Appendix 5.37 THE RESULT OF FIELD INVESTIGATION ON PRIOLITY LINK (1)

FOR IMPROVEMENT AND NEW CONSTRUCTION

PRIORITY LINKS SELECTED IN 3.3 (IDENTIFICATION FOR IMPROVEMENT AND NEW CONSTRUCTION)

BLOCK	STU	DY LINK	NO.	LINK LENG.	LINK VALUE	SHORT	ACT.	REMARKS	LENGTH OF PROPOSED
NO.	SEQ.	PROV.	RURAL	(KM)	T.DEV.	CONN.	CENTER 1		ROUTE (KM)
83	9	2261		31.0	0.96		 	(a) Û (b) Û (c) - (d) - Connecting Rt 214 with Rt 2080, good road network is formed.	31.1
	10		10083	19.0	0.44		;	(a) O (b) O (c) X (d) X Deleted - A. Sanon is small and connected with Rt 2079 with good laterite road by only 5.0km in distance.	_
96	11	2124		9.0	3.85		# ;	(a) Û (b) Û (c) Û (d) - Deleted - Section under DOH is to be paved in 1983.	- -
	12	2157		11.0	0.25		j	(a) X (b) X (c) - (d) - Deleted - Related area is cultivable, but almost forest at present. Immediate development is unexpected.	-
	13	2201		4.3	1.99		: :	(a) X (b) X (c) - (d)	_
	17	2128		10.5	0.74		i	(a) 0 (b) 0 (c) - (d) - Deleted - A road for security purpose is planned by other agency, near by the link.	_
53	18	2050		55.1	2.97		; ;	(a) Q (b) Q (c) X (d) - Altered to 67.1 km to connect K.A. Phosai with the link. Connecting paved section, whole section of Rt 2050 is to be paved rod	45.3 d.
	21	2232 +	- 2197	42.4	-0.10		#	(a) Û (b) Û (c) X (d) - Altered to 18.9km - Improvement of only Rt 2197 is considered to be enough because A. Kut Khopum is small.	17.2
 	22	2252		9.0	1.38			(a) (b) X (c) - (d) - Deleted - Because Rt 2197 is to be improved.	_
87 	24	2078 +	- 10087	50.1	2.87			(a) Û (b) Û (c) Û (d) X Altered to 30.0km as some section is already paved. Important link connecting C. Surin and C. Buri Ram.	42.0
	25	2208		35.0	1.05			(a) (b) (c) - (d) - Important link passing through center part in developed area.	48.0
: 	26	2265		23.0	1.35		# 1	(a) (b) (c) (d) - Deleted - Because Rt 2078 + 10087 and Rt 2208 adjacent to the link are to be improved. A.Krasang is connected by them.	- and the

Note

- (a) Present condition and future prospect of the related area
- (b) Number of settlement along the link
- (c) Scale of activity center connected by the link 0 : large or medium X : small (d) Difficulty of acquisition of Right of Way on the link under other agencies 0 : not difficult X : difficult
- O: well developed X: underdiveloped
- or expected or unexpected
- O : many X : few

2 of 6

THE RESULT OF FIELD INVESTIGATION ON PRIOLITY LINK

(2)

FOR IMPROVEMENT AND NEW CONSTRUCTION

BLOCK		DY LINE	NO.	LINK LENG.	LINK VALUE	SHORT	ACT.		LENGTH OF
NO.	SEQ.	PROV.	RURAL		T.DEV.	CONN.	CENTER		PROPOSED ROUTE(KM)
113	27	2160 +	- 10113	41.9	0.51			! (a) O (b) O (c) - (d) X	48.0
					——————————————————————————————————————	— · · · · · · · · · · · · · · · · · · ·	· 	Good road network between Rt 2 and Rt 201 is formed and whole section of Rt 2160 is to be paved road.	
59	28	2166		59.6	1.03			(a) 0 (b) 0 (c) (d)	59.7
								Passing through center part in developed area.	
	29	2162		22.5	2.13		#	(a) 0 (b) 0 (c) 0 (d) -	25.0
						·	.======	Important link for connection between C. Nakhon Ratchasima and C. Buri Ram.	
75	30	2076		30.0	5.37			(a) 0 (b) 0 (c) - (d) -	39.5
			14 Mile My par pag sang pan pag	· — — == == == ==	· —			Passing through center part in developed area and good network between Rt 214 and 2080 is formed.	
	32		10075	12.0	2.66		#	(a) 0 (b) X (c) X (d) X	_
								Deleted - Difficult to acquisition of right-of-way. A. Bung Bun is small.	
91	34		10091	18.0	-0.38	#		; (a) O (b) O (c) — (d) X	-
								Deleted ~ Already paved by RID.	
90	35	2072		21.0	0.39			(a) O (b) O (c) - (d) -	
								Deleted ~ A paved irrigation road exists closely.	
	36	2238		9.4	3.21			(a) O (b) O (c) - (d) -	
								Deleted - More than half of section is already paved.	
	37		10090	20.0	2.70	· — ~ 14 14 14 14 F		(a) O (b) O (c) - (d) X	51.5
			extensio	on of Rou	te 24			Altered to 45.0km regarding as the link for extension of Rt 24.	i
15	38	·	10015	27.0	0.36			; (a) O (b) O (c) - (d) X	24.0
								Two DOH roads, Rt 2313 and 2316 are connected and good road network is formed.	i
	39	9066		21.6	-0.39	#		(a) X (b) X (c) - (d) -	20.3
								Two DOH roads, Rt 2109 and 2146 are connected and good road network is formed between Rt 2 and 210.	ı {
68	40	20	10068	30.0	0.52			(a) 0 (b) 0 (c) - (d) X	- !
								Deleted - Difficult to acquisition of right-of-way.	i 2 3

Note

(a) Present condition and future prospect of the related area

O : well developed X : underdiveloped or expected or unexpected

(b) Number of settlement along the link

(c) Scale of activity center connected by the link

(d) Difficulty of acquisition of Right of Way on the link under other agencies 0: not difficult X: difficult

X : few O : many

THE RESULT OF FIELD INVESTIGATION ON PRIOLITY LINK FOR IMPROVEMENT AND NEW CONSTRUCTION

BLOCK	STU	DY LINK	NO.	LINK LENG.	LINK VALUE	SHORT	ACT.	: REMARKS	LENGTH OF PROPOSED
NO.	SEQ.	PROV.	RURAL		T.DEV.	CONN.	CENTER	·	: ROUTE(KM)
43	42		10043	67.5	0.54		#	(a) X (b) X (c) X (d) X Deleted - Immediate development is unexpected passing through hilly and rolling area. A. Na Hon is connected by follwing Rt 11043.	-
	43	11043 +	. 0	37.0	2.78		##	(a) 0 (b) 0 (c) 0 (d) X Important link, two medium size of Amphoes. A.Na Hon and A. Pho Chai are connected.	1 50.7 ! !
109	44	2199		36.5	0.81	•	#	(a) 0 (b) 0 (c) 0 (d) - Passing through well developed area and connects big size of A. Wang Yai.	35.3
14	47		11014	25.1	2.11			(a) 0 (b) 0 (c) - (d) X Deleted - Difficult to acquisition of right-of-way.	~ -
107	49	- 200 and 200 - 200 va	10107	41.0	0.29			(a) X (b) X (c) - (d) O Deleted - Passing through mountainous area, immediate development is unexpected.	
8	53		10008	39.0	1.30		#	(a) (b) (c) (d) Deleted - Sensitive area.	-
	54	* C-W main 6.07 Blad P'W min 20	11008	22.5	0.69		#	(a) (b) (c) (d) Deleted - Sensitive area.	! – !
31	55		10031	33.0	0.52			(a) 0 (b) 0 (c) ~ (d) X Passing through well developed area and many villages exist along the link.	33.4
48 48	56 56	2259	******************	46.0	1.88			(a) (b) (c) - (d) -	: 46.0 !
35	57	2289		25.0	0.97	#		(a) 0 (b) 0 (c) - (d) - Deleted - No need as adjoining Rt 2253 is to be studied and Rt 2023 closly located was already committed.	-
70	58		10070	8.0	4.42		#	! (a) ① (b) X (c) X (d) X Deleted - Difficult to acquisition of right-of-way and A.Kae Dam is small.	-
67	59	2297		15.0	2.25		#	(a) (b) (c) (d) - Altered to 35.0km - Good road network is formed by extending up to Rt 219.	; 30.6 ;
	60	2061		19.0	2.48			(a) 0 (b) X (c) 0 (d) X Altered to 10.0km - Only connection with A. Napho is planned, as Rt 207 passes closely.	9.4

Note

- (a) Present condition and future prospect of the related area
- (b) Number of settlement along the link
- (c) Scale of activity center connected by the link
- (d) Difficulty of acquisition of Right of Way on the link under other agencies 0: not difficult X: difficult

O: well developed X: underdiveloped or expected or unexpected

O: many X: few

O: large or medium X: small

THE RESULT OF FIELD INVESTIGATION ON PRIOLITY LINK (4) FOR IMPROVEMENT AND NEW CONSTRUCTION

BLOCK	STU	DY LINK	NO.	LINK	LINK	SHORT	ACT. :		LENGTH OF
NO.	SEQ.	PROV.	RURAL	LENG. (KM)	VALUE T.DEV.	CONN.	CENTER :	REMARKS :	PROPOSED ROUTE(KM)
16	62	2312		29.2	0.15	 -		(a) 0 (b) 0 (c) - (d) - Deleted - Under study by other project.	
40	63	2203		9.4	2.37		2 1 1 1 1	(a) 0 (b) X (c) - (d) - Deleted - Other roads with good condition exist closely.	
29	64	2183		26.5	-1.14		# ;	(a) 0 (b) X (c) 0 (d) - Altered to 31.5km to form good road network by extending up to Rt 209. A Nam Phong is big.	29.1
17	70		10018	47.0	-2.03		#	(a) X (b) X (c) U (d) U Few paved road exist in the area, important road network is formed by connection between Rt 212 and 2022.	48.
30	75	2025		14.2	1.47		3 1 1 1	(a) Ω (b) Ω (c) - (d) - Passing through well developed area.	16.
46	76	2101	— - 	5.0	3.96	#	} !	(a) 0 (b) 0 (c) - (d) - Passing through highly developed area. Good road network is formed with the section paved already of the same route.	5.4
	77	2291		30.0	0.03		# ;	(a) Û (b) Û (c) Û (d) - A Khao Wang is big. Good road network is formed with the above link.	25,
	79		10046	9.0	0.15		# ;	(a) O (b) X (c) X (d) X Important link to connect A. Whan Yai located along border line of Kingdom.	9.
	80	2102		6.1	2.11		; ;	(a) 0 (b) X (c) - (d) - Deleted - Other roads with good condition exist.	-
10	86		10010	22.0	0.40		! ! ! !	(a) (b) (c) (d) Deleted - Sensitive area.	-
36	87	2268		32.0	0.04		; ;	(a) 0 (b) 0 (c) - (d) - Deleted - Rt 2152 located closely is already committed.	-
101	91	2164		15.0	0.36		; ;	(a) (b) (c) - (d) - Deleted - Rt 2256 of paved road exists closely.	<u> </u>

Note

(a) Present condition and future prospect of the related area

O : well developed X : underdiveloped or unexpected or expected

(b) Number of settlement along the link

(c) Scale of activity center connected by the link

(d) Difficulty of acquisition of Right of Way on the link under other agencies

(e) Scale of activity center connected by the link

(f) Scale of activity center connected by the link

(g) Scale of activity center connected by the link

(g) Scale of activity center connected by the link

(g) Scale of activity center connected by the link

(g) Scale of activity center connected by the link

(g) Scale of activity center connected by the link

(g) Scale of activity center connected by the link

(g) Scale of activity center connected by the link

(g) Scale of activity center connected by the link

(g) Scale of activity center connected by the link

(g) Scale of activity center connected by the link

(g) Scale of activity center connected by the link

(g) Scale of activity center connected by the link

(g) Scale of activity center connected by the link

(g) Scale of activity center connected by the link

(g) Scale of activity center connected by the link

(g) Scale of activity center connected by the link

(g) Scale of activity center connected by the link

(g) Scale of activity center connected by the link

(g) Scale of activity center connected by the link

(g) Scale of activity center connected by the link

(g) Scale of activity center connected by the link

(g) Scale of activity center connected by the link

(g) Scale of activity center connected by the link

(g) Scale of activity center cent

X : few O: many

BLOC		TUDY LINK		LINK LENG.	LINK VALUE	SHORT	ACT. !	REMARKS	LENGTH OF :
NO		. PROV.		(KM)	T.DEV.	CONN.	CENTER :		: ROUTE(KM) :
9 	 5 9	3	10095	25.0	0.47		 	(a) (b) (c) (d) Deleted - Sensitive area	- - -
; 3	2 9	6 9071		17.0	2.47		# ; ;	(a) Ü (b) Ü (c) Ü (d) - Passing through well developed area. A Song Dad is big.	18.1
1 9	_ 7 9	7 2213		13.7	2.02) ! !	(a) 0 (b) X (c) - (d) - Developed area but few roads exist.	14.5
; ; ;	9	3 2172		44.7	1.08		; ;	(a) U (b) U (c) - (d) - Passing near by border line of Kingdom and forms good road network by connecting Rt 217 and 2186.	1 44.8 1 1
; 7 ;	6 9	9	10076	10.0	2.40		1	(a) O (b) X (c) O (d) X Altered to 30.0km to connect A.Kho Wang with Rt 2083 as this Amphoe belongs to C. Yasathon.	38.2
5	0 10	0 2105		12.4	-0.14		#	(a) X (b) 0 (c) 0 (d) - Good road network is formed with Rt 2276 + 10050 to be studied and connects A.Reou Nakhon.	12.4
; ; ;	10	1 2276 +	+ 10050	25.6	-1.65		#	(a) X (b) 0 (c) 0 (d) X Good road network is formed between Rt 22 and Rt 212 with the above link.	;
6	3 10	4 2162		25.5	1.05	#	! !	(a) U (b) U (c) - (d) - Important link connecting between C. Nakhon Ratchasima and C. Buri Ram with the same link included in Block No. 59.	26.0
1 8	1 10	6 2234		21.0	3.22	#	1 1 1 1 1	(a) U (b) U (c) - (d) - Deleted - No need as whole section of Rt 2167 is committed recently.	- - -
} 7	1 10	7 2269		42.0	-1.19		# ; ;	(a) U (b) X (c) X (d) - Deleted - Rt 202 exists closely, and A. Pathum Rat is small.	- - -
; 5 ;	4 10		10054	27.0	3.76		# 	(a) D (b) O (c) X (d) X Deleted - Difficult to acquisition of righi-of-way especially on the section passing through inhabitant area near C. Uhon Ratchatha	-
4	7 11	1	10047	20.0	1.14		# ; ;	(a) 0 (b) 0 (c) X (d) X Deleted - Difficult to acquisition of right-of-way and A. Meywade is small.	-

Note

- (a) Present condition and future prospect of the related area
- (b) Number of settlement along the link
- (c) Scale of activity center connected by the link

 O: large or medium X: small

 (d) Difficulty of acquisition of Right of Way on the link under other agencies

 O: not difficult X: difficult
- O : well developed X : underdiveloped
- or expected or unexpected
- O : many X : few

6 of 6

THE RESULT OF FIELD INVESTIGATION ON PRIOLITY LINK FOR IMPROVEMENT AND NEW CONSTRUCTION

;	BLOCK	STU	BY LINK N	۷Ū.	LINK	LINK	SHORT	ACT.		LENGTH OF :
!	NO.	SEQ.	PROV. R	RURAL	LENG. (KM)	VALUE T.DEV.	CONN.	CENTER	REMARKS	PROPOSED : ROUTE(KM)
!	23	118	2185 +	9232	45.3	-1.08		#	(a) X (b) X (c) X (d) - Altered to 23.5km - Improvement of only Rt 2185 is considered to be	19.8 ;
:	44	119	1	10044	10.0	1.89		#	enough because A. Na Wha is not so big. (a) O (b) O (c) O (d) O A. Tao Ngai is big and area is well developed.	12.0
	92	126	2309		25.0	1.20			(a) O (b) X (c) - (d) - Some section is already paved. Good road network is formed between Rt 24 and Rt 2119.	29.0 i
:	34	127	2253 +	2093	18.0	-0.76		#	(a) (b) (c) (d) X Deleted - No need as whole section of Rt 2253 is committed recently.	- -
;	19	135	2318		7.0	1,29		#	(a) Q (b) X (c) Q (d) ~ Passing through well developed area and A.Thung Fou is rather big.	8.3

SUB TOTAL 66

1662.5

SUB TOTAL

(6)

LENGTH OF PROPOSED ROUTES : 1061.2 KM

(35 LINKS)

LENGTH OF OMMITED ROUTES: 671.0 KM

(31 LINKS)

PRIORITY LINKS SELECTED IN 3.4 (IDENTIFICATION OF PRIORITY LINKS BY FUNCTIONAL ANALYSES OF NATIONAL HIGHWAY)

! !	HIGH- WAY NO.	STUDY LINK NO. SEQ. PROV. RURAL	LINK LENG. (KM)	REMARKS	LENGTH OF PROPOSED ROUTE(KM)
	N14	N4 2112 + 2173	95.0	(a) O (b) X (c) - (d) - Passing along the border line of Kingdom.	122.4

TOTAL 67

1757.5

TOTAL

LENGTH OF PROPOSED ROUTES : 1183.6 KM (36 LINKS)

LENGTH OF OMMITED ROUTES: 671.0 KM (31 LINKS)

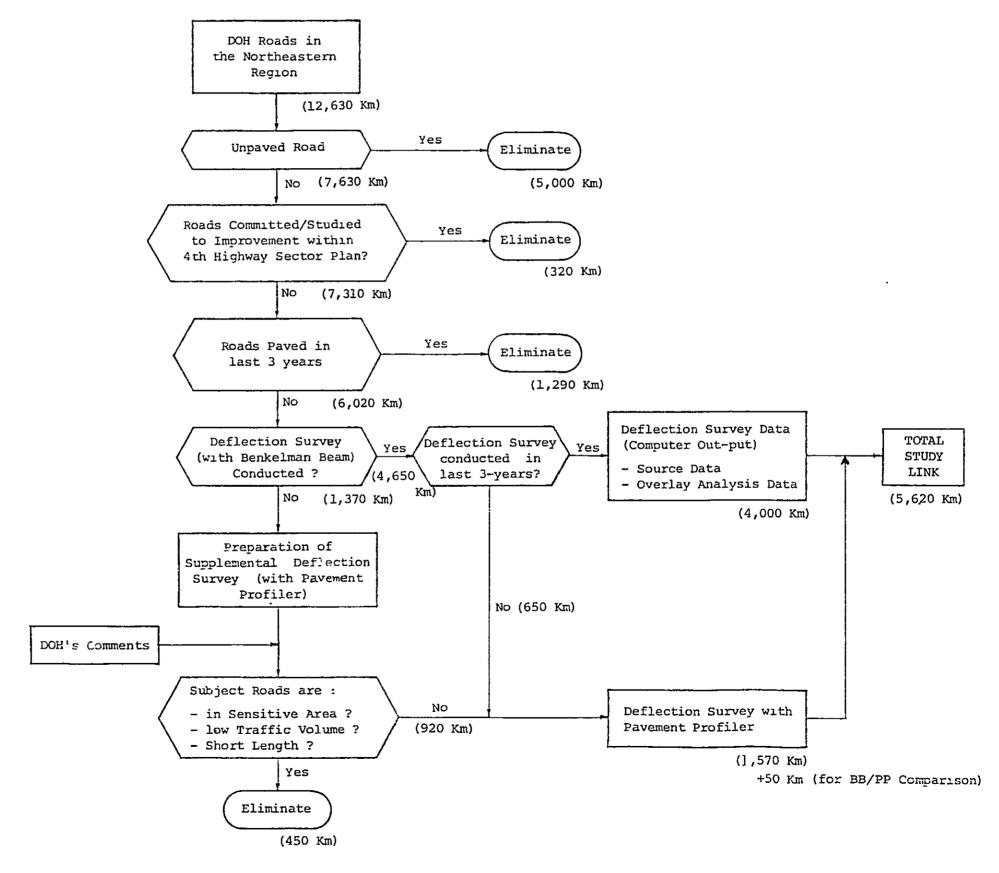
Note

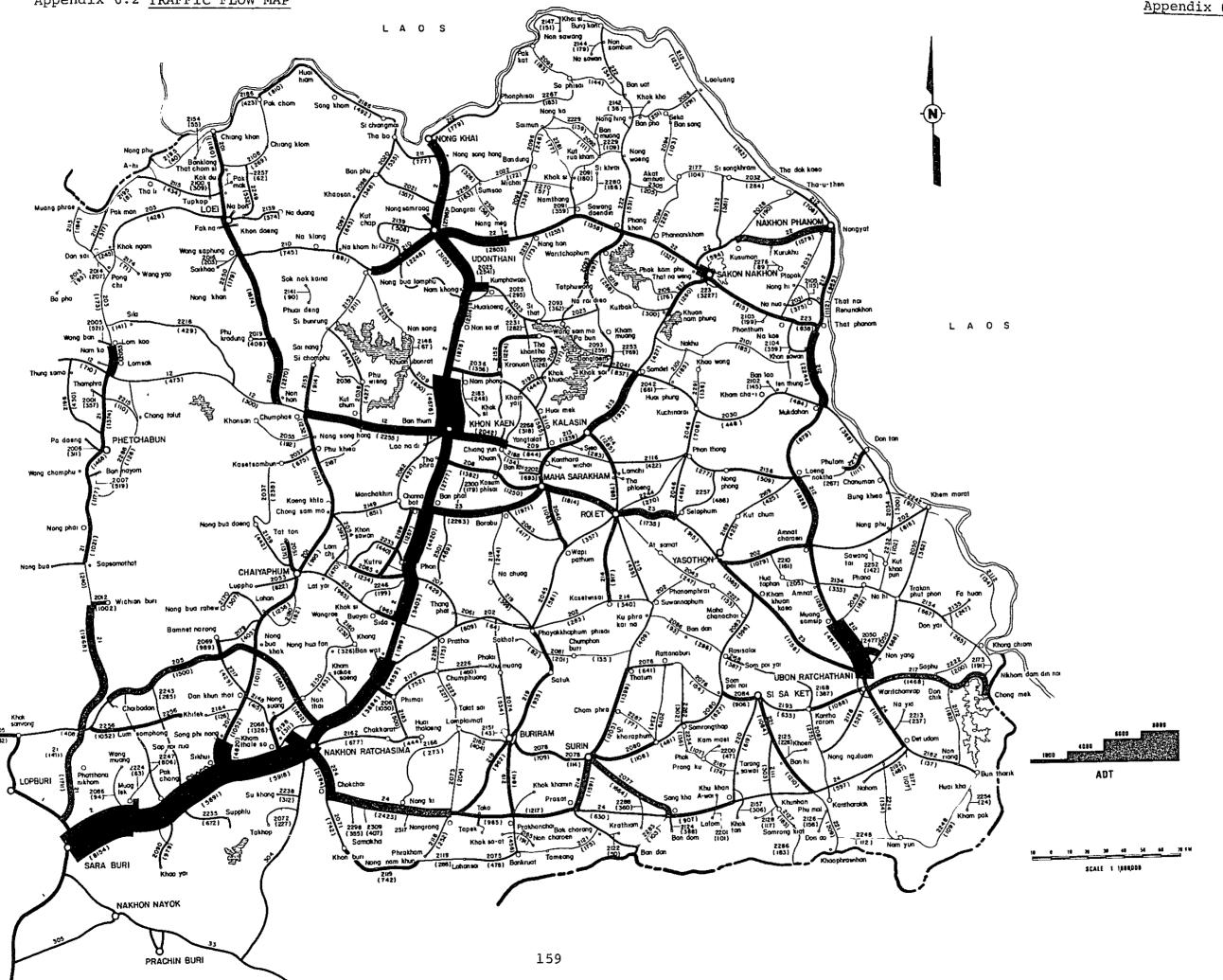
(a) Present condition and future prospect of the related area

O : well developed X : underdiveloped or expected

or unexpected

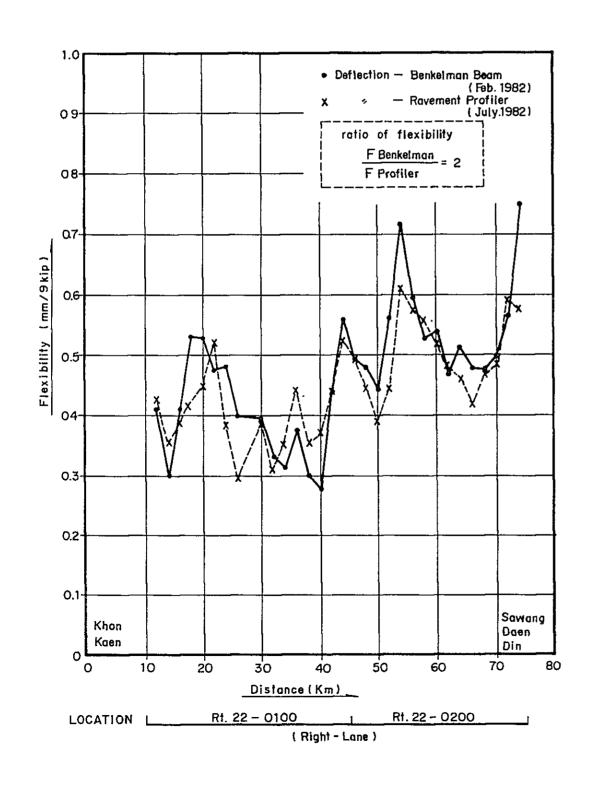
(b) Number of settlement along the link


O: many


X : few O : large or medium X : small

(c) Scale of activity center connected by the link

(d) Difficulty of acquisition of Right of Way on the link under other agencies 0: not difficult X: difficult 157


Appendix 6.1 STUDY LINK FOR REHABILITATION

Appendix 6.3 COMPARISON OF DEFLECTION

(Benkelman Beam/Pavement Profiler)

			P	avement F	rofiler	Benkelman Beam
No.	Section (Km)	Air Temp. (°C)	Paveme	ent Temp.	Flexibility (mm/9 kip)	Flexibility (mm/9 kip)
1	11 - 12	33	42	107.6	0.4245	0.4115
2	13 - 14	33	40	104.0	0.3553	0.3023
3	15 - 16	34	43	109.4	0.3870	0.4140
4	17 - 18	34	41	105.8	0.4150	0.5309
5	19 - 20	34	44	111.2	0.4494	0.9283
6	21 - 22	34	41	105.8	0.5228	0.4775
7	23 - 24	34	44	111.2	0.3886	0.4801
8	25 - 26	34	44	111.2	0.2950	0.4039
9	29 - 30	34	44	111.2	0.3867	0.3962
10	31 - 32	33	42	107.6	0.3105	0.3302
11	33 - 34	33	42	107. ⁶	0.3538	0.3150
12	35 - 36	33	43	109.4	0.4427	0.3784
13	37 - 38	33	43	109.4	0.3561	0.3099
14	39 - 40	33	42	107. ⁶	0.3741	0.2794
15	41 - 42	33	. 41	105.8	0.4432	0.4420
16	43 - 44	32	39	102 ²	0.5243	0.5613
17	45 - 46	31	39	102.2	0.4996	0.4978
18	47 - 48	35	44	111.2	0.4477	0.4826
19	49 - 50	36	47	116. ⁶	0.3902	0.4445
20	51 - 52	36	46	114.8	0.4435	0.5664
21	53 - 54	35	49	120.2 '	0.6129	0.7188
22	55 - 56	36	48	118.4	0.5744	0.5969
23	57 - 58	36	49	120.2	0.5592	0.5283
24	59 - 60	36	47	116. ⁶	0.5157	0.5410
25	61 - 62	36	45	113.0	0.4853	0.4699
26	63 - 64	37	45	113.0	0.4615	0.5156
27	65 - 66	34	45	113.0	0.4226	0.4801
28	67 - 68	34	45	113.0	0.4712	0.4801
29	69 - 70	34	44	111.2	0.4873	0.5029
30	71 - 72	34	43	109.4	0.5927	0.5690
31	73 ~ 74	33	43	109.4	0.5792	0.7493

Appendix 6.4 IDENTIFICATION OF LINKS FOR REHABILITATION (1)

SEQ. NO.	ROUTE NO.	LINY NO.	TYPE	LINK LENGTH (KM)	NO. OF DATA	AVERAGE OF DEFLECTION	B & T	BAD SECT. COUNT	REMARKS			——			L	IST	OF	- B	ΑĐ	SE		EON	Nū			- 		
1	2	200	AC	22	22	0.3045	1341	1		1																		
2		301	AC	1	1	0.2792	3860	Ô		•																		
3		302	AC	44	44	0.3288	3860	5	****	7	9	2	2 :	25	28													
4		401	AC.	12	12	0.2660	3770	ō		•		_	_															
5		402	AC.	26 \		0.4402	3770	3		16	22	2	3															
6		403	AC	8	8	0.6011	3770	3		5		, –																
7		501	ΑC	1	1	0.6195	2889	1		1			_															
8		502	AC	49	49	0.5358	2889	17	***	5	6	,	7	8	22	35	3	3	7	38	39	41	42	43	44	45	46	47
9		600	AC	36	35	0.5263	944	10	***	5					11													
10		701	AC	1	1	0.4323	1679	0																				
1.1		702	AC.	30	30	0.3384	1679	1		1																		
17		800	AC	30	30	0.2702	1854	0																				
13		901	AC:	32	19	0.4580	1209	2		4	14	1																
14		902	ΑC	14	14	0.6521	1208	9	****	4	5	j	6	9	10	11	11	2 1	3	14								
15	12	1101	DT	30	32	0.5734	90	11		6	14	2	:1 :	22	24	25	20	5 2	7	28	30	31						
16		1102	AC.	13	22	0.4436	637	1		11																		
17	22	101	AC.	32	31	0.4507	1028	1		21																		
18		102	ΑC	2	2	0.4017	1028	0																				
19		103	FΜ	2	3	1.0199	735	3		1	2	2	3															
20		104	AC	ے	6	0.3829	1028	0																				
21		105	AC:	1	1	0.5049	1028	Ō																				
22	•	201	AC.	31	14	0.5837	539	4		8	10) 1	. 1	14														
23		202	AC*	2	1	0.5286	539	0																				
24		204	AC.	2	16	0.5360	539	2			16	•																
25		205	AC	1	1	0.6422	539	1		1																		
26		207	AC.	2	2	0.6267	539	1		2			_	_	_				_									
27		301	AC	22	14	0.6127	538	9	****	3			7	8	9,	, 10	1	1 1	2	13								
28		302	AC	3	4	0.6471	539	2		3		-	_	_														
29		304	AC	5	5	0.6346	539	4		1			3	5		_		- .	_									
30		401	ΑC	14	14	0.7194	484	10	***	2	3	3	4	5	6	,	,	3	y	10	11							
31		402	AC:	2 2	2	0.6251	484	1		1																		
32		403	PM		2	0.5909	484	1		1		٠.		,	_	. ,		- ,		~	10	11	10	19	4.7	1 4		
33		404			17	0.6932	484	15	***	1			3	4	Ţ.		•	/	≅	77	10	11	12	13	14	10	'	
34		405	AC:	2	2	0.6724	484	2		1	-	-																
35		406	PM	3	3	0.5447	484	1		_ T																		
36		407	AC.	14	14	0.4937	484	1			٠.,		·-	->->	30		ı											
37		501	AC	34	33	0.5278	380	6	***	J	11	l. 2	20	/ ک	30	٠.												
38		502	ΑC	1	1	0.5984	380	.0		~		3	Λ	5	6		7 1	n 1	Δ	15	1.4	17	19	19	20	21		
39		600		24	23	0.6085	207	15	**	2 2	-		4	7								21				<u>~ 1</u>		
40	-	700		29	29	0.5775	299	13	**	~		-	0	/	0		. 1.	J 1	. /	17	-~	1 ند		_/				
41	23	101	AC.	5	5	0.3975	704	0		~		2	4															
42		102		5	5	0.6525	704	3	M. U. M. 38	2 1		3 2	3	4	=		7	9	C)	10	11	15	17	19	20	21	22	2 23
43		103	AC	37	32	0.7853		20	***	25	29	2 9 3	-	7	۔'	• ,	,	_		10		1.0	1,	1,		- 1		_ •-
44		104	AC	3	3	0.5338	704	1		1																		

IDENTIFICATION OF LINKS FOR REHABILITATION (2)

SEQ.	ROUTE NO.	LINK NO.	TYPE	LINK LENGTH (KM)	NO. OF DATA	AVERAGE OF DEFLECTION		BAD SECT. COUNT	REMARKS					 L	IST	OF	BA	 DS	ECT	ION	NO				F	
			~																			·			~	
45	23	105	DT	4	4	0.5392	704	1		3	_		_	_		4.5										
46		200	AC	32	24	0.6697	727	12	***	2	3	4	7	9	11	12	14	16	17	23	24					
47		202	AC	22	22	0.2613	689	1		14	_															
48		300	AC AC	33	32	0.5103	696	8	***				16	18	20	22	23									
49		302	AE	8	8	0.4199	696	2		2	3															
50		303	AC AC	44	42	0.4743	696	0			_	_	_													
51 52	•	,	AC AC	12	12	0.5367	271	4		1	2	3	7													
53		402 403	AC DT	3	3	0.6083	628	1		1																
54			DT	33	33	0.4868	627	2			23															
		505	DT DT	40	40	0.4327	268	6	**																	
55 57		600	DT	22	22	0.5916	308	10	***					17	18	19	20	21	22							
56 57		701	DT	41	42	0.4763	422	3		2	4	5														
57 50		702	ST	3	3	0.4084	258	0																		
58 50		703	PM	2	2	0.3522	258	0		_		_														
59 40		802	AC	36	14	2.7713	331	4					14													
A0	24	200	AC	43	43	0.4092	1296	6	****					30												
61		300	AC	32	32	0.5191	.1253	10	***								29									
62		400	AC	28	28	0.6821	517	20	****	1			8	9	11	12	13	14	15	16	17	18	19	20	21	22
								_			24															
63		500	AC	37	31	0.4816	484	5	***					25												
64		600	AC	50	25	0.8421	202	22	**	1	2	3	5	6	7	8	9	10	11	12	13	14	15	16	17	18
, =		700												24												
65 77		700	AC	38	38	0.5379	482	10	****			21	25	31	32	33	34	37	38							
66		801	AC	18	18	0.4763	475	2			18															
67 40		802	AC .	51	35	0.4811	475	5	***	6	13	19	21	26												
68 48		803	AC.	1	1	0.4519	475	0						•												
69 70		900	AC	49	49	0.5115	241	8	**	2	14	16	20	;26	28	32	46									
70		1001	Ta	40	40	0.5211	2358	10	****	6	26	27	28	30	31	32	34	35	38							
71		1002	AC	17	17	0.6769	1296	11	***	1	3	5	6	7	8	9	10	11	12	13						
72		1002	AC	1	1	0.2340	400	0																		
73		1003	AC	1	1	0.2405	2067	0																		
74		1004	AC	2	2	0.2053	2067	0																		
75	201	100	DT	40	40	0.3671	1068	0																		
76		200	DT	25	25	0.4897	448	6	***	7	17	18	20	22	25											
77		300	DΤ	17	17	0.3977	397	1		1																
78 78		400	DT	38	38	0.3968	397	О																		
79		500	AC	50	42	0.3382	338	2		5	8															
80		600	AC	27	32	0.3345	420	2			22															
81		700	AC	20	22	0.3075	428	1		22																
82.		800	AC	13	12	0.4929	415	2			12															
83		900	AC	23	23	0.5683	415	9	****	1	4	5	9	11	12	13	18	22								
84		1001	AC	7	7	0.3660	412	O																		
85	•	1002	TC	11	3	0.5644	412	1		1																
86		1003	AC	13	13	0.3805	412	0																		
87		1100	AC	49	33	0.5007	412	3		7	16	29														

