because sales natural gas is decreased according to LPG production increase.

I appreaciate if my report is useful for you.

Sincerely yours,

Y. Kawase

LPG PRODUCTION FROM NATURAL GAS

CONTENT

	page
I FOREWORD	1
II DEFINITION OF LPG	,1
III PHYSICAL PROPERTY OF LPG	1
IV LPG SPECIFICATION	2
V LPG DEMAND FORECAST	3
VI LPG USAGE	3
VI.1 Houshold and Commerce	3
VI.2 Industry	3
VI.3 Agriculture Industry	4
VI.4 Town Gas	4
VI.5 Petrochemical	4
VII MARKETING RESEARCH IN JAPAN	5
VII.1 Japanese LPG Import by Supply Source	5
VII.2 LPG Import Quantity of Each Company in Japan	6
VII.3 Import Terminal Capacity in Japan	6
VII.4 LPG Sales Quantity of Each Company in Japan	6
VII.5 LPG Supply and Demand Forecast in Japan	6
VII.6 Japan Petroleum Development Corporation	7
VIII MATERIAL BALANCE OF C3 AND C4 LPG (FROM NATURAL GAS)	7
IX LPG FOB BANGKOK PRICE (EXPORT LPG)	8
X CASE-1 EXPENDITURE AND REVENUE IN CASE OF NATURAL GAS	
PRICE 1.50 \$/MMBTU, C ₃ LPG PRICE 160 \$/T AND C ₄ LPG	
PRICE 180 \$/T (500 MMSCF/D)	10
X.1 Operation Cost	10
X.2 Cost of Natural Gas Charge	14
X.3 Expenditure	14
X.4 Revenue	14
X.5 Profit and Loss	14

X' CASE-1' EXPENDITURE AND REVENUE IN CASE OF NATURAL GAS PRIC 1.70 \$/MMBTU, C3 LPG PRICE 160 \$/T AND C4 LPG 180 \$/T	Æ
(500 MMSCF/D)	15
(500 MMSCF/D)	17
X'.1 Utility	15
X'.2 Operation Cost	15
X'.3 Cost of Natural Gas Charge	15
X1.4 Expenditure	15
XI CASE-2 EXPENDITURE AND REVENUE IN CASE OF NATURAL GAS	
PRICE EQUIVALENT TO FUEL OIL PRICE (2.063 b/MMBTU)	
(500 MMSCF/D)	16
XI.1 Natural Gas Price Equivalent to Fuel Oil 1,200"	16
XI.2 Utility	16
XI.3 Operation Cost	16
XI.4 Cost of Natural Gas Charge	17
XI.5 Expenditure	17
XI.6 Revenue	17
XI.7 Profit and Loss	17
XII CASE-3 EXPENDITURE AND IN CASE OF NATURAL GAS PRICE IS	
MIDDLE OF CASE-1 AND CASE-2 (1.78 \$/BTU) (500 MMSCF/D)	17
XII.1 Natural Gas Price	17
XII.2 Utility	18
XII.3 Operation Cost	18
XII.4 Cost of Natural Gas Charge	18
XIII RESULT OF CASE-1, CASE-1, CASE-2, CASE-3	
(500 MMSCF/D)	19
XIV CASE-4 EXPENDITURE AND REVENUE IN CASE OF NATURAL GAS .	
PRICE 1.50 \$/MMBTU, C3 LPG PRICE 160 \$/T, C4 LPG PRICE	
180 \$/T (700 MMSCF/D)	20
XIV.1 Construction Cost	2.
XIV.2 Operation Cost	2
XTV.3 Htility	2.

TABLE AND FIG. LIST

	•	ATTACH.
TABLE-1	PHYSICAL PROPERTY OF LPG	• - • 1
FIG.1	VAPOR PRESSURE OF PROPANE AND PROPYLENE	2
FIG.2	VAPOR PRESSURE OF BUTANES AND BUTENES	3
TABLE-2	THAI INDUSTRIAL SPECIFICATION OF LPG	4
TABLE-3	LIQUEFIED PETROLEUM GAS JIS K 2240-1972	5
TABLE-4	STANDARD OF SPECIFICATION OF LPG IMPORTED TO JAPAN	6
TABLE-5	LPG DEMAND FORECAST IN THAILAND AND JAPAN (MITI ESTIMATION)	7
TABLE-6	LPG SUPPLY/DEMAND PLAN (1979-1983)	8
TABLE-7	JAPANESE LPG BY SUPPLY SOURCE	9
FIG.3	SHARE OF JAPANESE LPG IMPORT BY SUPPLY SOURCE (AS OF 1977)	10
TABLE-8	LPG IMPORT QUANTITY OF EACH COMPANY IN JAPAN	11
FIG.4	SHARE OF LPG IMPORT IN JAPAN (AS OF 1977)	12
FIG.5	LPG IMPORT TERMINALS IN JAPAN	13
Table-9	LPG IMPORT TERMINAL CAPACITY BY AREA	14
TABLE-10	LPG IMPORT TERMINAL CAPACITY BY COMPANY	15
TABLE-11	LPG SALES QUANTITY OF EACH COMPANY IN JAPAN	16
FIG.6	SHARE OF LPG SALES IN JAPAN (AS OF 1977)	17
TABLE-12	C ₃ AND C ₄ IN LPG	18
TABLE-13-1	MATERIAL AND HEAT BALANCE OF C ₃ AND C ₄ LPG (FROM NATURAL GAS)	19-1
TABLE-13-1	MATERIAL AND HEAT BALANCE OF C ₃ AND C ₄ LPG (FROM NATURAL GAS)	19-2

		,
	•	
Ф\RT.R_14_1	PHYSICAL CONSTANT OF HYDROCARBON	ATTACH. 20-1
	PHYSICAL CONSTANT OF HYDROCARBON	20-2
TABLE-15	C ₃ AND C ₄ LPG PRODUCTION(LB/H) OF EACH YEAR	21
TABLE-16	C ₃ AND C ₄ LPG PRODUCTION (T/H, T/D, T/Y) OF EACH YEAR	22
FIG.7	FOB PRICE OF KUWAIT D/D LPG	23
FIG.8	CHANGE OF CRUDE OIL STANDARD PRICE (MARKET PRICE, ARABIAN LIGHT)	24
TABLE-17	AVERAGE PRICE OF C3 AND C4 LPG	25
TABLE-18	C ₃ LPG HEATING VALUE	26
TABLE-19	C ₄ LPG HEATING VALUE	27
TABLE-20	AVERAGE C3 AND C4 LPG HEATING VALUE	28
TABLE-21	COST SUMM.TION	29
FIG.9	PROFIT OR LOSS VS NATURAL GAS PRICE FOR C3 AND C4	30

•

.

3

LPG PRODUCTION FROM NATURAL GAS

I FOREWORD

I study LPG production from natural gas. Flour Ocean Services International Inc. reported LPG production from natural gas but not 100% of the gas from pipeline, only 61% in 1990. LPG production from refineries which will be included LPG from the expansion and new refinery is guessed larger than domestic requirement, but nobody can estimate because plants of the expansion and new refinery are not decided. It is evident that the expansion and new refinery should have much cracking units, so LPG production should be large.

Accordingly, whole or mostly of LPG which will be produced from natural gas should be exported, to get foreign currency, but LPG production should make much profit.

Another way to utilize LPG must be developed to increase domestic consumption, such as (1) motor car fuel (2) industrial use (3) small gas turbine of EGAT in province.

II DEFINITION OF LPG

C₃ LPG is liquefied propane and propene, dnd C₄
LPG is liquefied butanes and butenes, and ordinary LPG is mixutee of
C_{3s} and C_{4s} which is propene, propene, butanes and butenes. Actually,,
C_{3s} and C_{4s} cuts can not be perfectly separated to pure C_{3s} and C_{4s},
always mixed a small quantity of before and after cuts. For instance,
C₃ LPG is mainly C_{3s} and a small quantity of C₂ and C₄ cut are mixed.

III PHYSICAL PROPERTY OF LPG

Physical property of LPG must be very important, when composition of LPG is changed. TABLE-1 (ATTACH.1) shown the physical property of LPG for recalculation.

Vapor pressure of LPG is very important, because pressure test of LPG vessel is very important when components are changed. Vapor pressure of C_2 , C_3 , C_4 , C_5 mixture is calculated by vapor-liquid

equivalent calculation. This calculation takes long time without computer, but from Fig.1 VAPOR PRESSURE OF PROPANE AND PROPYLENE (ATTACH.2) and Fig.2 VAPOR PRESSURE OF BUTANES AND BUTENES (ATTACH.3), we can know outline.

When highest temperature of Thailand is 44.5 $^{\circ}$ C at Uttradit province on April 27, 1960, $^{\circ}$ C and $^{\circ}$ C are upon pressure at 44.5 $^{\circ}$ C is as follows:

44.5 °C = 112.1 °F

Vapor Pressure at 44.5 °C

Propene 17.8 atm.

Propane 14.5 atm.

i-Butane 5.6 atm.

c-Butane 3.5 atm.

When C_3 percentage of C_3 and C_4 mixed LPG is high, LPG vapor pressure is closed to 17.8 atm., and if C_4 percentage of C_3 and C_4 mixed LPG is high, LPG vapor pressure is closed to 3.5 atm. Maximum vapor pressure difference which is according to composition of C_3 and C_4 is nearly 17.8 - 3.5 atm. And when C_4 LPG is used, heating for vaporisation is needed, so vapor pressure of C_4 vapor pressure is higher than ordinal temperature.

The LPG specification of Thailand is 30% propane and 70% butanes, but LPG composition from natural gas is about 35.5% butanes and about 64.5% propane, thus vapor pressure of natural gas LPG is very higher than it of refinery LPG, but difference of vapor pressure is less than 14.3 atm. the pressure test of LPG vessel must be checked.

IV LPG SPECIFICATION

Thai industrial specification of LPG is shown in TABLE-2 (ATTACH.4). And Japanese industrial specification is shown in TABLE-3 (ATTACH.5).

Difference of LPG (C_3 and C_4 mixed LPG for household) between Thailand and Japan is big. Rate of C_3 and C_4 component in Thailand is 30: 70, in Japan 80: 20 in winter and 70: 30 in summer.

Standard specification of LPG imported in Japan is shown in TABLE-4 (ATTACH.6).

V LPG DEMAND FORECAST

LPG demand forecast in Thailand (NEA), JAPAN (MITI) are shown in TABLE-5 (ATTACH.7). And it of Mitsui's estimation is shown in TABLE-6 (ATTACH.8).

In Japanese statistics (TABLE-5 and 6. ATTACH.7 and 8), LPG demand forecast and each service as break-down are shown. As TABLE-5 (ATTACH.7) LPG demand in Thailand is very small compared with Japan. Moreover in Japan, town gas which is very similar to LPG consumption is very big, but Thailand has no town gas. So, Thailand must be developed the utilization of LPG for household, commerce and industry.

VI LPG USAGE

LPG usage in Japan is shown in Japanese specification of TABLE-3 (ATTACH.5) and LPG demand forecast of TABLE-5 and 6 (4TT4CH.7 and8). I explain the use of LPG more detail as follows:

VI.1 Household and Commerce

LPG is used as room heating, cooking, hot water and refrigerator for household and commerce.

VI.2 Industry

Butane utilization for industry has been increased recently.

Fuel of coal, fuel oil (kerosene, gas oil, fuel oil) have been replaced by LPG because of an economical point, preventing air pollution (low sulfur content) and no ash and soot (products are not contaminated by ash and soot), moreover, heating value is high, temperature control and handling are very easy.

- Metal industry (melting decarbonizing, gas reforming, hardening, quenching, annealing, cutting and scarfing forging)

- -- Ceramic industry (pottery, tile, whetstone, lime calcining, glass melting and molding work)
- Textile industry (gassed thread, plastic thread, plastic treating and dyeing)
 - Foodstuffs (cake, ham, bread).
 - Printing and Painting
- VI.3 Agriculture Industry (drying of tobacco leaf, grain, pasture, and ageing of fluts, and green house, and poultry farming and pig raising)

VI.4 Town Gas

 $\mathbf{C_{3}}$ and $\mathbf{C_{4}}$ are mixed with coal gas to increase calorific value.

VI.5 Internal Combusion Engine

- Taxis in big city are using LPG, octane number of C_3 is 96, and it of C_4 is 90.
 - Tractor
 - Forklift

VI.6 Petrochemical

Raw material of ethylene, ammonia, hydrogen and synthetic gas.

polyethylene (resin)
stylene butadiene (rubber)
polystylene (resin)
Tetoror (polyester fiber)
polyester (resin)
surface active gent (detergent)
ethanol (solvent, raw material)
polyvinyl chloride (resin)
nolyvinylidene resin & fiber

Ethand ----

4-ethyl lead (additive)
dioctyl phthalate (plasticizer)
buthyl acetate (solvent)
acetic acid (raw material)
ethyl acetate (solvent, raw material)
pentacrythritol (resin)
higher alcolols (detergent, plasticizer)

iso propyl alcohol (solvent)

aceton (solvent)

methacrylic resin

epoxy resin

Propylene ----- urethane foam

acrylic fiber

detergent

butyl rubber

polypropylene_glutamic acid (ajinomoto)

methylethylketon (solvent)

polyester resin

polybutene (rubber)

stylene butadiene rubber

nitrile butadiene rubber

polybutene 1 (rubber)

polybutadiene (rubber)

Nylon 66 (fiber)

butyl gum

polyisoprene rubber

C₄ cuts

n-butene butadiene isobutene

VII MARKETING RESEARCH IN JAPAN

VII.1 Japanese LPG Import by Supply Sources

Japan imported LPG from Middle East (Saudi Arabia, Kuwait, Iran), Australia, Canada and Venezuela as TABLE-7 (ATTACH.9) and about a half of total import is from Saudi arabia which is shown in FIG.3 (ATTACH.10).

VII.2 LPG Import Quantity of Each Company in Japan

LPG import quantity of each company in Japan is shown in TABLE-8 (ATTACH:11), and share of LPG import in Japan is shown in FIG.4 (ATTACH:12).

VII.3 Import Terminal Capacity in Japan

LPG import terminal in Japan is spreaded in mainland and Kyushu Island which is shown in FIG.5 (ATTACH.13).

LPG import terminal capacity by area is shown in TABLE-9 (ATTACH.14) and by company in TABLE-10 (ATTACH.15).

VII.4 LPG Sales Quantity of Each Company in Japan

LPG sales quantity of each company in Japan is shown in TABLE-11 (ATTACH.16), and share of LPG sales in Japan is shown in FIG:6 (ATTACH.17).

VII.5 LPG Supply and Demand Forecast in Japan

LPG supply and demand forecast was shown in TABLE-6 (ATTACH.8). In Japan, LPG demand is very big but domestic production is small.

•		1978	1979	1980	1981	1982	1983
Supply.							
Domestic	%	36.2	34.7	35.8	34.3	34.4	33.8
Import	%	63.8	65.3	64.2	65.7	65.6	66.2
Tota	al	100.0	100.0	100.0	100.0	100.0	100.0

Japan is big LPG importing country, and LPG domestic production is growing up corresponding to crude oil throughput but LPG demand is growing up year by year more than LPG domestic production. Thus, domestic production percentage was 36.2% on demand in 1978 and will be 33.8% in 1983.

VII.6 Japan Petroleum Development Corporation (JPDC)

Japanese Government has 100% share of JPDC, he assists a half of investment for exploratory drilling in country and foreign countires. And when crude oil and natural gas is discovered and commercial production is commenced, the fund is returned to JPDC, and if well is dry, the fund is not necessary returned to JPDC. But, the fund is tax from nation thus if Thailand excess product from natural gas and wants to export, Japanese Government expects that Thailand export them to Japan in proportion to share hold.

VIII MATERIAL BALANCE OF c_3 AND c_4 LPG (FROM NATURAL GAS)

 C_3 and C_4 cuts in the gas from pipeline is shown in TABLE-12 (ATTACH.18). As was noted previously, C_3 and C_4 cuts separation (yield) must be estimated by computer, and 100% of them can not be recovered, so, I assume that C_3 yield is 90% on total C_3 in natural gas, and C_4 yield is 98% on total C_4 in natural gas (see TABLE-12, ATTACH.18). These yields are based on Chiyoda's information.

I calculate material balance and heat balance of C_3 and C_4 LPG which are met the standard of specification of LPG imported in Japan (see TABLE-4, ATTACH.6), are shown in TABLE-13-1 and-2, (ATTACH.19-1 and -2). (13)-(19) of TABLE-13-2 shows calculation of heating value of C_3 LPG and C_4 LPG. These physical data are applied from TaBLE-14-1 and -2 (ATTACH.20-1 and -2). SOURCE: DATA BOOK ON HYDROCARBONS), afterward I will use data from same tables.

Then, I calculate production of C_3 and C_4 , LPG, and show in TABLE-15 (ATTACH.21) as Lb/H.

 C_3 and C_4 LPG production is shown in TABLE-16 (ATTACH.22) as ton.

