Mr. Tammachart Sirivadhanakul, Director of Regulatory Division, National Energy Administration.

near Mr. Tammachart,

Re: LPG PRODUCTION FROM NATURAL GAS

I study LPG production from 100% of natural gas (from well head), and whether Thailand can export LPG to Japan or not.

I do not use computor, but the calculation is based on Fluor's report and Chiyoda's estimation, so the result is not so much different.

Then LPG is manufactured from 100% of natural gas (from well head), the dew point control unit is unnecessary. Therefore, the cost of dew point control operation must be minused from the cost of LPG unit. I suppose that the cost of dew point control unit is 15-30% on the cost of LPG unit. In my report, I apply for 15% of that.

LPG PRODUCTION QUANTITY IN THAILAND

Natural Gas	LPG Production					
Production	T/Y					
	-	C ₃ LPG	C ₄ LPG	Total		
350 MMscf/D (in 1983)	-	196.2	107.8	304.0		
500 MMscf/D (after 1984)	In 1984	272.5	150.0	422.5		
700 Midscf/D (after 1988)	In 1988	360.0	199•1	559.1		
LPG From Refinery	In 1979			181.0		

I suppose that LPG production from the refinery after the expansion and new refinery completion, LPG from these refineries is excess for domestic requirement, because these refineries will

 $_{
m have}$ 2 lot of cracking units. Thai LPG demand in 1982 will be $_{
m 244~HT}$, so Thailand could not export before the completion of the $_{
m expans}$ ion and new refinery.

Accordingly, the most of LPG from natural gas should be exported to Japan (Japan is the best LPG market for Thailand), to obtain foreign currency, but after the completion of the expansion and new refinery.

After 1983, Thailand will be available to export for 300 x 10^3 T/Y and after 1988 for 560 x 10^3 T/Y.

II LPG USAGE

Every countries are saving crude oil, therefore, they are going to substitute petroleum products (from crude oil) to natural gas and LPG.

New usage of LPG for Thailand

- 1. Motor car
- 2. Gas turbine fuel for electric generators of EGAT in province.
- Others (such as refrigerator)

III MARKETING RESEARCH IN JAPAN

Thai LPG Production from Natural Gas

in 1983
$$304 \times 10^3 \text{ T}$$

after 1988 $559 \times 10^3 \text{ T}$

Japanese LPG Domestic Production and Import

	Domestic	in	1983		5,917 x	10 ³ T	33.8	%
	Import	in	1983		11,589 x	10 ³ T	66.2	%
,	•		1	Total	17,506 ×	10 ³ T	100.0	95

Japan is very good LPG market for Thailand.

TV FEASIBILITY STUDY

FOB Price of $C_{\overline{\mathbf{3}}}$ LPG and $C_{\mathbf{4}}$ LPG

	, **	C ₃ LPG \$/T	C ₄ LPG
1979,	Jan.	133	111
1989	Jan.	125.5	115.50
1989	April	126.50	127.50
1989	July	160.00	180.00
Price on	Spot	_	
1989	July	200.00	300.00

Latest FOB price of C_3 LPG is 160 L/T and C_4 LPG is 180 L/T (before the 2nd cil crisis), the price up is according to tight of all over the world LPG market.

The FOB price of them will be going up very rapidly.

THAI LPG COST VS LPG FOR PRICE

THAT BIG COST VO DIG TOS PRICE					: 用 - /
Natural Gas Price (from pipeline) \$/MMBTU	C ₃ LPG \$/T 160 C ₃ LPG \$/T	168	177	187	192
,	180	189	199	210	216
1.50	+12.26	+20.16	+30.16	+40.16	+45.16
1.70*1	+ 1.96	+ 9.86	+19.86	+29.86	+84.86
1.78	- 9.11	- 1.21	+ 8.79	+18.79	+23.79
2.06*2	-30.70	-22.80	-10.80	- 0.8	+ 4.2

Note: *1 1.70 \$/MMBTU may be current natural gas price including transportation fee.

Natural gas production is 500 MMscf/D.

^{*2} Fuel oil 1,200" equivalent price on calorific value.

x → _ _ ′

From the above mentioned table, at present status, if c_3 LPG FOB price is 192 $^{\circ}$ /T and c_4 LPG FOB price is 216 $^{\circ}$ /T, the profit is nearly zero. In other word, FOB LPG price should be higher than equivalent price of fuel oil 1,200". Anyhow, c_3 and c_4 FOB price will be immediately going up.

So, NGOT should watch a movement of LPG FOB price.

SALES NATURAL GAS IS DECREASED ACCORDING TO LPG PRODUCTION INCREASE

When LPG production is 100% from natural gas (from well head), the sales natural gas is decreased. Fluor LPG production is not from 100% of natural gas (from well head).

Unit: MMSCf/D 1981 1982 1983 1984 1985 Decreased Sales Natural 18.20 36.00 31.91 52.02 46.42 Gas Sales Natural Gas For 42.66 Existing Industry 8.77 18.55 30.57 55.23 (50%) 1989 1986 1987 1988 1990 Decreased Sales 44.45 46.16 51.61 36.97 Natural Gas 52.64 Sales Natural Gas For 64.47 66.80 62.13 Existing Industry 58.17 59.17 (50%)

VI LOCATION OF NATURAL GAS PROCESSING UNIT

Thailand has many water ways. LPG transportation cost by water is very cheap. And Thailand has possibility to export LPG to Japan. Therefore, the location of natural gas processing unit should not be far from sea-shore.

If LPG is increased production, NGOT can not supply sales natural gas to the existing industry even if 50% on total consumption,

. .

,

because sales natural gas is decreased according to LPG production increase.

I appreaciate if my report is useful for you.

Sincerely yours,

Y. Kawase

· .

.

•

LPG PRODUCTION FROM NATURAL GAS

CONTENT

•	page
I FOREWORD	1
II DEFINITION OF LPG	1
III PHYSICAL PROPERTY OF LPG	1
IV LPG SPECIFICATION	2
V LPG DEMAND FORECAST	3
VI LPG USAGE	3
VI.1 Houshold and Commerce	3
VI.2 Industry	3
VI.3 Agriculture Industry	4
VI.4 Town Gas	4
VI.5 Petrochemical	4
VII MARKETING RESEARCH IN JAPAN	5
VII.1 Japanese LPG Import by Supply Source	5
VII.2 LPG Import Quantity of Each Company in Japan	6
VII.3 Import Terminal Capacity in Japan	6
VII.4 LPG Sales Quantity of Each Company in Japan	6.
VII.5 LPG Supply and Demand Forecast in Japan	6
VII.6 Japan Petroleum Development Corporation	7
VIII MATERIAL BALANCE OF C3 AND C4 LPG (FROM NATURAL G4S)	?
IX LPG FOB BANGKOK PRICE (EXPORT LPG)	. 8
X CASE-1 EXPENDITURE AND REVENUE IN CASE OF NATURAL GAS	
PRICE 1.50 \$/MMBTU, C3 LPG PRICE 160 \$/T AND C4 LPG	40
PRICE 180 \$/T (500 MMSCF/D)	10
.X.1 Operation Cost	10
X.2 Cost of Natural Gas Charge	14
X.3 Expenditure	14
X.4 Revenue	14
X.5 Profit and Loss	14

	·····	· .
	• • • • • • • • • • • • • • • • • • •	·
	• • • • • • • • • • • • • • • • • • •	
		•
		,
		•
		• •
	•	•
		* *
4.4		,
·		<u>.</u> • •
_1		
ray or state		
		7.
7		* * *

CASE-1' EXPENDITURE AND REVENUE IN CASE OF NATURAL GAS PRICE 1.70 \$/MMBTU, C LPG PRICE 160 \$/T AND C4 LPG 180 \$/T	
(500 MMSCF/D)	15
	כו
X'.1 Utility	15
X'.2 Operation Cost	15
X1.3 Cost of Natural Gas Charge	15
X'.4 Expenditure	15
XI CASE-2 EXPENDITURE AND REVENUE IN CASE OF NATURAL GAS	
PRICE EQUIVALENT TO FUEL OIL PRICE (2.063 \$/MMBTU)	•
(500 MMSCF/D)	16
XI.1 Natural Gas Price Equivalent to Fuel Oil 1,200"	16
XI.2 Utility	16
XI.3 Operation Cost	16
XI.4 Cost of Natural Gas Charge	17
XI.5 Expenditure	17
XI.6 Revenue	17
XI.7 Profit and Loss	17
XII CASE-3 EXPENDITURE AND IN CASE OF NATURAL GAS PRICE IS	
MIDDLE OF CASE-1 AND CASE-2 (1.78 \$/BTU) (500 MMSCF/D)	17
XII.1 Natural Gas Price	17
XII.2 Utility	18
XII.3 Operation Cost	18
XII.4 Cost of Natural Gas Charge	18
XIII RESULT OF CASE-1, CASE-1, CASE-2, CASE-3	
(500 MMSCF/D)	19
XIV CASE-4 EXPENDITURE AND REVENUE IN CASE OF NATURAL GAS	
PRICE 1.50 \$/MMBTU, C3 LPG PRICE 160 \$/T, C4 LPG PRICE	
	20
XIV-1 Construction Cost	21
XIV.2 Operation Cost	21
XTV 3 Weinster	24

and the state of the property of the state o

.

And the second of the second o

TABLE AND FIG. LIST

	•	ATTACH.
TABLE-1	PHYSICAL PROPERTY OF LPG	 1
FIG.1	VAPOR PRESSURE OF PROPANE AND PROPYLENE	2
FIG.2	VAPOR PRESSURE OF BUTANES AND BUTENES	3
TABLE-2	THAI INDUSTRIAL SPECIFICATION OF LPG	4
TABLE-3	LIQUEFIED PETROLEUM GAS JIS K 2240-1972	5
	STANDARD OF SPECIFICATION OF LPG IMPORTED	
	TO JAPAN	6
TABLE-5	LPG DEMAND FORECAST IN THAILAND AND JAPAN	
ŕ	(MITI ESTIMATION)	7
TARLE-6	LPG SUPPLY/DEMAND PLAN (1979-1983)	8
TABLE-7	JAPANESE LPG BY SUPPLY SOURCE	9
FIG.3	SHARE OF JAPANESE LPG IMPORT BY SUPPLY SOURCE	ŧ
	(AS OF 1977)	10
TABLE-8	LPG IMPORT QUANTITY OF EACH COMPANY IN JAPAN	11
FIG.4	SHARE OF LPG IMPORT IN JAPAN (AS OF 1977)	12
FIG.5	LPG IMPORT TERMINALS IN JAPAN	13
TABLE-9	LPG IMPORT TERMINAL CAPACITY BY AREA	14
TABLE-10	LPG IMPORT TERMINAL CAPACITY BY COMPANY	15
TABLE-11	LPG SALES QUANTITY OF EACH COMPANY IN JAPAN	16
FIG.6	SHARE OF LPG SALES IN JAPAN (AS OF 1977)	17
TABLE-12	C3 AND C4 IN LPG	18 .
TABLE-13-1	MATERIAL AND HEAT BALANCE OF C3 AND C4 LPG	
-	(FROM NATURAL GAS)	19-1
TABLE-13-1	MATERIAL AND HEAT BALANCE OF C3 AND C4 LPG	
	(FROM NATURAL GAS)	19-2