IDENTIFICATION OF LINKS FOR REHABILITATION (3)

SEQ.	ROUTE NO.	LINK NO.	TYPE	LINK LENGTH (KM)	NO. OF DATA	AVERAGE OF DEFLECTION	B & T	BAD SECT. COUNT	REMARKS	LIST OF BAD SECTION NO
	201	1201	AC			0.5343	412	O	·	
88 89	201	1201	AC	3	3	0.6986	412	š		1 2 3
90		1203	DT	3	3	0.5447	412	1		2 Z
		1203	AC	20	20	0.4739	412	4		1 2 6 17
91		1300	DT	20 28	28	0.4085	148	3		2 17 18
92	202	100	דם	17	17	0.905	200	11	**	1 2 3 5 6 7 8 9 10 11 13
93 64	202		AC	32	32	0.7098	200	20	**	2 4 5 7 12 13 14 15 16 18 19 20 21 22 23 24 26
94		200	HU	ندت	شن	0.70%	200	20	<i>.</i>	27 28 30
95		301	PM	16	17	0.4522	425	1		8
		400	PM	19	17	0.4851	263	-2		13 16
96 07		500	ST	49	36	0.6580	263	27	**	1 2 7 8 11 12 13 16 17 18 19 20 21 22 23 24 25
97		500	Q:	7/	50	0,0000				26 27 28 29 30 31 32 34 35 36
00		600	та	20	11	0.6099	112	7	*	3 4 5 8 9 10 11
98 99		700	DT	30	15	0.5670	112	6	*	1 2 3 4 5 9
		900	PM	34	34	0.5010	184	9	*	1 2 3 6 20 22 27 29 34
100		1100	AC	49	49	0.4456	278	3		16 17 18
101		1200	AC	23	23	0.4197	278	2		22 24
102	203	200	DT	23	23	0.6505	59	14		10 11 12 13 14 15 16 17 18 19 20 21 22 23
103	203	300	DT	37	36	0.6404	80	18		1 2 3 4 5 6 8 9 10 11 12 13 14 16 17 18 22
104		300	D1	٠,		202121		_		34
105		400	DT	30	28	0.6731	107	17	*	1 6 7 8 9 10 11 19 20 21 22 23 24 25 26 27 28
105	205	600	DT.	30	18	0.4334	337	2		12 17
103	200	702	DΤ	35	35		477	2		15 30
107		800	DT	28	28	0.4664	524	3		5 15 28
100	206	100	AC	11	11	0.5576	362	6	***	1 2 3 4 7 8
110	207	100	DT	37	37	0.6168	194	20	*	1 2 3 4 5 6 8 13 16 17 18 21 25 26 27 28 29
110	207	100	L' 1	٠,						33 36 37 ;
111		202	DT	35	35	0.6025	131	20	*	1 4 5 6 7 9 11 12 14 15 16 17 18 19 20 23 24
1.11		202	,		• -					25 26 35
112		300	DT	23	23	0.5832	131	12	*	2 4 8 9 10 12 13 14 15 16 17 23
113	208	100		31	31			29	***	1 2 3 6 7 8 9 10 11 12 13 14 15 16 17 18 19
11.5	200	100	۱ س							20 21 22 23 24 25 26 27 28 29 30 31
114		200	DT	30	27	1.0662	310	25	***	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
117		2								18 20 21 22 23 24 25 26
115	210	101	AC	49	41	0.2043	691	0		
116		102		1	1		691	0		
117		201	AC	41	41		216	0		
118		300		37	37		203			
				30			256	0		
119		200		15				1		15
120				45						
121		200		44	44					6 16 40 47 48
122		300		29				6		22 23 25 26 27 28
123		400		18		_		3		5 20 21
124		500		34				4		1 26 30 32
125		300	T) I	-≟-⊤	<u> </u>					

IDENTIFICATION OF LINKS FOR REHABILITATION (4)

126 212 600 DT 39 30 0 .5387 45 7 17 18 19 20 21 24 25 127 702 DT 19 19 19 0 .4288 45 2 410 129 900 AC 111 11 0 .9077 67 10 1 2 3 4 5 6 7 9 10 11 130 901 DT 18 18 0 .03916 67 2 111 13 131, 1000 AC 26 26 0 .4534 163 5 * 1 3 10 19 20 21 22 23 24 25 26 29 36 37 3 133 1200 AC 25 24 0 .5453 134 7 7 8 10 13 14 20 21 134 1203 DT 2 2 0 .5354 234 1 7 7 8 10 13 14 20 21 135 1300 DT 35 36 0 .4435 186 1 27 136 1400 DT 48 51 0 .4655 39 4 4 15 3 34 9 41 137 1501 DT 42 43 0 .4946 761 4 1 8 3 74 22 138 213 100 DT 43 42 1 .4284 463 40 **** 1 2 8 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 18 18 20 21 22 23 24 25 26 27 28 29 30 31 32 33 18 21 20	SEQ. NO.	ROUTE NO.	LINK NO.	TYPE	LINK LENGTH (KM)	NO. ÚF DATA	AVERAGE OF DEFLECTION	В & Т	BAD SECT. COUNT	REMARKS					 L	.IST	0F	BA	 DS	ECT	ION	NO					744 444 ₈₄₄ <u>-</u>
127					~~~~																						
128		212									17	18	19	20	21	24	25										
129 900 AC 111 11 0.9077 67 10 1 1 2 3 4 5 6 7 9 10 11 130 901 DT 18 18 0.9316 67 2 111 13 131 1000 AC 26 26 26 0.4534 163 5 8 1 3 10 19 20 132 1100 AC 45 44 0.6715 157 23 8 3 4 7 12 13 15 20 21 22 23 24 25 26 29 36 37 31 134 1203 DT 2 2 0.5534 234 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							0.4288	45	2		12	13	1														
130			800		19	19	0.4466	67	2		4	10)														
130			900		11	11	0.9077	67	10		1	2	3	4	5	6	7	9	10	11							
131	130		901	DT	18	18	0.3916	67	2		11	13		_	_	_		_	- •								
1100 AC	131,		1000	AC	26	26	0.4534	163		#				19	20												
133	132		1100	AC	45	44	0.6715	157		*	3	4	7	12	13	15		21	22	23	24	25	26	29	36	37	38
134	133		1200	AC	26	26	0.5455	134	7	*																	
135	134		1203	DT							•		10		17	20	~ 1										
136	135		1300																								
138 213 100 DT 42 43 0.4946 761 4 18 37 42 138 213 100 DT 43 42 1.4284 463 40 **** 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 83 32 83 13 8	136		1400	DT								24	20	A 1													
138	137																										
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 83 28 36 37 38 41 42 35 36 37 38 41 42 35 36 37 38 41 42 35 36 37 38 41 42 35 36 37 38 41 42 35 36 37 38 41 42 35 36 37 38 41 42 35 36 37 38 41 42 35 36 37 38 41 42 35 36 37 38 39 40 41 42 35 36 37 38 39 40 41 42 35 36 37 41 43 44 45 46 47 48 49 50 51 52 53 50 40 40 40 40 40 40 40 40 40 40 40 40 40	138	213		DT						****						,	7	_	_	40	4 4	40	40	4.0			4 -
139					_	. –			0																		
139																		20	26	21	28	29	30	31	32	ಶತ	34
140 300 PM 54 57 0.6528 175 37 * 1 2 3 3 5 36 37 38 39 40 41 42 24 25 26 27 28 29 30 31 32 33 35 36 37 38 39 40 41 42 24 25 26 27 28 29 30 31 41 41 400 PM 33 33 30 0.5978 320 19 *** 1 2 3 4 5 6 7 10 16 24 25 26 27 28 29 30 31 42 41 41 41 41 41 41 41 41 41 41 41 41 41	139		200	рт	42	42	0.7122	519	20	XXXX										~~	~~	~ 4	٠.				
140						•-	9471LL	. 010	20	****	-	22	7	13	10	1/	18	13	20	22	23	24	26	27	28	29	30
141	140		300	PM	54	57	0.4528	175	27	×																	
141				• • • • •	٠.	٠,	0.0020	1/3	-57	ж	_			4	2	- 6	- /	ع 45	7	10	11	12	13	14	15	16	21
141															41	43	44	45	46	4/	48	49	50	51	52	53	54
142	141		400	₽M	33	33	0.5079	220	10	200					_												
142			144	• • •		- 00	0.0776	320	17	***	20 C	2	3	4	Ð	6	/	10	16	24	25	26	27	28	29	30	31
143	142		2100	пт	1	1	0 9494	175	•			J.															
144 200 DT 19 19 1.1389 321 18 *** 1 2 3 24 25 26 27 28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		214											,		_	_											
144	- · •			2.	2.0	20	0.0036	321	20	***	_	•	_	-	-8	-9	10	11	12	13	14	15	16	17	18	19	20
145 300 AC 48 48 0.2998 238 0 19	144		200	nт	19	19	1 1990	221	10										_			_					
145 300 AC 48 48 0.2998 238 0 146 400 AC 30 15 0.2782 157 0 147 500 AC 39 40 0.5526 175 14 * 3 4 8 14 16 18 19 20 21 22 23 24 27 32 148 600 AC 24 28 0.4916 527 0 149 700 AC 28 22 0.4342 470 1 10 150 800 PM 29 29 0.8088 622 27 **** 1 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 151 900 PM 40 38 0.6137 112 22 * 12 13 14 15 16 17 18 19 20 21 23 24 27 28 29 30 3 152 217 100 AC 43 43 0.2433 428 2 2 4 153 201 AC 44 17 0.2472 428 1 17 154 218 100 PM 25 25 0.5581 359 8 *** 10 14 18 19 20 21 22 24 156 219 100 PM 19 15 0.6238 208 5 ** 1 2 3 4 5 157 200 PM 25 24 0.4542 207 5 ** 18 19 20 21 22 158 302 DT 2 2 1.4139 410 2 1 2					- /	* /	1.100/	321	10	***		2	ತ	4	Ð	6	/	8	9	10	11	13	14	15	16	17	18
146	145		300	AC:	48	48	U 2006	220			19																
147																											
148										v	٠.,		_														
149										*	-3	4	ಕ	14	16	18	19	20	21	22	23	24	27	32			
150 800 PM 29 29 0.8088 622 27 **** 1 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 151 900 PM 40 38 0.6137 112 22 * 12 13 14 15 16 17 18 19 20 21 23 24 27 28 29 30 3 152 217 100 AC 43 43 0.2433 428 2 2 4 153 201 AC 44 17 0.2472 428 1 17 154 218 100 PM 25 25 0.5581 359 8 *** 10 14 18 19 20 21 22 24 155 200 AC 27 27 0.4443 359 0 156 219 100 PM 19 15 0.6238 208 5 ** 1 2 3 4 5 157 200 PM 25 24 0.4542 207 5 ** 18 19 20 21 22 158 302 DT 2 2 1.4139 410 2 1 2									_		4.5																
151 900 PM 40 38 0.6137 112 22 * 12 13 14 15 16 17 18 1 20 21 22 23 24 25 26 27 28 29 152 217 100 AC 43 43 0.2433 428 2 2 4 153 201 AC 44 17 0.2472 428 1 17 154 218 100 PM 25 25 0.5581 359 8 *** 10 14 18 19 20 21 22 24 155 200 AC 27 27 0.4443 359 0 156 219 100 PM 19 15 0.6238 208 5 ** 1 2 3 4 5 157 200 FM 25 24 0.4542 207 5 ** 18 19 20 21 22 158 302 DT 2 2 1.4139 410 2 1 2					_								_			_	_										
152 217 100 AC 43 43 0.2433 428 2 2 4 153 14 15 16 17 18 19 20 21 23 24 27 28 29 30 3 32 33 34 35 36 201 AC 44 17 0.2472 428 1 17 154 218 100 PM 25 25 0.5581 359 8 *** 10 14 18 19 20 21 22 24 155 200 AC 27 27 0.4443 359 0 156 219 100 PM 19 15 0.6238 208 5 ** 1 2 3 4 5 157 200 PM 25 24 0.4542 207 5 ** 18 19 20 21 22 12 12 158 302 DT 2 2 1.4139 410 2 1 2					~-	4	0.0000	022	21	ጽጽጽ ጵ				<u>.</u>	7	-8	-9	10	11	12	13	14	15	16	17	18	19
152 217 100 AC 43 43 0.2433 428 2 2 4 153 201 AC 44 17 0.2472 428 1 17 154 218 100 PM 25 25 0.5581 359 8 *** 10 14 18 19 20 21 22 24 155 200 AC 27 27 0.4443 359 0 156 219 100 PM 19 15 0.6238 208 5 ** 1 2 3 4 5 157 200 PM 25 24 0.4542 207 5 ** 18 19 20 21 22 158 302 DT 2 2 1.4139 410 2 1 2	151		900	РM	40	20	0.4107	***			20	21	22	23	24	25	26	27	28	29							
152 217 100 AC 43 43 0.2433 428 2 2 4 153 201 AC 44 17 0.2472 428 1 17 154 218 100 PM 25 25 0.5581 359 8 *** 10 14 18 19 20 21 22 24 155 200 AC 27 27 0.4443 359 0 156 219 100 PM 19 15 0.6238 208 5 ** 1 2 3 4 5 157 200 PM 25 24 0.4542 207 5 ** 18 19 20 21 22 158 302 DT 2 2 1.4139 410 2 1 2			,00	• • • •	40	20	0.013/	112	22	*	12	13	14	15	16	17	18	19	20	21	23	24	27	28	29	30	31
153	152	217	100	Δ٢	AD	40	0.0400	400	_		32	33	34	35	36												
154 218 100 PM 25 25 0.5581 359 8 *** 10 14 18 19 20 21 22 24 155 200 AC 27 27 0.4443 359 0 156 219 100 PM 19 15 0.6238 208 5 ** 1 2 3 4 5 157 200 PM 25 24 0.4542 207 5 ** 18 19 20 21 22 158 302 DT 2 2 1.4139 410 2 1 2												4															
155 200 AC 27 27 0.4443 359 0 156 219 100 PM 19 15 0.6238 208 5 ** 1 2 3 4 5 157 200 PM 25 24 0.4542 207 5 ** 18 19 20 21 22 158 302 DT 2 2 1.4139 410 2 1 2		218																									
156 219 100 PM 19 15 0.6238 208 5 ** 1 2 3 4 5 157 200 PM 25 24 0.4542 207 5 ** 18 19 20 21 22 158 302 DT 2 2 1.4139 410 2 1 2		-10								***	10	14	18	19	20	21	22	24									
157 200 PM 25 24 0.4542 207 5 ** 18 19 20 21 22 158 302 DT 2 2 1.4139 410 2 1 2		219										_	_	_	_												
158 302 BT 2 2 1.4139 410 2 1 2											-																
150 200 77 20 20 17										**			20	21	22												
200 DI 27 27 0.6926 410 19 **** 3 4 5 6 9 11 13 14 15 16 19 21 22 24 25 2																											
27 28	/		303	υı	27	27	0.6926	410	19	****			_	6	9	11	13	14	15	16	19	21	22	23	24	25	26

IDENTIFICATION OF LINKS FOR REHABILITATION (5)

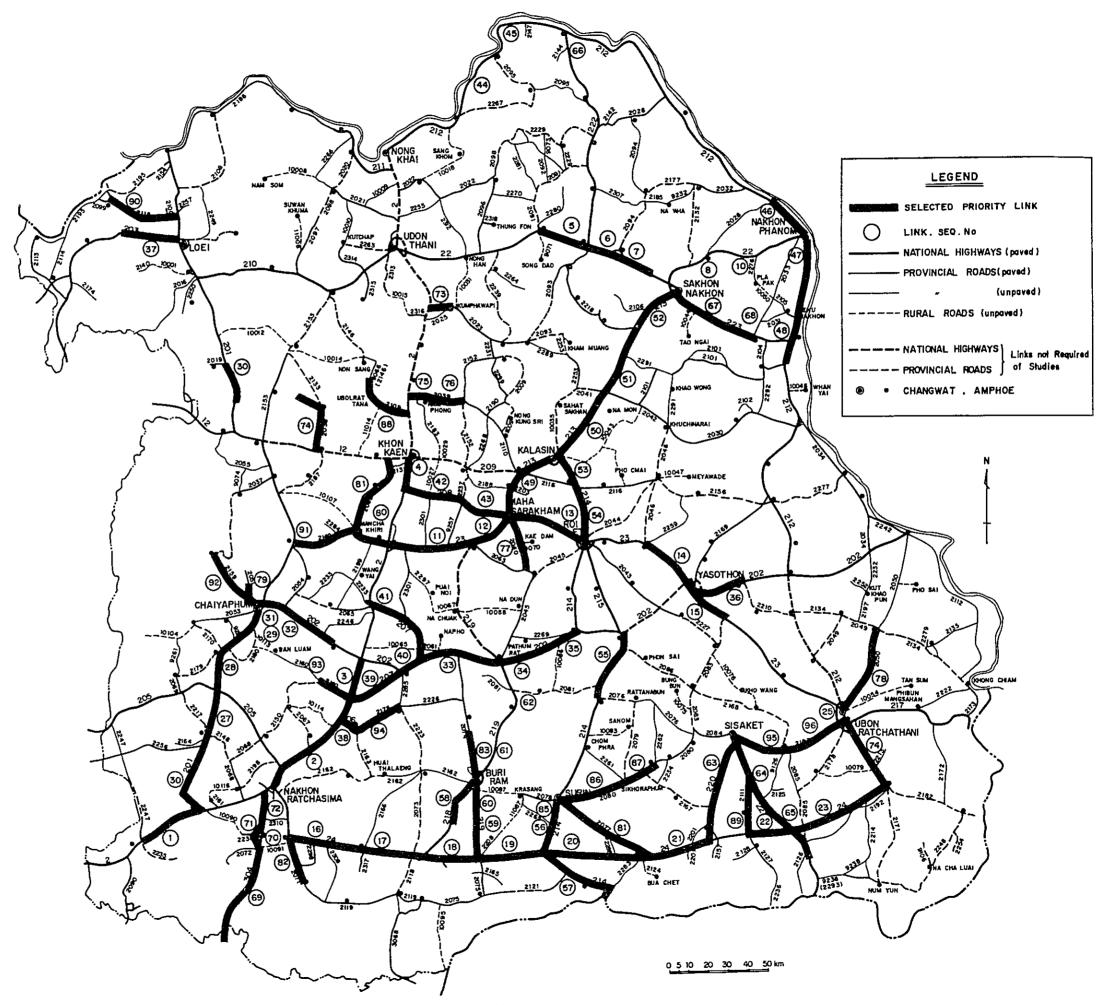
SEQ.	ROUTE	LINK	TVPF	LINK LENGTH	NO. OF	AVERAGE		BAD																		
NO.	NO.	NO.		(KM)	DATA	OF DEFLECTION	B & T	SECT. COUNT	REMARKS					£	.IST	OF	BA	D S	ECT	ION	l No					
160	219	400	DT	38	38	0.7486	410	29	****		 2			4 5	5 6	7	 ' <u>8</u>		10	11	12	13	14	 15	16	17
161	220	100	DΤ	57	57	0.5402	197	12	*	10	17	7 ZU 20) Z,	1 22	43	24	25	28	29	30	35					
162	221	100	DT	32	32	0.7518	329	28	***	2	3	4	;	0 41 5 <i>6</i>	7	8	9	10	11	12	13	14	16	17	18	19
163		200	DT	32	32	0.5102	415	7		20				3 4	· 6) ຊ	; 9	10	11	12	,					
164	222	100	Ta	31	31	0.4627	168		****	1			} 4	4 6	. 8	9	'									
165		200	DT	32	32	0.4081	168	2		22	24															
166		300	DT	20	20	0.4938		0		٠																
167		400	DT	45	45		129	2			16															
		100	2.1	70	4.0	0.5747	129	22	*	1	2	3	;	7 9	15	16	17	18	19	29	30	31	32	33	34	35
168	223	100	Λ.	,						37	38	39	4:	1 43	}										- •	
160	220		AC AC	<u>ه</u>	6	0.6417	470	5	***	1	3	4	. 5	5 6)											
		102	AC AC	35	35	0.5015	129	5	*	1	5	7	11	13												
170		200	AC	14	16	0.4016	129	0																		
171		300	ΑC	20	19	0.4029	269	0																		
172	224	100	ΑC	29	29	0.3032	1336	0																		
173	304	800	AC:	45	45	1.0438	. 539	39	****	1	2	3	. 4	1 5	i /-	. 7	2	5	10	11	10	10	1 /1	4 ==	٠,	4 ~7
												20	21	l 22	25	2/2	- 27	20	20	20	22	1.00 1.00	7.4	70	10	17
										28	30	40	43	3 44	. 20	20	-/	20	47	30	32	تن	-54	30	36	3/
174		902	AC	5	5	0.8995	236	5	**	1																
175		903	FM	5	5	0.9595	236	5	**	1				; 5												
176		904	AC	26	26	0.4650	681	7	****	1				, 10												
177	2015	100	DT	4	4	1.3851	53	4	****						1 12	13										
178	2017	100	ΡM	2	3	1.4520	205		•	1				ł												
179	2019	102	DΤ	5	5	0.6867	135	3		1			•													
180	2021	100	DT	43	43	0.8830		2		1	4															
181	2022	101					179	0		_		_														
182	2022		DT	15	14	0.6495	82	6		5	4	7	8	10ز (14											
		102	ET	15	15	0.5345	82	4		1		10														
183	0000	201	DT	34	34	0.5527	43	11		1	5	6	7	7 8				28	29	31						
184	2023	100	PM	8	8	4.9918	582	8	****	1	2	3	4	5	6	7	8									
185		200	DT	28	28	0.4584	312	0																		
186	2024	100	AC	5	5	0.5654	117	1		1																
187	2034	100	ST	49	47	0.4125	77	1		37																
188		200	ST	31	31	0.4164	99	0																		
189	2038	100	DT	31	31	0.5803	127	14	*	1	2	3	4	5	6	12	14	15	17	19	21	25	27			
190	2039	101	DT	16	16	0.8318	539	14	****	1				7												
191		102	DT	17	16	1.0247	539	16	***	1	2			5										15	1.4	
192	2040	101	DT	· 35	35	0.5408	234	13	**	1		_		25									-7	10	7.0	
193	2045	200	DT	41	41	0.4312	119	1	-	ŝ			'						01		О -т	~·~'				
194		100	DT	46	46	0.7906	114	45	*	1	2	3	л	5	6	7	0	O	10	1 1	12	10	1 /1	1 ==	1/	17
	2000	100	2.	-10	-10	0. 7,00	**1	70	•	18	19	20	21	22 40	23	24	25	26	27	28	30					
195	2051	100	DΤ	10	10	0.6225	237	5	**					· 40		74	70	-1 -1	44	40						
196	2054	100	DT	34	34	0.3952	156		**	1	4	5	4	. 7												
197				23				0	u u	~ .		~		~~												
17/	2057	100	AC	-∠್	23	0.4534	247	5	**	:3	4	೪	16	- 22												

Appendix 6.4 6 of 7

IDENTIFICATION OF LINKS FOR REHABILITATION (6)

SEQ.	ROUTE	LINK NO.	TYPE	LINK LENGTH (KM)	NO. OF DATA	AVERAGE OF DEFLECTION	 В & Т	BAD SECT. COUNT	REMARKS					L]	ST	οF	BAI	D SE	ECT	ION	N0				- -	
					חחות	DELECTION.																<u></u> -				
198	2058	100	AC	1	1	0.3729	530	0																		
199	2062	100	DŢ	44	44	0.5371	180	16	*	1						8	9	12	13	17	18	22	26	35	40	
200	2063	101	DT	37	37	1.4968	68	35		1 18 37	_		4 21		6 23							13 30				
201	2065	101	DΤ	32	23	0.4121	579	1		8										,						
202	2066	100	DT	6	6	0.7793	1306	4			4	5	6													
203	2067	100	DT	10	10	0.4383	38	0																		
204	2068	100	DT	20	20	0.5282	407	4		2	13	16	19													
205	2069	100	DΤ	7	6	0.6795	221	3		4	5	6														
206	2070	100	AC	1	1	0.2540	403	0																		
207	2071	100	ΤŒ	28	28	0.5124	282	9	**	1	2	15	22	24	25	26	27	28								
208	2074	200	DT	29	21	0.5626	136	5	*	3	10	11	12	14												
209	2075	100	DT	25	20	0.4624	153	0																		
210	2077	100	DT	50	47	0.6130	441	30	***	1	2	3	4	5	6	7	12	14	15	16	17	18	20	28	29	30
										31	32	34	35	36	38	40	41	42	44	45	46	47				
211	2078	100	DT	11	11	0.8340	218	8	**	1	2	3	4	5	6	7	8	•								
212	2080	100	DT	32	32	0.9066	351	32	***	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
										18			21			24	25	26	27	28	29	30	31	32		
213		200	DT	21	21	0.7816	193	21	*	1			4												16	17
										18	19			_		-		_					_ •			
214		300	DT	26	29	0.4882	201	2		27																
215	2084	100	DT	19	19	0.4906	228	0																		
216	2090	100	PM	50	24	0.6351	88	11		1	2	3	5	6	7	8	18	21	22	24						
217	2093	100	DT	19	17	0.5157	135	4		3	5		17	•	•	_				- '						
218	2099	100	DT	12	10	0.7572	57	7		1	2			٠ ٨	8	10										
219	2100	100	DT	5	5	1.0196	49	5		1				5	•											
220	2109	100	DT	24	22	0.8600	222	19	**	1	2 2	3			8	9	10	11	12	5 <u>/</u> 1	15	16	17	12	10	20
	,			_ ,							22		•	•	~	•	10			7.4	1.0	10	1,	10	1/	20
221	2111	100	DT	39	39	0.5221	117	9	*	1		27	29	35	36	37	38	39								
222	2115	101	DТ	39	39	0.8110	109	37	#-	î	$\tilde{2}$	3	4	5	6	7	8	9	10	11	12	13	1 4	15	17	1.2
							- • •						22	23	24	25	26	27	28	20	30	31	27	23	-2Λ -1/	35 10
											38								2	,		~·		J.,	.J.T	
223		201	DT	4	3	1.0994	61	3		1	2															
224	2130	100	DT	3	3	0.6225	433	1		1	_	-														
225		200	DT	2	2	0.9123	151	,		1	2															
226	2140	100	DΤ	2	2	1.2390	7	~ ~		1	2															
227	2149	100	DT	30	30	0.4837	251	7	**	ĝ		1 1	12	14	17	10										
228	2154	100	DT	1	1	0.7933	4	1		í		- 1		. ⊤	- /	4.7										
229	2159	100	DΤ	41	43	0.4852	102	11	*	1	6	7	12	12	1 4	15	1.4	17	דר	21						
230	2160	100	DT	20	19	0.8416	121	14	*	1	2	Δ	5	10	10	11	10	10	1/	1⊏ 1⊏	1.4	17	10			
231	2161	100	DT	5	ź	0.3148	218	0	^	•		7	J	7	10	тŢ	12.	10	7 4	IJ	10	Τ/	Tλ			
232	2175	100	DT	34	34	0.6737	167	20	*	2	Δ	6	7	1.4	15	1.4	17	10	10	21	20	~~	~		~ :	<u> </u>
		200	٠.	٠,	• ,	0.0/3/	107	20	^		33	_	,	1-7	1.0	10	1/	10	17	21	کند	23	∠4	20	<i>26</i>	હ1

IDENTIFICATION OF LINKS FOR REHABILITATION (7)


(BAD DEFLECTION : >= 0.6 MM)

SEQ.	ROUTE	LINK	TYPE	LINK LENGTH	NO. OF	AVERAGE OF	 в & т	BAD SECT.	REMARKS					 L	ST	QF	BAI) SE	ECTI	ON	NO	 	 	
NO.	NO.	NO.		(KM)	DATA	DEFLECTION		COUNT														 		
233	2186	400	рт	41	41	0.7250	42	35												14 31				
234 235	2193	100 201	DT BT	24 35	29 30	0.6141 0.6781	227 392	16 22	** ***	-	2 2 22	3	4	5	6 6		•			12 12		 	 	20
236 237	2238 2242	100 100	DT DT	5 7	5 7	0.6561 0.4884	21 23	2 0		1	3													
	TOTAL			5574	5266			1717																

BAD SECTION LENGTH (>= 0.6 MM).

	TRAFFIC	LINK	NO.	BAD
			OF	SECTION
	VOLUME	LENGTH	DATA	COUNT
* .:	>= 100	2867	2735	1369
**	>= 200 >= 200	1874	1774	928
*** :	>= 300	1345	1286	704
****	>= 400	1044	994	505

Appendix 6.5

DEFINITION OF TERMS

- (1) BAD SECTION : DEFLECTION >= 0.6 MM
- (2) BAD LINK : BAD SECTION COUNT >= 5

CONDITION OF SELECTION: BAD LINK WITH TRAFFIC VOLUME >= 100

SEQ.	ROUTE NO.	LINK NO.	TYPE	LINK LENG. (KM)	SECT.	AVE. DEF- LECTION	В % Т			SURFACE	REMARKS	LENGTH OF: PROPOSED ROUTE(KM):
1 1	2 _	302	AC	44	44	0.3288	3860	5 l	0	X	Only 10 Km of bad section.	-
2	_	502	AC	49	49	0.5358	2889	17	0	0	Included in the DOH's overlay plan in 1983.	-
3	_	600	AC	36	35	0.5263	944	10	0	X	Included in the DOH's overlay plan in 1983.	
4		902	AC	14	14	0.6521	1208	9 1	X	Û	Partially sealed.	
5	22	301	AC	22	14	0.6127	538	9 ; ;	X	X	Included in the DOH's overlay plan in 1983.	-
6		401	AC	14	14	0.7194	484	10 }	X	ū	Partially sealed. Included in the DOH's overlay plan in 1983.	-
7	_	404	AC	17	17	0.6932	484	15 ¦	X	0	Partially overlayed or sealed. Included in the DOH's overlay plan in 1983.	-
8	_	501	AC	34	33	0.5278	380	6 ;	0	X	Included in the DOH's overlay plan in 1983.	<u> </u>
9	-	600	AC	24	23	0.6085	207	15 ¦	X	X	Included in the DOH's overlay plan in 1983.	! - !
10	-	700	AC	29	29	0.5775	299	13 :	0	X	Included in the DOH's overlay plan in 1983.	-
11	23	103	AC	37	32	0.7853	704	20	Х	0	Fair surface condition.	- -
12	· -	200	AC	32	24	0.6697	727	12	X	Ö	Fair surface condition.	; – ;
13	. _	300	AC	33	32	0.5103	696	8	O	0		-
14		505	DT	40	40	0.4327	268	6 1	0	0		-
15	. _	600	DT	22	22	0.5916	308	10	O	0		·

AVERAGE OF DEFLECTION O: < 0.6 MM X: >= 0.6 MM SURFACE CONDITION O: GOOD X: POOR 169

PROPOSED LINKS FOR REHABILITATION (2)

:SEQ. : : NO.	ROUTE	LINK NO.	TYPE	LENG.	SECT.	AVE. DEF- LECTION	в & т	BAD : SECT. :	DEF-	SURFACE		LENGTH OF: PROPOSED : ROUTE(KM):
		200		43	43	0.4092	1296	6 1	0	0		
16	24	200	AC	43	4.5	0.4092	1270					
17		300	AC	32	32	0.5191	1253	10 !	0	0		- 1
18	_	400	AC	28	28	0.6821	517	20 l	X	Х		28
19	-	500	AC	36	31	0.4816	484	5 (0	χ	Very poor surface with many patchings and ruttings.	36
20		600	AC	50	25	0.8421	202	22	X	X		50
21		700	AC	38	38	0.5379	482	10	0	0		-
22		802	AC	51	35	0.4811	475	5 ¦	0	0		
23		900	AC	49	49	0.5115	241	8 1	0	0		 -
24	_	1001	DT	40	40	0.5211	2358	10 !	0	X	L = 23 Km (K.p 0 - 8, K.p 25 - 40), especially bad surface.	40 i
25	_	1002	AC	17	17	0.6769	1296	11 1	X	0	Bypass Ubon Ratchathani. Overlay planning in 1983.	
26	201	100	TQ	39	40	0.3671	1068	0	0	X	Very poor surface condition.	39 i
27	_	200	DT	25	25	0.4897	448	6 I	0	X	Very poor surface condition.	25 25
28	_	300	DT	17	17	0.3977	397	1 ;	0	X	Very poor surface condition.	 17
29	_	400	DT	38	38	0.3968	397	0 !	0	X	Very poor surface condition.	38 k
30	-	900	AC	23	23	0.5683	415	9 1	0	0		 ! - : !
31	202	100	DT	17	17	0.8157	200	11	X	0	Fair surface condition.	
32		200	AC	32	32	0.7098	200	20	X	0	Fair surface condition.	

NOTE

AVERAGE OF DEFLECTION SURFACE CONDITION

0 : < 0.6 MM 0 : GOOD X : >= 0.6 MM X : POOR 170 Note: **: These links were selected owing to the notable surface deterioration.

