-1	<u>_</u>	9 - 23 9	er) -	
		ADT.	0	(1)	p	1 <) ר	- 1 I	n	r-l	ო	_t	9	0	5 L	0	C.	0 4 C	•	,	۲.	Apr.	u	р т	4 -,	1	:1	r (0	ас)	(ař	ζ.)	ĸ) (Э	$\dot{\mathbf{o}}$	N. 00 00	α.	
a tor	2 C 2	ע	0	0	2			÷r	-i (2	4- 4	C1	ri	o	o	r-1	0		\mathbf{c}	•	Regulator	Mar.	c) <i>t</i>	-i (0	• 1	<u>()</u>		r ŧ	¢,	c	r -	: (3	•	0.000	ю Т	
on Regulator	بر 14 ا		0	0	<i>(</i> }	er)) C	5 r	4	Э	0	0	0	0	0	0	сс С	0 0 0 0 0 0 0 0 0 0 0 0 0) (;) ~	•	3enlu	Тер.	(*	4 C	э (Ç y	Ċų.	Ċ	0	0	0	·- 4	c	5 e	••	•		с Т Т	
: Lakkhon	net.		0	0	o	0	• p• •	4 C	3 ·	··•¶	0	Э	0	0	Ģ	2 4	0.231	•	۱ G	e •	ยภ์อรุเนี้ :	(an)	¢	×¢) (с» •	0	r 4	0	o	0	¢	¢	: H	n	60 •	기 :: ·	-1 16 17	
Station:	ν. τ τ τ		တ ဂ	90	1965	ю Ю	c o	2 G			D) –	5	50	O)	5	5001	$Mean(\bar{x})$	S	1/0	4	Station:	Vear	୍ୟ ପ	γ¢		ρi Di C	0 5	cc Ch	5	р- От	tr Ci	1019	$\langle \rangle \rangle$	- C	7 7 7 1	(X)UEegy			
		•																																					

Appendix 3-6 Page 3

		Total	1 6	0 7 7	30	001	67T	001) () () ()	4 F F	7 C 	- C - T - C - T - C	0 : 	724	123	60년	90 <u>1</u>	CO r	101	1 C r) 0) 1		t + 	ir C	20-79		
âays)		Dec.		5	Э	0	-	r	ر	ı د	4 e-	+ (N	2	t	0	Ч	r-	ى I) ,	I KO	• •	l •••	10	•		0.996	
(Unit:		Nov.	۰ ۱	N -	ŧ	0	÷	თ	2		1 r-		n c	σ	井	ŝ	r-I	Ø		10	12		n	• .:t	េល	1	0.747	
		<u>0ct.</u>	α) (°	~ ' -{	თ	ന പ	キ イ	23	00) (C) a I c) () 	0	9 1	ന	07	ი ი	0 11	r	თ ო	œ	- 00 (~	파	. 25	3.85	0.251	
		Sep.	0) () f r	13 (-1)	Ø ⊶L	11 10	80 F1	9 H	21	0		> 0 • •	19 4 -1 1	50	20	0) 11	8 1	17	16	00 දුර	20	20	3 7 2	.70	2.07	· +	
		Aug.	9	ו ני רי) / (1	ന ന്	9 6	20	1 7	8		0 C) i 4 (77	1-1- 1-1-	ഗ	코	o ri	6 근	9년 년	ю Н	라 m	して	.00	2.702	- 15	e clear Clear Clear
•	Reiny Days	127																			е т		17	ω	ູນ	3.482	. 21	יי ג ני ס ע
	Monthly Rai	Jun.	S S S S S S S S S S S S S S S S S S S	0	1 Q 1 P	0 ∢ -1 ≠	77	rd rd	ଡ ମ	9T	ମ ମ		9		מ	ი ო	18	15	20	17	다 ~	12	ထ	15	ഗ ല •	3.135	.22	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		May	5		- م د	-) (-) (/ - 	27	9 ت	ഗ പ	Ċ	21	17		77	ю Н	2	ω	さ	е Н	ო		キー		0	4.868	10.	vîation one with
		Apr.	et	י. בוי	{-	- C	л (2	oì	თ	t.	7	7	¢	0 (თ. ი	7	ო	G	5	თ	0	0	ო	. 55	3.057	9 1 2	Standard Dev înv dav is o
		Mar.	-1·	0	ú) ti	n (Ċ)	n	2	ო	r-1	r-t	ŗ	-1 (0	24	ო	ۍ	3	ო	±r	ហ	ო	S IN	1.802	- 61	S - Stan A raînv
Buri	- 1	rep.	ო	r-1	С) (r		-1	1	o	0	ო	3	· C	N 1	-1.	t t	0	ო	ო	м	0	0	г-1	l.650	. 38 8	- 84	Note:
ر. 0	,	can.	o	0	,	r	((5.	0	0	0	\$	0	Ċ.) r	-1 0	5 (2	0	Ö	0	0	0	တ	0.900	:† :::::::::::::::::::::::::::::::::::		Ż
Station:		ě –	υ Ο	OY OY	01	ō) ()) ()	р с р с	0 (3) (မာ စာ	(ပ (၇)	တိ	မ္မ	မ္မာ) ()) ()	o (D c	<u>ດ</u> . ເ ກີ	0 (20 -	5	\sim	<u>> 1</u>	$\tilde{\mathbf{b}}$	1674	0 2 0	Mean(T)	ין מי	s/x	

Table A. 3-23 Monthly Rainy Days Record

Appendix 3-6 Page 4

Source: Meteorological Department

ļ

Record
Days
Rainy
Monthly
3-24
ч Ч
Table

•

.

.

•

۰,

Station:	Suphan	ក្នុការ ដ			Mor	Monthly Rainy	iny Days		:		(Unit:	đays)
Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Seo.	0ct.	Nov.	Dec.
00	0	2	<u>+</u>	5	1 T		17	9 1-9 1-9	16	ω	2	0
С	Ø	0	t	ഹ	t.	ц Ц	თ	22	たり	18	ŝ	0
S C	0	0	0	ŝ	ഗ		22	ይሮ	00 r-1	ч Ч	0	0
ഗ്	O	2	1	Q	77	6	೧೯೭	12	20	12	<۲	, r-1
98	0	전	Q	۶đ	თ	თ	7	თ	77	72 72	L L	0
1961	≁ -1	0	ማ	Q	<u>८</u> र	თ	13 2	8 ~1	01	18	r-f	r-t
30	0	~1	0	œ	12	러	77	12	22	75 7	- - 1	0
ଞ୍ଚ	0	0	'n	2	ഗ	: 년	13	17	ମ ୮୩	17	S	Ч
0 0	0	2	ed	ŝ	22	თ	78 7	9 1	차 루	75	6	r-†
98	0	. ,	0	9	13	5T	オイ	9 1 8	21	12 1	m	ო
မီ	CN	0	o	ഗ	21.	Ч Ч	ет Т	18	ר - ד	ਜ ਦ	0	ᅪ
9 O O	e~~{	0	,{	4	२२	0 11	15	16	23	13	et	¢
00 00	r-1	ú	-1	10	01	თ	რ ~	72 7	ଚ ~	თ	m	0
90	0	ы	m	7	5	ю. Н	8 1	12	22	ന പ	<i>:</i> †:	0
6	p\$	<i>i</i> -t	\$	2	യ പ) 너	00 r-l	22	77	9 T	থ	ហ
5	r-1	2	ы	ω	はた	2	ა ი	17	1 7	л3 13	~	ო
5	0	н	:t	9	ഗ	년 년	s 1	ゴー	ರ ಗ	ው ተተ	01	ო
5	0	0	ო	7	13	<u>т</u> е	5 T	9 T	22	1	ŝ	тЧ
5	<i>∙-</i> {	0	a'	თ	ອ ເມື	5 T	17 7	00 ⊢†	22	77	ß	0
5	0	0	2	7	15	73	10	9 ≓1	64	oo r∸1	7	ო
Mean(x)	.70	.20	ភ្	ς.	0 †	. 85	.20	0 0	.20	ູນີ້	- 90	<u></u> .
ა	345	1.364	2.682	2.304	5.044	2.886	2.874	3,105	3.295	3.570	3-081	1.552
s/x	. 92	() []	. 78	4	011.	1: 10 10	. 20	0 (-[. 17	. 26	. 79	~- •
		Note:		tandard De	Deviation							
			н Ю У	10	one with	an amount	က် စင်း အရ	infall o	fo.l mm	or more.		
			5				1			1		

.

Appendix 3-6 Page 5

102-100 11-463 0-112

Meteorological Department

Source:

Record
Days
Rainy
Monthly
3-25
4
Table

•

.

Station: Bangkok

Year Jain. Feb Mar. Apr Mar. Jun Jul Ju	1011010	XoxBrido	X									(Unit:	(days)	
ear jan. Feb. Mar. Apr. Mar. Jul. Jul.						No.								
956 2 1 0 14 20 17 16 23 25 13 44 0 135 957 4 5 3 4 10 14 20 17 16 23 25 25 13 14 10 135 950 0 2 3 14 11 3 12 26 17 10 12 950 0 2 3 14 13 13 12 12 12 12 12 12 12 12 12 13 <th>at [</th> <th>ាម</th> <th>Ø[</th> <th>Mar.</th> <th>(D.</th> <th>\sim</th> <th>1 1 1</th> <th>1 11</th> <th>-A</th> <th>0.</th> <th></th> <th>Nov.</th> <th>10</th> <th>o ta</th>	at [ាម	Ø[Mar.	(D.	\sim	1 1 1	1 11	-A	0.		Nov.	10	o ta
57 2 7 7 8 17 16 25 25 18 6 0 135 55 4 5 3 4 10 16 20 22 20 1 0 125 955 7 7 8 14 13 13 15 12 12 13 13 15 12 13 13 15 12 13 13 15 12 13 13 15 12 13 13 15 12 13 13 15 12 13 13 15 12 13 13 15 12 13 13 15 12 13 13 15 12 13 13 15 12 13 13 14 5 14 16 12 13 14 13 12 13 13 14 12 12 13 14 13 12 13 14 13 12 13 14 13 12 13 14 12	o)	CN	r-1	0	;; []	20	17	۰C ۲	0.0 0			-		;
358 4 5 3 4 10 16 20 23 23 24 0 133 951 1 2 1	ö	N	~	7	5	α) (((-) U 4 C			t (.	0
559 0 2 4 3 14 12 22 20 20 1 0 115 950 0 0 0 4 1 13 13 13 13 951 1 1 1 13 13 13 14 12 12 12 12 13	Ö	zt	10	e e	. 1		- U 1 r		0 0			۵	0	ന
950 0 0 4 4 11 23 18 21 19 3 0 118 951 1 8 6 13 13 13 13 13 13 952 0 2 3 1 13 13 13 13 13 953 0 2 3 1 1 3 1 1 13 13 955 1 2 1 1 2 13 <	ö	Ċ) ():	t (> . 	0	۶Ċ.	2.2			, _ 1	0	N
980 0 0 4 1 13 13 15 15 17 16 2 17 16 2 13 981 0 3 1 13 14 19 23 25 13 13 985 0 3 1 4 12 14 19 23 22 24 5 13 13 965 0 3 1 4 22 15 19 23 22 14 13	is e	5 ·	7	t	n	± ≓	r~} r~}	23	8			ო	С	5.
961 1 8 6 18 17 18 13 121 963 0 5 3 7 12 14 19 20 25 14 5 121 965 1 7 2 5 15 19 25 24 20 15 3 3 131 965 1 7 2 5 15 19 25 22 19 131 131 965 2 1 1 2 2 2 14 13 131 131 131 13 131 131 13 131 13 131 13 131 13 131 13 13 131 13 131 131 131 131 131 131 131 131 131 131 131 131 131 131 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132<	μ Ch	0	0	:t:	,- ,	で て	0 1 0	97	21) (1.0
952 0 25 14 19 20 25 14 5 14 953 0 3 1 2 18 19 25 14 5 14 955 1 7 2 15 15 12 28 18 19 25 22 14 2 121 955 1 1 1 15 15 12 28 23 3 14 2 956 0 3 1 4 20 15 12 24 24 3 3 143 956 0 2 12 12 19 15 12 14 20 15 14 20 125 144 20 125 144 12 122 144 12 122 144 12 122 144 12 122 144 120 125 125 125 125 125 125 125 125 125 125 125 125 125 125 1	က် က	e-1	8	œ	မ	ଉ ମ	1	0 0 00	5) () -{	۷ ۴	V (
963 0 3 1 2 8 18 19 23 23 11 11 11 11 11 13 955 0 3 1 4 25 15 19 25 23 11 13 13 14 955 0 3 1 4 22 22 22 23 13 14 13 14 14 14 15 14 15 14 15 14 15 14 12 14 12 15 14 15 14 16 11 17 19 12 24 15 14 12 12 12 12 12 12 14 12 <td>ф о</td> <td>0</td> <td>2</td> <td>ማ</td> <td>2</td> <td>27</td> <td>t: </td> <td>l o L'r</td> <td>10</td> <td></td> <td></td> <td>0 u</td> <td>-1 (</td> <td>n (</td>	ф о	0	2	ማ	2	27	t: 	l o L'r	10			0 u	-1 (n (
854 3 3 2 5 15 15 15 15 15 14 14 855 1 7 2 5 20 15 15 25 24 20 15 </td <td>ω δ</td> <td>0</td> <td>ო</td> <td>erd</td> <td>2</td> <td>00</td> <td>. a</td> <td>0</td> <td>0 0 0</td> <td></td> <td></td> <td></td> <td><i>с і</i></td> <td>NO</td>	ω δ	0	ო	erd	2	00	. a	0	0 0 0				<i>с і</i>	NO
655 1 7 2 5 20 15 15 22 24 29 7 2 141 966 0 3 1 4 22 25 15 22 28 23 3 3 144 966 2 12 21 21 13 15 15 15 14 122 966 2 13 14 12 14 12 14 122 14 122 14 122 14 122 14 122 14 122 14 122 14 122 14 122 14 122 14 122 14 122 14 122 14 122 14 122 14 122 14 122 14 122 14 122 123 122 <	- (C) - (C)	ო	ო		σ	9 U 0) U I e) († e	9 L 9 C				··-1	\sim
566 0 3 1 4 22 22 24 20 15 3 3 14 566 2 12 12 12 12 14 12 14 12 566 2 12 12 13 15 16 15 3 5 14 566 2 12 12 13 15 16 15 3 5 14 566 2 12 12 13 17 13 15 12 122 567 3 3 4 16 17 13 15 12 122 122 122 122 122 122 15 122	ୁ ଏ ୦୦	r.	• r	1 () ι	4 Q) (3) -	0 V			4	(1	n
867 3 1 4 22 22 24 20 15 3 5 14 866 2 12 21 9 19 18 20 13 5 0 122 866 2 12 21 9 19 17 19 13 5 0 122 866 2 12 21 13 15 13 14 1 122 871 0 17 19 19 17 20 15 1 122 871 0 17 19 13 24 20 15 1 122 871 0 17 15 18 17 20 15 2 15 1 2 13 15 1 2 13 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1		1 (•	V	n	20	სი ~1	ഗ	22			თ	ო	-1
967 3 0 2 12 21 9 19 18 20 13 5 0 122 968 2 1 11 17 19 15 16 16 12 959 2 1 19 17 19 17 20 15 1 122 971 0 5 10 17 19 17 20 15 1 122 971 0 5 17 19 17 20 15 1 122 971 0 5 17 19 18 20 15 1 122 973 0 0 2 18 17 21 17 21 21 20 15 125 973 0 2 18 18 20 23 12 20 13 25 975 5 2 18 18 19 20 14 20 135 135 975 1.550	ວ ກ	.	m	r-tj	t.	22	22	22	24			сс.	ı ur	
968 2 10 11 17 19 15 16 16 7 0 123 970 3 3 4 10 17 19 17 20 15 1 123 971 0 5 4 5 22 16 13 12 123 971 0 5 4 5 22 16 13 24 20 15 12 123 973 0 0 4 13 17 20 19 17 21 20 15 15 15 15 973 0 0 4 17 21 21 20 15 15 15 973 0 0 4 20 14 20 15 125 155 973 0 15 18 18 18 19 20 4 2 135 155 155 155 155 155 155 155 155 155 155 155	တ္တ	ო	0	0		5 7 7	Q	o C	a C) U) (t c
259 2 1 2 1 15 19 17 20 15 1 123 271 0 5 4 5 22 16 13 21 15 1 122 272 0 5 14 15 17 20 15 1 122 273 0 9 2 18 16 14 20 15 1 2 155 273 0 9 2 18 16 14 20 25 15 155 275 0 0 14 20 25 15 155 275 5 17 13 17 13 16 14 20 25 155 155 275 5 2 16 14 20 25 15 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 1	ŝ	2	ω	5		¢) () {) u † c			01) (\mathbf{v}
870 3 3 4 10 17 15 17 15 17 15 17 15 17 15 17 15 17 15 17 15 17 15 17 15 17 15 1	00	~	~	•		10		0 (1 r) [-1 r			4	Э	N.
71 0 0 17 15 23 23 21 15 2 10 150 771 0 5 4 5 16 18 24 20 15 1 2 772 0 5 17 15 17 21 20 16 17 21 20 16 17 21 20 16 17 21 20 16 125 <	1 0	i (1 (ł.) (†		- 1	-1			:1	r-1	\sim
0 5 4 5 22 16 18 24 20 15 1 2 155 155 5 155 5 155 5 155 5 155 5 155 5 125 155 155 5 1 125 123 <	> (8 d	0	n)	t		L		23	23			~	C r	-10
272 0 2 17 20 19 17 21 20 16 14 20 25 156 5 125 274 1 0 4 13 17 15 16 14 20 25 15 5 1 125 274 1 0 4 13 17 13 18 12 23 9 0 139 139 275 6 2 3 2 17 13 18 18 19 20 4 2 139 0 139 0 139 0 139 0 139 0 139 0 139 0 139 0 139 0 130 0 130 0 130 0 130 0 130 0 130 0 130 0 130 0 130 0 130 0 130 0 130 0 130 0 130 0 130 0 130 0 10 10 <td>$\tilde{\mathbf{n}}$</td> <td>0</td> <td>ഗ</td> <td><i>.</i>‡</td> <td>ഗ</td> <td>22</td> <td></td> <td>ഗ പ</td> <td>24</td> <td></td> <td></td> <td>· ~</td> <td> (</td> <td>) ('</td>	$\tilde{\mathbf{n}}$	0	ഗ	<i>.</i> ‡	ഗ	22		ഗ പ	24			· ~	() ('
973 0 9 2 18 16 14 20 25 15 5 1 125 874 1 0 4 13 17 13 17 13 17 13 17 13 17 13 17 13 17 13 125 125 15 15 23 9 0 132 132 875 6 2 3 2 18 18 18 19 20 4 2 132 70 5 1 15 1 12 18 18 18 19 20 4 2 132 70 5 1 50 2 4 65 3 065 1<450	[≻ ∩	o	\$	Ц		17		ੇ ਜ	41				4 11	Оu
274 1 0 4 13 17 13 18 22 19 20 4 2 139 17 275 6 2 3 2 2 17 13 18 18 19 20 4 2 130 28n(X) 1.500 2.850 3.450 6.750 16.400 15.150 18.500 20.900 21.600 17.400 5.450 1.750 132.70 5/X 1.085 0.868 0.651 0.627 0.286 0.188 0.126 0.136 0.141 0.178 0.665 1.386 0.08 Note: S - Standard Deviation A rainy day is one with an amount of rainfall of 0.1 mm or more	5	0	0	ი		с: С		1 1	0) -	ົ່
275 6 2 3 2 17 19 18 18 29 20 4 2 130 130 Ean(X) 1.500 2.850 3.450 6.750 15.400 15.150 18.500 20.900 21.600 17.400 5.450 1.750 132.70 S 1.528 2.475 2.247 4.229 4.695 3.038 2.335 2.844 3.056 3.105 3.626 2.426 10.72 S/X 1.085 0.868 0.651 0.627 0.286 0.188 0.126 0.141 0.178 0.665 1.386 0.08 Note: S - Standard Deviation A rainy day is one with an amount of rainfall of 0.1 mm or more		r-f	0	7		71		α				5 (4 (M (
an(x) 1.500 2.850 3.450 6.750 16.400 16.150 18.500 20.900 21.600 17.400 5.450 1.750 132.70 S 1.528 2.475 2.247 4.229 4.695 3.038 2.335 2.844 3.056 3.105 3.626 2.426 10.72 /x 1.085 0.868 0.651 0.627 0.286 0.188 0.126 0.136 0.141 0.178 0.665 1.386 0.08 Note: S - Standard Deviation A rainy day is one with an amount of rainfall of 0.1 mm or more	5	ω	\$	ო		ر ر د)α 1 -	40 46			: ת) (m (
an(x) 1.500 2.850 3.450 6.750 16.400 16.150 18.500 20.900 21.600 17.400 5.450 1.750 132.70 S 1.628 2.475 2.247 4.229 4.695 3.038 2.335 2.844 3.056 3.105 3.626 2.426 10.72 /X 1.085 0.868 0.651 0.627 0.286 0.188 0.126 0.136 0.141 0.178 0.665 1.386 0.08 Note: S - Standard Deviation A rainy day is one with an amount of rainfall of 0.1 mm or more					I	\$		0	0			ł	N	<u>9</u>
 1.528 2.475 2.247 4.229 4.695 3.038 2.335 2.844 3.056 3.105 3.626 2.426 10.72 1.085 0.868 0.651 0.627 0.286 0.188 0.126 0.136 0.141 0.178 0.665 1.386 0.08 Note: S - Standard Deviation Note: S - Standard Deviation A rainy day is one with an amount of rainfall of 0.1 mm or more 	ដូន	0 .	, 0 0	ເງ 	J U	6.40	6.15	8.50	0.90	1.60	7.40	נו לי	15	32 70
<pre>/x 1.085 0.868 0.651 0.627 0.286 0.188 0.126 0.136 0.141 0.178 0.665 1.386 0.08 Note: S - Standard Deviation A rainy day is one with an amount of rainfall of 0.1 mm or more</pre>	<u></u>	. 52	1:	11 10 1	.22	. 69	.03	ი ი	2.84	3_05	C F C		2	2 C - 1 C C
: S - Standard Deviation A rainy day is one with an amount of rainfall of 0.1 mm or	· ·	. 08	- 80 -	- ôS	. 62	38	8	.12	ന ലെ) <u>-1</u>) (-1) - 1	1 1	4 00 1 00	1 80 1 9 1 1	0.08 0.08
A rainy day is one with an amount of rainfall of 0.1 mm or			Note:	, v.	ר ר ע									
JO HUN TO IT FINITER IN AND AND AND AND AND AND AND AND AND AN			-) '~ ቢ እ) (; ;			с 5 - 4 с		ć				
				1 3 1	n 1 	ר ד צ		BU HO						

Appendix 3-6 Page 6

·

Meteorological Department

Source:

					Moi	Monthly Rai	îny Days				(Unit:	days)	
	Can.	reb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	0ct.	Nov.	Dec.	רן יי-} יי
1956		0	ო	5	6 1			20			1	1	r
957.		0	0	വ	ഗ		17	ຕ			10) с	4 -
റ	0	3	ഗ്.	'n	е -			56			• ~	o c	1 1
တ	Ч	N	7	Q	12			13 1			1 44	° €	
С О	r f	r-t	۰. ص	2	15			79 7) (40	1
ю б	r-t	0	~	ഗ	9 1 9	01	16	ය ද			. ~	٩C	0
600	0	ò	e-4	¢	7			11) r	, 1,
ທ ⊣ ດີ ⊣	0	0	0	m	с,			00 11			10	10	, C , r
မာ ဂ	0	ы	0	ۍ ۱	22 .			17) () ()	10	3 (n 1 in
တို	0	ч	ம	7	8 1			54			000	1 KC	1.0
မီ	0	ო	·i	ŝ	20			21) ur	റെ	4 r- 1 r
о Б	0	0	0		ユー			9 7 0			6	• C	
မ ရ	0	ᅪ	0	다	0			7			რ) r	٥ o
00 0 00 0	-1	,. -	:t	ں N	ο Η			17			ເກ	1	
5	0	ო	ო	ω	13			21			- (1		
$\frac{5}{5}$	0	ო	ເດ	00	16	15		20			က	ന	; (` ; ~~
5	0	0	-t	თ	ى ە			17			- 0 - 1	- t-	1 ~
5	1 •	r-1	3		rt et			ഗ			ۍ ا	,o	10
5	~1	Ċ	ເກ	0	ଓ ମ			5 1 0			i n)	, (, ,
1975		0	. 1	1	81			20	ю Н	20	-	1 01	2 (4 1 m
Mean(x)	0.850	5 7	. 70	St.	. 50	12.850	. 50	- 25	00 00	ب اب	20	00	C C
w¦	ა თ. ო	1.276	2.100	3.263	4.770	2.594	3.428	ഗ	റ	2.937	3.487	2.191) -1
S/X	. 30	e-4 1-4 1-4	. 77	. 50	. 35 1	2	. 22	00	ŝ	Ø	5		

Table A. 3-26 Monthly Rainy Days Record

۱

.

Appendix 3-6 Page 7

A rainy day is one with an amount of rainfall

Source: Meteorological Department

(stop think)	Phraya Banlu	ought Period					22 Jun -	29	12 May - 1	9 14 Jul	0 3 May - 12	8 1. May - 18	5 1 May - 16	6 10 Oct 25	12 3 May - 14 May	8 27 Jul 1	0 16 Jun 25	15.5	<pre>6 times (50.0 %) 2 " (16.7) 2 " (16.7) 0 " (-) 2 " (15.7) 12 years ct Office, RID</pre>
Station		Period			Oct 17	5 Jun 25	2 May - 5	Aug 2	3 May - 2	- 21		May - 15	May - 30	Oct 25	13 Aug 25 Aug.	9 Jul 7	4 Jul 24 Jul.		7 times (46.7 %) 1 " (6.7) 2 " (13.3) 3 " (20.0) 0 " (-) 2 " (13.3) 2 " (23.3) 15 years Office and Phraya Banlu Project
		Drought	ମ ଅ	ເດ ຕັ	77	34	ເກ (-†		21	ю Н	12 T	10 F1	08	97	e et	0 el	21	17.6	Bangyeehon
		Period	Oct 30		Sep 8	9 Jun 14	Jui 31		May - 1	7 May - 21	May - 11	Jul 13	1 Jun 13	0ct	1 May - 10	May - 23	3 Jun 25		7 times (46.7 %) 3 " (20.0) 2 " (13.3) 2 " (13.3) 1 " (6.7) 2 " (13.3) 15 years Source: Chao-chet
	S	Drought		្តា		9 T	ው	러	22	ייז רי	र र र	- 07	22	22	0	11	12	13.7	May June July August October October
		Vear	96	9 0 0	98	69	00	8	98	00	5	97	5	5	さんので	5	5	Mean	

(Unit: days)

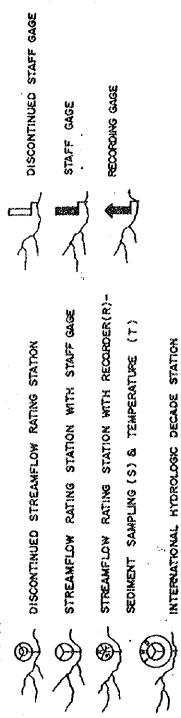

•

Table A. 3-27 Maximum Drought Days in Wet Season

.

Appendix 3-6 Page 8

Source: Hutchesy Section, Survey Division, RID

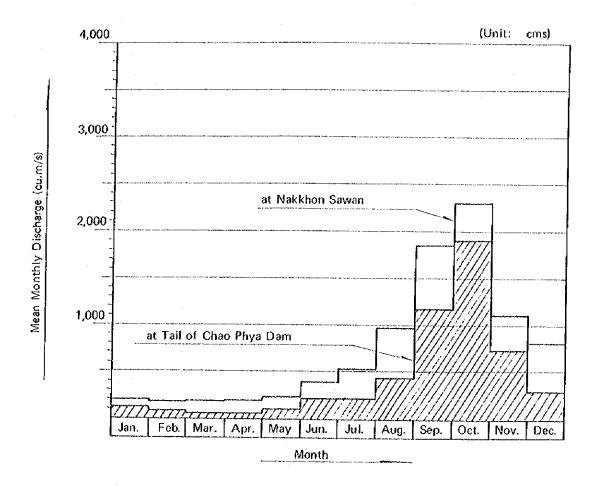
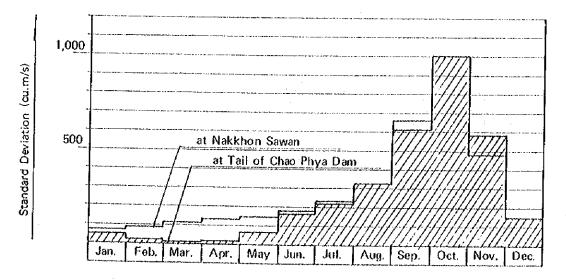



FIGURE A 34 MONTHLY MEAN DISCHARGE OF CHAO PHYA RIVER

Note: Data period 19 years (1957 - 1976)

Monthly and Annual Mean Discharge of Chao Phya River at Nakorn Sawan Table A. 3-28

Drainage Area: 110,559 square km

1961

1965 1965 1968

Ceer Ceer 1957 Hydrology Division, Royal Irrigation Department

S - Standard Deviation

- Mean

: ×

Note:

Source:

Appendix 3-8 Page 2

5.417

410.6 155.09 0.378

1,101.0 485.68 0.441

2,289.6 1,014.21 0.441

1,851.3 654.76 0.359

982.1 327.63 0.334

530.3 231.41 0.436

142.85 0.601

0.709

399.7 174.4 0.436

237.5

189.1 134.07

288.5 228.5 0.50.5 0.503 0.500

185.0 86.05

74.58

204.4

IX W

0.465

0.365

s/xi

595 205

427

4.98 706

476

758 243

1,010 2,085 1,437 3,890

1,557

785

683 928

t: 35 533 417

380

280 334 451 477

290 344 344 396 492

279 274 317

5051 5051 5051 5051

245 272

1973 1975 1975

479

682

616 743

1,539

1,173 2,846

779

1,057

1,747

.,132

Table A. 3-29 Monthly and Annual Mean Discharge of Chao Phya River at Chai Nar

Drainage Area: 120,693 square km (Unit: cms)

	• •																													<u>A</u> j	pp P
	trainel ^a Maca	nuccu ncan Discharge			တ	517	t re	1 :	t)	ł.	598 5	σ	- (O	- Ur) .;	ŧ (ກ່	00	Q	0	σ	οo	οc	о о с	11 D T • 0		·			
(SE	<1	Dec.		121	71.6	001	ഹ) (⊃.	のすい	ന	\sim	ŝ	$-\sigma$) (r	4 16	\circ	÷	0	72.0	េ	。 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 1-) (62.1	0.523	u		
		Nov.		r i i	\mathfrak{O}	. 560	\sim	ά) ; 1 ; 6	4 = 7 + 7		10,6	ഗ	ഹ	\sim	ια		$\frac{1}{2}$	\sim	ო	- is	50.1) () ()	ייי היי ביי) (; (7 - 7	- ლე	0.812			
		Oct.		с С	00.	3,381	, 88	01		2 C 4 C 6	5) (5) (5) (, v v C	0 20	1,357	e tr	, сн СН	10	4 C 1 C 1 C	¥ (, L00	d)	.507.8	367	in,			,00,	ເດ ເວິ •			
		Sep.		4	, 2 2	1,767	, 20	10 00	er U) (() ()) / / /	t (0 ·	<u>-1</u> -	ო	ഹ	0) r) :	-{ L]: €	000.	0 0	28.0	80	2、044	00	0 - 0	-1	ы С			
	0	- Bug		4.4	∞	676	4	S		C) U) :	3 (82.6	œ	0	(()) () U		30	თ. იი ი	206	363	77) ((n N	.75			
	n Discharge	Jul		t (χı	200	ഗ	r-∮.	ഘ	ഗ) ((р.;	0	· · ·	ರಿ ಗ	- (\)	し し し)) 	0	2 - 1 - 1	1.	267	ŝ			1.012		 	UOTIPT/
	Monthly Mea	Jun.	170		i) (N 0 D 0	<u> </u>	<u>о</u> ,		33. B	6	1 0 I 1 1 1	r (י ד ס ו	<u> </u>	238	6°04	0 1			ກ .	ต้ 	ല	281	Ē					יין קייק אייק אייק לייק	
-	тоМ	Nev	ເມ		+ + c	- V - V	ι α τ (0	:	ഗ	\circ	C r r	յտ	n u n c	ו ס	=t:	52.5	2	10 L	101		t) (1	SU.	131	G	α ⊂s		/0.		r t U	נ ו
		Apr.	т	ĸ	• • •	N 0 0 0 1 -		N	ľ		78.4	÷	Ċ	9.0	ż.	ю'	0	-1	~	10	. 0	ό ο	တ်	87.9		α Γ		Ó Ni T		ve ev)
		2.10%		æ	5 t-		: <	5	ം ഗ	ł	-	86.0	С	່ວ່ວ	1 () () (5 I	ø	ப்	ŵ	\mathcal{O}) (5	പ്	ന്	•	ອ - ທ		27		ו א ו	
	1.	: en.		c		> 0 • 4 • 4	; c	າ ກີເ ດີ	n	à	87.2	п	C	5 f-) L - L - L	ż.	ł	റ പറ റ		107	ם. הסיי		80 - 3	COT	80.9	o	2 2 2	+ •		Note:	} ;)
	- 14	-190	•	ω	6	3 (2	• • 0	9 0 4 0	n N	w.	106	£Υ	- W	ч C.	JC	4 (0	- I	\circ	240	е. Г	1 .	N B B	r-1	127.7	പ	0) -			
			1991	တ်	ö		0	5 c	$\tilde{\mathbf{D}}$	ເດ ເກ	on -	8	က္ဆ	: «		0 U 0 C	01		5	5	r	្រ	5		ıх	თ	×. 2∕.				

Appendix 3-8 Page 3

.

Hydrology Division, Royal Irrigation Department

Source:

Table A. 3-30 Monthly and Annual Specific Runoff of Chao Phya River at Nakorn Sawan

Dreinage Area: 110,559 square km (Unit: mm)

Jan. Feb. Mar. Monthly Specific Runs. 2.7 1.9 1.1 1.1 1.5 5.5 8.8 2.7 1.9 1.1 1.1 0.8 1.5 5.5 8.8 2.0 1.1 1.1 0.8 1.5 5.5 8.7 2.0 1.1 1.1 0.8 1.5 6.5 8.7 2.0 1.1 0.8 1.5 4.1 10.0 2.8 2.0 1.2 0.8 2.1 4.1 10.0 2.9 1.1 1.1 1.1 1.1 1.1 10.1 10.1 2.9 1.1 1.1 1.1 1.1 1.1 10.0 11.8 1.6 2.1 1.1	Jan. Feb. Mar. Nonthily Specific Number Annual Specific Number 1 1 10.8 1.5 5.0 1.3 9.1 5.0 1.3 9.1 5.0 1.4 1.1 0.8 1.5 5.0 1.3 9.1 5.0 1.4 1.1 0.8 1.5 5.0 1.3 9.1 9.0 5.0 1.4 9.0 5.0 1.4 9.0 5.0 1.4 9.0 5.0 1.4 9.0 5.0 1.4 9.0 5.0 1.4 9.0 5.0 1.4 9.0 5.0 1.4 9.0 5.0 1.4 9.0 5.0 1.4 9.0 5.0 1.4 9.0 5.0 1.4 9.0 5.0 1.4 9.0 5.0 1.4 9.0 5.0 1.4 9.0 5.0 5.0 1.4 9.0 5.0 1.4 9.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0													×
2.7 1.9 1.1 0.11 Mult. Mult.<	2.7 1.9 1.1 2.1 1.9 1.1 0.13 1.5 5.5 8.4 3.8 0.12 2.7 0.11 1.1 0.3 1.5 5.5 8.4 3.8 0.12 1.1 0.3 0.13 1.5 5.5 8.4 3.8 0.12 3.1 0.3 1.14 3.3 1.15 3.6 2.15 0.13 1.5 3.5 5.1 6.1 8.7 3.6 <	11:		Sev.		Xonthl	<u>V Speci</u>		। जन्म		1			いいののの
2.7 1.8 1.5 5.5 8.8 73.8 41.9 49.3 17.0 4.9 2.0 1.1 1.1 0.8 1.5 5.5 8.8 13.8 41.9 49.3 17.0 4.9 2.0 1.12 0.8 2.0 1.2 0.8 2.0 1.2 0.8 2.0 1.4 3.6 3.7 57.7 51.8 3.9 4.9 9.9 3.9 4.9 9.9 3.9 4.9 9.9 3.9 4.9 9.9 3.9 4.9 9.9 3.9 4.9 9.9 3.9 4.9 9.9 3.9 4.9 9.9 3.9 4.9 9.9 4.9	2.7 1.9 1.1 0.8 1.5 5.5 8.8 13.8 41.9 49.3 17.0 4.9 2.0 1.1 1.1 0.8 1.5 5.5 8.8 13.8 41.9 49.3 17.0 4.9 2.6 2.0 1.2 0.8 2.0 4.8 7.6 57.7 57.8 8.0 5.5 3.5 2.0 1.2 0.8 2.0 4.8 7.6 22.5 47.7 57.7 22.0 9.4 1800.5 3.5 2.1 1.3 1.1 0.0 2.1 5.3 1.0 3.4 15.7 57.7 22.0 9.4 15.0 2202.4 3.6 3.5 5.5 5.5 5.5 5.5 5.1 4.6 2.5 5.7 41.8 15.0 22.12 2 3.6 4.2 5.5 5.5 5.5 5.5 5.1 1.0 3.4 15.0 5.7 41.8 15.0 2212.2 4.9 4.1 5.2 4.5 5.5 5.5 5.1 1.0 3.4 12.0 50.7 10.6 2202.4 4.9 4.9 5.9 7.7 9.4 12.8 2.0 31.4 5.0 50.7 10.4 225.1 5.9 4.1 5.2 4.5 5.5 5.1 1.0 2.1 1.2 2.7 41.5 12.0 21.4 2.2 5.5 4.7 7 5.5 5.5 5.5 5.5 5.5 15.8 12.8 29.0 50.7 19.2 9.7 124.1 5.5 4.5 5.5 5.5 5.5 10.2 2.7 7 9.4 12.3 2.7 41.8 15.0 7.3 14.9 200.1 7.9 5.5 4.5 5.5 5.5 10.2 2.7 7 9.4 12.3 2.7 41.5 11.0 12.4 200.2 7.9 5.7 10.5 10.0 11.2 2.7 41.5 12.8 22.7 19.2 9.7 10.4 225.1 7.9 5.9 5.9 5.9 5.1 0.1 10.2 17.9 33.5 45.7 91.1 10.4 226.1 7.9 5.6 5.9 5.0 8.0 8.0 8.1 10.6 17.9 33.5 46.7 94.2 11.6 2201.9 7.5 5.9 5.0 4.1 5 10.6 17.9 33.5 46.7 94.2 11.6 11.0 17.4 200.1 19.2 97.4 10.0 10.0				5.4.1	May	- un -	1	bC	O	1-0	Nov.	U	norf
<pre>2.0 1.9 1.1 0.8 1.5 4.1 10.0 177 34.8 27.6 8.0 3.9 2.6 1.1 1.1 0.8 2.0 4.6 3.9 12.9 14.8 22.5 59.8 13.7 25.7 23.0 2.6 2.1 1.2 0.8 2.0 4.6 9.0 21.1 4.5 0 84.9 3.4 5.9 23.8 2.1 1.3 1.3 1.3 1.0 3.4 4.6 9.0 21.1 4.5 0 84.9 3.4 5.9 23.8 2.1 1.4 1.5 3.5 5.5 6.5 9.1 11.8 10.3 31.4 27.7 41.8 15.0 23.3 4.8 4.2 5.5 5.5 6.5 9.1 11.8 10.3 31.4 27.7 41.8 15.0 23.3 4.9 4.3 3.3 3.5 5.5 6.5 9.1 11.8 10.3 31.4 27.7 41.8 15.0 23.3 4.9 3.3 3.5 5.5 6.5 9.1 11.8 10.3 31.4 27.4 18.0 7.3 149. 5.9 4.3 4.7 5.1 10.2 17.7 9.4 13.3 31.4 27.7 41.8 15.0 23.3 4.9 3.9 3.5 5.5 6.5 9.1 11.8 10.3 31.4 27.4 18.0 7.3 149. 5.9 4.3 4.7 5.1 10.2 17.7 9.4 13.0 27.4 18.0 7.3 149. 7.2 6.4 5.7 5.1 10.2 17.7 9.4 13.9 27.4 18.0 7.3 149. 7.2 6.4 5.7 5.1 10.2 17.7 9.4 13.9 27.4 18.0 7.3 149. 7.2 6.4 5.7 5.1 10.2 17.7 9.4 13.9 27.4 18.0 7.3 149. 7.2 6.4 6.9 8.8 0.8 10.1 15.1 22.7 41.5 47.8 21.6 9.2 9.1 14.9 26. 7.9 5.6 5.8 9.3 10.2 17.0 10.1 12.9 27.7 41.5 47.8 11.1 12.14 7.5 5.6 9.7 0.9 8.1 8.1 11.2 12.7 41.5 47.8 11.1 12.14 7.5 5.6 9.7 11.5 11.6 10.0 10.1 12.9 27.5 34.8 30.0 14.9 20.0 14.9 200. 7.5 5.6 5.7 9.4 15.8 2.1 10.0 10.1 12.9 27.5 34.8 30.0 14.9 20.0 10.0 10.1 12.9 27.5 14.5 27.2 10.0 18.0 20.4 14.9 20.5 13.4 15.5 20.4 10.0 10.0 10.1 12.9 27.5 14.5 27.2 10.0 10.0 10.0 10.1 12.9 27.5 14.5 27.2 10.0 11.0 20.5 15.4 15.5 20.5 11.3 7 3.7 14.9 20.5 13.4 15.5 20.5 11.3 7 3.7 15.5 13.4 11.0 10.0 10.0 10.1 12.9 27.5 14.4 10.0 10.0 10.0 10.1 12.9 27.5 14.4 15.6 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10</pre>	<pre>2.0 1.9 1.1 0.8 1.5 4.1 10.0 17.7 34.8 27.6 8.0 3.9 2.6 7.7 2.0 1.6 1.5 3.9 12.9 4.6 3.7 30.9 55.7 72.0 0.6 3.5 2.0 1.6 1.5 3.9 12.9 14.8 28.2 63.7 105.6 50.7 10.6 5.9 2.0 1.6 1.5 3.9 12.9 14.8 28.2 63.7 105.6 50.7 10.6 3.6 3.4 3.3 3.5 5.5 6.5 9.1 11.8 18.3 31.4 27.7 41.8 15.0 210. 4.8 4.5 5.5 5.5 5.5 6.5 9.1 11.8 18.3 31.4 27.4 18.0 7.3 149. 5.6 4.5 5.3 5.1 5.5 1.7 31.8 18.3 31.4 27.4 18.0 7.3 149. 5.6 4.5 5.1 5.1 5.2 8.9 14.3 15.7 39.0 10.4 220. 2.1 1.8 18.3 31.4 27.4 18.0 7.3 149. 5.6 4.5 5.5 5.5 1.7 31.8 18.3 31.4 27.4 18.0 7.3 149. 5.6 4.5 5.1 5.9 5.3 7.7 15.1 11.8 18.3 31.4 27.4 18.0 7.3 149. 5.6 4.5 5.5 5.5 1.7 21.8 18.3 31.4 27.4 18.0 7.3 149. 5.6 4.5 5.1 5.9 1.3 10.2 12.0 15.1 22.3 21.6 17.6 8.7 9.1 220. 7.2 5.9 5.3 5.7 10.2 12.0 15.1 22.3 21.6 17.6 8.7 9.1 220. 7.2 5.6 5.9 8.8 9.3 10.9 110.0 12.1 15.2 28.7 44.8 46.7 5.8 11.5 200. 7.5 5.6 5.9 8.8 9.3 10.9 110.0 12.1 15.2 28.7 44.8 46.7 3.0 14.9 33.1 7.5 5.6 2.9 8.8 9.3 10.9 110.0 12.1 15.2 28.7 44.8 46.7 3.0 14.9 33.1 7.5 5.6 2.9 8.8 9.3 10.9 110.0 12.1 15.2 28.7 44.8 46.7 3.4 10.0 18.0 329. 7.5 5.6 2.9 8.8 9.3 10.9 110.0 12.1 15.2 28.7 44.8 46.7 3.4 10.0 18.0 329. 7.5 5.6 2.9 8.8 9.3 10.9 110.0 12.1 15.2 28.7 44.8 46.7 3.4 10.0 18.0 329. 7.5 5.6 2.9 12.1 15.2 28.7 44.8 46.7 3.4 10.0 18.0 329. 7.5 5.6 2.1 8.9 2.7 11.5 11.6 14.0 17.4 25.6 6.6.7 94.2 41.0 18.0 329. 7.5 5.6 2.1 8.9 2.7 5.8 11.1 12.1 5.2 28.7 44.8 46.7 2.4 10.0 18.0 329. 5.6 1.89 2.76 3.14 3.45 0.438 0.334 43.3 55.7 25.8 9.9 19.0 19.0 10.0 139. 7.5 5.6 2.1 8.9 1.0 0.595 0.435 0.438 0.334 0.350 0.441 0.379 0.379 0.360 0.461 0.600 0.714 0.595 0.435 0.438 0.334 0.350 0.441 0.379 0.379 0.360 0.461 0.600 0.714 0.595 0.435 0.438 0.334 0.350 0.441 0.379 0.379 0.360 0.461 0.600 0.714 0.595 0.438 0.438 0.334 0.350 0.441 0.379 0.379 0.360 0.461 0.600 0.714 0.595 0.438 0.438 0.334 0.350 0.441 0.379 0.379 0.379 0.379 0.341 0.441 0.379 0.379 0.379 0.379 0.379 0.379 0.340 0.360 0.441 0.379 0.379 0.379 0.379 0.379 0.379 0.340 0.304 0.441 0.379 0.379 0.441 0.370 0.370 0.441 0.370 0.370 0.441 0.370 0.</pre>	۵			٠	•		•	e de la constante de la consta		- of	[~		
2.0 1.1 1.1 0.3 2.1 6.3 8.7 30.9 52.6 79.8 38.9 55.5 29.3 2.6 1.8 1.3 2.0 1.8 1.6 9.8 7.7 22.0 9.8 9.8 9.8 9.8 9.8 9.8 9.8 1.8 1.0.6 5.3 23.6 5.3 23.6 5.3 23.6 5.3 23.6 23.8 1.8 1.0.6 23.8 1.	2.0 1.1 1.1 0.8 2.1 6.3 8.7 30.9 52.6 79.8 18.9 5.5 202 2.8 2.0 1.2 0.8 2.0 4.8 7.6 22.5 47.7 57.7 22.0 9.4 180 5.5 2.0 1.2 0.8 2.0 4.8 7.6 22.5 47.7 57.7 22.0 9.4 180 5.5 2.1 1.3 1.3 1.3 1.3 1.4 1.0 3.4 8.0 36.6 42.9 57.7 41.8 15.0 228 4.8 4.2 5.5 5.5 5.5 5.5 8.9 14.3 16.7 39.0 81.7 39.1 10.4 228 4.8 4.2 5.3 5.5 5.5 5.5 15.8 12.8 29.0 81.7 39.1 10.4 228 4.9 8.7 3.3 3.5 5.2 4.5 12.8 29.0 81.7 39.1 10.4 228 4.9 8.7 3.5 5.5 5.5 5.5 7.7 9.4 23.9 27.4 19.2 9.1 10.4 228 4.9 8.9 3.6 7.1 0.2 12.0 15.1 22.3 21.8 17.6 8.7 39.1 10.4 228 4.9 8.9 3.6 7 10.2 12.0 15.1 22.3 21.8 17.6 8.7 36.7 149. 7.9 8.9 3.6 7 10.2 12.7 11.2 22.3 21.4 17.6 8.7 36.8 134 4.9 8.9 3.6 7 10.2 12.7 15.1 22.3 21.8 17.6 8.7 36.8 134 5.9 8.9 8.7 3.7 3.8 7.1 9.2 12.9 27.4 19.2 9.1 200 7.5 5.9 8.9 8.1 11.2 12.2 28.7 44.8 46.7 25.8 11.5 127 7.5 5.9 8.9 8.1 11.2 12.2 28.1 44.8 46.7 25.8 11.5 127 7.5 5.9 8.9 8.0 12.0 10.0 10.1 18.9 27.5 34.9 30.0 14.4 33 5.9 8.7 11.5 11.6 14.0 17.4 25.6 65.7 94.2 18.0 323 5.0 4.1 1.5 11.6 14.0 17.4 25.6 65.7 24.5 11.5 27.2 11.0 201 7.5 5.0 1.89 2.76 3.4 3.4 3.3 5.5 7.5 38.8 9.9 204 7.5 5.1 1.8 2.4 3.4 12.8 2.3 3.4 13.5 3.7 2.5 11.5 11.7 130 5.0 1.89 2.76 3.4 13.8 2.3 8 1.3 11.2 12.9 25.5 35.7 24.5 11.1 12.1 12.1 12.1 12.1 12.1 12.1 12	ν κ.	• ~•	٠	•	•	•	о.	1.		5	.α	• `	(
<pre>2.8 2.0 1.2 0.8 2.0 4.8 7.6 22.5 47.7 57.7 22.0 9.9 5.5 2.0 1.6 1.3 3.9 12.9 12.8 14.8 28.2 63.7 105.0 50.7 10.6 5.6 3.7 105.0 50.7 10.6 23.8 2.1 1.3 1.3 1.3 1.0 3.4 8.9 35.5 42.7 41.8 16.0 23.8 2.8 3.4 1.3 2.5 5.5 5.5 5.5 5.1 11.8 18.3 31.4 27.4 18.0 7.3 149. 4.8 4.2 5.5 5.5 5.5 5.5 5.1 12.8 18.3 31.4 27.4 18.0 7.3 149. 5.9 4.3 4.1 5.1 5.1 10.2 12.0 15.1 22.3 21.8 17.7 41.8 15.0 22.8 5.9 4.3 4.3 5.3 5.1 5.8 5.5 16.7 39.0 81.7 30.0 19.2 9.1 129. 5.9 4.3 4.7 5.1 10.2 12.0 15.1 22.3 21.8 17.7 41.8 16.7 22.8 5.9 4.3 4.7 5.1 10.2 12.0 15.1 22.3 21.8 17.7 41.8 16.7 22.9 5.9 4.3 4.7 5.1 10.2 12.0 15.1 22.3 21.8 17.7 41.8 16.7 22.9 5.9 4.3 4.7 5.1 10.2 12.0 15.1 22.3 21.8 17.6 8.7 19.2 9.1 129.7 7.9 6.4 6.9 7.0 9.0 12.1 12.2 27.7 41.5 47.8 21.6 5.3 11.9 2 9.1 127.7 7.9 6.4 6.9 7.0 9.0 12.1 12.2 2.8 7 41.5 47.8 21.6 5.3 11.9 2 9.1 137.7 7.9 6.4 6.9 7.0 9.0 12.1 12.2 2.8 7 41.5 77.8 111.1 12.1 27.7 7.5 5.5 5.7 9.1 10.0 12.1 12.2 2.8 7 41.5 77.8 111.1 12.1 27.7 7.5 5.6 5.9 7.0 9.0 12.1 12.5 2.8 7 44.7 8 21.6 5.1 10.0 20.1 14.9 7.5 5.6 5.9 11.5 11.0 11.1 12.8 27.5 35.5 50.5 22.2 10.0 29.1 137 7.5 5.6 5.7 0.400 5.1 11.2 12.9 27.5 35.5 50.5 22.2 10.0 29.1 137 7.5 5.6 5.7 0.401 0.600 0.714 0.555 0.435 0.435 0.435 0.441 0.441 0.379 0.560 0.461 0.600 0.714 0.555 0.435 0.435 0.435 0.441 0.441 0.379 0.560 0.461 0.600 0.714 0.555 0.435 0.435 0.435 0.441 0.441 0.379 0.560 0.461 0.600 0.714 0.555 0.435 0.435 0.435 0.441 0.441 0.379 0.550 0.461 0.500 0.714 0.555 0.435 0.435 0.435 0.441 0.441 0.379 0.550 0.461 0.500 0.714 0.555 0.435 0.435 0.334 0.356 0.441 0.441 0.379 0.550 0.461 0.500 0.714 0.555 0.435 0.435 0.435 0.441 0.441 0.379 0.550 0.461 0.500 0.714 0.550 0.435 0.435 0.436 0.344 0.374 0.379 0.550 0.461 0.500 0.714 0.550 0.435 0.435 0.436 0.344 0.374 0.379 0.550 0.461 0.500 0.714 0.550 0.435 0.435 0.438 0.334 0.367 0.441 0.441 0.379 0.550 0.461 0.500 0.714 0.550 0.435 0.435 0.438 0.334 0.374 0.374 0.379 0.550 0.461 0.500 0.714 0.550 0.435 0.435 0.438 0.344 0.374 0.410 0.374 0.379 0.550 0.441 0.440 0.500 0.714 0.550 0.435</pre>	2.8 2.0 1.2 0.8 2.0 u.8 7.6 22.5 47.7 57.7 22.0 0.4 2.1 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.4 5.9 2.0 1.0 2.0 2.1 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.4 1.5 3.4 5.6 5.7 7.7 2.2.0 0.4 5.9 2.1 1.3 1.3 1.3 1.3 1.3 1.5 3.4 5.6 5.1 10.5 5.7 7.4 5.9	- 5 - 5	ri.		٠	•		•	0	0	σ) a	•	; ;; (-; (
<pre>5.5 2.0 1.6 1.5 3.9 12.9 14.8 28.7 63.7 105.7 22.0 9.4 5.9 2.7 1.8 1.3 2.6 4.6 9.0 21.1 45.0 64.9 33.4 5.6 2.1 1.3 1.3 1.3 3.5 5.5 6.5 9.1 11.8 16.7 39.0 81.7 39.1 10.4 2.6 7.7 41.8 15.0 2.1 2.8 29.0 53.4 2.9 57.7 41.8 16.0 213 4.3 4.1 5.2 4.6 6.5 9.1 11.8 18.3 31.4 27.4 18.0 7.3 1149 5.5 4.1 5.2 5.5 5.5 6.5 9.1 11.8 18.3 31.4 27.4 18.0 7.3 1149 5.5 4.1 5.9 5.3 5.1 5.1 10.2 12.0 15.1 22.3 21.4 18.0 7.3 1149 5.9 4.3 4.1 5.2 4.6 6.5 10.8 12.8 29.0 531.4 2.4 18.0 7.3 1149 5.9 4.3 4.1 5.2 4.6 6.5 10.8 12.8 29.0 531.4 2.4 18.0 7.3 1149 5.9 4.3 5.1 10.2 12.0 15.1 22.3 21.6 17.6 8.7 5.8 1149 7.2 5.9 5.3 5.7 10.8 17.9 33.5 5.5 17.8 11.1 2000 7.3 5.9 5.0 5.9 5.8 5.1 10.2 12.0 15.1 22.3 21.6 11.7 5.8 1149 7.2 5.9 5.0 5.9 5.8 8.9 10.6 15.5 18.4 24.5 17.8 11.1 2000 7.5 5.9 5.0 8.8 8.9 10.0 10.1 12.0 12.2 22.5 50.7 94.2 41.0 18.0 320 7.5 5.6 5.9 8.8 8.9 10.0 10.1 12.0 12.9 27.5 50.8 11.5 2000 7.5 5.6 5.9 8.8 8.9 10.0 10.1 12.0 12.9 27.5 50.8 11.5 2000 7.5 5.0 4.1 4.5 8 9.4 12.8 23.5 50.5 20.1 10.0 14.0 17.4 25.6 11.3 7 3.7 50.8 11.1 2.44. 5.6 11.3 7 3.45 4.0 300 14.0 17.4 25.6 56.7 94.2 41.0 18.0 3000 1.200 1.600 0.714 0.506 0.435 0.435 0.431 0.441 0.441 0.370 0.300 0.451 0.600 0.714 0.506 0.435 0.435 0.334 0.334 0.350 0.441 0.441 0.370 0.300 0.451 0.600 0.714 0.506 0.435 0.435 0.334 0.334 0.334 0.370 0.300 0.451 0.600 0.714 0.506 0.435 0.435 0.334 0.334 0.300 0.441 0.441 0.370 0.300 0.451 0.600 0.714 0.506 0.435 0.435 0.334 0.334 0.300 0.441 0.441 0.370 0.300 0.451 0.600 0.714 0.506 0.435 0.435 0.334 0.334 0.300 0.441 0.370 0.300 0.451 0.600 0.714 0.506 0.435 0.435 0.334 0.334 0.350 0.441 0.370 0.300 0.451 0.600 0.714 0.506 0.445 0.334 0.334 0.334 0.300 0.441 0.370 0.300 0.451 0.600 0.714 0.506 0.435 0.435 0.334 0.334 0.500 0.441 0.370 0.300 0.451 0.500 0.435 0.435 0.334 0.334 0.300 0.441 0.370 0.370 0.300 0.451 0.301 0.500 0.435 0.435 0.334 0.334 0.300 0.441 0.370 0.370 0.301 0.451 0.301 0.301 0.301 0.301 0.301 0.401 0.401 0.370 0.302 0.451 0.301 0.300 0.435 0.435 0.334 0.334 0.300 0.441 0.370 0.370 0.300 0.441 0.370</pre>	<pre>3.5 2.0 1.6 1.5 3.9 12.9 14.8 28.2 53.7 105.0 22.0 9.4 180. 2.1 13 1.3 1.3 1.5 3.6 4.6 9.0 21.1 45.0 84.6 33.4 10.6 228 3.6 4.2 5.5 5.5 5.5 6.5 9.1 11.8 18.3 31.7 4 18.0 7.3 31.1 10.4 229. 4.8 4.2 5.5 5.5 5.5 6.5 9.1 11.8 18.3 31.4 27.4 18.0 7.3 31.1 10.4 229. 5.9 4.3 4.1 5.2 4.6 5.5 16.8 12.8 23.0 58.5 33.1 19.2 9.1 10.4 229. 5.9 4.3 4.1 5.2 4.6 5.5 16.8 12.8 23.0 58.5 33.1 19.2 9.1 204. 5.9 4.3 4.1 5.2 4.6 5.5 16.8 12.8 22.0 58.5 33.1 19.2 9.1 10.4 229. 5.9 4.3 4.1 5.2 4.6 5.5 16.8 12.8 22.6 58.5 39.1 19.2 9.1 204. 5.9 4.3 4.7 5.1 10.2 17.7 9.4 12.9 27.4 13.0 7.3 119.2 9.1 204. 5.9 5.9 5.9 5.9 5.9 5.8 5.7 19.4 12.9 27.4 15.8 17.6 38.7 19.2 9.1 204. 7.2 5.9 5.9 5.9 5.9 5.8 12.1 15.2 27.7 41.5 47.8 21.6 5.1 207. 7.2 5.9 5.9 5.9 5.9 5.8 12.1 15.2 27.7 41.5 47.8 21.6 5.1 200. 7.2 5.9 5.9 5.9 5.9 5.8 12.1 15.2 27.7 41.5 47.8 21.6 5.1 200. 7.2 5.9 5.9 5.9 5.9 5.8 10.0 10.1 12.9 22.5 34.2 30.0 14.9 21.6 22.1 33.7 5.5 5.5 22.2 100.0 10.1 28.9 27.5 34.2 30.0 14.9 200. 7.2 5.9 5.0 7.0 0.500 0.714 0.1574 22.5 34.2 35.7 25.8 11.1 2.217 1241. 5.0 4.1 4.5 8 0.4 0.9 10.0 10.1 128.9 27.5 34.2 41.0 110.0 124. 7.6 5.9 5.9 5.1 11.2 11.6 14.0 1774 25.6 56.7 94.1 0.441 0.444 10.0 10.1 244. 7.6 5.9 5.9 5.1 11.2 11.6 14.9 0.1774 25.5 34.5 50.5 27.2 100.0 104.4 10.144. 7.5 5.1 4.1 4.5 8 0.435 0.435 0.435 0.438 0.334 0.360 0.4441 0.444 10.379 35.7 3.75 0.360 0.481 0.600 0.714 0.556 0.435 0.438 0.334 0.360 0.4441.0 0.441 0.379 35.7 3.75 8.7 8.1 1.4 1.1 2.1 5.9 9.6 2.44 44.2 24.5 11.7 3.375 3.75 3.75 3.75 3.75 3.75 3.75 3</pre>	60 2.		•	•	•	4	· ·	c			0 c		000
5.5 2.7 1.8 1.3 2.6 4.6 7.9 2.1 45.0 10.6 238. 7.3 1.1 1.0 3.4 8.0 36.6 42.9 3.4 15.0 228. 4.8 4.2 5.5 5.2 5.5 8.9 14.3 16.7 39.1 10.4 5.2 226. 4.8 4.2 5.3 5.5 5.5 5.2 8.9 14.3 16.7 39.1 10.4 226. 4.8 4.5 5.3 5.1 5.5 7.7 9.4 13.9 5.1 19.2 9.1 20.2 226. 5.6 4.5 5.3 5.1 5.5 7.7 9.4 13.9 27.4 5.0 7.3 149. 226. 5.9 4.5 5.3 5.1 5.5 7.7 9.4 13.9 27.4 5.1 19.2 9.1 10.4 226. 5.9 4.5 5.3 5.1 5.5 7.7 9.4 13.9 27.4 5.1 19.2 9.1 10.4 226. 5.9 5.9 5.3 5.1 5.5 7.7 9.4 13.9 27.4 5.1 19.2 9.1 10.4 226. 5.9 5.9 5.3 5.1 5.5 7.7 9.4 13.9 27.4 5.1 19.2 9.1 10.4 200. 5.9 5.9 5.3 5.1 5.5 7.7 9.4 13.9 27.4 5.2 1.1 19.2 9.1 10.4 200. 5.9 5.9 5.3 5.1 10.2 12.0 15.1 12.2 3 21.6 17.6 8.7 5.1 19.2 9.1 10.4 200. 7.9 5.4 5.8 5.3 5.1 10.2 12.1 15.2 28.7 441.5 47.8 21.6 9.1 10.4 200. 7.5 5.5 5.9 5.0 5.1 11.2 12.1 15.2 28.7 441.5 47.8 21.6 9.2 204. 7.5 5.5 9.7 11.5 11.6 14.0 17.4 25.6 5.7 25.8 11.9 3.0 14.4 13.4 141. 5.0 4.1 1.2 11.6 14.0 17.4 25.6 5.7 25.8 11.9 11.1 1441. 5.0 4.1 2.0 1.89 2.76 3.14 3.45 4.09 5.61 7.94 11.0 13.4 14.1 1441. 5.0 0.461 0.600 0.714 0.599 0.403 0.438 0.434 0.441 0.441 0.441 0.379 5.0 0.461 0.600 0.714 0.599 0.433 0.433 0.436 0.441 0.441 0.3779 5.0 0.461 0.600 0.714 0.599 0.435 0.438 0.434 0.441 0.441 0.441 0.3779 5.1 5.2 5.2 5.4 7.9 11.9 12.1 5.1 2.4 41.2 49.7 2.4 9.0 0.379 5.2 5.5 5.2 5.4 7.9 11.9 0.379 5.2 5.5 5.2 5.4 7.9 11.0 0.379 5.2 5.5 5.2 5.4 11.0 0.379 5.3 5.7 5.4 14.2 49.7 2.4 9.0 0.379 5.4 5.5 5.2 5.4 14.1 0.379 5.5 5.5 5.7 5.8 9.9 0.400 0.714 0.559 0.433 0.441.2 49.7 2.4 9.0 0.379 5.5 5.5 5.5 5.4 11.0 0.379 5.5 5.5 5.4 11.0 0.304 5.6 5.4 7.9 11.0 0.304 5.6 5.4 7.9 11.4 14.8 2.0.4 41.2 49.7 2.4 9.0 0.304 5.7 5.5 5.7 2.4 11.0 0.379 5.6 5.4 7.9 11.4 14.8 2.0.4 41.2 2.4 11.0 0.379 5.7 5.5 5.7 2.4 11.0 0.379 5.8 5.5 5.7 2.4 11.0 0.379 5.9 5.5 5.7 2.4 11.0 0.379 5.9 5.5 5.7 2.4 11.0 0.379 5.0 5.6 5.4 4.4 4.5 5.6 1.4 4.5 5.6 1.4 10.0 10.7 10.0 10.7 10.0 10.1 10.0 10.0	<pre>5.9 2.7 1.8 1.3 2.6 4.6 2.9 2.1 45.0 80.7 10.6 238. 2.1 1.3 1.3 1.1 1.0 3.4 8.0 36.6 42.9 30.7 10.6 238. 4.8 4.2 5.5 5.5 6.5 2.8 8.9 14.3 16.7 39.0 81.7 39.1 10.4 5.9 238. 5.6 4.5 5.5 5.5 6.5 11.8 19.3 31.4 27.4 18.0 7.3 149. 5.6 4.5 5.3 5.1 5.5 7.7 9.4 13.9 25.5 39.1 19.2 9.1 200. 5.9 4.3 4.7 5.1 10.2 12.0 15.1 22.7 41.5 47.8 21.6 7.3 149. 7.9 5.9 3.9 3.3 7.5 10.8 17.9 11.1 22.7 41.5 47.8 21.6 5.9 238. 5.9 4.5 5.3 5.7 9.0 12.1 12.2 27.4 18.0 7.3 149. 7.9 5.4 4.5 5.3 17 9.2 2.7 41.5 47.8 21.6 7.3 149. 7.9 5.4 5.5 5.7 9.0 12.1 12.2 28.7 41.5 47.8 21.6 7.3 149. 7.9 5.9 5.9 5.9 5.8 5.8 10.6 15.5 18.4 24.5 17.8 11.1 12.1 141. 7.5 5.6 5.9 8.8 10.6 12.1 15.2 28.7 44.5 17.8 11.1 14.4 337. 7.5 5.6 9.7 11.5 11.6 14.0 17.4 12.8 28.4 4.5 17.8 11.1 14.4 243. 7.5 5.6 9.7 11.5 11.6 14.0 17.4 12.8 28.4 9.4 24.5 17.8 11.1 14.4 243. 7.5 5.6 9.7 11.5 11.6 14.0 17.4 12.8 28.4 9.4 24.5 11.3 2.7 14.9 37.9 134. 7.5 5.6 9.7 11.5 11.6 14.0 17.4 12.8 23.5 50.5 22.2 10.0 14.9 323. 5.0 4.1 4.6 7 0.600 0.714 0.595 0.435 0.435 0.334 0.360 0.441 0.441 0.379 0.324. 5.0 1.89 2.76 3.14 3.45 4.09 5.61 7.94 15.8 24.56 11.37 3.75 10.0 14.9 0.379 0.360 0.441 0.441 0.379 0.379 0.360 0.441 0.441 0.379 0.379 0.360 0.441 0.441 0.441 0.379 0.379 0.360 0.441 0.441 0.441 0.379 0.376 0.461 0.600 0.714 0.595 0.435 0.435 0.438 0.334 0.356 0.441 0.441 0.441 0.379 0.376 0.461 0.441 0</pre>	61 S.	2.		•		c	•	, v c	- t • (N.	י הכ	80 .
2.1 1.3 1.3 1.4 2.0 2.4 2.0 2.4.1 45.0 84.9 33.4 5.9 218. 4.8 4.2 5.5 5.5 5.5 6.5 9.1 11.8 18.3 31.4 27.4 18.0 7.3 192 4.8 4.1 5.3 5.1 5.5 6.5 9.1 11.8 18.3 31.4 27.4 18.0 7.3 192 5.6 4.5 5.5 5.5 6.5 9.1 11.8 18.3 31.4 27.4 18.0 7.3 192 5.6 4.5 5.3 5.1 10.5 17.7 9.4 13.9 27.4 18.0 7.3 199 6.1 5.9 5.3 5.1 10.5 17.7 9.4 13.9 27.4 18.0 7.3 199 6.1 5.9 5.3 5.7 10.8 17.9 33.5 45.2 81.2 78.1 30.0 14.4 13.0 7.9 5.9 5.3 5.9 6.3 6.7 10.8 17.9 33.5 45.2 81.2 78.1 30.0 14.4 13.0 7.9 5.9 5.3 5.9 7.0 9.0 12.1 15.2 22.8 81.2 78.1 30.0 14.4 13.0 7.9 5.9 5.9 5.9 5.9 5.9 8.9 11.2 12.2 22.4 41.5 47.5 8.1 30.0 14.4 13.0 7.9 5.9 5.9 5.9 5.9 8.1 8.9 11.2 12.2 22.8 81.2 78.1 30.0 14.4 13.0 7.9 5.9 5.0 5.0 8.0 8.1 8.1 11.2 12.9 22.5 38.5 50.0 14.4 10.1 11.1 14.1 14.1 7.5 5.6 5.9 11.6 14.0 17.4 25.6 56.7 94.5 11.3 7 3.7 13.7 13.7 13.7 13.7 13.7 13.	2.1 1.3 1.3 1.3 1.4 2.0 3.4 4.0 24.1 45.0 54.9 33.4 5.9 218 4.8 4.1 5.5 5.5 5.5 5.5 5.5 5.1 8.9 31.4 27.4 18.0 7.3 1429 4.8 4.1 5.2 4.5 5.1 5.5 5.1 11.8 18.3 31.4 27.4 18.0 7.3 1492 5.6 4.5 5.3 5.5 5.5 5.5 5.1 10.2 12.0 58.5 39.1 19.2 9.1 7.3 1492 5.9 4.3 4.7 5.1 10.2 12.0 15.1 22.3 27.8 17.6 30.1 19.2 9.1 202 5.9 4.3 4.7 5.1 10.2 12.0 15.1 22.3 27.8 17.6 30.1 19.2 9.1 202 5.9 4.3 4.7 5.1 10.2 12.0 15.1 22.3 27.8 17.6 30.1 19.2 9.1 202 5.9 4.3 5.3 5.3 5.7 3.8 7.6 19.1 22.3 27.8 17.6 30.0 14.4 337 7.9 5.9 5.9 5.9 5.9 5.0 9.0 12.1 12.2 12.2 41.5 47.8 21.6 9.2 9.7 1267 7.2 5.3 5.9 5.9 8.8 8.9 10.6 15.1 12.2 7 41.5 47.8 21.6 9.2 104 7.5 5.5 9.7 11.5 11.6 11.0 10.1 18.9 27.5 34.8 35.0 14.4 337 7.5 5.5 9.7 11.5 11.6 14.0 10.1 18.9 27.5 34.8 35.0 14.9 11.1 14.1 14.1 5.6 5.9 4.1 0.600 0.714 0.595 0.435 0.435 0.441 0.441 0.141 0.141 0.141 0.360 0.441 0.600 0.714 0.595 0.435 0.436 0.441 0.441 0.141 0.1379 before 1964 5.0 4.1 1.1 2.1 5.9 9.6 24.4 46.9 66.0 27.4 8.0 19.7 19.7 19.7 5.9 5.1 5.2 5.4 7.9 11.4 14.8 23.4 41.2 49.7 24.9 11.0 0.379 before 1864 5.6 5.4 7.9 11.4 14.8 23.4 41.2 24.9 10.0 10.1 19.0 10.1 18.0 0.371 5.6 5.7 5.4 11.2 11.4 14.8 23.4 41.2 24.9 10.0 10.1 19.0 10.1 19.0 10.1 19.0 10.1 10.0 10.1 10.0 10.1 10.0 10.1 18.0 0.375 5.6 5.1 4.1 5.8 5.4 5.1 0.600 0.714 0.595 0.435 0.435 0.441 0.441 0.441 0.0 10.1 19.0 10.1 10.0 10.1 10.0 10.1 10.0 10.1 18.0 0.375 5.6 5.7 5.8 11.4 14.8 23.4 41.2 49.7 24.9 11.0 2.0 208. 508. 508. 508. 508. 508. 508. 508. 5	62 5.	с		•	•		; (. o		65	0	0.	98 .
3.6 3.4 3.3 3.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	<pre>3.6 3.4 3.3 4.5 1.6 1.0 3.4 8.0 36.6 42.9 57.7 41.8 16.0 213. 4.8 4.2 5.5 5.5 5.5 8.9 1.8 18.7 39.0 19.0 7.3 149. 5.6 4.5 5.5 5.5 5.5 16.8 12.8 29.0 53.5 39.1 19.0 7.3 149. 5.6 4.9 5.3 5.1 5.5 7.7 9.4 13.9 27.4 53.7 19.2 9.1 200 5.6 4.9 5.3 5.1 5.5 7.7 9.4 13.9 27.4 53.7 19.2 9.1 200 6.1 5.9 5.3 5.1 10.2 12.0 15.1 22.7 41.5 71.6 8.7 5.8 134. 7.9 6.4 5.9 5.3 6.7 10.2 17.9 33.5 46.2 741.5 71.6 8.7 5.8 134. 7.2 6.1 5.9 6.3 6.7 10.2 17.9 33.5 46.2 741.5 71.6 8.7 5.8 134. 7.2 6.1 5.9 6.3 6.7 10.2 17.9 33.5 46.2 741.5 71.8 11.1 10.1 203 7.2 6.9 5.9 6.8 8.8 9.3 10.9 10.6 16.5 18.4 24.5 17.8 111.1 1441 5.6 5.9 8.8 9.3 10.9 10.0 10.1 12.1 22.7 41.5 72.7 14.6 8.7 25.8 11.3 7.5 6.5 9.9 8.8 9.3 10.9 10.0 10.1 12.1 25.6 5.7 25.8 11.3 7.5 6.5 9.9 8.8 9.3 10.9 10.0 10.1 21.8 27.5 5.6 11.3 73.0 14.4 33.7 7.5 6.5 9.9 2.7 8 0.4 12.8 23.8 43.3 55.7 25.8 11.1 1441 7.5 6.5 9.1 11.2 11.6 14.0 17.4 25.6 66.7 94.2 01.0 130. 7.6 1.89 2.76 3.14 3.45 4.09 5.61 7.94 15.8 20.5 11.37 3.75 10.0 0.140 0.714 0.599 0.435 0.438 0.344 0.441 0.441 0.379 10.41 0.379 10.41 0.441 0.379 10.45 0.600 0.714 0.599 0.435 0.438 0.344 0.441 0.441 0.379 10.41 0.441 0.379 10.45 1.41 1.1 2.1 5.9 9.6 0.314 0.441 0.441 0.471 0.441 0.379 5.9 5.9 5.2 5.1 1.9 14.0 2.74 10.0 0.379 10.45 5.9 5.9 5.9 5.9 5.0 1.49.7 24.9 11.0 2.08. 5.9 5.9 5.9 5.9 5.9 5.0 1441 0.471 0.471 0.441 0.471 0.441 0.471 0.441 0.471 0.441 0.471 0.441 0.441 0.471 0.441 0.441 0.471 0.471 0.471 0.471 0.471 0.441 0.441 0.471 0.441 0.47</pre>	03	• •	•	•	•		•	• - • •	ۍ ک	1	പ്		00 00
<pre>4.8 4.2 5.5 5.5 5.5 5.5 5.5 10.2 12.0 11.0 200 11.7 39.1 10.4 4.3 4.1 5.5 5.5 5.5 5.5 5.5 10.2 12.0 12.1 10.4 11.0 20 5.6 4.5 5.3 5.1 5.5 7.7 9.4 13.0 81.7 39.1 19.2 9.1 200 5.6 4.5 5.3 5.1 5.5 7.7 9.4 13.0 27.4 18.0 7.3 149. 5.9 4.3 4.7 5.1 10.2 12.0 15.1 22.3 21.8 17.6 8.7 5.8 124 6.1 5.9 5.3 5.9 5.3 6.7 10.2 12.0 15.1 22.3 21.8 17.6 8.7 5.8 124 7.9 6.4 5.9 7.0 9.2 12.0 15.1 22.3 21.8 17.6 8.7 5.8 124 7.2 6.9 7.0 9.1 11.2 15.2 28.7 441.5 47.8 21.6 5.2 184 7.2 6.9 8.9 8.1 11.2 15.2 28.7 441.5 47.8 21.6 5.2 184 7.2 6.9 8.9 8.1 11.2 12.5 28.7 441.8 11.1 1411.1 5.9 5.0 8.0 8.1 8.1 11.2 12.9 28.7 441.8 11.3 30.0 14.4 337 7.5 5.5 9.7 11.5 11.6 14.0 17.4 25.6 56.7 94.2 41.0 18.0 201 7.5 5.5 9.7 5.8 9.4 12.8 23.8 43.3 55.7 25.8 11.5 201 7.6 1.6 1.4 5.9 5.0 10.0 10.1 18.9 27.5 34.9 36.0 14.9 14.1 201 7.5 5.6 0.451 0.500 0.714 0.555 0.435 0.435 0.431 0.441 0.441 0.379 0.360 0.451 0.500 0.714 0.565 0.435 0.433 0.334 0.356 0.441 0.441 0.379 0.50 0.451 0.500 0.714 0.565 0.435 0.433 0.334 0.356 0.441 0.441 0.379 0.504 5.9 5.4 14 1.1 2.1 5.9 9.6 24.4 46.9 66.0 27.4 8.0 197 7.7 5.4 5.4 5.4 7.9 11.4 14.8 23.4 41.2 49.7 24.9 11.0 2.308 0.441 0.441 0.379 0.566 0.451 0.500 0.714 0.555 0.435 0.435 0.441 0.441.0 0.379 0.504 5.6 5.4 7.9 11.4 1.4 2.1 2.1 2.1 2.9 9.6 0.0 27.4 8.0 197 7.7 5.5 5.5 5.7 24.9 11.0 0.379 7.7 5.5 5.6 5.4 7.9 11.4 14.8 23.4 41.2 49.7 24.9 11.0 2.308 0.441 0.441 0.379 7.7 7.4 7.9 11.0 2.0 208 7.4 7.4 7.9 11.0 2.0 2.041 0.308 7.4 41.2 49.7 24.9 11.0 2.084 7.4 7.4 7.4 11.0 2.0 2.041 0.308 7.4 7.4 7.4 11.0 2.0 2.041 0.308 7.4 41.2 49.7 24.9 11.0 2.308 7.4 41.2 49.7 24.9 11.0 2.318 7.4 41.2 49.7 24.9 11.0 2.318 7.4 41.2 49.7 24.9 11.0 2.318 7.4 41.2 49.7 24.9 11.0 2.308 7.4 41.2 49.7 24.9 11.0 2.318 7.4 41.2 49.7</pre>	<pre>4.8 4.2 5.5 5.5 5.5 6.5 16.8 14.3 16.7 39.0 81.7 39.1 10.4 226 4.3 4.1 5.2 5.5 5.5 5.5 6.5 16.8 11.8 18.3 31.4 27.4 18.0 7.3 149. 5.6 4.5 5.3 5.1 5.5 7.7 9.4 13.9 0.58.5 39.1 19.2 9.1 207 5.9 4.3 4.1 5.1 10.2 12.0 15.1 22.3 21.8 17.6 8.7 6.8 144. 6.1 5.9 5.3 5.7 7 9.4 13.9 25.5 39.1 19.2 9.1 167. 7.9 6.4 6.9 7.0 9.1 7.9 33.5 45.2 81.2 7.8 13.0 0 14.4 337 7.2 5.3 5.9 6.8 8.9 17.6 12.1 12.2 78.1 30.0 14.4 337 7.2 5.9 5.0 8.1 8.1 11.2 12.2 28.7 41.5 47.8 21.6 9.2 184. 7.2 5.9 5.0 8.0 8.1 81 11.2 12.2 28.7 44.7 25.8 11.1 141.1 141.1 5.9 5.0 4.1 1.5 11.6 14.0 17.4 25.6 66.7 94.2 41.0 18.0 323. 7.5 5.6 9.7 11.5 11.6 14.0 17.4 25.6 66.7 94.2 41.0 18.0 323. 7.5 5.6 9.7 11.5 11.6 14.0 17.4 25.6 66.7 94.2 41.0 18.0 323. 7.6 4.1 2.6 2.7 31.4 32.6 0.435 0.435 0.435 0.431 0.360 0.441 0.377 7.5 5.6 1.4 1.1 2.1 5.9 5.6 7.9 0.334 0.360 0.441 0.441 0.377 7.5 5.6 1.4 1.1 2.1 5.9 9.6 24.4 46.9 66.0 27.4 8.0 14.9 7.5 5.7 5.1 1.4 1.1 2.1 5.9 9.6 24.4 41.2 49.7 24.9 11.0 208. 8.6 5.7 5.8 1.4 1.0 1.7 4 14.8 23.4 41.2 49.7 24.9 11.0 208. 8.6 5.7 5.8 5.8 5.9 5.8 10.4 10.0 27.4 4.0 27.4 5.8 5.0 5.7 25.8 5</pre>	9 4 0 9 4 9 6	i 0	•	۰.			÷	ů.	N.	2	, _i	ю. Ю	ෆ
w.z.	<pre> the set of the set of set o</pre>	•	• > :	•		•			ю.	თ		<u></u> ,	0	0 0
5.6 4.1 5.7 9.4 13.9 27.4 53.7 19.2 9.1 206 5.9 4.3 5.1 5.5 7.7 9.4 13.9 27.4 53.7 19.2 9.1 206 5.9 4.3 5.1 5.5 7.7 9.4 13.9 27.4 53.7 19.2 9.7 5.6 6.1 5.9 5.3 5.1 10.2 12.0 15.1 22.7 47.8 21.6 5.7 5.1 10.2 134. 7.9 6.4 6.9 7.0 9.0 12.1 122.7 41.4 8.7 5.8 134. 7.5 6.4 6.9 7.0 9.0 12.1 12.2 78.1 11.6 14.1 206 7.2 5.3 5.9 5.0 8.1 10.6 16.1 11.2 12.6 18.1 24.5 11.1 14.1 5.6 5.3 5.1 18.4 24.5 11.1 14.1 204 7.5 6.4 11.6 17.4 12.8	5.6 4.4 5.5 5.1 5.5 5.5 5.1 5.5 5.5 5.8 134 7.9 6.4 6.9 7.0 9.0 12.1 15.2 28.7 44.8 46.7 25.8 11.1 141.1 7.5 6.5 6.7 10.6 10.0 10.1 18.9 27.5 34.1 24.5 11.1 141.2 57.5 5.0 5.0 5.1 11.2 11.2 12.1 12.2	t = 5 @	; :	•	•		0	ا- ا	÷	- -	5	თ	(~-	, σ 1 :1
5.9 4.3 5.1 5.5 7.7 9.4 13.9 27.4 53.7 19.4 13.9 27.4 53.7 19.4 13.4 6.1 5.3 5.1 5.5 7.7 9.4 13.8 7.6 13.4 6.1 5.9 6.3 5.7 10.2 12.0 15.1 22.3 21.8 17.6 8.7 5.8 7.9 6.4 6.9 7.0 0.2 12.1 22.7 44.1 8.7 5.8 7.2 6.4 6.9 7.0 12.1 15.5 28.7 44.6 75.6 9.7 134.1 7.2 5.3 5.9 5.0 5.1 8.1 134.1 141.1 5.9 5.0 5.1 11.2 11.2 12.9 28.7 44.7 56.8 11.1 5.0 4.1 11.2 12.9 12.1 12.1 12.1 141.2 141.2 141.2 5.6 5.6 5.6 5.6 5.6 5.7 25.8 194.1 5.0 1.88 </td <td>5.9 4.3 5.1 5.5 7.7 9.4 13.9 27.4 53.7 19.2 9.7 15.1 4.9 3.3 3.7 5.1 5.5 7.6 11.1 12.3 21.6 13.7 5.8 13.4 6.1 5.9 6.3 5.7 10.2 12.1 22.3 21.6 17.6 8.7 5.8 7.1 6.4 6.9 5.9 5.8 7.6 12.1 22.7 47.8 21.6 5.7 134.1 7.2 5.9 5.0 5.1 5.1 5.1 5.1 46.7 5.8 11.1 11.2 12.1 12.1 14.1 337.1 141.1 337.1 141.1 337.1 141.1 141.1 141.1 141.1 141.1 141.1 141.1 141.1 141.1 141.1 141.1 141.1 141.1 141.1 141.1 141.1 141.1 141.1 144.1 144.1 144.1 144.1 144.1 144.1 144.1 144.1 144.1 144.1 144.1 144.1 144.1 <</td> <td>יין סרי</td> <td>, ; ;</td> <td>•</td> <td></td> <td></td> <td>ŵ</td> <td>3</td> <td>сn</td> <td>ŵ</td> <td>0</td> <td>თ</td> <td></td> <td></td>	5.9 4.3 5.1 5.5 7.7 9.4 13.9 27.4 53.7 19.2 9.7 15.1 4.9 3.3 3.7 5.1 5.5 7.6 11.1 12.3 21.6 13.7 5.8 13.4 6.1 5.9 6.3 5.7 10.2 12.1 22.3 21.6 17.6 8.7 5.8 7.1 6.4 6.9 5.9 5.8 7.6 12.1 22.7 47.8 21.6 5.7 134.1 7.2 5.9 5.0 5.1 5.1 5.1 5.1 46.7 5.8 11.1 11.2 12.1 12.1 14.1 337.1 141.1 337.1 141.1 337.1 141.1 141.1 141.1 141.1 141.1 141.1 141.1 141.1 141.1 141.1 141.1 141.1 141.1 141.1 141.1 141.1 141.1 141.1 144.1 144.1 144.1 144.1 144.1 144.1 144.1 144.1 144.1 144.1 144.1 144.1 144.1 <	יין סרי	, ; ;	•			ŵ	3	сn	ŵ	0	თ		
30. 9.3 4.3 4.7 5.1 10.2 12.0 15.1 22.3 21.6 17.6 8.7 5.8 134.1 70 6.1 5.9 6.3 6.7 10.8 17.6 14.1 22.7 47.8 21.6 5.2 184.1 71 7.9 6.4 6.9 7.0 9.0 12.1 15.2 281.2 78.1 337.1 72 7.3 5.9 5.3 5.9 5.0 9.0 12.1 15.2 28.7 44.8 46.7 25.8 14.4 72 5.3 5.9 5.0 5.0 5.0 5.1 11.1 141.1 7 5 5.5 5.5 5.1 10.2 12.1 15.2 28.7 44.5 21.6 9.2 20.1 7 5 5.0 5.0 5.0 5.1 11.1 141.1 7 5 5.5 5.5 5.1 12.2 10.0 194.1 7 5 5.5 5.5 5.5 5.5 5.2	7.9 4.3 4.7 5.1 10.2 12.0 15.1 22.3 21.6 8.7 5.8 134. 7.9 5.9 5.3 7.5 14.1 22.7 41.5 47.8 21.6 5.2 184. 7.9 5.4 5.3 5.7 3.8 7.6 14.1 22.7 41.5 47.8 21.6 5.2 184. 7.2 5.4 5.3 5.7 3.1 5.2 28.7 44.8 46.7 25.8 11.5 222.2 28.7 44.8 46.7 36.7 34.1 37.7 37.5 37.5 36.5 36.1 144.4 37.7 37.9 37.7 37.9 37.7 37.9 37.7 37.9		י ד ד	•	•	Ю	1.	•	со	4.	ന	ം ഗ	i i e	
4.4 3.5 3.7 3.8 7.6 14.1 22.7 41.5 47.8 21.6 5.2 14.4 6.1 5.9 5.3 6.7 10.8 17.9 33.5 46.2 81.2 781.3 30.0 14.4 33.7 7.2 6.4 6.9 7.0 9.0 12.1 15.2 28.7 44.8 46.7 25.6 11.5 222.7 7.2 6.4 6.9 5.0 9.0 12.1 15.2 28.7 44.8 46.7 25.6 11.1 7.2 6.4 6.9 5.1 15.5 18.4 24.5 11.1 141. 5.6 5.9 5.0 5.1 44.0 17.4 25.6 14.9 323. 5.0 4.1 5.8 9.4 12.8 27.5 34.8 35.7 20.1 5.0 1.89 2.76 5.14 12.8 2.76 5.19 194. 5.0 1.89 2.76 5.11 2.55 34.8 3.75 204. 5.0 <	4.9 3.5 3.7 3.8 7.6 14.1 22.7 41.5 47.8 21.6 5.2 28.1 7.9 6.4 6.9 7.0 9.0 12.1 15.2 28.7 44.8 46.7 25.8 11.1 7.2 6.1 5.9 6.3 6.7 0.0 12.1 15.2 28.7 44.8 46.7 25.6 11.1 141.8 7.2 6.3 5.9 6.0 8.0 8.9 10.6 16.5 18.4 24.5 17.8 11.1 5.9 5.0 8.3 8.9 10.6 10.1 18.9 27.5 34.8 35.0 144.9 5.6 5.1 4.1 2.5 34.8 35.0 14.9 323. 5.0 4.1 4.5 5.6 5.1 27.5 34.8 35.0 144.9 323. 5.0 4.2 5.5 5.6 5.7 5.8 4.9 204. 5.0 1.88 2.76 3.14 2.75 34.8 35.7 25.8 2.4<		j (۰.		0	à	ئ	~	rt	5	œ		2 2
6.4 5.9 6.7 10.8 17.9 33.5 45.2 81.2 78.1 30.0 14.4 7.9 6.4 6.9 7.0 9.0 12.1 15.2 28.7 44.6 7.5 31.5 7.2 5.3 5.9 6.8 6.8 6.8 8.9 10.6 16.5 18.4 24.5 17.8 11.1 5.9 5.0 8.0 10.6 16.5 18.4 24.5 17.8 11.1 5.0 8.1 11.2 12.9 22.5 36.5 50.5 22.2 10.0 7.5 5.6 5.7 24.8 36.0 14.9 379. 7.5 5.6 5.1 17.4 25.6 56.7 94.2 10.0 5.0 4.1 25.6 56.7 94.2 41.0 180.0 329. 5.0 4.24 5.6 5.7 25.8 41.0 184.0 375. 5.0 1.89 2.76 5.14 12.8 2.44.1 14.5 375. 5.0	6.1 5.9 5.3 6.7 10.8 17.9 33.5 46.2 81.2 78.1 30.0 14.4 337. 7.9 6.4 5.9 5.3 6.7 9.0 12.1 15.2 28.7 44.8 46.7 25.8 11.1 141.4 7.2 5.9 5.9 5.8 6.9 10.6 16.5 18.4 24.5 11.1 141.2 5.9 5.0 5.1 8.1 11.2 12.2 22.5 36.5 50.5 22.2 10.0 201.0 5.6 5.7 5.1 8.1 11.2 12.1 23.5 36.5 10.0 14.0 201.0 201.0 5.0 4.1 4.1 25.6 5.7 34.8 36.0 14.9 201.0 201.0 5.0 4.1 25.6 5.1 14.0 17.4 25.6 204.1 204.1 5.0 1.89 2.76 5.11 5.1 7.94 15.5 204.1 204.1 5.0 1.89 2.7.9 5.1 2.94<		ni i						~		~	, , ,	•	
7.9 6.4 5.9 7.0 9.0 12.1 15.2 28.7 44.8 45.7 25.6 11.1 7.2 5.3 5.9 5.6 5.8 5.8 10.6 16.5 18.4 24.5 17.8 11.1 5.9 5.0 5.0 5.0 5.1 8.1 11.2 12.9 22.5 35.5 50.5 22.2 10.0 7.5 5.5 9.7 11.5 11.6 14.0 17.4 25.6 56.7 94.2 41.0 18.0 323. 5.0 4.1 4.5 4.4 5.8 9.4 12.8 23.8 43.3 55.7 25.8 9.9 204. 5.0 4.1 4.5 3.14 3.45 4.09 5.61 7.94 15.58 24.56 11.37 3.75 0.360 0.461 0.600 0.714 0.595 0.435 0.438 0.334 0.350 0.441 0.441 0.379 before 1964 3.2 1.8 1.4 1.1 2.1 5.9 9.6 24.4 46.9 66.0 27.4 8.0 197. 5.9 5.6 5.4 7.9 11.4 14.8 23.4 41.2 49.7 24.9 11.0 208.	7.9 6.4 6.9 7.0 9.0 12.1 15.2 28.7 44.8 46.7 25.8 11.5 222. 7.2 5.3 5.9 6.8 6.8 8.9 10.6 16.5 18.4 24.5 17.8 11.1 5.9 5.0 8.0 8.1 8.1 11.2 12.9 22.5 35.5 50.5 22.2 10.0 201. 5.6 5.9 8.8 9.3 10.9 10.0 10.1 18.9 27.5 34.8 36.0 14.9 194. 7.5 5.5 5.7 21.6 14.0 17.4 25.6 56.7 94.2 41.0 18.0 323. 5.0 4.1 4.5 11.6 14.0 17.4 25.6 56.7 94.2 41.0 18.0 323. 5.0 4.1 4.5 3.14 3.45 4.03 5.61 7.94 15.58 24.56 11.37 3.75 0.360 0.461 0.600 0.714 0.593 0.435 0.438 0.334 0.360 0.441 0.441 0.379 before 1964 3.2 1.4 1.1 2.1 5.9 9.6 24.4 46.9 66.0 27.4 8.0 197. after 1964 5.9 5.2 5.2 5.4 7.9 11.4 14.8 23.4 41.2 49.7 24.9 11.0 208. Note: X - Mean S - Standard Deviation Source: Hydrology Division Dougl Training	. o.	, ທີ		•	់	5	ന	ю 10		α	ic	• • -:	, 1 (0 (
7.2 5.3 5.9 5.8 5.8 5.8 8.9 10.6 15.5 13.4 24.5 17.8 11.1 141. 5.9 5.0 8.0 8.1 8.1 11.2 12.9 22.5 35.5 50.5 22.2 10.0 201. 7.5 5.6 5.9 8.8 9.3 10.9 10.0 10.1 18.9 27.5 34.8 36.0 14.9 10.1 201. 7.5 5.6 5.9 8.8 9.3 10.9 10.0 17.4 25.6 56.7 94.2 41.0 18.0 323. 5.0 4.1 2.5 3.14 3.45 4.09 5.61 7.94 15.58 24.56 11.37 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3	7.2 5.3 5.9 5.8 6.8 8.9 10.6 15.5 18.4 24.5 17.8 11.1 141. 5.9 5.0 5.0 5.0 5.1 8.1 11.2 12.9 22.5 35.5 50.5 22.2 10.0 201. 5.6 5.9 8.8 9.3 10.9 10.0 10.1 18.9 27.5 34.8 36.0 14.9 194. 7.5 5.5 5.5 5.7 11.5 11.6 14.0 17.4 25.6 56.7 94.2 41.0 18.0 323. 5.0 4.1 4.5 4.4 5.8 9.4 12.8 23.8 43.3 55.7 25.8 9.9 204. 1.80 2.89 2.76 3.14 3.46 4.09 5.61 7.94 15.58 24.56 11.37 3.75 0.360 0.461 0.600 0.714 0.596 0.435 0.438 0.334 0.360 0.441 0.441 0.379 before 1964 3.2 1.8 1.4 1.1 2.1 5.9 9.6 24.4 46.9 66.0 27.4 8.0 197. 5.9 5.2 5.2 5.4 7.9 11.4 14.8 23.4 41.2 49.7 24.9 11.0 208. Note: X - Mean S - Standard Deviation Source: Evolution Date Transform	1. 7.	ۍ ۵			÷	2	.0	ő	.: 1	, i	i bu	i Far	-
5.9 5.0 5.0 5.0 5.0 5.1 8.1 11.2 12.9 22.5 55.5 50.5 22.2 10.0 201. 5.6 5.9 8.8 9.3 10.9 10.0 10.1 18.9 27.5 34.8 36.0 14.9 194. 7.5 5.6 5.7 11.5 11.6 14.0 17.4 25.6 56.7 94.2 41.0 18.0 323. 5.0 4.1 4.5 4.4 5.8 9.4 12.8 23.8 43.3 55.7 25.8 9.9 204. 1.60 1.89 2.76 3.14 3.45 4.09 5.61 7.94 15.58 24.56 11.37 3.75 3.75 0.360 0.461 0.600 0.714 0.595 0.435 0.438 0.334 0.360 0.441 0.441 0.379 before 1964 3.2 1.4 1.1 2.1 5.9 9.6 24.4 46.9 66.0 27.4 8.0 197. after 1964 5.9 5.2 5.4 7.9 11.4 14.8 23.4 41.2 49.7 24.9 11.0 208.	5.9 5.0 5.0 5.1 8.1 11.2 12.9 22.5 5.5 5.5 5.7 11.5 11.6 14.0 10.1 18.9 27.5 34.8 35.0 14.9 10.0 201. 7.5 5.5 5.5 5.7 11.5 11.6 14.0 17.4 25.6 55.7 94.2 41.0 18.0 323. 5.0 4.1 2.5 3.14 3.45 4.09 5.61 7.94 15.58 24.56 11.37 3.75 3.75 3.75 1.37 3.75 3.75 3.75 3.75 3.75 3.75 3.74 15.58 24.56 11.37 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3	72 7.	ю.			•	ŝ	ő		. α	,) .;	; r	- - 1 -	
5.6 5.3 8.8 9.3 10.9 10.0 201. 22.2 10.0 201. 7.5 5.5 5.5 5.7 11.5 11.6 14.0 17.4 25.6 56.7 94.2 41.0 18.0 323. 5.0 4.1 2.16 11.6 14.0 17.4 25.6 56.7 94.2 41.0 18.0 323. 5.0 4.1 2.76 3.14 3.45 4.0 17.4 25.8 9.4 375 34.9 375 1.80 2.76 3.14 3.45 4.03 23.8 43.3 55.7 25.8 9.9 323. 0.360 0.461 0.600 0.714 0.595 0.435 0.435 204.5 11.37 3.75 204. before 1964 3.2 1.4 15.5 24.4 46.9 66.0 27.4 204. 3.2 1.4 1.1 2.1 5.9 5.4 46.9 66.0 27.4 204. 3.2 1.4 1.4 1.4 1.4 <	5.6 5.9 8.8 9.3 10.0 10.1 18.9 27.5 34.8 36.0 14.9 194. 7.5 5.5 5.5 5.7 11.5 11.6 14.0 17.4 25.6 56.7 94.2 41.0 18.0 323. 5.0 4.1 2.6 3.4 25.6 56.7 94.2 41.0 18.0 323. 5.0 4.1 2.6 3.14 3.45 4.03 5.61 7.94 15.5 24.2 41.0 18.0 323. 1.60 1.89 2.76 3.14 3.45 4.03 5.61 7.94 15.58 24.56 11.37 3.75 0.360 0.461 0.600 0.714 0.595 0.435 0.344 0.360 0.441 0.379 before 1964 3.2 1.4 1.1 2.1 5.9 5.4 4.6 6.0 27.4 8.0 197. 3.2 1.8 1.4 16.5 5.4 4.6 66.0 27.4 8.0 197. 3.2	73 5.	ம்						ċċ	• 5 0	; (÷	
7.5 5.6 5.7 11.5 11.6 14.0 17.4 25.6 56.7 34.8 36.0 14.9 134. 5.0 4.1 2.5 4.6 4.4 5.8 9.4 12.8 23.8 43.3 55.7 25.8 9.9 204. 1.60 1.89 2.76 3.14 3.46 4.09 5.61 7.94 15.58 24.56 11.37 3.75 0.360 0.451 0.600 0.714 0.595 0.435 0.438 0.334 0.360 0.441 0.441 0.379 before 1964 3.2 1.8 1.4 1.1 2.1 5.9 9.6 24.4 46.9 66.0 27.4 8.0 197. 5.9 5.2 5.2 5.4 7.9 11.4 14.8 23.4 41.2 49.7 24.9 11.0 208.	7.5 5.5 9.7 11.5 11.6 14.0 17.4 25.6 56.7 34.8 36.0 14.9 194. 5.0 4.1 4.5 4.4 5.8 9.4 12.8 23.8 43.3 55.7 25.8 9.9 323. 1.60 1.89 2.76 3.14 3.45 4.09 5.61 7.94 15.58 24.56 11.37 3.75 0.360 0.461 0.600 0.714 0.595 0.435 0.438 0.334 0.360 0.441 0.441 0.379 before 1964 after 1964 3.2 1.8 1.4 1.1 2.1 5.9 9.6 24.4 46.9 66.0 27.4 8.0 197. After 2964 5.9 5.2 5.2 5.4 7.9 11.4 14.8 23.4 41.2 49.7 24.9 11.0 208. Note: X - Mean S - Standard Deviation Source: Hydrology Division board Traination	74 5.	م			, c	ic	, , (, v c		5.	Ň	0	d B
5.0 4.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 3.2 3.2 1.60 1.89 2.7 3.1 3.4 12.8 23.8 43.3 55.7 25.8 9.9 2.04 1.60 1.89 2.7 3.1 3.4 3.4 12.8 2.4 5.5 2.4 5.5 2.7 3.75 2.04 0.360 0.461 0.600 0.71 0.595 0.435 0.436 0.334 0.360 0.441 0.379 204 before 1964 3.2 1.4 1.1 2.1 5.9 9.6 24.4 46.9 66.0 27.4 8.0 197 after 1964 3.2 5.2 5.4 7.9 11.4 14.8 23.4 41.2 49.7 24.9 197 More: 5.5 5.2 5.4 14.8 23.4 41.2 49.7 24.9 10.379 . 5.5 5.2 5.4 41.2 41.2 41.1 27.4 9.0 <td>5:0 4:1 4:6 4:4 18:0 323. 5:0 4:1 4:5 4:4 5.8 9:4 12.8 323. 1:60 1:89 2.76 3:4 3:45 4:09 5:61 7.94 15:58 9:5 204. 0:360 0.461 0.600 0.714 0.595 0.435 0.436 0.334 0.356 0.441 0.375 before 1964 3.2 1.4 1.1 2.1 5.9 9.6 24.4 46.9 66.0 27.4 8.0 197. 3.2 1.8 1.4 1.1 2.1 5.9 9.6 24.4 46.9 66.0 27.4 8.0 197. 3.2 1.8 1.4 1.1 2.1 5.9 5.4 41.2 40.7 24.9 10.7 24.9 10.7 3.2 5.2 5.2 5.4 41.2 41.2 49.7 24.9 11.0 208. 3.2 5.2 5.2 5.4 41.2 49.7 24.9 11.0 208. <t< td=""><td>5</td><td>k</td><td>•</td><td>```</td><td>5.</td><td>5.</td><td>5 I</td><td>י מ</td><td></td><td><u>.</u></td><td>ல்</td><td></td><td>י סוי</td></t<></td>	5:0 4:1 4:6 4:4 18:0 323. 5:0 4:1 4:5 4:4 5.8 9:4 12.8 323. 1:60 1:89 2.76 3:4 3:45 4:09 5:61 7.94 15:58 9:5 204. 0:360 0.461 0.600 0.714 0.595 0.435 0.436 0.334 0.356 0.441 0.375 before 1964 3.2 1.4 1.1 2.1 5.9 9.6 24.4 46.9 66.0 27.4 8.0 197. 3.2 1.8 1.4 1.1 2.1 5.9 9.6 24.4 46.9 66.0 27.4 8.0 197. 3.2 1.8 1.4 1.1 2.1 5.9 5.4 41.2 40.7 24.9 10.7 24.9 10.7 3.2 5.2 5.2 5.4 41.2 41.2 49.7 24.9 11.0 208. 3.2 5.2 5.2 5.4 41.2 49.7 24.9 11.0 208. <t< td=""><td>5</td><td>k</td><td>•</td><td>```</td><td>5.</td><td>5.</td><td>5 I</td><td>י מ</td><td></td><td><u>.</u></td><td>ல்</td><td></td><td>י סוי</td></t<>	5	k	•	```	5.	5.	5 I	י מ		<u>.</u>	ல்		י סוי
5.0 4.1 2.5 9.4 12.8 23.8 43.3 55.7 25.8 9.5 1.60 1.89 2.76 3.14 3.45 4.09 5.61 7.94 15.58 24.56 11.37 3.75 0.360 0.461 0.600 0.714 0.595 0.435 0.438 0.334 0.360 0.441 0.379 before 1964 3.2 1.4 1.1 2.1 5.9 5.4 46.9 66.0 27.4 8.0 197 after 1964 5.2 5.4 7.9 11.4 14.8 23.4 41.2 49.7 24.9 10.379 Note: 5.5 5.2 5.4 7.9 11.4 14.8 23.4 41.2 49.7 24.9 11.0 208.	5.0 4.1 2.5 4.4 5.8 9.4 12.8 23.8 43.3 55.7 25.8 9.9 204. 1.60 1.89 2.76 3.14 3.46 4.09 5.61 7.94 15.58 24.56 11.37 3.75 0.360 0.461 0.600 0.714 0.595 0.435 0.438 0.334 0.360 0.441 0.441 0.379 before 1964 3.2 1.8 1.4 1.1 2.1 5.9 9.6 24.4 46.9 66.0 27.4 8.0 197. after 1964 5.9 5.2 5.2 5.4 7.9 11.4 14.8 23.4 41.2 49.7 24.9 11.0 208. Note: X - Mean S - Standard Deviation Source: Hydrology Division Powel Tunion 20.4				÷	-(+		ഗ്	0	-1-	~-	00	0 0 0
1.60 1.89 2.76 3.14 3.45 4.09 5.61 7.94 15.58 24.56 11.37 3.75 0.360 0.461 0.600 0.714 0.595 0.435 0.438 0.334 0.360 0.441 0.441 0.379 before 1964 3.2 1.8 1.4 1.1 2.1 5.9 9.6 24.4 46.9 66.0 27.4 8.0 197. after 1964 5.9 5.2 5.2 5.4 7.9 11.4 14.8 23.4 41.2 49.7 24.9 11.0 208. Note: 7 Mean c created areas	1.60 1.89 2.76 3.14 3.45 4.09 5.61 7.94 15.58 24.56 11.37 3.75 0.360 0.461 0.600 0.714 0.595 0.435 0.438 0.334 0.360 0.441 0.441 0.379 before 1964 3.2 1.8 1.4 1.1 2.1 5.9 9.6 24.4 46.9 66.0 27.4 8.0 197. 5.9 5.2 5.2 5.4 7.9 11.4 14.8 23.4 41.2 49.7 24.9 11.0 208. Note: X - Mean S - Standard Deviation Source: Evérology Division Powel Trainers	.0	•	•	, i	•	•	5	Ċ.	(r	u	ŧ		
0.360 0.461 0.600 0.714 0.595 0.435 0.438 0.334 0.360 0.441 0.441 0.379 before 1964 3.2 1.8 1.4 1.1 2.1 5.9 9.6 24.4 46.9 66.0 27.4 8.0 197. after 1964 5.9 5.2 5.2 5.4 7.9 11.4 14.8 23.4 41.2 49.7 24.9 11.0 208. Note: 7 Mean & Struding Dates	0.360 0.461 0.600 0.714 0.595 0.435 0.438 0.334 0.360 0.441 0.441 0.379 before 1964 3.2 1.8 1.4 1.1 2.1 5.9 9.6 24.4 46.9 66.0 27.4 8.0 197. after 1964 5.9 5.2 5.2 5.4 7.9 11.4 14.8 23.4 41.2 49.7 24.9 11.0 208. Note: X - Mean S - Standard Deviation Source: Evérology Division Powel Tunion 2010	α ri	00 	ς,	- ei-	1	C) (¢)) (¢) () [) u •) u	> 6 • •	00	ກ	- 70
<pre>before 1964 3.2 1.8 1.4 1.1 2.1 5.9 9.6 24.4 46.9 66.0 27.4 8.0 197. after 1964 5.9 5.2 5.2 5.4 7.9 11.4 14.8 23.4 41.2 49.7 24.9 11.0 208. Note: X Main C Strudied Diff.</pre>	<pre>before 1964 3.2 1.8 1.4 1.1 2.1 5.9 9.6 24.4 46.9 66.0 27.4 8.0 197. after 1964 5.9 5.2 5.2 5.4 7.9 11.4 14.8 23.4 41.2 49.7 24.9 11.0 208. Note: x - Mean S - Standard Deviation Source: Evérology Division Powel Tunianty Deviation</pre>	x 0.36	0.46	- 60	5	0 10 10	n n t) () () () () () () () () () () () () ()) () ()	ກ ແ + ຕັ ກ	1 1 1	で … 	2 - 7 2 - 7	
3.2 1.8 1.4 1.1 2.1 5.9 9.6 24.4 46.9 66.0 27.4 8.0 197. after 1964 5.9 5.2 5.2 5.4 7.9 11.4 14.8 23.4 41.2 49.7 24.9 11.0 208. Note: X Man & Struding Division	3.2 1.8 1.4 1.1 2.1 5.9 9.6 24.4 46.9 66.0 27.4 8.0 197. after 1964 5.9 5.2 6.2 6.4 7.9 11.4 14.8 23.4 41.2 49.7 24.9 11.0 208. Note: X - Mean S - Standard Deviation Source: Evérology Division Powel Tuniantian	before l	ഹ					۱ ۱) ·))	† †	† * •	· · ·	
n after 1964 5.9 5.2 6.2 6.4 7.9 11.4 14.8 23.4 41.2 49.7 24.9 11.0 208. Note: 7 Main & Critical Division	n after 1964 5.9 5.2 5.2 5.4 7.9 11.4 14.8 23.4 41.2 49.7 24.9 11.0 208. Note: X - Mean S - Standard Deviation Source: Evérology Division Pousl Tuniantic	3.2	i	•					-	C.	(
.9 5.2 6.2 6.4 7.9 11.4 14.8 23.4 41.2 49.7 24.9 11.0 208. Note: X - Main S Strutting Second	.9 5.2 6.2 6.4 7.9 11.4 14.8 23.4 41.2 49.7 24.9 11.0 208. Note: X - Mean S - Standard Deviation Source: Hydrology Division Pousi Invignation	n after 196	±	•	•	•	•	•	t	ó	o.		*	ŗ.
X - Maan O Structure Structure	z - Mean S - Standard Deviation s: Hydrology Division Dourst Invigor Deviation	ທີ	•	•	•	•	r-{	. .	ິຕິ	r-t	0	भ	 	208.
1,11,11,11,11,11,11,11,11,11,11,11,11,1	s: rvčrology Division Darsi Inniroticu		Note:	1	Mann	U U U			1 (