The control of the state of the

•••••

The state of the second second

TABLE-14-1	PHYSICAL CONSTANT OF HYDROCARBON	ATTACH. 20-1
TABLE-14-2	PHÝSICAL CONSTANT OF HYDROCARBON	20-2
TABLE-15	C ₃ AND C ₄ LPG PRODUCTION(LB/H) OF EACH YEAR	21
TABLE-16	C ₃ AND C ₄ LPG PRODUCTION (T/H, T/D, T/Y) OF EACH YEAR	
		22
FIG.7	FOB PRICE OF KUWAIT D/D LPG	23
FIG.8	CHANGE OF CRUDE OIL STANDARD PRICE	
·	(MARKET PRICE, ARABIAN LIGHT)	24
TABLE-1,7	AVERAGE PRICE OF C3 AND C4 LPG	25
TABLE-18	C LPG HEATING VALUE	26
TABLE-19	C4 LPG HEATING VALUE	27
TABLE-20	AVERAGE C AND C4 LPG HEATING VALUE	28
TABLE-21	COST SUMMATION	29
FIG.9	PROFIT OR LOSS VS NATURAL GAS PRICE	
	FOR C _z AND C _l	30

: :

おおおい けんしん アフト・マ

No. 2 for against SEE against the control of the co

Appropriate to the second seco

LPG PRODUCTION FIOM NATURAL GAS

FOREWORD

I study LPG production from natural gas. Flour Ocean Services international Inc. reported LPG production from natural gas but not 100% of the gas from pipeline, cally 61% in 1990. LPG production from refineries which will be included LPG from the expansion and new refinery is guessed larger than domestic requirement, but nobody an estimate because plants of the expansion and new refinery are tot decided. It is evident that the expansion and new refinery should have much cracking units, so LPG production should be large.

Accordingly, whole or mostly of LPG which will be produced rom natural gas should be exported, to get foreign currency, but B production should make much profit.

Another way to utilize LPG must be developed to increase consumption, such as (1) motor car fuel (2) industrial (5) small gas turbine of EGAT in province.

II DEFINITION OF LPG

C₃ LPG is liquefied propane and propene, dnd C₄

RG is liquefied butanes and butenes, and ordinary LPG is mixutee of

RG is liquefied butanes and butenes, and ordinary LPG is mixutee of

RG is liquefied butanes and butenes. Actually,,

RG and C_{4s} which is propene, propene, butanes and butenes. Actually,,

RG and C_{4s} cuts can not be perfectly separated to pure C_{3s} and C_{4s},

RIWays mixed a small quantity of before and after cuts. For instance,

RG LPG is mainly C_{3s} and a small quantity of C₂ and C₄ cut are mixed.

III PHYSICAL PROPERTY OF LPG

Physical property of LPG must be very important, when physical property of LPG is changed. TABLE-1 (ATTACH.1) shown the physical property of LPG for recalculation.

Vapor pressure of LPG is very important, because pressure lest of LPG vessel is very important when components are changed. Vapor pressure of C2, C3, C4, C5 mixture is calculated by vapor-liquid

equivalent calculation. This calculation takes long time without computer, but from Fig.1 VAPOR PRESSURE OF PROPANE AND PROPYLENE (ATTACH.2) and Fig.2 VAPOR PRESSURE OF BUTANES AND BUTENES (ATTACH.3), se can know outline.

When highest temperature of Thailand is 44.5 $^{\circ}$ C at Uttradit province on April 27, 1960, C_{3s} and C_{4s} vapor pressure at 44.5 $^{\circ}$ C is as follows:

When C_3 percentage of C_3 and C_4 mixed LPG is high, LPG vapor pressure is closed to 17.8 atm., and if C_4 percentage of C_3 and C_4 mixed LPG is high, LPG vapor pressure is closed to 3.5 atm. Maximum vapor pressure difference which is according to composition of C_3 and C_4 is nearly 17.8 - 3.5 atm. And when C_4 LPG is used, heating for vaporisation is needed, so vapor pressure of C_4 vapor pressure is higher than ordinal temperature.

The LPG specification of Thailand is 30% propane and 70% butanes, but LPG composition from natural gas is about 35.5% butanes and about 64.5% propane, thus vapor pressure of natural gas LPG is very higher than it of refinery LPG, but difference of vapor pressure is less than 14.3 atm. the pressure test of LPG vessel must be checked.

IV LPG SPECIFICATION

That industrial specification of LPG is shown in TABLE-2 (ATTACH.4). And Japanese industrial specification is shown in FABLE-3 (ATTACH.5).

Difference of LPG (C_3 and C_4 mixed LPG for household) between flailand and Japan is big. Rate of C_3 and C_4 component in Thailand is 30: 70, in Japan 80: 20 in winter and 70: 30 in summer.

Standard specification of LPG imported in Japan is shown in TABLE-4 (ATTACH.6).

V LPG DEMAND FORECAST

LPG demand forecast in Thailand (NEA), JAPAN (MITI) are shown in TABLE-5 (ATTACH.7). And it of Mitsui's estimation is shown in TABLE-6 (ATTACH.8).

In Japanese statistics (TABLE-5 and 6. ATTACH.7 and 8), LPG demand forecast and each service as break-down are shown. As TABLE-5 (ATTACH.7) LPG demand in Thailand is very small compared with Japan. Moreover in Japan, town gas which is very similar to LPG consumption is very big, but Thailand has no town gas. So, Thailand must be developed the utilization of LPG for household, commerce and industry.

VI LPG USAGE

LPG usage in Japan is shown in Japanese specification of TABLE-3 (ATTACH.5) and LPG demand forecast of TABLE-5 and 6 (ATTACH.7 and8). I explain the use of LPG more detail as follows:

VI.1 Household and Commerce

LPG is used as room heating, cooking, hot water and refrigerator for household and commerce.

VI.2 Industry

Butane utilization for industry has been increased recently.

Fuel of coal, fuel oil (kerosene, gas oil, fuel oil) have been replaced by LPG because of an economical point, preventing air pollution (low sulfur content) and no ash and soot (products are not contaminated by ash and soot), moreover, heating value is high, temperature control and randling are very easy.

- Metal industry (melting decarbonizing, gas reforming, hardening, quenching, annealing, cutting and scarfing forging)

- _ Ceramic industry (pottery, tile, whetstone, lime calcining, $_{
 m glass}$ melting and molding work)
- Textile industry (gassed thread, plastic thread, plastic treating and dyeing)
 - Foodstuffs (cake, ham, bread)
 - Printing and Painting
- VI.3 Agriculture Industry (drying of tobacco leaf, grain, pasture, and ageing of fluts, and green house, and poultry farming and pig raising)

VI.4 Town Gas

 $\mathbf{C_{3}}$ and $\mathbf{C_{4}}$ are mixed with coal gas to increase calorific value.

VI.5 Internal Combusion Engine

- Taxis in big city are using LPG, octane number of ${\rm C_3}$ is 96, and it of ${\rm C_h}$ is 90.
 - Tractor
 - Forklift

VI.6 Petrochemical

Raw material of ethylene, ammonia, hydrogen and synthetic gas.

polyethylene (resin)
stylene butadiene (rubber)
polystylene (resin)
Tetoron (polyester fiber)
polyester (resin)
surface active gent (detergent)
ethanol (solvent, raw material)
polyvinyl chloride (resin)
polyvinylidene resin & fiber

Ethand -----

•

4-ethyl lead (additive) dioctyl phthalate (plasticizer) buthyl acetate (solvent) acetic acid (raw material) ethyl acetate (solvent, raw material) pentacrythritol (resin) higher alcolols (detergent, plasticizer)

iso propyl alcohol (solvent) aceton (solvent) methacrylic resin epoxy resin urethane foam acrylic fiber detergent ·butyl rubber polypropylene glutamic acid (ajinomoto)

methylethylketon (solvent) polyester resin polybutene (rubber) stylene butadiene rubber nitrile butadiene rubber polybutene 1 (rubber) polybutadiene (rubber) Nylon 66 (fiber) butyl gum polyisoprene rubber

VII MARKETING RESEARCH IN JAPAN

n-butene

butadiene

isobutene

Propylene

C, cuts

VII.1 Japanese LPG Import by Supply Sources

Japan imported LPG from Middle East (Saudi Arabia, Kuwait, Iran), Australia, Canada and Venezuela as TABLE-7 (ATTACH.9) and about a half of total import is from Saudi' Arabia which is shown in FIG.3 (ATTACH.10).

VII.2 LPG Import Quantity of Each Company in Japan

LPG import quantity of each company in Japan is shown in TABLE-8 (ATTACH.11), and share of LPG import in Japan is shown in FIG.4 (ATTACH.12).

VII.3 Import Terminal Capacity in Japan

LPG import terminal in Japan is spreaded in mainland and Kyushu Island which is shown in FIG.5 (ATTACH.13).

LPG import terminal capacity by area is shown in TABLE-9 (ATTACH.14) and by company in TABLE-10 (ATTACH.15).

VII.4 LPG Sales Quantity of Each Company in Japan

LPG sales quantity of each company in Japan is shown in TABLE-11 (ATTACH.16), and share of LPG sales in Japan is shown in FIG;6 (ATTACH.17).

VII.5 LPG Supply and Demand Forecast in Japan

LPG supply and demand forecast was shown in TABLE-6 (ATTACH.8). In Japan, LPG demand is very big but domestic production is small.

Import Tota	% 	63.8 100.0	100.0	100.0	100.0	100.0	100.0
7	0/		(= 7	64.2	65.7	65.6	66.2
Domestic	%	36.2	34.7	35.8	34.3	34.4	3 3.8
Supply:		,,,,	.,,,,	·	:	:	
		1978	1979	1980	1981	1982	1983

Japan is big LPG importing country, and LPG domestic production is growing up corresponding to crude oil throughput but LPG demand is growing up year by year more than LPG domestic production. Thus, domestic production percentage was 36.2% on demand in 1978 and will be 33.8% in 1983.

VII.6 Japan Petroleum Development Corporation (JPDC)

Japanese Government has 100% share of JPDC, he assists a half of investment for exploratory drilling in country and foreign countires. And when crude oil and natural gas is discovered and commercial production is commenced, the fund is returned to JPDC, and if well is dry, the fund is not necessary returned to JPDC. But, the fund is tax from nation thus if Thailand excess product from natural gas and wants to export, Japanese Government expects that Thailand export them to Japan in proportion to share hold.

VIII MATERIAL BALANCE OF C3 AND C4 LPG (FROM NATURAL GAS)

 C_3 and C_4 cuts in the gas from pipeline is shown in TABLE-12 (ATTACH.18). As was noted previously, C_3 and C_4 cuts separation (yield) must be estimated by computer, and 100% of them can not be recovered, so, I assume that C_3 yield is 90% on total C_3 in natural gas, and C_4 yield is 98% on total C_4 in natural gas (see TABLE-12, ATTACH.18). These yields are based on Chiyoda's information.