 C_3 and C_4 LPG value and their average value are shown in TABLE-17 (ATTACH.25).

Note: When I calculated heating value, it is gross heating value not net heating value, because natural gas price is based on gross heating value. And T means MT and \$ means US\$.

IX LPG FOB BANGKOK PRICE (EXPORT LPG) .

LPG price in Thailand (domestic LPG price) is very high, so LPG from natural gas is to make much profit according to Mr. Shishido's report last year.

LPG (CIF) price which was imported to Japan about 2 months ago was \$143/T, if freight rate between Thailand and Japan is assumed as about \$15/T, FOB Thailand might be \$128/T.

FOB price of Kuwait D/D LPG is shown in FIG.7 (ATTACH.23) $^{\rm C}_{\rm 3}$ price was higher than $^{\rm C}_{\rm 4}$ price, but recently both prices have been closed, because $^{\rm C}_{\rm 4}$ LPG demand has been grown up.

o The Nippon Economic Newspaper reported as following:

Dated on June 24, 1979

Kuwait FOB Price (price in April - June in 1979)

C₃ LPG 126.5 \$/T Note: See the above mentioned C₄ LPG 127.5 \$/T \$128/T.

Price on spot at Houston, USA

C₃ LPG 150 \$/T C₄ LPG 300 \$/T

o The same newspaper
Dated on July 5, 1979

Kuwait FOB Price (in July 1979)

C₃ LPG 160 \$/T C₄ LPG 180 \$/T

Price on spot

C₃ LPG 200 \$/T C₄ LPG 300 \$/T o FOB Persian Gulf (Mitsui & Co.estimated)

Freight of Persian Gulf to Japan may be 22 - 25 \$b/T. Freight of Siam Gulf to Japan may be 15 \$b/T.

All over the world, LPG is very tight, because $\mathbf{C}_{\!\!\! 4}$ is mixed in gasoline and used as petrochemical raw material (substituted naphtha).

The LPG price is risen in July 1979, being caused by LPG shortage not by crude oil price up. Change of crude oil standard price is shown in FIG.8 (ATTACH.24).

I calculate average price of C_4 and C_4 LPG produced from Siam Gulf natural gas (the gas from pipeline), and show it in TABLE-17 (ATTACH.25).

Ratio of C_3 LPG and C_4 LPG of produced from the gas from pipeline is 64.5 : 35.5 (wt), and average price is 167.1 \$/T when C_3 LPG price is 160 \$/T and C_4 LPG price is 180 \$/T.

According to Mr. Shishido's report (in 1978), exrefinery price of LPG in Thailand is as follows: (For your reference)

Note: * Exrefinery price of LPG was not changed before July 1979.

The price of LPG in Thailand (in June 1979) was higher than the LPG of FOB Kuwait price (April and June 1977).

X CASE-1 EXPENDITURE AND REVENUE IN CASE OF NATURAL GAS PRICE 1.50\(\sigma\)/MMBTU, C3 LPG PRICE 160\(\sigma/\)/T AND C4 LPG PRICE 180 \(\sigma/\)/T (500 MMscf/D)

X.1 Operation Cost

X.1.1 Production

In Mr. Shishido's report "THE PRELIMINARY ECONOMIC STUDY OF LPG RECOVERY FROM NATURAL GAS", LPG production was estimated as follows:

My calculation of LPG production (in case of 500 MMscf/D natural gas production schedule) is as follows: (in 1987)

X.1.2 Construction Cost of LPG Production

Construction cost was estimated by Chiyoda Chemical Engineering and Construction Company based on 380,000 T/Y LPG production.

Designed recovery ratio is as follows:

C₃ : more than 90% C₄ : more than 98%

 $^{\rm CO}_{\rm 2}$ removal unit is necessary when natural gas charge to LPG plant, $^{\rm CO}_{\rm 2}$ content must be less than 1%, because turboexpand is applied :

	•	Correction of Production rate	Correction 1979 Plant Cost	
	MM \$	MM \$	MM \$	¼/T.
LPG Unit	70			
CO2 Removal Unit	16	all on a log line supersupplementage of the first regard supersupplement		
Total	86	92.610 ^{*1}	98.112	232.27 ^{*3}
Note: *1 86.0	ооо мм _» х (<u>42</u>	2,400 T/Y) 0.7	= 92.610 MM&	,
*2 92.6	610 MM _b x 1.07	%	= 98.112 MM%	;
	7% up/year of	f construction c	ost	
*3 98.1	12 MM\$ ÷ 422.40	TM C	= 232.27 \$/I	!

Fluor's estimation of gas plant (the end of 1979)

200 MMscf/D 68,301 MM\$

500 MMscf/D
$$\times$$
 $x = 68,301 M\$ \times (\frac{500}{200})^{0.7} = 129,714$

129,714 M\\$ $\times (1 + \frac{0.07}{2}) = 134,254$

134,254 M\\$ = 1.37 (37% higher than Japan)

The difference could not be clarify, it might be caused by different process and price of machine and equipment. And it is contained the cost of the dew point control unit.

X.1.3 Dew Point Control Unit

When LPG recovery is from 100% natural gas (the gas from pipeline), the dew point control unit is unnecessary. Thus, LPG recovery acts as dew point control duty, the duty is not for LPG production. Thus, the operation cost of dew point control must be eliminated from the cost of LPG production.

The cost of dew point control can not calculate at this stage. I assumed for 15% of total operation cost of LPG production.

X.1.4 Operation Cost \$/T of LPG Production Expense

A. Natural gas price is 1.5 \$/MMMBTU

		% on Construction Cost	\$ / T
(1)	Depreciation (20 years)	5	11.61
(2)	Interest for Construction Cost	5	′ 11.61
(3)	Tax and Insurance	2	4.65
(4)	Maintenance	3	6.97
(5)	Administration	2	4.65
(6)	Overhead	2	4.65
	Total	119	44.14

Note: Construction cost is 232.27 \$/T

B. Interest of working capital

C₃ and C₄ LPG average price is 167.1 \$/T (from TABLE-17, ATTACH.25)

167.1 %/T x 422,400 T/Y = 70.58 MM \$/Y

70.58 MM \$/Y x $\frac{1.5 \text{ Mon.}}{12 \text{ Mon.}}$ = 8.82 MM \$/Y

8.82 MM \$/T x 8% = 0.71 MM \$/Y

8% is interest.

0.71 MM \$/Y ÷ 422,400 T/Y = 1.68 \$/T

.

C. Utility

Natural gas consumption is :

For LPG plant 9 MMscf/D
Cor CO₂ plant 18 MMscf/D
Total 27 MMscf/D

(Heating value of the natural gas was assumed as 1,050 BTU/scf by Mr. Shishido).

Natural Gas Price

Mr. Shishido's Estimation

1.555 %/MMBTU (compressor station at off-shore)

1.544 \ \/MMBTU (compressor station at on-shore)

Fluor's Report

1.50 \$/MMBTU

In the report, 2 natural gas prices were applied

1.75 \$/MMBTU

My Calculation

1.50 \$/MMBTU

The price is not included the transportation charge from the natural gas processing unit to end user. So, I apply for 1.50 \$/MMBTU of natural gas charge.

27 MMscf/D x 1,050 BTU/scf x
$$\frac{1.50 \text{ t}}{1 \text{ MMBTU}}$$
 = 42.525 \$/D = 15.52 MM\$/Y
15.52 MM\$/Y x $\frac{422,400 \text{ T/Y}}{380,000 \text{ T/Y}} \div 422,400$ = 40.84 \$/T

D. Labor cost

15 persons x 4 shifts = 60 persons

Salary and other expense is assumed as 200 \$/Mon. Month

200 \$/Mon month x 60 persons x 12 months = 0.144 MM\$/Y

0.144 MM\$/Y ÷ 422,400 T/Y = 0.34 \$/T

E. Operation cost

		\$/T
(1)	Expense	445144
(2)	Interest for Working Capital	1.68
(3)	Utility	40.84
(4)	Labor Cost	0.34
	Total	87.00

- F. Operation cost minus the cost of dew point control unit $87.00 \text{ p/T} \times (100 15)\% = 73.95 \text{ p/T}$
- X.2 Cost of Natural Gas Charge

$$50.92 \text{ MMBTU/T}^* \times \frac{1.5 \text{ t}}{\text{MMBTU}} = 76.38 \text{ t/T}$$

Note: * is come from TABLE-20 (ATTACH.28).

TABLE-20 (ATTACH.28) is calculated from TABLE-18 and -19

(ATTACH.26 and 27).

X.3 Expenditure

Total	150.33
Operation Cost	73.95
Cost Natural Gas Charge	76.38
	₽\.π .

Selling charge (including shipping) is assumed as 3% on total expenditure.

Expenditure is as follows:- $150.339/T \times (1 + 0.03) = 154.84 \sqrt{T}$

X.4 Revenue

 $\rm C_3$ and $\rm C_4$ LPG average FOB Bangkok price is 167.1 %/T which is from TABLE-17-7 (ATTACH.25).

. X.5 Profit or Loss

167.1 \$/T - 154.84 \$/T = +12.26 \$/T 12.26 \$/T - 154.84 \$/T x 100 = + 7.9%

In this case, profit is 12.26 \$/T. (see TABLE-21, ATTACH.29)

X' CASE-1' EXPENDITURE AND REVENUE IN CASE OF NATURAL GAS PRICE 1.70 \$/MMBTU, C₃ LPG PRICE 160 \$/T AND C₄ LPG PRICE 180 \$/T (500 MMSCF/D)

In X, I applied 1.50 \$/MMBTU of natural gas, but actual natural gas price in 1979 may be 1.70 \$/MMBTU, so I calculate in case of 1.70 \$/MMBTU as follows:

X':1 Utility

27 MMscf/H x 1,050 BTU/scf x
$$\frac{1.70 \text{ }}{1\text{MM}}$$
 = 48,195 \$/D = 17.59 MM\$/Y

17.59 MM \$/Y $\times \frac{422,400 \text{ T/Y}}{380,000 \text{ T/Y}} \div 422,400 \text{ T/Y} = 46.29 \text{ $/$T}$

X'.2 : Operation Cost

-	·	S/T	
(1)	Expense	44.14	no change
(2)	Interest for Yorking		· ·
	Capital	1.68	no change
(3)	Utility	46.29	
(4)	Labor Cost	0.34	no change
	Total	92.45	

 $92.45 \text{ } \%/\text{T} \text{ } \times (100 - 15)\% = 78.58 \text{ } \%/\text{T}$

K'.3 Cost of Natural Gas Charge

$$50.92 \text{ MMBTU/T} \times \frac{1.7 \text{ \%}}{\text{MMETU}} = 86.56 \text{ $\$/$T}$$

X'.4 Expenditure

	\$ / T
Cost of natural gas charge	86.56
Operation cost	78.58

X 1.5 Profit and Loss

167.1 $\$/T - 165.14 \ \$/T = + 1.96 \ \$/T$ 1.96 \$/T = 165.14 \$/T = + 1.2%

In this case, profit is 1.96 ξ/T .

- CASE-2 EXPENDITURE AND REVENUE IN CASE OF NATURAL GAS PRICE XI EQUIVALENT TO FUEL OIL PRICE (2.063 \$/MMBTU) (500 MMSCF/D)
 - XI.1 Natural Gas Price Equivalent to Fuel Oil 1,200"

Fuel Oil 1,200" 1.6157 \$/lit (May 1, 1978)

1.6157 %/lit = 0.0792 %/lit

1\$

= 20.4 B

Heating value (Gross)

400"

9,371 Kcal/lit

1,500" 9,826 Kcal/lit

1,200" 9,675 Kcal/lit (assumed)

9,675 Kcal/lit = 38,392.86 BTU/lit

1 Kcal = 3.96825 BTU

0.0792 \$/lit - 38,392.86 BTU/lit x MMBTU = 2.063 \$/MMBTU

XI.2 Utility

27 MMscf/D x 1,050 BTU/scf x $\frac{2.063 \text{ b}}{\text{MMBTU}}$ = 58,486 \$/D

= 21.35 MM\$/Y

21.35 MM\$/Y x $\frac{422,400 \text{ T/Y}}{380,000}$ ÷ 422,400 T/Y = 56.18 \$/T

XI.3 Operation Cost

\$/T

(1) Expense

- 44.14 no change
- (2) Interest for Forking Capital 1.68 no change
- (3) Utility

56.18

(4) Labor Cost

0.34 no change

Total

102.34

Total operation cost minus the cost of dew point control unit.

$$102.34 \ \text{$/\text{T} \times (100 - 15)\%} = 86.99 \ \text{$/\text{T}$}$$

XI.4 Cost of Natural Gas Charge

XI.5 Expenditure

Selling charge (including shipping) is assumed as 3% on total expenditure.

$$192.04 \text{ } \text{ } / \text{T} \text{ } \text{x} (1 + 0.03)\% = 197.80 \text{ } \text{ } / \text{T}$$

XI.6 Revenue

 C_3 and C_4 LPG average FOB Bangkok price is 167.1 \$/T which is come from TABLE-17 (7) (ATTACH.25).

XI.7 Profit and Loss

167.1 \$/T - 197.80 \$/T = -30.7 \$/T -30.7 \$/T
$$\div$$
 197.80 \$/T = -15.5%

In this case, loss is 30.7 \$/T.

XII CASE-3 EXPENDITURE AND REVENUE IN CASE OF NATURAL GAS PRICE IS MIDDLE OF CASE-1 AND CASE-2 (1.78 \$/MMBTU) (500 MMscf/D)

XII.1 Natural gas price

CASE-1	1.50	b/MMBTU
CASE-2	2.063	↓/MMBTU
CASE-3	1.78	\$/MMBTU

Average of CASE-1 and CASE-2 is 1.78 5/MMBTU.

XII.2 Utility

27 MMscf/D x 1,050 BTU/scf x
$$\frac{1.78 \text{ \$}}{\text{MMBTU}}$$
 = 50,463 \$/D = 18.42 MM \$/Y
18.42 MM\$/Y x $\frac{422,400 \text{ T/Y}}{380,000 \text{ T/Y}} \div 422,400 \text{ T/Y}$ = 48.47

XII.3 Operation Cost

		\$/T	
(1)	Expense	44.14	no change
(2)	Interest for Working Capital	1,68	no change
(3)	Utility	48.47	
(4)	Labor Cost	0.34	no change
	Total	94.63	

Total operation cost minus the cost of dew point control unit 94.63 \$/T x (100 - 15)% = 80.44 \$/T

XII.4 Cost of Natural Gas Charge

$$50.92 \text{ MMBTU/T} \times \frac{1.78 \text{ \$}}{\text{MMBTU}} = 90.64 \text{ $/$T}$$

XII.5 Expenditure

Cost Natural Gas Charge	90.64 b/T
Operation Cost	80.44 \$/T
Total	171.08 ¢/T

Selling charge (including shipping) is assumed as 3% on total expenditure.

$$171.08 \times (1 + 0.03)\% = 176.21 \ \text{s/T}$$

XII.6 Revenue

 C_3 and C_4 LPG average FOB Bangkok price is 167.1 \$/T which is come from TABLE-17 (7) (ATTACH.25).

XII.7 Profit and Loss

167.1 \$/\$T - 176.21 \$/\$T = -9.11 \$/\$T-9.11 \text{ \$/\$T} \div 176.21 \text{ \$/\$T} = -5.2 \text{ \$\frac{1}{2}}

In this case, loss is 9.11 \$p/T.

XIII RESULT OF CASE-1, CASE-1', CASE-2 AND CASE-3 (500 MMSCF/D)

When C_3 LPG price is 160 t/T and C_4 LPG price is 180 \$/T, average 167.1 \$/T, natural gas price must be 1.66 \$/T at profit zero point which is shown in FIG.9 (ATTACH.30). These calculations are based on 272.52 x 10 3 T/Y of C_3 LPG production, and 149.88 x 10 3 T/Y of C_4 LPG production in 1984 (see TABLE-16, ATTACH.22).

In FIG.9 (ATTACH.30) another 4 lines of 175 \$/T, 185 \$/T, 195 \$/T, 200 \$/T for $\rm C_3$ and $\rm C_4$ LPG average price are as following :

Natural gas price vs C_3 and C_4 LPG average price is as under :

Natural gas production 500 MMscf/D

NATURAL	GAS	C ₃	and C ₄ LPG	AVERAGE PR	ICE (\$/T)*			
PRICE		167.1	175	185	195	200		
\$/MMBTU	\$/MMBTU		PROFIT OR LOSS (\$/T)					
CASE-1	1.50	+12.26	+20.16	+30•16	+49.16	+45.16		
CASE-1'	1.70	+ 1.96	+ 9.86	+19.86	+29.86	+34.86		
CASE-2	2.063	-30.7	-22.80	-10.80	÷ 0.80	+ 4.2		
CASE-3	1.78	- 9.11	- 1.21	+ 8.79	+18.79	+23•79		

Note: * FOB Bangkok price

Then C_3 and C_4 LPG price is 167.1 L/T and natural gas price is 1.50 \$/MMBTU (CASE-1), profit is 12.26 \$/T, but when these are 1.78 \$/T (CASE-3) and 2.063 \$/MMBTU (CASE-2) of natural gas price, all are loss. Namely, even if fuel oil equivalent 2.063 \$/MMBTU and C_4 LPG 1.958/T, profit is still not so big (see FIG.9, ATTACH.30).