Appendix 3-8 Page 4

Monthly and Annual Specific Runoff of Cheo Phya River at Chai Nat Table A. 3-31

Dreinage Area: 120,693 square km
 (unit: mm)

·	Bec. Annual Specific Dec.		76				.3 221.		•	•	.8 50.	. cor	- 1 	٠	· · · · ·	ы.» 78.	- 3	-1 107.	5.5	.2					3.59 0	0.520	
	Nov.		2.8	~		, y		÷	5	\sim	٠) α -	•	ō .	-i				ю 0	30.4		-4	12.7	0	
	001	_; _;	22.2	പ്		E L£	$\frac{1}{2}$	5 :	r.		d,	\ddot{o}	0	ന	, ,	•	- 5	26.6	თ	33.5	r-1	79.3	¢	オーマ	23.3	O	
	Sep.		27.0	ω.	ц. С	σ	; a	, ; ;	ř.	<u>.</u>	ന			τ. Ο		÷	2) I - I - I - I - I	÷	า 00	•	ი. ი ქ	t.0.0	B	ה יית		5	- nom-nered
Runoff	Aug	•	0 0	20.4			σ							0. 1		•				-	ເດ ະ			4 4 D	7.31	5	6
0 11 41	1 U U	•	6.2	•	•			•									; ; ;	7 7	٠		1.7	٠		• •	٠	0.995	eviation Irrighti
Monthly Speci	Jun.	3.7	•	•		•			•	•	'n,		•	 ເຄ			•		•	•	3°0		ಲ್. ಇ	•	0 n 1	0.767	Stendard De on. Roval I
Month	May	ທ .⊣												년 9									5. 1	C	· · · · ·	2	Sten ision.
	Apr.	1) 	•		•	•	ſ	•		•	•	•	•	-1					•					G			S ⊅≟d
	Mar.		>		٠		,	ł			•	•	•	∞ 1		4		•	•					e.		77.	x - Mean Hydrology
	Teb.		4 0 -																				ଜୁନ	1	¢	2	Note: Source:
	cian.		-1 (* - 																				2.8	3	1		ፙ <u></u>
	$\Phi = c$	<.α ο ις η σ - Τ	0	ōð	ίð	ñà	ວັກ	ň.	8	8	- 8	a a	2.9	2 0	D I	[~	<u></u>	5	5	1	1	- 1	×	63	1× 20	~ I.	

Appendix 3-8 Page 5

Table A. 3-32 Extreme Momentary Discharge Records of the Chao Phya River

۱

		Nakhor	n Sawan C.	2			ati			
Year		Max.	i bawan Ci	Min.	· · · · · · · · · · · ·	Unao E Max.	'hya Da	m C.13 Nin.	Wat	Chulamani
	****		8	****				\$ 7 .E .] 5 a		Max.
1957	2,592	10 Oct.	-		2,670	12 Oct.	-	-	438	7 Oct.
1958	2,066	30 Sep	28	6,7 Apr.	2,295	30 Sep.	25 -	7 May	422	6 Oct.
1959	4,509	8 Oct.	25	22 Apr.	4,325	9 Oct.	22	15 May	572	19 Oct,
1960	2,567	20 Oct.	15	6,7 Apr.	2,095	13 Oct,	30	24 Apr. 11-16 May	444	19 Oct.
1961	4,712	13 Oct.	45	' 20 Apr.	3,985	15 Oct.	36	12 Feb.	531	3 Nov.
1962	3,812	17 Oct.	39	17 Apr.	3,609	15 Oct.	22	9-12 Jul.	537	24 Oct.
1963	2,946	12 Oct.	32	22,23 May	2,628	11 Oct.	25	1-4 Jul.	508	19 Oct,
1964	3,825	11 Oct.	90	5,6 Feb.	3,475	18 Oct.	49	14-18 Aug.	546	9 Oct.
1965	1,537	2 Oct.	153	6 Feb.	1,071	3.Oct.	պդ	14-22 Aug.		-
1966	2,930	24 Sep.	131	26,27 Jan.	2,349	25 Sep.	• 55	21,22 Feb.	485	28 Sep.
1967	2,768	8 Oct.	133	10 Apr.	1,985	7 Oct,	53	9 May	452	16 Oct.
1968	1,263	21 Sep.	165	3,4 Feb.	588	13 May	65	25 Apr.	219	14 May
1969	2,827	28 Sep.	122	9 May	2,047	6 Oct.	27	30,31 May	499	7 Oct.
1970	4,420	30 Sep.	200	2 Apr.	4,049	7 Oct.	59	5 Apr.	558	16 Oct.
1971	2,370	9 Oct.	242	17 Apr,	1,560	13 Oct,	57	23,24 Apr. 1,2 Jul.	443	11 Oct
1972	1,310	8 Oct.	197	9 May	1,129	9 Oct.	58	30 Jul.	395	10 Oct.
1973	2,600	5 Oct.	183	5 Jan.	1,910	7 Oct.	64	14 Feb. 12,13 Jul.	488	10 Oct
1974	1,930	9 Nov.	186	5 Jan.	2,089	19 Oct.	71	18 Jun.	511	21 Oct.
1975	4,355	17 Oct.	231	13 Feb.	3,977	22 Oct.	69	7-9, 13-15 Feb.	616	20-23 Oct
57-1975	m=2,913	S=1,059	m=123	S=75	m=2,518	S=1,076	m=46	S=17	m=481	S= 86
57-1963	m=3,315	S= 956	m= 30.7	S= 9.7	m=3,087	S= 811	m=27	S= 5.0	m=493	S≈ 54
54-1975	m=2,678	S=1,045	m=169	S=44	m=2,186	S=1,073	m=56	S=11.5	m=473	S=100

Note : _m; mean, _s; standard deviation

Source: Royal Irrigation Department

(Unit: cu.m/sec)

Appendix 3-9

·····	
Ayut	thaya C.15 Min.
******* * *** ************	
	- .
8.15	27 May 7 Feb.
13	
1.1.	8,19 May
9.40	26 Apr.
8,50	10 Jul,
8,50	6,19 Jun.
26	17 Aug.
-	÷-
32	30 Apr.
30	19 Jul.
28	26 Jul.
14	22 Jun.
36	22 Mar.
21	5 Jul.
14	26 May
16	15 Jul.
33	19,20 Jul.
24	10 Feb.
m=19.6	S=9.4
m= 9.8	S=1.7
m=24.9	S=7.4

Probable Discharge and Water Level of the Chao Phya River

.

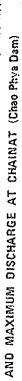
Study on maximum and minimum probable discharges has been conducted based on the mean monthly discharge record observed at Nakorn Sawan and Chao Phya Dam from 1964 - 1975. Its results are as shown below:

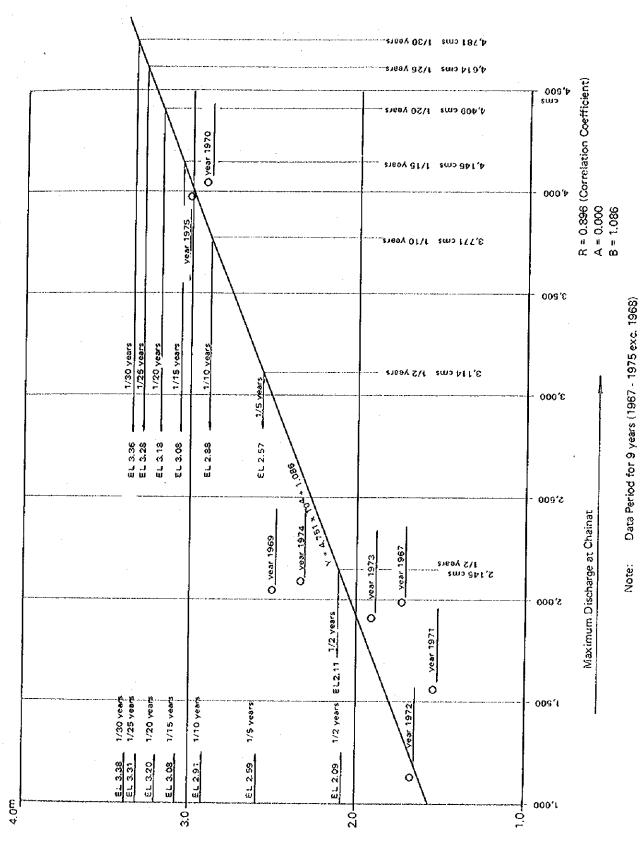
Probabl	e Max. Monthly Me	an Discharge
	:	(Unit: cu.m/s)
Return Period	Nakorn Sawan	<u>Chao Phya Dam</u>
2 years	2,025	1,596
5 years	2,940	2,583
10 years	3,548	3,291
15 years	4,132	4,007

Probable Min. Monthly Mean Discharge at Nakorn Sawan

(unit: cu.m/s)

Return Period	Discharge
2 years	221
5 years	1.73
10 years	149
15 years	137
20 yerars	129


Continuous maximum discharges in long term such as monthly maximum discharges have a relation with a flood duration in low-lying area, while momentary maximum discharges, which is larger than an averaged value of the maximum discharges in a long term, have relation with the highest flood level, which give a big influence on facilities such as dikes. Table A.3-33 shows momentary probable maximum discharges and maximum water levels of the Chao Phya river. Probable Maximum Momentary Discharges and Maximum Water Levels of the Chao Phya River 3-33 Table A.


·																		54-75		•	1 C	• •	•	•	1 1		Pa	ge	2	-
cu.m/s)		<u>-</u> 1964-1975	0 1	o ư	$\circ \alpha$	0 0) (1 r-	50t	1		I			Dal Knot			1953-75 196	ot St		4 m	101	((((((((((((((((((() 	0,03		2.28			
(Unit: cu.	·	Contament -	0	つ ()」 - (· [-	×α) O))	,	I	ł	,			Barlin		-1976	Ë	Ø		9 - 1 - 8 9 - 1 - 8 9 - 1 - 8	2	5	1 1	1	1	ł			
(1		975 <u>3</u>	1	G) IG			- 1 ~	. ო	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	i on	0		(9/4			1966-	ide	1 10	, r	3.46	မ်	5		3.88	· I	3.95			
	ischarges	1957-1	tu tu	2 10 10	27			609	19	63	62	t. 1 00		Mean Sea		7-1976	1968)	Inside	ۍ ۲	5	2.91	თ.	ပ	•	ł	i	I			
	<u> </u>	964-1975		3,114	17	н, Т	t)		4,614		4,781	ł		(Meter +	a	196.	ů.	Outside	୍	ະ ເມ	2.91	<u> </u>	2	1	3.31	1	3.38		excluded	1
	: Maximum Momentary Chai Nat Dan	-1975 1	<u> </u>	457	ഗ	- (Ø	-===	5	249	က	ഗ	460	• .	vels				1964-75	t.	4	4.58		5°.4	I	5.03	ï	5.11		1968 are	
	le Maxir		•	· ·	· •	· •	· *	· •	ີດ		• •	· •		Water Lev				957-63	4.08	л,	4.58	ω	4.73	i	4.77	i	ц. 8 <u>1</u>		1967 and	
	Probable	1964-1975	5.	3,550	2	<u>о</u>	4,849	j,	5,048	•	5,209	1		Maximum				1950-75 1	8	4	5	<u>ዓ</u>	0	0	5.16	?	°.		data of	
. <u>.</u>		-1963	,20	4,146	,71	,02	,24)	1	I	I	1		Probable	L L			1964-75	4.54	ő	5.02	-	Ч.		5.20	1	5.23		Two years	
	Nak	1975 1957	\circ	- H	∞	∞	တ	\sim	15	N	ഹ	QJ		-	nulamari			1957-63	4.51		•		<u>،</u>	I	ł	i	1		Note: 1	
		1957-	. A	•	•	•	^	•	5,7	•	•	•			Wat C			1957-75	:1	~	°,	<u>ආ</u>	਼	਼	5.08	4	ц.		NO	
	Return	Period	2 years	ŝ	10 years	15 years	20 years	25 years	30 years	40 years	50 ye	100 years				·	Return	Period	уе	ກ ທ	≥. ⊖ :	າ ທ່	27 0	ហ	30 years	o ve	0			

,

Appendix 3-10 Page 2

FIGURE A. 3-5 CORRELATION BETWEEN MAXMUM WATER LEVEL AT SING HA WAT

teW-eH-pni2 te level at Sing-Ha-Wat

Appendix 3-11

Influence on Lower Basin Caused by the Construction of Bhumiphol and Sirikit Dams

In order to clarify the influence on the Chao Phya river lower basin caused by the operation of Bhumiphol dam whose construction was completed in 1964, mean monthly discharges of the Chao Phya river observed at Nakorn Sawan before December 1963 and after January 1964 are tabulated as follows:

Monthly Mean Discharge at Chao Phya River at Nokorn Sawan (Dry Season)

· · ·							(1	mit: cu.	m/s)
Period	Jan.	Feb.	Mar.	Apr.	May	<u>Jun</u> .	<u>Jul</u> .	Aug.	
1957 - 1975	204	185	189	189	238	400	530	982	
before Dec. 1963	130	83	56	45	86	254	390	1,007	
after Jan. 1964	240	236	255	273	326	485	609	968	
	۰.						Annual	L	
		Sep.	Oct.	Nov	. <u>D</u>	ec.	Mean		
		1,851	2,300	1,10	1	411	715		:
•		2,010	2,725	1,169	9	331	691		
		1,758	2,051	1,06	1	457	727		

Fluctuation of Mean Discharge (Standard Deviation) (unit: cu.m/s)

Period	Jan.	Feb.	Mar.	Apr.	May	Jun.	<u>Jul</u> .	Aug.
1957-1975	75	86	114	134	143	174	231	328
before Dec. 1963	54	24	11	1.1	-37	126	93 -	303
after Jan. 1964	52	55	79	96	102	138	251	341

<u>Sep.</u>	Oct.	Nov.	Dec.
665	1,014	486	155
360	980	598	163
775	949	401	129

As is clear in the above table, the discharges of the Chao Phya river in the dry season have been stabilized and strengthened to a considerable extent especially in April since 1964 due to the storage effect by Bhumiphol dam. The minimum monthly mean discharges of the Chao Phya river obserbed at Nakorn Sawan and at the immediately downstream reach of Chao Phya Dam during the dry season have been picked up and tabulated as follows:

Minimum Monthly Mean Discharge of The Chao Phya River (Dry season)

			Chai Nat (at the tail of Chao Phya Dam)			
Year	Nakor Discharge	<u>n Sawan</u> Month	Order	Discharge	Month	Order
1958	34.3 ^{cu.m/}		3	33.7 ^{cu.m/s}	Mar.	.].
1959	33.8	Apr.	2	41.0	Feb.	3
1960	32.6	Apr.	l	46,9	Apr.	ц
1961	62.4	Apr.	6	53.7	Mar.	5
1962	53.7	Apr.	5	54,9	May	6
1963	45.2	Apr.	4	33.8	Jun.	2
1958-1	963 <u>M=43.7</u>	<u>s=11.3</u>	3	M=114.0	<u>S=8.6</u>	
1964	137	Mar.	1	71.0	Mar.	11
1965	190	Feb.	5	75.9	Feb.	7
1966	175	Jan.	3	80.0	Mar,	11
1967	205	Feb.	6	71.6	Jul.	5
1968	189	Feb.	ц	78.2	Apr.	9
1969	144	Mar.	2	49,9	Jun.	1
1970	253	Jan.	8	80.5	Mar.	12
1971	283	Mar.	1.1	77.8	Apr.	8
1972	279	Feb.	1.0	66.3	Jul.	2
1973	245	Jan.	7	68,8	Apr.	3
1974	272	Jan.	9	73,7	Mar.	6
1975	300	Feb.	12	79.0	Mar.	10
1964-1	975 <u>M=223</u>	<u>S=54</u>		M=72.7	<u>S=8.2</u>	

Note: M: mean

S: Standard deviation

Minimum monthly mean discharge had occurred in April every year before 1963, but it has been scattered over the three months from Jan. to Mar. since 1964. An averaged value of the minimum monthly mean discharges observed since 1964 is about 5 times of that of the same before 1964, which clearly prove the storage effect by this dam. According the discharge data observed at the immediate downstream reaches of the Chao Phya dam the minimum monthly mean discharges have been scattered over some months and especially in 1967 and 1972 if occurred in July due to the artificial intake of the river water to cover the water requirement in the whole Central Plain. It seems that occurrance of the minimum monthly mean discharges at the downstream reaches from Chao Phya dam has a close relation with the maximum consecutive draughty days, most of which have been recorded from May to July, and the absolute volume of rainy water in the beginning of the wet season.

An averaged value of the minimum monthly mean discharges observed since 1964 at Chai Nat is 73 cu.m/sec, and the minimum monthly mean discharges are much stabilized as expressed by the standard deviation of ±8 cu.m/sec except that of 50 cu.m/sec in 1969 when the salt intrusion became a big problem.

The major objectives to stabilize the minimum discharges in the lower reaches from Chao Phya dam are to secure the discharges of 25 cu.m/sec being released at Ayutthaya to cover the water requirement in Bangkok and to prevent the salt intrusion.

On the contrary, in order to clarify the effect of flood control by Bhumiphol and Sirikit dam operation, maximum monthly mean discharges of the Chao Phya river in the dry season before 1963 and after 1964 have been tabulated below. Reduction from the averaged maximum monthly mean discharge before 1963 to that after 1964 is 586 cu.m/sec at Nakorn Sawan and 761 cu.m/sec at the immediate downstream reaches of Chao Phya dam. By the way Sirikit dam was constructed in 1973, its storage effect of this dam is not yet clear due to the data available are quite limited.

				Chai		
	Maximu	lakorn Saw	an	<u> </u>	of Chao Phy	Dam)
Year	Discha	irge Mon	th Orde	r Discha	rge Month	Order
1957	2.0 <u>3</u> 4 [°]	u.m/s Oc	t. 6	2,010	cu.m/s Oct.	
1958	1,483	Sej	p. 7	1,256		7
1959	3,292	0c	t. 3	3,381	Oct.	2
1960	2,382	0et	t. 4	1,882	Oct,	6
1961	4,336	0et	t. L	3,406	Oct.	Ĵ.
1962	3,504	Oct	. 2	3,183	Oct.	3
1963	2,382	Oct	: , 1 j	1,994	Oct.	5
19	57-1963	M=2,773	<u>S=907</u>	M	=2,445 S=7	99
1964	3,374	0et	. 3	3,202	Oct.	3
1965	1,340	Sep	. 10	620	Sep.	10
1966	2,497	Sep	• 11	1,848	Sep.	şt
1967	2,218	0ct	. 5	1,468	Oct.	6
1968	930	Sep	. 12	180	Aug.	12
1969	1,974	Oct	. 7	1,224	Oct.	9
1970	3,463	Sep	. 2	3,229	Oct.	2
1971	1,929	Oct	. 8	1,356	Sep.	8
1972	1,010	Oct	. 11	597	Oct.	11
1973	2,085	0ct	. 6	1,508	Oct,	5
1974	1,539	Nov	. 9	1,397	Oct,	7
1975	3,890	Oct.	1	3,575	Oct.	l
196	4~1975	M=2,187	<u>S=925</u>	<u>M=</u>	1,684 <u>S=1</u> ,	055

Table A. 3-34 Maximum Monthly Mean Discharge of The Chao Phy River (Wet Season)

•

.

.

Note: M: Mean S: Standard Deviation

Appendix 3-13

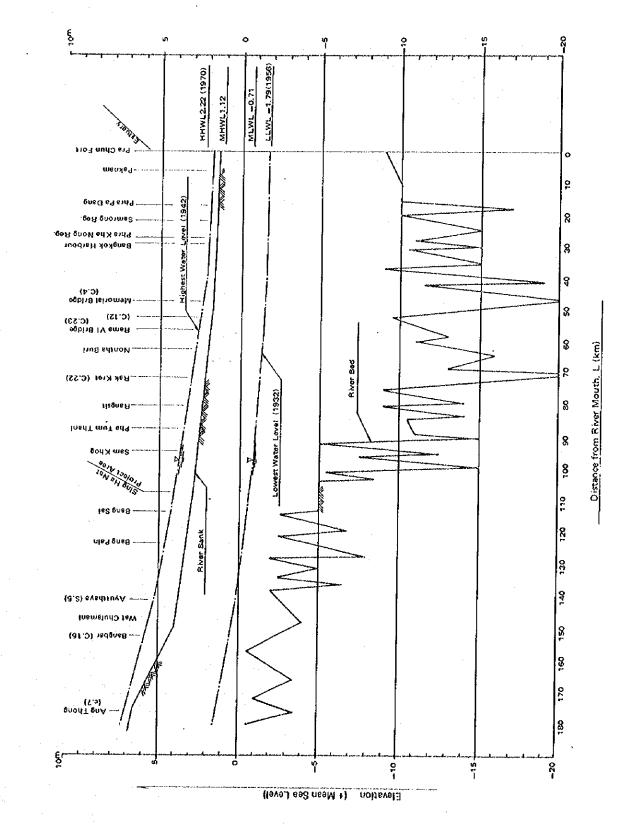
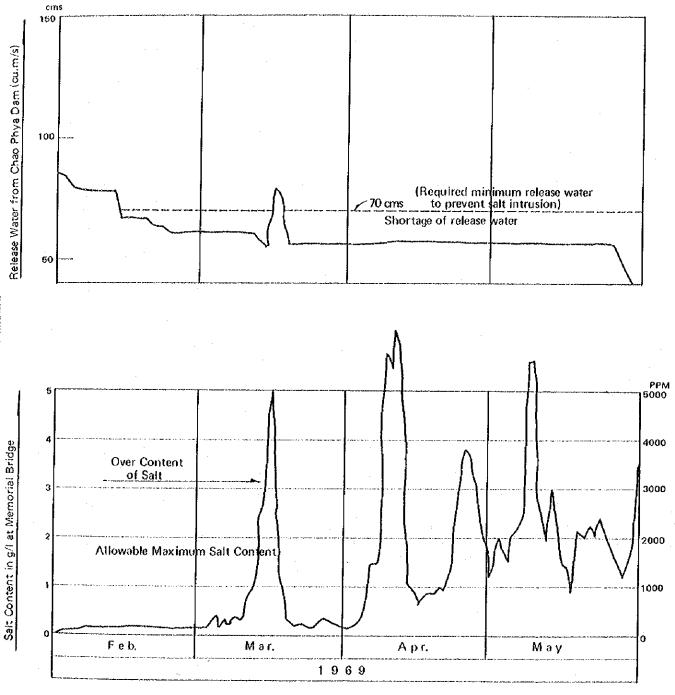
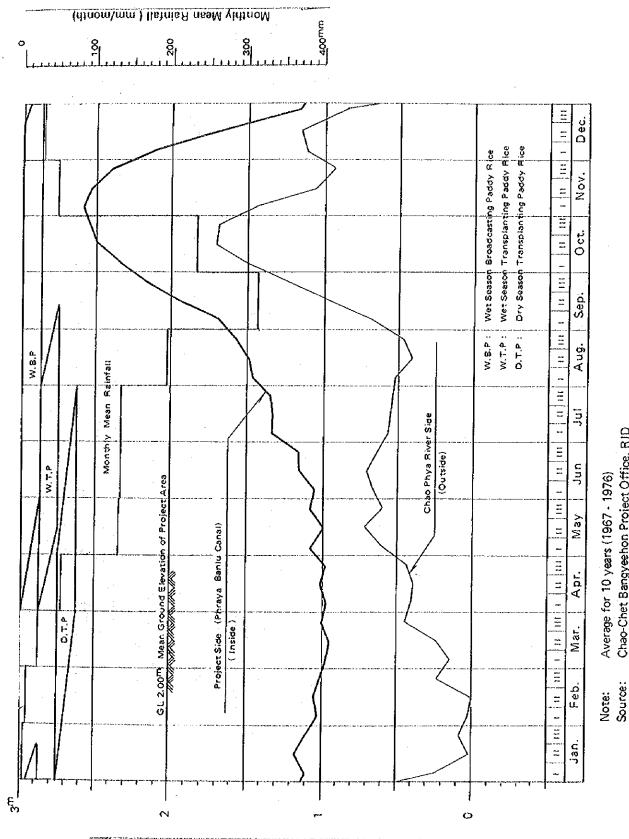



FIGURE A 3-6. PROFILE OF THE CHAO PHYA RIVER IN LOWER CENTRAL PLAIN

۰,

FIGURE A. 3-7

OPERATION OF SALT CONTROL AT MEMORIAL BRIDGE (observed in 1969)



Note: Observation is started from 1964 Source: Operation Center, RID

	• .						
11des	Bangkok Bar (kmlt)	Fort (Phrachul km.1)	Paknum (km.7)	Phra Pradeng (km.18)	Klong Toey Harbour (km.27)	Hydro. Dept (<u>km.</u> 49) 3 /
Hest. HW	+2.28		+2.22	t0.0+	86°T+		+2.42
	(0181)		(0267)	(0261)	(0461)	o)	(1942)
WHHW	ナー・ ー・ +		+1.12	- 07 • 7+	8년 - 년 +		
VIHWS	+J:07		+1.07	1		0	+1.03
NMEW	10-17		+0.7l	,	4	5	
MT.W.	-0-65		-0.57	f	1	-0-38	•
SMIM	-0.91	·	-0.71	J	1	ျက	ല
MIIW	-1-30		-1.07	-1.02	-0-30	-0.85	-0.51
L'est LW	-2.42		-1.79	-1.82	-1.78	٢.	-1.74
•	(3551)		(3556)	(796T)	(1367)	0 0	- 9 0
M Sp. Range	1.98		1.78	ŧ	I	.60	1.35
M Np. Range	•		1.28	ł	4	01.1	0.95
	Note:	H'est HW Mehw	Highest H. Meen Highe	High Water ther High Water	31 years 10 years	(3t6t - 0t6t) (02st - 0tst)	
		NHWN SMEM	Mean Hìgh Wat Mean Hìgh Wat	Water Spring Waten Neen	ττΟ5 τΩ F 5		
		NMIW	Low Low	5 1 1 1 1			
	•	SMIM	Mean Low 1	Water Spring	1	1	* . * *
		MLLW	Lowe	го⊻ Г	1	1	
		L'est LW	Lowest Low	¥at€	31 years	(1640 - 1670)	
		a/: Dis	tance	from river estuary	ary		
	Source:	STD STD					

Table A. 3-35 Tides at Estuary of Chao Phya River

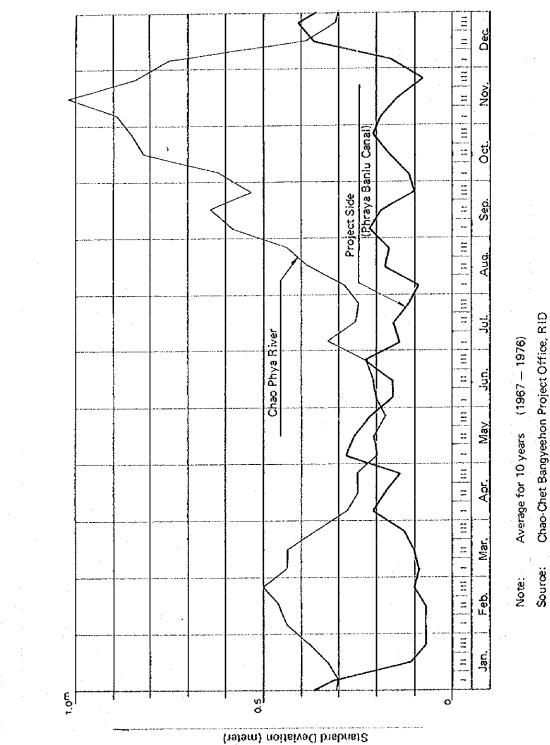
Appendix 3-15

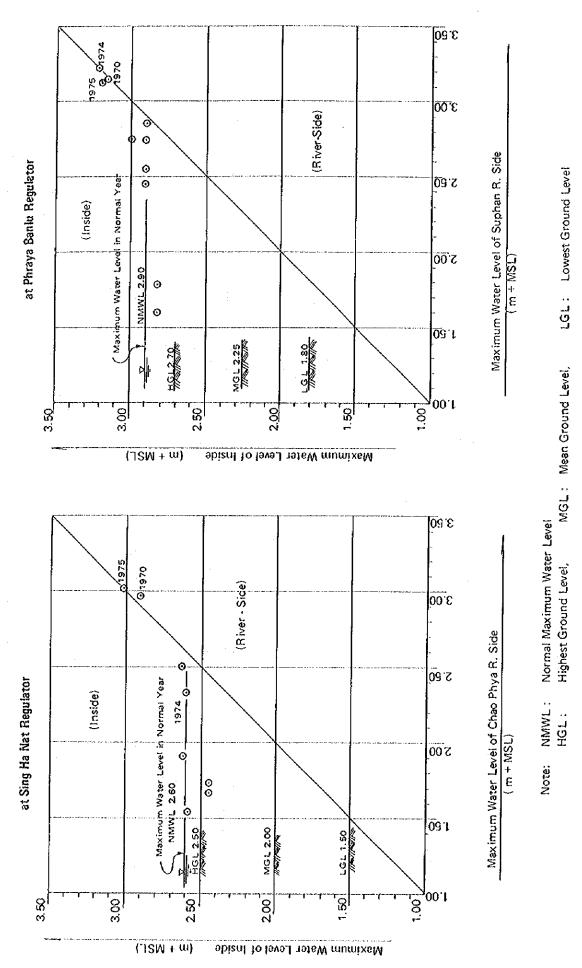
PIGORE A. 3-8 WOWTHLY MEAN WATER LEVEL AT SING HA NAT

Appendix 3-16 Page 1

Chao-Chet Bangyeehon Project Office, RID

Water Level (meter + Mean Sea Level)




FIGURE A. 3-9 FLUCTUATION OF MONTHLY MEAN WATER LEVEL AT SING HA NAT

• :

Appendix 3-16 Page 2

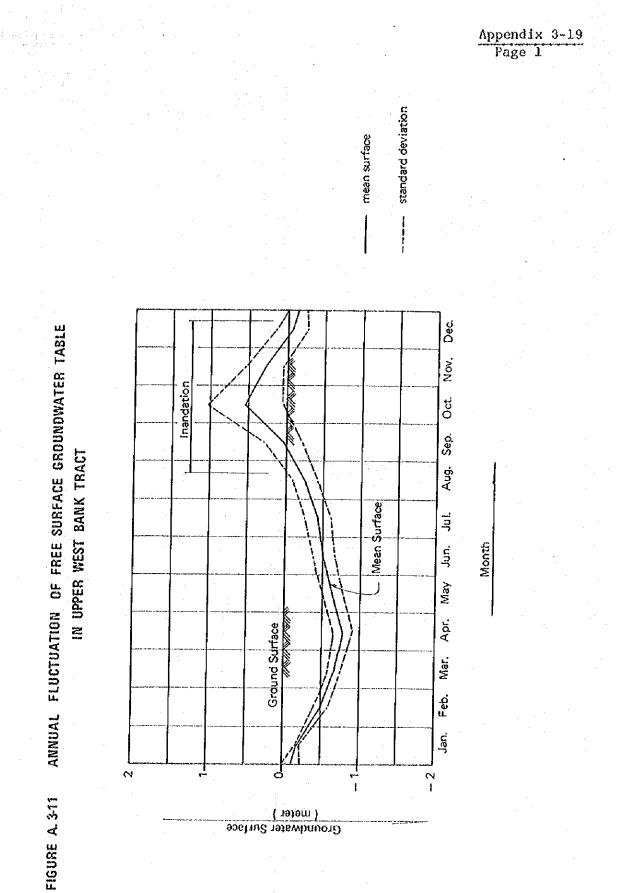
RELATIONSHIP BETWEEN MAXIMUM WATER LEVELS OF INSIDE OF WEST BANK TRACT FIGURE A. 3-10

	· · · · · · · · · · · · · · · · · · ·			(Unit: m)	
		Maximum	Werer Level		
	Phraya	Banlu	Sing Ha	a Nat	
	Outside	Inside	Outside	Inside	
Return Period	(Suphan River)	(Project Side)	(Chao Phya River)	(Project Side)	
Veans	5 5 7	2.95	2.09	2.58	
	0.12	3.09	2.59	2.77	
	0. 50	00 rt - 00	5.67	10,5	
15 veers	3.65	3.23	. 3.08	2.99	
	3.77		3.20	3.05	
		Kinimum water	Tevel		
	Phraya	3anlu	Sing Ha	e Net	
	Outside	Inside	Outside <u>l</u> /	Inside	
Return Period	(Suphan River)	(Project Side)	(Chao Phya River)	(Project Side)	
Veers	-14	0.95	-0.64	0.65	
	-0.03	0.80	74.0-	0.55	
	-0.12	0.74	-0,79	01.0	
Vears	-0-16	16.0	-0.82	0.47	
20 years	61-0-	0.70	-0.83	0.45	
-	Note: Phrava Banlu:	1966 -			į.
	Sing H	t : 1968 - 1975			14
	17 : the (data in 1970 is excluded.	dec.	·	
				•	
				·	
	-			. •	

Appendix 3-18 Page 1

		Dissaura Ronl	u Regulator			Lakkhon	Regulator		t Regulator
		side	In	side ct Side)	1	ream t Side)	Outside (Chao Phra River		side ct_side)
Year	(Suphan Max.	Min.	Max.	Min.	Max.	Min.	Max. Mi	n. Max.	<u>Min.</u>
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976	2.73 20 Oct. 1.78 1 Jan. 1.60 15 Jan. 2.85 5 Nov. 3.14 5 Nov. 2.74 4 Nov. 2.74 4 Nov. 2.44 14 Dec. 2.54 19 Oct. 3.22 28 Oct. 3.12 16 Nov.	-0.19 24 Mar.	3.16 31 Oct.	1.00 12 Apr. 0.87 22 May 0.80 3 Apr. 1.06 19 Jan. 0.70 9 Feb. 0.88 12 May 0.99 16 May	- - 2.74 31 Oct. 2.64 25 Oct. 2.64 15 Nov. 2.76 1 Nov. 3.00 30 Oct.	- - - 0.92 15 May 0.92 31 May 0.74 16 May 0.90 26 May 0.86 16 Mar.	2.91 25 Oct0.80 1.54 7 Dec0.60 1.67 13 Dec0.60 1.91 20 Oct0.65 2.33 21 Oct0.45	2.44 12 Nov. 1 Feb. 2.44 1 Nov. 17 Feb. 2.63 27 Oct. 21 Feb. 2.97 20 Oct. 26 Feb. 2.58 30 Oct. 15 Feb. 2.44 20 Oct. 5 Mar. 2.62 15 Nov. 27 Feb. 2.60 1 Nov. 12 Feb. 3.01 30 Oct. 16 Feb	0.65 23 May 0.47 30 Apr. 0.10 9 Jan. 0.60 30 Dec. 0.64 13 May 0.52 3 Jan. 0.87 6 Jun. 0.78 1.6 Mar.
Mean S	2.61 0.52	0.15 0.19	2.98 0.14	0.94 0.12	2.76 0.13	0.87 0.07	2.01 -0.61 0.57 0.15	2.63 0.20	0.59 0.21

Table A. 3-37 Extreme Water Level in the Vicinity of Project Area


Based on the record of daily mean water level Note:

S; Standard Deviation

1

Elevations of canal and river beds are EL.(-)2.00 m at the both regulator of Phraya Banlu and Sing Ha Nat

Source: Chao-chet Bangyeehon and Phraya Banlu Project Offices, RID

Free Surface Ground Water Tables in Upper West Bank Tract (at Sena) Table A. 3-38 Ê

(Unit:

0.357 0.135 +0.102 +0.265 +0.265 0.213 Dec. +0.645 +0.260 +0.452 +0.303 0.242 NoV. +0.543 0.482 +1.375 +0.617 +0.215 0.052 +0.562 00 44 +0-048 0.248 +0.405 0.259 0.097 0.081 +0.270 Sep. 0.164 0.091 0.336 0.494 0.226 0.046 0.239 Aug 0.180 0.272 0.653 0.609 0.369 0.203 0.421 0.321 0.546 0.588 0.726 0.371 0.148 0.510 Jun. 0.473 0.812 0.567 0.573 0.552 0:132 May 0.635 0.862 0.885 0.654 0.880 0.579 0.129 0.772 Apr. 0.793 0.730 0.597 0.564 0.557 0.086 0.663 Mar Mar 0.558 0.570 0.329 0.562 0.437 0.095 16#-0 Feb. 0.148 0.196 0.187 Standard Deviation (S) 0.030 0.185 0.264 Jan. Mean (x) 1969 1970 Vear 1966 1967 1968

- All measurements show depth in meters from ground surface to ground water table. • • -{ Note:
- The measurements with mark of (+) are height from ground surface to inandation water surface.

Source: Technical Division, RID

						л: д.	• 1 4						
Station	-an-	Feb.	Mar.	Anr.	May	Jun.	<u>.</u> 1u1.	Aug.	Sep.	Oct.	Nov.	0 0 0	Mean
f	7.2	7.2	7.2	7.3	1°.	7.5	7.4	7.7	7.3	7. ц			
Bang Bua Thong	6.5 0	7.1	7.3	7.3	7.2	7.4	7.2	7.1		- - - - -	7.2	7.5	
Meân	8°9	7.2	7.3	7.3	7.3	\$* 	7.3	7.1	7.1	7.2	7.2	7.5	7.2
			Electr	ical Con	Conductivity		(ECX10 ⁶ , m	micromhos/cm at	s/cm at	2000)			
Station	Can.	reb.	Mar. Apr	Apr.	May			Aug.	Sep.	0ct.	Nov.	Dec.	Mean
	230	300	262	300	260	280	260	240	2#0 2	220			
Bang Bua Thong	270	550	380	340	700	800	600	005	530 450	280	280	220	
Mean	250	т25	338	320	084	540	430	570	407	467	280	220	364
				0 + * * * *	1		1 5 0 0						
Station	Jan.	Feb.	Mar.	Apr.	1 10	Jun.	Jul.		seb.	0ct.	Nov.	Dec.	Mean
Sena	1 1 1	0.004	0.04	0.025	tin	0.004	0.012	0.005	0.010	0.016			0.012
	Note:	ם הק ס	Period	-									
) } ;	1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	sena: Sena: Bang Bua	Thong:	čan. Seo. j	- Oct.	1976 Oct. 1976	75			•		
	Source:	Sena D Weter	Omestic Water Supply Station	Sena Domestic Water Supply Water Supply Station	upply S	Station	and Bang	ಶಗಡ	Thong Do	Domestic			

•

Table A. 3-39 Water Quality of Canals in the West Bank Tract

Appendix 3-20 Page 1

Water Supply Station

				РН				
Station	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Mean
Chai Nat				7.6	7.8			,
Chao Phya Dam				7.3	7.5	7,6	8.2	
Sing Buri	8,5	7.7	7,8	7.4	7.9	7:9	8.7	
Ang Thong	8.2			7.5	7.7	7.9	8.3	
Ayutthaya	8.8	7.5	8.3	7.4	7,5	7.7	8.5	
Bang Sai		7.5	8.2					
Pathum Thani				7.5	7.9	7.7	8.7	
Non Tha Buri				7.3	8.0	7.6	8.5	
Mean	8.50	7.57	8,10	7.43	7.76	7,73	8,48	7.94
Standard Devia	lon (S))						
	0.24	0.09	0.22	0.10	0.18	0.12	0.19	

Table A. 3-40 Water Quality of the Chao Phya River

ς.

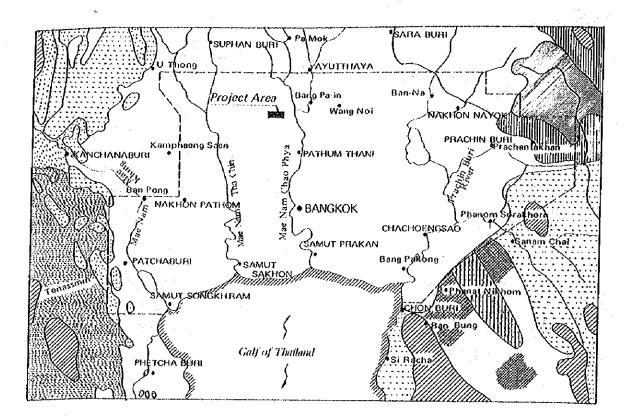
Electrical Conductivity

		(ECx1)	0°, mici	romhos/	em at 23	5°c)		
Station	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Mean
Chai Nat				115	128			
Chao Phya Dam				116	13.5	138	178	÷
Sing Buri	132	129	111	118	122	136	136	
Ang Thong	136			118	116	135	154	
Ayutthaya	150	123	135	128	1.05	130	155	
Bang Sai		124	136					
Pathum Thani				123	117	1.32	154	
Non Tha Buri				123	1.29	139	1.6.1	
Mean	139	125	127	120	1.1.9	135	156	132
(\$)	8	3	12	4	8	3	12	

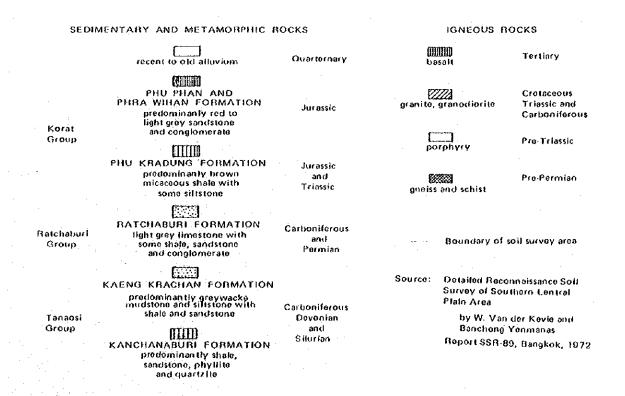
			Total	Solids	(PPM)			
Station	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Mean
Chai Nat				368	165			
Chao Phya Dam				375	172	262	1.67	
Sing Buri	-	663	468	433	209	240	222	
Ang Thong	-			467	241	219	258	
Ayutthaya	-	824	469	306	139	142	259	
Bang Sai		34.)	522				:	
Pathum Thani				342	167	.1.61	255	
Non Tha Buri				208	181	1.64	261	
Mean		609	486	357	182	198	237	345
(\$)		201	25	79	3.1	45	34	

Note: Observed in 1961

S; Standard deviation


Source: Enclosed Data on Water Analysis, Greater Chao Phya Project Refer to Lab. No.194/1962, RID

Station	Jun.	<u>Jul.</u>	Aug.	<u>Sep</u>	Oct.	Nov.	Dec.	Mear
Chai Nat				126	112			
Chao Phya Dam				115	113	1.3.1	143	
Sing Buri	129	115	81	98	117	139	114	
Ang [®] Thong	1.06			86	103	138	98	
Yutthaya	1.32	110	125	98	95	116	124	
Bang Sai		126	146					
Pathum Thani				1.00	99	124	144	
∮on Tha Buri				98	126	125	138	
Mean	122	117	117	103	110	129	1.27	118
(S)	12	7	27	12	<u>` 11</u>	8	.17	


Water Quality of the Chao Phya River (cont'd)

Station	Jun.	Jul	Aug.	Sep.	Oct.	Nov.	Dec.	Mean
			<u>0</u>	<u> </u>			1001	neun
Chai Nat				242	53			
Chao Phya Dam				260	59	.1.31	24	
Sing Buri		547	407	335	92	101	98	
Ang Thong	***	381		381	138	81	160	
Ayutthaya	-	714	336	217	4 4	28	123	
Bang Sai		268	377					
Páthum Thani				241	68	37	121	
Non Tha Burt				110	55	38	134	
Mean		478	373	255	73	69	110	226
(S)		169	29	80	30	38	43	

			Calc	sium (PP	M)			
Station	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Mean
Chai Nat				14,56	14.59			
Chao Phya Dam				15,10	13.93	17.32	18.14	
Sing Buri.	16.17	17.35	15.27	14,89	14.73	17.29	16.27	
Abg Thong	14.76			16.04	13.02	14.38	18.50	
Ayutthaya	17.12	13.81	16.49	17.53	12.91	13.36	19.04	
Bang Sai	· · · · ·	15.29	16,93					
Pathum Thani				16.69	15.17	13.36	18.55	
Non Tha Buri				16.53	14.48	14.61	19.32	
Mean	16.02	15,48	16.23	15.91	14.12	15.05	18.31	15.87
(\$)	0.97	1.45	0.70	1.01	0.80	J.66	0,99	

FIGURE A. 3-12 GEOLOGICAL MAP OF THE SOUTHERN CENTRAL PLAIN

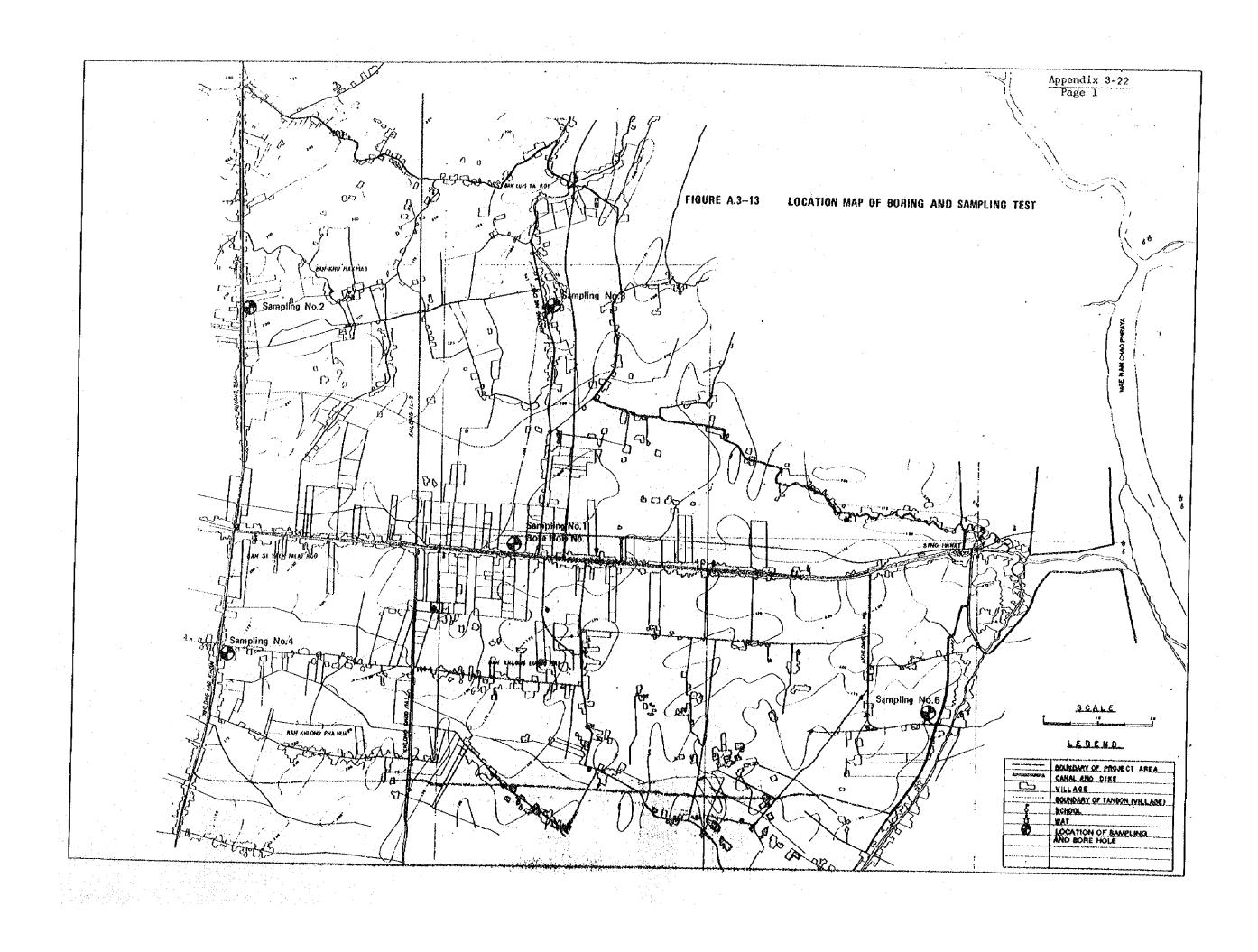
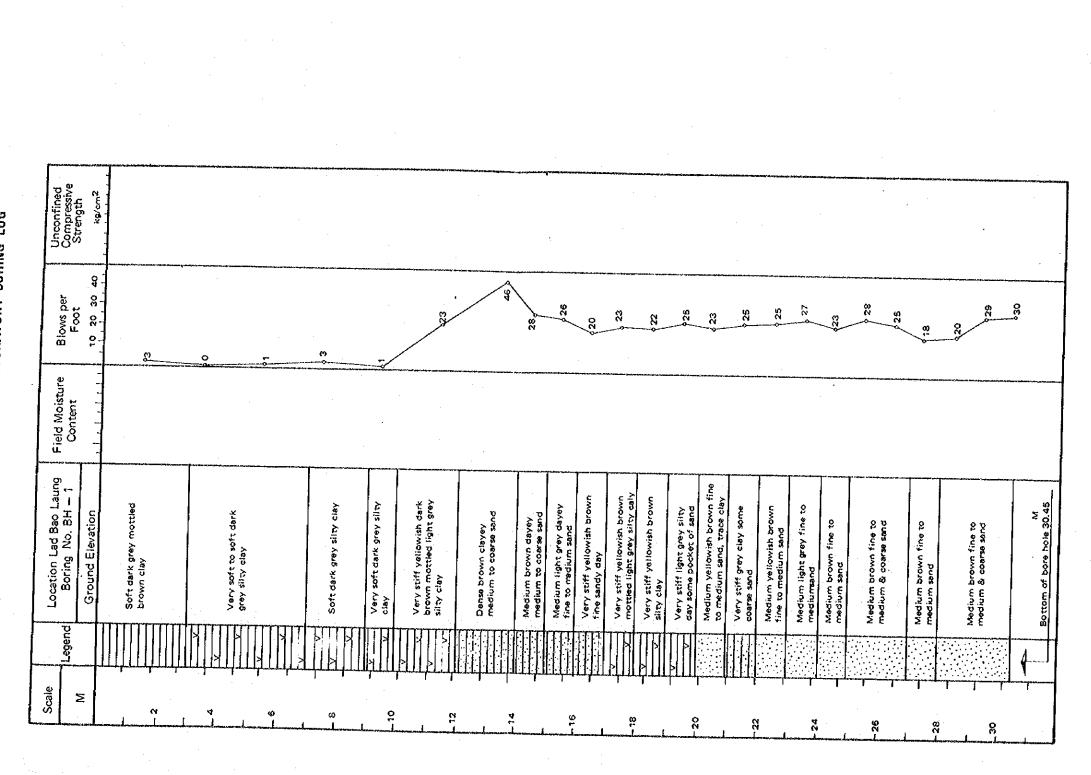
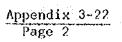
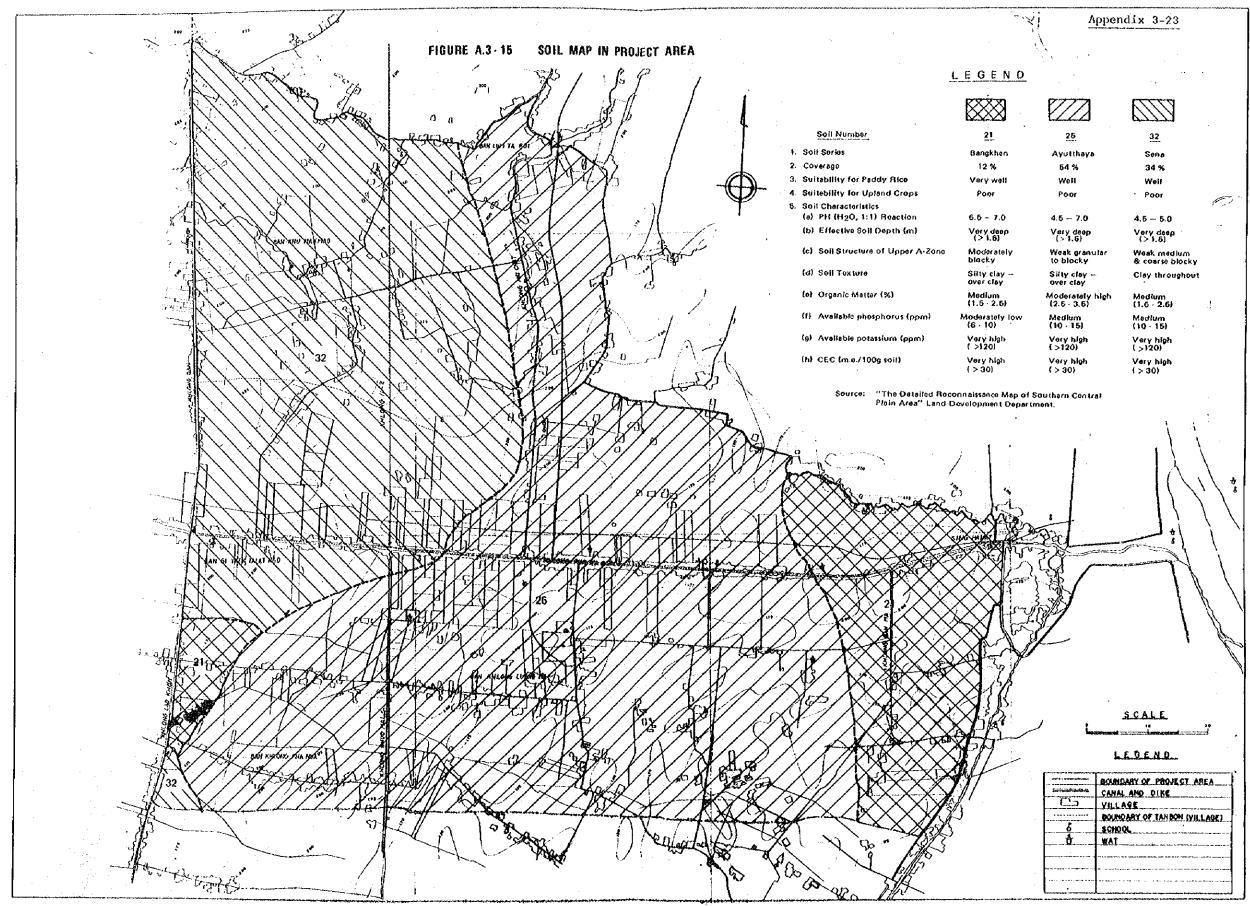
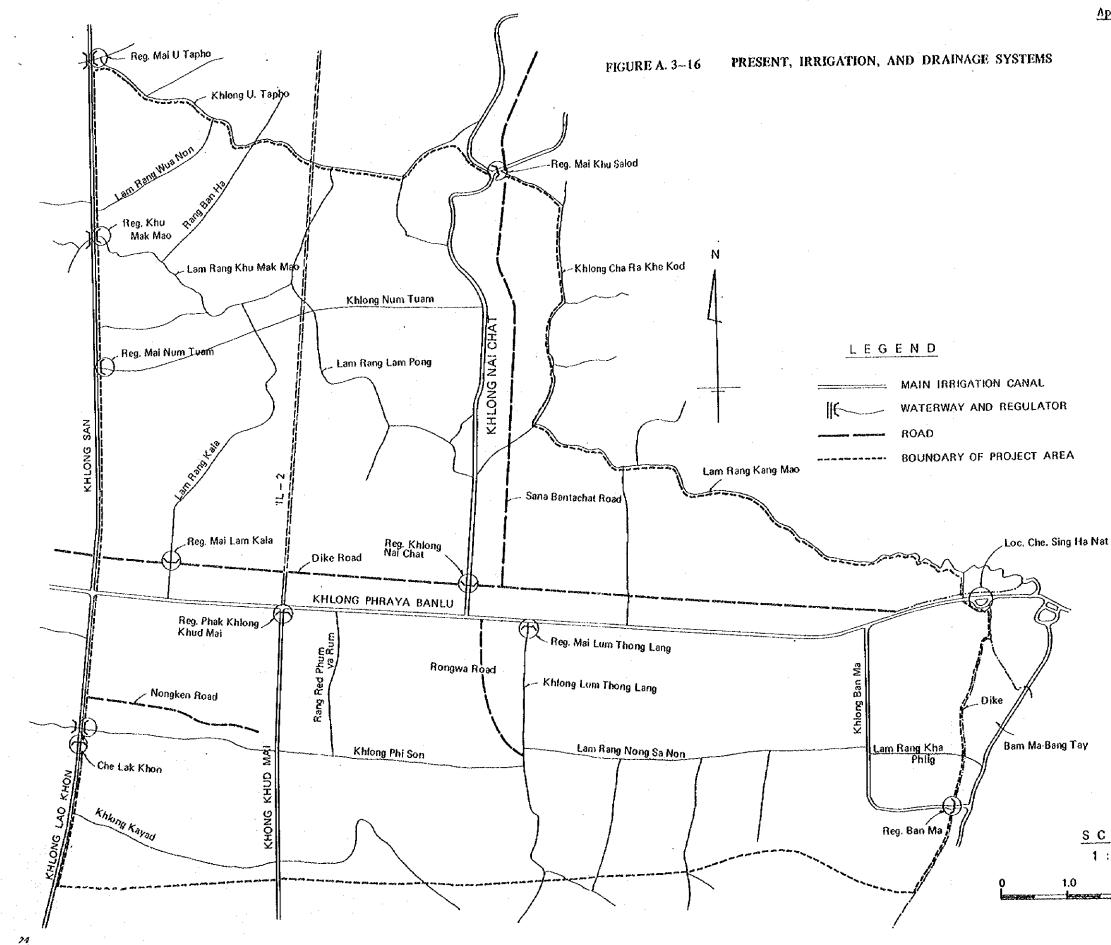




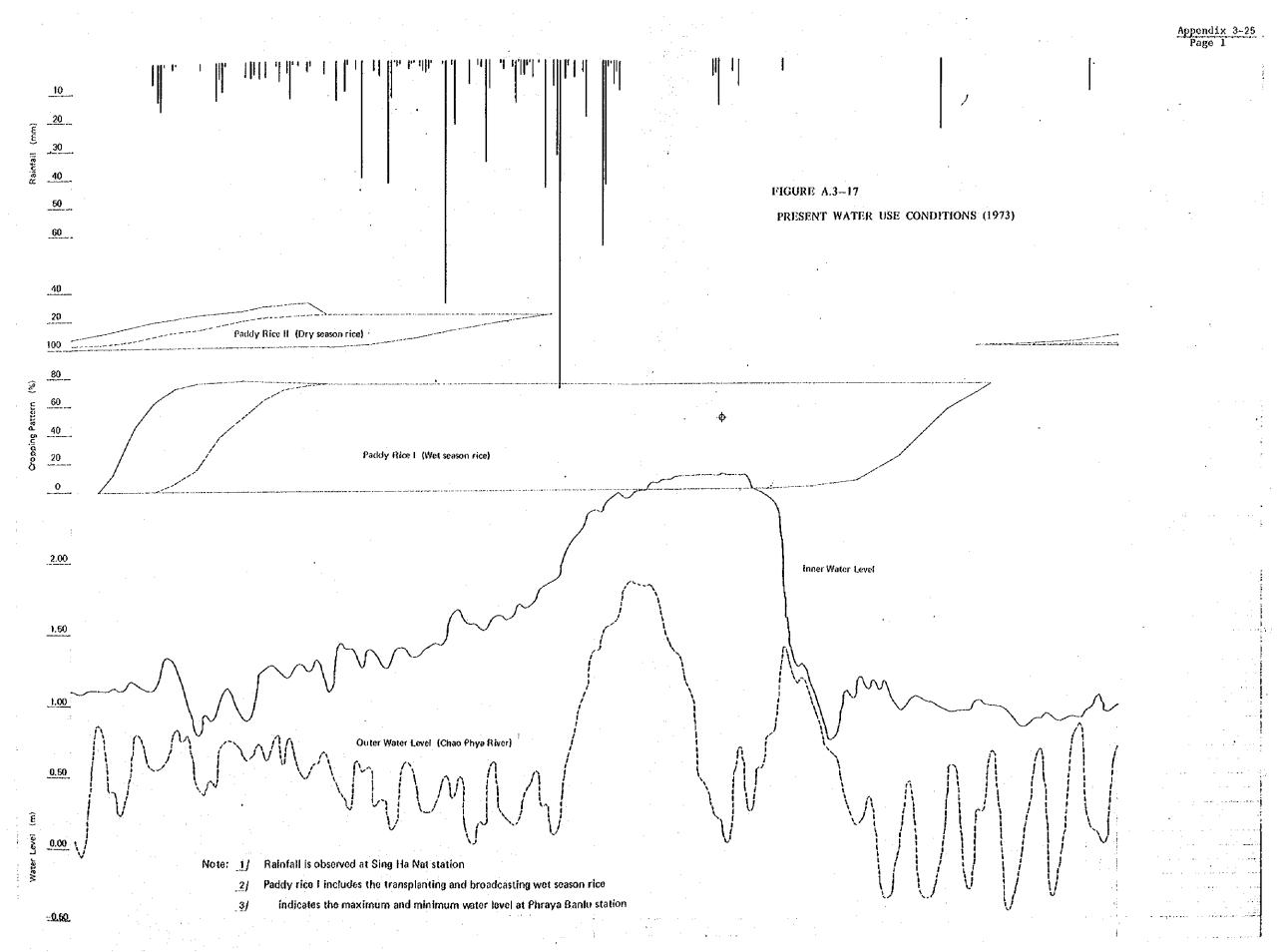
FIGURE A.3 – 14 SOIL AND MATERIAL LABORATORY BORING LOG

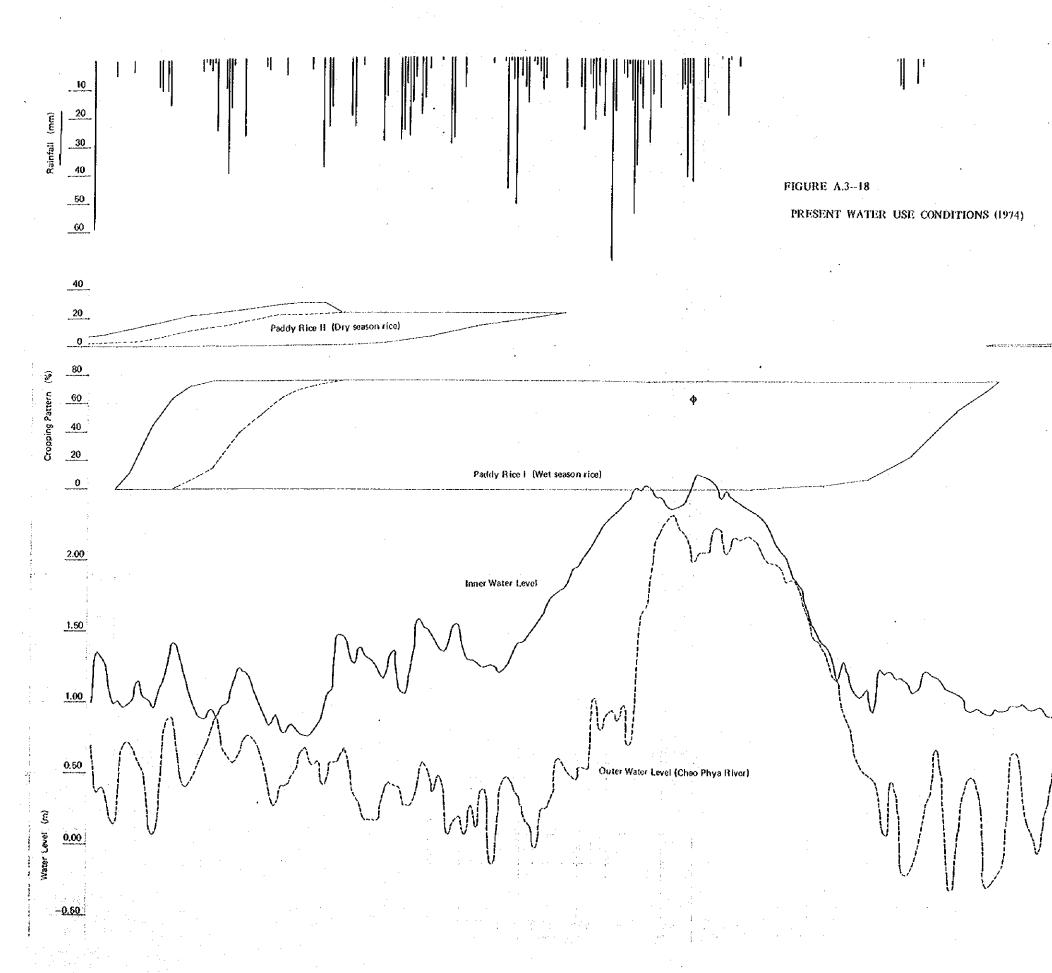



Remarks	යිනු වූ 	4.76 mm over 4.76 - 0.074 mm 0.74 mm under Inorganic clays of high plasticity
No. 5 22.2	4 0 1 1 2 4 0 9 1 1 4 0 0 1	98 98 2,58 0,58 0,58 0,58 0,58 0,58 0,58 0,58 0
No.4 #2.0	7 8 0 7 7 9 7 9 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9	00
No. 3 54. 2	62.0 62.0 62.0 62.0 62.0 62.0 62.0 62.0	н 96 2.56 2.56 С. 39 С. 30 С.
No. 2 60. 2	74.0 32.8 41.0	- - - - - - - - - - - - - - - - - - -
	00000000000000000000000000000000000000	1 6 93 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57
た (多)	ЖL (%) WD (%) WS (%) VS (%) T2 (%)	(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
<u>Item</u> Matural moisture content (%)	Consistency Liquid Limit Plastic limit Shrinkage limit Plasticity index	Grain size analysis Cravel Sand Silt and clay Specific gravity Matural unit densiry Classification of soil

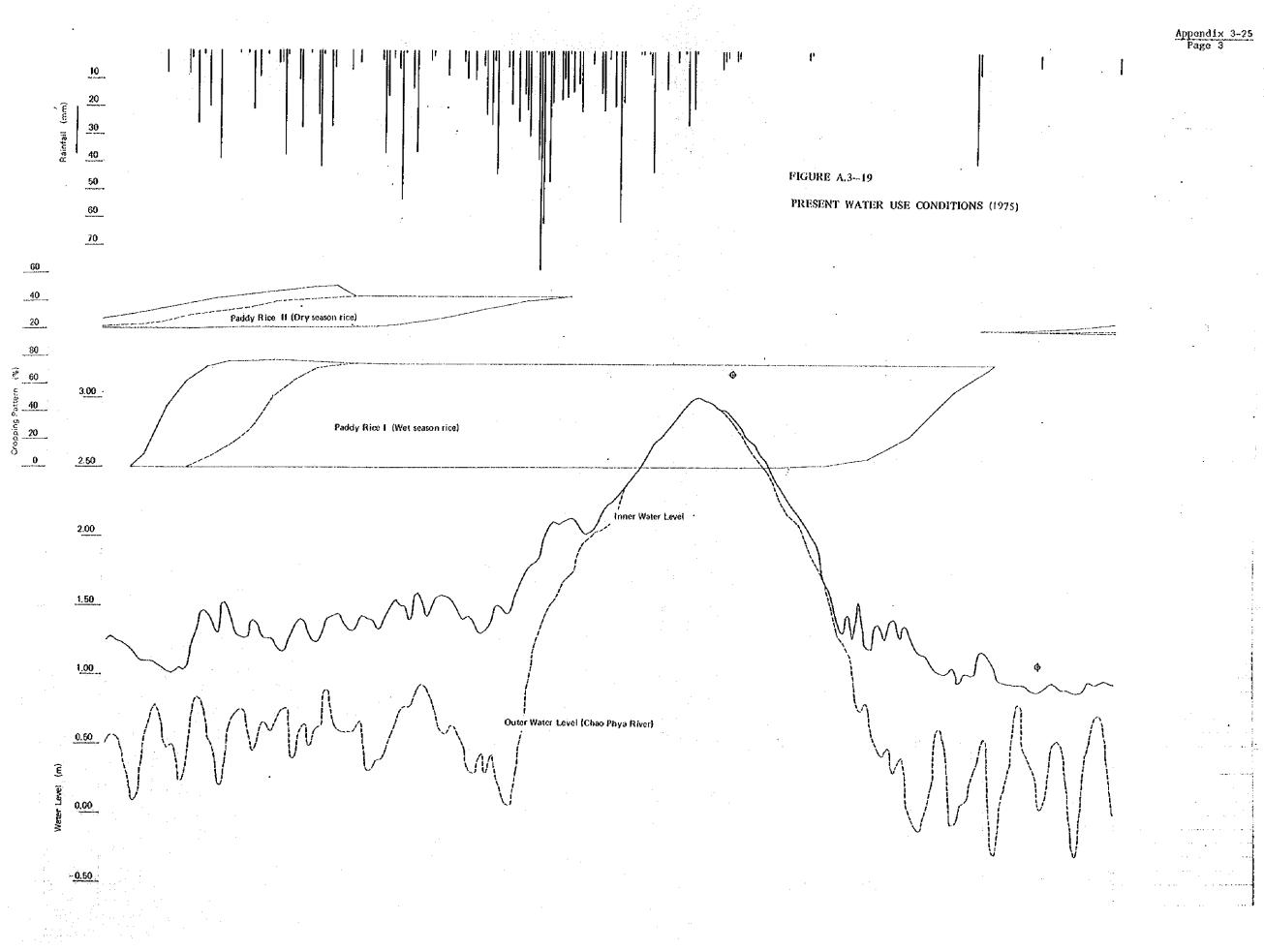
base on Unifined Soil Classification base on U.S. Bureau of Soil Triangular Classification Chant USCS: USDA: Note:

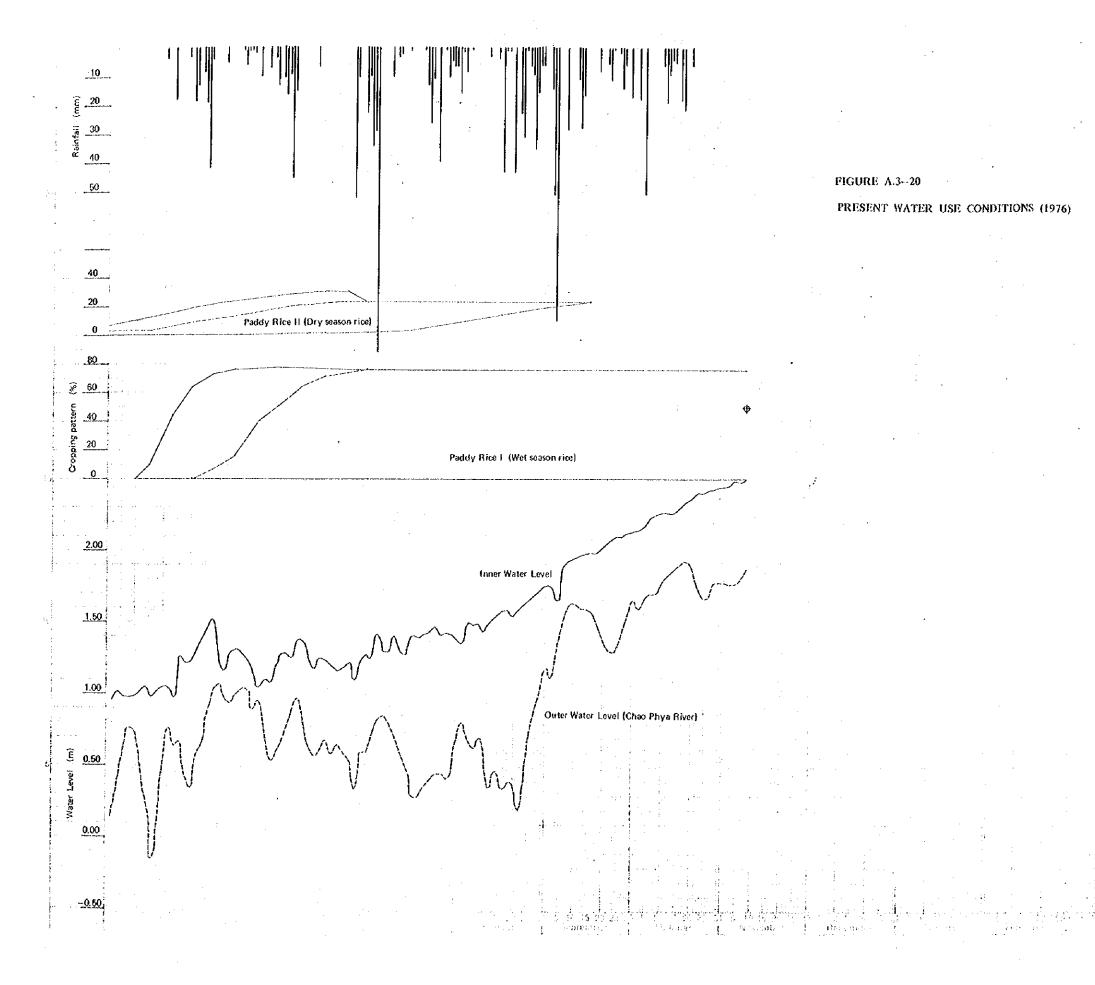
Table A. 3-41 Results of Soil Mechanical Test