I calculate material balance and heat balance of C₃ and C₄ LPG which are met the standard of specification of LPG imported in Japan (see TABLE-4, ATTACH.6), are shown in TABLE-13-1 and-2, (ATTACH.19-1 and -2). (13)-(19) of TABLE-13-2 shows calculation of heating value of C₃ LPG and C₄ LPG. These physical data are applied from TABLE-14-1 and -2 (ATTACH.20-1 and -2). SOURCE: DATA BOOK ON HYDROCARBONS), afterward I will use data from same tables.

Then, I calculate production of C_3 and C_4 , LPG, and show in TABLE-15 (ATTACH.21) as Lb/H.

 C_3 and C_4 LPG production is shown in TABLE-16 (ATTACH.22) as ton.

 C_3 and C_4 LPG value and their average value are shown in TABLE-17 (ATTACH.25).

Note: Then I calculated heating value, it is gross heating value not net heating value, because natural gas price is based on gross heating value. And T means MT and \$ means US\$.

:

IX LPG FOB BANGKOK PRICE (EXPORT LPG)

LPG price in Thailand (domestic LPG price) is very high, so LPG from natural gas is to make much profit according to Mr. Shishido's report last year.

LPG (CIF) price which was imported to Japan about 2 months ago was \$143/T, if freight rate between Thailand and Japan is assumed as about \$15/T, FOB Thailand might be \$128/T.

FOB price of Kuwait D/D LPG is shown in FIG.7 (ATTACH.23) $^{\rm C}_3$ price was higher than $^{\rm C}_4$ price, but recently both prices have been closed, because $^{\rm C}_4$ LPG demand has been grown up.

o The Nippon Economic Newspaper reported as following:

Dated on June 24, 1979

Kuwait FOB Price (price in April - June in 1979)

. C₃ LPG

126.5 \$/T

Note: See the above mentioned

C₄ LPG

127.5 \$/T

\$128/T.

Price on spot at Houston, USA

C_z LPG

150 \$/T

 C_L LPG

300 \$/T

o The same newspaper

Dated on July 5, 1979

Kuwait FOB Price (in July 1979)

C₃ LPG

160 \$/T

 \mathbf{C}_{l_4} LPG

180 \$∕T

Price on spot

C₃ LPG

200 \$/T

C_L LPG

300 \$/T

•

. V

o FOB Persian Gulf (Mitsui & Co.estimated)

Freight of Persian Gulf to Japan may be $22 - 25 \ \text{\ensuremath{\$/T}}$. Freight of Siam Gulf to Japan may be 15 \text{\ensuremath{/T}}.

All over the world, LPG is very tight, because C_4 is mixed in gasoline and used as petrochemical raw material (substituted naphtha).

The LPG price is risen in July 1979, being caused by LPG shortage not by crude oil price up. Change of crude oil standard price is shown in FIG.8 (ATTACH.24).

I calculate average price of C₃ and C₄ LPG produced from Siam Gulf natural gas (the gas from pipeline), and show it in IABLE-17 (ATTACH.25).

Ratio of C_3 LPG and C_4 LPG of produced from the gas from pipeline is 64.5 : 35.5 (wt), and average price is 167.1 \$/T when C_3 LPG price is 160 \$/T and C_4 LPG price is 180 \$/T.

According to Mr. Shishido's report (in 1978), exrefinery price of LPG in Thailand is as follows: (For your reference)

Exrefinery Price 3.1397 B/Kg = 154.096 \$/T

Note: * Exrefinery price of LPG was not changed before July 1979.

The price of LPG in Thailand (in June 1979) was higher than the LPG of FOB Kuwait price (april and June 1977).

-

^

.

.

X CASE-1 EXPENDITURE AND REVENUE IN CASE OF NATURAL GAS PRICE 1.50%/MMBTU, C₃ LPG PRICE 160%/T AND C₄ LPG PRICE 180 %/T (500 MMscf/D)

X.1 Operation Cost

X.1.1 Production

In Mr. Shishido's report "THE PRELIMINARY ECONOMIC STUDY OF LPG RECOVERY FROM NATURAL GAS", LPG production was estimated as follows:

My calculation of LPG production (in case of 500 MMscf/D natural gas production schedule) is as follows: (in 1987)

X.1.2 Construction Cost of LPG Production

Construction cost was estimated by Chiyoda Chemical Engineering and Construction Company based on 380,000 T/Y LPG production.

Designed recovery ratio is as follows:

C₃ : more than 90% C_h : more than 98%

CO₂ removal unit is necessary when natural gas charge to LPG plant, CO₂ content must be less than 1%, because turboexpand is applied:

:

	Chiyoda Estimate	Correction of Production rate	Correction 1979 Plant Cost	
	MM \$	MM \$	# MM	L/T
LPG Unit	70			
CO2 Removal Unit	16			٨
Total	86	92,610*1	981112	232.27*3
Note: *1 86.000	MM\$ X ($\frac{422}{380}$	$\frac{2,400 \text{ T/Y}}{0,000 \text{ T/Y}}$) $^{0.7}$	92.610 MM\$:
*2 ,92.610			98.112 MM\$	
7:	% up/year of	construction co	st	
*3 98.112 1	MM& ÷ 422.40) MT =	232.27 \$/T	
Fluor's es	, timation of	gas plant (the e	nd of 1979)	

200 MMscf/D 68,301 MM\$

500 MMscf/D
$$\times$$
 $\times = 68,301 M\$ \times (\frac{500}{200})^{0.7} = 129,714$

129,714 M\$ $\times (1 + \frac{0.07}{2}) = 134,254$
 $\frac{134,254}{98,112} \frac{M\$}{M\$} = 1.37 (37\% \text{ higher than Japan})$

The difference could not be clarify, it might be caused by different process and price of machine and equipment. And it is contained the cost of the dew point control unit.

X.1.3 Dew Point Control Unit

When LPG recovery is from 100% natural gas (the gas from pipeline), the dew point control unit is unnecessary. Thus, LPG recovery acts as dew point control duty, the duty is not for LPG production. Thus, the operation cost of dew point control must be eliminated from the cost of LPG production.

The cost of dew point control can not calculate at this stage. I assumed for 15% of total operation cost of LPG production.

X.1.4 Operation Cost \$/T of LPG Production Expense

A. Natural gas price is 1.5 \$/MMMBTU

		% on Construction Cost	\$/T
(1)	Depreciation (20 years)	5	11.61
(2)	Interest for Construction Cost	5	11.61
(3)	Tax and Insurance	2	4.65
(4)	Maintenance	· 3	6.97
(5)	Administration	2	4.65
(6)	Overhead	2	4.65
	Total	119	44.14

Note: Construction cost is 232.27 \$/T

B. Interest of working capital C₃ and C₄ LPG average price is 167.1 \$/T (from TABLE-17, ATTACH.25)

167.1
$$2/T \times 422,400 \text{ T/Y} = 70.58 \text{ MM } \$/Y$$
70.58 MM $\$/Y \times \frac{1.5 \text{ Mon.}}{12 \text{ Mon.}} = 8.82 \text{ MM } \$/Y$
8.82 MM $\$/T \times 8\% = 0.71 \text{ MM } \$/Y$
8% is interest.
0.71 MM $\$/Y \div 422,400 \text{ T/Y} = 1.68 \text{ $\$/T}$

C. Utility

Natural gas consumption is :

For	LPG	plant	9	MMscf/D
Cor	co2	plant	18	MMscf/D
	Tota	al	27	MMscf/D

(Reating value of the natural gas was assumed as 1,050 BTU/scf by Mr. Shishido).

Natural Gas Price

Mr. Shishido's Estimation

1.555 \$/MMBTU (compressor station at off-shore)

1.544 t/MMBTU (compressor station at on-shore)

Fluor's Report

1.50 \$/MMBTU

In the report, 2 natural gas prices were applied

1.75 \$/MMBTU

My Calculation

1.50 \$/MMBTU

The price is not included the transportation charge from the natural gas processing unit to end user. So, I apply for 1.50 \$/MMETU of natural gas charge.

27 MMscf/D x 1,050 BTU/scf x
$$\frac{1.50 \text{ $\frac{1}{4}$}}{1 \text{ MMBTU}}$$
 = 42.525 \$\frac{1}{2}\$ D = 15.52 NM\$\frac{1}{2}\$ Y = 42.525 \$\frac{1}{2}\$ TM\$\frac{1}{2}\$ Y = 40.84 \$\frac{1}{2}\$ TM\$

D. Labor cost

15 persons x 4 shifts = 60 persons

Salary and other expense is assumed as 200 \$/Mon. Month

200 \$/Mon month x 60 persons x 12 months = 0.144 MM\$/Y

0.144 MM\$/Y ÷ 422,400 T/Y = 0.34 \$/T

E. Operation cost

7	, .	b/T
(1)	Expense	44.141
(2)	Interest for Norking Capital	1.68
(3)	Utility	40.84
(4)	Labor Cost	0.34
	Total	.87.00

,--, ;-

- F. Operation cost minus the cost of dew point control unit 87.00 / T x (100 15)% = 73.95 / T
- X.2 Cost of Natural Gas Charge

50.92 MMBTU/T*x
$$\frac{1.5 \text{ b}}{\text{MMBTU}}$$
 = 76.38 \$/T

Note: * is come from TABLE-20 (ATTACH.28).

TABLE-20 (ATTACH.28) is calculated from TABLE-18 and -19

(ATTACH.26 and 27).

X.3 Expenditure

	\$/T
Cost Natural Gas Charge	76.38
Operation Cost	73.95
Total	150.33

Selling charge (including shipping) is assumed as 3% on total expenditure.

Expenditure is as follows:-150.33\$/T x (1 + 0.03) = 154.84 \$/T

X.4 Revenue

 C_3 and C_4 LPG average FOB Bangkok price is 167.1 \$/T which is from TABLE-17-7 (ATTACH.25).

X.5 Profit or Loss

In this case, projit is 12.26 \$/T. (see TABLE-21, ATTACH.29)

•••

X' CASE-1' EXPENDITURE AND REVENUE IN CASE OF NATURAL GAS PRICE 1.70 \$/MMBTU, C₃ LPG PRICE 160 \$/T AND C₄ LPG PRICE 180 \$/T (500 MMSCF/D)

In X, I applied 1.50 \$/MMBTU of natural gas, but actual natural gas price in 1979 may be 1.70 \$/MMBTU, so I calculate in case of 1.70 \$/MMBTU as follows:

X':1 Utility

27 MMscf/H x 1,050 BTU/scf x $\frac{1.70 \text{ $\$}}{1\text{MM}}$ = 48,195 \$\tilde{\text{D}}\$ $= 17.59 \text{ MM $\$/Y$} \times \frac{422,400 \text{ T/Y}}{380,000 \text{ T/Y}} \div 422,400 \text{ T/Y} = 46.29 $\text{$\$/T$}$

X'.2 Operation Cost

		$T \setminus \vec{x}$	
(1)	Expense	44.14	no change
(2)	Interest for Torking		
	Capital	1.68	no change
(3)	Utility	46.29	
(4)	Labor Cost	0.34	no change
	Total	92.45	

 $92.45 \ \text{$/$T} \times (100 - 15)\% = 78.58 \ \text{$/$T}$

X1.3 Cost of Natural Gas Charge

 $50.92 \text{ MMBTU/T } \times \frac{1.7 \text{ } \$}{\text{MMBTU}} = 86.56 \text{ } \$/\text{T}$

X 4 Expenditure

•4 Expenditure	\$ / T
Cost of natural gas charge	86.56
Operation cost	78.58

X'.5 Profit and Loss

167.1 \$/T - 165.14 \$/T = + 1.96 \$/T 1.96 \$/T = 165.14 \$/T = + 1.2%

In this case, profit is 1.96 t/T.