3 of 6

Q.	ROUTE	LINK	TVDC	LINK LENG.	SECT.	AVE.		BAD ;	DEF-	SURFACE		LENGTH OF
io.	NO.	NO.	1166	(KM)	COUNT	DEF- LECTION	B & T		LECTION	CONDI.	REMARKS	PROPOSED ROUTE(KM
33	202	500	DΤ	40	36	0.6580	263	27 ;	X	X		1 40
34	•	600	DT	20	11	0.6099	112	7 !	X	0	Overlayed in July, 1982.	
35	•	700	DT	30	15	0.5670	112	 6 ;	0	0	Overlayed in July, 1982.	
36	•	900	PM	34	34	0.5010	184	9 ¦ 1	0	0		
37	203	400	та	30	 28	0.6731	107	17 ;	X	0	Good surface condition/low traffic volume.	
38	206	102	AC	11	11	0.5576	362	6	0	X	Bypass Phimai. Very poor surface condition/high traffic volume.	5
39	207	100	DT	37	37	0.6168	194	20 1	X	X		1 37 1
40	•	202	DΤ	35	35	0.6025	131	20 ;	X	X	L = 13 Km(KP485-498), Very poor surface condition with many patchings and corrugations.	13
41	•	300	TG	23	23	0.5832	131	12 ¦	0	G		! -
42	208	100	DT	31	31	0.7702	402	29 l	X	X	Very poor surface condition/Recon- struction is recommended.	.l 31
43	-	200	דם	29	27	1.0662	310	25 ¦	X	X	Very poor surface condition/Reconstruction is recommended.	1 29
44	212	200	DT	44	44	0.4042	148	5 ¦	0	0		† –
45	-	300	Ta	29	29	0.5303	111	6 I	0	0		
46	-	1000	AC	26	26	0.4534	163	5 5	0	0		-
47	-	1100	AC	45	44	0.6715	157	23	X	0	Sealed recentrly.	-
48	-	1200	AC:	26	26	0.5455	134	7	0	0		
49	213	100	DT	44	42	1.4284	463	40	X	X		! 44 !

NOTE

AVERAGE OF DEFLECTION O: < 0.6 MM X: >= 0.6 MM SURFACE CONDITION O: GOOD X: POOR 171

PROPOSED LINKS FOR REHABILITATION (4)

:SEQ.	ROUTE	LINK NO.	TYPE	LENG.	SECT.	AVE. DEF- LECTION	в & Т	BAD :	DEF-	SURFACE	REMARKS	! LENGTH OF: ! PROPOSED : ! ROUTE(KM):
! NO. ! ! 50	NO. 213	200		42	42	0.7122	518	28	X	0	Partially sealed.	1 -1
 	_							; 				;i
! 51 !		300	PM	54	57	0.6528	175	37 ¦	X	0	Partially sealed/Low traffic volume.	-
 52 	_	400	PM	33	33	0.5978	320	19 ;	0	0		-
 53 	214	100	TG	28	28	0.8838	321	25 ¦	Х	Х	,	28
 54 	-	200	DT	19	19	1.1389	321	18	Х	Х		19 19
 55 	-	500	AC	39	40	0.5526	175	14 ;	0	0	Partially poor surface condition/Low traffic volume.	- -
 56 		800	PM	30	29	0.8088	622	27 ;	x	X		30 :
57	_	900	PM	40	38	0.6137	112	22 ¦	Х	0	Sealed already/Low traffic volume.	
! 58 	218	100	PM	25	25	0.5581	359	8 !	0	0	Bad section, 9 Km. Scheduled to be improved by District Office.	
59 	219	100	PM	19	15	0.6238	208	5 ¦	X	Ü	Bad section, 6 Km. Scheduled to be improved by District Office.	
40	. _	200	PM	25	24	0.4542	207	5 ¦	0	0		-
61	. -	303	DΤ	29	29	0.6926	410	19	X	X	Included in the DOH's overlay plan in 1983.	
62	. –	400	דם	38	38	0.7486	410	29 ¦	X	X	Included in the DOH's overlay palan in 1983.	-
63	220	100	DΤ	57	57	0.5402	197	12 }	0	0		
64	221	100	דם	32	32	0.7518	329	28 ; 1	X	X	Included in the DOH's overlay plan in 1983.	
65	· -	200	דם	32	32	0.5102	415	7 1	0	0	Bad section, 7 Km. Scheduled to by improved by District Office.	
66	222	400	DT	45	45	0.5747	129	22	0	0		

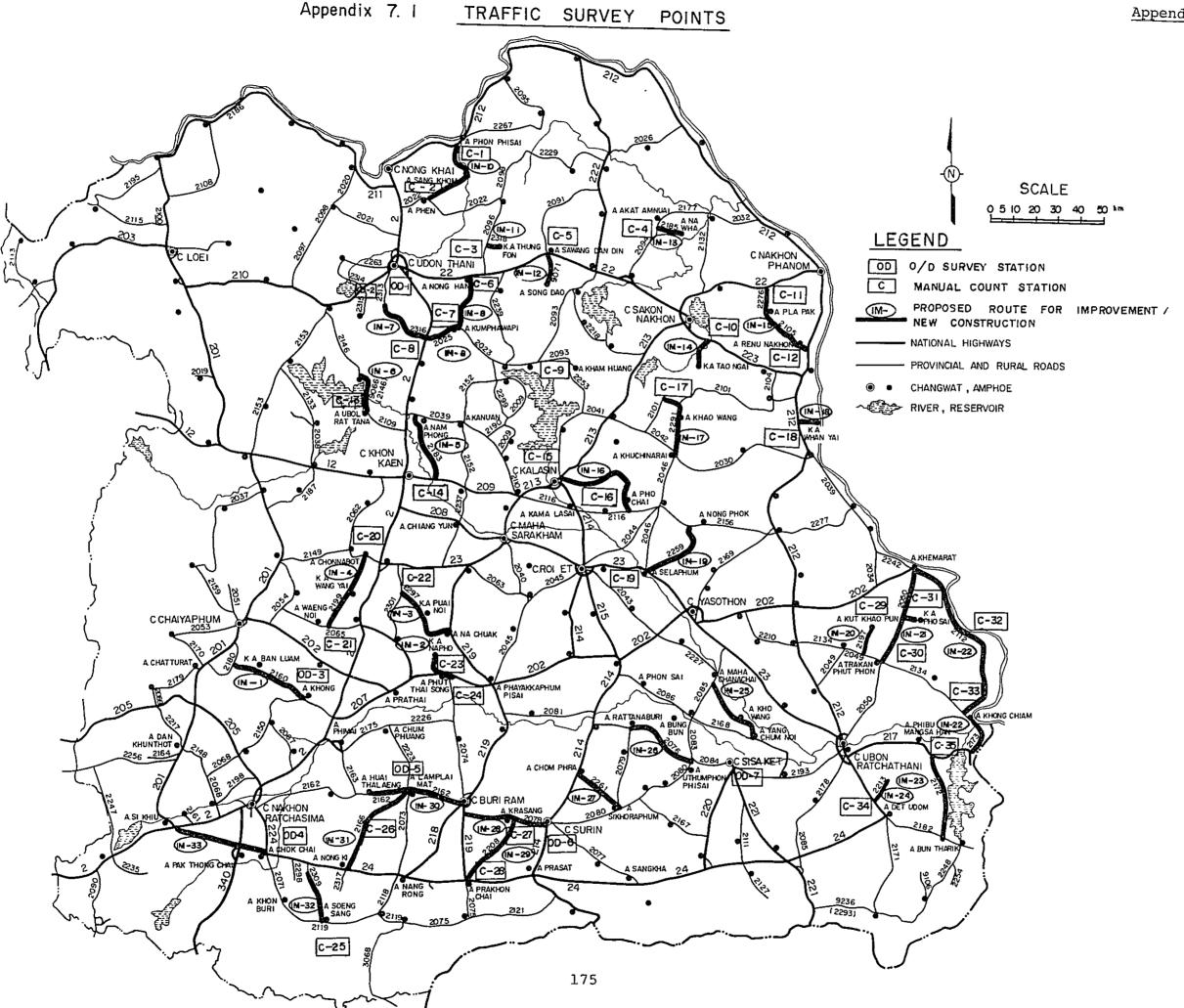
NOTE

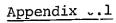
AVERAGE OF DEFLECTION 0 : C 0.6 MM SURFACE CONDITION 0 : GOOD

X : >= 0.6 MM X : POOR ₁₇₂

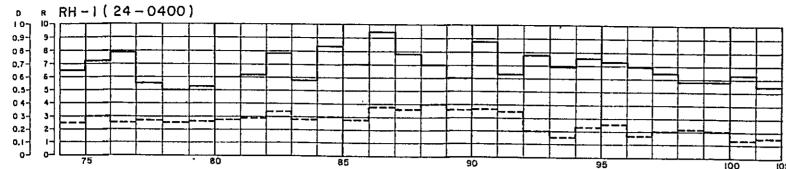
ς	Λf	6	

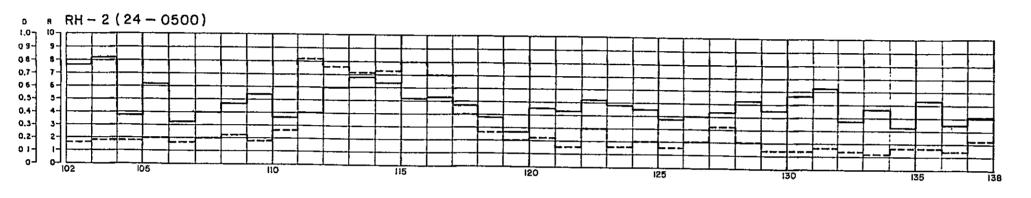
					~							. 5 of 6
5EQ. NO.	ROUTE NO.	LINK NO.	TYPE	LINK LENG. (KM)	SECT. COUNT	AVE. DEF- LECTION	B & T	BAD : SECT. : COUNT :	DEF-	SURFACE CONDI.	REMARKS	LENGTH OF PROPOSED ROUTE(KM)
67	223	100	AC	 ტ	6	0.6417	470	5		0	Fair to good surface condition.	ROOTE(RM)
68	~	102	AC	35	35	0.5015	129	5	0	0	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	·
69 69	304	800	AC	46	45	1.0438	539	39	X	χ	Very poor surface conditon with many patchings and uneven profile.	46
70	~	902	AC	6	5	0.8995	236	5	X	Х	Bypass. Very poor surface condition with many patchings and ruttings.	6
71	~	903	PM	5	5	0.9595	236	5 :	X	X	Included in the DOH's overlay plan in 1983.	
72	~	904	AC	26	26	0.4650	681	7	0	X	Poor surface condition/High traffic volume.	; 26 ;
73	2023	100	PM	36	8	4.9918	312	8 :	X	X		} 8
74	2038	100	DT	36	31	0.5803	127	14	0	0	w	; – !
75	2039	101	рт	16	16	0.8318	539	14	X	X		¦ 16
76	-	102	TQ	17	16	1.0247	539	16	X	X		17
77	2040	101	DΤ	35	35	0.5408	234	13	0	0	<u> </u>	-
78	2050	100	DT	46	46	0.7906	114	45	 X 		Bad section, 3 Km./ Low traffic volume.	! -
79	2051	100	דם	10	10	0.6225	237	5	!	0	Bad section, 6 Km.	-
80	2057	100	AC	23	23	0.4534	247	5	l 0	0		1
81	2062	100	pτ	44	44	0.5371	180	16		0		
82	2071	100	та	28	28	0.5124	282	9	!	X	Very poor surface conditon. / Narrow width. Reconstruction is recommended.	; 28
83	2074	200	DT	29	21					0		[-

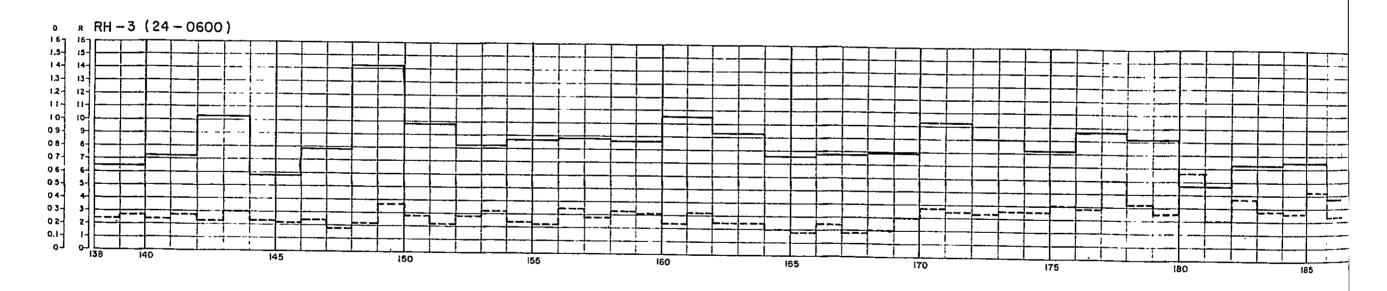

NOTE


AVERAGE OF DEFLECTION 0 : < 0.6 MM X : >= 0.6 MM SURFACE CONDITION 0 : GOOD X : POOR $_{173}$

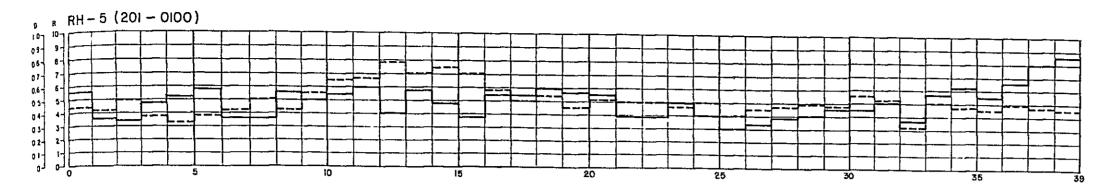
PROPOSED LINKS FOR REHABILITATION (6)

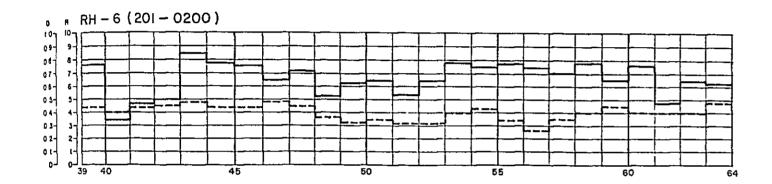

!SEQ.	ROUTE NO.	LINK NO.	TYPE	LENG.	SECT.	AVE. DEF- LECTION	B & T	BAD : SECT. : COUNT :	DEF- LECTION	SURFACE CONDI.	REMARKS	LENGTH OF: PROPOSED ROUTE(KM)
84	2077	100	DT	50	47	0.6130	441	30	X	0	Good surface condition.	
85	2078	100	TC	11	11	0.8340	218	1 8 1	Х	X	Included in overlay plan in 1982 - 83.	-
86	2080	100	DT	32	32	0.9066	351	32 ¦	Х	0	Fair surface condition.	-
87		200	DT	21	21	0.7816	193	21 ;	X	0	Fair surface condition.	- [
: 88 :	2109	100	DT	24	22	0.8600	222	19 ¦	X	X		24
39	2111	100	DT	39	39 	0.5221	117	9 ¦ ¦	0	0		-
90	2115	101	DT	39	39	0.8110	109	37 l	X 	0	Fair to good surface condition.	-
91	2149	100	TŒ	30	30	0.4837	251	7 :	0	0		-
92	2159	100	5T	41	43	0.4852	102	11	0	0		
93	2160	100	Ta	20	19	0.8416	121	14	X 	X	Very poor surface condition. Reconstruction is recommended.	20
94	2175	100	T	34	34	0.6737	167	20	X	X		34 1
95	2193 -	100	DT	24	29	0.6141	227	16	X 	Х	Planned to be overlayed in 1982 - 83.	
96		201	DT	35	30	0.6781	392	22	X 	X	Planned to be overlayed in 1982 - 83.	-
; TOTA	L.			2987				 				774

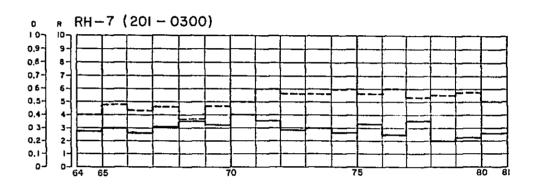

AVERAGE OF DEFLECTION 0 : < 0.6 MM X : >= 0.6 MM SURFACE CONDITION 0 : GOOD X : POOR

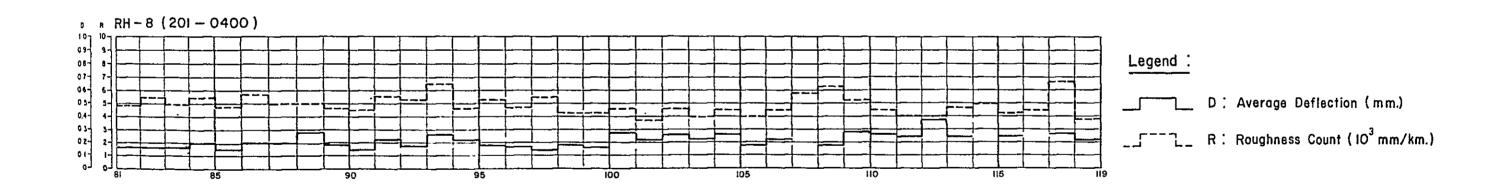


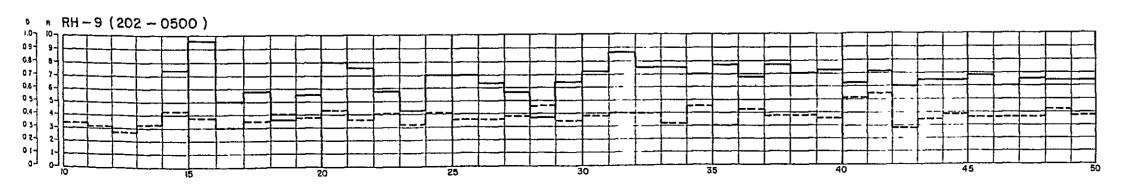


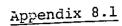

Legend:

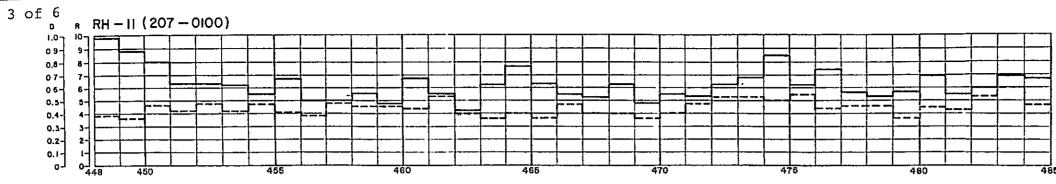


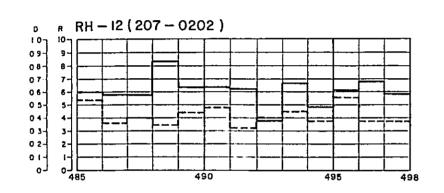

R: Roughness Count (10³ mm/km

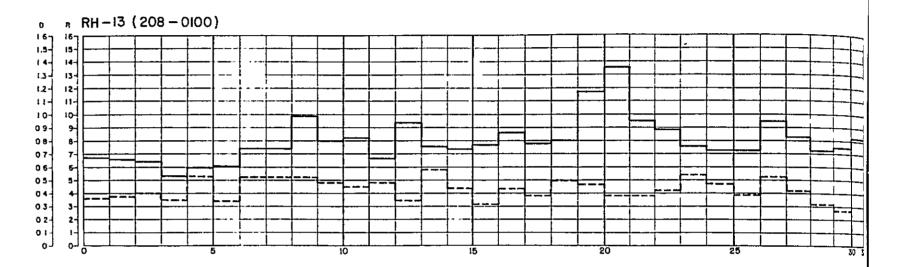


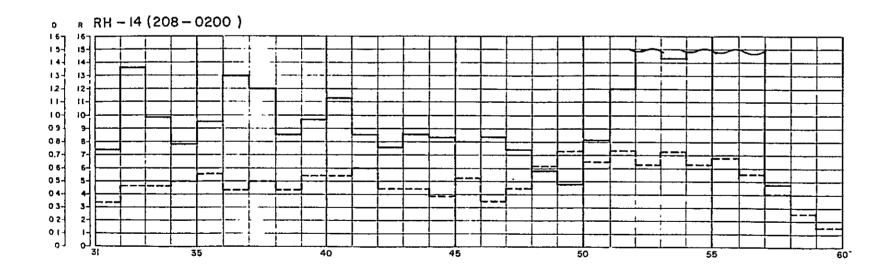


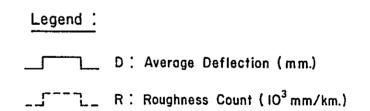


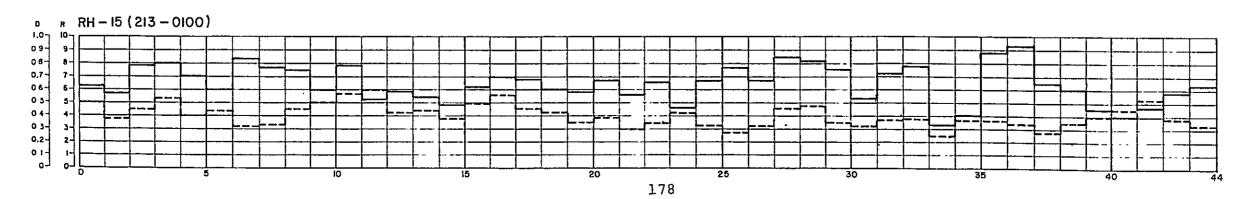


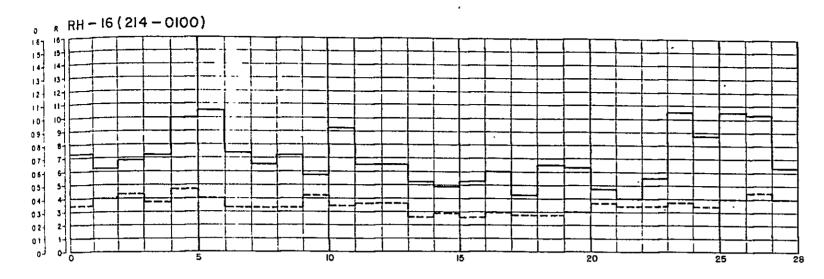


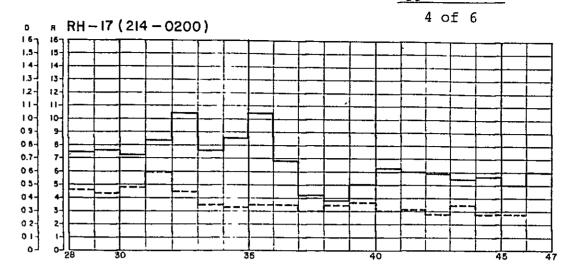


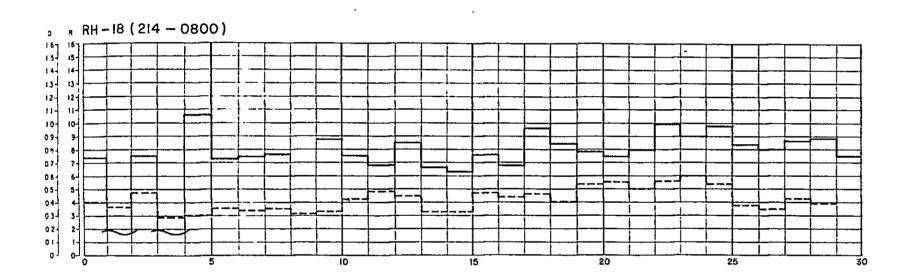


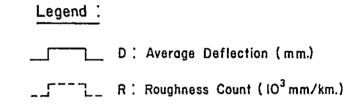


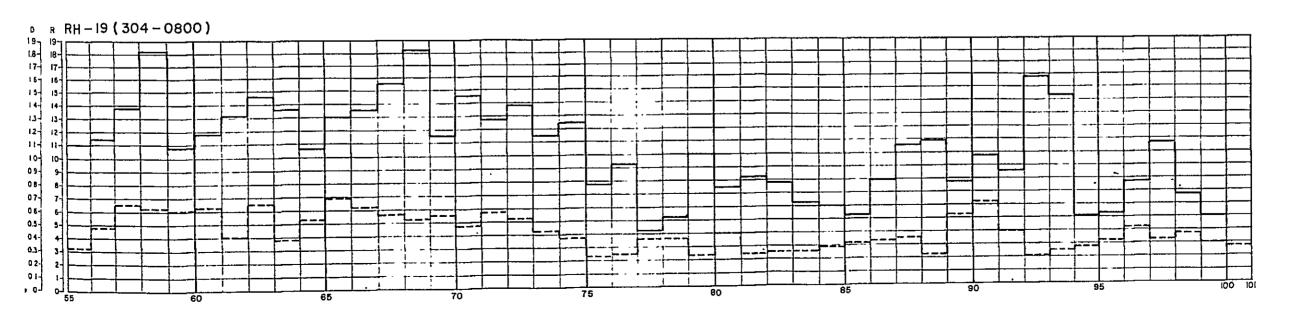


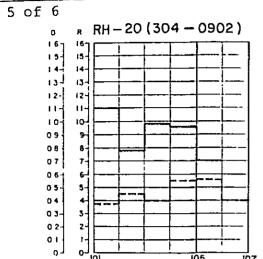


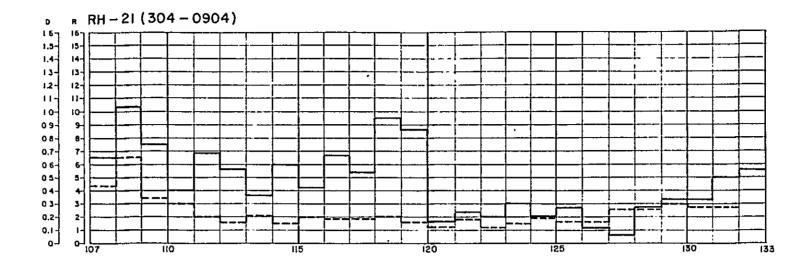


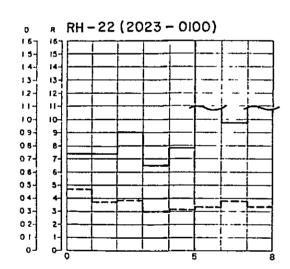




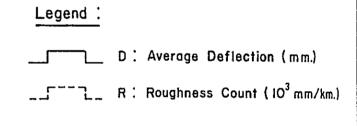


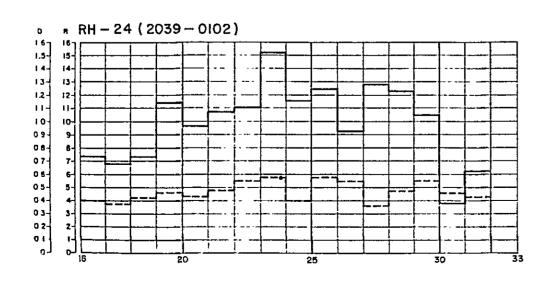


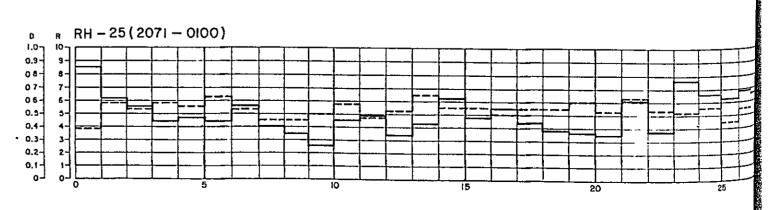


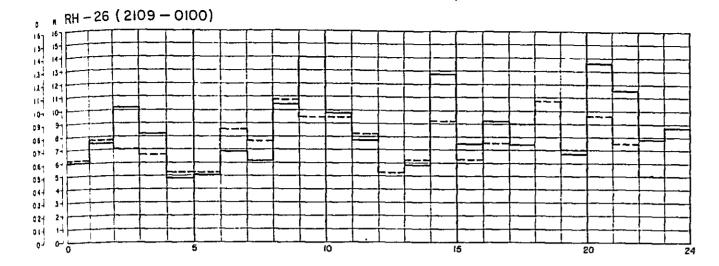


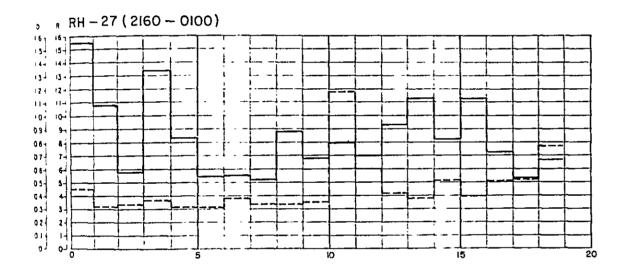
Appendix 8.1

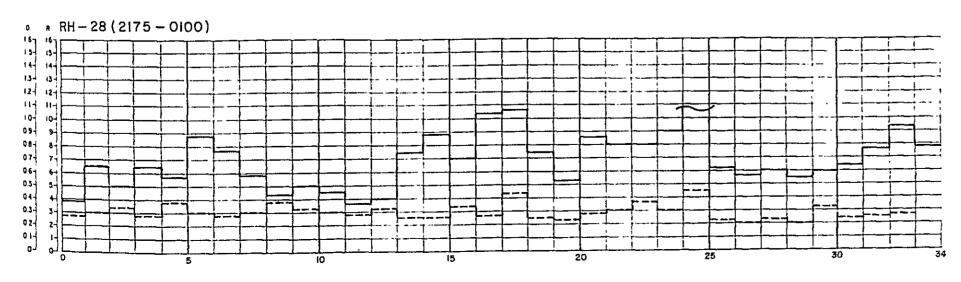

MEASURED ROUGHNESS AND PAVEMENT DEFLECTION (5)











6 of 6

Legend :

D: Average Deflection (mm.)

R: Roughness Count (10³ mm/km.)

and the second second second in the second s

Appendix 8.2 FORECASTED TRAFFIC VOLUME BY PROPOSED LINK (1)

YEAR PC	LB	HB	LT	MT	HT !	HV {	AADT :		AR !	PC	LB	HB	LT	MT	HT !	HV	AADT
1981 235	62	120	171	146	251	517	985	19		270	197	156	265	133	1961	485	1217
982 244	64	125	179	153	2631	5411	10291	1 19	82	280	204	162	278	140	2061	507 l	1270
983 253	67	129	188	161	2761	5661	10741	1 19	83	291	212	168	292	146	2161	5301	1325
984 263	69	134	197	169	2901	5921	11221	1 19	84 :	302	220	174	306	154	2261	554	1382
1985 2 7 3	72	139	207	177	3041	620 l	11721	1 19	85 ¦	313	229	181	321	161	237;	579 l	1442
986 283	75	145	217	185	3191	6491	1224	1 19	86	325	237	188	337	169	2491	6061	1505
1987 294	78	150	228	195	3341	6791	1278	1 19	87	338	246	195	353	177	261;	6341	1571
1988 305	80	156	239	204	351¦	7111	1335¦	1 19	88 (351	256	203	370	186	2741	6621	1639
1989 317	84	162	248	212	3641	7381	13861	1 19	39 :	364	265	210	384	193	2841	6881	1701
1990 329	87	168	258	220	378¦	7661	14391	1 19	90	378	276	218	399	200	295 l	7141	1766
1991 341	90	174	267	228	3921	7951	1493¦	19		392	286	227	414	208	3061	741	1833

		PRO	POSED I	LINK NO.	RH ~	з						PRO	POSED L	INK NO.	. RH -	4		
! YEAR	PC	LB	HB	LT	MT	HT !	HV !	AADT !	 1 1	YEAR	 PC	LB	HB	LT	MT	HT :	HV	AADT
1981 1982	105	157 163	65 67	165 173	58 61	801 841	2031 2121	6301 6571	1	1981 1982	297 308	171 177	153 159	248 260	174 183	147 154	474 496	1241
1983 1984	_	169 176	70 73	182 190	64 67	881 921	2221 2321	686 715	! !	1983 1984 1985	320 332 345	184 191 199	165 171 178	273 286 300	191 201 211	162; 170; 178;	518 542 566	13511
1985 1986 1987	122 127 131	182 189 196	75 78 81	200 210 220	70 74 77	971 1021 1071	2431 2541 2651		; ;	1986 1987	358 371	206 214	184 191	315 330	221 232	1871 1961	592 l 619 l	14711
1988 1989	136 142	204 212	84 88	231 239	81 84	1121	277 l 288 l	848 880	1 1	1988 1989	386 400	222 230	199 206	347 360	243 252	205 213	647 l 672 l	1302¦ 1662¦
1990 1991	147 152	220 228	91 94	248 258	87 91	120 ¦ 125 ¦	299 l 310 l		: :	1990 ¦ 1991 ¦	415 431	239 248	214 222	373 388	262 272	221 230	697 l 724 l	

		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		. RH -				_				PRUI	POSED L	INK NO.	RH -	6		
YEAR PC	LB	HB	LT	MT	HT :	HV :	AADT !	-	YEAR	ļ	PC	LB	HB	LT	MT	HT !	HV !	AADT
1981 375	152	102	149	137	137	376	1052	;	1981	- 1 - ·	281	117	123	164	154	1721	ነ 149 !	'
1982 389	158	106	157	144	1441	3941	10981	i	1982	1	292	121	128	173	162	181	471	•
1983 404	164	110	165	152	1521	4131	1146;	i	1983	i	303	126	133	181	170	1901	4931	
1984 : 419	170	114	173	160	1601	4331	11961	i	1984	;	314	131	138	191	179	200	517	1153
1985 435	176	118	182	168	1681	454	1248	- 1	1985	1	326	136	143	201	189	211	5421	
1986 452	183	123	192	177	1771	476	1303!	1	1986	i	339	141	148	211	198	2221	5681	
1987 469	190	128	202	186	1861	4991	13601	1	1987	1	351	146	154	222	209	2331	5961	
1988 487	197	132	212	195	1951	523	14201	;	1988	1	365	152	160	234	220	2451	6251	
1989 505	205	137	221	203	2031	5431	1474	ł	1989	ŀ	379	158	166	243	228	2551	6481	
1990 525	213	143	229	210	2101	5641	1530¦	1	1990	1	393	164	172	252	237	2641	6731	
1991 545	221	148	238	213	2181	5851	1588¦	ļ.	1991	1	408	170	179	262	246	274	6981	·

FORECASTED TRAFFIC VOLUME BY PROPOSED LINK (2)

PROPOSED LINK NO. RH - 7

PROPOSED LINK NO. RH - 8

	PC LB	HB	LT	MT	HT :	HV !	AADT !
1982 1983 1984 1985 1986 1987 1988	169 65 175 67 182 70 189 73 196 75 204 78 211 81 219 84 228 88	173 180 186 193 201 208 216 225 233	604 635 668 703 740 778 819 861 894	49 52 54 5,7 60 63 66 70	176 185 195 205 216 227 239 251 261	398; 416; 435; 455; 476; 498; 521; 545;	1236 1295 1356 1420 1488 1559 1633 1711 1776
	236 91 245 94	242 251	928 963	75 78	270¦ 281¦	588 610	1843¦ 1913¦