Appendix 3-24


SCALE 1 : 50,000 1.0 2.0 3.0 - la marca a



Appendix 3-25 Page 2 • and the second Ŵ

cheft Appendix 3-25 Page 4 530 ··· • ·· • • • • •

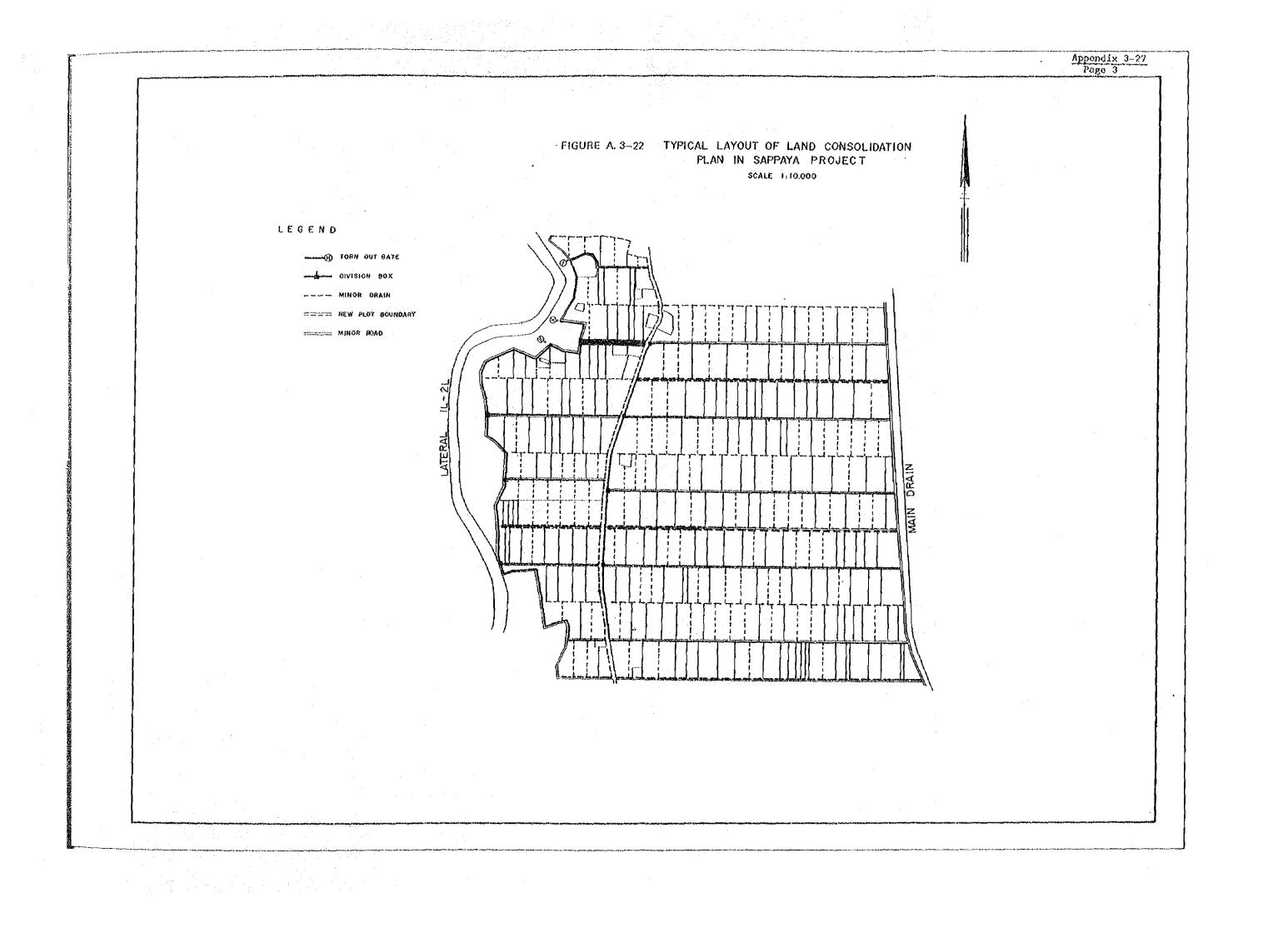
Min. W.L -0.72 8 88 0.60 -0.65 -0.45 -0.56 0.0 0 -0.63 OUTSIDE Source: Chao-ched Bangyeehon Irrigation Office Max. W.L 1.73 1.19 2.50 2.91 2 1.67 1.91 2.33 3.02 2.09 Outside of regurator (Chao Phya river) Inside: Inside of regurator Max. W.L. Min. W.L. 0.65 0.47 0.10 0.64 0.64 0.52 0.52 0.78 0.75 0.60 BOISNI MAXIMUM & MINIMUM WATER LEVEL AT SING HA NAT REG. .2.44 2.44 2.53 2.53 2.55 2.55 2.55 3.01 3.01 2.64 Outside: 1967 1968 1968 1970 1971 1972 1973 1973 1973 Mean Year ,75 Inside (max_) 74 (Oct - Nov.) Inside (max.) 73 Outside (Min.) č Outside (min.) (Jan. – June) ŗ 5 8 FIGURE A 3-21 88 69 4.00 80 200 8 8 0.0 (m) level tere! (m)

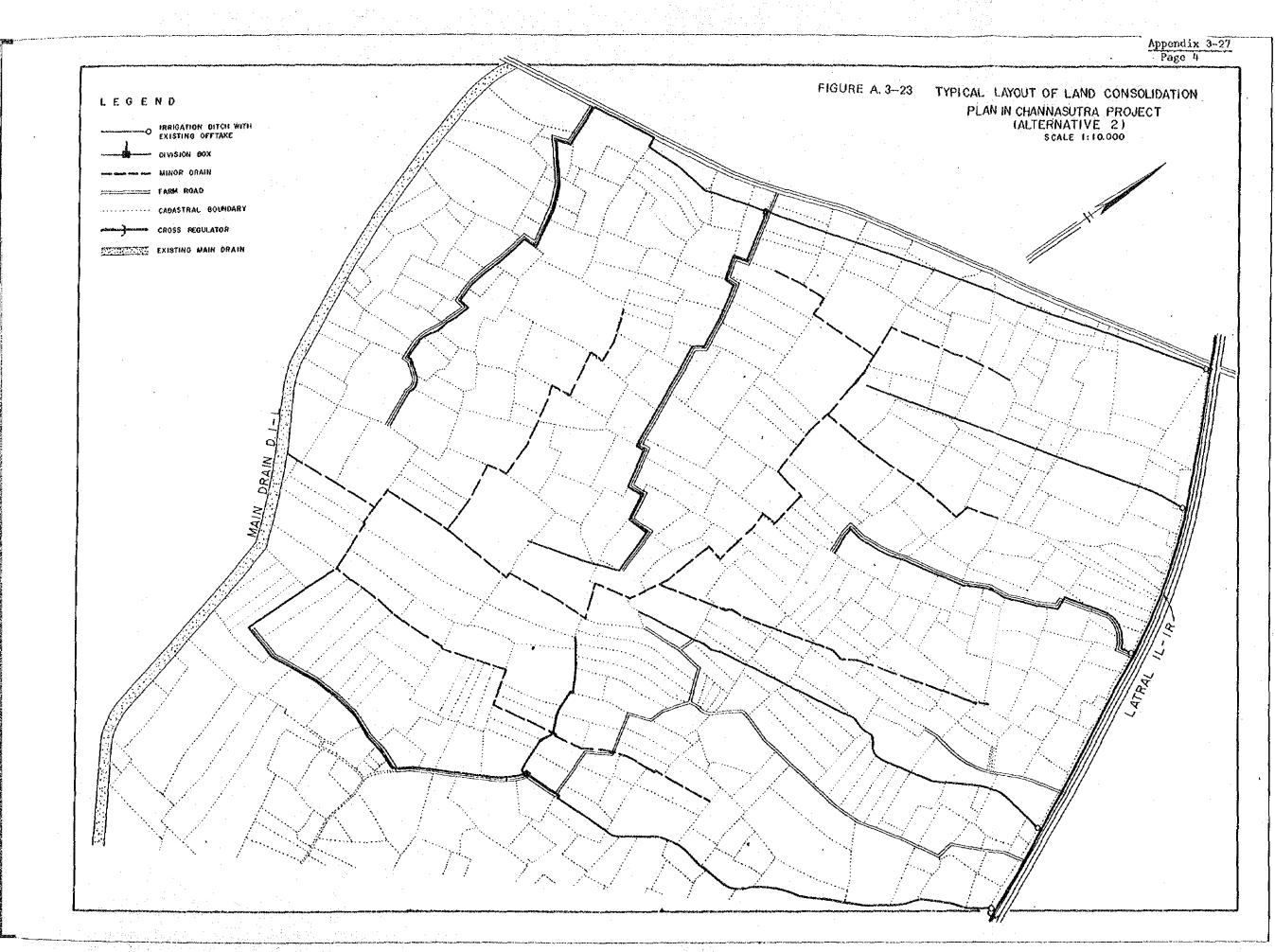
Appendix 3-26

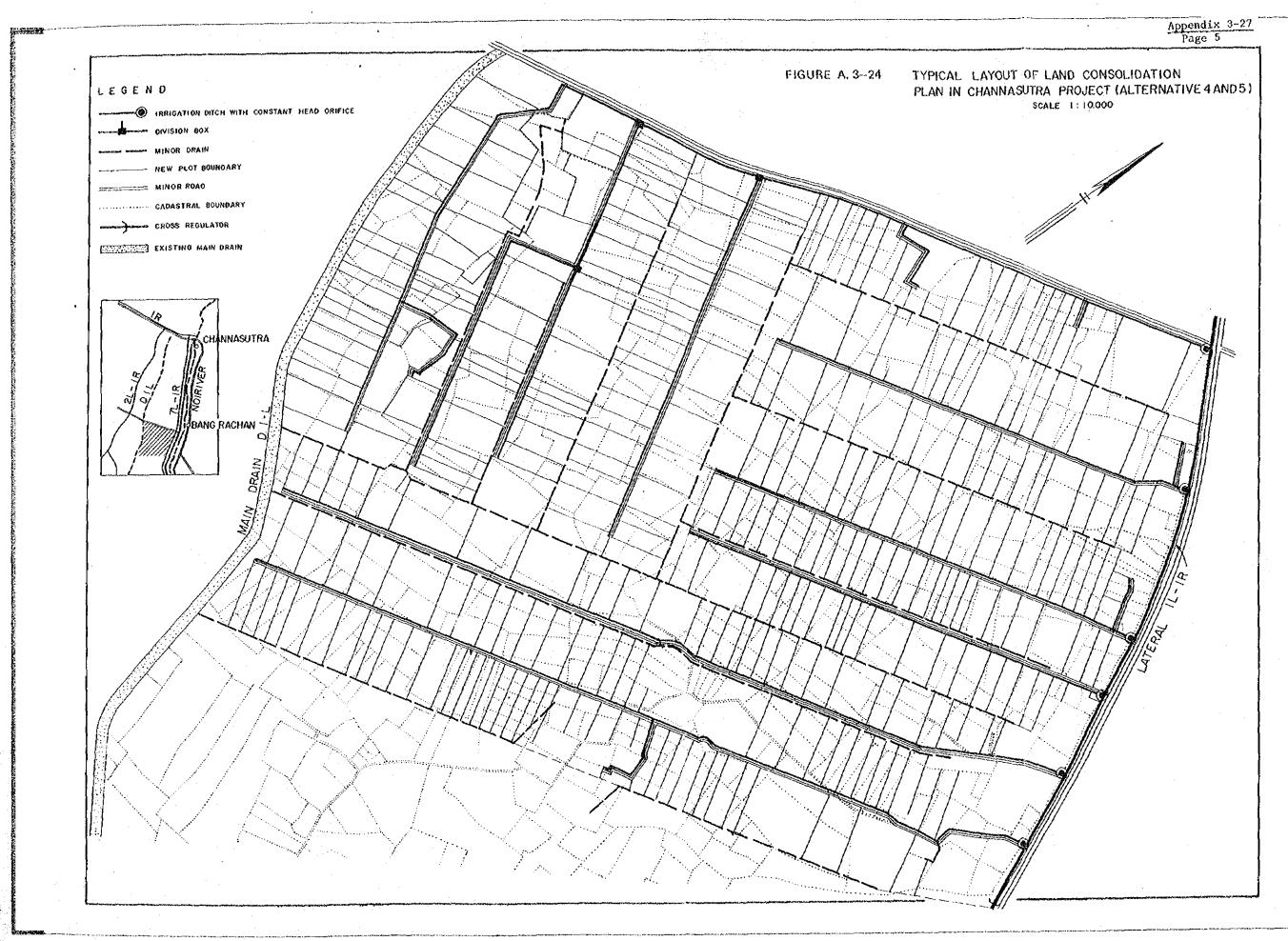
Table A. 3-42 Proposed Land Consolidation Area and Complated Area in Thailand in 1975

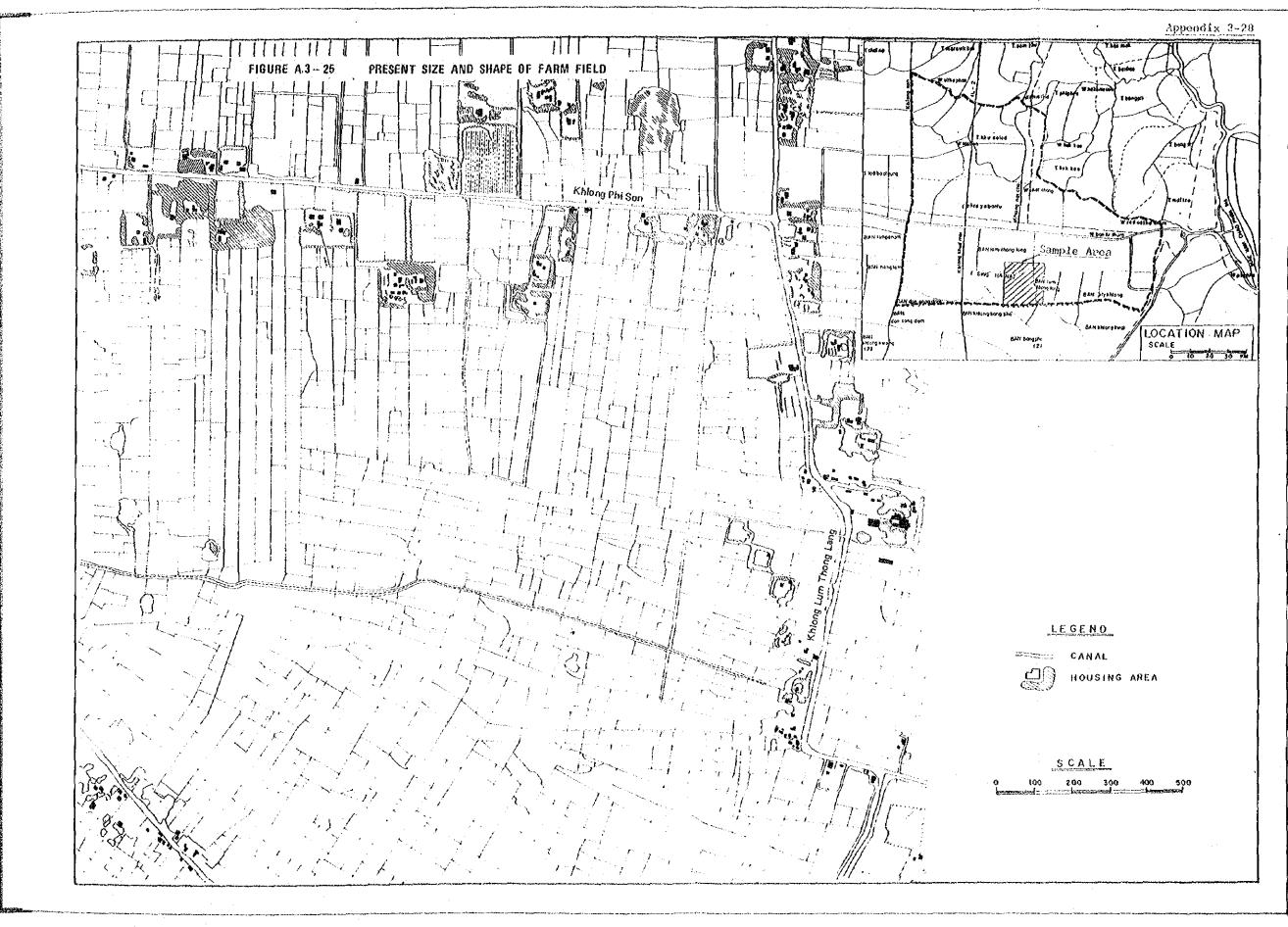
<u>troject</u> Suppaya Channasutra (I)	Area (na)		~		CG \110 /			
		1971	1972	1972 1973 1974	1974	1975	1976	Total
_	7,200	124	162	346	213	50.1	368	1,652
	9,600 }							
Channasutra (II) 5	56,700 }	176	5 3 T	1,149	1,216	2,368	1,168	6,608
r-}	12,000	ł	ı	ł	ł	· . I	160	09T
Total	85,500	300	693	1,495	1,429	2,807	1,596	8,420

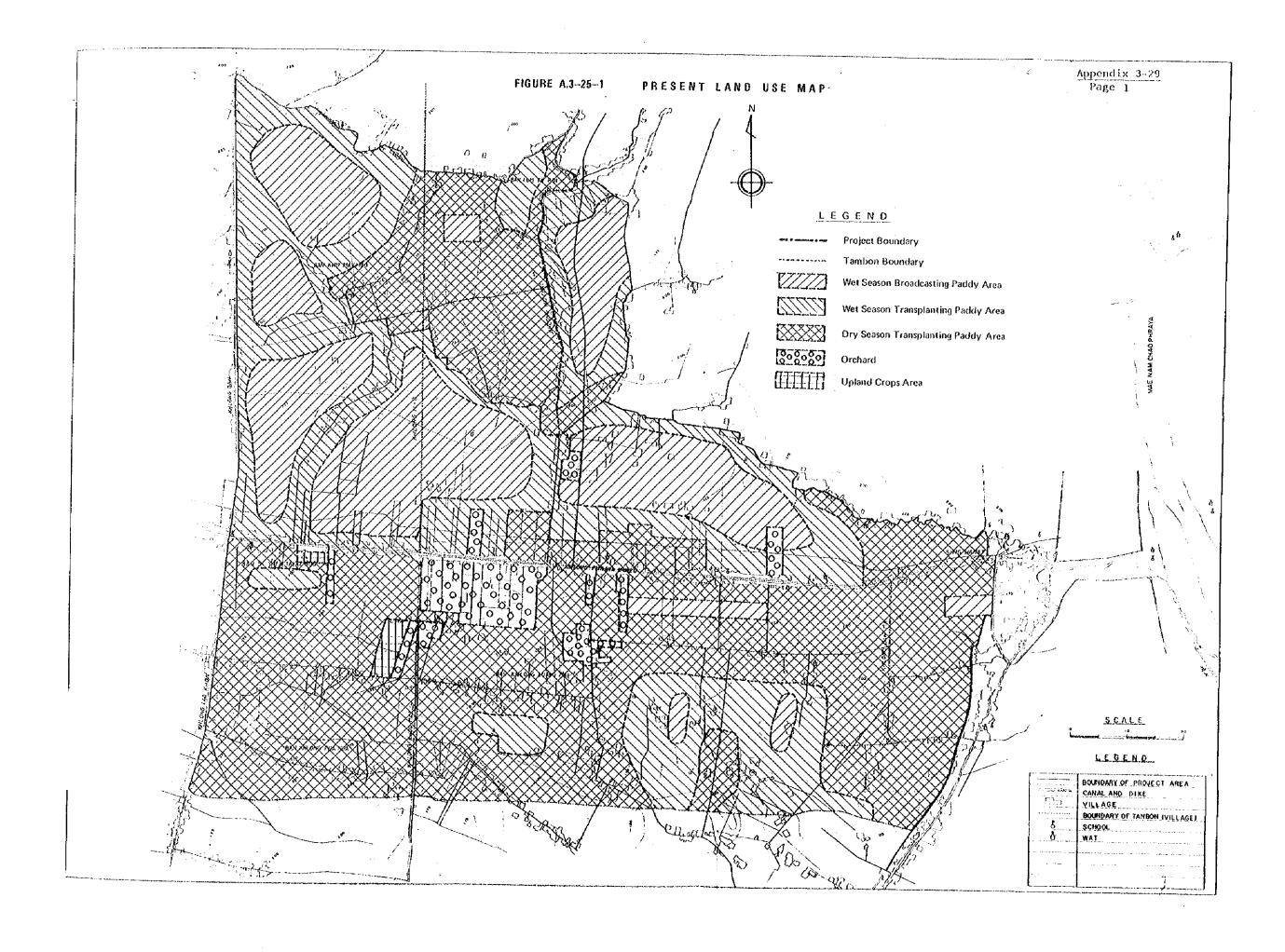
Source: Central Land Consolidation Office


;


,


Project
t and Channasutra Project
ಕಗರ
Project
: of Sappaya Project
41 0
r Features of Sa
Na Jo
õ
Comparison
3-43
Table A.


1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Sappaya Project	Channasutra Project	Remarks
Project area (ha)	7,200	Stage (I) : 9,600 Stage (II): 56,700 66,300	
Construction periods	1971 - 1980	Stage (I) : 1971-1977 Stage (II): 1978-1982	
Implemented area (ha)	1,652 (23 %)	6,608 (69 %)	
Construction cost (S/ha)	2,200	2,500	
Major Features of On-Farm Cost per ha (S/ha)	720 (2,380 B/rai)	470 (1,500 B/rai)	Exclusive of depreciation
size of plot (ha) length of Run (m) width of parcel (m) ratio of roads (m/ha) ratio of canal (m)	1.0 - 0.15 130 - 150 15 - 70 72.5 (11.6 m/rai) 98.1 (15.7 m/rai)	6.0 - 0.15 200 - 250 10 - 240 36.3 (5.8 m/rai) 68.1 (10.9 m/rai)	
Earth moving volume (m ³ /ha)	(77 11	т ³ /	
	3.0, 4.0, 6.0	4.0, 0.0	
Source:	Koyal irrigation Depart	Koyal Irrigation Department, Central Land Consolidation Urrice	LGation Urrice


Appendix 3-27 Page 2

Crop Yield

Ld of Paddy Rice

old in Ayutthaya Province

shown in Table A. 3-44, the Paddy Yields in the Ayutthaya) is lower than those in the Central Plain as well as whole in Thailand. There are about one million hectares of paddy (ilized for the floating type paddy in Thailand, and these re concentrated to the lower Chao Phys area. In the Ayutthaya (especially, this type of paddy occupies about 88 per cent of e paddy cropping area, because of low-lying area with flooding on in the wet season.

yield of floating paddy rice, in general, is quite low, cony, the average yield in the Ayutthaya Province becomes low when with those in Central Plain or Thailand.

ld in Project Area

paddy field in the Project Area is cultivated with nds of paddy cultivation, and the yield of each kind of that is as shown below, based on the collected data and field survey d by the mission.

Wet Season broadcasting paddy

pst paddy field in the Ayutthaya Province is cultivated with ting paddy, so that, it is reasonable to make assumption that as paddy yield of about 1.6 ton/ha in Ayutthaya Province for years from 1963 to 1972 can be regarded as that in the Project 1 this figure is approximately same to the result of the field onducted.

transplanting paddy

the transplanting paddy field, high yielding varieties are a under the application of fertilizer and agricultural

Area Area Area Froduction (ha) (ha) (ha) (ton) 217,475 5,028 212,446 362,566 220,754 99,584 120,770 149,493 220,455 13,966 206,489 350,190 220,455 13,966 206,489 350,190 220,200 11,656 208,544 374,638 220,200 11,656 208,544 374,638 219,797 17,245 202,552 383,583 220,435 15,245 204,299 331,136 219,317 5,452 213,855 401,398 215,839 33,837 182,002 385,274 219,317 5,452 213,855 401,398 219,317 5,452 213,855 401,398 219,317 5,452 213,855 401,398 218,794 25,514 193,202 3,451,398 218,795 25,514 193,200 3,451,399 2,219,000 N.A. </th <th>Year Area (ha) Area Area Area</th> <th></th> <th></th> <th>Planted</th> <th>Jamaged</th> <th>Harvested</th> <th></th> <th>Average</th>	Year Area (ha) Area Area Area			Planted	Jamaged	Harvested		Average
1963 217,475 5,028 212,446 352,565 1964 220,754 99,584 120,770 149,493 1965 220,455 13,966 208,544 370,190 1965 220,200 11,656 208,544 374,638 1966 220,555 13,966 208,544 374,638 1966 220,435 17,245 202,552 383,563 1967 219,797 17,245 202,552 383,563 1967 219,797 17,245 202,552 383,563 1968 220,435 37,742 182,693 331,136 1969 220,435 37,742 182,693 331,136 1970 215,839 33,837 182,602 351,236 1971 219,317 5,452 213,855 401,338 1971 219,317 5,452 213,855 401,338 1971 219,317 5,452 213,855 401,338 1971 219,317 5,452 213,855 401,338 1971 219,795 255,114 1932,203 351,322 1972 215,795 255,114 1932,203 3,451,339 1972 219,795 255,514	 1963 217,475 5,028 212,446 962,566 1964 220,754 99,984 120,770 149,493 1965 220,455 13,966 206,489 350,190 1966 220,200 11,656 208,544 374,638 1967 2219,797 17,245 208,544 374,638 1968 220,435 17,245 204,299 331,136 1968 220,435 37,742 182,699 331,136 1970 215,839 33,837 182,002 331,136 1971 219,317 5,452 213,865 401,398 1971 219,317 5,452 213,865 401,398 1971 219,317 5,452 213,865 401,398 1972 215,839 33,837 182,002 331,336 1971 219,317 5,452 213,865 401,398 1972 215,839 33,837 182,002 331,336 1971 219,317 5,452 213,865 401,499 1932,803 3,451,339 1972 213,317 5,452 213,865 400,000 1972 213,319 193,281 3,451,339 1972 213,790 551,000 6,791,000 12,397,000 1962 - 1975) 7,342,000 551,000 6,791,000 12,397,000 	Statistic	-cear	Area (na)	Area (ha)	Area (he)	Production (ton)	<u>vield4</u> / (ton/ha)
1964 220,754 99,564 120,770 149,493 1965 220,455 13,966 206,485 350,190 1966 220,455 13,966 208,544 376,538 1966 220,200 11,656 208,544 374,658 1967 219,797 17,245 202,552 383,583 1967 219,797 17,245 202,552 383,583 1968 220,955 16,558 204,299 331,356 1968 220,435 37,742 182,693 331,356 1970 215,839 33,837 182,693 351,788 1971 219,317 5,452 213,865 401,398 1971 219,317 5,452 213,865 401,398 1971 219,317 5,452 213,865 401,398 1971 219,317 5,452 213,865 401,398 1971 219,317 5,452 213,865 401,398 1972 213,795 1932,803 3,451,388 1 1972 218,795 25,514 1932,803 3,451,398 2 1975 2,197,000 5,514 1932,803 3,451,398 2 1975 2,219,00	1964 220,754 99,564 120,770 149,493 1965 220,455 13,966 206,489 350,190 1966 220,200 11,656 208,544 374,658 1967 219,797 17,245 202,552 383,583 1968 220,955 16,558 204,299 331,136 1970 215,839 33,837 182,693 361,788 1970 215,839 33,837 182,693 361,788 1971 219,317 5,452 182,693 361,788 1971 219,317 5,452 182,693 361,788 1971 219,317 5,452 182,693 351,338 1971 219,317 5,452 182,693 351,338 1971 219,317 5,452 182,693 351,338 1971 219,317 5,452 183,865 401,398 1972 212,819 13,670 109,149 351,332 70 call 2,187,947 255,138 1,932,809 3,451,388 1 Mean 218,795 25,514 193,281 345,139 2 - 1975) 2,219,000 N.A. N.A. 4,190,000 2 - 1975) 7,342,000 551,000 6,791,000 12,397,000 2 - 1575) 7,342,000 551,000 6,791,000 12,397,000 2 - 1975) 7,342,000 551,000 6,791,000 12,397,000 7 Dep. of Agricultural Extension, MOAC ("Statistical Reports of Ayutthaya Province", Wartional Statistical Office")	Ayutthaya Province ¹ /	1963	217,475	5,028	212,446	\sim	1.67
<pre>1965 220,455 l3,966 206,489 350,190 1966 220,200 l1,656 208,544 374,638 1967 219,797 l7,245 202,552 383,583 1968 220,435 16,558 204,299 331,136 1970 215,839 33,837 182,693 361,788 1970 215,839 33,837 182,603 361,788 1971 219,317 5,452 182,693 361,788 1971 219,317 5,452 213,865 401,398 1971 219,317 5,452 213,865 401,398 1971 219,317 5,452 213,865 401,398 1971 219,317 5,452 213,865 401,398 1971 219,317 5,452 213,865 401,398 1971 219,317 5,452 213,865 401,398 1971 219,317 5,452 213,865 401,398 1971 219,317 5,452 213,865 401,398 1971 219,317 5,452 213,865 401,398 1971 219,317 5,452 213,865 401,398 1971 219,317 5,452 213,865 401,398 1971 219,317 5,452 199,000 2 - 1975) 7,342,000 6,791,000 12,397,000 2 - 1575) 7,342,000 6,791,000 12,397,000</pre>	<pre>1965 220,455 13,966 206,489 350,190 1966 220,200 11,656 208,544 374,638 1967 219,797 17,245 202,552 383,583 1968 220,435 37,742 182,693 331,136 1970 215,839 33,837 182,602 385,274 1971 219,317 5,452 213,865 401,398 1971 219,317 5,452 213,865 401,398 1971 219,317 5,452 213,865 401,398 1971 218,794 193,670 199,149 351,322 1972 213,819 13,670 199,149 351,322 1972 213,819 13,670 199,149 351,322 1972 213,819 13,670 199,149 351,322 1972 213,819 13,570 199,149 351,322 1972 213,819 1,932,809 3,451,388 1 Mean 218,795 25,514 1932,809 3,451,388 1 Mean 218,795 25,514 1932,809 3,451,388 1 2 1975) 7,342,000 551,000 6,791,000 12,397,000 2 1575) 7,342,000 551,000 6,791,000 12,397,000 </pre>	(1963 - 1972)	1964	220,754	99 , 984	120,770	149,493	0
1966 220,200 11,656 208,544 374,638 1967 219,797 17,245 202,552 383,583 1968 220,435 16,558 204,299 331,136 1968 220,435 37,742 182,693 331,136 1970 215,839 33,837 182,693 351,788 1971 219,317 5,452 213,865 401,398 1971 219,317 5,452 213,865 401,398 1971 219,317 5,452 213,865 401,398 1971 219,317 5,452 213,865 401,398 1971 219,317 5,452 213,865 401,398 1972 212,819 13,670 193,281 451,338 Mean 218,795 25,514 193,281 345,139 Mean 218,795 25,514 193,281 345,139 Mean 218,795 25,514 193,200 345,139 2 1975 2,219,000 8,791,000 3,451,397,000 2 1975 7,312,000 551	<pre>1966 220,200 11,656 208,544 374,638 1967 219,797 17,245 202,552 383,583 1968 220,855 16,558 204,299 331,136 1970 215,839 33,837 182,002 385,274 1971 219,317 5,452 213,865 401,398 1971 219,317 5,452 213,865 401,398 1971 219,317 5,452 213,865 401,398 1971 219,317 5,452 213,865 401,398 1971 219,317 5,452 213,865 4,01,398 1971 2197,317 5,452 213,865 4,01,398 1971 2197,317 5,452 213,865 4,01,398 1971 2197,317 5,452 213,865 4,01,398 1971 219,317 5,452 213,865 4,01,398 1971 219,317 5,452 213,865 4,01,398 2 - 1975 215,819 1,932,809 3,451,388 1 2 - 1975) 7,342,000 N.A. N.A. 4,190,000 2 - 1975) 7,342,000 6,791,000 12,397,000 2 - 1575) 7,342,000 6,791,000 12,397,000 </pre>		1965	220,455	13,956	206,489	350,190	6g.1
1967 219,797 17,245 202,552 383,583 1968 220,435 37,742 182,693 331,336 1958 220,435 37,742 182,693 331,336 1970 215,839 33,837 182,602 385,274 1971 219,317 5,452 213,855 401,398 1971 219,317 5,452 213,855 401,398 1972 213,819 13,670 192,002 351,322 1972 213,519 13,670 199,149 351,322 1972 218,794 255,138 1,932,803 3,451,338 1972 218,795 25,514 1932,803 3,451,339 1975 2,219,000 N.A. N.A. 4,190,000 2 - 1975 7,342,000 551,000 6,791,000 12,397,000	1967 219,797 17,245 202,552 383,583 1968 220,855 16,558 204,299 331,336 1968 220,435 37,742 182,693 361,788 1969 220,435 37,742 182,693 361,788 1970 215,839 33,837 182,602 385,274 1971 219,317 5,452 213,855 401,398 1971 219,317 5,452 213,855 401,398 1971 219,317 5,452 213,855 401,398 1 1971 219,317 5,452 213,855 401,398 1 1972 212,819 13,570 199,209 351,322 1 Mean 218,795 25,514 1932,809 3,451,388 1 Mean 218,795 25,514 1932,809 3,451,388 1 Mean 218,795 25,514 1932,809 3,451,388 1 2 - 1975 2,219,000 N.A. M.A. 4,190,000 2 - 1975 2,219,000 551,000 5,71,000		9961.	220,200	11,656	•	374,638	1.70
<pre>1958 220,855 16,558 204,299 331,136 1958 220,435 37,742 182,693 361,788 1970 215,839 33,837 182,002 385,274 1971 219,317 5,452 213,855 401,398 1972 212,819 13,670 199,149 351,322 1972 212,819 13,670 199,149 351,328 Mean 218,795 25,514 193,281 3,451,388 1 2 - 1975) 7,342,000 N.A. N.A. 4,190,000 2 - 1975) 7,342,000 551,000 6,791,000 12,397,000 </pre>	<pre>1968 220,855 16,558 204,299 331,136 1969 220,435 37,742 182,693 361,788 1970 215,839 33,837 182,602 385,274 1971 219,317 5,452 213,865 401,398 1971 219,317 5,452 213,865 401,398 1972 212,819 13,670 199,149 351,322 1972 218,795 25,138 1,932,809 3,451,388 1 Mean 218,795 25,514 193,281 3,451,388 Mean 218,795 25,514 193,281 3,451,388 2 - 1975) 7,342,000 N.A. N.A. 4,190,000 2 - 1975) 7,342,000 551,000 6,791,000 12,397,000 2 - 1975) 7,342,000 551,000 6,791,000 12,397,000 </pre>		1961	219,797	17 , 245	•	383,583	~
<pre>1959 220,435 37,742 182,693 361,788 1970 215,839 33,837 182,602 385,274 1971 219,317 5,452 213,855 401,398 1972 212,819 13,670 199,149 351,322 Total 2,187,947 255,138 1,932,809 3,451,388 Mean 218,795 25,514 193,281 3,451,388 2 - 1975) 2,219,000 N.A. N.A. 4,190,000 2 - 1575) 7,342,000 551,000 6,791,000 12,397,000 </pre>	<pre>1959 220,435 37,742 182,693 361,788 1970 215,839 33,837 182,002 385,274 1971 219,317 5,452 182,002 3855 401,398 1972 212,819 13,670 199,149 351,322 1972 2187,947 255,138 1,932,809 3,451,388 1 Mean 218,795 25,514 193,281 345,139 2 - 1975) 2,219,000 N.A. 4,190,000 2 - 1975) 7,342,000 551,000 6,791,000 12,397,000 2 - 1975) 7,342,000 551,000 6,791,000 12,397,000 </pre>		1968	220,855	16,558	204,299	331,136	1.50
1970 215,839 33,837 182,002 385,274 1971 219,317 5,452 213,865 401,338 1972 212,819 13,670 195,149 351,328 1972 212,819 13,670 195,149 351,328 1 1972 212,819 13,670 195,149 351,322 351,322 Total 2,187,947 255,138 1,932,809 3,451,388 1 Mean 218,795 25,514 1932,809 3,451,388 1 Mean 218,795 25,514 1932,809 3,45,139 1 2 - 1975 2,219,000 N.A. M.A. 4,190,000 2 - 1975 7,342,000 551,000 6,791,000 12,397,000 2 - 1575 7,342,000 551,000 6,791,000 12,397,000	1970 215,839 33,837 182,002 385,274 1971 219,317 5,452 213,855 401,398 1972 212,819 13,670 199,149 351,322 1972 212,819 13,670 199,149 351,322 Total 2,187,847 255,138 1,932,809 3,451,388 1 Mean 218,795 255,14 193,281 345,139 1 Mean 218,795 25,514 193,281 345,139 1 2 - 1975 2,219,000 N.A. N.A. 4,190,000 2 - 1975 7,342,000 551,000 6,791,000 12,397,000 2 - 1975 7,342,000 551,000 6,791,000 12,397,000 2 - 1975 7,342,000 551,000 6,791,000 12,397,000 2 - 1975 7,342,000 551,000 6,791,000 12,397,000 2 - 1975 7,342,000 551,000 6,791,000 12,397,000 2 - 1975 7,342,000 551,000 6,791,000 12,397,000 3 - 1975 7,342,000 51,000		1969	220,435	37,742	182 , 693	361,788	1.54
<pre>1971 219,317 5,452 213,855 401,398 1972 212,819 13,670 199,149 351,322 Total 2,187,947 255,138 1,932,809 3,451,388 1 Mean 218,795 25,514 193,281 345,139 2 - 1975) 2,219,000 N.A. N.A. 4,190,000 2 - 1975) 7,342,000 551,000 6,791,000 12,397,000 </pre>	1971 219,317 5,452 213,855 401,398 1972 212,819 13,670 199,149 351,322 Total 2,187,947 255,138 1,932,809 3,451,388 1 Mean 2,187,947 255,138 1,932,809 3,451,388 1 Mean 2,187,947 255,138 1,932,809 3,451,388 1 Mean 2,187,995 25,514 193,281 3,45,139 1 2 - 1975 2,219,000 N.A. N.A. 4,190,000 2 2 - 1975 2,219,000 N.A. N.A. 4,190,000 2 2 - 1975 2,219,000 N.A. N.A. 4,190,000 2 2 - 1975 2,342,000 551,000 6,791,000 12,397,000 2 - 1975 7,342,000 551,000 6,791,000 12,397,000 2 - 1975 7,342,000 551,000 6,791,000 12,397,000 2 - 1975 7,342,000 551,000 6,791,000 12,397,000 2 - 1975 7,342,000 551,000 6,791,000 12,397,000 12	•	1970	215,839	33,837	•	- CU	1.79
1972 212,819 13,670 199,149 351,322 Total 2,187,947 255,138 1,932,809 3,451,388 1 Mean 218,795 25,514 193,281 345,139 2 - 1975) 2,219,000 N.A. 4,190,000 2 - 1975) 7,342,000 N.A. 4,190,000 12,397,000	1972 212,819 13,670 199,149 351,322 Total 2,187,947 255,138 1,932,803 3,451,388 1 Mean 218,795 25,514 193,281 345,139 1 Mean 218,795 25,514 193,281 345,139 1 2 - 1975 2,219,000 N.A. N.A. 4,190,000 2 - 1975 7,342,000 551,000 6,791,000 12,397,000 2 - 1975 7,342,000 551,000 6,791,000 12,397,000 2 - 1975 7,342,000 551,000 6,791,000 12,397,000 2 - 1975 7,342,000 551,000 6,791,000 12,397,000 2 - 1975 7,342,000 551,000 6,791,000 12,397,000 2 - 1975 7,342,000 551,000 6,791,000 12,397,000 2 - 1975 7,342,000 551,000 6,791,000 12,397,000 2 - 1975 7,342,000 551,000 6,791,000 12,397,000 3 - 1975 7,342,000 551,000 6,791,000 12,397,000 3 - 1975 7		1971	219,317	5,452	85	40J,338	7.83 7.83
Total 2,187,847 255,138 1,932,809 3,451,388 1 Mean 218,795 25,514 193,281 345,139 2 - 1975) 2,219,000 N.A. 4,190,000 2 - 1975) 7,342,000 5.71,000 6,791,000 12,397,000	Total 2,187,847 255,138 1,932,809 3,451,388 1 Mean 218,795 25,514 193,281 345,139 Mean 218,795 25,514 193,281 345,139 2 - 1975) 2,219,000 N.A. 4,190,000 2 - 1975) 7,342,000 551,000 6,791,000 12,397,000 2 - 1975) 7,342,000 551,000 6,791,000 12,397,000 2 - 1975) 7,342,000 551,000 6,791,000 12,397,000 ("Statistical Reports of Ayutthaya Province", National Statistical Office)		1972	232,819	13,670	•	351,322	1.65
Mean 218,795 25,514 193,281 345,139 2 - 1975) 2,219,000 N.A. 4,190,000 2 - 1975) 7,342,000 551,000 6,791,000 12,397,000 2 - 1975) 7,342,000 551,000 6,791,000 12,397,000	Mean 218,795 25,514 193,281 345,139 2 - 1975) 2,219,000 N.A. 4,190,000 2 - 1975) 7,342,000 551,000 6,791,000 12,397,000 2 - 1975) 7,342,000 551,000 6,791,000 12,397,000 2 - 1975) 7,342,000 551,000 6,791,000 12,397,000 2 - 1975) 7,342,000 551,000 6,791,000 12,397,000 2 - 1975) 7,342,000 551,000 6,791,000 12,397,000 2 - 1975) 7,342,000 551,000 6,791,000 12,397,000 2 - 1975) 7,342,000 551,000 6,791,000 12,397,000 2 - 1975) 7,342,000 551,000 6,791,000 12,397,000 2 - 1975) 7,342,000 551,000 6,791,000 12,397,000 2 - 1975) 7,342,000 551,000 12,591,000 12,597,000 2 - 1975) 7,342,000 551,000 12,591,000 12,597,000 3 - 1975) 7,920,000 551,000 12,591,000 12,591,000 3 - 1975 7,920,000 54,		Total	2,187,947	255,138	1,932,809	3,451,388	15.80
2 - 1975) 2,219,000 N.A. N.A. 4,190,000 2 - 1975) 7,342,000 551,000 6,791,000 12,397,000	2 - 1975) 2,219,000 N.A. N.A. N.A. 4,190,000 2 - 1975) 7,342,000 551,000 6,791,000 12,397,000 / Dep. of Agricultural Extension, MOAC ("Statistical Reports of Ayutthaya Province", National Statistical Office)		Mean	218,795	က်	193,281	345,139	. न . 58
2 - 1975) 7,342,000 551,000 6,791,000 12,397,000	2 - 1975) 7,342,000 551,000 6,791,000 12,397,000 / Dep. of Agricultural Extension, MOAC ("Statistical Reports of Ayutthaya Province", National Statistical Office)	Annual Rice Production in Central Plain ² /(1962	- 1975)	2,219,000	N.A.	N.A.	4,190,000	08 - T
l/ Dep. of Agriculturel	<pre>1/ Dep. of Agricultural Extension, MOAC ("Statistical Reports of Ayuttheya Province", National Statistical</pre>	Annual Rice Production in Thailand ^{3/} (1962	- 1975)	7,342,000	551,000	6,791,000	12,397,000	1.69
l/ Dep. of Agricultural	<u>1</u> / Dep. of Agricultural Extension, MOAC ("Statistical Reports of Ayutthaya Province", National Statistical							·
	"Statistical Reports of Ayutthaya Province", National Statistical	Source: 1/	Dep. of	Agriculturel	Cxtension MOA	C		-

Table A. 3-44 Statistical Data on Paddy Yield

.

Appendix 3-29 Page 3

Basing on planted area.

2/, 3/ Div. of Agricultural Economics, MOAC ("Agricultural Statistics of Thailand, Crop Year 1975/76")) J

Number in parenthesis: % of dry season trans-Mean yield of 1974 Crop year: 1975/76 plenting paddy Transplanting Broadcasting Remarks and 1975 1.0 ton/ha 89.6 ha *3.2 ton/ha Data on Faddy Yield in the Project Area Vield 1.20 ton/hg *2.48 ton/ha 2.3 ton/ha 2.4 ton/ha transplanting paddy Yield Vield 33.0 ha . (809) Flanted (20%) area 67% (31%) Coverage of 2년 19년 Planted 157 ha 80% area 54% No. of surveyed Flanted area 2,342 ha 1,150 ha No. of surveyed 2.9 ton/ha 2.5 ton/ha *2.9 ton/ha farmers ശ てで farm families Vield Paddy Yield 00 transplanting Phraya Banlu broadcasting Phraya Banlu Sing Ha Nat Wet and dry Wet season Khusaloà Khusalod Crob season Tambon Season Tambon Dry ≓et Set (3) Agro-economy survey conducted by this Mission in Project area conditions of farmers in Lad Bao Laung district. (Div. of office of Ayutthaya province (1) The survey on socio-economic Research & Flanning, ALRO, Oct.1976) (2) Statistical survey in each village (Muban) concerned Ayutthaya province, 1976) with Project Area. (Statistical Office of (+) Agricultural extension Date Source

Appendix 3-29 Page 4

*2.7 ton/ha

3,132 ha

Sing Ha Nat

Table A. 3-45

Data on Paddy Yield in the Project Area (continued)

•

Remarks Yean yield from harvested area in 1971 - 1975	
<u>Vield</u> 2.1 ton/ha *3.6 ton/ha	
Planted area 4,338 ha 4,248 ha	<u>Vield</u> 1.6 ton/ha 3.0 ton/ha
Crop Wet season broadcasting Wet & dry season transplanting	<u>Crop</u> Wet season broadcasting Dry season transplanting
(5) Agricultural extension office of Led Bao Laung	<pre>(6) Yield survey by guadrat sampling in Project area, which was conducted by this Mission</pre>

Appendix 3-29 Page 5

•

.

chemicals in the dry season and the beginning of the wet season. The paddy cultivation in the dry season is called as the dry season transplanting paddy which is blessed with favorate conditions of high yield in comparison with the yield of the wet season transplanting paddy.

As is seen in Table A. 3-45, yield of transplanting paddy, but if the yield marked by asterisks was regarded as the yield in the dry season transplanting paddy, 3.0 ton/ha of yield can be supposed to be an average yield of dry season transplanting paddy in the Project Area. On the other hand, the yield of wet season transplanting paddy rice is assumed at 2.2 ton/ha from the data.

2. Yield of Other Crops

Yield of Upland Crops

The cropping area of upland crops is very small in the Project Area, but many kind of crops are cultivated mainly for the farm households' self consumption. The yield of these upland crops in the Project Area and its neighbourhood are tabulated as follows:

Crops	Yield per crop	Data Source
Corn	2.3 ton/ha	
Soybean	2.6 ton/ha	
Śweet potato	5.0 ton/ha	Averaged yield of Upland Crops from planted area, Ayutthaya
Big pepper	1.7 ton/ha	Province (1974-1976), prepared
Cili pepper	1.2 ton/ha	by Agricultural Extension Office of Ayutthaya province
Tomato	5.6 ton/ha	or nyuttniyu protonou
Coconut	100 fruit/tree	
Banana (smelling)	60 fruit/tree	
Banana (cooking)	100 fruit/tree	
Water melon	5.2 ton/ha	Socio-economic conditions of farmers in Lad Boa Laung

district, prepared by ALRO

Out of these upland crops, water melon is one of the main upland crop in the Project Area, so the yield of 5.0 ton/ha is regarded as the representative of upland crops based on the above table.

Yield of Fruits

Citrus is the representative fruits in the Project Area, and the following shows the yield of citrus;

Yield	Data Source
12.6 ton/ha	Socio-economic conditions of farmers in Lad Boa Laung district prepared by ALRO.
7,0 ton/ha	Agricultural extension office of Ayutthaya Province
20.0 ton/ha (basing on	The result of interview to some farmers growing citrus in the project area

(basing on harvested area)

As is seen in the above table, the yield of citrus varies largely from 7.0 ton/ha to 20 ton/ha, and it is considered that these fluctuations of yields are caused by the tree age, cultivation technique and amount of input materials. In the Project, the yield of citrus is estimated at 15.0 ton/ha based on the above table.

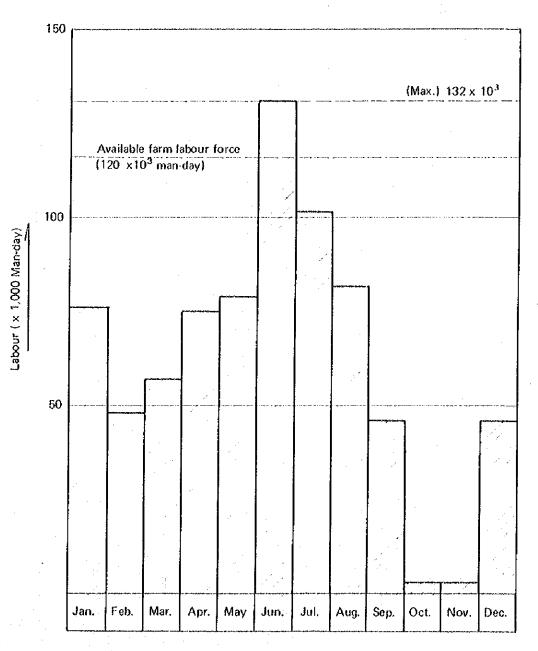
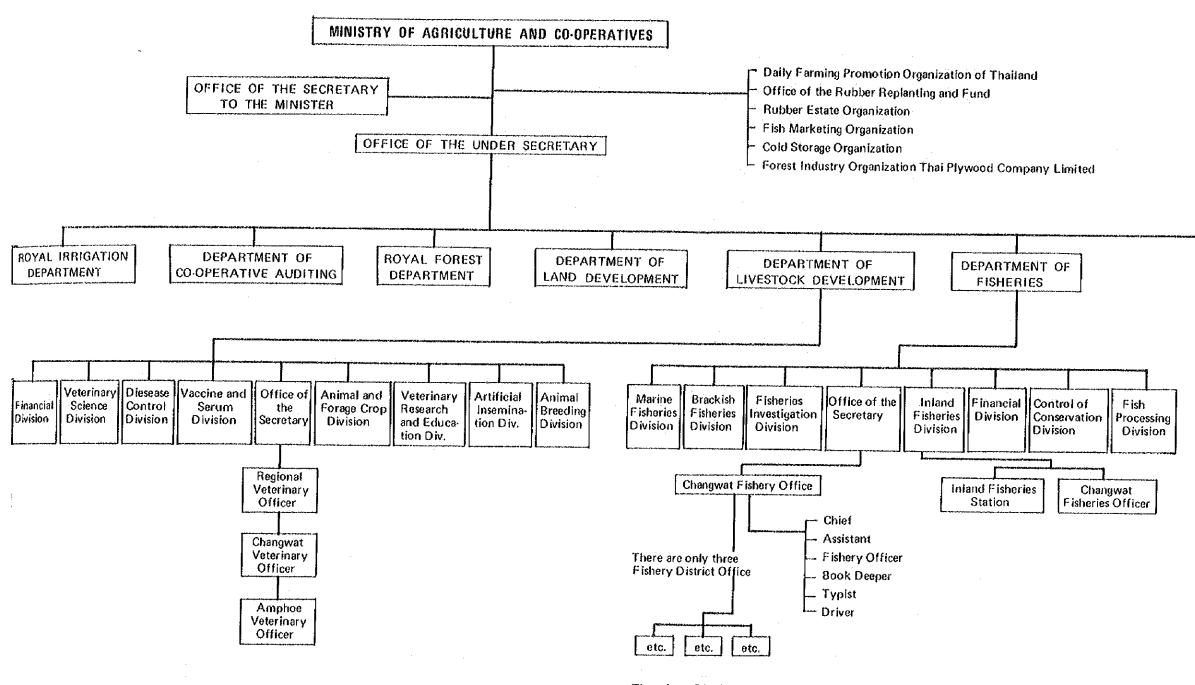
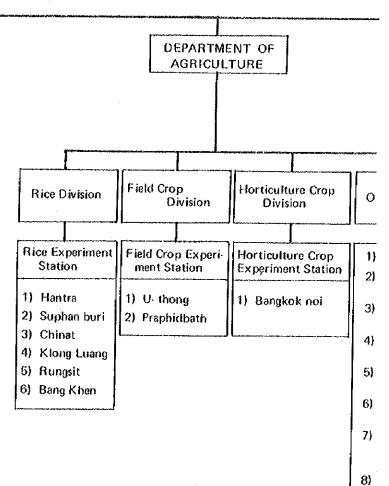

Number of Domestic Animals and Breeding Households in Each Tambon in the Project Area

Table A. 3-46


Proportion of the households breeding domestic animals to total farm households (Khusalod 486 households, Phraya Banlu 396 households.Sing Ha Nat 866 households) Note: 1/

Appendix 3-30

FIGURE A.3-26



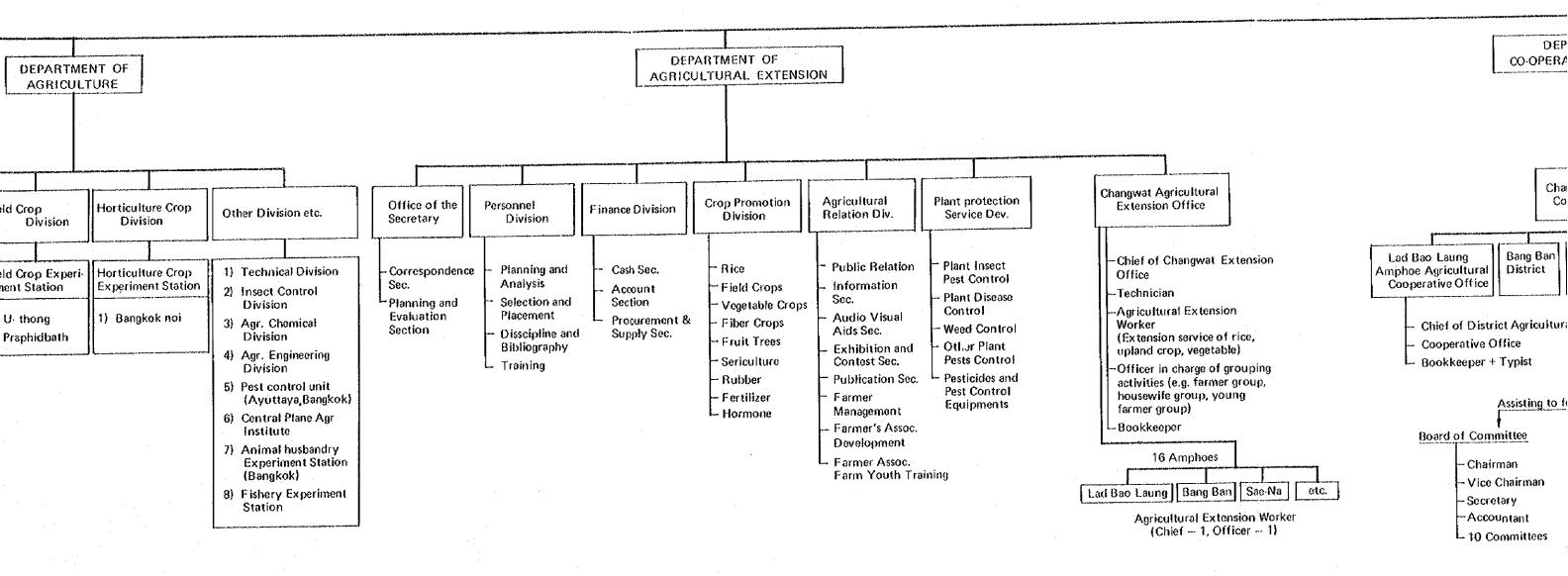
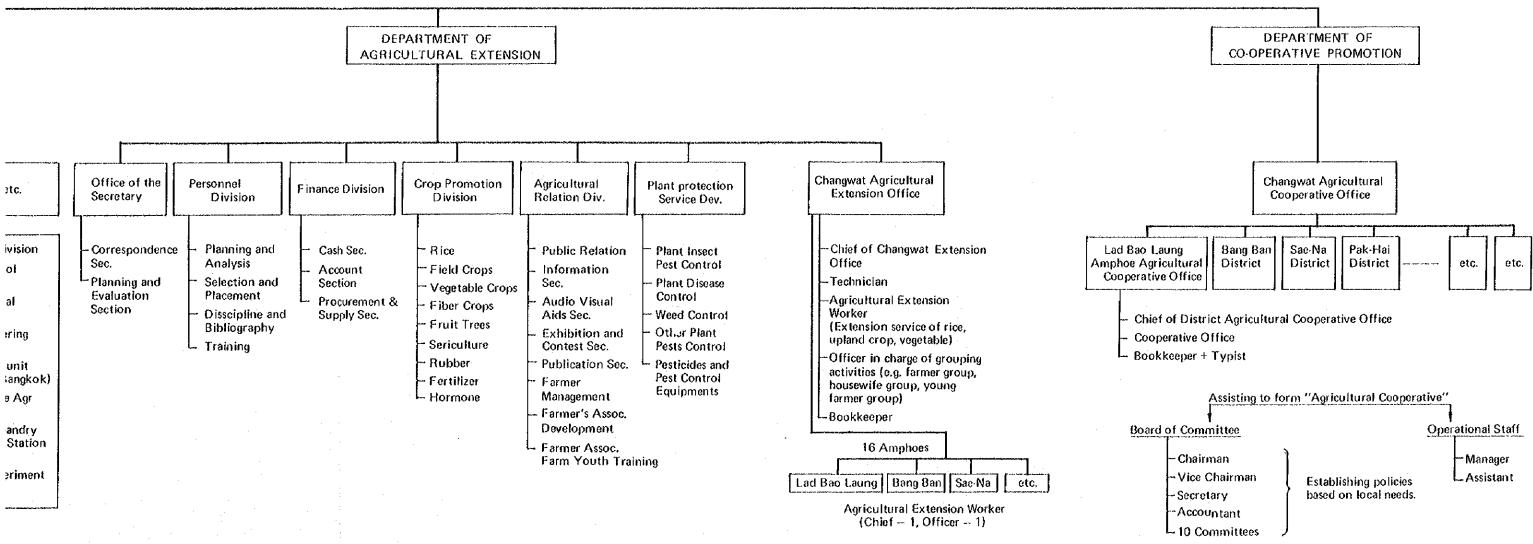


FIGURE A.3 – 27 ORGANIZATION CHART OF MINISTRY OF AGRICULTURE AND CO-OPERATIVES


There is no District Fishery Office in the Lad Bao Laung District The collection of Fishery Tax has been done through Internal Revenue District office,

`

- Work Load of Extension Worker in Amphoe Level
 - -- 50% routine work (e.g. statistical survey book keeping, etc)
 - 25% Agricultural extension servicing,
 - 25% Working for other departments in Amphur Level

- Work Load of Extension Worker in Amphoe Level
 - 50% routine work (e.g. statistical survey book keeping, etc)
 - 25% Agricultural extension servicing,
 - 25% Working for other departments in Amphur Level

Assisting to f	orm "Agricultural Coopera	tive''
i ommittee		Operational Staff
nairman	ſ	- Manager
ice Chairman	Establishing policies	_ Assistant
cretary	based on local needs.	
countant		

Number of Unit and Cost of Farm Machinery and Tools per House-hold Table Al3-47

house-hold 2002 744. <u>9</u>2 2,072 3,240 00 20 152 20 00 2 Machinery and Tool annual ò cost/ha Annual 185 0000 815 8 30 ŝ Cost of urable year છ (B/ha) 1,305 180 2,051 33 300 125 25 (e) 긵 Unit and Price per hectare unit/ha) 0.50 0.50 0.10 0-09 1.25 0.25 £ 8,010 5,075 700 1,170 500 300 100 <u>(m</u>) 04 125 Unit and Price B/unit) 2,000 3,000 14,500 150 500 50 20 (5)22 (Unit) 0.35 0-39 0 - \sim (N 3 ഗ Fuel and Other materials Boat, (with engine) Tool and Machinery Hand Tractor, SHP (small) Hoe (large) (small) Water pump Total Sicike Flow

 $(3) = (1) \times (2)$ (4) = (1)/4.0 haNote:

average farm land holding per farm house-hold is assumed at 4.0 ha

(1) X (1) 5)/(6) 0 н (2)(2)

(7) x 4.0 ha = (8)

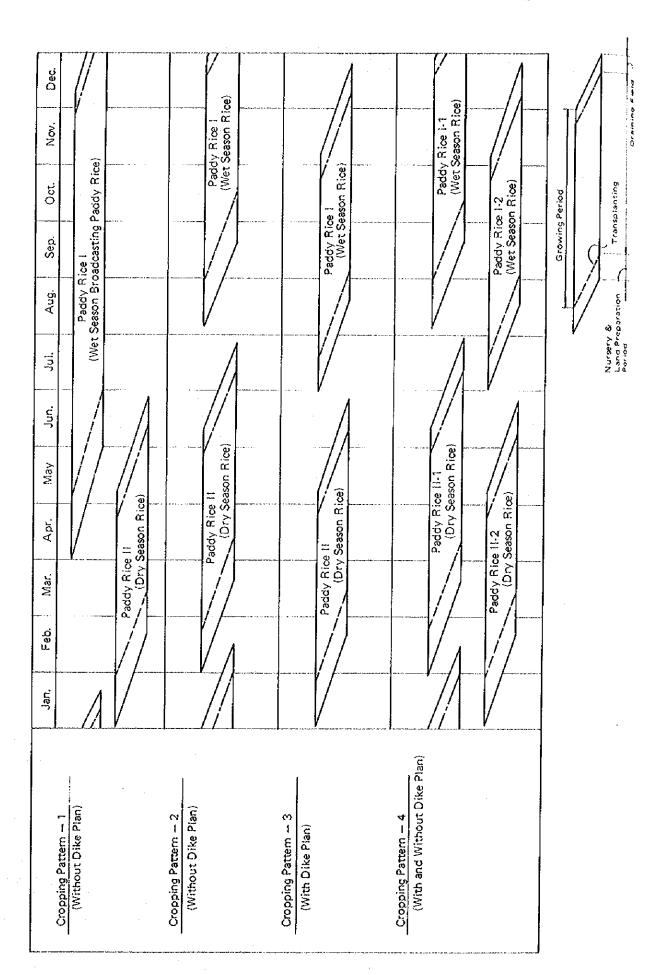
Proposed Cropping Pattern for Alternative Studies

Following cropping patterns are proposed for each alternative study. (see Figure A. 4-1)

Without Dike Plan

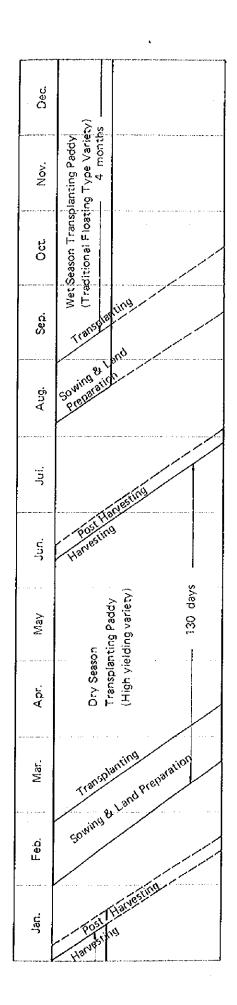
Cropping Pattern - 1:	Cropping intensity 67%
Paddy Rice I:	Broadcasted floating rice in the wet season
Paddy Rice 1T:	Transplanted new variety rice in the dry season
Cropping Pattern - 2:	Cropping intensity 130%
Paddy Rice I:	Transplanted floating rice in the wet season (30% of area)
Paddy Rice II:	Transplanted new variety rice in the dry season (100% of area)

With Dike Plan


Cropping Pattern - 3:	Cropping intensity 200%
Paddy Rice I:	Transplanted new variety rice in the wet season (100% of area)
Paddy Rice II:	Transplanted new variety rice in the dry season (100% of area)

With and without Dike Plan

Cropping Pattern - 4:	Cropping intensity 180%
Paddy Rice 1-1:	Transplanted floating rice in the wet season (30% of Block A)
Paddy Rice 1-2:	Transplanted new variety rice in the wet season (100% of Block B and C)
Paddy Rice 11-1:	Transplanted new variety rice in the dry season (100% of Block A)
Paddy Rice II-2:	Transplanted new variety rice in the dry season (100% of Block B and C)


FIGURE A.4-1.

PROPOSED CROPPING PATTERN

Appendix 4-1 Page 2

CROPPING PATTERN OF PADDY RICE WITHOUT DIKE FIGURE A.4-2

Appendix 4-1 Page 3

Lion Lion Project (ha) Project 3,571 1,336 1,90 B 3,128 995 1,66 B - 1,528 3,13 C - 1,528	Plan II-1	With Dike Plan	u	Dike Pla
Description Flan I-1 Flan I-2 Flan I ropping Area (na) 3,571 1,335 1,90 Without Project 3,571 1,335 1,90 Block A 3,128 995 1,66 Block A 3,128 995 1,66 Block A 3,128 3,13 3,13 E 1,528 3,13 3,13 E 1,528 1,528 3,13	lan II-			
ropping Area (ha) Without Project 3,571 1,336 Block A 3,128 1,336 1 C - 1,238 3 D - 1,528 5 E - 1,528		Flan II-2	Plan II-3	Plan TIL-1
Project 0x				
3,572 3,128 3,128 3,128 1,236 1,236 1,538 1,538 1,538	·			
ан 2,128 3,	3,571	1,336	ົ	1,903
а 1,528 1,5	3,128	695	1,666	1,66f
с. 1,502 1,528 1,528 1,528)	1,238	4	3,13(
- 1,528	1	1,602	ı	I
		1,528	Ĩ	,
Total 6,639 5,699 5,699	5,699	6,599	6,699	6,699
With Project				
7,621 2,851 4	11,220	4,204	6,054	3,935
1	9,854	3,130	5,156	5,166
. 2,664 6	1	3,895	9 , 864	· •
D - 3,425 -	;	5,044	• • •	1
		4,810	ŕ	I
Total 14,285 14,285 14,285 14,285	21,084	21,084	21,084	18,965
2. Proposed Cropping Pattern $1/$ 2 2 2 2	ю	۳ ۲	ო	-t
3. Proposed Facilities Innigation and drainage 206 244 235	206	54 t 0	235	213
)2/				
Road and Dike 153 153 153	ひたい	260	268	237
Station (Place) 2 5	2	ın ١	ю́	

*

Appendix 4-2 Page 1

91205	
Alternative	
Чн О	
Cost	
Construction	
1. 4-2	
Table A	

Plan III-1 8,540 3,440 7,600 2,070 22,050 1,070 0 7 7 40 24,260 (Unit: US\$1000) 0) |-| |-| 8,830 4,080 9,020 2,650 24,580 1,200 0+f f 26,920 Plan With Dike Plan Plan II-2 8,810 3,920 10,150 2,350 25,230 1,200 2,240 27,570 Plan II-1 고,200르/ 4,010 8,540 2,400 23,910 1,140 25,250 8,850 71an I-3 9,120 2,420 3,720 1,450 16,710 740 1,140 18,590 Without Dike Plan Plen 1-2 5,110 5,350 5,350 5,350 5,350 5,350 5,350 5,250 5,250 5,250 5,110 5,250 5,200 5,250 17,680 0.41,1 19,560 740 Plan I-1 9,130 2,520 3,020 1,510 16,180 1,140 18,060 740 Dikes, roads and canals 2. Agricultural Development 3. Project Administration Land consolidation Collateral works Pumping station Sub-total CIVIL WORKS Fotal Norks •

inclusive of required cost for animal husbandry and inland fishery as shown belows; n) Note

B 26,833/unit x 250 units = US\$335,000 B 10,000/unit x 250 units = US\$125,000 Animal husbandry : Inland fishery :

			Plan III-1		730		5,390	200	05	5,680	020 :+
	.t: US\$ 1000)		Plan II-3		730		6,310	280	130	6,720	5 , 990
stans	(unit:	With Dike Plan	Plan II-2		730		6,310	280	130	6,720	2,990
of Alternative			Plan II-1		730		6,310	280	130	6,720	5,990
ស ភូមិ ភូមិ ភូមិ ភូមិ ភូមិ ភូមិ ភូមិ ភូមិ			Plan I-3		730		060Ԡ	I	1	3,230	2,500
Net Incremental			Plan 1-2		730		060Ԡ	ł	ł	3,230	2,500
Table A. 4-3 N		- ł'	I-I uera	•	730		4,090	·	I	3,230	2,500
Tal			Senerits	 Without Project (1) 	Crops	2. With Project (2)	Cross	Animal husbandry	Inland fishery	Sub-total	3. Net incremental Benefit (2) - (1)

Appendix 4-2 Page 3

	Rate of urn (13%) it Cost	6			•	10	•	n,						TOS	(12,673)	-549						reach	
·	Rat Return Benefit			0 11 0	• • • •	191	10 1 1 1 1	100 000	070	ĉ	• • • •	888	6,765		(12,124)		10 6%) 		• •	dike plan)		*
	of (12%) Cost	ê		•	n -	2,048	n (n i						132	(560°81)		+ 740 =	1,285,		assumption:	(without di	പ്പ	
	Rate Return Benefit			- 1 1	- 10 - 10	205	4 7 8 1 7 1	962					8,054		13,839)	+740	(12 -	t		llowing	cost	n n co n co	3
	Net Incre- mental Benefit			-71	03 03	362	148	2,128	2,603	3,053	3,278	3,403	3 <u>,</u> 403		\sim					d based on the for construction cost		construc agricult	
	Agricultural Net Incre- mental Benefit			-1254/	-25	200	625	1,225	1,700	2,150	2,375	2,500	2,500						1,500 51147	is estimate 1.5% of	: 5.0% of	3.0% of tot l proportion c the economic	
	0 & M Cost			540/	0	162		\circ	0	0	0	0	0						មក ភូនិ ភូមិ	d maintenance cost i construction periodi	5	ying the annua. Obtained from	
	Construction Cost	•	6	51 61	, <u>6</u> ,	ŝ	5	90						2,24,047					чо ЧФ	Θ Θ		-do- imateč by applying set, which was oht:	
	No.	~1	~	ო	t <u>-</u>	ഗ	ۍ س	5	ω	თ	0 11	듺	12-50	0 7					~~`	900 00 01		<u>ਰੇ</u> / ਤੋਂst tar	
	5 0 2 2	5	67	80	8 0	80 00	00 00	00 0	80	ထို	00 00	00 00	080 080 0	3					Note:			·	

Table A. 4-4 Internal Rate of Return (Plan I-1)

Appendix 4-3 Page 1

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1,340 2 3,312 3 3,912 5 3,912 5 3,912 5 3,912 6 3,912 7 (19,560) 978 1,77 2 3,318 -125 5 3,912 177 2 3,912 177 2 3,912 177 2 3,912 177 2 3,912 177 2 3,912 177 2 3,912 177 2 3,912 177 2 3,912 2 3,91	ar No.	Construction Cost	O & M Cost	Agricultural Net Incre- mental Benefit	Net Incre- mental Benefit	L Rate Return Benefit	of (12%) Cost	Rate Return Benefit	of (13%) Cost
2 3,912 59 -125 -66 -47 2,785 -46 3 3,912 118 -25 93 59 2,488 57 5 3,912 177 200 377 213 2,488 57 5 3,912 177 200 377 213 2,488 57 5 3,912 177 200 377 213 2,218 205 6 3,912 177 200 377 213 2,218 205 7 (19,560) 978 1,700 2,678 1,082 936 8 1,700 2,678 1,082 1,002 936 978 2,150 3,128 1,022 936 936 10 978 2,500 3,478 1,002 982 1,002 12-50 3,478 1,002 8,231 1,002 936 936 12-50 3,478 1,002 8,231 5015 936 1,002 25 3,580 3,478 <td< td=""><td>2 3,912 3 3,912 5 3,912 5 3,912 5 3,912 6 3,912 7 (19,560) 9 8 1,77 2 7 2,785 6 3,912 7 (19,560) 9 8 1,77 9 978 1,225 1,2</td><td></td><td>·. O</td><td></td><td>·</td><td></td><td></td><td>1 ()</td><td></td><td>с 0</td></td<>	2 3,912 3 3,912 5 3,912 5 3,912 5 3,912 6 3,912 7 (19,560) 9 8 1,77 2 7 2,785 6 3,912 7 (19,560) 9 8 1,77 9 978 1,225 1,2		·. O		·			1 ()		с 0
3 3,912 59 -125 -47 2,785 -46 1 4 3,912 118 -25 93 59 2,488 57 2 5 3,912 177 200 377 213 2,188 57 2 5 3,912 177 200 377 213 2,218 57 3 5 3,912 177 200 377 213 2,218 57 3 912 177 200 377 213 2,218 205 3 912 278 1,225 2,203 996 1,983 413 6 978 1,700 2,678 1,002 976 1,002 8 1,020 3,478 1,002 8,231 1,042 9 12-50 3,478 1,002 9,92 1,042 12-50 3,478 1,002 8,231 5,915 1,042 12-50 3,478 1,002 8,231 5,915 1,042 12-50 3,478	3 3,912 59 -125 -66 -47 2,785 -46 5 3,912 118 -25 93 59 5,488 57 5 3,912 177 200 377 213 2,188 57 5 3,912 177 200 377 213 2,218 205 6 3,912 236 625 861 437 1,983 413 7 (19,560) 978 1,700 2,678 1,082 1,007 9 978 1,700 2,678 1,082 1,002 936 9 978 2,150 3,128 1,129 1,042 986 10 978 2,150 3,128 1,022 986 1,042 11 12-50 3,128 1,020 986 1,042 986 12-50 3,353 1,002 8,231 1,002 508 986 12-50 3,478 1,002 3,478 1,002 211 51426 12-50 3,478	്ന	6		•					н с 2000 2000
1 4 3,912 118 -25 93 59 2,488 57 2 5 3,912 177 200 377 213 2,218 205 3 6 3,912 177 200 377 213 2,218 205 3 6 3,912 236 625 861 437 1,983 413 4 7 (19,560) 978 1,225 2,203 996 1,007 5 8 1,700 2,678 1,082 1,007 936 936 6 978 2,150 3,128 1,129 1,042 936 7 10 978 2,150 3,478 1,002 989 8 11 020 3,478 1,002 938 531 6,915 8 25 3,353 1,080 3,478 1,002 8,231 6,915 2 25 3,550 3,478 1,002 8,231 211 6,915 2 25 3,580 3,47	4 3,912 118 -25 93 59 2,488 57 5 3,912 177 200 377 213 2,218 205 6 3,912 177 200 377 213 2,218 205 7 (19,560) 978 1,700 2,678 1,983 413 9 978 1,700 2,678 1,082 1,007 9 978 2,150 3,128 1,129 1,007 9 978 2,150 3,128 1,109 986 10 978 2,150 3,128 1,109 989 11 978 2,150 3,128 1,002 989 11 978 2,375 3,353 1,002 989 12-50 3,478 8,231 1,002 598 1042 12-50 3,478 8,231 2,143 (14,143) 6,915 25 3,580 3,478 8,231 (14,143) (12,426) 12-50 3,478 8,231 (14,143)	0	័ដ	69 2	-125	- 66	::†	2.785	146	2,711
2 5 3,912 177 200 377 213 2,218 205 3 6 3,912 235 625 861 437 1,983 413 5 8 3,912 236 525 861 437 1,983 413 5 8 1,082 1,082 1,007 6 9 3,128 1,082 1,007 7 10 3,128 1,082 1,002 988 8 11 00 3,478 1,080 3,478 1,002 908 9 12-50 3,478 1,002 3,478 1,002 908 9 12-50 3,478 1,002 978 2,500 3,478 1,002 908 9 12-50 3,478 1,002 908 908 9 12-50 3,478 1,002 908 908 908 9 12-50 3,478 1,002 908 908 908 908 9 12-50 3,478 1,002 908 908 908 908 908 908 908 908 908 908	5 3,912 177 200 377 213 2,218 205 7 (19,560) 978 1,225 2,203 996 413 8 978 1,700 2,678 1,082 1,007 9 978 1,700 2,678 1,082 1,007 9 978 1,700 2,678 1,082 1,007 9 978 1,700 2,678 1,082 1,007 9 978 2,150 3,128 1,129 1,007 9 978 2,150 3,128 1,129 1,042 10 978 2,550 3,478 1,002 989 11 12-50 3,478 1,002 3,478 1,002 25 3,580 3,478 1,002 3,478 1,002 12-50 3,580 3,478 1,002 1,143) (12,426) 12 5353 1,002 3,478 1,002 1,4143) 12,426)	гd	<u>_</u> 6,	118	-25	ю б	59	2,488	57	2,398
6 3,912 235 625 861 437 1,983 413 7 (19,560) 978 1,225 2,203 996 936 8 1,700 2,678 1,082 1,002 9 978 2,150 3,128 1,129 1,042 10 978 2,375 3,353 1,080 908 11 002 8,231 211 6,915 12-50 3,478 1,002 8,231 211 6,915 12-50 3,478 1,002 9,16 9,15 6,915 12-50 3,478 1,002 1,002 9,16 6,915 1,002 12,426) 13,426	6 3,912 236 625 861 437 1,983 413 7 (19,560) 978 1,700 2,678 1,082 936 936 8 9 978 1,700 2,678 1,082 1,002 936 9 978 1,700 2,678 1,082 936 936 9 978 2,150 3,128 1,129 1,042 9 978 2,150 3,128 1,129 1,042 10 978 2,150 3,375 1,080 989 11 29 978 2,375 3,478 1,002 908 12-50 3,478 1,002 8,231 6,915 508 25 3,580 3,478 8,231 211 6,915 25 3,580 3,478 1,002 6,915 511 25 3,580 3,478 1,002 6,915 511 25 3,580 3,478 1,002 6,915 511 25 3,580 3,478	2	일	177	200	377	213	2,218	205	2,124
+ 7 (19,560) 978 1,225 2,203 996 936 5 8 978 1,700 2,678 1,082 1,007 6 9 978 2,150 3,128 1,129 1,042 7 10 978 2,150 3,128 1,129 989 7 10 978 2,375 3,353 1,002 908 8 11 978 2,500 3,478 1,002 908 9 12-50 3,478 1,002 6,915 6,915 2 25 3,580 3,478 1,002 6,915 9 12-50 3,478 1,002 6,915 6,915 2 25 3,580 3,478 1,002 6,915 9 12-50 3,478 1,002 6,915 6,915 2 2 3,580 3,478 1,002 6,915 2 3,580 3,478 1,002 6,915 6,915 2 2 3,580 3,478 1,143 <td>7 (19,560) 978 1,225 2,203 996 936 8 1,700 2,678 1,082 1,002 978 1,082 1,002 936 9 978 2,150 3,128 1,082 1,002 989 1,002 989 1,020 989 1,002 1,002 1,002 1,002 1,002 3,478 1,002 3,478 1,002 3,478 1,002 3,478 1,002 2,500 3,478 1,002 2,478 1,002 2,500 3,478 1,002 2,11 2,002 2,008 2,478 1,002 2,500 3,478 1,002 2,500 3,478 1,002 2,500 3,478 1,002 2,500 3,478 1,002 2,500 3,478 1,002 2,500 3,478 1,002 2,11 2,002 2,11 2,002 2,11 2,002 2,11 2,002 2,150 1,002 2,150 1,002 2,12 2,124 1,002 2,124 1,002 2,124 1,002 2,124 1,002 2,124 1,002 2,124 1,002 2,11 2,002 2,11 2,002 2,11 2,002 2,11 2,002 2,11 2,002 2,124 1,002 2,11 2,002 2,11 2,002 2,11 2,002 2,11 2,002 2,11 2,002 2,11 2,002 2,11 2,002 2,11 2,002 2,11 2,002 2,11 2,002 2,11 2,002 2,11 2,002 2,11 2,002 2,11 2,002 2,11 2,002 2,11 2,002 2,11 2,002 2,11 2,002 2,11 2,002 2,000</td> <td>თ</td> <td>5</td> <td>236</td> <td>625</td> <td>861</td> <td>437</td> <td>1,983</td> <td>の ナ</td> <td>1.878</td>	7 (19,560) 978 1,225 2,203 996 936 8 1,700 2,678 1,082 1,002 978 1,082 1,002 936 9 978 2,150 3,128 1,082 1,002 989 1,002 989 1,020 989 1,002 1,002 1,002 1,002 1,002 3,478 1,002 3,478 1,002 3,478 1,002 3,478 1,002 2,500 3,478 1,002 2,478 1,002 2,500 3,478 1,002 2,11 2,002 2,008 2,478 1,002 2,500 3,478 1,002 2,500 3,478 1,002 2,500 3,478 1,002 2,500 3,478 1,002 2,500 3,478 1,002 2,500 3,478 1,002 2,11 2,002 2,11 2,002 2,11 2,002 2,11 2,002 2,150 1,002 2,150 1,002 2,12 2,124 1,002 2,124 1,002 2,124 1,002 2,124 1,002 2,124 1,002 2,124 1,002 2,11 2,002 2,11 2,002 2,11 2,002 2,11 2,002 2,11 2,002 2,124 1,002 2,11 2,002 2,11 2,002 2,11 2,002 2,11 2,002 2,11 2,002 2,11 2,002 2,11 2,002 2,11 2,002 2,11 2,002 2,11 2,002 2,11 2,002 2,11 2,002 2,11 2,002 2,11 2,002 2,11 2,002 2,11 2,002 2,11 2,002 2,11 2,002 2,11 2,002 2,000	თ	5	236	625	861	437	1,983	の ナ	1.878
5 8 1,700 2,678 1,082 1,007 6 9 978 2,150 3,128 1,129 1,042 7 10 978 2,375 3,353 1,080 989 8 11 978 2,500 3,478 1,002 908 9 12-50 3,478 1,002 508 9 12-50 3,478 1,002 508 9 12-50 3,478 1,002 508 9 12-50 3,478 1,002 913 6,915 1,012,426) 4 1,182 (14,182) (12,426) 4 3,478 1,002 1,01	8 9 9 9 9 9 9 9 9 9 9 9 9 9		9,56	978	1,225	2,203	986 986		936	
5 9 978 2,150 3,128 1,129 1,042 7 10 978 2,375 3,353 1,080 989 8 11 978 2,500 3,478 1,002 908 9 12-50 3,478 1,002 508 9 12-50 3,478 1,002 6,915 6,915 2 25 3,580 3,478 8,231 6,915 (14,182) (12,426) +39 -1,24	9 978 2,150 3,128 1,129 1,042 10 978 2,375 3,353 1,080 989 11 978 2,500 3,478 1,002 908 12-50 3,478 1,002 908 25 3,580 3,478 1,002 6,915 6,915 1,002 1,002 1,002 1,002 1,002 1,002 1,002 1,002 1,002 1,002 1,002 1,002 1,002 1,002 1,000 1	ю		978	1,700	2,678	1,082		1,007	
7 10 978 2,375 3,353 1,080 989 8 11 978 2,500 3,478 1,002 908 9 12-50 978 2,500 3,478 1,002 6,915 2 25 3,580 2,500 3,478 8,231 6,915 6,915 1,2426) 2 25 3,580 1,4,143) (12,426) +39 (14,143) (12,426)	10 11 12-50 25 3,580 3,478 1,002 978 2,500 3,478 1,002 6,915 6,915 6,915 6,915 71 (14,182) (14,143) (12,426) -1,24	G		978	2,150	3,128	1,129		1,042	
8 ll 978 2,500 3,478 1,002 908 9 12-50 978 2,500 3,478 1,002 508 2 25 3,580 2,500 3,478 8,231 6,915 2 25 3,580 -1,24 (14,182) (12,426) +39 (12,426)	li 978 2,500 3,478 1,002 908 12-50 978 2,500 3,478 1,002 501 6,915 25 3,580 2,500 3,478 8,231 6,915 6,915 25 3,580 -1,24 (14,182) (12,426) +39 (14,143) (12,426)	7		578	2,375	3,353	1,080		685	
9 12-50 2 25 3,580 978 2,500 3,478 8,231 6,915 2 25 3,580 (14,182) (12,426) +39 (12,426)	12-50 978 2,500 3,478 8,231 6,915 25 3,580 2,500 3,478 8,231 211 6,915 25 3,580 -1,24 -1,24	~1 00		978	2,500	3,478	1,002		308	
2 25 3,580 211 211 (14,182) (12,426) (14,182) (12,426) +39 -1,24	25 3,580 211 211 (14,182) (14,143) (12,426) +39 -1,24	9 12-5		978	2,500	3,478	8,231		6, 015 8	
(14,143) (12,426) 39 -1,24	(14,143) (12,426) -1,24	0	• 58 8		•			211		168
39	30 52						(14,182)	(14,143)		(13,670)
							00 †			

Appendix 4-3 Page 2

Appendix	4-3
Page 3	

= 12.48

1,288 オのオ

(12 + 1

Rate of turn (13%) fit (13%) 1,328 2,577 3 2,577 3 2,577 6 1,785 6 1,785 6 1,785 6 1,785	129	(13,028) 94
Rate Rate Rate 200 14 200 200 200 200 200 200 200 8905 820 820		(12,234) (13,028) -794
0f (12%) 2,965 2,965 2,365 2,365 2,365 2,108 2,108	162	(13,470)
a seturn Benefit 1,063 1,112 200 1,112 200 1,112 200 200 200 200 200 200 200 200 200		(13,964) +494
<pre>%et Incremental Benefit 87 849 849 849 849 849 8,155 3,430 3,430 3,430 3,430</pre>		-
Agricultural Net Incre- -125 -125 -200 625 1,700 2,500 2,500 2,500 2,500		
Cost 8 20 8 20 8 20 8 20 1 2 2 20 5 20		
Construction Cost 1,500 3,718 3,718 3,718 3,718 3,718 3,718 (18,590) (18,590)	\$ \$	
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
x 0.00000000000000000000000000000000000		

Table A. 4-6 Internal Rate of Return (Plan I-3)

.

Appendix 4-3 Page 4 .

	of (17%) Cost	1,293 3,838 2,75	2,804 2,804	5°048		128 (15,771)	2 	
	Rate Return Benefit	0	326 326 326	1,240 1,240	7,008 7,008 7,008 7,008	-	n	
	of (16%) Cost	н 200 200 200 201 201	0 0 0 5 0 0 6 0 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0	2,153		160 (16,269) 38	5 + <u>1,266</u>)	
(T-II u	Rate Return Benefit	י גר ר	24 34 3	•	222 222 222 222 222 222 222 222 222 22	(16,407) (; +138	(16	
of Return (Plan	Incremental Net Benefit	-221	98 716	1,814 3,723 4,861	5,939 6,479 6,778 6,778			
Internal Rate o	Agricultural Net Incre- mental Benefit	- 3000 -	- 160 140 160	1,498 2,035 4,073	5,151 5,691 5,990 5,990		• • •	
Table A. 4-7	0 & M Cost	64	ഗന	പയയ	788 788 788 788 788			
E E	- XE O I	1,500 5,250 5,250	- n - n -	P. A		2 2 2		
	o N	⊢1 (N (Ω)	ສະທິເ	∞ / Q	0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0) N		
	Year	0851 1979 1980	1981 1985 1985	か お 8 8 8 5 7 T T T	9.6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7007		

्र (16%)	Cost	1,293	N #	3,535	n /	2,625	2.261							188	(17,043) 4	-	
Rate Sturn	Benefit			-140	57	い す の	745	1,332	• •		्य		08,		(16,529) (. 	1	= 15.6%
्र (15%)	Cost	3,305	4,169 4	3,628	• •	2,740	2,382	•						226	(17,		+ 988 (1,502)
Return	Benefit	·		071-	0 0 0	360	785	3,415	ഹ	1,698	1,625	1,466	9,725	×	(18,592) +98		(15
Incremental	Net Benefit			-218	10¢	725	1,818	5	4, 900	5,978	6,577	6,817	6,817				
Agricultural Net Incre-	mental Benefit			0081	- 50	479	1,498	2,935	4,073	5,151	5,750	5,590	5,550				
	0 8 M Cost			82	191	246	320	\sim	\sim	 N 	827	2	\sim				
Construction	Cost	50,	ŝ	51	ι. Υ	5,524	ۍ ۴	(27,570)	:					7,520			
	<u>No.</u>	erd	\sim	ო	4	ŝ	G	1-	Ø	თ	0 H	77	12-50	25			
·	Year	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	2002			

Internal Rate of Return (Plan II-2)

Table A. 4-8

Appendix 4-3 Page 5

.

.

			• • •	· · · ·				·	
		Construction		Agricultural Net Incre-	Incremental		of	Rate Return	o£ (15%)
Vear	No.	Cost	0 & M Cost	mental Benefit	Net Benefit	Benefit	Cost	Benefit	Cost
1978		•					1.305		203
1979	~	•					F 070		4 C
1980	თ.	5,384		-300	-219	1111 1111 1	0 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1	011-	
1987		33	162	- 60	102	59	•	5	σ
1982	ហ	•	<u>_t</u>	1-79	722	359	2.676	176	າ ເ
ଅଟେ ଅନ୍ମ	ю	, 38	324	2,498	1,822	787	2,326	747	
786T	r	· •	0	o,	3,746	1,408	•	1.326	1
1985	¢¢		807	4,073	4,880	പ്പ	·	្ដ	
1986	O)		0	2,151	5,958	တို့		ြင့္သ	
1987	0		0	.0	6,408	6 0		1 (~ 1	
1988	~! ~!		\circ	တ္	6,797	0 -†		်ကိ	·
586T	12-50	÷.	807	ഗ	6.797	•			
2002	25	6,680) }	200	- 4	ic r
		· .				(18,519) () +1,31	15 10	(16,461)	(16,652 c)

.

Appendix 4-3 Page 6

Plan III-)	
f.Return (•
ਲੋਕੇ ਹੋ ਦ	
Internal	
0 7 - 7 0 7	
Table A.	