EXPENDITURE AND REVENUE IN CASE OF NATURAL GAS PRICE CASE-2 EQUIVALENT TO FUEL OIL PRICE (2.063 \$/MMBTU) (500 MMSCF/D)

XI.1 Natural Gas Price Equivalent to Fuel Oil 1,200"

Fuel Oil 1,200" 1.6157 1/lit (May 1, 1978)

1.6157 8/lit = 0.0792 \$/lit

. 1\$

= 20.4 g

Heating value (Gross)

400"

9,371 Kcal/lit

1,500"

9,826 Kcal/lit

1,200" 9,675 Kcal/lit (assumed)

9,675 Kcal/lit = 38,392.86 BTU/lit

1 Kcal

= 3.96825 BTV

 $0.0792 \text{ } \text{/lit} - 38,392.86 \text{ } \text{BTU/lit} \times \text{MMBTU} = 2.063 \text{ } \text{/MMBTU}$

XI.2 Utility

27 MMscf/D x 1,050 BTU/scf x $\frac{2.063 \text{ b}}{\text{MMBTU}}$ = 58,486 \$/D

= 21.35 MM\$/Y

21.35 MMS/Y $\times \frac{422,400 \text{ T/Y}}{380,000} \div 422,400 \text{ T/Y} = 56.18 \text{ \sqrt{T}}$

XI.3 Operation Cost

\$/T

(1) Expense

44.14 no change

Interest for Forking Capital 1.68 (2) no change

(3) Utility

56.18

(4) Labor Cost

0.34 no change .

The state of the s

Total operation cost minus the cost of dew point control init.

XI.4 Cost of Natural Gas Charge

$$50.92 \text{ MMBTU/T} \times \frac{2.063 \text{ }\$}{\text{MMBTU}} = 105.05 \text{ }\$/\text{T}$$

XI.5 Expenditure

	\$/T
Cost Natural Gas Charge	105.05
Operation Cost	86.99
Total	192.04

Selling charge (including shipping) is assumed as 3% on total expenditure.

$$192.04 \text{ } \text{ } /\text{T} \text{ } \text{x} (1 + 0.03)\% = 197.80 \text{ } /\text{T}$$

XI.6 Revenue

 C_3 and C_4 LPG average FOB Bangkok price is 167.1 \$/T which is come from TABLE-17 (7) (ATTACH.25).

XI.7 Profit and Loss

$$167.1 \text{ $/$T} - 197.80 \text{ $/$T} = -30.7 \text{ $/$T}$$

-30.7 \tag{T} \div 197.80 \tag{F} = -15.5%

In this case, loss is 30.7 \$/T.

XII CASE-3 EXPENDITURE AND REVENUE IN CASE OF NATURAL GAS PRICE IS MIDDLE OF CASE-1 AND CASE-2 (1.78 \$/MMBTU) (500 MMscf/D)

XII.1 Natural gas price

CASE-1	1.50	↓/MMBTU
CASE-2	2.063	↓/MMBTU
CASE-3	1.78	\$/MMBTU

Average of CASE-1 and CASE-2 is 1.78 \$/MMBTU.

.

XII.2 Utility

27 MMscf/D x 1,050 BTU/scf x
$$\frac{1.78 \text{ \$}}{\text{MMBTU}}$$
 = 50,463 \$/D = 18.42 MM \$/Y

$$18.42 \text{ MM} \text{ M/Y} \times \frac{422,400 \text{ T/Y}}{380,000 \text{ T/Y}} \div 422,400 \text{ T/Y} = 48.47$$

XII.3 Operation Cost

5/T (1) Expense 44.14 no change (2) Interest for Working 1.68 Capital no change (3) Utility 48.47 (4) Labor Cost 0.34 no change 94.63 Total

Total operation cost minus the cost of dew point control unit $94.63 \text{ g/T} \times (100 - 15)\% \approx 80.44 \text{ g/T}$

$$50.92 \text{ MMBTU/T} \times \frac{1.78 \$}{\text{MMBTU}} = 90.64 \$/\text{T}$$

XII.5 Expenditure

Selling charge (including shipping) is assumed as 3% on total expenditure.

$$171.08 \times (1 + 0.03)\% = 176.21 \ \text{\sqrt{T}}$$

٠,٠ .

t

. •

XII.6 Revenue

 c_3 and c_4 LPG average FOB Bangkok price is 167.1 %/T which is come from TABLE-17 (7) (ATTACH.25).

XII.7 Profit and Loss

167.1 \$/T - 176.21 \$/T = -9.11 \$/T-9.11 \$/T : 176.21 \$/T = -5.2 %

In this case, loss is $9.11 \text{ $\ell/T}$.

XIII RESULT OF CASE-1, CASE-1', CASE-2 AND CASE-3 (500 MMS6F/D)

When C_3 LPG price is 160 \$/T and C_4 LPG price is 180 \$/T, average 167.1 \$/T, natural gas price must be 1.66 \$/T at profit zero point which is shown in FIG.9 (ATTACH.30). These calculations are based on 272.52 x 10³ T/Y of C_3 LPG production, and 149.88 x 10³ T/Y of C_4 LPG production in 1984 (see TABLE-16, ATTACH.22).

In FIG.9 (ATTACH-30) another 4 lines of 175 5/T, 185 %/T, 195 %/T, 200 %/T for C₃ and C₄ LPG average price are as following :

Natural gas price vs C_3 and C_4 LPG average price is as under :

Natural gas production 500 MMscf/D

NATURAL GAS C ₂ and C ₃ LPG AVERAGE PRICE (\$/T)*					
NATURAL GAS PRICE	167.1	175 -	185	195	200
\$/MMBTU		PROFIT	OR LOSS (\$	/T)	-
.CASE-1 1,50	+12.26	+20.16	+30.16	+49.16	+45.16
CASE-1' 1.70	+ 1.96	+ 9.86	+19.86	+29.86	+34.86
CASE-2 2.063	-30.7	-22.80	-10.80	- 0.80	+ 4.2
CASE-3 1.78	- 9:11	- 1.21	+ 8.79	+18 •79	+23•79

Note: * FOB Bangkok price

Then C₃ and C₄ LPG price is 167.1 \$/T and natural ges price is 1.50 \$/MMBTU (CASE-1), profit is 12.26 \$/T, but when these are 1.78 \$/T (CASE-3) and 2.063 \$/MMBTU (CASE-2) of natural gas price, all are loss. Namely, even if fuel oil equivalent 2.063 \$/MMBTU and C₂LPG 1.955/T, profit is still not so big (see FIG.9, ATTACH.30).

In the above table, C_{\perp} and C_{\downarrow} average price is indicated, their average prices are breakdown as follows but approximately.

			03	c ₄
			LPG	LPG
Line	165.9	\$/T	160 \$/T	180 \$/T
Line	175	t/T	168 \$/Т	189 ұ/т
Line	185	\$/T	177 \$/Т	199 \$/T
Line	195	\$/T	187 \$/T	210 \$/T
Line	200	T\a	192 🎲 Т	216 \$/T

Note: Data of calculated. above number are approximately.

Natural gas price is 2.063 \$/MMBTU which is equivalent to fuel oil 1,200", when C_3 LPG and C_4 LPG prices are going up to 192 \$/T and 216 \$/T individually (price is going up about 40 \$/T higher than the present price of C_3 LPG and C_4 LPG), but it is almost no profit and loss.

As a consequence, NGOT will not able to produce C_3 and C_4 LPG at present price, but C_3 and C_4 LPG price will be going up. Tapidly in near future according to C_3 and C_4 LPG market is becoming tight.

CASE-4 EXPENDITURE AND REVENUE IN CASE OF NATURAL GAS PRICE 1.50 \$/MMBTU. C₃ LPG PRICE 160 \$/T C₄ LPG PRICE 180 1/T (700 MMSCF/D)

LPG production which was noted above is from 500 MMscf/D, LPG production from bigger size is cheaper than from smaller size.

en de la companya de

*

• _ (

. ..

XIV.1 Construction Cost

380,000 T/Y

86 MM%

86 MM $_{\odot}$ x $\left(\frac{559.15 \text{ T/Y}}{380,000 \text{ T/Y}}\right)^{0.7} = 112.70 \text{ MM}$

= 120.59 MM 7% up

120.59 ММ% - 559.15 Т

= 215.67 %T

Note: * come from TABLE-15 (ATTACH.21)

 $63.83 \text{ Kg/H} \times 24 \text{ h} \times 365 \text{ days} = 559.15 \text{ T/Y}$

XIV.2 Operation Cost

XIV.2.1 Natural gas price 1.5 \$/MMBTU

	9	on Construction Cost	°\$/T
1)	Depreciation (20 years)	5	10.78
2)′	Interest for Construction	on 5	10.78
3)	Tax and Insurance	2	. 4.31
4)	Maintenance	3	6,47
5)	Administration	2	4.31
6)	Overhead	S	4.31
٠	Total	19	40.96

Note: Construction cost is 215.67 L/T

XIV.2.2 Interest of working capital

Same as X.1.4, B
Namely, it is 1.68 T/Y.

XIV.2.3 Utility

Same as X.1.4, C

Namely, it is 40.84 %/T.

.

.

• •

XIV.2.4 Labor cost

16 persons x 4 shifts = 64 persons

Salary and other expense is assumed as 200 %/Man.Month.

200 ϕ /Man. Month x 64 persons x 12 months \div 559.150 T/Y = 0.27 ϕ /T

XIV.2.5 Operation cost

		5/T	
(1)	Expense	40.96	(change)
(2)	Interest for Working Capital	1.68	
(3)	Utility	40.84	
(4)	Labor Cost	0.27	(change)
	Total	83.75	

XIV.2.6 Total operation cost minus the cost of the dew point control unit

 $83.75 \ \$/T \ x (100 - 15)\% = 71.19 \ \$/T$

XIV.3 Cost of Natural Gas Charge

$$50.94^*$$
 MMBTU/T x $\frac{1.5}{MMBTU}$ = 76.41

Note: * come from TABLE-20 (ATTACH.28)

XIV.3 Expenditure

Selling charge (including shipping) is assumed as 3% on total expenditure.

Expenditure is as follows:

$$147.6 \ \$/T \times (1 + 0.03)\% = 152.03 \ \$/T$$

XIV.5 Revenue

Same as X.5

Namely, it is 167.1 \$/T

XIV.6 Profit and Loss

167.1
$$\$/T - 152.03 \ \$/T = 15.07 \ \$/T$$

15.07 $\$/T \div 152.03 \ \$/T = 9.0\%$
In this case, profit is 15.07 $\$/T$.