:	YEAR	! -! -	PC	LB	HB	LT	MT	HT !	HV :	AADT :
•	1981	;	169	65	173	604	49	1761	398¦	12361
	1982	ŀ	175	67	180	635	52	1851	4161	1295!
į	1983	!	182	70	186	668	54	1951	4351	1356;
;	1984	ł	189	73	193	703	57	2051	4551	14201
ŧ	1985	;	196	75	201	740	60	2161	4761	1488;
i	1986	ì	204	78	208	778	63	2271	4981	15591
i	1987	1	211	81	216	819	66	2391	5211	1633
ł	1988	1	219	84	225	861	70	2511	5451	1711
ŧ	1989	1	228	88	233	894	73	2611	5661	17761
ŀ	1990	;	236	91	242	928	75	2701	588;	18431
ţ	1991	1	245	94	251	963	78	281 !	6101	19131
	~				_~			~-~~-	_~	

PROPOSED LINK NO. RH - 9

PROPOSED LINK NO. RH - 10

YEAR PC	LB	HB	LT	MT	HT !	HV	AADT
1981 158	102	138	86	54	71;	263	6091
1 1982 164	106	143	90	57	751	2751	6351
1 1983 170	110	149	95	60	79 l	2871	6621
1 1984 177	114	154	100	63	831	3001	6911
1985 183	118	160	105	66	871	3131	7201
1 1986 190	123	166	111	70	911	3271	751
1 1987 198	128	173	117	73	961	3421	7841
1 1988 1 205	132	179	123	77	1011	3571	818¦
1 1989 1 213	137	186	127	80	1051	371:	8491
1990 221	143	193	132	63	1091	385¦	881
1991 229	148	200	137	86	1131	4001	9141

: YEA		LB	HB	LT	MT	HT :		AADT
198 198 198 198 198 198 198	1	9 60 4 62 9 65 4 67 9 70 5 73	58 60 62 65 67 70 73	506 532 560 589 620 652 686 722	178 187 197 207 218 229 241 254	126; 133; 139; 147; 154; 162; 171;	3621 3801 3991 4191 4401 4621 4851	1050 1101 1155 1211 1271 1333 1398 1467
198 199 199	9 16	.7 78 3 81	78 81 84	749 777 807	263 273 . 284	186 } 194 } 201 }	5481	1522 1580 1640

PROPOSED LINK NO. RH - 11

PROPOSED LINK NO. RH - 12

_								~_~		
	YEAR	1	PC	LB	HB	LT	MT	HT !	HV	AADT !
•		· i		~			~~~	•	'	4001
i	1981	1	166	56	93	82	53	481	1941	4981
ì	1982	ł	172	58	97	86	56	501	2031	5191
!	1983	ļ	179	60	100	91	59	531	2121	5421
i		;	186	63	104	95	62	561	2221	5651
į		;	193	65	108	100	65	591	2321	5901
:		1	200	67	112	106	68	621.	2421	615
;		,	208	70	116	111	72	651	2531	6421
				• -		117	76	681	2651	6701
ł		i	216	73	121					
1	1989	1	224	75	125	121	78	71!	2751	695 l
;	1990	;	232	78	130	126	81	741	2851	722
Ĭ		i				131	85	771	2961	749
;	1991	ł	241	81	135	131	85	//:	Z76 i	/42

YEAR :	PC	LB	HB	LT	MT	HT :	HV !	AADT !
{						!-		
1981	127	83	44	88	43	44!	131;	4291
1982	132	86	46	93	45	461	137!	4481
1983	137	89	47	タフ	48	491	1441	4671
1984 1	142	93	49	102	50	51;	150 l	483 !
1985	147	96	51	108	53	541	1581	509!
1986	153	100	53	113	55	571	1651	5321
1987 :	159	104	55	119	58	601	1731	5551
; 1988 ;	165	108	57	125	61	631	181;	579¦
1989	171	112	59	130	64	65 l	1881	6011
1990 1	178	116	62	135	66 .	681	1951	624 l
1991 1	184	121	64	140	69	701	2031	6481
	~~							

FORECASTED TRAFFIC VOLUME BY PROPOSED LINK (3)

PROPOSED LINK NO. RH - 13

PROPOSED LINK NO. RH - 14

! YEAR	PC	LB	НВ	LT	MT	HT ;	HV ¦	AADT !	•		EAR :	}	PC	ΓB	НВ	LT	MT	HT :	HV !	AADT :
1 1001		200	158	130	127	1171	402¦	13821		,	; 981 ¦	. —— !	 675	137	158	128	85	671	310:	1250
1981	1 650 1 675	208	164	137	134	1231	421	14401		• -	982 ¦		701	142	164	135	89	701	3241	1301
1982 1983	1 700	215	170	144	141	1291	4401				983	!	727	148	170	142	94	741	3381	1355
1 1984	1 727	224	177	151	148	1361	461	15631			984		755	153	177	149	99	781	3541	1411
1 1985	1 755	232	183	159	156	1431	4821	16281		1	985	}	784	159	183	157	104	821	3701	14691
1986	783	241	190	168	164	1511	5051	16971		1 1	986 :	}	813	165	190	165	110	861	3861	15301
1987	813	250	198	176	172	1591	5281	17681		1	987 ;	;	844	171	198	174	115	911	4041	15931
1988	844	260	205	185	181	1671	553 l	18421		; 1	988 ;	;	876	178	205	183	121	961	4221	16591
1989	876	270	213	192	188	1731	5741	1912:		1	989	1	910	185	213	189	126	991	4381	1722
1 1990	909	280	221	200	195	1801	5961	1985¦		1 1	990 ¦	•	944	192	221	197	131	1031	455 !	1787
1991	944	290	229	207	203	1871	6191	20601		1 1	991 :	l	980	199	229	204	136	1071	4721	1855

PROPOSED LINK NO. RH - 15

PROPOSED LINK NO. RH - 16

! YEAR :	PC	LB·	HB	LT	MT	HT :		AADT :	; YEA		PC	LB.	HB	LT	MT	HT ;		AADT
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991	375 389 404 419 435 452 469 487 505 525 545	154 160 166 172 179 186 193 200 208 215 224	165 171 178 185 192 199 206 214 222 231 240	247 260 273 288 303 318 335 352 366 379 394	92 97 102 107 113 119 125 131 136 141	206; 217; 228; 240; 252; 265; 279; 294; 305; 316; 329;	463 485 508 531 557 583 610 639 663 689 715	1239 1294 1351 1411 1473 1538 1607 1678 1742 1808 1877	; 198 ; 198 ; 198 ; 198 ; 198 ; 198 ; 198 ; 199 ; 199	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	400 415 431 447 464 482 500 519 539 560 581	288 299 310 322 334 347 360 374 388 403 418	133 138 143 149 154 160 166 173 179 186 193	275 289 304 320 337 354 373 392 407 423 439	152 160 168 177 186 196 206 217 225 234 242	37; 39; 41; 43; 45; 48; 50; 53; 57; 59;	322! 337! 352! 369! 386! 404! 423! 459! 476! 495!	128 134 139 145 152 158 165 172 179 186

PROPOSED LINK NO. RH - 17

PROPOSED LINK NO. RH - 18

HV : AADT !

6221 15911 6521 16631

684: 1737: 717: 1816: 751: 1897: 788: 1983:

826 | 2073 | 866 | 2166 | 899 | 2249 | 933 | 2334 | 969 | 2423 |

									_							
YEAR !	PC	LB	HB	LT	MT	HT !	HV ;	AADT !	;	YEAR :	PC	LB	HB	LT	MT	HT :
								;	1	. 1						;
1981 :	160	96	110	210	156	561	3221	7881	1	1981 :	364	273	164	332	193	2651
1982	166	100	114	221	164	591	3371	8241	1	1982	378	283	170	349	203	2791
1983	172	103	119	232	173	621	3531	8611	1	1983	392	294	177	367	214	2931
1984	179	107	123	244	182	65 l	3701	901	1	1984 :	407	305	183	387	225	3091
									1	1985						
1985	186	111	128	257	191	69 i	387¦	9421			423	317	190	407	236	325¦
1986	193	116	133	271	201	721	4061	9851	i	1986	439	329	198	428	249	. 3411
1987 :	200	120	138	285	211	761	4251	1030:	1	1987 ;	455	341	205	450	262	3591
1988 :	208	125	143	299	222	801	4451	1077!	1	1988	473	354	213	473	275	3781
1989	216	129	148	311	231	831	4621	11181	;	1989	491	368	221	491	286	3921
1990									!	1990	509	382	229	510		
1990 1	224	134	154	323	240	861	4801	1160!	:						297	4071
1991	232	139	160	335	249	891	4981	1204	1	1991	529	396	238	529	308	4231
									_							

FORECASTED TRAFFIC VOLUME BY PROPOSED LINK (4)

PROPOSED LINK NO. RH - 19

PROPOSED LINK NO. RH - 20

YEAR :	PC	LB	HB	LT	MT	 HT :	 HV ;	AADT :	- !	YEAR :	PC	 LB	 НВ	 LT	MT	 HT :	HV :	AADT :
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990	245 254 264 274 284 295 306 318 330 343 356	309 321 333 346 359 372 386 401 416 432 449	87 90 94 97 101 105 109 113 117 122 126	552 581 611 643 676 711 748 787 817 848 880	245 258 271 285 300 316 332 349 363 376 391	207; 218; 229; 241; 254; 267; 281; 295; 306; 318; 330;	5391 5661 5941 6241 6551 6871 7211 7571 7861 8161	1645 1722 1802 1886 1974 2066 2163 2264 2350 2439 2532		1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991	377 391 406 422 438 454 472 489 508 527 547	353 366 380 395 410 425 442 458 476 494 513	201 209 217 225 233 242 251 261 271 281 292	509 535 563 593 623 656 690 726 753 782 812	220 231 243 254 269 283 298 314 326 338 351	261 275 289 304 320 336 354 372 386 401 416	6821 7151 7491 7851 8221 8621 9031 9471 9831 10201	1921 2008 2099 2194 2293 2397 2506 2620 2720 2823 2931

PROPOSED LINK NO. RH - 21

PROPOSED LINK NO. RH - 22

; YEAR ;	PC	LB	HB	LT	MT	HT :	HV !	AADT :	- - -	YEAF		PC	LB	HB	LT	MT	HT :		AADT :
1981 1982 1983 1984 1985	377 391 406 422 438	353 366 380 395 410	201 209 217 225 233	509 535 563 593 623	220 231 243 256 269	261: 275: 289: 304: 320:	6821 7151 7491 7851 8221	1921 2008 2099 2194 2293		1981 1982 1983 1984 1985	2 1 3 1 1	535 624 665 709 755	833 888 947 1009 1076	51 54 58 62 66	541 565 591 617 645	285 298 311 325 340	246; 257; 269; 281; 293;	582 609 638 668 699	2541 2541 2686 2840 3003 3175
; 1986 ; ; 1987 ; ; 1988 ; ; 1989 ; ; 1990 ; ; 1991 ;	454 472 489 508 527 547	425 442 458 476 494 513	242 251 261 271 281 292	656 690 726 753 782 812	283 298 314 326 338 351	3361 3541 3721 3861 4011 4161	8621 9031 9471 9831 10201 10591	23971 25061 26201 27201 28231 29311		1986 1987 1986 1989 1990 1991	7 3 4 7 1 7 1 1 1 1 1 1 1	905 858 915 965 1019 1075	1147 1222 1303 1375 1450 1530	70 75 80 84 * 89 94	674 705 736 763 790 819	355 371 388 402 416 431	307 320 335 347 359 372	7321 7661 8021 8331 8641 8971	33581 35521 37571 39361 41231 43201

PROPOSED LINK NO. RH - 23

PROPOSED LINK NO. RH - 24

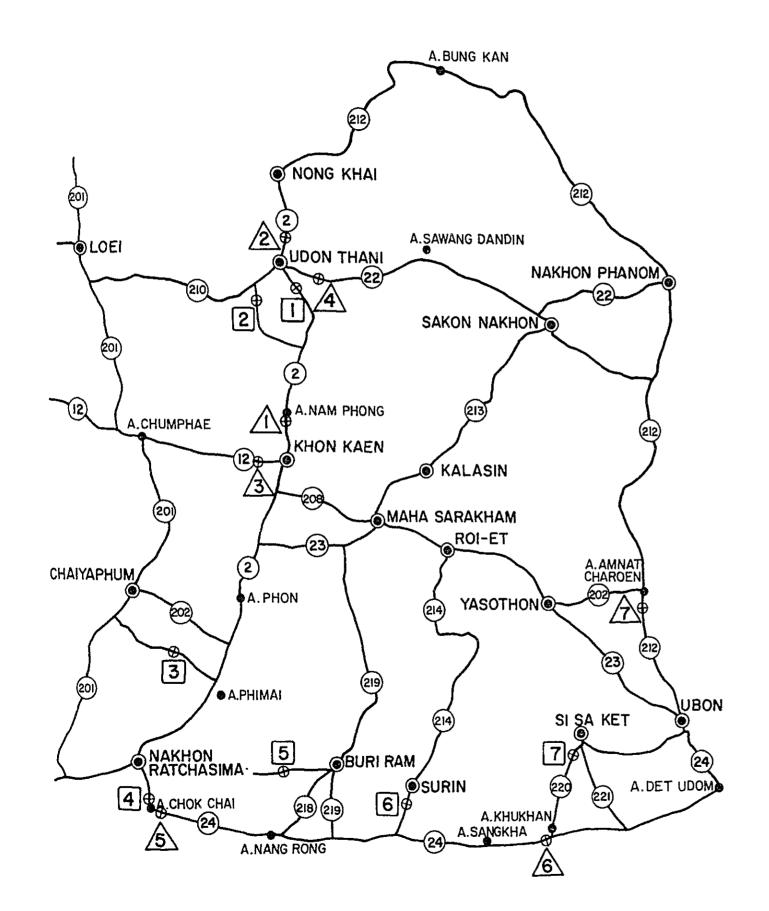
/EAR	PC	FB	HB	LT	MT	HT :	HV I	AADT :	YEAR	PC	LB	HB	LT	MT	HT :	HV I	_
.981 ¦	156	200	79	461	208	2521	5391	1356;	1981	156	200	79	461	208	252	539	
1982	166	213	84	482	217	2631	5651	14261	1 1982	166	213	84	482	217	2631	5651	
1983 ;	177	227	90	503	227	2751	5921	15001	1 1983 1	177	227	90	503	227	2751	5921	
1984 ;	189	242	96	526	237	2881	6211	15781	1 1984 1	139	242	96	526	237	2881	6211	
1985	201	258	102	550	248	301;	651;	16601	1985	201	258	102	550	248	301 ¦	6511	
1986	215	275	109	574	259	3141	6821	17471	1 1986 1	215	275	109	574	259	314;	6821	
987	229	293	116	600	271	3281	7151	1838	1987	229	293	116	600	271	328:	7151	
1988	244	313	124	627	283	3431	7501	19341	1 1988 1	244	313	124	627	283	3431	7501	
1989	257	330	130	650	293	3551	7791	20161	1989	257	330	130	650	293	355¦	7791	
1990	272	348	138	673	304	3681	8091	21031	1990	272	348	138	673	304	3681	8091	
1991	287	367	145	698	315	3811	841:	21931	1 1991 1	287	367	145	698	315	381	841;	

FORECASTED TRAFFIC VOLUME BY PROPOSED LINK (5)

PROPOSED LINK NO. RH - 25

PROPOSED LINK NO. RH - 26

										_			 							^^~~
YEAR	į	PC 🕟	LB	HB	LT	MT	HT !	HV !	AADT !	i	YE	EAR	PC	LB	HB	LT	MT	HT !	HV ;	AADT :
;	· ;			~_		~~	;			i		;	 					; _	i ·	!
1981	}	144	46	69	270	152	61 l	2821	7421	;	19	781 ¦	118	118	59	172	93	701	222;	630;
1982	;	154	49	74	282	159	641	2961	781 i	;	19	982 ¦	126	126	63	180	97	731	2331	665;
1983	ţ	164	52	78	295	166	671	311:	8221	;	1 19	983	134	134	67	188	102	761	245¦	7011
1 1984	;	174	56	84	308	173	70 l	3271	8651	;	19	984 :	143	143	71	196	106	80!	257 (740}
1 1985	;	186	59	89	322	181	731	3431	9101	:	19	785 ;	152	152	76	205	111	831	271;	780;
1 1986	ł	198	63	95	336	189	761	3601	9581	i	19	986	162	162	81	214	116	87 i	2841	824;
1 1987	;	211	67	101	352	198	791	3791	1009;	;	19	787 ;	173	173	87	224	121	911	2991	8691
: 1988	1	225	72	108	367	207	83;	3981	10621	:	1 19	788 ¦	185	185	92	234	127	95 l	314:	917;
1 1989	1	238	76	114	381	214	861	414 (11081	;	19	789 :	195	195	97	242	131	991	327;	9591
1990	ţ	251	80	120	394	222	89 l	431 :	11561	;	1 19	990 :	205	205	103	251	136	1021	341:	1003;
1 1991	ŀ	264	84	127	409	230	921	449 ¦	1207 (;	19	991 ¦	217	217	108	260	141	1061	355;	10491


PROPOSED LINK NO. RH - 27

PROPOSED LINK NO. RH - 28

YEAR ! PC	LB	HB	LT	MT	HT !	HV :	AADT :	YEAF		PC	LB	HB	LT	MT	HT :	HV ;	AADT :
1981 62 1982 66 1983 70 1984 75 1985 80 1986 85 1987 91 1988 97 1989 102 1990 108 1991 114	35 37 40 42 45 48 51 55 58 61 64	29 31 33 35 37 40 43 45 48 50	74 77 81 84 88 92 96 101 104 108	67 70 73 76 80 83 87 91 94 98	251 261 271 291 301 311 331 341 351 371 381	121 127 133 140 147 155 162 171 178 185 192	2921 3081 3241 3421 3611 3801 4011 4231 4421 4621 4831	1981 1982 1983 1984 1985 1987 1988 1989 1990	2 1 2 1 3 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	67 71 76 81 87 92 98 105 111 117	69 74 78 84 89 95 101 108 114 120	45 48 51 55 58 62 66 70 74 78 83	448 468 489 511 534 558 583 610 632 654 673	72 75 79 82 86 90 94 98 102 105	51: 53: 56: 58: 61: 64: 66: 69: 72: 74: 77:	168; 177; 185; 195; 205; 215; 226; 238; 248; 258; 269;	752; 750; 750; 829; 871; 915; 961; 1009; 1060; 1104; 1149; 1196;
										~							

A Sal Broom

Appendix 8.3 LOCATION OF VEHICLE GROSS WEIGHT SURVEY

Location No.	Route	Location									
\triangle	2	Khon Kaen - Udon Thani STA 479 + 0									
2	2	Udon Thani - Nong Khai 572 + 200									
<u> </u>	12	Khon Kaen - A. Chumpae 8 + 0									
4	22	Udon Thani - A. Sawan D.D. 10 + 800									
<u>\$</u>	24	A. Chokchai - A. Nang Rong 6 + 500									
<u> </u>	24	A. Sangkha - A. Det Udom 225 + 800									
\triangle	212	Ubon - A. Amnat C. 68 + 800									

Surveyed by DOH

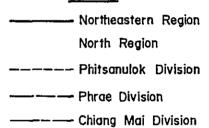
Location No.	Route	Location	Surface
1	12	near Udon Thani	Paved
2	2313		un-paved
[3]	2160		II
4	224	near Chok Chai	Paved
5	2162		un-paved
6	214		Paved
7	220		11

Surveyed by JICA TEAM

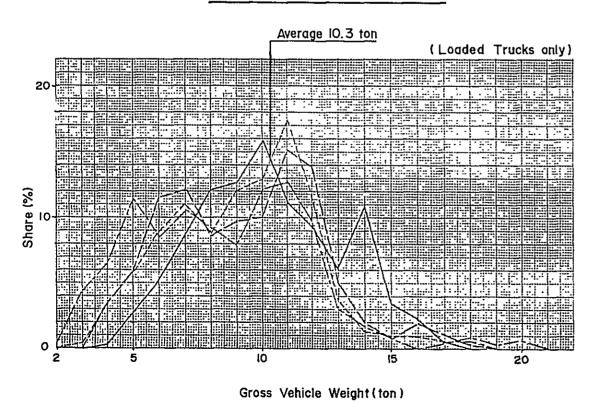
(6-Wheel Trucks)

Appendix 8.4 GROSS VEHICLE WEIGHT DISTRIBUTION

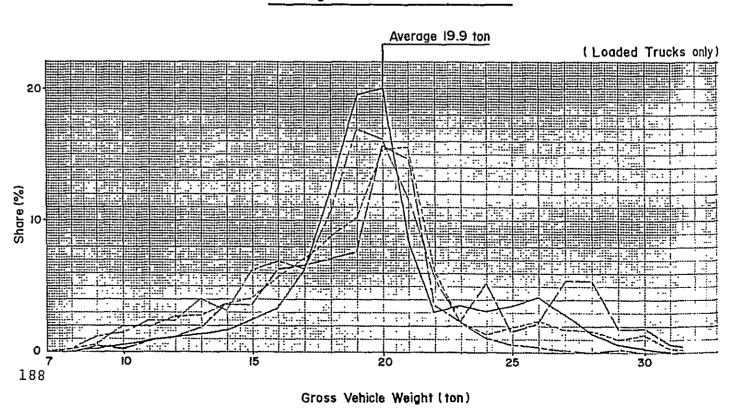
(IO-Wheet Trucks)

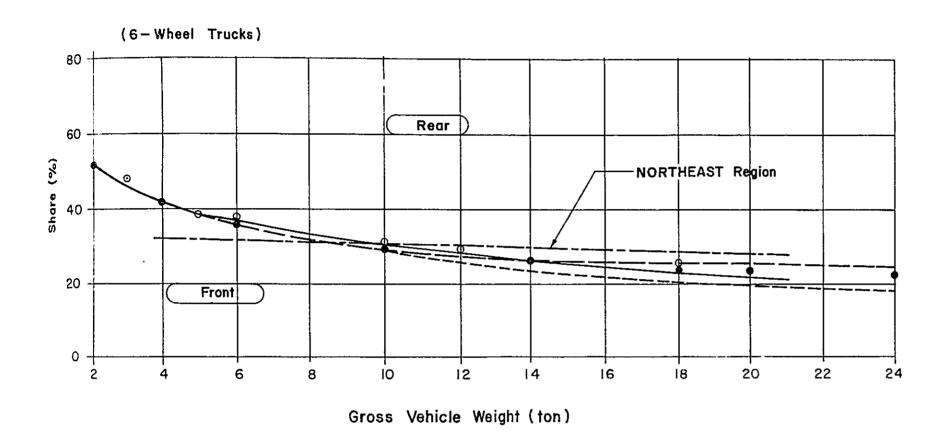

Gros	s Weigh	}				Locati	on 🗸			Total	Share	Gross Wei
(**	ion)	1	1	2	3	4	5	6	7	(No.)	(%)	(Ton)
3.5 ∿	4.5	7	1								0,29	7.5 № 8.5
4.5 ∿	5.5	5	3		5	1				9	2.62	8.5 ~ 9.5
5.5 <i>N</i>	6.5	5	3		7	4	1	2		17	4.96	9.5 ~ 10.5
6.5 №	7.5	7	9	2	5	8	3	3		30	8.75	10.5 ∼ 11.5
7.5 ∿	8.5	3 1	2	2	3	13	7	2	2	41	11.95	11.5 ~ 12.5
8.5 ≁	9.5	1	ı	6	1	ει	9	1	2	43	12.54	12.5 ~ 13.5
9.5 ~	10.5) !	3	8	4	15	9	3	2	54	15.74	13.5 ~ 14.5
10.5 ~	11,5 11		9	3	5	15	ţ	3	2	38	11.08	14.5 ≈ 15.5
11.5 ~ 1	2.5 1	2	5	7	i	13	ŧ	2	2	31	9.04	15.5 ∼ 16.5
I2.5 ~ i	13.5 13	3	3	5	3	4	4		2	21	6.12	16.5 ∿ 17.5
ا س 13.5	4.5	;	4	4	2	01	12	t	3	36	10.50	17.5 № 18.5
14.5 ~ ∶	1 5 .5 1	5	6		2	2	2			12	3.50	18.5 № 19.5
15.5 ~ 1	6.5 16	5	2	2	1	2	1			8	2.33	19.5 ∿ 20.5
16.5 ~ 1	7.5 17	,		1		1				2	0.58	20.5 ~ 21.5
Total	Loade	d 8	31	40	39	101	50	17	15	343		21.5 ~ 22.5
Total	Loade +Empt		05	256	274	421	336	64	62	1718		22.5 № 23.5
Empty	Rate (-	73	84	86	76	85	73	76	80		23,5 ~ 24.5

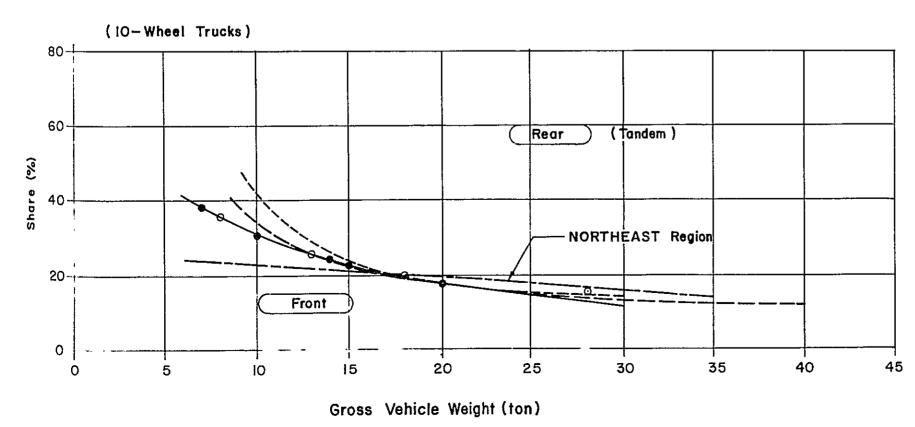
Gross Wei	ght			l	ocatio	n 🛂			Total	Share
(Ton)		ı	2	3	4	5	6	7	(No.)	(%)
7.5 № 8.5	8	1					_		1	0.08
8.5 ~ 9.5	9	1		1				1	3	0.25
9.5 ∼ 10.5	10	2	1	2				ı	6	0.50
0.5 ~ 11.5	11	3	1	1			4	2	11	0.92
11.5 ~ 12.5	12	5	2	2	3		1	t	14	1.17
2.5 ~ 13.5	13	8	3	2	ŀ	1	1	1	17	1.42
3.5 ~ 14.5	!4	10	2	1	3	ŀ	2	1	20	1.67
14.5 ° 15.5	15	13	2	2	ı	9	ŀ	1	29	2.42
5.5 ∼ 16.5	16	16	5	6	ŧ	3	7	ı	39	3.25
6.5 ∿ 17.5	17	22	8	9	7	16	9	2	73	6.08
17.5 ° 18.5	18	37	12	9	16	42	25	3	144	12.00
18.5	19	68	22	8	27	76	28	4	233	19.42
19.5	20	70	20	6	20	69	49	4	238	19.83
20.5 ~ 21.5	2!	31	9	2	9	15	31	3	100	8.33
21.5 ~ 22.5	22	11	4	3	i	15	1	1	36	3.00
22.5 № 23.5	23	7	3	5	3	21	1	2	42	3.50
3,5 ~ 24.5	24	8	4	з.	3	9	8	2	37	3.08


Gross	s Weig	ght .			L	ocatio	on 🗸			Total	55
(Ton)		1	2	3	4	5	_6_	7	(No.)	31
24.5 ∿	25.5	25	10	4	2	3	16	6	1	42	35%
25.5 ∿	26.5	26	12	4	2	6	15	9	1	49	4,0
26.5 №	27.5	27	9	5	ŧ	9	6	5		35	2 92
27.5 N	28.5	28	5	6	1	1	1	4		18	ĹŞţ
28.5 N	29.5	29	2	3	1		1	1		8	Ō 67
29,5 N	30.5	30	ı	1	ı			ŧ		4	D 3)
30.5 ∼	31.5	3!								1	0 (1
Taul.	Load	led	352	121	70	114	316	195	32	1200	
Total	Load + Er		475	232	207	218	692	258	71	2153	
Empty	Rate	(%)	26	48	66	48	54	24	55	44	

Note 1/: Locations of Survey are shown in Appendix C-1.


Legend


Loading Conditions (6 - Wheel)



Loading Conditions (!O — Wheel)

Appendix 8.5 AXLE LOAD DISTRIBUTION

Axle Load Distribution(%)

Gross Weight	6-W	heel	10-WI	neel		Gross Weight	6-W	heel	10 - V	Vheel
(ton)	F	R	F	R		(ton)	F	R	F	R
2	52.8	47.2				21	22.2	77.8	16.7	83.3
3	46.2	53.8				22	21.8	78.2	16.0	84.0
4	42.0	58.0				23	21.4	78.6	15.4	84.6
5	39.0	61.0				24	21.0	79.0	14.8	85.2
6	36,0	64.0	41.0	5.90		25			14.4	85.6
7	34.0	66.0	38.2	61.8		26			14.0	86.0
8	32.0	68.0	35.4	64.6		27			13.8	86.2
9	30.5	69.5	33.1	66.9		28			13.6	86.4
10	29.0	71.0	30.8	69.2		29			13.3	86.7
11	28.0	72.0	28.9	71.1		30			13.0	87.0
12	27.0	73.0	27.0	73.0		31			12.7	87.3
13	26.5	73.5	25.5	74.5		32			12.4	87.6
14	26,0	74.0	24.0	760		33			12.2	87.8
15	25.1	74.9	22.7	77.3		34			12.0	88.0
16	24.2	75.8	21.4	78,6		35			11.9	88.1
17	23.6	76.4	20.3	79.7		36			11.8	88.2
18	23.0	77.0	19.2	80.8		37			11.6	88.4
19	22.8	77.2	18.3	81.7		38			11.4	88.6
20	22.6	77.4	17.4	82.6		39			11.3	88.7
						40			11.2	88.8
<u> </u>			L		j	L				

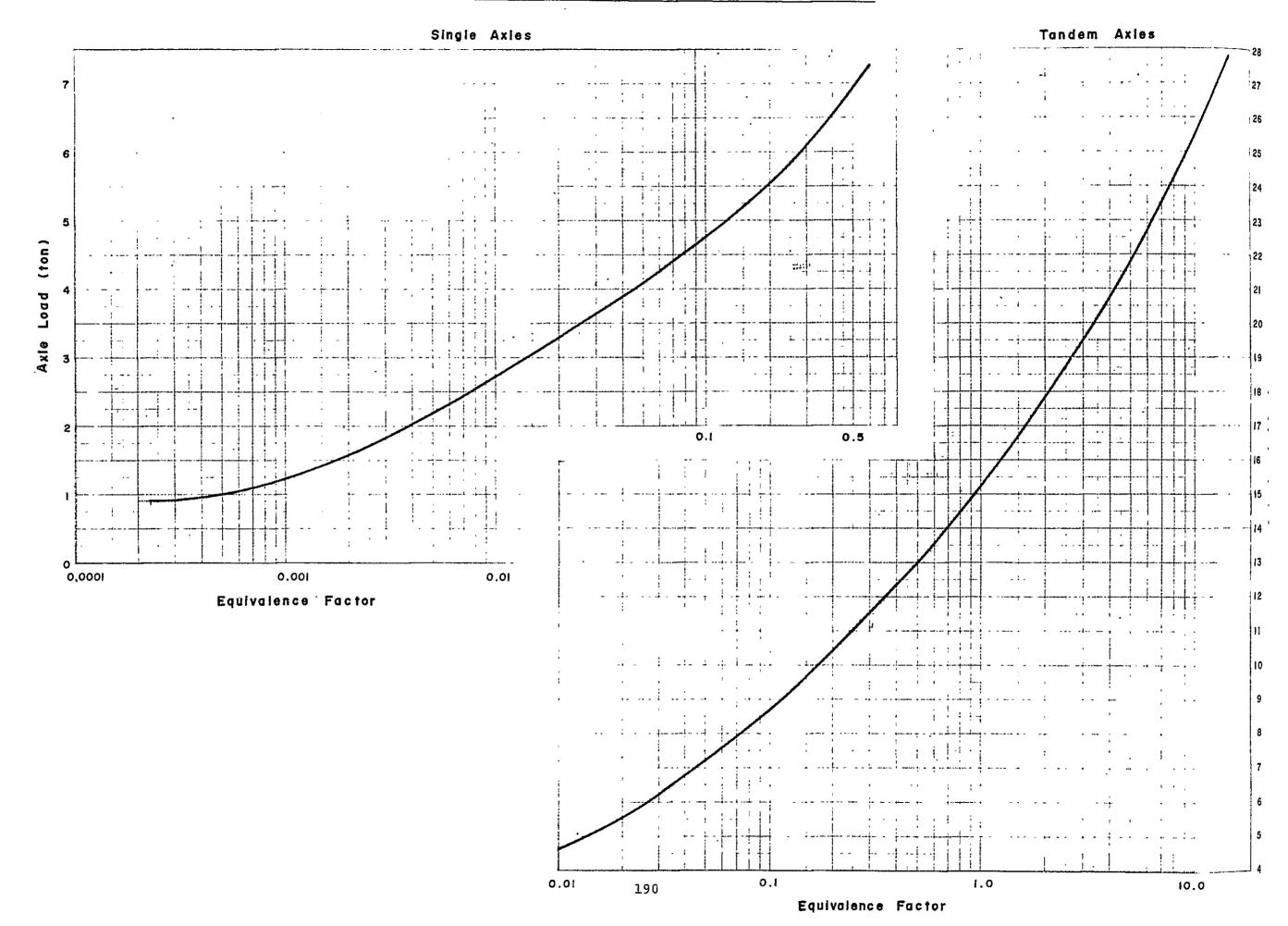
Note

F: Front Axle
R: Rear Axle(s)

LEGEND

North Region

o Phitsanulok Division


— — Phrae Division (National Road)

---- Phrae Division (Provincial Road)

----- Chiang Mai Division

Average in North Region

Appendix 8.6 TRAFFIC EQUIVALENCE FACTORS (Pt = 2.0, SN = 2)

Appendix 8.7 CUMULATIVE NUMBERS OF ESA (1)