In the above table, C_{j} and C_{4} average price is indicated, their average prices are breakdown as follows but approximately.

			c ₃	C ₄
			LPG	LPG
Line	165.9	\$ / T	160 \$/T	180 \$/T
Line	175	T\\$	168 \$/T	189 i/T
Line	185	\$/T	177 \$/T	199 \$/T
Line	195	\$/T	187 \$/T	210 \$/T
Line	200	b/T	192 %/T	216 \$/Т

Note: Data of calculated. above number are approximately.

Natural gas price is 2.063 \$/MMBTU which is equivalent to fuel oil 1,200", when C_3 LPG and C_4 LPG prices are going up to 192 \$/T and 216 \$/T individually (price is going up about 40 \$/T higher than the present price of C_3 LPG and C_4 LPG), but it is almost no profit and loss.

As a consequence, NGOT will not able to produce C_3 and C_4 LPG at present price, but C_3 and C_4 LPG price will be going up rapidly in near future according to C_3 and C_4 LPG market is becoming tight.

XIV CASE_4 EXPENDITURE AND REVENUE IN CASE OF NATURAL GAS PRICE 1.50 \$/MMBTU, C3 LPG PRICE 160 \$/T C4 LPG PRICE 180 \$/T (700 MMSCF/D)

LPG production which was noted above is from 500 MMscf/D, LPG production from bigger size is cheaper than from smaller size.

XIV.1 Construction Cost

380,000 T/Y 86 MM\$

86 MM\$ $\times \left(\frac{559.15^{*}T/Y}{380,000 T/Y}\right)^{0.7} = 112.70 MM$ = 120.59 MM$ 7% up

120.59 MM$ - 559.15 T = 215.67 $/T$

Note: * come from TABLE-15 (ATTACH.21)
63.83 Kg/H x 24 h x 365 days = 559.15 T/Y

XIV.2 Operation Cost

XIV.2.1 Natural gas price 1.5 \$/MMBTU

	% 0	n Construction Cost	\$ / T
1)	Depreciation (20 years)	5	10.78
2)	Interest for Construction	5	10.78
3)	Tax and Insurance	2	4.31
4)	Maintenance	3	6.47
5)	Administration	2	4.31
6)	Overhead	2	4.31
	Total	19	40.96

Note: Construction cost is 215.67 t/T

XIV.2.2 Interest of working capital Same as X.1.4, B Namely, it is 1.68 T/Y.

XIV.2.3 Utility Same as X.1.4, C Namely. it is 40.84 E/T.

XIV.2.4 Labor cost

16 persons x 4 shifts = 64 persons

Salary and other expense is assumed as 200 \$/Man.Month.

200 $\frac{1}{4}$ /Man. Month x 64 persons x 12 months $\frac{1}{2}$ 559.150 T/Y = 0.27 $\frac{1}{4}$ /T

XIV.2.5 Operation cost

XIV.2.6 Total operation cost minus the cost of the dew point control unit

$$83.75 \% T \times (100 - 15)\% = 71.19 \% T$$

XIV.3 Cost of Natural Gas Charge

$$50.94^* \text{MMBTU/T} \times \frac{1.5}{\text{MMBTU}} = 76.41$$

Note: * come from TABLE-20 (ATT CH.28)

XIV.3 Expenditure

Selling charge (including shipping) is assumed as 3% on total expenditure.

Expenditure is as follows :

 $147.6 \text{ $/T \times (1 + 0.03)\%} = 152.03 \text{ $/T}$

XIV.5 Revenue

Same as X.5

Namely, it is 167.1 L/T

XIV.6 Profit and Loss

167.1 \$/T - 152.03 \$/T = 15.07 \$/T15.07 $\$/T \div 152.03 \$/T = 9.0%$ In this case, profit is 15.07 \$/T.

XV COMPARISON OF LPG PRODUCTION FROM 500 MMSCF/D AND 700 MMSCF/D (NATURAL GAS PRICE 1.50 %/MMSTU)

	Expenditure \$/T	Revenue £/T	Profit \$/T	Profit %
From 500 NM/D Natural Gas	155.59	167.1	+10.31	6.6
From 700 MM/D Natural Gas	152.20	167.1	+15.07	9.9

LPG from 700 MMscf/D natural gas is 4.59 \$/T more profit, but LPG production unit can not be bigger than 700 MMscf/D unit.

XVI CONCLUSION

(1) Export LPG State

When LPG is exported, LPG must be separate C_3 LPG and C_4 LPG. And LPG state is not high pressure and atmospheric temperature must be low.

(2) Expected LPG Production and LPG to Export to Japan

When Thailand intends to export the products and by products (energy) from Siam Gulf natural gas, Japan expects to import the products and by products on proportion to the share hold.

Thai natural gas production from 700 MMscf/D natural gas from pipeline and quantity of imported LPG in Japan are as follows:

Thai LPG Production from Natural Gas (from pipeline)

(after 1988 5,590x 10³T)

Japanese LPG Romestic Production and Import

Domestic in 1983

 $5.91.7 \times 10^3 \text{T}$

33.8 %

Import in 1983 (forecast)

 $11,589 \times 10^{3}$ T.: 66.2 % Total 17,506 x 10^{3} T 100.0 %

Japanese import LPG will be grown up every year.

Japanese LPG market is good for Thailand.

(3) LPG price

I estimate the Thai LPG cost from natural gas as of 1979 before the 2nd oil crisis.

Calculation conditions of Thai LPG cost from natural gas CASE-2 are as follows:

Natural gas production 500 MMscf/D

Natural gas price 2.063 \$/MMBTU

C₃ LPG price 160 \$/T

 C_{4} LPG price 180 ϵ/T

C₃ LPG : C₄ LPG 64.5 : 35.5

Results are as follows :

C₃ LPG and C₄ LPG average FOB price 167.1 \$/T

Thai LPG selling price (cost) from natural gas 197.8 \$/T

Loss 30.7 %/T

Note: *1 come from XI.7

*2 come from TABLE-17 (7) (ATTACH.25)

According to the above table, the price of natural gas from pipeline is very high compared with other natural gas produced country, so That LPG cost from natural gas is very high.

In accordance with circumstances of Thai economics, the export LPG price must be higher than fuel oil price based on calorific power. If export LPG price is lower than fuel oil price, LPG can not export, because of big loss money.

As the above table at present status, Thailand can not produce and export LPG from natural gas.

(4) Possibility of LPG export

LPG FOB Kuwait price has been going up rapidly.

		ì		
	April	- June	July	on Spot
с ₃	LPG	126.5 \\T	160 ↓/ T	150 - 200
$C_{I_{L}}$	LPG	127.5 \$/T	180 \$/T	300

in 1979

The above mentioned price up is not according to crude oil price up, to tight of LPG market.

Therefore, it seems that LPG price will be going up more than 200 p/T in very near future.

(5) Export port condition

In case of Japan, the port condition and vessel are as follows:

- Port condition
 75.000 M³ cargo is acceptable.
- 2. Tanker size

50.000 D"T

LOA (length over all) 225 M

Draft 12 M

3. Cargo lot: about 43,000 T

43,000 T of one LPG lot is following days production.

in 1982 62 days in 1984 37 days in 1990 28 days

4. Fleight from Bangkok

Bangkok to Japan 15 \$/T

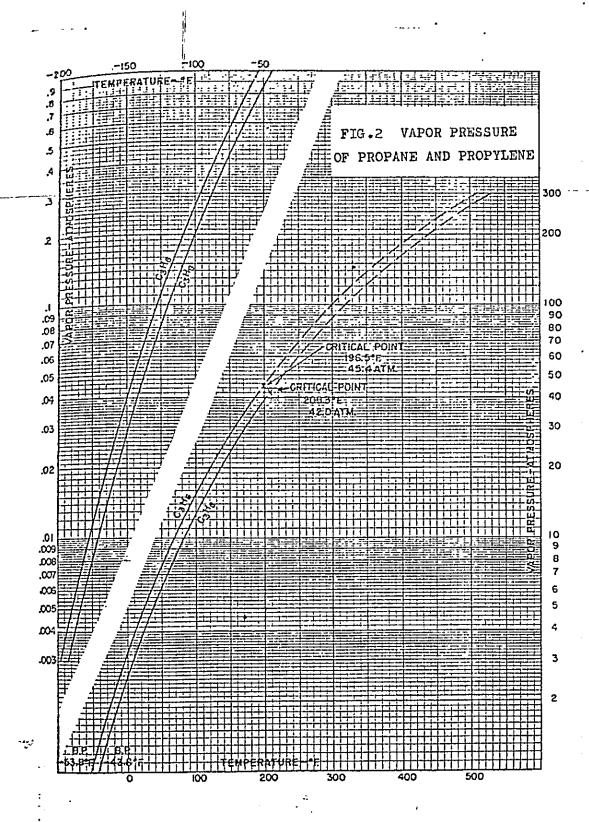
Comments

- (1) If NGOT exports LPG to Japan, he negotiates export port conditions with Japanese importer to fit production scale and port condition of Thailand.
- (2) According to NGOT plan, the gas processing unit is about 20 Km far from sea-shore. It is too far for low temperature and very low pressure LPG transportation by pipeline. It is better that the gas processing unit is very close to sea-shore.

Even: if, LPG is not exported, LPG must be transported by tanker in inland, tanker transportation fee is cheaper than other way.

- (3) C_4 LPG export price is higher than C_3 LPG export price, so C_4 LPG from the refineries is exported and C_3 LPG from natural gas is back to the refineries on same heating value. Therefore, Thai LPG specification is needed to change when more C_4 LPG is exported.
- (4) I assumed that the cost of dew point control is 15% on LPG production expense, it has big influence on LPG cost, so the cost of dew point control must be calculated exactly.

Summary


(1) Present LPG FOB price is not feasible for Thai LPG production from natural gas, but in near future LPG FOB price would be going

up and it will become feasible. NGOT should be watched a movement of LPG FOB price.

(2) Natural gas processing unit should be moved to sea-shore:

end.

		1/2	1	· · · · · · · · · · · · · · · · · · ·	T.	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
	Propane	(Propylene) Propene	n-Butane	i-Butane	(i-Butylene) i-Butene	1-Butene	t-Butene	c-Butene
Molecular Formular	с ₃ н ₈	C ₃ H ₆	с ₄ н ₁₀	С4н8	. с ₄ н8	с ₄ н ₈ .	С4н8	с ₄ н ₈
Molecular Weight	44.1	42.1	58 . 1 ·	56.1	56.1 ·	56.1	56.1	56:1
Boiling Point (1 atm) (°C)	42.1	-47.1	0 . 5	-11.7	-6.3	-6.9	0.9	3.7
Melting Point '' '(1 atm)'(-C)	-187.7.	-185.3	-138.4	-159.6	-185.4	-140.4	-105.6	-138.9
Specific Gravity Liquid (15 °C) (g/ml)	0,508	. 0.523	0.585	0.563	0.601	0.601	0.610	0.627
Gas (15 °C) (Kg/m ³)	1.895	1.805	. 2.5 <u>3</u> 8	2.529	2.443 .	2,442	i	2.442
Vapor Pressure (37.8 °C) (Kg/cm ² A)	13.4	. 15.9	3.6	5.0	4,4	4.4	3.5	3.2
Gross Heating Value (25 °C) (Kcal/Kg)	12.020	11,690	11,830	11,800	11,580	11,510	11,530	11,550
(15.6 °C) (Kcal/m ³)	22,830	21,120	30,050	29,850	28,300	28,110	28,170	28,210
(60 °F) (BTU/lb)	21,650 .	21,040	21,290	21,240	20,840	20,720	20,750	20,780
Net Heating: Value (25.0C) (Kcal/Kg)	10,930	10,940	10,890	10,840	10,830	10,760	10,780	10,800
(15.6 °C) (Kcal/m ³)	21,000	19,750	27 , 730	27,540	26,450	. 26,260	26,330	26,360
(60 °F) (BTU/Kg)	19,930 .	19,690	19,670	19,610	19,490	19,370	19,400	19,430
Latent Heat	101.8	104•6	92.1	87.6	93.4	94.2	96.9	99.5
Sensible Heat Gas) (25 °C) (Kcal/Kg °C)	0.399	0.368	0.401	0.398	0.365	0.380	0.374	0.336
Sensible Heat Liquid (25 °C) (Kcal/Kg °C)	0.602	0.611	0.575	0.582	0.549	0•558	0.544	0.537
Explosion Limit (in air) (vol %)	2.1 - 9.5	2.0 - 10.0	1.8 - 8.4	1.8 - 8.4	1.6 - 9.3	_		- , ,
Ignition Temperature (in air) (°C)	481	548	441	544	443	443		
Gas Specific Gravity (15.6 °C, 1 atm) (air = 1)	ત્•550	1.477	2.076	2.068	1.998	1.997	- ,	1.997

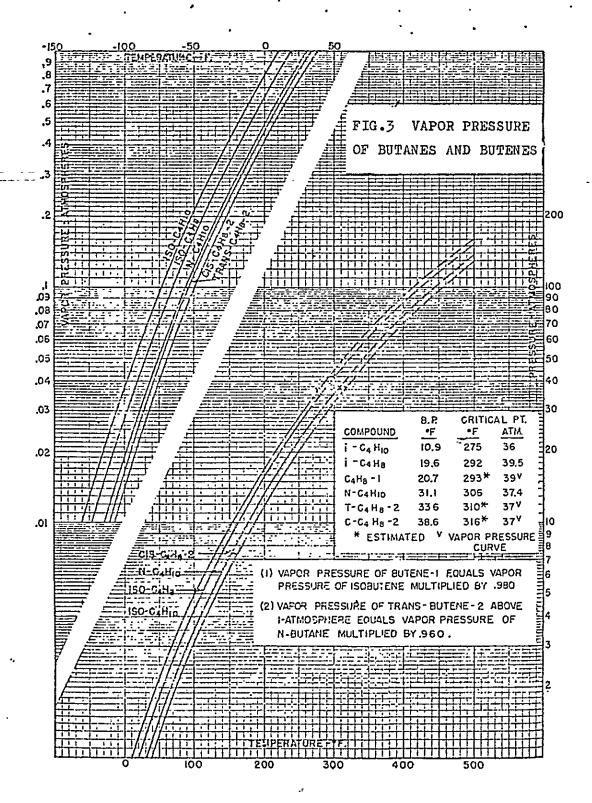


TABLE-2 THAI INDUSTRIAL SPECIFICATION OF LPG

4		····		•	
はかたはよ	LIQUEFIED PETROLEUM GAS		_ LIMITS	TEST METHODS]
THE THE PERSON AND TH	VAPOR PRESSURE @ 37.8°C 95% BOILING POINT °C PENTANE AND HEAVIERS VOL % (VAPOR) COPPER STRIP CORROSION TOTAL SULPHUR GRAINS/m³ RESIDUE AFTER EVAPORATION 100 ml NO WATER	MIN MAX MAX MAX MAX MAX	4.22 2.2 2 COPPER NO.1 0.05 0.05	ASTM-D-1267 ASTM-D-1837 ASTM-D-2163 ASTM-D-1838 ASTM-D-1266 . ASTM-D-2158	
	ODOR		Marketable		
1		<u> </u>		,	ĺ

 $C_{3s}:C_{4s}=3:7$ (by volume)

		Butadienes Usage		- Industry, Motor car, and Others.		Industry, Motor car, and Others.		2 Max. Household (general use)	2 Max. Household (for very cold weather area in winter)		
GAS	(Mol %)	Butanes +	Butenes	9	, 1	40 Min. 90 Max.	.nim 09	•	1 '	**	(%)
UEFIED PETROLEUM K2240 - 1972	Component	Propane +	Propylene	90 Min.	50 Min. 90 Max.	1	1	60 Min. 80 Max.	80 Min.	- AA	
LIQUEF JIS K		Ethane +	Ethylene	1				8 Max.	8 Max.		
TABLE-3		Sulfur	wt.%	0.02 Mnx.	0.02 Max.	0.02 Max	0.02 Max.	0.015 Max.	0.015 Max.		
	-	Vapor Pressure	(40 °C) (Ng/cm ²)	15.8 Max.	15.8 Max.	12.7 Max.	5.3 Max.	15.6 Маж.	15.6 Max.		
	Ttem		· ONT	-	2	2	47	Ct.	υ	3	7

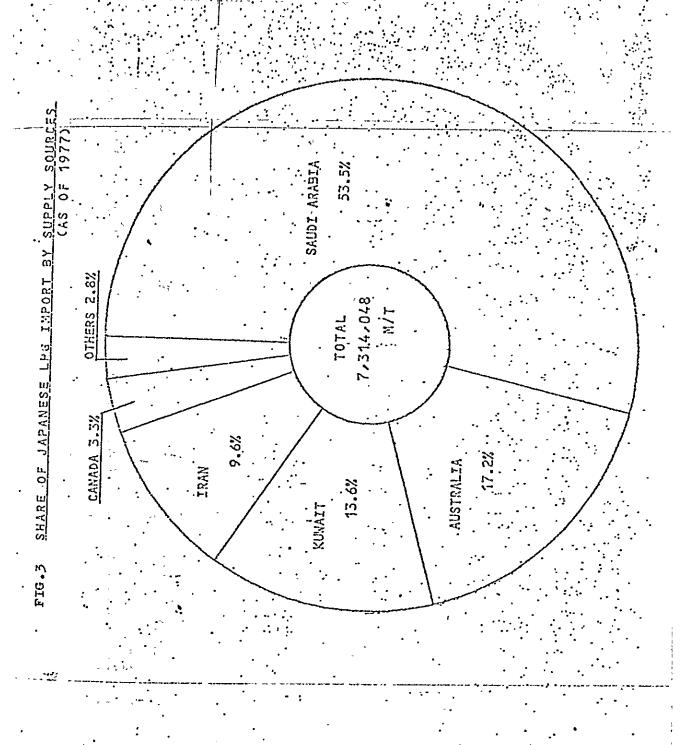
TABLE-4 STANDARD OF SPECIFICATION OF LPG
IMPORTED TO JAPAN

	C ₃ LPG	C ₄ LPG
	Mol%	Mol%
c ₂	2.0 Max.	-
c ₃	96.0 Min.	-
C ₄	2.5 Max.	95.0 Min.
c ₅		2.0 Max.