XV COMPARISON OF LPG PRODUCTION FROM 500 MMSCF/D AND 700 MMSCF/D (NATURAL GAS PRICE 1.50 \$/MMBTU)

•	Expenditure \$/T	Revenue \$/T	Profit \$/T	Profit %
From 500 MM/D Natural Gas	155•59	167.1	+10.31	6.6
From 700 MM/D Natural Gas	152,•20	167.1	+15.07	9.9

LPG from 700 MMscf/D natural gas is 4.59 \$/T more profit, but LPG production unit can not be bigger than 700 MMscf/D unit.

XVI CONCLUSION

(1) Export LPG State

When LPG is exported, LPG must be separate C_3 LPG and C_4 LPG. And LPG state is not high pressure and atmospheric temperature must be low.

(2) Expected LPG Production and LPG to Export to Japan

When Thailand intends to export the products and by products (energy) from Siam Gulf natural gas, Japan expects to import the products and by products on proportion to the share hold.

Thai natural gas production from 700 MMscf/D natural gas from pipeline and quantity of imported LPG in Japan are as follows :

Thai LPG Production from Matural Gas (from pipeline)

.in 1983

3.040x 10³T

(after 1988

5,590x 10³T)

Japanese LPG Bomestic Production and Import

Domestic in 1983

5,917 x 10³T

Import in 1983 (forecast) $11,589 \times 10^{3}$ T/ , 66.2 % $17,506 \times 10^{3}$ T 100.0 %

Total

Japanese import LPG will be grown up every year.

Japanese LPG market is good for Thailand.

(3) LPG price

I estimate the Thai LPG cost from natural gas as of 1979 before the 2nd oil crisis.

Calculation conditions of Thai LPG cost from natural gas CASE-2 are as follows :

Natural gas production

500 MMscf/D

Natural gas price'

2.063 \$/MMBTU

C3 LPG price

160 \$/T

C_L LPG price

180 *↓/*T

C3 LPG : C4 LPG

64.5: 35.5

Regults are as follows:

C3 LPG and C4 LPG average FOB price

167.1 \$/T

Thai LPG selling price (cost) from natural gas

197.8 \$/T

Loss

30.7 \$/T

Note: come from XI.7

come from TABLE-17 (7) (ATTACH.25)

ZV:

Programme Commence in the second ٠.

*

,

According to the above table, the price of natural gas from pipeline is very high compared with other natural gas produced country, so Thai LPG cost from natural gas is very high.

In accordance with circumstances of Thai economics, the export LPG price must be higher than fuel oil price based on calorific power. If export LPG price is lower than fuel oil price, LPG can not export, because of big loss money.

As the above table, at present status, Thailand can not produce and export LPG from natural gas.

(4) Possibility of LPG export

LPG FOB Kuwait price has been going up rapidly.

in 1979

April	- June	July	on Spot		
C ₃ LPG	126.5 \$/T	160 \$/т	150 - 200		
C ₄ LPG	127.5 \$/T	180 \$/Т	300		

The above mentioned price up is not according to crude oil price up, to tight of LPG market.

Therefore, it seems that LPG price will be going up more than 200 $\mbox{$b/T$}$ in very near future.

(5) Export port condition

In case of Japan, the port condition and vessel are as follows:

- Port condition
 75,000 M³ cargo is acceptable.
- 2. Tanker size

50,000 בעים

LOA (length over all) 225 M

Draft 12 M

÷ (*

3. Cargo lot: about 43,000 T

43,000 T of one LPG lot is following days production.

in 1982 -62 days

in 1984 37 days

in 1990 28 days

4. Fleight from Bangkok

Bangkok to Japan 15 \$/T

Comments

- (1) If NGOT exports LPG to Japan, he negotiates export port conditions with Japanese importer to fit production scale and port condition of Thailand.
- (2) According to NGOT plan, the gas processing unit is about 20 Km far from sea-shore. It is too far for low temperature and very low pressure LPG transportation by pipeline. It is better that the gas processing unit is very close to sea-shore.

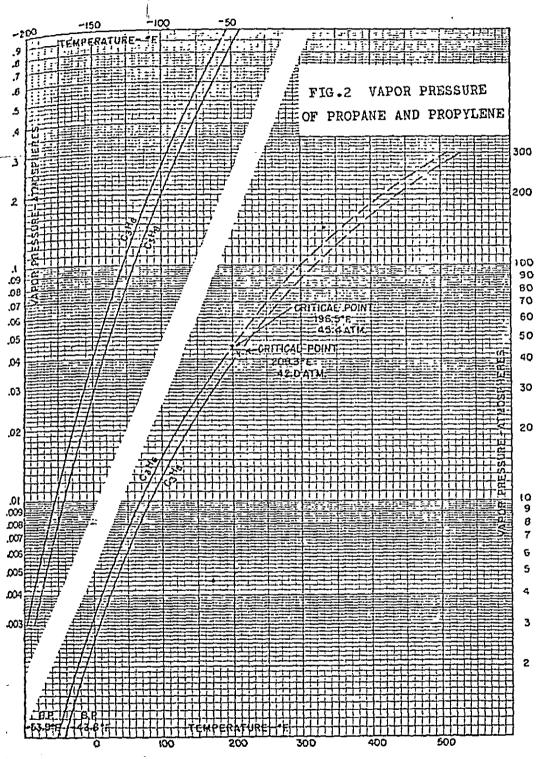
Even if, LPG is not exported, LPG must be transported by tanker in inland, tanker transportation fee is cheaper than other way.

- (3) C_4 LPG export price is higher than C_3 LPG export price, so C_4 LPG from the refineries is exported and C_3 LPG from natural gas is back to the refineries on same heating value. Therefore, Thai LPG specification is needed to change when more C_4 LPG is exported.
- (4) I assumed that the cost of dew point control is 15% on LPG production expense, it has big influence on LPG cost, so the cost of dew point control must be calculated exactly.

Summary

(1) Present LPG FOB price is not feasible for Thai LPG production from natural gas, but in near future LPG FOB price would be going

• -


up and it will become feasible. NGOT should be watched a movement of LPG FOB price.

(2) Natural gas processing unit should be moved to sea-shore.

end.

	Propane	(Propylene) Propene	n-Butane	i-Butane	(i-Butylene) i-But@ne	1-Butene	t-But@ne	c-Butene
Molecular Formular	с ₃ н ₈	с ₃ н ₆	с ₄ н ₁₀	с ₄ н ₈	с ₄ н ₈	С ₄ Н ₈ .	C ₄ H ₃	С4 Н8
Molecular Weight	44.1	42.1	58.1	56.1	56.1	56.1	56.1	56.1
Boiling Point (1 atm) (°C)	-42.1	-47.1	-0,5	-11.7	-6.3	-6.9	0.9	3.7
Melting Point (1 atm) (°C)	-187.7	-185.3	-138.4	-159.6	-185.4	-140,4	-105.6	-138.9
Specific Gravity Liquid (15 °C) (g/ml)	0.508	0.523	0.585	0.563	0,601	0.601	0.610	0.627
Gas (15 °C) (Kg/m ³)	1,895	1,805	2.538	2.529	2.443	2.442	-	2.442
Vapor Pressure (37.8 °C) (Kg/cm ² A)	13.4	15.9	3.6	5.0	4.4	4.4	3.5	3.2
Gross Heating Value (25 °C) (Kcal/Kg)	12.020	11,690	11,830	11,800	11,580	11,510	11,530	11,550
(15.6.°C) (Kcal/m ³)	22,830	21,120	30,050	29,850	28,300	28,110	28,170	28,210
(60 °F) (BTU/lb)	21,650	21,040	21,290	21,240	20,840	20,720	20,750	20,780
Net Heating Value (25 °C) (Kcal/Kg)	10,930	10,940	7 10,8 9 0	10,840	10,830	10,760	10,780	10,800
(15.6 °C) (Kcal/m ³)	21,000	19,750	.27,730	27,540	26,450	26,260	26,330	26,360
(60 °F) (BTU/Kg)	19,930	19,690	19,670	19,610	19,490	19,370	19,400	19,430
Latent Heat (3.P. 1 atm) (Kcal/Kg)	10,1.8	104.6	92.1	87.6	93.4	94.2	96.9	. 99.5
Sensible Heat Gas) (25 °C) (Kcal/Kg °C)	0.399	0.368	0.401	0.398	0.365	0.380	0.374	0.336
Sensible Heat Liquid (25 °C) (Kcal/Kg °C)	0,602	0.611	0.575	0.582	0.549	0,558	0.544	0.537
Explosion Limit (in air) (vol %)	2.1 - 9.5	2.0 - 10.0	1.8 - 8.4	1.8 - 8.4	1,6 - 9,3	· •	-	
Ignition Temperature (in air) (°C)	481	548	441	544	443	443	,	
Gas Specific Gravity (15.6 C, 1 atm) (air = 1)	1.550	1.477	2.076	2.068	1.998	1.997	-	1.997

;		

, , , , , , , , , , , , , , , , , , ,	•	
· · · · · · · · · · · · · · · · · · ·		The second secon
-		Company of the first
		The state of the s
, , , , , , , , , , , , , , , , , , ,		The last of the second of the
	· · · · · · · · · · · · · · · · · · ·	
•	,	And the second section is
, * ;		The state of the s

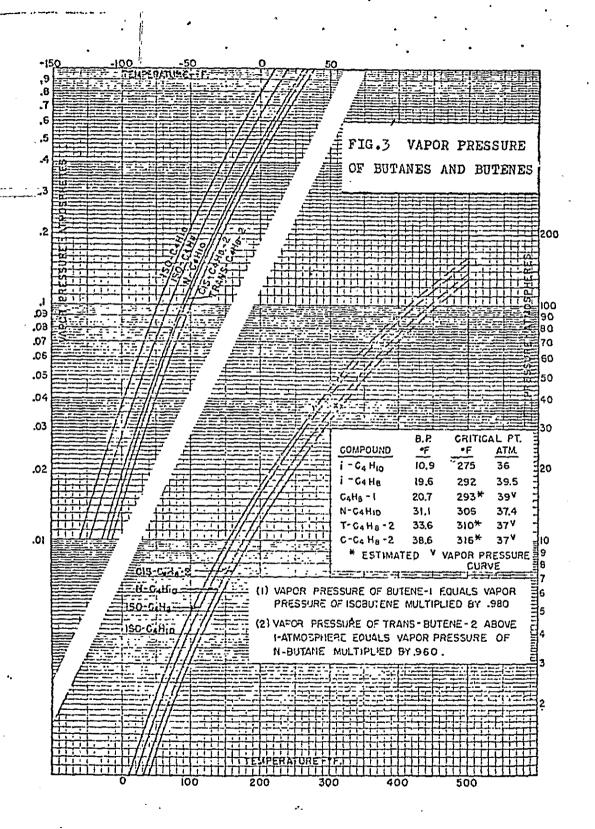


TABLE-2

THAI INDUSTRIAL SPECIFICATION OF LPG

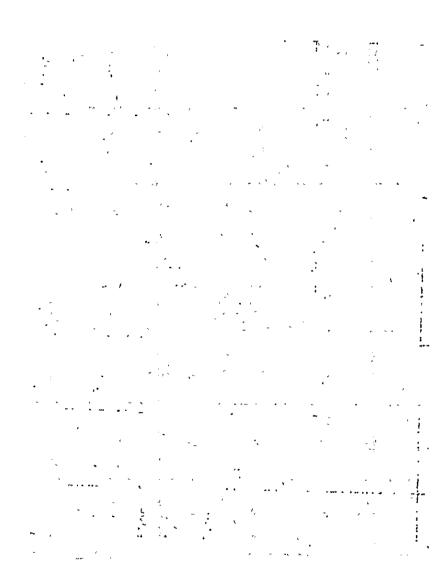
		,		
· LIQUEFIED PETROLEUM GAS		LIMITS	TEST METHODS	:
MMR PRESSURE @ 37.8°C	MIN	4.22	ASTM-D-1267	
75 BOILING POINT °C	MAX	. 2.2	ASTM-D-1837	
DEME AND HEAVIERS VOL % (VAPOR)	MAX	2	ASTM-D-2163	
WIER STRIP CORROSION	MAX	COPPER NO.1	ASTM-D-1838	
MAL SULPHUR GRAINS/m ³	MAX	0.05	ASTM-D-1266	:
SIDUE AFTER EVAPORATION 100 ml	NAX	0.05	. ASTM-D-2158	
O NATER				•
30R		Marketable `		