ROUTE / LINK 24 - 400DESIGN LANE FACTOR , ROUTE / LINK 24 - 500 DESIGN LANE FACTOR 0.5 YEAR OF FAVING 1971 ESA CONVERSION FACTOR YEAR OF PAVING 1971 ESA CONVERSION FACTOR' TRAFFIC GROWTH RATE HB: 0.610 TRAFFIC GROWTH RATE HB: 0.410 MT: 0.810 MT : 0.810 YEAR PASSENGER FREIGHT YEAR PASSENGER FREIGHT HT: 1.280 _____ _____ HT: 1.280 - 1982 3.8 4. - 1982 3.8 4.0 1992 - 19874.0 3.8 4. 1982 - 19873.8 1959 - 20013.€ 3.8 1988 - 2001 3.8 3.€ DAILY TRAFFIC NUMBER and ESA DAILY TRAFFIC NUMBER and ESA LB HB Year LTMTΗT HV PC ĽΒ HВ LT ADT Year MT ΗT ΗV ADT 1972 174 103 98(11) 107 115(17) 246 (57) 459 843 1972 157 133 93(10) 96 78 (12) 109 (26) 280 666 73 174 103 98(11) 107 115(17) 246 (57) 459 73 157 133 843 93(10) 96 78(12) 109 (26) 280 666 74 147 106(12) 112 107(16) 198(46) 411 768 169 127 103(11) 100 69 (10) 72(17) 244 640 75 138 119(13) 135 117(17) 186 (43) 422 107(12) 772 75 139 149 152 98(15) 34 (8) 239 679 76 161 118(13) 152 129(19) 263 (61) 510 907 121 142 113(13) 20€ 101 (24) 80 (12) 294 762 77 220 124 (14) 174 101 109 (16) 362 (85) 595 113(13) 1,090 77 159 151 244 70 (10) 117(27) 300 854 78 277 162 141(16) 330 (77) 191 218 (32) 689 78 175 1,319 164 139(15) 217 78 (12) 114(27) 331 887 79 264 114 152(17) 140 156(23) 448(105) 75€ 209 172 1,274 79 120(13) 228 89 (13) 168(39) 377 98€ 236 122(14) 145 95(14) 415(97) 632 1,071 80 231 179 128(14) 221 115(17) 181 (42) 1,055 91 235 62 120(13) 171 146 (22) 251 (59) 513 985 81 270 197 156(17) 265 133(20) 196 (46) 485 1,217 23 244 64 125 (14) 179 153(23) 263 (61) 541 1,029 278 82 280 204 162(18) 140(21) 206 (48) 508 1,270 Total (148)(216) (748)(1,112)Total (146)(154)(330) -(630) 83 (22) (50) 83 (19) (14)(24)(65) 84 84 (19) (23) (53) (15) (25) (68) 85 (24) (55) 85 (20) (16)(26) (71) 86 (21) (25) (58) (16)(27) 86 (74)87 (26) (61) 87 (22) (17)(29) (78) 88 (27) (64)(17) 88 (23) (30) (82) 89 (29) (66) 89 (23) (18)(31) (85) (147)(176)(407)(730)Total Total (113)(192)(523)(828) (): ESA (103) (1,360)(): $ESA(10^3)$

(1,940)

CUMULATIVE NUMBERS OF ESA (2)

			24 -	000		BIGN LANE	171213		0.5	ROUTE	/ []	•	<u> </u>	1001	DES	IGN LANE F	· AL TUR	-	0.5
YEAR	OF PA	/ING	197	-	ES:	A CONVERSI	ION FA	ACTOR		YEAR C	F PAV	ING	19	75	ESA	CONVERSIO	N FAC	CTOF	
TRAFF	IC GRO	WTH I	RATE			HB: 0.61	ιφ			TRAFFI	C GRO	WTH R	ATE		ŀ	B : 0.610			
						MT : 0.83	10					. —			<u> </u>	IT : 0.810			
YE	AR		SENGER	FREIG		HT : 1.28	80				AR		SSENGER	FREIGH	T H	IT : 1.280			
.982 - .988 -	1981 1987 2001		3.8 3.8 3.8	4.9 4.9 3.8						1982 - 1988 -	- 2001	,	3.8 3.8 3.8	4.9 4.9 3.8					
			ER and ES							DAILY			BER and ESA						
Year	PC	LB		LT	МТ	нт	HV	ADT		Year	PC	LB	НВ	LT	МТ	HT	HV	ADT	
1972	99	92	64(7)	74	62(9)	69(16)	195	460		1972	67	23	92(10)	68	146(22)	16(4)	254	412	
73	99	92	64(7)	74	62(9)	69 (16)	195	460		73	154	85	141(16)	92	143(21)	57(13)	341	672	
74	106	103	64(7)	79	55 (8)	51 (12)	170	458		74	145	118	145(16)	95	90(13)	55(13)	290	648	
75	101	101	59(7)	125	47(7)	43(10)	149	476		75	176	145	149(17)	109	86(13)	35 (8)	270	700	
76	110	100	55(6)	161	62(9)	57 (13)	174	556		76	296	272	187(21)	231	151(22)	115(27)	453	1,253	
77	92	145	63(7)	142	51(8)	71 (17)	185	564		77	291	232	168(19)	183	125(19)	111(26)	404	1,110	
78	68	201	50 (6)	142	46(7)	62 (15)	158	569		78	389	292	241 (27)	251	176(26)	131(31)	548	1,480	
79	73	176	54(6)	140	51(8)	84(20)	189	578		79	365	272	233(26)	224	214(32)	181(43)	628	1,489	
80	93	148	55 (6)	121	55 (8)	85 (20)	195	557		80	285	195	164(18)	179	147(22)	101(24)	412	1,072	
81	105	157	65(7)	165	58(9)	80 (19)	203	630		81	297	171	153(17)	248	174(26)	147(34)	474	1,190	
82	109	163	67 (7)	173	61(9)	84 (20)	212	657		82	308	177	159(18)	260	183(27)	154 (36)	496	1,241	
otal	-	-	(73)	-	(91)	(178)	-	-	(342)	Total	-	_	(146)	_	(174)	(221)	-	~	(5
83 84 85 86 87 88			(8) (8) (8) (9) (9) (9)		(9) (10) (10) (11) (11) (12) (12)	(21) (22) (23) (24) (25) (26) (27)				83 84 85 86 87 88			(18) (19) (20) (21) (21) (22) (23)		(28) (30) (31) (33) (34) (36) (37)	(38) (40) (42) (44) (46) (48) (50)			
otal			(61)		(75)	(168)			(304)	Total			(144)		(229)	(308)			(6

R0117	E / L	INK	201 -	100	<u>[</u> j	ESIGN LAN	E FACT	TOR	0.5	ROUTE	/ LII	√ l'	201 -	- 200	1	DESIGN LAN	IE FAC	TOK.	0.5
YEAR	ŭF F	AV1NG	19	<u> 4</u> .4	£	SA CONVERS	SION F	FACTOR		YEAR (DF PA'	VING		969		ESA CONVER			0.2
TRAF	1C G	ROWTH	RATE			HB: (0.610			TRAFF	IC GR	DWTH	RATE			HB:			
	EAR	PΑ	SSENGER	FRE		MT : (0.810			YE			SENGER	FREI		MT :	0.810		
	- 198:		3.8		.2	Hī :	1.280									HT:	1.280		
1982 ·	- 200	1	3.8 3.0 	5. 3.	. 2 . 8					1982 - 1988 -	2001		3.8 3.8 3.8	5.: 5.: 3.:	2 E				
DAILY	TRAFF:	IC NUM	BER and ES	Λ									BER and ES						
Year	PC	LE	НВ	LT		HT	HV	ADT	. 	Year	PC	LB	HE	LT	MT	нт	HV	ADT	
1970			41(5)		63 (9)	54(13)	158			1970			31 (3)		39(6)	53(12)	123		
71			41(5)		63(9)	54(13)	158			71			31(3)		39 (6)	53(12)	123		
72	103	149	41(5)	74	63(9)	54(13)	158	484		72	108	75	31(3)	46	39 (6)	53(12)	123	352	
73	123	196	43(5)	93	75(11)	68(16)	186	598		73	112	74	34(4)	59	46 (7)	55 (13)	135	380	
74	172	165	76 (8)	82	92(14)	76 (18)	244	663		74	128	93	50 (6)	53	51(8)	43(10)	144	418	
75	168	226	54(6)	110	141(21)	69 (16)	264	768		75	147	107	57(6)	80	40 (6)	54(13)	151	485	
76	292	228	66 (7)	139	107(16)	52(12)	225	886		76	189	112	63 (7)	121	57(8)	62 (15)	182	604	
77	312	199	68 (8)	202	110(16)	84 (20)	262	975		77	208	101	64(7)	104	65(10)	68(16)	197	610	
78	292	228	77(9)	164	138(20)	101(24)	316	1,000		78	199	106	73 (8)	129	93(14)	72(17)	238	672	
79	407	290	97(11)	125	130(19)	144(34)	371	1,112		79	241	110	96(10)	160	120(18)	114(27)	330	841	
80	351	172	121(13)	166	153 (23)	154(36)	428	1,117		80	191	229	92(10)	95	175(26)	126 (29)	393	908	
81	375	152	102(11)	149	137 (20)	137(32)	376	1,052		81	281	117	123(14)	164	154(23)	172(40)	449	1,011	
82	389	158	106 (12)	157	144(21)	144(34)	394	1,098		82	292	121	128(14)	173	162(24)	181 (42)	471	1,056	
Total	-	-	(95)	-	(208)	(281)	-	-	(584)	Total	-	-	(95)	-	(162)	(258)	-	-	(515)
83		 	(12)	···	(22)	(35)	· · · · · ·	· <u> </u>		83			(15)		(25)	(44)		<u></u>	
84 85			(13) (13)		(24) (25)	(37) (39)				84 85			(15) (16)		(27) (28)	(47) (49)			
86			(14)		(26)	(41)				86			(17)		(29)	(52)			
87 88			(14)		(27)	(43)				87 88			(17) (18)		(31) (32)	(54) (57)			
89			(15) (15)		(29) (29)	(46) (47)				88 89			(18)		(34)	(59)			
Total			(96)		(183)	(288)			(567)	Total			(116)		(206)	(362)			(684)
(): E	SA (10	03)							1 151)	(): E	SA (10	3)							(1,199)

CUMULATIVE NUMBERS OF ESA (4)

VEAG	<u></u>	JT NIC	4.0		FO	N CONUEDCE	ON FA	OTOD								DESIGN			
YEAR			19	68 -	ESI	A CONVERSI		CIUR		YEAF	R OF 1	PAVIN	G	1968		ESA CON	WERSI(ON FACTO	JR
TRAFF	IC GRO	HTW	RATE			HB : 0.	610			TRAF	FFIC (GROWT	H RATE			H	8: 0.6	510	
	 AR ·		SENGER	FREIGH		MT : 0.	810				 YEAR		 ASSENGER	-		MI	: 0.8	310	
				5.2		HT : 1.	280								IGHT 	H	1.2	280	
.982 - .988 -	1987	~~	3.8 3.8	5.2 3.8							- 198 - 198 - 200	37	3.8 3.8 3.8	5.	.2 .2 .8				
DAILY	TRAFFI	C NUM	BER and ESA							DAILY	TRAFFI	C NUM	BER and ESA						
Year	PC	LB —	НВ	LT		HT	HV	ADT		Year	PC	LB	HE	LT		HT	HV	ADT	
1970			129(14)		116(17)	71 (17)	316			1970			129 (14)		116(17)	71 (17)	316		
71			129(14)		116(17)	71 (17)	316			71			129(14)		116(17)	71(17)	316		
72	162	62	129(14)	158	116(17)	71(17)	316	698		72	162	62	129 (14)	158	116(17)	71(17)	316	698	
73	158	21	133(15)	251	116(17)	81 (19)	330	760		73	158	21	133(15)	251	116(17)	81(9)	330	760	
74	149	60	127(14)	284	102(15)	83 (19)	312	805		74	149	6C	127(14)	284	102(15)	83(19)	312	805	
75	153	77	151 (17)	316	79(12)	98 (23)	328	874		75	153	7 7	151(17)	316	79 (12)	98 (23)	328	874	
76	166	103	164(18)	389	84(12)	110(26)	358	1,016		76	166	103	164(18)	389	84 (12)	110 (26)	358	1,016	
77	201	87	149(17)	522	71(11)	107(25)	327	1,137		77	201	87	149(17)	522	71(11)	107(25)	327	1,137	
78	192	91	151(17)	508	95(14)	106 (25)	352	1,143		78	192	91	151(17)	508	95(14)	106 (25)	352	1,143	
7 9	187	77	175(19)	589	87(13)	142(33)	404	1,257		79	18-	77	175(19)	589	87(13)	142(33)	404	1,257	
80	164	69	165(18)	528	114(17)	127(30)	406	1,167		80	164	69	165(18)	528	114 (17)	127(30)	406	1,167	
81	169	65	173(19)	604	49(7)	176(41)	398	1,236		81	169	65	173(19)	604	49 (7)	176 (41)	398	1,236	
82	175	67	180 (20)	635	52 (8)	185 (43)	417	1,295		82	175	67	180 (20)	635	52 (7)	185 (43)	417	1,295	
Total	_	_	(216)		(177)	(335)	-	-	(728)	Total	<u>-</u>	-	(216)	-	(176)	(335)	-	~	(72
83 84 85 86 87 88			(21) (22) (22) (23) (24) (25) (26)		(8) (8) (9) (9) (10) (10) (11)	(46) (48) (50) (53) (56) (59)				83 84 85 86 87 88			(21) (22) (22) (23) (24) (25) (26)		(8) (8) (9) (9) (10) (10) (11)	(46) (48) (50) (53) (56) (59) (61)			
Total			(163)		(65)	(61) (373)			(601)	Total			(163)		(65)	(373)			(6

(1,249)

CUMULATIVE NUMBERS OF ESA (5)

VEAD	י חד ב	PAVIN	7	1975	.		N LANE		TOP.	V.		/ LIN	_	206 -		DESIGN LAN			0.5
				17/	•			ION FAC	TUK	YE	AK U	F FAVI	I N₁.•	19	/≅	ESA CONVER	:51ON	FACTOR	
TRAF	FIC (3ROWT!	H RATE				HB: O.	.610		TF	(AFFI)	GROV	NTH RATE			HB:	0.61	O	
			 ASSENGER				MT : 0	.810								MT :	0.81	0	
	/EAR 			FRE			HT : 1	.280			YEAF		PASSENGE		REIGHT	HT:	1.28	O.	
1982 1988	- 200	3 7 01	3.8 3.8 .3.8	5. 3.	.2 .2 .8					198	38 - 3 32 - 3	2001	3.8 3.8 3.8		5.0 5.0 3.8				
			BER and ESA										BER and ES						
Year	PC	LB	НВ	LT	MT	нт	HV	ADT		Year	PC	LB	НВ	LT	MT	HT	HV	ADT	
77	41	53	12(1)	52	68(10)	13(3)	93	239		72	251	121	70(8)	64	105(-16)	107(25)	282	718	
78	91	62	22(2)	58	81 (12)	48(11)	151	362		73	449	173	85 (9)	84	121(18)	75(18)	281	987	
79	103	79	75(8)	197	118(17)	5(1)	198	577		74	255	128	114 (13)	115	143(21)	103(24)	360	858	
80	_	-	106 (12)	_	86 (13)	38(9)	230	_		75	433	123	77(9)	105	170(25)	113(26)	360	1021	
81	158	102	138 (15)	86	54(8)	71 (17)	262	- 609		76	297	125	66 (7)	259	157(23)	. 105 (25)	328	1009	
82	164	106	143(16)	90	57(8)	75 (18)	275	635		77	283	165	74(8)	443	193(29)	98 (23)	365	1256	
										78	211	139	84 (9)	438	213 (31)	104(24)	401	1189	
Total	-	-	(54)	-	(68)	(59)	<u>-</u>	_	(181)	79	309	103	67(7)	452	245(36)	149(35)	668	1325	
83 84			(17) . (17)		(9) (9)	(18) (19)				80	416	93	70(8)	365	232 (34)	218(51)	520	1395	
85			(18)		(10)	(20)				81	124	58	58 (6)	506	176(26)	126(29)	362	1050	
86 87 88			(19) (19) (20)		(10) (11) (11) (12)	(21) (22) (24) (25)				82	129	60	60 (7)	532	187(28)	133(31)	380	1101	
89 Total			(21) (131)		(72)	(149)			(352)	Total	-	-	(91)	-	(287)	(311)	-	-	(689
(): I	ESA (1	0 ³)							(533)	83			(7)		(29)	(33)	•	·	
					•					84			(7)		(31)	(34)			
										85			(7)		(32)	(36)			
										86			(8)		(34)	(38)			
										87			(8)		(36)	(40)			
										88			(8)		(38)	(42)			
										89			(9)		(39)	(44)			
										Total			(54)		(239)	(267)			(560

(): ESA (10³)

																		ACTOR
YEAR	OF P	AVINO	,	1977		ESA CON	VERSIO	N FACT	OR	YEAR	OF P	AVING		1977		ESA CON	IVERS10	N FACTOR
TRAF	FIC G	ROWTH	RATE			HB	: 0.6	10		TRAF	FIC 6	ROWTH	RATE			HE	8: 0.6	10
	EAR		ASSENGER	FREI			: 0.8				EAR		SSENGER	FREI		MT	8.0 :	10
1982	- 198 - 198 - 200	2 7 1	3.8 3.8 3.8	5. 5. _3.	2 8	нт	: 1.2	30		1982 1988	- 198 - 198 - 200	32 37 91	3.8 3.8 3.8	5.2 5.2 3.8	2 2 8	нт	: 1.2	80
DAILY			BER and ESA										BER and ESA				·	
Year	PC	LB	HB	LT	МТ	HT	HV	ADT		Year	PC	LB	HB	LT	TM	HT	HV	ADT
1972	23	37	69()	48	57()	30 ()	146	264		1972	24	50	43 ()	20	28()	19()	90	183
73	18	17	47()	18	30()	18()	95	148		73	40	70	60()	33	29 ()	28()	117	260
74	16	17	36()	40	37()	20()	93	166		74	73	131	147()	49	81()	35()	263	516
75	35	23	61()	20	41()	28()	130	208		75	41	79	70 ()	33	32 ()	23()	125	278
76 	44	<u>29</u>	58()	26 	48()	25()	131	231		76 	63	72	85 ()	35	33()	17()	135	306
77	66	52	58(6)	50	83 (12)	42(10)	183	351		77	92	139	126 (14)	101	73 (11)	51 (12)	250	582
78	108	55	58(6)	55	49 (7)	30 (7)	137	355		78	109	131	107(12)	97	57(8)	29 (7)	193	530
79	135	51	82 (9)	74	59(9)	52(12)	193	453		79	74	78	45(5)	74	29(4)	24(6)	98	524
80	166	38	82(9)	76	45(7)	40 (9)	167	447		80	91	76	56(6)	62	44(7)	19(4)	119	348
81	166	56	93(10)	82	53(8)	48(11)	194	498		81	127	83	44(5)	88	43(6)	44(10)	131	429
82	172	58	97(11)	86	56(8)	50 (12)	203	519		82	132	86	46 (5)	93	45 (7)	46(11)	137	448
Total	-	-	(51)	-	(51)	(61)	-	_	(163)	Total		<u>.</u>	(47)		(43)	(50)	-	- (140
83 84 85 86 87 88			(11) (12) (12) (12) (13) (13) (14)		(9) (9) (10) (10) (11) (11) (12)	(12) (13) (14) (14) (15) (16) (17)				83 84 85 86 87 88			(5) (5) (6) (6) (6) (6) (7)		(7) (7) (8) (8) (9) (9)	(11) (12) (13) (13) (14) (15) (15)		
Total			(87)		(72)	(101)			(260)	Total			(41)		(57)	(93)		(191

CUMULATIVE NUMBERS OF ESA (7)

7 of 14

YEAR	OF F	PAVIN	3	1967		ESA CONVE	RSION	FACTOR		YEAR	OF P	AVING	i	1967		ESIGN LANE		_	0.5
			H RATE				0.61			TRAF	FIC G	ROWTH	RATE				0.610	10 T G K	
	EAR	P	ASSENGER	FRE	GHT		0.81				 EAR		SSENGER .	FREI		MT :	0.810		
982	- 198 - 198 - 200	32 37 01	3.8 3.8 3.8	5. 5. .3.	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	HT :	: 1.28	0		1982 · 1988 ·	- 198 - 198	2 7	3.8 3.8 3.8	5.: 5.: 3.:	2 2	HT:	1.280		
AILY			BER and ESA							DAILY	TRAFF	IC NUM	BER and ESA	·					
ear	PC	LB	НВ	LT	МТ	нт	HV	ADT		Year	PC	LB	HB	LT	MT	HT	HV	ADT	
972	452	120	126(14)	115	183(27)	112(26)	421	1,108		1972	359	270	122(14)	222	190(28)	170(40)	482	1,333	
73	371	182	135 (15)	188	180(27)	153(36)	468	1,209		73	295	258	141(16)	206	161(24)	138(32)	440	1,199	
74	358	173	145(16)	178	·145(21)	116(29)	406	1,115		74	403	216	161(18)	166	139(21)	116(27)	416	1,201	
75	411	168	133(15)	180	147(22)	100(23)	380	1,139		75	597	175	142(16)	136	125(19)	98(23)	365	1,273	
76	582	229	161(18)	211	198(29)	239 (56)	598	1,620		76	571	191	128(14)	124	123(18)	97 (23)	348	1,235	
77	525	196	179(20)	200	166(25)	130(30)	475	1,396		77	627	177	135(15)	99	91(13)	78(18)	304	1,207	
78	556	243	190(21)	223	155(23)	78 (18)	423	1,445		78	825	242	174(19)	111	90(13)	88 (21)	352	1,530	
79	693	266	186 (21)	229	203 (30)	50 (12)	439	1,627		79	742	133	145(16)	99	83(12)	83(19)	311	1,285	
80	-	-	172(19)	-	165(24)	84(20)	421	-		80	-	-	152(17)	-	84(12)	75(18)	311	-	
81	650	200	158(18)	130	127(19)	117(27)	402	1,382		81	137	137	158(17)	128	85 (13)	67(16)	310	1,250	
82	675	208	164 (18)	137	134 (20)	123(29)	421	1,440		82	142	142	164(18)	135	89 (13)	70 (16)	323	1,301	
otal	-	-	(251)	-	(375)	(408)	-	_	(1,034)	Total	_	_	(237)	_	(298)	(413)	-	-	(948
83 84 85 86 87 88			(19) (20) (20) (21) (22) (23) (24)		(21) (22) (23) (24) (25) (27) (28)	(30) (32) (33) (35) (37) (39) (40)				83 84 85 86 87 88			(19) (20) (20) (21) (22) (23) (24)		(14) (15) (15) (16) (17) (18) (19)	(17) (18) (19) (20) (21) (22) (23)			
otal			(149)		(170)	(246)			(565)	Total			(149)		(114)	(140)			(403)

(): ESA (10³)

CUMULATIVE NUMBERS OF ESA (8)

	OF PA			- 100 1965	•	DESIGN L			0.5	RDUTE YEAR				1976 1976		DESIGN LA ESA CONVE			0.5
	FIC GR					HB :	0.610	o		TRAFF							1.280	1010((
YE	 EAR	PA'	SSENGER	FREIG	SHT		0.810 1.280				:AR	PAS	SENGER	FREIG	HT		0.810		
1982 -	- 1982 - 1987 - 2001		3.8 3.8 3.8	5.2 5.2 3.8	2		. 1.20	·		1982 - 1988 -	1982 1987 2001	; ,	3.8 3.8 3.8	5.2 5.2 3.8		HR:	0.610		
DAILY			BER and ESA		-								BER and ESA						
Year	PC	LB	нв	LT	MT	НТ	HV	ADT		Year	PC	LB	НВ	LT	МТ	НТ	HV	ADT	
1972	213	135	75 (8)	160	70(10)	36 (8)	181	689		1972	94	263	17()	83	36 ()	12()	65	505	
73	211	215	126(14)	146	111(16)	62(15)	299	871		73	103	237	178()	102	68()	62()	308	750	
74	205	205	156(17)	143	96(14)	62 (15)	314	867		74	137	269	237 ()	117	118()	3()	358	881	
75	398	339	302 (34)	210	218(32)	117(27)	637	1,584		75	151	263	205 ()	118	205 ()	6()	416	948	
76	337	302	169(19)	111	190 (28)	91(21)	450	1,203		76	130	214	172()	138	138()	40 ()	350	834	
77	365	290	222(25)	114	178(25)	122(29)	522	1,285		77	195	373	209 (23)	362	166(25)	24(6)	399	1,329	
78	369	234	176 (20)	172	205 (30)	167(39)	548	1,323		78	337	405	192(21)	329	164 (24)	51 (12)	407	1,488	-
79	370	192	182(20)	178	164(24)	141(33)	487	1,227		79	408	298	104(12)	206	116(17)	75 (18)	295	1,207	
80	-	-	175(19)	-	128(19)	174(41)	477	-		80	-	-	119 (13)		134(20)	56(13)	309	-	
81	375	154	165 (18)	247	92(14)	206 (48)	463	1,239		81	400	288	133(15)	275	152(25)	37(9)	322	1,285	
82	389	160	171(19)	260	97(14)	217(51)	485	1,234		82	415	299	138 (15)	289	160(24)	39(9)	337	1,340	
Total	-	-	(261)	-	(286)	(375)	-	_	(922)	Total	-	-	(99)	-	(135)	(67)	-	-	(301
83 84 85 86 87 88			(20) (21) (21) (22) (23) (24) (25)	•	(15) (16) (17) (18) (18) (19) (20)	(53) (56) (59) (62) (65) (69) (71)				83 84 85 86 87 88			(16) (17) (17) (18) (19) (19) (20)		(25) (26) (28) (29) (30) (32) (33)	(10) (20) (11) (11) (12) (12) (13)			
Total			(156)		(123)	(435)			(714)	Total			(126)		(203)	(79)			(408

(1,636)

(): ESA (10³)

(709)

(2,053)

CUMULATIVE NUMBERS OF ESA (9)

YEAR		'AVINO	I RATE	- 20 1977		DESIGN :		N FACTO	0.5 DR		IC GR	OWTH	RATE	.970 	E	ESIGN LANE BA CONVERS HB : 0, MT : 0	ION FA	·).5
982	EAR - 198 - 198 - 200	 :2 :7	3.8 3.8 3.8 3.8	FREI 5. 5.	GHT 2 2 8		: 0.8				_2001	 : :	SENGER 3.8 3.8 3.8	5.2 5.2 2.3.8		HT : 1	.280		
DAILY	TRAFF:	IC NUM	BER and ESA	/			314			DAILY	TRAFF	IC NUM	BER and ES	Α					
ear	PC	LB	нв	LT	MT	HT	HV	ADT		Year	PC	LB	HB	LT	MT	НТ	HV	ADT	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-1 ·1	136	116	104 (12)	139	122(18)	19(4)	245	636		1971			155(17)		136 (20)	177(41)			
78	190	145	109(12)	176	104(15)	17(4)	230	741		72	205	266	155(17)	138	136 (20)	177(41)	468	1,077	
79	138	102	92(10)	249	71 (11)	69 (17)	232	721		73	279	277	153(17)	209	159(24)	133(31)	445	1,210	
38	-	-	101(11)	-	164(9)	63(15)	228	_		74	333	255	124(14)	150	223 (33)	83(19)	430	1,168	
81	160	96	110(12)	210	156(23)	56(13)	322	788		75	276	244	123(14)	297	112(17)	170 (40)	405	1,222	
82	166	100	114(13)	221	164(24)	59(14)	337	834		76	279	254	145(16)	350	204 (30)	159(37)	508	1,391	
n+ n 1			(70)		(200)					77	351	302	165(18)	411	216 (32)	256 (60)	637	1,701	
otal 			(70)	<u>-</u>	(100)	(67)	-	-	(237)	78	339	339	173(19)	361	205 (30)	169 (40)	547	1,586	
83 84			(13) (14)		(26) (27)	(14) (15)				79	267	358	158(18)	543	240 (36)	270 (63)	668	1,936	
85 86			(14) (15)		(28) (30)	(16) (17)				80	226	304	148(16)	489	230 (35)	173(40)	560	1,579	
87 88			(15) (16)		(31)	(18) (19)				81	364	273	164(18)	332	193(29)	265 (62)	622	1,591	
89			(17)		(34)	(19)				82	378	283	170(19)	349	203 (30)	279 (65)	542	1,662	
otal			(104)		(209)	(118)			(431)						,				
): E	ESA (10) ³)							(668)	Total	<u>-</u>	<u>-</u>	(203)	-	(336)	(539)	-	-	(1,078
										83 84 85 86 87 88			(20) (20) (21) (22) (23) (24) (25)		(32) (33) (35) (37) (39) (41) (42)	(69) (72) (76) (80) (84) (88) (92)			
										Total			(155)		(259)	(561)			(97

(): ESA (10³)

YEAR	OF P	AVING		1968		ESA CONVER	RSION F	ACTOR		YEA	R OF I	PAVIN	3	197		ESIGN LAN SA CONVER			0
TRAF	FIC G	ROWTH	RATE			НВ :	0.610						H RATE		_	HB:		no reix	
						MT:	0.810					<u>-</u>				MT :			
	EAR 		SSENGER	FREIC		нт:	1.280			•	YEAR	Pi	ASSENGER		IGHT				
982 -	- 198; - 198; - 200	7	3.8 3.8 _3.8	_5.2 5.2 _3.8	2 2 3.					1982	- 199 - 199 - 200	32 37	3.8 3.8 .3.8	5. 5.	.2 .2 .8.	HT:	. 280		
DVILA	TRAFFI	C NUM	BER and ESA		· -		_			DAILY	TRAFF	IC NUMI	BER and ESA						
Year	PC	LB	НВ	LT	MT	нт	HV	ADT		Year	PC	LB	НВ	LT	MT	нт	HV	ADT	
1972	215	185	119 (13)	110	312(46)	264 (62)	695	1,195		1972	423	138	153(17)	191	171(25)	311(73)	635	1,387	
73	206	248	123(14)	164	337 (50)	80(19)	540	1,158		73	504	192	168(19)	232	179(26)	228 (53)	575	1,503	
74	238	303	159(18)	293	525 (78)	118(28)	802	1,636		74	475	204	169(19)	310	195(29)	237(55)	601	1,590	
75	292	360	165 (18)	341	493 (73)	76(18)	734	1,727		75	428	189	201(22)	458	179(26)	198(46)	578	1,651	
76	302	338	142(16)	342	402 (59)	65(15)	609	1,591		76	417	238	194(22)	511	215(32)	197(46)	606	1,772	
77	141	250	94(10)	390	277(41)	11(3)	382	1,163		77	417	252	202 (22)	578	158(23)	215 (50)	575	1,822	
78	340	252	173(19)	454	441 (65)	20 (5)	634	1,680		78	531	223	261(29)	701	307(45)	402 (94)	970	2,425	
79	215	282	86(10)	361	197(29)	268 (63)	551	1,409		79	533	155	206 (23)	634	278(41)	269 (63)	753	2,075	
80	209	289	90(10)	466	149(22)	260 (61)	499	1,463		80	385	287	200 (22)	499	273(40)	219(51)	692	1,863	
81	245	309	87(10)	552	245 (36)	207 (48)	539	1,645		81	377	353	201(22)	509	220 (33)	261 (61)	682	1,921	
82	254	321	90(10)	581	258 (38)	218(51)	566	1,722		82	391	366	209 (23)	535	231 (34)	275 (64)	715	2,008	
otal	-	-	(187)	-	(675)	(559)	-	-	(1,421)	Total	-	-	(291)	~	(429)	(875)	-	-	()
83 84 85			(10) (11) (11)		(40) (42) (44)	(54) (56) (59)				83 84			(24) (25)		(36) (38)	(67) (71)	 ;		
86			(12)		(47)	(62)				85 86			(26) (27)		(40) (42)	(75) (79)			
87 88			(12) (13)		(49) (52)	(66) (69)				87 88			(28) (29)		(44) (46)	(83)			
89			(13)		(54)	(72)				89			(30)		(48)	(87) (90)			
otal			(82)		(328)	(438)			(848)	Total			(189)		(294)	(552)			

CUMULATIVE NUMBERS OF ESA (11)

VE VD	OF PA	VING	19	968 8		COA	D0			V-6-						E04 001""	-00101	CACTOR	
•						ESA CONVE	KSION	FACTOR		YEAR	R OF F	YAVIN	<i>5</i> 1	972		ESA CONVI	-K21UN	PACIUR	
TRAFF	TIC GF	KOWTH	RATE			HB: 0	.610			TRAF	FIC (3ROWTI	H RATE			HB :	0.610	0	
	AR		 SSENGER	FREI		MT : O	.810				 /EAR		 ASSENGER	FREI		MT :	0.68	0	
982 ·	- 1981 - 1981 - 2001	2 7	3.8 3.8 3.8	5.3 5.3 3.6	2 2 3	HT: 1	.280			1982	- 198 - 198 - 200	 32 37	6.6 6.6 5.5	4.	5 5	HT :	0.99	0	
DAILY			BER and ESA							DAILY	TRAFF	IC NUM	BER and ESA						
Year	PC	LB	HB	LT	MT	нт	HV	ADT	- p-sug	Year	PC	LB	HB	LT	MT	нт	HV	ADT	
1972	423	138	153(17)	191	171(25)	311 (73)	635	1,387		1972	330	815	70 (8)	133	254(31)	115(21)	439	1,717	
73	504	192	168(19)	232	179 (. 26)	228 (53)	575	1,503		73	396	857	72(8)	130	418(52)	152(28)	642	2,027	
74	475	204	169(19)	310	195 (29)	237(55)	601	1,590		74	434	910	62 (7)	144	241(30)	149(27)	452	1,940	
75	428	189	201(22)	458	179(26)	198(46)	5 7 8	1,651		75	227	864	62 (7)	411	283 (35)	121 (22)	466	1,968	
7€	417	238	194(22)	511	215 (32)	197(46)	606	1,772		76	231	890	61(7)	514	282(35)	152(28)	495	2,130	
77	417	252	202 (22)	578	158(23)	215 (50)	575	1,822		77	247	881	56 (6)	507	208(26)	198(36)	462	2,097	
78	531	223	261(29)	701	307(45)	402 (94)	970	2,425		78	421	930	56(6)	540	233(29)	255 (46)	544	2,435	
79	533	155	206 (23)	634	278 (41)	269 (63)	753	2,075		79	444	933	59(7)	552	244(30)	229 (41)	539	2,461	
80	385	287	200 (22)	499	273(40)	219(51)	692	1,863		80	469	807	49 (5)	510	231(29)	211 (38)	491	2,277	
81	377	353	201 (22)	509	220 (33)	261(61)	682	1,921		81	585	833	51(6)	541	285 (35)	246 (445)	582	2,541	
82	391	366	209 (23)	535	231 (34)	275 (64)	715	2,008		82	624	888	54(6)	565	298 (37)	257(47)	609	2,686	
otal	-	-	(291)	-	(429)	(875)	-	-	(1,595)	Total	-	-	(73)	-	(369)	(379)	-	-	(82]
83 84 85 86 87 88 89		-	(24) (25) (26) (27) (28) (29) (30) (189)		(36) (38) (40) (42) (44) (46) (48) (294)	(67) (71) (75) (79) (83) (87) (90)			(1,035)	83 84 85 86 87 88 89			(6) (7) (7) (8) (8) (9) (9)		(39) (40) (42) (44) (46) (48) (50)	(49) (51) (53) (55) (58) (60) (63)			(752

CUMULATIVE NUMBERS OF ESA (12)