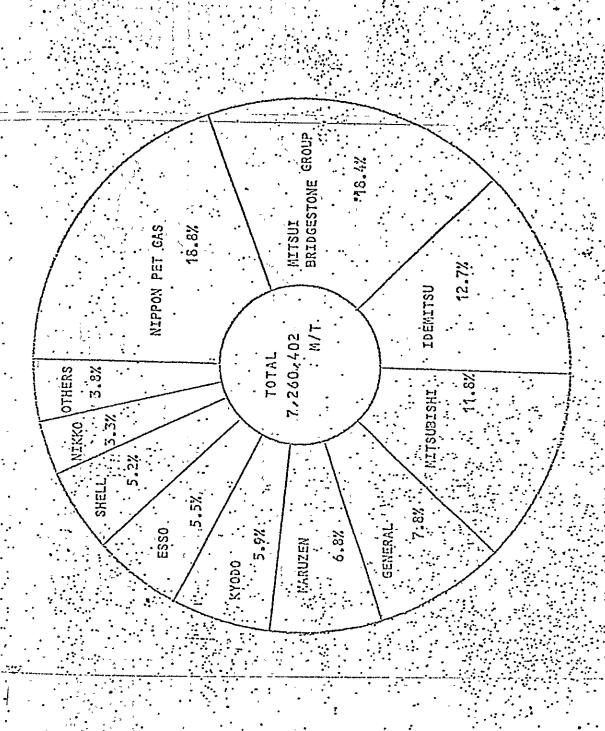
	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982
,											722
IN THAILAND							*				<u> </u>
10 ³ k1	241	195	188	197	223	240	000	727	П	. (-
1031	* 48	112	108	123	. 128	138	167	2 6	966	296	† † † †
						37.	701	201	÷0>;	122	254
IN JAPAN				·-							
10 ² T					•	•					
Household	4,208	4,616	4,833	4,990	5,265	5,275	5,453	5,690	5,937	6, 195	, P 461
Industry	1,586	2,009	2,131	2,438	2,750	3,067	3,627	4.093	4.328	77.17	4, 867
י מפים האסוף				,			•		7,17	11,726	4,077
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	~ ~ —	404	664	563	695	# 29	222	, 981	1,070	1,163	1,345
Motor Car	1,506	1,495	1,448	1,558	1,655	1,677	1,707	1,736	1,753	1,769	1.786
Petrochemical Raw											
Material	1,087	1,194	1,069	998	806	932	226	1,030	1,034	1,038	1,041
Export	30	50	10	∞	5	-	æ	<u></u>	/ oc	, oc	· α
Total	8,824	9,765	9,990	10,423	11,173	11,626	12,549	13,538	14,130	14.765	15.494

Note: * Specific gravity G3s 0.5155 x 30%

 c_{3s} 0.5155 x 30% = 0.15465 0.573 c_{4s} 0.5978 x 70% = 0.41846


 $147 \times 0.573 = 84$

ŗ


	1							
YEAR	1978		1979	•		- !		
SUPPLY/DEMAND		lst half	2nd half	Total	1980	1691	1982	1983
	•							
DILSENDO.	4,668	2,320	2,610.	.4,930	5,244	5,483	5,735	5,917
Inport :	8,232	4,545	4,714.	9,259	9,413	10,496	10,922	11,589
·	12,900	6,865	7,324	14,189	14,657	15,969	16,657	17,505
•								
nousmiolo usa	5,340	.2,404	3.128	5.535	5.719	1. 0. 0.	. 000	e C
INDUSTRIAL FURE.	3,316	1,765	1,653	3,619	3.798	4 0.0		0.00
ELECTRIC POWER	344	330	135	465	509	996	0 F C	1 484
TOWN 6AS	9.42	451	726	1,177	1,344	7 43 E	765,1	1 403
AUTOMOBILE FUEL	1,721	849	. 876	1,725	1,748	1.776	1.795	2 6
CHENICAL FEEDSTOCK.	1,271	614	750	1,364	1,471	1,522	.1.553.	1.576
EYPORT .	41	. 30	50	40	40	- <u>Q</u>	40	07
TOTAL	12,975	6,433	7,488	13,921	14,621	15,650	16,537	17,265
ENTORY	970	1,402	1,238	1,238	1,274	1,593.	.1,713	1,954
	7	-	-	-	*			

JAPANESE LPG IMPORT BY SUPPLY SOURCES rable-7

~	1	. 10	·			<u></u>			-1
1977	3,911	1,255	266	702	241	28		77314	
1976	3,464	1,084	853	703	249.			6,570.	1
1975	2,799	1,097	8225	702	232		232	5,911	
461	2,654	1,008.	626	. 767	223	. 27	. 02	5,678	<u> </u>
1973	.1,750	1,029	1,303	771	224	. 103	. 34	5,214.	
1972	1,101	741	,1,249	. 829	267	. 259	130	4,425	
. 1971.	. 1,003	553	1,158	575	250		6 6	3,621 :	
: YEAR COUNTRY	SAUDI ARABIA	AUSTRALIA	WUWAIT	IRAN.	CANADA	Venezuela	OTHERS	TOTAL	•

CONTRANY 1972 1973 1974 1975 1976 1977 NIPPON PET. 6AS 6E1 771 1,135 1,532 1,563 HITCHISTORIAN 1,1326 1,464 1,473 1,146 1,297 1,533 GAS GROUP GAS GROUP 293 372, 652 638 673 919 HITCHISTORIAN SEKIYU 191 227 335 348 550 565 GENERAL SEKIYU 455 616 543 474 411 429 KYODO SEKIYU 455 616 543 474 411 429 KYODO SEKIYU 191 225 200 227 397 379 NARUZEN SEKIYU 119 225 200 227 397 379 NIKKO LIG. 6AS 311 286 232 230 242 CTHERS 195 212 237 328 398 274 TOTAL 5,421 5,478 5,750 5,711 6,688 7,7250		· 				•			······································	•	• •		
COUNTY: 1972 1973 1974 1975 19 4. 1,432 1,332 1,332 1,332 4. 1,464 1,473 1,146 1,432 5.11 598 494 432 5 5.11 598 494 432 5 5.11 227 335 348 5 455 616 543 468 5 150 201 147 286 33 150 201 147 286 33 119 225 200 227 35 195 212 237 328 39 195 212 237 328 39 195 212 237 328 39	1977 ·	1,363	1,338	616	859	565	267.	429		379	242	57.4	
6 6 6 77 175 1755 1755 1755 1755 1755 17	2	1,385	1,297	673	572	530	50.		364	307		398	5,688.
6£1 771 1,135 6. 1,326 1,464 1,473 6. 293 372, 652 511 598 494 511 598 494 719 227 335 455 646 543 150 201 147 119 225 200 283 311 286 195 212 237 283 311 286 195 212 237	1975 +	1,332	10146	638	725	348	468	. 424	 286	. 222	. 232	. 328	5,911
455 455 455 195 195 195 195 195 195 195		1,135	1,473	. 652	÷67	335	. 278	170	147.	500	285	257	
S. S. D	1973	1.77	1,464	372.	593	227	181	616	201,	225	311	272	5,178
	1972	621	1,326	. 293	. 511	191	217	. 455	150		283	195	4,421
	CONPANY	PET. GA		IDEMITSU SEKIYU	. MITSUBISHI LIQ. GAS	GENERAL SEKIYU	MARUZEN SEKIYÜ	KYODO SEKIYU .	E080	SHELL	NIKKO LIQ. GAS	OTHERS .	TOTAL

G.4 SHARE OF LPG INPORT IN JAPAN

	ATTACH	I•13
(YTEDRACO)	CHISA IDENTISU 60,000 60,000 ICHINARA MITSUI/NOSI 3 160,000	
AND	MITSUSISHI JOSUCO JOSUCO TOTOCO TOTOC	KAWASAKI MITSUI 36,000 POWER COMPANY POWER COMPANY
/NO		AWASAKI GENERAL 35,000 ELECTRIC IDEMITS
INTUAFANTA ENTRE THE TRANSTRUCTION BEING PLANNED	TOWYO GAS	KAMASAKI KAWASAKI K WIHON OIL KYODO 64,000 40,000 * TEPCO: TOKYO
WHEKMINACE WINTER OF THE CUNIT : 11 CUNIT :	SAWA STEEL COOD STEEL COOD COOD COOD COOD COOD COOD COOD COO	HEKINAN KAN SHELL WIH Z 78,030 64
CPG-12 MP OR 1		CHITA DAD STAL STAL 180,000
COO'O8	NIEGN OTH NIEGN OTH 152,000 THE SAKAI SAKA	SUNT TO WAKAN
250/503 216/000 26/7/000	134,000 134,000 134,000 134,000 14,300 14,300 14,300 14,000 14,300 14,00	KCSE KT 807 SHT 60.600
810 110 110 110 110 110 110 110 110 110	65.00 E12.00 E12	TOWNYAMA TOBRITOU TE SOLOGO
8 2 C C C C C C C C C C C C C C C C C C	1	KARATSU WITSUE 75.000

24,000 60,000 80,000 152,000 30,000 (under construction) 90,000 25,000 (under construction) 80,000 60,000 702,000 716,000 2,429,000	Steel) il)) tomo tal)	50,000 74,000 (under construction) 22,000 180,000 (under construction) 131,000 56,000 56,000 64,000 755,000 78,000 (under construction)	Chiba (Idemitsu) Anegasoki (Tokyo Electric Power Co.) Toyosu (Tokyo Electric Power Co.) Ichihara (Mitsui/Mobil) Sodegaura (ESSO) Negishi (Tokyo Gas) Kawasaki (Mitsui) " (General) " (Kyodo) " (Total Total Total Chita (Idemitsu) Chita (Idemitsu)
		(under	Hekinan (Shell) Chita (Idemitsu)
			Area (Chukyo Area)
. 516,000	Others		****
		755,000	Total
702,000	Totel	54,000	
60,000	Kobe (Mitsubishi)	000,04	
48,000	Metal)	36,000	
(HOTTON TORING COALS)	Wakavama (Sumitomo	36,000	Kawasaki (Mitsui)
20 000 (under construction)	" (Imatani)	30,000	Negishi (Tokyo Gas)
25 000 (under construct:)		131,000	Sodegaura (ESSO)
October Construction)			İchihara (Mitsui/Mobil)
30 000 / dom gone gone for the state of		22,000	Power Co.)
53,000			Toyosu (Tokyo Electric
152,000	" (Nihon Oil)		Fower co.)
80,000	Sakai (Mitsui)		Anegasoki (Tokyo Electric
000,000	Kakegrwa (Kobe Steel)	000,00	/ The Transfer of the Country of the
24,000	Osaka (Mitsui)	80,000	Chiba (Mitsui + Marubeni)
Osaka Area (Ken-Hanshin Area) ',		•	

LPG IMPORT TERMINAL CAPACITY BY AREA

TABLE-9

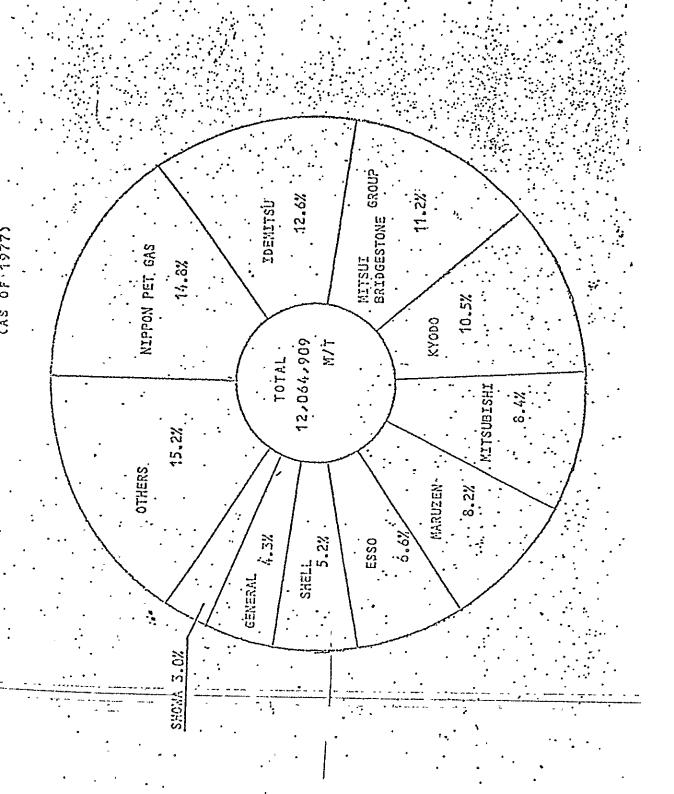


TABLE-10 LPG IMPORT TERMINAL CAPACITY BY COMPANY

		T	
o	Mitsui Group	388,000	ı
		12,000	(under construction)
	Nitsui/Mobil .	180,000	(11 11)
o	Idemitsu	240,000	
	•	80,000	(under construction)
	Idemitsu etc.	32,000	(" ")
	Nohon Pet Gas	216,000	
	Mitsubishi	165,000	
	Kyodo .	147,000	
	ESSO	131,000	
	General	126,000	
		25,000	(under construction)
	Tokyo Electric Power Co.	118,000	•
	•	74,000	(under construction)
	Nikko Liq. Gas	94,000	
	Kobe Steel	60,000	
	Maruzen	53,000	
		30,000	(under construction)
	Tokyo Gas	52,000	
	Sumitomo Metal	48,000	
	Iwatani	80,000	(under construction)
	Shell	78,000	(" ")
	• :		
	Total	2,429,000	

YMAGMOO	1972	1973	1974	1975	1976	2261	
3 3		***************************************					
Mippon per GAS		1,178	1,2416	1,612	1,790	1,783.	•
IDEMITSU	1,193	1,209	, 212, 2	1,214	345.	1,521	
MITSUI BRIDGESTONE GROUP	22,298	1,437	1,326	.12174	1,157	1,348	í
XYC90	. 10	. 666	1,092	1,092	1,317	1,273	• F_
MITSUSIENT	767	775	793.	83 10 01	912	1,012	
Nezunzek	240	. 761	. 2887	921	. 526	986	•
ESSO	7.01	 50 10	· · · · · · · · · · · · · · · · · · ·	783	7.2	764	: •
צאפרר	360	422	463	561	7,602	031	• • •
GENERÁL.	227	007	422	887	067	523	·:•
SHOWA	205	205	. 500	250	203	10	
OTHERS	1,794	1,940	1,978	270	10 00	65 100 100	•••
TOTAL "	9,386	10,177.	10,511	4,10,769	11,454	12,065	٠.
		· · · · · · · · · · · · · · · · · · ·		•	-		