	4. 0	(15%)	Cost		•	3,068	3,193	2.775	0. E11	4 4 4 4 4	050°7			-						169	9 1 1	Lo°oT	7		
· · · .	Rate	•••	Benefit				: 		306		D		ĉ		a.	1-347			с С		- 14	>>>>	1114	= <u>1</u> 4.G	
	0 f	(347)	Cost		0 - C - C - C - C - C - C - C - C - C -	00/10	5,2,5	2,873	2.518		64267									214	с и	+ - - - - -	,387	$\frac{1}{1}$ + $\frac{1}{1}$ $\frac{501}{501}$	n
·	兄母との	Return	Benefit			;	277-	57	319	000) (7,254	(C) 27) () [] 	ຄື	1,465	10	r () i n	n n		(17 530)	× 1	~1 +	ਹੈ	
	Net Incre-	mental	Benefit			1		000	9T2	с С) (Ļ	100.1	^o	5	_t_ ^	5.678) (n	õ						
	$\dot{\mathbf{O}}$	Incre-	mental Benefit			0.40	- 1. V	ົ	396	23		t t	ۍ ۵۵	ч С	7	t, 5 703	ഹ	- U - C C	2						
			O & M Cost			73		0 ·	219	282	728	2 4 1	/28	728		128	728	100	0.4						
		Construction	Cost	1,500	89 89	4,852	u u		\sim	ഗ	へつらつ「キク」	• 1 2							ę	050,0					
		:	ġ.	<i>c</i> -1	2	ന	لہ	Γ L	n	9	4	. ¢	υ	თ	0))- -	12-50	ι	0 V					
		;	2002	1978	1979	1980	202		ZDAT	00001	186T		0022	1986	100 r	100 H	88ST	0000		2002					

Appendix 4-3 Page 7

				U -/	able A.										
	·					vbbag	Nice Vice					Upland	Unland-type and Crobs	oe Crosse	[· "
Noi	Nonth	tent ETP	Plant M	C.U	ю н ж	ant B C.U	1		a. X	0.0 (-1)		84 A	0. 2 2	C B	Oreburd W
	.:	(mm/day)	_			·									
Jan		0 0	ю 0												œ
		9.9 9	ŝ		ω,	•									00
тер.	1-4	ц. 7 Ц	0.90	7. 1.	0.85	0 :1	о <u>э</u>	٠			ω.	٠			0-80
	F-4 ⊁-4	С -1-	9		<u></u> .		φ.	4	φ		ഹ		က္		ω.
Nar		5.2		•	0		ෆ	•	ω.		ŝ		io •	•	ω.
		5.2	-1			•	0	•	ິ ທີ່		0	•	ŝ		∞
Apr	1-+	5.7			극	5.7	アール	0. 0	1.06	0 . 0	0.95	ച്ച്. ഹ	1.02	ອ ເມ	60
•		5.7	9	٠		•	} •	•	-1		00	•	တ '	•	∞
May		5.0	0)		9	•	-4	4	4	- 4	ŵ.	•	.	•	œ
I		5.0			ာ	•	9		1-1		3		ω	•	ω.
500	-1-4 	ເດີ. ເບ				-	о, О		<u>,</u>	•			3	•	လ
		ເດ -1							o,	يب، 1:					ω
Jul	t-t •	5 5	۰.	٠											÷
	I−4	4,2	ю. •		<u></u>										ω.
びいか	ાન	0-1	Ó)	•	οņ	•	<u></u> ,	•							0
I		0. ग	90°7		0-90	з . б	0.85	შ	¢						-
Set	1{ •	3° 0	-1	•	9	•	on •	•	8.						
I	Ъ-1	ი. ი	r-1 1		-4 1		0		Ø}						ω,
Oct	۱د •	а. с	~1 •	•	-1		r-1 •	•	਼	- 4					ч;
	3-3	თ.	0.	•			۲·}	•	넘						сц.
Nov	1-4	0. 1	တ္	٠	0		4	•	-	+					~
)- { 	0.1 1			9	٠	0	•	01.4 01.4	ເດ - ກ					ω,
Dec	1-1	0 ന					o,		0	•					~
	ŀ	•													

X: Coefficient C.U: Consumptive use, in millimeter per day

Note:

Appendix 4-4

Comparison of Consumptive Use of Rice

The comparison of the consumptive use which has been authorized in the reports submitted already is made, in order to confirmed the estimated values of the consumptive use of the project. Following table indicates the monthly consumptive use of rice at the four areas inclusive of the Project Area.

Month	Project Area	Northern Chao Phya Project	Sam Chook Experi- mental Farm	Mae-Kuang Water Use Experimental Station
Jan.	4,72/	4.6b/		
Feb.	5.6	5,4	3.7 <u>c</u> /	5.9 <u>d</u> /
Mar.	6.3	6.4	6.8	6.3
Apr.	6.9	6.7	9.5	8,5
May	6.0	5,3	8.0	8.1
Jun.	5.5	, 5.0	3,8	-
Jul.	5.0	4.6	5,9	_
Aug.	4.8	4.4	7.0	4.2
Sep.	4.5	4.1	5.3	5.3
Oct.	4.7	41.14	5.6	6,5
Nov.	5,4	4.7	6.0	5.6
Dec.	5.0	4.5	-	

Comparison of Consumptive Use of Rice (millimeter per day)

Note: <u>a</u>/ Calculated by multiplying the potential evapotranspiration, ETp (see Table A.4-11) by crop coefficient of K = 1.2

b/ Prepared by NEDECO in 1970 (K = 1.2)

c/ See Table A. 4-12

d/ See Table A. 4-12

From the Table, the estimated values are almost the same to that of the Northern Chap Phya project, which is located on an adjacent upstream of the Project Area. However, the values observed at two experimental farms, Sam Chook Experimental Farm and Mae-Kuang Water Use Experimental Station, is relatively large, especially at the peak periods during the growing seasons. But those values will be varied depending upon the varieties of paddy, growing season, water management and so forth. After consideration of the facts mentioned above, the estimated values appear to be adequate for the Project.

			ath r	June 25, 1964	nonu	22°. –	ember 11, 19(in (4 month rice)	Feb. 20,	Continuo	21 to May 21, 1965	ne 8, 1955			Aug. 10	Continuously from Aug.	rrt			Feb. 24	Continuously from Feb.	24 to May 28	•	
tion (ETa) of Rice	大臣には、		ម ជាម ទ	61 10 12	Irrigation Period:	\$	Earvesting:	;		Variety: Leong Kamin	- f :	Irrigation Period:	I	Harvesting:		Kan	anting J	Irrigation Period:			E S	nting 1	φ ρ.	ŗ		
Evapotranspination	ed ETa (mm) Daily Mean		5	O۲.	- Oh	ີສ ີ	ŝ	တ	00	3.65	6.77	0. r.0	8.00	7.63	. Chie	3	ы. С	6.47	٠	5.48	ω.	5.26		넊	•	
Observeč	Observe Total					159.5				32.8	209.8	283.9	168.0		al Station.	92.5	159.8	•	.11	570.0	0	•	256.2	227.9	707.6	
Table A. 4-12	Irrigation Period	nental F	. 25 - 3	Jul. 1 - 31	1 11 11	е - - т	0ct. l + 31	Nov. 1 - 22	Average 151 days	Feb. 20 - 28	Mar. 1 - 31	ෆ 	May 1 - 21	Average 91 days	iment	Aug. 10 -	. Sep. 1 3	Oct. 1 - 31	Nov: 1 - 21	Average 104 days	Feb. 24 - 28	の (M · · ABX · 归	ල - 		Average 94 days	
	80 42 12 14	Chook	Wet season rice	(one year of	date, 1964)					Dry season rice	(one year of	date, 1965)			Station: Mae-Kuang	Wet season rice	re two years o	data, 1966 - 1967)			Dry season rice	ge two years o	data, 1967 - 1968)			

Appendix 4-5 Page 2

Table A. 4-13 Field Water Requirements of Crops

										ويعيدون والمحاور المارد		Ric						-4	······································		Upland-t	ype Crops	\$
				Plan	t A			Plant	B			Plan	t C			Plan	t D	*	Average	U	pland Cro	ps	
Mon	th	$\frac{\text{Perco-}}{(1)}$	$\frac{C \cdot U}{(2)}$	$\frac{\Lambda \cdot S}{(3)}$	To (4)	(5)	$\frac{c.u}{(2)}$	$\frac{A.S}{(3)}$	$\frac{Tc}{(4)}$	$\frac{1}{(5)}$	$\frac{C \cdot U}{(2)}$	$\frac{\Lambda \cdot S}{(3)}$	Тс (4)	(5)	$\frac{C_{1}U}{(2)}$	$\frac{A.S}{(3)}$	Тс (4)	(5)	Field Water Requirements (6)	Plant A	<u>Plant B</u>	Average F.W.R.	Vegetable, Orchard
Jan.	I	15	50	30	95	6.3						•			1.1				2.0				3.1
	11	16	53	160	229	14.3	53	30	99	6.2									6.5				3.1
Feb.	I	15	63		78	5.2	60	160	235	15.7	60	30	105	7.0	2				9.0	1.4		0.7	3.7
	II	13	65		78	5.0	55		68	5.2	52	1.60	225	17.3	52	30	95	7.3	9.0	2.4	1.4	1.9	3.7
Mar.	I	15	98		113	7.5	83		98	6:5	71		86	5.7	66	160	241	16.1	7.0 1/	4.4	2.6	3.5	4.2
	ΪI	16	99		115	7.2	92		108	6.8	88		104	6,5	75		91	5.7	6.8	5.3	4,4	4.9	4.2
Apr.	I.	15	96].].].]	7.4	101		116	7.7	102		117	7,8	93	· .	1.05	7.0	7.6	5.4	5.8	5.6	4.6
	11	15	89		104	6.9	96		111	7.4	102		117	7.8	101		116	7.7	7.4	4.6	5.4	5.0	4.6
Мау	I	15	68		83	(5.5)	78		93	6.2	86.		101	6.7	90		1.05	7.0	4.6	3.3	4.0	3.7	4.0
	11	16					72		88	(5.5)	83		99	6.2	91		107	6.7	2,3	1.0	3.3	2.2	4.0
Jun.	I	15									62		77	(5.1)	71		86	5.7	0.2		0.9	0.5	3.7
	II	15													62		77	(5.1)	. ~				3.7
Jul.	I	15	54	15	84	5.6													1.8				3,4
	11	16	58	160	234	14.6	58	15	89	5.6									6.4				3,4
Aug.	I	15	54		69	4.6	51	160	226	15.1	51	15	81	5,4					8.2				3.2
	Π	16	67		83	5.2	58		74	4.6	51	160	227	14.2	54	15	85	5.3	7.8			•.	3.2
Sep.	Ţ	15	66		81	5.4	60		75	5.0	54		69	4.6	48	160	223	14,9	5.4				3.0
	ΙI	15	68		83	5.5	66		81	5.4	60		75	5.0	51		66	4.4	5.3				3.0
Oct.	I	15	66		81	5.4	69		84	5.6	69		84	5.6	62		77	5.1	5.5				3.1
	11	16	64		80	5.0	70		86	5.4	74		90	5.6	74		90	5.6	5.4				3.1
Nov.	I	15	54		69	(4.6)	62		77	5.1	68		83	5.5	72		87	5.8	3.7				3.2
	11	15					54		69	(4.6)	62		77	5.1	68		83	5.5	1,8				3.2
Dec.	1	15									54		69	(4.6)	60		75	5.0	0.2				3.1
	II	16													56		(71)	4.4	-				3.1

Note:

(1) Percolation in paddy fields is assumed at 1.0 mm/day

(2) See Table A. 4-11

(3) Additional Water Supply (A.S.) for nursery bed and land preparation is assumed as follows: Nursery bed

Area : one-twentieth of paddy field area

Water : requirement: 300 mm

water : requirements to whole paddy area: 15 mm

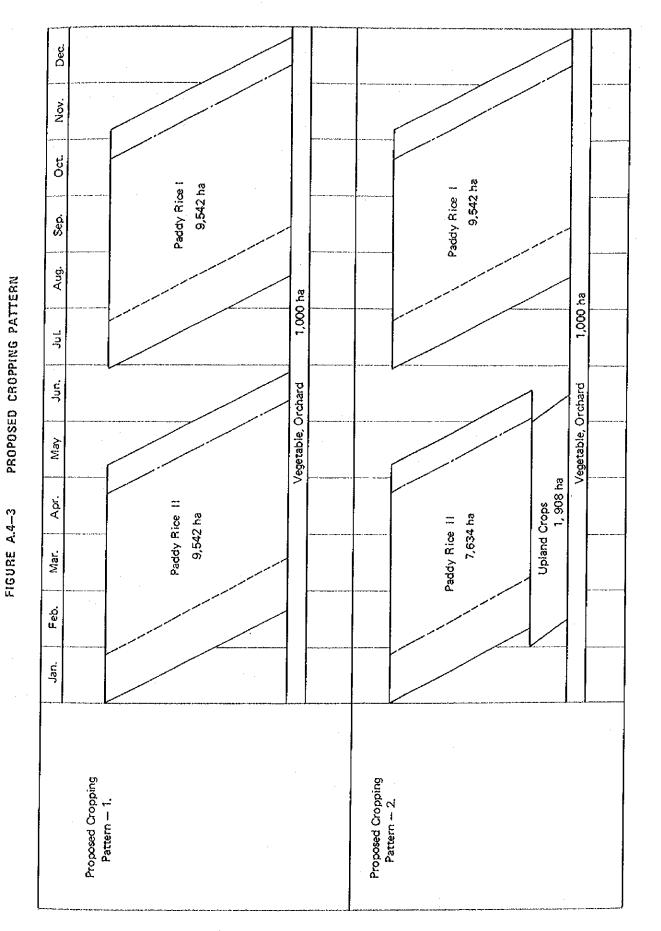
Land Preparation

- Pre-irrigation for plowing 15 mm (plowing depth 150 mm, increasing soil moisture from
- 10 per cent to 20 per cent) land preparation:

Saturation of surface soil layer: 60 mm (plowing depth 150 mm,

with 40 per cent of soil prosity)

- Standing water above soil surface: 100 mm
- (4) Total field water requirements, in millimeter per half-month, (1)+(2)+(3)
- (5) Total field water requirements, in millimeter per day
- () shows the water requirements of rice during the period of drying field.


(6) Estimated by applying the following proportion of planting area in half month;

- plant A: 31.25% plant B: 33,33% plant C: 31.25% plant D: 4.17% Maximum average field water requirements:
 - $7.1 \times 15/48 + 6.5 \times 16/48 + 5.7 \times 15/48 + 5.4 \times 1/48 + 160 \times 1/48 = 9.6 \text{ mm/day}$

1/ Maximum 9.6 mm/day

Appendix 4-6 Page 1

(Unit: mm)

Appendix 4-6 Page 2

Effective Rainfall

Three rainfall data observed at Sing Ha Nat, Phraya Banlu and Lakkhon regulators are available around the Project Area for 14 years from 1962 to 1975. By using these rainfall data, Probability analysis was made to determine the design rainfall for the irrigation plan, that is, 2-years probable rainfall equivalent to once every two years and 10-years probable rainfall equivalent to once every ten years are selected as the rainfalls of normal year and the design year for the Project respectively, and they are summarized as given below;

			(Un	it: mm)
	Return Pe	riod: 2-years	Return Pe	riod: 10-years
		Corresponding		Corresponding
Station	Rainfall	year	<u>Rainfall</u>	year
Sing Ha Nat Reg.	1,394	1971	1,060	1967
Phraya Banlu Reg.	1,222	1969	954	1971
Lakkhon Reg.	1,162	1964	823	1965
Average	1,259		946	

Probable Rainfall

As is seen in the above Table, the rainfall in the normal year and design year are estimated at 1,259 mm/annum and 946 mm/annum on average, and the corresponding year at each station to meet the average rainfall estimated above is found out respectively. The effective rainfalls for paddy fields and upland fields are computed by applying the calculation method of effective rainfalls $\frac{1}{}$ used in the irrigation Project under the Royal Irrigation Department.

1/ Paddy field:

Monthly rainfall x coefficient (K)

Coefficient	К:
-------------	----

Jan.:	0,90	Jul.:	0,75
Feb.:	0.90	Aug.:	0.75
Mar.:	0.90	Sep.:	0.75
Apr.:	0.75	0et.:	0.65
May :	0,75	Nov.:	0,80
Jun.:	0.75	Dec :	0,90

Upland field:

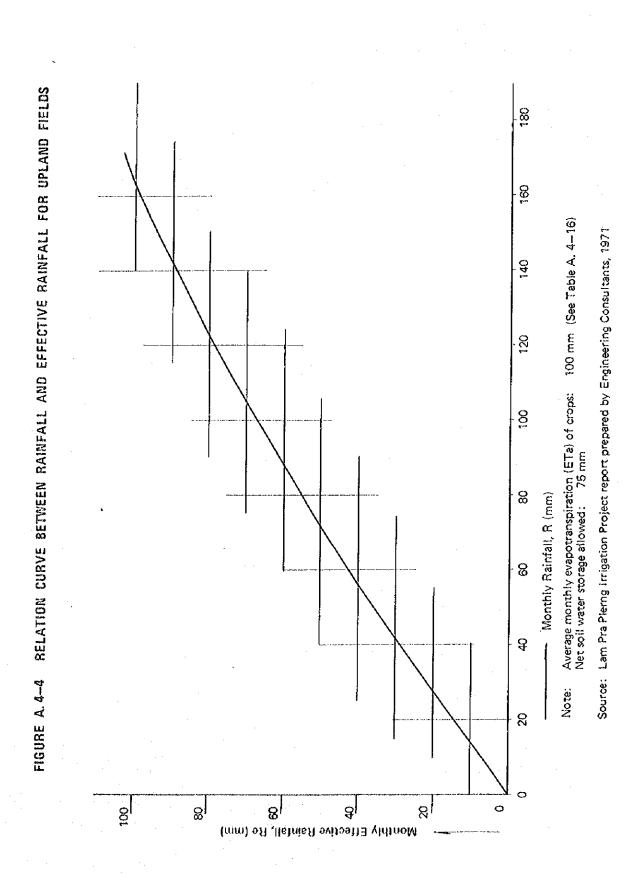
Based on Figure A, 4-4

Table A. 4-14 and A. 4-15 show the effective rainfalls of paddy fields and upland fields, in case of the normal year and design year.

,

.

			₽.s.t	nfall		ree.	addie Delig	-11
			1411			Paddy F	ctive Rainf ield	all
Mor	<u>ith</u>	Sing Ha Nat Reg.	Phraya Banlu Reg.	Lakkhon 	Average (1)	Ratio of Effective Rainfall	Effective	Upland Field (4)
Hov.	1 11		134.2		44.7	0.80	35.8	32.3
Dec.	1 1 1	2.0		52.0	17,3 0,7	0.90 0.90	15.6 0.6	12.2 0.4
Jan.) 1]					0,90 0,90		-
leb.	I I I	5.2	96. 198	27.4	1.7 9.1	0,90 0,90	1.5	1.1 6.2
Mar.	I I I	22.2	~ 29.0	8.3 7.3	2.8 19.5	0.90 0.90	2.5 17.6	1.9]3.8
Apr,	l I I	12.0 46.5	5.5 ~	- 101,9	5.8 49.5	0.75 0.75	4,4 37,1	年。0 36,0
May	I I I	31.4 144.1	27.5 21.9	254.7 43.3	104.5 69.8	0.75 0.75	78.4 52.4	70,0 49,0
J un.	۲ ۱۱	120.5 47.3	71.0 49.3	70.2 92.2	87.2 62.9	0.75 0.75	65.4 47.2	59,7 44,7
Jul.	I I I	21.1 57.9	135.0	56.0 47.3	70.7 35.1	0.75	53.0 26.3	49.6 25.9
Aug.	I I I	68.6 225.5	104.9 100.3	35.1 85.6	69.5 137.1	0.75 0.75	52.1 102.8	48,8 87,4
Sep.	I I I	157.3 151.9	145.9 199.8	15.0 226.4	106.1 192.7	0.75 0.75	79,6 144,5	70.9 109.8
Oct.	1 I 1	72.5	120.5	19.5 19.5	70.8 100.1	0.65 0.65	46.0 65.1	49.5 67.2
Total		1,397.6	1,214.0	1,161.7	1,257.6		936.1	840.3


Table A.4-14 Effective Rainfall (Return Period: 2-years)

Note: (4); estimated based on Figure A. 4-4

Table A.4-15	Effective	Rainfall	(Return	Period:	10 years)

				i.			(Unit:	mm)
	•	:	Rain	Fall		Effec	tive Rainfa	1.1
		~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~	Phraya			Paddy Ratio of	Field	
		Sing Ha		Lakkhon			Effective	Upland
Month		Nat Reg.	Reg.	Reg.	Average	Rainfall	Rainfall	Field
					(1)	(2)	(3)=(1)x(2)	(4)
Novi	J	38.8			12.9	0.80	10.3	9.0
	11	0.8	-	5,2	2.0	0.80	1.6	1.3
pec.	ľ		-	-	-	0,90	_	
	ET.			-		0.90	-	-
	ľ	-	~		-	0,90	~	
I	I.		**	-	-	0.90	-	-
feb.	τ			43.6	14.5	0.90	13.1	10.0
]]]	34.0		16.8	16.9	0.90	15.2	12.0
					<i>a</i> .			
	ľ.	21.5	-	~ ^ c	7.1	0.90 0.90	614 11 - 5	$5.0 \\ 3.5$
1	I		11.3	3.6	5.0	0.30	4.5	3.5
Apr.	T.	5.0	34,0	1.4	13.5	0.75	10.1	9.4
	Ţ	35.5	92.7	~~	42.7	0.75	30.0	31.0
11 a	τ	2 2		7 h	3.6	0.75	2,7	2.5
	I I	3.3 51.5	- 14.1	7,年 52,1	39.2	0.75	29.4	28.5
	. 1	01.10	-4. ° F (F -14	Q 2. + 1.	0312	00		
Jun.	L	131.2	34.4	48.6	71.4	0.75	53.6	50.0
Ī	I	40.2	7,5	39.7	29.1	0.75	21,8	21.0
Jul.	Ť	89,9	10.5		36.1	0.75	27.1	26.1
	T	89.9 76.3	19.5 48.4	3.4	42.7	0.75	30.0	30.9
	•	1 Se 🕈 Se		~··				
Aug.	I	28.8	23.0	01.0	30.9	0.75	23.2	22.1
ľ	Ĩ	34.1	192.9	82,7	103.2	0.75	77,4	69.0
Sep.	T	129.3	119.0	89.9	112.7	0.75	84.5	74.4
-	I		96.5	218.8		0.65	116.6	96.1
								<u>.</u>
Oct.			46.0		82.4	0.65	53,6	56.8
Ţ	I	28.9	21.2.8	9,3	83.7	0.65	54,4	57,4
Pat 1			000	201 7	005 0		665 6	616.0
10191		1,043.1	952.1	721.7	905.0		665.5	010.0

Note: (4); estimated based on Figure A. 4-4

Appendix 4-7 Page 5

Table A. 4-16 Average monthly effective rainfall as related to mean monthly rainfall and average monthly crop evapotranspiration, ETa, for upland-type crop with net soil water storage allowed of 75 mm 1/

R (rom)	25	50	75	100	1.25	150	1.75	200	225	25
		Avera	ige moi	nthly	effect	ive ra	infall	, Re (mm)	
15	9	10	10	11	11	12	12	13]4].
20	12	13]1	14	15	16	17	18	19	2
30	18	19	21	22	22	23	24	26	28	3
40	23	25	27	29	30	31	32	35	38	4
50	25	32	34	35	36	38	40	43	46	4
60		38	40	42	43	45	47	51	55	5
70		43	46	49	51	53	55	59	63	6
80		48	52	55	58	60	63	67	71	7
90		50	57	6.1	64	67	70	75	79	8
1.00			63	67	71	74	78	. 82	87	9
110			68	73	78	80	. 84	89	95	10:
1.20			73	78	84	- 86	91.	97	102	11
1.30			75	83	89	92	98	304	110	118
140				89	95	99	105	112	118	120
150				94	.1.0.1	105	110	120	125	13
160				99	106	110	117	125	1.32	143
170				1.00	111	116	123	131	138	349
180					116	121	129	136	144	15
190					121	126	134	142	150	16
200					125	1.32	140	148	157	16

Net soil	water	sto	rage a	illowed,	เกมอ	** ********		·····			*****
		25	30	40	50	60	75	100	125	150	175
Factor	0	.74	0.82	0,88	0.93	0,96	1.00	1.02	1.04	1.06	1.07
		· • • • • • • • • • • • • • • • • • • •								********	

Note: Average monthly effective rainfall cannot exceed average monthly rainfall or average monthly crop evapotranspiration. Where mean monthly rainfall is less than the minimum effective rainfall in the Table above it is assumed to be 100 percent effective.

Water Losses

Water losses for paddy fields consist of the following two losses;

- i) Application losses
- ii) Conveyance losses

The former is considered to be on-farm losses due to mostly the farmer's capacity of farm water management, and in the project, the 20 per cent of the average field irrigation water requirements is taken as the on-farm losses, based on the following assumption.

	Application losses
Surface run-off	108
Feeder loss	5
Operation loss	5
Total (1)	20

On the other hand, the latter which is water losses during conveyance stage, furthermore, can be classified into two factors namely: physical and non-physical factors, and physical factors are composed of seepage, leakage and evaporation losses, while non-physical factors are rather related to operational factors such as over-application of irrigation water in the fields, unscheduled drainage and illegal diversion.

However, in the project area, no data on the water conveyance losses exist entirely, so that the conveyance losses for main canals and laterals are decided as shown below, although the Morits empirical formula¹/ could be considered as the procedure for estimation of seepage losses of canal.

1/ Morits Formula: Water losses (cu.m/km) = 0.038.C.(Q/V)^{1/2}
where, Q = canal discharge (cu.m/sec), V = velocity of flow (m/sec)
and C = 0.20 for sandy canal and 0.13 for clay and clayey canals.

	Conveyance loss (%)
Water loss in main cana	18
physical	2.5
Non-physical	5.0
Sub-total (2)	7.5
Water loss in laterals	10.0
Sub-total (3)	10.0
Total (4) = (2)	+ (3) 17.5

Total loss $(5)^{1/2}$

33.4

As a result, total water loss for paddy field irrigation are decided to be 33.4 per cent of farm turn-out requirements in the project.

On the other hand, the irrigation efficiency for upland fields is assumed to be 65 per cent, in view of irregular parcellation patterns resulting in diverse lengths of runs, non-uniform distribution of water, expected operation and percolation losses.

 $1/(5) = 100\% - [100 - (1)\%] \times [100 - (2)\%] \times [100 - (3)\%]$

			-		Gross	Irriga	tion Water	Requirement	·a (
Month		r Requirements (mm/half mon) (2)	Effective <u>Rainfall</u> (mm/balf_mon) (3)	Net Water Requirements (mm/half mon) (4)	Farm Gate Water Requirements (mm/half mon) (5)	Diversion Water (mm/half mon) (6)		$\frac{Block A}{(cu.m/s)}$ (8)	$\frac{Block B}{(cu.m/s)}$ (9)	Block C (cu.m/s) (10)	<u>.</u> <u>Total</u> (cu.m/s (11)
Jan. I II	2.0 6.5	30.0 104.0	~	30.0 104.0	37.5 130.0	45.0 156.2	0.347	1.00	0.81	1.50	3.31 10.78
Feb. I II	9.0 9.0	135.0 117.0	1.5 8.2	133,5 108,8	166.9	200.5	1.547	4.46	3.61	6.69	14.76
Mar. I	7.0	105.0	2.5	102.5	136.0 128.1	163.4	1.455 1.187	4.20	3.40	6.29	13,89
II	6.8	108.8	17.6	91.2	114.0	136.9	0.990	2.86	2.77 2.31	5.13 4.28	11.32 9.45
Apr. I II	7.6 7.4	114.0 111.0	4,4 37.1	109.6 73.9	137.0 92.4	164.6 111.0	1.270 0.803	3.66 2.32	2.96 1.87	5.49 3.47	12.11 7.66
May I II	4.6 2.3	69.0 36.8	78.4 52.4			- 1 - 2			~	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Jun. 1 II	0.2	3.0	65.4 47.2			· · · ·	-		-	-	-
Jul. I II	1.8 6.4	27.0	53.0 26.3	76.1	95.1		-		-		
Aug. I	8.2	123.0	52.1	70.9	88.6	114.2	0.826	2.38	1.93	3.57 3.55	7.88
11	7.8	104.8	102.8	2.0	2.5	3.0	0.022	0.06	0.05	0.09	0.20
Sep. I II	5.4 5.3	81.0 84.8	79.6 144.5	1.4	1.8	2.2	0.017	0.05	0.04	0.07	0.16
Oct. I II	5.5 5.4	82.5 86.4	46.0 65.1	36.5 21.3	45.6 26.6	54.8 32.0	0.423 0.231	1.22 0.67	0,99 0,54	1.83 1.00	4.04 2.21
Nov, I II	3.7 1.8	55.5 27.0	35.8	19.7 27.0	24.6 33.8	29.5 40.6	0.228 0.313	0.66	0.53	0,99	2.18 2.98
Dec. I II	0.2	3.0	15.6		-	-			-	-	
	4	(2): Av (3): Ef (4): (2 (5): (4 (6): (5 (7): (6	'erage field wa	ter requiremer 11 in millimet 1 - 0.10)	nt, in millimete	r per day (see T r per half month th (see Appendix					

Table A. 4-17 Irrigation Water Requirements for Paddy Fields (Return Period: 2-years)

L.

(9): Block B; irrigable area 2,334 ha x (7) (10): Block C; irrigable area 4,323 ha x (7) (11): (8) + (9) + (10)

Appendix 4-8 Page 1

.

Month Jan. I II Feb. I II Mar, I II Apr, I II Nay I			Effective	Not Unter	Gross	Water Requireme	nts	Irriga	tion Water	
Moi	nth	Field Water	Requirements	Rainfall	Net Water Requirements	Farm Gate Water Requirements	1 A A	D		
		(mm/day)	(mm/half mon)	(mm/half mon)	(mm/half mon)	(mm/half mon)	Diversion Water		Block A	Block B
		(1)	(2)	(3)	(4)	(1007) (5)	(mm/half mon) (6)	(%/sec/ha) (7)	(cu.m/s) (8)	(cu.m/s) (9)
Jan		3.1	46,5	•••	46.5	71.5	85.9	0.663	0.09	0.17
	11	3.1	49.6	. —	49,6	76,3	91.7	0.663	0.09	0.17
Feb.		3.7	55.6]]	54,5	83.9	100.8	0.778	0.11	0.19
	II	3.7	48.1	6.2	41.9	64.5	77.5	0.690	0.10	0.17
Mar		4.2	63.0	1.9	61.1	94.0	112.9	0.871	0.12	0.22
	II .	4.2	67.2	13.8	53,4	82.2	98.7	0.714	0.10	0.18
Apr,		4.6	69.0	4.0	65,0	100.0	120.1	0.927	0.13	0.23
	11	4.6	69.0	36.0	33.0	50.8	61.0	0.471	0.07	0.12
May		4.0	60.0	70.0		. 		~		
	11	4.0	64.4	49.0	15.4	23.7	28.5	0.206	0.03	0.05
Jun.		3.7	55.5	59,7	*	-		-	_	
	11	3.7	55.5	44.7	10.8	16.6	19.9	0.154	0.02	0.04
Jul.		3,4	51.0	49.6	1.4	2.2	2.6	· · ·		~
	II	3.4	54.4	25.9	28.5	43.9	52.7	0.381	0.05	0.09
Aug.		3.2	48.0	48.8	-	-		-		-
	11	3.2	51.2	87.4	-	~	-			
Sep.		3.0	45.0	70.9	~		-	_		~
	II	3.0	45.0	109.8	-	· · ·	-	~	-	
Oct.		3.1	46,5	49.5	_			-	-	_
	II	3.1	49.6	67.2	-	-	~			
Nov.		3.2	48.0	32.2	15.8	24.3	29.2	0.225	0.03	0.06
	ΙI	3.2	48.0		48.0	73.9	88.8	0.685	0.10	0.17
Dec.		3.1	46.5	12.2	34.3	52.8	63.4	0.489	0.07	0.12
	II	3.1	49.6	0.4	49,2	75.7	90.9	0.658	0.09	0.12

Table A, 4-18 Irrigation Water Requirements for Upland Crops (Return Period: 2-years)

Note: (1): Average field water requirements, in millimeter per day (see Table A. 4-13) (2): Average field water requirements, in millimeter per half month (3): Effective rainfall, in millimeter per half month, (see Appendix A. 4-14) (4): (2) - (3) (5): (4)/(1 - 0.35) (6): (5)/(1 - 0.075)(1 - 0.10) (7): (6)/8.64 x n (8): Block A; irrigable area 142 ha x (7) (9): Block B; irrigable area 249 ha x (7) (10): Block C; irrigable area 609 ha x (7) (11): (8) + (9) + (10)

Appendix 4-8 Page 2

er Requirements	·····
B Block C (cu.m/s) (10) 0.40 0.40	Total (cu.m/s) (11) 0.66 0.66
0.47 0.42 0.53	0.88
0.43	0.71
0.56 0.29	0.92 0.48
0.13	0.21
0.09	0.15
0.23	- 0.37
-	
- -	- - -
-	-
0.14 0.42	0.23 0.69
0.30 0.40	0.49 0.65

•			·		Gross	Irrigation Water H			
Month		er Requirement _s) (mm/half mon) (2)		Net Water Requirements (mm/half mon) (4)	Farm Gate Water Requirements (mm/half mon) (5)	Diversion Water (mm/half mon) (6)	Requirements (l/sec/ha) (7)	$\frac{\text{Block } A}{(\text{cu.m/s})}$ (8)	Block B (cu.m/s) (9)
Jan I 11		30.0 104.0	•	30.0 104.0	37.5 130.0	45.0 156.2	0.347 1.130	1,00 3,26	0,81 2,64
feb. I II		135.0 117.0	13.1 15.2	121.9 101.8	152.4 127.3	183.l 152.9	1.413 1.362	4.08 3.93	3,30 3,18
Mar. I	7.0	105.0	6,4 4,5	98.6 104.3	123.3 130.4	148.1 156.6	1.143 1.133	3.30 3.27	2.67
II Apr. I	7.6	114.0	10.1	. 103.9	130.0	156.2	1.205	3,48	2.81
11		111.0	30.0	81.0	101.3	121.7 99.6	0.939	2.71	2.19 1,79
May I II		69.0 36.8	2.7 29.4	66.3 7.4	82.9 9.3	33.0 11.2	0.081	0,23	0.19
Jun. I II		3.0	53.6 21.8	~	-	-	~	-	
Jul. I II		27.0 102.4	27.1 30.0	72.4	- 90,5	108.7	0.786	2,27	1.83
Aug. I II		123.0 104.8	23.2 77.4	99.8 27.4	124.8 34.3	149.9 41.2	1.157 0.298	3.34 0.86	2.70 0.70
Sep. I II		81.0 84.8	84.5 116.6	-			~ .	-	
Oct. I II	5.5	82.5 86.4	53.6 54.4	28,9 32,0	36.1 40.0	43.4 48.0	0,335 0,347	0.97	0.78 0.81
Nov. I	3,7	\$5.5	10.3 1.6	45.2 25.4	56,5 31,8	67.9 38.2	0,524 0,295	1.51 0.85	1.22 0.69
II Dec. I	0.2	27.0		3.0	3,8	4.6	0.035	0.10	0.08
II	-	(2): (3): (4): (5): (6): (7): (8): (9):	Average field w	vater requirema fall in millime)(1 - 0.10) gable area 2, gable area 2,	ent, in millimet	er per day (see er per half mont nth (see Appendi	h		

Table A. 4-19 Irrigation Water Requirements for Paddy Fields (Return Period: 10-years)

(11): (8) + (9) + (10)

~

Appendix 4-8 Page 3

.

Requirements Block C (cu.m/s) <u>Total</u> (cu.m/s) (10) (11) 1,50 3.31 4.88 10.78 6.11 13.49 i3.00 5.89 4.94 10.91 10.81 4,90 11.50 5.21 8.96 4.06 3.32 7.33 0.77 0.35 ------~ -----7.50 3,40 5.00 11.04 2.85 1.29 1 ~ ~ 1,45 3.20 3.31 1.50 2.27 5.00 1.28 0.15 0.33 --

Table A. 4-20 Irrigation Water Requirements for Upland Crops (Return Period: 10-years)

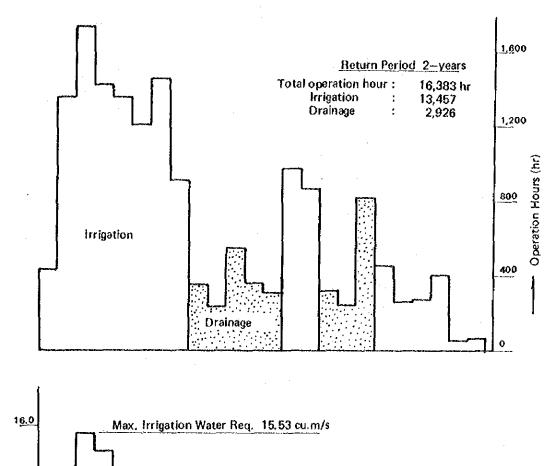
				Effective	Net Water	Gross Water Requirements Farm Gate Water				Irrigation Water Requirements				
Mon	<u>th</u>	and the second second second data is a second se	Requirements (mm/half mon)	Rainfall	Requirements	Requirements (mm/half mon)	Diversion Water (mm/half mon)	Requirements (%/sec/ha)	$\frac{Block A}{(cu.m/s)}$	Block B (cu.m/s)	Block C (cu.m/s)	Total (cu.m/s		
-		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)		
Jan:		3.1	46.5		46.5	71.5	85,9	0,663	0.09	0.17	0.40	0,66		
	· I I	3.1	49.6	· _	49.6	76.3	91.7	0.663	0,09	0.17	0.40	0.66		
Feb.	I	3.7	55,6	10.0	45.6	70.2	84.2	0,650	0.09	0.16	0,40	0.65		
	11	3.7	48,1	12.0	36.1	55.5	66.7	0.594	0.08	0.15	0.36	· 0.59		
Mar.	I	4.2	63.0	5.0	58.0	89.2	107.1	0.826	0.11	0.21	0.50	0.82		
	11	4.2	67.2	3.5	63.7	98.0	117.7	0.851	0.12	0.21	0.52	0.85		
Apr.	Ĭ	4.6	69.0	9,4	59.6	91.7	110.2	0.850	0.12	0.21	0.52	0.85		
•	11	4.6	69.0	31.0	38.0	58,5	70.3	0.542	0.08	0.13	0.33	0.54		
May	I	4.0	60.0	2.5	57.5	88.5	106.3	0,820	0.12	0.20	0.50	0.82		
	II	4.0	64.4	28.5	35.9	55.2	66.3	0.480	0.07	0.12	0.29	0,48		
Jun.	I	3.7	55.5	50.0	5.5	8.5	10.2	0.078	0.01	0.02	0.08	0.11		
	11	3.7	55.5	21.0	34.5	53.1	63.8	0.492	0.07	0.12	0.30	0.49		
Jul.	I	3,4	51.0	26.1	24,9	38.3	46.0	0.355	0.05	0.09	0.22	0.39		
	11	3,4	54,4	30.9	23.5	36.2	43.5	0.315	0.04	0.08	0.19	0.31		
Aug.	ł	3,2	48.0	22.1	25.9	39.8	47.8	0.369	0.05	0.09	0.22	0,36		
	11	3,2	51.2	69.0		-	-		-		-	-		
Sep.	I.	3.0	45.0	74.4	. 	-	- .		-	**	~	-		
•	II	3.0	45.0	96.1	~	-	-	-	· _		-	-		
Oct.	I	3.1	46.5	56.8	-		-	-			-	~		
	11	3,1	49.6	57,4	~	~	-	-				-		
Nov.	I	3.2	48.0	9.0	39.0	60.0	72.1	0.556	0.08	0,14	0.34	0.56		
	II	3.2	48.0	1.3	46.7	71.8	86.2	0.665	0.09	0.17	0.40	0.66		
Dec.	I	3.1	46.5	+	46.5	71.5	85,9	0,663	0.09	0.17	0.40	0.66		
	II	3.1	49.6		49,6	76.3	91.7	0.663	0.09	0.17	0.40	0,66		

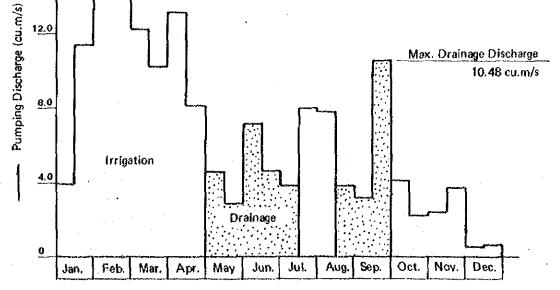
(2): Average field water requirements, in millimeter per half month

(3): Effective rainfall, in millimeter per half month, (see Appendix A. 4-15)

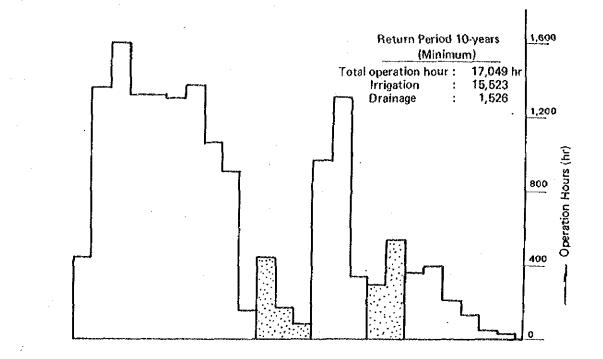
.

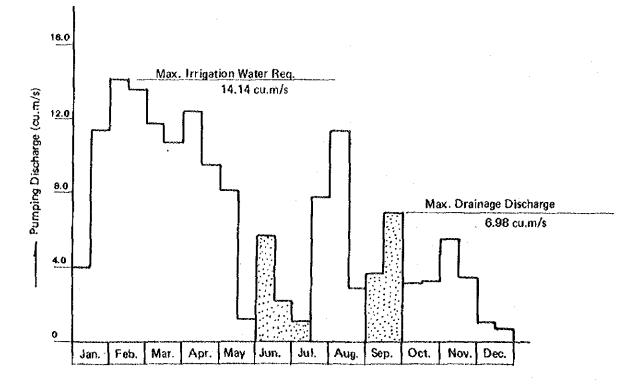
- (4): (2) -(3)
- (5): (4)/(1 0.35)


(6): (5)/(1 - 0.075)(1 - 0.10)


- (7): (6)/8.64 x n
- (8): Block A; irrigable area 142 ha x (7)
 (9): Block B; irrigable area 249 ha x (7)
 (10): Block C; irrigable area 609 ha x (7)
- (11); (8) + (9) + (10)

Appendix 4-8 · Page 4


FIGURE A.4-5


AVERAGE PUMPING DISCHARGE AND PUMP OPERATION HOURS

Note: Detail estimation is given in Table A.4 - 21

Appendix 4-8 Page 5

Appendix 4-8 Page 6

) shows the drainage discharge and operation hours of pumps for drainage

 \sim

pump capacity: Block A: 2.79 cu.m/s (3.99) x 3 units (\$1,350) Block B: 2.41 cu.m/s (3.44) x 3 units (\$1,350) Block C: 4.51 cu.m/s (6.44) x 3 units (\$1,650)

13,457 (2,926) (360) (360) (304) 979 (2#2) (817) (350) (233) 875 (316) #53 264 305 905 268 405 16,383 51 66 1,357 1,729 1,359 1,359 Lo ta L (uu) sound 4,481 (970) (101) 324 (80) (272) (116) (021) 283 (104) 146 SS 8 H 8 H 483 방 양 5,451 # 52 # 02 X 572 151 404 1.09 cu.m/s x 86,400 x 15/2.79 cu.m/s (jump capacity) x 3,600 Tours of 4, 428 (978) (102) 321 (81) (272) (117) (183) 287 (106) 6# 88 5,406 Block 447 397 477 297 60 60 876 147 148 567 463 Operation ित्त स्8्र Slock A ь,548 (978) (117) (78) (183) (120) +€8 (२०२) 306) (106) (81) (273) 158 93 5,526 #58 #08 008 1080 1080 129 129 σ 590 10 12 12 12 e/ : denived from Table A. 4-17 and A. 4-18 (3.10) (10.48) (3.90) 5.25 (4.4S) (2.81) (7.07) (4.61) 7.84 (3.79) 4 04 5 5 12-19 10-16 13-03 8-14 2.41 Total 3.97 11.44 15.53 14.58 0.49 0.61 Total derived from Table A. 4-23 (cu.m/s) (1.81) 3.80 3.55 (1.75) (1.43) (2.87) 6.05 3.76 (2.07) (1.30) (3.29) (2.24) 1.83 1.73 0.30 1.90 7.16 5.56 4.71 Y V V Pumping Discharge (0.97) 2.02 1.92 (0.78) (2.59) (1.12) (0.70) (1.75) (1.14) 0.99 0.54 0.98 2.69 2,49 3-19 0.59 0.90 0.12 3.57 BLOCK •• •• 3.79 2.39 (1.29)<u>5</u>/ (0.81) ો 1.09 a/ 3.35 ખુ Block A (2.03) (1.12) 2.43 2,37 (1.09) (0.89) 0.07 3.54 2.96 0.69. 1.00 к. 57 ะ. 30 1.22 0.67 Note: Nasiona Sasara Haritari Harit Jan. I II 54 54 54 H H H 는록 는록 1년 ₽-4 1-1 (-1 нH איג ויד אין Month Sep. Nov. . 80 10.2. 064 -177

Return Period: 2-years

Table A. 4-22 Average Operation Hours of the Proposed Pump

•

·

Table A. 4-22 Return Period: 10-years (Minimum)

Return Period:	10-y	10-years (Minimum)							
		Pumping Discharge (cu.	arge (cu.m/s)			Operation Hours	of Pumps (hr)	2	
Month	Block A	Block B	Block C	Total	Block A	Block B	BLOCK C	Total	
Jan. I	1-09	0.98	1,90	3.97	זיין	1,47	152	0+++	
	3-35	2.81	5.28	22-44	194	644	450	1,359	
Feb. I	4.17	3.46	6.51	ንተግተ	240	534	527	1,601	
H	10.4	3.33	6.25	I3 .59	677	432	1:33	7,824	
War. I	3.41	2.88	5.44	11.73	011	431	434	1,305	
1-1 2-1	3-39	2.85	t t2	10.66	467	484	376	l,297	
Apr. I	3-60	3.02	5.73	12.35	465	4 8 7 4	4 00 00	1,375	
⊷i ⊢t	2.79	2.32	4.30	9.50	360	347	351	1,058	
May I TT	2-34 0-30	80 0 7	3.82	8.15 1 25	302 #2	297	305 54	904 1 1 1	
				1 U U U					
	(0.62)	(1210)	(100-T)	(2.16)	(56)	(27)	(26)	(1147)	
Jul. I	(0.31)	(0.27)	(67.0)	(1.07)	(26)	(26)	(27)	(82)	
H H H	2-31	ਾਨ 'ਦ	3.59	7.81	318	342	306	966	
Aug. I	3.39	2.79	5.22	0+-TT	88 1 1	459	417	7,334	
	0.86	0.70	1.29	2.85	311	112	110	340	
Sep. I	(1-07)	(0.93)	(72-7)	(3.71)	(95)	(86)	(62)	(289)	
	(2,01)	(1.74)	(3.23)	(8.38)	(180)	(182)	(180)	(245)	
00t. H	0.97	0.78	1.45	3.20	125	717	977	358	
H H	1.00	0.81	1.50	10-8	138	130	128	396	
Nov. I	1.59	1.36	2.61	5.55	206	266	209	183	
Fred Fred	16.0	0.86	1.68	3.48	130	216	734	081	
Dec. I	0,21	0.27	0.59	1.07	27	ᅿ	てさ	115	1
}~4 }~4	0,09	0.17	0.40	0.66	С Г	27	at O	74	Page
				Total	5,180 (508)	5,302 (513)	5,041 (505)	15,523 (1,526)	- 1

Appendix 4-8 Page 7

17.049

9,5,6

5.815

5.658

Table A. 4-23 Drainage Discharge for Project Area

Return Period: 2-years

		-			0	ultivated	Amon						Other	e			
		Field W	ater Requ	uirements		n Water		rainage D.	ischarge		Drai	n Water			ischarge	•	Total
		Paddy	Upland	· · · · · · · · · · · · · · · · · · ·	••••••••••••••••••••••••••••••••••••••	+				Sub-	·····	₩₩₩₩₩₩ [₩] ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	****** ***** ** **********************			Sub-	Drainage
Month	Rainfall (mm)	Fields (mm)	Fields (mm)	Average (mm)	<u>mm</u>	1/sec/ha	$\frac{Block A}{(cu.m/s)}$	$\frac{Block}{(cu.m/s)}$	$\frac{Block C}{(cu.m/s)}$	Total (cu.m/s	 5)	<u>l/sec/ha</u>	$\frac{Block A}{(cu.m/s)}$	$\frac{Block B}{(cu.m/s)}$	$\frac{Block C}{(cu.m/s)}$	Total (cu.m/s	Discharge s) (cu.m/s)
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)
May I	113.1	69.0	60.0	68.1	45.0	0.347	1.05	0.90	1,71	3.66	73.5	0.567	0.24	0.22	0.36	0.82	4,48
. II	69.9	36,8	64.4	39.4	30.5	0.221	0.67	0.57	1.09	2.33	45.4	0.328	0,14	0.13	0.21	0.48	2.81
Jun, İ	87.2	3.0	55,5	8.0	79.2	0.611	1,85	1.58	3.01	6.44	56.7	0,437	0.18	9.17	0.28	0.63	7,07
11	56.8		55.5	5.3	51.5	0,397	1.21	1.03	1.96	4.20	36.9	0.285	0.12	0.11	0.18	0.41	4.61
Jul. I	70.9	27.0	51.0	29.3	41.6	0.321	0.97	0,83	1.58	3.38	46.1	0.356	0.15	0.14	0.23	0.52	3,90
11	35.1	102.4	54,4	97.8		,	-			, -	22.8	0.165	0.07	0.06	0.11	0.24	0.24
Aug. I	69.5	123.0	48.0	115.9	-	_	~	-	-	~	45.2	0.349	0.15	0.14	0.22	0.51	0.51
11	137.2	104.8	51.2	99.7	37.5	0.271	0.82	0.70	1.34	2.86	89.2	0.645	0,27	0.25	0.41	0.93	3.79
Sep. I	106.1	81.0	45.0	77.6	28.5	0,220	0.67	0.57	1.09	2.33	69.0	0.532	0.22	0.21	0.34	0.77	3.10
II ·	192.6	84.8	45.0	81.0	111.6.	0,861	2.61	2.22 .	4.25	9.08	125.2	0.966	0.41	0.37	0.62	1.40	10.48
Oct. I	70.9	82.5	46.5	79.1				-	-	~	46.1	0,356	0.15	0.14	0.23	0.52	0.52
11	85,6	86.4	49.6	82,9	2.7	0.020	0.06	0.05	0.10	0.21	55.6	0.402	0.17	0.16	0.26	0.59	0.80

Return Period: 10-years (Minimum)

		÷			С	ultivated	Area		·		·	·	Other				
		Field W	later Requ	irements	Drai	n Water	D	rainage D	ischarge		Drai	n Water	D	rainage D	ischarge		Total
		Paddy	Upland	·····		4		**************************************	· · · · · · · · · · · · · · · · · · ·	Sub-						Sub-	Drainage
Month	Rainfall	Fields	Fields	Average	៣៣	l/sec/ha	Block A	Block B	Block C	Total	າກກ	l/sec/ha	Block A	Block B	Block C	Total	Discharge
	(mm)	(mm)	(mm)	(mm)			(cu.m/s)	(cu.m/s)	(cu:m/s)	(cu.m/s)		(cu.m/s)	(cu.m/s)	(cu.m/s)	(cu.m/	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)
May I	3.6	69.0	60.0	68.1	~		~		-		2.3	0.018	0.01	0.01	0.01	0.03	0.03
II	39.1	36.8	64.4	39.4			-	-	-	•	25.4	0.184	0.08	0.07	0.12	0,27	0.27
Jun. I	71.4	3.0	55.5	8.0	63.4	0.489	1.48	1.26	2,41	5.15	46.4	0.358	0.15	0.14	0.23	0.52	5.67
TI	29.1		55.5	5.3	23.8	0.184	0.56	0.48	0,91	1.95	18.9	0.146	0.06	0.06	0.09	0,21	2.16
Jul. I	39.0	27.0	51.0	29.3	9.7	0.075	0.23	0.19	0.37	0.79	25.4	0.196	0.08	0.08	0.12	0,28	1.07
II	40.1	102.4	54.4	97.8	-				~	**	26.1	0.189	0.08	0.07	0.12	0,27	0.27
Aug. I	31.1	123.0	48.0	115.9	_		-		-	-	20.2	0.156	0.07	0.06	0.10	0.23	0.23
II	103.2	104.8	51.2	99.7	3.5	0.025	0.08	0.06	0.12	0,26	67.1	0.485	0.21	0.19	0.31	0.71	0.97
Sep. I	113.1	81.0	45.0	77.6	35.5	0.274	0.83	0.71	1.35	2.89	73.5	0.567	0.24	0.22	0.36	0.82	3.71
11	152.9	84.8	45.0	81.0	71.9	0.555	1.68	3.44	2.74	5.86	99.4	0.767	0.33	0.30	0.49	1.12	6.98
Oct. I	76.9	82.5	46.5	79.1		·		_		-	50.0	0.386	0.16	0.15	0.25	0.56	0.56
II	83.0	86.4	49.6	83.0	~		-	-	•~	_	54.0	0.391	0.16	0.15	0.25	0.56	0.56

Note: (1) Average half month rainfall at three stations, Sing Ha Nat, Phraya Banlu and Lakkhon, in each probable year

- (2) See Table A. 4-17
- (3) See Table A. 4-18
- (4) (2)x0.905+(3)x0.095
- (5) (1)-(4)
- (6) (5)/8.64 x n
- (7) 3,027 ha x (6)
- (8) 2,583 ha x (6)
- (9) 4,932 ha x (6)

(10) (7) + (8) + (9)

(11) (1) x run-off coefficient 0.65 (assumed)

- (12) (11)/8.64 x n
- (13) 422 ha x (12) (14) 387 ha x (12)
- (15) 637 ha x (12)
- (16) (13) + (14) + (15)
- (17) (10) + (16)

.

Appendix 4-9

ţ,

AREA-REDUCTION FACTOR FOR DRAINAGE MODULUS

FIGURE A.4-6

0

6 0

0 0

63

0 0

 $\{\mathbf{j}\}$

03

Reduction Factor

- ; ;

Area Decade Rainfall (July - Nov.) Á rea

ij

440,000 ha 250 (0.78) 200 (0.80) 135 (0.84) 250 (0.78) 200 (0.80) 135 (0.84) 224,000 ha 280 (0.88) 230 (0.92) 140 (0.88) 9,600 ha 320 (3.00) 250 (1.00) 160 (1.00) > 320 ha Return Period 10 years 5 years 2 years

ro

000

60

03

40

10,000 1 1,000

100,000

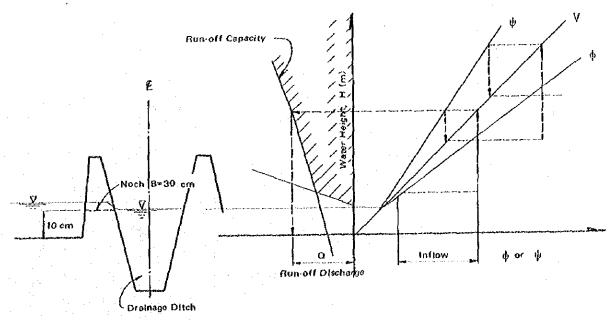
Area (ha 320

Source: Northern Chao Phya study report prepared by NEDECO, 1970

Sate Sa NO 407 C

Runoff Analysis by Mononobe's Graphic Method

Basic equiation is shown as follows;


$$\frac{(I_1 + I_2)}{2} \text{ At} - \frac{(Q_1 + Q_2)}{2} \text{ At} = V_2 - V_1 \dots (1)$$
Where; I_1 : Inflow at time t_1
 J_2 : Inflow at time t_2
 Q_1 : Outflow at time t_1
 Q_2 : Outflow at time t_2
 t : too showrt time considered to be linear in
changing of inflow and outflow
 V_1 : Field surface storage at time t_1
 V_2 : Field surface storage at time t_2

The above equation shall be transformed into:

$$\phi = V + Q \frac{\Delta t}{2}, \qquad \psi = V - Q \frac{\Delta t}{2}$$

and presented in a form of a general equation as below:

The equation (2) is expressed in the following diagram which indicates the procedure of estimation of run-off discharges through notches of the paddy fields.

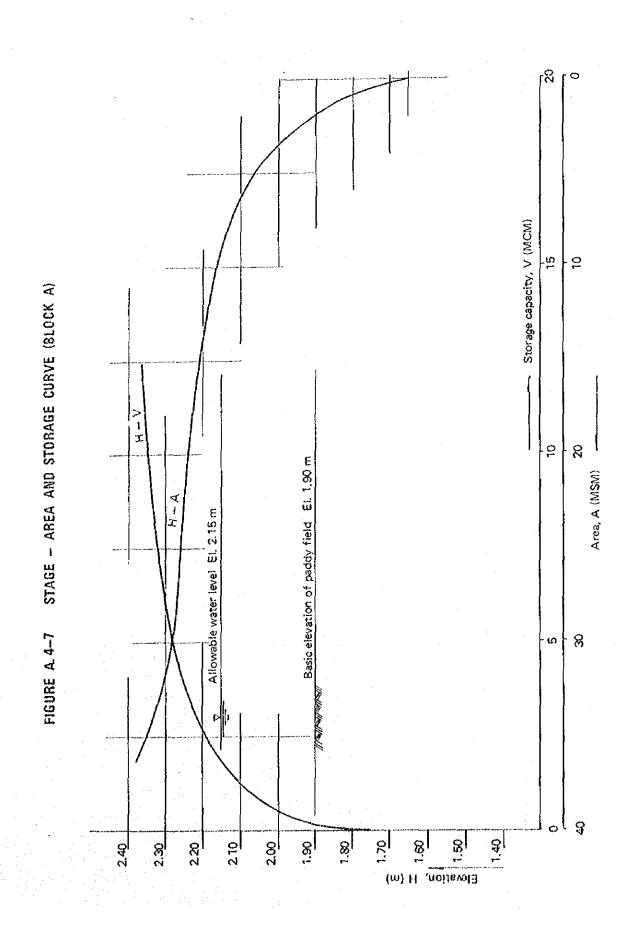
ILLUSTRATION OF PROCEDURE FOR RUN-OFF DISCHARGE

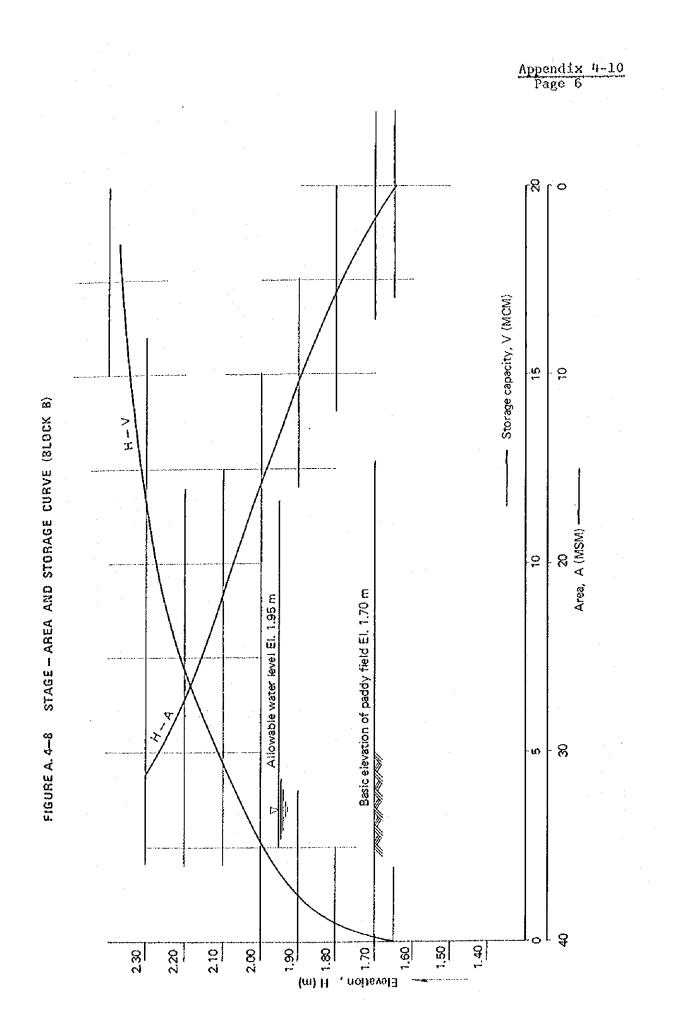
	Table A. 4-24	Drainage Conditions	ns at Jach Pumping	g Rate (Block A)	
Pumping Rate	Maximum 1/ Water Level	Maximum 2/ Water Deoth	Inundation 3/ Period	Inundation 1 Area	Max. Water Depth <u>5</u> / of Each Field
~	ជ			i l	E
Case 1 : 3 I O	.20 m (Width of	notch)	ע גע ע ר		
α = 1.20	2-24	<i>м</i> ,	05 (4.	ි ජ	ິ ທີ່ ເ
C4 	2		0 (4.2	60	<u>ති</u>
1.30	2.23	0,33	95 (4.0)	1,972	0.180
с ,	3	്	0 (3.	80	с <u>1</u> 0
4	2	.0	5 (3.	6	5
<u>.</u> 1	3	. <u>(</u>	1 (3.	33	.17
5	\sim	2		50	91-
Case 2 : 3 = 0	0.30 m (Width of n	otch)	davs		
- 04	2.26	0.36	キ) ホモ	9 7 7 0	4
N -1	2.25	0.35	(4.5	000	2
ო	2.25	•	04 (H.	10.	Ģ
က္	2.25		00 (4.	, 23	2
ು	2.24		ĊĦ.	5 7 1 2	7
-1 +2	2.24	0.34	92 (3.8)	2,081	051.0
un) F	2.23		()	•00	Ę
Note: 2/	Lowest elevat	of paddy fiel	81. J.70 8	, , ,	
	: warer ceptn ar : Inundation per	υS	n or ya le wate	ыл. 1.90 п Г. 2.75 п	
गित	: Inundation are : Maximum water	a at maximum wate depth of each pad	er level. Riv fields control	ed by noch and	
	e dit	، ۱ ۰	'n	×	

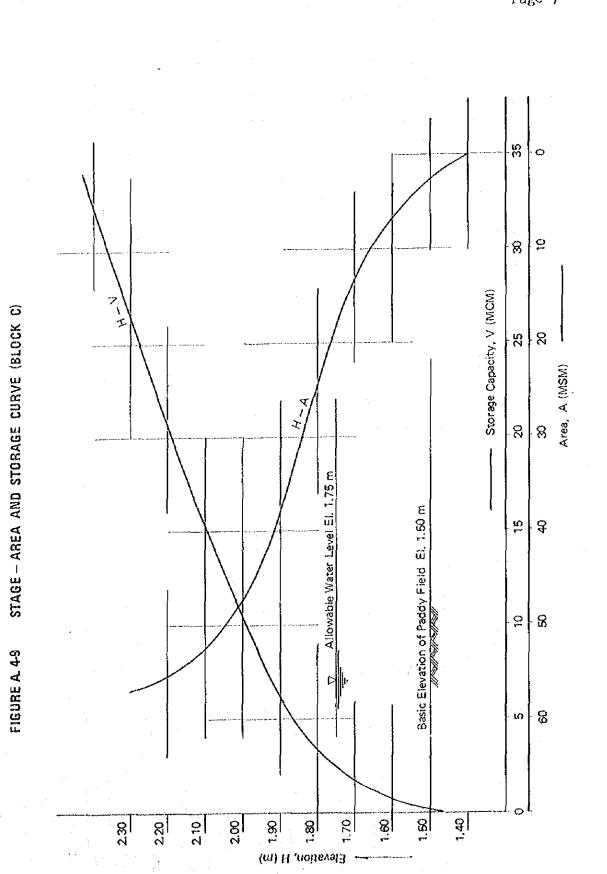
Drainage Conditions at Each Pumping Rate (Block 3) 4-25 Table A.

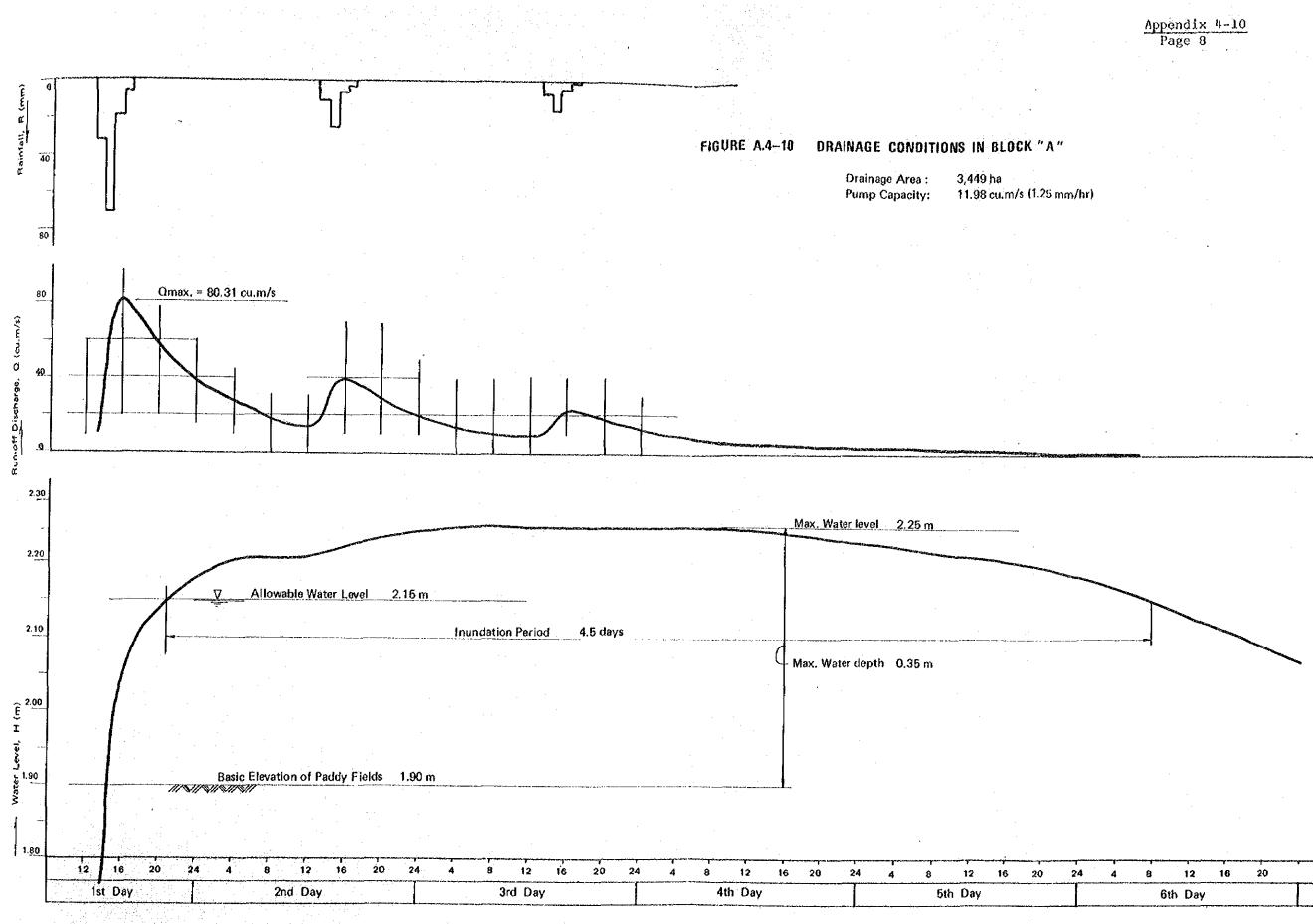
5 Max. Water Depth of Each Field 0.215 0.215 0.215 0.215 0.215 0.215 0.211 0.211 0.211 0.213 0.211 0.211 0.211 Е 0.215 Inunderion 1,413 1,378 1,60<u>4</u> 2,571 1,537 Area Na 1,584 2,557 L,683 1,630 1,520 , 448 t: t: 1,710 m Inundation àays àays $\frac{1}{2}$ (2.6)(2.5) (0.0) (3.2) (2.8) (2.6) (2.5) (2.3) (7.2) (2.2)(2.0) (1.3) Period кı С # 0 0 5 4 4 4 5 0 0 5 Maximum 2/ Water Depth m 0.25 10.00 0.29 0.27 0.29 0.30 0.29 0.28 0.27 0.32 B # 0.30 m (Width of notch) Case I : B = 0.20 m (Width of notch) Maximum 1/ Water Level 2.00 00 00 00 00 00 00 00 00 00 2.02 2.01 2.01 2.02 500-7 - 60 E 1.97 1.87 1.98 Pumping Rate Hum/hr 07.4 1.30 2 - 35 1-25 1-35 い け・ モ 1.50 1.20 1.25 ام . د 5 09 - 50 1.20 ~ Case 11 ļł U Ω(

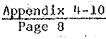
1.70 Water depth above basic elevation of paddy field EL. 1.70 Inundation periods above allowable water level EL. 1.95 m Lowest elevation of paddy field : EL. 1.55 m •• -101-01-1-01 Note:

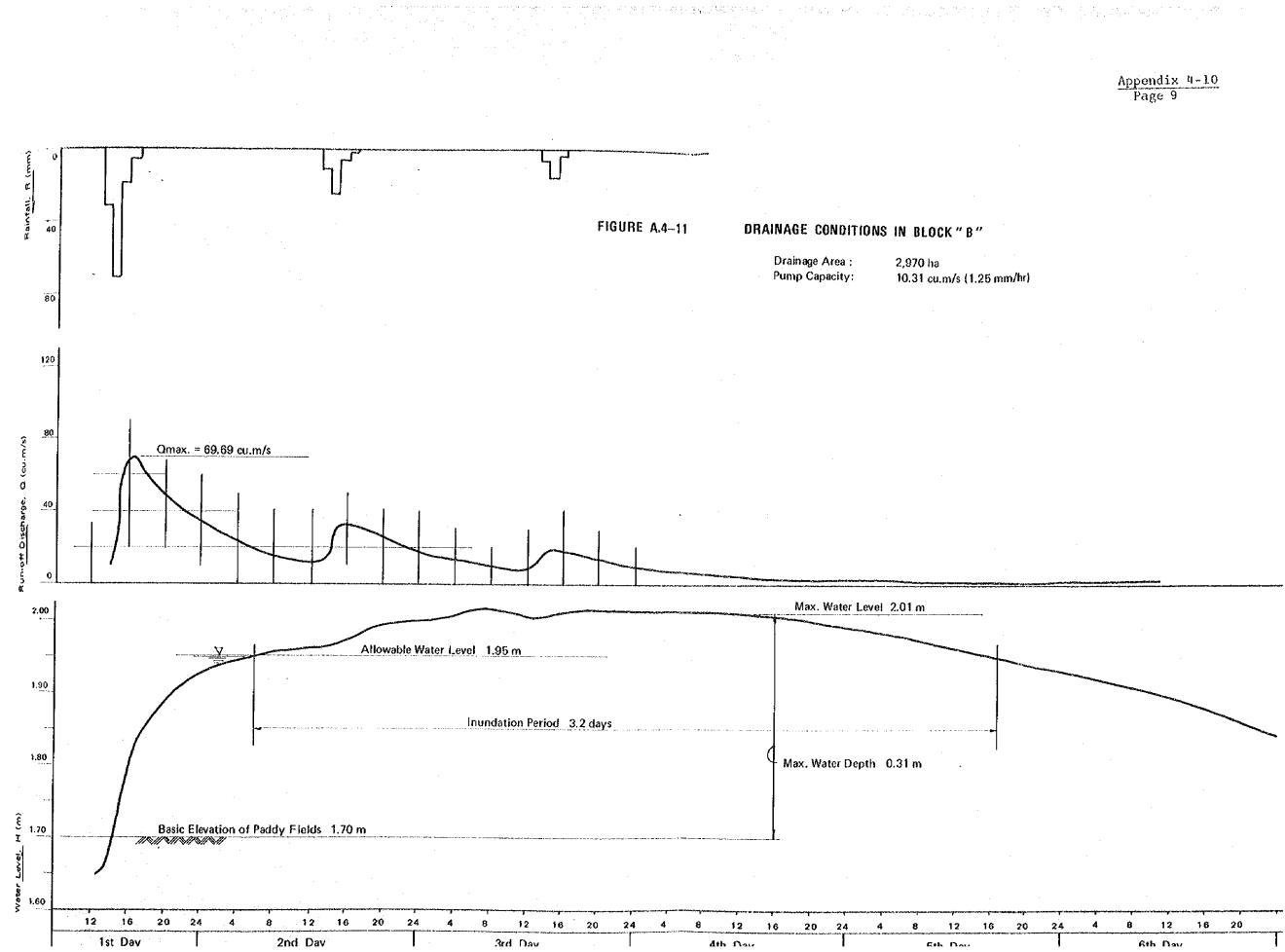

£

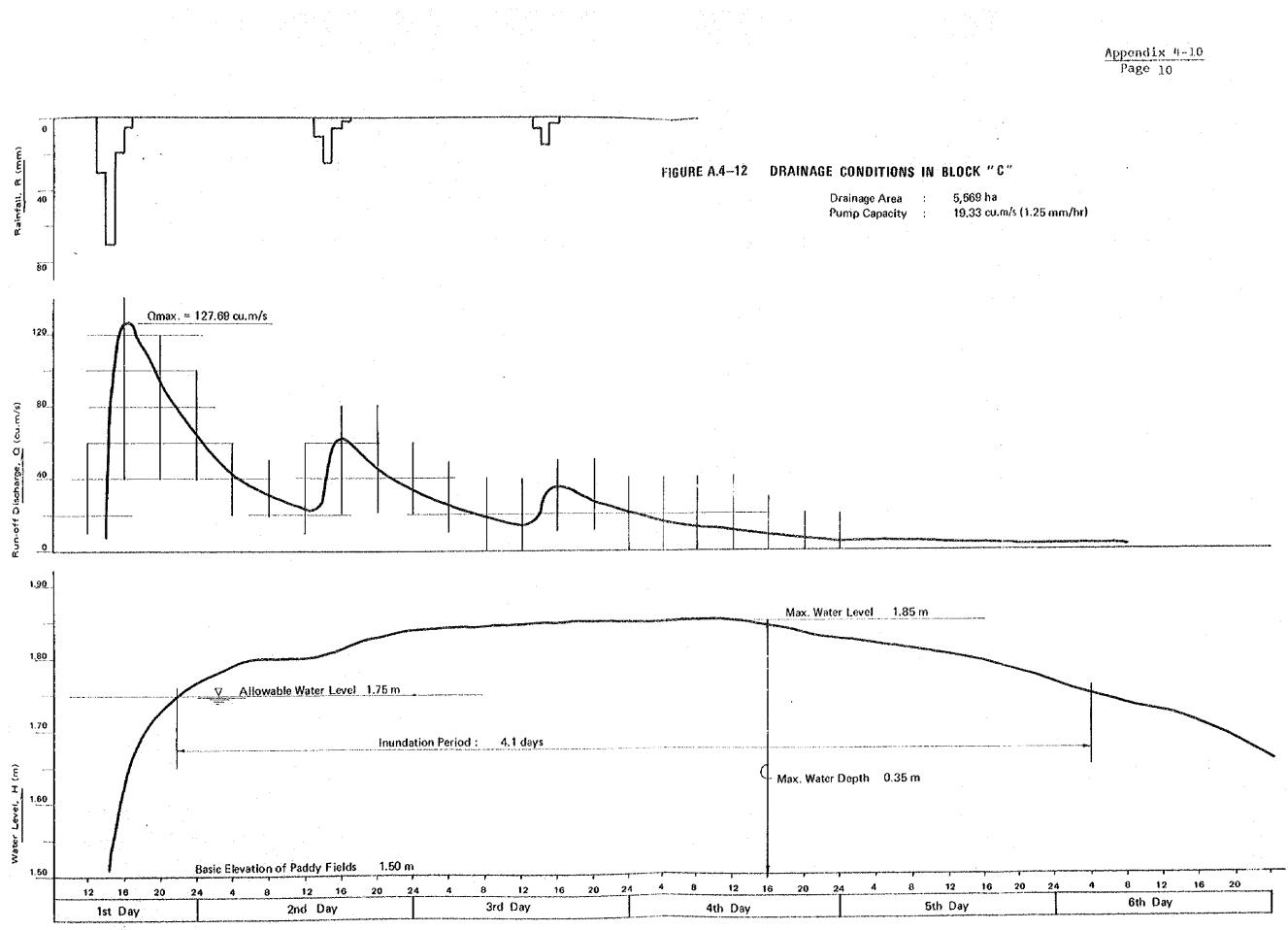

Inundation area at maximum water level

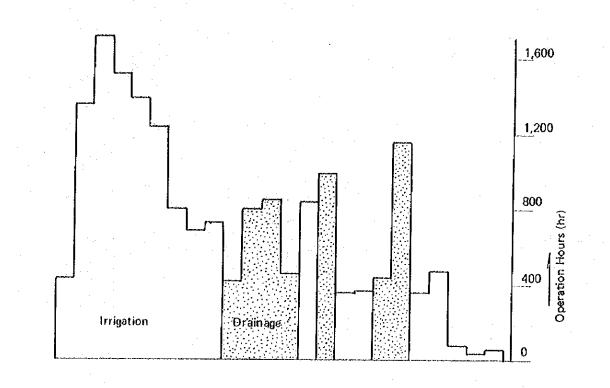

Maximum water depth of each paddy fields controled by noch and dreinage ditch


Drainage Conditions at Ecah Pumping Rate (Block C) Table A. 4-26


Max. Water Depth 5/ of Each Fleid 0.213 0.213 0.213 0.213 0.213 0.209 0-209 0-209 0-209 0.209 0.209 0.209 0.213 E à Maximum water depth of each paddy fields controled by noch and Inundation E 2,844 2,774 2,704 2,558 2,558 3,208 3,208 3,074 2,936 2,936 2,936 2,936 2,996 ų, D, 2,915 1.50 Inundation periods above allowable water level EL. 1.75 m 52.62 Water depth above basic elevation of paddy field EL. Inundation 3/ Lowest elevation of paddy field : EL. 1.40 m days (3.8) (3.5) (3.3) (3.0) days (4.3) (3.3) (3.3) (2.5) (2.5) (2.5) (1.1) (4.0) (3.8) (3.6) Period 봂 Inundation area at maximum water level. Maximum 2/ Water Depth 8 0.33 0.33 0.32 0.31 0.31 0.31 0.360.350.350.340.340.330.330.20'm (Width of notch) 0.30 m (Width of notch) drainage ditch Verimum J Water Level E 108 - E 1.83 -Marten 16 1ŧ 61 Pumping Rate m m Note: ••• r=•1 1.20 07-10 1-40 1.50 1.20 83 an er • • 2 Case Case 11 11 U σ







Return Period :		· · · · ·
10 · years (maxim	<u>um)</u>	
Total operation h	our:	17,620 hr
Irrigation	:	12,391
Drainage	:	5,229

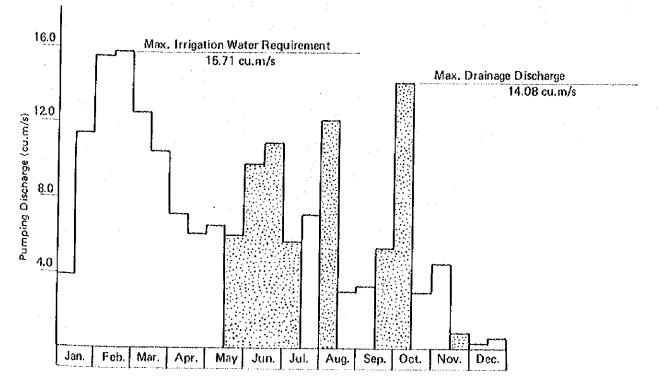


Table A. 4-27 Average Operation Hours of the Proposed Pump

.

Return Period: 10 years (Maximum)

·	Total	60 1	1,359	1,724,	1,516	1,391	1,242	- 798	586	725	(472)	(804)	(853)	(465) 212	843	(065)	362	375	(827)	(1,180)	357	473	(26)	37	51	12,391	(5,229)	17,620.			
scmut of sums	Block C	151	450	570	501	49t	674	263	225	247	(387)	(255)	(282)	(148)	8/2	(974)	116	122	(527)	(366)	116	160	(25)	18	10	4,128	(I,670)	5,798) × 3,600
Operation Hours of Pumps	Block B	1=7	877	566	804 1	457	804	261	226	340	(138)	(282)	(384)	(170)	6/7	(363)	611	122	(163)	(424)	116	155	(23)	ខក	4T	590°4	(1,555)	5,931			1.09 cu.m/s × 86,400 × 15/2.79 cu.m/s (pump capacity) × 3,600
J	Block A	lele/	191	588	517	470	420	274	235	242	(52T)	(324)	(584)	(147)	<u>∩</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(313)	127	131	(141)	(380)	125	158	(22)	Q	13	4,198	(250'T)	5,801	nd A. 4-29		79 cu.a/s (p
		3.97	11.12	15.49	15.72	12-51	10.46	7-17	6.15	6.58	(2100)	(08,-8)	(10.96)	(5.68)	24-1	(12.08)	3-03	3.37	(s.39)	(34-08)	3.00	4.28	(0.97)	0.36	0.66	Total		•	le A. 4-28 and	le A. 4-31	,400 × 15/2.
Pumping Discharge (cu.m/s)	Block C	7-90	5.28	7.14	7-24	5.81	4 85	3.30	2.82	3-09	(2.32)	(4.56)	(2110)	(2.64)	07 °C	(2.61)	- ° '	1.53	(2.49)	(6.54)	1-36	2-01	(0.45)	0.22	0.40				derived from Table	ved from Table A	cu.n/s x 86
mping Discha	Block B	95-0	2.81	3.79	0.02 0	3.06	2.56	1.75	1.51	1-61	(1-24)	(2.42)	(2.71)	(1-47) (1-47)		(3.00)	21-1	0.82	(H. H)	(3.49)	0.73	70	(0-24)	0.09	0.17				a/ : deri	2/: derived	e/: 1.09
		2.092/	3.35	55.1	4-62	3.64	3.05	2.12	1,82	1.88	(1.44)2	(2.82)	(3.15)	(1.63)		(3.47)	78-0	1-02	(J.56)	(50.4)	10-0	1-23	(0.28)	0.05	60.0				Note:		
-	Wonth	Jan. I	II.	Feb. I	н	Xar- I	11	Apr. I	IΙ	Yay I	II	1911 I	11	<u></u> йы. I II		Aug. I	4	Sep. I	11	Oct. I		Nov. I		Dec. I							

•

Appendix 4-11 Page 2

v

pump capacity: Block A : 2.79 cu.m/s (3.99) x 8 units (c1.350) Block B : 2.44 cu.m/s (3.440 x 8 units (c1.350) Block C : 4.51 cu.m/s (5.44) x 8 units (c1.650)

Table A. 4-28 Irrigation Water Requirements for Paddy Fields (Return Period: 10-years)

						Gros	s Water Requireme	ents	Irriga	tion Water F
Mon	th	Field Water	Requirement	Effective Rainfall	Net Water Requirements	Farm Gate Water Requirements	Diversion Water	Requirements	Block A	Block B
		(mm/day) (1)	(mm/half mon) (2)	(mm/half mon) (3)	(mm/half mon) (4)	(mm/half mon) (5)	(mm/half mon) (6)	(L/sec/ha) (7)	(cu.m/s) (8)	(<u>cu.m/s</u>) (9)
Jan.	Ţ	2.0	30.0	_	30.0	37.5	45.0	0.347	1.00	0.81
	11	6.5	104.0	**	104.0	130.0	156.2	1.130	3.26	2.64
Feb.	I	9.0	135,0	1.8	133.2	166.5	200.0	1:543	4,45	3.60
	ΙI	9.0	117.0		117.0	146.3	175.7	1.564	4.51	3.65
Mar.	1	7.0	105.0		105.0	131.3	157.7	1.217	3,51	2.84
	ΙI	6.8	108.8	15.1	93.7	317.1	140.7	1.018	2.94	2.38
Apr.	I	7.6	114.0	51.8	62.2	77.8	93.5	0.721	2.08	1,68
•	ΊI	7.4	111.0	57.5	53.5	66.9	80.4	0.620	1.79	1.45
May	I	4.6	69.0	15.3	53.7	67.1	80.6	0.622	1.79	1.45
	11	2.3	36.8	72.2	-	~			-	
Jun.	I	0.2	3.0	98.4				~	-	-
	ΙI	-	_	96.5	•••	-	_	-	-	
Jul.	T	1.8	27.0	68.3	~		. –	-	· -	~
	11	6.4	102.4	36.5	65.9	82.4	99.0	0.716	2.07	1.67
Aug.	I	8,2	123.0	182.1	~	- .	·		~	~
	11	7.8	104.8	75.5	29.3	36.6	44.0	0.318	0.92	0.74
Sep.	I	5.4	81.0	50.5	30.5	38,1	45.8	0.353	1.02	0.82
. 1 .	II	5.3	84.8	87.9	~	-		-	**	
Oct.		5.5	82.5	150.5	-	-		***		~*
	11	5,4	86.4	57.5	28,9	36.1	43.4	0.314	0.91	0.73
Novi		3.7	55,5	20.7	34,8	43.5	52.3	0.404	1.17	0.94
	ĨI	1.8	27.0	30.0	-	••• ·	-		~	-
Deci		0.2	3.0	25.9	~	-	_	-	~	
	ĪÌ			0.5	-	-	_	**		ہے مصرحیت سے بیرے بہرے

Note: (1): Average field water requirement, in millimeter per day (see Table A. 4-13)

(2): Average field water requirement, in millimeter per day (see land in field).

(3): Effective rainfall in millimeter per half month (Table A. 4-30)

(4): (2) - (3)

(5): (4)/(1 - 0.2)

(6): (5)/(1 - 0.075)(1 - 0.10)

(7): (6)/8.64 x n

(8): Block A; irrigable area 2,885 ha x (7)

(9): Block B; irrigable area 2,334 ha x (7)

(10): Block C; irrigable area 4,323 ha x (7)

(11); (8) + (9) + (10)

Requirements

Block C	<u>fotal</u>
(cu.m/s)	(cu.m/s)
(10)	(11)
1.50 4.88 6.67 6.76 5.26 4.40 3.12 2.68	$\begin{array}{c} 3.31 \\ 10.78 \\ 14.72 \\ 14.92 \\ 11.61 \\ 9.72 \\ 6.88 \\ 5.92 \end{array}$
2.69 - - - -	5.93 - -
3.10	6.84
-	-
1.37	3.03
1.53	3.37
-	-
1.36	3.00
1.75	3.86
-	-
-	-

Table A. 4-29 Irrigation Water Requirements for Upland Crops (Return Period: 10-years)

						s Water Requireme	ents	Irriga	tion Water	Requirements	يحد بالمحاج المراجع والمار المحاج الم
Marsth	Field Water	Requirement	Effective Rainfall	Net Water Requirements	Farm Gate Water Requirements	Diversion Water	Requirements	Block A	Block B	Block C	Total
Month			(mm/half mon)		(mm/half mon)	(mm/half mon)	(l/sec/ha)	$\frac{1}{(cu.m/s)}$	(cu.m/s)	(cu.m/s)	(cu.m/s)
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
Jan. I	3.1	46.5	**	46.5	71.5	85.9	0.663	0.09	0.17	0.40	0.66
II	3,1	49.6	-	49.6	76.3	91.7	0.663	0.09	0.17	0.40	0.66
Feb. I	3.7	55.6	1.5	54.1	83.2	99.9	0.771	0.11	0.19	0.47	0.77
IGD. I	3.7	48.1		48.1	74,0	88.9	0.791	0.11	0,20	0,48	0.79
Mar. I	4.2	63.0		63.0	96,9	116.4	0.898	0.13	0.22	0.55	0.90
II	4.2	67.2	11.7	55.5	85,4	102.6	0.742	0.11	0,18	0.45	0.74
Apr. I	4.6	69.0	48.5	20.5	31.5	37.8	0.292	0.04	0.07	0.18	0.29
II	4.6	69.0	53.0	16.0	24.6	29.5	0.227	0,03	0.06	0.14	0.23
May I	4.0	60.0	14.5	45.5	70,0	84.1	0.649	0.09	0.16	0.40	0.65
II	4.0	64.4	65.0			~	-				~
Jun. I	3.7	55.5	77.5	_ ·	<u></u>	~			-	_	
Jun. 1 IT	3.7	55.5	83.0	-	_	<u>-</u>					~
	3.4	51.0	61.0	~	_	_	_	-	-		-
Jul. I II		54.4	35.0	19.4	29.8	35.8	0.259	0.04	0.06	0.16	0.26
	3.4 3.2	48.0	129.0	J. J. 4		-	01205	~		-	
Aug, I		48.0 51.2	67.5	-			-	-	-	-	-
II Cui 7	3.2	45.0	47.5	-	-		•	· _	-	_	_
Sep. I	3.0		47.5	~		-	_	_		~	
II	3.0	45.0		-	-	-			<i>*</i> -	2	~
Oct. I	3.1	46.5	125.5	-		-	-		-	-	
11	3,1	49.6	60.5		-	C H C	0,421	0.06	0.10	0.26	0.42
Nov. I	3.2	48.0	18.5	29.5	45.4	54.5		0.04	0.07	0.18	0.29
II	3.2	48.0	27.0	21.0	32.3	38.8	0,299	0.04	0.09	0.22	0.36
Dec. I	3.1	46.5	21.0	25.5	39.2	47.1	0,363		0.03	0.40	0.66
II	3.1	49.6	-	49.6	76.3	91.7	0.663	0.09	0.11	0.40	0.00

(9): Block B; irrigable area 249 ha x (7) (10): Block C; irrigable area 609 ha x (7) (11): (8) + (9) + (10)

~

Appendix 4-11 Page 4

.

ς.