YEAR	OF P	AVING	1	963		ESA CONVE	RSION	FACTOR		YEAR	OF P	AVIN5	•	1963	ES	A CONVERS:	ION FA	AOTOF
TRAF	FIC G	ROWTH	RATE			HB:	0.610)		TRAFI	FIC G	ROWTH	RATE			HB: 0.6	10	
	 EAR		SSENGER .				0.680				EAR		 SSENGER	FREI		MT : 0.6		
.982 .988	 - 198 - 198 - 200	2 7 1	6.6	4.: 4.: 3.	5. 5 4	HT:	0.990	•		1982 - 1988 -	- 198 - 198 - 200	<u>-</u> 7 1	6.c 6.6 5.5	4.5 4.5 3.6	5 5 8	HT: 0.9	' 90	
			SER and ESA										BER and ESA					
Year	PC	LB	нв	LT ——	MT	НТ	HV	ADT		Year	PC	LB	НВ	LT	MT	нт	н۷	ADT
1972	375	81	121 (13)	104	163(20)	164(30)	448	1,008		1972	375	81	121(13)	104	163(20)	164(30)	448	1,008
73	475	157	132(15)	106	173(21)	208 (38)	513	1,251		73	475	157	132(15)	106	173(21)	208 (38)	513	1,251
74	265	136	89(10)	107	109(14)	69(12)	267	775		74	265	136	89(10)	107	109(14)	69(12)	267	775
75	318	133	88(10)	136	98(12)	59(11)	245	. 832		75	318	133	88(10)	136	98(12)	59(11)	245	832
76	339	135	84 (9)	141	124(15)	74(13)	282	897		76	339	135	84 (9)	141	124(15)	74(13)	282	897
77	362	135	93(10)	285	144(18)	95 (17)	332	1,114		77	362	135	93(10)	285	144(18)	95(17)	332	1,114
78	338	134	85 (9)	145	124(15)	75 (14)	284	901		78	338	134	85 (9)	145	124(15)	75(14)	284	901
79	465	329	199 (22)	389	411(51)	369 (67)	979	2,162		79	465	329	199 (22)	389	411(51)	369 (67)	979	2,162
80	198	170	87(10)	463	166(21)	144(26)	397	1,228		80	198	170	87(10)	463	166 (21)	144(26)	397	1,228
81	156	200	79 (89)	461	208(26)	252 (46)	539	1,356		81	156	200	79 (89)	461	208 (26)	252 (46)	539	1,356
82	166	213	84 (9)	482	217(27)	263 (48)	564	1,426		82	166	213	84 (9)	482	217(27)	263 (48)	564	1,426
Total	-	-	(230)	-	(400)	(562)	-	-	(1,192)	Total	-	-	(230)	-	(400)	(562)	-	-
83 84 85 86 87 88 89			(10) (11) (11) (12) (13) (14) (15)	· ·	(28) (29) (31) (32) (34) (35) (36)	(50) (52) (54) (57) (59) (62) (64)				83 84 85 86 87 88			(10) (11) (11) (12) (13) (14) (15)		(28) (29) (31) (32) (34) (35) (36)	(50) (52) (54) (57) (59) (62) (64)		
otal			(86)		(225)	(398)			(709)	Total			(86)		(225)	(398)		

YEAR	OF P	AVING	1	976		ESA CONV	ERSION	FACTO	ı R	YEA	R OF	PAVIN	G	1963		ESA CONVER	SION F	ACTOR	
TRAFF	TIC G	ROWTH	RATE			НВ	0.610)		TRAI	FFIC	GROWT	H RATE			HB : 0	.610		
	 EAR		SSENGER	FREI		MT	: 0.680	0			 YEAR		 ASSENGER	FRE		MT : (0.680		
1982 -	- 198: - 198: - 200	2 7	6.6 6.6 .5.5	4. 4. .3.	5 5 6	HT	: 0.990)		1982 1988	- 19 - 19 - 20	 82 87 01	6.6 6.6 5.5	4. 4. 3.	.5 .5 .6	HT : (990		
DAILY	TRAFFI	с пим	BER and ES/	Α	h								BER and ES/						
Year	PC	LB	НВ	LT	MT	HT	HV	ADT		Year	PC	LB	НВ	LT	МТ	HT	HV	ADT	
1972	86	21	32 ()	32	31()	28()	91	230		1972	120	114	124 (14)	114	94(12)	17(3)	235	583	
73	87	23	33()	36	41()	30 ()	104	250		73	139	121	124(14)	126	88(11)	28(5)	240	626	
74	107	41	43()	62	77 ()	63()	183	393		74	98	107	101(11)	132	69(9)	32(6)	202	539	
7 5	136	135	54()	124	106()	70 ()	230	625		75	85	58	74 (8)	115	45 (6)	11(2)	130	388	
76	143	60	53()	172	82()	63()	198	573		76	137	122	155(17)	124	52(6)	23 (4)	230	613	
7 7	120	39	57(6)	269	115(14)	62(11)	234	662	-	77	140	118	77(9)	205	64 (8)	15(3)	156	619	
78	125	39	55(6)	298	162(20)	60(11)	277	739		78	180	146	122(14)	194	97(12)	43(8)	262	782	
79	102	82	63 (7)	280	247(31)	65 (12)	375	839		79	78	104	62 (7)	138	58 (7)	21(4)	141	461	
80	127	59	59 (7)	332	267(33)	100(18)	426	944		80	71	98	53(6)	129	50(6)	2(9)	105	403	
81	144	46	69 (8)	270	152(19)	61 (11)	282	742		81	118	118	59 (7)	172	93(12)	70 (13)	222	630	
82	154	49	74(8)	282	159(20)	64 (11)	297	781		82	126	126	63 (7)	180	97(12)	73 (13)	233	665	
Total	-	-	(42)	_	(137)	(74)	-	-	(253)	Total	-	-	(226)	-		(85)	-	_	(50
83 84 85 86 87 88			(9) (9) (10) (11) (11) (12) (13)		(21) (22) (22) (24) (25) (26) (27)	(12) (13) (13) (14) (14) (15) (16)				83 84 85 86 87 88			(7) (8) (8) (9) (10) (10) (11)		(13) (13) (14) (14) (15) (16) (16)	(14) (14) (15) (16) (16) (17) (18)			
otal			(75)		(167)	(97)			(339)	Total			(63)		(101)	(110)			(27

YEAR	DF PAY	/ING	13	977	E	SA CONVER	RSION F	ACTOR		YEAR	OF P	AVING	1	1978		ESA CONVER	RSION F	ACTOR	
TRAFF	IC GRO	HTWC	RATE			HB : (0.610			TRAF	FIC G	ROWTH	RATE			нв :	0.610		
YE			ENGER	FREIGH		MT : (0.680				 EAR		SSENGER	FREI		MT :	0.680		
- 1982 - 1988 -	1982 1987	4	5.6 5.6 5.5	4.5 4.5 3.6		HT : (990					2 7	6.6 6.6 5.5	4.: 4.: 3.	5 5	HT:	0.990		
DAILY			ER and ESA	•						DAILY			BER and ESA						
Year	PC	LB	НВ	LT	МТ	НТ	HV	ADT		Year	PC	LB	НВ	LT	MT	HT	HV	ADT	
73	14	14	24()	14	19()	10()	53	95		73	73	49	56()	42	161()	22()	239	403	
74	9	9	20()	15	16()	7()	43	76		74	52	78	37()	118	156()	22()	215	463	
7 5	30	12	29 ()	13	24()	5()	58	113		75	112	73	27()	180	202()	73 ()	302	667	
76	44	16	32()	28	20()	9()	61	149		76	163	155	76()	314	301()	103()	480	1,112	
77 	35 	22 	31()	26 	53()	11()	95	178		77	75	88	65()	389	200()	65()	330	882	
78	54	38	30 (3)	38	40 (5)	20) 4)	130	220		78 	57	109	76()	431	183()	102()	361	958	
79	66	45	40 (4)	55	43(5)	15(3)	98	264		79	220	107	80(9)	392	174 (22)	201(36)	455	1,174	
80	106	37	30(3)	95	56(7)	65(12)	151	388		80	381	103	68 (8)	142	91(11)	55 (10)	214	840	
81	62	35	29(3)	74	67(8)	25 (5)	121	292		81	67	69	45 (5)	448	72(9)	51(9)	168	752	
82	66	37	31(3)	77	70(9)	26(5)	127	308		82	71	74	58 (5)	468	75 (9)	53(10)	176	790	
Total	_		(16)	-	(34)	(29)	_	-	(79)	Total	-		(27)	-	(51)	(65)	-	-	(143
83 84 85 86 87 88			(4) (4) (4) (5) (5) (5)		(9) (9) (10) (10) (11) (11) (12)	(5) (5) (5) (6) (6) (6)				83 84 85 86 87 88			(6) (6) (6) (7) (7) (8) (8)		(10) (10) (11) (11) (12) (12) (13)	(10) (11) (11) (11) (12) (13) (13)			
Total			(31)		(72)	(39)			(142)	Total			(48)		(79)	(81)			(208

Appendix 8.8 CALCULATED OVERLAY THICKNESS (1)

Date of deflection Survey

AC Surface 70 mm 150 Crushed Stone Base Soil Subbase 150

RH-1(24-04	100)											19	9/2/1982	2	s	oil Subbase 150
Section	Average Deflection	Standard Deviation	Design Deflection	Rou	ghness	; (10) 3 mm/	Km.)			Ove	lay Thi	ckness	(mm)		Remarks.
(Km.) - (Km.)	X (m.m.)	σ (m.m.)	$\overline{X}+1.5\sigma(m.m.)$	0	2	4	6	8	10	Al	A2	В	С	D	E	EVGINAL IV.S
74 - 75	0.6433	0.2704	1.0490	_						28	45	12	32	30	31	
75 - 76 76 - 77 77 - 78 78 - 79 79 - 80 80 - 81 81 - 82 82 - 83 83 - 84 84 - 85 85 - 86 86 - 87 87 - 88 88 - 89 89 - 90 90 - 91 91 - 92 92 - 93	0.7241 0.7881 0.5560 0.5040 0.5394 0.5970 0.6136 0.7940 0.5625 0.8525 0.7019 0.9562 0.7802 0.7038 0.6090 0.8868 0.6376 0.7700	0.2095 0.2606 0.2330 0.1922 0.2037 0.2038 0.1564 0.1665 0.1367 0.1415 0.1961 0.1740 0.1445 0.1146 0.1342 0.1801 0.0953 0.1607	1.0383 1.1790 0.9056 0.7922 0.8449 0.9027 0.8483 1.0437 0.7675 1.0648 0.9960 1.2171 0.9969 0.8758 0.8103 1.1570 0.7806 1.0110							28 26 44 0 0 0 0 27 0 30 18 48 18 0 0 42 0 20 0	40 57 23 0 3 19 0 38 0 39 34 56 31 0 0 51 0 34	12 0 30 * * * * 10 * 12 0 33 0 * * 26 *	32 31 47 13 0 3 12 3 32 0 34 25 51 25 8 0 45 0 27	30 28 44 13 0 4 12 4 28 0 31 21 47 22 9 0 42 0 25 7	31 30 49 14 3 8 14 8 31 0 34 24 57 24 11 4 46 2 26 10	Note; Al; Asphalt Institute Method (Design Def. X + 1.50) A2; Asphalt Institute Method (Design Def. X + 2.00) B; TRRL Method C; TRRL in the Tropics Method D; Ruiz's Formula E; California Method * Pavement failure within design period is not foreseen.
93 - 94 94 - 95 95 - 96 96 - 97 97 - 98 98 - 99 99 -100 100 -101 101 -102	0.6913 0.7548 0.7370 0.6917 0.6559 0.5870 0.5817 0.6327	0.1150 0.1105 0.3539 0.1160 0.1147 0.1466 0.1526 0.1687 0.0602	0.8638 0.9205 1.2678 0.8658 0.8279 0.8068 0.8107 0.8857							0 53 0 0 0 0	0 13 67 0 0 0 0	0 39 * * * *	14 56 7 0 0 0 9	13 53 8 0 0 0 10	15 67 10 7 4 5 12	

CALCULATED OVERLAY THICKNESS (2)

Date of deflection Survey

AC Surface	50	mm
Crushed Stone Base	150	
Laterite Subbase	150	

RH-2(24	- 0500) (1)												17/3/198	31	La	terite Subbase 150
Section	Average Deflection	Standard	Design Deflection	Roue	ghness	(10	3mm/	Km.)			Ove	rlay Th	ickness	(mm)		Remarks.
(Km.)-(Km.)	\overline{X} (m.m.)	σ (m.m.)	$\overline{X}+1.5\sigma(m.m.)$	0	2	4	6	8	10	Al	A2	В	С	D	E	Rendlrs.
102 - 103	0.7775	0.1184	0.9551			T				0	16	*	16	16	15	
103 - 104	0.8238	0.0672	0.9246						İ	0	0	*	12	12	12	
104 - 105	0.3889	0.0411	0.4505							0	0	*	*	0	0	Note;
105 - 106	0.6152	0.0625	0.7089							0	0	*	*	0	0	Al; Asphalt Institute Method
106 - 107	0.3260	0.0682	0.4284							0	0	*	*	0	0	(Design Def. \overline{X} + 1.50)
107 - 108	0.4092	0.0637	0.5048							0	0	*	*	0	0	A2; Asphalt Institute Method
108 - 109	0.4764	0.0851	0.6041		$\overline{}$					0	o	*	*	0	0	(Design Def. \overline{X} + 2.00)
109 - 110	0.5446	0.0574	0.6306		一					0	0	*	*	0	0	B; TRRL Method
110 - 111	0.3606	0.1148	0.5328		\Box					0	0	*	*	0	0	C; TRRL in the Tropics Method
111 - 112	0.4071	0.0684	0.5097				_	力		0	0	*	*	0	0	D; Ruiz's Formula
112 - 113	0.6008	0.0718	0.7085		- -		+	┰╫		0	0	*	*	0	0	E; California Method
113 - 114	0.6948	0.0823	0.8183		<u> </u>		\dashv	T'		0	0	*	0	0	2	* Pavement failure within
114 - 115	0.6476	0.2151	0.9703	-			+	1		4	28	*	18	17	17	design period is not
115 - 116	0.5116	0.1343	0.7130	<u> </u>	 -		+			0	0	*	*	0	0	foreseen.
116 - 117	0.5387	0.1025	0.6925			 	+	П		0	0	*	*	0	0	Tolescen.
117 - 118	0.4789	0.1016	0.6313	-		┪	+]		0	0	*	*	. 0	0	
118 - 119	0.3825	0.1018	0.5352	 	+	\dashv	-			0	0	*	*	. 0	0	
119 - 120	0.2643	0.0897	0.3988		 					0	0	*	*	0	0	
120 - 121	0.4562	0.0647	0.5532	\vdash	-h					0	0	*	*	0	0	
121 - 122	0.4370	0.0947	0.5790	-						0	0	*	*	0	0	
122 - 123	0.5259	0.0948	0.6681	-						0	0	*	*	0	0	
123 - 124	0.4817	0.0671	0.5824	\vdash	+					0	0	*	*	-		
124 - 125	0.4579	0.0071	0.6004	-	Щ							*	*	0	0	
125 - 126	0.3768	0.0330		-	\dashv					0	0			0	0	
126 - 127	0.4033	0.1431	0.5945							0	0	*	*	0	0	
			0.5274	-	-					0 .	0	*	*	0	0	
127 - 128	0.4443	0.0447	0.5113							0	0	*	*	0	0	
128 - 129	0.5384	0.1082	0.7007		\dashv					0	0	*	*	0	0	
129 - 130	0.4448	0.0779	0.5616	_						0	0	*	*	0	0	
130 - 131	0.5732	0.1341	0.7744				┸			0	0	*	*	0	0	

design period is not

foreseen.

CALCULATED OVERLAY THICKNESS (3)

RH-2 (24 -0500) (2)

Section	Average Deflection	Standard Deviation	Design Deflection	Roug	ghnes	s (10	0 ³ mm/	Km.))		Over	lay Thi	ickness	(mm)		Remarks.
(Km.)-(Km.)	$\frac{\overline{X}}{X}$ (m.m.)		$\overline{X}+1.5\sigma(m.m.)$	0	2	4	6	8	10	Al	A2	В	С	D	E	Remains,
131 - 132	0.6208	0.0476	0.6921							0	0	*	*	0	0	
132 - 133	0.3805	0.0626	0.4744		T	-	-	-		0	0	*	*	0	0	
133 - 134	0.4667	0.0583	0.5542		T					0	0	*	*	0	0	Note;
134 - 135	0.3341	0.1428	0.5483							0	0	*	*	0	0	Al; Asphalt Institute Method
135 - 136	0.5290	0.0664	0.6286				1	1	[0	0	*	*	0	0	(Design Def. \overline{X} + 1.50)
136 - 137	0.3552	0.0820	0.4782	-						0	0	*	*	0	0	A2; Asphalt Institute Method
137 - 138	0.4168	0.0856	0.5452		- 	-			ļ	0	0	*	*	0	0	(Design Def. $\overline{X} + 2.0\sigma$)
157 150			·		!L_											B; TRRL Method
		- · · · · ·														C; TRRL in the Tropics Method
																D; Ruiz's Formula
																E; California Method
																* Pavement failure within

CALCULATED OVERLAY THICKNESS (4)

Date of deflection Survey

10/11/1980

AC Surface	50	mr
Crushed Stone Base	150	
Laterite Subbase	150	

RH-3 (24 - 0600)

Remarks.		(mm)	ckness	lay Thi	Over			Km.)	3mm/1	ness (10	Roug	Design Deflection	Standard Deviation	Average	Section
Remaiks.	E	D	С	В	A2	Al	10	8	6	2 4	0	X+1.50(m.m.)	o (m.m.)	Deflection X (m.m.)	(Km.) - (Km.)
	0	0	*	*	0	0					E	0.7843	0.0900	0.6494	138 - 140
Note;	3	0	0	*	0	0				#		0.9538	0.1591	0.7152	140 - 142
Al; Asphalt Institute Metho	46	39	42	0	40	30						1.3852	0.2330	1.0357	142 - 144
(Design Def. $\overline{X} + 1.5\sigma$)	0	0	*	*	0	0	j			#		0.7437	0.1040	0.5876	144 - 146
A2; Asphalt Institute Metho	24	21	23	*	22	0				#		1.1970	0.2657	0.7984	146 - 148
(Design Def. \overline{X} + 2.00)	155	92	87	60	81	74	ļ		ļ	 		2.1423	0.4881	1.4101	148 - 150
B; TRRL Method	23	20	22	*	10	0	1		İ			1.1844	0.1453	0.9665	150 - 152
C; TRRL in the Tropics Met	11	7	7	*	0	0		İ				1.0558	0.1560	0.8219	152 - 154
D; Ruiz's Formula	6	0	0	*	0	0	į 	}		#_		0.9997	0.0938	0.8590	154 - 156
E; California Method	13	9	9	*	0	0	Ì			 		1.0780	0.1367	0.8730	156 - 158
•	22	20	21	*	14	0						1.1767	0.2049	0.8693	158 - 160
* Pavement failure within	35	32	33	0	29	19						1.3008	0.1619	1.0579	160 - 162
design period is not	31	28	29	0	27	11				+		1.2562	0.2168	0.9309	162 - 164
foreseen.	25	22	23	*	25	0	-					1.2030	0.2982	0.7557	164 - 166
	12	9	8	*	0	0				₽∣	<u> </u>	1.0688	0.1872	0.7879	166 - 168
	40	36	37	0	43	24				}		1.3409	0.3686	0.7881	168 - 170
	68	52	55	13	54	44]				1.5412	0.3358	1.0374	170 - 172
	21	18	19	*	9	0			i	 		1.1633	0.1745	0.9016	172 - 174
	7	11	11	*	0	D					F	1.1006	0.1929	0.8113	174 - 176
	33	30	33	0	30	17	j		_	-		1.2865	0.2132	0.9667	176 - 178
	29	25	28	0	26	7		Ì				1.2434	0.2160	0.9195	178 - 180
	3	0	0	*	0	0		Ì	中	1-1-	-	0.9574	0.2532	0.5776	180 - 182
	8	4	4	*	0	0						1.0348	0.1982	0.7376	182 - 184
	11	8	9	*	0	0			,	-		1.0670	0.2080	0.7549	184 - 186
	0	0	*	*	0	0		ĺ	-			0.7819	0.2278	0.4401	186 - 187

CALCULATED OVERLAY THICKNESS (5)

Date of deflection Survey 21/3/1982

DBST	25 mm
Crushed Stone Base	150
Laterite Subbase	150

RH04 (24 - 1001) (1)

Section	Average Deflection	Standard Deviation	Design Deflection	Roughness	(10 ³ mm)	/Km.)			Over	lay Thi	ckness	(mm)		Remarks.
(Km.)-(Km.)	$\frac{\overline{X}}{\overline{X}}$ (m.m.)	o (m.m.)	$\overline{X}+1.5\sigma(m.m.)$	0 2	4 6		10	Al	A2	В	С	D	E	Remains,
0 - 1	0.3290	0.1223	0.5124					0	0	*	*	0	0	
1 - 2	0.3329	0.1281	0.5251					0	0	*	*	0	0	
2 - 3	0.4300	0.1303	0.6254					0	0	*	*	0	0	Note;
3 _ 4	0.4257	0.1156	0.5991					0	0	*	*	0	0	Al; Asphalt Institute Method
4 _ 5	0.4367	0.0869	0.5670					0	0	*	*	0	0	(Design Def. \overline{X} + 1.50)
5 - 6	0.6343	0.1001	0.7845					0	0	*	0	0	0	A2; Asphalt Institute Method
6 _ 7	0.3719	0.1342	0.5732				ļ	0	0	*	*	0	0	(Design Def. $\overline{X} + 2.00$)
7 _ 8	0.4367	0.0940	0.5776					0	0	*	*	0	0	B; TRRL Method
8 _ 9	0.4795	0.1425	0.6933					0	0	*	*	0	0	C; TRRL in the Tropics Method
9 - 10	0.5571	0.1065	0.7169					0	0	*	*	0	0	D; Ruiz's Formula
10 - 11	0.5290	0.0758	0.6428					0	0	*	*	0	0	E; California Method
11 - 12	0.4540	0.1141	0.6252					0	0	*	*	0	0	* Pavement failure within
12 - 13	0.4419	0.0844	0.5685					0	0	*	*	0	0	design period is not
13 - 14	0.5186	0.0919	0.6565					0	0	*	*	0	0	foreseen.
14 - 15	0.5286	0.0890	0.6620					0	0	*	*	0	0	
15 - 16	0.5586	0.1320	0.7566					0	0	*	0	0	0	
16 - 17	0.5590	0.1352	0.7618					0	0	*	0	0	0	
17 - 18	0.4971	0.0903	0.6327					0	0	*	*	0	0	
18 - 19	0.4243	0.1331	0.6239					0	0	*	*	0	0	
19 - 20	0.5855	0.1024	0.7390					0	0	*	0	0	0	
20 - 21	0.4737	0.0915	0.6110					0	0	*	*	0	0	
21 - 22	0.3989	0.1150	0.5714					0	0	*	*	0	0	
22 - 23	0.5895	0.1520	0.8175					0	0	*	0	0	2	
23 _ 24	0.5938	0.1158	0.7675					0	0	*	0	0	0	
24 - 25	0.3868	0.2174	0.7129					0	0	*	*	0	0	
25 - 26	0.6157	0.1152	0.7885					0	0	*	0	0	0	
26 - 27	0.6290	0.1160	0.8031					0	0	*	0	0	1	
27 – 28	0.6729	0.1903	0.9583					0	21	*	12	14	15	
28 – 29	0.4899	0.1101	0.6550			[0	0	*	*	0	0	
29 - 30	0.6743	0.1234	0.8593					0	0	*	0	0	6	

CALCULATED OVERLAY THICKNESS (6)

RH-4 (24 - 1001) (2)

Section	Average Deflection	Standard Deviation	Design Deflection	Rou	ıghn	ess_{	10³r	mm/K	m.)			Ove	rlay Th	ickness	(mm)		Para ala
(Km.) - (Km.)	\overline{X} (m.m.)	o (m.m.)	$\overline{X}+1.5\sigma(m.m.)$	0	2	4		6	8	10	Al	A2	В	С	D	E	Remarks.
30 - 31	0.6270	0.1753	0.8899								0	0	*	4	4	8	
31 - 32	0.6167	0.1077	0.7782								0	0	*	0	0	0	
32 - 33	0.5800	0.2536	0.9604			\Box					0	26	*	13	14	15	Note;
33 - 34	0.6225	0.1718	0.8801								0	6	*	3	3	7	Al; Asphalt Institute Method
34 - 35	0.6281	0.1530	0.8576			一门					0	0	*	0	0	5	(Design Def. \overline{X} + 1.50)
35 - 36	0.5552	0.1262	0.7446								0	0	*	*	0	0	A2; Asphalt Institute Method
36 - 37	0.5005	0.1420	0.7134			ጎ					0	0	*	*	0	0	(Design Def. \overline{X} + 2.00)
37 - 38	0.6071	0.1541	. 0.8384			7					0	0	*	0	0	4	B; TRRL Method
38 - 39	0.5838	0.1092	0.7477								0	0	*	*	0	0	C; TRRL in the Tropics Method
39 - 40	0.4695	0.1179	0.6464	r	-	7					0	0	*	*	0	0	D; Ruiz's Formula
				<u> </u>		.11.		<u> </u>		i							E; California Method
											-						* Pavement failure within
																	design períod is not

foreseen.

CALCULATED OVERLAY THICKNESS (7)

Date of deflection Survey

8/10/1982

DBST 25 mm
Soil Cement Base 150
Laterite Subbase 150

RH-5(201 - 0100) (1)

Section	Average	Standard	Design	Rone	Thnese	(10 ³ m	m/Kı	n)	,,,_,_,,	Over	lav Th	ickness	(mm)		
(Km.) - (Km.)	Deflection X (m.m.)	Deviation σ (m.m.)	Deflection X+1.50(m.m.)	0	2	4 6		8 10	Al	A2	В	С	D	Е	Remarks.
0 - 1	0.5414	0.2432	0.9062						0	0	*	0	0	8	
1 - 2	0.3500	0.1064	0.5097	L					0	0	*	*	0	0	Note;
2 - 3	0.3371	0.1436	0.5526						0	0	*	*	0	0	Al; Asphalt Institute Method
3 - 4	0.4719	0.2045	0.7786						0	0	*	0	0	0	(Design Def. $\overline{X} + 1.5\sigma$)
4 – 5	0.5348	0.2162	0.4590			_			0	0	*	0	0	4	A2; Asphalt Institute Method
5 - 6	0.5800	0.2540	0.9611			$ lambda \mid$			0	15	*	8	8	13	(Design Def. $\overline{X} + 2.00$)
6 - 7	0.3590	0.1188	0.5373						0	0	*	*	0	0	B; TRRL Method
7 - 8	0.3457	0.1730	0.6052						0	0	*	*	0	0	C; TRRL in the Tropics Metho
8 - 9	0.5552	0.2572	0.9411	-					0	11	*	6	5	11	D; Ruiz's Formula
9 - 10	0.4905	0.2277	0.8320				_		0	0	*	0	0	2	E; California Method
10 - 11	0.5305	0.2441	0.8967						0	0	*	0	0	7	
11 - 12	0.5910	0.2545	0.9727						0	17	*	10	10	14	* Pavement failure within
12 - 13	0.3929	0.2200	0.7228						0	0	*	*	0	0	design period is not
13 - 14	0.5710	0.2464	0.9405						0	10	*	5	5	11	foreseen.
14 - 15	0.4790	0.2602	0.8694						0	0	*	0	0	5	
15 - 16	0.3771	0.2223	0.7106						0	0	*	*	0	0	
16 - 17	0.5300	0.1430	0.7445						0	0	*	*	0	0	
17 - 18	0.5224	0.1906	0.8082						0	0	*	0	0	0	
18 - 19	0.5938	0.2223	0.9273		ĺ				0	0	*	3	4	10	
19 - 20	0.5557	0.1921	0.8439			TT '			0	0	*	0	0	3	
20 - 21	0.5510	0.2638	0.9467			 			0	14	*	6	5	12	
21 - 22	0.3800	0.1832	0.6548						0	0	*	*	0	0	
22 – 23	0.3862	0.1572	0.6220						0	0	*	*	0	0	
23 - 24	0.4848	0.1962	0.7791			TT			0	0	*	*	0	0	
24 - 25	0.4071	0.2007	0.7082			11			0	0	*	*	0	0	
25 - 26	0.3100	0.1313	0.5070						0	0	*	*	0	0	
26 - 27	0.3224	0.1590	0.5608						0	0	*	*	0	0	
27 - 28	0.3810	0.1264	0.5706						0	0	*	*	0	0	

CALCULATED OVERLAY THICKNESS (8)

RH-5 (201 - 0100) (2)

Remarks.		(mm)	ckness	lay Thi	Over			Km.)	3mm/1	(10	hness	Rou	Design Deflection	Standard Deviation	Average Deflection	Section
Relial As,	0 Al 0 0 A2 22 B; 0 C; 21 D; 40 E; 62 *	D	¢	В	A2	Al	10	8	6	4	2	0	$\overline{X}+1.5\sigma(m.m.)$		\overline{X} (m.m.)	(Km.) - (Km.)
	0	0	*	*	0	0							0.6711	. 0.1795	0.4019	28 - 29
Note;	0	0	*	*	0	0							0.6697	0.1478	0.4481	29 - 30
Al; Asphalt Institute Met	0	0	*	*	0	0]				0.7078	0.1744	0.4462	30 - 31
(Design Def. \overline{X} + 1.50		0	*	*	0	0			Ţ				0.7372	0.1581	0.5000	31 - 32
A2; Asphalt Institute Met	0	0	*	*	0	0			´				0.6881	0.1972	0.3924	32 - 33
(Design Def. \overline{X} + 2.00		20	20	0	34	5				\sqcap			1.0541	0.3243	0.5676	33 - 34
B; TRRL Method	22	20	20	0	32	6				П			1.0568	0.2883	0.6243	34 - 35
C; TRRL in the Tropics M	٥	0	0	*	0	0		-		\prod			0.8111	0.1735	0.5510	35 - 36
_	21	18	18	0	29	0]				1.0436	0.2557	0.6600	36 - 37
•	40	33	35	0	44	30			·				1.1871	0.2431	0.8224	37 - 38
·	62	46	49	28	57	44				丁			1.3216	0.3068	0.8614	38 - 39
* Pavement failure within												-				
design period is not																·····
foreseen.																

CALCULATED OVERLAY THICKNESS (9)

Date of deflection Survey

13/10/1982

DBST 25 mm
Soil Cement Base 150
Laterite Subbase 150

RH - 6 (201 - 0200)

Remarks.		(mm)	kness	lay Thic	Over			(m.)	3 mm/k	3 (10	ghness	Roug	Design Deflection -	Standard Deviation	Average Deflection	Section
Relialks.	E	D	С	В	A2	LA .	10	8	6	4	2	0	X+1.50(m.m.)	o (m.m.)	X (m.m.)	Km.)-(Km.)
	73	42	43	9	55	42							1.2072	0.2966	0.7624	39 - 40
Note;	0	0	*	*	0	0							0.5270	0.1205	0.3462	40 - 41
Al; Asphalt Institute Method	0	0	*	*	0	0							0.6108	0.0945	0.4690	41 - 42
(Design Def. $\overline{X} + 1.5\sigma$)	0	0	0	*	0	0				$\perp \perp$			0.7801	0.1918	0.4924	42 - 43
A2; Asphalt Institute Method	113	73	79	46	82	68							1.5658	0.4715	0.8586	43 - 44
(Design Def. $\overline{X} + 2.0\sigma$)	37	34	36	0	47	34						<u></u>	1.1425	0.2388	0.7843	44 - 45
B; TRRL Method	60	48	51	20	61	49							1.2815	0.3441	0.7652	45 - 46
C; TRRL in the Tropics Meth	7	4	4	*	0	0							0.8832	0.1453	0.6652	46 - 47
D; Ruiz's Formula	28	28	30	0	42	26							1.0880	0.2475	0.7167	47 - 48
E; California Method	5	0	0	*	0	0							0.8608	0.2196	0.5314	48 - 49
	19	18	19	*	33	9							1.0085	0.2523	0.6300	49 - 50
* Pavement failure within	50	43	45	13	58	43]]			1.2231	0.3773	0.6571	50 - 51
design period is not	7	4	3	*	6	0							0.8784	0.2249	0.5410	51 - 52
foreseen.	30	30	31	0	46	34] [1.1005	0.2882	0.6681	52 - 53
	52	44	47	13	57	45							1.2401	0.3058	0.7814	53 - 54
	47	42	45	12	55	42]						1.2118	0.3066	0.7519	54 - 55
	54	46	49	18	58	46			Ì	Π			1.2541	0.3234	0.7690	55 - 56
	33	31	33	0	44	30	1			'	\sqcap		1.1128	0.2371	0.7571	56 – 57
	28	28	30	0	42	25							1.0832	0.2526	0.7043	57 - 58
	39	36	38	0	48	36			İ				1.1540	0.2481	0.7819	58 - 59
	36	34	36	0	50	34							1.1389	0.3148	0.6667	59 - 60
	38	36	38	0	49	36				7			1.1569	0.2630	0.7624	60 - 61
	6	3	. 3	*	8	0				7			0.8737	0.2621	0.4805	61 - 62
	7	3	3	*	0	0			1				0.8840	0.1592	0.6452	62 - 63
	7	4	4	*	0	0		Ì]	$\neg \neg$			0.8878	0.1729	0.6285	63 - 64

CALCULATED OVERLAY THICKNESS (10)

Date of deflection Survey

DBST	25 mm
Soil Aggregate Base	150
Soil Subbase	150

RH -	7	(201	_	0300)
------	---	------	---	-------

7/10/1982

- Remarks. Note:		(mm)	ckness	lay Thi	Over			Km.)	0 3 mm/1	ss (I	ughnes	Design Deflection -	Standard Deviation	Average Deflection	Section
tvanet ra,	E	D	С	В	A2	Al	10	8	6	4	2	X+1.50 (m.m.)		X (m.m.)	(Km.)-(Km.)
	0	0	*	*	0	0						0.4665	. 0.1224	0.2830	64 - 65
	0	0	*	*	0	0						0.7179	0.2716	0.3105	65 - 66
	0	0	*	*	0	0	ļ	1	1			0.4625	0.1239	0.2767	66 - 67
Al; Asphalt Institute Metho	0	0	*	*	0	0						0.6217	0.2005	0.3210	67 - 68
(Design Def. $\overline{X} + 1.50$)	0	0	*	*	0	0			E			0.6015	0.1652	0.3538	68 ~ 69
A2; Asphalt Institute Metho	0	0	*	*	0	0						0.5012	0.1161	0.3271	69 - 70
(Design Def. $\overline{X} + 2.00$)	0	0	*	*	0	0			7			0.6564	0.1751	0.3938	70 - 71
B; TRRL Method	0	0	*	*	0	0						0.6975	0.2259	0.3586	71 - 72
C; TRRL in the Tropics Met	0	0	*	*	0	0				\top		0.4677	0.1185	0.2900	72 – 73
D; Ruiz's Formula	0	0	*	*	0	0						0.4301	0.0861	0.3010	73 - 74
E; California Method	0	0	*	*	0	0				7		0.4893	0.1408	0.2781	74 - 75
* Pavement failure within	0	0	*	*	0	0			٣,	\top		0.5967	0.1911	0.3100	75 – 76
design period is not	0	0	*	*	0	0						0.3922	0.0967	0.2471	76 – 77
foreseen.	0	0	*	*	0	0			T†			0.5298	0.1243	0.3433	77 – 78
	0	0	*	*	0	0	1			\top		0.2715	0.0476	0.2000	78 - 79
	0	0	*	*	0	0				\dashv		0.3225	0.0588	0.2343	79 - 80
	0	0	*	*	0	0			7	+		0.4385	0.1127	0.2695	80 - 81

CALCULATED OVERLAY THICKNESS (11)

Date of deflection Survey

_		
	DBST	25 mm
	Crushed Stone Base	150
	Soil Subbase	150

9/10/1982 RH-8 (201 - 0400) (1) Section Standard Design Average Roughness (10 mm/Km.) Overlay Thickness (mm) Deflection Deflection Deviation Remarks. (Km.) - (Km.) \overline{X} (m.m.) $\overline{X}+1.5\sigma(m.m.)$ 0 6 8 10 Al Α2 D E σ (m.m.) В С 81 - 82 0.1700 0.0675 0.2713 0 0 0 0 0.1729 82 - 83 0.0503 0.2483 0 0 0 Note; 83 - 84 0.1765 0.0543 0.2580 0 Al; Asphalt Institute Method 0.2001 84 - 85 0.0835 0.3248 0 0 (Design Def. $\overline{X} + 1.5\sigma$) 85 - 86 0.1414 0.0442 0.2077 0 0 A2; Asphalt Institute Method 86 - 87 0.2024 0.0572 0.2881 0 0 (Design Def. \overline{X} + 2.00) 87 - 88 0.2050 0.0588 0.2932 0 0 B; TRRL Method 88 - 89 0.2748 0.0815 0.3970 0 TRRL in the Tropics Method 89 - 90 0.1859 0.1127 0.3549 0 0 D; Ruiz's Formula - 91 0.1495 0.2291 0 0 90 0.0531 0 E; California Method 0 91 - 92 0.2148 0.1172 0.3905 0 * Pavement failure within 92 - 93 0.1762 0.0755 0.2894 0 0 0 design period is not 0.2442 0.1233 0.4297 0 0 0 93 ~ 94 foreseen. 0.3081 0 0 94 - 95 0.2129 0.0635 0.2950 - 96 0.1900 0.0700 95 0 0 0.2921 0 _ 97 0.1824 0.0731 96 97 - 98 0.1652 0.0800 0.2853 0 0 0 98 - 99 0.1886 0.1472 0.4094 0 0 0 0.0641 0.2662 99 - 100 0.1700 0 100 - 101 0.2662 0.2256 0.6046 0 0 0 101 - 102 0.2224 0.0905 0.3581 0 0.2542 0.6380 0 0 102 - 103 0.2567 0 103 - 104 0.2124 0.1000 0.3624 0 0 0.3914 104 - 105 0.2589 0.0883 0 0.0985 0.3420 105 - 106 0.1942 0 0 0 0 0.3043 106 - 107 0.2119 0.0616 0 0.0871 0.3273 0 0 108 - 109 0.1967 0 109 - 110 0.2900 0.1449 0.5073 0 0 0 110 -111 0.2738 0.1141 0.4450 0

0.0911

0.2581

111 - 112

0.3948

0

0

0

0

.