•

and the last control of th	24 AND C4 IN LPG
	Z H
	ບັ
	AND
	ບ້

TABLE-12

LPG
Z
υ
AND
S _L

		**	c_{2}			•	ט	c_{4}		
	(1)	(2)	(5)	(†)	(5)	(41)	(21)	(31)	(17)	(51)
	Gas From Pipeline	(1)×379÷10 ³	(2)×90%	2)+379x44.0942	(4)+2·2	Gas From Pipeline	(11)x379÷10 ³	(2')x98%	(31)÷379×58.12 ² (41)÷2:2	2(1,4)
	Lb-No1/H	10 ³ scf/H	10 ³ scf/H	10 ² Lb/H	T/H	T/LOM-dl	10 ³ scf/H	10 ³ scf/H	10 ² Lb/H	T/H
1981	595.7	225.8	203.2	23.6	10.7	239.3	2.06	88.9	13.6	6.2
1982	4*266	376.5	338.9	39.4	17.9	6. 404	153.5	150.4	23.1	10.5
1983	1,191.6	451.6	4.904	47.3	21.5	8.484	183.5	179.8	27.6	12.5
1984	1,655.7	627.5	564.8	65.7	29.9	8.479	255.7	250.6	38.4	12.9
1985	1,655.7	627.5	564.8	65.7	29.9	8.479	255.7	250.6	58.4	12.9
. 986ι	1,920.6	6-127	655.1	76.2	34.6	785.0	297.5	291.6	L. 44	20•3
1987	1,920.6	727.9	655.1	76.2	34.6	785.0	297.5	291.6	2. 44	20.3
1988	2;186.2	828.6	745.7	86.8	39.5	895.4	339.4	332.6	51.0	23.2
1989	2,186.2	828.6	2,542	86.8	39.5	895.4	339.4	332.6	51.0	23.2
1990	2,186.2	828.6	2.545	86.8	39.5	895.4	339.4	332.6	51.0	23,2

*1 Fluor's report *2 Molecular Weight

*3 Yield of Gg and Ch recovery

	_
	S
	4
	FROM MATURAL GAS
	7
	œ
	5
i	TURA
ŀ	4
l	Ξ
t	Ξ
ı	×
ĺ	E
ŀ	J
ı	
ŀ	
ŀ	
١	8
ł	ဌ
l	_
ı	4
ĺ	U
1	_
Ř	9
ı	3
ŧ	•
ŀ	۴
ı	ò
ı	-
ı	4
I	O
	63
ŀ	7
ł	ž
ľ	₹
ŧ	н
ı	ă
l	F4
Į	يء
ř	ď
3	囟
ŧ	Ħ
ı	_
ă	므
i	z
1	•
j	ч
ij	4
ä	н
ā	α,
ă	21
ġ	MATERIAL AND HEAT BALANCE OF C3 AND C4 LPG (FROM 1
d	Σ
p)	~
ŝ	ŀ
9	
ď	
ij	Į
á	l
ğ	
ij	
ä	۲
ij	1

									, .
(10)	9 ^{CLX} (9) * (6)	BTU/scf (Gross)		7	- - ,^	2,522		,	3,988
. (6)	(8) × (4)	MM BTU	1.21	91.64	2.72	95.57	121.12	3.03	151.15
(8)		BTU/1b (Gross)	22,300	21,650	21,265*4		21,265*4	21,020*5	
(2)	6*70*0×(3)	NM ³	18.2	971.4	22,3	1,011.9	991.7	20.2	1,011.9
(9)	(2) x 379 ² ²	scf.	682.2	36,384.0	833.8	37,900.0	37,142.0	758.0	. 0.006,75
(5)	(3) (4) $\times 0.4536^{1}$	Kg	24.55	1,920.10	58.00	2,002.65	5.76 2,583.60	65.45	2,649.05
(4)	(2) x (3)	1.5	54.12	4,233.02	127.86	4,415.00	5,695.76	144.29	5,840.05
(3)	Molecular	e180.c	30.068	460°44	58.120	\h'\h'\	58.120	72.146	۲
(2)	Adjusting	Mol %	1.8	0*96	2*5	100.0	0.86	2.0	100.0
(1)	Specification	Mo1 %	C2 2.0 Max.	c ₃ 96.0 Min	C4 2.5 Max.	Total	C4 95.0 Min.	Ç ₅ 2.0 Max.	Total
		-	C3 IPG			1	Ch LPG	,	

Note: data from TABLE-14-1 and-2 (ATTACH.20-1 and-2).

3 1 scf =
$$0.0285 \times \frac{460}{460+(60-32)} = 0.0267$$

Pentanes (21,070 + 21,030 + 20,960) \div 3 = 21,020

* N

(11)	(12)	(13)	(41)	(15)	(16)	(42)	(18)	(41)
	(4) × (14)	$(4) \times (11) (12) \div (6) \times 10^9$	(4)÷(6)	(15)÷(4)	Ž	(15)x0.5556*8	(16)x0.5083*9	6-9441.0x(11)
BTU/lb (Net)	ммвти	BTU/scf (Net)	BTU/11b (Gross)	BTU/lb (Net)	Kcal/Kg (Gross)	Kcal/Kg (Net)	Kcal/lit (Gross)	Kcal/lit (Net)
62 20,420	1.11							:
c ₃ 19,930	84.36							ņ
c ₄ 19,640*6	2.51					•	•	
Total	87.98	2.321	21,647	19,928	12,027	11,072	6,113	6,362
6 ₄ 19,640*6	111,86				-			
C5 19,429*7	2.80							
Total	114.66	3,025	25,882	19,634	14,308	10,909	7,309	5,545

(FROM NATURAL GAS)

MATERIAL AND HEAT BALANCE OF c_3 AND c_4 LPG

TABLE-13-2

Pentanes (19,500 + 19,450 + 19,330) ; 3 = 19,427 BTU/15 40.428 1,481.695 0.5246 Pentanes 2,583.60 x 0.5735 пеап 65.45 x 0.6177 0.5735 0.563 0.584 2,649.05 19,640 BTU/Lb. *7 Butanes ° 5° 5° Butanes (19,670 + 19,610) = = 0.5556 Kcal/Kg = 975.441 .58.00 x2015735 = 33.263 1,24.55 x, 01374 = . 9.182 0.5083 Specific Gravity 0.508 Ethylene 0.374 1,920.10 x 0,508 2,002.65 mean 1 BTU/Lb Propane φ, ర్ట్ చే

9

Note:

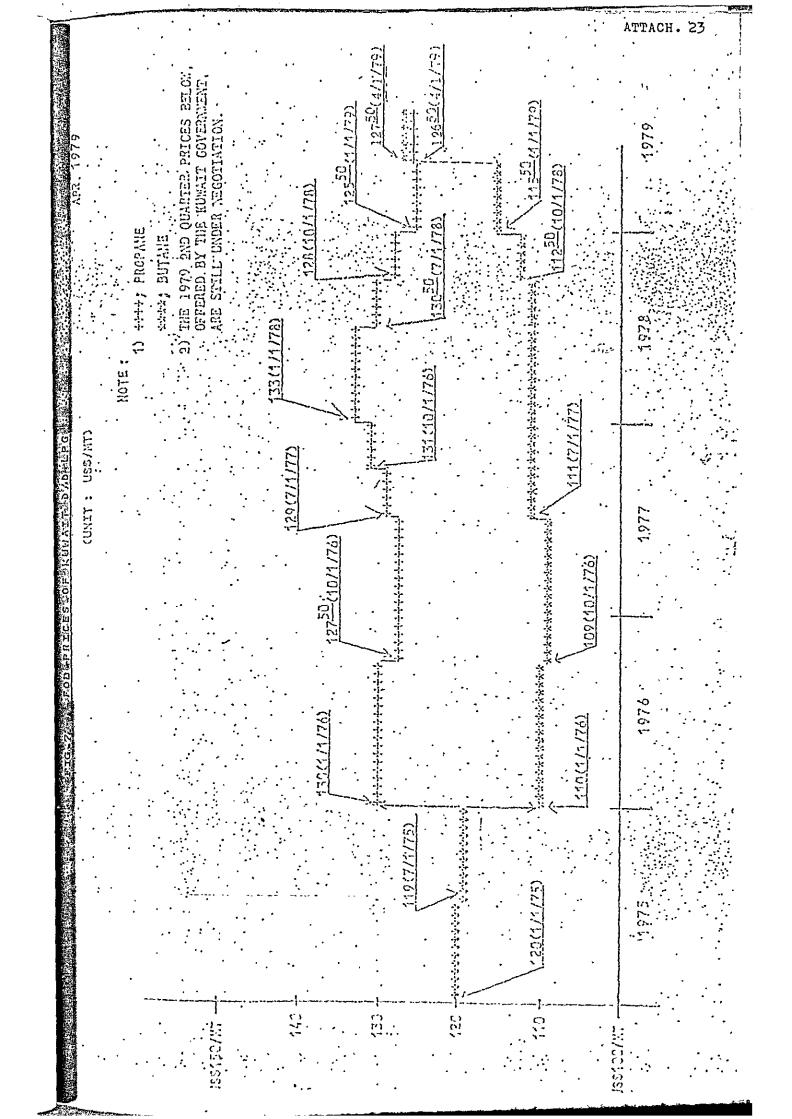
	G 60°F-BTU Ab	Net		21.500	19,930	19,670	19,500	19,240	19,180	19.050	19,020	19,000	18,980	19,610	19,450	19.330	10.01	10,220	19,160	19,200	19.140	19,150	19,160	19,090	19,130	19,110 19,110
<u></u>	REAT OF C	Gross		23,800	21,650	21,2904	21,070	20,780	20,670	00 530	20,450	20,450	20,420	21.240	21,030	20.960	20.750	20,700	20,700	20,740	. 50.650	20,660	20,670	20,600	20,040	20,020
	LANTS	G/ml		0.162	220	.225	.232	.234	233	,	Ţ	ļ	ļ	. 234	.234	į	٠,	1	i	.241	١	ţ	ı	1	ï	11
ໝ	CHITICAL CONSTANTS	Atm Th		45.8	12.0	37.4	32.6	29.4	24.8	23*	2	o.	2	30	32.4	: :	314	è	31.	31	28*	28.5	28.5	28.5	Si S	28.5
HYDROCARBONS	ситтс	an lie		1110.3	206.3	306	380.5	455,0	565	6120	651	260	731	375	369.5	320	437	443	415	441	400	504	20S*	475	49S	487
YDROC		Lb /gal	·	3,50		_	5.25	5.53	.85	0.01	6.11	6.19	0.27	4.69	5.30	4.97	5.48	5.57	5.44	5.51	5.68	5.76	5.85	50.0	5.83	5.81
OF H	DENBITT	Sp Gr 00°/60°		0.30	.508		.631	30.0	707.	722	133	7.	. 753	.503	.625	.597	658	.000	.054	.000	683	603.	5	873.	700	869
1		'API		340	147	111	92.7	21.0	08.6	5.5	61.3	58.7	56.4	120	94.9	103	83.5	80.0	84.9	81.ó	75.7	73.0	8 8	77.2	20.0	7.5.
PHYSICAL CONSTANTS	MELTING	٠. د		-296.5	-305.7	216.9	-201.5	3.00	1 70.3	1 G.5	- 21.5	- : : : : : : : : : : : : : : : : : : :	+ 14.7	-255.0	-2555.5	+ +	-245	-180	-147.0	-198.8	-180.8	-182.9	181.5	190.8	1 5	-211.0
ICAL	POINT	Št.	4	-128.0	- 43.8	1.15 +	6.00	200	258.2	303.4	345.2	38. 4.	421.3	10.9	82.2	49.0	140.5	145.9	121.5	130.4			200.2		193.6	
PHYS	HOLEC.	WT.		30.1	44.1	25.1	72.1	300.	114.2	128.2	1.12.3	156.3	5.071	58.1	1.27	72.1	86.2	86.2	80.2	86.2	100.2	8	100.5	7.001	100.2	100.2
-	PORNULA	•		in Sub	H.C	รี วั	HIS C		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CH	Cultur	Cultip	C18113	Callin	Callin	Callin	Cillia	Celli-	c _t n _t t	CiHit	Cilli	HE		11:11	1110	CHILIS
TABLE-14-1			HORMAL PARAFFINS	Ethane	Propano.	Dutane	Pentano	Honfane	Octane	Nonane	Decane	Undecane	Todacame	ISO-PARAFFIRS Isobutane	2-Methylbutane (Isopentane).	2,2-Dimethy lpropane (Neo-	2.Mothylpentane (Isohexane),	3-Methylpentane	hexane)	isopropyl)	2-Methylhevane (Isoheptane).	3-Methylhexane,	o o Dimethylandaria	Tunnetuyibentane	2,3-Dimethylpentane	3,3-Dimethylpentane

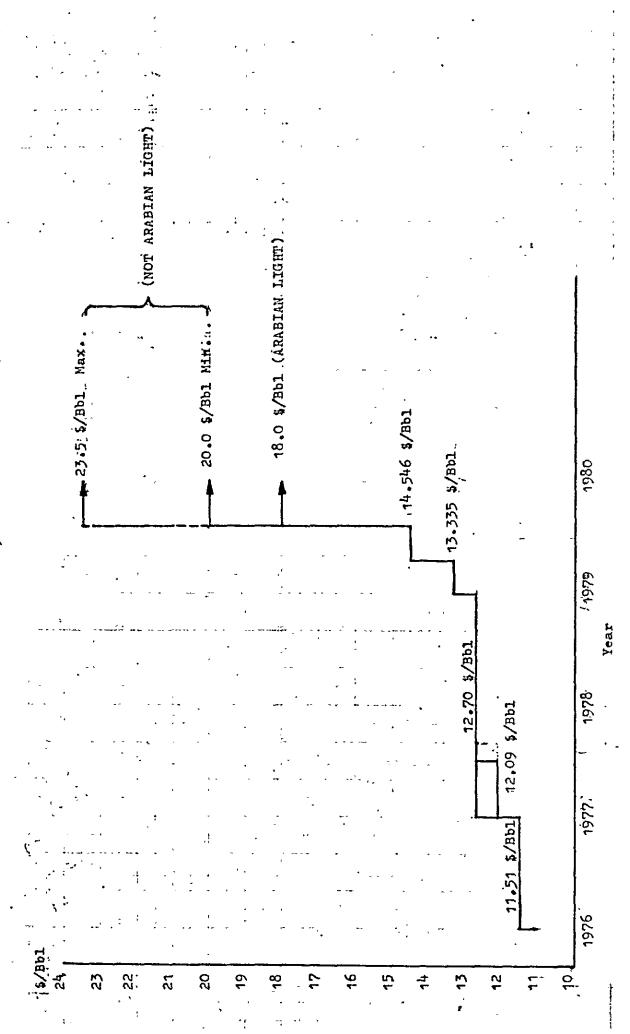
.

2,2,3-Trimethylbutane (Trip-tane)	C ₁ H ₁₁	100.2	177.6	- 13.0	72.1	0.695	5.78	.087	29.5		20,620	19,110
2-Mothylheptane (Isooctane)	THE C	114.2	243.8	- 165.1	70.1	.702	5.84	249	25*	1	20,570	19,080
2.5-Dimothylhoxane (Di-	;			1	?		00	100	₹	1	010'07	000'41
3,2,4-Trimothylpentane ("Iso-	: ::::::::::::::::::::::::::::::::::::	2,711	228,4	- 130	71.2	.698	5.81	230	 K	0.237	20,530	19,060
octane")		114.2	210.6	-161.2	71.8	000.	5.79	515	27.	1	20,540	19,050
OLEFINS Ethylene	C311	28.0	-154.7	-272.5	27.3	51:	2.91	20	51	.23	21,640	20,290
Propylene	Cilli	12.1	- 53.9	-301.4	140	.522	4.35	196.5	45.4	233	21,040	19,690
Butene-1	C,11,	56.1	20.7	!	20	.601	5.00	293	30•	}	20,840	19,490
Cis-Butene-2	: ::	56.1	38.6	-218.0	2.16	.627	5.22	316	i i	1	20,780	19,430
Isobutene		56.1	19.0	-220.6	3 5	28		292.5	39.5	13.	20,720	19,370
Pentene-1 (Amylene).	C,11,4	70.1	86.2	-216,4	87.2	.647	5.38	385	36	ì	20,710	19,360
Cis-Pentena-2.	֓֞֞֞֜֟֓֓֓֓֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֟֓֓֓֓֓֓֓֓֓֓֓	2.5	86.6	-230.2	25.00	199	8.50	306	8	١	20,660	19,310
Trust unique	ב ב	- - -	s:02	7217.0	> Fo	<u> </u>	4	3,00	3	j	0.00	19,290
2-Methylbuteno-1	C,II,	70.1	88.0	1	84.5	.655	5.45	387	36•	}	20,610	19,260
amylene)	Carra	70.1	68.4	-293.0	92.0	.633	5.27	363'	37*	1	20,660	19,310
2-Methylbutene-2	ا ا ا	70.1	201.2	-207.0	80.6	.667	5.55	401	35•	1	20,570	19,220
Hexane-1	in the	<u>2</u> 2	146.4	-218.0	77.2	879	5.62	403		!	20,450	19,100
Trans-Hoxene-Z.	E	3	151.2	207.0	75.7	583	83.5	200	. ;	1 1	20.400	10.050
Cis-Hexene-3.		20.25	153.7	-211.0	75.4	.65 8	S . S	47%	33	1 !	20,420	19,070
DIOLEFINS Propadiene	C.III.	40.1	30.1	-213.0	106	505	20.2	249	: 8	1	20.8804	-0:00 p1
Butadiene-1.2.	ָרָי <u>י</u>	51.1	+ 50.5	1	83.5	658	5.48	343,	1	ı	1	
Butadieno-1,3	= 0	51.1	24.1	-101.0	04.2	627	3.23	308	45	1	20,230	19,180
Pentadione-1.2	2115	68.1	112.8	0.58	71.5	269	5.80	4204	1	í	!	i
Cis-Pentadiene-1.3		0x.	111.0	ì	71.8	.690	5.79	07.7	١	i	20,150	19,010
Trans-Fentadiono-1.3	- - - -	08.1	108.1	1	0.07	5	5.cs	415	ı	ı	20,150	19,040
Pentadiona-1,4	11.0	08.1	78.9	-234.0	81.3	965	5.53	350	Ī	i	20,320	19,210
3-Methylbutadiene-1,2,	- 5		ž	- 184.℃	6.28	583.	5.70		1	ı	ı	ł
prene)	Cilia	68.1	93.3	-231.0	74.8	.680	5.71	395	i	1	20,060	18,950

* Critical temperature-boiling point cerrelation. * Mixture of cis- and trans-isomers. * Vapor pressure curve or cerrelation. ' Noat of combustion as a gas—otherwise as a liquid. Estimated.