Table A.4-30

Effective Rainfall (Return Period: 10-years)

(Unit: mm)

							(Unit:)	m n)
			Rain	fall			tive Rainfa	1.1
						Paddy	Field	
			Phraya		t	Ratio of		
		Sing Ha	Banlu	Lakkhon			Effective	0p1and
Mon	th	Nat. Reg.	Reg.	Reg.	Average	Rainfall	Rainfall	Field
					(1)	(2)	$(3)=(1)\times(2)$	(4)
Nov.	E	0	77.7	0	25,9	0,80	20.7	18.5
	ΪĬ	20.0	74.5	18.4	37.6	0.80	30.0	27.0
Dec.	I	67.5	0	18.9	28.8	0.90	25.9	21.0
•	1 I	.1., 5	0	. 0	0.5	0.90	0.5	0
Jan.	1	0	0	0	0	0.90	0	0
Jun	Ĩ	õ	õ	0	0	0.90	Ő	Õ
ri . 1	r	6.1	0	0	2.0	0.00	1.8	
l'eb.	L []	0.1	0	0	0	$0.90 \\ 0.90$	0	1.5 0
Mar.		0	0	0	0	0.90	0	0
	ΙI	29.6	2,3	18.4	16.8	0,90	15.1	41.7
Apr.	I	89,5	69.9	47.6	69.0	0.75	51,8	48.5
	11	92.6	121.5	15.8	76,6	0.75	57.5	53.0
May	I	24.7	6,5	29.7	20.4	0.75	15.3	14.5
-	H	130.2	79.9	78.5	96.3	0.75	72.2	65.0
Jun.	Ţ	149.5	23.1	181.0	117.9	0.75	98.4	77.5
	T I	94.9	86.5	204.8	128.6	0.75	96.5	83.0
մսի.	Ι	105.5	46.0	121.7	91.1	0.75	68.3	61.0
041.1	ΙI	22.4	112.1	11.6	48.6	0.75	36.5	35.0
				1				
Aug.	I []	330.3	101.5	296.8	242.8	0.75	182.1	129.0
	11.	74.3	155.4	72,4	100.7	0.75	75.5	67.5
Sep.	Ĩ	64.6	57.0	80.7	67.3	0.75	50.5	47.5
	I I	196.6	61.7	1.47.8	135.2	0.65	87.9	86.3
Oct.	I	117.6	415.3	161.8	231.6	0.65	150.5	125.5
	[]	46.2	148.3	71.8	88.7	0.65	57.5	60.5

ı.

Note: (4); estimated based on Figure A.4-4

Table A. 4-31 Drainage Discharge for Project Area

						ultivated	nrea			•			Othe	1.9			
		Field W	ater Req	uirements	Dra	in Water	Ďr	ainage Di	scharge	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Drai	n Water	· · · · · · · · · · · · · · · · · · ·			······································	Tota).
		Paddy	Upland							Sub-						Sub-	Drainage
	Rainfall	Fields	Fields	Average	mm	l/sec/ha	Block A	Block B	Block C	Total	mm	l/sec/ha	Block A	Block B	Block C	Total	Discharge
,,	ma	mm	mm	mm			cu.m/s	cu.m/s	cu.m/s	cu.m/s			cu.m/s	cu.m/s	cu.m/s	cu.m/s	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)
Apr. I	69.0	114.0	69.0	109.7				** *		~	44. 9	0.346	0.15	0.13	0.22	0.50	0.50
, I I	76.6	111.0	69,0	107.0						-	49.8	0.384	0.16	0.15	0.24	0.55	0.55
May I	20.4	69.0	60.0	68.1	-		- '	- '	-	-	13.3	0.103	0.04	0.04	0.07	0.15	0.15
Í	96.3	36,8	64.4	39.4	56.9	0.412	1,25	1.06	2.03	4,34	62.6	0.453	0.19	0.18	0.29	0,66	5.00
Jun. I	117.9	3.0	55.5	8.0	109.9	0.848	2.57	2.19	4.18	8,94	76.6	0.591	0.25	0.23	0.38	0.86	9.80
II	128.6		55,5	5.3	123.3	0.951	2.88	2.45	4.69	10.03	83.6	0.645	0.27	0.25	0.41	0,93	10.96
Jul. I	91.1	27.0	51.0	29.3	61.8	0.477	1.44	1.23	2.36	5.03	59.2	0.457	0.19	0.18	0.29	0,66	5.69
II	48.6	102.4	54.4	97.8				-		-	31.6	0.229	0.10	0.09	0.15	0.34	0.34
Aug. I	242.8	123.0	48.0	115.9	126.9	0,979	2.96	2.53	4.83	10.32	157.8	1.218	0.51	0.47	0.78	1.76	12.08
II	100.7	104.8	51.2	99.7	1.0	0.07	0.21	0.18	0.35	0.74	65.5	0.474	0.20	0.18	0.30	0.68	1.42
Sep. 1	67.3	81.0	45.0	77.6	-	-	-		· 		43.7	0.338	0.14	0.13	0.22	0.49	0.49
11	135.2	84.8	45.0	81.0	54.2	0.418	1.27	1,08	2.06	4.41	87.9	0.678	0.29	0.26	0.43	0.98	5.39
Oct. I	231.6	82.5	46.5	79.1	152.5	1.177	3.57	3.04	5.80	12.41	150.5	1.161	0.49	0.45	0.74	1.68	14.09
11	88.7	88.4	49.6	84.7	4.0	0,029	0.09	0.08	0.14	0.31	57.7	0,417	0.18	0.16	0.27	0.61	0.92
Nov. I	25.9	55.5	48.0	54.8			-	-	-	~	16.8	0,130	0.05	0.05	0.08	0.18	0.18
II	37.6	27.0	48.0	29.0	8.6	0.066	0.20	0.17	0.32	0.69	24.4	0.188	0.08	0.07	0.12	0.27	0,96

Return Period: 10-years (Maximum)

•

Note: (1) Average half month rainfall at three stations, sing Ha Nat, Phraya Banlu and Lakkhon, in probable 10-years

(2) See Table A. 4-17 (3) See Table A. 4-18 (4) (2) \times 0.905 + (3) \times 0.095 (5) (1) - (4) (6) (5)/8.64 \times n (7) 3.027 ha \times (6) (8) 2.583 ha \times (6) (9) 4.932 ha \times (6) (10) (7) + (8) + (9) (11) (1) x runoff coefficient 0.65 (assumed) (12) (11)/8.64 x n (13) 422 ha x (12) (14) 387 ha x (12) (15) 637 ha x (12) (16) (13) + (14) + (15) (17) (10) + (16) .

Necessity and Possibility for Separation of Irrigation and Drainage System

Necessity

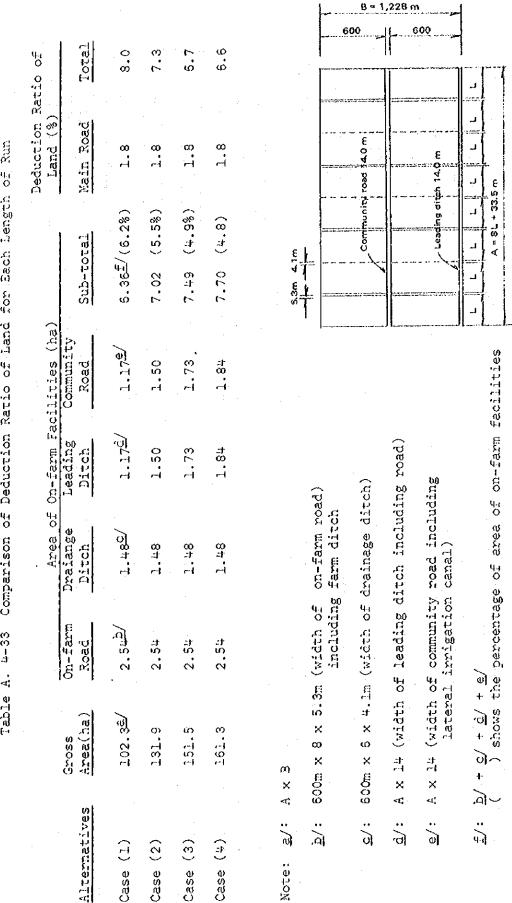
The modernized paddy cultivation requires systematic irrigation and drainage systems controlled intentionally in each rotation block. The puddling period has been planned at 48 days so that not only transplanting but also harvesting of paddy should be completed within 48 days in one rotation block. For this purpose, each plot has to control irrigation water freely under the separated irrigation and drainage systems. In case of planning a dual purpose canal system, it is virtually difficult to control irrigation water freely, because the irrigation water supply in plot by plot are different due to the difference of growing stage of paddy.

Possibility

It is necessary to examine thoroughly the possibility for the separation of irrigation and drainage systems in the project, because the project area lies on generally low-lying and flat area, and the outer water level is high during the wet season even after the Project. During the wet seasons when the outer water level is higher than the inner one, it is planned that drainage will be made forcedly by pumps. On the other hand, in the dry season, the irrigation water is lifted by pumps and is conveyed to the field with effective hydraulic potential in canals provided along the roads. These plans will make it possible to separate irrigation and drainage systems in the field. Comparison of Land Consolidation Cost for Each Length of Run 4-32 Table A.

	Area	ក្		On-farm	On-farm Facilities			Construction Cost	n Cost
Alternatives	Gross	Net	Land Levelling	On-farm Road	Drainage Ditch	Leading Ditch	Community Road	Total Cost	<u>Cost/ha</u>
Case (1) (100x50m)	ра 102-3	ਸਕ 96.0 <u>ਰ</u> /	\$44,160	4,800m \$4,320	3,600m \$5,400	833.4m \$5,667	833.4m \$2,083	\$61,630	, \$642 (106)
Case (2) (130x50m)	6 131 6	12t - 8	\$57 , #54	4,800m \$4,320	3,600 0 \$5,400	1,033.4m \$7,027		S76,784	\$615 (102)
Case (3) (150x50m)	151-5	0-445	\$65,240	4,800m \$4,320	3,600m \$5,400	1,233.4m \$8,387	1,233.4 \$3,083	\$87,430	(TOT) 2098
Case (4) (160x50m)	161.3	153.6	\$70,556	. 4 ,800m \$4,320	3 ,600m \$5,400	1,313.4m \$8,931	1,313.4m \$3,283	\$52,590	\$603 (100)
Note:	ತ್ರ ೧೯೦SS	สระคล หวักบร	1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	on-farm facil	fecilities			ч 	

2) Costs of survey, preparation, land clearing, structures, and overhead are not included in the above costs.


460 \$/na 0.9 \$/m 6.8 \$/m 2.5 \$/m 2.5 \$/m

> On-farm road Drainage ditch Leading ditch Community road

Land levelling

Unit cost of on-farm facilities:

Appendix 4-13 Page 1

8
11.
a of Ru
19 19 19
ie Fi
-6
(1) (1)
for
۰¢
Lano
44 0
n Ratio of Land for
al X
g
Deduction
5
ъ Ф
Á
ч <u>н</u> О
omparison
Com
თ
00-1
1
Table A.
ച
់ក្ត
£-1

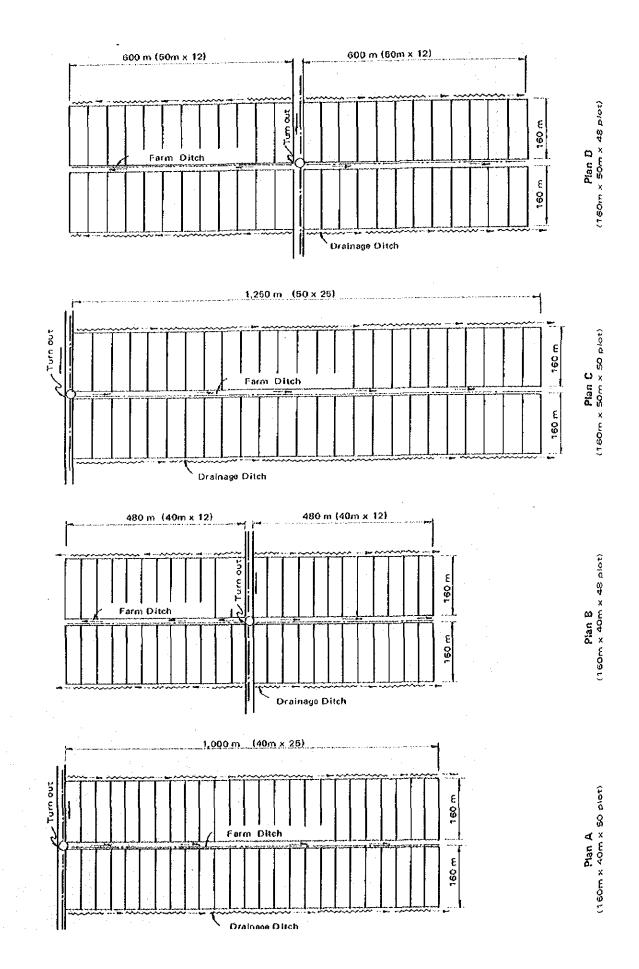


FIGURE A. 4-14 ALTERNATIVES ON SIZE OF PLOT AND REPARCELING OF LAND

Table A. 4-34 Comparison of Land Consolidation Cost for Each Width of Plot

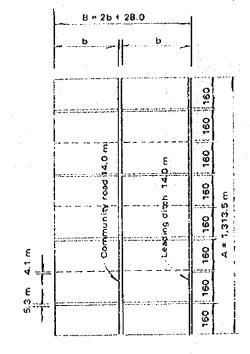
٠

1 Cost	Cost/ha	\$623 (103)	\$603 (100)
Construction Cost	Total Cost	\$76,524	\$92,590
	Community Road	1,313.4m \$3,283	1,313.4m \$3,283
	ading itch	1,313.4m \$8,931	1,313.4m \$8,931
On-farm Facilities	Drainage Ditch	2,880m \$4,320	3,600m \$5,400
чо	On-ferm Roed	3,840m \$3,456	ц,800m S4,320
	Land Levelling	\$56,534	70,656
67	Net (ha)	122.9	153.6
Area	Gross Net (ha) (ha)	129.8 122.9	161.3
	Case	Case B	Case

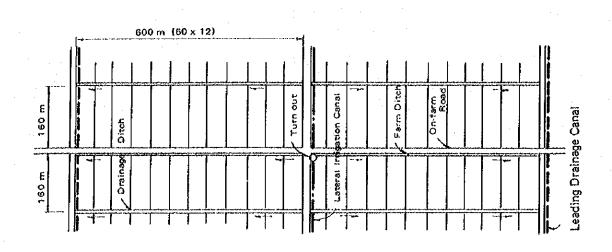
Note: 1) Unit cost of on-farm facilities;

460 \$/ha	თ	1.5 S/m	6.8 \$/m	2.5 S/m	
Land levelling	On-farm road	Drainage ditch	Leading ditch	Community road	

Costs of Survey, preparation, land clearing, structures and overhead are not included in the above costs.


Comparison of Deduction Ratio of Land for Each Width of Plot Table A. 4-35

	· · · ·		Area of	Area of On-farm Facilities (ha)	lities (ha)		Deduction Ratio of Land (%)	atio of
Case	Gross Area(ha)	On-farm Road	Drainage Ditch	Leading Ditch	Community Road	Sub-total	Main Road	Total
а 8 9 9	129.8	2.043/	/ ⊊ 8⊺.1	1.84 <u>6/</u>	78.I	6.90 (5.3%)	1.8 1	
C ase C	162.3	2.54	00 각 · -	1.84	н. В.	7.70 (4.8%)	∞ + -1	9 . 6
		: c : : : ;,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ĩ		:		


Note: 2/: Dmx8x5.3 (Width of on-farm road including farm ditch)

b/: b m x 6 x 4.1 (Width of drainage ditch)

x 14m (Width of community road including lateral irrigation canal) ٩Ç :)

i

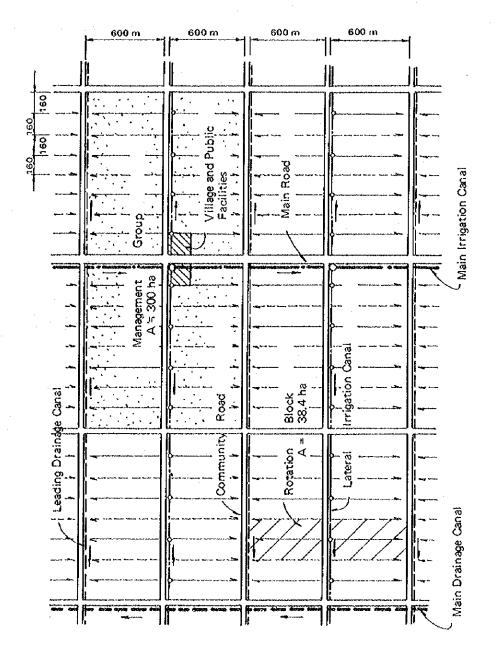
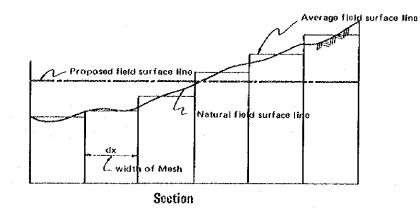


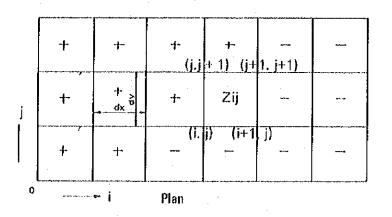
FIGURE A. 4-15 TYPICAL LAYOUT OF FARM LAND DEVELOPMENT

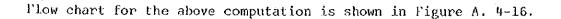
Procedure for Computation of Land Leveling

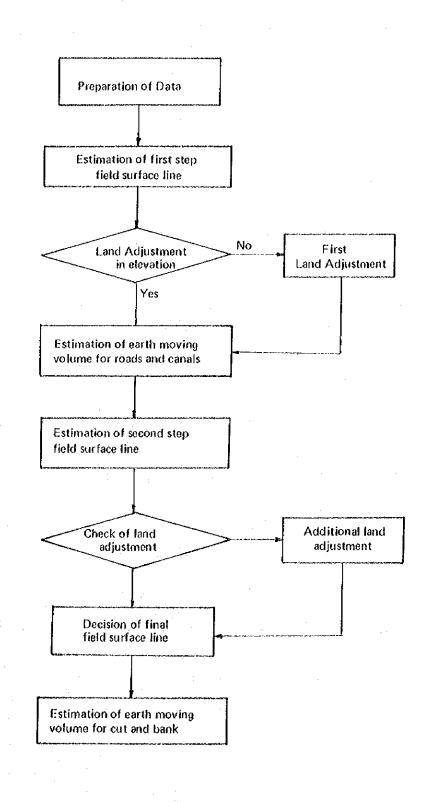
The computation of land leveling is made by applying the mech method. According to this method, it is assumed that the topography is levelled within the same mech after partitioning off the present field surface into several meshes with regular intervals, as shown in the following figures, and each moving volume and hauling distance can be computed by the following formula;

Area

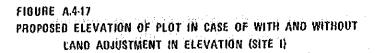

 $\Lambda_{i,1}$ (mesh area surrounded by coordinates) XiJ, YiJ Centroid coordinate: $1/4 \times (Z_{iJ} + Z_{i+1,J} + Z_{i,J+1} + Z_{i+1,J+1})$ Ground elevation, Z_{iJ}: $\Sigma\Sigma(A_{iJ} + 2_{iJ})$ Designed elevation F: EEA11


Height of cut and bank, Hc, HB: Designed elevation minus Zij


Earth moving volume, Vc, VB:


Hauling distance D:

Height of cut and bank x A_{ij} $\{(X_{C} - X_{B})^{2} + (Y_{C} - Y_{B})^{2}\}^{1/2}$ $X_{c} = \frac{\Sigma \Sigma V_{c} \times X_{i,J}}{\Sigma V_{c}}$ $Y_{c} = \frac{\Sigma \Sigma V_{c} \times Y_{i,J}}{\Sigma V_{c}}$ $X_{B} = \frac{\Sigma\Sigma V_{B} \times X_{iJ}}{\Sigma V_{B}} \qquad X_{B} = \frac{\Sigma\Sigma V_{B} \times Y_{iJ}}{\Sigma V_{B}}$



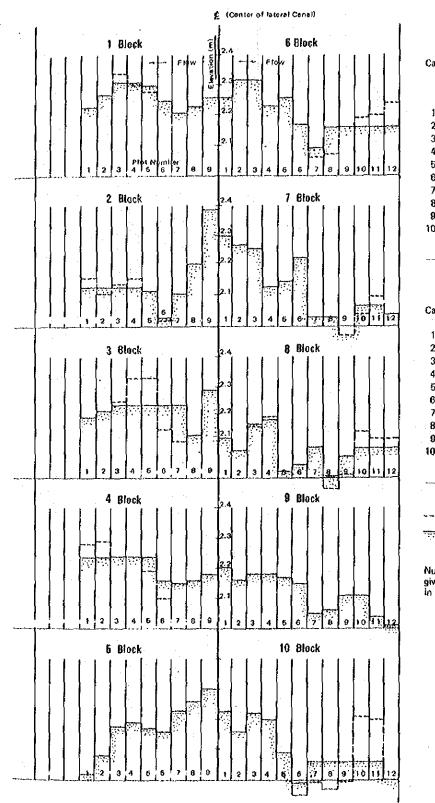
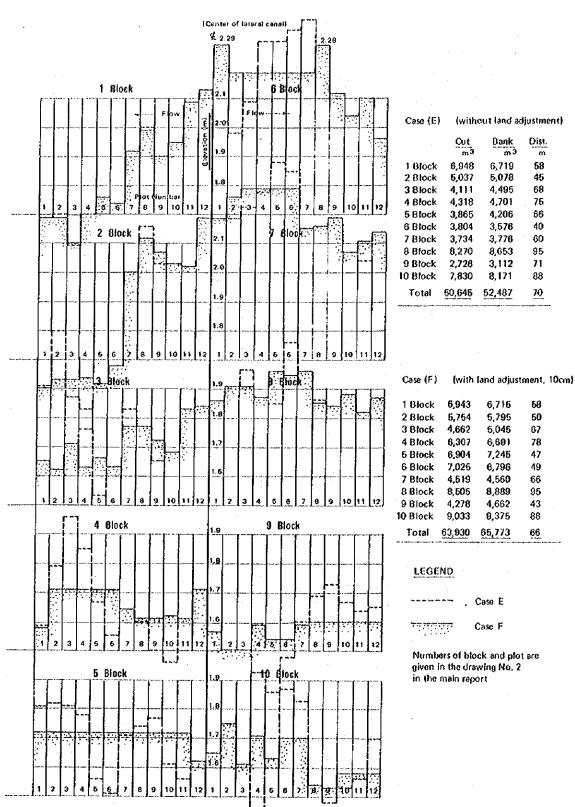

FIGURE A. 4-16 FLOW CHART OF ESTIMATION FOR EARTH MOVING VOLUME

Table A. 4-36 Summary of Estimation for Earth Moving Volume and Hauling Distance

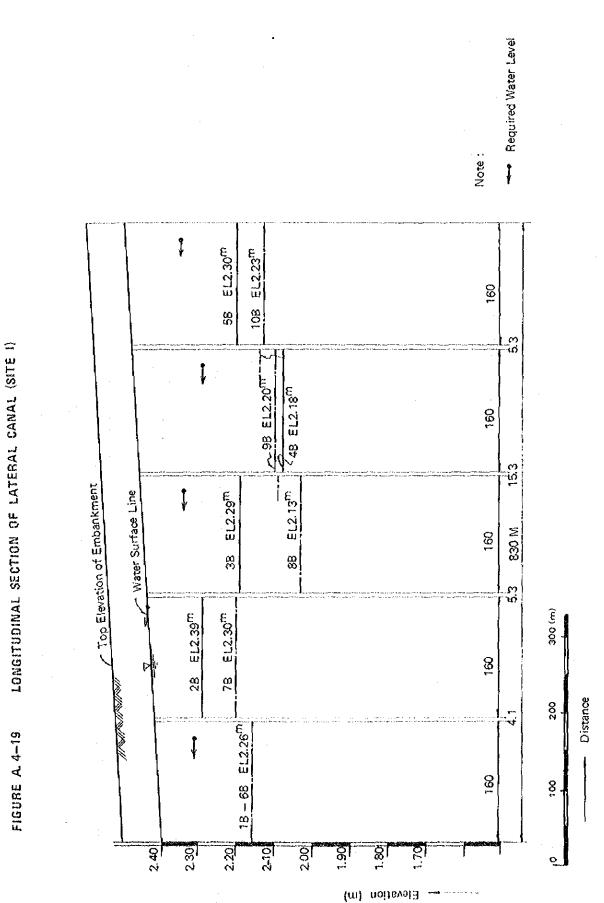
.

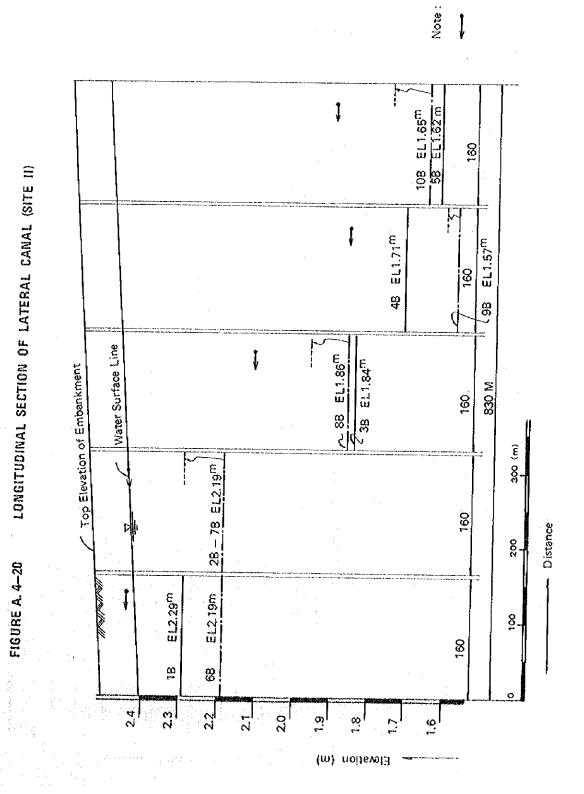
Case (H) 83.2 95.0	179.2 160mx 40m	о т	29,443 61,234 90,677(506)	30,491 63,077 93,568(522)	10,133 41,013 51,146(285)	6 70 6 70	0 0 0 4 0 0 7 7 7
Case (G) 84.0 05.0	180.0 160mx50m	IJ	31,519 65,649 97,168(540)	33,259 67,493 100,752(560)	16,490 49,940 66,430(369)	လ ထ ဗ သ ထ ထဲ	173 219 208
Case (T) 84.0 95.0	160mx50m 160mx50m	0	29,731 63,530 a) <u>93,661(520)</u>	31,470 65,773 97,243(540)	9,315 34,303 <u>43,618(242)</u>	ຕ ບ ທ ທີ່ ບິດ ທີ່	140 197
Case (E) 84.0 86.0	<u>180.0</u> spot) 160mx50m	no land adjustment	26,833 50,645 77,478(430m ³ /ha)	28,571 52,487 81,058(450)	1 1 1	19 67 67	1 1 1
L. Area (ha) Site I Site II	Total 2. Size of plot (length of run x width of	able difference tion (cm)	4. Jend revering works (cut volume, Site I Site II Total	Bank volume, Site I Site II Total	Land adjustment in elevation Site I Site II Total	5. Average hauling distance (m) Cuting works Site I Site II Average	Land adjustment in elevation Site I Average

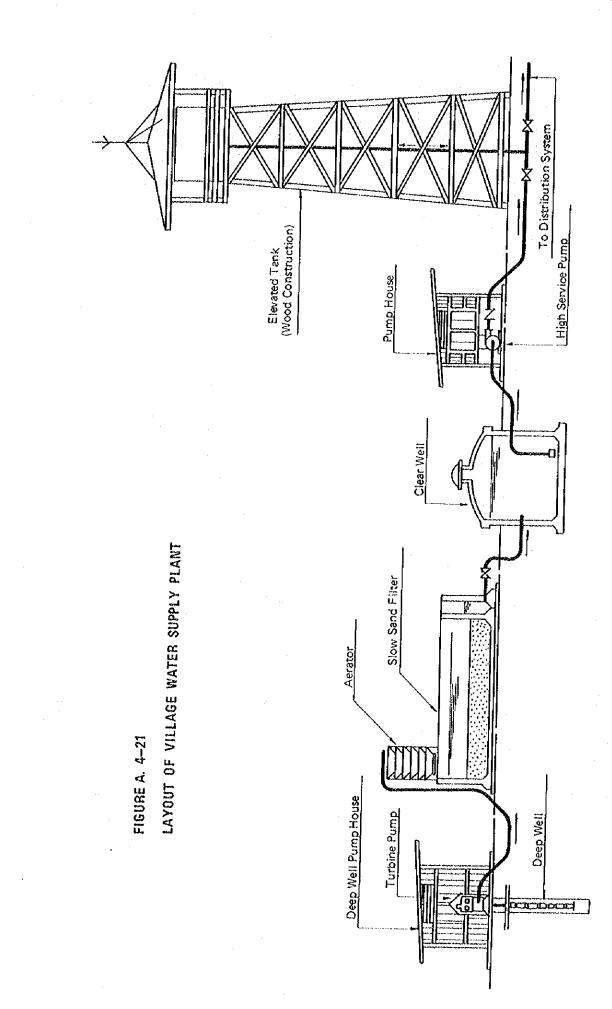

Caso (E)	(Without land adjustment)			
	Cut	Bank	Dist.	
	în S	m3	ស	
1 Block	1,222	1,068	58	
2 Block	2,491	2,540	84	
3 Block	2,218	2,542	62	
4 Block	2,666	2,989	40	
5 Block	1,955	2,230	65	
6 Block	2,684	2,456	67	
7 Block	2,751	2,792	57	
8 Block	3,703	4,087	62	
9 Block	3,614	3,997	72	
10 Block	3,529	3,870	54	
Total	26,833	28,571	<u>61</u>	

Case (F)	(with land	adjustmer	nt, 10 cm}
1 Block	1,284	1,131	60
2 Block	2,594	2,643	87
3 Block	2,894	3,218	75
4 Block	2,873	3,197	42
5 Block	1,955	2,230	65
6 Block	3,280	3,051	70
7 Block	2,829	2,870	58
8 Block	3,816	4,200	65
9 Block	3,614	3,997	72
10 Block	4,592	4,933	45
Total	29,731	31,470	<u>63</u>

LEGEND		
	Case	E


يىرى ئىرى Case F


Numbers of block and plot are given in the drawing No. 1 in main report.


FIGURE A.4 -- 18 PROPOSED ELEVATION OF PLOT IN CASE OF WITH AND WITHOUT LAND ADJUSTMENT IN ELEVATION (SITE II)

.

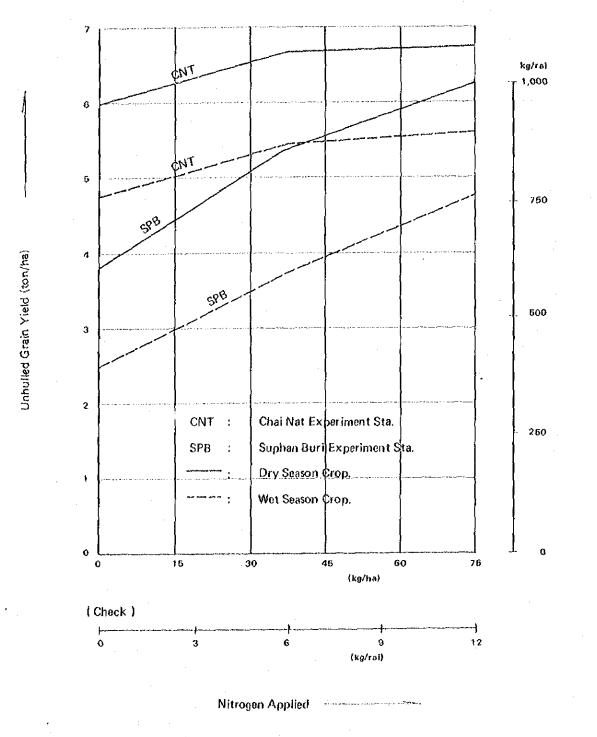
Required Water Level

Inputs per Ha	Fertilizer for nursery: 9 kg of Ammophos (15-2070) Seed: 40 kg Fungicide for seed: Ditane M-45 1.5 kg or any other Kinds of chemicals	Insecticieds for seedlings: 0.1 kg of Carbaryl (Sevin) 85%, WSP or any other kinds of chemicals.
Recommended Practice	Form and size of nursery: wet-seedbeds with the width of 120-150 cm (area for nursery is 500 m ² per 1 ha of transplanting area) Seed rate and the method of seed preparation - Seed rate : 50 g per one m ² of seed-bed - Selection : select seed with water - Soaking : in clean or fungicided water - Incubation: keep seeds moist and warm in half filled, losely tied sacks for 36 to 48 hr.	Apply recommended insecticides at 8 to 10 days after sowing, the beds should be covered by After sowing, the beds should be covered by filmy shallow water 3 to 4 days after sowing, drain the water in the nursery and make the surface of beds dry for 1 to 2 days to make the sprouting seeds fix to soil. Then, water should be deepened gradually in a range between 2 to 3 cm, so that seedling are not submerged.
	(ଜ (ମୁ	(a) (b) (d) (d)
Operation	Sowing (ist day after sowing)	are of Seedlings (8-20 days)

Appendix 4-20 Page 1

Inputs der Ha	<pre>Basal fertilizer: Wet - 156 kg of Ammophos (15-20-0) (N: 25kg, P₂05: 31kg) Dry - 188 kg of Ammophos (16-20-0) (N: 30kg, P₂05: 38kg)</pre>			Herbicides of pre-emergency application: 25kg of Benthiocarb 8%, G or any other kind of herbicides.	Herbicides of post-emergency application; 0.8-1.0 kg of 2.4D sodium salt 95%, WSP or any other kinds of chemi chemicals.	
Recommended Practice	Prepare land by soaking (if land is too dry to plow), plowing and harrowing. The harrowing is to be performed as: lst step: after flooding with enough water, harrow the field longitudinal and cross-wise 2nd step: more than 6 days after 1st harrow- ing, harrow with applying basal fertilizer finally.	After final harrowing, transplant imediately in the way as: (a) Planting distance: 25cm x 25cm (wet season), 20cm x 20cm (dry season) in the way of regular planting with using 3 to 5 seedlings per hill.	(b) Seeclings should be planted as shallow as possible	(a) 3 to 5 days after transplanting (before the weeds can be seen), apply herbicide and maintain water 3 to 5 cm deep for 10 days at least.	(b) 20 to 25 days after transplanting (when weeds are showing), apply herbicide to the completely drained field and keep the field dry for 2 days.	Weed between hills by hand or rotary weeder
Field Cueration	3. Land Freparation (1st-25 days)	4. Transplanting (26-30 days)		5. Spraying herbicides (3-5 days & 20-25days)		5. Weeding (45-60 days)

Appendix 4-20 Page 2

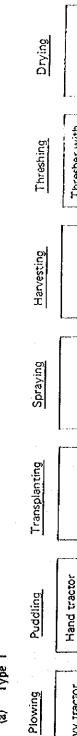

lst: 2 kg of Carbaryl (Sevin) 85%, WSP or (46-0-0) (N: 25kg) any other kind of Additional Fertilizer; Wet - 55kg of Urea Dry - 65kg of Urea insecticides insecticides Inputs per Ha Insecticides 2nd: (1) Desides above mentioned chemicals, 0.25kg of Warfaring or any other kind of rodenticides per one times of applying will be needed to control rats stop irrigation and drain the water from the field. After milk-ripe stage (14 days before harvesting) paddy must be reduced in their moisture contents to 14 % by sunshine or dryer. Threshed 65 days after transplanting (for the to 4 days by sunshine. Bring them to dry place When 80 % of panicle turns yellowish and become Dry up harvested paddy hills in the field for 2 20 to 10 days before heading, apply additional These insecticide should be applied after checking the number of each harmful insects field where much harmful insects After drying paddy hills, thresh them. 30 days after transplanting Recommended Practices firm to touch, harvest the rice would be found) fertilizer. and pile up. the field. lst: 2nd: (P) (a) 7. Additional Fertiliging 8. Spraying Insecticides (30 5 65 days) (125-130 davs) Field Operation (65-70 čays) 10. Harvesting 12. Threshing Drainage ll. Drying Noter

(46-0-0) (N: 30kg)

30 kg of carbofuran (Fureden) 3%, G or any other kind of Appendix 4-20 Page 3

G: Granule

(2) WSP: Water soluble powder,


FIGURE A.4-22 PADDY YIELD RESPONSE TO NITROGEN

Remarks: (1) Source: "Annual Research Report of 1969" Rice Dep. (2) Yield : Mean yield of RD1 and C4-63

(3) Another fertilizer application: P2O5 75 kg/ha, K2O 6 kg/ha

Paddy . شرو

FARM MECHANIZATION SYSTEM WITH PROJECT

FIGURE A.4 - 23

Transportation

Hand tractor with trailer

Sunshine

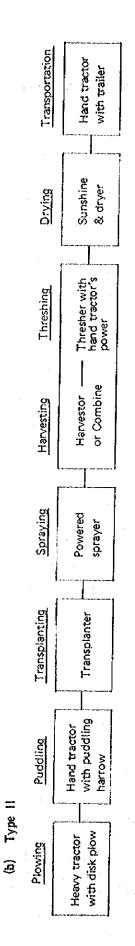
Thresher with

hand tractor

Man-power

Hand sprayer

Man-power


with puddling harrow

with disk plow

Heavy tractor

power

& dryer

Transportation Hand tractor with trailer Man-power Harvesting with cultivator Hand tractor Cultivation Hand sprayer Spraying (Furrow. irrigation) Man-power Irrigation Sowing & Transplanting Man-power Hand tractor Harrowing with rotary with disk plow Heavy tractor Plowing

Upland Crops (Vegetable) & Fruit

2

4 wheel tractor (more than 50 PH) 2 wheel tractor (7 – 8 PH)

Heavy tractor; Hand tractor;

ି ପି

Remarks:

Appendix 4-22 Page 1

<u>ltems</u>	Unit	Plowing	Puddling	Threshing	Drying
1. Machinery					
(a) Power		∿50 PH	7-8 PH	7~8 PH	5PH Gasoline
		4 wheel	2 wheel	2 wheel	engine,
		tractor	hand	hand	kerosine
	•		tractor	tractor	burner
(b) Empliment		Disc plow	Pudd1 ing	Throw-in	Flat type
()) (my) is meane		prov prov	harrow	type	rice dryer
				thresher	(UP type)
				(IRRI type)	3 7
		26"x6 ^{disc}	1,2m width	1.8m drum	2 ton bin
2. Capacity of Machinery	,			•	
(a) Operational width	m	1,58	0.97		-
		26"x2/5x6)			
	km/hr	5.0	2.9		-
(c) Theoretical ope. cap					
	ha/hr	0.79	0.28	-	-
(d) field ope, efficienc		85	80		-
(e) Field ope, capacity	ha/hr	0.67	0.22	0,16	0.20
			b c c b	(=0.8ton)	(=1.0 ton)
(f) Field ope, hours 2/		3.49	4,54	6.25	5.00
(g) Real ope, efficiency		80	80	75 8.33	80 6,25
	hr/ha	1.86	5.68 3	8.33]	1
	time bu/ba	2 3.72	.17.0	8.33	1. 6.25
<pre>(j) Real ope, hours (k) Real ope, capacity</pre>	hr/ha ba/ba	0.269	0.059	0.120	0.160
(1) Real ope, days per h		0.205	0.005	0.170	01.600
ų 3 1	ia daγ/ha	0.5	2.2	1.1	0.4
(m) Real ope. capacity p	<u> </u>	0.0	616		
	ha/day	2.2	0.5	1.0	2.5
(m) Possible ope. days	day	70	48	40	40
3. Coverage per one unit	ofma	chinery			
at an or age per one unter	·····	one unit	one unit	Two units	Three units
		per two	per one	per one	one manage-
		farming	farm	farming	ment group
		groups	household	group	<i>.</i> .

Table A.4-39 Capacity of Farm Machinery for Paddy Rice Cultivation (Mechanization System Type I)

Note: 1/ Field operational efficiency is based on the data for 50m x 160m field plot

2/ Real operational efficiency means the efficiency inclusive of loss time outside the field

3/ One day = 8 hours, but in the case of drying, one day is 16 hours

Annual average hours of tractor operation in Thailand 1,350hr - 334hr of estimated operational hours Total Cost per ha m 471 471 <u>616</u> <u>ඉ</u> -1 #71 5 10 с Н (1) x 1% = 0.025%(Insuarance fee) + 0.5%(Garage cost) + 0.1%(Jubricating oil cost) (Unit: Z/ha/crop (2) (8) Price of That made hand tractor = B4,000(Body) + B8,000(7-8PH diesel engine)
(1) x 0.9 * (2) (154ha x 2) (102ha x 2) (tha x 2) (38he x 2) Coverage Total per Unit (B/unit/year) (ha) 308 76 204 ω Farm Machinery Cost per Hectare for Paddy Rice Cultivation 5,750 3,765 3,755 1,830 2,138 37 ,440 011,110 (9) Other Fixed 2,080 120 750 75 01 Cost J B 250 2,330 11.5 120 150 (2) (1)×0.02= 30 (1)×0.02= 20 $(1) \times 0.08 = 960$ $(1) \times 0.03 = 360$ 1,688 (1)×0.02=300 (1)×0.08 (1)×0.04 = 1,000 15,560 010'T Repair #16**,**640 Cost R 1,360hr; 2,026hr; Depreciation 1,350 2,160 18,720 4,500 2,610 270 180 23,220 Cost 2/ <u>6</u> (\hat{e}) B122 × 1,026hr. Durable (year) Feriod 0 1 3 in ŝ 10.10 Ø œ 고2,000 ^고/ 고,500 고,000 Purchasing ₹92 = 208,000 25,000 233,000 14,500 15,000 Price (B) 12,000 <u></u> -10/01.1 7-8PH Hand tractor Note: Puddling harrow L. Fixed Cost Heavy tractor Sub-total Sub-total Disc plow Machinery Totel Thresher Trailer Dryer

Appendix 4-22 Page 3

besides paddy rice cultivation.

Table A.4-40

Cost
O
- ét
,A
ſØ
- 19F
- 51
n,
1
•
\sim

•

<pre>(5)=(#)x13 Tuel Cost (3) Inclusive of Lubricat- tue Oil Cost</pre>	(\$/ha)	17.6	58.8	114.9	50.2 2.8 2.8	の け, り う け		322.0
\sim		ら の 一	27.9 1	.1 (00 (00 -	ע ע ב א פי t	38.0		
(3) Fuel Frice	(Z/Z)	0 0 0 10	0 0 7 0	0 U V 0	0 0 0 7 7 7	1 (Q) 1 (V)		
(2) Fuel 1 Consumption	(% () x) () () () () () () () ()	μ Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α	1 r 0 c	р с 9 4 1 1	G+0 0.75 X -1.5	L 2.0		
(1) Operation Hour per ha		5 C) (n 0	2.5 2/	7.3		
Machinery	Hand tractor with Puddling harrow	Keavy tractor with disc plow	Hand tractor with puddling harrow	Thresher with engine of hand tractor	Dryer	Hand tractor with trailer		
Operation	l. Land preparation for seed-bed	2. Plowing	3. Puddling	t. Threshing	5. Drying	6. Transportation	Total	1 1 1

X: Xerosene L: Light oil, G+O: Gasoline mixed with lubricating oil, Average hours of 1st and 2nd crops Remarks: 1/ 2/

•

3. Farm Machinery Cost per Hectare

2616 + 2323 = 2939

	Operation	<u>Man-day</u>	Machinery-day	Remarks
l.	Nursery			
	a) Preparation & sowing b) Care of seedling	3.0 2,0	0.3	Hand tractor with puddling harrow
	Sub-total	5.0	0.3	(three times)
2.	Land Operation			
	a) Plowing	0.5	0.5	Heavy tractor with discplow (cross-wis
	b) First puddling	1.5	1.5	Hand tractor with puddling harrow
				(cross-wise)
	c) Second puddling d) Repair of dikes	0.8 1.8	0.6	-do- (one time)
	Sub-total	4.6	2.6	
3.	Transplanting			
	a) Pulling seedlings b) Transplanting	8.0 22.0		Regular planting
	Sub-total	30.0		
ы	Fertilization	Antonia de Caracteria		
	a) Basal fertilization b) Additional fert.	1.0		
	Sub-total	2.0		
5.	Spraying			
	a) Inseticides b) Herbicides	2.0 1.0		
	Sub-total	3.0		
6.	Weeding	11.0		
7.	Irrigation/Drainage	6.0		
	Harvesting			
.	a) Cutting/Bundling	20,8		
. •	b) Hauling/Piling	3.7	0,9	Hand tractor with trailer
	c) Threshing	5.5	10	Thesher with hand tractor's engine
	Sub-total	30.0	1.9	-
9.	Post Harvesting	·		
- •	a) Drying	4.0	2,5	Dryer
· ·	b) Sacking	2,0	. :	
•	c) Piling/Delivery	1.5	0,3	Hand tractor with trailer
	Sub-total	7.5	2.8	
	Total	99.1	7.6	

•

Table A.4-42 Farm Labour Balance with Project

-

											(Unit: m	an-day)		
	Area	Jan.	Feb.	Mar.	<u>Apr</u> .	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
Double cropping of pa	addy rice		÷											
	l ha	9.0	23.5	20.4	7.0	3.8.3	19.6	16,8	25.0	15.1	7.5	19.8	18,2	198.2
Vegetables & Fruits	l ha	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	360.0
Animal husbandry	l unit	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15,0	180.0
Inland fishery	l unit	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	180.0
Double cropping of pa	addy rice						1997 - A.							•
	9,452 ha	85,878	224,237	194,657	66,794	155,535	187,023	160,000	238,550	144,084	71,565	188,932	173,664	1,891,225
Vegetables	500 ha	15,000	15,000	15,000	15,000	15,000	15,000	15,000	15,000	15,000	15,000	15,000	15,000	180,000
Fruits	500 ha	15,000	`15,000	15,000	15,000	15,000	15,000	15,000	15,000	15,000	15,000	15,000	15,000	180,000
Animal husbandry	250 unit	3,750	3,750	3,750	3,750	3,750.	3,750	3,750	3,750	3,750	3,750	3,750	3,750	45,000
Inland fishery	250 unit	3,750	3,750	3,750	3,750	3,750	3,750	3,750	3,750	3,750	3,750	3,750	3,750	45,000
Total labour requirement														
	(1)	123,378	261,737	232,157	104,294	193,035	224,523	197,806	276,050	181,580	109,065	226,432	211,164	2,341,221
Available farm labour	r force	-									·. ·			
	(2)	191,250	191,250	191,250	191,250	191,250	191,250	191,250	191,250	191,250	191,250	191,250	191,250	2,295,000
Balance	(2)-(1)	67,872	-70,487	-40,907	86,956	-1,785	~33,273	-6,556	-84,800	9,670	82,185	-35,182	-19,914	-46,221

Remarks: (1) Available farm labour force = 2,550 household x 3.0 workablemen per household x 25 days per month = 191,250 man-days per month

Appendix 4-23 Page 2

Appendix 4-23 Page 3

FIGURE A.4-24 FARM LABOUR BALANCE WITH PROJECT

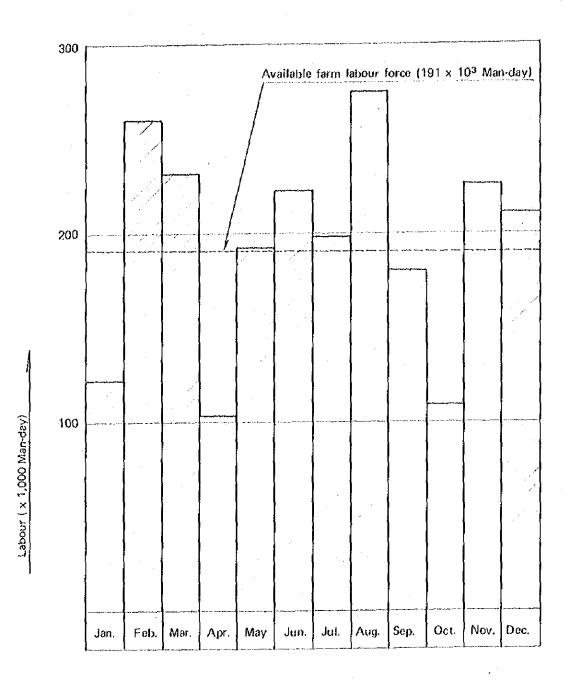


Table A.4-43 Introduction Plan of Animal Hosbandry with Project

	· · · · · · ·		Production Unit	
Kind	Managing Method	Raising Scale	Facility	Annual Production
Swine	Integrated hog raising from breeding to fattening	Gilts(4): 5 head Sire (5): 1 head Breeded pigs: 80 head/year (7 head, usually) Fattening hogs: 78 head/year (10 head, usually)	Pen of gilts, sire & pigs: 48 m ² Grazing ground of gilts & sire: 180 m ² Pen of fattening hogs etc.: 35 m ² Site area: 580 m ²	Fattening hogs: 78 head (weight, 100 kg/head) Scraped gilt & sire: 2 head (weight, 140 kg/head)
Chicken	Raising "egg and meat type" chicken with introduction of 140 days old chicks	Chicks: 530 bird/year (177 bird, usually) Matured hens: 500 bird, usually	Pen of matured hens: 110 m^2 Pen of chicks: 25 m^2 Other facility: 40 m^2 Site area: 350 m^2	Eggs: 108,000 eggs (216 egg/year x 500 head Meat: 1,000 kg (2 kg/head x 500 head)
Duck	Raising "egg and meat type" ducks	Matured ducks: 500 bird, usually	Pen of matured ducks: 70 m ² Site area 140 m ²	Eggs: 67,500 egg (150 egg x 500 head x 0. Meat: 675 kg (1.5 kg/head x 500 head

<u>Total</u>

Table A.4-44 Introduction Plan of Fresh-Water Fish Culture with Project

			Production U	nit	
Kind	Managing Method	Raising Scale	Facility	анна на	Annual Production
Carp	Raising 2 crops per year	No. of fry fishes per crop: 8,000 fish	Fish pond:	1,600 m ² (one rai)	Fresh fishes: 1,500 kg x : (weight: 0.7 kg/fish)
Ciclid (Tilapia	Raising 2 crops per) year	No. of fry fishes per crop: 8,000 fish	-do-		Fresh fishes: 1,500 kg x ((weight: 0.5 kg/fish)
Cat- fish	Raising one crop per year	No. of fry fishes per crop: 6,000 fish	-do-		Fresh fishes: 7,500 kg (weight: 2.0 kg/fish)
				Total	

-

Appendix 4-24

No. of unit in Project Area

83

83

84

.

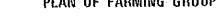
head)

× 0.9)

nead x 0.9)

250

No. of unit in Project Area 83 2 2 83 84


250

Appendix 4-25

٠, •

4

FIGURE A.4 – 25 PLAN OF FARMING GROUP

			L				
 					(<u>)</u>		Farm Road
		36	3	1	<u></u>		F
					- 65	(38)	
1		<u></u>	39		(34)	<u> 39</u>	
		3	40		<u></u>	40	
		(32)	(41)		<u></u>		-
		<u></u>	(12)		<u>(3)</u>	<u>(</u>	
4		0	(13)	_1]	30	(13)	<u> </u>
		29	(44)		29	44	
		23	45		28 (45	
		27	66		$\overline{\mathfrak{O}}$	46	
		26	67		26	6	{}
1		(25)	48)		601	(48)	
ال'ــــــــــــــــــــــــــــــــــــ							Trigation Canal
**** ** **			24		$\overline{\bigcirc}$	<u>6</u>	
		2	\odot		21	23	
		3	22		3	22	
			21		(4)	21	-l
		6	20		⑤ √	20	
	^v	6	(19		6	Θ	
		<u> </u>	(18)		$\overline{\bigcirc}$	18	
·'		(8)	1		<u> </u>	$\overline{\mathbf{O}}$	
		Ö	16		0	16	
		<u>ío</u>	(15)		10	10	
	}	<u>(</u>)	11		<u>.</u>	11	
j		(12)	(13)		× (12)	(j)	
<u>_ ====</u>	J					L.	rainage Canal
					4]]		
1		1	1 :	[∔	11	1	11 ¹¹ -
Į	I I	۱۲ 		וו }		1	۰۱۱ سا
		Rotation E	Hock		Rotation	Block	
		38.4	ha		38.4	4 ha	
		L.				ļ	
				ing Grou			
					a (about 20 h	ouseholds}	
×	(16)	: Plot nu	mher	÷			•
	1 plot	160 x £	i0 m ≃ 0.8 ba	a			
	Rotation Block	: 0.8ba x	48 plots = 3	8.4 ha	(Period of I	and préparati	on 48 days)
	Farming Group Management Gro		tion Blocks = ing Groups =	: 38.4 h : 76.8 x	a x z ≕ 70.8 4 = 307.2	ona (about⊿ ha	20 farm households)
	management of c	ана ал ан на Структ струка (1) (ing croaps		(about 80 f	arm househo	lds)

Table A.4-45. Required Capacity and Cost for Rice Processing Facilities

		5			(unit:	tons)
		Planned Yield		Present Yield		Increment
Dry	Season (9,5	44,847 42ha x 4.7ton,	- /ha)	7,170	=	37,677
Wet	Season (9,5)	40,076 42ha x 4.2ton/	/ha) [°]	7,404	2	32,674
	Total	84,923		14,574		70,349

2. Capacity and Equipment Cost of Warehouse (Unit: 8'000)

37,677 tons (Dry Season) x 0.77 % = 29,000 tons is the required capacity of warehouse

20,000 tons of paddy will be stored by agricultural cooperatives

Capacity per warehouse :	500 tons (300 m ² x 3 m)
Number of warehouse :	40 (= 20,000 tons/500 tons)
Cost of warehouse :	\$20,000 (= 40 warehouses x 2\$500)

Remaining paddy of 9,000 tons will be stored by each farm household

Capacity per warehouse	:	$15 \text{ tons} (10 \text{ m}^2 \times 3 \text{ m})$
Number of warehouse	:	600 (= 9,000 tons/15 tons)
Cost of warehouse	:	\$3,630 (= 600 warehouses x 2\$3,630)

3. Capacity and Equipment Cost of Rice Mill

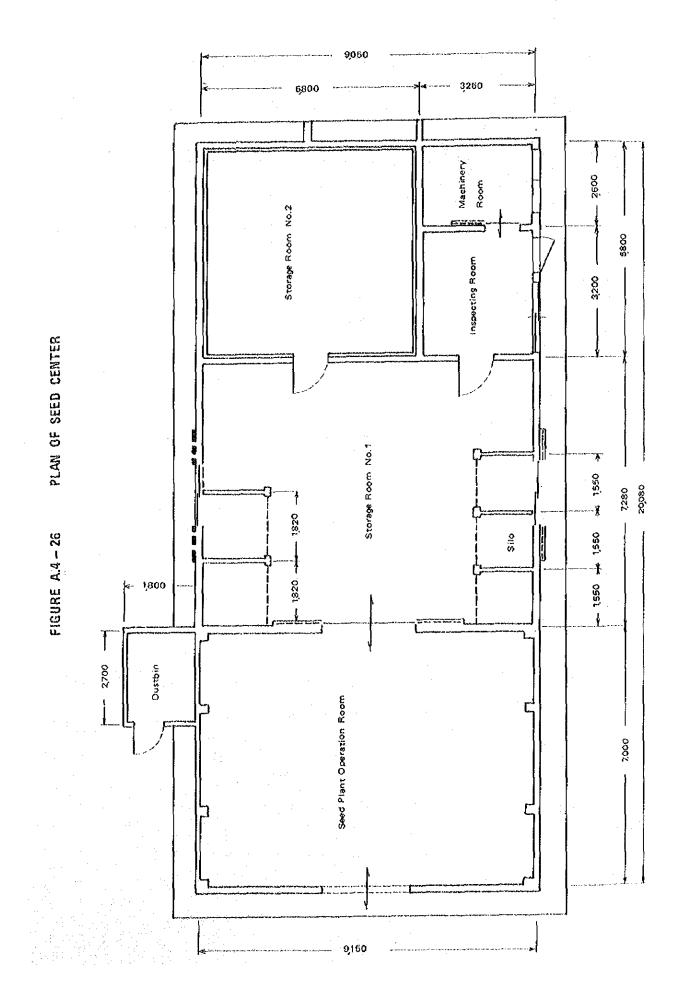
Increment of Paddy Yield

E.

A half of stored paddy rice (29,000 tons) in the dry season is sold without milling and the remaining half is milled. The yield of paddy in the wet season is less than that in the dry season. So, the required capacity of mill is as follows:

29,000 tons x 1/2 = 15,000 tons

Paddy of 3,000 tons is polished in the dry season by a mill with the annual capacity of 6,000 tons (per 200 days) and 2,000 tons polished by a mill with the annual capacity of 4,000 tons. Thus, three sets of each milling machine are required to polish paddy of 15,000 tons in the dry season. The equipment costs are as follows:


6,000 tons per year : 3 sets x @\$1,900 = \$\$,700 (Unit: \$'000) 4,000 tons per year : 3 sets x @\$1,600 = \$4,800

Total \$10,500

	Cultivation Acreage	Seeds Demand per Ha.	Seeds Demand	Unit Price	Amount
	(ha)	(ton)	(ton)	(000, 4)	(1000)
addy					
Wet Season	9,542	0.04	382	2.6	992
Dry Season	9,542	0.04	382	2.6	992
Sub-total	19,084		764	+-	1,984
					·
'egetables	COO	0.004	0.0	100	216
Chinese Cabbag	e 500 500	0.004 0.0005	2.0 0.3	158 - 400	316].20
Cabbage Cauliflower	500	0.0003	0.3	388	78
CauthEnower	500	0.0000		560	
Sub-total	1,500	-	2.5		517
		(trees)	(trees))	
ruits	260	560	14,560	0.010	1,456
					1
ish					
Carp	14	50 x 2*	1,400	0.2 *	280
Tilapia	13	50 x 2*	1,400	0.14×	196
Catfish	1.3	38 *	494\$	2.0 *	988
Sub-total	40		3,294*	-	1,464
ivestock					
Swine	3.1.	455	5	100	500
Chicken	6	10	62.5	1	63
Duch	3	10	62.5	7	63
Sub-total	20		130.0		626

Table A.4-46. Seeds Demand in Planning Stage

Note: * expressed in thousand fingerlings or \$1000 per thousand fingerlings

19.11.1 o	A.4-47.
Table	8.4-47.

Demand of Fertilizers and Agricultural Chemicals

<u>Crops</u> Fertilizers	Input Qty. per ha. (kg)	Cultivation Acreage (ha)	Input Qty. (ton)	Cost per ha. (\$'000)	$\frac{\text{Amount}}{(\beta'000)}$
Dry season paddy	262	0 640	0.500		
		9,542	2,500	1,049	10,010
Wet season paddy	220	9,542	2,099	0.881	8,407
Pruits	1,960	500	980	8,120	4,060
Vegetables	1,908	500	954	9.540	4,770
Total			6,533		27,247
Other Materials					· ·
Lime for paddy	3,000	9,542	28,626	0.270	2,576
Lime for fruits & . vegetables	6,000	1,000	6,000	0.936	936
fotal			34,626		30,759
Agricultural Chemical	S				
Dry season paddy	21.2	9,542	202	0.763	7,280
Wet season paddy	21.2	9,542	202	0.763	7,280
Fruits	1,285	500	642	14.805	7,403
Vegetables	1,117 (372 x 3)	500	559	19,962	9,981
Total			1,605		31,944

•

.

Table A.4-48.Number of Farm Machinery to be introduced in the
Project Area

1. Number of Machinery for One Farming Group (76,8 ha)

.

Kinds of Machinery	Case 1 (set)	$\frac{\text{Case II}}{(\text{set})}$	<u>Operational</u>	Capacity
Heavy Tractor	1/2		Plowing: (2 times)	2.0 ha/day
Medium-size Tractor	144	<u>.</u> .	Plowing: (1 time)	1.2 ha/day
Hand Tractor (7-8 Hp)	20	20	Puddling:	1.0 ha/day
7-8 Hp Class Thresher	2	2	Threshing:	1.0 ha/day
2 tons Bin Dryer	1	L	Drying:	2.5 ha/day

 Number of Farm Machinery in the Project (For Farming Groups of Paddy - 9,542 ha, 125 groups)

Kinds of Machinery	Case I (set)	Case II (set)	Remarks
Heavy Tractor	63	-	with disc plow & trailer
Medium-size Tractor	-	124	with rotary plow & trailer
Hand tractor (7-8 Hp)	2,500	2,500	with puddling harrow and trailer
7-8 Hp Class Thresher	248	248	without engine
2 tons Bin Dryer	125	125	

3. Number of Farm Machinery in the Project (For Farming Groups of Orchard and Vegetables - 500 ha and 6 groups respectively)

Kinds of Machinery	Case 1 (set)	$\frac{\text{Case II}}{(\text{set})}$	Remarks
Medium-size Tractor	6	6	one set per group
7-8 Hp Class Power Ti	ller ₁₂	12	two sets per group
Powered Sprayer	12	12	two sets per group

Note: Heavy tractor - over 50 Hp, four wheel type

Medium-size tractor - 20 Hp class, two wheel type

farm Machinery	<u>Unit</u>	Unit <u>Price</u> (8'000)	<u>Amount</u> (8'000)	<u>Unit</u>	Unit Price (<u>#1000</u>)	Amount (3'000)
lleavy Tractor	63	253	15,939		~	b
Medium Size Tractor	6	98	588	130	98	12,740
7-8 JP Hand Tractor	2,500	15	37,500	2,500	15	37,500
7-8 HP Power Tiller	12	25	300	12	25	300
7-8 IIP Class Thresher	248	12	2,976	248	1.2	2,976
Powered Sprayer	12	20	240	12	20	240
2 fon Bin Dryer	125	1.5	1,875	125	15	1,875
fotal			59,418			55,631

Table A.4-49. Cost of Farm Machinery

Note:

1.)

The prices of tractors are including the prices of their attachments.

 The price of heavy tractor exclusive of trailer is #233,000.

 Heavy tractor - over 50 Hp, four wheel type Medium-size tractor - 20 Hp class, four wheel type.

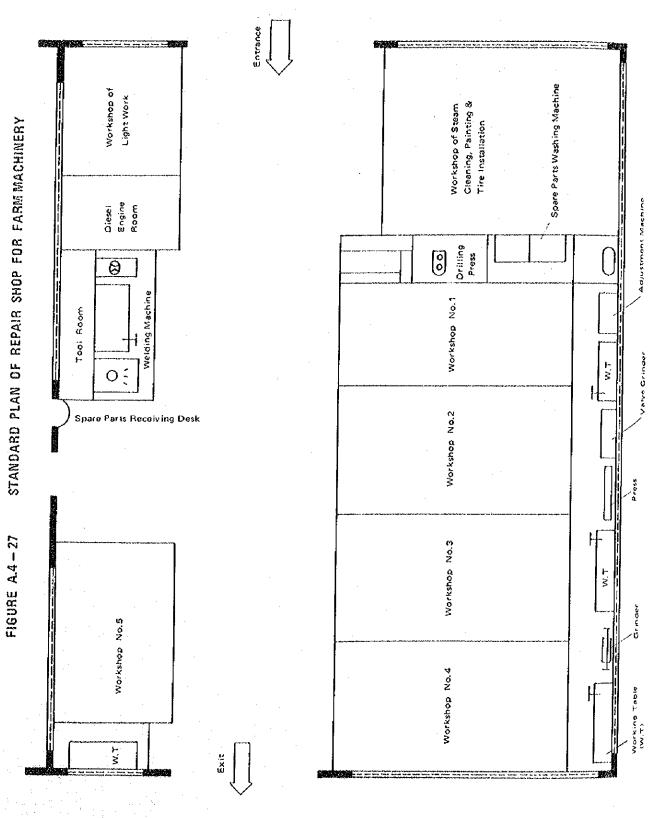
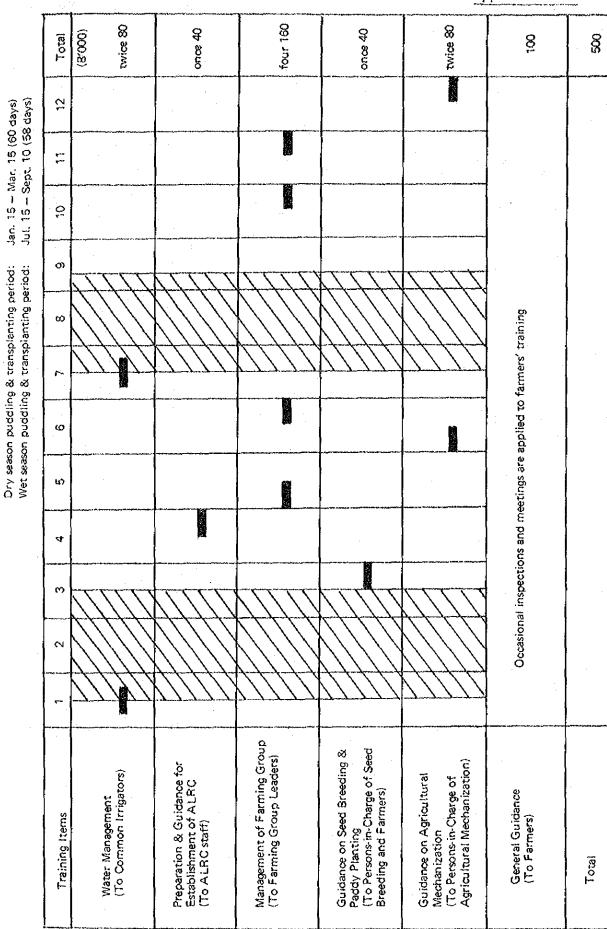



FIGURE A.4-28. ANNUAL TRAINING SCHEDULE

Appendix 4-33

Table A.4-50. Organization and Operation Expenses of ALRC

1. Organization of ALRC

Personnel	No. of Personnel	Man	Woman	Truck & Boat		Wireless Telephoné	Office Space
1. Director	1.0						
Director	10-1			·		- }	2.1
Deputy Director	2			· +	-	- }	160
	2						
2. Staff						•	
General Manager	1	.)		••			3.0
Div. of General Affai	rs 5	3	2]	— 1	30
Div. of Extension	8	6	2		4	_ ·	50
Div. of Credits	9	5	· 4	-	1		50
Div. of Sales & Purch	asing 12	7	5 -	$\frac{3}{2}$	2	·	50
Div. of Utilization	15	12	3	$\frac{4}{1-4}$	ų	-	50
Div. of Farm Machiner	y 10	7	3	1.5/	3	}	50
Div. of Irrigation Wa	ter Contro 7	5 5	2	<u>1</u> 6/	5	34	50
Branch (Production Un	it) 8	łį	ł,		4	-	. –
fotal	(75 (87)	50	25	5	24	<u>34</u>	500

Note: 1/

including each general and vice-general director of ALRC

- $\frac{2}{160}$ m² = 30 m² (room for general director of ALRC + 50 m² (meeting room) + 50 m²(directors' room) + 30 m²(preparatory room)
 - $\frac{3}{-1}$ 6-ton truck
 - 当 boat

1.1

- 5/ 2-ton truck
- 6/ 2-ton truck

2. Personnel Expenses of ALRC

	Personnel	Yearly Unit Expenses (#'000)	Number	$\frac{\text{Amount}}{(\beta'000)}$
1)	Director			
	General Director	12	1	12
	Vice General Director	6	1.	6
	Director	3	8	24
	Deputy Director	3	2	6
	Sub-total		12	48
2)	Man Stäff			
	General Manager	72	1.	* 72
	Division Chief	50	7	*350
	Clerk - 1st Class	30	20	300
	- 2nd Class	25	12	300
	- 3rd Class	1.5	9	135
	Expert	45	J . J.	*495
	Sub-total		50	1,652
3)	Woman Staff			
	Woman Clerk - 1st Class	s 1.0	10	100
	- 2nd Class	s 96	15	Titit
	Sub-total		25	244
4)	Others			
	Common Irrigator	3	29	97
	Leader of Management G	eoup 3	29	97
	Leader of Farming Group) .1.	136	136
	lired Labor	(1,917)	nan x ∦30 x 12	mos.) 690
	Sub-total		194	1,020
5)	Total		281	2,964

* Paid by the Government (\$917,000). The deduction of \$917,000 From the total amount of \$2,964,000 produces \$2,047,000.

3. Expenses for Preparation and Establishment of ALRC

Year	Amount (\$'000)
1977	500
1978	500
1979	500
Total	1,500

Remarks: Each amount is including the expenses for preparation for land register books and execution of disposition for substitute plots

4. Expenses for the Training by ALRC

Year	Amount (¥1000)
1977	500
1978	500
1979	500
1980	500
1981	500
1982	500
1983	500
Total	3,500

5. Annual Operational Expenses for ALRC

Expense	Amount (\$1000)
Travel	990
Office Maintenance	593
Meeting	100
Fuel & Others	200
Contingency	300
Total	2,183

Covernment Office	Manager Class @Ø72,000	Expert @\$45,000	lst Class Clerk @#50,000	2nd Class Clerk @#30,000	3rd Class Clerk @\$15,000	Amount
Changwat]			**	2*
· ·		45		30	~	75**
Amphoe		1	~	2	~	2*
		45	~	30		75**
fambon		-			3	3*
	-	·		••	45	45**
RED		. .	1.	3	¹	4\$
			(1)			(1)
		~	50	90	~	140
	_		(50)			(.50)
lgric. Coop	erative	- 6	3	1	l	11*
		(5)	(2)			(7)
		270	150	30	15	465**
		(225)	(100)			(325)
Extension		٤Ļ	1	3	-	8*
		(1)				(1)
	-	180	50	90	-	320**
		(45)				(45)
\LRO	1	6	5	ъ	şt	20*
	(1)	(5)	(4)			(10)
	72	270	250	120	60	772**
	(72)	(225)	(200)			(497)
Operational						
xpenses fo	r above ex	penses				608**
(D)	_				^	a
fotal	1.	3.8	1.0	1.3	8	50* (30)
	(1)	(11)	(7)	200	100	(19) 2.500**
	72 (72)	810 (495)	500 (35)	390	120	2,500** (917)

Personnel and Operation Expenses Paid by the Government for Execution of 6. Supporting Service

Note: The expenses in parentheses are for ALRC. No. of person Amount in Ø1,000

Table A.M-51. Proposed Cropping Area in Accordance with Land Consolidation

			,							· ·														
				79		180	19	81	19	982	19	83	19	984	19	85	19	86	19	87	. 10	88		989
<u>Crops</u>	Block	<u>Unit</u>	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet
ady Aroadcasting		ton/ha Area(ha)	-	1.6 2,190		1.6 1,800		1.6 850	, , 	1.6 400	-	-	-	• 	-	- -	-	-		 -	-	-		 -
_{fransplanting}	A	ton/ha Area(ha)	3.0 540	2.2 580	3.0	2.6* 2,500	3.4* 2,500	3.0 2,500	3.7 2,500	3.4 2,500	4.0 2,500	3,8 2,500	4.3 2,500	4r.2** 2,500	4.7** 2,500	4.2 2,500	4,7 2,500	4.2 2,500	4.7 2,500	4.2 2,500	4,7 2,500	4.2 2,500	月.7 2,500	4,2 2,500
fransp)anting	A+B	ton/ha Area(ha)	3.0 290	2.2 660	3.0 290	2.2 660	3.0	2.6* 2,860	3.4# 2,860	3.0 2,860	3.7 2,860	3.4 2,860	4.0 2,860	3.8 2,860	4.3 2,860	4,2** 2,860		4.2 2,860	4.7 2,860	4,2 2,860	4,7 2,860	4,2 2,860	4.7 2,860	4,2 2,860
mansplanting	с	ton/ha Area(ha)	3.0 780	2.2 268	3.0 780	2+2 268	3.0 780	2.2 268	3.0	2.6* 2,000	3.4* 2,000	3.0 2,000	3.7 2,000	3.4 2,000	4.0 2,000	3.8 2,000	4.3 2,000	4.2** 2,000	4,7** 2,000	4.2 2,000	4.7 2,000	4.2 2,000	4,7 2,000	11.2 2,000
Transplanting	с	ton/ha Area(ha)	3.0 780	2.2 265	3.0 780	2.2 265	3.0 780	2.2 265	3.0	2.2 2,182	3.0 2,182	2.6* 2,182	3.4* 2,182	3.0 2,182	3.7 2,182	3.4 2,382	4.0 2,182	3.8 2,182	4.3 2,182	4.2** 2,182	4,7☆☆ 2,182		4.7 2,182	4.2 2,182
Fruits	B	ton/ha Area(ha)	1.9 60		(1) 10	8	(2 10		(1) 2 ¹ 10	4	(2 2 10	7	(2 3	0	(2) 3(0	(3	0	(3)	0	(3)	C	(3 3	0
	c	ton/ha Area(ha)	15 180	5	19	5	1.04	5	(-).8 300) 8	(2 40	-) 1	10 (1 2 40	5) 4	1.00 (2) 22 400	1) 7	10 (2 3 40	4) 0	1.00 (25 30 400	7)	10) (30 30 400))	10 (3) 3) 40)	0) 0
itzetables	۸	ton/ha Area(ha)	8 39		39		14 150		20 150		20].5(3: 15(38 150		34 15(38 150	3	38		31	8
	B	ton/ha Area(ha)	8 20		8 20		20 20		11 150		20 150		20 15		32 150		3) 15(38 150		38 150		38 15 (
	c	ton/ha Area(ha)	8 47		8 קיז		8 47		8 : 47		1# 20(20 20(26 200		3: 200		38 200		38 200		38 200	
Total			6,699	-	7,729	2	8,800	l 	9,552	<u>></u> .	10,542	2	10,542	2	1.0,542	-	10,543	2	10,542	l •	10,542	-	10,5	542

Note: * Initial year after the completion of land consolidation works ** Target year to display full benefits after the completion of land consolidation works

() New planting

.

,

Appendix 4-35 Page 1

-

Table A.4-52. Expected Yield in Accordance with Land Consolidation

										•											(Unit	: ton)	
		- 19	Wet		980	Andrew and the second s	981		82	1	983		984		.985	19	86	1	987	1	988]	989
Crop	Block	lary	wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Vet
aidy (:		·					•									·····
Broadcast ing	ABC	~	3,504	-	2,880		1,360	+-	640	-	·	•••	· _	-	_								
Transplanting	A	1,620	1,276	-	6,500	8,500	7,500	9,250	8,500	10,000	9,500	10,750	10,500	11,750	10,750	11,750	10,500	11,750	10.500	11,750	10.500	11.750	10,500
Transplanting		870	1,452	870	1,452		7,436	9,724	8,580	10,582	9,724	11,440	10,868	12,298	12,012	13,442	12,012	13,442	12,012	13,442	12,012	13,442	12,012
Transplanting	. C	2,340	590	2,340	590	2,340	590	-	5,200	6,800	6,000	7,400	6,800	8,000	7,600	8,600	8,400	9,400	8,400	9,400	8,400	9,400	8,400
Transplanting	, C	2,340	583	2,340	583	2,340	583	2,340	. 583		5,673	7,419	6,546	8,073	7,419	8,728	8,292	9,383	9,164	10,255	9,164	10,255	9,164
Total.		7,170	7,405	5,550	12,005	13,180	17,469	21,314	23,503	27,382	30,897	37,009	34,714	40,121	37,531	42,520	39,312	43,975	40,076	44,847	40,076	44,847	40,076
sruits													•	<u></u>	••••••••••••••••••••••••••••••••••••••						·		····
	В		900		080		260	2,0	040	2,	460	2,	760	2.		· 3.	000	3.0	000	3.	000	3.	000
	с	2,	700	2,	700	2,	700	3,3	240	3,	780		160		480	10,			340		000		000
Total		3,	600	3,1	870	3,	960	5,2	280	6.	240	10.	920	12,	360	.13,		<u>14</u> ,	340	1.5,	000	15,	
						••••••••••••••••••••••••••••••••••••••								<u> </u>						3.03			
legetable	Α	:	312	:	312	2,	100	3.0	000	3.1	900	· ta	800	Ę.	700	E -	700	5.1	700	5	700	r, s	700
	В		160	3	160		160		100		000		900		800	,	700		700		700		700
	с		376	i i	376	;	376		376		800		000		200		100		500		600		600
Total		Į	848	8	348	2,6	<u> 336</u>	5,1	176	- 9.1	700	12,		15,		17,		19,0		<u>19,</u>		19,0	
				-				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	متعهم	<u> </u>			100	1.5 5		L ()		10,0				ا و 10 .11. محمد محمد	

Appendix 4-35 Page 2

	-							
	Remarks	Unit Price: B2.600	Total of tree: 145,600	Unit Price: B205.6				
4 5 9 9 9 9	1984 Dry Wet	387 387 382 387 387 381	f J	2 · 5 5 + 4	1,464	626	t.588 t	als before
	1983 Dry Wet	- 295 382 767 992	1 1	ທ ກ ທີ່ 1 ທີ່ 1	714	567	3,554	input materials
TTAM STUTION WEIGHT	1982 Dry Wet	(35) (64) 215 295 850 933	56,000 560	ಸರಿ ಕೆ. ಕೆ. ಕೆ.	001	250	3,212	quantity of j
N TRUCK	1981 Dry Wet	(70) (135) 100 215 442 910	67,200 672	1.034 1.034	320	230	2,868	to the
• 00 + •	1980 Dry Wet	(83) (290) - 100 216 1,014	22,400 224	0.212 0	3	. 1	1,498	renthisis refers dation
・	1979 Dry wet	(108) (365) - 260 949	i B	0.212 44	4	1	1,253	Figure in paren land consolidat
	Crop	Paddy Qty (ton) Qty (ton) Amount (\$'000)	Fruits Qty (tree) Amount (B'000)	Vegetables Qty (ton) Amount (31000)	Fish Amount (2'000)	Livestock Amount (B'000)	Total Amount (B'000)	Note:

Appendix 4-35 Page 3

Annual Input Materials with Project - Seeds Table A.4-53.

le A.4-54. Annual	1979 Dry Wet	(152) (172) 1,389 1,823	uits Qty (ton) Qty (ton) Amount (\$'000) 2,487	i i	5,699 5	Figures in parenthisis re
al Input Materials	1980 Dry Wet	(118) (232) 53 1,076 3,325 3	(162) 128 3,335	1 I	693 7,646	fers to
ls with Project	1981 Dry Wet	(99) (61) 53 114 5355,019	(162) 128 3,335	168 2994 2994	785 743	the guantity o
ict — Agricultural	1982 Dry Wet	(50) (31) 114 156 5,019 081	. 385 4. 128 4. 128	335 5,989	1,071 21,517	quantity of input material
ural Chemicals	1983 Dry Wet	156 202 5,616 7,280	5, 011 5	556 981 9	28,788	ິ n et
0	1984 Dry Wet	202 202 7,280 7,280	642 403	556 981 9	1,605 1,605	

Appendix 4-35 Page 4

2,099 8,407 ¥e† 980 4,050 954 4,770 28,626 3,512 1861 1708 6,533 30,759 2,090 2,500 7,712 10,010 ∆~ZQ Wet 1983 980 4,060 654 4,770 3,512 28,450 5,961 t 1,928 8,355 ALC A (50) 1,619 6,676 Wet 1982 4,060 572 2,860 2,634 980 4,772 22,434 (147) 1,404 (6,204 Dry (100) 1,179 5,116 ¥et (247) 196 1,816 1,756 1981 1,430 286 2,956 14,010 ١ (293) 655 3,792 Dry (449) (334) (348) (223) 550 ,843 1,367 1,392 3,092 т же т (247) 196 1,816 1980 7,178 878 1,564 ۱ ۱ ۱ ALIC 1,843 1,367 Ver (329) 1979 J,363 21225 4,573 1 <u>Vrd</u> Qty (ton) Qty (ton) Amount (B1000) Vegetables Qty (ton) Amount (2'000) Others (Lime, Oil) Qty (ton). Amount (B'000) Amount (B'000) Amount (3'000) Qty (ton) Qty (ton) Total Qty (ton) Crops Fruits Paddy

Annual Input Material with Project - Ferrilizers

Table A.4-55.

Figure in parenthisis refers to the quantity of input materials before land consolidation Note:

Appendix 4-35 Page 5

Table A.4-56. Expenditures for Supporting Services in Accordance with Land Consolidation

Facility	1978 Dry Wet	1979 Dry Wet	1980 Dry Wet	1981 Dry Wet	1.982 Dry Wet	1983 Dry Wet	1984 Dry Wet	1985 Dry Wet	1986 Dry Wet	1987 Dry Wet	1988 Dry Wet	1989 Dry Wet	1990 Dry Wet	1991 Dry Wet	Tota
Seed Center Training Center ALRC Office	2,000	2,000	2,000		:	· · · · · ·									2,00
Production Unit C Motor Pool Spare Machine)ffice	1,225	300 490	300 161	300 540	300									2,00 1,20 1,22
Assemble house, e Truck, etc، Water Supply	etc. 200	Tutu 110	500	520	144	68 1,400	2,000								1,46 2,00 1,57
Sub-total	2,200	3,639	3,290	981	<u>984</u>	1,768	2,000.		-	***	**		-	- .	1,40 <u>14,86</u>
Marchouse Ricemill Farm Machinery Hanger			3,500 1,600 15,037 525	3,500 1,900 15,037 525	3,500 1,600 15,037 525	4,800 1,900 10,520 525	3,500 1,600	2,400 1,900),200 -	1,230	-	-		-	23,63 10,50 55,63 2,10
Sub-total	-	-	20,662	20,962	20,662	17,745	5,100	4,300	1,200	1,230	-		-		<u>91,86</u>
)peration Cost of ALRC	705	1,410	2,115	2,820	3,525	4,230	4,230	4,230	4,230	4,230	4,230	年,230	4,230	4,230	48,64
Cost paid by the Government Stablishment cost	50 0 t	1,000	1,500	2,000	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500	30,00
cost of ALRC armers' training cost	500	500	500	-	·	-	-	~	-			~	~		1,50
Sub-total	500 2,205	500 3,410	500 4,615	500 5,320	500 <u>6,525</u>	500 7,230	500 7,230	- 6,730	- 6,730	6,730	6,730	6,730	6,730	6,730	3,50 83,64
eeds ertilizer gro-chemical	1,253 4,573 5,699	1,253 4,573 5,699	1,498 7,178 7,646	2,868 14,010 14,741	3,212 22,434 21,517	3,554 28,450 28,788	4,588 30,759 31,944	50,34 327,29 339,64							
Sub-total	11,525	11,525	16,322	31,619	47,163	60,792	•	-	67,291	<u>67,291</u>	<u>67,291</u>	<u>67,291</u>	67,291	67,291	717,27
Ground Total										÷.,					907,64

•

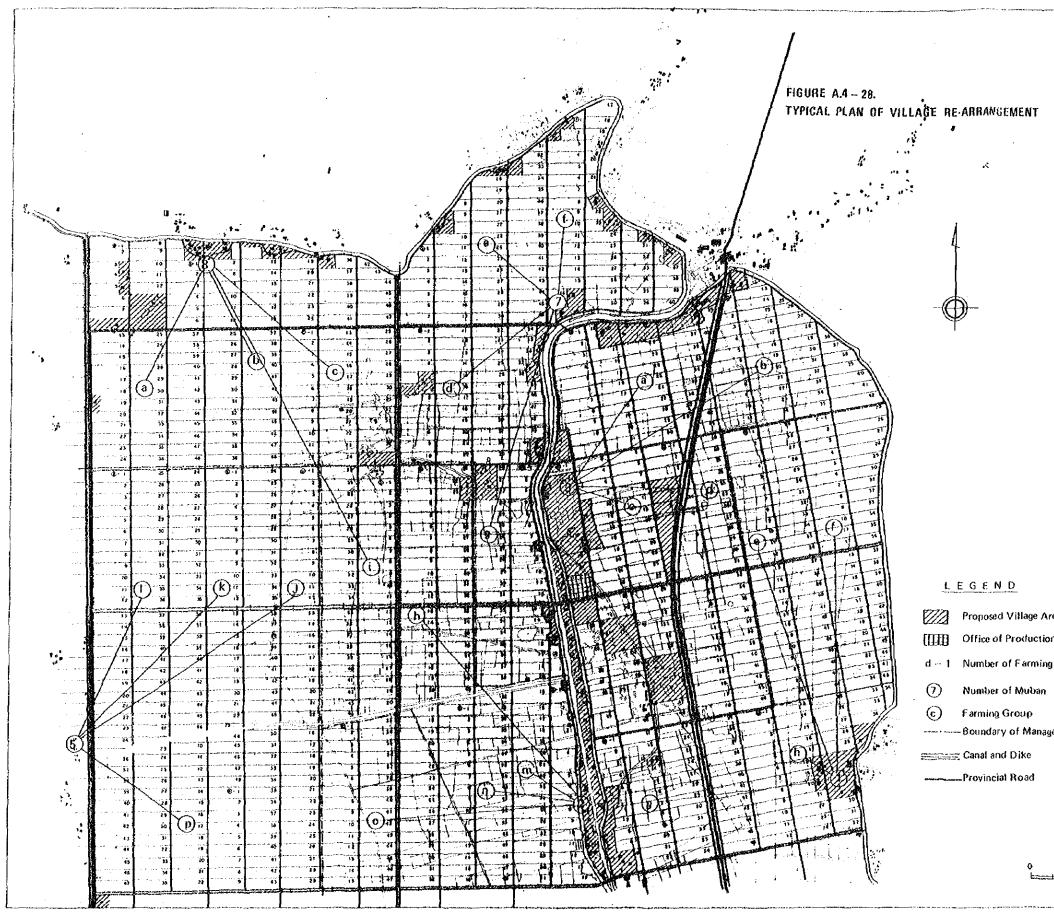
Appendix 4-36 Page 1

,

Table A.4-57.