 $c_{36}: c_{46} = 3:7 \text{ (by volume)}$

	-		JIS	K2240 - 1972			
Item			-	Component	(% Low)	,	
No.	Vapor Pressure	Sulfur	Ethane +	Propane +	Butanes +	Butadienes	Usage
1	(40 °C) (Kg/cm²)	wt.8	Ethylene	Propylene	Butenes		
٠, ۴	15.8 Max.	0.02 Max.		•uIM 06	, , , , , , , , , , , , , , , , , , ,	1.	Industry, Motor car, and Others.
∩ 1	15.8 Max.	0.02 Max.		50 Min. 90 Max.	1		
2	12.7 Max.	0.02 Max.		Í	40 Min. 90 Max.	1	Industry, Motor car, and Others.
ተ	5.3 Max.	0.02 Max.	1	1	90 Min.	1	
^ c #	15.6 Max.	0.015 Max.	8 Max.	60 Min. 80 Max.	1	2 Max.	Household (general use)
Ö	15.6 Max.	0.015 Max.	8 Max.	80 Min.	ī	2 Max.	Household (for very cold weather area in winter)
-		,			Ŷ	,	

•		
	غیر د م	.
· ·		1
-		
	· ·	A A A A A A A A A A A A A A A A A A A

TABLE-4 STANDARD OF SPECIFICATION OF LPG
IMPORTED TO JAPAN


	C ₃ LPG	C ₄ LPG
	Mol%	Mol%
c ₂	2.0 Max.	-
c ₃	96.0 Min.	-
C _I	2.5 Max.	95.0 Min.
C ₅		2.0 Max.

	· ^	ر مارد المراجعة المراجعة الم	ij.		,						-,	
1985		444	254		6,461	4,853	1,345	1,786	1,041	∞	15,494	
1981		396	227		6,195	4,592	1,163	1,769	1,038	∞.	14,765	
1980		356	204		5,937	4,328	1,070	1,753	1,034	∞	14,130	
1979		317	182		5,690	4,093	, 981	1,736	1,050,	80	13,538	
1978		292	167		5,453	3,627	222	1,707	226	∞	12,549	
1977		540	138	,	5;275	3,067	ħ29	1,677	932	- -	11,626	
1976	3	. 223	128	,	5,265	2,750	269	1,655	806	5.	11,173	
1975	-	197	123		. 066. 4	2,438	563	1,558	998	&	10,423	
1974		188	108		4,833	2,131	€64	1,448	1,069	10	9,990	
1973	,	195	112	5°	4,616	2,009	401	1,495	1,194	50	9,765	
1972		147	* 78-	à	4,208	1,586	407	1,506	1,087	30	8,824	
	IN THAILAND	10 ³ K1	103፹	IN JAPAN	Household	Industry	Town gas	Motor Car	Petrochemical Raw Material	Export	Total	

* Specific gravity G_{SS} 0.5155 x 30% = 0.15465 0.04

Note:

147 x 0.573 = 84

, 	;	i	-	<u>`</u>	• •	-	;			·			• • •	,	
6001	5067		- 5,917 -	11,589	17,506		6,288	4,439	1,485	1,523	1,814	1,576	0	17,265	1.,954
0001	2041		5,735	10,922	16,657		060'9	4,218	. 1,243	1,597	1,795	.1,553	40	16,537	2,713
	1701	-	5,483	10,456	15,969		5,898	4,010	996	1,436	1,776	1,522	9	15,650	1,593.
000	1900		5,244	9,413	14,657		5,712	3,798	509	1,344	1,748	1,471	40	14,621	1,274
	Total		4,930	9,259	14,189		5,532.	3,618	465	1,177	1,725	1,564	40	13,921	1,238
1979	2nd hal t		2,610.	4,714	7,324		3,128	1,853	135	726	928	750	20	7,489	1,238
	lst holf		2,320	4,545	6,865		7,404	1,765	330	451	6¥8	614	. 50	6,433	1,402
1978) 		4,668	8,232	12,900		5,340	3,316	344	942	1,721	1,271	£	12,975	02.6
YEAR	รบุคคุม หายเล่น	รมายกร	. DILSEWOG.	TROGNI	TOIAL	GN/KEG	nosmord use	"INDUSTRIAL FUEL"	HENDE DIVIDENT.	TOWN GAS	AUTOMOBILE FUEL	CHENTONT PEDDSTOCK.	TADETE	ror	INVENTORY

			<u> </u>		LINDS	1,000%/T		,
YEAR	. 1971 .	1972	1973	761	1975	1976	1977	*
SAÜDI ARABIA	1,003	1,101	.1,750	2,654	2,799	3,464	3,911	; '
AUSTRALIA	10 10	152	1,029	1,008 .	1,097	78011	1,255	
KUWAIT	1,158	1,1249	1,303	929	. ; . 82 83	853	266	•
-	575	678	771	767	702	708	702	
CANADA	25.0	267			 !?!	546	. 241	
Venezusla	7	. 259	103	27			. 26.	
OTHERS	· · · · · · · · · · · · · · · · · · ·	. 130	75		. 23.3	. 27.	180	
TOTAL	5,621 .	4,425	5,214.	5,678	5,9113	6,570	7,314	
	_	,			-		-	

TABLE-7

JAPANESE LPG IMPORT BY SUPPLY SOUSCES

•	•			:			. •		•		•	
. 2261	1,363	1,238	919	859	565	267.	. 527	. 397.	579	242	722	7,260
11974	1,385	1,297	673	572	530	501	414	354	507	250	398	5.5688
1975 .	1,332	1,146	. 638	432	. 248	. 468	. 727	. 286	. 222 .	. 252	. 328	5,911
: 4261	1/135	1,473	652	767	335		572	147.	. 200	. 235	. 237	5,780
1973	777	19761	372.	598	227	181	616	. 201	225	<u> </u>	212	5,178
1973	681	1,326	293	511	191	217	. 455	. 150 ·	119	20 80 80	. 195	125.45
COMPANY	NIPPON PET, GAS	RITSUL & BRIDGESTONE LIG. GAS GROUP	IDEMITSU SEKIYU	MITSUBISHI LIQ. GAS	GENERAL SEKIYU	MARUZEN SEKIYU	KYODO SEKIYU .	ESSO	SHELL	NIKKO LIQ. GAS	OTHERS	TOTAL

CONSTRUCTION SOCCO SOCCO SENDAL NITSUBLEN KASHIMA K	CHIBA CHIBA MITSUI CHIBA CHIBA MITSUI TEPCO 112,CDD 3 74,0DD 3 74,0DD 3 74,0DD 3 74,0DD 22,CCD TOWNG GAS	KAWASAKI KAWASAKI GENERAL MITSUI 35,000 56,000. Efectric Power C
BEING PLANNO BEING PLANNO NANNO NITSUI 60,000	NITSUI ZAJODO ZAJODO SONKA WITSUI ZAJODO STEEL SODE STEEL SODE STEEL SODE STEEL SODE SOJODO S	CHITA HEKINAN KAMASAKI IDEMITSU SHELL MIHON OIL 180,000 E 78,000 64,000
SAKAI SAKAI NIEON OIL 152,000	SAKAI GENERAL 90,500 I 25,000 I 25,000 I 25,000 I 25,000	UDESHT SUMETONS WETAL ASJCOO ASJCOO
2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		32,000 32,000 1789 7000 7000 7000 7000 7000 7000 7000 7

Tokyo Area (Kei-Yo Area)		Osaka Area (Ken-Hanshin Area)	Pea)
Chiba (Nitsui + Marubeni)	80,000	Osake (Mitsui)	24,000
Chiba (Idemitsu)	000'09	Kakegawa (Kobe Steel	. ;
Anegasoki (Tokyo Electric		Sakai (Nitsui)	000.08
Power Co.)	.74,000 (under construction)	" (Nihon Oil)	152,000
Toyosu (Tokyo Electric		" (Maruzen)	53,000
Power Go.)	22,000	•	50,000 (under construction)
Ichihara (Mitsui/Mobil)	180,000 (under construction)	(General)	000.06
Sodegaura (ESSO)	131,000		25.000 (under construction)
Negishi (Tokyo Gas)	30,000	" (Iwatani)	80,000 (under construction)
Kawasaki, (Mitsui)	36,000	Wakavama (Sumitono	TOTAGE TARREST TOTAGE T
" (General)	36,000	- Metal)	48,000
" (Kyodo)	40,000	Kobe (Nitsubishi)	000,009
(Nihon Oil)	94,000		
Total	753,000	Totel	702,000
		Others	716.000
Nagoya Area (Chukyo Area)			
Hekinan (Shell)	78,000 (under construction)	Grand Total	2,429,000
Chita (Idemitsu)	180,000		TTAC
Total	258,000		H.14
	_		

TABLE-10 LPG IMPORT TERMINAL CAPACITY BY COMPANY

	5 4	· .		. T			
o Mitsui Group	· · · · · · · · · · · · · · · · · · ·	-		388,000			-
: •			,	12,000	(under	construc	tion)
Mitsui/Mobil	,	:	1	180,000	(и	11)
o Idemitsu	•		-	240,000			
*		•	•	<u>8</u> 0,000	(under	construc	tion)
Idemitsu etc.	, ÷		-	32,000	("	ır)
Nohon Pet Gas	J		•	216,000			
Mitsubishi			•	165,000	^		
Kyodo		•		147,000			
ESSO .	r 1			131,000			
General	-			126,000			
		. 1	,	25,000	(under	construct	ion)
Tokyo Electric	Power Co.	· ·		118,000			
• .	1	ı		74,000	(under	construct	ion)
Nikko Liq. Gas	•		•	94,000		-	
Kobe Steel	_		-	60,000			
Maruzen				53,000		,	-
	, ,	:		30,000	(under	c^nstruct:	ion)
Tokyo Gas	, ,		b	52,000			
Sumitomo Metal	, -	_		48,000			
Iwatani	C ₁ ×	-		80,000	(under c	construct:	ion)
Shell -	J- /),		-	78,000	(11	ţţ)
-	, ~. , .			• •			•