CALCULATED OVERLAY THICKNESS (12)

RH - 8 (201 - 0400) (2)

Section	Average Deflection	Standard Deviation	Design Deflection	Rou	ghnes	s (10	3 _{mm/}	′Km.)		Ove	rlay Thi	ckness	(mm)		Remarks.
(Km.) - (Km.)	\overline{X} (m.m.)		$\overline{X}+1.5\sigma(m.m.)$	0	2	4	6	8	10	Al	A2	В	С	D	E	Nemal No,
112 _ 113	0.3742	. 0.1945	0.6659							0	0	*	*	0	0	
113 _ 114	0.2548	0.1768	0.5200							0	0	*	*	0	0	
115 _ 116	0.2524	0.0995	0.4016			$\neg \top$				0	0	*	*	0	0	Note;
117 - 118	0.2690	0.1470	0.4895	-	_			1	ļ	0	0	*	*	0	0	Al; Asphalt Institute Method
118 - 119	0.2324	0.0945	0.3781	 -	-	_ -	\dashv	J	ı	0	0	*	*	0	0	(Design Def. \overline{X} + 1.50)
220	******	******	3,4,52	L												A2; Asphalt Institute Method
																(Design Def. \overline{X} + 2.00)
																B; TRRL Method
																C; TRRL in the Tropics Method
																D; Ruiz's Formula
																E; California Method
																* Pavement failure within
																design period is not
																foreseen.

CALCULATED OVERLAY THICKNESS(13)

Date of deflection Survey 3/6/1981

DBST	25	mm
Crushed Stone Base	150	
Laterite Subbase	150	

RH-9 (202 - 0500) (1)

				<u> </u>					. 3 .			Design	Standard	Average	Section
Remarks.	E	(mm) D	ckness C	lay Thi	Over A2	Al	10	Km.) 8	0 mm/	hness (1	Roug 0		Deviation	Deflection \overline{X} (m.m.)	(Km.) - (Km.)
	1	0	0	*	0	0					1	0.9129	. 0.1102	0.7476	14 – 15
Note;	59	47	52	13	52	41			ĺ	_		1.4494	0.3104	0.9838	15 ~ 16
Al; Asphalt Institute Method	0	0	*	*	ď	0				 		0.7656	0.1596	0.5262	16 – 17
(Design Def. $\overline{X} + 1.5\sigma$)	0	0	*	*	0	0				1	ļ	0.8184	0.1475	0.5971	17 - 18
A2; Asphalt Institute Method	0	0	*	*	0	0						0.4673	0.0639	0.3714	18 - 19
(Design Def. \overline{X} + 2.00)	0	0	*	*	0	0						0.7750	0.1468	0.5548	19 - 20
B; TRRL Method	5	0	0	*	0	0				4		0.9690	0.1038	0.8133	20 - 21
C; TRRL in the Tropics Meth	11	10	10	*	0	0					-	1.0566	0.1895	0.7724	21 - 22
D; Ruiz's Formula	0	0	*	*	0	0				1	<u> </u>	0.8817	0.1967	0.5867	22 - 23
E; California Method	0	0	*	*	0	0					<u> </u>	0.7321	0.2071	0.4214	23 - 24
•	0	0	*	*	0	0					<u> </u>	0.8866	0.1292	0.6929	24 - 25
* Pavement failure within	0	0	*	*	0	0						0.8465	0.1010	0.6950	25 _ 26
design period is not	0	0	*	*	0	0					<u> </u>	0.8982	0.1785	0.6305	26 _ 27
foreseen.	0	0	*	*	0	0				 	<u> </u>	0.8000	0.1533	0.5700	27 _ 28
	0	0	*	*	0	0				4-4		0.4746	0.0710	0.3681	28 _ 29
	0	0	*	*	0	0				111	_	0.8834	0.1626	0.6395	29 _ 30
	0	0	*	*	0	0						0.8825	0.1125	0.7138	30 - 31
	36	33	37	0	40	25						1.2928	0.2895	0.8586	31 - 32
	3	0	0	*	0	0						0.9421	0.1281	0.7500	32 - 33
	19	19	20	*	22	0						1.1416	0.2569	0.7562	33 - 34
	0	0	*	*	0	0						0.8155	0.0767	0.7005	34 ~ 35
	6	2	2	*	0	0						0.9913	0.1558	0.7576	35 - 36
	0	0	*	*	0	0						0.8130	0.0925	0.6743	36 - 37
	10	7	8	*	0	0			İ			1.0359	0.1866	0.7560	37 - 38
	0	0	*	*	0	0						0.8802	0.1233	0.6952	38 - 39
	0	0	*	*	0	0			_			0.8123	0.0701	0.7071	39 - 40
	0	0	*	*	0	0			<u> </u>			0.7621	0.0944	0.6205	40 - 41
	3	0	0	*	0	0						0.9490	0.1632	0.7043	41 - 42
	0	0	*	*	0	0						0.7185	0.0758	0.6048	42 - 43
	0	0	*	*	0	0						0.7746	0.0951	0.6319	43 - 44

CALCULATED OVERLAY THICKNESS (14)

RH-9 (202 - 0500) (2)

Section	Dofloction	Standard													Standard Deviation	Design Deflection -	Roughness (10 mm/Km.) Overlay Thickness (mm)												Remarks.
(Km.)-(Km.)			$\overline{X}+1.5\sigma(m.m.)$	0	2	4	6	8	10	Al	A2	В	С	D	E	Nonat res													
44 - 45	0.6286	0.1506	0.8544							0	0	*	*	0	0	·													
45 - 46	0.6676	0.2433	1.0325			ŢĮ			Į	0	0	*	8	7	10														
46 - 47	0.5814	0.0879	0.7132			7				0	0	*	*	0	0	Note;													
47 - 48	0.6400	0.0704	0.7455		_	7				0	0	*	*	0	0	Al; Asphalt Institute Method													
48 _ 49	0.6345	0.0724	0.7430	\vdash	_		ļ		1	0	0	*	*	0	0	(Design Def. \overline{X} + 1.50)													
49 - 50	0.6360	0.0605	0.7267	-	$\neg \vdash$					0	0	*	*	0	0	A2; Asphalt Institute Method													
15 - 55	0.0300	0.0003	0.7207	L_		_ 11				Ü	Ü			J		(Design Def. \overline{X} + 2.00)													
									···.							B; TRRL Method													
																C; TRRL in the Tropics Method													

D; Ruiz's Formula
E; California Method

foreseen.

* Pavement failure within design period is not

CALCULATED OVERLAY THICKNESS (15)

Date of deflection Survey

AC Surface 50 mm

Crushed Stone Base 150

Laterite Subbase 180

RH-10 (206 - 0102)

21/12/1982

Remarks.		(mm)	ckness	lay Thi	Over		Roughness (10 mm/Km.)						Design Deflection	Standard Deviation	Average Deflection	Deflection	
ACMAL NO.	E	D	С	В	A2	Al	10	8	6	4	2	0	X+1.50(m.m.)	σ (m.m.)	(Km.)-(Km.) X (m.m.)		
	0	*	*	*	0	0							0.5729	0.1524	0.3443	0 - 1	
Note;	23	20	22	0	30	0							1.0046	0.2945	0.5628	1 - 2	
Al; Asphalt Institute Method	65	53	57	15	65	50		1	1	1	1	1	1.3201	0.4558	0.6363	2 - 3	
(Design Def. \overline{X} + 1.50)	15	13	13	0	0	0							0.9490	0.2702	0.5436	3 - 4	
A2; Asphalt Institute Method	0	*	*	*	0	0						L	0.5600	4 - 5 0.3420 0.1453 0.5600			
(Design Def. \overline{X} + 2.00) B; TRRL Method																	
C; TRRL in the Tropics Meth													•				
D; Ruiz's Formula																	
E; California Method																	
* Pavement failure within																	
design period is not																	
foreseen.																	

CALCULATED OVERLAY THICKNESS (16)

Date of deflection Survey

25 mm DBST 150 Crushed Stone Base Laterite Subbase 120

RH-11 (207 - 0100) (1)

4/2/1981

Section (Km.)-(Km.)	Average Deflection		Design Deflection	Roug	hness	(10 ³ 1	mm/K	m.)			Over	lay Thi	ickness	(nun)		Remarks.
(Kin 2 / (Kin 2 /	X (m.m.)) σ (m.m.) $\overline{X}+1.5$	X+1.50(m.m.)	0	2	4	6	8	10	Al	A2	B	С	D	E	
448 _ 449	0.9860	0.1800	1.2560							0	16	*	26	25	26	
449 - 450	0.8629	0.1123	1.0312							ο	c	*	0	0	7	Note;
450 - 451	0.8114	0.1118	0.9791							0	0	*	0	0	3	Al; Asphalt Institute Method
451 - 452	0.6252	0.0741	0.7364							0	0	*	*	0	0	(Design Def. $\overline{X} + 1.5\sigma$)
452 - 453	0.6243	0.0738	0.7350							0	0	*	*	0	0	A2; Asphalt Institute Method
453 - 454	0.6100	0.1232	0.7947			\perp				0	0	*	*	0	0	(Design Def. \overline{X} + 2.00)
454 - 455	0.5510	0.0664	0.6506							0	0	*	*	0	0	B; TRRL Method
455 - 456	0.6771	0.3064	1.1367					-		0	5	*	13	13	15	C; TRRL in the Tropics Method
456 - 457	0.5038	0.0451	0.5715							0	0	*	*	0	0	D; Ruiz's Formula
457 - 458	0.4933	0.0827	0.6173	L		Ш				0	0	*	*	0	0	E; California Method
458 - 459	0.5548	0.0843	0.6812					1		0	0	*	*	0	0	
459 - 460	0.4762	0.0537	0.5568						ļ	0	0	*	*	0	0	* Pavement failure within
460 - 461	0.6886	0.0685	0.7913							0	0	*	*	0	0	design period is not
461 - 462	0.5567	0.1157	0.7302							0	0	*	*	0	0	foreseen.
462 - 463	0.4114	0.1484	0.6340				-	-		0	0	*	*	0	0	
463 - 464	0.6386	0.1508	0.4648							0	0	*	*	0	0	
464 - 465	0.7671	0.1177	0.9436]				0	0	*	*	0	1	
465 ~ 466	0.6393	0.0991	0.7880				}		1	0	0	*	*	0	0	
466 - 467	0.5525	0.0734	0.6626							0	0	*	*	0	0	
467 _ 468	0.5281	0.0745	0.6398							0	0	*	*	0	0	
468 - 469	0.6238	0.0578	0.7106			}				0	0	*	*	0	0	
469 - 470	0.4881	0.0789	0.6065							0	0	*	*	0	0	
470 - 471	0.5581	0.0705	0.6638							0	0	*	*	0	0	
471 - 472	0.5395	0.0638	0.6352							0	0	*	*	0	0	
472 - 473	0.6267	0.1081	0.7888					ļ		0	0	*	*	0	0	
473 - 474	0.6981	0.1497	0.9226							0	0	*	*	0	0	
474 - 475	0.8533	0.1237	1.0390				1			0	0	*	0	0	7	
475 _ 476	0.6111	0.772	0.7268					ļ		0	0	*	*	0	0	
476 - 477	0.7467	0.1799	1.0166							0	0	*	0	0	6	
477 - 478	0.5795	0.0847	0.7066					_]_		0	0	*	*	0	0	

design period is not

foreseen.

CALCULATED OVERLAY THICKNESS (17)

RH-11 (207 - 0100) (2)

Section	Average Deflection	Standard Deviation	Design Deflection	Rou	ghnes	ss (1	0 ³ mm/	/Km.)			Ove	rlay Thi	ckness	(mm)		Remarks.
(Km.)-(Km.)	X (m.m.)	o (m.m.)	X+1.50(m.m.)	0	2	4	6	8	10	Al	A2	В	С	Ď	E	ACCINCL IS LE
478 - 479	0.5267	0.0725	0.6355							0	0	*	*	0	0	
479 - 480	0.5724	0.0595	0.6616							0	0	*	*	0	0	
480 - 481	0.6905	0.1104	0.8561							0	0	*	*	0	0	Note;
481 - 482	0.5529	0.1446	0.7697				_			0	0	*	*	0	0	Al; Asphalt Institute Method (Design Def. $\overline{X} + 1.5\sigma$)
482 - 483	0.5957	0.0601	0.6859	-						0	0	*	*	0	0	-
483 - 484	0.6938	0.1221	0.8769							0	0	*	*	0	0	A2; Asphalt Institute Method
484 - 485	0.6762	0.1292	0.8700				一			0	0	*	*	0	0	(Design Def. \overline{X} + 2.00)
			·									· · · · · · · · · · · · · · · · · · ·				_ B; TRRL Method
																C; TRRL in the Tropics Method
																D; Ruiz's Formula
																E; California Method
																* Pavement failure within

CALCULATED OVERLAY THICKNESS (18)

Date of deflection Survey 21/5/1981

DBST	30 mm
Crushed Stone Base	150
Soil Subbase	150

RH-12 (207 - 0200)

Section	Average Deflection	Standard Deviation	Design Deflection	Rou	ghnes	s (1	0 ³ mm/	Km.)			Over	lay Th	ickness		Remarks.	
(Km.) - (Km.)	$Km.$) – $(Km.$) \overline{X} $(m.m.)$	σ (m.m.)	X+1.5σ(m.m.)	0	2	4	6	8	10	Al	A2	В	С	D	E	ACINGLES.
485 - 486	0.6071	0.1712	0.8640				7			0	0	*	*	0	0	
486 - 487	0.5957	0.1450	0.8132		_	T	٦			0	0	*	*	0	0	Note;
487 - 488	0.5938	0.1264	0.7835							0	0	*	*	0	0	Al; Asphalt Institute Method
488 - 489	0.8324	0.2142	1.1537	Γ			ŀ			0	0	*	18	17	18	(Design Def. $\overline{X} + 1.5\sigma$)
489 - 490	0.6467	0.2064	0.9562							0	0	*	*	0	3	A2; Asphalt Institute Method
490 - 491	0.6481	0.3466	1.1649							0	0	*	19	18	19	(Design Def. \overline{X} + 2.00)
491 - 492	0.6210	0.2220	0.9539				ĺ			0	0	*	*	0	3	B; TRRL Method
492 - 493	0.3715	0.1120	0.5395				}			0	0	*	*	0	0	C; TRRL in the Tropics Metho
493 - 494	0.6710	0.2077	0.9825	L						0	0	*	*	0	5	D; Ruiz's Formula
494 - 495	0.4843	0.1735	0.7446							0	0	*	*	0	0	E; California Method
495 - 496	0.6157	0.2052	0.9235							0	0	*	*	0	0	* Pavement failure within
496 - 497	0.6914	0.1247	0.8785					1		0	0	*	*	0	0	design period is not
497 - 498	0.5876	0.0983	0.7351							0	0	*	*	0	0	foreseen.

CALCULATED OVERLAY THICKNESS (19)

Date of deflection Survey 12/3/1981

,,		
DBST	25	mm
Soil Aggregate Base	150	
Laterite Subbase	200	

RH - 13 (208 - 0100)

				<u>-</u> -								12, 3, 1			1200		
-	Average Deflection	Standard Deviation	Design Deflection	Roughness (10 mm/Km.)						Over	lay Th	ickness	(mm)		- Remarks.		
	X (m.m.)	□ (m.m.)	X+1.5σ(m.m.)				6 8 1		Al	A2	В	С	D	E	RendIKS,		
0 - 1	0.6720	0.1362	0.8763						0	0	*	0	0	0			
1 - 2	0.6624	0.1397	0.8720			\mathbb{T}			0	0	*	0	0	0	Note;		
2 - 3	0.6571	0.0907	0.7932			7			0	0	*	0	0	0	Al; Asphalt Institute Method		
3 - 4	0.5395	0.0998	0.6892			T]			0	0	*	*	0	0	(Design Def. \overline{X} + 1.50)		
4 - 5	0.5905	0.0546	0.6724						0	0	*	*	0	0	A2; Asphalt Institute Method		
5 - 6	0.6033	0.1166	0.7782					į	0	0	*	O	0	0	(Design Def. \overline{X} + 2.00)		
6 - 7	0.7300	0.0782	0.8473						0	0	*	0	0	0	B; TRRL Method		
7 - 8	0.7381	0.1535	0.9683						0	0	0	9	9	15	C; TRRL in the Tropics Method		
8 - 9	0.9810	0.2154	1.3040						42	51	10	49	44	73	D; Ruiz's Formula		
9 - 10	0.7967	0.2521	1.1748			17		ļ	28	42	0	36	32	54	E; California Method		
10 - 11	0.8176	0.1200	0.9975						0	5	0	13	12	21	•		
11 - 12	0.6635	0.1519	0.8914						0	0	*	0	0	0	* Pavement failure within		
12 - 13	0.8433	0.1196	1.0227						0	12	0	16	15	27	design period is not		
13 - 14	0.7452	0.0943	0.8866						0	0	*	0	0	0	foreseen.		
14 - 15	0.7290	0.0910	0.8656						0	0	*	0	0	0			
15 - 16	0.7557	0.0948	0.8979			Π			0	0	*	0	0	0			
16 - 17	0.8543	0.2164	1.1788			<u> </u>			29	40	0	35	33	54			
17 - 18	0.7830	0.2132	1.1028						17	33	0	26	25	41			
18 - 19	0.8057	0.0812	0.9274						0	0	*	3	4	8			
19 - 20	1.1700	0.2701	1.5751			$\exists \top$			62	70	36	73	67	104			
20 - 21	1.3486	0.6341	2.2997						97	109	80	108	113	155			
21 - 22	0.9635	0.4648	1.6607		$\neg \uparrow \neg$				67	79	42	80	73	111			
22 - 23	0.8971	0.1046	1.0540						5	18	0	20	19	32			
23 - 24	0.7629	0.0911	0.8994						0	0	*	0	0	0			
24 - 25	0.7229	0.1405	0.9336			$\dashv \uparrow$			0	0	*	5	5	10			
25 - 26	0.7210	0.1026	0.8748		\dashv				0	0	*	0	0	0			
26 - 27	0.9567	0.2161	1.2808			 			40	49	6	46	42	70			
27 - 28	0.8229	0.1838	1.0986		\dashv				16	31	0	26	24	40			
		- -	_				1 1										
28 - 29	0.7438	0.1885	1.0266	l	Į	1		ļ	0	20	0	17	16	27			
28 - 29 29 - 30	0.7438 0.7595	0.1885 0.1436	1.0266 0.9750	-	-	ا ا			0	20 0	0	17	10	27 17			

CALCULATED OVERLAY THICKNESS (20)

Date of deflection Survey 18/3/1981

DBST	25	mm
Soil Aggregate Base	150	
Laterite Subbase	200	

RH -	14	(208 -	0200)
------	----	--------	-------

Remarks.		(mm)_	ickness	rlay Th	Ove		.)	nun/Kn	(10 ³ r	hness	Roug	Design Deflection	Standard	Average Deflection	Section
	Е	D	С	В	A2	Al	3 10	6	4	2	0	X+1.50(m.m.)	σ (m.m.)	X (m.m.)	(Km.)-(Km.)
	14	13	16	0	15	0			<u> </u>			1.0722	0.2275	0.7310	31 - 32
Note;	148	89	90	60	86	75						2.0210	0.4343	1.3695	32 - 33
Al; Asphalt Institute Method	74	54	62	25	61	50						1.5210	0.3537	0.9905	33 - 34
(Design Def. $\overline{X} + 1.50$)	4	0	0	*	0	0						0.9401	0.1061	0.7810	34 - 35
A2; Asphalt Institute Method	32	30	36	0	38	23				<u> </u>		1.2431	0.2036	0.9376	35 - 36
(Design Def. \overline{X} + 2.00)	145	88	90	0	84	75						1.9998	0.4697	1.2952	36 - 37
B; TRRL Method	175	105	100	80	102	89						2.3203	0.7484	1.1976	37 - 38
	23	23	27	0	28	10			Π			1.1678	0.2017	0.8652	38 - 39
	73	53	60	25	60	49				T		1.5087	0.3543	0.9771	39 - 40
D; Ruiz's Formula	118	75	78	45	75	65						1.7850	0.4240	1.1490	40 - 41
E; California Method	16	15	18	0	11	0		1	<u>'</u>			1.0908	0.1497	0.8662	41 - 42
* Pavement failure within	0	0	0	*	0	0		1				0.8896	0.1499	0.6647	42 - 43
design period is not	23	23	27	0	27	8			П	7		1.1618	0.2042	0.8555	43 - 44
foreseen.	13	12	14	0	3	0						1.0588	0.1544	0.8271	44 - 45
** Thickness chart in not	34	32	36	0	49	25			\Box			1.2518	0.2971	0.8062	45 - 46
available.	15	13	17	0	9	0						1.0747	0.1702	0.8193	46 - 47
	4	0	0	*	0	0			\Box			0.9437	0.1349	0.7414	47 - 48
	0	0	*	*	0	0		1				0.7157	0.0717	0.6081	48 - 49
	0	0	*	*	0	0		1				0.7159	0.1497	0.4914	49 - 50
	17	16	19	0	16	0		TT,		1		1.0980	0.1866	0.8181	50 - 51
	108	70	75	40	70	61						1.7202	0.3348	1.2180	51 - 52
	**	148	**	**	133	122		╁╌				3.3355	0.8717	2.0280	52 - 53
	169	100	98	75	94	84		\dagger				2.2115	0.5017	1.4590	53 - 54
	**	143	**	**	127	117		╫╜			<u> </u>	3.2005	0.7435	2.0852	54 - 55
	**	152	**	**	136	124		†1		 		3.4435	0.9344	2.0419	55 - 56
	**	131	**	**	122	105		+	T			2.8733	0.7993	1.6743	56 - 57
	0	0	0	*	0	0	,		┼			0.7661	0.1845	0.4893	57 - 58

CALCULATED OVERLAY THICKNESS (21)

Date of deflection Survey

24/9/1982

DBST 25 mm
Soil Cement Base 150
Laterite Subbase 270

RH-15	(213 -	0100) (1)
-------	--------	------	-----	----

	(213 0100)	\±/							=			24/ 3/ 1.			
Section	Average Deflection	Standard Deviation	Design Deflection	Rou	ghnes	s (10³ı	mm/Km	.)		Over	lay Thi	ickness	(mm)		Remarks.
(Km.)-(Km.)	X (m.m.)	o (m.m.)	$\overline{X}+1.5\sigma(m.m.)$	0	2	4	6	B 10	Al	A2	В	С	D	E	None Pro-
0 - 1	0.6243	0.2695	1.0286						18	39	0	25	23	23	
1 – 2	0.5742	0.1951	0.8668						0	0	*	3	2	6	
2 – 3	0.7924	0.1044	0.9490						0	13	0	13	13	13	Note;
3 - 4	0.8014	0.1471	1.0221	-					17	31	0	24	22	22	Al; Asphalt Institute Method
4 - 5	0.7038	0.1528	0.9329						0	13	0	12	10	12	(Design Def. \overline{X} + 1.50)
5 – 6	0.5911	0.0973	0.7371						0	0	*	0	0	0	A2; Asphalt Institute Method
6 - 7	0.9324	0.2273	1.2733						49	59	0	53	48	58	(Design Def. \overline{X} + 2.00)
7 – 8	0.7724	0.1973	1.0683			ן ן			25	40	0	30	27	26	B; TRRL Method
8 - 9	0.7643	0.1707	1.0203	-					16	32	0	24	22	21	C; TRRL in the Tropics Method
9 - 10	0.5940	0.2028	0.8982						0	13	*	7	6	8	D; Ruiz's Formula
10 - 11	0.7833	0.2216	1.1158	-					33	46	0	36	33	33	E; California Method
11 - 12	0.5248	0.1944	0.8163				1		0	0	*	0	0	2	* Pavement failure within
12 - 13	0.5862	0.2557	0.9697				1		2	30	0	17	15	16	design period is not
13 - 14	0.5524	0.1387	0.7604			1			0	0	*	0	0	0	foreseen.
14 - 15	0.4914	0.1757	0.7550			\top			0	0	*	0	0	0	
15 _ 16	0.6124	0.1447	0.8294						0	0	*	0	0	3	
16 _ 17	0.6990	0.2059	1.0079		_				13	32	0	23	20	19	
17 - 18	0.6867	0.1554	0.9197		_				0	13	0	10	8	11	
18 - 19	0.6148	0.1896	0.8992						0	11	*	8	7	9	
19 - 20	0.5900	0.0834	0.7150		_ _	7			0	0	*	0	0	0	
20 - 21	0.6781	0.1688	0.9313			-\			0	16	0	12	10	12	
21 - 22	0.5657	0.1517	0.7932	-		-			0	0	*	0	0	0	
22 – 23	0.6510	0.1041	0.8072			7			0	0	*	0	0	1	
23 - 24	0.4662	0.1275	0.6574	-		1			0	0	*	*	0	0	
24 – 25	0.6538	0.1572	0.8896	-		\Box			0	3	*	6	5	7	
25 - 26	0.7467	0.1372	0.9525	-	$\neg \Box$	-			0	17	0	14	14	14	
26 - 27	0.6767	0.1020	0.8297]			0	0	*	0	0	3	
27 - 28	0.8119	0.1165	0.9866						8	22	0	18	18	17	
28 - 29	0.8057	0.0786	0.9237						0	0	0	10	10	11	
29 - 30	0.7419	0.1452	0.9597						0	19	0	14	14	14	

CALCULATED OVERLAY THICKNESS (22)

RH - 15 (213 - 0100) (2)

Section	Average Deflection	Standard Deviation	Roue	ghness	(10	3 mm/	Km.)			Ove	lay Thi	ckness		—— Remarks.		
(Km.) - (Km.)	$\frac{\overline{X}}{X}$ (m.m.)	σ (m.m.)	Deflection $\overline{X}+1.5\sigma(m.m.)$	0	2	4	6	8	10	Al	A2	В	С	D	E	Remains,
30 - 31	0.5195	0.1157	0.6931							0	0	*	*	0	0	
31 - 32	0.7100	0.1688	0.9633			1				0	22	0	15	15	15	
32 - 33	0.7667	0.2859	1.1956							42	55	12	45	40	45	Note;
33 - 34	0.3262	0.1005	0.4770			1				0	0	*	*	0	0	Al; Asphalt Institute Method
34 - 35	0.3952	0.1086	0.5581			1				0	0	*	*	0	0	(Design Def. \overline{X} + 1.5 σ)
35 - 36	0.8862	0.1673	1.1372	\vdash			-	-		35	45	0	38	34	36	A2; Asphalt Institute Method
36 - 37	0.9105	0.0994	1.0595	-	-	1				24	32	0	29	27	26	(Design Def. \overline{X} + 2.00)
			0.7840		-					0	0	*	0	0	0	B; TRRL Method
3, 30	0.6333	0.1005		-								*				C; TRRL in the Tropics Metho
38 - 39	0.5905	0.1546	0.8224	-		٦				0	0		0	0	3	D; Ruiz's Formula
39 - 40	0.4406	0.1645	0.6873			Щ.				0	0	*	*	0	0	•
40 - 41	0.3971	0.1612	0.6389	İ		Ш				0	0	*	*	0	0	E; California Method
41 - 42	0.4789	0.1588	0.7171					İ		0	0	*	0	0	0	* Pavement failure within
42 - 43	0.5862	0.1913	0.8731							0	3	*	3	3	6	design period is not
43 - 44	0.6268	0.1741	0.8880		$\dagger \lnot$	7				0	5	*	6	4	8	foreseen.