TABLE-15 C₃ AND C₄ LPG PRODUCTION (LB/H) OF EACH YEAR


	***	. c ₃	LPG	-		C4 LPG				Total		
	с ₂ 10 ³ Lb/н	с ₃ 10 ³ lb/н	с ₄ 10 ³ ьь/н	Total 10 ³ Lb/H	с ₄ . 10 ³ lb/н	^С 5 10 ³ lb/н	Total 10 ³ Lb/H	с _{ў 10³lb/н}	^С 3 10 ³ Lb/н	с _ц 10 ³ lb/н	с ₅ 10 ³ lb/н	Total
1981 ^{*1} (Kg/H)	0.44	23.6 ^{*1}	0.54	24.58 ^{*3} (11.17)	13.06 ^{*2}	0.27	13.33 ^{*4} (6.06)	0.44	23.6	13.6	0.27	37.91 (17.23)
1982 (Kg/H)	0.74	39:4	0.90	41.04 (18.65)	22,20	0.45	22,65 (10,30)	0.74	. 39•4	23•1	0.45	63.69 (28.95)
1983 (Kg/H)	0.89	47.•3	1.08	49.27 (22.40)	26 . 52	0.54	27.06 (12.30)	0.89	47+3	27.6	0.54	76.33 (34.70)
1984 (Kg/H)	1.23	65.7	1•51	68.44 (31.11)	36 . 89	0.75	37.64 (17.11)	1.23	65.7	38.4	0.75	106.08 (48.22)
1985 (Kg/H)	1•23	65.7	1.51	68.44 (31.11)	36.89	0.75	37.64 (17.11)	1.23	65•7	38 • 4	0.75	106,08 (46,22)
1986 (Kg/H)	1.43	76.2	1.75	79•38 (36•08)	42.95	0.88	43.83 (19.92)	1.43	76.2	44.7	0.88	123 - 21 (56 - 00)
1987 (Kg/H)	1.43	76.2	1•75	79•38 (36•08)	42 . 95	0.88	43.83 (19.92)	1.43	. 76.2	44.7	0.88	123.21 (56.00)
1988 (Kg/H)	1.63	86.8	1•99	90,42 (41.10)	49.01	1.00	50,01 (22,73)	1.63	86.8	51 _• 0	. 1.00	140.43 (63.83)
1989 (Kg/H)	1.63	86.8	1.99	90.42 (41.10)	49.01	1.00	50,01 (22,73)	1.63	86.8	51.0	1.00	140.43 (63.83)
1990 (Кg/H)	1.63	86.8	1.99	90.42 (41.10)	49.01	1.00	50.01 (22.73)	1.63	86.8	51 . 0	1,00	140.83 (63.83)


Note: *1 come from TABLE-12 (4) (ATTACH.18)	Calculation way *3	C ₃ LPC 23.6 Lb/1	•	*4	13.06	C ₄ LPG Lb/H÷0.98	-
*2 TABLE-12 (4') (ATTACH.18) minus C4	•	%	. Lb/H ;		%	<i>:</i> :	Lb/H
in C3 LPG of this Table	c ₂	1.8	. 0.44	\mathtt{C}_{I_1}	98	• • • •	13.06
13.6 - 0.54 = 13.06	. c ₃	96.0	23.60	° ₅	2		0.27
	c ₄	2.2	0.54				
		100.0	24.58		100	• .	13 • 33

 c_3 and c_4 lpg (T/H, T/D, T/Y) production of each year

3							`					_
REMARK NATURAL GAS	PRODUCTION MM scf/D	150	300	350	200	500	009	009	200	200	200	
	10 ² T/Y	150.93	253.60	303.97.	422,40	422.40	490*26	490.56	559.15	559.15	559.15	
Total	T/D	413.52	694.80	885.80	1,157.28	1,157.28	1,344.00	1,344.00	1,531.92	1,531,92	1,531.92	
	T/H	17.23	28.95	34.70	48,22	48.22	26.00	26.00	63.83	63.83	63.83	
	10 ² T/Y	53.08	90,23	107.75	149.88	149.88	174.50	174.50	199.11	199,11	199.11	
$c_{l_{\dagger}}$ LPG	T/D	145.44	247.20	295.23	49.014	410,64	478.08	478.08	545.52	545.52	545.52	-
	T/H*	90.9	10.30	12.30	17.11	17.11	19.92	19,92	22.73	22.73	22.73	
	1034/2	97.85	163.39	196.22	272.52	272.52	316.06	316.06	360.04	360.04	70.095	
. C. I.PG	T/D	268.08	9.644	537.6	49.942	746.64	865.92	865.92	04.986	. 04.986	04.386	
	T/H	11.17	18.65	22.40	31.11	31.11	36.08	36.08	41,10	41.10	41.10	-
	•	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	

Note: *from TABLE-15 (ATTACH.21)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			C3 LPG	ъс	c ₄ LPG		C3 and C4 LPG	C3 and C4 LPG	C2 and C4 LPG	C3 LPG:% on Total
a_3 LPG $^{-1}$ $(1) \times 160 \text{ s/T}$ $(3) \times 180 \text{ s/T}$ $(2) + (4)$ $(1) + (3)$ $(5) \div (6)$ 10^3 s/Y 97.85 $15,656$ 53.06 9.551 $25,207$ 150.91 167.1 165.37 $26,139$ 90.23 $16,241$ $42,380$ 253.97 167.1 196.22 $31,395$ 107.75 $19,395$ $50,790$ 253.97 167.1 272.52 $43,603$ 149.88 $26,978$ $70,581$ 422.40 167.1 272.52 $43,603$ 149.88 $26,978$ $70,581$ 422.40 167.1 316.06 $50,570$ 174.50 $31,410$ $81,980$ 490.56 167.1 316.06 $57,664$ 199.11 $35,840$ $93,504$ 559.15 167.2 360.04 $57,664$ 199.11 $35,840$ $93,504$ 559.15 <t< th=""><th>- /*</th><th></th><th>(1)</th><th>(2)</th><th>(3)</th><th></th><th></th><th>(9)</th><th>(2)</th><th>(8)</th></t<>	- /*		(1)	(2)	(3)			(9)	(2)	(8)
103 n/r 103 s/r*2 103 s/r*2 103 s/r*2 103 s/r*2 103 s/r*2 103 s/r*2 97.85 15,656 53.06 9.551 25,207 150.91 167.1 163.37 26,139 90.23 16,241 42,380 253.60 167.1 196.22 31,395 107.75 19,395 50,790 303.97 167.1 272.52 43,603 149.88 26,978 70,581 422.41 167.1 272.52 43,603 149.88 26,978 70,581 422.41 167.1 316.06 50,570 174.50 31,410 81,980 490.56 167.1 360.04 57,664 199.11 35,840 93,504 559.15 167.2 360.04 57,664 199.11 35,840 93,504 559.15 167.2 360.04 57,664 199.11 35,840 93,504 559.15 167.2 360.04 57,664 199.11 35,840 93,504 559.15 167	-	2. ·	C3 TPG 1	(1)x160 \$/T	Ch LPG*1	(3)x180 \$/T	(5) + (4)	(1) + (3)	(5) ÷ (6)	(4) + (6)
97.85 15,656 53.06 9,551 25,207 150.91 167.1 163.37 26,139 90.23 16,241 42,380 253.60 167.1 196.22 31,395 107.75 19,395 50,790 303.97 167.1 272.52 43,603 149.88 26,978 70,581 422.41 167.1 272.52 43,603 174.50 31,410 81,980 490.56 167.1 316.06 50,570 174.50 31,410 81,980 490.56 167.1 360.04 57,664 199.11 35,840 93,504 559.15 167.2 360.04 57,664 199.11 35,840 93,504 559.15 167.2 360.04 57,664 199.11 35,840 93,504 559.15 167.2			103 T/Y	103 \$/x*2	10 ² T/Y	103 \$/y*2	10 ³ \$/Y	10 ³ T/Y	10 ³ 5/T	38
163.37 26,139 90.23 16,241 42,380 253.60 167.1 196.22 31,395 107.75 19,395 50,790 303.97 167.1 272.52 43,603 149.88 26,978 70,581 422.41 167.1 272.52 43,603 174.50 31,410 81,980 490.56 167.1 316.06 50,570 174.50 31,410 81,980 490.56 167.1 360.04 57,664 199.11 35,840 93,504 559.15 167.2 360.04 57,664 199.11 35,840 93,504 559.15 167.2 360.04 57,664 199.11 35,840 93,504 559.15 167.2 360.04 57,664 199.11 35,840 93,504 559.15 167.2 360.04 57,664 199.11 35,840 93,504 559.15 167.2		1981	97.85	15,656	53.06	9,551	25,207	150.91	167.1	. 8* 19
196.22 31,395 107.75 19,395 50,790 303.97 167.1 272.52 45,603 149.88 26,978 70,581 422.41 167.1 272.52 43,603 149.88 26,978 70,581 422.40 167.1 316.06 50,570 174.50 31,410 81,980 490.56 167.1 360.04 57,664 199.11 35,840 93,504 559.15 167.2 360.04 57,664 199.11 35,840 93,504 559.15 167.2 360.04 57,664 199.11 35,840 93,504 559.15 167.2 360.04 57,664 199.11 35,840 93,504 559.15 167.2 360.04 57,664 199.11 35,840 93,504 559.15 167.2 360.04 57,664 199.11 35,840 93,504 559.15 167.2	· , ,	1982	163.37	26,139	90.23	16,241	.42,380	253.60	167.1	7. 49
272.52 43,603 149.88 26,978 70,581 422,41 167.1 272.52 43,603 149.88 26,978 70,581 422.40 167.1 316.06 50,570 174.50 31,410 81,980 490.56 167.1 360.04 57,664 199.11 35,840 93,504 559.15 167.2 360.04 57,664 199.11 35,840 93,504 559.15 167.2 360.04 57,664 199.11 35,840 93,504 559.15 167.2 360.04 57,664 199.11 35,840 93,504 559.15 167.2 360.04 57,664 199.11 35,840 93,504 559.15 167.2	-	1983	196.22	31,395	107.75	19,395	50,790	26.505	167.1	64.5
272.52 43,603 149.88 26,978 70,581 422.40 167.1 316.06 50,570 174.50 31,410 81,980 490.56 167.1 316.06 50,570 174.50 31,410 81,980 490.56 167.1 360.04 57,664 199.11 35,840 93,504 559.15 167.2 360.04 57,664 199.11 35,840 93,504 559.15 167.2 360.04 57,664 199.11 35,840 93,504 559.15 167.2		1984	272.52	43,603	149.88	26,978	70,581	422,41	167.1	64.5
316.06 50,570 174.50 31,410 81,980 490.56 167.1 316.06 50,570 174.50 31,410 81,980 490.56 167.1 360.04 57,664 199.11 35,840 93,504 559.15 167.2 360.04 57,664 199.11 35,840 93,504 559.15 167.2 360.04 57,664 199.11 35,840 93,504 559.15 167.2	<u>. </u>	1985	272.52	43,603	149.88	26,978	70,581	422.40	1,291	64.5
316.06 50,570 174.50 31,410 81,980 490.56 167.1 360.04 57,664 199.11 35,840 93,504 559.15 167.2 360.04 57,664 199.11 35,840 93,504 559.15 167.2 360.04 57,664 199.11 35,840 93,504 559.15 167.2 360.04 57,664 199.11 35,840 93,504 559.15 167.2	۴	1986	316.06	50,570	174.50	31,410	81,980	490.56	. 167.1	#• †9
360.04 57,664 199.11 35,840 93,504 559.15 167.2 360.04 57,664 199.11 35,840 93,504 559.15 167.2 360.04 57,564 199.11 35,840 93,504 559.15 167.2	· ·	1987	316.06	50,570	174.50	31,410	81,980	490.56	167.1	#· 19
360.04 57,664 199.11 35,840 93,504 559.15 167.2 360.04 57,564 199.11 35,840 93,504 559.15 Average Average 167.1		1988	360.04	57,664	199-11	35,840	93,504	559-15	167.2	7 4. 49
360.04 57,664 199.11 35,840 93,504 559.15 400 40 40 40 40 40 40 40 40 40 40 40 40		1989	360.04	57,664	199.11	35,840	93,594	559.15	167.2	4,49
. :		1990	360.04	57,664	199.11	35,840	93,504	559.15	167.2	, 4° 49
	- 1	·••••					,		Average	64.5

Note: *1 are come from TABLE-16 (ATTACH.22).

*2 G LPG 160 5/T, C4 LPG 180 5/T

	(1)	(2)	(3)	(4)	(5)	(9)	
· •	CZLPG.	(±)x54	(2)x3,65 ^{*2}	(3)x21,647 ³ BTU/1b	(2)x21,647 BTU/1b	(3)x21,647 BIU/1b	,
	10 ³ 1b/H [*] 1	10 ³ 1b/D	10 ⁶ 1b/Y	Gross 10 ⁶ BTU/H	Gross 10 ⁶ BTU/D	10 ⁶ BTU/Y	
1981	24.58	589.92	215.32	532.08	12,770.00	4,561.03	
1982	41.04	96.486	359.51	888.39	21,321.43	7,782.31	
1983	49.27	1,182.48	431.61	1,066.55	25,597.14	9,343.06	····
1984	68.44	1,642.56	599.53	1,481,52	35,556.50	12,978.03	
1985	68.44	1,642.56	599.53	1,481.52	35,556.50	12,978.03	
1986	79.38	1,905.12	695.37	1,718.34	41,240.13	15,052.67	
1987	79.33	1,905.12	695.37	1,718.34	41,240.13	15,052.67	
1988	90.42	2,170.08	792.08	1,957.32	46,975.72	17,146.16	
1989	24.06	2,170.08	792.08	1,957.32	46,975.72	17,146.16	
1990	90•42	2,170.08	792.08	1,957.32	46,975.72	17,146.16	
		1					

bte: *1 come from TABLE-15 (ATTACH.21).

LPG production can not be changed because heating value of sales natural gas should be maintained constant. * Uİ

*> come from TABLE-13-2 (14) (ATTACH.19-2).

	(1)	(2)			(5)	(9)
		(1) x 24 H	(2) x 365 ^{*2}	(1) x 25,882*3 BTU/Lb	(2) x 25,882 BTU/Lb	(3) x 25,882 BTU/Lb
	7*, *,	, M	\ C	Gross	Gross	Gross
	10 Lb/H	10'Ib/D	10_TP/X	10 BTU/H	10 BTU/D	10'BTU/Y
1981	13.33	319.92	116.77	345.01	8,280.17	3,022.24
1982	22.65	543.60	198.41	586.83	14,069,46	5,115,25
1983	27.06	44.649	237.05	75.007	16,808.81	6,135.33
1984	37.64	903-36	329.73	974.20	23,380.76	8,534.07
1985	37.64	903.36	329.73	974.20	23,380.76	8,534.07
1986	43.83	1,051.92	383.95	1,134,41	27,225.79	9,937.39
1987	43.83	1,051,92	383.95	1,134.41	27,225.79	9,937.39
1988	50.01	1,200.24	438.09	1,294.36	31,064.61	11,338.65
1989	50.01	1,200.24	438.09	1,294.36	31,064.61	11,338.65
1990	50.01	1,200.24	438.09	1,294.36	31,064.61	11,338.65

Note: *1 come from TABLE-15 (ATTACH.21).