3

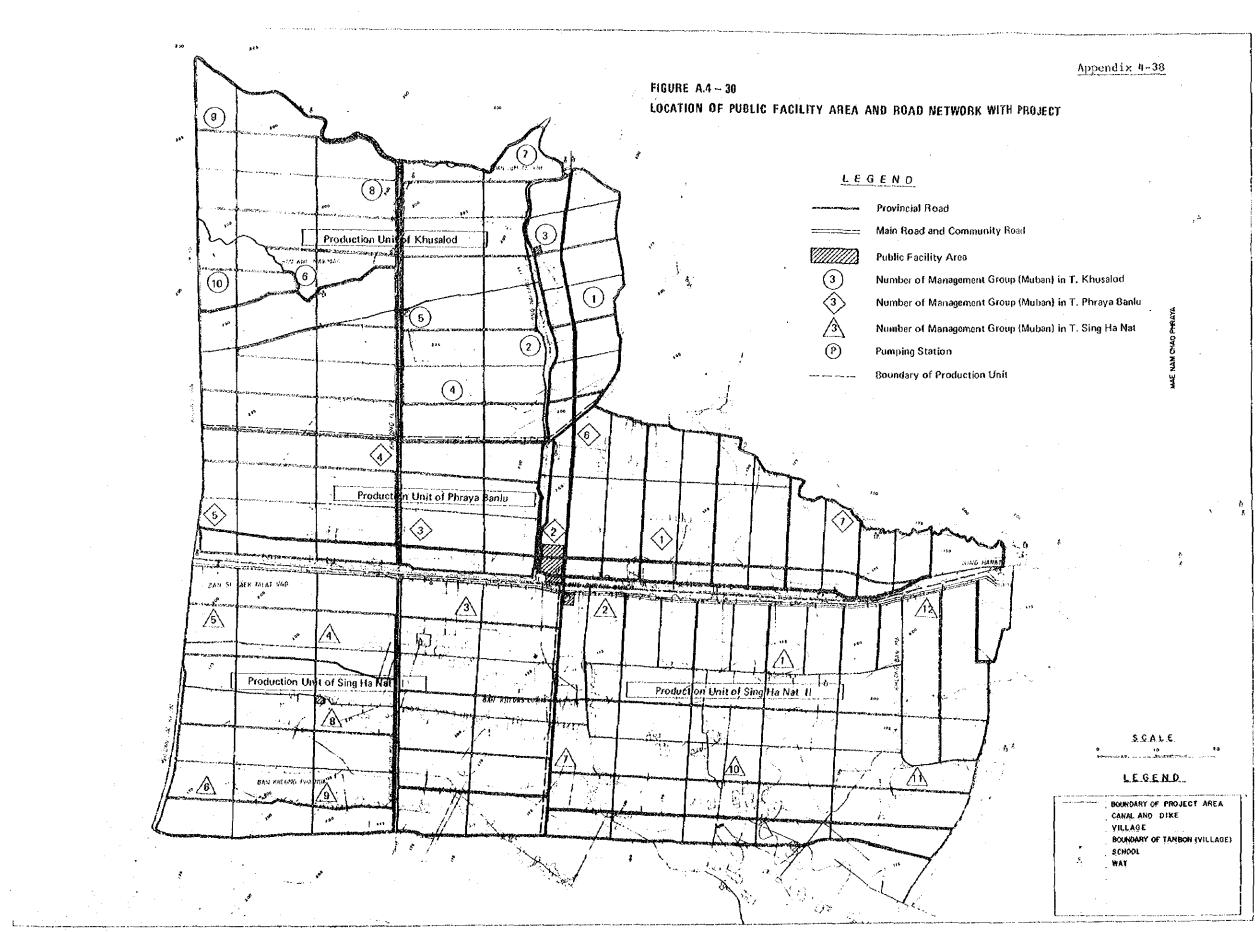
Cost of Supporting Services Facilities

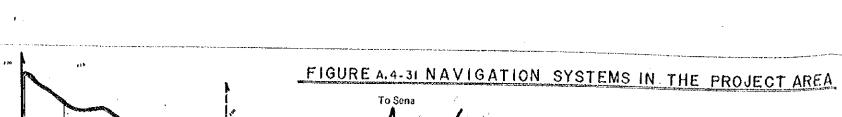

				Annual Unit:	Interes \$'000	st: 5%
Name of Facilities	Cost	Life (year)	Payment per Year	Annual Repair Cost (1%)	<u>Total</u>	<u>%/Ha</u>
ALRC Office	2,000	30	130	20	150	14
Production Unit Off						
	1,200	30	78	12	90	9
Training Center	2,000	30	130	20	150	14
Seed Center	2,000	26	139	20	159	15
Motor Pool	1,225	26	85	1.2	97	9 :
Spare Machine	1,461	. 8	-226	15	2月】	23
Assemble House & Wa		/				
	2,000	26	140	20	160	15
Truck and Motor Bic	ycle 2/					
	1,576	8	244	16	260	25
Water Supply	1,400	26	97	14	111	3.1
Total	14,862		1,269	141	2,418	135
Proposed Area					10	0,542 ha

Farm Machinery55,63Hanger2,10Warehouse23,63Rice Mill10,50	91,861 is not included in30Supporting Services' Cost
---	--

Note: 1/ Inclusive of truck terminal, navigation center and shopping center

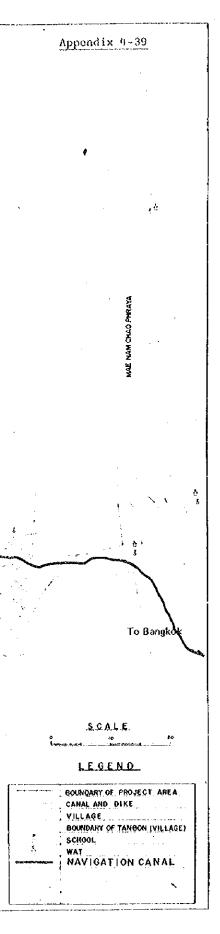
	· · · · · ·						r i	
			Ķ	2,000	X	34	24	N 68,000
	Wireless Telep			-				
	Motor Bicycle	1	ß	12,000	х	24		\$288,000
	Boat							\$500,000
	Pick-Up, 2 ton							\$200,000
2]	Truck - 6 ton							8520,000

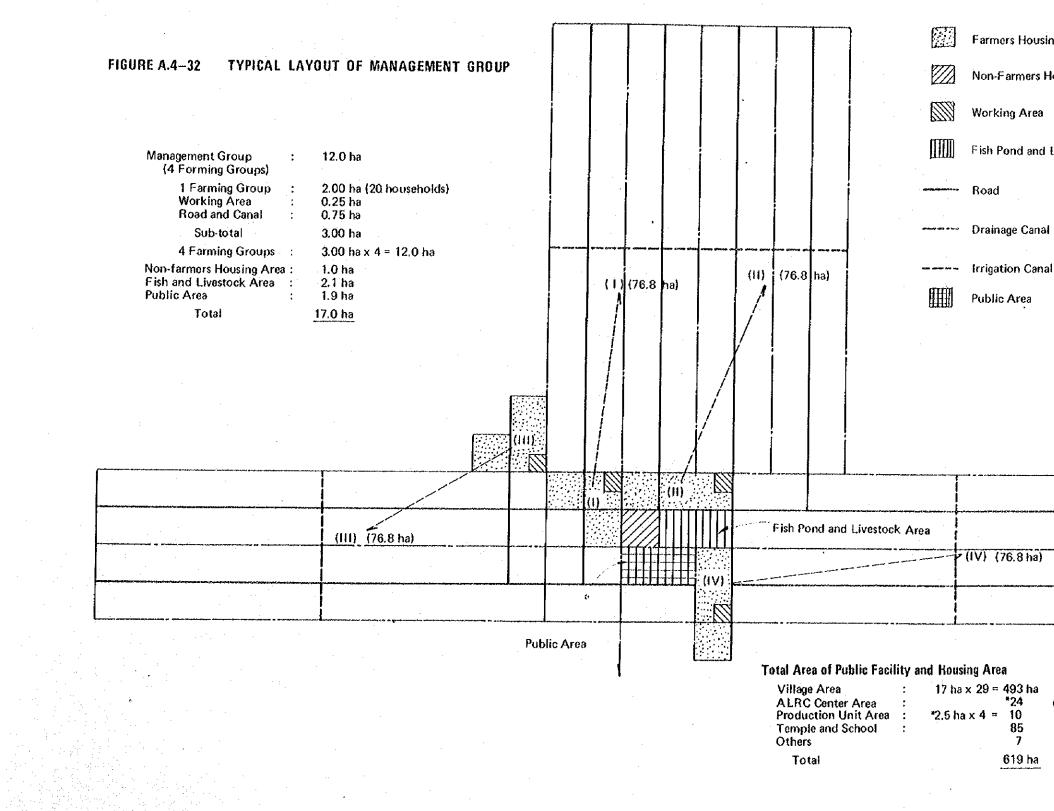

Total <u>\$1,576,000</u>


111-1

r

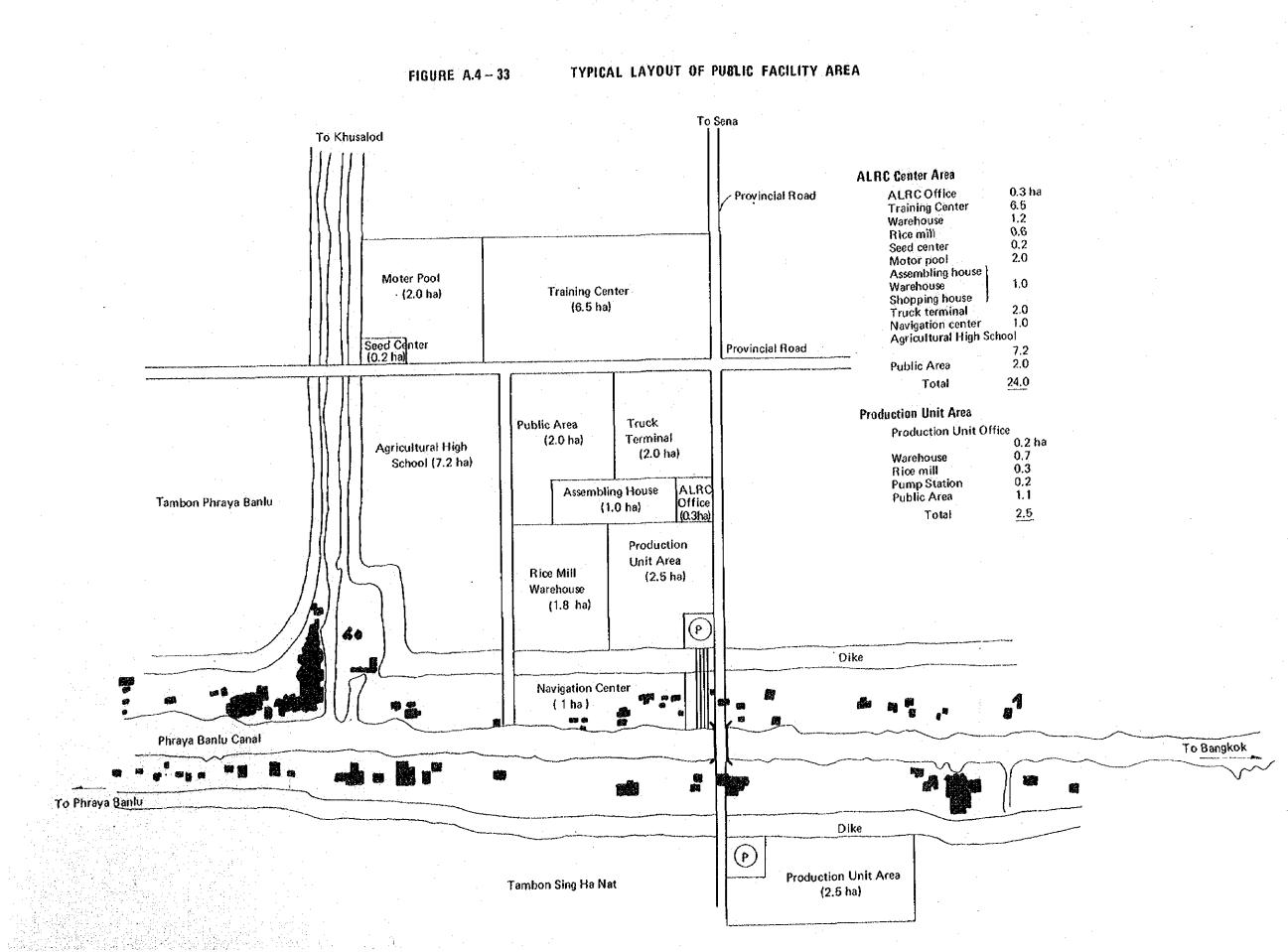
Appendix 4-37
ea
n Unit
Plot
ement Group
60A1 E
SCALE 200 400 600
<u>least and a set and a</u>





795-1

т,


Appendix 4-40

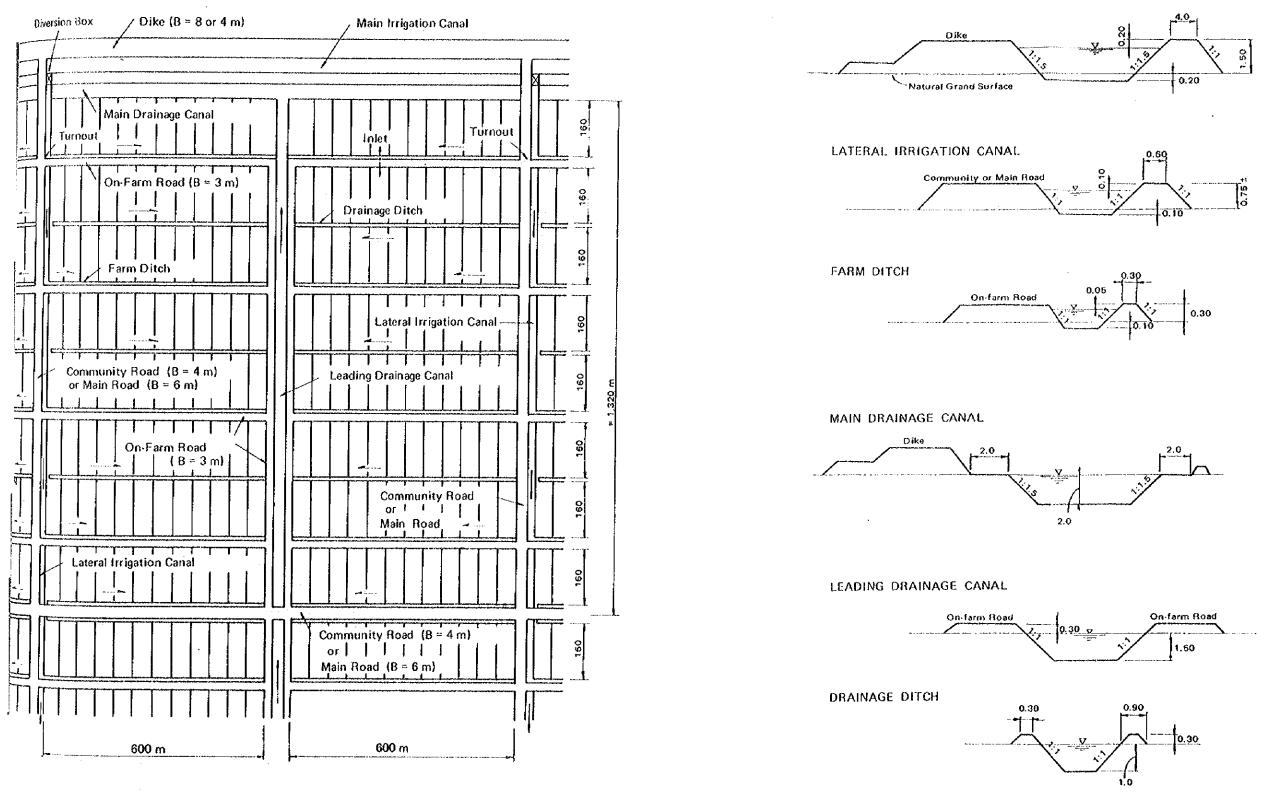
Farmers Housing Area

Non-Farmers Housing Area

Fish Pond and Livestock Area

24 (: Refer to Figure A.4-32) 85 7 619 ha

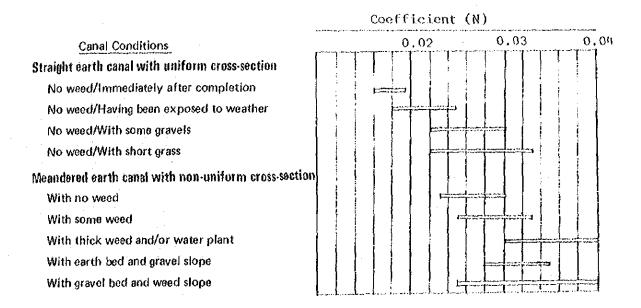
Appendix 4-41


Table A.4-58. Cost for Community Development Plan

<u>Items</u>	Acreage (ha)	Price per Ha or House (\$'000)	Cost (¥,000)	Remarks
Land Construction				
ALRC Center area	24	20	480	A part of this cost is included in Table A.4-57.
		ан сайтаан ал		III TADLE A.4~37,
Production Unit Area	3.0	20	200	- do -
Rural Community Area	375	5	1,875	Reclamation costs are not included.
Fish pond & Livestock	A 100 <i>d</i>			
TTSR pond 6 mivestock	60	(42)	(2,500)	Included in the
a de la construcción a ser en esta de la construcción a ser esta de la construcción de la construcción a ser esta de la construcción de la construcción de la construcción a ser esta de la construcción de la a ser esta de la construcción de la			(2,500)	agricultural pro- duction cost.
Sub-total	469	-	$\frac{2,555}{(5,000)}$	
			- ,	
House Construction				
Compensation for Transferring	120*	1.0	1,200	Only transfer cost
New House	940*	40	37,600	For new separate farm house-holds
				and new comers.
Sub-total	<u>893</u> *		38,800	
Total			41,355	
			(42,655)	

Note: * houses

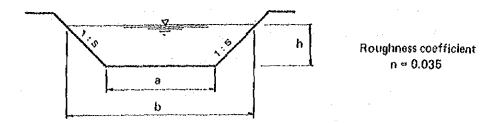
r



MAIN IRRIGATION CANAL

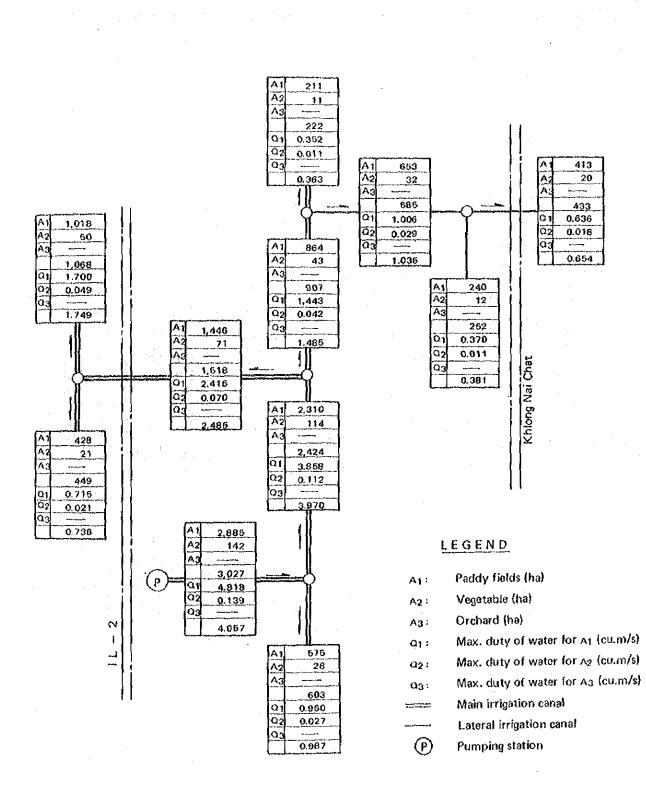
Appendix 4-43

Roughness Coefficient (N)


Roughness Coefficient (N) is to be determined taking into full consideration various conditions of the canals, such as roughness of canal surface, vegetation, shape and water velocity, etc. Standard roughness coefficient under various conditions in excavated and dredged canals are shown below.

In the case of natural flow canal where there is much gravel and weeds, the standard value of N is calculated to be approximately 0.035. In this project the canal will be designed on straight line and uniform cross-section in the implementation of land consolidation, and the water velocity would not be so high. Therefore, the N value has been designed as 0.035.

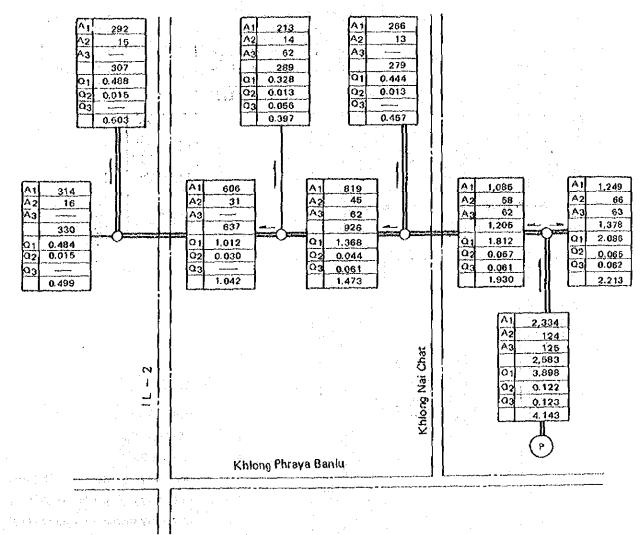
Table A,4-59


Design Discharge for Each Typical Section of Irrigation Canal

N 5										
nain	irrigat					. 2	a + 4.5	. .		
	S = 1.5			(a + 4,		A =	2	X 1 2 =	1.5a +	3.375
	h = 1.5	บุณ	p =	(a + 5.			·			
					1=1/1	0,000		7,500		,000
		-		-2/3		=0.01	$\frac{1}{1/2} = ($		$\frac{1^{1/2}z_0}{V}$	
ė.	<u></u>		R	$\frac{R^{2/3}}{3}$	V	0	V m/s		****	$\frac{Q}{m^3/s}$
M C O		ກ ກ		0.004	m/s 0.258	m^3/s	0,298	1,900	_m/s 0,365	2,327
2.0	6.375	7.41 8.41	$0.860 \\ 0.936$	0.904 0.957	0.258	1.645 2.125	0.316	2,499	0:387	3.048
3.0 4.0	7,875 9,375	9.41	0,930	0.997	0.285	2.672	0,329	3,084	0.403	3.778
5.0	3.0.875		1.045	1.030	0.294	3.197	0,340	3,698	0.416	4.52%
6.0	12.375		1.085	1,056	0.302	3.737	0.348	4.307	0.427	5,284
7.0	13,875		1,118	1.077	0.308	4,274	0,355	4.926	0.435	6.036
			.L ; 3. L (/							
	(° –) 6		b -	(a + 3.	۵)	0 - 2	$\frac{a+3}{2}$ x	10~ 2		
	S ≈ 1.5 h = 1.0			(a + 3.		//	2	J. N ~ a	· T I I V	
	ti - 1+(ų –	ιατοι						
					1=1/1	0,000	I = 1/7	,500		5,000
				2/2		=0,01		01155		.01414
<u>a</u>	<u> </u>	P	R	$R^{2/3}$	V	Q	V	Q	V	Q
m	m ²	m	m		m/s	10 ³ /s	m/s	103/8	m/s	m ³ /s
2.0	3.50	5.61	0.624	0.730	0.209	0.730	0,243	0.844	0.295	1.032
3.0	4.50	6.61	0,681	0,774	0.223	0.995	0,255	1,148	0.313	1,407
4.0	5.50	7.61	0,723	0.805	0.230	1.266	0,266	1,463	0,325	1.789
5.0.	6,50	8.61	0,755	0,829	0.237	1,540	0.274	1,781	0.335 0.343	2.177 2.569
6.0	7.50	9,61	0.780	0.848	0.242	1,816	0.280	2,100	0.349	2.967
7.0	8,50	30.61	0.801	0.863	0.247	2,100	0.285	2,423	0.049	2.507

	· · ·									
Late	ral irri	gation	canal							
	S = 1.0	m	b =	a + 3.5		2a +	1.5	06 - 0	75a + 0.	500
	h = 0.7			a + 2.2	1	2	X U.	75 = 0,	75a + 0,	563
			,			0 000	ĭ⊶1/9	,500	i-1/	5,000
						0,000 ≃0,01		,01155		01414
	•	P·	b	$R^{2/3}$	a transfer and the second		V	Q	V	Q
<u>d</u>	A m ²	~	R	N /	V m/s	Q m ³ 7s	m/s	$\frac{\sqrt{37}}{10^37}$ s	m/s	m ³ 7s
m 1.0	1.313	m 3.12	m 0,421	0.562	0.161	0.211	0.1.85	0.243	0.227	0.298
2.0	2.063	4.12	0,501	0.631	0,180	0.371	0.209	0.431	0.255	0.526
3.0	2.813	5.12	0.549	0.670	0.191	0.537	0.221	0.622	0.271	0,762
14,0		6.12	0,582	0.697	0,199	0,709	0.230	0.819	0.282	1,005
5.0	4.313	7.12	0.606	0.716	0.205	0.884	0,236	1.018	0.289	1.246
6,0		8 12	0.624	0.730	0,209	1.058	0.241	1.220	0.295	1.494
- · ·		• • •								

and an an appendix to an any second second second second second


FIGURE A.4 - 35. DIAGRAM OF PROPOSED IRRIGATION SYSTEM (BLOCK A)

+ 5

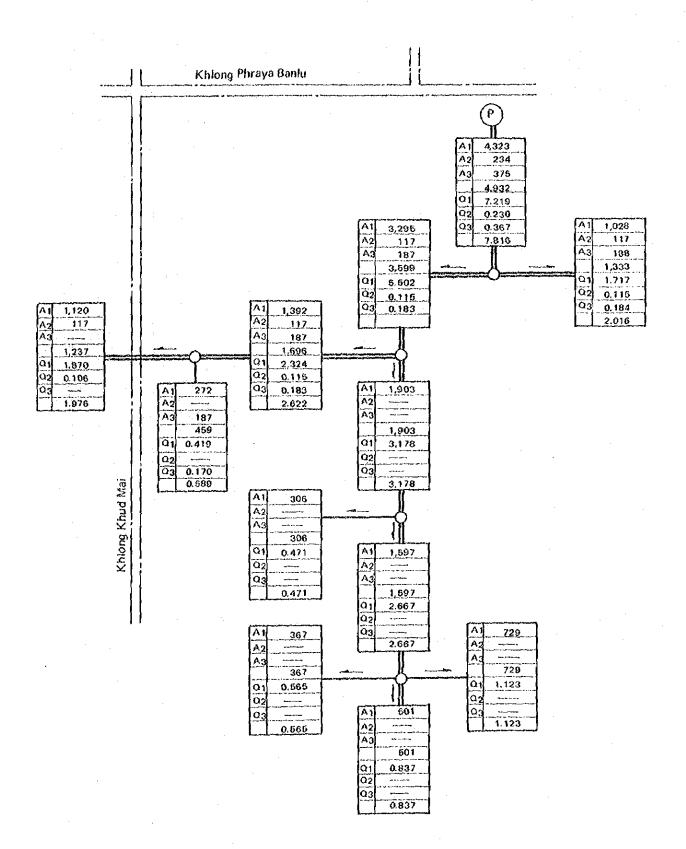
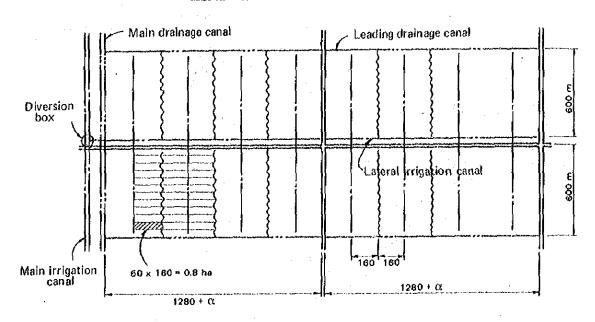

fange oan

FIGURE A.4 -- 36 DIAGRAM OF PROPOSED IRRIGATION SYSTEM (BLOCK B)

وحرير والمح



1100

Standard Design of Diversion Box

Water distribution from main irrigation canals to lateral canals will be controled by the diversion box equipped with double gates, in order to execute systematic water distribution. By operating the two gates, orifice gate and diversion gate, constant head (H) between two gates will be kept and these phenomena make it possible to divert the constant irrigation water to meet the design water demand in each irrigation system. Standard design of diversion box is as shown below:

LOCATION OF DIVERSION BOX

1 plot = 0.80 ha

Numbers of plot = $12 \times 8 \times 4 = 384$

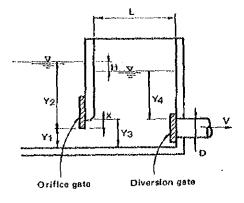
Accordingly,

Standard covering area of a diversion box:

= 384 x 0.8 ha = 307.2 ha

In lateral irrigation canal, a design discharge Q is:

 $Q = q \times A = 0.00154$ cu.m/s/ha $\times 307.2 = 0.473$ cu.m/s


Appendix 4-48 Page 2

Diversion box, being a constant head type (double orifice), is designed by using the theory of submerged orifice, namely, an orifice gate shall be installed so that a discharge will be fixed, and then a diversion gate shall be operated in order that the difference of water level H will be 0.06 m, which is appropriate in standard design to get a required diversion water.

Following is the formula for orifice flow:

$$0 = C.A.\sqrt{2gH}$$

- C: Coefficient, 0.65
- A: Cross-Sectional area of orifice (sq.m)
- g: Acceleration of gravity, 9,8 (cu.m/sec²)

Accordingly, the required crosssectional area of orifice is:

$$\Lambda = \frac{Q}{C.\sqrt{2gH}} = \frac{0.473}{0.65 \times \sqrt{19.6} \times 0.06} = \frac{0.473}{0.705} = 0.671 \text{ sq.m}$$

The cross-section of an orifice gate is a regular square, and the length of a side is equal to Y_3 . Notwithstanding, the actual height of cross-sectional area of orifice will be determined so that 80 percent of Y_3 may be maximum.

 $0.8Y_3 \times Y_3 = \Lambda$ $0.8Y_3^2 = 0.671$ $Y_3 = \sqrt{\frac{0.671}{0.8}} = 0.95 \text{ m}$

 Y_2 will be designed to be equal to or more than Y_1 or Y_3 . Inside length of water tank L will be designed to be more than 2.75 Y_1 .

 $L > 2.75Y_1 \approx 2.75 \times 0.8 \times Y_3 = 2.75 \times 0.8 \times 0.95 = 2.09$ Accordingly, L = 2.1 m

 Y_h will be designed to be more than 1.75 times of the depth which is equal to the velocity head at the full flow plus 0.08 m.

Appendix 4-48 Page 3

$$Y_{ij} \ge 1.75 \times (\frac{V^2}{2g} + 0.08)$$

1.

Where, Y = 1.2 m/st

į

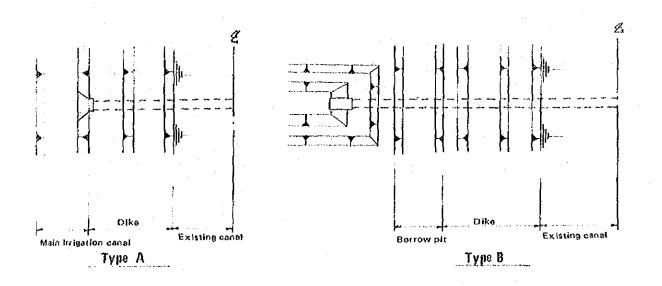
$$Y_4 > 1.75 (1.2/19.6 + 0.08) = 0.25 m$$

Diameter of diversion pipe is:

$$Q = V \cdot A^{T} = V \times \frac{\pi D^{2}}{t_{F}}$$

A': cross-sectional area of diversion pipe

$$D = \sqrt{\frac{Q}{0.7854V}} = \sqrt{\frac{0.473}{0.7854 \times 1.2}} = 0.70 \text{ m}$$


Typical design of diversion box is shown in Drawing No.6 attached to the main report.

Appendix 4-49 Page 1

Design of Culverts in Irrigation Canal

(1) Design of Culvert in Main Irrigation Canal Crossing Existing Canal

Construction sites and design discharge of each block are shown in the diagram of the proposed irrigation system. As the design discharge is not much, pipe culvert with the combination of following two types has been proposed in this project from the economical point of view.

As the project area is almost flat, the water head should be kept as much as possible. But protection from the sediment load should be considered in the first priority in the design of culvert for maintenance purpose. In this respect, the design will be made so that the velocity may be 1.0 m/s¹ for the design discharge and that its diameter may be between 600 and 61,500, the maximum diameter of ready-made pipes.

Hydraulic dimension and cross-section are summarized below:

Description	Bl	ock A	Block B		Block C	
Name of existing canal	11,-2	<u>Nai Chat</u>	<u>11-2</u>	Nai Chat	Khud Mai	
Classification of canal Design discharge, Q (cu.m/s) Diameter of culvert, D (mm) Velocity V (m/s)	Main 2.485 ¢1500 1.406	Lateral 0.654 ¢900 1.028	Main 1.042 ¢1100 1.096	Main 1.930 41500 1.092	Main 1.976 φ1500 1.118	
Velocity head, $v^2/2g$ (m) Combination of Type	0.101	0.054	0.061	0.061	0.064	
Upstream	Δ	B	В	В	В	
Downstream Approximate length of culvert	A , l(m)	В	A	۸	Α	
Loss head, h (m)	51 0.20	89 0,20	72 0.17	67 0.14	72 0.15	

Hydraulic Dimension of Culvert

 $h = (fe + fse + f\ell) V^2/2g$

fe : Coefficient of inlet loss 0.5

fse: Coefficient of outlet loss 1.0

f : Coefficient of friction loss

D(min)	f
φ 900	0.0242
φ1100	0.0185
ቀ1 500	0.0123

The culvert will be protected by concrete for safety purpose and at the inlet and outlet of the culvert, reinforced concrete transition will be paved. At the inlet, a gate will be installed to keep the effective water level and also to divert the water. A screen will also be necessary to protect from inflow of materials such as weed, etc.

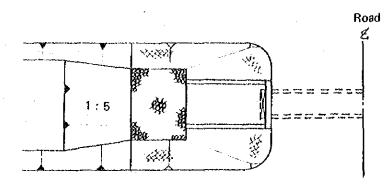
At the foundation of culvert, concrete pile will be driven for safety purpose. Typical layout of the culvert is shown in the Drawing No.7 attached to the main report.

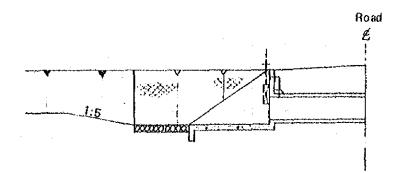
(2) Road Crossing for Irrigation Canal

Road crossing for irrigation canal will be made by pipe culvert. Considering the safetiness against the load of vehicles running on the road, the depth from ground surface of road to the top of culvert should be kept at a minimum of 0.6 (standard depth: 1.0 m). To keep such depth, irrigation canal bed should be lowered because of its shallow water depth. At the inlet and outlet of the culvert, a transition having a gentle bed slope of 1:5 should be provided to climinate a sudden variation of velocity and a sediment load, for which a diameter of culvert will be designed so that the discharge velocity will be 1.0 m/st at the design discharge. To give protection to a slope of road and irrigation canal, gravels should be paved at the inlet and outlet of the culvert.

Road Crossing for Main Irrigation Canal

In case of main irrigation canal, road crossing will be made by using two pipe culverts, because if only one culvert is used, the diameter should be bigger due to much water discharge in the canal and hence lowered. At a point of the main irrigation canal crossing the main road, a gate will be installed so that it can play a role to keep the effective water level. Assuming the irrigation area is 1,000 ha as standard, loss of head is as follows:


Design discharge: Q = q cu.m/s/ha x A ha = 0.00167 x 1,000 = 1.67 cu.m/s Diameter of culvert: D = 1,000 mm x 2 Discharge velocity for each culvert:


· .	V ≠ 1.067 m/s	
togs head:	$h = (fe + fse + fl) V^2/2g$	
	$= \{0.5 + 1.0 + 0.021(4 \sim 8m)\}$	$\frac{1.067}{19.6} = 0.08 \text{ m}$

Road Crossing for Lateral Irrigation Canal

In case of lateral canal, a gate will be installed at every crossing point having each interval of 1.20 km[±] and such gate will serve as a check gate at the same time. Assuming that one standard irrigation area is 150 ha and the diameter of culvert is ϕ 500, the loss of head will be 0.12 m which satisfies every hydraulic dimension, as shown below.

Design discharge:	Q = q cu.m/s/ha x A ha
	$= 0.00154 \times 150 = 0.231 \text{ cu.m/s}$
Diameter of culvert:	D = 500 m
Discharge velocity:	V = 1.176 m/s
Loss head:	h = (fe + fse + ft) $V^2/2g$
	$= (0.5 + 1.0 + 0.053 (4 \ v \ 8m)) \frac{1.176^2}{19.6} = 0.12 m$

Details are shown in the Drawing No.8 attached to the main report.

m³7s

3,490

5,362

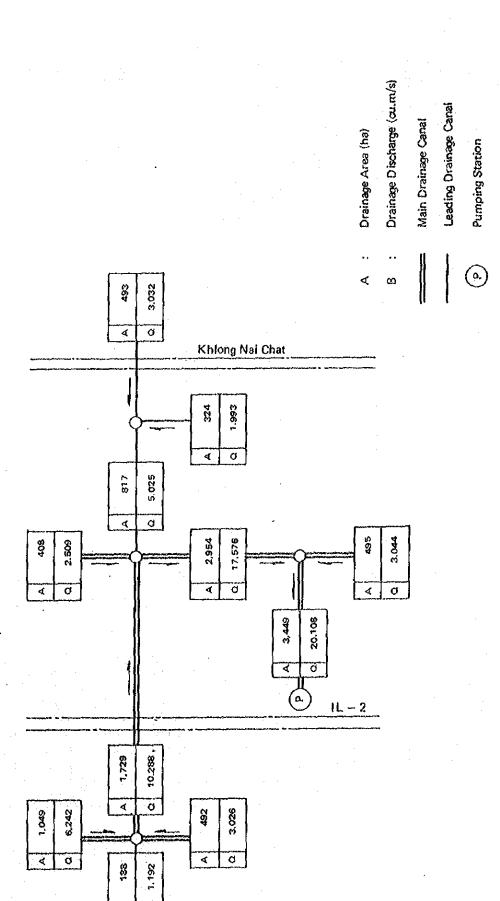
7.308

9,284

Q

 $\overline{\mathfrak{m}^3/\mathfrak{s}}$

1.544


2,723

3,948

5,201

Design Discharge for Each Typical Section of Table A.4-60 Drainage Canal . С A m² а b 11 A Main drainage canal S = 1.5 b = (a + 6) m $A = \frac{2.0}{2}(2a + 6) = 2a + 6$ h = 2.0 m ∴ P = a + 7,21 1=1/7,500 I = 1/5,000I=1/10,000 R^{2/3} Q v V R Y Q <u>_____</u> m m³7s m² m³7s 10/3 m/s m/s m m 3.020 0.427 4.270 0.349 2.0 10.0 9.21 1.086 1.057 0.302 4,640 0,469 1.249 1.160 0.331 6.566 0.383 4.0 14.0 11.21 13.21 1.363 1.229 0.351 6.321 0.497 8.946 0.406 6.0 18.0 1.279 0.365 8.039 0.517 0.422 8,0 22.0 15.21 1,446 11.374 10.0 26.0 17.21 1.511 1.337 0.376 9.783 0.532 13.832 0.435 11.310 ′ b ≍ (a + 3) m Lateral drainage canal S = 1.0 $\Lambda = \frac{1.50^{2}}{2}(2a + 3) = 1.5a + 2.25$ h = 1.50 P ≈ (a + 4.24) m I=1/5,000 I=1/7,500 I=1/10,000 $1^{1/2}=0.01155$ 11/2=0.01 11/2=0.01414 $R^{2/3}$ v V V Q R Q <u>, 1</u> ۸ in/s m3/s \mathfrak{m}^2 m/s m^3/s n/s - ID m m 1.890 0.294 0.255 1.337 0,360 5.25 6.24 2.0 0.841 0,891 2,360 0,404 3.333 0,330 8.25 8.24 1.001 0,286 4.0 1.001 3.423 4.838 0.351 0.430 0.304 6.0 11.25 10.24 1.099 1,065 6,370 0.365 4,507 0.447 14.25 12.24 1.107 0.316 8.0 1.164

٨

ġ

FIGURE A4 - 38 DIAGRAM OF PROPOSED DRAINAGE SYSTEMS (BLOCK A)

Appendix 4-51 Page 1

Appendix 4-51 Page 2

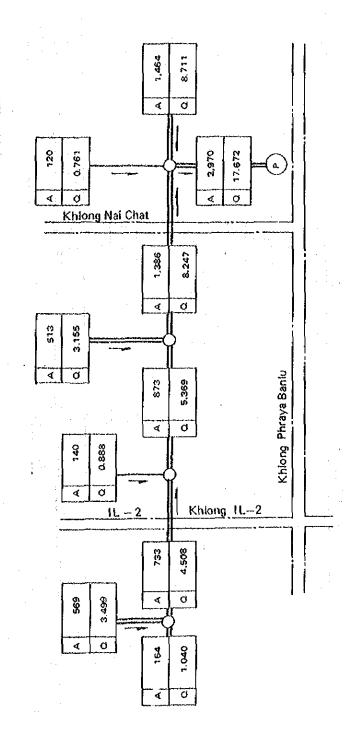
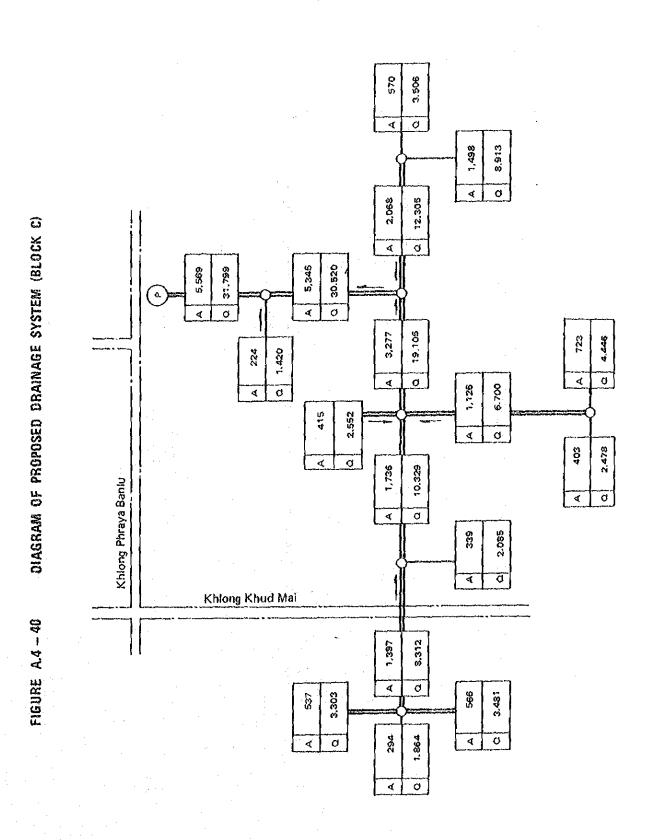
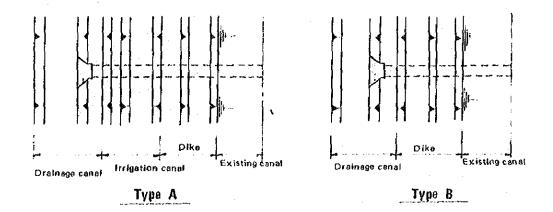



FIGURE A.4 - 39 DIAGRAM OF PROPOSED DRAINAGE SYSTEMS (BLOCK B)



•

Design of Culverts in Drainage Canal

(1) Design of Culvert in Main Drainage Canal Crossing Existing Canal

Construction sites and design discharge of each block are shown in the diagram of proposed drainage system. Because of much discharge volume of the main drainage canal, the culvert will be designed by reinforced concrete culvert with the combination of two types as follows.

For the protection from the sediment load in the culvert, the design will be made so that the discharge velocity may be 1.0 m/s^{\pm} against the design discharge, and that the width of cross section of culvert may be more than 1.20 m.

The hydraulic dimension and cross section are summarized below.

Hydraulic Dimension of Culvert

Description	B.	lock A	8	Block C	
Name of existing canal	11,-2	Nai Chat	11-2	<u>Nai Chat</u>	Khud Mai
Classification of canal	Main	beading	Malin	Main	Main
Design discharge, Q(cu.m/	s) 10.288	3,032	4,508	8,247	8.312
Cross-section of culvert Width × Height (m)	3.0x3.0	1.7x).7	2.0x2.0	2.7x2.7	2.7x2.7
Vetocity,V (m/sec)	1,143	1.049	1.127	1.131 0.065	$1.140 \\ 0.066$
Velocity head, V ² /2g (m) Combination of type	0.007	0.000	0.005	0,005	0,000
Upstream	٨	В	8	Α	Δ.
Downstream	Λ	В	В	В.,	В
Approximate length of cul	vert, 2(1	n)			
	88	53	58	68 .	73
boss head, h (m)	0.13	0.12	0.13	0.13	0.14

h = (fe + fse) $\sqrt{2}/2g$ + 1.2

fe : Coefficient of inlet loss 0.5

fse: Coefficient of outlet loss 1.0

1 : Hydraulic gradient

$$I = (\frac{N^2 V^2}{R^4/3})$$

N : Coefficient of roughness 0.015

R: : Hydraulic mean depth

The culvert will be made by reinforced ready-mixed concrete, and the cross-section will be regular square. At the inlet and outlet the transition of reinforced concrete will be provided. A screen will be set for the protection from materials such as weed etc.

At the foundation at culvert piles will be driven for safety purpose.

Typical layout is shown in the Drawing No.9 attached to the main report.

(2) Road Crossing for Drainage Canal

Road crossing for drainage canal will also be made by pipe culvert, as the bed of drainage canal is deeper than that of irrigation canal, a sufficient depth from the road surface can be obtained without lowering the canal bed at the inlet and outlet of the culvert. But from the nature of drainage canal the diameter of culvert will be determined so that the discharge velocity may be 1.0 m/s¹ against the design discharge, to prevent from the sediment load.

At the inlet and outlet of culvert a gravel will be paved for the protection of slope of canal.

Road Crossing for Main Drainage Canal

Road crossing of main drainage canal will be made by using two or more pipes having the maximum diameter of ϕ 1,500, as the discharge in drainage canal is more than that in irrigation canal, and the drainage canal has a sufficient cross-sectional area because of its borrow pit nature.

Assuming that one standar drainage area is 1,000 ha, the loss head will be 0.10 m as shown below;

Desing discharge: Q = q cu.m/s/ha x A ha= 0.00615 x 1,000 = 6.15 cu.m/s Diameter of culvert: D = 1,500 mm x 3 culvertsDischarge velocity per one culvert: V = 1.160 m/sLoss head; $h = (\text{fe + fse + fl}) V^2/2g'$

$$= \{0.5 + 1.0 + 0.0123 \quad (4 \sim 8m)\} \frac{1.160^2}{19.6} = 0.10 m$$

Road Crossing for Leading Drainage Canal

Assuming that one standard drainage area is 150 ha, the loss head will be 0.12 m as shown below:

Design discharge: $Q = q \operatorname{cu.m/s/ha} \times A$ ha = 0.00634 x 150 = 0.951 cu.m/s

Diameter of culvert:	D = 1,000 mm	
Discharge velocity:	V = 1.210 m/s	
Loss head:	h = (fe + fse + fl) $v^2/2g$ 1 210 ²	
	= $\{0.5 + 1.0 + 0.021 (4 \sim 8m)\} \times \frac{1.210^2}{19.6}$	0.1.2 m

Typical layout is shown in Drawing No.10 attached to the main report.

•

.

Required Units of Pumps

Maximum discharge to be required for irrigation and drainage in each block are as follows:

Drainage			Irrigation					
	~~~~~~~~~~	\$ ~. \$ ~. * f = \$ * * 2 * * 2 * * * * * * * * * * * * *	A	Area Disc			charge	
Block	Area	Discharge	Paddy	Upland	for Paddy	for Upland	Total	
	(ha)	(cu.m/s)	(ha)	(ha)	(cu.m/s)	(cu.m/s)	(cu.m/s)	
Α	3,449	11.97	2,885	142	4,818	0.139	4,957	
8	2,970	10,31	2,334	294	3.898	0.245	4.143	
С	5,569	19.32	4,323	609	7.219	0.597	7.816	
					*****			

Note:

Unit drainage discharge q = 0.00347 cu.m/sec/ha (1.25 mm/hour)

Unit irrigation water requirement Paddy q = 0.00167 cu.m/sec/ha Upland q = 0.00098 cu.m/sec/ha

Discharge for drainage is bigger than that for irrigation, therefore the units of pumps and bore diameter should be decided based on the quantity of drainage discharge. The units of pump should also be more than two units taking trouble of pumps into consideration.

The relations between discharge and bore diameter are as follows:

Bore, D (mm)	Discharge (cu.m/min)
1,000	115 - 150
1,200	150 - 200
1,350	200 - 255
1,500	255 - 325
1,650	325 - 400
1,800	400 - 480
2,000	480 - 600

The required head of pumps is computed by the following formula: Total Head = (Delivery water level - Suction water level) + Pipe loss

Total head for both irrigation and drainage are estimated as follows:

. •

	Delivery Water Level (m)	Suction Water Level (m)	Pipe Loss	Total <u>Head</u> (m)	
Drainage	WL3.20 [±]	WL1.50 [±]	)00	2,70	
Irrigation	WL3.00 ¹	WL0.10 [±]	0.70	3,60	

If pumps is planned to meet the discharge in case of drainage, total head in case of irrigation will be of 3.60/2.70 = 130% and the discharge will be about 70-80 % owing to the characteristic of pump.

The following table indicates the lifting capacity for irrigation and drainage in case of various units of pumps ranging from two units to five units.

Drainage Lifting capacity per unit			Diameter	'Irrigation Lifting capacity per unit		
Block	Unit	$Q(m^3/s)$	Q (m ³ /min)	<u>x unit</u>	$Q(m^3/s)$	$Q(m^3/min)$
٨	2	5,98	359 -	φ1,650 x 2	4.19	251
	3	3,99	239	φ1,350 x 3	2,79	167
	4	2,99	179	φ1,200 x 4	2.09	125
	5	2,39	)#3	<b>¢1,000</b> x 5	1.67	100
В	2	5,15	309	φ1,500 x 2	3,61	212
	3	3.44	206	φ1,350 x 3	2 41	145
	4	2.58	155	φ1,200 x 4	1.81	109
	5	2.06	124	φ1,000 × 5	1,44	86
с	2	9,66	580	$\phi^2,000 \times 2$	6,76	406
	3	6,44	386	φ1,650 x 3	4 51	271
	4	4,83	290	φ1,500 x 4	3.38	203
	5	3.86	232	φ1,350 x 5	2.70	162
	6	3.22	193	φ1,200 x 6	2.25	135

# Lifting Capacity of Pumps

Annual mean pumping operation hours in the normal year (return period 2-years) are shown in Figure A.4-41 to Figure A.4-43, when above pumps are operated.

.

OF PUMPS IN NORMAL YEAR (Block OPERATION HOURS FIGURE A.4 - 41

R

0.0 ::: 0 ი ტუ 0) 0 1 ပ္ရင္ဆင္ရ 0.07 0. 0 w 8. 0. *** o O M 8 ۰ 1 4 ő I ់ក្ន Nov. 600 ි. පි. පි. ක්ෂ 5 1 6) 61 ი ა 0.67 o o က်မှူ က်မှူ 10.5 5.8 = 7 Co Co Co Co 041 17.5 1.22 ~ ----12 (0.89)(3.02) 18.2 ຕ ເຊິ ≓ N Oran Sep. 10 17 0) 00 с с м -- 1 (60' 50L ώ. Έ ----2°.7 4 **N** Aug. t 87 10.0 9.22 12.0 2.37 Indicates the drainage discharge ( T 10.9 2.43 80 60 6 = Jul. (1:12) 2 5 1 4 10 i I ရှိ ရ (2.03) (1.33) 5 4 2 1 ο ω **γ** 0 0 Ξ Jun. 20.4 22.5 16.3 . . . 1.29) (0.81) 00 **W** ei ei ა ს **წ** 0 4 1 = May 23.0 1 4 4 : ( 61 50 11 () 0 1 20.6 t el с, **М** 4 8 N ~ Ξ Apr. 19.5 E E E E E E 3.79 1.1 8.6 °°1 18.5 20.3 17.0 2.96 ດ ______ Ŧ Pumpage of one unit m3/s Mat. 6.9 0 (1 ა ა . .... 13.8 22 4.30 9 0 -4 ~* Feb 19.3 17.7 4.57 v A ∎ 27 ..... 14.5 Units 19.2 3.35 o. 00 4 m ц З <u>-</u>9 12.5 8 01 01 20 न् स ल व Peak ने Note: 4 ហ e 4 3 3 ଲ 3 ---¢, ć 2 Month ŧ~ د^{60,08} هو، 80.8) دونه 1.4 5 00 (5 00) \$/2th 66'E) 2/Ein 19.1 (5'33) s/Em Unite sifnu S x stinu € × ∳ 1,360 stinu 8 x 000,1 & stinu h x 005,1 \$ 099'1\$

Appendix 4-53 Page 3

(See Table A.4 - 61)

The necessary water requirements  $m^3/s$ 

7

Pumping operation hours

PUMPS IN NORMAL YEAR (Block B) OPERATION HOURS OF FIGURE A.4 - 42

0.12 23 0 0 N F TR 9 ~ ¥ 0 Nim Dec. 0.12 9, , 0 ณัวส •---°0 ∕₩ <u>сі</u> 10 15.0 5.11 0.90 0 0 Ξ o o II Nov. 0.59 00 ~ ¥ 6 0 0 17.7 _ 6 S 0.54 ⁿT 0 0 4 4 Ξ ഗ ന സ ti O 16.5 ្តី។ 0.99 ი ი ų V (0.78)(2.59) 18 ŝ . О-и N W W .... d 80 5.4 7.3 6] ---o cine ľ (36.0) 00 00 1 ý v 4 Aug 1.92 12.8 19.1 o o T ۰. ۳. ж Indicates the drainage discharge 2.02 5 4 7 7 20.1 6.7 N M Ξ Jul. (1.75) (1.14) (0.97) с. Г. Т. ŵr ----4**7** 0 0 20,6 13.3 0 00 n 101 Jun 22 20.4 9.9 ١ 8 8 1.12)(0.70) ი დ. 1 13.0 8.2 Ξ ന നെ 4 **T** May ²/₂ ×, :() 5 10 11 × 132 19.3 8. 6 18.3 2.4 -----Apr. 3.19 21.2 × 7 5 5 1 1 1 1 1 ----16.6 2.49 15.6 9.0 10.2 Pumpage of one unit m3/s = 0 0 Mar. 19.9 2.99 ល សំម្ន o Far ----23.7 3.57 153 11.5 ÷ I 23.3 Feb. 3.30 n N N N 5.1 4 N 1 .... Ê 22.8 0.98 2.81 2 2 2 ----Jan. 16.5 000 T 8 0 1 ທ ຜູ • • Peak 4 Note: 6 4 က 4 ល ۰. 2  $\sim$ က  $\sim$ ო N į. Month ----নি 5'41 (3'44) 18.1 s/c^m 19.5 44.1 \$/E^{UI} \$/ew s/ew (5'98) (5.06) Childy stinu S x stinu E ztinu ở x 000,t φ erinu N x 005,1.4 × 09°C'L ¢ 00914

Units

..

- (See Table A.4 61) The necessary water requirements  $m^3/s$ ۰.
- Pumping operation hours ने ले ले ने

Appendix 4-53 Page 4

OPERATION HOURS OF PUMPS IN NORMAL YEAR (Block C) FIGURE A.4 - 43

						×** -> × • • • • • • • • • • • • • • • • • •			***** ***	* First, and goal	ر میں بیمہ ا				1 ₉₋₉₋₁ -17-0-26-1		
Dec	=	0.40	4					60 (N 167		[		ം ഗണ്					
å	-	0.30	-		Q F M	}		ci w				N.18					
	=	1.77	en G		4 61	1		12.6			(*************************************	15.7					
Nov.		1.13	o yr		0	[		0				o					
	=	8	o ein		ຕ ທັ <b>ງ</b>	1		н. К <b>ж</b>									
ช 0		1.83	ហ ឃុំម្ន		5	1				· ·		16.3 8.9		· · ·			
	=:	(4.87)	r. N		6 20 1			0.5	r. 0				ო ს <b>შ</b>				
Sep.	•   •	(1.43) ((	្រ ហ័ម្ម ហ័ម្ម		ຕ ທ່າ							0, ∞](		 	<b>-</b>		
•	:::	(1.75) (		-	s v	1						6 0 1					
-Sng-		3.55	-4- 1-2-6 1-1-2-1		0.8			0	۲) هر ز				10 12 MG				
	=		S S S S S S S S S S S S S S S S S S S		20.2				0 (1)	<u>t</u>			00 M				-
Jul.		(1.81) 3.80	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		9 19 19	1		10 0				0) 	<u> </u>	•			
	=	(2.14)	് ന ഗ്ന്ന്		9 0 81	1		ω				13.3	<u> </u>				
յսդ		(328)	يري د اري		3 7 7 8 1 8 1 8			15.3 10		ļ		20.5 20.5					-
		(1.30)	1		[ <b> </b>	+		9						}			
May		(2.07)	е ер		8 7 1 1			20.0 20.0 20.0				12.9	· · · · · ·	 		·	-
	=	3.76 [2	13.3 14.5 14.5		27				2				4				
Apr.		6.05 3.	21.5 1		20.0	1			19.0 2.7				9.4	ര ഗ്സ			
		4.71 6.	16,7			o I							17.9	<u></u>			200
Mar.		5.66 4.	20.1			)			16.2 9.4					 m			
	=	6.71 5.	23.8			1:7			23.6	a=				11.6 2.3			
Ређ.		7.16 6.	53	·		14.1				ω				15.6			<b>7</b> -
			200 1	<u>с м</u> 4		<u> </u>			13.5	∾ ∾w			22.9	<u> </u>			
Jan.	=	1.90 5.28	∎	¦ 	1	4 <b>X</b>		9 9 19				16.9			· ·		
¥			1°		, ,			Ë I			aarana						•
Peak			41				~		~~~~	m	4		~	<u>ო</u>	4	i0	
Month	/		sem	00.67	s/e	ω ^μ	0 974 979)	 s,	}	9:38 9:38 9:43)	1		1	<u>}</u>	5 30 (3 80)		
		Units 1/	sijur 000			× 09 tion (		<b>  </b>	in ţ X						1`32(		

Appendix 4-53 Page 5

The necessary water requirements  $\,m^{3/s}$  (See Table A.4  $\,\cdot$  61) Pumping operation hours Units

⁾ v! v) g| . . . . . .

				(Unit: cu.m/s)
		Block A	Block B	Block C
Jan.	1	1.09	0.98	1,90
	1 1	3.35	2.81	5,28
Jeb.	I	4,57	3.80	7.16
	11	4,30	3.57	6.71
Mar.	1	3.54	2,99	. 5,66
	7.1	2.96	2,49	4,7]
Apr.	1 1 I	3.79 2.39	$3.19 \\ 1.99$	6,05 3,76
May	1 -	(1.29)	(1.12)	(2.07)
	1 I	(0.81)	(0.70)	(1.30)
Jun.	I	(2.03)	(1.75)	(3.29).
	1 I	(1.33)	(1.14)	(2.14)
Jul.	1	(1.12)	(0.97)	(1.8))
	11	2.43	2.02	3.80
Aug.	I	2.37	1.92	3,55
	I I	(1.09)	(0.95)	(1,75)
Sep.	I I	(0.89) (3.02)	(0.78) (2,59)	(1,43) (4,87)
Oct.	I	1.22	0.99	1.83
	I I	0.67	0.54	1.00
Nov.	I I I	0,69 1,00	$0.59 \\ 0.90$	1.13 1.77
Dec.	1	0.07	0.12	0,30
	11	0.09	0.12	0,40

Table A.4-61 Design Capacity for Irrigation and Drainage (Normal year)

Note: (

): indicate the design capacity for drainage

.

# Table A.4-62 Irrigation Water Requirement and Drainage Discharge (Normal year)

# Irrigation Water Requirement

(Unit: cu.m/s)

	J	Block A		ì	Block B		ł	Block C	
	Paddy	-		Paddy	-		Paddy	Upland	00 L . 1
	2,885ha	Acres of the second sec		2,334ha			<u>4,323ha</u>		Total
	<u>Q</u>	<u>Q2</u>	<u>Q</u>	$\underline{q_1}$	Q2	Q	<u>Q1</u>	Q	Q
Jan.I	1.00	0.09	1,09	0.81	0.17	0,98	1,50	0.40	1.90
T.J.	3,26	0.09	3.35	2.64	0.17	2.81	4,88	0.40	5,28
Feb.T	4,46	0.11	4.57	3.61	0.19	3.80	6.69	0.47	7.16
11		0.10	4.30	3.40	0.37	3,57	6.29	0.42	6.71
Mar.1	3.42	0.12	3,54	2.77	0.22	2,99	5.13	0.53	5,66
11	2.86	0.10	2,98	2.31	0.18	2.49	ח.28	0,43	4.71
Apr. I	3.66	0.13	3,79	2.96	0.23	3.19	5.49	0,56	6.05
11	2.32	0.07	2.39	1,87	0.12	1.99	3.47	0,29	3.76
May I	·•				-	-			·
) î î		0.03	0.03	-	0.05	0.05	· +-	0.13	0,13
Jun.I	-	~			<u>~</u>	•			-
I I		0:02	0.02		0.04	0.04		0.94	0.94
Jul.1			- ·	-	-		-	-	~
11	2.38	0.05	2.43	1,93	0.09	2.02	3.57	0.23	3.80
Aug, I	2.37	. ~	2.37	1.92	-	1.92	3.55		3.55
11		~	0.06	0.05	-	0.05	0.09		0.09
Sep.1	0.05	سر	0.05	0.04		0.04	0.07		0.07
. tī					-	•-			
Oct.I	1.22	-	1.22	0,99	•=	0.99	1.83		1.83
11	0.67		0.67	0.54	-	0.54	1.00		1.00
Nov,I	0.66	0.03	0.69	0.53	0.06	0.59	0.99	0.14	1.13
II	0,90	0.10	1.00	0.73	0.17	0,90	1,35	0.42	1.77
Dec.l	-	0.07	0.07		0.12	0.12	•-	0.30	0.30
11		0.09	0.09	~	0.16	0.12	-	0,40	0.40

### Drainage Discharge (Cont'd)

t ...

	Block A			В	lock B		Block C		
	Cultivat-			Cultivat-			Cultivat-		
	ed Area	Others		ed Area		. *	ed Area	Others	
	3,027ha	422ha	<u>Total</u>	2,583ha	<u>387ha</u>	<u>Total</u>	4,932ha	<u>637ha</u>	Total
May I	1.05	0.24	1.29	0.90	0.22	1.12	1.71	0.36	2,07
11		0.14	0.81	0.57	0.13	0.70	1,09	0.21	1.30
Jun. 1	1.85	0.18	2.03	1.58	0.17	1.75	3.01	0.28	3.29
11	1.21	0.12	1.33	1.03	0.11	1.14	1.96	0.18	2.14
Jul.I	0.97	0.15	1.12	0.83	0,14	0.97	1.58	0.23	1.81
11	**	0.07	0.07	-	0,06	0.06	-	0.11	0.11
Aug.I	~	0.15	0.15		0.14	0.14	. <b></b>	0.22	0.22
11	0.82	0.27	1.09	0.70	0.25	0.95	1,34	0.41	1,75
Sep. I	0.67	0.22	0,89	0.57	0.21	0.78	1.09	0.34	1.43
II	2.61	0.41	3.02	2.22	0.37	2.59	4,25	0.62	4,87
Oct.I		0.15	0.15	-	0.14	0.14		0.23	0.23
11	0.06	0.17	0.23	0.05	0.16	0.21	0.10	0.26	0.36

Subsequent paragraph deals with the selection of most desirable units of pumps from view point of cost and operation and maintenance,

Cost:

Running cost;

Electric power charge in Thailand is only the consumed electric power charge, and it is not necessary to pay the contract charge.

Initial cost;

.

The total bore diameter of pumps gradually increases in accordance with the increase of number of pumps. Therefore, construction cost including civil works and building gradually increases as units of pumps increases.

From the result, it is found out that less units of pumps are more effective from economic view point.

#### Operation and Maintenance:

The pumps, which will be used for both purposes of irrigation and drainage, are operated throughout a year in the Project. All units of pump will be operated when the drainage discharge is at peak, but in the case of operation for irrigation, it is desireble that each station has spare units of one or two from operation point of view, because the durability of pumps gets more longer by alternate using of the pumps. If the plan having two units is adopted, there would be no spare units, when the water requirements is at peak, and the bore diameter becomes large and the farmers in the Project Area have no experienced in operating such pumps with the large scale hore. Therefore, the plan having two units is not recommendable. Also, in case that the number of units for each block is more than five units in ordre to adopt the smaller bore diameter than  $\phi$ 1,000 mm, it will not be efficient from economic and operation and maintenance points of view.

As mentioned above, three units of pump is the most effective plan considering the economy, safty for operation, the durability and the operation and maintenance. Therefore, plan of the three units installed will be adopted in each block, and following table shows the features of pumps in each block.

Block	Delivery discha	irge per	unit		Diameter	Units
٨	3.99 cu.m/sec	e (239 ci	u. <i>m</i> /mir	1)	ф1,350 mm	3
В	3,44 и	(206	н	)	φ1,350 ^μ	3
С	6.44 "	( 386	11	)	φ1,650 ^{''}	3

### Selection of Prime Mover

. • <u>•</u>

#### Disel engine

Heavy oil and lubricating oil will be used for fuel, and the fuel consumptions are as follows:

		Heavy oil	Lubricating oil	
Fuel consumption	(g/ps/hr)	1.90	5	
Price	(\$/2)	2.6	18.0	
Specific gravity		0.9	0.9	

Output (ps)	Rate of fuel consumption (g/ps/hr.)
100 - 200	200
200 ~ 500	190
more 500	180

				onsumption o(2/hr/unit)	Operation costs for hour per unit(B/hr/unit)			
	Output		Heavy	Lubricat-	Heavy	Lubricat-		
Block	per unit (ps)	<u>Units</u>	oil	ing oil	oil	ing oil	Total	
Α	240	3	50 7	1.3	131.8	23.4	155.2	
В	200	. 3	42.2	1.1	109.7	19.8	129.5	
С	440	3	92.9	2.4	241.5	43.2	284.7	
<u>Total</u>			•		494.0	86.4	569.4	
				:		· .		
			1. J.					

Annual operating hours in the normal year are as follows.

	Total annual	Annual operating
Black	operating hours	hours per unit
	(hr)	(hr) 1/
Δ	5,226	1,742
B	5,406	1,802
С	5,451	1,817

 $\mathbf{y}$  : Total annual operation hours/unit.

			l operation v unit (Ø1		Annual operation costs per three units (\$'000)		
Block	Annual operating hours per unit(hr)	Heavy oil	Lubricat- ing oil		Heavy oil	Lubricat ing oil	Total
AB	1,842	242.7 197.6	43.1 35.7	285.8	728.1 592.8	129.3	857.4 699.9
C	1,817	438.8	78.5	517.3	1,316.4	235.5	1,551.9
Total				1,036.4	2,637.3	471.9	3,109.2

# · · ·

1.1 2.1

Motor	

	Output	Annual operating	Annual operating	Annual operating
Block.	per unit	hours per unit	costs per unit	costs per three units
	(kw)	(hr)	(\$,000)	(\$1000)
A	170	1,842	156.6 1/	469.8
В	140	1,802	126.1	378.3
С	300	1,817	272.6	817.8
Total	· · · · · ·		555.3	1,665.9
	卫: 1	70kw x 1,842hr x 0	.5 \$/kwh	

Following table indicate the approximate comparison of both type of prive mover from view point of annual cost required.

	··· (Uni	it: \$'000)
ltems	Diesel Engine	Motor
Amortization 1/ Replacement cost 2/ Operation cost	6,1120 2,290 3,110	7,350 2,420 1,670
Total	11,820(103)	11,440(100)
	sec Table A.4-63)	

2/ : pump cost x 0.02978 (i=10%)

As is seen in the above table, although an annual cost is almost same, motor is recommended in the project considering the easy operation.

Table A. 4-63 Cost of Pumping Facilities

	Diesel engine		Motor	
	\$1,350 x	\$1,650 x	φ1,350 ×	¢1,650 x
Items	3 units	3 units	3 units	3 units
	(1000N)	('000B)	(1000R)	('0008)
Pump & Accessories	6,260	9,660	6,260	9,660
Prime mover	1,118	1,680	1,240	2,320
Reduction gear	1,287	1,456	1,220	1,780
Value & Pipe	4,680	7,733	4,680	7,733
Switch board	1,096	1,331	2,193	2,663
Auxiliary equipments	52	48	114	127
Installation & Arrangement	4,531	5,753	4,067	5,353
Packing & Preightage	1,167	1,680	1,167	1,680
Other costs	2,088	3,063	2,273	3,393
Total	22,279	32,404	23,214	34,709

The construction costs for electric power transmission and supplying facilities is \$7,026,000 (From PEA)

Total costs for pumping facilities of Project Area is as follows;

Block	<u>c</u>	Motor ('000B)	Diesel engine ('000ß)
٨	.∳1,350 x 3 units	23,214	22,279
В	$\phi$ 1,350 x 3 units	23,214	22,279
С	¢1,650 x 3 units	34,709	32,404
Total	L ·	81,137	76,962

The construction costs in case of motor

= Construction cost of pumping facilities

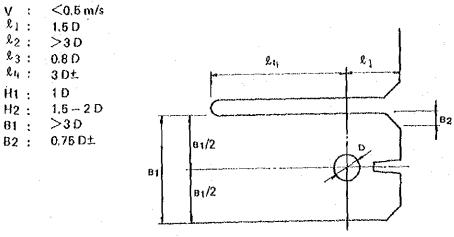
+ Costs of the electric power transmission faiclities

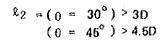
=881,137,000 +87,026,000

= ¥88,163,000

•

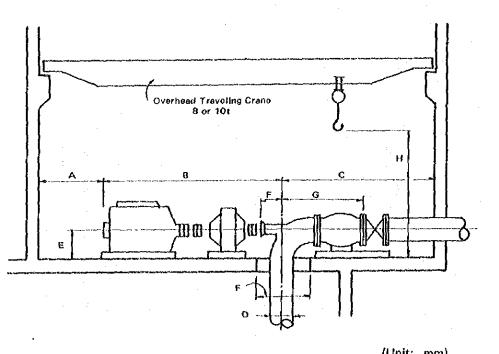
# Plan of Pumping Stations


Dimensions of the proposed pumps are as follows;


	Design C	apacity			y		
Block	Drainage	Irriga- tion	units	Boredia- <u>meter</u>	m ³ /s	m ³ /min	Type of pump
۸	11,97	4,96	3	φ <b>1</b> ,350	3.99	239	Horizontal mixed flow pump
B	10.31	4.14	З	<b>\$1,350</b>	3,44	206	TI TI
С	19.32	7,82	3	¢1,650	6.44	386	51

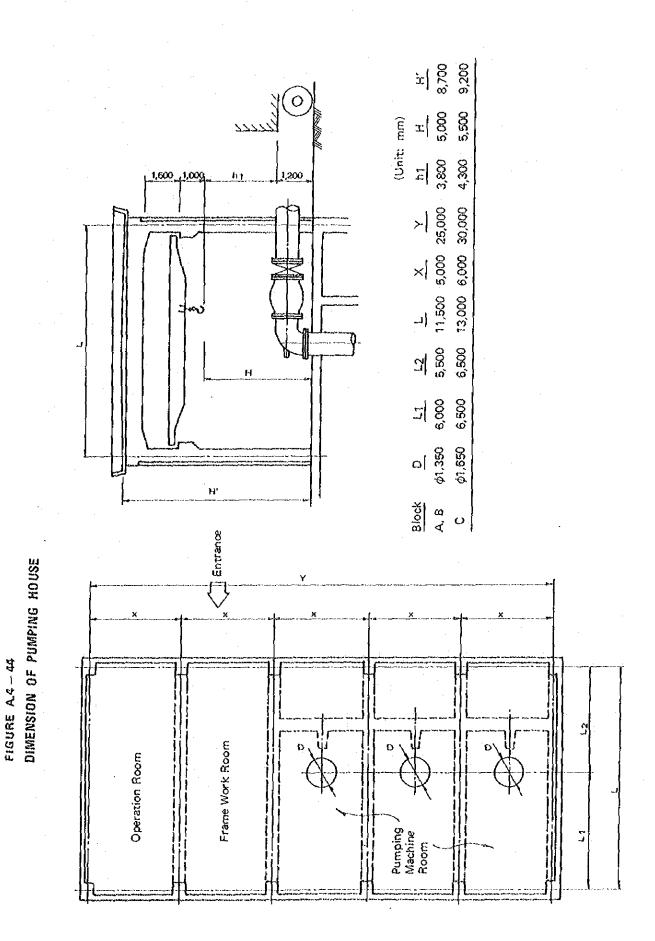
(1) Design of suction tank

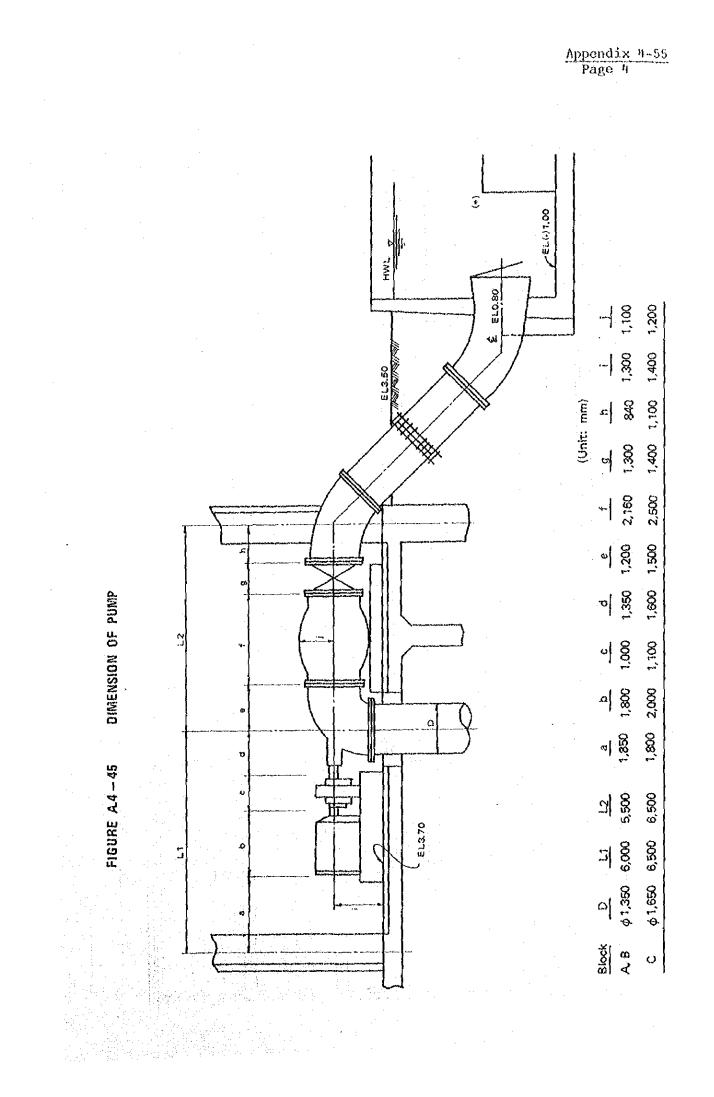
۷









#### (2) Design of Pumping House

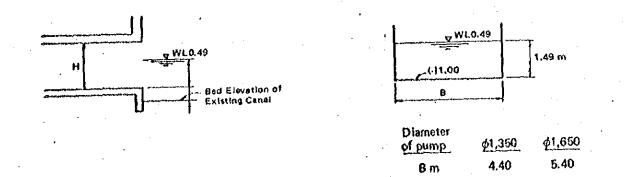

The building of pumping station is composed of three rooms, namely pumping machine room, frame work room, and operation room. Main facilities set in the machine room are composed of pumps, reduction gear, motor and regulating values, and the width of the machine room is planned as follows. Also, the overhead travelling crane will be installed in the pumping house.



					tour n	941 <u>7</u>	
Block	<u>D</u>	<u>A B</u>	C	E	F	G	<u> </u>
A, 8	φ1,350 0ve	500 4,000±	6,500	1,300	1,350	3,360	over 4,100
С	φ1,650 ove 1,	r 500 4,500±	6,500	1,400	1,600	4,000	over 4,800


Capacity of the overhead travelling crane is as follows;

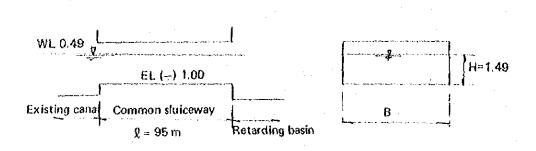





# Hydraulic Calculation of Pumps

As already discussed previousely, the proposed pumps have the dual purposes for irrigation and drainage, and their systems of water flow are illustrated as shown below:




Section of common sluiceway is as follows:



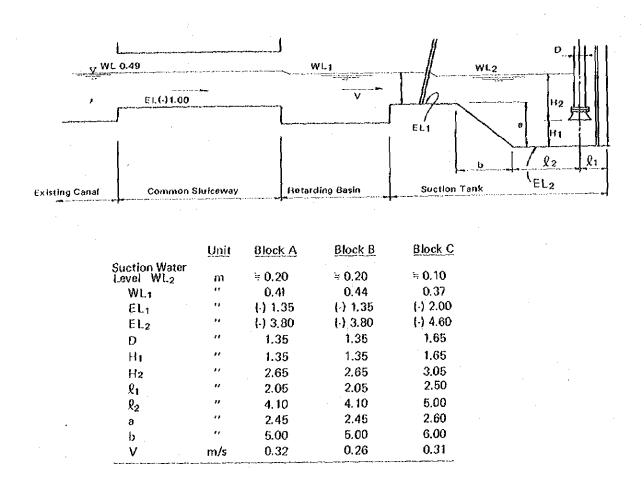
#### (1) Decision of Suction Water Level

### In case of irrigation water supply:

The suction water level in case of irrigation water supply is calculated by deducting the loss head caused by common sluiceway and screen provided in the suction tank from the low water level of 0.49 m.



Description	Unit	Block A	<u>Block B</u>	Block C
Design water requirements, Q	m ³ /s	4.96	4.14	7.82
Width of the common sluiceway, B	m	4.40	4.40	5.40
Cross-sectional area of flow, A	m ²	6.56	6,56	8.05
Hydraulic radius, R	m	0.557	0.557	0.584
Velocity, V	m/s	0.756	0.631	0,971
Velocity head, hv	m	0.029	0.020	0.048
Hydraulic gradient, I		2.8x10 ⁻⁴	$2.0 \times 10^{-4}$	4.3x10 ⁻⁴
Loss head, h	m	0,071	0.049	0.113


h = (fe + fse)hv + I.

fe : coefficient of inlet loss 0.5 fse: coefficient of outlet loss 1.0

$$T = \frac{N^2 V^2}{B^4/3}$$

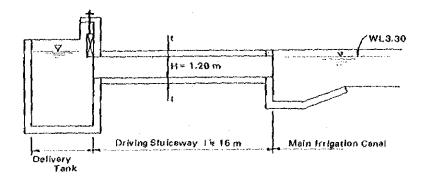
Roughness coefficient 0.015 (Reinforced concrete)

The suction water level and the bed elevation of the suction tank are calculated as follows;



#### In case of drainage:

Assuming that the water level of the retarding basin is WL 1.50^{$\pm$} in all blocks, the suction water level will be WL 1.20 after reducing the loss head of 0.30^{$\pm$} m at the part of suction tank.


From the result of study, design bed elevation of suction tank and the depth of suction tube are decided based on the irrigation water supply.

#### (2) Decision of Delivery Water Level

#### In case of irrigation water supply:

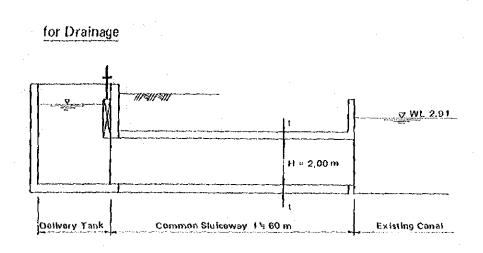
÷.,

Assuming that half of design irrigation water requirement is to be distributed from the suction tank to each main irrigation canal, the delivery water level will be roughly calculated as follows;



The water level of the delivery tank is calculated by adding the loss head caused by the driving sluiceway to the design water level of WL 3.30 for the main irrigation canal.

Description	Unit	Block A	Block B	Block C
Design water requirements, Q Cross-sectional width of the	m ³ /s	2,48	2.07	3,91
driving sluiceway, B	m	2.0	2.0	3.0
Cross-sectional area of flow, A	m ²	2.4	2.4	3.6
Hydraulic radius, R	10	0,387	0.387	0,429
Velocity of flow, V	m/s	1,033	0.863	1.086
Velocity head, hv	m	0.054	0.038	0,060
Hydraulic gradient, I		8.5x10 ⁻⁴	5.9x10 ⁻⁴	6,2x10 ⁻⁴
Loss head, h	ររា	0.094	0.066	0.099
Delivery water level, HWL		\$ 3.40	≒ 3.40	¥ 3.40


h = (fe + fse)hv + 1.l = 1.5hv + 1.l

Roughness coefficient

N = 0.015

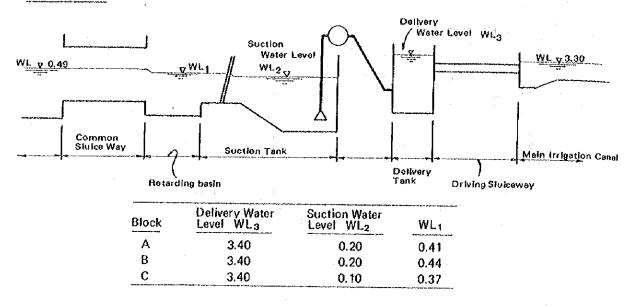
$$I = \frac{N^2 V^2}{R'^1/3}$$

# Incase of drainage:

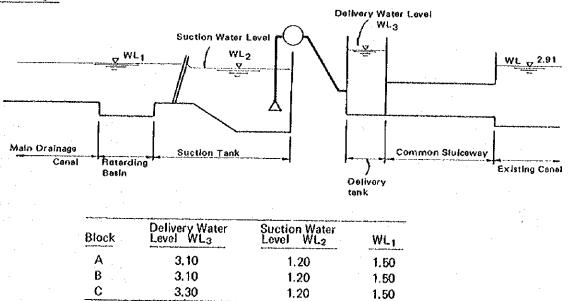


The delivery water level is calcuated by adding the loss head caused by the common sluiceway to the design outer water level of WL  $3.00^+_{-}$ .

Description	Unit	Block A	Block B	Block C
Design drainage discharge, Q Cross-sectional width of the	m ³ /s	11.97	10.31	19.32
common sluiceway, B	n	4 1	4.4	5.4
Cross-sectional area of flow, A	m ²	8.8	8.8	10.8
Hydraulic radius, R	18	0.688	<b>0.688</b>	0.730
Velocity of flow, V	m/s	1.360	1.172	1.789
Velocity head, hv	10	0.094	0.070	0.163
Hydraulic gradient, I		6.9x10 ⁻⁴	$5.1 \times 10^{-4}$	$1.1 \times 10^{-3}$
Loss head, h	m	0.182	0.136	0.311
Delivery water level, HWL		= 3.10	≒ 3.10	5 3.10


Figure A.4-46 indicates the results of design suction and delivery water level.

#### FIGURE A.4 - 46


1.1

# DESIGN SUCTION AND DELIVERY WATER LEVEL

#### for Irrigation



for Drainage



# So, actual heads of pump (WL3-WL2) are calculated as follows;

	Block A	Block B	Block C
for irrigation	3.20	3.20	3.30
for drainage	1.90	1.90	2.10

# (3) Calculation of Total Head

The total head of pump can be calculated by adding the total loss head in the pipe to the actual head of pump. The loss heads in the pipe are calculated as follows;

Buttorfly valve	
45° Bending pipe	Block A.B Block C
$D_1 \begin{pmatrix} P \end{pmatrix} \rightarrow b \downarrow$ $D_1 \begin{pmatrix} P \end{pmatrix} \rightarrow b \downarrow$ $P \to b \to $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
45 ⁶ Bending pipe Bell mouth	
(1) Suction loss head (he)	4 ^{- 1}
he = $fe.V_1^2/2g$ fe:	0.3 (Bell mouth)
(2) Bending loss head (hb)	
$hb = n \cdot fb \cdot V_1^2/2g$ fb:	0.13 n: Number of bending pipe
(3) Reducer loss head (hgd)	
hgd = fgd. $(V_1 - V_2^4)^2/2g$	fgd: 0.13 V': Velocity of flow after reducing
(4) Valve loss head (hv)	
$hv = fu V_1^2/2g$ fv:	0.30 (Butterfly value)
(5) Delivery loss head (hse)	
hse = $fse.\sqrt{2}/2g$	fse: 1.5 (In case of flap Valve)
(6) Friction loss head (hf)	
hf = f.( $\ell_1$ + $\ell_2$ ). $V_1^2/2g$	f: 0.0141 (φ1,350) f: 0.0108 (φ1,650)

If pumps are planned for the purpose of drainage, total loss head for the irrigation will be nearly 130% of that in case of drainage, resulting in 70% of discharge in the drainage. Therefore, the loss heads in pipes in case of irrigation purpose are calculated based on the 70% of drainage discharge.

 $\pm \mathbf{r}_{ij}$ 

		Dla	سار ۵	D) o	olc D		al a
		Irriga-	ck A	Irriga-		Blc Irriga-	
ltems	Unit				Drainage	tion	Drainage
Lifting capacity, Q	$m^3/s$	3,99	2,79	3.44	2.41	6.44	4.51
Diameter of pipe, D1	ហា	ф <u>]</u> .	;350	φł,	350.	φ],	650
Diameter of pipe, D ₂	010		,650	\$1,	650	φ <u>1</u> ,	800
Velocity at $D_1$ , $V_1$	m/s	2.787	1.949	2.403	1.684	3.012	2,109
Velocity at D2, V2	m/s	1.866	1.304	1.609	1.127	2.531	1.772
Velocity head of $V_1$ , t	IV1						
•	m	0.396	0.194	0.295	0.145	0.463	0.227
Velocity head of $V_1$ , h	122				-		
•	m	0,178	0.098	0.132	0.065	0.327	0.160
Suction loss head, he	m	0.119	0.058	0,089	0.044	0.139	0.068
Bending loss head, hb	m	0.154	0.075	0.116	0.057	0.180	0.089
Valve loss head, hv	m	0.119	0.059	0.089	0.044	0.140	0.068
Reducer loss head, hgd	m	0.009	0.005	0.006	0.003	0.003	0.002
Friction loss head, hf			•				
	m	0.084	0.041	0.063	0.030	0.080	0.039
Delivery loss head, hs	e						
	Dł	0.267	0.147	0.198	0.098	0.491	0.240
•							
Total		0.752	0.385	0.561	0.276	1.033	0.506
•		0.80	0.40	0,60	0.30	1.10	0.50
	· ·		÷				

- Therefore, the total loss head in each blocks are as follows;

	Bloc	Block A Block B		Block C		
	Irriga- tion	Drainage	Irriga-	Drainage	Irriga- tion	Drainage
		mainage	t ion	Drainage	LION	Dearnage
Actual head	1.90	3.20	1.90	3.20	2.10	3.30
Loss head in pipe	0.80	0.40	0.60	0.30	1.10	0.50
Total (loss head)	2.70	3,60	2.50	3.50	3.20	3.80
		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -				

#### Study on the Suction Performance of Pump (Cavitation)

If high vacuum is partly formed in water flow, the water vaporizes and fine bubble of vapor arises. This phenomenon called cavitation, which arises around the entrance of the impeller of pump, and causes noise and vibration, reduces the pumping efficiencies and the delivery discharge, and at last causes the stop of operation. In order to prevent from this penomenon, the suction head and the type of pump must be decided considering that the pump is able to endure against the high pressure more than the required minimum pressure, that is, the reducing pressure at the entrance of the impeller plus the saturated stream pressure of water.

The study on cavitation was made for the horizontal axial flow pump and the horizontal mixed flow pump in each case of the operating for irrigation and/or drainage. In the study, following two values of Net Possitive Suction Head (NPSH) are estimated;

> NPSH which the pump requires ..... (hsv) NPSH which the pump is able to avail ..... (Hsv)

In order that the pump does not cause the cavitation

Hsv > hsv is sufficient condition.

#### Calculation of hsv;

hsv is calculated by the following arithmetical formula.

hsv = 
$$(\frac{N \cdot \sqrt{Q}}{S})^{\frac{1}{4}/3}$$
  
N =  $\frac{Ns \cdot H^{\frac{3}{4}}}{Q^{\frac{1}{2}}}$ 

where,

Q : Delivery discharge (cu.m/min)

S : Suction specific velocity Mixed flow pump % 1,300, Axial flow pump % 1,200

N : Number of impeller turning (rpm)

H :	Total pump head	•
Ns:	Specific velocity Mixed flow pump: Axial flow pump:	900 - 1,000 1,500 - 1,600

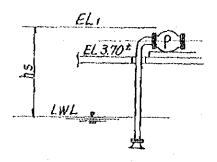
				N(rpm)		hsv (m)	
				Axial	Mixed	Axial	Mixed
Block Q(m ³ /min)	$Q^{1/2}$	<u>H(m)</u>	H3/4	flow pump	flow pump	Flow pump	flow pump
A 239	15.46	2.7	2 11	220	140	¥.01	1.97
B 206	14.35	2.5	1,99	220	140	3,63	1,79
C 386	19.65	3.2	2,39	200	120	4,86	2.23

#### Calculation of Hsv:

Hsv is calculated by the following formula:

Hsv = Ha - hs - hv - ht - h = 9.5 - hs - ht

Ha : Atmospheric pressure (10.33 m)


hs : Actual suction head (m)

hv : Saturated stream pressure (0.33 m)

ht : Suction loss head (m)

h : Allowance 0.5 (m)

Actual suction head indicates the height from the suction water level to the upper end of pump.



			Drainage	Irrigation				
Item	Unit	Block A	Block B	Block C	Block A	Block B	Block C	
LWL	m	1.20	1,20	1.20	0,20	0.20	0.10	
EL	m	6.10	6,10	6,30	6,10	6.10	6,30	
hs	រា	4.90	4,90	5.10	5,90	5,90	6.20	
ht	ົກ	0.25	0.19	0.28	0.13	0,10	0.15	
Hsv	m	4.35	4.41	4,12	3.47	3,50	3.15	

	11	orizo	ntal axia	al flo	w pump	Horizontal mixed flow pump									
		Dr	ainage	In	igation		Dre	linage	Irrigation						
ßlock	hsv	llsv	Judgment	Hsv	Judgment	hsv	Hsv J	ludgment		Judgment					
	(m)	0-21040				(m)		angga ngga ng Salanta pinana panja ga	·····						
٨	4.01	4.35	. P	3.47	F .	1,97	4.35	Р	3.47	Р					
В	3.63	4.41	Р	3.50	I	1.79	4.41	Р	3.50	Р					
С	4.86	4.12	r	3.15	I	2.21	4.12	P	3.15	P					
	:														

Note: P; Possible I; Impossible

from the table mentioned above, the axial flow pump is able to be operated for the purpose of drainage, but it can not be operated for the purpose of irrigation, therefore, the horizontal mixed flow pump are recommended in all blocks in the Project.

### Decision of the Pumping Dimensions

1.1

The pumping dimensions should be decided in the case of drainage, because the delivery discharge is bigger than that in case of irrigation.

• Number of impeller turning (N)

The number of impeller turning is calculated by the following formula;

$N = N_{S} \frac{H^{3/4}}{H^{2}}$	Ns : Specific velocity (mixed flow pump Ns = 900 - 1,000)	
Q ^{1/2}	Q : Design delivery discharge (cu.m/min)	
	H : Design total head (m)	

<u>Block</u>	Q (m ³ /min)	<u>ll(m)</u>	H3/4	N
Α	239	2.70	2,11	140
В	206	2.50	1.99	140
C	386	3.20	2.39	120

^o Number of poles and revolutions, and the type of motor.

Number of poles, P	6
Number of revolutions, rpm	1,000
Туре	Three-phase motor
	·

• Required output of the motor

The required output of motor is calculated by the following;

$$RHP = \frac{K.r.Q.H(1+\alpha)}{\eta p.\eta_G}$$

PHP : Required output (KW) (PS)

к:	Coefficient	In	case	of kw	 0.163
		In	case	of PS	 0,222
•	· · · · ·				

r : Specific gravity of water 1.0

. -

Q : Delivery discharge (cu.m/min)

H : Total pumping head (m)

α : Surplus coefficient 0.15

ng 🕴

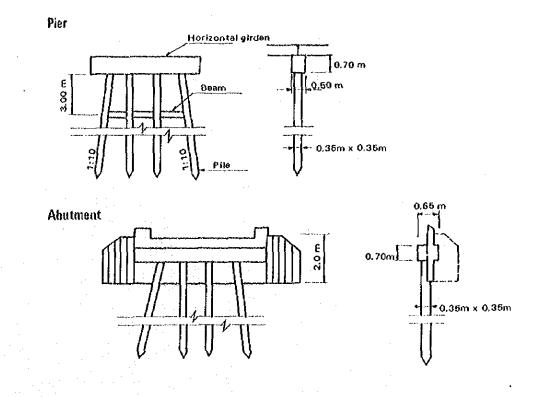
.

.

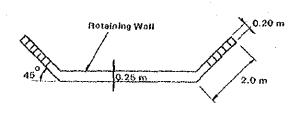
,

.

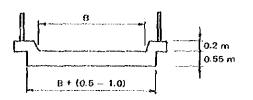
Conduction efficiency in case of using the reduction gear, 0.95

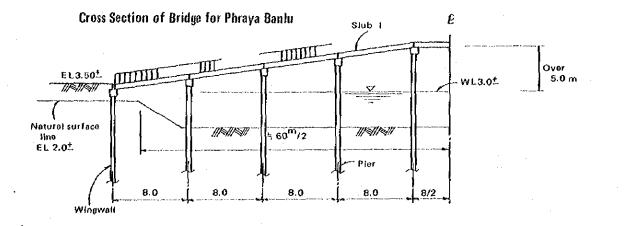

	Boredia-		Delivery discharge	Total	Required	output
Block	meter	Units	per unit	llead	KW	PS
2,112,111	( mæ)		$(m^3/min)$			
٨	φ1,350 ·	3	239	2.70	170	240
В	φ1,350	3	206	2.50	140	200
С	φ1,650	3	386	3.20	300	440

#### Typical Design of Bridge

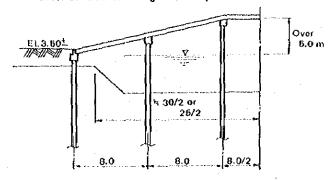

4.5

Bridges will be constructed across the eixsting canals, that is, Phraya Banlu, IL-2, Khud Mai and Nai Chat in the Project Area. Automobile can not pass to the existing wooden bridges except in a few bridges, but after completion of this Project, it is considered that the traffic will be increased owing to the development of road function, and therefore stable bridges, that is, steel bridges, prestressed concrete bridge and slub bridge will be necessary. Slub bridge is adopted in this planning from economical point of view. After completion of the Project, the existing canals will be used for the navigation canals, so the central portion of bridge should be high in order that a ship will be able to a through under the bridges.


Generally speaking, maximum span length of slub bridge is ten meters. So the length of it is planned to be eight meters in considering the safty and the span division. Typical designs are as follows, after making reference to the typical designs which belong to the Department of Highway, RID.




### Appendix 4-59 Page 2




Slub





Cross Section of Bridge for IL-2, Khud Mai and Nai Chat



#### Estimation of Deduction Ratio

The deduction ratio after the project equipped with necessary facilities can be estimated by applying the following equation;

Reduction Ratio (%)

area to be reducted by on-farm facilities x 100 objective area for on-farm facilities

On farm facilities include the all irrigation and drainage canals and roads except the provincial roads, and of which reduction ratio of each block amounts as follows;

Description	Block A	Block B	Block C	Total
Area of on-farm facilities (	ha) (a) 223	181	341	745
Objective area for on-farm facilities (ha) (b) ^{1/}	3,250	2,764	5,273	11,287
Reduction Ratio (%) (c)=(a)/(b)x100	6.9	6.5	6.5	6.6

Note:

	Block A	Block B	Block C
Gross area (1)	3,493 ^{ha}	3,057 ^{ha}	5,744 ^{ha}
Area of existing canal (2)	26	1.2	93
Area of public facilities $(3)^{\frac{2}{2}}$	121	125	198
River side land (4) $\frac{3}{4}$	1.8	75	82
Dike (5)	50	43	62
Borrow pit (6)	24	22	32
Provincial road (7)	14	1.6	· 4
· · · · · · · · · · · · · · · · · · ·			

1/: (b) = (1) - {(2) + (3) + (4) + (5) + (6) + (7)}

21: consists of homestead, school, supporting services, fish pond and animal husbandry.

3/: areas between dikes to be provided along the Khlong Phraya Banlu, Khud Mai and Nai Chat. Table A.4-64

1.

Length and Area of Bed Width for Proposed Facilities (Block A)

Туре	Longth		ike			<u>8, P</u>	М	ow pit	Į.,	D.C	ro	ncial ad		road	Comm	unity ad
<u>type</u>	Length km	<u>U.W</u> m/m	$\frac{R.A}{ha}$	<u>U.W</u> m/m	L km	$\frac{R.A}{ha}$	-2 km	R.A ha	<u>k</u> m	$\frac{R.A}{ha}$	<u>U.W</u> m/m	R.A ha	<u>U.W</u> m/m	R.A ha	<u>U.N</u> m/m	R.A ha
Dike (8m) (with M.I.C)		17 .05					. •				<i>, .</i>	110	117 11	iju	137 16	lici
(4m) (with M.I.C)	7.5	$17.25 \\ 13.25$	0.0	26.10							-				~	·
" (8m) (without M.I.C)	7.5	13.25	9.9	23.60			7.5	17.7			-				~	
" (4m) (without M.I.C)	29.9	13.25	39.6	19.40	111 0	00.5		<u> </u>	÷	• • •			-	•	~	-
Main road (6m) (with L.I.C)	2.75	13.23	39.0	16.80	14.0	23.5	1.5	2.5	14.4	24.2	-			÷		-
" (with D.D)	10.45	~		-			~				-	-	8.38	2.3	-	-
" (with L.D.C)	5,60		-		-		-	••	-	-			8.50	8.9	-	-
" (with L.I.C and L.D.C)	1.30		-		-				-		-	-	8,50		*~	-
Community road (4.0m) (with M.I.C)	1,00			-	-	-		-	•		-	-	8.88	1.2		
" (with L.I.C)	25.05		~	-	-		-	-	-				~	••	6.75	
" (with D.D)	6,55	-	-		-	-			-					-	6,38	16.0
" (with L.I.C and L		-	-	-		-	-		<b></b>	<u>.</u>		-		-	6.50	4.3
	1.0															
Leading drainage canal (with O.F.R)	9.75	~		***	. –	~	*	-	-	~	-				6,88	0.7
Existing provincial road (with M.I.C)	-	-	-	-	***			-		-		-				
" (with L.I.C)	4.15	-			-	~					11.0			~		
	4.10		**		••	-			-	••	10.5	4.4			-	-
Proposed provincial road (with M.I.C and		-			-			-	*	-	11.0		-		~	-
hoposed provincial road (with hirre due	- M.D.C)	-	-				_				10.0					
" (with M.D.C)	<b>••</b>					-	-				12.0		-	-		
" (with M.I.C)		÷.					**			-	11.5		-	••	-	
Existing Dike (with L.D.C)		10.0	-	~	-	-	-	-			11.0			-		-
Existing Road (with L.I.C)		.LV.V						-	-	••		-		••		-
method war (http://witto)	-		~		_	. ••	~			<b>-</b> .			9.25			•
Total		(37.4)	49.5		(14.0)	23.5	(9.0)	20.2	(14.4)	24.2	(4.15)	4.4 (	[14.5)	<u>12.4</u> (	32.6)	21.0

Note: ( ) shows the total length of facilities

U.W : Unit width (m) R.A : Required area (ha) M.I.C : Main irrigation canal L.I.C : Lateral irrigation canal M.D.C : Main drainage canal L.D.C : Leading drainage canal D.D : Drainage ditch O.F.B : One farm road

0.F.R : On-farm road

		Ма	in	Lateral								
On~f	arm	irrig	ation	irri	gation	ď						
roa	d		nal		na).							
U.W	R.A	U.W	R.A		R.A	Ū						
m/m	ha	m/m	ha		ha	m,						
		14,50			·							
	- '	14.50	10.9		_							
-	~		-	-								
<del>.</del> .	-				-							
	<b></b>			4.30	1.2							
		-	-	-	~							
	-	•			••							
-		-	•-	3.30	0.4	·						
-		7.78				-						
	-	-	-	4.30	10.8							
-		~			~							
-			~	3.30	0.3	-						
3.6x2	7.0			lares.		-						
	-	10.10				٠						
-	~			4.10	1.7	-						
-	-			-	-	-						
-		8.10			••	12.						
						12						
<u>↔</u>	-	10.10				-						
	-	-	-		-							
	-	-		4,30		-						
(19.50)	7.0	(7.50)	10.9	(34,25)	].4.4							

Length and Area of Bed Width for Proposed Facilities (Block A)

14

														1.1.1		· .	1		1						
		•				•							Ма	in	Lat	ceral.	Mai	n	Len	ding					
<u> </u>		w pit				incial		-		unity	On~f	Farm	irrig	ation	irri	gation	drain	age		inage	Drai	nage			· · · · ·
B.P	<u>M.</u> ]	<u>) C</u>	<u>L.</u>	D.C		ad	Main	road	ro		roa	ad	ca	inal	ea	mal.	can	al	0 H	nal	dit	ch	Tot	al	Number of
$\frac{R.A}{ha}$	<u>k</u> m	R.A ha	<u>k</u> km	R.A ha	U.W m/m	R.A ha	<u>U.W</u> 70/m	$\frac{R.A}{ha}$		R.A ha	U.W	R.A	<u>U.W</u> m/m	R.A	U.W	R.A	0.0	R.A	U.N		<u>U.W</u> m/m	R.A ha	<u>U.W</u> m/m	R.A ha	Unit Cost
ha	km	ha	km	ha	m/m	ha	m/m	ha	m/m	ha	<u>U.W</u> m/m	R.A ha	m/m	ha	m/m	ha	m/m	ha		R.A ha	m/m	ha	m/m	ha	••••
																				· *					
	7,5	17.7		1	-		~	· ••			•••	·	14.50				-	~	~			-	57.85	-•	D-1, MIC-1
	/,5	11.1.1		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			~				-		14.50	10.9	-	-	· -		-	-	••		51.35	38.5	D-2, MIC-2
00 C	, c	0.0	3.4. 1.	04 0	•••	÷ .			÷ '		-	-		-	- · · ·	-	~	-	-	~ `	-		36,65	-	D-3
23.5	1.5	2.5	14.4	24.2			~	-		-	-		-	·			-		-	. <del>.</del> .	<b></b>		30.05	89,8	D-4
-		•••• .	~	-	· –	•••	8.38	2.3	-		-		-		4.30	1.2		~	-		•••		12.68	3.5	MR-1, LIC-1
~	-	<b></b> .	. ~		-	~	8,50	8.9			· _	-	~	-	-	-		-	- ]	-	3.4x2	7.1	15.30	16.0	MR-2, DD-1
				~			8.50			-		-	<b></b>	<b>~</b> '	~				5.4x2	3.0	-		19,30	3.0	MR-3, LDC-2
	-						8,88	1.2	<u> </u>		-	-	'		3.30	0.4	<b>~</b>		5,90	0.8	**		18.08	2,4	MR-4, LDC-3, LIC-3
~		-	-			·	-	-	6.75		· ••		7.78			•	~				-		14.53	~	CR-4, MIC-4
~~			~	-			-	-	6.38	16.0	-		<b>-</b> '		4.30	10.8	<b>_</b> '		-	-		_	10.68	26.8	CR-1, LIC-2
				<b>-</b> '	-	· ~		<del>-</del> ·	6.50	4.3	÷	-		~		<b>~</b>	~	~	-	-	3.4x2	44	13.30	8.7	CR-2, DD-2
																									-
	يت.	-		~			·	_	6.88	0.7					3.30	0.3	<del></del> .		5.90	0.6	***	1~	16.08	1.6	CR-3, LDC-4, LIC-4
-	-			<b>-</b> '	. –	-					3.6x2	7.0	~		-	-	-	_	7.00	6.8		-	14,20	13.8	OFR-1, LDC-1
	-			-	11.0		-			-			10,10			-				-		-	21.10	·	PR-2, MIC-3
~		-			10.5	4.4		_		-		~-		-	4.10	1.7		-	_				14.60	6.1	PR-1, LIC-5
·		-	-	÷	11.0		· · ·	<u></u>	~	-	_	-	_		· · · ·			_				_	11.00		PR-5
			• •								-		-												
-	+		5	- 1 🚅 -	12.0				-	-			8.10			-	12.05			-			32.15	-1	PR-3, MIC-5, MDC-1
**		÷		-	11.5		_	_	_		~	~	0.10				12.05		_				23.55		PR-4, MDC-2
	-		-	_	11.0							~	10.10		-	-	12.005		-				21.10	<u>.</u>	PR-6, MIC-3
			_				_	-		-	-	~	10.10				~~	-	5.0	-	-		15.00		D-5, LDC-5
						-	9,25		-		-	•-	<b>.</b> .	-	- h 20		-	. <b>-</b>	5.0		-	-	13.55	_	MR-5, LIC~6
		-			_	_	9,20	•	~	-					4.30		-	-	-		-	-	T0+00	—	int of his o
23.5	(9.0)	20.2	(14.4)	24.2	(4.15)	4.4	(14,5)	12.4 (	(32.6)	21.0	(19.50)	7 0	(7.50)	10.0	(34 25)	14.4			(17.65)	11.2	(34.0)	11.5		210.2	
					( )		(2110)			£, ⊥ + Ų museinininis	(13:00)		(7.50)	1.V   J	(01120)	L 4 • 1		,	(11,00)	A L + 4.	(0000)				
			· ···· ···· ···· ···· ····· ·····											والمرار والمستورية والمعادية	····			****							

of facilities

nal canal anal

Appendix 4-61 Page 2

Table A.4-65

1 .

Length and Area of Bed Width of Proposed Facilities (Block B)

							Down				Diamon	4			<u>^</u>	•	0	-		ain		teral
		D.	ike		······	B.P		ow pit D.C	L.D			incial oad	Main	road		unity ad		farm		igation		igati
Туре	Length	U.W		U.W	e		management of the second		TATA Discribit and surface distant	R.A	U.W		II W		roa U.W	R.A	roa H W		0.W	anal Rá		anal p
	km	m/m	R.A ha	U.W m/m	km	$\frac{R.A}{ha}$	<u>k</u> km	R.A ha	<u>k</u> km	ha	<u>m/m</u>	R.A ha	m/m	R.A ha	$\frac{0.W}{m/m}$	$\frac{K \cdot h}{ha}$	U.W m/m	$\frac{R.A}{ha}$	0.11 m/19	R.A ha	$\frac{\overline{U.W}}{m/m}$	<u>R</u>
Dike (8m) (with M.I.C)	<del>.</del>	17.25		26,10											_	_			14.50			ľ
" (4m) (with M.I.C)	9.45	13,25	12.5	23.60			9.45	22.3				~	_	_		-	-					,
" (8m) (without M.I.C)		17,25		19,40									_	-	-	_		~	71100			,
# (4m) (without M.I.C)	22.4	13.25	29.7		13.1	22.0	4.0	6.7	5.3	8.9			_	~*	-	· -				_		,
Main road (6m) (with L.I.C)	2.4	-	••	_			- · · ·			0.0			8.38	2.0	-						4.30	, r
" (with D.D)	8.3		<b>-</b>		-		-	~		_	~	-	8.38	$2.0 \\ 7.1$	-		-			<u> </u>	4.50	L P
" (with L.D.C)	5.6	-	•							-		-			~		-		~~	-	-	,
" (with L.T.C and L.D.C)								-		-	-	-	8.50	4.8		~	-		bern	-		,
Community road (4,0m) (with M.I.C)	~~		_	-			-		. =-	-	-		8,88		-	~*	-	-	- - -	~	3.30	P
" (with L.I.C)	12.0			_		-			~						6,75		<i></i>	-	7,78		-	
" (with D.D)		-	_	_			~~	-		-		-		-	6.38	7.6	-		-	-	4.30	5
" (with L.I.C and L.	.D.C)				_	-			-		-	**	<b>6-</b>	-	6.50			<del>~-</del>		•-	~-	· 1
					· _										~ ~~						0 00	,
leading drainage canal (with O.F.R)	12.35		-		_	_	-	~	24	-	-	-		-	6.88		0		-		3.30	,
Existing provincial road (with M.I.C)	2.65	_						-	-			~ ~		-	~		3.6x2	8,9		-		. ,
" (with L.1.C)	5.45	•~					-	-	-		11.0	2.9		-	-	-	***		10.10	2.7	-	<u>^</u>
11	6.50	 					•	••			10.5	5.7	~	-		-	-		-		4,10	2
Proposed provincial road (with M.I.C and			-	~	~	-	-				11.0	7.2		***			-	~	-		-	, 1
	-						-	_	_		12.0								8.10			·
" (with M.D.C)	-				<b></b>		-	-		-	12.0		-	_			÷	~	0,10		~	•
" (with M.I.C)				_		-			-				-	-	-			-	10 10		~	•
Existing Dike (with L.D.C)	1.2	10.0	1.2	~		-	-	-			11.0		-	-	-	-	-		10.10		-	•
Existing Road (with L.I.C)	~ • • •	± • • •		-		~				~	~		0.00	-	~	-	· •••	-	-			•
					-	~		-	~	-	•••	-	9,25		-			-	-		4.30	
Total		(33.05)	43.4		(13.1)	22.0 (	13.45)	29.0	(5.3)	8.9	(14.6)	<u>15.8</u> (	16.3)	<u>13.9</u> (	12.0)	7.6	(24.7)	8.9	(12.10)	) <u>16.4</u> (	(19.85)	8
марада фала алында таралаларын бай форма алаар жана айлам тараттар айлар айлар айлар тараттар бай тараттар бай бай тараттар ала об айлар жана айлам тараттар ала об айлар жана айлам													· · · · - · · · · · · · · · · · · · · ·							· • • • • • • • • • • • • • • • • • • •		

Note: ( ) shows the total length of facilities

U.S : Unit width (m) R.A : Required area (ha) M.I.C : Main irrigation canal L.I.C : Lateral irrigation canal M.D.C : Main drainage canal L.D.C : Leading drainage canal D.D : Drainage ditch O.F.R : On-farm road

# Area of Bed Width of Proposed Facilities (Block B)

r pit C R.A ha	L.D L.D km	.C R.A ha	Provi rc U.W m/m	ncial bad <u>R.A</u> ha	Main U.W m/m	road <u>R.A</u> ha	Commu roz <u>U.W</u> m/m		On-f roa <u>U.W</u> m/m		irri	in gation nal <u>R.A</u> ha		eral gation nal <u>R.A</u> ha	Mai drain <u>can</u> U.W m/m	age	dra ca	ling inage nal <u>R.A</u> ha	Drail dite <u>U.W</u> m/m		To <u>U.W</u> m/m	tal <u>R.A</u> ha	Number of Unit Cost
					<u>_</u>	· _				· •••	14.50		•*		~		- 1	••			57,85		D-1, MIC-1
22.3					~	~		·			14.50	13.7	**	-	-	-	-	~	-		51.35	48.5	D-2, MIC-2
				-	_	~	-	_		-				-	-	~	-		•••	~	36,65	-	D 3
6.7	5.3	8.9			-	•	-	-		-	-	-		-						-	30.05	67.3	D~4
-	~		-		8,38	2.0	-	-		-	••		4.30	1.0	· 🛶	•		-	**	-	12.68	3.0	MR-1, LIC-1
-		••	-	-	8.50	7.1	-74	-		-	-			<b></b>	-		-		3.4x2	5.6	15.30	12.7	MR-2, DD-1
~	<b>-</b>	-		~	8.50	4.8	-	~			-	-	-	-	- ·		5.4x2	3.0	-	-	19.30	7.8	MR-3, LDC-2
-		~	-		8.88		-	~		-	-	***	3.30			-	5.90			~	18,08	-	MR-4, LDC-3, LIC-3
	•-		<b>.</b>	·	<b>~</b> .		6,75		~	-	7.78		⊷			**	-	-			14.53	~	CR-4, MIC-4
-	-	-		-		~	6.38	7.6	-				4.30	5.2			~	-	-	••	10.68	12.8	CR-1, LIC-2
	-			-	-		6.50		·	-	-			~	••	••		~	3.4x2		13,30		CR-2, DD-2
_	_	_		_	_	_	6.88			**		_	3.30			~.	5.90			-	16.08	~	CR-3, LDC-4, LIC-4
	_	_	_		·	_	-		3.6×2	8.9		_	_				7.00	8,6		-	14.20	17.5	OFR-1, LDC-1
-	-		11.0	2.9	_				-	-	10.10	2.7			-		_				21.10	5.6	PR-2, MIC-3
-	-	-	10.5	5.7	_	_	_	_	-	-	_	_	4.10	2.3							14,60	8.0	PR-1, LIC-5
	-		11.0	7.2	-	-		-		<b>_</b>	~~*		-		<del>.</del> .		-				11.00	7.2	PR-5
-	~		12.0		-		_	_	***		8.10		~		12,05		-	~	••	~	32.15		PR-3, MIC-5, MDC-1
_			11.5				-		-		~		-	-	12.05						23.55		PR-4, MDC-2
~	_	-	11.0		-	-					10.10		~	•-		-					21.10	~	PR-6, MIC-3
_		-	- ·	_		~	_			⊷	-	-		-	-		5.0	0.6		-	15.00	1.8	D-5, LDC-5
	-			-	9,25		-	<b>-</b> '	~	•			4,30					<u> </u>		~	13.55	-	MR-5, LIC-6
29.0	(5.3)	8.9	(14.6)	15.8	(16.3)	<u>13.9</u> (	(12.0)	7.6	(24.7)	8.9	(12.10)	<u>16.4</u> (	(19.85)	8.5			(19.15)	12.2	(16.6)	5.6		192.2	

# Appendix 4-61 Page 3

 $\mathbf{N}$ 

 $\mathbf{N}$ 

			n	ike		*******************************	B,P		ow pit	·····			incial	N - *	. 1		unity		-farm	i
:	Туре	Length	U.W	R.A	U.W	l	and the second sec		D.C	Transmission (see Transmission)	D.C	U.W	ad	manufacture of the second	road	$\frac{ro}{U.W}$			oad	
·	Туре	Length km	m/m	ha	$\frac{0.11}{m/m}$	km	$\frac{R.A}{ha}$	<u>k</u>	R.A ha	<u>2</u> km	$\frac{R.A}{ha}$	$\frac{0.w}{m/m}$	R.A	$\frac{U.W}{m/m}$	$\frac{R_{IA}}{ha}$	$\frac{0.W}{m/m}$	R.A ha	<u>U.W</u> m/m	R.A	$\frac{\overline{U}}{\overline{m/2}}$
		K III	tin vin	na	107 BI	Kan	net	ĸm	na	. Kiil	na	m/m	ha	m/m	ha	m/m	na	m/m	ha	m/
	(with M.I.C)	7.0	17.25	12.1	26.10	6.5	17.0	0.5	1.3			-		<del>~</del>	-	•-	~			14.
∥ (4m)	(with M.I.C)	3.0	13,25	4.0	23,60			3.0	7.1			_	_	-	~	_		-		14.
" (8m)	(without M.I.C)	6.6	17.25	11.4	19.40	0.4	0.8			6.2	12.0		·	-		-			-	
" (Կա)	(without M.I.C)	22.8	13.25	30.2	16.80	8.4	24.1	1.0	1.7	13.4	22.5		-		-	_	-		~	
ain road	(6m) (with L.I.C)	5.0	_	-		-	-		~	~	~		-	8.38	4.2					_
17	(with D.D)	16.9	-	-		·			-		••		_	8.50	14.4	~	<u></u> -		_	
u	(with L.D.C)	-	. –	<b>⊷</b>	-	-			-			_	-	8.50					-	~
11	(with L.I.C and L.D.C)			-	-	-	~	~	-		·			8,88						
Community	road (4.0m) (with M.I.C)	3.2					~~		-	_				~	~	6.75	2.2	~		7.1
11	(with L.I.C)	28.2		-	~	-	-		· 🖬	_	-		-	~	_	6.38	18.0			-
11	(with D.D)	11.55	e '		_		-	-	_			-				6.50	7.5			
14	(with L.I.C and L	.D.C)																		
		11.55		-	-			-	•••	-			_	_		6.88	8.0			~
leading di	cainage canal (with O.F.R)	15.20	-	-											-	-		3.6x2	10.9	-
Existing 1	Provincial road (with M.I.C)	-	-	-						-	-	11.0		••	-			•••	-	10.1
11	(with L.I.C)	-	-	-		·		·				30.5		-	~	••			-	
11		-	-		-		-			-		11.0				-8				
Proposed (	provincial road (with M.I.C and	d M.D.C)																		
		2.0					-		-		~•	12.0	2.4					-	~	8.1
<b>#</b> T	(with M.D.C)	0.5			<b>*-</b>		-		-	-		11.5	0.6	-	-	-		-		
e)	(with M.I.C)	1.3	-	· 🛶	••	مو	-	-			-	11.0	1.4		~		-		-	10.10
Existing I	Dike (with L.D.C)	4.6	10.0				. ~	-	~			•~	-				-	_		
Existing H	Road (with L.I.C)	3.0			-	**	-			~	-	~		9,25	2.8	·	-	-	-	-
	Total		(44.0)	62.3		(15,3)	31.9	(4.5)	10.1	(19.6)	34.5	(3.8)	<b>타.</b> 타 (	(24.9)	21,4 (	54,5)	35.7	(30.4)	10.9	(16,5)

#### Note: ( ) shows the total length of facilities

U.W :

1

- R.A :
- M.I.C ;
- Unit width (m) Required area (ha) Main irrigation canal Lateral irrigation canal L.I.C :
- M.D.C :
- Main drainage canal Leading drainage canal Drainage ditch L.D.C :
- D.D :
- On-farm road 0. F.R :

th and Area of Bed Width for Proposed Facilities (Block C)

cial <u>d</u> <u>Main road</u> <u>R.A</u> <u>U.W</u> <u>R.A</u> <u>m/m</u> ha - - - - - - - - - - - - -	m/m ha	On-farm road U.W R.A m/m ba	Main irrigation canal. $\overline{U.W}$ R.A $\overline{m/m}$ ha 14.50 10.1 14.50 4.3	Lateral irrigation canal U.W R.A m/m ha	Main drainage canal U.W R.A m/m ha	Leading dmainage canal J.W R.A m/m ha	Drainage ditch U.W R.A m/m ha	Total           U.W         R.A           m/m         ha           57.85         40.5           51.35         15.4           36.65         24.2	Number of Unit Cost D-1, MIC-1 D-2, MIC-2
R.A U.W R.A ha ha m/m ha 	M W.W R.A m/m ha	U.W R.A m/m ba	<u>U.W</u> <u>R.A</u> m/m ha 14.50 10.1	$\frac{U.W}{m/m} = \frac{R.A}{ha}$	U.W R.A	U.W R.A m/m ba	$\frac{U.W}{m/m} = \frac{R.A}{ha}$	U.W         R.A           m/m         ha           57.85         40.5           51.35         15.4	Unit Cost D-1, MIC-1 D-2, MIC-2
ha m/m ha 	m/m ha	m/m ba	14.50 10.1	m/m ha	U.W R.A m/m ha	n/m ba		57.85 40.5 51.35 15.4	D-1, MIC-1 D-2, MIC-2
- 8.50 14.4 - 8.50					 			51.35 15.4	D-2, MIC-2
- 8.50 14.4 - 8.50					··· ··	~ ~		51.35 15.4	
- 8.50 14.4 - 8.50					·		· ·		
- 8.50 14.4 - 8.50								30,00 29,2	D-3
- 8.50 14.4 - 8.50			ан А.		~ ~ .			30.05 68.5	D-4
- 8.50 14.4 - 8.50				4.30 2.1	·			12.68 6.3	MR-1, LIC-1
- 8,50	_				·· ·· ··		3.4x2 11.5	15.30 25.9	MR-2, DD-1
	.3	×	نے ا		5	4x2		19.30 ~	MR-3, LDC-2
- 8.88				3.30		90		18.08 -	MR-4, LDC-3, LIC-3
	6.75 2.2		7.78 2.5					14.53 4.7	CR-4, MIC-4
·	6.38 18.0			4.30 12.1				10.68 30.1	CR-1, LIC-2
	6.50 7.5	-					3.4x2 7.9	13.30 15.4	CR-2, DD-2
	6.88 8.0		un - 194	3.30 3.8	- 5	.90 6.8		16.08 18.6	CR-3, LDC-4, LIC-4
		3.6x2 10.9	<b>.</b> -			00 10.7		14.20 21.6	OFR-1, LDC-1
			10.10				~ -	21.10 -	PR-2, MIC-3
· · · · · ·				4.10		-	~ •	14,60 -	PR-1, LIC-5
		· · ·				• • • • •	<b></b>	11.00 -	PR-5
2 11 -			0 10 16		12 05 2 0		·	32 15 6 L	PR-3, MIC-5, MDC-1
			0.10 1.0						PR-4, MDC-2
						1			PR-6, MIC-3
T't	••• • ••		10.10 1.3					=	D-5, LDC-5
- 9.25 2.8				4.30 1.3	~	· 2.3	- <del>-</del>	13.55 4.1	MR-5, LIC-6
and the second	(54.5) 35.7	(30.4) 10.9	(16.50) 19.8 (4	47.75) 19.3	(2.5) 3.0 (31.	35) <u>19.8</u> (	(56.9) <u>19.4</u>	292.5	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

ities

## Appendix 4-61 Page 4

· · · · · · · · · · · · · · · · · · ·	Total (US\$'000)	(13,555.0)	( 94.5)	( 5,767.5)	( 2,491.0)	( 254.0)	( 6,720.0)	( 743.0)	( 1,137.0)	(1,566.0)	( 182.0)	(23,903.0)	(3,585.5)	(27,488.5)	(8,705.8)	(36,194.3)
·	Tc (B'000)	271,100	18,910	115,350	109,820	5,080	134°400	14,860	22,740	31,320	3,640	478,060	71,710	549,770	174,115	723,885
	Currency (US\$1000)	(8,854.0)	( 929.0)	(2,588.0) (2,588.0)	( 5,075.0)	( 232.0)	( 65.0)	( 143.0)	(0.073.0)	(0.184 )	( 182.0)	(0.846,II)	(1,702.3)	(13,050.3)	(4,592.3)	(17, 642.6)
Ŷ	<u> </u>	177,080	18.580	31,760	101,500	079,1	1,300	14,860	21,460	8,620	3,640	226,960	34,045	261,005	91,846	352,851
	Currency (USS'000)	( +,701.0)	( 16.5)	<pre>&lt; 4,179.5)</pre>	( #16.0)	( 22.0)	(6,655.0)	ŀ	< 64.0)	(1,135.0)		(12,555.0)	( 1,883.2)	(14,438.2)	(.4,113.5)	(18,551.7)
	Foreign (B'000)	94,020	330	83,590 7 200	4,340 8,320	044	133,100	I	1,280	22,700	I	251,100	37,665	288,765	82,269	371 <b>,</b> 034
	Description	Civil Works	1-1. Preparation	1-2. Pumping Station	•	1-5. Provincial Road	Construction Equipment	Agricultural Development	Project Administration & Facilities	Consulting Services	Lend Acquisition	Sub-total (1 to 6)	Contingency	Total	Price Escalation	Grand Total
•		, H		• :			۰. ۱	'n	t.	ີ່ເດີ	6.		٦.		ő	

67 Investment Cost of the Project

.

Table A.4-67 Inves

•

Remarks	12 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 + 10 1 - 1 - 0 1 - 1 - 1 1 - 1 - 1 1 - 1	2 t t 1 1 1 1 7 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
<u> </u>	129.60 59.00 26.10 15.15 696.00 116.00	0 0 0 0	2,175.00 840.00 30.30 30.30 380.00 30.00 30.00 3,647.30 3,650 3,650
Amount F.C. (B1,000)	32.40 6.00 18.00  - 50 57.00	0 111001	218.08 218.08 21.20 4.8.00 4.8.00 7.28 7.28 11 267.28
Rate L.C. (g)	23 7000 7000 7000 7000 7000 7000 7000 70	0101 1000 9	28 10 10 10 10 10 10 10 10 10 10 10 10 10
R. (B)	1 1 t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	) <b>) i z</b> t	н н н н н н н н н н н н н н
Unit	233 19 19 19 19 19 19 19 19 19 19 19 19 19	е е е е	EEENEE
Quantity	1,620 3 90 17,400	7,000 2,200 200	1,400 1,400 300 2,400 3,500 3,000 3,000
1. Civil Works Item Description	L-L-L. Fumping Section Dry works by pump \$4" Setting & withdrawing of a concrete plant 0.5 m ³ . Retaining wall Temporary road Foothold Curing concrete Sub-total	<pre>1-1-2. Dike Temporary pier Foothold Curing concrete Temporary road Sub-total 1-1-3. On-Farm</pre>	Backfill of canal Sheet-piling cofferdam Temporary road Dry works by pump $\phi^{\mu''}$ Foothold Curing concrete Sub-total

Appendix 1:-62 Page 2

													1.020		
Remarks	• •	147 147 14 14 14	די-5 קיי	4 1		0 1441 1941	L.C X 3%		L.C x 25%			1-2-1-1 ^b 2.C x 25%	·		
	2000 ° +#/	1,260.00 372.00	30.00	1,677.15 1,680		3,000.00	4,050.00 50.00	7,200.00 7,200	3,720	18,580		2,700 1,700 1,780	8,880		
F.C.		1 1		۰.60 ۱.0.60 ۳		• •	<b>1</b>	, t i "n		330		21,600 800	22,400	construction cost of works (see Appendix 4-63)	·.
Rate L.C.	1	6,000 40	0 - 	<b>t</b> 2 {	·	3,000 20	·							rks (see Aj	
R.C.	( <del>a</del> )	i i	1 -1	-		11			·					sost of wo	
Unit		е Е	N E	]		6 6 6 7 7						S N N		truction o	
Quantity		210	3,000	) ) <del> </del>		1,000 5,000	ਨ ਨਾਜ ਦੇ ਨਾਨ		L.S			ູ ດັດ ເບີ້ມີເມີ		Number of cons	
Item Description	1-1-4. Provincial Road	Temporary pier Foothold	Curing concrete Memonany noad	sub-total Sub-total	1-1-5. Other preparation	Field Office Motor pool	Indirect labor cost Other	Sub-total	1-1-6. Overhead		1-2. Pumping Station 1-2-1. Block A	Pump ¢l,350 mm Earthwork & other Overnead	Sub-total	Note: 2/; 1	
¥-1	+				 				н Н		신 난				

Appendix 4-62 Page 3

.

	Remarks	2-2-2-1 L.C × 258		1-2-3-1 L-C x 25%					t.C x 25%		
ŧ	(B1,000)	2,700 4,400 1,780	8,880	3,600 5,510 2,280	11,390	2,610 2,510	31,760		900.00 3,887.00 409.00 1,299.00	6,495.00 8,490	1,134.00 2,912.00
4 1 1	<u>F.C.</u> ( <b>B1,000</b> )	21,600 800 -	22,400	33,400 960 -	34,360	т, т30 т, т30	83,590		75.00 269.00 100.40	474.40 11 480	94.50 224.00
4 4 12 12	(B)								120 130 204,500		130
ռ Ռ	F.C. (B)								10 20,200		00
	Unit	sert		s ሌተ					e e ti		EE
	Quantity	ំ ទី		رط رئ ب ب س م م		L.S			7,500 29,900 1, S	· ·	9,450 22,400
	Item Description 1-2-2. Block B	Pump Øl,350 mm Earthwork & other Overhead	1-2-3. Block C	Fump \$1,550 mm Earthwork & other Overhead	Sub-total	1-2-4. Electric facility Sub-total	Total	1-3. Dike 1-3-1. Block A	Dike, Type D-2 Dike, Type D-4 Bridge, Type Br-4 Overhead	Sub-total	1-3-2. Block B Dike, Type D-2 Dike, Type D-4

۹ .

Appendix 4-62 Page 4

en 1995 - Alexandre Santa 1996 - Santa Santa 1997 - Santa Santa		Appendix 4-62 Page 5
Remarks L.C × 258	50 50 50 50 50 50 50 50 50 50 50 50 50 5	00-1-00-1-00-1-00-1-00-1-00-1-00-00-1-00-00
11 1.000) (B1.000) 5.126.20 5,130 5,130	1,540.00 350.00 1,518.00 2,964.00 211.60 1,796.00 8,980.40 8,980.40	181.62 726.48 11,320.98 2,769.2 5,951.00 5,951.00 29,756.05 29,750.05
Amount F.C. (B1,000) 1.20 - 319.70 # 320	70.00 30.00 66.00 228.00 228.00 50.20 50.20 51.0 1.340 1.340	1,452.96 1,452.96 180.19 241.20 557.70 557.70 557.70 4 2,490 19 2,490
te し.C. 年6	220 120 130 130 230 204,500 204,500	3,740 3,740 3,
Rate (3) 1	10 10 203,600 50,200 50,200	0 0 ( # %
a Hi	田田田田田 田田田田 王王 王 王 王 王 王 王 王 王 王 王 王 王 王	વે વે વે વે
Quantity 1,200 L.S	22,000 22,000 22,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,00000000	3,027 3,027 1S LS LS
<u>Description</u> Dike, Type D-5 Overhead Sub-total Block C	Dike, Type D-1 Dike, Type D-2 Dike, Type D-3 Dike, Type D-4 Dike, Type D-5 Bridge, Type Br-2 Bridge, Type Br-4 Overhead Sub-total Con-Farm Block A	Survey Land clearing Land leveling Road Canal & ditch Terminal facilities Overhead Sub-total
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-4-1. -4-1.	

			Page b
Renarks	07 07 07 07 07 07 07 07 07 07 07 07 07 0		ц.С х 25%
t ( <u>31,000</u> )		295.92 1,183.68 1,183.68 5,115.88 5,837.59 9,094.00 9,094.00 45,470 45,470 45,470 45,470 101,500	423.30 425.00 528.30 530
Amount F.C. (B1,000)	1,232,48 1,232,84 1,232,84 1,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12 2,422,12,12 2,422,12,12 2,422,12,12,12,12,12,12,12,12,12,12,12,12,1	2,367,36 98,64 396,45 396,46 396,46 47,9,64 8,320 8,320 8,320 8,320 8,320 8,320	10.00 110.00 110.11
(B) (B)	0000 7770 0 7770 0	9 3 7 4 4 0 0 7 4 4 0 0 7 4 4 0 0 0 7 4 4 0 0 0	<b>103</b>
Rate (B)	100.	1 O O N 007 	<b>a</b> t
<u>Unit</u>	ለ <b>በ</b> ለ ር.ር.ር	र र र 	£
Quantity			т. Г. Г.
I-4-2. Block B	Survey Land clearing Land leveling Road leveling Canal & ditch Terminal facilities Overhead Sub-total 1-4-3. Block C	Survey Land clearing Venal 6 ditch Canal 6 ditch Terminal facilities Overhead Sub-total Total	a provincia

Appendix 4-62 Page 6

1023 1

# Appendix 4-62 Page 7

Remarks					L.C × 25%				I.C × 25%	·	
1 1	( 21,000)	555, 90 272, 91	669.50	633.60 772.00	726-00	3,630.55 3,630		188.00 46.00 154.70	97.00 485.70	) ) ) () ) () ) () ) () ) () ) () ) ()	H,640
E.	(000,1%)	21.80	26.00	164.80 187.20	J	410.40 410.40	·	6.00 1.50 7.80		20 20 20 20 20 20 20 20 20 20 20 20 20 2	0 11
Rate L.C.	(a)	102	103	633,600 386,300				オ の の 7 の 6 一			
	8		_] 	164,800 93,500				ოოთ			
Unit	• .	EI E	1 <b>H</b>	unit unit				8 6 <b>8</b>			
Quantity	•	50°, 10°, 10°, 10°, 10°, 10°, 10°, 10°, 1	6,500	rt (N	L-S			2,000 5000 1,300	L.S		
Description	Block W	Road, Type PR-1 Road Type PR-2	Road, Type PR-5	Bridge, Type Br-1 Bridge, Type Br-2	Overhead	Sub-total	Block C	Koad, Type PR-3 Road, Type PR-4 Road, Type PR-6	Overhezd Sub-total		Total
Item	1-5-2.						1-5-3.				

. .

#### 2. Construction Equipment

÷ ,

			Unit	(Unit:	R.000)
Equipments	Specification	No.	Price	Amount	Remárks
Bulldozer	15t 140ps	1.8	1,000	18,000	
Bulldozer	16t 140ps	11	1,050	11,550	Swampy type
Bulldozer	21.t 200ps	1.1	1,600	17,600	
Backhoe	0.3m ³ 60ps	- 7	730	5,110	
Backhoe	0.6m ³ 100ps	5	1,450	7,250	
Dragline	0.6m ³	2	90	180	Backhoe attachment
Fronted loader	1.6m ³ 125ps	- E	770	770	
Scrape-dozer	6.4m ³ 183ps	22	1,850	40,700	
Motor grader	3.7m 125ps	3	1,150	1,150	
Tire roller	10t 40ps	6	350	2,100	
Dump truck	8t 196ps	3	310	930	
Water tank truck	6t	1	230	230	
Fuel truck	8t	2	380	760	
Agitator truck	1.6m ³ 135ps	2	250	500	
Agitator truck	3.0m ³ 195ps	2	420	840	
Mixing pland	0.5m ³ 30ps	1.	580	-580	
Pot mixer	$0.3m^3$ 7.5ps	3	60	780	
Diesel hammer	2.2t	1	690	690	Backhoe
					attachment
Diesel hammer	1.25t	1	410	410	Backhoe
					attachment
Vibrator	2.5ps	10	11	110	
Rammer	100kg	3.0	27	270	
Belt conveyor	7m 3ps	5	3	45	
Concrete conveyor	10m 3.5ps	2	90	180	
Pump	ф4 ¹¹ 7рs	10	15	150	
Jeep		5	120	600	
Motor cycle	90cc	5	12	60	
Sub-total				110,945	
Spare parts		L.S.		22,155	20%
Transportation		L.S.		1,300	18
Total				1.34,400	

Note: Required Numbers of construction equipments are referred to Appendix 4-65.

	Renarks											
	Amount <u>1.C.</u> ) ( <u>31,000</u> )	4,000 1,200	2,000	1,225	1,462	2,000	1,576	, to0	14,862 14,860	·		
	<u>F.C.</u> (31,000)						·					
:	Rate F.C. L.C. (B) (B)		·									
	Unit											
	Quantity , c	ា ហ ដ ដ	רי <del>רי</del> י. א	ل ^ب د	L.S	رتا ک	L.S	Ľ.S			·	
Agricultural Development	Description ATPC Office	Production unit Office	Training center Seed center	Motor pool	Spare machine	Assemble house & ware house	Truck & notor bycicle	Water supply	Total			

с, С

Appendix 4-62 Page 9

Remarks 762.25 6,462.25 2,540 2,520 2,520 2,880 .000°.18 12,648 12,650 1,800 540 540 5,000 400 6,470 576 648 648 864 21,460 300 2,340 .11* Amount B1,000 1,280 1,280 1,280 4,000 1,5000 1,5000 +,000 9,000 1,000 1,000 500 5,000 3,000 114.45 Rm 53.05 km Rate ວ '2 36.1 ନ୍ଦ୍ର: (କ୍ର) man-month man-month man-month. man-month man-month man-month men-month man-month Main irrigation canal Main drainage canal Total Un ŝt ed X сч Е 20 x 60 30 x 60 CO X 60 60 153.05 XOT Quantity x 72 x 72 10,000 x 72 600 × 72 ល ហុ ភូ ភូ ភូ с. 5 1 Dixe 12, 10 × 12, hy hy × 12, က φ Overhead (Staff of project office) × 4. Project Administration & Facilities x (n) ທ Rout surveying Administration Division Topographical survey Sub-total Sub-total Sub-total Engineering Division Project Facilities High school grad High school grad Office equipments University grad Total University grad Pre-Engineering Surveying works Rout survey^{1/} Plain survey Collage grad Collage grad ्रि Item Description Core-boring Others : Others Buibling Funiture Note: 4-2-4-3°

Appendix 4-62 Page 10

						Tage II
	Remarks					
	at 1.c. (B1,000)	;	1 	à .		1,1440 7,180 8,620 8,620
·	Amount (B1,000)	•	4 1, 00 4 1	15,012 15,012 15,010		22,700
· . ·	Rate (3) (3) (3)	120,000 15,500	120,000 15,500			 
	Unit	man-month trip	man-month trìo			
	Quantity	50 50 11 60 11 10 60	0 8 0 7 7 1 1	0		
Consulting Services	<u>Description</u> Foreign Exchange Cost	Final Design Consultant remuneration International travel expense Miscellaneous & communication	Sup-totat Construction Supervision Consultant remuneration Internation travel expense Mission	sub-total Sub-total	Local Currency Cost To be borne by the Government; Local transportation, office accomodation and consultants	Final Design Construction supervision Sub-total Total
ي. ان	14en 5-1.				2-5 - 5	

. . . Appendix 4-62 Page 11

.

•

	•					
	Remarks					
	unt <u>1.C.</u> (B1,000)	2,241.92	1,023.36	1,472.64	3,637.92 3,640	
	<u>F.C.</u> (31,000) (:					
	Rate (B)	12,600	15,600	15,600		
	Unit	୍ଷ ,୯	ಹ	,C.		
	Quantity	73.2	ବ <b>ଟ</b> ୍ଚ ୦	ナ ナ の		-
•					н Мал	

Block B Area of Dike Block A Area of Dike Block C Area of Dike 6. Land Aquisition Description

÷ ;

•

Totel

÷

Appendix 4-62 Page 12

												-	Appe Pa	ge 1	23
		Remarks	·	5E - 8	רי הי הי הי הי הי	0-0 00-0	C0-12 C0-2	CP-1	11-22	(F.C+L.C)x10%		6-24 4	1.00	<b>ус</b> т	
		(B1 000)		76.11	27.54 10.923	00.066	407-00 480.00	583.15	66.00	344.00	2,984.723	937.50	937.50	134.40 67.20	85,00
		( R1 000)	с 1	12.90	1.89 1.986	154.00	624.00	ទ ក ទ	1		800.226	I	ł	1 . I 	f .
•		Kate L-C. (A)		. ອ. ເ	1.1	1: 1: 1:	3.0	1,070	550			3,600		134,400 67,200	42,500
• •	<b>ب</b>	E.C.	, ,	0 1	0.7	70	တ • ၊ က	01	,			ı		j j	r
		Unit		Сш		ម មា	е 2 б	भ त भ	E			E		6 6 7 7 7 7 7 7 7 8 7 8 7 8 7 8 7 8 7 8	0 0 0
	· •	Quantity		12.900	2,700	2.200	3,700 160,000	ភ្លុង ល	120	L.S		312.5		-H -H -	-
	Earth Work & Other (pumping station)	Description	Block A (a) Public Works		Embankment Removal of excess soil	()	ks ement bar	E	Pipe work Pipe ¢700 mm	Other	Sub-total	(b) Pumping Station Building	Sub-total	(c) Gate Works Roller-gate 4.0 ^m 4.0 ^m Roller-gate 4.0 ^m 2.0 ^m	Slush-gate 2.0 x 1.6
	Earth Work	No.	1-2-1-1.	-			•					•			•

Table A.4-68 Construction Cost of Works

Appendix 4-63 Page 1

,

				Page	1x 11-63 2
Remarks	same to Block A	す た の 1、1 ~ 戸 所 山 日 岡		Pr-11 (F.C+L.C)X10%	6 
(#1,000) (#1,000) 180.00	475.40 4,400 4,400 4,400	96.17 61.20 10.67	1,215.00 462.00 570.00 715.83	65.00 415.00 3,611.87	1,260.00 1,260.00
Amount <u>F.C.</u> B <u>1,000</u> )	800 800 - 226 800 800 - 226 800	1.94 1.94 1.94	189.00 - 741.00 6.69	연 1 1 6 5 6	[ ]
Rate <u>1.C.</u> 4,400 2,000		1. 2 0 1 - 2 0 1 - 4	450 110 3.0 1,070	550	3,000
Ra (B)		0010 001	ອ 0 ເຫຼີ 0 1 ເ	1 ¹ .	5 5
Curr ga ace ace		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	ማ ለ ይያ ርብ የተኛ ርብ ይ ይ አ ባ በ በ	ан Ал Ал (раболо) Ал	₩ N
Quantity 2 90	ഗ പ്	16,300 6,000 11 9,700	2,700 4,200 190,000 669	120	420 4
<u>Description</u> Slush-gate \$700 mm	Sub-total Total Total Total	<pre>Block C (a) Public Works Earth works Earth works Excavation Embankment Removal of excess soil</pre>	Concrete works Concrete Form Reinforcement bar Foundation work File 220 x 220mm	Pipe work Pipe ¢700 mm Other Sub-total	<ul><li>(5) Pumping Station Building Sub-total</li></ul>
	<b>1</b> 1 2 - 2 - 2 - 1				-

		 	Appendix Page 3	4-63
Remarks	Remarks	m/na 31.25 x 3,027	m/ha 31.25 × 2,583	
<pre>L.C. (B6.00) 186.00 93.60 114.40 8.80 240.00 642.80 5,514.67 5,510</pre>	277.7 277.7 867.3 867.3 123.5 475.9	32.75 7 39.00 945.90 2,769.2	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2,519.90
(B1,000) =	Amount <u>     F.C.</u> (B1,000) 11 20.9 2.5 50.1	5 2 8 5 - 7 - 7 5 - 7 - 7 5 -		142.12
Rate (B) 186,000 57,200 4,400 2,000	Rate 1.C. 101 83 83 19 19	10 N N O	ままのある の で し の の の の で っ っ っ っ の の ろ の の ろ つ っ っ っ っ っ っ っ っ っ っ	· · · · ·
	NNNt BU	ाल । ल	ниоог <u>н</u>	
	8) 5) 1) 도도도도	6666	8 8 8 8 <b>6</b> 8	
	Quantity 2,750 10,450 1,300 25,050	6,550 2,000 949,5600	2,400 8,300 5,600 12,600 80,720	
с, с		pe CR-2 pe CR-3 0FR-1 0r-3 0r-3	MR-1 MR-2 MR-3 MR-3 Type CR-1 Type OR-1 Type On-3	
្រ ។ ខ្មែរលំលួល ( ប ។ ដែលលំ។ 	Type Type ad,	Foad, Foad, Yad, Ty Yad, Ty Yad, Ty Yad, Ty	0000	rota <u>l</u>
Description (c) Gate Work Roller- Roller- Slush-g Stush-g Screen Tota Tota	escrit bescrit r Road, r Road, nunity	Community Road Community Road On Farm Road, On Farm Road, Tota	Alock B Main Road, Type Main Road, Type Main Road, Type Community Road, T On-Farm Road, T On-Farm Road, T	
	Road (On-farm) No. I L-4-1-1. Bloc Mair Mair Mair		• - - - - - - - - - - - - - - - - - - -	

		4 i	•			Appendix Page 4	4-63
Remarks		31.25 ^{m/ha} x	5032 t	Remarks			23.44 ^{m/ha} x 3,027
nt (.21,000)		57.75 80.85 64.00 60.80 1,541,30	4,500.20	mt <u>L.C.</u> (Bl,000)	750 41.25 375.75 19.50 15.00	000000	
<u>F.C.</u> (B1,000)	20 33.80 56.40	11.23 1.23 1.1.23 1.13 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	283.28	<u>F.C.</u> (B1,000)		1 (10) 0	13.10 70.95 241.20
Rate L.C. (B)	ମ ଓ ଅନ୍ତୁ ୦୦୦୦ ମ ମ	6 7 6 7 W	· ·	Rate U.C. (B)	0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 - 1 O O O O 1 - 1 O O O C 1 - 1 O O O C	00 1 1 1 1 1
E C E	4000	14014		F.C.		4 4 10 10 10 10 10 10 10 10 10 10 10 10 10	} z→ r~t
Unit	EEEE	មត្តត្		Unit		5 <b>6 6 6</b> 6 6 6	e e
Quantity	15,000 15,000 28,2000 28,2000	11,550 11,550 3,200 30,400 134,130		Quantity	22,500 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,750 25,7500 25,7500 25,7500 25,7500 25,7500 25,7500 25,7500 25,7500 25,7500000000000000000000000000000000000		10,050
No. Description		Community Road, Type CR-2 Community Road, Type CR-3 Community Road, Type CR-4 On-Farm Road, Type OFR-1 On-Farm Road, Type Or8-1 21	Canal & Ditch (On-Farm)	No. 1-4-1-2. Block A	rigation Canal, Typ Irrigation Canal, Irrigation Canal, Irrigation Canal, Irrigation Canal,	Leveral INTIGATION VANAL, 19PE MICTO Leading Drainage, Canal Type LDC-1 Leading Drainage, Type LDC-3 Leading Drainage, Type LDC-4 Drainage Diftch, Type LDC-4	Ditch, Type Ditch, Type Total

.

	•••																										nd ge		4	*****	-	
Remarks	•								22 nu m/ha	ې ۲ : ۲	e –	·																	× (	7.9.5 * #		
L.C. (B1,000)	6#2°00		3ô.		130.80	٠	0	25.20	166.00	87.1	2,988.05		002			04.40	άi	07-02 02-10		•	ń.		'n,	•		:_	łα	231.00	iN	¢ اربا اربا	5,115.88	
<u>F.C.</u> ( <b>B</b> 1,000)	ហិ	2.65	1		5.45	::::: •	11.20	2.40	16-60	ιņ.	242.75		04	) () - (*	20	1 (	, r	1. 30	,	ţ			00-00	ဂိုင်	4 C	4 - 4 -	ς α	) •	115.61	د ب ز	396.40	
Nate L.C. (B)	100	27											C		> •		) (   (	N r	ი u ქ r	ດ ເ ( *	ດ ເ 1 ເ	Ω. 	-1 C 2 C	ο ν ν	10		4 C F		) ମ କାଳୀ			
<u>F.C.</u> (B)	10	+-† .	1	· 1	Ч	tt	~	ы	<b>1</b>	r-1		·		) C 1 ~		1 -	- <b>1</b> ,	1	)	1	۱	1 2	, t	0 0	ષ શ	o e	- O	1 -	+ <b>-</b> -+			
Unit	ß	Ħ	F1	ខ	E	£	E	£	E	Ħ			£	£	3	日	Ħ	E	E <b>i</b> I	e	E	E	F1	E 1	∃_ <b>f</b>	₹ \$	3 F	5 8	ម			
Quantity	9,450	2,650	2,400	12,000	5,450	12,350	5,600	1,200	16,600	60,550			1 200		•	6°700	× .	•	÷.	•	ŝ	•	•	•	•		¢	ົຕ	115,610	•		
	ïype	Type MI(	, ń	, Type	Jyne	1-1	e LDC-2	E LDC-5	1-00				T.T.P	•		Type Mic		Type ML(	THIS PADE PICAL	- ADe	Canal, Type Lic-4	e O	L, LYDE LUC-L TDC :			È.		10-10 10-10	0 2 1 1 1 1 0		·	
Description Block B	rrigetion Canal,	rigation Can	Irrigation		Irrigatic	Drainage	Drainage,	Drainage, Tyr	a Ditch, Type	Ditch, Type	Total	lock C	Trnigation Canal			Irrigation Canal.	Trigarious Caudio	Turiton Car		TUTIES TION	uorigetion	Lrrigation Ca	g brannage cana	g Urainage, Lype LUC-4	LOAGING UNALIAKE, LYPE LU Mois Duristone contin Time		aliages lyre e ditor tyre		Ditch, TVD		Total	
<u>-4-2-2.</u> B	ಗೆ ಬೇಕಿಸಿ	Main Ir	ŭ te	Lateral	Lateral	Leading	Leading	Leading	Drainage	Drainage		4-3-2. B	ţ.			17 17 17 18 17 17 18 18 18		Tatata Lr		Laterat	Laterai	Latera.	Leading	resours			The form		Drainage			

Relarks				·									• .		4 unit/76.8 ha	x 3,027 ha	C	x 3,027 ha L mit/76 8 ha	200 8 ×	(76.8 h	x 3,027 ha	5 unit/76.8 ha	x 3,027	0°8 ×	
Int L.C. (B1,000)	709.38 83.70	, o	1	101.64	` <b>1</b>	105.71 54.72	ഗ	87.6	<u>ත</u>	99.	117.68	i, *	00.	57.	88.48		208.12	HL OLC	1 • •	49.16		685.56		2	5,638.47
Amount F.C. (B1,000) (	25.92 6.26	୍ମ		12.44	1	0.40 0.40	ò	<u>.</u>	5.80	•	1.2	2	45.90	340.40	35.8			ł		ı		101		r	557.70
Rate L.C. (3)	တ်င	38,210 242,500	n ∧ i ~-i c	n n	6	• •	ဲဂ်	က်	က်	•	÷	င့်ရှိ	်	38	560		220	1 330	) ) ( 1	580		3,480	C ru	2	
(B)	л,440 З.130	600	35,300	0,1,0 0,1,0	590	0 0 0 0 0 0 0 0 0 0	5,080	5,030	1,450	7,430	0141	142,200		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	100		J	1		I	,	0T		τ	
Unit	unît "	11	1 1	4. 4	= 1		:	<b>*</b>	14	*	£	1	11	t	t		11	11		÷		<b>t</b> .			
Quantity	80	1 e-1		t. 1	1	00 	~	00	t.	72	ω	ы	-1	2	158		348	80 10 10	•	<b>T58</b>		197		+	
Terminal Facilities (On-farm) No. Description	•	Check, Culvert	Culvert, Type A-2 Culvert, Type A-2	Culvert, Type B-3	Culvert, Type C-1	Culvert, 17pe C-2 Culvert, Type C-3	Culvert, Type D-2	Culvert, Type D-3	Culvert, Type E-1	Culvert, Type E-2	Culvert, Type E-3	Culvert, Type F-1	Culvert, Type F-2	Bridge, Type Br-3	Turn out		Farm inlet \$200 m/m	Culvert (2) \$500 m/m		Culvert (3) \$300 m/m		Culvert (4) \$800 m/m	Type-3	i i	fotal

۰.

Appendix 4-63 Page 6

Appendix 4-63 Page 7

.

	Renarks																						10 9L/ +3	untr//0.0142,58	± / / 5 00 4 2 583	unity / 0.02,2,583		0.0	uit (/ / 0. % 2, 583 h	
unt		(DOD * + @ /	0T-468	t i	83.70	. 4	ဖ - စ	328.70	ю - С	I.	6.2	50.45	7.2	8.2	51-0	20.5	0.7	10.9	4 ° 0 t	<del>رم</del> ا +	2.2	0 	7.4	5. 0	177.76	79.5	8 .9	588.12	80 . tt	5,074.82
Amount		P.	01-17	1	6.26	r	6.3	თ.	6.30	ı	<u>е</u>	2.95			ສຸ ທ	4	<u>с</u> -0	5	l2.87	4.23	6.8	202.80	1.01 1	13.50	÷	ı	,	1.69	I	524.48
Rate		(æ)	막	5,49	•	2	9,60	8,70	2,69	9,05	25,410	0,09	ម្ល	H	°. S	,28	8,46	8,45	ိုင်္န	с , 7.1	, 2 0	4,90	8,70	ω.	220	· · ·	ക്	3,480	<u>_</u>	
Ка	0 E	(a)	1.	312	ക	d d	6,30	<b>9</b> 6	51.0	Ч.	3,110	ъ С	o	∞.	4	80	°°,	in t:	en ≞t	ц,	6,80	°, O	0,20	100	1	I	I	10	ł	
	Unit		unit	ŧ	11		÷	F	11		11	1	F	<b>;</b> .	ŧ	F.	£	t:	F	Ľ	F	:	i.		:	:		**	1	·
	Quantity		0 त	1	5	ı	r- <b>ł</b>	~1	7	ł	ო	ស		2	ო	(١	ი	Q	თ	ო	ᆔ	ત	3	$\mathbf{O}$	$\mathbf{O}$	ന	$\mathbf{a}$	169	-11	
	Description	Block B	Diversion Dox	Type CH-	Check, Type CH-2	Type CH-	r, Type A-	4	, Type	M	Culvert, Tupe B-3	Culvert, Type C-1			Type		Type	Type.	Type	Type	Type	, Type	5	Turn out	Farm inlet	Culvert (2), Type-1	), Type-	Culvert (4), Type-3	Culvert (1), Type-4	Total
	No	1-4-2-3.																												

,

	Remarks																				0 60		0.8.18,932	0°1°2×0°2×0°2×0°3°3°3		/ 0. 6 76 4, 932	unit//o.o.net.932			<b>a</b>
unt	(BI,000)		748.79	I	167-40	J	5.0	32.69	1	254.10	<b>;</b>	5	118.56	0	<u>_</u>	0	ື	4	ယ္	- 63	5	0.0 1	-CA	0 	0-01	17.0	617.4		6,837.59	
Amount	<u>F.C.</u> (B1,000)		27.36	4	12.52	ł	9	3.15	ı	31.10	1	-37	7.54	-1	រ ភ្	0.0	0 8	0.0		ω '	0.1	5	ŀ	I	I	3.21	ł		479.62	
Xate	L.C. (B)		ਿੰ ਇ	5,49	1,85	8,2]	5,50	2,69	9°.0	25,410	0,00	ີຄີ	E,	2,0%	0,26	8,46	ວະ ອີ	ğ	4,7]	40,00	8,70							·		
ជ័	F.C.		1	(-+	r fi		ုင	<u></u>	. – ľ	3,110	43	590	580		2	5	-1	064~1	-, ,		Š	100	ì	,	1	0 1	١			
	Unit		unit	=	F	E		51	F		ŧ	t	ŧ	F	1		ŧ	2		51	¥.		:	÷	ŧ	E	1			
	Quantity		6t	•	4	ł	e-1	гI	i	9	I	11		r-1	S	G	t.	र स	15	ч	~1	257	1,542	257	257	321	1,799			
	Description	Block C	Diversion Dox	Check, Type CH-1	Type CH	5-1	. <del> </del>   F		, Type B-	بر	ç	t, Type C-	Culvert, Type C-3	, Type D-	, Type D-	, Type D-	ы Б	, Type E-	i n	ß.	Ç,	4.5	Farm inlet	Culvert (2), Type-1	Culvert (3), Type-2	Culvert (4), Type-3	Culvert (1), Type-4		Total	
	<b>No.</b>												•																	

5 **4** - ja

Appendix 4-63 Page 8

# Table A.4-69 Unit Cost

1. Unit Cost of Major Structures

						The Law Char		
				11.24	0.0	Unit Cos		Oronales
No.	Description			Unit	F.C.	<u>L.C.</u>	Total	Remarks
					(B)	())	(ß)	1. 0. 00.
<b>)</b>	Dike,	Туре		m	10	220	230	B=8.00m
2.	н	Туре		11	10	120	130	B=4,00m
3.	11	Туре		ល	10	230	240	B=8,00m
4,	()	Туре		m ·	1.0	130	140	B=4 , 00m
5.	17	Туре	D-5	m	3.	46	47	
6.	Provincial Road,	Туре	PR 1	m	4	102	106	
7.	49	Туре		m	11	.1,03	107	
8.	12	Type	PR-3	IU	. 3	94	97	
9.	TT	Туре	PR4	ល	3	92	95	
10.		Туре	PR-5	m	4	103	107	•
	14	Type	PR-6	m	6	119	125	
12.	Main Road,	Туре	MR-1	ห	e,	103	1.05	
13.	a (	Type		RN .	2	83	85	
14.	н	Type.		m	2	90	92	
15.	ίπ.	Type		M	2	95	97	
16,	tt.	Type		m	2	84	86	
17.	Community Road.	Type		m	2	19	21	
18.	II	Type		m.	-	-5	5	
19.	11		CR-3	m	]	7	8	
20.	64	fype		m	2	20	22	
23.	On-Farm Road,	• •	OFR-1	in	-	2	2	
22.	Main Irrigation (	Canal.				·		
			MIC-1	m	1.0	100	110	
23.	i ii		MIC-2	m	10	1.00	110	
24.	11		MIC-3	m	1	27	28	
25.			MIC-4	D)	-	17	17	
26.	55		MIC-5	m	у.	19	20	
27.	Lateral Irrigatio	on Car	al.					·
	C,		LIĆ-L	m	. ~	1.5	15	
28.	43		LIC-2	r <b>n</b>	~	15	15	
29.	17		PIC-3	m		15	15	
30.	. 11	Type	LIC-4	m		15	15	
31.	н		LIC-5	, <b>m</b>	1	24	25	
32	11		L1C-6	m	· · •	1.5	15	
33.	Leading Drainage	Canal	- <b>4</b>					
	1		LDC-1	<b>1</b> 11	4	41	45	
34.	**		LDC-2	m	2	25	27	
35.	n		LDC-3	In	3	29	32	
36.	11		LDC-4	m	3	28	31	
37.	α (		LDC~5	ຫ	2	2)	23	
38.	Main Drainage,		MDC-J	m	6	58	64	
39.			MDC-2	ю	8	82	90	

<u>No.</u>	Descr	iption			<u>Unit</u>	<u>(k)</u>	(Å) P°C	Total (B)	Remarks
90,	Drainage	Ditch.	Type	1-60	m	1	1,0	11	
41.	н	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		DD-2		1	10	.1.3.	
42.	Bridge,	Prino	8r-1		<b>b.</b> S.	164,800	633,600	798,400	B=8.00m
43.	197-10250-5		8r-2		11	93,600	386,300	479,900	B=8.00m
44.	11		Br-3		15	70,200	278,700	348,900	B=6.00m
45,	11		Br-4		н	50,200	204,500	254,700	B=4,00m
46.	Diversion	n box			ь.s.	3,440	39,410	40,850	
47.	Check,	Type	CH-1		L.S.	3,150	45,490	48,640	
48.	**	Type	CH-2		11	3,130	41,850	44,980	
49.	<b>}</b> :	Туре	CH-3		1)	3,110	38,210	41,320	
50,	Culvert,	'Type	A1		L.S.	36,900	242,900	279,800	
51.	и	Type			11	35,300	241,700	277,000	
52.	11	Туре			11	36,300	249,600	285,900	
53.	**	Туре			п	46,900	328,700	375,600	
54	11	Туре			**	65,000	385,500	450,500	
55.	11	Type			11	3,150	32,690	35,840	
56.	11	Type			0	3,130	29,050	32,180	
57.	44	Туре	B-3		н	3,110	25,410	28,520	
58.	11	Type	C~1		*1	590	10,090	10,680	
59.	н	Type	C-2		41	590	9,610	10,200	
60.	t t	Туре	C-3		11	580	9,120	9,700	
61.	43	Туре	D-1		14	5,140	72,050	77,190	
62.	U.	Туре	D-2		11	5,080	60,260	65,340	
63.	¢1	Туре	D-3		(1	5,030	48,460	53,490	
64.	11	Туре	E-1		EC.	1,450	18,490	19,940	
65.	EF.	Type	E-2		11	1,430	16,600	1,8,030	
66.	11	Туре	E-3			1,410	14,710	16,120	
67.	* 6	Туре	F-1		11	142,200	595,000	737,200	
68.	5 H	Туре	F~2		31	45,900	200,300	246,200	
69.	∎E	fype	Γ-3		)1	56,800	247,200	304,000	
70.	71	Туре			41	102,800	424,900	527,700	
71.	11	Туре	1~5		11	109,600	449,500	559,000	
72.	Turn out				ь.s.	100	560	660	
73.		\$200 mm	-		11		220	220	
74.	Culvert	•	se-1		11	. — .	1,330	1,330	φ500 mm
75.	Culvert				н	-	- 580	580	\$300 mm
76.	Culvert				(I	10	3,480	3,490	ф800 mm
77.	Culvert				51		510	510	ф300 mm

н.,

Appendix 4-64 Page 3

				Unit Co:	• <del>1</del> -	
No.	Description	Unit	F.C.	L.C.	Total	Remarks
		******	())	(1)	(8)	
On-l	Land Clearing	ha	20	240	260	
0n2	Land Leveling	ha	480	3,740	4,220	
0n-3	Farm Road & Ditch	m	.1	10	11	
On-4	Drainage Ditch	11	]	13	1.4	
ES-1	Stripping	m ³	0.6	3.8	4,4	D=50m .
ES-2	N S	11	0.5	3.3	3.8	D=40m
EE-1	Excavation		0.3	2.8	3.1	
EE-2	FR	н	0.3	2.5	2.8	
EE-3	11	11	0.5	5.0	5.5	
EE-4	0	н	0.3	3,4	3,7	
EE-5	18	11	0.5	4.7	5.2	
EE-6	**	u	0.3	2.6	2.9	
EE-7	11	11		12.0	12.0	
EE~8	H	11	1.0	5.9	6.9	
EB-1	Embankment	U.	0.2	1.9	2.1	
EB-2	n	11	0.2	2.7	2.9	
EB3	11	П.	֥	12.0	12.0	
EB-4	11	71	0.7	10.2	10.7	
EP-1	Pavement	н	1.0	83.0	84.0	
ET~1	Removal of excess soil	n	0.2	1.1	1.3	
CO-1	Reinforcement bar	kg	3.9	3.1	7.0	
CO-2	. <b>H</b>	11	3.9	3.0	6.9	$ka/m^2$
CO-3	Concrete material	m ³	58.0	374.0	432.0	$\sigma_{28}=210 \frac{\text{kg/m}^2}{\text{kg/m}^2}$
CO-4	11	11	45.0	335.0	380.0	$\sigma_{28} = 160^{-5}$
CO-5	Concrete mixing	11	1.2	28.0	29.2	0.5m [°] Mixer
CO~6	13	н	1.3	29.8	31.1	0.3m ³ Mixer
C0~7	Placing concrete	11	0.6	24.2	24.8	0.3m ³ Mixer
CO-8	11	11	0.5	20.9	21.4	0.5m ³ Mixer
CO-9	Concrete	11	70	450	520	0.5m ³ Mixer
						$\sigma_{28}$ =210kg/m ²
CO J.O	12	n	70	450	520	0.3m ² Mixer
	•	0				σ ₂₈ =210kg/m ²
CO-11	Form	m ²	~	60	60	
CO-12	n	15	-	1.10	110	
CP~1	Concrete pile	pile	10	1,070	1,080	[]200x200mm
CP-2		11	10	2,810	2,820	C350x350mm
					0 100	l=12m
CP~3	83	1)	10	3,470	3,480	CI350x350mm
			_		1 1. 600	l=15m
CP-4	u	84	10	4,570	´4 <b>,</b> 580	E1350x350mm
						&=20m
			~~	0.0	. 100	<b>փ</b> 4"pump
Pr-1	Drying works	day	20	80	25 000	φι pump 0.5m ³ Mixer
Pr-2	Setting & Withdrawing	<b>Ի</b> •Տ,•	2,000	23,000	25,000	O'SW, Mixet,
	of a concrete plant		000	000	490	
Pr-3	Retaining wall	m . 3	200	290	40	
Pr-4	Foothold	m ³		40	40 10	
Pr-5	Curing concrete	m ²	.—	1.0 6. 000	6,000	
Pr-6	Temprary pier	m	-	6,000	0,000	

.

.

				Unit Cos	st	
No.	Description	Unit	F.C.	L.C.	Total	Remarks
			(Ø)	(8)	(8)	· • • • • • • • • • • • • • • • • • • •
Pr-7	Backfill of canal	km	1,880	18,750	20,630	
Pr-8	Sheet-piling cofferdam	m	-	600	600	
Pr-9	Field Office	m ²	••	3,000	3,000	
Pr-10	Motor pool	1 H	·	20	20	
Pr-11	Concrete pipe	10		550	550	ф700 mm

• 1

•

2. Labor Cost

. **.** 

Personnel.	<u>Unit</u>	Cost K
Worker	day	40
Skilled worker	ทั	50
Foreman	н	65
Chief worker	54	100
Operator of vehicle	11	65
Asst. operator of vehicle	PT	60
Operator of heavy equipment	11	90
Asst. operator of heavy equipm	ient"	60
Mason	8	40
Carpenter	0	40
Smith	tt	50
Painter	11	80
Asphalt worker	14	80
Watchep	11	50
llead carpenter	11	100
Head smith	Ħ	100
Head welder	11	100

Source: Land Reform Office, Royal Irrigation Department

### 3. Naterial Cost

			Cost ())		
Description	Unit	r.c.	<u>L.C.</u>	Total	Remarks
Portland cement	ton	160.00	640,00	800.00	one bag 50 kg
Sand (for concrete)	m ³	~	70.00	70,00	
Gravel (for concrete)	11	-	130,00	130,00	
Unscreened gravel	11		120,00	120.00	
Deformed bar	ť	4,314.00	2,876.00	7,190.00	SD30 ф.16mm
Round bar	н	3,756.00	2,504.00	6,260.00	SR24 \$15mm
Miscellaneous steel	\$1	6,000.00	4,000.00	10,000.00	
Wood (for reform)	$m^2$		150.00	150,00	
Casolin	lit	1.80	1.80	3,60	
Lubricating oil	П	9.00	9.00	18.00	
Diesel fuel (for truck)	**	1.30	1.30	2.60	
Diesel fuel (for generat	or eng	ine)		· .	
	51	1.30	1.30	2.60	
Light gasolin	44	1.30	1.30	2,60	
Timeber (soft)	m ³		2,200.00	2,200.00	
" (hard)	11	~	4,000.00	4,000.00	
Brick	m ²	-	40.00	40,00	
Masonary	m ³	· ~	700.00	700.00	
Crushed stone	н	~	120.00	120.00	
Asphalt	t			3,000.00	
Laterite (pavement of ro	$m^{3}$		80.00	80.00	from salaburi
Water stop	m	300.00		300.00	

۶.

. .

.

.

#### 4. Operation Cost of Heavy Equipment

	Purchase		Deprecia-	Re	epair Co Parts	st Labor	fuel	E Lubri Cost	and the second second in	Labor ^C / (Oper-	Adminis-C	l <i>j</i>		
Description .	Price d	Life time	tion Cost	Rate	Cost	Cost	l/h	F.C.	L.C.	ator)	8 Other	Foreign	Local	Remarks
	(1)	(2)	$(3)=\frac{(1-0,1)\times(1)}{(2)}$	(4)	$(5)=\frac{(1)x(4)}{(2)}\times 0.$	7 (6)=(1)x(4) (2)	0.3			(8)	(9)	(7)	(6)+(7)+(8)+(9)	
	ß	hr	8		Ŗ	ß	l/hr	8/hr	<u>}/h</u> r	\$/hr	₿/hr	%/hr	B/hr	\$/hr
Bulldozer $15^{t}_{t}$ 140 ps	1,000,000	6,500	138.5	1.10	118.5	50.8	11.0	18.6	18.6	26.3	15.4	18,6	111.1	
" $16^{C}_{+}$ 140 ^{ps}	1,050,000	6,500	145.4	1,20	136.7	58.2	11,0	18.6	18.6	26.3	16.2	18.6	119.3	Swampy type
1 21 200 ⁰⁸	1,600,000	7,800	184.6	1.15	165,1	70.8	20.0	33.8	33.8	26.3	20.5	33.8	151,4	
Backhoe $0.6_{m3}^{m3} 100^{ps}$	1,450,000	7,200	181.3	0.95	133.9	57.4	8.0	13.5	13.5	26.3	20.1	13.5	117.3	-
	730,000	6,000	109.5	0.75	63.9	27.4	5.0	8.5	8.5	26.3	12.2	8,5	74.4	
pragine 0.6 125 _{m3}	90,000	7,200	11.3	0.95	8.3	3,7	-	-	• <del>••</del> `				3.7	Backhoe attachment
Frontend loader 1.6 ^m ₃	770,000	6,500	106.6	1.05	87.1	37.3	11.0	18.6	18.6	26.3	11.8	18.6	94.0	
Scrape-dozer $6.4^{m_3}$ 183 ^{ps} Motor-grader $3.7^{m_3}$ 125	1,850,000	6,500	256.2	1.00	199.2	85.4	19.0	32.1	32.1	26.3	28.5	32.1	172.3	
Motor-grader $3.7^{\text{m}}_{\text{t}}$ 125 ps	1,150,000	6,600	156.8	0.85	103.7	44.4	12.0	20.3	20.3	26.3	17.4	20.3	108.4	
Tire rollor $10^{+}_{+}$ $40^{\text{ps}}_{-}$	350,000	7,000	45.0	0.85	29.8	12.8	9,0	6.8	6.8	26.3	5.0	6.8	50.9	
Water tank truck $6^{\prime}_{t}$	230,000	6,000	34.5	0.90	24.2	10.4	5.0	8.5	8.5	11.4	3.8	8.5	34.1	
Dupm truck 8 ^t ₃ 196 ^{ps}	310,000	6,000	46.5	0.80	28.9	12.4	7.0	11.8	11.8	11.4	5.2	11.8	40.8	
Agitaton truck 3.0", 195 ^{PS}	420,000	5,500	68.7	0.60	32.1	13.7	7.0	11.8	11.8	11.4	7.6	<b>J</b> 1.8	44.5	
" $1.6_{+}^{""}$ $135_{+}^{P3}$	250,000	5,000	45.0	0.60	21.0	9.Ö	5.0	8.5	8.5	11.4	5.0	8.5	33.9	
Diesel hammer $2.2^{t}_{t}$	690,000	6,000	103.5	0.95	76,5	32.8	-		-	~	-	-	32.8	Backhoe attachment
Diesel hammer 1.25 (95ps)	410,000	6,000	61.5	0.95	45.4	1.9.5					••	~	19,5	Backhoe attachment

Note:	a/	Heavy equipment purchase cost	
	•••	C.I.F Bangkok in Oct. 1976	

- b/ Fuel & Lubricant Cost Fuel consumption  $(\ell/hr) \times 1.30 \frac{\beta/\ell}{\beta/\ell} \times 1.3$  (Light gasolin) Fuel consumption  $(\ell/hr) \times 1.80 \times 1.15$  (Gasolin)
- c/ Labor

Heavy equipment (Bulldozer, Backhoe, etc.)  $(38H + 4H \times 1.5)$ 

$$\left(\frac{\partial \Pi}{\partial H} + \frac{\eta}{\partial R}\right)$$

Operator: 
$$(90^{\cancel{8}}+60^{\cancel{8}}) \times \frac{(\overline{8H} + \overline{8H} \times 1.5)}{10 \text{ hr}} = 26.3 \text{ }/\text{H}$$

Dump truck

Operator: 
$$65\% \times \frac{(\frac{8H}{8H} + \frac{4H}{8H} \times 1.5)}{10 \text{ hr}} = 11.4 \text{ B/H}$$

d/ Administration & other {(1)/(2)} x 0.1

Appendix 4-64 Page 7

#### Decision of Required Number of Construction Equipments

The required number of construction equipments can be calculated based on the work volume, operation hours of equipment during the construction period.

Sample explanation for the estimation of the required number of equipments is given hereinafter in case of scrape dozer 6.4 cu.m;

Construction stage of max, work volume: 4th year

Required total operation hours in 4th year; for dike and provincial road works: 2,191.9 hr for on-farm works: 25,895.7 hr

Operation hours during construction period per unit:

for dike and provincial road works:

7 months x 25 days/mon. x 10 hr/day = 1,750 hr/unit

for on-farm works:

5 months x 25 days/mon. x 10 hr/day = 1,250 hr/unit

Required number of equipments;

for dike and provincial road works;

2,191,9/1,750 = 1.25

for on-farm works:

25,895.7/1,250 = 20.72

Total 21.97 = 22 units

1/: See Appendix 4-65.

Appendix 4-65 Page 2

Following figure shows the yearly required number of main construction equipments, which was estimated through same procedure mentioned above.

;

			·	Year	 	
Equipment	Unit	2nd	3rd	4th	5th	<u>6th</u>
	0				·····	
Bulldozer 15 t	5					
	10				÷	
	16-					
	20			18 units		
	0		·		·	
Bulldozer 16 t	6	· / // = / /				
	10-					
	15			11 บกโร		
, <u> </u>	0					
Bulldozer 21 t	6-				-	
	10					
	16	•		11 units		
	0-	· · · · · · · · · · · · · · · · · · ·			······	
Scrape-dozer 6.4m ³						
	10-					
	15	en e				
	20					
	25			L 22 units		
an a		<b>.</b>	, میں میں <u>میں بھی بندی ہو</u> ۔ میں میں میں میں اور میں <u>کی میں اور میں او</u>			

.

Description	Horks	Work Volume (m ³ )	Hourly Production (m ³ /hr)	Required Operation Hours (hour)
1. Dike				
Block A	Type D-2 Excavation	48,976.0	95.0	515.5
	Type D-4 Excavation	195,151.3 (62,657.3)	101.8	1,917.0 (615.5) <u>a</u> /
Block B	Type D-2 Excavation	61,702.5 (43,093,8)	95.0	649.0 (453.6)
	Type D-4 Excavation	146,195.0 (79,624.1)	101.8	1,436.1 (782.2)
Block C	Type D-1 Excavation	57,389.2	95.0	604 <b>.</b> 1
	Type D-2 Excavation	19,589.0	95.0	206.2
	Type D-3 Excavation	54,505.4	101.8	535.4
	Type D-H Excavation	148,811.2	101.8	1,461.8
Sub-total				7,325.6 (1,851.3)
2. On-Farm				
Block A Land leveling	Excavation	732,534.0 (102,850.0)	57.0	12,851.5 (1,804.4)
	Excavation	1,059,450.0 (148,750.0)	86.4	12,262.2 (1,721,6)
Road	Type R-1 Excavation	5,619,4 (789,0)	101.8	55,2 (7,8)
	Type R-2 Excavation	2,504.3 (351.6)	101.8	24.6 (3.4)
	Type R-6 Excavation	37,452.2 (5,258.4)	101.8	367,9 (51,7)
Canal & ditch	Type MC-2 Excavation	33,915.0 (4,761.8)	95.0	357.0 (50.1)
	Type LI-1 Excavation	1,018.0 (142.9)	101.8	10.0 (1.4)
	Type LI-2 Excavation	9,263.8 (1,300.7)	101.8	91.0 (12.8)
	Type L1-5 Excavation	2,433.0 (341.6)	1.01.8	23.9 (3.4)

Table A.4-70 Estimation of Total Operation Hours of Scrape Dozer 6.4  $m^3$ 

Note: a/ shows the required operation hours in 4th year

Appendix 4-65 Page 4

· •

Description	Works	Work Volume (m ³ )	Hourly Production (m ³ /hr)	Required Operation Hours hour
	Type DD-1 Excavation	1,349,7 (195,8)	101.8	13.7 (1.9)
	Type DD-2 Excavation	875.5 (122.9)	101.8	8.6 (1.2)