2,429,000

,		1	· · · · ·	•		•		· .		AT	TACH.16	
2261	1,783.	1,521	1,1348	1,273	1,042	986 .	764	631	10.00	10.	1,829	12,665
. 1976	1,790	17345	1,157	1,317	912	975 .	7.7	209	067	303	in co	11,454
. 1975	.12612	1,214	10174	1,092	83.22	921	783	561	488	250	279.1	4,10,749
1974	1,7416	1,219	4,330	1,092	793	788	512.	463	422	200	1.978	10,511.
1973	1,178	1,209	1,437	666	775	761	to es	725	, 40ò	205	1,940	10,177
1972	1,031.	1,193	1,298	ю 10	767	740	7.01	360	227	202	1.794	9,385
COMPANY	Nippon Per GAS	Toel IIsu	MINSUI BRIDGESTONE GROUP	0000X	NET SUBTRIET	MARUZEN	: : : : : :	71588	GENERAL	SHOWA	988	TOTAL

- ـ مّ ,	-	in .								·····.			····
	"(51)	24(14)	T/H	6.2	10.5	12.5	12.9	12.9	20.3	20.3	23.2	23.2	23.2
, ,	(+1)	(31)+379×58.12 ² (41)+2.2	10 ² 1b/H	. 13.6	23.1	27.6	38.4	38.4	6.44	2.44	51.0	51.0	51.0
ς _h	(3:)	(21)×98%	10 ³ scf/H	88.9	150.4	179.8	250.6	250.6	291.6	291.6	332.6	332.6	332.6
,	(21)	(11)×379÷10 ³	10 ³ scf/H	2.06	153.5	. 183.5	255.7	. 255.7	297.5	297.5	339.4	339.4	539.4
	(11)	Gas From Pipeline	Lb-Mol/H	. 239.3	6.404	484.8	8.479	8.479	785.0	785.0	895.4	895.4	895.4
	(5)	(4);2.2	T/H	10.7	17.9	21.5	29.9	29.9	34.6	34.6	39.5	39.5	39.5
	(4)	(3)÷379×44.09 ⁴²	10 ³ Lb/H	23.6	39.4	47.3	65.7.	65.7	76.2	76.2	86.8	86.8	86.8
c ₃	(3)	(2)×90%* ³ (3)	10 ³ scf/H	203.2	358.9	4.904	564.8	564.8	655.1	655.1	745.7	745.7	7.547
	(2)	(1)x379÷10 ³	10 ³ scf/H	225.8	376.5	451.6	627.5	627.5	6 222	6.727	828.6	828.6	823.6
-	(1)	Gas From Pipeline	Lb-Mol/H	595.7	4.566	1,191.6	1,655.7	1,655.7	1,920.6	1,920.6	2,186.2	2,186.2	2,186.2
	-	-	-	1981	1982	-1983	1984	1985	1986	1987	1988	1989	1990

Note: *1 Fluor's report

*2 Molecular Weight

 \mathcal{S} Yield of $\mathcal{C}_{\mathcal{S}}$ and $\mathcal{C}_{\mathfrak{t}}$ recovery

 	<u> </u>	· · · · ·	<u> </u>						· · · · · ·
(01)	6) ÷ (6)	Bru/scf (Gross)				2,522			3,988
(6)	(8) × (4)	MM BTU	1.21	91.64	2.72	95.57	121.12	3.03	151.15
(8)	٠	Bru/lb (Gross)	22,300	21,650	21,265*4	-	21,265*4	21,020,5	
(2)	(6)x0.0267*3	NM ²	18•2	971.4	22.3	1,011.9	2.166	20.2	1,011.9
(9)	(2) × 379 ²	scf	682.2	36;384.0	8.55.8	37,900.0	37,142.0	758.0	37,900.0
(2)	(3) (4) × 0.4536 ¹	Kg	24.55	1,920.10	58.00	2,002.65	2,583.60	65.45	2,649,05
(4)	(2) × (3)	1.0	54.12	4,233.02	127.86	4,415.00	5,695.76	144.29	5,840.05
(3)	Molecular	Weight 1b	30.068	460*44	58.120		58.120	72.146	
(2)	Adjusting Molecular	Mol %	1.8	0*96	- cu cu	10	98.0	2.0	100•0
(4)	Specification	Mo1. %	C, 2.0 Max.	c _z 96.0 Min	C4 2.5 Max.	Total	c ₄ 95.0 Min.	C,5 2.0 Max.	Total
			C, LPG	···			Par to		

Note: data from TABLE-14-1 and-2 (ATTACH.20-1 and-2).

460
 1 sef = 0.0283 $\times \frac{460}{460+(60-32)}$ = 0.0267

いるというないから	(19) (17)x0.1746*9 (17)x0.1744	(Net)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3	6,363		· •• •	•	5,545	= 19,427 BTU/Lb	A	TTACH •19-22
A STATE OF THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUM	6	(Gross)		*	6,113		• •	-	7,309	- ·i·	.631	0.625 0.577 0.6177
	(15)x0.5556*8 Kcal/Kg	(Net)	,		11,072				10,909	Pentanes (19,500 + 19,450 + 19,330)	Pentanes	= 1,481.695 = 40.428 <u>0.574</u> 6
,	(14)x0.5556*8 Kcal/Kg	(ego to)	·		12,027				14,308	.		0.563 0.5735 2,583.60 x 0.5735 65.45 x 0.6177 2,649.05 mean
	(12)÷(4) BTU/1b		,	-	19,928		,		19,654	19,640 bru/ld	, Butanes	ນ ກັນ ເຂົ້າ
	(9)÷(4) BTU/1b (Gross)		,		21,647	,		רממ ער	2004	Kg. ≡	•	9.182 975.441 33.263 5083
(44)	(12) BE		-	-	2.321		-	3.025	2012	Butanes (19,670 + 19,610) 1 BTU/Lb = 0.5556 Kcal/Kg Specific Gammital	0.508	74- =
(12)	(4) x (11) MMBTU	1.11	94,36	2.51	87:98	111.86	2.80	114.66		*6 Butanes *8 1 BTU/Lb *9 Specific		
(11)	BTU/1b (Net)	62 20,420	C ₃ 19,930	c4 19,640*6	Total	C4 19,640*6	C ₅ 19,429*7	Total		Notes		. 5° 5° 5

TABLE-14-1	·	PHYS	PHYSICAL	CONSTANTS		OF H	DROC.	HYDROCARBONS	,			
	Ponyora	MOLEC.	BOILING	MELTING		DENSITY	-	CRITIC	CRITICAL CONSTANTS	NA TS	HEAT OF COMBUST G 60°F-BTU	OXBUST BTU/
-		WT.	j.	,	"API	Sp Gr 00,000	Lb/gal	→ Å	Αtm	G/ml	Gross	Z Z
ORMAL PARAFFINS	CH,	16.0	-258.9	-290.5	340	0.30		116 3	8 3 4	183	293	
Ethane	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30.1	-128.0 -1 43.8	-207.8 -305.7	247	.374	E 4.	+ 90.1 206.3	\$ C C C	223	22,300	200 200 200 200 200 200 200 200 200 200
Donten		* 04			;;	t 00.		90	4.75	222	21,290	19,67
Hexane		86.2	155.7	- 139.5	81.0	23	5.25	386.5	32.6 29.6	232	21,070	19.50
Octane		114.2	209.2	- 131.1 - 70.3	24.8 6.6.5	20.58	5.73 5.89	512.5	26.8 24.6	234	20,670	19,167
Nonane	C,II,	128.2	303.4	9.43 1	£.5	727	0.01	612¢	23	1	20,530	19.050
Undecane	i ii	156.3	381.4	1 2 1 2 1 2 1	58.7	700	1.5	5 50	in S	1	20,480	19,020
Dodecane	Cullin	170.3	421.3	+ 14.7	50.4	753	6.27	35.	18.	1	20,450	18.98(
SO-PARAFFINS Isobutane	Cillie	58.1	10.9	-255.0	120	.563	4.69	27.5	98	766	7076 16	0,19
2-Methylbutane (Isopentane).	Cillin	72.1	82.2	-255.5	0.40	.625	5.20	369.5	32.4	234	21,030	19,450
. pentane)	Cilin	72.1	49.0	+	103	.597	4.97	3294	:. <u>.</u>	· 	20.960	19.330
2-Methylpentane (Isohevane). 3-Methylpentane	Calla	86.2 86.2	140.5	-245 -180	83.5 80.0	.659	5,48	437	30.	.11	20,750	19,210
hexane)	C,H,	56.2	121.5	-147.6	84.9	.654	5.44	415	31.	i	20,700	19,160
isopropy I)	Callia	80.3	130.4	-198.8	81.0	.688	5.54	155	31	.241	20,740	19,200
2-Methylhexane (Isoheptane).	SE CO	100 100 100 100 100 100 100 100 100 100	194.1	180.8	75.7	.683	5.68	490	28*	ı	20,650	19.140
3-Ethylpentane.		100.5	200.2	181.5	99.8	202	28.5	508	25 25 25 25 25 25 25 25 25 25 25 25 25 2	11	20,660 .	19,150
2.3-Dimethylpentane	Calla	100.2		1	2 02	200	5 8	3 00	2 6	l	20,000	19,090
2,4-Dimethylpentane	CHIL	100.1 100.2	176.9	-183.1 -211.0	77.2	608	9.5.8	477	28.5		050,02 050,03 050,03	19,130
		_						: :	ׅ֚֝֡֜֜֝֜֜֜֜֝֜֜֜֜֜֜֜֜֜֓֓֓֓֜֜֜֜֜֓֓֓֓֜֜֜֜֜֓֓֡֓֡֜֜֜֜֡֓֡֓֡֜֜֜֡֡֡֡֡֡		7	11.6