LPG production can not be changed because heating value of sales natural gas should be maintained construct. **™**

^{*3} come from TABLE-13-2 (14)(ATTACH.19-2)

TABLE-20 AVERAGE C3 AND C4 LPG HEATING VALUE

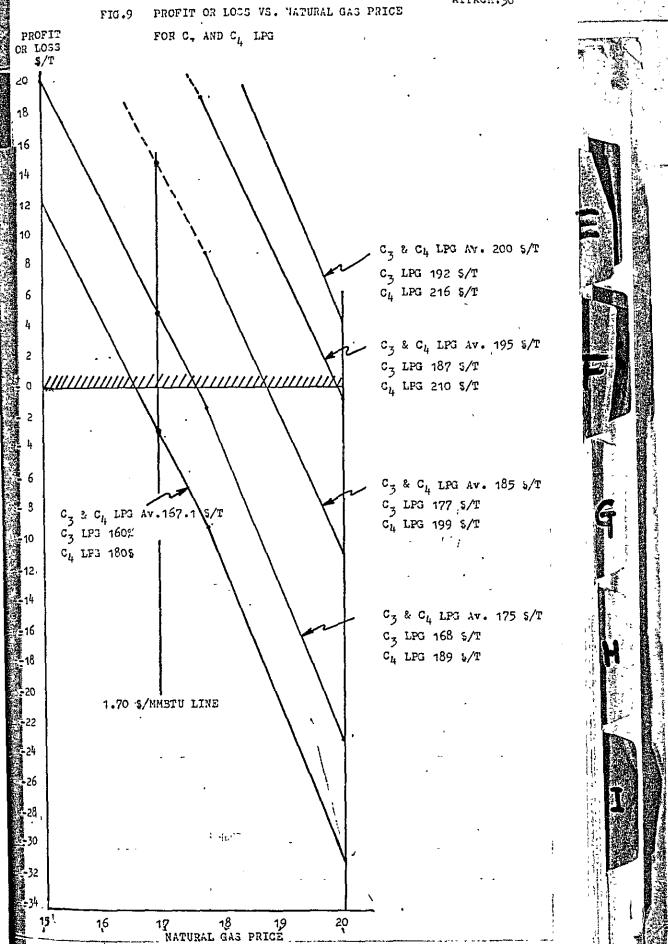
1084				•	•
	c ₂ LPG	Ct LPG	C3+C4 LPG	C2+ C4 LPG	(3) ÷ (4)
	Gross	Gross	Gross	Production	Gross
1081	109BTU/Y	10 ⁹ BTU/Y	10 ⁹ BTU/Y	10 ³ T/Y	10 ⁶ BTU/T
200	4,661.03	3,022.24	7,682.27	150.93	50.91
1982	7,782.31	5,115.06	12,897.37	253.60	50.86
1983	9,343.06	6,135.33	15,478.39	303.97	50.92
1984	12,978.03	8,534.07	21,512.10	422,40	50.92
1985	12,978.03	8,534.07	21,512.10	422.40	50.92
1986	15,052.67	9,937.39	24,990.06	490.56	50.94
1987	15,052.67	9,937.39	24,990.06	95.064	50.94
1988	17,146.16	11,338.65	28,484.81	559.15	50.94
1989	17,146.16	11,338.65	28,484.81	559.15	50.94
1990	17,146.16	11,338.65	28,484.81	559.15	50.94

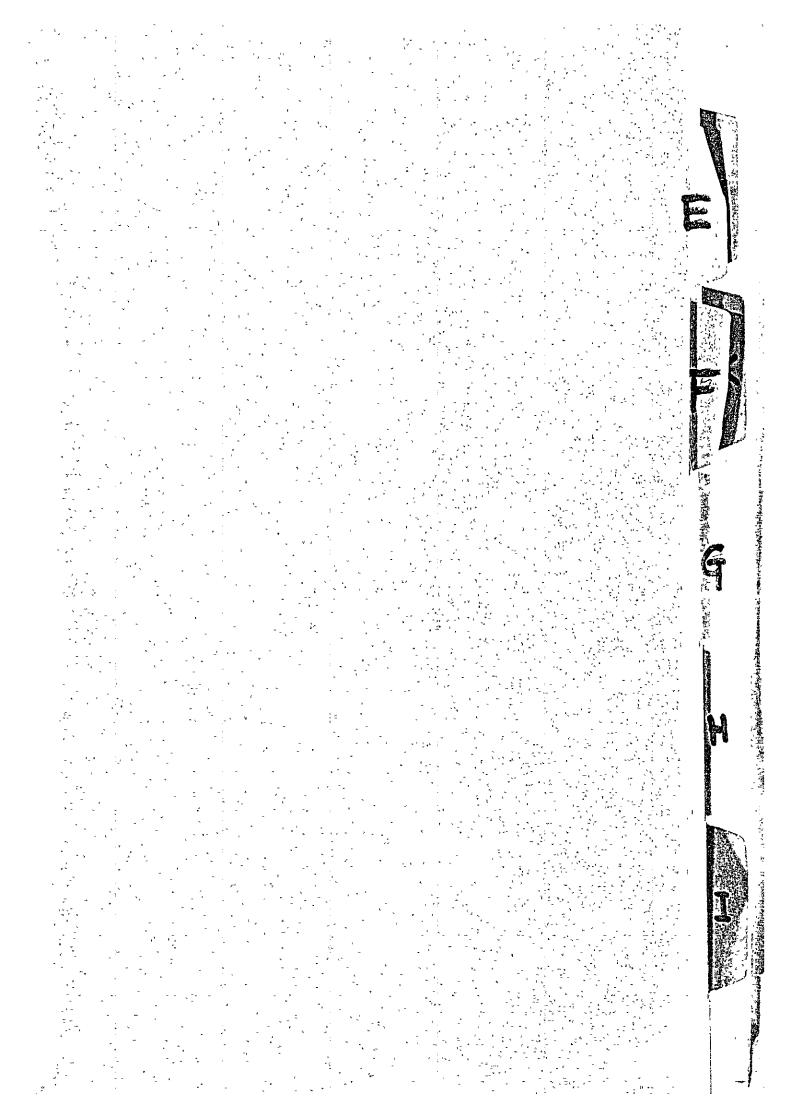
Note: (1) TABLE-18 (6) (ATTACH.26)

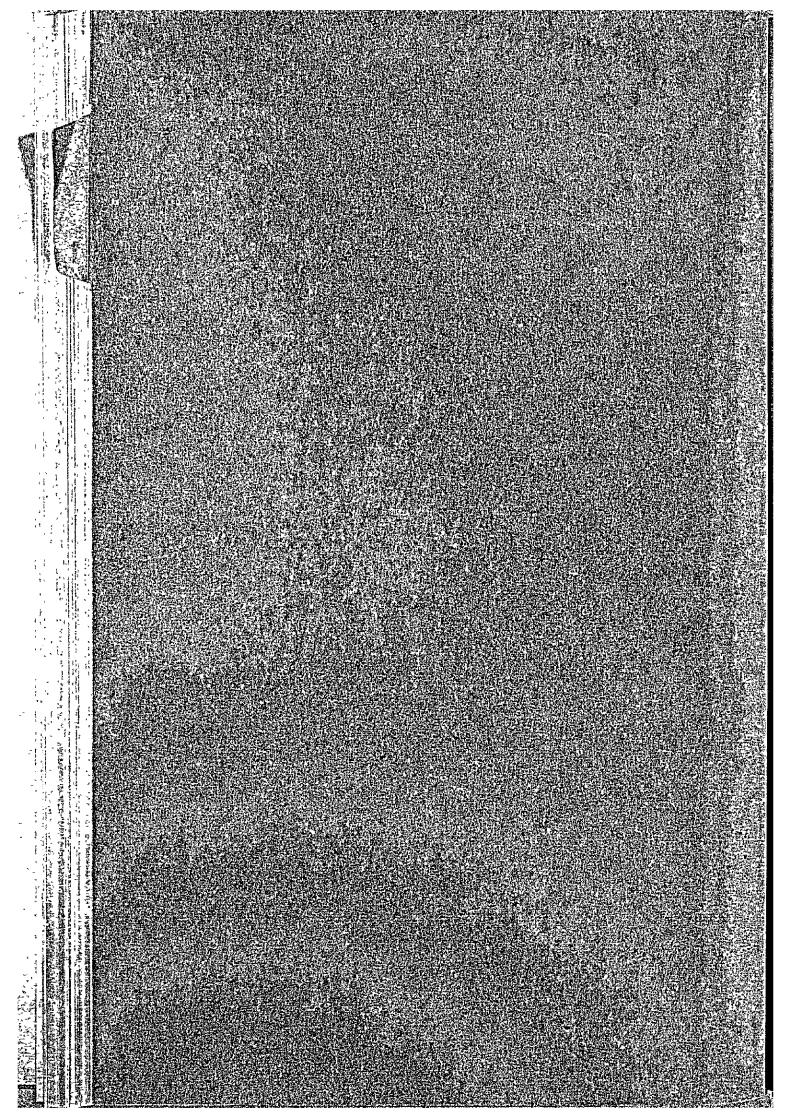
⁽²⁾ Tible-19 (6) (ATTACH.27)

⁽⁴⁾ TABLE-16 (ATTACH.22)

TABLE-21


COST SUMMATION


Production 385,010 T/Y


/			
			\$/T
Charge Natural Gas	50.92 MMBTU/T	1.5 \$/10 ⁶ BTU	76.38
Operation Cost	(Investment 93 242,158 %/T		,090 T =
Depreciation	5% on Inve	estment	11.61
Interest for Investment	5% on Inve	estment	11.61
Tax and Insurance	2% on Inve	estment	4.65
Maintenance	3% on Inve	estment	6.97
Administration	2% on Inve	estment	4.65
Over-head	2% on Inve	estment	4.65
Interest of Vorking Capital			1.68
Sub-Total			45.82
Utility			40.82
Labor Cost	15x4 = 60 200 %/mon x) persons c 60 persons	
	x 12 mon ÷	385,090 T/Y	0.34
· Sub-Total			86.98
	Minus 15% for control	dew point	73•93
Total .			150.31
	plus 3% for se	elling charge	154.82

OUTLET (INCOME)

		
C3 and C4 LPG		100
3 04 HFG		167.1

PETROLFUM STATISTICS IN 1978

June 11, 1979.

. . .

	page
CRUDE OIL IMPORTED BY COUNTRY OF ORIGIN 1978	. 1
PRODUCTION OF TOTAL FOUR REFINERIES IN 1978	, 2
FANG REFINERY PRODUCTION (1960-1969)	. 2
PETROLEUM PRODUCTS IMPORTS IN 1978	. 3
PETROLEUM PRODUCT CONSUMPTION 1978	4
WHOLESALE PRICE OF PETROLEUM PRODUCTS AT REFINERIES AS CONTROLLED BY GOVERNMENT (INCLUDING TAX)	
(EXREFINERY PRICE)	5
RETAIL PRICE OF PETROLSUM PRODUCTS IN THE MUNICIPALITY	
OF BANDKOK	5
EXREFINERY PRICE WAS CHANGED ON MAY 1ST 1979	5
PETROLEUM IMPORT PRICE (CIF PRICE).	6
PETROLEUM PRODUCT IMPORTS BY COUNTRY	7
PETROLEUM STOCK PILING BY LEGAS	. 8
SUBSIDY FOR SALES COMPANY	8
ANK CAPACITY	9
ANK INSTALLATION PLANNING	10
RUDE OIL IMPORT VALUE	11
ETROLEUM PRODUCT IMPORT VALUE	44

													Un	it: 10 ³ K]	<u></u>	
1							1978	ì			·		,		1979	
	Jan.	Feb	Mar.	April	Илу	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total	Jan.	Feb.	Mar.
Çatar	160	165	158	186	305	276		339	322	242	306	157	2,616	386	92	257
Kuwait	59	26	125	- 1	186	} -	71	47	66	54	61	165	860	55	111	183
abu Dhabi	-	81	-	117	-	157	105	234	84	88	81	-	713	31	444	-
Saudi Arabia	550	472	499	246	203	81 -	223	83 -	169	361	437	70	3,545	229	299	381
China	-	_	-	_	-	17	76	i -	93	71	104	87	531	83	55	94
Iran	_	37	-	-	-	148	46	-	} -	-	-	-	231	-	-	-
Iraq		-		_	-	105	_	1	-	-	-	-	105	-	-	-
Brunie	58	_	64	61	145	-	161	_	176	59	60	90	874	66	65	64
Darius	_	_		44	-	-	-	-	-	-	, -	-	44	_	-	-
Singapore		-	_	-	_	_	-	8	11	_	-	-	19	-		18
Indonesia	-	-	-	-	-	-	-	-	-	_	-	-	_	<u>"</u>	-	14
Total	827	781	846	654	839	784	682	711	921	875	1,049	569	9,538	850	766	1,011

data of 1979 are preliminary, subject to change.

PRODUCTION OF TOTAL FOUR REFINERY IN 1978

UNIT : KL

	Jan.	Fob.	Mar.	April	Иау	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
				`			,			·	.5.500	40 586	224 406
LPG	21,981	16,610	20,049	15,627	.19,516	21,452	18,771	11,069	18,549	22,052	15,799	19,586	221,106
Gasoline Premium	116,313	97,194	93,036	79,324	110,896	101,071	100,552	92,497	107,845	103,741	90,370	87,168	1,180,007
Regular	80,289	72,369	77,079	79,186	69,468	71,593	74,766	58,371	75,060	64,932	83,073	81,924	888,110
Jet Fuel JP-1	50,806	50,580	57,749	63,181	65,818	67,967	, 63 , 493	43,231	69;776	77,216	49,528	61,483	720,828
JP±4	2,252	4,206	2,353	4,339	2,191	2,098	2,148	1,890	2,180	2,156	4,214	4,341	34,368
Kerosene	24,688	17,579 ·	14,979	22,753	21,518	19,069	29,460	19,569	16,929	20,798	17,748	33,389	258,479
biesel Oil HSD .	246,734	229,567	167,883	138,315	229,933	215,446	188 ₁ 436	166,889	201,999	207,156	182,692	207,057	2,382,167
LSD	10,291	9,523	11,898	14,919	9,114	10,191	12,241	6,546	15,990	10,950	12,501	5,526	129,990
Tuel Oil	198,619	222,733	261,208	259,745	252 , 25 ⁴	165,596	194,504	187,436	239,158	227,908	244,710	283,104	2,743,025
ļ	12,706	15,315	13,534	12,251	14,942	2,389	2,881	2,306	2,116	2,886	706	1,257	81,301
Bitumen	12,700	1 10,010,	12,22	12,25.	,			}		1		1	}
Total	764,679	739,726	719,813	689,640	795,650	676,872	687,302	589,804	749,602	739,807	701,641	784,845	8,639,381
	1	}		ļ		Ì					!	<u> </u>	<u></u>

Year Benzine Kei 1960 0.4 1961 0.1 1962 0.1	Kerosene	-			1		:	
Benzine 0.4 0.1	rosene				Fuel Oil	oit.	ا ا ا	
		Diesel	JP-4	JP-1	Heavy	Light	T.PG	rotar
····				•				
		1	ı	ı	1.4	4.1	ŧ	5.9
	1	0.2	ı		2.7	ı	1	3.0
	ı	ı	ı	ı	† •0	F.	l	1.6
·	ı	0.2	1	ı	7.1	0.2	·	
_	19.4	138.1	7.3	24.2	121.9	0.001	1.5	380.5
1965 202.9	22.0	534.3	35.4	182.5	308.7	2.9	6•+	1,293.6
1966 327.2	33.2	733.9	64.1	163.4	591.3	9.6	9.5	1,932.2
	91.3	796.1	9.64	156.2.	618.9	ı	17.2	2,196-1
1968 480.9	152.7	8888.8	6.4	185.4	866.7	1	34.6	2,614.0
9.245 6961	159.2	1,027.1	18.6	232.3	1,005.6	ı	7.6u	3,040.1

Note: In this period, Thailand had only one refinery.