Block B Land leveling	Excavation	(625,084.8)	57.0	(10,366.4)
	Excavation	(904,055.0)	86,4	(10,463.6)
Road	Type R-1 Excavation	(4,906.8)	101.8	(48.2)
	Type R-2 Excavation	(1,985.1)	101.8	(19.5)
	Type R-6 Excavation	(17,937.2)	101.8	(176.2)
Canal & ditch	Type MC-2 Excavation	(42,731.0)	95.0	(449.8)
	Type MC-3 Excavation	(1,801.9)	101.8	(37.7)
	Type LI-1 Excavation	(885.7)	101.8	(8.7)
	Type LI-2 Excavation	(4,438,5)	101.8	(43.6)
	fype L1-5 Excavation	(3,196.5)	101,8	(31.4)
	Type DD-1 Excavation	(1,109.6)	101.8	(10.9)
Block C	Provense to Ass	1 103 646 0	57.0	20,939.4
Land leveling	Excavation Excavation	1,193.545.8 1,726,211.5	86.4	19,979.3
Road	Type R-1 Excavation	10,220.7	101.8	100.4
	Type R-2 Excavation	4,051.6	101.8	39.8
	Type R-5 Excavation	2,107.3	101.8	20.7
	Type R-6 Excavation	42,165.6	101.8	414,2
	Type R-9 Excavation	4,947.5	101.8	48.6

Appendix 4+65 Page 5

Description	Works	Work Volume (m ³ )	Hourly Production (m ³ /hr)	Required Operation Hours hour
Canal & ditch	Type MC-1 Excavation	31,654.0	95.0	333,2
	Type MC-2 Exeavation	13,566.0	95.0	142.8
	Type MC-4 Excavation	1,353.9	101.8	13,3
	Type MC-3 Excavation	885.7	101.8	8.7
	Type LI-1 Excavation	1,852.8	101.8	18.2
	Type L1-2 Excavation	10,424.3	101.8	102.4
	Type LI-6 Excavation	1,109.6	101.8	10.9
· · · · · · · · · · · · · · · · · · ·	Type DD-1 Excavation	2,260.0	101.8	22.2
	Type DD-2 Excavation	1,537.2	101.8	15.1
Sub-total				90,510.8 (25,895.7)
3. Provincial Roa	ad			-
Block A	Type PR-1 Excavation	(7,502.7)	101.8	(73.7)
Block B	Type PR-1 Excavation	(9,854.2)	101.8	(96.8)
•	Type PR-2 Excavation	(4,957.7)	101.8	(48.7)
	Type PR-5 Excavation	(12,358.5)	101.8	(121.4)
Block C	Type PR-6 Excavation	4,519.9	101.8	11 ti - ti
Sub-total		• •		385.0
Total				(340.6) 98,221.4 (28,087.6)
الم مرجع الم			الله العالية المالية المالية المراجعة الله المراجعة المالية المراجعة المراجعة المراجعة المراجعة الم	an a

Residual Values of Construction Equipments

Residual values of the construction equipments can be calculated by the following equation;

£ .

Residual values = Purchase Price -{Depreciation cost + Repair Cost}

Sample explanation for the residual values in case of scrape dozer 6.4  $m^3$  is given hereinafter.

Purchase price	= $\$1,850,000 \times 22^{\text{unit}} \times 1.2^{1/2}$ = $\$48,840,000$
Depreciation cost	= Operation hours x Depreciation cost/hours = $\frac{27}{34}$ = $\frac{37}{34}$
Repair cost	= Operation hours x Repair cost/hour x (1.0 - 0.1) $\frac{5}{5}$ = 98,221.4 hr x 199.2 x 0.9
	= \$17,609,000

so that,

.

Residual values = \$48,840,000 -= \$6,067,000

Note:	<u>_1/</u> ;	20% of spare parts are included (see Appendix 4-62,
	_2] ;	See Appendix 4-65
	<u>_3</u> / ;	See Appendix 4-64, page 7
	<u>4</u> ] ;	10% of residual values for spare parts are considered
	<u>-5/</u> ;	See Appenidx 4-64, page 7

Based on the above procedure for the estimation of the residual values of construction equipments, total residual values of the construction equipment required for the project are evaluated to be B25,460,000 as shown in Table A.4-71.

Residual Values of Construction Equipments and Provisional Facilities Table A.4-71

Total (3)+(C) 4,160 13,383 14,516 42,775 2,317 28 4,925 107 60 T 103 ლ ქ 263 52 121 20,245 103,238 I,0003 8,810 5,133 6,474 17,511 1,0003 ದ ಕೆ. ಕೆ. ಕೆ. ಕೆ. ಕೆ. Cost (C) 865 ម ដ 43,579 r-1 r-1 ച പ ဗ္ဗ 77 5 7 0 7 0 7 0 Repair Cost 148.6 179.3 26.8 93.3 221.8 120.5 20\$T/hr 78.4 26.0 0.0 t:0 Residual values of equipments = (A) - {(B) + (C)} = B128,700,000 - B103,238,000 = B25,462,000 = B25,460,000 106.7 123.0 57.5 68.8 8° 78 て、たさ 1,000B 11,436 7,250 8,042 25,164 1,452 2,499 3,229 59,659 Cost (B) 17 116 26 **ട** പ 62 20 73 Se Depreciation Cost Cost/hr 256.2 #5.0 156.8 34.5 181.3 103.5 0**-**05 138.5 1 9 1 8 1 9 1 8 1 1 8 1 109.5 106.6 46.5 61.5 130.5 р 390.9(day) 43,564.6 98,221.4 32,273.6 82,569.3 49,864.7 485.2 485.2 578.0 253.4 1,420.0 nou 13,784.0 29,491.5 1,503.5 1,885.4 Operation (ur) anoi <u>Cost (A)</u> 1,000B Purchase 128,700 8,700 6,132 828 21,500 13,500 21,120 48,840 2,520 1,380 924 1,116 ₹85 969 216 276 Ê 25 e E ິ E Ħ E 2.25 2.2 0.0 0.0 9.4 10.4 3.7 6.6 0.8 ဖ -1 5 E 9 10 ω Fronted Loader Dump Truck fotor-grader Disel Hammer Ecuipments Tire Roller Screpedozer Natertruck Bulldozer Backhoe Total **Mixser** : •--: ţ, :

Appendix 4-66 Page 2

Residual values of provisional facility =  $B_1$ ,800,000 x 0.3 =  $B_5$ 40,000 x 0.3

Total residual value = B25,460,000 + B540,000 = B26,000,000

#### Table A.4-72

																	(Unit: \$*000)					
		·	Total			(Oct.177-:	Sep. <b>'78)</b>	2nd year	(Oct. 178-	Sep.'79)		(Oct. 179-	Sep.'80)		(Oct. '80-	-Sep. '81)	5th year	(Oct.'81-	Sep.'82)	6th year	(Oct. '82-	Sep.'83)
	Discription	<u>F.C.</u>	<u>ь.с.</u>	<del></del>	<b>F.C.</b>	<u>L.C.</u>	<u> </u>	F.C.	Б.С.	<u> </u>	F.C.	L.C.	<u> </u>	<u> </u>	L.C.	T	<u> </u>	L.C.	<u>T</u>	<u>F.C.</u>	L.C.	<u> </u>
1	. Civil Works	94,020	177,080	271,100				26 ,850	16,118	42,968	25,086	44,611	69,697	37,778	56,745	94,523	2,126	30,468	32,594	2,180	29,138	31,138
	1-1. Preparation	330	18,580	18,910	-	-	-	20	4,628	4,648	. 87	3,385	3,472	97	5,981	5,988	63	1,949	2,012	63	2,727	2,790
	1-2. Pumping Station	83,590	31,760	115,350				26,830	11,490	38,320	22,400	8,880	31,280	34,360	11,390	45,750						
	1-3. Dike	1,340	20,600	21,940							459	6,764	7,223	341	4,856	5,197	249	5,442	5,691	291	3,538	3,829
	1-4. On-Farm	8,320	101,500	109,820							2,140	25,582	27,722	2,550	30,448	32,998	1,804	22,597	24,401	1,826	22,873	24,699
	1-5. Provincial Road	440	4,640	5,080										430	4,)60	4,590	70	480	490			
2.	Construction Equipment	133,100	1,300	134,400				9,276	100	9,376	101,669	1,000	102,669	7,385	67	7,452	7,385	67	7,452	7,385	<b>6</b> 6	9,451
3.	Agricultural Development	-	14,860	14,860		2,200	2,200		3,640	3,640		3,290	3,290		980	980		980	980		3,770	3,770
4.	Project Administration & Facility	1,280	21,460	22,740	1,280	9,530	10,810		2,386	2,386		2,386	2,386		2,386	2,386		2,386	2,386		2,386	2,386
5.	Consulting Services	22,700	8,620	31,320	7,690	1,440	9,130	3,002	1,436	4,438	3,002	1,436	4,438	3,002	1,436	4,438	3,002	1,436	4,438	3,002	1,436	4,438
6.	Land Acquisition		3,640	3,640	-	910	910		910	93.0		910	910		910	910						
	Sub-total	251,100	226,960	478,060	8,970	1,4080	23,050	39,128	24,590	63,718	129,757	53,633	183,390	48,165	62,524	110,689	12,513	35,337	47,850	12,567	36,796	49,363
1.	Contingency	37,665	34,045	71,710	1,346	2,113	3,459	5,869	3,689	9,558	19,464	8,045	27,509	7,224	9,379	16,603	1,877	5,300	7,177	1,885	5,519	7,404
	Total	288,765	261,005	549,770	10,316	16,193	26,509	44,997	28,279	73,276	149,221	61,678	210,899	55,389	71,903	127,292	14,390	40,637	55,027	14,452	42,315	56,767
8,	Price Escalation	82,269	91,846	174,115	825	1,295	2,120	7,487	4,706	12,193	38,754	16,019	54,773	19,967	25,920	45,887	6,754	19,072	25,826	8,482	24,834	33,316
	Grand Total	371,034	352,851	723,885	11,141	17,488	28,629	52,484	32,985	85,469	187,975	77,697	265,672	75,356	97,823	173,179	21,144	59,709	80,853	22,934	67,149	90,083

Disbursement Schedule

## Appendix 4-67 Page 1

.

#### Construction Method of the Works

#### 1. Outline

Construction works in the Project Area consist of the following works:

- 1. Pumping station
- 2. Dike
- 3. Land consolidation
- 4. Provincial road

Project Area is located in the low-lying area with an elevation of averaged two meters above mean sea level and it is submerged in the wet season. The construction of dike and pumping station will be proceeded prior to the construction of land consolidation taking account the flooding irrigation in the wet season. Construction period will be five years, of which Block A will be started first, then Block B and lastly Block C. It will be possible to use the existing canals and provincial road in order that the construction materials will be transported to Project Area. And, in order to transport the heavy equipments, it would be effective to use the ship which comes from Bangkok passing through Chao Phya river and goes through the existing canals, Khlong Phraya Banlu, in the Project Area. As regards the soil texture, silty clay (or CH) covers the ground surface in the Project Area, therefore crawlar type construction equipments are more effective for these works and swampy-type heavy equipment would also be partly required. It is assumed in this planning that daily operation hours of heavy equipments would be ten (10) hours which is generally adopted in Thailand. Outline of construction method for principal works are as follows.

2. Workable days and Bulk factor of soil

#### Workable days

Norkable days for civil works are influenced by climate, especially rainfall. And in order to calculate the workable days, the daily rainfall data for the last ten years (1966 - 1975, observation station. Sing Ha Nat Office of RID) were analyzed based on the standards below. a) Concrete works

	Below 10 mm/day	Possible to work
	Over 10.1 mm/day	Impossible to work
b) Other	works (Excavation, Embankment, and O	thers)
	Below 5 mm/day	Possible to work
. * .	5.1 mm/day - 20.0 mm/day	One restday
	20.1 mm/day - 50.0 mm/day	Two restdays
	Over 50.1 mm/day	Three restdays

#### Monthly Workable Days

Works	Jan.	Feb.	Mar.	Apr.	May	Jun.	<u>Jul</u> .	Aug.	Sep.	Oct.
Concrete	30	27	29	28	26	25	25	24	20	24
Others	30	27	28	26	23	21	22	1.9	1.5	20
		·					Nov.	Dec.	Total	Annual mean
· · ·		х					28	30	316	26days
	· ·				· .	·	27	29	287	24days

The above-mentioned table indicates the annual workable days after analyzing the rainfall data, but flooding irrigation method has been adopted in the Project Area, therefore, annual workable days will be decided taking into account the water level in the Project Area and the growing period of paddy. Figure A.5-1 indicates the relationships.

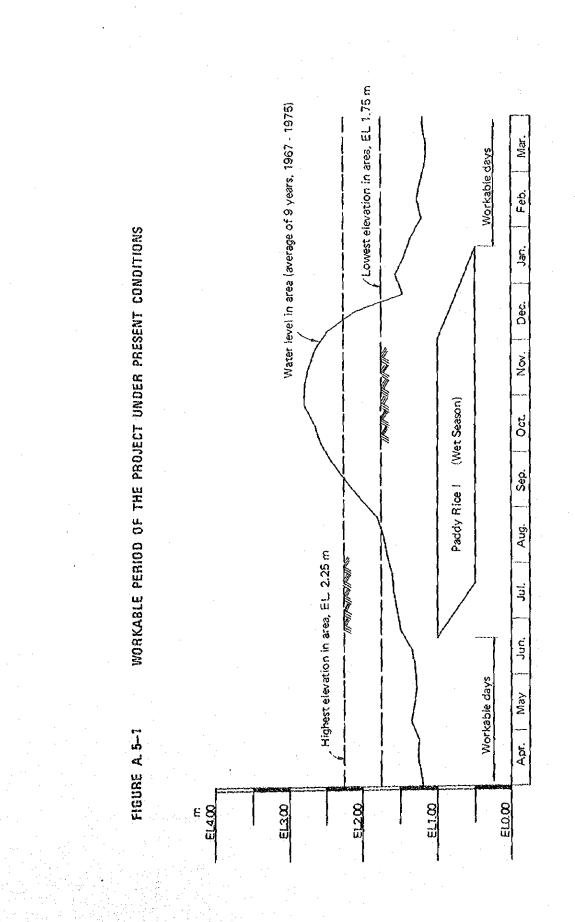
After these analyses, workable periods for civil works are as follows:

Pumping station works	From the beginning of January to the end of August (Eight months/year)
Dike and provincial road works	From the beginning of January to the end of July (Seven months/year)
On-farm works	Twentieth of January - Twentieth of June (Five months/year)

And also, monthly mean workable days are as follows:

Concrete works ----- Twenty seven (27) days/month

Other works ----- Twenty five (25) days/month


#### × . Bulk factor of soil

Bulk factor of soil for construction of civil works were decided follows:

#### Bulk Factor of Soil

Classification	Original condition	Bulk Fa	actor c	f soil
of Soil texture	of soil	P	Ŀ	B
Clayey soil	P	1.00	1.43	0.90
	I.	0.70	1.00	0.63
	В	1,11	1,59	1,00
Sandy soil	Ρ	1,00	1.25	0.90
	L	0,80	1.00	0.72
	В	1.11	1,39	1.00
Gravel & Sand	·	1.00	1,18	1.08
	I.	0,85	1.00	0.91
	В	0,93	1.09	1.00

Note: P: in place condition L: in bank condition B: in loose condition



- 3. Construction method of works
- (a) Pumping station works

Pumping station are to be constructed in each blocks. Pumping station works must be started earlier than the other works, with Block A at first, then Block B and finally Block C.

#### Excavation works

The following equipments are required for excavation works. Bulldozer with capacities of 15 ton Fronted loader with capacities of 1.6 cu.m Backhoe with capacities of 0.6 cu.m Dump truck with capacities of 8 ton

Materials excavated by the above mentioned equipments are deposited at nearby and, which would used for backfill or embankment materials. And also excess soil are leveled in field for the land consolidation works.

#### Works of concrete pile

The foundation at construction site is weak of N-values 1-2 to the depth of ten meters, therefore concrete piles are required in order to bear the pumping stations. Concrete pile are drived by 1.25 ton diesel pile hammer attached to the universal excavator from which the backhoe is taken off. Daily (10 hours/day) production of piling is about 13 pieces.

#### Concrete works

Concrete mixing works are accomplished by 0.5 cu.m portable batching plant which is set at job site, then, mixed concrete is transferred and placed by agitator truck and concrete conveyer. Daily mixing capacity is about 3.0 cu.m by using the 0.5 cu.m portable batching plant .

#### (b) Dike works

#### Stripping of surface soil

The work belongs to embankment works of dike and is composed of stripping the vegitations and the organic soil lying on the depth of 20 cm. This work is required in order that the connection of embankment portion and foundation will be in good condition, and in order to prevent from water seepage from the abutment portion. The surface soil is stripped by 15 ton bulldozer or swampy type 16 ton bulldozer, and it is hauled and embanked at nearby place. Then, the soil is leveled in land consolidated area.

#### Excavation works

Planning of excavation works is indicated in Type A of Figure A.5-2. Excavated materials from the borrow pit portion are transferred to the embankment portion. The upper layer is excavated by 15 ton bulldozer and the lower layer is excavated by 6.4 cu.m scrape dozer, and afterward excavated materials are hauled and transferred to the embankment portion.

#### Embankment works

#### Non-pavement embankment portion:

Transferred embankment materials are spread by 15 ton bulldozer or swampy type 16 ton bulldozer and afterwards compacted by tire roller with capacities of 8-20 ton

#### Pavement embankment portion:

Principal main roads are paved at depth of 15 cm on the surface by the good materials contained with many gravel and sand, so called a laterite, which is transferred from the mountainous area. In this planning, the laterite is transported from Salaburi located in the northern part of about 100 km from the Project Area. Transported laterite is spread by 15 ton bulldozer and afterward compacted by tire roller with capacities of 8-20 ton.

#### (c) On-farm works

On-farm works will be divided into following works,

(i) Road and canal works

(ii) Land leveling works

(iii) Related structure works

#### Road and canal works

Planning of road and canal works are indicated in Type B and Type C of Figure A.5-2.

#### Type B:

Excavated materials from the canal portion are transferred to the embankment portion. Methods of excavation works are as follows: the excavated materials by 0.6 cu.m backhoe are houled to the embankment portion and embanked by 15 ton bulldozer or swampy type 16 ton bulldozer

#### Type C:

Embankment materials, which are equally excavated from surrounding paddy fields, are transferred to the embankment portion. Excavation works are conducted as follows, embankment materials are excavated by 15 ton bulldozer or swampy-type 16 ton bulldozer and afterward hauled or transferred to embankment portion.

Construction methods of embankment works are same as methods adopted to dike works.

#### Land levelling works

(1) Land clearing works

There are many small hills in which trees and shrubs grow in the Project Area, therefore, before the execution of land consolidation works, stripping the obstructions (land clearing works) are required in the Project. And also it is considered that these obstructions will be cleared by bulldozer. Therefore, in this planning, 15 ton and/or 21 ton bulldozer are used for this purpose.

#### (2) Land leveling works

As regards soil texture in the Project Area, which was previously described, silty clay reaches to the depth from 10 m to 15 m. Namely, clear classifications between surface soil and sub-surface soil can not be observed. Averaged volumes of land levelling works are calculated in sample areas as follows:

> Land adjustment: 242 cu.m/ha (hauling distance 197 m) Land leveling: 520 cu.m/ha (hauling distance 65 m)

Method of land adjustment and land leveling works are: two third of these works are accomplished by 6.4 cu.m scrape dozer and one third of these works are accomplished by 21 ton bulldozer and 15 ton bulldozer or swampy type 16 ton bulldozer. After hauling the soil, in order to remove fluctuation and level the field surface, bulldozer are used along the width of plot throughout the field, and also along the length of run throughout the field.

#### (3) Farm Road and Ditch works

Road works:

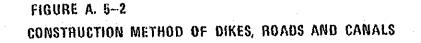
Embankment materials are gathered from vicinity of proposed farm roads, and embanked by 15 ton bulldozer and/or swampy type 16 ton bulldozer. And afterward, these are spready by the bulldozer and compacted by tire roller having 8 - 20 ton capacities.

#### Ditch works:

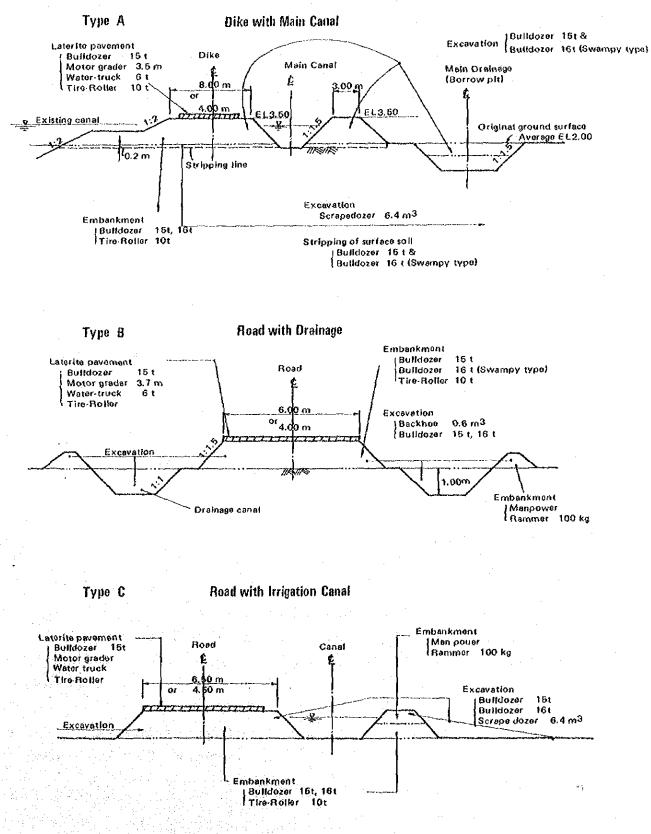
Ditchs are excavated by backhoe with capacities of 0.3 cu.m

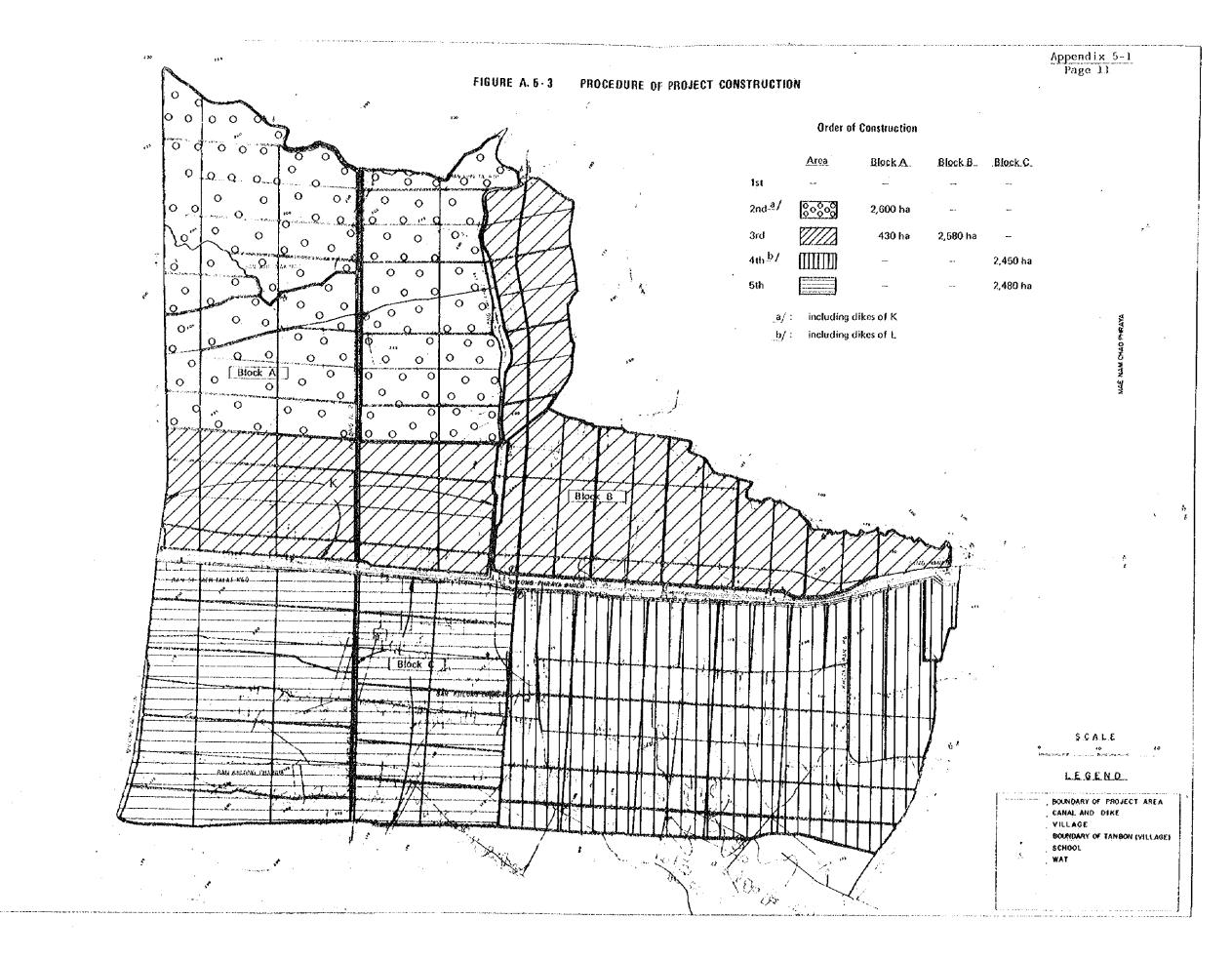
#### Related structure works

In this planning, concrete required for related structures are mixed by the potable concrete mixer set at jobe site, and mixed concrete are transferred and placed by man power using wheelbarrows or by belt conveyer.


Daily mixing capacities of 0.3 cu.m potable concrete mixer will be considered to 20 cu.m/day.

Appendix 5-1 Page 9


#### (d) Provincial road works


Construction methods for provincial roads conform to Type B of Figure A.5-2.

•



۰.





# Operation and Maintenance Costs

### 1. Maintenance costs

(B'000)

1-1. Irrigation, drainage and road systems Laterite pavement of main road and dike  $0.18m^3/m \times 78.3km \times 84\beta/m^3 = 1,184$   $0.18m^3/m \times 13.6km \times 84B/m^3$  206 Excavation  $0.15m \times 4.0m \times 343km \times 13\beta m^3 = 2,675$ 1-2. Building facilities  $10,425,000 \times 4\% = 417$ 

1-3. Others	900
:	

### Total 5,382

#### 2. Personnel Cost

2 1 5 1	12 6
5 <u>1</u>	
5 <u>1</u>	
	6
3 8	0
	24
3 2	6
2 1 *	72
) 7 *	350
) 10	300
5 12	300
5 9	135
5 11 🔹	495
) .10	100
5 <b>1</b> 5 .	յդւ
29	97
	97
	136
281 2,9	964 1
	3 8 3 2 2 1 * 0 7 * 0 10 5 12 5 9 5 11 * 0 10 5 15 3 29 3 29 1 36 m x \$30 x 12mos) 0

3.	Runni	ng cost		(1,000 ))
	3-1.	Operation cost of p	umps	
		0.5 Ø/kwh x 170k	v x 1,842hr x 3unit	ts = 470
		0.5 %/kwh x 140ki	w x 1,802hr x 3unit	ts = 378
	•	0.5 B/kwh x 300kv	$x \ge 1,817hr \ge 3unit$	ts = 818
	3-2.	Others		1,917
	V~ 2 .	others	Total	3,583
				A A george - Aparatican
ц.	Depre	ciation cost of vehic	cles and equipments	3
	4-1.	Vehicles		
		Truck	2 x \$260,000 x 20%	depn. = 104
		Pickup Truck	2 x \$100,000 x 20%	n = 40
		Motor Bicycle 2 ¹	1 x # 12,000 x 20%	" = 58
	4-2.	Wireless phone		
		Main station (ALI	C) 1x2x	¢82,000x10% depn.= 1
		Sub-station (Prod	luction unit) 4x2x	
			agement group)29x2x	
	4-3.	Office equipment		
		Typewriter	7 x \$10,000 x	20% depn. = 14
		Calculation machi	ne 11 x Ø 1,500 x	20% " = 3
		Copying machine	5 x \$20,000 x	20% " = 20
			Total	254
: :	•		Grand Total (1 to	(12,183)
1.1.1				x
				· .
i se si				
	· · · · · ·	en an an an an an an Ara. An an an Araba an Araba an		
•				

4

# Terms of Reference for the Consultant's Services

1. Objectives

The purpose of the consultant's services is to assist the Government in the effective implementation of the Irrigated Agricultural Development Project in the West Bank Tract of Greater Chao Phys.

2. Specific Terms of Reference

The consultants will provide a team to undertake the followings of the consultant's services.

- (a) To prepare detailed design, cost estimates, specifications and tender documents for civil works and for procurement of operation and maintenance equipments, construction machineries, construction materials and other goods and instruments necessary for the project;
- (b) To assist ALRO in the supervision of construction works under the project.
- (c) To assist and advise the Project Manager in preparing monthly construction schedule and work records;
- (d) To assist the relevant Government agencies to prepare agri-institutional establishment program which will include provision for:
  - (i) effective education of farmers in the project area through intensive demonstration and other means to enable them to adopt new cropping systems, diversify crops, use improved varieties of crops and improve cultivation practices;
  - (ii) strengthening of existing farmer's organizations and establishment of new organizations, of local farmers for the effective channelling of agricultural services;
  - (iii) adequate supply of agricultural credit and production requisites to these farmers as required for the recommended system of intensive cropping; and

- (c) To train local counterpart personnel in all phases of project activities.
- 3. Expertise
- (a) Senior Irrigation Engineer with sufficient experience in the planning, design, and operation and maintenance of irrigation and drainage system and with sufficient seniority to function as team leader
- (b) Design Engineer with sufficient experience in the planning, design and construction of the pumps, road and dike, canal systems and on-farm facilities
- (c) Equipment Engineer with experience in management and organization of operation and maintenance of construction equipments;
- (d) Engineering Geologist with sufficient experience in the geological and soil mechanical investigation for the major structures such as canal structures, pumping station, bridge and etc.
- (e) Agronomist with sufficient experience in the crop and soil management under paddy irrigation and upland crops at the farm level as well as in agricultural supporting services for irrigated agriculture.
- (f) Agri-institutional Expert with broad experience in the agricultural supporting services for irrigated agriculture
- (g) Economist with sufficient experience in the establishment of farm budgets, marketing and credit services and in the evaluation of economic and financial viability of the irrigated agricultural development project.
- (h) Topographical Surveyor with sufficient experience in the planning execution and supervision of the topographical surveying works.

4. Services to be provided by the Government

The Government will provide the following for carrying out the Consultant's services.

- (a) All available documents, drawing, maps, statistics, data and other information related to the irrigated Agricultural Development Project in the West Bank Tract.
- (b) Suitable full-time counterparts personnel, including engineers, technicians and professionals, as required for the project; and
- (c) To exempt the Consultants from (or bear the cost of) any taxes, duties, fees, levies and other impositions imposed under its laws and regulations in the respect of;
  - (i) any payment made to the onsultants in connection with the carrying out their services;
  - (ii) any equipment and materials and supplies brought into the territories of the Government for the purpose of carrying out the services; and
  - (iii) any property brought by the members of the Consultants for their personnel use and consumption.

Figure A.5-4 shows the proposed schedule for the Consultant's services.

# FIGURE A. 5-4.

# PROPOSED SCHEDULE FOR CONSULTANT'S SERVICES

Phasing Year	1976	1977	1978	1979	1980	1981 19	982	1983	
Description	7-9-11-8 10 12	1 - 3 - 5 - 7 - 9 - 11 - 2 - 4 - 6 - 8 - 10 - 12	1 - 3 - 5 - 7 - 9 - 11 - 2 4 6 8 10 12	$1 - 3\overline{4}   5 - 7 - 9 - 11 - 2   4   6   8   10   12$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3-6-7-9-11-4	Remarks
I. Final Design 1. Senior Irrigation Engineer									<u>months</u> I 1 10
2. Equipment Engineer			GROUT & STATE						1-2 4
<ol> <li>Engineering Geologist</li> <li>Design Engineer (Pump)</li> </ol>									1-3 2 1-4 6
5. Design Engineer (Road & Dike)									I 5 10
6. Design Engineer (On-farm)		here and her							I – 6 10
7. Design Engineer (On-farm)									1-7 7 1-8 5
8. Design Engineer (Building) 9. Topographic Surveyor									1~9 2 56
<ul> <li>II. Construction Supervision</li> <li>1. Project Engineer</li> <li>2. Construction Engineer</li> </ul>			for an and						H – 1 15 H – 2 60 _75
<ul> <li>III. Supporting Services <ol> <li>Agronomist</li> <li>Agri-institutional Expert</li> <li>Economist</li> </ol> </li> </ul>			anna jao					hand the second se	$\begin{array}{cccc} 111 - 1 & 34 \\ 111 - 2 & 15 \\ 111 - 3 & 2 \\ & 51 \\ \hline 182 \\ \hline \end{array}$

Appendix 5-3 Page 4

# Table A, 6-1 Structure of Paddy Price per Ton

IBRD forecast in constant end-US\$222 1. World market price of 1974 prices milled rice in 1985 in 5% broken US\$ 285/MT constant end-1974 25% broken US\$ 2067MT prices, Bangkok fob. 20% of 5% broken and Assumption: 80% of 25% broken Weighted average price: **US\$221.8** Weighted price index of "Total food" 1973 : 100-64 1974 : 157 or 100 94 1976 : 147 Source: "Price forecast for main primary commodities" July 1975. IBRD 2. World market price of US\$209 milled rice in 1985 in constant 1976 prices 84,174 3. Price of milled rice in Baht 4. Commission for middleman \$ -417 and exportor Transport and handling 5. Transport & handling B -295 Mill to boat 40 Freight by boat 35 20 Handling 200 Ware house 10/sack/month 2 month 6. Rice price at rice mill \$3,462 7. Transport from farm to 8 -40 mi]] \$100/ton Paddy, \$100+0.66 = 8. Milling charge 150 B150/ton milled rice. \$3,272 9. Farm gate price of milled rice Recovery rate: 0.66 10. Farm gate price of paddy \$2,160 excluding by-products  $0.7 \times (1 - 0.94) : 0.66 =$ 196 0.06 11. By-products  $3,272 \times 0.06 = 196$ 1/: Recovery rate of hulled rice from paddy in weight Recovery rate of milled rice 21 from hulled rice in weight 12. Farm gate price of paddy \$2,356 \$2,360

#### Farm Labor Analysis

#### 1. Labor Supply

Because almost all of the farm lands have been planted to rice, seasonal fluctuation of farm labor requirement has been high, namely, during the seasons of transplanting and harvesting of rice, relatively large sized farmers have suffered from scarcity of hired labor, resulting in introducing them from outside the Project Area.

On the other hand, in the slack seasons, even large sized farmers have little opportunity of employment.

In future, however, when the double cropping of rice and horticulture, animal busbandry and inland fishery are introduced through the provion of facilities for flood control and irrigation, and on-farm facilities, the said fluctuation of farm labor requirement is expected to be diminished.

But a substantial increase in absolute labor requirement will cause severe scarcity of labor forces in near future if the growth rate of population will remain at low of 1.9% as it is.

To meet the increase in farm labor requirement, workable population should be increased by preventing emigration and by U-turn of ones who have deserted the villages of the Project Area.

Furthermore, according to the proposed cropping pattern, the peak month of labor demand will be shifted from June at present to February, March, August and November in future.

Present conditions of labor requirement in the neighboring area are similar to those in the Project Area and are not expected to change simultaneously with the Project Area, therefore, many of the workers of these areas would be expected to commute to the Project Area on a daily basis. In this context, the available labor force for the farming in the Project Area including casual migration was estimated, as shown in the Tables A.6-2, on the assumption that the workable heads per family are three, workable days per month are 25 and available labor force which commutes to the Project Area is 40 per cent of those inside.

A part of this potential labor force, for instance, of well-off farmers, in fact, does not participate in manual farm work, but it can be compensated by a part of non-farmers' labor force which is estimated at 20 per cent of total labor force in the Project Area.

2. Existing Wage Rate

It is difficult to obtain reliable data on the existing wage rates for farm labor, because of the following reasons;

- ° Most of the farm labor is provided by the farm family.
- ^o An exchange of labor among neighbors and relatives is common.
- Land preparation, transplanting, weeding, harvesting etc. are paid by the job.
- ⁹ Therefore, an employment on a daily basis is limited.

So far as the information obtained by field survey, the current wage rates are likely to be 15 to 18 Baht for male and 10 to 12 Baht for female on transplanting of rice, and about 20 Baht for male and 10 to 12 Baht for female on harvesting of rice.

In the case of permanent labor in orchards, employees are paid 15 Baht for male and 12 Baht for female per day.

3. Economic Costs of Farm Labor

It is postulated that the marginal opportunity cost of farm labor in the Project Area can be approximated by an S-shaped curve (Figure A. 6-2). The marginal opportunity costs are positive at all levels of labor demand and increase as more labor is employed in farm work. The increase is slow initially, reflecting the scarcity of alternative productive employment, but becomes more rapid as the labor supply becomes fully used.

At the employment level corresponding to full employment of abailable family labor in the Project Area and surrounding areas (Table A. 6-2), the marginal opportunity costs are assumed equal to the market wage rates. If the demand for farm labor were to increase beyond this level, as would generally happen under the with project conditions the opportunity cost would continued to rise, though at a slower pace. At a level of about 30 per cent about full employment it is postulated that the opportunity cost curve would flatten out, at that cost the available labor pool would be drastically enlarged, as laborers from many other areas could be diverted to farm work in the Project Area.

It is, therefore, reasonable to approximate the S-shaped curve by three straight line segments. (Figure A.6-1)

Three points determine the position of the curve. Point A represents the minimum opportunity cost of farm labor which is judged to be four Baht per man-day, equal to economic values of alternative employment (casual non-farm labor, fishing, house repairs, etc.) plus the cost to supply the additional food requirements of strenuous farm work with the Project. Point B indicates that at full employment of available labor in the Project Area and in neighboring areas, the opportunity cost would equal the market wage rate of 15 Baht per man-day. The horizontal segment to the right of Point C indicates that at 20 Baht per man-day as many hired laborers as needed would be available for farm labor in the Project Area.

The curve in Figure A.6-2 was drawn by idealizing figure. The monthly opportunity cost may be read directly from the curve at the corresponding level of labor demand.

#### 4. Labor Demand

Based on the results of field survey and information from extension workers, labor requirement per hectare and per production unit were estimated as shown in the tables A.6-3 and A.6-4.

Total farm labor requirements at present and in future with Project were computed on the basis of the above tables and the present and projected cropping patterns, and the results were shown in Tables A.6-5 and A.6-6.

5. Yearly Change in Labor Demand

Labor demand in future was assumed that the demand level would remain as it was with the situations of without Project, while with the with-Project-situations, the demand would increase corresponding to the intensification and divercification of farming through the implementation of the Project in the Area.

Estimated labor demand are tabulated in Tables A.6-7 and A.6-8.

# 6. Ratios of Labor Demand to Available Labor Force

Monthly farm labor demand as percentage of available labor force was derived from Tables A.6-2, A.6-7 and A.6-8, as shown in Table A.6-9 and A.6-10.

7. Wage Rate (Opportunity Cost of Labor per Man-day)

The monthly marginal opportunity costs of labor per man-day were read from the curve in Figure A.6-2 at the corresponding level of labor demand and shown in Tables A.6-11 and A.6-12.

### 8. Total Labor Costs

The total labor costs were computed by multiplying labor demand by wage rates and the results were tabulated in Tables A.6-13 and A.6-14. The differences between total labor costs without project and the ones with project were applied to Table A.6-16. Table A.5-2 Available Farm Labor Force in Future

.

Available Farm Labor Force inside the Project Area

Dependent $y$ No. of series         Mandays         Dependent $y$ No. of series         Mandays	Population       Crowth     No.       Rate     No.       Rate     No.       1.9     10,590       1.9     10,590       1.9     10,590       1.9     11,000       1.9     11,000       1.9     11,000       1.9     11,000       1.9     11,900       1.9     11,900       1.9     11,900       1.9     11,900       1.9     11,900       1.9     11,900       1.9     12,510       1.9     12,550       1.9     12,550       1.9     12,550       1.9     12,550       1.9     12,550       1.9     12,550       1.9     12,550       1.9     12,550       1.9     12,550       1.9     12,550       1.98     147       1.98     155       1.98     174       1.74     174	WILDOUT Froject			İ				
Rete         No.         Size         Tamilles         Der Month         Rete         No.         Size         Tamilles         Der Month         Lucon man-days         No.         Lucon man-days         Lucon man-days <thlucon man-days<="" th=""> <thlucon man-days<="" th="">         Luco</thlucon></thlucon>	Rate         No.           79         1.9         10,390           1.9         1.0         20,200           1.9         1.9         10,390           1.9         1.9         11,420           1.9         11,9         11,500           1.9         11,9         11,500           1.9         11,9         11,500           1.9         11,9         11,500           1.9         11,9         11,500           1.9         11,9         11,500           1.9         11,9         11,500           1.9         11,9         11,900           1.9         11,9         11,900           1.9         11,9         11,900           1.9         11,900         12,550           1.9         12,550         12,550           1.98         12,550         12,550           1.98         12,550         12,550           1.98         12,550         14,7           1.98         1.98         1.74           1.98         1.74         1.74           1.98         1.74         1.71		No. Of Feym	Mandays	Popul Growth	ation	Family	No. of Farm	Mandeys
97 1.9 10,200 5.34 1,610 120 1.9 10,200 5.34 1,610 120 125 2.1 10,410 5.25 1,670 5.15 1,770 133 2.5 10,920 5.13 1,510 5.30 11,910 5.30 11,910 5.30 1,970 5.30 11,910 5.30 1,970 5.30 11,910 5.30 1,970 5.30 11,910 5.50 1,970 5.30 1,970 5.30 1,970 5.30 1,970 5.30 1,970 5.30 1,970 5.30 1,970 5.30 1,970 5.30 1,970 5.30 1,970 5.30 1,970 5.30 1,970 5.30 1,970 5.30 1,970 5.30 1,970 5.30 1,970 5.30 1,970 5.30 1,970 5.30 1,970 5.30 1,970 5.30 1,970 5.30 1,970 5.30 1,970 5.30 1,970 5.30 1,970 5.30 1,970 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,940 5.50 2,94	975 1.9 10,200 977 1.9 10,390 980 1.9 10,390 981 1.9 10,390 982 1.9 11,000 982 1.9 11,000 983 1.9 11,420 985 1.9 11,420 986 1.9 12,510 986 1.9 12,510 986 1.9 12,550 988 1.9 12,550 988 1.9 12,550 988 1.9 12,550 988 1.9 12,550 1980 12,550 1981 147 1981 147 1981 147 1981 147 1982 1986 163 1988 163 1988 163 1988 163 1988 163 1988 163 1988 163 1988 163 1988 163 1988 163 1988 163 1988 163 1988 163 1988 163 1988 163 1988 163 1988 163 1988 163 1988 163 1988 163 1988 163 1988 163 1988 163 1988 163 1988 163 1988 163 1988 163 1988 163 1988 164 1988 1640 1988 16400 1988 16400 1988 16400000000000000000			per Month 300 men-days	Rate	<u>.</u>	Size	ranilies	200
977 1.9 10,990 6.25 1,660 125 2.1 10,410 6.25 1,670 978 1.9 10,990 6.15 1,720 129 2.5 10,650 5.99 1,970 962 1.9 11,000 5.99 1,960 147 3.0 11,910 5.99 1,970 962 1.9 11,000 5.99 1,960 147 3.0 11,910 5.83 2,040 963 1.9 11,640 5.74 2,000 129 3.0 12,660 5.56 2,74 963 1.9 11,640 5.74 2,000 158 3.0 12,660 5.56 2,74 963 1.9 12,090 5.50 2,000 158 3.0 12,660 5.56 2,74 966 1.9 12,090 5.50 2,000 171 2.5 14,000 5.50 2,420 966 1.9 12,500 5.50 2,300 171 2.5 14,000 5.50 2,420 966 1.9 12,790 5.50 2,300 171 2.5 14,000 5.50 2,420 974 1.9 12,790 5.50 2,300 171 2.5 14,000 5.50 2,420 976 1.9 12,790 5.50 2,300 171 2.5 14,000 5.50 2,420 976 1.9 12,790 5.50 2,300 171 2.5 14,000 5.50 2,420 976 1.9 12,790 5.50 2,300 171 2.5 14,000 5.50 2,420 970 1.9 12,790 5.50 2,300 171 2.5 14,000 5.50 2,420 970 1.9 12,790 5.50 2,300 171 2.5 14,000 5.50 2,420 970 1.9 12,790 5.50 2,300 171 2.5 14,000 5.50 2,420 981 1.9 12,790 5.50 2,300 171 2.5 14,000 5.50 2,420 982 1.9 12,790 5.50 2,300 171 2.5 14,000 5.50 2,420 988 1.9 12,790 5.50 2,300 171 2.5 14,000 5.50 2,420 988 1.9 12,790 5.50 2,300 171 2.5 14,000 5.50 2,420 988 1.9 12,790 5.50 2,300 171 2.5 14,000 5.50 2,420 988 1.9 12,790 5.50 2,300 171 2.5 14,000 5.50 2,420 988 1.9 12,790 5.50 2,300 171 2.5 14,000 5.50 2,420 988 1.9 12,790 5.50 2,300 171 2.5 14,000 5.50 2,420 988 1.9 12,790 5.50 2,300 171 2.5 14,000 5.50 2,420 988 1.9 12,990 5.50 2,000 5.50 2,000 5.50 2,000 5.50 2,420 988 1.9 12,990 5.50 2,000 5.50 2,000 5.50 2,000 5.50 2,420 988 1.9 12,990 5.50 2,000 5.50 2,000 5.50 2,000 5.50 2,420 998 1.9 12,000 5.50 2,000 5.50 2,000 5.50 2,000 5.50 2,000 5.50 2,420 998 1.9 1.0 125 1.0 1.0 1.0 21 1.0 1.0 21 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	977 1.9 10,390 978 1.9 10,390 981 1.9 11,000 982 1.9 11,210 983 1.9 11,420 985 1.9 11,420 985 1.9 11,420 985 1.9 11,420 986 1.9 11,900 986 1.9 11,900 988 1.9 12,550 988 1.9 12,550 1980 12,550 1981 147 1982 1982 147 1982 147 1982 147 1983 158 1986 165 1986 170 1986 165 1986 165 1986 165 1986 170 1986 170 1986 165 1986 170 1986 170 1997 170 1997 170 1907 170 1907 170 1907 170 1907 170 1907 170 1907 170 100000000000000000000000000000000	ര	1,610	120	თ . ქ	10,200	ന	1,610	120
978       1.9       10,990       6.16       1,720       129       2.5       10,920       6.15       1,730         950       1.9       11,210       5.90       1,960       1.9       1,500       1,970         952       1.9       11,210       5.90       1,960       1.9       1,500       1,970       1,970         952       1.9       11,210       5.90       1,960       1.9       3.0       1,960       5.90       1,970         933       1.9       11,860       5.66       2,100       126       3.0       1,910       5.65       2,230         935       1.9       13,800       1.9       12,800       5.66       2,100       5.65       2,230         935       1.9       12,500       5.50       2,330       171       2.5       1,4000       5.50       2,490         937       1.9       12,550       5.50       2,330       171       2.5       1,490       5.50       2,490         937       1.9       12,550       5.50       2,330       171       2.5       1,490       5.50       2,490         937       1.9       12,550       5.50       2,330       171 <td>978 1.9 10,590 979 1.9 11,000 981 1.9 11,210 982 1.9 11,210 985 1.9 11,840 986 1.9 11,840 986 1.9 11,860 986 1.9 11,860 986 1.9 11,860 988 1.9 12,550 988 1.9 12,550 988 12,990 12,790 1981 143 1981 143 1981 147 1982 1986 165 1986 170 1986 165 1986 165 1986 165 1986 170 1986 165 1986 170 1986 170 1997 170 1907 170 1907 170 1907 170 1907 170 1907 170 100000000000000000000000000000000</td> <td></td> <td>1,650</td> <td>125</td> <td>2-2</td> <td>10,410</td> <td>2</td> <td>1,670</td> <td>125</td>	978 1.9 10,590 979 1.9 11,000 981 1.9 11,210 982 1.9 11,210 985 1.9 11,840 986 1.9 11,840 986 1.9 11,860 986 1.9 11,860 986 1.9 11,860 988 1.9 12,550 988 1.9 12,550 988 12,990 12,790 1981 143 1981 143 1981 147 1982 1986 165 1986 170 1986 165 1986 165 1986 165 1986 170 1986 165 1986 170 1986 170 1997 170 1907 170 1907 170 1907 170 1907 170 1907 170 100000000000000000000000000000000		1,650	125	2-2	10,410	2	1,670	125
979 1.9 10,790 5.08 1,770 133 2.5 10,920 5.08 1,900 980 1.9 11,200 5.99 1,900 138 2.0 11,910 5.99 1,870 982 1.9 11,200 5.93 1,960 147 3.0 11,910 5.93 2,040 983 1.9 11,200 5.68 2,170 168 3.0 12,266 5.55 2,330 985 1.9 12,090 5.56 2,100 168 2.8 12,960 5.55 2,330 986 1.9 12,090 5.50 2,840 168 2.10 168 2.930 987 1.9 12,790 5.50 2,840 174 2.5 13,520 2,942 988 1.9 12,790 5.50 2,840 174 2.5 13,605 5.50 2,929 988 1.9 12,790 5.50 2,840 174 2.5 13,605 5.50 2,920 988 1.9 12,790 5.50 2,840 174 2.5 13,600 5.50 2,550 988 1.9 12,790 5.50 2,840 174 2.5 13,600 5.50 2,550 988 1.9 12,790 5.50 2,840 174 2.5 13,600 5.50 2,550 988 1.9 12,790 5.50 2,840 174 2.5 13,600 5.50 2,550 988 1.9 12,790 5.50 2,840 174 2.5 13,600 5.50 2,550 988 1.9 12,790 5.50 2,840 174 1.5 12,9 210 174 1.000 8.5 14,000 5.50 2,550 988 1.9 12,790 5.50 2,840 174 1.5 14,000 5.50 2,550 2,550 988 1.9 12,790 5.50 2,840 174 1.5 14,000 5.50 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2,550 2	979 1.9 10,790 982 1.9 11,210 982 1.9 11,210 983 1.9 11,420 985 1.9 11,840 985 1.9 12,090 986 1.9 12,090 986 1.9 12,550 988 1.9 12,550 988 12,990 12,790 1981 143 1981 143 1982 1982 143 1982 1986 165 1982 143 1983 1986 163 1983 1986 163 1983 1986 163 1983 1986 163 1983 1988 163 1983 1988 163 1983 1988 163 1983 1988 163 1983 1988 163 1983 1988 163 1983 1988 163 1983 1988 163 1988	•	1,720	129	2.3	10,650	-	1,730	130
980     1.9     11,000     5.99     1,840     18     2.8     1,270     5.90     1,970       981     1.9     11,420     5.90     1,900     147     3.0     11,910     5.90     1,970       983     1.9     11,420     5.90     1,900     147     3.0     11,910     5.90     1,970       983     1.9     11,460     5.66     2,100     158     2,140     5.55     2,230       986     1.9     12,500     5.50     2,240     168     2.6     2,440       987     1.9     12,500     5.50     2,300     171     2.5     2,420       987     1.9     12,500     5.50     2,300     171     2.5     2,420       987     1.9     12,500     5.50     2,300     171     2.5     2,420       987     1.9     12,500     5.50     2,300     171     2.5     2,420       987     1.9     12,500     5.50     2,300     171     2.5     2,420       987     12,500     5.50     2,300     171     2.5     1400       987     12,500     5.50     2,300     171     2.5     1400       988     1.9	980 1.9 11,000 982 1.9 11,210 982 1.9 11,210 985 1.9 11,840 985 1.9 12,090 987 1.9 12,090 987 1.9 12,550 988 1.9 12,550 988 1.9 12,550 988 1.9 12,550 988 12,990 12,550 988 12,990 1988 147 1982 1982 143 1982 1986 143 1982 1986 143 1982 1986 143 1986 165 1988 165 1988 165 1988 165 1988 165 1988 165 1988 165 1988 165 1988 165 1988 165 1988 165 1988 165 1988 165 1988 165 1988 165 1988 165 1988 165 1988 165 1988 165 1988 165 1988 165 1988 165 1988 165 1988 165 1988 165 1988 165 1988 165 1988 165 1988 165 1988 165 1988 165 1988 165 1988 165 1988 165 1988 165 1988 170 1988 170 19	•	1,770	133	ы Ю	10,920	0	3,300	135
061     1.9     11,210     5.90     1,970     1,970       022     1.9     11,420     5.83     1,960     147     3.0     11,910     5.83     2,040       035     1.9     11,860     5.66     2,100     158     3.0     12,600     5.83     2,230       035     1.9     13,910     5.56     2,100     158     3.0     12,600     5.53     2,230       036     1.9     12,910     5.50     2,280     171     215,900     5.56     2,230       036     1.9     1.9     1.9     12,500     5.50     2,230       036     1.9     1.9     2.50     2,280     171     2.5     12,500       036     1.9     1.9     5.50     2,280     171     2.5     2,420       036     1.9     12,500     5.50     2,330     171     2.5     2,420       036     1.9     12,500     5.50     2,190     5.50     2,420       036     1.9     12,500     171     2.5     1,400     5.50     2,420       031     1.9     12,500     2.3     171     2.5     1,420     5.50     2,430       0400     5.50     2,420<	961 1.9 11,210 982 1.9 11,420 983 1.9 11,420 985 1.9 11,860 986 1.9 12,090 986 1.9 12,090 988 1.9 12,550 988 1.9 12,550 988 1.9 12,550 988 1.9 12,550 988 1.9 12,550 12,790 12,790 12,790 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50	•	1,840	138	2.8	11,220	O)	1,870	140
882       1.9       11,420       5.83       1,910       5.83       2,040         983       1.9       11,860       5.74       2,030       125       3.0       12,500       5.65       2,140         985       1.9       13,190       5.56       2,170       168       2.8       2,330         985       1.9       13,500       5.50       2,1200       158       3.0       12,630       5.50       2,440         986       1.9       13,510       5.50       2,2240       166       2.7420       5.50       2,440         987       1.9       12,530       5.10       2,330       171       2.5       12,630       5.50       2,440         986       1.9       12,540       5.10       2,330       171       2.5       12,900       5.50       2,440         987       1.9       1.9       12,11       2.5       2,440       2.5       2,440         987       1.9       1.9       1.71       2.5       14,000       5.50       2,440         987       1.9       1.9       1.71       2.5       14,000       5.50       2,440         987       1.9       1.9       <	982 1.9 11,420 983 1.9 11,420 985 1.9 11,860 985 1.9 12,090 986 1.9 12,090 988 1.9 12,550 988 1.9 12,550 988 1.9 12,550 988 1.9 12,550 12,790 12,790 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550	•	2,900	n t u	0'e	11,560	$\sigma$	1,970	8 1:5 1:5
883     1.5     11,640     5.74     2,030     152     3.0     12,260     5.56     2,230       984     1.9     11,660     5.50     2,240     156     2,230       985     1.9     12,560     5.50     2,240     156     5.50     2,440       986     1.9     12,550     5.50     2,240     166     2.5     2,440       986     1.9     12,790     5.50     2,330     171     2.5     14,000     5.50     2,440       986     1.9     12,790     5.50     2,330     171     2.5     14,000     5.50     2,440       986     1.2     12,790     5.50     2,330     171     2.5     14,000     5.50     2,450       986     1.2     12,790     5.50     2,330     171     2.5     14,000     5.50     2,450       981     1.2     12,790     5.50     2,330     274     274     275     2,440       786     1.2     2.4     2.4     2.4     2.4     276     2,440       70.1     1.1     1.2     1.1     1.1     2.5     1,400     5.50     2,450       70.1     1.2     1.4     1.4     2.5	983 1.9 11,640 984 1.9 12,090 985 1.9 12,090 986 1.9 12,090 988 1.9 12,550 988 1.9 12,550 988 1.9 12,550 988 1.9 12,550 12,790 12,790 12,790 12,800 12,800 12,800 1981 147 1981 147 1982 1988 163 1983 1988 163 1983 1988 163 1983 1988 163 1983 1988 163 1983 174	•	1,960	ユキフ	3.0	11,920	<u></u> ор	2 040	69T
384     1.9     11,860     5.66     2,100     158     3.0     12,630     5.56     2,230       935     1.9     12,730     5.58     2,170     163     2.8     2,330       936     1.9     12,530     5.50     2,220     171     2.5     19,550     5.55     2,420       936     1.9     12,730     5.50     2,330     171     2.5     19,550     2,550       938     1.9     12,730     5.50     2,330     171     2.5     14,000     5.50     2,420       938     1.9     12,730     5.50     2,330     174     2.5     14,000     5.50     2,420       938     1.9     12,730     171     2.5     14,000     5.50     2,420       938     12,730     5.30     2,330     174     2.5     14,000     5.50     2,550       938     1.9     12,79     171     2.5     14,000     5.50     2,420       938     1.9     1.0     2.4     1.000     5.50     2,420       939     1.4     1.5     1.4     1.000     5.50     2,420       939     1.4     1.5     1.4     1.000     5.5     2,550    <	984 1.9 11,860 985 1.9 12,090 986 1.9 12,090 988 1.9 12,550 988 1.9 12,550 988 1.9 12,550 988 1.9 12,590 12,790 12,790 12,790 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12	•	2,030	152	3.0	12,260	5	2 140	161
985     1.9     12,050     5.56     2,170     163     2.8     12,920     5.56     2,420       986     1.9     12,550     5.50     2,2200     166     2.5     2,420       986     1.9     12,550     5.50     2,330     171     2.5     14,000     5.50     2,490       986     1.9     12,790     5.50     2,330     171     2.5     14,000     5.50     2,490       986     1.9     12,790     5.50     2,330     171     2.5     14,000     5.50     2,490       986     1.9     12,790     5.50     2,330     171     2.5     14,000     5.50     2,490       986     1.9     5.50     2,330     171     2.5     14,000     5.50     2,490       7000     5.50     5,330     171     1.0     1.7     1.55     14,000     5.50     2,490       7001     5.50     5.4     persons     5.4     persons     5.50     2,490       7001     5.50     5.4     persons     5.4     persons     5.50     2,490       701     2.5     1.4     2.5     1.4     2.5     1.4     2.5       701     1.5 <t< td=""><td>985 1.9 12,090 987 1.9 12,550 988 1.9 12,550 988 1.9 12,550 988 1.9 12,550 988 1.9 12,790 12,790 12,550 12,550 12,550 12,790 12,550 12,790 12,550 12,790 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,</td><td></td><td>2,100</td><td>158</td><td>а, о . б</td><td>12,630</td><td>ഹ</td><td>2,230</td><td>167</td></t<>	985 1.9 12,090 987 1.9 12,550 988 1.9 12,550 988 1.9 12,550 988 1.9 12,550 988 1.9 12,790 12,790 12,550 12,550 12,550 12,790 12,550 12,790 12,550 12,790 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,550 12,		2,100	158	а, о . б	12,630	ഹ	2,230	167
356     1.9     12,510     5.50     2,240     166     2.6     13,320     5.50     2,420       967     1.9     12,750     5.50     2,330     171     2.5     13,550     5.50     2,420       968     1.9     12,790     5.50     2,330     171     2.5     1400     5.50     2,450       968     1.9     12,790     5.50     2,330     171     2.5     1400     5.50     2,450       968     1.9     12,790     5.50     2,330     171     2.5     1400     5.50     2,450       700     5.50     2,50     2,50     2,830     171     2.5     1400     5.50     2,550       701     20     5.4     21     1000     5.4     2000     2,550       701     20     20     20     2000     2000     2,550       701     20     20     2000     2000     2100       701     20     200     200     212     173       702     125     140     21     101     105       1980     121     140     21     104     21     105       1981     198     163     161     174 <td< td=""><td>986 1.9 12,310 987 1.9 12,550 988 1.9 12,550 988 1.9 12,550 12,790 Note: 2/ Avera Note: 2/ Avera 12,790 12,500 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,9000 12,9000 12,9000 12,9000 12,900</td><td>•</td><td>2,170</td><td>163</td><td>2.8</td><td>12,980</td><td>10</td><td>2,330</td><td>175</td></td<>	986 1.9 12,310 987 1.9 12,550 988 1.9 12,550 988 1.9 12,550 12,790 Note: 2/ Avera Note: 2/ Avera 12,790 12,500 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,790 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,900 12,9000 12,9000 12,9000 12,9000 12,900	•	2,170	163	2.8	12,980	10	2,330	175
977     1.9     12,550     5.50     2,280     171     2.5     19,000     5.50     2,490       988     1.9     12,790     5.50     2,330     174     2.5     14,000     5.50     2,490       Note:     J. Average size of families 1970     Chargwat Ayuthaya:     5.4     persons     2,550     2,550     2,550       Note:     J. Average size of families 1970     Chargwat Ayuthaya:     5.4     persons       Project area     1.6.34     persons     1.4     000     5.50     2,490       Project area     1.6.34     persons     1.4     1.4     1.4       Project     1.4     1.4     1.4     1.4     1.4       Project     1.4     1.57     1.4     1.5     1.4       Project     1.4     1.5     1.4     1.5     1.5       Project     1.	987 1.9 12,550 988 1.9 12,550 12,790 Note: 2/ Avera vajlable farm Labor For 1980 138 1981 147 1982 143 1983 158 1983 158 1983 158 1988 163 1988 163 1988 163	•	2,240	58	2.6	13,320	in	2,420	3.82
938     1.9     12,790     5.50     2,550       Valleble Farm Labor Force size of families 1970     5.4 persons     2,550     2,550       Valleble Farm Labor Force per Month including Surrounding Areas     5.4 persons     2,550     2,550       Valleble Farm Labor Force per Month including Surrounding Areas     6.34 persons     2,550     2,550       Valleble Farm Labor Force per Month including Surrounding Areas     (Unit: 1,000 men-days)     1,000 men-days)       Without Project     1000 men-days)     1000 men-days)     161       1980     138     140     21     161       1981     143     140     21     161       1981     143     153     31     184       1981     140     25     173     184       1982     12     170     153     31     184       1981     183     163     167     165     212       1981     163     170     167     165     212       1987     170     167     167     165     248       1987     170     167     165     248       1987     170     167     167     265     212       1987     170     167     175     275     265     231 <td>988 1.9 12,790 Note: 2/ Avera vajlable farm Labor Forc 1980 1980 143 1981 147 1982 1984 158 1983 1988 163 1988 1988 163 1988 1988 1988</td> <td>• •</td> <td>2.280</td> <td>171</td> <td>in C</td> <td>33,650</td> <td>្រហ</td> <td>2.480</td> <td>185</td>	988 1.9 12,790 Note: 2/ Avera vajlable farm Labor Forc 1980 1980 143 1981 147 1982 1984 158 1983 1988 163 1988 1988 163 1988 1988 1988	• •	2.280	171	in C	33,650	្រហ	2.480	185
Note: 1 Average size of families 1970 Changwar Averthays: 5.4 persons Project area : 5.34 persons Project area : 5.34 persons Project area : 5.34 persons Project area : 5.34 persons (Init: 1,000 men-days) Without Froject 1982 147 13 160 1152 148 25 1982 147 13 160 153 31 184 1983 12 170 151 45 1986 168 11 179 151 16 1986 168 11 179 151 65 248 1986 168 11 179 16 1986 168 11 179 175 56 248 1986 168 11 179 175 56 248	Note:         J         Avera           Vajlabje         Farm         Labor         For           Year         Tasice         138           1980         143         147           1982         143         147           1983         158         163           1985         163         158           1986         158         158           1988         158         158           1988         158         158           1988         174         174		2.330	174 174	5	14,000	l n	0 2 2 C	
Note: J Average size of families 1970 Changwat Ayutthaye: 5.4 persons Project area : 5.34 persons Project area : 5.34 persons Project area : 5.34 persons (init: 1,000 men-days) Without Project [1,000 men-days] Without Project [1,000 men-days] SS2 147 152 140 21 140 21	Note: J Avera e farm Tabor Torr ear 100 100 1000 981 1163 982 1163 985 1163 988 163 988 163 988 163 988 163 988 163 174								
a farm labor Force per Nonth including Surrounding Areas         Without Project         Without Project         Without Project         Starm Labor Force         Without Project         Without Project         Starm Labor Force         Without Project         Starm Labor Force         Without Project         Starm Labor Force         Starm Labor Fo	9 9 9 9 9 9 9 9 9 9 9 9 9 9	នរំឧត រំរាឌមេដ បំទំព័រ ខ្		970 ສູບ 10	s SC				
a farm labor Force per Nonth including Surrounding Areas         Without Project         Without Project         Without Project         Starm Labor Force         Starm Labor Force         Without Project         Starm Labor Force         Starm Labor Fo	e 6 6 6 7 1 1 4 3 7 1 4 3 7 1 4 3 7 5 6 6 6 7 1 1 4 3 7 1 1 4 3 7 1 1 4 3 7 1 1 4 3 7 1 1 4 3 7 1 1 6 3 6 6 6 7 1 1 6 3 6 6 6 6 7 1 1 4 3 7 1 1 6 3 6 6 6 6 7 1 1 4 3 7 1 1 6 3 6 6 6 6 7 1 1 6 3 6 6 6 6 7 1 1 1 5 6 6 6 6 7 1 1 1 5 6 6 6 6 7 1 1 1 1 5 6 6 6 7 1 1 1 1 5 6 6 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		·						
E farm labor Force per Nonth including Surrounding Areas         Without Project       (Unit: 1,000 men-days)         Without Project       1000 men-days         Sear       Inside       Outside       Total         Sear       Inside       Outside       Total       140       21         Sear       140       21       140       21       34         Sear       12       170       153       31       34         Sear       12       170       153       34       34         Sear       12       170       163       163       34         Sear       11       179       185       73         Sear       11       182       73       73	e farm tabor 981 143 982 143 982 143 988 155 988 155 988 163 988 163 988 163 988 163 163 163 163 163 163 163 163 163 163								·
Mithout Froject         (Unit: 1,000 men-days)           Mathout Froject         Nithout Froject           980         138         14         152           981         143         14         21           982         143         14         21           983         14         153         14         21           983         147         13         160         153         31           983         147         13         160         153         31           983         152         14         25         34         25           984         158         170         153         34         34           985         163         170         151         34         34           985         163         170         151         34         34           985         163         170         177         45         56           987         171         179         186         73         73           987         171         132         186         73         73	241 25 25 25 25 25 25 25 25 25 25 25 25 25	Der				<i>.</i>			
ear     Inside     Total     Inside     Outside       980     138     14     152     140     21       981     143     14     152     148     25       982     147     13     160     153     31       983     152     13     160     153     31       983     152     13     160     153     31       984     158     12     170     151     34       985     163     170     175     45       985     163     170     175     56       985     171     179     175     56       987     171     179     186     73	882 9881 1474 9882 1474 158 158 158 158 158 158 158 158 158 158		ł.	ය <u>ි</u> )	Ü	00 men-day	ys)		
980 138 14 152 981 143 140 982 147 153 140 983 147 15 160 153 31 983 153 160 153 31 986 163 12 175 161 34 158 153 31 179 175 161 34 161 34 175 161 34 161 34 175 161 34 175 161 34 161 34 175 161 34 161 34 175 161 34 161	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			SUT	i de	Outside	1		
981 143 14 257 148 25 982 147 15 160 153 31 983 152 13 160 153 31 984 158 12 170 167 45 986 168 11 179 167 45 986 168 11 179 175 175 986 168 11 179 186	00000000000000000000000000000000000000	가 더 -	152	-+ -	60	21	161		
982 147 13 160 153 31 983 152 13 163 163 34 984 158 12 170 167 45 985 163 12 175 175 175 986 168 11 179 175 175 987 171 179 186 65	<ul> <li>(1)</li> <li>(2)</li> <li>(3)</li> <li>(4)</li> <li>(5)</li> <li>(5)</li> <li>(6)</li> <li>(7)</li> /ul>		157	<b>1</b>	00 21	25	173		
983 152 13 163 161 34 985 158 12 170 167 45 985 163 12 179 167 45 986 168 11 179 167 65 987 168 11 179 168 175 65 987 171 11 179 168 73	ស ។ ។ ៧ ០ ୮ ៩ ស ស ស ស ស ស ស ស ស ស ស ស ស ស ស ស	ଓ ମ ମ	160	ed.	23	10 10	t 8 1		
984 158 12 170 167 45 985 163 12 175 175 56 986 168 11 179 132 65 987 171 11 186 73	ដ ភេ ០ ្ ស ស ល ល ល ល ០ ០ ០ ០ ០	ሰን የ1	163	•- <b>1</b>	61	nt n	195		
985 163 12 175 175 56 986 168 11 179 132 65 987 171 11 129 186 73	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	57	170	- 1 ·	67	មា វា	212	×.	
986 168 11 179 185 65 987 171 11 182 73 988 11 186 73	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22	275	**1 *	25	0 U 0 U	231	·	
987 171 11 182 186 73	735 988 735	년 ( 년 )	511	··· / 7	85 28 28 28	ດ ຊີ່ມີ. ເ	21:0 > 1:0		·
	988		182	/- <b>(</b> /	.85 	73	255		

Appendix 6-2 Page 5

,

.

		Table A.6-3	A.6-3	Monthly	Labor	Require	Requirement per	r Hectare	λq	Crop at	Present			
	נג 10 נג	rian.	С.Э.	Mar.	- 7 <u>0</u> 4	May	J.m.	Jul.	Aug.	Seo.	(Unit: Oct	Ř	Man-day) <u>ov.</u> <u>D</u> ec.	Total
Rice	:	- - -			 . •				• .				.   '	
Wet, BC	ល រោះ	31.6	با 8.	o		н. С	ອ ເມ	თ. ე	0. H	0	0	0	19, G	78.4
Wet, TP	e T	0	0	0	8.7	28.8	17.6	8.0	37-0	23.9	0	0	0	124.0
	ю Ц	0	с. з о	20.6	22.2	6-0.	33.4	28.7	9. t 9	0	0	0	0	124-0
Upland Crops	ۍ تا	0	0	6.0	6.0	6.0	6.0	e.0	0.0	0	0	0	0	36.0
	មា ប្រ	28.0	28-0	28,0	12.0	12.0	28.0.	28.0	28.0	12.0	12.0	12.0	12.0	240.0

.

Table A.6-4 Monthly Labor Requirement per Hectare or Production Unit by Crop in Future with Project

											(Unit	:: Nan-	-day)	
	Per	Jan.	reo.	Mar.	Apr.	May	Jun.	<u>. tur</u>	Aug.	Sep.	Oct.	Oct. Nov. Dec.	Dec.	Total
Rice (Total)		0-0	23.5	20.4	7.0	16.3	19.6	16.8	25.0	15. L	7.5	19.8	18.2	198.2
Wet, BC	ສ ກະ	1	i	۱	i	I	0.0	12.9	25.0	15.1	7.5	∞.0 50.0	18.2	1-00
Wet, îP	р Ц	0.0 9	23.5	20.4	7.0	16.3	19.0	з <b>.</b> 9	ŀ	ı	i	1	<b> </b>	66 66
Vegetables	ราว	30	30	30	30	30	30	30	30	30	30	30	30	360
Citrus	ល រា:	30	30	30	30	30	30	30	30	30	30	30	30	360
Animal	DG	15	ഗ	51	51	15	: <b>1</b> 5	ഗ പ	15	<b>Т</b> 2	15 1	ين سا	ഗ ല	180
Fish	្លាក	ଜୁମ	72 72	5 72	15	5 5	5	<u>1</u> 5	15	<u>२</u>	15	ന പ	ч С	180
	Note:	- D4	Productio	G	Unit									
	     	<b>n</b>	, , , , , ,				÷							

Appendix 6-2 Page 6

.

.

	Area Jan.	Rice (Total) 69	Wet, BC 2,190 69	Wet, TP 1,773	Dry, TP 2,390	pland Crops 106	itrus 240	Total 6,699 76		Table	Area E PU Jan
Table A	n. Feb.	เร รา 5	87	0	53	0	7 7	8 1 2 1		le A.6-5	n. Teb.
A.6-5	Mar.	ರು ಬ	0	0	のゴ	г <del>л</del>	[-	57		Monthly	Mar.
Wonthly	Apr.	77	с С	5 T	5 3 3	<i>1-</i> 4	ო	75		y Lebor	Apr.
Labor R	May	76		Ч С	よう	н	<del>ෆ</del>	80		Requirement	May
Labor Reguirement by	Jun.	124	13	55 37	08	-4	۲-	132		ment by	Jun -
	Jul.	9 <del>0</del>	13	74	69	r-t	2	101		ğor0	Jul.
Crop at	Aug.	76	2	65	ത	r-4	2	;; 80		in Future	Aug.
Present	Seo.	50 1.	0	17 t	0		ო	4 D		8141 1	Sep.
L.	(Unit: <u>Oct.</u>	0	0	0	0		ഗ	(m)		Project	(Unit: Oct.
	X ]	0	Ö	0	0		ო	ာ၊			ž
	1,000 Man-Čays) 2v. Dec. Tot	44	31 17	0	0		ო	17			1,000 Man-days) 2v. Dec. Total
	lays) Total	688 880	172	220	296	ഗ	60	754			days) Total

lavs)	Total	1,893	947.	640	180	780	80 tr	00 4	110 227 212 2,349	. *
00 Man-<	Dec.	174	174	0	ល ក	រ ភ	t:	-1 -	212	
с: Р, О(	Nov.	189	ର ଅ	0	15	ഗ ല	과	ವ	227	
(Unit	Oct.	72	72	0	භ 11	ち た	ţ	<b>:</b> }	110	1.1
	Sep.	さた	가 다	o	15	ಬ ಗ	ゴ	ц,	182	ion Uni
	Aug.	239	239	0	ഗ പ	ഹ പ	.1	ц.	277	Production
	Jul.	160	123	37	5 1	ഹ പ	t:	¥	1 <u>98</u>	10 10 10
	Jun-	187	Q	181 181	പ	12	4	ᅶ	225	nted
	May	156	0	156	ഗ പ	ი ქ	t:	コ	#6 <u>7</u>	l'ransplanted
	Apr.	67	0	67	ເດ ເກ	ട 1	ᅶ	t	105	E T T
	Mar.	<u>1</u> 95	0	<b>36</b> T	15	15	7	. <del>1</del>	233	1 S
	LeD L	224	Ö	224	5	ഗ പ	t	: <b>†</b>	262	Broadcast
	Jan.	86	0	86	ਮ	რ ⊢I	ť	t	124	BC;
Area				9,542	500	500	250	250		Note:
		Rice (Total)	Wet, TP	Dry, TP	Vegetables	Cítrus	Animal	Fish .	Total	

		*+	<b>}</b> .			Total	754	8 8 8	046	с,	ကိုကို	(r),	2,285 2,349	
	Total	754				Dec.	4.7	57	73	် က	0 2 2 2 2 2 2 2	50	205 212	
	lays) Dec.	47	n tre			days) Nov.	က	15	t- t	77	722 793	202	218 227	1 1
	1,000 Man-days) - <u>Nov.</u> De	(1)	constant in			1,000 Man-days Oct. Nov.	ŝ	ମ ମ	51	38	~( 0) () 0)	55	011 108	4
Le C	(Unit: 1,0	ო	0 •c1		44	(Unit: 1,( Sep. (	មា ក្នុ	ខ	0 Q	89	9 ਜ ਜ ਜ	164	175 182	
POPOL AGREET BY BOILER ALCOORE FRODECE	( Un Sep.	ល វ	Project area		by Month with Project	Aug. S	לי. 00	35	117	<u></u>	$\infty \propto$	5	267 227	
	Aug.	78 8	the Pro		onth wit	Jul. A	104	111	120	<b>m</b>	$m \sim$	· 00	198 198	
	- 72.0	104	farming in	·		Jun .	132	138	7 <b>4</b> 8	163	100	274	221 225	
	Jun.	132	ん 4		Labor Demand	<u> </u>	80	8 8 8	0) 0)	18	0 9 0	80	180 101	n 4 4
	May	80	ນ demand ເດີ		Total La		75 (10)	77	80 80			10		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Apr.	75	that the labor without-Project		A.6-8	Mar Mar.		(20) (20)	(52) (20)	4 <del>-  </del>	ຍາ. ໜ	1 ml	227 235	Forces
	rar.	57		·	32D16	Feb.		(10) (20)	(78) 84 (20)	2017 212	ωO	ന	254 262	Lod t
	Сор.	80 11	is assumed ditions of			Jan.	76 76	(64) (64)	(20) (20) (20)	( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )	101	118	124 124	ilabie fiction
	Len Len	76 76	te: It is condi	·			161	173	787 787	O)	$-1$ $\odot$	) ゴ	259 267	
	54 0 15 10	40 40 1-	Note		•	Vear	0861	1861	1982	- <del>8</del> 6	00 00 00 00	) ເດ } ທີ	1987 1988 1988	

Appendix 6-2 Page 8

и 	Table	Ч Ч	A.6-9	Monthly	Farm Labor	or Demand	1 N 1 N	Percentage cont Profect	44 0	Potential Fu	Full Emplo	Employment	
Apr.       May       Jun.       Jul.       Jul.       Jul.       Mult.       Mult.<							3013 + 5		ر				
Apr.       May       Jun.       Jul.       Jul.       Jul.       May       Jun.       Jul.       <		·								(Ubit:			
49       53       87       68       55       30       2       2         47       50       83       65       54       29       2       2       2         47       50       83       65       54       23       30       2       2       2       2         47       50       83       65       54       23       28       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2	Jan Feb.	Feb.		Mar.	Apr	λew	Jun	Jul.	Aug	Sep.	,	Nov	Dec:
H8       51       84       66       54       29       2         47       50       83       65       54       29       2       2         47       50       83       65       53       28       2       2       2         47       50       83       65       53       28       2       2       2         46       75       61       51       28       2       2       2       2         41       45       74       58       448       256       2       2       2       2         41       44       73       55       46       24       2       2       2       2         41       43       72       57       46       25       2       2       2       2       2	50 32	32		38	ರ -1	53	87	63	55	30	2	0	
47       50       83       65       53       28       2       2         46       49       81       64       51       28       2       2         44       49       51       28       2       2       2       2         44       47       78       61       49       26       2       2       2         43       446       75       59       48       26       2       2       2       2         41       44       73       57       46       25       2       2       2       2       2         41       43       72       57       46       25       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2		31		36	00 t	51 21	80 10 10	66	տ Դ	50 70	5	0	30
46 49 81 64 51 28 2 2 44 47 78 61 49 26 2 2 42 46 75 59 48 26 2 2 2 42 45 74 58 47 25 2 2 41 44 73 57 46 25 2 2 2 41 43 72 57 46 24 2 2 2		30		35	47	50	ကိုထိ	ი დ	ю G	28	7	3	29
44 47 78 61 49 26 2 2 4 43 46 75 59 48 26 2 2 2 42 45 74 58 47 25 2 2 2 41 44 73 57 46 25 2 2 2 41 43 72 57 46 24 2 2 2		29		35	91	0 1:	51 8	49 97	51	28	3	7	26
43 46 75 59 48 26 2 2 4 42 45 74 58 47 25 2 2 41 44 73 57 46 25 2 2 4 41 43 72 57 46 24 2 2 2		28		50 0	11 12	1±7	78	61	10 11	26	~	3	28
42 45 74 58 47 25 2 2 41 44 73 57 46 25 2 2 41 43 72 57 46 24 2 2 2		27		93 93	() t	с С	75	5 6 6	00 t	26	2	4	27
41 44 73 57 46 25 2 2 41 43 72 57 46 24 2 2 2		27		32	5 7 7	n t	ትረ	58	רי ל	25	~	~	26
41 43 72 57 46 24 2 2 2 2		26		н с	-1 -1 -1	부산	73	57	10	25	7	0	26
		26		31	41	н3	72	57	46	24	2	2	26

Table A.6-10 Monthly Farm Labor Demand as Percentage of Fotential Full Employment With Project

	Dec.	29	33	0 1-	ರ ಸ	ტ წ	68	72	79	79
	Nov.	(4	σ	22	<b>5</b> 0	58	73	r 1 60	34	85
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Oct.	2	-	허기	თ 1≓	29.	36	0 t	t 7	-i F
(Unit:	Sep.	28	32	37	94 4	5 5	62	56	98 98	58
	Aug.	52	5 G	5 0	76	88	57	102	103	704 704
	Jul	65	0; 0	85 85	60 9	73	75	75	75	7 tt
	Jun.	82	80	80	84	85 85	87	86	85	9r: 9
	May	50	ц С	5 1 1	н 9	66	71	73	73	73
	Apr.	73	73	59	58 89	t 0	47 4	다. 국	0 t	39
	Mar	т <u>о</u>	68 68	19	72	71	80	85	88 88	87
	Feb.	56	64	61	74	75	8 8 9	95	86 、	88 88
	Jan.	73	ゴロ	5	19	t: 8	თ ქ	0) 11	4.7	9 1
	Al	161	173	#8⊤	96 T	212	231	248	259	267
. *	Year	086T	1981	1982	1983	186ĩ	1985	1986	1987	1988

Appendix 6-2 Page 9

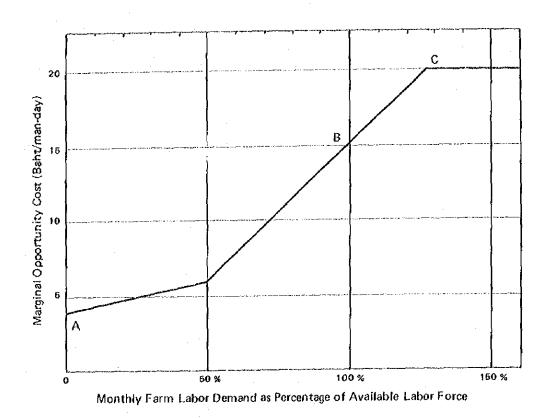
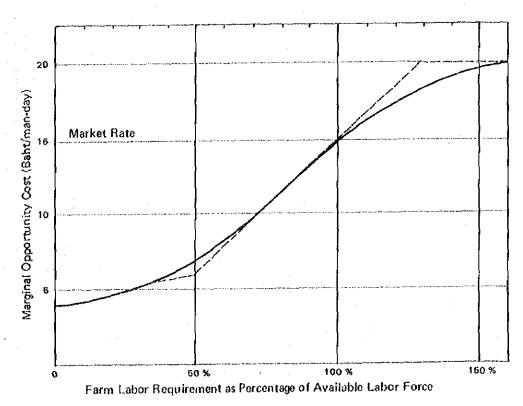



FIGURE A.6-1. TYPICAL OPPORTUNITY COST CURVES FOR FARM LABOR

FIGURE A.6 -- 2. OPPORTUNITY COST CURVES FOR FARM LABOR

.*	Dec.	ŝ	ហ	Ω	ເກັ	ഗ	ۍ ۱	ŝ	ŵ	ۍ ۱					Dec.	ι N	ø	Q	7	ω	01	04	г г	ল
	-day) Nov.		ដ	井	-tr	:t	4	đ	÷	-1				Man-day)	Nov.	<u>-</u> 1	4	ល	9	œ	0	12 12	12	12
	Baht/Man-day) Oct. Nov	:1	÷	7	.,	オ	t.	4	: .न	t			·	1,000 Ma	Oct.	÷	4	÷	م	ഗ	0)	دن	ø	Ð
0 0 1	(Unit: Sep.	ю	ហ	വ	ហ	(7)	ഹ	IJ	വ	ŝ			4.)	(Unit:	Sep.	ഹ	ഗ	Q	۲ ~	ω	თ	σ)	01	01
out Project	Aug.	00	တ	ထ	7	۲~	5	2	7	٢			l Project		Aug.	1	ထ	თ	11	ი ქ	ය ද	ው ተት	15	15
Month without	Jul.	υī	ດາ	თ	თ	. <i>Q</i> 1	œ	00	හ	\$			Month with		Jul.	တ	ŋ	თ	01	0 /1	ц Ч	ri ri	ц Ц	11
Ъу	Jun.	ಣ ರ	75	12	12		r-t r-t	년 년	0 1	0			Rate by Mo		Jun.	12	12	77	-12	12	13	ಣ ಗ	12	72
Wage Rate	May	ω	7	5	2	7	ţ	1~	5	Q			ਘੋਫ਼ਟੁਣ ਨੋਰ		May	5	7	ß	თ	თ	01	0 1	0 1	0 H
A.6-11	ADr.	7	5	r-	2	-	ഗ	ß	ഗ	Q			A.6-12		Apr.	-0 -1	ੇ ਟ	œ	00-	Q	Q	Q	ý	Q
Teble	Mar.	ŵ	9	ω	დ	9	ۍ ک	ທີ	ι Ω	ы			Table		Mar.	თ	0 ਜ	۰ Ծ	or	0 러	12	() 17	et	et.
	Feb.	ι Ω	ហ	ഹ	ហ	ഹ	ŝ	ហ្គ	u)	ŝ		·	1		Teb.	œ	on	Ø	0	2	ST ST	せた	ഗ ന	5
	Jan.	6	7	7	2	5	G	Q	S	ß			·		Jan.	01	ੇ ਜ	ິດ	ີວາ	7	7	7	¢.	7
	Year	60	80	8	1983	8	38	88	8	80 00				:	Year	σ	on.	S.	1983	σ	S	op.	0	0
									-	10	1. 	ar e b	•		.*	r e		• .	•					

Appendix 6-2 Page 11

Project
without
Month
ŊĞ
Costs
Labor
Total
A.6-13
Table

-	Total										
Baht)	Dec.	235	235	235	235	235	235	235	235	235	
,_,	Nov.									1	
(Unit:	Oct.	12	12	75	12	сі н	12	12	12	12	
	Sep.	225	225	225	225	225	225	225	225	225	
	Aug.	672	672	672	588	588	588	588	588	588	
	Jul	1,040	936	936	936	936	832	832	832.	832	
	- unr	1,716	7,584	1,584	1,584	1,452	1,452	1,452	1,320	1,320	
	May	640	560	560	560.	560	560	560	560	50 t	
	Apr.	525	\$25	525	525	525	450	450	450	450	
	Mar.	342	342	945 945	342	342	342	285	285	285	
	TeD.	240	240	240	240	240	240	240	240	240	
	Jan.	532	532	532	532	532	50 1 1	456	456	1:56	
	Vear	085T	1981	1982	1983	1981 1981	1985	1985	1987	1988	

Table A.6-14 Total Labor Costs by Month with Project

Total	6,512 7,567	8,753	11,725	15,212	20,789	24,027	26,200	26,966
Baht) Dec.		438	555	1,000	1,560	1,790	2,255	2,332
1,000	t 5 0 H	205	r62	976	3,690 2,690	2,424	2,616	2,724
(Unit: Oct.	80 17 14 14	9 10 10	06T	305	516	ដា ភូលិ ភូលិ	648	660
Sep.	225 275	408	623	928	1,296	1,476	1,750	1,820
Aug.	588 768	7 ° 053	1,628	2,418	3,375	3,810.	4,005	4,155
.142.	986 686	1,080	1,350	1,540	1,903	2,057	2,145	2,178
Jun.	1,584 1,656	1,775	1,956	2,172	2,613	2,782	2,652	2,700
May	560 615	792	1,062	1,260	1,630	1,800	1,890	7,940
Apr.	750	640	680	546	582	606	624	630
Mar.	848 848 868	765	1,130	2,500	2,208	2,544	2,951	3,029
eD.	38 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	756	1,160	1,760	2,639	3,318	3,810	0.59,6
ŭan.	760 790	756	818	707	777	826	82tr	868 8
Vear	086 1 8 6 1	1982	1983	- 1 85T	1985 1985	1986	1987	1988

				R	i c e		:			Ve	getab	les		
			Without	Project		Wi	th Projec	t	Without Project		Wit	h Proje	ct	
Item	Unit	Wet S BC	eason TP	Dry Season TP	Total (Avg.)	Wet Season TP	Dry Season TP	Total (Avg.)	Coconut2/	Chinese Cabbage	Cabbage	Cauli- flower	Total	Average
Yield	ton/ha	1.6	2.2	3.0	(2.294)	(4.2)	4.7	(4,45)		14,6	15,2	9.0	38.8	12.93
Price	Baht/ton	2,360	2,360	2,360	(2,360)	2,360	2,360	(2,360)		1,200	1,600	2,500	-	1,658
Value	Baht/ha	3,776	5,192	7,080	(5,414)	9,912	11,092	(10,502)	10,000	17,520	24,320	22,500	64,340	21,447
Cash Cost <u>1</u> /	Baht/ha	1,689	2,510	2,510	(2,227)	3,042	3,210	(3,126)	0	6,572	9,183	7,995	23,750	7,917
NPV	Baht/ha	2,087	2,682	4,570	(3,187)	6,870	7,882	(7,376)	10,000	10,948	15,137	14,505	40,590	13,530
Area	Ha	2,190	1,773	2,390	6,353	9,542	9,542	19,084	106	500	500	500	1,500	500
Total NPV	(1,000)	4,571	4,755	10,922	20,248	65,554	75,210	140,764	1,060	5,474	7,569	7,253	20,295	6,765
Incremental NPV	(\$ '000)		140	,764 - 20	,248 = 1.20	,516						20,295	- 1,060 =	19,235

Table A.6-15 Net Production Value before Labor by Crop at Present and at Full Development

 $\underline{1}/:$ Labor costs are not incuded in the cash cost.

2/: It is assumed that other crop than rice is coconut, yield: 5 tons, price: 2 Baht/kg

BC: Broadcast

TP: Transplanted

Appendix 6-3 Page 1

Net Production Value before Labor by Crop at Present and at Full Development (cont.)

.

			<u>Citru</u> k	s lith Projec	i				<u>Ani</u> With	m a l Project	<u>.</u>			
Item	<u>Unit</u>	Without Project	Existing	Expanding	Total (Avg.)	Item	Unit	Swine	Chicken	Ducks	Total	Average	Carp	<u>C</u>
^{il} 7ield	Ton/ha	1.5	30	30	(30)	Products		8,080	900kg(Meat) 108,000eggs	675kg(Meat) 67,500eggs	-	-	3.0	
Price	Baht/ton	3,000	3,000	3,000	(3,000)	Price	Baht/egg	13	12- 0.95/egg	10 1,0/egg	. -	~	8	
Value	Baht/ha	45,000	90,000	90,000	(90,000)	Value	Baht/PU	105,040	113,400	74,250	292,690	97,560	24,000	24
Cash Cost	Baht/ha	18,930	27,040	27,040	(27,040)	Cash Cost	Baht/PU	87,600	90,615	43,900	222,115	74,040	14,076	13
NPV	Baht/ha	26,070	62,960	62,960	(62,960)	NPV	Baht/PU	17,440	22,785	30,350	70,575	23,530	9,930	1.0
Area	На	240	240	260	500	Number of F	20	83	84	83	250	83.3	83	
lotal NPV	1,000Baht	6,257	15,110	16,370	31,480	Total NPV	l,000Baht	1,448	1,914	2,519	5,881	1,960	824	
Incrementa NPV	1 1,000Baht	3	1,480 - 6,	257 = 25,22	23	Incremental NPV	1,000Baht		5,88	31				

Note: PU - Production unit

Appendix 6-3 Page 2

	r i s h		• •
W:	ith Proje	<u>ct</u>	
Ciclid	Catfish	<u>Total</u>	Average
3.0	7.5	13.5	4,5
8	12	-	10.2
24,000	90,000	138,000	46,000
13,060	80,719	107,850	35,950
10,940	9,281	30,150	10,050
83	84	250	83.3
908	780	2,512	837
	2,512		

Table A.6-16 Economic Cost and Benefit Stream

(unit: million Baht)

		0 0 0			Incrementa	Incremental Production Benefit	eîit eîit
Year	Construction Costs	Operation 8 Maintenance Costs	Sub-total	Net Production Value before Labor2/	Labor Costs	Net Production Value after Labor	Project Benefits
1978 1978	25.5	O	25.5	o	0	0	-25.5
1979	70.6	0	70.6	0	Q	0	-70.5
1980	0-065	හ	191.8 191	-8.4	e. 0	-8.7	-200.5
1851 1	118.5	6.6	125.1	0.2	7.1	נו ז - ר ו	-126.5
1582	0°. 0°.	0 0	ດ. ອີ	ಯ ಸ- ಗ	2.9	0) 	0.74-
1983	50.3	10-9	61.2	0.0 1	້ິດ	35.0	-26.2
198 4	-12.53/	12.2		84.5	9 . 9	74.9	75.2
1985	0	12.2	12.2	129.3	15.1	0. 113.0	TOL
386T	0	12.2	12.2	148.8	18.7	130.1	117.9
1987	0	12.2	12.2	165.2	21.0	2.44.2	132.0
1988	0	12.2	12.2	173.2	21.8	オーゴのゴ	139.2
							·

Operation and maintenance costs indicate all the costs for the Land Reform Cooperative who is proposed to conduct the operation and maintenance of irrigation and crainage facilities and also the supporting services. ને Notes:

Costs for construction of orchards and fish-ponds, and net value of production which will be lost during construction works (dry season) are counted in the farm management costs. \geq

Residual values of equipment and provisional facilities for the project construction. 6

Table A.6-17 Crop Budgets per Hectare without Project

(unit: Baht)

		Rice		Citrus
	Wet_Sc	ason	Dry Season	
Item	BC	TP	TP	
1. Gross Income (Baht)	3,520	4,840	6,600	45,000
Yield (ton)	1.6	2.2	3.0	15.0
Price (%/kg)	2.2	2.2	2.2	3.0
2. Production Costs excld. Labor Cost	1,899	2,677	2,677	24,543
Seeds	312	108	108	2401/
Fertilizers	0	658	658	5,684
Agro-chemicals	385	581	581	10,364
Draft Animals	90	90	90	7002/
Equipment	787	845	845	170
Others	79	114	114	858
Interest	169	240	240	6,486
Land Tax	41	41	41	41
3. NPV before Labor	1,621	2,163	3,923	20,457

4. Hired Labor

5. Net Crop Income

$\underline{1}$: Costs for recruiting trees

2/: Costs for fuel

.

Table A. 6-18 Crop Budgets per Hectare (Field Crops)

۰.

and the state of the state

.

ì

							· ·	
		Rice			Vegetabl	es		Citrus
Item	Wet Season	Dry. Season	Total	Chinese Cabbage	Cabbage	Cauli- flower	<u>Total</u>	
1. Gross Income (Baht)	9,240	10,340	19,580	17,520	24,320	22,500	64,340	90,000
Yield (ton)	4.2	4.7	· _	14.6	15.2	9.0	(12.14)	30
Price (Ø/kg)	2.2	2.2	-	1.2	1.6	2.5	5.3	3
2. Production Costs excld. Labor Cost	3,214	3,387	6,601	6,769	9,610	8,126	24,505	33,531
Seeds	104	104	208	315	898	776	1,989	340
fertilizers	878	1,020	1,898	3,028	3,918	3,523	10,469	8,120
Agro-chemicals	763	763	1,526	1,966	2,638	2,051	66,550	14,805
Equipment	1,063	1,063	2,126	637	996	791	2,424	1,240
Others	, 140	1 48	288	297	423	357	1,077	1,225
Interest	225	248	473	499	710	600	1,809	7,719
hand Tax	41	4).	82	27	27	28	82	82
3. NPV before Labor	6,026	6,953	12,979	10,751	14,710	14,374	39,835	62,130
•								

2

.

Table A.6-18 (Cont.) Crop Budgets per Production Unit (Animal and Fish)

• 1

(Unit: Babt)

		Astr	1als .			fis		
Item	Swine	Chicken	Ducks	Average	Carp	Tilapia	Catfish	Average
1. Gross Income (Baht)	105,040	113,400	74,250	97,560	24,000	24,000	30,000	46,000
Yield	8,080	108,000eggs 900head	67,500eggs 675heads		3.0tons	3.0	7,5	
Price	13	80.95/egg 8 12/head	B1/egg B10/head		8 \$/kg	8	12	
2. Production Costs excld. Labor Costs	96,405	101,236	49,187	82,260	14,755	13,729	84,598	37,690
Feed	84,000	73,000	36,500	64,500	9,200	9,200	63,870	27,420
Recruiting	-	12,940	5,190	6,040	Fingerlings 3,200	_"_ 2,240	¹¹ - 12,000	5,810
Vaccination	1,800	2,050	1,500	1,780	~	. `	-	-
Facilities	١,800	, 4 ,000 ,	1,500	2,430	2,000	1,000	1,000	1,000
Others	4,380	4,600	2,235	3,730	670	622	3,844	1,715
Interest	4,415	4,636	2,252	3,770	6 75	657	3,874	1,735
Land Tax	10	10	10	10	10	10	10	10
3. NPV before Labor	8,635	12,164	25,063	15,300	9,245	9,644	5,402	8,310

.

-

	£-1	Table A.6-	-19 Farm Bud	lgets (Wi	Farm Budgets (Wíthout Project)	ject)	un)	(unit: Baht)		
		З ла			t ha			6 ha		
			3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7					R L C C		
	Wet S	Wet Season	Dry Season	45	Season	Dry Season	Wet	Season Dr	Dry Season	Le
Iten	BC	ու եւ		R	di Li	а:	С М	le.l		1
Gross Income	10,560	14,520	008°51	14,080	19,360	26,400	21,120	29,040	39,600	
Production Costs	6,000	045°6	a,750	0 111 *8	13,185	12,590	13,775	21,750	21,175	
Costs excl. Labor Costs	5,700	8,030	8,030	7,600	I0,710	10,710	11,390	16,050	16,060	
Hired Labor	300	1,110	720	840	2,475	1,980	2,385	5,700	5,115	
Net Income	4,560	5,380	11,050	5,640	6,175	13,710	7,345	7,280	18,425	·
				~ <u>6.108774</u>				(unit: Baht)		
		3 ha					ਖ ਮੋਲ			6 ha
				1	ha Rice				1	
Ĭtem	Rice I	2 ha Rice Rice 1 ha Vegetables	2 ha 1 ha	Rice P Citrus 1 P	PU Animals PU Fish	Rice 2	ha Rice ha Vegetables	3 ha 1 ha	Rice Citrus	Rice
Gross Income	58,740	103,500	129,160		202,300	78,320	123,080	148	148,740 I	117,480
Production Costs	19,943	38,027	85,080		142,173	27,534	46,728		55,754	45,846
Costs excld.Labor Costs 19,803	19,803	37,707	84,760		139,753	26,404	44,308		53,334	39,506
Hired Labor	140	320		320	2,420	1,130	2,420		2,420	6,240
Net Income	38,797	65,473	080 * 11	080	60,127	50,786	76,352	63	92 , 985	71,634
			·							

Appendix 6-4 Page 4

Farmers' Ability to Pay Water Change and Investment Costs Table A.6-21

16,896 47,838 26 6,900 10 64,734 (unit: Baht) 71,634 72,634 Q 71,634 6 ha Rice Citrus с 009° т 71,132 과 /1 01.0 82,396 11,264 5,356 86,996 Rice 38,797 92,352 53,555 1 ha d R ო l ha Vege-57,4.84 68,748 ന പ 3 ha Rice 4,600 11,264 37,555 0.08 38,797 73,348 ŝ 3,004 76,352 tables 1 1 1 2 3 11,264 50,786 ۰÷ 500 5 M 50,786 46,186 3u ,922 50,786 \circ Rice ۱ PC Anîmals PU Fish ha Kice 8,899 ю Н 1,493 3,634 55,000 46,101 38,797 0.07 ŝ 21,330 58,634 60,127 ha Citrus 8,448 30,907 1,275 3,450 5 25,865 0.07 æ 39,355 144,080 42,805 18,215 2 ha Rice 3 ha ha Vegeha Rice 8,44,8 3,450 5 50,406 t: H 3,169 0.08 65,473 25,865 39,608 62,304 58,854 tables 8.44.8 26,899 ц С 3,450 38,797 0 38,797 07 35,347 38,797 Rice Disposable Income(c)=(a)-(b) Water Charge (OM costs) (b) (b)/(a) x 100 farmer after deduction of FC repayment Ч О Amount left to individual Amount for tax exemption Amount after deduction Individual income tax FC Amortisation (d) (d)/(c) × 100 Taxable amount income tax (a) Net income Iten Tax rate

Appendix 6-4 Page 5

Table A.6-22 Contribution to Rice Export by Project

1. Incremental Paddy Production by Project

(a) Present Production

1.6ton/ha x 2,190ha = 3,504ton(Wet season broadcasting)2.2ton/ha x 1,773ha = 3,900ton(Wet season transplanting)3.0ton/ha x 2,390ha = 7,170ton(Dry season transplanting)Total14,574ton

(b) Production with Project
4.2ton/ha x 9,542ha = 40,076ton (Wet season transplanting)
4.7ton/ha x 9,542ha = 44,847ton (Dry season transplanting)
Total.
84,923ton

(c) Increment = (b) - (a) =
$$70,349$$
 ton

- 2. Increasing Rice Consumption in Project Area
- (a) Present Consumption 10,200 (Population at present) x $197 \text{kg}^{1/2} = 2,009 \text{ ton}$
- (b) Future Consumption 14,000 (Population in future) x $197 \text{kg}^{1/2} = 2.758 \text{ ton}^{-1}$
- (c) Increasing Paddy Consumption = (b) (a) = <u>749 ton</u> 1/ 130kg ÷ 0.66 (Milling rate)
- 3. Contribution Amount to Export in Paddy = 1 2 = 69,600
- 4. Contribution Ammount to Export of Milled Rice = 45,936 ton/year
- 5. Saving of Foreign Currency 45,936ton x 6,152B/ton = B282.6 million : US\$14.1 million

6.22

การที่ และมีสารแหน่งมีสารแหน่งที่สารแหน่งการการที่สารหมายให้และสารายและสาราชได้ได้ได้การได้ได้เราะได้ได้เราะได้ การที่ และมีสารแหน่งมีสาราชได้สาราชได้สาราชได้เสียงสาราชได้เสียงสาราชได้เสียงสาราชได้ได้ได้ได้ได้ได้ได้ได้ได้ได้