CALCULATED OVERLAY THICKNESS (23)

Date of deflection Survey 6/8/1982

DBST	25 mm
Soil Cement	150
Soil Subbase	100

الأراز الأراز المراج يتراق أنتاج المتراث المناصف والمتراث والمناطق والمناطق والمناطق والمناطق والمناطق والمناطق والمناطق والمناطق

RH - 16 (214 - 0100)

Section	Average Deflection	Standard	Design Deflection	Roughness (10 ³ mm/Km.)			Over	lay Thi	ckness	(mm)		Da
(Km.)-(Km.)	X (m.m.)	σ (m.m.)	$\overline{X}+1.5\sigma(m.m.)$	0 2 4 6 8	10	Al	A2	В	С	D	E	Remarks.
0 - 1	0.7250	0,1312	0.9219			0	0	*	0	0	3	
1 - 2	0.6305	0.1124	0.7991		ļ	0	0	*	*	0	0	
2 - 3	0.6719	0.1149	0.8443			0	0	*	ź	0	0	Note;
3 - 4	0.7148	0.1487	0.9378			0	0	*	0	0	4	Al; Asphalt Institute Method
4 - 5	1.0148	0.2428	1.3790		Ì	40	49	13	50	45	52	(Design Def. \overline{X} + 1.50)
5 - 6	1.0567	0.2764	1.4713		ļ	47	55	20	57	52	66	A2; Asphalt Institute Method
6 - 7	0.7200	0.1121	0.8882			0	0	*	0	0	0	(Design Def. \overline{X} + 2.00)
7 - 8	0.6619	0.0977	0.8085			0	0	*	*	0	0	B; TRRL Method
8 - 9	0.7148	0.1234	0.8999			0	0	*	0	0	0	C; TRRL in the Tropics Method
9 - 10	0.5757	0.1020	0.7287			0	0	*	*	0	0	D; Ruiz's Formula
10 - 11	0.9276	0.1907	1,2136			19	33	0	33	30	28	E; California Method
11 - 12	0.6576	0.2693	1.0615		Ì	0	17	*	15	14	13	* Pavement failure within
12 - 13	0.6484	0.1214	0.8306		- (0	0	*	*	0	0	design period is not
13 - 14	0.5262	0.0723	0.6346		1	0	0	*	*	0	0	foreseen.
14 - 15	0.4990	0.0701	0.6043			0	0	*	*	0	0	
15 - 16	0.5357	0.1027	0.6898			0	0	*	*	0	0	
16 - 17	0.5990	0.0874	0.7301		1	0	0	*	÷	0	0	
17 - 18	0.4348	0.1347	0.6368		İ	0	0	*	*	0	0	
18 - 19	0.6557	0.1310	0.8536			0	0	*	0	0	0	
19 - 20	0.6367	0.1901	0.9218			0	0	*	0	0	2	
20 - 21	0.4786	0.1720	0.7365			0	0	*	*	0	0	
21 - 22	0.4081	0.0603	0.4985		}	0	0	*	*	0	0	
22 - 23	0.5419	0.1278	0.7336	 - 		0	0	*	*	0	0	
23 - 24	1.0571	0.2587	1.4451			45	54	20	56	50	62	
24 - 25	0.8748	0.2137	1.1953			16	32	0	30	27	26	
24 - 25 25 - 26	1.0548	0.3516	1.5821			53	63	35	68	60	85	
25 - 26	1.0348	0.1494	1.2565	 		26	36	0	38	33	34	
26 - 27 27 - 28	0.6262	0.1332	0.8260	 	ļ	0	0	*	*	0	0	

CALCULATED OVERLAY THICKNESS (24)

Date of deflection Survey 10/8/1982

25 mm DBST 150 Crushed Stone Base Soil Subbase 100

- Remarks.		Overlay Thickness (mm)								ness (1	Roug	Design Deflection	Section Average Standard Deflection Deviation				
Manual Man		E	D	С	В	A2	Al	10	8	6	2 4	0	X+1.5σ(m.m.)	σ (m.m.)	X (m.m.)	(Km.)-(Km.)	
		17	15	16	*	15	0						1.0659	0.2138	0.7453	28 - 29	
Note;	Not	23	21	24	*	28	3						1.1246	0.2497	0.7500	29 – 30	
Al; Asphalt Institute Metho		14	10	12	*	7	0						1.0340	0.2071	0.7233	30 - 31	
(Design Def. $\overline{X} + 1.50$)	·	40	. 34	37	0	43	28			\Box			1.2498	0.2735	0.8395	31 - 32	
A2; Asphalt Institute Metho	A2;	80	55	62	22	60	51						1.4981	0.2960	1.0540	32 - 33	
(Design Def. \overline{X} + 2.00)		21	20	22	*	24	0						1.1066	0.2263	0.7671	33 - 34	
	В;	21	20	22	*	19	0	Ì					1.1076	0.1711	0.8510	34 - 35	
C; TRRL in the Tropics Met	C;	62	47	53	15	52	44			}			1.4001	0.2290.	1.0567	35 - 36	
_	D;	3	0	0	*	0	0			}			0.9053	0.1400	0.6952	36 - 37	
E; California Method	E;	0	0	*	*	0	0						0.5496	0.0852	0.4219	37 - 38	
		0	0	*	*	0	0		ŀ				0.5125	0.0829	0.3881	38 - 39	
* Pavement failure within		0	0	*	*	0	0						0.6744	0.1042	0.5181	39 - 40	
design period is not		0	0	*	*	0	0						0.7536	0.0802	0.6333	40 - 41	
foreseen.	f	0	0	*	*	0	0			İ			0.7367	0.0797	0.6171	41 - 42	
		0	0	*	*	0	0				TT		0.6707	0.0468	0.6005	42 - 43	
		0	0	*	*	0	0						0.7514	0.1355	0.5481	43 - 44	
		0	0	*	*	0	0				TT		0.6853	0.0854	0.5571	44 - 45	
		0	0	*	*	0	0						0.6809	0.1194	0.5019	45 - 46	
		0	0	*	*	0	0						0.6794	0.1196	0.5000	45 - 46	
		0	0	*	*	0	0						0.7419	0.0921	0.6037	46 - 47	

CALCULATED OVERLAY THICKNESS (25)

Date of deflection Survey

21/10/1981

Penetration Macadam 60 mm

Crushed Stone Base 150

Laterite Subbase 150

RH	-	18	(214	-	(0080

Section	Average Deflection	Standard Deviation	Design Deflection	Roug	hness	(10	3mm/K	m.)			Over	lay Thi	ckness	(mm)		Remarks.
(Km.)-(Km.)	X (m.m.)	σ (m.m.)	X+1.50(m.m.)	0	2	4	6	8	10	Al	A2	В	С	D	E	Newalks,
0 - 1	0.7400	0.1655	0.9882							23	36	0	28	26	25	
1 - 2	0.0650	0.0092	0.0789							0	0	0	0	0	0	
2 – 3	0.7520	0.1463	0.9715							20	33	0	27	24	22	Note;
3 - 4	0.0711	0.0100	0.0861							0	0	0	0	0	0	Al; Asphalt Institute Method
4 - 5	1.0629	0.1723	1.3212		\Box					62	68	50	67	61	83	(Design Def. \overline{X} + 1.50)
5 – 6	0.7230	0.2756	1.1365							44	58	28	47	43	47	A2; Asphalt Institute Method
6 – 7	0.7581	0.1331	0.9577							17	29	0	25	24	22	(Design Def. \overline{X} + 2.00)
7 - 8	0.7643	0.1215 ·	0.9466		1 1					15	25	0	22	21	18	B; TRRL Method
8 - 9	NO DATA	NO DATA	NO DATA		17					0	0	0	0	0	0	C; TRRL in the Tropics Method
9 - 10	0.8795	0.1740	1.1405							45	54	28	48	44	48	D; Ruiz's Formula
10 - 11	0.7581	0.2013	1.0601		1					35	47	17	38	35	34	E; California Method
11 - 12	0.6829	0.1502	0.9081			ή				4	22	0	18	16	15	* Pavement failure within
12 - 13	0.8400	0.2039	1.1458			П				46	56	30	49	44	48	design period is not
13 - 14	0.6648	0.1225	0.8484			ľ				0	4	*	9	8	9	foreseen.
14 - 15	0.6314	0.1515	0.8586							0	12	*	10	11	10	
15 - 16	0.7629	0.1143	0.9343			П				12	24	0	22	20	18	
16 - 17	0.6957	0.0890	0.8293			Π				0	0	*	7	8	7	
17 - 18	0.9495	0.2891	1.3832							67	76	54	73	68	95	
18 - 19	0.8319	0.1597	1.0715							36	46	18	40	37	36	
19 - 20	0.7971	0.1102	0.9624							18	28	0	25	25	21	
20 - 21	0.7576	0.1012	0.9094]			4	18	0	18	17	15	
21 - 22	0.7952	0.1076	0.9567			П	-			17	27	0	25	25	22	
22 - 23	0.9876	0.1573	1.2236		<u> </u>]			53	60	38	57	52	62	
23 - 24	0.9086	0.1120	1.0766		Ì		٦			37	44	20	40	37	37	
24 - 25	0.9705	0.2390	1.3290				7			62	71	52	67	63	85	
25 - 26	0.8157	0.1287	1.0088			\Box				26	37	0	33	30	27	
26 - 27	0.8014	0.0837	0.9270		17					9	19	0	20	20	18	
27 - 28	0.2652	0.1507	1.0913		1					39	48	22	42	39	40	
28 _ 29	0.8829	0.1336	1.0833			ľ				38	46	20	41	38	38	
29 - 30	0.7600	0.1467	0.9800	-	 	1				21	34	0	28	27	24	

CALCULATED OVERLAY THICKNESS (26)

Date of deflection Survey

75 mm AC Surface Crushed Stone Base 150 Spo; Subbase 200

RH -	19 (304 - 08	300) (1)										3/12/1	.980		Spo; Subbase 200
Section	Average Deflection	Standard	Design Deflection	Roug	hness	(10 ³ m	n/Km.)		Ove	erlay T	hicknes	s (mm)		Remarks.
(Km.) - (Km.)	x (m.m.)	o (m.m.)	$\overline{X}+1.5\sigma(m.m.)$	0	2	4 6	8	10	D Al.	A2	В	С	D	E	3031102.752
55 _ 56	1.1073	0.2697	1.5118						72	80	52	79	76	113	
56 _ 57	1.1443	0.2554	1.5274						73	80	52	80	77	115	
57 - 58	1.3874	0.3410	1.8990						93	99	76	103	103	167	Note;
58 - 59	1.8324	0.5856	2.7108]	ļ	126	137	**	**	145	**	Al; Asphalt Institute Method
59 - 60	1.0562	0.3071	1.5168						72	81	52	80	76	114	(Design Def. \overline{X} + 1.50)
60 - 61	1.1851	0.4222	1.8184]		89	97	73	100	98	157	A2; Asphalt Institute Method
61 - 62	1.3297	0.3682	1.8819				1	l	92	100	75	102	102	165	(Design Def. \overline{X} + 2.00)
62 - 63	1.4629	0.3205	1,9436]		95	100	78	1.05	105	**	B; TRRL Method
63 - 64	1.3562	0.2853	1.7842				-		87	93	69	97	95	154	C; TRRL in the Tropics Method
64 - 65	1.0627	0.2490	1.4362						67	75	52	73	69	100.	D; Ruiz's Formula
65 – 66	1.3033	0.5173	2.0793				7		101	110	85	111	114	**	E; California Method
66 – 67	1.3541	0.2720	1.7621				ΓΙ		86	92	68	96	94	150	* Pavement failure within
67 – 68	1.5474	0.3285	2.0402						98	107	82	109	112	**	design period is not
68 - 69	1.8190	0.5855	2.6972						126	136	**	**	143	**	foreseen.
69 - 70	1.1582	0.2229	1.4926				ļ		71	77	50	78	73	110	** Thickness chart is not
70 - 71	1.4757	0,3322	1.9740				ŀ		96	104	80	106	107	**	available
71 - 72	1.2889	0.3417	1.8014						88	95	70	98	96	**	
72 - 73	1.3898	0.3963	1.9843				 	ļ	96	107	80	107	108	**	
73 - 74	1.1514	0.2388	1.5097			\top	ŀ		72	79	50	78	75	114	
74 - 75	1.2462	0.2273	1,5871						77	83	58	85	82	126	
75 - 76	0.7755	0.2030	1.0800			1		}	33	45	0	37	36	34	
76 - 77	0.9251	0.2633	1.3200		\Box				58	67	38	62	59	77	
77 - 78	0.4186	0.1577	0.6551						0	0	*	*	0	0	
78 - 79	0.5163	0.2113	0.8333]]]		0	0	*	3	5	6	
79 - 80	0.8814	0.2234	1.2165			1			49	58	25	51	49	57	
80 - 81	0.7229	0.1689	0.9762	Ì	1	┤	ļ		14	29	0	23	22	22	
81 - 82	0.7981	0.1837	1.0736		$\top\!\!\!\!\top$	┦			32	43	0	35	33	34	
82 - 83	0.7717	0.2565	1.1565		\dashv				42	54	17	45	43	46	
83 - 84	0.6286	0.2415	0.9909		\sqcap		}		17	36	0	25	24	23	
84 - 85	0.6048	0.3210	1.0863						34	51	0	37	35	36	

The second secon

CALCULATED OVERLAY THICKNESS (27)

RH - (304 - 0800) (2)

Remarks.			(mm)	ckness	lay Thi	Over			(m.)	mm/K	(10	ghness	Roug	Design Deflection	Standard Deviation	Average Deflection	Section
Remaiks,		E	D	С	В	A2	Al	10	8	6	4	2	0	$\overline{X}+1.5\sigma(m.m.)$	o (m.m.)	\overline{X} (m.m.)	(Km.)-(Km.)
	3	3	0	0	*	0	0		\top					0.7979	0.1800	0.5279	85 – 86
		39	38	39	10	47	36	1					<u></u>	1.1035	0.2094	0.7894	86 - 87
Note;	5	85	63	66	40	69	62							1.3665	0.2071	1.0559	87 - 88
Al; Asphalt Institute Met	A.)	130	83	88	60	87	78					\parallel		1.6088	0.3514	1.0817	88 - 89
(Design Def. \overline{X} + 1.50		90	64	69	42	77	63							1.3880	0.4120	0.7700	89 - 90
A2; Asphalt Institute Met	A.	124	80	84	58	86	76							1.5725	0.3993	0.9736	90 - 91
(Design Def. \overline{X} + 2.00	l	94	67	70	43	77	65			7	1			1.4088	0.3684	0.8562	91 - 92
B; TRRL Method	, В	**	135	**	**	130	121	Ì			1			2.5169	0.5673	1.6660	92 - 93
C; TRRL in the Tropics 1	, C	**	131	**	**	128	117	ļ						2.4229	0.6340	1.4719	93 - 94
D; Ruiz's Formula	L D	1	0	0	*	0	0							0.7727	0.1794	0.5037	94 - 95
E; California Method	E	4	0	0	*	0	0					 _		0.8107	0.1931	0.5211	95 - 96
* Pavement failure within	*	73	56	60	35	68	56				\forall			1.2975	0.3358	0.7938	96 - 97
design period is not	5	155	95	97	70	97	88				\prod			1.7880	0.4791	1.0694	97 - 98
foreseen.	5	35	35	37	0	48	34				1			1.0835	0.2639	0.6876	98 - 99
** Thickness chart is not) *:	0	0	*	*	0	0				4	\top		0.5884	0.0584	0.5008	99 - 100
available														· -		***	100 - 101

Appendix 8.8

28 of 36

CALCULATED OVERLAY THICKNESS (28)

Date of deflection Survey

26/11/1980

AC Shurface	75 mm
Crushed Stone Base	150
Soil Subbase	150

RH	_	20	(304	_	0902)
VU	_	20	(304	_	02021

Remarks.		(mm)	ckness	lay Thi	Over			m/Km.)	10 ³ n	ss (1	Roughnes	Design Deflection	Standard	Average Deflection	Section
Veligi v2°	E	D	С	В	A2	Al	10	8		4	0 2	x+1.50(m.m.)	o (m.m.)	\overline{X} (m.m.)	(Km.)-(Km.)
	170	105	106	87	109	96						1.8619	0.5129	1.0925	101 - 102
	104	72	76	58	84	71	1					1.4041	0.4142	0.7829	102 - 103
Note;	147	92	96	75	98	86	į.					1.6658	0.4623	0.9724	103 - 104
Al; Asphalt Institute Method	128	82	88	68	90	79						1.5405	0.3816	0.9681	104 - 105
(Design Def. \overline{X} + 1.5 σ)	94	66	71	55	82	67			7			1.3495	0.4453	0.6814	105 - 106
A2; Asphalt Institute Method													•		106 - 107
(Design Def. \overline{X} + 2.00)			·							il					
B; TRRL Method															
C; TRRL in the Tropics Meth															
D; Ruiz's Formula															
E; California Method															
* Pavement failure within															
design period is not															
foreseen.															

CALCULATED OVERLAY THICKNESS (29)

Date of deflection Survey

27/11/1980

AC Surface	75	mm
Crushed Stone Base	150	
Soil Subbase	200	

RH - 21 (304 - 0904)

Remarks.		(mm)	ckness	lay Thi	Over)	(10 ³ mm/Kr	hness	Design Deflection _Rough	Standard Deviation	Average Deflection	Section
	E	D	С	В	A2	Al	8 10	4 6	2	X+1.50(m.m.) 0		X (m.m.)	(Km.)-(Km.)
	35	34	37	20	51	36				1.0407	0.2538	0.6599	107 - 108
	130	83	87	70	89	80				1.5507	0.3362	1.0465	108 - 109
Note;	77	58	62	48	73	60				1.2725	0.3441	0.7563	109 - 110
Al; Asphalt Institute Metho	0	0	0	*	0	0				0.7410	0.2175	0.4148	110 - 111
(Design Def. $\overline{X} + 1.5\sigma$)	105	71	74	58	85	70				1.4025	0.4734	0.6924	111 - 112
A2; Asphalt Institute Metho	26	27	27	0	44	23				0.9706	0.2786	0.5527	112 - 113
(Design Def. \overline{X} + 2.00)	0	0	*	*	0	0			7	0.6219	0.1691	0.3682	113 - 114
B; TRRL Method	4	0	0	*	0	0			П	0.7817	0.1257	0.5932	114 - 115
C; TRRL in the Tropics Met	4	0	0	*	4	0			7	0.7791	0.2342	0.4278	115 - 116
D; Ruiz's Formula	18	20	18	0	28	9				0.9105	0.1703	0.6551	116 - 117
E; California Method	0	0	0	*	0	0			_	0.7436	0.1361	0.5395	117 - 118
* Pavement failure within	67	53	56	42	64	56				1.2228	0.1939	0.9319	118 - 119
design period is not	93	66	70	55	78	67	1 1		Π	1.3509	0.3288	0.8578	119 - 120
foreseen.	0	0	*	*	0	0			1	0.3263	0.1017	0.1738	120 - 121
	0	0	*	*	0	0			7	0.3532	0.0775	0.2370	121 - 122
	0	0	*	*	0	0				0.3195	0.0811	0.1979	122 - 123
	0	0	*	*	0	0			<u> </u>	0.5189	0.1459	→ 0.3000	123 - 124
	0	0	*	*	0	0			7	0.3278	0.0745	0.2160	124 - 125
	0	0	*	*	0	0				0.4058	0.0859	0.2770	125 - 126
	0	0	*	*	0	0				0.2942	0.1100	0.1292	126 - 127
	0	0	*	*	0	0			\Box	0.1432	0.0502	0.0679	127 - 128
	0	0	*	*	0	0				0.4613	0.1203	0.2808	128 - 129
	0	0	*	*	0	0				0.5612	0.1527	0.3322	129 - 130
	0	0	*	*	0	0			77	0.6046	0.1814	0.3325	130 - 131
	0	0	0	*	0	0				0.6403	0.0929	0.5009	131 - 132
	0	0	٥	*	0	0				0.7139	0.1096	0.5495	132 - 133

CALCULATED OVERLAY THICKNESS (30)

Date of deflection Survey 20/11/1980

Penetration Macadam	50	mi
Crushed Stone Base	100	
Soil Subbase	100	

RH - 22 (2023 - 0100)

Section	Average Deflection	Standard Deviation	Design Deflection	Rou	ghness	(10) ³ mm/	/Km.)			Ove:	rlay Th	ickness	(mm)		Remarks.
(Km.) - (Km.)	X (m.m.)	o (m.m.)	X+1.5σ(m.m.)	0	2	4	6	8	10	Al	A2	В	С	D	E	rengirs.
0 - 1	0.7300	0.1395	0.9392							0	16	*	16	15	18	
1 - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8	0.7305 0.9095 0.6429 0.7882 18.7791 0.9648 16.3890	0.1440 0.1991 0.1728 0.2391 5.9257 0.1172 5.8572	0.9465 1.2081 0.9021 1.1469 27.6676 1.1405							0 45 0 38 ** 38 **	18 54 12 51 ** 44 **	* 13 * 0 ** 0 **	16 48 10 40 ** 39 **	15 46 10 38 ** 38 **	18 60 14 48 ** 48 **	Note; Al; Asphalt Institute Method (Design Def. $\overline{X} + 1.5\sigma$) A2; Asphalt Institute Method (Design Def. $\overline{X} + 2.0\sigma$) B; TRRL Method
			•													C; TRRL in the Tropics Method D; Ruiz's Formula E; California Method * Pavement failure within design period is not foreseen. ** Thickness chart is not available

CALCULATED OVERLAY THICKNESS (31)

PH - 23 (2039 - 0101) RH - 24 (2039 - 0102) Date of deflection Survey 20/10/1980

DBST	25	mm
Soil Aggregate Base	100	
Soil Subbase	150	

Section	Average Deflection	Standard	Design Deflection	Roughness	(10 ³ mm/	'Km.)			Ove:	rlay Th	ickness	(mm)		
(Km.)-(Km.)	$\frac{\overline{X}}{X}$ (m.m.)	o (m.m.)	$\overline{X}+1.5\sigma(m.m.)$	0 2	4 6	8	10	Al	A2	В	С	D	E	- Remarks.
0 - 1	0.7644	0.2997	1.2139					43	57	14	47	42	47	
1 ~ 2	0.9671	0.5226	1.7510		╁┤ ╽			79	92	58	92	86	140	
2 - 3	0.9368	0.3778	1.5035		†			65	77	40	75	68	102	Note;
3 - 4	1.0400	0.5685	1.8927					86	100	70	98	95	159	Al; Asphalt Institute Method
4 - 5	0.5530	0.4371	1.2087		1 1	ļ		43	61	14	47	42	47	(Design Def. $\overline{X} + 1.50$)
5 - 6	0.5315	0.1897	0.8161		†	-		0	0	*	0	0	3	A2; Asphalt Institute Method
6 ~ 7	0.6119	0.3250	1.0994		╁			29	49	0	34	30	32	(Design Def. \overline{X} + 2.00)
7 - 8	0.6908	0.2524	1.0693		7			25	43	0	31	27	27	B; TRRL Method
8 - 9	0.8203	0.3791	1.3890		†			58	27	34	64	58	80	C; TRRL in the Tropics Meth
9 - 10	1.0205	0.2477	1.3920		 			58	68	34	65	58	80	D; Ruiz's Formula
10 - 11	0.9470	0.3888	1.5571		 			69	80	48	79	73	110	E; California Method
11 - 12	1.0644	0.6078	1.9762		十			90	104	72	103	101	168	* Pavement failure within
12 - 13	0.8476	0.2389	1.2060					43	54	10	47	41	47	design period is not
13 - 14	0.7433	0.2417	1.1058					30	46	0	35	31	32	foreseen.
14 - 15	0.7983	0.1044	0.9548		1			0	14	0	14	14	14	** Thickness chart is not
15 - 16	0.7609	0.3567	1.2960					51	65	25	55	49	62	available
16 - 17	0.7340	0.2334	1.0841		"			- ₂₇ -	43	0	32	28	29	
17 - 18	0.6894	0.2002	0.9897					8	29	0	19	18	18	
18 - 19	0.7455	0.1723	1.0040					11	29	0	23	20	20	
19 – 20	1.1390	0.4762	1.8534		7)			84	96	68	96	93	153	
20 - 21	0.9586	0.3404	1.4692		$\uparrow \uparrow \uparrow \uparrow$			63	75	40	73	65	94	
21 - 22	1.0773	0.3615	1.6195		77			73	83	53	84	77	120	
22 - 23	1.1036	0.2409	1.4651		 			63	71	40	73	65	94	
23 – 24	1.5186	0.2708	1.9248		† † †			88	94	70	100	98	162	
24 - 25	1.1740	0.3453	1.6918		#			76	86	56	88	82	132	
25 - 26	1.2335	0.5274	2.0246		 			92	105	75	105	104	**	
26 - 27	0.9282	0.2691	1.3319		 			54	64	30	59	53	68	
27 - 28	1.2917	0.5004	2.0423		┼┤			98	105	75	106	105	**	
28 - 29	1.2428	0.4304	1.8885		†			86	98	70	98	95	157	
29 - 30	1.0479	0.2165	1.3727		+	-		56	65	32	64	58	77	
30 - 31	0.8962	0.2727	1.3052		 			52	61	28	57	51	64	
31 - 32	0.6146	0.6200	1.5446		╁┚│			68	86	28 45	5 <i>1</i> 77	71	110	

CALCULATED OVERLAY THICKNESS (32)

Date of deflection Survey 26/10/1981

DBST 25 mm
Crushed Stone Base 150
Soil Subbase 150

RH - 25 (2071 - 0100)

														···	
Remarks.	· · · · · · · · · · · · · · · · · · ·	(mm)	ckness	lay Thi	Over:)	Km.	(10 ³ mm/1	ness	Roug	Design Deflection	Standard Deviation	Average Deflection	Section
	E	D	С	В	A2	Al_	10		4 6	2	0	X+1.50(m.m.)		X (m.m.)	(Km.)-(Km.)
	16	20	23	*	12	0						1.1172	0.1746	0.8552	0 - 1
Note;	0	0	*	*	0	0						0.8783	0.1741	0.6171	1 - 2
Al; Asphalt Institute Metho	Ω	0	0	*	0	0						0.9117	0.2446	0.5448	2 - 3
(Design Def. \overline{X} + 1.50)	0	0	*	*	0	0]]			0.7431	0.1975	0.4543	3 - 4
A2; Asphalt Institute Metho	ο,	0	*	*	0	0						0.6659	0.1263	0.4765	4 - 5
(Design Def. \overline{X} + 2.00)	0	0	*	*	0	0						0.6397	0.1387	0.4316	5 - 6
B; TRRL Method	0	0	*	*	0	0						0.7543	0.1280	0.5624	6 - 7
C; TRRL in the Tropics Met	0	0	*	*	0	0						0.5887	0.1255	0.4005	7 – 8
D; Ruiz's Formula	0	0	*	*	0	0						0.5669	0.1373	0.3610	8 - 9
E; California Method	0	0	*	*	0	0			_]_]			0.3776	0.0676	0.2762	9 - 10
·	0	0	*	*	0	0						0.6614	0.1393	0.4524	10 - 11
* Pavement failure within	0 ,	0	*	*	0	0						0.7485	0.1705	0.4929	11 - 12
design period is not	0	0	*	*	0	0						0.5269	0.1084	0.3643	12 - 13
foreseen.	0	0	*	*	0	0						0.6354	0.1312	0.4386	13 - 14
	9	11	13	*	0	0						1.0336	0.2684	0.6310	14 - 15
	0	0	*	*	0	٥						0.6445	0.1204	0.4638	15 - 16
	0	0	*	*	0	0	İ		\top			0.8252	0.1850	0.5476	16 - 17
	0	0	*	*	0	0						0.6032	0.1094	0.4390	17 - 18
	0	0	*	*	0	0			$\exists 1$			0.5479	0.1050	0.3905	18 - 19
	0	0	*	*	0	0						0.5198	0.0919	0.3819	19 ~ 20
	0	0	*	*	0	0	İ		\prod			0.5200	0.1022	0.3667	20 - 21
	11	13	14	*	9	0						1.0505	0.2876	0.6190	21 - 22
	0	0	*	*	0	0						0.6156	0.1599	0.3757	22 - 23
	0	11	13	*	0	0						1.0360	0.1812	0.7643	23 ~ 24
	0	0	*	*	0	0						0.7888	0.0884	0.6562	24 - 25
	0	0	*	*	0	0			T			0.8365	0.1434	0.6214	25 ~ 26
	0	0	*	*	0	0						0.8698	0.1180	0.6929	26 - 27
	0	0	*	*	0	0			_			0.8449	0.1178	0.6682	27 - 28

CALCULATED OVERLAY THICKNESS (33)

Date of deflection Survey 14/10/1980

DBST	25 mm
Soil Aggregate Base	150
Soil Subbase	100

RH - 26 (2109 - 0100)

Section	Average Deflection	Standard Deviation	dard Design Roughness (10 mm/Km.)							Ove	rlay Th	ickness	Remarks.			
$(Km.)-(Km.)$ Deflection \overline{X} $(m.m.)$		σ (m.m.)	$\overline{X}+1.5\sigma(m.m.)$	0	2	4	6	8	10	Al	A2	В	С	D	E	Nemarks,
0 - 1	0.6232	0.3005	1.0740							0	0	*	5	6	8	
1 - 2	0.7536	0.2066	1.0635		_					0	0	*	4	4	7	
2 ~ 3	1.0122	0.2946	1.4542							32	44	10	45	42	49	Note;
3 - 4	0.8444	0.2965	1.2892						İ	8	30	0	29	28	28	Al; Asphalt Institute Method
4 - 5	0.4944	0.2035	0.7997					1	-	0	0	*	*	0	0	(Design Def. \overline{X} + 1.50)
5 - 6	0.5109	0.2124	0.8296]	-		0	0	*	*	0	0	A2; Asphalt Institute Method
6 - 7	0.6916	0.3603	1.2321							0	27	0	23	22	23	(Design Def. \overline{X} + 2.00)
7 - 8	0.6110	0.2743	1.0225							0	0	*	0	0	5	B; TRRL Method
8 - 9	1.0473	0.4226	1.6812						_	49	59	28	63	59	85	C; TRRL in the Tropics Method
9 ~ 10	1.4153	0.8971	2.7609			7				91	103	**	**	120	**	D; Ruiz's Formula
10 - 11	0.9816	0.5386	1.7894						7	55	67	34	67	66	100	E; California Method
11 - 12	0.7679	0.2805	1.1887						_	0	16	0	17	17	17	* Pavement failure within
13 - 14	0.5971	0.1716	0.8545					\Box		0	0	*	0	0	0	design period is not
14 - 15	1.2855	0.8720	2.5935							84	100	**	**	112	**	foreseen.
15 - 16	0.7527	0.3640	1.2987							10	35	0	30	28	29	** Thickness chart is not
16 - 17	0.9302	0.5508	1.7563							53	66	33	66	65	95	available
17 - 18	0.7548	0.2552	1.1376							0	4	*	13	12	14	
19 - 20	0.6871	0.2334	1.0373						_	0	0	*	2	2	6	
20 - 21	1.3579	0.3603	1.8984							60	68	45	73	73	115	
21 - 22	1.1460	0.5250	1.9336						_	62	71	47	75	75	121	
22 - 23	0.7829	0.2314	1.1299							0	0	*	12	13	13	
23 - 24	0.8732	0.1951	1.1658				_		-	0	0	0	16	16	16	

CALCULATED OVERLAY THICKNESS (34)

Date of deflection Survey 24/9/1981

DBST	25 mm
Crushed Stone Base	150
Soil Subbase	200

RH - 2	7 (2160	-0100)
--------	---------	--------

Remarks.			(mm)	ckness	lay Thi	Over			(m.)	0 3 mm/1	ss ()	ughne	Design	Standard Deviation	Average Deflection	Section
Remalks.		E	D	С	В	A2	Al	10	8	6	4	2	+1.5σ(m.m.) (_	
		141	85	74	**	71	62				\top	\Box	2.2951	0.4990	1.5467	0 - 1
		**	106	**	**	91	75				\prod		2.7097	1.0866	1.0798	1 - 2
lote;	Not	0	0	*	*	0	0						0.8754	0.1909	0.5890	2 - 3
d; Asphalt Institute Metho	Al;	89	60	60	**	52	44						1.8751	0.3609	1.3338	3 - 4
(Design Def. \overline{X} + 1.50)		17	14	15	*	0	0				T		1.2907	0.3055	0.8324	4 - 5
A2; Asphalt Institute Metho	A2;	0	0	*	*	0	0				1		0.7986	0.1705	0.5429	5 ~ 6
(Design Def. \overline{X} + 2.00)		19	16	17	*	23	0						1.3196	0.5156	0.5462	6 - 7
3; TRRL Method	В;	0	0	*	*	0	0				T'	_	0.7670	0.1618	0.5243	7 - 8
; TRRL in the Tropics Met	C;	21	19	21	*	11	0				4	_	1.3391	0.3045	0.8824	8 - 9
; Ruiz's Formula	D;	0	0	*	*	0	0				-	-	0.9605	0.1825	0.6867	9 - 10
:; California Method	E;	0	0	*	*	0			+	_	┸┼╴		1.0547	0.1710	0.7982	10 - 11
Pavement failure within	* P	22	20	22	*	22	_ ,		_		\exists	_	1.3514	0.4387	0.6933	11 - 12
design period is not	đ	4	0	0	*	0	0						1.1059	0.1131	0.9362	12 - 13
foreseen.	f	35	32	35	*	26	10				\exists		1.4823	0.2377	1.1257	13 - 14
* Thickness chart is not	**	12	8	9	*	0	0]		1	1.2287	0.2766	0.8138	14 - 15
available		92	62	62	**	57	46			1	_		1.8989	0.5177	1.1224	15 - 16
		0	0	*	*	0	0			7	_	+	1.0577	0.2200	0.7276	16 - 17
		0	0	*	*	0	0			1	+	+	0.7628	0.1451	0.5452	17 - 18
		0	0	*	*	0	0		7		_	-	0.9615	0.1988	0.6633	18 - 19

CALCULATED OVERLAY THICKNESS (35)

Date of deflection Survey

7/9/1981

DBST 25 mm
Crushed Stone Base 150
Laterite Subbase 150

RH - 28 (2175 - 0100) (1)

Section	Average	Standard	Design			(7.0 ³ -	- /12	`			-1 m	ialmass	/mm\		
(Km.)-(Km.)	Deflection \overline{X} (m.m.)		Deflection $\overline{X}+1.50 \text{ (m.m.)}$	0	gnness 2	(10 ³ mr			Al	A2	B B	ickness C	(mun)	E	Remarks.
0 - 1	0.3933	0.1962	0.6877						0	0	*	*	0	0	
1 - 2	0.6524	0.3926	1.2413						0	19	*	18	18	19	
2 - 3	0.5033	0.1662	0.7526						0	0	*	*	0	0	Note;
3 - 4	0.6476	0.1699	0.9025						0	0	*	*	0	0	Al; Asphalt Institute Method
4 - 5	0.5838	0.1707	0.8399				Ì		0	0	*	*	0	0	(Design Def. $\overline{X} + 1.5\sigma$)
5 - 6	0.8838	0.2843	1.3103						0	21	*	24	25	26	A2; Asphalt Institute Method
6 - 7	0.7676	0.8608			\sqcap				59	75	**	75	79	130	(Design Def. \overline{X} + 2.00)
7 - 8	0.5819	0.1757							0	0	*	*	0	0	B; TRRL Method
8 - 9	0.4343	0.0920							0	0	*	*	0	0	C; TRRL in the Tropics Metho
9 - 10	0.4914	0.1172			77				0	0	*	*	0	0	D; Ruiz's Formula
10 - 11	0.4519	0.1098							0	0	*	*	0	0	E; California Method
11 - 12	0.3710	0.0718			17				0	0	*	*	0	0	* Pavement failure within
12 - 13	0.4000	0.0811							0	0	*	*	0	0	design period is not
13 - 14	0.7438	0.1634							0	0	*	0	0	0	foreseen.
14 - 15	0.8943	0.3109				1 1			0	29	**	30	29	32	** Thickness chart is not
15 - 16	0.6905	0.1632			$\neg \neg$	1 1			0	0	*	*	0	0	available
16 - 17	1.0343	0.6423			7				57	71	**	73	80	121	
17 - 18	1.0529	0.2822				1			22	38	**	41	39	45	
18 - 19	0.7462	0.1940				7			0	0	*	0	0	4	
19 - 20	0.5210	0.1268							0	0	*	*	0	0	
20 - 21	0.8600	0.3596							10	35	**	34	32	36	
21 - 22	0.8057	0.3037							0	15	*	20	20	22	
22 - 23	0.8030	0.3841							5	34	**	32	31	33	
23 - 24	0.8974	0.2633		-	1				0	16	*	23	22	24	
	34.2295	12.0713		-	╌┼┵╌	†			**	**	**	**	**	**	
24 - 25	0.6095	0.0836		-		╅╵╎			0	0	*	*	0	0	
25 - 26	0.5633	0.1397		-	+				0	0	*	*	0	0	
26 - 27		0.1397		-					0	0	*	*	0	0	
27 - 28	0.5929			-					0	0	*	*	0	0	
28 - 29	0.5529	0,0691		-					0	0	*	*	0	0	
29 - 30	0.5914	0.0908	0.7276	<u></u>											

CALCULATED OVERLAY THICKNESS (36)

RH - 28 (2175 - 0100) (2)

Section	Average Deflection	Standard	Design Deflection								Remarks.					
$(Km.)-(Km.)$ $\frac{Dellection}{X}$ $(m.m.)$ σ $(m.m.)$ $\overline{X}+1.50$		0	2	4	6	8	10	Al	A2	В	С	D	E	TORIGE NES		
30 _ 31	0.6148	0.1186	0.7927							0	0	*	*	0	0	
31 - 32	0.7790	0.1485	1.0018				ĺ		l	0	0	*	0	0	0	
32 - 33	0.9310	0.1241	1.1170							0	0	*	3	5	10	Note;
33 - 34	0.7844	0.2003	1.0848			,		1	1	0	0	*	0	0	7	Al; Asphalt Institute Method
30 0.	******	*******		L_												(Design Def. \overline{X} + 1.50)
			·											·		A2; Asphalt Institute Method
																(Design Def. \overline{X} + 2.00)
																B; TRRL Method
																C; TRRL in the Tropics Method
																D; Ruiz's Formula
																E; California Method
																* Pavement failure within
																design period is not
																foreseen.