PETROLEJM PRODUCTS IMPORTS IN 1978

	, Ta-			i	T	ī	T	1		, 	·	Unit	: K1
	Jan.	Feb.	Mar.	April	Hay	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
LPG	. 9,442	2,052	1,552	1,053	T	2,173	6,419	4,954	7,639	8,759	9,351	18,069	71,463
Gasoline Premium	1,761	11,007	18,781	18,185	9,719	8,536	3,353	15,460	_	6,436	17,606	25,951	136,845
Regular	9,364	429	337	20,117	6,041	13,669	6,688	5,398	3,754	23,773	12,630	9,130	111,330
Jet Fuel JP-1	. 2,127	3,810	6,352	2,512	-	810	-	300	_	3,23 ^L	3,720	9,198	32,063
JP-4	-	-	-		-	-	_	_	_	_	_		22,000
Kerosene	253	206	236	236	201	280	-	227	478	469	268	_	2,854
Diesel Oil HSD	66,134	87,079	125,313	44,560	167,574	100,100	41,774	214,437	95,087	131,438	120,196	145,012	1,338,701
. LSD .	· _	-		-	-	_	_	_	-	_		4,790	4,790
Tuel Oil	63,514	57,646	84,709	79,255	125,483	184,866	67,314	55,007	70,590	14,870	31,442	18,069	852,765
Bitumen	-	-	-	-	_	 	_	-	-	_		-	0,2,70)
Total -	152,595	162, 229	237,280	165,918	309,018	310,434	125,545	295,783	177,548	189,029	195;213	230,219	2,550,811

,					PETROLEUM I	ROD TOUGORS	NI KOITAMU	1978						:
/		•		(Page 3 impo	ort plus pad	e 2 producti	lon)				Uni	t : Kl	
		Jan.	Feb.	Mer.	April	May	June	July	Aug.	Sept.	Cct.	Nov.	Dec.	Total
7.700	Imp.	9,442	2,052	1,552	1,053	••	2,173	6,419	4,954	7,639	8,759	9,351	18,069	71,463
LPG	Prod.	21,981	16,610	20,094	15,627	19,516	21,452	18,771	11,069	18,549	22,052	15,799	19,586	221,106
] 	Total	31,428	18,662	21,646	16,680	- 19,516	23,625	25,190	16,023	26,188	30,811	25,150	37,655	292,569
Gasoline Premium	Imp.	1,761	11,007	18,781	18,185	9,719	8,536	3,353	15,460	-	6,486	17,606	25,951	. 136,845
	Prod.	116,313	97,194	93,036	79,324	110,896	101,071	100,552	92,497	107,845	103,741	90,370	87,168	1,180,007
	Total	118,074	108,201	111,817	97,509	120,615	109,607	103,905	107,957	107,845	110,227	107,976	113,119	1,316,852
Regular	Imp.	9,364	429	337	20,117	6,041	13,669	6,688	5,398	3,754	23,773	12,630	9,130	111,330
	Prod.	80,289	72,369	77,079	79,186	69,468	71,593	74,766	58,371	75,060	64,932	83,073	81,924	888,110
	Total	89,653	72,798	77,416	99,303	75,509	85,262	81,454	63,769	78,814	88,705	95,703	91,054	999,440
Jet Fuel JP-1	Imp.	2,127	3,810	6,352	2,512	-	810	-	300	-	3,234	3,720	9,198	32,063
	Prod	50,806	50,580	57,749	63,181	65,818	67,967	63,493	43,231	69,776	77,216	49,528	61,483	720,828
	Total	52,933	54,390	64,101	65,693	65,818	68,777	63,493	43,531	69,776	80,450	53,248	70,681	752,891
3P_4	Imp.	-	-		_	-	-	-	-	-	-	-	- l. 71.4	- 71: 768
	Prod.	2,252	4,206	2,353	4,339	2,191	2,098	2,148	1,890	2,180	2,156	4,214	4,341	3 ⁴ ,368
	Total	H	11	"	"	"	. "	(1	11	11	\ " <i>,</i>	· · ·	-	
Kerosene	Imp.	253	206	236	236	201	280	-	227	478	469	268	- 700	2,854
	Prod.	24,688	17,579	14,979	22,753	21,518	19,069	29,460	19,569	16,929	20,798	17,748	33,389	258,479 261,333
	Total	24,941	17,785	15,215	22,989	21,719	19,349	29,460	19,796	17,407	21,267	18,016	33,389	
Diesel Oil HSD	Imp.	66,134	87,079	125,313	44,560	167,574	100,100	41,771	214,437	95,087	131,438	120,196	145,012	1,338,701
	Prod.	246,734	229,567	167,883	138,315	229,933	215,446	188,486	166,889	201,999	207,166	182,692	207,057	2,382,167
	Total	312,868	316,646	293,196	182,875	397,507	315,546	230,257	381,326	297,086	338,604	302,888	352,069	3,720,863
LSD	Imp.	_	_	-	-	-	-	_	-	-	-	-	4,.790	4,790
	Prod.	10,291	9,523	11,898	14,919	9,114	10,191	12,241	6,546	15,990	10,950	12,801	5,526	129,990
	Total	10,291	9,523	11,898	14,919	9,114	10,191	12,241	6,546	15,990	10,950	12,801	10,316	134,780 1,2 t
Fuel Oil	qmI.	63,514	57,646	84,709	79,255	125,483	184,865	67,314	55,007	70,590	14,270	31,442	18,069	852,765
	Prod.	198,619	228,733	261,208	259,745	252,254	165,596	194,504	187,436	239,158	227,908	244,710	283,104	2,743,025
•	Total	262,133	286,429	345,917	339,000	377,737	350,462	261,818	242,443	309,748	242,778	275, 152	301,173	3,595,790
Bitumen	Imp.] -	_ ·	· -	-	_	-	_	-	-	-	_	-	- 24 704
	Prod.	12,706	13,315	13,534	12,251	14,942	2,389	2,881	2,306	2,116	2,898	706	1,267	81,301
	Total	"	n	11	it it	, u	n	11	"	11	**	"	, ,,	0.73
Total	Imp.	152,593	162,229	237,220	165,918	309,018	310,434	125,545	295,783	177,548	189,029	195,213	230,219	2,550,811
•	Prod	754,679	739,726	719,813	689,640	795,650	676,872	687,302	589,804	749,602	739,807	701,641	748,845	8;639,381
	Total	917,274	901,955	957,093	855,558	1,104,668	987,306	812,847	885,587	927,150	928,836	896,854	1,015,064	11,190,192
	1.		1	1	1	ì	•	1	ſ	ł	ì	1	1	1

25

/ ;

- _ -

1.

WHOLESALE PRICE OF PETROLEUM PRODUCTS AT REFINERIES AS CONTROLLED BY GOVERNMENT (INCLUDING TAXES) (EXREFINERY PRICE)

-					· · · · · · · · · · · · · · · · · · ·	19'	78							1979	
	Jan.	Feb.	Mar.	April	May	Juhe	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	řeb.	Mar.
LP3 (B/kg)	3.3235	3.3235	3.3235	3.3235	3 3255	3+3255	3 : 3255	3,3255	3.3255	3.3255	3.3255	3.3255	3.3255	3.4018	3.4018
Gasoline Premium	3.6898	3.6898	4.4533	4:4533	41.4533	4.4533	4,4533	4.4533	4.4533	4.4533	4.4533	4.4533	4.4533	4.9599	4.9599
Regular	3:4389	3.4389	4.2024	4+2024	4:2024	4.2024	4.2024	4.2024	4.2024	4.2024	4.2024	4.2024	4.2024	4.5179	4.5179
Jet Fuel JP-1	2.4557	2.455?	2.4557	2.4557	2.4557	2.4557	2.4557	2,4557	2.4557	2.4557	2.4557	2.4557	2.4557	2.4733	2,4733
JP-4	2.2892	2.2892	2.2892	2.2892	2.2892	2.2892	2.2892	2.2892	2.2892	2.2892	2.2892	2.2892	2.2892	2.3160	2.3160
Kerosene	2.3971	2.3971	2.3971	2.3971	2.3971	2.3971	2.3971	2.3971	2.3971	2.3971	2.3971	2.3971	2.3971	2.5900	2.5900
Diesel Oil HSD	2.3520	2.3520	2.3520	2.3520	2.3520	2.3520	2.3520	2.3520	2.3520	2.3520	2.3520	2.3520	2.3520	2.5018	2.5018
bleser our msp	2.3097	2.3097	2.3097	2.3097	2.3097	2.3097	2.3097	2.3097	2.3097	2.3097	2.3097	2.3097	2.3097	2.4737	2:4737
Fuel Oil 450"	-	_		_	-	_	_	-	, 		} -	-	-	-	-
600"	1.6722	1.6722	1.6722	1.6722	1.6722	1.6722	1.6722	1.6722	1.6722	1.6722	1.6722	1.6722	1.6722	1.6966	1.6966
1,200"	1.6314	1.6314	1.6314	1.6314	1.6314	1.6314	1.6314	1.6314	1.6314	1.6314	1.6314	1.6314	1.6314	1,6356	1,6356
1,500"	1.6157	1.6157	1.6157	1.6157	1.6157	1.6157	1.6157	1.6157	1.6157	1.6157	1.6157	1.6157	1.6157	1.6157	1.6157
Situmen (K/kg)	1.2266	1.2265	1.2266	1.2266	1.2266	1.2266	1.2266	1.2266	1.2266	1.2266	1.2266	1.2266	1.2266	1.2724	1.2724

data of 1979 are preliminary, subject to change.

RETAIL P	RICE OF	PETROLEUM	PRODUCTS	I٩	THE	MUNICIPALITY	OF	BANGKOK	Unit	:	R/lit.
4)								·		-	P/

			2 02 21111-11111 0111
		iar. 10, 1978	Jan. 31, 1979
Gasoline Premium		4.98	5.60
Regular	1	4.69	5•12
Piesel Oil HSD LSD Vel Oil: 400" ,600"		2.68	3.06
Diesel Oil HSD		2.64	3.03
· · · : LSD		2.50	2.93
Wel Oil:		•	
400"	~ `	- '	,
,600°	,	1.66	1.86
1,200"	:	1.62	1.79
1,500"	*	1.61	1.77
	- 1	}	L

June 1, 1979.

EXREFINERY PRICE WAS CHANGED ON MAY 1ST 1979

	No Tax	Excise Tax	Municipal Tax % on Excise Tax	B/L Exrefinery Price
Gasoline Premium	3.1528	2.2960	1	5.7418
Regular	2.9047	2.0992	1	5.0249
Jet Fuel JP-1				
JP-2	no .	price com	itroi	
Kerosene	2.9284	0.2754	1	3.2066
Diesel Oil HSD	2.7845	0.2727	1	3.0599
LSD	2.7547	0.2637	1	3.0210
Fuel Oil 600"	2.0798	0.001	-	2.0808
1,200"	1.9975	0.001	-	1.9985
1,500"	1.9707	0.001	-	1.9717
LPG K/L	2.717	0.001	-	
k/kg	4.6828	(2.717	+ 0.001) x 4.9628 2.719	4.9646
Bitumen B/Kg	1.74850		-	1.7485

RETAIL PRICE

The retail price was changed on January 31, 1979 (effective on February 1, 1979). Exrefinery price went up on May 1, 1979, but retail price did not change, so retail price is lower than exrefinery price. So, Thai Government decided to subsidize retail price since May 1, 1979, but now not yet enforced.

ટુ

		~~~~~~~					<u>}</u>					oute of
	Ján.	Feb.	Mar.	April	May	June	, July	Aug.	Sept.	Oct.	Nov.	Dec.
LPG (B/kg)	1.990	2.141	2.144	2.196	••	1.916	1.985	2.152	2.109	2.005	2:017	2.039
Gasoline Premium	2.545	2.514	2.513	2.483	2.481	2.417	2.443	2.487	•	2.404	2.486	2:531
Regular	2.328	2.294	2,282.	2.187	2.203	2.156	2.147	2.660	2.165	2.395	2.124	2.166
Jet Fuel JP-1	2.385	2.264	2.236	2.230	-	1.981	, _	3 523	,	2.277	2.253	2.266
JP-4			-	·- ·	• .	;-	· · -	~		· _	_	_
Kerosene	2.269	. 2.272	2.292	2.297	2.299	2.290	-	2.304	2.268	2.330	2.295] _ }
Diesel Oil HSD	2•138	2.109	2.133	2.084	2.108	2.099	2.026	2.169	2.057	2.209	2.128	2:124
LSD.	~· ·	-	-	-	, <u>~</u>	-2 -2				-		2:247
Fuel Oil ·	.1-555	1.577	1.613	1.549	1.586	1.549	1.541	1.529	1.471	1.493	1.491	1:489
Bitumen	. · ·	- .	-			- :	-		-		_	
						١.			1			

PETROLEUM PRODUCT IMPORTS BY COUNTRIES

Unit : Kl

															
Countries	Singapore	Taiwan	China	Indonesia	Srilanka	Hongkong	Japan	Korea	Australia	Bahrain	Kuwait	Iran	Yenan	South AFC	Total
LPG	46+306				<u> </u>			3.394	2.893					1.829	54.422
Gasoline Premium	72+325	33.940				, ,	5.402			į Į	}		[]		111.667
Regular	9.986	56.645		ļ 					1	<u> </u>					66.631
Jet Fuel JP-1	24.260						ĺ	\	} .			!			24.260 1,061.963
Diesel Oil HSD	547.485	284.593	3:808		(3.150	7.180		23.253	119.510	72.984	02 010	54.666	19.936	788.134
Fuel Oil	474.313			108.327	27.118				,	· .	19.825	62.549 	77.000	19.950	1
Total	1,174.675	375.178	3.808	108.327	27.118	3.150	12.582	3.394	26.146	119.510	92.809	83.949	54.666	21.765	2,107.077
	55.7%	17.8%	0.2%	5.1%	1.3%	0.2%	0.6%	0.25	1.2%	5•7 %	4.495	4.0%	2.6%	1.0%	100%
•].									<u> </u>	<u></u>

· · · ..

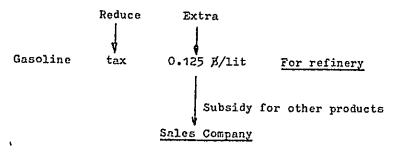
- 3

9

à

June 8, 1979.

I PETROLEUM STOCK PILING BY LEGAL.


Buying : Crude Oil and Product 5% - 20%

Refining Products : 5% - 20%

Petroleum products for are 20%, other are 5%.

The refinery submit the document for petroleum stock piling to the Ministry of Commerce and have to get approval from him.

II SUBSIDY FOR SALES COMPANY (see page 5 and 51)

Subsidy 0.088 B/lit for domestic refined products except gasoline. Subsidy for import products except gasoline has to change depend on import price.

TANK CAPACITY (As May 1979)

Refinery	Crude Oil 10 ³ Kl	Gasoline	Jet Fuel 10 ³ Kl	Kerosene 10 ³ KL	Diesel Oil 10 ³ Kl	Fuel Oil 10 ³ Kl	Total	
TORC	530	103	55	11	134	67	900	3 ⁴ •1
SÜMMIT	675	. 78	1	49	178	255	1,249	47.3
ESSO	361	46	15	10	60	44	490	18.6
10 ³ K1	1,566	181	84	70	372	366	2,639	
%	59.3	6.9	3.2	2,6	14.1	13.9		100%

ъ

TANK-INSTALLATION PLANNING

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	·	Remark	<u> </u>	
	Crude Thruput	Import Products	Total (1)+(2)	Total Tank Capacity	Holding Days (4) ÷ 3	Petroleum Stock Piling (5) ÷ 2	Petroleum Stock Piling By Law	Deficit Stock Piling	New Instration Tank				
	K1/SD	K1/CD	K1/D	K1.	days	days	days	days	КІ				
1977	29,269	4,456	33,725	2,639,000	78	39	60	21	- '		-		•
1978	29,545	6,989	36,534		72	36	60	24	-	New Tank	Installation	n Expected Sc	hedule
1979	29,269	13,896	43,165	H	61	30	60	30	-	100,000 Kl or Tank	50,000,Kl Tank	or 30,000 Kl c	r. 10,000 Kl Tank
1980	29,269	18,877	48,146	3,852,000	80	40	60	20	1,213,000	12	24	40	121
1981	29,269	20,693	491962	4;996;000	100	50	60	10	1,144,000	11 .	23	38	114
1982	29,269	24,082	53,351	6,402,000	120	60	60	٥	1,406,000	15	- 28	47	140
1983	58,548	-	58,548	7,611,000	130	65	65)	0	1,209,000	12	24	40	121
1984	57,491	-	57,491	8,049,000	140	70	70	(0)	438,000	4	[*] 9	15	44
1985	64,127	-	64,127	9,619,000	150	75	75 Assum	0	1,570,000	16	31	52	157
1986	69,881	-	69,881	10,482,000	150	75	75	0 1	860,000	9	17	29	86
1	i	j	1	}	1	•	}	'	1]			

Note: * Thailand can install tanks from 1980, in 1979 can not.

^{**} Petroleum stock piling is average inventry, so (5) devided 2.

1979	
۲	
June	

	•
	:
•	•
VALUE	
Ξ	
5	
IMPORT	
ፚ	
조	
٠.	
oH o	
SRUDE	
5	
င္ပ	
_	
	r
•	

		April May	1 1	June	1978 July	Aug.	Sept.	0ct.	Nov.	Dec.	July Aug. Sept. Oct. Nov. Dec. Total	Jan.	1979 1. Feb. Mar.	Mar,
<u> </u>	99	1,422 1,351 1,456 1,127 1,452		1,333	1,136	1,333 1,136 1,194 1,535 1,474	1,555		1,770	953	16,222	1,524	953 16,222 1,524 1,402 1,820	1,820

PETROLEUM PRODUCT IMPORT VALUE

			1	4,627	
×		-	+		_
Unit: 10 ⁶ g		Dec		439	4
ä.		Nov.		380	
		oct.		195	
		Sept. Oct.		329	
		Aug.		580	
	1978	1	1	. 211	
		June		. 551	
		May		590	
		April		314	
		Mar.		470	
		Feb.		316	
		Jan.		252	
	l			Value	