,

2.2.3-Trimothylbutane (Trip-		_		L	-	-	-					
rano)	CHIL	100.2	177.6		73.1							
2-Methylheptana (Isodelane)		114.9	_			_		\$ 80.	29 5	1	20,620	19,110
	Callar	114.2	245.4	3 J	05.6	703	2. % 2. %	549	26.	1	20,570	19,080
Isobutyl)	C. II.	114,2	1 228 4	130	-		—.		ç	l 	20,570	19,080
4.2,4-1 rimothylpentane ("Iso- Octane")					 	869.	5.81	230	25	0.237	20,550	19,060
OLEFINS	<u> </u>	114.2	210.0	-161.2	. E	.096	5.79	515	27•	1	20,540	10.050
Ethylene,	C311.	28.0	-154.7	-272.5	27.1							
Propylona	Cill	42.1	د د ا		_	?		3	5	:23	21,549	20,290*
Butene-1	511		3 6	_	<u>-</u>	_	4.35	196.5	45.4	.233	21,040	19.690
Cis-Butene-2.	J.	56.1	38.6		<u> </u>	9.69	2.00	293	30.		20.8404	19 4004
Isobutene	::::::::::::::::::::::::::::::::::::::	50.1	33.6	157.7			0.22	200	<u>ا</u> د	1	20,780	19,430
	113	60.1	19.6			-8	4.93	202 5	37.	1 8	20,750	19,400
Cis. Pantage 9	ilio C	70.1	86.2		_	:			3.3	1,7	20,720	19,370
Trans-Ponteng-2.		70.1	98.0	-290.2	82.0	3.8	5.38	382	36.	I	20,710	19,360
2-Mathelbude .		7.0	8.03	_		.654 1	3.41	396	3 .	1	20,660	19,310
3-Methylbutene-1	CHI!	70.1	88 0	i	8.1.5	55	14		3 2	1	01-9'0:	19,290*
	7.11	. 02					2	20	36	J	20,610	19,260
2-Methylbutene-2.	CHI	70.1	101.2	-292.0 -207.0	92.0 80.0	.633	5.27	363	37.	1	20,660	19.310
Hexene-1	Cellin	84.2	146.4	-218 0	44		3	- - -	,	1	20,570	19,220
Trans-Hexene-2		<u>2</u>	155.4	-231.0	73.9	820.	2.5	163	÷ ;	1	20,450	10,100
Cis-Ilexene-3	: : :::	3 3	154.2	-207.0	7.5.7	683		2017	-:	1	20,420	19,070
Trans-Hoxene-3	CHE	2 2	153.7	-211.0	75.4	.684	5.60	1 21	- -	11	20,100	19,050
DIOLEFINS		!			70.0		5.68	473	÷	11	20.420	19,070
Propadieno	C,II,	40.1	- 30.1	-213.0	100				_		2	000.61
Butadieno-1,2	CH		+ 50.5	2	3 5	cuo.	36.	219	 0,	1	20,880	19,930
· · · · · · · · · · · · · · · · · · ·	CIII.		24.1	-164 0	0.0	623	20 t		1	1	1	i
Cin-Pentadiane-1,2,	110	08.1	112.8	2	5	_	1	200		!	20,230	19,180
Trans-Pentadieno-1.3		08.1	111.6	1	3.17	3 6	08.0	420	1	1	i	1
Pontadione-14	: :	5		1	26 0		5.08	4 10	1 1	-	20,150	19,010
3-Methylbutndiene-1,2	- - - - - -	2.5	78.9	-231.0	81.3	. 065	5,53	350	_		001.00	19,040
Z-fitthylbutadiene-1,3 (Iso-				0.181-	82.0		5.70	410	-	. <u>. </u>	20,320	19,210
	1000	1.89	83.3	-231.0	74.8	.686	5.71	395			_	!
* Most of combustion as a gas-	in as a gas—otherwise as a liquid.	s n liquic		Critical temperaturashoiting	Dernture.	1,011				-	20.060	18,950

* Hast of combustion as a gas-otherwise as a liquid,

'Critical temperature-boiling point correlation.

* Vapor pressure eurve or correlation.

į

* Mixture of cis- and trans-isomors

-

					1		
		c ₃ :	LPG			C ₄ LPG	
	c ₂	c ₃	С ₄	Total	C ₄	c ₅	Tot
	10 ³ Lb/н	10 ³ Lb/H	10 ³ Lb/H	10 ³ Lb/Н	10 ³ Lb/н	10 ³ Lъ/н	10 ³ 1
1981 ^{*1} (Kg/H)	0.44	23.6 ^{*1}	0.54	24.58 ^{*3} (11.17)	13.06 ^{*2}	0.27	ر 13. 6.0)
1982 (Kg/Ḥ)	0.74	39:4	0.90	41.04 (18.65)	22.20	0.45	(10.
1983 (Kg/H)	0.89	47.3	1.08	49:27 (22:40)	26.52	o ì 54	27. (12.
1984 (Kg/H)	1.23	65.7	1.51	68.44 (31.11)	36.89	0175	37 (17
1985 (Kg/H)	1.23	65.7	1-51	68.44 (31.11)	36.89	0175	3.7 (17
1986 (Kg/H)	1.43	76.2	1.75	79.38 (36.08)	42.95	0.88	43. (19.
1987 (Kg/H)	1.43	76.2	1•75	79.38 (36.08)	42.95	0.88	43. (19
1988 (Kg/H)	1.63	86.8	1.99	90.42 (41.10)	49.01	1.00	50 (22
1989 (Kg/H)	1.63	86.8	1.99	90.42 (41.10)	49:01	1.00	50 (22)
1990 (Kg/H)	1.63	86.8	1.99	90.42 (41.10)	49.01	1.00	50 (22)

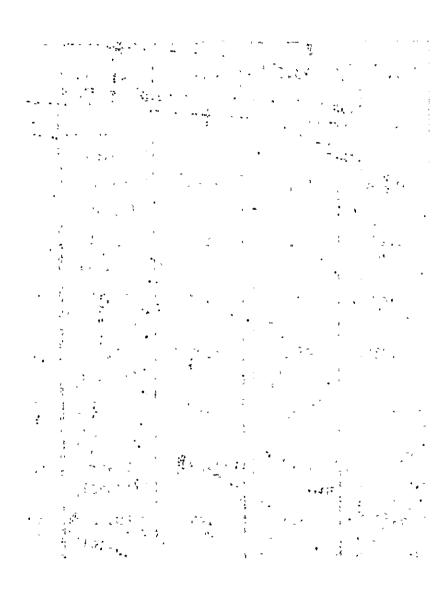
Note: *1 come from TABLE-12 (4) (ATTACH.18)

*2 TABLE-12 (4') (ATTACH.18) minus C₄ in C₃ LPG of this Table 13.6 - 0.54 = 13.06 Calculation way *3

c₂ 1

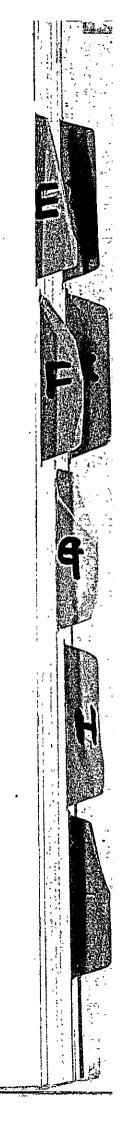
С₄

C3 AND C4 LPG PRODUCTION (LB/H) OF EACH YEAR TABLE-15


		. c ₃	LPG	-		C ₄ LPG				Total		
	с ₂ 10 ³ Lb/н	с ₃ 10 ³ lb/н	с ₄ 10 ³ Lb/н	Total 10 ³ Lb/H	с ₄ 10 ³ lb/н	с ₅ 10 ³ lb/н	Total 10 ³ Lb/H	с ₂ 10 ³ Lb/н	^С 3 10 ³ Lb/н	с ₄ 10 ³ Lb/н	с ₅ 10 ³ lb/н	Total 10 ³ Lb/H
1981 ^{*1} (Kg/H)	0.44	23.6*1	0.54	24.58 ^{*3} (11.17)	13 ¹ 06 ^{*2}	0.27	13.33 ^{*4} (6.06)	0.44	23.6	13.6	0.27	37•91 (17•23)
1982 (Kg/H)	0.74	39:4	0.90	41.04 (18.65)	22.20	0.45	22.65 (10.30)	0.74	39•4	23.1	0.45	63.69 (28.95)
1983 (Kg/H)	0.89	47.3	1.08	49:27 (22:40)	26,52	0154	27.06 (12.30)	0.89	47•3	27.6	0154	76.33 (34.70)
1984 (Kg/H)	1.23	65.7	1.51	68.44 (31.11)	36 . 89	0475	37.64 (17.11)	1•23	65•7	38.4	0.75	106.08 (48.22)
1985 (Kg/H)	1.23	65.7	1.51	68.44 (31.11)	36.89	0 •75	37•64 (17•11)	1.23	65•7	38,4	0.75	106:08 (48:22)
1986 (Kg/H)	1.43	76.2	1.75	79.38 (36.08)	42.95	0.88	43.83 (19.92)	1.43	76.2	44.7	0.88	123•21 (56•00)
1987 (к _б /н)	1.43	76.2	1.75	79.38 (36.08)	42.95	0.88	43.83 (19.92)	1.43	76.2	44.7	0.88	123.21 (56.00)
1988 (Kg/H)	1.63	86.8	1.99	90.42 (41.10)	49.01	1.00	50.01 (22.73)	1.63	86.8	51.0	1.00	140.43 (63.83)
1989 (Kg/H)	1.63	86.8	1.99	90.42 (41.10)	49:01	1.00	50.01 (22.73)	1.63	86.8	51.0	1.00	140.43 (63.83)
1990 (Kg/H)	1.63	86.8	1.99	90.42 (41.10)	49.01	1.00	50.01 (22.73)	1.63	86.8	51.0	1.00	140.83 (63.83)

Calculation way

Note: *1 come from TABLE-12 (4) (ATTACH.18)


*2 TABLE-12 (4') (ATTACH.18) minus C4 in C₃ LPG of this Table
13.6 - 0.54 = 13.06

*3	c ₃ L		* Ļ		C ₄ LPG Lb/H÷0.98	
		/H÷0•96 '				Lb/H
	%	Lib/H.		%		•
c2	1.8	. 0.44	c ₄	98	. • • •	13.06
c ₃	96.0	2360	c ₅	2	. :	0.27
c ₄	2.2	0.54			•	
	100-40	24.•58		100	•	13 • 33

REMARK	NATURAL GAS PRODUCTION MM scf/D	150	300	350	500	500	009	. 009	200	200	200	
	10 ³ ፹/፻	150,93	253.60	303.97	422,40	422,40	490.56	490.56	559.15	559.15	559.15	•
Total	T/D	413.52	694*80	883.80	1,157.28	1,157.28	1,344.00	1,344.00	1,531.92	1,531,92	1,531,92	
	T/H*	17.23	28.95	34.70	48.22	48,22	56.00	26.00	63.83	63.83	63.83	
	10 ³ T/Y	53.08	90,23	107.75	149,88	149.88	174,50	174.50	199-11	199.11	1199.11	
\mathtt{c}_{4} LFG	T/D	145.44	247.20	295.20	410.64	49.014	80°824	478.08	545.52	545.52	545.52	
	T/H	90*9	10.30	12.30	17.11	17.11	19.92	19.92	22.73	22.73	22.73	
	10 ³ T/Y	97.85	163.39	196.22	272.52	272.52	316.06	316.06	360.04	360.04	360.04	
. C ₂ LPG	T/D	268.08	9.644	537.6	746.64	746.64	865.92	865.92	04.986	04.986	04.986	
	T/H*	11.17	18.65	22.40	31.11	31,11	36.08	36.08	41,10	41,10	41.10	
		1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	

Note: * from TABLE-15 (ATTACH.21)

